
Universidade de Brasília
Instituto de Ciências Exatas

Departamento de Ciência da Computação

Nominal Equational Problems Modulo Associativity,
Commutativity and Associativity-Commutativity

Washington Luís Ribeiro de Carvalho Segundo

Tese apresentada como requisito parcial para
conclusão do Doutorado em Informática

Orientador
Prof. Dr. Mauricio Ayala-Rincón

Coorientadora
Prof. Dr. Maribel Fernández

Brasília
2019

Universidade de Brasília
Instituto de Ciências Exatas

Departamento de Ciência da Computação

Nominal Equational Problems Modulo Associativity,
Commutativity and Associativity-Commutativity

Washington Luís Ribeiro de Carvalho Segundo

Tese apresentada como requisito parcial para
conclusão do Doutorado em Informática

Prof. Dr. Mauricio Ayala-Rincón (Orientador)
Universidade de Brasília

Prof. Dr. Maribel Fernández (Coorientadora)
King’s College London

Prof. Dr. Temur Kutsia Prof. Dr. Alejandro Díaz-Caro

Johannes Kepler University Linz Universidad Nacional de Quilmes
& ICC (CONICET-UBA)

Prof. Dr. Daniel Lima Ventura
Universidade Federal de Goiás

Prof. Dr. Bruno Luiggi Macchiavello Espinoza
Coordenador do Programa de Pós-graduação em Informática

Brasília, 20 de fevereiro de 2019

Dedicatória

Dedico este trabalho à minha família nuclear: Iraciara Almeida e José Lucas, que foram
as pessoas que mais sofreram com minhas ausências e com meu mal humor no momentos
em que cumprir com os deadlines. Dedico-o também em memória de minha mãe, Denise
Gonçales Ribeiro de Carvalho, e de meu tio Ricardo José Gonçales. Minha mãe partiu
logo no início desta jornada de 5 anos, e meu tio partiu de forma mais recente. Ambos
fazem muita falta nos dias de hoje, e sempre farão.

iv

Agradecimentos

Em primeiro lugar ao meu orientador, Professor Mauricio Ayala-Rincon, à minha coo-
rientadora, Professora Maribel Fernández e à minha coorientadora informal, Professora
Daniele Nantes-Sobrinho. Sem o apoio e orientação fornecidos por vocês, este trabalho,
de fato, não existiria. Reconheço também o meu orientador de mestrado, Professor Flávio
Leonardo de Moura, por ter me reinserido no ambiente acadêmico, após a pausa de três
anos. Agradeço aos membros da banca: Professor Temur Kutsia; Professor Alejandro
Díaz-Caro; e Professor Daniel Lima-Ventura pelas importantes contribuições e sugestões
de correção do texto da tese.

À minha família, cujo apoio e compreensão foi fundamental para execução deste traba-
lho: Iraciara A. de Souza; José Lucas A. Ribeiro; Washington R. de Carvalho; Denise G.
de Carvalho; Derly Gonçales; Manoel Gonçales Neto; M. Cristina Gonçales; Beatriz M.
Gonçales; Ricardo J. Gonçales; Maria do Socorro de Almeida; Adilson de Souza; Adilson
de Souza Júnior; Kelly Cristina; Iara de Souza, Gilberto Machado; Indiara de Souza; M.
Luiza Gomes; Armando Nunes; Antônia Almeida; e Guilherme Almeida.

Aos amigos de trabalho por terem compreendido a importância deste meu trabalho
na minha formação e me dado suporte em minhas ausências: Dra. Cecília Leite; Dra.
Bianca Amaro; Tainá Assis; Lautaro Mattas; Clediomir Silva; Leonard Richard e toda a
equipe de bolsistas que trabalhou comigo nestes anos.

Por fim, agradeço aos amigos: Bruno Mazzo e Juliano Mazzo (que sempre executaram
o papel dos irmãos que eu nunca tive); Gabriel F. Silva e Ariane Alves (cujo apoio dado
no dia da defesa foi fundamental); Alison R. Panisson (por ter sido um companheiro e
amigo na fria Londres); Ana C. Oliveira (por ter compartilhado o trabalho e objetivos com
relação à Lógica Nominal); Lucas Silveira; Daniel Saad; Thiago F. Ramos; Bruno Delboni;
Andréia B. Avelar; Thaynara de Lima; Mehwish Arshid; e Kaliana D. de Freitas que
foram os companheiros de laboratório, como também às amizades conquistadas durante
esta jornada.

Com toda a certeza muitos nomes além destes deveriam constar aqui. Pela ausência
peço perdão, e gostaria de dizer que todos foram fundamentais para que eu alcançasse o
meu objetivo. A todos vocês eu gostaria de dizer:

U B U N T U = “Eu sou porque vocês são.”

v

Acknowledgements

In the first place to my supervisor, Professor Mauricio Ayala-Rincón, my co-supervisor,
Professor Maribel Fernández and my informal co-supervisor, Professor Daniele Nantes-
Sobrinho. Without your support and supervision, this work, in fact, would not exist. I
acknowledge also my supervisor of the master course, Professor Flávio Leonardo de Moura,
for having reintegrated me to the academic environment after the break of three years.
I acknowledge the referees: Professor Temur Kutsia; Professor Alejandro Díaz-Caro; and
Professor Daniel Lima-Ventura for the important contributions and the suggestions of
correction in the thesis text.

To my family, whose support and comprehension was fundamental to the execution
of this work: Iraciara A. de Souza; José Lucas A. Ribeiro; Washington R. de Carvalho;
Denise G. de Carvalho; Derly Gonçales; Manoel Gonçales Neto; M. Cristina Gonçales;
Beatriz M. Gonçales; Ricardo J. Gonçales; Maria do Socorro de Almeida; Adilson de
Souza; Adilson de Souza Júnior; Kelly Cristina; Iara de Souza, Gilberto Machado; Indiara
de Souza; M. Luiza Gomes; Armando Nunes; Antônia Almeida; and Guilherme Almeida.

To the work friends for having acknowledged the relevance of my work in my formation
and having provided me support in my absences: Dra. Cecília Leite; Dra. Bianca Amaro;
Tainá Assis; Lautaro Mattas; Clediomir Silva; Leonard Richard and all the research fellows
that worked with me in these years.

Finally, I thank the friends: Bruno Mazzo and Juliano Mazzo (that always played the
role of the brothers that I never had); Gabriel F. Silva and Ariane Alves (whose support
were fundamental in the day of the viva); Alison R. Panisson (for being a partner and
a friend in the cold London); Ana C. Oliveira (for sharing her work and goals regarding
Nominal Logic); Lucas Silveira; Daniel Saad; Thiago F. Ramos; Bruno Delboni; Adréia
B. Avelar; Thaynara de Lima; Mehwish Arshid; and Kaliana D. de Freitas that were the
lab partners and the conquered friends during this journey.

I am pretty sure that, beyond these, plenty of names should be here. For these
absences, I ask for your pardon, and I would like to say that all of you were fundamental
for me to achieve my goal. I would like to say to all of you:

U B U N T U = “I am because you are.”

vi

“The world is my country, science is my religion.”
Christiaan Huygens

vii

Resumo

A sintaxe nominal tem sido utilizada em vários contextos por quase duas décadas. Ela é
uma ferramenta poderosa para se lidar com ligação de variáveis de uma forma concreta,
que pode ser aplicada a qualquer especificação na qual parâmetros são utilizados para se
abstrair variáveis, tal como em predicados e funções. Na sintaxe nominal, objetos que
são sintaticamente diferentes podem ter a mesma semântica módulo alfa-conversão, tal
como acontece no Cálculo Lambda. O tratamento de igualdades, em especial a alpha-
equivalêcia, é algo essencial em linguagens formais e implementações. Este trabalho inves-
tiga a alpha-equivalência nominal com símbolos de função associativos (A), comutativos
(C) e associativos-comutativos (AC). Verificação de equivalência, casamento e unificação
módulo A, C e AC são investigados. Em relação a verificação de igualdade, as alpha-
equivalências nominais módulo A, C e AC foram especificadas em Coq e provadas ser
corretas. Um algoritmo implementado em OCaml para verificação de igualdade módulo
A, C e AC é automaticamente extraído da especificação e experimentos são executados
utilizando-se também um algoritmo aperfeiçoado. Limites superiores para o tempo de
execução na solução de problemas nominais de verificação equacional são fornecidos. Um
algoritmo de unificação módulo C baseado em regras de redução é especificado em Coq
e provado ser correto e completo. Por meio do uso de variáveis protegidas, este algo-
ritmo de unificação resolve problemas de casamento nominal módulo C, o que foi também
formalizado ser correto e completo. O algoritmo de unificação baseado em regras de re-
dução fornece uma família finita de conjuntos de equações nominais de ponto fixo. Cada
uma destas equações pode ter um conjunto infinito de soluções independentes. Portanto,
demonstra-se que problemas de unificação nominal módulo C e AC podem gerar um con-
junto infinito de soluções independentes. Este fato contrasta com unificação sintática
módulo C ou AC, que são conhecidas por estar na classe finitária de problemas. Uma
implementação em OCaml do algoritmo de unificação nominal é fornecida e utilizado para
se construir exemplos.

Palavras-chave: Lógica nominal, Alpha-equivalência, Unificação de primeira-ordem,
Unificação nominal, Unificação módulo teorias equacionais, Equações de ponto fixo.

viii

Abstract

The nominal syntax has been used in many application contexts for almost two decades.
It is a powerful tool for dealing with variable binding in a concrete manner that can be
applied to any specification in which parameters are used to abstract variables, such as in
predicates and functions. In the nominal syntax, syntactically different objects can have
the same semantics modulo alpha-conversion, as happens in the lambda calculus. Deal-
ing with equality, and in special with alpha-equivalence, is essential in formal languages
and implementations. This work investigates the nominal alpha-equivalence with associa-
tive (A), commutative (C) and associative-comutative (AC) function symbols. Equality-
checking, matching and unification modulo A, C and AC are investigated. Regarding
equality-checking, nominal alpha-equivalence modulo A, C and AC are specified in Coq
and proved sound. An algorithm implemented in OCaml for equality-checking modulo A,
C and AC is automatically extracted from the specification and experiments are performed
using also an improved algorithm. Upper bounds for solving nominal equality-checking
problems are given. A rule-based nominal unification modulo C algorithm is specified
in Coq and proved sound and complete. By using protected variables, this unification
algorithm solves nominal matching problems modulo C, which is formalised to be sound
and complete. The rule-based nominal unification algorithm outputs a finite family of sets
of fixed point nominal equations. Each of which might have an infinite set of indepen-
dent solutions. Therefore, nominal unification modulo C or AC are proved to potentially
generate infinite independent solutions. This contrasts with syntactic unification modulo
C or AC that are known to be in the finitary class. An OCaml implementation of the
nominal unification algorithm is provided and used to build examples.

Keywords: Nominal logic, Alpha-equivalence, First-order unification,
Nominal unification, Unification modulo equational theories, Fixed point equations.

ix

Contents

1 Introduction 1
1.1 Related work . 3
1.2 Contribution summary . 7
1.3 Organisation . 8

2 Background 10
2.1 First-order unification . 10

2.1.1 First-order syntactic unification . 13
2.1.2 First-order A, C and AC-unification 16

2.2 Nominal syntax . 22
2.2.1 Freshness and the nominal α-equivalence 24
2.2.2 A rule-based nominal unification algorithm 26

3 Specification and Formalisation in Coq: the case of nominal α equality-
checking 32
3.1 Soundness of ≈α using a weak α-equivalence ∼ω 36
3.2 Soundness of ≈α without using ∼ω . 40
3.3 Comparing the two formalisation approaches 42

4 Nominal α, A, C and AC equality-checking 44
4.1 Operations over tuples . 45
4.2 Extension of the rules for ≈α . 48
4.3 Formalisation of the soundness of ≈{A,C,AC} 51
4.4 A naive implementation of the ≈{A,C,AC} equality-checking algorithm 55
4.5 Automatic code extraction . 58
4.6 Execution tests . 62
4.7 Upper bounds . 64

x

5 Nominal C-unification and matching 72
5.1 Formalisation of nominal C-unification with

protected variables . 72
5.1.1 Basic formalised notions and results on nominal C-unification 73
5.1.2 Main formalised results for C-unification 78

5.2 Nominal C-matching . 93
5.2.1 Basic notions on nominal C-matching and auxiliary formalised properties 93
5.2.2 Main formalised results for nominal C-matching 96

6 Nominal fixed point problems 107
6.1 Generating combinatorial solutions via

pseudo-cycles . 107
6.2 General solutions for C FP problems. 116

6.2.1 Soundness and completeness of the generator 119
6.2.2 Improvements in the generation of solutions 129

7 Nominal A, C and AC-unification and matching 133
7.1 Rules for nominal A, C and AC problems 133
7.2 Solutions for nominal AC FP problems . 141

8 Conclusion and future work 148

References 150

Appendices 154

A 155

xi

Chapter 1

Introduction

Equational problems emerge in many application contexts. In fact, operations such as
pattern recognition and simplification are completely linked with these kinds of problems.
For instance, in optimisation, the partial solutions obtained during the computation steps
can be interpreted as simpler equivalent versions of the original problem. An example
of the use of pattern recognition occurs in searching engines. In this case, a pattern
expression is given to be matched inside a text. Moreover, in functional programming,
the inference of a principal type of an expression uses a general operation with patterns
denominated unification.

Formally, an equational problem is defined over a set of terms and an equivalence
relation ≈. In first-order logic, terms are build, inductively, in the following manner: a
constant c is a term; a variable X is a term; an application of a function symbol to a
tuple of terms f(t0, . . . , tn) is also a term, where f has arity n+ 1. Then, a substitution
is defined as a mapping with a finite domain from variables to terms {X0/t0, . . . , Xk/tk}.
A substitution σ acts recursively over a term. For instance, if σ = {X/W, Y/Z} then
f(X, Y)σ = f(W,Z).

From the previous definitions it is possible to formally establish the main classes of
equational problems, equality-checking, matching and unification. Given a pair of terms
(s, t) and an equivalence relation ≈, these classes are defined, respectively, by the following
three questions: i) is s related to t by ≈ ? ii) what is the set {σ | sσ ≈ t}? iii) what is the
set {σ | sσ ≈ tσ}? In the case of the two sets, the found σ’s are denominated solutions
for the matching (resp. unification) problem sσ ≈? t (resp. sσ ≈? tσ). It is interesting to
know if these sets are decidable, what is their cardinality, and in which class of complexity
the problems of finding solutions are.

The relation ≈ may contain equational theories over the function symbols of the syntax.
For instance, given a commutative (C) binary function symbol f , for any terms s and t, it
is true that f(s, t) ≈ f(t, s). The same holds for other possible equational properties, such

1

as associativity (A), nilpotency (N), etc. Observe that function symbols with equational
properties have a very frequent use in algebra and logic. For instance, monoids (resp.
abelian groups) are defined with a binary A (resp. AC) operator with neutral element
(U). In symmetric groups, N is a property of the operator of composition of elements
and in the classical logic, the symbols ∨ and ∧ are, respectively, interpreted as the AC
operators, disjunction and conjunction, that have as neutral element, respectively, the
constants false and true.

The set of function symbols available to build terms is called their signature and it is
represented by the letter Σ. Then, equational problems where Σ contains function symbols
with equational theories are denominated equality-checking (matching or unification)
modulo. According to the functions symbols in Σ, equational problems may be in distinct
classes of decidability, cardinality and complexity. Supposing that Σ contains only syntactic
function symbols, those symbols that do not have equational properties, then any equality-
checking, matching or unification problem is decidable, has a unitary set of solutions
and is linearly solved. On the other hand, if Σ contains at least one C function symbol,
equality-checking is quadratic, general matching and unification are NP-complete (See
Rmk. 2.5 of Subsection 2.1.2) and all this kind of equational problems are decidable and
have a finite set of solutions, but this set may have more than one element.

Standard first-order terms do not express a relevant aspect in computation denominated
binding. This can be exemplified as the action of specifying parameters in a definition of a
function. For instance, in f : a 7→ a2 the name a is bound and therefore any renaming
of a, say a by b, results in a syntactically different term f : b 7→ b2 that has the same
semantics of the first. First-order syntax was generalised to include a new constructor
called abstraction. This new object is represented by [a]t and expresses the binding of a in
t. In the last example, the term f : a 7→ a2 would be represented by f : [a]a2, which is
related to the term f : [b]b2 by an equivalence relation ≈α.

This modification was denominated nominal syntax and allowed to define in a concrete
manner the relation ≈α. It also changes the representation of variables. Variables X are
decorated with permutations π that are represented by a possibly empty list of renamings
(a0 b0) :: . . . :: (an bn) :: nil. Equational problems in the nominal syntax are decidable,
polynomially bounded and have unitary sets of solutions. As expected, such properties
may change when Σ has function symbols with equational properties.

The present work explores algorithms for solving equational problems in the nominal
syntax where Σ contains A, C and AC function symbols. Also, implementations and a
formalisation of the properties of these algorithms are provided.

2

1.1 Related work

Reasoning over first-order terms has been investigated since the middle sixties. Robinson
[60] proposed his syntactic first-order unification algorithm as an underlying tool for the
resolution principle in theorem-proving. This unification algorithm was proved sound and
complete, and the problem of first-order syntactic unification was proved unitary. Efficient
versions of this algorithm appear only in the late seventies, when, independently, Martelli
and Montanari [51], and Paterson and Wegman [56] proposed algorithms that were linearly
bounded, in time and space. The former is based on smart reasoning strategies, while the
latter used a different representation for terms by acyclic digraphs, which was called term
graph representation.

Later, first-order reasoning was extended to signatures with function symbols that
have equational properties such as A, C, distributivity (D), idempotence (I), existence of
neutral element (U) among others (see the E-unification survey by Baader and Snyder [15]).
For instance, in [64], Siekmann explored first-order unification with C function symbols,
proposing a sound and complete algorithm and proving that first-order C-unification is
decidable and finitary. First-order C-unification is a NP-complete problem [44].

First-order AC-unification was first investigated by Stickel in [67]. This work presented
the translation of an AC-unification problem to the problem of solving a set of Diophantine
equations. Proofs of soundness and completeness of this algorithm were given by Fages [38].
Later improved versions (in efficiency) of AC-unification appear in a series of works, for
instance in [19, 29]. Additionally, complexities of first-order equational problems were
explored by Kapur and Narendran in [43, 44, 45], and by Benanav, Kapur and Narendran
in [17]. Eker [36, 37] investigated and implemented AC-matching algorithms via the
translation AC-matching problems to hierarchies of bipartite graph matching problems.

The formal treatment of α-equivalence was the main objective of a creation of a new
theoretical framework denominated Nominal Logic [42, 57, 58]. This framework is based
on two key concepts, freshness and name swapping, that implement the notion of binding
in a concrete manner. A name is fresh for a term if it does not occur unbounded, and
abstractions [a]s and [b]t are α-equivalent if a is fresh for t and s is α-equivalent to the
name swapping of a by b in t (which is denoted by (a b) · t). In the nominal approach,
freshness and α-equivalence take into account an extra parameter named freshness context.
This object is a set of pairs a#X with the semantics that a must be fresh in a possible
instance of X. This theory was a basis of new developments in the area of equational
reasoning, matching and unification.

Nominal unification, that is unification in the nominal syntax, appears only in 2004, in
the work of Urban, Pitts and Gabbay [72]. The authors presented a rule-based algorithm
that was composed by sets of transformation rules. The simplification rules operate over

3

two types of constraints, equations s ≈? t and freshness constraints a#? t. The latter
express the question: under which freshness context, can a be fresh for t? One set of rules
is used to simplify freshness constraints and the other is applied to equations. The same
strategy is used in the unification algorithms that are explored in Chapter 5. In [72], this
nominal unification algorithm has been showed sound and complete, and, as in first-order
syntactic unification, it provides unitary solutions.

Additionally, Levy and Villaret [48, 49] showed that there exists a quadratic reduction
from a nominal to a higher-order patterns unification problem [53, 55, 73]; and Cheney [27]
proved the opposite way: a higher-order patterns unification problem can be reduced to
a nominal unification problem. Independently, Levy and Villaret [48], and Calvès and
Fernández [25] demonstrated that nominal unification is quadratically bounded. The latter
extends the Paterson and Wegman syntactic first-order unification algorithm [56], with
the definition of a morphism from first-order to the nominal syntax, keeping the Paterson-
Wegman term graph representation. Some implementations of nominal unification were
used in logic programming languages such as αKanren [22] and αProlog [26].

An algorithm for solving nominal matching problems was first studied by Fernández
and Gabbay [41] in which context was called nominal rewriting. In this work, the authors
defined a nominal matching algorithm as a special case of nominal unification, considering
the right-hand sides of equations as ground terms. Then, α-equality-checking and nominal
matching were more deeply explored by Càlves and Fernández [24, 23]. To improve
efficiency of the proposed algorithms, the representation of nominal terms was changed.
A new concept denominated environment synthesised in just one expression the atoms
that need to be fresh and the permutation that must be applied to the considered term.
From this new representation, sets of simplification rules were established to operate
over α equality-checking and nominal matching problems, postponing the propagation
of operations of checking freshness and the action of permutations. The latter strategy
was denominated lazy permutations. Upper bounds for the execution were obtained. The
execution of α equality-checking is linear for ground and log-linear for non-ground terms,
while nominal matching is log-linear for linear problems (where each variable occurs just
once) and quadratic for non-linear problems.

Cheney [28] proposed a generalisation of nominal unification and nominal matching
that removes the freshness restriction in the application of atom-renamings, which was
denominated equivariant unification and equivariant matching. These generalisations
were applied to confluence analysis of nominal rewriting systems [1, 41] and also to the
construction of nominal anti-unification algorithms [16]. In addition, Ayala-Rincón et al [8]
provided an analysis over closed nominal rewriting systems, that avoids nominal equivariant
algorithms and uses only standard nominal matching.

4

Type systems were also investigated in the nominal syntax. Fernández and Gab-
bay [40] defined a curry-style polymorphic type system for nominal terms, while Fair-
weather et al [39] proposed dependent types in the nominal syntax. Moreover, Fairweather
and Fernández investigated types on nominal rewriting, and finally Ayala-Rincón et al [12]
developed intersection types for nominal terms.

Formalisations of first-order syntactic unification can be found, for example, in Avelar
et al. [2], and Brandt, Schlichtkrull and Villadsen [21], which were performed, respectively,
in the proof assistants PVS and Isabelle/HOL. Also, the most well-known formalisations
of nominal unification were done in the proofs assistants Isabelle/HOL, HOL4, PVS and
Coq, respectively, by Urban, Pitts and Gabbay [72, 70], Kumar and Norrish [46], Ayala-
Rincón, Fernández and Rocha-Oliveira [11] (also published in [61]), and Ayala-Rincón et
al. [3]. These syntactic and nominal formalisations can be grouped in two classes: the
functional recursive and the inductive ones. In the first, the unification algorithms are
defined recursively, and in the second they are specified through relations that are defined
inductively. From a pragmatic point of view, recursive and inductive definitions are equally
feasible in proof assistants, but the key difference is that the recursive ones are closer to
algorithmic implementations, while the inductive are easier to manage in proofs, due to
the induction schemes that are generated automatically by the proof assistants.

In the formalisations of [46] and [70], the proof of soundness of ≈α uses an auxiliary
weak α-equivalence, denoted as ∼ω. Essentially, ∼ω is defined as ≈α with restrictions.
One of these restrictions is that it only relates abstractions with the same atom, i.e.,
[a]s ∼ω [a]t if s ∼ω t, but, if a 6= b, [a]s ∼ω [b]t is not derivable. In opposition of this
approach, the formalisation of the soundness of ≈α proposed by [11] followed the strategy
of [41], and exposed that the formalisation is simplified if one does not use the auxiliary ∼ω
in the proofs. Chapter 3 provides a detailed comparison between these two formalisation
approaches (with and without the use of ∼ω).

Specially, formalisations of [46] and [11] differ from [72] and [3] in other aspects. The
formalisation [46] uses a different approach to build the solutions, that are obtained via
construction of a triangular substitution. This is a set of singleton bindings for different
variables, that are accumulated in the recursive calls, during the execution of the algorithm.
In [11], the specification does not include freshness constraints. A simple recursive function
generates the minimal freshness context ∇ for a pair 〈a, t〉, where a is fresh for t under
the context ∇. This function is called from the unification algorithm to build a solution
for the unification problem.

Beyond unification, following the nominal approach, principles of induction and recur-
sion modulo α-equivalence were formalised in Isabelle/HOL and Coq, and implemented in
Agda. These developments were performed, respectively, by Urban [69] (and extended by

5

Urban and Kaliszyk [71]), Aydemir, Bohannon and Weirich [13], and Copello et al. [31].
In the first and second, specifications diverge from the nominal syntax. The reason is
that, in the first, terms are defined using indices to represent bound variables, and, in the
second, although the presence of a general treatment of binding scopes, a higher-order
argument is used to express bound object-level variables. On the other hand, the Agda
implementation is based essentially on nominal swapping and freshness, without using
indexes or higher-order expressions.

Formalisations of equational reasoning modulo A, C and AC are available: Nipkow [54]
proposed a set of rules that implement rewriting tactics in Isabelle/HOL to reason
modulo A, C and AC. This set was used to build equational matching and unification
algorithms, but aspects of performance and termination of these algorithms were not
explored. Contejean [30] developed a sound and complete A, C and AC-matching algorithm
that was defined as a set of rewriting rules that decompose equations until solved normal
forms are reached. This algorithm was formalised in Coq and implemented in CiME, but
efficiency and complexity analysis were not provided. Additionally, Braibrant and Pous [20]
designed a plugin for Coq to use the tactic rewrite modulo A and AC. The development
of tactics aac rewrite, which uses matching modulo A and AC, and aac reflexivity
which uses equality-checking modulo A and AC, was based on the Morphisms library and
an auxiliary OCaml program with implementations of the equality-checking and matching
algorithms. Proofs of soundness of the algorithms were presented, but, again, neither
complexity analysis nor performance tests were given.

Recently, Durán et al. [35] extended the Maude system implementing A-unification
and narrowing algorithms. C, AC, ACU, CU and UI reasoning was already present in
previous versions of the system. The pitfall in A-unification is that problems may have
an infinite number of solutions (see Subsection 2.1.2). For solving this issue, the authors
created a smart detection mechanism of the problematic cases, that generates a warning
saying that the provided set of solutions may be incomplete.

In [5] and [6], it is provided a Coq formalisation of an extension of the standard nominal
α-equivalence, by adding A, C and AC function symbols to the signature. The soundness
of the standard nominal α-equivalence is used in the proof of soundness of the nominal
α, A, C and AC-equivalence. Two OCaml implementations of the nominal α, A, C and
AC equality-checking algorithm were presented. One implementation was automatically
extracted from the specification and the other was coded by hand with an improvement in
the A and AC equality-checking cases. Running tests were provided comparing the two
implementations, and upper bounds were given. These results are presented in Chapter 4.

Regarding extensions of nominal equational reasoning, nominal narrowing was intro-
duced by Ayala-Rincón, Fernández and Nantes-Sobrinho in [9]. This work adapts Hullot’s

6

seminal work on narrowing, originally developed from the first-order rewriting perspective,
to the nominal approach in such a manner that nominal equational unification problems
are solvable by narrowing whenever the equational theories can be presented as a class
of convergent closed rewriting systems. Another extension of nominal unification was
proposed in Schmidt-Schauss et al. [63]. This development proposed an algorithm to solve
nominal unification problems with recursive let operators. In this algorithm, the solutions
of a unification problem are expressed in terms of nominal fixed point equations.

Obtaining solutions for such equations is a recurrent problem; indeed, in [3] it has been
showed that nominal C-unification problems are reduced to solving finite families of fixed
point equations. This work also proved that nominal C-unification problems may have
infinite independent solutions, differing from syntactic C-unification that is well-known
to be finitary. Finally, sound and complete nominal C-unification/matching algorithms
with protected variables were proposed in [7]. The content of [3] and [7] are described in
Chapter 5 and Chapter 6, Section 6.1.

In [4], Ayala-Rincón et al. proposed a sound and complete combinatorial procedure to
generate the set of solutions of nominal fixed point problems. This result is described in
Chapter 6, Section 6.2. Recently, Ayala-Rincón, Fernández and Nantes-Sobrinho [10] pro-
posed a representation of solutions of nominal C-unification problems based on fixed-point
constraints. The authors showed that the standard representation of solutions, composed
by a pair of a freshness context and a substitution, can be translated conservatively to
a pair of fixed-point constraints and a substitution. Following this approach, nominal
C-unification problems are finitary, as in the syntactic case.

1.2 Contribution summary

The contributions of the present work can be grouped in three subjects:

1. Equality-checking:

• In Chapter 3, a Coq formalisation of the soundness of nominal α-equivalence is
provided with a comparison between two formalisation approaches.

• In Chapter 4, the nominal α-equivalence is extended, including A, C and AC
function symbols in the signature. This extension is proved sound. Also, an
OCaml executable code is automatically extracted from the specification and
execution tests are performed. The extracted implementation is compared with
an improved one. Upper bounds for nominal α, A, C and AC equality-checking
are provided;

2. Unification and matching:

7

• In Chapter 5, it is presented a Coq specification of a nominal unification al-
gorithm with C function symbols. This specification takes into account a set
of protected variables X that can not be instantiated. Proofs of termination,
soundness and completeness of this algorithm are formalised. Execution exam-
ples computed with an OCaml implementation of the nominal C-unification
algorithm are also provided.

• Additionally, a nominal C-matching algorithm is obtained setting X with the
variables that occur in right-hand side of the equations in the input problem.
The properties of termination, soundness and completeness of this algorithm
are available in the Coq formalisation.

• Also, in Section 7.1, an extension of the nominal C-unification/matching algo-
rithm, with A and AC function symbols is considered. This extension adds rules
to simplify equations whose terms are headed by A or AC function symbols.
The extended algorithm is proved sound. Completeness is reached when either
the right-hand side variables are protected or the input problem does not have
A function symbols.

• These nominal C, and nominal AC-unification algorithms simplifies the input
problem, transforming it into a family of fixed point problems.

3. Fixed point problems:

• Fixed point problems are proved to have infinite independent solutions, built
just using basic terms and the C or the AC function symbols of the signature.
Since the nominal C and the nominal AC algorithms were proved sound and
they have as output a set of fixed point problems, one concludes that nominal C,
and nominal AC-unification problems may have infinite independent solutions.
This result contrasts with first-order C and first-order AC-unification that are
finitary problems.

• Sound and complete generators of solutions for nominal fixed point problems
are also presented. In the C case, a detailed combinatorial analysis over the
cycles in the permutations of the fixed point equations is explored in Chapter 6.
The generation of AC combinatorial solutions is presented in Section 7.2.

1.3 Organisation

Chapter 2 gives the necessary background. Chapter 3 presents the use of Coq as a
proof assistant and provides as an example the formalisation of the soundness of the

8

nominal α-equivalence. Chapter 4 contains a formalisation of the soundness of the
nominal α-equivalence modulo A, C and AC, also providing implementations and tests.
Chapter 5 explores a formalisation of nominal unification and matching in a signature
with C function symbols. Chapter 6 presents the results about generating a sound and
complete set of solutions with C function symbols for nominal fixed point equations.
Chapter 7 analyses nominal unification and matching, and fixed point problems with A, C
and AC function symbols. Finally, Chapter 8 concludes and discusses the future work.
The Coq formalisation and the source code of OCaml implementations are available at
http://dx.doi.org/10.5281/zenodo.2582109. The hierarchy of the Coq formalisation
is presented in Appendix A.

9

http://dx.doi.org/10.5281/zenodo.2582109

Chapter 2

Background

In this Chapter, a brief explanation about syntactic unification and unification modulo A,
C and AC is presented. Also, unification in the nominal syntax is explored.

2.1 First-order unification

A first-order equational problem is given through the syntax of first-order terms, substitu-
tions and their action over terms. A signature over first-order terms is a set of function
symbols with an associated arity, that may have associated equational properties. Variables
are represented by capital letters X, Y, Z, . . ., and function symbols by lowercase letters
f, g, h,

Definition 2.1 (Signature). A signature Σ is a countable set of function symbols f with
an associated arity. Each function symbol may have associated equational properties.
If a function symbol has arity 0 it is called a constant. A function symbol that has no
associated equational property is denominated syntactic.

Remark 2.1. C function symbols are assumed binary, and, exceptionally, AC function
symbols are taken with no fixed arity.

Definition 2.2 (First-order terms T (Σ,V)). Given a signature Σ and a countable set of
variables V, a first-order term is either a constant c ∈ Σ, a variable X ∈ V, or a function
symbol f ∈ Σ with arity n > 0 applied to a tuple of n first-order terms. This definition is
synthesised in the following expression:

t := c | X | f(t, ..., t).

A first-order term is called syntactic, if all its function symbols are syntactic.

10

The following equational properties are from interest. For simplicity, they are exhibited
free from universal quantifiers:

A (associativity) := f(f(X, Y), Z) ≈ f(X, f(Y, Z))
C (commutativity) := f(X, Y) ≈ f(Y,X)
U (neutral element) := f(X, e) ≈ X, f(e,X) ≈ X

I (idempotence) := f(X,X) ≈ X

D (distributivity) := f(X, g(Y, Z)) ≈ g(f(X, Y), f(X,Z))

Example 2.1. Let Σ = {0, 1,+, ∗} be a signature with constants 0 and 1, that are,
respectively, the neutral elements w.r.t. the ACDU binary function symbols + and ∗. Then,
in this signature, the following equations, between the following well-formed first-order
terms, holds:

• ∗(1, ∗(+(+(1, X),+(1, Y)), 0)) ≈ ∗(∗(+(+(1, X),+(1, Y)), 0), 1);

• ∗(∗(+(+(1, X),+(1, Y)), 0), 1) ≈ ∗(+(+(1, X),+(1, Y)), 0);

• ∗(+(+(1, Y),+(1, X)), 0) ≈ ∗(+(1, Y),+(1, X));

• +(+(1, X),+(∗(Y, 1), ∗(Y,X))) ≈ +(+(1, X),+(Y, ∗(Y,X))).

Definition 2.3 (Size of a first-order term). The size of a first-order term t, denoted as
|t|, is recursively defined as: |X| := 1, |f(t0, ..., tn)| := 1 +∑

0≤i≤n |ti|.

Notation 2.1. As usual, the notation | | will be also used to denote the cardinality of
sets.

Definition 2.4 (First-order problem). A first-order problem P over T (Σ,V) is a finite
set of equations between first-order terms ∈ T (Σ,V), of the form {s0 ≈? t0, ..., sn ≈? tn}.
If si, ti for i = 0..n are syntactic first-order terms, P is called a syntactic first-order
problem.

Example 2.2.

P =

 +(+(1, X),+(Y, ∗(Y,X))) ≈? +(+(1,W),+(0, ∗(0, Y))),
∗(Z,W) ≈? ∗(+(+(1, X),+(1, Y)), 0)


is a first-order problem over the signature Σ = {0, 1,+, ∗} from Ex. 2.1.

Definition 2.5 (Sets of variables).

1. The set of variables occurring in a term t will be denoted by V ar(t);

11

2. This notation extends to a set S of terms in a natural way: V ar(S) := ⋃
t∈S V ar(t);

3. Let P be a first-order problem, V ar(P) denotes the set ⋃s≈?t∈P V ar(s) ∪ V ar(t).

Definition 2.6 (Substitution).

1. A substitution σ is a mapping from variables to terms such that its domain, defined
by dom(σ) := {X | X 6= Xσ}, is finite;

2. For X ∈ dom(σ), Xσ is called the image of X by σ;

3. Define the image of σ as im(σ) := {Xσ | X ∈ dom(σ)}.

4. Let dom(σ) = {X0, · · · , Xn}, then σ can be represented as a set of the form
{X0/t0, · · · , Xn/tn}, where Xiσ = ti, for 0 ≤ i ≤ n.

Definition 2.7 (Composition of substitutions).
The composition of substitutions

σ = {X0/t0, · · · , Xn/tn} and δ = {Xn+1/tn+1, · · · , Xn+k+1/tn+k+1},

denoted by σδ, is defined by {X0/t0δ, · · · , Xn/tnδ, Xn+1/tn+1, · · · , Xn+k+1/tn+k+1}.

Definition 2.8 (Action of a substitution over a first-order term). A substitution σ acts
over a first-order term recursively:

cσ := c | f(t0, ..., tn)σ := f(t0σ, ..., tnσ).

Example 2.3.

a) X{X/a, Z/b} = a;

b) f(X, Y, c){X/a, Y/b, Z/d} = f(a, b, c);

c) g(f(X, Y), f(Z,W)){X/a, Y/b, Z/c,W/d} = g(f(a, b), f(c, d)).

Definition 2.9 (Action of a substitution over a fist-order problem). The action of a
substitution σ over a first-order problem P is defined by Pσ := ⋃

s≈?t∈P{sσ ≈? tσ}.

Definition 2.10 (First-order equality-checking). Let P be a first-order problem over
T (Σ,V). The equality-checking of P returns success (>) if for each s ≈? t ∈ P it is true
that s ≈ t. Otherwise it returns fail (⊥).

12

Definition 2.11 (First-order solutions). Let P be a first-order problem over T (Σ,V). The
substitution σ is called a first-order unification (resp. matching) solution for the problem
P , if for each s ≈? t ∈ P it is true that sσ ≈ tσ (resp. sσ ≈ t). The set of first-order
unification (resp. matching) solutions of P is denoted by U(P) (resp. M(P)).

Definition 2.12 (Equivalence between substitutions). Let ≈ be an equivalence relation,
and σ and δ substitutions. σ is said equivalent to δ modulo ≈, denoted by σ ≈ δ, if for
every X in dom(σ) ∪ dom(δ), Xσ ≈ Xδ.

Definition 2.13 (More general solutions and complete set of solutions). Let P be a
first-order problem and σ, δ ∈ U(P) (resp. M(P)). Then, σ is more general than δ,
denoted by σ 4 δ, if there exists λ such that σλ ≈ δ. A set S ⊆ U(P) (resp. M(P)) is
complete if for every γ ∈ U(P) (resp. M(P)), there exists σ ∈ S, such that σ 4 γ.

Definition 2.14 (Independent solutions). Let P be a first-order problem and σ, δ ∈ U(P)
(resp. M(P)). σ and δ are called independent solutions, if neither σ 4 δ, nor δ 4 σ.

Definition 2.15 (Minimal-complete set of solutions). A complete set S ⊆ U(P) (resp.
M(P)) is minimal if for any σ, δ ∈ S, were σ is not equivalent to δ, σ and δ are
independent.

Remark 2.2. Let P be a first-order unification problem over T (Σ,V), Subsec. 2.1.2 shows
that the chosen signature Σ has influence in the expected cardinality of a minimal-complete
set S ⊆ U(P) (resp. M(P)). The type associated with a signature Σ is unitary, (resp.
finitary and infinitary), denoted by 1 (resp. ω or ∞), if the expected cardinality of a
minimal-complete set is at most unitary (finite or countable). If it is impossible to build
such a minimal-complete set, the associated type is zero (0).

2.1.1 First-order syntactic unification

In this Subsec., the seminal unification algorithm proposed by Robinson [60] is shortly
described. This algorithm can be expressed by the set of simplification rules of Fig. 2.1
over pairs of substitutions and syntactic first-order problems. In these simplification rules,
the symbol] represents the operator of disjoint union. In the following, capital calligraphy
letters P, Q, R, . . ., will denote pairs of substitutions and problems. For a unification
problem P , the input of the algorithm is a pair P = 〈id, P 〉 composed by the identity
substitution and the problem itself.

Notation 2.2. Reductions using system of Fig. 2.1 are denoted by ⇒, thus P ⇒ Q means
that the second pair is obtained from the first by an application of a simplification rule.

13

〈σ, P] {s ≈? s}〉 s is a constant
or a variable (Trivial)

〈σ, P 〉
〈σ, P] {t ≈? X}〉 t is not a

variable (Orient)
〈σ, P] {X ≈? t}〉

〈σ, P] {f(s0, ..., sm) ≈? g(t0, ..., tn)}〉
f 6= g (Clash)

⊥

〈σ, P] {f(s0, ..., sn) ≈? f(t0, ..., tn)}〉
(Decomp)

〈σ, P ∪ {s0 ≈? t0, ..., sn ≈? tn}〉

〈σ, P] {X ≈? t}〉 X ∈ V ar(t) and
t is not a variable (Occurs)

⊥
〈σ, P] {X ≈? t}〉

X /∈ V ar(t) (Elim)
〈σ{X/t}, P{X/t}〉

Figure 2.1: Simplification rules for the Robinson unification algorithm

Definition 2.16 (Set of variables of a pair). The set of variables of a pair P = 〈σ, P 〉,
denoted by V ar(P), is defined as being equal to V ar(P).

Lemma 2.1 (Termination of ⇒). The relation ⇒ is terminating.

Proof. The proof is by case analysis on the derivation rules, using the decreasing lexico-
graphic measure over pairs, such that for P = 〈σ, P 〉 it is given by the triple:

〈|V ar(P)|,
∑

s≈?t∈P
|s|+ |t|,

number of equations
in P in the form t ≈? X

〉

For rules (Clash) and (Occurs) it is assumed that the measure of ⊥ is equal to 〈0, 0, 0〉.
Notice that in reductions by rules (Trivial), (Decomp) the second coordinate of the
measure decreases, while the first either decreases or keeps the same. A reduction by
rule (Orient) reduces the third coordinate of the measure and keeps the values of the
first two coordinates. Finally, in reductions by (Elim) the first coordinate of the measure
decreases.

Notation 2.3 (Standard rewriting notation). The standard rewriting nomenclature will be
used, e.g., P will be called a normal form or irreducible by ⇒, denoted by ⇒-nf, whenever
there is no Q such that P ⇒ Q; ⇒∗ and ⇒+ denote respectively derivations in zero or
more and one or more applications of the rules.

Example 2.4. Considering the problem

P =

 +(+(1, X),+(Y, ∗(Y,X))) ≈? +(+(1,W),+(0, ∗(0, Y))),
∗(Z,W) ≈? ∗(+(+(1, X),+(1, Y)), 0)


14

of Ex. 2.2, over Σ = {0, 1,+, ∗}, where + and ∗ are considered syntactic. The system
of Fig. 2.1 derives P = 〈id, P 〉 to 〈{X/0, Y/0, W/0, Z/ + (+(1, 0),+(1, 0))}, ∅〉, that is
a ⇒-nf. The simplification steps are given by the following. Highlighted equations show
where the rules are applied.

P = 〈id,

 +(+(1, X),+(Y, ∗(Y,X))) ≈? +(+(1,W),+(0, ∗(0, Y))) ,
∗(Z,W) ≈? ∗(+(+(1, X),+(1, Y)), 0)

〉

⇒(Decomp) 〈id,


+(1, X) ≈? +(1,W) ,
+(Y, ∗(Y,X)) ≈? +(0, ∗(0, Y)),
∗(Z,W) ≈? ∗(+(+(1, X),+(1, Y)), 0)

〉

⇒(Decomp) 〈id,


1 ≈? 1 , X ≈? W,

+(Y, ∗(Y,X)) ≈? +(0, ∗(0, Y)),
∗(Z,W) ≈? ∗(+(+(1, X),+(1, Y)), 0)

〉

⇒(trivial) 〈id,


X ≈? W ,

+(Y, ∗(Y,X)) ≈? +(0, ∗(0, Y)),
∗(Z,W) ≈? ∗(+(+(1, X),+(1, Y)), 0)

〉

⇒(elim) 〈{X/W},

 +(Y, ∗(Y,W)) ≈? +(0, ∗(0, Y)) ,
∗(Z,W) ≈? ∗(+(+(1,W),+(1, Y)), 0)

〉
⇒(decomp) 〈{X/W},

 Y ≈? 0 , ∗(Y,W) ≈? ∗(0, Y),
∗(Z,W) ≈? ∗(+(+(1,W),+(1, Y)), 0)

〉
⇒(elim) 〈{X/W, Y/0},

 ∗(0,W) ≈? ∗(0, 0) ,
∗(Z,W) ≈? ∗(+(+(1,W),+(1, 0)), 0)

〉
⇒(decomp) 〈{X/W, Y/0},

 0 ≈? 0 , W ≈? 0,
∗(Z,W) ≈? ∗(+(+(1,W),+(1, 0)), 0)

〉
⇒(trivial) 〈{X/W, Y/0},

 W ≈? 0 ,
∗(Z,W) ≈? ∗(+(+(1,W),+(1, 0)), 0)

〉
⇒(elim) 〈{X/0, Y/0, W/0, },

{
∗(Z, 0) ≈? ∗(+(+(1, 0),+(1, 0)), 0)

}
〉

⇒(decomp) 〈{X/0, Y/0, W/0, }, { Z ≈? +(+(1, 0),+(1, 0)) , 0 ≈? 0}〉

⇒(elim) 〈{X/0, Y/0, W/0, Z/+ (+(1, 0),+(1, 0))}, { 0 ≈? 0 }〉

⇒(trivial) 〈{X/0, Y/0, W/0, Z/+ (+(1, 0),+(1, 0))}, ∅〉

15

Observe that σ = {X/0, Y/0, W/0, Z/+ (+(1, 0),+(1, 0))} ∈ U(P), since

+(+(1, X),+(Y, ∗(Y,X)))σ ≈ +(+(1, 0),+(0, ∗(0, 0))) ≈ +(+(1,W),+(0, ∗(0, Y)))σ and
∗(Z,W)σ ≈ ∗(+(+(1, 0),+(1, 0)), 0) ≈ ∗(+(+(1, X),+(1, Y)), 0)σ

.

