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Resumo

Sistemas de software de longa vida devem evoluir e ser mantidos para lidar com as ne-
cessidades flexíveis das partes interessadas, mudanças no ambiente e o comportamento in-
certo dos componentes internos. Diversas abordagens na Engenharia de Software propõem
aplicações de uso intensivo de software com recursos de autogerenciamento para superar
as barreiras ao sucesso de sistemas intrinsecamente dinâmicos e complexos, com nen-
huma ou pequena intervenção humana. No entanto, a natureza da adaptação autonômica
não é trivial, pois a combinação de todas as condições operacionais possíveis levaria a
incalculáveis soluções baseadas em pesquisa para atingir o objetivo do sistema. O pro-
cesso de projeto de software orientado a objetivos defende que colocar os objetivos do
sistema como prioridade restringe as possibilidades de adaptação e fornece uma estru-
tura direta que garante o comportamento confiável do sistema, orientando atividades de
desenvolvimento, manutenção e evolução propensas a erros. O presente trabalho propõe
uma contribuição para o processo de projeto orientado a objetivos de para sistemas auto-
adaptativos, por meio do fornecimento de uma arquitetura para verificação de sistemas
auto-adaptativos, que mapeia modelos de objetivos para o código executável do Robot Op-
erating System (ROS) executável sob a influência das incertezas. A etapa de verificação
é baseada na coleta de dados em tempo de execução e na análise de séries temporais,
seguindo métricas da Teoria de Controle. Assim, os engenheiros de sistemas de software
auto-adaptativos podem contar com evidências quantitativas para avaliar os mecanismos
de adaptação com garantias de confiabilidade. A abordagem foi avaliada pela aplicação do
processo de verificação em um mecanismo de adaptação orientado a objetivos, que adapta
o comportamento de um sistema médico para melhorar a confiabilidade do sistema. Como
resultado, a verificação forneceu informações sobre como melhorar o mecanismo em re-
lação às suas configurações para combater o ruído sensores, levando a uma solução mais
robusta.

Palavras-chave: Sistemas auto-adaptativos, Projeto de software orientado a objetivo,
Teoria de Controle
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Abstract

Long-lived software systems should evolve and be maintained to cope with flexible
stakeholders’ necessities, changing environments and internal component’s uncertain be-
havior. A large body-of-knowledge has been proposed for software-intensive applications
with self-managing capabilities to overcome the barriers to the success of inherently dy-
namic and complex systems with none or tiny human intervention. Nonetheless, auto-
nomic adaptation nature is not trivial since the combination of all possible operational
conditions would hinder infinite search-based solutions towards reaching the system’s goal.
The goal-oriented software design process advocates that embracing the system’s goals as
first-class citizens constrains the adaptation possibilities and provides a straightforward
framework that guarantees the system’s trustworthy behavior by guiding error-prone de-
velopment, maintenance and evolution activities. The present work proposes a contri-
bution to goal-oriented design process of self-adaptive systems approaches by means of
providing an architecture for verification of self-adaptive systems, which maps contextual
goal-models to executable Robot Operating System (ROS) code that runs upon the influ-
ence of uncertainties. The verification step is based on runtime data collection and time-
series analysis w.r.t control theoretical based properties. Thus, engineers of self-adaptive
software systems can rely on quantitative evidences to evaluate adaptation engines with
guarantees of trustworthiness. The approach was evaluated by the use of the verification
process upon a goal-oriented adaptation engine, which adapts the behavior of a medical
system in order to improve the system reliability. As a result, our solution provided in-
sights on how to improve the engine configurations for tackling the noise in sensing source
of uncertainty, leading into a more robust engine.

Keywords: Self-adaptive software, Goal-Oriented Design Process, Control Theory
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Chapter 1

Introduction

1.1 Motivation

Long-lived software systems should evolve and be maintained to cope with flexible
stakeholders’ necessities, changing environments and internal components uncertain be-
havior [1]. However, complex applications, inaccessible or dangerous environments and
high cost of specialized human work places barriers on human-driven software adaptation.
Therefore, Kephart J. et al. discussed the need to systematically address software sys-
tems capable of autonomously adapting to runtime disturbances with none or tiny human
intervention, the self-adaptive systems (SAS) [2]. Since then, a widely spread effort on
producing approaches to enable modeling, development and maintenance of SAS has been
placed [3, 4].

Nevertheless, tackling such dynamic needs is not trivial mostly due to uncertainties
arising from multiple sources. First and foremost, uncertainty is an intrinsic property
of unexplored scenarios in the software design phase, given those unpredictable events
that arise at runtime, as well as error-prone requirements elicitation techniques, and
unexpected situations that demand creative solutions [5]. Thus, reasoning on the impact
of uncertainty on the system’s runtime behavior is fundamental for building trustworthy
adaptation mechanisms in order to provide continuous goals achievement [6]. As a result,
the reasoning process needs strict guidelines to assure that the end behavior follows high
level rules that prevents the system from reaching any state that violates non-negotiable
requirements (e.g. safety-critical applications) [7].

In order to help humans build trust in SAS, it is paramount to have goal-definition and
visualization paradigms so that the specified goals do represent what is really desired [2].
For this reason, goals have become a first-class entity in SAS [8]. To recognize and manage
uncertainties in the assurance process from early on, GORE (Goal-Oriented Requirements
Engineering) offers proved means to decompose technical and non-technical requirements
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into well-defined entities (goals) and reason about the alternatives to meet them. Hence,
it has been used as a means to model and reason about the systems’ ability to adapt to
changes in dynamic environments [7, 9, 10, 11, 12].

Thereby, it is noteworthy that the system goals continuous satisfaction is challenging,
specially when the system operates under the presence of uncertainty [13]. This has been
subject of research on the self-adaptive software engineering community in the last few
decades [4, 14, 15, 16]. However, many of the proposed solutions lack on a strong theo-
retical background for assuring the system dependability, what culminated on a research
front that employs Control Theory for guiding the adaptation mechanisms design [8, 13].
After all, Control Theory provides a set of strong mathematically-based techniques which
could guide the adaptation mechanisms design. In that sense control theoretical methods
have been proposed [17, 18] to pave the way for performing trustworthy adaptation where
the system goals are placed as first-class citizens.

1.2 Research Challenges

The assessment of uncertainty during the software design phase is vital for long-lived
software systems. With that in mind, approaches rely on goal model verification [9, 10] to
shorten the design-time and runtime gap by generating runtime models augmented with
uncertainty from previously verified models in the light of model-checking. However, it is
not sufficient to verify whether the system can reach the desired goal in the control-based
mechanisms design process for SAS. With this in mind, we raise the first research question
that we aim to address in this work.

How to ensure that the goal-oriented adaptation engine guarantees hold even when the
system operates in the presence of uncertainty?

Goals have been used as a means to model and reason about the systems’ ability to
adapt to changes in dynamic environments. However difficulties w.r.t eligible software
system models, methodologies as well as architectures that pursue controllability as a
first-class concern still remain. It is noteworthy that the contributions so far step forward
into supporting the development of self-adaptive software, while they shorten the distance
between design-time and runtime [6]. However they still lack on concrete architectures for
evaluating whether the employed adaptation policies are in compliance with the control-
theoretical requirements regarding the system’s reaction in face of unforeseen changes, i.e.
uncertainty, during runtime. Then, we raise the second research question.
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Can we conceive a concrete architecture for SAS that seamlessly integrates goal-oriented
adaptation process and control theoretical verification while accounting for uncertainty?

To the best of our knowledge mRubis [19] is the only exemplar in SAS literature
that supports the development, runtime evaluation and comparison between model-based
adaptation techniques. Even though the approach may hinder scenarios execution for
empirical validation of SAS, it would demand extra effort for integrating the proposed
architecture to goal model specification language. Also, the metrics provided by the
architecture are not compliant with control-theoretical guarantees. In addition, means are
necessary to verify the system behavior following implemented and integrated adaptation
engines [17]. Finally, we raise the third research question.

How to analyze the guarantees provided by goal-oriented adaptation engines from a control
theoretical perspective?

1.3 Research Contributions

In a nutshell, our contributions pervades the research questions in three complemen-
tary directions that summed up contribute to an end-to-end process from goal modeling to
runtime verification. Thus, first we present a method that contributes with the assurance
that the goal-oriented adaptation engine properties hold in the presence of uncertainty
by providing means to exercise the system in a runtime environment with monitorable
disturbance injection into uncertainty sources. Second, we conceptually propose a layered
architecture that support the integration between goal-oriented adaptation process and
control theoretical verification. And finally, we present a process for analyzing the guar-
antees provided by adaptation engines from control theoretical perspective, that stands
upon timeseries analysis. As a minor contribution, we provide an exemplar of SAS for
empirical validation.

1.4 Evaluation

We evaluate our work by collecting evidence to our claim that the proposed architec-
ture supports the verification of guarantees provided by goal-oriented adaptation engines
from a control theoretical perspective. In two sequential experimental sets in which we
evaluate whether the goal-oriented model and the analysis algorithm provide enough in-
formation for a sound control theoretical analysis of the system behavior and whether an
assurance process based on the model may lead the system into ensuring the desired prop-
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erties even when operating under uncertainty. All upon an architecture for self-adaptive
systems following which a Body Sensor Network prototype is implemented, where we
monitor and adapt individual components parameters for ensuring a reliable system. For
the first, the results show that the relative error between the goal-oriented model and the
monitored behavior w.r.t control theoretical metrics are sufficiently acceptable, but more
investigation could be placed on the model’s sensitivity in respect to the terms contri-
bution to its global state. In addition, results derived from the second experimental set
assert that the approach enables a sound verification of the system behavior under influ-
ence of the goal-oriented adaptation engine even in presence of noise in sensing, source
of uncertainty, towards guaranteeing continuous fulfillment of the desired system goals.
Summed up, our evaluation efforts build evidence that our runtime verification architec-
ture seamlessly contributes to the goal-oriented SAS design process.

1.5 Document Roadmap

The rest of the document is organized as follows. Chapter 2 provides further detail on
the theoretical foundations necessary for the proposal explanation. Chapter 3 details the
approach that tackles the claimed research questions. Chapter 4 discusses the prototype
implemented and the experimental scenario employed in the work along with the results.
Conclusions about the work itself and future work are presented in Chapter 6.
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Chapter 2

Theoretical Background

2.1 Self-Adaptive Software Systems

Continuous behavior change is a basic necessity for long-lived software systems, since
stakeholders’ needs can be volatile, operating environments be dynamic and the system’s
internal structure, hardware and/or software, may degrade in time. However, change
might lead to unwanted behavior if not performed with caution, to address that, many
software engineering techniques (e.g. BDD, TDD, refactoring, etc) have been proposed
for human-driven adaptation. Though, strict needs on the behavioral change may un-
able human-driven change such as budget availability, unreachable environments, time
constraints for performing software adaptations. Self-adaptive software engineering have
been studied to address this issue by enabling systems to adapt themselves with tiny or
none human intervention. When it comes to the self-adaptive system high-level archi-
tecture, it’s well-established that the participating entities are organized into managing
system, managed system and environment, see Figure 2.1.

