# UNIVERSIDADE DE BRASÍLIA FACULDADE DE TECNOLOGIA DEPARTAMENTO DE ENGENHARIA CIVIL E AMBIENTAL PROGRAMA DE PÓS-GRADUAÇÃO EM ESTRUTURAS E CONSTRUÇÃO CIVIL

# COMPORTAMENTO AO PUNCIONAMENTO DE LAJES COGUMELO DE CONCRETO ARMADO COM PILARES RETANGULARES E FUROS DE GRANDES DIMENSÕES

### LIANA DE LUCCA JARDIM BORGES

## ORIENTADORES: GUILHERME SALES S. DE A. MELO RONALDO BARROS GOMES

TESE DE DOUTORADO EM ESTRUTURAS PUBLICAÇÃO: E.TD. – 002A/2004

BRASÍLIA/DF FEVEREIRO/2004

### UNIVERSIDADE DE BRASÍLIA FACULDADE DE TECNOLOGIA DEPARTAMENTO DE ENGENHARIA CIVIL E AMBIENTAL PROGRAMA DE PÓS-GRADUAÇÃO EM ESTRUTURAS E CONSTRUÇÃO CIVIL

### COMPORTAMENTO AO PUNCIONAMENTO DE LAJES COGUMELO DE CONCRETO ARMADO COM PILARES RETANGULARES E FUROS DE GRANDES DIMENSÕES

#### LIANA DE LUCCA JARDIM BORGES

TESE DE DOUTORADO SUBMETIDA AO DEPARTAMENTO DE ENGENHARIA CIVIL E AMBIENTAL DA FACULDADE DE TECNOLOGIA DA UNIVERSIDADE DE BRASÍLIA, COMO PARTE DOS REQUISITOS NECESSÁRIOS PARA A OBTENÇÃO DO GRAU DE DOUTOR.

**APROVADA POR:** GUILHERME SALES SOARES DE AZEVEDO MELO, Ph.D. (UnB) (ORIENTADOR) RONALDO BARRÓS GOMES, Ph.D. (UFG) (ORIENTADOR) JOAO CARLOS TEATINI-DE SOUZA CLIMACO, Ph.D. (UnB) (EXAMINADOR INTERNO) h 29.14 YOSLAKI NAGATO, D.Sc. (UnB) (EXAMINADOR INTERNO) IBRAHIM ABD EL MALIK SHEHATA, Ph.D. (COPPE/UFRJ) (EXAMINADOR EXTERNO) GIUSEPPE BARBOSA GUIMARÃES, Ph.D. (PUC/RJ) (EXAMINADOR EXTERNO)

Brasilia/DF, 12 de Fevereiro de 2004.

### FICHA CATALOGRÁFICA

#### BORGES, LIANA DE LUCCA JARDIM

Comportamento ao Puncionamento de Lajes Cogumelo de Concreto Armado com Pilares Retangulares e Furos de Grandes Dimensões [Distrito Federal] 2004.

xxv, 367 p., 297 mm (ENC/FT/UnB, Doutor, Estruturas e Construção Civil, 2004)

Tese de Doutorado - Universidade de Brasília. Faculdade de Tecnologia. Departamento de Engenharia Civil e Ambiental

1. Laje Cogumelo2. Puncionamento3. Pilar Retangular4. Furos em LajesI. ENC/FT/UnBII. Título (série)

### **REFERÊNCIA BIBLIOGRÁFICA**

BORGES, L.L.J. (2004). Comportamento ao Puncionamento de Lajes Cogumelo de Concreto Armado com Pilares Retangulares e Furos de Grandes Dimensões. Tese de Doutorado, Publicação E.TD-002A/04, Departamento de Engenharia Civil e Ambiental, Universidade de Brasília, Brasília, DF, 367 p.

**CESSÃO DE DIREITOS** 

NOME DO AUTOR: Liana de Lucca Jardim Borges

TÍTULO DA TESE DE DOUTORADO Comportamento ao Puncionamento de Lajes Cogumelo de Concreto Armado com Pilares Retangulares e Furos de Grandes Dimensões GRAU / ANO: Doutor / 2004

E concedida à Universidade de Brasília a permissão para reproduzir cópias desta tese de doutorado e para emprestar ou vender tais cópias somente para propósitos acadêmicos e científicos. O autor reserva outros direitos de publicação e nenhuma parte desta tese de doutorado pode ser reproduzida sem a autorização por escrito do autor.

Liana de Lucca Jardim Borges Rua Cel Serafin Agapito Quadra 6 Lote 7 n° 190 Apt° 102 Vila Maria José - Goiânia/GO - Brasil - CEP 74815-470 e-mail: <u>lianajardim@ig.com.br</u>

meu filho, Luís Guilherme, meu marido, Renato, meus pais, Sylvio e Leda (in memorian), meus irmãos, Fabrício e Rodrigo, e meus avós, Oscar (in memorian) e Alzira (in memorian).

### AGRADECIMENTOS

O meu sincero agradecimento aos professores Guilherme Sales Soares de Azevedo Melo e Ronaldo Barros Gomes pela paciência e competente orientação durante os anos de doutorado.

Ao professor Paul E. Regan, da Universidade de Westminster (UK), pelas valiosas sugestões e esclarescimentos.

Aos professores do Programa de Pós-Graduação em Estruturas e Construção Civil (PECC) da Universidade de Brasília, pelas disciplinas ministradas e informações valiosas.

Aos colegas do PECC e CMEC/UFG (Curso de Mestrado em Engenharia Civil/Universidade Federal de Goiás) pela colaboração e apoio na execução dos ensaios, em especial, a Alessandra Luciano Carvalho, Ana Lúcia Carrijo Adorno, Jales Almeida Silva, Leandro Mouta Trautwein e Tais Helena Musse.

Aos engenheiros, técnicos e demais funcionários dos laboratórios do Centro Tecnológico de Engenharia Civil de Furnas Centrais Elétricas S.A., situado em Aparecida de Goiânia/GO, pelo apoio técnico e financeiro para a realização de todo o programa experimental desta tese de doutorado, em especial, aos eng<sup>22</sup> Walton Pacelli de Andrade, Moacir Alexandre Souza de Andrade, Rubens Machado Bittencourt, Reynaldo Machado Bittencourt e Albéria Cavalcante, pela contribuição eficaz e contínua na realização desta pesquisa.

À CAPES e CNPq, pela bolsa de estudos.

Ao Renato e Luis Guilherme, pelo incansável e imensurável apoio, incentivo, paciência, admiração e amor.

Ao meu pai, Sylvio, e irmãos, Fabrício e Rodrigo, pelo grande apoio, solidariedade, incentivo, e amor.

A DEUS, minha razão de existir, pela ajuda espiritual e infinito amor.

### RESUMO

São analisadas experimentalmente 20 (vinte) lajes cogumelo de concreto armado de dimensões 3000 mm x 3000 mm x 200 mm, e resistência à compressão em torno de 40 MPa e altura útil de aproximadamente 164 mm, submetidas à puncionamento simétrico. As principais variáveis da pesquisa foram: a relação entre as dimensões da seção transversal retangular do pilar ( $c_{max}/c_{min}$  entre 1 e 4, com  $c_{min}$  constante); o número de furos na região do pilar, e o detalhamento da armadura de cisalhamento.

É apresentada uma proposta de inclusão do parâmetro  $c_{max} d$  ( $c_{max}$  é a maior dimensão da seção transversal do pilar e d é a altura útil da laje) nas expressões de cálculo da resistência à punção do CEB-FIP (1991) e do ACI (2002). Para a norma brasileira NBR-6118 (2003) é sugerida uma forma de cálculo do perímetro efetivo de controle de lajes com furos próximos ao pilar

Os resultados mostraram uma redução na taxa de crescimento da resistência à punção das lajes quando se aumenta a relação  $c_{max}/c_{min}$ , mantendo-se  $c_{min}$  (menor dimensão da seção transversal do pilar) constante, com as forças cortantes concentrando-se nas extremidades do pilar, principalmente com o aumento da relação  $c_{max}/c_{min}$ .

Com relação à presença de furos adjacentes ao pilar, observou-se uma redução de rigidez e de resistência em até 23% para as dimensões de furos utilizadas. A utilização de armadura de cisalhamento, como disposta na pesquisa, restabeleceu e até superou a resistência à punção da laje monolítica de referência.

As normas de projeto que apresentam no cálculo da resistência a punção prescrições para a consideração da geometria do pilar (ACI (2002), EC-2 (1992) e a NBR-6118 (1978)), e para a consideração de furos próximos ou adjacentes ao pilar (ACI (2002), BS8110 (1997), EC-2 (1992), EC-2 (2001) e a NBR-6118 (2003)), mostraram-se conservadoras ( $V_{Exp}$   $V_{calc}$  entre 1,21 e 1,50) nas estimativas das cargas de ruptura das lajes com pilares retangulares sem furos e sem armadura de cisalhamento (série 1). As normas do CEB-FIP (1991) e NBR-6118

(2003) forneceram estimativas praticamente iguais às cargas obtidas experimentalmente  $(V_{Exp}, V_{calc} = 0.99)$  para essas lajes.

A proposta de inclusão do parâmetro  $c_{max} d$  no cálculo da resistência à punção nas expressões do ACI (2002) e CEB-FIP (1991) conduziu a estimativas mais próximas das cargas obtidas experimentalmente e a favor da segurança para as lajes com pilares retangulares e furos (serie 2), e para as lajes com pilares retangulares, furos e armadura de cisalhamento (série 3). A proposta de cálculo do perimetro efetivo de controle para a norma NBR-6118 (2003), utilizando o método do Handbook to BS8110 (1987), também forneceu estimativas mais próximas dos resultados experimentais para as lajes com pilares retangulares e furos (série 2), e para as lajes com pilares retangulares (série 3).

### ABSTRACT

Twenty reinforced concrete flat slabs (3000 mm x 3000 mm x 200 mm) with concrete resistance around 40 MPa and effective height between 139 and 164 mm are tested, submitted the symmetrical punching. The principal variables of the research were: relationship between the dimensions of the rectangular dimension of the column ( $c_{max}/c_{min}$  between 1 and 4), the number of holes at the columns region; and the shear reinforcement detailing.

A proposal for inclusion of the parameter  $c_{max} d$  ( $c_{max}$  being the largest dimension of the column and d the effective height of the slab) in the expressions of the punching shear resistance of CEB-FIP (1991) and ACI (2002) is presented. For the code NBR-6118 (2003) it is suggested a way to calculate the effective control perimeter of flat slabs with holes close to the column.

The results showed a reduction in the growth rate of the punching shear resistance of the slabs when the relation  $c_{max} c_{min}$  is increased, maintaining  $c_{min}$  (smaller dimension of the column) constant, with the shear forces concentrating on the extremities of the column, mainly with the increase of the relation  $c_{max} c_{min}$ .

With relation to the presence of holes adjacent to the column it was observed a reduction in rigidity and in resistance up to 23% for the dimensions of holes used. The use of shear reinforcement, as disposed in the research, reestablished and even overcame the punching shear resistance of the monolithic reference slab.

The design codes that for the calculation of punching shear resistance considers the column geometry (ACI (2002), EC-2 (1992)), and considers holes close or adjacent to the column (ACI (2002), BS8110 (1997), EC-2 (1992), EC-2 (2001) and NBR-6118 (2003)), were conservatives ( $V_{Exp} V_{calc}$  between 1,21 and 1,50) in estimating the rupture loads of the slabs with rectangular columns without holes nor shear reinforcement (series 1). CEB-FIP (1991) and NBR-6118 (2003) presented estimates practically equal to the experimentally obtained ( $V_{Exp} V_{calc} = 0,99$ ) for these slabs.

The proposal of the inclusion of the  $c_{max} d$  parameter for the calculation of the punching shear resistance in the expressions of ACI (2002) and CEB-FIP (1991) led to closer estimates for the slabs with rectangular columns and holes (series 2) and for the slabs with rectangular columns, holes and shear reinforcement (series 3). The proposal of effective control perimeter calculation for the NBR-6118 (2003) code, using the BS8110 handbook method (1987) also led to closer estimates for the slabs with rectangular columns and holes (series 2) and for the slabs.

# SUMÁRIO

| CAPÍTULO                                                       | PÁG. |
|----------------------------------------------------------------|------|
| 1 - INTRODUÇÃO                                                 | 1    |
| 1 1 - CONSIDERAÇÕES GERAIS                                     | 1    |
| 1.2 - OBIFTIVOS                                                | 2    |
| 13 - APRESENTAÇÃO DA PESOUISA                                  | 3    |
|                                                                |      |
| 2 - REVISÃO BIBLIOGRÁFICA                                      | 5    |
| 2.1 – INTRODUÇÃO                                               | 5    |
| 2.2 - NORMAS DE PROJETO                                        | 5    |
| 2.2.1 - ACI 318 (2002)                                         | 6    |
| 2.2.2 - BS8110 (1997)                                          | 10   |
| 2.2.3 - CEB-FIP MC 90 (1991)                                   | 13   |
| 2.2.4 - EUROCODE 2 (1992)                                      | 17   |
| 2.2.5 - EUROCODE 2 (2001)                                      | 20   |
| 2.2.6 – HANDBOOK TO BS8110/85 (1987)                           | 23   |
| 2.2.7 - NBR-6118 (1978)                                        | 24   |
| 2.2.8 - NBR-6118 (2003)                                        | 26   |
| 2.3 - LAJES COM PILARES RETANGULARES                           | 30   |
| 2.3.1 - PESQUISAS REALIZADAS                                   | 30   |
| 2.3.2 - COMPARAÇÃO DOS RESULTADOS DA LITERATURA COM NORMAS     |      |
| DE PROJETO                                                     | 54   |
| 2.3.2.1 - COMENTÁRIOS FINAIS                                   | 66   |
| 2.4 - LAJES COM FUROS E/OU ARMADURA DE CISALHAMENTO            | 66   |
| 2.4.1 - PESQUISAS REALIZADAS                                   | 66   |
| 2.4.2 - COMPARAÇÃO DOS RESULTADOS DA LITERATURA COM NORMAS     |      |
| DE PROJETO – LAJES SEM ARMADURA DE CISALHAMENTO                | 102  |
| 2 4 2 1 - COMENTARIOS FINAIS                                   | 110  |
| 2 4.3 - COMPARAÇÃO DOS RESULTADOS DA LITERATURA COM NORMAS     |      |
| DE PROJETO – LAJES COM ARMADURA DE CISALHAMENTO                | 111  |
| 2.4.3.1 - COMENTARIOS FINAIS                                   | 115  |
| 3 - PROGRAMA EXPERIMENTAL                                      | 117  |
| 3.1 - CONSIDERAÇÕES GERAIS                                     | 117  |
| 3.2 - MODELOS EXPERIMENTAIS                                    | 117  |
| 3.2.1 - DESCRIÇÃO DAS LAJES COM PILARES RETANGULARES (SÉRIE 1) | 118  |
| 3.2 1.1 - CARACTERISTICAS GEOMETRICAS                          | 118  |
| 3.2.1.2 - ARMADURA DE FLEXÃO                                   | 119  |
| 3.2.1.3 - CONCRETO                                             | 121  |
| 322-DESCRIÇÃO DAS LAJES COM FUROS E/OU ARMADURA DE             |      |
| CISALHAMENTO (SÉRIES 2 E 3)                                    | 121  |
| 3 2 2 1 - CARACTERISTICAS GEOMETRICAS                          | 121  |
| 3.2.2.2 - ARMADURA DE FLEXÃO                                   | 123  |
| 3.2.2.3 – CONCRETO                                             | 127  |
| 3.2.2.4 - ARMADURA DE CISALHAMENTO                             | 127  |

| 3.3 - MOLDAGEM E CURA                                                                             | 131  |
|---------------------------------------------------------------------------------------------------|------|
| 3 4 - SISTEMA DE ENSAIO                                                                           | 134  |
| 3 5 – INSTRUMENTAÇÃO                                                                              | 136  |
| 3.5.1 - LAJES COM PILARES RETANGULARES (SERIE 1)                                                  | 137  |
| 3511 - DEFLETÔMETROS                                                                              | 137  |
| 3512 - EXTENSÔMETROS                                                                              | 138  |
| 3.5.2 - LAIFS COM FUROS F/OU ARMADURA DE CISALHAMENTO (SERIES                                     |      |
| 2 F 3)                                                                                            | 139  |
| 3521 - DEFLETÔMETROS                                                                              | 130  |
| 3.5.2.2 - EXTENSÔMETROS                                                                           | 141  |
| 3.5 - PROCEDIMENTO DE ENSAIO                                                                      | 143  |
| J. J TROCEDIMENTO DE ENSAIO                                                                       | 175  |
| 4 - APRESENTAÇÃO E DISCUSSÃO DOS RESULTADOS EXPERIMENTAIS                                         |      |
| DAS LAIFS COM PILARES RETANGULARES (SÉRIE 1)                                                      | 145  |
| 41 - INTRODUÇÃO                                                                                   | 145  |
| 42 - MATERIAIS                                                                                    | 145  |
| 4.2 - MATERIAS                                                                                    | 145  |
| 4.2.1 - CONCRETO                                                                                  | 148  |
| 4.3 - DESLOCAMENTOS VERTICAIS                                                                     | 1/18 |
| 4.5 - DESEOCAVIENTOS VERTICAIS<br>4.4 - DEFORMAÇÕES DA ARMADURA DE ELEXÃO                         | 155  |
| 4.5 = FISSURACÃO                                                                                  | 168  |
| A 6 DESISTÊNCIA                                                                                   | 100  |
| 4.61  ELEY                                                                                        | 173  |
| 4.6.2 - CISALHAMENITO                                                                             | 175  |
| 4.6.2 - OSALHAMENTO                                                                               | 175  |
| 4.6.4 ANÁLISE DAS LAIES COM DU ADES DETANCHI ADES                                                 | 179  |
| 4.6.4 - ANALISE DAS LAJES COM FILARES RETANGULARES                                                | 180  |
| 4.6.4.2 DESULTADOS EVDEDIMENTAIS                                                                  | 180  |
| 4.6.4.2 - RESULTADOS EXPERIMENTAIS                                                                | 100  |
| 4.0.4 5 - COMPARAÇÃO DOS RESULTADOS EXPERIMENTAIS COM<br>DESULTADOS DA LITEDATUDA                 | 107  |
| RESULTADOS DA LITERATURA                                                                          | 105  |
| 5 - APRESENTAÇÃO E DISCUSSÃO DOS RESULTADOS EXPERIMENTAIS                                         |      |
| DAS LAIFS COM FUROS F/OU ARMADURA DE CISALHAMENTO (SÉRIE                                          |      |
| 2 E 3)                                                                                            | 185  |
| 5 I – INTRODUÇÃO                                                                                  | 185  |
| 52 - MATERIAIS                                                                                    | 185  |
| 5.21 - CONCRETO                                                                                   | 185  |
| 522 - ACO                                                                                         | 187  |
| 5.3 - DESLOCAMENTOS VERTICAIS                                                                     | 100  |
| 54 - DEFORMAÇÕES DA ARMADURA DE ELEXÃO                                                            | 203  |
| 5.5 - DEFORMAÇÕES DA ARMADURA DE CISALHAMENTO                                                     | 210  |
| 5.5 - ELSUBACÃO                                                                                   | 210  |
| 57 - RESISTÊNCIA                                                                                  | 217  |
| 5.7 = RESISTENCIA                                                                                 | 224  |
| 5.7.2 CISALHAMENTO                                                                                | 224  |
| 573 - PÓS-PUNCIONAMENTO                                                                           | 242  |
| 574 ANÁLISE LAIES COM EUDOS E/OU ADMADUDA CISALHAMENTO                                            | 242  |
| 5.7.4 = INTRODUÇÃO                                                                                | 243  |
| 5.7.4.2 - RESULTATION EXDERIMENTALS                                                               | 243  |
| 5.7.4.2 = 0.0001 ADUS LAI ENIMIENTAIS<br>5.7.4.3 = 0.0000 ARACÃO DOS RESULTADOS EVDEDIMENTAIS COM | 244  |
| JIT.J - COMIARAÇÃO DOS RESULTADOS EXFERIMENTAIS COM                                               |      |
|                                                                                                   |      |

| 6 - COMPARAÇÃO DOS RESULTADOS EXPERIMENTAIS COM OS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| ESTIMADOS PELAS NORMAS DE PROJETO E POR PESOUISADORES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 257 |
| 61 - INTRODUÇÃO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 257 |
| 6 2 - LAJES COM PILARES RETANGULARES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 257 |
| 6.2.1 - LAJES DA PRESENTE PESOUISA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 257 |
| 6.2.2. LAIES DA PRESENTE PESQUISA E DA LITERATURA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 261 |
| 623-PROPOSTA DE CONSIDERAÇÃO DA RELAÇÃO como d NAS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |
| EXPRESSÕES DAS NORMAS DE PROJETO DO ACI (2002) E CEB (1991)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 269 |
| 6.2.4. COMPARAÇÃO DOS RESULTADOS ESTIMADOS PELAS NORMAS DE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |
| PROJETO DO ACI (2002) E CER-FIP (1991) COM OS ESTIMADOS PELA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |
| PRODOSTAS DADA AS LAIES DA SÉRIE LE DA LITERATURA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 270 |
| 63 - LAIES COM FUROS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 274 |
| 6.2.1 LATES DA DESENTE DESOLITSA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 274 |
| 6.3.2 ANALISE DO MÉTODO DE <b>P</b> OLL et $d$ (1071)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 278 |
| 6.3.2 - AIVALISE DO METODO DE ROLL ( $a$ , ( $1971$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 278 |
| 0.3.2.1 - LAJES DA PRESENTE PESQUISA<br>6.2.2.2 - LAJES DA PRESENTE PESQUISA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 270 |
| 6.3.2.2 - LAJES DA PRESENTE PESQUISA E DA LITERATURA<br>6.2.2.2 - DRODOSTA DADA A MODIELCAÇÃO DO LIMITE DIFEDIOR DA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 200 |
| EVIDESSÃO DE DOLL et al (1071)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 201 |
| EXPRESSAU DE RULL $\mathcal{C}$ $C$ | 204 |
| 0.3.3 - PROPOSTA DE CALCULO DO PERIVIETRO EFETIVO DE CONTROLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |
| PARA A NBR-0118 (2003) UTILIZANDO O METODO DO HANDBOOK<br>TO $PS9110/95$ (1097)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 200 |
| $\frac{10 \text{ B}}{30110} \frac{30}{30} (1987)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 209 |
| 0.3.4 - COMPARAÇÃO DOS RESULTADOS ESTIMADOS PELAS NORMAS DE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |
| PROJETU E POR PESQUISADORES COM OS ESTIMADOS PELA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 220 |
| PKUPUSTA PAKA A NBK-0118 (2003)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 289 |
| 0.4 - LAJES COM ARMADUKA DE CISALHAMENTU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 297 |
| 0.4.1 - LAJES DA PRESENTE PESQUISA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 297 |
| 6.4.2 - ANALISE DU METUDU DE RULL et <i>al.</i> (1971)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 308 |
| 6.4.2.1 - LAJES DA PRESENTE PESQUISA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 308 |
| 6 4 2 2 - LAJES DA PRESENTE PESQUISA E DA LITERATURA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 310 |
| 6.4.2.3 - DETERMINAÇÃO DA INFLUENCIA DA PARCELA DE ARMADURA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |
| DE CISALHAMENTO NO CALCULO DA RESISTENCIA A PUNÇÃO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 210 |
| UTILIZANDO A EXPRESSÃO DE ROLL et $ai.$ (1971)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 312 |
| 0.4.3 - COMPARAÇÃO DAS ESTIMATIVAS DA NBR-0118 (2003) COM AS DA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 214 |
| PROPOSTA PARA A NORMA BRASILEIRA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 314 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 201 |
| 7 - CONCLUSÕES E SUGESTOES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 321 |
| 7.1 - CONCLUSUES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 321 |
| 7.1.1 - LAJES COM PILARES RETANGULARES (SERIE 1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 322 |
| 7.1.1.1 - DESLUCAMENTUS VERTICAIS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 322 |
| 7.1.1.2 - DEFORMAÇÕES DA ARMADURA DE FLEXAŬ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 322 |
| 7.1.1.3 - FISSURAÇAU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 322 |
| 7 1.14 - MODUS, CARGAS E SUPERFICIES DE RUPTURA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 322 |
| 7.1.1.5 - NORMAS DE PROJETO E METODOS DE CALCULO DE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 202 |
| PESQUISADURES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 323 |
| 7.1.1.0 - PROPUSTA DE CUNSIDERAÇAU DU PARAMETRU $c_{max} d$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 523 |
| 2 E 2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 204 |
| 4 E J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 224 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 324 |

248

| 7.1.2.2 - ARMADURA DE CISALHAMENTO                            | 324 |
|---------------------------------------------------------------|-----|
| 7.1.2.3 - DESLOCAMENTOS VERTICAIS                             | 324 |
| 7.1.2.4 - DEFORMAÇÕES DA ARMADURA DE FLEXÃO                   | 325 |
| 7.1.2.5 - DEFORMAÇÕES DA ARMADURA DE CISALHAMENTO             | 325 |
| 7.1.2.6 – FISSURAÇÃO                                          | 326 |
| 7.1.2.7 - MODOS, CARGAS E SUPERFICIES DE RUPTURA              | 326 |
| 7.1.2.8 - NORMAS DE PROJETO E MÉTODOS DE CÃLCULO DE           |     |
| PESQUISADORES                                                 | 327 |
| 7.1.2.9- PROPOSTA DE CALCULO DO PERIMETRO EFETIVO DE CONTROLE |     |
| PARA A NB1 (2003)                                             | 327 |
| 7.2 - SUGESTOES PARA TRABALHOS FUTUROS                        | 328 |
|                                                               |     |
| REFERENCIAS BIBLIOGRAFICAS                                    | 329 |
| A REALWEADOR DOG DUGLIOG REALIGADOR DIA CORROS DE REALIA      |     |
| A - RESULTADOS DOS ENSAIOS REALIZADOS EM CORPOS DE PROVA      | 225 |
| CILINDRICOS DE CONCRETO                                       | 335 |
| D LEITUDAS DOS DEELETÔMETROS E EVTENSÔMETROS                  | 241 |
| B - LEITURAS DOS DEFLETOMETROS E EXTENSOMETROS                | 341 |
| C-CÁLCINO DA RESISTÊNCIA À FLEXÃO DAS LAJES UTILIZANDO A      |     |
| TEORIA DAS LINHAS DE RUPTURA                                  | 353 |
|                                                               |     |
| D - CÁLCULO DAS FORCAS NOS TIRANTES DO SISTEMA DE ENSAIO      | 356 |
|                                                               |     |

## LISTA DE TABELAS

#### Tabela

| 2 1 - Características das lajes 10, 11 e 12 de FORSSEL & HOLMBERG (1946)         | 31  |
|----------------------------------------------------------------------------------|-----|
| 2.2 - Características das lajes testadas por HAWKINS et al. (1971)               | 33  |
| 2.3 - Resultados dos ensaios realizados por HAWKINS et al. (1971)                | 34  |
| 2.4 - Lajes de REGAN & REZAI-JORABI (1988) com ruptura por punção                | 41  |
| 2.5 - Características das lajes monolíticas ensaiadas por TENG et al. (1999)     | 44  |
| 2.6 - Características das laies ensaiadas por AL-YOUSIF & REGAN (2003)           | 46  |
| 2.7 - Características das laies monolíticas ensaiadas por SILVA (2003)           | 50  |
| 28 - Características cargas e modos de ruptura das laies de OLIVEIRA (2003)      | 51  |
| 2.9 - Fatores de flexão pronostos por OLIVEIRA (2003)                            | 54  |
| 2.10 - Estimativas dos métodos de cálculo para as laies da literatura            |     |
| carregadas/anoiadas nos quatro bordos                                            | 59  |
| 2 11 - Características e cargas de ruptura das laies de MOWRER & VANDERBILT      |     |
| (1967)                                                                           | 69  |
| 2.12 - Parâmetros dos furos nas laies ensaiadas por ROLL et al. (1971)           | 71  |
| 2 13 - "Lavout" dos furos                                                        | 71  |
| 2.13 Eugent des laies de GOMES e ANDRADE (1995)                                  | 77  |
| 2.15 - Resultados dos ensaios das lajes de GOMES e ANDRADE (1995)                | 78  |
| 2.15 Resultatos dos clisalos das lajes de COMES e ARDRADE (1995)                 | 81  |
| 2.17 - Comparação entre as recomendações propostas por TENG et al (1000) e       | 01  |
| algumas normas de projeto                                                        | 84  |
| 2 18 - Características e resultados das laies de EL-SALAKAWV et al. (1990)       | 86  |
| 2.19 - Características e resultados das lajes de REGAN (1000)                    | 00  |
| 2.10 Características e resultados das lajes de IQANNOLI (2001)                   | 94  |
| 2.21 - Comparação entre cargas experimentais e teóricas das laies de IOANNOLL    | 74  |
| (2001)                                                                           | 07  |
| 2.22 - Características das laies ensaiadas por SILVA (2003)                      | 08  |
| 2 23 - Resultados dos ensaios das laies de SILVA (2003)                          | 101 |
| 2 24 - Estimativas das normas e métodos de cálculo para as laies com furos       | 105 |
| 2.25 - Estimativas normas de projeto para as lajes com armadura de cisalhamento  | 112 |
| 2.25 Zomativas normas de projeto para as lajes com armadara de elsamamento       | 112 |
| 3.1 - Características geométricas das lajes da Série 1                           | 119 |
| 3.2 - Composição do concreto                                                     | 121 |
| 3.3 - Características geométricas das lajes das séries 2 e 3                     | 122 |
|                                                                                  |     |
| 4.1 – Propriedades do concreto no dia do ensaio das lajes da Serie 1             | 147 |
| 4.2 Propriedades dos aços utilizados nas lajes da Serie I                        | 148 |
| 4.3 – Deslocamentos centrais maximos medidos nas lajes da Serie I                | 153 |
| 4.4 – Deformações maximas registradas nas barras da armadura de flexão das lajes |     |
| da Serie I                                                                       | 156 |
| 4.5 – Cargas de fissuração visual das lajes da Série 1                           | 169 |
| 4.0 - Cargas de ruptura por flexão das lajes da Série 1                          | 174 |
| 4.7 – Cargas e modos de ruptura observados nas lajes da Série 1                  | 179 |
| 4.8 – Cargas de pos-puncionamento das lajes da Série 1                           | 179 |

| experimental das lajes da Série 1                                                                                                                                                   | 181        |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| 4.10 - Influência da relação entre lados do pilar na carga de ruptura experiment                                                                                                    | al         |
| das lajes da Série 1<br>4.11 - Comparação dos resultados experimentais das laies da Série 1 com os j                                                                                | 183<br>de  |
| TENG et al. (1999), SILVA (2003) e OLIVEIRA (2003)                                                                                                                                  | 184        |
| 5.1 – Propriedades do concreto no dia do ensaio das lajes das séries 2 e 3                                                                                                          | 186        |
| 5.2 – Propriedades dos aços utilizados nas lajes das séries 2 e 3                                                                                                                   | 187        |
| 5.3 – Cargas de fissuração visual das lajes das séries 2 e 3                                                                                                                        | 218        |
| 5.4 – Cargas de ruptura por flexão das lajes das séries 2 e 3                                                                                                                       | 225        |
| 5.5 – Cargas e modos de ruptura das laies das séries 2 e 3                                                                                                                          | 242        |
| 5.6 – Cargas de pós-puncionamento das laies das séries 2 e 3                                                                                                                        | 243        |
| 5.7 – Influência da presenca do furo na carga de ruptura experimental                                                                                                               | 244        |
| 5.8 – Contribuição da armadura de cisalhamento na carga de ruptura experimental<br>5.9 – Comparação dos resultados experimentais das laies com furos da literatu                    | 247<br>Ira |
| com os da presente pesquisa                                                                                                                                                         | 250        |
| 5.10 - Comparação dos resultados experimentais das laies com armadura                                                                                                               | dc         |
| cisalhamento da literatura com os da presente pesquisa                                                                                                                              | 255        |
| 6.1 - Comparação dos resultados experimentais com os estimados por normas                                                                                                           | de         |
| projeto e por pesquisadores para as lajes da Série 1<br>6.2 – Comparação dos resultados experimentais com os estimados por normas (                                                 | 259<br>de  |
| projeto e por pesquisadores para as lajes da Série 1 e da literatura                                                                                                                | 262        |
| 6.3 – Estimativa média, desvio padrão e coeficiente de variação das normas                                                                                                          | de         |
| projeto e de pesquisadores para as lajes da Série 1 e da literatura<br>6.4 – Comparação das estimativas do ACI/02 e CEB/91 com as respectiv                                         | 263<br>as  |
| propostas                                                                                                                                                                           | 271        |
| 6.5 – Comparação das estimativas do CEB/91 e do metodo de OLIVEIRA/03 co<br>as estimativas da proposta para o CEB/91                                                                | om<br>272  |
| 6.6 - Comparação dos resultados experimentais com os estimados pelas normas                                                                                                         | de         |
| projeto e por pesquisadores para as lajes da Série 2                                                                                                                                | 277        |
| 6.7 – Estimativas do método de ROLL et al. (1971) para as lajes da Série 2<br>6.8 – Estimativas do método de ROLL et <i>al.</i> (1971) para as lajes da Série 2 e                   | 278<br>da  |
| literatura                                                                                                                                                                          | 281        |
| 6.9 – Estimativas da proposta para o método de ROLL et al. (1971) para as lajes<br>Série 2 e da literatura                                                                          | da<br>286  |
| 6.10 – Estimativas das normas de projeto e de pesquisadores para as lajes com fur                                                                                                   | os         |
| da literatura, incluindo a proposta para a NB1 (2003)                                                                                                                               | 291        |
| 6.11 – Estimativas da norma do ACI (2002) para as laies da Série 3                                                                                                                  | 299        |
| 6.12 – Estimativas da norma do BS8110 (1987) para as laies da Série 3                                                                                                               | 300        |
| 6.13– Estimativas da norma do HANDBOOK TO BS8110 (1987) para as lajes                                                                                                               | da         |
| 6.14 Estimativas da norma da EC2 (1002) para estaina da Sária 2                                                                                                                     | 301        |
| 0.14 - Estimativas da norma do EC2 (1992) para as lajes da Serie 36.15 - Estimativas da norma do EC2 (2001) esta está inclusión da Serie 3                                          | 302        |
| 0.10 - Estimativas da norma do EC2 (2001) para as lajes da Serie 3                                                                                                                  | 303        |
| o 10 – Estimativas da norma da NBI (2003) para as lajes da Serie 3                                                                                                                  | 304        |
| <ul> <li>6.17 – Estimativas da proposta para a NB1 (2003) para as lajes da Série 3</li> <li>6.18 – Comparação dos resultados experimentais com os estimados por normas o</li> </ul> | 305<br>de  |
| projeto para as lajes da Série 3                                                                                                                                                    | 307        |
| 6.19 - Estimativas do método de ROLL et al (1971) para as laises da Série 3                                                                                                         | 308        |

| 6.20 – Estimativas do método de ROLL et al. (1971) para as lajes da Série 3 e da  |        |
|-----------------------------------------------------------------------------------|--------|
| literatura                                                                        | 310    |
| 6.21 - Resultados das estimativas para armadura e concreto das lajes com armadura |        |
| de cisalhamento, utilizando a equação de ROLL et al (1971)                        | 313    |
| 6.22 - Comparação das estimativas das normas de projeto com as da proposta para   |        |
| a NB1 (2003) para as lajes da Série 3 e da literatura                             | 316    |
|                                                                                   |        |
| A.1 - Resultados individuais dos ensaios em corpos de prova cilíndricos de        |        |
| concreto de dimensões 150 mm x 300 mm                                             | 335    |
| A.2 - Resultados individuais dos ensaios de tração axial em amostras de aço de    |        |
| vários diâmetros utilizados nas lajes da Serie 1                                  | 340    |
| A.3 - Resultados individuais dos ensaios de tração axial em amostras de aço de    | 2.40   |
| varios diametros utilizados nas lajes das series 2 e 3                            | 340    |
| B 1 – Deslocamentos da laje I 41                                                  | 3/1    |
| $B_1 = Deslocamentos da laje L41 A$                                               | 341    |
| B 3 – Deslocamentos da laje L 42                                                  | 342    |
| B 4 - Deslocamentos da laje L 42A                                                 | 342    |
| B.5 – Deslocamentos da laje L43A                                                  | 342    |
| B.6 – Deslocamentos da laje L44                                                   | 343    |
| B.7 – Deslocamentos da laje L45                                                   | 343    |
| B 8 – Deslocamentos da laje L46                                                   | 344    |
| B.9 – Deslocamentos da laje L45FS CG                                              | 344    |
| B.10 – Deslocamentos da laje L45FD_CG                                             | 345    |
| B.11 – Deslocamentos da laje L45FD – Direção x                                    | 345    |
| B.12 – Deslocamentos da laje L45FD – Direção y                                    | 345    |
| B.13 – Deslocamentos da laje L45FFS_CG                                            | 346    |
| B.14 – Deslocamentos da laje L45FFD_CG                                            | 346    |
| B.15 – Deslocamentos da laje L45FFD – Direção x                                   | 346    |
| B 16 – Deslocamentos da laje L45FFD – Direção y                                   | 347    |
| B.17 – Deslocamentos da laje L45FFD_AC2 – Direção x                               | 347    |
| B.18 – Deslocamentos da laje L45FFD_AC2 – Direção y                               | 348    |
| B 19 - Deslocamentos da laje L45FFD AC3 - Direção x                               | 348    |
| B.20 - Deslocamentos da laje L45FFD AC3 - Direção y                               | 349    |
| B.21 – Deslocamentos da laje L45FFD AC4 – Direção x                               | 349    |
| B 22 – Deslocamentos da laje L45FFD AC4 – Direção y                               | 349    |
| B.25 Deslocamentos da laje L45FFD AC5 Direção x                                   | 350    |
| B.24 - Deslocamentos da laje L45FFD_AC5 - Direção y                               | 251    |
| $B_{20} = Deslocamentos da laje L45 AC1 = Direção x$                              | 351    |
| B 27 – Deslocamentos da laje L 45 AC5 – Direção y                                 | 357    |
| $B_{28} - Deslocamentos da laje L45 AC5 - Direção x$                              | 352    |
| D.20 Desidententos da lajo D.15 Mes Direção y                                     | J J 22 |
| C.1 – Cargas previstas para ruptura por flexão das lajes da Série 1               | 355    |
| C.2 - Cargas previstas para ruptura por flexão das lajes das séries 2 e 3         | 355    |
|                                                                                   |        |
| D.1 – Características mecânicas dos tirantes                                      | 356    |
| D.2 – Leituras médias das deformações $\varepsilon$ nos tirantes da laje L45FD    | 358    |
| D.3 – Leituras medias das torças F nos tirantes da laje L45FD                     | 358    |
| D 4 – Leituras médias das deformações e nos tirantes da laje L45FFD               | 358    |

| D.5 – Leituras médias das forças F nos tirantes da laje L45FFD          | 359 |
|-------------------------------------------------------------------------|-----|
| D.6 - Leituras médias das deformações e nos tirantes da laje L45FFD_AC2 | 359 |
| D.7 - Leituras médias das forças F nos tirantes da laje L45FFD_AC2      | 360 |
| D.8 - Leituras médias das deformações ɛ nos tirantes da laje L45FFD_AC3 | 360 |
| D.9 – Leituras médias das forças F nos tirantes da laje L45FFD_AC3      | 361 |
| D.10 – Leituras médias das deformações e nos tirantes da laje L45 AC1   | 361 |
| D 11 – Leituras médias das forças F nos tirantes da laje L45_AC1        | 362 |
|                                                                         |     |
|                                                                         |     |

## LISTA DE FIGURAS

# Figura

| 2.1 – Perímetro de controle situado a $0,5d$ do pilar, de acordo com ACI (2002)<br>2.2 – Perímetro de controle situado a $0,5d$ da última camada de armadura de | 7  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| cisalhamento, de acordo com ACI (2002)                                                                                                                          | 10 |
| 2.3 - Perimetro de controle para lajes com furos, de acordo com ACI (2002)                                                                                      | 10 |
| 2.4 – Perímetro de controle situado a 1,5d do pilar, de acordo com BS8110 (1997)                                                                                | 11 |
| 2.5 - Perímetro de controle para lajes com furos, de acordo com BS8110 (1997)                                                                                   | 13 |
| 2.6 – Perímetro de controle a 2d do pilar, de acordo com CEB-FIP (1991)                                                                                         | 14 |
| 2.7 – Perímetro de controle situado a 2 <i>d</i> da última camada de armadura de cisalhamento, de acordo com CEB-FIP (1991)                                     | 17 |
| 2.8 – Perímetro de controle situado a 1,5 <i>d</i> do pilar, de acordo com EUROCODE 2                                                                           |    |
| (1992)                                                                                                                                                          | 17 |
| 2.9 - Perímetro de controle de lajes com furos, de acordo com EUROCODE 2                                                                                        |    |
| (1992)                                                                                                                                                          | 20 |
| 2.10 - Perímetros de controle a 2d do pilar em lajes (a) sem furos e (b) com furos,                                                                             |    |
| de acordo com EUROCODE 2 (2001)                                                                                                                                 | 20 |
| 2.11 – Perímetro de controle situado a 1,5d da última camada de armadura de                                                                                     |    |
| cisalhamento, de acordo com o EUROCODE 2 (2001)                                                                                                                 | 23 |
| 2.12 – Considerações para o tratamento de furos em lajes sob punção, de acordo                                                                                  |    |
| com o Handbook to BS8110 (1987)                                                                                                                                 | 23 |
| 2.13 – Perímetro de controle para (a) $c_{min} / c_{min} \le 3$ e (b) $c_{min} / c_{min} > 3$ , de acordo                                                       |    |
| com NBR-6118 (1978)                                                                                                                                             | 26 |
| 2.14 – Perímetro de controle de laies com furos, de acordo com NBR-6118 (2003)                                                                                  | 26 |
| 2.15 – Perímetro de controle situado a 2d da última camada de armadura de                                                                                       |    |
| cisalhamento de acordo com a NBR-6118 (2003)                                                                                                                    | 29 |
| 2.16 - Ancoragem para armadura de punção constituída por conectores do tipo pino                                                                                |    |
| de acordo com a NBR-6118 (2003)                                                                                                                                 | 29 |
| 2.17 – Disposição da armadura de punção, de acordo com a NBR-6118 (2003)                                                                                        | 29 |
| 2.18 - Detalhes das lajes 10, 11 e 12 de FORSSEL & HOLMBERG (1946) -                                                                                            |    |
| unidades em mm                                                                                                                                                  | 31 |
| 2.19 - Características das lajes e esquema de ensaio de HAWKINS et al. (1971) -                                                                                 |    |
| unidades em mm                                                                                                                                                  | 32 |
| 2.20 – Comparação entre os resultados experimentais de HAWKINS et al.(1971) e                                                                                   |    |
| as expressões de MOE(1961) c ACI-ASCE Committee 326 (1962).                                                                                                     | 37 |
| 2.21 - Comparação entre resultados de HAWKINS et al. (1971) e a norma do ACI                                                                                    |    |
| (1963)                                                                                                                                                          | 38 |
| 2.22 – Modelo de laie ensaiada por VANDERBILT (1972) e instrumentação dos                                                                                       |    |
| pilares – unidades em mm                                                                                                                                        | 40 |
| 2.23 – Modelo das laies ensaiadas por REGAN & REZAI-JORABI (1988) –                                                                                             |    |
| unidades em mm                                                                                                                                                  | 40 |
| 2.24 – Modelos empregados na proposta de REGAN & REZAI-JORABI (1988)                                                                                            | 42 |
| 2.25 - Características das lajes ensaiadas por TENG et al. (1999) - unidades em                                                                                 |    |
| mm                                                                                                                                                              | 43 |
| 2.26 – Perímetro de controle proposto por TENG et al. (1999) para lajes com pilares                                                                             |    |
| retangulares                                                                                                                                                    | 45 |
|                                                                                                                                                                 |    |

| 2.27 – Lajes ensaiadas por AL-YOUSIF & REGAN (2003) – unidades em mm<br>2.28 – Características das lajes L1, L2, L3 e L12 ensaiadas por SILVA (2003) – | 46  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| unidades em mm                                                                                                                                         | 49  |
| 2.29 – Esquema de ensaio de SILVA (2003) – unidades em mm                                                                                              | 49  |
| 2 30 – Armadura de flexão das laies L1, L2, L3 e L12 de SILVA (2003) – unidades                                                                        |     |
| em mm                                                                                                                                                  | 50  |
| 2 31 - Disposição do carregamento nas lajes de OLIVEIRA (2003) - unidades em                                                                           |     |
| mm                                                                                                                                                     | 52  |
| 2 32 – Tinos de laies classificadas nor OLIVEIRA (2003)                                                                                                | 54  |
| 2.32 - Tipos de lajes classificadas por OEI (ERCR (2003)                                                                                               | 0.  |
| monolíticas                                                                                                                                            | 56  |
| 2.24 Estimativas das laies ensaiadas por EORSSEL & HOLMBERG (1946)                                                                                     | 60  |
| 2.54 - Estimativas das lajos ensaiadas por HAWKINS et al. (1071)                                                                                       | 61  |
| 2.55 - Estimativas das lajes ensaiadas por TENG et al. (1971)                                                                                          | 67  |
| 2.30 - Estimativas das lajos cusatadas por AL VOUSE & REGAN (2003)                                                                                     | 63  |
| 2.37 - Estimativas das lajes ensaiadas por AL-10031F & REUAIN (2003)                                                                                   | 64  |
| 2.36 - Estimativas das lajes ensaiadas por SIL VA (2003)                                                                                               | 65  |
| 2.39 - Estimativas das lajes ensatadas por OLIVEIRA (2003)                                                                                             | 05  |
| 2.40 – Armadura de cisalhamento utilizada por GOMES e ANDRADE (1995) –                                                                                 | 76  |
| unidades em mm                                                                                                                                         | 10  |
| 2.41 – Disposição dos turos em relação ao pilar has lajes de GOMES &                                                                                   | 76  |
| ANDRADE (1995) – unidades em mm                                                                                                                        | /0  |
| 2.42 – Lajos ensaiadas por GUMES e ANDRADE (1995)                                                                                                      | 80  |
| 2.43 – Perimetro crítico efetivo recomendado por TENG et dl. (1999) para lajes com                                                                     | 0.2 |
| furos                                                                                                                                                  | 83  |
| 2.44 – Lajes ensaiadas por EL-SALAKAWY et al. (1999) – unidades em mm                                                                                  | 85  |
| 2.45 – Detalhamento da armadura principal de flexão da laje SEO testada por EL-                                                                        | 0.( |
| SALAKAWY et al. (1999)                                                                                                                                 | 86  |
| 2.46 – Locais onde armadura de punção e inefetiva, segundo a BS8110 (1997)                                                                             | 88  |
| 2.47 – Perimetro crítico proposto por REGAN (1974) para o Handbook to                                                                                  | 0.0 |
| BS8110/85 (1987)                                                                                                                                       | 88  |
| 2.48 Lajes ensaiadas por REGAN (1999) – unidades em mm                                                                                                 | 89  |
| 2.49 – Distribuição da armadura de cisalhamento utilizada por REGAN (1999)                                                                             | 91  |
| 2.50 – Detalhamento da armadura negativa de flexão utilizada por REGAN (1999)                                                                          | 0.0 |
| - unidades em mm                                                                                                                                       | 92  |
| 2.51 – Distribuição da armadura de cisalhamento utilizada por IOANNOU (2001)                                                                           | 95  |
| 2.52 – Detalhe dos "shearbands utilizados por IOANNOU (2001)                                                                                           | 95  |
| 2.53 – Tratamento alternativo de furos proposto por IOANNOU (2001)                                                                                     | 96  |
| 2.54– Perimetros de controle para as lajes ensaiadas por IOANNOU (2001)                                                                                | 96  |
| 2.55 Tratamento da laje PSSCH1 como laje com pilar de borda                                                                                            | 97  |
| 2.56 - Características das lajes com turos e/ou armadura de cisalhamento de                                                                            |     |
| SILVA (2003) – unidades em mm                                                                                                                          | 99  |
| 2.57 – Armadura de cisalhamento das lajes L7 a L11 – unidades em mm                                                                                    | 99  |
| 2.58 – Estimativas das normas e métodos de cálculo para as lajes com furos de MOWRER & VANDERBILT (1967)                                               | 107 |
| 2.59 – Estimativas normas e métodos de cálculo para as lajes com furos de ROLL,<br>ZAIDI, SABNIS & CHUANG (1971)                                       | 107 |
| 2.60 – Estimativas normas e métodos de cálculo para as lajes com furos de GOMES<br>& ANDRADE (1995)                                                    | 108 |
| 2.61 – Estimativas normas e métodos de cálculo para as laies com furos de TENG                                                                         |     |
| et al. (1999)                                                                                                                                          | 108 |
|                                                                                                                                                        |     |

| 2.62 – Estimativas normas e métodos de cálculo para as lajes com furos de EL-<br>SALAKAWY et al (1999)        | 109 |
|---------------------------------------------------------------------------------------------------------------|-----|
| 2.63 – Estimativas normas e métodos de cálculo para as lajes com furos de REGAN (1999) e IOANNOU (2001)       | 109 |
| 2.64 – Estimativas normas e métodos de cálculo para as lajes com furos de SILVA (2003)                        | 110 |
| 2.65 – Estimativas das normas de projeto para as lajes com armadura de cisalhamento de GOMES & ANDRADE (1995) | 113 |
| 2.66 – Estimativas das normas de projeto para as lajes com armadura de cisalhamento de REGAN (1999)           | 114 |
| 2.67 – Estimativas das normas de projeto para as lajes com armadura de cisalhamento de IOANNOU (2001)         | 114 |
| 2.68 – Estimativas das normas de projeto para as lajes com armadura de cisalhamento de SILVA (2003)           | 115 |
| 3.1 – Características geométricas das lajes da Série 1 (unidade em mm)                                        | 118 |
| 3.2 – Armadura de flexao das lajes da Serie I (unidade em mm)                                                 | 120 |
| 3.3 – Características geometricas das lajes das Series 2 e 5 (unidades em mm)                                 | 122 |
| 3.5 – Detalhamento da armadura superior flexão das lajes da Série 3                                           | 125 |
| 3.6 Detalhe dos "studs" utilizados nas lajes da Série 3 – unidades em mm                                      | 128 |
| 3.7 – Detalhamento da armadura de cisalhamento das laies da Série 3 - unidades em                             |     |
| mm                                                                                                            | 129 |
| 3.8 – Fotografias da armadura de cisalhamento na armação de flexão das lajes                                  | 130 |
| 3.9 – Fotografia da laje com furo e pronta para a moldagem                                                    | 132 |
| 3.10 – Detalhe do estribo e alça, e posicionamento das alças nas lajes (em mm)                                | 133 |
| 3.11 - Sistema de ensaio (unidades em mm)                                                                     | 135 |
| 3.12 - Posicionamento dos defletômetros nas lajes da Série 1 (unidades em mm)                                 | 137 |
| 3.13 – Posicionamento dos extensômetros na armadura de flexão das lajes da Série                              |     |
| 1 (unidades em mm)                                                                                            | 138 |
| 3.14 – Definição de deformações radiais e tangenciais                                                         | 139 |
| 3.15 - Posicionamento dos defletômetros nas lajes das Séries 2 e 3                                            | 140 |
| 3.16-Posicionamento dos extensômetros na armadura de flexão das lajes da Série 2                              | 141 |
| Série 3                                                                                                       | 142 |
|                                                                                                               | 140 |
| 4.1 – Deslocamentos verticais da laje L41                                                                     | 149 |
| 4.2 Deslocamentos verticais da laje L42                                                                       | 149 |
| 4.5 – Deslocamentos verticais da laje L41A                                                                    | 150 |
| 4.4 – Deslocamentos verticais da laje L42A                                                                    | 150 |
| 4.5 - Deslocamentos verticais da laje L45A                                                                    | 151 |
| 4.7 – Deslocamentos verticais da laje L44                                                                     | 157 |
| 48 – Deslocamentos verticais da laje L46                                                                      | 152 |
| $4.9 - \text{Deslocamentos centrais das laies com pilar 150 x c_{mix}$                                        | 154 |
| 4.10 - Deslocamentos centrais das lajes com pilar 200 x Cmax                                                  | 154 |
| 4.11 – Deformações da armadura de flexão da laje L41                                                          | 156 |
| 4.12 - Deformações da armadura de flexão da laje L41A                                                         | 158 |
| 4.13 - Deformações da armadura de flexão da laje L42                                                          | 159 |
| 4.14 - Deformações da armadura de flexão da laje L42A                                                         | 161 |

| 4.15 Deformações da armadura de flevão da laie I.43A                                | 162 |
|-------------------------------------------------------------------------------------|-----|
| 4.15 - Deformações da armadura de flevão da laje L451                               | 164 |
| 4.10 - Deformações da armadura de flevão da laje L 45                               | 165 |
| 4.17 - Deformações da armadura de flexão da laje L45                                | 167 |
| 4.18 - Deformações da armadura de nexao da raje 140                                 | 160 |
| 4.19 Fissuração na laje L41                                                         | 109 |
| 4.20 - Fissuração na laje L41A                                                      | 170 |
| 4.21 – Fissuração na laje L42                                                       | 170 |
| 4.22 Fissuração na laje L42A                                                        | 171 |
| 4.23 – Fissuração na laje L43A                                                      | 1/1 |
| 4.24 – Fissuração na laje L44                                                       | 172 |
| 4.25 – Fissuração na laje L45                                                       | 172 |
| 4.26 – Fissuração na laje L46                                                       | 175 |
| 4.27 - Superficies de ruptura das lajes com pilar retangular – unidades em mm       | 170 |
| 4.28 – Influencia da variação do perimetro do pilar na variação da carga de ruptura | 100 |
| experimental das lajes da Série I                                                   | 182 |
| 4.29 – Comparação entre cargas de ruptura das lajes da presente pesquisa, TENG et   | 104 |
| al. (1999), SILVA (2003) e OLIVEIRA (2003)                                          | 184 |
| 5.1 – Curvas "Tensão x Deformação" do concreto utilizado nas laies                  | 187 |
| 5.2 - Curvas "Tensão x Deformação" dos acos utilizados nas lajes das Séries 2 e 3   | 188 |
| 5.3 Deslocamentos das laies I 45FS CG e I 45FD CG                                   | 191 |
| 5.4 - Deslocamentos da laje L 45FD                                                  | 192 |
| 5.5 – Deslocamentos das laies I 45FFS, CG e I 45FFD, CG                             | 193 |
| 5.6 Deslocamentos da laje L 45FFD                                                   | 194 |
| 5.7 Deslocamentos da laje L45FFD AC2                                                | 195 |
| 5.8 – Deslocamentos da laje L45FFD AC3                                              | 196 |
| 5.9 - Deslocamentos da laje LASEED ACA                                              | 197 |
| 5.10 - Deslocamentos da laje L45FFD AC5                                             | 198 |
| 5.11 Deslocamentos da laje L 45 AC1                                                 | 199 |
| 5.12 - Deslocamentos da laje L45 AC5                                                | 200 |
| 5.12 Deslocamentos cantrais das laies da Série ?                                    | 200 |
| 5.13 - Deslocamentos centrais das lajes da Série 3                                  | 202 |
| 5.14 - Desideamentos centrais das lajes da Serie 5                                  | 202 |
| 5.15 - Deformações da armadura de flexão da laje L4515 CO                           | 204 |
| 5.17 - Deformações da armadura de flexão da laje L451D_CO                           | 205 |
| 5.17 Deformações da armadura de flevão da laje LASEES, CG                           | 200 |
| 5.10 Deformações da armadura de flexão da laje L45115 CG                            | 207 |
| 5.19 Deformações da armadura de flexão da laje L451 PD_CO                           | 200 |
| 5.20 - Deformações da armadura de nexão da laje L4511 D                             | 209 |
| 5.21 Deformações da armadura de cisalhamento da laje L45FFD_AC2                     | 211 |
| 5.22 - Deformações da armadura de cisalhamento da laje L45FFD_AC5                   | 213 |
| 5.23 - Deformações da armadura de cisalhamento da laje L43FFD_AC4                   | 214 |
| 5.24 - Deformações da armadura de cisalhamento da laje L45FFD AC5                   | 215 |
| 5.25 Deformações da armadura de cisalhamento da laje L45 ACT                        | 215 |
| 5.26 – Deformações da armadura de cisalnamento da laje L45_AC5                      | 210 |
| 5.27 - rissuração na laje L45r5_CG                                                  | 218 |
| 5.28 – rissuração na laje L45FD UG                                                  | 219 |
| 5.29 Fissuração na laje L45FD                                                       | 219 |
| 5.30 - rissuração na laje L43FFS CG                                                 | 220 |
| 5.31 – rissuração na laje L45FFD CG                                                 | 220 |
| 5 32 – Fissuração na laje L45FFD                                                    | 221 |

| 5.33 - Fissuração na laje L45FFD AC2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 221 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 5.34 - Fissuração na laje L45FFD AC4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 222 |
| 5.35 - Fissuração na laje L45FFD_AC5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 222 |
| 5.36 – Fissuração na laje L45_AC1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 223 |
| 5.37 – Fissuração na laje L45_AC5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 223 |
| 5.38 - Configuração das superficies de ruptura das lajes da Serie 2 (dimensões em                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |
| mm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 227 |
| 5.39 – Fotografias das superfícies de ruptura das lajes da Série 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 228 |
| 5.40 – Configuração das superfícies de ruptura das lajes da Serie 3 (dimensões em                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 224 |
| mm)<br>6 41 - Esta en Carlos de la contra des laires de Cárlo 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 234 |
| 5.41 – Potogranas das superfícies de ruptura das lajes da Sene 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 233 |
| 61 - Estimativas das normas de projeto e de pesquisadores para as lajes da Série 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 260 |
| 6 2 – Estimativas das normas de projeto e de pesquisadores para as lajes da Série 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 200 |
| e da literatura                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 264 |
| 6.3 – Tendência das estimativas das normas de projeto e de pesquisadores para as                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |
| lajes da Série 1 e da literatura                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 268 |
| 6.4 – Tendência das estimativas das normas de projeto do ACI (2002), CEB (1991)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |
| e das propostas para as normas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 272 |
| 6.5 - Tendência das estimativas da norma de projeto do CEB (1991), do método de                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |
| OLIVEIRA/03 e da proposta para o CEB (1991)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 274 |
| 6.6 - Estimativas das normas de projeto e de pesquisadores para as lajes da Série 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 278 |
| 6.7 - Comparação dos resultados experimentais com a tendência das estimativas do                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |
| método de ROLL et al. (1971) para as lajes da Série 2 – Curvas V $bd\sqrt{f'}$ x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |
| Press Dd VI e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 279 |
| $6.8$ – Comparação dos resultados experimentais com a tendência das estimativas do método de ROLL et <i>al.</i> (1971) para as lajes da Série 2 – Curvas $VV_{flex}$ x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |
| $V_{Rex}/bd\sqrt{f'_c}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 279 |
| 6.9 - Comparação dos resultados experimentais com a tendência das estimativas do                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |
| método de ROLL et al. (1971) para as lajes da Série 2 e da literatura - Curvas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |
| $V bd f' x V_a bd f'$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 007 |
| 6.10 Comparação dos resultados experimentais com a tendência das estimativas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 203 |
| do método de ROLL et al. (1971) para as laies da Série 2 e da literatura - Curvas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |
| I'll a l'al fait a l'al fait and an anno anno anno anno anno anno an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |
| V flex X V flex DU J c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 283 |
| 6.11 - Comparação dos resultados experimentais com a tendência das estimativas do método de ROLL et <i>al.</i> (1971) e da proposta para as lajes da Série 2 e da                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |
| literatura – Curvas V $bd\sqrt{f'_c} \propto V_{flex} bd\sqrt{f'_c}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 288 |
| 6.12 – Comparação dos resultados experimentais com a tendência das estimativas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 200 |
| do método de ROLL et al. (1971) e da proposta para as laies da Série 2 e da                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |
| literatura – Curvas $V/V_{am} \propto V_{a}$ / $bd \int f'$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 000 |
| (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12)  (12) | 288 |
| DIJ – Comparação das estimativas da NBT (2003) com as estimativas da proposta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 202 |
| 6.14 Comparação das estimativas de ND1 (2003) com as estimativas de proposto                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 293 |
| 0.14 - Comparação das estimativas da NDT (2003) com as estimativas da proposta para a norma brasileira das laies de POLL et $al. (1971)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 202 |
| 6.15 - Comparação das estimativas da NB1 (2003) com as estimativas da proposta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 673 |
| para a norma brasileira das lajes de GOMES & ANDRADE (1995)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 294 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |

| 6.16 – Comparação das estimativas da NB1 (2003) com as estimativas da proposta<br>para a norma brasileira das lajes de TENG et <i>al.</i> (1999)                        | 294 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| para a norma brasileira das lajes de REGAN (1999) e IOANNOU (2001)<br>6.18 – Comparação das estimativas da NB1 (2003) com as estimativas da proposta                    | 295 |
| para a norma brasileira das lajes de EL-SALAKAWY et <i>al.</i> (1999)<br>6 19 – Comparação das estimativas da NB1 (2003) com as estimativas da proposta                 | 295 |
| para a norma brasileira das lajes de SILVA (2003)<br>6 20 - Comparação das estimativas da NB1 (2003) com as estimativas da proposta                                     | 296 |
| nara a norma brasileira das laies da Série 2                                                                                                                            | 296 |
| 6.21 – Estimativas das normas de projeto para as lajes da Série 3                                                                                                       | 307 |
| 6.22 – Comparação dos resultados experimentais com a tendência das estimativas                                                                                          |     |
| do método de ROLL et al. (1971) para as lajes da Série 3 – Curvas $V / hd\sqrt{f'_c} \propto$                                                                           |     |
| $V_{flox}$ bd $\sqrt{f'_{o}}$                                                                                                                                           | 309 |
| 6.23 – Comparação dos resultados experimentais com a tendência das estimativas                                                                                          |     |
| do método de ROLL et <i>al.</i> (1971) para as lajes da Série 3 – Curvas $V/V_{flex}$ x                                                                                 |     |
| $v_{flex} + bd \sqrt{f_c}$                                                                                                                                              | 309 |
| 6.24 – Comparação dos resultados experimentais com a tendência das estimativas do método de ROLL et <i>al.</i> (1971) para as lajes da Série 3 e da literatura – Curvas |     |
| $V \ bd \sqrt{f'_c} \times V_{flex} \ bd \sqrt{f'_c}$                                                                                                                   | 311 |
| 6.25 – Comparação dos resultados experimentais com a tendência das estimativas do método de ROLL et <i>al.</i> (1971) para as lajes da Série 3 e da literatura – Curvas |     |
| $V/V_{flex} \times V_{flex} Dd \sqrt{f_c}$                                                                                                                              | 312 |
| 6.26 – Comparação das estimativas da NB1 (2003) com as da proposta para a norma para as lajes com armadura de cisalhamento de GOMES & ANDRADE                           |     |
| (1995)<br>(07 Compared to the test of the DED (2002)                                                                                                                    | 317 |
| 0.27 - Comparação das estimativas da NBT (2003) com as da proposta para a                                                                                               | 217 |
| 6.28 — Comparação das estimativas da NB1 (2003) com as da proposta para a                                                                                               | 317 |
| norma para as laies com armadura de cisalhamento de IOANNOLI (2001)                                                                                                     | 318 |
| 6.29 – Comparação das estimativas da NB1 (2003) com as da proposta para a                                                                                               | 510 |
| norma para as lajes com armadura de cisalhamento de SILVA (2003)                                                                                                        | 318 |
| 6.30 - Comparação das estimativas da NB1 (2003) com as da proposta para a                                                                                               |     |
| norma para as lajes da Série 3                                                                                                                                          | 319 |
| 7.1 – Perímetro efetivo de controle proposto para a NB1 (2003)                                                                                                          | 328 |
| C.1 – Linhas de ruptura para as lajes das séries 1, 2 e 3                                                                                                               | 353 |
| D 1 – Posição e identificação dos tirantes nas laies                                                                                                                    | 356 |
| D.2 – Deformações dos acos dos tirantes na laie L45FD                                                                                                                   | 363 |
| D.3 – Deformações dos aços dos tirantes na laie L45FFD                                                                                                                  | 364 |
| D.4 – Deformações dos aços dos tirantes na laje L45FFD AC2                                                                                                              | 365 |
| D.5 - Deformações dos aços dos tirantes na laje L45FFD AC3                                                                                                              | 366 |
| D.6 – Deformações dos aços dos tirantes na laje L45_AC1                                                                                                                 | 367 |
|                                                                                                                                                                         |     |

# LISTA DE SÍMBOLOS

| a                                | vão de cisalhamento                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| b                                | largura da laje, perímetro do pilar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $b_0$                            | perimetro de controle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Cmin                             | menor dimensão da seção transversal do pilar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Cmax                             | maior dimensão da seção transversal do pilar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| d                                | altura útil da laje                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| dx                               | altura útil da laje medida na direção x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| dy.                              | altura útil da laje medida na direção y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| e                                | excentricidade do furo em relação ao pilar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| f'c                              | resistência à compressão do concreto medida em corpos de prova cilíndricos                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| fc2                              | resistência à compressão para concreto fissurado medido em corpos de prova cilíndricos                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| fei                              | resistência à compressão do concreto aos / dias                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| f <sub>ck</sub>                  | resistência característica à compressão concreto medida em corpos de prova cilíndricos                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| f.ck;                            | resistência característica à compressão concreto medida em corpos de prova cilíndricos aos <i>j</i> dias                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| fcu                              | resistência à compressão do concreto medida em corpos de prova cúbicos                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| fu                               | resistência última do aço da armadura de flexão                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| fus                              | resistência última do aço da armadura de cisalhamento                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| $f_{y}$                          | resistência ao escoamento do aço da armadura de flexão                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Jyv, Jys                         | resistência ao escoamento do aço da armadura de cisalhamento                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| fyrwd , fyd                      | resistência ao escoamento de projeto do aço da armadura de cisalhamento                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| fywd.er                          | resistência efetiva ao escoamento de projeto do aço da armadura de                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                  | cisalhamento                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| h                                | altura total da laje                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| k                                | coeficiente de efeito de tamanho                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1                                | comprimento da laje                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| r                                | um quarto do perimetro do pilar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| S                                | distâncie redict entre e Gree de riler e consistencies de serve de s |
| So                               | cisalhamento                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Sr                               | distância radial entre elementos da armadura de cisalhamento                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| <i>U</i> , <i>U</i> <sub>1</sub> | perimetro de controle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| UO                               | perímetro do pilar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Uext, Uout                       | perímetro de controle afastado da última camada de armadura de cisalhamento                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Un.ef                            | perimetro efetivo de controle situado afastado da última camada de armadura de cisalhamento                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| V                                | tensão de cisalhamento atuante                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Vc. VRI                          | resistência ao cisalhamento oferecida pelo concreto                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Vmáx                             | resistência máxima ao cisalhamento na face do pilar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Vn                               | resistência nominal ao cisalhamento                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $V_{S}$                          | resistência ao cisalhamento oferecida pela armadura de cisalhamento                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $v_{R2}$                         | resistência ao cisalhamento de cálculo máxima                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| V <sub>R3</sub>                  | resistência ao cisalhamento oferecida pelo concreto e armadura de cisalhamento                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

| VRdc              | resistência ao cisalhamento de projeto fornecida pelo concreto                              |
|-------------------|---------------------------------------------------------------------------------------------|
| Av Arv. Ase       | área da armadura de cisalhamento dentro do perímetro de controle                            |
| Asw               | área da armadura de cisalhamento em uma camada ao redor do pilar                            |
| As                | área da armadura de flexão                                                                  |
| K                 | coeficiente de normalização da altura útil                                                  |
| V                 | força nominal atuante                                                                       |
| Vc                | força nominal resistente oferecida pelo concreto                                            |
| VExp              | carga de ruptura experimental                                                               |
| Vr                | carga de fissuração visual                                                                  |
| Vnex              | carga de ruptura por flexão                                                                 |
| $V_n$             | força nominal resistente                                                                    |
| $V_{pp}$          | carga de pós-puncionamento                                                                  |
| Vref              | força nominal resistente de referência para lajes com pilares quadrados de lado<br>igual 2d |
| V <sub>Rd,c</sub> | força nominal resistente de projeto oferecida pelo concreto                                 |
| $V_s$             | força nominal resistente oferecida pela armadura                                            |
| α                 | ângulo entre a armadura de cisalhamento e o plano medio da laje                             |
| $\alpha_s$        | coeficiente relacionado ao posicionamento do pilar em relação à laje                        |
| β                 | coeficiente relacionado à excentricidade da carga do pilar                                  |
| Be                | relação entre maior e menor dimensão da seção transversal do pilar                          |
| Et                | deformação tangencial                                                                       |
| Er                | deformação radial                                                                           |
| Ye                | coeficiente de redução da resistência do concreto                                           |
| $\rho, \rho_1$    | taxa geométrica de armadura de flexão                                                       |
| Px                | taxa geométrica da armadura de flexão medida na direção x                                   |
| Py                | taxa geométrica da armadura de flexão medida na direção y                                   |
| Trl               | tensão de cisalhamento resistente fornecida pelo concreto                                   |
| Tr2               | tensão de cisalhamento resistente no perimetro do pilar                                     |
| T <sub>r3</sub>   | tensão de cisalhamento resistente fornecida pelo concreto e armadura de cisalhamento        |
| $T_s$             | tensão de cisalhamento atuante uniformemente distribuída                                    |
| Twd               | tensão tangencial de cálculo atuante uniformemente distribuída                              |
| Twa               | tensão tangencial última                                                                    |
| υ                 | resistência à compressão para concreto fissurado medido em corpos de prova<br>cilíndricos   |
| E                 | coeficiente de efeito de tamanho                                                            |

# **CAPÍTULO** 1

### INTRODUÇÃO

#### **1.1 – CONSIDERAÇÕES GERAIS**

As lajes cogumelo são estruturas laminares planas horizontais (placas) que se apóiam diretamente em pilares, sem vigas para a transferência das cargas. Estas placas estão sujeitas, então, à ruptura por punção na ligação laje-pilar, que se manifesta frágil e repentinamente.

A punção é um fenômeno caracterizado pela atuação de forças concentradas na superficie da laje, que causam um deslocamento vertical ao longo de uma superficie tronco-cônica ou tronco-piramidal (PARK & GAMBLE, 1980). A superficie de ruptura, segundo REGAN & BRAESTRUP (1985), percorre a espessura da laje com uma inclinação média entre, aproximadamente, 25 a 30 graus, em relação ao seu plano médio.

A literatura apresenta diversos trabalhos teórico-experimentais e teórico-computacionais que estudam o comportamento da ligação laje-pilar de lajes cogumelo com pilares de seção transversal quadrada, sob a influência de variáveis distintas (resistência à compressão do concreto, taxa de armadura de flexão, adição ao concreto de fibras de aço, disposição e taxa de armadura de cisalhamento, furos, etc.).

No entanto, apesar da utilização prática mais freqüente dos pilares de seção retangular, em relação aos de seção quadrada, as pesquisas com pilares retangulares são em menor numero, dos quais, podem-se citar HAWKINS et *al.* (1971), REGAN & REZAI-JORABI (1988), TENG et *al.* (1999), REGAN (1999), AL-YOUSIF & REGAN (2003), SILVA (2003) e OLIVEIRA (2003).

Outro aspecto de utilização bastante comum é a existência de furos relativamente grandes (mesma ordem de grandeza das dimensões do pilar) em lajes que estejam posicionados adjacentes aos pilares, especialmente em edifícios de vários andares, nos quais tubulações de

1

condutos elétricos, mecânicos e hidráulicos percorrem vários andares e estão localizados próximos aos pilares por conveniência funcional.

Dentre as pesquisas que estudam o efeito de furos próximos ao pilar na resistência de lajes cogumelo de concreto armado, pode-se citar MOE (1961), HOGNESTAD et *al.* (1964), MOWRER & VANDERBILT (1967), ROLL et *al.* (1971), GOMES & ANDRADE (1995), REGAN (1999), EL-SALAKAWY et *al.* (1999), TENG et *al.* (1999) e SILVA (2003). Furos em lajes cogumelo reduzem a resistência à punção das lajes, tornando a ruptura ainda mais frágil.

#### **1.2 – OBJETIVOS**

A presente pesquisa tem como objetivo avaliar o efeito da relação entre as dimensões da seção transversal retangular de pilares internos  $(c_{max}, c_{min})$  no comportamento ao puncionamento de lajes cogumelo de concreto armado, com valores variando entre 1 e 4, para as situações de perímetro constante e perímetro variável  $(c_{min} \text{ constante})$ . Assim, contribuir com subsídios, a partir de dados experimentais, para o cálculo da resistência à punção destas estruturas, levando em consideração a geometria do pilar relativa à altura útil da laje  $(c_{max}, d)$ .

Outro objetivo da pesquisa é investigar a influência de furos de grandes dimensões (dimensões equivalentes à de um pilar), simétricos e não-simétricos, posicionados adjacentes ao pilar, na resistência à punção. Através desta investigação, sugerir uma proposta para a norma brasileira NBR-6118 (2003) para o cálculo do perimetro efetivo de controle, considerando a redução deste devido à influência da proximidade do furo.

Finalmente, avaliar a contribuição da armadura de cisalhamento na resistência e ductilidade de lajes cogumelo apoiadas em pilares internos de seção transversal retangular com dois furos simétricos adjacentes a estes.

#### 1.3 – APRESENTAÇÃO DA PESQUISA

No CAPITULO 2 apresenta-se a revisão bibliográfica da pesquisa, contendo as prescrições de algumas normas de projeto para o tratamento da geometria do pilar, da presença de furos e armadura de cisalhamento. São mostrados e discutidos os resultados de pesquisas da literatura que estudaram os assuntos abordados nesta, além de comparações desses resultados com os estimados pelas normas de projeto

O programa experimental da pesquisa é apresentado no CAPITULO 3, que contém a descrição das lajes ensaiadas, dos materiais utilizados, do processo executivo de confecção e ensaio das lajes, e das medições realizadas.

O CAPITULO 4 apresenta e discute os resultados experimentais de ensaios mecânicos dos materiais das lajes, deslocamentos verticais, deformações da armadura de flexão, fissuras, e resistência das lajes com pilares de seção transversal retangular (Série 1), além de comparar o comportamento das lajes da presente pesquisa com o das lajes da literatura.

O CAPITULO 5 apresenta e discute os resultados experimentais das lajes com furos e/ou cisalhamento (Séries 2 e 3), acrescido de resultados de deformações das armaduras de cisalhamento.

O CAPITULO 6 compara os resultados experimentais obtidos para todas as lajes ensaiadas na presente pesquisa com os estimados por diversas normas de projeto e por pesquisadores, e apresenta algumas propostas para consideração da geometria do pilar na resistência à punção de lajes para as normas ACI (2002) e CEB-FIP (1991), e para cálculo do perímetro efetivo de controle para a norma brasileira NBR-6118 (2003).

O CAPITULO 7 apresenta as conclusões obtidas da pesquisa e algumas sugestões para trabalhos futuros.

## **CAPÍTULO 2**

## **REVISÃO BIBLIOGRÁFICA**

#### 2.1 – INTRODUÇÃO

São abordadas, nesta pesquisa, algumas normas de projeto que tratam do puncionamento em lajes cogumelo, tais como, ACI 318 (2002), BS8110 (1985), CEB-FIP Model Code 90 (1991), EUROCODE 2 (1992), EUROCODE 2 (2001), Handbook to BS8110/85 (1987), NBR-6118 (1978) e NBR-6118 (2003).

São apresentados, também, resultados e métodos de cálculo propostos por alguns pesquisadores, que trataram do estudo do puncionamento em lajes cogumelo de concreto armado, simultaneamente, com pilares de seção retangular, furos e armadura de cisalhamento

Finalmente, comparações entre os resultados experimentais, obtidos da literatura, e os previstos pelas normas de projeto e métodos de cálculo são realizadas para uma melhor compreensão das normas.

Apesar da existência de poucas pesquisas experimentais sobre o que trata a presente pesquisa, as normas de projeto que apresentam recomendações sobre estes assuntos, não demonstram um consenso no tratamento da influência da relação entre lados do pilar, da presença de furos e da contribuição da armadura de cisalhamento na resistência ao puncionamento de lajes.

#### 2.2 – NORMAS DE PROJETO

As normas de projeto fornecem uma previsão da carga de ruptura de lajes cogumelo sujeitas à punção, através de um modelo empírico de cálculo que relaciona a tensão nominal de cisalhamento, atuante em uma determinada superfície de controle, com a resistência nominal

ao cisalhamento. Este modelo de cálculo é básico para todas as normas, diferenciando-se quanto à superficie de controle a ser considerada e à resistência ao cisalhamento. O Committee 426 do ACI-ASCE (1973) indica que a seção de controle para o cisalhamento, em lajes armadas bidirccionalmente à flexão, é definida pelo perímetro da área carregada ou da reação.

Cabe ressaltar que algumas normas como BS8110 (1985), Handbook to BS8110/85 (1987). CEB-FIP MC90 (1991), EUROCODE 2 (2001) e NBR-6118 (2003) não tratam especificamente a questão da geometria dos pilares na resistência ao puncionamento de lajes cogumelo. As normas ACI (2002), EUROCODE 2 (1992) e a NBR-6118 (1978), entretanto, consideram o efeito da relação entre lados do pilar na resistência à punção de lajes, quando esta relação é superior a 2, 2 e 3. respectivamente

As normas citadas apresentam recomendações especiais quanto à consideração do perimetro crítico a ser empregado no cálculo da resistência à punção de lajes apoiadas em pilares quadrados. Entretanto, não existe um consenso na adoção de um único perímetro crítico para lajes com pilares quadrados, e também de fatores específicos ( $f_{c}, f_{ct.sp}, d$ , entre outros) que realmente contribuem para a resistência à punção. Sabe-se que as expressões empíricas propostas pelas normas de projeto são baseadas, essencialmente, em pesquisas experimentais realizados por pesquisadores que analisaram diversas variáveis que pudessem influenciar na resistência da laje cogumelo com pilares quadrados.

As prescrições das normas abordadas são apresentadas a seguir, e os coeficientes de segurança de projeto são adotados iguais a 1,0, para representar as condições de laboratório.

#### **2.2.1 – ACI 318 (2002)**

A norma do ACI (2002) considera que a seção crítica, ou de controle, de lajes sujeitas à punção, está localizada a uma distância de 0,5*d* medida a partir da face do pilar ou da área carregada. Para uma laje cogumelo com altura efetiva *d* apoiada em pilar de seção retangular com dimensões  $c_{min}$  (menor dimensão) e  $c_{max}$  (maior dimensão), o perímetro de controle é obtido conforme mostra a Fig. 2.1.

6



Figura 2.1 – Perímetro de controle situado a 0,5*d* do pilar, de acordo com ACI (2002)

A verificação da punção em lajes cogumelo, segundo ACI (2002) e realizado através da comparação entre a força nominal atuante V e a força nominal resistente  $V_n$ . Para uma laje sem armadura de cisalhamento, a força nominal resistente é oferecida apenas pelo concreto  $V_c$ , dada pela Eq. 2.1.

$$V \le V_c \tag{kN} \tag{2.1}$$

onde  $V_c$  c o menor valor obtido através das Eqs. 2.2, 2.3 e 2.4:

$$\left(I + \frac{2}{\beta_c}\right) \frac{1}{6} \sqrt{f_c} b_d d \qquad (kN)$$
 (2.2)

$$\left(\frac{\alpha_s d}{b_0} + 2\right) \frac{1}{12} \sqrt{f_c} b_0 d \qquad (kN)$$
(2.3)

$$\frac{1}{3}\sqrt{f_c}b_0d \qquad (kN) \qquad (2.4)$$

sendo

 $\beta_c$  = relação entre o lado maior e o lado menor do pilar.

 $f_c$  = resistência à compressão do concreto em corpos de prova cilíndricos, em MPa.

 $b_0$  = perímetro de controle localizado a 0,5d do pilar, mm.

d = altura efetiva da laje, em mm.

 $\alpha_s = 40$  (pilares internos), 30 (pilares de borda) e 20 (pilares de canto)

Para uma laje com armadura de cisalhamento, a força nominal atuante V na seção de controle, perpendicular ao plano da laje, não deve exceder a força nominal resistente fornecida pelo concreto ( $V_c$ ) e pela armadura de cisalhamento ( $V_s$ ), de acordo com a Eq. 2.5:

$$V \le V_n = (V_c + V_s)$$
 (kN) (2.5)

Para uma laje com armadura de cisalhamento, a contribuição do concreto, dado pela Eq 2.6, não deve exceder:

$$V_c \leq \frac{1}{6}\sqrt{f_c'} b_o d \qquad (kN) \tag{2.6}$$

A contribuição da armadura de cisalhamento é fornecida pela Eq. 2.7:

$$V_s = \frac{A_v \cdot f_y \cdot d}{s_r} \qquad (kN) \qquad (2.7)$$

onde

 $A_v =$ Área da armadura de cisalhamento dentro da distância s, em mm<sup>2</sup>

 $s_r$  = Espaçamento entre elementos da armadura de cisalhamento, em mm

 $f_{y}$  = Tensão específica de escoamento do aço, em MPa ( $\leq 420$  MPa)

A soma das contribuições do concreto e da armadura de cisalhamento, dada pela Eq. 2.8, não deve exceder:

$$V_c + V_s \le \frac{l}{2} \sqrt{f_c'} h_0 d$$
 (kN) (2.8)

O valor obtido da Eq. 2.4 se torna não conservativo quando se tem relações entre os lados do pilar com valores maiores que 2, tratando-se, neste caso, de pilares retangulares alongados. Para estes pilares, a tensão real de cisalhamento na seção de controle, atinge o valor máximo dado pela Eq. 2.4 apenas na região dos cantos do pilar, diminuindo este valor em direção à região central do lado do pilar.

Ensaios realizados constataram ainda que, na medida em que o valor da razão  $b_0/d$ aumentava, nos casos de pilares de grandes dimensões, o valor de  $v_c$  (=  $V_c/b_0d$ ) diminuía. Baseados nestes aspectos é que foram desenvolvidas as Eqs. 2.2 e 2.3. de forma a se levar em consideração os fatores mencionados no cálculo de  $v_c$ .

As Eqs. 2.2 e 2.3 mostram que o método de cálculo do ACI (2002) trata o caso de pilar retangular através da redução das tensões nominais cisalhantes, e desconsidera a influência da armadura de flexão e o efeito de tamanho na resistência ao puncionamento.

A região externa à armadura de cisalhamento deve ser verificada em uma seção situada a 0,5d da última camada da armadura, utilizando uma das Eqs. 2.2 a 2.4, com o perimetro calculado de acordo com a distribuição da armadura utilizada. O ACI (2002) define que o espaçamento radial dos elementos da armadura de cisalhamento não deve ser maior que d/2.

A Fig. 2.2 mostra os perímetros apropriados para uma distribuição em cruz e radial dos elementos da armadura, para o caso de um pilar quadrado de lado c, e o cálculo do perímetro na seção de controle na região externa à armadura de cisalhamento.

Com relação à presença de furos nas imediações dos pilares, localizados até uma distância de 10*h* a partir do centro do pilar ou área carregada, o ACI (2002) recomenda a redução no perímetro de controle. Esta redução é dada pelo comprimento do perímetro compreendido entre as linhas radiais que partem do centro do pilar e tangenciam os vértices do furo. A Fig. 2.3 ilustra o cálculo do perímetro de controle de lajes com furos.



Figura 2.2 – Perímetro de controle situado a 0,5*d* da última camada de armadura de cisalhamento, de acordo com ACI (2002)



Figura 2.3 – Perimetro de controle para lajes com furos, de acordo com ACI (2002)

#### 2.2.2 - BS8110 (1997)

A norma BS8110 (1997) considera o perímetro de controle localizado a 1,5*d* da face do pilar com cantos quadrados, independentemente da forma do pilar, como mostra a Fig. 2.4. Entretanto, a norma é omissa no caso de lajes com pilares retangulares.



Figura 2.4 – Perimetro de controle situado a 1,5*d* do pilar, de acordo com BS8110 (1997)

A tensão de cisalhamento em lajes sob punção é definida pela BS8110 (1997) de acordo com a Eq. 2.9:

$$v_c = 0.27 \sqrt[3]{100 \rho f_{cu}} \sqrt[4]{400 d}$$
 (MPa) (2.9)

onde

 $\rho$  é a taxa geométrica de armadura de flexão, em % ( $\leq$  3%)

400 d é o fator de efeito de tamanho ( $\geq 1$ )

 $f_{cu}$  é a resistência à compressão do concreto em corpos de prova cúbicos, em MPa ( $f_{cu} \le 40$  MPa)

d é altura útil da laje, em mm

A BS8110 (1997) recomenda que a resistência à punção de lajes deve ser verificada em três seções de controle: na face do pilar, na seção crítica situada a 1,5*d* da face do pilar, e na seção externa à região com armadura de cisalhamento situada a 1,5*d* da penúltima camada da armadura.

Na face do pilar, a força nominal atuante, V, deve ser inferior ao limite definido na Eq. 2.10.

$$V \le \sqrt{f_{cu}} u_0 d \qquad (kN) \tag{2.10}$$
onde  $u_0$  é o perimetro do pilar.

Na seção situada a 1,5*d* da face do pilar, a punção deve ser verificada através da Eq. 2.11 Caso seja satisfeita, não e necessária a utilização de armadura de cisalhamento, sendo que apenas o concreto resiste à força atuante. Caso contrário, a contribuição da armadura de cisalhamento é dada pela Eq. 2.12.

$$V \le v_c \ u \ d \tag{kN} \tag{2.11}$$

$$V_s \le 0.87 f_w A_{sv} sen\alpha$$
 (kN) (2.12)

onde

*u* é o perimetro de controle situado a 1,5*d* da face do pilar, cm mm  $f_{yv}$  é a resistência ao escoamento da armadura de cisalhamento, em MPa  $A_{xv}$  é a área da armadura de cisalhamento dentro do perímetro *u*, em mm<sup>2</sup>  $\alpha$  é o ângulo entre a armadura de cisalhamento e o plano da laje, em graus

Quando da utilização de armadura de cisalhamento, e, para  $V_s \le 0.6 v_c u d$ , a resistência ao cisalhamento é dada pela contribuição do concreto e do aço, sendo expressa pela Eq. 2.13. Caso contrário,  $V_n$  é dada pela Eq. 2.14.

$$V_n = v_c \ u \ d + V_s \tag{kN} \tag{2.13}$$

$$V_n = \frac{I}{7} \left( I0 \, v_c \, u \, d + 2 \, V_s \right) \tag{kN} \tag{2.14}$$

Em lajes com armadura de cisalhamento, a seção de controle situada a 1,5d da penúltima camada de armadura deve ser verificada através da Eq. 2.11 substituindo o perímetro u por  $u_2$ , sendo este último definido para cada caso de distribuição.

A armadura de cisalhamento deve ser distribuída em, no mínimo, duas camadas dentro de um espaço de 1,5d a partir do pilar, e distância circunferencial entre elementos da armadura é limitada a 1,5d.

Para lajes com uma abertura localizada dentro de uma distancia de 6d até o pilar, a norma BS8110 (1997) introduz uma redução no perímetro de controle, sendo esta redução semelhante à recomendada pelo método de cálculo do ACI (2002). A Fig. 2.5 apresenta o perímetro de controle para o caso de lajes com furos.



Figura 2.5 – Perímetro de controle para lajes com furos, de acordo com BS8110 (1997)

## **2.2.3 – CEB-FIP MC90 (1991)**

O CEB-FIP (1991) não apresenta recomendações com relação à presença de furos em lajes sob puncionamento. Além disso, nenhum tratamento especial é dado quando os pilares ou áreas carregadas apresentam, para relações entre lado maior e lado menor, valores superiores a 2.

