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ABSTRACT 

 

Forced convection heat transfer and the characteristics of the flow in 

annulus passages are important phenomena in the engineering field. Many 

engineering applications have concentric and eccentric annulus pipe flows such 

as heat exchangers, nuclear reactors, solar energy systems, thermal storage 

systems, cooling of electronic devices. Some annular passages appear as a 

result of fabrication or construction errors, leading to tube misalignment and, 

therefore, the appearance these geometric configurations with very narrow 

passages. In both cases, it is important to know and understand the behavior of 

the flow. The new geometry configurations may affect the physics of the heat 

transfer phenomena for instance.  

The aim of this work is to investigate the effect of the velocity fluctuations 

in the heat transfer coefficients for eccentric channels using numerical 

simulation. The main geometric parameters of the channel are the length, 

L=1500 mm and the diameter ratio Di/Do=0.5. The eccentricity varies from 0.7 

up to 0.9 in intervals of 0.05. For coupled problem simulations, accounting for 

heat transfer associated to turbulence, both Reynolds number and Prandtl 

number were kept constant, Re = 15000 and Pr = 0.7. The boundary condition 

of the heat transfer problem was prescribed heat flux at the inner wall surface, 

q’’ = 2000 W/m2 while the outer wall was kept insulated. 

Numerical simulation has been performed using the URANS/LES 

approach in order to predict the main features of the turbulent flow. The working 

fluid was air and the Reynolds number was based on the hydraulic diameter hD , 

the mean average velocity ub and the kinematic viscosity of the fluid, . 

Throughout the computations the density was kept constant. The specific model 

used was the DES-SST model, such model solves the flow field switching to 

LES turbulence model wherever possible, otherwise the k-w SST model is then 

activated. The geometry of the problem presented in this work matches the one 

used by Choueiri and Tavoularis[1] in their experimental work. In our first 

simulation only the velocity field, the Reynolds stresses and the dynamic of the 

flow were computed and compared with the experimental work from the 
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mentioned authors. Afterwards, the Reynolds number was increased twice and 

the heat transfer problem was set up. 

To assure the correct methodology was employed during the 

computations, a concentric case was also simulated, under the same Reynolds 

and Prandlt numbers. The results were then compared with the analytical 

equations presented by Gnielinski (2011).  

The analysis of the results showed that the model used for the numerical 

simulations was successful in predicting the characteristics of the flow. The 

patterns of the velocity fluctuations and their quasi-periodic motions were 

correctly predicted by the code and presented good agreement with 

experimental data from the fluid dynamics studies of Choueri and Tavoularis[1].  

The methodology used for the heat transfer case was validated through 

the analytical equations for the concentric case. After the validation of the 

methodology for the concentric case, the eccentric cases were simulated with 

the same boundary conditions (Re=15000, Pr=0.7, Di/Do = 0.5 and constant 

heat flux q’’ = 2000 W/m2 and density, while the outer wall kept insulated). It was 

possible to find a direct correlation between the Nusselt number and the 

dynamic behavior of the flow. According to the results at the onset of the 

velocity fluctuations, the reduction of the area at the narrow gap no longer 

affects the heat transfer process strongly. For an optimal eccentricity, found in 

our case to be 0.85,  it may be possible to maintain almost the same values of 

the Nusselt number that are found in the concentric case. The worst outcomes 

were found in the cases with eccentricities of 0,7 and 0,75 where the velocity 

fluctuations did not appeared just at the end of the channel. In these cases, the 

Nusselt number in the Narrow gap was decreased by around 75% in 

comparison with the concentric case.  

 

 

 

 

 

 

 

 



 
 

8 
 

RESUMO 

 

A transferência de calor convectiva e as características do escoamento 

em canais anulares é um fenômeno importante no campo da engenharia. 

Muitas das aplicações da engenharia te, canais concêntricos e excêntricos, 

como trocadores de calor, reatores nucleares, sistemas de energia solar, 

esfriamento de dispositivos eletrônicos. Alguns canais anulares aparecem 

como resultado de erros na fabricação ou na construção levando a ter 

desalinhamento das tubulações e assim o aparecimento dessas configurações 

geométricas com fendas estreitas. Nos dois caos é importante entender o 

comportamento do escoamento. 

O intuito do trabalho é investigar o efeito das flutuações da velocidade 

nos coeficientes de transferência de calor para canais excêntricos usando 

simulação numérica. Os principais parâmetros geométricos do canal são o 

comprimento, L=1500 mm e a razão dos diâmetros Di/Do=0.5. A excentricidade 

muda entre 0.7 e 0.9 em intervalos de 0.05. Para os problemas acoplados o 

numero de Reynolds e o numero de Prandtl foram mantidos constantes Re = 

15000 e Pr = 0.7. A condição de contorno para o problema de transferência de 

calor foi um fluxo de calor prescrito na parede interna q’’ = 2000 W/m2 e a 

parede externa é mantida isolada. 

Foram feitas simulações numéricas usando formulações URANS/LES 

com o intuito de ter uma previsão das principais características do escoamento 

turbulento. O fluido de trabalho foi ar e o numero de Reynolds foi baseado no 

diâmetro hidráulico   a velocidade media ub e a viscosidade cinemática do 

-SST, esse modelo 

resolve o campo de fluxo fazendo uma troca entre o modelo LES e o modelo  k-

w SST. A geometria do problema e a mesma usada pelo Choueiri e o 

Tavoularis [1] no seu trabalho experimental. Na nossa primeira simulação só o 

campo de velocidade, as Tensões de Reynolds e a dinâmica do escoamento foi 

simulada e comparada com o trabalho experimental. Depois o numero de 

Reynolds foi incrementado e o problema de transferência de calor foi 

adicionado. 

Para ter certeza que a metodologia usada era certa, foi simulado um 

caso concêntrico com o problema de transferência de calor. Os resultados 
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foram comparados com es equações analíticas presentadas pelo Gnielinski 

(2011). 

A analise de resultados mostrou que o modelo usado para as 

simulações numéricas teve sucesso ao prever as características do 

escoamento. O comportamento quase-periódico foi modelado corretamente 

pelo código e presentou uma boa concordância com os resultados 

experimentais do Choueiri e o Tavoularis [1]. 

A metodologia usada para os casos com transferência de calor foi 

validada com as equações analíticas para o caso concêntrico. Após a validação 

da metodologia, os casos excêntricos foram simulados com a s mesmas 

condições de contorno. Foi possível achar uma correlação direta entre o 

numero de Nusselt e o comportamento dinâmico do escoamento. Segundo os 

resultados, após do  inicio das flutuações de velocidade a redução da área não 

afeta fortemente o processo de transferência de calor. Foi achada uma 

excentricidade ótima e=0.85 onde foi ppossivel manter quase os mesmos 

valores do numero de Nusselt que foram obtidos no caso concêntrico. Os 

piores resultados foram obtidos nas excentricidades de 0.7 e 0.75 onde as 

flutuações de velocidade não apareceram ou apareceram só no final do canal e 

o numero de Nusselt apresentou reduções de ate 75% comparado com o caso 

concêntrico. 
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1 INTRODUCTION 

1.1 Motivation 

Turbulent flow is one of the problems in the fluids mechanics field that 

has been widely studied over the years. As a result of its vast application in the 

engineering field that responds to this type of behavior, will be certainly studied 

for many other years. In the engineering field is quite easy to find applications of 

turbulent flow in non-circular channels. A wide variety of mechanical systems 

used in industrial applications are constituted by a simple stationary annulus 

pipe whose fluid passes through the narrow gap between inner and outer 

cylindrical walls. Counter, concurrent flow, shell and tube heat exchangers, 

electrical motors, generators, cores of nuclear reactors and more are some 

examples of devices that use annular passages and narrow gaps . In many 

cases, the design tolerances and manufacturing limits may cause a 

misalignment, creating some eccentricity between inner and outer rods. This is 

the reason why the eccentric annulus and the non-circular passages have 

become of interest to researchers. On the other hand, the design project itself 

leads to the genetry that contains tight passages, that might be characterized as 

a narrow gap. 

A narrow region connected to one or more wide regions is described as a 

compound channel. In the narrow regions the viscous effects are predominant 

giving rise to a new mass distribution inside the channel that is different in 

comparison to that one found in single channels. Furthermore, the turbulence 

characteristics itself is also affected by the channel configuration. At the gap 

vicinity the Reynolds Stresses and the mixing process are enhanced as 

consequence of the large scale motions that dominate the region [2]. 

Industrial equipment with narrow passages that can be classified as a 

kind of compound channel needs a great understanding of the dynamics of the 

flow and the friction factor, velocity profile and shear stresses fields. In some 

industrial applications is also important to know the behavior of the heat transfer 

coefficients, and how such coefficients are affected by the turbulence and the 

geometric parameter of the equipment. Furthermore, the design of the project 

must take into account the peculiarities of the turbulence effects on the heat 

transfer problem, otherwise, the operational reliability of the equipment may be 

seriously affected. 
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The laminar and turbulent flow in circular pipes has been vastly studied 

over the years and it was possible to develop equations that describe the 

dynamic characteristics of the flow accurately. In the same way, concentric 

channels are examples of geometry configurations whose analytical solutions 

are successfully applied to describe the flow field and the thermal behavior 

facing some particular boundary condition. The main reason lies on the 

symmetry of the geometries, and therefore, the symmetry of the flow. In the 

eccentric annulus pipe case, this symmetry no longer exists and the cross-

sectional area reminds the idea of the compound channel concept. The mean 

average velocity is higher away from the narrow gap. Due to the asymmetry of 

the geometry, the equations that describe the dynamic behavior in circular and 

concentric pipes are not able to predict the flow features in the eccentric case 

[3]. 

Despite of the asymmetry of the flow, a wide variety of studies have been 

made in order to know how the asymmetry of the transversal section and the 

geometry characteristics can influence in the friction factor, maximum velocity, 

shear stress fields, mean average velocity, friction velocity and mass 

distribution. One of the characteristic, very well reported in previous works, is 

the friction factor decreasing as the eccentricity increases. Moreover, studies 

have shown that flow asymmetry increases as the eccentricity increase, 

regardless the Reynolds number [4][5][6][7][8]. This kind of behavior appears to 

be independent of the geometry of the cross-section shape, since it has been 

encountered in triangular and rectangular ducts as well [9]. 

The analytical solutions for concentric cases under laminar flow have 

been better developed and studied non-circular passages or eccentric annuli 

with heat transfer. Reynolds and co-workers [10] presented the solution for the 

heat transfer problem in fully developed laminar flow in concentric annulus. In 

the same field, Gnielinski [11] presented analytical equations to obtain the 

friction factor and Nusselt number for fully developed turbulent flow in 

concentric annuli taking into account the geometry of the problem (Di/Do ratio), 

the Reynolds number, the Prandtl number and the thermal boundary conditions 

type prescribed. Such work provides a set of specific constants to be used 

depending on the thermal boundary conditions of the problem (constant heat 

flux, constant surface temperature, etc). For the case of eccentric channels and 
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others non-circular passages, there are some studies developed, however, a 

lack of information and research still remains. Studies performed in eccentric 

case, with different Reynolds numbers, Di/Do ratio and thermal boundary 

conditions, have shown that the effect of increasing eccentricity generally leads 

to a decrease of Nusselt number compared with the concentric case under the 

same geometrical, thermal, and fluid dynamics boundary conditions 

[4][12][13][14]. 

