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It is not the critic who counts; not the man who points out how the strong man

stumbles, or where the doer of deeds could have done them better. The credit belongs to

the man who is actually in the arena, whose face is marred by dust and sweat and blood,

who strives valiantly; who errs and comes short again and again; because there is not

effort without error and shortcomings; but who does actually strive to do the deed; who

knows the great enthusiasm, the great devotion, who spends himself in a worthy cause,

who at the best knows in the end the triumph of high achievement and who at the worst,

if he fails, at least he fails while daring greatly. So that his place shall never be with

those cold and timid souls who know neither victory nor defeat.

- Theodore Roosevelt
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Resumo Estendido

Compressive Sensing Using Directional Filters for
Magnetic Resonance Image Reconstruction under

Different k-Space Trajectories

Autora: Jéssica Vivian Moreira da Silva

Orientador: Prof. Dr. Cristiano Jacques Miosso

Programa de Pós-Graduação em Engenharia Biomédica

Dissertação de Mestrado Braśılia-DF. Junho de 2019

Introdução

Nós vivemos na era do big data, da Internet das coisas, do aprimoramento genético e da

recodificação do genoma. No entanto, visualizar os componentes internos do corpo humano

e suas funcionalidades ainda é um desafio. Uma breve pesquisa sobre os artigos mais recen-

tes publicados de 2018 a 2019 no campo da imagiologia médica com Ressonância Magnética

(RM) nas bases de dados da Biblioteca Digital IEEE Xplore, PubMed e Web of Science, apre-

sentou uma coleção de 50.574 estudos sobre detecção, segmentação, extração, delineação,

diagnóstico e classificação das patologias do corpo humano e caracteŕısticas fisiológicas.

A prevalência de tais estudos indica que os pesquisadores estão direcionando seus esforços

para serem precisos e assertivos em relação ao diagnóstico, procedimentos e tratamentos.

O imageamento por ressonância magnética (IRM) tem mostrado ser uma ferramenta po-

derosa e flex́ıvel capaz de gerar imagens de diferentes aspectos do corpo humano [30]. O

exame de RM é conhecido principalmente devido à sua superioridade no que diz respeito

ao contraste do tecido, o que aumenta as chances de diagnóstico em comparação com ou-

tras técnicas como raios-X, radiografia e tomografia computadorizada (CT) [21, 32]. Além

disso, a RM permite o uso de várias técnicas e dispositivos auxiliares para adquirir imagens

de alta resolução úteis em muitas fases da intervenção médica. Pesquisas recentes sobre

IRM mostram avanços no diagnóstico precoce da śındrome de Sturge-Weber, a detecção

de lipossarcoma mixóide metástases antes dos sintomas cĺınicos e metástases pulmonares, a

predição de distúrbios respiratórios em pacientes com Esclerose Lateral Amiotrófica (ELA),

revelando atrofia medular cervical precoce [2, 24, 25], e a adequação de IRM na triagem de

câncer de pulmão e nódulos com diâmetros acima de 6 milimetros [35]. Embora o cenário

para o IRM seja promissor em relação a novas aplicações e técnicas relacionadas à escolha

de pulsos RF e trajetórias de aquisição, o exame ainda enfrenta complicações e problemas

relacionados à aceitação do paciente. Os exames leva de 45 a 60 minutos por parte do

corpo, e o paciente tem que ficar parado por um longo peŕıodo de tempo, frequentemente

em posições muito desconfortáveis. Isso é especialmente desafiador no caso de pacientes
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pediátricos, que por vezes requerem sedação ou anestesia geral. Esse procedimento envolve

riscos ao paciente e necessita de pessoal especializado e equipamento de monitoramento [17].

Outro caso desafiador é o dos pacientes claustrofóbicos, para quem às vezes o exame acaba

por não ser uma opção viável, principalmente quando os pacientes precisam estar atentos

e responsivos [20]. Visando reduzir o tempo total do exame, técnicas de reconstrução de

imagem baseadas em Compressive Sensing (CS) foram desenvolvidas e tiveram resultados

positivos com relação ao número de medidas no domı́nio do espaço-k [34, 11, 38, 28]. Pes-

quisas recentes usando pré-filtragem mostraram resultados favoráveis relacionados ao tempo

de reconstrução, número de medições requeridas e qualidade de imagem. Essas pesquisas,

no entanto, não inspecionaram posśıveis relações entre diferentes trajetórias no domı́nio do

espaço-k e pré-filtragem. Em [42] a técnica de pré-filtragem é testada com uma variedade

de famı́lias de filtros, todas elas correspondendo a respostas de frequência não direcionais.

No entanto, não encontramos estudos sistemáticos com pré-filtragem sob diferentes cenários,

com diferentes trajetórias e filtros direcionais.

Objetivos Gerais

Esta pesquisa tem como objetivo avaliar o potencial de esparsificação dos filtros direcionais e

o quanto eles afetam a imagem final reconstrúıda ao usar CS com pré-filtragem. O objetivo

principal é explorar caracteŕısticas dos filtros direcionais e como elas afetam a esparsidade

de imagens quando comparado com os filtros de Haar, que foram usados nas primeiras

estratégias de pré-filtragem. A hipótese é que os filtros direcionais podem produzir imagens

mais esparsas, uma vez que podem extrair componentes de alta frequência em direções

espećıficas.

Metodologia

Nesta pesquisa, avaliamos o uso de filtros direcionais para reconstrução de imagens de res-

sonância magnética utilizando CS com pré-filtragem. Argumentamos que os filtros direci-

onais podem melhorar a reconstrução quando comparados aos filtros separáveis, como os

usados nos primeiros trabalhos de pré-filtragem. Inicialmente, começamos projetando e im-

plementando filtros direcionais considerando uma variação suave no domı́nio da frequência,

onde a frequência máxima é colocada em um determinado ângulo, variando em toda a faixa

de frequências até chegar em zero, esses são os filtros dos cenários I e II. Já os demais filtros

dos cenários III, IV e V foram projetados e implementados levando em conta uma distri-

buição em faixa de frequência igualmente dividido entre o número de filtros no conjunto. O

design desses filtros seguem três etapas como resumido na Figura 1. Para testar os filtros

propostos utilizamos dois fantomas de cabeça (Shepp-Logan e Cérebro) e uma imagem real

do cérebro em corte sagital, comparando esse resultado com reconstrução com pré-filtragem

utilizado filtros de Haar e reconstruções com Total Variation (TV). Utilizamos parâmetros
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de qualidades como a razão sinal-erro (SER) e o ı́ndice de similaridade estrutural (SSIM)

Resultados

No geral, os ı́ndices de qualidade mostram que, ao truncar os filtros com janelas que têm

ripples fixas como Blackman, Hann e Hamming compensam em termos de diminuir os

efeitos do fenômeno de Gibbs e isso tem um efeito positivo na qualidade das imagens finais

reconstrúıdas. Este efeito pode é visto nos resultados do cenário III, onde todos os resultados

para os filtros janelados com uma janelas retangulares estão abaixo do SER dos outros filtros

para o mesma imagem reconstrúıda. A partir das reconstruções com fantomas, notamos que

os filtros direcionais pareciam se beneficiar da estrutura do fantoma do Cérebro e isso se

refletia no SER mais alto que o do fantoma de Shepp-Logan. Por essa razão, reconstrúımos

uma imagem real de cabeça em corte sagital. Nós primeiro adquirimos medidas na mesma

trajetória com 90 linhas radiais no espaço-k utilizada para os fantomas e em seguida com

uma trajetória em espiral com crescimento do raio exponencial e 180 voltas. Os principais

resultados das reconstruções estão resumidos na Tabela 4.1.

Tabela 1. Resultados SER e SSIM para a reconstrução usando CS com pré-filtragem
com filtros Haar no esquema 3 configurado como em [37], pré-filtragem com filtros
direcionais e as reconstruções com TV de [45].

Haar TV Directional

Images SERdB SSIM SERdB SSIM SERdB SSIM
Shepp-Logan 135 1 114.9 1 28.7 0.98

Brain 39.2 0.420 37.4 0.516 31.5 0.369
Head 26.5 0.580 22.1 0.481 27.7 0.592

Conclusão

Neste trabalho, avaliamos diferentes estratégias para projetar filtros direcionais. Ao compa-

rar o desempenho de todas as estratégias de filtros na reconstrução de uma imagem real da

cabeça, os filtros do cenário III apresentaram melhores resultados em termos de qualidade de

imagem quando comparados aos filtros de Haar. Relacionamos esse resultado com a capa-

cidade dos filtros direcionais em extrair informações como limites, arestas, sulcos, texturas

em diferentes orientações da imagem e, portanto, essa capacidade favorece a esparsidade

em cada versão filtrada das medidas, portanto, simplificando o processo de resolução da

minimização da lp para cada versão filtrada das imagens finais reconstrúıdas. Igualmente

importante, as reconstruções a partir de medidas adquiridas em uma trajetória em espiral

com crescimento exponencial apresentaram maiores resultados de SER e SSIM, mesmo com

uma diminuição de 0,13% das medidas com relação à trajetória radial.

Palavras-chave: Ressonância Magnética, Compressive Sensing, Pré-Filtragem,

Filtros Direcionais, Filtros Separáveis.
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Dissertação de mestrado, Universidade de Braśılia - Faculdade do Gama (FGA), 2017.
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Abstract

Compressive Sensing Using Directional Filters for
Magnetic Resonance Image Reconstruction under

Different k-Space Trajectories

Author: Jéssica Vivian Moreira da Silva

Supervisor: Dr. Cristiano Jacques Miosso

Post-Graduation Program in Biomedical Engineering

Braśılia, June of 2019.

Recent research in Magnetic Resonance Imaging (MRI) shows improvements in diag-

nostic and early diagnostic for a wide range of pathologies and the superiority of the

contrast for softy tissues when compared to other imaging techniques shows the applica-

bility and importance of MRI exams. Even though the promising research, the MRI exam

still face obstacles due to the time required to scan specific areas of the body and how this

problem escalates with pediatric and claustrophobic patients. Research in Compressive

Sensing (CS) showed positive results in terms of diminishing the number of measures and

thus the time required for scanning the human body.

Although, these research showed positive results when implementing prefiltering with

compressive sensing, they did not explore different scenarios, as directional filters and

different trajectories. That being said, this research proposes five strategies in designing

directional filters for prefiltering with Compressive Sensing. We show the mathematical

steps adopted in each strategy and we reconstruct two phantoms and a real image of the

head with several filters set for each scenario.

We also give an special attention to the quality indexes used to assess image quality

and what they actually measure in terms of image fidelity. All the images were recon-

structed from simulated measures acquired in a radial and spiral k-space trajectory using

an Iterative Reweighted Least Square (IRLS) algorithm with prefiltering.

Finally, we showed that directional filters projected from ideal frequency response dis-

tributions and windowed by Hann, Hamming, Blackman and rectangular window present

better Signal-to-Error Ratio (SER) and Structural Similarity Index Measure (SSIM) re-

sults for a real image of the head reconstruction when compared to the reconstruction of

Haar filters.

Key-words: Magnetic Resonance Imaging, Compressive Sensing, Prefilter-

ing, Directional Filters, Separable Filters.
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Chapter 1
Introduction

1.1 Research Topic

We live in the era of big data, the Internet of things, genetic enhancement, and

genome recoding. However, visualizing the human body’s internals and their function-

alities is still challenging. A brief search over the most recent articles published from

2018 to 2019 on the field of medical imaging with Magnetic Resonance Imaging (MRI)

on the data bases IEEE Xplore Digital Library, PubMed and Web of Science showed

a collection of 50.574 studies regarding detection, segmentation, extraction, delineation,

diagnosis and classification of the human body pathologies and physiological characteris-

tics. To see the ten most relevant studies from each data base and the definitions of the

articles search refer to the Tables 9, 10, and 11 in Annex C.

The prevalence of such studies indicates that researchers are directing their effort on

being accurate and assertive regarding diagnosis, procedures and treatments. MRI has

shown to be a powerful and flexible tool capable of generating images of many aspects of

the human body [30]. It is well known mainly due to his softy tissue contrast superiority,

which increases the diagnostic odds compared to other techniques as X-ray, radiography,

and Computed Tomography (CT) [21, 32]. Also, MRI enables the use of a number of

techniques and auxiliary devices to acquire high-resolution images useful in many phases

of medical intervention [24, 27].

Recent research on MRI show improvements on diagnosing renal Angiomyolipomas

Without Visible Fat (AML.wovf) [31], advances in early diagnosis of Sturge-Weber Syn-

drome (SWS), the detection of Myxoid Liposarcoma (MLS) metastases before clin-

ical symptoms and pulmonary metastases, the prediction of respiratory disorders in

Amyotrophic Lateral Sclerosis (ALS) patients, by revealing early cervical spinal cord

atrophy [2, 24, 25], and the suitability of MRI on screening lung cancer and nodules with

diameters above 6 millimeters [35].

A meta-analysis compiling works from 1995 to 2015 concluded that MRI is the best
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imaging modality for the diagnosis of vertebral metastases, when compared to other

techniques such as CT, Positron Emission Tomography (PET), Single-photon Emission

Computed Tomography (SPECT), and Bone Scintigraphy (BS) [32]. MRI is also suitable

as a research tool, playing an important role in tractography, and in the mapping of brain

regions and structural connectivity trajectory, which helps us to understand the human

brain network functioning and which can thus lead to discoveries and advances on the

treatment of neuro-degenerative diseases [47, 48, 3].

In radiotherapy planning, the accurate structural information and tumor delineation

leads to a preference regarding MRI over CT images [41], although several radiotherapy

services still rely on CT for treatment planning due to economical and time constraints.

New strategies in MRI acquisition and reconstruction show promising advances in

fetal cardiac imaging, in the prediction of growth restriction and birth weight despite

of maternal and fetal motion [49, 18, 33]. MRI is also being applied in radiofrequency

ablation tests, eliminating the use of an external Radiofrequency (RF) generator and

allowing real-time monitoring of the ablation progress. Also, in ablation treatments MRI

allows one to gather more data on the impact suffered by different tissues [27].

Even though the MRI scenario is promising regarding new applications and tech-

niques related to the choice of RF pulses and acquisition trajectories, the exam still faces

complications and issues related to patient acceptance. In fact, the exam takes from 45

to 60 minutes per body part [40], and the patient has to be still for a long period of time,

frequently in very uncomfortable positions. This is specially challenging in the case of

pediatric patients, and this sometimes requires sedation or general anesthesia. Such pro-

cedure however involves risks and needs specialized staff and monitoring equipment [17].

Another challenging case is that of claustrophobic patients, for whom sometimes the

exam ends up not being a viable option, especially when the patients need to be aware

and responsive, so anesthetics cannot be administered [20].

In order to reduce the total exam time, image reconstruction techniques based on

Compressive Sensing (CS) have been developed and they have had positive results con-

cerning the number measurements in the k-space domain [34, 11, 38, 28]. Recent research

using prefiltered images have shown favorable results related to time of reconstruction,

number of required measurements and image quality [37, 16, 1]. These research, however,

did not inspect possible relations between different trajectories in k-space domain and

prefiltering. In addition, to our best knowledge, they still did not explore directional fil-

ters and their ability to extract high frequency components in separate directions, which

could potentially improve reconstruction by providing sparser filtered images.

In [34], the author discussed how an evaluation can be conducted in order to de-

termine an appropriate sparsifying transform for a specific type of k-space trajectory.

