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Resumo

Neste trabalho, efetua-se um estudo numérico das propriedades de suspensões
magnéticas gás-sólido em escoamentos puramente viscosos.

Primeiramente, investiga-se a sedimentação de uma partícula esférica isolada em
fluido newtoniano, quando esta é suficientemente pequena para que forças brownianas
sejam consideradas mas o número de Reynolds seja desprezável. Deste modo, conseguimos
definir os parâmetros físicos apropriados para o escoamento de suspensões. As simulações
para este caso simples ainda possibilitam a validação do método numérico para o cálculo
da variância das flutuações de velocidade e a função autocorrelação destas flutuações em
uma ampla faixa de números de Péclet e Stokes.

Em seguida, efetuam-se simulações de Dinâmica de Langevin para integrar as
equações governantes dos movimentos translacional e rotacional de 𝑁 partículas mi-
crométricas suspensas em um fluido puramente viscoso, incluindo interações hidrodinâmi-
cas, para suspensões magnéticas e não-magnéticas.

O primeiro objetivo desta dissertação é investigar o comportamento de curto tempo
das flutuações de velocidade das partículas em suspensão, em termos da variância das tais.
Também é apresentado um estudo do comportamento de longo tempo dessas flutuações
de velocidade, calculando sua autocorrelação no tempo e a difusividade das partículas,
que foi observada anisotrópica.

Sabendo a variância das flutuações de velocidade a partir das simulações numéri-
cas, determinou-se a pressão de partículas em termos da fração volumétrica de partículas,
sendo esta relação tipicamente uma quantidade de fechamento em modelos de sistemas
particulados complexos, como leitos fluidizados. Este cálculo baseado em princípios físicos
é uma contribuição inédita deste trabalho, visto que modelos de pressão de partículas são
geralmente heurísticos.

Detalhes do tensor de flutuações de velocidade hidrodinâmicas e sua importância
para a pressão de partículas e a viscosidade de partículas são discutidos. As simulações
mostram clara evidência da pressão de partículas resultando do distúrbios ao escoamento
produzidos pelas interações hidrodinâmicas na suspensão diluída.

Finalmente, examinaram-se os efeitos das interações magnéticas dipolares e do
campo magnético externo sobre as propriedades supracitadas. Notou-se que as interações
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magnéticas dipolares produzem uma recorrelação das flutuações de velocidade, causando
um coeficiente de difusão divergente. Até onde se sabe, este também é um resultado
inédito.

Palavras-chave: suspensões magnéticas, flutuações de velocidade, pressão de
partículas, difusividade, interações hidrodinâmicas, interações magnéticas dipolares, sed-
imentação.
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Abstract

In this work, we undertake a numerical study of properties of magnetic gas-solid
suspensions of micron-sized particles sedimenting in creeping flow.

First we investigate the sedimentation of an isolated spherical particle in a Newto-
nian fluid when it is small enough for Brownian forces to be considered but the Reynolds
number is negligible, in order to define the appropriate physical parameters of our sus-
pension flows. The simulations for this simple case allow us to validate the numerical
approach for calculating velocity fluctuations variance and autocorrelation function over
a wide range of Péclet and Stokes numbers.

Next, we perform Langevin Dynamics simulations to integrate the equations gov-
erning the translational and rotational motions of 𝑁 micron-sized spherical particles sus-
pended in a viscous fluid, including hydrodynamic interactions between the particles, both
for non-magnetic and magnetic suspensions.

The first particular interest of this dissertation is to investigate the short-time
behavior of the particle velocity fluctuations in this suspension in terms of its variance. We
also present a study of the long-time behavior of these velocity fluctuations by calculating
their time autocorrelation functions and the anisotropic particle diffusivities.

Knowing the particle velocity variance from the numerical simulations, we deter-
mine the particle-phase pressure in terms of the particle volume fraction, that usually
being a closure quantity required in models of complex particulate systems such as flu-
idized beds. This calculation based upon physical principles is a novel contribution of this
work, since models of particle-phase pressure are typically heuristic.

Details of the hydrodynamic velocity fluctuations tensor and its importance to
determine the particle-phase pressure and particle viscosity are discussed. The simulations
show clear evidence for the particle pressure arising from the flow disturbance produced
by hydrodynamic interactions in a dilute suspension.

Finally, we examine the effect of magnetic dipolar interactions and the intensity
of the external field over these properties. We find out that magnetic dipolar interactions
produce a recorrelation of velocity fluctuations, yielding a divergent diffusivity coefficient.
To the best of our knowledge, this is also a novel result.
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Keywords: magnetic suspensions, velocity fluctuations, particle-phase pressure, diffusiv-
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1 Introduction

1.1 Overview of Magnetic Suspensions

In this work we investigate some properties of non-colloidal magnetic suspensions
in sedimentation via numerical integration of their equation of motion. We take a partic-
ular interest in gas-solid suspensions, though the formulation is more general in nature
and may be applied to liquid-solid suspensions. In this context, we firstly make a brief
exposition of magnetic suspensions in general, their distinctive physical characteristics
and technological uses.

A noteworthy consequence of the insertion of particles in a fluid, even when they
are not magnetic, is the alteration of properties of the resulting suspension. For example,
the effective viscosity of an infinitely dilute1 statistically homogeneous suspension was
shown by Einstein (1956) to be enhanced by the carried particles, whose presence imposes
an additional energy dissipation. Furthermore, when the particles are close enough to
alter the flow around their neighbors, the effect of the particle configuration comes into
play resulting in further change of properties, e.g. in the work of Batchelor and Green
(1972). This conclusion opens up a possibility to tune the properties of a suspension to a
given application. Magnetic suspensions fulfill that exact purpose. They are comprised of
particles which react to an external field, thereby rendering it suitable for the control of
their configuration and consequently also the rheological2 properties of the suspension.

Magnetic suspensions can be classified according to their properties and applica-
tions. Ferrofluids were the first of these suspensions to be studied, under the theoretical
setting of the work of Rosensweig (1969). They are made of ferromagnetic nanometric
particles, typically suspended in oil based, organic or inorganic fluids, such as ester, water
and kerosene, respectively. A physically remarkable feature of these fluids is a tendency
to align along imposed magnetic field lines, as seen in Fig. (1). In a shear flow setting,
this mechanism culminates in a competition between rotation imposed by the flow and
orientation with the magnetic fields lines, promoting additional energy dissipation in what
is called the magnetoviscous effect (ROSENSWEIG; KAISER; MISKOLCZY, 1969).
1 That is, where pairwise interactions between particles are negligible.
2 Rheology is the study of deformation and flow of matter (MORRISON et al., 2001), typically in the

realm of complex fluids, aiming to the characterization of its properties.
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Figure 1 – Ferrofluid over glass under the action of a magnet (Gregory F. Maxwell, 2006).

Their firstly designed applications center around their capacity of presenting ele-
vated yield stresses when submitted to external magnetic fields, thus being fit to sealing
applications, as rotary shaft seals (RAJ; MOSKOWITZ, 1990). More recent applications
include damping of loudspeakers, illustrated by Fig. (2), currently used by prominent
companies like Sony. It consists in hindering resonance peaks of the diaphragm motion,
smoothing transient responses in frequency changes and enhancing heat transfer in the
coil cooling (RAJ; MOSKOWITZ, 1990). Medical applications also exist, such as magnetic
hyperthermia, a treatment for cancerous tumor oblation based on the heat generated by
a ferrofluid subject to an oscillatory magnetic field (HIERGEIST et al., 1999).

Figure 2 – Loudspeaker damping with ferrofluids (Sony, 2014).

Magnetorheological fluids are liquid-solid suspensions of micrometric magnetizable
particles and they are so called due to the sharp change in their rheological properties
with the application of an external magnetic field. Indeed, they transition from liquid-
like to solid-like states with the application of the field due to the formation of chain-
like structures and more complex coherent structures, so that they will only flow under
stresses above a minimum threshold, called yield stress (BICA; LIU; CHOI, 2013). Some
technologies based upon this physical feature are damping devices to control mechanical
vibrations, such as car brakes and seismic shock dampers in buildings (BICA; LIU; CHOI,
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Figure 3 – Magnetorheological fluid seismic damper (Purdue University, 2010).

2013), depicted in Fig. (3).

Gas-solid magnetic suspensions are also often encountered in practice, chiefly in
the stabilization of fluidized beds by an external magnetic field, as first proposed by
Rosensweig (1979). Fludized beds are suspensions of millimeter-sized particles carried up-
wards by an injected fluid, whose purpose is to perform chemical reactions at elevated
rates, in view of the high velocities which these particles attain. Their performance is low-
ered by the formation of large voids of particles in the carrier fluid, thence the motivation
for flow control strategies which inhibit this behavior. This particular stabilization scheme
works by the formation of complex structures of linked particles due to magnetic dipolar
interaction and a tendency to align with the external field, hence restraining the flow
and controlling void fractions formation. Fig. (4) shows voidage waves in a non-magnetic
fluidized bed.

Figure 4 – A fluidized bed. Traveling voidage waves indicated by the arrows. Courtesy of
the Vortex Lab-UnB.

Yet, a seldom investigated scenario, both from the theoretical and applied view-
points is that of micron-sized ferromagnetic particles immersed in a gas, a dual regime in
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which the inertia of the particles should often be taken into account although the inertia
of the carrier fluid is negligible. Foreseeable applications of this physical system abound,
even more so with the freshly arisen interest in microfluidics devices. Moreover, since the
non-inertial regime of the fluid is linear, analytical methods of solution of its equation
of motion are available, enabling simpler methods to determine the motion of the par-
ticles, which apply the available theoretical machinery of microhydrodynamics to avoid
numerically solving the fluid phase equations.

1.2 Literature Review

In view of our interest in the hydrodynamical aspects of motion, both for an
isolated particle and then for a collection of interacting particles, we firstly remark some
of its aspects, then list some contributions from papers in magnetic and non-magnetic
suspensions in order to specify and justify the subarea of magnetic suspensions examined
in this dissertation.

The sedimentation of isolated particles in fluids has long arisen the interest of
the scientific community for its rich dynamics, ensuing a great number of renowned works
from early on, e.g. the quadratic drag formula of Newton (1687) and the solution of Stokes
(1851) for a falling sphere in creeping flow. The interaction between particle and the fluid,
which is governed by the non-linear Navier-Stokes equation, may give rise to intriguingly
erratic motion, cf. (ERN et al., 2012). In fact, this problem is not completely solved and
there have been many works lately concerning the solution of the equation of motion
for the sedimentation of an isolated particle in a fluid for finite Reynolds numbers, sub-
ject to different circumstances, such as a Basset force (SOBRAL; OLIVEIRA; CUNHA,
2007), hydrodynamic drags given by particular drag formulas (FERREIRA; CHHABRA,
1998), anistropy of the particle shape (MOHAZZABI, 2010) or non-Newtonian fluids
(CHHABRA; SOARES; FERREIRA, 1998; JAYARAMAN; BELMONTE, 2003).

In the linear regime of low Reynolds numbers, collisions of the mesoparticle with
the fluid particles result in Brownian fluctuations and induce a diffusive process (EIN-
STEIN, 1956). Primordial works as that of Uhlenbeck and Ornstein (1930) helped es-
tablish a solid knowledge of this process. This proper understanding of the motion of
individual particles is the first step to describing suspensions. However, the complexity of
the dynamics of a suspension is far greater than that of an isolated particle since in the
latter, the presence of a particle disturbs the flow, which in turn modifies the path of the
others. Thus, this hydrodynamic interaction between particles stems displacements from
their original streamlines upon eventual encounters, yielding a collective diffusive behav-
ior at times much larger than the one it takes for a particle to fall through its own radius
(RALLISON; HINCH, 1986). Therefore, a complex interplay between hydrodynamic and
Brownian fluctuations befalls.
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The analysis of such systems by analytic methods has been fruitful in very dilute
regimes, where only pairwise interactions are accounted, e.g. Batchelor’s calculations of
the average velocity and viscosity of these suspensions (BATCHELOR, 1972; BATCHE-
LOR, 1976). In that context, two-body problems describe properly the effects of interac-
tions and have been used to calculate transport properties (CUNHA; HINCH, 1996). In
contrast, numerical methods are applicable to wider volumetric fraction regimes and are
amenable to the insertion of physical mechanisms without major alterations. Many contri-
butions have been made in this manner, e.g. in colloidal suspensions (BRADY; BOSSIS,
1988; LADD, 1993; CUNHA et al., 2002; CUNHA; SOUSA; HINCH, 2002; PADDING;
LOUIS, 2004), ferrofluids (GONTIJO; CUNHA, 2015), magnetorheological suspensions
(MOHEBI; JAMASBI; LIU, 1996; MELLE et al., 2002; BOSSIS et al., 2011; ROURE;
CUNHA, 2018) and magnetic fluidized beds (WANG et al., 2013).

Nevertheless, some works numerical focus on the regime of negligible particle in-
ertia, thus there is still room for the study of its effect over macroscopic properties. An
investigation of this influence could be paramount in attempts to reconcile the variance
of velocity fluctuations of non-magnetic suspensions determined by numerical simulations
(KOCH, 1994; CUNHA et al., 2002) and analytic calculations (CAFLISCH; LUKE, 1985)
with that observed in experiments (NICOLAI; GUAZZELLI, 1995), under the claim that
the inertia of the particles could balance the statistical weight fluctuations in the suspen-
sion (CUNHA, 1997), which induces convective currents. Effects of hydrodynamic inter-
actions, considered in this work, are even more often disregarded. This is an important
contribution of this study.

These velocity fluctuations also give rise to a hydrodynamic fluctuations stress
tensor, analogously to turbulence, whose isotropic part is associated to a particle-phase
pressure. Several works in the literature have used a suitable choice of the particle pressure
as a function of the particle volume fraction to investigate stability of fluidized beds (HAR-
RIS; CRIGHTON, 1994; DURU et al., 2002; SUNDARESAN, 2003; CUNHA; SOBRAL;
GONTIJO, 2013; SOBRAL; HINCH, 2017). In fact, the resulting models are not based in
a method of calculating particle pressure from first principles. Batchelor (1988) appears
to be the first who proposed some physical basis, suggesting that particle pressure may
be associated to particle velocity fluctuations or particle self-diffusivity in low Reynolds
numbers. A study of fluctuations and particle pressure in a homogeneous sedimenting
gas-solid suspension based on kinetic theory and numerical simulations for concentrated
suspensions of moderated Stokes number showed particle velocity fluctuations to be signif-
icantly anisotropic (KOCH; SANGANI, 1999). A crucial step in determining the particle
pressure is to predict the magnitude of the particle velocity fluctuations. In the absence of
an imposed shear flow, the velocity fluctuations of non-Brownian, non-magnetic particles
arise solely due to the hydrodynamic interactions among the particles.

Furthermore, the magnetic gas-solid suspension dual regime where the inertia of
the fluid is negligible, as opposed to that of the particles, is still feasible for micrometric
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particles, and a sensible calculation assuming typical values for its parameters shows that
even Brownian motion may still be sensibly retained. Indeed, as shown in Tab. (1), the
Stokes number, St, and Péclet number, Pe, which respectively quantify particle inertia
and Brownian fluctuations, both present moderate non-negligible values.

Table 1 – Typical parameters of magnetic gas-solid suspensions of micron-sized particles.
𝜌𝑠 is the particle density, 𝜌 the fluid density, 𝜂 the fluid viscosity, 𝑎 the par-
ticle radius, 𝑔 the gravitational acceleration, 𝑘

𝐵
Boltzmann’s constant, 𝑇 the

temperature, St Stokes’ number, Re Reynolds’ number and Pe Péclet’s number.

𝜌𝑠 (kg/m3) 104

𝜌 (kg/m3) 1.2
𝜂 (Pa.s) 1.8× 10−5

𝑎 (𝜇m) 1
𝑔 (m/s2) 9.81
𝑘

𝐵
(J/K) 1.38× 10−23

𝑇 (K) 298
St 0.05
Re 8× 10−5

Pe 100

1.3 Scope of the Work

The main goal of this work is the description of the short and long-time behavior
of the hydrodynamic velocity fluctuations tensor in a dilute magnetic gas-solid suspension
under conditions of high Péclet number and small Stokes numbers. The relevant macro-
scopic properties such as the variance of velocity fluctuations, the velocity autocorrelation
functions, their associated diffusivities and the particle-phase pressure are determined
by our Langevin Dynamics computer simulations. While this is generally well-known, it
should be appreciated that a study involving the prediction of particle pressure based on
the direct calculation of particle velocity fluctuations in a suspension is still an open ques-
tion. This is a particularly valuable approach to the study of non-Brownian suspensions,
where the computation of the above mentioned properties by direct numerical simulations
of particle velocity fluctuations seems to be still scarce.

In order to attain these objectives, the dissertation structure is organized follows:

∙ Chapter 2: We describe the theoretical foundation of the models for the physical
mechanisms inserted in the simulation;

∙ Chapter 3: We carry out numerical simulations of an isolated non-magnetic particle
in sedimentation and compare their results to the analytic solution;

∙ Chapter 4: We describe the methodology of many-body simulations by extending
the procedure employed in the single particle case;
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∙ Chapter 5: We simulate the motion of suspensions of massive magnetic and non-
magnetic particles in sedimentation. In the latter case, we investigate the effect
of hydrodynamic interactions and particle inertia over the velocity fluctuations,
whereas in the former we examine the effects of dipolar interactions and the external
field;

∙ Chapter 6: We present results and simulate particular settings which are related
to potential applications. There, our interest is qualitative;
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2 Theoretical Fundamentals

This chapter presents an overview of the theoretical background of this work, in
what concerns the main forces and torques of Brownian, hydrodynamic and magnetic
origin. These are the principal mechanisms which influence the collective motion of the
low Reynolds number magnetic suspension here investigated.

We start by deriving general equations of fluid motion under the framework of
continuum mechanics. Then, we restrict our analysis to flows free of fluid inertia and
obtain expressions for the forces which they exert upon immersed particles. Lastly, we
present Maxwell’s equations, specify them to the magnetostatic regime and employ them
to determine the generalized forces due to external magnetic fields or magnetic dipolar
interaction.

2.1 Balance Equations of a Fluid

2.1.1 Continuum Hypothesis and Motion

Continuum mechanics is concerned with the derivation of equations of motion for
continuous media, whose properties are described by fields. This description is based upon
the continuum hypothesis, i.e., the assumption that matter may be regarded as continuous,
rather than discrete. Physically, this is tantamount to ascribing local properties to the
continuum, which are in fact averages of molecular properties over a volume sufficiently
large to contain enough particles to render this statistic significant, yet smaller than spatial
macroscopic variations due to the flow (BATCHELOR, 2000). The volume at which these
averages converge is called sensitive volume.

For instance, the density of a fluid is defined as the limit

𝜌(𝑥) = lim
𝛿𝑉𝑥→𝛿𝑉 *

𝑥

1
𝛿𝑉𝑥

∫︁
𝛿𝑉𝑥

∑︁
𝑖

ℳ𝑖𝛿(𝑥𝑖 − 𝑦) 𝑑𝑦 (2.1)

as the sampling volume 𝛿𝑉𝑥 tends to the sensitive volume 𝛿𝑉 *
𝑥 . Here, 𝛿(𝑥𝑖−𝑦) is the Dirac

delta distribution and 𝑦 is a dummy position vector which sweeps the sampling volume,
as illustrated by Fig. (5). In this idealization, the volume is composed of concentrated
point-masses ℳ𝑖 each located at the position 𝑥𝑖. The presence of the Dirac delta as
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weighting factor ensures that volume integrals over regions containing mass points yield
their total mass. Fig. (6) shows how the values of the aforementioned averages typically
vary with the volume over which they are measured.

ℳ𝑖
ℬ

𝛿𝑉 *𝑥

𝑥
𝑦

zoom

𝑥

Figure 5 – Continuum density as the volume average over a sensitive volume 𝛿𝑉 *
𝑥 .

Figure 6 – Dependence of the density on the sensitive volume of the instrument of measure
(BATCHELOR, 2000).

Mathematically, a continuous body ℬ is identified by the set of labels of its parti-
cles, ℬ = {𝑋}. The continuum hypothesis implies that these particles are nondenumer-
able, thus instead of counting them, we map them to a region (a configuration) which
they occupy at some reference time, 𝑉0 (ODEN, 2011). Hence, a motion is described by
a mapping Φ that takes an initial configuration 𝑉0 to a current configuration 𝑉 at a time
𝑡, i.e.,

𝑥 = Φ(𝑋, 𝑡). (2.2)

It should be noted that the continuum hypothesis is not always applicable, since
there are physical settings where volumes which contain sufficient molecules for the con-
vergence of averages of properties are already large enough to capture their macroscopic
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variations. Thus, local properties cannot be defined. This could occur, for example, in
shock waves and in rarefied gases (BATCHELOR, 2000).

The distinction between coordinates of points in space and labels of particles per-
mits two different descriptions of motion: one named Eulerian, which gives properties
as functions of positions in space, e.g. 𝜌(𝑥, 𝑡), and another named Lagrangian, describ-
ing properties as functions of particle labels, 𝜌(Φ(𝑋, 𝑡), 𝑡). Laws of motion in classical
mechanics describe rates of variation of state variables of given particles, i.e., they are
naturally written in terms of derivatives with fixed labels. Therefore, derivatives with a
fixed 𝑋 appear in Eulerian descriptions of motion, and in order to write them only in
terms of fields, we employ the chain rule,

𝐷𝐺

𝐷𝑡
:=
(︃

𝜕𝐺

𝜕𝑡

)︃
𝑋

=
(︃

𝜕𝐺

𝜕𝑡

)︃
𝑥

+ 𝑢(𝑥, 𝑡) · ∇𝐺(𝑥, 𝑡), (2.3)

where the material derivative operator has been defined. There, 𝑢(𝑥, 𝑡) is the velocity
field of the continuum, i.e., the material derivative of the position vector and 𝐺(𝑥, 𝑡) is
an arbitrary tensor field of any rank.

In the following sections, we shall be concerned with the derivation of the equations
of motion for a fluid, which involve time rates of change of integrals over material volumes.
To this end, it is useful to carry out those integrals over the reference configuration using
the mapping (2.2). Since this requires knowledge of the time derivative of the mapping
Jacobian determinant, we finish this section with its deduction. Consider the Jacobian of
transformation (2.2), also referred to as the gradient of deformation in the Lagrangian
description,

ℱ = 𝜕𝑥

𝜕𝑋
, (2.4)

whose coordinates are ℱ𝑖𝑗 = 𝜕𝑥𝑗/𝜕𝑋𝑖. Its material and partial derivatives commute, so
by the chain rule,

𝐷ℱ
𝐷𝑡

= ℱ · ∇𝑢. (2.5)

Now the derivative of the determinant is, by the chain rule,

𝐷 det ℱ
𝐷𝑡

= 𝑑 det ℱ
𝑑ℱ : 𝐷ℱ

𝐷𝑡
. (2.6)

Note that the right-hand side is the inner product of the gradient1 of the determinant of
ℱ and another tensor, so by definition

𝑑 det ℱ
𝑑ℱ : 𝐷ℱ

𝐷𝑡
= lim

ℎ→0

1
ℎ

[︃
det

(︃
ℱ + ℎ

𝐷ℱ
𝐷𝑡

)︃
− det (ℱ)

]︃
. (2.7)

Binet’s theorem yields

det
(︃

ℱ + ℎ
𝐷ℱ
𝐷𝑡

)︃
= det(ℱ) det

(︃
𝐼 + ℎℱ−1 · 𝐷ℱ

𝐷𝑡

)︃
. (2.8)

1 With respect to the coordinates of ℱ .
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Furthermore, by a Taylor expansion,

det
(︃

𝐼 + ℎℱ−1 · 𝐷ℱ
𝐷𝑡

)︃
= 1 + ℎ tr

(︃
ℱ−1 · 𝐷ℱ

𝐷𝑡

)︃
+𝒪(ℎ2). (2.9)

Inserting Eq. (2.5) in Eq. (2.9),

det
(︃

𝐼 + ℎℱ−1 · 𝐷ℱ
𝐷𝑡

)︃
= 1 + ℎ∇ · 𝑢 +𝒪(ℎ2), (2.10)

so Eqs. (2.6), (2.7), (2.8) and (2.10) yield

𝐷 det ℱ
𝐷𝑡

= det ℱ ∇ · 𝑢, (2.11)

called Euler’s second formula.