A long list of studies [3][4] on how to develop autonomous software systems from a
wide variety of perspectives have been published in the last twenty years right after the
seminal work of Kephart and Chess [2] which proposed a first version of the MAPE-K
adaptation loop architecture. Among all, we have decided to deepen the study on the
MORPH reference architecture [20] since a hierarchical multi-layer which fits well with
goal-oriented approaches is proposed, which is the core of this work.

2.1.1 MORPH reference architecture

The MORPH reference architecture for self-adaptive systems, proposed by Braberman
V. et al., provides a four-layered architecture in which adaptation reasoning is divided
in two perspectives, reconfiguration and behavioral. The dynamic reconfiguration stands
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Figure 2.1: Self-adaptive systems generic component architecture

for runtime changes of component structure and operational parameters in order to guar-
antee non-functional requirements such as the ones comprising dependability [21] (e.g.
reliability, availability, security). On the other hand, behavioral update guides the system
behavior to ensure that high-level goals are satisfied and is taken as more of an orchestra-
tion of the system components. A representation of the proposed architecture is depicted
in Figure 2.2.

Figure 2.2: The MORPH reference architecture [20]
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The Goal Management layer encompasses the highest level management reasoning
processes of the architecture. In which, a Goal Model Manager triggers reconfiguration
or behavior problem solvers for determining solutions in respect to strategies that satisfy
the target system goals. This layer interacts with a Knowledge Repository from which
the goal models, for example, are extracted, as well as with the Strategy Management
layer by, within a feedback loop fashion, sending new strategies resolutions and receiving
exceptions that are seen as constraints towards finding acceptable strategies.

Then, the Strategy Management layer is responsible for triggering adaptations to
changes that can sufficiently be addressed by pre-processed strategies, the ones synthe-
sized by the Goal Management layer. The main concept of the layer is to permit quick
adaptation in face of not attending runtime strategies. It receives adaptation requests
from the Strategy Enactor layer and replies it with a deployable strategy. However, when
no strategy suffices the constraints imposed by the lower layer, it must throw an exception
to the Goal Management layer. There also is internal information exchange in between
the behavior and reconfiguration managers to ensure consistency in the strategy selection.

Further into the architecture, the Strategy Enactor layer involves the target software
system constant monitoring and triggering either behavioral or reconfiguration operations
thus guiding the system towards the strategy’s goals. It directly interacts with the sys-
tem’s sensors and actuators. In case of unsolvable adaptations regarding the system’s
state, exceptions are thrown to the upper layer.

A logging mechanism is recommended in between the Strategy Enactor layer and the
target system, it can collect information regarding the system states during the execution
and the adaptations triggered. This information can be further treated and interpreted to
refine the models within the Knowledge Repository. At last, the Target System layer, that
contains the components that execute the system to satisfy the stakeholders’ needs. It
is necessary that the target system provides mechanisms for state monitoring and either
reconfiguration and/or behavioral actuation.

2.2 Control Theoretical Analysis

Control systems are subject to inputs not known at design-time, based on that, they
are designed to respond within acceptable boundaries to dynamic environmental inter-
actions. The analysis on whether the designed system is operating accordingly demands
metrics that can be used for comparison in respect to the performance of various control
systems [22]. Design-time analysis methods mainly consist on stressing a model of the
system with known input signals and initial conditions variations, and collecting its re-
sponse in terms of the properties to be evaluated, then the metrics that correspond to the
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response behavior are calculated and can be used for further comparison. This section
details the analysis of typical second order responses and presents the metrics employed
throughout the work.

When mechanical systems are affected by an input, the amount of energy contained
varies and it responds by sparing the received energy towards the equilibrium. The energy
dispersion can be realized by movement, emission of sounds or release of heat, for example.
Then, suppose a piano key that, when pressed, unleashes a hammer that hits a stretched
string, that produces sound to disperse the kinetic energy transferred to it. So, once
the piano key is pressed and released the piano responds with a sound with an intensity
proportional to the force applied by the pianist to the key. Now, suppose that the pianist
desires that the sound intensity be around 64W/m2, characterizing the setpoint. He or
she, then, presses the intended piano key with a correspondent force producing the curve
depicted in Figure 2.3.

Figure 2.3: Piano’s sound intensity response to unitary key press

The transient portion of the curve is defined by the moments before the sound in-
tensity stabilizes nearby the setpoint value, according to the commonly used stability
criterion, the system response stabilizes when it converges to a certain value [22]. When
the curve is within the stability region, it is said to have achieved the steady-state. The
Control Theory community, specifically for transient and steady-state analysis [22][18]
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defined metrics to classify and compare responses to inputs be them known (forecasts) or
unknown (disturbances). In this work, they are presented in Table 2.1.

ID Metric Description
M1 Stability “Ability of the system to achieve its goals”

G1

M2 Settling time “The time required to reach the setpoint boundaries
after a goal change”

M3 Overshoot “Spikes in the system output for different adapta-
tion options”

M4 Steady-state error “Oscillations in the response time of the soft-
ware for different adaptation options”

M5 Control effort “The amount of resources consumed by the ad-
aptation mechanism to achieve goals”

G2 M6 Robustness “Deviations in the system output under disturb-
ances”

M7 Optimality “The tasks completed and the resources used by
the software for different adaptation options”

Table 2.1: Behavioral metrics adapted from [18]

The metrics M1 - M4, grouped by G1, are related to transient and steady-state aspects
of the runtime behavior of the system and the M5 - M7, grouped by G2, are related to
the controller properties on whether it can optimally adapt to specific situations and is
robust enough in face of uncertain scenarios. Where, G1 stands for ‘Input Response’ and
G2 to ‘Controller Property’. Formal means of evaluating the metrics in respect to the
mathematical models that represent the controller, the system plant and the control loop
topology applied to each case are placed. However, white-box approaches are not valid in
the scope of the work since it is claimed that not known a priori control algorithms are
evaluated through the analysis.

The input response analysis does not comprise the whole collected execution life-cycle,
since more than one inputs can be taken during an analysis experimental set. Therefore
it is defined that the response itself begins at the instant that the input is observed until
a few moments after the system stabilization or another input is taken. See Figure 2.4.
On the other hand, the controller property analysis takes into consideration both, the
complete period of simulation execution. In contrast to the input response, the controller
properties analysis is related to the amount of computational resources demanded, its
capacity of dealing with uncertain scenarios and whether the adaptation decisions leads
the system to an optimal behavior.
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Figure 2.4: Input response with metrics

2.3 Goal-Oriented Software Design Process

The goal-oriented requirements engineering (GORE) has been an active field of study
for the last two decades, in which goals are taken as first-class citizens [23]. Typically,
GORE approaches advocates the use of goal models for elicitation, conceptualization and
analysis of the system requirements, in which, interactions between the system’s and
environment’s entities collaborates positively or negatively for the stakeholders’ needs
satisfaction. Despite that, approaches that not only employs goal models for creating and
reasoning, but, for the entire life cycle (e.g. architecture, process design, coding, testing,
adaptation, evolution) have been extensively proposed [24], with the advantage that the
system operations continuously meet the goals it was designed or adapted for.

Using goal models in the entire life cycle of the application demands trustful trans-
formations, mappings or integration from source, goal model, to the target, which corre-
sponds to the artifact to be used in one or more phases of the software design or runtime.
Horkoff J., et. al [24] performed a meta-study on the literature regarding transformations
from/to goal models that pervades the entire life cycle of software systems. In which a
classification of the transformations is placed. This work employs Horkoff’s classification,
see Table 2.2, in order to both delimit the scope of its contributions to the goal-oriented
design process approaches and be able to further compare them to existent approaches in
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Transformation
A process that takes one or more source models
as input and produces one or more target models as
output by following a set of transformation rules.

Mapping

A set of rules that describes how one or more
constructs in the source modeling language can be
connected to one or more constructs in the target
modeling language.

Integration
The creation of a new modeling language which
is made up of constructs and relations from the
source and target modeling languages.

Exogenous Transformation A transformation between models expressed in
different languages.

Endogenous Transformation A transformation between models expressed in
the same language.

Vertical Transformation A transformation where the source and target
models reside at different abstraction levels.

Horizontal Transformation A transformation where the source and target
models reside at the same abstraction level.

Table 2.2: Transformation definitions [24]

the literature.
Also, we leverage the importance of having one goal model structured in several lan-

guages, since distinct reasoning processes with specific constraints might read or write
in it. To maintain consistency, exogenous transformations are to be held whenever is
necessary. A contextual goal model is used as the main model of this work, due all its
advantages such as the proximity with the natural language and the liability for trans-
formations. Then, a transformation from CGM to parametric formulae is advised, since
at runtime, the goal tree does not scale for fast decision making. Also, a transformation
from goal model to system architecture is proposed in this work. In the next topics,
the languages and respective transformations used throughout the work are detailed and
conceptual remarks are placed for the goal model to architecture transformation.

Furthermore, we follow the design-time process from Solano et al. [10] from contex-
tual goal modeling to the parametric formula generate and contribute with an automatic
runtime policy synthesis at runtime, see Figure 2.5. In this work, the contextual goal
modeling extends GODA [9] with capabilities of taking uncertainties into account. In
addition, the CGM to parametric symbolic formula process generates formal models, i.e.
algebraic formulae, embedded with the representation of uncertainties for reliability and
cost. The processes are further detailed in the next topics.
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Figure 2.5: Goal-oriented design process for SAS

2.3.1 Contextual Goal Modeling

According to [11], a contextual goal model (CGM) is composed of: (i) actors such as
humans or software that have goals and can decide autonomously on how to achieve these
goals; (ii) goals as a useful abstraction to represent stakeholders’ needs and expectations,
offering an intuitive way to elicit and analyze requirements; (iii) tasks as atomic parts
that are responsible for the operationalization of a system goal, that is, an operational
means to satisfy stakeholders’ needs; and (iv) contexts as partial states of the world that
are relevant to a goal. A context is strongly related to goals since context changes may
affect the goals of a stakeholder and the possible ways to satisfy the goals. Goals and
tasks of a CGM can be refined through AND-decomposition or OR-decomposition, that
is, a link that decomposes a goal/task into sub-goals/tasks, meaning that all or at least
one, respectively, of the decomposed goals/tasks must be fulfilled/executed to satisfy its
parent entity. The link between a goal and a task is called means-end, and indicates a
means to fulfill a goal through the execution of a task.