Additionally, in [42] the prefiltering technique is tested with a variety of filters’ families,

all of them corresponding to nondirectional frequency responses. Nonetheless, we did not
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find systematic studies performed on the prefiltering strategy under different scenarios,

meaning with different trajectories and directional filters. Since different trajectories can

show different results in terms of signal sparsity, and filtering those same measurements

can alter the corresponding image’s sparsity, the reconstruction algorithms may suffer a

change in performance depending on the relation between the trajectory and the chosen

filters. In addtion, the sparsifying potential of the directional filters was not systemati-

cally tested along with prefiltering in Compressive Sensing.

1.2 Research Question and Contributions

In the context of the research gaps related to prefiltering in Compressive Sensing, this

research proposes a systematic evaluation of the use of directional filters combined with

different trajectories, and the study of their influence on reconstructed image’s quality,

number of required measurements, and algorithm performance. Also, we aim at exploring

different strategies to implement the directional filters. The motivation is that different

strategies to build a filter with a certain frequency specification can lead to major changes

in terms of the filtered measurements and the impact on the reconstruction quality.

In order to achieve these outcomes, we will simulate Magnetic Resonance (MR) mea-

sures under different trajectories. Also, we will use digital phantoms and MR images to

help us quantify the relation between the filters and different trajectories. We also want

to perform statistical tests in order to evaluate the hypothesis of quality enhancement

when prefiltering with determined trajectories.

In this research we address the following questions:

1. What are the improvements in the Signal-to-Error Ratio (SER) in MRI reconstruc-

tion when using prefiltering in the measurement domain with directional filters?

2. Which trajectory shows better results for a specific filter or set of filters?

3. What is the difference in the directional filters’ results compared to results in the

scientific literature?

4. How significant and reliable are the findings and results in terms of the number of

measures, reconstruction time, and image quality?

1.3 Objectives

1.3.1 General Objectives

This research aims at evaluating the sparsifying potential of directional filters and how

much they affect the final reconstructed image when using CS with prefiltering. The

main goal is to study some filter characteristics and how they impact the image sparsity
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and compared to Haar filters, which were used in the first prefiltering strategies. The

hypothesis is that directional filters may produce sparser images, since they can extract

high frequency components in specific directions, as in the case of ridges, lines and edges.

This study attempts to identify some required characteristics of sparsifying filters and

how they relate to different trajectories.

We will design and implement different directional filters in this research, and they

will be compared between each other and to the Haar filters results provided by [37], in

terms of image quality and reconstruction time. Also, the filters will be tested under

different k-space trajectories.

1.3.2 Specific Objetives

‚ Design and implement directional filters with different techniques in order to com-

pare the sparsifying potential of each filter family.

‚ Evaluate the designed directional filters under different k-space trajectories and

with different numbers of measurements.

‚ Compare the directional filters to the results obtained with Haar filters.

‚ Evaluate the results of the tested directional filters, when compared to the Haar

filters in terms of quality indexes.
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Chapter 2
Theoretical Foundation and State of the Art

This chapter describes the basic theory used in this research and the state of the art re-

garding techniques to reconstruct MR images from measurements in the k-space domain.

Section 2.1 is a brief explanation of the fundamentals of Magnetic Resonance Imaging

and the standard reconstruction methods used in clinical MRI scans. Finally, Section 2.3

explains the fundamentals of Compressive Sensing as well as the reasons why it is a

promising method when combined with prefiltering.

2.1 Magnetic Resonance Imaging

There are many ways to describe the theory of MRI and in this work, we will adopt the

theory sequence described in [46], which we consider more intuitive as a first introduction

as well as an interesting approach to someone already acquainted with the subject. We

also adopt the classical description [30, 6, 5].

2.1.1 What is seen in MRI images?

To answer this question a good approach is to classify the body tissues into three cate-

gories:

I - Fluids: Cerebrospinal Fluid (CSF), synovial fluid, edema;

II - Water-based tissues: Muscle, brain, cartilage, kidney;

III - Fat-based tissues: Fat, bone marrow.

In Figure 2.1, one can observe that these types of tissues differ from each other by

the level of grey. This difference in grey levels associated to different tissues is defined as

the image contrast. Indeed, the MR scan is able to measure some tissue property, as we

will describe, and associate it to a proportional level of grey, thus allowing us to see the

boundaries between the organs and pathological tissues, which frequently have edemas
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(a) T1 image. (b) T2 image. (c) PD image.

Figure 2.1. Coronal magnetic resonance images of a human abdomen, taken from
the Visible Human Project [43]. The contrast varies in each figure as a result of the
physical characteristics (T1, T2 or PD) measured after the stimulation of the tissue
cells with RF pulses as well as magnetic spatial gradients.

or proliferating blood supply. This characteristic makes them appear as a mixture of

water-based tissues and fluids on the MR images.

MRI scans provide a wide range of contrast by applying different RF pulse sequences

and gradient pulses (we will get to them in the following sections). The challenge is to

set the right RF pulse sequences that will provide an appropriate level of contrast be-

tween types of tissue that one wants to distinguish, for example normal tissues opposed

to pathological ones. Those sequences are normally already defined in the scan configu-

ration and they have carefully controlled timings and durations. Even though there are

infinite possibilities of pulse and gradient sequences, they all have timing values called

the Repetition Time (TR) and the Echo Time (TE). Also, each configuration of pulse

sequence is designed in a manner as to enhance a part of the tissue we want to depict. In

this context, T1, T2 and PD are the physical properties that an MR scan measures and

codes in the form of image brightness.

Depending on the kind of tissue we want to image there is a specific set of pulse

sequence that will produce a signal with high intensity and consequently an image with

better contrast. There are two main types of pulse sequences, Spin Echo (SE) and

Gradient Echo (GE). For each sequence there is a specific technique related to timings

and the flip angle. Section 2.1.2 contextualize the sequence of pulses and gradients applied

to the human body in order to select a region and to provide an image of that area.

2.1.2 How is the MR data encoded and stored?

Based on the relation between T1, T2 and PD and the grey levels in the image, we now

consider the shape of the pulse sequence and how each element of volume in the body

(voxel) is excited and them have their timings measured by coils in the MRI scan. Also,

the same coils are used to apply the pulses and gradients at a certain degree in specific
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times (TE and TR). Here we explore the gradient echo sequence focusing on how it

manages to localize the MR signal coming from the tissue. Figure 2.2 shows the pulses

arrangement.

Figure 2.2. Diagram representing the pulses and gradients over time used in the
gradient-echo setup, in MRI. The first line represents the RF pulse applied at the
angle of 90˝. At the same time there is the GSS and at the end of the RF pulse
the direction of the GSS is reversed. The GPE is applied between the duration of
the reversed GSS , as well as the reversed GFE . The positively directed part of the
GFE is applied at the end of GSS . TE is a measure of time between the RF pulse
and the signal coming from the tissue that is excited. TR is a measure of all the
process including application of pulses and measure of the MR signal. This process
is repeated many times depending on the size and resolution of the final image.

Spatial Encoding

For each voxel we want to establish a particular resonance frequency and for that we have

to apply a GSS alongside with the RF pulse. The RF pulse excites the tissues and the

GSS selects the plane of the resulting image. Combinations of the gradients Gx, Gy and

Gz are used to create images of the body planes (sagittal, transverse and coronal) as in

Figure 2.3. A GPE is applied in 90˝ from the GSS gradient direction. Suppose that we are

acquiring a coronal image, so the slice in the z-axis is encoded by GSS and the directions

x and y are then encoded by using the phase and frequency of the signal returning from

the tissue. The GFE is applied at the same time the coils receive the MR signal from

the tissue. The gradient used to encode the x and y axes are arbitrary, which means
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that we can encode the frequencies in rows or columns, since the analogous is chosen for

the phase. In this example the GPE will encode the x-axis (columns), and the GFE will

encode the y-axis (rows).

Figure 2.3. Anatomical planes. Image modified from [7]. In order to conduct
the MRI acquisition process we use the anatomical planes to place the pulses and
gradients at the right directions and acquire images from different perspectives.

The signal acquired here has two sets of data (phase and frequency) and we want to

be able to acquire this information as a single set. We can do it by Fourier Transforming

our signal, which allow us to collect the data as an individual set of complex data. The

MR signal acquired as a function of time is then mathematically represented as a function

of frequency. The process represented by the diagram in Figure 2.2 is repeated a certain

number of times and the average of the results is stored. This is done to decrease the

relative contribution of noise in the signal.

After that, we change the magnitude of the GPE gradient and reapply all the pulse

sequence. The number of times this process is repeated determines the number of columns

of the slice. We do it because the GPE does not offer enough information to differentiate

the columns in the slice. A second Fourier transform is applied, after all phase-encoding

steps are completed in order to fill a matrix of data (k-space matrix), to relate phase and

position as a Fourier transform pair. This process is time consuming, with the total scan
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time given by the product of multiplication

ST “ NA ¨NPE ¨ TR, (2.1)

whereNA is the number of signal averages, NPE is the number of phase-encoding gradients

applied, and TR is the pulse repetition time.

In fact, if we wanted to acquire all data from all voxels in the slice selected it would

take days, which is not feasible for medical and clinical circumstances. To contour this

situation we sample the signal following trajectories in the k-space and apply a series of

mathematical techniques to reconstruct an image from the sampled data. If we had all the

measurements from all voxels, we would only make an inverse Fourier transform to acquire

the MR image. Some of those techniques used to reconstruct an image from samples of the

k-space are, spectral interpolation, which consists in interpolating the frequency domain

in order to obtain measurements in a cartesian mesh and then to calculate an inverse

transform to reconstruct a MR image. Other technique widely used is, the filtered back-

projection, applied in tomography but also in MRI for the case where the data is measured

using a radial trajectory. For this case, the projection slice theorem relates Fourier to

the measurements in linear projections and the back-projection filtering process allows

to calculate the image. This technique consists in filtering projections in the frequency

space using a ramp filter, performing an inverse transform and back-projecting it to create

the final image. A promising technique, called Compressive Sensing, is discussed in the

Section 2.3 and we will explain some of the advantages and challenges of its application

in MRI.

2.2 MRI Physics and the Bloch Equation

The ability to image the human body relies on the possibility of using pulse sequences

to excite the body particles and then to measure the effects of different set of pulses.

This is feasible due to the behavior of atoms nucleus with odd atomic number that have

an angular momentum, called spin. An abundant atom in the human body with odd

atomic number is hydrogen, see Table 2.1. Naturally, the spins of the atoms are oriented

in random directions, but once they are affected by a strong magnetic field they tend to

align in the same direction of the field.

In order to measure an MR signal, we not only apply a sequence of pulses but also

a strong field B0 in the z-direction, that works as a reference from where the spins start

to move. This field remains in all the process to acquire the MR signal from the tissue.

Besides the angular momentum, the spin also precesses about the magnetic field direction,

see Figure 2.4. This movement results from the interaction of forces with a rotating

object. The relationship between the frequency f (in megahertz, MHz) of precession and
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Table 2.1. Biological abundance of some elements studied in medical imaging.
Values calculated from the Source: [22, 26].

Element Biological Abundance (%)
Hydrogen 63
Carbon 9.4
Nitrogen 1.5
Sodium 0.041

Phosphorus 0.24
Calcium 0.22

the strength B (in tesla, T) of the magnetic field was found from experiments and given

by the Larmor equation, which states that

f “ γB, (2.2)

where γ is the gyromagnetic ratio, equal to 42.58 MHz T´1. Since there are so

many protons, what we actually measure is the average magnetic moment of a large

group of protons in the magnetic field that precess at nearly the same Larmor frequency.

The spins can be in two possible states, one is known as spin-up or parallel and is

aligned to the magnetic field, the other is spin-down or anti-parallel. There is a statistical

distribution for the two states and the lower state, spin-up, is slightly favored. The sum

of all those spins is the net magnetization Mpt0q in the same direction as the field B0.

When the longitudinal component Mz of the magnetization is equal to Mpt0q and there is

Figure 2.4. Geometric representation of a spin precessing about the B0 field.
The red ball representes the spin and the curved arrow around it, represents its
natural movement around itself. The bigger arrow crossing the ball indicates the
state of the spin, alligned with the B0 field, in a positive direction related to the
tridimensional plane. The red dashed circle with arrows indicates the direction of
the precessing movement.
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no transverse magnetization in the x and y directions, we say the system is in equilibrium.

It is possible to change the magnetization of the system if we expose it to a RF pulse with

a frequency equal to the energy difference between the states of the spins. If sufficient

energy is applied, it is possible to saturate the spin and make Mz “ 0. The time constant

describing how Mz returns to its equilibrium (Mpt0q) is the, already know, relaxation time

T1, and is given by

Mz “Mpt0qp1´ e
´t{T1q, (2.3)

which is an exponential growth with time constant T1.

If a magnetic field is applied in the xy direction, the magnetization vector will rotate

around the z-axis at the Larmor frequency, equal to the frequency of the photon, which

leads to the transition between energy levels of the spins. This rotation will at some

point begin to lapse because each subsystem of spins begins to perceive the influence

of a different magnetic field and this delay will be higher depending on the duration of

the pulse applied. The influence of the pulse in the transverse magnetization at xy is

described by

Mxypt1q
“Mxypt0q

e´t{T2 , (2.4)

where the relaxation time T2 is the constant that describes how long the transverse

magnetization of the spins system takes to return to the balance. As the interaction

between spins occurs more rapidly, T2 is always smaller in relation to T1, since T1is slower

due to the difficulty that larger cells have in moving and dissipating energy. The curve

presented in Figure 2.5 represents exponential growth in Mz compared to the exponential

decay of Mxy, which occurs more quickly due to time constant T2. This behavior is

described as Free Induction Decay (FID), that is the tendency of the spins to return to

equilibrium after suffering disturbances.

Since now we know how the spins work as a system and how a pulse sequence is applied

to extract the MR signal from the tissue, the following image, Figure 2.6 summarize the

process of imaging a certain area of the human body. First, we apply a B0 field that

will align the spin system in the z-plane, after that we apply a GSS gradient to select

the plane we want to image. In the region where GSS is applied the Larmor equation

is valid and we can excite the region with gradients as GPE, GFE or RF pulses, that

depends on the sequence we are using. The following steps where already described in

the Section 2.1.2. Each sequence of gradient and RF pulses are used to enhance the MR

signal from determined tissue, also some of they take in account the PD, since the number

of protons affect directly in magnetization.

The behavior of these magnetization curves can be described by means of the phe-

nomenological Bloch equation. In fact, if B is the effective magnetic field (including the

static component and the desired perturbations) at a certain position, M is the magnetic

11



Figure 2.5. Magnetization curves Mz and Mxy. The blue curve represents the
magnetization decay in the xy direction. T2 is measured at 37% of the equilibrium
magnetization value in the Mxy curve. The purple curve represents the magnetiza-
tion increase in the z direction. Similarly, T1 is measured at 63% of the equilibrium
magnetization value in the Mz curve.

moment at the same position and
ÝÑ
i ,
ÝÑ
j ,
ÝÑ
k are the unitary vectors in the x, y, and z

directions, respectively, then the phenomenological Bloch equation establishes that

dM

dt
“ γM ˆB´

Mxptq

T2

ÝÑ
i ´

Myptq

T2

ÝÑ
j ´

Mzptq ´M0

T1

ÝÑ
k , (2.5)

M ˆB “

»

—

–

MyptqBzptq ´MzptqByptq

MzptqBxptq ´MxptqBzptq

MxptqByptq ´MyptqBxptq

fi

ffi

fl

, (2.6)

where γ is the gyromagnetic ratio, Mz is the longitudinal magnetization component,

Mx and My are the transverse magnetization components, M0 is the magnetization of

equilibrium, and T1 and T2 the spin-lattice relaxation time and the spin-spin relaxation

time.
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Figure 2.6. MR signal acquisitionon process for a transverse image of the abdomen
applying a gradient echo sequence. The red balls represent the spins of the protons
aligned with the B0 field. Notice that the protons have different colors and it is
an attempt to represent their different characteristics concerning each tissue which
results in different times (T1 and T2), also the PD is different and that is why the
number of protons differ around the body region imaged. The cross sectional image
of the abdomen is from the Sansum Clinic [15]. Human body in supine position
modified from [8].