A norma do CEB-FIP (1991) considera para as ligações laje-pilar que não possuem armadura de punção, que sejam feitas duas verificações:

- Verificação da compressão do concreto, através da comparação das tensões atuantes na seção de controle definida pelo pilar e a tensão resistente (=0,5 f<sub>c2</sub>);
- Comparação entre a tensão nominal atuante no perímetro de controle localizado a 2d do contorno do pilar (Fig. 2.6), com uma tensão nominal resistente.



Figura 2.6 – Perimetro de controle a 2d do pilar, de acordo com CEB-FIP (1991)

A altura efetiva d é calculada pela média aritmética das alturas efetivas nas direções ortogonais x e y:

$$d = \frac{d_x + d_y}{2}$$
 (mm) (2.15)

A taxa geométrica de armadura principal de flexão  $\rho$  é obtida pela média geométrica das taxas de armadura  $\rho_x$  e  $\rho_r$  nas direções ortogonais x e y, respectivamente, em uma região com largura igual ao lado do pilar mais 3*d* para cada lado, sendo dada por:

$$\rho = \sqrt{\rho_x \, \rho_y} \tag{\%}$$

Para ligações laje-pilar com armadura de punção, as verificações a serem feitas são semelhantes às realizadas com lajes sem armadura, porém, é adicionada uma verificação da tensão de cisalhamento na seção de controle localizada a 2*d* da última camada de armadura.

A verificação da compressão no concreto e feita através da comparação entre a tensão de cisalhamento atuante no perimetro do pilar e a tensão resistente do concreto. A tensão atuante nas faces do pilar é dada por v sendo definida pela relação entre a força atuante (V) e a superfície  $u_0 d$ , dada pela Eq. 2.17.

$$v = \frac{V}{u_0 d} \le 0.5 f_{c2}$$
 (MPa) (2.17)

$$f_{c2} = 0.6 \left[ 1 - \left( \frac{f_{ck}}{250} \right) \right] f_{ck} \qquad (MPa)$$
(2.18)

onde

е

 $u_0$  é o perímetro do pilar, em mm

 $f_{ck}$  é a resistência característica à compressão do concreto medida em corpos de prova cilindricos, em MPa

 $f_{c2}$  e a resistência à compressão para um concreto fissurado, em MPa

Na verificação da seção de controle localizada a 2*d* do pilar, a tensão de cisalhamento atuante na seção de controle v e comparada com a tensão de cisalhamento resistente  $v_n$  na Eq. 2.19:

$$v \le v_n$$
 (MPa) (2.19)

A tensão de cisalhamento resistente de lajes sem armadura de cisalhamento, em condições de projeto, dada apenas pela contribuição do concreto  $v_c$ , é obtida pela Eq. 2.20:

$$v_c = \frac{V_c}{u \, d} \le 0.12 \left( 1 + \sqrt{\frac{200}{d}} \right) (100 \, \rho \, f_{ck})^{1/3}$$
 (MPa) (2.20)

onde

u é o perímetro de controle situado a 2d do pilar, em mm

 $\rho$  e a taxa geométrica da armadura principal de flexão, em %;

Em lajes com armadura de cisalhamento, a tensão de cisalhamento resistente é calculada através da contribuição do concreto  $v_c$  e da armadura de cisalhamento  $v_s$ , sendo dada pelas Eqs. 2.21 a 2.23.

$$V \le V_c + V_s \tag{kN} \tag{2.21}$$

$$V_c = 0.09 \,\xi \,(100 \,\rho \,f_{ck})^{1/3} \,u \,d$$
 (kN) (2.22)

$$V_{s} = I_{s} 5 \left(\frac{d}{s_{s}}\right) A_{sw} f_{ywd} \sin \alpha \ge 0.03 \xi \left(100 \rho f_{ck}\right)^{1/3} ud \quad (kN)$$
(2.23)

onde

 $\xi = 1 + \sqrt{\frac{200}{d}}$  é o coeficiente de efeito de tamanho, *d* em mm

 $A_{sw}$  é a área da armadura de cisalhamento em uma camada ao redor do pilar, em mm<sup>2</sup>;

 $s_r$  é o espaçamento radial entre as camadas da armadura de cisalhamento, em mm (<0,75d);

 $\alpha$  é o ângulo entre a armadura de cisalhamento e o plano da laje, em graus;

 $f_{ywd}$  é a tensão de escoamento da armadura de cisalhamento de projeto, em MPa ( $\leq$  300 MPa).

Na verificação da seção de controle localizada a 2*d* da última camada de armadura de cisalhamento, a tensão de cisalhamento atuante é comparada com a resistente, e, neste caso, apenas a parcela da resistência do concreto é considerada, como mostra a Eq. 2.24.

$$V \le 0.12 \, \xi \left( 100 \, \rho f_{ck} \right)^{1/3} u_{n,ef} \, d \qquad (kN) \tag{2.24}$$

Onde  $u_{n,ef}$  é o comprimento efetivo do perímetro de controle situado a 2*d* da última camada da armadura de cisalhamento

A Fig. 2.7 apresenta as configurações para o cálculo do perímetro de controle na seção situada a 2*d* da última camada de armadura de cisalhamento, para distribuição radial e em cruz da armadura de cisalhamento.



Figura 2.7 – Perímetro de controle situado a 2*d* da última camada de armadura de cisalhamento, de acordo com CEB-FIP (1991)

### 2.2.4 – EUROCODE 2 (1992)

O EUROCODE 2 (1992) recomenda que o perimetro de controle u seja obtido a uma distância de 1,5d a partir da face do pilar. Para o caso de pilar com seção retangular, o perímetro do pilar deve ser, no máximo, igual a 11d. Para relações entre lados superior a 2, o EUROCODE 2 (1992) recomenda que se considere apenas certos trechos do perímetro de controle, uma vez que, para estes casos, o esforço cortante se concentra nos cantos dos apoios e parte do trecho central do lado maior do pilar é considerado inefetiva. A Fig. 2.8 ilustra esta recomendação.





Nos casos de lajes sem armadura de cisalhamento, a tensão nominal atuante v é comparada com a tensão nominal resistente  $v_{RI}$ , sendo esta fornecida apenas pelo concreto, de acordo com as Eqs. 2.25 a 2.28:

$$v \le v_{\rm B}$$
, (MPa) (2.25)

sendo

$$v = \beta \frac{V}{u \, d} \tag{MPa}$$

$$v_{RI} = \tau_R \ k \left( I, 2 + 40 \ \rho_I \right)$$
 (MPa) (2.27)

$$\tau_R = 0.25 \left( 0.21 f_{ck}^{2/3} \right)$$
 (MPa) (2.28)

onde

- $\beta$  é o coeficiente que leva em conta os efeitos da excentricidade da carga, e, salvo cálculo mais rigoroso, pode ser tomado igual a um ( $\beta = 1.00$ ) para casos onde não houver excentricidade; caso contrário,  $\beta = 1.15$  para pilares internos,
- k é coeficiente de efeito de tamanho, que também depende da porcentagem de armadura (k  $| l | l, 6 | d | \ge l, d em metros$ )

 $\rho_l$  é a taxa de armadura de flexão ( $\leq 1,5\%$ ), em %;

u é o perímetro de controle localizado a 1,5d da face do pilar, em mm

No caso de lajes com armadura de cisalhamento, a norma recomenda que sejam feitas duas verificações: na seção de controle localizada a 1,5*d* da face do pilar, e na seção de controle situada a 1,5*d* última camada de armadura de cisalhamento. A resistência ao cisalhamento, verificada na seção de controle, é dada pela contribuição do concreto e da armadura de cisalhamento, sendo adotado para esta, o menor dos valores calculados para  $v_{R2}$  e  $v_{R3}$ 

$$v \le \begin{cases} v_{R2} \\ v_{R3} \end{cases}$$
 (MPa) (2.29)

onde

$$v_{R2} = 1.6 v_{R1}$$
 (MPa) (2.30)

$$v_{R3} = v_{R1} + \sum A_{Sw.} f_{yd} sena \qquad (MPa) \qquad (2.31)$$

sendo

 $v_{R2}$  a resistência de cálculo máxima (MPa);

 $v_{R3}$  a resistência de cálculo para lajes com armadura de punção (MPa);

 $\sum A_{Sw,f_{yd}}$  sen $\alpha$  a soma das projeções dos esforços de cálculo da armadura de punção na direção da aplicação da reação da laje, e  $\alpha$  o ângulo entre a armadura e o plano da laje.

Na verificação da seção de controle situada a 1,5d da última camada de armadura de cisalhamento, deve-se calcular um novo perímetro de controle. A nova tensão atuante neste novo perímetro deve ser então comparada com a tensão resistente para ligações sem armadura de punção  $v_{RI}$ , utilizando o perímetro de controle apropriado.

Para lajes cogumelo com furos localizados a uma distância menor que 6*d* a partir do pilar, o perímetro de controle é reduzido de maneira similar àquela da norma BS8110 (1985) e ACI (2002), ou seja, o comprimento do perímetro compreendido entre as linhas radiais que partem do centro do pilar até o furo é considerado inefetivo (Fig.2.9).



Figura 2.9 - Perímetro de controle de lajes com furos, de acordo com EUROCODE 2 (1992)

# 2.2.5 - EUROCODE 2 (2001)

A norma do EUROCODE 2 (2001) define que a seção de controle está localizada a uma distância de 2*d* do pilar c possui cantos arredondados, assim como o CEB-FIP (1991). Na presença de furos distantes até 6*d* do pilar, a norma recomenda que seja desprezado o comprimento de perímetro delimitado por linhas radiais que se originam do centro do pilar (ou área carregada) e tangenciam os vértices do furo. A Fig. 2.10 apresenta os perímetros críticos recomendados pela norma.



Figura 2.10 – Perímetros de controle a 2*d* do pilar em lajes (a) sem furos e (b) com furos, de acordo com EUROCODE 2 (2001)

O EUROCODE 2 (2001) apresenta recomendações muito semelhantes ao do CEB-FIP MC90 (1991), com relação às verificações da seção de controle: verificação da tensão máxima de cisalhamento no perímetro do pilar ( $v_{max}$ ), da tensão de cisalhamento atuante na seção de controle a 2*d* do pilar (v), e da tensão de cisalhamento atuante na seção de controle a 1,5*d* da última camada de armadura de cisalhamento, se houver.

A tensão de cisalhamento atuante v é dada pela Eq. (2.32):

$$v = \frac{V}{u_1 d} \tag{MPa}$$

onde  $u_1$  é o perímetro de controle a 2d do pilar.

Para lajes sem armadura de cisalhamento, são feitas duas verificações: na face do pilar, através da Eq. 2.33, e na seção de controle a 2*d* do pilar, através da Eq. 2.34.

$$v = \frac{V}{u_0 d} \le v_{max} = 0,5 v f_{ck}$$
 (MPa) (2.33)

onde

 $u_0$  é o perimetro do pilar ou da área carregada, em mm;

 $v_{max}$  é a tensão máxima de cisalhamento atuante na face do pilar, em MPa;

v é a resistência à compressão para um concreto fissurado, dada por  $0.6\left(1 - \frac{f_{ab}}{250}\right)$ , em MPa.

$$v = \frac{V}{u_1 d} = \frac{0.18}{\gamma_c} \left( 1 + \sqrt{\frac{200}{d}} \right) (100 \,\rho_1 \, f_{ck})^{1/3} \quad (\text{MPa})$$
(2.34)

Onde  $\rho_1 = \sqrt{\rho_{1x} \rho_{1y}} \le 0.02$  é a taxa de armadura de flexão.

Para lajes com armadura de cisalhamento, a tensão de cisalhamento atuante na seção de controle a 2d do pilar é determinada considerando a contribuição do concreto e da armadura de punção, de acordo com a Eq.(2.35).

$$v = 0.75 v_{e} + 1.5 \left(\frac{d}{s_{e}}\right) A_{sw} f_{ywd ef} \left(\frac{l}{u_{l}d}\right) sen \alpha \quad (MPa)$$
(2.35)

onde

 $A_{sw}$  é a área de armadura de cisalhamento situada em uma camada, em mm<sup>2</sup>  $f_{ywd,ef}$  é a resistência efetiva de projeto de escoamento da armadura de cisalhamento (= 250 +  $0,25d \leq f_{ywd}$ ), dada em MPa.

Na seção de controle situada a 1,5*d* da última camada de armadura de cisalhamento, a tensão de cisalhamento é obtida pela Eq. 2.36, considerando a contribuição apenas do concreto, levando em consideração o perímetro de controle externo  $u_{out}$ .

$$v_{Rd,c} = \frac{V_{Rd,c}}{u_{out}d} = \frac{0.18}{\gamma_c} k \left(100 \,\rho_1 \, f_{ck}\right)^{1/3} \qquad (MPa)$$
(2.36)

onde

 $v_{Rd,c}$  é a tensão de cisalhamento de projeto resistida pelo concreto, em MPa.  $V_{Rd,c}$  é a força nominal resistente de projeto dado pelo concreto, em kN.

A Fig. 2.11 apresenta o perímetro de controle situado a 1,5*d* da última camada de armadura, recomendado pela norma do EUROCODE 2 (2001).



Figura 2.11 – Perímetro de controle situado a 1,5*d* da última camada de armadura de cisalhamento, de acordo com o EUROCODE 2 (2001)

## 2.2.6 - HANDBOOK TO BS8110/85 (1987)

O Handbook to BS8110/85 (1987) apresenta considerações no tratamento de furos em lajes sob punção sugeridas por REGAN (1974), que se diferem das apresentadas pela própria norma BS8110 (1985). O Handbook recomenda utilizar, ao invés de projeções radiais que partem do centro do pilar, projeções paralelas às faces do furo, para casos onde o furo se localiza dentro da região de perímetro de controle, e também, projeções que partem dos vértices ou do centro da área carregada/pilar, para casos específicos. A Fig. 2.12 mostra alguns casos de furos próximos ao pilar.



Figura 2.12 – Considerações para o tratamento de furos em lajes sob punção, de acordo com o Handbook to BS8110 (1987)

Para casos onde o furo apresenta dimensões consideráveis, a resistência deve ser limitada pelas tensões de cisalhamento atuantes na face do pilar, de acordo com as equações propostas pela norma BS8110 (1985).

#### **2.2.7** – NBR-6118 (1978)

A Norma Brasileira NBR-6118 (1978) recomenda que as lajes submetidas à punção devem ser verificadas através da comparação entre a tensão tangencial distribuída uniformemente  $(\tau_{wd})$  na área "u d", determinada a uma distância de 0,5d da face do pilar, com a valor último da tensão tangencial de cálculo  $(\tau_{wu})$ , independente da utilização de armadura de cisalhamento.

Para lajes sem armadura de cisalhamento, a comparação é feita através da Eq. (2.37):

$$\tau_{wd} \le 0.5 \ \tau_{wu} \qquad (MPa) \tag{2.37}$$

Para lajes com armadura de cisalhamento a comparação é feita utilizando a Eq. (2.38):

$$\tau_{wul} \leq \tau_{wu}$$
 (MPa) (2.38)

sendo

$$\tau_{wd} = \frac{V}{u.d}$$
 (MPa) (2.39)

$$\tau_{ww} = 0.63 \frac{\sqrt{f_{w}}}{\gamma_{w}}$$
 (MPa) (2.40)

onde

V é a força nominal atuante, em kN;

d é a altura efetiva da laje, em mm;

u é o perímetro de controle situado a 0,5d do pilar, em mm;

Deverá ser calculada e colocada na face tracionada uma armadura de flexão que atravesse a projeção da área em que se aplica a carga e que seja suficientemente ancorada além do perímetro u. Sempre que a tensão atuante no concreto,  $\tau_{wd}$ , for igual ou inferior ao valor último dado por  $\tau_{ww}$  mas superior à metade deste valor, dever-se-á dispor de uma armadura transversal, tal que a componente dos esforços que ela absorve, perpendicular a laje, corresponda a no minimo a 75% do valor de cálculo da força concentrada aplicada à laje, de acordo com a Eq. (2.41), e distribuída dentro da faixa delimitada pelos perímetros u e o perímetro situado a 1,5d da face do pilar.

$$A_{sw} = 0.75 \frac{V}{f_{yd}}$$
 (mm<sup>2</sup>) (2.41)

onde

 $A_{sw}$  é a área de armadura de cisalhamento, em mm<sup>2</sup>  $f_{yd}$  é a tensão de projeto de escoamento do aço (< 300 MPa).

Para lajes apoiadas em pilares ou sob áreas carregadas com a relação entre o lado maior e o lado menor inferior a 3 ( $c_{max} c_{min} \le 3$ ), o perimetro de controle e dado de acordo com a Fig.2.13a. Quando o pilar ou a area carregada apresenta relação entre lados superior a 3, a NBR-6118 (1978) recomenda que o perimetro de controle seja definido de acordo com a Fig.2.13b.



Figura 2.13 – Perímetro de controle para (a)  $c_{max}$   $c_{min} \le 3$  e (b)  $c_{max}$   $c_{min} > 3$ , de acordo com NBR-6118 (1978)

# 2.2.7 – NBR-6118 (2003)

A NBR-6118 (2003) apresenta semelhanças em alguns conceitos com o CEB-FIP (1991), como por exemplo, na forma e definição dos perimetros de controle e no cálculo das forças resistentes, variando apenas alguns coeficientes. O perímetro de controle a ser utilizado no cálculo da resistência à punção de lajes cogumelo é mostrado na Fig. 2.14.

Para lajes com furos situados a menos de 8*d* do pilar, não deve ser considerado o trecho do perímetro critico compreendido entre as linhas que se originam do centro do pilar (ou área carregada) e tangenciam os furos. A Fig. 2.14 apresenta a seção de controle de uma laje com furos próximos ao pilar.





Em lajes sem armadura de punção, deve ser verificada a compressão diagonal do concreto na zona adjacente ao pilar, e a punção na superfície de controle distante 2*d* da face do pilar. Nas lajes com armadura de punção, a verificação deve ser feita da mesma forma como se não houvesse armadura, e, adicionalmente, na seção situada a 2*d* da última camada de armadura de cisalhamento.

A verificação da compressão do concreto na seção do pilar é feita através da comparação entre a tensão atuante no perímetro do pilar  $\tau$ , e a tensão resistente  $\tau_{r2}$ :

$$\tau_s \le \tau_{r2} \qquad \text{(MPa)} \qquad (2.42)$$

sendo

$$\tau_s = \frac{V}{u_0 d} \qquad (MPa) \qquad (2.43)$$

$$\tau_{r2} = 0,27 \left( 1 - \frac{f_{ck}}{250} \right) f_{ck}$$
 (MPa) (2.44)

A verificação da punção na seção de controle situada a 2*d* do pilar em lajes sem armadura de cisalhamento é feita com a comparação entre a tensão de cisalhamento atuante na seção de controle  $u_1$ ,  $\tau_s$ , e a tensão de cisalhamento resistente fornecida apenas pelo concreto $\tau_{r1}$ , através da Eq. 2.45:

$$\tau_r \le \tau_{r_1} \tag{MPa} \tag{2.45}$$

onde

$$\tau_{s} = \frac{V}{u_{I} d}$$
 (MPa) (2.46)

$$\tau_{rI} = 0.13 \left( 1 + \sqrt{\frac{200}{d}} \right) (100 \,\rho \, f_{ck})^{1/3} \qquad \text{(MPa)}$$

Em lajes com armadura de cisalhamento, a verificação da punção na seção de controle situada a 2*d* do pilar é feita comparando a tensão de cisalhamento  $\tau$ , com a resistente fornecida pelo concreto e armadura  $\tau_{r3}$ , através da Eq. 2 48

$$\tau_{r3} = 0.10 \left( 1 + \sqrt{\frac{200}{d}} \right) (100 \ \rho f_{cb})^{1/3} + \left( 1.5 \frac{d}{s_r} \frac{A_{sw} f_{ywd}}{u_1 d} sen \alpha \right) (\text{MPa})$$
(2.48)

onde

 $A_{sw}$  é a área da armadura de punção em uma camada, em mm<sup>2</sup>,

 $f_{ywd}$  é a resistência ao escoamento de cálculo da armadura de punção, deve ser menor que 300 MPa para conectores ou 250 MPa para estribos (CA-50 ou CA-60), em MPa;

E, finalmente, a verificação da seção de controles localizada a 2*d* da última camada de armadura de cisalhamento, é feita comparando a tensão de cisalhamento atuante com a resistente fornecida apenas pelo concreto, considerando o perimetro de controle  $u_{ext}$  apropriado.

$$\tau_{cl} = \theta_{cl} I 3 \left( 1 + \sqrt{\frac{200}{d}} \right) (100 \ \rho \ f_{ct})^{\frac{1}{3}} u_{ext} d \qquad (MPa)$$
(2.49)

onde  $u_{ext}$  é o perímetro de controle localizado a 2*d* da última camada de armadura de cisalhamento, de acordo com a Fig. 2.15.

De acordo com a norma brasileira, a armadura de combate à punção deve ser preferencialmente constituída por três ou mais camadas de conectores tipo pino com extremidades alargadas, e, cada uma dessas extremidades deve estar ancorada fora do plano da armadura de flexão correspondente, como mostra a Fig. 2.16. O espaçamento entre camadas deve ser limitado a 0,75*d* e a distância entre a face do pilar e a primeira camada de armadura deve ser limitada a 0,5*d*, como mostra a Fig. 2.17.



Figura 2.15 – Perímetro de controle situado a 2*d* da última camada de armadura de cisalhamento, de acordo com a NBR-6118 (2003)



Figura 2.16 - Ancoragem para armadura de punção constituída por conectores do tipo pino, de acordo com a NBR-6118 (2003)



Figura 2.17 - Disposição da armadura de punção, de acordo com a NBR-6118 (2003)

# 2.3 – LAJES COM PILARES RETANGULARES

### 2.3.1 – PESQUISAS REALIZADAS

FORSSEL & HOLMBERG (1946) ensaiaram 10 (dez) lajes cogumelo quadradas de 1200 mm de lado e 127 mm de espessura, e resistência à compressão ( $f'_c$ ) de 18 MPa. O sistema de ensaio consistiu no apoio dos quatro bordos e aplicação vertical descendente do carregamento.

Sete lajes foram ensaiadas simulando os dois tipos mais conhecidos de puncionamento: simétrico e não-simétrico, com o carregamento sendo aplicado através de uma seção circular de 140 mm de diâmetro (lajes 1 a 7)

As lajes 10 e 13 tiveram o carregamento aplicado centralmente através de uma seção retangular de dimensões 25 mm x 300 mm, porém a laje 13 foi apoiada em apenas duas bordas opostas e rompeu por flexão sob carga de 176 kN.

As lajes 11 e 12 utilizaram, cada qual, um par de seções circulares de 140 mm de diâmetro separadas, respectivamente, de 400 mm e 200 mm, de centro a centro.

A posição do carregamento nas lajes 10, 11 e 12 e a superfície de ruptura da laje 11 são apresentadas na Fig. 2.18. A Tab. 2.1 apresenta as cargas de ruptura das lajes ensaiadas por FORSSEL & HOLMBERG (1946).

Os pesquisadores observaram que as superficies de ruptura das lajes 10 e 11 foram semelhantes, porém apresentaram cargas de ruptura diferenciadas em 33%, sendo que a laje 11 rompeu com a maior carga. A laje 12 apresentou uma superficie de ruptura com uma configuração entre a que caracterizou a laje 11 e uma circular típica.

Observa-se na configuração das superficies de ruptura das lajes 11 e 12 que, apesar das áreas carregadas não representaram pilares retangulares, ocorreu uma concentração de esforços cortantes nas extremidades das áreas carregadas, pois não ocorreram superficies localizadas, e sim envolvendo as duas áreas carregadas.

30

|      | Cmin | Cmáx | d    |                     | ρ    | fc    | V <sub>Exp</sub> |  |
|------|------|------|------|---------------------|------|-------|------------------|--|
| Laje | (mm) | (mm) | (mm) | C <sub>max</sub> /a | (%)  | (MPa) | (kN)             |  |
| 10   | 25   | 300  | 104  | 2,88                | 0,68 | 18    | 186              |  |
| 11   | 140  | 400  | 112  | 3,57                | 0,63 | 18    | 279              |  |
| 12   | 140  | 200  | 108  | 1,85                | 0,65 | 18    | 265              |  |

Tabela 2.1 - Características das lajes 10, 11 e 12 de FORSSEL & HOLMBERG (1946)



Figura 2.18 – Detalhes das lajes 10, 11 e 12 de FORSSEL & HOLMBERG (1946) – unidades em mm

HAWKINS et al. (1971) desenvolveram um trabalho experimental que teve como objetivo estudar a influência da relação entre as dimensões da seção transversal do pilar retangular, com perimetro constante, no comportamento de lajes cogumelo de concreto armado submetidas a carregamento centrado. Foram ensaiadas até a ruptura 9 (nove) lajes quadradas de dimensões 2100 mm x 2100 mm x 152 mm apoiadas em pilares internos de seção

transversal retangular, com variação de  $c_{max} c_{min}$  entre 1 e 4,3, na posição do carregamento e na taxa de armadura de flexão. O perímetro dos pilares se manteve constante e igual a 1219 mm para todas as lajes, exceto para a laje 9, cujo pilar teve perimetro igual a 914 mm.

Foram usadas duas formas de carregamento (vide Fig. 2.19 e Tab. 2.2): para as lajes 1 a 5, foram aplicadas apenas cargas concentradas  $P_1$  espaçadas de 600 mm, ao longo de duas bordas opostas da laje, e paralelas às faces menores do pilar, enquanto que para a laje 6, as cargas concentradas  $P_1$  foram aplicadas nas bordas da laje paralelas às faces maiores do pilar, para as lajes 7, 8 e 9, foram aplicadas cargas  $P_1$  da mesma forma que nas lajes 1 a 5, porém, com cargas adicionais  $P_2$  ao longo das outras bordas, que foram paralelas às faces maiores do pilar, sendo que o valor de  $P_2$  correspondeu a 65% do valor de  $P_1$ .



Figura 2.19 – Características das lajes e esquema de ensaio de HAWKINS et *al.* (1971) – unidades em mm

Com relação à taxa de armadura de flexão, as lajes 1 a 6 tiveram taxa de armadura de flexão constante e igual a 1,12%, porém, foram adicionadas quatro barras de aço na camada superior externa da armadura de flexão da laje 5, dentro de uma faixa central de 457 mm, reduzindo, desta forma, o espaçamento nesta região. As lajes 7, 8 e 9 sofreram reduções diferenciadas na taxa de armadura em relação às anteriores. A Fig. 2.19 mostra as características das lajes e o detalhe do sistema de ensaio, e a Tab. 2.2, as características principais das lajes de HAWKINS et *al.* (1971).

As lajes foram projetadas e confeccionadas para representar a região de momento negativo em torno de um pilar interno de uma laje cogumelo com vãos de 4500 mm e sobrecarga de aproximadamente 5 KPa. A resistência a compressão do concreto e a tensão de escoamento da armadura principal de flexão foram, aproximadamente, 30 MPa e 420 MPa, respectivamente.

|      | Pilar |      |                    | Concreto |      | Armadura de flexão principal |                    |                 |      |  |
|------|-------|------|--------------------|----------|------|------------------------------|--------------------|-----------------|------|--|
| Laje | Cmin  | Cmáx | Cmáx               | máx fc   | d    | S                            | As                 | f <sub>ys</sub> | ρ    |  |
|      | (mm)  | (mm) | / c <sub>min</sub> | (MPa)    | (mm) | (mm)                         | (mm <sup>2</sup> ) | (MPa)           | (%)  |  |
| 1    | 305   | 305  | 1                  | 31,9     | 117  | 152                          | 2800               | 419,0           | 1,12 |  |
| 2    | 203   | 406  | 2                  | 26,9     | 117  | 152                          | 2800               | 419,0           | 1,12 |  |
| 3    | 152   | 457  | 3                  | 30,5     | 117  | 152                          | 2800               | 419.0           | 1,12 |  |
| 4    | 114   | 495  | 4,3                | 31,6     | 117  | 152                          | 2800               | 419,0           | 1,12 |  |
| 5    | 152   | 457  | 3                  | 28,0     | 117  | 65 e 152                     | 3600               | 419,0           | 1,12 |  |
| 6    | 457   | 152  | 3*                 | 25,3     | 117  | 152                          | 2800               | 419,0           | 1,12 |  |
| 7    | 152   | 457  | 3                  | 26,6     | 117  | 197                          | 2142               | 419,0           | 0,87 |  |
| 8    | 114   | 495  | 4,3                | 26,6     | 121  | 133                          | 2065               | 422,0           | 0,81 |  |
| 9    | 152   | 305  | 2                  | 30,1     | 121  | 140                          | 1948               | 422,0           | 0,77 |  |

Tabela 2.2 - Características das lajes testadas por HAWKINS et al. (1971).

As lajes romperam por punção na região em torno da ligação laje-pilar, exceto as lajes 1 e 6 que romperam por flexão. Com o aumento da relação entre os lados do pilar, a resistência ao puncionamento reduziu, a ruptura se tornou mais abrupta, e o tamanho do cone de ruptura diminuiu, à exceção das lajes 1 e 6 que romperam essencialmente por flexão. A Tab.2.3 apresenta os tipos de carregamentos aplicados, as cargas e os modos de ruptura das lajes testadas por HAWKINS et *al.* (1971).

Apesar das lajes 3, 5, 6 e 7 apresentarem pilares com as mesmas dimensões, a laje 7 carregada nas quatro bordas rompeu por punção de maneira similar às lajes 3 e 5, porém, com uma carga inferior. Entretanto, a laje 6, carregada ao longo das bordas paralelas ao lado maior do pilar, rompeu por flexão, sendo que o modelo de carregamento proposto permitiu que esta laje se comportasse como se a relação entre os lados do pilar fosse igual a 1,0. Para as lajes similares 3 e 5, a maior quantidade de armadura na laje resultou em um aumento de 35% na rigidez e apenas um pequeno aumento na resistência à punção.

| Laje | Cmax/Cmin | Carregamento | V <sub>Exp</sub> (kN) | Modo de ruptura | Superfície de<br>ruptura |
|------|-----------|--------------|-----------------------|-----------------|--------------------------|
| 1    | 1         | P1           | 393                   | Flexão          | -                        |
| 2    | 2         | P1           | 358                   | Punção          | A partir do pilar        |
| 3    | 3         | Pl           | 340                   | Punção          | ×                        |
| 4    | 4,3       | Pl           | 337                   | Punção          | м                        |
| 5    | 3         | P1           | 362                   | Punção          |                          |
| 6    | 3         | *P1          | 343                   | Flexão          | -                        |
| 7    | 3         | P1 c P2      | 326                   | Punção          | A partir do pilar        |
| 8    | 4,3       | PleP2        | 321                   | Punção          |                          |
| 9    | 2         | PleP2        | 322                   | Punção          |                          |

Tabela 2.3 – Resultados dos ensaios realizados por HAWKINS et al. (1971)

HAWKINS et *al* (1971) realizaram comparações entre os resultados experimentais das lajes testadas e os obtidos pelas expressões propostas por MOE (1961) e pelo ACI-ASCE Committee 326 (1962), com a finalidade de propor uma expressão para o cálculo da resistência à punção de lajes cogumelo com pilares retangulares com relação entre lados superior a 2,0.

O trabalho dos autores foi desenvolvido de forma a analisar a prescrição normativa do ACI (1963), onde a tensão de cisalhamento máxima permitida a uma distância 0,5*d* da face da área carregada deveria ser  $0,335\sqrt{f_c}$  (MPa). Pelos ensaios, perceberam que, de acordo com esta norma, a tensão de cisalhamento era independente da forma dos pilares, e que a origem deste limite estaria baseada em equações pouco precisas (OLIVEIRA, 2003).

O limite da resistência ao puncionamento de lajes cogumelo correspondente a  $0,335 \sqrt{f_c}$ ' (MPa) foi proposto pelo ACI-ASCE Committee 326 (1962), e está presente na atual versão desta norma (ACI, 2002). O Committee 326 constatou que para grandes relações r d $(r = b_0/4)$ , onde  $b_0$  é o perímetro do pilar, a resistência última ao puncionamento  $v_u$  para lajes armadas nas duas direções era maior que a resistência ao cisalhamento em uma diagonal comprimida, no caso de uma viga. A partir disto, obtiveram a Eq. 2.50, que por sua vez, fornecia resultados conservadores quando comparados com os resultados experimentais.

Entretanto, o ACI-ASCE Committee 326 (1962) recomendou a expressão  $0,335 \sqrt{f_a}$  (MPa) no procedimento de projeto da norma do ACI 318 (1963), pois, para uma área carregada diferente da quadrada, poderia existir questionamento com relação ao valor correto para r. Esta equação tornou-se inadequada para pilares retangulares uma vez que esta penalizava a capacidade resistente das lajes à medida que o maior lado do pilar aumentava e, além disso, considerava a seção crítica na face do pilar.

$$v_u = 0.335 \left(\frac{d}{r} + 1\right) \sqrt{f_c} \quad (MPa)$$
 (2.50)

onde

 $v_u$  é tensão de cisalhamento calculada na face do pilar, em MPa; r o valor correspondente a um quarto do perimetro do pilar quadrado, em mm,  $f'_c$  a resistência à compressão do concreto em corpos de prova cilíndricos, em MPa.

O ACI-ASCE Committee 326 (1962) usou os dados relatados por DIAZ DE COSSIO (1962), sobre cisalhamento e tração diagonal em lajes e sapatas, para sustentar a escolha da expressão  $0,335 \sqrt{f_c}$  como a resistência ao cisalhamento. Os resultados realizados em vigas mostraram que a tensão de cisalhamento na diagonal aumentou com o acréscimo da relação largura / altura. Desta forma, o ACI-ASCE Committee 326 (1962) propôs o uso de um fator multiplicador na tensão de cisalhamento que é função daquela relação. Como conseqüência, o multiplicador forneceu uma tensão de cisalhamento de  $0,260\sqrt{f_c}$  (*MPa*) para grandes relações largura / altura e pequenas taxas de armadura.

DIAZ DE COSSIO (1962) também testou lajes armadas em uma direção, carregadas através de áreas retangulares com as maiores dimensões paralelas aos apoios. Em todos os casos, as tensões de cisalhamento na seção crítica localizada a 0,5*d* a partir da área carregada excedeu o valor de  $0,260\sqrt{f_c}$  (*MPa*) na ruptura. A necessidade de ajustes na Eq. 2.50 foi reforçada pois, para um pilar com relação entre lados igual a 3, a resistência última ao cisalhamento em uma seção localizada a 0,5*d* da face do pilar é  $0,297\sqrt{f_c}$  (*MPa*).

HAWKINS et *al.* (1971) analisaram os resultados fornecidos por MOE (1961), que dentre eles, constou o teste de uma laje com uma relação entre lados do pilar igual a 3,0, e a proposição da Eq. 2.51 para o cálculo da resistência última ao cisalhamento de lajes cogumelo apoiadas em pilares retangulares

$$\mathbf{v} = \frac{V_n}{bd} = \left[ 1,26 \left( 1 - 0.075 \frac{r}{d} \right) - 0,44 \left( \frac{V_n}{V_{flex}} \right) \right] \sqrt{f_c'} \quad (MPa)$$
(2.51)

onde

r é o comprimento do lado maior do pilar, em mm,  $V_u$  é a carga última calculada por cisalhamento, em kN,  $V_{dex}$  é a carga última calculada por flexão, em kN.

A Fig. 2.20 apresenta uma comparação entre os resultados obtidos experimentalmente e os fornecidos pelas Eqs. 2.50 e 2.51. Na preparação da figura, adotou-se que r tem o mesmo

valor de I, o maior lado do pilar, pois se tentou estabelecer valores ideais para r igualando-se o valor de  $V_u$  ao valor de  $V_{Exp}$ . Os valores fornecidos foram maiores que 1, o que não faz sentido fisicamente.

Os dados experimentais de HAWKINS et *al.* (1971) são representados pelos pontos circulares, sendo que o ponto sem preenchimento corresponde à laje 6. Observa-se que a expressão de cálculo proposta por MOE (1961) superestima as resistências últimas das lajes, sendo que o valor médio encontrado para a relação  $V_{Exp}$   $V_{calc}$  foi de 0,94. A equação proposta pelo ACI-ASCE Committee 326 (1962) fornece resultados mais próximos dos reais, porém, um pouco mais conservadores.

Como esperado, ocorreu certa coerência entre os resultados estimados pelas duas expressões e os experimentais, pois, a resistência última das lajes decresce com o aumento da relação r/d, mantendo o perímetro constante (r corresponde a  $\frac{1}{4}$  do perímetro do pilar quadrado utilizado por DIAZ DE COSSIO (1962) em seus testes). Até então, a utilização de pilares retangulares, de acordo com as equações vigentes, favorecia certa perda na capacidade resistente ao puncionamento das lajes.



Figura 2.20 – Comparação entre os resultados experimentais de HAWKINS et *al.*(1971) e as expressões de MOE(1961) e ACI-ASCE Committee 326 (1962).

Considerando graficamente apenas os dados experimentais e a curva que representa a expressão da norma do ACI (1963), na Fig. 2.21, verifica-se que para relações s *l* (s e l são os lados menor e maior do pilar, respectivamente) superiores a 0,5, não há necessidade de modificar a expressão de cálculo proposta pela norma. Entretanto, para relações s *l* inferior a 0,5, algumas modificações são essenciais. Desta forma, os autores verificaram a necessidade de modificar as provisões existentes para aqueles casos onde o alongamento do pilar afeta a resistência ao cisalhamento.

A partir de análises obtidas dos resultados experimentais, os autores propuseram a Eq. 2.52 para o cálculo da resistência ao cisalhamento de lajes cogumelo com pilares retangulares para relação entre os lados maior e menor do pilar superior a 2,0.

$$\frac{V_{Exp}}{b \, d \, \sqrt{f_c}} = \left(0,21+0,25\frac{s}{l}\right) \le 0,335 \qquad (MPa) \tag{2.52}$$



Figura 2.21 – Comparação entre resultados de HAWKINS et al. (1971) e a norma do ACI (1963)

HAWKINS et *al.* (1971) observaram a coerência da expressão proposta pelo ACI (1963) e por MOE (1961), e adotaram o limite de  $0.335 \sqrt{f_e}$  (MPa) para a resistência ao cisalhamento

das lajes. A partir deste limite e dos dados experimentais disponíveis, os autores construiram um gráfico, que é mostrado na Fig. 2.21, que permite a comparação entre os resultados experimentais e a expressão proposta pelo ACI (1963), e também, a obtenção de uma expressão que forneça a resistência ao cisalhamento de lajes com pilares retangulares. Este gráfico relaciona os valores  $V_{Exp} / d\sqrt{f_c}$  x comprimento da seção de controle localizada a 0,5*d* da face do pilar, com a relação entre lados menor e maior do pilar.

A linha tracejada representa a variação da resistência em função da variação da relação entre os lados, sendo que a reta inicia-se no valor de  $0.210\sqrt{f_c}$  para a relação s T = 0, e se estende até o valor de  $0.335\sqrt{f_c}$  para a relação s I = 0.5. A partir desta relação entre lados do pilar, a tensão de cisalhamento assume o valor de  $0.335\sqrt{f_c}$  (MPa).

A laje 6 representada na Fig.2.21, por um ponto circular vazio, apresentou comportamento análogo ao dos resultados de DIAZ DE COSSIO (1962) para testes em lajes armadas em uma direção. Aparentemente, a limitação para s l na Eq. 2.52 não se mostra necessária para a laje que estiver apoiada ao longo de dois lados apenas e a maior dimensão da carga concentrada ou da área de reação for paralela a estes lados.

VANDERBILT (1972) apud OLIVEIRA (2003) realizou ensaios com lajes cogumelo com pilares quadrados e circulares. O sistema de ensaio consistiu no apoio da laje em um pilar central e a utilização de vigas periféricas de rigidez nos quatro bordos, para impedir os esforços de torção provenientes das cargas aplicadas nas lajes. O carregamento aplicado na laje foi distribuído através de "air bags", após o posicionamento e acomodação da laje sobre um pórtico de reação.

Durante os ensaios, os pilares foram monitorados com extensômetros elétricos de resistência em regiões imediatamente abaixo da superficie inferior das lajes, na posição vertical. Os resultados destas medições mostraram que, nos pilares quadrados ocorrem concentrações de tensões consideráveis em regiões próximas dos cantos, similares àquelas observadas por MOE (1961) e HAWKINS et *al.* (1971), enquanto que as distribuições de tensões em torno dos pilares circulares foram praticamente uniformes. A Fig. 2.22 mostra algumas características das lajes de VANDERBILT (1972), e também, o posicionamento dos medidores de deformações em torno dos pilares de reação.



Figura 2.22 – Modelo de laje ensaiada por VANDERBILT (1972) e instrumentação dos pilares – unidades em mm

REGAN e REZAI-JORABI (1988) ensaiaram 23 (vinte e três) lajes de concreto armado de 100 mm de espessura e comprimento total de 1600 mm, sujeitas tanto a carregamento centrado como a duas cargas iguais simétricas em relação a um dos eixos da laje, como mostrado na Fig. 2.23.



Figura 2.23 – Modelo das lajes ensaiadas por REGAN & REZAI-JORABI (1988) – unidades em mm

40

As principais variáveis nos ensaios foram: as dimensões das placas de carregamento, a largura das lajes e o comprimento dos vãos de cisalhamento. Após a ruptura inicial em um vão de cisalhamento, seis lajes foram retestadas com um dos apoios movidos internamente e o vão foi reduzido a uma única carga central. Todas as lajes romperam por cisalhamento, sendo que apenas quatro lajes com cargas centradas e duas lajes com cargas simétricas romperam por puncionamento, e a demais lajes romperam como viga chata. A Tab.2.4 apresenta as características principais e resultados das lajes que apresentaram ruptura por puncionamento.

| 1           | fc    | ρ    | a    | b                   | Cmus | Cmáx    | $V_{Exp}$ | Superfície de     |
|-------------|-------|------|------|---------------------|------|---------|-----------|-------------------|
| Laje        | (MPa) | (%)  | (mm) | (mm) (mm) (mm) (kN) |      | ruptura |           |                   |
| 21          | 38,2  | 1,64 | 450  | 1200                | 100  | 70*     | 118       | A partir do pilar |
| 25          | 30,3  | 1,64 | 550  | 1200                | 100  | 150     | 106       |                   |
| 14R         | 31,0  | 1,54 | 450  | 800                 | 100  | 75*     | 77        |                   |
| 15 <b>R</b> | 30,8  | 1,54 | 450  | 800                 | 100  | 150     | 86        |                   |
| 19 <b>R</b> | 29,0  | 1,51 | 450  | 1000                | 100  | 150     | 85        | н                 |
| 20R         | 30,8  | 1,51 | 450  | 1000                | 100  | 300     | 132       |                   |

Tabela 2.4 - Lajes ensaiadas por REGAN & REZAI-JORABI (1988) com ruptura por punção

Os autores propuseram um método para o cálculo de lajes armadas unidirecionalmente e sujeitas a cargas concentradas. O método consiste em calcular a resistência ao cisalhamento utilizando o perímetro de controle recomendado pela norma BS8110 (1985) em duas etapas: a força concentrada é resistida por uma pressão uniforme ascendente atuando em uma zona de distribuição definida, e em seguida, a pressão é tratada como carregamento descendente, transmitido aos apoios.

O somatório das forças cortantes resulta na tensão aplicada, que por sua vez, é comparada com a resistência limite determinada de acordo com a BS8110 (1985), tanto para punção quanto para viga chata. A Fig. 2.24 apresenta alguns modelos de configuração utilizados na proposta de REGAN & JORABI (1988).



a) Distribuição simétrica do carregamento



c) Transmissão do carregamento para os apoios



e) Coincidência da seção de cisalhamento (um vão) e perímetro de controle para punção



b) Distribuição transversal do carregamento



d) Transmissão do carregamento para os apoios (par de cargas)



t) Diagrama de esforço cortanto da item d) acima



TENG et *al.* (1999) analisaram experimentalmente 5 (cinco) lajes quadradas de concreto armado de dimensões 2200 mm x 2200 mm x 150 mm sob influência da variação da relação entre lados do pilar, mantendo constante a menor dimensão, e da relação entre os momentos fletores nas direções x e y.

Para este estudo, realizou-se a variação da relação entre lados do pilar para valores iguais a 1, 3 e 5, e diferentes taxas de carregamento nas direções x e y. Os pilares foram moldados juntamente com as lajes e apresentaram dimensões de 200 mm x 200 mm, 200 mm x 600 mm e 200 mm x 1000 mm, e altura total de 200 mm.

Os valores médios para a resistência à compressão cilindrica do concreto e tensão de escoamento das barras de aço deformadas foram, respectivamente, 40 MPa e 460 MPa. A Fig. 2.25 mostra detalhes de uma das lajes ensaiadas pelos pesquisadores, e a Tab. 2.5, as características das lajes monolíticas testadas por TENG et *al.* (1999).



Figura 2.25 - Características das lajes ensaiadas por TENG et al. (1999) - unidades em mm

O sistema de ensaio consistiu na aplicação de oito pontos de carga de igual magnitude no bordo superior da laje. Nas lajes das séries OC13- $\alpha$  e OC13- $\beta$ , houve diferenciação nas cargas aplicadas, com diferentes taxas de carregamento, sendo que na série  $\alpha$ , o carregamento na direção y foi igual a 1,6 vezes o na direção x, e na outra série, o carregamento na direção y foi equivalente a 0,63 vezes o na direção x.

|             | Pilar                                          |      | Concreto     | Armad            | Ve       |              |      |  |
|-------------|------------------------------------------------|------|--------------|------------------|----------|--------------|------|--|
| Laje        | C <sub>mín</sub> C <sub>máx</sub><br>(mm) (mm) |      | f'c<br>(MPa) | <i>d</i><br>(mm) | ρ<br>(%) | fys<br>(MPa) | (kN) |  |
| OC11        | 200                                            | 200  | 36,0         | 105              | 1,81     | 453          | 423  |  |
| OC13        | 200                                            | 600  | 35,8         | 107              | 1,71     | 453          | 568  |  |
| OC13-α=1,6  | 200                                            | 600  | 33,0         | 110              | 1,67     | 470          | 508  |  |
| OC13-β=0,63 | 200                                            | 600  | 39,7         | 111              | 1,65     | 470          | 455  |  |
| OC15        | 200                                            | 1000 | 40,2         | 103              | 1,76     | 453          | 649  |  |

Tabela 2.5 – Características das lajes monolíticas ensaiadas por TENG et al. (1999)

Os pesquisadores observaram durante os ensaios que a primeira fissura se formou no bordo superior da laje ao longo do lado do pilar sob carga de aproximadamente 10% a 20% da carga última. Com o aumento da carga, surgiram outras fissuras radiais que se iniciaram no pilar e seguiram em direção às bordas da laje, e, em seguida, apareceram as fissuras circunferenciais em torno do pilar. Quando a carga atingiu valor próximo da carga última, os deslocamentos aumentaram repentinamente indicando, assim, a incidência de uma ruptura abrupta. As superfícies de ruptura apresentadas pelas lajes ensaiadas mostraram inclinações entre 30 e 40 graus em relação ao plano da laje.

TENG et *al* (1999) constataram que todas as lajes testadas tiveram ruptura frágil e repentina por punção, e, as lajes OC11, OC13 e OC15 romperam com cargas iguais a 423 kN, 568 kN e 649 kN, obtendo-se um aumento de até 53% na carga de ruptura, quando se triplicou o perímetro do pilar (vide Tab. 2.5). Observou-se que grande parte da tensão de cisalhamento está concentrada nas extremidades do pilar alongado, subentendendo que a resistência à punção da laje é determinada pela resistência da laje em torno da região extrema do pilar retangular.

Com relação às taxas de carregamento, observou-se que a variação no tipo de carregamento influenciou a resistência à punção, sendo que esta influência foi limitada nos casos onde o carregamento maior foi aplicado no lado menor do pilar. Neste caso, onde a força aplicada no lado menor do pilar foi 1,6 vezes aquela aplicada no lado maior, a resistência à punção

diminui aproximadamente 10%. No caso da força aplicada no lado maior ser de valor superior, nenhuma redução na resistência última foi observada.

TENG et *al* (1999) apresentaram as recomendações das normas do ACI 318 (1995), BS8110 (1985) e EUROCODE 2 (1992) para o cálculo de lajes cogumelo sem armadura de cisalhamento. Todos as normas, exceto BS8110 (1985), tratam o efeito da relação entre lados do pilar na resistência à punção de lajes cogumelo de formas diferenciadas. O ACI (1995) trata a geometria do pilar através da redução das tensões nominais de cisalhamento, enquanto o EC2 (1992) reduz o perímetro de controle.

Devido à limitação de informações e resultados experimentais sobre o comportamento de lajes cogumelo com pilares retangulares, os pesquisadores propuseram recomendações especiais para o cálculo destas estruturas. As recomendações de projeto propostas são, essencialmente, uma complementação para a norma da BS8110 (1985), para o cálculo de lajes cogumelo apoiadas em pilares retangulares.

Para o tratamento da geometria do pilar, uma redução no perímetro de controle foi introduzida, de maneira similar à do EUROCODE 2 (1992), entretanto, resultando em um perímetro maior, comparado com a norma, como mostra a Fig. 2.26.





AL-YOUSIF e REGAN (2003) ensaiaram 4 (quatro) lajes quadradas de 2000 mm de lado e 100 mm de espessura, e as principais variáveis dos ensaios foram as relações entre os lados do pilar (1 c 5) e as condições de apoio em relação à flexão (dois e quatro bordos apoiados). Todas as lajes ensaiadas romperam por punção. As maiores cargas foram observadas nas lajes com os quatro bordos apoiados, enquanto as menores foram obtidas pelas lajes apoiadas em dois bordos apenas (opostos). Neste último caso, a menor carga última foi registrada na laje com os bordos apoiados paralelos à menor dimensão do pilar, como mostra a Tab. 2.6 e Fig.2.27.

| Laje | C <sub>min</sub><br>(mm) | C <sub>máx</sub><br>(mm) | <i>f</i> °с<br>(МРа) | Apoios                 | V <sub>Exp</sub><br>(kN) | Modo de<br>ruptura | Superfície<br>de ruptura |
|------|--------------------------|--------------------------|----------------------|------------------------|--------------------------|--------------------|--------------------------|
| 1    | 100                      | 500                      | 22.6                 | 2 bordos paralelos aos | 102                      | Punção             | A partir do              |
| 1    | 100                      | 500                      | 23,0                 | menores lados do pilar | 103                      |                    | pilar                    |
| 2    | 100                      | 500                      | 23,2                 | 4 bordos               | 209                      |                    | н                        |
| 2    | 100                      | 500                      | 21.2                 | 2 bordos paralelos aos | 100                      | 01                 |                          |
| 2    | 100                      | 100 500                  | 21,2                 | maiores lados do pilar | 189                      |                    |                          |
| 4    | 300                      | 300                      | 22,0                 | 4 bordos               | 242                      | н                  | 91                       |

Tabela 2.6 Características das lajes ensaiadas por AL-YOUSIF & REGAN (2003)



Figura 2.27 - Lajes ensaiadas por AL-YOUSIF & REGAN (2003) - unidades em mm

Os pesquisadores observaram que os resultados teóricos obtidos dos métodos da BS8110 (1985), ACI (2002) e EC2 (1992) apresentaram discrepâncias com relação aos resultados experimentais. Especificamente no caso da norma britânica, para a laje com pilar quadrado (Laje 4) a norma está a favor da segurança ( $V_{Exp} V_{calc} = 1,16$ ), porém a relação é reduzida significativamente nas demais lajes com pilar retangular, atingindo  $V_{Exp} V_{calc} = 0,76$  no caso do apoio nos lados paralelos a menor dimensão do pilar (Laje 1).

Diante dos resultados insatisfatórios apresentados pelas normas analisadas, e com base em diversos resultados da literatura, uma proposta é apresentada por AL-YOUSIF & REGAN (2003) para melhorar o método de cálculo sobre punção da BS8110 (1985), especificamente no cálculo do perímetro de controle de lajes com pilares de seção retangular carregadas em dois ou quatro bordos. A expressão proposta pelos pesquisadores para o cálculo do perímetro de controle efetivo  $u_{eff}$  é apresentada na Eq. 2.53.

$$u_{eff} = 2\left[\lambda_x \left(c_x + 3d\right) + \lambda_y \left(c_y + 3d\right)\right] \qquad (mm) \qquad (2.53)$$

onde

$$\lambda_x = \left(1,09 - 0,03\frac{c_x}{d}\right) \le I$$
, para lajes calculadas em uma ou duas direções;

$$\lambda_y = \left(1,09 - 0.09 \frac{c_y}{d}\right) \le 1$$
, para lajes calculadas em uma direção, ou

$$\left(1,09-0.03\frac{c_y}{d}\right) \le 1$$
, para lajes calculadas em duas direções.

Sendo  $c_y$  a dimensão do pilar paralela ao vão da laje, e  $c_x$  a outra dimensão, no caso da laje ser armada em apenas uma direção

Observa-se nos dados anteriores que o menor valor de  $c_x$  em  $\lambda_x$  e de  $c_y$  em  $\lambda_y$  (segundo caso) é 3*d*. Isto indica que os valores previstos pela BS8110 para este tipo de laje (com c d < 3), são
considerados satisfatórios pelos pesquisadores. É importante ressaltar que a limitação do método proposto é  $c_{x,y}/d \le 4,55$ , ou seja,  $\lambda_{x,y} = 0,954$ .

SILVA (2003) investigou o comportamento de 4 (quatro) lajes quadradas de concreto armado sob influência da variação da relação entre lados do pilar. As lajes apresentaram dimensões de 1800 mm x 1800 mm x 130 mm (d = 90mm),  $f_c$  em torno de 40 MPa e foram submetidas a carregamento concêntrico.

Dentre as lajes ensaiadas, três apresentaram pilar com seção transversal retangular (150 mm x 150 mm, 150 mm x 300 mm e 150 mm x 450mm) e a outra laje teve pilar com seção circular de 402 mm de diâmetro, como mostra a Fig. 2.28.

O carregamento foi aplicado nas lajes, através de chapas metálicas e executado de baixo para cima. Foi utilizado um atuador hidráulico alimentado por uma bomba manual para aplicar a carga. A reação ao carregamento centrado foi feita por um conjunto de vigas metálicas atirantadas em uma laje de reação. A reação ao carregamento aplicado foi realizada através de placas de apoio (120mm x 200mm) posicionadas em oito pontos equidistantes, dentro de uma circunferência de raio igual a 825mm. O esquema de ensaio pode ser visualizado na Fig.2.29.

A armadura principal de flexão foi composta por uma malha ortogonal de 19 barras de 12,5 mm de diâmetro ( $f_y = 538$  MPa) no bordo superior, em cada direção, e no bordo inferior, foi posicionada a armadura secundária de flexão, composta de uma malha ortogonal de 11 barras de 6,3mm de diâmetro ( $f_y = 594$  MPa) em cada direção (Fig.2.30). Foi acrescentada uma ancoragem nas extremidades da armadura principal, composta de 19 barras de 6,3mm de diâmetro ( $f_y = 594$  MPa), na forma de grampo em "U", em ambas direções.



Figura 2.28 – Características das lajes L1, L2, L3 e L12 ensaiadas por SILVA (2003) – unidades em mm



Figura 2.29 - Esquema de ensaio de SILVA (2003) - unidades em mm



Figura 2.30 – Armadura de flexão das lajes L1, L2, L3 e L12 de SILVA (2003) – unidades em mm

As lajes L1, L2, L3 e L12 romperam por puncionamento com cargas iguais a 273 kN, 401 kN, 469 kN e 525 kN, respectivamente, como pode ser visto na Tab.2.7. O aumento da relação  $c_{max} c_{min}$  do pilar de 1 para 3, mantendo uma das dimensões constante, conduziu ao acréscimo de aproximadamente, 72% da carga de ruptura. Apesar das lajes L3 e L12 terem perímetros de controle aproximadamente iguais (situado a 2*d* da face do pilar) as cargas de ruptura se diferenciaram em 12%.

Tabela 2.7 - Características das lajes monolíticas ensaiadas por SILVA (2003)

| Laje | Pilar<br>(mm x mm)      | f'c<br>(MPa) | ρ<br>(%) | V <sub>Exp</sub><br>(kN) | Modo de<br>ruptura | Superficie de ruptura                 |
|------|-------------------------|--------------|----------|--------------------------|--------------------|---------------------------------------|
| Ll   | 150 x 150               | 39,6         | 1,45     | 273                      | Punção             | A partir do pilar                     |
| L2   | 150 x 300               | 40,4         | 1,45     | 401                      | 95                 |                                       |
|      |                         |              |          |                          |                    | A partir do pilar, na direção do lado |
| L3   | 150 x 450               | 40,8         | 1,45     | 469                      |                    | maior, e, afastado do pilar, na outra |
|      |                         |              |          |                          |                    | direção                               |
| L12  | $\phi = 402 \text{ mm}$ | 42,3         | 1,45     | 525                      | н                  | A partir do pilar                     |

O comportamento à flexão de lajes cogumelo e a influência da relação entre lados do pilar  $(c_{max} c_{min})$  na resistência ao puncionamento foi investigado por OLIVEIRA (2003). O

programa experimental do autor consistiu no ensaio até a ruptura de 15 (quinze) lajes retangulares (1680 mm x 2280 mm x 130 mm) de concreto armado de alta resistência (54 MPa  $< f'_c < 67$  MPa), apoiadas em pilares com seção transversal variável, fornecendo valores para a relação  $c_{max} c_{min}$  entre 1 e 5. Para cada relação  $c_{max} c_{min}$ , as lajes foram carregadas de três formas diferentes: lajes carregadas nos dois bordos menores, nos dois bordos maiores, e nos quatro bordos.

A Tab.2.8 e Fig.2.31 apresentam, respectivamente, as características, cargas e modos de ruptura, e, a disposição do carregamento das lajes ensaiadas por OLIVEIRA (2003).

|      | d    | 0        | f.    | Pi                                             | lar | Carga    | VErm | VE                | Modo de |
|------|------|----------|-------|------------------------------------------------|-----|----------|------|-------------------|---------|
| Laje | (mm) | р<br>(%) | (MPa) | c <sub>min</sub> c <sub>máx</sub><br>(mm) (mm) |     | aplicada | (kN) | V <sub>Flex</sub> | ruptura |
| Lla  | 107  | 1,09     | 57    | 120                                            | 120 | P1       | 234  | 0,97              | FP      |
| Llb  | 108  | 1,08     | 59    | 120                                            | 120 | P2       | 322  | 0,49              | Р       |
| Llc  | 107  | 1,09     | 59    | 120                                            | 120 | P1 e P2  | 318  | 0,45              | Р       |
| L2a  | 109  | 1,07     | 58    | 120                                            | 240 | P1       | 246  | 0,94              | FP      |
| L2b  | 106  | 1,10     | 58    | 120                                            | 240 | P2       | 361  | 0,56              | Р       |
| L2c  | 107  | 1,09     | 57    | 120                                            | 240 | P1 e P2  | 331  | 0,45              | Р       |
| L3a  | 108  | 1,08     | 56    | 120                                            | 360 | P1       | 241  | 0,87              | FP      |
| L3b  | 107  | 1,09     | 60    | 120                                            | 360 | P2       | 400  | 0,62              | Р       |
| L3c  | 106  | 1,10     | 54    | 120                                            | 360 | P1 e P2  | 358  | 0,48              | Р       |
| L4a  | 108  | 1,08     | 56    | 120                                            | 480 | P1       | 251  | 0,85              | FP      |
| L4b  | 106  | 1,10     | 54    | 120                                            | 480 | P2       | 395  | 0,62              | Р       |
| L4c  | 107  | 1,09     | 56    | 120                                            | 480 | P1 e P2  | 404  | 0,51              | Р       |
| L5a  | 108  | 1,08     | 57    | 120                                            | 600 | PI       | 287  | 0,90              | FP      |
| L5b  | 108  | 1,08     | 67    | 120                                            | 600 | P2       | 426  | 0,65              | Р       |
| L5c  | 109  | 1,07     | 63    | 120                                            | 600 | PleP2    | 446  | 0,52              | Р       |

| Tabela 2.8 – Características, cargas e mod | os de ruptura das lajes de OLIVEIRA (2003) |
|--------------------------------------------|--------------------------------------------|
|--------------------------------------------|--------------------------------------------|



Figura 2.31 - Disposição do carregamento nas lajes de OLIVEIRA (2003) - unidades em mm

As cargas P1 e P2 tiveram a mesma intensidade e foram aplicadas paralelamente ao menor e maior lado do pilar, respectivamente. Isto possibilitou a análise do comportamento das lajes com a variação da posição do carregamento, em relação às faces dos pilares, e a observação da variação da resistência ao puncionamento com a resistência à flexão, sob carregamento P1.

A armadura de flexão foi constante para todas as lajes e constituiu-se de barras de aço de 12,5mm de diâmetro, com 23 e 15 barras posicionadas ao longo da direção y e x, respectivamente, dispostas ortogonalmente. O espaçamento nas direções x e y foram, respectivamente, 102 mm e 117 mm. A ancoragem de todas as barras da armadura principal de flexão consistiu de grampos de diâmetro 6,3 mm dobrados em forma de "U". A armadura inferior de flexão teve barras de 6,3 mm de diâmetro espaçadas de 204 mm (x) e 236 mm (y).

As lajes carregadas nos dois bordos menores romperam por flexo-puncionamento (predominância das fissuras de flexão, deformações da armadura de flexão superior à determinada para o escoamento, e cargas últimas próximas das estimadas para ruptura por flexão), enquanto as demais lajes romperam por punção.

Os resultados mostram que as cargas de ruptura tenderam a aumentar com o acréscimo da relação  $c_{max} c_{min}$  do pilar, atingindo um aumento de 23% para as lajes carregadas nos bordos menores, 32%, nos maiores, e 40%, nos quatro bordos.

Observa-se que as lajes carregadas no bordo menor apresentaram as menores cargas de ruptura, em relação às carregadas de outras formas. O autor atribui este fato à baixa capacidade resistente destas lajes à flexão. À medida que a relação  $c_{max} c_{min}$  aumenta, no caso destas lajes, também ocorre um acréscimo nas estimativas para a resistência à flexão, de forma a confirmar o inter-relacionamento da relação  $c_{max} c_{min}$  e da resistência à flexão no crescimento das cargas de punção das lajes.

Com relação às lajes carregadas nos dois bordos maiores e nos quatro bordos, as cargas de ruptura apresentaram-se próximas, com uma diferença máxima de 12%, no caso das lajes L3b e L3c.

OLIVEIRA (2003) propõe fatores de flexão  $\lambda$  para serem incorporados à equação do CEB-FIP (1991), derivados de ensaios realizados e de resultados da literatura, que levam em consideração as principais condições que podem ocorrer relacionando o comportamento à flexão das lajes e a orientação dos lados de apoios. Estes fatores foram determinados, segundo o autor, para levar em consideração o fenômeno da polarização das forças cortantes, nos casos de puncionamento simétrico, para lajes monolíticas sem armadura de cisalhamento e solicitadas em uma ou duas direções, de acordo com a Eq. 2.54.

$$V = \frac{0.18}{\lambda} \left( 1 + \sqrt{\frac{200}{d}} \right) \sqrt[3]{100\rho f'_{\pm}} du \qquad (kN)$$
 (2.54)

sendo d a altura útil da laje,  $\rho$  a taxa geométrica de armadura de flexão,  $f_c$  a resistência à compressão do concreto medida em corpos de prova cilíndricos, e u o perímetro de controle recomendado pela norma do CEB-FIP MC90.

Desta forma, a Tab. 2.9 e Fig. 2.32 mostram, respectivamente, os fatores de flexão e os três tipos distintos de laje (classificada de acordo com o carregamento aplicado), sendo que o autor propôs para cada tipo de laje, um fator de flexão para correção.



Tabela 2.9 - Fatores de flexão propostos por OLIVEIRA (2003)



Figura 2.32 – Tipos de lajes classificadas por OLIVEIRA (2003)

## 2.3.2 – COMPARAÇÃO DOS RESULTADOS DA LITERATURA COM NORMAS DE PROJETO

Para a avaliação dos métodos de cálculo apresentados, foi realizada, graficamente, uma relação entre as resistências estimadas e uma resistência de referência  $V_{ref}$ , igual à resistência estimada para uma laje calculada bidirecionalmente e com um pilar quadrado de lado  $c_{max} = 2d$ , de forma semelhante à utilizada por OLIVEIRA (2003).

A Fig. 2.33 apresenta a tendência das estimativas das normas e de outros métodos para áreas carregadas quadradas ( $c_{max} c_{min}=1$ ) e retangulares ( $c_{max} c_{min}=4$ ). A utilização do parâmetro  $c_{max}/d$  nas comparações entre as normas, e em demais análises, se deve à necessidade de se levar em conta o efeito do acréscimo das dimensões do pilar, quadrado ou retangular, no cálculo da resistência estimada pelas normas.

Para áreas carregadas quadradas, as estimativas do CEB (1991), NB1 (2003), EC2 (2001), ACI (2002), BS8110 (1997) e OLIVEIRA (2003), se apresentaram com uma variação de até 10% de um em relação ao outro. As estimativas da NB1 (1978) foram consideravelmente superiores às demais normas, para áreas quadradas relativamente grandes, confirmando o fato de que a norma não impõe limitações para as dimensões das áreas carregadas no cálculo da resistência à punção.

O EC2 (1992) foi o método que apresentou as menores estimativas para as cargas de ruptura para valores de  $c_{max}d$  superiores a 3, que permaneceram iguais e constantes. Para as estimativas do método de TENG et *al.*(1999), a carga de ruptura de uma laje carregada com área quadrada, estabiliza em um determinado valor, a partir de  $c_{max}d = 5$ .

O método de AL-YOUSIF & REGAN (2003) apresenta estimativas semelhantes às da norma BS8110 (1997), até relações  $c_{max} d = 3$ . A partir dai, a resistência da laje estimada pelos autores, tende a aumentar com o acréscimo da relação  $c_{max} d$ , com estimativas entre valores obtidos pelo método de TENG et *al* (1999) e da BS8110 (1997).

Para as áreas retangulares ( $c_{max} c_{min} = 4$ ), o ACI (2002) estimou as mais baixas resistências para valores de  $c_{max}/d$  relativamente pequenos, enquanto o EC2 (1992) forneceu os mais baixos valores para  $c_{max}/d$  elevados A NB1 (1978) também apresentou uma das mais baixas resistências para pequenos valores de  $c_{max}/d$ , chegando a atingir as maiores estimativas, dentre as normas analisadas.

Assim como para áreas quadradas carregadas, as normas CEB/91, NB1/03, EC2/01, BS/97 e OLIVEIRA/03, com exceção do ACI/02, apresentaram estimativas bastante próximas tanto para áreas carregadas pequenas quanto de maiores dimensões, com uma variação de até 5%, de um em relação ao outro.



Figura 2.33 - Comparação entre alguns métodos e normas de projeto para lajes monolíticas

A Tab. 2.10 apresenta as estimativas dos métodos e normas de projeto apresentadas para as lajes com pilares retangulares, e submetidas a carregamento nos quatro bordos, ensaiadas por FORSSEL & HOLMBERG (1946), HAWKINS et *al.* (1971), TENG et *al.* (1999), AL-YOUSIF & REGAN (2003), SILVA (2003) e OLIVEIRA (2003). As Figs. 2.34 a 2.39 ilustram a tendência das estimativas das normas de projeto e de pesquisadores. As linhas de

tendência utilizadas foram do tipo potência, pois, procurou-se utilizar funções matemáticas semelhantes às empregadas nas expressões das normas de projeto, e foram determinadas utilizando o software "EXCEL" da "Microsoft". Linhas de tendência são curvas ajustadas aos dados disponíveis que relacionam grandezas conhecidas com as que devam ser determinadas, utilizando o "Método dos Mínimos Quadrados".

Observa-se na Tab. 2.10 e Fig. 2.34 que as normas NB1/03 e CEB/91 superestimaram os resultados das lajes de FORSSEL & HOLMBERG (1946) em até 7%. A proposta de OLIVEIRA (2003) conduziu a resultados mais próximos dos reais, com a relação  $V_{Exp}/V_{calc}$  variando entre 0,98 e 1,16, tendendo a superestimar a resistência da laje com o aumento da relação  $c_{max} d$ .

As demais normas subestimaram as cargas de ruptura das lajes de FORSSEL & HOLMBERG (1946), especialmente a NB1/78, EC2/92 e ACI/02, sendo que os resultados estimados tenderam a se aproximar dos experimentais com o aumento de  $c_{max} d$  A norma BS8110/97 forneceu estimativas mais satisfatórias, para qualquer valor de  $c_{max} d$ , em relação aos métodos de TENG et *al.* (1999) e de AL-YOUSIF & REGAN (2003).

Para as lajes de HAWKINS et *al.* (1971) observa-se na Tab. 2.10 e Fig. 2.35 que o ACI/02, EC2/92 e NB1/78 tendem a apresentar, em geral, os resultados mais conservadores, em relação aos demais métodos de cálculo. Para relações  $c_{max} d$  relativamente baixos, a NB1/78 apresenta-se mais conservadora, enquanto que o ACI/02 e EC2/92 apresentam valores mais conservadores para relações  $c_{max} d$  relativamente altas.

As estimativas da BS8110 (1997) e dos métodos de TENG et *al.* (1999) e AL-YOUSIF & REGAN (2003), para as lajes de HAWKINS et *al.* (1971), se apresentaram bem próximas, como esperado. A proposta de TENG et *al.* de reduzir o perímetro de controle de pilares retangulares com  $c_{max}$  *d* relativamente elevados, melhorou os resultados das lajes com  $c_{max}$  *d* > 3. A proposta de cálculo de AL-YOUSIF & REGAN conduziu a melhores estimativas para lajes com pilar com  $c_{max}$  *d*>3, quando comparadas com as da BS/97.

As normas CEB/91, NB1/03, EC2/01 e o método de OLIVEIRA/03 tendem a superestimar a resistência das lajes de HAWKINS et *al.* (1971), especialmente, aquelas com  $c_{max} d > 3$ , entretanto, a utilização do fator de flexão proposto por OLIVEIRA/03 permitiu aproximar os

resultados teóricos dos experimentais, em relação à norma do CEB/91. Cabe ressaltar que o método de cálculo conservador que estimou resistências mais próximas das experimentais, em todos os casos, foi o EC2/01, independente do valor da relação  $c_{max}/d$ , provavelmente devido às limitações da norma com relação ao coeficiente de tamanho. A Fig.2.35 mostra a tendência dos resultados de HAWKINS ct *al.* (1971) devido à influência da relação  $c_{max}/d$ .

As previsões da norma ACI/02, EC2/92 e NB1/78 se apresentaram as mais conservadoras, em relação aos demais métodos de calculo, para as lajes ensaiadas por TENG et *al.* (1999), independente da relação  $c_{max} d$ , como mostram a Tab.2.10 e Fig.2.36. Os métodos da BS/97 e TENG et *al.*/99 forneceram estimativas praticamente iguais até relações  $c_{max} d < 6$ . Para valores superiores a  $c_{max} d = 6$ , o método de TENG et *al.* se apresentou mais conservador. O método de AL-YOUSIF & REGAN forneceu estimativas mais conservadoras que o de TENG et *al.*, a partir de relações  $c_{max} d > 1,91$ .

Para as lajes de TENG et *al.* (1999), as normas do CEB/91 e NB1/03, seguidas do método de OLIVEIRA/03, apresentaram as estimativas mais próximas das experimentais, com uma variação de até 15% entre carga teórica e experimental, ao passo que o EC2/01 apresentou resultados mais conservadores que estes, como mostra a Fig.2.36. As normas BS/97, CEB/91, NB1/03, EC2/01, NB1/78 e o método de OLIVEIRA/03 tendem a superestimar as resistências das lajes de TENG et *al.* (1999) à medida que se aumenta a relação  $c_{max}/d$ .

Para as lajes de AL-YOUSIF & REGAN (2003), todas as normas, exceto a NB1/03 e CEB/91, subestimaram as cargas de ruptura, entre 12% e 87% (Fig.2.37). Com relação às lajes ensaiadas por SILVA (2003), observa-se na Tab.2.10 e Fig.2.38 que todos os métodos de cálculo utilizados se apresentaram conservadores, especialmente com o aumento da relação  $c_{max} d$ . Dos métodos utilizados, os que se apresentaram menos conservadores foram o CEB/91 e NB1/03, com relação  $V_{Exp} V$  de até 1,28.

As estimativas da norma do ACI/02 e NB1/78 se mostraram as mais conservadoras em relação às demais normas e métodos utilizados para as lajes ensaiadas por OLIVEIRA/03, independente da relação  $c_{max}d$ , como mostram a Tab.2.10 e Fig.2.39. As demais normas e métodos tenderam a superestimar as resistências das lajes de OLIVEIRA/03, especialmente a norma NB1/03 e CEB/91, com o aumento da relação  $c_{max}d$ . Observa-se na Tabela 2.10 que a proposta do autor propiciou uma melhoria nas estimativas do CEB/91.

|                    |                             |                                        |        |          |        |       |                    |                    |        |        | 1 Exp /V c | alc                |                     |             |                   |                            |
|--------------------|-----------------------------|----------------------------------------|--------|----------|--------|-------|--------------------|--------------------|--------|--------|------------|--------------------|---------------------|-------------|-------------------|----------------------------|
| Autor              | Laje                        | C <sub>màx</sub> /<br>C <sub>min</sub> | d (mm) | C máx /d | AC1/02 | BS/97 | CEB/91<br>(γ=1,33) | CEB/91<br>(γ=1,50) | EC2/92 | EC2/01 | NB1/78     | NB1/03<br>(γ=1,33) | N B1/03<br>(7=1,40) | OLIVEIRA/03 | TENG et<br>al./99 | AL-<br>YOUSIF et<br>al./03 |
| Let                | 10                          | 12                                     | 104    | 2,88     | 2,06   | 1.01  | 1,05               | 0.93               | 2,02   | 1.11   | 2,53       | 1,05               | 0,93                | 0.98        | 1,30              | 1,35                       |
| d. 4               | 11                          | 3.9                                    | 112    | 4.82     | 1,30   | 1.03  | 1.08               | 0,96               | 1,71   | 1.28   | 1,26       | 1,08               | 0,96                | 1.02        | 1.03              | 1,10                       |
| FOF                | 12                          | 2,4                                    | 108    | 3,15     | 1.38   | 1,19  | 1,24               | 1,10               | 1,71   | 1.30   | 1,41       | 1,24               | 1,10                | 1.16        | 1,19              | 1,19                       |
| IS et              | 7                           | 3                                      | 117    | 3,91     | 1,16   | 0,94  | 0,99               | 0,88               | 1.29   | 1.01   | 1.07       | 0,93               | 0.88                | 0,93        | 0,94              | 0.96                       |
| FLAWKIN<br>al. 71  | 8                           | 4.3                                    | 121    | 4.09     | 1,28   | 0,93  | 0.97               | 0.86               | 1.43   | 0.99   | 1.19       | 0.91               | 0,86                | 0.91        | 1,16              | 0.95                       |
|                    | 9                           | 2                                      | 121    | 2.52     | 1.09   | 1.04  | 1,08               | 0,96               | 1,21   | 1.10   | 1,23       | 1.02               | 0,96                | 1.01        | 1,04              | 1,04                       |
| ē                  | OC11                        | I                                      | 105    | 1,90     | 1,65   | 1,20  | 1,24               | 1,10               | 1.37   | 1.31   | 1.86       | 1.17               | 1.10                | 1.15        | 1,20              | 1,20                       |
| 0NG                | OC13                        | 3                                      | 107    | 5,61     | 1.57   | 1.15  | 1.21               | 1.07               | 1.49   | 1.27   | 1,43       | 1,14               | 1,07                | 1.14        | 1,15              | 1.22                       |
| TT o               | OC15                        | 5                                      | 103    | 9.71     | 1,52   | 1,03  | 1.08               | 0,96               | 1,66   | 1.15   | 1,55       | 1,01               | 0,96                | 1,03        | 1,15              | 1.20                       |
| SIF<br>31F<br>03   | 2                           | 5                                      | 80     | 6.25     | 1.53   | 0,98  | 1,01               | 0,90               | 1.87   | 1.16   | 1,61       | 1,01               | 0,90                | 0,96        | 1,19              | 1.24                       |
| AI<br>YOU<br>et ai | 4                           | 1                                      | 80     | 3.75     | 1,27   | 1,16  | 1.19               | 1,06               | 1,55   | 1.36   | 1.39       | 1,19               | 1,06                | 1.12        | 1,16              | 1.21                       |
| 03                 | LI                          | 1                                      | 90     | 1,67     | 1,51   | 1,11  | 1,14               | 1,01               | 1,28   | 1.26   | 1.71       | 1,07               | 1.01                | 1.05        | 1,11              | 1,11                       |
| VA                 | L2                          | 2                                      | 90     | 3,33     | 1,67   | 1,37  | 1,42               | 1,26               | 1.53   | 1.57   | 1,85       | 1.33               | 1.26                | 1,33        | 1,37              | 1,38                       |
| SIIIS              | L3                          | 3                                      | 90     | 5.00     | 1.88   | 1.39  | 1,44               | 1,28               | 1.78   | 1.59   | 1,72       | 1,36               | 1.28                | 1.36        | 1,39              | 1,44                       |
|                    | LIC                         | 1                                      | 107    | 1,12     | 1.28   | 1,04  | 1,07               | 0.95               | 1,03   | 1.13   | 1.48       | 1,01               | 0,95                | 0.99        | 1,04              | 1.04                       |
| 0.V                | L2C                         | 2                                      | 107    | 2,24     | 1.07   | 0,96  | 1,00               | 0.89               | 0,94   | 1.05   | 1,21       | 0,94               | 0.89                | 0,93        | 0.96              | 0,96                       |
| TEIR               | L3C                         | 3                                      | 106    | 3,40     | 1.20   | 0,96  | 0,99               | 0,88               | 1,07   | 1.05   | 1,11       | 0,94               | 0,88                | 0.93        | 0,96              | 0,96                       |
| 110                | L4C                         | 4                                      | 107    | 4.49     | 1.24   | 0.95  | 1.00               | 0,88               | 1,16   | 1.05   | 1,14       | 0,94               | 0,88                | 0.94        | 0,95              | 0.98                       |
|                    | L5C                         | 5                                      | 109    | 5.50     | 1.18   | 0,91  | 0,95               | 0,85               | 1,16   | 1.00   | 1,16       | 0,90               | 0.85                | 0.90        | 1.00              | 0.96                       |
|                    |                             | Media                                  |        |          | 1,41   | 1,07  | 1,11               | 0,99               | 1,44   | 1,20   | 1,47       | 1,06               | 0,99                | 1,04        | 1,12              | 1,13                       |
|                    | Des                         | vio pad                                | råo    |          | 0,27   | 0,14  | 0,14               | 0,13               | 0,30   | 0,18   | 0,36       | 0,14               | 0,13                | 0,13        | 0,14              | 0,16                       |
| C                  | Coeficiente de variação (%) |                                        |        | )        | 19,1   | 13,1  | 12,9               | 12,9               | 21,2   | 14,9   | 24,5       | 13,1               | 12,9                | 12,9        | 12,2              | 13,7                       |

Tabela 2.10 - Estimativas das normas de projeto e de pesquisadores para as lajes da literatura carregadas/apoiadas nos quatro bordos



Figura 2.34 – Estimativas das normas de projeto e de pesquisadores para as lajes de FORSSEL & HOLMBERG (1946)



Figura 2.35 – Estimativas das normas de projeto e de pesquisadores para as lajes de HAWKINS et al. (1971)



Figura 2.36 – Estimativas das normas de projeto e de pesquisadores para as lajes de TENG et al. (1999)



Figura 2.37 – Estimativas das normas de projeto e de pesquisadores para as lajes de AL-YOUSIF & REGAN (2003)



Figura 2.38 – Estimativas das normas de projeto e de pesquisadores para as lajes de SILVA (2003)



Figura 2.39 – Estimativas das normas de projeto e de pesquisadores para as lajes de OLIVEIRA (2003)

## 2.3.2.1 – COMENTÁRIOS FINAIS

Apesar de algumas normas e métodos de cálculo levarem em consideração a geometria do pilar no cálculo da resistência à punção de lajes, os resultados estimados por estes, na maioria dos casos analisados, subestimaram a contribuição do perímetro do pilar ou da resistência básica ao cisalhamento nos cálculos, estimando resultados consideravelmente inferiores aos experimentais.

Por outro lado, outros métodos de cálculo, tais como, o CEB-FIP (1991) e NBR-6118 (2003), apesar de não apresentarem prescrições com relação à contribuição da geometria do pilar na resistência à punção, apresentou, para a grande maioria das lajes da literatura, estimativas teóricas contra a segurança.

Dados experimentais adicionais são necessários para o conhecimento do comportamento de lajes sob punção sob influência da variação da seção transversal do pilar. A inclusão do parâmetro  $c_{max} d$ , que relaciona o comprimento da maior dimensão do pilar com a altura útil da laje, no cálculo da resistência à punção de lajes, têm sua importância, pois, conforme observado nos resultados da literatura, a geometria do pilar (seção quadrada ou retangular) influencia na carga resistente da laje

## 2.4 – LAJES COM FUROS E/OU ARMADURA DE CISALHAMENTO

## 2.4.1 – PESQUISAS REALIZADAS

Um dos trabalhos experimentais pioneiros na investigação da influência de furos em lajes de concreto armado sujeitas ao puncionamento foi desenvolvido por MOE (1961). MOE (1961) apud ROLL et *al.* (1971) desenvolveu uma equação de projeto (Eq. 2.55) para prever a resistência de lajes quadradas monolíticas carregadas através de pilares quadrados.

$$V = \frac{\left(I5bd\sqrt{f'_c}\right)\left(I - 0.0075r/d\right)}{I + \left(5.25bd\sqrt{f'_c}\right)/V_{Flex}}$$
(lb) (2.55)

onde

V é a carga de ruptura por cisalhamento, em lb;

b é o perimetro efetivo em torno da área carregada, em in;

d é a altura efetiva da laje, em in;

f'c é a resistência à compressão do concreto em corpos de prova cilíndricos, em psi;

r é o comprimento do lado da área quadrada carregada, em in;

 $V_{Flex}$  é a carga correspondente à ruptura por flexão de uma laje monolítica, em lb

O termo  $V_{Flex}$  é calculado de acordo com a Eq. 2.56 obtida por ELSTNER & HOGNESTAD (1956) usando a teoria das linhas de escoamento.

$$V_{Flex} = 8m\left(\frac{1}{1-r/a} - 3 + 2\sqrt{2}\right)$$
 (N) (2.56)

$$m = \rho f_{v} d^{2} \left( 1 - 0.5 \rho \frac{f_{v}}{f_{c}'} \right)$$
 (N.mm/mm) (2.57)

onde m é o momento fletor último por unidade de largura da laje monolítica, e a e o comprimento da laje quadrada, em mm.

MOE (1961) apud ROLL et *al.* (1971) testou 15 (quinze) lajes com furos e observou que a Eq 2.55 previa a carga última de punção da maioria das lajes quase com exatidão, desde que o comprimento do perímetro efetivo *b* da seção critica fosse reduzido devido à presença dos furos. Foi com base no extenso trabalho de MOE (1961) que o ACI-ASCE Committee 326 (1962) recomendou um metodo simplificado para o cálculo de lajes com e sem furos, propondo a Eq. 2.58.

$$V = \frac{l}{3}bd \,\frac{r+d}{r} \sqrt{f'_{c}}$$
 (N) (2.58)

onde b é o perimetro da área carregada. levando em consideração a presença de furos (caso houver), sendo igual a 4r para um pilar quadrado

O mesmo valor de V pode ser obtido pela Eq. 2.59:

$$V = \frac{1}{3}b_0 d \sqrt{f'_c}$$
 (N) (2.59)

onde  $b_0$  é o perímetro efetivo de uma seção pseudocrítica a uma distância de d/2 a partir do perímetro da área carregada, em mm. Na presença de furos, o perímetro seria reduzido adequadamente.

MOWRER & VANDERBILT (1967) conduziram duas séries de testes em lajes com furos, na maioria dos casos, duplicando os testes de MOE (1961). Uma das séries compreendeu 17 (dezessete) lajes com agregado de peso leve, e 8 (oito) lajes com agregados de peso normal, apoiadas nos quatro bordos.

As lajes com dimensões quadradas de 915 mm de lado e 76 mm de espessura, foram ensaiadas simplesmente apoiadas nos quatro bordos e moldadas monoliticamente com o pilar quadrado de 152 mm de lado, localizado na superfície superior da laje. As principais variáveis dos ensaios desta série foram a forma dos furos, a quantidade de armadura de flexão, e a resistência do concreto.

A Tab.2.11 apresenta as principais características e cargas de ruptura das lajes ensaiadas por MOWRER & VANDERBILT (1967).

Baseando-se em seus ensaios, os autores propuseram uma modificação da expressão de MOE (1961) dada pela Eq. 2.60, que forneceu resultados satisfatórios tanto para concreto de peso leve quanto de peso normal.

$$V = \frac{9.7 (1 + d/r) b d \sqrt{f'_c}}{1 + (5.25 b d \sqrt{f'_c}) / V_{Flox}}$$
(lb) (2.60)

onde o perímetro efetivo b foi definido da mesma forma que na expressão proposta por MOE (1961), e similarmente reduzido na presença de furos

|              | 0 = 0 | e                   | 2        | Furo              |                 | L*-  |
|--------------|-------|---------------------|----------|-------------------|-----------------|------|
| Laje         | (mm)  | <i>J c</i><br>(MPa) | ρ<br>(%) | Forma             | Tamanho<br>(mm) | (kN) |
| JN - 1 - 1,7 | 152   | 16,5                | 1,67     | 152<br>[152       | 13 x 152        | 83   |
| JN - 2 - 1,7 | 152   | 16,0                | 1,67     | 152<br>152        | 13 x 152        | 86   |
| JN - 3 - 1,7 | 152   | 14,6                | 1,67     | 152<br>S          | 38 x 38         | 106  |
| JN - 1 - 2,2 | 152   | 14,0                | 2,20     | 152<br>152        | 13 x 152        | 77   |
| JN - 2 - 2,2 | 152   | 10,4                | 2,20     | 152<br>152<br>152 | 13 x 152        | 73   |
| JN - 3 - 2,2 | 152   | 14,6                | 2,20     | 152<br>See 152    | 38 x 38         | 113  |

Tabela 2.11 – Características e cargas de ruptura das lajes de MOWRER & VANDERBILT (1967)

ROLL, ZAIDI, SABNIS & CHUANG (1971) realizaram uma investigação experimental com 158 (cento e cinqüenta e oito) lajes quadradas de concreto armado, monolíticas e com furos, simplesmente apoiadas nos quatro bordos e carregadas através de um pilar quadrado central. O objetivo dos pesquisadores foi propor uma expressão para a previsão da resistência ao cisalhamento de lajes com furos, considerando a influência da resistência à flexão da laje. Para este estudo, foram analisadas combinações de tamanho, forma, número e localização do furo.

As lajes ensaiadas foram divididas em 3 séries (séries A, B e H), utilizando modelos em escala média, ao invés de escala normal de tamanho. Os testes iniciais (série A-1) foram planejados para simular as lajes originais testadas por MOE (1961) e ELSTNER & HOGNESTAD (1956), com um fator de escala de 2.5, porém, com uma variação na taxa de armadura de flexão.

Todos os parâmetros da série A-2 foram os mesmos da série A-1, exceto a altura efetiva, taxa de armadura e relação *r/d*. As lajes da série B foram praticamente semelhantes às da série A, com exceção da utilização de barras de armadura de diâmetros diferentes. Na série H, houve mudança na taxa de armadura de flexão, em relação às outras séries, e no tamanho dos furos, resultando em modelos que representaram duas vigas se cruzando.