2.1.2 Reynolds’ Transport Theorem

As priorly stated, we proceed to the determination of material derivatives of inte-
grals over current configurations. In this case, the domain of integration depends on time,
therefore the derivative and integral cannot be commuted. Instead, first we change the
variables of integration, pulling back to the reference configuration. Then, the derivative
and integral commute, that is

𝐷

𝐷𝑡

∫︁
𝑉 (𝑡)

𝐺(𝑥, 𝑡) dV =
∫︁

𝑉0

𝐷

𝐷𝑡
[𝐺(𝑥, 𝑡) det ℱ ] dV0. (2.12)

Applying the product rule for derivatives and Euler’s second formula, (2.11),

𝐷

𝐷𝑡

∫︁
𝑉 (𝑡)

𝐺(𝑥, 𝑡) dV =
∫︁

𝑉0

[︂
𝐷𝐺

𝐷𝑡
+ 𝐺(∇ · 𝑢)

]︂
det ℱ dV0. (2.13)

Rewriting the integral in the current coordinates, we obtain

𝐷

𝐷𝑡

∫︁
𝑉 (𝑡)

𝐺(𝑥, 𝑡) dV =
∫︁

𝑉 (𝑡)

[︂
𝐷𝐺

𝐷𝑡
+ 𝐺(∇ · 𝑢)

]︂
dV, (2.14)

named Reynolds’ transport theorem (REYNOLDS; BRIGHTMORE; MOORBY, 1903).
An useful variation of it may be obtained by recalling the definition of the material
derivative, which yields

𝐷

𝐷𝑡

∫︁
𝑉 (𝑡)

𝐺(𝑥, 𝑡) dV =
∫︁

𝑉 (𝑡)

[︃
𝜕𝐺

𝜕𝑡
+∇ · (𝐺𝑢)

]︃
dV, (2.15)

and applying the divergence theorem,

𝐷

𝐷𝑡

∫︁
𝑉 (𝑡)

𝐺(𝑥, 𝑡) dV =
∫︁

𝑉 (𝑡)

𝜕𝐺

𝜕𝑡
dV +

∫︁
𝑆(𝑡)

𝐺𝑢 · �̂� dS. (2.16)

Here, 𝑆(𝑡) is the boundary of the volume 𝑉 (𝑡). We conclude from this equation that the
time rate of variation of a property inside a material volume in motion is due to two
distinct contributions: a local variation inside the volume, and a flux of the property
through the surface.
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2.1.3 Continuity Equation

Now that we are in possession of an expression for time derivatives of integrals
over material volumes, we can start to inquire how the laws governing integral properties
imply equations for corresponding local variables. In the first place, we consider the mass
density of a continuum, 𝜌(𝑥, 𝑡). Its corresponding extensive property is the total mass of
the body, given by

𝑚 =
∫︁

𝑉
𝜌(𝑥, 𝑡) dV. (2.17)

By the principle of mass conservation, it remains constant during the motion in the
absence of chemical reactions or relativistic effects, such that its time derivative is always
null,

𝐷𝑚

𝐷𝑡
= 0. (2.18)

Applying Reynolds’ transport theorem, Eq. (2.14), to Eq. (2.18),∫︁
𝑉

(︂
𝐷𝜌

𝐷𝑡
+ 𝜌∇ · 𝑢

)︂
dV = 0. (2.19)

Note that this result holds for an arbitrary volume 𝑉 . Therefore, under the assumption
that the integrand is continuous, which is sensible for physical flows, the du Bois-Reymond
lemma (PATERSON, 1983) implies that the integrand is null in every point of the domain,
i.e., there results

𝐷𝜌

𝐷𝑡
+ 𝜌∇ · 𝑢 = 0, (2.20)

denominated the continuity equation.

Another useful variation of Reynolds’ transport theorem is obtained by combining
it with the continuity equation. Indeed, for an arbitrary field proportional to the mass
density, corresponding to 𝜌(𝑥, 𝑡)𝐺(𝑥, 𝑡), Eq. (2.14) implies

𝐷

𝐷𝑡

∫︁
𝑉

𝜌(𝑥, 𝑡)𝐺(𝑥, 𝑡) dV =
∫︁

𝑉

[︃
𝐷(𝜌𝐺)

𝐷𝑡
+ 𝜌𝐺∇ · 𝑢

]︃
dV. (2.21)

Deriving the product and using Eq. (2.20),

𝐷

𝐷𝑡

∫︁
𝑉

𝜌(𝑥, 𝑡)𝐺(𝑥, 𝑡) dV =
∫︁

𝑉
𝜌

𝐷𝐺

𝐷𝑡
dV. (2.22)

2.1.4 Balance of Linear Momentum

We derive Cauchy’s equation for the balance of linear momentum, which results
from Newton’s second law applied to the body, i.e., its time rate of change of linear
momentum is equal to the sum of external forces acting over it. Those might be body
forces, 𝐹𝑏, that act from distance, or surface forces, 𝐹𝑠, which act upon contact. Hence,

𝐷𝐿

𝐷𝑡
= 𝐹𝑏 + 𝐹𝑠. (2.23)
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The linear momentum of a continuum element is d𝐿 = 𝜌𝑢 dV, while the body and surface
forces over it are respectively 𝑑𝐹𝑏 = 𝜌𝑏 dV and 𝑑𝐹𝑠 = 𝑡(𝑥, 𝑡; �̂�) dS, where 𝑏 is the body
field per unit mass and 𝑡(𝑥, 𝑡; �̂�) the traction2, so Eq. (2.23) results in

𝐷

𝐷𝑡

∫︁
𝑉

𝜌𝑢 dV =
∫︁

𝑉
𝜌𝑏 dV +

∫︁
𝑆

𝑡 dS. (2.24)

By Cauchy’s hypothesis (ODEN, 2011; BATCHELOR, 2000), the force density is linearly
related to the normal vector to the surface by the stress tensor field, 𝑡(𝑥, 𝑡; �̂�) = �̂�·𝜎(𝑥, 𝑡).
Therefore, applying the conservative version of Reynolds’ transport theorem, Eq. (2.22),∫︁

𝑉
𝜌

𝐷𝑢

𝐷𝑡
dV =

∫︁
𝑉

𝜌𝑏 dV +
∫︁

𝑆
�̂� · 𝜎 dS. (2.25)

In addition, use of the divergence theorem for second-rank tensors permits this equation
to be written entirely in terms of volume integrals,∫︁

𝑉
𝜌

𝐷𝑢

𝐷𝑡
dV =

∫︁
𝑉

𝜌𝑏 dV +
∫︁

𝑉
∇ · 𝜎 dV, (2.26)

whence the localization theorem applies, yielding Cauchy’s equation for the balance of
linear momentum,

𝜌
𝐷𝑢

𝐷𝑡
= ∇ · 𝜎 + 𝜌𝑏. (2.27)

In order to determine the continuum motion, closure equations are required for
the mass density and the stress tensor. We present the particular equations of this kind
for the fluids that concern us in this study. In the case of incompressible flow, the mass
density of the fluid is constant along the motion, then Eq. (2.20) implies

∇ · 𝑢 = 0. (2.28)

Moreover, if the fluid is Newtonian, the deviatoric part of its stress tensor is linearly
related to the symmetric part of the velocity gradient. Since the incompressibility condi-
tion implies the equality of the mechanical pressure and the thermodynamic equilibrium
pressure, the stress tensor is written as

𝜎 = −𝑝𝐼 + 2𝜂𝑑 (2.29)

where 𝑝 is the pressure, 𝜂 is the dynamic viscosity and 𝑑 = (∇𝑢+∇𝑢𝑇 )/2. Consequently,
it follows from the Eqs. (2.27) to (2.29), with the body field being gravity (𝑏 = 𝑔), that

𝜌
𝐷𝑢

𝐷𝑡
= −∇𝑝 + 𝜂∇2𝑢 + 𝜌𝑔. (2.30)

This is the Navier-Stokes equation for a Newtonian incompressible fluid.
2 A surface force density exerted over the fluid.
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2.1.5 Particle Pressure

On a side note, while we are talking about constitutive models, we take the op-
portunity to discuss a central property of our study, the particle pressure. In contrast to
our discussion of continuum mechanics, this quantity arises in the kinetic theory of gases.
There, macroscopic properties are determined via the analysis of the microscopic motion
of particles. We reproduce its derivation of the relation between pressure in gases and the
velocity fluctuations tensor of its particles. It is exactly this link that we mean to provide
by our numerical investigation, by analogy to kinetic theory, thence the importance of
this exposition, based in Chapman and Cowling (1970). A similar analogy is widely used
in turbulence, in the Reynolds decomposition of the Navier-Stokes equations, where the
turbulent fluctuations promote momentum transfer which enters the stress tensor of the
mean flow.

We analyze the exchange of linear momentum in a surface, in order to determine
the forces resulting from this interaction and thereby define a particle pressure. The
number of particles contained in an infinitesimal volume element is given by its number
density times the volume element 𝑛(𝑥, 𝑡) dV. Alternatively, it can be represented using the
velocity distribution of these particles, as d𝑉

∫︀
𝑓(𝑥, 𝑈 , 𝑡) 𝑑𝑈 , where 𝑈 is their velocity

and 𝑓 their probability density function. Similarly, the state space average value of an
arbitrary tensor property of any rank is given by

𝑛⟨𝐺(𝑥, 𝑡)⟩ =
∫︁

𝐺(𝑥, 𝑡)𝑓(𝑥, 𝑈 , 𝑡) 𝑑𝑈 . (2.31)

Now consider a stationary wall d𝑆, illustrated by Fig. (7), impinged by all the
particles contained in the volume d𝑉 = (𝑈 · �̂�) d𝑆 d𝑡. In this case, the total number
of particles which collides against the surface is precisely the amount contained in the
volume,

d𝑆 d𝑡
∫︁

+
(𝑈 · �̂�)𝑓(𝑥, 𝑈 , 𝑡) 𝑑𝑈 , (2.32)

where the symbol + indicates the motion of these particles towards the direction pointed
out by the normal vector, arbitrarily chosen as exterior to the domain of fluid. Analogously,
the number of particles bounced back by the wall is

d𝑆 d𝑡
∫︁

−
(𝑈 · −�̂�)𝑓(𝑥, 𝑈 , 𝑡) 𝑑𝑈 . (2.33)

We assume that there is no condensation or evaporation over the surface, such that the
number of incident particles is equal to that of bounced back. Thus, subtracting Eq. (2.33)
from Eq. (2.32), we get

d𝑆 d𝑡
[︂∫︁

+
(𝑈 · �̂�)𝑓(𝑥, 𝑈 , 𝑡) 𝑑𝑈 −

∫︁
−

(𝑈 · −�̂�)𝑓(𝑥, 𝑈 , 𝑡) 𝑑𝑈
]︂

= 0, (2.34)

or equivalently,
⟨𝑈 · �̂�⟩ = 0. (2.35)
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𝑈d𝑡

d𝑆

�̂�

Figure 7 – Volume occupied by the particles which collide against the wall.

Likewise, the linear momentum before the collision is

d𝑆 d𝑡
∫︁

+
ℳ𝑈(𝑈 · �̂�)𝑓(𝑥, 𝑈 , 𝑡) 𝑑𝑈 (2.36)

and after the collision,

d𝑆 d𝑡
∫︁

−
ℳ𝑈(𝑈 · −�̂�)𝑓(𝑥, 𝑈 , 𝑡) 𝑑𝑈 . (2.37)

On the other hand, the variation of the linear momentum over the surface is equal to the
impulse over it due surface forces, given by

−d𝑆 d𝑡 𝑡(𝑥, 𝑡; �̂�). (2.38)

Accordingly, subtracting Eq. (2.37) from (2.36) and equating the result to (2.38), we have

−d𝑆 d𝑡 𝑡(𝑥, 𝑡) = 𝑑𝑆 𝑑𝑡
∫︁
ℳ𝑈(𝑈 · �̂�)𝑓(𝑥, 𝑈 , 𝑡) 𝑑𝑈 . (2.39)

By Eq. (2.31) and the identity 𝜌 =ℳ𝑛, it follows that

𝑡 = −𝜌⟨(𝑈 · �̂�)𝑈⟩. (2.40)

In terms of the velocity fluctuations, i.e., deviations with respect to the mean, 𝑈 ′ =
𝑈 − ⟨𝑈⟩, this result can be rewritten using Eq. (2.35) as

𝑡 = �̂� · 𝜎𝑝, (2.41)

where
𝜎𝑝 = −𝜌⟨𝑈 ′𝑈 ′⟩ (2.42)

is a stress tensor of hydrodynamic fluctuations, analogous to the Reynolds tensor, relating
the stress to velocity fluctuations. From its isotropic and deviatoric parts, a particle-phase
pressure and a particle-phase viscosity may be defined. Also, note how the form of Eq.
(2.42) is analogous to that of Cauchy’s hypothesis for the traction.

15



In our context of magnetic suspensions far from equilibrium, we define by analogy
a tensor of hydrodynamic fluctuations,

𝜎ℎ = −𝜑𝜌𝑠⟨𝑈 ′𝑈 ′⟩, (2.43)

where 𝜌𝑠 is the density of solid particles and 𝜑 their volume fraction. Indeed, a particle
pressure 𝑝𝑝 has been defined is gas-solid suspensions as (ABADE; CUNHA, 2007; CUNHA,
1997; BATCHELOR, 1988)

𝑝𝑝 = 𝜑𝜌𝑠

3 ⟨𝑈
′ ·𝑈 ′⟩. (2.44)

Moreover, a particle-phase viscosity, which is more seldom explored, may be defined by

𝜂𝑝 = −𝜑𝜌𝑠

�̇�
⟨𝑈 ′

2𝑈
′
3⟩ (2.45)

where �̇� is the shear-rate.

2.2 Microhydrodynamics

A fundamental parameter in fluid flows is the Reynolds number, which informs
their typical ratio of inertial and viscous forces. In our analysis, it is suitably defined with
the particle radius as length scale and its Stokes settling speed as velocity scale as

Re = 𝜌𝑈𝑠𝑎

𝜂
. (2.46)

In the scope of microhydrodynamics, suitable characteristic scales of the flow are

|𝑥| ∼ 𝑎, |𝑢| ∼ 𝑈𝑠, 𝑡 ∼ 𝑎

𝑈𝑠

and 𝑝 ∼ 𝜂𝑈𝑠

𝑎
. (2.47)

In contrast to most common problems in hydrodynamics, the proper scale of the pressure
is given by viscous stresses, since these dominate inertial stress in low-Reynolds number
flows. In terms of these non-dimensional variables, the Navier-Stokes equation becomes

Re
(︃

𝜕�̃�

𝜕𝑡
+ �̃� · ∇̃�̃�

)︃
= −∇̃𝑃 + ∇̃2�̃�, (2.48)

where the modified pressure is 𝑃 = 𝑝− 𝜌𝑔 ·𝑥, tacitly accounting for gravitational effects,
and non-dimensional variables are indicated by tildes.

In the regime under consideration in this work, the suspension of micron-sized
particles is immersed in a slow flow, such that the Reynolds number is low and the inertia
of the fluid may be neglected. Therein, Eq. (2.48) reduces to

−∇𝑃 + 𝜂∇2𝑢 = 0, (2.49)

rewritten in dimensional form, along with the incompressible form of the continuity equa-
tion,

∇ · 𝑢 = 0, (2.50)
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which we repeat here to remind that both equations must be solved simultaneously. This
regime is referred to as creeping flow and its governing equations are the Stokes equations.

In this section, we deduce the equations for hydrodynamic forces and torques in the
aforementioned regime, accounting for the leading order disturbances which the motion
of a particle produces over the others. Our framework is substantiated by the linearity
of the Stokes equations. Since the calculation is somewhat lengthy, we outline in advance
the sequence of addressed topics and their relevance to the matter.

First we present the formal solution of unbounded Stokes flows with a force density,
such as occurs when a particle is immersed in a fluid. Next we specify this solution to
a punctual force, which is then used to construct general integral solutions of Stokes
flows via the reciprocal theorem. With this integral solution, we can determine the force,
torque and stresslet3 over a particle by Faxén’s laws. Then, we show how the velocity
disturbance field produced by a particle can be written as a series in the inverse distance,
via the multipole expansion, and how we can obtain the matrices which linearly relate
the moments of surface traction to dynamical variables of the flow, therefore determining
our hydrodynamic forces and torques.

The presentation of the topics is partially based in Kim and Karrila (1991) and
Roure (2018).

2.2.1 Formal Solution of Stokes Flows

We start by presenting a solution of the velocity field when the fluid exerts a force
density field 𝑓(𝑥) at each point in its domain. Taking it into account, the Stokes equation
acquires the form

−∇𝑃 + 𝜂∇2𝑢 = 𝑓(𝑥). (2.51)

Since the velocity field is solenoidal, the divergence of Eq. (2.51) yields an inhomogeneous
Poisson equation for the pressure field,

∇2𝑃 = −∇ · 𝑓 . (2.52)

Therefore, taking the laplacian of Eq. (2.51) and using Eq. (2.52), we have

∇4𝑢 = 1
𝜂

(𝐼∇2 −∇∇) · 𝑓 . (2.53)

Bearing in mind that the force density may be written as a convolution integral with the
Dirac delta distribution,

𝑓(𝑥) =
∫︁
R3

𝑓(𝑥′)𝛿(𝑥− 𝑥′) 𝑑𝑥′. (2.54)

Eq. (2.53) then reduces to

∇4𝑢 = 1
𝜂

∫︁
R3

(𝐼∇2 −∇∇)𝛿(𝑥− 𝑥′) · 𝑓(𝑥′) 𝑑𝑥′ (2.55)
3 Symmetric part of the first moment of the force over a particle surface.
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and setting
∇4𝐻(𝑥− 𝑥′) = 𝛿(𝑥− 𝑥′), (2.56)

its formal solution may be found to be

𝑢 = 1
𝜂

∫︁
R3

(𝐼∇2 −∇∇)𝐻(𝑥− 𝑥′) · 𝑓(𝑥′) 𝑑𝑥′. (2.57)

Then we proceed to determine its explicit form by calculating (𝐼∇2−∇∇)𝐻(𝑥−𝑥′). To
this end, note that

−∇2
(︃

1
4𝜋|𝑥− 𝑥′|

)︃
= 𝛿(𝑥− 𝑥′), (2.58)

so the solution of Eq. (2.56) is

𝐻(𝑥− 𝑥′) = −|𝑥− 𝑥′|
8𝜋

. (2.59)

by direct integration of the laplacian in spherical coordinates. We accomplish our goal by
applying the aforementioned operator to 𝐻, i.e., Eq. (2.57) is explicitly written as

𝑢 = − 1
8𝜋𝜂

∫︁
R3

𝐺(𝑥− 𝑥′) · 𝑓(𝑥′) 𝑑𝑥′, (2.60)

where the Green kernel is

𝐺(𝑥− 𝑥′) = (𝐼∇2 −∇∇)|𝑥− 𝑥′| = 𝐼

|𝑥− 𝑥′|
+ (𝑥− 𝑥′)(𝑥− 𝑥′)

|𝑥− 𝑥′|3
, (2.61)

also called the Oseen tensor.

2.2.2 Stokes’ Fundamental Solution

This fundamental solution corresponds to a force density located at a point 𝑥0,
physically symbolizing the force exerted over a single particle whose dimensions are neg-
ligible. This is a valuable solution because its simple form may be used to solve arbitrary
creeping flows via the Reciprocal Lorentz’ Theorem, to be presented next. In accordance
to the foregoing discussion, we restrict our attention to the case of a localized density
force, i.e.,

𝑓(𝑥) = 𝐹 𝛿(𝑥− 𝑥0) (2.62)

where 𝐹 is the constant force exerted over the particle. Also, let 𝑟 = 𝑥−𝑥0, 𝑟 = |𝑟| and
𝑟 = 𝑟/𝑟. In this case, Eq. (2.61) yields

𝑢(𝑥) = − 1
8𝜋𝜂

𝐺(𝑟) · 𝐹 . (2.63)

This velocity field is referred in the literature as Stokeslet (KIM; KARRILA, 1991). Other
quantities which characterize the flow are straightforwardly derived. The pressure field
following from Eq. (2.52) is

𝑃 (𝑥) = ∇
(︂ 1

4𝜋𝑟

)︂
· 𝐹 = − 𝑟

4𝜋𝑟2 · 𝐹 . (2.64)
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The velocity gradient calculated from Eq. (2.63) is

∇𝑢 = − 1
8𝜋𝜂𝑟2 [𝐹 𝑟 − 𝑟𝐹 + (𝑟 · 𝐹 )𝐼 − 3(𝑟 · 𝐹 )𝑟𝑟] , (2.65)

such that the corresponding vorticity and stress fields are, respectively

𝜉 = 𝜀 : ∇𝑢 = 1
4𝜋𝜂𝑟2 (𝜀 · 𝑟) · 𝐹 (2.66)

and
𝜎 = 3

4𝜋𝑟2 𝑟𝑟𝑟 · 𝐹 , (2.67)

where 𝜀 is the Levi-Civita alternating third-rank tensor. The vorticity and stress fields of
a point force are called rotlet and stresslet (KIM; KARRILA, 1991). It is convenient to
assign a symbol to the linear operator which produces the stress field, which is, up to a
constant,

𝒯 = 6
𝑟2 𝑟𝑟𝑟. (2.68)

With this notation, we have
𝜎 = 1

8𝜋
𝒯 · 𝐹 . (2.69)

2.2.3 Reciprocal Lorentz’ Theorem

Now we derive the reciprocal theorem of Lorentz (1907), which is the integral form
of Green’s second identity applied to a pair of Stokes flows, (𝑢, 𝜎) and (𝑢′, 𝜎′), defined
in the same region 𝑉 with boundary 𝜕𝑉 . This theorem permits the construction of an
integral representation formula for the velocity field of Stokes flows, as we shall show in
the next section.

For its proof, consider the Stokes equations of both flows,

∇ · 𝜎 = 𝑓 , ∇ · 𝑢 = 0 (2.70)

and
∇ · 𝜎′ = 𝑓 ′, ∇ · 𝑢′ = 0. (2.71)

Note that the constitutive equation for the stress tensor of a Newtonian incompressible
fluid, Eq. (2.29), yields 𝜎 : ∇𝑢′ = 2𝜂 𝑑 : 𝑑′ = 𝜎′ : ∇𝑢, hence the product rule for
derivatives along with Eqs. (2.70) and (2.71) for the divergence of the stress tensors yield
Lorentz’s reciprocal theorem in the differential form,

∇ · (𝜎 · 𝑢′)− 𝑢′ · 𝑓 = ∇ · (𝜎′ · 𝑢)− 𝑢 · 𝑓 ′. (2.72)

Integrating over 𝑉 , using the divergence theorem and the symmetry of the stress tensor,
we obtain the integral form of the theorem, namely∫︁

𝜕𝑉
𝑢′ · 𝜎 · �̂� dS−

∫︁
𝑉

𝑢′ · 𝑓 dV =
∫︁

𝜕𝑉
𝑢 · 𝜎′ · �̂� dS−

∫︁
𝑉

𝑢 · 𝑓 ′ dV. (2.73)
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2.2.4 Integral Representation of Stokes Flows

Now we employ Lorentz’s reciprocal theorem when (𝑢′, 𝜎′) is the fundamental
solution and (𝑢, 𝜎) is an arbitrary non-singular (𝑓 = 0) Stokes flow. Eqs. (2.73), (2.63)
and (2.69) yield

− 1
8𝜋𝜂

∫︁
𝜕𝑉

𝐺(𝑥−𝜁) ·𝜎(𝜁) ·�̂�* d𝑆𝜁 = 1
8𝜋

∫︁
𝜕𝑉

𝑢(𝜁) ·𝒯 (𝑥−𝜁) ·�̂�* d𝑆𝜁−
∫︁

𝑉
𝑢(𝜁)𝛿(𝑥−𝜁) d𝑉𝜁 ,

(2.74)
where d𝑆𝜁 and d𝑉𝜁 denote integrations with respect to the variable 𝜁. Note that we
temporarily denoted the unit normal vector pointing outwards the fluid region by �̂�*.
This was done since in order to describe the flow outside an immersed particle, it is more
convenient to use a normal vector which points outside the particle, thus towards the
fluid. Accordingly, in terms of this vector, �̂� = −�̂�*,

1
8𝜋𝜂

∫︁
𝜕𝑉

𝐺(𝑥− 𝜁) ·𝜎(𝜁) · �̂� d𝑆𝜁 = − 1
8𝜋

∫︁
𝜕𝑉

𝑢(𝜁) ·𝒯 (𝑥− 𝜁) · �̂� d𝑆𝜁 −
∫︁

𝑉
𝑢(𝜁)𝛿(𝑥− 𝜁) d𝑉𝜁 .

(2.75)
By the defining property of the Dirac delta distribution,

If 𝑥 ∈ 𝑉, 𝑢(𝑥)

If 𝑥 /∈ 𝑉 , 0

⎫⎬⎭ = − 1
8𝜋𝜂

∫︁
𝜕𝑉

𝐺(𝑥− 𝜁) ·𝜎(𝜁) · �̂� d𝑆𝜁 −
1

8𝜋

∫︁
𝜕𝑉

𝑢(𝜁) ·𝒯 (𝑥− 𝜁) · �̂� d𝑆𝜁 ,

(2.76)
where 𝑉 is the closure of 𝑉 . Eq. (2.76) is the integral representation of Stokes flows,
which determines the velocity field exclusively in terms of boundary conditions, given the
propagators of the fundamental solution. Therefore, it provides an alternative method to
the solution of the PDEs of motion.

The integral representation assumes a more specific form in the case of immersed
rigid particles, as we now show. To this end, we analyze a doubly connected region of
fluid, illustrated in Fig. (8), which represents the flow around an immersed particle. In
this case, the boundary is composed of two disjoint surfaces, 𝑆𝑝 and 𝑆∞, the first being
the surface of the particle and the latter an imaginary spherical surface of arbitrarily large
radius.

Furthermore, we split the velocity field in two distinct contributions, 𝑢(𝑥) =
𝑢𝐷(𝑥) + 𝑢∞(𝑥), where 𝑢𝐷(𝑥) is the velocity disturbance produced by the presence of
the particle and 𝑢∞(𝑥) is the incident undisturbed flow. By this classification, we should
have 𝑢𝐷(𝑥) → 0 as |𝑥| → ∞ whereas 𝑢(𝑥) → 𝑢∞(𝑥) as |𝑥| → ∞, which motivates us
to define

𝑢∞(𝑥) := − 1
8𝜋𝜂

∫︁
𝑆∞

𝐺(𝑥− 𝜁) · 𝜎(𝜁) · �̂� d𝑆𝜁 −
1

8𝜋

∫︁
𝑆∞

𝑢(𝜁) · 𝒯 (𝑥− 𝜁) · �̂� d𝑆𝜁 . (2.77)

The application of the integral representation to the inner points of the region 𝑉 implies

𝑢𝐷(𝑥) = − 1
8𝜋𝜂

∫︁
𝑆𝑝

𝐺(𝑥− 𝜁) · 𝜎(𝜁) · �̂� d𝑆𝜁 −
1

8𝜋

∫︁
𝑆𝑝

𝑢(𝜁) · 𝒯 (𝑥− 𝜁) · �̂� d𝑆𝜁 . (2.78)
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�̂�

𝑆∞

𝑆𝑝

Figure 8 – Boundary of the creeping flow around a rigid particle.

The first integral which appears in Eq. (2.78) may be interpreted as the velocity field
generated by a distribution of traction 𝜎 · �̂� over the surface 𝑆𝑝 - compare against Eq.
(2.60) - and it is thus denominated single layer, in an analogy to electrostatic potential
theory (KIM; KARRILA, 1991). The second term is likewise called double layer, however
its interpretation is more involved. It can be understood as a distribution of sources or
sinks of intensity 𝑢 · �̂� and an actual double layer of Stokeslets with dipole intensity |𝑢|�̂�
in the direction of 𝑢 (KIM; KARRILA, 1991).