In the example of Figure 2.6, the Body Sensor Network, actor, and its main objective
is elicited as the root goal "G1: Emergency is detected". To decompose the goal tree until
the tasks that operationalize the root goal, one should ask herself what it needs to be
done to satisfy the root goal and how. Then, G1 is decomposed into a soft goal (how)
and a hard goal (what), as for the soft goal, it is stated that G1 must be achieved with
at least 90% reliability, and for the hard goal that the patient should be monitored, "G2:
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Figure 2.6: Contextual goal model example

Patient status is monitored". Next, G2 is decomposed into "G3: vital signs are monitored"
and "G4: Vital signs are analyzed", through an AND decomposition since both must be
realized. Both goals are decomposed into tasks, "T1: Monitor vital signs" and "T2:
Analyze vital signs", respectively. Such tasks are decomposed, within the boundary of
the Body Sensor Network actor, to finally reach executable tasks. T1 is decomposed into
T1.1 and T1.2, supported by an OR decomposition, stating that to fulfill the vital signs
monitoring, the system could collect SaO2 data or temperature data. T2 is decomposed
into "T2.1: Fuse sensor data", "T2.2: Detect patient status" and "T2.3: Persist data"
within an AND decomposition. The operation of the Body Sensor Network is subject to
two context conditions, both regarding the availability of the sensors needed to collect
vital signs data.

2.3.2 CGM to Parametric Formulae Transformation

Parametric formulae are key enabler towards runtime analysis [9], since its computa-
tion is constant. The produced formulae composes each tasks’ QoS attributes, regarding
its operation, the contextual information associated and the means to satisfy the root
goal. Therefore, the formulae can be used in the application behavior analysis since the
parameters are constantly collected and updated during runtime.
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The transformation technique is automatic stands for traversing the contextual goal
tree and composing the nodes through arithmetic operations regarding the nodes and
edges relations, in terms of decomposition, runtime behavior, weights, contexts, thus
comprising an exogenous vertical transformation. In piStarGODA-MDP for example,
the formulae is created over a process of building parametric MDPs, in respect to the
execution behavior in Figure 2.7, in PRISM language for each leaf task node in the CGM
and assembling them to represent the root goal fulfillment.

Figure 2.7: Software module execution behavior [9]

Furthermore, the tool relies on the root goal specification upon the probabilistic ex-
istence property, which evaluates the probability of the system eventually reaching a
state that satisfies a goal of interest. Finally, it uses the parametric model checking
PARAM [25] to generate the parametric formulae in a bottom-up fashion (i.e. from leaf-
tasks to root goal), see Figure 2.8. Since G3 has no specific feature, its reliability will be
the same as its subtree “T1: monitor vital signs". Subtrees T1.1 and T1.2 have both an
AND-decomposition, thus the reliabilities of each subtrees are multiplied to obtain the
reliabilities of each, T1.1 and T1.2. Finally, the leaf nodes have their reliability retrieved
by PARAM, in which rTi and fTi represent the reliability and execution frequency of leaf
node i. Similarly, cost formulae are generated by the algorithm.

Figure 2.8: Bottom-up formulae generation process [10]
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Chapter 3

Our Approach

3.1 Introduction

The present work provides an end-to-end conceptualization of an architecture for sup-
porting adaptation engines verification and analysis. Moreover, it contributes seamlessly
to the goal-oriented design process of trustworthy self-adaptive software systems. First,
we introduce our view on the design process where we contribute to the goal-oriented SAS
process from Solano et. al [10]. Then we present a vision of the concrete architecture
that integrates the elements for a goal-oriented adaptation process in which the system is
exercised with the injection of disturbance that lead into a control theoretical verification.

The design process is represented by three parallel lines that merge into one that
in a big picture ensembles a feedback loop, see Figure 3.1. The first line, withdraws
the Contextual Goal Model (CGM) and transforms feasible tasks into components that
compose the target system. The second, derives from the parametric formula which is used
on the adaptation engine design. Both lines, merge into a single one which culminates into
a self-adaptive system (SAS) through an integration process, which finally is configured
by the system engineers and it is ready-to-go to runtime. The third line consists of setting
uncertainty scenarios which will exercise the SAS in a runtime simulation in parallel to
the desired properties specification for verification purposes. During runtime, information
regarding the system behavior is collected and a control theoretical analysis is performed.
This provides the system engineers with quantitative evidence on how the SAS behaves
in the presence of uncertainty and may lead to refinements into the adaptation engine
design, closing the feedback loop and contributing to trustworthy adaption engines design.

Our architecture provides means for performing each of the aforementioned processes
that contribute on the provision of concrete means for the adaptation engine verification
process. It is composed of four major layers, two horizontal and two vertical. Wherein the
Knowledge Repository centralizes the information necessary for reasoning on the adap-
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Figure 3.1: The process view

tations to be taken, the requirements in goal-model fashion and the runtime behavior
information. The Analysis layer contains the components for exercising scenarios into
during runtime and the verification of the system behavior. The System Manager layer
is represented by the adaptation engine and strategy enactor components which guides
the system to fulfill its adaptation goals. Finally, the Target System layer is composed
by the system to be adapted and the components that monitors and effects on it. Figure
3.2 depicts the architecture where white round-shaped squares represent procedures and
white sharp-shaped squares artifacts, arrows represent the direction of the data flow, and,
as a result, dependency between components.

The next few sections furthers down into each layer of the architecture presenting
conceptual aspects of the containing components and how they pervade the design process.
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Figure 3.2: The architecture

3.2 Knowledge Repository

The knowledge repository is orthogonal to the other layers since it contains the mod-
els necessary for the reasoning procedures at all levels. As in this approach we advocate
the importance of a goal-oriented design-process, the models suggested are goal mod-
els, following from goal-oriented requirements engineering literature [12]. The knowledge
repository content can be fed either at design-time through stakeholders (e.g. require-
ment engineers, product owners, analysts) or at runtime through mechanisms that collect
system information for requirements and models improvement.

The goal model is subject to input/output operations at any time, since the stake-
holders and automatic inference mechanisms might guide the system towards new or
updated goals. It is desired that the model updates are performed without any system
outage because the components might rely on the goal model at runtime regarding the
decision-making process. Then, the goal model must be ready for use in persistent storage
or in-memory. Persistent storage approaches tend to be more resilient to faults while in-
memory provides better performance, a hybrid approach might be eligible when trade-offs
between the qualities are required.

Either way, the employed approach should be transparent to the goal model consumers
and producers. Therefore, an interface must provide the high-level operations on the
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model with guarantees that no inconsistent state is present and that all layers have access
to the same model. Each layer requires distinct perspectives of the model (e.g. goal tree,
symbolical formula), since the decision-making reasoning is subject to performance issues
and lower layers usually tend to require faster response in comparison with upper layers.
As a result, models automatic transformation is advised in order to guarantee consistency
between the models used in different layers.

Following Solano et. al [10] we advocate for the employment of Contextual Goal
Models (CGMs) and its respective derived formula for decision-making in our approach.
Contextual information may hinder different system configurations which provides the
means for adapting the system. Also, in their work, a set of uncertainties may be rep-
resented on the parametric formula. This provides flexibility on the adaptation engine
reasoning process with not much loss on computational effort. In addition, the trans-
formation from CGM to parametric formula is fully automatic and complies with the
necessary mechanisms for assuring consistency between models in the layer. For more
information on the transformation process from contextual goal modeling to parametric
formula please refer to the Section 2.3.2.

3.3 Analysis Layer

The analysis layer is orthogonal to all other layers. Even though it is not part of
the deployed software artifact, it plays an important role by stressing an instance of the
designed system for the provision of qualitative and quantitative arguments regarding the
adaptation engine quality. It provides the system engineers with a mechanism for evaluat-
ing how well the adaptation engine behaves in face of isolated or composed uncertainties
before deploy. The current work, inspired by mRUBiS [19], presents two architectural
components that are at the core of the analysis layer, the uncertainty injector and the
runtime verification procedure. Finally, it suggests how the user may explore uncertainty
injection in all levels of the architecture to gather evidences on the adaptation engine
behavior correctness.

In the light of the control theoretical analysis method, the process can be divided in
three distinct steps: configuration, execution and verification.

Configuration. Consists of setting up an execution scenario within the model or
application to be exercised. It includes the configuration of each architectural component,
duration and the means by which the model or system will be exercised, i.e. the input
signals. The first strictly depends on the architectural components domain specific task
to be realized, the second can be either mathematically predicted or empirically defined
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by observing the time necessary for convergence or divergence and the third depends on
which uncertainty source should be exercised and the signal the best defines it.

Execution. The system or the model is stressed through cycles of uncertainty injec-
tion and the persistence of the variables of interest evolution in time. During this step,
the configured injector mechanism acts upon the application by enforcing noise by alter-
ing structural system elements, i.e. parameters, flooding buffers, swapping functions or
resources.

Verification. Collecting the data gathered during runtime, processing it and syn-
thesizing information w.r.t the property(ies) and plotting the timeseries that define the
system evolution in time. The timeseries goes under thorough information extraction and
comparison in terms of control theoretical based metrics. Finally, the extracted metrics
can be compared to the desired properties.

3.3.1 Uncertainty Injector

Deviation on the delivered service is usually perceived at runtime, when an error turns
active mostly due to emergent uncertainties. Despite of that, the uncertainty source might
have been placed at any time. The injector as a runtime architectural component is re-
sponsible for simulating the emergence of uncertainties during the execution, which is not
strict only to runtime related uncertainties. Therefore, this subsection discusses uncer-
tainty injection in a broader scope. The uncertainty sources compliant with the current
work are based on Weyns et al. [13] compiled from Hezavehi et al. [5] into six different
classes of uncertainty comprising twenty-three sources either isolated or composed into
more complex types.

Within the System Itself class of uncertainty, the model uncertainty sources (i.e. sim-
plifying assumptions, model drift, incompleteness) are inherent to the accuracy of
the model used in the adaptation reasoning process. Therefore, model uncertainty injec-
tion requires that simpler, incoherent or incomplete system models override the models
used in the adaptation reasoning process. However, models are not only domain spe-
cific but may pursue unique specification rules, since modeling techniques are constantly
improved. As a result, the injector should provide means for periodically injecting pre-
set models into the System Manager layer, overriding the complete and concrete models
loaded from the knowledge repository. In addition to the System Itself class, the adapta-
tion functions source of uncertainty might as well be affected by uncertainty injection
by the simulation of misbehaving probes and effectors. This could be either through noise
in the propagated information or failures that prevent the information from reaching its
destination. Uncertainty injection in the form of noise into the Logging Infrastructure can
also hinder uncertainty for automatic learning.
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The Goals class of uncertainty is subject to sources of uncertainty upcoming from
the high level system goals, which are local to the Knowledge Repository. Therefore, the
uncertainty injection is performed by read and write operations in the goal models stored
in the Knowledge Repository. However, the focus of the uncertainties to be injected are
taken prior to the simulation, for design-time sources of uncertainty (i.e. requirements
elicitation, specification of goals), and during the execution, for runtime sources of
uncertainty (future goal changes). The design-time sources are related to the accuracy
with which the system was modeled and requires that pre-set faulty goal models be
provided in the configuration phase. The runtime sources encompasses changes in the
goals which can be realized by noise injection in the goals parameters at runtime.