As dimensões dos pilares quadrados foram mantidas constantes e iguais a 102 mm de lado e 152 mm de altura. Todas as lajes ensaiadas apresentaram dimensões constantes e iguais a 737 mm x 737 mm x 61 mm, com variação na altura efetiva (45,7 mm na série A-1, 39,4 mm na série A-2, 45,7 mm nas séries B e H), no diâmetro das barras da armadura de flexão (6,35 mm nas séries A-1 e A-2, 9,52 mm na série B e ambos diâmetros na série H), na taxa de armadura de flexão (1,15% na serie A-1, 1,34% na série A-2, 2,53% na série B e 1,15 e 2,53% na série H), e na relação r d (2,22 para série A-1, 2,58 para série A-2, 2,22 para série B e 2,22 para série H).

A taxa de armadura de flexão das lajes foi determinada considerando apenas as barras continuas (12 barras). As Tabs. 2.12 e 2.13 apresentam, respectivamente, os parâmetros dos furos e o 'layout" destes furos nas lajes ensaiadas por ROLL et *al.* (1971).

| Série | Tipo do furo<br>(Tab.2.13) | Forma do furo | Tamanho (mm)          | Nº de furos  | Distância<br>do pilar |  |
|-------|----------------------------|---------------|-----------------------|--------------|-----------------------|--|
|       | 0                          |               | Laje sem fui          | 0            |                       |  |
|       | 1                          | S<br>C        | 50,8<br>50,8          | 1 <b>a</b> 4 | variável              |  |
|       | 2                          | S             | 50,8<br>102,0         | 1 a 4        | 0                     |  |
| Α     | 3                          | S             | 50,8                  | 1 a 4        | variável              |  |
|       | 4                          | С             | 50, <b>8</b><br>102,0 | 1 a 4        | 0<br>variável         |  |
|       | 5                          | S             | 50,8                  | 1 ou 2       | 0                     |  |
|       | 6                          | L             | 50,8 x 102,0          | 1            | 0                     |  |
|       | 7                          | S             | 50,8                  | 2            | 0                     |  |
|       | 0                          |               | Laje sem fui          | 0            |                       |  |
| D     | 1                          | S             | 50,8                  | 1 a 4        | 0                     |  |
| D     | 2                          | S             | 50,8<br>102,0         | 1 a 4        | 0                     |  |
|       |                            |               | 25,4                  |              |                       |  |
|       |                            |               | 76,2                  |              |                       |  |
| Η     | 2                          | S             | 127,0                 | 4            | 0                     |  |
|       |                            |               | 152,0                 |              |                       |  |
|       |                            |               | 318,0                 |              |                       |  |

Tabela 2.12 – Parâmetros dos furos nas lajes ensaiadas por ROLL et al. (1971)

Tabela 2.13 - "Layout" dos furos

| Tipo | Forma e posição | Tipo | Forma e posição |
|------|-----------------|------|-----------------|
| 0    | Laje monolítica | 4    |                 |
| I    | ⊗ ⊠_jy          | 5    |                 |
| 2    |                 | 6    |                 |
| 3    | ↔<br>y ·        | 7    |                 |

De acordo com os pesquisadores, o termo  $V_{Flex} / h d \sqrt{f'_c}$ , considerado um parâmetro importante no cálculo da resistência ao cisalhamento das lajes, atingiu o valor máximo de 23 para os testes das lajes da série A (séries A-1 e A-2).

Para aumentar o termo citado, uma das formas seria o aumento de  $V_{flex}$  através do acréscimo da taxa de armadura de flexão ou da tensão de escoamento do aço. Desta forma, ROLL et *al* (1971) aumentaram a taxa de armadura de flexão da série A para a série B, sendo que a resistência do aço ao escoamento  $f_y$  aumentou em alguns casos. Conseqüentemente, para a série B, o parâmetro  $V_{Flex} / b d \sqrt{f'_c}$  atingiu valor máximo de 50, valor este consideravelmente maior que aqueles normalmente encontrados em projeto, segundo os pesquisadores

A partir de uma análise estatística de todas as 124 lajes das series A-1 e A-2, os pesquisadores chegaram a uma equação exponencial complexa que pode ser simplificada na forma das Eqs. 2.61 e 2.62.

$$\frac{V}{b \, d \, \sqrt{f'_c}} = \frac{I4 \left( I + 0.15 \, r \, d - 0.425 \, e \, d \right)}{I + \left( I0 \, b \, d \, \sqrt{f'_c} \right) \, V_{Flex}} \tag{2.61}$$

$$\frac{V}{V_{Flex}} = \frac{I4 \left( 1 + 0.15 \, r/d - 0.425 \, e/d \right)}{V_{Flex} \left( b \, d \, \sqrt{f'_c} \right) + 10} \tag{2.62}$$

onde

 $V_{Flex}$  é a força nominal resistente para uma ruptura por flexão de uma laje monolítica, em lb

Vé a força nominal atuante, em lb

b é o perímetro efetivo em torno da área carregada, em in;

d e a altura efetiva da laje, em in;

 $f'_c$  é a resistência à compressão do concreto em corpos de prova cilíndricos, em psi;

r é o comprimento do lado da área quadrada carregada, em in;

e excentricidade do furo em relação ao centro do pilar, em in;

Constatou-se que as Eqs. 2.61 e 2.62 mostraram-se conservadoras para o caso das lajes da série A com quatro furos de canto, fornecendo um coeficiente de correlação de 0,905, contra 0,950 quando estes dados foram eliminados da análise estatística. As Eqs. 2.61 e 2.62 apresentaram bom desempenho na avaliação da resistência a punção das lajes com furos, fornecendo para a relação  $V_{Exp}$  V valores entre 0,82 e 1,09.

Para as lajes da série B, as Eqs. 2.61 e 2.62 previram cargas de ruptura razoáveis com o parâmetro  $V_{Flex}$   $bd\sqrt{f'_e}$  até valores aproximados de 27, mostrando-se levemente conservadora dentro do intervalo entre 28 e 35, e completamente conservadora para  $V_{Flex}$   $bd\sqrt{f'_e}$  entre 46 e 50, nos casos de lajes com quatro grandes furos de canto.

Foram realizados, então, ensaios com a série H com a finalidade de investigar os efeitos do tamanho dos furos quando quatro furos de canto (tipo 2 – Tab.2.13) são usados, pois, os pesquisadores observaram que as equações então propostas com base nos testes da série A se apresentaram conservadoras para os casos de furos quadrados de 102 mm de lado, porém, excelentes para furos de 50,8 mm. A série H também mostrou os efeitos de uma grande redução do perimetro efetivo *b* resultando em altos valores do parâmetro  $V_{Flex} / bd \sqrt{f'_c}$  que teve um valor máximo de 72 para os furos de 152 mm. Alguns ensaios foram realizados com lajes com quatro furos de canto de 318 mm de lado, resultando em modelos caracterizados por duas vigas cruzadas.

Com base em seus resultados experimentais e de MOE (1961), ROLL et *al.* (1971) propuseram expressões para previsão da resistência à punção das lajes em função de parâmetros importantes, tais como, relação dimensão do pilar/altura efetiva (*r d*), relação excentricidade do furo/altura efetiva (*e d*), perímetro efetivo *b*, resistência a compressão do concreto  $f'_c$  e carga de ruptura estimada para flexão  $V_{Flex}$ . O perímetro efetivo *b* é o perímetro reduzido em torno do pilar excluindo as partes compreendidas entre projeções radiais do centro do pilar até os furos, e a excentricidade *e* é a distância entre o centro da area carregada e o centróide da área efetiva *bd*.

Para as lajes da série H, que foram ensaiadas com o objetivo de investigar o efeito do tamanho do furo, quando quatro furos de canto estão presentes, foram definidos os casos limites laje <u>monolítica</u>, para a qual o perimetro efetivo *b* corresponde ao perímetro do pilar, e, <u>duas vigas</u> <u>cruzadas</u>, para as quais o perímetro efetivo *b* e assumido como igual a zero, resultando em  $V_{Flex} / bd \sqrt{f'_c}$  tendendo ao infinito. Observou-se que as expressões forneceram resultados satisfatórios para as lajes da série H, para valores de  $V_{Flex} / bd \sqrt{f'_c}$  até 30 Com o aumento de  $V_{Flex} / bd \sqrt{f'_c}$  além de 30, as expressões tenderam a ser mais conservadoras.

Ao analisar a relação  $V_{Exp} V$ , a Eq. 2.61 foi usada para avaliar a carga de ruptura prevista V de lajes com furos de dimensões até 152 mm, e a teoria da flexão foi usada, entretanto, para avaliar V das duas vigas cruzadas (furos de 318 mm de lado). Observou-se que as vigas com barras de diâmetro 6,35 mm romperam por escoamento da armadura na flexão, enquanto que as vigas com barras de diâmetro 9,52 mm romperam por compressão na flexão, tal que a relação  $V_{Exp}/V_{Flex}$  de 0,23 para a "laje" com barras de 9,52 mm de diâmetro (série H e b = 0) representa o limite inferior da resistência das lajes com furos de canto infinitamente grandes  $(b = 0 e V_{Flex} / bd \sqrt{f'_e} = \infty)$ .

A partir das análises anteriores utilizando o parâmetro  $V_{Flex} = b d \sqrt{f'_c}$ , entre outros, na determinação da resistência ao cisalhamento, e dentro de um intervalo normal de parâmetros da laje com  $V_{Flex} = b d \sqrt{f'_c} \le 30$ , as Eqs. 2.61 e 2.62 podem ser usadas para previsão aproximada da resistência à punção de lajes com furos.

Para grandes valores para a relação  $V_{flex} / b d \sqrt{f'_c}$ , tal como ocorre quando quatro grandes furos de canto são usados, a expressão se apresenta conservadora. Na Eq. 2.61, se  $V_{Flex} / b d \sqrt{f'_c}$  tende ao infinito, a relação  $V_{Exp} / b d \sqrt{f'_c}$  se aproxima do valor limite igual ao numerador, e conseqüentemente  $V_{Exp} / V_{Flex}$  se aproxima de zero, conduzindo a uma resistência ao puncionamento igual a zero.

Sabe-se, entretanto, que a "laje" com furos de canto de tamanho infinito teria um valor limite de  $V_{Exp}$   $V_{Flex}$  igual à relação de  $V_{Exp}$  das vigas cruzadas com a carga de flexão da laje monolítica  $V_{flex}$ . Esta relação foi encontrada como sendo igual a 0,23 para o caso de ruptura por flexão devido à compressão das vigas da série H. Considerando que os termos e/d c r/dnas Eqs. 2.61 e 2.62 tendem a se anular um com o outro para o intervalo das variáveis estudadas, e conseqüentemente, causam pouco efeito na resistência à punção das lajes, estes foram negligenciados na proposta de uma nova expressão de cálculo.

A forma final das equações propostas por ROLL et *al.* (1971), dadas pela Eqs. 2.63 e 2.64, contém apenas o parâmetro  $V_{Flex} / b d \sqrt{f'_c}$ , e o limite de  $V_{Exp} / V_{Flex}$  igual a 0,23, quando  $V_{Flex} / b d \sqrt{f'_c}$  se aproximar do infinito.

$$\frac{V}{V_{Flex}} = \frac{6.1}{5.2 + \frac{V_{Flex}}{b d \sqrt{f'_c}}} + 0.23$$
(2.63)

$$\frac{V}{bd\sqrt{f'_{c}}} = \frac{6.1}{1+5.2\frac{bd\sqrt{f'_{e}}}{V_{Flex}}} + 0.23\frac{V_{Flex}}{bd\sqrt{f'_{e}}}$$
(2.64)

GOMES e ANDRADE (1995) analisaram a contribuição da armadura de cisalhamento, na forma de "studs", na resistência última de 16 (dezesseis) lajes cogumelo de concreto armado com dimensões 3000 mm x 3000 mm x 200 mm, quando furos circulares (com diâmetro variável) estão próximos do pilar (seção quadrada de 200 mm de lado). As principais variáveis dos ensaios foram a presença e tamanho dos furos, e, o detalhamento da armadura de cisalhamento

A Fig. 2.40 mostra o detalhe dos "studs" utilizados nas lajes de GOMES e ANDRADE (1995), e que, inclusive, foi empregado no presente trabalho, porém, utilizando outras dimensões e espaçamentos. A configuração da disposição dos furos circulares em torno do pilar é apresentada na Fig. 2.41.

As lajes foram divididas em dois grupos: Grupo 1 (L12A (monolítica), L13, L14, L15 e L23 – sem armadura de cisalhamento) e Grupo 2 (Ll6 (monolítica), L17, L18, L19, L20, L21, L22, L24, L25, L26 e L27 – com armadura de cisalhamento). A Tab. 2.14 apresenta as características das lajes ensaiadas por GOMES e ANDRADE (1995).

Todas as lajes, exceto L12A e L16, tiveram furos posicionados próximo ao pilar central. As lajes L13 ( $\phi = 90$  mm), L14 ( $\phi = 151$  mm), L17 ( $\phi = 90$  mm) e L18 ( $\phi = 166$  mm) foram moldadas com apenas um furo cada, enquanto as lajes L15, L19, L21 e L22 tiveram dois furos com diâmetro de 166 mm. As demais lajes tiveram quatro furos, de 166 mm de diâmetro cada um. Nas lajes L26 e L27 foram usados quatro tubos de aço, de 202 mm de diâmetro e 190 mm de altura, dentro da laje e em torno dos furos.



Figura 2.40 - Armadura de cisalhamento utilizada por GOMES e ANDRADE (1995) - em

mm



Figura 2.41 – Disposição dos furos em relação ao pilar nas lajes de GOMES & ANDRADE (1995) – unidades em mm

As lajes L16 a L20 e L24 apresentaram oito linhas de "studs" contendo quatro camadas de elementos de armadura de 10 mm de diâmetro, enquanto as lajes L21 e L22 tiveram oito linhas e seis camadas de 8 mm e 6 mm de diâmetro para os "studs", respectivamente. Nas lajes L25, L26 e L27, a armadura compôs-se de oito linhas de armadura distribuída radialmente a partir do pilar, mas oito linhas radiais intermediárias foram adicionadas a partir da quarta camada.

| Laie |    | Furo            |              | Armadura | de cisall              | namento                        |      | f    | d    |
|------|----|-----------------|--------------|----------|------------------------|--------------------------------|------|------|------|
| Laje | Nº | tamanho<br>(mm) | Linha Camada |          | s <sub>0</sub><br>(mm) | $s_{\theta}$ $s_{r}$ (mm) (mm) |      | MPa  | (mm) |
| L12A | 0  | -               | -            | -        | -                      | -                              | -    | 36,5 | 163  |
| L13  | 1  | φ = 90          |              | -        | -                      | -                              | -    | 31,4 | 153  |
| L14  | 1  | $\phi = 151$    | -            |          | -                      | -                              | -    | 31,4 | 155  |
| L15  | 2  | φ = 166         | -            | -        | -                      | -                              | -    | 27,8 | 148  |
| L23  | 4  | φ = 166         | -            | -        | -                      | -                              | -    | 36,4 | 160  |
| L16  | -  | -               | 8            | 4        | 80                     | 80                             | 10,0 | 34,6 | 156  |
| L17  | 1  | φ = 90          | 8            | 4        | 80                     | 80                             | 10,0 | 34,1 | 166  |
| L18  | 1  | φ = 166         | 8            | 4        | 80                     | 80                             | 10,0 | 36,8 | 165  |
| L19  | 2  | φ = 166         | 8            | 4        | 80                     | 80                             | 10,0 | 36,6 | 165  |
| L20  | 4  | φ = 166         | 8            | 4        | 80                     | 80                             | 10,0 | 33,8 | 159  |
| L24  | 4  | φ = 166         | 8            | 4        | 40                     | 80                             | 10,0 | 35,0 | 161  |
| L25  | 4  | φ = 166         | 8/8          | 6/3      | 80                     | 80                             | 10,0 | 34,2 | 160  |
| L26  | 4  | φ = 166         | 8/8          | 6/3      | 80                     | 80                             | 10,0 | 36,7 | 169  |
| L27  | 4  | φ = 166         | 8/8          | 10/5     | 80                     | 80                             | 10,0 | 30,7 | 169  |
| L21  | 2  | φ = 166         | 8            | 6        | 80                     | 80                             | 8,0  | 36,3 | 165  |
| L22  | 2  | φ = 166         | 8            | 6        | 80                     | 80                             | 6,0  | 34,5 | 164  |

Tabela 2.14 - Caracteristicas das lajes ensaiadas por GOMES e ANDRADE (1995)

A laje L12A sem furos e sem armadura de cisalhamento rompeu por punção com carga de 650 kN, e as lajes L13, L14, L15 e L23, sem armadura de cisalhamento, mas com furos, romperam com, respectivamente, 600 kN, 556 kN, 554 kN e 550 kN, como mostra a Tab.2.15.

As cargas de ruptura das lajes L16 a L19, todas com armadura de cisalhamento e, exceto a laje L16, com um ou dois furos, foram 1140 kN, 1096 kN, 992 kN e 1010 kN, respectivamente. A laje L20, com quatro furos, rompeu sob carga de 780 kN, enquanto as lajes L21 e L22, com dois furos, romperam por punção com cargas iguais a 896 kN e 832 kN, respectivamente. A laje L24, similar à laje L20, mas com um espaçamento menor entre a primeira camada de armadura e a face do pilar, rompeu sob carga de 890 kN. As lajes L25, L26 e L27 romperam com cargas iguais a, respectivamente, 900 kN, 985 kN e 985 kN, sendo que a laje L27 rompeu por flexão.

| Laje | <i>f</i> <sub>c</sub><br>(MPa) | <i>d</i><br>(mm) | V <sub>Exp</sub><br>(kN) | Modo de<br>ruptura | Superficie de ruptura                                   |
|------|--------------------------------|------------------|--------------------------|--------------------|---------------------------------------------------------|
| L12A | 36,5                           | 163              | 650                      | Punção             | A partir do pilar                                       |
| L13  | 31,4                           | 153              | 600                      |                    |                                                         |
| L14  | 31,4                           | 155              | 556                      |                    |                                                         |
| L15  | 27,8                           | 148              | 554                      |                    | •                                                       |
| L16  | 34,6                           | 156              | 1140                     | 81                 | Externa à armadura de cisalhamento                      |
| L17  | 34,1                           | 166              | 1096                     |                    |                                                         |
| L18  | 36,8                           | 165              | 992                      |                    |                                                         |
| L19  | 36,6                           | 165              | 1010                     |                    | н                                                       |
| L20  | 33,8                           | 159              | 780                      | м                  | Adjacente ao pilar (interna à armadura de cisalhamento) |
| L21  | 36,3                           | 165              | 896                      | **                 | Cruzando a armadura de cisalhamento                     |
| L22  | 34.5                           | 164              | 832                      |                    |                                                         |
| L23  | 36,4                           | 160              | 550                      |                    | A partir do pilar                                       |
| L24  | 35,0                           | 161              | 890                      | н                  | Externa à armadura de cisalhamento                      |
| L25  | 34,2                           | 160              | 900                      | 11                 | Cruzando a armadura de cisalhamento                     |
| L26  | 36,7                           | 169              | 985                      |                    | Externa à armadura de cisalhamento                      |
| L27  | 30,7                           | 169              | 985                      | Flexão             |                                                         |
|      |                                |                  |                          |                    |                                                         |

Tabela 2.15 – Resultados dos ensaios das lajes de GOMES e ANDRADE (1995)

Os resultados apresentados neste trabalho mostraram que a existência de furos reduziu a resistência à punção de uma laje cogumelo de concreto armado. Entretanto, o uso de armadura de cisalhamento, em laje com furo, permitiu a recuperação de tal perda, e além disto, possibilitou o alcance de resistências à punção mais elevadas quando comparadas com lajes sem furos e sem armadura de cisalhamento.

Observou-se nos resultados que a utilização de armadura de cisalhamento em lajes com furos permitiu a mudança no mecanismo de ruptura das lajes, como foi o caso da L19 e L20. Os autores relataram que, por outro lado, os resultados sugeriram que deve existir um limite de correlação entre a perda de resistência devido à existência de furos e a capacidade para redução da perda de resistência com o uso de armadura de cisalhamento na região em torno do pilar. Duas lajes testadas pelos autores mostraram que pode ser possível aumentar tal limite com o uso de tubos em torno dos furos (Lajes L26 e L27).

A Fig.2.42 apresenta a seção transversal das lajes mostrando a disposição da armadura de cisalhamento e a configuração das superfícies de ruptura das lajes ensaiadas por GOMES & ANDRADE (1995)



Figura 2.42 - Lajes ensaiadas por GOMES e ANDRADE (1995)

TENG et *al.* (1999) analisaram a influência de furos adjacentes ao pilar na resistência ao puncionamento de lajes cogumelo de concreto armado. Para isso, além das 5 (cinco) lajes monolíticas mencionadas anteriormente, os autores ensaiaram, adicionalmente, 15 (quinze) lajes quadradas de dimensões 2200 mm x 2200 mm x 150 mm, apoiadas em pilares com relação entre lados iguais a 1, 3 e 5. Foram analisadas diversas posições para os furos (200 mm x 400 mm) e diferentes taxas de carregamento nas direções x e y. A Tab.2.16 apresenta as características de todas as lajes de TENG et *al.* (1999).

|         | Pi   | lar   | Concreto |            | Armadura |      | IZ.  |
|---------|------|-------|----------|------------|----------|------|------|
| Laje    |      |       |          | Posição do | de flo   | exão | VExp |
|         | Cmin | C máx | $f'_c$   | furo       | d        | ρ    | (kN) |
|         | (mm) | (mm)  | (MPa)    |            | (mm)     | (%)  |      |
| OC11    | 200  | 200   | 36,0     | -          | 105      | 1,81 | 423  |
| OC11H30 | 200  | 200   | 33,9     | $\square$  | 108      | 1,70 | 349  |
| OC11V23 | 200  | 200   | 34,1     |            | 109      | 1,69 | 373  |
| OC11V20 | 200  | 200   | 38,6     |            | 105      | 1,74 | 207  |
| OC13    | 200  | 600   | 35,8     | -          | 107      | 1,71 | 568  |
| OC13H50 | 200  | 600   | 36,3     |            | 110      | 1,67 | 443  |
| OC13V43 | 200  | 600   | 36.6     |            | 114      | 1,61 | 467  |
| OC13V23 | 200  | 600   | 36,9     | $\square$  | 108      | 1,70 | 484  |
| OC13V40 | 200  | 600   | 43,0     | $\square$  | 109      | 1,69 | 340  |
| OC13H02 | 200  | 600   | 43,1     |            | 112      | 1,64 | 512  |
|         |      |       |          |            |          |      |      |

Tabela 2.16 - Características das lajes ensaiadas por TENG et al. (1999)

|                    | Pilar                    |                          | Concreto     | Posição do | Armadura<br>de flexão |          | V <sub>Exp</sub> |
|--------------------|--------------------------|--------------------------|--------------|------------|-----------------------|----------|------------------|
| Laje               | C <sub>min</sub><br>(mm) | C <sub>máx</sub><br>(mm) | f'c<br>(MPa) | furo       | <i>d</i><br>(mm)      | ρ<br>(%) | (kN)             |
| OC13-α=1,6         | 200                      | 600                      | 33.0         |            | 110                   | 1,67     | 508              |
| OC13H50-α=1,6      | 200                      | 600                      | 33,1         | $\square$  | 115                   | 1,60     | 428              |
| OC13V43-α=1,6      | 200                      | 600                      | 33,2         | $\square$  | 111                   | 1,65     | 383              |
| OC13H02-α=1,6      | 200                      | 600                      | 37,5         |            | 114                   | 1,61     | 420              |
| OC13-β=0,63        | 200                      | 600                      | 39,7         | -          | 111                   | 1,65     | 455              |
| OC13H50-<br>β=0,63 | 200                      | 600                      | 39,8         |            | 110                   | 1,67     | 511              |
| OC13V23-<br>β=0,63 | 200                      | 600                      | 35,7         |            | 110                   | 1,67     | 488              |
| OC15               | 200                      | 1000                     | 40,2         |            | 103                   | 1,76     | 649              |
| OC15H70            | 200                      | 1000                     | 37,9         |            | 108                   | 1,67     | 529              |
| OC15V43            | 200                      | 1000                     | 36,0         |            | 109                   | 1,66     | 612              |

Tabela 2.16 - Características das lajes ensaiadas por TENG et al. (1999) (continuação)

As lajes testadas tiveram ruptura frágil e repentina por punção, e, as lajes sem furos apresentaram as maiores cargas de ruptura, em relação às outras lajes de sua série.

Como mencionado anteriormente, no item "PILARES RETANGULARES", os autores constataram que grande parte da tensão de cisalhamento está concentrada nas extremidades do pilar retangular, sugerindo que a resistência à punção da laje é determinada pela resistência da laje em torno da região extrema do pilar retangular. Tal fato pode ser constatado através das cargas de ruptura das lajes OC11V20 e OC13V40, com o furo

localizado na região extrema do pilar, que tiveram as menores cargas de ruptura por punção. correspondentes a 207 kN e 340 kN, respectivamente.

A presença de furos adjacentes ao pilar provocou redução da resistência última de, no minimo, 6%, no caso das lajes com pilar de seção 200 mm x 1000 mm, e de, no máximo, 51%, no caso das lajes com pilar de menor seção transversal.

Para lajes com furos, os pesquisadores propuseram algumas mudanças na BS8110 (1985) com relação ao perímetro crítico. Na presença de furos, as linhas radiais se originam do centro da parte extrema da área carregada ou pilar, e não do centro da área carregada, como recomendado pelo ACI (1995) e BS8110 (1985). Quando o furo estiver localizado a uma distância menor que 6*d* a partir do pilar, o trecho do perímetro, compreendido pelas linhas radiais que partem da parte extrema do pilar até o furo, é considerada inefetiva, como pode ser visto na Fig. 2.43.



Figura 2.43- Perimetro crítico efetivo recomendado por TENG et al. (1999) para lajes com furos

Uma análise, em separado, dos resultados experimentais das 20 (vinte) lajes, e também, juntamente com outras 114 (cento e quatorze) lajes ensaiadas por MOE (1961) e ROLL et *al.* (1971), mediante a comparação com os resultados obtidos das normas, é mostrada na Tab.2.17. São comparados os resultados médios das relações  $V_{calc} = V_{Exp}$ , desvio padrão e coeficiente de variação.
Observa-se na Tab.2.17 que o cálculo do perímetro crítico de uma laje com pilar retangular e furos, segundo ACI (1995) e EUROCODE 2 (1992), com as linhas radiais partindo do centro do pilar não fornece resultados satisfatórios. A utilização do perímetro crítico calculado de acordo com as recomendações sugeridas pelos pesquisadores, como uma extensão para a BS8110 (1985), fornece resultados mais satisfatórios.

Os coeficientes estudados, considerando o total de 134 lajes, apresentaram valores menos satisfatórios que os obtidos da análise feita para as 20 lajes apenas. Isto mostra que a aplicação das recomendações normativas para lajes com pilares retangulares e furos, propostas pelas normas de projeto comentados, não se mostra eficaz nas lajes com furos e pilares quadrados, especialmente as normas do ACI (1995) e do EUROCODE 2 (1992).

TENG et *al.* (1999) apresentaram as recomendações das normas do ACI 318 (1995), BS8110 (1985) e EUROCODE 2 (1992) para o cálculo de lajes cogumelo sem armadura de cisalhamento. Na presença de furos nas lajes, o BS8110 (1985) e o EUROCODE 2 (1992) negligenciam o efeito do furo se ele estiver localizado além da distância de 6*d* a partir do pilar, enquanto que o ACI (1995) despreza o efeito do furo se estiver situado além de 10*h* a partir do pilar.

| Método                                                  | Coeficiente                                                                       | 20 lajes BCA-<br>NTU           | 134 lajes                      |
|---------------------------------------------------------|-----------------------------------------------------------------------------------|--------------------------------|--------------------------------|
| BS8110 (1985) com<br>recomendações dos<br>pesquisadores | V <sub>calc</sub> V <sub>Exp</sub><br>Desvio padrão<br>Coeficiente de<br>variação | 0,891<br>0,114<br><b>0,128</b> | 0,881<br>0,192<br><b>0,218</b> |
| ACI (1995)                                              | V <sub>calc</sub> V <sub>Exp</sub><br>Desvio padrão<br>Coeficiente de<br>variação | 0,685<br>0,111<br>0,162        | 0,622<br>0,181<br>0,291        |
| EUROCODE 2 (1992)                                       | V <sub>cale</sub> V <sub>Exp</sub><br>Desvio padrão<br>Coeficiente de<br>variação | 0,697<br>0,112<br>0,161        | 0,616<br>0,164<br>0,266        |

Tabela 2.17 – Comparação entre as recomendações propostas por TENG et *al.* (1999) e algumas normas de projeto

84

EL-SALAKAWY et *al* (1999) investigaram o efeito de furos no comportamento ao puncionamento de ligações laje-pilar de borda de lajes cogumelo de concreto armado, através de testes em 6 (seis) lajes retangulares de dimensões 1540 mm x 1020 mm x 120 mm, apoiadas em pilares quadrados com lados iguais a 250 mm e comprimento total de 1520 mm, das quais apenas uma laje não possuiu furo.

Os principais parâmetros estudados foram a localização e o tamanho do furo (250 mm x 250 mm c 150 mm x 150 mm). A Fig. 2.44 apresenta os modelos das lajes e a Tab.2.18 apresenta as características principais e os resultados de cargas de ruptura experimentais e estimadas pela norma do ACI 318 (1995).

Devido à existência de furo adjacente ao pilar, a quantidade de armadura de flexão equivalente àquela interrompida pelo mesmo foi adicionada nos lados do furo, com base nas prescrições do ACI (1995), como mostra a Fig. 2.45.



Figura 2.44 - Lajes ensaiadas por EL-SALAKAWY et al. (1999) - unidades em mm

| Laia | d    | $f_c$ | Furo                                | (mm) |     | V <sub>Exp</sub> | VACI | VExp/            | Superficie de     |
|------|------|-------|-------------------------------------|------|-----|------------------|------|------------------|-------------------|
| Laje | (mm) | (MPa) | C <sub>mín</sub> = C <sub>máx</sub> | Lſ*  | Df* | (kN)             | (kN) | V <sub>4CI</sub> | ruptura           |
| XXX  | 90   | 33,0  | 150                                 | -    | -   | 125              | 90   | 1,39             | A partir do pilar |
| SEO  | 90   | 31,5  | 150                                 | L    | 0   | 120              | 75   | 1,60             |                   |
| SFO  | 90   | 32,5  | 150                                 | F    | 0   | 110              | 55   | 2,00             | W                 |
| SFO  | 90   | 33,0  | 150                                 | F    | 90  | 115              | 72   | 1,60             | 99                |
| SFO  | 90   | 30,0  | 150                                 | F    | 180 | 114              | 73   | 1,56             | 64                |
| CFO  | 90   | 30,5  | 250                                 | F    | 0   | 87               | 36   | 2,42             |                   |

Tabela 2.18 - Características principais e resultados das lajes ensaiadas por EL-

SALAKAWY et al. (1999)

Lf\* - Localização do furo em relação ao pilar, como mostra a Fig. 2.44

F - em frente ao pilar

L - ao lado do pilar

Df\*- Distância do furo em relação ao pilar (face a face)



Figura 2.45 – Detalhamento da armadura principal de flexão da laje SEO testada por EL-SALAKAWY et *al.* (1999)

A laje CFO, com o furo de dimensões 250 mm x 250 mm e adjacente ao pilar, apresentou os deslocamentos verticais superiores em até 143% àquelas da laje XXX, sem furo, para niveis de carga correspondentes, enquanto que os deslocamentos máximos das lajes com furos de dimensões 150 mm x 150 mm foram superiores em até 32% àquelas medidas na laje XXX. Isto mostra que a redução da rigidez da laje devido à presença de furos foi mais significativa na laje com furo de maior dimensão.

O tamanho do furo também influenciou a resistência da laje, pois, a resistência última daquela com furo de maior dimensão, sofreu redução de 30% em relação à da laje sem furo, enquanto que, a redução na resistência da laje com furo de menor dimensão, foi de até 12%.

Observou-se também, que a distância entre a face do pilar e o furo influenciou a capacidade das ligações entre laje e pilar, pois nas lajes que tiveram os furos posicionados a uma distância igual a d e 2d (d e a altura útil da laje) da face do pilar, a resistência à punção diminuiu, em média, 8,5%, em relação à laje sem furo, enquanto que na laje com o furo adjacente ao pilar, a redução da resistência foi de 12%.

Conforme constatado pelos pesquisadores, para as lajes retangulares com furos localizados na vizinhança do pilar de borda, a norma do ACI 318 (1995) forneceu valores conservadores para a resistência da ligação laje-pilar de borda, especialmente para aquelas com furos de dimensões 250 mm x 250 mm.

REGAN (1999) realizou testes em 8 (oito) lajes cogumelo de concreto armado, com furos e armadura de cisalhamento, apoiadas em pilares retangulares. O objetivo do estudo foi analisar o efeito de furos adjacentes a pilares na resistência última dessas lajes e a minimização da perda de resistência devido ao uso da armadura de punção.

Como mencionado pelo autor, as normas de projeto que tratam o assunto de punção, não apresentam recomendações específicas quando se utiliza armadura de cisalhamento em lajes com furos, embora recomendem uma armadura mínima quando esses estão presentes. Adicionalmente, certas normas de projeto consideram de formas diferentes a redução do perímetro de controle do pilar devido aos furos no cálculo da resistência à punção.

Conforme comentado pelo autor, as sugestões propostas pela norma BS8110 (1985), para o cálculo do perimetro efetivo de controle de lajes com furos adjacentes ao pilares, se apresentam conservadoras e até mesmo incoerentes, pois, prevêem que um furo adjacente ao lado menor de um pilar retangular é menos prejudicial que ao lado maior, ao contrário do que mostram análises elásticas utilizando o "Método dos Elementos Finitos" apresentadas por alguns pesquisadores. Além disso, a norma ignora uma eventual excentricidade do perímetro reduzido, e prevê que a armadura de punção colocada nos locais indicados na Fig.2.46 é inefetiva.



Figura 2.46 – Locais onde armadura de punção é inefetiva, segundo a BS8110 (1985)

Como proposta para o cálculo do perímetro efetivo de controle de lajes com furos e sujcitas à punção, para o Handbook to BS8110/85 (1987), REGAN (1974) propôs um método de cálculo para estimar a influência do furo na resistência da laje. Este método consiste em deduzir do perímetro crítico total o trecho compreendido entre linhas paralelas que tangenciam os vértices do furo (Fig.2 47), ao contrário do método da BS8110/85, onde as linhas são projeções radiais.



Figura 2.47 – Perímetro de controle proposto por REGAN (1974) para o Handbook to BS8110/85 (1987)

As oito lajes testadas por REGAN (1999) foram projetadas para avaliar as prescrições da norma BS8110 (1985) e do Handbook to BS8110 (1987) no tratamento de furos e para explorar o uso de armadura de cisalhamento, destinada a diminuir a perda de resistência resultante dos furos.

As lajes com dimensões 2000 mm x 2000 mm x 160 mm se apoiaram centralmente em pilares de 150 mm x 250 mm e foram submetidas a oito pontos de carga iguais, como pode ser visto na Fig 2.48. A Tab.2.19 apresenta as características básicas, as cargas e modos de ruptura, bem como a posição dos furos em relação ao pilar, das lajes ensaiadas por REGAN (1999). A Fig. 2.49 apresenta a distribuição da armadura de cisalhamento das lajes de REGAN (1999).



Figura 2.48 - Lajes ensaiadas por REGAN (1999) - unidades em mm

A laje 1, sem furos, e a laje 2, com furos nos dois lados do pilar, não tiveram armadura de cisalhamento. As lajes 3 e 4, semelhantes às lajes 1 e 2, respectivamente, em termos de furos, tiveram armadura de cisalhamento mínima calculada conforme as exigências do BS8110 (1985). Essa armadura foi colocada em duas camadas em torno do pilar, com o detalhamento levemente modificado para se adequar aos furos.

|      | Fu      | ILOS                   | Arm<br>cisa          | nadura de<br>Ihamento                 | VErn | Modo          | Superficie                                |
|------|---------|------------------------|----------------------|---------------------------------------|------|---------------|-------------------------------------------|
| Laje | Posição | Tamanho<br>(mm)        | Tipo                 | $\frac{\sum A_{sy} f_{y} senu}{(kN)}$ | (kN) | de<br>ruptura | de ruptura                                |
| 1    | -       | -                      | 7                    | -                                     | 456  | Punção        | A partir do<br>pilar                      |
| 2    | XX      | 100 x 150              | -                    | ÷                                     | 396  |               |                                           |
| 3    | -       |                        | Tiras de<br>perfil I | 201                                   | 516  | •             | Cruzando a<br>armadura de<br>cisalhamento |
| 4    | XX      | 100 x 150              | Tiras de<br>perfil I | 201 <sup>(1)</sup>                    | 476  | •             |                                           |
| 5    |         | 100 x 150              | Tiras de<br>perfil I | 80                                    | 496  |               |                                           |
| 6    | XXX     | 100 x 100<br>100 x 150 |                      |                                       | 296  |               | A partir do<br>pilar                      |
| 7    | XXX     | 100 x 100<br>100 x 150 |                      | -                                     | 296  |               |                                           |
| 8    | XXX     | 100 x 100<br>100 x 150 | Barra<br>dobrada     | -                                     | 336  |               | Cruzando a<br>armadura de<br>cisalhamento |

Tabela 2.19 - Características, cargas e modos de ruptura das lajes de REGAN (1999)

<sup>(1)</sup> excluindo os dois elementos imediatamente externos aos furos; d=124 mm e  $\rho=1,30\%$ 

A laje 5 teve a disposição dos furos semelhante à da laje 4, porém, apresentou a armadura de cisalhamento apenas adjacente aos furos e com uma resistência ao escoamento suficiente para suprir a perda de resistência ao cisalhamento fornecida pelo concreto devido aos furos.

A laje 6, com quatro furos adjacentes ao pilar, não possuiu armadura de cisalhamento. As lajes 7 e 8, também com quatro furos, tiveram a armadura de cisalhamento constituida de barras dobradas posicionadas em baixo e em cima do pilar, respectivamente, e colocadas ao lado dos furos e adjacentes às maiores faces do pilar.

Na laje 7, pretendeu-se confeccionar a armadura de cisalhamento da atual laje 8, porém foi moldada com as barras dobradas colocadas em posição invertida. Desta forma, o autor tratou a laje 7 como se não tivesse armadura de cisalhamento.



Figura 2.49 – Distribuição da armadura de cisalhamento utilizada por REGAN (1999) – em mm

A armadura de flexão negativa utilizada nas lajes de REGAN (1999) consistiu de barras de 16 mm a cada 120 mm, dispostas na direção paralela ao lado maior do pilar, e de barras de 16 mm a cada 130 mm, na outra direção, de forma que as armaduras tivessem resistências à flexão iguais. Nas extremidades das barras foram adicionadas barras em "U" de 12 mm para fornecer a ancoragem necessária. A armadura de flexão positiva foi constituída de barras de 8

mm espaçadas igualmente à armadura de flexão negativa. A Fig.2.50 mostra o detalhamento da armadura negativa de flexão utilizada pelo autor.



Figura 2.50 – Detalhamento da armadura negativa de flexão utilizada por REGAN (1999) – unidades em mm

Todas as lajes romperam por punção. Os resultados dos testes de REGAN (1999) mostraram que o tratamento dado pelo BS8110 (1985) para a presença de furos na resistência à punção foi bastante conservador, enquanto que a proposta recomendada pelo Handbook to BS8110/85 (1987) forneceu bons resultados.

A armadura de cisalhamento local, colocada nos lados dos furos, pode ser altamente efetiva no restabelecimento da resistência perdida devido ao furo e, que, para furos com largura total igual a 3/8 do perímetro do pilar, a armadura de cisalhamento local somada à armadura mínima prescrita pela norma, resultou em resistências levemente acima daquelas de uma laje sem furo e sem armadura de cisalhamento.

Em geral, a armadura de cisalhamento foi mais efetiva quando colocada próxima ao furo. O uso de barras dobradas como armadura de cisalhamento aumentou a resistência da laje com furo, o qual removeu 5/8 da interface laje-pilar, e para o caso onde a resistência foi governada

pelas condições locais na face do pilar. O autor sugere que o limite superior para a resistência à punção poderia ser modificado para permitir um aumento quando uma parte da carga é transmitida diretamente ao pilar através da barra inclinada.

IOANNOU (2001) ensaiou 5 (cinco) lajes circulares de 2000 mm de diàmetro (vão efetivo de 1700 mm) e 170 mm de espessura (d = 134 mm), resistência à compressão entre 40 e 60 MPa, apoiadas em pilares quadrados de 200 mm de lado.

As variáveis estudadas foram o tamanho e posicionamento dos furos e o detalhamento da armadura de cisalhamento (Tab.2.20 e Fig 2.51). As lajes foram apoiadas centralmente no pilar e submetidas a carregamento através de oito pontos próximos às bordas da laje.

A armadura de cisalhamento foi constituída por "shearbands" de 25,4 mm de largura e 1,2 mm de espessura ( $f_{ys} = 550$  MPa e  $f_{us} = 600$  MPa). Um detalhe típico da armadura de cisalhamento utilizada é apresentado na Fig. 2.52.

Observa-se na Tab 2.20 que a laje PSSCH1, com um modelo de furo altamente excêntrico, apresentou a maior carga de ruptura, e, fazendo uma ponderação na resistência do concreto entre as lajes PSSCH4a e PSSCH4b, a armadura de cisalhamento da laje PSSCH4a produziu um aumento na resistência à punção de aproximadamente 22%, quando comparada com a laje PSSCH4b, que não teve armadura de cisalhamento.

IOANNOU (2001) analisou os resultados experimentais baseando-se nas prescrições da norma do CEB-FIP MC90 (1991) para lajes com armadura de cisalhamento, mas usando uma aproximação diferente da norma com relação à presença de furos. Entretanto, a autora utiliza na expressão da norma a quantidade de armadura de cisalhamento dentro do espaçamento de 1,5d da face do pilar com números desiguais de elementos em sucessivas camadas, ao invés de utilizar a quantidade de armadura recomendada pelo CEB-FIP MC90 (1991) ( $1,5 \frac{d}{s} A_{sw}$ ).

Outro procedimento utilizado por IOANNOU (2001) foi utilização de perimetro crítico efetivo  $(u_1)$  devido à presença de furo. Para furos dispostos simetricamente em relação ao pilar, o perímetro foi determinado de acordo com o Handbook to BS8110 (1987), com exceção daquela laje onde o furo percorre todo o lado do pilar, sendo que neste caso, uma

dedução do perímetro foi feita com trechos compreendidos dentro de um ângulo de 22,5 graus (Fig 2.53).

|         |     | e                  |                        | Furos   | V-                     | Modo de<br>ruptura<br>Punção após<br>esmagamento<br>do concreto em<br>torno do pilar<br>Flexo-<br>puncionamento<br>Punção |
|---------|-----|--------------------|------------------------|---------|------------------------|---------------------------------------------------------------------------------------------------------------------------|
| Laje    | A/C | <i>јс</i><br>(МРа) | Dimensões<br>(mm x mm) | Detalhe | — <i>V Exp</i><br>(kN) | ruptura                                                                                                                   |
| PSSCH1  | Sim | 48,0               | 400 x 400              |         | 492                    | Punção após<br>esmagamento<br>do concreto em<br>torno do pilar                                                            |
| PSSCH2  | Sim | 39,2               | 200 x 400              |         | 433                    | Flexo-<br>puncionamento                                                                                                   |
| PSSCH3  | Sim | 41,6               | 200 x 400              |         | 386                    | Punção<br>(cruzando a<br>armadura de<br>cisalhamento)                                                                     |
| PSSCH4a | Sim | 41,6               | 200 x 400              |         | 415                    | Punção após<br>esmagamento<br>do concreto em<br>torno do pilar                                                            |
| PSSCH4b | Não | 32,8               | 200 x 400              |         | 313                    | Punção<br>(cruzando a<br>armadura de<br>cisalhamento)                                                                     |

| Tabela 2.20 - | Características, | cargas e modos | de ruptura da | s lajes d | le IOANI | VOU | (2001) |
|---------------|------------------|----------------|---------------|-----------|----------|-----|--------|
|               |                  | 0              |               | 9         |          |     | - /    |



Figura 2.51 – Distribuição da armadura de cisalhamento utilizada por IOANNOU (2001)



Figura 2.52 – Detalhe dos "shearbands" utilizados por IOANNOU (2001)

Para a laje PSSCH1, foram utilizadas duas aproximações para o cálculo do perímetro crítico. Uma delas é levar em conta a excentricidade do furo com a redução do perímetro, considerando o furo real e um furo fictício, restabelecendo a simetria, como mostra a Fig. 2.54. A outra aproximação é considerar o pilar como sendo de borda, como mostra a Fig. 2.55.

A Tab. 2.21 apresenta os resultados dos cálculos segundo o CEB-FIP MC90 (1991), e uma comparação entre as cargas experimentais e teóricas.



Figura 2.53 – Tratamento alternativo de furos proposto por IOANNOU (2001)



Figura 2.54 – Perímetros de controle para as lajes ensaiadas por IOANNOU (2001)



Figura 2.55 - Tratamento da laje PSSCH1 como laje com pilar de borda

|              |            |                              | (20         | 01)                      |                       |                           |           |
|--------------|------------|------------------------------|-------------|--------------------------|-----------------------|---------------------------|-----------|
| Laje         | n          | <i>V<sub>c</sub></i><br>(kN) | Vs<br>(kN)  | V <sub>c+s</sub><br>(kN) | V <sub>Exp</sub> (kN) | $V_{Exp}/V_{c+s}$<br>(kN) | Obs.      |
| Descuu       | 22         | 158                          | 231         | 350                      | 492                   | 1,41                      | Fig. 2.54 |
| PSSCHI       | 26         | 229                          | 273         | 445                      | 492                   | 1,11                      | Fig. 2.55 |
| PSSCH2       | 26         | 289                          | 273         | 490                      | 433                   | 0,88                      |           |
| PSSCH3       | 20         | 151                          | 210         | 323                      | 386                   | 1,20                      |           |
| PSSCH4a      | 20         | 281                          | 210         | 421                      | 415                   | 0,99                      |           |
| PSSCH4b      | -          | 259                          | -           | 259                      | 313                   | 1,21                      |           |
| n – número d | le element | tos efetivos d               | la armadura | de cisalham              | ento (10,5            | kN, cada um               | )         |

Tabela 2.21 – Comparação entre cargas experimentais e teóricas das lajes de IOANNOU

Com relação à laje PSSCH1, o tratamento como pilar de borda (Fig.2.55) é claramente preferível em relação à adição de um furo fictício para restabelecer a simetria, embora a aproximação do furo fictício fornece bons resultados para furos menores.

As previsões para as lajes PSSCH3, PSSCH4a e PSSCH4b são razoavelmente boas considerando as dificuldades em estimar o total de armadura que contribui para  $\Sigma A_{se}$  (área da armadura de cisalhamento), o que não ocorreria se a armadura de cisalhamento estivesse melhor posicionada. A resistência à punção calculada para a laje PSSCH2 foi superestimada pelo CEB-FIP (1991), mas isto pode ser calculado bem pela teoria das linhas de escoamento.

SILVA (2003), além de analisar a influência da relação  $c_{max} c_{min}$  do pilar na resistência das lajes, investigou o comportamento de lajes cogumelo de concreto armado sob influência da presença de furos quadrados (150 mm x 150 mm) e de armadura de cisalhamento. Foram

ensaiadas até a ruptura 8 (oito) lajes quadradas de 1800 mm de lado e 130 mm de espessura (d = 90 mm), sob carregamento concêntrico.

As lajes ensaiadas foram divididas em quatro grupos, sendo a principal variável de cada grupo, a relação entre lados do pilar: Grupo 1 (lajes monolíticas, apresentadas anteriormente), Grupo 2 (L4, L5 e L6 – lajes com furos), Grupo 3 (L7, L8 e L9 – lajes com armadura de cisalhamento) e Grupo 4 (L10 e L11 – lajes com furos e armadura de cisalhamento). A Tab.2.22 e Fig.2.56 apresentam as características das lajes com furos e/ou armadura de cisalhamento ensaiadas.

A armadura de cisalhamento utilizada nas lajes L7, L8, L9, L10 e L11 foi composta de elementos de aço interconectados por chapas, também de aço, nas suas extremidades ("stud"). Os "studs" foram compostos por vergalhões de aço CA-50 ( $\phi = 8$ mm e comprimento de 105 mm) soldados, em suas extremidades, a chapas de aço de 30mm de largura e 10mm de espessura. A Fig. 2.57 mostra o detalhe do "stud" utilizado por SILVA (2003).

| <b>Grupo</b><br>2<br>3 |      | Dilan     | Ø            |          |      | Armadura de cisalhamento |           |                                            |                            |  |  |
|------------------------|------|-----------|--------------|----------|------|--------------------------|-----------|--------------------------------------------|----------------------------|--|--|
| Grupo                  | Laje | (mm x mm) | J c<br>(MPa) | ρ<br>(%) | Furo | Nº cam.                  | ф<br>(mm) | A <sub>se</sub> /cam<br>(mm <sup>2</sup> ) | $s_{\theta} = s_r$<br>(mm) |  |  |
|                        | L4   | 150 x 150 | 39,4         | 1,57     | sim  | -                        | -         | -                                          | -                          |  |  |
| 2                      | L5   | 150 x 300 | 39,6         | 1,57     | sim  | -                        | -         | -                                          | -                          |  |  |
|                        | L6   | 150 x 450 | 39,1         | 1,57     | sim  | -                        | -         | -                                          | -                          |  |  |
|                        | L7   | 150 x 150 | 49,0         | 1,45     | não  | 3                        | 8,0       | 402                                        | 42                         |  |  |
| 3                      | L8   | 150 x 300 | 49,4         | 1,45     | não  | 2 e 3                    | 8,0       | 302 e 402                                  | 42                         |  |  |
|                        | L9   | 150 x 450 | 50,2         | 1,45     | não  | 3                        | 8,0       | 302                                        | 42                         |  |  |
| A                      | L10  | 150 x 150 | 40,0         | 1,57     | sim  | 3                        | 8,0       | 302                                        | 42                         |  |  |
| 4                      | LII  | 150 x 300 | 40,8         | 1,57     | sim  | 3                        | 8.0       | 302                                        | 42                         |  |  |

Tabela 2.22 - Características das lajes ensaiadas por SILVA (2003)



Figura 2.56 – Características das lajes com furos e/ou armadura de cisalhamento de SILVA

(2003) - unidades em mm



Figura 2.57 - Armadura de cisalhamento das lajes L7 a L11 - unidades em mm

As lajes L4, L5 e L6 similares às lajes monolíticas L1, L2 e L3, respectivamente, porém com dois furos adjacentes ao pilar, romperam sob carga equivalente a 225, 350 e 375 kN. Observa-se na Tab. 2.23, que a presença de furos reduziu entre 13% e 20% a carga de ruptura das lajes.

As lajes L7, L8 e L9, também similares, respectivamente, a L1, L2 e L3, mas com armadura de cisalhamento (distribuídas para obter perímetros de controle semelhantes), apresentaram cargas de ruptura iguais a 420 kN, 452 kN e 452 kN, respectivamente. Na laje com pilar de seção transversal quadrada, observa-se que houve aumento da resistência última (em torno de 54%) com a utilização de armadura de cisalhamento disposta radialmente.

O ganho de resistência com a utilização da armadura de cisalhamento na laje 2, resultando na laje L8, foi de aproximadamente 13%. Entretanto, a disposição utilizada para a armadura de cisalhamento na laje com pilar de maior seção transversal (150 mm x 450 mm), praticamente não alterou a carga de ruptura da laje, como pode ser visto quando se comparam as lajes L3 c L9. O aumento da carga de ruptura, devido à contribuição da armadura de cisalhamento, apresentou uma tendência em diminuir com o acréscimo da relação entre lados do pilar, para o caso específico do detalhamento utilizado nesta pesquisa.

As lajes L10 e L11, com pilares de seção retangular (relações  $c_{max} c_{min}$  iguais a 1 e 2), furos e armadura de cisalhamento, romperam com cargas iguais a, respectivamente, 325 kN e 350 kN. Verifica-se com os resultados que a armadura de cisalhamento utilizada na laje com pilar de seção quadrada e com furos, possibilitou que a laje alcançasse uma resistência última superior à de uma laje monolítica sem tal armadura, e superasse em 19%. O mesmo fato não foi observado na laje com pilar de seção retangular com  $c_{max} c_{min} = 2$ , pois a laje L11 rompeu sob carga equivalente a 87% da carga de ruptura da laje monolítica (L2).

A Tab.2.23 apresenta os resultados de cargas e modos de ruptura das lajes ensaiadas por SILVA (2003). Todas as lajes com armadura de cisalhamento (L7, L8, L9, L10 e L11) apresentaram ruptura por punção com a superfície de ruptura localizada externamente à zona armada com os "studs". Na laje L10, apesar da existência de dois furos, o uso da armadura de cisalhamento proporcionou um aumento da carga de ruptura de 19% em relação à laje similar sem furos (L1). Entretanto, a ruptura da laje L10 ocorreu com uma carga igual a 77% da carga de ruptura da laje similar L7, porém, sem furos. Quando comparadas as cargas de

ruptura das lajes L11 (com dois furos e armadura de cisalhamento) e L5 (com dois furos e sem armadura de cisalhamento) verifica-se que a armadura de cisalhamento adotada foi ineficaz, pois não contribuiu com acréscimo no carregamento último.

|           | Pilar                   | fr       |        | A                      | rmadu<br>isalhan | ira de<br>nento                            | VExp | Modo de | Superfície de                                                                                      |
|-----------|-------------------------|----------|--------|------------------------|------------------|--------------------------------------------|------|---------|----------------------------------------------------------------------------------------------------|
| Laje      | (mm)                    | (MPa)    | Furo   | N <sup>o</sup><br>cam. | φ<br>(mm)        | A <sub>se</sub> /cam<br>(mm <sup>2</sup> ) | (kN) | ruptura | ruptura                                                                                            |
| L1        | 150 x 150               | 39,6     | não    | -                      | -                | -                                          | 273  | Punção  | A partir do pilar                                                                                  |
| L2        | 150 x 300               | 40,4     | não    | -                      | -                | -                                          | 401  |         | R                                                                                                  |
| L3        | 150 x 450               | 40,8     | não    | -                      | -                | -                                          | 469  | и       | A partir do pilar<br>(direção do maior<br>lado)<br>Afastado do pilar<br>(direção do<br>menor lado) |
| L12       | φ = 402                 | 42,3     | não    | -                      | -                | -                                          | 525  |         | A partir do pilar                                                                                  |
| L4        | 150 x 150               | 39,4     | sim    | -                      | -                | -                                          | 225  | 61      | A partir do pilar                                                                                  |
| L5        | 150 x 300               | 39,6     | sim    | -                      | -                | - 1                                        | 350  |         | A partir do pilar<br>(direção do maior<br>lado)<br>Afastado do pilar<br>(direção do<br>menor lado) |
| L6        | 150 x 450               | 39,1     | sim    |                        | 4                | ÷                                          | 375  | n       | A partir do pilar<br>(direção do maior<br>lado)<br>Afastado do pilar<br>(direção do<br>menor lado) |
| L7        | 150 x 150               | 49,0     | não    | 3                      | 8,0              | 402                                        | 420  |         | Externa à<br>armadura de<br>cisalhamento                                                           |
| L8        | 150 x 300               | 49,4     | não    | 2 e 3                  | 8,0              | 302 e 402                                  | 452  |         |                                                                                                    |
| L9        | 150 x 450               | 50,2     | não    | 3                      | 8,0              | 302                                        | 452  | н       |                                                                                                    |
| L10       | 150 x 150               | 40,0     | sim    | 3                      | 8,0              | 302                                        | 325  |         |                                                                                                    |
| L11       | 150 x 300               | 40,8     | sim    | 3                      | 8,0              | 302                                        | 350  |         | 0                                                                                                  |
| $s_0 = s$ | $r_r = 42 \text{ mm}$ ( | lajes L7 | a L11) |                        |                  |                                            |      |         |                                                                                                    |

Tabela 2.23 – Resultados dos ensaios das lajes ensaiadas por SILVA (2003)

## 2.4.2 – COMPARAÇÃO DOS RESULTADOS DA LITERATURA COM NORMAS DE PROJETO – LAJES SEM ARMADURA DE CISALHAMENTO

A Tab.2.24 apresenta uma comparação entre as estimativas dos métodos de projeto analisados para algumas lajes da literatura com furos próximos ao pilar e sem armadura de cisalhamento.

As Figs. 2.58 a 2.64 apresentam as estimativas das normas de projeto e métodos de cálculo (ACI/02, BS/97, HB/87, EC/92, EC/01, NB1/03, TENG/99, IOANNOU/01 e ROLL/71) para as lajes com furos, ensaiadas por MOWRER & VANDERBILT (1967), ROLL et *al.* (1971), GOMES e ANDRADE (1995), TENG et *al.* (1999), EL-SALAKAWY et *al.* (1999), REGAN (1999), IOANNOU (2001) e SILVA (2003).

Todos os métodos de cálculo analisados forneceram estimativas conservadoras para as lajes ensaiadas por MOWRER & VANDERBILT (1967), principalmente com o aumento do número de furos. As normas do ACI/02 e EC/92 foram as mais conservadoras, pois estimaram relações  $V_{Exp}$   $V_{calc}$  até valores superiores a 5,0 (Tab. 2.24 e Fig. 2.58).

Para as lajes de ROLL et *al.* (1971) (Tab 2.24 e Fig. 2.59) os métodos do ACI/02, EC/92 e EC/01 foram os que se apresentaram mais conservadores. O maior valor para a relação  $V_{Exp} V_{calc}$  (3,71) foi fornecido pelo ACI/02 para a laje S-244-9-0-1 com quatro furos de dimensões iguais ao do pilar, e com vértices coincidentes (caso de duas vigas se cruzando), pois a norma superestimou a influência do furo no cálculo do perímetro efetivo.

Observando as estimativas dos demais métodos de cálculo para as lajes de ROLL et *al.* (1971), verifica-se que, para o grupo de lajes com furos e pilares apresentando apenas um dos vértices coincidentes, o aumento do número de furos tornou os métodos mais conservadores, enquanto que, no grupo de lajes com furos adjacentes ao pilar, este aumento forneceu, na maioria dos métodos, resultados contra a segurança.

Percebe-se, então, que, para as lajes de ROLL et *al.* (1971), as normas de projeto tendem a superestimar a influência do furo quando este se posiciona com um dos vértices coincidentes com o do pilar, em relação à posição adjacente do furo em relação ao pilar.

Para as lajes ensaiadas por GOMES & ANDRADE (1995), todos os métodos de cálculo apresentaram resultados conservadores, especialmente com o aumento do diâmetro e do número de furos.

Os maiores valores para a relação  $V_{Exp} V_{calc}$  foram fornecidos pela norma do ACI (2002), que variou entre 1,50 e 2,05, enquanto que, melhores estimativas foram obtidas através do método de ROLL et *al.* (1971), para lajes com dois e quatro furos, que variou entre 1,35 e 1,43, e da norma NB1 (2003), para lajes com um furo apenas, que variou entre 1,14 e 1,18. (Tab.2.24 e Fig. 2.60).

No caso das lajes ensaiadas por TENG et *al.* (1999), observa-se na Tab. 2.24 e Fig. 2.61 que as normas ACI/02, EC/92 e EC/01, novamente se apresentaram, em ordem decrescente, como as mais conservadoras nas estimativas das cargas de ruptura.

Comparando os métodos da BS/97 e de TENG et *al.* (1999) verifica-se que a proposta dos pesquisadores para o cálculo do perimetro efetivo de controle de lajes com pilares de seção retangular e com furos forneceu resultados mais satisfatórios em relação à norma.

Com base nos resultados apresentados pelas normas HB/87, IOANNOU/01 e ROLL/71, para as lajes de TENG et *al.* (1999), verifica-se que o posicionamento do furo em relação ao pilar, com apenas um de seus vértices coincidentes (por exemplo, OC11V23) é mais prejudicial à resistência da laje que a situação onde o furo se posiciona adjacente ao pilar (por exemplo, OC11H30).

A utilização de um furo ficticio na laje SEO ensaiada por EL-SALAKAWY et *al.* (1999), como recomendado por IOANNOU (2001), reduziu a carga de ruptura de forma que forneceu o valor de 1,40 para a relação  $V_{Exp}V_{calc}$  (Tab. 2.24 e Fig.2.62).

Para as demais lajes, onde não foi possível utilizar o artificio da simetria, devido ao posicionamento do furo em relação ao pilar, as estimativas ficaram contra a segurança.

De maneira geral, para as lajes com pilar de borda e furos posicionados em diversas localizações, todos os métodos de cálculo, com exceção do EC/92, EC/01, BS/97 e TENG et

*al.* (1999), apresentaram estimativas contra a segurança. A BS/97 e TENG et *al.* forneceram estimativas iguais e valores para  $V_{Exp}$   $V_{calc}$  entre 0,91 e 1,05.

Para as lajes de REGAN (1999) e IOANNOU (2001), além do ACI/02, EC/92 e EC/01, os métodos de cálculo da BS/97, NB1/03 e TENG et *al.* se apresentaram bastante conservadores, fornecendo valores para a relação  $V_{Exp}$ ,  $V_{calc}$  entre 1,56 e 2,41 (Tab. 2.24 e Fig. 2.63).

Assim como observado por REGAN (1999), as sugestões propostas pelo mesmo para o Handbook to BS/85 (1987) melhorou os seus resultados, em relação ao BS/97, e os de IOANNOU (2001), fornecendo estimativas para  $V_{Exp}$   $V_{calc}$  entre 0,93 e 1,10.

A proposta de IOANNOU (2001) para o CEB-FIP (1991), no tratamento de furos em lajes, estimou resistências próximas das experimentais, para as lajes de REGAN (1999), em relação às demais normas

O método de ROLL et *al.* (1971) forneceu resultados conservadores para as lajes de IOANNOU (2001) e de REGAN (1999), com  $V_{Exp} V_{calc}$  variando entre 1,19 e 1,40, porém, melhores que as estimativas do ACI/02, BS/97, EC/92, EC/01, NB1/03 e TENG et *al.* (1999).

Com relação às lajes ensaiadas por SILVA (2003), todos os métodos de cálculo se apresentaram conservadores, como mostra a Tab. 2.24 e Fig. 2.64. O aumento das dimensões do pilar reduziu a tendência dos métodos de estimar resultados conservadores.

| -              | -            |                  |       |       |        | I Exp  | 1º calc |         |            |         |
|----------------|--------------|------------------|-------|-------|--------|--------|---------|---------|------------|---------|
| Autor          | Laje         | .4 <i>CL</i> /02 | BS/97 | HB/87 | EC2/92 | EC2/01 | NB1/03  | TENG/99 | IOANNOL/01 | ROLL/71 |
| T              | JN-1-1.7     | 2,44             | 1,39  | 1,16  | 2,36   | 1,83   | 1.22    | 1,39    | 1,42       | 1.83    |
| ERBI           | JN-2-1.7     | 5,00             | 2.54  | 1,52  | 4,48   | 3.33   | 2.23    | 2,54    | 1.67       | 2,68    |
| AND<br>57)     | JN-3-1.7     | 2,30             | 1.35  | 1,30  | 2.55   | 1,89   | 1,26    | 1.35    | 1,19       | 2,02    |
| 1 % X<br>(190  | JN-1-2.2     | 2.46             | 1.24  | 1,04  | 2,19   | 1,63   | 1.09    | 1.24    | 1,27       | 1,60    |
| A RI I         | JN-2-2.2     | 5.26             | 2.27  | 1.36  | 4.55   | 2,98   | 2,00    | 2.27    | 1,49       | 2.43    |
| NON            | JN-3-2.2     | 2,45             | 1,31  | 1.27  | 2,45   | 1.83   | 1.23    | 1.31    | 1,16       | 1,92    |
|                | S-121-0-0-1  | 1,52             | 1.04  | 0,96  | 1,49   | 1.37   | 0.89    | 1.04    | 0,89       | 1,14    |
| 1              | S-122-0-0-1  | 1,63             | 1,12  | 0.94  | 1,60   | 1,43   | 0.93    | 1,12    | 0,82       | 1,18    |
| 126            | S-123-0-0-1  | 1,50             | 1,03  | 0,76  | 1,46   | 1.26   | 0.81    | 1.03    | 0.71       | 1,31    |
| NG             | S-124-0-0-1  | 1,67             | 1,14  | 0,72  | 1.60   | 1,31   | 0_85    | 1,14    | 0,63       | 1,31    |
| HUA            | S-221-0-0-1  | 1.90             | 1.04  | 1.06  | 1.35   | 1.38   | 0,89    | 1.04    | 1.13       | 1.21    |
| SR             | S-222-0-0-1  | 2.12             | 1,13  | 1,19  | 1,49   | 1,46   | 0.95    | 1,13    | 1.05       | 1,21    |
| INBN           | S-223-0-0-1  | 2,48             | 1,33  | 1,46  | 1.69   | 1,95   | 1,26    | 1,33    | 1,75       | 1.28    |
| DI S           | S-224-0-0-1  | 2,67             | 1.45  | 1,71  | 1,71   | 1.73   | 1.12    | 1,45    | 1,54       | 1.21    |
| ZAI            | S-241-9-0-1  | 1,71             | 0,91  | 0.89  | 1.25   | 1.21   | 0.78    | 0,91    | 0.94       | 1.23    |
| SOL .          | S-242-9-0-1  | 1.89             | 1.02  | 0.96  | 1.33   | 1.33   | 0.86    | 1.02    | 0.84       | 1.22    |
|                | S-243-9-0-1  | 2,46             | 1.28  | 1,12  | 1.76   | 1.59   | 1.03    | 1.28    | 1,35       | 1,09    |
|                | S-244-9-()-] | 3.71             | 1.94  | 1,52  | 2,51   | 2,24   | 1.46    | 1,94    | 1,37       | 1,39    |
| 156            | 13           | 1.57             | 1.27  | 1,28  | 1,47   | 1.27   | 1.18    | 1.27    | 1,33       | 1,32    |
| ES &<br>DE (19 | 14           | 1,50             | 1.22  | 1.22  | 1.40   | 1,21   | 1,14    | 1.22    | 1,38       | 1.22    |
| GOM            | 15           | 1.92             | 1,50  | 1,59  | 1.85   | 1,57   | 1,46    | 1.50    | 1,57       | 1,43    |
| ANI            | 23           | 2.05             | 1.81  | 1,92  | 1.93   | 1.77   | 1.67    | 1.81    | 1.98       | 1.35    |
|                | OC11H30      | 1,80             | 1,32  | 1.09  | 1.54   | 1.44   | 1.22    | 1,32    | 1,30       | 1.27    |
|                | OC11V23      | 1,74             | 1,28  | 1,24  | 1.47   | 1.37   | 1.17    | 1.28    | 1,41       | 1.30    |
|                | OC11V20      | 1,25             | 0.93  | 0,97  | 1.01   | 0,99   | 0.83    | 0,93    | 0,96       | 0,81    |
| (66)           | OC13H50      | 1,33             | 0,98  | 0,94  | 1,30   | 1.08   | 0.92    | 1,07    | 1,08       | 1,09    |
| al. (15        | OC13V43      | 1.43             | 1.07  | 1.01  | 1.39   | 1.14   | 0.98    | 1.03    | 1.09       | 1,14    |
| G et a         | OC13V23      | 1.59             | 1,18  | 1,04  | 1.51   | 1,28   | 1.08    | 1.18    | 1.04       | 1.23    |
| TEN            | OC13V40      | 1,15             | 0.83  | 0,90  | 0,96   | 0,90   | 0.76    | 0.88    | 1,19       | 0.89    |
|                | OC13H02      | 1,76             | 1,43  | 1,09  | 1,61   | 1,49   | 1.28    | 1,09    | 1,19       | 1.26    |
|                | OC15H70      | 1,31             | 0,89  | 0,98  | 1,52   | 0.98   | 0,83    | 1,10    | 0.96       | 1.10    |
|                | OC15V43      | 1,72             | 1.16  | 1,15  | 1.96   | 1.26   | 1.07    | 1.28    | 1,01       | 1_32    |

Tabela 2.24 – Estimativas das normas de projeto e de pesquisadores para as lajes com furos da literatura

|                |            |                 |               |       |        | Γ <sub>Exp</sub> | A' cale |         |            |         |
|----------------|------------|-----------------|---------------|-------|--------|------------------|---------|---------|------------|---------|
| Autor          | Laje       | .4 <i>CI/02</i> | <b>B</b> S/97 | HB/87 | EC2/92 | EC2/01           | .NB1/03 | TENG/99 | IOANNOU/01 | ROLL/71 |
| (666)          | 2          | 2.01            | 1,75          | 1,10  | 1,95   | 1,91             | 1,68    | 1,75    | 1,01       | 1,29    |
| AN (I          | 6          | 2,41            | 1,98          | 0,94  | 2,08   | 1,77             | 1,56    | 1,98    | 1,09       | 1,19    |
| REG            | 7          | 2,39            | 1,97          | 0,93  | 2,06   | 1,77             | 1,56    | 1,97    | 1,08       | 1,19    |
| IOANOOU (2002) | PSSCH4b    | 1,83            | 1,74          | 1,05  | 1,91   | 1,80             | 1,62    | 1,74    | 1,21       | 1,40    |
| 10             | SE0        | 0,97            | 1,05          | 0,96  | 1,19   | 1,20             | 0,96    | 1,05    | 1,40       | 0,79    |
| VY et          | CF0        | 0.89            | 1.05          | 0.78  | 1.17   | 1.21             | 0,97    | 1,05    | 0,82       | 0,62    |
| 1999)          | SF0        | 0,90            | 1,03          | 0,88  | 1,32   | 1,36             | 1,09    | 1,03    | 0,81       | 0,70    |
| -SAL           | SF1        | 0,82            | 0,94          | 0,91  | 1,05   | 1,10             | 0,89    | 0,94    | 0,84       | 0,72    |
| EI             | SF2        | 0,82            | 0,91          | 0,93  | 1,05   | 1,07             | 0,86    | 0,91    | 0,86       | 0,72    |
| )03)           | L4         | 2,49            | 1,78          | 1,08  | 2,06   | 2,03             | 1,63    | 1,78    | 1,23       | 1,33    |
| / V (2(        | L5         | 2.13            | 1.65          | 1,38  | 1.92   | 1.95             | 1.56    | 2,04    | 1,51       | 1,56    |
| SILV           | L6         | 1,67            | 1,54          | 1,26  | 1,95   | 1,63             | 1,31    | 1,74    | 1,35       | 1,42    |
| MI             | EDIA       | 1,97            | 1,34          | 1,13  | 1,78   | 1,55             | 1,19    | 1,35    | 1,18       | 1,29    |
| DESVIO         | PADRÃO     | 0,91            | 0,39          | 0,26  | 0,73   | 0,48             | 0,34    | 0,40    | 0,29       | 0,40    |
| COEF. VA       | RIAÇÃO (%) | 46,1            | 29,5          | 22,8  | 40,7   | 30,8             | 28,6    | 29,8    | 24,7       | 31,2    |

Tabela 2.24 – Estimativas das normas de projeto e de pesquisadores para as lajes com furos da literatura (continuação)



Figura 2.58 – Estimativas das normas de projeto e de pesquisadores para as lajes com furos de MOWRER & VANDERBILT (1967)



Figura 2.59 – Estimativas das normas de projeto e de pesquisadores para as lajes com furos de ROLL, ZAIDI, SABNIS & CHUANG (1971)



Figura 2.60 – Estimativas das normas de projeto e de pesquisadores para as lajes com furos de GOMES & ANDRADE (1995)



Figura 2.61 – Estimativas das normas de projeto e de pesquisadores para as lajes com furos de TENG et al. (1999)



Figura 2.62 – Estimativas das normas de projeto e de pesquisadores para as lajes com furos de EL-SALAKAWY et al (1999)



Figura 2.63 – Estimativas das normas de projeto e de pesquisadores para as lajes com furos de REGAN (1999) e IOANNOU (2001)



Figura 2.64 – Estimativas das normas de projeto e de pesquisadores para as lajes com furos de SILVA (2003)

### 2.4.2.1 – COMENTÁRIOS FINAIS

Os resultados das estimativas, para as lajes da literatura analisadas, mostraram que ocorre uma tendência dos métodos de cálculo de fornecerem resultados conservadores, para algumas lajes com furos, e, contra segurança, para outras. Observou-se que o método proposto para o Handbook to BS8110 (1987), IOANNOU (2001) e a norma NB1 (2003) forneceram, de maneira geral, os melhores resultados, em relação aos outros métodos de cálculo (Tab. 2.24).

A literatura apresenta algumas pesquisas relacionadas com a investigação da influência de furos próximos ao pilar na resistência à punção de lajes cogumelo. Com o objetivo de contribuir com dados experimentais adicionais para a melhor compreensão dos métodos de projeto, incluindo resultados de lajes com furos de grandes dimensões, a presente pesquisa propõe estudar alguns modelos de furos, de forma que sugestões e complementações possam ser apresentadas para a norma brasileira.

# 2.4.3 – COMPARAÇÃO DOS RESULTADOS DA LITERATURA COM NORMAS DE PROJETO – LAJES COM ARMADURA DE CISALHAMENTO

A Tab. 2.25 apresenta as estimativas das normas de projeto para as lajes com armadura de cisalhamento da literatura, com e sem furos. As Figs. 2.65 a 2.68 ilustram graficamente as estimativas das normas para as lajes ensaiadas por, respectivamente, GOMES & ANDRADE (1995), REGAN (1999), IOANNOU (2001) e SILVA (2003).

Todas as normas de projeto forneceram estimativas conservadoras para as lajes de GOMES & ANDRADE (1995) e de REGAN (1999), especialmente o ACI (2002), com relação  $V_{Exp}V_{ACI}$ , variando entre 1,19 e 2,39,e, 2,04 e 2,97, respectivamente.

As normas BS8110 (1997), NB1 (2003) e Handbook to BS (1987) estimaram, de modo geral, os resultados menos conservadores para as lajes de GOMES & ANDRADE (1995), enquanto que, para as lajes de REGAN (1999), o Handbook to BS (1987) foi o método que se mostrou menos conservador ( $V_{Exp}$   $V_{HB 87}$  entre 0,94 e 1,14).

Para as lajes de IOANNOU (2001), exceto a laje PSSCH2, que rompeu por flexão, todas as normas forneceram estimativas conservadoras, especialmente o ACI (2002). A laje PSSCH2 apresentou os menores valores para a relação  $V_{Exp}$   $V_{calc}$ , em relação às demais lajes.

A norma mais conservadora na estimativa das cargas de ruptura das lajes de SILVA (2003) foi, assim como para as demais lajes da literatura, o ACI (2002), com  $V_{Exp}$   $V_{ACI}$  entre 2,21 e 2,77.

O EC2/01 foi, em seguida, a norma mais conservadora ( $V_{Exp}$   $V_{EC2.01}$  variando entre 1,19 e 1,59). A BS8110 (1997), NB1 (2003) e HB (1987) foram as normas que forneceram os resultados mais satisfatórios, em relação às demais normas, com  $V_{Exp}$   $V_{calc}$  variando entre 1,00 e 1,13, com exceção da estimativa do Handbook para a laje L10 (0,90).

Observa-se na Tab. 2.25 que o ACI (2002) foi a norma que forneceu os resultados mais conservadores para as cargas de ruptura das lajes com armadura de cisalhamento apresentadas, sendo o valor médio da relação  $V_{Exp}$ ,  $V_{ACI}$  igual a 2,02, e com os maiores valores para o desvio padrão (0,54) e coeficiente de variação (26,7).

|               |            |        |       | V <sub>Exp</sub> | /V cale | _     |        |
|---------------|------------|--------|-------|------------------|---------|-------|--------|
| Autor         | Laje       | ACI/02 | BS/97 | EC2/92           | EC2/01  | HB/87 | NB1/0: |
|               | 16         | 2,38   | 1,10  | 1,31             | 1,43    | 1,10  | 1,20   |
| (56)          | 17         | 2,14   | 1,04  | 1,18             | 1,27    | 1,07  | 1,07   |
| (1)           | 18         | 1.88   | 1,04  | 1,02             | 1,13    | 1,08  | 1,06   |
| NDE           | 19         | 1,92   | 1,04  | 1,04             | 1,15    | 1,07  | 1,08   |
| DRA           | 20         | 1,19   | 1,25  | 1.34             | 0,99    | 1,29  | 0,97   |
| ANI           | 21         | 1,60   | 1,32  | 1,42             | 1,24    | 1,37  | 1,22   |
| *             | 22         | 2.08   | 1,44  | 1.29             | 1.52    | 1,51  | 1,47   |
| ME            | 24         | 1,93   | 1,05  | 1,04             | 1,13    | 1,09  | 1,06   |
| GO            | 25         | 1.37   | 1,43  | 1,53             | 1.13    | 1,48  | 1,11   |
|               | 26         | 1,47   | 1,04  | 1,20             | 1,13    | 1,07  | 1,05   |
|               | 3          | 2,04   | 1,00  | 1,00             | 1,34    | 1,00  | 1,22   |
| (66           | 4          | 2,64   | 1,42  | 1.53             | 1,97    | 1,02  | 1,81   |
| REGA<br>(1999 | 5          | 2,53   | 1.68  | 1,40             | 1,92    | 1,14  | 1,77   |
| -             | 8          | 2.97   | 1,82  | 1,38             | 1,86    | 0,94  | 1,70   |
| D             | PSSCHI     | 1,34   | 1,23  | 0.98             | 1,12    | 1,00  | 1,06   |
| (10           | PSSCH2     | 1,23   | 0,93  | 1.06             | 0,96    | 0,90  | 0,92   |
| )AN<br>(20    | PSSCH3     | 1,60   | 1,16  | 1,26             | 1,17    | 1,22  | 1,12   |
| К             | PSSCH4     | 1.54   | 1,09  | 1.35             | 1,26    | 0,83  | 1,21   |
| (8            | L7         | 2,59   | 1,00  | 1,17             | 1,48    | 1,00  | 1,05   |
| 2003          | L8         | 2,77   | 1,07  | 1,25             | 1,59    | 1,07  | 1,13   |
| A             | L9         | 2,76   | 1,06  | 1,24             | 1,58    | 1,06  | 1,12   |
| SILV          | L10        | 2.21   | 1.07  | 1,01             | 1,19    | 0.90  | 1,07   |
| 0             | LII        | 2,36   | 1,15  | 1,07             | 1,28    | 0,97  | 1,14   |
| Μ             | EDIA       | 2,02   | 1,19  | 1,22             | 1,34    | 1.09  | 1,20   |
| DESVIC        | ) PADRÃO   | 0,54   | 0,23  | 0,17             | 0,28    | 0,17  | 0,25   |
| COEF.VA       | RIAÇÃO (%) | 26,7   | 19,2  | 13,9             | 21,2    | 15,8  | 20,4   |

Tabela 2.25 – Estimativas das normas de projeto para as lajes com armadura de cisalhamento da literatura

Seguido do ACI (2002), o EC2 (2001) apresentou as estimativas mais conservadoras (Média = 1,34, DP = 0,28 e CV = 21,2), uma vez que apresenta algumas limitações nas expressões de cálculo, e isto reduz a carga estimada.

As normas BS8110 (1997) e NB1 (2003) apresentaram resultados levemente conservadores para todas as lajes da literatura, com  $V_{Exp}V_{calc}$  aproximadamente iguais, embora a BS8110 (1997) tenha fornecido para o desvio padrão e coeficiente de variação valores levemente inferiores (DP = 0,23 e CV = 18,9).

O Handbook to BS8110 (1987) forneceu um valor médio para a estimativa de  $V_{Exp}/V_{calc}$  mais próximo da unidade (1,09), em relação às demais normas, com desvio padrão e coeficiente de variação iguais a, respectivamente, 0,17 e 15,8%.

O EC2 (1992), apesar de ter apresentado uma relação média  $V_{Exp}$   $V_{EC2/92}$  um pouco superior à das normas BS8110 (1997) e NB1 (2003), apresentou os menores valores para o desvio padrão (0,17) e coeficiente de variação (13,9%).



Figura 2.65 – Estimativas das normas de projeto para as lajes com armadura de cisalhamento de GOMES & ANDRADE (1995)



Figura 2.66 – Estimativas das normas de projeto para as lajes com armadura de cisalhamento de REGAN (1999)



Figura 2.67 – Estimativas das normas de projeto para as lajes com armadura de cisalhamento de IOANNOU (2001)



Figura 2.68 – Estimativas das normas de projeto para as lajes com armadura de cisalhamento de SILVA (2003)

## 2.4.3.1 – COMENTÁRIOS FINAIS

A armadura de cisalhamento, utilizada em lajes com furos próximos ao pilar, permitiu restabelecer a resistência perdida devido ao furo, sendo que, em alguns ensaios da literatura, ocorreram mudanças nos mecanismos de ruptura (superficies de ruptura modificadas) e nos modos de ruptura, de cisalhamento para flexão. Cabe ressaltar que foram analisados, na literatura, diversos detalhamentos para a distribuição da armadura de cisalhamento, sendo especialmente elementos de armadura uniformemente distribuídos.

Com a ausência do concreto devido ao furo, a região próxima a este se encontra sujeita a um nível mais elevado de tensões, em relação à situação sem furos. Teoricamente, a utilização de uma concentração maior de armadura de cisalhamento próxima à região do furo tenderia a proporcionar um acréscimo de resistência à punção da laje. Estudos que investigam a eficiência deste tipo de detalhamento são importantes, pois, é racional que todos os elementos da armadura de cisalhamento trabalhem eficientemente à tração.



# CAPÍTULO 3

## PROGRAMA EXPERIMENTAL

#### **3.1 – CONSIDERAÇÕES GERAIS**

O programa experimental deste trabalho compreendeu ensaios, até a ruptura, de 20 (vinte) lajes cogumelo quadradas de concreto armado de 3000 mm de lado e 200 mm de espessura, apoiadas em pilares internos.

As lajes testadas foram divididas em 3 (três) séries, em função das variáveis analisadas: Serie 1 (oito lajes com pilares retangulares), Série 2 (seis lajes com furos e sem armadura de cisalhamento) e Série 3 (seis lajes com armadura de cisalhamento).

A seção transversal dos pilares das lajes da Série 1 foram definidas de forma a apresentarem dimensões práticas e usuais, tendo como referência principal, um pilar quadrado de 200 mm de lado, utilizado por GOMES (1991).

As dimensões das lajes foram adotadas baseando-se em trabalhos anteriormente desenvolvidos (GOMES, 1991; ANDRADE, 1999; TRAUTWEIN, 2001), de forma a representar uma região de momento negativo em torno de pilares, ou região com momento positivo em torno de cargas concentradas. As linhas definidas pelos pontos de fixação da laje, na estrutura física do ensaio (laje de reação), representaram linhas de inflexão de momentos fletores em lajes contínuas, com vãos de comprimento médio de 6,8 metros.

#### **3.2 – MODELOS EXPERIMENTAIS**

As lajes apresentaram dimensões constantes e iguais a 3000 mm x 3000 mm x 200 mm. Os materiais constituintes do concreto das lajes foram dosados de forma o obter uma resistência a compressão do concreto  $(f'_c)$  em torno de 40 MPa, aos 14 dias, entretanto, na prática, a

resistência à compressão do concreto variou entre 36,2 e 44,7 MPa. Da mesma forma, a altura útil das lajes foi definida para 164 mm, porém, ocorreram algumas alterações devido ao processo executivo da concretagem, e variou entre 139 e 164 mm. A taxa geométrica de armadura de flexão variou entre 1,00 e 1,55%, calculada de acordo com o CEB-FIP MC90 (1991).

#### **3.2.1 – DESCRIÇÃO DAS LAJES COM PILARES RETANGULARES**

## 3.2.1.1 – CARACTERÍSTICAS GEOMÉTRICAS

As lajes da Série 1 apresentaram as seguintes dimensões, em mm, para a seção transversal dos pilares: 150 x 250, 150 x 450, 150 x 600, 200 x 400, 200 x 600 e 200 x 800. A Fig.3 1 e a Tab.3.1 apresentam as características geométricas das lajes da Série 1.



Figura 3.1 – Características geométricas das lajes da Série 1 (unidades em mm)

| Laia | Pilar | (mm)  |             | Perímetro do | fc    | ρ    | d    |
|------|-------|-------|-------------|--------------|-------|------|------|
| Laje | Cmin  | C max | - Cmáx Cmin | pilar (mm)   | (MPa) | (%)  | (mm) |
| L42  | 200   | 400   | 2           | 1200         | 43,2  | 1,53 | 139  |
| L42A | 200   | 400   | 2           | 1200         | 36,2  | 1,15 | 164  |
| L45  | 200   | 600   | 3           | 1600         | 42,0  | 1,37 | 154  |
| L46  | 200   | 800   | 4           | 2000         | 39,3  | 1,15 | 164  |
| L41  | 150   | 250   | 1,67        | 800          | 44,7  | 1,39 | 139  |
| L41A | 150   | 250   | 1,67        | 800          | 38,9  | 1,24 | 164  |
| L43A | 150   | 450   | 3           | 1200         | 38,7  | 1,24 | 164  |
| L44  | 150   | 600   | 4           | 1500         | 40,0  | 1,18 | 164  |

Tabela 3.1 - Características geométricas das lajes da Série 1

## 3.2.1.2 – ARMADURA DE FLEXÃO

A armadura de flexão se manteve constante para todas as lajes, e foi determinada para prevenir a ruptura por flexão. A armadura de flexão negativa, posicionada no bordo superior da laje, foi composta por uma malha ortogonal de 31 barras de 16 mm de diâmetro (aço CA50), em cada direção e espaçadas a cada 100 mm. A armadura de flexão positiva, colocada no bordo inferior da laje, compôs-se de uma malha ortogonal de 21 barras de 8 mm de diâmetro (aço CA50), em cada direção e espaçadas a cada 150 mm. O cobrimento das barras das armaduras superior e inferior de flexão foram de 20 mm.

Com a finalidade de proporcionar uma adequada ancoragem para a armadura de flexão negativa, foram adicionadas 31 barras de 12,5 mm de diâmetro (aço CA50) na forma de grampo, em cada extremidade da armação e em cada direção. A Fig.3.2 mostra o detalhamento da armadura de flexão das lajes com pilares retangulares.


N2 - 21 Ø 8mm c/ 150 mm (cada direção) - c: 2960 mm



N3 - 2 x 31 Ø12,5mm c/ 100 mm (cada direção) - c: 1500 mm



Figura 3.2 - Armadura de flexão das lajes da Série 1 (unidades em mm)

### **3.2.1.3 – CONCRETO**

Para a confecção das lajes e corpos de prova, utilizou-se o cimento CPII-F32, o granito com dimensão máxima de 19 mm, como agregado graúdo, e a areia artificial de granito, como agregado miúdo. Foram utilizados aditivos no concreto com a finalidade de melhorar a resistência à compressão (sílica ativa) e a trabalhabilidade (aditivo superplastificante). O concreto foi fabricado no local da moldagem das lajes, e a quantidade de material utilizado é apresentada na Tab. 3.2.

| Material           | Peso em kg / $1.05 \text{ m}^3$ |
|--------------------|---------------------------------|
| Agregado graúdo    | 992                             |
| Agregado miúdo     | 847                             |
| Cimento            | 400                             |
| Sílica ativa       | 24,8                            |
| Superplastificante | 2,709                           |
| Agua               | 197                             |
| Relação a/cey      | 0,45                            |

Tabela 3.2 - Composição do concreto

# 3.2.2 – DESCRIÇÃO DAS LAJES COM FUROS E/OU ARMADURA DE CISALHAMENTO

### 3.2.2.1 – CARACTERÍSTICAS GEOMÉTRICAS

As séries 2 e 3 apresentaram os pilares com seção transversal de 200 mm x 600 mm e os furos, 200 mm x 300 mm. A área formada pelo furo representa 50% da seção do pilar, sendo, considerado um furo de grandes dimensões. Os furos retangulares foram posicionados com um dos menores lados adjacente à menor dimensão do pilar, pois, se trata de uma das situações mais críticas, como mostram os resultados apresentados no CAPITULO 2.