In the case of rigid particles, which is the one addressed in our study, the double
layer term may be shown to be null (KIM; KARRILA, 1991), thus the integral represen-
tation reduces to

𝑢(𝑥) = 𝑢∞(𝑥)− 1
8𝜋𝜂

∫︁
𝑆𝑝

𝐺(𝑥− 𝜁) · 𝜎(𝜁) · �̂� d𝑆𝜁 . (2.79)

2.2.5 Multipole Expansion

An useful representation for the velocity disturbance field of rigid particles is ob-
tained by expanding the Oseen tensor in a Taylor series. Indeed, since4

𝐺(𝑥− 𝜁) = 𝐺(𝑥)− 𝜁 · ∇𝐺|𝑥 + 𝜁𝜁

2! : ∇∇𝐺|𝑥 + · · · , (2.80)

it follows from Eq. (2.79) that

𝑢𝐷(𝑥) = − 1
8𝜋𝜂

[𝐹 ·𝐺(𝑥)−𝒟 : ∇𝐺(𝑥) + · · · ] , (2.81)

4 Note that 𝐺(𝑥−𝜁) = 𝐺(𝑥)+𝜁 ·∇𝜁𝐺|𝑥 + 𝜁𝜁

2! : ∇𝜁∇𝜁𝐺|𝑥 + · · · = 𝐺(𝑥)−𝜁 ·∇𝐺|𝑥 + 𝜁𝜁

2! : ∇∇𝐺|𝑥 + · · ·
since ∇𝜁 = −∇𝑥 by the chain rule.
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where
𝐹 =

∫︁
𝑆𝑝

𝑡 d𝑆 (2.82)

is the force over the particle and

𝒟 =
∫︁

𝑆𝑝

𝜁𝑡 d𝑆 (2.83)

the force dipole. Splitting the dipole into its traceless symmetric, anti-symmetric and
isotropic parts, the velocity disturbance may be written as

𝑢𝐷(𝑥) = − 1
8𝜋𝜂

[︃
𝐹 ·𝐺(𝑥)− 𝑇

2 · (∇×𝐺) (𝑥)− 𝑆 : ∇𝐺(𝑥) + · · ·
]︃

. (2.84)

Note that the isotropic part yields a null contribution, since the Oseen tensor is solenoidal.
There,

𝑇 =
∫︁

𝑆𝑝

𝜁 × 𝑡 d𝑆 (2.85)

is the torque and
𝑆 = 1

2

∫︁
𝑆𝑝

[𝜁𝑡 + 𝑡𝜁] d𝑆 − 1
3

∫︁
𝑆𝑝

𝜁 · 𝑡 d𝑆 𝐼 (2.86)

the stresslet over the particle.

In the case of a single sphere, due to the symmetry of the boundary conditions,
the flow produced by its translation only contains a few terms in the multipole expansion.
Indeed, bearing in mind that the combination of a Stokes force monopole and a degenerate
quadrupole, (︃

1 + 𝑎2

6 ∇
2
)︃

𝐺 = 4
3𝑎

𝐼, (2.87)

suffices to meet the boundary condition of rigid body translation, whereas the torque
term in the multipole expansion meets a boundary requirement of rigid body rotation,
the disturbance field produced by a sphere in rigid body motion is

𝑢𝐷(𝑥) = − 1
8𝜋𝜂

[︃
𝐹 ·

(︃
1 + 𝑎2

6 ∇
2
)︃

𝐺− 𝑇

2 · ∇ ×𝐺

]︃
. (2.88)

2.2.6 Faxén’s Laws

In this section, we derive Hilding Faxén (1924) laws for the force, torque and
stresslet over an isolated rigid sphere in a Stokes flow. Also in this case, the symmetry of
the flow results in a multipole expansion which contains only a few terms, yielding closed
and useful equations.

We start with the integral representation of the velocity disturbance field produced
by the particle, Eq. (2.79). Placing the origin on the sphere centroid, we have that for the
points 𝑥 over the particle surface, the no-slip boundary condition with linear and angular
velocities 𝑈 and Ω, respectively, implies

𝑈 + Ω× 𝑥− 𝑢∞(𝑥) = − 1
8𝜋𝜂

∫︁
𝑆𝑝

𝐺(𝑥− 𝜁) · 𝑡(𝜁) dS𝜁 . (2.89)
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Integrating this equation again, this time with respect to 𝑥, we have
∫︁

𝑆𝑝

[𝑈 + Ω× 𝑥− 𝑢∞(𝑥)] dS𝑥 = − 1
8𝜋𝜂

∫︁
𝑆𝑝

[︃∫︁
𝑆𝑝

𝐺(𝑥− 𝜁) · 𝑡(𝜁) dS𝜁

]︃
dS𝑥. (2.90)

Note that the linear and angular velocities of the rigid particle are constant. Furthermore,
the integrals of polyadics 𝑥 · · ·𝑥 containing an even number of terms are null due to the
sphere symmetry. Also, interchanging the order of integration on the right-hand side,

4𝜋𝑎2𝑈 −
∫︁

𝑆𝑝

𝑢∞(𝑥) dS𝑥 = − 1
8𝜋𝜂

∫︁
𝑆𝑝

[︃∫︁
𝑆𝑝

𝐺(𝑥− 𝜁) dS𝑥

]︃
· 𝑡(𝜁) dS𝜁 . (2.91)

We profit further from the sphere symmetry by performing Taylor expansions of
the ambient velocity field and the Oseen tensor about the center of the sphere and the
point 𝜁, respectively:

𝑢∞(𝑥) = 𝑢∞(0) + 𝑥 · ∇𝑢∞|0 + 𝑥𝑥

2! : ∇∇𝑢∞|0 + · · · (2.92)

and5

𝐺(𝑥− 𝜁) = 𝐺(𝜁)− 𝑥 · ∇𝜁𝐺|𝜁 + 𝑥𝑥

2! : ∇𝜁∇𝜁𝐺|𝜁 + · · · . (2.93)

Then, we apply Eqs. (2.92) and (2.93) to Eq. (2.91). We remind that integrals of odd rank
polyadics 𝑥 · · ·𝑥 are zero and remark the following integral:

∫︀
𝑆𝑝

𝑥𝑥 dS𝑥 = 4𝜋𝑎4 𝐼/3. Also,
note ∇2𝑛𝑢∞ = 0 and ∇2𝑛

𝜁 𝐺 = 0 for 𝑛 greater than 1, which follow from Stokes equations.
Hence,

4𝜋𝑎2𝑈 − 4𝜋𝑎2
(︃

1 + 𝑎2

6 ∇
2
)︃

𝑢∞|0 = −4𝜋𝑎2 1
8𝜋𝜂

∫︁
𝑆𝑝

(︃
1 + 𝑎2

6 ∇
2
𝜁

)︃
𝐺|𝜁 · 𝑡(𝜁) dS𝜁 . (2.94)

From the definition of the Oseen tensor,(︃
1 + 𝑎2

6 ∇
2
𝜁

)︃
𝐺|𝜁 = 4

3𝑎
𝐼. (2.95)

Since the force over the particle is the integral of the traction, Eqs. (2.94) and (2.95)
result in Faxén’s law for the force over rigid spherical particles,

𝐹 = 6𝜋𝜂𝑎

[︃(︃
1 + 𝑎2

6 ∇
2
)︃

𝑢∞|0 −𝑈

]︃
. (2.96)

Faxén’s laws for torque and stresslet are similarly obtained. The same procedure is
repeated for the first moment of the integral representation for the velocity disturbance.
Indeed, taking the tensor product of 𝑥 and Eq. (2.89),

𝑥𝑈 + 𝑥(Ω× 𝑥)− 𝑥𝑢∞(𝑥) = − 1
8𝜋𝜂

𝑥
∫︁

𝑆𝑝

𝐺(𝑥− 𝜁) · 𝑡(𝜁) dS𝜁 . (2.97)

5 Similarly to the previous Taylor expansion, 𝐺(𝑥 − 𝜁) = 𝐺(𝜁 − 𝑥) = 𝐺(𝜁) + 𝑥 · ∇𝑥𝐺|𝜁 + 𝑥𝑥

2! :

∇𝑥∇𝑥𝐺|𝜁 + · · · = 𝐺(𝑥)− 𝑥 · ∇𝜁𝐺|𝜁 + 𝑥𝑥

2! : ∇𝜁∇𝜁𝐺|𝜁 + · · · since ∇𝜁 = −∇𝑥 by the chain rule.
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Integrating once again over the sphere surface and commuting integrals over 𝑥 and 𝜁,∫︁
𝑆𝑝

[𝑥𝑈 + 𝑥(Ω× 𝑥)− 𝑥𝑢∞(𝑥)] dS = − 1
8𝜋𝜂

∫︁
𝑆𝑝

[︃∫︁
𝑆𝑝

𝑥𝐺(𝑥− 𝜁) dS𝑥

]︃
· 𝑡(𝜁) dS𝜁 . (2.98)

This calculation is more conveniently written in index notation, as∫︁
𝑆𝑝

[𝑥𝑖𝑈𝑗 + 𝑥𝑖𝜀𝑗𝑘𝑙Ω𝑘𝑥𝑙−𝑥𝑖𝑢
∞
𝑗 (𝑥)] dS = − 1

8𝜋𝜂

∫︁
𝑆𝑝

[︃∫︁
𝑆𝑝

𝑥𝑖𝐺𝑗𝑘(𝑥− 𝜁) dS𝑥

]︃
𝑡𝑘(𝜁) dS𝜁 . (2.99)

Now, the ambient velocity field and the Oseen tensor are expanded in Taylor series,

𝑢∞
𝑗 (𝑥) = 𝑢∞

𝑗 (0) + 𝑥𝑙𝜕𝑙𝑢
∞
𝑗 (0) + 1

2! 𝑥𝑚𝑥𝑙𝜕𝑚𝜕𝑙𝑢
∞
𝑗 (0) + 1

3! 𝑥𝑝𝑥𝑚𝑥𝑙𝜕𝑝𝜕𝑚𝜕𝑙𝑢
∞
𝑗 (0) · · · (2.100)

and

𝐺𝑗𝑘(𝑥− 𝜁) = 𝐺𝑗𝑘(𝜁)− 𝑥𝑙𝜕𝑙𝐺𝑗𝑘(𝜁) + 1
2!𝑥𝑙𝑥𝑚𝜕𝑙𝜕𝑚𝐺𝑗𝑘(𝜁)− 1

3!𝑥𝑝𝑥𝑙𝑥𝑚𝜕𝑝𝜕𝑙𝜕𝑚𝐺𝑗𝑘(𝜁) + · · · .

(2.101)
Integrals of polyadics of the position components appear when substituting these expan-
sions back in the integral representation. Thus, the following identities are noteworthy

∫︁
𝑆𝑝

𝑥𝑖𝑥𝑗 dS𝑥 = 4𝜋𝑎4

3 𝛿𝑖𝑗 (2.102)

and ∫︁
𝑆𝑝

𝑥𝑖𝑥𝑗𝑥𝑘𝑥𝑙 dS𝑥 = 4𝜋𝑎6

15 (𝛿𝑖𝑗𝛿𝑘𝑙 + 𝛿𝑖𝑘𝛿𝑗𝑙 + 𝛿𝑖𝑙𝛿𝑗𝑘), (2.103)

whereas integrals of an odd number of position components vanish. It follows from Eqs.
(2.99) to (2.103) that

𝜀𝑖𝑗𝑘Ω𝑘 −
(︃

1 + 𝑎2

10∇
2
)︃

𝜕𝑖𝑢
∞
𝑗 (0) = 1

8𝜋𝜂

∫︁
𝑆𝑝

(︃
1 + 𝑎2

10∇
2
)︃

𝜕𝑖𝐺𝑗𝑘(𝜁)𝑡𝑘(𝜁) dS𝜁 . (2.104)

The combination of terms involving the Oseen tensor can be written over the sphere
surface as (︃

1 + 𝑎2

10∇
2
)︃

𝜕𝑖𝐺𝑗𝑘(𝜁)𝑡𝑘(𝜁) = 2
5𝑎3 (𝛿𝑖𝑗𝜁𝑘 + 𝛿𝑖𝑘𝜁𝑗 − 4𝛿𝑗𝑘𝜁𝑖), (2.105)

therefore Eq. (2.104) is equivalent to

8𝜋𝜂

[︃
𝜀𝑖𝑗𝑘Ω𝑘 −

(︃
1 + 𝑎2

10∇
2
)︃

𝜕𝑖𝑢
∞
𝑗 (0)

]︃
= 2

5𝑎3

∫︁
𝑆𝑝

(𝜁𝑘𝑡𝑘𝛿𝑖𝑗 + 𝑡𝑖𝜁𝑗 − 4𝜁𝑖𝑡𝑗) dS𝜁 . (2.106)

Back to Gibbs notation,

8𝜋𝜂

[︃
𝜀 ·Ω−

(︃
1 + 𝑎2

10∇
2
)︃
∇𝑢∞(0)

]︃
= 2

5𝑎3

∫︁
𝑆𝑝

[(𝜁 · 𝑡) 𝐼 + 𝑡𝜁 − 4𝜁𝑡] dS𝜁 . (2.107)

Both of the Faxén laws for torque and stresslet can be retrieved from Eq. (2.107).
Its anti-symmetrical part yields the relation

8𝜋𝜂𝑎3
[︃(︃

1 + 𝑎2

10∇
2
)︃

𝑊 ∞(0)− 𝜀 ·Ω
]︃

= 2𝜏 (2.108)
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where 𝑊 ∞ is the anti-symmetric part of the ambient flow velocity gradient and

𝜏 = 1
2

∫︁
𝑆𝑝

(𝜁𝑡− 𝑡𝜁) dS𝜁 . (2.109)

Contracting Eq. (2.108) with the Levi-Civita alternating tensor,

𝑇 = 8𝜋𝜂𝑎3
[︃
∇× 𝑢∞(0)

2 −Ω
]︃

(2.110)

since the Laplacian of ambient vorticity field vanishes, in compliance to the Stokes flow
equation. Furthermore, the symmetrical part of the (2.107) yields

𝑆 = 20𝜋𝜂𝑎3

3

(︃
1 + 𝑎2

10∇
2
)︃

𝐸∞|0 (2.111)

where 𝐸∞ is the symmetrical part of the ambient velocity gradient and

𝑆 = 1
2

∫︁
𝑆𝑝

(𝜁𝑡 + 𝑡𝜁) dS𝜁 −
1
3

∫︁
𝑆𝑝

[(𝜁 · 𝑡)𝐼] dS𝜁 (2.112)

is the symmetrical traceless part of the force dipole.

2.2.7 Mobility and Resistance Formulations

At this point, we wish to derive equations for the hydrodynamic force and torque
over each particle in a dilute suspension, accounting for hydrodynamic interactions. The
linearity of the Stokes equations is crucial in this process since it furnishes linear relations
between dynamic and kinematic variables of the flow. In a quiescent flow, these amount
to (KIM; KARRILA, 1991)⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑈1
...

𝑈𝑁

Ω1
...

Ω𝑁

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= −𝜂−1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a11 · · · a1𝑁 𝑏11 · · · 𝑏1𝑁

... . . . ... ... . . . ...
a𝑁1 · · · a𝑁𝑁 𝑏𝑁1 · · · 𝑏𝑁𝑁

b11 · · · b1𝑁 c11 · · · c1𝑁

... . . . ... ... . . . ...
b𝑁1 · · · b𝑁𝑁 c𝑁1 · · · c𝑁𝑁

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝐹1
...

𝐹𝑁

𝑇1
...

𝑇𝑁

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (2.113)

where the upper indices denote the particle to which the variable relates. There, a𝑖𝑗, 𝑏𝑖𝑗,
b𝑖𝑗 and c𝑖𝑗 are second-rank tensors which together form the mobility matrix. In this form,
the linear relation is called the mobility formulation.

Knowledge of the mobility matrix enables the determination of the hydrodynamic
forces and torques over the particles via inversion of Eq. (2.113), once the linear and
angular velocities are known. In this inverted form, where the forces and torques are the
dependent variables, the linear relation is named the resistance formulation. In this form,
the equations for force and torque are often written as

𝐹𝑖 = −
𝑁∑︁

𝑗=1
(𝜁𝑇 𝑇

𝑖𝑗 ·𝑈𝑗 + 𝜁𝑇 𝑅
𝑖𝑗 ·Ω𝑗) (2.114)
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and
𝑇𝑖 = −

𝑁∑︁
𝑗=1

(𝜁𝑅𝑇
𝑖𝑗 ·𝑈𝑗 + 𝜁𝑅𝑅

𝑖𝑗 ·Ω𝑗), (2.115)

where 𝜁𝑖𝑗 are resistance matrices, associated to translation or rotation according to the
indices 𝑇 and 𝑅. This formula emphasizes the linear dependence of the dynamical variables
on the boundary values of the kinematic variables. Despite this linear dependence, it is the
coupling between the equations of motion of all the particles which precludes analytical
solutions of their ODEs of motion. The resistance formulation is the natural setting for
determining the motion of immersed particles since it permits the solution of initial value
problems, albeit numerically.

We remark that the forces and torques over the particles, given by Eqs. (2.114)
and (2.115), are sufficient for the simulations of the immersed particles. Indeed, the flow
produced around them is the sum of their hydrodynamic disturbances, which is a solution
of the Stokes equations, Eqs. (2.50) and (2.51). See Cunha et al. (2002) for a picture of
the fluid velocity field found in numerical simulations of non-magnetic particles.

2.2.8 Method of Reflections

The method of reflections is a scheme to determine the asymptotic expansions
for the generalized forces, or equivalently for the generalized velocities, over a system of
hydrodynamically interacting particles in terms of the inverse distances between them.
It can be cast in the mobility or in the resistance formulation, but the former converges
more quickly, therefore we employ it. Furthermore, its inversion yields the generalized
forces, which we seek.

In the chosen formulation, the method works as follows: suppose that the forces
and torques over the particles are known, as well as the ambient flow in which they are
immersed. Then, we generate a sequence of particle linear and angular velocities satisfying
the Stokes equations, ({𝑈 𝑘

𝑖 }, {Ω𝑘
𝑖 }), for every particle 𝑖 = 1, · · · , 𝑁 , and the sequence

index 𝑘 ranges over the natural numbers.

We construct the zeroth term of the sequence as the correct solution in the absence
of hydrodynamic interactions under the known generalized forces. In the next step, we
take the new ambient flow over a given particle to be the sum of the original flow and the
velocity disturbances produced by all other particles in it, i.e., we reflect their velocity
disturbances. We also impose the nullity of the forces and torques over the particle from
this step on, so that their values, already correct in the zeroth order, remain unaltered.

Then, the generalized velocities of the current step are found by Faxén’s first and
second laws, with null forces and torques. For every higher order reflection, the procedure
is repeated, furnishing the next terms in the sequence. The sum of the series of linear or
angular velocities provides the actual linear or angular velocities, all reflections considered.
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In practice, especially when the suspension is dilute, so that the particles are on
average far apart, the series can be truncated at a suitable order in the inverse distance,
yielding an asymptotic approximation to the velocities. The relation is then inverted to
obtain approximate generalized forces in terms of the generalized velocities. The process
is depicted by Fig. (9) and exemplified by its application to our case of interest, the
determination of a first-order correction to the forces and torques due to hydrodynamic
interactions.

𝑢∞, 𝜉∞

𝑆𝑖 𝑆𝑗

𝑈 1
𝑗 , Ω1

𝑗

𝑈 2
𝑗 , Ω2

𝑗

𝑈 3
𝑗 , Ω3

𝑗...

𝑈 1
𝑖 , Ω1

𝑖

𝑈 2
𝑖 , Ω2

𝑖

𝑈 3
𝑖 , Ω3

𝑖

Figure 9 – Reflections of the velocity disturbances over the surfaces 𝑆𝑖 and 𝑆𝑗 correspond-
ing to the particles 𝑖 and 𝑗. Adapted from Kim and Karrila (1991).

In our analysis, the particles settle in a quiescent fluid, therefore the original am-
bient velocity and vorticity fields are null. It follows from Faxén’s first and second laws,
Eqs. (2.96) and (2.110) that the force and torque over each particle are

𝐹𝑖 = 𝐹 0
𝑖 = −6𝜋𝜂𝑎𝑖𝑈

0
𝑖 (2.116)

where 𝑎𝑖 is radius of the particle 𝑖 and

𝑇𝑖 = 𝑇 0
𝑖 = −8𝜋𝜂𝑎3

𝑖 Ω0
𝑖 . (2.117)

Now, for the first reflection, we have

𝐹 1
𝑖 = 6𝜋𝜂𝑎𝑖

⎡⎢⎢⎢⎣
𝑁∑︁

𝑗=1
𝑗 ̸=𝑖

(︃
1 + 𝑎2

𝑖

6 ∇
2
)︃

𝑢𝑗(𝑥𝑖)−𝑈 1
𝑖

⎤⎥⎥⎥⎦ = 0. (2.118)

Furthermore, the velocity disturbance produced by each particle in rigid body motion is
given by Eqs. (2.88) and (2.61) as

𝑢𝑗(𝑥𝑖) = − 1
8𝜋𝜂𝑟𝑗𝑖

[︃
𝐼 + 𝑟𝑗𝑖𝑟𝑗𝑖 +

𝑎2
𝑗

3𝑟2
𝑗𝑖

(𝐼 − 3𝑟𝑗𝑖𝑟𝑗𝑖)
]︃
· 𝐹𝑗 + 𝑇𝑗

8𝜋𝜂
×∇

(︃
1
𝑟𝑗𝑖

)︃
. (2.119)
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Applying this result to Eq. (2.118), noting that ∇4𝐺 and ∇×∇2𝐺 are both null,

𝑈 1
𝑖 =

𝑁∑︁
𝑗=1
𝑗 ̸=𝑖

{︃
− 1

8𝜋𝜂𝑟𝑗𝑖

[︃
𝐼 + 𝑟𝑗𝑖𝑟𝑗𝑖 +

𝑎2
𝑖 + 𝑎2

𝑗

3𝑟2
𝑗𝑖

(𝐼 − 3𝑟𝑗𝑖𝑟𝑗𝑖)
]︃
· 𝐹𝑗 + 𝜀 · 𝑟𝑗𝑖

8𝜋𝜂𝑟2
𝑗𝑖

· 𝑇𝑗

}︃
. (2.120)

Similarly, the angular velocities due to the first reflection follow from Faxén’s second law
as

𝑇 1
𝑖 = 8𝜋𝜂𝑎3

𝑖

⎛⎜⎜⎜⎝
𝑁∑︁

𝑗=1
𝑗 ̸=𝑖

𝜉𝑗(𝑥𝑖)
2 −Ω1

𝑖

⎞⎟⎟⎟⎠ = 0. (2.121)

Taking into account the nullity of ∇ × ∇2𝐺 once more, we note that the degenerate
quadrupole does not contribute to the vorticity of the ambient flow. Indeed, the curl of
(2.119) yields a rotlet, given by Eq. (2.66), and a torque related term, which may be
simplified to

𝜉𝑗(𝑥𝑖) = 𝜀 · 𝑟𝑗𝑖

4𝜋𝜂𝑟2
𝑗𝑖

· 𝐹𝑗 −
1

8𝜋𝜂𝑟3
𝑗𝑖

(𝐼 − 3𝑟𝑗𝑖𝑟𝑗𝑖) · 𝑇𝑗, (2.122)

thus Eq. (2.121) implies

Ω1
𝑖 =

𝑁∑︁
𝑗=1
𝑗 ̸=𝑖

[︃
𝜀 · 𝑟𝑗𝑖

8𝜋𝜂𝑟2
𝑗𝑖

· 𝐹𝑗 −
1

16𝜋𝜂𝑟3
𝑗𝑖

(𝐼 − 3𝑟𝑗𝑖𝑟𝑗𝑖) · 𝑇𝑗

]︃
. (2.123)

Gathering the results of the zeroth and first orders, we get

𝑈𝑖 = − 𝐼 · 𝐹𝑖

6𝜋𝜂𝑎𝑖

−
𝑁∑︁

𝑗=1
𝑗 ̸=𝑖

{︃
1

8𝜋𝜂𝑟𝑗𝑖

[︃
𝐼 + 𝑟𝑗𝑖𝑟𝑗𝑖 +

𝑎2
𝑖 + 𝑎2

𝑗

3𝑟2
𝑗𝑖

(𝐼 − 3𝑟𝑗𝑖𝑟𝑗𝑖)
]︃
· 𝐹𝑗 −

𝜀 · 𝑟𝑗𝑖

8𝜋𝜂𝑟2
𝑗𝑖

· 𝑇𝑗

}︃

(2.124)
and

Ω𝑖 = − 𝐼 · 𝑇𝑖

8𝜋𝜂𝑎3
𝑖

−
𝑁∑︁

𝑗=1
𝑗 ̸=𝑖

[︃
− 𝜀 · 𝑟𝑗𝑖

8𝜋𝜂𝑟2
𝑗𝑖

· 𝐹𝑗 + 1
16𝜋𝜂𝑟3

𝑗𝑖

(𝐼 − 3𝑟𝑗𝑖𝑟𝑗𝑖) · 𝑇𝑗

]︃
, (2.125)

whence it follows that the mobility matrix is formed by the blocks

a𝑖𝑖 = 𝐼

6𝜋𝜂𝑎𝑖

, (2.126)

a𝑖𝑗 = 1
8𝜋𝜂𝑟𝑗𝑖

[︃
𝐼 + 𝑟𝑗𝑖𝑟𝑗𝑖 +

𝑎2
𝑖 + 𝑎2

𝑗

3𝑟2
𝑗𝑖

(𝐼 − 3𝑟𝑗𝑖𝑟𝑗𝑖)
]︃

, 𝑗 ̸= 𝑖, (2.127)

𝑏𝑖𝑖 = 0, (2.128)

𝑏𝑖𝑗 = − 𝜀 · 𝑟𝑗𝑖

8𝜋𝜂𝑟2
𝑗𝑖

, 𝑗 ̸= 𝑖, (2.129)

b𝑖𝑖 = 0, (2.130)

28



b𝑖𝑗 = − 𝜀 · 𝑟𝑗𝑖

8𝜋𝜂𝑟2
𝑗𝑖

, 𝑗 ̸= 𝑖, (2.131)

c𝑖𝑖 = 𝐼

8𝜋𝜂𝑎3
𝑖

(2.132)

and
c𝑖𝑗 = 1

16𝜋𝜂𝑟3
𝑗𝑖

(𝐼 − 3𝑟𝑗𝑖𝑟𝑗𝑖), 𝑗 ̸= 𝑖. (2.133)

2.3 Electrodynamics

2.3.1 Maxwell’s Equations

In order to calculate the forces which arise from dipolar interaction, it is necessary
to describe the electric and magnetic fields produced by magnetic dipoles. Furthermore,
the particles in a magnetic suspension are often subject to a force exerted by a magnet,
whose magnetic field must be derived. Thus, one must resort to Maxwell’s equations.
These equations may be demonstrated by assuming the validity of Coulomb’s law of the
force between charged particles and requiring invariance to the Lorentz’s transformations
(SCHWARTZ, 2012). Their microscopic form is

∇ · 𝑒 = 𝜚

𝜀0
, (2.134)

∇ · 𝑏 = 0, (2.135)

∇× 𝑒 = −𝜕𝑏

𝜕𝑡
, (2.136)

∇× 𝑏 = 𝜇0𝑗 + 𝜇0𝜀0
𝜕𝑒

𝜕𝑡
(2.137)

in SI units. Here, 𝑒 is the electric field, 𝑏 the magnetic induction, 𝜚 the electric charge
density, 𝑗 the current density, 𝜀0 the vacuum permittivity and 𝜇0 the vacuum permeabil-
ity. Lowercase letters are used in the aforementioned fields to denote their microscopic
character.