Example 2.5. Let P = {f(f(a,X), c) ≈? f(g(a, b), c)} and Q = {f(f(a,X), c) ≈?

f(f(a, h(X)), c)} syntactic unification problems. Then, the simplifications of a) P = 〈id, P 〉
and b) Q = 〈id,Q〉 using rules of Fig. 2.1 result both in ⊥, as show the following
derivations:

a)

P = 〈id, { f(f(a,X), c) ≈? f(g(a, b), c) }〉

⇒(Decomp) 〈id, { f(a,X) ≈? g(a, b) , c ≈? c}〉

⇒(Clash) ⊥

b)

Q = 〈id, { f(f(a,X), c) ≈? f(f(a, h(X)), c) }〉

⇒(Decomp) 〈id, { f(a,X) ≈? f(a, h(X)) , c ≈? c}〉

⇒(Decomp) 〈id, { a ≈? a ,X ≈? h(X), c ≈? c}〉

⇒(Trivial) 〈id, { X ≈? h(X) , c ≈? c}〉

⇒(Occurs) ⊥.

Notice that the set S = {σ | 〈id, P 〉 ⇒∗ 〈σ, ∅〉} is at most unitary. Although rules of
Fig. 2.1 are applied non-deterministically, each equation has a unique way of simplification.
Thus derivations has no branches. Moreover, the algorithm defined by ⇒ has been showed
sound and complete ([52]). The proofs of these properties are based on analysis of the
derivation rules. Efficient versions of the algorithm of Fig. 2.1 were proposed independently
by [51] and [56]. Both first-order syntactic unification algorithms have been showed linearly
bounded in time and space.

2.1.2 First-order A, C and AC-unification

This section presents unification algorithms to solve first-order unification problems in a
signature Σ that may contain, beyond the syntactic, A, C and AC function symbols.

16

First-order A-unification

First-order A-unification is translated to the problem of solving equations in free semigroups,
and this problem has been showed to have an infinite set of solutions in [50]. The classic
example of an A-unification problem that have an infinite set of solutions is given by
P = {f(X, c) ≈? f(c,X)} where f, c are, respectively, a binary associative function symbol
and a constant. The minimal-complete set of first-order solutions of P contains the
following infinite set:

{{X/c}, {X/f(c, c)}, {X/f(c, f(c, c))}, {X/f(f(c, c), f(c, c))}, . . .}.

First-order C-unification

A first-order C-unification algorithm can be obtained by a simple extension of the Robinson
algorithm (Fig. 2.1), adding rule (C) of Fig. 2.2, and imposing a restriction at rule
⇒(Decomp), that is applied only to non-commutative function symbols.

〈σ, P] {f(s0, s1) ≈? f(t0, t1)}〉
f is C and i = 0, 1 (C)

〈σ, P ∪ {s0 ≈? ti, s1 ≈? t1−i}〉
Figure 2.2: Commutative rule

Remark 2.3. From now, the relation ⇒ will represent reduction steps of the first-order
C-unification algorithm defined by Figs. 2.1 and 2.2.

Lemma 2.2 (Termination of ⇒). The relation ⇒ is terminating.

Proof. The proof is based on case analysis with well-founded induction on the derivation
rules of ⇒. It is used the same lexicographic measure of proof of Lem. 2.1, and all the
cases, except that of rule (C), were already explored. For rule (C), one just observes
that |{f(s0, s1) ≈? f(t0, t1)}| = |{s0 ≈? ti, s1 ≈? t1−i}|+ 2 > |{s0 ≈? ti, s1 ≈? t1−i}|, for
i = 0, 1, and then the second coordinate of the lexicographic measure is greater before
application of the rule, while the first coordinate keeps the same value.

Example 2.6. Let P = 〈id, {fC0 (fC1 (X, Y), fC1 (a, b)) ≈? f
C
0 (fC1 (c, d), fC1 (Z,W))}〉 be a

first-order C-unification problem and fC0 , f
C
1 commutative function symbols. Reducing

〈id, P 〉 by ⇒, one obtains the following set of ⇒-nf’s:

〈{X/c, Y/d, Z/a, W/b}, ∅〉,
〈{X/c, Y/d, W/a, Z/b}, ∅〉,
〈{X/d, Y/c, Z/a, W/b}, ∅〉,
〈{X/d, Y/c, W/a, Z/b}, ∅〉 and ⊥.

17

This reduction can be represented by the labelled tree of Fig 2.3, where the label of the
root is 〈id, P 〉 and labels of the other nodes are obtained after application of rules of the
C-unification algorithm to their parents. This representation is called derivation tree of
〈id, P 〉. Observe that, rule (C) is the rule that generates branches in the derivation tree.
The right-hand side (rhs) derivations of Fig 2.3 are omitted because their eight generated
leaves have labels equal to ⊥, as result of applications of rule (Clash). Nevertheless, the
left-hand side (lhs) branch of the tree contains four leaves whose substitutions in the labels
are solutions for the input problem.

Given a first-order nominal C-problem P , notice that the set {σ | 〈id, P 〉 ⇒∗ 〈σ, ∅〉}
is finitary. Equations have finite occurrences of C function symbols, then the rule (C)
generates only a finite number of branches. Termination of the algorithm was already
showed in Lem. 2.2, and the proofs of soundness and completeness are also performed by
case analysis on the application of the simplification rules. One concludes that first-order
C-unification has type finitary. These last results can be found in [64].

〈id, P 〉

〈id,
{

fC
1 (X,Y) ≈? fC

1 (Z,W),
fC
1 (a, b) ≈? fC

1 (c, d)

}
〉

(⊥)

(C), (Clash)

〈id,
{

fC
1 (X,Y) ≈? fC

1 (c, d),
fC
1 (a, b) ≈? fC

1 (Z,W)

}
〉

〈id, {X ≈? d, Y ≈? c, fC
1 (a, b) ≈? fC

1 (Z,W)}〉

〈{X/d}, {Y ≈? c, fC
1 (a, b) ≈? fC

1 (Z,W)}〉

〈{X/d, Y/c, {fC
1 (a, b) ≈? fC

1 (Z,W)}〉

〈{X/d, Y/c}, {a ≈? W, b ≈? Z}〉

〈{X/d, Y/c, W/a}, {b ≈? Z}〉

〈{X/d, Y/c, W/a, Z/b}, ∅〉

(Elim)

(Elim)

〈{X/d, Y/c, {a ≈? Z, b ≈? W}〉

〈{X/d, Y/c, Z/a}, {b ≈? W}〉

〈{X/d, Y/c, Z/a, W/b}, ∅〉

(Elim)

(Elim)

(C) (C)

(Elim)

(Elim)

〈id, {X ≈? c, Y ≈? d, fC
1 (a, b) ≈? fC

1 (Z,W)}〉

{〈X/c}, {Y ≈? d, fC
1 (a, b) ≈? fC

1 (Z,W)}〉

〈{X/c, Y/d}, {fC
1 (a, b) ≈? fC

1 (Z,W)}〉

〈{X/c, Y/d}, {a ≈? W, b ≈? Z}〉

〈{X/c, Y/d, W/a}, {b ≈? Z}〉

〈{X/c, Y/d, W/a, Z/b}, ∅〉

(Elim)

(Elim)

〈{X/c, Y/d}, {a ≈? Z, b ≈? W}〉

〈{X/c, Y/d, Z/a}, {b ≈? W}〉

〈{X/c, Y/d, Z/a, W/b}, ∅〉

(Elim)

(Elim)

(C) (C)

(Elim)

(Elim)

(C) (C)

(C) (C)

Figure 2.3: Derivation tree of Ex. 2.6.

Remark 2.4. The presented first-order C-unification algorithm may generate a set of
solutions that is not minimal. For instance, given the problem P = {f〈X, a〉 ≈? f〈a, Y 〉},
where f is a C function symbol, the algorithm outputs the solutions {X/Y } and {X/a, Y/a},
but clearly {X/Y } 4 {X/a, Y/a}. To obtain such a minimal complete set one can

18

execute the presented algorithm, deciding for each σ and δ in the obtained solutions set if
these substitutions are or not independent, keeping more general solutions and removing
redundancies afterwards.

Remark 2.5 (First-order C-unification NP-completeness).
Deciding if a first-order C-unification problem is solvable is an NP-complete problem. To
prove that the problem is NP, a non-deterministic decision procedure using the reduction
rules of ⇒ is built. In this procedure, whenever rule (C) applies, only one of the two
possible branches is guessed. In this manner, if the derivation tree has a solution as a leaf,
this procedure guesses a path to the solution, answering positively to the decision problem.
According to the measure used in the proof of termination (Lem. 2.2), the reduction ⇒ is
polynomially bounded, which implies that this non-deterministic procedure is polynomially
bounded.

To prove NP-completeness, one can polynomially reduce the well-known NP-complete
positive 1-in-3-SAT problem into first-order C-unification, as done in [14]. An instance
of the positive 1-in-3-SAT problem consists of a set of clauses C = {Ci|1 ≤ i ≤ n}, where
each Ci is a disjunction of three propositional variables, say Ci = pi ∨ qi ∨ ri. A solution of
C is a valuation with exactly one variable true in each clause.

The proposed reduction of C into a first-order C-unification problem would require just a
commutative function symbol, say f , two constants, say c0 and c1, a variable for each clause
Ci, say Yi, and a variable for each propositional variable p in C, say Xp. Instantiating Xp

as c0 or c1, would be interpreted as evaluating p as true or false, respectively. Each clause
Ci = pi ∨ qi ∨ ri in C is translated into an equation Ei of the form

f(f(f(Xpi , Xqi), Xri), Yi) ≈? f(f(f(c0, c1), c0), f(f(c1, c0), c1)).

The first-order C-unification problem for C is given by PC = {Ei|1 ≤ i ≤ n}. Thus, to
conclude it is only necessary to check that σ is a solution for PC if and only if σ instantiates
exactly one of the variables Xpi , Xqi and Xri in each equation with c0 and the other two
with c1, which means that C has a solution.

First-order AC-unification

Standard first-order AC-unification algorithms use algebraic approaches, such as translating
the unification problem to solving a system of Diophantine equations. Such approach is
illustrated in Ex. 2.7.

Example 2.7 (Adapted from [67]). Let P = {f(X,X, Y, a, b, c) ≈? f(b, b, b, c, Z)} be a
nominal AC-unification problem and f an AC function symbol.

19

To find a sound and complete set of solutions, one first execute a “pre-cooking” process,
where common elements are eliminated in the lhs and rhs of the equations. P is transformed
into P ′ = {f(X,X, Y, a) ≈? f(b, b, Z)}.

In the second step, the algorithm transforms P ′, replacing constants and subterms that
are headed by different function symbols by the new variables W0 and W1, The result is
P ′′ = {f(X,X, Y,W0) ≈? f(W1,W1, Z)}.

Then, observing the multiplicity of occurrences of each variable, the equations of the
problem are translated into Diophantine equations. f(X,X, Y,W0) ≈? f(W1,W1, Z) is
translated into 2X + Y +W0 = 2W1 + Z. Each solution of this equation must consists of
non-negative integers, which is represented by a basis of new variables Z0, ..., Z6, as shows
Table 2.1.

Table 2.1: Solutions for the equation 2X + Y +W0 = 2W1 + Z

X Y W0 W1 Z 2X + Y +W0 2W1 + Z
0 0 1 0 1 1 1 Z0
0 1 0 0 1 1 1 Z1
0 0 2 1 0 2 2 Z2
0 1 1 1 0 2 2 Z3
0 2 0 1 0 2 2 Z4
1 0 0 0 2 2 2 Z5
1 0 0 1 0 2 2 Z6

Observing the columns of Table 2.1, one obtains the following equations:

X = Z5 + Z6

Y = Z1 + Z3 + 2Z4

W0 = Z0 + 2Z2 + Z3

W1 = Z2 + Z3 + Z4 + Z6

Z = Z0 + Z1 + 2Z5

There exist 27 = 128 possibilities of including or not variables Z0, ..., Z6 in the solutions.
This set is restricted to 69 cases where variables X, Y, Z,W0 and W1 are simultaneously
6= 0. Also, cases where W0 and W1, that are originally associated to constants, and now
are designated to more than one variable (example W0 = Z0 + 2Z2 + Z3) are eliminated.
After this elimination step, there are only six remaining cases:

20

σ0 = {X/Z5, Y/Z3, W0/Z3, W1/Z3, Z/f(Z5, Z5)}

σ1 = {X/Z5, Y/f(Z1, Z3), W0/Z3, W1/Z3, Z/f(Z1, Z5, Z5)}

σ2 = {X/Z5, Y/f(Z4, Z4), W0/Z0, W1/Z4, Z/f(Z0, Z5, Z5)}

σ3 = {X/Z5, Y/f(Z1, Z4, Z4), W0/Z0, W1/Z4, Z/f(Z0, Z1, Z5, Z5)}

σ4 = {X/Z6, Y/Z1, W0/Z0, W1/Z6, Z/f(Z0, Z1)}

σ5 = {X/f(Z5, Z6), Y/Z1, W0/Z0, W2/Z6, Z/f(Z0, Z1, Z5, Z5)}

Observe that the variables in the images of W0 and W1 must be mapped, respectively, to
distinct constants a and b. This step eliminates σ0 and σ1 because in these cases W0 and
W1 are mapped to the same variable. Then, the set of solution candidates for the original
problem P = {f(X,X, Y, a, b, c) ≈? f(b, b, b, c, Z)} is given by:

σ′2 = {X/Z5, Y/f(b, b), Z/f(a, Z5, Z5)}

σ′3 = {X/Z5, Y/f(Z1, b, b), Z/f(a, Z1, Z5, Z5)}

σ′4 = {X/b, Y/Z1, Z/f(a, Z1)}

σ′5 = {X/f(Z5, b), Y/Z1, Z/f(a, Z1, Z5, Z5)}

Finally, after normalising σ′2, σ′3, σ′4 and σ′5, by replacing variables in the images that
already occur in the domain of the substitutions, the set of general solutions for the initial
problem is given by:

U(P) =



{Y/f(b, b), Z/f(a,X,X)},
{Y/f(Z1, b, b), Z/f(a, Z1, X,X)},

{X/b, Z/f(a, Y)},
{X/f(Z5, b), Z/f(a, Y, Z5, Z5)}


The following list summarises the steps executed in the previous example by the

first-order AC-unification algorithm:

1. Common terms in the lhs and rhs are eliminated;

2. A mapping from constants and subterms that are headed by different function
symbols to a set of new variables is generated;

3. A corresponding system of Diophantine equations is generated observing the multi-
plicity of the variables in each equation of the problem;

21

4. The positive solutions of the system of Diophantine equations are generated;

5. A new variable is associated with each solution;

6. Solution candidates are built for each group of variables that does not designates
zero to the original variables of the problem;

7. In the solution candidates, the images of the variables of step 2 are replaced by their
respective designated terms;

8. The feasible cases are normalised observing the variables that occur in the image
and the domain of the substitutions and composing the binds.

The algorithm described above was proved terminating, sound and complete by
Stickel [67] and Fages [38].

The following Table 2.2 summarises the type of unification and complexity of first-order
problems under some equational theories. Also complexities and types of equality-checking
and matching problems are considered in the table. The column “Related work” presents
some references.

Table 2.2: Types and complexities of first-order equational problems

Complexities
Equational
theory

Unification
type

Equality-
checking Matching Unification Related

work
Syntactic 1 O(n) O(n) O(n) [60, 51, 56]

C ω O(n2) NP-complete NP-complete [17, 44]
A ∞ O(n) NP-complete decidable [50, 17]
AU ∞ O(n) NP-complete decidable [50, 44]
AI 0 O(n) NP-hard NP-hard [43]
AC ω O(n3) NP-complete NP-complete [17, 44, 45]
ACU ω O(n3) NP-complete NP-complete [45]
D ω - NP-hard NP-hard [68]

2.2 Nominal syntax

The nominal syntax ([57]) is defined using a new class of objects called atoms, represented
by A. Atoms are the simplest structure, just object-level variables, and they only differ
in their names, so for a, b ∈ A the expression a 6= b is redundant. Atoms are denoted by
lower-case roman characters: a, b, c, etc. Together with this new class, the set of atom
permutations Π, i.e., atom bijections over A with a finite domain, is also used. A swapping
is a particular permutation that has just two atoms a, b in his domain, and it is denoted

22

by a pair (a b), where a is mapped to b and b to a simultaneously. A permutation π can
be expressed by a finite list of swappings of the form (a1 b1) :: . . . :: (an bn) :: nil, where nil
denotes the identity permutation.

When no confusion arises, the identity (nil) and the symbol “::” will be omitted from
lists of swappings. The symbols ⊕ and π−1 stand, respectively, for the list concatenation
operation and the reverse list of π.

A nominal term is defined as being either: an empty tuple (or unity) 〈〉; an atom as
term object a; an abstraction [a]t; an application of a function symbol to a term f t; a pair
〈u, v〉; or a suspension π.X. In the last, the action of π is suspended until X is instantiated.
When composed, pairs generate tuples 〈t0, ..., tn〉 with arbitrary bracketing and number of
elements, but notice that the construction of unary tuples is not allowed. Also, observe
that function symbols have no fixed arity. Thus, the application of a function symbol to
the (〈〉) may be interpreted as the neutral element in the given signature. For instance,
∧〈〉, ∨〈〉, +〈〉 and ×〈〉 might be interpreted as “false”, “true”, 0 and 1, respectively.

Definition 2.17 (Nominal terms). The set of nominal terms is generated by the following
grammar:

s, t ::= 〈〉 | a | [a]t | 〈s, t〉 | f t | π.X

with a ∈ A, π ∈ Π and f ∈ Σ.

From now, if no confusion arises, nominal terms will be called just terms.

Definition 2.18. The size of a nominal term t, denoted as |t|, is recursively defined as:

|〈〉| := 1, |a| := 1, |π.X| := 1,
|[a]t| := |t|+ 1, |〈u, v〉| := |u|+ |v|+ 1, |f s| := |s|+ 1.

Definition 2.19 (Action of permutations over atoms). The action of a permutation over
atoms is recursively defined as:

((a b) :: π) · a := π · b, ((a b) :: π) · b := π · a, ((a b) :: π) · c := π · c, nil · a := a.

Definition 2.20 (Action of permutations over terms). The action of a permutation over
terms is specified as the homeomorphic extension of the action of permutations over atoms:

π · 〈〉 := 〈〉 π · 〈u, v〉 := 〈π · u, π · v〉 π · f t := f (π · t)
π · a := π · a π · ([a]t) := [π · a](π · t) π · (π′ . X) := (π′ ⊕ π) . X

Example 2.8. The permutation (a e)(b e)(c e)(d e) acting over the term

f [a]〈〈a, c〉, 〈〈g d, b〉, 〈e,X〉〉〉

23

has as result

f [b]〈〈b, d〉, 〈〈g e, c〉, 〈a, (a e)(b e)(c e)(d e).X〉〉〉.

2.2.1 Freshness and the nominal α-equivalence

The nominal α-equivalence is defined through the inference rules of Fig. 2.4, where
judgements of the form ∇ ` s ≈α t are derived. In this sentence, ∇ is called a freshness
context that is defined as a set of pairs in A× V . The interesting rules for α-equivalence
are those for abstractions and suspensions. For instance, there exist two possible rules
((≈α [aa]) and (≈α [ab])) for abstractions. The former and the latter checks, respectively,
whether abstracted terms are α-equivalent under the same, or different abstracted atoms.
For the latter rule, one needs to check whether renaming one of the abstracted terms t
by swapping these different atoms, say (a b), the α-equivalence with the other abstracted
term s holds (the equality judgement ∇ ` s ≈α (a b) · t). In addition, the atom a used in
this renaming has to be fresh in the abstracted term t that is renamed. In this way, rule
(≈α [ab]) has as premisse the freshness judgment ∇ ` a# t that is derived via inference
rules of Fig. 2.5. This establishes the link between rules of Figs 2.4 and 2.5.

Definition 2.21 (Difference set). ds(π, π′) = {a | π · a 6= π′ · a} is the set of atoms where
π and π′ differ (the difference set).

Notation 2.4. ds(π, π′)#X is an abbreviation of {a#X | a ∈ ds(π, π′)}.

(≈α 〈〉)∇ ` 〈〉 ≈α 〈〉
(≈α atom)

∇ ` a ≈α a
∇ ` s ≈α t (≈α app)
∇ ` f s ≈α f t

∇ ` s ≈α t (≈α [aa])
∇ ` [a]s ≈α [a]t

∇ ` s ≈α (a b) · t ∇ ` a# t
(≈α [ab])

∇ ` [a]s ≈α [b]t

ds(π, π′)#X ⊆ ∇
(≈α var)

∇ ` π.X ≈α π′.X
∇ ` s0 ≈α t0 ∇ ` s1 ≈α t1 (≈α pair)
∇ ` 〈s0, s1〉 ≈α 〈t0, t1〉

Figure 2.4: Rules for the relation ≈α

Notation 2.5. dom(∆|X), dom(∆|X)#Y and ∇ ` dom(∆|X) # s denote, respectively, the
sets {a | a#X ∈ ∆}, {a#Y | a ∈ dom(∆|X)} and {∇ ` a# s | a ∈ dom(∆|X)}.

24

(# 〈〉)
∇ ` a# 〈〉

(# atom)
∇ ` a# b

∇ ` a# t
(# app)

∇ ` a# f t
(# a[a])

∇ ` a# [a]t

∇ ` a# t
(# a[b])

∇ ` a# [b]t
(π−1 · a#X) ∈ ∇

(# var)
∇ ` a# π.X

∇ ` a# s ∇ ` a# t
(# pair)

∇ ` a# 〈s, t〉

Figure 2.5: Rules for the freshness relation

Example 2.9. The judgement ∇ ` a# 〈[a]〈a, b〉, π.X〉 and ∇ ` a# [b]〈f π.X, b〉 can be
derived only if the pair (π−1 · a)#X is in the context ∇. The derivation trees that justifies
these assertions are given below:

(# a[a])
∇ ` a# [a]〈a, b〉

(π−1 · a)#X ∈ ∇
(# var)

∇ ` a# π.X
(# pair)

∇ ` a# 〈[a]〈a, b〉, π.X〉

(π−1 · a)#X ∈ ∇
(# var)

∇ ` a# π.X
(# app)

∇ ` a# f π.X
(# atom)

∇ ` a# b
(# pair)

∇ ` a# 〈f π.X, b〉
(# a[b])

∇ ` a# [b]〈f π.X, b〉

Example 2.10. The judgement ∇ ` [a]〈[a]f a, π.X〉 ≈α [b]〈[b]f b, π′.X〉 is derived if
ds(π, π′⊕(a b))#X is subset of ∇ and (π′−1 · a)#X ∈ ∇. The derivation tree of this
judgement is given below:

(≈α atom)
∇ ` a ≈α a

(≈α app)
∇ ` f a ≈α f a

(≈α [aa])
∇ ` [a]f a ≈α [a]f a

ds(π, π′⊕(a b))#X ⊆ ∇
(≈αvar)

∇ ` π.X ≈α (π′⊕(a b)).X
(≈αpair)

∇ ` 〈[a]f a, π.X〉 ≈α 〈[a]f a, (π′⊕(a b)).X〉 51 (≈α a[b])
∇ ` [a]〈[a]f a, π.X〉 ≈α [b]〈[b]f b, π′.X〉

where:

51 =

(# atom)
∇ ` a# b

(# app)
∇ ` a# f b

(# a[b])
∇ ` a# [b]f b

(π′−1 · a)#X ∈ ∇
(# var)

∇ ` a# π′.X
(# pair)

∇ ` a# 〈[b]f b, π′.X〉

25

2.2.2 A rule-based nominal unification algorithm

This subsection presents a version of the rule-based nominal unification algorithm proposed
by Urban, Pitts and Gabbay [72].

Definition 2.22 (Nominal constraints). The set nominal constraints is composed by
equations s ≈? t and freshness constraints of the form a#? t, where a ∈ A and s and t are
terms.

Definition 2.23 (Nominal triple). A nominal triple is an element of the form 〈∇, σ, P 〉,
where ∇ is a freshness context, σ is a substitution and P is finite set of nominal constraints.

The nominal unification algorithm is defined through the two set of rules of Figs.
2.6 and 2.7 that simplify, respectively, equations and freshness constraints. From now,
calligraphic uppercase letters (e.g., P ,Q,R, etc) will denote nominal triples.

Definition 2.24 (Substitution action over nominal terms). The action of a substitution
σ over a nominal term t is defined recursively as:

〈〉σ := 〈〉 aσ := a (f t)σ := f tσ

〈s, t〉σ := 〈sσ, tσ〉 ([a]t)σ := [a]tσ (π.X)σ := π ·Xσ

Along the document, IH stands for induction hypothesis.

Lemma 2.3 (Substitutions and permutations commute). The actions of permutations
and substitutions commute: (π · t)σ = π · (tσ)

Proof. The proof is easily done by induction in the structure of t.

• (π · 〈〉)σ = 〈〉 = π · (〈〉σ)

• (π · a)σ = bσ = b = π · a = π · (aσ)

• (π · [a]t)σ = [π · a]((π · t)σ) =IH [π · a](π · (tσ)) = π · (([a]t)σ)

• (π · 〈s, t〉)σ = 〈(π · s)σ, (π · t)σ〉 =IH 〈π · (sσ), π · (tσ)〉 = π · (〈s, t〉σ)

• (π · (π′.X))σ = π′ ⊕ π · (Xσ) = π · (π′ · (Xσ)) = π · ((π′.X)σ)

Notation 2.6. Let ∇ and ∇′ be freshness contexts and σ and σ′ be substitutions.

• ∇′ ` ∇σ denotes that ∇′ ` a#Xσ holds for each (a#X) ∈ ∇, and

• ∇ ` σ ≈ σ′ that ∇ ` Xσ ≈α Xσ′ for all X in dom(σ) ∪ dom(σ′).

26

Definition 2.25 (Solution for a nominal triple). A solution for a nominal triple P =
〈∆, δ, P 〉 is a pair of the form 〈∇, σ〉, where the following conditions are satisfied:

i) ∇ ` ∆σ;

ii) if a#? t ∈ P then ∇ ` a# tσ;

iii) if s ≈? t ∈ P then ∇ ` sσ ≈α tσ;

iv) there exists λ such that ∇ ` δλ ≈ σ.

U(P) denotes the solution set of a triple P. The solution set of a finite set of nominal
constraints P is defined as U(〈∅, id, P 〉).

Definition 2.26 (More general solution and complete set of solutions). For 〈∇, σ〉 and
〈∇′, σ′〉 in U(P), 〈∇, σ〉 is called more general than 〈∇′, σ′〉, denoted 〈∇, σ〉 4 〈∇′, σ′〉, if
there exists a substitution λ satisfying ∇′ ` σλ ≈ σ′ and ∇′ ` ∇λ. A subset S of U(P) is
said to be a complete set of solutions of P if for all 〈∇′, σ′〉 ∈ U(P), there exists 〈∇, σ〉 in
S such that 〈∇, σ〉 4 〈∇′, σ′〉.

Definition 2.27 (Set of variables of a set of nominal constraints). The set of vari-
ables occurring in a set of nominal constraints P is denoted by V ar(P) and defined as
(⋃s≈?t∈P V ar(s) ∪ V ar(t)) ∪

⋃
a#? u∈P V ar(u).

Definition 2.28 (Variables of a nominal triple). The set of variables of P = 〈∇, σ, P 〉 is
defined as V ar(P) and denoted by V ar(P).

Definition 2.29 (Size of a set of nominal constraints). The size of a set of nominal
constraints is denoted by |P | and defined as (∑s≈?t∈P |s|+ |t|) +∑

a#? u∈P |u|.

In the following rules of systems of Figs. 2.6 and 2.7, the symbols] and ∪ stand,
respectively, for the disjoint and the standard union operation.

Remark 2.6. Notice that, in rule (≈? inst) of Fig. 2.6, the substitution σ{X/π−1 · t} is
the result of the composition of σ with {X/π−1 · t} (cf. Def. 2.7).

Notation 2.7.

• P ⇒≈ Q (resp. P ⇒# Q) denotes that P is related to Q by the system of Fig. 2.6
(resp. Fig. 2.7);

• Let P be a set of nominal constraints, P≈ and P# will, respectively, denote the sets
of equations and freshness constraints in the set P .

27

〈∇, σ, P] {s ≈? s}〉 (≈? refl)
〈∇, σ, P 〉

〈∇, σ, P] {〈s0, t0〉 ≈? 〈s1, t1〉}〉 (≈? pair)
〈∇, σ, P ∪ {s0 ≈? s1, t0 ≈? t1}〉

〈∇, σ, P] {π.X ≈? π
′.X}〉

(≈? var)
〈ds(π, π′)#X ∪∇, σ, P}〉

〈∇, σ, P] {f s ≈? f t}〉 (≈? app)
〈∇, σ, P ∪ {s ≈? t}〉

〈∇, σ, P] {[a]s ≈? [a]t}〉
(≈? [aa])

〈∇, σ, P ∪ {s ≈? t}〉
〈∇, σ, P] {[a]s ≈? [b]t}〉

(≈? [ab])
〈∇, σ, P ∪ {s ≈? (a b) · t, a#? t}〉

〈∇, σ, P] {π.X ≈? t} or {t ≈? π.X}〉
X /∈ var(t) (≈? inst)

〈∇, σ{X/π−1 · t}, P{X/π−1 · t}〉

Figure 2.6: Reduction rules for equations

〈∇, σ, P] {a#? 〈〉}〉 (#? 〈〉)〈∇, σ, P 〉
〈∇, σ, P] {a#? b̄}〉 (#? ab̄)

〈∇, σ, P 〉

〈〈∇, σ, P] {a#? f t}〉 (#? app)
〈∇, σ, P ∪ {a#? t}〉

〈∇, σ, P] {a#? [a]t}〉
(#? a[a])

〈∇, σ, P 〉

〈∇, σ, P] {a#? [b]t}〉
(#? a[b])

〈∇, σ, P ∪ {a#? t}〉
〈∇, σ, P] {a#? π.X}〉 (#? var)
〈{(π−1 · a)#X} ∪ ∇, σ, P 〉

〈∇, σ, P] {a#? 〈s, t〉}〉 (#? pair)
〈∇, σ, P ∪ {a#? s, a#? t}〉

Figure 2.7: Reduction rules for freshness constraints

Lemma 2.4 (Termination of ⇒≈ and ⇒#). Both relations ⇒≈ and ⇒# are terminating.

Proof. The proof is by well-founded induction on the lexicographic measure 〈|V ar(P≈)|, |P≈|, |P#|〉
over triples 〈∇, σ, P 〉.

• If P ⇒≈ Q by rule (≈? inst), then |V ar(P≈)| > |V ar(Q≈)|. In all other cases of
P ⇒≈ Q, one has |V ar(P≈)| ≥ |V ar(Q≈)| and |P≈| > |Q≈|;

• If P ⇒# Q, |V ar(P≈)| = |V ar(Q≈)|, |P≈| = |Q≈| and |P#| > |Q#|.

28

Notation 2.8 (Standard rewriting notation). The standard rewriting nomenclature of
Not. 2.3 is extended to nominal triples (Def. 2.23):

• P is called a normal form or irreducible by ⇒≈ (resp. ⇒#), denoted by ⇒≈-nf
(resp. ⇒#-nf), whenever there is no Q such that P ⇒≈ Q (P ⇒# Q); ⇒∗≈ and ⇒+

≈

(resp. ⇒∗# and ⇒+
#) denote respectively derivations in zero or more, and one or

more applications of the rules.

Definition 2.30 (Reduction strategy for ⇒≈ and ⇒#). For a unification problem P the
algorithm defined using rules of Figs. 2.6 and 2.7 proceeds by the following reduction
strategy:

1. The input problem P is converted into the nominal triple P = 〈∅, id, P 〉;

2. 〈∅, id, P 〉 is reduced by ⇒≈ until reaching a normal form Q = 〈∅, σ,Q〉.
If Q≈ 6= ∅, the algorithm outputs ⊥ (fail);

3. If Q≈ = ∅, then Q ⇒∗# R, where R = 〈∇, σ, R〉 is a ⇒#-nf.
If R 6= ∅, the algorithm also outputs ⊥ (fail), otherwise the pair 〈∇, σ〉 is the output
of the algorithm.

Exs. 2.11 to 2.13 present the simplification steps applying the strategy of Def. 2.30 to
a problem.

Example 2.11. The algorithm applied to P = {[a]〈X, f a〉 ≈? [b]〈〈Z,Z〉, Z〉} outputs
〈∅, {X/〈f a, f a〉, Z/f b}〉:

P = 〈∅, id, { [a]〈X, f a〉 ≈? [b]〈〈Z,Z〉, Z〉 }〉

⇒(≈?[ab]) 〈∅, id, { 〈X, f a〉 ≈? 〈〈(a b).Z, (a b).Z〉, (a b).Z〉 , a#? 〈〈Z,Z〉, Z〉}〉

⇒(≈?pair) 〈∅, id, { X ≈? 〈(a b).Z, (a b).Z〉 , f a ≈? (a b).Z, a#? 〈〈Z,Z〉, Z〉}〉

⇒(≈?inst) 〈∅, {X/〈(a b).Z, (a b).Z〉}, { f a ≈? (a b).Z , a#? 〈〈Z,Z〉, Z〉}〉

⇒(≈?inst) 〈∅, {X/〈f a, f a〉, Z/f b}, { a#? 〈〈f b, f b〉, f b〉 }〉

⇒(#? pair)(2×)
〈∅, {X/〈f a, f a〉, Z/f b}, { a#? f b }〉

⇒(#? app) 〈{∅}, {X/〈f a, f a〉, Z/f b}, { a#? b }〉

⇒(#? ab) 〈{∅}, {X/〈f a, f a〉, Z/f b}, ∅〉

29

Notice that 〈∅, {X/〈f a, f a〉, Z/f b}〉 is a solution for P since ∅ ` [a]〈〈f a, f a〉, f a〉 ≈α
[b]〈〈f b, f b〉, f b〉.

Example 2.12. The algorithm applied to P = {f [a]〈X, 〈a, Y 〉〉 ≈? f [b]〈b, 〈b, Z〉〉} outputs
〈a#Z, {X/a, Y/(a b).Z}, ∅〉:

P = 〈∅, id, { f [a]〈X, 〈a, Y 〉〉 ≈? f [b]〈b, 〈b, Z〉〉 }〉

⇒(≈?app) 〈∅, id, { [a]〈X, 〈a, Y 〉〉 ≈? [b]〈b, 〈b, Z〉〉 }〉

⇒(≈?[ab]) 〈∅, id, { 〈X, 〈a, Y 〉〉 ≈? 〈a, 〈a, (a b).Z〉〉 , a#? 〈b, 〈b, Z〉〉}〉

⇒(≈?pair) 〈∅, id, { X ≈? a , 〈a, Y 〉 ≈? 〈a, (a b).Z〉, a#? 〈b, 〈b, Z〉〉}〉

⇒(≈?inst) 〈∅, {X/a}, { 〈a, Y 〉 ≈? 〈a, (a b).Z〉 , a#? 〈b, 〈b, Z〉〉}〉

⇒(≈?pair) 〈∅, {X/a}, { a ≈? a , Y ≈? (a b).Z, a#? 〈b, 〈b, Z〉〉}〉

⇒(≈?refl) 〈∅, {X/a}, { Y ≈? (a b).Z , a#? 〈b, 〈b, Z〉〉}〉

⇒(≈?inst) 〈∅, {X/a, Y/(a b).Z}, { a#? 〈b, 〈b, Z〉〉 }〉

⇒(#? pair) 〈∅, {X/a, Y/(a b).Z}, { a#? b , a#? Z}〉

⇒(#? ab) 〈∅, {X/a, Y/(a b).Z}, { a#? Z }〉

⇒(#? var) 〈{a#Z}, {X/a, Y/(a b).Z}, ∅〉

Notice that 〈{a#Z}, {X/a, Y/(a b).Z}, ∅〉 is a solution for P since
{a#Z} ` f [a]〈a, 〈a, (a b).Z〉〉 ≈α f [b]〈b, 〈b, Z〉〉}.

Example 2.13. The algorithm applied to either a) P = {[a]〈X, Y 〉 ≈? [b]〈a, b〉} or
b) P = {[a]〈X, b〉 ≈? [b]〈b, c〉} outputs ⊥. Observe that P has no solutions in both cases:

a) P = 〈∅, id, { [a]〈X,Y 〉 ≈? [b]〈a, b〉 }〉

⇒(≈?[ab]) 〈∅, id, { 〈X,Y 〉 ≈? 〈b, a〉 , a#? 〈a, b〉}〉

⇒(≈?pair) 〈∅, id, { X ≈? b , Y ≈? a, a#? 〈a, b〉}〉

⇒(≈?inst) 〈∅, {X/b}, { Y ≈? a , a#? 〈a, b〉}〉

⇒(≈?inst) 〈∅, {X/b, Y/a}, { a#? 〈a, b〉 }〉

⇒(#? pair) 〈∅, {X/b, Y/a}, {a#? a, a#? b }〉

⇒(#? ab) 〈∅, {X/b, Y/a}, {a#? a}〉. Since this is a normal form and the set
of nominal constraints is non-empty the algorithm outputs ⊥.

30

b) P = 〈∅, id, { [a]〈X, b〉 ≈? [b]〈b, c〉 }〉

⇒(≈?[ab]) 〈∅, id, { 〈X, b〉 ≈? 〈a, c〉 , a#? 〈b, c〉}〉

⇒(≈?pair) 〈∅, id, { X ≈? a , b ≈? c, a#? 〈b, c〉}〉

⇒(≈?inst) 〈∅, {X/a}, {b ≈? c, a#? 〈b, c〉}〉. Since this is a ⇒#-normal form
and the set of equations is non empty the algorithm outputs ⊥.

Nominal unification has type 1 and it is quadratically bounded

[72] presented a proof that the rules of Figs. 2.6 and 2.7 are sound and complete, and the
set of generated solutions is at most unitary. Thus nominal unification has type 1. These
proofs of soundness and completeness of unification algorithm, given by the strategy, are
contained in the proofs of Chap. 5 for nominal unification modulo C. Then these proofs
are omitted.

As explained in the related work section (Sec. 1.1), the works of [25] and [48] demon-
strated that nominal unification is quadratically bounded. It is a open question if it is
possible to build a nominal unification algorithm that is executed in subquadratic time
(and space).

31

Chapter 3

Specification and Formalisation in
Coq: the case of nominal α
equality-checking

In this Chapter, a short introduction of the use of Coq is provided. The Coq proof
assistant [32] is a system designed for specification and formal verification of programs and
mathematical proofs. It is based on the so-called Calculus of Inductive Constructions, the
λ-calculus with a rich type system, and uses a specification language named Gallina. Based
on the Curry-Howard isomorphism, Coq establishes a correspondence between logical
statements and type checking judgements. Terms of Gallina allow representing logical
statements, programs, properties of these programs, and proofs of the logical statements
and properties. The proofs are constructed through the use of an interactive system with
the application of tactics. Tactics are sets of instructions that are pre-specified in the
system using another language denoted by Ltac.

As a use case of Coq, it is presented the formalisation of soundness of ≈α using two
different approaches. The first approach (presented in Sec. 3.1) was originally formalised in
Isabelle/HOL by Urban [70] as an improvement of a previous Isabelle/HOL formalisation
given by [72]. This improvement introduced the use of an auxiliary weak-equivalence
relation ∼ω. The second approach (presented in Sec. 3.2) is part of the development
in PVS of nominal unification given in [11] (also in Chap. 3 of [61]). The latter is
straightforward and more elegant, which is checked in Sec. 3.3 by a comparison between
the two formalisation approaches. The following Lems. 3.1 to 3.3 are used in both
approaches.

In the Coq specification, file Terms.v, the grammar is specified as in Fig. 3.1. Atoms
and variables are inductively defined through a mapping to Coq naturals, and permu-
tations (resp. freshness contexts) are defined as lists of pairs of atoms (resp. pairs of

32

atoms and variables). Constructors Ut, At, Ab, Pr, Fc and Su specify the empty tuple,
atoms as term objects, abstractions, pairs, function applications and suspended variables,
respectively. For the Fc constructor, the first and second nat arguments correspond to
super and subscripts of the applied function symbol. These scripts are, respectively, used
to distinguish the equational properties of the function symbol and its indexation between
the class of operators with the same equational properties. In the formalisation, the
function symbols fAj , fACk and fCn are given respectively by Fc 0 j, Fc 1 k and Fc 2 n, all
having type term→ term. Indeed, superscripts 0, 1 and 2 are used to specify A, AC and
C function symbols, respectively, and all other superscripts are representing syntactic
function symbols. Function scripts will be omitted when no confusion arises. In the
specification of terms, Notation declarations are used to provide friendly representations
for the term constructors.

Inductive Atom : Set := atom : nat → Atom.
Inductive Var : Set := var : nat → Var.
Definition Perm := list (Atom × Atom).
Definition Context := list (Atom × Var).

Inductive term : Set :=
| Ut : term
| At : Atom → term
| Ab : Atom → term → term
| Pr : term → term → term
| Fc : nat → nat → term → term
| Su : Perm → Var → term

Notation «» := (Ut).
Notation %a := (At a).
Notation [a]ˆt := (Ab a t).
Notation <|t1,t2|> := (Pr t1 t2).
Notation pi|.X := (Su pi X).

Figure 3.1: Coq specification of the grammar of nominal terms

Although in nominal syntax different atoms a and b are assumed to be different, this is
not automatically true in computational specifications. Indeed, since the given approach
uses variables ranging over naturals to represent atoms, different variables might represent
the same atom. Then, rules (≈α [ab]) and (# a[b]), respectively, from Figs. 2.4 and 2.5,
were specified with the extra condition a 6= b.

In the Coq specification, the definition of action of permutations and its properties
are formalised in file Perm.v as Defs. 2.19 and 2.20. The action of a permutation over an
atomic term object a, e.g., π · a, gives as result a term π · a.

The sets of derivable freshness and α-equivalence judgements (by rules of Figs. 2.4
and 2.5) are specified as the inductive definitions fresh and alpha equiv respectively of
Figs. 3.2 and 3.3. These definitions are included, respectively, in the files Fresh.v and
Alpha Equiv.v.

In the fresh definition, the interesting rule is fresh Su. Notice that, in this rule, the
judgement fresh C a (Su p X), which means that a is fresh for the term Su p X under the

33

context C , is derivable only if the pair ((!p $ a), X) is in the freshness context C ,
where !p stands for the reverse list of permutation p. For the definition alpha equiv, the
interesting rules are alpha equiv Ab 2 and alpha equiv Su. In the former, the judgement
alpha equiv C ([a]ˆt) ([a’]ˆt’) is derivable if tree conditions are satisfied:

i) a 6= a’ . Atoms a and a’ are different;

ii) alpha equiv C t (|[(a,a’)]| @ t’), which means that t is α-equivalent to |[(a,a’)]| @ t’ .
The last is the result of the action of the swapping |[(a,a’)]| over the term t’ ; and

iii) C ` a # t’ , that is a notation for the freshness judgement fresh C a t’ .

In the rule alpha equiv Su, alpha equiv C (p|.X) (p’|.X) is derivable only if for every
atom a that is in the difference set of p and p’ (expressed by (In ds p p’ a)) the pair
(a, X) is in the freshness context C . The last sentence corresponds to the specification
of the condition ds(π, π′)# ⊆ ∇, in rule (≈α var) of Fig. 2.4. The specification of the
predicate In ds and the formalisation of its properties are in file Disagr.v.

Inductive fresh : Context → Atom →term → Prop :=

| fresh Ut : ∀ C a, fresh C a Ut

| fresh Pr : ∀ C a t1 t2, (fresh C a t1) → (fresh C a t2) →
(fresh C a (<|t1,t2|>))

| fresh Fc : ∀ C a E n t, (fresh C a t) → (fresh C a (Fc E n t))

| fresh Ab 1 : ∀ C a t, fresh C a (Ab a t)

| fresh Ab 2 : ∀ C a a’ t, a 6= a’ →
(fresh C a t) → (fresh C a (Ab a’ t))

| fresh At : ∀ C a a’, a 6= a’ → (fresh C a (At a’))

| fresh Su : ∀ C p a X, set In (((!p $ a), X)) C →
fresh C a (Su p X) .

Figure 3.2: Specification of fresh (freshness judgment derivation)

Lemma 3.1 (Freshness preservation of ≈α). If ∇ ` a# t and ∇ ` t ≈α t′ then ∇ ` a# t′.

Proof. This result was formalised in file Alpha Equiv.v, Lem. alpha equiv fresh. Its
proof is obtained by induction on ≈α. The interesting case is the analysis of the (≈α [ab])
rule, whose hypotheses are a0 6= b0, ∇ ` t ≈α (a0 b0) t′, ∇ ` a0 # t′, and ∇ ` a# [a0]t. By
IH ∇ ` a# t⇒ ∇ ` a# (a0 b0) t′. It should be concluded that ∇ ` a# [b0]t′. For doing
that, it is necessary to evaluate three cases: a = a0, b0 = a 6= a0 and b0 6= a 6= a0. The
difficult case is the last one, that is solved by application of the (# a[b]) rule with the use
of a technical lemma about the freshness relation.

34

Inductive alpha equiv : Context →term →term → Prop :=

| alpha equiv Ut : ∀ C, alpha equiv C («») («»)

| alpha equiv At : ∀ C a, alpha equiv C (%a) (%a)

| alpha equiv Pr : ∀ C t1 t2 t1’ t2’,
(alpha equiv C t1 t1’) → (alpha equiv C t2 t2’) →
alpha equiv C (<|t1,t2|>) (<|t1’,t2’|>)

| alpha equiv Fc : ∀ m n t t’ C,
(alpha equiv C t t’) → alpha equiv C (Fc m n t) (Fc m n t’)

| alpha equiv Ab 1 : ∀ C a t t’,
(alpha equiv C t t’) → alpha equiv C ([a]ˆt) ([a]ˆt’)

| alpha equiv Ab 2 : ∀ C a a’ t t’, a 6= a’ →
(alpha equiv C t (|[(a,a’)]| @ t’)) → C ` a # t’ →
alpha equiv C ([a]ˆt) ([a’]ˆt’)

| alpha equiv Su : ∀ (C : Context) p p’ (X : Var),
(∀ a, (In ds p p’ a) → set In ((a,X)) C) →
alpha equiv C (p|.X) (p’|.X) .