Na Série 2, as principais variáveis estudadas foram. quantidade de furos e detalhamento da armadura de flexão na região do furo, enquanto que, na Série 3, a distribuição da armadura de cisalhamento. A Tab.3.3 e a Fig.3.3 apresentam as características geométricas das lajes da Série 2 e da Série 3.

| Série | T          | Cmáx             | d    | fc    | ρ    | N° de | Grampo    | Armadura de cisalhamento  |           |
|-------|------------|------------------|------|-------|------|-------|-----------|---------------------------|-----------|
|       | Laje       | C <sub>min</sub> | (mm) | (MPa) | (%)  | furos | ancoragem | N <sup>°</sup><br>camadas | φ<br>(mm) |
|       | L45FS_CG   | 3                | 154  | 40,5  | 1,14 | 1     | sim       | -                         | -         |
|       | L45FD_CG   | 3                | 154  | 39,0  | 1,38 | 1     | sim       | -                         | -         |
| 2     | L45FD      | 3                | 154  | 41,4  | 1,38 | 1     | não       | -                         | -         |
|       | L45FFS_CG  | 3                | 154  | 41,6  | 1,00 | 2     | sim       | -                         | -         |
|       | L45FFD_CG  | 3                | 164  | 40.6  | 1,24 | 2     | sim       | -                         | -         |
|       | L45FFD     | 3                | 144  | 37,0  | 1,55 | 2     | não       |                           | -         |
| 3     | L45FFD_AC2 | 3                | 154  | 44.5  | 1,38 | 2     | não       | 4                         | 10,0      |
|       | L45FFD_AC3 | 3                | 154  | 39,6  | 1,38 | 2     | não       | 3                         | 8,0       |
|       | L45FFD AC4 | 3                | 154  | 43,2  | 1,38 | 2     | não       | 3                         | 8,0       |
|       | L45FFD_AC5 | 3                | 154  | 40,7  | 1,38 | 2     | não       | 2                         | 8,0       |
|       | L45_AC1    | 3                | 154  | 39,0  | 1,38 | 0     | -         | 4                         | 10,0      |
|       | L45_AC5    | 3                | 154  | 41,1  | 1,38 | 0     | -         | 2                         | 8,0       |

Tabela 3.3 - Características geométricas das lajes das séries 2 e 3

F-um furo; FF-dois furos; S-sem acréscimo de armadura de flexão, D-com acréscimo de armadura de flexão; CG-com grampo de ancoragem; ACi-armadura de cisalhamento do tipo i"





# 3.2.2.2 – ARMADURA DE FLEXÃO

Nas lajes da Série 2, variou-se a taxa de armadura de flexão, de uma laje para outra, da seguinte forma: fez-se o acréscimo de barras na região adjacente às faces do furo, cujo número de barras correspondeu àquele das barras interrompidas devido à presença dos furos (L45FD, L45FFD, L45FFD\_CG e L45FFD\_CG), e, também, adicionou-se grampos de ancoragem nas barras citadas (L45FD\_CG e L45FFD\_CG), como mostra a Fig. 3.4.

O detalhamento da armadura de flexão das lajes da Série 3 seguiu a disposição utilizada na laje L45FFD, como mostra a Fig.3.5. Quanto às lajes monolíticas da Série 3, a armadura de flexão foi composta da mesma quantidade de barras continuas da laje L45FFD. O cobrimento das barras das armaduras de flexão superior e inferior das lajes das séries 2 e 3 foram, respectivamente, 30 mm e 25 mm.







N5 - 2¢ 16 mm c/ 100 mm - c: 880 mm

Figura 3.4 - Detalhamento da armadura superior flexão das lajes da Série 2 (continuação)







Figura 3.4 - Detalhamento da armadura superior flexão das lajes da Serie 2 (continuação)







Figura 3.5 – Detalhamento da armadura superior flexão das lajes da Serie 3 (continuação)

### 3.2.2.3 – CONCRETO

O concreto utilizado nas lajes das séries 2 e 3 foi semelhante ao das lajes da Série 1.

### 3.2.2.4 - ARMADURA DE CISALHAMENTO

A armadura de cisalhamento utilizada nas lajes deste grupo foram os "studs". Este tipo de armadura de cisalhamento é constituída por vergalhões, posicionados verticalmente na laje, e interconectados por barras chatas de aço soldadas nas duas extremidades do vergalhão.

Os "studs" foram ancorados externamente às barras da armadura de flexão superior e inferior, envolvendo-as e conduzindo. assim, a uma ancoragem mais efetiva da armadura de cisalhamento. Diversos trabalhos realizados com a utilização deste tipo de armadura de cisalhamento, no combate à punção (ELGABRY & GHALI (1990); GHALI & DILGER (1991), GOMES (1991); ANDRADE (1999); TRAUTWEIN (2001), entre outros) têm

mostrado a sua eficiência, quando disposta de forma a envolver a armadura de flexão, além da NBR-6118 (2003) recomendar a sua utilização.

A Fig.3.6 mostra o detalhe dos "studs" utilizados nas lajes, e a Fig.3.7, o detalhamento da armadura de cisalhamento na laje. A Fig.3.8 apresenta fotografias das armaduras de cisalhamento posicionadas nas lajes prontas para a moldagem.



Figura 3.6 - Detalhe dos "studs" utilizados nas lajes da Série 3 - unidades em mm

L45FFD\_AC2





L45FFD\_AC4









Figura 3.7 – Detalhamento da armadura de cisalhamento das lajes da Série 3 - unidades em mm (continuação)



Figura 3.8 - Fotografias da armadura de cisalhamento na armação de flexão das lajes



Figura 3.8 – Fotografias da armadura de cisalhamento na armação de flexão das lajes (continuação)

### 3.3 – MOLDAGEM E CURA

As lajes foram moldadas em uma forma metálica composta por uma base e laterais, formadas por chapas de aço devidamente ligadas por parafusos e enrijecedores.

Foram encaixados 4 tubos de PVC de 50 mm de diâmetro, em cada lado da forma, e mantidos verticalmente através de tábuas de compensado ligadas entre si nas extremidades. Isto foi feito com a finalidade de deixar furos na laje para posterior passagem dos tirantes de fixação durante a montagem do sistema de ensaio. A Fig.3.9 mostra uma fotografia com a forma metálica juntamente com a armação, pronta para a moldagem da laje.



Figura 3.9 – Fotografia da laje com furo e pronta para a moldagem

Antes da moldagem de cada laje, foram colocados 2 a 3 estribos de 10 mm de diâmetro na região central da laje onde estaria posicionado o pilar, entre a malha superior e inferior da armadura de flexão, para manter as malhas na posição correta.

Para a moldagem das lajes com furos, foram confeccionados caixotes de madeirite, de dimensões 200 mm x 300 mm x 200 mm (largura x comprimento x altura), que foram colocados no local do furo, deixado na armação da laje. A altura do caixote correspondeu à altura total da laje, com a finalidade de facilitar o processo de desempenamento do concreto da laje.

Adicionalmente, foram colocadas e amarradas com arame recozido, 3 (três) alças de aço diâmetro 16 mm na ferragem superior da laje, com a finalidade de facilitar o transporte da

laje moldada para o local de ensaio. A Fig. 3.10 mostra o detalhe e a posição das alças e estribos nas lajes.



Figura 3.10 – Detalhe dos estribos e das alças, e posicionamento das alças nas lajes (unidades em mm)

Durante a concretagem de cada laje, foram moldados 20 (vinte) corpos de prova cilíndricos de dimensões 150 mm x 300 mm, para a realização do controle de qualidade do concreto com a obtenção das características de resistência à compressão simples (NBR-5739/94), resistência à tração por compressão diametral (NBR-7222/94) e o módulo de elasticidade longitudinal (NBR-8522/84).

Após o inicio de pega do concreto, foram feitas ensecadeiras de argamassa percorrendo as laterais da laje permitindo a formação de um reservatório de água. A cura da laje foi feita ao ar livre durante, aproximadamente, 14 (quatorze) dias, sob o reservatório de água, enquanto os corpos de prova foram mantidos em câmara úmida (temperatura ambiente e 100% de umidade). Após este período, a laje foi transportada para o local de ensaio através de um caminhão "munck", e mantida sob temperatura e umidade ambiente.

### 3.4 – SISTEMA DE ENSAIO

O sistema de ensaio das lajes consistiu na fixação das bordas das lajes à laje de reação, através de 16 (dezesseis) tirantes de aço, com diâmetro de 25 mm, sendo 4 (quatro) tirantes em cada borda, e de um sistema constituido de vigas metálicas.

A carga foi aplicada no centro da face inferior da laje através de um atuador hidráulico (Difasa - modelo R2006), com capacidade para aplicação de carga de 2000 kN, alimentado por uma bomba manual. A carga aplicada foi representada por um pilar interno com as dimensões citadas nas Tabs. 3.1 e 3.3.

O controle de aplicação das cargas foi realizado através de uma célula de carga (Transdutec), com capacidade de 2000 kN, acoplada a um sistema de aquisição de dados (marca Transdutec). O sistema de ensaio, juntamente com os detalhes da transmissão da força aplicada na laje para a laje de reação, é mostrado na Fig.3.11.

Devido algumas lajes ensaiadas não apresentarem, nas direções x e y, eixos de simetria iguais (caso das lajes da Série 2 com apenas um furo), os tirantes de fixação das lajes, que atuaram na transmissão à laje de reação da carga aplicada, foram instrumentados com extensômetros elétricos de resistência. Os extensômetros foram posicionados a meia altura e nas faces interna e externa de cada tirante para medição das deformações ocorridas devido à carga P aplicada, c para, conseqüentemente, determinação das forças atuantes em cada tirante. O ANEXO D apresenta as leituras das deformações registradas durante os ensaios e as respectivas forças.





Figura 3.11 - Sistema de ensaio - unidades em mm







DETALHE - SISTEMA DE TRANSMISSÃO DA CARGA Figura 3.11 – Sistema de ensaio - unidades em mm (continuação)

### 3.5 – INSTRUMENTAÇÃO

A instrumentação das lajes compreendeu o monitoramento das cargas aplicadas, dos deslocamentos verticais das lajes e das deformações na armadura superior de flexão e da armadura de cisalhamento. A formação e desenvolvimento das fissuras foram registrados com marcação à tinta de seus traçados feitos no bordo superior da laje.

# 3.5.1 – LAJES COM PILARES RETANGULARES (SÉRIE 1)

# 3.5.1.1 – DEFLETÔMETROS

Para medir os deslocamentos verticais de vários pontos da laje em relação aos pontos de fixação, foram utilizados no bordo superior da laje, 9 (nove) defletômetros analógicos, com curso de 50 mm e resolução de 0,01 mm. Para medir o deslocamento da laje como corpo rígido em relação à laje de reação, foram utilizados nos pontos de fixação, nas duas direções perpendiculares, 2 (dois) defletômetros digitais com curso de 10 mm e resolução de 0,001 mm. As leituras dos deslocamentos foram efetuadas em duas direções perpendiculares (direção x e y), com a origem do sistema de coordenadas sendo representada pelo centro da laje, como mostra a Fig.3.12.





Figura 3.12 - Posicionamento dos defletômetros nas lajes da Série 1 (unidades em mm)

# 3.5.1.2 – EXTENSÔMETROS

A armadura superior de flexão das lajes foi instrumentada com extensômetros elétricos de resistência (marca KYOWA do tipo KFG-5-120-C1-11) com a finalidade de medir diretamente deformações específicas. Para a leitura dos extensômetros durante os ensaios das lajes, foram utilizadas duas pontes digitais Tokyo Sokki Kenkyujo modelo TDS 601/TDS 302. Em cada posição definida na armadura, foram colados 1 (um) par de extensômetros, em lados diametralmente opostos da barra, para se obter um valor médio para as deformações medidas.

A Fig.3.13 mostra o posicionamento dos extensômetros nas barras da armadura superior de flexão das lajes da Série 1. Foram medidas deformações nas barras da armadura nas direções radiais e tangenciais (Fig.3.14), e em pontos localizados próximos e ao longo do lado maior do pilar.



Figura 3.13 – Posicionamento dos extensômetros na armadura de flexão das lajes da Série 1 (unidades em mm)



Figura 3.14 – Definição de deformações radiais e tangenciais

# 3.5.2 – LAJES COM FUROS E/OU ARMADURA DE CISALHAMENTO (SÉRIES 2 E 3)

# 3.5.2.1 – DEFLETÔMETROS

Nas lajes L45FS\_CG, L45FD\_CG, L45FFS\_CG e L45FFD\_CG, da Série 2, a quantidade e a distribuição dos defletômetros sobre a laje foi semelhante à utilizada nas lajes da Série 1. Após a confecção de novo sistema de suporte para os defletômetros, foi possível realizar medições mais completas. Nas demais lajes, os deslocamentos verticais foram medidos ao longo do comprimento da laje, nas duas direções perpendiculares x e y, com a origem do sistema de coordenadas coincidente com o centro da laje, como mostra a Fig.3.15.



Figura 3.15 – Posicionamento dos defletômetros nas lajes das Séries 2 e 3

# 3.5.2.2 – EXTENSÔMETROS

O posicionamento dos extensômetros na armadura de flexão das lajes da Série 2 é apresentado na Fig.3.16. A Fig.3.17 apresenta o posicionamento dos extensômetros nas barras da armadura de cisalhamento das lajes da Série 3.



Figura 3.16 - Posicionamento dos extensômetros na armadura de flexão das lajes da Série 2



Figura 3.17 – Posicionamento dos extensômetros na armadura de cisalhamento das lajes da Série 3

#### **3.6 – PROCEDIMENTO DE ENSAIO**

Anteriormente à colocação da laje sobre quatro apoios (corpos de prova cilíndricos de dimensões 300 mm x 600 mm), o macaco e a célula de carga foram devidamente centralizados na laje de reação, em relação ao sistema de ensaio, e, as chapas de aço, para a simulação do pilar, foram colocadas sobre a célula de carga, de acordo com a Fig.3.11.

Para a simulação dos pilares nas lajes, foram utilizadas chapas grossas de aço com espessura entre 35 mm e 63 mm, dependendo da seção do pilar estudada, que se fixaram no centro da face inferior das lajes. O sistema de simulação do pilar consistiu na disposição das chapas de aço, de forma que a carga a ser aplicada fosse correta e integralmente transmitida. Para isso, proporcionou-se o espraiamento da carga, diferentemente para cada seção de pilar, com ângulo de aproximadamente 45 graus, como pode ser visto no detalhe da Fig.3.11.

Em seguida, a laje foi fixada à laje de reação utilizando 16 (dezesseis) tirantes e chapas de aço (150 mm x 150 mm x 10 mm) chumbadas na laje com argamassa para a distribuição da carga. Procurou-se manter o nivelamento da laje em relação ao solo.

O ensaio teve duração média de duas horas, sendo que aplicação da carga foi feita em incrementos de carga de 50 kN. Inicialmente, realizou-se um pré-carregamento de 0 kN até 100 kN, em incrementos de 50 kN, com a finalidade de acomodar a estrutura e verificar o funcionamento dos instrumentos de medição. Após esta verificação, retirou-se o carregamento, e então, iniciou-se a aplicação da carga até a ruptura da laje. A cada incremento de carga, foram registradas as leituras dos extensômetros e defletômetros, feitas as marcações das fissuras na face superior da laje e os registros com fotografias.

# **CAPÍTULO 4**

# APRESENTAÇÃO E DISCUSSÃO DOS RESULTADOS EXPERIMENTAIS DAS LAJES COM PILARES RETANGULARES

### 4.1 – INTRODUÇÃO

Este capítulo apresenta os resultados experimentais obtidos nos ensaios das lajes com pilares retangulares (Série 1), e uma discussão a respeito. São apresentados c discutidos resultados de propriedades dos materiais constituintes das lajes, deslocamentos verticais, deformações das armaduras de flexão, fissuração, modos e superfícies de ruptura, e resistências das lajes.

Comparações entre os resultados experimentais da presente pesquisa os obtidos da literatura são realizadas, para a verificação do comportamento e resistência das lajes devido à influência da geometria do pilar

# 4.2 – MATERIAIS

#### **4.2.1 – CONCRETO**

As características mecânicas do concreto, utilizado na confecção das lajes, foram obtidas através de ensaios específicos, para obtenção da resistência à compressão simples (NBR-5739/94), resistência à tração por compressão diametral (NBR-7222/94), e módulo de elasticidade longitudinal (NBR-8522/84).

O controle de qualidade do concreto foi realizado, através dos ensaios citados em corpos de prova cilíndricos, de dimensões 150 mm x 300 mm, aos 7, 14, 28, 90 dias, e especialmente, no dia do ensaio da laje, para o acompanhamento do crescimento da resistência do concreto com a idade.

Em cada idade, foram ensaiados 4 (quatro) corpos de prova, sendo dois para a obtenção da resistência do concreto à compressão simples, e dois para o ensaio de módulo de elasticidade, que foram reaproveitados para o ensaio de tração por compressão diametral.

O ensaio dos corpos de prova para obtenção do módulo de elasticidade tangente foi realizado com a utilização de um "compressômetro" acoplado ao corpo de prova, e leituras da variação do deslocamento, em relação ao comprimento inicial do trecho definido pelo "compressômetro", foram registradas como função das forças aplicadas (tensão de compressão variando do valor inicial de 0,5 MPa ao valor final, equivalente a 40% da resistência à compressão do concreto).

A Tab.4.1 apresenta os valores médios dos resultados individuais, obtidos nos ensaios realizados nos corpos de prova. Os resultados individuais dos ensaios constam no ANEXO A.

É apresentada uma discussão a respeito dos resultados de resistência à tração por compressão diametral e módulo de elasticidade longitudinal do concreto, estimados pela norma brasileira correspondente, com a finalidade de observar a coerência dos resultados experimentais. A NBR-6118 (2003) recomenda que, na falta de resultados experimentais de resistência à tração por compressão diametral ( $f_{ct.sp}$ ) e módulo de elasticidade longitudinal inicial ( $E_c$ ), sejam utilizadas, respectivamente, as Eqs. 4.1 e 4.2.

$$f_{cl.sp} = \frac{f_{el}}{0.9} \qquad \text{(MPa)} \qquad \text{Eq. 4.1}$$

com

$$\begin{aligned} f_{ct\,inf} &= 0.7 \ f_{ctm} \\ f_{ct,sup} &= 1.3 \ f_{ctm} \end{aligned} e \ f_{ctm} &= 0.3 \ f_{ckg}^{2/3} \end{aligned}$$

onde

 $f_{cki}$  é a resistência característica à compressão do concreto aos *j* dias, em MPa  $f_{ctm}$  é a resistência média à tração direta do concreto, em MPa,

 $f_{ct.inf}$  é a resistência inferior à tração direta do concreto, em MPa;  $f_{ct.sup}$  é a resistência superior à tração direta do concreto, em MPa

$$E_c = 5600 f_{cir}^{1/2}$$
 (GPa) Eq. 4.2

onde  $E_c$  é o módulo de elasticidade inicial, em MPa.

Os resultados dos ensaios de tração por compressão diametral se apresentaram dentro do intervalo de valores estipulado pela NBR-6118 (2003). Entretanto, os resultados dos ensaios de módulo de elasticidade do concreto, apresentaram-se com valores inferiores aos fornecidos pela expressão da norma brasileira entre 22% e 40%, como mostra a Tab.4.1.

No entanto, a expressão proposta pela NBR-6118 (2003), para o cálculo do módulo de elasticidade inicial, é recomendada para a estimativa aos vinte e oito dias de idade. Além disso, a norma não fixa limites para a resistência à compressão para a obtenção do módulo de elasticidade, o que pode conduzir a situações contra a segurança, à medida que a resistência do concreto é aumentada. A Tab. 4.1 apresenta os resultados estimados pela NB1 (2003) e os experimentais do módulo de elasticidade longitudinal do concreto ( $E_c$ ).

| Laje | Idade<br>(dias) | fc<br>(MPa) | f <sub>ct.sp</sub><br>(MPa) | fct.sp (NB1/03)<br>(MPa) | Ec<br>(GPa) | <i>E<sub>c (NB1/03)</sub></i><br>(GPa) | E <sub>c</sub> /<br>E <sub>c(NB1/03)</sub> |
|------|-----------------|-------------|-----------------------------|--------------------------|-------------|----------------------------------------|--------------------------------------------|
| L42  | 16              | 43,2        | 4,0                         | $2,9 < f_{ci,sp} < 5,3$  | 25,1        | 36,8                                   | 0,68                                       |
| L42A | 17              | 36,2        | 3,6                         | $2,5 < f_{ct,sp} < 4,7$  | 22,2        | 33,7                                   | 0,66                                       |
| L45  | 19              | 42,0        | 4,3                         | $2,8 < f_{ct,sp} < 5,2$  | *           | 36,3                                   | *                                          |
| L46  | 14              | 39,3        | 4,4                         | $2,7 < f_{ct.sp} < 5,0$  | 27,5        | 35,1                                   | 0,78                                       |
| L41  | 37              | 44,7        | 4,3                         | $2,9 < f_{ct,sp} < 5,5$  | 23,6        | 37,4                                   | 0,63                                       |
| L41A | 17              | 38,9        | 3,4                         | $2,7 < f_{cl,sp} < 5,0$  | 20,9        | 34,9                                   | 0,60                                       |
| L43A | 18              | 38,7        | 3,3                         | $2,7 < f_{ct,sp} < 5,0$  | 22,4        | 34,8                                   | 0,64                                       |
| L44  | 19              | 40,1        | 3,7                         | $2,7 < f_{ct,sp} < 5,1$  | *           | 35,5                                   | *                                          |
| M    | EDIA            | 40,4        | 3,9                         | $2,7 < f_{ct.sp} < 5,1$  | 23,6        | 35,6                                   | 0,67                                       |
| Γ    | P.P.            | 2,75        | 0,43                        | -                        | 2,37        | 1,20                                   | 0,06                                       |
| C.V  | . (%)           | 6,8         | 11,0                        |                          | 10,0        | 3,4                                    | 9,0                                        |

Tabela 4.1 – Propriedades do concreto no dia do ensaio das lajes da Série 1

As características mecânicas dos aços utilizados na confecção da armadura de flexão foram obtidas através de ensaios de tração axial realizados em amostras, de acordo com a NBR-6152 (1992). Os valores médios das tensões de escoamento e ruptura, das deformações de escoamento e dos módulos de elasticidade das amostras, são apresentados nas Tab.4.2.

| φ<br>(mm) | $\begin{array}{cccc} f_y & f_u & \varepsilon_y & E_s \\ f_y & (MPa) & (MPa) & (mm/m) & (GPa) \end{array}$ |     | $\begin{array}{cccc} f_y & f_u & \varepsilon_y & E_s \\ (MPa) & (MPa) & (mm/m) & (GPa) \end{array}$ |     | Utilização das Barras                 |
|-----------|-----------------------------------------------------------------------------------------------------------|-----|-----------------------------------------------------------------------------------------------------|-----|---------------------------------------|
| 8,0       | 674                                                                                                       | 814 | 4,7                                                                                                 | 215 | Armadura inferior de flexão           |
| 12,5      | 617                                                                                                       | 748 | 4,0                                                                                                 | 214 | Ancoragem armadura superior de flexão |
| 16,0      | 604                                                                                                       | 757 | 4,6                                                                                                 | 229 | Armadura superior de flexão           |

Tabela 4.2 – Propriedades dos aços utilizados nas lajes da Série 1

#### 4.3 – DESLOCAMENTOS VERTICAIS

As Figs. 4.1 a 4.8 apresentam os deslocamentos verticais das lajes da Série 1, nas direções ortogonais  $x \, e \, y$ , do inicio do carregamento até leituras próximas à ruptura. O ANEXO B apresenta tabelas com as leituras dos deslocamentos das lajes da Série 1.

Em níveis baixos de carregamento (aproximadamente 300 kN), os perfis de deslocamentos verticais nas direções x e y apresentaram-se bastante simétricos, em todas as lajes ensaiadas. A partir deste nível de carga, os perfis de deslocamentos não se mostraram simétricos, especialmente, com o aumento da relação  $c_{max}$   $c_{min}$  do pilar.

Os deslocamentos verticais das lajes, na direção y (direção paralela à maior dimensão da seção transversal do pilar), foram superiores aos deslocamentos equidistantes do centro da laje, na direção x, devido à restrição imposta pelo pilar. Os deslocamentos maiores fora do centro da laje representam menores deformações da laje, em relação aos pontos fora da região do pilar.

A distribuição de deslocamentos ao longo da laje, a partir da face do pilar, apresentou-se aproximadamente linear, até cargas próximas à ruptura, sugerindo que a porção de laje

externa ao pilar sofreu rotação como corpo rígido, e não apenas na parte externa à fissura de cisalhamento, como observado por KINNUNEN & NYLANDER (1960).



Deslocamento(mm)

Figura 4.1 – Deslocamentos verticais da laje L41



Deslocamento(mm)

Figura 4.2 - Deslocamentos verticais da laje L42









Deslocamento(mm







Distância do centro da laje (mm)





Deslocamento (mm)

Figura 4.6 – Deslocamentos verticais da laje L44









Deslocamento (mm)

Distância do centro da laje (mm)

Figura 4.8 - Deslocamentos verticais da laje L46

A Fig.4.9 apresenta uma comparação entre os deslocamentos verticais, medidos no centro do pilar das lajes da Série 1, com pilares de dimensões 150 x  $c_{max}$ , e a Fig.4.10, das lajes com pilares de dimensões 200 x  $c_{max}$ .

Até o carregamento equivalente a 200 kN, que correspondeu á carga de fissuração visual  $(V_{fillexdoi})$  das lajes com pilar de dimensões 150 x  $c_{max}$ , com exceção da laje L43A  $(V_{fillexdoi}) =$  250 kN), os deslocamentos centrais apresentaram valores aproximadamente iguais. A partir desta carga, a laje L43A apresentou os menores deslocamentos, até as últimas leituras registradas, em comparação com as demais lajes, como mostra a Fig.4.9. A partir de 300 kN, a laje L41 (d = 139 mm) desenvolveu deslocamentos superiores aos das demais lajes (d = 164 mm), devido às diferentes alturas efetivas. A cada incremento de carga, a diferença entre os deslocamentos das lajes L41, L41A e L44 aumentou.

Do início do carregamento até a carga de 250 kN, que correspondeu à carga de fissuração visual das lajes com pilar de dimensões 200 x  $c_{max}$ , os deslocamentos centrais das lajes mostraram-se aproximadamente iguais. A partir desta carga, a laje L46, apoiada no pilar de maior perímetro, desenvolveu os menores deslocamentos, em comparação com as demais lajes do grupo, para níveis de carga correspondentes, e a laje L42, apoiada no menor pilar, apresentou os maiores deslocamentos, como pode ser visto na Fig.4.10.

A laje L46 desenvolveu a capacidade à flexão com mais intensidade que as demais lajes, mostrando uma ductilidade superior quando próxima da ruptura, acompanhada de uma configuração composta de muitas fissuras de flexão. A Tab.4.3 apresenta os maiores deslocamentos registrados no ponto central das lajes, para cargas próximas da ruptura.

| Laje     | Pilar<br>(mm x mm) | Cmax /<br>Cmm | <i>d</i><br>(mm) | $V_{Exp}$ (kN) | V<br>(kN) | Deslocamento<br>(mm) |
|----------|--------------------|---------------|------------------|----------------|-----------|----------------------|
| L42      | 200 x 400          | 2             | 139              | 703            | 650       | 15,1                 |
| L42A     | 200 x 400          | 2             | 164              | 743            | 700       | 13,5                 |
| L45      | 200 x 600          | 3             | 154              | 843            | 700       | 16,0                 |
| L46      | 200 x 800          | 4             | 164              | 947            | 850       | 18,2                 |
| L41      | 150 x 250          | 1,67          | 139              | 600            | 600       | 15,4                 |
| L41A     | 150 x 250          | 1,67          | 164              | 650            | 600       | 13,0                 |
| L43A     | 150 x 450          | 3             | 164              | 776            | 600       | 10,9                 |
| L44      | 150 x 600          | 4             | 164              | 814            | 600       | 11,3                 |
| V - cars | a aplicada         |               |                  |                |           |                      |

Tabela 4.3 – Deslocamentos centrais máximos medidos nas lajes da Série 1



Figura 4.9 - Deslocamentos centrais das lajes com pilar 150 x cmin



Figura 4.10 – Deslocamentos centrais das lajes com pilar 200 x cmar

# 4.4 – DEFORMAÇÕES DA ARMADURA DE FLEXÃO

As deformações radiais das barras da armadura de flexão, medidas em relação à maior dimensão do pilar (direção x), foram superiores às da menor dimensão (direção y), especialmente com o aumento da relação  $c_{max} c_{min}$ , com exceção das lajes L42 e L42A, que apresentaram grandes deformações radiais na armadura, próximo ao menor lado do pilar, até atingir o escoamento, sob carga de 600 kN. As deformações radiais no maior lado do pilar alcançaram 12,8 mm/m na laje L45, e, no lado menor do pilar, 7,1 mm/m na laje L42.

A deformações tangenciais, diferentemente das radiais, foram mais elevadas próximas à menor dimensão do pilar (direção x). Próximo à maior dimensão do pilar, as deformações tangenciais atingiram 2,7 mm/m na laje L41, enquanto no lado menor do pilar, alcançaram 3,6 mm/m na laje L45.

Na região próxima aos cantos dos pilares, foram registradas deformações medidas paralela (direção y) e perpendicularmente (direção x) à maior dimensão do pilar. Observou-se que as maiores deformações ocorreram nas barras dispostas perpendicularmente. Na laje L45, duas barras da armadura de flexão entrou em processo de escoamento, sob carga entre 750 kN e 800 kN, atingindo deformações iguais a 7,2 mm/m, e a laje L44 apresentou a barra central disposta na direção x em processo de escoamento, entre 700 e 800 kN.

A Tab.4.4 apresenta as deformações máximas registradas nas barras da armadura de flexão das lajes da Série 1. Observa-se que as barras da armadura de flexão mais solicitadas à tração, com maiores deformações, foram, na maioria dos casos, aquelas dispostas na direção perpendicular ao lado maior do pilar ( $\varepsilon_x > \varepsilon_y$ ).

As Figs. 4.11 a 4.18 apresentam as curvas que relacionam as deformações da armadura de flexão com a força aplicada, das lajes da Série 1. As leituras das deformações medidas nas barras da armadura de flexão são apresentadas no ANEXO B
|      |                    |           | Série 1                      |                      |                              |                     |
|------|--------------------|-----------|------------------------------|----------------------|------------------------------|---------------------|
| Laje | Pilar<br>(mm x mm) | Cmax/Cmin | Extensômetro<br>na direção x | <i>Е</i> х<br>(mm/m) | Extensômetro<br>na direção y | <i>Ey</i><br>(mm/m) |
| L42  | 200 x 400          | 2         | 6                            | 2,7                  | 1                            | 7,1                 |
| L42A | 200 x 400          | 2         | 5                            | 2,5                  | 1                            | 4,1                 |
| L45  | 200 x 600          | 3         | 6                            | 12,8                 | 4                            | 2,5                 |
| L46  | 200 x 800          | 4         | 5                            | 3,4                  | 3                            | 2,6                 |
| L41  | 150 x 250          | 1,67      | 5                            | 3,3                  | 4                            | 2,7                 |
| L41A | 150 x 250          | 1,67      | 5                            | 3,3                  | 4                            | 2,5                 |
| L43A | 150 x 450          | 3         | 5                            | 3,5                  | 3                            | 2,5                 |
| L44  | 150 x 600          | 4         | 6                            | 7,6                  | 3                            | 2,4                 |

Tabela 4.4 - Deformações máximas registradas nas barras da armadura de flexão das lajes da



Figura 4.11 - Deformações da armadura de flexão da laje L41



Figura 4 11 – Deformações da armadura de flexão da laje L41 (continuação)





Figura 4.12 - Deformações da armadura de flexão da laje L41A



Figura 4.12 – Deformações da armadura de flexão da laje L41A (continuação)



Figura 4.13 - Deformações da armadura de flexão da laje L42



Figura 4.13 - Deformações da armadura de flexão da laje L42 (continuação)



Figura 4.14 - Deformações da armadura de flexão da laje L42A



Figura 4.14 – Deformações da armadura de flexão da laje L42A (continuação)



Figura 4.15 - Deformações da armadura de flexão da laje L43A



Figura 4.15 – Deformações da armadura de flexão da laje L43A (continuação)





Deformação tangencial (mm/m)

Figura 4.16 – Deformações da armadura de flexão da laje L44



Figura 4.16 – Deformações da armadura de flexão da laje L44 (continuação)



Figura 4.17 - Deformações da armadura de flexão da laje L45



Figura 4.17 – Deformações da armadura de flexão da laje L45 (continuação)





Figura 4.18 – Deformações da armadura de flexão da laje L46

### 4.5 – FISSURAÇÃO

A formação e o desenvolvimento das fissuras foram praticamente semelhantes em todas as lajes, independentemente da geometria do pilar. Inicialmente, surgiram fissuras de flexão (fissuras radiais) que se iniciaram no pilar, sob carga equivalente, em média, a 31% da carga de ruptura, e, com o aumento do carregamento, se estenderam em direção às bordas da laje, além do surgimento de novas fissuras.

As fissuras de cisalhamento (fissuras circunferenciais) surgiram em torno da região do pilar, sob carga correspondente, em média, a 44% da carga de ruptura, e, novas fissuras deste tipo foram surgindo com a aplicação do carregamento.

A Tab.4.5 apresenta as cargas correspondentes ao surgimento das fissuras radiais e circunferenciais, e suas respectivas relações com as cargas de ruptura, além das deformações das barras da armadura de flexão relativas ao aparecimento da respectiva fissura. As fissuras radiais ( $V_{f(flexão)}$ ) estão relacionadas com as deformações denominadas tangenciais ( $\varepsilon_i$ ), enquanto as fissuras tangenciais ( $V_{f(clsaih)}$ ), com as deformações radiais ( $\varepsilon_r$ ). A Tab. 4.5 mostra que a primeira fissura a surgir (flexão) apareceu na direção y, e a primeira fissura de cisalhamento, próxima à maior dimensão do pilar.

As deformações tangenciais  $\varepsilon_r$ , associadas às fissuras de flexão, tiveram valores mais elevados na região localizada próxima ao lado menor do pilar, em relação ao lado maior. É interessante ressaltar que, concordando com os resultados de deformações tangenciais nas barras da armadura de flexão, cujos maiores valores foram observados nos pontos próximos à menor dimensão do pilar, os deslocamentos dos pontos dispostos na direção y das lajes foram superiores aos na direção x, como já comentado.

As Figs. 4.19 a 4.26 mostram as fotografias das fissuras nas lajes testadas. Observa-se um maior número de fissuras de flexão e de cisalhamento nas lajes L44 (pilar 150 x 600) e L46 (200 x 800), que apresentaram os pilares de maior dimensão.

| Laje | V <sub>Exp</sub><br>(kN) | V <sub>f(flexão)</sub><br>(kN) | V s(slexão)<br>/ V Exp | ୟ<br>(mm/m) | Ponto | V f(cisalh)<br>(kN) | V f(cisalh)<br>/ V Exp | €7<br>(mm/m) | Ponto |
|------|--------------------------|--------------------------------|------------------------|-------------|-------|---------------------|------------------------|--------------|-------|
| L42  | 703                      | 250                            | 0,36                   | 0,3         | 5     | 300                 | 0,43                   | 0,6          | 6     |
| L42A | 743                      | 200                            | 0,27                   | 0,4         | 5     | 300                 | 0,40                   | 0,8          | 6     |
| L45  | 843                      | 250                            | 0,30                   | 0,6         | 5     | 350                 | 0,42                   | 1,9          | 6     |
| L46  | 947                      | 250                            | 0,26                   | 0,5         | 5     | 400                 | 0,42                   | 1,1          | 6     |
| L41  | 600                      | 250                            | 0,42                   | 0,5         | 3     | 300                 | 0,50                   | 0,7          | 6     |
| L41A | 650                      | 200                            | 0,31                   | 0,5         | 5     | 300                 | 0,46                   | 0,8          | 6     |
| L43A | 776                      | 250                            | 0,32                   | 0,4         | 5     | 350                 | 0,45                   | 0,8          | 6     |
| L44  | 814                      | 200                            | 0,25                   | 0,3         | 5     | 350                 | 0,43                   | 1,0          | 6     |
|      | MÉDI                     | A                              | 0,31                   | -           | -     | 0,44                | -                      | -            | -     |
|      | DP                       |                                | 0,05                   | -           | -     | 0,03                | -                      | -            | -     |
|      | C.V. (%                  | 6)                             | 17,0                   | -           | -     | 7,0                 | -                      | -            | -     |

Tabela 4.5 - Cargas de fissuração visual das lajes da Série 1

 $V_{f(flexao)}$  – carga correspondente ao surgimento da primeira fissura de flexão (visual)  $V_{f(cisalh)}$  – carga correspondente ao surgimento da primeira fissura de cisalhamento (observação visual)



Figura 4.19 - Fissuração na laje L41



Figura 4.20 - Fissuração na laje L41A



Figura 4.21 – Fissuração na laje L42



Figura 4.22 - Fissuração na laje L42A



Figura 4.23 – Fissuração na laje L43A



Figura 4.24 – Fissuração na laje L44



Figura 4.25 - Fissuração na laje L45



Figura 4.26 – Fissuração na laje L46

### 4.6 – RESISTÊNCIA

### 4.6.1 – FLEXÃO

As cargas últimas de flexão foram calculadas utilizando a teoria das linhas de ruptura, a partir das configurações das fissuras observadas durantes os ensaios (ANEXO C), e de acordo com as expressões apresentadas por alguns autores (HALLGREN (1996) e MOKHTAR et *al.* (1985)).Os momentos resistentes por unidade de comprimento foram determinados através da expressão constante na norma do CEB-FIP MC90 (1991), com a utilização do diagrama simplificado de tensões em uma seção qualquer de concreto submetida à flexão.

As estimativas das expressões para cálculo da carga correspondente à ruptura por flexão, sugeridas por HALLGREN e MOKHTAR et *al.* para as lajes da Série 1 são bastante próximas. As lajes atingiram a ruptura com carregamento equivalente entre 56 e 77% da carga prevista para ruptura por flexão (Tab. 4.6) As estimativas obtidas a partir do

desenvolvimento das linhas de ruptura para as lajes do presente trabalho (vide ANEXO C) se apresentaram superiores às demais, sendo que os valores para a relação  $V_{Exp}$ ,  $V_{flex}$  variaram entre 0,50 e 0,69.

As lajes L45 e L46, com as maiores cargas de ruptura experimental e os maiores deslocamentos verticais, até próximo da ruptura, além de uma acentuada configuração de fissuras na face tracionada da laje, apresentaram os maiores valores para a relação  $V_{Exp}/V_{flex}$ , para todas as cargas estimadas para ruptura por flexão. Adicionalmente, as lajes L41 e L41A, apoiadas nos pilares de menor seção transversal, apresentaram os menores valores para a relação  $V_{Exp}/V_{flex}$ . A Tab.4.6 apresenta as cargas de ruptura estimadas para uma ruptura por flexão para as lajes da Série 1.

O ANEXO C apresenta a configuração das linhas de ruptura desenvolvida para as lajes da Série 1 e os cálculos das cargas estimadas para ruptura por flexão. A configuração das linhas de ruptura adotada nas lajes teve que ser desenvolvida para pilares retangulares, e baseou-se nos modelos da literatura, desenvolvidos para pilar de seção transversal quadrada, considerando-se adequadamente as distâncias entre a face do pilar (ponto de carregamento) e os pontos de deslocamento nulo (tirantes).

| Laia    | Pilar(mm)      | ρ        | $f_{v}$     | d        | $f_{c}$  | V <sub>Exp</sub> | VExp/Vflex    | VExp/Vnex   | VExp/V flex |  |
|---------|----------------|----------|-------------|----------|----------|------------------|---------------|-------------|-------------|--|
| Laje    | Cmin X Cmáx    | (%)      | (MPa)       | (mm)     | (MPa)    | (kN)             | (HALLGREN)    | (MOKHTAR)   | (ANEXO C)   |  |
| L42     | 200 x 400      | 1,51     | 604         | 139      | 43,2     | 703              | 0,72          | 0,71        | 0,52        |  |
| L42A    | 200 x 400      | 1,28     | 604         | 164      | 36,2     | 743              | 0,64          | 0,63        | 0,55        |  |
| L45     | 200 x 600      | 1,37     | 604         | 154      | 42,0     | 843              | 0,77          | 0,76        | 0,64        |  |
| L46     | 200 x 800      | 1,28     | 604         | 164      | 39,3     | 947              | 0,72          | 0,71        | 0,63        |  |
| L41     | 150 x 250      | 1,51     | 604         | 139      | 44,7     | 600              | 0,63          | 0,62        | 0,56        |  |
| L41A    | 150 x 250      | 1,28     | 604         | 164      | 38,9     | 650              | 0,57          | 0,56        | 0,50        |  |
| L43A    | 150 x 450      | 1,28     | 604         | 164      | 38,9     | 776              | 0,67          | 0,67        | 0,68        |  |
| L44     | 150 x 600      | 1,28     | 604         | 164      | 40,0     | 814              | 0,71          | 0,70        | 0,59        |  |
|         |                | M        | <b>ÉDIA</b> |          |          |                  | 0,68          | 0,67        | 0,58        |  |
|         |                |          | D.P         |          |          |                  | 0,06          | 0,06        | 0,05        |  |
|         |                | C.       | V. (%)      |          |          |                  | 9,4           | 9,5         | 8,1         |  |
| Vnex- ( | carga de rupti | ura esti | imada pa    | га а гир | tura por | flexão,          | , segundo a t | eoria das L | .R.         |  |

Tabela 4.6 - Cargas de ruptura por flexão das lajes da Série 1

#### 4.6.2 – CISALHAMENTO

Todas as lajes foram ensaiadas até a ruptura e romperam por punção. Este tipo de ruptura foi diagnosticado porque o comportamento geral das lajes, observado durante os ensaios até o momento da ruptura, mostrou que não houve uma generalização de deformações de escoamento das barras da armadura de flexão.

Quando o pico de carga foi atingido, que correspondeu ao momento da ruptura (resistência última da laje), a resistência da laje diminuiu rapidamente. Foi aplicada carga adicional permitindo que a laje se deformasse e fissuras se abrissem, de forma a obter a resistência na fase de pos-puncionamento e a melhor visualização da fissura formada no bordo superior da laje. A fissura visível no bordo superior da laje apresentou uma forma diferente da circular observada nas lajes com pilar quadrado, especialmente quando se aumentou a relação  $c_{max} c_{min}$ .

Em todas as lajes ensaiadas, a superficie de ruptura interceptou a face inferior da laje, no pilar, e atingiu a armadura principal de flexão principal, aparecendo posteriormente no bordo superior, devido ao descolamento do cobrimento de concreto. A estimativa da inclinação das superficies de ruptura foi feita através da remoção do concreto deslocado no bordo superior, quando então, determinou-se a altura efetiva da laje e o local onde a fissura cruzou o centro de gravidade da armadura principal de flexão.

As lajes apresentaram superficies de ruptura com inclinações que variaram entre 20 e 35 graus, em relação ao plano médio da laje. A Fig.4.27 apresenta a configuração das superficies de ruptura estimadas para as lajes com pilar retangular, e a Tab.4.7 apresenta os modos e cargas de ruptura observados nos ensaios.



Figura 4.27 - Superficies de ruptura das lajes da Serie I - unidades em mm







Figura 4.27 – Superficies de ruptura das lajes da Série 1 – unidades em mm (continuação)

Observa-se na Tab.4.7, que as cargas de ruptura das lajes, tanto com pilar de dimensões 150 x  $c_{max}$  como 200 x  $c_{max}$  aumentaram com o acréscimo da relação entre lados do pilar, com aumento de ate 35%, para as lajes com pilar 200 x  $c_{max}$ , e de até 36%, com pilar 150 x  $c_{max}$ .

| T    | Pilar | (mm) | d    | fc    | fcr.sp | ρ    | V <sub>Exp</sub> | Modo de | Superficie           |  |
|------|-------|------|------|-------|--------|------|------------------|---------|----------------------|--|
| Laje | Cmin  | Cmáx | (mm) | (MPa) | (MPa)  | (%)  | (kN)             | ruptura | de ruptura           |  |
| L42  | 200   | 400  | 139  | 43,2  | 4,0    | 1,53 | 703              | punção  | a partir do<br>pilar |  |
| L42A | 200   | 400  | 164  | 36,2  | 3,6    | 1,15 | 743              | "       | 64                   |  |
| L45  | 200   | 600  | 154  | 42,0  | 4,3    | 1,29 | 843              | 6.6     | 6.6                  |  |
| L46  | 200   | 800  | 164  | 39,3  | 4,4    | 1,15 | 947              | 62      | 66                   |  |
| L41  | 150   | 250  | 139  | 44,7  | 4,3    | 1,39 | 600              | 66      |                      |  |
| L41A | 150   | 250  | 164  | 38,9  | 3,4    | 1,24 | 650              | 4.6     | 46                   |  |
| L43A | 150   | 450  | 164  | 38,7  | 3,3    | 1,24 | 776              | £. 6.   | 2.4                  |  |
| L44  | 150   | 600  | 164  | 40,0  | 3,7    | 1,18 | 814              | 6.6     | 46                   |  |

Tabela 4.7 - Cargas e modos de ruptura observados nas lajes da Série 1

# 4.6.3 – PÓS-PUNCIONAMENTO

A capacidade de carga na fase pós-puncionamento, que corresponde à carga residual que a laje resiste após sua ruptura, variou entre 30% e 40% da carga de ruptura, como pode ser visto na Tab.4.8.

| Laia | Pilar            | ( <b>mm</b> ) | d        | fc    | $V_{Exp}$ | $V_{pp}$ | $V_{pp}$ |
|------|------------------|---------------|----------|-------|-----------|----------|----------|
| Laje | C <sub>min</sub> | Cmáx          | (mm)     | (MPa) | (kN)      | (kN)     | VExp     |
| L42  | 200              | 400           | 139      | 43,2  | 703       | 284      | 0,40     |
| L42A | 200              | 400           | 164      | 36,2  | 743       | *        | *        |
| L45  | 200              | 600           | 154      | 42,0  | 843       | 250      | 0,30     |
| L46  | 200              | 800           | 164      | 39,3  | 947       | 330      | 0,35     |
| L41  | 150              | 250           | 139      | 44,7  | 600       | 239      | 0,40     |
| L41A | 150              | 250           | 164      | 38,9  | 650       | 218      | 0,34     |
| L43A | 150              | 450           | 164      | 38,7  | 776       | 260      | 0,34     |
| L44  | 150              | 600           | 164      | 40,0  | 814       | 265      | 0,33     |
|      |                  |               | MÉDIA    |       |           |          | 0,35     |
|      |                  |               | D.P.     |       |           |          | 0,04     |
|      |                  |               | C.V. (%) |       |           |          | 11,4     |

Tabela 4.8 – Cargas de pós-puncionamento das lajes da Série 1

### 4.6.4 – ANÁLISE DAS LAJES COM PILARES RETANGULARES

### 4.6.4.1 – INTRODUÇÃO

Na análise das cargas de ruptura das lajes da Serie 1, foi realizada uma investigação da influência da geometria do pilar, na resistência à punção das lajes, utilizando os resultados experimentais desta pesquisa e da laje L1 (pilar de dimensões 200 mm x 200 mm), ensaiada por GOMES (1991), que por sua vez, apresentaram caracteristicas idênticas.

Uma comparação foi feita entre as cargas de ruptura das lajes da Série 1 e das ensaiadas por TENG et al. (1999), HAWKINS et al. (1971), OLIVEIRA (2003) e SILVA (2003).

### 4.6.4.2 – RESULTADOS EXPERIMENTAIS

Para analisar a influência da geometria do pilar na carga última das lajes da Série 1, estas foram divididas em duas sub-séries. A Sub-Série 1A compreendeu as lajes que tiveram os pilares com uma das dimensões igual a 200 mm e a outra variável. A Sub-Série 1B reuniu as lajes apoiadas em pilares com uma das dimensões iguais a 150 mm e a outra também variável. A relação entre lados ( $\beta_c = c_{max}$ ,  $c_{min}$ ) variou entre 1,67 e 4, como mostra a Tab.4.9.

Como as lajos apresentaram alturas úteis diferenciadas, a comparação entre os resultados de cargas de ruptura experimentais foi realizado após a normalização das alturas úteis em relação à laje de referência em questão, utilizando um coeficiente  $K (= d_{ref}/d)$ , sendo que  $d_{ref}$  corresponde à altura útil da laje de referência.

Um acréscimo de 50% no perímetro do pilar, entre as lajes L1 (pilar 200 mm x 200 mm - testada por GOMES (1991)) e L42 (pilar 200 mm x 400 mm), acarretou um aumento de aproximadamente 44% na carga de ruptura. Entretanto, o mesmo acréscimo de perímetro, entre as lajes L1 e L42A (similar à L42), conduziu a um aumento de 29% na carga de ruptura.

Considerando as lajes L1 e L45 (pilar 200 mm x 600 mm), observa-se que o aumento de 100% no perimetro do pilar, produziu um aumento de 55% na carga de ruptura. Quando se

comparam as lajes L1 e L46 (pilar 200 mm x 800 mm), verifica-se que o aumento de 150% no perimetro do pilar, elevou em 64% a carga de ruptura.

Na Sub-Série 1B, as lajes L41 e L41A, ambas apoiadas em pilares com dimensões 150 mm x 250 mm, apresentaram alturas efetivas diferentes, e iguais a 139 mm e 164 mm. Entretanto, após a normalização das alturas efetivas, a laje L41 apresentou carga de ruptura superior em 9% à da laje L41A. Uma comparação entre as lajes L41A e L43A, mostra que um aumento de 50% no perimetro do pilar provocou um acréscimo de 19% na carga de ruptura, e um aumento no perimetro do pilar de 88%, comparando as lajes L41A e L44 (pilar 150 mm x 600 mm), produziu um acréscimo de 25% na carga de ruptura (Tab.4.9).

| Lais  | Pilar (mm) |                  | Pilar (1    |      | $\beta_c$ | d    | u <sub>o</sub> | VExp         | K.VExp                                        |  | A (17 17 ) |
|-------|------------|------------------|-------------|------|-----------|------|----------------|--------------|-----------------------------------------------|--|------------|
| Laje  | Cmin       | C <sub>máx</sub> | (Cmax/Cmin) | (mm) | (mm)      | (kN) | (kN)           | $\Delta u_0$ | $\Delta (\mathbf{\Lambda}. \mathbf{V}_{Exp})$ |  |            |
| L1*   | 200        | 200              | 1           | 159  | 800       | 560  | 560            | 1,00         | 1,00                                          |  |            |
| L42   | 200        | 400              | 2           | 139  | 1200      | 703  | 804            | 1,50         | 1,44                                          |  |            |
| L42A  | 200        | 400              | 2           | 164  | 1200      | 743  | 720            | 1,50         | 1,29                                          |  |            |
| L45   | 200        | 600              | 3           | 154  | 1600      | 843  | 870            | 2,00         | 1,55                                          |  |            |
| L46   | 200        | 800              | 4           | 164  | 2000      | 947  | 918            | 2,50         | 1,64                                          |  |            |
| L41A* | 150        | 250              | 1,67        | 164  | 800       | 650  | 650            | 1,00         | 1,00                                          |  |            |
| L41   | 150        | 250              | 1,67        | 139  | 800       | 600  | 708            | 1,00         | 1,09                                          |  |            |
| L43A  | 150        | 450              | 3           | 164  | 1200      | 776  | 776            | 1,50         | 1,19                                          |  |            |
| L44   | 150        | 600              | 4           | 164  | 1500      | 814  | 814            | 1,88         | 1,25                                          |  |            |

Tabela 4.9 – Influência da variação do perímetro do pilar na variação da carga de ruptura experimental das lajes da Série 1

\* laje de referência;  $\Delta u_0$  – variação do perimetro do pilar;  $\Delta (K.V_{Exp})$  – variação da carga de ruptura; L1 – laje testada por GOMES (1991);  $K = d_{ref}/d$ 

A Fig. 4.28 mostra curvas que relacionam a variação da carga de ruptura com a variação do perimetro do pilar (a partir da laje L1 - pilar de 200 mm x 200 mm, e da laje L41A - pilar de 150 mm x 250 mm), para os resultados experimentais. Observa-se que ocorre uma redução na taxa de crescimento da carga de ruptura experimental quando se elevou o perimetro do pilar em incrementos iguais, concomitante o acréscimo da relação entre os lados do pilar, a partir de  $c_{max} c_{min} = 3$ .



Figura 4.28 – Influência da variação do perímetro do pilar na variação da carga de ruptura experimental das lajes da Série 1

Na investigação da influência da relação entre lados do pilar na carga de ruptura experimental das lajes da Série 1, agrupou-se na Tab.4.10, a laje L1 (de GOMES (1991)) com as lajes ensaiadas com pilares de mesmo perímetro. Novamente, procedeu-se à normalização das alturas úteis das lajes em relação às lajes de referência em questão.

Considerando as lajes L1 e L41, após a normalização das alturas efetivas, ambas apoiadas em pilares de perímetro igual a 800 mm, observa-se que o aumento da relação entre lados de 1,0 para 1,67, aumentou a carga de ruptura experimental em 23%. Para as lajes L1 e L41A, a variação de  $c_{max} c_{min}$ , de 1 para 1,67, provocou um aumento na carga de ruptura de 13%, como mostra a Tab.4.10.

Com relação às lajes apoiadas em pilares de perimetro igual a 1200 mm, o aumento da relação  $c_{max} c_{min}$  do pilar de 2 para 3 (caso das lajes L42A e L43A), produziu um acréscimo de, aproximadamente, 5% na carga de ruptura experimental.

| Laia | Pilar (mm) |      | C <sub>máx</sub> / | d    | u <sub>o</sub> | VExp | K. VExp | K U /V-                                          |  |
|------|------------|------|--------------------|------|----------------|------|---------|--------------------------------------------------|--|
| Laje | Cmin       | Cmáx | Cmin               | (mm) | (mm)           | (kN) | (kN)    | <b>n</b> <i>V</i> Exp/ <i>V</i> Exp(L1 ou I.42A) |  |
| L1   | 200        | 200  | 1                  | 159  | 800            | 560  | 560     | 1,00                                             |  |
| L41  | 150        | 250  | 1,67               | 139  | 800            | 600  | 686     | 1,23                                             |  |
| L41A | 150        | 250  | 1,67               | 164  | 800            | 650  | 630     | 1,13                                             |  |
| L42A | 200        | 400  | 2                  | 164  | 1200           | 743  | 743     | 1,00                                             |  |
| L43A | 150        | 450  | 3                  | 164  | 1200           | 776  | 776     | 1,05                                             |  |

Tabela 4.10 – Influência de  $\beta_c$  na carga de ruptura experimental das lajes da Série 1

# 4.6.4.3 – COMPARAÇÃO DOS RESULTADOS EXPERIMENTAIS COM RESULTADOS DA LITERATURA

O aumento do perímetro do pilar, mantendo constante a menor dimensão (aumento da relação entre lados), das lajes testadas por TENG *et al.* (1999), SILVA (2003) e OLIVEIRA (2003), provocou acréscimo da carga de ruptura experimental (Tab. 4.11 e Fig. 4.29). O aumento da carga de ruptura não se apresentou linear, de forma que a taxa de crescimento da carga diminui com o aumento, em incrementos iguais, do perímetro do pilar e da relação  $c_{max}/c_{min}$ .

Uma variação de 100% no perímetro do pilar das lajes de TENG *et al.*, a partir de um pilar quadrado, provocou um acréscimo de 44% na carga de ruptura, enquanto que nas lajes da presente pesquisa, o aumento na carga de ruptura foi de 55%. Este mesmo acréscimo no perímetro do pilar, a partir de um pilar quadrado, no caso das lajes de SILVA (2003) e de OLIVEIRA (2003), elevou as cargas de ruptura em, respectivamente, 72% e 13%.

Ao comparar as lajes da presente pesquisa com as testadas por SILVA (2003) e OLIVEIRA (2003), observa-se que uma variação no perimetro do pilar de 50% produziu um acréscimo de 29% na carga de ruptura nas lajes ensaiadas, de 47%, nas lajes de SILVA (2003), e de apenas 4%, nas lajes de OLIVEIRA (2003).

Um aumento de 200% no perímetro do pilar, a partir de um pilar quadrado, provocou um acréscimo na carga de ruptura de 71%, no caso das lajes de TENG *et al.* (1999), e de 38%, nas lajes de OLIVEIRA (2003). Apesar das diferentes variações nas cargas, observa-se que esta continua a aumentar quando se eleva a relação  $c_{max} c_{min}$  até 5, ao contrário do que prevê algumas normas de projeto e métodos de pesquisadores.

| A                  | Laic         | Pilar | (mm)             | Cmax / | d    | u <sub>0</sub> | K. V Exp | A    | A 17_          |
|--------------------|--------------|-------|------------------|--------|------|----------------|----------|------|----------------|
| Autor              | Laje         | Cmin  | C <sub>máx</sub> | Cmin   | (mm) | (mm)           | (kN)     | DH 0 | $\Delta V Exp$ |
|                    | OC11         | 200   | 200              | 1      | 115  | 800            | 423      | 1,00 | 1,00           |
| 1ENG <i>et al.</i> | <b>OC</b> 13 | 200   | 600              | 3      | 107  | 1600           | 610      | 2,00 | 1,44           |
| (1999)             | OC15         | 200   | 1000             | 5      | 103  | 2400           | 725      | 3,00 | 1,71           |
|                    | LI*          | 200   | 200              | 1      | 159  | 800            | 560      | 1,00 | 1,00           |
| Grupo 1 - pilar    | L42A         | 200   | 400              | 2      | 164  | 1200           | 720      | 1,50 | 1,29           |
| $200 \ge C_{max}$  | L45          | 200   | 600              | 3      | 154  | 1600           | 870      | 2,00 | 1,55           |
|                    | L46          | 200   | 800              | 4      | 164  | 2000           | 918      | 2,50 | 1,64           |
| 0 1 1              | L41A         | 150   | 250              | 1,67   | 164  | 800            | 650      | 1,00 | 1,00           |
| Grupo I - pilar    | L43A         | 150   | 450              | 3      | 164  | 1200           | 776      | 1.50 | 1.19           |
| 1 JU X Cmax        | L44          | 150   | 600              | 4      | 164  | 1500           | 814      | 1,88 | 1,25           |
|                    | LI           | 150   | 150              | 1      | 90   | 600            | 273      | 1,00 | 1,00           |
| SILVA (2003)       | L2           | 150   | 300              | 2      | 90   | 900            | 401      | 1,50 | 1,47           |
|                    | L3           | 150   | 450              | 3      | 90   | 1200           | 469      | 2,00 | 1,72           |
|                    | LIC          | 120   | 120              | 1      | 107  | 480            | 318      | 1,00 | 1,00           |
|                    | L2c          | 120   | 240              | 2      | 107  | 720            | 331      | 1.50 | 1.04           |
| OLIVEIRA<br>(2003) | L3c          | 120   | 360              | 3      | 106  | 960            | 361      | 2,00 | 1,13           |
| (2003)             | L4c          | 120   | 480              | 4      | 107  | 1200           | 404      | 2,50 | 1,27           |
|                    | L5c          | 120   | 600              | 5      | 109  | 1440           | 439      | 3,00 | 1,38           |

Tabela 4.11 – Comparação dos resultados experimentais das lajes da Série 1 com os de TENG et al. (1999), SILVA (2003) e OLIVEIRA (2003)



Figura 4.29 – Comparação das cargas de ruptura das lajes da Série 1 com as de TENG et al. (1999), SILVA (2003) e OLIVEIRA (2003)

# **CAPÍTULO 5**

# APRESENTAÇÃO E DISCUSSÃO DOS RESULTADOS EXPERIMENTAIS DAS LAJES COM FUROS E/OU ARMADURA DE CISALHAMENTO

### 5.1 – INTRODUÇÃO

Os resultados experimentais de propriedades dos materiais, deslocamentos verticais, deformações nas armaduras de flexão e de cisalhamento, fissuração, e, resistência das lajes das Séries 2 e 3 são apresentados neste capítulo.

Para as lajes da Série 2 é feita uma análise da influência dos furos posicionados adjacentes ao pilar e do detalhamento da armadura de flexão, na ductilidade e na resistência ao cisalhamento das lajes. No caso das lajes da Série 3, uma análise dos detalhamentos de armadura é feita nas lajes sem e com dois furos.

Comparações entre os resultados experimentais da presente pesquisa e da literatura, são apresentadas e discutidas.

### 5.2 – MATERIAIS

### **5.2.1 – CONCRETO**

Assim como na Série 1, foram realizados ensaios para obtenção do controle de qualidade do concreto, aos 7, 14, 28 e 90 dias, e no dia do ensaio das lajes das Séries 2 e 3. Os resultados individuais são apresentados no ANEXO A

Os resultados obtidos nos ensaios de tração por compressão diametral nos corpos de prova, se apresentaram dentro do intervalo estipulado pela NBR-6118 (2003). Os resultados dos

ensaios de módulo de elasticidade tangente apresentaram, assim como nas lajes da Série 1, valores inferiores aos estipulados pela norma brasileira em, no mínimo, 28%, e, no máximo, 44%. Os resultados teóricos da resistência à tração por compressão diametral  $(f_{ct,sp})$  e módulo de elasticidade inicial  $(E_c)$ , para as lajes das Séries 2 e 3, foram calculados utilizando as eqs. 4.1 e 4.2.

A Tab. 5.1 apresenta os resultados médios dos ensaios realizados em corpos de prova cilíndricos de concreto de dimensões 150 mm x 300 mm. A Fig. 5.1 mostra as curvas de "Tensão x Deformação", obtidas experimentalmente para o concreto utilizado nas lajes, até valores da tensão de compressão axial no concreto equivalente a 80% da carga de ruptura.

| Laje       | Idade<br>(dias) | f'c<br>(MPa) | f <sub>ct,sp</sub><br>(MPa) | fct.sp (NB1/03)<br>(MPa)    | E <sub>c</sub><br>(GPa) | <i>E<sub>c (NB1/03)</sub></i><br>(GPa) | E <sub>c</sub> /<br>E <sub>c(NB1/03)</sub> |
|------------|-----------------|--------------|-----------------------------|-----------------------------|-------------------------|----------------------------------------|--------------------------------------------|
| L45FS_CG   | 18              | 40,5         | 3,6                         | $2,8 < f_{ct,sp} < 5,2$     | 20,2                    | 35,6                                   | 0,57                                       |
| L45FD_CG   | 18              | 39,0         | 4,2                         | $2,7 < f_{cl.sp} < 5,0$     | 22,0                    | 35,0                                   | 0,63                                       |
| L45FD      | 18              | 41,4         | 4,0                         | $2,8 < f_{cl,sp} < 5,2$     | 24,2                    | 36,0                                   | 0,67                                       |
| L45FFS_CG  | 19              | 41,6         | 4,2                         | $2,8 < f_{ct.sp} < 5,2$     | 23,9                    | 36,1                                   | 0,66                                       |
| L45FFD_CG  | 19              | 40,6         | 4,2                         | $2,8 < f_{ct.sp} < 5,2$     | 24,7                    | 35,7                                   | 0,69                                       |
| L45FFD     | 18              | 37,0         | 4,3                         | $2,5 < f_{cl,sp} < 4,7$     | 20,7                    | 34,1                                   | 0,61                                       |
| L45FFD_AC2 | 25              | 43,8         | 4,1                         | $2,9 < f_{ct,sp} < 5,3$     | 20,8                    | 37,1                                   | 0,56                                       |
| L45FFD_AC3 | 18              | 39,4         | 3,5                         | $2,7 < f_{ct,sp} < 5,0$     | 25,4                    | 35,2                                   | 0,72                                       |
| L45FFD_AC4 | 18              | 43,2         | 3,1                         | $2,9 \le f_{cl.sp} \le 5,3$ | 22,5                    | 36,8                                   | 0,61                                       |
| L45FFD_AC5 | 18              | 40,7         | 3,2                         | $2,8 < f_{ct,sp} < 5,2$     | 21,0                    | 35,7                                   | 0,59                                       |
| L45_AC1    | 18              | 39,0         | 3,2                         | $2,7 < f_{ct.sp} < 5,0$     | 21,5                    | 35,0                                   | 0,61                                       |
| L45_AC5    | 19              | 41,1         | 3,4                         | $2,8 < f_{cl,sp} < 5,2$     | 23,1                    | 35,9                                   | 0,64                                       |
| MÉDIA      |                 | 40,6         | 3,8                         | $2,8 < f_{cl.sp} < 5,1$     | 22,6                    | 35,7                                   | 0,63                                       |
| D.P.       |                 | 1,87         | 0,46                        | -                           | 1,47                    | 0,81                                   | 0,03                                       |
| C.V. (%)   | )               | 4,6          | 12,1                        | -                           | 6,5                     | 2,3                                    | 4,8                                        |

Tabela 5.1 – Propriedades do concreto no dia do ensaio das lajes das séries 2 e 3



Figura 5.1 - Curvas "Tensão x Deformação" do concreto utilizado nas lajes

#### 5.2.2 – AÇO

Os resultados dos ensaios de tração, realizados com o aço das armaduras de flexão e de cisalhamento, de acordo com a NBR-6152 (1992), são apresentados na Tab. 5.2, e as curvas de "Tensão x Deformação", de cada diâmetro da armadura utilizada, são apresentadas na Fig. 5.2. Os resultados individuais dos valores apresentados na Tab. 5.2 constam no ANEXO A.

| Diâmetro<br>(mm) | f <sub>r</sub><br>(MPa) | f <sub>u</sub><br>(MPa) | <i>€</i> <sub>j</sub> ,<br>(mm/m) | Es<br>(GPa) | Utilização das barras                      |
|------------------|-------------------------|-------------------------|-----------------------------------|-------------|--------------------------------------------|
| 8,0              | 598                     | 723                     | 2,9                               | 210         | Armadura inferior de flexão e cisalhamento |
| 10,0             | 593                     | 733                     | 2,8                               | 213         | Armadura de cisalhamento                   |
| 12,5             | 541                     | 702                     | 2,4                               | 229         | Ancoragem da armadura de flexão            |
| 16,0             | 601                     | 677                     | 4,9                               | 211         | Armadura superior de flexão                |

Tabela 5.2 - Propriedades dos aços utilizados nas lajes das séries 2 e 3





2 e 3



Figura 5.2 – Curvas de "Tensão x Deformação" média dos aços utilizados nas lajes das séries 2 e 3 (continuação)

#### **5.3 – DESLOCAMENTOS VERTICAIS**

Os maiores deslocamentos verticais das lajes das séries 2 e 3 ocorreram no centro da laje, e diminuíram com o afastamento do ponto instrumentado em relação ao ponto central.

Os deslocamentos das lajes da Série 2, especificamente com um furo (L45FS\_CG e L45FD\_CG), ao longo da direção x, foram praticamente semelhantes àqueles na direção y (lado do pilar sem o furo), como mostra a Fig. 5.3 Observa-se que ocorre uma simetria no perfil de deslocamentos da laje L45FD, em relação ao ponto central da laje, somente na direção x, como mostra a Fig. 5.4. Na direção y (direção do furo), não é observado a simetria na distribuição de deslocamentos, devido à presença do furo em um dos lados do pilar. Na direção y, os deslocamentos foram levemente superiores nos pontos dispostos no lado com furo, especialmente em pontos afastados do pilar.

A Fig. 5.5 mostra que, nas lajes com dois furos da Série 2, os deslocamentos das lajes, na direção y, foram mais elevados que aqueles na direção x, devido à menor deformação da laje causada pela restrição imposta pelo pilar, além da presença de furos adjacentes ao pilar, como pode ser visto a partir da comparação entre as figs. 5.3 e 5.5.

Na laje L45FFD, com dois furos simétricos, observa-se a simetria no perfil de deslocamentos nas direções x e y. Na direção y, nota-se a descontinuidade na distribuição de deslocamentos nos pontos externos aos furos, em relação aos pontos sobre o pilar, devido à presença dos furos, como mostra a Fig. 5.6.

Os deslocamentos das lajes da Série 3 foram medidos em pontos distribuídos alinhadamente sobre a laje, nas direções x e y, em posições idênticas às da L45FFD. Observa-se nas figs. 5.7 a 5.12 que, em todas as lajes da Série 3, os perfis de deslocamentos apresentaram-se simétricos, em relação ao centro da laje, nas direções x e y. Na direção x, os perfis apresentaram uma distribuição aproximadamente linear, em relação ao pilar. Na direção y, observa-se que este comportamento não ocorre nas lajes com furos.

Assim como na laje L45FFD, ocorreu uma descontinuidade no perfil de deslocamentos da laje na direção y (direção do furo), dos pontos sobre o pilar para os pontos externos ao furo. Observa-se, inclusive, uma descontinuidade na distribuição dos deslocamentos, do ponto

central da laje para os pontos adjacentes, e, posicionados sobre o pilar, provavelmente, devido aos pontos estarem fixados em suportes distintos. Tal fato não foi observado nas lajes monolíticas da Série 3 (L45\_AC1 e L45\_AC5).



Deslocamento (mm)





Figura 5.3 - Deslocamentos das lajes L45FS\_CG e L45FD\_CG






Figura 5.4 - Deslocamentos da laje L45FD

Deslocamento (mm)



| I MACING DITL | en ta | <br> | m |
|---------------|-------|------|---|



Figura 5.5 - Deslocamentos das lajes L45FFS\_CG e L45FFD\_CG



Deslocamento (mm)



Figura 5.6 - Deslocamentos da laje L45FFD



Distância do centro da laje (mm)

Figura 5.7 – Deslocamentos da laje L45FFD\_AC2

Deslocamento (mm)



| Des | ocamento | $(\mathbf{mn})$ |
|-----|----------|-----------------|
|-----|----------|-----------------|





Figura 5.8 – Deslocamentos da laje L45FFD\_AC3









Figura 5 9 - Deslocamentos da laje L45FFD\_AC4





Deslocamento (mm)



Figura 5.10 - Deslocamentos da laje L45FFD\_AC5





Deslocamento (mm)



Figura 5.11 - Deslocamentos da laje L45\_AC1

Desiocamento (mm)







Figura 5.12 - Deslocamentos da laje L45\_AC5

As figs. 5.13 e 5.14 apresentam uma comparação dos deslocamentos centrais, respectivamente, das lajes da Série 2 e Série 3, com os da laje L45.

Observa-se na Fig. 5.13, que a presença de furos influenciou o desenvolvimento dos deslocamentos centrais das lajes, pois a laje monolítica L45, apresentou os menores deslocamentos centrais, em relação às lajes da Série 2, exceto com a laje L45FFD\_CG, pois esta apresentou altura efetiva igual a 164 mm. A quantidade de furos também influenciou nos deslocamentos das lajes, pois as lajes com dois furos apresentaram deslocamentos centrais superiores aos das lajes com um furo, para níveis de carga correspondentes

A presença de barras adicionais de armadura de flexão, devido ao furo, permitiu que os deslocamentos centrais sofressem uma redução, quando se comparam as lajes L45FS\_CG, L45FD\_CG e L45FD, e, L45FFS\_CG e L45FFD, inclusive, possibilitou que as lajes L45FD\_CG e L45FD apresentassem deslocamentos bastante próximos aos da laje sem furo (L45), como pode ser visto na Fig. 5.13

A utilização de armadura de cisalhamento, em todas as lajes testadas, provocou uma redução nos deslocamentos centrais, em relação à laje L45, e principalmente, em relação à laje L45FFD, em cada nivel de carregamento, sendo que as lajes monolíticas da Série 3 (L45\_AC1 e L45\_AC5) apresentaram os menores deslocamentos, como pode ser visto na Fig. 5.14.

Devido à utilização de armadura de cisalhamento, as lajes apresentaram uma maior ductilidade, desenvolvendo grandes deslocamentos verticais, em relação às lajes sem armadura de cisalhamento, até cargas próximas da ruptura.

A laje L45\_AC1 com maior número de camadas e diâmetro de armadura, apresentou os menores deslocamentos, em relação às demais lajes da Série 3, além de apresentar a maior ductilidade. Para as lajes com furos do Série 3, os maiores deslocamentos, em cada nivel de carga, foram desenvolvidos pela laje L45FFD\_AC2, embora esta laje tenha apresentado a maior área de armadura de cisalhamento por camada.



Figura 5.13 - Comparação dos deslocamentos centrais da laje L45 (Série 1) com os das lajes da Série 2



Figura 5.14 - Comparação dos deslocamentos centrais da laje L45 (Serie 1) e da laje L45FFD (Serie 2) com os das lajes as Serie 3

## 5.4 – DEFORMAÇÕES DA ARMADURA DE FLEXÃO

As deformações das barras da armadura de flexão das lajes da Série 2, dispostas nas direções x e v, são apresentadas nas figs. 5.15 a 5.20.

A presença de um furo, em um dos lados do pilar das lajes da Série 2, provocou, nas barras paralelas ao eixo x, maiores deformações naquelas posicionadas fora da região do pilar, oposta ao furo, a partir de um carregamento de, aproximadamente 600 kN, pois, até este nível de carga, as barras mais solicitadas foram aquelas posicionadas sobre o pilar, como mostram as figs. 5 15 e 5.16.

Observa-se que as barras paralelas ao eixo y foram mais solicitadas na região mais próxima à ligação pilar-furo, e, as menores deformações foram observadas na região mais próxima ao canto do pilar, oposto ao furo, como pode ser visto nas figs. 5.15 e 5.17.

Nas lajes com dois furos da Série 2, as maiores deformações da armadura de flexão, paralelas ao eixo x, foram registradas nas barras posicionadas sobre o pilar, especialmente na laje L45FFS\_CG, onde as barras mais próximas ao eixo principal x escoaram com cargas entre 650 kN e 750 kN (Fig. 5.18).

As barras interceptadas pelos furos (extensômetro 7) praticamente não foram solicitadas, e, as barras instrumentadas externamente ao furo (extensômetros 12 e 13), apresentaram as menores deformações na laje L45FFS\_CG. Entretanto, nas lajes L45FFD\_CG e L45FFD, estas barras foram mais solicitadas que as demais, a partir da carga de 650 kN (Figs. 5.19 e 5.20).

As barras paralelas ao eixo y, nas lajes com dois furos, foram mais solicitadas na região compreendida pelos furos, enquanto, menores deformações foram registradas na região mais próxima ao furo. Observa-se, também, que as barras da armadura de flexão interceptadas pelo furo, praticamente não foram solicitadas (extensômetro 6), como mostram figs 5.18 a 5.20.

O aumento da taxa de armadura de flexão, quando se comparam as lajes L45FFD CG e L45FFD com a laje L45FFS CG, possibilitou uma redução das tensões desenvolvidas individualmente pelas barras agrupadas, apenas na direção x.

203





Figura 5.15 - Deformações da armadura de flexão da laje L45FS\_CG





Figura 5.16 - Deformações da armadura de flexão da laje L45FD\_CG



Figura 5.17 - Deformações da armadura de flexão da laje L45FD





Figura 5.18 - Deformações da armadura de flexão da laje L45FFS\_CG



Figura 5.19 - Deformações da armadura de flexão da laje L45FFD\_CG





Figura 5.20 - Deformações da armadura de flexão da laje L45FFD

## 5.5 – DEFORMAÇÕES DA ARMADURA DE CISALHAMENTO

As figs. 5.21 a 5.26 apresentam o desenvolvimento das deformações da armadura de cisalhamento das lajes com a atuação do carregamento aplicado.

Na laje L45FFD\_AC2, nenhum elemento da armadura de cisalhamento entrou em processo de escoamento ate a leitura registrada (0,98. $V_{Exp}$ ), sendo que as maiores deformações foram registradas na terceira camada de armadura, próxima à face do furo (extensômetros 41 e 42 quase atingiram a deformação de escoamento,  $\varepsilon_V = 2,8$  mm/m). Os elementos da primeira camada, próximos ao centro do pilar, também apresentaram grandes deformações (Fig. 5.21).

As deformações da armadura de cisalhamento da laje L45FFD\_AC3 são apresentadas na Fig 5.22. Observa-se que, assim como na laje L45FFD\_AC2, as maiores deformações foram registradas na região próxima à face do furo, na terceira c, especialmente na segunda camada de armadura, que atingiu o escoamento sob carga de aproximadamente 1000 kN.

Na distribuição adotada na laje L45FFD\_AC4, os elementos da primeira camada de armadura de cisalhamento foram mais solicitados que os das outras camadas, especificamente na região mais próxima do centro do pilar, como se pode observar na Fig. 5.23, onde o elemento entrou em escoamento a partir de 800 kN.

O desenvolvimento das deformações da armadura de cisalhamento da laje L45FFD\_AC5, devido à atuação do carregamento, é apresentado na Fig. 5.24. Os elementos da segunda camada de armadura de cisalhamento apresentaram deformações superiores aos da primeira camada, especialmente na linha central de "studs", e todos entraram em escoamento a partir do carregamento entre 750 e 800 kN (aproximadamente 93% da carga de ruptura experimental). Os elementos situados mais próximos ao furo se deformaram levemente.

Na distribuição da armadura de cisalhamento da laje L45\_AC1, apresentada na Fig. 5.25, observa-se que as deformações nos elementos da armadura apresentaram valores muito próximos, sendo que as deformações registradas na primeira camada de armadura, na região mais próxima ao menor lado do pilar, foram levemente superiores às demais.

Os elementos da primeira camada da armadura de cisalhamento da laje L45\_AC5, localizados mais próximos ao menor lado do pilar, foram mais solicitados que os da segunda camada, sendo que entraram em processo de escoamento, sob carga entre 1000 kN e 1050 kN (94% da carga de ruptura), como mostra a Fig. 5.26. Quanto aos elementos próximos ao maior lado do pilar, os da segunda camada foram mais solicitados que os demais

Avaliando o comportamento geral dos elementos da armadura de cisalhamento das lajes da Série 3, observa-se que o posicionamento dos "studs" empregado nas lajes, permitiu que trabalhassem efetivamente, sendo solicitados somente à tração. Nas lajes L45FFD\_AC5 e L45\_AC5, alguns elementos da armadura de cisalhamento entraram em escoamento, em diferentes posições analisadas.

Em alguns casos, o escoamento da armadura de cisalhamento das lajes não ficou claramente definido por um patamar de escoamento nas curvas de "Carga x Deformação", pois, trata-se de um sistema hiperestático composto pelo concreto, armadura de flexão e de cisalhamento que não permite o escoamento livre da barra analisada.





Carga (kN)



Figura 5.21 – Deformações da armadura de cisalhamento da laje L45FFD\_AC2 (continuação)





Figura 5.22 - Deformações da armadura de cisalhamento da laje L45FFD\_AC3



Figura 5.22 – Deformações da armadura de cisalhamento da laje L45FFD\_AC3 (continuação)



Figura 5.23 – Deformações da armadura de cisalhamento da laje L45FFD\_AC4



Figura 5.24 - Deformações da armadura de cisalhamento da laje L45FFD\_AC5



Figura 5.25 - Deformações da armadura de cisalhamento da laje L45\_AC1



Figura 5.25 - Deformações da armadura de cisalhamento da laje L45\_AC1 (continuação)



Figura 5.26 - Deformações da armadura de cisalhamento da laje L45\_AC5

## 5.6 – FISSURAÇÃO

Em todas as lajes com furos, das séries 2 e 3, as primeiras fissuras radiais surgiram nos vértices dos furos e se desenvolveram em direção as bordas da laje. Nas lajes da Série 2, as fissuras radiais apareceram sob carga que variou entre 24% e 36% da carga de ruptura, e se estenderam em direção às bordas da laje. Nas lajes da Série 3, as fissuras radiais surgiram sob carga entre 20% e 30% da carga de ruptura, como mostra a Tab. 5.3.

As fissuras circunferenciais surgiram posteriormente às fissuras radiais, em torno do pilar, sob carga correspondente entre 33% e 51% da carga de ruptura, no caso das lajes da Série 2, e entre 36% e 54% da carga de ruptura, para as lajes da Série 3. Nas faces dos furos, pode ser observado, sob cargas superiores à  $V_{flctsalh}$  (carga referente ao surgimento da primeira fissura de cisalhamento), o surgimento de uma fissura de cisalhamento que se desenvolveu até se tornar a fissura de ruptura.

A utilização de armadura de cisalhamento nas lajes da Série 3 conduziu ao aumento das cargas de fissuração  $V_{f(clexdo)}$  e  $V_{f(clesalh)}$ , em relação às lajes sem tal armadura, embora a carga de ruptura das lajes com "studs" também tenha sido de maior valor. A Tab. 5.3 apresenta as cargas de fissuração radial e circunferencial observadas durante os ensaios e suas relações com a carga de ruptura das lajes. As figs. 5.27 a 5.37 mostram fotografias da fissuração no bordo superior das lajes das séries 2 e 3.

Nas lajes da Série 2, observa-se a menor quantidade de fissuras, tanto de flexão quanto de cisalhamento, em relação às lajes com tal armadura, como mostram as figs. 5.27 a 5.32. A presença de armadura de cisalhamento permitiu que, além de uma maior ductilidade da laje até próximo da ruptura, as lajes pudessem desenvolver um maior número de fissuras, antes que atingisse a ruptura.

Nas lajes da Série 3, observa-se nas fotografias das figs. 5.33 a 5.37, a grande quantidade de fissuras de flexão e de cisalhamento desenvolvidas no bordo tracionado das lajes, especialmente nas lajes sem furos, que desenvolveram uma capacidade resistente superior à das demais lajes testadas.

| Laje       | <i>d</i><br>(mm) | f <sup>°</sup> c<br>(MPa) | fam<br>(MPa) | V <sub>f(flexdo)</sub><br>(kN) | V <sub>f(cisalh)</sub><br>(kN) | V <sub>Exp</sub><br>(kN) | V <sub>f(flexão)</sub><br>/ V <sub>Exp</sub> | V <sub>f(cisalh)</sub><br>/V <sub>Exp</sub> |
|------------|------------------|---------------------------|--------------|--------------------------------|--------------------------------|--------------------------|----------------------------------------------|---------------------------------------------|
| L45FS_CG   | 154              | 40,5                      | 3.6          | 200                            | 300                            | 792                      | 0,25                                         | 0,38                                        |
| L45FD_CG   | 154              | 39,0                      | 4,2          | 200                            | 300                            | 750                      | 0,27                                         | 0.40                                        |
| L45FD      | 154              | 41,4                      | 4,3          | 250                            | 350                            | 776                      | 0,32                                         | 0,45                                        |
| L45FFS_CG  | 154              | 41.6                      | 4,2          | 200                            | 250                            | 750                      | 0,27                                         | 0,33                                        |
| L45FFD_CG  | 164              | 40,6                      | 4,2          | 200                            | 300                            | 850                      | 0,24                                         | 0,35                                        |
| L45FFD     | 144              | 37,0                      | 4,0          | 250                            | 350                            | 685                      | 0.36                                         | 0,51                                        |
| L45FFD_AC2 | 154              | 44,5                      | 4,1          | 250                            | 450                            | 1230                     | 0,20                                         | 0,37                                        |
| L45FFD_AC3 | 154              | 39,6                      | 3,5          | 250                            | 450                            | 1050                     | 0,24                                         | 0.43                                        |
| L45FFD_AC4 | 154              | 43,2                      | 3,1          | 250                            | 450                            | 865                      | 0,29                                         | 0,52                                        |
| L45FFD_AC5 | 154              | 40,7                      | 3,2          | 250                            | 450                            | 837                      | 0,30                                         | 0,54                                        |
| L45_AC1    | 154              | 39,0                      | 3,2          | 350                            | 450                            | 1250                     | 0,28                                         | 0,36                                        |
| L45_AC5    | 154              | 41,1                      | 3,4          | 250                            | 450                            | 1092                     | 0,23                                         | 0,41                                        |
|            |                  | M                         | ÉDIA         |                                |                                |                          | 0,27                                         | 0,42                                        |
|            | D.P.             |                           |              |                                |                                |                          | 0,04                                         | 0,07                                        |
| C.V. (%)   |                  |                           |              |                                |                                | 14,8                     | 16,7                                         |                                             |

Tabela 5.3 - Cargas de fissuração visual das lajes das séries 2 e 3



Figura 5.27 - Fissuração na laje L45FS\_CG



Figura 5 28 - Fissuração na laje L45FD\_CG



Figura 5.29 - Fissuração na laje L45FD



Figura 5.30 - Fissuração na laje L45FFS\_CG



Figura 5.31 – Fissuração na laje L45FFD\_CG



Figura 5.32 – Fissuração na laje L45FFD



Figura 5.33 – Fissuração na laje L45FFD\_AC2



Figura 5.34 - Fissuração na laje L45FFD\_AC4



Figura 5.35 – Fissuração na laje L45FFD\_AC5



Figura 5.36 - Fissuração na laje L45\_AC1



Figura 5.37 – Fissuração na laje L45\_AC5

# 5.7 – RESISTÊNCIA

### 5.7.1 – FLEXÃO

As lajes da Série 2 apresentaram relações  $V_{Exp}V_{flex}$  ( $V_{flex}$  é a carga última prevista para ruptura por flexão) que variaram entre 0,57 e 0,64, como mostra a Tab. 5.4. A resistência à flexão das lajes com furos foi determinada, assim como nas lajes monolíticas, através da teoria das linhas de ruptura apresentada no ANEXO C.

O detalhamento da armadura de flexão, utilizada na região próxima aos furos, das lajes L45FD\_CG, L45FD, L45FFD\_CG e L45FFD permitiu manter constante a quantidade de barras contínuas efetivas para o combate aos esforços de flexão, em relação à laje sem furos (L45), de forma que as variações nas taxas de armadura são apenas devidas às alterações nas alturas úteis.

As lajes L45FS\_CG e L45FFS\_CG, que não possuíram barras adicionais devido à presença dos furos, apresentaram as menores taxas de armadura de flexão, e, conseqüentemente, maiores valores para a relação  $V_{Exp'}V_{flex}$ , pois a resistência à flexão foi reduzida. Isto representa a maior proximidade da ruptura por flexão para estas lajes, em relação às demais.

As lajes da Série 3 apresentaram cargas previstas para a ruptura por flexão, muito próximas, diferenciando-se apenas devido à resistência do concreto, com relações  $V_{Exp}$   $V_{flex}$  variando entre 0,64 e 0,96.