This work aims to perform a numeric simulation of a turbulent flow in 

eccentric annulus passages using a commercial finite volumes platform. The 

main geometric parameters of the channel are the length, L=1500 mm, the 

diameter ratio Di/Do=0.5 and the eccentricity [0.7, 0.75, 0.8, 0.85, 0.9]. The 

computations were performed under a Reynolds number of 15000. To perform 

the coupled problem, heat flux q’’= 2000 W/m2was imposed at the inner wall 

and the outer wall insulated. The Prandtl number was set to 0.7 and the density 

of the fluid was kept constant for all simulations. Both Reynolds and Prandtl 

numbers were kept constant throughout the computations, regardless the 

geometry. The same boundary condition of constant heat flux in the inner wall 

and the outer wall insulated is applied in a concentric channel. A comparison 

between the numerical results and the analytical equations, available in the 

literature, for the concentric case was carried out in order to validate the 

methodology proposed.  

 

1.2 Objectives 

1.2.1 General Objective 

The present work has the main goal to investigate the process of 

developing turbulent flow in eccentric channels under heat transfer processes. 

To achieve such goals, prescribed heat flux was imposed at inner wall and the 

outer wall insulated.  

1.2.2 Specific purpose 

The specific goals of this work are: 

 Perform a numeric simulation of the problem studied 

experimentally by Choueiri and Tavoularis [1] and compare the results. In 

this section incompressible, turbulent and isothermal flow will be 

simulated. 
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 Increase the Reynolds number, adding the heat transfer process 

and perform a turbulent flow simulation for concentric pipe flow. The 

numerical predictions will be compared with analytical solutions available 

in literature. 

 Validate the methodology used for the heat transfer problem with 

analytical equations for previous works. 

 Simulate non-isothermal flow in eccentric channels with Di/Do ratio 

of 0.5. and eccentricities varying from 0.7 to 0.9, to assess how the 

turbulence and the velocity patterns at the gap vicinity affect the local 

Nusselt number. 

 

1.3 Chapters Organization 

 

This work is presented in seven chapters. Followed by the introduction, t 

chapter two presents the previous works in concentric and eccentric channels 

taking into account just purely flow dynamics and heat transfer problems 

through a bibliographic review. 

Chapter three presents the fundamental theory of turbulence as well as 

the explanation of the turbulence models applied in the numerical simulations. 

Chapter four explains the methodology used in order to perform the 

simulations as well as the geometry used and the boundary conditions applied 

to the problem. 

The results, analysis and discussion are presented in the chapter five. 

Chapters six and seven, presents the conclusions and references respectively. 
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2 BIBLIOGRAPHIC REVIEW 

 

The interest in the understanding of the flow in annular passages arises 

because of the vast applications in engineering and even in nature that have 

this kind of geometries. Every day the technology creates new applications for 

these channels, such as cooling of electronic devices and industrial machinery. 

As regards the healthy sciency catheterized arteries in the medicine field are 

thought as a concentric pipe flow.  

Several studies on annular passages have been made along the last fifty 

years. One of the first reference studies of these geometries was the work 

developed by Redberg and Charles [15]. They made a numerical study of 

laminar flow in a circular pipe with eccentricities from 0 up to 1 and Di/Do ratio 

varying between 0.1 and 0.9. Their outcomes were compared with analytical 

solutions available at that time. The main conclusions of the work was that for 

lower Di/Do ratio, the sensitivity to the eccentricity increases making higher the 

changes in the volumetric flow rate at a given pressure gradient [15].  

Soon after, Snyder and Goldstein [16] presented an exact solution of the 

velocity distribution for a fully developed turbulent flow in an eccentric channel. 

From this solution was also possible obtain expression for local shear stress 

distribution and friction factors in each wall and the overall friction factor. 

Besides, they concluded that the wall stress is higher in the regions of small 

gaps, the local friction factor is lower in the outer wall compared with the inner 

wall in the same angle position, as shown in Figure 2.1 [16].  

Piot and Tavoularis made another study in laminar regime. They studied 

the flow instabilities that appeared in the narrow gap of the eccentric channel 

with Di/Do ratio of 0.282 and Reynolds numbers higher than 1200. They noticed 

that the streak oscillations in the narrow gap become stronger as the 

eccentricity increased as shown in Figure 2.2[17]. They compared the critical 

Reynolds number in both the narrow and the wider gap and concluded that in 

the narrow gap, the critical Reynolds number increases with the eccentricity. In 

the case of the wider gap, seems to be insensitive to low variations of the 

eccentricity. 
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Figure 2.1 Inner and outer friction factors of an eccentric channel with radius 

ratio of 5/6.[16] 

 

 

Figure 2.2 Streak oscillations in the narrow gap for a constant Reynolds number 

and different eccentricities.[17] 

 

An impressive amount of studies have also been devoted to the turbulent 

regime in concentric and eccentric annulus, in order to understand how the 

radius ratio and the eccentricity can affect the development and behavior of the 

flow. Douglas[3] made an experimental work using Reynolds number ranging 

from 20000 to 55000 and eccentricities varying from 0 up to 0.5. He found out 
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that the friction factor decreases with increasing of the eccentricity. This is one 

of the principal characteristics found in eccentric channels and the same 

behavior has been encountered by others authors over the years [5][7]. 

Another important experimental work was developed by Quarmby [18] in 

a concentric channel using different radius ratio and a Reynolds number, 

ranging from 6000 up to 90000. He found that the friction factor is independent 

of the radius ratio. However, the location of the point of maximum velocity was 

found to depend on both Reynolds number and radius ratio. Performing 

experiments in a concentric channel, Clump and Kwasnoski [19] implemented a 

diffusivity model to predict the turbulence in these geometry. They compared 

the velocity distributions obtained by their model with previous works from other 

authors and found a great agreement with the results predicted. Lawn and Elliot 

[20] studied experimentally a concentric channel using as radius ratio 0.088, 

0.176 and 0.396. They found that the radius where is found the zero shear 

stress is independent of the Reynolds number and also noticed that the friction 

factor in the concentric case is between 5% and 8.5% above than that one 

found in a pipe flow. Two years after, Rehme [21] made an experimental work, 

which presented disagreement with the result found by Quarmby [18]. In his 

paper Rehme [21] concluded that the pressure drop coefficients increase 

slightly with increasing radius ratio and the friction factor decreases with 

increasing radius ratio. 

In turbulence modeling, the isotropic two equation models have become 

industry standard models and are commonly used for most types of engineering 

problems. Two equation models include two extra transport equations to 

represent the transport of turbulent properties of the flow. This allows to know 

the history effects like convection and diffusion of turbulent energy. The ability 

of the two equation models to predict important turbulent parameters such the 

turbulent kinetic energy, eddy viscosity and dissipation has also been studied 

and compared with experimental data. A comparison between     model and 

the     model was performed by Speziale and co-workers [22]. They found 

that the     model neglects an exact viscous cross-difussion term and does 

not damp the destruction of the dissipation term near the wall. Due to these 

simplifications the turbulent kinetic energy prediction near the boundary are not 

very successful although it gives adequate predictions for the skin friction and 



 
 

22 
 

turbulence statistics away from the wall. Besides, they proposed a     model 

including the viscous term and introducing near wall damping functions. Azouz 

and co-workers[23] compared both     model and the mixing-length model for 

concentric and eccentric annuli. The     model performs equally well for 

concentric annuli, but in the case of eccentric channels, the     seemed to 

perform better than the mixing-length model. 

Some years ago, Chung [24] made a numerical simulation of a 

concentric channel with a Reynolds number of 8900 emphasizing his 

investigation in the transverse curvature effect on near-wall turbulent structures. 

He found that the turbulent structures near the outer wall are more activated 

than those near the inner wall and the inner wall supplies relatively less 

turbulent kinetic energy than the outer wall. This fact can be attributed to the 

different vortex generation process that occurs in each wall.  

Most papers have been focused the attention on the fully developed 

regime condition, but in many engineering applications is also important to take 

into account the entrance region flow. In the entrance region the flow has not 

yet hydrodinamicaly fully developed. In this context, Choueiri and Tavoularis [1] 

made and very thorough experimental study in an eccentric channel with a 

Di/Do ratio of 0.5, and eccentricity of 0.8 and a Reynolds number of 7300 using 

an aqueous solution of ammonium thiocyanate (NH4SCN) as a work fluid. They 

named three main regions from the beginning of the channel to the end. These 

three regions presented specifics characteristics of the flow velocity fluctuations 

patterns, which change as the stations get farther from the channel’s entrance. 

The Figure 2.3 shows the flow development along the channel at the narrow 

gap of the eccentric annuli. Parameters as the mean velocity fluctuations, 

Strouhal number and convection velocity of the flow along the channel length 

were also studied. 
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Figure 2.3 Velocity vector in the narrow gap. (a) Streamline projection. (b) 

Re≈7800. [1] 

Using energy gradient method, developed in previous works, Dou and 

co-workers[25] calculated the critical condition for turbulent transition in a 

concentric annulus using various radius ratio. They observed that the critical 

flow rate, as well as, the critical Reynolds number for the onset of turbulent 

transition increases with increasing of the radius ratio. Figure 2.4 shows the 

results found by the authors in order to validate the influence of the radius 

ratio(k) in the critical condition for turbulent transition Qc. The inner rod creates 

instability for radius ratio ranging from 0.12 up to 0.18, enhancing the stability 

for radius ratio higher than the same values. 

 

Figure 2.4 Flow rate at critical condition vs the radius ratio. Outer radius 

constant. [25] 

As the annular channels can be considered as non-circular passages, 

other geometries with narrow gap regions are also focus of interest, since 

channels with tight gaps, but different geometries, are widely used in 

engineering applications. An experimental study on the gap region created by 
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four half rods located in a cross configuration is presented by Cajarilescov and 

Todreas[26]. They implemented an algebraic stress turbulence model for a 

Reynolds number of 27000, in order to take into account the secondary flow 

effects. Measurements with a Laser Doppler Anemometry (LDA) for the axial 

velocity distributions and turbulence kinetic energy were also performed. It was 

found that the model used can provide reasonable predictions of axial velocity, 

friction factor and wall shear stress distributions. The results of the experiments 

were compared with the analytical results as well as other experimental data 

from previous authors. 