Figure 3.3: Specification of alpha equiv (α-equivalence judgment derivation)

Lemma 3.2 (Invariance of terms under ≈α and the action of permutations). (∀a ∈
ds(π, π′),∇ ` a# t) iff ∇ ` π · t ≈α π′ · t.

Proof. This result is formalised in file Alpha Equiv.v, Lem. alpha equiv pi, by induc-
tion on term t under arbitrary permutations, being the case of abstraction the interesting
one. Suppose t = [a]t′. The IH is given by:

∀π′0, (∀a0 ∈ ds(π, π′0),∇ ` a0 # t′)⇔ ∇ ` π · t′ ≈α π′0 · t′

It should be proved that:

(∀a0 ∈ ds(π, π′),∇ ` a0 # [a]t′)⇔ ∇ ` π · [a]t′ ≈α π′ · [a]t′

Applying the definition of the permutation action, the rhs rewrites to
∇ ` [π · a](π · t′) ≈α [π′ · a](π′ · t′). The proof relies in analysing four cases according to
whether π · a and π′ · a as well as a0 and a are or not equal. The case π · a 6= π′ · a and
a0 6= a, that is the most difficult one, is explained below.

(⇒) As main premise one has ∀a0 ∈ ds(π, π′),∇ ` a0 # [a]t′ and should conclude that
∇ ` [π · a](π · t′) ≈α [π′ · a](π′ · t′). Applying (≈α [ab]), one should prove two
subgoals: ∇ ` π · t′ ≈α ((π · a) (π′ · a)) (π′ · t′) and ∇ ` (π · a) # (π′ · t′). For the

35

first subgoal one applies IH and it remains to prove that ∇ ` a0 # t′ supposing
a0 ∈ ds(π, π′ ⊕ [((π · a) (π′ · a))]). Using a previous result about difference sets this
rewrites to a0 ∈ ds(π, π′). Thus, from the main premise one has ∇ ` a0 # [a]t′ and
then, since a0 6= a, ∇ ` a0 # t′. The second subgoal is proved instantiating a0 in
the main premise with (π′)−1 · (π · a), thus obtaining ∇ ` ((π′)−1 · (π · a)) # [a]t′.
By a lemma on freshness, it results in ∇ ` (π · a) # [π′ · a](π′ · t′). Finally, since
π · a 6= π′ · a, it can be concluded that ∇ ` (π · a) # (π′ · t′).

(⇐) The main premise is ∇ ` [π · a](π · t)′ ≈α [π′ · a](π′ · t′) and one has to prove
∀a0 ∈ ds(π, π′),∇ ` a0 # [a]t′. Inverting the main premise according to rule (≈α [ab])
one has as hypotheses ∇ ` π · t′ ≈α ((π · a) (π′ · a)) (π′ · t′) and ∇ ` (π · a) # (π′ · t′).
Applying (≈α [ab]) to the goal it remains to show that ∇ ` a0 # t′, and then two
cases should be evaluated: π · a = π′ · a0 and π · a 6= π′ · a0. For the first subgoal,
one uses the second hypothesis with a technical freshness property to conclude
that ∇ ` (π′ · a0) # (π′ · t′) ⇒ ∇ ` a0 # t′. For the second subgoal, using the first
hypothesis and applying IH with the instantiation π′0 = π′ ⊕ [((π · a) (π′ · a))] it just
remains to prove that a0 ∈ ds(π, π′⊕ [((π · a) (π′ · a))]) assuming a0 ∈ ds(π, π′). But
because π · a 6= π′ · a0, it is a trivial application of a previous result about difference
sets.

Remark 3.1. Lem. 3.2 is applied in Sec. 3.1 in the proof of Lem. 3.9 and in both Secs. 3.1
and 3.2 in proofs related with symmetry, as preservation of α-equivalence under swappings,
e.g., ∇ ` (a b) · t ≈α (c d) · t with ∇ ` a, b, c, d# t.

Lemma 3.3 (Reflexivity of ≈α). ∇ ` t ≈α t

Proof. Reflexivity of ≈α is formalised in file Alpha Equiv.v, Lem. alpha equiv refl,
by induction on the structure of t. All the cases are trivial, and are solved by simple
applications of the inference rules of ≈α.

3.1 Soundness of ≈α using a weak α-equivalence ∼ω
This section describes a formalisation of the soundness of ≈α, using the so-called “weak”
α-equivalence relation ∼ω defined and specified, respectively, in Figs. 3.4 and 3.5. First,
∼ω is proved be an equivalence relation, which is straightforward and gives an intermediate
transitivity result for ≈α: ∇ ` t1 ≈α t2 and t2 ∼ω t3 implies ∇ ` t1 ≈α t3. Second, this
result is used in conjunction with some auxiliary lemmas to prove first the transitivity,
and then the symmetry of ≈α.

36

(∼ω 〈〉)〈〉 ∼ω 〈〉
(∼ω atom)

a ∼ω a
∇ ` s ≈α t (∼ω app)
f s ∼ω f t

s0 ∼ω t0 s1 ∼ω t1 (∼ω pair)
〈s0, s1〉 ∼ω 〈t0, t1〉

s ∼ω t (∼ω [aa])
[a]s ∼ω [a]t

ds(π, π′) = ∅
(∼ω var)

π.X ∼ω π′.X

Figure 3.4: Rules for weak α-equivalence ∼ω

Lems. 3.4, 3.5 and 3.6 are properties of ∼ω that are formalised in file w Equiv.v of
the specification. These lemmas are used in Lem. 3.7, which relates ≈α with ∼ω, in proofs
of Lem. 3.9, and Lems. 3.10 and 3.11 on the transitivity and the symmetry of ≈α. All
the proofs related strictly to ∼ω are straightforward and their details can be found in the
formalisation.

Notice that in rule w equiv Su of Fig 3.5, the expression (∀ a, ¬ (In ds p p’ a))
denotes the condition ds(π, π′) = ∅ of rule (∼ω var).

Lemma 3.4 (Equivalence of ∼ω). ∼ω is an equivalence relation.

Proof. Reflexivity is proved by induction on the structure of terms; symmetry and transi-
tivity are proved by induction in the derivation rules of ∼ω.

Lemma 3.5 (Equivariance of ∼ω). If t ∼ω t′ then π · t ∼ω π · t′ .

Proof. The proof is by induction on the derivation rules of ∼ω in the sentence t ∼ω t′.

Lemma 3.6 (Freshness preservation of ∼ω). If ∇ ` a# t and t ∼ω t′ then ∇ ` a# t′.

Proof. The proof is by induction on the derivation rules of ∼ω in the sentence t ∼ω t′.

Lemma 3.7 (Intermediate transitivity for ≈α with ∼ω). If ∇ ` t1 ≈α t2 and t2 ∼ω t3
then ∇ ` t1 ≈α t3 .

Proof. Formalisation is by induction on the derivation rules of ≈α, and it is given in
the file Alpha Equiv old.v, Lem. alpha equiv w equiv trans. It uses properties of
terms and expansions of the inference rules in the definition of ≈α, except for the rule
(≈α [ab]) whose analysis requires the application of the equivariance property for ∼ω
(Lem. 3.5) and preservation of freshness under ∼ω (Lem. 3.6). Namely, in the inductive
step of this case one has as premises ∇ ` t1 ≈α (a b) · t2, ∇ ` [a]t1 ≈α [b]t2, [b]t2 ∼ω t3,
∇ ` a# t2 and as IH: for all t0, (a b) · t2 ∼ω t0 implies ∇ ` t1 ≈α t0; and one needs to
conclude that ∇ ` [a]t1 ≈α t3 (some non relevant premises are omitted). By the definition

37

Inductive w equiv :term →term → Prop :=

| w equiv Ut : w equiv («») («»)

| w equiv At : ∀ a, w equiv (%a) (%a)

| w equiv Fc : ∀ m n t t’, (w equiv t t’) →
w equiv (Fc m n t) (Fc m n t’)

| w equiv Pr : ∀ t1 t2 t1’ t2’,
(w equiv t1 t1’) → (w equiv t2 t2’) →
w equiv (<|t1,t2|>) (<|t1’,t2’|>)

| w equiv Ab : ∀ a t t’, (w equiv t t’) →
w equiv ([a]ˆt) ([a]ˆt’)

| w equiv Su : ∀ p p’ X, (∀ a, ¬ (In ds p p’ a)) →
w equiv (p|.X) (p’|.X) .

Figure 3.5: Specification of w equiv

of ∼ω, [b]t2 ∼ω t3, t3 should be of the form [b]t′3. Thus, one needs to conclude that
∇ ` [a]t1 ≈α [b]t′3. Additionally, one has t2 ∼ω t′3 and, by equivariance of ∼ω (Lem. 3.5),
it follows that (a b)t2 ∼ω (a b) · t′3. Also, by preservation of freshness under ∼ω (Lem. 3.6)
one has ∇ ` a# t′3. Instantiating the IH with (a b) · t′3, one has that ∇ ` t1 ≈α (a b) · t′3.
From this, applying rule (≈α [ab]), one finally concludes that ∇ ` [a]t1 ≈α [b]t′3.

Lemma 3.8 (Equivariance of ≈α). If ∇ ` s ≈α t then ∇ ` π · s ≈α π · t.

Proof. The formalisation of this result is in file Alpha Equiv old.v, Lem. alpha equiv
equivariance, and it was done by induction on the inference rules of ≈α. The tricky
case is when one has as hypotheses a 6= b, ∇ ` t ≈α (a b) · t′ and ∇ ` a# t′. The IH is
∇ ` π · t ≈α π · ((a b) · t′). It should be proved that ∇ ` π · ([a]t) ≈α π · ([b]t′). Applying
the definition of the permutation action and the (≈α [ab]) rule, three subgoals have to be
proved: π · a 6= π · b, ∇ ` (π · t) ≈α ((π · a) (π · b)) (π · t′) and ∇ ` (π · a) # (π · t′). The first
and the last are trivially solved by technical lemmas. For the second sub goal, Lem. 3.7
instantiating t2 with π · ((a b) · t′) is applied. Then one of the new subgoals is the IH and
the other one is (π · ((a b) · t)) ∼ω ((π · a) (π · b)) (π · t′). The latter is an instance of a
technical lemma about the distribution of a permutation over swappings.

Lemma 3.9 (Second intermediate transitivity lemma). If ∇ ` t1 ≈α t2 and ∇ ` t2 ≈α π·t2
then ∇ ` t1 ≈α π · t2.

Proof. The proof is by induction on≈α in the hypothesis∇ ` t1 ≈α t2 and it is formalised in
file Alpha Equiv old.v, Lem. pi alpha equiv. The interesting case is for abstractions,

38

that is t1 = [a]t′1 and t2 = [b]t′2. Several cases are considered according to whether a and
b, a and π · a, b and π · b as well as a and π · b are (or not) equal. The interesting case
happens when a 6= b, b 6= π · b and a 6= π · b and is presented below.

After applying rule (≈α [ab]) to the hypothesis ∇ ` [a]t′1 ≈α [b]t′2, one obtains
∇ ` t′1 ≈α (a b)·t′2 with ∇ ` a# t′2. And the IH becomes ∀π,∇ ` (a b) t′2 ≈α π ·((a b)·t′2)⇒
∇ ` t′1 ≈α π · ((a b) · t′2). Applying rule (≈α [ab]) after the action of permutation π in
the second hypothesis ∇ ` [b]t′2 ≈α π · [b]t′2, one obtains ∇ ` t′2 ≈α (b (π · b)) (π · t′2) with
∇ ` b# (π · t′2).

It should be proved that ∇ ` [a]t′1 ≈α π · ([b]t′2). Again, applying the action of
permutation π and rule (≈α [ab]), two subgoals are obtained: ∇ ` a# (π · t′2) and
∇ ` t′1 ≈α (a (π · b)) (π · t′2). The former is proved by Lem. 3.1 with some manipulations
over permutations and swappings. And the latter is proved by first applying Lem. 3.7
which establishes as intermediate steps: ∇ ` t′1 ≈α (a (π · b)) · (π · ((a b)(a b)t′2)) and
(a (π · b)) · (π · ((a b)(a b)t′2)) ∼ω (a (π · b))(π · t′2). The last is proved using equivariance
and equivalence of ∼ω (Lems. 3.5 and 3.4 respectively) while the former is obtained by
IH instantiated with permutation π′ = (a b) :: π ⊕ (a (π · b)) when its premisse becomes
∇ ` (a b) t′2 ≈α ((a b) :: π ⊕ (a (π · b))) · ((a b) · t′2). Thus by application of Lem. 3.2 one
concludes.

Lemma 3.10 (Transitivity of ≈α through ∼ω). If ∇ ` t1 ≈α t2 and ∇ ` t2 ≈α t3 then
∇ ` t1 ≈α t3 .

Proof. The formalisation is by induction in ∇ ` t1 ≈α t2 with generalisation of t3 and it
is in file Alpha Equiv old.v, Lem. alpha equiv trans. The difficult case occurs when
t1 = [a]t′1, t2 = [b]t′2 and t3 = [c]t′3, with a 6= b 6= c 6= a. The IH is given as ∀t0,∇ `
t′2 ≈α t0 ⇒ ∇ ` t′1 ≈α t0, and the other hypotheses are: ∇ ` t′1 ≈α (a b) · t′2, ∇ ` a# t′2,
∇ ` t′2 ≈α (b c) t′3 and ∇ ` b# t′3. It should be concluded that ∇ ` [a]t′1 ≈α [c]t′3.

Applying the rule (≈α [ab]) to the goal one obtains the subgoals ∇ ` a# t′3 and
∇ ` t′1 ≈α (a c) t′3. The former one is proved using the Lem. 3.1. Applying IH over the
latter subgoal, it remains to prove ∇ ` (a b) · t′2 ≈α (a c) t′3. So, it is needed to prove
the intermediate statement ∇ ` [(b c)(a b)] · t′3 ≈α [(b c)(a b)(b c)] · t′3, that is possible by
application of the Lem. 3.2. Manipulating swappings and using the Lem. 3.9 it is possible
to infer ∇ ` (a b) · t′2 ≈α [(b c)(a b)(b c)] · t′3.

Finally, applying the Lem. 3.7 with t2 := [(b c)(a b)(b c)] · t′3 only remains to prove that
[(b c)(a b)(b c)] · t′3 ∼ω (a c) t′3., that can easily be reached using properties of ∼ω such as
its equivalence and equivariance (Lems. 3.5 and 3.4 respectively).

Lemma 3.11 (Symmetry of ≈α through ∼ω). If ∇ ` t ≈α t′ then ∇ ` t′ ≈α t .

39

Proof. The proof is by induction on ≈α over ∇ ` t ≈α t′ and it is formalised in file
Alpha Equiv old.v, Lem. alpha equiv sym. The non-trivial case is when a 6= b and
the hypotheses are ∇ ` t0 ≈α (a b) · t′0, ∇ ` a# t′0 and ∇ ` (a b) · t′0 ≈α t0, with the
subgoal ∇ ` [b]t′0 ≈α [a]t0. This is proved by application of the rule (≈α [ab]) and then by
a double application of Lem. 3.10 instantiated with t2 := (a b) · t0 and t2 := [(a b)(a b)] · t0.
The remaining subgoals are treated using Lem. 3.8.

3.2 Soundness of ≈α without using ∼ω
This section describes the verification of ≈α using the direct approach. Auxiliary Lems. 3.12
to 3.15 are used in the proofs of Lems. 3.16 and 3.17, respectively, the symmetry and the
transitivity of ≈α.

Lemma 3.12 (Basic properties of freshness).

i) ∇ ` a# π · s iff ∇ ` π−1 · a# s

ii) ∇ ` a# s iff ∇ ` π · a# π · s

Proof. These properties are formalised in file Fresh.v, Lems. fresh lemma 1 and
fresh lemma 2, respectively. Item (i) is proved by induction on the structure of s
and item (ii) is proved as a corollary of item (i), using properties of the action of permuta-
tions π over atoms. The difficult case of item (i) is when s = [b]t and a 6= π · b. In this
case, IH is given by ∇ ` a# π · t iff ∇ ` π−1 · a# t and the goal is ∇ ` a# [π · b](π · t)
iff ∇ ` π−1 · a# [b]t. Splitting the goal in necessity and sufficiency, the first subgoal is
∇ ` π−1 · a# [b]t, and it has as hypothesis ∇ ` a# [π · b](π · t). Since a 6= π · b, this
hypothesis implies in ∇ ` a# (π · t). One concludes applying rule (# a[b]) followed by
IH. Sufficiency is proved similarly.

Lemma 3.13 (Basic properties over permutations with empty difference set).
ds(π, π′) = ∅ implies

i) ∇ ` π · a# s iff ∇ ` π′ · a# s

ii) ∇ ` a# π · s implies ∇ ` a# π′ · s;

iii) ∇ ` π · s ≈α t implies ∇ ` π′ · s ≈α t; and

iv) ∇ ` s ≈α π · t implies ∇ ` s ≈α π′ · t.

Proof. These results are formalised in file Alpha Equiv.v, Lems. ds empty fresh 1,
ds empty fresh 2, ds empty equiv 1 and ds empty equiv 2, respectively. For item

40

(i), just observe that ds(π, π′) = ∅ implies π ·a = π′ ·a. Item (ii) is a consequence of item (i)
and Lem. 3.12 (item (ii)), observing that if ds(π, π′) = ∅ then also ds(π−1, π′−1) = ∅. Items
(iii) and (iv) have similar proofs which are obtained by induction on the structure of s with
case analysis over t, and on the structure of t with cases analysis over s, respectively. The
non-trivial cases are those where s = [a]s0 and t = [b]t0. For instance, for item (iv), the
hypotheses are: ds(π, π′) = ∅, a 6= π ·b, ∇ ` s0 ≈α (a, π ·b) (π ·t0) and∇ ` a# π ·t0, and IH
is: ∀π0,∀π1, ds(π0, π1) = ∅ implies that ∀u, if ∇ ` u ≈α (π0 · t0) then ∇ ` u ≈α (π1 · t0).
Having these premisses, one must prove that ∇ ` [a]s0 ≈α [π′ · b](π′ · t0). After applying
rule (≈α [ab]), three subgoals are generated: a 6= π′ · b, ∇ ` s0 ≈α (a π′ · b)(π′ · t0) and
∇ ` a# π′ · t0. The first and the last are solved trivially, just observing that π · b = π′ · b
(using the hypothesis ds(π, π′) = ∅) and applying item (ii), respectively. The second
subgoal is proved using the definition of composition of permutations and applying IH over
∇ ` s0 ≈α (π′⊕ (a π′ · b)) · t0, with π0 = π⊕ (a π · b) and π1 = π′⊕ (a π′ · b). The two new
subgoals are ∇ ` s0 ≈α (π ⊕ (a, π · b)) · t0 and ds(π ⊕ (a π · b), π′ ⊕ (a, π′ · b)) = ∅. The
former is exactly one of the hypothesis and the latter is a consequence of the hypothesis
ds(π, π′) = ∅, after using results about difference sets.

Lemma 3.14 (Inversion of permutations over ≈α). ∇ ` π · s ≈α t iff ∇ ` s ≈α π−1 · t

Proof. The formalisation of this result is in file Alpha Equiv.v, Lem. perm inv side,
and its proof is by induction on the structure of s with case analysis over t. The complicated
case is when s = [a]s0 and t = [b]t0, with π ·a 6= b. In this case IH is ∀π,∀u,∇ ` π ·s0 ≈α u
iff ∇ ` s ≈α π−1 ·u. Necessity has as hypotheses: ∇ ` π ·s0 ≈α (π ·a b) t0 and ∇ ` π ·a# t0.
One applies rule (≈α [ab]) to the objective ∇ ` [a]s0 ≈α [π−1 · b](π−1 · t0), generating three
subgoals: a 6= π−1 · b, ∇ ` s0 ≈α (a π−1 · b) (π−1 · t0) and ∇ ` a# π−1 · t0. The first and
the last are trivially solved by manipulations of the permutation π and an application
of Lem. 3.12, item (i), respectively. IH is applied to the first hypothesis, resulting in
∇ ` s0 ≈α π−1 · (π · a b) t0. Then the definition of composition of permutations and
Lem. 3.13, item (iv), is applied with π = (π · a b)⊕ π−1 and π′ = π−1 ⊕ (a π−1 · b), only
remaining to prove that ds((π · a b)⊕ π−1, π−1 ⊕ (a π−1 · b)) = ∅, which is easily showed
by manipulations of permutations over atoms. The proof of sufficiency is very similar.

Lemma 3.15 (Equivariance of ≈α). ∇ ` s ≈α t iff ∇ ` π · s ≈α π · t.

Proof. The formalisation of this result is in file Alpha Equiv.v, Lem. alpha equiv
equivariance. For necessity and sufficiency, Lem. 3.14 is applied to the objective and in
the hypothesis, respectively. Then Lem. 3.13, item (iv), is applied and one only needs to
prove that ds(π ⊕ π−1, id) = ∅, and this statement is easily reached by an application of
results of difference sets and manipulation of permutations over atoms.

41

Lemma 3.16 (Symmetry of ≈α by the direct approach). If ∇ ` s ≈α t then ∇ ` t ≈α s.

Proof. The formalisation is in file Alpha Equiv.v, Lem. alpha equiv sym. The proof
is by induction over the derivation cases of ∇ ` s ≈α t. The interesting case is given by
rule (≈α [ab]). In this case, ∇ ` [a]u ≈α [b]v whenever ∇ ` u ≈α (a b) · v and ∇ ` a# v.
By equivariance of freshness (Lem. 3.12, item (ii)), ∇ ` b# (a b) · v is obtained. By IH,
∇ ` (a b) · v ≈α u and then ∇ ` b#u, by Lem. 3.1. Finally, by inversion of permutations
over ≈α (Lem. 3.14), ∇ ` v ≈α (a b) · u. This and ∇ ` b#u prove ∇ ` [b]v ≈α [a]u.

Lemma 3.17 (Transitivity of ≈α by the direct approach). ∇ ` t1 ≈α t2 and ∇ ` t2 ≈α t3
imply ∇ ` t1 ≈α t3.

Proof. The proof is by induction on the size of t1 and case analysis over ∇ ` t1 ≈α t2 and
∇ ` t2 ≈α t3. Its formalisation is in file Alpha Equiv.v, Lem. alpha equiv trans. The
subsequent steps show the abstraction case, which is the most interesting one due to the
asymmetry of rule (≈α [ab]) (see Fig. 2.4). Consider t1 = [a]u, t2 = [b]v and t3 = [c]w. So
one must analyse the following situations:

• a = b = c: thus the result follows by IH;
• a = b 6= c: by definition, ∇ ` u ≈α v and ∇ ` v ≈α (b c) · w and ∇ ` b#w. By IH,
∇ ` u ≈α (b c) · w. As a = b, then freshness condition to a is satisfied as well;
• a 6= b = c: one has that ∇ ` a# v, ∇ ` u ≈α (a c) · v and ∇ ` v ≈α w. By
Lem. 3.15, ∇ ` (a c) · v ≈α (a c) · w and, by IH, ∇ ` u ≈α (a c) · w. By Lem. 3.12,
∇ ` c# (a c) · v and ∇ ` c# (a c) · w by Lem. 3.1. Finally, again by Lem. 3.12,
∇ ` a#w;
• b 6= a = c: it is known that ∇ ` u ≈α (b c) · v and ∇ ` v ≈α (b c) · w. Then
∇ ` (b c) · v ≈α w by Lem. 3.14. By IH ∇ ` u ≈α w;
• a 6= b 6= c 6= a: it is necessary to prove that ∇ ` u ≈α (a c) · w and ∇ ` a#w. Let

us prove first the freshness condition. by definition of ≈α, ∇ ` a# v and ∇ ` v ≈α
(b c)·w. By Lem. 3.1, ∇ ` a# (b c)·w and, by Lem. 3.12, ∇ ` a#w. Now let us prove
≈α: By Lem. 3.15, ∇ ` (a b) · v ≈α [(b c), (a b)] · w. As ds([(b c), (a b)], (a c)) = {a, b}
and both atoms are fresh in w, then ∇ ` [(b c), (a b)] · w ≈α (a c) · w by Lem. 3.2.
Now, applying IH twice, one obtains ∇ ` u ≈α (a c) · w.

3.3 Comparing the two formalisation approaches

A brief comparison between the two formalisation approaches is summarised below:

42

• The proof of symmetry of ≈α without using ∼ω (Lem. 3.16) is independent of
transitivity, unlike the proof that uses ∼ω, in which the formalisation of symmetry
relies on transitivity;

• Lems. 3.4 to 3.7 w.r.t. ∼ω are no longer necessary in the direct approach. Also the
Second intermediate transitivity lemma (Lem. 3.9) is not needed. Counting all these
lemmas, a total of 338 proof lines were eliminated;

• In the approach without ∼ω, the few auxiliary lemmas on ≈α (Lems. 3.12 to 3.13) are
proved by simple induction either on the structure of the terms or on the inference
rules of ≈α. Only 177 proof lines were added with these new results;

• Although, in the direct approach sufficiency is also proved in the equivariance lemma
of ≈α (Lem. 3.15), the proof is slightly shorter than the presented in Lem. 3.8;

• In the approach without∼ω, the proofs of Lems. 3.16 and 3.17, respectively, symmetry
and transitivity of ≈α are based only on nominal properties and properties of ≈α,
but the number of proof lines of these two lemmas is almost the same of the approach
with ∼ω;

• The formalisation without ∼ω is shorter. Precisely, adopting this approach results in
a reduction of 251 proof lines in the whole formalisation, which represents a reduction
of approximately 33 % in comparison with the formalisation with ∼ω.

43

Chapter 4

Nominal α, A, C and AC
equality-checking

The present chapter contains results published in [5, 6]. Those extend ≈α by adding
A, C and AC function symbols in the signature. To check α-equivalence modulo A, C
and AC, denoted ≈{A,C,AC}, one uses soundness of ≈α to check ≈{A,C,AC}. This extension
is obtained via the specification of an inductive relation equiv(S) (see Fig. 4.8 and
file Equiv.v) parameterised by a set S of indices, where each index is associated to a
different equational theory. In particular, if S = ∅ the relation equiv(S) excludes from
the specification of equiv all specialised inference rules for any equational theory. The
relation equiv(∅) is formally proved be equivalent to the relation ≈α (see file Equiv.v,
Lem. alpha equiv eq equiv):

∇ ` t ≈α t′ ⇔ equiv(∅)(∇, t, t′).

The generic relation equiv considers A, AC and C function symbols if 0, 1 or 2 belong
to S, respectively. Namely, equiv({0}), equiv({1}), equiv({2})) and equiv({0, 1, 2}) select
the specialised inductive rules in the definition of equiv for the relation ≈α modulo A, AC,
C and combinations of A, AC and C, respectively. In this way one builds the relations
≈α,A, ≈α,AC, ≈α,C and ≈{A,C,AC}. For readability, from now on, instead of indices 0, 1 and
2, the corresponding abbreviations A, AC and C will be used.

In Subsec. 4.5, an alternative recursive version of equiv is presented that has been
proved be equivalent to the relation ≈{A,C,AC}, and from which OCaml executable code
has been automatically extracted.

44

4.1 Operations over tuples

The inductive rules for A and AC operators in the definition of the relation ≈{A,C,AC} use
three auxiliary operators specified in file Tuples.v that deal with arguments of function
symbols. Arguments of a function symbol f are terms built using the constructor for pairs
and the arguments of terms headed by the same function symbol f . These operators,
specified as in Figs. 4.1, 4.2 and 4.3 extract the relevant information of the arguments
to which a(n A, C or AC) symbol fEn is applied and specify the length or number of
arguments, ‖t‖fEn := TPlength t E n, and the selection and deletion of the ith argument,
respectively, t(i)

fEn
:= TPith i t E n and t[?i]

fEn
:= TPithdel i t E n.

Fixpoint TPlength (t: term) (E n: nat) : nat :=
match t with
| (<|t1,t2|>) ⇒ (TPlength t1 E n) + (TPlength t2 E n)
| (Fc E0 n0 t0) ⇒ if (E,n) = (E0,n0)

then (TPlength t0 E n)
else 1

| ⇒ 1
end.

Figure 4.1: Specification of TPlength

Fixpoint TPith (i: nat) (t: term) (E n: nat) : term :=
match t with
| (<|t1,t2|>) ⇒ let l1 := TPlength t1 E n in

if i ≤ l1
then TPith i t1 E n
else TPith (i-l1) t2 E n

| (Fc E0 n0 t0) ⇒ if (E,n) = (E0,n0)
then TPith i t0 E n
else t

| ⇒ t
end.

Figure 4.2: Specification of TPith

Exs. 4.1 to 4.3 illustrates the behaviour of the operators ‖ ‖f , ()f and [?]f .

Example 4.1. For the number of arguments.

1. ‖f〈 〉‖f = ‖〈 〉‖f = 1;

2. ‖f 〈a, b〉‖f = ‖〈a, b〉‖f = 2, but ‖g 〈a, b〉‖f = 1;

45

Fixpoint TPithdel (i: nat) (t: term) (E n: nat) : term :=
match t with
| (<|t1,t2|>) ⇒ let l1 := (TPlength t1 E n) in

let l2 := (TPlength t2 E n) in
if i ≤ l1
then
if l1 = 1
then t2
else <|(TPithdel i t1 E n),t2|>

else
let ii := i-l1 in
if l2 = 1
then t1
else <|t1,(TPithdel ii t2 E n)|>

| (Fc E0 n0 t0) ⇒ if (TPlength (Fc E0 n0 t0) E n) = 1
then «»
else Fc E0 n0 (TPithdel i t0 E n)

| ⇒ «»
end.

Figure 4.3: Specification of TPithdel

3. ‖f 〈[a](π.X), f 〈b, g 〈a, f 〈a, b〉〉〉〉‖f =
‖[a](π.X)‖f + ‖b‖f + ‖g 〈a, f 〈a, b〉〉‖f = 3 .

Example 4.2. For the selection of the ith argument.

1. t(0)f = t(1)f and, if i > ‖t‖f then t(i)f = t(‖t‖f)f (cf. Lem. 4.1);

2. If ‖t‖f = 1 and t is not headed by f then t(1)f = t, but also (f f t)(1)f = t;

3. (f 〈[a](π.X), f 〈b, g 〈a, f 〈a, b〉〉〉〉)(3)f = (f 〈b, g 〈a, f 〈a, b〉〉〉)(2)f =
(g 〈a, f 〈a, b〉〉)(1)f = g 〈a, f 〈a, b〉〉.

Example 4.3. For the deletion of the ith argument.

1. t[?0]f = t[?1]f and if i > ‖t‖f then t[?i]f = t[?‖t‖f]f (cf. Lem. 4.1);

2. If ‖t‖f = 1 then t[?1]f = 〈 〉;

3. (f 〈[a](π.X), f 〈b, g 〈a, f 〈a, b〉〉〉〉)[?2]f =
f 〈[a](π.X), (f 〈b, g 〈a, f 〈a, b〉〉〉)[?1]f 〉 = f 〈[a](π.X), f (g 〈a, f 〈a, b〉〉)〉.

Remark 4.1. The use of operators the ‖ ‖f , ()f and [?]f has two advantages:
first, neither an additional data structure to express associativity is necessary (e.g. lists,
sequences, arrays) nor an operator for flattening terms; second, the adopted grammar
permits the manipulation of arbitrary combinations of different function symbols with

46

different equational properties, occurring simultaneously in a term, via the use of specialised
rules which fit the given signature and its corresponding equational theory. This simplifies
the treatment of α-equivalence modulo A, C and AC, and other equational theories.

Lem. 4.1, lists some results from a much longer list of formalised lemmas on tuples
(see file Tuples.v). The proofs of these results are very technical and obtained by simple
induction on the structure of terms, so they are omitted in the present text. These
properties are applied mainly in the manipulation of elements of tuples in the proofs of
Lems. 4.7 to 4.9.

Lemma 4.1 (Basic properties of the operators: ‖ ‖f , ()f and [?]f).

i) Selecting or removing the 0-th element of a tuple is the same as operating over the
first element: t(0) = t(1) and t[?0] = t[?1];

ii) In a tuple with n elements, the operation of selecting or removing the i-th element,
with i ≥ n, is the same as operating over the n-th element: if i ≥ ‖t‖ then t(i) = t(‖t‖)

and t[?i] = t[?‖t‖];

iii) If ‖t‖ = 1 then, for any i, t[?i] = 〈〉;

iv) If ‖t‖ 6= 1 then ‖t[?i]‖ = ‖t‖ − 1;

v) If 0 < i < j and i < ‖t‖ then (t[?j])(i) = t(i);

vi) If 0 < i < j ≤ ‖t‖ then (t[?j])[?i] = (t[?i])[?(j−1)];

vii) If 0 < i < ‖t‖ and i ≥ j then (t[?j])(i) = t(i+1) and (t[?j])[?i] = (t[?(i+1)])[?j].

These results are formalised in the following corresponding Lemmas of file Tuples.v:

i) TPith 0 and TPithdel 0;

ii) TPith overflow and TPithdel overflow;

iii) TPithdel TPlength 1;

iv) TPlength TPithdel;

v) TPith TPithdel lt;

vi) TPithdel lt comm;

vii) TPith TPithdel geq and TPithdel geq comm.

47

4.2 Extension of the rules for ≈α
New rules (≈α A), (≈α C), and (≈α AC) for A, C and AC are included. These rules are
combined with those from Fig. 2.4 for ≈α, with the following modification: (≈α app) is
replaced by (≈α app) and applies whenever the function symbol fEk applied to s is such
that E /∈ S or E = C ∈ S and s is not a pair. Otherwise, when E = A,C or AC and
E ∈ S, rules (≈α A), (≈α C) or (≈α AC) apply. Therefore, if f is not an A, C or AC
function symbol or A,C,AC /∈ S, the behaviour of (≈α app) and (≈α app) would be
exactly the same. These rules define an extended calculus for general α-equivalence modulo
A, C and AC. Other equational theories might be included similarly. In the following,
∇ ` s ≈{A,C,AC} t denotes that s and t are α-equivalent modulo A, C and AC under the
context ∇.

∇ ` s ≈{A,C,AC} t E /∈ S or
E = C and s is not a pair

(≈α app)
∇ ` fEk s ≈{A,C,AC} fEk t

Figure 4.4: (≈α app)-rule for ≈{A,C,AC}

∇ ` (fAk s)(1)
fA
k

≈{A,C,AC} (fAk t)(1)
fA
k

,

∇ ` (fAk s)[?1]
fA
k

≈{A,C,AC} (fAk t)[?1]
fA
k (≈α A)

∇ ` fAk s ≈{A,C,AC} fAk t

Figure 4.5: (≈α A)-rule for A function symbols

Rule (≈α A) applies when the terms compared are headed by the same A function
symbol and A ∈ S. It verifies recursively if the first arguments on the lhs and rhs are
related by ≈{A,C,AC} as well as the result of applying the root function symbol to the
respective tuples without the first argument.

∇ ` s0 ≈{A,C,AC} ti, ∇ ` s1 ≈{A,C,AC} t1−i
i = 0, 1 (≈α C)

∇ ` fCk 〈s0, s1〉 ≈{A,C,AC} fCk 〈t0, t1〉

Figure 4.6: (≈α C)-rule for C function symbols

Rule (≈α C) has two possibilities of application: for i = 0 (resp. i = 1) one must
have ∇ ` s0 ≈{A,C,AC} t0 and ∇ ` s1 ≈{A,C,AC} t1 (resp. ∇ ` s0 ≈{A,C,AC} t1 and
∇ ` s1 ≈{A,C,AC} t0). The case where fCk is applied to a term different of a pair is considered
in the (≈α app)-rule.

48

∇ ` (fACk s)(1)
fAC
k

≈{A,C,AC} (fACk t)(i)
fAC
k

,

∇ ` (fACk s)[?1]
fAC
k

≈{A,C,AC} (fACk t)[?i]
fAC
k AC ∈ S (≈α AC)

∇ ` fACk s ≈{A,C,AC} fACk t

Figure 4.7: (≈α AC)-rule for AC function symbols

Rule (≈α AC) behaves similarly to rule (≈α A): the fundamental difference is that the
first argument on the lhs can be compared modulo ≈{A,C,AC} with any arbitrary argument
on the rhs. If there exists such argument, say the ith, it remains to check that the terms
obtained applying the function symbol to the tuples deleting the first and the ith arguments
to the right and to the left are related by ≈{A,C,AC}.

Example 4.4. ∇ ` f〈a, gAC〈b, 〈c, d〉〉〉 ≈{A,C,AC} f〈a, gAC〈〈d, c〉, b〉〉, where g is AC, f is
a function symbol that allows only α-equivalence and AC ∈ S.

(≈α app)

(≈α pair) ∇ ` a ≈{A,C,AC} a

∇ ` b ≈{A,C,AC} b

∇ ` c ≈{A,C,AC} c

∇ ` d ≈{A,C,AC} d ∇ ` 〈〉 ≈{A,C,AC} 〈〉
(≈α AC)

∇ ` gACd ≈{A,C,AC} gACd
(≈α AC)

∇ ` gAC〈c, d〉 ≈{A,C,AC} gAC〈d, c〉
(≈α AC)

∇ ` gAC〈b, 〈c, d〉〉 ≈{A,C,AC} gAC〈〈d, c〉, b〉

∇ ` 〈a, gAC〈b, 〈c, d〉〉〉 ≈{A,C,AC} 〈a, gAC〈〈d, c〉, b〉〉

∇ ` f〈a, gAC〈b, 〈c, d〉〉〉 ≈{A,C,AC} f〈a, gAC〈〈d, c〉, b〉〉

The key code fragment of the formalisation regarding α-equivalence modulo A, C,
and AC is the inductive definition equiv in Fig. 4.8 (available in the file Equiv.v of the
specification). This definition uses notations and operators given in Figs. 3.1, 4.1, 4.2
and 4.3, and specifies a relation that has type Context → term → term → Prop and a
set of naturals S as parameter. This definition includes specific rules for each constructor
of the nominal syntax, and a signature that may contain A, C and AC function symbols
according to S.

The inference rules (≈α 〈〉), (≈α atom), (≈α app), (≈α [aa]), (≈α [ab]), (≈α var),
(≈α pair), (≈α A) and (≈α AC) are specified, respectively, by the following constructors
of equiv: equiv Ut; equiv At; equiv Fc; equiv Ab 1; equiv Ab 2; equiv Su; equiv Pr;
equiv A and equiv AC. And additionally, the two cases of rule (≈α C) are specified by
equiv C1 and equiv C2.

As in the specification of ≈α (Fig. 3.3), the constructor equiv Ut (resp. equiv At)
expresses that 〈〉 (resp. ā) is related with itself, for any S and any C. In equiv Fc, Fc E n
t is related to Fc E n t’, if E does not belong to S, that means one is not dealing with an

49

Inductive equiv (S : set nat): Context → term → term → Prop :=

| equiv Ut : ∀ C, equiv S C («») («»)

| equiv At : ∀ C a, equiv S C (%a) (%a)

| equiv Pr : ∀ C t1 t2 t1’ t2’,
(equiv S C t1 t1’) → (equiv S C t2 t2’) → equiv S C (<|t1, t2|>) (<|t1’,t2’|>)

| equiv Fc : ∀ E n t t’ C, (¬ set In E S ∨ (E = 2 ∧ ((¬ is Pr t) ∨ (¬ is Pr t’))) →
(equiv S C t t’) → equiv S C (Fc E n t) (Fc E n t’)

| equiv Ab 1 : ∀ C a t t’, (equiv S C t t’) → equiv S C ([a]ˆt) ([a]ˆt’)

| equiv Ab 2 : ∀ C a a’ t t’, a 6= a’ →
(equiv S C t (|[(a,a’]| @ t’)) → C ` a # t’ → equiv S C ([a]ˆt) ([a’]ˆt’)

| equiv Su : ∀ (C : Context) p p’ (X : Var), (∀ a, (In ds p p’ a)→ set In (a, X) C)→
equiv S C (p|.X) (p’|.X)

| equiv A : set In 0 S → ∀ n t t’ C,
(equiv S C (TPith 1 (Fc 0 n t) 0 n) (TPith 1 (Fc 0 n t’) 0 n)) →
(equiv S C (TPithdel 1 (Fc 0 n t) 0 n) (TPithdel 1 (Fc 0 n t’) 0 n)) →
(equiv S C (Fc 0 n t) (Fc 0 n t’))

| equiv AC : set In 1 S → ∀ n t t’ i C,
(equiv S C (TPith 1 (Fc 1 n t) 1 n) (TPith i (Fc 1 n t’) 1 n)) →
(equiv S C (TPithdel 1 (Fc 1 n t) 1 n) (TPithdel i (Fc 1 n t’) 1 n)) →
(equiv S C (Fc 1 n t) (Fc 1 n t’))

| equiv C1 : set In 2 S → ∀ n s0 s1 t0 t1 C,
(equiv S C s0 t0) → (equiv S C s1 t1) →
(equiv S C (Fc 2 n (<|s0, s1|>)) (Fc 2 n (<|t0, t1|>)))

| equiv C2 : set In 2 S → ∀ n s0 s1 t0 t1 C,
(equiv S C s0 t1) → (equiv S C s1 t0) →
(equiv S C (Fc 2 n (<|s0, s1|>)) (Fc 2 n (<|t0, t1|>))) .

Figure 4.8: Specification of equiv

50

A, AC or C function symbol, or if E = 2, that means one is dealing with a C function
symbol which is not applied to a pair ((¬ is Pr t) ∨ (¬ is Pr t’)). Notice that, equiv Fc
was specified to cover the cases in which rules for A, C or an AC function symbols do not
apply.

The constructor equiv Ab 2 relates [a]ˆt to [a’]ˆt’, considering S and a freshness
context C, whenever the atoms are different (i.e., a 6= a’), t is related with |[(a,a’]| @ t’
(an application of swapping (a a′) to t’) and a is fresh in t’ in the context C, which uses
notation C ` a # t’ in the specification.

The constructor equiv AC relates Fc 1 n t to Fc 1 n t’, given S and C, whenever
1 belongs to S (otherwise equiv Fc is applied) and there exists an i such that TP-
ith 1 (Fc 1 n t) 1 n is related to TPith i (Fc 1 n t’) 1 n and TPithdel 1 (Fc 1 n t) 1 n is
related to TPithdel i (Fc 1 n t’) 1 n.

4.3 Formalisation of the soundness of ≈{A,C,AC}
The following steps were performed in order to check that ≈{A,C,AC} is indeed an equivalence
relation. After proving an intermediate transitivity lemma for ≈{A,C,AC} (Lem. 4.3), one
proves freshness preservation and equivariance (Lems. 4.4 and 4.5) of ≈{A,C,AC} and then,
transitivity before symmetry (Lems. 4.8 and 4.9). By using the parameter set S on the
equiv(S) relation and renaming superscripts of function symbols, one obtains as corollary
of the soundness of ≈{A,C,AC} the soundness of ≈α,A, ≈α,C and ≈α,AC.

In addition to preservation of freshness and equivariance, the intermediate transitivity
lemma (Lem. 4.3) is relevant to guarantee key properties on swappings and permutations
acting over ≈{A,C,AC}-related terms as, for instance, ∇ ` t ≈{A,C,AC} (a a′) · t′ ⇒ ∇ `
(a′ a) · t ≈{A,C,AC} t′ (see file AACC Equiv.v, Lem. aacc equiv swap inv side).

Lemma 4.2 (Reverse of ≈{A,C,AC}). The inference rules of ≈{A,C,AC} are invertible, which
means that:

i) If ∇ ` 〈s0, s1〉 ≈{A,C,AC} 〈t0, t1〉 then ∇ ` s0 ≈{A,C,AC} t0 and ∇ ` s1 ≈{A,C,AC} t1;

ii) If ∇ ` [a]s ≈{A,C,AC} [a]t or ∇ ` fEk s ≈{A,C,AC} fEk t (with E /∈ {A,C,AC}) then
∇ ` s ≈{A,C,AC} t;

iii) If ∇ ` [a]s ≈{A,C,AC} [b]t then ∇ ` s ≈{A,C,AC} (a b) · t and ∇ ` a# t;

iv) If ∇ ` fAk s ≈{A,C,AC} fAk t then
∇ ` (fAk s)(1) ≈{A,C,AC} (fAk t)(1) and ∇ ` (fAk s)[?1] ≈{A,C,AC} (fAk t)[?1];

v) If ∇ ` fACk s ≈{A,C,AC} fACk t then there exists i > 0,≤ ‖t‖, such that
∇ ` (fACk s)(1) ≈{A,C,AC} (fACk t)(i) and ∇ ` (fACk s)[?1] ≈{A,C,AC} (fACk t)[?i];

51

vi) If∇ ` fCk 〈s0, s1〉 ≈{A,C,AC} fCk 〈t0, t1〉 then either ∇ ` s0 ≈{A,C,AC} t0 and ∇ ` s1 ≈{A,C,AC} t1,
or ∇ ` s0 ≈{A,C,AC} t1 and ∇ ` s1 ≈{A,C,AC} t0;

vii) If ∇ ` π.X ≈{A,C,AC} π′.X then ds(π, π′) ⊆ ∇.

Proof. Items i) to vii) are proved using a tactic of the Coq named inversion that is
applied to the hypothesis, resulting exactly on the objectives that one is trying to prove.

Remark 4.2. In the proofs Lems. 4.3 to 4.5 the treatment given to the cases of rules
(≈α C), (≈α A) and (≈α AC) are very similar to the treatment of rule (≈α app). Thus
the interesting case is always given by rule (≈α [ab]).