With the purpose of applying Eqs. (2.134) to (2.137) to dielectric media, one spa-
tially averages them, smoothing out their rapidly fluctuating microscopic properties and
consequently obtaining Maxwell’s macroscopic equations6 (JACKSON, 2012; GROOT;
SUTTORP, 1972). In performing the referred averages, a Taylor series expansion of the
local properties leads to the appearance of averages of the charge density multipoles in
the macroscopic equations. Those contributions are related to the charge density distri-
bution, hence are bulk properties of the medium (JACKSON, 2012). They are comprised
6 Note that capital letters are used for macroscopic variables thereafter, to distinguish them from their

microscopic equivalents, where there are any.
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in the electric displacement 𝐷𝑒 and magnetic field 𝐻 , which are called derived fields of
the fundamental fields 𝐸 and 𝐵. To first order, we have

𝐷𝑒 = 𝜀0𝐸 + 𝑃 , (2.138)

where 𝑃 is the electric polarization vector and

𝐵 = 𝜇0(𝑀 + 𝐻), (2.139)

in which 𝑀 is the magnetization, the average of the magnetic dipole moments. Thus, the
macroscopic equations obtained are (GROOT; SUTTORP, 1972)

∇ ·𝐷𝑒 = 𝜌𝑒, (2.140)

∇ ·𝐵 = 0, (2.141)

∇×𝐸 = −𝜕𝐵

𝜕𝑡
, (2.142)

∇×𝐻 = 𝐽𝑓 + 𝜕𝐷𝑒

𝜕𝑡
, (2.143)

𝜌𝑒 being the free electric charge.

Inasmuch as the scope of this dissertation is the study of magnetic dipolar inter-
action in a creeping flow of a non-conducting carrier fluid, transient effects are negligible
and the free charge distribution is null, so we restrict ourselves to the magnetostatic limit
of Maxwell’s macroscopic equations, that is, permanent regime with 𝐽𝑓 = 0, 𝐷𝑒 = 0,
𝑃 = 0 and 𝜌𝑒 = 0, such that only the following equations ought to be satisfied

∇ ·𝐵 = 0, (2.144)

∇×𝐻 = 0. (2.145)

The irrotationality of 𝐻 implies that it can be written as the gradient of a magnetic
potential function,

𝐻 = −∇𝜙. (2.146)

Furthermore, combining Eqs. (2.139), (2.144) and (2.146), it follows that

∇2𝜙 = ∇ ·𝑀 . (2.147)

This is a Poisson equation, which is linear, hence our approach is to develop a general
solution in unbounded space from the fundamental solution, where the forcing is related
to a delta distribution.

Now that the governing equations have been presented, we should discuss their
boundary conditions. They are obtained by integrals of the differential equation over
infinitesimal pillboxes which comprise both sides of a surface, illustrated in Fig. (10).
Firstly we will integrate Eq. (2.144) using the divergence theorem. We take the limit as
sides of the contour aligned with the normal vector shrink to zero, so that they do not
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Figure 10 – A surface which separates two magnetically different media, 1 and 2 (JACK-
SON, 2012). The pillboxes illustrate the integration regions for the determi-
nation of boundary conditions.

contribute to the integral, and afterwards take the limit where the upper and lower areas
of the volume go to zero, thereby obtaining

𝐵1 · �̂� = 𝐵2 · �̂�, (2.148)

i.e., the normal component of 𝐵 is continuous. Then, we proceed likewise using Stokes’
theorem to integrate Eq. (2.145), taking firstly the limit of vanishing normally oriented
segments of the contour, and afterwards shrinking the rest of the contour to zero. There
results

𝐻1 × �̂� = 𝐻2 × �̂�, (2.149)

that is, the tangential component of the derived field 𝐻 is continuous.

2.3.2 Effects of Magnetic Fields over Matter

The physics of magnetic suspensions centers around the response of the immersed
particles to external fields. Matter in general may present various responses according
to its composition. In this section, we present briefly some classes of magnetic materials
according to their response to a field in order to specify what kind of immersed particles
are taken into consideration as well as how they interact with the external field and with
one another.

In any case, the net effect of these interactions is to alter the magnetization, i.e., the
average of magnetic moment dipoles, according to the preceding discussion of Sec. (2.3.1).
From the standpoint of continuum mechanics, the magnetization can be interpreted as
the volume average in the sensitive volume 𝛿𝑉 *

𝑥 which surrounds the point 𝑥. Regarding
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the particles in this average as point dipoles (CUNHA, 2012),

𝑀 (𝑥) = lim
𝛿𝑉𝑥→𝛿𝑉 *

𝑥

1
𝛿𝑉𝑥

∫︁
𝛿𝑉𝑥

𝑁∑︁
𝑖=1

𝑚𝑖𝛿(𝑦 − 𝑥𝑖) d𝑦, (2.150)

where the dummy integration vector 𝑦 sweeps across the sensitive volume, 𝑚𝑖 is the
dipole moment of the i-th particle and 𝑥𝑖 its position, as illustrated by Fig. (11). The

𝑚𝑖
ℬ

𝛿𝑉 *𝑥

𝑥
𝑦

zoom

𝑥

Figure 11 – Continuum mechanical interpretation of the magnetization as the volume
average of magnetic dipoles in a sufficiently small volume 𝛿𝑉 *

𝑥 (CUNHA,
2012).

volume average can be cast in a more transparent form by commuting the sum with the
integral and integrating,

𝑀(𝑥) = lim
𝛿𝑉𝑥→𝛿𝑉 *

𝑥

𝑛

𝑁

𝑁∑︁
𝑖=1

𝑚𝑖. (2.151)

where 𝑛 = 𝑁/𝛿𝑉𝑥. That is, the magnetization is the ensemble average of the dipole
moment of the particles times their number density. This is an important formula since
we use it in later sections to numerically determine the magnetization of our magnetic
suspension. In the case of monodisperse particle magnetization, all the magnetic dipole
moments have the same norm, so they are given by 𝑚𝑖 = 𝑚 �̂�𝑖, such that

𝑀(𝑥) = lim
𝛿𝑉𝑥→𝛿𝑉 *

𝑥

𝑛𝑚

𝑁

𝑁∑︁
𝑖=1

�̂�𝑖. (2.152)

There, the magnetization is simply interpreted as the product of a saturation magne-
tization 𝑀𝑠 = 𝑛𝑚 and the average orientation of the particles, ∑︀𝑁

𝑖=1 �̂�𝑖/𝑁 . That is,
the highest achievable value of the magnetization is 𝑀𝑠 = 𝑛𝑚 when all particles are
aligned in the same direction. This reasoning also provides a simple interpretation to the
Langevin function (see Appendix A). In superparamagnetic materials, the magnetization
is 𝑀 = 𝑀𝑠ℒ(𝛼)�̂� , which comparing to Eq. (2.152) gives ℒ(𝛼) = �̂� ·∑︀𝑁

𝑖=1 �̂�𝑖/𝑁 , i.e., the
Langevin function is the average particle orientation projected onto the applied magnetic
field direction.
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Diamagnetic materials are composed of particles with no net magnetic moment,
which develop orbital currents opposing external fields, hence presenting negative mag-
netization (i.e., magnetization in the opposite direction to the external field). However,
diamagnetic effects are very mild compared to the other forms of magnetism, seldom
being accounted for (JACKSON, 2012). In contrast, paramagnetic materials contain un-
paired electrons whose dipole moments orient with an applied field, resulting in a net
positive magnetization aligned with the field. In turn, ferromagnetic materials are made
of paramagnetic particles which align along the direction of a very strong applied field.
However, when the field is removed, the particles retain remnant magnetizations over suf-
ficiently short distance ranges, determining so-called Weiss’ domains, where the dipolar
interaction tendency of alignment is stronger than exchange interactions (CHIKAZUMI;
GRAHAM, 2009). This behavior persists for temperatures below Curie’s point (1040 K
for iron), where Brownian thermal fluctuation completely disorient the magnetic moments
and the magnetization fizzles out. Fig. (12) illustrates Weiss’ magnetic domains, each of
which presents different magnetizations. Note that magnetic domains may be temporarily

Figure 12 – Ferromagnetic domains (GRIFFITHS, 2005).

enlarged by the application of strong fields, henceforth producing magnets. In our analysis
of magnetic suspensions in sedimentation, we consider the particles to be ferromagnetic
magnets, permanently magnetized with a uniform magnetization.

There are many others responses to external fields, e.g. ferrimagnetism, antiferro-
magnetism, among others (MATTIS, 2006). The ones listed in this section are exemplary
and by no means an attempt to fully cover the subject.

2.3.3 Formal Solution of Poisson’s Equation

We derive the formal solution to Eq. (2.147). As desired, this provides the means
to determine the magnetic field produced by a magnet, given that the magnetization
distribution is known. First we write the divergence of the magnetization as a convolution
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integral with the Dirac delta distribution,

∇2𝜙 =
∫︁
R3
∇𝑥′ ·𝑀(𝑥′)𝛿(𝑥− 𝑥′) d𝑥′. (2.153)

Then, we integrate by parts and, assuming that 𝑀(𝑥) has compact support, the surface
term vanishes and the remaining integral is carried over its support 𝑉 , yielding

∇2𝜙 = −
∫︁

𝑉
𝑀 (𝑥′) · ∇𝑥′𝛿(𝑥− 𝑥′) d𝑥′. (2.154)

Now we use the fundamental solution of Poisson’s equation,

∇2
(︃
− 1

4𝜋|𝑥− 𝑥′|

)︃
= 𝛿(𝑥− 𝑥′), (2.155)

to replace the delta distribution in Eq. (2.154). The Laplacian commutes with the integral
over 𝑥′, hence by the uniqueness of solutions of Laplace’s equation, we have

𝜙(𝑥) = 1
4𝜋

∫︁
𝑉

𝑀(𝑥′) · ∇𝑥′

(︃
1

|𝑥− 𝑥′|

)︃
d𝑥′. (2.156)

2.3.4 Magnetic Fields of a Sphere and a Prism

We exemplify the usage of Eq. (2.156) by applying it to our two cases of interest,
namely the magnetic field produced by two uniformly magnetized permanent magnets: a
sphere and a rectangular prism. The first is a model of the magnetic particles immersed
in the suspension, whereas the latter is used as a magnet to generate an external field.
In both cases, the uniform magnetization can be moved within the gradient and, by the
divergence theorem, Eq. (2.156) can be recast in the form

𝜙(𝑥) = 1
4𝜋

∫︁
𝑆

𝑀(𝑥′) · �̂�(𝑥′)
|𝑥− 𝑥′|

d𝑆 ′. (2.157)

In the case of a sphere, illustrated in Fig. (13), we may assume the vectors 𝑥 and
𝑥′ to be coplanar due to azimuthal symmetry. Furthermore, we can choose the 𝑧-axis
along the magnetization direction. In order to carry out the integral in Eq. (2.157), may
write the Green kernel in terms of Legendre polynomials,

1
|𝑥− 𝑥′|

=
∞∑︁

𝑙=0

(︃
𝑎𝑙

𝑟𝑙+1

)︃
𝑃𝑙(cos(𝜃 − 𝜃′)). (2.158)

The resulting integral is more readily calculated in terms of spherical harmonics, so
we use the addition formula of Legendre polynomials (JACKSON, 2012; NIKIFOROV;
UVAROV, 1988),

𝑃𝑙(cos(𝜃 − 𝜃′)) = 4𝜋

2𝑙 + 1

𝑙∑︁
𝑛=−𝑙

𝑌 *
𝑙𝑛(𝜃′, 𝜑′)𝑌𝑙𝑛(𝜃, 𝜑), (2.159)
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Figure 13 – Cross section of the magnetized sphere.

where 𝑌𝑙𝑛 are the spherical harmonics and the asterisk stands for complex conjugation,
such that Eq. (2.157) takes the form

𝜙(𝑥) = 𝑀
∫︁ ∞∑︁

𝑙=0

𝑙∑︁
𝑛=−𝑙

1
2𝑙 + 1

(︃
𝑎𝑙

𝑟𝑙+1

)︃
𝑌 *

𝑙𝑛(𝜃′, 𝜑′)𝑌𝑙𝑛(𝜃, 𝜑) cos 𝜃′𝑎2dΩ, (2.160)

Ω being the solid angle. Writing the cosine in terms of spherical harmonics and integrating,
their orthogonality relations yield

𝜙(𝑥) = 𝑚

4𝜋𝑟2 cos 𝜃, (2.161)

where 𝑟 = |𝑥| and 𝑚 = 4𝜋𝑎3𝑀/3, or in vector form,

𝜙(𝑥) = −𝑚

4𝜋
· ∇

(︂1
𝑟

)︂
= 𝑚 · 𝑟

4𝜋𝑟3 . (2.162)

It can be noted that the magnetic field produced is equal to that of a dipole, 𝑀 (𝑥) =
𝑚𝛿(𝑥), while all other contributions vanish. From Eq. (2.146),

𝐻 = 3(𝑚 · 𝑟)𝑟 −𝑚

4𝜋𝑟3 . (2.163)

The gradient of this field will be of importance later, so we calculate it here in advance:

∇𝐻 = 3
4𝜋𝑟4 [𝑚𝑟 + 𝑟𝑚 + (𝑚 · 𝑟)𝐼 − 5(𝑚 · 𝑟)𝑟𝑟]. (2.164)

A rectangular prismatic shaped magnet is depicted by in Fig. (14). Instead of
calculating its potential, we turn directly to its magnetic field. Eqs. (2.146) and (2.157)
furnish

𝐻(𝑥) = 1
4𝜋

∫︁
𝑆

𝑀(𝑥′) · �̂�(𝑥′)(𝑥− 𝑥′)
|𝑥− 𝑥′|3

d𝑆 ′. (2.165)

Assuming that the magnetization is aligned in the positive direction of the 𝑧 axis, only
the top and bottom surfaces contribute to the integral, with opposite signs, resulting in

𝐻(𝑥) = 𝑀

4𝜋

{︃∫︁ ℓ𝑦

−ℓ𝑦

∫︁ ℓ𝑥

−ℓ𝑥

(𝑥− 𝑥′)𝑒1 + (𝑦 − 𝑦′)𝑒2 + (𝑧 − 𝑧′)𝑒3

[(𝑥− 𝑥′)2 + (𝑦 − 𝑦′)2 + (𝑧 − 𝑧′)2]3/2 d𝑥′ d𝑦′
}︃ ⃒⃒⃒⃒
⃒
ℓ𝑧

𝑧′=−ℓ𝑧

. (2.166)
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Figure 14 – Magnetized right rectangular prism.

Evaluation of the double integral with 𝑑(𝑥, 𝑥′) =
√︁

(𝑥− 𝑥′)2 + (𝑦 − 𝑦′)2 + (𝑧 − 𝑧′)2 pro-
vides

𝐻𝑥 = 𝑀

4𝜋

{︂1
2 ln[(𝑥− 𝑥′)2 + (𝑧 − 𝑧′)2]− ln[𝑑(𝑥, 𝑥′) + 𝑦 − 𝑦′]

}︂ ⃒⃒⃒⃒
⃒
ℓ𝑥

𝑥′=−ℓ𝑥

⃒⃒⃒⃒
⃒
ℓ𝑦

𝑦′=−ℓ𝑦

⃒⃒⃒⃒
⃒
ℓ𝑧

𝑧′=−ℓ𝑧

,

(2.167)

𝐻𝑦 = 𝑀

4𝜋

{︂1
2 ln[(𝑦 − 𝑦′)2 + (𝑧 − 𝑧′)2]− ln[𝑑(𝑥, 𝑥′) + 𝑥− 𝑥′]

}︂ ⃒⃒⃒⃒
⃒
ℓ𝑥

𝑥′=−ℓ𝑥

⃒⃒⃒⃒
⃒
ℓ𝑦

𝑦′=−ℓ𝑦

⃒⃒⃒⃒
⃒
ℓ𝑧

𝑧′=−ℓ𝑧

,

(2.168)
and

𝐻𝑧 = tan−1
[︃

(𝑥− 𝑥′)(𝑦 − 𝑦′)
(𝑧 − 𝑧′)𝑑(𝑥, 𝑥′)

]︃ ⃒⃒⃒⃒
⃒
ℓ𝑥

𝑥′=−ℓ𝑥

⃒⃒⃒⃒
⃒
ℓ𝑦

𝑦′=−ℓ𝑦

⃒⃒⃒⃒
⃒
ℓ𝑧

𝑧′=−ℓ𝑧

(2.169)

and the components of the magnetic field gradient are given by their derivatives,

𝜕𝐻𝑥

𝜕𝑥
= 𝑀

4𝜋

{︃
𝑥− 𝑥′

(𝑥− 𝑥′)2 + (𝑧 − 𝑧′)2 −
(𝑥− 𝑥′)

𝑑(𝑥, 𝑥′)[𝑑(𝑥, 𝑥′) + 𝑦 − 𝑦′]

}︃ ⃒⃒⃒⃒
⃒
ℓ𝑥

𝑥′=−ℓ𝑥

⃒⃒⃒⃒
⃒
ℓ𝑦

𝑦′=−ℓ𝑦

⃒⃒⃒⃒
⃒
ℓ𝑧

𝑧′=−ℓ𝑧

,

(2.170)

𝜕𝐻𝑥

𝜕𝑦
= 𝑀

4𝜋

{︃
−1

𝑑(𝑥, 𝑥′) + 𝑦 − 𝑦′

[︃
𝑦 − 𝑦′

𝑑(𝑥, 𝑥′) + 1
]︃}︃ ⃒⃒⃒⃒

⃒
ℓ𝑥

𝑥′=−ℓ𝑥

⃒⃒⃒⃒
⃒
ℓ𝑦

𝑦′=−ℓ𝑦

⃒⃒⃒⃒
⃒
ℓ𝑧

𝑧′=−ℓ𝑧

, (2.171)

𝜕𝐻𝑥

𝜕𝑧
= 𝑀

4𝜋

{︃
𝑧 − 𝑧′

(𝑥− 𝑥′)2 + (𝑧 − 𝑧′)2 −
(𝑧 − 𝑧′)
𝑑(𝑥, 𝑥′)

1
𝑑(𝑥, 𝑥′) + 𝑦 − 𝑦′

}︃ ⃒⃒⃒⃒
⃒
ℓ𝑥

𝑥′=−ℓ𝑥

⃒⃒⃒⃒
⃒
ℓ𝑦

𝑦′=−ℓ𝑦

⃒⃒⃒⃒
⃒
ℓ𝑧

𝑧′=−ℓ𝑧

,

(2.172)

𝜕𝐻𝑦

𝜕𝑥
= 𝑀

4𝜋

{︃
−1

𝑑(𝑥, 𝑥′) + 𝑥− 𝑥′

[︃
𝑥− 𝑥′

𝑑(𝑥, 𝑥′) + 1
]︃}︃ ⃒⃒⃒⃒

⃒
ℓ𝑥

𝑥′=−ℓ𝑥

⃒⃒⃒⃒
⃒
ℓ𝑦

𝑦′=−ℓ𝑦

⃒⃒⃒⃒
⃒
ℓ𝑧

𝑧′=−ℓ𝑧

, (2.173)
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𝜕𝐻𝑦

𝜕𝑦
= 𝑀

4𝜋

{︃
𝑦 − 𝑦′

(𝑦 − 𝑦′)2 + (𝑧 − 𝑧′)2 −
(𝑥− 𝑥′)
𝑑(𝑥, 𝑥′)

1
𝑑(𝑥, 𝑥′) + 𝑥− 𝑥′

}︃ ⃒⃒⃒⃒
⃒
ℓ𝑥

𝑥′=−ℓ𝑥

⃒⃒⃒⃒
⃒
ℓ𝑦

𝑦′=−ℓ𝑦

⃒⃒⃒⃒
⃒
ℓ𝑧

𝑧′=−ℓ𝑧

,

(2.174)

𝜕𝐻𝑦

𝜕𝑧
= 𝑀

4𝜋

{︃
𝑧 − 𝑧′

(𝑦 − 𝑦′)2 + (𝑧 − 𝑧′)2 −
(𝑧 − 𝑧′)
𝑑(𝑥, 𝑥′)

1
𝑑(𝑥, 𝑥′) + 𝑥− 𝑥′

}︃ ⃒⃒⃒⃒
⃒
ℓ𝑥

𝑥′=−ℓ𝑥

⃒⃒⃒⃒
⃒
ℓ𝑦

𝑦′=−ℓ𝑦

⃒⃒⃒⃒
⃒
ℓ𝑧

𝑧′=−ℓ𝑧

,

(2.175)

𝜕𝐻𝑧

𝜕𝑥
= 𝑀

4𝜋

{︃
(𝑦 − 𝑦′)(𝑧 − 𝑧′)

(𝑧 − 𝑧′)2𝑑2(𝑥, 𝑥′)] + (𝑥− 𝑥′)2(𝑦 − 𝑦′)2

×
[︃
𝑑(𝑥, 𝑥′)− (𝑥− 𝑥′)2

𝑑(𝑥, 𝑥′)

]︃}︃ ⃒⃒⃒⃒
⃒
ℓ𝑥

𝑥′=−ℓ𝑥

⃒⃒⃒⃒
⃒
ℓ𝑦

𝑦′=−ℓ𝑦

⃒⃒⃒⃒
⃒
ℓ𝑧

𝑧′=−ℓ𝑧

, (2.176)

𝜕𝐻𝑧

𝜕𝑦
= 𝑀

4𝜋

{︃
(𝑥− 𝑥′)(𝑧 − 𝑧′)

(𝑧 − 𝑧′)2𝑑2(𝑥, 𝑥′)] + (𝑥− 𝑥′)2(𝑦 − 𝑦′)2

×
[︃
𝑑(𝑥, 𝑥′)− (𝑦 − 𝑦′)2

𝑑(𝑥, 𝑥′)

]︃}︃ ⃒⃒⃒⃒
⃒
ℓ𝑥

𝑥′=−ℓ𝑥

⃒⃒⃒⃒
⃒
ℓ𝑦

𝑦′=−ℓ𝑦

⃒⃒⃒⃒
⃒
ℓ𝑧

𝑧′=−ℓ𝑧

(2.177)

and

𝜕𝐻𝑧

𝜕𝑧
= 𝑀

4𝜋

{︃
−(𝑥− 𝑥′)(𝑦 − 𝑦′)

(𝑧 − 𝑧′)2𝑑2(𝑥, 𝑥′)] + (𝑥− 𝑥′)2(𝑦 − 𝑦′)2

×
[︃
𝑑(𝑥, 𝑥′)− (𝑧 − 𝑧′)2

𝑑(𝑥, 𝑥′)

]︃}︃ ⃒⃒⃒⃒
⃒
ℓ𝑥

𝑥′=−ℓ𝑥

⃒⃒⃒⃒
⃒
ℓ𝑦

𝑦′=−ℓ𝑦

⃒⃒⃒⃒
⃒
ℓ𝑧

𝑧′=−ℓ𝑧

. (2.178)

2.3.5 Magnetic Force and Torque on a Magnetic Dipole

Now we are able to determine the force and torque exerted by one magnetic dipole
over another. First, we must seek the formulae that relate those quantities to magnetic
fields. To this end, notice that when Ampère’s law - Eq. (2.143) - is written in terms of
𝐵 and 𝐸 with the aid of Eqs. (2.138) and (2.139), the curl of 𝑀 has the same form as a
forcing as the current density. In fact, we have

∇×𝐵 − 𝜇0𝜀0
𝜕𝐸

𝜕𝑡
= 𝜇0

(︃
𝐽𝑓 +∇×𝑀 + 𝜕𝑃

𝜕𝑡

)︃
(2.179)

and we may define current densities

𝐽
𝑀

= ∇×𝑀 (2.180)

and
𝐽

𝑃
= 𝜕𝑃

𝜕𝑡
(2.181)

37



which are respectively due to circulation of magnetization and transient bound charge,
whereas 𝐽𝑓 results from the current of free charge, so that the sum of them acts as a total
current density

𝐽 = 𝐽𝑓 + 𝐽
𝑀

+ 𝐽
𝑃
. (2.182)

By Lorentz’s force formula, we may write

𝐹
𝑀

=
∫︁

𝐽 ×𝐵 𝑑𝑥 (2.183)

and for the torque around the center 𝑥0 of a particle,

𝑇
𝑀

=
∫︁

𝑟 × (𝐽 ×𝐵) 𝑑𝑥, (2.184)

where 𝑟 = 𝑥− 𝑥0. In the magnetostatic regime, we are left with

𝐹
𝑀

=
∫︁

𝐽
𝑀
×𝐵 𝑑𝑥 (2.185)

and
𝑇

𝑀
=
∫︁

𝑟 × (𝐽
𝑀
×𝐵) 𝑑𝑥. (2.186)

Let us derive a specific expression for the force over a magnetic dipole subject
to an external magnetic induction 𝐵, in the magnetostatic regime. From Eqs. (2.180),
(2.141) with 𝑀 = 𝑚𝛿(𝑟),

𝐽
𝑀
×𝐵 = ∇ · (𝐵 𝑚 𝛿)−∇(𝑚 ·𝐵 𝛿) +∇(𝑚 ·𝐵) 𝛿 (2.187)

eliding the arguments of the functions. Integrating (2.187) over free space and using the
divergence’s theorem for scalars and second-order tensors, the first two terms on the right-
hand side yield null results since the singularity in the delta distribution is not contained
in the boundary. Eq. (2.185), the constancy of 𝑚 and the sampling property of the delta
distribution give

𝐹
𝑀

= 𝑚 · (∇𝐵)𝑇 |𝑥0
. (2.188)

Since the external field 𝐵 does not account for the magnetization of the particle itself,
we have

𝐵 = 𝜇0𝐻 (2.189)

in that region7. Moreover, Eq. (2.145) implies

∇𝐻 = (∇𝐻)𝑇 , (2.190)

whereby Kelvin’s force results,

𝐹
𝑀

= 𝜇0𝑚 · ∇𝐻 . (2.191)
7 The same argument can be extended to a discrete distribution of particles, where each particle has a

neighborhood containing only that particle, resulting in no magnetization contribution to the external
magnetic induction that acts over it.
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Here, the evaluation of the gradient on the location of a particle is tacitly indicated, as
the calculation aimed to determine the force on a particle all along.