By expanding the vectorial product in (2.5), it is also possible to rewrite the Bloch

equation in terms of three spatial components, given by

dMxptq

dt
“ γpMyptqBzptq ´MzptqByptqq ´Mxptq{T2; (2.7)

dMyptq

dt
“ γpMzptqBxptq ´MxptqBzptqq ´Myptq{T2; (2.8)

dMzptq

dt
“ γpMxptqByptq ´MyptqBxptqq ´ pMzptq ´M0q{T1. (2.9)
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With appropriate limiting conditions those equation can be solved for different circum-

stances that describe the changes in the magnetization during excitation and relaxation.

For the special case in which, Bxptq “ Byptq “ 0 and Bzptq “ B0, the equation can be

expressed as:

dMxptq

dt
“ γpMyptqB0q ´Mxptq{T2; (2.10)

dMyptq

dt
“ ´γpMxptqB0q ´Myptq{T2; (2.11)

dMzptq

dt
“ ´pMzptq ´M0q{T1. (2.12)

2.3 Mathematical Principle of Compressive Sensing

Compressive Sensing (CS) is set of theories and methods for reconstructing signals from

highly limited linear measurements, possibly acquired below the Nyquist rate, making

use of numerical optimization and exploring the existence of a sparse representation in

some domain.

The mathematical foundation of CS was initially developed by Donoho, Candès,

Romberg, and Tao [11, 12, 19]. Basically, CS can be applied when we have only m

samples or linear measurements of a signal x and we want to be able to obtain all the

l samples of the signal, with m ă l. Thinking of MR images, we want samples of the

MR signal to fill the whole k-space, so that in Figure 2.7, xlˆ1 is a staked version of

the desired image matrix, but we can only acquire a few samples (bmˆ1) of the matrix,

due to hardware, physiological, and physic constraints. Our problem can be stated as

computing x based solely on

b “Mx. (2.13)

with M a matrix with fewer rows than columns, so that (2.13) is undetermined. Note

that under this condition, we need additional information in order to solve the system,

and in CS this piece of information refers to sparsity. Starting from a unknown x, we can

affirm that there is a transformed version of x that is sparse. In other words, there is a

invertible Tlˆl that can be applied to x and results in a sparse vector. In this context, T

is called the sparsifying matrix, so that

x̂ “ Tx, (2.14)

is a vector that has most part of its components null or, in practice, fairly close to zero

under a tolerance. Note that, since x̂ is sparse, even with less measurements m, only a

solution whose transform T is sparse is a valid solution.
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Therefore, our problem is represented with the following restriction:

MT´1x̂´ b “ 0, (2.15)

where M is a mxl matrix, which represents the acquisition process in the k-space, so that

pMq is a submatrix of the Fourier matrix.

Figure 2.7. Illustration of MRI signal sampling acquisition. The pulse sequence
and specially the trajectories have a effect on the k-space matrix. The first column
represents the measurements bmˆ1 acquired after applying techniques concerning
pulse and trajectory sequences to obtain the MR signal. Apling techniques of image
reconstruction, as CS, we are then able to obtain all the measurements Xlˆ1 needed
to represent the signal as an image. The MRI scan figure is modified from [39].

By this point, CS becomes a problem of optimization with restrictions. Ideally, we

want to find the sparsest version of x̂, which is to minimize the number of non-zeros in x̂,

process called l0 of x̂ and expressed as }x̂}0. However, this problems is known as NP-hard,

because requires an enumeration of all
`

l
η

˘

possible locations of the non-zeros in x̂, where

η is the number of non-zeros, or sparsity of the signal [4, 36]. In particular, the theory of

CS proposes some conditions and theorems that implies m to be high enough with η, for

which there will be only a x satisfying Equation (2.13) and also }x̂}0 ăă η [10, 11, 34].

As a result, one possible option is to find the minimum l1-norm by solving

min
x̂
}x̂}1 , subject to Ax̂´ b “ 0, (2.16)

where A “ MT´1. When searching for the sparse solution, we are looking for the

intersection between the solution space and the axis. One way of visualizing it is to start

from the center and to expand until it reaches the intersection in the solution space, as
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is shown in Figure 2.8 for different values of p.

For the case where we try to solve the l2-norm, there is a close form solution (least

square), however, solving it means to find the minimum energy solution and in general,

it is not the sparsest solution. Similarly, finding the solution for the l1-norm has bigger

probabilities to find the sparsest solution when compared to l2, whereas, there is no closed

form solution for that case, but there is a solution based in convex optimization, since the

problem is of polynomial complexity. In a like manner, we can solve the lp-norm for p ă 1

and in some cases, it shows better results than the l1-norm, at the cost of computational

effort, but less measurements when compared to l1.

For a perfect reconstruction the M matrix has to satisfy certain criteria, known as

necessary and sufficient conditions. The conditions are listed below:

I - Restricted Isometry Property (RIP) M is such that @ signal vlx1 with no more than

3η non null entries, RIP states that

1´ ε ď
}MT´1v}2
}v}2

ď 1` ε, (2.17)

where ε ą 0 and the smaller the ε the easier to meet the conditions, because the

matrix preserves the Euclidean length of the vector v, which indicates that it is not

in the null space of MT´1 [9].

II - Incoherence: The rows of M cannot be sparse in the transformed domain defined

by T . Which means that, the transform used to sparsify x cannot sparsify the rows

of M [13]. The relation of coherence (µ), with m samples for Partial Fourier is

given by

m ě C.µ.ηplogpnqq4, (2.18)

where C is as small as ε in the RIP.

2.3.1 Optimization algorithm

In [23] Foucart discuss a series of algorithms for CS based on optimization. The algorithms

are Basis pursuit and Quadratically constrained basis pursuit. The first one is an attempt

to solve the l1-norm as Equation in 2.16, the other method is also called noise-aware l1-

minimization, where the constrain takes in account a tolerance for the scenarios with

noise. The problem is described as

min
x̂
}x̂}1 , subject to }Ax̂´ b}22 ď η, (2.19)

The cases for lp with p ă 1 where studied by Rao and Kreutz-Delgado [44], where they

substituted the objective function in the lp-minimization by a weighted l2-norm, where

the weights are computed from a previous interaction. The approach here is to solve a
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(a) p “ 2. (b) p “ 1.

(c) p “ 1
2 . (d) p “ 0.

Figure 2.8. Visual example of the lp-minimization solution to a set of under-
determined equations. The strait line represents all the points satisfying all the
infinite points of the equation Ax “ b, with A1ˆ2, x2ˆ1, b1ˆ1. The concave closed
curves are examples of lp-balls, corresponding to complete set of points with the
same lp-value. By increasing lp and thus the corresponding lp ball until this ball
touches the straight line we identify a solution to Ax “ b with minimum lp, here
represented by the red dot. This illustrates the fact that minimizing the lp with
the constraint Ax “ b may yield a sparse solution to the underdetermined system,
as required by CS. The figure (a) represents the lp-minimization solution for p “ 2,
for this problem there is a closed form solution called least-square. The smaller the
value of p more precise is the solution, however, it means that we will need more
measurements or more computational power. For p “ 1, figure (b), the solutions
adopted require more measurements compared to solving l2-norm. For values of
p ă 1, figure (c), a possible solution is IRLS, where the smaller the p more compu-
tationally demanding the solution will be. The ideal solution would be by solving
l0, as in figure (d), however this process is known as of NP-hard complexity and
its solution requires years of computational effort to find a single solution, what is
unsuitable for MRI
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modified version of

min
x̂

1

2
}x̂}pp , subject to Ax̂´ b “ 0, (2.20)

by solving

min
x̂

1

2

N
ÿ

n“1

wn |x̂n|
2 , subject to Ax̂´ b “ 0 (2.21)

Where wn “
ˇ

ˇxk´1n

ˇ

ˇ

p´2
. This methods is called Iterative Reweighted Least Square (IRLS)

and is a powerful algorithm applied in CS, with the advantage that for different values

of p it is possible to use the same algorithm by only changing one single parameter.

The algorithm utilized here has a stage of prefiltering before every reconstruction and a

composition stage, as described in Section 2.3.2. Next, we present the algorithm used in

this work and based on [36, 14, 37].

Algorithm 1 Signal Reconstruction in Compressive Sensing Using IRLS and Prefiltering

Inputs: p ą 0, A, b, H, µ
First: Calculate the n filtered versions bfn of b using (2.22).
Loop 1: Reconstruction of the n filtered versions of x̂: For 1 to n

Second: Initialize x̂f
p0q
n “ Qp0qAT pAQp0qAT q´1bfn and Qp0q “ I(identity matrix).

Loop 2: Inner loop: Start m :“ 1;

2.1 Compute Qpmq “ diagpq
pmq
1 , q

pmq
2 , ..., q

pmq
N q, where qk “

ˇ

ˇ

ˇ
x̂fn

pm´1q
pkq

ˇ

ˇ

ˇ

2´p

;

2.2 Calculate x̂fn
pmq
“ QpmqAT pAQpmqAT q´1bfn;

2.3 If
}x̂fnpmq´x̂fnpm´1q}

1`}x̂fnpm´1q}
ď

?
µ

100
then

Go to Third;

else

m :“ m` 1;

End Loop 2
Third: Update the regularization parameter, µ :“ µ

10
;

3.1 If µ ă 10´8, end iterations of Loop 1 ;
else
Go to 2.1;

End Loop 1
Loop 3: For 1 to n

Fourth: Xfn is the DFT of x̂fn
4.1 If |Hn| ą tolerance AND |Hn| ą than all

ˇ

ˇHpn´1q
ˇ

ˇ

Xr “ Xfn
Hn

End Loop 3
xr is the IDFT of Xr.
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2.3.2 Prefiltering for Image Reconstruction in Compressive Sensing

Compressive Sensing with prefiltering consists in using filters before computing the l1 or

lp to find filtered versions of the MR desired image. In some studies, it has been shown

that the use of prefiltering with Haar filters at one level has improved the quality of the

reconstructed image relative to other methods [37]. The idea is to choose the filters in

such a way that they increase the image sparsity in the pixel domain. The prefiltering

is performed by means of 2D filters, which are created from 1D filters after the external

product between two filters. The filtered versions of b are calculated from

bf “ HkPτ ˝ b, (2.22)

where ˝ is the element-by-element product and HkPτ is the staked version of the filter H

in the trajectory τ of the k-space samples. In addition, the filtered versions are computed

in a manner that combined preserves the spectral information of the nonfiltered image.

For each filtered version, the minimization problem is solved and a composition stage is

responsible for searching the high-pass information for each pixel in all filtered version.

For each corresponding value of the components of Xfn (reconstruction of the filtered

version of the image), we divide the frequency corresponding by the filter Hn. The DC

level of the image is lost in the filtering process, but it is reclaimed from the original

measurements b. Although, this procedure leads to more reconstructions, they tend to

be less computationally demanding and also allow parallelization for each filtered version

reconstruction, which decreases substantially the total time of reconstruction.

19



Chapter 3
Initial Experiments

In this research, we evaluate the use of directional filters for reconstructing magnetic

resonance images using compressive sensing with prefiltering. We argue than directional

filters can potentially improve reconstruction when compared to separable filters, such

as those used in the first prefiltering works. Furthermore, we explore different scenarios

regarding the directional filters design, the total number of filters, the passband etc. In

this chapter and in the following one, we describe these scenarios and the experiments

we conducted in order to evaluate the final image quality in each case, in Figure 4.30 we

present a summary of all the directional filters explored in this work.

We start by describing the adopted proceedings for the initial tests, which are divided

into two approaches to build directional filters with smooth transitions. The algorithm

used to minimize the lp is IRLS, already described in Section 2.3.1.

3.1 Directional Filters with Smooth Transitions

The approach proposed by Miosso et al. in [37] makes use of filter banks in three different

schemes in a way that combining Haar filters preserves the spectral information of the

image; the DC components as well as other low-pass components are restored from the

original measurements. Their experiments showed improvements in terms of SER and

computation time over techniques as Total-variation (TV). However, they did not explore

other filters or different trajectories. In this work, we propose the use of directional

filters since they have showed to be able to extract edges and details in a predefined

direction [50]. We are also exploring different smooth distributions for each direction

of the filters and exploring different windows to truncate the filters. Initially, we are

proposing two scenarios described below.
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3.1.1 Scenario I: Projecting Directional Filters from a Smooth Fre-

quency Distribution Along all Frequency Spectrum

We begin designing directional filters considering a smooth variation in the frequency

domain, where the maximum frequency is placed at a given angle, varying across all

frequencies until it reaches zero. The design of this filters follow three steps, where we

first create a smooth distribution for the frequency domain (Hd), this version is almost

what we want to use, except for the fact that it is a band-pass filter and we want only

the high frequencies. Hence, we use a high-pass mask to preserve the high frequencies

we want to keep. For that part is particularly important to preserve the smoothness of

the filter, because we want to be as sparse as possible in the image domain and abrupt

changes in the frequency domain leads to vestigial indexes in the image domain and that

is exactly what we want to avoid. We calculate the filter version hd in the image domain

by calculating the Inverse Discrete Time Fourier Transform (IDTFT) of Hd. Finally, we

create a bi-dimensional window to truncate hd and then, calculate H for the image size

we want.

I - Smooth distribution: For each set o n filters we calculate a smooth distribution

H1d according to the Hann Function 3.1, in each direction given by an determined

angle between 0 to π.

Whrns “ 0.5` 0.5cosp2x´ πq. (3.1)

The Hann function was chosen because we wanted to guarantee that the distribution

reaches zero at the limits as show in Figure 3.1. Also, we limited the angles because

the other half (H2d) of the spectrum is a mirrored version of H1d, or H1d calculated

with a 90° degrees forward shift. In that way, our smooth distribution is given by

Hd “ H1d `H2d. (3.2)

This is done as an attempt to create a symmetric filter, so we end up having a

real image at the final of the reconstructions. Equally important, we apply the

high-pass mask to guarantee a high-pass filter at the final of the design, the pro-

cess can be visualized in Figures 3.2a, 3.2b and the three-dimensional versions in

Figures 3.3a, 3.3b.

II - Calculating hd: In order to calculate the filter hd in the image domain it is used

the smooth distribution Hd. Let Dthdu be the Discrete Time Fourier Transform

(DTFT) of Hd, them D´1tHdu is the IDTFT of hd as described by the Equation 3.3

below.

hdrn1, n2s “

ĳ

2π

Hdrn1, n2se
j2πpn1f1`n2f2qdf1df2. (3.3)
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Figure 3.1. Hann function with independent variable x scaled over the frequency
domain r0, πs. The function is used to determine the smooth distribution Hd along
the chosen band-pass of the filter.

III - Windowing : Finally, the next stage relies on windowing the filters with a bi-

dimensional window WpNo`1qˆpNo`1q, where No is the order of the filter hp. The

Figures 3.4a, 3.4b, 3.4c and 3.4d are a visual illustration of the windows type used

to truncate the filters hp. After this step, each filter is transformed to frequency

domain in order to filter the measurements b and to obtain the filtered versions bf ,

where for each of them is reconstructed a filtered version of the MR image.
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(a) Band-pass version of Hd. (b) Hd after the high-pass mask.