Lemma 4.3 (Intermediate transitivity for ≈{A,C,AC} with ≈α). If ∇ ` s ≈{A,C,AC} t and
∇ ` t ≈α u then ∇ ` s ≈{A,C,AC} u.

Proof. The formalisation of this result is in file AACC Equiv.v, Lem. aacc alpha equiv
trans and it is obtained as follows: after generalisation of u, induction is applied on
deduction rules of ≈{A,C,AC} for ∇ ` s ≈{A,C,AC} t. Some cases require analysis over the
premisse ∇ ` t ≈α u; for instance, in the case in which one has t = 〈t1, t2〉, the inversion
tactic of Coq is applied to obtain that u must be equal to 〈u1, u2〉 with ∇ ` t1 ≈α u1 and
∇ ` t2 ≈α u2, according to the inference rule (≈α pair).

Lemma 4.4 (Freshness preservation under ≈{A,C,AC}). If ∇ ` a# s and ∇ ` s ≈{A,C,AC} t
then ∇ ` a# t.

Proof. The proof is by induction on ≈{A,C,AC} (see Lem. aacc equiv fresh of file
AACC Equiv.v), using technical results about the freshness relation for dealing with
cases related with rules (≈α [aa]) and (≈α [ab]) for the case in which s and t are abstrac-
tions.

Lemma 4.5 (Equivariance of ≈{A,C,AC}). If ∇ ` s ≈{A,C,AC} t then ∇ ` π · s ≈{A,C,AC} π · t.

Proof. Equivariance follows by induction in the inference rules of ≈{A,C,AC}, its formali-
sation is in file AACC Equiv.v, Lem. aacc equivariance. For the case of abstractions,
specifically for the case of the rule (≈α [ab]), Lem. 4.3 is required; indeed, when one has
∇ ` [a]s′ ≈{A,C,AC} [b]t′, initially it is necessary to prove that ∇ ` π ·s′ ≈{A,C,AC} π ·((a b) ·t′)
and ∇ ` π · ((a b) · t′) ≈α (π · a π · b) · (π · t′) and then apply that lemma to obtain
∇ ` π · s′ ≈{A,C,AC} (π · a π · b) · (π · t′).

Remark 4.3. Lems. 4.2 to 4.5 that are proved for ≈{A,C,AC} are not automatically inherited
for the specific cases of ≈α,A, ≈α,C and ≈α,AC. These properties are formalised in particular
for ≈α,C in file c Equiv.v of the specification and they are used in Lem. 5.4 and Thm. 5.2.
Further references to these lemmas are directed to the corresponding general results.

52

Lemma 4.6 (Reflexivity of ≈{A,C,AC}). ∇ ` t ≈{A,C,AC} t .

Proof. Reflexivity is formalised in file AACC Equiv.v, Lem. aacc equiv refl, and it is
easily proved by induction on t.

The next lemma generalises the way in which arguments used in the rule (≈α AC) are
combined.

Lemma 4.7 (Combination of AC arguments). If ∇ ` t ≈{A,C,AC} t′ then
∀(0<i≤‖t‖f)∃(0<j≤‖t‖f)∇ ` t(i)f ≈{A,C,AC} t′(j)f and ∇ ` t[?i]f ≈{A,C,AC} t′[?j]f .

Proof. The formalisation of this result is in file AACC Equiv.v, Lem. aacc equiv TPith l,
and its proof is by induction on ‖t‖f using simple auxiliary lemmas and properties of the
operators ‖t‖f , t(i)f and t[?i]f . The proof of the particular case i = 1 is explained as follows:
∇ ` t ≈{A,C,AC} t′ ⇒ ∃(0<j≤‖t′‖f),∇ ` t(1)f ≈{A,C,AC} t′(j)f ∧ ∇ ` t[?1]f ≈{A,C,AC} t′[?j]. The
complicated case happens when ‖t‖f > 2: after applying the auxiliary lemma for terms f t
and f t′ one obtains for some valid i0, ∇ ` t(1)f ≈{A,C,AC} t′(i0)f and ∇ ` f t[?1]f ≈{A,C,AC}
f t′[?i0]f . Notice that if i = 1, the result follows trivially. For i > 1, induction applies for the
terms t0 = f t[?1]f and t′0 = f t′[?i0]f with argument i1 = i− 1. Notice that the IH is given
as ∀(‖t0‖f < ‖t‖f , t′0, 0<i1≤‖t0‖f)∃j1,∇ ` t0(i1)f ≈{A,C,AC} t′0(j1)f and ∇ ` t0[?i1]f ≈{A,C,AC} t′0[?j1]f .
Then, applying IH, a witness j is obtained such that, with the pre-conditions: ‖f t[?1]f‖f <
‖t‖f and ∇ ` f t[?1]f ≈{A,C,AC} f t′[?i0]f , one obtains ∇ ` f t(i)f ≈{A,C,AC} f t

′
(j)f and

∇ ` f t[?(i)]f ≈{A,C,AC} f t
′
[?j]f . The first pre-condition is solved by an application of the

definition of ‖ ‖ and an auxiliary lemma for the operators ‖t‖f and t[?i]f . The second is
exactly the assumption. Then one just needs to consider two cases: i0 ≤ j1 or i0 > j1. One
instantiates j respectively as j1 + 1 or j1 and concludes using properties of the operators
‖t‖f , t(i)f and t[?i]f .

Lemma 4.8 (Transitivity of ≈{A,C,AC}). If ∇ ` t1 ≈{A,C,AC} t2 and ∇ ` t2 ≈{A,C,AC} t3 then
∇ ` t1 ≈{A,C,AC} t3 .

Proof. The formalisation is in file AACC Equiv.v, Lem. aacc equiv trans, and it is by
induction on the size of the term t1. The terms t2 and t3 are generalised, and inversions from
the equational inference rules are applied to both∇ ` t1 ≈{A,C,AC} t2 and∇ ` t2 ≈{A,C,AC} t3.
The difficult cases are those of rules (≈α [ab]) and (≈α A) or (≈α AC). For (≈α [ab]),
an interesting subcase is when a 6= a′ 6= a′0 6= a: the premisses are ∇ ` t ≈{A,C,AC}
(a a′) · t′ ∧ ∇ ` a# t′ and ∇ ` t′ ≈{A,C,AC} (a′ a′0) · t′0 ∧ ∇ ` a′0 # t′0, the IH is given as
∀(s1,s2,s3), |s1| < |t| ∧ (∇ ` s1 ≈{A,C,AC} s2 ∧ ∇ ` s2 ≈{A,C,AC} s3) ⇒ ∇ ` s1 ≈{A,C,AC} s3,
and one should conclude that ∇ ` [a]t ≈{A,C,AC} [a′0]t′0. Applying (≈α [ab]) it remains to
prove that ∇ ` a# t′0 and ∇ ` t ≈{A,C,AC} (a a′0) · t′0. The former is obtained by freshness

53

preservation, and the latter by IH with application of Lem. 4.3, equivariance and freshness
preservation.

In the case of rules (≈α A) or (≈α AC), the following proof context is reached at
some point of the formalisation, where for the case of (≈α A), the indices i and i0 are
equal to 1: the premisses are ∇ ` t(1)f ≈{A,C,AC} t′(i)f ∧ ∇ ` f t[?1]f ≈{A,C,AC} f t′[?i]f , and
∇ ` t′(1)f ≈{A,C,AC} t′0(i0)f∧∇ ` f t

′
[?1]f ≈{A,C,AC} f t′0[?i0]f , the IH is given by ∀(s1,s2,s3), |s1| <

|f t| ∧ (∇ ` s1 ≈{A,C,AC} s2 ∧ ∇ ` s2 ≈{A,C,AC} s3) ⇒ ∇ ` s1 ≈{A,C,AC} s3, and one should
conclude that ∇ ` f t ≈{A,C,AC} f t′0. Applying (≈α A) and the IH one concludes easily for
the case in which E = A. When E = AC one uses the Lem. 4.7 and the second premise
above, obtaining a third premise: ∃i1,∇ ` t′(i)f ≈{A,C,AC} t′0(i1)f ∧ ∇ ` t′[?i]f ≈{A,C,AC}
t′0[?i1]f . Then, applying the (≈α AC) rule instantiated with i1. The resulting subgoals are
∇ ` t(1)f ≈{A,C,AC} t′0(i1)f and ∇ ` f t[?1]f ≈{A,C,AC} f t′0[?i1]f , and from the first and third
premises above, both subgoals are solved by application of IH.

Lemma 4.9 (Symmetry of ≈{A,C,AC}). If ∇ ` t ≈{A,C,AC} t′ then ∇ ` t′ ≈{A,C,AC} t.

Proof. Symmetry is easily formalised in file AACC Equiv.v, Lem. aacc equiv sym, by
induction on ≈{A,C,AC} applying lemmas 4.3, 4.6 and 4.8, freshness preservation and
equivariance.

In particular, the use of the Lem. 4.8 is crucial: in the (≈α [ab]) case one should prove
that ∇ ` [b]t′ ≈{A,C,AC} [a]t having as hypotheses ∇ ` t ≈{A,C,AC} (a b) · t′ and ∇ ` a# t′,
with IH ∇ ` (a b) · t′ ≈{A,C,AC} t. Then, Lem. 4.8 is applied twice instantiating t2 as
(a b) · t and as (a b)⊕ (a b) · t′, this allows the use of Lems. 4.3 (with properties of ≈α) and
equivariance to conclude.

The following corollary is used to derive, from Lems. 4.6, 4.8 and 4.9 the proofs
that ≈α,A, ≈α,C, ≈α,AC and ≈{A,C,AC} are indeed equivalence relations. Remember the
parameterisation used in the specification, in which equiv with argument set of indices
{0}, {1}, {2} and {0, 1, 2} correspond respectively to ≈α,A, ≈α,AC, ≈α,C and ≈{A,C,AC}.

Corollary 4.1 (Equivalence of equiv(S), for S ⊆ {0, 1, 2}). For S ⊆ {0, 1, 2}, equiv(S)
is also an equivalence relation.

Proof. The formalisation is in file Equiv.v, Lem. subset equivalence, and is obtained
by the manipulation of the superscripts in S−1 = {0, 1, 2} − S. For a general equivalence
problem equiv(S)(∇, t1, t2), one replaces all superscripts of the operators in the terms t1
and t2 inside the set S−1 by new ones that neither belong to {0, 1, 2} nor occur in t1 and t2
obtaining respectively t′1 and t′2. Then, by induction on the inference rules for equiv, one
easily proves that equiv(S)(∇, t1, t2) ⇔ equiv(S)(∇, t′1, t′2) ⇔ equiv({0, 1, 2})(∇, t′1, t′2).
Thus, using that equiv({0, 1, 2}) is an equivalence relation one concludes.

54

4.4 A naive implementation of the ≈{A,C,AC} equality-
checking algorithm

An algorithm to check a problem 〈∇, P 〉 modulo A/C/AC is defined by the recursive
function Check given in Algorithm 1. This algorithm simply distinguishes the cases that
should be considered to deal with A/C/AC function symbols. For instance, assuming
that + is an AC function symbol, the equality ∇ ` +〈s,+〈t, [a]X〉〉 ≈α,AC +〈+〈[b]X, s〉, t〉
holds whenever the freshness constraints a#X, b#X belong to ∇. Equational problems
will be written as pairs 〈∇, P 〉, where ∇ is a set of freshness constraints and P a set of
equations. For simplicity, when no confusion arises brackets will be omitted.

Example 4.5. Assuming ∇ = {a#X, b#X} and using Algorithm 1, where g is a syntactic
function symbol, it follows that

∇, {[a]g〈a,X〉 ≈ [b]g〈b,X〉} =⇒Line 12 ∇, {g〈a,X〉 ≈ (a b) · g〈b,X〉}

= ∇, {g〈a,X〉 ≈ g〈a, (a b).X〉} =⇒Line 42 ∇, {〈a,X〉 ≈ 〈a, (a b)X〉}

=⇒Line 8 ∇, {a ≈ a,X ≈ (a b).X} =⇒Line 6, 16 ∇, ∅ =⇒Line 2 >

Example 4.6. Consider the problem 〈∅, {fAk 〈ā, 〈b̄, [a]ā〉〉 ≈ fAk 〈〈ā, b̄〉, [b]b̄〉}〉.

∅, {fAk 〈ā, 〈b̄, [a]ā〉〉 ≈ fAk 〈〈ā, b̄〉, [b]b̄〉}

=⇒Line 19, 21 ∅, {fAk 〈b̄, [a]ā〉 ≈ fAk 〈b̄, [b]b̄〉}, since Check(∅, ā ≈ ā) (Line 20)

=⇒Line 19, 21 ∅, {fAk [a]ā ≈ fAk [b]b̄}, since Check(∅, b̄ ≈ b̄) (Line 20)

=⇒Line 19, 21 ∅, {〈〉 ≈ 〈〉}, since Check(∅, [a]ā ≈ [b]b̄) (Line 20)

=⇒Line 5, 2 >

Notice that, in the third step above, one calls Check(∅, 〈〉 ≈ 〈〉) since (fAk [a]ā)[?1]
fA
k

=
(fAk [b]b̄)[?1]

fA
k

= 〈〉 (see Figs. 4.1 to 4.3).

Example 4.7. Consider the problem 〈∅, {fCk 〈b̄, [a]ā〉 ≈ fCk 〈[b]b̄, b̄〉}〉.

∅, {fCk 〈b̄, [a]ā〉 ≈ fCk 〈[b]b̄, b̄〉}

=⇒Line 29 ∅, {b̄ ≈ b̄, [a]ā ≈ [b]b̄},

since Check(∅, {b̄ ≈ [b]b̄, [a]ā ≈ b̄}) = ⊥ (L. 27)

=⇒Line 6 ∅, {[a]ā ≈ [b]b̄} =⇒Line 10, 12, 2 >

Example 4.8. Let ∗ and f be a C and a syntactic function symbol respectively. Consider
the problem 〈∇, {[a]f〈[b](X ∗ b), Y 〉 ≈ [b]f〈[a](a ∗X), Y 〉}〉 and assume that {a#X, b#X,

55

Algorithm 1 Checking α-equivalence modulo A, C and AC
1: function Check(∇, P)

2: if P = ∅ then>
3: else let s ≈ t ∈ P and P ′ = P \ {s ≈ t} in
4: case s ≈ t of

5: 〈〉 ≈ 〈〉 : Check(∇, P ′) // rule (≈α 〈〉)

6: ā ≈ ā : Check(∇, P ′) // rule (≈α atom)

7: 〈s1, s2〉 ≈ 〈t1, t2〉 :
8: Check(∇, {s1 ≈ t1, s2 ≈ t2} ∪ P ′) // rule (≈α pair)

9: [a]s′ ≈ [a]t′ : Check(∇, {s′ ≈ t′} ∪ P ′) // rule (≈α [aa])

10: [a]s′ ≈ [b]t′ : // rule (≈α [ab])
11: if ∇ ` a# t′ then
12: Check(∇, {s′ ≈ (a b) · t′} ∪ P ′)
13: else ⊥
14: end if

15: π.X ≈ π′.X : // rule (≈α var)
16: if For all a ∈ ds(π, π′), a#X ∈ ∇ then Check(∇, P ′)
17: else ⊥
18: end if

19: fA
k s

′ ≈ fA
k t

′ : // rule (≈α A)
20: if Check(∇, {(fAk s′)(1)

fA
k

≈ (fAk t′)(1)
fA

k

}) then

21: if Check(∇, {(fAk s)[?1]
fA

k

≈ (fAk t)[?1]
fA

k

}) then Check(∇, P ′)
22: else ⊥
23: end if
24: else ⊥
25: end if

26: fC
k 〈s0, s1〉 ≈ fC

k 〈t0, t1〉 : // rule (≈α C)
27: if Check(∇, {s0 ≈ t0, s1 ≈ t1}) then Check(∇, P ′)
28: else
29: if Check(∇, {s0 ≈ t1, s1 ≈ t0}) then Check(∇, P ′)
30: else ⊥
31: end if
32: end if

33: fAC
k s′ ≈ fAC

k t′ : // rule (≈α AC)
34: let Branch(i) :=
35: if Check(∇, {(fACk s)(1)

fAC
k

≈ (fACk t)(i)
fAC

k

}) then

36: Check(∇, {(fACk s)[?1]
fAC

k

) ≈ (fACk t)[?i]
fAC

k

)})
37: else ⊥
38: end if in
39: if Iter(Branch, 1, ‖fACk t‖) then Check(∇, P ′)
40: else ⊥
41: end if

42: f s′ ≈ f t′ : Check(∇, {s′ ≈ t′} ∪ P ′) // rule (≈α app)

43: : ⊥ // otherwise
44: end if
45: end function

56

a#Y, b#Y } ⊆ ∇. The algorithm Check proceeds as follows:

∇, {[a]f〈[b](X ∗ b), Y 〉 ≈ [b]f〈[a](a ∗X), Y 〉}

=⇒Line 10, 11, 12 ∇, {f〈[b](X ∗ b), Y 〉 ≈ f〈[b](b ∗ (a b).X), (a b).Y 〉}

since ∇ ` a# f〈[a](a ∗X), Y 〉

=⇒Line 42 ∇, {〈[b](X ∗ b), Y 〉 ≈ 〈[b](b ∗ (a b).X), (a b).Y 〉}

=⇒Line 7, 8 ∇, {[b](X ∗ b) ≈ [b](b ∗ (a b).X), Y ≈ (a b).Y }

=⇒Line 9 ∇, {X ∗ b ≈ b ∗ (a b).X, Y ≈ (a b).Y }

=⇒Line 26, 27, 28, 29 ∇, {X ≈ (a b).X, b ≈ b, Y ≈ (a b).Y }

since Check(∇, {X ≈ b, b ≈ (a b).X, Y ≈ (a b).Y }) = ⊥

=⇒Line 15, 16 ∇, {b ≈ b, Y ≈ (a b).Y }, since ds(id, (a b))#X ⊆ ∇

=⇒Line 6 ∇, {Y ≈ (a b).Y }

=⇒Line 15, 16, 2 >, since ds(id, (a b))#Y ⊆ ∇

Lines 33 to 41 in Algorithm 1 deal with the case of equations headed by AC-function
symbols. The algorithm checks equality of the first argument on the lhs of the equation with
the first, second, third, etc. of the rhs until this check succeeds and then recursively checks
equality of the whole term obtained by eliminating the first argument on the lhs and the
successful ith argument on the rhs; otherwise, the search continues recursively increasing
ith until it exceeds the number of arguments of the heading function symbol in fACk s′, and
the check fails. This is specified in Coq through a simple recursive implementation of an
iteration function iter (see Fig. 4.9).

Example 4.9. Consider the problem 〈∇, {fACk ([a]a, π.X) ≈ fACk (π′.X, [b]b)}〉 and assume
that ds(π, π′)#X ⊆ ∇. The algorithm Check proceeds as follows:

∇, {fACk ([a]ā, π.X) ≈ fACk (π′.X, [b]b̄)}

=⇒Line 36 Check(∇, {[a]ā ≈ [b]b̄})

since Check(∇, {[a]ā ≈ π′.X}) = ⊥ (Line 35, 37)

=⇒Line 36 ∇, {fACk π.X ≈ fACk π′.X},

since Check(∇, {[a]ā ≈ [b]b̄}) = > (Line 35, 10, 6, 2)

=⇒Line 35 ∇, {〈〉 ≈ 〈〉},

since Check(∇, π.X ≈ π′.X) = > (Line 15)

=⇒Line 5, 2 >

57

Note that the proposed algorithm can check validity of α-equivalence constraints
modulo A and/or C and/or AC (≈{A,C,AC}) with multiple occurrences of function symbols,
some that might be A and some C and some other AC, all at once. This is due to the fact
that there are no interactions between A, C, and AC symbols since distributive properties
are not considered.

4.5 Automatic code extraction

To obtain executable code from the inductive definition of equiv (Fig. 4.8), an equivalent
recursive function, called equiv rec (Fig. 4.11), has been specified in file AACC Equiv rec.v.
This recursive function applies the α, A, C and AC equivalence inference rules. Since
the applications of rules (≈α A) and (≈α AC) require recursive applications of inference
rules to equations over terms that are not subterms of the input equation, the standard
Fixpoint definition of Coq is not applicable. Thus, a more powerful recursive combinator
was used that allows well-founded recursion, having as the decreasing measure the size of
the terms |t|. Also a recursive version of fresh (Fig. 4.8), called fresh rec (Fig. 4.10), was
defined in file AACC Equiv rec.v using the Coq Fixpoint combinator. This recursive
function is used in the specification of equiv rec (Fig. 4.11).

In equiv rec, the expression “equiv rec C s t by rec (term size s) lt” specifies that the
recursion is performed with the decreasing measure term size s. Then each recursive
call generates a proof obligation, checking that this measure is in fact decreasing. For
instance, in the pattern matching “equiv rec C (Ab a u) (Ab b v) := ...”, the recursive call
equiv rec C u v is executed in such way that term size (Ab a u) > term size u. The interest-
ing recursion case occurs in the pattern matching “equiv rec C (Fc 1 n u) (Fc E n’ v) := ...”,
that specifies the application of rule (≈α AC). In this case the auxiliary iterator iter
(Fig. 4.9) is used and the recursive calls are performed in equiv rec C (TPith 1 u 1 n)
(TPith i v 1 n) and equiv rec C (TPithdel 1 (Fc 1 n u) 1 n) (TPithdel i (Fc 1 n v) 1 n).
The proof that the specified measure decreases uses Lems. term size TPith and
term size TPithdel, of file Tuples.v, showing that:

term size (Fc 1 n u) > term size (TPith 1 u 1 n) and
term size (Fc 1 n u) > term size (TPithdel 1 (Fc 1 n u) 1 n).

The recursive calls generated by the application of rule (≈α AC) need to be specified
through an auxiliary (recursively defined) iteration operator iter (see Fig. 4.9) that makes
the application of the fixed point Coq mechanisms difficult.

For the verification of equiv rec, the techniques given by Sozeau [66] were adopted.
The applied strategy uses a new type of definition named Equations that allows the
simultaneous use of well-founded and iterative recursion, automatically generating the

58

Fixpoint iter (P : nat → bool) (i j : nat) {struct j} : bool :=
match j with
| 0 ⇒ false
| S j0 ⇒ if P i

then true
else iter P (S i) j0

end .
Figure 4.9: Specification of the recursive iterator iter

Fixpoint fresh rec (C : Context) (a : Atom) (t : term) :=
match t with

| «» ⇒ true

| %a0 ⇒ if eq atom rec a a0
then false
else true

| [a0]ˆs ⇒ if eq atom rec a a0
then true
else fresh rec C a s

| <|u, v|> ⇒ fresh rec C a u && fresh rec C a v

| Fc m n s ⇒ fresh rec C a s

| pi|.X ⇒ if in context dec (!pi $ a, X) C
then true
else false

end.
Figure 4.10: Specification of fresh rec

59

Equations equiv rec (C : Context) (s t : term) : bool :=
equiv rec C s t by rec (term size s) lt :=

equiv rec C Ut Ut := true;

equiv rec C (At a) (At b) :=
eq atom rec a b;

equiv rec C (Ab a u) (Ab b v) :=
if eq atom rec a b
then equiv rec C u v
else
if fresh rec C a v
then equiv rec C u (((a,b)::nil)@v)
else false;

equiv rec C (Pr u0 u1) (Pr v0 v1) :=
if equiv rec C u0 v0
then equiv rec C u1 v1
else false;

equiv rec C (Fc 0 n u) (Fc E n’ v) :=
if eq nat rec n n’ && eq nat rec 0 E
then
if equiv rec C (TPith 1 u 0 n) (TPith 1 v 0 n)
then equiv rec C (TPithdel 1 (Fc 0 n u) 0 n)

(TPithdel 1 (Fc 0 n v) 0 n)
else false
else false;

equiv rec C (Fc 1 n u) (Fc E n’ v) :=
if eq nat rec n n’ && eq nat rec 1 E
then

let branch (i : nat) :=
if equiv rec C (TPith 1 u 1 n) (TPith i v 1 n)
then equiv rec C (TPithdel 1 (Fc 1 n u) 1 n)

(TPithdel i (Fc 1 n v) 1 n)
else false
in iter branch 1 (TPlength v 1 n)

else false;

equiv rec C (Fc 2 n (Pr u0 u1))
(Fc E n’ (Pr v0 v1)) :=

if eq nat rec n n’ && eq nat rec 2 E
then
if
if equiv rec C u0 v0
then equiv rec C u1 v1
else false
then true
else
if equiv rec C u0 v1
then equiv rec C u1 v0
else false

else false;

equiv rec C (Fc E n u) (Fc E’ n’ v) :=
if eq nat rec E E’ && eq nat rec n n’
then equiv rec C u v
else false;

equiv rec C (Su pi X) (Su pi’ Y) :=
if eq var rec X Y
then sub context rec

(fresh context (disgr pi pi’) X) C
else false;

equiv rec C := false.

Figure 4.11: Specification of equiv rec

60

simplification lemmas required in the inductive formalisation of the correctness of equiv rec.
Other techniques are available in Coq for defining more complex recursive functions, such
as the Program Fixpoint definition [65]. This allows the specification of functions with
well-founded and iterative recursion, but the simplification lemmas are not automatically
generated.

Another way of building recursive functions from inductive definitions in Coq is proposed
in the recent work by Larchey-Wendling and Monin [47]. The strategy consists in defining
first the graph of the inductive definition; then, one proves termination, functionality
and totality (over a specific domain) of the graph. This strategy also allows the use of
Coq code extraction, but the process of constructing the recursive definition is not as
straightforward as the Equation approach applied in the present work.

The following lemma verifies the recursive function equiv rec stating its equivalence to
the inductive definition ≈{A,C,AC}.

Lemma 4.10 (Correctness of equiv rec). ∇ ` s ≈{A,C,AC} t iff (equiv rec∇ s t = true).

Proof. The formalisation is in file AACC Equiv rec.v, Lem. equiv rec eq. Necessity
is proved by induction on the derivation rules of ∇ ` s ≈{A,C,AC} t. Each case uses a
previous result based on an automatically generated simplification lemma for equiv rec. For
instance, for the case of rule (≈α [ab]) the hypotheses are a 6= b, ∇ ` u ≈{A,C,AC} (a b) · v
and ∇ ` a# v, and IH is given by (equiv rec ∇u ((a b)·v) = true). A previous result allows
to rewrite the objective (equiv rec∇ ([a]u) ([b]v) = true) to ((fresh rec∇ a v = true) ∧
(equiv rec ∇u ((a b)·v) = true)). After rewriting IH, one concludes using a previous correct-
ness lemma for fresh rec which states that ∇ ` a# v if and only if (fresh rec∇ a v = true).

Sufficiency is reached by induction on the size of s and case analysis over s and t. One
of the non-trivial cases is when both terms s and t are headed by the same AC function
symbol f . In this case the hypotheses are l = |u|+ 1 and (equiv rec∇ (f u) (f v) = true),
and IH is given by ∀m,m < l ⇒ ∀u0,∀v0, (equiv rec∇u0 v0 = true) ⇒ ∇ ` s0 ≈{A,C,AC}
v0. A previous result allows rewriting the premisse (equiv rec∇ (f u) (f v) = true) to
∃i, (equiv rec∇u(1) v(i) = true) ∧ (equiv rec ∇ (f u)[?1] (f v)[?i] = true). Splitting this
conjunction and applying IH in both generated premisses results in two new hypotheses
∇ ` u(1) ≈{A,C,AC} v(i) and ∇ ` (f u)[?1] ≈{A,C,AC} (f v)[?i]. Notice that in the applications of
IH the condition m < l needs to be verified through arithmetic properties of the operators
| |, ‖ ‖, () and [?]. Then, one concludes with an application of rule (≈α AC).

Executable OCaml code was automatically extracted from equiv rec, using the built-
in code extraction mechanism of Coq. The generated code is available as the file
Impl/Original Generated Equiv.ml inside the specification folder.

61

The extracted code uses Coq naturals to represent atoms, variables and indices of
function symbols: n is represented as n applications of the successor constructor S to zero
0. For execution tests (see Subsec. 4.6), an adjusted version of the generated code that
just replaces Coq naturals by OCaml integers, was used. The adjusted code is available as
the file Impl/Adjusted Generated Equiv.ml.

In addition to the extracted naive algorithm, a manually generated one was implemented
that essentially improves the representation of terms by flattening arguments of A and
AC function symbols, and by a simpler analysis for the AC case than the one given by
the Algorithm 1. By flattening terms, application of the selection and deletion operators,

()f and [?]f , over arguments of A and AC operators is avoided and arguments of
these operator are then sequentially analysed.

The improved analysis of the AC case is inspired by the translation to the problem of
finding a perfect matching in a bipartite graph given in [17] initially proposed for solving
AC-matching. For a given equational problem over terms headed by an AC function
symbol, a graph whose vertices are labelled by the arguments of the AC function in the
lhs and rhs of the equation is built. There is an edge between two vertices labelled by
arguments in opposite sides of the equation if they match. A perfect matching in the
bipartite graph is a solution for the initial problem. In the case of AC-equational check,
for solving the flattened equational problem f(s1, . . . , sk) ≈ f(t1, . . . , tk), if the answer
is positive, and if si is known to be equivalent to tl and tj, there should be another
lhs argument sm that is also equivalent to these three arguments. Thus, the improved
implementation essentially searches imperatively for rhs arguments that are equivalent to
the first, second and so on lhs arguments (see the complexity analysis given in Thm. 4.1).
This implementation is available as files Impl/Basics.ml and Impl/Improved Equiv.ml.

4.6 Execution tests

Experiments were performed with the extracted and improved algorithms, over an iMAC
server with 16GB of RAM and with a processor Intel Xeon CPU, model W3530 2.80GHz,
providing randomly recursively generated ground equational problems as inputs. Terms
were generated using only tuples with arguments associated to the right as arguments for
A and AC function symbols. Also, subterms headed by an associative function symbol,
say either fAk or fACk , do not have arguments headed by the same function symbol. For
example, fA0 〈ā, 〈b̄, 〈c̄, 〈d̄, ē〉〉〉〉 and fAC0 〈fA0 〈ā, b̄〉, fA4 〈c̄, fAC0 〈d̄, ē〉〉〉 are in this class of terms.

Although flattened terms mitigate the required effort for manipulation of arguments
of associative operators, it should be stressed that the adequate data structure to deal
with flattened arguments of these operators should allow random access as arrays and

62

sequences do. Also, having only ground terms mitigates the negative effects of inefficient
procedures for dealing with permutation operations, such as queries about their support,
inversion and composition, which are used in the extracted algorithm for application of
rule (≈α var).

The number of different syntactic, A, C and AC symbols were restricted to ten (each
class), and atoms were chosen among a set of ten thousand. In the randomly recursive
generation of an equational problem, whenever abstractions are generated as subterms,
the choice of different atoms in the lhs and in the rhs of the equation is enforced. This
strategy was adopted to prioritise the use of rule (≈α [ab]) against (≈α [aa]), since the
latter has lower cost. In this case, to guarantee that the equality-checking results in true,
avoiding collisions and ensuring the condition ∇ ` a# t′ of the rule (≈α [ab]), a list of
used atoms that are not allowed to occur in the body of the abstractions is kept.

Four different sets of input problems were generated. The first one, uses only ab-
stractions and syntactic function symbols; the second uses also A symbols; the third uses
syntactic, A and C symbols; and, the fourth allows all four kinds of symbols. For each
set, problems with positive answer of sizes from 100 to 10000, with intervals of length 100,
were generated; for each size twenty five different problems were generated. Each problem
was tested with both, the extracted and the improved implementations.

For the improved algorithm inputs were translated by representing tuples as lists. The
cost of this syntactic translation was not considered, but of course the time required for
the flattening operation was considered in the evaluation. This operation consists in the
elimination of nested occurrences of A and AC function symbols.

Time performance of the experiments is given in Figs. 4.12 to 4.15. Plots in each figure
correspond to tests with the same set of inputs, and lhs and rhs plots correspond respectively
to experiments with the extracted and the improved implementations. These figures plot
also the regressions computed using the generalised additive model (GAM) generated
using the ggplot2 library of R. For all sets of inputs the performance of the improved
implementation was better than the performance of the extracted implementation.

As expected, from the required uniformity of known worst case inputs, which even for
α-syntactic problems results in exponential running time for the extracted algorithm, in
all cases it could be observed that only a few isolated cases present running time much
higher than the regression curve.

The α-syntactic case (Fig. 4.12) shows a linear behaviour for both implementations.
Notice that the improved implementation was, approximately, 15% faster than the extracted
one. This can be explained by the fact that the recursive calls in nested tuples are more
time consuming than operating on more efficient data structures, such as lists, used to
represent arguments of function symbols.

63

Adding A and C-function symbols (respectively, Fig. 4.13 and Fig. 4.14) increases
the running time as expected, but the relative behaviour is very similar. In this case the
performance of the improved implementation was approximately thirty times faster than
the performance of the extracted algorithm. This could be explained since the bottleneck of
the extracted algorithm resides in the inefficient manipulation of permutation operations as
well as inefficient data structure for the representation of function arguments, incrementing
in this way the running time required for the analysis of A and C operators over problems
randomly generated as explained. The small effect caused by the addition of C function
symbols, for both implementations, is explained by the fact that the inputs with high cost
attributed to the C checking are artificial and with low probability of occurrence in the
random input generator.

Substantial additional running time is required if AC-symbols are included (Fig. 4.15).
Indeed, in the extracted algorithm, one moves from milliseconds to seconds. This is
explained because of the required exhaustive application of the linear running time
implementations for the operators ‖ ‖f , ()f and [?]f (see Figs. 4.1, 4.2 and
4.3) used to deal with AC terms. This happens since these operators were implemented
straightforwardly over tuples that are in fact built as combinations of nominal pairs. In
addition, the approach adopted in the improved implementation is more efficient regarding
recursive computation of equality-checking for arguments of AC operators. The advantages
of this approach can be observed in Fig. 4.15 where the maximum execution time was less
than 3 milliseconds for inputs of size around five thousand and less than one hundredth of
a second for inputs of size around ten thousand.

Accentuation of the curves for inputs in the fourth set of size greater than 8300, for
both implementations can be explained by memory saturation; larger terms could be
treated by improving the data structures used for representing arguments of nominal AC
operators.

4.7 Upper bounds

This section is concerned with providing upper bounds to the problem of checking the
validity of α-equivalence constraints in the presence of A, C and AC function symbols, by
applying simplification rules. Several techniques from [24], originally implemented to deal
polynomially with nominal α-equivalence as well as with nominal matching, should be
adopted in order to obtain efficient algorithms. Among these techniques, it is necessary to
use adequate data structures, such as trees for terms and random access structures for
maintaining and answering in constant time queries about the images of permutations and
their inverses, as well as for updating compositions of swappings and permutations (and

64

0.000

0.002

0.004

0.006

0 2500 5000 7500 10000

Input size

T
im

e
(s

ec
s.

)

0.000

0.002

0.004

0.006

0 2500 5000 7500 10000

Input size

T
im

e
(s

ec
s.

)

Figure 4.12: Tests with only α operators. The same scale was used in the left- and
right-hand side plots

65

0.0

0.1

0.2

0.3

0.4

0 2500 5000 7500 10000

Input size

T
im

e
(s

ec
s.

)

0.000

0.002

0.004

0.006

0 2500 5000 7500 10000

Input size

T
im

e
(s

ec
s.

)

Figure 4.13: Tests with α-A operators. The scale of the time-axis on the right-hand side
is 33.3 times bigger than on the left-hand side

66

0.0

0.1

0.2

0.3

0 2500 5000 7500 10000

Input size

T
im

e
(s

ec
s.

)

0.000

0.001

0.002

0.003

0.004

0 2500 5000 7500 10000

Input size

T
im

e
(s

ec
s.

)

Figure 4.14: Tests with α-A-C operators. The scale of the time-axis on the right-hand
side is 37.5 times bigger than on the left-hand side

67

0

20

40

60

0 2500 5000 7500 10000

Input size

T
im

e
(s

ec
s.

)

0.00

0.01

0.02

0.03

0.04

0 2500 5000 7500 10000

Input size

T
im

e
(s

ec
s.

)

Figure 4.15: Tests with α-A-C-AC operators. The scale of the time-axis on the right-hand
side is 750 times bigger than on the left-hand side

68

their inverses). The log-linear algorithm defined in [24] to check α-equivalence relies on
the use of “lazy permutations”: permutations, their inverses and supports are “suspended”
over terms and updated eagerly whenever swappings have to be applied, but they are only
pushed down one level in the tree structure of the terms when a transformation rule is
applied, and they are applied to terms only when necessary.

Remark 4.4. To illustrate why such an approach is used, consider lines 10 to 14 in
Algorithm 1, related with the application of the rule (≈α [ab]). Special care has to be taken
with (a b) t′ (line 12, rule (≈α [ab])), since it is not a term in our syntax, the permutation
has to be propagated in t′ and this implies an additional linear factor on the complexity
of checking α-equivalence. However, adopting the above-mentioned approach, where the
syntax is extended with “suspended” permutations over terms, which are propagated in a
“lazy” way, this linear factor is avoided. Also, notice that there is a secondary freshness
checking in ∇ ` a# t′. This requires an algorithm for validating freshness constraints based
on simplification rules for freshness (Fig. 2.5 bottom up) which is linear in 〈∇, a# t′〉. To
avoid repeated computations (for instance, the check for ∇ ` a# t′ may appear several
times in the computation) one could keep a list of atoms that need to be fresh to a term.
This was exactly the propose of [24], where lists of atoms and permutations are appended
to terms.

Theorem 4.1 (Running time bounds). Let n be the size of a problem 〈∇, P 〉, given as
|〈∇, P 〉| := |∇|+ |P |, where |∇| is the number of atoms and variables occurring in ∇ and
|P | the sum of the size of terms in equations in P . The validity of 〈∇, P 〉 modulo A, C
and AC can be checked in time

i) O(n log n), if the problem includes neither C nor AC-function symbols;

ii) O(n2 log n), if the problem does not contain AC function symbols; and

iii) O(n3 log n), otherwise.

Proof. (sketch)
To obtain these bounds, first the use of suspended permutations over terms and of lazy

propagation of permutations and freshness checks (see Rmk. 4.4) is assumed; second, that
terms in the problems are pre-computed providing a flat representation of the arguments
of A and AC-function symbols. All maximal subterms should be linearly pre-computed to
provide their arguments. This can be done for instance using sequences or arrays of terms
in which arguments are flattened and might be accessed randomly (in constant time).

i) Consider a problem of the form 〈∇, {s ≈ t}〉 where s and t contain neither C- nor
AC-function symbols. Since A-function symbols are assumed to be flattened, the

69

problem can be log-linearly solved through a simple adaptation of the solution
for α-equivalence checking given in [24]. For the A case, the problem can be
directly decomposed, according to the number ns of flattened arguments, into a new
problem with ns new disjoint equational sub-problems, that is, a problem of the form
〈∇, P ∪ {fAk s′ ≈ fAk t

′}〉 becomes directly a problem of the form 〈∇, P ∪ {s′(1)
fA
k

≈
t′(1)

fA
k

, . . . , s′(ns)fA
k

≈ t′(ns)fA
k

}〉.

ii) Let 〈∇, {s ≈ t}〉 be a problem without AC-function symbols. A regular worst case
happens when the problem has k nested C-function symbols. Assume that n = m 2k,
where m� n. In this case, considering terms with the same commutative symbol at
the root, and with arguments of the same size, an upper bound for the running time
is given by the recurrence relation:

T (n) = 4T (n/2) +O(n log n) where T (m) = O(m logm).

In the first recurrence equation, the first summand has a factor 4 because it is
necessary to check four sub problems of half of the original size, and the second
summand provides a bound, according to the previous item, if the term does not
have C-operators. Notice that both summands are included since the objective is to
give an upper bound. The initial condition of the recurrence relation also assumes
that sub-problems of size m have no occurrences of C-function symbols. Thus one
has,

T (n) = 4T (n/2) +O(n log n)
= 4k T (m) +O(n)∑k−1

i=0 2i(log n− i log 2)
= (n

m
)2O(m logm) +O(n log n)∑k−1

i=0 2i −O(n) log 2∑k−1
i=0 2ii

= O(n2 logm
m

) +O(n log n)(2k − 1)−O(n) log 2(2k(k − 2) + 2)
= O(n2) +O(n2 log n)
= O(n2 log n)

Factors related with m can be omitted since m� n was assumed.

iii) First, notice that terms headed by C-function symbols can be considered as a
particular case of AC symbols whose tuples (arguments) have always exactly two
elements. Thus, the complexity analysis for C- and AC-function symbols could be
unified.

Let 〈∇, {s ≈ t}〉 be a problem that contains AC-function symbols. Assuming the
flat representation of all maximal subterms of s and t that are headed with A and

70

AC-function symbols is pre-computed, the relevant part of the analysis is related
with the verification of α-equivalence between subterms s′ and t′ of s and t headed
by an AC-function symbol, say fACk . This involves checking whether the tuple of ns
arguments in s′ contains arguments that are related by α-equivalence modulo AC to
arguments of the tuple of arguments in t′. These arguments are not necessarily in
the same positions in the tuples of arguments of s′ and t′. In the worst case scenario,
for each argument of the tuple of arguments of fACk in s′, say s′(i)

fAC
k

, one has to

go over the whole tuple of arguments of fACk in t′, checking 〈∇, {s′(i)
fAC
k

≈ t′(j)
fAC
k

}〉,
for i, j ≤ ||s′||fAC

k
. In case this is true, ≈{A,C,AC}-equivalence eliminating these two

arguments of the tuples should be checked. By item i), one already knows that the
procedure without C and AC symbols is log-linear.

The problem essentially boils down to the problem of searching a perfect matching
in the bipartite graph that consists of vertices V labelled by the ns arguments of the
lhs’s and rhs’s and edges, E, between vertices labelled with terms that match, as
proved in [17] for solving AC-matching in the usual first-order syntax. This problem
is known to have solutions of complexity O(|V | × |E|), that is the same as O(|V |3)
since in the worst case one has O(|V |2) edges (see for instance [33]).

One concludes that searching for a perfect matching is bounded cubically on the
size of the problem, since the number of arguments, ||s′||fAC

k
, is linearly bounded

in the size of the problem. But notice that for the case of just AC-equivalence,
applying this method requires only complexity O(|V |2) since after having checked
two terms to be equivalent, the corresponding edge can be fixed and checking for
other equivalences for these terms is unnecessary. Thus, an upper bound for the
whole problem is O(n3 log n).

71

Chapter 5

Nominal C-unification and matching

In this chapter the techniques to specify and formalise the main properties of nominal
unification and matching in a signature with C function symbols are described. Results of
the present chapter were published in [3] and in [7].

5.1 Formalisation of nominal C-unification with
protected variables

This section describes a formalisation of an algorithm to solve nominal unification problems
in a signature with commutative function symbols. This algorithm was specified using a
rule-based approach that follows the same strategy presented in Subsec. 2.2.2. Two sets
of transformation rules are used, one to deal with equations (Fig. 5.1) and the other to
deal with freshness constraints (Fig. 5.2). These rules act over quadruples of the form
〈∇,X , σ, P 〉, where: ∇ is a freshness context; X is a set of protected variables (variables
that are forbidden to be instantiated); σ is a substitution; and P is a set of nominal
constraints. From now, calligraphic uppercase letters (e.g., P ,Q,R, etc) will denote
quadruples.

The inference rules transform a quadruple into a finite family of fixed point problems
{Q0, ...,Qn}. These fixed point (or just FP) problems are quadruples whose set of nominal
constraints is composed only by FP equations of form π.X ≈? X.

Example 5.1. Given the nominal unification problem P = 〈∅, {[a][b]X ≈? [b][a]X}〉, the
standard unification algorithm given in Subsec. 2.2.2 reduces it to 〈∅, {X ≈? (a b).X}〉,
which gives the solution 〈{a#X, b#X}, id〉. However, as will be showed in Chap. 6,
independent solutions are feasible when there is at least one commutative function symbol
in the signature. The derivation form P to 〈{a#X, b#X}, id〉 is given below.

P = 〈∅, id, { [a][b]X ≈? [b][a]X }〉

72

⇒(≈?[ab]) 〈∅, id, { [b]X ≈? [b](a b).X , a#? [a]X}〉

⇒(≈?[aa]) 〈∅, id, { X ≈? (a b).X , a#? [a]X}〉

⇒(≈?var) 〈{a#X, b#X}, id, { a#? [a]X }〉

⇒(#? [aa]) 〈{a#X, b#X}, id, ∅〉

5.1.1 Basic formalised notions and results on nominal C-unification

Definition 5.1 (Nominal C-unification problem with protected variables). A nominal
C-unification problem with protected variables is a triple 〈∇,X , P 〉, where ∇ is a freshness
context, X a set of protected variables, and P a finite set of nominal constraints.

From now,∇ ` σ ≈ σ′ will be replaced by∇ ` σ≈α,C σ′ and denote that∇ ` Xσ ≈α,C Xσ′

for all X in dom(σ) ∪ dom(σ′).

Definition 5.2 (Solution for quadruples and unification problems). A solution for a
quadruple P = 〈∆,X , δ, P 〉 is a pair 〈∇, σ〉, where the domain of σ has no variables in X ,
and the following conditions are satisfied:

i) ∇ ` ∆σ;

ii) if a#? t ∈ P then ∇ ` a# tσ;

iii) if s ≈? t ∈ P then ∇ ` sσ ≈α,C tσ;

iv) there exists λ such that ∇ ` δλ≈α,C σ.

A solution for a unification problem 〈∆,X , P 〉 is a solution for the associated quadruple
〈∆,X , id, P 〉. The solution set for a unification problem or quadruple P is denoted by
UC(P).

Definition 5.3 (Variables of a quadruple). The set of variables of P = 〈∇,X , σ, P 〉 is
defined as V ar(P) and also denoted by V ar(P).