A laje L45\_AC1, que apresentou a maior carga de ruptura experimental (punção), apresentou o maior valor para a relação  $V_{Exp}/V_{flex}$  (0,96), enquanto que o menor valor para esta relação foi apresentado pela laje L45FFD\_AC5 (0,64), que rompeu por punção com a menor carga registrada. A Tab. 5.4 apresenta as cargas estimadas para a ruptura por flexão das lajes das séries 2 e 3, calculadas através da teoria das linhas de ruptura.

| Laje       | d    | $f_c$ | fct.sp | ρ    | $f_{y}$ | VExp | V <sub>flex</sub> | VExp /            |
|------------|------|-------|--------|------|---------|------|-------------------|-------------------|
|            | (mm) | (MPa) | (MPa)  | (%)  | (MPa)   | (kN) | (kN)              | V <sub>flex</sub> |
| L45FS_CG   | 154  | 40,5  | 3,6    | 1,21 | 601     | 792  | 1229              | 0,64              |
| L45FD_CG   | 154  | 39,0  | 4,2    | 1,32 | 601     | 750  | 1300              | 0,58              |
| L45FD      | 154  | 41,4  | 4,3    | 1,32 | 601     | 776  | 1309              | 0,59              |
| L45FFS_CG  | 154  | 41,6  | 4,2    | 1,15 | 601     | 750  | 1199              | 0,63              |
| L45FFD_CG  | 164  | 40,6  | 4,2    | 1,24 | 601     | 850  | 1406              | 0,60              |
| L45FFD     | 144  | 37,0  | 4,0    | 1,41 | 601     | 685  | 1192              | 0,57              |
| L45FFD_AC2 | 154  | 44,5  | 4,3    | 1,32 | 601     | 1230 | 1300              | 0,95              |
| L45FFD_AC3 | 154  | 39,6  | 3,6    | 1,32 | 601     | 1050 | 1318              | 0,80              |
| L45FFD_AC4 | 154  | 43,2  | 3,1    | 1,32 | 601     | 885  | 1302              | 0,68              |
| L45FFD_AC5 | 154  | 40,7  | 3.2    | 1,32 | 601     | 837  | 1316              | 0,64              |
| L45_AC1    | 154  | 39,0  | 4,0    | 1,32 | 601     | 1250 | 1307              | 0,96              |
| L45_AC5    | 154  | 41,1  | 3,4    | 1,32 | 601     | 1092 | 1308              | 0,83              |

Tabela 5.4 - Cargas de ruptura por flexão das lajes das séries 2 e 3

#### 5.7.2 – CISALHAMENTO

Todas as lajes das séries 2 e 3 romperam por punção. Nas lajes da Série 2, a ruptura ocorreu brusca e repentinamente, enquanto que, nas lajes da Série 3, desenvolveu-se de forma dúctil e com aviso prévio, independente da presença de furos. A utilização de armadura de cisalhamento em torno do pilar e, também, próxima aos furos, favoreceu o desenvolvimento de uma ruptura calma e silenciosa.

Como comentado anteriormente, observou-se o surgimento da fissura de ruptura dentro do furo, e o seu desenvolvimento até a ruptura. Inicialmente, a fissura se inicia no bordo superior da laje (bordo tracionado) e percorre inclinadamente em direção ao pilar até, aproximadamente, a altura do plano médio da laje Com o acréscimo de carga, surge outra fissura de cisalhamento na superficie inferior da laje, no pilar, e percorre, também, inclinadamente até encontrar a outra fissura. A superficie de ruptura se formou, quando estas duas fissuras se encontraram dentro do furo.

As superficies de ruptura das lajes da Série 2 se desenvolveram com inclinações que variaram entre 25 e 60 graus, em relação ao plano médio da laje. As superficies de ruptura foram estimadas, experimentalmente, em todas as lajes, da mesma forma que nas lajes da Série 1, sendo que, nas lajes L45FD e L45FFD, a superficie de ruptura foi observada após o corte ao meio, utilizando um equipamento contendo um disco diamantado, específico para o corte de concreto armado.

As figs. 5.38 e 5.39 apresentam, respectivamente, a configuração das superficies de ruptura e as fotografias das superficies de ruptura dentro dos furos, das lajes da Série 2 e, especialmente, das lajes L45FD e L45FFD cortadas ao meio.

Nas lajes da Série 3, as superficies de ruptura se desenvolveram externamente à região armada, com inclinações que variaram entre 15 e 30 graus, em relação ao plano médio da laje, e se estenderam horizontalmente até aparecer no bordo superior. A Fig. 5.40 apresenta a configuração das superficies de ruptura das lajes da Série 3.

Pode-se notar nas fotografias das lajes com armadura de cisalhamento (Fig. 5.41), que pequenas fissuras inclinadas se desenvolveram dentro da região com armadura, antes de atingir a ruptura. Como relatado anteriormente, as barras da armadura de punção trabalharam efetivamente em todas as posições, e principalmente, na região adjacente furo, por onde pode ser visualizada a superficie de ruptura



Figura 5.38 - Configuração das superficies de ruptura das lajes da Série 2 (dimensões em

mm)


Figura 5.39 - Fotografias das superfícies de ruptura das lajes da Série 2



Figura 5.39 - Fotografias das superfícies de ruptura das lajes da Série 2 (continuação)



Figura 5.39 - Fotografias das superficies de ruptura das lajes da Série 2 (continuação)



Figura 5.39 - Fotografias das superfícies de ruptura das lajes da Série 2 (continuação)



Figura 5.39 - Fotografias das superfícies de ruptura das lajes da Série 2 (continuação)



Figura 5.39 - Fotografias das superfícies de ruptura das lajes da Série 2 (continuação)



Figura 5.40 - Configuração das superfícies de ruptura das lajes da Série 3 (dimensões em

mm)



Figura 5.41 - Fotografias das superfícies de ruptura das lajes da Série 3



Figura 5.41 - Fotografias das superfícies de ruptura das lajes da Série 3 (continuação)



Figura 5.41 - Fotografias das superfícies de ruptura das lajes da Serie 3 (continuação)



Figura 5.41 - Fotografias das superficies de ruptura das lajes da Série 3 (continuação)

- Métodos de cálculo propostos:

A investigação experimental de lajes com características geométricas e dos materiais diferentes das desta pesquisa e a verificação dos seus resultados através dos métodos de cálculo propostos serviriam para verificar os resultados obtidos neste trabalho. consolidar os métodos de cálculo e estabelecer comparações e limites.

As variáveis poderiam ser a resistência à compressão do concreto (25MPa a 50MPa), distribuição dos cabos de protensão na laje (distribuição uniforme e concentrada em faixas), dimensões e forma do pilar (pilares circulares e quadrados com diâmetro ou comprimento do lado variando entre 200mm e 300mm).

- Verificação da superfície de ruptura cruzando apenas a l<sup>a</sup> camada da armadura de cisalhamento:

O aperfeiçoamento e a consolidação das verificações da superficie de ruptura cruzando apenas a 1<sup>a</sup> camada da armadura de cisalhamento seriam feitos através de mais testes experimentais. Um dos objetivos seria confirmar o coeficiente n = 1.5 da equação 2.11. Além disso, poderia ser proposto um método de verificação da superficie de ruptura cruzando apenas a 1<sup>a</sup> camada da armadura de cisalhamento para as adaptações do *fih* e do Método da Descompressão.

 Análise dos resultados experimentais através de métodos numéricos como os dos programas computacionais ANSYS ou DIANA e verificação da possibilidade da determinação de um modelo teórico para cálculo de lajes cogumelo protendidas com armadura de cisalhamento baseado em modelos como os propostos por SHEHATA (1985) e GOMES (1991).



Figura 5.41 – Fotografias das superfícies de ruptura das lajes da Série 3 (continuação)

As lajes da Série 2 com apenas um furo adjacente ao pilar (menores lados coincidentes), L45FD\_CG (d = 154 mm,  $f'_c = 40,5 \text{ MPa}$ ), L45FS\_CG (d = 154 mm,  $f'_c = 39 \text{ MPa}$ ) e L45FD (d = 154 mm,  $f'_c = 41,4 \text{ MPa}$ ), romperam com cargas iguais a, respectivamente, 750 kN, 792kN e 776 kN (vide Tab 5.5). As cargas de ruptura das lajes com um furo apresentaram valores aproximados, diferenciando-se, no máximo, em 6%.

As lajes da Série 2, com dois furos simétricos adjacentes ao pilar (L45FFD\_CG (d = 164 mm,  $f'_c = 40,6$  MPa), L45FFS\_CG (d = 154 mm,  $f'_c = 41,6$  MPa) e L45FFD (d = 144 mm,  $f'_c = 37$  MPa)), romperam com cargas iguais a, respectivamente, 850 kN, 750 kN e 685 kN. As lajes com dois furos simétricos apresentaram cargas de ruptura razoavelmente diferenciadas, atingindo uma variação de até 24%.

A laje L45FFD\_AC2 ( $d = 154 \text{ mm e} f'_c = 44,5 \text{ MPa}$ ), com dois furos simétricos e armadura de cisalhamento, rompeu com carga igual a 1230 kN. A distribuição da armadura foi feita em 4 (quatro) camadas, sendo que a primeira camada conteve 14 (quatorze) elementos de 10 mm

de diâmetro, e as outras três camadas, 22 (vinte e dois) elementos. A distância entre a face do pilar e a primeira camada de armadura foi de 77 mm, e entre camadas, foi de 116 mm.

O detalhamento da armadura de cisalhamento na laje L45FFD\_AC3 (d = 154 mm e  $f'_c = 39,6$  MPa), semelhante ao da laje L45FFD\_AC2, porém, constituindo-se de três camadas de armadura e com elementos de 8,0 mm de diâmetro, conduziu a uma carga de ruptura de 1050kN.

A laje L45FFD\_AC4 (d = 154 mm e  $f'_c = 43,2$  MPa), com dois furos e armadura de cisalhamento, rompeu sob carga de 885 kN. A distribuição da armadura de cisalhamento apresentou-se diferenciada das demais, constituida de 3 (três) camadas, sendo a primeira camada composta de 16 (dezesseis) elementos, a segunda, de 12 (doze) elementos, e a terceira, de 8 (oito) elementos

A laje L45FFD\_AC5 (d = 154 mm e  $f'_c = 40,7$  MPa), com dois furos e armadura de cisalhamento, rompeu sob carga de 837 kN. A armadura de cisalhamento desta laje foi distribuida radialmente, e se compôs de 2 (duas) camadas de "studs", cada camada contendo 10 (dez) elementos de 8,0 mm de diâmetro A distância entre a face do pilar e a primeira camada de armadura foi de 77 mm, e a distância entre camadas, de 116 mm.

A laje L45\_AC1 ( $d = 154 \text{ mm e } f_c = 39 \text{ MPa}$ ), sem furos e com armadura de cisalhamento, rompeu sob carga de 1250 kN. A distribuição da armadura de cisalhamento, em torno de um pilar de dimensões 200 mm x 600 mm, foi feita radialmente, com 4 (quatro) camadas de "studs", cada uma contendo 12 (doze) elementos de diâmetro igual a 10 mm, conforme mostrado na Fig. 3.7. O espaçamento entre camadas, e, entre a face do pilar e a primeira camada, foi de 75 mm.

A laje L45\_AC5 (d = 154 mm e  $f_c = 41,1$  MPa), sem furos e com armadura de cisalhamento, rompeu sob carga de 1092 kN. O detalhamento da armadura de cisalhamento desta laje foi semelhante ao da laje L45FFD\_AC5, diferenciando-se apenas no número de elementos por camada, que, neste caso, foi de 12 (doze) elementos.

A Tab 5.5 apresenta as cargas e modos de ruptura das lajes das séries 2 e 3.

| Laje       | <i>d</i><br>(mm) | fc    | Grampo<br>de | N <sup>0</sup> de | Armadu<br>cisalham      | ra de<br>ento       | V <sub>Exp</sub> | Modo de             |
|------------|------------------|-------|--------------|-------------------|-------------------------|---------------------|------------------|---------------------|
| 0          | (mm)             | (MPa) | ancoragem    | turos             | Ase/cam.                | N <sup>0</sup> cam. | (KIV)            | ruptura             |
| L45FS_CG   | 154              | 40,5  | sim          | i                 | -                       | -                   | 792              | Punção              |
| L45FD_CG   | 154              | 39,0  | sim          | 1                 | -                       | -                   | 750              | Punção              |
| L45FD      | 154              | 41,4  | não          | 1                 | -                       | -                   | 776              | Punção              |
| L45FFS_CG  | 154              | 41,6  | sim          | 2                 | -                       | -                   | 750              | Punção              |
| L45FFD_CG  | 164              | 40,6  | sim          | 2                 | -                       | -                   | 850              | Punção              |
| L45FFD     | 144              | 37,0  | não          | 2                 | *                       | -                   | 685              | Punção              |
| L45FFD_AC2 | 154              | 43,8  | não          | 2                 | 14, 22, 22 e<br>22¢10mm | 4                   | 1230             | Punção<br>(externa) |
| L45FFD_AC3 | 154              | 39,6  | não          | 2                 | 14, 22 e<br>22φ8mm      | 3                   | 1050             | Punção<br>(externa) |
| L45FFD_AC4 | 154              | 43,2  | não          | 2                 | 8, 12 e<br>16¢8 mm      | 3                   | 885              | Punção<br>(externa) |
| L45FFD_AC5 | 154              | 40,7  | não          | 2                 | 10 <b>þ</b> 8 mm        | 2                   | 837              | Punção<br>(externa) |
| L45_AC1    | 154              | 39,0  | não          | 0                 | 12¢10 mm                | 4                   | 1250             | Punção<br>(externa) |
| L45_AC5    | 154              | 41,1  | não          | 0                 | 12 <b>\$</b> 8 mm       | 2                   | 1092             | Punção<br>(externa) |

Tabela 5.5 - Cargas e modos de ruptura das lajes das séries 2 e 3

# 5.7.3 – PÓS-PUNCIONAMENTO

A Tab. 5.6 apresenta as cargas de pós-puncionamento das lajes das séries 2 e 3. Pode-se notar que a capacidade residual de carga das lajes variou entre 38% e 60% da carga de ruptura.

A capacidade pós-puncionamento das lajes com furos e armadura de cisalhamento foi, na maioria dos casos, superior à das lajes sem armadura, e inclusive, em relação às lajes monolíticas e armadas com "studs".

| Laje       | <i>d</i><br>(mm) | fc<br>(MPa) | $V_{Exp}$<br>(kN) | $V_{pp}$ (kN) | Vpp/VExp |
|------------|------------------|-------------|-------------------|---------------|----------|
| L45FS_CG   | 154              | 40,5        | 792               | 420           | 0,53     |
| L45FD_CG   | 154              | 39,0        | 750               | 287           | 0,38     |
| L45FD      | 154              | 41,4        | 776               | 338           | 0,44     |
| L45FFS_CG  | 154              | 41,6        | 750               | 353           | 0,47     |
| L45FFD_CG  | 164              | 40,6        | 850               | 498           | 0,58     |
| L45FFD     | 144              | 37,0        | 685               | 400           | 0,58     |
| L45FFD_AC2 | 154              | 44,5        | 1230              | 620           | 0,50     |
| L45FFD_AC3 | 154              | 39,6        | 1050              | 580           | 0,55     |
| L45FFD_AC4 | 154              | 43,2        | 885               | 510           | 0,58     |
| L45FFD_AC5 | 154              | 40,7        | 837               | 440           | 0,53     |
| L45_AC1    | 154              | 39,0        | 1250              | 470           | 0,38     |
| L45_AC5    | 154              | 41,1        | 1092              | 530           | 0,48     |

Tabela 5.6 - Cargas de pós-puncionamento das lajes das séries 2 e 3

# 5.7.4 – ANÁLISE DAS LAJES COM FUROS E/OU ARMADURA DE CISALHAMENTO

# 5.7.4.1 – INTRODUÇÃO

Inicialmente, fez-se uma análise considerando todos os resultados experimentais de cargas de ruptura obtidos e comparando-os entre si, a fim de investigar a influência das variáveis estudadas (furos, grampos de ancoragem e barras adicionais da armadura de flexão e armadura de cisalhamento) no comportamento das lajes.

Uma comparação entre os resultados obtidos nos ensaios e aqueles encontrados na literatura foi realizada. Como foram estudadas diversas variáveis, procurou-se enfocar apenas no estudo da presença de furos adjacentes ao pilar e da contribuição da armadura de cisalhamento na resistência última.

# 5.7.4.2 – RESULTADOS EXPERIMENTAIS

# a) Influência dos Furos

Uma vez que as lajes L45FFD\_CG e L45FFD apresentaram alturas úteis diferentes da maioria das lajes, procedeu-se à normalização das alturas úteis em relação à da laje L45. A presença de um furo nas lajes da Série 2, L45FS\_CG, L45FD\_CG e L45FD, conduziu a reduções entre 6 e 11% na carga de ruptura, em relação às lajes monolíticas L45 e L45\_AC5 (Tab. 5.7).

A presença de dois furos simétricos, nas lajes das séries 2 e 3, posicionados com suas menores dimensões adjacentes aos menores lados do pilar reduziu, em média, 13%, a carga de ruptura, quando se comparam as lajes L45FFS\_CG, L45FFD\_CG e L45FFD com a L45, e a laje L45FFD\_AC5 com a L45\_AC5

A laje L45FFD\_CG apresentou carga de ruptura praticamente igual à da L45, apesar de possuir dois furos adjacentes ao pilar, devido à altura útil da laje L45FFD\_CG, enquanto que a laje L45FFD apresentou carga de ruptura inferior em 13% em relação à laje L45. As alturas úteis das lajes citadas foram normalizadas de acordo com a laje de referência L45, através do coeficiente K (Tab. 5.7). A Tab. 5.7 apresenta a influência dos furos, posicionados adjacentes ao pilar, na redução da resistência das lajes.

| Laje              | <i>d</i><br>(mm) | f'c<br>(MPa) | Nº de<br>furos | Grampo de<br>ancoragem | ρ<br>(%) | V <sub>Exp</sub><br>(kN) | K. V <sub>Exp</sub><br>(kN) | K. V <sub>Exp</sub> /<br>V <sub>Exp</sub> |
|-------------------|------------------|--------------|----------------|------------------------|----------|--------------------------|-----------------------------|-------------------------------------------|
| L45*              | 154              | 42,0         | 0              | -                      | 1,29     | 843                      | 843                         | 1,00                                      |
| L45FS_CG          | 154              | 40,5         | 1              | Sim                    | 1,14     | 792                      | 792                         | 0,94                                      |
| L45FD_CG          | 154              | 39,0         | 1              | Sim                    | 1,38     | 750                      | 750                         | 0,89                                      |
| L45FD             | 154              | 41,4         | 1              | Não                    | 1,38     | 776                      | 776                         | 0,92                                      |
| L45FFS_CG         | 154              | 41,6         | 2              | Sim                    | 1,00     | 750                      | 750                         | 0,89                                      |
| L45FFD_CG         | 164              | 40,6         | 2              | Sim                    | 1,24     | 850                      | 798                         | 0,95                                      |
| L45FFD            | 144              | 37,0         | 2              | Não                    | 1,55     | 685                      | 733                         | 0,87                                      |
| L45 AC5*          | 154              | 41,1         | 0              | -                      | 1,38     | 1092                     | 1092                        | 1,00                                      |
| L45FFD_AC5        | 154              | 40,7         | 2              | Não                    | 1,38     | 837                      | 837                         | 0,77                                      |
| * laje de referên | cia; K coe       | eficiente d  | e normali      | zação da altura        | util d ( | $K = d_{rat}$            | (d)                         |                                           |

Tabela 5.7 – Influência da presença do furo na carga de ruptura experimental

#### b) Influência da Armadura de Flexão

Nas lajes da Série 2, o aumento da taxa de armadura de flexão nas lajes com um furo, L45FD\_CG e L45FD ( $\rho = 1,38\%$ ), com relação à laje L45FS\_CG ( $\rho = 1,14\%$ ) praticamente não influenciou na carga de ruptura. A laje L45FS\_CG rompeu com uma carga 4% superior, em média, à das demais lajes, como pode ser visto na Tab. 5.7.

Com relação às lajes com dois furos, houve um acréscimo na carga de ruptura, quando se comparam as lajes L45FFS\_CG e L45FFD\_CG. Entretanto, tal aumento deve-se, como mencionado anteriormente, ao aumento da altura efetiva que ocorreu na laje L45FFD\_CG. Tal fato pode também ser observado quando se comparam as lajes citadas com a laje L45FFD, que apresentou uma altura efetiva inferior

A partir da Tab. 5.7, observa-se, ao comparar as lajes L45FD e L45FD CG, que a presença de grampos de ancoragem nas barras interceptadas pelos furos não provocou acréscimo da carga de ruptura por punção, uma vez que, os trechos verticais dos grampos de ancoragem poderiam, eventualmente, atuar como armadura de cisalhamento disposta em torno dos furos.

## c) Influência da Armadura de Cisalhamento

A utilização da armadura de cisalhamento, nas lajes da Série 3, provocou um acréscimo da resistência ultima, nas lajes monolíticas e nas lajes com furos. Observou-se que pode-se alcançar resistências aproximadas e até mais elevadas, quando da utilização de armadura de cisalhamento em lajes com furos, em relação a lajes monolíticas.

A disposição da armadura de cisalhamento, nas lajes com furos adjacentes ao pilar, é um aspecto de extrema importância, pois, é necessário que esteja distribuída em uma região onde estão atuando os maiores esforços de puncionamento e, também, onde ocorre uma deficiência de material (concreto, no caso) nas lajes.

A utilização de armadura de cisalhamento na laje L45\_AC1, sem furos, provocou um aumento de 48% na carga de ruptura da laje, quando comparada com a laje similar L45, sem

furos e sem armadura de cisalhamento, como mostra a Tab. 5.8. A redução de quatro camadas para duas, e adicionalmente, a diminuição da área de armadura de cisalhamento por camada, como foi o caso das lajes L45\_AC1 e L45\_AC5, conduziu a uma diminuição no ganho de resistência da laje, pois a laje L45\_AC5 apresentou uma carga de ruptura superior à da laje L45, em apenas 30%.

A presença de dois furos de dimensões 200 mm x 300 mm adjacentes ao pilar, com as menores dimensões coincidentes, provocou uma redução de 21% na carga de ruptura, quando se comparam as lajes L45 e L45FFD. Entretanto, com a utilização de armadura de cisalhamento constituída de quatro camadas de "studs" de diâmetro igual a 10 mm, da forma como foi disposta na laje L45FFD\_AC2, foi possível aumentar a carga de ruptura em 80%, em relação à laje similar sem armadura (L45FFD), e inclusive, superar em 46% a carga de ruptura da laje L45.

A redução do número de camadas de armadura de cisalhamento de quatro para três, e, da área de armadura por camada, quando se comparam as lajes L45FFD\_AC2 e L45FFD\_AC3, conduziu a uma redução na carga de ruptura da L45FFD\_AC3, pois o acréscimo de resistência à punção desta laje, em relação à L45FFD, foi de apenas 53%, comparado com 80% da laje L45FFD\_AC2.

A Tab. 5.8 mostra que o detalhamento da armadura de cisalhamento utilizado na laje L45FFD\_AC3 permitiu que a carga de ruptura desta laje superasse a resistência de uma laje similar sem furos e sem armadura de cisalhamento, em 25%.

O detalhamento da armadura de cisalhamento utilizado na laje L45FFD\_AC4 favoreceu o acréscimo da carga de ruptura, em relação à laje sem armadura (L45FFD), em torno de 29%, e também, em relação à laje sem furos e sem armadura (5%).

A distribuição da armadura de cisalhamento da laje L45FFD\_AC5, similar à da laje L45\_AC5, propiciou um acréscimo na carga de ruptura, em relação à laje L45FFD, de 22%, enquanto que, em relação à laje L45, não foi observado qualquer aumento da resistência à punção.

Observou-se nos resultados das lajes com furos e armadura de cisalhamento, tanto das cargas de ruptura quanto das deformações da armadura de cisalhamento, que a concentração de "studs" próxima ao furo e em torno do pilar, permitiu aumentar a resistência das lajes até valores superiores à de uma laje monolítica sem tal armadura.

Na laje L45FFD\_AC5, onde a armadura de cisalhamento foi distribuída radial e uniformemente em torno do pilar, sem a concentração de armadura próxima ao furo, verificou-se que a carga de ruptura desta laje alcançou a resistência da laje monolítica L45.

|            | No    | Armadu       | ira de cisa                                | lhamen                  | to                     | Ver  | Vr-/                      | VEml                  |  |
|------------|-------|--------------|--------------------------------------------|-------------------------|------------------------|------|---------------------------|-----------------------|--|
| Laje       | furos | Detalhe      | A <sub>se</sub> /cam<br>(mm <sup>2</sup> ) | \$ <sub>0</sub><br>(mm) | s <sub>r</sub><br>(mm) | (kN) | V <sub>Exp</sub> (LASFFD) | V <sub>Exp(L45)</sub> |  |
| L45        | 0     | •            | -                                          | -                       | -                      | 843  | 1,23                      | 1,00                  |  |
| L45FFD     | 2     |              |                                            | -                       | -                      | 685  | 1,00                      | 0,79                  |  |
|            |       |              | 1 <sup>a</sup> 1100                        |                         |                        |      |                           |                       |  |
|            | 2     | <u></u>      | 2 <sup>a</sup> 1728                        | 77                      | 116                    | 1020 | 1.90                      | 1 46                  |  |
| L43FFD_AC2 | 2     |              | 3 <sup>a</sup> 1728                        | //                      | 110                    | 1230 | 1,80                      | 1,40                  |  |
|            |       |              | 4 <sup>a</sup> 1728                        |                         |                        |      |                           |                       |  |
|            |       | ·            | l <sup>a</sup> 704                         |                         |                        |      |                           |                       |  |
| L45FFD_AC3 | 2     | XX           | 2 <sup>a</sup> 1106                        | 77                      | 116                    | 1050 | 1,53                      | 1,25                  |  |
|            |       | * *** * **** | 3 <sup>a</sup> 1106                        |                         |                        |      |                           |                       |  |
|            |       |              | 1 <sup>a</sup> 804                         |                         |                        |      |                           |                       |  |
| L45FFD_AC4 | 2     |              | 2 <sup>a</sup> 603                         | 77                      | 116                    | 885  | 1,29                      | 1,05                  |  |
|            |       |              | 3 <sup>a</sup> 402                         |                         |                        |      |                           |                       |  |
| L45FFD_AC5 | 2     |              | 503                                        | 77                      | 116                    | 837  | 1,22                      | 0,99                  |  |
| L45_AC1    | 0     |              | 943                                        | 75                      | 75                     | 1250 | 1,82                      | 1,48                  |  |
| L45_AC5    | 0     |              | 603                                        | 77                      | 116                    | 1092 | 1,59                      | 1,30                  |  |

Tabela 5.8 – Contribuição da armadura de cisalhamento na carga de ruptura experimental

# 5.7.4.3 – COMPARAÇÃO DOS RESULTADOS EXPERIMENTAIS COM RESULTADOS DA LITERATURA

#### a) Lajes com Furos

A Tab. 5.9 apresenta uma comparação dos resultados experimentais obtidos por diversos pesquisadores com os da pesquisa atual, considerando a presença de furos próximos ao pilar.

Nos resultados de GOMES & ANDRADE (1995) apresentados na Tab. 5.9, verifica-se uma redução de até 15% na carga de ruptura das lajes quadradas (3000 mm x 3000 mm x 200 mm) com pilares quadrados (200 mm x 200 mm) e furos circulares, quando comparadas com a laje monolítica L12A (caso de quatro furos).

O aumento do número e do diâmetro dos furos não provocou reduções consideráveis nas cargas de ruptura, a partir de um furo de 151 mm de diâmetro. Ocorreu um decréscimo da carga de ruptura quando se utilizou um furo de 90 e 151 mm de diâmetro, a partir da laje sem furo.

Nas lajes de dimensão retangular (1540 mm x 1020 mm x 120 mm), com pilares de borda (250 mm x 250 mm), estudadas por EL-SALAKAWY *et al.* (1999), verifica-se que a localização e o tamanho do furo é um fator extremamente importante na resistência da laje, especificamente em lajes com pilares de borda.

A presença de um furo quadrado (250 mm x 250 mm), adjacente ao pilar e alinhado na direção perpendicular à borda, reduziu em 30% a resistência da laje. A menor redução na resistência ultima à punção foi registrada na laje com furo quadrado (150 mm x 150 mm) adjacente ao pilar e perpendicular à borda, que foi de apenas 4% (Laje SE0).

As lajes quadradas (2200 mm x 2200 mm x 150 mm) com pilares internos quadrados (200 mm x 200 mm), testadas por TENG *et al.* (1999), tiveram uma redução de carga última entre 12 e 51%, quando da existência de furos de seção retangular (200 mm x 400 mm) adjacentes ao pilar. A situação mais desfavorável para a posição do furo é, obviamente, aquela em que o furo está significativamente inserido no perimetro critico da região sob puncionamento

No caso das lajes de TENG *et al.* (1999), apoiadas em pilar de seção retangular, a presença de furos adjacentes ao pilar conduziu a uma redução de 10 a 40% da carga de ruptura, em relação à laje monolítica. Observa-se na Tab. 5 9 que, nestes casos, a resistência tende a diminuir, tanto com o posicionamento do furo dentro da região do perímetro critico da punção, quanto estando adjacente ao menor lado do pilar.

Nos resultados de REGAN (1999), observa-se, que a presença de furos em lajes com pilares retangulares reduziu a carga de ruptura em até 36%, em relação a lajes monolíticas.

A presença de dois furos quadrados (150 mm x 150 mm) e simétricos, posicionados adjacentes ao pilar quadrado de mesmas dimensões do furo, provocou um decréscimo na carga de ruptura de aproximadamente 18%, em relação à laje monolítica, no caso das lajes ensaiadas por SILVA (2003). Nas lajes com pilares retangulares de dimensões, em mm, 150 x 300 e 150 x 450, ensaiadas pelo autor, os furos reduziram a carga de ruptura em, respectivamente, 13% e 20%, em relação às lajes semelhantes em furos.

Para as lajes da presente pesquisa, que foram ensaiadas com o objetivo de investigar a influência dos furos na resistência das lajes, observa-se que a presença de um furo. adjacente ao menor lado do pilar retangular, reduziu em 14% a carga de ruptura, e, a existência de dois furos simétricos, diminuiu a carga de ruptura em 33%, quando comparada com a laje monolítica.

| -               |      | D'1                  |                                                                                | Furo   |                 | <i>C</i> 1 | .1   | IZ.  |
|-----------------|------|----------------------|--------------------------------------------------------------------------------|--------|-----------------|------------|------|------|
| Auto            | Laje | (mm)                 | Detalhe                                                                        | Quant. | Tamanho<br>(mm) | (MPa)      | (mm) | (kN) |
| 5)              | 12A  | Interno<br>200 x 200 |                                                                                | 0      | -               | 36,5       | 163  | 650  |
| E (199          | 13   | Interno<br>200 x 200 | $\otimes$                                                                      | 1      | φ = 90          | 31,4       | 153  | 600  |
| ICADI           | 14   | Interno<br>200 x 200 | $\otimes$                                                                      | 1      | φ = 151         | 31,4       | 155  | 556  |
| & AND           | 15   | Interno<br>200 x 200 | $\otimes$                                                                      | 2      | φ = 166         | 27,8       | 148  | 554  |
| GOMES           | 23   | Interno<br>200 x 200 | $\overset{\otimes}{\overset{\otimes}{\overset{\otimes}{\overset{\otimes}{}}}}$ | 4      | φ = 166         | 36,4       | 160  | 550  |
|                 | XXX  | Borda<br>250 x 250   | LajeXXXX                                                                       | 0      | •               | 33,0       | 90   | 125  |
| (666)           | SE0  | Borda<br>250 x 250   | N S THE                                                                        | r      | 150x150         | 32,5       | 90   | 120  |
| LAKAWY et al. ( | CF0  | Borda<br>250 x 250   | CPO                                                                            | 1      | 250x250         | 30,5       | 90   | 87   |
| EL-SA           | SFO  | Borda<br>250 x 250   | 1.aje SFO                                                                      | I      | 150x150         | 31,5       | 90   | 110  |
|                 | SF1  | Borda<br>250 x 250   | 290<br>150<br>290                                                              | ĩ      | 150x150         | 33,0       | 90   | 115  |

Tabela 5.9 – Comparação dos resultados experimentais das lajes com furos da literatura com os da presente pesquisa

| ×               |         | Dilor                | Fur      | 0  |                 | f.    | 4    | V.   |
|-----------------|---------|----------------------|----------|----|-----------------|-------|------|------|
| Auto            | Laje    | (mm)                 | Detalhe  | Na | Tamanho<br>(mm) | (MPa) | (mm) | (kN) |
| EL-<br>SALAKAWY | SF2     | Borda<br>250 x 250   | Lage SF2 | 1  | 150x150         | 30,0  | 90   | 114  |
| _               | OC11    | Interno<br>200x200   |          | 1  | 200x400         | 36,0  | 115  | 423  |
|                 | OC11H30 | Interno<br>200x200   |          | 1  | 200x400         | 33,9  | 118  | 349  |
|                 | OC11V23 | Interno<br>200x200   |          | 1  | 200x400         | 34,1  | 109  | 373  |
|                 | OC11V20 | Interno<br>200x200   |          | 1  | 200x400         | 38,6  | 105  | 207  |
|                 | OC13    | Interno<br>200x600   |          | 1  | 200x400         | 35,8  | 107  | 568  |
| (6              | OC13H50 | Interno<br>200x600   |          | 1  | 200x400         | 36,3  | 110  | 443  |
| i al. (199      | OC13V43 | Interno<br>200x600   |          | 1  | 200x400         | 36,6  | 114  | 467  |
| TENG e          | OC13V23 | Interno<br>200x600   |          | 1  | 200x400         | 37,0  | 108  | 484  |
|                 | OC13V40 | Interno<br>200x600   |          | 1  | 200x400         | 43,0  | 109  | 340  |
|                 | OC13H02 | Interno<br>200x600   |          | 1  | 200x400         | 43,1  | 112  | 512  |
|                 | OC15    | Interno<br>200x1000  |          | 1  | 200x400         | 40,0  | 103  | 649  |
|                 | OC15H70 | Interno<br>200x1000  |          | 1  | 200x400         | 37,9  | 108  | 529  |
|                 | OC15V43 | Interno<br>200x1000  |          | 1  | 200x400         | 36,0  | 109  | 612  |
| 66/N            | 1       | Interno<br>150 x 250 |          | 0  | -               | 39,4  | 124  | 440  |
| REGA            | 2       | Interno<br>150 x 250 |          | 2  | 100x150         | 40,7  | 124  | 380  |

Tabela 5.9 – Comparação dos resultados experimentais das lajes com furos da literatura com os da presente pesquisa (continuação)

|                 |        |                      | Fu      | го                 |                    |             |                  |               |  |
|-----------------|--------|----------------------|---------|--------------------|--------------------|-------------|------------------|---------------|--|
| Auto            | Laje   | Pilar<br>(mm)        | Detalhe | N° Tamanho<br>(mm) |                    | fc<br>(MPa) | <i>d</i><br>(mm) | V Exp<br>(kN) |  |
| REGAN<br>(1999) | 6      | Interno<br>150 x 250 |         | 4                  | 100x100<br>100x150 | 37,6        | 124              | 280           |  |
|                 | LI     | Interno<br>150 x 150 |         | 0                  | -                  | 39,6        | 90               | 273           |  |
| (               | L4     | Interno<br>150 x 150 |         | 2                  | 150x150            | 39,4        | 90               | 225           |  |
| (2003           | L2     | Interno<br>150 x 300 |         | 0                  | ÷                  | 40,4        | 90               | 401           |  |
| LVA             | L5     | Interno<br>150 x 300 |         | 2                  | 150x150            | 39,6        | 90               | 350           |  |
| 02              | L3     | Interno<br>150 x 450 |         | 0                  |                    | 40,8        | 90               | 469           |  |
|                 | L6     | Interno<br>150 x 450 |         | 2                  | 150x150            | 39,1        | 90               | 375           |  |
| uisa            | L45    | Interno<br>200 x 600 |         | 0                  | -                  | 42,0        | 154              | 843           |  |
| e pesq          | L45FD  | Interno<br>200 x 600 |         | 1                  | 200x300            | 41,4        | 154              | 726           |  |
| Presen          | L45FFD | Interno<br>200 x 600 |         | 2                  | 200x300            | 37,0        | 144              | 635           |  |

Tabela 5.9 – Comparação dos resultados experimentais das lajes com furos da literatura com os da presente pesquisa (continuação)

## b) Lajes com Armadura de Cisalhamento

A Tab. 5.10 apresenta os resultados experimentais da presente pesquisa e de algumas pesquisas da literatura referentes a lajes com armadura de cisalhamento, com pilares de seção transversal quadrada ou retangular.

Para os resultados de GOMES & ANDRADE (1995), observa-se na Tab. 5.10, que a utilização de armadura de cisalhamento na laje com um furo permitiu que a resistência desta laje superasse em 69% a da laje monolítica, e, em 83% a da laje similar sem armadura.

No caso das lajes com dois furos, o aumento na resistência última devido à armadura de cisalhamento, em relação à laje monolitica, foi de, no mínimo, 28% (distribuição radial com 6 camadas de elementos de 6,0 mm). Observa-se um acréscimo na carga de ruptura da laje com dois furos, com a utilização de 4 camadas de elementos de 10,0 mm de diâmetro, de aproximadamente 82%.

Nas lajes com quatro furos, a armadura de cisalhamento provocou um acréscimo na carga de ruptura de, no mínimo, 42% para os "studs" distribuídos em 8 linhas, cada uma com 4 camadas de elementos de 10,0 mm de diâmetro. O ganho máximo de resistência nas lajes com quatro furos foi de 79%, para os casos das lajes 26 e 27, que tiveram os furos revestidos com tubos de aço. Com a utilização destes tubos de aço dentro dos furos, observa-se na Tab. 5.10 que não houve aumento de resistência quando se elevou o número de camadas de "studs, de 6 para 10, e sim, mudança no modo de ruptura (flexão).

Em relação à laje monolítica L12A ensaiada pelos autores, a utilização de armadura de cisalhamento nas lajes com quatro furos, produziu um acréscimo de até 52%, na carga de ruptura.

A distribuição da armadura de cisalhamento, constituída de fatias de perfis de aço de viga de seção "T", em torno da região do pilar da laje monolítica ensaiada por REGAN (1999), produziu um aumento na resistência da laje de aproximadamente 14%, quando da utilização de armadura mínima calculada de acordo com a norma BS8110 (1997).

Nas lajes com dois furos, a utilização da armadura de cisalhamento, cuja área de aço correspondeu à àrea mínima calculada segundo o BS8110 (1997), permitiu um acréscimo de 21% na carga de ruptura da laje similar sem tal armadura. Em relação à laje monolítica, a laje com dois furos e armadura mínima apresentou carga de ruptura superior em 5%.

O detalhamento da armadura de cisalhamento da laje 5 de REGAN (1999), que se constituiu apenas de 2 camadas, cada uma com 4 elementos de diâmetro de 6,0 mm, produziu uma carga de ruptura levemente superior (4%) à da laje 4, que teve uma área maior de armadura.

Nas lajes com quatro furos, as barras dobradas colocadas próximas às faces dos furos produziram um acrescimo na carga de ruptura, em relação a laje similar sem tal armadura, de

14%. Em relação à laje monolítica, a utilização de barras dobradas, nas lajes com quatro furos, não elevou a carga de ruptura

Ao comparar as lajes PSSCH4a e PSSCH4b, ensaiadas por IOANNOU (2001), e ponderando os diferentes valores da resistência à compressão do concreto, verifica-se, na Tab. 5.10, que a armadura de cisalhamento elevou em, aproximadamente, 22% a carga de ruptura.

Embora a laje PSSCH1 tenha apresentado o furo com a maior dimensão, em relação aos demais furos, esta rompeu com a maior carga (492 kN).

Assim como observado anteriormente, a laje que apresentou a menor resistência última, dentre aquelas com armadura de cisalhamento, foi aquela cujos furos tiveram seus maiores lados adjacentes ao pilar (PSSCH3). Entretanto, esta laje rompeu com uma carga superior à da laje sem armadura de cisalhamento, em aproximadamente 23%.

Nota-se nos resultados obtidos por SILVA (2003), que a armadura de cisalhamento aumentou a carga de ruptura das lajes monolíticas com pilar quadrado em 54%, e das lajes com pilar retangular, em 13%.

Nas lajes com pilar quadrado e dois furos simétricos, a presença da armadura de cisalhamento distribuída dentro do perímetro circular, cuja origem é o centro do pilar, e o raio é a distância entre este centro e o elemento da última camada, conduziu a uma carga de ruptura superior em 19% à de uma laje monolítica e sem armadura, mas inferior à carga de uma laje monolítica e com armadura de cisalhamento.

Na laje com pilar retangular e dois furos simétricos, a armadura de cisalhamento não aumentou a carga de ruptura, quando comparada com a laje monolítica sem armadura.

Nas lajes quadradas (3000 mm x 3000 mm x 200 mm) com pilares internos retangulares (200 mm x 600 mm), testadas na presente pesquisa, o emprego de armadura de cisalhamento nas lajes monolíticas, distribuída uniformemente em torno do pilar, produziu um acréscimo na carga de ruptura de até 48%, em relação à laje sem tal armadura.

Obviamente, com a presença de dois furos simétricos na laje, a resistência tende a diminuir. Entretanto, a utilização de armadura de punção, constituída de "studs" ancorada nos bordos superior e inferior da laje, permitiu aumentar a resistência das lajes com dois furos em até 80%, inclusive, superar a resistência da laje monolítica L45 em 46%, como comentado anteriormente.

Nota-se nos resultados das lajes da Série 3 da presente pesquisa, que uma maior concentração de armadura de cisalhamento próxima do furo, permite elevar ainda mais a resistência da laje, quando comparada com a distribuição mais uniforme dos elementos da armadura, assim como foi observado nos resultados das lajes 4 e 5 de REGAN (1999).

| Or   |      |    | Furo            | Armadu | ira de cisalha        | mento     | £     | d    | V <sub>Exp</sub><br>(kN) |
|------|------|----|-----------------|--------|-----------------------|-----------|-------|------|--------------------------|
| Auto | Laje | N° | Tamanho<br>(mm) | Linhas | Camadas               | φ<br>(mm) | (MPa) | (mm) |                          |
|      | 12A  | 0  | -               | -      | -                     | -         | 36,5  | 163  | 650                      |
|      | 13   | 1  | φ = 90          | -      | -                     | -         | 31,4  | 153  | 600                      |
| (5   | 17   | 1  | φ = 90          | 8      | 4                     | 10,0      | 34,1  | 166  | 1096                     |
| 661  | 15   | 2  | φ = 166         | -      | da                    | -         | 27,8  | 148  | 554                      |
| DE ( | 19   | 2  | φ = 166         | 8      | 4                     | 10,0      | 36,6  | 165  | 1010                     |
| SAL  | 21   | 2  | φ = 166         | 8      | 6                     | 8,0       | 36,3  | 165  | 896                      |
| IQN  | 22   | 2  | φ = 166         | 8      | 6                     | 6,0       | 34,5  | 164  | 832                      |
| K Y  | 23   | 4  | φ = 166         | -      | -                     | -         | 36,4  | 160  | 550                      |
| ES   | 20   | 4  | φ = 166         | 8      | 4                     | 10,0      | 33,8  | 159  | 780                      |
| IWC  | 24   | 4  | φ = 166         | 8      | 4                     | 10,0      | 35,0  | 161  | 890                      |
| G    | 25   | 4  | φ = 166         | 8/8    | 6/3                   | 10,0      | 34,2  | 160  | 900                      |
|      | 26   | 4  | φ = 166         | 8/8    | 6/3                   | 10,0      | 36,7  | 169  | 985                      |
|      | 27   | 4  | φ = 166         | 8/8    | 10/5                  | 10,0      | 30,7  | 169  | 985                      |
| 0    | 1    | -  | -               |        |                       |           | 39,4  | 124  | 440                      |
| 566  | 2    | 2  | 100x150         |        | -                     |           | 40.7  | 124  | 380                      |
| N    | 3*   | -  | -               | A      | se.min (BS8110'97     | )         | 39,7  | 124  | 500                      |
| EGA  | 4*   | 2  | 100x150         | A      | se.min (BS8110 97     | )         | 39,2  | 124  | 460                      |
| RI   | 5    | 2  | 100x150         |        | $A_{se} < A_{se,min}$ |           | 46,4  | 124  | 480                      |

Tabela 5.10 – Comparação dos resultados experimentais das lajes com armadura de cisalhamento da literatura com os da presente pesquisa

| JL      |              |    | Furo               | Armadu          | ira de cisalh                     | amento    | £     | d    | VEm  |  |
|---------|--------------|----|--------------------|-----------------|-----------------------------------|-----------|-------|------|------|--|
| Auto    | Laje         | Nº | Tamanho<br>(mm)    | Linha           | Camada                            | φ<br>(mm) | (MPa) | (mm) | (kN) |  |
| (6661)) | 6            | 4  | 100x100<br>100x150 |                 | -                                 |           | 37,6  | 124  | 280  |  |
| REGAN   | 8            | 4  | 100x100<br>100x150 | Barras dobradas |                                   |           | 41,8  | 124  | 320  |  |
|         | PSSCH1       | 1  | 400x400            | "Shear          | band" – figs<br>2.52              | s.2.51 e  | 48,0  | 134  | 492  |  |
| (2001)  | PSSCH2       | 2  | 200x400            | "Shear          | band" – figs<br>2.52              | s.2.51 e  | 124   | 280  | 433  |  |
| NNOL    | PSSCH3       | 2  | 200x400            | "Shear          | band" – fig:<br>2.52              | s.2.51 e  | 124   | 320  | 386  |  |
| IOA     | PSSCH4a      | 2  | 200x400            | "Shear          | band <sup>**</sup> – figs<br>2.52 | s.2.51 e  | 41,6  | 134  | 415  |  |
|         | PSSCH4b      | 2  | 200x400            |                 | -                                 |           | 32,8  | 134  | 313  |  |
|         | L1 (150x150) | -  | -                  | -               | -                                 | -         | 39,6  | 90   | 273  |  |
|         | L7 (150x150) | -  |                    | 8               | 3                                 | 8,0       | 49,0  | 90   | 420  |  |
| 03)     | L10(150x150) | 2  | 150x150            | 6               | 3                                 | 8,0       | 40,0  | 90   | 325  |  |
| (20     | L2 (150x300) | -  | -                  | -               | -                                 | -         | 40,4  | 90   | 401  |  |
| V.A     | L8 (150x300) | -  | -                  | 8               | 3/2                               | 8,0       | 49,4  | 90   | 452  |  |
| SIL     | L11(150x300) | 2  | 150x150            | 6               | 3                                 | 8,0       | 40,8  | 90   | 350  |  |
|         | L3 (150x450) | 2  | -                  | -               | -                                 | -         | 40,8  | 90   | 469  |  |
|         | L9 (150x450) | -  | -                  | 6               | 3                                 | 8,0       | 50,2  | 90   | 452  |  |
| -       | L45          | -  | ÷.                 | -               | -                                 | -         | 42,0  | 154  | 843  |  |
| SI      | L45FFD       | 2  | 200x300            | -               | -                                 | -         | 37,0  | 144  | 635  |  |
| SQL     | L45_AC1      | -  | -                  | 12              | 4                                 | 10,0      | 39,0  | 154  | 1250 |  |
| PE      | L45_AC5      | -  | -                  | 12              | 2                                 | 8.0       | 41,1  | 154  | 1092 |  |
| TTE     | L45FFD_AC5   | 2  | 200x300            | 10              | 2                                 | 8,0       | 40,7  | 154  | 837  |  |
| SEN     | L45FFD_AC2   | 2  | 200x300            | 22              | 4                                 | 10,0      | 43,8  | 154  | 1230 |  |
| RE      | L45FFD_AC3   | 2  | 200x300            | 22              | 3                                 | 8,0       | 39,4  | 154  | 1050 |  |
| H       | L45FFD_AC4   | 2  | 200x300            | 16              | 3                                 | 8,0       | 43,2  | 154  | 885  |  |

Tabela 5.10 – Comparação entre resultados experimentais de lajes com furos e armadura de cisalhamento (continuação)

# **CAPÍTULO 6**

# COMPARAÇÃO DOS RESULTADOS EXPERIMENTAIS COM OS ESTIMADOS PELAS NORMAS DE PROJETO E POR PESQUISADORES

# 6.1 – INTRODUÇÃO

Uma comparação dos resultados experimentais com os fornecidos pelos métodos de cálculo de vários pesquisadores (ROLL et *al.* (1971). TENG et *al.* (1999), IOANNOU (2001), AL-YOUSIF & REGAN (2003), OLIVEIRA (2003)) e normas de projeto (ACI (2002), BS8110 (1997), CEB-FIP Model Code (1991). EUROCODE 2 (1992; 2001), Handbook to BS8110/85 (1987) e NBR-6118 (1978; 2003)) foi realizada para as lajes das séries 1. 2 e 3 da presente pesquisa.

# 6.2 – LAJES COM PILARES RETANGULARES (SÉRIE 1)

#### 6.2.1 – LAJES DA PRESENTE PESQUISA

A Tab. 6.1 e Fig. 6.1 apresentam comparações dos resultados experimentais das lajes da Série 1 com os estimados por algumas normas de projeto e por pesquisadores.

Os métodos de cálculo das normas do EC2 (1992), ACI (2002) e NBI (1978), apesar de considerarem no cálculo da resistência à punção, o efeito da relação  $c_{max}/c_{min}$  do pilar. ou no cálculo da tensão de cisalhamento ou do perímetro de controle, apresentaram, em ordem crescente, estimativas mais conservadoras em relação aos demais métodos, com maiores valores para o desvio padrão e coeficiente de variação. Observa-se que a NB1 (1978) tende a ser menos conservadora para valores mais altos de  $c_{max}/d$ , ao contrário da norma do ACI (2002) e EC2 (1992), como mostram a Tab. 6.1 e Fig. 6.1.

O método de cálculo do EC2 (1992) se apresentou conservador, pois subestimou a carga de ruptura devido à redução significativa do perímetro de controle, como o aumento da relação entre os lados do pilar, a partir de  $c_{max} c_{min} = 2$ . A diferença entre a carga experimental e a teórica aumentou com o acréscimo do perímetro do pilar

Os métodos da BS8110 (1997), TENG et *al.* (1999) e AL-YOUSIF & REGAN (2003) apresentaram estimativas próximas para as cargas de ruptura (vide Fig 6.1). As previsões da BS8110 (1997) foram praticamente idênticas às do método de TENG et *al.* (1999), pois este último apresenta prescrições que limita o acréscimo do perímetro de controle a partir de relações  $c_{max} c_{min} > 4$ . A redução do perimetro de controle no método de AL-YOUSIF & REGAN (2003), que se torna efetivo para relações  $c_{máx} d > 3$ , tornou o método levemente mais conservador em relação aos outros.

Melhores estimativas foram obtidas pelas normas do CEB (1991) e NB1 (2003), utilizando o coeficiente de segurança iguais a 1,50 e 1,40, respectivamente, ao invés de 1,33 (Tab. 6.1), obtendo-se, os menores valores para o desvio padrão (0,03) e coeficiente de variação (2,9%).

A limitação proposta no método de cálculo do EC2 (2001), para o termo  $(l + \sqrt{200/d})$ , conduziu à redução da carga estimada, em relação à norma do CEB (1991) (ambas normas apresentam expressões de cálculo semelhantes). Assim, o EC2 (2001) forneceu resultados um pouco mais conservadores que o CEB (1991), com valor médio para relação  $V_{Exp}V_{calc}$  de 1,10, desvio padrão e coeficiente de variação iguais a, respectivamente, 0,04 e 3,6 (vide Fig. 6.1).

A proposta de OLIVEIRA (2003) para o método do CEB (1991), com a inclusão do fator de flexão, reduziu a carga de ruptura estimada das lajes, em relação à norma, e desta forma, forneceu estimativas pouco mais conservadoras, com média de 1,10, e, desvio padrão e coeficiente de variação praticamente iguais aos das normas do CEB (1991) e NB1 (2003).

| Laia     | a            | 1 (1000)      | a /d                 | /d V <sub>Exp</sub> /V <sub>calc</sub> |           |        |        |        |        |        |             |         |              |
|----------|--------------|---------------|----------------------|----------------------------------------|-----------|--------|--------|--------|--------|--------|-------------|---------|--------------|
| Laje     | C min /C min | <i>a</i> (mm) | c <sub>máx</sub> / a | ACI/02                                 | BS8110/97 | CEB/91 | EC2/92 | EC2/01 | NB1/78 | NB1/03 | OLIVEIRA/03 | TENG/99 | AL-YOUSIF/03 |
| LA2      | 2            | 139           | 2,88                 | 1,31                                   | 1,17      | 1,09   | 1,20   | 1,20   | 1,47   | 1,09   | 1,15        | 1,17    | 1,17         |
| L42A     | 2            | 164           | 2,44                 | 1,22                                   | 1,11      | 1,03   | 1,18   | 1,09   | 1,37   | 1,03   | 1,09        | 1,11    | 1,11         |
| L45      | 3            | 154           | 3,90                 | 1,37                                   | 1,13      | 1,06   | 1,31   | 1,13   | 1,27   | 1,06   | 1,12        | 1,13    | 1,15         |
| LA6      | 4            | 164           | 4,88                 | 1,39                                   | 1,10      | 1,03   | 1,43   | 1,08   | 1,28   | 1,03   | 1,10        | 1,10    | 1,14         |
| L41      | 1,67         | 139           | 1,80                 | 1,43                                   | 1,15      | 1,07   | 1,19   | 1,17   | 1,63   | 1,07   | 1,11        | 1,15    | 1,15         |
| L4IA     | 1,67         | 164           | 1,52                 | 1,31                                   | 1,09      | 1,01   | 1,15   | 1,06   | 1,51   | 1,01   | 1,05        | 1,09    | 1,09         |
| L43A     | 3            | 164           | 2,74                 | 1,48                                   | 1,13      | 1,06   | 1,33   | 1,11   | 1,39   | 1,06   | 1,11        | 1,13    | 1,13         |
| L44      | 4            | 164           | 3,66                 | 1,46                                   | 1,07      | 1,00   | 1,36   | 1,06   | 1,32   | 1,00   | 1,06        | 1,07    | 1,09         |
| Media    |              |               |                      | 1,37                                   | 1,12      | 1,04   | 1,27   | 1,11   | 1,40   | 1,04   | 1,10        | 1,12    | 1,13         |
| Desvio p | oadrão       |               |                      | 0,09                                   | 0,03      | 0,03   | 0,10   | 0,05   | 0.13   | 0,03   | 0,03        | 0,03    | 0,03         |
| Coeficie | nte de varia | ção (%)       |                      | 6,3                                    | 3,0       | 2,9    | 7,9    | 4,7    | 9,0    | 2,9    | 3,0         | 3,0     | 2,8          |

Tabela 6.1 – Comparação dos resultados experimentais com os estimados por normas de projeto e por pesquisadores para as lajes da Série 1





#### 6.2.2 – LAJES DA PRESENTE PESQUISA E DA LITERATURA

A Tab. 6.2 apresenta uma comparação dos resultados experimentais com as estimativas das normas de projeto e de pesquisadores para as lajes da presente pesquisa e da literatura. armadas bidirecionalmente e apoiadas/carregadas nos quatro bordos.

A Tab. 6.3 apresenta os valores médios para a relação  $V_{l,xp}/V_{cabas}$  desvio padrão e coeficiente de variação relacionados às estimativas das normas de projeto e de pesquisadores. É apresentado, também, o parâmetro  $c_{max}/d$ , utilizado em análise anteriores, para mostrar a tendência dos resultados devido a sua influência.

A NB1/78, novamente, se apresentou como a norma de projeto mais conservadora, apresentando um valor médio para  $V_{Exp}/V_{calc}$  de 1.50 e os maiores valores para o desvio padrão e coeficiente de variação.

As normas do ACI/02 e EC2/92 também se apresentaram conservadoras, fornecendo uma média de 1,43 e 1.37, respectivamente, com desvio padrão e coeficiente de variação inferiores ao apresentados pela NB1/78.

As normas NB1/03 e o CEB/91 tendem a superestimar levemente as resistências das lajes armadas bidirecionalmente, apresentando um valor médio de 0,99 para a relação  $V_{Exp}/V_{calc}$ , e os menores valores para o desvio padrão (0.11) e coeficiente de variação (10.6%).

O EC2/01 se apresentou conservador, principalmente, em relação às normas NB1/03 e CEB/91, com uma estimativa média de 1,15, desvio padrão de 0,15 e coeficiente de variação de 12.6%.

As melhores estimativas, a favor da segurança, foram apresentadas, em ordem crescente, pela BS/97 e OLIVEIRA/03, com estimativas médias iguais a, respectivamente, 1,07 e 1.05, e valores aproximadamente iguais para o desvio padrão (0,11) e coeficiente de variação (10,6%). As estimativas fornecidas pelos métodos de TENG et *al.*/99 e AL-YOUSIF et *al.*/03 foram bastante semelhantes (1,13 e 1,14, respectivamente), porém, se apresentaram mais conservadoras que a norma BS/97.

261

|                    |      |         | I Exp I cak |       |        |        |        |        |        |             |         |              |  |  |  |
|--------------------|------|---------|-------------|-------|--------|--------|--------|--------|--------|-------------|---------|--------------|--|--|--|
| Autor              | Laje | C min d | ACI/02      | BS 97 | CEB 91 | EC2 92 | EC2 01 | NB1 78 | NB1 03 | OLIVEIRA 03 | TENG/99 | AL-YOUSIF/03 |  |  |  |
|                    | L42  | 2.88    | 1,31        | 1,17  | 1,09   | 1,20   | 1.20   | 1,47   | 1,09   | 1,15        | 1.17    | 1,17         |  |  |  |
|                    | L42A | 2,44    | 1.22        | 1,11  | 1,03   | 1.18   | 1,09   | 1,37   | 1.03   | 1,09        | 1.11    | 1.11         |  |  |  |
|                    | 1.45 | 3,90    | 1.37        | 1,13  | 1,06   | 1.31   | 1.13   | 1.27   | 1.06   | 1.12        | 1,13    | 1,15         |  |  |  |
|                    | L46  | 4,88    | 1,39        | 1.10  | 1,03   | 1,43   | 1.08   | 1.28   | 1,03   | 1.10        | 1,10    | 1,14         |  |  |  |
| SERI               | L41  | 1,80    | 1,43        | 1,15  | 1.07   | 1,19   | 1,17   | 1,63   | 1,07   | 1,11        | 1,15    | 1,15         |  |  |  |
|                    | 141A | 1.52    | 1,31        | 1,09  | 1,01   | 1.15   | 1.06   | 1.51   | 1,01   | 1.05        | 1.09    | 1,09         |  |  |  |
|                    | L43A | 2,74    | 1,48        | 1.13  | 1,06   | 1,33   | 1,11   | 1.39   | 1,06   | 1,11        | 1,13    | 1,13         |  |  |  |
|                    | L/44 | 3,66    | 1,46        | 1,07  | 1,00   | 1,36   | 1,06   | 1,32   | 1,00   | 1,06        | 1,07    | 1,09         |  |  |  |
| S et<br> )         | 7    | 3,91    | 1,16        | 0,94  | 0.88   | 1,29   | 1,01   | 1,07   | 0,88   | 0.93        | 0,94    | 0,96         |  |  |  |
| rkin<br>(197       | 8    | 4.09    | 1.28        | 0,93  | 0.86   | 1,43   | 0,99   | 1,19   | 0,86   | 0,91        | 1.16    | 0.95         |  |  |  |
| HAW<br>al.         | 9    | 2.52    | 1,09        | 1,04  | 0,96   | 1.21   | 1,10   | 1.23   | 0,96   | 1,01        | 1.04    | 1,04         |  |  |  |
| + 6                | OC11 | 1,90    | 1,65        | 1,20  | 1.10   | 1.37   | 1.31   | 1,86   | 1,10   | 1.15        | 1.20    | 1,20         |  |  |  |
| NG (               | OC13 | 5,61    | 1.57        | 1,15  | 1,07   | 1,49   | 1.27   | 1,43   | 1,07   | 1.14        | 1.15    | 1,22         |  |  |  |
| TE                 | OC15 | 9.71    | 1.52        | 1.03  | 0,96   | 1,66   | 1,15   | 1.55   | 0.96   | 1.03        | 1,15    | 1.20         |  |  |  |
| RG                 | 10   | 2.89    | 2,06        | 1,01  | 0,93   | 2.02   | 1,11   | 2.53   | 0,93   | 0.98        | 1,30    | 1,35         |  |  |  |
| SSE<br>MBE<br>(MBE | 11   | 4.82    | 1,30        | 1,03  | 0,96   | 1,71   | 1,12   | 1.26   | 0,96   | 1,02        | 1,03    | 1,10         |  |  |  |
| FOIL<br>HOI        | 12   | 3,15    | 1,38        | 1,19  | 1,10   | 1.71   | 1,30   | 1,41   | 1.10   | 1,16        | 1.19    | 1,19         |  |  |  |
| 56                 | A2a  | 2,22    | 1.62        | 0,95  | 0.88   | 1.32   | 1,02   | 1.79   | 0.88   | 0.92        | 1,16    | 1,18         |  |  |  |
| R &<br>0 (19       | A2b  | 2,22    | 1,59        | 1,01  | 0,93   | 1,29   | 1.08   | 1.80   | 0.93   | 0,98        | 0.99    | 1,10         |  |  |  |
| NFI                | A2c  | 2.22    | 1,56        | 0.95  | 0.88   | 1.26   | 1,02   | 1.51   | 0.88   | 0,92        | 1,17    | 1,21         |  |  |  |
| FLS                | .A7b | 2.22    | 1,72        | 1,15  | 1,06   | 1,36   | 1.23   | 1.92   | 1,06   | 1.11        | 1.25    | 1,26         |  |  |  |
| 1100               | A5   | 3,11    | 1.41        | 1.02  | 0.95   | 1,19   | 1.10   | 1.55   | 0.95   | 1.00        | 1.21    | 1.22         |  |  |  |
| REGAN              | BD8  | 0.99    | 1.56        | 1.05  | 0,96   | 1,27   | 1.11   | 1,82   | 0,96   | 0.99        | 1.22    | 1.23         |  |  |  |
| ISIF<br>ISIF       | 2    | 6,25    | 1,53        | 0,98  | 0,90   | 1,87   | 1.16   | 1,61   | 0.90   | 0.96        | 1,19    | 1,24         |  |  |  |
| A VOL              | 4    | 3.75    | 1,27        | 1.16  | 1,06   | 1.55   | 1.37   | 1.39   | 1.06   | 1.12        | 1,16    | 1.21         |  |  |  |
| 10                 | L1   | 1,67    | 1,51        | 1,11  | 1,01   | 1.28   | 1.26   | 1,71   | 1.01   | 1,05        | 1,11    | 1,11         |  |  |  |
| 11. V              | 12   | 3.33    | 1.67        | 1.37  | 1.26   | 1,53   | 1,57   | 1,85   | 1.26   | 1.33        | 1,37    | 1.38         |  |  |  |
| \$ 3               | L3   | 5.00    | 1.88        | 1.39  | 1.28   | 1.78   | 1.59   | 1.72   | 1.28   | 1.36        | 1.39    | 1,44         |  |  |  |
|                    | LIC  | 1,12    | 1,28        | 1,04  | 0,95   | 1,03   | 1,13   | 1,48   | 0,95   | 0,99        | 1,04    | 1,04         |  |  |  |
| 200                | 1 2C | 2.24    | 1.07        | 0,96  | 0,89   | 0,94   | 1,05   | 1.21   | 0,89   | 0,93        | 0_96    | 0,96         |  |  |  |
| IRA                | 1.3C | 3.40    | 1.20        | 0.96  | 0.88   | 1.07   | 1.05   | 1.11   | 0.88   | 0.93        | 0.96    | 0,96         |  |  |  |
| IVE                | L4C  | 4,49    | 1,24        | 0.95  | 0,88   | 1.16   | 1.05   | 1.14   | 0.88   | 0,94        | 0,95    | 0,98         |  |  |  |
| 0                  | L5C  | 5,50    | 1.18        | 0.91  | 0.85   | 1.16   | 1,00   | 1.16   | 0.85   | 0.90        | 1.00    | 0.96         |  |  |  |

Tabela 6.2 – Comparação dos resultados experimentais com os estimados por normas de projeto e por pesquisadores para as lajes da Série 1 e da literatura

| Normas e Métodos de  |      | V Exp / V cale |        |
|----------------------|------|----------------|--------|
| Cálculo              | М    | DP             | CV (%) |
| ACI/02               | 1.43 | 0,22           | 15,5   |
| BS/97                | 1.07 | 0.12           | 10,7   |
| CEB-FIP MC90/91      | 0,99 | 0,11           | 10,6   |
| EC2/92               | 1,37 | 0,25           | 18,1   |
| EC2/01               | 1.15 | 0.15           | 12,6   |
| NB1/78               | 1,50 | 0,31           | 20,4   |
| NB1/03               | 0.99 | 0.11           | 10.6   |
| OLIVEIRA/03          | 1.05 | 0,11           | 10,7   |
| TENG et al./ 99      | 1,13 | 0,11           | 9,9    |
| AL-YOUSIF et al. /03 | 1,14 | 0,12           | 10,7   |

Tabela 6.3 – Estimativa média, desvio padrão e coeficiente de variação das normas de projeto e de pesquisadores para as lajes da Série 1 e da literatura

A Figura 6.2 apresenta. graficamente, as estimativas das normas de projeto e de pesquisadores para as lajes da literatura, incluindo as da Série 1 desta pesquisa, em função da relação  $c_{máx}/d$ . A Figura 6.3 mostra a tendência das estimativas obtidas, traçadas com a utilização de equações do tipo potência, baseando-se nas justificativas descritas no CAPITULO 2, pág. 56.


Figura 6.2 – Estimativas das normas de projeto e de pesquisadores para as lajes da Série 1 e da literatura



Figura 6.2 – Estimativas das normas de projeto e de pesquisadores para as lajes da Série 1 e da literatura (continuação)



Figura 6.2 – Estimativas das normas de projeto e de pesquisadores para as lajes da Série 1 e da literatura (continuação)



Figura 6.2 – Estimativas das normas de projeto e de pesquisadores para as lajes da Série 1 e da literatura (continuação)



Figura 6.2 – Estimativas das normas de projeto e de pesquisadores para as lajes da Série 1 e da literatura (continuação)



Figura 6.3 – Tendência das estimativas das normas de projeto e de pesquisadores para as lajes da Série 1 c da literatura

# 6.2.3 – PROPOSTA DE CONSIDERAÇÃO DA RELAÇÃO $c_{más}/d$ NAS EXPRESSÕES DAS NORMAS DE PROJETO DO ACI (2002) E CEB (1991)

Diante da importância de utilizar o parâmetro  $c_{max}/d$  nas análises das normas de projeto, foram utilizados os resultados experimentais desta pesquisa juntamente com os obtidos na literatura das lajes carregadas/apoiadas nos quatro bordos para incorporar este parâmetro nas expressões do ACI 318 (2002) e CEB-FIP MC90 (1991). As equações propostas para as normas citadas são apresentadas, respectivamente, nas Eqs. 6.1 e 6.2.

$$V_{prop_{-ACI}} = \omega \sqrt{f} b_0 d \qquad (kN) \tag{6.1}$$

$$V_{prop\_CEB} = 0.18 \ \chi \left[ 1 + \sqrt{\frac{200}{d}} \right] (100 \ \rho \ f'_c)^3 \ u \ d \tag{kN}$$
(6.2)

sendo *d* a altura útil da laje,  $\rho$  a taxa geométrica de armadura de flexão,  $f_c$  a resistência à compressão do concreto medida em corpos de prova cilíndricos, e,  $b_0$  e *u* o perímetro de controle recomendado por, respectivamente, ACI (2002) e CEB (1991).

Os fatores  $\omega e \chi$  são parâmetros derivados dos resultados de ensaios apresentados nesta pesquisa, que levam em consideração a geometria do pilar. As expressões para a determinação dos valores de  $\omega e \chi$  são apresentadas nas Eqs. 6.3 e 6.4.

$$\omega = \frac{0.5}{(c_{max}/d)^{0.1756}}$$
(6.3)

$$\chi = 0.95 \left(\frac{c_{max}}{d}\right)^{0.038} \tag{6.4}$$

# 6.2.4 – COMPARAÇÃO DOS RESULTADOS ESTIMADOS PELAS NORMAS DE PROJETO DO ACI (2002) E CEB-FIP (1991) COM OS ESTIMADOS PELAS PROPOSTAS PARA AS LAJES DA SÉRIE 1 E DA LITERATURA

A Tab. 6.4 apresenta uma comparação das estimativas das normas de projeto do ACI/02 e CEB/91 com suas respectivas propostas, e a Fig. 6.4 ilustra a tendência destas estimativas. A curva de tendência obtida das estimativas do ACI (2002) se apresenta consideravelmente a favor da segurança, ao contrário da linha de tendência obtida para o CEB (1991).

Como mencionado anteriormente, linha de tendência é uma curva ajustada para um conjunto de dados fornecidos, no presente caso, utilizando regressão não linear ajustando uma curva potencial. A equação da curva que melhor representa o conjunto de dados foi obtida através do "Método dos Minimos Quadrados", que define que a curva ajustada seja tal que a soma dos quadrados das distâncias verticais dos pontos à reta seja minima.

A inclusão do parâmetro  $c_{max}$  d nas expressões de cálculo do ACI/02 e CEB/91 conduziram a um valor médio para a relação  $V_{Exp}$ ,  $V_{calc}$  mais próximo de 1,0 e a favor da segurança, com menor desvio padrão, em relação às estimativas atuais das normas citadas.

A Tab. 6.5 apresenta uma comparação das estimativas da norma de projeto do CEB/91 com as do método de OLIVEIRA/03 e da proposta atual para o CEB/91. A Fig. 6.5 mostra a tendência das estimativas apresentadas.

A inclusão do fator  $\chi = 0.95 (c_{max}/d)^{0.038}$  na equação do CEB/91 para o cálculo da resistência à punção conduziu a uma estimativa média para a relação  $V_{Exp} V_{calc}$  igual a 1,04, enquanto que OLIVEIRA/03 estimou um valor médio de 1,05, sendo aproximadamente iguais, os correspondentes valores para desvio padrão e coeficiente de variação.

| Autor                | Laje    | l <sub>Exp</sub><br>(kN) | c max d | V Exp V prop CLB | Fxp' Fprop ACT | V <sub>Fap</sub> V <sub>CEB</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | I Exp I AC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|----------------------|---------|--------------------------|---------|------------------|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                      | L42     | 703                      | 2,88    | 1,14             | 1.06           | 1,09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1,31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                      | L42A    | 743                      | 2.44    | 1.08             | 1.05           | 1.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                      | L45     | 843                      | 3,90    | 1.10             | 1.07           | 1.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                      | L46     | 947                      | 4.88    | 1.07             | 1.02           | 1.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| SERI                 | L41     | 600                      | 1.80    | 1,12             | 1,17           | 1,07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1,43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                      | L41A    | 650                      | 1.52    | 1.06             | 1.04           | 1.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                      | L43A    | 776                      | 2.74    | 1,10             | 1.09           | 1.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                      | L44     | 814                      | 3,66    | 1.05             | 1.01           | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1,46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ) et                 | 7       | 326                      | 3,91    | 0.91             | 0.91           | 0,88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1,16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| KINS<br>1971         | 8       | 321                      | 4,09    | 0,90             | 0.88           | 0.86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1,28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| al. (                | 9       | 322                      | 2.52    | 1,00             | 0,95           | 0.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| * *                  | 0C11    | 423                      | 1,90    | 1,15             | 1.37           | 1,10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1,65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 999<br>DNG           | OC13    | 568                      | 5.61    | 1.11             | 1,31           | 1,07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1,57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 11<br>11             | OC15    | 649                      | 9.71    | 0,99             | 1,17           | 0,96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| . E<br>RG            | 10      | 186                      | 2,89    | 0.97             | 1.07           | 0.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| SSEI<br>MITE<br>946) | 11      | 279                      | 4.82    | 1,00             | 0.96           | 0.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| FOR<br>HOUL          | 12      | 265                      | 3,15    | 1.15             | 1.14           | Exp       I       Prop       ACI       V       Fair       I       E         1.06       1,09       1.05       1.03       1.07       1.06         1.07       1,06       1.02       1.03       1.17       1.07         1.02       1,03       1.17       1,07       1.04       1.01         1.09       1.06       1.01       1.00       0.91       0.88       0.88       0.86       0.95       0.96       1.37       1.10       1.31       1.07       1.31       1.07       1.31       1.07       0.93       0.96       0.96       1.14       1.10       1.36       0.88       1.36       0.93       1.15       0.88       1.36       0.93       1.15       0.88       1.46       1.06       1.27       0.95       1.15       0.96       1.19       1.06       1.22       1.01       1.53       1.26       1.54       1.28       0.96       0.91       0.88       0.90       0.88       0.90       0.88       0.90       0.88       0.90       0.88       0.90       0.88       0.82       0.85       1.12       0.9 | 1.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| (9)                  | A2a     | 334                      | 2.22    | 0.91             | 1.36           | 0.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| . Å.<br>195          | A2b     | 400                      | 2.22    | 0,97             | 1.36           | 0.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1,59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| NER                  | A2c     | 467                      | 2,22    | 0.91             | 1.15           | 0.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| EI S<br>N            | A7b     | 512                      | 2.22    | 1.10             | 1.46           | 1,06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1,72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| HKK                  | A5      | 534                      | 3.11    | 0.99             | 1,27           | 0,95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1,41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| REGAN                | BD8     | 251                      | 0,99    | 1,02             | 1.15           | 0,96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1,56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| -<br>ISI<br>al.      | 2       | 209                      | 6.25    | 0.93             | 1,09           | 0.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| VOL<br>Fet<br>(200   | 4       | 242                      | 3,75    | 1.11             | 1.19           | 1.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                      | LI      | 273                      | 1.67    | 1.06             | 1.22           | 1.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| LVA<br>(003)         | L.2     | 401                      | 3,33    | 1.31             | 1.53           | 1.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| SI<br>2              | L3      | 469                      | 5,00    | 1.33             | 1.54           | 1,28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                      | LIC     | 318                      | 1,12    | 1,00             | 0,96           | 0,95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1,28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 2003                 | L2C     | 331                      | 2.24    | 0.93             | 0.91           | 0.89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| RA                   | L3C     | 358                      | 3.40    | 0.92             | 0,91           | 0.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1,20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| IN II                | L4C     | 404                      | 4,49    | 0,92             | 0.90           | 0.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1,24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 10                   | L5C     | 447                      | 5.50    | 0.88             | 0,82           | 0.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.01     1.31       1.06     1.48       1.00     1.46       0.88     1.16       0.86     1.28       0.96     1.09       1.10     1.65       1.07     1.57       0.96     1.30       1.10     1.38       0.93     2.06       0.96     1.30       1.10     1.38       0.88     1.62       0.93     1.59       0.88     1.62       0.93     1.59       0.88     1.62       0.93     1.59       0.88     1.62       0.95     1.41       0.96     1.53       1.06     1.27       1.01     1.51       1.26     1.67       1.28     1.88       0.95     1.28       0.89     1.07       0.88     1.20       0.88     1.24       0.85     1.18       0.99     1.43       0.11     0.22       10.6     15,5 |
| MÉDIA                |         |                          |         | 1,04             | 1,12           | 0,99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1,43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| DESVIO PAI           | DRÃO    |                          |         | 0,11             | 0,19           | 0,11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0,22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| COEF. VARI           | AÇÃO (% | 6)                       |         | 10,7             | 16,9           | 10,6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 15,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

Tabela 6.4 – Comparação das estimativas das normas do ACI/02 e CEB/91 com as respectivas propostas



Figura 6.4 – Tendência das estimativas das normas de projeto do ACI (2002) e do CEB (1991) e das propostas para as normas

|                                          | 1    | a 14    |        | V Exp V calc | _          |
|------------------------------------------|------|---------|--------|--------------|------------|
| Autor                                    | Laje | C mia G | CEB/91 | OLIVEIRA/03  | Prop_CEB/9 |
|                                          | L42  | 2,88    | 1,09   | 1,15         | 1,14       |
|                                          | L42A | 2,44    | 1,03   | 1,09         | 1,08       |
|                                          | L45  | 3,90    | 1,06   | 1,12         | 1,10       |
| ш                                        | L46  | 4,88    | 1,03   | 1,10         | 1,07       |
| SER                                      | L41  | 1,80    | 1,07   | 1,11         | 1,12       |
|                                          | L41A | 1,52    | 1,01   | 1,05         | 1,06       |
|                                          | L43A | 2,74    | 1,06   | 1,11         | 1,10       |
|                                          | L44  | 3,66    | 1,00   | 1,06         | 1,05       |
| SN S | 7    | 3,91    | 0,88   | 0,93         | 0,91       |
| WKI<br>(19                               | 8    | 4,09    | 0,86   | 0,91         | 0,90       |
| HA<br>et al                              | 9    | 2,52    | 0,96   | 1,01         | 1,00       |

Tabela 6.5 – Comparação das estimativas do CEB/91 e do método de OLIVEIRA/03 com as estimativas da proposta para o CEB/91

| Autom                      | Laio  | a /d     |        | V Exp / V calc |             |
|----------------------------|-------|----------|--------|----------------|-------------|
| Autor                      | Laje  | C máx "G | CEB/91 | OLIVEIRA/03    | Prop_CEB/91 |
| et<br>9)                   | OC11  | 1.90     | 1.10   | 1,15           | 1,15        |
| 0661)<br>DNG               | OC13  | 5,61     | 1,07   | 1,14           | 1,11        |
| TF<br>al.                  | OC15  | 9,71     | 0.96   | 1,03           | 0,99        |
| L E<br>RG                  | 10    | 2,89     | 0,93   | 0,98           | 0,97        |
| RSSE<br>MBE<br>1946)       | 11    | 4,82     | 0,96   | 1,02           | 1,00        |
| FOR<br>HOL                 | 12    | 3,15     | 1,10   | 1,16           | 1,15        |
| 56)                        | A2a   | 2,22     | 0.88   | 0.92           | 0,91        |
| 8 &<br>0 (19               | A2b   | 2,22     | 0.93   | 0,98           | 0,97        |
| TAL                        | A2c   | 2,22     | 0,88   | 0,92           | 0,91        |
| ELSI                       | A7b   | 2,22     | 1.06   | 1,11           | 1,10        |
| НОСН                       | A5    | 3,11     | 0.95   | 1,00           | 0,99        |
| REGAN                      | BD8   | 0,99     | 0,96   | 0,99           | 1,02        |
| ]SIF<br>JSIF<br>al.<br>03) | 2     | 6,25     | 0,90   | 0,96           | 0,93        |
| Al YOU<br>et et (20        | 4     | 3,75     | 1,06   | 1,12           | 1,11        |
| * ~                        | LI    | 1,67     | 1,01   | 1.05           | 1,06        |
| 11. V<br>2003              | L2    | 3,33     | 1,26   | 1,33           | 1,31        |
| S C                        | L3    | 5,00     | 1,28   | 1,36           | 1,33        |
| )3)                        | LIC   | 1,12     | 0,95   | 0,99           | 1,00        |
| (20)                       | L2C   | 2,24     | 0,89   | 0,93           | 0,93        |
| IRA                        | L3C   | 3,40     | 0.88   | 0.93           | 0.92        |
| IVE                        | L4C   | 4,49     | 0,88   | 0.94           | 0,92        |
| 10                         | L5C   | 5.50     | 0.85   | 0,90           | 0,88        |
| MÉDIA                      |       |          | 0,99   | 1,05           | 1,04        |
| DESVIO P                   | ADRÃC |          | 0,11   | 0,11           | 0,11        |
| COEF. VA                   | RIAÇÃ | 0 (%)    | 10,6   | 10,7           | 10,7        |

Tabela 6.5 – Comparação das estimativas do CEB/91 e do método de OLIVEIRA/03 com as estimativas da proposta para o CEB/91 (continuação)



Figura 6.5 – Tendência das estimativas da norma de projeto do CEB (1991), do método de OLIVEIRA/03 e da proposta para o CEB (1991)

### 6.3 – LAJES COM FUROS (SÉRIE 2)

#### 6.3.1 – LAJES DA PRESENTE PESQUISA

A influência de furos adjacentes a pilares em lajes cogumelo de concreto armado é um fator referenciado por alguns métodos de cálculo na determinação da resistência à punção.

A norma do ACI (2002) apresenta recomendações especiais para o cálculo do perimetro de controle de lajes cogumelo com furos adjacentes ou próximos, em até 10*h* do pilar. Entretanto, as prescrições do ACI, para lajes da Série 2, forneceram resultados mais conservadores em relação às demais normas, principalmente com o aumento do número de furos (M=1,55; DP=0,12; CV=0,08), como pode ser visto na Tab. 6.6.

Para as lajes com um furo, as cargas de ruptura superaram no minimo em 43% a carga prevista pela norma, enquanto que para as lajes com dois furos, as cargas de ruptura

experimentais foram superiores em. no mínimo, 59% a carga estimada. O ACI considera o perímetro de controle localizado a 0.5*d* da face do pilar, de forma que, isto resulta em uma carga resistente menor, além de reduzir a tensão de cisalhamento, para o caso de pilar de seção retangular.

Seguida da norma do ACI/02, o EC2/92 apresentou os resultados mais conservadores (Média = 1.49: DP = 0.13 e CV = 0.08). As considerações de ambas normas no tratamento de furos próximos ao pilar são praticamente os mesmos, entretanto. o EC2/92 considera o perímetro de controle com cantos arredondados e situados a 1.5*d* da face do pilar, e obtém o perímetro de controle efetivo através da redução deste devido à influência da relação  $c_{max}/c_{min}$  do pilar.

Comparando os resultados fornecidos pela norma BS8110/97 e pelo Handbook to BS8110/85 (1987), observa-se que o Handbook apresenta resultados mais satisfatórios em relação ao BS8110 (1997), devido às considerações relativas ao cálculo do perímetro de controle. Mesmo assim, ambos métodos de cálculo superestimam a influência dos furos no cálculo do perímetro de controle. A norma BS8110 (1997) estimou resultados menos conservadores que a norma do ACI (2002), pois, além dos parâmetros adicionais considerados (taxa de armadura, coeficiente de tamanho), a BS8110 (1997) adota um valor maior para o perímetro de controle.

A proposta de TENG et *al.* (1999) para o cálculo do perímetro de controle efetivo das lajes do Grupo 2, com furos próximos ao pilar (< 6*d*) tendeu a reduzir ainda mais o perímetro de controle devido ao furo, em relação à norma BS. Tal fato conduziu a cargas estimadas inferiores, e conseqüentemente, a estimativas mais conservadoras, principalmente com o aumento do número de furos.

As normas do EC2 (2001) e NB1 (2003) apresentam as mesmas considerações para o cálculo da resistencia à punção de lajes com furos próximos a pilares, tanto com relação à expressão normativa quanto ao perímetro de controle efetivo considerado, porem, diferenciando-se no valor do coeficiente de tamanho  $(1 + \sqrt{200/d})$ . A NB1/03 apresentou um valor médio para a relação  $V_{Exp}/V_{calc}$  igual a 1,21, enquanto o EC2/01, 1,29, sendo que ambos apresentaram desvio padrão e coeficiente de variação correspondentes

275

aproximadamente iguais. Observa-se na Tab. 6.6 que ambas normas se tornam conservadoras com o aumento do número de furos

O CEB-FIP (1991) não apresenta considerações especiais sobre o assunto, apenas prescreve que a resistência à punção de laje cogumelo de concreto armado deve ser verificada na seção localizada a uma distância igual a 2d, a partir da face do pilar, independentemente da presença de furos. Desta forma, a norma do CEB (1991) não foi empregada nos cálculos das lajes da Série 2 da presente pesquisa

A proposta de IOANNOU (2001), como sugestão para o CEB-FIP (1991), nas considerações do cálculo do perímetro de controle efetivo, devido a furos próximos ao pilar, forneceu, de maneira geral, resultados conservadores.

Para as lajes com um furo assimétrico, a proposta da autora de utilizar um furo ficticio similar para estabelecer a simetria geométrica forneceu para o perimetro de controle efetivo valores superiores àqueles obtidos utilizando a proposta de considerar, nestes casos, o pilar com furo assimétrico como pilar de borda.

A utilização da primeira proposta forneceu resultados teóricos mais razoáveis que os obtidos da segunda proposta. Desta forma, os perimetros críticos efetivos calculados para as lajes com dois furos foram praticamente iguais aos das lajes com um furo.

A expressão proposta por ROLL, ZAIDI, SABNIS & CHUANG (1971) para estimar a resistência à punção das lajes, considerando a influência da resistência à flexão, forneceu as melhores estimativas, assim como o Handbook to BS8110/85 (1987), com um valor médio para  $V_{Exp}V_{calc}$  igual a 1,13, e os menores valores para desvio padrão (0,05) e coeficiente de variação (0,04).

A Tab. 6.6 e Fig. 6.6 apresentam uma comparação dos resultados experimentais com os estimados pelas normas de projeto do ACI (2002), BS8110 (1997), Handbook to BS8110 (1987), EC2 (1992), EC2 (2001) e NB1 (2003), e por pesquisadores, tais como, TENG et *al.* (1999), IOANNOU (2001) e ROLL et *al.* (1971), para as lajes da Série 2.

| Loio                                                                         | .1 (mana)     |        |       |       |        | V <sub>Exp</sub> / V | calc   |         |            |         |
|------------------------------------------------------------------------------|---------------|--------|-------|-------|--------|----------------------|--------|---------|------------|---------|
| Laje<br>LA5FS_CG<br>L45FD_CG<br>L45FD<br>L45FFS_CG<br>L45FFD_CG<br>L45FFD_CG | <i>a</i> (mm) | AC1/02 | BS/97 | HB/87 | EC2/92 | EC2/01               | NB1/03 | TENG/99 | IOANNOU/01 | ROLL/71 |
| LA5FS_CG                                                                     | 154           | 1,48   | 1,28  | 1,22  | 1,49   | 1,29                 | 1,21   | 1,42    | 1,43       | 1,13    |
| L45FD_CG                                                                     | 154           | 1,43   | 1,13  | 1,08  | 1,34   | 1,14                 | 1,07   | 1,25    | 1,26       | 1,09    |
| L45FD                                                                        | 154           | 1,43   | 1,15  | 1,09  | 1,34   | 1,16                 | 1,08   | 1,27    | 1,28       | 1,11    |
| L45FFS_CG                                                                    | 154           | 1,59   | 1,41  | 1,27  | 1,62   | 1,45                 | 1,35   | 1,82    | 1,40       | 1,21    |
| LA5FFD_CG                                                                    | 164           | 1,70   | 1,36  | 1,22  | 1,58   | 1,37                 | 1,30   | 1,77    | 1,35       | 1,14    |
| 1.45FFD                                                                      | 144           | 1,68   | 1,29  | 1,16  | 1,59   | 1,34                 | 1,23   | 1,65    | 1,28       | 1,08    |
| MÉDIA                                                                        |               | 1,55   | 1,27  | 1,17  | 1,49   | 1,29                 | 1,21   | 1,53    | 1,33       | 1,13    |
| DESVIO PAD                                                                   | RÃO           | 0,12   | 0,11  | 0,08  | 0,13   | 0,12                 | 0,11   | 0,25    | 0,07       | 0,05    |
| COEF. VARI                                                                   | 4ÇÃO (%)      | 7,7    | 8,9   | 6,6   | 8,5    | 9,4                  | 9,5    | 16,3    | 5,3        | 4,0     |

Tabela 6.6 - Comparação dos resultados experimentais com os estimados pelas normas de projeto e por pesquisadores para as lajes da Série 2



Figura 6.6 - Estimativas das normas de projeto e de pesquisadores para as lajes da Série 2

### 6.3.2 - ANÁLISE DO MÉTODO DE ROLL et al. (1971)

### 6.3.2.1 – LAJES DA PRESENTE PESQUISA

A Tab. 6.7 apresenta as estimativas da expressão proposta por ROLL et *al.* (1971) para as lajes da Série 2, e as figs. 6.7 e 6.8 mostram a comparação dos resultados experimentais com a tendência das estimativas do método de ROLL et *al.* (1971), cujas coordenadas foram obtidas da Tab. 6.7. A curva proposta pelos pesquisadores, em função da resistência à flexão das lajes, se apresenta como o limite inferior dos resultados estimados.

| Luie      | L' - Ibd rais(f)  | V. hdrait(f) | Law bdegis(f )      | P. 18.       | 1'            | V. /V         |
|-----------|-------------------|--------------|---------------------|--------------|---------------|---------------|
| Lajo      | flex Od Faiz() c) | Emp Daraiz() | ROLL OUT CILL () c) | • Eq. • flex | * ROLL * flex | · Exp. · ROLL |
| L45FS CG  | 9.8               | 7,0          | 6,2                 | 0.72         | 0,64          | 1,13          |
| LASFD_CG  | 9,7               | 6,8          | 6.2                 | 0,70         | 0,64          | 1,09          |
| L45FD     | 9.5               | 6.8          | 6,1                 | 0,72         | 0,64          | 1,11          |
| L45FFS_CG | 10.2              | 7,7          | 6.4                 | 0,76         | 0,63          | 1,21          |
| L45FFD_CG | 12.4              | 8,2          | 7,2                 | 0,66         | 0,58          | 1,14          |
| L45FFD    | 12,8              | 7,9          | 7,3                 | 0,61         | 0,57          | 80,1          |

Tabela 6.7 – Estimativas do método de ROLL et al. (1971) para as lajes da Série 2



Figura 6.7 – Comparação dos resultados experimentais com a tendência das estimativas do método de ROLL et *al.* (1971) para as lajes da Série 2 – Curvas  $V / bd \sqrt{f'_c} \propto V_{flex} / bd \sqrt{f'_c}$ 



Figura 6.8 – Comparação dos resultados experimentais com a tendencia das estimativas do método de ROLL et *al.* (1971) para as lajes da Série 2 – Curvas  $V/V_{flex} \propto V_{flex} / bd\sqrt{f'_c}$ 

### 6.3.2.2 – LAJES DA PRESENTE PESQUISA E DA LITERATURA

A Tab. 6.8 apresenta os resultados obtidos utilizando a proposta de ROLL et *al.* (1971) para as lajes com furos da Serie 2 e da literatura. Foram realizados os mesmos cálculos desenvolvidos pelos pesquisadores citados, com o propósito de realizar análises semelhantes, porém, reunindo resultados da literatura não abordados anteriormente.