Additionally, the Context class of uncertainty is strict to runtime. Uncertainty in-
jection for this class are realized within the target system. Such system interacts with
the environment and might have distinct modes of operation depending on the context
it is emerged in. Then, noise can be injected in the variables representing contextual
data inside each component in the target system for the execution context source.
Also, applications with sensors for perceiving the context are subject to noise in sens-
ing, due to accuracy, interference with other elements, and so on. The injection is thus
straightforward.

It is notable that Human Interaction class of uncertainty is out of the scope of this
work. It is domain specific and the variety of options for human interactions in the
goal-oriented design-process is wide enough and prone to innumerous possibilities.

3.3.2 Runtime Verification

The runtime verification is responsible for performing the tasks from raw data col-
lection, processing and transformation into meaningful information to finally extracting
relevant properties. In this work, the verification step is performed on system properties
that evolve in time, a timeseries. First, the data collection is realized on the informa-
tion persisted by the Logging Infrastructure into logs. Second, the procedure performs a
processing and transformation of actuation signals, input signals and the system status
into a timeseries response. Third, the properties extraction are placed in respect to the
aforementioned control-theoretical metrics 2.1.

In this work, several components contribute to each other for the fulfillment of a main
application goal represented by the concrete goal model tasks and decompositions. Then,
the processing and transformation step should compose the information persisted for
each of the components into a single overall behavior of the system, as in many cases the
properties to be guaranteed are in respect to the general system behavior. The parametric
formula derived from the CGM and stored in the Knowledge Respository can be employed
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for verification purposes. As it provides enough information for being used for control
theoretical verification even in face of uncertainties. All in all, it supports contextual
information modeling, system properties representation and is prone to uncertainty.

In Figure 3.3, a typical response to a perturbation in the system is illustrated.

Figure 3.3: System behavior and metrics

The figure represents the outcome of the processing and transformation phase, which
paves the way to the properties extraction step, further discussed in the next subtopics.
Given that the outcome of the processing phase is an array of size N containing the values
that represent the system response at each instant (TS).

Stability

A system is said to be stable when it reaches its state of steadiness. In Control
Theory, the steady-state is defined by the interval in which the response curve stays
inside the acceptable stability margin from the convergence point (usually 2% or 5%). In
this work, the convergence point is calculated by the simple average of the last quarter of
the timeseries values, Equation 3.1.

CP =

N∑
n= 3N

4

TS[n]

N
4

(3.1)
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The evaluation that defines whether the response reached the steady state or not
consists of querying if the last value (TS[N ]) is within the interval determined by the
stability margin (−SM < TS[N ] < +SM).

Settling Time

The settling time is time required for the response curve to reach stability. Marked
in Figure 3.3 by the crossing from the vertical dashed line with the lowermost dashed
stability margin line. From the settling time on, it is guaranteed that the response curve
stays inside the stability margin.

Algorithm 1 Calculate Settling Time
1: procedure CalculateST
2: ST ← 0
3: for each sample in TS do
4: if −SM < sample < +SM then
5: if ST is 0 then
6: ST ← sample instant
7: else
8: ST ← 0

return ST

The Algorithm 1 returns the first sample instant that is inside the interval (−SM <

sample < +SM) until a sample is out of the interval or the array is over. When the
response curve is not stable, the algorithm returns 0.

Overshoot

The overshoot, or maximum (percent) overshoot, indicates the maximum peak value
of the response curve measured from the convergence point. The Equation 3.2 illustrates
the mathematical model used for calculating the overshoot.

OS = TS[tp]− CP

CP
· 100% (3.2)

Where the tp is the sample related to the highest peak on the response which can be
extracted with a maximum function iterating over the TS array.

Steady-State Error

The steady-state error is a measurement of how far from the precise setpoint value
has the system response reached. It is calculated by the relative distance between the

22



convergence point and the setpoint, defined by the system stakeholders, see Equation 3.3.
Be setpoint the value determined as the desired final state for the response curve,

SSE = | CP − setpoint |
setpoint · 100% (3.3)

3.4 System Manager Layer

The System Manager layer contains the architectural components for adapting the
target system. It constantly monitors the system status and triggered events. Then,
based on a model and the system requirements, an analysis is performed towards deciding
whether it is needed to adapt the system. Furthermore, a planning routine decides a
strategy that might lead the system towards reaching its goals. At the end of a cycle,
the strategy is executed. This structure might be repeated on as many sublayers inside
the system manager layer as the engineers find useful. Distinct layers can be applied by
means of performing hierarchical adaptation in which lower layers propagate exceptions
upwards when they cannot find a strategy that fulfills the current goal, due to contextual
constraints. Thus, upper layers which perform higher level reasoning processes may find
a sufficient or the best strategy for the situation, propagating it downwards.

We present a minimal two-layered architecture containing an adaptation engine for
higher level reasoning and a enactor for lower level strategy enforcement. However it
is not our intention to limit the number of layers, since our goal is of verifying different
proposals of adaptation engines. The two following subsections dive into major theoretical
aspects of both architectural components.

3.4.1 Adaptation Engine

Responsible for higher level reasoning, the adaptation engine architectural component
must be capable of performing computationally expensive decision-making algorithms.
Search in adaptation space is particularly difficult to solve as the size of the adaptation
space grows in exponential order since it is prone to the combination of possible solutions.
Specially when it accounts to not only the execution or not or each target system compo-
nent, but the interaction of components to satisfy the goal. Which increases even more
when more than one parameters for each components are taken also considered.

Despite the difficulty, approaches propose goal-oriented requirements formalization by
enabling uncertainty to be modeled in goal-oriented notation [7, 10, 26, 27]. Reasoning
upon these models is still not free from state explosion, but constraints can be elicited
to build heuristics which lead to feasible solutions. The parametric formula employed in
this work is used for both analyzing the current status of the overall system property
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of interest and for calculating through a search-based solution, the combination of local
(goal, condition, actions) that would lead the system into reaching its objective.

The Figure 3.4 details the feedback loop corresponding to high-level processes em-
ployed the strategy synthesis. Where a Pref is the system overall property to be con-
stantly monitored and guaranteed during runtime, it is provided by an external agent.
The error is composed by the difference of where the system currently is (Pcurr) and where
it wants to get (Pref ). The need adaptation? block, queries if the error is bigger than
the expected. And the evaluate actions loop through the parametric formula, searching
for the combination of terms that would lead the system into reaching Pref . When the
combination is found it is propagated to the strategy enactor in the form of strategy.

Figure 3.4: Detailed vision of the adaptation engine

The reasoning process follows the Algorithm 2 written in pseudo-code. Where Ps is
the set of properties monitored from the system, labeled as “system information” upon
the thick line in Figure 3.4. Line 4 calculated the error based on the desired Pref and
the current Pcurr. Line 5 corresponds to the analysis on whether the adaptation needs
to be performed, querying if the error is within the acceptable stability margins. And
from line 6 - 21, the evaluate action block is performed by a search with heuristics within
the possible adaptation space. Finally, line 22 corresponds to the strategy selection and
propagation to the Strategy Enactor.

The evaluate action block from line 6 to 21 uses incremental gains on the error for
reaching the desired reference value, other strategies could be employed for reaching the
desired value. The algorithm is run periodically in a preset actuation frequency and
collects a configurable quantity of status messages from the target system in order to
calculate the current system property. It performs a search in the solution space (R), that
starts in the value determined by a percentage of the current property value, determined
by the offset. For example, if the current system property value is 0.80, the offset is
20% and the error is bigger than 0, then the search starts at 0.54 for each and every
component. In the case of the error being smaller than 0, the offset is applied as an
increment to the current property value. Also, the Kp determines the granularity of each
search step since. It is noteworthy that smaller Kps might lead the into more precise
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Algorithm 2 Adaptation Engine Pseudo-Code
1: procedure AdaptationEngine
2: Ps ← monitor system
3: pcurr ← apply Ps to parametric formula
4: error← pref − pcurr

5: if −stabilityMargin < error < stabilityMargin then return true
6: for each pi in Ps do
7: Ps ← ResetToStartingPoint(offset)
8: pnew ← apply Ps to parametric formula
9: if error > 0 then
10: pi ← pi + Kp · error until pnew > pref

11: where pnew ← apply Ps to parametric formula
12: for each Rj in Ps − pi do
13: rj ← rj + Kp · error until pnew > pref

14: where pnew ← apply Ps to parametric formula
15: else
16: pi ← pi −Kp · error until pnew < pref

17: where pnew ← apply Ps to parametric formula
18: for each Rj in Ps − pi do
19: rj ← rj −Kp · error until pnew < pref

20: where pnew ← apply Ps to parametric formula
21: Strategies← Strategies + Ps

22: Send a strategy from Strategies that satisfy the stabilityMargin

solutions and might even be necessary for reaching a solution. However, the smaller it is,
the bigger is the search space, which can invalidate the algorithm in terms of scalability.
Finally, the pref determines the setpoint to be achieved by the search. Thus, the algorithm
can be configured in terms of these parameters.

3.4.2 Strategy Enactor

The enactment level architectural components are responsible for enforcing one or more
active strategies at the target system. The strategies are synthesized in the adaptation
engine and must be read, interpreted and enforced by the strategy enactor. It is the
strategy enactor’s responsibility to evaluate whether the active strategy truly leads the
system into the desired behavior, thus monitoring the system events and status must be
constantly performed. If the active strategy does not lead the system into fulfilling the
system goals or no strategy among the present ones could lead the system towards its
goals, exceptions might be thrown to the upper layer with statements or constraints that
supports the adaptation engine strategy synthesis.
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As illustrated by Figure 3.5 the active strategy is composed by Goal, a Condition and
an Action. The goal placeholder determines the property reference to which the compo-
nent should converge to. The condition is used to determine whether the current error
satisfies the requirements. And the action drives the system into reaching the desired
goal. The strategy enactor interfaces directly with the target system by sending adapta-
tion commands and receiving system information through status and event messages.

Figure 3.5: Detailed vision of the strategy enactor

3.5 Mapping from Goal-Model to Components

According to Szyperski et al. [28], "a software component is a unit of composition with
contractually specified interface and explicit context dependencies only". From such defini-
tion, we derive that the most important aspect of components is the separation between
implementation and interface that enable seamless integration with other components.
In the goal model, the means-end tasks suffice the requirement of being an independent
entity that completely fulfills a higher level goal at a concrete level. Then, composed with
others, such tasks contribute to the fulfillment of the main goal of the application.

Without loss of generality, in this work, we propose a mapping from means-end tasks to
components. In this case, we assume that each component in the architecture encapsulates
the tasks that decompose the respective means-end task. Also, this mapping does not
limit the software design decisions in terms of what is a component and how the means-
end tasks decomposition compose with each other. They might be designed as functions,
methods, classes, modules or whatever software building block sound reasonable to the
system engineers. Despite of that, it is required that a mathematical model relating the
composed building blocks to the property to be adapted is provided to single means-end
task. Which can then be plugged into the parametric formula.
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It is noteworthy that the mapping suggested in this work is no more than a contract
between the requirements engineering process and the implementation of the system. The
components correct implementation and binding is left to the system engineers and is a
manual process.