The only rule of Fig. 5.1 that can generate branches is (≈? C). This rule is indeed
an abbreviation for two rules providing the different forms in which one can relate the
arguments s and t in an equation fCk s ≈? f

C
k t for a commutative function symbol: either

〈s0, s1〉 ≈? 〈t0, t1〉 or 〈s0, s1〉 ≈? 〈t1, t0〉.

Definition 5.4 (Proper problem). A quadruple P = 〈∆,X , δ, P 〉 is called a proper
problem if every commutative function symbol in P has a tuple as argument.

73

〈∇,X , σ, P] {s ≈? s}〉 (≈? refl)
〈∇,X , σ, P 〉

〈∇,X , σ, P] {〈s1, t1〉 ≈? 〈s2, t2〉}〉 (≈? pair)
〈∇,X , σ, P ∪ {s1 ≈? s2, t1 ≈? t2}〉

〈∇,X , σ, P] {π.X ≈? π
′.X}〉, π′ 6= id

(≈? inv)
〈∇,X , σ, P ∪ {π ⊕ (π′)−1.X ≈? X}〉

〈∇,X , σ, P] {fEk s ≈? f
E
k t}〉, E 6= C

(≈? app)
〈∇,X , σ, P ∪ {s ≈? t}〉

〈∇,X , σ, P] {fCk 〈s0, s1〉 ≈? f
C
k 〈t0, t1〉}〉, i = 0, 1

(≈? C)
〈∇,X , σ, P ∪ {s0 ≈? ti, s1 ≈? t1−i〉

〈∇,X , σ, P] {[a]s ≈? [a]t}〉
(≈? [aa])

〈∇,X , σ, P ∪ {s ≈? t}〉
〈∇,X , σ, P] {[a]s ≈? [b]t}〉

(≈? [ab])
〈∇,X , σ, P ∪ {s ≈? (a b) · t, a#? t}〉

〈∇,X , σ, P] {π.X ≈? t} or {t ≈? π.X}〉 let σ′ := σ{X/π−1 · t}, X /∈ var(t) ∪ X
(≈? inst)〈

∇,X , σ′, P{X/π−1 · t} ∪
⋃

Y ∈dom(σ′),
a#Y ∈∇

{a#? Y σ
′}

〉

Figure 5.1: Reduction rules for equations

Remark 5.1. Terms in the equations preserve the syntactic restriction that commutative
symbols are only applied to tuples. This restriction is not crucial since any equation of the
form fCk π.X ≈? t can be translated into an equation of form fCk 〈π.X1, π.X2〉 ≈? t, where
X1 and X2 are new variables and ∇ is extended to ∇′ in such a way that both X1 and X2

inherit all freshness constraints of X in ∇: ∇′ = ∇∪ {a#Xi | i = 1, 2, and a#X ∈ ∇}.

In the rule (≈? inst) of Fig. 5.1 notice that the inclusion of new constraints in the
problem, given in ⋃(Y ∈dom(σ′), a#Y ∈∇){a#? Y σ

′} is necessary to guarantee that the new
substitution σ′ is compatible with the freshness context ∇. Also, checking whether the
variable X is a protected variable is a condition for the application of rule (≈? inst).

Notation 5.1. P ⇒≈ Q (resp. P ⇒# Q) will denote that P reduces to Q by the rules
of Fig. 5.1 (resp. Fig. 5.2). As usual, the relation ⇒∗≈ (resp. ⇒∗#) denotes zero or more
reduction steps of ⇒≈ (resp. ⇒#).

Notation 5.2 (Set of ⇒≈ and ⇒#-normal forms). P⇒≈ (resp. P⇒#) denotes the set of
normal forms of P with respect to ⇒≈ (resp. ⇒#).

The relations⇒# and⇒≈ are specified in file C Unif.v through propositional relations
fresh sys and equ sys in Figs. 5.4 and 5.5. Each constructor of these definitions represents

74

〈∇,X , σ, P] {a#? 〈〉}〉 (#? 〈〉)〈∇,X , σ, P 〉
〈∇,X , σ, P] {a#? b̄}〉 (#? ab̄)

〈∇,X , σ, P 〉

〈〈∇,X , σ, P] {a#? f t}〉 (#? app)
〈∇,X , σ, P ∪ {a#? t}〉

〈∇,X , σ, P] {a#? [a]t}〉
(#? a[a])

〈∇,X , σ, P 〉

〈∇,X , σ, P] {a#? [b]t}〉
(#? a[b])

〈∇,X , σ, P ∪ {a#? t}〉
〈∇,X , σ, P] {a#? π.X}〉 (#? var)
〈{(π−1 · a)#X} ∪ ∇,X , σ, P 〉

〈∇,X , σ, P] {a#? 〈s, t〉}〉 (#? pair)
〈∇,X , σ, P ∪ {a#? s, a#? t}〉

Figure 5.2: Reduction rules for freshness constraints

one rule, except for the case of rule (≈? C) that is specified by two constructors: equ sys C1
and equ sys C2. For instance, rules (≈? [aa]) and (≈? [ab]) are specified, respectively,
by equ sys Ab1 and equ sys Ab1, and rules (#? a[a]) and (#? a[b]), respectively, by
fresh sys Ab 1 and fresh sys Ab 2.

Remark 5.2. Notice that, in equ sys (Fig. 5.4) the set of protected variables X is given by
the parameter varSet in the definition of the relation. Then simplification rules are applied
over triples 〈∇, σ, P 〉, instead of quadruples as presented in the theory. This difference
has no effect in the behaviour of the algorithm or in the formal proofs. The set X (or
varSet) remains unchanged during derivations, having action only in the application of
rule (≈? inst). The condition of this rule of checking whether X ∈ V ar(t) ∪ X is specified
in the expression (¬ set In X (set union var eqdec (term vars t) varSet)) of constructor
equ sys inst (of relation equ sys).

Normal forms (NF) and the transitive-reflexive closure of a generic propositional
relation (tr clos) are specified also in file C Unif.v as presented in Fig. 5.3.

Definition NF (T :Type) (R:T→T→Prop) (s:T) := ∀ t, ¬ R s t.

Inductive tr clos (T :Type) (R:T→T→Prop) : T→T→Prop :=

| tr rf : ∀ s, tr clos T R s s

| tr os : ∀ s t, R s t → tr clos T R s t

| tr ms : ∀ s t u, R s t → tr clos T R t u → tr clos T R s u

Figure 5.3: Specification of NF and tr clos

75

Inductive equ sys (varSet : set Var) : Triple → Triple → Prop :=

| equ sys refl : ∀ C S P s, (set In (s ∼? s) P) →
equ sys varSet (C,S,P) (C,S,P\(s ∼? s))

| equ sys Pr : ∀ C S P s0 s1 t0 t1,
(set In ((<|s0,s1|> ∼? <|t0,t1|>)) P) →
equ sys varSet (C,S,P) (C,S,(((P|+(s0 ∼? t0))|+(s1 ∼? t1))\((<|s0,s1|> ∼? <|t0,t1|>))))

| equ sys Fc : ∀ C S P E n t t’, (set In ((Fc E n t ∼? Fc E n t’)) P) → E 6= 2 →
equ sys varSet (C,S,P) (C,S,(P|+(t ∼? t’))\((Fc E n t ∼? Fc E n t’)))

| equ sys C1 : ∀ C S P n s0 s1 t0 t1, (set In ((Fc 2 n (<|s0,s1|>) ∼? Fc 2 n (<|t0,t1|>)))) P →
equ sys varSet (C,S,P)
(C,S,((P|+(s0 ∼? t0))|+(s1 ∼? t1))\(Fc 2 n (<|s0,s1|>) ∼? Fc 2 n (<|t0,t1|>))))

| equ sys C2 : ∀ C S P n s0 s1 t0 t1, (set In ((Fc 2 n (<|s0,s1|>) ∼? Fc 2 n (<|t0,t1|>)))) P →
equ sys varSet (C,S,P)
(C,S,((P|+(s0 ∼? t1))|+(s1 ∼? t0))\(Fc 2 n (<|s0,s1|>) ∼? Fc 2 n (<|t0,t1|>))))

| equ sys Ab1 : ∀ C S P a t t’, (set In (([a]ˆt ∼? [a]ˆt’)) P) →
equ sys varSet (C,S,P) (C,S,(P|+(t ∼? t’))\(([a]ˆt ∼? [a]ˆt’)))

| equ sys Ab2 : ∀ C S P a b t t’, a 6= b → (set In (([a]ˆt ∼? [b]ˆt’)) P) →
equ sys varSet (C,S,P)
(C,S,((P|+(t ∼? ((a,b)::nil)@t’))|+(a #? t’)))\(([a]ˆt ∼? [b]ˆt’)))

| equ sys inst : ∀ C S S’ P pi X t,
(¬ set In X (set union var eqdec (term vars t) varSet)) →
((set In (pi|.X ∼? t) P) ∨ (set In (t ∼? pi|.X)) P)) →
S’ = S c©((X,(!pi)@t)::nil) →
equ sys varSet (C,S,P)
(C,S’,((P\(pi|.X ∼? t)\(t ∼? pi|.X)))|ˆˆ((X,(!pi)@t)::nil))\cup(C/?S’))

| equ sys inv : ∀ C S P pi pi’ X, pi 6= pi’ → pi’ 6= [] → (set In ((pi|.X ∼? pi’|.X)) P) →
equ sys varSet (C,S,P)
(C,S,(P|+((pi++(!pi’))|.X ∼? []|.X)))\((pi|.X ∼? pi’|.X))) .

Figure 5.4: Specification of equ sys

76

Inductive fresh sys : Triple → Triple → Prop :=

| fresh sys Ut : ∀ C S P a, (set In (a #? («»)) P) →
fresh sys (C,S,P) (C,S,P\(a #? («»)))

| fresh sys At : ∀ C S P a b, a 6= b → (set In (a #? (%b)) P) →
fresh sys (C,S,P) (C,S,(P\(a #? (%b))))

| fresh sys Fc : ∀ C S P a E n s, (set In (a #? (Fc E n s)) P) →
fresh sys (C,S,P) (C,S,(P|+(a #? s))\(a #? (Fc E n s)))

| fresh sys Ab 1 : ∀ C S P a s, (set In (a #? ([a]ˆs)) P) →
fresh sys (C,S,P) (C,S,(P\(a #? ([a]ˆs))))

| fresh sys Ab 2 : ∀ C S P a b s, a 6= b → (set In (a #? ([b]ˆs)) P) →
fresh sys (C,S,P) (C,S,(P|+(a #? s))\(a #? ([b]ˆs)))

| fresh sys Su : ∀ C S P a pi X, (set In (a #? (pi|.X)) P) →
fresh sys (C,S,P) (C|++((!pi) $ a,X),S,(P\(a #? (pi|.X))))

| fresh sys Pr : ∀ C S P a s t, (set In (a #? (<|s,t|>)) P) →
fresh sys (C,S,P) (C,S,(((P|+(a #? s))|+(a #? t))\(a #? (<|s,t|>)))) .

Figure 5.5: Specification of fresh sys

Definition 5.5 (Valid quadruple). P = 〈∇,X , σ, P 〉 is valid if im(σ) ∩ dom(σ) = ∅ and
dom(σ) ∩ V ar(P) = ∅.

Remark 5.3. A substitution σ in a valid quadruple P is idempotent, that is, σσ = σ.

Remark 5.4. The relation ⇒≈, starts from a quadruple with the identity substitution and
always maintains a quadruple 〈∇,X , σ′, P ′〉 in which the substitution σ′ does not affect the
current problem P ′. The same happens for ⇒# since the substitution does not change with
this relation. This motivates the next definition and lemma.

Lemma 5.1 (Preservation of valid quadruples by ⇒≈ or ⇒#). If P = 〈∇,X , σ, P 〉 is
valid and P ⇒≈ ∪ ⇒# P ′ = 〈∇′,X , σ′, P ′〉, then P ′ is also valid.

Proof. The proof is by case analysis on the derivation rules used in the relation ⇒≈
∪ ⇒#, and its formalisation is in file C Unif.v, Lems. fresh valid preservation and
equ valid preservation. The only rule that enlarges the domain of σ is (≈? inst)
building a new substitution σ′ = σ{X/π−1 · t}, for t such that X /∈ V ar(t). Since
dom(σ) ∩ V ar(P) = ∅ and t occurs in P , dom(σ′) ∩ V ar(t) = ∅; the first property is
obtained: im(σ′) ∩ dom(σ′) = ∅. For the second property, notice that P ′ consists of two
parts:

1. (P −{π.X ≈? t}){X/π−1 · t} that includes equations and freshness constraints whose
variables do not intersect dom(σ′); and

77

2. ⋃(Y ∈dom(σ′), a#Y ∈∇){a#? Y σ
′} that also does not include variables in dom(σ′), since

im(σ′) ∩ dom(σ′) = ∅.

Consequently, dom(σ′) ∩ V ar(P ′) = ∅ and then P ′ is a valid quadruple.

From now on, only valid quadruples will be considered.

Notation 5.3. Extending the Not. 2.7, P≈, P#, Pfp≈ and Pnfp≈ will, respectively, denote
the sets of equations, freshness constraints, FP and non FP equations in the set P .

5.1.2 Main formalised results for C-unification

Lemma 5.2 (Termination of ⇒≈ and ⇒#). The relations ⇒≈ and ⇒# are terminating.

Proof. The proof is by well-founded induction on P using the measure

|P| = 〈|V ar(P≈)|, |P≈|, |Pnfp≈|, |P#|〉

with a lexicographic ordering. Its formalisation is in file C Unif Termination, Lems.
equ sys termination and fresh sys termination.

i) Note that this measure decreases after each step 〈∇,X , σ, P 〉 ⇒≈ 〈∇,X , σ′, P ′〉:

– for (≈? inst), |V ar(P≈)| > |V ar(P ′≈)|;

– for (≈? refl), (≈? pair), (≈? app), (≈? [aa]), (≈? [ab]) and (≈? C), |V ar(P≈)|
≥ |V ar(P ′≈)|, but |P≈| > |P ′≈|;

– and, for (≈? inv), both |V ar(P≈)| = |V ar(P ′ ≈)| and |P≈| = |P ′≈|, but |Pnfp≈| >
|P ′nfp≈ |.

ii) For 〈∇,X , σ, P 〉 ⇒# 〈∇,X , σ′, P ′〉, |V ar(P≈)| ≥ |V ar(P ′≈)|, |P≈| = |P ′≈|, |Pnfp≈ | =
|P ′nfp≈ |, but |P#| > |P ′#|.

Next Def. 5.6 gives the strategy of application of ⇒≈ and ⇒#. Since both systems are
terminating (Lem. 5.2), this strategy results also in a terminating process.

Definition 5.6 (Derivation tree for 〈∆,X , P 〉). A derivation tree for the unification
problem 〈∆,X , P 〉, denoted as T〈∆,X ,P 〉, is a tree with root label P = 〈∆,X , id, P 〉 built in
two stages:

i) Initially, a tree is built, whose branches end in leaf nodes labelled with the quadruples
in P⇒≈. The labels in each path from the root to a leaf correspond to a⇒≈-derivation.

78

ii) Further, for each leaf labelled with a quadruple Q in P⇒≈, such that Q≈ = Qfp≈,
the tree is extended with a path to a new leaf that is labelled with a Q̄ ∈ Q⇒#. The
labels in the extended path from the node with label Q to the new leaf correspond to a
⇒#-derivation.

For 〈∆,X , P 〉 a unification problem, all labels in the nodes of T〈∆,X ,P 〉 are valid by
Lem. 5.1.

An OCaml implementation of the nominal C-unification algorithm with protected
variables is available at Impl-Unif/, inside the specification folder. This implementation
is based on a straightforward algorithmic strategy in which simplification paths are built
choosing equations and freshness constraints in the order in which they appear in the
unification problem (using a list data structure). The rules in ⇒≈ and ⇒# are applied
in this order, according to the construction of derivation trees in Def. 5.6. As soon
as an equation or a freshness constraint can not be simplified the algorithm fails. The
implementation outputs the derivation tree in TikZ latex code. Examples of derivation
trees generated with the implementation are given in Figs. 5.6, 5.7, 5.11, 5.15 to 5.18 and
6.1. The symbols (⊥) and (>) are added to the trees to discriminate, respectively, failure
and successful leaves. The draw of trees in the examples were manually adjusted to fit the
page.

Example 5.2 (Continuing Ex. 5.1).
P = 〈∅, ∅, id, {[a][b]X ≈? [b][a]X}〉 reduces to 〈∅, ∅, id, {(a b).X ≈? X}〉 via rules in
Figs. 5.1 and 5.2 (see derivation tree in Fig. 5.6).

In the following, infix notation is adopted for commutative symbols: s ∗ t abbreviates
∗〈s, t〉.

Example 5.3. Let ∗ be a commutative function symbol. Below, it is showed how the
problem

P = 〈∅, ∅, id, {[a′](a b).X ∗ Y ≈? [b′](a c)(c d).X ∗ Y }〉

reduces via rules in Figs. 5.1 and 5.2 (see derivation tree in Fig. 5.7). Application of
rule (≈? C) gives two branches that reduce into two FP problems: Q1 and Q2. Observe
that, in the first step of the derivation, the action of swapping (a′ b′) (cf. Def. 2.20) over
suspension (a c)(c d).X has as result (a c)(c d)(a′ b′).X.

P = 〈∅, ∅, id, { [a′](a b).X ∗ Y ≈? [b′](a c)(c d).X ∗ Y }〉

⇒(≈?[ab]) 〈∅, ∅, id, { (a b).X ∗ Y ≈? (a c)(c d)(a′ b′).X ∗ (a′ b′).Y , a′#? (a c)(c d).X ∗ Y }〉

1.

79

〈{}, {}, id, {[a][b]X ≈? [b][a]X}〉

〈{}, {}, id, {[b]X ≈? [b](a b).X, a#? [a]X}〉

〈{}, {}, id, {X ≈? (a b).X, a#? [a]X}〉

〈{}, {}, id, {a#? [a]X, (a b).X ≈? X}〉

〈{}, {}, id, {(a b).X ≈? X}〉

(>)

(#? a[a])

(≈? inv)

(≈? [aa])

(≈? [ab])

Figure 5.6: Derivation tree of Ex. 5.2.

⇒(≈?C) 〈∅, ∅, id, { (a b).X ≈? (a c)(c d)(a′ b′).X , Y ≈? (a′ b′).Y , a′#? (a c)(c d).X ∗ Y }〉

⇒(≈?inv)(2×) 〈∅, ∅, id, {(a b)[(a c)(c d)(a′ b′)]−1.X ≈? X, [(a′ b′)]−1.Y ≈? Y, a
′#? (a c)(c d).X ∗ Y }〉

⇒ (#? app),
(#? pair)

〈∅, ∅, id, {(a b)(a′ b′)(c d)(a c).X ≈? X, (a′ b′).Y ≈? Y, a
′#? (a c)c d).X , a′#? Y }〉

⇒(#? var)(2×) 〈{a
′#X, a′#Y }, ∅, id, {(a b)(a′ b′)(c d)(a c).X ≈? X, (a′ b′).Y ≈? Y }〉 = Q1

2.

⇒(≈?C) 〈∅, ∅, id, { (a b).X ≈? (a′ b′).Y , Y ≈? (a c)(c d)(a′ b′).X, a′#? (a c)(c d).X ∗ Y }〉

⇒(≈?inst) 〈∅, ∅, X/(a′ b′)(a b).Y, { Y ≈? (a′ b′)(a b)(a c)(c d)(a′ b′).Y , a′#? (a′ b′)(a b)(a c)(c d)(a′ b′).Y ∗
Y }〉

⇒(≈?inv) 〈∅, ∅, X/(a′ b′)(a b).Y, {(a′ b′)(a b)(a c)(c d)(a′ b′).Y, a′#? (a′ b′)(a b)(a c)(c d)(a′ b′).Y ∗ Y }〉

⇒ (#? app),
(#? pair)

〈∅, ∅, X/(a′ b′)(a b).Y,


(a′ b′)(a b)(a c)(c d)(a′ b′).Y ≈? Y,

a′#? (a′ b′)(a b)(a c)(c d)(a′ b′).Y ,

a′#? Y

〉
⇒(#? var)(2×) 〈{a

′#Y, b′#Y }, ∅, X/(a′ b′)(a b).Y, {(a′ b′)(a b)(a c)(c d)(a′ b′).Y ≈? Y }〉 = Q2

80

〈{}, {}, id, {[a′]fC
n 〈(a b).X, Y 〉 ≈? [b

′]fC
n 〈(a c)(c d).X, Y 〉}〉

〈{}, {}, id, {fC
n 〈(a b).X, Y 〉 ≈? f

C
n 〈(a c)(c d)(a′ b′).X, (a′ b′).Y 〉, a′#? f

C
n 〈(a c)(c d).X, Y 〉}〉

(≈? C) (≈? C)

(≈? [ab])

〈{}, {}, id, {(a b).X ≈? (a c)(c d)(a
′ b′).X, Y ≈? (a

′ b′).Y, a′#? f
C
n 〈(a c)(c d).X, Y 〉}〉

〈{}, {}, id, {Y ≈? (a
′ b′).Y, a′#? f

C
n 〈(a c)(c d).X, Y 〉, (a b)(a′ b′)(c d)(a c).X ≈? X}〉

〈{}, {}, id, {a′#? f
C
n 〈(a c)(c d).X, Y 〉, (a b)(a′ b′)(c d)(a c).X ≈? X, (a′ b′).Y ≈? Y }〉

〈{}, {}, id, {a′#? 〈(a c)(c d).X, Y 〉, (a b)(a′ b′)(c d)(a c).X ≈? X, (a′ b′).Y ≈? Y }〉

〈{}, {}, id, {a′#? (a c)(c d).X, a′#? Y, (a b)(a
′ b′)(c d)(a c).X ≈? X, (a′ b′).Y ≈? Y }〉

〈{a′#X}, {}, id, {a′#? Y, (a b)(a
′ b′)(c d)(a c).X ≈? X, (a′ b′).Y ≈? Y }〉

〈{a′#Y, a′#X}, {}, id, {(a b)(a′ b′)(c d)(a c).X ≈? X, (a′ b′).Y ≈? Y }〉

(>)

(#? var)

(#? var)

(#? pair)

(#? app)

(≈? inv)

(≈? inv) 〈{}, {}, id, {(a b).X ≈? (a
′ b′).Y, Y ≈? (a c)(c d)(a

′ b′).X, a′#? f
C
n 〈(a c)(c d).X, Y 〉}〉

〈{}, {}, X/(a′ b′)(a b).Y, {Y ≈? (a
′ b′)(a b)(a c)(c d)(a′ b′).Y, a′#? f

C
n 〈(a′ b′)(a b)(a c)(c d).Y, Y 〉}〉

〈{}, {}, X/(a′ b′)(a b).Y, {a′#? f
C
n 〈(a′ b′)(a b)(a c)(c d).Y, Y 〉, (a′ b′)(c d)(a c)(a b)(a′ b′).Y ≈? Y }〉

〈{}, {}, X/(a′ b′)(a b).Y, {a′#? 〈(a′ b′)(a b)(a c)(c d).Y, Y 〉, (a′ b′)(c d)(a c)(a b)(a′ b′).Y ≈? Y }〉

〈{}, {}, X/(a′ b′)(a b).Y, {a′#? (a
′ b′)(a b)(a c)(c d).Y, a′#? Y, (a

′ b′)(c d)(a c)(a b)(a′ b′).Y ≈? Y }〉

〈{b′#Y }, {}, X/(a′ b′)(a b).Y, {a′#? Y, (a
′ b′)(c d)(a c)(a b)(a′ b′).Y ≈? Y }〉

〈{a′#Y, b′#Y }, {}, X/(a′ b′)(a b).Y, {(a′ b′)(c d)(a c)(a b)(a′ b′).Y ≈? Y }〉

(>)

(#? var)

(#? var)

(#? pair)

(#? app)

(≈? inv)

(≈? inst)

Figure 5.7: Derivation tree of Ex. 5.3.

81

Lemma 5.3 (Preservation of solutions by ⇒#). If P ⇒# P ′ then UC(P) = UC(P ′).

Proof. The proof is by case analysis on one-step ⇒#-reduction and is formalised in file
C Unif Soundness, Lem. fresh sys compl. The interesting case is rule (#? var). For
rules (#? 〈〉), (#? ab̄), (#? app), (#? a[a]) (#? a[b]) and (# pair) the analysis is simple
and similar.

• For example, the analysis of case of rule (#? a[b]) is given by:

P = 〈∇,X , σ, P] {a#? [b]t}〉 ⇒# 〈∇,X , σ, P ∪ {a#? t}〉 = P ′〉

Supposing 〈∇′, σ′〉 ∈ UC(P), except for the second condition in Def. 5.2, all other
three conditions hold trivially for P ′. The same happens when 〈∇′, σ′〉 ∈ UC(P ′):
conditions first, third and fourth in Def. 5.2 hold for P. For the second condition
in Def. 5.2, by application of rule (# a[b]) of the freshness relation (Fig. 2.5) and
inversion property of these inference rule and, substitution action (Def. 2.24), one
has that ∇′ ` a# tσ′ if and only if ∇′ ` a# [b]tσ′ if and only if ∇′ ` a# ([b]tσ′).
Hence, UC(P) = UC(P ′).

• Now, consider the interesting case of (#? var):

P = 〈∇,X , σ, P] {a#? π.X}〉 ⇒# 〈{(π−1 · a)#X} ∪ ∇,X , σ, P 〉 = P ′

On the one hand, if 〈∇′, σ′〉 ∈ UC(P), the second, third and fourth conditions in Def.
5.2 hold trivially for P ′. To prove the first condition for P ′, by the second condition
in Def. 5.2 for P one has that ∇′ ` a# π.Xσ′, which, by nominal properties and
substitution action (Def. 2.24), implies that ∇′ ` π−1 · a#Xσ′. Since by hypothesis
∇′ ` ∇σ′ (first condition of Def. 5.2 for P), one has that ∇′ ` ({(π−1 ·a) #X}∪∇)σ′.
Therefore, UC(P) ⊆ UC(P ′).

On the other hand, if 〈∇′, σ′〉 ∈ UC(P ′), the first, third and fourth conditions in Def.
5.2 hold trivially for P . For proving the second condition for P , by the first condition
in Def. 5.2 one has that ∇′ ` (π−1 · a) #Xσ′, which again by nominal properties
and Def. 2.24 implies that ∇′ ` a# (π.X)σ′. Thus, by the last and the second
condition in Def. 5.2 for P ′, one obtains the second condition for P. Therefore,
UC(P ′) ⊆ UC(P).

Lemma 5.4 (Preservation of solutions by ⇒≈). If P ⇒≈ P ′ then UC(P ′) ⊆ UC(P).

82

Proof. The proof is by case analysis on one-step ⇒≈-reduction and it is formalised in file
C Unif Soundness.v, Lem. equ sol preserv.

• Rule (≈? [aa]):

P = 〈∇,X , σ, P] {[a]s ≈? [a]t}〉 ⇒≈ 〈∇,X , σ, P ∪ {s ≈? t}〉 = P ′

Let 〈∇′, σ′〉 be a solution in UC(P ′). Then, according to the definition of solution
(Def. 5.2) four conditions are satisfied: first, for all a#X ∈ ∇, ∇′ ` a#Xσ′;
second, for all a#?w ∈ P , ∇′ ` a#wσ′; third, for all u ≈? v ∈ P ∪ {s ≈? t},
∇′ ` uσ′ ≈α,C vσ′, and; fourth, there exists λ such that ∇′ ` σλ ≈ σ′.

Except for the third condition, all other conditions hold trivially. The third condition
also holds, since (by the inference rules of ≈α,C and Lem. 4.2) ∇′ ` sσ′ ≈α,C tσ′ if only
if ∇′ ` [a]sσ′ ≈α,C [a]tσ′; hence, UC(P ′) ⊆ UC(P). Notice that a solution 〈∇′, σ′〉
in UC(P), satisfies the four conditions for P ′, hence one has that UC(P ′) = UC(P)
indeed.

• A similar analysis of case of rule (≈? [aa]) shows that UC(P) = UC(P ′) also for rules
(≈? refl), (≈? pair), (≈? app).

• Rule (≈? C): Consider a derivation of the form below, where i = 0 or i = 1:

P = 〈∇,X , σ, P]{fCk 〈s0, s1〉 ≈? f
C
k 〈t0, t1〉〉 ⇒≈ 〈∇,X , σ, P∪{s0 ≈? ti, s1 ≈? t1−i}〉 = P ′

As for the previous rules, for 〈∇′, σ′〉 ∈ UC(P ′), the first, second and fourth conditions
in Def. 5.2 are preserved trivially. Regarding the third condition, it also holds since
∇′ ` s0 ≈α,C ti, and∇′ ` s1 ≈α,C t1−i implies that∇′ ` fCk 〈s0, s1〉σ′ ≈α,C fCk 〈t0, t1〉σ′.
Thus, UC(P ′) ⊆ UC(P).

• Rule (≈? [ab]):

P = 〈∇,X , σ, P] {[a]s ≈? [b]t}〉 ⇒≈ 〈∇,X , σ, P ∪ {s ≈? (a b) · t, a#? t}〉 = P ′

Let 〈∇′, σ′〉 be a solution in UC(P ′). Again, the interesting condition to be checked
is the third condition in Def. 5.2. Since 〈∇′, σ′〉 is a solution of P ′, one has that ∇′ `
a# tσ′ and ∇′ ` sσ′ ≈α,C ((a b) · t)σ′. By Lem. 2.3, one has ((a b) · t)σ′ = (a b) · (tσ′).
Hence, by application of the α-equivalence rule (≈α,C [ab]) in Fig. 2.4, one concludes
that ∇′ ` [a](sσ′) ≈α,C [b](tσ′), which by the definition of substitution action (Def.
2.24) can be written as ∇′ ` ([a]s)σ′ ≈α,C ([b]t)σ′. Thus, UC(P ′) ⊆ UC(P).

83

Notice that in this case UC(P) ⊆ UC(P ′) too; indeed, if ∇′ ` ([a]s)σ′ ≈α,C ([b]t)σ′,
by Def. 2.24, reverse application of the α-equivalence rule (≈α [ab]) (Lem. 4.2) and
Lem. 2.3, one has that ∇′ ` sσ′ ≈α,C ((a b) · t)σ′ and ∇′ ` a# tσ′.

• Rule (≈? inst). Consider the reduction

P = 〈∇,X , σ, P]{π.X ≈? t}〉 ⇒≈
〈
∇,X , σ′′, P{X/π−1 · t} ∪ ⋃

Y ∈dom(σ′′),
a#Y ∈∇

{a#? Y σ
′′}

〉
= P ′

where σ′′ := σ{X/π−1 · t} and X /∈ V ar(t) ∪ X .

Let 〈∇′, σ′〉 ∈ UC(P ′). First, the third condition in Def. 5.2 is analysed. Let u ≈? v

be an equation in P . One has that ∇′ ` u{X/π−1 · t}σ′ ≈α,C v{X/π−1 · t}σ′ and
∇′ ` σ′ ≈ σ{X/π−1 · t}λ, for some λ. Thus, ∇′ ` u{X/π−1 · t}(σ{X/π−1 · t}λ) ≈α,C
v{X/π−1 · t}(σ{X/π−1 · t}λ), which implies ∇′ ` u{X/π−1 · t}λ ≈α,C v{X/π−1 · t}λ.
For the last part the general assumption that P and P ′ are valid quadruples is
used; hence, by Lem. 5.1, dom(σ) does not intersect the set V ar(P)∪ V ar(t)∪ {X}.
Thus, ∇′ ` uσ{X/π−1 · t}λ ≈α,C vσ{X/π−1 · t}λ, and finally, by the hypothesis
∇′ ` σ′ ≈ σ{X/π−1 · t}λ, one concludes that ∇′ ` uσ′ ≈α,C vσ′.

To conclude the analysis of the third condition, π.X ≈? t should be considered. One
has that π.X(σ{X/π−1 · t}λ) = π · (π−1 · t)λ. The last term corresponds to tλ that
is equal to t(σ{X/π−1 · t}λ). Since ≈{α,C} is an equivalence relation (Cor. 4.1), by
reflexivity one concludes that ∇′ ` π.Xσ′ ≈α,C tσ′.

The first condition in Def. 5.2 is immediate. The second condition is more interesting
and depends on the third one. One needs to prove that for any a#? u ∈ P ,
∇′ ` a#uσ′. The proof proceeds by induction in u. The cases in which u = 〈〉, u = b̄,
u = [a]v and u = φ.Y , for Y 6= X, are immediate. The case in which u = ā is not
possible since it contradicts the hypothesis. The cases in which u = fv or u = 〈u1, u2〉
and u = [b]v follow by direct application of the induction hypothesis. The interesting
case is when u = φ.X for which the hypothesis is that ∇′ ` a#φ.X{X/π−1 · t}σ′.
By application of the substitution one has ∇′ ` a#φ · (π−1 · t)σ′; by application of
nominal properties for the freshness relation # this gives ∇′ ` π · φ−1 · a# tσ′. By
freshness preservation (Lem. 4.4) and the fact that∇′ ` π.Xσ′ ≈α,C tσ′ (proved in the
analysis of the third condition of Def. 5.2) one obtains ∇′ ` π φ−1 · a# π.Xσ′; thus,
by nominal properties one obtains ∇′ ` φ−1 ·a#Xσ′ and finally that ∇′ ` a#φ.Xσ′.

The analysis of the fourth condition in Def. 5.2 uses the hypothesis that there exists
a λ such that ∇′ ` σ′′λ ≈ σ′ and, given that σ′′ := σ{X/π−1 · t}, for P one has that
the substitution {X/π−1 · t}λ satisfies the requirement that ∇′ ` σ{X/π−1 · t}λ ≈ σ′.

84

• Finally, for the rule (≈? inv) consider a derivation:

P = 〈∇,X , σ, P] {π.X ≈? π
′.X}〉 ⇒≈ 〈∇,X , σ, P ∪ {π ⊕ (π′)−1.X ≈? X}〉 = P ′

Suppose that 〈∇′, σ′〉 ∈ UC(P ′). All conditions in Def. 5.2 hold trivially (in both
directions) except the third. Suppose∇′ ` (π⊕(π′)−1.X)σ′ ≈α,C Xσ′, by substitution
properties (Def. 2.24), this holds if and only if ∇′ ` π ⊕ (π′)−1 · (Xσ′) ≈α,C Xσ′,
and by equivariance (Lem. 4.5) and the definition of action of substitutions (Def.
2.24), the last holds if and only if, ∇′ ` π.Xσ′ ≈α,C π′.Xσ′. One concludes that
UC(P) = UC(P ′).

Definition 5.7 (Successful leaves). Let 〈∆,X , P 〉 be a unification problem. A leaf in
T〈∆,X ,P 〉 that is labelled with a quadruple Q, where Uc(Q) 6= ∅, is called a successful leaf.
The set of successful leaves of T〈∆,X ,P 〉 is denoted by SL(T〈∆,X ,P 〉).

Remark 5.5. Observe that in the second phase of construction of the tree T〈∆,X ,P 〉 (item
(ii) of Def. 5.6), for any quadruple, all equations are FP. In this case ⇒# acts only over
freshness constraints a#? t that are reducible, except when t = ā. Then the generated
leaves in this phase must contain only FP equations and possibly freshness constraints in
the form a#? ā. The following Lem. 5.5 uses this idea to characterise the set of successful
leaves.

Lemma 5.5 (Characterisation of successful leaves of T〈∆,X ,P 〉). Let P = 〈∆,X , P 〉 be
a unification problem and Q = 〈∇,X , σ,Q〉 ∈ SL(T〈∆,X ,P 〉), then Q contains only FP
equations (and no freshness constraints), i.e., Q = Qfp≈.

Proof. This result is proved by case analysis onQ, and is formalised in file C Unif Soundness,
Cor. gen successfull leaves. If there is a non FP equation in Q, say s ≈? t, then by
definition of T〈∇,X ,P 〉, Q should be a ⇒≈-nf in P⇒≈ . Since no rule of the relation ⇒≈
applies to the equation s ≈? t in Q, one has only the following possibilities:

i) Neither s nor t are suspended variables and s and t are terms of different grammatical
type (for instance an abstraction and a pair, or an atom term and a functional term).

ii) s and t are functional terms rooted by different function symbols.

iii) s and t are different atom terms.

iv) s is a suspension, say π.X, and t 6= π′.X, but X ∈ V ar(t)∪X .

85

Since for all these cases there is no 〈∆, δ〉 such that ∆ ` sδ ≈α,C tδ, one can conclude
that UC(Q) = ∅, which contradicts the hypothesis Q ∈ SL(T〈∆,X ,P 〉).

In the case in which Q≈ = Qfp≈ and Q contains freshness constraints, there exists a
quadruple P ′ = 〈∆′,X , σ′, P ′〉 ∈ P⇒≈ and Q is a ⇒#-nf of P ′. The set P ′ can be split
into sets of freshness constraints P ′⊥, and FP equations. The relation ⇒# changes only
P ′⊥, and since freshness constraints in Q should be of the form a#? ā (see Rmk. 5.5), and
there is no 〈∆, δ〉 such that ∆ ` a# āδ, that is ∆ ` a# ā, and also in this case UC(Q) = ∅,
contradicting again Q ∈ SL(T〈∆,X ,P 〉).

Finally, by contradiction, one concludes that Q = Qfp≈ .

Theorem 5.1 (Soundness of T〈∆,X ,P 〉). T〈∆,X ,P 〉 is correct, i.e., if P ′ = 〈∇,X , σ, P ′〉 is
the label of a leaf in T〈∆,X ,P 〉, then

1. UC(P ′) ⊆ UC(〈∆, id, P,)〉, and

2. if P ′ contains non FP equations or freshness constraints then UC(P ′) = ∅.

Proof. The first is proved by induction on the number of steps of ⇒≈ and ⇒#, using
Lems. 5.3 and 5.4. The second is a direct application of Lem. 5.5.

To prove completeness (Thm. 5.2), a few auxiliary properties, given in Lem. 5.6 on the
relation ` ≈α,C between substitutions required. These properties are formalised in
file Subst.v, in Lems. subst sym, subst trans, c equiv unif, c equiv unif fresh,
c equiv unif 2 and subst cancel left. Their proofs are obtained using the properties
of equivalence and freshness preservation of ≈α,C (Cor. 4.1 and Lem. 4.4) and Lem. 2.3.

Lemma 5.6 (Basic properties of nominal C-equivalence between substitutions).

i) (Symmetry) ∆ ` σ≈α,C δ implies ∆ ` δ≈α,C σ;

ii) (Transitivity) If ∆ ` σ≈α,C δ and ∆ ` δ≈α,C λ, then ∆ ` σ≈α,C λ;

iii) (Composition with instantiation) ∆ ` π.Xσ ≈α,C tσ implies ∆ ` {X/π−1 ·t}σ≈α,C σ;

iv) (Freshness preservation) If ∆ ` σ≈α,C δ and ∆ ` a# tσ, then ∆ ` a# tδ;

v) (Compatibility with ≈α,C) If ∆ ` σ≈α,C δ and ∆ ` sσ ≈α,C tσ, then ∆ ` sδ ≈α,C tδ;

vi) (Equivariance by substitutions) ∆ ` σ≈α,C δ implies ∆ ` λσ≈α,C λδ.

The completeness theorem guarantees that the set of successful leaves provides a
complete set of solutions. Its proof uses case analysis on the rules of the relations ⇒≈ and
⇒# by an argumentation similar to the one used for Thm. 5.1. For ⇒# one has indeed

86

equivalence: P ⇒# P ′, implies UC(P) = UC(P ′). The same is true for all rules of the
relation ⇒≈ except the branching rule (≈? C), for which it is necessary to prove that all
solutions of a quadruple reduced by (≈? C) must belong to the set of solutions of one of
its children quadruples.

Theorem 5.2 (Completeness of T〈∆,X ,P 〉). Let P = 〈∆,X , P 〉 and T〈∆,X ,P 〉 be a unification
problem and its derivation tree. Then UC(P) = ⋃

Q∈SL(T〈∆,X ,P 〉) UC(Q).

Proof. This result is formalised in file C Unif Completeness, Lem. equ sys compl.
From soundness (Thm. 5.1), UC(P) ⊇ ⋃

Q∈SL(T〈∇,X ,P 〉) UC(Q). The other inclusion is
proved by induction on the size of subtrees of T〈∇,X ,P 〉. This is done verifying that in the
preservation lemmas for ⇒# and ⇒≈ (Lems. 5.3 and 5.4) all rules, except (≈? C) and
(≈? inst) preserve exactly the same sets of solutions.

• For one-step application of rule (≈? C) on a quadruple Q, labelling a node in T〈∇,P 〉,
one has two sibling nodes labelled with quadruples Q1 and Q2 such that

Q = 〈∆,X , σ,Q] {fC〈s0, s1〉 ≈? f
C〈t0, t1〉}〉,

Q1 = 〈∆,X , σ,Q ∪ {s0,≈? t0, s1 ≈? t1}〉 and Q2 = 〈∆,X , σ,Q ∪ {s0,≈? t1, s1 ≈? t0}〉.

If 〈∆′, σ′〉 ∈ UC(Q) then it satisfies the four conditions in Def. 5.2 for Q. It can
be easily checked that 〈∆′, σ′〉 satisfies the first, second and fourth conditions for
both Q1 and Q2. Regarding the third condition, since it holds for Q, it holds for
any equation in Q and also ∆′ ` fC〈s0, s1〉σ′ ≈α,C fC〈t0, t1〉σ′. From the last, by
substitution action one has that ∆′ ` fC〈s0σ

′, s1σ
′〉 ≈α,C fC〈t0σ′, t1σ′〉. Then, by

Lem. 4.2 either ∆′ ` s0σ
′ ≈α,C t0σ′ and ∆′ ` s1σ

′ ≈α,C t1σ′, or ∆′ ` s0σ
′ ≈α,C t1σ′

and ∆′ ` s1σ
′ ≈α,C t0σ

′. Thus, the third condition holds for Q1 or for Q2, and
it can be concluded that 〈∆′, σ′〉 ∈ UC(Q) if and only if 〈∆′, σ′〉 ∈ UC(Q1) or
〈∆′, σ′〉 ∈ UC(Q2). Therefore UC(Q) = UC(Q1) ∪ UC(Q2). By induction hypothesis,
the solutions of the successful leaves in the subtrees rooted by Q1 and Q2 are exactly
the set UC(Q).

• For one-step application of rule (≈? inst) on a quadruple Q, labelling a node in
T〈∇,X ,P 〉, one has a sibling node labelled with a quadruple Q′ such that

Q = 〈∆,X , σ,Q]{π.X ≈? t}〉 ⇒≈
〈

∆,X , σ′′, Q{X/π−1 · t} ∪
⋃

Y ∈dom(σ′′),
a#Y ∈∆

{a#? Y σ
′′}
〉

= Q′

where σ′′ := σ{X/π−1 · t} and X /∈ V ar(t) ∪ X .

Suppose that 〈∆′, σ′〉 ∈ UC(Q). It is checked that 〈∆′, σ′〉 satisfies the four conditions
in Def. 5.2 for Q′.

87

− The first condition, that is ∆′ ` ∆σ′, is the same for Q and Q′.

For the second, third and fourth condition, observe that, by the third condition
of the hypothesis 〈∆′, σ′〉 ∈ UC(Q), one has ∆′ ` π.Xσ′ ≈α,C tσ′.

− Proving that the second condition holds for Q′, requires proving that:

1. a#? u ∈ Q implies ∆′ ` a# (u{X/π−1 · t})σ′ and

2. for all Y ∈ dom(σ′′) such that a#Y ∈ ∆, ∆′ ` a#Y σ′′σ′.

For the first subcase, applying Lem. 5.6, item (iii), one concludes that
∆′ ` {X/π−1 · t}σ′≈α,C σ′. Then, by symmetry and freshness preservation of equiva-
lence of substitutions (Lem. 5.6, items (i) and (iv)), ∆′ ` a#uσ′ implies
∆′ ` a# (u{X/π−1 · t})σ′. Then, using the second condition of hypothesis 〈∆′, σ′〉 ∈
UC(Q) one concludes. For the second subcase, applying the first condition of hy-
pothesis 〈∆′, σ′〉 ∈ UC(Q) to hypothesis a#Y ∈ ∆, and using manipulations over
the composition of substitutions, one obtains ∆′ ` a#Y σ′′σ′.

− The third condition of Q′ is proved as follows: For u ≈? v ∈ Q′, one must
shows that ∆′ ` sσ′ ≈α,C tσ′. Since u ≈? v must be in Q{X/π−1 · t} (because⋃
Y ∈dom(σ′′),
a#Y ∈∆

{a#? Y σ
′′} contains only freshness constraints), there exists u0 and v0 such

that u0 ≈? v0 ∈ Q, u = u0{X/π−1 · t} and v = v0{X/π−1 · t}. Then the objective
became ∆′ ` u0{X/π−1 · t}σ′ ≈α,C v0{X/π−1 · t}σ′. Applying Lem. 5.6, item (v),
one must shows that ∆′ ` σ′≈α,C {X/π−1 · t}σ′ and ∆′ ` u0σ

′ ≈α,C v0σ
′. The former

is proved using Lem. 5.6, items (i) and (iii), and the latter is obtained by the third
condition of hypothesis 〈∆′, σ′〉 ∈ UC(Q).

− In the fourth condition of Q′, using the fourth condition of the hypothesis
〈∆′, σ′〉 ∈ UC(Q), that is given by ∆′ ` σλ≈α,C σ′, the objective is to provide a
substitution δ such that ∆′ ` σ{X/π−1 · t}δ≈α,C σ′. The substitution δ is chosen
to be σ′, and the objective became ∆′ ` σ{X/π−1 · t}σ′≈α,C σ′. Applying Lem. 5.6,
item (ii), with the intermediate substitution σσ′, one needs to show that ∆′ `
σ{X/π−1 · t}σ′≈α,C σσ′ and ∆′ ` σσ′≈α,C σ′. For the former, one applies item (vi)
followed by item (iii) of Lem. 5.6. In the latter, is used Lem. 5.6, item (ii), with the
intermediate substitution σσλ. The new generated subgoals are ∆′ ` σσ′≈α,C σσλ
and ∆′ ` σσλ≈α,C σ′. Lem. 5.6, item (vi) followed by (i), is applied to the former.
The property of idempotence of σ is used to conclude the latter.