Bae and Park[27] developed an analytical calculation to predict the 

turbulent friction factor in a rod bundle, deriving the geometric parameters 

integrating the law of the wall over each subchannel. They found that the friction 

factor converges to a constant value, regardless the geometry of the channel. 

At the central subchannel the friction factor was found to increase constantly as 

the rod distance ratio increases, as shown in Figure 2.5. 

 

Figure 2.5 Turbulent friction factor for rectangular and triangular subchannels. 

[27] 

Bertocchi and co-workers[28] made an experimental work based on 

Laser Doppler Anemometry (LDA) to measure the turbulent quantities and the 

friction factor at gap region between two rods, under a Reynolds number 

ranging from 600 up to 30000. They noticed that as the flow rate decreases, a 

peak in the root mean square of the streamwise velocity is found at the center 
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of the gap as a consequence of the coherent structures crossing the gap, 

implying in the cross flow enhancement. They also observed that as the 

Reynolds number is decreased the structures are found to appear further away 

from the entrance of the main sub channel. Besides, it was found that one of the 

mechanism that may increase the heat transfer coefficients are the large 

coherent structures that can occur across the gap between two rods. 

Similar to the cross-flow found in the gap by Bertocchi [28], a study of a 

pressurized water reactor (PWR) sub-channel was made by Lakehal [29] using 

a LES model. It was found a low influence of the Reynolds number in the 

narrow gap and a strong secondary flow motion, this secondary flow seemed to 

have more importance than the principal flow and exceeded the turbulence 

counterpart near the wall. 

The principal applications of the eccentric annuli, geometries, are found 

in equipment that works with heat transfer. The heat exchangers, nuclear 

reactors, thermal storage systems, boilers, solar energy systems are just some 

examples of the wide variety of applications that are constituted by this kind of 

geometries. The interest in the understanding the heat transfer process in non-

circular channels arises from the need of controlling, increasing and improving 

the heat transfer process. When the non-circular passage is a consequence of 

manufacture errors, the better understanding of the process can lead to better 

practices in damage control. In the case of enhancement of the heat transfer, it 

is also important to know how the flow dynamics and geometric parameters 

affect the heat transfer coefficients.  

Purely flow dynamics in non-circular passages along with the heat 

transfer process have been studied over the years. Deissler and Taylor [4] 

presented an analytic method for concentric and eccentric annuli passages 

flow, analyzing the dynamics of the flow and the heat transfer problem.  For the 

dynamics of the flow, it was found that the line of maximum velocity lies closer 

to the inner wall than to the outer wall. The friction factor was found to decrease 

as the eccentricity increase [3][5][7]. For the case of maximum eccentricity the 

friction factor was found to be up to 70% of the value obtained for the concentric 

case. In the case of the heat transfer problem, prescribing insulated outer wall, 

the average Nusselt number in the concentric case has a value slightly higher 

compared with the circular tube. However, as the eccentricity increases the 



 
 

26 
 

Nusselt number decreases, as shown in Figure 2.6. Despite that the local 

Nusselt number was not obtained in the different gap regions, the behavior 

presented in the figure below may be attributed to the different velocities 

distributions that appear when the eccentricity increases.  

Non-isothermal flow was also target of investigation in the papers 

published by Dreissler and Taylor [4] and Lee and Barrow [30]. Both works 

studied the heat transfer in annuli passages, being the inner wall heated and 

the outer one kept insulated. Studies were carried out by using different radius 

ratio and Reynolds numbers. They concluded that the influence of the 

eccentricity on the Nusselt number is similar to the friction factor. The Nusselt 

number decreases when the eccentricity increases, being such behavior even 

more evident in the annulus pipe flow for lower radius ratio.  

 

Figure 2.6 Variation of the average Nusselt number for a case with heat transfer 

in the inner wall and the outer wall insulated. Prandtl number, 0.73[4]. 

 

In 1968, Cheng and Hwang [31]studied the heat transfer problem for 

eccentric channels under laminar flow using as boundary condition uniform heat 

flux in both inner and outer walls. The purpose of the work was to present a 

solution without using bipolar transformation and they decided to apply a 
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Simpson´s rule for integration having excellent agreement with the results 

obtained for previous works [31]. The same year, Wilson and Medwell 

employed the analogy of heat and momentum transfer in a concentric case 

under turbulent flow, analyzing different radius ratio and different Prandtl 

numbers. The results of the work showed that the friction factor depends only 

on the Reynolds number for radius ratios higher than 0.2. The Figure 2.7 

presents the variation of the temperature distributions found by the authors, 

they concluded that at low Prandtl numbers the more rounded profiles are 

obtained as consequence of the dominance of molecular diffusion. Increasing 

the Reynolds number decreases the thickness of the sublayer which leads to 

the square shape of the profiles [32]. 

 

Figure 2.7 Fully developed temperature distributions for a concentric case with 

a constant Reynolds number and a varying Prandtl number. [32] 

 

As mentioned before, many applications of non-circular passages such 

as heating and cooling applications starts at the duct entrance or before the fully 

development conditions. Many studies are found considering a fully developed 

regime. However, few works have taken into account the entrance region. In 

this scenario, Quarmby and Anad [33] suggested a solution for either the 

thermal fully developed entrance region for a concentric annuli with different 
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radius ratio, Prandtl numbers and uniform heat flux on either surface. The 

entrance length showed to be considerably shortened for Prandtl numbers 

superior to one. In the Figure 2.8, they stressed the relationship between 

increasing the radius ratio b and the entrance length x+ for both cases of heated 

inner or outer surface. It is noticeable that with the increasing of b, the entrance 

length decreases but it is also important to see that this effect is more 

noticeable for the heated inner wall compared to the heated outer wall.  

 

Figure 2.8 Influence of radius ratio in the entrance length. [33] 

 

Nikitin and co-workers [8] used Direct Numerical Simulations (DNS) to 

carry out computations of the flow in eccentric tube (e=0.50; eq. 2.1) under 

turbulent flow at Re=8000. The authors observed that in the narrowest gap the 

flow may be considered as laminar in terms of the local Nusselt number but this 

consideration is no longer possible in terms of the intensity of temperature 

fluctuations. This oscillations appeared to be significantly higher near the inner 

wall compared to the outer wall 

  
   

     
 (2.1) 

 Where: 

    = Distance between centers 
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    = Outer diameter 

    = Inner diameter 

In more recent years, Volker Gnielinski [11] presented an analytical 

equation for the calculation of the friction factor and the Nusselt number IN 

concentric cases taking into account a diameter ratio(Di/Do), the Reynolds 

number, the Prandtl number and the thermal boundary conditions of the heat 

transfer problem. Some years later, Dawood and co-workers [34] made a 

bibliographic review of different experimental and numerical works studying the 

enhancement of thermal performance. In this review they presented natural 

convective and forced convective heat transfer cases for both concentric and 

eccentric annuli with horizontal, vertical and inclined configurations. From the 

results presented in this review was possible to validate the Nusselt number 

decreasing as a function of the eccentricity increasing, whenerver forced 

convection was imposed for horizontal channel. On the other hand, in vertical 

channels some results showed that the local and averaged Nusselt number 

increases as direct function of the eccentricity. 

Chung and Jin Sung [35] solved non-isothermal flow in the same 

geometry presented in their work of 2002 in order to investigate the effect of the 

curvature of the channel on the turbulence and thermal parameters near the 

wall. They found that overall turbulent thermal statistics were larger in the outer 

wall compared to the inner wall associating such results to the transverse 

curvature of the wall. It was also noticed by the authors that this tendency was 

more evident for small Di/Do ratios. 

Jian Su and co-workers [36] developed an analytical method based on 

the law of the wall for velocity and temperature for the prediction of friction 

factor and Nusselt number in rod bundles arranged in square and hexagonal 

arrays. They compared their results with those ones available in literature, 

achieving great agreement. In the square array, the proposed model slightly 

under predicted the Nusselt number but still holding a good agreement. The 

results obtained for the hexagonal array was found to match with previous 

works found in the literature. 
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3 FUNDAMENTAL EQUATIONS 

3.1 Governing equations 

In this chapter it will be briefly presented the main equations which rule 

the mass, energy and momentum conservation in a fluid flow.  

  

3.1.1 Mass conservation 

For compressible and non-stationary flow, the continuity equation also 

known as mass conservation equation is written as: 

  0i

i

u
t x




 
 

 
 (3.1) 

where: 

  = density of the fluid.  

   = velocity component in the orthogonal directions.  

   = spatial coordinates. 

  = time. 

3.1.2 Momentum conservation 

The equation of the momentum conservation is obtained from the 

Newton’s second law of motion, which says that the variation of the momentum 

is equal to the summation of the external forces acting on a fluid mass. In the 

equation (3.2) the letter F represents additional external forces also acting in the 

fluid. The terms at the right of the equation are the pressure P, the normal 

stresses and the shear stresses applied to the surfaces of the control volume. 
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 (3.2) 

 

3.1.3 Energy equation 

The continuity and momentum equations are in most cases enough to 

solve a pure dynamic problem. However, when the heat transfer problem is 

added, the temperature field solution requires additional equation. 

 The first law of thermodynamics also known as the energy equation is in 

charge of lead us to accomplish this objective. The first law of thermodynamics 

establishes that the rate of energy accumulation in the control volume is equal 

to five terms listed below: 

1. The net transfer of energy by fluid flow. 
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2. The net heat transfer conduction. 

3. The rate of internal heat generation. 

4. The net work transfer from the control volume to its environment. 

The energy equation can be expressed in terms of enthalpy, turbulent 

kinetic energy or temperature. In the equation (3.3) is presented the 

temperature formulation of the energy equation in terms of the specific heat 

(Cp) and constant pressure (P). For problems where the fluid is incompressible 

(β=0), the conductivity (k) is constant, does not exist internal heat generation 

(q’’’=0) and the viscous dissipation (μΦ) is negligible, the energy equation is 

written as in equation (3.4). 