Figure 3.2. Visual difference comparison before and after applying a high-pass
mask to eliminate low frequencies.

(a) Band-pass version of Hd. (b) Hd after the high-pass mask.

Figure 3.3. 3D representation of the filters in Figures 3.2a and 3.2b, respectively.
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(a) Bi-dimensional Hann window. (b) Bi-dimensional Hamming window.

(c) Bi-dimensional Blackman window. (d) Bi-dimensional rectangular window.

Figure 3.4. Bi-dimensional windows used to truncate hp.
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3.1.2 Scenario II: Implementing Directional Filters from Smooth Win-

dows Distributions Along all Frequency Spectrum

This second set of filters can be seen as a special case of the scenario I previously presented

in Section 3.1.1. Where the filter used to sparsify the measurements b are the smooth dis-

tributions Hd after applying the high-pass mask, differentiating only the functions for the

distribution as described by the Equations 3.1, 3.4 and 3.5. The Figures 3.5a, 3.5b, 3.5c,

show the resulting image of each filter with their respective distribution functions. To

implement filters directly in the frequency domain does not guarantee control over the be-

havior of the intermediate frequencies, but this characteristic is not necessarily a problem

if the filters are still capable to sparsify the filtered versions of the final image.

Hamming : Whrns “ 0.54` 0.5cosp2x´ πq, (3.4)

Blackman : Whrns “ 0.42` 0.5cosp2x´ πq ` 0.08cosp4x´ πq, (3.5)

(a) (b) (c)

Figure 3.5. Hd version of the filters for (a) Hann function, (b)Hamming function
and (c)Blackman function.

3.1.3 Simulated k-Space Measurements

We started from an image X and from that we calculated the measurements b by com-

puting a Fourier Transform of X in a Cartesian grid and selecting the components closest

to a trajectory τ in the k-space, this procedure is similar to the one in [11]. The Fig-

ure 3.6 represents the trajectory used to compose the experiments that will be described

in the next section, and this trajectory represents « 23.68% of the possible measure-

ments for the chosen size of the image. After that, we computed each filtered version bf

from the original measures b and composed the images following the process explained in

Section 2.3.2.
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Figure 3.6. Radial trajectory with 90 lines representing « 23.68% of the possible
measurements for an image of size 512ˆ512.

3.2 Experimental Structure

For each scenario of filters, were computed experiments for 12 sets of filters n “ r2, 3, 5, 6,

7, 8, 9, 10, 20, 30, 35, 40s, where npkq represents the number of filters for each set. They

are equally distributed for all the frequency spectrum, according to a given angle. For

example, for the set of filters with np2q “ 3, the maximum frequencies will be around

the angles (0, π
3
, 2π

3
) and their respective mirrored angles, since Hd were implemented in

a way to guarantee symmetry, this can be seen in Figure 3.7a, 3.7b and 3.7c.

(a) (b) (c)

Figure 3.7. Set of Hd built using the same ground rules in scenario I. Windowed
by Blackman window with 3 filters, where the maximum frequencies are around the
angles ´π and π for (a), ´π3 and π

3 for (b)and ´2π
3 and 2π

3 for (c).
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The same criteria were used to build the other set of filters, in a way that, the bigger

the n, the smaller the angle distance from the next filter in the set. We used two reference

images to extract the measurements b, they are both displayed in Figures 3.8a and 3.8b,

to simplify, we will refer to them as Shepp-Logan and Brain image. For the scenario I, we

tested four windows type and reconstructed 48 MR images for each reference image. For

the scenario II, we tested three distribution functions and reconstructed 36 MR images

for each reference image, totalizing 168 reconstructions. For each image we evaluated the

SER and the Structural Similarity Index Measure (SSIM). The SSIM is a measure that

evaluates structural information and the dependence of samples of the image with its

neighboring samples [51]. The structural index is assembled as a weighted combination

of luminance (l), contrast (c), and structure (s) comparison, as

SSIMpx1, x2q “ rlpx1, x2qs
α
rcpx1, x2qs

β
rspx1, x2qs

γ, (3.6)

where x1 and x2, are the signals we are trying to compare. The equation (3.7) is built

in a way to make sure the index satisfies similarity (Spx1, x2q “ Spx2, x1q), where the

order of the signals does not affect the comparison, boundedness (Spx1, x2q ď 1), which

states a upper bound as an indicator of how close the signals are and unique maximum

(Spx1, x2q “ 1 ðñ x1 “ x2), what means that the index is equal to 1, if and only if the

signals are equal [52]. That being said, the index is stated as

SSIMpx1, x2q “
p2µx1µx2 ` c1qp2σx1x2 ` c2q

pµ2
x1
` µ2

x2
` c1qpσ2

x1
` σ2

x2
` c2q

. (3.7)

Given the two signals x1 e x2 of same size NˆN , µx1 and µx2 are the sample mean, σ2
x1

and

σ2
x2

are the sample variance and σx1x2 is the sample covariance of x1 and x2. The terms

c1 “ pk1Lq
2, c2 “ pk2Lq

2 are variables to stabilize the division by the denominator, L is

the dynamic range of the pixel value and the constants are k1 “ 0.01 and k2 “ 0.03, by

default. Besides the image quality measurements, we also calculated the mean, maximum,

and standard deviation reconstruction time for each set of filters.

3.3 Preliminary Evaluation of Filter Design Strategies

In this section, we present and discuss the results of both scenarios I and II. All im-

ages reconstructed in this work where a minimization of the l1-norm using the method

described in the Section 2.3.1.

Experiment Settings :

- Reconstructed images: Two reconstructed images 3.8a and 3.8b, both of size

512ˆ512.
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(a) Shepp-Logan phantom. (b) Transverse section phantom of the brain.

Figure 3.8. Images used to test the filters in the scenarios I and II.

- Trajectory : Radial;

- Measurements : 90 radial lines;

- lp minimization : p = 1;

- Filters : Directional filters from Scenario I and II;

- Exclusion Criteria : Reconstructions with SER under zero.

- Total of Reconstructions : 96 reconstructions from Scenario I and 72 recon-

structions from Scenario II, 168 total.

3.3.1 Comparison between Scenario I and II

The Figures 3.9 and 3.10 lay out in graphs the quality parameters results for the re-

constructions of the Shepp-Logan phantom in Figure 3.8a, where SER and SSIM are in

function of the number of filters utilized to filtrate the image spectrum. In the scenario

II the results for the set of 2 filters with smooth distribution following the equations

of the Blackman and Hann windows was omitted since they were not able to properly

reconstruct the images. In this work we are considering that the signal was reconstructed

when SER ą 0. All graphs presented in this section have a guideline legend where we

separate the groups of filters by scenarios and window used to truncate the filters or

smooth distribution, in both cases refereed by the function name. As an example of how

to read the graphs; in Figure 3.9, all the graphs with an asterisk (˚) are designed as

described in Section 3.1.1 (Scenario I). So, the first graph in red with asterisks shows the
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SER results for the filters design as described in Scenario I and also truncated by a rect-

angular window as the one shown in Figure (3.4c). The analogous analysis works for the

other set of graphs. The purple graph with markers in circles (o) displays the SER results

for the filters implemented as described in Section 3.1.2 (Scenario II) from a frequency

distribution described by the Blackman Function (3.5). In both quality measurements,

SER and SSIM, the higher the value the best performance has the filter. Where for

the SSIM we evaluate the luminance, contrast and structure of the reconstructed image

and the closeness to 1 means that the image has no distortion, degradation or changes

in the structural information when compared to the original image in terms of absolute

error. On the other hand, SER evaluates the ration of the power of the original image

and the error between the original and reconstructed image. To elucidate, usually, SER

values are reported with a significance of 0.1 dB and SSIM with significance of 0.001. In

this work, we extrapolate the significance of both parameters by one decimal, to present

even slight differences between our filters. An interesting example happens with the set

of filters qualified as best SER and SSIM results for the Shepp-Logan phantom. In Fig-

ures 3.11a and 3.12a we have the reconstructions for the best SER and SSIM, respectively,

however, evaluating the parameters we can tell that both reconstructions have a slight

difference in terms of the quality parameters, but only noticeable when extrapolating the

conventional significance used to report the measures. Since the filters can be considered

similar in terms of quality of the final reconstructions measured here, we can take in ac-

count the number of filters in the set. That being said, the set of 5 filters is a preferable

choice because even considering that the reconstructions are being parallel computed, the

composition stage will take less time to search for the coefficients of Xr between 5 Xfn

(reconstructions of the filtered versions of the phantom in frequency domain), than 35.
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Figure 3.9. SER results for the reconstruction of the Shepp-Logan image in the
scenarios I and II. The red circles highlights the highest and lowest SER for the
image.

Figure 3.10. SSIM results for the reconstruction of the Shepp-Logan image in the
scenarios I and II. The red circles highlight the highest and lowest SSIM for the
image.
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(a) SER = 24.13 dB, SSIM = 0.9679. (b) SER = 10.26 dB, SSIM = 0.5571.

Figure 3.11. Best and worst SER results for the reconstruction of the Shepp-
Logan comparing both scenarios. (a) Reconstruction with filters from scenario I:
Set of 5 filters and rectangular windowing. (b) Reconstruction with filters from
scenario II: Set with 2 filters and smooth distribution following the equation of the
Hamming windowing.

(a) SER = 24.08 dB, SSIM = 0.9688. (b) SER = 10.26 dB, SSIM = 0.5571.

Figure 3.12. Best and worst SSIM results for the reconstruction of the Shepp-
Logan. (a) Reconstruction with filters from scenario I: Set of 35 filters and rectan-
gular windowing (b) Reconstruction with filters from scenario II: Set with 2 filters
and smooth distribution following the equation of the Hamming windowing.

Next, the Figures 3.13 and 3.14 are the reconstruction results for a more complex
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phantom of the brain, Figure 3.8b. The following two Figures 3.15a and 3.15b are the

final reconstructed images comparison between the best and worst SER and SSIM results

for the Brain phantom. In this case, both quality measures seemed to agreed revealing

the same set of filters for the best and worst reconstructions. Also, for both phantoms,

the set of 2 filters with smooth distribution following the equation of Hamming was the

worst reconstruction comparing the both Scenarios I and II. Although, adding one filter

to the same design of filters and placing the higher frequencies of each filters in angles

equally distant from each other as the filters in Figures 3.7a, 3.7b and 3.7c resulted in an

increase of 5.8 dB in SER and 0.394 in SSIM for the Shepp-Logan and 9.9 dB in SER and

0.117 in SSIM for the Brain phantom. In the Figures 3.16 and 3.17, we present again the

SER results but this time as an attempt to compare how each design of filter behave for

one of the phantoms. An interesting observation here is that even if the Brain phantom

is, in theory, more complex than the Shepp-Logan image, the filters tested until here

showed higher SER results and this will be taken in account to explore other designs for

the directional filters, as well as different images to test the filters sparsifying potential.

Figure 3.13. SER results for the reconstruction of the Brain image in the scenarios
I and II. The red circles highlight the highest and lowest SER for the image.
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Figure 3.14. SSIM results for the reconstruction of the Brain image in the sce-
narios I and II. The red circles highlight the highest and lowest SER for the image.

(a) SER = 26.04 dB, SSIM = 0.3389. (b) SER = 11.03 dB, SSIM = 0.1737.

Figure 3.15. Best and worst SER and SSIM results for the reconstruction of the
Brain phantom. (a) Reconstruction with filters from scenario I: Set of 35 filters and
rectangular windowing (b) Reconstruction with filters from scenario II: Set with 2
filters and smooth distribution following the equation of the Hamming windowing.
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Figure 3.16. SER results for the Shepp-Logan and Brain images in scenario I.

Figure 3.17. SER results for the Shepp-Logan and Brain images in scenario II.
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Chapter 4
Further Experiments with Directional Filters

This chapter is composed of three sections, where we first describe different approaches

to design directional filters and next, we present and discuss reconstructions with these

filters using phantoms. Each design approach is described in a section and their respective

graph results for the quality measures SER and SSIM of each image. In the last section,

we present a group of tests with a real image of the brain in different trajectories.

4.1 Exploring Smooth Filters in a Frequency Range

4.1.1 Scenario III: Projecting Filters From an Ideal Frequency Response

Distribution in a Range of the Frequency Spectrum

The present set of filters is built following the mathematical process of filters design using

the windowing method. The steps are described as a comparison to what was designed

in the initial experiments as an attempt to exemplify the theoretical differences between

each set of filters. That being said, the filters were design similarly to the process of

the filters in Section 3.1.1 (Scenario I) following the steps of the windowing method.

The difference is in the frequency distribution adopted here. Therefore, in Equation 3.3,

Hd “ 1, and hrn1, n2s is calculated for the limits of the angles (θ), equally distributed

between the number of filters, and the radius r. We also apply a high-pass mask to

eliminate the low frequencies from our filters. The windows applied here are the same

as illustrated in Figures 3.4a, 3.4b, 3.4c and 3.4d and the visual result of the filters are

presented in Figures 4.1a, 4.1b, 4.1c, 4.1d. To standardize, we kept the same number of

filters as n “ r2, 3, 5, 6, 7, 8, 9, 10, 20, 30, 35, 40s and the same phantoms Shepp-Logan 3.8a

and Brain 3.8b while comparing the filters scenarios.
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(a) Hann windowing. (b) Hamming windowing.

(c) Blackman windowing. (d) Rectangular windowing.

Figure 4.1. Visual output of the filters in Scenario III.
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4.1.2 Scenario IV: Implementing Directional Filters From a Smooth Fre-

quency Distribution in a Range of the Frequency Spectrum

The filters investigated in Section 3.1.2 (Scenario II) where implemented following a

smooth distribution of half the frequency spectrum in a way that the distribution dis-

played a symmetry for each half of the spectrum. Analogous to this structure, the filters

here are design following the same arrangement for the smooth distributions distinguish-

ing only from the range of the smooth distribution adopted. Instead of expanding the

smooth distribution along all the spectrum, we limit the distribution in a range equally

divided between the number of filters in the set. To summarize, the filters in this scenario

are implemented in the frequency domain assuming a smooth distribution according to

the equation of the windows of Hann, Hamming and Blackman, as previously described

by the equations 3.1, 3.4 and 3.5, respectively. The Figures 4.2a, 4.2b and 4.2c below

present the visual result of the filters in this configuration.

(a) Hann distribution. (b) Hamming distribution. (c) Blackman distribution.

Figure 4.2. Visual display of the filters following the smooth distribution of the
equations of the Hann, Hamming and Blackman window.

4.1.3 Scenario V: Implementing Filters From an Ideal Frequency Re-

sponse Distribution in a Range of the Frequency Spectrum

The following set of filters can be understood as a special case of the filters in the previous

Section 4.1.2, where we implement the filters in an ideal frequency response range, also,

equally divided between the number of the filters. In this case, we built a set of filters

to contrast with the ones in Scenario IV to test and compare the effects of the smooth

transition in a range of the filter gain. The process to implement the filters in this section

is actually simple. For each set of n filters, we have to divide the frequency spectrum by

the number of filters, in a way to implement symmetry between the angle directions, and

in the range of the Discrete Fourier Transform (DFT) of each filter we place the gain as

one and zero at the other frequencies. The Figure 4.3 shows the visual result of the filters

with ideal frequency response distribution.
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Figure 4.3. Visual display of the filters in Scenario V following an ideal frequency
response distribution.