Figure 3.6: Goal to component mapping example

In the illustrated example of Figure 3.6, we demonstrate a mapping between means-end
tasks, ’T1: Collect pulse oximeter’, into the class G3_T1 that implements the methods
defined by the interface class Component. The class G3_T1 contains available and data as
attributes, where the available is a boolean value that evaluates in correspondence to the
contextual information of the task and the data contains the information to be exchanged
through the leaf-tasks implemented as methods collect, process and transfer. A pseudo-
code containing the implementation of the Component inherited methods is represented
in Algorithm 3.

Algorithm 3 G3_T1
1: procedure SetUp
2: available← True
3: procedure TearDown
4: available← False
5: procedure Run
6: if available is True then
7: isCollected← collect(data)
8: isProcessed← process(data)
9: isTransferred← transfer(data)
10: else
11: skip

return (isCollected and isProcessed and isTransferred)
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Whereas the implementation of collect, process and transfer behaviors are in charge of
the system engineer. In the case of OR decomposition instead of only ANDs, the return
statement would change to suffice the first-order logic derived which state whether a run
cycle was successfully performed or resulted in a failure.

3.6 Target System Layer

The target system layer contains the system that is ought to deliver the service that
fulfills the functional requirements and mechanisms for monitoring and adaptation. Such
layer is subdivided into three architectural components: probes, effectors and system.

The probes are meant for system’s data collection and pre-processing data gathered via
instrumentation internally to the component or upon the communication infrastructure.
Either way, the probes shall continuously evaluate emergent changes into the system
state that are relevant to the property to be adapted. The information that evidences
the changes should be collected and propagated to decision-making structures, e.g. the
system manager layer.

The effectors, in turn, are responsible for acting on the target system. The actuation
may refer to either behavioral or reconfiguration aspects of the system. Each system
component must be instrumented with actuation mechanisms that enable change during
runtime. Behavioral changes are domain dependent and subject to the provided services
from each component. The reconfiguration can be either domain dependent or indepen-
dent. While the dependent is prone to the system parameters, the independent deals with
components insertion, removal and binding.

Finally, the system to be adapted’s architecture should be flexible, though following
some basic principles to ensure runtime adaptability is advised. In this work, it is required
that each self-sufficient task should be mapped into independent components that upon
execution satisfies a well delimited goal. In addition, each component should be mapped
into the parametric formula elements. The goals to components mapping provides the
necessary structural rules for enacting adaptable components.

3.7 Logging Infrastructure

The logging infrastructure is motivated by the need of monitoring and evaluating the
system behavior in face of runtime changes, which is directly related to how well the adap-
tation engine fits its purposes. Therefore, a transparent logging layer constantly monitors
the messages that travel through the communication channels between the System Man-
ager and the Target System layers.
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This work assumes that the manager and target system layers share information
through message exchange. Logging can be accomplished in two ways: centralized logging
or distributed logging with information aggregation. The centralized solution is simpler
than the distributed. However, it demands additional effort for guaranteeing event or-
dering and for avoiding the bottleneck on systems with many nodes. On the other hand,
there is a necessity of time synchronization between the nodes that participate on the
logging task in a distributed systems domain. Even though global clock synchroniza-
tion is a well-established problem in distributed system community, its implementation
is harsh and depending on the adopted solution, a communication network overload can
be observed. Also, it is required that a log aggregator is deployed to correctly merge the
logs, which should not be a problem for globally ordered events.

A fundamental information to be logged for each message that passes by the logging
infrastructure is the message’s emitting source. Even though the goals to components
mapping guarantees that each means-end task are implemented as a singular and self-
sufficient component, the logging infrastructure must make sure that this information is
associated to the event and status messages propagated upwards by the probe. So, that
the Analyzer and the System manager can correctly map each component property to its
respective term in the formula.
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Chapter 4

Case Study and Evaluation

4.1 Body Sensor Network a Case Study on ROS

To discuss our proposed methodology, we use the exemplar implementation1 of a Body
Sensor Network (BSN) [29, 30]. The main objective of the BSN is to keep track of a pa-
tient’s health status, continuously classifying it into low, moderate, or high risk and, in
case of any anomaly, to send an emergency signal to authorities on the subject. The
structure of the BSN is as follows: a few wireless sensors are connected to a person to
monitor her vital signs, namely, a pulse oximeter (SaO2) for blood oxidation, an elec-
trocardiograph (ECG) for heart rate, a thermometer (TEMP) for temperature and an
arterial blood pressure monitor (ABP) for systolic and diastolic blood pressure measure-
ment. Additionally, there may be a central node responsible for analyzing the collected
data, fusing it, identifying the patient’s health status and finally emitting an emergency
message if necessary.

A more precise description of the BSN is detailed by its requirements that are repre-
sented by a goal-model, as depicted in Figure 4.1. The goal model goes through a vertical
and exogenous transformation for algebraic formula derivation [10] and is mapped into
the target system components as suggested in this work. Modeling a SAS requires to take
into consideration not only the requirements and means to achieve them, but also the
contextual information that may be related to the system’s operation. For this purpose,
we use a Contextual Goal Model (CGM) since it allows us to specify in a simple structure
the stakeholders and high-level requirements, the ways to meet such requirements, and the
environmental factors that can affect the quality and behavior of a system. According to
Figure 4.1, the Body Sensor Network, actor, and its main objective is elicited as the root
goal "G1: Emergency is detected". Then, G1 is decomposed into a soft goal and a hard

1The case study is avaliable at https://github.com/rdinizcal/master_thesis_eval along with all
data generated and processed for the experiments presented in this chapter.
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Figure 4.1: Body Sensor Network Goal Model

goal, as for the soft goal, it is stated that G1 must be achieved with 95% ± 2% reliability,
and for the hard goal that the patient should be monitored, "G2: Patient status is moni-
tored". Next, G2 is decomposed into "G3: Vital signs are collected" and "G4: Vital signs
are analyzed", through an AND decomposition since both must be realized. The former
is decomposed on 4 goals with an ’OR’ decomposition indicating that at least one should
be realized to fulfill its objective, for the collection of specific sensor’s data, which are re-
alized by the means-end tasks T1.1, T1.2, T1.3 and T1.4: collect SaO2 data, ECG data,
temperature data or blood pressure data. The latter is decomposed on the means-end
task "T1: Analyze vital signs" which states that the BSN should analyze the vital signs
to identify and detect an emergency. Finally, each means-end task is still decomposed on
the leaf-tasks, that in conjunction operationalize the means-end task. The operation of
the Body Sensor Network is subject to four context conditions: SaO2, ECG, TEMP and
ABP . Each of them refers to the availability of their respective sensors needed to collect
vital signs data.

The BSN self-adaptive software implementation follows the conceptual architecture
presented in the approach and make use of the Robot Operating System (ROS) middle-
ware for message exchange 4.2. Where the ROS Master is the name server for registering,
deregistering and lookup ROS nodes and communication topics. The communication top-
ics are used for peer-peer communication with publish/subscribe protocol. The common
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bus is provided in default as a TCP/IP connection between the ROS Master and the
nodes and within nodes. Each architectural layer was implemented as a ROS package.
Each ROS package, provides its own manifest, set of messages, provided services, codes
(nodes in this case) and ros launch for command lines configuration. We further detail
the nodes behaviors for each package in the next subtopics.

Figure 4.2: Architectural view from the BSN implementation on ROS

4.1.1 Knowledge Repository

The Knowledge Repository package contains a data access node, a parametric formula
and persisted logs during the execution. The data access node was implemented following
a hybrid approach. It stores data in-memory and persists it in bursts once in a while.
Then, the most recent data is ready to whoever wants to consume it during runtime and is
being persisted for the analysis layer. The data access node persists data coming from the
logging infrastructure and mostly responds to data requests coming from the adaptation
engine, as illustrated in the activity diagram example from Figure 4.3. It contains data
structures for supporting fixed size buffers of adaptation commands, status, events and
uncertainty injection messages. Which are occasionally persisted in separate files where
information regarding the instant issued, source, target and content are persisted per file
line.

It’s unique configuration parameter is the execution frequency, set to 10KHz to avoid
bottlenecks to due data persistence and mostly to avoid data loss. The parametric formula

32



Figure 4.3: Exemplar activity diagram of data access

is stored in the reliability.formula file. The logs are named after the type of message saved
incremented to a timestamp.

4.1.2 System Manager

The System Management layer contains two ROS nodes: the adaptation engine and
the strategy enactor.

The adaptation engine responsibility is to guide the system adaptation into achieving a
overall desired level of reliability, specified in the goal model by the soft goal Reliability =
95% ± 2%, Figure 4.1. The node configurations are in respect to the adaptation engine
Algorithm 2 parameters. And is left to the user to set: the monitoring frequency, the
reliability setpoint, the actuation frequency, the amount of messages the system should
request to the data access, a offset and a gain (Kp).

The strategy enactor continuously monitors the target system by the processing of
Status and Event messages receipt through pub/sub. In the case of the BSN, the system
reliability is being monitored, therefore, status messages that inform whether an invoca-
tion of the target system component has succeeded or not is stored in buffers for each
active component. At a defined frequency the buffers are read and the reliability of each
component computed. The reliability status might trigger active strategies into adapting
the system by publishing messages containing the adaptation command.

Figure 4.4 represents a typical execution in which an adaptation is issued to the
strategy enactor. The enactor dissembles the strategy upcoming and apply changes to
the innermost control loop: goals, conditions and actions. With the defined setpoint
(the new goal), the strategy enactor emits messages to the effector with the adaptation
command and target component. In defined frequency the probe collects information
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Figure 4.4: Exemplar activity diagram of system manager

from the target system components and propagates it to the adaptation engine, passing
through the logger and the strategy enactor.

Two strategies were hardcoded: (i) data collection replication and (ii) sensor frequency
adjustment. The first strategy relies on replicating the the sensors’ data collection task
and performing an average of the collected data, which is more likely to succeed. Then,
the system manager constantly monitors each sensor’s reliability status and adjusts the
number of replicas of the data collection task in order to fulfill the reliability reference
requirement. The second is about adjusting the sensor’s invocation frequency for reducing
package loss due to message buffer overflow in the central hub. The strategy follows the
same proportional control approach despite that the controlled variable is not the number
of replicas, but the sensor’s frequency. Also, the relation between sensor frequency and
reliability, due to message loss in the central hub is inversely proportional, which was not
the case for number of replicas.