   
  

  
   (   )    

  

  
        (3.3) 

   (
  

  
   (  ⃗ ))   (   ) (3.4) 

 

As it is known, the Navier-Stokes equations can be applied to laminar 

and turbulent flows, but in the case of turbulence, with all the details that occurs 

in small scales is no longer possible to make a direct discretization of the 

Navier-Stokes equations [39]. The solution presented by Reynolds [40] for the 

condition named for turbulence, is to decompose all quantities into two parts; a 

mean averaged quantity, represented as the quantity with an overbar and a 

fluctuating field, represented with and apostrophe as in equation (3.5) 
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 (3.5) 

 The overbar used in the previous equation to indicate a mean value, is 

also a symbol of a linear mathematical operator. The equations (3.6) to (3.9) 

presents the properties of this operator. [41] 
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a = a+a' = a+a' = a+a'

a' = 0

 (3.6) 

ab ab ab   (3.7) 

ab' ab' ab' 0    (3.8) 

  ab a a' b b' ab ab' ba' a' b'        (3.9) 

 

Employing the decomposition followed by the averaging process in the 

equation (3.1), we obtain: 
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Applying the rules presented in equations (3.6) to (3.9) in the equation 

(3.10) leads to the expression presented in equation (3.11). Assuming an 

incompressible and stationary flow, it is obtained the expression (3.12). 
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 In the same way, the momentum and energy equations for 

incompressive flow can be re-witten as: 
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 Where, 

  α=Thermal diffusivity¨ 

   = Reynolds stress tensor 

     ̅̅ ̅̅ ̅̅ ̅= Sub-grid turbulent Flux 

  ̅  ̅̅ ̅̅ ̅̅        ̅̅ ̅̅ ̅̅ ̅= Cross turbulent flux 

  ̅ ̅
̅̅ ̅̅ ̅    ̅ ̅= Leonard’s turbulent flux 
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In the equation (3.13) the first term in the right side of the equation 

corresponds to the momentum transference due to the pressure gradients. The 

second one is related to the momentum transference due to the velocity 

gradients and viscosity. And the third one is the Reynolds stress tensor that 

represents the momentum transference due to the velocity fluctuations. 

 

3.2 Turbulence models 

3.2.1 k-w SST model 

The Shear-Stress Transport ( k   SST) model was developed by 

Menter [42] to use the advantages of the classic k   model in the near-wall 

regions and the advantages of the k  model in the regions far from the wall. In 

order to attach both turbulence models, the k   is converted into a k   

formulation. The k   SST model has as characteristic a blending function 

which is 1 in the boundary layer region using the k   model and zero in the 

regions outside of the boundary layer, activating the k   model. 

Besides, the k   SST model uses a damped cross-diffusion derivative 

term in the   equation and the turbulent viscosity is modified to take into 

account the transport of the turbulent shear stress [43]. 

The formulation of the k   SST model are presented in the following 

equations, the transport equation for the kinetic energy k and the turbulent 

frequency w, respectively: 
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 (3.16) 

Where: 

2 2 k2 2', , , ,      are constants. 

kb bP ,P are source terms. 

kP is the turbulence generation due to viscous forces. 

The turbulent viscosity term in the k   SST model is expressed by the 

following equation: 
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In the equation (3.17) the term S is an invariant variable of the rate of 

deformation tensor and the term F2 is the second blending function and it is 

defined as follows: 
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 The coefficients   and   are constants defined as 5/9 and 0.09 

respectively. 

 

3.2.2 LES model 

The Large Eddy Simulation (LES) model was proposed in 1963 by 

Smagorinsky[44]. The main idea of the LES model is to reduce computational 

cost by ignoring the smallest length scales with a low-pass filtering in the 

Navier-Stokes equations. The LES model solves THE large-scale fluctuating 

motions and uses “sub-grid” scale turbulence models for the small-scale 

motions [43]. Such model is an anisotropic model, mainly applied to the large 

scales, since the small scales are thought to be isotropic. 

The governing equations for the LES model are obtained by filtering the 

time-dependent Navier-Stokes equations in the physical space. The filtering 

process, filters out the eddies whose scales are smaller than the mesh spacing 

or the filter width. The filtered variable is represented with an overbar as shown 

in the equation (3.20). 
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where D is the fluid domain and G is the filter function an is expressed as: 
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V as the volume control. 

 

3.2.3 DES-SST model 

The DES model is a hybrid model that combines features of RANS and 

LES formulations, proposed by Spalart Allmaras, based on a previous set up 
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blending function. It is based on the idea of using Reynolds Averaged Navier-

Stokes formulation (RANS) in attached and mildly separated boundary layers, 

switching to the use of Large Eddy Simulation (LES) in wall separated regions. 

When the DES-SST model is applied the overbar has different meanings 

to the RANS and LES formulations. For the regions those respond to the 

URANS formulation (k-w SST model), the overbar represents the time average 

of the quantity and the     represents the Reynolds stress tensor.  

On the other hand, for the regions where LES model is applied, the 

overbar indicates a spatial averaging which gives a filtered variable. The     

represents the sub-grid scale stress tensor (SGS stress tensor) that can 

determine the dynamical coupling between large and small scales in turbulence. 

Unlike Reynolds stress tensor, the SGS stress tensor is a fluctuating turbulence 

quantity. The equations (3.21) and (3.22) presents the calculation of     for the 

Reynolds stress tensor and the SGS stress tensor respectively. Only the 

deviatory part of the SGS stress tensor is modeled using a statistical approach 

similar to RANS. The turbulent scales larger than the grid size are directly 

solved whereas the effects of the SGS scales are modeled, assuming that 

these scales are more homogeneous in behavior[28]. The equation (3.23) 

presents the turbulent heat flux in the LES model. 
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The Reynolds stress tensor in equation (3.21) represents the momentum 

transfer due to velocity fluctuations. This tensor is symmetrical and is an 

additional unknown variable in the problem that appears due to the effects of 

the instantaneous flow that are not present in the mean average flow. This 

leads to an indeterminate system, because the number of equations is not 

enough to solve the set of unknown variables. 

Boussinesq introduced the first solution for this problem, but for 

incompressible cases, the equation proposed resulted in the turbulent kinetic 

energy being zero, which is not true. Kolmogorov in 1941, then, modified the 
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equation to solve this problem by adding a kinetic as shown in the following 

equation. 
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The switching between the regions solved with each model is made 

using the idea of the DES model proposed by Strelets[45]. The main idea is 

switching between the regions where the turbulent length    is lower than the 

local grid spacing in any of its directions, in these cases the URANS model is 

then activated. On the other hand, if the turbulent length    is greather than the 

local grid size, the LES model is rescued.  

The turbulent length    is calculated as a function of the turbulent kinetic 

energy   and the turbulent eddy frequency , applying IN the equation (3.25). 

When the LES mode is activated, the quantity     is replaced by         , 

where     is the maximum edge size of the computational domain in any 

direction.   
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 

 
    (3.25) 

The modification made by Stretlets[45] included an additional term, a  

multiplier (    ) as the destruction term of the turbulent kinetic energy equation 

  , where   represents the turbulence eddy dissipation and 𝐹    is the switching 

function. 

t DES* k F    (3.26) 

t
DES DES

DES

L
F max ,1 C 0,61

C 

 
   

 
 (3.27) 

   ANSYS® - CFX gives the option of a zonal formulation of the DES model 

based on the blending functions of the SST model. When 𝐹    is set as zero, the 

Strelets model is applied [45]. 
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 
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3.3 Forced convection heat transfer 

The forced convection is characterized by the fluid being forced to flow 

over a surface, driven by a pump or a fan. Convection heat transfer can be 

complicated because it involves fluid motion and also heat conduction, but 

despite the complexity of convection, the rate of heat transfer in this mechanism 

is proportional to the temperature difference and is expressed by Newton’s Law 

of cooling[46]. 

 '' Sq h T T   (3.29) 

 Where, 

     = Heat flux [    ] 

    = Convection heat transfer coefficient [     ] 

     = Temperature of the surface [ ] 

     = Temperature of the fluid sufficiently far from the surface [ ] 

 

3.3.1 Nusselt number 

The Nusselt number is a dimensionless number that measures the 

increase of heat transmission, from the surface on which a fluid flows by 

convection compared to the transfer of heat if it occurs only by molecular 

diffusion. In the equation (3.30),    is a characteristic length of the problem. For 

complex shapes it may be defined as the volume of the body divided by its 

surface. The thermal conductivity of the fluid is assigned by . 

chL
Nu

k
  (3.30) 

 

3.3.2 Heat transfer in concentric channels 

There are many studies that deals with the problem of heat transfer in 

concentric annuli, but only after the work developed by Gnielinski[11], the 

diameter ratio was included in an analytical expression to calculate values as 

the friction factor   and Nusselt number, NU. Besides the Di/Do ratio, other 

factors as Reynolds number, Prandtl number and thermal boundary conditions 

for the walls were also taking into account, as seen in equations (3.32) to (3.34). 

The Reynolds number is a dimensionless number that allows 

characterizing the flow regime. Its value indicates whether the flow follows 
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under laminar or turbulent regime, as shown in equation (3.31). Where Lc is the 

characteristic length, in our case, the hydraulic diameter, Dh. The analytical 

solution written by Gnielinski[11], proposed a correction in the Reynolds number 

that considers the diameter ratio of the channel, implying in a mean velocity and 

the friction factor.  

Re C CuL uL

 
   (3.31) 

* 2

10(1.8log Re 1.5)annf    (3.32) 

   
 

2 2

*

2

1 ln 1
Re Re

1 ln

a a a

a a

  



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D
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D
  (3.34) 

The Nusselt number for forced convective heat transfer is commonly 

expressed as a function of two principal parameters, the Reynolds number and 

the Prandtl number. The Prandtl number is defined as the momentum diffusivity 

and thermal diffusivity ratio as shown in equation (3.35). In the case of the 

expression developed by Gnielinski[11], besides these two numbers, other 

parameters have been taken into account to predict the Nusselt values. The 

variation of fluid properties, represented as a constant,   varies for each 

thermal boundary condition, the equation (3.37) presents the calculation of   for 

the case of heating gas. The factor    and the factor 𝐹   . The last one depends 

on the thermal boundary condition. If the thermal condition is heat transfer at 

the inner wall and the outer wall insulated, the factor 𝐹    assumes different 

value in comparison to the case which the inner wall is insulated and the outer 

wall heated. 
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 0.60.9 0.15annF a   (3.39) 

 

3.3.3 Heat transfer in eccentric channels 

In the case of eccentric channels, the calculations of the heat flux and the 

Nusselt number are made using the equations (3.29) and (3.30) respectively. 

The equation (3.29)can be rewritten in terms of the bulk temperature in the 

cross section,  Tb, rather than   . The bulk temperature is defined as the ratio 

between the rate of flow enthalpy through a cross section and the rate of flow of 

heat capacity through a cross section[47]. The equation (3.40) shows the 

expression for the case with constant heat flux. 

0

1
A

bT uTdA
uA

   (3.40) 

 

Chang and Tavoularis[37] studied the heat transfer process in a 

rectangular channel with an inner rod. To obtain the surface temperature of the 

rod, they presented the equation (3.41).Taking into account the axial and 

azimuthal directions and the temperature of the surface in each point. 
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4 METHODOLOGY 

 

4.1 Computational domain and mesh 

The first simulation presented in this work was carried out in the same 

computational domain, geometric parameters and Reynolds number used by 

Choueiri and Tavoularis[1] in their experimental work. The channel is composed 

by an external tube with an outer diameter of Do = 50.8 mm and a core tube 

(inner diameter) with Di = 25.1 mm, leading to a diameter ratio of approximately 

0.5. The hydraulic diameter, used in calculations of non-circular passages is 

defined as a cross-sectional area and the wetted perimeter ratio, shown in 

equation (4.1). So, the hydraulic diameter is then computed as Dh=25.7 mm. 