Corollary 5.1 (Generality of sucessful leaves). Let P = 〈∆,X , P 〉 be a unification
problem and 〈∇′′, σ′〉 ∈ UC(P). Then there exists a successful leaf Q ∈ SL(T〈∆,X ,P 〉) where

88

Q = 〈∇,X , σ,Q〉 such that 〈∇′′, σ′〉 ∈ UC(Q), and hence, ∇′′ ` ∇σ′ and there exists λ
such that ∇′′ ` σλ≈α,C σ′.

Proof. By Thm. 5.2, UC(P) = ⋃
P ′∈SL(T〈∆,X ,P 〉) UC(P ′). Then there exists Q ∈ SL(T〈∆,X ,P 〉)

such that 〈∇′′, σ′〉 ∈ UC(Q). Suppose Q = 〈∇,X , σ,Q〉. Then by the first and fourth
conditions of the definition of solution (Def. 5.2) one has that ∇′′ ` ∇σ′ and there exists
λ such that ∇′′ ` σλ≈α,C σ′.

In the formalisation, the strategy of application of⇒# and⇒≈ was specified inductively
through a relation ⇒υ denominated unif-step (Fig. 5.8). In this definition, ⇒≈ is applied
without restrictions by use of rule (υ≈), but freshness constraints are reduced only when
all equations of the problem are FP equations. This fact is expressed by the condition
P≈ = Pfp≈ in rule (υ#). In the specification, the relation ⇒υ is in file C Unif.v and it is
given by the relation of Fig. 5.9. The definitions of leaf and unif path (Fig. 5.10) are also
specified in file C Unif.v, respectively, as a normal form w.r.t. ⇒υ, and as a reduction of
zero or more steps from a unification problem to a leaf.

(υ≈)
P ⇒≈ Q
P ⇒υ Q

(υ#)
P ⇒# Q

, P≈ = Pfp≈P ⇒υ Q

Figure 5.8: Unification-step

Inductive unif step (varSet : set Var) : Triple → Triple → Prop :=

| equ unif step : ∀ T T’, equ sys varSet T T’ → unif step varSet T T’

| fresh unif step : ∀ T T’, fixpoint Problem (equ proj (snd T)) →
fresh sys T T’ → unif step varSet T T’ .

Figure 5.9: Specification of unif step

Definition leaf (varSet : set Var) (T : Triple) :=
NF (unif step varSet) T .

Definition unif path (varSet : set Var) (T T’ : Triple) :=
tr clos (unif step varSet) T T’ ∧ leaf varSet T’.

Figure 5.10: Specification of leaf and unif path

Theorem 5.3 (Main properties of ⇒υ).

i) (Termination of ⇒υ) The relation ⇒υ is terminating;

89

ii) (Decidability of ⇒υ) Given a quadruple P, it is possible to decide if P is a normal
form w.r.t. ⇒υ, or there exists Q such that P ⇒υ Q;

iii) (Soundness of⇒∗υ) If P ⇒∗υ Q, Q is a leaf and 〈∇, σ〉 ∈ UC(Q) then 〈∇, σ〉 ∈ UC(P);

iv) (Completeness of ⇒∗υ) 〈∇, σ〉 ∈ UC(P) if and only if there exists a leaf Q such that
P ⇒∗υ Q and 〈∇, σ〉 ∈ Q.

Proof.

i) The termination of ⇒υ is formalised in Cor. unif step termination of file
C Unif Termination by case analysis on the derivation rules of ⇒υ. Its proof
is a direct consequence of Lem. 5.2;

ii) This result is formalised in Lem. unif step NF dec of file C Unif Termination.
Its proof is based on case analysis over P = 〈∇,X , σ, P 〉. More specifically, the
analysis is done over the set of nominal constraints P , verifying whether it is or not
possible to reduce P by ⇒υ;

iii) Soundness of ⇒∗υ is formalised in Thm. c unif path soundness of file
C Unif Termination, and its proof is a consequence of Lems. 5.3 and 5.4;

iv) Finally, the completeness of ⇒∗υ is formalised in Thm. unif path compl of file
C Unif Completeness using item i), Lem. 5.3 and Thm. 5.2, and well-founded
induction on derivations ⇒υ.

Example 5.4. This example illustrates the execution of the nominal C-unification algo-
rithm for the initial problem

P = 〈∅, ∅, id, {[a]f〈[b](X ∗ Y), Z〉≈?[b]f〈[a](a ∗X), Z〉}〉,

where the set of protected variables is empty. Notice that the application of rule (≈? C)
generates two branches that are represented by items (i) and (ii) in the example (see Fig.
5.11). The algorithm generates the leaves

〈{a#Z}, ∅, {X/b, Y/(a b).X}, {(a b).Z ≈? Z}〉, and

〈{a#Z}, ∅, {Y/b}, {(a b).X ≈? X, (a b).Z ≈? Z}〉.

By Thm. 5.3, the union of the solutions of these two leaves is equal to the set of
solutions of the initial problem P. As will be showed in Chap. 6, the complete set of

90

〈{}, {}, id, {[a]〈[b]fC
n 〈X,Y 〉, Z〉 ≈? [b]〈[a]fC

n 〈a,X〉, Z〉}〉

〈{}, {}, id, {〈[b]fC
n 〈X,Y 〉, Z〉 ≈? 〈[b]fC

n 〈b, (a b).X〉, (a b).Z〉, a#? 〈[a]fC
n 〈a,X〉, Z〉}〉

〈{}, {}, id, {[b]fC
n 〈X,Y 〉 ≈? [b]fC

n 〈b, (a b).X〉, Z ≈? (a b).Z, a#? 〈[a]fC
n 〈a,X〉, Z〉}〉

〈{}, {}, id, {fC
n 〈X,Y 〉 ≈? fC

n 〈b, (a b).X〉, Z ≈? (a b).Z, a#? 〈[a]fC
n 〈a,X〉, Z〉}〉

〈{}, {}, id, {X ≈? (a b).X, Y ≈? b, Z ≈? (a b).Z, a#? 〈[a]fC
n 〈a,X〉, Z〉}〉

〈{}, {}, id, {Y ≈? b, Z ≈? (a b).Z, a#? 〈[a]fC
n 〈a,X〉, Z〉, (a b).X ≈? X}〉

〈{}, {}, Y/b, {Z ≈? (a b).Z, a#? 〈[a]fC
n 〈a,X〉, Z〉, (a b).X ≈? X}〉

〈{}, {}, Y/b, {a#? 〈[a]fC
n 〈a,X〉, Z〉, (a b).X ≈? X, (a b).Z ≈? Z}〉

〈{}, {}, Y/b, {a#? [a]f
C
n 〈a,X〉, a#? Z, (a b).X ≈? X, (a b).Z ≈? Z}〉

〈{}, {}, Y/b, {a#? Z, (a b).X ≈? X, (a b).Z ≈? Z}〉

〈{a#Z}, {}, Y/b, {(a b).X ≈? X, (a b).Z ≈? Z}〉

(>)

(#? var)

(#? a[a])

(#? pair)

(≈? inv)

(≈? inst)

(≈? inv)

〈{}, {}, id, {X ≈? b, Y ≈? (a b).X, Z ≈? (a b).Z, a#? 〈[a]fC
n 〈a,X〉, Z〉}〉

〈{}, {}, X/b, {Y ≈? a, Z ≈? (a b).Z, a#? 〈[a]fC
n 〈a, b〉, Z〉}〉

〈{}, {}, {X/b, Y/a}, {Z ≈? (a b).Z, a#? 〈[a]fC
n 〈a, b〉, Z〉}〉

〈{}, {}, {X/b, Y/a}, {a#? 〈[a]fC
n 〈a, b〉, Z〉, (a b).Z ≈? Z}〉

〈{}, {}, {X/b, Y/a}, {a#? [a]f
C
n 〈a, b〉, a#? Z, (a b).Z ≈? Z}〉

〈{}, {}, {X/b, Y/a}, {a#? Z, (a b).Z ≈? Z}〉

〈{a#Z}, {}, {X/b, Y/a}, {(a b).Z ≈? Z}〉

(>)

(#? var)

(#? a[a])

(#? pair)

(≈? inv)

(≈? inst)

(≈? inst)

(≈? C) (≈? C)

(≈? [aa])

(≈? pair)

(≈? [ab])

Figure 5.11: Derivation tree of Ex. 5.4.

91

solutions of 〈{a#Z}, ∅, {X/b, Y/(a b).X}, {(a b).Z ≈? Z}〉 is unitary whereas the complete
set of solutions of 〈{a#Z}, ∅, {Y/b}, {(a b).X ≈? X, (a b).Z ≈? Z}〉 is infinite.

P = 〈∅, ∅, id, { [a]f〈[b](X ∗ Y), Z〉≈?[b]f〈[a](a ∗X), Z〉} 〉

⇒(≈?[ab]) 〈∅, ∅, id, { f〈[b](X ∗ Y), Z〉 ≈? f〈[b](b ∗ (a b).X), (a b).Z〉 , a#? f〈[a](a∗X), Z〉}〉

⇒(≈?app) 〈∅, ∅, id, { 〈[b](X ∗ Y), Z〉 ≈? 〈[b](b ∗ (a b).X), (a b).Z〉 , a#? f〈[a](a ∗X), Z〉}〉

⇒(≈?pair) 〈∅, ∅, id, { [b](X ∗ Y) ≈? [b](b ∗ (a b).X) , Z ≈? (a b).Z, a#? f〈[a](a ∗X), Z〉}〉

⇒(≈?[aa]) 〈∅, ∅, id, { X ∗ Y ≈? (b ∗ (a b).X), Z ≈? (a b).Z , a#? f〈[a](a ∗X), Z〉}〉

1.

⇒(≈?C) 〈∅, ∅, id, { X ≈? b , Y ≈? (a b).X, Z ≈? (a b).Z, a#? f〈[a](a ∗X), Z〉}〉

⇒(≈?inst) 〈∅, ∅, {X/b}, { Y ≈? a , Z ≈? (a b).Z, a#? f〈[a](a ∗X), Z〉}〉

⇒(≈?inst) 〈∅, ∅, {X/b, Y/a}, { Z ≈? (a b).Z , a#? f〈[a](a ∗X), Z〉}〉

⇒(≈?inv) 〈∅, ∅, {X/b, Y/a}, {(a b).Z ≈? Z, a#? f〈[a](a ∗X), Z〉 }〉

⇒(#? app) 〈∅, ∅, {X/b, Y/a}, {(a b).Z ≈? Z, a#? 〈[a](a ∗X), Z〉 }〉

⇒(#? pair) 〈∅, ∅, {X/b, Y/a}, {(a b).Z ≈? Z, a#? [a](a ∗X) , a#? Z}〉

⇒(#? a[a]) 〈∅, ∅, {X/b, Y/a}, {(a b).Z ≈? Z, a#? Z }〉

⇒(#? var) 〈{a#Z}, ∅, {X/b, Y/a}, {(a b).Z ≈? Z}〉

2.

⇒(≈?C) 〈∅, ∅, id, { X ≈? (a b).X , Y ≈? b, Z ≈? (a b).Z, a#? f〈[a](a ∗X), Z〉}〉

⇒(≈?inv) 〈∅, ∅, id, {(a b).X ≈? X, Y ≈? b, Z ≈? (a b).Z, a#? f〈[a](a ∗X), Z〉}〉

⇒(≈?inst) 〈∅, ∅, {Y/b}, {(a b).X ≈? X, Z ≈? (a b).Z , a#? f〈[a](a ∗X), Z〉}〉

⇒(≈?inv) 〈∅, ∅, {Y/b}, {(a b).X ≈? X, (a b).Z ≈? Z, a#? f〈[a](a ∗X), Z〉 }〉

⇒(#? app) 〈∅, ∅, {Y/b}, {(a b).X ≈? X, (a b).Z ≈? Z, a#? 〈[a](a ∗X), Z〉 }〉

⇒(#? pair) 〈∅, ∅, {Y/b}, {(a b).X ≈? X, (a b).Z ≈? Z, a#? [a](a ∗X) , a#? Z}〉

⇒(#? a[a]) 〈∅, ∅, {Y/b}, {(a b).X ≈? X, (a b).Z ≈? Z, a#? Z }〉

⇒(#? var) 〈{a#Z}, ∅, {Y/b}, {(a b).X ≈? X, (a b).Z ≈? Z}〉

Remark 5.6 (Nominal C-unification is NP-complete). Observe that the proof that first-
order C-unification is NP-complete (see Rmk. 2.5) is easily adapted to the context of
nominal C-unification. Constants c0, c1 are replaced by atom terms a and b, and the

92

polynomial measure is changed to that used in Lem. 5.2. Remembering that this measure
assures that the time of checking non-deterministicaly a solution for a unification problem is
polynomial. The nominal C-unification problem for C is given by PC = 〈∅, {Ei|1 ≤ i ≤ n}〉.
Simplifying PC would not add additional freshness constraints since the problem does not
include abstractions. Thus, to conclude it is only necessary to check that 〈∅, σ〉 is a solution
for PC if and only if σ instantiates exactly one of the variables Xpi , Xqi and Xri in each
equation with a and the other two with b, which means that C has a solution.

5.2 Nominal C-matching

In this section the attention is restricted to nominal C-matching problems: a nominal
C-unification problem whose solutions should be applied only to the lhs of the nominal
equations.

A nominal C-matching algorithm was specified through the matching-step rules pre-
sented in Fig. 5.12. Its specification is given in Fig. 5.13 and is in file C Matching.v. These
rules basically apply the rules in Figs. 5.1, 5.2 and 5.8, but now the set X of protected
variables plays an important role and should be defined as the variables occurring in the
rhs of the set of equational constraints P , in the input problem.

5.2.1 Basic notions on nominal C-matching and auxiliary for-
malised properties

This subsection shortly describes the main auxiliary lemmas related with nominal C-
matching notions.

Definition 5.8 (Protected variables and nominal C-matching problems). The set of pro-
tected variables for a matching problem 〈∇, P 〉 is the set of rhs variables of the equations in
P , denoted by Rvar(P), i.e., Rvar(P) = {X | s ≈? t ∈ P and X ∈ var(t)}. The quadruple
associated with the nominal C-matching problem 〈∇, P 〉 is given by 〈∇, Rvar(P), id, P 〉.

(µυ)
P ⇒υ Q
P ⇒µ Q

(µfp)
〈∇,X , σ, P] {π.X ≈? X}〉

, P = Pfp≈〈∇ ∪ dom(π)#X, X , σ, P 〉

Figure 5.12: Matching-step

Remark 5.7. Notice that, the standard nominal unification algorithm presented in Sec.
2.2 (of Chap. 2) can be seen as a particular case of the algorithm of Sec. 5.1, removing the

93

Inductive match step : Triple → Triple → Prop :=

| match to unif step : ∀ T T’, unif step (rhvars Probl (snd T)) T T’ →
match step T T’

| match fixpoint : ∀ C C’ S P pi X,
fixpoint Problem P →
pi 6= [] →
set In (pi|.X ∼? []|.X)) P →
C’ = set union Context eqdec C (fresh context (dom perm pi) X) →
match step (C, S, P) (C’, S, P\(pi|.X ∼? []|.X))) .

Figure 5.13: Specification of match step

restriction of the protected variables of rule (≈? inst) and rule (≈? C), and also adding
rule (µfp) of Fig. 5.12 to the equational system of Fig. 5.1.

Derivation with rules of Fig. 5.12 is denoted by ⇒µ. A quadruple Q is called a
matching leaf if Q is a normal form w.r.t. ⇒µ. A matching path is a reduction P ⇒∗µ Q,
where Q is a matching leaf. The specifications of matching leaf and matching path are in
file C Matching.v and are presented in Fig. 5.14.

Definition match leaf (T : Triple) := NF match step T .

Definition match path (T T’ : Triple) :=
tr clos match step T T’ ∧ match leaf T’ .

Figure 5.14: Specification of match leaf and match path

When solving a problem according to the rules in Fig. 5.12 using the protected variables
given in Def. 5.8, the domain of a substitution that is a solution is disjoint from the set of
rhs variables of the problem.

Definition 5.9 (Solution for a nominal C-matching problem). A nominal C-matching
solution for a quadruple P of the form 〈∆, Rvar(P), δ, P 〉 is a pair 〈∇, σ〉, where dom(σ)∩
Rvar(P) = ∅, and the following conditions are satisfied:

i) ∇ ` ∆σ;

ii) ∇ ` a# tσ, if a#? t ∈ P ;

iii) ∇ ` sσ ≈α,C t, if s ≈? t ∈ P ;

iv) there is a substitution λ such that ∇ ` δλ≈α,C σ.

A nominal C-matching solution for the problem 〈∆,X , P 〉 is a solution for 〈∆, Rvar(P), id, P 〉,
its associated nominal C-matching problem. The solution set for a matching problem P is
denoted byMC(P).

94

Lemma 5.7 (UC andMC equivalence). Let P = 〈∆, Rvar(P), δ, P 〉 be a quadruple. Then,
〈∇, σ〉 ∈ UC(P) if and only if 〈∇, σ〉 ∈ MC(P).

Proof. The formalisation follows straightforwardly from the definitions of UC(P) and
MC(P), and is given in file C Matching.v, Lem. unif match sol equiv.

Remark 5.8. Despite the fact that the reduction rules (Figs. 5.2, 5.1, and 5.12) preserve
the set X of protected variables given as input, in the following formalised results, for
quadruples of the form P = 〈∆, X , δ, P 〉 and Q = 〈∆′, X , δ′, Q〉, where P ⇒µ Q, the sets
Rvar(P) and Rvar(Q) will be considered. These sets change after reduction steps using
rules such as (≈? refl), (≈? inst) and (µfp), but as Lem. 5.8 shows, Rvar(Q) ⊆ Rvar(P),
therefore if Rvar(P) ⊆ X then Rvar(Q) ⊆ X . Since in the matching algorithm X is the set
of rhs variables of the input problem, for each quadruple in a derivation P0 ⇒µ . . .⇒µ Pn
the rhs variables are in the protected set.

Lemma 5.8 (Preservation of Rvar by ⇒µ). Let P = 〈∆,X , δ, P 〉 and Q = 〈∆′,X , δ′, Q〉
such that P ⇒µ Q. Then Rvar(Q) ⊆ Rvar(P).

Proof. The formalisation follows by case analysis on the ⇒µ reduction and it presented in
file C Matching.v, Lem. match step rh vars.

Corollary 5.2 (Intersection emptyness preservation with rhs variables by⇒µ). Let P and
Q be two quadruples, 〈∆,X , δ, P 〉 and 〈∆′,X , δ′, Q〉, respectively, and Y be an arbitrary
set of variables. If Rvar(P) ∩ Y = ∅ and P ⇒µ Q, then Rvar(Q) ∩ Y = ∅.

Proof. This is indeed an easy set theoretically based corollary of Lem. 5.8, which is specified
in file C Matching.v, Cor. match step rh inter empty.

Corollary 5.3 (Preservation of valid quadruples by ⇒µ). If P ⇒µ Q and P is valid then
Q is also valid.

Proof. The formalisation follows from Lem. 5.1 and is given in file C Matching.v,
Lem. match step valid preserv.

Lemma 5.9 (Decidability of ⇒µ). For every quadruple P it is possible to decide whether
there exists Q such that P ⇒µ Q. Thus, also it is possible to decide if P is a leaf.

Proof. The formalisation is obtained by decidability of the relation ⇒υ (item (i) of Thm.
5.3), which is given in file C Matching.v, Lem. match step NF dec.

95

5.2.2 Main formalised results for nominal C-matching

Theorem 5.4 (Termination of ⇒µ). The relation ⇒µ is terminating.

Proof. The proof is by case analysis on the derivation rules of the relation ⇒µ, and uses a
lexicographic measure over sets of equation and freshness constraints. It is contained in
file C Matching.v, Lem. match step termination. The measure is given by

〈
|var(P)|, ∑

s≈?t∈P
|s|+ |t|, |P≈/Pfp≈|,

∑
a#? s∈P

|s|
〉

Let P = 〈∆,X , δ, P 〉 and Q = 〈∇,X , σ,Q〉 such that P ⇒µ Q.
For the case of rule (µυ), Thm. 5.3 item (ii) is applied.
For the case of an application of rule (µfp), one observes that:

1. |var(Q)| ≤ |var(P)|,

2. ∑
s≈?t∈Q

|s|+ |t| < ∑
s≈?t∈P

|s|+ |t|,

3. |Q≈/Qfp≈ | = |P≈/Pfp≈| and

4. ∑
a#? s∈Q

|s| = ∑
a#? s∈P

|s|.

Therefore the measure also decreases in this case, which concludes the proof.

Lemma 5.10 (Preservation of solutions by ⇒µ). Let P = 〈∆,X , δ, P 〉 a valid quadruple
and Q = 〈∆′,X , δ′, Q〉, if Rvar(P) ∩ dom(σ) = ∅, P ⇒µ Q and 〈∇, σ〉 ∈ MC(Q), then
〈∇, σ〉 ∈ MC(P).

Proof. The proof is by case analysis on the derivation rules of ⇒µ, and is formalised in file
C Matching.v, Lem. match step preserv. Notice that hypothesis Rvar(P)∩dom(σ) = ∅
is in fact necessary, since from 〈∇, σ〉 ∈ MC(Q) it is impossible to derive such statement
which is a necessary condition to show that 〈∇, σ〉 ∈ MC(P). According Def. 5.9, one
has Rvar(Q) ∩ dom(σ) = ∅. From this, the hypothesis Rvar(P) ∩ dom(σ) = ∅ and using
Lems. 5.3 (item (iii)) and 5.7 one concludes the case of rule (µυ). For the case of rule
(µfp), one needs to conclude the conditions of Def. 5.9 for the pair 〈∇, σ〉 w.r.t. P.
Condition (iv) is trivially satisfied. The first condition is proved just observing that
every constraint a#X in ∆ is also in ∆ ∪ dom(π). The second condition is easily proved
from the fact that if a#? s ∈ P] {π.X ≈? X} then a#? s ∈ P . Then, one applies the
hypothesis 〈∇, σ〉 ∈ MC(Q) using Def. 5.9, item (ii), to conclude. The third condition
is proved by analysis of two cases. The first case is when s ≈? t ∈ P] {π.X ≈? X}
being the equation s ≈? t equal to π.X ≈? X. In this case, one starts proving the
statement X ∩ dom(σ) = ∅ using the hypothesis Rvar(P] {π.X ≈? X}) ∩ dom(σ) = ∅.

96

From this, (π.X)σ can be replaced by π.X in the objective ∇ ` πXσ ≈α,C X, remaining
to prove that ∇ ` π.X ≈α,C X. Then, using the condition (i) of Def. 5.9 of hypothesis
〈∇, σ〉 ∈ MC(Q) one has that ∇ ` (∆ ∪ dom(π)#X)σ. Since X /∈ dom(σ), one concludes
that dom(π)#X ⊆ ∇ and then the objective is proved using the definition of ≈{α,C} for
the case of suspensions. The second case is when s ≈? t ∈ P . This case is trivial, and uses
hypothesis 〈∇, σ〉 ∈ MC(Q) with Def. 5.9, item (iii).

Theorem 5.5 (Completeness of ⇒µ). Let P = 〈∆,X , δ, P 〉 a valid quadruple that is not
a matching leaf, if Rvar(P)∩ dom(σ) = ∅, then 〈∇, σ〉 ∈ MC(P) if and only if there exists
Q such that P ⇒µ Q and 〈∇, σ〉 ∈ MC(Q).

Proof. This lemma is formalised in file C Matching.v, Lem. match step compl. Necessity
is proved by case analysis on the derivation rules of ⇒µ. Lem. 5.9 is applied to the
premise that P is not a matching leaf to obtain that there exists Q′ such that P ⇒µ Q′.
Then for the case of rule (µυ), using Lems. 5.3 (item (iv)) and 5.7 it is proved the
assertion that there exists Q′′ such that P ⇒υ Q′′ and 〈∇, σ〉 ∈ UC(Q′). From this,
using again Lem. 5.7, applying rule (µυ) and using Cor. 5.2 one concludes. For the
case of rule (µfp), P = 〈∆,X , δ, P ′] {π.X ≈? X}〉 with P ′ = P ′fp≈ . The quadruple
Q = 〈∆ ∪ dom(π)#X,X , δ, P 〉 will be a witness. Thus, P ⇒µ Q follows by an application
of rule (µfp). To prove that 〈∇, σ〉 ∈ MC(Q), one has to show that the conditions of Def.
5.9 are satisfied, having as hypothesis that 〈∇, σ〉 ∈ MC(P). Conditions (ii), (iii) and (iv)
are trivially verified and intersection emptyness is proved using Cor. 5.2. For condition
(i), a constraint a#X is chosen that is in ∆ ∪ dom(π)#X to analyse if it is either in ∆ or
dom(π)#X. If a#X is in ∆ the proof is trivial, otherwise one first proves the assertion that
{X} ∩ dom(σ) = ∅ from the hypotheses that P is valid and Rvar(P) ∩ dom(σ) = ∅. This
allows to replace every Xσ and every (π.X)σ, respectively, just by X and π.X, because
X /∈ dom(σ). Since π.X ≈? X is in P] {π.X ≈? X} and 〈∇, σ〉 ∈ MC(P), one has that
∇ ` (π.X)σ ≈α,C X, therefore ∇ ` π.X ≈α,C X and then dom(π)#X ⊆ ∇. On the other
hand, having a ∈ dom(π) as hypothesis, one has to prove that ∇ ` a#Xσ, which is the
same as ∇ ` a#X. Using the fact that dom(π)#X ⊆ ∇, one concludes.

Sufficiency is formalised as a direct consequence of Lem. 5.10.

Theorem 5.6 (Soundness of⇒∗µ). Let P = 〈∆,X , δ, P 〉 be a valid quadruple and P ⇒∗µ Q.
If Q is a matching leaf and 〈∇, σ〉 ∈ MC(Q) such that Rvar(P) ∩ dom(σ) = ∅ then
〈∇, σ〉 ∈ MC(P).

Proof. The proof uses Cors. 5.3 and 5.2 and Lem. 5.10, and is done by induction on the
number of steps of ⇒µ. It is given in file C Matching.v, Thm. match path soundness.
If P = Q the proof is trivial. In the case where P ⇒µ Q, Lem. 5.10 is applied to

97

conclude. When P ⇒µ R and R ⇒∗µ Q, one uses Lem. 5.10, IH and Lems. 5.3 and 5.2 to
conclude.

Theorem 5.7 (Completeness of ⇒∗µ). Let P = 〈∆,X , δ, P 〉 be a valid quadruple and
〈∇, σ〉 ∈ MC(P). Then there exists a matching leaf Q such that P ⇒∗µ Q and 〈∇, σ〉 ∈
MC(Q).

Proof. The formalisation follows by well-founded induction on the number of applications
of ⇒µ. It is formalised in file C Matching.v, Thm. match path compl. Also, Lem. 5.9
is applied in the analysis of the cases where either P is a matching leaf or there exists
Q′ such that P ⇒µ Q′. If P is a matching leaf then P = Q and the proof is completed.
If there exists Q′ such that P ⇒µ Q′, one applies Lem. 5.9 to obtain that P is not a
matching leaf. Lem. 5.5 is applied to the premise that P is not a matching leaf. From this
and the hypothesis 〈∇, σ〉 ∈ MC(P) one obtains that there exists Q′ such that P ⇒µ Q′.

The IH is established as the following statement: ∀R valid, if P ⇒µ R, Rvar(R)∩dom(σ)
and 〈∇, σ〉 ∈ MC(R), then there exists S, such that R ⇒∗µ S and 〈∇, σ〉 ∈ MC(S).

This is applied to the hypothesis P ⇒µ Q′ to conclude that there exists Q, such
that Q′ ⇒∗µ Q and 〈∇, σ〉 ∈ MC(Q′). The other premises of IH are achieved with the
auxiliary results given by Lem. 5.3 and Cor. 5.2. Finally, by case analysis on the statement
Q′ ⇒∗µ Q, one concludes.

Remark 5.9. Let P = 〈∆, Rvar(P), id, P 〉 and Q = 〈∇, Rvar(P), σ,Q〉 be, respectively, a
matching problem and a quadruple, so that P ⇒∗µ Q. If π.X ≈? X ∈ Q, then the nominal
C-matching algorithm eliminates this FP equation by a further application of rule (µfp).
From this and Lem. 5.5, one concludes that successful matching leaves must have an empty
set of nominal constraints, and obviously it does not contain any FP equation (Lem. 5.8).
This is the reason why nominal C-matching problems are considered to have only finite
sets of solutions.

Theorem 5.8 (Characterisation of successful matching leaves). Let Q = 〈∆,X , δ, Q〉 a
matching leaf, if Q is a proper problem and there exists 〈∇, σ〉 ∈ MC(Q), then Q = ∅.

Proof. This result is formalised in file C Matching.v, Thm. match successfull leaves ch.
First one proves the assertion that Q is a FP problem. This statement is proved using
Lems. 5.5 and 5.7, and rule (µυ) of the definition of matching-step (Fig. 5.12). Therefore,
if Q is a fixed problem it must be equal to the empty set, otherwise Q could be reduced by
an application of rule (µfp) of Fig. 5.12, which contradicts the fact that Q is a matching
leaf.

98

〈{}, {X,Z}, id, {[a]〈[b]fC
n 〈X,Y 〉, Z〉 ≈? [b]〈[a]fC

n 〈a,X〉, Z〉}〉

〈{}, {X,Z}, id, {〈[b]fC
n 〈X,Y 〉, Z〉 ≈? 〈[b]fC

n 〈b, (a b).X〉, (a b).Z〉, a#? 〈[a]fC
n 〈a,X〉, Z〉}〉

〈{}, {X,Z}, id, {[b]fC
n 〈X,Y 〉 ≈? [b]fC

n 〈b, (a b).X〉, Z ≈? (a b).Z, a#? 〈[a]fC
n 〈a,X〉, Z〉}〉

〈{}, {X,Z}, id, {fC
n 〈X,Y 〉 ≈? fC

n 〈b, (a b).X〉, Z ≈? (a b).Z, a#? 〈[a]fC
n 〈a,X〉, Z〉}〉

〈{}, {X,Z}, id, {X ≈? (a b).X, Y ≈? b, Z ≈? (a b).Z, a#? 〈[a]fC
n 〈a,X〉, Z〉}〉

〈{}, {X,Z}, id, {Y ≈? b, Z ≈? (a b).Z, a#? 〈[a]fC
n 〈a,X〉, Z〉, (a b).X ≈? X}〉

〈{}, {X,Z}, Y/b, {Z ≈? (a b).Z, a#? 〈[a]fC
n 〈a,X〉, Z〉, (a b).X ≈? X}〉

〈{}, {X,Z}, Y/b, {a#? 〈[a]fC
n 〈a,X〉, Z〉, (a b).X ≈? X, (a b).Z ≈? Z}〉

〈{}, {X,Z}, Y/b, {a#? [a]f
C
n 〈a,X〉, a#? Z, (a b).X ≈? X, (a b).Z ≈? Z}〉

〈{}, {X,Z}, Y/b, {a#? Z, (a b).X ≈? X, (a b).Z ≈? Z}〉

〈{a#Z}, {X,Z}, Y/b, {(a b).X ≈? X, (a b).Z ≈? Z}〉

〈{a#X, b#X, a#Z}, {X,Z}, Y/b, {(a b).Z ≈? Z}〉

〈{b#Z, a#X, b#X, a#Z}, {X,Z}, Y/b, {}〉

(>)

(µfp)

(µfp)

(#? var)

(#? a[a])

(#? pair)

(≈? inv)

(≈? inst)

(≈? inv)

〈{}, {X,Z}, id, {X ≈? b, Y ≈? (a b).X, Z ≈? (a b).Z, a#? 〈[a]fC
n 〈a,X〉, Z〉}〉

(⊥)

(≈? C) (≈? C)

(≈? [aa])

(≈? pair)

(≈? [ab])

Figure 5.15: Derivation tree of Ex. 5.5

99

Example 5.5 (Nominal C-matching). This example is similar to Ex. 5.4, but now
the set of protected variables is equal to the rhs variables of the initial problem, that is
{X,Z}. This results in the execution of the nominal C-matching algorithm that provides
the matching leaves

Q1 = 〈∅, {X,Z}, id, {Y/(a b).X}〉{X ≈? b, (a b).Z ≈? Z, a#? f〈[a](a ∗X), Z〉},

and, Q2 = 〈{a#X, b#X, a#Z, b#Z}, {X,Z}, {Y/b}, ∅〉.

Since X is a protect variable, Q1 has no solution due the fact that the equation X ≈? b

cannot be solved since X cannot be instantiated. Notice that, in the generated tree, by the
OCaml implementation (see Fig. 5.15), the lhs branch does not reach a leaf. Indeed, once
the constraint X ≈? b is detected, that branch fails.
Q2 has just one solution given by 〈{a#X, b#X, a#Z, b#Z}, {Y/b}〉. Thms. 5.6 and

5.7 show that this solution is the unique C-matching solution for the initial problem.

P = 〈∅, {X,Z}, id, { [a]f〈[b](X ∗ Y), Z〉≈?[b]f〈[a]((a ∗X)), Z〉 }〉

⇒(≈?[ab]) 〈∅, {X,Z}, id, { f〈[b](X ∗ Y), Z〉 ≈? f〈[b](b ∗ (a b).X), (a b).Z〉 , a#? f〈[a](a ∗
X), Z〉}〉

⇒(≈?app) 〈∅, {X,Z}, id, { 〈[b](X ∗ Y), Z〉 ≈? 〈[b](b ∗ (a b).X), (a b).Z〉 , a#? f〈[a](a∗X), Z〉}〉

⇒(≈?pair) 〈∅, {X,Z}, id, { [b](X ∗ Y) ≈? [b](b ∗ (a b).X) , Z ≈? (a b).Z, a#? f〈[a](a ∗
X), Z〉}〉

⇒(≈?[aa]) 〈∅, {X,Z}, id, { X ∗ Y ≈? (b ∗ (a b).X) , Z ≈? (a b).Z, a#? f〈[a](a ∗X), Z〉}〉

1.

⇒(≈?C) 〈∅, {X,Z}, id, {X ≈? b, Y ≈? (a b).X , Z ≈? (a b).Z, a#? f〈[a](a ∗X), Z〉}〉

⇒(≈?inst) 〈∅, {X,Z}, {Y/(a b).X}, {X ≈? b, Z ≈? (a b).Z , a#? f〈[a](a ∗X), Z〉}〉

⇒(≈?inv) 〈∅, {X,Z}, {Y/(a b).X}, {X ≈? b, (a b).Z ≈? Z, a#? f〈[a](a ∗X), Z〉}〉

2.

⇒(≈?C) 〈∅, {X,Z}, id, { X ≈? (a b).X , Y ≈? b, Z ≈? (a b).Z, a#? f〈[a](a ∗X), Z〉}〉

⇒(≈?inv) 〈∅, {X,Z}, id, {(a b).X ≈? X, Y ≈? b , Z ≈? (a b).Z, a#? f〈[a](a ∗X), Z〉}〉

⇒(≈?inst) 〈∅, {X,Z}, {Y/b}, {(a b).X ≈? X, Z ≈? (a b).Z , a#? f〈[a](a ∗X), Z〉}〉

⇒(≈?inv) 〈∅, {X,Z}, {Y/b}, {(a b).X ≈? X, (a b).Z ≈? Z, a#? f〈[a](a ∗X), Z〉 }〉

⇒(#? app) 〈∅, {X,Z}, {Y/b}, {(a b).X ≈? X, (a b).Z ≈? Z, a#? 〈[a](a ∗X), Z〉 }〉

100

⇒(#? pair) 〈∅, {X,Z}, {Y/b}, {(a b).X ≈? X, (a b).Z ≈? Z, a#? [a](a ∗X), a#? Z }〉

⇒(#? a[a]) 〈∅, {X,Z}, {Y/b}, {(a b).X ≈? X, (a b).Z ≈? Z, a#? Z }〉

⇒(#? var) 〈{a#Z}, {X,Z}, {Y/b}, { (a b).X ≈? X , (a b).Z ≈? Z}〉

⇒(µfp) 〈{a#X, b#X, a#Z}, {X,Z}, {Y/b}, { (a b).Z ≈? Z }〉

⇒(µfp) 〈{a#X, b#X, a#Z, b#Z}, {X,Z}, {Y/b}, ∅〉

Example 5.6 (Nominal C equality-checking). This example presents the execution of
the nominal C-unification algorithm applied to nominal C-equality checking. In item (a),
the set of protected variables, {X, Y, Z}, consists now of all variables in the input problem.
The algorithm generates two leaves (see Fig. 5.16)

〈∅, {X, Y, Z}, id, {X ≈? b, Y ≈? (a b).X, (a b).Z ≈? Z, a#? f〈[a](a ∗X), Z〉}〉

and, 〈∅, {X, Y, Z}, id, {(a b).X ≈? X, Y ≈? b, (a b).Z ≈? Z, a#? f〈[a](a ∗X), Z〉}〉.

Both are quadruples that have equations without solutions. In the former, X cannot be
instantiated to solve X ≈? b, and in the latter, Y cannot be instantiated to solve Y ≈? b.

In item (b), the set of protected variables, {X, Y }, consists also of all variables in the
input problem, but the generated leaves (see Fig. 5.17) are

〈∅, {X, Y }, id, {X ≈? b, b ≈? (a b).X, (a b).Y ≈? Y, a#? f〈[a](a ∗X), Y 〉}〉

and, 〈{a#X, b#X, a#Y, b#Y }, {X, Y }, id, ∅〉

The first leaf has also equations with the protected variable X. Namely, in equations
X ≈? b and b ≈? (a b).X X cannot be instantiated. Thus, neither equation has solutions.
On the other branch, the second leaf provides a solution given by the freshness context
{a#X, b#X, a#Y, b#Y }.

In item (c), the set of protected variables, {X}, consists also of all variables in the
input problem and the generated leaves (see Fig. 5.18) are

〈{a#X, c#X, d#X}, {X}, id, ∅〉 and 〈{a#X, b#X, c#X}, {X}, id, ∅〉

Observe that these two successful leaves have different freshness contexts with the same
number of elements: {a#X, c#X, d#X} and {a#X, b#X, c#X}.

(a) 〈∅, {X,Y, Z}, id, { [a]f〈[b](X ∗ Y), Z〉≈?[b]f〈[a](a ∗X), Z〉 }〉

101

⇒(≈?[ab]) 〈∅, {X,Y, Z}, id, { f〈[b](X ∗ Y), Z〉 ≈? f〈[b](b ∗ (a b).X), (a b).Z〉 , a#? f〈[a](a ∗
X), Z〉}〉

⇒(≈?app) 〈∅, {X,Y, Z}, id, { 〈[b](X ∗ Y), Z〉 ≈? 〈[b](b ∗ (a b).X), (a b).Z〉 , a#? f〈[a](a∗X), Z〉}〉

⇒(≈?pair) 〈∅, {X,Y, Z}, id, { [b](X ∗ Y) ≈? [b](b ∗ (a b).X) , Z ≈? (a b).Z, a#? f〈[a](a∗X), Z〉}〉

⇒(≈?[aa]) 〈∅, {X,Y, Z}, id, { X ∗ Y ≈? (b ∗ (a b).X) , Z ≈? (a b).Z, a#? f〈[a](a ∗X), Z〉}〉

1.

⇒(≈?C) 〈∅, {X,Y, Z}, id, {X ≈? b, Y ≈? (a b).X, Z ≈? (a b).Z , a#? f〈[a](a ∗
X), Z〉}〉

⇒(≈?inv) 〈∅, {X,Y, Z}, id, {X ≈? b, Y ≈? (a b).X, (a b).Z ≈? Z, a#? f〈[a](a∗X), Z〉}〉

2.

⇒(≈?C) 〈∅, {X,Y, Z}, id, { X ≈? (a b).X , Y ≈? b, Z ≈? (a b).Z, a#? f〈[a](a ∗
X), Z〉}〉

⇒(≈?inv) 〈∅, {X,Y, Z}, id, {(a b).X ≈? X, Y ≈? b, Z ≈? (a b).Z , a#? f〈[a](a ∗
X), Z〉}〉

⇒(≈?inv) 〈∅, {X,Y, Z}, id, {(a b).X ≈? X, Y ≈? b, (a b).Z ≈? Z, a#? f〈[a](a ∗
X), Z〉}〉

(b) 〈∅, {X,Y }, id, {[a]f〈[b](X ∗ b), Y 〉≈?[b]f〈[a](a ∗X), Y 〉}〉

⇒(≈?[ab]) 〈∅, {X,Y }, id, { f〈[b](X ∗ b), Y 〉 ≈? f〈[b](b ∗ (a b).X), (a b).Y 〉 , a#? f〈[a](a∗X), Y 〉}〉

⇒(≈?app) 〈∅, {X,Y }, id, { 〈[b](X ∗ b), Y 〉 ≈? 〈[b](b ∗ (a b).X), (a b).Y 〉 , a#? f〈[a](a∗X), Y 〉}〉

⇒(≈?pair) 〈∅, {X,Y }, id, {[b](X ∗ b) ≈? [b](b ∗ (a b).X) , Y ≈? (a b).Y, a#? f〈[a](a∗X), Y 〉}〉

⇒(≈?[aa]) 〈∅, {X,Y }, id, { X ∗ b ≈? (b ∗ (a b).X) , Y ≈? (a b).Y, a#? f〈[a](a ∗X), Y 〉}〉

1.

⇒(≈?C) 〈∅, {X,Y }, id, {X ≈? b, b ≈? (a b).X, Y ≈? (a b).Y , a#? f〈[a](a∗X), Y 〉}〉

⇒(≈?inv) 〈∅, {X,Y }, id, {X ≈? b, b ≈? (a b).X, (a b).Y ≈? Y, a#? f〈[a](a ∗X), Y 〉}〉

2.

⇒(≈?C) 〈∅, {X,Y }, id, { X ≈? (a b).X , b ≈? b, Y ≈? (a b).Y, a#? f〈[a](a ∗X), Y 〉}〉

⇒(≈?inv) 〈∅, {X,Y }, id, {(a b).X ≈? X, b ≈? b , Y ≈? (a b).Y, a#? f〈[a](a ∗X), Y 〉}〉

⇒(≈?refl) 〈∅, {X,Y }, id, {(a b).X ≈? X, Y ≈? (a b).Y , a#? f〈[a](a ∗X), Y 〉}〉

⇒(≈?inv) 〈∅, {X,Y }, id, {(a b).X ≈? X, (a b).Y ≈? Y, a#? f〈[a](a ∗X), Y 〉 }〉

⇒(#? app) 〈∅, {X,Y }, id, {(a b).X ≈? X, (a b).Y ≈? Y, a#? 〈[a](a ∗X), Y 〉 }〉

102

⇒(#? pair) 〈∅, {X,Y }, id, {(a b).X ≈? X, (a b).Y ≈? Y, a#? [a](a ∗X), a#? Y }〉

⇒(#? a[a]) 〈∅, {X,Y }, id, {(a b).X ≈? X, (a b).Y ≈? Y, a#? Y }〉

⇒(#? var) 〈{a#Y }, {X,Y }, id, { (a b).X ≈? X , (a b).Y ≈? Y }〉

⇒(µfp) 〈{a#X, b#X, a#Y }, {X,Y }, id, { (a b).Y ≈? Y }〉

⇒(µfp) 〈{a#X, b#X, a#Y, b#Y }, {X,Y }, id, ∅〉

(c) 〈∅, {X}, (a b).X ∗ (c d).X ≈? (c d)(b d)(a d).X ∗X〉

1.

⇒(≈?C) 〈∅, {X}, id, (a b).X ≈? (c d)(b d)(a d).X , (c d).X ≈? X〉

⇒(≈?inv) 〈∅, {X}, id, (a b)(a d)(b d)(c d).X ≈? X , (c d).X ≈? X〉

⇒(µfp) 〈{a#X, c#X, d#X}, {X}, id, (c d).X ≈? X 〉

⇒(µfp) 〈{a#X, c#X, d#X}, {X}, id, ∅〉

2.

⇒(≈?C) 〈∅, {X}, id, (a b).X ≈? X, (c d).X ≈? (c d)(b d)(a d).X 〉

⇒(≈?inv) 〈∅, {X}, id, (a b).X ≈? X , (c d)(a d)(b d)(c d).X ≈? X〉

⇒(µfp) 〈{a#X, b#X}, {X}, id, (c d)(a d)(b d)(c d).X ≈? X 〉

⇒(µfp) 〈{a#X, b#X, c#X}, {X}, id, ∅〉

Remark 5.10. Notice that, the α, C equality-checking of Ex. 5.6, item (b), differs from
that of Ex. 4.8. In the former, the algorithm provides the freshness context
{a#X, b#X, a#Y, b#Y }, while in the latter it returns only >. This exemplifies the different
behaviours between these two equality-checking algorithms. One outputs only > or ⊥ if
the two compared terms are or not ≈α,C-equivalent under a given freshness context, and
the other provides either a set o freshness contexts or returns fail when the two compared
terms are not ≈α,C-equivalent in any context.