The strategies implemented were coded as increments of proportional gains in a feed-
back loop style for each component. From which we derive the mathematical model 4.1
that represent the feedback calculation to proportionally achieve the desired x. Where
error = pref − pcurr, pref is the desired reliability for the local component, pcurr is the
current reliability that is calculated using Equation 4.3 and Kp is a gain that is empiri-
cally defined based on the desired response. The Kp defines the amplitude of the steps
towards reaching the desired pref .

x = Kp · error (4.1)
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Figure 4.5: Feedback Loop for Proportional Control

4.1.3 Target System

The Target System package contains the effector node, the probe node and the nodes
which operationalize the functional requirements of the BSN.

The effector’s objective is to actuate on the system based on the information upcoming
from the strategy enactor. In this case study, the adaptations are realized by the recon-
figuration of the components parameters, thus the implemented effector forwards the pair
(action, value) to the component through publishing an effect message with the content
upcoming from the upper layers. For example, the replicate data collectors adaptation
message could contain the following string: “replicate_collect = 5”, whereas the action
is the “replicate_collect” and the value is 5.

Similarly to the effector, the probe is part of the communication interface between
the System Manager and the BSN. Its responsibility is to reroute the status and event
messages upcoming from the BSN components. These messages can indicate success or
failure in the component execution or contextual information in respect to its activation
status gathered at the component.

The components follow the goal to architecture mapping suggested in the approach.
Thus each component, implemented as ROS node, provides the services described by
the means-end tasks from the goal model, see Figure 4.1. The BSN components can be
divided in two types: the sensors and the central hub. The sensors simulate data collec-
tion following a probability distribution generator modeled as first-order markov chains,
which simulate data collection from a patient that has probabilities of transitioning from
health states. Beyond the data collection, two other sequential tasks were implemented
that determine the higher level "Collect Sensor Data" leaf task in the goal model, the
data processing task and data transmission. The data processing in this case contains a
procedure that employs a moving average filter and the data transmission builds a mes-
sage and publishes it in a topic that the central hub constantly reads. The central hub
is responsible for providing the analyze vital signs behavior, thus, it implements (i) a
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procedure for collecting data from the topic and storing in an internal buffer, (ii) a data
fusion procedure and (iii) a persistence procedure. The procedures are sequential and
their execution must all succeed in order to fulfill the higher level "Analyze vital signs"
leaf task.

Figure 4.6: Exemplar activity diagram of target system

Figure 4.6 illustrates one of the possible message exchange situations, where the G4T1
implements the Central Hub and the others implement the Sensors. Yet, according to the
figure the sensors transmit sensor data messages to the central hub. These contain the
collect and filtered data for that component. Also, there is intense communication from
the system nodes to the effector and the probe.

For both sensor and central hub, the initial configuration requires that the nodes
frequency be specified. It is notable that at least three sensors are constantly sending
messages to the central hub. If the central hub’s processing speed is lower than the
sensors transmission frequency, it might lead to message loss in the central hub since the
communication buffer has got limited size. Therefore, we suggest that the central hub
frequency is set as at least 3x the biggest sensor frequency. Among that, the sensors must
be configured with transition matrices of 5x5 representing the sensor markov chain used
for data generation. E.g. the thermometer measures at least 25◦C and at most 50◦C and
we classify the range 40◦C to 50◦C as represented by a high risk to the patient. Figure 4.7
represents a visualization of an example of markov chain, in which each state represent the
range of possible values. Where the green state is represented by the low risk range, the
yellow are the moderate risk range and the red are the high risk range. The probability
of transitioning between states depends on the patient profile.

Then, the sensors invoke three tasks in each execution cycle: collect data, process data
and transfer data. The data collection consists of randomly getting a data value within
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Figure 4.7: Configuration of markov chain for temperature data generation

the range represented by the patient current health status for that sensor. Then, the data
passes through a moving average filter which smooths the collected data based on the last
Nth data values collected, to avoid outliers. And finally, the data is transferred as sensor
data message to the central hub. On the other hand, the central hub procedures consists
of first consume the sensor data that arrived in the topic. Then, fuse the sensor data with
the last states of each of the sensors data. This procedure works by normalizing every
sensor data and combining them with a simple average function. At last, the average
value is considered at the total patient health risk status and if it is above or below a
threshold, the patient is considered to be in risk and an emergency alert is thrown.

4.1.4 Logging Infrastructure

The Logging Infrastructure package contains the logger node.
The implemented logger node objective is to collect messages traveling between the

System Manager, Target System and Analysis layers. It is implemented as node in the
middle that receives every message that travels in between layers. Every message received
is converted into a neutral persist type of message in which every field is copied from
the original, the persist message is sent to the data access node and the original is re-
routed to the previous target. Every message received comes with the source name, that
represents the node that emitted the message, including the ones in the target system.
Therefore, every message traveling from node to node has a mapping from the source node
produced which is fundamental for the goal to architecture mapping. Also, the problem
of distributed synchronization is solved in this implementation by collecting solely the
logger timestamp, which is the one sent for persistence. Ensuring an order in the events
in a satisfactory but simple solution.
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4.1.5 Analysis

The Analysis package contains the injector node and python scripts for performing
control theoretical analyses from the logged information.

In this case study we explored the noise in sensing uncertainty by employing a pa-
rameter modification approach with the uncertainty injector. First, the sensor nodes
were equipped with subscribers listening to messages coming from the injector node.
When the message arrives, its content is read and the value is attributed to a previously
created parameter, noise. The parameter is used for generating noise in the collected
data following the Equation 4.2. Where the error is a randomized value in the interval
[−data · noise, data · noise].

data = data± error (4.2)

As represented in the activity diagram in Figure 4.8, the injector constantly updates
either the logger and each of the sensors noise state.

Figure 4.8: Exemplar activity diagram of injector

The injector, just like all the other nodes, enables its execution frequency configuration.
Also, it requests that the user enters a list of the nodes that are participating on the
uncertainty injection. Their names must be entered on the configuration file. Besides
that, the parameters that determine the signal used for uncertainty injection may be
configured. The parameters are: signal type, offset, amplitude, frequency, duration and
beginning instant. The signal type can be step, ramp or random. The amplitude varies in
accordance to the uncertainty to be injected, the frequency in Hz, the injection duration
in seconds and the instant that the injection should begin.
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Figure 4.9: Uncertainty injection signals

The analyzer is implemented besides the scope of ROS and is executed only once at
the end of the simulation. The logs are fed as the input of the analyzer, which returns a
timeseries corresponding to the variation of a system attribute in time, in the case study,
the reliability. In this work, we advocate for the use of the parametric formula as well
for computing the overall system timeseries based on the system components reliability.
The analyzer, first loads the logs collected during the execution and stored under the
Knowledge Repository, parse and treat the information that is used on the analysis of the
system stability, convergence point, settling time, overshoot and steady-state error.

4.2 Evaluation

We claim that the presented architecture enables runtime analysis of goal-oriented
adaptation engines w.r.t. control theoretical guarantees for systems operating in scenarios
prone to uncertainty. Because, (i) it provides means for the collecting and processing
enough information to perform a sound control theoretical analysis and (ii) it permits
the injection of monitorable uncertainties during the execution. Therefore, to guide the
evaluation of our approach, we follow the Goal Question Metric approach (GQM) [31].

Our experimental evaluation consists of collecting evidence that our approach permits
(1) performing control theoretical analysis and verification of whether goal-oriented adap-
tation engines comply with the specified properties (Goal 1) and (2) guaranteeing that
the system specifications hold even in face of uncertainty (Goal 2). Therefore, we rely
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G1: Perform control theoretical verification
Question Metrics

G1Q1: Is our control theoretical verification approach
sound? relative error

G2: Provide guarantees in presence of uncertainty
Question Metrics

G2Q1: Does our verification approach support runtime
analysis of the system operating in face of
uncertainty?

control theory
metrics

Table 4.1: Goal-Question-Metric definition

on the Body Sensor Network application implemented under the proposed architecture to
exercise scenarios that illustrate the questions elicited in Table 4.1.

4.2.1 Performing Control Theoretical Verification

The control theoretical analysis is subject to (i) a mathematical model of the system,
(ii) known inputs to exercise the model and (iii) the response to the inputs in time. Since
we are concerned with the application’s reliability, the evaluation consists of whether
the employed reliability formula accurately represents the system runtime behavior or
not, in respect to control theoretical metrics (i) convergence point (stability), (ii) settling
time, (iii) overshoot and (iv) steady-state error. Furthermore, the correlation between
the system’s overall reliability calculated using the parametric formula and the monitored
system behavior is performed.

Experimental Setup

The experiments were ran in the BSN, implemented in ROS upon the architecture
proposed by this work. In this experiment we compare the behavior of a set of executions
of the BSN that takes 200s. The behavior is computed through (i) a parametric formula
synthesized from a goal model representing the BSN and (ii) the estimated system be-
havior. The component’s local reliability, in this work, is calculated by the Equation 4.3,
in which Success is the number of succeeded executions and Fails is the number of failed
executions, in a time frame.

R(t) = Success

Success + Fails
(4.3)

Moreover, the estimated behavior, Equation 4.4, composes the success or not of
each means-end task invocation (G4_T1: Central Hub, G3_T1_1: Pulse Oximeter,
G3_T1_2: ECG, G3_T1_3: Thermometer).

40



Success = G4_T1 and (G3_T1_1 or G3_T1_2 or G3_T1_3) (4.4)

The model described by Equation 4.4 was derived from the system requirements as
follows: when the central hub fails we can state that the system failed on delivering correct
service since it is an unique point of failure. Despite that, any sensor that correctly collects
the data it is intended to, it is sufficient for processing patient’s information on the system.
As a result, the ’and’ operation between central hub and the sensors in addition to the
’or’ operations relating all sensors provide the estimated behavior.

A bottom-up approach is employed to calculate the reliability of the system in time
using the parametric formula. When a component is invoked, its local reliability is com-
puted using the Equation 4.3 for every instant within the time window given by the res-
olution (2.5 seconds). Then, the global reliability is computed by composing the recently
calculated local reliability and the last state of each other component’s local reliability.

On the other hand, a top-down approach is employed in the system’s reliability cal-
culus using the monitored behavior. For every component invocation the Equation 4.4
computes whether the system as a whole failed or not. Similarly to the bottom-up ap-
proach, the top-down composes the recent success or failure with each component’s last
state. The calculated system status are stacked into a buffer along with the instants of
invocation. Finally, the buffer is traversed from instant to instant computing the system
overall reliability with the Equation 4.3.

Finally, to evaluate whether using the parametric formula in our approach would lead
to a sound control theoretical verification, we use the estimated behavior as a reference
for performing a statistical correlation and asserting whether it sufficiently represents the
system behavior with respect to the control theoretical metrics. Therefore, we calculate
the relative error, Equation 4.5 for each and every metric.

error = (Vexpected − Vachieved)
Vexpected

(4.5)

Scenario

We expect to evaluate the control theoretical metrics of the system behavior. There-
fore, the system must be subject to variations in the response due to controller actuation.
Thus, the components behavior is prone to a stochastic method that generates failures,
illustrated by the minimum value around 35 seconds in Figure 4.10.