The tube has an eccentricity of 0.8 and a total length of 1500 mm. The 

eccentricity is calculated as shown in equation (4.2) with    as the distance 

between centers. After the first simulation new computations were carried out 

varying the eccentricity between 0.7 and 0.9 in intervals of 0.05 maintaining all 

the other geometric parameters used by Choueiri and Tavoularis [1] in their 

experimental work. 

4
h
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P
  (4.1) 
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D D


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
 (4.2) 

The origin of the cartesian coordinates is located in the center of the 

outer diameter and in the beginning of the channel, with the flow flowing in the 

parallel to x-axis, from the left to the right, Figure 4.1. The spanwise direction of 

the flow coincides with the z-axis and the y-axis is in the vertical direction. 

To build the mesh, special care was taken near the wall. At such region a 

small size mesh were built to capture the different characteristics of the 

boundary layer. The y+ used near the walls was maintained less than 0.5, as 

shown in Table 4.1, regardless the eccentricity. In the streamwise direction of 

the domain 300 equidistant points were used, which produced a cell size of 6 

mm. The coarsest cell in the transversal section is always smaller than the cells 

in streamwise direction. 

The total number of nodes for all the cases was 1224120, the number of 

elements 1200000 and the number of faces 48000. 
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Figure 4.1 Computational domain. (a) Schematic view of the channel. (b) Mesh 

of the cross section. (c) Cross-section of the channel. 

 

Table 4.1 Distance of the first element near the wall in all the cases 

Eccentricity Distance of the 
first element [m] 

0 1.0e-5 

0.7 3.0e-6 

0.75 2.5e-6 

0.8 2.0e-6 

0.85 1.5e-6 

0.9 2.9e-6 

 

In order to compare the numerical results with the experimental 

outcomes from Choueiri and Tavoularis[1] it will be analyzed the same five 

(c) 

flow 
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points in the cross-section that the authors did, as shown in the Figure 4.1. The 

points (1 up to 5) lies on the line that describes the middle path between both 

inner and outer walls. The Table 4.2 presents the z and y coordinates of each 

point in the cross-section of the annular channel.  

 

Table 4.2 Coordinates of the measurement points for the experimental case 

Point Z Y 

1 0 -0.024384 

2 0.013716 -0.018796 

3 0.019304 -0.00508 

4 0.013716 0.008636 

5 0 0.014224 

 

4.2 Boundary conditions 

The boundary conditions used for all the simulations either concentric or 

eccentric annuli were the following. 

4.2.1 Isothermal case 

The boundary conditions adopted for the isothermal case are presented 

in the Figure 4.2. The inlet velocity was setted as 9.0183 [m/s] to obtain a 

Reynolds number of 15000. The turbulence intensity was chosen 5% in the 

inletand the outlet condition established was a differencial pressure of 0 [Pa]. 

Both inner and outer walls were set as smooth wall with no slip condition. 

 

 

No slip condition 
Smooth wall 

No slip condition 
Smooth wall 

z 

y 

flow 

flow y Inlet 
u=9.0183 m/s 
TI=5% 

 
Outlet 
P=0 Pa x 

Figure 4.2 Boundary conditions of the isothermal case 
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4.2.2 Heat transfer case 

  Figure 4.3 presents the boundary conditions used for the simulations of 

the non-isothermal computations for both concentric and eccentric cases. 

Similarly to the isothermal case showed in Figure 4.2, the inlet velocity, 

turbulence intensity and conditions for the outer wall were maintained. At the 

channel’s inlet temperature was set 298 [K]. At the channel’s outlet opening 

condition was applied with an outlet temperature of 313 [K]. The flow cross 

through  the channel just one time, the translational periodicity condition for any 

of the simulations was not applied. 

 
 

The inner wall was set as a smooth wall with no slip conditions.  

A prescribed heat flux of 2000 [W/m2] was set on the inner wall’s surface. 

For the outer wall a no slip condition, smooth wall and adiabatic condition 

was setted. 

It is important to highlight that for both cases with and without heat 

transfer process, the time step for all simulations was chosen taking special 

care in guarantee a Courant number lower than 1. The time step was 

maintained constant for each simulation. The table below summarizes the time 

step setted and the numer of time steps simulated for each case. 

 

 

 

 

 

Inlet 
u=9.0183 m/s 
TI=5% 
Temp=298 [K] 

No slip condition 
Smooth wall 
HeatFlux=2000 [W/m2] 

No slip condition 
Smooth wall 
Adiabatic 

 
Outlet 
Opening 
Temp.=313 [K] 

flow 

flow y 

x 

Figure 4.3 - Boundary conditions of the non-isothermal case 
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Case Time step Number of time steps 

REF 1.4e-4 17957 

A 1.0e-4 23505 

B 1.0e-4 21655 

C 9.0e-5 38217 

D 8.0e-5 17413 

E 1.5e-4 17556 

 

4.3 Turbulence Settings – DES-SST 

In the section 3.2 we explained the formulation of the DES-SST model. In 

this simulation the shielding function of the SST blending was used, applying 

the formulation of the equation (3.2), the blending factor was chosen as 0 and 

the      remained with a value of 0.61.  

The transient scheme which defines the discretization algorithm for the 

transient term was chosen Second Order Backward Euler. For the advection 

scheme was selected central difference with the activated option of bounded 

CDS which is highly recommended in cases using DES and SAS models due to 

the control of the courant number between the specified advection scheme and 

the central difference scheme (CDS) [43]. 

 

4.4 Simulations performed 

The main goal of the present work is to validate the behavior of a 

developing turbulent flow in an eccentric channel and study the influence of the 

velocity fluctuations in the heat transfer coefficients. In order to achieve this 

main purpose, it was decided to start from the geometry used in the 

experimental work of Choueiri and Tavoularis[1]. Once we have the 

experimental results from the authors, it was possible to validate the results 

obtained from the numerical simulation for a pure dynamic eccentric case, 

e=0.8. 

As mentioned before there are currently no analytical equations to solve 

the heat transfer problem in eccentric channels under turbulent flow. That is the 

reason why the methodology, mesh, boundary conditions and turbulence model 

needed to be tested and to be compared with the experimental results for the 

pure dynamic eccentric case. In sequence it will be possible to use the same 
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methodology and conditions for the cases where the heat transfer process was 

added. 

For this purpose, a concentric channel with the same diameter ratio and 

a Reynolds number of 15000, was first simulated. Constant heat flux of 2000 

[W/m2] in the inner wall and insulated outer wall was imposed. The numerical 

results were compared with the analytical equations from 

Gnielinski[11](equations (3.31) to (3.39)). After the validation of the 

methodology the same parameters were applied to the eccentric cases. 

In order to give initial values for the transient simulation, RANS K- SST 

was set up and running in steady state. After complete these simulations, the 

transient cases were then initiated. In all cases the maximum Courant number 

was maintained between 0.8 and 0.9. The total time of simulation was large 

enough to provide approximately 15 flow-through or convective time. The 

convective time is defined as the time that takes to the fluid flow from the 

beginning to the channel until the end. 

All the simulations were performed in a computer Intel Quad-core i7 

7700k processor, RAM memory of 32 Gb, using as operating system Windows 

10 Home and a GTX 1050 Ti video card. The physical time of each simulation 

was about 2 weeks for each simulation. 
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5 RESULTS AND DISCUSSION 

 

In this chapter the results obtained from the numerical simulations for the 

channel with the same parameters used by Choueiri and Tavoularis[1] will be 

presented. After validating and comparing both, experimental and numerical 

results, the non-isothermal eccentric cases will be presented. Table 5.1 shows 

the denominations that will be used as reference for each one of the 

eccentricities simulated in this work. The concentric case will be used as a 

reference for non-isothermal cases. 

 

Table 5.1 Denomination of the different eccentricity cases. 

Eccentricity 0 0.7 0.75 0.8 0.85 0.9 

Case REF A B C D E 

 

 

5.1 Isothermal eccentric channel 

 

5.1.1 Mean flow development 

To validate the flow simulation in the eccentric channel measurements of 

the three velocity components and its respective mean average values were 

taken at the five positions shown in Figure 4.1(c). The development of the 

velocities along the channel are presented in Figure 5.1 at 5 seconds of 

simulation. The points measured are the same as the ones chosen by Choueiri 

and Tavoularis[1]. It should be remembered that the z-axis corresponds to the 

spanwise direction, this means that the u and w velocity components will be 

representing the streamwise and spanwise directions respectively. 

In the case of the spanwise velocity, that coincides with the z-axis and 

the w velocity, the local mean velocity is null, w/ub=0, regardless the point 

where the velocity data was gathered. Besides that, the flow fluctuations start 

more or less at        . 

Two kinds of behavior are observed in the streamwise velocity. In the 

points 1 and 2 a peak of velocity is around      , being such value noticed in 

the beginning of the channel. Going farther towards the channel’s outlet, at 
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        , the ratio of velocities decrease to        in point 1 and       in the 

point 2. This interval between           is defined as the entrance region 

ER. From            (as the fluctuation growth region, FG) there is an 

increase of the mean velocity and the fluctuations start to appear around 

        , from this zone to the end of the channel, is the rapid mixing region, 

RM. At this region is possible to see the establishment of the mean velocities 

and fluctuations. The names of the regions were proposed by Choueiri and 

Tavoularis [1] and the behavior of the flow described by them in each one of the 

regions were found in the numerical simulation.   

For the points 3, 4 and 5, the pattern in the first two regions it is different 

from the points 1 and 2. Unlike the first two cases, at          , there is 

an increase of the mean velocity. However, point 3 reach the maximum velocity 

first in comparison with points 4 and 5. Afterwards, a slightly velocity decrease 

takes part continuing up to the next region before the establishment of the mean 

value and the fluctuations. A similar behavior was also observed by Chang and 

Tavoularis [37] at the narrow gap in a rectangular channel with a cylinder inside. 

The three regions mentioned above and the behavior presented in each 

point for velocity, matches with the experimental results encountered by 

Choueiri and Tavoularis[1]. They defined this regions as entrance region, ER 

from          , fluctuations growth region, FG             and 

rapid mixing region, RM           . These definitions are going o be 

used in the present work. 

Although in all positions the three main regions proposed by Choueiri and 

Tavoularis [1] are identified, the point 1 located at the narrow gap will be object 

of the main dynamical analysis. 
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Figure 5.1 Velocity fluctuations of the main components, the blue line 

represents the velocity fluctuations along the channel and the red line the mean 

average velocity. (a) Streamwise direction. (b) vertical-velocity component. (c) 

Spanwise direction. 

 

The Figure 5.2 presents the behavior of the three velocity components 

obtained experimentally by Choueiri and Tavoularis[1]. It is possible to see that 

the patterns as well as the magnitude of the mean velocity in each component 

assigned to each point are in good agreement with the numerical simulation 

performed in this work and presented by Figure 5.1. This agreement with the 

experimental outcomes, enable us to conclude that that the conditions 

established for the simulations are able to predict the dynamical behavior with a 

good accuracy. 