The torque on a magnetic dipole is similarly calculated. To this end, a particular
expression for the integrand of Eq. (2.186) is determined with the aid of vector operation
identities as

𝑟 × (𝐽
𝑀
×𝐵) = ∇𝛿 · (𝑟 ×𝑚) 𝐵 +∇𝛿 × (𝑟 ·𝐵) 𝑚. (2.192)

Eq. (2.192) is integrated over free space analogously to the determination of Kelvin force:
the product rule is used to obtain integrals of derivatives, which are then converted to
surface integrals not containing the singularity of the delta function, thus being nulli-
fied. The remaining integrals contain delta distributions and yield the remainder of their
integrands evaluated at the singularity, as follows:

𝑇
𝑀

= ∇ · (𝑚× 𝑟 𝐵)|𝑟=0 −∇× (𝑟 ·𝐵 𝑚)|𝑟=0. (2.193)

Expanding the resulting terms and evaluating them at the singularity, bearing in mind
that the external magnetic induction does not contain a magnetization contribution, there
results from Eq. (2.184) that

𝑇
𝑀

= 𝜇0𝑚×𝐻 , (2.194)

once more omitting that quantities must be evaluated at a magnetic dipole.

Now, considering the magnetic induction produced by one magnetic dipole, identi-
fied by the index 𝑗, as the incident field over another, tagged by the index 𝑖, the application
of Eqs. (2.191) and (2.194) to the magnetic field of Eqs. (2.163) and (2.164) yields

𝐹𝑖 = 3𝜇0𝑚𝑖𝑚𝑗

4𝜋𝑟4
𝑗𝑖

[(�̂�𝑖 ·�̂�𝑗)𝑟𝑗𝑖+(�̂�𝑖 ·𝑟𝑗𝑖)�̂�𝑗 +(�̂�𝑗 ·𝑟𝑗𝑖)�̂�𝑖−5(�̂�𝑖 ·𝑟𝑗𝑖)(�̂�𝑗 ·𝑟𝑗𝑖)𝑟𝑗𝑖]. (2.195)

and
𝑇𝑖 = 3𝜇0𝑚𝑖𝑚𝑗

4𝜋𝑟3
𝑗𝑖

[︂
(�̂�𝑗 · 𝑟𝑗𝑖)�̂�𝑖 × 𝑟𝑗𝑖 −

1
3�̂�𝑖 × �̂�𝑗

]︂
, (2.196)

These force and torque formulae will be used in the dynamical simulations to investigate
the behavior of magnetic suspensions.
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3 Motion of an Isolated Particle

Our numerical study begins with the sedimentation of a spherical Brownian par-
ticle in a fluid without inertia. This is the case of small particles, with diameters of the
order of micrometers. On that scale, viscous forces over the particle dominate inertial ones
and since the particle itself is small, its trajectory is highly susceptible to the multiple
collisions it suffers from the molecules of the carrier fluid, therefore it wanders erratically.

This regime is of interest in many practical applications of suspensions comprised
of micrometer sized particles. In this setting, a first step towards the simulation of a
suspension is a proper description of the dynamics of an isolated particle. Thus, our
interest here is to determine the motion of an isolated particle and therefrom obtain
macroscopic properties related to its motion. This approach is then readily extended to
account for multiple particles and their interactions, providing a means for the calculation
of transport properties in suspensions.

A key feature of this method is its non-dimensional formulation, which permits the
identification of the influence of physical mechanisms over the macroscopic properties and
the particle dynamics. We remark that the study of an isolated particle is also valuable
because an analytic solution is available, so we present and compare it against the code
which we developed, in order to validate it.

3.1 Formal Solution

In this section we present a solution to the equation of motion of the spherical
isolated Brownian particle equivalent to that of Uhlenbeck and Ornstein (1930) but spe-
cialized to our problem by restricting attention to the case of a constant gravitational
force field. We begin by stating this equation of motion, which is derived from Newton’s
second law applied to the particle,

ℳ𝑑𝑈

𝑑𝑡
= −6𝜋𝜂𝑎𝑈 + 𝐹 𝑏(𝑡) +ℳ𝑔, (3.1)

where 𝐹 𝑏(𝑡) is the Brownian force and all the other symbols have already been defined as in
Chap. (2). The force interaction between particle and fluid is split into two contributions,
a systematic drag −6𝜋𝜂𝑎𝑈 and a random fluctuating force 𝐹 𝑏. Their balance keeps the
particle in perpetual motion.
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In this work, we take the Langevin dynamics approach of describing the motion
in a timescale much longer than the correlation time of forces of the collisions which
the carrier fluid particles impart on the mesoparticle. Under this description, we avoid
the cumbersome details of these countless collisions and instead provide their statistical
moments. Even if in doing so we lose the possibility of reporting the exact trajectory of
the particle, our actual interest resides on the properties the system presents and those
depend rather on the statistical properties of the motion.

With this characterization of the Brownian force, Eq. (3.1) is a stochastic ODE,
where each realization of the particle trajectory provides different velocities. Under this
condition, the quantities of interest must be characterized by ensemble averages, repre-
sented by

⟨𝐺⟩ = lim
𝑛𝑟→∞

1
𝑛𝑟

𝑛𝑟∑︁
𝑖=1

𝐺𝑖. (3.2)

Here the general quantity 𝐺 = 𝐺(𝛼𝑖, 𝑡) is a stochastic process from a statistic point of
view and 𝑛𝑟 is the total number of realizations. In a constant time, G is a random variable
of the process, depending on the realizations 𝛼𝑖.

The preceding discussion motivates us to assume that the Brownian force has no
preferred direction, such that its average is null,

⟨𝐹 𝑏(𝑡)⟩ = 0, (3.3)

and that it is uncorrelated at the timescale in which we describe it, i.e.,

⟨𝐹 𝑏(𝑡)𝐹 𝑏(𝑡 + 𝜏)⟩ = 12𝑘
𝐵

𝑇𝜋𝜂𝑎𝛿(𝜏) 𝐼 (3.4)

where 𝑘
𝐵

is the Boltzmann constant, 𝑇 the temperature, 𝛿(𝜏) Dirac’s delta distribution
and 𝐼 the identity second-rank tensor. The intensity of this autocorrelation at equal times
follows from the fluctuation-dissipation theorem (ZWANZIG, 2001).

Before presenting the solution of Eq. (3.1), we write it in non-dimensional form.
To this end, we define the following characteristic scales:

|𝑈 | ∼ 𝑈𝑠, 𝑡 ∼ 𝑎

𝑈𝑠

, |𝐹 𝑏| ∼
(︂2𝐷0𝑈𝑠

𝑎

)︂1/2
6𝜋𝜂𝑎. (3.5)

The Brownian force scale comes from the square root of the coefficient in Eq. (3.4), with
the Stokes-Einstein diffusivity defined by

𝐷0 = 𝑘
𝐵

𝑇

6𝜋𝜂𝑎
, (3.6)

bearing in mind that 𝛿(𝜏) has the dimensions of [𝑡]−1. The non-dimensional parameters
which result from this process are the Stokes number,

St = ℳ𝑈𝑠

6𝜋𝜂𝑎
, (3.7)
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which measures the ratio between the inertia of the particle and the hydrodynamic drag
exerted by the fluid, and the Péclet number,

Pe = 𝑎𝑈𝑠

𝐷0
, (3.8)

a measure of the hydrodynamic drag over the thermal Brownian forces imposed over the
particle. Denoting non-dimensional variables by tildes and noting thatℳ𝑔 = 6𝜋𝜂𝑎𝑈𝑠, we
have

St 𝑑�̃�

𝑑𝑡
+ �̃� =

√︃
2

Pe 𝐹 𝑏(𝑡)− 𝑒3, (3.9)

where 𝑒3 is the versor which points in the direction opposite to gravity. Eq. (3.9) is a
linear first-order ODE, thus it has the straightforward solution

�̃�(𝑡) = �̃�(0)𝑒−𝑡/St +
√︃

2
PeSt2

∫︁ 𝑡

0
𝐹 𝑏(𝑡′)𝑒−(𝑡−𝑡′)/St 𝑑𝑡′ − 𝑒3(1− 𝑒−𝑡/St), (3.10)

by the integrating factor method.

We can also calculate the particle displacement by integrating Eq. (3.10),

�̃�(𝑡)− �̃�(0) = �̃�(0)
∫︁ 𝑡

0
𝑒−𝑡′′/St 𝑑𝑡′′ +

√︃
2

PeSt2

∫︁ 𝑡

0

∫︁ 𝑡′′

0
𝐹 𝑏(𝑡′)𝑒−(𝑡′′−𝑡′)/St 𝑑𝑡′ 𝑑𝑡′′

− 𝑒3

∫︁ 𝑡

0
(1− 𝑒−𝑡′′/St) 𝑑𝑡′′. (3.11)

Changing the order of integration in the double integral,∫︁ 𝑡

0

∫︁ 𝑡′′

0
𝐹 𝑏(𝑡′)𝑒−(𝑡′′−𝑡′)/St 𝑑𝑡′ 𝑑𝑡′′ =

∫︁ 𝑡

0

∫︁ 𝑡

𝑡′
𝐹 𝑏(𝑡′)𝑒−(𝑡′′−𝑡′)/St 𝑑𝑡′′ 𝑑𝑡′ (3.12)

which can now be directly integrated, yielding∫︁ 𝑡

0

∫︁ 𝑡′′

0
𝐹 𝑏(𝑡′)𝑒−(𝑡′′−𝑡′)/St 𝑑𝑡′ 𝑑𝑡′′ = St

∫︁ 𝑡

0
𝐹 𝑏(𝑡′)

[︁
1− 𝑒−(𝑡−𝑡′)/St

]︁
𝑑𝑡′. (3.13)

Consequently, denoting the displacement by Δ�̃�(𝑡) = �̃�(𝑡)− �̃�(0),

Δ�̃�(𝑡) = �̃�(0)St(1− 𝑒−𝑡/St) +
√︃

2
Pe

∫︁ 𝑡

0
𝐹 𝑏(𝑡′)

[︁
1− 𝑒−(𝑡−𝑡′)/St

]︁
𝑑𝑡′

− 𝑒3
[︁
𝑡− St(1− 𝑒−𝑡/St)

]︁
. (3.14)

The macroscopic properties of the process are related to the fluctuation of the
stochastic variable �̃� , i.e., its deviation with respect to the mean, which we denote by a
prime and calculate as �̃� ′ = �̃� − ⟨�̃�⟩. Taking the ensemble average of Eq. (3.10), which
commutes with time integrals, and using Eq. (3.3),

⟨�̃�⟩(𝑡) = �̃�(0)𝑒−𝑡/St − 𝑒3(1− 𝑒−𝑡/St). (3.15)

From Eqs. (3.10) and (3.15), it follows that

�̃� ′(𝑡) =
√︃

2
PeSt2

∫︁ 𝑡

0
𝐹 𝑏(𝑡′)𝑒−(𝑡−𝑡′)/St 𝑑𝑡′. (3.16)
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The important physical conclusion to be drawn from Eqs. (3.15) and (3.16) is that grav-
ity only contributes to the mean motion of the particle, whereas the Brownian force
contributes to the fluctuation of the particle velocity about the mean.

We are now in a position to calculate the properties of interest, namely the au-
tocorrelation of velocity fluctuations, their variance, and the diffusivity. The first one is
given by

�̃�(𝜏) = lim
𝑡→∞
⟨�̃� ′(𝑡)�̃� ′(𝑡 + 𝜏)⟩, (3.17)

where the time limit assures that the stochastic process may be rendered statistically
permanent, the effects of the initial conditions will already have decayed and the process
will attain its thermodynamic limit. From Eq. (3.16),

�̃�(𝜏) = 2
PeSt2 lim

𝑡→∞

∫︁ 𝑡

0

∫︁ 𝑡+𝜏

0
⟨𝐹 𝑏(𝑡′)𝐹 𝑏(𝑡′′)⟩𝑒−(2𝑡+𝜏−𝑡′−𝑡′′)/St 𝑑𝑡′′ 𝑑𝑡′. (3.18)

Eq. (3.4), which in non-dimensional form is ⟨𝐹 𝑏(𝑡)𝐹 𝑏(𝑡 + 𝜏)⟩ = 𝛿(𝜏) 𝐼, implies

�̃�(𝜏) = 2𝐼

PeSt2 lim
𝑡→∞

∫︁ 𝑡

0

∫︁ 𝑡+𝜏

0
𝛿(𝑡′′ − 𝑡′)𝑒−(2𝑡+𝜏−𝑡′−𝑡′′)/St 𝑑𝑡′′ 𝑑𝑡′. (3.19)

By the sampling property of the delta distribution,

�̃�(𝜏) = 2𝐼

PeSt2 lim
𝑡→∞

∫︁ 𝑡

0
𝑒−(2𝑡−2𝑡′+𝜏)/St 𝑑𝑡′, (3.20)

First integrating and then calculating the limit, we have

�̃�(𝜏) = 𝑒−𝜏/St

PeSt 𝐼. (3.21)

Note that, by Eq. (3.21), the non-dimensional correlation time of the velocity fluctua-
tions is the Stokes number. In dimensional form, this correlation time is the relaxation
time of the particle, ℳ/6𝜋𝜂𝑎. The variance of the velocity fluctuations, which is the
autocorrelation for a null time shift, is equal to

⟨�̃� (𝑡)�̃�(𝑡)⟩ = 𝐼

PeSt . (3.22)

We perceive that when Pe or St is increased, the velocity fluctuations are hindered.
Physically, this occurs when the intensity of Brownian forces diminishes or when the
inertia of the particle increases, respectively, relative to the hydrodynamic drag. This
second mechanism is worth remarking, since it is absent is the often studied case of
particles with negligible inertia.

The diffusivity is given by the integral of the autocorrelation of velocity fluctua-
tions,

�̃� =
∫︁ ∞

0
�̃�(𝜏) 𝑑𝜏 . (3.23)

Integrating Eq. (3.21),
�̃� = 𝐼

Pe . (3.24)
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The inertia of the particle does not affect the diffusivity because even though it hinders the
variance of velocity fluctuations, it also enhances the correlation time, i.e., the memory of
the system, and both contributions cancel out in the integral. It should be noted that, in
dimensional form, we have 𝐷 = 𝐷0 𝐼, that is, isotropic diffusion with the Stokes-Einstein
diffusion coefficient. In this case, gravity only affects the mean velocity, thus it does not
alter the diffusivity, caused exclusively by Brownian velocity fluctuations.

That is not the case in a suspension, cf. (KOCH, 1994; LADD, 1993), where
the hydrodynamic interaction between particles couples their motion, and gravity inserts
memory in the system. Furthermore, in this scenario, hydrodynamic interaction induces
dispersion and enhances the diffusivity. The code which we have developed aims to deter-
mine velocity fluctuations and diffusivity in suspensions, using the isolated particle as a
validation, since its motion has the analytic solution presented.

As an addendum to this section, we calculate the ensemble average of the particle
displacements, which provides the appropriate form of the argument of Einstein (1956)
when gravity is present, similarly to the more general results of Uhlenbeck and Ornstein
(1930). Note that in this case gravity does exert an effect over the displacement since the
latter is not a fluctuation, but rather the integral of the velocity, including its mean value.
Since we are only interested in the contribution which gravity exerts over the motion, it
suffices to address the case where the initial velocity is null. Thus, Eqs. (3.3), (3.4) and
(3.14) yield

⟨Δ�̃�(𝑡)Δ�̃�(𝑡)⟩ = 𝑒3𝑒3[𝑡− St(1− 𝑒−𝑡/St)]2 + 2𝐼

Pe

[︃
𝑡− St

2 (3− 4𝑒−𝑡/St + 𝑒−2𝑡/St)
]︃

. (3.25)

In particular, when St → 0, finite times are much greater the correlation time of velocity
fluctuations, so thermodynamic equilibrium is attained and we have

⟨Δ�̃�(𝑡)Δ�̃�(𝑡)⟩ = 𝑡2𝑒3𝑒3 + 2𝑡

Pe𝐼, (3.26)

which in dimensional form is precisely Einstein’s argument, ⟨Δ�̃�Δ�̃�⟩ = 2𝐷0𝑡 𝐼, plus a
contribution due to gravity which is quadratic in time, related to sedimentation at the
Stokes velocity.

3.2 Computational Procedure

Now we describe the Langevin dynamics computational algorithm which we have
developed to determine macroscopic properties of the aforementioned problem, i.e., the
motion of a spherical isolated particle in the presence of Brownian and gravitational forces
at low particle Reynolds numbers and a nonzero Stokes number.

The non-dimensional stochastic differential equation that describes the particle
dynamics is the same as Eq. (3.9), but with the approximation

𝐹 𝑏(𝑡) ≈ n𝐹 (𝑡)
Δ𝑡

, (3.27)
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which enables the numerical implementation of the Brownian force. Here n𝐹 (𝑡) is a pseudo-
random vector with Gaussian distribution, null average ⟨n𝐹 (𝑡)⟩ = 0 and unitary variance,
⟨n𝐹 (𝑡)n𝐹 (𝑡)⟩ = 𝐼 (NÄGELE, 2006). In addition, the term 1/Δ𝑡 is an approximation of
the Delta distribution by the impulse associated with the numerical time step Δ𝑡. Under
these conditions, we have

St 𝑑�̃�

𝑑𝑡
+ �̃� =

√︃
2

Pe Δ𝑡
n𝐹 (𝑡)− 𝑒3, (3.28)

Eq. (3.28) is numerically integrated via a standard Euler method. We remind that Eq.
(3.28) defines a stochastic process, thus the particle velocity as a function of time is
different in each realization of it that we make. The quantities of interest are, as usual,
calculated as averages over all the realizations we carry out, given by Eq. (3.2) but for a
finite number of realizations.

A typical particle trajectory obtained in a numerical realization is exhibited in
Fig. (15), along with the mean square displacement, both in the direction of gravity and
orthogonal to it. The mean square displacement is calculated by

⟨Δ�̃�(𝑡)Δ�̃�(𝑡)⟩ = 1
𝑛𝑟

𝑛𝑟∑︁
𝑖=1

Δ�̃�𝑖(𝑡)Δ�̃�𝑖(𝑡), (3.29)

where the index 𝑖 refers to the value of the random variable obtained at the i-th realization.
There are no restrictions on the initial time, according to the discussion leading to Eq.
(3.26), since we simulated the case St = 0. The numerical results agree very well with Eq.
(3.26) in both directions. Fig. (16) pictures the influence of the Péclet number over the
motion of the particle. It can be seen that at small values of Pe, the hydrodynamic drag
dominates the Brownian diffusion and the motion is more deterministic. On the other
hand, for low Pe, these thermal Brownian effects dominate, the motion is more erratic
and prominently diffusive.

Another property of the process which we calculate numerically is the variance of
the velocity fluctuations, obtained from Eq. (3.2) as

⟨�̃� ′(𝑡)�̃� ′(𝑡)⟩ = 1
𝑛𝑟

𝑛𝑟∑︁
𝑖=1

�̃� ′
𝑖(𝑡)�̃� ′

𝑖(𝑡), (3.30)

where 𝑡 is a time much larger than the correlation time of velocity fluctuations, in order
for the process to be statistically steady. We take a particular interest in this property
because it is the simplest measure of the intensity of the velocity fluctuations. Figure
(17) shows the variance of velocity fluctuations to scale with St−1 in contrast with scaling
analysis based on a purely inertial regime, which finds St−2/3 (CUNHA, 1997). In any
case, this result points out that particle inertia has a role in suppressing the velocity
fluctuations. This is particularly important as a type of screening mechanism for the
velocity fluctuations at low Reynolds suspensions, where the interplay between viscous
hydrodynamic interactions and the inertia of the particles determines the order of velocity
fluctuations. We argue that this finding could be fundamental for our understanding of
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Figure 15 – Typical stochastic trajectory of an isolated sedimenting particle in Brown-
ian motion. The insert shows the mean square displacement of the particle.
The directions perpendicular and parallel to gravity are denoted by ∙ and M,
respectively. Eq. (3.26) for the square displacement is represented by a con-
tinuous line (—). Numerical simulation carried out for St = 0 and Pe = 1.

(a) Pe = 1. (b) Pe = 10.

Figure 16 – Typical stochastic trajectories as a function of the Péclet number.

the velocity fluctuations divergence in dilute sedimenting suspensions with particles free
of inertia and distributed randomly and independently in a numerical box (i.e. divergence
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paradox (CUNHA, 1997; HINCH, 1988)).
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Figure 17 – Vertical component of the velocity fluctuation variance of a massive isolated

particle as a function of St, to Pe = 1. The directions perpendicular and
parallel to gravity are denoted by ∙ and M, respectively.

The autocorrelation is calculated in the same way as the variance, but for velocity
fluctuations relative to two different times: a sufficiently large 𝑡, and a posterior one, 𝑡+𝜏 ,
that is,

⟨�̃� ′(𝑡)�̃� ′(𝑡 + 𝜏)⟩ = 1
𝑛𝑟

𝑛𝑟∑︁
𝑖=1

�̃� ′
𝑖(𝑡)�̃� ′

𝑖(𝑡 + 𝜏). (3.31)

Here we present the autocorrelations are normalized by the variance, namely

𝑐𝑖𝑗(𝜏) =
⟨�̃� ′

𝑖(𝑡)�̃� ′
𝑗(𝑡 + 𝜏)⟩

⟨�̃� ′
𝑖(𝑡)�̃� ′

𝑗(𝑡)⟩
, (3.32)

which is already non-dimensional by definition. The results of Eq. (3.31) are presented in
Fig. (18). The autocorrelations calculated numerically agree very well with the analytic
result. The role of inertia in the insertion of memory can be clearly seen. As St is increased,
these autocorrelations take a much longer time to decay.

The diffusivity is calculated by the integral of the autocorrelation of velocity fluc-
tuations, that is,

�̃� =
∫︁ 𝑇

0
⟨�̃� ′(𝑡)�̃� ′(𝑡 + 𝜏)⟩𝑑𝜏 , (3.33)

where 𝑡 and 𝑇 are times much larger than the correlation time of the velocity fluctuations,
such that the autocorrelations integrated are already statistically steady and the integral
converges, such that the particle diffusivity plateau is reached. Fig. (19) presents the
diffusivity as a function of the Péclet number. The values obtained for the diagonal terms
in both the directions orthogonal and parallel to gravity are in accordance with the Stokes-
Einstein diffusion coefficient, given in non-dimensional form by Eq. (3.24), also indicating
the isotropy of the Brownian diffusivity.
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Figure 18 – Normalized velocity fluctuations autocorrelation for different values of St and
Pe = 1. The directions perpendicular and parallel to gravity are denoted by ∙
and M, respectively. Eq. (3.21) normalized, 𝑐(𝜏) = exp(−𝜏/St), is represented
by solid lines (—).
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are denoted by ∙ and M, respectively.
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4 Many-Body Simulations

In this chapter, we describe our Langevin dynamics simulation of magnetic suspen-
sions. We developed a Fortran code to implement this model. We stress that the range
of parameters explored is fitting for a gas-solid suspension, such as a magnetic dusty
gas. However, this model is also suitable for simulations of liquid-solid suspensions, such
as magnetorheological fluids, with a proper choice of the physical parameters. Typical
simulations take about 2 days to be run.

4.1 Langevin Dynamics

In order to simulate a dilute suspension of spherical micron-sized particles in sed-
imentation at low Reynolds number, we extend Eq. (3.28) by accounting for the forces
caused by hydrodynamic and magnetic dipolar interactions between particles, as well as
an external magnetic field. In addition, we also consider short-range repulsion forces due
to both a stabilizing steric layer of surfactants and Hertzian contact when the particles
overlap. Thus, Newton’s second laws for the translation and rotation of a particle 𝑖 take
the forms

ℳ𝑖
𝑑𝑈𝑖

𝑑𝑡
= 𝐹 ℎ

𝑖 + 𝐹 𝑑
𝑖 + 𝐹 𝑚

𝑖 + 𝐹 𝑏
𝑖 + 𝐹 𝑟

𝑖 + 𝐹 𝑐
𝑖 + 𝐹 𝑔

𝑖 (4.1)

and
𝐽𝑖

𝑑Ω𝑖

𝑑𝑡
= 𝑇 ℎ

𝑖 + 𝑇 𝑑
𝑖 + 𝑇 𝑚

𝑖 + 𝑇 𝑏
𝑖 , (4.2)

where the indices ℎ, 𝑑, 𝑚, 𝑏, 𝑟, 𝑐 and 𝑔 stand for hydrodynamic, magnetic dipolar, external
magnetic, Brownian, repulsive, contact and gravitational forces or torques.