The Figure 4.10 shows that after 40 seconds the G3_T1_X tasks’ reliability converges
to the rref = 0.70. This is due to the fact that at this instant the adaptation mechanism
was triggered. It is notable that the convergence happens in proportional steps since the
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Figure 4.10: Reliability behavior for tasks collection replication control

step size is calculated by the relation between the error and a pre-defined gain. This
characterizes the response for proportional feedback control strategies.

Results

This experiment aims at building evidence on the trust on the parametric formula for
verifying whether the system runtime behavior complies with control theoretical metrics.
Therefore, we have collected data regarding the component invocations in respect to
success or failure at each execution instant. The data is processed according to the
procedures detailed in the experimental setup for both curves. Finally, the analyzer
component extracts information on the response stability, its convergence point, settling
time, overshoot and steady-state error. It is noteworthy that the analysis is performed on
the subset of the timeseries that begins at the moment when the adaptation was triggered
to the ending of it. Figure 4.11 depicts the comparison between the behavior and metrics
in respect to the parametric formula and the monitored behavior.

The scenario in the BSN was executed 10 times and the control theoretical metrics
computed and compared. The summary of the executions are presented in Table 4.2.

convergence point settling time (s) overshoot (%) steady-state error (%)
formula 0.818 ± 0.0215 2.055 ± 0.447 0.017 ± 0.003 0.091 ± 0.023

monitored 0.816 ± 0.0178 2.329 ± 0.604 0.021 ± 0.001 0.093 ± 0.020
error 0.25% 11.76% 18.90% 2.77%

Table 4.2: Control theoretical metrics summary
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Figure 4.11: Qualitative comparison between parametric formula and monitored behavior

Discussion

The comparison between the parametric formula and monitored reliability behavior
w.r.t to the control theoretical metrics are satisfactory. Given that the highest mean
error is 18.90% in overshoot metric, followed by settling time with 11.76% and the others
does not reach beyond 3%. The above average error is due to peaks in the reliability
behavior during the executions resulting in values which trespassed the stability margin .
Also, it seems that the parametric formula is less sensitive to components local reliability
fluctuation in comparison with the estimated monitored behavior, see Figure 4.12 from
instants [150s, 175s]. Where the orange curve follows the arc induced by the red, purple
and green colored curves, and the dark blue just follows along a linear behavior.

Errors in the formula are propagated to the analysis method and its result. In this
work, the verification is subject to the goal-oriented parametric formula devised in previous
works [10, 9]. In these works, evidence on the steady-state values of the formula were
produced and the correctness is once again reassured by the converging point analysis.

4.2.2 Providing Guarantees in the Presence of Uncertainty

It is desired that adaptation mechanisms guide the target system into constantly
fulfilling its purpose with trustworthiness. Dynamic scenarios might lead into undesired
behavior due to emergent uncertainties that affect the system functionality. As a result,
guaranteeing that the adaptation mechanism is robust in the presence of uncertainty is
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Figure 4.12: Exemplify reliability formula response and sensitivity.

key challenge on engineering assurance process. In this set of experiments we evaluate
whether our approach supports the runtime analysis of the impact of emergent uncertainty
through the BSN reliability response.

Experimental Setup

Following from the evaluation goal 1 the experiments of this section were run in the
BSN. In addition, the designed goal-oriented adaptation engine is activated for reasoning
on the composition of the entire system reliability. Since the adaptation engine reasons on
a wider set of possible strategies, the executions were taken in periods of 600s. The uncer-
tainty injection is focused on noise in sensing, which is exercised by different combinations
of input signal types and its parameters. The adaptation mechanisms are incremented
with a strategy to cope with message loss in the central hub. Finally, the response is
analyzed w.r.t control theoretical metrics.

Scenario

We expect to evaluate whether the adaptation engine objective is guaranteed in the
presence of uncertainty during the execution. Hence, the uncertainty injection mechanism
is employed. We vary the types of injections and the amplitude of the signals. The step,
ramp and random signals are used and the amplitude varies from 5% to 50%, covering a
wide spectrum of the uncertainty injection.
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In addition to the data collection task replication, a frequency adjustment strategy
for message loss reduction in the central hub was employed for these experiments. As a
result, the Figure 4.13 illustrates the local reliability evolution in time for each component.
Where a downwards peak can be observed in the interval [50s, 100s]. The peak can be
explained by the reliability recovery in the sensors, around instant t = 80s, that caused the
sensors to send more messages to the central hub that, as consequence, lost messages due
to a probable overflow and its reliability was degraded. Afterwards, the enactor updated
the sensors frequency and from 100s on all system components tend to stabilize at 0.80.

Figure 4.13: Local reliability behavior example

The adaptation engine have been setup to propagate a combination of what should
be the reliability values for each component that would lead the system overall reliability
to reach the desired value. In other words, the propagated strategy is a set of pairs
containing the component’s identification associated with a local desired reliability, the
local setpoint. The property to be guaranteed in the experiment is the overall reliability,
which was configured to be 95% with acceptable stability margin of ±2%.

Results

We execute the system for 24 different configurations regarding the uncertainty in-
jection signal and the adaptation engine parameters and compute the control theoretical
metrics for every generate system response, see Table 4.4. In which 7 out of the 24 were
classified by our algorithm as not reaching the stability, with special remarks (*) for 5 that
achieved the desired convergence point against 2 that diverged from the desired overall
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reliability. A summary of the average value and error for each metric is presented in Table
4.3.

convergence point settling time (s) overshoot (%) steady-state error (%)
response 0.94 ± 0.04 287.70 ± 217.59 5.34% ± 0.04 1.75% ± 0.04

Table 4.3: Summary of system’s response to noise in sensing injection
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Discussion

Fully supported by our approach, a runtime analysis of the adaptation engine operating
in the presence of the noise in sensing source of uncertainty is performed as follows.

The goal-oriented adaptation engine has fulfilled the reliability at 95% objective at the
majority of the exercised scenarios. Since we evaluated the response for different sets of
parameter configurations for the adaptation engine, it is possible to compare and choose
the configuration that best fits the stakeholders’ purposes. From the obtained results for
example, we can state that using a offset of 20% and a granularity of 0.1 would render
a more robust adaptation mechanism for operating in scenarios subject to the inputs
exercised. In addition, a more precise analysis on each adaptation engine configuration
can be placed in respect to the other metrics, e.g. the configuration 20% offset and
0.01 granularity lead to smaller settling time for the injected signals. It is noteworthy
as well that, on the highest noise in sensing uncertainty amplitude injected, ramp with
50% amplitude, the 50% offset diverged from the desired behavior in contrast to the 20%
configuration.

As for the marked (*) stability labels a qualitative investigation of the response is
necessary, see Figure 4.14. The not stable but convergent behavior is explained by our
definition of stability, that relies on the stability margin requirement of ±2%. The ex-
amples in Figures 4.14a and 4.14b illustrates that the overall reliability converges to the
desired point but due to volatility in the behavior the last few points of the execution
were out of the stability margin requirement. Depending on how strict the requirements
are the stability margin could be stretched or this analysis could place doubts on the
responses that stabilize on the last seconds of execution, pointed out by the settling time
metric. If the former is the case, then we can say that the adaptation engine is robust
enough to be stable at the 91.4% (22/24) of the cases or 41.6% (10/24) of the cases for
the latter, since doubt would be placed in 7 other curves that stabilize after 500s.
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(a) Step response with 2% amplitude to
50% offset and 0.01 granularity

(b) Random response with 15% amplitude
to 20% offset and 0.01 granularity

Figure 4.14: Responses to not stable convergent scenarios

4.2.3 Threats to validity

Construct validity.

The major threats here are the correctness of the implementation of the BSN and of the
proposed approach. The BSN has been thoroughly tested as part of previous work [32, 10].
Concerning our approach, at least two authors of this work reviewed the implementation
and checked the plausibility of the evaluation results based on the experience they have
with the BSN. Another threat is due to the formula generation process employed in this
work, which follows the GODA-MDP implementation [10]. It does not guarantee that
the formula terms are directly mapped into each component properties. Even though we
proposed a mapping from means-end tasks to components, its enactment is subject to
human-driven thus error-prone implementation. And even if the implementation of each
component is correct, there lays a discussion on whether the components collaboration
behaves accordingly to the source goal model. Which may lead to discrepancies between
the desired behavior, the implemented and the modeled. We insistently advise for ensuring
that the system engineer implements the component following the modeled means-task
id and that the messages that run through the architectural components contains the
source emitter, for correctly tracking the means-end implementation with its elements in
the parametric formula.

Internal validity.

Our approach showed itself effective and efficient in the evaluation. Although we com-
prehensively deal with the contextual uncertainties class, unveiling sources of uncertainty
involved in a system’s operation is inherently non-deterministic, which represents a threat
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to any assurance process. Moreover, our policy strategies were specified in ad-hoc manner,
but they were implemented to automate the policies enactment. This might represent a
scalability threat in complex scenarios with multiple uncertainties combined as well as in
catastrophic scenarios where highly rare events have to be taken into account. Also, as
observed at the evaluation goal 1 results from Section 4.2.1, the transient-state overshoot
and settling time control theoretical metrics resulted in higher errors when compared to
the estimated behavior. This is due to discrepancies in the parametric formula sensitivity
when compared to the estimated behavior. Therefore, a deeper investigation must be
placed on both estimated behavior and parametric formula transient-state response.

External validity.

Although our approach is platform independent, we do reckon the limitation of the
evaluation since it was applied in the specific case of the BSN. Further evaluation must
be performed to generalize the results. Despite all efforts to implement the BSN with
new features to tame uncertainty, further study must be done to verify the applicability
in real-world scenarios with multiple uncertainties combined.
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Chapter 5

Related Work

5.1 Model-based Adaptation

Cámara J. et al [33] employ Stitch [34] specification language alongside with PRISM
markov decision process for generating verifiable adaptation policies, in design-time, which
compose a strategies repertoire. Additionally, Cámara J. et al [35] use model checking of
stochastic multiplayer games for online reasoning for the adaptation plans enactment in a
runtime-fashion. In contrast, our proposal relies on design-time models for guaranteeing
desired behavior and enable model updates and reasoning for runtime adaptation.

Moreover, Calinescu R. et al [6] advocate the use of a goal driven method for assurance
case specification which is updated during the adaptation. However it does not fit into
using goal-models for guiding the system self-adaptation, since it is a product of the
correct execution of the system, and not what drives the system to behave correctly
during runtime. The approach uses UPPAAL [36] at design-time and PRISM [37] at
runtime for modeling and verification. On the other hand, our proposal applies goal-
models as specification languages that are analyzed in both design-time and runtime, the
latter in the form of a parametric formula.

Shevtsov S. et al [38] rely on Setpoint, Threshold and Optimization requirements
(STO-reqs) for representing user related adaptation policies in mathematical notation,
what furthers the gap between non-specialist stakeholders’ and the system in comparison
with goal-modeling. Which is the basis of our work, despite that, we rely on goal-oriented
notation for requirement specification.