4.2 Experimental Results and Comparison

Experiment Settings :

- Reconstructed images: Two reconstructed images 3.8a and 3.8b, both of size

512ˆ512.

- Trajectory : Radial;

- Measurements : 90 radial lines;

- lp minimization : p = 1;

- Filters : Directional filters from Scenario III, IV and V;

- Exclusion Criteria : Reconstructions with SER under zero.

- Total of Reconstructions : 96 reconstructions from Scenario III, 72 reconstruc-

tions from Scenario IV and 24 reconstructions from scenario V, 192 total.

In the present section, we display the quality parameters results SER and SSIM of the

reconstructions with directional filters designed in all the five scenarios explored in this

research. To compare the results, we plotted again the graphs for the Scenario I and

II alongside to the other scenarios graphs. The graphs are presented in the same way

explained in Section 3.3.1, where the legend shows the separation of the filters set by sce-

narios with different markers and specify the type of the smooth distribution or truncation

with a window by colors. Likewise, the results presented in the previous Chapter 3, we

also pointed out the best and worst SER and SSIM results, see Figures 4.7a, 4.7b, 4.11a,

and 4.11b. We display them not only to visually and mathematically contrast the highest

quality index measures with the lowest outcomes, but to also compare or even highlight
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features that should be avoided in future design of directional filters when compared with

the ones who had a better outcome. Since the best and worst outcomes, as shown in

Figures 4.4, 4.5, 4.9, 4.10, for both phantoms are coming from the filters in scenario III,

designed from an ideal frequency response distribution with windowing method, we want

to start a comparison between those specific set of filters and analyze how their gain are

distributed in the frequency spectrum. A central idea behind the design of directional

filters to reconstruct MR measures with prefiltering is to favor the sparsity of each filtered

version, Xfn, because sparsity is not only a highly valuable feature, but also the piece of

information that makes possible for CS to reconstruct signals with less measures when

compared to other techniques. For that reason, we designed the filters thinking in smooth

transition bands and a big γ (4.1) ratio between the main lobes and side lobes of the

filters.

γ “
|Gpejwq|

|δ|
(4.1)

Overall, the quality indexes show that by truncating the filters with windows that have

fixed ripples as Blackman, Hann and Hamming payoff in terms of diminishing the effects

of Gibbs phenomenon and it has a positive effect on the quality of the final reconstructed

images. This effect can be seen in the graphs of scenario III in Figure 4.27, where all

the red graphs of the filters windowed with a rectangular windowing is below the SER

rate of the other filters for the same reconstructed image. For the case of the best result

for the Shepp-Logan phantom with Blackman windowing and 6 filters, the final image

reconstruction is 4.3 dB in SER and 0.03 in SSIM above the filters with rectangular

windowing and same set number, refer to Figure 4.6 to see the SSIM results. In addition

to this analysis, the worst reconstruction case for both phantoms are from the scenario

III with rectangular windowing in the set with 3 filters. This set of filters seem to be an

outline, since reconstructing the same images with 2 or 5 filters in the set showed better

results, with a SER gain of more than 20 dB, for both cases. Considering this outline

aspect and the positive effects on diminishing the ripples in the stop band of the filters,

it is possible that not only the size of the ripples but also how they are distributed in

the frequency domain of the signal has an impact on how well these filtered versions are

able to preserve the spectrum of the images in the composition stage. In Figures 4.8

and 4.12 we present some of the filtered xfn reconstructions for the Haar filters and the

best and worst result of the directional filters. Defining the sparsest xfn versions visually

is a challenging task, since the images seem alike. However, comparing the xfn from Haar

with the xfn from the directional filters with worst results, the edges of the image seem

to be scattered, although this not necessarily means that the final image will be of poor

quality.

39



Figure 4.4. SER results for the reconstruction of the Shepp-Logan phantom. The
red circles highlights the highest and lowest SER for the image.

Figure 4.5. SSIM results for the reconstruction of the Shepp-Logan phantom.
The red circles highlight the highest and lowest SSIM for the image.
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Figure 4.6. Zoomed in view of the upper graphs in SSIM results for the recon-
struction of the Shepp-Logan phantom. The red circle highlight the highest and
lowest SSIM for the image.

(a) SER = 28.71 dB, SSIM = 0.984. (b) SER = 1.90 dB, SSIM = 0.149.

Figure 4.7. Best and worst SER and SSIM results for the reconstruction of the
Shepp-Logan. (a) Reconstruction with filters from scenario III: Set of 6 filters and
Blackman windowing. (b) Reconstruction with filters from scenario III: Set with 3
filters and rectangular windowing.
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(a)

(b)

(c)

Figure 4.8. Reconstructed sparse xfn components of the Shepp-Logan phantom.
In (a) we have the three sparse components used to compose the final image, in (b)
we have the three xfn versions (n “ r10, 20, 30s) for the Directional filter with best
results, in (c) we have the three xfn versions (n “ r10, 20, 30s) for the Directional
filter with worst results.
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Figure 4.9. SER results for the reconstruction of the Brain phantom. The red
circles highlight the highest and lowest SER for the image.

Figure 4.10. SSIM results for the reconstruction of the Brain phantom. The red
circles highlight the highest and lowest SSIM for the image.
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(a) SER = 31.52 dB, SSIM = 0.369. (b) SER = 4.54 dB, SSIM = 0.1727.

Figure 4.11. Best and worst SER results for the reconstruction of the Brain
phantom. (a) Reconstruction with filters from scenario III: Set of 40 filters and
Hann windowing. (b) Reconstruction with filters from scenario III: Set with 3
filters and rectangular windowing.
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(a)

(b)

(c)

Figure 4.12. Reconstructed sparse xfn components of the Brain phantom. In (a)
we have the three sparse components used to compose the final image, in (b) we
have the three xfn versions (n “ r10, 20, 30s) for the Directional filter with best
results, in (c) we have the three xfn versions (n “ r10, 20, 30s) for the Directional
filter with worst results.
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4.3 Experiments with Real Image

Experiment Settings :

- Reconstructed images : Head image originally of size 1024ˆ1024 downsampled

to a size of 512ˆ512.

- Trajectories: Radial and Spiral with exponential radius growth;

- Measurements : 90 radial lines and 180 turns for spiral trajectory;

- lp minimization : p = 1;

- Filters : Directional filters from Scenarios, I, II, III, IV and V;

- Exclusion Criteria : Reconstructions with SER under zero.

- Total of Reconstructions : 96 reconstructions from Scenario I, 72 reconstruc-

tions from Scenario II, 96 reconstructions from Scenario III, 72 reconstructions from

Scenario IV and 24 reconstructions from scenario V, 360 total.

From the reconstructions with phantoms we notice that the directional filters seemed

to benefit from the structure of the Brain phantom and it was reflected in the SER

higher than the ones for the Shepp-Logan phantom. For that reason, we reconstructed

a real image that we will refer simply as Head image. We first acquired b measures

in the same radial trajectory in the k-space as in Figure 3.6 and next with a spiral

trajectory represented in Figure 4.18 with exponential radius growth and 180 turns. In

these experiments the main goal was to compare the performance of the directional filters

designed to the separable Haar filters, also by means of comparison, we reconstructed

the image with a TV optimization routine, described as barrier iterations for equality

constrained TV minimization in [45]. The Figures 4.13 and 4.14 show the SER and SSIM

graphs for all the reconstructions with the directional filters in the different scenarios.

We also plotted the Haar results with 3 filters as the scheme proposed by Miosso in [37]

represented by a red star marker in both graphs. To help identify the filters set with

higher SER and SSIM values than the Haar filters we plotted a dashed line that indicates

that the filters above this reference line have presented higher values of the quality indexes

for the reconstruction with the real image. Similarly to the previous experiments with

phantoms the filters set from scenario III presented the best results in terms of quality

measures but it seems that there is a minimum range from where the frequency spectrum

should be divided in order to favor sparsity in the filtered measures bf . For SER index,

only the set after 8 filters started to present a gain in comparison with the Haar filters

the gain went from 0.2 dB until 1.25 dB.
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In terms of structural similarity, the gain started to be expressive after 10 filters in

the set with a gain of 0.005 until 0.012 in SSIM. An interesting result from the filters

in scenario III truncated with a rectangular window is that the distortion caused in the

impulse response of the filter due to the rigging created at the edge of the transition

band can be compensated if we redistribute the frequency spectrum in small ranges with

more filters, this aspect can be seem starting from the set with 20 filters. In addition,

the worst reconstruction result for the Head image is also from the same set of filters,

which presented the worst results with the phantoms. This reinforces the idea that

the distribution range of the frequency spectrum between the filters affect its capability

to produce sparser versions of the measures. The reconstructed images of the head

are displayed in Figures 4.15a, 4.15b, 4.15c and 4.15d, a detail of the reconstruction is

presented in Figures 4.16b, 4.16c, and 4.16d to help the visual comparison, the first

Figure 4.16a is the original image from where the measures were extracted. Also, in

Figures 4.17a, 4.17b, and 4.17c, we present the some of the xfn reconstructions for the

Haar and directional filters. In Table 4.1 we summarize the results of the reconstructions

from measurements acquired in a radial trajectory with Haar, directional filters and TV.

From that, we see that the reconstructions of piecewise continuous images show better

results with classical approaches as TV, compared to directional filters, however, the

reconstruction using CS with prefiltering with Haar filters present better results in terms

of image quality. On the other hand, reconstructions using CS with prefiltering using

directional filters present higher results in terms of quality indexes.
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Figure 4.13. SER results for the reconstruction of the Head image in a radial
trajectory. The red circles highlight the highest and lowest SER for the image. The
red star is the result of the reconstruction of the Head image with the Haar filters.

Table 4.1. SER and SSIM results for the reconstruction using CS with prefiltering
with Haar filters in the scheme 3 set up as in [37], and prefiltering with directional
filters, and the reconstructions with TV from [45].

Haar TV Directional

Images SERdB SSIM SERdB SSIM SERdB SSIM
Shepp-Logan 135 1 114.9 1 28.7 0.98

Brain 39.2 0.420 37.4 0.516 31.5 0.369
Head 26.5 0.580 22.1 0.481 27.7 0.592
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Figure 4.14. SSIM results for the reconstruction of the Head image in a radial
trajectory. The red circles highlight the highest and lowest SSIM for the image.
The red star is the result of the reconstruction of the Head image with the Haar
filters.
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(a) SER = 26.5 dB,
SSIM = 0.580.

(b) SER = 22.1dB,
SSIM = 0.481.

(c) SER = 27.7 dB,
SSIM = 0.592.

(d) SER = 2.53 dB,
SSIM = 0.130.

Figure 4.15. Reconstructions of the Head image. In (a) we have the reconstruc-
tion for the Haar filters, in (b) we have the reconstruction with TV, in (c) we have
the best reconstruction result for the directional filters, where the reconstruction
is from the set of 40 filters windowed by Hamming in scenario III, in (d) we have
the worst reconstruction result for the directional filters, where the reconstruction
is from the set of 3 filters windowed by a rectangular window in scenario III.
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(a) Original. (b) Directional.

(c) Haar. (d) TV.

Figure 4.16. Detail comparison of the reconstructed image of the head and the
original image. In (a) we have the original image of the head, in (b) we have
the best reconstruction result for the directional filters, where the reconstruction is
from the set of 40 filters windowed by Hamming in scenario III, in (c) we have the
reconstruction for the Haar filters, and in (d) we have the reconstruction with TV.
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(a)

(b)

(c)

Figure 4.17. Reconstructed sparse xfn components of the Head image. In (a) we
have the three sparse components used to compose the final image, in (b) we have
the three xfn versions (n “ r10, 20, 30s) for the Directional filter with best results,
in (c) we have the three xfn versions (n “ r10, 20, 30s) for the Directional filter
with worst results.
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Finally, the reconstructions from measures acquired in a k-space spiral trajectory

reinforced the results from the radial trajectory, however, the quality of the image showed

improvements for both Haar and directional filters. For the Haar filter the gain was of 2.1

dB in SER and 0.193 in SSIM, on the other hand, the directional filter gain was of 2.5 dB

in SER and 0.03 in SSIM. This is an interesting result since the spiral trajectory acquired

slightly less measures than the radial trajectory, a difference of 0.13% in the number of

measures. The Figures 4.19 and 4.20 display the graphical results of SER and SSIM

for the reconstructions of the Head image with measures acquired in a spiral trajectory

with exponential growth. The Figures 4.22a, 4.22b, and 4.22c, show the reconstructed

images for the Haar filter, the directional filter with 40 filters in the set, windowed by the

Hamming window in scenario III and the worst reconstruction for the directional filter

with 3 filters in the set, windowed by a rectangular window in scenario III, the same

filters from the previous experiment, but in this case with spiral trajectory. Also, in

Figures 4.24a, 4.24b, and 4.24c, we present some of the xfn reconstructions for the Haar

and directional filters. Similar to the xfn from the images reconstructed from measures

in a radial trajectory, we can tell that the images are differents from each other, however

we cannot visually define with precision which are the sparsest versions. In the Table 4.2,

we summarize the SER and SSIM results for the Haar and directional filters for both

k-space trajectories.

Figure 4.18. Representation of an spiral trajectory with radius growth and 180
turns representing « 23.55% of the possible measurements for an image of size
512ˆ512.
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Figure 4.19. SER results for the reconstruction of the Head image in a spiral
trajectory. The red circles highlight the highest and lowest SER for the image. The
red star is the result of the reconstruction of the Head image with the Haar filters.

Table 4.2. Summary of the results for reconstructions of the Head image in both
radial and spiral trajectory. The directional filter results are the best SER and
SSIM results displayed in the graphs 4.13 and 4.14.

Radial Spiral

SERdB SSIM SERdB SSIM
Haar 26.5 0.580 28.6 0.613

Directional 27.7 0.592 30.2 0.621

The next set of Figures 4.25, 4.26, 4.27, 4.28, and 4.29 present the SER results for

all the images reconstructed in this work separated by scenario. The idea is to provide a

visual display of how the different design strategies behave reconstructing different images.

Overall, the SER results for the Brain phantom were higher than the results for the

Shepp-Logan and Head image in the all the scenarios. Considering all scenarios results,

in general the graphs are divided by scenarios with the best SER results for the Brain

phantom, followed by the results for the Head image and Shepp-Logan phantom, except

for the scenario I, where the SER results of the Shepp-Logan phantom reconstructions

are higher than the reconstructions for the Head image. To remember, the filters in

scenario I are projected from a smooth frequency distribution along all the frequency

spectrum and truncated by a window and this setup seem to work better for piecewise

continuous images than for a real image. Categorically in scenario IV, to increase the
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Figure 4.20. SSIM results for the reconstruction of the Head image in a spiral
trajectory. The red circles highlight the highest and lowest SSIM for the image.
The red star is the result of the reconstruction of the Head image with the Haar
filters.

number of filters degraded the quality of the reconstructions. For the Head image the loss

in SER was of 3 dB and for the Shepp-Logan was of 5.3 dB. The filers in Scenario V are

implemented in the frequency domain from an ideal frequency response distribution and

the results suggest that for real images the degradation suffered by adding more filters,

which results in dividing the frequency spectrum in smaller ranges, is less aggressive than

for piecewise continuous images.
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Figure 4.21. Zoomed in view of the upper graphs in SSIM results for the recon-
struction of the Head image in a spiral trajectory. The red circle highlights the
highest and lowest SSIM for the image. The red star is the result of the reconstruc-
tion of the Head image with the Haar filters.