We also assume that the dipolar moments of the particles are fixed to them,
thus they rotate with their angular velocities. This is a fair assumption for sufficiently
large particles, which are not influenced by quantum-mechanical effects of intrinsic dipole
rotation. Indeed, this hypothesis is applicable to our study, since the Néel relaxation time
of micron-sized particles is far larger than their Brownian relaxation times (ODENBACH,
2009). Therefore,

𝑑�̂�𝑖

𝑑𝑡
= Ω𝑖 × �̂�𝑖. (4.3)

The hydrodynamic forces and torques are given by the inversion of the mobility
relation (2.113), with the mobility matrices (2.126) to (2.133). Other works, e.g. Nitsche
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and Batchelor (1997), have shown that even point particle approximations provide a good
qualitative picture of the hydrodynamic interaction in dilute suspensions. Therefore, our
mobility matrices with first-order corrections due to particle size are suitable for this
simulation. The magnetic dipolar forces and torques are given by the sums of Eqs. (2.195)
and (2.196) over all other particles, assuming this superposition to be valid. Such an
assumption is sensible in very dilute suspensions. It should be noted the magnetic dipole
moments are extensive properties, proportional to the volume of the particles. This is
an important effect in the analysis of polydisperse suspensions. The external magnetic
force and torque follow from Eqs. (2.191) and (2.194), with a magnetic field of our choice.
While the Brownian forces and torques are modeled in the same fashion as in Eq. (3.28),
it should be borne in mind that their intensity varies with the radius of the particles,
according to Eq. (3.4).

We account for mechanisms which prevent the overlap of particles over the course
of the simulation. Instead of considering the detailed lubrication forces arising from hydro-
dynamic interactions at short range, which are computationally costly, we only consider
short range repulsion due to surfactants or contact. Nevertheless, the effect produced
is qualitatively the same, the superposition of particles is avoided. The surfactant layer
repulsion force between two particles is given by the Rosensweig, Nestor and Timmins
(1965) formula, reproduced in Rosensweig (2013),

𝐹 𝑟
𝑖𝑗 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−𝜋𝑁𝑠𝑢𝑝𝑘

𝐵
𝑇 (𝑎𝑖 + 𝑎𝑗 − 2𝛿𝑠)2

2𝛿𝑠

ln
(︃

𝑎𝑖 + 𝑎𝑗

𝑟𝑖𝑗

)︃
𝑟𝑖𝑗, −2𝛿𝑠 < 𝜀𝑖𝑗 < 0,

0 otherwise.

(4.4)

where 𝑁𝑠𝑢𝑝 is the surface density of surfactants, 𝛿𝑠 is the thickness of the surfactant layer
and the gap between particles is defined by 𝜀𝑖𝑗 = 𝑟𝑖𝑗 − 𝑎𝑖 − 𝑎𝑗. The steric layer covering
the particles is illustrated by Fig. (20). The Hertz force due to contact of two overlapping1

spheres is (TIMOSHENKO; GOODIER, 1970; ABADE; CUNHA, 2007)

𝐹 𝑐
𝑖𝑗 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−𝜅

⎡⎣(︃ 1
𝑎𝑖 − 𝛿𝑠

+ 1
𝑎𝑗 − 𝛿𝑠

)︃−1

𝛿3
𝑖𝑗

⎤⎦1/2

𝑟𝑖𝑗, 𝛿𝑖𝑗 > 0,

0 otherwise,

(4.5)

where 𝜅 is a constant related to material properties of the particles and 𝛿𝑖𝑗 = 𝜀𝑖𝑗 − 2𝛿𝑠

is the virtual overlap of the magnetic cores 𝑖 and 𝑗, cf. Fig. (21). The total repulsion
and contact forces are respectively given by sums of Eqs. (4.4) and (4.5) over all other
particles 𝑗.

We account for the possibility of different particle radii in our scaling by taking
the average radius as the length scale of the problem. Therefore, the characteristic scales
1 With overlapping magnetic cores.
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𝛿𝑠

𝑎

Figure 20 – Schematic depiction of the steric repulsion layer. Surfactants represented by
spring with beads attached to the magnetic core surface.
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𝑖
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𝑗

𝛿 𝑖𝑗

Figure 21 – Schematic depiction of the virtual overlap between the magnetic cores of two
particles.

are

𝑟𝑖𝑗 ∼ ⟨𝑎⟩, 𝑈𝑖 ∼ 𝑈𝑠, 𝑡 ∼ ⟨𝑎⟩
𝑈𝑠

, Ω𝑖 ∼
𝑈𝑠

⟨𝑎⟩
𝐹𝑖 ∼ 6𝜋𝜂⟨𝑎⟩𝑈𝑠,

𝑇𝑖 ∼ 8𝜋𝜂⟨𝑎⟩2𝑈𝑠 and 𝐻 ∼ 𝐻0, (4.6)

where 𝑈𝑠 = 2Δ𝜌⟨𝑎⟩2𝑔/9𝜂 is the Stokes velocity of a particle of radius ⟨𝑎⟩ and 𝐻0 is a
suitable scale of the external magnetic field: the intensity of a constant field or 𝑀/4𝜋 in
the case of a rectangular prismatic magnet.

In non-dimensional form the equations of motion become

St �̃�3
𝑖

𝑑�̃�𝑖

𝑑𝑡
= 𝐹 ℎ

𝑖 + 𝐹 𝑑
𝑖 + 𝐹 𝑚

𝑖 + 𝐹 𝑏
𝑖 + 𝐹 𝑟

𝑖 + 𝐹 𝑐
𝑖 + 𝐹 𝑔

𝑖 (4.7)

and
3St �̃�5

𝑖

10
𝑑Ω̃𝑖

𝑑𝑡
= 𝑇 ℎ

𝑖 + 𝑇 𝑑
𝑖 + 𝑇 𝑚

𝑖 + 𝑇 𝑏
𝑖 . (4.8)
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In the following, we provide the non-dimensional expressions of these forces and torques.

∙ Hydrodynamical:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�̃�1
...

�̃�𝑁

Ω̃1
...

Ω̃𝑁

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= −

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ã11 · · · ã1𝑁 �̃�11 · · · �̃�1𝑁

... . . . ... ... . . . ...
ã𝑁1 · · · ã𝑁𝑁 �̃�𝑁1 · · · �̃�𝑁𝑁

b̃11 · · · b̃1𝑁 c̃11 · · · c̃1𝑁

... . . . ... ... . . . ...
b̃𝑁1 · · · b̃𝑁𝑁 c̃𝑁1 · · · c̃𝑁𝑁

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝐹 ℎ
1
...

𝐹 ℎ
𝑁

𝑇 ℎ
1
...

𝑇 ℎ
𝑁

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (4.9)

where the non-dimensional mobility matrices are

ã𝑖𝑖 = 𝐼

�̃�𝑖

, (4.10)

ã𝑖𝑗 = 3
4𝑟𝑗𝑖

[︃
𝐼 + 𝑟𝑗𝑖𝑟𝑗𝑖 +

�̃�2
𝑖 + �̃�2

𝑗

3𝑟2
𝑗𝑖

(𝐼 − 3𝑟𝑗𝑖𝑟𝑗𝑖)
]︃

, 𝑗 ̸= 𝑖, (4.11)

�̃�𝑖𝑖 = 0, (4.12)

�̃�𝑖𝑗 = −𝜀 · 𝑟𝑗𝑖

𝑟2
𝑗𝑖

, 𝑗 ̸= 𝑖, (4.13)

b̃𝑖𝑖 = 0, (4.14)

b̃𝑖𝑗 = −3𝜀 · 𝑟𝑗𝑖

4𝑟2
𝑗𝑖

, 𝑗 ̸= 𝑖, (4.15)

c̃𝑖𝑖 = 𝐼

�̃�3
𝑖

(4.16)

and
c̃𝑖𝑗 = 1

2𝑟3
𝑗𝑖

(𝐼 − 3𝑟𝑗𝑖𝑟𝑗𝑖), 𝑗 ̸= 𝑖. (4.17)

∙ Magnetic dipolar:

𝐹 𝑑
𝑖 = 𝜆

𝑁∑︁
𝑗=1
𝑗 ̸=𝑖

(�̃�𝑖 − 𝛿𝑠)3(�̃�𝑗 − 𝛿𝑠)3

𝑟4
𝑗𝑖

[(�̂�𝑖 · �̂�𝑗)𝑟𝑗𝑖 + (�̂�𝑖 · 𝑟𝑗𝑖)�̂�𝑗

+ (�̂�𝑗 · 𝑟𝑗𝑖)�̂�𝑖 − 5(�̂�𝑖 · 𝑟𝑗𝑖)(�̂�𝑗 · 𝑟𝑗𝑖)𝑟𝑗𝑖] (4.18)

and

𝑇 𝑑
𝑖 = 3𝜆

4

𝑁∑︁
𝑗=1
𝑗 ̸=𝑖

(�̃�𝑖 − 𝛿𝑠)3(�̃�𝑗 − 𝛿𝑠)3

𝑟3
𝑗𝑖

[︂
(�̂�𝑗 · 𝑟𝑗𝑖)�̂�𝑖 × 𝑟𝑗𝑖 −

1
3�̂�𝑖 × �̂�𝑗

]︂
, (4.19)

with 𝛿𝑠 = 𝛿𝑠/⟨𝑎⟩.
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∙ External magnetic field:

𝐹 𝑚
𝑖 = 𝛼�̃�3

𝑖 �̂�𝑖 · ∇̃�̃� (4.20)

and
𝑇 𝑚

𝑖 = 3𝛼�̃�3
𝑖

4 �̂�𝑖 × �̃� . (4.21)

∙ Brownian:
𝐹 𝑏

𝑖 =
(︂ 2�̃�𝑖

PeΔ𝑡

)︂1/2
n𝐹 (4.22)

and
𝑇 𝑏

𝑖 =
(︂ 3�̃�𝑖

2PeΔ𝑡

)︂1/2
n𝑇 (4.23)

with ⟨n𝐹 ⟩ = ⟨n𝑇 ⟩ = 0 and ⟨n𝐹 (𝑡)n𝐹 (𝑡)⟩ = ⟨n𝑇 (𝑡)n𝑇 (𝑡)⟩ = 𝐼.

∙ Steric layer repulsion:

𝐹 𝑟
𝑖𝑗 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−𝜋�̃�𝑠𝑢𝑝(�̃�𝑖 + �̃�𝑗 − 2𝛿𝑠)2

2𝛿𝑠Pe
ln
(︃

�̃�𝑖 + �̃�𝑗

𝑟𝑖𝑗

)︃
𝑟𝑖𝑗, −2𝛿𝑠 < 𝜀𝑖𝑗 < 0,

0 otherwise,

(4.24)

with
𝐹 𝑟

𝑖 =
𝑁∑︁

𝑗=1
𝑗 ̸=𝑖

𝐹 𝑟
𝑖𝑗 (4.25)

and �̃�𝑠𝑢𝑝 = 𝑁𝑠𝑢𝑝⟨𝑎⟩2.

∙ Contact forces:

𝐹 𝑐
𝑖𝑗 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−�̃�

⎡⎣(︃ 1
�̃�𝑖 − 𝛿𝑠

+ 1
�̃�𝑗 − 𝛿𝑠

)︃−1

𝛿3
𝑖𝑗

⎤⎦1/2

𝑟𝑖𝑗, 𝛿𝑖𝑗 > 0,

0 otherwise,

(4.26)

with
𝐹 𝑐

𝑖 =
𝑁∑︁

𝑗=1
𝑗 ̸=𝑖

𝐹 𝑐
𝑖𝑗, (4.27)

�̃� = ⟨𝑎⟩𝜅/6𝜋𝜂𝑈𝑠 and 𝛿𝑖𝑗 = 𝛿𝑖𝑗/⟨𝑎⟩.

∙ Gravitational:
𝐹 𝑔

𝑖 = −�̃�3
𝑖 𝑒3. (4.28)

Now we define the non-dimensional parameters which appear in Eqs. (4.9) to
(4.28). First, the already encountered Stokes and Péclet parameters are slightly altered,
since the length scale is now the average radius of particles, but their form and meaning
remain the same:

St = ℳ𝑈𝑠

6𝜋𝜂⟨𝑎⟩2
, (4.29)
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quantifying the inertia of the particle relative to flow drag, with ℳ = 4𝜋⟨𝑎⟩3𝜌𝑠/3 and

Pe = 𝐷0

⟨𝑎⟩𝑈𝑠

, (4.30)

a measure of Brownian forces, relative to flow forces, where

𝐷0 = 𝑘
𝐵

𝑇

6𝜋𝜂⟨𝑎⟩
. (4.31)

In addition to those, we also define a parameter of external magnetic field intensity,

𝛼 = 𝜇0𝑚0𝐻0

6𝜋𝜂⟨𝑎⟩2𝑈𝑠

, (4.32)

and another of dipolar field intensity

𝜆 = 𝜇0𝑚
2
0

8𝜋2𝜂⟨𝑎⟩5𝑈𝑠

. (4.33)

We remark that these magnetic parameters 𝛼 and 𝜆 are not the exact same parameters
encountered in ferrofluids. They are defined by quotients of external magnetic field and
dipolar interaction forces, respectively, and a fluid viscous drag scale not a thermal force,
as in ferrofluids. A tacit physical parameter which is of utmost importance to the time
evolution of the suspension is the volumetric fraction of particles, defined as the volume
of particles over the total volume of the suspension. In our simulations, it amounts to

𝜑 = 4𝜋⟨𝑎⟩3𝑁
3ℓ𝑥ℓ𝑦ℓ𝑧

, (4.34)

where ℓ𝑥, ℓ𝑦 and ℓ𝑧 are the lengths of the sides of the container.

In view of the many simultaneous physical mechanisms at play in the suspension,
a judicious choice of the numerical integration time step must be made. It should be
sufficiently refined to capture all effects, yet not small enough that the computational
cost of the simulation ceases to be feasible. In this work, we have chosen

Δ𝑡 = 1
100 min(1, 5Pe, 5St, 𝜀), (4.35)

where 𝜀 = max(min(𝜀𝑖𝑗), 5.10−4). This lower bound for 𝜀 is a numerical strategy to avoid
freezing of the simulation. We also set the parameters 𝛿𝑠 = 0.2, �̃�𝑠𝑢𝑝 = 200 and �̃� = 10
for all the particles.

4.2 Boundary Conditions, Initial Conditions and Geometry

The particle initial positions are randomly generated within a box of length ℓ𝑥 =
25𝑎, width ℓ𝑦 = 25𝑎 and height ℓ𝑧 = 75𝑎, with an uniform probability distribution of
the initial position in each direction, excluding volumes which had already been occupied
by the previously generated particles. Initial linear velocities are null. Analogously, the
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𝐻
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𝑥
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ℓ𝑥

Figure 22 – Illustration of the initial condition of the numerical simulation. Magnetic field
applied along the 𝑧 direction, opposite to gravity.

initial orientations are uniformly distributed over a sphere of unitary radius and their
initial angular velocites are null. Fig. (22) illustrates the initial condition.

We assumed a boundary condition of periodicity in all directions, such that the
particles whose centers exit the box through one side are brought back inside through the
opposite one. If this translation would result in an overlap of particles, Brownian displace-
ments are applied to the center of the translated particle until no overlap occurs. Ensemble
averages of all properties are calculated as averages first in the particles comprised in the
box, then in the realizations.

We have not simulated polydisperse suspensions in this work, however we ac-
count for this possibility in our modeling, since we will address them in future works.
The possibly unequal magnetic cores radii �̃�𝑚,𝑖 = �̃�𝑖 − 𝛿𝑠, 𝑖 = 1, · · · , 𝑁, are generated
according to a pseudo-random approximation to the log-normal distribution, since this
is the distribution typically observed in experiments (MASSART et al., 1995). To this
end, a pseudo-Gaussian distribution was produced by a Box-Muller algorithm (PRESS et
al., 1992) providing a variable 𝑌 . Then the pseudo-log-normally distributed variable 𝑋

was obtained by the variable transformation 𝑋 = exp(𝑌 ). In fact, note that if 𝑌 has a
Gaussian PDF

𝑃 (𝑌 ) = 1√︁
2𝜋⟨𝑌 ′2; 𝑃 ⟩

exp
[︃
−(𝑌 − ⟨𝑌 ; 𝑃 ⟩)2

2⟨𝑌 ′2; 𝑃 ⟩

]︃
, (4.36)

then the PDF of 𝑋 is given by

𝑃 (𝑋) = 1√︁
2𝜋⟨𝑌 ′2; 𝑃 ⟩𝑋

exp
[︃
−(ln 𝑋 − ⟨𝑌 ; 𝑃 ⟩)2

2⟨𝑌 ′2; 𝑃 ⟩

]︃
(4.37)
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where ⟨𝑌 ; 𝑃 ⟩ denotes an average with respect to the PDF 𝑃 , rather than to 𝑃 . Also
note that the algorithm used furnishes 𝑌 with specified mean and variance but actually
the quantities of interest are the mean and variance of 𝑋, which specify the actual radii
distribution, therefore we are interested in writing ⟨𝑌 ; 𝑃 ⟩ and ⟨𝑌 ′2; 𝑃 ⟩ in terms of ⟨𝑋; 𝑃 ⟩
and ⟨𝑋 ′2; 𝑃 ⟩, so that these latter quantities enter the code as parameters of average radius
and polydispersity. Eq. (4.37) implies

⟨𝑋; 𝑃 ⟩ = exp
(︂
⟨𝑌 ; 𝑃 ⟩+ 1

2⟨𝑌
′2; 𝑃 ⟩

)︂
(4.38)

and
⟨𝑋 ′2; 𝑃 ⟩ =

[︁
exp

(︁
⟨𝑌 ′2; 𝑃 ⟩

)︁
− 1

]︁
exp

(︁
2⟨𝑌 ; 𝑃 ⟩+ ⟨𝑌 ′2; 𝑃 ⟩

)︁
, (4.39)

thus the inversion of Eqs. (4.38) and (4.39) achieves the desired end,

⟨𝑌 ; 𝑃 ⟩ = ln
⎡⎣ ⟨𝑋; 𝑃 ⟩2√︁
⟨𝑋; 𝑃 ⟩2 + ⟨𝑋 ′2; 𝑃 ⟩

⎤⎦ (4.40)

and √︁
⟨𝑌 ′2; 𝑃 ⟩ = ln

(︃
⟨𝑋; 𝑃 ⟩2 + ⟨𝑋 ′2; 𝑃 ⟩

⟨𝑋; 𝑃 ⟩2

)︃
. (4.41)

When this procedure is applied for the particle magnetic core radii, the choice of non-
dimensional length scale establishes the constraint ⟨�̃�𝑚,𝑖⟩ = 1−𝛿𝑠, which enters as an input.
Furthermore, the radii standard deviation is interpreted as a measure of polydispersity of
the radii.

A magnetic core radii distribution found by this method is displayed in Fig. (23).
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Figure 23 – Histogram of the hydrodynamic radii given by the computer generated pseudo
log-normal distribution. The actual corresponding log-normal distribution is
represented by a continuous line (—).
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4.3 Properties of Suspensions

Besides the new mechanisms in the dynamics of particles in a suspension, another
difference with respect to the analysis of a single particle is the possibility to use other
descriptors to characterize it. In particular, since the hydrodynamic interactions depend on
the relative distance of particles, describing the suspension configuration is fundamental.
A quantity which provides an insight on this position distribution is the structure factor.
Essentially, it is the ensemble average of the correlation of number densities in Fourier
space, normalized by a suitable factor. That is, it measures how likely it is that the
particles are at a given distance corresponding to a given wavenumber. In mathematical
terms, the structure factor is given by

𝑆(𝑘) = 1
𝑁
⟨𝑛*(𝑘, 𝑡)𝑛(𝑘, 𝑡)⟩. (4.42)

where 𝑛(𝑘, 𝑡) is the number density on the wavenumber 𝑘 and the asterisk denotes complex
conjugation. For point particles, the number density in configuration space is

𝑛(𝑥, 𝑡) =
𝑁∑︁

𝛼=1
𝛿(𝑥− 𝑥𝛼), (4.43)

such that, when integrated over a region, it yields the total number of particles in that
region. Its dependence on the wavenumber follows from its Fourier transform,

𝑛(𝑘, 𝑡) =
∫︁
R3

𝑛(𝑥, 𝑡) exp(−𝑖𝑘 · 𝑥) d𝑥, (4.44)

whence
𝑛(𝑘, 𝑡) =

𝑁∑︁
𝛼=1

exp(−𝑖𝑘 · 𝑥𝛼). (4.45)

Therefore, the structure factor for point particles reduces to

𝑆(𝑘) = 1
𝑁

⟨
𝑁∑︁

𝛼,𝛽=1
exp[𝑖𝑘 · (𝑥𝛽 − 𝑥𝛼)]

⟩
, (4.46)

and by symmetry, it is calculated by

𝑆(𝑘) = 1 + 2
𝑁

⟨
𝑁∑︁

𝛼=1

∑︁
𝛽<𝛼

cos[𝑘 · (𝑥𝛽 − 𝑥𝛼)]
⟩

(4.47)

It should be noted that in general, the structure factor depends on the direction of the
wavenumber, so in our simulations we calculate it along directions parallel and perpen-
dicular to gravity, in order to compare them.

In a brief side note, it should be mentioned that some authors prefer to work
with the pair-distribution function than with the structure factor. Given the probability
that any particle is found at 𝑥1 and any other at 𝑥2, 𝑛(2)(𝑥1, 𝑥2), the pair-distribution
function, 𝑔(𝑟), is given by (MCQUARRIE, 2000)

𝑛(2)(𝑥1, 𝑥2) = 𝑛2𝑔(𝑥1, 𝑥2) (4.48)
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with 𝑛 = 𝑁/𝑉 . If the positions of both particles were independent, we would have 𝑔(𝑟) =
1, with 𝑟 = |𝑥2 − 𝑥1|. Therefore, the pair-distribution function measures the correlation
between the spacial location of the particles, its higher values indicating higher likeliness
of the corresponding particle distances. However, note that the structure factor is directly
related to the pair-distribution function by a Fourier transform. Indeed, it can be shown
that (DHONT, 1996)

𝑆(𝑘) = 1 + 𝑛
∫︁

𝑔(𝑟) exp(𝑖𝑘 · 𝑟) 𝑑𝑟. (4.49)

Since the structure factor is more directly calculated and provides the same information,
we chose to use it rather than the pair-distribution function to obtain information about
the microstructure.

In addition to the likeliness of relative positions of particles, the structure factor
also conveys information about convective currents induced in the fluid domain. In fact,
an imbalance in particle number leads to a weight excess of volumes containing greater
numbers of particles. Thus, they settle at relatively higher speeds, inducing convective
currents. Their relation to the structure factor follows from the fact that fluctuations in
the number density are proportional to the average modulus of the number density, i.e.,√

𝑛′2 ∼
√︁
⟨|𝑛|2⟩. For example, in a system in thermodynamic equilibrium, the structure

factor is equal to 1 (MATTIS, 2004), such that Eq. (4.42) yields
√

𝑛′2 ∼
√

𝑁 . Fig. (24)
presents a box of particles in thermodynamic equilibrium which is divided by an imaginary
line in two equal parts. Instead of having an equal number of particles in each side, we
find that one side will typically contain a surplus of the order of

√
𝑁 particles, and the

other side a deficit of the same amount, inducing these convective currents that tend to
mix both sides.

Figure 24 – Convective current induces by the extra weight in one side of the box. Adapted
from (HINCH, 1988; ABADE, 2005).
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Especially in magnetic suspensions, the number of aggregates and their average
size are an important feature implicit in the particle configuration, with relevance to the
dynamics of the suspension. Indeed, particles in chains linked by dipolar interaction have a
restrained motion, however the action of large chains over an isolated particle may promote
large velocity fluctuations. The competition between these mechanisms is important to the
particle-phase pressure of the system and the conclusion of which mechanism dominates
the collective motion may be drawn from the distribution of number of particles per
aggregate.

In order to determine the number of particles per aggregate, we developed a simple
depth-first search algorithm. It tags a given particle and then every other one connected to
it by a chain recursively. We consider that two particles form an aggregate if they overlap,
since this configuration is favored by the conjunct action of the external field and dipolar
forces. The depth-first search works as described in Algorithm (1). Fig. (25) illustrates
the method by a simple example, where the connected particles are schematically linked
by continuous line. In this example, the algorithm would proceed as follows:

1. Tag particle 1;

2. Tag particle 2, since it is connected to 1, and restart the search starting from particle
2;

3. Tag particle 5, which is the only one connected to 2 and not tagged;

4. Go back to particle 1 to finish the search, because every restart (new search) has
been finished;

5. Tag particle 3 and finish the search which started with particle 1, counting a total
of 4 particles in the aggregate;

6. Similarly, a new search would be started at particle 4, tag it, count particle 8 and
tag it, and finish, counting a two-particle aggregate;

7. Tag particle 6 and count it as a one-particle "aggregate";

8. Likewise for particle 7, tag it and count it as a one-particle "aggregate".
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Input: links(𝑖,𝑗) between overlapping particles
Result: The histogram of number particles per aggregate
Initialization: tagged ← false
for 𝑖← 1 to 𝑁 do

if tagged (𝑖) false then
count=0;
DFS (𝑖,tagged (𝑖),count);

end
end
Function: DFS(𝑖,tagged (𝑖),count)
tagged(𝑖)←true;
count=count+1;
for 𝑗 ← 1 to 𝑁 do

if links(𝑖,𝑗) true and tagged(𝑖) false then
DFS(𝑗);

end
end
Algorithm 1: Algorithm of depth-first search to count number of aggregates.
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Figure 25 – Schematic representation of aggregates. The particles are numbered, as in the
simulation, and the aggregates are indicated by continuous lines that connect
the centers of the particles.
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5 Numerical Simulation of
Transport Properties

In this chapter, we numerically simulate dilute suspensions of massive sediment-
ing particles. We characterize their velocity fluctuations through both short-time and
long-time statistical properties. In this first group, we are interested in the variance of
velocity fluctuations and their associated particle-phase pressure. In the second, we are
concerned with the autocorrelation of the velocity fluctuations and the diffusivity. In addi-
tion, we investigate the structure evolution of the suspension. Our intention is to describe
the formation of chain-like structures in the magnetic case and determine the property
changes promoted by the presence of these structures. The regime explored is only weakly
Brownian, with Pe = 10.