103

〈{
},
{X

,Y
,Z
},

id
,
{[
a
]〈[
b]
f
C n
〈X

,Y
〉,
Z
〉≈

?
[b
]〈[
a
]f

C n
〈 a
,X
〉,
Z
〉}
〉

〈{
},
{X

,Y
,Z
},

id
,
{〈
[b
]f

C n
〈X

,Y
〉,
Z
〉≈

?
〈[b

]f
C n
〈 b
,(
a
b)
.X
〉,
(a

b)
.Z
〉,

a
#

?
〈[a

]f
C n
〈 a
,X
〉,
Z
〉}
〉

〈{
},
{X

,Y
,Z
},

id
,
{[
b]
f
C n
〈X

,Y
〉≈

?
[b
]f

C n
〈b
,(
a
b)
.X
〉,

Z
≈

?
(a

b)
.Z
,
a
#

?
〈[a

]f
C n
〈a
,X
〉,
Z
〉}
〉

〈{
},
{X

,Y
,Z
},

id
,
{f

C n
〈X

,Y
〉≈

?
f
C n
〈b
,(
a
b)
.X
〉,

Z
≈

?
(a

b)
.Z
,
a
#

?
〈[a

]f
C n
〈a
,X
〉,
Z
〉}
〉

〈{
},
{X

,Y
,Z
},

id
,
{X
≈

?
(a

b)
.X

,
Y
≈

?
b,

Z
≈

?
(a

b)
.Z
,
a
#

?
〈[a

]f
C n
〈a
,X
〉,
Z
〉}
〉

〈{
},
{X

,Y
,Z
},

id
,
{Y
≈

?
b,

Z
≈

?
(a

b)
.Z
,
a
#

?
〈[a

]f
C n
〈a
,X
〉,
Z
〉,

(a
b)
.X
≈

?
X
}〉

(⊥
)

(≈
?
in
v
)

〈{
},
{X

,Y
,Z
},

id
,
{X
≈

?
b,

Y
≈

?
(a

b)
.X

,
Z
≈

?
(a

b)
.Z
,
a
#

?
〈[a

]f
C n
〈a
,X
〉,
Z
〉}
〉

(⊥
)

(≈
?
C
)

(≈
?
C
)

(≈
?
[a
a
])

(≈
?
p
a
ir
)

(≈
?
[a
b
])

Figure 5.16: Derivation tree of Ex. 5.6 (a)
104

〈{}, {X,Y }, id, {[a]〈[b]fC
n 〈X, b〉, Y 〉 ≈? [b]〈[a]fC

n 〈a,X〉, Y 〉}〉

〈{}, {X,Y }, id, {〈[b]fC
n 〈X, b〉, Y 〉 ≈? 〈[b]fC

n 〈b, (a b).X〉, (a b).Y 〉, a#? 〈[a]fC
n 〈a,X〉, Y 〉}〉

〈{}, {X,Y }, id, {[b]fC
n 〈X, b〉 ≈? [b]fC

n 〈b, (a b).X〉, Y ≈? (a b).Y, a#? 〈[a]fC
n 〈a,X〉, Y 〉}〉

〈{}, {X,Y }, id, {fC
n 〈X, b〉 ≈? fC

n 〈b, (a b).X〉, Y ≈? (a b).Y, a#? 〈[a]fC
n 〈a,X〉, Y 〉}〉

〈{}, {X,Y }, id, {X ≈? (a b).X, b ≈? b, Y ≈? (a b).Y, a#? 〈[a]fC
n 〈a,X〉, Y 〉}〉

〈{}, {X,Y }, id, {b ≈? b, Y ≈? (a b).Y, a#? 〈[a]fC
n 〈a,X〉, Y 〉, (a b).X ≈? X}〉

〈{}, {X,Y }, id, {Y ≈? (a b).Y, a#? 〈[a]fC
n 〈a,X〉, Y 〉, (a b).X ≈? X}〉

〈{}, {X,Y }, id, {a#? 〈[a]fC
n 〈a,X〉, Y 〉, (a b).X ≈? X, (a b).Y ≈? Y }〉

〈{}, {X,Y }, id, {a#? [a]f
C
n 〈a,X〉, a#? Y, (a b).X ≈? X, (a b).Y ≈? Y }〉

〈{}, {X,Y }, id, {a#? Y, (a b).X ≈? X, (a b).Y ≈? Y }〉

〈{a#Y }, {X,Y }, id, {(a b).X ≈? X, (a b).Y ≈? Y }〉

〈{a#X, b#X, a#Y }, {X,Y }, id, {(a b).Y ≈? Y }〉

〈{b#Y, a#X, b#X, a#Y }, {X,Y }, id, {}〉

(>)

(µfp)

(µfp)

(#? var)

(#? a[a])

(#? pair)

(≈? inv)

(≈? refl)

(≈? inv)

〈{}, {X,Y }, id, {X ≈? b, b ≈? (a b).X, Y ≈? (a b).Y, a#? 〈[a]fC
n 〈a,X〉, Y 〉}〉

(⊥)

(≈? C) (≈? C)

(≈? [aa])

(≈? pair)

(≈? [ab])

Figure 5.17: Derivation tree of Ex. 5.6 (b)

105

〈{
},
{X
},

id
,
{f

C n
〈(
a
b)
.X

,(
c
d
).
X
〉≈

?
f
C n
〈(
c
d
)(
b
d
)(
a
d
).
X
,X
〉}
〉

〈{
},
{X
},

id
,
{(
c
d
).
X
≈

?
(c

d
)(
b
d
)(
a
d
).
X
,
(a

b)
.X
≈

?
X
}〉

〈{
},
{X
},

id
,
{(
a
b)
.X
≈

?
X
,
(c

d
)(
a
d
)(
b
d
)(
c
d
).
X
≈

?
X
}〉

〈{
a
#
X
,
b#

X
},
{X
},

id
,
{(
c
d
)(
a
d
)(
b
d
)(
c
d
).
X
≈

?
X
}〉

〈{
c#

X
,
a
#
X
,
b#

X
},
{X
},

id
,
{}
〉

(>
)

(µ
fp
)

(µ
fp
)

(≈
?
in
v
)

〈{
},
{X
},

id
,
{(
a
b)
.X
≈

?
(c

d
)(
b
d
)(
a
d
).
X
,
(c

d
).
X
≈

?
X
}〉

〈{
},
{X
},

id
,
{(
c
d
).
X
≈

?
X
,
(a

b)
(a

d
)(
b
d
)(
c
d
).
X
≈

?
X
}〉

〈{
c#

X
,
d
#
X
},
{X
},

id
,
{(
a
b)
(a

d
)(
b
d
)(
c
d
).
X
≈

?
X
}〉

〈{
a
#
X
,
c#

X
,
d
#
X
},
{X
},

id
,
{}
〉

(>
)

(µ
fp
)

(µ
fp
)

(≈
?
in
v
)

(≈
?
C
)

(≈
?
C
)

Figure 5.18: Derivation tree of Ex. 5.6 (c)

106

Chapter 6

Nominal fixed point problems

This chapter is devoted to the description of a generator of the possible infinite solutions
of a nominal C-unification problem of the form 〈∆,X , σ,∪i,j{πij.Xi ≈? Xi}〉, of i = 0..k
and j = 0..ki, denominated nominal C FP problems. Sec. 6.1 uses an algebraic approach
to determinate when is possible to build an infinite, but not complete yet, set of solutions
for nominal C problems. Sec. 6.2 extends the generator of solutions, obtaining a sound
and complete set for nominal C FP problems. The results of the current chapter were
published in [3] and [4].

6.1 Generating combinatorial solutions via
pseudo-cycles

To build solutions for a successful leaf P = 〈∇,X , σ, P 〉 in the derivation tree of a given
unification problem, one selects and combine solutions generated for C FP equations
π.X ≈? X, for each X ∈ V ar(P) such that X /∈ X . The notion of pseudo-cycle of a
permutation is used in order to provide precise conditions to build terms t by combining
the atoms in dom(π), such that ∇ ` π · t ≈α,C t. For convenience, the algebraic cycle
representation of permutations is used. Thus, instead of presenting permutations as lists
of swappings, they are presented as products of disjoint cycles [62].

107

Example 6.1. The permutations

a 7→ b

b 7→ c

c 7→ d

d 7→ a

e 7→ f

f 7→ e


and


a 7→ b

b 7→ c

c 7→ d

d 7→ a



can be respectively represented by the lists of swappings (a b)(e f)(c d)(a c) and (a b)(c d)(a c),
but are also represented as the product of permutation cycles (a b c d)(e f) and (a b c d).

Permutation cycles of length one are omitted. In general the cyclic representation of a
permutation consists of the product of all its cycles.

Remark 6.1. Let π be a permutation with |dom(π)| = n.

• Given a ∈ dom(π) the elements of the sequence a, π(a), π2(a), . . . cannot be all
distinct;

• Taking the first k ≤ n, such that πk(a) = a, one has the k-cycle (a π(a) . . . πk−1(a)),
where πj+1(a) is the successor of πj(a). For the 4-cycle in the permutation (a b c d) (e f),
the 4-cycles generated by a, b, c and d are the same: (a b c d) = (b c d a) = (c d a b) =
(d a b c).

Def. 6.1 establishes the notion of a pseudo-cycle w.r.t. a k-cycle κ. Intuitively, given
a k-cycle κ and a commutative function symbol ∗, a pseudo-cycle w.r.t κ, (A0 . . . Al), is
a cycle whose elements are either atom terms built from the atoms in κ or terms of the
form A′i ∗ A′j, for A′i, A′j elements of a pseudo-cycle w.r.t κ.

Definition 6.1 (Pseudo-cycle). Let κ = (a0 a1 . . . ak−1) be a k-cycle of a permutation π.
A pseudo-cycle w.r.t. κ is inductively defined as follows:

1. κ = (a0 · · · ak−1) is a pseudo-cycle w.r.t. κ, called trivial pseudo-cycle of κ.

2. κ′ = (A0 ... Ak′−1) is a pseudo-cycle w.r.t. κ, if the following conditions are simulta-
neously satisfied:

(a) each element of κ′ is of the form Bi ∗ Bj, where ∗ is a commutative function
symbol in the signature, and Bi, Bj are different elements of κ′′, a pseudo-cycle
w.r.t. κ. κ′ will be called a first-instance pseudo-cycle of κ′′ w.r.t. κ.

(b) Ai 6≈α,C Aj for i 6= j, 0 ≤ i, j ≤ k′ − 1;

108

(c) for each 0 ≤ i < k′ − 1, κ · Ai ≈α,C A(i+1)modk′.

Notation 6.1. The length of the pseudo-cycle κ, denoted by |κ|, consists of the number
of elements in κ. A pseudo-cycle of length one will be called unitary.

Example 6.2.

1. (Continuing Ex. 5.1) The unitary pseudo-cycles of κ = (a b) are of the form
(a ∗ b) for ∗ any commutative symbol in the signature. These pseudo-cycles are the
basis for a more elaborated construction used to build infinite independent solutions
for the leaf 〈∅, id, {X ≈? (a b).X}〉. Exs. of these solutions are: 〈∅, {X/a ∗ b}〉,
〈∅, {X/(a ∗ a) ∗ (b ∗ b)}〉, 〈∅, {X/(a ∗ b) ∗ (a ∗ b)}〉, 〈∅, {X/((a ∗ a) ∗ a) ∗ ((b ∗ b) ∗ b)}〉,
〈∅, {X/(a ∗ (a ∗ a)) ∗ (b ∗ (b ∗ b))}〉, etc.

2. (Continuing Exs. 5.3 and 6.1) In Q1 and Q2 one has the occurrences of the 4-cycle
κ = (a b c d). Suppose ∗,⊕,+ are commutative operators in the signature. The
following are pseudo-cycles w.r.t. κ: κ = (a b c d); κ1 = ((a∗ b) (b∗ c) (c∗d) (d∗a));
κ2 = ((a⊕ c) (b⊕ d)); κ11 = (((a ∗ b) + (b ∗ c)) ((b ∗ c) + (c ∗ d))((c ∗ d) + (d ∗ a)) ((d ∗
a) + (a ∗ b))); κ12 = (((a ∗ b) ∗ (c ∗ d)) ((b ∗ c) ∗ (d ∗ a))); κ21 = (((a⊕ c) ∗ (b⊕ d)));
κ121 = (((a∗ b)∗ (c∗d))∗ ((b∗ c)∗ (d∗a))). κ1 and κ2 are first-instance pseudo-cycles
of κ, and κ11 and κ12 of κ1 and κ21 of κ2. Notice that, |κ| = |κ1| = |κ11| = 4,
|κ12| = 2, and |κ21| = |κ121| = 1. Also, κ1 corresponds to ((a ∗ d) (b ∗ a) (c ∗ b) (d ∗ c)),
a first-instance pseudo-cycle of κ.

Finally, observe that for the elements of the unitary pseudo-cycles κ21 and κ121, say
s = (a⊕ c) ∗ (b⊕ d) and t = ((a ∗ b) ∗ (c ∗ d)) ∗ ((b ∗ c) ∗ (d ∗ a)), {X/s} and {X/t}
(resp. {Y/s} and {Y/t}) are solutions of the C FP equation (a b c d)(e f).X ≈? X

(resp. (a b c d).Y ≈? Y).

Pseudo-cycles will be considered modulo commutativity. This notion of equivalence
between pseudo-cycles is formally expressed by Def. 6.2.

Definition 6.2 (Pseudo-cycle C equivalence). Let κ1 and κ2 be two pseudo-cycles w.r.t.
the pseudo-cycle κ. They are said to be equivalent modulo commutativity of ∗, denoted by
κ1 ≈(C,∗) κ2, if each element A of κ1 is equivalent modulo commutativity of ∗ to one element
B of κ2, i.e., A ≈(C,∗) B and they have the same successor, that is, κ · A ≈(C,∗) κ ·B.

Example 6.3. ((A ∗B) (C ∗D) (E ∗ F)) = κ1 ≈(C,∗) κ2 = ((F ∗ E) (A ∗B) (D ∗ C)).

Notation 6.2. [κ](C,∗) denotes the equivalence class modulo commutativity of ∗ of the
pseudo-cycle κ, that is, [κ](C,∗) = {κ′ | κ ≈C κ′}.

109

When the operator ∗ is clear from the context, it will be denoted by ≈C and the
congruence class of the pseudo-cycle κ by [κ]C . So, pseudo-cycle equivalence modulo C
can be determined by a single element.

Lemma 6.1. If κ1 and κ2 are two pseudo-cycles w.r.t. the cycle κ, and there exists t ∈ κ1

such that t ≈C t′, for some t′ ∈ κ2, then κ1 ≈C κ2.

Proof. The proof follows directly from the fact that κ.t ≈C κ.t′.

Remark 6.2. The elements of pseudo-cycles can be represented by the coefficients of κ.
Thus, if one chooses an element A0 of κ, the pseudo-cycle κ′ = ((κ0 · A0) · · · (κk−1 · A0))
can be represented by (0 · · · k − 1), the choice of A0 only reorders the pseudo-cycle. Then,
one can define an operation + between elements of (0 · · · k − 1) where i+ j = i+ j and
i+ k = i.

Def. 6.3 is devoted to organise the first-instance pseudo-cycles of a pseudo-cycle κ in a
matrix with dimensions (k − 1)× k, denominated first-instance pseudo-cycle matrix. Each
first-instance pseudo-cycle of κ is also a pseudo-cycle that have size less or equal to |κ|. As
showed in the following lemmas, a chain of subsequent first-instance pseudo-cycle matrices
may give rise to a set of pseudo-cycles κi, where |κi| = 1. Such pseudo-cycles configures
solutions for a given C FP problem.

Definition 6.3. The first-instance pseudo-cycle matrixM(k−1)×k of a pseudo-cycle κ =
(0 · · · k − 1) for a commutative function symbol ∗, is defined as the (k− 1)× k-matrix with
components aij := j − 1 ∗ i+ j − 1.

M(k−1)×k =



0 ∗ 1 1 ∗ 2 · · · k − 1 ∗ 0
0 ∗ 2 1 ∗ 3 · · · k − 1 ∗ 1

.

0 ∗ k − 2 1 ∗ k − 1 · · · k − 1 ∗ k − 3
0 ∗ k − 1 1 ∗ 0 · · · k − 1 ∗ k − 2


(k−1)×k

When the function symbol ∗ is clear from the context M(k−1)×k will be called simply
first-instance pseudo-cycle matrix of κ.

Remark 6.3. One wants to establish a relationship between the rows of the matrix
M(k−1)×k related to κ and the first-instance pseudo-cycles of κ: for each i, 1 ≤ i ≤ k − 1,
the i-th row [ai1 ai2 . . . aik] of M(k−1)×k is mapped to the first-instance pseudo-cycle:
κi = (0 ∗ i 1 ∗ i+ 1 . . . k − 1 ∗ i− 1).

110

Example 6.4. The first-instance pseudo-cycle matrix of κ = (0 1 2 3) is

M3×4 =


0 ∗ 1 1 ∗ 2 2 ∗ 3 3 ∗ 0
0 ∗ 2 1 ∗ 3 2 ∗ 0 3 ∗ 1
0 ∗ 3 1 ∗ 0 2 ∗ 1 3 ∗ 2


Not all the rows of M3×4 are pseudo-cycles of κ: the second row does not, since it

contradicts condition (2.b) of the Def. 6.1; however, it contains two first-instance pseudo-
cycles of κ, both with length 2. Also notice that the first and third rows are equivalent
modulo C.

Example 6.5. For the 4-cycle κ = (a b c d), if one considers its pseudo-cycle κ = (a b c d),
the representation κ = (0 1 2 3) of κ via coefficients, does not depend on the choice
of A0.

• if A0 = a, then (0 1 2 3) corresponds to ((κ0 ·a) (κ1 ·a) (κ2 ·a) (κ3 ·a)) = (a b c d).

• if A0 = b, then (0 1 2 3) corresponds to ((κ0 ·b) (κ1 ·b) (κ2 ·b) (κ3 ·b)) = (b c d a).

and so on. If one chooses the pseudo-cycle k1 = ((a∗ c) (b∗d)) of κ, one can still represent
it via coefficients (0 1).

• if A0 = (a ∗ c) then (0 1) corresponds to κ1, itself.

• if A0 = (b∗d) then (0 1) corresponds to ((κ0
1 · (b∗d)) (κ1

1 · (b∗d))) = ((b∗d) (a∗c))).

Lemma 6.2. LetM = (aij)k−1×k be a first-instance pseudo-cycle matrix for a pseudo-cycle
κ. The following properties are valid inM:

1. ai(j+1) = κ · aij, for j < k .

2. κ · aik = ai1;

3. The element aij is equivalent modulo commutativity of ∗ to the element a(k−i)(i+j),
i.e., aij ≈C a(k−i)(i+j), for 1 ≤ i ≤ bk−1

2 c.

4. Suppose k = 2n for some positive integer n.

(a) ani ≈C an(n+i), for 1 ≤ i ≤ k.

(b) If κn1 = (an1 an2 . . . ann) and κn2 = (an(n+1) an(n+2) . . . ank) then κn1 ≈C κn2.

That is, when k is even, the k
2 -th row of the matrix , has two equivalent modulo C

pseudo-cycles with relation to κ, both with length k
2 .

111

Proof. The proof of all items follows by algebraic manipulation, using the commutativity
of ∗ and Def. 6.3:

1.
ai(j+1) = (j + 1− 1) ∗ (i+ j + 1− 1) = (j − 1) + 1 ∗ (i+ j − 1) + 1

= (κ · j − 1) ∗ (κ · i+ j − 1) = κ · aij

2.
κ · aik = (κ · k − 1) ∗ (κ · i+ k − 1) = k − 1 + 1 ∗ i+ k − 1 + 1

= (1− 1) + k ∗ (i+ 1− 1) + k = 1− 1 ∗ i+ 1− 1 = ai1

3.
a(k−i)(i+j) = i+ j − 1 ∗ k − i+ i+ j − 1 ≈C k − i+ i+ j − 1 ∗ i+ j − 1

= (j − 1) + k ∗ i+ j − 1 = j − 1 ∗ i+ j − 1 = aij

4. (a) By Def. 6.3, it follows that
an(n+i) = n+ i− 1∗n+ n+ i− 1 = n+ i− 1∗(i− 1) + k ≈C i− 1∗n+ i− 1 =
ani

(b) The proof follows directly from Def. 6.2 and the mapping from the rows of
M(k−1)×k to cycles.

Example 6.6. Let ρ = (a b c d e) be a 5-cycle, its pseudo-cycle representation via
coefficients is κ = (0 1 2 3 4), and the corresponding first-instance pseudo-cycle matrix is

M3×4 =


0 ∗ 1 1 ∗ 2 2 ∗ 3 3 ∗ 4 4 ∗ 0
0 ∗ 2 1 ∗ 3 2 ∗ 4 3 ∗ 0 4 ∗ 1
0 ∗ 3 1 ∗ 4 2 ∗ 0 3 ∗ 1 4 ∗ 2
0 ∗ 4 1 ∗ 0 2 ∗ 1 3 ∗ 2 4 ∗ 3


Notice that, for instance, a12 ≈C a43 which implies that κ1 ≈C κ4. Similarly, a23 ≈C a35

implies κ2 ≈C κ3. Every row ofM3×4 is a first-instance pseudo-cycle of κ, with length 5.

Remark 6.4. The next results establish the properties and conditions that a row of
M(k−1)×k must satisfy to be (or contain) a pseudo-cycle of κ.

Lemma 6.3. Let M = (aij)k−1×k be a first-instance pseudo-cycle matrix for a pseudo-
cycle κ . If there exists a positive integer n ≤ k such that ani ≈C ani′, for some i 6= i′,
then k = 2n.

Proof. Suppose that ani ≈C ani′ with i 6= i′. Then, i− 1 ∗ i+ n− 1 ≈C i′ − 1 ∗ i′ + n− 1.
Since i 6= i′, it follows that i− 1 = i′ + n− 1 and i′ − 1 = i+ n− 1. Therefore, i = i′ + n

and i′ = i+ n, which imply, i+ i′ = (i+ i′) + 2n. Hence, 0 = 2n and k = 2n.

112

Theorem 6.1. Let κ be a pseudo-cycle with k elements andM its first-instance matrix,
with k an odd number. The k− 1 rows ofM are first-instance pseudo-cycles w.r.t. κ, with
k elements.

Proof. For each row ri = [ai1 ai2 . . . aik] ofM, for 1 ≤ i ≤ k, one uses the mapping
from Rmk. 6.3, to obtain the candidate pseudo-cycle of κ :

κi = (0 ∗ i 1 ∗ i+ 1 . . . k − 1 ∗ i− 1),

whose elements clearly satisfy the conditions b. and c. of Def. 6.1. Also, since k is odd, it
follows from Lem. 6.2, that the elements of κi satisfy condition a. of the Def. 6.1.

Lemma 6.4. LetM(k−1)×k be first-instance matrix of the pseudo-cycle κ, with k = 2n+ 1
for some positive integer n. If κi is the pseudo-cycle in the i-th row ofM, for 1 ≤ i ≤ k−1,
then κi ≈C κk−i.

Proof. By Lem. 6.2, a(k−i)(i+j) ≈C aij, for each 1 ≤ i ≤ k − 1, therefore, by Lem. 6.1,
κi ≈C κk−i.

The next theorem says that the first-instance pseudo-cycle matrix of κ contains all
possible first-instance pseudo-cycles of κ.

Theorem 6.2. κ′ is a first-instance pseudo-cycle of κ iff it is equivalent to a pseudo-cycle
that is in a row of the first-instance pseudo-cycle matrixM(k−1)×k of κ.

Proof. Let A0 ∈ κ′, by definition, A0 = B1 ∗ B2 for some B1, B2 ∈ κ. If B1 6= B2 then
A0 = m ∗ n with m 6= n and 0 ≤ m,n ≤ k − 1. But for all m,n there exist i, j such that
m ∗ n ≈C aij ∈M(k−1)×k. On one hand, if k is odd and κ′′ = (A0 κA0 . . . κ(k−1)A0)
then, by Thm. 6.1, κ′′ is a pseudo-cycle in a row ofM(k−1)×k, with k elements. Besides, by
Lem. 6.1, κ′ ≈C κ′′. On the other hand, if k is even and κ′′ = (A0 κA0 . . . κ(k−1)A0),
by Lem. 6.2, either κ′′ is equivalent to a row i for 1 ≤ i ≤ bk−1

2 c, and therefore, κ′′ is
equivalent to a first-instance pseudo-cycle of κ with k elements, or κ′′ can be split into
two pseudo-cycles κ′′1 and κ′′2 of length k

2 , both containing an element equivalent to A0, by
Lem. 6.1, κ′ ≈C κ′′i (i = 1, 2), and therefore, κ′ is in a row of M(k−1)×k.

Theorem 6.3. Let κ be a pseudo-cycle with k elements and M be its first-instance
pseudo-cycle matrix. The following properties hold

i) if k is even, then κ has exactly bk−1
2 c first-instance pseudo-cycles with k elements,

and one with k
2 elements.

ii) if k is odd, then κ has exactly k−1
2 first-instance pseudo-cycles with k elements.

113

Proof.

i) Suppose k = 2n for some positive integer n. By Lem. 6.2, it follows that rows 1 to
bk−1

2 c ofM are first-instance pseudo-cycles of κ with k elements and κi ≈C κk−i, for
1 ≤ i ≤ b2n−1

2 c. According to Lems. 6.2 and 6.3, the n-th row ofM contains two
equivalent first-instance pseudo-cycles of κ both with k

2 elements.

ii) Suppose k = 2n+ 1, for some non-negative integer n. By Thm. 6.1 the k − 1 rows
ofM are first-instance pseudo-cycles of κ with length k. From Lem. 6.2, it follows
that κi ≈C κk−i, for 1 ≤ i ≤ bk−1

2 c and the result follows.

Remark 6.5. Let κ be a pseudo-cycle. Notice that only item 2 of Def. 6.1 may build
a first-instance pseudo-cycle κ′ w.r.t. κ with fewer elements. If |κ′| < |κ| then, due to
algebraic properties of cycles and commutativity of the operator applied (∗), one must have
that |κ′| = |κ|/2. Thus, unitary pseudo-cycles can only be generated from cycles of length
a power of two. This is the intuition behind the next theorem, proved by induction on the
size of the cycle κ.

Theorem 6.4. A pseudo-cycle κ contains a unitary pseudo-cycle iff |κ| is a power of two.

Proof. Let κ be of the form κ = (a0 a1 . . . ak−1).
(⇐) The proof is by induction on n.

• Base Case. n = 1

In this case, k = 2 and the first-instance pseudo-cycle matrix w.r.t. κ and ∗ is

M12× =
[

0 ∗ 1 1 ∗ 0
]

Notice that 0 ∗ 1 ≈C 1 ∗ 0, and this single row of M12× contains two equivalent
first-instance unitary pseudo-cycles κ1 = (0 ∗ 1) and κ2 = (1 ∗ 0) .

• Induction Step. Suppose that the result holds for k = 2n. It is proved the result
holds for k = 2n+1.

Let κl be a pseudo-cycle of length l = 2n+1 = 2.(2n). By Thm. 6.3, κl has a first
instance pseudo-cycle of length l

2 = 2n, and by IH, the result follows.

(⇒) Let κ1 and κ2 be pseudo-cycles w.r.t. a pseudo-cycle κ such that κ2 is a first-instance
pseudo-cycle of κ1. By Lem. 6.2 , |κ2| < |κ1| only if |κ1| = 2.|κ2|.

Notice that κ = (a0 · · · ak−1) is an immediate first-instance pseudo-cycle of κ with k
elements.

114

• If k = 1 = 20, the result follows.

• Suppose that k > 1. Then, there exists a pseudo-cycle κp regarding to κ, with
|κp| = 1 only if one has a chain of pseudo-cycles κ, κ1, · · · , κp−1, κp, where κ1 is a
first-instance pseudo-cycle of κ, and κi+1 is a first-instance pseudo-cycle of κi, for all
i = 1, · · · , (p− 1). Besides,

|κ| = 2.|κ1|, |κ1| = 2.|κ2|, · · · , |κp−1| = 2.|κp| and |κp| = 1.

So, k must be equal to 2p, and the result follows.

Notice that, according to item 2.c of Def. 6.1, if κ′ = (A0 . . . Ak′−1) is a pseudo-cycle
w.r.t. π then π · Ak′−1 ≈α,C A0; particularly, if k′ = 1 then π · A0 ≈α,C A0. Below, given
P = 〈∅,X , {π.X ≈? X}〉 a C FP problem, if X /∈ X by a combinatorial solution of P one
understands a substitution {X/t}, such that π · t ≈C t, and t contains only atoms from π

and commutative function symbols, built as unary pseudo-cycles w.r.t. κ a cycle in π.

Theorem 6.5. Let P = 〈∅,X , {π.X ≈? X}〉 be a C FP problem, where X /∈ X . P has a
combinatorial solution iff there exists a unitary pseudo-cycle κ w.r.t. π.

Proof. (⇐) Suppose that π has a unitary pseudo-cycle, say κ = (t), then κ · t ≈C t, by
definition of pseudo-cycles, and π · t ≈C t. Therefore, {X/t} is a solution for P .
(⇒) Suppose that π does not have a unitary pseudo-cycle, then by Thm. 6.4, every
pseudo-cycle κ w.r.t. π has length k = 2n(2r + 1), for some positive integer r.

Suppose, by contradiction, that there is a combinatorial solution for P, say {X/t}.
If any atom from dom(κ) is in t, then all atoms of κ have to occur in t, otherwise one
would not have π · t ≈C t. Since one works modulo commutativity, terms may change their
positions pairwise, inside t, respecting the parentheses. Therefore, one should be able to
arrange in pairs the atoms in κ, and permute them around the commutative symbols. To
do so, one has to take the k elements and organise them in pairs, interactively. But if k
has an odd factor, different from 1, it is not possible.

Remark 6.6. Since one can generate infinitely many unitary pseudo-cycles from a given
2n-cycle κ in π, n ∈ N, if X /∈ X there exist infinite independent solutions for the C FP
problem 〈∅,X , {π.X ≈? X}〉.

Remark 6.7. Since the set of solutions of a nominal C-unification problem P = 〈∇,X , P 〉
is the union of the solutions of the successful leaves of the derivation tree T〈∇,X ,P 〉 (Thm. 5.2).
And this successful leaves are C FP problems (Lem. 5.5). One concludes that the nominal
C-unification problems may have infinite sets of independent solutions.

115

Remark 6.8. Proving that nominal C FP problems have potentially infinite independent
solutions does not provide the warranty that these problems are in the infinitary class. In
fact, to show that a problem has type ∞, it is necessary to prove the existence of infinite
minimal complete sets of solutions. At this point, nominal C FP was proved at least
infinitary, which means that these kind of problems have either type ∞ or type 0.

6.2 General solutions for C FP problems.

Pseudo-cycles are built just from atom terms in dom(π) and commutative function symbols.
In this section, an extension of the Def. 6.1 provides a broader class of solutions involving
all function symbols and constructors of the signature.

Remark 6.9 (More general solution and complete set of solutions). The notion of more
general than (denoted by �) and complete set of solutions given by Def. 2.26 are extended
to be used in the context of the ≈α,C relation. The only change that must be done in Def.
2.26 is to replace U(P) by UC(P).

Example 6.7. Given the nominal C-unification problem

P = 〈∅, ∅, id, {[a′]〈(a c).X ? (a c)(b c).Y, (a d)(b d)(c d).X〉 ≈? [b′]〈X ? Y, X〉}〉

the algorithm in Sec. 5.1 transforms it into the following C FP problems (see Fig. 6.1).

Q1 = 〈{a′#X, a′#Y }, ∅, id, {π1.X ≈? X, π2.Y ≈? Y, π3.X ≈? X}〉

and
Q2 = 〈{a′#Y, b′#Y }, ∅, {X/π−1

1 .Y }, {π4.Y ≈? Y, π5.Y ≈? Y }〉.

Where:

• ? is a commutative symbol.

• π1 = (a c)(a′ b′)

• π2 = (a c)(b c)(a′ b′)

• π3 = (a d)(b d)(c d)(a′ b′)

• π4 = (a c)(b c)(a′ b′)(a c)(a′ b′)

• π5 = (a′ b′)(a c)(a d)(b d)(c d)(a′ b′)(a c)(a′ b′)

116

In the k-cycle permutation representation π1, π2, π3, π4 and π5 are, respectively given by:
(a c)(a′ b′), (a b c)(a′ b′), (a b c d)(a′ b′), (a b) and (a d c b)(a′ b′). Then, in this representation:

Q1 = 〈{a′#X, a′#Y }, ∅, id, {(a c)(a′ b′).X ≈? X, (a b c)(a′ b′).Y ≈? Y, (a b c d)(a′ b′).X ≈? X}〉

and

Q2 = 〈{a′#Y, b′#Y }, ∅, {X/(a′ b′)(a c).Y }, {(a b).Y ≈? Y, (a d c b)(a′ b′).Y ≈? Y }〉.

Def. 6.4 extends Def. 6.1 adding new cases in the construction of the cycles. Extended
pseudo-cycles, or just epc’s, considers all nominal syntactic elements including new vari-
ables, and also non commutative function symbols. As in the previous section, the unitary
extended pseudo-cycles give rise to solutions for a C FP problem, but now the generated
set is proved complete. The definition of extended pseudo-cycle given below is parametric
on a set Z of variables.

Definition 6.4 (Extended Pseudo-cycle). Let π.X ≈? X and Z a set of variables. The
extended pseudo-cycles (for short, epc) κ for π relative to Z are inductively defined from
the permutation cycles of π as follows:

1. κ = (Y), for any variable not occurring in Z, is an epc for π;

2. κ = (a0 · · · ak−1) is an epc for (a0 · · · ak−1) a permutation cycle in π such that
k = 2l, for l > 0, called trivial extended pseudo-cycle of π.

3. κ = (A0 ... Ak−1), for a length k ≥ 1, is an epc for π, if the following conditions are
simultaneously satisfied:

(a) i. each element of κ is of the form Bi ?Bj, where ? is a commutative function
symbol in the signature, and Bi, Bj are different elements of κ′, an epc for
π; in this case, κ will be called a first-instance extended pseudo-cycle of κ′

for π; or
ii. each element of κ is of the form Bi ? Cj for any commutative symbol ?,

where Bi and Cj are elements of κ′ and κ′′ epc’s for π, which might both
be the same, but κ is not a first-instance epc for π; or

iii. each element of κ is of the form 〈Bi, Cj〉, where Bi and Cj are elements of
κ′ and κ′′ epc’s for π, which might both be the same; or

iv. either each element of κ is of the form g Bi or each element is of the form
[e]Bi, where g is a non commutative function symbol in the signature and
e /∈ dom(π), and each Bi is an element of κ′ an epc for π; or

117

〈{
},

{}
,
id
,
{[
a
′]〈
f
C n
〈(
a
c)
.X

,(
a
c)
(b
c)
.Y

〉,
(a

d
)(
b
d
)(
c
d
).
X
〉≈

?
[b
′]〈
f
C n
〈X

,Y
〉,
X
〉}
〉

〈{
},

{}
,
id
,
{〈
f
C n
〈(
a
c)
.X

,(
a
c)
(b
c)
.Y

〉,
(a

d
)(
b
d
)(
c
d
).
X
〉≈

?
〈f

C n
〈(
a
′ b

′)
.X

,(
a
′ b

′)
.Y

〉,
(a

′ b
′)
.X

〉,
a
′ #

?
〈f

C n
〈X

,Y
〉,
X
〉}
〉

〈{
},

{}
,
id
,
{f

C n
〈(
a
c)
.X

,(
a
c)
(b
c)
.Y

〉≈
?
f
C n
〈(
a
′ b

′)
.X

,(
a
′ b

′)
.Y

〉,
(a

d
)(
b
d
)(
c
d
).
X

≈
?
(a

′ b
′)
.X

,
a
′ #

?
〈f

C n
〈X

,Y
〉,
X
〉}
〉

(≈
?
C
)

(≈
?
C
)

(≈
?
p
a
ir
)

(≈
?
[a
b
])

〈{
},

{}
,
id
,
{(
a
c)
.X

≈
?
(a

′ b
′)
.X

,
(a

c)
(b
c)
.Y

≈
?
(a

′ b
′)
.Y
,
(a

d
)(
b
d
)(
c
d
).
X

≈
?
(a

′ b
′)
.X

,
a
′ #

?
〈f

C n
〈X

,Y
〉,
X
〉}
〉

〈{
},

{}
,
id
,
{(
a
c)
(b
c)
.Y

≈
?
(a

′ b
′)
.Y
,
(a

d
)(
b
d
)(
c
d
).
X

≈
?
(a

′ b
′)
.X

,
a
′ #

?
〈f

C n
〈X

,Y
〉,
X
〉,

(a
c)
(a

′ b
′)
.X

≈
?
X
}〉

〈{
},

{}
,
id
,
{(
a
d
)(
b
d
)(
c
d
).
X

≈
?
(a

′ b
′)
.X

,
a
′ #

?
〈f

C n
〈X

,Y
〉,
X
〉,

(a
c)
(a

′ b
′)
.X

≈
?
X
,
(a

c)
(b
c)
(a

′ b
′)
.Y

≈
?
Y
}〉

〈{
},

{}
,
id
,
{a

′ #
?
〈f

C n
〈X

,Y
〉,
X
〉,

(a
c)
(a

′ b
′)
.X

≈
?
X
,
(a

c)
(b
c)
(a

′ b
′)
.Y

≈
?
Y
,
(a

d
)(
b
d
)(
c
d
)(
a
′ b

′)
.X

≈
?
X
}〉

〈{
},

{}
,
id
,
{a

′ #
?
f
C n
〈X

,Y
〉,

a
′ #

?
X
,
(a

c)
(a

′ b
′)
.X

≈
?
X
,
(a

c)
(b
c)
(a

′ b
′)
.Y

≈
?
Y
,
(a

d
)(
b
d
)(
c
d
)(
a
′ b

′)
.X

≈
?
X
}〉

〈{
},

{}
,
id
,
{a

′ #
?
〈X

,Y
〉,

a
′ #

?
X
,
(a

c)
(a

′ b
′)
.X

≈
?
X
,
(a

c)
(b
c)
(a

′ b
′)
.Y

≈
?
Y
,
(a

d
)(
b
d
)(
c
d
)(
a
′ b

′)
.X

≈
?
X
}〉

〈{
},

{}
,
id
,
{a

′ #
?
Y
,
a
′ #

?
X
,
(a

c)
(a

′ b
′)
.X

≈
?
X
,
(a

c)
(b
c)
(a

′ b
′)
.Y

≈
?
Y
,
(a

d
)(
b
d
)(
c
d
)(
a
′ b

′)
.X

≈
?
X
}〉

〈{
a
′ #

Y
},

{}
,
id
,
{a

′ #
?
X
,
(a

c)
(a

′ b
′)
.X

≈
?
X
,
(a

c)
(b
c)
(a

′ b
′)
.Y

≈
?
Y
,
(a

d
)(
b
d
)(
c
d
)(
a
′ b

′)
.X

≈
?
X
}〉

〈{
a
′ #

X
,
a
′ #

Y
},

{}
,
id
,
{(
a
c)
(a

′ b
′)
.X

≈
?
X
,
(a

c)
(b
c)
(a

′ b
′)
.Y

≈
?
Y
,
(a

d
)(
b
d
)(
c
d
)(
a
′ b

′)
.X

≈
?
X
}〉

(⊤
)

(#
?
v
a
r)

(#
?
v
a
r)

(#
?
p
a
ir
)

(#
?
a
p
p
)

(#
?
p
a
ir
)

(≈
?
in
v
)

(≈
?
in
v
)

(≈
?
in
v
)

〈{
},

{}
,
id
,
{(
a
c)
.X

≈
?
(a

′ b
′)
.Y
,
(a

c)
(b
c)
.Y

≈
?
(a

′ b
′)
.X

,
(a

d
)(
b
d
)(
c
d
).
X

≈
?
(a

′ b
′)
.X

,
a
′ #

?
〈f

C n
〈X

,Y
〉,
X
〉}
〉

〈{
},

{}
,
X
/(
a
′ b

′)
(a

c)
.Y
,
{(
a
c)
(b
c)
.Y

≈
?
(a

′ b
′)
(a

c)
(a

′ b
′)
.Y
,
(a

′ b
′)
(a

c)
(a

d
)(
b
d
)(
c
d
).
Y

≈
?
(a

′ b
′)
(a

c)
(a

′ b
′)
.Y
,
a
′ #

?
〈f

C n
〈(
a
′ b

′)
(a

c)
.Y
,Y

〉,
(a

′ b
′)
(a

c)
.Y

〉}
〉

〈{
},

{}
,
X
/(
a
′ b

′)
(a

c)
.Y
,
{(
a
′ b

′)
(a

c)
(a

d
)(
b
d
)(
c
d
).
Y

≈
?
(a

′ b
′)
(a

c)
(a

′ b
′)
.Y
,
a
′ #

?
〈f

C n
〈(
a
′ b

′)
(a

c)
.Y
,Y

〉,
(a

′ b
′)
(a

c)
.Y

〉,
(a

c)
(b
c)
(a

′ b
′)
(a

c)
(a

′ b
′)
.Y

≈
?
Y
}〉

〈{
},

{}
,
X
/(
a
′ b

′)
(a

c)
.Y
,
{a

′ #
?
〈f

C n
〈(
a
′ b

′)
(a

c)
.Y
,Y

〉,
(a

′ b
′)
(a

c)
.Y

〉,
(a

c)
(b
c)
(a

′ b
′)
(a

c)
(a

′ b
′)
.Y

≈
?
Y
,
(a

′ b
′)
(a

c)
(a

d
)(
b
d
)(
c
d
)(
a
′ b

′)
(a

c)
(a

′ b
′)
.Y

≈
?
Y
}〉

〈{
},

{}
,
X
/
(a

′ b
′)
(a

c)
.Y
,
{a

′ #
?
f
C n
〈(
a
′ b

′)
(a

c)
.Y
,Y

〉,
a
′ #

?
(a

′ b
′)
(a

c)
.Y
,
(a

c)
(b
c)
(a

′ b
′)
(a

c)
(a

′ b
′)
.Y

≈
?
Y
,
(a

′ b
′)
(a

c)
(a

d
)(
b
d
)(
c
d
)(
a
′ b

′)
(a

c)
(a

′ b
′)
.Y

≈
?
Y
}〉

〈{
},

{}
,
X
/
(a

′ b
′)
(a

c)
.Y
,
{a

′ #
?
〈(
a
′ b

′)
(a

c)
.Y
,Y

〉,
a
′ #

?
(a

′ b
′)
(a

c)
.Y
,
(a

c)
(b
c)
(a

′ b
′)
(a

c)
(a

′ b
′)
.Y

≈
?
Y
,
(a

′ b
′)
(a

c)
(a

d
)(
b
d
)(
c
d
)(
a
′ b

′)
(a

c)
(a

′ b
′)
.Y

≈
?
Y
}〉

〈{
},

{}
,
X
/(
a
′ b

′)
(a

c)
.Y
,
{a

′ #
?
Y
,
a
′ #

?
(a

′ b
′)
(a

c)
.Y
,
(a

c)
(b
c)
(a

′ b
′)
(a

c)
(a

′ b
′)
.Y

≈
?
Y
,
(a

′ b
′)
(a

c)
(a

d
)(
b
d
)(
c
d
)(
a
′ b

′)
(a

c)
(a

′ b
′)
.Y

≈
?
Y
}〉

〈{
a
′ #

Y
},

{}
,
X
/(
a
′ b

′)
(a

c)
.Y
,
{a

′ #
?
(a

′ b
′)
(a

c)
.Y
,
(a

c)
(b
c)
(a

′ b
′)
(a

c)
(a

′ b
′)
.Y

≈
?
Y
,
(a

′ b
′)
(a

c)
(a

d
)(
b
d
)(
c
d
)(
a
′ b

′)
(a

c)
(a

′ b
′)
.Y

≈
?
Y
}〉

〈{
b′
#
Y
,
a
′ #

Y
},

{}
,
X
/(
a
′ b

′)
(a

c)
.Y
,
{(
a
c)
(b
c)
(a

′ b
′)
(a

c)
(a

′ b
′)
.Y

≈
?
Y
,
(a

′ b
′)
(a

c)
(a

d
)(
b
d
)(
c
d
)(
a
′ b

′)
(a

c)
(a

′ b
′)
.Y

≈
?
Y
}〉

(⊤
)

(#
?
v
a
r)

(#
?
v
a
r)

(#
?
p
a
ir
)

(#
?
a
p
p
)

(#
?
p
a
ir
)

(≈
?
in
v
)

(≈
?
in
v
)

(≈
?
in
st
)

Figure 6.1: Derivation tree of Ex. 6.7

118

v. each element of κ is of the form [aj]Bi, where aj are atoms in κ′ =
(a0 · · · ak′−1) a trivial epc for π, and Bi elements of κ′′ an epc for π; and

(b) for ∇′ = ∪Y ∈Var(κ){dom(π)#Y },

i. it does not hold that ∇′ ` Ai ≈α,C Aj for i 6= j, 0 ≤ i, j ≤ k − 1; and
ii. for each 0 ≤ i ≤ k − 1 one has that ∇′ ` π(Ai) ≈α,C A(i+1)modk.

Remark 6.10. Notice that epc’s built using only items 2 and 3.a.i and 3.b are exactly
those pseudo-cycles that are built by Def. 6.1. A relevant aspect is that, as in Def. 6.1,
item 2.a, only case 3.a.i of Def. 6.4 allows generating epc’s that might be shorter than the
epc’s to which this case is applied. When this is the case, the length of the generated epc
is half of the original one. Extended pseudo-cycles of length k = 1 are called unitary.

Example 6.8. (Continuing Ex. 6.7) Given the C FP equation (a b c d)(a′ b′).X ≈? X. Let
κ = (a b c d) and Z = {X, Y }. Assume, ? and ⊕ are commutative symbols, f and g non
commutative symbols. The following are pseudo-cycles relative to Z: (a?d b?a c?b d?c),
(a ? c⊕ b ? d), etc. The following are epc’s relative to Z: (f〈a, b〉 f〈b, c̄〉 f〈c, d〉 f〈d, a〉),
([e]a ? c [e]b ? d), (g〈fa, [e]a〉 g〈fb, [e]b〉 g〈fc, [e]c〉 g〈fd, [e]d〉),
(〈t, f〈g〈fa, [e]b〉, Z〉 ⊕ f〈g〈fc, [e]d〉, Z〉〉 ? 〈t, f〈g〈fb, [e]c〉, Z〉 ⊕ f〈g〈fd, [e]a〉, Z〉)〉), etc.