(a) SER = 28.6 dB,
SSIM = 0.613.

(b) SER = 30.2 dB,
SSIM = 0.621.

(c) SER = 0.97 dB,
SSIM = 0.154.

Figure 4.22. Reconstructions of the Head image in spiral trajectory measure
acquisition. In (a) we have the reconstruction for the Haar filters, in (b) we have
the best reconstruction result for the directional filters, where the reconstruction
is from the set of 40 filters windowed by Hamming in scenario III, in (c) we have
the worst reconstruction result for the directional filters, where the reconstruction
is from the set of 3 filters windowed by a rectangular window in scenario III.
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(a) Original. (b) Directional. (c) Haar.

Figure 4.23. Detail comparison of the reconstructed image of the head from
measures acquired in a spiral trajectory and the original image. In (a) we have the
original image of the head, in (b) we have the best reconstruction result for the
directional filters, where the reconstruction is from the set of 40 filters windowed
by Hamming in scenario III, in (c) we have the reconstruction for the Haar filters.

57



(a)

(b)

(c)

Figure 4.24. Reconstructed sparse xfn components of the Head image with mea-
surements acquired in a spiral trajectory. In (a) we have the three sparse com-
ponents used to compose the final image, in (b) we have the three xfn versions
(n “ r10, 20, 30s) for the Directional filter with best results, in (c) we have the
three xfn versions (n “ r10, 20, 30s) for the Directional filter with worst results.
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Figure 4.25. SER results for the Shepp-Logan, Brain and Head images in scenario
I.

Figure 4.26. SER results for the Shepp-Logan, Brain and Head images in scenario
II.
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Figure 4.27. SER results for the Shepp-Logan, Brain and Head images in scenario
III. The Haar SER result is for the reconstruction of the Head image.

Figure 4.28. SER results for the Shepp-Logan, Brain and Head images in scenario
IV.

60



Figure 4.29. SER results for the Shepp-Logan, Brain and Head images in scenario
IV.
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Chapter 5
Conclusion

In this research, we evaluated different strategies to design directional filters. We first

started from filters with smooth transitions all along the frequency domain, first in sce-

nario I projecting filters from an ideal frequency response characterized by a smooth

distribution following the Hann equation and them truncating the filter by windowing

them with Hann, Hamming, Blackman and rectangular windows. Then, in scenario II we

implemented the filters in the frequency domain following smooth distributions defined

by the equations of the Hann, Hamming and Blackman window. These first two strate-

gies where evaluated reconstructing phantoms from measurements acquired in a radial

trajectory in the k-space.

When comparing these strategies to the reconstructions with prefiltering using Haar

filters, the results were not positive for directional filters, since TV and CS with pre-

filtering using separable filters reconstructed both phantoms with way higher SER and

SSIM values. However, we noticed that the SER results for the directional filters were

higher with the Brain phantom than the Shepp-Logan phantom. Thus, it is important to

evaluate what each quality index assess in terms of quality. When calculating the SER,

we are in practice assessing the signal error between a reference signal and the distorted

one. In fact, what the quality indexes were saying is that in general, for the Brain phan-

tom the directional filters were able to present a small error signal in the reconstruction,

however, they were not able to preserve the structural similarity so well as what it did

for the Shepp-Logan phantom.

In the second part of the research, we proposed three other strategies to design di-

rectional filters keeping the filter impulse response in a range of the frequency spectrum,

equally divided between the numbers of filters in the set. In scenario III, we projected

filters from an ideal frequency response distribution and windowed them with the Hann,

Hamming, Blackman and rectangular windows. Next, in scenario IV, we implemented

filters from a smooth transition in a range of the frequency spectrum and finally, in sce-

nario V we also implemented a set of filters from an ideal frequency response distribution
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in a range of the DFT. When comparing the performance of all the filters strategies in

reconstructing a real image of the head, the filters in scenario III, showed better results

in terms of image quality when compared to Haar filters. We relate this result to the

ability of the directional filters in extracting features such as boundaries, edges, ridges,

textures at different orientations of the image, and thus this ability favors the sparsity in

each filtered version of the bf measures, hence, simplifying the process of solving the lp

minimization for each filtered version of the final reconstructed images. Equally impor-

tant, the reconstructions from measures acquired in a spiral trajectory with exponential

growth presented higher SER and SSIM results, even with a decrease of 0.13% measures

compared to the radial trajectory.

Besides the filters strategies proposed in this work, we also tested some other different

design strategies as emulating the spectral filling of the Haar filters with directional filters,

we also tested the directional filters without the mirrored symmetry, and the results were

below the SER and SSIM acquired with the Haar filters.

In future a research we think that windowing the filters in scenario III with Kaiser

windows could improve the reconstruction quality even more, since with this window we

have parameters to specifically interfere in the size of the ripples, in the stopband, caused

by the truncation of the DTFT. Also, we think that exploring other strategies to project

smooth filters as the project of filters with smooth transitions proposed by Burrus could

show promising results. Further, in future researchers the directional filters should be

tested with measures that are more realistic acquired in non-cartesian grids to approxi-

mate the results to realistic situations on magnetic resonance imaging reconstructions.

5.1 Considerations to Select a Filter

When conducting this research we had the opportunity to test different strategies to

design directional filters and explore different ways to divide the frequency spectrum of

the reconstructed images and also to compare the reconstructions with directional and

separable filters and from that we acquire an sense of discernment to choose a more fitting

filter for CS with prefiltering. We start these considerations by reflecting on the source

of the measurements from where we want to reconstruct an image.

Starting from a piecewise continuous phantom, some researches argue that they over-

estimate the performance of the reconstructions algorithms, however, we want to consider

the reconstruction of measurements from a phantom used to calibrate and test the MRI

scan equipment, or even different types of phantoms for studies purpose. Some of these

phantoms are piecewise continuous and then to properly reconstruct measurements from

them we should use Haar filters in the prefiltering stage. For informations regarding

the Reconstruction Time (RT) refer to Appendix A and for the hardware configurations

where the reconstructions were conducted refer to Appendix B.
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Further, when considering biological tissues or phantoms that emulate the complexity

of biological tissues with different segments of information in small sections the directional

seen to be a better fit in the prefiltering stage due to its ability to acquire information as

ridges, edges and etc. Also, we want to take in account some considerations regarding the

quality indexes and the RT. To see the RT, refer to Table 5 in Appendix A. To estimate

the approximated reconstruction time for an equipment similar to the one used in this

research we calculate nˆRTmean, where n is the number of filters in the set and RTmean

is the average reconstruction time.

As an example, we refer to the best reconstruction result for the Head image with

measures acquired in a spiral trajectory, see Figure 4.19. To this example, the total

reconstruction time for serial reconstructions is of 40 ˆ 6.63 « 4 hours and 25 minutes.

However, using an parallelized algorithm the total reconstruction time is the RTmax. The

quality indexes results for this reconstruction is SER of 27.7 dB and SSIM of 0.592.

Whereas reconstructing the same image with half the number of filters results in SER

0f 27.5 dB and SSIM of 0.590 and total reconstruction time of 20 ˆ 6.73 « 2 hours and

14 minutes, almost half the time of the reconstruction with 40 filters for a gain of 0.2

dB in SER and 0.002 in SSIM. For serial reconstructions, the number of filters in the set

easily increase the total reconstruction time from minutes to hours and this should be

a concern depending on the research scope. On the other hand, parallel reconstructions

benefit from the fact that the total reconstruction time will take as long as the single

most time consuming reconstruction, although the more number of filters used, the more

time the composition stage will request to compose the final image

5.2 Research challenges

When we decided to conduct this research we had in mind the idea that directional filters

could be able to provide sparse xfn versions in the prefiltering stage of the reconstructions

due to its ability to provide borders, ridges, edges and etc. However, we did not know

by then what was the best way to design the directional filters and how it could impact

in the final reconstructed images and we started from different approaches considering

an smooth distribution along all the frequency spectrum because we believe at first that

the smoother the filters transitions the sparse the filtered images. From testing and

experimenting with different parameters we proposed the five scenarios and systematically

tested them with different numbers of filters and directional positions for three images

with measures acquired in a radial trajectory and after with a spiral trajectory.

Due to the empirical nature of the study, a great challenge was the time required

to reconstruct the images and the fact that the reconstructions are computationally de-

manding and we only had access to a cluster near to the deadline to conclude the research

and this limited the number of experiments with different images and trajectories. In a
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future work, we want to explore the five proposed scenarios reconstructing images from an

image bank with different images of different parts of the human body exploring different

k-space trajectories.
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A Reconstruction Time Results

The following tables are divided in lines by the reconstructed images (Shepp-Logan, Brain

and Head) with measures b acquired in a radial trajectory, except for Head*, where the

measures b were acquired in a spiral trajectory. The rows are divided, according to each

scenario, by the type of window used to truncate the filters or the smooth distribution,

the number of filters and the RT results. RTMaxrmins is the maximum reconstruction

time of Xfn for each set of n filters. RTMeanrmins is the average RT for the set of filters

and RTσrmins is the RT standard deviation (σ) of the filters in the set. The grey lines are

the results of the reconstructions in the Virgo Cluster and the white lines are the results

for the reconstruction in an Asus k45Vm notebook, hardware info is in Appendix B.

Table 1

Haar Nº of Filters RTMaxrmins RTMeanrmins RTσrmins
Shepp-Logan 3 1.33 1.15 0.18

Brain 3 5.31 4.22 1.26
Head 3 4.20 3.57 0.57
Head* 3 7.32 6.79 0.47

Table 2. Reconstruction time in Scenario I.

Scenario I Window Type Nº of Filters RTMaxrmins RTMeanrmins RTσrmins

Shepp-Logan Blackman 2 7.27 7.22 0.07

3 7.19 6.92 0.25

5 7.43 7.09 0.32

6 7.64 7.16 0.27

7 7.74 7.23 0.40

8 8.41 7.47 0.62

9 7.98 7.19 0.44

10 7.54 7.26 0.27

20 21.43 8.93 3.61

30 29.10 9.19 4.56

35 8.66 7.40 0.43

40 8.33 7.28 0.43

Hann 2 7.29 7.13 0.22

3 7.77 7.27 0.44

5 7.38 7.01 0.33

6 7.39 7.04 0.30

7 7.79 7.21 0.50

8 8.65 7.37 0.74
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Table 2 continued from previous page

Scenario I Window Type Nº of Filters RTMaxrmins RTMeanrmins RTσrmins

9 8.00 7.09 0.50

10 7.44 6.98 0.33

20 8.28 7.08 0.46

30 7.75 6.73 0.45

35 8.36 7.13 0.52

40 28.10 9.52 4.29

Hamming 2 7.66 7.39 0.38

3 8.00 7.51 0.43

5 8.28 7.62 0.53

6 7.82 7.49 0.35

7 7.97 7.35 0.51

8 8.17 6.88 0.79

9 7.35 6.54 0.43

10 7.01 6.54 0.30

20 7.77 6.55 0.47

30 11.56 7.21 1.22

35 11.33 8.15 1.21

40 9.81 7.70 0.72

Rect 2 7.29 7.19 0.14

3 43.44 18.50 21.65

5 24.96 9.94 8.45

6 7.04 6.33 0.39

7 7.23 6.69 0.47

8 8.72 7.49 0.88

9 59.16 12.37 17.56

10 165.38 22.14 50.34

20 8.04 6.65 0.60

30 10.19 7.70 1.34

35 7.82 6.40 0.59

40 7.62 6.30 0.53

Brain Blackman 2 4.50 4.36 0.21

3 4.67 4.41 0.25

5 4.58 4.37 0.16

6 4.75 4.33 0.34

7 4.62 4.30 0.21

8 4.59 4.31 0.18

9 4.48 4.21 0.19
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Table 2 continued from previous page

Scenario I Window Type Nº of Filters RTMaxrmins RTMeanrmins RTσrmins

10 4.46 4.16 0.22

20 4.51 4.14 0.18

30 4.43 4.13 0.19

35 4.39 4.11 0.18

40 4.59 4.18 0.18

Hann 2 4.36 4.23 0.19

3 4.34 4.24 0.15

5 4.75 4.37 0.27

6 4.83 4.50 0.29

7 4.92 4.54 0.29

8 8.42 5.83 1.61

9 8.69 5.36 1.33

10 6.19 4.82 0.57

20 5.22 4.78 0.32

30 14.74 6.27 2.88

35 11.48 5.07 1.71

40 8.82 4.60 0.76

Hamming 2 4.21 4.15 0.07

3 4.23 4.12 0.15

5 4.24 4.01 0.25

6 4.25 4.04 0.21

7 4.62 4.26 0.28

8 7.85 5.62 1.10

9 6.00 5.47 0.42

10 15.74 7.78 4.61

20 11.21 5.04 1.59

30 11.24 5.01 1.89

35 9.09 5.78 1.22

40 10.59 5.51 1.22

Rect 2 3.39 3.22 0.25

3 3.82 3.69 0.17

5 4.88 4.23 0.47

6 5.63 5.01 0.55

7 5.78 5.39 0.46

8 5.41 5.19 0.20

9 5.54 4.63 0.61

10 8.63 5.31 1.24
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Table 2 continued from previous page

Scenario I Window Type Nº of Filters RTMaxrmins RTMeanrmins RTσrmins

20 5.64 4.42 0.34

30 4.41 4.15 0.19

35 4.50 4.12 0.20

40 5.90 4.16 0.40

Head Blackman 2 7.68 7.67 0.02

3 7.85 7.32 0.48

5 7.86 7.29 0.55

6 7.78 7.26 0.42

7 7.66 7.07 0.40

8 7.69 7.17 0.35

9 7.72 7.14 0.37

10 7.86 7.25 0.43

20 7.75 7.17 0.34

30 7.89 7.21 0.35

35 7.95 7.22 0.36

40 7.79 7.13 0.34

Hann 2 7.17 7.09 0.11

3 7.48 7.02 0.41

5 7.46 6.95 0.51

6 7.41 6.79 0.50

7 7.34 6.96 0.37

8 7.25 6.89 0.35

9 7.34 6.87 0.33

10 7.50 6.91 0.43

20 7.46 6.89 0.35

30 7.31 6.78 0.29

35 7.39 6.82 0.30

40 7.30 6.73 0.31

Hamming 2 7.33 7.21 0.17

3 7.27 6.85 0.38

5 7.44 6.88 0.52

6 7.44 6.94 0.44

7 7.39 6.98 0.40

8 7.15 6.71 0.35

9 6.98 6.65 0.26

10 7.27 6.66 0.41

20 7.33 6.76 0.33
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Table 2 continued from previous page

Scenario I Window Type Nº of Filters RTMaxrmins RTMeanrmins RTσrmins

30 7.37 6.77 0.32

35 7.35 6.72 0.32

40 7.21 6.65 0.31

Rect 2 6.45 6.43 0.02

3 7.30 6.91 0.43

5 6.73 6.17 0.46

6 6.48 6.12 0.29

7 6.51 6.10 0.41

8 6.53 6.08 0.42

9 6.71 6.12 0.34

10 6.65 6.20 0.37

20 6.56 6.12 0.33

30 6.77 6.16 0.32

35 6.88 6.06 0.36

40 6.66 6.11 0.32

Head* Blackman 2 8.91 8.90 0.01

3 8.91 8.82 0.08

5 9.72 9.03 0.43

6 9.45 8.95 0.28

7 9.38 8.93 0.38

8 9.20 8.94 0.19

9 9.35 8.97 0.25

10 9.47 8.81 0.33

20 9.81 9.00 0.31

30 9.67 8.98 0.27

35 9.53 8.93 0.25

40 9.78 9.00 0.29

Hann 2 8.66 8.55 0.16

3 8.58 8.47 0.14

5 8.79 8.52 0.28

6 9.05 8.64 0.30

7 8.93 8.53 0.28

8 8.81 8.56 0.20

9 8.78 8.53 0.17

10 8.69 8.42 0.20

20 8.79 8.44 0.21

30 9.55 8.56 0.29
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Table 2 continued from previous page

Scenario I Window Type Nº of Filters RTMaxrmins RTMeanrmins RTσrmins

Hamming 2 8.47 8.40 0.10

3 8.56 8.48 0.09

5 8.53 8.34 0.27

6 8.51 8.28 0.20

7 8.73 8.39 0.19

8 8.67 8.40 0.16

9 8.63 8.49 0.11

10 8.57 8.39 0.16

20 8.68 8.32 0.21

30 8.77 8.34 0.22

35 8.72 8.31 0.19

40 8.58 8.23 0.16

Rect 2 7.32 7.28 0.05

3 7.33 7.29 0.03

5 7.53 7.31 0.23

6 7.36 7.23 0.08

7 7.48 7.34 0.13

8 7.65 7.37 0.21

9 7.74 7.38 0.18

10 7.56 7.25 0.24

20 7.77 7.35 0.24

30 7.72 7.36 0.20

35 7.75 7.36 0.19

40 7.67 7.31 0.19

Table 3. Reconstruction time in Scenario II.