5.1 Non-Magnetic Suspensions

We start by the characterization of non-magnetic suspensions. Our interest lies
in determining how the main parameters of non-magnetic suspensions influence their
short-time and long-time properties. These parameters are the Stokes number, the Péclet
number and the volume fraction of particles. We remark that a typical configuration
of 𝜑 = 0.01 corresponds to a total of 𝑁 = 111 particles in the box, with dimensions
ℓ𝑥 = 25𝑎, ℓ𝑦 = 25𝑎 and ℓ𝑧 = 75𝑎. The size of the container is kept constant throughout
all the simulations, so the number of particles grows linearly with the volume fraction,
attaining a maximum of 𝑁 = 333 for simulations with 𝜑 = 0.03.

Fig. (26) illustrates a typical time evolution of the suspension obtained from our
numerical simulations, from the initial particle distribution until a non-dimensional time
𝑡 = 2.5, respectively. While in Fig. (26a) the particle distribution appears to be more
statistically homogeneous, in Fig. (26e) we observe a shift in the distribution of large
void regions inside the numerical box. The particle velocity fluctuations induced by their
hydrodynamic interactions and the near field forces can produce different transitions in the
particle distribution, as shown by the structure factors, as well as they define the effect of
a particle pressure in the suspension. Indeed, a shift in the peaks of the structure factors is
observed over time, outlining the time evolution of the most probable distances of particles
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and also the length scale of the structures in the suspension. The configuration anisotropy
is also verified in the structure factor, with peaks at different wavenumbers for both
directions. Our simulations for dilute suspensions show clear evidence of a particle-phase
pressure opposite to aggregate formation or suspension instability, which also reflects in
the gradual modification of the distribution of local maxima and minima in the structure
factors. In fact, the presence of remarked local maxima and minima throughout the whole
wavenumber range indicates that convective currents occur in all observed lengthscales.

The results of a simulation performed with St = 0.1, Pe = 10 and 𝜑 = 0.01 are
shown in Figs. (27) and (28). The variance of velocity fluctuations is observed to attain a
statistically steady regime. The bumps noticed in its values are statistical fluctuations due
to the number of realizations of the simulation, which is limited by computational cost.
It is seen that the variance of the velocity fluctuations is enhanced due to the effects of
hydrodynamic interactions. Furthermore, it takes a longer time to reach its steady state
value, i.e., it has a longer correlation time parallel to gravity, showing that the velocity
variance and the correlation time are significantly anisotropic, with ⟨𝑈 ′2

‖ ⟩/⟨𝑈 ′2
⊥ ⟩ ∼ 2. This

in turn ensues a slower decay of the velocity autocorrelation in the gravity direction,
with a non-dimensional correlation time 𝜏𝑐‖ ∼ 0.7, thus the suspension presents a higher
diffusivity when hydrodynamic interactions are present. In fact, in the absence of an
imposed shear flow, the velocity fluctuations of non-Brownian particles arise solely due to
the hydrodynamic interactions among the particles. In addition, it shows that when the
motion of the particles is coupled by hydrodynamic interactions, cf. Eqs. (4.7) and (4.9),
the action of gravity inserts memory in the system, especially along its direction, yielding
the non-exponential decay of Fig. (28) and resulting in a non-Markovian diffusion process
and anisotropic diffusivities. Under this condition a diffusivity tensor can be defined as
follows:

𝐷 = 𝐷‖𝑒3𝑒3 + 𝐷⊥(𝐼 − 𝑒3𝑒3), (5.1)

with coefficients parallel to gravity denoted by ‖ and those perpendicular to it by ⊥.

Next, we explore the dependence of the properties on the particle volume fraction.
The velocity fluctuations variance is depicted in Fig. (29). In the direction parallel to
gravity, it is seen to grow roughly linearly with 𝜑, whereas it remains approximately
constant in the direction perpendicular to gravity. It should be noted that the coefficient
1/PeSt is incorporated for consistency with Eq. (3.22), which is the correct solution for
the limit 𝜑 → 0. Similarly, we see from Fig. (30) that the diffusivity parallel to gravity
grows steeply with the volumetric fraction. Meanwhile, it depends much more mildly on
𝜑 in the direction orthogonal to gravity.

In consonance with the preceding study of an isolated particle, the same parame-
ters present there also appear in the equation of motion of the suspension and retain their
importance over its macroscopic properties. Fig. (32) depicts this influence over the ve-
locity fluctuations, showing that they are strongly hindered by the inertia of particles. In
the horizontal direction, they show good qualitative agreement with the isolated particle
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(a) 𝑡 = 0.
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(b) Structure factor at 𝑡 = 0.

(c) 𝑡 = 1.25.
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(d) Structure factor at 𝑡 = 1.25.

(e) 𝑡 = 2.5.
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(f) Structure factor at 𝑡 = 2.5.

Figure 26 – Typical time evolution of the suspension configuration in a three-dimensional
numerical box and the corresponding structure factors, in the directions per-
pendicular (∙) and parallel (∘) to gravity. The numerical simulation was per-
formed with 𝜑 = 0.01, St = 0.1 and Pe = 10.
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Figure 27 – Non-dimensional velocity fluctuation variances perpendicular (∙) and parallel
(△) to gravity for a monodisperse low Reynolds number suspension with
St = 0.1, Pe = 10 and 𝜑 = 0.01. Statistics were made over 50 realizations.
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Figure 28 – Normalized autocorrelation of velocity fluctuations perpendicular (∙) and par-
allel (△) to gravity for a monodisperse low Reynolds number suspension with
St = 0.1, Pe = 10 and 𝜑 = 0.01. Statistics were made over 50 realizations.
Exponential fits 𝑐11 = exp(−𝜏/𝜏𝑐1) (continuous line), with 𝜏𝑐1 = 0.139±0.002
and 𝑐33 = exp(−𝜏/𝜏𝑐3) (dashed line), with 𝜏𝑐3 = 1.05± 0.02.

decay given by Eq. (3.22), in contrast to the direction parallel to gravity. However, the
anisotropy caused by hydrodynamic interactions is seen to decrease with an increasing of
the Stokes number. We argue that this reduction results from an increase in the relaxation
time of the particles, 𝜏𝑟 = ℳ/6𝜋𝜂𝑎. Indeed, the Stokes number is the non-dimensional
relaxation time of the particles. When it becomes much larger than a characteristic time
of hydrodynamic interaction between two particles, 𝜏ℎ ∼ ℓℎ/

√︁
⟨𝑈 ′2⟩ (ℓℎ is a characteristic

length of hydrodynamic interaction between particles), the particles settle through this
region of hydrodynamic interaction with a neighbor without responding to the forces that
it produces. Fig. (31) illustrates this effect. It should be pointed out that as the Stokes
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Figure 29 – Non-dimensional velocity fluctuation variances perpendicular (∙) and par-
allel (△) to gravity in terms of the volume fraction of particles, for a
monodisperse low Reynolds number suspension with St = 0.1 and Pe = 10.
Statistics were performed over 50 realizations. The associated error bars
are also shown in the plot. Linear fits ⟨�̃�′2

‖ ⟩ = [1 + (107 ± 4)𝜑]/PeSt and
⟨�̃�′2

⊥⟩ = [1 + (2.3 ± 0.2)𝜑]/PeSt. The inset amplifies the variance of perpen-
dicular velocity fluctuations.
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Figure 30 – Non-dimensional diffusivity perpendicular (∙) and parallel (△) to gravity in
terms of the volume fraction of particles, for a monodisperse low Reynolds
number suspension with St = 0.1 and Pe = 10. Statistics were performed
over 50 realizations. The associated error bars are also shown in the plot.
Linear fits �̃�‖ = [1 + (131 ± 3)𝜑]/Pe and �̃�⊥ = [1 + (5.8 ± 0.5)𝜑]/Pe. The
inset amplifies the perpendicular diffusivity.
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Figure 31 – Velocity fluctuations produced by hydrodynamic interactions of a particle 2
over a particle 1, in a suspension. When the Stokes number is high, particle
1 is less susceptible to hydrodynamic interactions and it settles beyond the
region of interaction without alteration of its trajectory. For small Stokes
numbers, particle 1 changes significantly its trajectory and velocity due to
hydrodynamic interactions.

number is increased, collisions increase their relative importance as the mechanism respon-
sible for the velocity fluctuations, therefore we claim that this change in the nature may
be responsible for altering their decay scaling from St−1 to St−2/3 in an inertial regime.
A quantitative observation of this claim is computationally costly, once the regime of
high Stokes numbers is associated to elevated relaxation times, requiring longer times of
simulation in order to attain steady states of the properties.

5.1.1 Particle Pressure

Knowing the velocity fluctuations at a hydrodynamic scale, we obtain a hydrody-
namic fluctuations tensor of the solid phase by analogy with the kinetic theory of gases,
cf. Sec. (2.1.5),

𝜎ℎ = −𝜌𝑠𝜑⟨𝑈 ′𝑈 ′⟩. (5.2)

Its isotropic part is associated with a particle pressure,

𝑝𝑝 = 𝜌𝑠𝜑

3 ⟨𝑈
′ ·𝑈 ′⟩, (5.3)
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Figure 32 – Non-dimensional velocity fluctuation variances perpendicular (∙) and paral-

lel (△) to gravity in terms of the Stokes number, for a monodisperse low
Reynolds number suspension with 𝜑 = 0.01 and Pe = 10. Statistics were
performed over 50 realizations. The associated error bars are also shown in
the plot. Eq. (3.22) is represented by a solid line (—).

whereas its deviatoric part furnishes a particle viscosity, say

𝜂𝑝 = 𝜌𝑠𝜑

�̇�
⟨𝑈 ′

2𝑈
′
3⟩. (5.4)

In the present context, a particle pressure arises when momentum is transported by the
hydrodynamic particle velocity fluctuations and also by eventual interparticle collisions
(i.e. near field interactions), which transport momentum from the center of one particle
to another. This particle pressure acts against particle concentration gradients, tending
to homogenize the solid phase, whereas a particle viscosity attenuates low wavenumber
fluctuations. As mentioned before, Fig. (26) shows from a qualitative point of view the
action of the particle pressure in our dilute suspension, just filling out depleted volumes
of particles or in a reverse way spreading aggregative regions of particles and so giving
rise to several transitions of the spatial particle distribution.

Suitable choices for the dependence of the solid phase pressure and viscosity on the
particle volume fraction are often proposed (DURU et al., 2002; SUNDARESAN, 2003)
since the continuum models of interacting phases frequently use Newtonian constitutive
equations for the stress tensor describing the dispersed phase. For instance

𝜎𝑝 = −𝑝𝑝(𝜑)𝐼 + 2𝜂𝑝(𝜑)
(︂

𝑑− ∇ · 𝑣3 𝐼
)︂

, (5.5)

where 𝑑 is the rate of strain tensor and 𝑣 the solid phase velocity field, used in attempts to
solve two-phase flows and determine conditions of their stability (HOMSY; EL-KAISSY;
DIDWANIA, 1980; KOCH, 1990). This connection between the properties provided by
computational simulations of mesoscopic suspensions and their use in continuum models
highlights the relevance of hybrid methods, in which both approaches are combined.
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Figure 33 – Non-dimensional particle pressure in terms of the volume fraction of particles,
for a monodisperse low Reynolds number suspension with St = 0.1 and Pe =
10. Statistics made over 50 realizations, quadratic fit 𝑝𝑝 = [𝜑+(39±1)𝜑2]/Pe.

We determined the particle pressure from our simulations for different values of
particle volume fraction, as shown in Fig. (33), whence we obtained a first-order correc-
tion in 𝜑 for this property, as presented in Tab. (2). We can see that our correction of the
diffusivity perpendicular to gravity as a direct consequence of hydrodynamic interactions
is comparable to the theoretical result of Batchelor (1976) for an isotropic suspension,
𝐷 = 1.45𝜑. Furthermore, Batchelor’s result is based upon an assumption of a statisti-
cally homogeneous suspension. In contrast, the time evolution of our suspension leads to
anisotropic configurations, which is reflected by the anisotropy of transport coefficients.
Thus, for instance, we are able to determine the ratio of the diffusion coefficients parallel
and perpendicular to gravity, 𝐷‖/𝐷⊥ ≈ 20, which is an order greater than the one found
in experiments, cf. (GUAZZELLI; HINCH, 2011), but in good agreement with other nu-
merical simulations, see (CUNHA et al., 2002; KOCH, 1994). On the other hand, the
effect of particle viscosity associated with the velocity fluctuations is still negligible in
the dilute regimes explored here. In a dilute regime the particle pressure has a stabilizing
effect on the suspension making the suspension more statistically homogeneous. This oc-
curs because the particle pressure in a dilute regime always increases with an increasing
of the particle volume fraction 𝜑.

Table 2 – Approximate numerical values for the first-order correction of macroscopic prop-
erties.

⟨𝑈 ′2
‖ ⟩ ⟨𝑈 ′2

⊥ ⟩ 𝐷‖ 𝐷⊥ 𝑝𝑝

110𝑘
𝐵

𝑇

𝑚
𝜑

2𝑘
𝐵

𝑇

𝑚
𝜑 130𝐷0𝜑 6𝐷0𝜑

40𝐷0𝜂

𝑎2 𝜑2
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5.2 Magnetic Suspensions

5.2.1 Dipolar Interactions

Now we present results of simulations for a magnetic suspension of spherical par-
ticles. We examine how the external magnetic field and the dipolar interactions influence
transport properties as well the time evolution of the suspension configuration. First we
analyze the effect of dipolar interactions with a fixed field. A fundamental difference with
respect to the case of non-magnetic suspensions is the formation of chain-like structures
of aggregated particles. We examine how the aggregative effect of magnetic dipolar inter-
actions influences the dynamical behavior of the suspension, in contrast to the dispersive
effect of hydrodynamic interactions.

Fig. (34) shows the time evolution of velocity fluctuations in the suspension. Its
values remain anisotropic, larger in the direction of gravity than in the orthogonal direc-
tion. Their anisotropy ratio is of order ⟨𝑈 ′2

‖ ⟩/⟨𝑈 ′2
⊥ ⟩ ∼ 2, comparable to the non-magnetic

case, cf. Fig. (27). In the presence of stronger dipolar interactions, velocity fluctuations
orthogonal to gravity decay with time at a steady rate, breaking the stationary character
of the statistical process. This is due to a continued formation of larger chains of particles,
suppressing motions of the aggregated particles, especially in the direction orthogonal to
the field. Also for this reason, the time averages1 of these fluctuations decrease with the
increasing of the dipolar interactions, as shown in Fig. (35). However, for sufficiently ele-
vated values of dipolar interaction, not all points do seem to follow this downward trend.
We argue that this is associated with the formation of larger chains, of 3 or 4 particles,
which are now clusters heavily influencing the motion of isolated particles. From this
point on, it is likely that magnetic interactions between clusters and particles becomes
more relevant and determines the velocity fluctuations. However their effect is not obvi-
ous, since the larger induced magnetic fields are now compensated by increased inertia
of the clusters and this interplay of mechanisms may induce further reduction of velocity
fluctuations.

This screening of velocity fluctuations is observed as well in numerical simulations
of magnetic fluidized beds (WANG et al., 2013), where it promotes voidage control and
enhances the bed performance. This hindrance is also reflected in the particle pressure
presented in Fig. (36). A core contribution of our work, the characterization of a particle
pressure associated to the fluctuations, shows to be especially valuable in magnetic sus-
pensions, where expressions relating it to external field and dipolar interaction effects are
lacking.

Our observations about chain-like structure formation and its influence over the
dynamics of the velocity fluctuations are further supported by a histogram of the relative
1 Time averages are calculated starting after a sufficient number of steps to render the statistics inde-

pendent of initial conditions.
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Figure 34 – Non-dimensional variance of the velocity fluctuations perpendicular (∙) and
parallel (△) to gravity as a function of time for a monodisperse magnetic low
Reynolds number suspension with St = 0.1, Pe = 10, 𝜑 = 0.01 and 𝛼 = 20.
Statistics performed over 50 realizations.

frequency of aggregates in the suspension. Fig. (37) shows that the number of aggregates in
the suspension is indeed enhanced when the effect of dipolar interactions is stronger. Fig.
(37b) shows that aggregates of 4 particles may be found in the suspension microstructure
for 𝜆 = 80. Furthermore, the fraction of dimers is increased from 5% to 15% when the
dipolar interaction is increased from 𝜆 = 20 to 𝜆 = 80. Fig. (38) shows that this increase
in dipolar interactions also disrupts the magnetization values that would otherwise be
attained due to the action of the external field. In thermal equilibrium and in the absence
of dipolar or hydrodynamic interactions, the magnetization would be equal to its Langevin
value at that field, of approximately 1. That is, the dipole moments would be aligned
with the magnetic field, on average. We argue that the loss of magnetization with the
increasing of dipolar interactions results from the increase in the number of larger chains.
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Figure 35 – Non-dimensional variance of velocity fluctuations perpendicular (∙) and par-
allel (△) to gravity, as a function of the dipolar interaction parameter. Sim-
ulation performed over 50 realizations with St = 0.1, Pe = 10, 𝜑 = 0.01
and 𝛼 = 20. Linear fits: ⟨𝑈 ′2
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Figure 36 – Non-dimensional particle pressure of a monodisperse magnetic low Reynolds
number suspension with St = 0.1, Pe = 10, 𝜑 = 0.01 and 𝛼 = 20. Simulations
performed over 50 realizations. Linear fit: 𝑝𝑝𝑎/𝜂𝑈𝑠 = [122±1−(0.2±0.01)𝜆]×
10−5.

This induces cluster-particle and cluster-cluster magnetic interactions, causing an increase
in the velocity fluctuations over isolated particles and diffusion of orientations, in some
cases even permitting the formation of chains aligned opposed to the field.

The structure factor as a function of the wavenumber is presented in Figs. (39) and
(40) for different times and dipolar interaction parameters. It measures the correlation
between density numbers as a function of the reciprocal wavelength. From a physical point
of view, the structure factor gives the fluctuation in the number of particles at different
length scales of the numerical box. We can see that at the initial configuration, the ran-
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Figure 37 – Histogram with the relative frequency of number of particles per aggregate.
Simulation performed over 50 realizations with St = 0.1, Pe = 10, 𝛼 = 20
and 𝜑 = 0.01.

dom dispersion presents a structure factor which oscillates around its thermal equilibrium
value2 of 1 in both directions. However, horizontal and vertical structure factors behave
differently as time evolves. The structure factor parallel to the field develops a broad
maximum band close to a reciprocal wavelength of 0.5 (i.e., a wavelength of 2), indicating
that aggregates of two particles become more likely to be found. In contrast, the structure
factor orthogonal to the field has its peaks shifted to lower reciprocal wavelengths, corre-
sponding to greater separation of particles along horizontal directions. We attribute both
of these behaviors to dipolar interactions, since particles with dipole moments aligned
with the field have attractive interactions when their distance vectors are aligned to the
field and repulsive interactions when these vectors are orthogonal to the field. In fact, we
see the aforementioned effects are even more remarked when dipolar interactions are in-
2 See Mattis (2004) or Dhont (1996) for a proof of the equilibrium value of the structure factor.
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Figure 38 – Non-dimensional magnetization perpendicular (∙) and parallel (△) to gravity
as a function of the dipolar interaction parameter. Simulation performed over
50 realizations with St = 0.1, Pe = 10, 𝜑 = 0.01 and 𝛼 = 100.

creased. Since 𝑆(𝑘) ∼ ⟨𝑛′2(𝑘)⟩, we also argue that the increase of the horizontal structure
factor over all wavelengths indicates an increase of convective currents in the 𝑥𝑦 plane
with time, with highest values on 𝑎𝑘𝑥/2𝜋 = 0.4. On the other hand, these convective
currents are apparently hindered in the 𝑧 plane, except near 𝑎𝑘𝑧/2𝜋 = 0.4.

The velocity fluctuations autocorrelation in the direction of gravity intriguingly
rises for a time of 𝜏𝑈𝑠/𝑎 = 5, after nearly being nullified, as displayed in Fig. (41) and in
contrast to the non-magnetic case. This behavior may also be attributed to the formation
of chain-like structures in the suspension, which restrain motions orthogonal to the field,
in this way binding fluctuations parallel to the field. Consequently, the time integral of
these autocorrelations diverges and does not define a diffusive process. It should also
be noted that this observed behavior of a non-zero correlation function at long times is
closely related to the formation of chains, also indicated by the structure factor. In fact,
it may be a consequence to the characteristic time of this formation, as is also seen in the
progressive evolution of the structure factor shown in Figs. (39) and (40). The integral of
velocity autocorrelations shown in Fig. (42) diverges because of the positiveness attained
by the autocorrelation at long times.

A curious result can be seen as the dipolar interactions exceed a certain critical
value. For instance, from 𝜆 = 90 on, the values of velocity fluctuation autocorrelations
function in the direction of gravity are also drastically attenuated, causing a sharp de-
crease of the diffusivity3 parallel to gravity, along with the anisotropy between diffusion
coefficients, as seen in Fig. (43). We argue that the sharp decrease in the diffusivity paral-
lel to gravity marks the change from a regime dominated by hydrodynamic interactions to
another dominated by dipolar interactions. In this way, the dominant physical mechanism
3 Even though the integral of the velocity autocorrelations does not appear to converge as time goes

to infinity, we present its partial value as integrated until the end of the simulations.
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becomes aggregative instead of dispersive, such that a drop in the diffusivity results. In
this process, the anisotropy in the diffusivities goes from 𝐷‖/𝐷⊥ ∼ 25 to 𝐷‖/𝐷⊥ ∼ 3.
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Figure 39 – Structure factors perpendicular (∙) and parallel (∘) to gravity at different
times. Simulation carried out for St = 0.1, Pe = 10, 𝛼 = 20, 𝜆 = 20 and
𝜑 = 0.01.
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Figure 40 – Structure factors perpendicular (∙) and parallel (∘) to gravity at different
times. Simulation carried out for St = 0.1, Pe = 10, 𝛼 = 20, 𝜆 = 80 and
𝜑 = 0.01.
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Figure 41 – Normalized autocorrelation of velocity fluctuations perpendicular (∙) and par-
allel (△) to gravity for a magnetic monodisperse low Reynolds number sus-
pension with St = 0.1, Pe = 10, 𝜑 = 0.01 and 𝛼 = 20.
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Figure 42 – Non-dimensional integral of velocity fluctuations autocorrelation perpendic-
ular (∙) and parallel (△) to gravity as a function of the time of integration.
Simulation performed for St = 0.1, Pe = 10, 𝛼 = 20 and 𝜑 = 0.01. Statistics
performed over 50 realizations.
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Figure 43 – Non-dimensional diffusion perpendicular (∙) and parallel (△) to gravity in
a monodisperse magnetic low Reynolds number suspension with St = 0.1,
Pe = 10, 𝜑 = 0.01 and 𝛼 = 20. Statistics performed over 50 realizations.
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5.2.2 External Field

Now we keep the dipolar interactions parameter fixed at 𝜆 = 100 and vary the
intensity of the external magnetic field, applied in the opposite direction to gravity. The
time evolution of the velocity fluctuations is plotted in Fig. (44), where both time se-
ries do not present a clearcut distinction. At a higher field, Fig. (44b), it is seen that in
early stages of the motion the velocity fluctuations in the gravity direction appear to be
mildly hindered, whereas they grow towards the end of the simulation. We argue that this
could be due to the formation of larger chains of particles, which induce large velocity
fluctuations over single particles. This is reasonable assumption, since this structure for-
mation is observed to take times comparable to the total time of simulation. Furthermore,
larger applied fields orient the particles quicker along its lines, favoring faster structure
formation and permitting the observation of such velocity fluctuations peaks, as seen is
Fig. (44b). Indeed, at low applied fields and elevated values of dipolar interactions, there
is a competition for orientation induced by the external field and that promoted by the
dipolar interactions. In fact, we see from Fig. (45) that the magnetization for the range
𝛼 ∈ (0, 20) is much lower than its thermodynamic equilibrium value (see Appendix A),
however for magnetic fields close to 𝛼 = 20 it begins to saturate to values close to unity.

Fig. (46) depicts the dependence of the velocity fluctuations time average on the
external field. A slight decrease in the velocity fluctuations is observed when 𝛼 is increased
from 0 to 20 but saturates from this value onward. We argue that this reflects the distinct
roles of the external field and the dipolar interactions. While the latter are responsible
for the attractive forces that lead to aggregation, their increase signifying a direct change
in the configuration and properties of the suspension, the former is associated to the
orientation of the dipole moments along the field. Thus, after a critical value of the external
field, the dipoles are already aligned along the field and aggregation befalls by the action
of dipolar interactions. Further increases in the field do not contribute any more. This
is an inductor-atractor scenario, where the field acts as an inductor, promoting proper
conditions for the action of the atractor, the dipolar forces. Analogously, the particle
pressure is presented in Fig. (47). We also see that it is insensitive to the magnetic field
intensity, except perhaps in the interval 𝛼 ∈ (0, 20). A more detailed investigation of this
interval of magnetic fields is in order.

Histograms of number of particles per aggregate are presented in Fig. (48) for the
two different fields intensities. The distribution remains approximately unchanged, with
only a feeble increase in dimer frequency, in consonance with our description of the field
action.