(a) (b) (c) 
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Figure 5.2 Velocity fluctuations of the three main components at five 

measurement points obtained experimentally by Choueiri and Tavoularis[1]. (a) 

Streamwise fluctuations (z axis). (b) Spanwise fluctuation at the measurement 

points (x axis). (c) Velocity fluctuations in the w direction (y axis). 

 

5.1.2 The dynamics of the flow – the strouhal for isothermal flow 

The Strouhal number    allows to adimensionalize the frequency using 

the macro scales of the problem and it is defined as: 

h

b

fD
St

u
  (5.1) 

 

The streamwise and spanwise velocities time-traces for the three main 

regions are shown in Figure 5.3. Data were gathered at point 1 of the Table 4.2 

corresponding to the narrow gap for x/Dh = 38, 42 and 53. The points are 

chosen at the end of the FG region, at the beginning of the RM region and near 

the outlet of the RM region. The reason why the poins are gathered in these 

points is because an the end of the FG region an along the RM region, the flow 

reach an stable oscillation. 
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 In the streamwise direction, AT x/Dh=38, the fluctuations does not have 

a stable mean value during the time, on the other hand, for the positions at 

x/Dh=42 and x/Dh=53 the velocity fluctuates around approximately 0.56ub and 

0.6ub respectively. 

 

Figure 5.3 Streamwise and spanwise velocity fluctuations at five seconds of 

simulation for the point 1 located at the narrow gap. (a) x/Dh=38, end of the FG 

region. (b) x/Dh=42, beginning of the RM region. (c) x/Dh=53, end of the RM 

region. 

In order to obtain the frequency of the oscillations of the signal, a Fast 

Fourier Transform (FFT) was used. The fundamental frequency of the oscilatory 

motion in the streamwise velocity component was approximately twice the 

frequency of the one found in the spanwise direction. Applying equation (5.1) 

the value of the Strouhal number for both components in each region (ER, FG, 

RM) is then obtained. The results are presented in Figure 5.4. 

Due to the difference between the properties of the fluid used for the 

experimental case and the simulations, in order to maintain the same Reynolds 

number, the velocity in the numerical case is 10 times higher compared with the 

experimental case. Therefore, the frequencies obtained are also 10 times 

higher than the ones obtained by Choueiri and Tavoularis[1]. Even so, the 

values obtained for the Strouhal number of 0.2 and 0.1 for the streamwise and 
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spawise velocities components respectively, agrees with the experimental 

results obtained by their experimental campaing.  

 
Figure 5.4 Strouhal number along the channel’s length, in the narrow gap 

 

5.2 Non-isothermal cases 

In this section will be analyzed the mean average and fluctuant field of 

the flow under the same fluid dynamic boundary condition, but adding different 

eccentricities. Besides the changes adopted in face of the new eccentricities we 

also coupled the problem imposing prescribed heat transfer boundary 

conditions on the tube’s surfaces. Each eccentric case will be compared with a 

concentric one simulated under the same boundary conditions. As mentioned 

before analytical expressions are provided for Gnielinski [11] that allow us to 

validate the numerical results only for the concentric case. 

 

5.2.1 Main velocity components in the narrow gap 

Figure 5.5 shows the behavior of the mean average velocity in the 

streamwise direction for the concentric case in the narrow gap (presented as a 

solid line). Each eccentric case simulated is also showed. The eccentricity was 

rangedfrom0.7 up to 0.9. The concentric case has a value of approximately 1.15 

ub and, as expected, there is not velocity fluctuations for any farther station 
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along the channel. For the case A, corresponding to an eccentricity of 0.7, the 

mean velocity decreases to 37% compared with the concentric channel as a 

consequence of the area reduction inside the narrow gap.  

As the eccentricity increases, the station where the flow field starts to 

present the quasi-periodic motion, moves toward to the channel’s inlet. It 

means, the onset of the gap instabilities has shortened with the eccentricity 

increasing. For the eccentricity of 0.75 the velocity fluctuations start almost at 

the end of the channel at x/Dh=52.5, whereas for the eccentricity of 0.9 the 

velocity fluctuations are noticed soon after the channel’s entrance at x/Dh=8.3. 

As the inner tube goes closer to the outer one, the eccentricity increases 

and the gap become narrower. The gap reduction will produce a reduction in 

the mean velocity at this point, since the viscosity dominates the flow inside the 

tight gap. It is important to notice that when the velocity fluctuations appear, 

they cause an increase in the mean velocity. For all studied cases the velocity  

is not enough to reach the same value of the velocity obtained for the reference 

case (e=0). But it is noticeable that the presence of the velocity  fluctuations can 

increase the mean velocity value. 

 

 

Figure 5.5 Comparisson of thestreamwise velocity m bu u along the channel 
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Figure 5.6 shows the fluctuations of the spanwise velocity along the 

channel. There is no velocity fluctuations along the gap for the reference case 

and the case A, (e=0.7). For the other cases the spanwise velocity fluctuates 

around 0 between -0,3 and 0.3. This amplitude is almost the same in cases B, 

C, D and E, the difference between these cases is the onset of the velocity 

fluctuations that is directly influenced by the eccentricity. These fluctuations 

proves that there are coherent structures crossing the gap between the 

subchannels located at each side of the narrow gap.   

 

 

Figure 5.6 Comparisson of the spanwise velocity 
m bw u  along the channel 

inside the narrow gap. 

 

5.2.2 Velocity contours and profiles 

In Figure 5.7 (a) - (f) the contour plots of the mean average streamwise 

velocity component are shown for every simulated channel at x/Dh=50 . The 

isolines of the mean average velocities are made dimensionless by using the 

bulk velocity. Due to the good symmetry only the half part of the picture is 
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shown. First of all, it is noticeable the great symmetry of the flow, regardless the 

eccentricity of the channel.  

As expected in the eccentric cases the velocity reach a maximum value 

in the wider gap. On the other hand the minimum velocity appears in the narrow 

one. In cases A and B, which did not present velocity fluctuations, or only 

appeared at the end of the channel, the narrow gap presents a minimum 

velocity of approximately 0.4ub. In the cases C and D, despite the gap 

reduction, through the eccentricity increasing, the flow velocity inside it was 

found to be higher (around 0.6ub) in comparison with the cases A and B, being 

such behavior attributed to the velocity fluctuations that seems to play an 

important role on the mass distribution inside the channel. This kind of mass 

distribution and the velocity increasing with the fluctuanting field was also 

reported by Lee and Barrow [30]. This behavior is in agreement with the one 

found in Figure 5.5. The onset of the gap instabilities in cases C, D and E, 

assigned by the velocity fluctuations, lead to a streamwise velocity increasing 

inside the narrow gap in comparison with cases A and B. 
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(a) 

 

(b) 

 

(c) 

 
(d) 

 

(e) 

 

(f) 

 
Figure 5.7 Velocity contours of the streamwise velocity component in the 

transversal plane located at x/Dh=50. (a) Reference case. (b) Case A. (c) Case 

B. (d) Case C. (e) Case D. (f) Case E. 

 

The Figure 5.8 presents the velocity profiles in the narrow gap for all the 

studied cases at different streamwise stations, x/Dh, along the channel. The 

velocity is presented in non-dimensional form by using the bulk velocity, Ub. The 

non-dimensional velocity is stressed as a position function, also made 
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dimensionless by the gap size S. Figure 5.8 (a) shows the reference case 

corresponding to a concentric channel. The velocity profile has a flattened 

shape in the center of the gap that is characteristic of a turbulent flow near 

solids surfaces, seemingly to be independent of the streamwise position along 

the channel. The flattened shape obtained in the velocity profile was found in 

previous works [3][7][18][19][24]. Moreover, the maximum velocity reach an 

approximate value of 1.2ub. 

Looking at the Figure 5.8 (b) and (c), that correspond to the cases A and 

B, the eccentricity is not high enough to produce fluctuations in the velocity field, 

therefore, at the interior of the channel there is a reduction of the velocity 

around 35% and 54.5% respectively compared with the reference case. As we 

move further, from the inlet of the channel, the velocity decreases until reaching 

a value of 0.42ubfor the case A and 0.38ub for the case B which is expected as 

a consequence of the width gap reduction as the eccentricity increases. It is 

important to notice in the case B that although the velocity fluctuations exist 

(even nearby the end of the channel), their influence in the velocity profile is not 

evidenced by the isolines of velocity distribution, as shown in Figure 5.7 and 

Figure 5.8. 

In Figure 5.8 (d) is presented the case C (e=0.8). This is the first case in 

which the velocity fluctuations appear, reaching a stable behavior oscillating 

around a constant value. The solid line corresponding to the position x/Dh=10 

still presents a reduction of the velocity with the increasing of the eccentricity 

(0.38ub) and this reduction continues until x/Dh=30.  in the streamwise station 

located at x/Dh=40, where gap instability appear for the very first time, it is 

possible to see a slight increasing of the values of the velocity profile, about 5 % 

compared with upstream position at x/Dh=30. This increasing becomes more 

evident as we move farther towards the channel’s inlet. At x/Dh=50, where the 

velocity fluctuates around a constant value, the maximum velocity reaches 

0.69ub. Such value is approximately the same velocity found at the beginning of 

the channel for the case B.  

The increasing of the values of the velocity profile due to the velocity 

fluctuations is evident in Figure 5.8 (e) and (f). In both figures, from the point of 

onset of the velocity fluctuations there is always an increasing in the maximum 

values of the velocity that is evident in the velocity profiles compared with the 
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profile presented with a solid line which is in a location where there are not 

fluctuations. Even so, the Figure 5.8 (f) does not shows a higher increasing 

compared with Figure 5.8 (e). Such fact will be expected since the fluctuations 

started earlier. This might be attributed to the viscous effects that are higher in 

the case of very tight gaps. The viscous effects might be also de reason why at 

stations x/Dh=40 and x/Dh=50, the velocity profile in Figure 5.8 (f) presents 

lower values compared with station x/Dh=30. 

In the Figure 5.9 the velocity contours for the case D is shown for 

different stations downstream the channel. In the same way the data were 

made non-dimensional through the bulk velocity. In Figure 5.9 (a) it is presented  

the velocity contours in a region where there is still not velocity fluctuations. The 

difference between the velocities found in the narrow and the wider gap for this 

position are around 87%. In Figure 5.9 (b) and (c) located at x/Dh=40 and 

x/Dh=50 respectively, it is noticed that the maximum velocity increases in both 

the wider and the narrow gap, this behavior is in concordance with the one 

found Figure 5.8 (e). From the point where the velocity fluctuations appear, the 

velocity profile changes and the maximum velocity increases compared to the 

one found at the beginning of the channel. Station where the velocity 

fluctuations still does not exist. 