Scenario II Distribution Nº of Filters RTMaxrmins RTMeanrmins RTσrmins

Shepp-Logan Blackman 2 7.75 7.03 1.02

3 4.56 4.43 0.12

5 4.74 4.39 0.28

6 4.82 4.34 0.27

7 4.83 4.46 0.29

8 4.95 4.48 0.31

9 5.00 4.37 0.33

10 4.58 4.27 0.27

20 4.61 4.18 0.24
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Table 3 continued from previous page

Scenario II Distribution Nº of Filters RTMaxrmins RTMeanrmins RTσrmins

30 4.85 4.27 0.29

35 4.70 4.20 0.25

40 4.91 4.26 0.28

Hann 2 4.15 3.96 0.27

3 4.04 3.99 0.09

5 4.28 3.98 0.19

6 4.26 4.13 0.18

7 4.55 4.22 0.27

8 4.70 4.22 0.34

9 4.59 4.17 0.26

10 4.93 4.51 0.34

20 4.29 3.89 0.21

30 10.36 5.88 1.43

35 6.41 4.82 0.57

40 5.13 4.36 0.41

Hamming 2 4.29 4.06 0.33

3 4.09 4.08 0.02

5 4.48 4.21 0.23

6 4.29 4.13 0.18

7 4.51 4.14 0.26

8 4.63 4.17 0.31

9 4.71 4.19 0.31

10 4.55 4.16 0.24

20 4.63 4.14 0.25

30 4.62 4.13 0.26

35 4.65 4.16 0.26

40 8.94 5.18 1.35

Brain Blackman 2 3.39 3.09 0.43

3 3.79 3.68 0.15

5 3.89 3.77 0.09

6 4.06 3.77 0.17

7 3.93 3.62 0.17

8 4.03 3.70 0.22

9 4.10 3.73 0.28

10 4.11 3.80 0.22

20 4.22 3.82 0.26

30 7.19 3.93 0.67
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Table 3 continued from previous page

Scenario II Distribution Nº of Filters RTMaxrmins RTMeanrmins RTσrmins

35 9.36 5.70 1.85

40 7.13 4.27 0.87

Hann 2 3.48 3.47 0.03

3 3.88 3.64 0.36

5 3.95 3.71 0.24

6 4.29 3.96 0.21

7 4.33 3.82 0.25

8 4.07 3.73 0.22

9 4.04 3.80 0.28

10 4.03 3.71 0.26

20 3.98 3.63 0.21

30 3.96 3.59 0.24

35 3.95 3.53 0.21

40 4.19 3.66 0.24

Hamming 2 3.56 3.35 0.29

3 3.72 3.55 0.19

5 3.91 3.62 0.24

6 4.27 3.86 0.31

7 4.16 3.61 0.26

8 3.94 3.52 0.26

9 3.88 3.58 0.23

10 3.99 3.62 0.25

20 4.07 3.78 0.20

30 10.35 4.52 1.71

35 13.02 6.14 2.53

40 7.34 4.41 0.80

Head Blackman 2 5.73 5.72 0.02

3 5.84 5.74 0.09

5 6.36 5.80 0.41

6 6.13 5.79 0.19

7 6.02 5.68 0.21

8 6.13 5.68 0.27

9 6.53 5.80 0.36

10 6.43 5.74 0.36

20 6.42 5.79 0.30

30 6.54 5.81 0.34

35 6.49 5.76 0.32
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Table 3 continued from previous page

Scenario II Distribution Nº of Filters RTMaxrmins RTMeanrmins RTσrmins

40 6.52 5.73 0.29

Hann 2 5.54 5.46 0.12

3 5.55 5.42 0.16

5 6.10 5.55 0.38

6 5.82 5.53 0.19

7 5.78 5.57 0.22

8 5.93 5.55 0.25

9 6.20 5.54 0.34

10 6.16 5.53 0.31

20 6.14 5.54 0.26

30 6.35 5.60 0.29

35 6.31 5.59 0.29

40 6.28 5.56 0.28

Hamming 2 5.54 5.45 0.13

3 5.60 5.47 0.14

5 5.95 5.46 0.38

6 5.75 5.51 0.17

7 5.72 5.53 0.23

8 5.91 5.50 0.27

9 6.14 5.54 0.32

10 6.11 5.51 0.32

20 6.09 5.48 0.26

30 6.21 5.57 0.28

35 6.14 5.49 0.27

40 6.10 5.46 0.27

Head* Blackman 2 6.16 6.03 0.18

3 6.61 6.34 0.24

5 6.79 6.28 0.37

6 7.66 6.99 0.41

7 6.75 6.33 0.27

8 6.72 6.26 0.29

9 6.97 6.34 0.37

10 6.87 6.25 0.38

20 6.88 6.29 0.35

30 7.24 6.30 0.36

35 7.43 6.58 0.39

40 6.87 6.21 0.31
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Table 3 continued from previous page

Scenario II Distribution Nº of Filters RTMaxrmins RTMeanrmins RTσrmins

Hann 2 6.01 5.94 0.11

3 6.31 6.15 0.14

5 6.68 6.11 0.40

6 6.60 6.09 0.29

7 6.60 6.23 0.24

8 6.53 6.06 0.32

9 6.81 6.14 0.35

10 6.61 6.00 0.34

20 6.63 6.07 0.30

30 6.68 6.06 0.33

35 6.84 6.10 0.34

40 6.70 6.04 0.31

Hamming 2 6.14 6.01 0.19

3 6.23 6.11 0.13

5 6.73 6.13 0.44

6 6.51 6.08 0.27

7 6.53 6.15 0.31

8 6.45 6.02 0.32

9 6.82 6.12 0.33

10 6.67 6.01 0.37

20 6.65 6.06 0.32

30 6.82 6.09 0.39

35 6.92 6.07 0.37

40 6.82 6.10 0.33

Table 4. Reconstruction time of Scenario III.

Scenario III Window Type Nº of Filters RTMaxrmins RTMeanrmins RTσrmins

Shepp-Logan Blackman 2 4.61 4.44 0.23

3 5.19 4.85 0.34

5 5.39 5.17 0.17

6 5.51 5.25 0.21

7 5.57 5.33 0.21

8 5.60 5.28 0.19

9 5.60 5.27 0.23

10 5.86 5.43 0.25

20 6.32 5.58 0.32
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Table 4 continued from previous page

Scenario III Window Type Nº of Filters RTMaxrmins RTMeanrmins RTσrmins

30 6.89 6.01 0.43

35 20.18 7.10 2.56

40 19.94 6.96 2.78

Hann 2 4.82 4.66 0.22

3 6.21 5.79 0.44

5 7.86 6.18 0.94

6 8.26 6.58 1.00

7 6.14 5.94 0.20

8 11.06 6.93 1.86

9 8.07 6.60 0.85

10 6.70 6.23 0.29

20 6.90 6.19 0.32

30 15.44 6.97 2.11

35 7.36 6.19 0.57

40 6.94 5.83 0.53

Hamming 2 4.86 4.76 0.13

3 5.58 5.30 0.41

5 5.66 5.55 0.09

6 5.99 5.64 0.34

7 5.96 5.76 0.19

8 5.93 5.69 0.14

9 6.04 5.67 0.27

10 6.08 5.73 0.26

20 6.22 5.71 0.29

30 6.57 5.59 0.41

35 6.75 5.77 0.47

40 7.07 6.10 0.41

Rect 2 4.46 4.31 0.21

3 4.81 4.62 0.21

5 5.57 5.16 0.39

6 15.72 7.51 4.19

7 19.47 9.99 4.42

8 20.59 11.23 6.66

9 19.63 7.14 4.71

10 14.70 8.24 3.31

20 8.53 5.38 0.93

30 6.38 4.99 0.57
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Table 4 continued from previous page

Scenario III Window Type Nº of Filters RTMaxrmins RTMeanrmins RTσrmins

35 6.03 4.86 0.56

40 6.25 4.76 0.55

Brain Blackman 2 3.57 3.24 0.47

3 4.03 3.78 0.41

5 4.14 3.90 0.26

6 4.38 4.03 0.24

7 4.44 3.94 0.29

8 4.59 4.21 0.28

9 4.46 4.03 0.30

10 4.44 4.02 0.36

20 16.27 7.39 4.91

30 4.47 3.94 0.28

35 4.25 3.72 0.27

40 4.14 3.65 0.24

Hann 2 3.66 3.27 0.56

3 6.03 4.49 1.34

5 8.11 5.92 1.59

6 7.32 4.63 1.40

7 7.78 5.42 1.32

8 5.86 4.40 0.61

9 5.05 4.13 0.39

10 4.22 3.87 0.25

20 4.37 3.81 0.27

30 4.46 3.77 0.26

35 4.34 3.74 0.25

40 4.32 3.76 0.30

Hamming 2 3.10 2.91 0.27

3 3.64 3.39 0.26

5 3.94 3.64 0.28

6 4.22 3.77 0.24

7 4.23 3.77 0.29

8 4.09 3.80 0.20

9 4.41 3.90 0.32

10 4.39 3.99 0.33

20 9.94 4.43 1.40

30 157.56 9.63 27.97

35 4.93 4.21 0.32
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Table 4 continued from previous page

Scenario III Window Type Nº of Filters RTMaxrmins RTMeanrmins RTσrmins

40 6.73 4.27 0.52

Rect 2 3.07 2.93 0.19

3 3.54 3.37 0.21

5 4.04 3.59 0.34

6 3.92 3.58 0.29

7 4.20 3.70 0.27

8 4.02 3.62 0.21

9 4.47 3.62 0.34

10 4.20 3.56 0.36

20 4.43 3.53 0.38

30 4.68 3.54 0.45

35 4.64 3.69 0.44

40 4.95 3.67 0.45

Head Blackman 2 4.84 4.80 0.06

3 5.99 5.88 0.11

5 6.44 5.94 0.41

6 6.20 5.87 0.19

7 6.26 5.82 0.24

8 6.30 5.87 0.31

9 6.43 5.97 0.23

10 6.41 6.05 0.22

20 6.62 6.03 0.25

30 7.31 6.04 0.39

35 6.51 5.97 0.29

40 7.00 6.06 0.33

Hann 2 4.76 4.72 0.05

3 5.52 5.36 0.14

5 6.26 5.86 0.30

6 6.39 6.10 0.20

7 6.53 6.07 0.26

8 6.48 6.01 0.33

9 6.52 6.08 0.22

10 6.51 6.18 0.22

20 6.76 6.23 0.34

30 6.89 6.19 0.36

35 6.84 6.24 0.35

40 6.94 6.23 0.38
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Table 4 continued from previous page

Scenario III Window Type Nº of Filters RTMaxrmins RTMeanrmins RTσrmins

Hamming 2 4.74 4.70 0.05

3 5.45 5.33 0.14

5 6.15 5.83 0.28

6 6.38 6.11 0.19

7 6.53 6.09 0.26

8 6.60 6.14 0.37

9 6.50 6.08 0.23

10 6.69 6.36 0.24

20 6.98 6.38 0.36

30 7.20 6.41 0.41

35 6.95 6.29 0.39

40 6.90 6.22 0.36

Rect 2 5.13 4.97 0.22

3 6.92 6.36 0.49

5 7.81 7.09 0.61

6 7.79 7.13 0.70

7 7.96 7.30 0.54

8 8.32 7.48 0.65

9 8.10 7.45 0.62

10 8.29 7.43 0.57

20 8.57 7.19 0.84

30 8.82 7.03 0.90

35 8.86 7.04 0.87

40 9.14 7.14 0.90

Head* Blackman 2 5.00 4.98 0.03

3 5.54 5.45 0.10

5 6.39 6.00 0.24

6 6.68 6.29 0.26

7 6.75 6.19 0.30

8 6.75 6.28 0.29

9 6.72 6.32 0.23

10 6.78 6.40 0.24

20 7.04 6.46 0.30

30 7.64 6.49 0.45

35 6.97 6.38 0.33

40 7.99 7.13 0.35

Hann 2 5.15 5.10 0.07
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Table 4 continued from previous page

Scenario III Window Type Nº of Filters RTMaxrmins RTMeanrmins RTσrmins

3 5.72 5.65 0.10

5 6.50 6.15 0.27

6 6.86 6.43 0.27

7 7.00 6.48 0.28

8 7.11 6.52 0.34

9 7.00 6.59 0.24

10 7.06 6.65 0.23

20 7.31 6.67 0.40

30 7.11 6.50 0.32

35 7.21 6.57 0.36

40 7.31 6.55 0.37

Hamming 2 5.13 5.09 0.06

3 5.75 5.67 0.10

5 6.54 6.18 0.25

6 6.86 6.46 0.23

7 7.08 6.51 0.29

8 7.14 6.63 0.34

9 7.06 6.60 0.26

10 7.12 6.65 0.29

20 7.48 6.73 0.35

30 7.29 6.62 0.37

35 7.43 6.71 0.38

40 7.31 6.63 0.35

Rect 2 5.33 5.29 0.05

3 6.55 6.09 0.40

5 7.20 6.52 0.63

6 7.58 6.76 0.92

7 7.39 6.82 0.64

8 7.81 6.91 0.64

9 7.60 6.95 0.65

10 8.01 6.87 0.65

20 8.19 6.81 0.79

30 8.49 6.67 0.89

35 8.74 6.64 0.88

40 8.51 6.46 0.83
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Table 5. Reconstructio time of Scenario IV.