The structure factor time evolution is presented in Figs. (49) and (50). The re-
marks made about Fig. (40) for the high dipolar interaction regime, which still hold. An
interesting difference to be observed is that, in the particular realization depicted in Fig.
(49), the particles orient on average in the direction opposite to the field. It shows that
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Figure 44 – Non-dimensional variance of the velocity fluctuations perpendicular (∙) and
parallel (△) to gravity for a monodisperse magnetic low Reynolds number
suspension with St = 0.1, Pe = 10, 𝜑 = 0.01 and 𝜆 = 100. Statistics per-
formed over 50 realizations.

the orientational action of dipolar forces dominates that of the external field in this par-
ticular instance, contributing to the low magnetization value found in Fig. (45). We also
see from Fig. (49) that the horizontal (in the 𝑥𝑦 plane) structure factor peaks shift to
lower wavelengths along time at low applied fields. This result could indicate a repulsive
character of the dipolar interactions in this regime of low magnetic fields, perhaps as a
consequence of unaligned orientations of chains of particles. In contrast, Fig. (50) shows
that the horizontal structure factor average on the wavenumbers rises in a roughly ho-
mogeneous fashion. This could point out to an attractive effect of dipolar interactions,
such that chain formation is still in progress, giving rise to convective currents in the field
associated to low lengthscale number density fluctuations

√︁
𝑛′2

𝑘𝑥
∼
√︁
⟨|𝑛(𝑘𝑥)|2⟩.

The breaking in autocorrelation anisotropy indirectly noted in Fig. (43) is observed
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Figure 45 – Non-dimensional magnetization perpendicular (∙) and parallel (△) to gravity
as a function of the external field parameter. Simulations performed over 50
realizations with St = 0.1, Pe = 10, 𝜑 = 0.01 and 𝜆 = 100. Langevin function
represented by a continuous line (—).
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Figure 46 – Non-dimensional variance of velocity fluctuations perpendicular (∙) and par-
allel (△) to gravity as a function of the external field parameter. Simulation
performed over 50 realizations with St = 0.1, Pe = 10, 𝜑 = 0.01 and 𝜆 = 100.

again in Fig. (51b). It is seen that the complex effects of the interplay of external field
and dipolar interactions leads to recorrelation, as in Fig. (51a), as well as to mitigation of
velocity fluctuation correlations, as in Fig. (51b). In a tentative explanation for these ap-
parently contradictory phenomena, we claim that the suppression of velocity fluctuations
autocorrelation in the direction of gravity might occur due to an overshooting instability
in the orientation of the particles produced by strong fields. In fact, hydrodynamic torque
interactions couple the rotational and translational motion of all the particles, possibly
transmitting the short-time orientation fluctuations induced by the field as alternating
velocity fluctuations to the particles, damping the memory inserted by gravity. Neverthe-
less, at long times the effect of recorrelation introduced by the dipolar interactions persists
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Figure 47 – Non-dimensional particle-phase pressure as a function of the external field
parameter. Simulation performed over 50 realizations with St = 0.1, Pe = 10,
𝜑 = 0.01 and 𝜆 = 100.

even in high magnetic fields, albeit faded. Indeed, the velocity fluctuation correlations in
the direction of gravity continue to be greater than the ones orthogonal to it, as seen by
their time integral presented in Fig. (52). We attribute this behavior to the formation of
chains of particles, whose fluctuations are bound by the magnetic link between them. The
additional inertia of the chain, compared to a single particle, inserts additional memory
and ties the fluctuation at a given time to that of a later time.

The inset in Fig. (52) amplifies the integral of velocity fluctuation correlations
perpendicular to gravity. In contrast to their parallel counterpart, they do not appear
to increase continuously over time. Thus, these correlations orthogonal to gravity seem
to define a diffusive Markovian process along this direction, the influence of gravity and
the magnetic field over it being less appreciable than along the parallel direction. We
see that though the correlation appears to oscillate around zero resulting in a decay of
their integral at short times, this integral appears to converge at long times, actually
characterizing a diffusive process with a well defined diffusion coefficient.

Similarly to Fig. (43), Fig. (53) illustrates the drastic suppression of the diffusion
along the direction of gravity caused by the dipolar interactions. Furthermore, it sets an
approximate threshold of 𝛼 = 20 for the occurrence of this phenomenon.
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Figure 48 – Histogram of the relative frequency of number of particles per aggregate.
Simulation carried out with St = 0.1, Pe = 10, 𝜆 = 100 and 𝜑 = 0.01.
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Figure 49 – Structure factors perpendicular (∙) and parallel (∘) to gravity at different
times. Simulation carried out for St = 0.1, Pe = 10, 𝛼 = 10, 𝜆 = 100 and
𝜑 = 0.01.
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Figure 50 – Structure factors perpendicular (∙) and parallel (∘) to gravity at different
times. Simulation carried out for St = 0.1, Pe = 10, 𝛼 = 100, 𝜆 = 100 and
𝜑 = 0.01.
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Figure 51 – Normalized autocorrelation of velocity fluctuations perpendicular (∙) and par-
allel (△) to gravity for a magnetic monodisperse low Reynolds number sus-
pension with St = 0.1, Pe = 10, 𝜑 = 0.01 and 𝜆 = 100. The zero value is
highlighted by a continuous line.
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Figure 52 – Non-dimensional integral of velocity fluctuations autocorrelation perpendic-
ular (∙) and parallel (△) to gravity as a function of the time of integration.
Simulation carried out for St = 0.1, Pe = 10, 𝜆 = 100 and 𝜑 = 0.01. The
inset amplifies the autocorrelation integral perpendicular to gravity.
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Figure 53 – Non-dimensional diffusion perpendicular (∙) and parallel (△) to gravity in
a monodisperse magnetic low Reynolds number suspension with St = 0.1,
Pe = 10, 𝜑 = 0.01 and 𝜆 = 100. Statistics performed over 50 realizations.

90



6 Applications of Magnetic
Suspensions

6.1 Suspension Stability

In this chapter, we address a few characteristics of magnetic suspensions with a
view to selected potential applications. The first one we consider is the stability of a mag-
netic suspension, more specifically how the thickness of the surfactant layer impacts the
stability of the suspension. This layer is added to prevent aggregation and flocculation
of magnetic particles, which depletes the suspension and reverts its properties back to
those of the carrier fluid. In Fig. (55), we examine how the layer thickness affects the
average velocity of the suspension. We stress that this is a qualitative study, since it does
not renormalize the hydrodynamic interactions by Ewald sums of the mobility tensors
(BEENAKKER, 1986). We choose to avoid this renormalization because our interest lies
in the scaling of the average velocity dependence on 𝛿𝑠, rather than its actual values.
Furthermore, our study is restrained to dilute suspensions, where these interactions occur
at high distances, on average. The decay of these hydrodynamic interaction forces and
torques makes the renormalization correction less important. The addition of Ewald sums
would elevate the computational cost of the simulations, which is already high, especially
the resistance formulation employed. As expected, we find out that the average velocity
of the suspension presents a strong dependence with the layer thickness up until approx-
imately 𝛿𝑠 = 0.2𝑎. Beyond this point, the formation of aggregates is strongly reduced
and their average fall speed stabilizes as a consequence. Therefore, a layer thickness of
𝛿𝑠 = 0.2𝑎 would be appropriate for the application in question.

We also present the variance of velocity fluctuations as a function of the layer
thickness, since it is a counter-intuitive result. As Fig. (55) shows, the variance of velocity
fluctuations decays with the thickening of the layer. This would be unexpected since
thinner layers permit the formation of longer chains, with increased inertia, which would
respond less to applied forces and thus present lower velocity fluctuations. However, we
may argue, just as in Sec. (5.2.1), that larger chains produce higher fluctuations over
single particles, resulting in greater variances on average. Hence, this result would be in
agreement with the conclusions drawn in Sec. (5.2.1). The same behavior reflects itself in
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Figure 54 – Non-dimensional velocity average perpendicular (∙) and parallel (△) to grav-
ity as a function of the surfactant layer thickness. Simulation performed over
50 realizations with St = 0.1, Pe = 10, 𝜑 = 0.01, 𝛼 = 100 and 𝜆 = 100.

the particle-phase pressure of the suspension, Fig. (56).
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Figure 55 – Non-dimensional variance of velocity fluctuations perpendicular (∙) and par-
allel (△) to gravity as a function of the surfactant layer thickness. Simulation
performed over 50 realizations with St = 0.1, Pe = 10, 𝜑 = 0.01, 𝛼 = 100
and 𝜆 = 100. The inset amplifies the variance of perpendicular velocity fluc-
tuations.
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Figure 56 – Non-dimensional particle-phase pressure as a function of the surfactant layer
thickness. Simulation performed over 50 realizations with St = 0.1, Pe = 10,
𝜑 = 0.01 and 𝜆 = 100.
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6.2 Magnetic Active Matter

Active matter, such as living fluids, has been the focus of extensive research done
over the last few years due to the complex collective mechanisms which microorganisms
display to generate propulsion in a viscous flow. A related topic that has risen an even
more recent interest is that of magnetic active matter (PEYER; ZHANG; NELSON,
2013; KLAPP, 2016), i.e., magnetic particles immersed in a flow, which move under the
action of an external magnetic field. Besides being able to emulate the behavior seen in
biological suspensions, magnetic active matter presents advantages over the former, such
as the simpler models that govern them and their controllability, enabling studies of their
optimal propulsion.

We exemplify a possible application of the code developed in this work by simu-
lating a prototype of magnetic active matter. We generate an initial condition where the
particles are lined up in chains and submit them to the action of the magnetic field of
a rectangular prism, given by Eqs. (2.167) to (2.178), which in addition moves a veloc-
ity of constant modulus and periodically changing sign. Fig. (57) illustrates that these
so called magnetic snakes are displaced by the field and exhibit relative motion to one
another, indicating the break of the symmetry and reversibility of creeping flows induced
by interactions between magnetic dipoles or with the external field and also observed in
the self-propelled motion of microorganisms.

This is an important example since our code is currently being used by a doctorate
student in our group, Yves-Garnard Irilan, to further investigate these propulsion mecha-
nisms in magnetic active matter. Besides the common framework of both studies, with the
same equations of particle motion, some quantities are of interest in both works. In fact,
a goal of his work is to investigate how these chains of particles interact and recombine
over time, the structure factor and the histogram of number of particles per aggregate
being fundamental quantities in this structural description.
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(a) 𝑡 = 0. (b) 𝑡 = 2.5.

(c) 𝑡 = 5. (d) 𝑡 = 7.5.

Figure 57 – Top view of the time evolution of the configuration of magnetic snakes subject
to an external oscillatory magnetic field. Parameters of the simulation: St =
0.01, Pe = 5, 𝛼 = 1000 and 𝜆 = 40.
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7 Conclusion

We developed a code in Fortran to determine short and long-time properties related
to particle velocity fluctuations in magnetic gas-solid suspensions of interacting massive
particles in sedimentation. We started our analysis by the case of Brownian motion of
a non-magnetic isolated particle under the action of gravity, where we developed a nu-
merical solution which was validated against a particular form of the analytic solution by
Uhlenbeck and Ornstein (1930). Next, the numerical approach was extended to perform
simulations of viscous magnetic suspensions at low Reynolds numbers in the presence
of particle inertia and Brownian motion, with 𝑁 particles interacting hydrodynamically.
From the numerical simulations we have investigated the short and long-time behavior
of the anisotropic particle velocity fluctuations (i.e. hydrodynamic fluctuations tensor)
produced by hydrodynamic interactions in terms of particle velocity variance, autocorre-
lation functions and particle diffusivities as a function of time, the Stokes number and
particle volume fraction.

The variances and particle diffusivities were found to be highly anisotropic, with
velocity fluctuations in the gravity direction being stronger and correlated over longer
times than in the horizontal direction. The velocity variance decreased with the increasing
of the Stokes number at a high Péclet number. In the dilute regime simulated here, the
vertical particle velocity variance was found to increase linearly with 𝜑(PeSt)−1, whereas
the particle diffusivity increased like 𝜑/Pe. For St = 0.1 and a high Pe number (i.e. Pe =
10) the largest velocity variance (in the gravity direction) due the effect of hydrodynamic
interactions was 110𝜑𝑘

𝐵
𝑇/𝑚 and the corresponding result for the particle diffusivity in

the same direction was 130𝐷0𝜑. We also have evaluated from our computer simulation the
particle-phase pressure associated with the velocity fluctuations induced by hydrodynamic
interactions. The results suggested this particle pressure contribution for the same St and
Pe to go like 40𝐷0𝜂𝜑2/𝑎2. In a dilute regime the particle pressure seems to be a stabilizing
effect on the suspension. This occurs because the particle pressure in a dilute regime always
increases with increasing the particle volume fraction 𝜑 as we have shown here. However,
we can argue that in more concentrated suspensions, the particle pressure can decrease
with increasing 𝜑 as a consequence of the increased viscous dissipation and the drastic
decreased source of velocity fluctuations as one approaches the close-packed limit.

Afterwards, we turned to the characterization of velocity fluctuations in a magnetic
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suspension. Given sufficiently strong external fields and dipolar interactions, we found
that the particles orient their dipole moments along the field due to its action, such that
the interactions promote formation of chain-like structures. These structures, with larger
moments of inertia and rotation restrained by dipolar interactions inhibit the velocity
fluctuations, and thus the particle-phase pressure, in the suspension. We found dipolar
interaction corrections for the parallel velocity fluctuations as −0.017𝜆/PeSt, and for
the particle-phase pressure as −0.2 × 10−5𝐷0𝜂𝜆/𝑎2. Indeed, the structural changes were
found to be reflected in the aggregate histogram, with an enhanced relative frequency of
dimers and trimers, and in the structure factor, in a peak of number density correlation
at the wavelength corresponding to dimer formation, in the field direction. Nevertheless,
we found out that for very strong dipolar interactions (i.e., 𝜆 ≥ 90), the variance of
velocity fluctuations are notably enhanced by the increasing of dipolar interactions. We
claimed that this effect originates in the velocity fluctuations induced by magnetic action
of clusters of 3 and 4 particles over the motion of single particles or other clusters. On
the other hand, an investigation of the effect of field intensity increase revealed that it is
associated with the characteristic time of particle orientation along its direction, which
enables the action of the dipolar interactions. Thus, after a field intensity threshold, most
of the particles are already oriented along its direction, so the magnetization is saturated
and further increase does not significantly affect suspension properties, except when it is
sufficiently high to produce an overshooting instability of dipole moment orientations at
short-times. We assert that this could be the mechanism behind the verified suppression
of the anisotropy of velocity fluctuation autocorrelations and diffusion coefficients after a
critical external magnetic field intensity of about 𝛼 = 10.

In fact, the most remarkable distinctions observed between the magnetic and non-
magnetic suspensions relate to the diffusion and microstructure. We have seen that the
structure factor perpendicular to the field increases in all wavelengths in the presence of
high dipolar interactions. This implies the increase of convective currents in the 𝑥𝑦 plane
along time. We In contrast, fluctuations of number density in the direction of gravity were
reduced, except near 𝑎𝑘𝑧/2𝜋 = 0.5, associated to dimer formation.

The first appreciable difference of the velocity fluctuations with respect to the non-
magnetic suspension is a continuous time decay of the velocity fluctuations perpendicular
to the magnetic field (and thus to gravity), especially for high effects of magnetic field
and dipolar interactions. This means a break of the statistical stationary character of the
process. In a novel result, the autocorrelation of velocity fluctuations was observed to
recorrelate at long times, enhancing the diffusivity in the direction of gravity. We also no-
ticed that for high effects of magnetic fields and dipolar interactions, the correlation time
in the direction of gravity is sharply decreased. This results in an attenuation of the diffu-
sivity parallel to gravity. We argue that this owes to the dominance of dipolar interactions
over hydrodynamic interactions, shifting the regime from diffusive to aggregative.

This work was limited to the study of particle velocity fluctuations in a dilute
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gas-solid suspension. This is by no means a restriction of the simulations developed here,
liquid-solid suspensions may be studied with the same code, with only a proper choice of
physical parameters. In fact, our code is ideally suitable to explore more concentrated sus-
pensions. Our studies have motivated the use of direct numerical simulations of particles
to feed parameters of continuum models for multiphase particulate flows.

7.1 Future Work

The flexibility of the modeling used in this code could support diverse comple-
mentary works. There are multiple related topics of interest which could be explored with
similar methods, such as the investigation of suspensions containing both magnetic and
non-magnetic particles. Thence, one is able to quantify the dependence of the magnetic
effects on the fraction of magnetic particles. This is important in industrial applications
because it enables the determination of an ideal fraction of magnetic particles from the
economic benefit-cost point of view, reducing the cost of the suspension while still achiev-
ing the desired control of its properties. Another application of this work is, as mentioned
in Sec. (6.2), is the study of the control over a collective motion of assemblies of magnetic
particles in a fluid, resembling microorganisms.

In addition, there are numerous ways to supplement our characterization of the
magnetic suspension studied in this work. A principal direction among them is studying
the effect of diameter size polydispersity over the response of the suspension. This is
such an important consideration in view of the natural polydispersity which occurs in the
production of magnetic particles, and some of its impact over the suspension dynamics
arises from the proportionality of the dipole moment to the volume of the particles,
which results in the fostering of magnetic forces produced by the largest particles. In
fact, this is a simply feasible study under the formulation described in this work, which is
already polydisperse. Effects of polydispersity over velocity fluctuations of non-magnetic
suspensions have already been studied by Cunha et al. (2002), and a related study of the
magnetic case would an extension of this work. Investigations of magnetic suspensions with
higher concentrations (𝜑 > 5%) is another natural direction for expansion of this work.
Though the framework is essentially equal, we advise the renormalization of magnetic
dipolar and hydrodynamic interactions by Ewald summing in this more concentrated
suspensions.

Furthermore, it would be important to investigate the response of the suspension
to a horizontal magnetic field (i.e., perpendicular to gravity). Its action could cause a
larger suppression of velocity fluctuations, increasing the contrast in the dynamic behav-
ior of magnetic and non-magnetic suspensions. In that case, it could be a more fitting
configuration for commercial uses. This has been verified in the stabilization of magnetic
fluidized beds, e.g. by Wang et al. (2013).
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Our explanations of the physical mechanisms behind anisotropy suppression of
the long-time transport coefficients can be put on a more solid ground with further tests.
Suggestions for future work regarding this characterization include a closer investigation
of the parameter interval over which the anisotropy is hindered, for example varying
𝛼 ∈ (10, 30) for 𝜆 = 100, and likewise 𝜆 ∈ (70, 90) for 𝛼 = 20. Also, examining the variance
of particle orientation over time could shed some light upon the alleged mechanism of
overshooting instability, its dependence on the external field and the time scales over
which it occurs.

Lastly, this study prompts a more complete characterization of the recorrelation
of velocity fluctuations at long times and its relation to dipolar interactions. It would be
very interesting to quantify the time at which this recorrelation starts and compare it
against scalings based on the characteristic time of structure formation.

The author would like to continue researching correlated topics to this dissertation
in a PhD, possibly with Professor D. L. Koch at Cornell University.
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A Langevin Magnetization

The case of non-interacting ferromagnetic suspended particles in thermal equilib-
rium is of particular interest to us because it provides an example where the dependence of
the magnetization on the magnetic field may be directly determined1. Thus, it enables the
validation of the formulae of magnetic force and torque which we used in our numerical
simulations.

In order to determine this magnetization, we first find the potential energy of the
magnetic permanent dipoles. To this, we would like to write Kelvin’s force over a particle
with dipole moment 𝑚𝑖,

𝐹 = 𝜇0𝑚𝑖 · ∇𝐻 (A.1)

as the gradient of a scalar field. Since 𝐻 is irrotational by Ampère’s law in the magneto-
static regime, we have (∇𝐻)𝑇 = ∇𝐻 , thus it follows from Eq. (A.1) that

𝐹 = ∇ (𝜇0𝑚𝑖 ·𝐻) , (A.2)

such that the potential energy of a magnetic dipole in a field 𝐻 is

𝜙 = −𝜇0𝑚𝑖 ·𝐻 . (A.3)

The total energy in a system of 𝑁 non-interacting particles with permanent dipoles
𝑚𝑖 is therefore

𝐸 = 𝐸0 −
𝑁∑︁

𝑖=1
𝜇0𝑚𝑖 ·𝐻 , (A.4)

where 𝐸0 is the ground-state energy, i.e., its energy when the magnetic field is null. Its
partition function in equilibrium is given by the integral

𝑍 =
∫︁

exp(−𝛽𝐸) 𝑑Ω, (A.5)

where 𝛽 = 1/𝑘
𝐵

𝑇 , over the whole state space Ω, comprised of the angles which determine
the orientations of the particles. This integral is in fact a product of 𝑁 equivalent iterated
integrals. Integrating each one in spherical coordinates over a sphere of unitary radius,
1 The reader should be advised that this attempt of demonstration is an oversimplification, it is inher-

ently at fault as the Bohr-van-Leuween theorem precludes the possibility of explaining magnetization
by classical mechanics. Essentially, the demonstration fails because magnetic moments are quantized,
only being able to assume any value (JACKSON, 2000). However, it does need to concern us, since
our systems are far from ground-states, thus quantum-mechanical effects are negligible.
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the integral over the azimuth angle 𝜑 yields 2𝜋, while the one over the latitude attains
the following form:

𝑍(𝑇, 𝑉, 𝐻) = 𝑍0(𝑇, 𝑉 )
[︂
2𝜋
∫︁ 𝜋

0
exp(𝜇0𝑚𝛽𝐻 cos 𝜃) sin 𝜃 𝑑𝜃

]︂𝑁

, (A.6)

𝑍0(𝑇, 𝑉 ) being the partition function in the absence of an applied magnetic field. Inte-
grating over 𝜃, we get

𝑍 = 𝑍0

[︃
4𝜋

sinh(𝜇0𝑚𝛽𝐻)
𝜇0𝛽𝑚𝐻

]︃𝑁

. (A.7)

Now note that the total magnetic dipole moment can be alternatively represented
by minus the gradient of the energy with respect to the magnetic field, i.e., it follows from
Eq. (A.4) that

𝑚 =
𝑁∑︁

𝑖=1
𝑚𝑖 = − 1

𝜇0

𝜕𝐸

𝜕𝐻
. (A.8)

Therefore, the equilibrium ensemble average of the magnetic dipoles,

⟨𝑚⟩ = 𝑍−1
∫︁

𝑚 exp(−𝛽𝐸) 𝑑Ω, (A.9)

can also be written as
⟨𝑚⟩ = 1

𝜇0𝛽

𝜕 ln 𝑍

𝜕𝐻
�̂� . (A.10)

Taking the natural logarithm of Eq. (A.7) and deriving over 𝐻, we get

⟨𝑚⟩ = 𝑚𝑁

[︃
coth(𝜇0𝑚𝛽𝐻)− 1

𝜇0𝑚𝛽𝐻

]︃
. (A.11)

The magnetization is the volume average of the magnetic dipole moments, which in this
case is simply equivalent to the division by the volume of the system, 𝑉 , thus

⟨𝑀⟩ = 𝑚𝑛
(︂

coth 𝛼− 1
𝛼

)︂
, (A.12)

where the number density is 𝑛 = 𝑁/𝑉 and the magnetic field intensity parameter is
defined by 𝛼 = 𝜇0𝑚𝐻/𝑘

𝐵
𝑇 . In terms of the volume fraction of particles, we have

⟨𝑀⟩ = 3𝑚𝜑

4𝜋𝑎3

(︂
coth 𝛼− 1

𝛼

)︂
. (A.13)

With the Langevin function defined by

ℒ(𝛼) = coth(𝛼)− 1
𝛼

, (A.14)

we have
⟨𝑀⟩ = 3𝑚𝜑

4𝜋𝑎3ℒ(𝛼). (A.15)

In the limit of low applied fields, the magnetization may be shown to grow linearly
with the field intensity parameter. Taking into account that the cotangent is singular
at 𝛼 = 0, this expansion may be somewhat involved. Our approach consists in taking
advantage of the readily obtainable series of another function, 𝛼/(𝑒𝛼 − 1). Firstly, note
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that the aforementioned quotient tends to a finite limit as 𝛼→ 0, albeit the denominator
goes to zero. Therefore, we have the Taylor expansion

𝛼

𝑒𝛼 − 1 =
∞∑︁

𝑘=0

𝐵𝑘

𝑘! 𝛼𝑘 (A.16)

where 𝐵𝑘 are called the Bernoulli numbers. In order to determine these numbers, passing
the denominator of the left-hand side to the right-hand side and writing it as a Taylor
series,

𝛼 =
∞∑︁

𝑚=1

∞∑︁
𝑘=0

𝐵𝑘

𝑘!𝑚!𝛼
𝑘+𝑚. (A.17)

Now we effect the variable change 𝑛 = 𝑘 + 𝑚 in the double series, getting

𝛼 =
∞∑︁

𝑛=1

𝛼𝑛

𝑛!

𝑛−1∑︁
𝑘=0

𝑛!
𝑘!(𝑛− 𝑘)!𝐵𝑘. (A.18)

By the linear independence of powers of 𝛼, we have

𝐵0 = 1 (A.19)

and
𝑛−1∑︁
𝑘=0

(︃
𝑛

𝑘

)︃
𝐵𝑘 = 0, 𝑛 > 1, (A.20)

whence it follows that 𝐵1 = −1/2 and 𝐵2 = 1/6.

Note that the Langevin function may be written in terms of Bernoulli numbers.
Indeed, since

coth(𝛼) = 𝑒𝛼 + 𝑒−𝛼

𝑒𝛼 − 𝑒−𝛼
= 1− 2𝛼

𝛼(𝑒2𝛼 − 1) , (A.21)

there results
coth(𝛼) = 1− 1

𝛼

∞∑︁
𝑘=0

𝐵𝑘

𝑘! (2𝛼)𝑘. (A.22)

Replacing the first three Bernoulli numbers, we find from Eq. (A.22) that

ℒ(𝛼) ∼ 𝛼

3 , 𝛼≪ 1 (A.23)

so
⟨𝑀⟩ ∼ 𝑚𝑛

3 𝛼, 𝛼≪ 1. (A.24)

On the other hand, in the limit of large fields, Eq. (A.14) the Langevin function goes to
1,

lim
𝛼→∞

ℒ(𝛼) = 1. (A.25)

Both behaviors are represented in Fig. (58). A logical physical conclusion that may be
drawn from this calculation is that the maximum magnetization obtainable occurs when
all dipole moments are aligned with the magnetic field, resulting in a saturation value
equal to the dipole moment of a particle times their number density.
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Figure 58 – Langevin function (continuous line) of the applied field intensity parameter
and its linear asymptote for small values of 𝛼 (dashed line).
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