As figs. 6.9 e 6.10 mostram a tendência dos resultados estimados pela proposta de ROLL et al. (1971), e os resultados experimentais das lajes com furos (Série 2 e literatura), através da influência de  $V_{Flex} / bd \sqrt{f'_c}$ , respectivamente, nas relações  $V / bd \sqrt{f'_c}$  e  $V V_{Flex}$ .

As estimativas fornecidas pelas eqs. 2.64 e 2.63, apresentadas, respectivamente, nas figs. 6.9 e 6.10, seguem a tendência dos resultados experimentais da literatura, com exceção dos resultados de EL-SALAKAWY et *al.* (1999), que ensaiaram lajes com pilar de borda, e apresentaram resultados experimentais inferiores aos estimados pelas expressões, e dos resultados de MOWRER & VANDERBILT (1967), que ensaiaram lajes com concreto leve, cujos pontos se distanciam das curvas representativas das expressões citadas, a favor da segurança, como mostram as figs. 6.9 e 6.10.

Os pontos mais afastados da curva (lajos de MOWRER & VANDERBILT) correspondem às lajos com dois furos adjacentes ao pilar e que apresentaram o perímetro de controle (prescrito pelo método de ROLL et *al.* (1971)) bastante reduzido, em relação às outras lajos.

Para algumas lajes ensaiadas por TENG et *al.* (1999) (OC11V20 e OC13V40), os resultados estimados pelo método de ROLL et *al.* (1971) se apresentaram superiores aos experimentais, portanto, contra a segurança. Para os demais resultados, com exceção das lajes citadas anteriormente e de ROLL et *al.* (1971), com altos valores para o termo  $V_{Flex}$   $hd\sqrt{f'_{c}}$ , os pontos estão próximos das curvas.

A proposta dos pesquisadores forneceu valores para a relação  $V_{Exp}V_{ROLL}$  entre 0,62 (lajes de EL-SALAKAWY et *al*) e 2,68 (lajes de MOWRER & VANDERBILT), média de 1,30, desvio padrão de 0,31 e coeficiente de variação de 23,5%, como mostra a Tab. 6.8.

|       |                            |          | literatura                    |          |       |          |        |
|-------|----------------------------|----------|-------------------------------|----------|-------|----------|--------|
| Autor | Laje                       | V nex bd | $V_{Fap}/bd$<br>$raiz(f_{a})$ | raiz(f ) | Fran/ | V ROLA / | I Fixt |
| _     | \$_000_0_0_2               | 67       | 7.2                           | 5.0      | 1.08  | 0.74     | 1.4    |
|       | S-000-0-0-3                | 75       | 7.6                           | 53       | 1.01  | 0.71     | 1.4    |
|       | S-000-0-0-0                | 75       | 7.0                           | 5 2      | 0.02  | 0.71     | 1 3    |
|       | S-000-0-0-4                | 7.5      | 7.7                           | 5.2      | 1.02  | 0.71     | 1.4    |
|       | S-000-0-0-1                | 9.6      | 2.7                           | 5.9      | 1.02  | 0.71     | 1.9    |
|       | 5-121-0-0-1                | 0,0      | 0.7                           | 5.0      | 0.02  | 0,67     | 1.2    |
|       | S-121-0-0-2<br>S-122-0-0-1 | 0.0      | 0.1                           | 63       | 0.92  | 0.63     | 1.5    |
|       | 5-122-0-0-1                | 10,1     | 9.0                           | 6.4      | 0.90  | 0.03     | 1.3    |
|       | 5-122-0-0-2                | 10.3     | 6.9                           | 6.4      | 0.66  | 0.63     | 1.0    |
|       | S 122-0-0-18               | 10.5     | 0.8                           | 6.5      | 0.00  | 0.62     | 1.4    |
|       | S 122 0-0-10               | 10.5     | 2.1                           | 71       | 0.30  | 0,02     | 1,4    |
|       | 5-123-0-0-1                | 11.0     | 0.0                           | 6.0      | 0.72  | 0.50     | 1.4    |
|       | 5-123-0-0-2                | 11.0     | 7.7                           | 0.7      | 0.61  | 0.52     | 1.5    |
|       | 5-124-0-0-1                | 10.5     | 7.0                           | 0,1      | 0.04  | 0.53     | 1,4    |
|       | 5-124-0-0-1                | 14,7     | 10,8                          | 1,9      | 0.75  | 0,54     | نيا    |
|       | 5-121-1-0.9-1              | 8.3      | 8.2                           | 5.1      | 0.99  | 0.08     | 1.5    |
|       | 5-121-2-1.8-1              | 3.0      | 1.1                           | 5.5      | 0.90  | 0.09     | 1.3    |
|       | S-121-3-2.7-1              | 7.4      | 8.2                           | 5,3      | 1.10  | 0.71     | 1.3    |
|       | S-121-1-3.6-1              | 7.4      | 8.1                           | 5.3      | 1.10  | 0.72     | 1,-    |
|       | 5-121-5-4.5-1              | 7.6      | 7.8                           | 5.4      | 1.03  | 0,71     | 1,4    |
| -     | 5-121-0-5.4-1              | 7.8      | 7.9                           | 5.4      | 1.02  | 0.70     | 1.4    |
| 126   | S-000-0-0-1                | 14.7     | 10,2                          | 7.9      | 0.70  | 0.54     | 1.2    |
| -     | 8-000-0-0-2                | 17.6     | 10,4                          | 8.8      | 0.39  | 0.50     | 1.1    |
| d.    | S-121-0-0-1                | 16.8     | 9.7                           | 8.5      | 0.58  | 0.51     | 1.1    |
| -     | S-121-0-0-2                | 17.4     | 10.9                          | 8.7      | 0.62  | 0.50     | 1.2    |
| O     | S-122-0-0-1                | 22.5     | 12.0                          | 10,1     | 0.53  | 0.45     | 1,1    |
| 2     | S-122-0-0-1a               | 19.4     | 11.7                          | 9.3      | 0,60  | 0.48     | 1.4    |
| =     | S-123-0-0-1                | 24.3     | 13.9                          | 10.6     | 0.57  | 0,44     | 1,3    |
| Be    | S-124-0-0-1                | 30.0     | 15,9                          | 12,1     | 0.53  | 0,40     | 1.3    |
| -     | S-221-0-0-1                | 19.4     | 11,2                          | 9.3      | 0,58  | 0,48     | 1.4    |
| s A   | 5-222-0-0-1                | 23.2     | 12,5                          | 10.3     | 0,54  | 0,44     | 1,2    |
| ric   | S-222-0-0-1a               | 22.8     | 12.5                          | 10.2     | 0.55  | 0,45     | 1.2    |
| S     | S-223-0-0-1                | 27.7     | 14,7                          | 11.5     | 0.53  | 0.42     | 1,2    |
|       | S-224-0-0-1                | 33,5     | 15.7                          | 13.0     | 0,47  | 0.39     | 1,4    |
|       | S-241-9-0-1                | 21,1     | 10,1                          | 9.7      | 0.48  | 0,40     | 1.0    |
|       | S-242-9-0-1                | 26.0     | [].2                          | 11,1     | 0,43  | 0.43     | 1.0    |
|       | 5-242-9-0-2                | 26,6     | 11.8                          | 11.2     | 0.44  | 0.42     | 1.(    |
|       | S-242-9-0-1a               | 25,2     | 12.4                          | 10.9     | 0.49  | 0.43     | 1.1    |
|       | S-243-9-0-1                | 35.0     | 14.6                          | 13,4     | 0.42  | 0.38     | 1.0    |
|       | S-244-9-0-1                | 45.8     | 22,2                          | 16.0     | 0,48  | 0.35     | 1,3    |
|       | S-244-9-0-2                | 50.0     | 20.1                          | 17,0     | 0.40  | 0.34     | 1,1    |
|       | Serie II (b=271mm)         | 11,9     | 10.7                          | 7,0      | 0,90  | 0,59     | 1.5    |
|       | Série II (b=163mm)         | 19,8     | 13,4                          | 9,4      | 0.68  | 0.47     | 1,4    |
|       | Série H (b=102 mm)         | 31.9     | 18.9                          | 12.6     | 0.59  | 0.39     | 1.5    |
|       | Série II (b=0)             | infinito | infinito                      | infinito | 0.39  | 0.38     | 1,0    |
|       | Série H (b=0)              | infinito | infinito                      | infinito | 0.44  | 0.37     | 1,1    |
|       | Série H (b=271mm)          | 26.2     | 15.7                          | 11.1     | 0.60  | 0,42     | 1,4    |
|       | Série H (b=163mm)          | 43,0     | 19,4                          | 15.3     | 0.45  | 0.36     | 1,2    |
|       | Série H (b=135mm)          | 50,0     | 20.1                          | 17,0     | 0,40  | 0.34     | 1,1    |
|       | Série H (b=117mm)          | 60,9     | 22.2                          | 19.6     | 0.36  | 0.32     | 1,1    |
|       | Série II (b=102mm)         | 70,8     | 24.2                          | 22.0     | 0.34  | 0.31     | 1,1    |
|       | Série 11 (b-0)             | infinito | infinito                      | infinito | 0.23  | 0.23     | 1.0    |
|       | Série H (b=0)              | infinito | infinito                      | infinito | 0.23  | 0.21     | 1.1    |

Tabela 6.8 - Estimativas do método de ROLL et al. (1971) para as lajes da Série 2 e da

| Autor        | Laje      | I nex bd   | V Exp bil | V <sub>ROLL</sub> bd | V to | ROLL | V Eq. |
|--------------|-----------|------------|-----------|----------------------|------|------|-------|
|              | IN-1-17   | 1.1.3      | 14.7      | 77                   | 0.99 | 0.54 | 1.83  |
| 1. L         | IN-2-17   | 31.6       | 33.6      | 12.5                 | 1.06 | 0.40 | 2.68  |
| A REAL       | DN 2 1 7  | .1.0       | 127       | 63                   | 1 79 | 0.64 | 2 02  |
| 9. F         | JIN-3-1.7 | 7,0        | 14.1      | 8.0                  | 0.70 | 0,04 | 1.60  |
| O IZ         | JIN-1-2.2 | 30.6       | 35.3      | 0,2                  | 0,72 | 0.37 | 7.43  |
| Z S          | JIN-2-2.2 | 110        | 13.4      | 7.0                  | 1.17 | 0.59 | 1.97  |
|              | 13        | 16.8       | 11.2      | 8.5                  | 0.67 | 0.53 | 1.32  |
| S S S        | 1.4       | 18.0       | 10.9      | 8.9                  | 0.60 | 0.49 | 1 22  |
| ME SK        | 15        | 20.7       | 13.8      | 9.6                  | 0.67 | 0.47 | 1.43  |
| OE NO        | 13        | 20,7       | 15.0      | 11.8                 | 0.55 | 0.41 | 1 35  |
|              | LASES CG  | 9.8        | 7.0       | 6.2                  | 0.72 | 0.64 | 1.13  |
|              | LASED CG  | 97         | 6.8       | 6.2                  | 0.70 | 0.64 | 1.09  |
| с.<br>ш      | 1.45FD    | 95         | 6.8       | 6.1                  | 0.72 | 0.64 | 1.11  |
| 8            | LASEES CO | 10.2       | 7.7       | 6.4                  | 0.76 | 0.63 | 1.21  |
| 1            | LASEED CG | 12.4       | 8.2       | 7.2                  | 0.66 | 0.58 | 1.14  |
|              | L45FFD    | 12.8       | 7.9       | 73                   | 0.61 | 0.57 | 1.08  |
|              | OC11H30   | 17.6       | 11.2      | 8.8                  | 0.63 | 0.50 | 1.27  |
|              | OC11V23   | 16.2       | 10.8      | 8.3                  | 0.67 | 0.52 | 1.30  |
| 6            | OC11V20   | 12.9       | 8.6       | 2.4                  | 0.43 | 0.47 | 0.91  |
| 66           | OC13H50   | 7.4        | 5.8       | 5.3                  | 0.78 | 0.71 | 1.09  |
| T.C          | OC13V43   | 7.8        | 6.2       | 5.5                  | 0.79 | 0.70 | 1.13  |
| 0 8          | OC13V23   | 7.7        | 6.7       | 5.4                  | 0.87 | 0.70 | 1.24  |
| 0            | OC13V40   | 8.8        | 5.3       | 5.9                  | 0.59 | 0.66 | 0.89  |
| Ē            | OC131102  | 8.1        | 7.0       | 5.6                  | 0.87 | 0.69 | 1.26  |
| -            | OC151170  | 4.7        | 4.4       | 4.0                  | 0.93 | 0.85 | 1.10  |
|              | OC15V43   | 5.4        | 5,8       | 4.3                  | 1.07 | 0.81 | 1.33  |
| Z ~          | 2         | 19.3       | 11.9      | 9.2                  | 0.62 | 0.48 | 1.29  |
| V0           | 6         | 3.3.1      | 15.4      | 12.9                 | 0.46 | 0.39 | 1.19  |
| KI:          | 7         | 32.9       | 15.3      | 12.8                 | 0.46 | 0.39 | 1,19  |
| JANCOU MINIS | PSSCH4b   | 17.1       | 12.1      | 8.6                  | 0.71 | 0.50 | 1.40  |
| 20           | SEO       | 9.1        | 4.7       | 6.0                  | 0.52 | 0.66 | 0,79  |
| MN           | CFO       | 11.2       | 4.2       | 6.8                  | 0.38 | 0.60 | 0.62  |
| 125          | SFO       | 8.6        | 4.1       | 5.8                  | 0.47 | 0.67 | 0.70  |
| AL A         | SF1       | 8,6        | 4,2       | 5,8                  | 0,49 | 0,67 | 0.73  |
| 20           | SF2       | 8,1        | 4,0       | 5,6                  | 0.49 | 0,69 | 0,72  |
| 50           | L4        | 29,8       | 16.0      | 12.1                 | 0.54 | 0,40 | 1,33  |
| 1 00         | LS        | 14.9       | 12.4      | 7,9                  | 0,84 | 0,53 | 1.56  |
| NC           | L6        | 10.0       | 8.9       | 6.3                  | 0,90 | 0.63 | 1,42  |
|              |           | MÉ         | DIA       |                      |      |      | 1,30  |
|              |           | DESVIO     | PADRAO    |                      | _    |      | 0,31  |
|              | COL       | FICIENTE D | F VARIACA | 0 (%)                |      |      | 235   |

Tabela 6.8 – Estimativas do método de ROLL et *al.* (1971) para as lajes da Série 2 e da literatura (continuação)

Observa-se nas figs. 6.9 c 6.10 que as curvas representativas, respectivamente, das eqs. 2.64 e 2 63 definem o limite inferior para os valores dos termos  $V / bd \sqrt{f'_c}$  e  $V V_{Flex}$  das lajes de ROLL et *al.* (1971). Entretanto, com a inclusão dos demais resultados, as curvas das eqs. 2.64 e 2.63 não se apresentaram como o limite inferior, pois alguns resultados de TENG et *al.* (1999) ficaram abaixo das curvas. As lajes OC11V20 e OC13V40 apresentaram cargas de ruptura experimentais inferiores às estimadas pelo método de ROLL et *al.* (1971).



Figura 6.9 – Comparação dos resultados experimentais com a tendência das estimativas do método de ROLL et *al.* (1971) para as lajes da Série 2 e da literatura – Curvas  $V / bd \sqrt{f'_c} \propto$ 



V Rex / bd Vf'c

Figura 6.10 – Comparação dos resultados experimentais com a tendência das estimativas do método de ROLL et *al.* (1971) para as lajes da Série 2 e da literatura – Curvas *V/V<sub>flex</sub>* x

V Rex / bd Vf'c

## 6.3.2.3 – PROPOSTA PARA A MODIFICAÇÃO DO LIMITE INFERIOR DA EXPRESSÃO DE ROLL et al. (1971)

Para definir uma curva que represente o limite inferior para os resultados experimentais e dados da literatura, de forma a incluir as lajes OC11V20 e 0C13V40 de TENG et *al.* (1999) nos gráficos das figs. 6.9 e 6.10, propõe-se calcular as referidas lajes de TENG et *al.* (1999) e as demais lajes com furos assimétricos apresentadas, de acordo com as propostas apresentadas por IOANNOU (2001) para lajes com furos assimétricos próximos ou adjacentes ao pilar.

IOANNOU (2001) recomenda que, para lajes com furos assimétricos próximos ao pilar, o perímetro efetivo de controle pode ser calculado de duas formas, adotando-se aquele de menor valor: ou tratando a laje com furo assimétrico com pilar de borda, ou, restabelecendo a simetria da laje com um furo fictício.

Observa-se na Tab. 6.9 que, nos casos de lajes com furos assimétricos, apresentados em negrito, a proposta atual de utilizar a sugestão de IOANNOU (2001) que forneça a estimativa de menor valor para a carga de ruptura, forneceu estimativas ( $V_{Prop}$ ) inferiores às estimadas por ROLL et *al.* (1971) ( $V_{ROLL}$ ), e conseqüentemente, relações  $V_{Exp} / V_{Prop}$  superiores à respectiva relação  $V_{Exp} / V_{ROLL}$ , inclusive nos casos das lajes OC11V20 e OC13V40.

A Tab. 6.9 apresenta a comparação das estimativas do método de ROLL et *al.* (1971) com as obtidas através das duas sugestões apresentadas por IOANNOU (2001). O restabelecimento da simetria da laje com a utilização de furos fictícios para o cálculo do perímetro efetivo de controle forneceu um valor médio para  $V_{Exp}$   $V_{Prop}$  de 1,38, desvio padrão de 0,29 e coefficiente de variação de 20,9%, enquanto que o tratamento do pilar da laje com furo assimétrico como sendo de borda apresentou estimativa média para  $V_{Exp}$   $V_{Prop}$  de 1,40, desvio padrão de 0,31 e coefficiente de variação de 22,2%.

Para o caso das lajes OC11V20 e OC13V40, que apresentaram o furo assimétrico posicionado adjacente ao pilar, e, cujo comprimento do lado foi maior que o do pilar, especificamente, o artificio da simetria geométrica do furo conduziu a estimativas mais

satisfatórias e a favor da segurança. como mostra a Tab. 6.9. Cabe ressaltar que as lajes OC11V20 e OC13V40 apresentaram. respectivamente, pilar de seção quadrada e retangular.

Para algumas lajes, o artificio da simetria do furo foi o método empregado no cálculo do perímetro efetivo de controle, enquanto que, para outras, utilizou-se o tratamento do pilar com o furo assimétrico como sendo pilar de borda. A Tab. 6.9 apresenta as relações  $V_{Exp}/V_{Prop}$  para cada um dos casos utilizados para o cálculo do perímetro efetivo de controle, sendo que, nas figs. 6.11 e 6.12, os resultados teóricos fornecidos pela curva da proposta correspondem às menores estimativas de  $V_{Prop}$ .

Observa-se que os valores médios da relação  $V_{Exp}$ ,  $V_{PROP}$  apresentaram-se pouco superiores ao da relação  $V_{Exp}/V_{ROLL}$  e valores praticamente iguais para desvio padrão e coeficiente de variação. Entretanto a proposta forneceu, individualmente, estimativas consideravelmente mais seguras que o método de ROLL et *al.* (1971) para as lajes com furos assimétricos, especialmente para as lajes de TENG et *al.* (1999). As figs. 6.11 e 6.12 apresentam as linhas de tendência para os resultados estimados pela proposta e pelo método de ROLL et *al.* (1971), e os pontos relativos aos resultados experimentais.

Os resultados de EL-SALAKAWY et *al.* (1999) não são apresentados na Tab. 6.9 e nas figs. 6.11 e 6.12, pois se referem a lajes com pilar de borda e não fornecem qualquer contribuição para a proposta.

| Autor | Laje                            | I Exp ROLL | LEXP L'PROPIFURO SIMETRICO) | Exp PROPIPILAR DE BORDA |
|-------|---------------------------------|------------|-----------------------------|-------------------------|
|       | S-000-0-0-2                     | 1,44       | 1,44                        | 1,44                    |
|       | S-000-0-0-3                     | 1,43       | 1,43                        | 1,43                    |
|       | S-000-0-0-4                     | 1,38       | 1,38                        | 1,38                    |
|       | S-000-0-0-5                     | 1,43       | 1,43                        | 1,43                    |
|       | S-121-0-0-1                     | 1,54       | 1,79                        | 1,71                    |
|       | S-121-0-0-2                     | 1.38       | 1,62                        | 1,48                    |
|       | S-122-0-0-1                     | 1.52       | 1.52                        | 1.52                    |
|       | S-122-0-0-2                     | 1.39       | 1.39                        | 1.39                    |
|       | S-122-0-0-1a                    | 1.06       | 1.06                        | 1.06                    |
|       | S-122-0-0-1b                    | 1.40       | 1.40                        | 1.40                    |
|       | S-123-0-0-1                     | 1.24       | 1.36                        | 1.32                    |
|       | S-123-0-0-2                     | 1.40       | 1.52                        | 1 48                    |
|       | S-124-0-0-1                     | 1.22       | 1.22                        | 1 22                    |
|       | S-124-0-0-1                     | 1.36       | 1,22                        | 1 36                    |
|       | S-121-1-0 9-1                   | 1.45       | 1.57                        | 1,50                    |
|       | S 171 7 1 8 1                   | 1,70       | 8 ya 2 mi<br>1 5. 1         | 1,42                    |
|       | S 121 - 2 - 1.0 - 1             | 1,37       | 1,04                        | 1,40                    |
|       | S-121-3-2, /-1<br>S 131 1 3 6 1 | 1,22       | 1,04                        | 1,27                    |
|       | 5-121-4-3.0-1                   | 1,03       | 1,03                        | 1,60                    |
|       | 5-121-5-4.5-1                   | 1,40       | 1,57                        | 1,51                    |
|       | S-121-0-3.4-1                   | 1,45       | 1,55                        | 1.49                    |
|       | S-000-0-0-1                     | 1,30       | 1,30                        | 1,30                    |
|       | S-000-0-0-2                     | 1,18       | 1,18                        | 1,18                    |
| ~     | S-121-0-0-1                     | 1,14       | 1,21                        | 1,18                    |
| 121   | S-121-0-0-2                     | 1,25       | 1,29                        | 1,27                    |
| (15   | S-122-0-0-1                     | 1,18       | 1,18                        | 1,18                    |
| 10    | S-122-0-0-1a                    | 1,26       | 1,26                        | 1,26                    |
| G     | S-123-0-0-1                     | 1,31       | 1,39                        | 1,33                    |
| 11    | S-124-0-0-1                     | 1,31       | 1,31                        | 1,31                    |
| ×     | S-221-0-0-1                     | 1.21       | 1,25                        | 1.24                    |
|       | S-222-0-0-1                     | 1,21       | 1,21                        | 1,21                    |
|       | S-222-0-0-1a                    | 1,22       | 1,22                        | 1,22                    |
|       | S-223-0-0-1                     | 1,28       | 1,33                        | 1,31                    |
|       | S-224-0-0-1                     | 1.21       | 1,21                        | 1,21                    |
|       | S-241-9-0-1                     | 1,04       | 1,10                        | 1,09                    |
|       | S-242-9-0-1                     | 1,01       | 1,01                        | 1,01                    |
|       | S-242-9-0-2                     | 1,05       | 1,05                        | 1,05                    |
|       | S-242-9-0-1a                    | 1,14       | 1,14                        | 1,14                    |
|       | S-243-9-0-1                     | 1,09       | 1,12                        | 1,10                    |
|       | S-244-9-0-1                     | 1,39       | 1,39                        | 1,39                    |
|       | S-244-9-0-2                     | 1.18       | 1.18                        | 1.18                    |
|       | Série H (b=271mm)               | 1.53       | 1.53                        | 1.53                    |
|       | Serie 11 (b=163mm)              | 1.43       | 1.43                        | 1.43                    |
|       | Série H (b=107 mm)              | 1.50       | 1.50                        | 1.50                    |
|       | Série II (b=0)                  | 1.07       | 1.02                        | 1.07                    |
|       | Série H (b=0)                   | 1 19       | 1 19                        | 1 19                    |
|       | Série H (h=271mm)               | 1 4 1      | 1 41                        | 1.41                    |
|       | Série H (b=163mm)               | 1 77       | 1 27                        | 1.27                    |
|       | Sária H (b=125mm)               | 1 1 2      | 1 1 2                       | / شور 1<br>1 1 9        |
|       | Série II (b-117mm)              | 1.10       | 1,10                        | 1,10                    |
|       | Série U (b=102mm)               | 1,15       | 1,1.5                       | 1,12                    |
|       | Serie H (0=102mm)               | 1,10       | 1,10                        | 1,10                    |
|       | Serie H (b=0)                   | 1,01       | 1,01                        | 1,01                    |

Tabela 6.9 - Estimativas da proposta para o método de ROLL et al. (1971) para as lajes da

## Série 2 e da literatura

| Autor        | Laje          | V Exp / V ROLI | Fixp / V PROPIETURO SIMETRICO | V Exp / V PROP(PILAR DE BORDA) |
|--------------|---------------|----------------|-------------------------------|--------------------------------|
| -            | JN-1-1.7      | 1,83           | 2,02                          | 1.98                           |
| SIL &        | JN-2-1.7      | 2,68           | 2,68                          | 2,68                           |
| RER B        | JN-3-1.7      | 2,02           | 2,15                          | 2,06                           |
| WR<br>DE     | JN-1-2.2      | 1,60           | 1,68                          | 1,64                           |
| OVA          | JN-2-2.2      | 2.43           | 2,43                          | 2.43                           |
| ~ >          | JN-3-2.2      | 1,92           | 2,09                          | 1,99                           |
| Do           | 13            | 1.32           | 1,40                          | 1,70                           |
| RA<br>8955   | 14            | 1,22           | 1,32                          | 1,65                           |
| NON CON      | 15            | 1,43           | 1,43                          | 1,43                           |
| B A B        | 23            | 1.35           | 1.35                          | 1,35                           |
|              | L45FS_CG      | 1,13           | 1,24                          | 1,28                           |
| 0            | L45FD CG      | 1.09           | 1,19                          | 1.22                           |
| [2]          | L45FD         | 1.11           | 1.22                          | 1,26                           |
| $\alpha$     | L45FFS_CG     | 1,21           | 1,21                          | 1,21                           |
| 5            | L45FFD CG     | 1,14           | 1,14                          | 1,14                           |
|              | L45FFD        | 1,08           | 1,08                          | 1,08                           |
|              | OC111130      | 1,27           | 1,31                          | 1,29                           |
| 1.2          | OC11V23       | 1,30           | 1,35                          | 1,32                           |
| 66           | OC11V20       | 0,91           | 1,27                          | 1,13                           |
| 61           | OC13H50       | 1,09           | 1,23                          | 1,11                           |
|              | OC13V43       | 1,13           | 1,29                          | 1,22                           |
| G            | OC13V23       | 1,24           | 1,53                          | 1,43                           |
| 9            | OC13V40       | 0,89           | 1,15                          | 1,11                           |
| Ē            | OC13H02       | 1,26           | 1,41                          | 1,31                           |
| +            | OC15H70       | 1,10           | 1,25                          | 1,15                           |
|              | OC15V43       | 1.33           | 1.48                          | 1,40                           |
| × 6          | 2             | 1,29           | 1,29                          | 1,29                           |
| 0 z 66       | 6             | 1,19           | 1,19                          | 1,19                           |
| RI<br>(]     | 7             | 1,19           | 1,19                          | 1,19                           |
| 104800612000 | PSSCH4b       | 1,40           | 1,40                          | 1,40                           |
| < 0          | 1.4           | 1,33           | 1.33                          | 1,33                           |
| D00          | L5            | 1,56           | 1,56                          | 1,56                           |
| 5 5          | L6            | 1,42           | 1.42                          | 1,42                           |
|              | MEDIA         | 1,32           | 1,38                          | 1,40                           |
| DESV         | /IO PADRÃO    | 0,28           | 0,29                          | 0,31                           |
| EFICIENT     | E DE VARIAÇÃO | 21,2           | 20,9                          | 22,2                           |

Tabela 6.9 - Estimativas da proposta para o método de ROLL et *al.* (1971) para as lajes da Série 2 e da literatura (continuação)



Figura 6.11 – Comparação dos resultados experimentais com a tendência das estimativas do método de ROLL et *al.* (1971) e da proposta para as lajes da Série 2 e da literatura – Curvas

 $V / bd \sqrt{f'_c} \propto V_{flex} / bd \sqrt{f'_c}$ 



Figura 6.12 - Comparação dos resultados experimentais com a tendência das estimativas do método de ROLL et *al.* (1971) e da proposta para as lajes da Série 2 e da literatura - Curvas

 $V/V_{\rm flex} \ge V_{\rm flex} / hd \sqrt{f'_e}$ 

# 6.3.3 – PROPOSTA DE CÁLCULO DO PERÍMETRO EFETIVO DE CONTROLE PARA A NBR-6118 (2003) UTILIZANDO O MÉTODO DO HANDBOOK TO BS8110/85 (1987)

O método de cálculo da norma NB1 (2003) prescreve que o perimetro efetivo de controle, na presença de furos, é obtido através da dedução do perimetro de controle situado a 2d do pilar no trecho compreendido entre linhas de projeção radial, que partem do centro do pilar e tangenciam os vértices do furo. Observa-se nos resultados apresentados nas tabs. 6.6 e 2.24 (Capitulo 2) que a norma brasileira forneceu, de modo geral, resultados conservadores para as estimativas  $V_{Exp}/V_{calc}$ , devido à redução significativa do perimetro de controle devido ao furo.

Como apresentado anteriormente (Tabs. 6.6 e 2.24), a proposta de REGAN (1974) para o Handbook to BS8110/85 (1987), considerando a influência de furos em lajes com a exclusão dos trechos do perímetro de controle inseridos dentro de projeções paralelas às faces do furo e que partem do pilar (vide Fig. 2.12), apresentou os melhores resultados teóricos, depois do método de ROLL et *al.* (1971), para as lajes da Série 2. Desta forma, propõe-se aplicar o método apresentado no Handbook to BS8110 (1987) no tratamento de furos, para o cálculo do perímetro de controle situado a 2*d* da face do pilar, prescrito pela NB1 (2003).

# 6.3.4 – COMPARAÇÃO DOS RESULTADOS ESTIMADOS PELAS NORMAS DE PROJETO E POR PESQUISADORES COM OS ESTIMADOS PELA PROPOSTA PARA A NBR-6118 (2003)

A Tab. 6.10 apresenta as estimativas das normas de projeto e dos pesquisadores analisados, incluindo a proposta do Handbook to BS8110/85 (1987) para a NB1 (2003), para as lajes da Série 2 e da literatura. São apresentados os valores médios, obtidos a partir de todas as lajes com furos, para a relação  $V_{Exp}/V_{calc}$ , desvio padrão e coeficiente de variação.

Para as lajes de MOWRER & VANDERBILT (1967) a proposta para o método da NB1 (2003) forneceu relações  $V_{Exp}/V_{calc}$  entre 0.92 e 1.23. enquanto que a norma estimou valores entre 1.09 e 2,23. Nas lajes de ROLL et *al.* (1971), tanto a norma brasileira quanto a proposta para esta, apresentaram para a maioria das lajes, estimativas contra a segurança. Para as lajes com turos posicionados com um dos vértices coincidentes com o do pilar (série S221 a S224)

e série S241 a S244), o aumento do número de furos conduziu a resultados mais conservadores, tanto com furos pequenos quanto maiores.

Para as lajes de GOMES & ANDRADE (1995), a proposta do Handbook para a NB1 (2003) forneceu estimativas mais conservadoras ( $V_{Exp}$ ,  $V_{calc}$  entre 1,17 e 1,98) que as apresentadas pela própria norma ( $V_{Exp}$ ,  $V_{calc}$  entre 1,14 e 1,67), especialmente com o aumento do diâmetro e número de furos. As estimativas da proposta foram semelhantes às de IOANNOU (2001), para as lajes com furos em pares (lajes 15 e 23).

As estimativas da proposta, para a maioria das lajes ensaiadas por TENG et *al.* (1999) apresentaram relações  $V_{Exp}$   $V_{calc}$  inferior a 1,0, assim como a NB1 (2003) Entretanto, a proposta tendeu a melhorar as estimativas apenas das lajes OC11V20 e OC13V40.

Para as lajes ensaiadas por REGAN (1999), a proposta forneceu estimativas contra a segurança, exceto apenas para a laje com dois furos (laje 2). A NB1 (2003) forneceu estimativas conservadoras para as lajes, apresentando  $V_{Exp}/V_{calc}$  entre 1,56 e 1,68.

Em todas as lajes ensaiadas por EL-SALAKAWY et *al.* (1999), tanto a proposta atual quanto a NB1 (2003) apresentaram resultados contra a segurança, com relações  $V_{Exp}$   $V_{calc}$  entre 0,71 e 0,88 (proposta) e entre 0,86 c 1,09 (norma brasileira).

Para as lajes de SILVA (2003), a proposta conduziu a resultados mais satisfatórios em relação aos obtidos pela NB1 (2003). A proposta atual forneceu valores  $V_{Exp}$   $V_{calc}$  entre 0,99 e 1,26, enquanto que a NB1 (2003), entre 1,31 e 1,63. A NB1 (2003) tende a superestimar a influência do furo no cálculo do perímetro de controle efetivo.

A proposta do Handbook para a NB1 (2003), assim como nas lajes de SILVA (2003), forneceu para as lajes do presente trabalho estimativas mais próximas de 1,0, em relação às fornecidas pela NB1 (2003), sendo que a norma estimou resultados conservadores para as lajes, com valores para  $V_{Exp}$   $V_{calc}$  entre 1,07 e 1,35

De acordo com a Tab. 6.10, verifica-se que, dentre todos os métodos de cálculo analisados, o método da norma do ACI (2002) foi o que se apresentou como o mais conservador nas

estimativas da carga de ruptura, com o maior valor para a média da relação  $V_{Exp}/V_{calc}$  (1,92), e maiores valores para o desvio padrão (0.86) c coeficiente de variação (44.9%).

A proposta do Handbook to BS (1987) para a NB1 (2003) apresentou a melhor média para a relação  $V_{Exp}/V_{calc}$  (1,03) com desvio padrão e coeficiente de variação iguais a, respectivamente, 0.24 e 23.4, enquanto que a NB1 (2003) apresentou um valor médio para a relação  $V_{Exp}/V_{calc}$  igual a 1.19, desvio padrão de 0.32 e coeficiente de variação de 27,0.

Seguido da proposta atual, o Handbook to BS8110 (1987) forneceu os melhores resultados para a média (1,13), desvio padrão (0,24) e coeficiente de variação (21,4).

|       |             |         |       |        |        |        | I Exp I co | tle       |         |             |        |
|-------|-------------|---------|-------|--------|--------|--------|------------|-----------|---------|-------------|--------|
| Autor | Laje        | .1CI/02 | BS:97 | ITB 37 | EC2.92 | EC2'01 | NB1 03     | PROPOST.1 | TENG-99 | IO.1NNOU/01 | ROLL71 |
| E     | JN-1-1.7    | 2,44    | 1,39  | 1,16   | 2,36   | 1,83   | 1,22       | 1,02      | 1,39    | 1,42        | 1,83   |
| (196) | JN-2-1.7    | 5.00    | 2,54  | 1,52   | 4,48   | 3,33   | 2,23       | 1,21      | 2,54    | 1,67        | 2,68   |
| RER   | JN-3-1.7    | 2,30    | 1,35  | 1,30   | 2,55   | 1,89   | 1,26       | 1,23      | 1,35    | 1,19        | 2,02   |
| L'RB  | JN-1-2.2    | 2,46    | 1,24  | 1,04   | 2,19   | 1,63   | 1,09       | 0,92      | 1,24    | 1,27        | 1,60   |
| MUN   | JN-2-2.2    | 5,26    | 2,27  | 1,36   | 4,55   | 2,98   | 2,00       | 1.08      | 2,27    | 1,49        | 2,43   |
| ~     | JN-3-2.2    | 2.45    | 1,31  | 1,27   | 2.45   | 1,83   | 1,23       | 1,20      | 1,31    | 1,16        | 1,92   |
|       | S-121-0-0-1 | 1,52    | 1,04  | 0,96   | 1.49   | 1,37   | 0,89       | 0.84      | 1,04    | 0,89        | 1,14   |
| 11)   | S-122-0-0-1 | 1,63    | 1,12  | 0,94   | 1,60   | 1,43   | 0,93       | 0.82      | 1,12    | 0,82        | 1,18   |
| 0112  | S-123-0-0-1 | 1,50    | 1,03  | 0,76   | 1,46   | 1,26   | 0,81       | 0,66      | 1,03    | 0,71        | 1,31   |
| ANG   | S-124-0-0-1 | 1,67    | 1,14  | 0,72   | 1.60   | 1.31   | 0,85       | 0.63      | 1,14    | 0.63        | 1,31   |
| CH    | S-221-0-0-1 | 1.90    | 1.04  | 1.06   | 1,35   | 1.38   | 0.89       | 0,93      | 1.04    | 1,13        | 1,21   |
| SA    | S-222-0-0-1 | 2,12    | 1,13  | 1,19   | 1,49   | 1,46   | 0.95       | 1,05      | 1,13    | 1,05        | 1,21   |
| ABNI  | S-223-0-0-1 | 2,48    | 1,33  | 1,46   | 1,69   | 1,95   | 1,26       | 1,29      | 1,33    | 1,75        | 1,28   |
| S/    | S-224-0-0-1 | 2,67    | 1,45  | 1,71   | 1,71   | 1,73   | 1,12       | 1,54      | 1,45    | 1,54        | 1,21   |
| VID   | S-241-9-0-1 | 1,71    | 0,91  | 0,89   | 1,25   | 1,21   | 0,78       | 0,78      | 0,91    | 0,94        | 1,23   |
| T     | S-242-9-0-1 | 1.89    | 1,02  | 0,96   | 1,33   | 1,33   | 0.86       | 0.84      | 1.02    | 0.84        | 1,22   |
| kO    | S-243-9-0-1 | 2,46    | 1,28  | 1,12   | 1,76   | 1,59   | 1.03       | 1,00      | 1.28    | 1.35        | 1,09   |
|       | S-244-9-0-1 | 3.71    | 1,94  | 1,52   | 2,51   | 2,24   | 1.46       | 1,37      | 1,94    | 1,37        | 1,39   |
| Sh    | 13          | 1,57    | 1,27  | 1,28   | 1,47   | 1,27   | 1.18       | 1,21      | 1.27    | 1,33        | 1.32   |
| LS &  | [4          | 1,50    | 1,22  | 1,22   | 1,40   | 1,21   | 1,14       | 1,17      | 1,22    | 1,38        | 1,22   |
| NON   | 15          | 1.92    | 1,50  | 1,59   | 1,85   | 1.57   | 1,46       | 1,57      | 1,50    | 1,57        | 1,43   |
| 24    | 23          | 2,05    | 1,81  | 1,92   | 1,93   | 1,77   | 1,67       | 1,98      | 1.81    | 1,98        | 1,35   |

Tabela 6.10 – Estimativas das normas de projeto e de pesquisadores para as lajes com furos da Série 2 e da literatura, incluindo a proposta para a NB1 (2003)

|                     |             |         |       |       |         |        | I Exp I co | ule                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         |             |         |
|---------------------|-------------|---------|-------|-------|---------|--------|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-------------|---------|
| Autor               | Laje        | .1C1/02 | BS 97 | HB 8" | EC 2/92 | EC2 01 | NB1/03     | PROPOST.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | TENG 99 | 10.4NNOU:01 | ROLL/71 |
| ZO                  | 2           | 2,01    | 1,75  | 1,10  | 1,95    | 1,91   | 1,68       | 1,01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1,75    | 1,01        | 1,29    |
| GGA                 | 6           | 2,41    | 1,98  | 0,94  | 2,08    | 1,77   | 1,56       | 0,86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1,98    | 1,09        | 1,19    |
| B.O.                | 7           | 2.39    | 1.97  | 0,93  | 2,06    | 1.77   | 1.56       | 0.86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.97    | 1,08        | 1,19    |
|                     | OC11H30     | 1,80    | 1,32  | 1,09  | 1,54    | 1,44   | 1,22       | 1,01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1,32    | 1,30        | 1,27    |
|                     | OC11V23     | 1,74    | 1,28  | 1,24  | 1,47    | 1,37   | 1,17       | 1,14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1,28    | 1,41        | 1,30    |
|                     | OC11V20     | 1,25    | 0,93  | 0,97  | 1,01    | 0,99   | 0,83       | 0,89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0,93    | 0,96        | 0,81    |
| 666                 | OC13H50     | 1,33    | 0,98  | 0,94  | 1,30    | 1,08   | 0,92       | 0,87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1,07    | 1,08        | 1,09    |
| ef. ()              | OC13V43     | 1,43    | 1.07  | 1,01  | 1,39    | 1,14   | 0.98       | 0.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1 0.3   | 1.09        | 1,14    |
| oto                 | OC13V23     | 1,59    | 1,18  | 1,04  | 1,51    | 1,28   | 1,08       | 0,96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1,18    | 1,04        | 1,23    |
| ENC                 | OC13V40     | 1,15    | 0,83  | 0.90  | 0,96    | 0,90   | 0,76       | 0,85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.88    | 1.19        | 0,89    |
| -                   | OC131102    | 1,76    | 1,43  | 1,09  | 1,61    | 1,49   | 1,28       | 1,02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1,09    | 1.19        | 1,26    |
|                     | OC15H70     | 1,31    | 0,89  | 0,98  | 1,52    | 0,98   | 0,83       | 0,81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1,10    | 0,96        | 1,10    |
|                     | OC15V43     | 1,72    | 1,16  | 1.15  | 1,96    | 1,26   | 1,07       | NB 1/03       PROPOSTA       TENG 09       IOANNOU/01       RO         1,68       1,01       1,75       1,01       1         1,56       0,86       1,98       1,09       1         1,22       1,01       1,32       1,30       1         1,17       1,14       1,28       1,41       1         0,83       0,89       0,93       0,96       0         0,92       0,87       1,07       1,08       1         0,98       0,95       103       1,09       1         1,08       0,96       1,18       1,04       1         0,76       0,85       0,88       1,19       0         0,83       0,81       1,10       0,96       1         1,07       0,95       1,28       1,01       1         1,07       0,95       1,28       1,01       1         1,07       0,95       1,28       1,01       1         1,07       0,95       1,28       1,01       1         1,09       0,81       1,03       0,81       0 | 1,32    |             |         |
| 10,434 0,000 (2000) | PSSCH4b     | 1,83    | 1,74  | 1,05  | 1,91    | 1,80   | 1,62       | 0,96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1,74    | 1,21        | 1,40    |
| et al               | SE0         | 0.97    | 1.05  | 0,96  | 1.19    | 1.20   | 0.96       | 0.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.05    | 1.40        | 0.79    |
| WY.                 | CF0         | 0,89    | 1,05  | 0,78  | 1,17    | 1,21   | 0,97       | 0,71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1,05    | 0,82        | 0,62    |
| NKA<br>(m)          | SF0         | 0,90    | 1,03  | 0,88  | 1,32    | 1,36   | 1,09       | 0,81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1,03    | 0,81        | 0,70    |
| ALA:                | SF1         | 0,82    | 0,94  | 0,91  | 1,05    | 1,10   | 0,89       | 0,84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0,94    | 0.84        | 0,72    |
|                     | SF2         | 0.82    | 0,91  | 0.93  | 1.05    | 1.07   | 0.86       | 0.86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.91    | 0.86        | 0,72    |
| 4 -                 | 1.4         | 2,49    | 1,78  | 1,08  | 2,06    | 2,03   | 1,63       | 0,99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1,78    | 1,23        | 1,33    |
| 1LV/                | 1.5         | 2.13    | 1.65  | 1.38  | 1.92    | 1,95   | 1,56       | 1.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2,04    | 1.51        | 1,56    |
| S O                 | L6          | 1,67    | 1,54  | 1,26  | 1,95    | 1,63   | 1,31       | 1,16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1,74    | 1,35        | 1,42    |
|                     | L45FS_CG    | 1,48    | 1,28  | 1,22  | 1,49    | 1,29   | 1,21       | 1,14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1,42    | 1,43        | 1,13    |
|                     | IA5FD CG    | 1,43    | 1,13  | 1.08  | 1,34    | 1,14   | 1,07       | 1,00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1,25    | 1,26        | 1,09    |
| III: 2              | L45FD       | 1,43    | 1.15  | 1,09  | 1.34    | 1,16   | 1.08       | 1,02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1,27    | 1.28        | 1,11    |
| SER                 | L45FFS_CG   | 1,59    | 1,41  | 1,27  | 1,62    | 1,45   | 1,35       | 1,18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1,82    | 1,40        | 1,21    |
|                     | 1A5FFD_CG   | 1.70    | 1.36  | 1,22  | 1.58    | 1.37   | 1.30       | 1,14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.77    | 1.35        | 1.14    |
|                     | L45FTD      | 1,68    | 1,29  | 1,16  | 1,59    | 1,34   | 1,23       | 1,08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1,65    | 1,28        | 1,08    |
|                     | MEDIA       | 1,92    | 1,33  | 1,13  | 1,75    | 1,52   | 1,19       | 1,03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1,37    | 1,20        | 1,27    |
| DEST                | VIO PADRÃO  | 0,86    | 0,37  | 0,24  | 0,69    | 0.46   | 0,32       | 0,24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.39    | 0,28        | 0,38    |
| C. V.               | ARIAÇÃO (%) | 44,9    | 27,9  | 21,4  | 39,3    | 30,1   | 27,0       | 23,4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 28,4    | 23,2        | 30,0    |

Tabela 6.10 – Estimativas das normas de projeto e de pesquisadores para as lajes com furos da Série 2 e da literatura, incluindo a proposta para a NB1 (2003) (continuação)



Figura 6.13 – Comparação das estimativas da NB1 (2003) com as estimativas da proposta para a norma brasileira das lajes de MOWRER & VANDERBILT (1967)



Figura 6.14 – Comparação das estimativas da NB1 (2003) com as estimativas da proposta para a norma brasileira das lajes de ROLL et *al.* (1971)



Figura 6.15 – Comparação das estimativas da NB1 (2003) com as estimativas da proposta para a norma brasileira das lajes de GOMES & ANDRADE (1995)



Figura 6.16 – Comparação das estimativas da NB1 (2003) com as estimativas da proposta para a norma brasileira das lajes de TENG et *al.* (1999)



Figura 6.17 – Comparação das estimativas da NB1 (2003) com as estimativas da proposta para a norma brasileira das lajes de REGAN (1999) e IOANNOU (2001)



Figura 6.18 – Comparação das estimativas da NB1 (2003) com as estimativas da proposta para a norma brasileira das lajes de EL-SALAKAWY et *al.* (1999)



Figura 6.19 – Comparação das estimativas da NB1 (2003) com as estimativas da proposta para a norma brasileira das lajes de SILVA (2003)



Figura 6.20 – Comparação das estimativas da NB1 (2003) com as estimativas da proposta para a norma brasileira das lajes da Série 2

### 6.4 – LAJES COM ARMADURA DE CISALHAMENTO

### 6.4.1 – LAJES DA PRESENTE PESQUISA

As tabs. 6.11 a 6.17 apresentam, respectivamente, as estimativas do ACI (2002), BS8110 (1997), Handbook to BS8110/85 (1987), EC2 (1992), EC2 (2001), NB1 (2003) e da proposta para a NB1 (2003) para as lajes da Série 3.

Segundo o ACI (2002), as cargas de ruptura experimentais das lajes da Série 3 foram superiores às cargas previstas em até 63%, como pode ser visto na Tab. 6.11, além dos mecanismos de ruptura previstos se diferenciarem dos experimentais. Todas as lajes apresentaram superfície de ruptura externa à região com armadura de cisalhamento, sendo que foram previstas para as lajes L45\_AC1, L45FFD\_AC2 e L45FFD\_AC3, superfícies de ruptura adjacentes ao pilar, e, para as lajes L45FFD\_AC4, L45FFD\_AC5 e L45\_AC5, superfície de ruptura cruzando a armadura de cisalhamento.

Apesar disto, observa-se na Tab. 6.11 que as cargas de ruptura experimentais apresentaram-se próximas das estimadas para superficie de ruptura externa à região com armadura de cisalhamento, com exceção da laje L45FFD\_AC4. Tal fato mostra que o espaçamento entre camadas e entre o pilar e a primeira camada foi adequado de forma a evitar qualquer ruptura adjacente, e, a armadura de cisalhamento apresentou efetividade superior à esperada nos cálculos do ACI (2002).

Para o BS8110 (1997), as cargas previstas para as lajes do Grupo 3 apresentaram-se próximas das experimentais ( $V_{Exp}/V_{BS8110}$  entre 0,99 e 1,04), além dos mecanismos de ruptura previstos terem coincidido com os experimentais, como mostra a Tab. 6.12. Isto mostra que os perímetros calculados externamente à região com armadura de cisalhamento, foram considerados adequadamente, além da armadura de cisalhamento ter apresentado comportamento coerente com a previsão da norma.

O Handbook to BS8110 (1987) estimou resultados semelhantes os fornecidos pelo BS8110 (1997) para o caso das lajes monolíticas da Série 3, como esperado, pois ambos métodos de cálculo se diferenciam apenas com relação ao tratamento de furos em lajes. Com relação às lajes com furos, a proposta do Handbook tendeu a estimar cargas de ruptura superiores às

previstas pelo BS, tanto para superficie cruzando a armadura de cisalhamento quanto localizada externamente à região armada (Tab. 6.13). As estimativas do Handbook para a relação  $V_{Exp}V_{calc}$ , para as lajes da Série 3, variou entre 0,87 (L45FFD\_AC4) e 1,04 (L45\_AC5), e os mecanismos de ruptura experimentais diferenciaram dos previstos, para todas as lajes com furos.

Para o EC2 (1992), todas as lajes apresentaram cargas de ruptura experimentais superiores às previstas pela norma entre 13% e 55%, além dos mecanismos de ruptura experimentais não terem coincidido com os previstos, como mostra a Tab. 6.14. Apesar disto, observa-se que as cargas estimadas pela norma para ruptura com superficie localizada externamente à região com armadura de cisalhamento se apresentaram próximas das experimentais, com exceção da laje L45FFD\_AC4.

O EC2 (2001) e a NB1 (2003) estimaram, para todas as lajes, mecanismos de ruptura coincidentes com os experimentais, e, também, resultados conservadores ( $V_{Exp}$   $V_{calc}$  entre 1,19 e 1,25, para o EC2, e entre 1,06 e 1,20, para a NB1), como mostram as tabs. 6.15 e 6.16, respectivamente.

A proposta apresentada anteriormente para a NB1 (2003) que, por sua vez, considera a influência do furo no cálculo do perímetro de controle, conforme recomenda o Handbook to BS8110 (1987), conduziu a estimativas praticamente iguais às da norma, como esperado, para as lajes monolíticas.

Para as lajes com furos, a proposta tendeu a fornecer resultados superiores aos da norma, uma vez que o perímetro efetivo de controle é maior, neste caso. Assim, os valores determinados pela proposta para a relação  $V_{Exp}$ ,  $V_{calc}$  se apresentaram inferiores aos da norma ( $V_{Exp}$ ,  $V_{calc}$  entre 0,98 e 1,16), além da proposta estimar mecanismos de ruptura idênticos aos experimentais.

| Laje       | d<br>(mm) | f°c<br>(MPa) | Armadura de cisalhamento | $A_{se}/cam$ (mm <sup>2</sup> ) | φ<br>(mm) | 50<br>(mm) | <i>s<sub>r</sub></i><br>(mm) | V <sub>kxp</sub><br>(kN) | V <sub>int</sub><br>(kN) | V <sub>eat</sub><br>(kN) | V <sub>ady</sub><br>(kN) | <i>V<sub>ACI</sub></i><br>( <b>kN</b> ) | V <sub>lixp</sub> /<br>V <sub>ACT</sub> | Ruptura<br>prevista | Ruptura<br>real |
|------------|-----------|--------------|--------------------------|---------------------------------|-----------|------------|------------------------------|--------------------------|--------------------------|--------------------------|--------------------------|-----------------------------------------|-----------------------------------------|---------------------|-----------------|
| L45_AC1    | 154       | 39,0         |                          | 943                             | 10,0      | 75         | 75                           | 1250                     | 1066                     | 1205                     | 769                      | 769                                     | 1,63                                    | Adjacente           | Externa         |
| L45FFD_AC2 | 154       | 43.8         |                          | 1728                            | 10,0      | 77         | 116                          | 1230                     | 872                      | 1238                     | 815                      | 815                                     | 1,51                                    | Adjacente           | Externa         |
| L45FFD_AC3 | 154       | 39,4         |                          | 1106                            | 8,0       | 77         | 116                          | 1050                     | 828                      | 942                      | 774                      | 774                                     | 1,36                                    | Adjacente           | Externa         |
| L45FFD_AC4 | 154       | 43,2         |                          | 603                             | 8,0       | 77         | 116                          | 885                      | 738                      | 922                      | 810                      | 738                                     | 1,20                                    | Interna             | Externa         |
| L45FFD_AC5 | 154       | 40,7         |                          | 503                             | 8,0       | 77         | 116                          | 837                      | 561                      | 768                      | 786                      | 561                                     | 1,49                                    | Interna             | Externa         |
| L45 AC5    | 154       | 41.1         |                          | 603                             | 8,0       | 77         | 116                          | 1092                     | 701                      | 1022                     | 790                      | 701                                     | 1,56                                    | Interna             | Externa         |

Tabela 6.11 – Estimativas da norma do ACI (2002) para as lajes da Série 3

299
| Laje       | <i>d</i><br>(mm) | f <sub>c</sub><br>(MPa) | Armadura de cisalhamento | $A_{se}/cam$ (mm <sup>2</sup> ) | ø<br>(mm) | <i>s<sub>0</sub></i><br>(mm) | <i>s<sub>r</sub></i><br>(mm) | V <sub>Exp</sub><br>(kN) | V <sub>int</sub><br>(kN) | V <sub>ext</sub><br>(kN) | V <sub>ady</sub><br>(kN) | V <sub>BS8110</sub><br>(kN) | V <sub>Exp</sub> /<br>V <sub>BS8110</sub> | Ruptura<br>prevista | Ruptura<br>real |
|------------|------------------|-------------------------|--------------------------|---------------------------------|-----------|------------------------------|------------------------------|--------------------------|--------------------------|--------------------------|--------------------------|-----------------------------|-------------------------------------------|---------------------|-----------------|
| L45_AC1    | 154              | 39,0                    |                          | 943                             | 10,0      | 75                           | 75                           | 1250                     | 1479                     | 1230                     | 1232                     | 1230                        | 1,02                                      | Externa             | Externa         |
| L45FFD_AC2 | 154              | 43,8                    |                          | 1728                            | 10,0      | 77                           | 116                          | 1230                     | 1327                     | 1188                     | 1232                     | 1188                        | 1,04                                      | Externa             | Externa         |
| L45FFD_AC3 | 154              | 39,4                    |                          | 1106                            | 8,0       | 77                           | 116                          | 1050                     | 1061                     | 1022                     | 1232                     | 1022                        | 1,03                                      | Externa             | Externa         |
| L45FFD_AC4 | 154              | 43,2                    |                          | 603                             | 8,0       | 77                           | 116                          | 885                      | 956                      | 893                      | 1232                     | 893                         | 0,99                                      | Externa             | Externa         |
| L45FFD_AC5 | 154              | 40,7                    |                          | 503                             | 8,0       | 77                           | 116                          | 837                      | 851                      | 850                      | 1232                     | 850                         | 0,99                                      | Externa             | Externa         |
| L45_AC5    | 154              | 41,1                    |                          | 603                             | 8,0       | 77                           | 116                          | 1092                     | 1056                     | 1053                     | 1232                     | 1053                        | 1,04                                      | Externa             | Externa         |

Tabela 6.12 – Estimativas da norma do BS8110 (1997) para as lajes da Série 3

| Laje       | d<br>(mm) | <i>f</i> 'c<br>(MPa) | Armadura de cisalhamento | $A_{sc}/cam$ (mm <sup>2</sup> ) | <i>ф</i><br>(mm) | <i>Տե</i><br>(mm) | <i>s<sub>r</sub></i> (mm) | V <sub>Exp</sub><br>(kN) | V <sub>m</sub><br>(kN) | V <sub>est</sub><br>(kN) | V <sub>ady</sub><br>(kN) | V <sub>HB 87</sub><br>(kN) | V <sub>Exp</sub> /<br>V <sub>HB-87</sub> | Ruptura<br>prevista | Ruptura<br>real |
|------------|-----------|----------------------|--------------------------|---------------------------------|------------------|-------------------|---------------------------|--------------------------|------------------------|--------------------------|--------------------------|----------------------------|------------------------------------------|---------------------|-----------------|
| L45_AC1    | 154       | 39,0                 |                          | 943                             | 10,0             | 75                | 75                        | 1250                     | 1479                   | 1230                     | 1232                     | 1230                       | 1,02                                     | Externa             | Externa         |
| L45FFD_AC2 | 154       | 43,8                 |                          | 1728                            | 10,0             | 77                | 116                       | 1230                     | 1393                   | 1371                     | 1232                     | 1232                       | 1,00                                     | Adjacente           | Externa         |
| L45FFD_AC3 | 154       | 39,4                 |                          | 1106                            | 8,0              | 77                | 116                       | 1050                     | 1127                   | 1172                     | 1232                     | 1127                       | 0,93                                     | Interna             | Externa         |
| L45FFD_AC4 | 154       | 43,2                 |                          | 603                             | 8,0              | 77                | 116                       | 885                      | 1022                   | 1034                     | 1232                     | 1022                       | 0,87                                     | Interna             | Externa         |
| L45FFD_AC5 | 154       | 40,7                 |                          | 503                             | 8,0              | 77                | 116                       | 837                      | 917                    | 987                      | 1232                     | 917                        | 0,92                                     | Interna             | Externa         |
| L45_AC5    | 154       | 41,1                 |                          | 603                             | 8,0              | 77                | 116                       | 1092                     | 1056                   | 1053                     | 1232                     | 1053                       | 1,04                                     | Externa             | Externa         |

Tabela 6.13 – Estimativas da norma do HANDBOOK TO BS8110 (1987) para as lajes da Série 3

| Laje       | d<br>(mm) | f с<br>(MPa) | Armadura de cisalhamento | A <sub>se</sub> /cam<br>(mm <sup>2</sup> ) | ø<br>(mm) | <i>s</i> <sub>0</sub><br>(mm) | <i>S<sub>r</sub></i><br>(mm) | V <sub>EXp</sub><br>(kN) | <i>V<sub>rd2</sub></i><br>(kN) | V <sub>nB</sub><br>(kN) | V <sub>ext</sub><br>(kN) | V <sub>EC '92</sub><br>(kN) | V <sub>Exp</sub> ·<br>V <sub>EC/92</sub> | Ruptura<br>prevista | Ruptura<br>real |
|------------|-----------|--------------|--------------------------|--------------------------------------------|-----------|-------------------------------|------------------------------|--------------------------|--------------------------------|-------------------------|--------------------------|-----------------------------|------------------------------------------|---------------------|-----------------|
| L45_AC1    | 154       | 39.0         |                          | 943                                        | 10,0      | 75                            | 75                           | 1250                     | 999                            | 1095                    | 1122                     | 999                         | 1,25                                     | Interna             | Externa         |
| L45FFD_AC2 | 154       | 43,8         |                          | 1728                                       | 10,0      | 77                            | 116                          | 1230                     | 795                            | 1361                    | 1136                     | 795                         | 1,55                                     | Interna             | Externa         |
| L45FFD_AC3 | 154       | 39,4         |                          | 1106                                       | 8,0       | 77                            | 116                          | 1050                     | 741                            | 1294                    | 888                      | 741                         | 1,42                                     | Interna             | Externa         |
| L45FFD_AC4 | 154       | 43,2         |                          | 603                                        | 8,0       | 77                            | 116                          | 885                      | 788                            | 794                     | 903                      | 788                         | 1,13                                     | Interna             | Externa         |
| L45FFD_AC5 | 154       | 40,7         |                          | 503                                        | 8.0       | 77                            | 116                          | 837                      | 757                            | 725                     | 74()                     | 725                         | 1,16                                     | Interna             | Externa         |
| L45_AC5    | 154       | 41,1         | ••[•                     | 603                                        | 8,0       | 77                            | 116                          | 1092                     | 1035                           | 949                     | 998                      | 949                         | 1,15                                     | Interna             | Externa         |

Tabela 6.14 - Estimativas da norma do EC2 (1992) para as lajes da Série 3

| Laje       | d<br>(mm) | f'c<br>(MPa) | Armadura de cisalhamento | $A_{ss}/cam$ (mm <sup>2</sup> ) | ø<br>(mm) | <i>Sti</i><br>(mm) | <i>s<sub>r</sub></i><br>(mm) | V <sub>Exp</sub><br>(kN) | V <sub>int</sub><br>(kN) | V <sub>ext</sub><br>(kN) | V <sub>adı</sub><br>(kN) | V <sub>EC 01</sub><br>(kN) | V <sub>Exp</sub> /<br>V <sub>EC 01</sub> | Ruptura<br>prevista | Ruptura<br>real |
|------------|-----------|--------------|--------------------------|---------------------------------|-----------|--------------------|------------------------------|--------------------------|--------------------------|--------------------------|--------------------------|----------------------------|------------------------------------------|---------------------|-----------------|
| L45_AC1    | 154       | 39,0         |                          | 943                             | 10,0      | 75                 | 75                           | 1250                     | 1426                     | 1005                     | 2433                     | 1005                       | 1,24                                     | Externa             | Externa         |
| L45FFD_AC2 | 154       | 43,8         |                          | 1728                            | 10.0      | 77                 | 116                          | 1230                     | 148()                    | 1019                     | 2670                     | 1019                       | 1,21                                     | Externa             | Externa         |
| L45FFD_AC3 | 154       | 39,4         |                          | 1106                            | 8,0       | 77                 | 116                          | 1050                     | 1096                     | 837                      | 2453                     | 837                        | 1,25                                     | Externa             | Externa         |
| L45FFD_AC4 | 154       | 43,2         |                          | 603                             | 8,0       | 77                 | 116                          | 885                      | 806                      | 718                      | 2641                     | 718                        | 1,23                                     | Externa             | Externa         |
| L45FFD_AC5 | 154       | 40,7         |                          | 503                             | 8,0       | 77                 | 116                          | 837                      | 738                      | 701                      | 2519                     | 701                        | 1,19                                     | Externa             | Externa         |
| L45_AC5    | 154       | 41,1         |                          | 603                             | 8.0       | 77                 | 116                          | 1092                     | 925                      | 881                      | 2539                     | 881                        | 1,24                                     | Externa             | Externa         |

Tabela 6.15 – Estimativas da norma do EC2 (2001) para as lajes da Série 3

| Laje       | d<br>(mm) | fo<br>(MPa) | Armadura de cisalhamento | A <sub>se</sub> /cam<br>(mm²) | ø<br>(mm) | s <sub>0</sub><br>(mm) | <i>s</i> ,<br>(mm) | V <sub>Exp</sub><br>(kN) | V <sub>int</sub><br>(kN) | V <sub>ext</sub><br>(kN) | V <sub>ady</sub><br>(kN) | V <sub>NBI</sub><br>(kN) | V <sub>Exp</sub> /<br>V <sub>NB1</sub> | Ruptura<br>prevista | Ruptura<br>real |
|------------|-----------|-------------|--------------------------|-------------------------------|-----------|------------------------|--------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|----------------------------------------|---------------------|-----------------|
| L45_AC1    | 154       | 39.0        |                          | 943                           | 10,0      | 75                     | 75                 | 1250                     | 1487                     | 1175                     | 2190                     | 1175                     | 1,06                                   | Externa             | Externa         |
| L45FFD_AC2 | 154       | 43,8        |                          | 1728                          | 10,0      | 77                     | 116                | 1230                     | 1530                     | 1044                     | 2403                     | 1044                     | 1,18                                   | Externa             | Externa         |
| L45FFD_AC3 | 154       | 39,4        |                          | 1106                          | 8,0       | 77                     | 116                | 1050                     | 1141                     | 873                      | 2208                     | 873                      | 1,20                                   | Externa             | Externa         |
| L45FFD_AC4 | 154       | 43,2        |                          | 603                           | 8,0       | 77                     | 116                | 885                      | 855                      | 768                      | 2377                     | 768                      | 1,15                                   | Externa             | Extema          |
| L45FFD_AC5 | 154       | 40.7        |                          | 503                           | 8,0       | 77                     | 116                | 837                      | 786                      | 696                      | 2267                     | 696                      | 1,20                                   | Externa             | Externa         |
| L45_AC5    | 154       | 41,1        |                          | 603                           | 8,0       | 77                     | 116                | 1092                     | 981                      | 939                      | 2235                     | 939                      | 1,16                                   | Externa             | Externa         |

Tabela 6.16 – Estimativas da norma da NB1 (2003) para as lajes da Série 3

| Laje       | d<br>(mm) | f'c<br>(MPa) | Armadura de cisalhamento | $A_{so}/cam$ (mm <sup>2</sup> ) | φ<br>(mm) | <i>s</i> ∂ (mm) | <i>s<sub>r</sub></i> (mm) | V <sub>Exp</sub><br>(kN) | V <sub>ini</sub><br>(kN) | V <sub>ear</sub><br>(kN) | V <sub>ady</sub><br>(kN) | V <sub>Prop</sub><br>(kN) | V <sub>Exp</sub> /<br>V <sub>Prop</sub> | Ruptura<br>prevista | Ruptura<br>real |
|------------|-----------|--------------|--------------------------|---------------------------------|-----------|-----------------|---------------------------|--------------------------|--------------------------|--------------------------|--------------------------|---------------------------|-----------------------------------------|---------------------|-----------------|
| L45_AC1    | 154       | 39.0         |                          | 943                             | 10,0      | 75              | 75                        | 1250                     | 1487                     | 1175                     | 2190                     | 1175                      | 1,06                                    | Externa             | Externa         |
| L45FFD_AC2 | 154       | 43,8         |                          | 1728                            | 10,0      | 77              | 116                       | 1230                     | 1600                     | 1249                     | 2403                     | 1249                      | 0,98                                    | Externa             | Externa         |
| L45FFD_AC3 | 154       | 39,4         |                          | 1106                            | 8,0       | 77              | 116                       | 1050                     | 1210                     | 1043                     | 2208                     | 1043                      | 1,01                                    | Externa             | Externa         |
| L45FFD_AC4 | 154       | 43.2         |                          | 603                             | 8.0       | 77              | 116                       | 885                      | 935                      | 880                      | 2377                     | 880                       | 1,01                                    | Externa             | Externa         |
| L45FFD_AC5 | 154       | 40,7         |                          | 503                             | 8,0       | 77              | 116                       | 837                      | 854                      | 825                      | 2267                     | 825                       | 1,01                                    | Externa             | Externa         |
| L45_AC5    | 154       | 41.1         |                          | 603                             | 8,0       | 77              | 116                       | 1092                     | 981                      | 939                      | 2235                     | 939                       | 1,16                                    | Externa             | Externa         |

Tabela 6.17 – Estimativas da proposta para a NB1 (2003) para as lajes da Série 3

Baseando-se na Tab. 6.18 e Fig. 6.21, observa-se que, para as lajes da Série 3, a norma do ACI (2002) se apresentou como a mais conservadora na estimativa das cargas de ruptura  $(V_{Exp}, V_{ACI})$ , com média de 1,46, desvio padrão de 0,15 e coeficiente de variação de 10,6%), alem de estimar mecanismos de ruptura diferentes dos experimentais. As cargas previstas pelo ACI para ruptura externa ficaram bem próximas das cargas experimentais.

Seguida do ACI (2002), a norma EC2 (1992) subestimou as cargas de ruptura para as lajes da Série 3, apresentando para a relação  $V_{Exp}$   $V_{EC/92}$  um valor médio de 1,27, e os maiores valores para o desvio padrão (0,17) e para o coeficiente de variação (13,5%). O EC2 (1992) estimou mecanismos de ruptura diferentes dos experimentais, ressaltando que as cargas previstas para ruptura externa à região com armadura apresentaram-se próximas das cargas reais.

O EC2 (2001) apresentou também resultados conservadores, mostrando uma média de 1,23, com os menores valores, dentre todos analisados, para desvio padrão (0,02) e coeficiente de variação (1,9%). A NB1 (2003) forneceu estimativas pouco menos conservadoras que o EC2 (2001) ( $V_{Exp}V_{NB1/03} = 1,16$ ), porém com valores maiores para desvio padrão (0,05) e coeficiente de variação (4,4%).

A proposta do Handbook to BS8110 (1987) para a NB1 (2003) tendeu a melhorar os resultados estimados pela norma brasileira para as lajes com furos da Série 3, pois apresentou menor valor médio para  $V_{Exp} V_{Prop}$  (1,04), apesar de valores para desvio padrão e coeficiente de variação pouco superiores (DP = 0,07 e CV = 6,3%).

O método da BS8110 (1997) estimou resultados mais satisfatórios que a NB1 (2003) e que a proposta para a NB1 (2003), pois apresentou valor médio para  $V_{Exp}V_{BS,97}$  igual a 1,02, e desvio padrão e coeficiente de variação inferiores (DP = 0,02 e CV = 2,1%). O Handbook to BS8110 (1987) apresentou, de maneira geral, resultados contra a segurança para as lajes com furos, com valor médio para a relação  $V_{Exp}V_{HB,87}$  de 0,96, e valores para o desvio padrão e coeficiente de variação relativamente altos.

|        | projete j                                                                                                        |                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                         |                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                     |
|--------|------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| VExp / | VExp /                                                                                                           | VExp /                                                                                                                                                                                                                                                                                                                                               | V <sub>Exp</sub> /                                                                                                                                                                      | V <sub>Exp</sub> /                                                                                                                                                                                                                               | V <sub>Exp</sub> /                                                                                                                                                                                                                                                                                        | V <sub>Exp</sub> /                                                                                                                                                                                                                                                                                                                                                  |
| VACIO2 | V <sub>BS/97</sub>                                                                                               | V <sub>EC '92</sub>                                                                                                                                                                                                                                                                                                                                  | VEC 01                                                                                                                                                                                  | V'HB/87                                                                                                                                                                                                                                          | VNB1/03                                                                                                                                                                                                                                                                                                   | V Prop                                                                                                                                                                                                                                                                                                                                                              |
| 1,63   | 1,02                                                                                                             | 1,25                                                                                                                                                                                                                                                                                                                                                 | 1,24                                                                                                                                                                                    | 1.02                                                                                                                                                                                                                                             | 1.06                                                                                                                                                                                                                                                                                                      | 1,06                                                                                                                                                                                                                                                                                                                                                                |
| 1.51   | 1,04                                                                                                             | 1,55                                                                                                                                                                                                                                                                                                                                                 | 1,21                                                                                                                                                                                    | 1,00                                                                                                                                                                                                                                             | 1,18                                                                                                                                                                                                                                                                                                      | 0,98                                                                                                                                                                                                                                                                                                                                                                |
| 1.36   | 1,03                                                                                                             | 1,42                                                                                                                                                                                                                                                                                                                                                 | 1.25                                                                                                                                                                                    | 0,93                                                                                                                                                                                                                                             | 1,20                                                                                                                                                                                                                                                                                                      | 1,01                                                                                                                                                                                                                                                                                                                                                                |
| 1,20   | 0.99                                                                                                             | 1,13                                                                                                                                                                                                                                                                                                                                                 | 1.23                                                                                                                                                                                    | 0,87                                                                                                                                                                                                                                             | 1,15                                                                                                                                                                                                                                                                                                      | 1,01                                                                                                                                                                                                                                                                                                                                                                |
| 1.49   | 0.99                                                                                                             | 1,16                                                                                                                                                                                                                                                                                                                                                 | 1.19                                                                                                                                                                                    | 0.92                                                                                                                                                                                                                                             | 1,20                                                                                                                                                                                                                                                                                                      | 1.01                                                                                                                                                                                                                                                                                                                                                                |
| 1,56   | 1,04                                                                                                             | 1,15                                                                                                                                                                                                                                                                                                                                                 | 1,24                                                                                                                                                                                    | 1,04                                                                                                                                                                                                                                             | 1,16                                                                                                                                                                                                                                                                                                      | 1,16                                                                                                                                                                                                                                                                                                                                                                |
| 1,46   | 1,02                                                                                                             | 1,27                                                                                                                                                                                                                                                                                                                                                 | 1,23                                                                                                                                                                                    | 0,96                                                                                                                                                                                                                                             | 1,16                                                                                                                                                                                                                                                                                                      | 1,04                                                                                                                                                                                                                                                                                                                                                                |
| 0,15   | 0,02                                                                                                             | 0,17                                                                                                                                                                                                                                                                                                                                                 | 0,02                                                                                                                                                                                    | 0,07                                                                                                                                                                                                                                             | 0,05                                                                                                                                                                                                                                                                                                      | 0,07                                                                                                                                                                                                                                                                                                                                                                |
| 10,6   | 2,1                                                                                                              | 13,5                                                                                                                                                                                                                                                                                                                                                 | 1,9                                                                                                                                                                                     | 6,9                                                                                                                                                                                                                                              | 4,4                                                                                                                                                                                                                                                                                                       | 6,3                                                                                                                                                                                                                                                                                                                                                                 |
|        | V <sub>Exp</sub> /<br>V <sub>ACV02</sub><br>1,63<br>1,51<br>1,36<br>1,20<br>1,49<br>1,56<br>1,46<br>0,15<br>10,6 | $V_{Exp}$ $V_{Exp}$ $V_{ACV02}$ $V_{BS/97}$ 1,63         1,02           1,51         1,04           1,36         1,03           1,20         0.99           1,49         0.99           1,56         1,04           1,49         0.99           1,56         1,04           1,46         1,02           0,15         0,02           10,6         2,1 | $V_{Exp}$ $V_{Exp}$ $V_{Exp}$ $V_{Exp}$ $V_{ACV02}$ $V_{BS'97}$ $V_{EC'92}$ 1,631,021,251,511,041,551,361,031,421,200.991,131.490.991.161,561,041,151,461,021,270,150,020,1710,62,113,5 | $V_{Exp}$ $V_{Exp}$ $V_{Exp}$ $V_{Exp}$ $V_{Exp}$ $V_{ACV02}$ $V_{BS'97}$ $V_{EC'92}$ $V_{EC 01}$ 1,631,021,251,241,511,041,551,211,361,031,421,251,200.991,131,231,490.991,161,191,561,041,151,241,461,021,271,230,150,020,170,0210,62,113,51,9 | $V_{Exp}$ $V_{Exp}$ $V_{Exp}$ $V_{Exp}$ $V_{Exp}$ $V_{Exp}$ $V_{ACV02}$ $V_{BS'97}$ $V_{EC'92}$ $V_{EC 01}$ $V_{HB'87}$ 1,631,021.251,241,021,511,041,551,211,001,361,031.421.250.931,200.991,131.230,871.490.991.161.190.921,561,041,151.241.041,461,021,271,230,960,150,020,170,020,0710,62,113,51,96,9 | $V_{Exp}$ $V_{Exp}$ $V_{Exp}$ $V_{Exp}$ $V_{Exp}$ $V_{Exp}$ $V_{Exp}$ $V_{ACV02}$ $V_{BS'97}$ $V_{EC'92}$ $V_{EC 01}$ $V_{HB'87}$ $V_{NB1'03}$ 1,631,021,251,241,021.061,511,041,551,211,001,181,361,031,421.250.931,201,200.991,131.230,871,151.490.991,161.190.921.201,561,041,151,241,041,161,461,021,271,230,961,160,150,020,170,020,070,0510,62,113,51,96,94,4 |

Tabela 6.18 – Comparação dos resultados experimentais com os estimados pelas normas de projeto para as lajes da Série 3



Figura 6.21 – Estimativas das normas de projeto para as lajes da Série 3

### 6.4.2 – ANÁLISE DO MÉTODO DE ROLL et al. (1971)

#### 6.4.2.1 – LAJES DA PRESENTE PESQUISA

A Tab. 6.19 apresenta uma comparação dos resultados experimentais com os estimados pela expressão de ROLL et *al.* (1971) para as lajes da Série 3, em função da resistência à flexão das lajes ( $V_{flex}$ ). As figs. 6.22 e 6.23 mostram a comparação dos resultados experimentais com a tendência dos resultados fornecidos pelo método de ROLL et *al.* (1971).

Observa-se que as cargas de ruptura experimentais foram superiores às estimadas pela expressão de ROLL et *al.* (1971) entre 21 e 74%. Como esperado, a considerável diferença entre os valores ocorreu devido à existência de armadura de cisalhamento nas lajes, que foram calculadas pela expressão de ROLL et *al.* (1971), que estima apenas a contribuição do concreto.

| Laje                        | $V_{flex}$ bd<br>raiz( $f_c$ ) | $V_{Exp}$ bd<br>raiz( $f_c$ ) | V <sub>ROLL</sub> bd<br>raiz(f <sub>0</sub> ) | V Exp V flex | V ROLL 'V flex | V <sub>Exp</sub> V <sub>ROLL</sub> |  |  |  |  |  |
|-----------------------------|--------------------------------|-------------------------------|-----------------------------------------------|--------------|----------------|------------------------------------|--|--|--|--|--|
| L45_AC1                     | 9,3                            | 9,8                           | 6,0                                           | 1,06         | 0,65           | 1,62                               |  |  |  |  |  |
| L45FFD_AC2                  | 11.8                           | 12,1                          | 7,0                                           | 1,03         | 0,59           | 1.74                               |  |  |  |  |  |
| L45FFD_AC3                  | 12,3                           | 10,9                          | 7,1                                           | 0,89         | 0,58           | 1,53                               |  |  |  |  |  |
| L45FFD AC4                  | 11.9                           | 8,8                           | 7,0                                           | 0,74         | 0,59           | 1,26                               |  |  |  |  |  |
| L45FFD_AC5                  | 12,2                           | 8,6                           | 7,1                                           | 0,70         | 0,58           | 1.21                               |  |  |  |  |  |
| L45_AC5                     | 9,1                            | 8,3                           | 6,0                                           | 0,92         | 0,66           | 1.40                               |  |  |  |  |  |
|                             |                                | MÉD                           | IA                                            |              |                | 1,46                               |  |  |  |  |  |
|                             | DESVIO PADRÃO                  |                               |                                               |              |                |                                    |  |  |  |  |  |
| COEFICIENTE DE VARIAÇÃO (%) |                                |                               |                                               |              |                |                                    |  |  |  |  |  |

Tabela 6.19 - Estimativas do método de ROLL et al. (1971) para as lajes da Série 3



Figura 6.22 – Comparação dos resultados experimentais com a tendência das estimativas do método de ROLL et *al.* (1971) para as lajes da Série 3 – Curvas  $V / bd \sqrt{f'_c} \propto V_{flex} / bd \sqrt{f'_c}$ 



Figura 6.23 – Comparação dos resultados experimentais com a tendência das estimativas do método de ROLL et *al.* (1971) para as lajes da Série 3 – Curvas  $V/V_{flex} \propto V_{flex}/bd\sqrt{f'_e}$ 

#### 6.4.2.2 – LAJES DA PRESENTE PESQUISA E DA LITERATURA

A Tab. 6 20 apresenta as estimativas mostradas na Tab. 6.19 juntamente com as previsões do método de ROLL et *al.* (1971) para as lajes com armadura de cisalhamento da literatura, e as figs. 6.24 e 6.25 apresentam uma comparação dos resultados experimentais com a tendência das estimativas do método de ROLL et *al.* (1971).

Novamente, observa-se que os resultados experimentais foram superiores aos estimados pela equação de ROLL et *al.* (1971), sendo que a relação  $V_{Exp}$ ,  $V_{ROIL}$  variou entre 1,21 e 2,46, com uma média de 1,77, desvio padrão de 0,32 e coeficiente de variação de 18,2%

| Autor | Laje    | V <sub>flex</sub> /bd<br>raiz(f <sup>°</sup> c) | V <sub>Exp</sub> /bd<br>raiz(f <sub>c</sub> ) | V <sub>ROLL</sub> bd<br>raiz(f <sub>c</sub> ) | V <sub>Exp</sub><br>V <sub>flex</sub> | V <sub>ROLL</sub> '<br>V <sub>Ilex</sub> | V <sub>Exp</sub><br>V <sub>ROLI</sub> |
|-------|---------|-------------------------------------------------|-----------------------------------------------|-----------------------------------------------|---------------------------------------|------------------------------------------|---------------------------------------|
|       | 16      | 15,5                                            | 18,7                                          | 8,1                                           | 1,21                                  | 0,52                                     | 2,30                                  |
| 5(4   | 17      | 17,6                                            | 18,1                                          | 8,8                                           | 1,03                                  | 0,50                                     | 2,06                                  |
| 51)   | 18      | 18,0                                            | 16,8                                          | 8,9                                           | 0,93                                  | 0.49                                     | 1,89                                  |
| IDI   | 19      | 20,6                                            | 19,6                                          | 9,6                                           | 0,95                                  | 0,47                                     | 2,04                                  |
| DR    | 20      | 29,6                                            | 23,6                                          | 12.0                                          | 0,80                                  | 0,41                                     | 1.97                                  |
| AN    | 21      | 20,7                                            | 17,5                                          | 9,6                                           | 0.84                                  | 0,47                                     | 1,81                                  |
| S.    | 22      | 21,0                                            | 16.7                                          | 9,7                                           | 0.80                                  | 0,46                                     | 1.72                                  |
| MEG   | 24      | 29,5                                            | 26,1                                          | 12,0                                          | 0,88                                  | 0,41                                     | 2,18                                  |
| GOI   | 25      | 29.6                                            | 26.9                                          | 12.0                                          | 0.91                                  | 0.41                                     | 2.24                                  |
| -     | 26      | 30,4                                            | 26,9                                          | 12.2                                          | 0,88                                  | 0,40                                     | 2,20                                  |
|       | 3       | 12,3                                            | 10,0                                          | 7,1                                           | 0,81                                  | 0,58                                     | 1,40                                  |
| 199)  | 4       | 19.8                                            | 14.7                                          | 9.4                                           | 0,75                                  | 0.47                                     | 1,57                                  |
| (19   | 5       | 18,2                                            | 13,9                                          | 8,9                                           | 0,76                                  | 0,49                                     | 1,56                                  |
| -     | 8       | 31,7                                            | 16,6                                          | 12,5                                          | 0,52                                  | 0,40                                     | 1,32                                  |
| D     | PSSCHI  | 9,8                                             | 10,7                                          | 6,2                                           | 1,09                                  | 0,64                                     | 1,71                                  |
| (11)  | PSSCH2  | 10,3                                            | 10,0                                          | 6,4                                           | 0,97                                  | 0,62                                     | 1,55                                  |
| (20)  | PSSCH3  | 19,4                                            | 16,7                                          | 9.3                                           | 0,86                                  | 0.48                                     | 1,80                                  |
| 0     | PSSCH4a | 15,7                                            | 14,5                                          | 8,2                                           | 0,92                                  | 0,52                                     | 1.77                                  |

Tabela 6 20 – Estimativas do método de ROLL et *al.* (1971) para as lajes da Série 3 e da literatura

| Autor | Laje       | V <sub>flex</sub> /bd<br>raiz(f <sup>*</sup> c) | V <sub>Ixp</sub> /bd<br>raiz(f <sup>e</sup> c) | V <sub>ROLL</sub> /hd<br>raiz(f <sup>°</sup> c) | $V_{Exp}/V_{flex}$ | V <sub>ROLI</sub> ./<br>V <sub>flex</sub> | V Esp |
|-------|------------|-------------------------------------------------|------------------------------------------------|-------------------------------------------------|--------------------|-------------------------------------------|-------|
| -     | L7         | 25.5                                            | 26.8                                           | 10.9                                            | 1,05               | 0,43                                      | 2,46  |
| 5003  | L8         | 12,7                                            | 14,4                                           | 7,2                                             | 1,13               | 0,57                                      | 1,98  |
| V (S  | L9         | 8,4                                             | 9,5                                            | 5,7                                             | 1,13               | 0,68                                      | 1,67  |
| ILV   | L10        | 29,6                                            | 23,0                                           | 12,0                                            | 0,77               | 0,41                                      | 1,91  |
| \$    | LH         | 14.7                                            | 12,2                                           | 7,9                                             | 0,83               | 0,54                                      | 1,55  |
|       | L45_AC1    | 9,3                                             | 9,8                                            | 6,0                                             | 1,06               | 0,65                                      | 1,62  |
|       | L45FFD AC2 | 11.8                                            | 12.1                                           | 7,0                                             | 1.03               | 0,59                                      | 1.74  |
| (11)  | L45FFD AC3 | 12,3                                            | 10.9                                           | 7,1                                             | 0,89               | 0,58                                      | 1,53  |
| EP.   | L45FFD AC4 | 11.9                                            | 8,8                                            | 7.0                                             | 0,74               | 0,59                                      | 1,26  |
|       | L45FFD AC5 | 12.2                                            | 8,6                                            | 7.1                                             | 0,70               | 0.58                                      | 1.21  |
|       | L45_AC5    | 9.1                                             | 8,3                                            | 6,0                                             | 0,92               | 0.66                                      | 1,40  |
|       |            | M                                               | ÉDIA                                           |                                                 | _                  |                                           | 1,77  |
|       |            | DESVIC                                          | PADRÃC                                         | )                                               |                    |                                           | 0,32  |
|       | COEF       | ICIENTE I                                       | DE VARIA                                       | ÇÃO (%)                                         |                    |                                           | 18,2  |

Tabela 6.20 – Estimativas do método de ROLL et *al.* (1971) para as lajes da Série 3 e da literatura (continuação)



Figura 6.24– Comparação dos resultados experimentais com a tendência das estimativas do método de ROLL et *al.* (1971) para as lajes da Série 3 e da literatura – Curvas  $V / bd \sqrt{f'_c} \propto$ 

V Nex / bd Vf'c



Figura 6.25 – Comparação dos resultados experimentais com a tendência das estimativas do método de ROLL et *al.* (1971) para as lajes da Série 3 e da literatura Curvas *VV*<sub>flex</sub> x

 $V_{flex}$  bd  $\sqrt{f'_{L}}$ 

# 6.4.2.3 – DETERMINAÇÃO DA INFLUÊNCIA DA PARCELA DE ARMADURA DE CISALHAMENTO NO CÁLCULO DA RESISTÊNCIA À PUNÇÃO UTILIZANDO A EXPRESSÃO DE ROLL et al. (1971)

As equações propostas por ROLL et *al.* (1971) basearam-se em ensaios realizados com lajes cuja principal variável foi o furo (tamanho, forma, número e localização), não utilizando armadura de cisalhamento nas lajes.