Scenario IV Distribution Nº of Filters RTMaxrmins RTMeanrmins RTσrmins

Shepp-Logan Blackman 2 4.84 4.83 0.01

3 5.37 4.86 0.50

5 5.41 4.71 0.49

6 5.65 4.76 0.45

7 5.93 4.95 0.46

8 21.86 11.73 7.31

9 19.20 10.18 4.66

10 8.82 6.44 1.33

20 9.31 5.56 1.17

30 21.37 9.39 5.17

35 9.24 4.35 0.98

40 6.97 4.22 0.94

Hann 2 17.09 10.96 8.68

3 9.45 6.26 2.77

5 7.85 6.39 1.16

6 5.96 5.31 0.56

7 7.70 7.08 0.56

8 6.75 6.13 0.48

9 9.51 6.25 1.49

10 10.54 6.66 1.74

20 7.06 5.09 0.65

30 6.51 4.54 0.54

35 6.69 4.28 0.53

40 6.89 4.02 0.58

Hamming 2 5.66 5.60 0.08

3 5.54 5.27 0.45

5 6.71 5.44 0.78

6 6.41 5.56 0.50

7 6.64 5.55 0.53

8 6.73 5.79 0.44

9 7.14 5.77 0.57

10 6.67 5.60 0.43

20 6.43 4.98 0.46

30 15.95 7.10 2.26

35 6.99 4.59 0.55

40 6.55 4.29 0.49
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Table 5 continued from previous page

Scenario IV Distribution Nº of Filters RTMaxrmins RTMeanrmins RTσrmins

Brain Blackman 2 4.14 3.93 0.31

3 4.00 3.74 0.38

5 4.05 3.66 0.27

6 3.90 3.58 0.31

7 4.16 3.56 0.38

8 4.38 3.50 0.52

9 4.68 3.58 0.48

10 4.66 3.59 0.43

20 4.66 3.13 0.57

30 4.77 2.94 0.60

35 4.41 2.70 0.48

40 3.99 2.57 0.45

Hann 2 3.81 3.21 0.85

3 4.53 3.82 0.62

5 3.99 3.40 0.43

6 3.83 3.42 0.27

7 3.71 3.36 0.33

8 3.71 3.36 0.36

9 4.00 3.36 0.36

10 4.42 3.42 0.47

20 4.46 3.09 0.52

30 4.25 2.82 0.48

35 4.12 2.68 0.46

40 4.08 2.56 0.46

Hamming 2 3.64 3.44 0.28

3 4.29 3.76 0.52

5 4.49 3.81 0.52

6 4.30 3.86 0.40

7 4.35 3.78 0.42

8 4.33 3.78 0.47

9 4.38 3.80 0.38

10 4.62 3.81 0.45

20 4.96 3.50 0.57

30 4.82 3.20 0.57

35 11.51 3.84 2.16

40 10.69 3.77 1.82
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Table 5 continued from previous page

Scenario IV Distribution Nº of Filters RTMaxrmins RTMeanrmins RTσrmins

Head Blackman 2 5.66 5.43 0.34

3 6.05 5.57 0.48

5 6.29 5.92 0.33

6 6.96 6.19 0.42

7 6.69 6.25 0.33

8 7.01 6.34 0.44

9 6.76 6.11 0.41

10 7.01 6.35 0.43

20 6.40 5.77 0.39

30 6.68 5.37 0.59

35 6.71 5.09 0.62

40 6.37 4.88 0.57

Hann 2 5.47 5.26 0.30

3 5.83 5.41 0.40

5 6.13 5.74 0.36

6 6.68 6.03 0.40

7 6.47 6.07 0.28

8 6.75 6.19 0.37

9 6.44 6.21 0.26

10 6.87 6.30 0.37

20 6.70 5.93 0.45

30 6.45 5.54 0.49

35 6.64 5.39 0.57

40 6.59 5.17 0.56

Hamming 2 5.40 5.17 0.33

3 5.86 5.38 0.43

5 6.13 5.74 0.38

6 6.72 6.03 0.41

7 6.64 6.14 0.36

8 6.84 6.25 0.41

9 6.50 6.24 0.24

10 6.85 6.27 0.40

20 6.64 5.95 0.48

30 6.27 5.48 0.46

35 6.68 5.40 0.56

40 6.75 5.21 0.56
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Table 5 continued from previous page

Scenario IV Distribution Nº of Filters RTMaxrmins RTMeanrmins RTσrmins

Head* Blackman 2 5.88 5.72 0.23

3 6.47 5.99 0.45

5 6.80 6.24 0.42

6 7.26 6.51 0.47

7 7.11 6.58 0.37

8 7.31 6.59 0.51

9 7.23 6.65 0.56

10 7.24 6.60 0.55

20 6.72 5.96 0.54

30 6.22 5.43 0.56

35 6.54 5.28 0.63

40 6.07 5.03 0.59

Hann 2 5.86 5.66 0.28

3 6.14 5.77 0.34

5 6.44 6.17 0.31

6 7.62 7.05 0.48

7 7.41 6.80 0.52

8 6.81 6.45 0.27

9 7.43 6.85 0.42

10 7.20 6.57 0.47

20 7.38 6.30 0.54

30 7.26 5.92 0.68

35 6.66 5.53 0.63

40 6.25 5.30 0.58

Hamming 2 5.86 5.54 0.45

3 6.11 5.78 0.33

5 6.39 6.01 0.32

6 6.76 6.30 0.34

7 6.71 6.38 0.32

8 6.84 6.44 0.27

9 6.91 6.46 0.35

10 7.12 6.54 0.44

20 6.90 6.30 0.49

30 6.55 5.72 0.57

35 6.77 5.52 0.62

40 6.56 5.37 0.61
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Table 6. Reconstruction time of Scenario V.

Scenario V Nº of Filters RTMaxrmins RTMeanrmins RTσrmins

Shepp-Logan 2 3.51 3.44 0.10

3 4.13 4.05 0.14

5 10.18 9.26 0.80

6 10.21 9.45 0.59

7 10.99 9.43 0.89

8 11.32 9.51 1.12

9 11.09 9.58 0.89

10 11.85 9.86 1.05

20 12.29 10.18 0.95

30 12.35 10.12 1.05

35 12.48 9.92 0.90

40 11.45 8.57 1.83

Brain 2 2.46 2.28 0.26

3 3.34 3.16 0.22

5 9.90 9.01 0.64

6 10.40 9.23 0.84

7 10.68 9.59 0.87

8 10.77 9.37 0.84

9 10.18 9.36 0.72

10 10.80 9.34 0.91

20 12.40 9.78 1.18

30 13.33 10.12 1.36

35 12.91 10.30 1.18

40 10.91 8.07 1.16

Head 2 4.42 4.32 0.14

3 5.28 5.12 0.22

5 6.13 5.68 0.42

6 6.62 5.87 0.52

7 6.28 5.75 0.46

8 6.61 5.93 0.59

9 6.97 6.09 0.71

10 7.16 6.18 0.69

20 7.52 6.49 0.61

30 7.89 6.42 0.85

35 8.24 6.42 0.79

40 8.10 6.49 0.93
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Table 6 continued from previous page

Scenario V Nº of Filters RTMaxrmins RTMeanrmins RTσrmins

Head* 2 5.31 5.12 0.27

3 6.22 5.91 0.30

5 6.61 6.32 0.37

6 7.32 6.56 0.48

7 7.23 6.57 0.51

8 7.95 7.38 0.55

9 7.88 6.71 0.66

10 8.14 6.75 0.70

20 8.94 7.04 0.82

30 8.91 6.96 0.89

35 9.21 6.85 0.91

40 9.13 7.02 0.92

B Hardware Info

Table 7. Hardware information of Asus k45Vm.

Asus k45Vm

Processor Intel(R) Core(TM) i7-3610QM CPU @ 2.30

Architecture x86 64

Memory 8GB, DDR3 1600 MHz SDRAM

Core/threads 4/8

CPU(s) 8

Kernel Version Linux 42„16.04.1-Ubuntu

Table 8. Hardware information of Virgo 2.0 from [29].

Virgo Cluster

Virgo 2.0 Beowulf Cluster

Nodes 23

Processor Intel Quad Core XEON E5430

Memory 8GB/64GB/16GB to 32GB - Depends on node.

OS CentOS (RHEL)
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C Annex

Articles Search Definitions

C.1 IEEE Xplore Digital Library

Boolean expression: MRI AND (Segmentation OR Delineation OR Detection OR Clas-

sification OR Diagnosis OR Early Diagnosis).

Search on Metadata: Includes abstract, summary, title text and indexing terms.

Year range: 2018 - 2019.

Search returned 992 articles.

C.2 Web of Science

Boolean expression: TS = (MRI AND (Segmentation OR Delineation OR Detection OR

Classification OR Diagnosis OR Early Diagnosis)).

Article types: Includes classical article, clinical trial and review.

Sorted by: Best match.

Year range: 2018 - 2019.

Search returned 9.858 articles.

C.3 PubMed

Boolean expression: MRI AND (Segmentation OR Delineation OR Detection OR Clas-

sification OR Diagnosis OR Early Diagnosis).

Search on Metadata: Includes abstract, summary, title text and indexing terms.

Year range: 2018 - 2019.

Search returned 39.724 articles.
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Table 9. The ten most relevant articles in MRI searched with the advanced defi-
nitions in Section C.1 on IEEE Xplore Digital Library.

Order Title Authors DOI Reference Count Publisher

1
Boundary Delineation of MRI Images for

Lumbar Spinal Stenosis Detection Through
Semantic Segmentation Using Deep Neural Networks

A. S. Al-Kafri; S. Sudirman; et al. 10.1109/ACCESS.2019.2908002 46 IEEE

2
An Intelligent System for Early Assessment

and Classification of Brain Tumor
T. Keerthana; S. Xavier 10.1109/ICICCT.2018.8473297 13 IEEE

3
Automatic Segmentation and Cardiopathy
Classification in Cardiac Mri Images Based

on Deep Neural Networks
Y. Chang; B. Song; C. Jung; et al. 10.1109/ICASSP.2018.8461261 13 IEEE

4
Enhancement and automated segmentation of
ultrasound knee cartilage for early diagnosis of

knee osteoarthritis
P. R. Desai; I. Hacihaliloglu 10.1109/ISBI.2018.8363850 9 IEEE

5

Comprehensive computer-aided diagnosis for
breast T1-weighted DCE-MRI through

quantitative dynamical features and
spatio-temporal local binary patterns

G. Piantadosi; S. Marrone; et al. 10.1049/iet-cvi.2018.5273 109 IET

6
A Significant Regional-based Diagnosis

System for Early Detection of
Alzheimer?s Disease Using sMRI Scans

F. E. A. El-Gamal; M. M. Elmogy; et al. 10.1109/ISSPIT.2018.8642665 33 IEEE

7
Segmentation of MRI images for

brain cancer detection
W. El Hajj Chehade; R. A. Kader; et al. 10.1109/ICOIACT.2018.8350721 11 IEEE

8
Image Segmentation for Detection

of Knee Cartilage
A. Thengade; B. H. Mutha 10.1109/ICCUBEA.2018.8697658 10 IEEE

9
Segmentation and Detection of Tumor in

MRI images Using CNN and SVM Classification
R. Vinoth; C. Venkatesh 10.1109/ICEDSS.2018.8544306 16 IEEE

10
Early Diagnosis of Alzheimer’s Disease:

A Neuroimaging Study with Deep Learning
Architectures

J. Islam; Y. Zhang 10.1109/CVPRW.2018.00247 12 IEEE

Table 10. The ten most relevant articles in MRI searched with the advanced
definitions in Section C.2 on Web of Science.

Order Title Authors DOI Total Citations Publisher

1
Diagnosis of multiple sclerosis:

2017 revisions of the McDonald criteria
Thompson, Alan J.; Banwell, Brenda L.; et al. 10.1016/S1474-4422(17)30470-2 267 ELSEVIER SCIENCE

2
MRI-Targeted or Standard Biopsy

for Prostate-Cancer Diagnosis
Kasivisvanathan, V; Rannikko, ; et al. 10.1056/NEJMoa1801993 208 MASSACHUSETTS MEDICAL SOC

3
International guidelines for
groin hernia management

Simons, M. P.; Smietanski, M.; et al. 10.1007/s10029-017-1668-x 78 SPRINGER

4

Multimodal Neuroimaging Feature
Learning With Multimodal Stacked Deep

Polynomial Networks for Diagnosis
of Alzheimer’s Disease

Shi, Jun; Zheng, Xiao; et al. 10.1109/JBHI.2017.2655720 40 IEEE-INST

5
Learning a variational network for

reconstruction of accelerated MRI data
Hammernik, Kerstin; Klatzer, Teresa; et al. 10.1002/mrm.26977 39 WILEY

6
Deep convolutional neural network and 3D

deformable approach for tissue segmentation in
musculoskeletal magnetic resonance imaging

Liu, Fang; Zhou, Zhaoye; et al. 10.1002/mrm.26841 31 WILEY

7
A new switching-delayed-PSO-based

optimized SVM algorithm for diagnosis of
Alzheimer’s disease

Zeng, Nianyin; Qiu, Hong; et al. 10.1016/j.neucom.2018.09.001 29 ELSEVIER SCIENCE BV

8

Coordination-Responsive Longitudinal
Relaxation Tuning as a Versatile

MRI Sensing Protocol for
Malignancy Targets

Zhang, Kun; Cheng, Yu; et al. 10.1002/advs.201800021 29 WILEY

9

Optimising the Diagnosis of Prostate
Cancer in the Era of Multiparametric Magnetic

Resonance Imaging: A Cost-effectiveness
Analysis Based on the Prostate MR Imaging Study (PROMIS)

Faria, Rita; Soares, Marta O.; et al. 10.1016/j.eururo.2017.08.018 29 ELSEVIER SCIENCE BV

10
A Meshfree Representation for

Cardiac Medical Image Computing
Zhang, Heye; Gao, Zhifan; et al. 10.1109/JTEHM.2018.2795022 28 IEEE-INST

Table 11. The ten most relevant articles in MRI searched with the advanced
definitions in Section C.3 on PubMed.

Order Title Authors URL Journal

1 Early undifferentiated arthritis. Micheroli R, Ciurea A. /pubmed/29468290 Der Orthopäde

2
Tokyo Guidelines 2018: diagnostic

criteria and severity grading of acute
cholangitis (with videos).

Kiriyama S, Kozaka K, et al. /pubmed/29032610 Journal of Hepato-Biliary-Pancreatic Sciences

3
A review on automatic fetal and

neonatal brain MRI segmentation.
Makropoulos A, Counsell SJ,

et al.
/pubmed/28666878 NeuroImage

4
Early Diagnosis and Treatment of
Cerebral Palsy in Children with a

History of Preterm Birth.
Spittle AJ, Morgan C, et al. /pubmed/30144846 Clinics in Perinatology

5
MRI in otology: applications in

cholesteatoma and Ménière’s disease.
Lingam RK, Connor SEJ, et al. /pubmed/28969854 Clinical Radiology

6
Clinical Diagnostic Tests Versus
MRI Diagnosis of ACL Tears.

Brady MP, Weiss W. /pubmed/29140170 Journal of Sport Rehabilitation

7
Impact of Advancing Technology on

Diagnosis and Treatment of Breast Cancer.
Greenwood HI, Dodelzon K, et al. /pubmed/30005769 Surgical Clinics of North America

8
The value of MRI in early diagnosis

of dysbaric osteonecrosis.
Shen YT, Chen H, et al. /pubmed/30248746 Chinese Journal of Industrial Hygiene and Occupational Diseases

9
Whole Body MRI and oncology:

recent major advances.
Pasoglou V, Michoux N, et al. /pubmed/29334236 The British Journal of Radiology

10
MRI Brain Tumour Segmentation

Using Hybrid Clustering and Classification
by Back Propagation Algorithm

M M, P S. /pubmed/30486629 Asian Pacific Journal of Cancer Prevention,
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1–4, 2008.

[15] Sansum Clinic. Mri of the abdomen. Available at https://www.sansumclinic.

org/medical-services/radiologyGR/mri---magnetic-resonance-scanning/

mri-of-the-abdomen. Last access: March 18th, 2019.
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