It is important to notice that the large area region where the maximum 

velocity takes place (wider gap) in the Figure 5.9 (a) decreases in the Figure 5.9 

(b) and (c), reinforcing the new flow characteristic as the flow evolves inside the 

channel. This shows that there is a new distribution of the mass from the 

moment when the velocity starts to fluctuate. 
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(a) 

 

(b) 

 
(c) 

 

(d) 

 
(e) 

 

(f) 

 
Figure 5.8 Velocity profiles in the narrow gap at different stations along the 

channel. (a) Reference case. (b) Case A. (c) Case B. (d) Case C.  (e) Case D. 

(f) Case E. 
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(a) 

 

(b) 

 

(c) 

 
Figure 5.9 Isocontoursof the streamwise velocity component for the case D at 

different stations along the channel’s length. (a) x/Dh=20. (b) x/Dh=40. 

(c)x/Dh=50 

 

5.2.3 Fluctuation intensities 

Figure 5.10 are depicted the intensity of velocity fluctuations in the 

streamwise direction at x/Dh=50 for each simulated case. The values are 

displayed in dimensionless form by using the bulk velocity 
bu . All the figures 

presents symmetry along the vertical axis, so, that is the reason why is 

presented only the half part of the transversal plane of the channel.  

For the reference case, Figure 5.10 (a),the maximum axial velocity 

intensity is around 
2' bu u =0.08, being found near the inner and outer wall 

showing a constant distribution in both horizontal or vertical axis. As the 

eccentricity starts to increase (Figure 5.10 (b) and (c)) the velocity intensities 

distribution changes and the maximum values are found in regions near to the 

wider gap reaching values of around 
2' bu u =0.081 and the minimum velocity 
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intensities are found in the narrow gap with values between 
2' bu u =0.01 and 

2' bu u =0.03. 

In Figure 5.10 (d), (e) and (f) the isoline maps of the velocity intensities 

distribution in the streamwise direction is almost constant. In these cases the 

velocity fluctuations already exist. It is interesting to notice at 90° is the location 

at which the maximum value of 
2' bu u

 
is found, being 0° located at the center 

of the narrow gap in the inner tube. Besides that, the minimum value of the 

velocity fluctuations, surprisingly, takes place at regions near to the wider gap. 

Similar behavior was found by Nikitin [8], in his work the author found the 

maximum values of the velocity intensities taking place nearby 90°. Moreover, 

his outcomes presented almost the same values in the vicinity regions of the 

narrow and wider gaps. 

Looking at the narrow gap, the intensity velocity fluctuation assumes 

values lower than found at 90° and higher than we found at the wider gap. This 

shows that the velocity intensities increase from 0° to a maximum value at 90° 

and decreases again until its minimum value near to 180°. This behavior was 

found for cases C, D and E (numerical simulations whose the fluctuacting field 

was prescribed). 
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(a) 

 

(b) 

 

(c) 

 
(d) 

 

(e) 

 

(f) 

 

Figure 5.10 Streamwise velocity fluctuation intensity contours of 
2u' bu  at 

x/Dh=50. (a) Reference Case. (b) Case A. (c) Case B. (d) Case C. (e) Case D. 

(f) Case E. 
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As well as the velocity intensities in the streamwise direction, is also 

important to take a close look in the intensity of the fluctuant spanwise 

component of the velocity field. In Figure 5.11 the isocontours of these 

intensities are shown for every simulation, the concentric case and the other 

five eccentricities cases. The fluctuations in the spanwise direction are also 

presented in non-dimensional form through the bulk velocity. For the concentric 

case, the distribution, as expected, is symmetric and the values are almost the 

same as in Figure 5.10 (a). The highest value of 
2w' bu

 
was found near the 

wall, as expected. Near the wall the turbulence is highly anisotropic presenting 

different values for each component of the Reynolds Stress tensor trace (Silva 

Freire et al., 1998) 

Unlike in the streamwise direction, the maximum value of the spanwise 

velocity fluctuation intensity was found at the narrow gap for the cases (e), (d) 

and (f), worthing 
2w' bu =0.25. As the position increases azimuthally, the 

magnitude of the intensities decreases until a minimum value, 
2w' bu ~ 0.08 at 

90°, after this position the value tends to increase again, but without recover its 

maximum value. 

For the cases C, D and E, as the eccentricity increases the magnitude of 

the intensity 
2w' bu

 
decreases until a value of 

2w' bu ~ 0.201 for e=0.9. This 

decrease is expected after the analysis of the Figure 5.8 (f) where it was also 

possible to see a reduction in de velocity profile compared with the Figure 5.8 

(e). 
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(a) 

 

(b) 

 

(c) 

 
(d) 

 

(e) 

 

(f) 

 

Figure 5.11 Spanwise velocity fluctuation intensity contours of 
2w' bu  at 

x/Dh=50. (a) Reference Case. (b) Case A. (c) Case B. (d) Case C. (e) Case D. 

(f) Case E. 
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5.2.4 The dynamics of the flow – the strouhal number for non-isothermal 

flow 

 

As it was mentioned in section 5.1.2 the Strouhal number allows us to 

stress the frequencies in non-dimensional form. In order to acchieve such goal 

macroscales of the problem are going to be used. The streamwise and 

spanwise velocity components time-traces were gathered for the cases C, D 

and E (corresponding to the eccentricities 0.8,0.85 and 0.9) for two streamwise 

positions along the channel, at x/Dh=30 and x/Dh=50. The cases A and B were 

not studied because there were not velocity fluctuations. A Fast Fourier 

Transform FFT was applied in order to obtain the main frequency of the velocity 

time-traces and calculate de Strouhal number thorugh the eq. 5.1. 

Figure 5. presents the FFT performed at x/Dh=50 for the cases C, D and 

E. Looking to the FFT of point 1, located at the narrow gap for the three cases 

the streamwise component has a frequency twice the spanwise component. As 

we move azimuthally the peaks of the dominant frequency are no longer as 

marked as at point 1.  At point 3, in the streamwise component is still possible 

to identify a dominant frequency but in the spanwise component as the 

eccentricity increases, two dominating frequencies appear. Point 4 presents a 

similar behavior, but at this point the streamwise component is the one where 

there are two dominating frequencies. 
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 (a) 

 

 

 

 
(b) 

 

 

 
(c) 

 

 

 
Figure 5.12 Fast Fourier Transform graphs at x/Dh=50 (a) Eccentricity 0.8 (b) 

Eccentricity 0.85 (c) Eccentricity 0.9 
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Figure 5. presents the Strouhal number obtained for the cases and the 

positions previously indicated. The Strouhal number remains constant for all 

points investigated (1 and 5), located at the middle of the narrow gap and the 

wider gap respectively. Moreover, dimensionless frequency was found great 

agreement with the experimental work[1]. The frequency in the streamwise 

direction is twice compared with the spanwise direction, this particularity is in 

concordance with the experimental results of Choueri and Tavoularis[1]. 

 

 

Figure 5.13 Strouhal number in the streamwise and spanwise directions at 

x/Dh=30 and x/Dh=50 

 

5.2.5 The coherent structures visualization - q-criterion 

 

The Q-criterion is the second invariant of the velocity gradient tensor [48]. 

IT represents the local balance between the vorticity magnitude and the shear 

strain rate. This criterion is applied in the domain and defines regions where the 

vorticity magnitude is greater than the magnitude of rate of strain, assigning the 
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regions where the vorticity, and, therefore, the coherent structures have evolved 

[49]. The equation (5.2) presents the expression used to obtain the Q-criterion, 

  is the instantaneous vorticity and   is also the instantaneous shear strain rate. 

The vorticity and the shear strain rate also can be seen as the antisymmetric 

and the symmetric component of the velocity gradient tensor [48]. 

 2 21

2
Q S   (5.2) 

 

The Q-criterion must have a positive value in order to show the regions 

where the vorticity is more important than the shear strain. Figure 5.12 shows 

the isosurfaces of the Q-criterion along the channel colored by using the eddy 

viscosity for the concentric channel and the other five eccentricity cases, as 

well. 

In the concentric case and the case A there is no coherent structures 

appearance. From the case B till the case E these structures start to appear 

always in pairs at each side of the narrow gap, after some distance from the 

inlet, x/Dh. It is also noticeable, in concordance with the previous figures, that as 

the eccentricity increases the gap instability onset is shortened and coherent 

structures are found closer to the inlet of the channel. In the case E, with the 

higher eccentricity, the coherent structures are present in almost all the length 

of the channel. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

 

Figure 5.12 Flow visualization through the Q- criterion. (a) Reference case. (b) 

Case A. (c) Case B. (d) Case C.  (e) Case D. (f) Case E. 
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5.3 Heat transfer – THE NUSSELT NUMBER AND THE ECCENTRICITY 

5.3.1 The Reference case 

The heat transfer problem in the concentric case was numerically  

simulated and analyzed. The outcomes were faced against the analytic solution, 

trough the equations presented in the section 3.3.2. In this case the equation 

(3.40) was applied to obtain the bulk temperature in the transversal plane. The 

heat transfer coefficient and the Nusselt number were computed through the 

equations (3.29) and (3.30), respectively. the simulated nusselt number was 

compared to the analytic equation 3.37. 

The Figure 5.13 presents the variations of the surface temperature (Ts) 

and bulk temperature (Tb) in the reference case (e=0). The surface 

temperature, is obtained for different stations along the inner rod, by averaging 

the temperatures as a function of the azimuthal position. By definition, the fully 

developed thermal condition for a channel with constant heat flux is achieved 

when the difference between the surface and bulk temperatures is constant in 

the streamwise direction [47]. Such behavior is shown in the Figure 5.13 below, 

roughly, at x/Dh = 20 the thermal fully developed condition is achieved. 

 
Figure 5.13 Axial temperature variations of the concentric case 
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The Table 5.2 presents the comparison between the Nusselt number 

obtained by applying the analytical equations and that one obtained from the 

numerical simulation. The Simulation under-predicted the Nusselt number in 

12.43%, however, despite such difference, the model was thought to be able in 

predicting the non-isothermal problem. So, accepting the numerical computation 

as a valid result we also validate the mesh, thermal boundary conditions and 

turbulence model applied to solve the problem. It is important to notice that the 

result presented in the table bellow for the numerical simulation was taken in 

the transversal plane. 

 

Table 5.2 Numerical and analytical results of the Nusselt number 

 Nusselt number 
Analytical equation 

(eq. 3.37) 
49.65 

Numerical  
Simulation 

43.48 

 

5.3.2 Eccentric channels 

Taking into account that there is no any analytical solution to predict the 

nusselt number for the eccentric cases, the good accuracy of our previous 

simulation allows us to extend our numerical methodology to the new 

simulations. As mentioned in section 3.3.3, in order to obtain the surface 

temperature it was used the equation (3.40). The Figure 5.14 presents the 

comparison between the surface temperatures, Ts, for all the eccentric cases, 

along with the concentric case, used as a reference. The reference case is 

always depicted as a solid line.  