Os perímetros de controle calculados externamente à região de armadura de cisalhamento, para as lajes que apresentaram a superficie de ruptura localizada externa à armadura (lajes do Grupo 3, de SILVA (2003), e algumas de GOMES & ANDRADE (1995)), mostraram que a equação de ROLL et *al.* não é adequada para estimar cargas de ruptura associadas com superficie de ruptura externa.

Para as lajes que apresentaram superficie de ruptura cruzando a armadura de cisalhamento, fez-se, inicialmente, uma normalização das cargas de ruptura estimadas pela equação de

ROLL et *al.* (1971), referentes à contribuição do concreto, baseando-se no valor médio de  $V_{Exp}/V_{calc}$  igual a 1.30 ( $V_{calc}/V_{Exp} = 0.77$ ), obtido dos resultados das lajes da Série 2.

A diferença entre a carga experimental e a parcela referente à contribuição da armadura de cisalhamento, calculada tomando-se como número de camadas o valor de  $1.5 d/s_r$ , assim como algumas normas de projeto, forneceu a provável contribuição do concreto em lajes com tal armadura.

A relação entre a parcela referente à contribuição do concreto, em lajes com armadura de cisalhamento, e a do concreto, em lajes sem a armadura, foi obtido para cada uma das lajes que tiveram superficie de ruptura cruzando a região armada.

A Tab. 6.21 apresenta as cargas de ruptura estimadas pela equação de ROLL et *al.* ( $V_{ROLL}$ ) e suas correspondentes após a normalização ( $V_{ROLL}$ ), a parcela referente à armadura de cisalhamento distribuída em  $1.5 d/s_r$  camadas ( $V_s$ ), a parcela do concreto quando da existência da armadura ( $V_c$ ), e. por fim. o coeficiente que relaciona a  $V_c$  (laje com armadura de cisalhamento) e  $V_{ROLL}$  (laje sem armadura de cisalhamento).

Observa-se que a contribuição do concreto na resistência à punção é reduzida quando existe armadura de cisalhamento, em relação a sua parcela em lajes sem a armadura, em 12%, em média, com desvio padrão e coeficiente de variação, iguais a, respectivamente, 0.14 e 16.2%.

| Autor      | Laje | V <sub>ROLL</sub><br>(kN) | V <sub>ROLL</sub><br>(kN) | V <sub>Exp</sub> (kN) | $V_s$ (kN) | $V_c$ (kN) | V <sub>c</sub> /<br>V <sub>ROLL</sub> |
|------------|------|---------------------------|---------------------------|-----------------------|------------|------------|---------------------------------------|
| 王王         | I.21 | 495                       | 643                       | 896                   | 374        | 522        | 0.81                                  |
| NC 200     | L22  | 484                       | 629                       | 832                   | 209        | 623        | 0.99                                  |
| C Al GG    | L25  | 402                       | 522                       | 900                   | 565        | 335        | 0.64                                  |
| 7 -        | L3   | 370                       | 480                       | 516                   | 131        | 385        | 0.80                                  |
| [A]<br>(66 | L.4  | 303                       | 394                       | 476                   | 126        | 350        | 0.89                                  |
| FC<br>19   | L5   | 318                       | 413                       | 496                   | 71         | 425        | 1,03                                  |
| ~ ~        | L8   | 254                       | 330                       | 336                   | -          | 336        | 1,02                                  |
|            |      |                           | MEDIA                     |                       |            |            | 0,88                                  |
|            |      | DES                       | <b>VIO PADE</b>           | RAO                   |            |            | 0,14                                  |
|            | C    | DEFICIEN                  | FE DE VAI                 | RIAÇÃO (%             | )          |            | 16,2                                  |

Tabela 6.21 – Resultados das estimativas para armadura e concreto das lajes com armadura de cisalhamento, utilizando a equação de ROLL et *al.* (1971)

### 6.4.3 – COMPARAÇÃO DAS ESTIMATIVAS DA NB1 (2003) COM AS DA PROPOSTA PARA A NORMA BRASILEIRA

A Tab. 6.22 apresenta uma comparação das estimativas da norma NB1 (2003) com as fornecidas pela proposta para a norma para as lajes da Série 3 e da literatura, e os valores médios para a relação  $V_{Exp}V_{calc}$ , desvio padrão e coeficiente de variação.

Para as lajes de GOMES & ANDRADE (1995), a proposta do Handbook para a NB1 (2003) estimou resultados mais conservadores que a norma para a relação  $V_{Exp}$ ,  $V_{calc}$ , para todas as lajes com furos.

A proposta do Handbook para a NB1 (2003) para o cálculo do perimetro efetivo de controle, através da desconsideração dos trechos compreendidos entre linhas de projeção que partem do vértice do pilar e tangenciam os furos circulares, forneceu valores inferiores para o perímetro efetivo de controle, que os obtidos da norma, e conseqüentemente, menores cargas de ruptura estimadas.

A localização dos furos, próximos aos vértices do pilar tende a fornecer resultados menores para o perimetro, quando se usam linhas partindo do vértice do pilar, ao invés do centro deste.

Para a laje 3 (sem furo) de REGAN (1999), a estimativa da NB1 (2003) foi semelhante à da proposta para a norma, como esperado. Para as lajes com furos, a proposta melhorou os resultados pois, nestes casos, o perímetro de controle efetivo foi obtido a partir de linhas de projeção paralelas às face do furo, obtendo-se um valor maior para este, em relação ao da norma, e conseqüentemente, cargas de ruptura estimadas mais próximas das experimentais.

A NB1 (2003) forneceu estimativas para  $V_{Exp}$   $V_{calc}$  entre 1,22 e 1,81, enquanto que a proposta do Handbook para a NB1 (2003), entre 1,12 e 1,26.

Para a laje PSSCH4a de IOANNOU (2001), a relação  $V_{Exp} V_{calc}$  obtida através da NB1 (2003) foi de 1,21, enquanto que, da proposta do Handbook para a norma, foi de 0,92.

Para as lajes PSSCH2 e PSSCH3, ocorreu o inverso. Observa-se nas configurações dos furos das lajes PSSCH2 e PSSCH3 e das lajes de GOMES & ANDRADE (1995) (furos afastados do pilar) que os resultados apresentaram tendências semelhantes de terem o valor de  $V_{calc}$  diminuído com a utilização da proposta do Handbook, pois ocorreu redução do perímetro efetivo de controle.

As lajes sem furos ensaiadas por SILVA (2003) apresentaram as estimativas da NB1 (2003) semelhantes às da proposta do Handbook para a norma. Para as lajes com furos posicionados adjacentes ao pilar, as cargas de ruptura estimadas pela proposta foram superiores às da NB1 (2003), e conseqüentemente, as relações  $V_{Exp}/V_{calc}$  foram menores (1,00 para L10 e 1.07 para L11), como mostra a Tab. 6.22.

Para as lajes da Série 3. o comportamento das estimativas da norma e da proposta foi semelhante ao ocorrido com as lajes de SILVA (2003), ou seja, as estimativas da proposta para a relação  $V_{Exp}/V_{calc}$  foram inferiores às da norma.

Observa-se na Tab. 6.22 que o ACI (2002) apresentou o maior valor para a estimativa média de  $V_{Exp}/V_{calc}$  (1.92). e os maiores valores para desvio padrão (0.57) e coeficiente de variação (29,7%), seguido do EC2 (2001), que forneceu uma relação média de  $V_{Exp}/V_{calc}$  igual a 1,35, desvio padrão de 0,27 e coeficiente de variação de 20,1%.

Verifica-se que o Handbook, dentre todos os métodos de cálculo analisados, apresentou a melhor estimativa média para a relação  $V_{Exp}/V_{calc}$ , seguido da proposta do Handbook para a NB1 (2003), que teve valor médio de  $V_{Exp}/V_{calc}$  igual a 1,11, desvio padrão de 0,14 e coeficiente de variação de 12,3%.

As figs. 6.26 a 6.30 mostram uma comparação das estimativas da norma NB1 (2003) com as da proposta para esta norma, respectivamente, para as lajes de GOMES & ANDRADE (1995), REGAN (1999), IOANNOU (2001), SILVA (2003) e da Série 3.

| A          | 1 - 1 -      |         |       |        | V Pap /V | alc   |        |          |
|------------|--------------|---------|-------|--------|----------|-------|--------|----------|
| Autor      | Laje         | .4CI'02 | BS:97 | EC2/92 | EC2/01   | HB/87 | NB1 03 | PROPOSTA |
|            | 16           | 2,38    | 1,10  | 1,31   | 1.43     | 1.10  | 1.20   | 1.19     |
| 6          | 17           | 2,14    | 1.04  | 1,18   | 1,27     | 1,07  | 1.07   | 1.12     |
| 661        | 18           | 1.88    | 1,04  | 1.02   | 1.13     | 1,08  | 1,06   | 1,17     |
| DE (       | 19           | 1,92    | 1,04  | 1,04   | 1,15     | 1,07  | 1,08   | 1,17     |
| DRA        | 20           | 1.19    | 1.25  | 1,34   | 0.99     | 1.29  | 0.97   | 1,02     |
| AN         | 21           | 1,60    | 1.32  | 1.42   | 1,24     | 1.37  | 1.22   | 1,26     |
| Sa         | 22           | 2,08    | 1.44  | 1.29   | 1.52     | 1,51  | 1.47   | 1,54     |
| OME        | 24           | 1,93    | 1,05  | 1,04   | 1,13     | 1.09  | 1.06   | 1,16     |
| Ğ          | 25           | 1.37    | 1,43  | 1.53   | 1.13     | 1,48  | 1,11   | 1,17     |
|            | 26           | 1.47    | 1,04  | 1.20   | 1.13     | 1.07  | 1.05   | 1,11     |
| (66        | 3            | 2.04    | 1.00  | 1,00   | 1.34     | 1.00  | 1.22   | 1.22     |
| (19        | 4            | 2.64    | 1,42  | 1,53   | 1.97     | 1,02  | 1,81   | 1,26     |
| GAN        | 5            | 2,53    | 1,68  | 1,40   | 1,92     | 1,14  | 1,77   | 1,23     |
| RE(        | 8            | 2,97    | 1,82  | 1,38   | 1,86     | 0,94  | 1.70   | 1,12     |
| -          | PSSCHI       | 1,34    | 1,23  | 0,98   | 1.12     | 1,00  | 1,06   | 1.05     |
| 00         | PSSCH2       | 1,23    | 0,93  | 1,06   | 0,96     | 0,90  | 0.92   | 0,94     |
| (20<br>(20 | PSSCH3       | 1,60    | 1,16  | 1,26   | 1,17     | 1,22  | 1,12   | 1,29     |
| ž          | PSSCH4a      | 1,54    | 1,09  | 1,35   | 1,26     | 0,83  | 1,21   | 0,92     |
|            | L7           | 2,59    | 1,00  | 1,17   | 1.48     | 1,00  | 1,05   | 1,05     |
| 5003       | L8           | 2,77    | 1,07  | 1,25   | 1.59     | 1,07  | 1,13   | 1.12     |
| A C        | L9           | 2,76    | 1,06  | 1,24   | 1,58     | 1.06  | 1.12   | 1,12     |
| SILV       | L10          | 2,21    | 1.07  | 1.01   | 1,19     | 0,90  | 1.07   | 1,00     |
|            | LII          | 2.36    | 1,15  | 1,07   | 1.28     | 0,97  | 1,14   | 1,07     |
|            | L45_AC1      | 1.63    | 1.02  | 1.25   | 1.24     | 1,02  | 1,06   | 1.06     |
|            | L45FFD_AC2   | 1.51    | 1,04  | 1,55   | 1,21     | 1,00  | 1,18   | 0.98     |
| E          | L45FFD_AC3   | 1,36    | 1,03  | 1.42   | 1,25     | 0,93  | 1,20   | 1,01     |
| SER        | L45FFD_AC4   | 1,20    | 0.99  | 1,12   | 1,23     | 0,87  | 1,15   | 1,01     |
|            | L45FFD_AC5   | 1,49    | 0,99  | 1,15   | 1,19     | 0,92  | 1,20   | 1,01     |
|            | L45_AC5      | 1.56    | 1,04  | 1,15   | 1,24     | 1.04  | 1,16   | 1,16     |
|            | MEDIA        | 1,92    | 1,16  | 1,24   | 1,35     | 1,04  | 1,22   | 1,11     |
| DES        | VIO PADRÃO   | 0,57    | 0,24  | 0,17   | 0,27     | 0,17  | 0,24   | 0,14     |
| COEF.      | VARIAÇÃO (%) | 29,7    | 20,3  | 14,1   | 20,1     | 16,0  | 19,5   | 12,3     |

Tabela 6.22 – Comparação das estimativas das normas de projeto com as da proposta para a NB1 (2003) para as lajes da Série 3 e da literatura



Figura 6.26 – Comparação das estimativas da NB1 (2003) com as da proposta para a norma para as lajes com armadura de cisalhamento de GOMES & ANDRADE (1995)



Figura 6.27 – Comparação das estimativas da NB1 (2003) com as da proposta para a norma para as lajes com armadura de cisalhamento de REGAN (1999)



Figura 6.28 – Comparação das estimativas da NB1 (2003) com as da proposta para a norma para as lajes com armadura de cisalhamento de IOANNOU (2001)



Figura 6.29 – Comparação das estimativas da NB1 (2003) com as da proposta para a norma para as lajes com armadura de cisalhamento de SILVA (2003)



Figura 6.30 – Comparação das estimativas da NB1 (2003) com as da proposta para a norma para as lajes da Série 3

### **CAPÍTULO 7**

### **CONCLUSÕES E SUGESTÕES**

#### 7.1 – CONCLUSÕES

As dimensões das lajes e as variáveis utilizadas na pesquisa (furos, seção do pilar, armadura de cisalhamento, relações  $c_{máx'}c_{min}$  e  $c_{máx'}d$ ), definidas em função da utilização prática, de pesquisas anteriores e das condições disponíveis no laboratório, foram consideradas satisfatórias para o estudo do puncionamento das lajes com pilares com relação das dimensões da seção transversal retangular ( $c_{máx'}c_{min}$ ) de até 4 e furos com dimensões da mesma ordem de grandeza do pilar.

O aumento da relação  $c_{max} c_{mun}$  e a utilização de armadura de cisalhamento, na forma estudada na pesquisa, conduziram a cargas últimas mais próximas das correspondentes à ruptura por flexão das lajes.

A disposição das placas de aço utilizadas para a simulação de variação da seção dos pilares estudados apresentou desempenho satisfatório, pois, permitiu um espraiamento uniforme da carga aplicada sobre a superficie inferior da laje, além de ter evitado uma eventual flexão das chapas.

A inclusão do parâmetro que relaciona a dimensão do pilar e a altura útil da laje ( $c_{max}/d$ ) nas expressões de cálculo da resistência à punção das normas ACI (2002) e CEB (1991) permitiu que as estimativas das normas se aproximassem dos resultados experimentais das lajes

A proposta, para a NB1 (2003), de calculo do perímetro efetivo de controle de lajes com furos próximos ao pilar, utilizando o método recomendado pelo Handbook to BS8110 (1987) se mostrou como uma possível alternativa para estimar a resistência ultima de lajes sob punção.

#### 7.1.1 – LAJES COM PILARES RETANGULARES (SÉRIE 1)

#### 7.1.1.1 – DESLOCAMENTOS VERTICAIS

Os deslocamentos das lajes apresentaram uma distribuição linear nas direções x e y. Os maiores valores foram registrados nos pontos mais próximos da área carregada, sendo que os pontos próximos à menor dimensão do pilar se deslocaram mais que os próximos à maior dimensão. Isto significa menor deformação da laje em relação ao centro do pilar, uma vez que no ensaio o pilar é que se move (e o centro do pilar tem o maior deslocamento medido), enquanto que as bordas da laje permanecem fixas, a menos do deslocamento devido à deformação dos tirantes de fixação.

### 7.1.1.2 – DEFORMAÇÕES DA ARMADURA DE FLEXÃO

As barras da armadura de flexão mais solicitadas à tração, com as maiores deformações, foram, na maioria dos casos, aquelas dispostas na direção perpendicular à maior dimensão do pilar, que, em algumas lajes, atingiram o escoamento sob cargas proximas a ruptura por punção. Isto indica que os maiores esforços de flexão ocorreram nessa direção (x), na região delimitada pelo pilar.

#### 7.1.1.3 – FISSURAÇÃO

As primeiras fissuras a surgir nas lajes foram as radiais, seguidas pelas tangenciais em níveis maiores de carregamento.

#### 7.1.1.4 - MODOS, CARGAS E SUPERFICIES DE RUPTURA

Todas as lajes com pilares de seção retangular romperam por punção O aumento da relação  $c_{max} c_{min}$  do pilar conduziu ao aumento da carga de ruptura das lajes, em níveis inferiores à resistência à flexão das lajes, calculada pela teoria das linhas de ruptura. No entanto, a taxa de crescimento da carga de ruptura não ocorreu na mesma proporção do acréscimo da relação

 $c_{max}/c_{min}$  ( $c_{min}$  constante). As superficies de ruptura observadas nos ensaios apresentaram uma inclinação entre 20 e 35 graus em relação ao plano médio da laje, como mostra REGAN & BRAESTRUP (1985).

# 7.1.1.5 – NORMAS DE PROJETO E MÉTODOS DE CÁLCULO DE PESQUISADORES

Com relação à influência da geometria do pilar, as normas que apresentam considerações específicas sobre o assunto. ACI (2002), EC2 (1992) e NBI (1978), forneceram as estimativas mais conservadoras para as cargas de ruptura por punção, com maiores valores para desvio padrão e coeficiente de variação.

Melhores estimativas foram fornecidas pelo CEB (1991) e NB1 (2003), com média de 0,99, desvio padrao de 0,11 e coeficiente de variação de 10,6%. As estimativas de OLIVEIRA (2003), com a inclusão do fator ( $c_{max}$ 'd) tendeu a fornecer resultados levemente mais conservadores que a NB1 e CEB.

# 7.1.1.6 – PROPOSTA DE CONSIDERAÇÃO DO PARÂMETRO $(c_{max}/d)$

A proposta de inclusão do fator  $c_{max}/d$  nas expressões de cálculo da resistência à punção das normas do ACI (2002) e CEB (1991) conduziu a melhores estimativas, com menor desvio padrão e coeficiente de variação, e a favor da segurança.

As normas do ACI (2002) c CEB (1991) forneceram valores médios para a relação  $V_{Exp}/V_{calc}$  iguais a, respectivamente, 1,43 e 0.99, enquanto que as propostas correspondentes às normas, 1.12 e 1,04. As expressões das normas do ACI (2002) e CEB (1991), juntamente com os latores propostos, são apresentadas abaixo.

$$V_{prop\_CEB} = 0.18 \left( 0.95 \left( \frac{c_{max}}{d} \right)^{0.038} \right) \left( 1 + \sqrt{\frac{200}{d}} \right) (100 \rho f_c)^{l} \overline{3} u d$$

$$V_{prop\_ACI} = \frac{0.5}{(c_{max}/d)^{0.1756}} \sqrt{f_c} b_0 d$$

#### 7.1.2-LAJES COM FUROS E/OU ARMADURA DE CISALHAMENTO (SÉRIE 2 E 3)

#### 7.1.2.1 – ARMADURA DE FLEXÃO

A utilização de barras adicionais de armadura de flexão na região em torno dos furos, como utilizado nesta pesquisa, não provocou acréscimo na resistência ao puncionamento das lajes. Os grampos utilizados como ancoragem da armadura principal de flexão, que foi interceptada pelos furos, não alteraram as cargas de ruptura das lajes com furos.

#### 7.1.2.2 – ARMADURA DE CISALHAMENTO

A armadura de cisalhamento constituída de "studs", que são conectores do tipo pino com chapas de aço nas extremidades, com a função de garantir a ancoragem na armadura de flexão, apresentou um adequado desempenho, com a armadura de cisalhamento sendo ancorada externamente às barras superior e inferior da armadura de flexão.

#### 7.1.2.3 – DESLOCAMENTOS VERTICAIS

A presença e o aumento no número de furos nas lajes conduziu ao aumento dos deslocamentos verticais das lajes em relação à laje monolítica.

As barras adicionais da armadura de flexão na região próxima ao furo reduziram os deslocamentos verticais das lajes, em relação às lajes sem tal armadura, permitindo que lajes com furos apresentassem deslocamentos semelhantes aos de lajes monolíticas.

A utilização de armadura de cisalhamento nas lajes permitiu uma redução dos deslocamentos verticais, para níveis de carga correspondentes. As lajes com armadura de cisalhamento

apresentaram maior ductilidade antes da ruptura, diferentemente das lajes sem tal armadura, independente da presença de furos.

#### 7.1.2.4 – DEFORMAÇÕES DA ARMADURA DE FLEXÃO

As barras da armadura de flexão descontínuas (que foram interceptadas pelos furos) das lajes da Série 2, praticamente não foram solicitadas. Os pontos instrumentados das armaduras que registraram as maiores deformações foram aqueles localizados próximos à ligação laje-pilar.

A presença de barras adicionais na armadura de flexão na região dos furos das lajes da Série 2, apenas na direção paralela à menor dimensão do pilar (direção x), permitiu que as deformações medidas em cada uma destas barras reduzissem, quando comparadas com as lajes sem barras adicionais.

Apenas algumas barras dispostas na direção x (próximo ao centro da laje), na laje L45FFS\_CG, entraram em escoamento sob carga próxima da ruptura (punção).

#### 7.1.2.5 – DEFORMAÇÕES DA ARMADURA DE CISALHAMENTO

Com exceção das lajes L45FFD\_AC5 e L45\_AC5, com furos e armadura de cisalhamento, todas as demais lajes não apresentaram elementos da armadura de cisalhamento em processo de escoamento.

Os elementos da armadura de cisalhamento situados mais próximos aos furos foram tão solicitados quanto àqueles posicionados próximos ao meio do pilar. Na maioria dos casos, as maiores deformações foram registradas nos elementos das últimas camadas, uma vez que as superfícies de ruptura de todas as lajes com armadura de cisalhamento se desenvolveram externamente à região armada.

#### 7.1.2.6 – FISSURAÇÃO

As primeiras fissuras a surgir nas lajes com furos e/ou armadura de cisalhamento foram as radiais, seguidas pelas tangenciais em níveis maiores de carregamento. Nas lajes com furos, as fissuras radiais surgiram inicialmente nos vértices dos furos e se desenvolveram em direção às bordas da laje.

As fissuras circunferenciais foram observadas nas faces internas dos furos com carregamento superior ao registrado no bordo tracionado da laje. As fissuras observadas nas faces dos furos se desenvolveram com o carregamento até se tornarem, na maioria dos casos, na própria superficie de ruptura.

#### 7.1.2.7 – MODOS, CARGAS E SUPERFÍCIES DE RUPTURA

Todas as lajes com furos e/ou armadura de cisalhamento romperam por punção. Nas lajes sem armadura de cisalhamento a ruptura ocorreu de forma brusca e repentina, enquanto que, nas lajes com armadura de cisalhamento a ruptura se desenvolveu com algum aviso prévio.

A presença de furos adjacentes ao pilar reduziu a carga de ruptura das lajes rompendo por punção em até 24% (lajes L45\_AC5 e L45FFD\_AC5).

A utilização de armadura de cisalhamento nas lajes sem furos conduziu a um aumento de até 48% na carga de ruptura (lajes L45 e L45\_AC1), chegando a atingir níveis próximos da resistência à flexão. Nas lajes com furos, a armadura de cisalhamento elevou a carga de ruptura em até 80% (lajes L45FFD e L45FFD\_AC2).

O uso de armadura de cisalhamento, nas lajes com furos, permitiu à laje alcançar resistência à punção, no minimo, igual à da laje similar monolítica (lajes L45 e L45FFD\_AC5).

Devido à existência de furos adjacentes ao pilar, as superficies de ruptura das lajes com furos e sem armadura de cisalhamento se desenvolveram de forma diferente daquelas registradas nas lajes monolíticas, com inclinações, em relação ao plano da laje, entre 15 e 60 graus. No caso das lajes com armadura de cisalhamento, embora tenha ocorrido fissuras secundárias cruzando os elementos da armadura, como visualizado nas fotografias, a superficie de ruptura ocorreu externamente à região com armadura de cisalhamento, apresentando inclinações que variaram entre 15 e 30 graus.

# 7.1.2.8 – NORMAS DE PROJETO E MÉTODOS DE CÁLCULO DE PESQUISADORES

As normas que consideram a influência de furos no cálculo da resistência à punção, através da redução do perímetro de controle, com linhas de projeção radial que partem do centro do pilar e tangenciam o furo (ACI (2002), BS8110 (1997), EC2 (1992), EC2 (2001), e NB1 (2003)), apresentaram resultados mais a favor da segurança em relação às demais normas de projeto e métodos de cálculo, para as lajes das séries 2 e 3.

O Handbook to BS8110 (1987), que sugere que o perímetro de controle seja calculado tomando-se linhas de projeção paralelas às faces do furo, forneceu as melhores estimativas, juntamente com o método de cálculo proposto por ROLL et *al.* (1971), com os menores valores para o desvio padrão e coeficiente de variação, para as lajes da Série 2. Para as lajes do Série 3. o Handbook to BS8110 (1987) forneceu estimativas de carga e mecanismos de ruptura contra a segurança para a maioria das lajes.

As normas NB1 (2003) c EC2 (2001) foram conservadoras apenas nas estimativas das cargas de ruptura das lajes da Série 3. pois previram corretamente os mecanismos de ruptura, enquanto que a BS8110 (1997) foi a que apresentou as melhores estimativas, tanto para cargas quanto para mecanismos de ruptura.

# 7.1.2.9 – PROPOSTA DE CÁLCULO DO PERÍMETRO EFETIVO DE CONTROLE PARA A NB1 (2003)

A proposta de calcular o perímetro de controle de acordo com o Handbook (1987) utilizando as expressões da norma brasileira NB1 (2003), conforme a Fig. 7.1, forneceu melhores estimativas que as duas referidas normas de projeto, além de ter estimado, para as lajes com armadura de cisalhamento, mecanismos de ruptura coincidentes com os experimentais:



Figura 7.1 - Perímetro efetivo de controle proposto para a NB1 (2003)

#### 7.2 – SUGESTÕES PARA TRABALHOS FUTUROS

Ensaiar mais lajes com furos e armadura de cisalhamento, mas com essa armadura dimensionada para que a superficie de ruptura cruze a armadura, e esse mecanismo de ruptura possa ser mais bem estudado. Estudar novas distribuições da armadura de cisalhamento na região dos furos, especialmente em torno do pilar.

Investigar o comportamento de lajes cogumelo com furos e pilares situados nos bordos ou cantos dessas lajes.

Estudar o efeito da relação entre as dimensões do pilar de seção retangular, mantendo constante o perimetro do pilar, para se ter menor variação do nivel de tensões no pilar e no entorno.

Na realização de ensaios experimentais, sugere-se utilizar pilaretes monoliticamente ligados às lajes, evitando as placas de aço. Assim, o ensaio pode retratar com mais fidelidade a situação real de uma estrutura, embora não reduza o elevado nível de tensões atuantes nas extremidades do pilar

Estudar modelos eficientes de cálculo dos deslocamentos das lajes cogumelo, monolíticas ou não, de modo que os resultados previstos se aproximem dos experimentais.

# **REFERÊNCIAS BIBLIOGRÁFICAS**

- ACI Committee 318 (1963). Commentary on Building Code Requirements for Reinforced Concrete (ACI 318 – 63). SP-10, American Concrete Institute, Detroit, 1963, 91 pp.
- ACI Committee 318 (1970). "Proposed Revision of ACI Committee 318-63: Building Code Requirements for Reinforced Concrete". ACI Journal. Proceedings V.67, Nº 2, Feb. 1970, p. 77-186.
- ACI Committee 318 (1989). Building Code Requirements for Reinforced Concrete (ACI 318 89). American Concrete Institute, Detroit. 1989.
- ACI Committee 318 (1995). Building Code Requirements for Reinforced Concrete (ACI 318 95) and Commentary (ACI 318R-95). American Concrete Institute, Farmington Hills. Michigan, 1995, 369 pp.
- ACI Committee 318 (2002). Building Code Requirements for Reinforced Concrete (ACI 318 02) and Commentary (ACI 318R-02). American Concrete Institute, Farmington Hills, Michigan, 2002, 391 pp.
- ACI-ASCE Committee 326 (1962). "Shear and Diagonal Tension, Part 3 Slabs and Footings". ACI Journal, Proceedings V.59, N° 3, Mar. 1962, p. 353-396.
- ACI-ASCE Committee 426 (1974). The shear strength of reinforced concrete membersslabs". Proceedings ASCE, vol. 100 (S18), Aug. 1974, p. 1543-1591.
- AL-YOUSIF, A.T., REGAN, P.E. "Punching resistances of rc slabs supported by large an/or elongated columns" The Structural Engineer, March, 2003, p. 130-134.
- ANDRADE, M.A.S. (1999). "Punção em lajes cogumelo Estudo do posicionamento da armadura de cisalhamento em relação à armadura de flexão". Dissertação de Mestrado. Universidade Federal de Goiás, Goiânia, 1999. 176 pp.
- ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 6118 Projeto e Execução de Obras de Concreto Armado Procedimento. Rio de Janeiro, 1978.
- ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 6118 Projeto de Obras de Concreto Armado Procedimento. Rio de Janeiro, 2003.
- ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS NBR-.8522/84 Concreto Determinação do módulo de deformação estática e diagrama tensão-deformação – Método de ensaio. Rio de Janeiro, 1984.
- ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS NBR-6152/92 Materiais metálicos – Determinação das propriedades mecânicas à tração – Método de ensaio. Rio de Janeiro. 1992.

- ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS NBR-7222/94 Argamassa e concreto Determinação da resistência a tração por compressão diametral de corpos de prova cilíndricos Método de ensaio. Rio de Janeiro, 1994.
- ASSOCIAÇÃO BRASILEIRA DE NORMAS TECNICAS NBR-5739/94 Ensuio de compressão de corpos de prova cilindricos de concreto. Rio de Janeiro, 1994.
- BS8110 (1997). Structural Use of Concrete: Part 1, Code of Practice for Design and Construction. (BS 8110 : Part 1 : 1997), Britsh Standards Institution, London, 1997.
- CEB-FIP MC90 (1991). "CEB-FIP Model Code 1990: Final Draft". Bulletin D'Information 204, Committe Euro-International du Beton, Lousanne, July 1991.
- CEB-FIP Bulletin 2 (1999). "Structural Concrete Textbook on behaviour, design and performance Updated knowledge of the CEB-FIP Model Code 1990". Lausanne, July 1999, 305 pp.
- CEB-FIP Bulletin 12 (2001). "Punching of structural concrete slabs". Lausanne, April 2001, 307 pp.
- DILGER, W., GHALI, A. (1981). "Shear reinforcement for concrete slabs". Proceeding ASCE, vol. 107 (ST12), Dec. 1981, p. 2403-2430.
- DIAZ DE COSSIO, R. (1962) Discussion of "Shear and Diagonal Tension.. Part 3 Slabs and Footings", by ACI-ASCE Committee 326, ACI Journal, Proceedings V.59, n.9, September 1962, p. 1323-1332.
- ELGABRY, A.A., GHALI, A. "Design of stud-shear reinforcement for slabs". ACI Structural Journal, May-June 1990, p.350-361
- EL-SALAKAWY, POLAK, M. A, SOLIMAN, M. H. (1999). "Reinforced Concrete Slab-Column Edge Connections with Openings". ACI Structural Journal, v.96, n.1, January-February 1999, p. 79-87.
- ELSTNER, R.C., HOGNESTAD, E. "Shearing strength of reinforced concrete slabs". Journal of the American Concrete Institute, vol.28, n.1, July 1956.
- EUROCODE 2 (1992). "Design of concrete structures Part1: General Rules and Rules for Buildings". European Prestandard ENV 1992-1-1:1991. Comité Europeen de Normalisation, Brussels, 1992, 253 pp.
- EUROCODE 2 (2001). "Design of concrete structures Part1: General Rules and Rules for Buildings". European Prestandard ENV 2001-1-1:2001. Comité Europeén de Normalisation, Brussels, 2001, 253 pp.
- FORSELL, C., HOLMBERG, A., Stampellast pa platter av betong. Betong, v.31, n.2, 1946, p. 95-123.

- GOMES, R.B. (1991). "Punching Resistance of Reinforced Concrete Flat Slabs with Shear Reinforcement" Ph D. Thesis. The Polytechnic of Central London, London, Oct. 1991, 185 pp.
- GOMES, R.B., ANDRADE, M.A.S (1995). "Punching in Reinforced Concrete Flat Slabs with Holes. In: Proceedings of Developments in Computer Aided Design and Modeling for Structural Engineering. Edinburgh-UK, 1995, p.185-193.
- HALLGREN, M. (1996). "Punching Hear Capacity of Reinforced High Strength Concrete Slabs". Doctoral Thesis, Royal Institute of Technology, Stockholm-Sweden, Nov. 1996, 206 pp.
- HANDBOOK TO BRITISH STANDARD BS8110.1985. "Structural use of concrete". Palladian Publications Ltd, London, 1987.
- HAWKINS, N.M., FALLSEN, H.B., HINOJOSA, R.C. (1971). "Influence of Column Rectangularity on the Behavior of Flat Plate Structures". ACI Publication SP-30: Cracking, Deflection, and Ultimate Load of Concrete Slab Systems, American Concrete Institute, Detroit, Michigan, 1971, p. 126-146.
- HOGNESTAD, E., ELSTNER, R.C., HANSON, J.A. (1964). "Shear strength of reinforced concrete structural lightweight aggregate concrete slabs". ACI Journal, June 1964, p.643-656.
- JOHANSEN, K.W. (1962). "Linhas de Ruptura Teoria e Prática". Traduzido e adaptado do original dinamarquês por Jayme Mason (livre docente da Escola Nacional de Engenharia). Editora Ao Livro Técnico S.A. Rio de Janeiro, 1962.
- IOANNOU, C. (2001). "Behaviour of flat slabs with openings". Ph D. Thesis, University of Sheffield, 2001.
- KINNUNEN, S. (1963). "Punching of concrete slabs with two-way reinforcement, with special reference to dowel effect and deviation of reinforcement from polar symmetry. In: Civil Engineering 6, Transactions of the Royal Institute of Technology, n. 198, Stockholm, 1963.
- KINNUNEN, S., NYLANDER, H. (1960). "Punching of concrete slabs without shear reinforcement". In: Civil Engineering 3, Transactions of the Royal Institute of Technology, n.158, Stockholm, 1960, 112 pp.
- MAC GREGOR, J.G. "Reinforced Concrete Mechanics & Design". 2<sup>a</sup> edition, Prentice Hall, New Jersey, 1992, 848 pp.
- MELO, G.S.S.A. (1990). "Behavior of reinforced concrete flat slabs after local failure". PhD Thesis, The Polytechnic of Central London. London, August 1990, 214 pp.
- MELO, G.S.S.A., COELHO, A.E.G., OLIVEIRA, D.R.C. (2000). "Reinforced concrete flat slabs with inclined stirrups as shear reinforcement". International Workshop on Punching Shear Capacity of RC Slabs, Stockholm, Sweden, 2000, p. 155-162.

- MELO, G.S.S.A.(2000). "Puncionamento, pós-puncionamento e colapso progressivo em lajes cogumelo". IV Simpósio EPUSP sobre Estruturas de Concreto. São Paulo, 2000, 17pp.
- MOE, J. (1961). "Shearing Strength of Reinforced Concrete Slabs and Footings Under Concentrated Loads". Development Department Bulletin D47, Portland Cement Association, Skokie, Apr. 1961, 130 pp.
- MOKHTAR, A.S., GHALI, A., DILGER, W. "Stud shear reinforcement for flat concrete plate". ACI Journal, Sep-Oct 1985, p. 676-683.
- MOWRER, R.D., VANDERBILT, M.D. "Shear strength of lightweight aggregate reinforced concrete flat plates". ACI Journal, November 1967, p. 722-729.
- OLIVEIRA, D.R.C. (1998). "Análise experimental de lajes cogumelo de concreto armado com armadura de cisalhamento ao puncionamento". Dissertação de Mestrado, Universidade de Brasília, Brasília, 1998, 121 pp.
- OLIVEIRA, D.R.C. (2003). "Análise experimental de lajes cogumelo de concreto de alta resistência com pilares retangulares". Tese de Doutorado em Estruturas e Construção Civil. Universidade de Brasília, Brasília, Agosto 2003, 183 pp
- PARK, R. GAMBLE, W. L. (1980). Reinforced Concrete Slabs. John Wiley & Sons Inc., New York 1980, 618 pp.
- REGAN, P.E. (1974) "Design for punching shear". The Structural Engineer, vol.52, n°6, June 1974, p. 197-207.
- REGAN, P.E. (1984). "The Dependence of Punching Resistance upon the Geometry of the Failure Surface". Magazine of Concrete Research, v.36, n.126, March 1984, p. 3-8
- REGAN, P.E. & BRAESTRUP, M.W. (1985). "Punching shear in reinforced concrete: a state of art report".Bulletin D'information 168, Comite Euro International Du Beton, January 1985, 232 pp.
- REGAN, P.E., REZAI-JORABI, H "Shear resistance of one-way slabs under concentrated loads". ACI Structural Journal, March-April 1988, p.150-158.
- REGAN, P.E. (1985). "Shear combs, reinforcement against punching". The Structural Engineer, vol 63B (4), December 1985, p. 76-84.
- REGAN, P.E. (1993). "Punching tests of concrete slabs with riss star shear reinforcement for riss AG" School of Architecture & Engineering, University of Westminster, London, January 1993.
- REGAN, P.E. (1999). "Punching tests of reinforced concrete slabs with and without shear reinforcement with openings adjacent to columns". School of the Built Environment, University of Westminster, London, July 1999, 41 pp.

- ROLL, F., ZAIDI, S.T.H., SABNIS, G.M., CHUANG, K. (1971). "Shear Resistance of Perforated Reinforced Concrete Slabs" SP-30, Crack, Deflection and Ultimate Load of Concrete Slab System, American Concrete Institute, Farmington Hills, Michigan, 1971, p. 77-101.
- SILVA, J.A. "Punção em Lajes Cogumelo: Pilares Retangulares, Furos e Armadura de Cisalhamento". Dissertação de Mestrado em Engenharia Civil. Universidade Federal de Goiás, Goiânia, Julho 2003, 171 pp
- SHEHATA, I.A.M.S. (1985). "Theory of punching in concrete slabs". PhD Thesis, The Polytechnic of Central London, London, 1985, 257 pp.
- TENG, S., KUANG, K. L., CHEONG, H. K. (1999) "Concrete Flat Plate Design Findings of Joint BCA-NTU", R&D Project, 1999, 15 pp.
- TRAUTWEIN, L.M. (2001). "Punção em lajes cogumelo de concreto armado com armadura de cisalhamento tipo "stud" interno e tipo estribo inclinado". Dissertação de mestrado. Universidade de Brasilia, Brasília, 2001, 168 pp.



# A – RESULTADOS DOS ENSAIOS REALIZADOS EM CORPOS DE PROVA CILÍNDRICOS DE CONCRETO

| Tabela A.1 - Resultados | individuais | dos ensaios  | em corpos  | de prova | cilíndricos | de concreto |
|-------------------------|-------------|--------------|------------|----------|-------------|-------------|
|                         | de dime     | ensões 150 r | nm x 300 r | nm       |             |             |

| Laje Idade                        | Resistência à<br>compressão (MPa) |       | Módulo de elasticidade<br>longitudinal (GPa) |       | Resistência à tração<br>diametral (MPa) |       |      |
|-----------------------------------|-----------------------------------|-------|----------------------------------------------|-------|-----------------------------------------|-------|------|
|                                   | Valores<br>individuais            | Média | Valores<br>individuais                       | Média | Valores<br>individuais                  | Média |      |
| 7<br>14<br>L42 16<br>28<br>91     | 7                                 | 32,3  | 32,8                                         | 20,8  | 20,9                                    | 3,5   | 3,6  |
|                                   | /                                 | 33,3  |                                              | 21.0  |                                         | 3,7   |      |
|                                   | 1.1                               | 38,5  | 39,1                                         | 23,0  | 22,9                                    | 3,5   | 3,7  |
|                                   | 14                                | 39,6  |                                              | 22.8  |                                         | 3,8   |      |
|                                   | 16                                | 43,0  | 43,2                                         | 24.0  | 25,1                                    | 4,3   | 4,0  |
|                                   | 10                                | 43,3  |                                              | 26,2  |                                         | 3,6   |      |
|                                   | 20                                | 48.3  | 47.7                                         | 25,2  | 24.7                                    | 4,8   | 4.8  |
|                                   | 28                                | 47,0  |                                              | 24,2  |                                         | -     |      |
|                                   | 01                                | 49,4  |                                              | -     |                                         | -     |      |
|                                   | 53,1                              | 51,3  | -                                            | *     | -                                       |       |      |
| 7<br>17<br>142A<br>28<br>91       | 7                                 | 32,2  | 31,7                                         | 20,6  | 20,2                                    | 3,6   | 3,3  |
|                                   | /                                 | 31.2  |                                              | 19.8  |                                         | 3.0   |      |
|                                   | 17                                | 35,3  | 36,2                                         | 22,0  | 22.2                                    | 3,3   | 3,6  |
|                                   | 17                                | 37,0  |                                              | 22,4  |                                         | 3,9   |      |
|                                   | 20                                | 41.6  | 40.0                                         | 23,7  | 24,3                                    | 3,8   | 3,9  |
|                                   | 28                                | 40,1  | 40,9                                         | 24,8  |                                         | 3,9   |      |
|                                   | 01                                | 46.5  | 48.4                                         | -     | -                                       | -     |      |
|                                   | 31                                | 50,2  |                                              | -     |                                         | -     |      |
| 7<br>14<br>1.45<br>19<br>28<br>91 | 7                                 | 30,6  | 21.2                                         | -     |                                         | 3,3   |      |
|                                   | 31,7                              | 31,2  | -                                            | -     | 3,2                                     | 3.3   |      |
|                                   | 14                                | 38,3  | 20 -                                         | -     |                                         | 3.8   |      |
|                                   | 39,1                              | 38,7  | -                                            | -     | 3,5                                     | 3,7   |      |
|                                   | 10                                | 41,2  | 42,0                                         | -     | 4                                       | 4,3   | 4,3  |
|                                   | 19                                | 42.8  |                                              | -     |                                         | 4,2   |      |
|                                   | 20                                | 41.4  | 41,4                                         | 24.4  | 25,7                                    | 3.8   | 3,8  |
|                                   | 28                                | -     |                                              | 26,9  |                                         | -     |      |
|                                   | 01                                | 46.3  | 45,9                                         | 28.9  | 30,4                                    | 3.9   | -4,0 |
|                                   | 91                                | 45,5  |                                              | 31,8  |                                         | 4,1   |      |
|      |       | Resistênc<br>compressão | ia à<br>(MPa) | Módulo<br>elasticidade | de<br>(GPa) | Resistência tração<br>diametral (MPa) |       |  |
|------|-------|-------------------------|---------------|------------------------|-------------|---------------------------------------|-------|--|
| Laje | Idade | Valores<br>individuais  | Média         | Valores<br>individuais | Média       | Valores<br>individuais                | Média |  |
|      | 7     | 34.2                    | 22.5          | 24.7                   | 212         | 3,7                                   | 3.7   |  |
|      | 1     | 32,8                    | 6,66          | 23,8                   | 44,0        | 2,7                                   | 3.4   |  |
|      | 1.1   | 39,9                    | 20.3          | 25,2                   | 275         | 4,5                                   | 1.1   |  |
| 1.46 | 14    | 38.6                    | 37,0          | 29.7                   | £ / 957     | 4.2                                   | 7,7   |  |
| L40  | 20    | 42.7                    | 12.2          | 28,3                   | 28.0        | 3,6                                   | 3.8   |  |
|      | 20    | 43,8                    | 43,3          | 27,6                   | 20,0        | 3,9                                   | 3,0   |  |
|      | 01    | 48,9                    | 19.5          | -                      |             | -                                     |       |  |
|      | 91    | 48,1                    | -+0,5         |                        | -           | -                                     |       |  |
|      | 7     | 32,2                    | 22.2          | 20,1                   | 10.5        | 3,2                                   | 2.1   |  |
|      | 1     | 32,3                    | 32,3          | 18,8                   | 2 19,5      | 2,9                                   | 3,1   |  |
|      |       | 35.5                    | 25.4          | 20,4                   | 21.2        | 3,1                                   | 2.1   |  |
|      | 14    | 39,3                    | 37,4          | 22.1                   | 21,3        | 3,1                                   | 3,1   |  |
|      |       | 40,4                    |               | 23,7                   |             | -                                     | 1     |  |
| L41  | 21    | 40,4                    | 40,4          | -                      | 23,7        | -                                     | -     |  |
|      |       | 41,1                    |               | 22,3                   |             | -                                     |       |  |
|      | 28    | 39.8                    | 40,5          | -                      | 22,3        | -                                     | ~     |  |
|      |       | 44.7                    |               | 23.6                   |             | 4.5                                   |       |  |
|      | 37    | 44.8                    | 44,8          | -                      | 23.6        | 4.1                                   | 4.3   |  |
|      |       | 28.2                    |               | 19.5                   |             | 2.8                                   |       |  |
|      | 7     | 28.7                    | 28,5          | 19.7                   | 19,6        | 2.1                                   | 2,5   |  |
|      |       | 353                     |               | 20.0                   | -           | 3.4                                   |       |  |
|      | 14    | 32.2                    | 33.8          | 20,0                   | 20,1        | 42                                    | 3.8   |  |
|      |       | 37.9                    |               | 21.5                   |             | 3.5                                   |       |  |
| LAIA | 17    | 39.8                    | 38,9          | 20.2                   | 20,9        | 3.3                                   | 3,4   |  |
|      |       | 39.9                    |               | 22.2                   |             | 4.1                                   |       |  |
|      | 28    | 37.5                    | 38,7          | 24.2                   | 23,2        | 3.5                                   | 3,8   |  |
|      |       | 44.9                    |               | -                      |             | -                                     | †     |  |
|      | 91    | 46.7                    | 45.8          | -                      | -           | -                                     | -     |  |
|      |       | 30.8                    |               | 19.6                   | 1           | 2.6                                   | 1     |  |
|      | 7     | 30.1                    | 30,5          | 22.2                   | 20,9        | 2.5                                   | 2.6   |  |
|      | -     | 36.6                    |               | 22,2                   |             | 3.2                                   |       |  |
|      | 14    | 36.5                    | 36,6          | 21.5                   | 21,8        | 3.6                                   | 3,4   |  |
|      |       | 37.9                    |               | 22.8                   |             | 3.6                                   |       |  |
| L43A | 18    | 395                     | 38,7          | 22.0                   | 22,4        | 3.0                                   | - 3,3 |  |
|      |       | 40.5                    |               | 23.0                   |             | 3.4                                   |       |  |
|      | 28    | 43.1                    | - 41,8        | ,8 23.0                |             | 3,7                                   | 3,6   |  |
|      |       | 43,1                    |               | 22,0                   |             | 5,7                                   |       |  |
|      | 91    | 4/,7                    | 48,5          |                        | -           |                                       | -     |  |

Tabela A.1 - Resultados individuais dos ensaios em corpos de prova cilindricos de concreto de dimensões 150 mm x 300 mm (continuação)

| Laje     |       | Resistên<br>compressão | cia à<br>5 (MPa) | Módulo de el<br>longitudin | lasticidade<br>al (GPa) | Resistência à tração<br>diametral (MPa) |       |  |
|----------|-------|------------------------|------------------|----------------------------|-------------------------|-----------------------------------------|-------|--|
| Laje     | Idade | Valores<br>individuais | Média            | Valores<br>individuais     | Média                   | Valores<br>individuais                  | Média |  |
|          |       | 34,1                   |                  | 24,0                       |                         | 2.8                                     |       |  |
|          | 7     | 33.9                   | 34,0             | 23.8                       | 23,9                    | -                                       | 2,8   |  |
|          |       | 37,9                   |                  | -                          |                         | 4,0                                     |       |  |
|          | 14    | 38.2                   | 38,1             | -                          |                         | 3.7                                     | 3,9   |  |
| 1.4.4    | 10    | 40.1                   | 40.1             |                            |                         | 3.8                                     |       |  |
| 1 44     | 19    | 40.0                   | 40,1             | -                          |                         | 3.5                                     | 3.1   |  |
|          | 20    | 43.8                   | 12.5             | -                          |                         | 3.6                                     |       |  |
|          | 28    | 41,1                   | 42,5             | -                          |                         | 3,0                                     | 3,3   |  |
|          |       | 44.2                   |                  | 30.7                       |                         | 3.7                                     |       |  |
|          | 91    | 43.3                   | 43,8             | 31.0                       | 30,9                    | 4.1                                     | 3,9   |  |
|          | _     | 33,2                   |                  | 19.2                       |                         | 3.3                                     |       |  |
|          | 7     | 33.0                   | 33,1             | 22.0                       | 20,6                    | 2.6                                     | 3,0   |  |
|          |       | 38.7                   |                  | 22.7                       |                         | 4.2                                     |       |  |
|          | 14    | 38,4                   | 38.6             | 22.7                       | 22,7                    | 3,7                                     | 4,0   |  |
| L45FS_CG |       | 40.9                   |                  | 19.9                       |                         | 3.7                                     |       |  |
|          | 18    | 39.9                   | 40,4             | 20.5                       | 20,2                    | 3.5                                     | 3,6   |  |
|          |       | 43.4                   |                  | 25.7                       |                         | 4.4                                     |       |  |
|          | 28    | 41.6                   | 42.5             | -                          | 25,7                    | 4.2                                     | 4,3   |  |
|          |       | 48.0                   |                  | 26.4                       |                         | 4.6                                     | -     |  |
| _        | 91    | 47.7                   | 47,9             | 25.6                       | 26,0                    | 4,0                                     | 4,3   |  |
|          | -     | 25.1                   |                  | 18.1                       |                         | 2.5                                     |       |  |
|          | 7     | 24,3                   | 24,7             | 17.4                       | 17,8                    | 2,8                                     | 2,7   |  |
|          |       | 32,6                   |                  | 24.4                       |                         | 3,6                                     |       |  |
|          | 14    | 31.2                   | 31,9             | 23.1                       | 23,8                    | 3,5                                     | 3,6   |  |
| 1400 00  | 10    | 40,0                   |                  | 21.9                       |                         | 4,4                                     |       |  |
| LASED_CG | 18    | 37.9                   | 39,0             | 22.0                       | 22,0                    | 4,0                                     | 4,2   |  |
|          |       | 36.9                   |                  | 21,7                       |                         | 4,8                                     |       |  |
|          | 28    | 38,9                   | 37,9             | 23.7                       | 22.7                    | 4,0                                     | 4.4   |  |
|          |       | 45.5                   |                  | 30.4                       |                         | -                                       |       |  |
|          | 91    | 43,1                   | 44.3             | -                          | 30,4                    | -                                       |       |  |
|          | _     | 32,1                   |                  | -                          |                         | 2.9                                     |       |  |
|          | 7     | 30,9                   | 31,5             | -                          | •                       | 2,7                                     | 2,8   |  |
| L45FD    |       | 39,9                   |                  | 22.9                       |                         | 3.3                                     |       |  |
|          | 14    | 37.8                   | 38,9             | 23.0                       | 23,0                    | 4,4                                     | 3,9   |  |
|          |       | 40.9                   |                  | 24.8                       |                         | 4,0                                     |       |  |
|          | 18    | 41,8                   | 41.8             | 23,6                       | 24,2                    | 3.9                                     | 4,0   |  |
|          |       | 43,3                   |                  | -                          |                         | 4.8                                     |       |  |
|          | 28    | 43.6                   | 43,5             | -                          |                         | 3.9                                     | 4,4   |  |

Tabela A.1 - Resultados individuais dos ensaios em corpos de prova cilíndricos de concreto de dimensões 150 mm x 300 mm (continuação)

| Idade | Resistên<br>compressão                                                                                                                                                                                                                                                                                                                                                                               | cia à<br>p (MPa)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Módulo de el<br>longitudino                                                                                                                                                                                                                                                                                                                                                                                                               | asticidade<br>al (GPa)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Resistência à tração<br>diametral (MPa)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Idade | Valores<br>individuais                                                                                                                                                                                                                                                                                                                                                                               | Média                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Valores<br>individuais                                                                                                                                                                                                                                                                                                                                                                                                                    | Média                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Valores<br>individuais                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Média                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
|       | 26,5                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 20,8                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3,3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 3     | 27,4                                                                                                                                                                                                                                                                                                                                                                                                 | 27,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 21,3                                                                                                                                                                                                                                                                                                                                                                                                                                      | 21,1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2,9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3,1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
|       | 33,3                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3,6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 7     | 34,3                                                                                                                                                                                                                                                                                                                                                                                                 | 33,8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3,9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3,8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
|       | 35,1                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 24,1                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4,2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 14    | 36,4                                                                                                                                                                                                                                                                                                                                                                                                 | 35,8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 21,5                                                                                                                                                                                                                                                                                                                                                                                                                                      | 22,8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3,8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
|       | 41.5                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 24,8                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 19    | 41,7                                                                                                                                                                                                                                                                                                                                                                                                 | 41,6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 23,0                                                                                                                                                                                                                                                                                                                                                                                                                                      | 23,9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4,3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4,2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
|       | 44.8                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 25,4                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 28    | 44.9                                                                                                                                                                                                                                                                                                                                                                                                 | 44,9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 25.0                                                                                                                                                                                                                                                                                                                                                                                                                                      | 25,2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
|       | 24,8                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 17.9                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2,9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 3     | 25,4                                                                                                                                                                                                                                                                                                                                                                                                 | 25,1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 19.3                                                                                                                                                                                                                                                                                                                                                                                                                                      | 18.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2,7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2,8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
|       | 28,5                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 21,3                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| 7     | 32,1                                                                                                                                                                                                                                                                                                                                                                                                 | 30,3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 21.9                                                                                                                                                                                                                                                                                                                                                                                                                                      | 21,6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
|       | 36,8                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 23,6                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3,8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 14    | 38,7                                                                                                                                                                                                                                                                                                                                                                                                 | 37,8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 23,8                                                                                                                                                                                                                                                                                                                                                                                                                                      | 23,7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3,6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
|       | 40,4                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 24.7                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4,7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 19    | 40.8                                                                                                                                                                                                                                                                                                                                                                                                 | - 40,6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                         | 24,7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4,2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
|       | 41.9                                                                                                                                                                                                                                                                                                                                                                                                 | 41.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 24,4                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 28    | 40.8                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 24.0                                                                                                                                                                                                                                                                                                                                                                                                                                      | 24,2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
|       | 29.5                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 17.7                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 7     | 29.9                                                                                                                                                                                                                                                                                                                                                                                                 | 29,7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 18.2                                                                                                                                                                                                                                                                                                                                                                                                                                      | 18,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3,2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
|       | 34.2                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 14    | 34.8                                                                                                                                                                                                                                                                                                                                                                                                 | 34,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3,4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
|       | 37.4                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 21.0                                                                                                                                                                                                                                                                                                                                                                                                                                      | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 18    | 36.5                                                                                                                                                                                                                                                                                                                                                                                                 | 37,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 20,4                                                                                                                                                                                                                                                                                                                                                                                                                                      | 20,7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
|       | 41.2                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 22.5                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 28    | -                                                                                                                                                                                                                                                                                                                                                                                                    | 41,2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                         | 22,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4,2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
|       | 22.3                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 16.0                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 3     | 23.2                                                                                                                                                                                                                                                                                                                                                                                                 | 22,8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 15.9                                                                                                                                                                                                                                                                                                                                                                                                                                      | 16,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
|       | 27.6                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 7     | 28.9                                                                                                                                                                                                                                                                                                                                                                                                 | 28,3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2,9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
|       | 33.9                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 20.0                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 14    | 33.4                                                                                                                                                                                                                                                                                                                                                                                                 | 33.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 19.8                                                                                                                                                                                                                                                                                                                                                                                                                                      | 19,9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
|       | 40.4                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 22.0                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 18    | 40.4<br>37.5<br>39,0                                                                                                                                                                                                                                                                                                                                                                                 | 39,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 20.9                                                                                                                                                                                                                                                                                                                                                                                                                                      | 21,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3,2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
|       | at Fight                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
|       | 376                                                                                                                                                                                                                                                                                                                                                                                                  | (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|       | Idade         3         7         14         19         28         3         7         14         19         28         7         14         19         28         7         14         19         28         7         14         18         28         3         7         14         18         28         3         7         14         18         28         3         7         14         18 | Idade         compressão<br>Falores<br>individuais           26.5         27,4           7         33.3           7         33.3           14         35,1           36,4         41.5           19         41.5           19         41.7           28         44.8           24,8         25.4           7         28,5           32,1         36,8           14         36,8           14         36,8           25,4         7           28,5         32,1           14         36,8           14         36,8           29,5         32,1           14         36,8           28         41.9           40,8         29,5           7         29,9           14         34,8           18         36,5           28         -           3         22,3           3         22,3           3         22,3           3         22,3           3         22,3           3         22,3           23,4         33,4 | Idadecompressão (MPa)IdadeValores<br>individuaisMédia26.5<br>27,427,0733.3<br>33.333.8733.3<br>34.333.81435,1<br>36,435.81941.5<br>41,741,62844.8<br>44.944.92844.8<br>25.125.1728,5<br>30,330,31436.8<br>35.837.81436.8<br>35.737.81436.8<br>35.737.81436.8<br>35.737.81436.8<br>35.737.81434.2<br>36.534.5729.5<br>29.929.71434.2<br>36.534.51837.4<br>36.537.02841.2<br>41.241.21433.9<br>33.733.71840.4<br>33.933.71840.4<br>33.939.0 | idade         iongressão (MPa)         longitudino           Valores<br>individuais         Média         Falores<br>individuais           26.5         27,0         20,8           27,4         27,0         20,8           27,4         27,0         21,3           7         33,3         33,8         -           34,3         35,8         24,1           36,4         35,8         24,1           36,4         41,6         23,0           14         36,4         44,9         25,4           28         44,8         44,9         25,0           3         24,8         25,1         19,3           3         25,4         17,9         19,3           44,8         44,9         25,0         19,3           3         25,4         19,9         19,3           3         25,4         23,0         21,3           7         28,5         30,3         21,3           7         28,5         30,3         21,9           14         36,8         37,8         23,8           19         40,4         40,6         -           28         41,9 | Idade         compressão (MPa)         longitudinal (GPa)           Valores<br>individuais         Média         Valores<br>individuais         Média           3         26,5         27,0         20,8         21,1           7         33,3         33,8         -         -           7         33,3         33,8         -         -           14         35,1         35,8         24,1         22,8           19         41,5         41,6         24,8         23,9           44,8         44,9         25,4         25,2           3         25,4         25,1         19,9         18,6           7         28,5         30,3         21,3         21,6           3         25,4         25,1         19,3         21,6           3         24,8         25,1         19,3         21,6           3         25,4         37,8         23,6         23,7           3         36,8         37,8         23,6         23,7           14         36,8         37,8         23,6         23,7           28         41,9         41,4         24,0         24,2           7         29,9 | $ \begin{array}{ c c c c c c } Idade & \hline \begin{tabular}{ c c c c c } \hline \begin{tabular}{ c c c c c } \begin{tabular}{ c c c c c c } \hline \begin{tabular}{ c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c } \hline \begin{tabular}{ c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$ |  |

Tabela A.1 - Resultados individuais dos ensaios em corpos de prova cilindricos de concreto de dimensões 150 mm x 300 mm (continuação)

|            |       | Resistên<br>compressão | cia à<br>(MPa) | Módulo de el<br>longitudin | lasticidade<br>al (GPa) | Resistência<br>diametral | à tração<br>(MPa) |
|------------|-------|------------------------|----------------|----------------------------|-------------------------|--------------------------|-------------------|
| Laje       | Idade | Valores<br>individuais | Média          | Valores<br>individuais     | Media                   | Valores<br>individuais   | Média             |
|            |       | 26,3                   |                | 16.3                       |                         | 2,8                      |                   |
|            | 3     | 24,3                   | 25,3           | 17,5                       | 16,9                    | 2.7                      | 2,8               |
|            | _     | 31,6                   |                | 19.6                       |                         | 2,8                      |                   |
|            | 1     | 30.8                   | 31,2           | 19.7                       | 19,7                    | 3.1                      | 3,0               |
|            |       | 39,4                   |                | 21.0                       |                         | 4,0                      |                   |
| L45H D_AC2 | 14    | 38.9                   | 39,2           | 22.3                       | 21.7                    | 3.6                      | 3,8               |
|            | 2.4   | 43.5                   |                | 22.0                       |                         | 4.2                      |                   |
|            | 25    | 44.0                   | 43,8           | 19,6                       | 20.8                    | 4.0                      | 4,1               |
| ľ          | 20    | 45.0                   |                |                            |                         | 4,3                      |                   |
|            | 28    | -                      | 45,0           | -                          |                         |                          | 4,3               |
|            |       | 24,5                   |                | 16.4                       |                         | 2,0                      |                   |
|            | 3     | 25.3                   | 24,9           | 16.5                       | 16,5                    | 2.0                      | 2,0               |
|            |       | 31,4                   |                | 11.3                       |                         | 1.5                      | _                 |
|            | 7     | 32.4                   | 31,9           | -                          | 11,3                    | 1,6                      | 1,6               |
| L45FFD_AC3 |       | 37.5                   |                | 18,9                       |                         | 3,5                      | -                 |
|            | 14    | 38.2                   | 37.9           | 18.6                       | 18.8                    | 2.9                      | 3.2               |
|            |       | 39.7                   |                | 24.0                       |                         | 3.7                      |                   |
|            | 18    | 39,0                   | 39,4           | 26.7                       | 25,4                    | 3,3                      | 3.5               |
|            | 28    | 41.9                   |                | 25.6                       | _                       | -                        |                   |
|            |       | 40.9                   | 41,4           | 25.9                       | 25,8                    | -                        | -                 |
|            |       | 27,5                   | - 27,7         | 19.5                       | 20,8                    | 2.8                      |                   |
|            | 3     | 27.9                   |                | 22.1                       |                         | 2,7                      | 2,8               |
|            |       | 34.9                   |                | 20.1                       |                         | 3,3                      | 3,2               |
|            | 7     | 34,3                   | 34,6           | 20.0                       | 20,1                    | 3,1                      |                   |
|            |       | 39,7                   |                | 22,0                       |                         | 3,6                      |                   |
| L45FFD_AC4 | 14    | 39.1                   | 39.4           | 21.9                       | 22.0                    | 3.5                      | 3.6               |
|            |       | 43.1                   |                | 22,1                       |                         | 3.0                      |                   |
|            | 18    | 43,3                   | -43.2          | 22,9                       | 22.5                    | 3,1                      | 3,1               |
| Ì          |       | 43.3                   |                | 22.1                       |                         | -                        |                   |
|            | 28    | 44.1                   | 43,7           | 23,6                       | 22,9                    | -                        | ~                 |
|            |       | 29,7                   |                | 19,8                       | _                       | 2,6                      |                   |
|            | 3     | 28.6                   | 29,2           | 17.7                       | 18,8                    | 2.2                      | 2,4               |
|            |       | 33,3                   |                | 19.9                       |                         |                          |                   |
|            | 7     | 32,8                   | 33,1           | 19.0                       | 19,5                    | -                        | •                 |
| L45FFD_AC5 |       | 38.9                   |                |                            |                         | 2.5                      |                   |
|            | 14    | 38.5                   | 38.7           | -                          | •                       | 3.1                      | 2,8               |
|            |       | 40.8                   |                | 22.0                       |                         | 3.4                      |                   |
|            | 18    | 40.6                   | - 40,7         | 20.0                       | 21,0                    | 3.0                      | 3.2               |
|            |       | 42.6                   | _              | 23.8                       |                         |                          | -                 |
|            | 28    | 41.6                   | 42,1           | 24.6                       | 24,2                    |                          |                   |

Tabela A.1 - Resultados individuais dos ensaios em corpos de prova cilíndricos de concreto de dimensões 150 mm x 300 mm (continuação)

|          |       | Resistên<br>compressão | cia à<br>5 (MPa) | Múdulo de e<br>longitudin | lasticidade<br>al (GPa) | Resistência à tração<br>diametral (MPa) |       |  |
|----------|-------|------------------------|------------------|---------------------------|-------------------------|-----------------------------------------|-------|--|
| Laje     | Idade | Valores<br>individuais | Média            | Valores<br>individuais    | Média                   | Valores<br>individuais                  | Média |  |
|          | 2     | 25.9                   | 261              | 19,7                      | 10.1                    | 2,6                                     | 26    |  |
|          | 3     | 26,2                   | 20,1             | 19,0                      | 19,4                    | 2,5                                     | 2,0   |  |
|          | 7     | 33,6                   | 32.0             | 21,3                      | 21.7                    | 3,5                                     | 2.6   |  |
|          |       | 32,3                   | 33,0             | 22,0                      | 21,7                    | 3,4                                     | 515   |  |
| 1 45 405 | 14    | 39.3                   | 20.1             | -                         |                         | 4,0                                     | 27    |  |
| THO WCO  | 1-1   | 39,5                   | 37,4             | -                         | -                       | 3,3                                     | 3,7   |  |
|          | 10    | 40,9                   | 41.1             | 23,1                      | 22.1                    | 3,8                                     | 2.1   |  |
|          | 15    | 41.3                   |                  | ~                         | 1 , ل                   | 3,0                                     | 3,4   |  |
|          | 28    | 43,5                   | 11.3             | -                         |                         | -                                       |       |  |
|          | 20    | 45,0                   | 44,5             | -                         | -                       | -                                       |       |  |

Tabela A.1 - Resultados individuais dos ensaios em corpos de prova cilindricos de concreto de dimensões 150 mm x 300 mm (continuação)

Tabela A.2 - Resultados individuais dos ensaios de tração axial em amostras de aço de vários diâmetros utilizados nas lajes da Série 1

| Diâmetro | f <sub>y</sub> (M | fy (MPa) |            | E <sub>y</sub> (mm/m) |            | Pa)   | E <sub>s</sub> (GPa) |       |  |
|----------|-------------------|----------|------------|-----------------------|------------|-------|----------------------|-------|--|
| (mm)     | Individual        | Média    | Individual | Média                 | Individual | Média | Individual           | Média |  |
|          | 676               |          | 4,76       |                       | 821        |       | 202                  |       |  |
| 8,0      | 668               | 674      | 4,42       | 4,70                  | 789        | 814   | 231                  | 215   |  |
|          | 679               |          | 4,92       |                       | 832        |       | 213                  |       |  |
|          | 621               | 617      | 4,60       | 4,04                  | 749        |       | 218                  |       |  |
| 12.5     | 630               |          | 3,87       |                       | 736        | 748   | 223                  | 214   |  |
|          | 601               |          | 3,64       |                       | 758        |       | 202                  |       |  |
|          | 598               |          | 3,99       |                       | 760        |       | 231                  |       |  |
| 16,0     | 615               | 604      | 4,87       | 4,57                  | 742        | 757   | 243                  | 229   |  |
|          | 600               |          | 4,84       |                       | 769        |       | 212                  |       |  |

Tabela A.3 - Resultados individuais dos ensaios de tração axial em amostras de aço de váriosdiâmetros utilizados nas lajes das séries 2 e 3

| Diâmetro<br>(mm) | f <sub>y</sub> (MPa) | € <sub>r</sub> (mm√m) | f <sub>u</sub> (MPa) | ε <sub>u</sub> (mm√m) | E <sub>s</sub> (GPa) |
|------------------|----------------------|-----------------------|----------------------|-----------------------|----------------------|
| 8.0              | 598                  | 2.85                  | 723                  | 20.11                 | 210                  |
| 10,0             | 593                  | 2,78                  | 733                  | 20,51                 | 213                  |
| 12.5             | 541                  | 2,36                  | 702                  | 20,43                 | 229                  |
| 16,0             | 601                  | 4,85                  | 677                  | 20,44                 | 211                  |

## **B - LEITURAS DOS DEFLETÔMETROS E EXTENSÔMETROS**

|       |                                  | Deslocamentos verticais Laje L41 (mm) |      |       |           |           |          |       |      |      |      |  |  |  |  |
|-------|----------------------------------|---------------------------------------|------|-------|-----------|-----------|----------|-------|------|------|------|--|--|--|--|
| Form  |                                  |                                       |      | ħ     | lúmero do | relógio o | omparado | 70    |      |      |      |  |  |  |  |
| rorça | D19                              | D18                                   | D17  | D16   | D15       | D5        | D6       | D7    | D8   | D9   | D10  |  |  |  |  |
|       | Distância ao centro da laje (mm) |                                       |      |       |           |           |          |       |      |      |      |  |  |  |  |
| (kN)  | 1350                             | 900                                   | 600  | 285   | 185       | 0         | 185      | 285   | 600  | 900  | 1350 |  |  |  |  |
| 0     | 0                                | 0                                     | 0    | 0     | 0         | 0         | 0        | 0     | 0    | 0    | 0    |  |  |  |  |
| 100   | 0.16                             | 0,10                                  | 0,40 | 0,57  | 0.58      | 0.64      | 0.39     | 0,42  | 0.39 | 0,10 | 0,15 |  |  |  |  |
| 150   | 0.35                             | 0.33                                  | 0.78 | 1,09  | I.13      | 1.21      | 0,89     | 0.86  | 0.69 | 0,28 | 0.39 |  |  |  |  |
| 200   | 0,87                             | 0,77                                  | 1.53 | 2,15  | 2.24      | 2.39      | 2,09     | 1,95  | 1,44 | 0.70 | 0,82 |  |  |  |  |
| 250   | 1,40                             | 1,34                                  | 2,48 | 3.54  | 3,74      | 3.97      | 3.69     | 3.43  | 2.50 | 1.35 | 1.41 |  |  |  |  |
| 300   | 1.78                             | 1.95                                  | 3,51 | 5,02  | 5.35      | 5.66      | 5.38     | 5.00  | 3.68 | 2.03 | 1.61 |  |  |  |  |
| 400   | 2,91                             | 3,21                                  | 5.69 | 8,20  | 8,90      | 9.35      | 9,02     | 8.35  | 6,15 | 3,58 | 2.11 |  |  |  |  |
| 450   | 3,21                             | 3.92                                  | 6.87 | 10.00 | 10.90     | 11.50     | 11,00    | 10,20 | 7,50 | 4.40 | 2.78 |  |  |  |  |
| 500   | 3,64                             | 1,55                                  | 8,04 | 11.58 | 12.70     | 13.21     | 12.65    | 11,70 | 8.60 | 5.06 | 3.21 |  |  |  |  |
| 550   | 4.26                             | 5.39                                  | 9.28 | 13.62 | 14.89     | 15,44     | 14.68    | 13.52 | 9.90 | 5.82 | 3.79 |  |  |  |  |

Tabela B.1 - Deslocamentos da laje L41

Tabela B.2 Deslocamentos da laje L41A

|       | _                                |      |      | Desloc | amentos   | verticais   | Laje L41 | A (mm) |      |      |       |  |  |  |
|-------|----------------------------------|------|------|--------|-----------|-------------|----------|--------|------|------|-------|--|--|--|
| Form  |                                  |      |      | N      | lúmero do | o relógio o | omparado | or     |      |      |       |  |  |  |
| 10144 | D19                              | D18  | D17  | D16    | D15       | D5          | D6       | D7     | D8   | D9   | D10   |  |  |  |
|       | Distância ao centro da laie (mm) |      |      |        |           |             |          |        |      |      |       |  |  |  |
| (kN)  | 1350                             | 900  | 600  | 285    | 185       | 0           | 185      | 285    | 600  | 900  | 1350  |  |  |  |
| 0     | 0                                | 0    | 0    | 0      | 0         | 0           | 0        | 0      | 0    | 0    | 0     |  |  |  |
| 100   | 0.55                             | 0.10 | 0.20 | 0.30   | 0.32      | 0.52        | 0.38     | 0.35   | 0,31 | 0.18 | 0.76  |  |  |  |
| 150   | 1,001                            | 0,31 | 0,45 | 0,80   | 0,97      | 1,25        | 1,15     | 1,09   | 0,82 | 0,48 | 1.430 |  |  |  |
| 200   | 1.433                            | 0.59 | 0.93 | 1.49   | 1.65      | 2.35        | 2.10     | 1.98   | 1.48 | 0.88 | 2.060 |  |  |  |
| 250   | 1.815                            | 1.00 | 1.62 | 2.48   | 2.92      | 3.72        | 3,38     | 3,16   | 2,35 | 1.40 | 2,590 |  |  |  |
| 300   | 2.168                            | 1,50 | 2.42 | 3.60   | 4.15      | 5.15        | 4.75     | 4.40   | 3.27 | 1.95 | 3.080 |  |  |  |
| 350   | 2,529                            | 2.60 | 3.36 | 4,88   | 5.55      | 6.72        | 6,15     | 5,73   | 4,20 | 2,50 | 3,490 |  |  |  |
| 400   | 2,875                            | 3,20 | 4.30 | 6,19   | 6.80      | 8,25        | 7.60     | 7.15   | 5.18 | 3.05 | 3,910 |  |  |  |
| 150   | 3,175                            | 3.80 | 5.30 | 7.55   | 8.38      | 9,75        | 9.08     | 8.35   | 6.10 | 3.58 | 1,300 |  |  |  |
| 500   | 3,463                            | 4,45 | 6.32 | 9,00   | 10,00     | 11.40       | 10.58    | 9,70   | 7.08 | 4,15 | 4,680 |  |  |  |
| 550   | 3,758                            | 5.05 | 7.32 | 10.38  | 11.56     | 13.00       | 12.15    | 11.30  | 8.05 | 4.72 | 5.030 |  |  |  |

|       |      | Deslocamentos verticais Laje L42 (mm) |      |       |           |           |          |       |      |      |      |  |  |  |
|-------|------|---------------------------------------|------|-------|-----------|-----------|----------|-------|------|------|------|--|--|--|
| E     |      |                                       |      | N     | lúmero de | relógio e | omparado | 76    |      |      |      |  |  |  |
| rorça | D19  | D18                                   | D17  | D16   | D15       | D5        | D6       | D7    | D8   | D9   | D10  |  |  |  |
|       |      | Distância ao centro da laje (mm)      |      |       |           |           |          |       |      |      |      |  |  |  |
| (kN)  | 1350 | 900                                   | 600  | 285   | 185       | 0         | 185      | 285   | 600  | 900  | 1350 |  |  |  |
| 0     | 0    | 0                                     | 0    | 0     | 0         | 0         | 0        | 0     | 0    | 0    | 0    |  |  |  |
| 100   | 0.28 | 0.24                                  | 0.39 | 0,50  | 0,51      | 0,46      | 0,43     | 0,41  | 0,30 | 0,17 | 0.26 |  |  |  |
| 150   | 0,49 | 0.43                                  | 0.66 | 0.86  | 0.90      | 0.82      | 0.78     | 0.74  | 0.54 | 0,31 | 0.45 |  |  |  |
| 200   | 0.78 | 0.66                                  | 1.06 | 1,42  | 1.49      | 1.47      | 1.35     | 1.29  | 0.92 | 0,53 | 0.66 |  |  |  |
| 250   | 1,17 | 1,05                                  | 1.69 | 2,36  | 2.45      | 2.55      | 2,30     | 2.16  | 1,52 | 0.88 | 0,91 |  |  |  |
| 300   | 1.70 | 1,59                                  | 2.60 | 3.65  | 3.82      | 4.30      | 3,96     | 3,66  | 2,61 | 1,49 | 1.27 |  |  |  |
| 350   | 2.16 | 2.28                                  | 3,72 | 5.22  | 5.54      | 6.00      | 5,62     | 5,21  | 3.72 | 2,23 | 1.65 |  |  |  |
| 400   | 2.57 | 3,09                                  | 5,00 | 6,98  | 7.39      | 7,88      | 7,36     | 6.79  | 4,86 | 2,79 | 1.99 |  |  |  |
| 450   | 2,92 | 3,76                                  | 6.08 | 8.00  | 8.50      | 9.55      | 8.96     | 8.29  | 5,93 | 3,39 | 2.31 |  |  |  |
| 500   | 3,27 | 4.45                                  | 7,14 | 10.01 | 10,64     | 11,29     | 10,55    | 9.74  | 6,97 | 3,98 | 2.64 |  |  |  |
| 550   | 3,62 | 5,25                                  | 8,36 | 11,77 | 12.44     | 13.14     | 12.29    | 11.31 | 8,10 | 4,62 | 2.96 |  |  |  |
| 600   | 3.96 | 6,00                                  | 9.56 | 13,60 | 14.32     | 15.08     | 14.12    | 12.98 | 9,30 | 5.30 | 3,29 |  |  |  |

Tabela B.3 – Deslocamentos da laje L42

Tabela B.4 – Deslocamentos da laje L42A

|       |                                  | Deslocamentos verticais Laje L42A (mm)     |      |       |       |       |       |       |      |      |       |  |  |  |
|-------|----------------------------------|--------------------------------------------|------|-------|-------|-------|-------|-------|------|------|-------|--|--|--|
| Fanco |                                  | Número do relógio comparador               |      |       |       |       |       |       |      |      |       |  |  |  |
| rorça | D19                              | D18                                        | D17  | D16   | D15   | D5    | D6    | D7    | D8   | D9   | D10   |  |  |  |
|       | Distância ao centro da laje (mm) |                                            |      |       |       |       |       |       |      |      |       |  |  |  |
| (kN)  | 1350                             | 350 900 600 285 185 0 185 285 600 900 1350 |      |       |       |       |       |       |      |      |       |  |  |  |
| 0     | 0                                | 0                                          | 0    | 0     | 0     | 0     | 0     | 0     | 0    | 0    | 0     |  |  |  |
| 107   | 1.484                            | 0.17                                       | 0.31 | 0,58  | 0.68  | 0.75  | 0.73  | 0.72  | 0.54 | 0.34 | 1.778 |  |  |  |
| 213   | 2.293                            | 0.52                                       | 0.89 | 1.49  | 1.65  | 1.78  | 1.75  | 1.65  | 1.25 | 0.78 | 2.862 |  |  |  |
| 320   | 3,010                            | 1,45                                       | 2,44 | 3,46  | 3,69  | 4,14  | 4,02  | 3,80  | 2,80 | 1.75 | 3,812 |  |  |  |
| 426   | 3.739                            | 2,75                                       | 4,52 | 6,42  | 6.80  | 7.15  | 6,90  | 6.50  | 4.85 | 3,00 | 4,650 |  |  |  |
| 533   | 4,313                            | 4,00                                       | 6,50 | 9,35  | 9,80  | 10,05 | 9,80  | 9,25  | 6,85 | 4,25 | 5,368 |  |  |  |
| 640   | 4,950                            | 5,35                                       | 8,75 | 13,00 | 13,45 | 13,50 | 13,18 | 12,60 | 9,00 | 5,55 | 6,083 |  |  |  |

Tabela B.5 – Deslocamentos da laje L43A

|       |      |                                  |      | Desloc | amentos y | verticais   | Laje L43. | A (mm) |      |      |      |  |  |  |
|-------|------|----------------------------------|------|--------|-----------|-------------|-----------|--------|------|------|------|--|--|--|
| Force |      |                                  |      | ľ      | lúmero do | o relógio o | omparado  | )r     |      |      |      |  |  |  |
| ruiça | D19  | D18                              | D17  | D16    | D15       | D5          | D6        | D7     | D8   | D9   | D10  |  |  |  |
|       |      | Distância ao centro da laje (mm) |      |        |           |             |           |        |      |      |      |  |  |  |
| (kN)  | 1350 | 900                              | 600  | 285    | 185       | 0           | 185       | 285    | 600  | 900  | 1350 |  |  |  |
| 0     | 0    | 0                                | 0    | 0      | 0         | 0           | 0         | 0      | 0    | 0    | 0    |  |  |  |
| 50    | 0.35 | 0.03                             | 0.04 | 0.13   | 0.14      | 0.15        | 0.14      | 0.13   | 0.09 | 0.05 | 0.28 |  |  |  |
| 100   | 0.86 | 0.17                             | 0.25 | 0.40   | 0.42      | 0.52        | 0.38      | 0.38   | 0.26 | 0.15 | 0.81 |  |  |  |
| 150   | 1.31 | 0.35                             | 0.55 | 0.82   | 0.82      | 0.84        | 0.80      | 0.81   | 0.56 | 0.32 | 1.25 |  |  |  |
| 200   | 1,73 | 0,63                             | 0,98 | 1.47   | 1,52      | 1.67        | 1.51      | 1.44   | 1.03 | 0.60 | 1.59 |  |  |  |
| 250   | 2.10 | 1,02                             | 1,66 | 2,39   | 2,48      | 2.64        | 2.38      | 2.28   | 1,59 | 0.95 | 2,00 |  |  |  |
| 300   | 2,43 | 1,55                             | 2,44 | 3,47   | 3,65      | 3,88        | 3,71      | 3,33   | 2,35 | 1,37 | 2,30 |  |  |  |
| 350   | 2,73 | 2,26                             | 3,43 | 4,84   | 5,00      | 5.23        | 4,72      | 4.45   | 3,18 | 1,85 | 2,60 |  |  |  |
| 400   | 3,05 | 2,68                             | 4.28 | 6,02   | 6,28      | 6,55        | 5,92      | 5,58   | 4,00 | 2,35 | 2,98 |  |  |  |
| 450   | 3.35 | 3.28                             | 5.18 | 7.21   | 7.54      | 7.80        | 7.08      | 6,75   | 4.80 | 2,85 | 3.25 |  |  |  |
| 500   | 3.67 | 3.90                             | 6.20 | 8.65   | 9.06      | 9.43        | 8.75      | 8.26   | 5.75 | 3,40 | 3.55 |  |  |  |
| 550   | 3,93 | 4.45                             | 7.10 | 9,90   | 10,40     | 10.85       | 10.15     | 9.55   | 6.61 | 3,90 | 3,85 |  |  |  |

|       |      |      |      | Deslo | camentos   | verticais  | Laje L44   | (mm)  |      |      |      |
|-------|------|------|------|-------|------------|------------|------------|-------|------|------|------|
| Farma |      |      |      | Ņ     | lúmero do  | relógio c  | omparado   | 01    |      |      |      |
| rorça | D19  | D18  | D17  | D16   | D15        | D5         | D6         | D7    | D8   | D9   | D10  |
|       |      |      |      | D     | istância a | o centro d | a laje (mr | n)    |      |      |      |
| (kN)  | 1350 | 900  | 600  | 285   | 185        | 0          | 185        | 285   | 600  | 900  | 1350 |
| 0     | 0    | 0    | 0    | 0     | 0          | 0          | 0          | 0     | 0    | 0    | 0    |
| 100   | 1.06 | 0.25 | 0,37 | 0.46  | 0.50       | 0.55       | 0.43       | 0.39  | 0,36 | 0.22 | 1.27 |
| 150   | 1.55 | 0.46 | 0.74 | 0.95  | 1.01       | 1.19       | 0.95       | 0.86  | 0.73 | 0.47 | 1.70 |
| 200   | 2.05 | 0.90 | 1.51 | 1.91  | 2.01       | 2.17       | 1.94       | 1.85  | 1.41 | 0.85 | 2.11 |
| 250   | 2.56 | 1.42 | 2.47 | 3.28  | 3.42       | 3.52       | 3.27       | 3.16  | 2.27 | 1.38 | 2.48 |
| 300   | 2.97 | 1.85 | 3.14 | 4.24  | 4.51       | 4.60       | 4.40       | 4.10  | 2.94 | 1.77 | 2.74 |
| 350   | 3.37 | 2.32 | 3.94 | 5.53  | 5.89       | 5.99       | 5.75       | 5.33  | 3.84 | 2.32 | 3.06 |
| 400   | 3.73 | 2.83 | 4.80 | 6.60  | 7.19       | 7.30       | 7.00       | 6.48  | 4.69 | 2.84 | 3.30 |
| 450   | 4.09 | 3.40 | 5.70 | 7.71  | 8.40       | 8.58       | 8.25       | 7.62  | 5.52 | 3.33 | 3.60 |
| 500   | 4,43 | 4.25 | 6.63 | 8.89  | 9,70       | 9.98       | 9.55       | 8.81  | 6.41 | 4.26 | 3.87 |
| 550   | 4.77 | 4.99 | 7.60 | 10,55 | 11.10      | 11.30      | 10.80      | 10.00 | 7,40 | 4,98 | 4,13 |