Vogel T. et al [19] rely on an extensible CompArch language to express the runtime
model that seamlessly interfaces with model-driven adaptation engines. The language
designed for architectural adaptation ensembles mechanisms for issue injection, execution
time measurement, impact analysis and adaptation strategy enactment. However, it does
not give support for goal-oriented approaches without effort.
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The present work employs the specification methods from Solano G. et al [10] and
makes use of the goal-model to parametric formula. Such approach provides guarantee
of correctness over goal-models at design-time and a formula that can be used for goal-
oriented adaptation at runtime for reliability and cost evaluation. Ours is complementary
to theirs, aiming at the provenience of guarantees of correctness for the runtime behavior
w.r.t. control theoretical metrics.

5.2 Guarantees under Uncertainty

In Cámara J. et al [33] the system properties are discretized and modeled in PRISM
with markov decision processes for optimal policies synthesis over state space represen-
tations, where the guarantees under uncertainty are provided by the probabilistic model-
checking. However, they are limited to uncertainty modeled in design-time which also
depends on the discretization factor. On the other hand, Cámara J. et al [35] employ
model checking of stochastic games wherein the system and the environment are modeled
as interacting players along with the desire to maximize an utility reward. Falling in the
same limitations of uncertainty modeling capabilities.

Calinescu R. et al [6] employ either design-time and runtime (ActivFORMS [39])
techniques for provisioning assurance against uncertainty. The seven-step methodology
comprises design-time modeling and verification in UPPAAL the relevant aspects of the
controlled software system, environment and controller. Then, at runtime, performs ver-
ification with PRISM model checker. It is noteworthy that the models verified in design
time are taken to runtime with a model-to-architecture transformation, placed by Ac-
tivFORMS. Thus, the unknowns left to runtime can be resolved through monitoring the
system and the environment. Our work follows the same direction by suggesting a goal
model to runtime architecture mapping.

Shevtsov S. et al [38] reportedly tackle uncertainty from four sources, (i) disturbances
from the execution environment, (ii) system parameters, (iii) component interaction and
(iv) requirement change. The approach relies on learning the software model and semi-
automatically synthesizing the controller with manual poles choice that, at runtime, will
cope with the aforementioned uncertainty. The manual support for controller synthesis
settles the uncertainty management at design time, which is not the case of our proposal
since there is room for model update at runtime, and, therefore, dynamic uncertainty
mitigation at runtime.

Vogel T. et al [19] provide support for issues injection and an utility function usage for
deriving the behavior of a system property through simulation in the form of a timeseries.
Thus, uncertainty can be analytically overcome by stressing distinct uncertainty scenarios

52



which demands adaptation engine improvements during design-time that are taken to
runtime in the same designed language. Such approach has inspired ours which does the
same despite the presence of another layer of goal model verification at both design-time
and runtime.

5.3 Control-based Metrics Analysis

In Cámara J. et al [33] an evaluation of the impact of the synthesized adaptation
policies was taken. The method takes into consideration the solution’s (1) optimality, by
evidencing the percentage of constraints satisfaction, (2) robustness, by evaluating the
repertoire in several distinct scenarios and (3) stability, since not converging scenarios are
discarded. The evaluation method is manual, along with the system analysis. Accordingly,
Cámara J. et al [35] assess (1) stability, (2) cost of control (by measuring the execution
time to generate a plan) as well as (3) robustness (by simulating runtime disturbances).
Thus, it partially fulfills the control-based metrics at design-time and at runtime.

Calinescu R. et al [6] reportedly issue that the control theoretical paradigm is not
supported. Despite that, the evaluation step assesses (1) stability and (2) controller
robustness by simulating randomly selected scenarios of execution. Their engine analysis
process is manual and liable only to design-time.

On the other hand, Shevtsov S. et al [38] claims that control-based adaptation engines
can be used for STO-reqs. Employing SimCA [40] the control theoretical adaptations
provide formal guarantees for controller properties, such as (1) stability, (2) absence of
overshoot, (3) zero steady-state error, (4) tuneable settling time and (5) tuneable robust-
ness at runtime. The guarantees are addressed at both design- and runtime since not only
the design-time synthesis provides guarantees, but tunnings at runtimes contributes to it
as well.

Vogel T. et al [19] assess the adaptation engine effectiveness in terms of the utility
function provided, and efficiency, in terms of the adaptation execution time. Their work
supports the analysis of control-based metrics, but does not implements a verification
mechanism that checks whether the control-based metrics satisfy the requirements.

Finally, Solano G. et al [10] manually analyze the effectiveness in terms of stability and
robustness of the adaptation policies through simulations where the tackled uncertainty
are stressed. Our proposal, in contrast, advocates the use of dynamic goal-models at
runtime, enabling assessment of both reliability and performance metrics at design-time
and at runtime.

We summarize the major work related to ours in Table 5.1. First, we evaluate which
languages are used for modeling the system and its inherent uncertainty and whether
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they are used at design-time or runtime. Then, we split the techniques for guaranteeing
the desired behavior under uncertainty into model-checking and algebraic. Finally, we
categorize the metrics used for evaluating the adaptation into control-based metrics in
respect to stability, settling time, overshoot and steady-state error. The tag ’partial’
indicates that the work evaluates at least one metric but not all. The lifecycle phase (i.e.
design-time and runtime) is put in perspective as a third axis in the comparison provided.
The phase in which each characteristic is resolved determines the assurance process of the
solution.

Model-base
Adaptation

Guarantees under
Uncertainty

Control-based
Metrics Analysis

Language(s) Model-
Checking Algebraic Stability, OS, ST

SSE

Cámara J. et al. [33] design-time design-time no design-time
(partial)

Cámara J. et al. [35] runtime runtime no runtime
(partial)

Calinescu et al. [6] design-time
runtime

design-time
runtime no runtime

(partial)
Shevtsov et al. [38] design-time no design-time design-time

Vogel T. [19] runtime no runtime runtime
(partial)

Solano G. [10] design-time
runtime design-time runtime

design-time
runtime
(partial)

Our Work design-time
runtime design-time runtime design-time

runtime

Table 5.1: Related work summary table
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Chapter 6

Conclusions and Future Work

Uncertainty pervades all phases of software lifecycle, from requirements elicitation
in design-time through runtime behavior. Several methods were developed within the
software engineering for minimizing uncertainty at design-time and their impact in the
system behavior. Lately, approaches advocate for runtime adaptation for reducing the
costs of taming emergent uncertainty during the execution. In this work, we contribute
to the claim that uncertainty must be consistently tamed on the lifecycle as a whole.
We present an architecture that supports the verification of goal-oriented adaptation
engines w.r.t widely adopted control theoretical metrics. Moreover, the verified system
can seamlessly be taken to runtime with minimal or no changes bundled with evidence that
the it behaves accordingly to its goals under the influence of certain kinds of uncertainty.

Our approach relies on a layered architecture implemented upon the Robot Operating
System (ROS) middleware, which is widely adopted by academy and industry, for support-
ing reconfiguration and behavioral adaptation of software systems. Based on philosophy
that goal models should pervade all the software lifecycle for the provision of trustworthy
behavior, we focus on the analysis of adaptation engines based on goal-oriented reasoning
processes. Which composes a step of the verification process of the system behavior under
the influence of uncertainty w.r.t to control theoretical metrics.

The architecture is instantiated by an implementation of the Body Sensor Network (BSN)
case study, in which reliability requirements are of extreme importance given the medi-
cal nature of the system. Mechanisms for adapting the BSN parameters which lead to
reliability improvement, the system instrumentation for collecting data related to com-
ponent failures and an adaptation engine that uses a parametric formula, derived from
a goal model, for reasoning over the adaptations are designed and implemented accord-
ingly to the proposed conceptual architecture. Finally, scenarios prone to uncertainty
are designed and with the uncertainty injection component, also implemented on ROS,
executions are performed for collecting evidence that the system behaves as expected in
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a control theoretical analysis fashion.
Furthermore, the hypotheses that define the work solution are validated through em-

pirical observation. That was taken in two phases, a correlation comparison between the
parametric formula and the expected and monitored system behavior and a verification
process on whether the implemented adaptation engine behaves as expected in face of
uncertainty. The satisfactory results on both phases pave the way for further investiga-
tion on solutions that unite accessible GORE software development processes to control
theoretical systematic methods. Given this work outcomes we elicit envisioned next steps
which shall contribute to the ongoing research topic:

• Explore the injection of other sources uncertainty: Hezavehi et al. [5] clas-
sified uncertainty studied in software communities into 7 groups. We explored one
in a specific scenario, noise in sensing. The architecture is ready for exploring other
groups with not much effort, a straight-forward step would be to extend the compo-
nents into permitting other uncertainty injections for providing more evidence and
robustness for developed adaptation engines.

• Sensitivity analysis of parametric formula: The experiments from the eval-
uation goal 1 drew our attention to the fact that the parametric formula overall
reliability is more sensible to components when decomposed by AND, which could
lead us to develop heuristics for optimizing the adaption engine reasoning process.
A sensitivity analysis on the on the parametric formula can help sharpening its
accuracy and the adaptation engine itself, we then would suggest efforts on this
duty.

• Improvement on adaptation engine reasoning process: The adaptation en-
gine reasoning process presented in this work is specific for the situation it was
developed to, as it stands upon the shoulders of strong assumptions on how the
system behaves. Methods for developing more robust and independent from the
system goal-oriented adaptation engines would be a follow up of this work, which
could even use the presented architecture and case study for test-bed experiments.

• Adaptation strategies characterization: The adaptation strategies employed
in the work were hardcoded in lower level language, that demanded specific imple-
mentation of strategy enactors, effectors and mechanisms inside the target system
components for supporting the adaptation. The used of proper specific languages
would empower the architecture and the application of the method. Thus it is a
possible point of improvement for the work.
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• Control theoretical properties characterization: The control theoretical prop-
erties verification against the system behavior is non-automated as in a model-
checking approach, due specially to the fact that the properties to be verified fol-
lowed no specific language. Specifying the properties in a logical language and a
mechanism for automatic verification could be a follow up to the current work.

• Evaluate the approach with other systems: Even though the evaluation con-
tributed with evidence on the applicability our approach, the evaluation was per-
formed on a specific case study at specific scenarios, which would hinder threats to
the validity as aforementioned. A straight-forward follow up would be to extend the
evaluation to other SAS exemplars.

• Explore other control theoretical metrics: In this work we define, calculate
and analyze the system response in respect to convergence point/stability, overshoot,
settling time and steady-state error. However, there are other relevant variables
when it comes to analyzing the a control theoretical solution: controller effort,
controller robustness, delay time, rise time, peak time [22]. A differentiation from
maximum overshoot to minimum undershoot could hinder more precision on the
transient-state analysis and on the adaption engine.
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