As the eccentricity increases the temperature fluctuates with the flow 

field. The average temperature on the rod’s surface starts to oscillate just few 

hydraulic diameter downstream from the inlet as the gap becomes tighter, it 

means, the eccentricity becomes higher. It is noticeable that the temperature 

difference between the reference case and the case B increases along the 

channel. When the velocity fluctuations starts to appear, at x/Dh=48, the surface 

temperature, Ts, decreases and reach a constant oscillation around a value 

near to the surface temperature obtained in the reference case, (A). Figure 5.14 

shows the important role that the velocity fluctuation plays in the temperature 
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distribution. Furthermore, it shows how the velocity fluctuations are able to 

dissipate the high temperatures on the tube’s surface.  

 

 

Figure 5.14 Surface temperature, TS, along the channel for different 

eccentricities. 

 

From the dynamical analysis, it was possible to see how the behavior of 

the flow changes when we move in the azimuthal direction. The fluctuation 

intensities for the streamwise direction, increases as we move from the narrow 

gap towards the wider gap as shown in Figure 5.15. 

 Figure 5.16 shows the Nusselt number for each simulated case as a 

function of the azimuthal direction. The position 0° is located in the narrow gap 

and 180° the wider gap (clockwise). The Nusselt number was obtained using 

the equations (3.29) and (3.30). The calculations were made using the bulk 

temperature at x/Dh=50. The local surface temperature, as a function of the 

angular position on the inner tube, was taken each 10°. 

For the concentric case it is possible to see that the Nusselt number has 

a constant behavior. For the two first eccentricity cases (cases A and B) the 

Nusselt number is considerably reduced at 0° taking a value of around 23% 
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compared with the reference case (case A, e=0). This values can be explained 

taking into account that in this positions the area, and therefore the velocity, is 

lower. Since the average Nusselt number is ruled by the Prandlt and Reynolds 

numbers, local Nusselt is ruled by local scales. In the narrow gap the viscous 

effects are greater and, therefore, the local velocity and Reynolds are 

diminished, affecting, in negative way, the local heat convection. Another 

striking features of the flow at such positions is the absence of the flow 

instabilities. As the angle is increasing, the local Nusselt number starts to 

increase until a its maximum value of approximately  60 at 180°, taking at 90° 

the same value obtained in the concentric case.  

It is remarkable to observe distinguished Nusselt number distribution for 

higher eccentricities. In the case D (e=0.85) the values are quite similar to the 

ones obtained in the reference case, despite the obvious reduction in the 

streamwise velocity at the narrow gap showed in the Figure 5.7. This may be 

explained by the intensity of the velocity fluctuations presented in Figure 5.10 

and Figure 5.11. From these figures it is possible to observe that in the narrow 

gap, where the streamwise velocity is affected by the area reduction and 

viscous effects, the flow fluctuation produced in the spanwise direction 

attenuates the effects of the velocity reduction and is strong enough to maintain 

the Nusselt number about only 10% lower with respect to the reference case. 
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Figure 5.16 Nusselt number distribution as a function of azimuthal position. 

 

To confirm the influence of the velocity fluctuations in the heat transfer 

process, Nusselt distribution around the inner tube was gathered at two different 

streamwise stations, x/Dh=10 and x/Dh=50, for two different cases, D and E.  It 

is important to highlight that at x/Dh=10 the case D (e=0.85) does not have 

velocity fluctuations. In the case E (e=0.9), at x/Dh=10 is the point of the onset 

of the velocity fluctuations, but they are just beginning and have not reached a 

stable behavior. 

Figure 5.17 shows the Nusselt number distribution at x/Dh=10 for the 

cases D and E (e=0.85 and 0.9 respectively). The local Nusselt data were 

stressed as a ratio its local value and the concentric Nusselt.  It is interesting to 

observe that the Nusselt decreasing from zero up to 20°, starting to increase 

again, reaching its maximum at about 60°. As the azimuthal position increases 

the local velocity also increases and the gap size becomes wider. After 

approximately 100°, the Nusselt distribution is found almost constant, being the 

values compareble with the reference case. For farther stations from the 

channel’s inlet, at x/Dh=50, both cases have developed velocity fluctuations. 

Even though, at the narrow gap vicinity (0° up to 60°) the Nusselt number is 
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reduced, in comparison with the reference case (e=0), its lowest value is about 

70% of the value obtained for the concentric case and takes place at 60°. 

 

 

Figure 5.17 Variation of the Nusselt number in the azimuthal direction for the 

cases D and E at two different positions along the channel x/Dh=10 and 

x/Dh=50. 

 

It is important to emphasize that it seems to have an optimal value of the 

eccentricity in order to compensate the effects of the tight gap and maintain the 

values of the Nusselt number similar with the concentric case. For eccentricities 

with values lower and higher than 0.85, it seems that the flow does not develop 

a dynamical behavior enough to maintain the Nusselt number sufficiently similar 

to the reference case. 
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6 CONCLUSIONS 

 

The aim of the present work was to analyze the mean average flow 

quantities and the dynamics of the developing turbulent flow in eccentric 

channels. We also furthered our research by investigating the influence of the 

velocity fluctuations on the convective heat transfer coefficient on the tube’s 

surface, through the coupling problem, turbulence associated to the heat 

transfer. The onset gap instability and its dependence on the eccentricity was 

also target of our investigation. 

In order to achieve this goal it was first performed a incompressible three 

dimensional unsteady flow simulation to predict the main features of the 

turbulent flow in a compound channel which contains a narrow gap. The 

computational domain is the same one which Choueiri and Tavoularis [1] whose 

the authors carried out their experimental campaign. The channel was 

composed by two different pipes with d/d = 0.50, being the inner one displaced 

from the center of the cross-sectional plane, forming an annular narrow 

passage. The Reynolds number based on the hydraulic diameter (Dh) and the 

bulk velocity (ub) and the kinematic viscosity, , yielding Re = 7300. The 

computations were performed in a finite volume commercial software applying 

an anisotropic hybrid URANS/LES model known as DES-SST to overcome the 

additional diffusivity caused by the turbulence.  

From the comparison of the first simulation with the experimental results 

it was possible to verify three different regions in the flow developing processes 

along the channel. moreove, the turbulence model successfully predicted the 

main characteristics reported by the experimental work performed by Choueri 

and Tavoularis [1]. Regardless the azimuthal region, were the flow is located, 

the entrance region (ER), the fluctuation growth (FG) and the rapid mixing (RM) 

regions could be observed in the five points of analysis. 

The Strouhal number was analyzed in the streamwise and spanwise 

directions. It was found that it reaches an almost constant value at the end to 

the FG region. This agrees with the point where the velocity fluctuations begins 

and also the mean velocity reach its stable value. The Strouhal number in the 

streamwise direction is almost twice than the spanwise direction. This results 

also matches with the experimental work of Choueiri and Tavoularis [1].  
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A second set of simulation was performed increasing the Reynolds 

number to 15000 and adding thermal boundary conditions to the problem. The 

eccentricity was ranged from 0.7 to 0.9 in intervals of 0.05. The heat flux applied 

was 2000 [W/m2] at the inner wall.  The outer wall was kept isolated. The fluid 

proprieties were also kept unchangeable, so, the Prandtl number was set 0.70 

throughout the computations.  

The intensities of the velocity fluctuations were studied for the 

streamwise and spanwise components. With this analysis was possible to 

observe that in the narrow gap the spanwise velocity has a more important 

intensity compared with the streamwise velocity. This leads to think that exist a 

secondary flow produced by the coherent structures that are crossing through 

the gap. As we move azimuthally the intensities in the spanwise direction 

decrease and the intensities in the streamwise direction increases until a 

maximum value around 90°. 

The Strouhal number was again analyzed to observe if adding the heat 

transfer problem caused some effect in the dynamics of the flow. The values of 

the Strouhal number in the narrow gap remained constant and in concordance 

with the work of Choueiri and Tavoularis [1]. In the azimuthal direction, at 

positions 3 and 4, the flow presented two dominating frequencies for the 

spanwise direction for the point 3 and in the streamwise direction for the point 4. 

At point 2, the frequency in the streamwise and spanwise direction is the same 

and point 5 presented the same behavior as point 1 with the frequency in the 

streamwise direction twice than the spanwise direction. 

The concentric case was studied in order to validate the methodology 

implemented for the heat transfer problem by making a comparison with the 

analytical equations given by Gnielinski [11]. The Nusselt number predicted by 

the code was about 12% lower than that computed from analytic equations. 

As the eccentricity increases it is evident that the onset of the velocity 

fluctuations is shortened for both streamwise and spanwise directions. 

Analyzing the velocity profiles it was evident how the velocity fluctuations played 

an important role in order to ate the gap vicinity as the eccentricity increases. At 

the streamwise station where the fluctuations appeared for the first time the 

velocity profiles presented higher values in comparisson to the locations where 

the fluctuations were not observed.  
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The surface temperature of the inner rod was also seen affected by the 

velocity fluctuations. The fluctuating flow field led the mean average 

temperature to a sudden decrease that takes place at the very same point of 

the onset of the velocity fluctuations. Affected by the velocity fluctuation the 

mean average surface temperature oscillates around a value near to the one 

obtained for the concentric case and the onset of these fluctuations is earlier as 

the eccentricity increases. 

The Nusselt number distribution on the inner rod’s surface was computed 

for all cases. Due to the flow symmetry in the concentric case, there was no 

variation of the Nusselt number, however, it was used as a reference case. But 

for the cases with higher eccentricities, it was really interesting to notice that 

even when the velocity and fluctuation intensities in the streamwise directions 

were considerably reduced at the narrow gap, the Nusselt number was 

comparable with the concentric case. This was found to be consequence of the 

high velocity fluctuation intensities in the spanwise direction at the narrow gap 

vicinity. So, the result lead to conclude that the spanwise velocity fluctuation 

seems to play an important role in the heat transfer process. 

Besides, for the case with an eccentricity of 0.85 the values of the 

Nusselt number were closer to the concentric case than those ones found in the 

pipes with eccentricity 0.8 and 0.9. This allows to think that there is an optimal 

value in which the velocity fluctuations intensities affect the flow in a way that 

are able to attenuate the effect of the velocity reduction in the narrow gap 

maintaining the Nusselt number comparable to the one found for the concentric 

case.  

 

6.1 Future works 

The influence of the heat flux and Reynolds number has not been 

validated, that is why for future works we recommend: 

 Analyze different heat fluxes and Reynolds numbers in a longer 

channel in order to study the delay in the velocity fluctuations as a 

function of the Reynolds number. 

 Analyze if for other thermal and dynamical conditions there is a 

change in the best eccentricity case obtained in the present work.  
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 Validate the fluctuation intensities in the three components in 

lower intervals and for different dynamical conditions. 
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