Tabela B.6 – Deslocamentos da laje L44

Tabela B.7 – Deslocamentos da laje L45

|       |      |      |       | Deslo | camentos   | verticais  | Laje L45    | i (mm) |      |      |      |
|-------|------|------|-------|-------|------------|------------|-------------|--------|------|------|------|
| Eana  |      |      |       | N     | Vúmero do  | relógio o  | omparado    | or     |      |      |      |
| FOLGS | D19  | D18  | D17   | D16   | D15        | D5         | D6          | D7     | D8   | D9   | D10  |
|       |      |      |       | D     | istância a | o centro d | la laje (mr | n)     |      |      |      |
| (kN)  | 1350 | 900  | 600   | 285   | 185        | 0          | 185         | 285    | 600  | 900  | 1350 |
| 0     | 0    | 0    | 0     | 0     | 0          | 0          | 0           | 0      | 0    | 0    | 0    |
| 100   | 1.17 | 0.19 | 0.30  | 0.40  | 0.40       | 0.61       | 0.55        | 0.51   | 0.38 | 0.22 | 0,97 |
| 150   | 1.62 | 0.35 | 0.58  | 0.75  | 0.76       | 1.02       | 0.93        | 0.87   | 0.63 | 0.37 | 1.41 |
| 200   | 2.07 | 0.74 | 1.22  | 1.59  | 1.65       | 1.95       | 1.75        | 1.64   | 1.15 | 0,67 | 1.83 |
| 250   | 2.58 | 1.47 | 2.35  | 3.05  | 3.20       | 3.47       | 3.15        | 3.00   | 2.09 | 1.20 | 2.37 |
| 300   | 3.01 | 2.20 | 3.48  | 4.55  | 4.75       | 5.03       | 4.58        | 4.35   | 3.02 | 1,71 | 2.80 |
| 350   | 3,39 | 2.85 | 4.52  | 5.95  | 6.25       | 6.50       | 5.97        | 5.68   | 3.95 | 2.25 | 3.20 |
| 400   | 3,70 | 3.56 | 5.64  | 7,48  | 7.80       | 8.05       | 7,40        | 7.07   | 4.90 | 2.79 | 3,58 |
| 450   | 4.13 | 4.28 | 6,80  | 9,08  | 9.44       | 9.70       | 8.97        | 8.59   | 5,96 | 3,39 | 3.96 |
| 500   | 4.42 | 4,98 | 7.90  | 10.57 | 10.98      | 11.25      | 10,45       | 10,00  | 6.96 | 3.95 | 4,30 |
| 550   | 4,71 | 5.71 | 9.06  | 12,20 | 12.62      | 12,80      | 11.90       | 11,43  | 7,96 | 4.52 | 4.65 |
| 600   | 5.05 | 6,48 | 10.30 | 13.92 | 14,40      | 14.53      | 13.56       | 13.00  | 9.00 | 5.11 | 4,97 |
| 650   | 5.31 | 7.16 | 11.37 | 15.45 | 15.98      | 16.00      | 15.00       | 14.34  | 9.90 | 5.61 | 5.26 |

|       |      |      | -     | Desloc | amentos    | verticais  | Laje L+6    | (mm)  |       |      |      |
|-------|------|------|-------|--------|------------|------------|-------------|-------|-------|------|------|
| Famos |      |      |       | N      | lúmero de  | relógio c  | omparado    | )T    |       |      |      |
| гогса | D19  | D18  | D17   | D16    | D15        | D5         | D6          | D7    | D8    | D9   | D10  |
|       |      |      |       | D      | istância a | o centro d | la laje (mr | n)    |       |      |      |
| (kN)  | 1350 | 900  | 600   | 285    | 185        | 0          | 185         | 285   | 600   | 900  | 1350 |
| 50    | 0.97 | 0.05 | 0,12  | 0.16   | 0.19       | 0.25       | 0.23        | 0,22  | 0.18  | 0.10 | 0.94 |
| 100   | 1.42 | 0.12 | 0,30  | 0.40   | 0.44       | 0.54       | 0,50        | 0.47  | 0.36  | 0.21 | 1.49 |
| 150   | 1.88 | 0,36 | 0.59  | 0,80   | 0,82       | 1.04       | 0,95        | 0,88  | 0,65  | 0.39 | 2.03 |
| 200   | 2.30 | 0.64 | 1.06  | 1.46   | 1.58       | 1.83       | 1.67        | 1.54  | 1.14  | 0.67 | 2.47 |
| 250   | 2.69 | 1.10 | 1.82  | 2.50   | 2.68       | 2.90       | 2.68        | 2.44  | 1.79  | 1.06 | 3.01 |
| 300   | 3.21 | 1.62 | 2.67  | 3.65   | 3.90       | 4.17       | 3.87        | 3.51  | 2.58  | 1.51 | 3.46 |
| 350   | 3.53 | 2.16 | 3.54  | 4.85   | 5.15       | 5.46       | 5.10        | 4.61  | 3.39  | 2.00 | 3.82 |
| 400   | 3.87 | 2.73 | 4.48  | 6.13   | 6,49       | 6.79       | 6,33        | 5.74  | 4.20  | 2.47 | 4.17 |
| 450   | 4.22 | 3.35 | 5,47  | 7,48   | 7.90       | 8.21       | 7.69        | 6.97  | 5,10  | 3,00 | 4.52 |
| 500   | 4.52 | 3.88 | 6,34  | 8,65   | 9,11       | 9,43       | 8,84        | 8.03  | 5.86  | 3,45 | 4,81 |
| 550   | 4.82 | 4,42 | 7.22  | 9.87   | 10,40      | 10,80      | 10,14       | 9.22  | 6,74  | 3,97 | 5,10 |
| 600   | 5,12 | 5,02 | 8,24  | 11.27  | 11.83      | 12.26      | 11.55       | 10,53 | 7.66  | 4,52 | 5.39 |
| 650   | 5,40 | 5,60 | 9.15  | 12.54  | 13.16      | 13.64      | 12.90       | 11,77 | 8.53  | 5,02 | 5.67 |
| 700   | 5,69 | 6,22 | 10,17 | 13.92  | 14.62      | 15,16      | 14,35       | 13,14 | 9.45  | 5.57 | 5,92 |
| 750   | 5,96 | 6,80 | 11,11 | 15,24  | 16,00      | 16,56      | 15 75       | 14,47 | 10,30 | 6.08 | 617  |
| 800   | 6.25 | 745  | 12,22 | 16,83  | 17,62      | 18,17      | 17,34       | 16,02 | 11,20 | 6,58 | 6.43 |

Tabela B.8 – Deslocamentos da laje L46

Tabela B.9 – Deslocamentos da laje L45FS\_CG

|       |      |      | 1     | Deslocam | entos ver  | ticais La   | e LASFS     | CG (mm | )     |      |      |
|-------|------|------|-------|----------|------------|-------------|-------------|--------|-------|------|------|
| E.uso |      |      |       | 1        | lúmero do  | o relógio o | comparado   | TC     |       |      |      |
| ruiça | D19  | D18  | D17   | D16      | D15        | D5          | D6          | D7     | D8    | D9   | D10  |
|       |      |      | -     | D        | istância a | o centro d  | la laje (mi | m)     |       |      |      |
| (kN)  | 1350 | 900  | 600   | 285      | 185        | 0           | 185         | 285    | 600   | 900  | 1350 |
| 0     | -    | 0    | 0     | 0        | 0          | 0           | 0           | 0      | 0     | 0    | -    |
| 50    | -    | 0.05 | 0.10  | 0.15     | 0.15       | 0.24        | 0.15        | 0.15   | 0.10  | 0.05 | -    |
| 100   | -    | 0.12 | 0.30  | 0.34     | 0.36       | 0.61        | 0.48        | 0.44   | 0.40  | 0.25 | -    |
| 150   | -    | 0.26 | 0.58  | 0.92     | 1.20       | 1.53        | 1.24        | 1.14   | 0.82  | 0.53 | -    |
| 200   | -    | 0.52 | 1.75  | 2.27     | 2.45       | 2.65        | 2.50        | 2.32   | 1.75  | 1.08 | -    |
| 250   | -    | 1,00 | 2,37  | 3,40     | 3.62       | 4.20        | 4,00        | 3,65   | 2.70  | 1.68 | -    |
| 300   | -    | 1.55 | 3,43  | 5,00     | 5,30       | 5.75        | 5.54        | 5.25   | 3.71  | 2,30 | -    |
| 350   | -    | 2,15 | 4,65  | 6.76     | 7.00       | 7.42        | 7 20        | 7.00   | 4,80  | 2,98 | -    |
| 400   |      | 3,20 | 5,70  | 8,00     | 8,50       | 9,14        | 8,85        | 8,40   | 5,90  | 3.65 | -    |
| 450   | -    | 4,50 | 6,80  | 9.75     | 10,40      | 11.00       | 10,62       | 10.00  | 7.10  | 4,40 | -    |
| 500   |      | 5.15 | 7.85  | 11,90    | 12,40      | 12.80       | 12,46       | 12,00  | 8.25  | 5,10 | -    |
| 550   | -    | 5.90 | 10.10 | 14.30    | 14,70      | 15.10       | 14.60       | 14,00  | 9.35  | 5,80 | -    |
| 600   | -    | 6,60 | 11,00 | 15,70    | 15.98      | 16.25       | 15,80       | 15,10  | 10,38 | 6,42 | -    |

|       |      |      | ſ    | Deslocam | entos ver  | ticais Laj | e L45FD     | CG (mm | )    |      |      |
|-------|------|------|------|----------|------------|------------|-------------|--------|------|------|------|
|       |      |      |      | 1        | iumero do  | relogio c  | omparado    | or     |      |      |      |
| Força | D19  | D18  | D17  | D16      | D15        | D5         | D6          | D7     | D8   | D9   | D10  |
|       |      |      |      | D        | istância a | o centro d | la laje (mr | n)     |      |      |      |
| (kN)  | 1350 | 900  | 600  | 285      | 185        | 0          | 185         | 285    | 600  | 900  | 1350 |
| 0     | 0    | 0    | 0    | 0        | 0          | 0          | 0           | 0      | 0    | 0    | 0    |
| 50    | 0,88 | 0.05 | 0,10 | 0,18     | 0.18       | 0,31       | 0.00        | 0.26   | 0,18 | 0,11 | 1.39 |
| 150   | 1,40 | 0.14 | 0.25 | 0.36     | 0,37       | 0.65       | 0.33        | 0.57   | 0.40 | 0,25 | 2.11 |
| 200   | 1.94 | 0.29 | 0.52 | 0.76     | 0.81       | 1,20       | 0.84        | 1.05   | 0.73 | 0.48 | 2.66 |
| 250   | 2.35 | 0.55 | 0.98 | 1.40     | 1.50       | 2.03       | 1.70        | 1.85   | 1.25 | 0.84 | 3.19 |
| 300   | 2.76 | 1.00 | 1.70 | 2.45     | 2,65       | 3.28       | 2.80        | 2.90   | 2.10 | 1.31 | 3.61 |
| 350   | 3,09 | 1.61 | 2.75 | 3.90     | 4.20       | 4.87       | 4.32        | 4.20   | 3.08 | 1.95 | 4.16 |
| 400   | 3.47 | 2.32 | 3.95 | 5.48     | 5.93       | 6.64       | 6.10        | 5,80   | 4.25 | 2.65 | 4,57 |
| 450   | 3.82 | 3.05 | 5.05 | 7.08     | 7.60       | 8.30       | 7.60        | 7.20   | 5.25 | 3.30 | 5.02 |
| 500   | 4.05 | 3.70 | 6.10 | 8.50     | 9.08       | 9.75       | 9.00        | 8.45   | 6.20 | 3.90 | 5.35 |
| 550   | 4.38 | 4.76 | 7.15 | 10.08    | 10.75      | 11.55      | 10.70       | 10,00  | 7.35 | 4.65 | 5,74 |
| 600   | 4.65 | 5.13 | 8.40 | 11.70    | 12.40      | 13.30      | 12.50       | 11.65  | 8.50 | 5.37 | 6.06 |
| 650   | 4.96 | 5.85 | 9.52 | 13.30    | 14.10      | 15.00      | 14.10       | 13,10  | 9.60 | 6.10 | 6.38 |

Tabela B.10 - Deslocamentos da laje L45FD\_CG

Tabela B.11 – Deslocamentos da laje L45FD – Direção x

|       | Desiocamentos verticais Laje L45FD (mm) |      |       |            |             |             |       |      |      |       |  |  |
|-------|-----------------------------------------|------|-------|------------|-------------|-------------|-------|------|------|-------|--|--|
| Form  |                                         |      | 1     | Número do  | n relógio d | omparado    | )1    |      |      |       |  |  |
| ruita | DI                                      | D2   | D3    | D4         | D5          | D6          | D7    | D8   | D9   | D10   |  |  |
|       |                                         |      | D     | istância a | o centro d  | la laje (mi | n)    |      |      |       |  |  |
| (kN)  | -900 -600 -285 -185 0 185 285 600 900   |      |       |            |             |             |       |      |      |       |  |  |
| 0     | 0                                       | 0    | 0     | 0          | 0           | 0           | 0     | 0    | 0    | 0     |  |  |
| 50    | 0.00                                    | 0.10 | 0.13  | 0.10       | 0.15        | 0.10        | 0.10  | 0.12 | 0.00 | 0.321 |  |  |
| 100   | 0.11                                    | 0.35 | 0.46  | 0.45       | 0.52        | 0.35        | 0.43  | 0.35 | 0.09 | 1.024 |  |  |
| 150   | 0.28                                    | 0.62 | 0.89  | 0.82       | 0.94        | 0.76        | 0.81  | 0.64 | 0.25 | 1.867 |  |  |
| 200   | 0.47                                    | 0.93 | 1.30  | 1.30       | 1.40        | 1.23        | 1.23  | 0.95 | 0,44 | 2.331 |  |  |
| 300   | 1.15                                    | 2.11 | 2.95  | 3.10       | 3.30        | 3.10        | 2.94  | 2.15 | 1.14 | 3,243 |  |  |
| 400   | 2.05                                    | 3.65 | 5,10  | 5.45       | 5.75        | 5.52        | 5.15  | 3.70 | 2,05 | 4,117 |  |  |
| 500   | 3,17                                    | 5,50 | 7.68  | 8,30       | 8,70        | 8.40        | 7.75  | 5.50 | 3.15 | 4.864 |  |  |
| 550   | 3.72                                    | 6.37 | 8.90  | 9,65       | 10,08       | 9.80        | 9.05  | 6.40 | 3.66 | 5.148 |  |  |
| 600   | 4.20                                    | 7.30 | 10.25 | 11,15      | 11.57       | 11.30       | 10,50 | 7.35 | 4,25 | 1,967 |  |  |
| 650   | -                                       | -    | -     | -          | 14,40       | -           | -     | -    | -    | -     |  |  |
| 700   | -                                       | -    | -     | -          | 17.00       | -           | -     | -    | -    | -     |  |  |

Tabela B.12 - Deslocamentos da laje L45FD - Direção y

|       |      |      | Desloca | mentos v   | erticais l  | .aje L45F   | D (mm) |      |      |      |
|-------|------|------|---------|------------|-------------|-------------|--------|------|------|------|
| Loren |      |      | ħ       | vúmero do  | o relógio o | comparad    | or     |      |      |      |
| Furça | D11  | D12  | D13     | D14        | D5          | D15         | D16    | D17  | D18  | D19  |
|       |      |      | D       | istáncia a | o centro c  | la laje (mi | m)     |      |      |      |
| (kN)  | -900 | -600 | -285    | -185       | Ü           | 185         | 285    | 600  | 900  | 1330 |
| 0     | Û    | 0    | 0       | 0          | 0           | 0           | 0      | 0    | 0    | 0    |
| 50    | 0.00 | 0.00 | 0.01    | 0.07       | 0.15        | 0,07        | 0,08   | 0.00 | 0.00 | 0.29 |
| 100   | 0,00 | 0,05 | 0,01    | 0,20       | 0.52        | 0,24        | 0,25   | 0.00 | 0.04 | 1.09 |
| 150   | 0.09 | 0,24 | 0.37    | 0,50       | 0.94        | 0.53        | 0,50   | 0.25 | 0.16 | 1,52 |
| 200   | 0.22 | 0.47 | 0.73    | 0.88       | 1,40        | 0.95        | 0.90   | 0.53 | 0.32 | 1.96 |
| 300   | 0.85 | 1.57 | 2.30    | 2.63       | 3,30        | 2,72        | 2.60   | 1,78 | 1.04 | 2,82 |
| 400   | 1.95 | 3,27 | 4,75    | 5.23       | 5.75        | 5.42        | 4.93   | 3.65 | 2.86 | 3.50 |
| 500   | 3.08 | 5.28 | 7.65    | 8.23       | 8,70        | 8.62        | 8.31   | 6.45 | 4.50 | 4.12 |
| 550   | 3.63 | 6,20 | 8,95    | 9.60       | 10,08       | 10.03       | 9.80   | 7.65 | 5.00 | 4,39 |
| 600   | 4.22 | 7.20 | 10.40   | 11.16      | 11.57       | 11,30       | 10,90  | 8.60 | 5.60 | 4.63 |
| 650   | -    | -    | -       | -          | 14,40       | -           | -      | -    | -    | -    |
| 700   | -    | -    | -       | -          | 17.00       | -           | -      | -    | -    | -    |

|       |      |      | D     | eslocame | nios vert  | icais Laje | L45FFS     | CG (mn | 1)    |      |      |
|-------|------|------|-------|----------|------------|------------|------------|--------|-------|------|------|
| E     |      |      |       | ٢        | lúmero do  | relógio c  | omparado   | )1     |       |      |      |
| Força | D19  | D18  | D17   | D16      | D15        | D5         | D6         | D7     | D8    | D9   | D10  |
|       |      |      |       | D        | istância a | o centro d | a laje (mr | n)     |       |      |      |
| (kN)  | 1350 | 900  | 600   | 285      | 185        | 0          | 185        | 285    | 600   | 900  | 1350 |
| 0     | 0    | 0    | 0     | 0        | 0          | 0          | 0          | 0      | 0     | 0    | 0    |
| 50    | 4,48 | 0.04 | 0.06  | 0,16     | 0,14       | 0.25       | 0.25       | 0.22   | 0.16  | 0,10 | 2.79 |
| 100   | 5.13 | 0.13 | 0.24  | 0.42     | 0.41       | 0.58       | 0.57       | 0.54   | 0.39  | 0.24 | 3.54 |
| 150   | 5.62 | 0.30 | 0.53  | 0.85     | 0.86       | 1.15       | 1.10       | 1.04   | 0.75  | 0.48 | 4.10 |
| 200   | 6.08 | 0.58 | 1.05  | 1.64     | 1.70       | 2.10       | 2.04       | 1.90   | 1.36  | 0.89 | 4.53 |
| 250   | 6.52 | 1.05 | 1.90  | 2.85     | 2.95       | 3.45       | 3.35       | 3,10   | 2.30  | 1,40 | 5.00 |
| 300   | 6.86 | 1.68 | 2.95  | 4.42     | 4,70       | 5.10       | 4,90       | 4.55   | 3,40  | 2.12 | 5.46 |
| 350   | 7 22 | 2.45 | 4,30  | 6,40     | 6,50       | 7.05       | 6.85       | 6,30   | 4.66  | 2,93 | 5.90 |
| 400   | 7,53 | 3,29 | 5.60  | 8,35     | 8,60       | 9,15       | 8,90       | 8.15   | 6.07  | 3.82 | 6,34 |
| 450   | 7 87 | 4,15 | 6,95  | 10,20    | 10.45      | 10,95      | 10,60      | 9,70   | 7,18  | 4,52 | 6,66 |
| 500   | 8,18 | 5,00 | 8.30  | 12.20    | 12.50      | 13,00      | 12,60      | 11.50  | 8.50  | 5,35 | 6.97 |
| 550   | 8,52 | 5,80 | 9.63  | 14,30    | 14,60      | 15.15      | 14.72      | 13.34  | 9,85  | 6.20 | 7.36 |
| 600   | 8,85 | 6,55 | 10,90 | 16.20    | 16,55      | 17.20      | 16,70      | 16,20  | 11.15 | 7.05 | 7,68 |
| 650   | 9.22 | 7,60 | 12,40 | 18.65    | 19.00      | 19.70      | 18,30      | 17.60  | 12.70 | 8,00 | 7,95 |

Tabela B.13 - Deslocamentos da laje L45FFS\_CG

Tabela B.14 - Deslocamentos da laje L45FFD CG

|       |      |      | Ľ    | eslocame | ntos vert  | icais Laje  | ELASEED     | _CG (mn | n)   |      |      |
|-------|------|------|------|----------|------------|-------------|-------------|---------|------|------|------|
| Fana  |      |      | _    | ľ        | Júmero do  | o relógio o | comparado   | זכ      |      |      |      |
| rorça | D19  | D18  | D17  | D16      | D15        | D5          | D6          | D7      | D8   | D9   | D10  |
|       |      |      |      | D        | istância a | o centro d  | la laje (mi | 11)     |      |      |      |
| (kN)  | 1350 | 900  | 600  | 285      | 185        | 0           | 185         | 285     | 600  | 900  | 1350 |
| 0     | ()   | 0    | 0    | 0        | 0          | 0           | 0           | 0       | 0    | 0    | 0    |
| 50    | 3.04 | 0.05 | 0.10 | 0.15     | 0,16       | 0.24        | 0.24        | 0.22    | 0.16 | 0.10 | 3.46 |
| 100   | 3.96 | 0,16 | 0.29 | 0,41     | (),44      | 0.59        | 0,56        | 0.54    | 0,40 | 0.26 | 4.30 |
| 150   | 4.46 | 0.34 | 0,58 | 0.84     | 0.88       | 1.10        | 1.08        | 1.00    | 0.75 | 0.48 | 4.95 |
| 200   | 4.91 | 0.62 | 1.04 | 1,50     | 1.54       | 1,74        | 1,70        | 1.60    | 1.20 | 0.75 | 5.51 |
| 250   | 5,29 | 0,98 | 1.65 | 2.40     | 2.45       | 2,57        | 2,47        | 2.32    | 1,74 | 1,09 | 6.08 |
| 300   | 5,59 | 1.40 | 2,30 | 3,40     | 3,50       | 3.55        | 3,42        | 3.20    | 2.40 | 1.50 | 6,56 |
| 350   | 5,91 | 1.97 | 3,30 | 4.78     | 5,00       | 4.90        | 4.75        | 4.43    | 3_30 | 2.10 | 7.08 |
| 400   | 6,20 | 2.55 | 4.23 | 6.15     | 6.32       | 6,18        | 6,00        | 5.57    | 4,15 | 2.62 | 7.51 |
| 450   | 6.49 | 3.10 | 5.12 | 7,42     | 7.60       | 7.50        | 7.20        | 6.80    | 5.00 | 3,17 | 7,89 |
| 500   | 6.76 | 3.80 | 6,17 | 8,95     | 9.20       | 8,97        | 8,70        | 8.25    | 6,00 | 3,78 | 8,24 |
| 550   | 7,06 | 4,40 | 7,10 | 10,40    | 10,70      | 10,40       | 10.07       | 9,54    | 6,85 | 4.35 | 8,61 |
| 600   | 7.30 | 5,18 | 8,38 | 12.30    | 12,56      | 12,20       | 11.84       | 11,25   | 7.95 | 5.00 | 8,93 |
| 650   | 7,61 | 5,80 | 9.35 | 13.80    | 14,10      | 13.70       | 13.38       | 12.80   | 8,90 | 5,60 | 9,27 |

Tabela B.15 - Deslocamentos da laje L45FFD - Direção x

|        | Deslocamentos verticais Laje LASFFD (mm) |      |       |            |            |             |       |      |      |       |  |  |
|--------|------------------------------------------|------|-------|------------|------------|-------------|-------|------|------|-------|--|--|
| Farrag |                                          |      | r     | lúmero de  | relógio o  | omparado    | 70    |      |      | _     |  |  |
| ruiça  | DI                                       | D2   | D3    | D4         | D5         | D6          | D7    | D8   | D9   | D10   |  |  |
|        |                                          |      | D     | istância a | o centro d | la laje (mi | n)    |      |      |       |  |  |
| (kN)   | -900                                     | -600 | -285  | -185       | 0          | 185         | 285   | 600  | 900  | 1350  |  |  |
| 0      | 0                                        | 0    | 0     | 0          | 0          | 0           | 0     | 0    | 0    | 0     |  |  |
| 100    | 0.16                                     | 0.27 | 0.35  | 0.40       | 0.45       | 0,40        | 0.40  | 0.30 | 0.08 | 0.465 |  |  |
| 200    | 0.88                                     | 1.51 | 2.13  | 2.30       | 2.33       | 2,32        | 2.18  | 1.55 | 0.80 | 1.662 |  |  |
| 300    | 88                                       | 3.15 | 4,43  | 4.80       | 4,90       | 4.83        | 4,50  | 3.30 | 1.75 | 2.502 |  |  |
| 400    | 3.13                                     | 5.26 | 7 43  | 8.02       | 8.25       | 8.05        | 7.54  | 5.35 | 2.90 | 3.281 |  |  |
| 450    | 3.73                                     | 6.30 | 9.13  | 9.70       | 9.95       | 9.75        | 9,40  | 6,40 | 3.50 | 3.585 |  |  |
| 500    | 4.40                                     | 7.46 | 11.00 | 11.60      | 11.95      | 11.70       | 11.10 | 7.55 | 4.10 | 3.966 |  |  |
| 550    | 5.18                                     | 8,90 | 13.50 | 14,07      | 14.38      | 14,10       | 13.50 | 8.95 | 4.85 | 4.339 |  |  |
| 600    | -                                        | -    | -     | -          | 17,00      | -           | -     | -    | -    | -     |  |  |

|       |                                  |      | Deslocar | nentos ve | erticais L | aje L45Fl | FD (mm) |      |      |      |  |  |  |  |
|-------|----------------------------------|------|----------|-----------|------------|-----------|---------|------|------|------|--|--|--|--|
| Form  |                                  |      | N        | lúmero do | relógio o  | omparado  | )1      |      |      |      |  |  |  |  |
| TUIÇA | D11                              | D12  | D13      | DI4       | D5         | D15       | D16     | D17  | D18  | D19  |  |  |  |  |
|       | Distância ao centro da laje (mm) |      |          |           |            |           |         |      |      |      |  |  |  |  |
| (kN)  | -900                             | -600 | -285     | -185      | 0          | 185       | 285     | 600  | 900  | 1350 |  |  |  |  |
| 0     | 0                                | 0    | 0        | 0         | 0          | 0         | 0       | 0    | 0    | 0    |  |  |  |  |
| 100   | 0,05                             | 0,18 | 0,26     | 0,23      | 0,45       | 0,24      | 0,23    | 0,17 | 0,10 | 1,01 |  |  |  |  |
| 200   | 0.60                             | 1.10 | 1.70     | 1.73      | 2.33       | 1,70      | 1.68    | I.17 | 0.68 | 2,34 |  |  |  |  |
| 300   | 1.30                             | 2.75 | 4.16     | 4.27      | 4.90       | 4.20      | 4.14    | 2.78 | 1.64 | 3.15 |  |  |  |  |
| 400   | 2.75                             | 4,80 | 7.38     | 7.44      | 8,25       | 7.34      | 7.27    | 4.78 | 2.80 | 3.83 |  |  |  |  |
| 450   | 3,43                             | 5.95 | 9.30     | 9.40      | 9.95       | 9.24      | 9.15    | 5.88 | 3.50 | 4.54 |  |  |  |  |
| 500   | 4.13                             | 7.15 | 11.30    | 11.34     | 11.95      | 11.14     | 11.06   | 7.03 | 4.22 | 4.75 |  |  |  |  |
| 550   | 4.83                             | 8.85 | 14.10    | 14.19     | 14.38      | 14.00     | 13.93   | 8.54 | 5,20 | 4.90 |  |  |  |  |
| 600   | -                                | -    | -        | -         | 17.00      | -         | -       | -    | -    | -    |  |  |  |  |

Tabela B.16 – Deslocamentos da laje L45FFD – Direção y

Tabela B.17 – Deslocamentos da laje L45FFD\_AC2 – Direção x

|       | Deslocamentos verticais Laje L45FFD AC2 (mm) |       |       |            |             |             |       |       |      |      |  |  |
|-------|----------------------------------------------|-------|-------|------------|-------------|-------------|-------|-------|------|------|--|--|
| Force |                                              |       | N     | Vúmero de  | o relógio o | omparade    | or    |       |      | -    |  |  |
| rorça | D1                                           | D2    | D3    | D4         | D5          | D6          | D7    | D8    | D9   | D10  |  |  |
|       |                                              |       | D     | istância a | o centro c  | la laje (mi | n)    |       |      |      |  |  |
| (kN)  | 900                                          | 600   | 285   | 185        | 0           | 185         | 285   | 600   | 900  | 1350 |  |  |
| 0     | 0                                            | 0     | 0     | 0          | 0           | 0           | 0     | 0     | 0    | 0    |  |  |
| 100   | 0.28                                         | 0.51  | 0.73  | 0.75       | 0.78        | 0.77        | 0.72  | 0.52  | 0.31 | 1.31 |  |  |
| 200   | 0.95                                         | 1.65  | 2.32  | 2,50       | 2.58        | 2.50        | 2.30  | 1.66  | 1.00 | 1.89 |  |  |
| 300   | 1.87                                         | 3.20  | 4,45  | 4.90       | 5.05        | 4.75        | 4.40  | 3.20  | 1.90 | 2.49 |  |  |
| 400   | 2.96                                         | 5.07  | 7.05  | 7.70       | 7.92        | 7.45        | 6.90  | 5.00  | 3.00 | 3.08 |  |  |
| 500   | 4.04                                         | 6,88  | 9.70  | 10.55      | 10.80       | 10.40       | 9.50  | 6.80  | 4.10 | 3.64 |  |  |
| 600   | 5.10                                         | 8.73  | 12.40 | 13.50      | 13.90       | 13,40       | 12.20 | 8.70  | 5.20 | 4,13 |  |  |
| 700   | 6.18                                         | 10.60 | 15.20 | 16.50      | 16,90       | 16.40       | 15.00 | 10,50 | 6.30 | 4.62 |  |  |
| 800   | 7,18                                         | 12.33 | 18.10 | 19.70      | 20.25       | 19,60       | 18,00 | 12,30 | 7.35 | 5.08 |  |  |
| 850   | -                                            | -     | -     | -          | 23.00       | -           | -     | -     | -    | -    |  |  |
| 900   | -                                            | -     | -     |            | 25,00       | -           | -     | -     | -    | -    |  |  |
| 950   | -                                            | -     | •     | -          | 28.00       | -           | •     | -     | -    | -    |  |  |
| 1000  | -                                            | -     | -     | -          | 32.00       | -           | -     | -     |      | -    |  |  |
| 1050  | -                                            | -     | -     | -          | 35.00       | -           | -     | -     | -    | -    |  |  |
| 1100  | -                                            | -     | -     | -          | 40.00       | -           | -     | -     | -    | -    |  |  |

|       |      | D     | eslocamer | ntos verti | cais Laje  | L45FFD     | AC2 (mi | m)    |      |  |
|-------|------|-------|-----------|------------|------------|------------|---------|-------|------|--|
| E     |      |       | N         | lúmero do  | relogio e  | omparado   | 10      |       |      |  |
| Força | D11  | D12   | D13       | D14        | D5         | D15        | D16     | D17   | D18  |  |
|       |      |       | D         | istância a | o centro d | a laje (mr | n)      |       |      |  |
| (kN)  | 900  | 600   | 285       | 185        | 0          | 185        | 285     | 600   | 900  |  |
| 0     | 0    | 0     | 0         | 0          | 0          | 0          | 0       | 0     | 0    |  |
| 100   | 0.16 | 0.28  | 0.42      | 0.42       | 0.78       | 0.23       | 0.42    | 0.27  | 0.14 |  |
| 200   | 0.55 | 1.00  | 1.50      | 1.50       | 2.58       | 1.35       | 1.50    | 1.04  | 0.55 |  |
| 300   | 1.30 | 2.24  | 3.40      | 3.41       | 5.05       | 3.25       | 3.37    | 2.35  | 1.30 |  |
| 400   | 2.32 | 3 92  | 5.95      | 6.00       | 7.92       | 5.80       | 5.90    | 4.05  | 2.25 |  |
| 500   | 3,40 | 5.66  | 8.65      | 8,70       | 10,80      | 8,50       | 8.56    | 5.80  | 3.25 |  |
| 600   | 4.50 | 7,45  | 11,40     | 11,50      | 13,90      | 11,30      | 11,30   | 7,60  | 4,30 |  |
| 700   | 5,65 | 9.28  | 14.30     | 14,35      | 16,90      | 14,18      | 14.12   | 9,48  | 5 39 |  |
| 800   | 6.80 | 11.15 | 17,35     | 17,40      | 20,25      | 17,20      | 17,10   | 11.40 | 6.50 |  |
| 850   | -    | -     | -         | -          | 23,00      | -          | -       | -     | -    |  |
| 900   | -    | -     | -         | -          | 25,00      | -          | -       | -     | -    |  |
| 950   | -    | -     | -         | -          | 28,00      | -          | -       | -     | -    |  |
| 1000  | -    | -     | -         | -          | 32.00      | -          | -       | -     | -    |  |
| 1050  | -    | -     | -         | -          | 35,00      | -          | -       | -     | -    |  |
| 1100  | -    | -     | -         | -          | 40.00      | -          | -       | -     | -    |  |

Tabela B.18 Deslocamentos da laje L45FFD\_AC2 - Direção y

Tabela B.19 – Deslocamentos da laje L45FFD\_AC3 – Direção x

|       |      | D     | eslocame | ntos verti | cais Laje   | L45FFD      | AC3 (m | m)    |      |  |
|-------|------|-------|----------|------------|-------------|-------------|--------|-------|------|--|
| Europ |      |       | ٢        | lúmero do  | o relógio u | omparado    | 70     |       |      |  |
| гогса | DI   | D2    | D3       | D4         | D5          | D6          | D7     | D8    | D9   |  |
|       |      |       | D        | istância a | o centro d  | la laje (mi | n)     |       |      |  |
| (kN)  | 900  | 600   | 285      | 185        | 0           | 185         | 285    | 600   | 900  |  |
| 0     | 0    | 0     | 0        | 0          | 0           | 0           | 0      | 0     | 0    |  |
| 100   | 0.25 | 0.37  | 0.50     | 0.52       | 0.55        | 0.52        | 0.50   | 0.36  | 0.22 |  |
| 200   | 0.78 | 1.26  | 1.73     | 1.84       | 1.93        | 1.84        | 1.74   | 1.24  | 0.75 |  |
| 300   | 1.49 | 2.46  | 3.41     | 3.68       | 3.84        | 3.65        | 3.42   | 2.43  | 1.45 |  |
| 400   | 2.52 | 4.30  | 5.93     | 6.40       | 6.68        | 6.28        | 5.82   | 4 18  | 2.46 |  |
| 500   | 3,63 | 6.02  | 8,36     | 8.95       | 9,40        | 8,90        | 8.30   | 5.92  | 3,52 |  |
| 600   | 4,77 | 7_94  | 11.05    | 11,95      | 12,40       | 11,72       | 10,90  | 7,70  | 4,60 |  |
| 650   | 5,34 | 8,90  | 12,60    | 13.45      | 13,90       | 13,20       | 12,30  | 8.65  | 5,12 |  |
| 700   | 5,95 | 9.96  | 14.10    | 15,00      | 15.52       | 14.70       | 13,70  | 9,60  | 5.70 |  |
| 750   | 6.35 | 10.74 | 15.58    | 16,60      | 17,12       | 16,22       | 15.15  | 10,10 | 6.15 |  |
| 800   | 6,95 | 11.87 | 17,05    | 18,20      | 18,80       | 17.80       | 16,65  | 11.30 | 6.70 |  |
| 850   | -    | -     | -        | -          | 22,00       | -           | -      | -     | -    |  |
| 900   | -    | -     | -        | -          | 23,00       | -           | -      | -     | -    |  |
| 950   | -    |       |          |            | 25,00       |             | -      |       |      |  |

|       |      | Ð     | eslocame | ntos verti | cais l aje  | L45FFD      | AC3 (m | m)    |      |   |
|-------|------|-------|----------|------------|-------------|-------------|--------|-------|------|---|
| Long  |      |       | N        | Número do  | o relógio o | omparade    | )[     |       |      |   |
| rorça | DII  | DI2   | D13      | DI4        | D5          | D15         | D16    | D17   | D18  |   |
|       |      |       | D        | istância a | o centro d  | la laje (mi | m)     |       |      |   |
| (kN)  | 900  | 600   | 285      | 185        | 0           | 185         | 285    | 600   | 900  |   |
| 0     | 0    | 0     | 0        | 0          | 0           | 0           | 0      | 0     | 0    |   |
| 100   | 0.04 | 0.14  | 0.28     | 0.28       | 0.55        | 0.28        | 0.29   | 0.20  | 0.10 |   |
| 200   | 0.28 | 0.61  | 1.00     | 1.00       | 1.93        | 1.00        | 1.00   | 0.70  | 0,36 |   |
| 300   | 0.81 | 1.51  | 2.36     | 2.38       | 3.84        | 2.39        | 2.38   | 1.63  | 0.92 | - |
| 400   | 1,80 | 3,20  | 4.89     | 4,94       | 6,68        | 4.88        | 4.85   | 3.26  | 1.93 |   |
| 500   | 2,84 | 4.94  | 7,54     | 7,59       | 9,40        | 7.50        | 7,46   | 5,00  | 2.95 |   |
| 600   | 3,90 | 6.70  | 10.30    | 10,37      | 12.40       | 10,29       | 10,18  | 6.85  | 4.05 | _ |
| 650   | 4,43 | 7,60  | 11,70    | 11.78      | 13.90       | 11.67       | 11,60  | 7.80  | 4.58 |   |
| 700   | 5.04 | 8.62  | 13.28    | 13.39      | 15.52       | 13,26       | 13,20  | 8.83  | 5.18 |   |
| 750   | 5.60 | 9.56  | 14.80    | 14.90      | 17,12       | 14,74       | 14.66  | 9,78  | 5.74 |   |
| 800   | 6,12 | 10,44 | 16,25    | 16,35      | 18,80       | 16.20       | 16,08  | 10,70 | 6,28 |   |
| 850   | -    | -     | -        | -          | 22,00       |             | -      | -     |      |   |
| 900   | -    | -     | -        | -          | 23,00       | -           | -      | -     | -    |   |
| 950   | -    |       | -        | -          | 25,00       | -           | -      | -     |      |   |

Tabela B.20 - Deslocamentos da laje L45FFD\_AC3 - Direção y

Tabela B.21 – Deslocamentos da laje L45FFD\_AC4 – Direção x

|        |      | D    | eslocame | ntos verti | cais Laje   | L45FFD      | AC4 (m | m)    |      |      |
|--------|------|------|----------|------------|-------------|-------------|--------|-------|------|------|
| Farm   |      |      | 1        | iúmero do  | o relógio o | comparad    | or     |       |      |      |
| r orça | DI   | D2   | D3       | D4         | D5          | D6          | D7     | D8    | D9   | D10  |
|        |      |      | D        | istância a | o centro d  | la laje (mi | n)     |       |      |      |
| (kN)   | 900  | 600  | 285      | 185        | 0           | 185         | 285    | 600   | 900  | 1350 |
| 0      | 0    | 0    | 0        | 0          | 0           | 0           | 0      | 0     | 0    | 0    |
| 100    | 0.24 | 0.39 | 0,52     | 0.55       | 0,58        | 0.55        | 0.50   | 0.39  | 0,23 | 0.81 |
| 200    | 0.70 | 1,18 | 1.63     | 1,72       | 1.88        | 1.75        | 1,64   | 1,22  | 0,65 | 1.71 |
| 300    | 1.55 | 2.61 | 3,62     | 3,87       | 4,18        | 3.97        | 3.66   | 2.72  | 1,53 | 2,54 |
| 400    | 2.58 | 4.32 | 6.03     | 6.50       | 7.00        | 6.68        | 6.20   | 4.52  | 2,65 | 3.33 |
| 450    | 3,17 | 5.28 | 7,48     | 8,00       | 8.60        | 8.20        | 7,58   | 5.50  | 3,20 | 3.67 |
| 500    | 3.65 | 6.08 | 8.80     | 9.37       | 10.00       | 9.58        | 8.90   | 6.39  | 3,80 | 4.00 |
| 550    | 4.20 | 7.00 | 10.25    | 10.90      | 11.55       | 11.15       | 10,40  | 7.37  | 4.38 | 4.34 |
| 600    | 4.80 | 8.07 | 11.94    | 12.60      | 13.36       | 12,86       | 12.00  | 8,43  | 5,00 | 4,66 |
| 650    | 5,30 | 8.92 | 13,32    | 14.05      | 14,90       | 14.34       | 13.50  | 9.36  | 5.57 | 4.96 |
| 700    | 5,86 | 9,90 | 14,90    | 15.05      | 16.50       | 15.95       | 15,00  | 10,40 | 6,12 | 5,32 |

Tabela B.22 - Deslocamentos da laje L45FFD\_AC4 - Direção y

|        |      | D    | eslocame | ntos verti | cais Laje   | L45FFD     | AC4 (m | m)   |      |      |
|--------|------|------|----------|------------|-------------|------------|--------|------|------|------|
| Fores  |      |      | ľ        | vúmero do  | o relógio o | omparad    | or     |      |      |      |
| I UIÇA | D11  | D12  | D13      | D14        | D5          | D15        | D16    | D17  | D18  | D19  |
|        |      |      | D        | istância a | o centro d  | la laje (m | m)     |      | -    |      |
| (kN)   | 900  | 600  | 285      | 185        | 0           | 185        | 285    | 600  | 900  | 1350 |
| 0      | 0    | 0    | 0        | 0          | 0           | 0          | 0      | 0    | 0    | 0    |
| 100    | 0.06 | 0.20 | 0.33     | 0.35       | 0.58        | 0.33       | 0.34   | 0.24 | 0,12 | 0.85 |
| 200    | 0,37 | 0,82 | 1.31     | 1.35       | 1.88        | 1.32       | 1.29   | 0.88 | 0.45 | 1.58 |
| 300    | 1,10 | 2.18 | 3,38     | 3.44       | 4.18        | 3.40       | 3.30   | 2,20 | 1.18 | 2.24 |
| 400    | 2,03 | 3.84 | 6.05     | 6.12       | 7,00        | 6.06       | 6,00   | 3,90 | 2,10 | 2,80 |
| 450    | 2,66 | 4.95 | 7.81     | 7,90       | 8.60        | 7.80       | 7.79   | 5,04 | 2.80 | 3,08 |
| 500    | 3.15 | 5.82 | 9,20     | 9.30       | 10.00       | 9,20       | 9,20   | 5.90 | 3.30 | 3,32 |
| 550    | 3,68 | 6.74 | 10.78    | 10.90      | 11.55       | 10.76      | 10,77  | 6.85 | 3.83 | 3.55 |
| 600    | 4.26 | 7,75 | 12.38    | 12.50      | 13,36       | 12,33      | 12.35  | 7.83 | 4,40 | 3,82 |
| 650    | 4.80 | 8.65 | 13,90    | 14.00      | 14.90       | 13.85      | 13,85  | 8.75 | 4.90 | 4,06 |
| 700    | 5.32 | 9.60 | 15.50    | 15.65      | 16.50       | 15,44      | 15.44  | 9.70 | 5.50 | 4.31 |

|       |      | D    | eslocame | atos verti | cais Laje  | L45FFD     | AC5 (mi | n)   |      |   |
|-------|------|------|----------|------------|------------|------------|---------|------|------|---|
| Europ |      |      | N        | lúmero do  | relógio c  | omparado   | 10      |      |      |   |
| rorça | DI   | D2   | D3       | D4         | D5         | D6         | D7      | D8   | D9   | - |
|       |      |      | D        | istância a | o centro d | a laje (mi | n)      |      |      |   |
| (kN)  | 900  | 600  | 285      | 185        | 0          | 185        | 285     | 600  | 900  |   |
| 0     | 0    | 0    | 0        | 0          | 0          | 0          | 0       | 0    | 0    |   |
| 100   | 0.30 | 0.49 | 0.65     | 0.69       | 0.73       | 0.70       | 0.68    | 0.51 | 0.32 |   |
| 200   | 0.89 | 1.49 | 2.00     | 2.15       | 2.26       | 2.23       | 2.05    | 1.56 | 0.97 |   |
| 300   | 1.71 | 2.87 | 3.90     | 4.12       | 4.36       | 4.22       | 4.00    | 3.00 | 1.80 |   |
| 400   | 2.65 | 4.50 | 6.12     | 6.50       | 6.82       | 6.62       | 6.24    | 4.64 | 2.70 |   |
| 450   | 3.12 | 5.26 | 7.25     | 7.70       | 8,10       | 7.85       | 7.42    | 5.50 | 3.20 |   |
| 500   | 3,64 | 6.15 | 8,50     | 9,00       | 9.50       | 9.25       | 8 75    | 6,40 | 3,70 |   |
| 550   | 4.17 | 7,05 | 9.90     | 10,50      | 11,05      | 10,80      | 10,20   | 7 42 | 4,29 |   |
| 600   | 4,69 | 8,00 | 11.25    | 11.92      | 12.46      | 12,14      | 11,50   | 8.25 | 4,77 |   |
| 650   | 5.22 | 8.88 | 12.65    | 13.40      | 14.00      | 13.64      | 12.95   | 9.18 | 5,25 |   |
| 700   | -    | -    | -        | -          | 15.00      | -          | -       | -    | -    |   |
| 750   | -    | -    | -        | -          | 17.00      | -          | -       | -    | -    |   |

Tabela B.23 – Deslocamentos da laje L45FFD\_AC5 – Direção x

Tabela B 24 - Deslocamentos da laje L45FFD\_AC5 - Direção y

|       | -    | D    | eslocame | nios verti  | cais Laje  | L45FFD      | AC5 (m | m)   |      |   |
|-------|------|------|----------|-------------|------------|-------------|--------|------|------|---|
| Famou |      |      | ľ        | Júmero do   | relógio o  | omparado    | 70     |      |      |   |
| roiça | D11  | D12  | D13      | D14         | D5         | D15         | D16    | D17  | D18  |   |
|       |      |      | D        | fistância a | o centro d | la laje (mi | n)     |      |      | _ |
| (kN)  | 900  | 600  | 285      | 185         | 0          | 185         | 285    | 600  | 900  |   |
| 0     | 0    | 0    | 0        | 0           | 0          | 0           | 0      | 0    | 0    | - |
| 100   | 0.17 | 0.31 | 0.41     | 0,36        | 0,73       | 0.47        | 0.45   | 0.32 | 0.17 |   |
| 200   | 0.53 | 1_00 | 1.40     | 1.48        | 2.26       | 1.50        | 1.50   | 1.03 | 0.56 |   |
| 300   | 1.25 | 2.30 | 3.34     | 3.38        | 4.36       | 3.50        | 3.46   | 2.40 | 1.34 |   |
| 400   | 2.23 | 4.00 | 5.85     | 5.87        | 6.82       | 6.00        | 6.00   | 4.05 | 2.30 |   |
| 450   | 2.72 | 4.84 | 7.14     | 7,15        | 8,10       | 7,36        | 7.30   | 4.95 | 2.80 |   |
| 500   | 3.27 | 5,77 | 8.55     | 8,58        | 9,50       | 8,80        | 8,70   | 5,86 | 3,34 |   |
| 550   | 3,82 | 6,70 | 10,05    | 10,31       | 11,05      | 10,45       | 10,35  | 6,75 | 3,85 |   |
| 600   | 4,32 | 7.55 | 11,45    | 11.47       | 12,46      | 11,77       | 11.68  | 7,64 | 4.36 |   |
| 650   | 4,90 | 8.50 | 13.07    | 13.46       | 14.00      | 13,40       | 13.28  | 8,70 | 4.93 |   |
| 700   | -    | -    |          | -           | 15,00      | -           | -      | -    | -    |   |
| 750   | -    | -    | -        | -           | 17,00      | -           | -      |      | -    |   |

|       |      |       | Deslocan | nentos ve  | rticais La | je L45_A    | C1 (mm) |       |             |      |
|-------|------|-------|----------|------------|------------|-------------|---------|-------|-------------|------|
| Farma |      |       | N        | lúmero do  | relógio o  | omparado    | JL      |       |             |      |
| rorça | D1   | D2    | D3       | D4         | D5         | D6          | D7      | D8    | D9          | D10  |
|       |      |       | D        | istância a | o centro d | la laje (mi | n)      |       |             |      |
| (kN)  | 900  | 600   | 285      | 185        | 0          | 185         | 285     | 600   | <b>9</b> 00 | 1350 |
| 0     | 0    | 0     | 0        | 0          | 0          | 0           | 0       | 0     | 0           | 0    |
| 100   | 0,14 | 0.33  | 0.39     | 0,48       | 0.50       | 0.48        | 0.41    | 0.35  | 0.20        | 1.16 |
| 200   | 0.34 | 0.65  | 0.85     | 0.97       | 1.02       | 1.00        | 0.90    | 0,70  | 0,41        | 1.75 |
| 300   | 1.35 | 2.30  | 3.15     | 3.50       | 3.70       | 3.60        | 3.30    | 2.40  | 1,40        | 3.01 |
| 400   | 2.35 | 3.95  | 5.50     | 6.00       | 7.00       | 6.25        | 5.65    | 4.08  | 2.39        | 3.81 |
| 500   | 3.40 | 5.70  | 7.90     | 8.60       | 9.50       | 8.60        | 8.05    | 5.80  | 3.37        | 4.52 |
| 600   | 4.35 | 7.30  | 10.25    | 11.15      | 11.50      | 11.20       | 10.45   | 7.50  | 4.40        | 5.14 |
| 700   | 5.39 | 9.02  | 12.65    | 13.70      | 14.10      | 13.90       | 12.95   | 9.25  | 5.35        | 5.78 |
| 800   | 6.42 | 10.52 | 15.00    | 15.90      | 16.80      | 16.00       | 15.35   | 10.78 | 6.25        | 6.42 |
| 850   | 6.95 | 11.45 | 16.40    | 17.70      | 18.35      | 18.05       | 16.80   | 11.79 | 6.80        | 6.73 |
| 900   | 7,60 | 12.62 | 18.00    | 19,50      | 20,15      | 19,87       | 18,40   | 12,90 | 7,45        | 7,04 |
| 950   | 8,27 | 13,72 | 19,60    | 21.30      | 22,10      | 21,70       | 20.05   | 14,05 | 8.05        | 7.32 |
| 1000  | -    | -     | -        | -          | 25,00      | -           | -       | -     | -           | -    |
| 1050  | -    | -     | -        | -          | 28.00      | -           | -       | -     | -           | -    |
| 1100  | -    | -     | -        | -          | 30.00      | -           | -       | -     | -           | -    |
| 1150  | -    | -     | -        | -          | 34.00      | -           | -       | -     | -           | -    |

Tabela B.25 – Deslocamentos da laje L45\_AC1 – Direção x

Tabela B.26 - Deslocamentos da laje L45\_AC1 - Direção y

|       |      |       | Deslocan | nentos ve  | rticais La | je L45 A    | C1 (mm) |       |      |      |
|-------|------|-------|----------|------------|------------|-------------|---------|-------|------|------|
| Force |      |       | 7        | lúmero do  | relógio o  | omparado    | or      |       |      |      |
| rorça | D11  | D12   | D13      | D14        | D5         | D15         | D16     | D17   | D18  | D19  |
|       |      |       | D        | istância a | o centro d | la laje (mr | 11)     |       |      |      |
| (kN)  | 900  | 600   | 285      | 185        | 0          | 185         | 285     | 600   | 900  | 1350 |
| 0     | 0    | 0     | 0        | 0          | 0          | 0           | 0       | 0     | 0    | 0    |
| 100   | 0,17 | 0.28  | 0.38     | 0.38       | 0,50       | 0.40        | 0.35    | 0.26  | 0.15 | 0.84 |
| 200   | 0.30 | 0.50  | 0,70     | 0.73       | 1.02       | 0.72        | 0.69    | 0.40  | 0,30 | 1.36 |
| 300   | 1.04 | 1.85  | 2.70     | 2.90       | 3.70       | 2.95        | 2.75    | 1.85  | 1.10 | 2.60 |
| 400   | 2.00 | 3.55  | 5.10     | 5.40       | 7.00       | 5.40        | 5.10    | 3.45  | 2.05 | 3.35 |
| 500   | 3,00 | 5.25  | 7,50     | 7.90       | 9.50       | 7.95        | 7.52    | 5.15  | 3,00 | 3.90 |
| 600   | 4.10 | 7.05  | 10.00    | 10.48      | 11.50      | 10,50       | 10.00   | 6.90  | 4.08 | 4.41 |
| 700   | 5.20 | 8.92  | 12.73    | 13.25      | 14.10      | 13.25       | 12.65   | 8.75  | 5.15 | 4.88 |
| 800   | 6.38 | 10.90 | 15.54    | 16.15      | 16.80      | 16.15       | 15.45   | 10.70 | 6.30 | 5.44 |
| 850   | 7,00 | 11.90 | 17,00    | 17.65      | 18.35      | 17,72       | 16.90   | 11.70 | 6.90 | 5.70 |
| 900   | 7.65 | 13.05 | 18.70    | 19.40      | 20.15      | 19.35       | 18.55   | 12.80 | 7.55 | 5.99 |
| 950   | 8.40 | 15.30 | 20.60    | 21.40      | 22.10      | 21.30       | 20.40   | 15.00 | 8.25 | 6.30 |
| 1000  | -    | -     | -        | -          | 25.00      | -           | -       | -     | -    | -    |
| 1050  | -    | -     | -        | -          | 28.00      | -           | -       | -     | -    | -    |
| 1100  | -    | -     | -        | -          | 30.00      | -           | -       | -     | -    | -    |
| 1150  | -    | -     | -        | -          | 34.00      | -           | -       | -     | -    |      |

|         |      |       | Deslocan | nentos ve  | rticais La | je LAS A   | C5 (mm) |       |      |  |
|---------|------|-------|----------|------------|------------|------------|---------|-------|------|--|
| Freedow |      |       | ٢        | lúmero do  | relógio e  | omparado   | )r      |       |      |  |
| roiça   | Dl   | D2    | D3       | D4         | D5         | D6         | D7      | D8    | D9   |  |
|         |      |       | D        | istância a | o centro d | a laje (mr | n)      |       |      |  |
| (kN)    | 900  | 600   | 285      | 185        | 0          | 185        | 285     | 600   | 900  |  |
| 0       | 0    | 0     | 0        | 0          | 0          | 0          | 0       | 0     | 0    |  |
| 100     | 0.18 | 0.32  | 0.45     | 0.46       | 0.47       | 0.46       | 0.45    | 0.35  | 0.21 |  |
| 200     | 0.56 | 0.94  | 1.32     | 1.40       | 1.48       | 1.41       | 1.33    | 1.00  | 0.62 |  |
| 300     | 1.31 | 2.20  | 3.10     | 3.35       | 3,50       | 3.35       | 3.10    | 2.27  | 1.40 |  |
| 400     | 2.40 | 4.00  | 5.50     | 6.00       | 6.20       | 6.00       | 5.58    | 4.00  | 2.40 |  |
| 450     | 2.94 | 4,90  | 6,80     | 7.35       | 7.60       | 7,40       | 6,90    | 4.93  | 3,00 |  |
| 500     | 3,50 | 5.83  | 8.05     | 8,70       | 9,00       | 8,75       | 8.20    | 5.90  | 3.58 |  |
| 550     | 4.00 | 6.70  | 9.25     | 10,00      | 10.43      | 10.20      | 9.50    | 6,80  | 4.14 |  |
| 600     | 4.50 | 7,50  | 10,45    | 11,30      | 11.70      | 11.40      | 10,60   | 7,58  | 4,60 |  |
| 650     | 5.10 | 8,50  | 11.80    | 12,80      | 13.20      | 12,90      | 12,05   | 8,60  | 5,25 |  |
| 700     | 5,70 | 9 50  | 13.30    | 14,30      | 14.80      | 14.43      | 13.44   | 9.53  | 5,83 |  |
| 750     | 6.30 | 10.50 | 14,70    | 15,80      | 16,40      | 16,00      | 14.85   | 10,50 | 6,45 |  |
| 800     | -    | -     | -        | -          | 19,00      | -          | -       |       | •    |  |
| 850     | -    | -     | -        | -          | 21,00      | -          | -       | -     | -    |  |
| 900     | -    |       |          | -          | 22.00      | -          |         |       |      |  |
| 950     | -    | -     | -        | -          | 24.00      | -          | -       | -     | -    |  |
| 1000    | -    | -     | -        | -          | 27.00      | -          | -       | -     | -    |  |

Tabela B.27 - Deslocamentos da laje L45\_AC5 - Direção x

Tabela B.28 - Deslocamentos da laje L45\_AC5 - Direção y

|       |      |       | Deslocan | nentos ve  | rticais La | ije L45 A   | C5 (mm) |       |      |   |
|-------|------|-------|----------|------------|------------|-------------|---------|-------|------|---|
| Force |      |       | ١        | lúmero do  | relógio o  | omparado    | )[      |       |      |   |
| rotta | D11  | D12   | D13      | D14        | D5         | D15         | D16     | D17   | D18  |   |
|       |      |       | D        | istância a | o centro d | la laje (mr | n)      |       |      |   |
| (kN)  | 900  | 600   | 285      | 185        | 0          | 185         | 285     | 600   | 900  |   |
| 0     | 0    | 0     | 0        | 0          | 0          | 0           | 0       | 0     | 0    |   |
| 100   | 0.17 | 0.29  | 0.35     | 0.35       | 0.47       | 0.35        | 0.31    | 0.23  | 0.13 |   |
| 200   | 0.36 | 0.67  | 0.95     | 1.00       | 1.48       | 0.97        | 0.90    | 0.64  | 0.35 |   |
| 300   | 0.92 | 1.66  | 2.38     | 2.55       | 3.50       | 2.46        | 2.35    | 1.65  | 0.95 |   |
| 400   | 2.00 | 3.43  | 4.94     | 5.25       | 6.20       | 5.12        | 5.00    | 3.44  | 2.05 |   |
| 450   | 2.58 | 4.43  | 6.30     | 6,70       | 7,60       | 6.54        | 6.23    | 4.42  | 2,65 |   |
| 500   | 3.12 | 5,35  | 7 64     | 8,05       | 9,00       | 7,85        | 7.55    | 5,35  | 3 20 | 1 |
| 550   | 4,05 | 6,70  | 9.45     | 9.88       | 10,43      | 9,65        | 9.32    | 6,68  | 4,15 |   |
| 600   | 4.78 | 7,80  | 11.00    | 11.45      | 11,70      | 11.25       | 10,90   | 7,82  | 5,00 |   |
| 650   | 5.50 | 8,95  | 12,50    | 13.08      | 13,20      | 12.85       | 12,43   | 8,95  | 5,65 |   |
| 700   | 6,20 | 10.08 | 14,20    | 14,80      | 14,80      | 14.55       | 14,10   | 10,15 | 6,40 |   |
| 750   | 6,90 | 11.20 | 15,80    | 16,38      | 16,40      | 16.15       | 15.60   | 11.20 | 7.05 |   |
| 800   | -    | -     | -        | ~          | 19,00      | -           | -       | -     | -    |   |
| 850   |      | -     | -        | -          | 21.00      | -           | -       |       | -    |   |
| 900   |      |       | -        | -          | 22.00      |             |         |       | -    |   |
| 950   | -    | -     | -        | -          | 24.00      |             | -       |       | -    |   |
| 1000  | -    | -     | -        | -          | 27.00      | -           | -       | -     | -    |   |

## C - CÁLCULO DA RESISTÊNCIA À FLEXÃO DAS LAJES UTILIZANDO A TEORIA DAS LINHAS DE RUPTURA

A resistência à flexão das lajes da pesquisa foram determinadas a partir da configuração das linhas de ruptura apresentadas na Fig. C.1.



Figura C.1 – Linhas de ruptura para as lajes dos grupos 1.2 e 3

Sendo

$$a_x = 1350 - \frac{c_{min}}{2}$$
 (mm)  
 $a_y = 1350 - \frac{c_{max}}{2}$  (mm)  
 $e_x = e_y = 525$  mm  
 $l_x - l_y = 2700$  mm

Aplicando um deslocamento virtual unitário no ponto C (pilar), e considerando o deslocamento dos pontos de carga iguais a zero, tem-se:

- Deslocamento do ponto B =  $\Delta B = \frac{e_x}{a_y}$ 

- Rotação da linha de ruptura no ponto B =  $\alpha$  = =  $\frac{\Delta B}{\overline{DO} + \overline{OB}} = \frac{\Delta B}{e_{j} + \left(825 - \frac{c_{max}}{2}\right)\Delta B}$ 

- Deslocamento do ponto A =  $\Delta A = \frac{e_y}{q}$ 

- Rotação da linha de ruptura no ponto A =  $\beta = \frac{\Delta A}{\overline{OE} + \overline{AO}} = \frac{\Delta A}{e_{\pm} + \left(825 - \frac{c_{\min}}{2}\right)\Delta A}$ 

- Deslocamento do ponto C e demais vértices do pilar =  $\Delta C = 1$ 

- Rotação da linha de ruptura na face do pilar (direção x) =  $\chi = \frac{1}{a_r}$ 

- Rotação da linha de ruptura na face do pilar (direção y) =  $\delta = \frac{I}{a}$ 

Aplicando o Principio dos Trabalhos Virtuais, obtem-se:

Wexterno = Winterno  $V_{\text{flex}} = \Sigma$  (trabalho interno das linhas de escoamento do tipo (a), (b) e (c))

$$V_{plax} = 2m_{\mu} \left\{ \frac{I_x}{a_y} + \frac{I_y}{a_x} - 2\left(\frac{a_y}{a_x}f_x + \frac{a_x}{a_y}f_y\right) \right\}$$

Onde  

$$f_{x} = \frac{e_{y}}{a_{y}} \frac{\frac{e_{x}}{a_{x}} \left(\frac{a_{y}}{e_{y}} - I\right)}{I + \frac{e_{x}}{a_{x}} \left(\frac{a_{y}}{e_{y}} - I\right)} ; f_{y} = \frac{e_{x}}{a_{x}} \frac{\frac{e_{y}}{a_{y}} \left(\frac{a_{x}}{e_{x}} - I\right)}{I + \frac{e_{y}}{a_{y}} \left(\frac{a_{x}}{e_{x}} - I\right)} ; m_{y} = \rho f_{y} d^{2} \left(I - \theta, 5 \rho \frac{f_{y}}{f_{c}}\right)$$

Sendo  $m_u$  o momento fletor por unidade de comprimento atuante na linha de ruptura, obtido do diagrama simplificado de tensões em uma seção de concreto sob flexão. As tabs. C.1 e C.2 apresentam as cargas previstas para ruptura por flexão para as lajes dos grupos 1, 2 e 3.

| Laje | c <sub>min</sub><br>(mm) | c <sub>min</sub><br>(mm) | e <sub>x</sub><br>(mm) | e <sub>y</sub><br>(mm) | 1 <u>,</u><br>(mm) | ц<br>(mm) | a <sub>x</sub><br>(mm) | a,<br>(mm) | $\mathbf{f}_{\mathbf{x}}$ | f,    | $\Sigma W_r/m_u$ | m <sub>v</sub><br>(N.m/m) | V <sub>flex</sub><br>(kN) |
|------|--------------------------|--------------------------|------------------------|------------------------|--------------------|-----------|------------------------|------------|---------------------------|-------|------------------|---------------------------|---------------------------|
| 1.41 | 150                      | 250                      | 525                    | 525                    | 2700               | 2700      | 1275                   | 1225       | 0,152                     | 0,156 | 7,409            | 144579                    | 1071                      |
| L41A | 150                      | 250                      | 525                    | 525                    | 2700               | 2700      | 1275                   | 1225       | 0,152                     | 0.156 | 7.409            | 173786                    | 1288                      |
| L43A | 150                      | 450                      | 525                    | 525                    | 2700               | 2700      | 1275                   | 1125       | 0.149                     | 0.165 | 7,762            | 143979                    | 1118                      |
| L44  | 150                      | 600                      | 525                    | 525                    | 2700               | 2700      | 1275                   | 1050       | 0,146                     | 0,172 | 8,064            | 172283                    | 1389                      |
| L42  | 200                      | 400                      | 525                    | 525                    | 2700               | 2700      | 1250                   | 1150       | 0.152                     | 0.162 | 7,750            | 173786                    | 1347                      |
| L42A | 200                      | 400                      | 525                    | 525                    | 2700               | 2700      | 1250                   | 1150       | 0.152                     | 0,162 | 7,750            | 174337                    | 1351                      |
| L45  | 200                      | 600                      | 525                    | 525                    | 2700               | 2700      | 1250                   | 1050       | 0,148                     | 0,172 | 8,149            | 162545                    | 1325                      |
| L46  | 200                      | 800                      | 525                    | 525                    | 2700               | 2700      | 1250                   | 950        | 0.140                     | 0,182 | 8.621            | 173990                    | 1500                      |

Tabela C.1 - Cargas previstas para ruptura por flexão das lajes do Grupo 1

Tabela C.2 - Cargas previstas para ruptura por flexão das lajes dos grupos 2 e 3

| Laje       | c <sub>min</sub><br>(mm) | c <sub>max</sub><br>(mm) | e,<br>(mm) | e,<br>(mm) | ե<br>(mm) | ц<br>(mm) | ::<br>(mm) | a <sub>y</sub><br>(mm) | f,    | ſ,    | ΣW <sub>i</sub> /m | m <sub>u</sub><br>(N.m/m) | V <sub>flex</sub><br>(kN) |
|------------|--------------------------|--------------------------|------------|------------|-----------|-----------|------------|------------------------|-------|-------|--------------------|---------------------------|---------------------------|
| L45FS_CG   | 200                      | 600                      | 525        | 525        | 2700      | 2700      | 1250       | 1050                   | 0.148 | 0,172 | 8,149              | 150757                    | 1229                      |
| L45FD_CG   | 200                      | 600                      | 525        | 525        | 2700      | 2700      | 1250       | 1050                   | 0.148 | 0,172 | 8,149              | 159578                    | 1300                      |
| L45FD      | 200                      | 600                      | 525        | 525        | 2700      | 2700      | 1250       | 1050                   | 0.148 | 0,172 | 8.149              | 160693                    | 1309                      |
| L45FFS_CG  | 200                      | 600                      | 525        | 525        | 2700      | 2700      | 1250       | 1050                   | 0.148 | 0.172 | 8,149              | 147185                    | 1199                      |
| 145FFD_CG  | 200                      | 600                      | 525        | 525        | 2700      | 2700      | 1250       | 1050                   | 0.148 | 0,172 | 8.149              | 172583                    | 1406                      |
| L45FFD     | 200                      | 600                      | 525        | 525        | 2700      | 2700      | 1250       | 1050                   | 0.148 | 0,172 | 8,149              | 146292                    | 1192                      |
| 1.45_AC1   | 200                      | 600                      | 525        | 525        | 2700      | 2700      | 1250       | 1050                   | 0,148 | 0,172 | 8,149              | 159578                    | 1300                      |
| L45FFD_AC2 | 200                      | 600                      | 525        | 525        | 2700      | 2700      | 1250       | 1050                   | 0,148 | 0,172 | 8,149              | 161686                    | 1318                      |
| L45FFD_AC3 | 200                      | 600                      | 525        | 525        | 2700      | 2700      | 1250       | 1050                   | 0.148 | 0.172 | 8.149              | 159773                    | 1302                      |
| L45FFD_AC4 | 200                      | 600                      | 525        | 525        | 2700      | 2700      | 1250       | 1050                   | 0.148 | 0,172 | 8.149              | 161448                    | 1316                      |
| L45FFD_AC5 | 200                      | 600                      | 525        | 525        | 2700      | 2700      | 1250       | 1050                   | 0.148 | 0,172 | 8,149              | 160381                    | 1307                      |
| L45_AC5    | 200                      | 600                      | 525        | 525        | 2700      | 2700      | 1250       | 1050                   | 0.148 | 0,172 | 8,149              | 160561                    | 1308                      |

## D – CÁLCULO DAS FORÇAS NOS TIRANTES DO SISTEMA DE ENSAIO

O posicionamento dos tirantes nas lajes é apresentado na Figura A3.1, juntamente com a identificação. Foram registradas leituras das deformações dos tirantes em algumas lajes ensaiadas, incluindo lajes com um e dois furos e lajes monolíticas. A Tabela A3.1 apresenta as características mecânicas dos tirantes.



Figura D.1 – Posição e identificação dos tirantes nas lajes

| Curaotorious modulious uos thanks | Tabela | D. | 1 - C | aracterísticas | mecânicas | dos | tirante |
|-----------------------------------|--------|----|-------|----------------|-----------|-----|---------|
|-----------------------------------|--------|----|-------|----------------|-----------|-----|---------|

| Amostra            | Diâmetro(mm) | $f_y$ (MPa) | $f_u$ (MPa) | <i>ɛ</i> , (mm/m) | $E_s$ (GPa) |
|--------------------|--------------|-------------|-------------|-------------------|-------------|
| 1                  |              | 525         | 679         | 2,5               | 210         |
| 2                  | 25,0         | 555         | 697         | 2,4               | 231         |
| 3                  |              | 536         | 670         | 2,2               | 233         |
| M                  | IÈDIA        | 539         | 682         | 2,4               | 225         |
| DESVI              | O PADRÃO     | 15,2        | 13,7        | 0,1               | 12,7        |
| COEF, VARIAÇÃO (%) |              | 2.8         | 2,0         | 4,2               | 5,7         |

O cálculo das forças atuantes em cada tirante foi feito utilizando a Lei de Hooke, que relaciona linearmente a tensão normal atuante ( $\sigma = F/A$ , sendo F a força atuante e A a área da seção transversal do tirante) com a deformação específica correspondente, e e apresentada nas eqs. D.1 e D.2.

$$\sigma = E_x \varepsilon$$
 (MPa) Eq. D.1

onde

 $\sigma$  é a tensão atuante, em MPa;  $E_s$  é o módulo de elasticidade longitudinal do aço, em MPa  $\varepsilon$  é a deformação específica, em mm/m;

Substituindo  $\sigma = \frac{F}{A}$  na eq. D.1. pode-se determinar a força *F* atuante, através da eq. D.2. em função da deformação correspondente  $\varepsilon$ , considerando as características mecânicas do aço.

$$F = A E_s \varepsilon$$
 (N) Eq. D.2

onde

A é a área da seção transversal do tirante, em mm<sup>2</sup>

As tabs. D.2 a D.11 apresentam os valores médios para as leituras de deformações dos tirantes T1 a T8, respectivamente, das lajes L45FD, L45FFD, L45FFD AC2, L45FFD AC3 e L45 AC1.

As figs. D.2 a D.6 mostram as curvas que relacionam as deformações nos tirantes com as correspondentes cargas aplicadas.

| Carga |      | Ĺ    | )eforma | ções nos | s tirantes | s (mm/m | )    |      |
|-------|------|------|---------|----------|------------|---------|------|------|
| (kN)  | T1   | T2   | ТЗ      | T4       | T5         | T6      | 77   | T8   |
| 0     | 0    | 0    | 0       | 0        | 0          | 0       | 0    | 0    |
| 100   | 0,01 | 0,01 | 0,00    | 0,01     | 0,01       | 0,01    | 0,01 | 0,01 |
| 150   | 0,01 | 0,02 | 0,04    | 0,07     | 0,03       | 0,01    | 0,02 | 0,03 |
| 200   | 0,03 | 0,06 | 0,09    | 0,15     | 0,07       | 0,02    | 0,03 | 0,06 |
| 250   | 0,05 | 0,11 | 0,12    | 0,21     | 0,12       | 0,03    | 0,05 | 0,10 |
| 350   | 0.10 | 0.18 | 0.15    | 0.33     | 0.22       | 0.04    | 0.09 | 0.20 |
| 450   | 0,15 | 0,23 | 0,17    | 0,47     | 0,35       | 0,05    | 0,12 | 0,30 |
| 550   | 0,18 | 0,28 | 0,19    | 0,61     | 0,47       | 0,07    | 0,15 | 0,40 |
| 600   | 0,24 | 0,31 | 0,20    | 0,65     | 0,53       | 0,07    | 0,16 | 0,45 |
| 650   | 0,26 | 0,33 | 0,22    | 0,71     | 0,59       | 0,08    | 0,17 | 0,50 |
| 700   | 0.32 | 0.36 | 0.24    | 0.77     | 0.65       | 0.09    | 0,18 | 0.55 |
| 750   | 0,32 | 0,39 | 0,25    | 0,84     | 0,72       | 0,10    | 0,18 | 0,58 |

Tabela D.2 – Leituras médias das deformações  $\varepsilon$  nos tirantes da laje L45FD

Tabela D.3 – Leituras médias das forças F nos tirantes da laie L45FD

| Carga |    |    | Forg | a nos ti | rantes (k | (N) |    |    | 255  |
|-------|----|----|------|----------|-----------|-----|----|----|------|
| (kN)  | F1 | F2 | F3   | F4       | F5        | F6  | F7 | F8 | 2251 |
| 0     | -1 | -1 | -1   | 0        | -1        | 0   | -1 | 1  | -4   |
| 100   | 1  | 1  | 0    | 1        | 1         | 1   | 1  | 1  | 13   |
| 150   | 1  | 2  | 4    | 7        | 3         | 1   | 2  | 3  | 44   |
| 200   | 3  | 6  | 9    | 15       | 7         | 2   | 3  | 6  | 101  |
| 250   | 5  | 11 | 12   | 22       | 12        | 3   | 5  | 10 | 158  |
| 350   | 10 | 18 | 15   | 33       | 23        | 4   | 9  | 20 | 266  |
| 450   | 15 | 23 | 17   | 48       | 36        | 5   | 12 | 31 | 375  |
| 550   | 19 | 29 | 20   | 63       | 48        | 7   | 15 | 41 | 480  |
| 600   | 24 | 31 | 21   | 66       | 55        | 7   | 16 | 46 | 532  |
| 650   | 27 | 34 | 22   | 73       | 61        | 8   | 18 | 51 | 586  |
| 700   | 32 | 37 | 24   | 79       | 67        | 9   | 19 | 56 | 646  |
| 750   | 32 | 40 | 25   | 87       | 74        | 10  | 19 | 60 | 692  |

| I abela U.4 – Leituras medias das deformações s nos tirant | tes da | da laie | L45FFD |
|------------------------------------------------------------|--------|---------|--------|
|------------------------------------------------------------|--------|---------|--------|

| Carga |      |      | Deforma | ções no | s tirantes | s (mm/m   | )    |            |
|-------|------|------|---------|---------|------------|-----------|------|------------|
| (kN)  | T1   | T2   | ТЗ      | T4      | T5         | <b>T6</b> | 77   | <b>T</b> 8 |
| 0     | 0    | 0    | 0       | 0       | 0          | 0         | 0    | 0          |
| 150   | 0,04 | 0,02 | 0,09    | 0,08    | 0,09       | 0,02      | 0,03 | 0,01       |
| 250   | 0,13 | 0,10 | 0,16    | 0,19    | 0,22       | 0,06      | 0,11 | 0,03       |
| 350   | 0,23 | 0,13 | 0,18    | 0,29    | 0,37       | 0,07      | 0,14 | 0,08       |
| 450   | 0,33 | 0,13 | 0,19    | 0,41    | 0,53       | 0,09      | 0,16 | 0,12       |
| 500   | 0.39 | 0.15 | 0.20    | 0.47    | 0.61       | 0.10      | 0.18 | 0,15       |
| 550   | 0,44 | 0,16 | 0,21    | 0,52    | 0,69       | 0,11      | 0,19 | 0,19       |
| 600   | 0,50 | 0,16 | 0,21    | 0,58    | 0,76       | 0,12      | 0,19 | 0,23       |
| 650   | 0,56 | 0,16 | 0,21    | 0,65    | 0,85       | 0,13      | 0,20 | 0,26       |

| Carga |    |    | FORÇ | NOS T | IRANTES | 5 (KN) |    |    | 255  |
|-------|----|----|------|-------|---------|--------|----|----|------|
| (kN)  | F1 | F2 | F3   | F4    | F5      | F6     | F7 | F8 | 6251 |
| 0     | 0  | 0  | 0    | 0     | 0       | 0      | 0  | 0  | 0    |
| 150   | 4  | 2  | 9    | 8     | 9       | 2      | 3  | 1  | 73   |
| 250   | 13 | 10 | 16   | 19    | 22      | 6      | 11 | 3  | 202  |
| 350   | 22 | 13 | 19   | 30    | 38      | 7      | 14 | 8  | 301  |
| 450   | 33 | 13 | 20   | 42    | 55      | 9      | 16 | 12 | 403  |
| 500   | 40 | 15 | 21   | 48    | 62      | 10     | 18 | 15 | 459  |
| 550   | 45 | 16 | 22   | 53    | 71      | 11     | 19 | 19 | 512  |
| 600   | 51 | 16 | 22   | 60    | 78      | 12     | 19 | 24 | 563  |
| 650   | 58 | 16 | 22   | 67    | 88      | 13     | 20 | 27 | 620  |

Tabela D.5 – Leituras médias das forças F nos tirantes da laje L45FFD

Tabela D.6 – Leituras médias das deformações  $\varepsilon$  nos tirantes da laje L45FFD\_AC2

| Carga |      | D    | )eformaç | ções nos | ; tirantes | : ( <i>mm/m</i> ) |      |      |
|-------|------|------|----------|----------|------------|-------------------|------|------|
| (kN)  | T1   | T2   | Т3       | T4       | T5         | <b>T</b> 6        | T7   | T8   |
| 0     | 0    | 0    | 0        | 0        | 0          | 0                 | 0    | 0,0  |
| 150   | 0,03 | 0,02 | 0,11     | 0,17     | 0,04       | 0,10              | 0,00 | 0,11 |
| 250   | 0,13 | 0,08 | 0,15     | 0,30     | 0,04       | 0,17              | 0,02 | 0,24 |
| 350   | 0.29 | 0,11 | 0.16     | 0.42     | 0,09       | 0,19              | 0.03 | 0.42 |
| 450   | 0,41 | 0,14 | 0,17     | 0.53     | 0,14       | 0.20              | 0,05 | 0,60 |
| 550   | 0,55 | 0,17 | 0,18     | 0,65     | 0,20       | 0,20              | 0,07 | 0,78 |
| 650   | 0,68 | 0,20 | 0,19     | 0,75     | 0,26       | 0,19              | 0,09 | 0,94 |
| 750   | 0,82 | 0,23 | 0,20     | 0,86     | 0,35       | 0,16              | 0,11 | 1,10 |
| 850   | 0,96 | 0,27 | 0,21     | 0,95     | 0,45       | 0,15              | 0,14 | 1,24 |
| 900   | 1,05 | 0,30 | 0,21     | 1,00     | 0,55       | 0,15              | 0,15 | 1,32 |
| 950   | 1,12 | 0,32 | 0,21     | 1,04     | 0,55       | 0,13              | 0,16 | 1,39 |
| 1000  | 1,21 | 0,34 | 0.20     | 1,08     | 0.59       | 0,10              | 0,17 | 1,48 |
| 1050  | 1,30 | 0,36 | 0,20     | 1,12     | 0.64       | 0,09              | 0,20 | 1,55 |
| 1100  | 1,37 | 0,37 | 0,19     | 1,15     | 0,68       | 0,07              | 0,21 | 1,62 |
| 1150  | 1,47 | 0,39 | 0,17     | 1,20     | 0,73       | 0,05              | 0,25 | 1,73 |
| 1200  | 1,53 | 0,38 | 0,14     | 1,27     | 0,79       | 0,03              | 0,28 | 1,81 |

| Carga |     |    | For | ça nos ti | rantes (k | (N) |    |     | 25F  |
|-------|-----|----|-----|-----------|-----------|-----|----|-----|------|
| (kN)  | F1  | F2 | F3  | F4        | F5        | F6  | F7 | F8  | 6211 |
| 0     | 0   | 0  | 0   | 0         | 0         | 0   | 0  | 0   | 0    |
| 150   | 3   | 2  | 11  | 17        | 4         | 10  | 0  | 11  | 117  |
| 250   | 13  | 8  | 15  | 30        | 4         | 18  | 2  | 25  | 230  |
| 350   | 29  | 11 | 16  | 43        | 9         | 20  | 3  | 43  | 348  |
| 450   | 42  | 14 | 17  | 54        | 14        | 21  | 5  | 62  | 457  |
| 550   | 57  | 17 | 18  | 67        | 21        | 21  | 7  | 80  | 574  |
| 650   | 70  | 20 | 19  | 77        | 27        | 20  | 9  | 97  | 677  |
| 750   | 84  | 24 | 20  | 88        | 36        | 16  | 11 | 113 | 786  |
| 850   | 98  | 27 | 21  | 98        | 46        | 15  | 14 | 128 | 896  |
| 900   | 108 | 31 | 22  | 103       | 57        | 15  | 15 | 135 | 973  |
| 950   | 115 | 32 | 21  | 107       | 57        | 13  | 16 | 143 | 1009 |
| 1000  | 124 | 34 | 21  | 111       | 61        | 10  | 18 | 152 | 1061 |
| 1050  | 133 | 37 | 20  | 115       | 66        | 8   | 20 | 160 | 1121 |
| 1100  | 141 | 38 | 19  | 118       | 70        | 7   | 22 | 166 | 1164 |
| 1150  | 151 | 40 | 17  | 124       | 75        | 5   | 26 | 178 | 1230 |
| 1200  | 158 | 39 | 14  | 130       | 81        | 3   | 29 | 186 | 1281 |

Tabela D.7 – Leituras médias das forças F nos tirantes da laje L4SFFD\_AC2

Tabela D.8 - Leituras médias das deformações c nos tirantes da laje L45FFD\_AC3

| Carga |      | ۵    | eformaç | ;ões nos | : tirantes | . (mm/m    | )    |      |
|-------|------|------|---------|----------|------------|------------|------|------|
| (kN)  | T1   | T2   | ТЗ      | T4       | T5         | <b>T</b> 6 | 77   | 78   |
| 0     | 0    | 0    | 0       | 0        | 0          | -          | 0    | 0,0  |
| 150   | 0,03 | 0,02 | 0,07    | 0,06     | 0,07       | -          | 0,03 | 0,02 |
| 250   | 0,08 | 0,05 | 0,14    | 0,17     | 0,18       | -          | 0,08 | 0,04 |
| 350   | 0,24 | 0,07 | 0,16    | 0,26     | 0,27       | -          | 0,14 | 0,10 |
| 450   | 0,40 | 0,09 | 0.17    | 0,36     | 0,39       | -          | 0,19 | 0,19 |
| 550   | 0,53 | 0,11 | 0,17    | 0,46     | 0,50       | -          | 0,25 | 0,30 |
| 650   | 0,67 | 0,13 | 0,18    | 0,57     | 0,61       | -          | 0,28 | 0,42 |
| 700   | 0.80 | 0.14 | 0.19    | 0.62     | 0.66       | -          | 0.31 | 0.48 |
| 750   | 0,82 | 0,15 | 0,20    | 0,67     | 0,72       | -          | 0,33 | 0,55 |
| 800   | 0,89 | 0,17 | 0,20    | 0,72     | 0,77       | -          | 0,35 | 0,61 |
| 850   | 0,97 | 0,18 | 0,20    | 0,77     | 0,82       | -          | 0,36 | 0,67 |
| 900   | 1,03 | 0,19 | 0,20    | 0,82     | 0,87       | -          | 0,37 | 0,76 |
| 950   | 1.11 | 0,20 | 0.20    | 0.87     | 0,93       | -          | 0.39 | 0.84 |
| 1000  | 1,19 | 0,22 | 0,21    | 0,91     | 0,98       | -          | 0,41 | 0,91 |

| Carga |     | -  | Fo | rça nos t | irantes (F | (N) |            |    |
|-------|-----|----|----|-----------|------------|-----|------------|----|
| (kN)  | F1  | F2 | F3 | F4        | F5         | F6  | <b>F</b> 7 | F8 |
| 0     | 0   | 0  | 0  | 0         | 0          | -   | 0          | 0  |
| 150   | 3   | 2  | 7  | 6         | 7          | -   | 3          | 2  |
| 250   | 8   | 5  | 14 | 18        | 18         | -   | 8          | 4  |
| 350   | 25  | 7  | 16 | 27        | 28         | -   | 14         | 10 |
| 450   | 41  | 9  | 17 | 37        | 40         | -   | 20         | 19 |
| 550   | 54  | 11 | 17 | 47        | 51         | -   | 25         | 30 |
| 650   | 69  | 13 | 19 | 58        | 63         | -   | 29         | 43 |
| 700   | 82  | 14 | 20 | 63        | 67         | -   | 31         | 49 |
| 750   | 84  | 15 | 20 | 69        | 74         | -   | 33         | 56 |
| 800   | 91  | 17 | 21 | 74        | 79         | -   | 36         | 62 |
| 850   | 99  | 18 | 21 | 79        | 84         | -   | 37         | 69 |
| 900   | 106 | 20 | 21 | 84        | 90         | -   | 38         | 78 |
| 950   | 114 | 21 | 21 | 89        | 96         | -   | 40         | 86 |
| 1000  | 123 | 22 | 21 | 94        | 100        | -   | 42         | 94 |

Tabela D.9 – Leituras médias das forças F nos tirantes da laje L45FFD\_AC3

Tabela D.10 – Leituras medias das deformações  $\varepsilon$  nos tirantes da laje L45\_AC1

| Carga | Deformações nos tirantes (mm/m) |      |      |      |           |      |      |            |  |
|-------|---------------------------------|------|------|------|-----------|------|------|------------|--|
| (kN)  | <b>T1</b>                       | T2   | 73   | T4   | <i>T5</i> | 76   | 77   | <b>T</b> 8 |  |
| 0     | -                               | 0    | 0    | 0    | 0         | 0    | 0    | 0,0        |  |
| 150   | -                               | 0,02 | 0,08 | 0,13 | 0,05      | 0,05 | 0,01 | 0,07       |  |
| 250   | -                               | 0,05 | 0,12 | 0,21 | 0,09      | 0,06 | 0,02 | 0,09       |  |
| 350   | -                               | 0,11 | 0,16 | 0,38 | 0,21      | 0,17 | 0,07 | 0,17       |  |
| 450   | -                               | 0,12 | 0,18 | 0,51 | 0,31      | 0,26 | 0,11 | 0,22       |  |
| 550   | -                               | 0,15 | 0.20 | 0,65 | 0,42      | 0,34 | 0,15 | 0,31       |  |
| 650   | -                               | 0,16 | 0,23 | 0,76 | 0.53      | 0,41 | 0,18 | 0,40       |  |
| 750   | -                               | 0,18 | 0,26 | 0,86 | 0,64      | 0,47 | 0,21 | 0,49       |  |
| 850   | -                               | 0,20 | 0,29 | 0,96 | 0,75      | 0,55 | 0,24 | 0,60       |  |
| 900   | -                               | 0,22 | 0,31 | 1,01 | 0,81      | 0,59 | 0,25 | 0,64       |  |
| 950   | -                               | 0,23 | 0,33 | 1,04 | 0.85      | 0,62 | 0,27 | 0,69       |  |
| 1000  | -                               | 0,25 | 0,34 | 1,09 | 0,90      | 0,66 | 0,28 | 0,75       |  |
| 1050  | -                               | 0,26 | 0,35 | 1,13 | 0,96      | 0,69 | 0,29 | 0,81       |  |
| 1100  | -                               | 0,26 | 0,36 | 1,17 | 1,01      | 0,73 | 0,30 | 0,87       |  |
| 1150  | -                               | 0,28 | 0,37 | 1,23 | 1,06      | 0,76 | 0,30 | 0,94       |  |
| 1200  | -                               | 0,28 | 0,37 | 1.28 | 1,10      | 0.79 | 0,31 | 1.00       |  |

| Carga | Força nos tirantes (kN) |    |    |     |     |    |    |     |  |  |
|-------|-------------------------|----|----|-----|-----|----|----|-----|--|--|
| (kN)  | F1                      | F2 | F3 | F4  | F5  | F6 | F7 | F8  |  |  |
| 0     | -                       | 0  | 0  | 0   | 0   | 0  | 0  | 0   |  |  |
| 150   | -                       | 2  | 8  | 13  | 5   | 5  | 1  | 7   |  |  |
| 250   | -                       | 5  | 12 | 21  | 9   | 6  | 2  | 9   |  |  |
| 350   | -                       | 11 | 16 | 39  | 21  | 18 | 7  | 17  |  |  |
| 450   | -                       | 12 | 18 | 53  | 32  | 27 | 11 | 22  |  |  |
| 550   | -                       | 15 | 21 | 66  | 43  | 35 | 15 | 32  |  |  |
| 650   | -                       | 16 | 23 | 78  | 54  | 42 | 18 | 41  |  |  |
| 750   | -                       | 19 | 26 | 89  | 66  | 48 | 21 | 50  |  |  |
| 850   | -                       | 21 | 29 | 98  | 77  | 57 | 24 | 61  |  |  |
| 900   | -                       | 23 | 31 | 103 | 83  | 61 | 25 | 66  |  |  |
| 950   | -                       | 23 | 33 | 107 | 88  | 64 | 27 | 71  |  |  |
| 1000  | -                       | 25 | 35 | 112 | 93  | 68 | 28 | 77  |  |  |
| 1050  | -                       | 26 | 36 | 116 | 98  | 71 | 30 | 83  |  |  |
| 1100  | -                       | 27 | 37 | 120 | 103 | 75 | 30 | 90  |  |  |
| 1150  | -                       | 28 | 38 | 126 | 109 | 78 | 31 | 96  |  |  |
| 1200  | -                       | 28 | 38 | 131 | 113 | 81 | 31 | 103 |  |  |

Tabela D.11 – Leituras médias das forças F nos tirantes da laje L45\_AC1







Figura D.3 – Deformações dos aços dos tirantes na laje L45FFD









Figura D.6 - Deformações dos aços dos tirantes na laje L45\_ACI