Example 6.9 (Continuing Exs. 6.7 and 6.8). For the C FP (a b c)(a′ b′).Y ≈? Y it is not
possible to obtain an epc w.r.t. κ′ = (a b c), due the fact that the length of this cycle is not
a power of two. On the other hand, applying case 3.a.i to the trivial epc (a b c d) w.r.t.
κ = (a b c d), one obtains the epc (a ? c b ? d) that has half length of the trivial one.

Since unitary epc’s can only be obtained from permutation cycles of length a power
of two, when a unitary epc is being generated, the last application of 3.a.i transforms a
length two epc of the form (A0 A1) into (A0 ?A1). By condition 3.b.ii, ∇ ` π(A0) ≈α,C A1

and ∇ ` π(A1) ≈α,C A0. Therefore, ∇ ` π(A0 ? A1) ≈α,C A0 ? A1.
Although the relation ≈α,C is being considered by the class of terms involved in the

generation of epc’s, only ≈C would be necessary, except for considerations related with
the freshness constraints (on new variables); hence, the invariant 3.b.ii can be seen as
π(Ai) ≈C Ai+1, where i+ 1 is read modulo the length of the epc.

6.2.1 Soundness and completeness of the generator

Definition 6.5 (Generated solutions of singleton C FP problems). For Q and π.X ≈?

X ∈ Q, the set of generated solutions for 〈∆,X , {π.X ≈? X}〉, denoted as 〈∆,X , {π.X ≈?

X}〉SolG, consists of pairs of the form 〈∇, {X/s}〉 where (s) is a unitary epc for π such
that ∇ ` dom(∆|X) # s, where ∇ = ∆ ∪Y ∈Var(s) (dom(∆|X)#Y ∪ dom(π)#Y).

119

Example 6.10 (Continuing Exs. 6.7 and 6.8).
The set 〈{a′#X, a′#Y }, ∅, {(a b c d)(a′ b′).X ≈? X}〉SolG contains only generated solutions
〈∇, {X/e}〉 where (e) is a epc w.r.t. (a b c d). Because a′#X is in the freshness context,
the condition ∇ ` dom(∆|X) # s imposes that pairs 〈∆, {X/s}〉, being (s) an epc regarding
(a′ b′), are not in the set of generated solutions.

Theorem 6.6 (Soundness of solutions of singleton C FP problems).
Each 〈∇, {X/s}〉 in 〈∆,X , {π.X ≈? X}〉SolG is a solution of 〈∆,X , {π.X ≈? X}〉.

Proof. If X ∈ X the proof is trivial, because

〈∆,X , {π.X ≈? X}〉SolG = {〈∆ ∪ dom(π)#X, id〉}

with id = X/X. Supposing X /∈ X , the proof follows the lines of reasoning used for non
unitary epc’s. By construction, the invariant that the elements of an epc of length l,
κ′ = (e0 . . . el−1), satisfy the property ∇′ ` π(ei) ≈α,C ei+1, where i+ 1 abbreviates i+ 1
modulo l, and ∇′ = ∪Y ∈Var(κ′)dom(π)#Y , holds. The only case in which the length of
an epc decreases is 3.a.i. Thus, when this case applies to a binary epc, say (s0 s1), an
unitary epc (s) is built, being this of the form (s0⊕ s1) for a commutative function symbol
⊕. Since by the invariant one has that ∇′ ` π(si) ≈α,C si+1, for i = 0, 1, one has that
∇′ ` π(s0 ⊕ s1) ≈α,C s0 ⊕ s1; thus, one has that ∇′ ` π(s) ≈α,C s. In further steps in the
construction of epc’s, new unitary epc’s (t′) might be built from unitary epc’s (t) applying
cases 3.a.ii, iii, iv and v, that, can easily be checked, preserve the property∇′ ` π(t′) ≈α,C t′,
for∇′ = ∪Y ∈Var(t′)dom(π)#Y , if∇′ ` π(t) ≈α,C t, for∇′ = ∪Y ∈Var(t)dom(π)#Y . Therefore
all unitary non-trivial epc’s give a correct solution of the form 〈∇′, {X/s}〉 of the C FP
problem 〈∅,X , π.X ≈? X〉. Hence, if in addition, one has that ∇′ ∪∆ ` dom(∆|X) # s,
then for ∇ := ∇′ ∪ ∆, the pair 〈∇, {X/s}〉 ∈ 〈∆,X , {π.X ≈? X}〉SolG is a solution of
〈∆,X , {π.X ≈? X}〉.

Remark 6.11. Assuming the symbols in the signature are denumerable, it is possible to
enumerate the unitary epc’s and thus the generated solutions. This can be done as usual,
enumerating first all possible unitary epc’s with an element of length bounded by a small
natural, say twice the length of π, and using only the first |π| symbols in the signature and
atoms in dom(π); then, this length is increased generating all extended unitary epc’s with
elements of length |π| + 1 and using only the first |π + 1| symbols in the signature and
atoms in dom(π) and so on.

Remark 6.12. The following result, proved by induction in the construction of the epc’s,
is used in the proof of completeness of generated solutions for C FP problems.

120

Lemma 6.5 (Extended pseudo-cycle correspondence for π and π2). For k ≥ 1, (A0 · · ·A2k−1)
is an epc for π if, and only if, there exist (B0 · · ·B2k−1−1) and (C0 · · ·C2k−1−1) epc’s for
π2 with a substitution σ such that atoms in its image belong to dom(π)\dom(π2), and for
0 ≤ j ≤ 2k−1 − 1 one has Bjσ ≈α,C A2j and Cjσ ≈α,C A2j+1.

Proof. The proof is by induction in the construction of the extended pseudo-cycles.
Base Case.

1. Case 1 of Def. 6.4 does not apply since k ≥ 1.

2. Let (a b) be a trivial epcfor π, and let (Y Y ′) be an epcfor π2. Notice that
dom(π2) = dom(π)\{a | a ∈ 2-cycle of π}.

Induction Step.

1. By Def. 6.4(3.a.i), from an epcfor π, (A0 · · ·A2k−1) one can build another epcin steps
A and/or B. By i.h., there exist epc’s for π2: (B0 · · ·B2k−1−1) and (C0 · · ·C2k−1−1)
and a substitution σ such that Bjσ ≈α,C A2j and Cjσ ≈α,C A2j+1. We consider two
cases, depending on whether the epcobtained has length equal to 2k or 2k−1:

(a) (A0 ?Aj · · ·A2k−1 ?A2k−1+j) with j 6= 2k−1, then the length of the new epcdoes
not change. From the two epc’s for π2 we build the epc’s in the following way:

• j is even: (B0 ? B j
2
· · ·B2k−1−1 ? B2k−1+ j

2−1) and
(C0 ? C j

2
· · ·C2k−1−1 ? C2k−1+ j

2−1). Notice that the conditions of σ are
preserved, for instance, (B0 ? B j

2
)σ = A0 ? Aj.

• j is odd: (B0 ? C j−1
2
· · ·B2k−1−1 ? C2k−1+ j−1

2 −1) and
(C0 ? B j+1

2
· · ·C2k−1−1 ? B2k−1+ j+1

2 −1). Notice that (B0 ? C j−1
2

)σ = B0σ ?

C j−1
2
σ = A0 ? Aj, similarly, one can check that the two epc’s satisfy the

conditions on σ.

(b) (A0 ? A2k−1 · · ·A2k−1−1 ? A2k−1) with j = 2k−1. From the epc’s for π2 we build
(B0 ? B2k−2 · · ·B2k−2−1 ? B2k−1−1) and (C0 ? C2k−2 · · ·C2k−2−1 ? C2k−1−1).

2. By Def. 6.4(3.a.ii), from epc’s for π, (A0 · · ·A2k−1) and (A′0 · · ·A′2k′−1), we build an
epcfor π, (A0?A

′
j · · ·A2k−1?A

′
2k′−1), for some 0 ≤ j ≤ 2k−1 (the case 0 ≤ j ≤ 2k′−1

is analogous).

By i.h., there exist epc’s for π2, (B0 · · ·B2k−1−1) and (C0 · · ·C2k−1−1) for (A0 · · ·A2k−1),
and (B′0 · · ·B′2k′−1−1) and (C ′0 · · ·C ′2k′−1−1) for (A′0 · · ·A′2k′−1), satisfying the condi-
tions for σ, σ′ respectively. We can choose Bi, Ci, B

′
j, C

′
j such that var(Bi, Ci) ∩

var(B′j, C ′j) = ∅. Then we have consider two cases:

121

• for a j even: take (B0 ? B
′
j
2
· · ·B2k−1−1 ? B

′
2k′−1+ j

2−1) and
(C0 ? C

′
j
2
· · ·C2k−1−1 ? C2k′−1+ j

2−1).

• for a j odd: (B0 ? C
′
j−1

2
· · ·B2k−1−1 ? C

′
2k′−1+ j−1

2 −1) and
(C0 ? B

′
j−1

2
) · · ·C2k−1−1 ? B

′
2k′−1+ j−1

2 −1).

Its straightforward to check that the conditions for these epcof π2 hold for σ ∪ σ′.

3. By Def. 6.4(3.a.iii), from epc’s for π, (A0 · · ·A2k−1) and (A′0 · · ·A′2k′−1), we build the
epcof π: (〈A0, A

′
j〉 · · · 〈A2k−1, A

′
2k′+j−1〉).

By i.h., there exist epc’s for π2, (B0 · · ·B2k−1−1) and (C0 · · ·C2k−1−1) for (A0 · · ·A2k−1),
and (B′0 · · ·B′2k′−1−1) and (C ′0 · · ·C ′2k′−1−1) for (A′0 · · ·A′2k′−1), satisfying the condi-
tions for σ, σ′ resp. Similarly to the previous case, one can check that the result
holds, depending on whether j is even or odd.

4. By Def. 6.4(3.a.iv), from (A0 · · ·A2k−1) an epcfor π, one can build either ([e]A0 · · · [e]A2k−1)
or (g A0 · · · g A2k−1). By i.h., there exist epc’s for π2: (B0 · · ·B2k−1−1) and (C0 · · ·C2k−1−1)
and a substitution σ satisfying the requirements. Its clear that ([e]B0 · · · [e]B2k−1−1)
and ([e]C0 · · · [e]C2k−1−1) are epc’s in π2, for ([e]A0 · · · [e]A2k−1), and similarly,
(g B0 · · · g B2k−1−1) and (g C0 · · · g C2k−1−1) are epc’s in π2, for (g A0 · · · g A2k−1).

5. By Def. 6.4(3.a.v), from (A0 · · ·A2k−1) and (a0 · · · a2l−1), resp. an epcand a permu-
tation cycle of π, we build ([aj]A0 · · · [a2l+j−1]A2k−1), another epcfor π. By i.h., we
have for π2 epc’s (B0 · · ·B2k−1−1) and (C0 · · ·C2k−1−1) and a substitution σ satisfying
the necessary conditions.

• Case l = 1, then (a0 · · · a2l−1) = (a b), take ([a]B0 · · · [a]B2k−1−1) and
([b]C0 · · · [b]C2k−1−1).

• Otherwise, (a0 a2 · · · a2l−2) and (a1 a3 · · · a2l−1) are permutation cycles of π2,
and the we take ([aj]B0 · · · [aj−2]B2k−1−1) and
([aj+1]C0 · · · [aj−1]C2k−1−1).

In both cases σ satisfy the necessary conditions.

Example 6.11. For (a b) and (c d e f), permutation cycles of π, one has that (a), (b),
(c e) and (d f) are permutation cycles of π2, and also, a, b ∈ dom(π)\dom(π2). Therefore,
supposing that ‘+’, ‘∗’ and ‘?’ are commutative function symbols, ((c ∗ e) + a) ? ((d ∗ f) + b)
and ((c ∗ e) + Y) ? ((d ∗ f) + Y ′) are respectively unitary epc’s of π and π2. Then:

• 〈∆, {X/((c ∗ e) + a) ? ((d ∗ f) + b)}〉 ∈ 〈∆, ∅, π.X ≈? X〉SolG iff

122

• 〈∆′, {X/((c ∗ e) + Y) ? ((d ∗ f) + Y ′)}〉 ∈ 〈∆, ∅, π2.X ≈? X〉SolG,

where ∆′ = ∆ ∪ dom(π2)#Y, Y ′ ∪ dom(∆|X)#Y, Y ′. So the σ of Lem. 6.5 is {Y/a, Y ′/b},
so that ((c ∗ e) + a (d ∗ f) + b) is an epc of π, ((c ∗ e) + Y) and ((d ∗ f) + Y ′) are epc’s
of π2, with ((c ∗ e) + Y)σ = (c ∗ e) + a and ((d ∗ f) + Y ′)σ = (d ∗ f) + b.

Example 6.12. Let π = (a b c d e f g h) then π2 = (a c e g)(b d f h). There are
solutions of 〈∅, ∅, π2 ·X ≈? X〉 that are not solutions of 〈∅, ∅, π.X ≈? X〉:

• 〈∅, X/(a⊕ e)⊕ (c⊕ g)〉, 〈∅, X/(b ? f)⊕ (d ? h)〉 ∈ 〈∅, ∅, π2 ·X ≈? X〉SolG;

• 〈∅, X/((a⊕ e)⊕ (c⊕ g))⊕ ((b ? f)⊕ (d ? h))〉 ∈ 〈∅, ∅, π2 ·X ≈? X〉SolG

but none of them is a solution for 〈∅, ∅, π.X ≈? X〉.
However there exist solutions in the intersection of both problems, for instance,

〈∅, X/((a⊕ e)⊕ (c⊕ g)) ∗ (X/(b⊕ f)⊕ (d⊕ h))〉.

Theorem 6.7 (Completeness of solutions for singleton C FP problems).
Let 〈∆,X , {π.X ≈? X}〉 be a singleton C FP problem with a solution 〈∇, {X/s}〉. Then
there exists 〈∇′, {X/t}〉 ∈ 〈∆,X , {π.X ≈? X}〉SolG such that 〈∇′, {X/t}〉 � 〈∇, {X/s}〉.

Proof. Since 〈∇, {X/s}〉 is a solution of the problem, it follows that ∇ ` ∆{X/s} and
∇ ` π(s) ≈α,C s. The proof is done by induction on the structure of s.
Base Case. This case will be split in two parts.

1. s = a.

The pair 〈∇, {X/a}〉 is a solution only if a /∈ dom(∆|X) ∪ dom(π),
then ∅ ` π · a = a. Let Y be a new variable and ∇′ = dom(∆|X)#Y ∪ dom(π)#Y ,
then 〈∇′, {X/Y }〉 is a generated solution. Let σ = {Y/a}, notice that ∇ ` ∇′σ and
Y σ = a. Therefore, 〈∇′, {X/Y }〉 � 〈∇, {X/a}〉.

2. s = π′.Y and dom(π)#π′.Y .

Notice that 〈∇, {X/π′.Y }〉 ∈ 〈∆,X , π.X ≈? X〉SolC only if
∇ ` dom(∆|X) # π′.Y, dom(π) # π′.Y , that is, if ∇ ` (π′)−1 · dom(∆|X) #Y and
∇ ` (π′)−1 · dom(π) #Y , so that ∆∪ ((π′)−1 · dom(∆|X)∪ (π′)−1 · dom(π)) #Y ⊂ ∇.

Let 〈∇′, {X/Z}〉 ∈ 〈∆,X , π.X ≈? X〉SolG with ∇′ = ∆ ∪ dom(π) ∪ dom(∆|X)#Z,
Consider the substitution σ = {Z/π′.Y }, then ∇ ` Zσ ≈α,C π′.Y and ∇′σ = ∆σ ∪
(dom(π) ∪ dom(∆|X))#Zσ = ∆ ∪ (π′)−1 · dom(π)#Y ∪ (π′)−1 · dom(∆|X)#Y , so
∇ ` ∇′σ. Therefore, 〈∇′, {X/Z}〉 � 〈∇, {X/π′.Y }〉.

Induction Step.

123

1. s = 〈s1, s2〉

In this case ∇ ` π(〈s1, s2〉) ≈α,C 〈s1, s2〉, that is, ∇ ` 〈π(s1), π(s2)〉 ≈α,C 〈s1, s2〉,
which implies in ∇ ` π(si) ≈α,C si, for i = 1, 2.

By IH and Defs. 6.4 and 6.5, there exist
〈∇′1, {X/t1}〉, 〈∇′2, {X/t2}〉 ∈ 〈∆,X , π.X ≈? X〉SolG such that (t1), (t2) and (〈t1, t2〉)
are unitary epc’s w.r.t. π. Furthermore 〈∇′i, {X/ti}〉 � 〈∇, {X/si}〉, i.e., there
exist substitutions λi such that ∇ ` ∇iλi and ∇ ` tiλi ≈ si, for i = 1, 2. One can
choose (t1) and (t2) such that V ar(t1) ∩ V ar(t2) = ∅ and dom(λi) ∩ V ar(sj) = ∅,
for i, j = 1, 2. Then, ∇ ` 〈t1, t2〉λ1λ2 ≈α,C 〈s1, s2〉, and ∇ ` (∇1 ∪∇2)λ1λ2, that is,
〈∇1 ∪∇2, {X/〈t1, t2〉}〉 � 〈∇, {X/〈s1, s2〉}〉.

2. s = fs′

Since ∇ ` π · fs′ ≈α,C fs′, it follows that ∇ ` f(π(s′)) ≈α,C fs′ and therefore,
∇ ` π(s′) ≈α,C s′. By IH and Defs. 6.4 and 6.5, there exist
〈∇′, {X/t′}〉 ∈ 〈∆,X , π.X ≈? X〉SolG such that (t′) and (ft′) are unitary epc’s w.r.t.
π. Furthermore 〈∇′, {X/t′}〉 � 〈∇, {X/s′}〉, that is, there exist a substitution σ

such that ∇ ` ∇′σ and ∇ ` t′σ ≈α,C s′, and since ∇ ` ft′σ ≈α,C f(t′σ) ≈α,C
fs′ and adding f at the top of t′ does not change the variables of t′, therefore,
〈∇′, {X/ft′}〉 ∈ 〈∆,X , π.X ≈? X〉SolG and 〈∇′, {X/ft′}〉 � 〈∇, {X/fs′}〉.

3. s = [e]s′.

(a) e /∈ dom(π)
Since ∇ ` π([e]s′) ≈α,C [e]s′, it follows that ∇ ` π(s′) ≈α,C s′, i.e., 〈∇, X/s′〉 is
a solution for 〈∆,X , π.X ≈? X〉. By IH and Defs. 6.4 and 6.5, there exist
〈∇′, {X/t′}〉 ∈ 〈∆,X , π.X ≈? X〉SolG such that (t′) and ([e]t′) are unitary epc’s
w.r.t. π. Furthermore 〈∇′, {X/t′}〉 � 〈∇, {X/s′}〉, i.e., there exist a substi-
tution σ such that ∇ ` ∇′σ and ∇ ` t′σ ≈α,C s′, therefore, 〈∇′, {X/[e]t′}〉 ∈
〈∆,X , π.X ≈? X〉SolG and 〈∇′, {X/[e]t′}〉 � 〈∇, {X/[e]s′}〉.

(b) e ∈ dom(π).
By hypothesis, ∇ ` π([e]s′) ≈α,C [e]s′, i.e., ∇ ` [π · e](π(s′)) ≈α,C [e]s′, and
∇ ` π(s′) ≈α,C (π · e e)(s′) only if ∇ ` (π · e) # s′. Notice that e occurs in s′

iff π · e occurs in s′. Therefore, for ∇ ` e# s′, it follows that ∇ ` π(s′) ≈α,C s′

and the result follows by induction hypothesis.

4. s = s1 ⊕ s2

This case has two parts:

124

(a) ∇ ` π(s1) ≈α,C s1 and ∇ ` π(s2) ≈α,C s2.
By IH and Defs. 6.4 and 6.5, there exist
〈∇′1, {X/t1}〉, 〈∇′2, {X/t2}〉 ∈ 〈∆,X , π.X ≈? X〉SolG such that (t1), (t2) and (t1⊕
t2) are unitary epc’s w.r.t. π. Furthermore 〈∇′i, {X/ti}〉 � 〈∇, {X/si}〉, i.e.,
there exist substitutions λi such that ∇ ` ∇iλi and ∇ ` tiλi ≈ si, for
i = 1, 2. One can choose (t1) and (t2) such that V ar(t1) ∩ V ar(t2) = ∅ and
dom(λi) ∩ V ar(sj) = ∅, for i, j = 1, 2. Then, ∇ ` (t1 ⊕ t2)λ1λ2 ≈α,C (s1 ⊕ s2),
and ∇ ` (∇1 ∪∇2)λ1λ2, that is, 〈∇1 ∪∇2, {X/t1 ⊕ t2}〉 � 〈∇, {X/s1 ⊕ s2}〉.

(b) ∇ ` π(s1) ≈α,C s2 and ∇ ` π(s2) ≈α,C s1.
Notice that ∇ ` π2(s1) ≈α,C π(s2) ≈α,C s1 and ∇ ` π2(s2) ≈α,C π(s1) ≈α,C s2.
Therefore, 〈∇, {X/s1}〉 and 〈∇, {X/s2}〉 are solutions of 〈∆,X , π2.X ≈? X〉.
By IH, there exist
〈∇1, {X/t1}〉, 〈∇2, {X/t2}〉 ∈ 〈∆,X , π2 ·X ≈? X〉SolG such that 〈∇i, {X/ti}〉 �
〈∇, {X/si}〉. Then there exist substitutions λi such that ∇ ` ∇iλi and ∇ `
tiλi ≈α,C si, for i = 1, 2.
One can choose (t1) and (t2) such that V ar(t1) ∩ V ar(t2) = ∅ and dom(λi) ∩
V ar(sj) = ∅, for i, j = 1, 2.
Therefore, 〈∇1∪∇2, X/t1⊕ t2〉 ∈ 〈∆,X , π2.X ≈? X〉SolG and 〈∇1∪∇2, X/t1⊕
t2〉 � 〈∇, X/s1 ⊕ s2〉, via substitution λ = λ1λ2.
Notice that ∇ ` π(t1)λ ≈α,C π(s1) ≈α,C s2 ≈α,C t2λ and analogously, ∇ `
π(t2)λ ≈α,C t1λ. Hence, λ is a solution for the C-unification problem {π(t1) =?

t2, π(t2) =? t1}. Let 〈∇′, λ′〉 be a solution more general than 〈∇, λ〉 such that
the atoms in the image of λ′ are in dom(π)\dom(π2). Since (t1) and (t2) are
unitary epc’s of π2, it follows by Lem. 6.5, that (t1λ′ t2λ′) is an epc for π. By
Def. 6.4, (t1λ′ ⊕ t2λ′) is a unitary epcfor π, such that 〈∇′, {X/t1λ′ ⊕ t2λ′}〉 ∈
〈∆,X , {π.X ≈? X}〉SolG and 〈∇′, {X/t1λ′ ⊕ t2λ′}〉 � 〈∇, {X/s1 ⊕ s2}〉.

Remark 6.13. The algorithm of syntactic commutative unification presented in Sec. 2.1.2
is used in the proof of Lem. 6.7 (case 4.b) and Def. 6.6.

Definition 6.6 (General C-matchers). Let si, for i = 1..k, be terms. A most general
C-matcher of these terms, if it exists, is a most general C-solution δ of the C-unification
problem {si =? Z}i=1..k, where Z is a new variable for si, with i = 1..k.

Remark 6.14. Alternatively, Def. 6.4 could be restricted to ground terms (by removing
the first case in the construction of epc’s), and then instead of computing C-matchers via
C-unification, one could use an ≈α,C-equality checker (for example, the one specified in

125

Sec. 4.3). This would also simplify case 3.a.iv) in Def. 6.4, since it would be sufficient to
consider just one atom e′ not in dom(π).

Definition 6.7 (Generated solutions for a variable). Let the C FP problems for X in P
be given by 〈∇,X , πi.X ≈? X〉, for πi ∈ ΠX , and such that |ΠX | = k. If there exist

• solutions 〈∇i,X , {X/ti}〉 ∈ 〈∇,X , πi.X ≈? X〉SolG for each C FP problem and

• a most general C-matcher δ of the terms {ti}i=1..k with X as new variable

such that the problem 〈∅,∪(a#Y)∈∇′′{a#Y δ}〉, where ∇′′ := ∪ki=1∇i, has a solution 〈∇′, ∅〉,
then one says that 〈∇′, {X/Xδ}〉 is a generated solution for X. The set of all generated
solutions is denoted by [X]PG.

Example 6.13. Let Pi := πi.X ≈? X, for i = 1..3, be C FP equations for π1 = (a b c d),
π2 = (a c) and π3 = (b d) and suppose that P := 〈∇,X , P 〉 is a C FP problem where Pi
for i = 1..3 are the C FP equations for X in P .

1. 〈∇ ∪ a, b, c, d#Y, δ1 := {X/((a ∗ c) ∗ (b ∗ d))⊕ Y }〉 ∈ 〈∇,X , P1〉SolG;

2. 〈∇ ∪ a, c#Y ′, Y ′′, δ2 := {X/((a ∗ c) ∗ Y ′)⊕ Y ′′}〉 ∈ 〈∇,X , P2〉SolG; and

3. 〈∇ ∪ b, d#Y ′1 , Y ′′1 , δ3 := {X/((b ∗ d) ∗ Y ′1)⊕ Y ′′1 }〉 ∈ 〈∇,X , P3〉SolG.

Remark 6.15. Notice that, in Ex. 6.13, δ = {X/((a∗c)∗ (b∗d))⊕Y ′′, Y ′/(b∗d), Y ′1/(a∗
c), Y/Y ′′, Y ′′1 /Y ′′} is a most general C-solution of terms {ti := Xδi} with variable X.

Remark 6.16. Also in Ex. 6.13, according to the definition, the set of initial freshness
constraints is given as ∇′′ = ∇∪{a, b, c, d#Y, a, c#Y ′, Y ′′, b, d#Y ′1 , Y ′′1 }. Notice that Y ′′ ∈
V ar(im(δ)), have to satisfy the constraints on Y ′′1 , Y and X, that is, a, b, c, d#Y ′′ is a new
constraint on Y ′′, inherited from the constraints of the variables in the domain of δ. 〈∇′, ∅〉
is the solution of 〈∅,∪(a#Y)∈∇′′{a#Y δ}〉, and then it holds that ∇′ ` dom(∇′′|Z) #Zδ, for
all Z ∈ dom(δ). Thus, 〈∇′, {X/Xδ}〉 belongs to [X]PG.

Example 6.14. (Continuing Ex. 6.8) Consider the singleton C FP problems on the
variable X in Q1 of Ex. 6.7 relative to the variable set Z = {X, Y } and X /∈ X :
〈{a′#X},X , {Eq1 := (a c)(a′ b′).X ≈? X}〉 and 〈{a′#X},X , {Eq2 := (a b c d)(a′ b′).X ≈?

X}〉. Since a′#X is in the freshness context, there is no combinatorial solution with
occurrences of the atoms in the permutation cycle (a′ b′). For the cycles (a c) and (a b c d),
in equations Eq1 and Eq2, possible solutions include, respectively:

• 〈∇, {X/(a+ c) ? Z}〉, 〈∇, {X/(fa+ fc) ? Z}〉, 〈∇, {X/([g]a+ [g]c) ? Z}〉, for ∇ =
a, c, a′, b′#Z, a′#X;

126

• 〈∇′, {X/(a+c)?(b+d)}〉, 〈∇′, {(fa+fc)?(fb+fd)}〉, 〈∇′, {([g]a+[g]c)?([g]b+[g]d)}〉,
for ∇′ = a′#X.

Since the general C-matchers for pairs of these three solutions for Eq1 and Eq2 are
respectively {Z/b+ d}, {Z/fb+ fd} and {Z/[g]b+ [g]d}, the combined solutions for both
singleton C FP problems are those given for Eq2.

Corollary 6.1 (Soundness and completeness of generated solutions for a variable). Let
P = 〈∆,X , P 〉 be a C FP problem. Any solution in [X]PG is a solution of each C FP
equation for X in P. If 〈∇, {X/s}〉 is a solution for each C FP equation for X in P then
there exists 〈∇′, {X/Xδ}〉 ∈ [X]PG such that 〈∇′, {X/Xδ}〉 � 〈∇, {X/s}〉

Proof. By Thm. 6.6 and Def. 6.5:

(Soundness) Each solution 〈∇i, {X/ti}〉 in 〈∆,X , {πi.X ≈? X}〉SolG is a correct solution
for 〈∆,X , {πi.X ≈? X}〉, for πi ∈ ΠX . Suppose 〈∇′, {X/Xδ}〉 belongs to [X]PG . Since
δ is a C-solution of terms ti with variable X, one has that Xδ ≈C tiδ, and also that
∇i ` π(ti) ≈α,C ti. Thus, ∇′ ` π(ti)δ ≈α,C tiδ since by definition one also has that
∇′ ` dom(∇|X)#Xδ, because by construction for all Y ∈ V ar(Xδ), ∇′ includes the
freshness constraints dom(∇′′|X)#Y and ∇′′ is an extension of ∇.

(Completeness) For |ΠX | = k, i = 1..k, there are 〈∇i, {X/ti}〉 ∈ 〈∆,X , {πi.X ≈? X}〉SolG ,
solution of 〈∆,X , {πi.X ≈? X}〉, such that 〈∇i, {X/ti}〉 � 〈∇, {X/s}〉. Then, for each i,
there exists a ∇i such that ∇ ` ∇iλi and ∇ ` {X/ti}λi ≈ {X/s}. One can choose each ti
in a way to satisfy ∩ki=1V ar(ti) = ∅, and then for λ = λ1 · · ·λk and ∇′′ = ∪ki=1∇i, one also
has ∇ ` ∇′′λ and ∇ ` {X/ti}λ ≈ {X/s}.

Notice that 〈∇, λ〉 is a nominal C-solution for the problem 〈∇i,X ,∪ki=1{ti ≈? X}〉.
Then, given δ, a most general C-solution for {ti =? X}i=1..k, it holds that there exists λ′

such that ∇ ` δλ′ ≈ λ.
Let 〈∇′, ∅〉 be a solution of 〈∅,X ,∪(a#Y)∈∇′′{a#Y δ}〉, then, by Def. 6.5, one has that

〈∇′, {X/Xδ}〉 ∈ [X]PG , and so, since ∇ ` ∇′′λ, also that ∇ ` ∇′′δλ′, which is the same
that∇ ` ∇′λ′. On the other hand, Xδ ≈C tiδ and then∇ ` s ≈α,C tiλ ≈α,C tiδλ′ ≈C Xδλ′,
which implies ∇ ` {X/s} ≈ {X/Xδ}λ′. Hence, 〈∇′, {X/Xδ}〉 � 〈∇, {X/s}〉.

Definition 6.8 (Generated Solutions for C FP problems). Let P be a C FP problem. The
set of generated solutions for P, denoted as [P]SolG, is defined as the set that contains all
solutions of the form〈 ⋃

X∈V ar(P)
∇X ,

⋃
X∈V ar(P)

{X/sX}
〉
, where each 〈∇X , {X/sX}〉 ∈ [X]PG.

127

Example 6.15. (Continuing Ex. 6.14) Consider the third singleton C FP problem on the
variable Y in Q1 relative to Z = {X, Y } and X /∈ X : 〈{a′#Y },X , {(a b c)(a′ b′).Y ≈? Y }〉.
There exists no possible combinatorial solution since a′#Y is in the freshness context and
the length of permutation cycle (a b c) is not a power of two. The only possible solution
is given as 〈a, b, c, a′, b′#Y ′, {Y/Y ′}〉. Hence, using the solutions in Ex. 6.14 for the C
FP equations on X, one has the following solutions for the C FP problem Q1, where
∆ = a′, b′#X, a, b, c, a′, b′#Y ′:

• 〈∆, {X/(a+ c) ? (b+ d), Y/Y ′}〉

• 〈∆, {X/(fa+ fc) ? (fb+ fd), Y/Y ′}〉

• 〈∆, {X/([g]a+ [g]c) ? ([g]b+ [g]d), Y/Y ′}〉

A similar analysis can be done for the C FP problem Q2 in Ex. 6.7. Also, for the C
FP equations (a b).Y ≈? Y and (a d c b)(a′ b′).Y ≈? Y , the permutation cycle (a′ b′) avoids
any possible combinatorial solution with occurrences of the atoms a′ or b′. Cycles (a b) and
(a d c b) allow combinatorial solutions for each of these equations, but it will be seen (Ex.
6.20) that they cannot be combined.

Corollary 6.2 (Soundness and completeness of generated solutions for C FP problems).
Let P be a C FP problem. Any solution in the set of solutions [P]SolG is a correct
solution of P. For any 〈∇, δ〉 solution of P there exist a pair 〈∇′, σ〉 ∈ [P]SolG such that
〈∇′, σ〉 � 〈∇, δ〉.

Proof. By Def. 6.8 and Cor. 6.1:

(Soundness) A solution of P is of the form
〈⋃

X∈Var(P)∇X ,
⋃
X∈Var(P){X/sX}

〉
, where each

〈∇X , {X/sX}〉 ∈ [X]PG is a correct solution for all C FP equations in P for the variable
X, this completes the soundness proof.

(Completeness) Let P = {〈∆,X ,∪ki=1{πi1 .X1 ≈? X1}πi1∈ΠX1
}〉 and 〈∇, δ〉 be a solution

of P. There exist more general solutions 〈∇j, {Xj/tj}〉 ∈ [Xj]PG , for j = 1, . . . , k; i.e.,
〈∇j, {Xj/tj}〉 � 〈∇, δ〉; hence, there is a solution for P of the form 〈⋃j∇j,

⋃
j{Xj/tj}〉 is

in [P]SolG and 〈⋃j∇j,
⋃
j{Xj/tj}〉 � 〈∇, δ〉.

Remark 6.17. A greedy procedure for the generation of solutions in [X]P proceeds as
follows. Follow the construction of generated solutions in Def. 6.5 for each C FP problem
〈∇,X , πi.X ≈? X〉 in P , where πi ∈ ΠX , as given in Lem. 6.1; for each generated solution
〈∇′, {X/s}〉 build the freshness context ∇′′ = ∇′ ∪⋃Y ∈V ar(s) dom(∇|X)#Y ∪ dom(ΠX)#Y
and check whether 〈∇′′, {X/s}〉 is a solution for all 〈∇,X , πi.X ≈? X〉, for πi ∈ ΠX . Here,
dom(ΠX)#Y abbreviates ∪πi∈ΠXdom(πi)#Y .

128

6.2.2 Improvements in the generation of solutions

The greedy procedure can be improved eliminating generation of solution of non interesting
permutation cycles in ΠX , according to the observations below.

In first place, notice that according to the theory of pseudo-cycles, one is interested in
building solutions with atoms that occur only in permutation cycles of length a power of
two in all permutations π ∈ ΠX .

In second place, notice that if there exist permutation cycles of length a power of two
κi ∈ πi and κj ∈ πj , for πi, πj ∈ ΠX , such that dom(πi)∩dom(πj) 6= ∅, dom(πi)\dom(πj) 6=
∅ and dom(πj)\dom(πi) 6= ∅, then there might not be possible solutions with occurrences of
atom terms in the domain of πi and/or πj for the C FP equations related with permutations
πi and πj. The simplest example is given by permutation cycles (a b) and (a c). The
precise relation between permutation cycles that allows for construction of solutions for
all permutations in ΠX is given in the next definition.

Definition 6.9 (Permutation factor). A permutation π is said to be an n-factor of a
permutation π′ whenever there exists n such that πn = π′.

Example 6.16. Let π = (a b c d e f g h). The odd powers of π, π1, π3 = (a d g b e h c f),
π5 = (a f c h e b g d) and π7 = (a h g f e d c b) are the only factors of π.

Remark 6.18. For a permutation cycle κ of length 2k, the factors corresponding to
permutation cycles of the same length are exactly the permutations cycles κp, for p odd
such that 0 < p < 2k; also, if λ is a p-factor of κ then λ is the q-factor of κ, where q is the
minimum odd number such that 0 < q < 2k and p · q = 1 modulo 2k. For instance, if κ is
a permutation cycle of length 24, κ3, κ5, κ7, etc, are respectively the 11- 13- and 7-factors,
etc, of κ.

The key observation about permutation cycles κ and λ, of respective lengths 2k and
2l, for k ≥ l ≥ 0, such that, κ2k−l contains a permutation cycle, say ν, that is a p-factor
of λ, is that this happens if and only if regarding elements in dom(λ), possible generated
solutions from both permutation cycles coincide. Indeed, first, notice that either l = 0 and
then ν = λ or l > 0 and λ2l−1 consists of 2l−1 permutation cycles of length two; second,
observe that if l > 0, then λ2l−1 = νp·2

l−1 = ν2l−1, since p is an odd number (such that
0 < p < 2l). Moreover, notice that κ2k−l |dom(λ) = ν, that implies that κ2k−1|dom(λ) = ν2l−1.
Thus, the permutation cycles of length two generated from κ and λ, restricted to dom(λ)
are the same, which implies that commutative combinations built (according to Def. 6.4)
regarding to the elements in dom(λ) are the same.

Example 6.17. Consider κ = (a b c d e f g h) and λ = (a g e c). Notice that κ2 =
(a c e g)(b d f h) and λ is a 3-factor of ν = (a c e g). Then λ2 = ν3·2 = ν2 = (a e)(c g). Also,
notice that the unitary epc’s built from λ and ν are the same.

129

Definition 6.10 (Permutation cycles in the top of ΠX). Let ΠX be the set of permutations
for C FP equations on the variable X in a C FP problem. A permutation cycle κ ∈ π ∈ ΠX

is in the top of ΠX , whenever for all atoms a ∈ dom(κ) and all π′ ∈ ΠX , if a ∈ dom(π′),
and a is an element in a permutation cycle λ in π′, then there exists a natural m such that
the permutation cycle of the element a in π2m, say ν, is a factor of the permutation cycle
λ.

Example 6.18. Consider the permutations π1 = (a b c d e f g h), π2 = (a g e c)(b f) and
π3 = (a e)(c g)(d h). The permutation cycle π1 is in the top of the set of permutations;
indeed, notice that all permutation cycles in all permutations appear as a factor in powers
of two of π1: π0

1 = (a b c d e f g h); π2
1 = (a c e g)(b d f h); π4

1 = (a e)(c g)(b f)(d h); π8
1 =

(a)(e)(c)(g)(b)(f)(d)(h).

Theorem 6.8 (Atoms of interest in C FP problems on a variable). Let ΠX be the set of
permutations for C FP equations on the variable X in a C FP problem. Only the set of
atoms in the domain of permutation cycles in the top of ΠX might occur in solutions of all
C FP equations on X.

Proof. Only atoms that are in permutation cycles of length a power of two in all per-
mutations π ∈ ΠX might occur in solutions of all C FP equations on X. Suppose a is
an atom that only occurs in permutation cycles of length a power of two for all π ∈ ΠX

and let κ be a permutation cycle in ΠX of maximal length, say 2k, with a ∈ dom(κ).
Suppose λ is a permutation cycle in φ, for some φ ∈ ΠX , with a ∈ dom(λ) and let 2l be the
length of λ. Only if λ is a factor of a permutation cycle in π2k−l , say ν such that νp = λ,
the epc’s built from λ (and from κ) will maintain the invariants required, restricted to
the atoms in dom(λ), that is for an epc built from λ of the form (A0 . . . A2m−1), where
m ≤ l, φ(Ai) ≈C Ai+1 and φ2l−m(Ai) ≈C Ai, where i + 1 reads modulo 2m. This also
holds for λ. Hence, since ν is a p-factor of λ (and also, π2k−l |dom(λ) = ν), one has that
νp(Ai) ≈C Ai+1 and νp·2

l−m(Ai) ≈C Ai. If the epc is of length two, that is it is of the
form (A0A1), one has m = 1 and νp·2

l−1(Ai) ≈C Ai, for i = 0, 1, and since p is odd,
this implies that ν2l−1(Ai) ≈C Ai, for i = 0, 1. This condition also holds for π, since
(π2k−l |dom(ν))2l−1 = (ν)2l−1 ; hence, π2k−1(Ai) = Ai+1, for i = 0, 1. If κ is not a permutation
cycle in the top of ΠX , then there exists some permutation cycle λ ∈ φ ∈ ΠX , such that
a ∈ dom(κ)∩ dom(λ), 2l is the length of λ, but the permutation cycle of length 2l in κ2k−l ,
say ν, such that a ∈ dom(ν) is not a factor of λ. Thus, since ν2l−1 6= λ2l−1 atoms in the
domains of ν and λ cannot be combined uniformly to build common solutions for κ and λ
(i.e., for π and ψ).

To finish it is showed how a common solution can be built when κ is in the top of ΠX .
Suppose that (A) is a unitary epc built from λ by successive applications of case 3.a.i. of

130

Def. 6.4 halving in each step the length of the epc. One has that λ(A) = A. It is possible
to generate an epc for κ of the form (Aκ(A)κ2(A) . . . κ2k−l−1(A)). From this epc it is
possible to build a unitary epc by successive applications of case 3.a.i. of Def. 6.4, first
obtaining (A ?1 κ

2K−l−1(A) κ(A) ?1 κ
2k−l−1+1(A) . . . κ2k−l−1−1(A) ?1 κ

2k−l−1(A)), and so on
until a unitary epc of the form ((· · · ((A ?1 B1) ?2 B2) · · ·) ?k−l Bk−l) is obtained where
the Bi’s, for 1 ≤ i ≤ k − l are adequate combinations of the terms κ(A), . . . κ2k−l−1(A)
according to the constructions of epc’s. From this epc one has the solution for π.X ≈? X

of the form 〈∅, {X/(· · · ((A ?1 B1) ?2 B2) · · ·) ?k−l Bk−l}〉, where ?j, for j = 1, . . . , l are
commutative symbols. Using the unitary cycle (A) for λ and cases 1 and 3.a.ii of Def. 6.4
one can generate the unitary epc ((· · · ((A?1Y1)?2Y2) · · ·)?k−lYk−l) which gives the solution
〈∇, {X/(· · · ((A?1Y1)?2Y2) · · ·)?k−lYk−l}〉 for λ, where ∇ = {dom(λ)#Yj|1 ≤ j ≤ l}. The
C-unification problem 〈∇,X , X ≈? (· · · ((A ?1 B1) ?2 B2) · · ·) ?k−l Bk−l, X ≈? (· · · ((A ?1

Y1) ?2 Y2) · · ·) ?k−l Yk−l}〉 unifies with solution 〈∅, {X/(· · · ((A?1B1) ?2B2) · · ·) ?k−lBk−l}〉
which is a common solution for π and φ.

Example 6.19. (Continuing example 6.18) First, notice that the permutation cycle
π1 = (a b c d e f g h) is not in the top of (a d e b g h c f); also, π1 is neither in the top of
(a b c d) nor in the top of (a i). Since π1 is not a factor of π2, solutions generated from the
epc (ā d̄ ē b̄ ḡ h̄ c̄ f̄) might not be solutions built for π1; for instance, consider the unitary
epc built for π2, (((ā ? ḡ) � (ē ? c̄))⊕ ((d̄ ? h̄) � (b̄ ? f̄)), which is not a solution for π1, since
not π1((ā ? ḡ)� (ē ? c̄)) ≈C (d̄ ? h̄)� (b̄ ? f̄). Also, for the epc (ā b̄ c̄ d̄): the permutation cycles
in π2

1 are (a c e g) and (b d f h), which give different solutions. For (ā ī), the permutation
cycle (a e) in π4

i produces different solutions.
Now consider solutions of C FP equations πi.X ≈? X, for i = 1, 2, 3, where ΠX consists

of the permutations π1 = (a b c d e f g h), π2 = (a g e c)(b f) and π3 = (a e)(c g)(d h). In this
case, it has been seen (Ex. 6.18) that π1 is a permutation cycle in the top of ΠX . Among
the solutions generated for πi.X ≈? X, for i = 1, 2, 3 through epc’s one has, respectively:
〈∇1, {X/s1 = ((ā+ ē) ? (c̄+ ḡ))⊕ ((b̄+ f̄) ? (d̄+ h̄)}〉,
〈∇2, {X/s2 = ((ā+ ē) ? (c̄+ ḡ))⊕ ((b̄+ f̄) ? Y }〉 and
〈∇3, {X/s3 = ((ā+ ē) ? (c̄+ ḡ))⊕ (Z ? (d̄+ h̄)}〉,
where ∇1 = ∅, ∇2 = {a#Y, b#Y, c#Y, e#Y, f#Y, g#Y } and
∇3 = {a#Z, c#Z, d#Z, e#Z, g#Z, h#Z}, and the symbols ⊕, ? and + are commutative.
The C-unification problem 〈∇1 ∪ ∇2 ∪ ∇3, {X ≈? s1, X ≈? s2, X ≈? s3}〉 has solution
{X/s1, Y/d̄+ h̄, Z/b̄+ f̄} with the respective freshness constraints; thus, restricting this
solution to the freshness constraints on X one has the common solution 〈∅, {X/s1}〉.

Example 6.20. (Continuing Ex. 6.15) As it is seen in Ex. 6.15, the C FP equations
(a b).Y ≈? Y and (a d c b)(a′ b′).Y ≈? Y in the C FP problem Q2, have no possible
combinatorial solution with occurrences of the atoms a′ or b′. By Thm. 6.8, cycles (a b)

131

and (a d c b) do not give rise to possible combinatorial solutions for both C FP equations.
Hence, there is no feasible combinatorial solution for this C FP problem. Therefore, the
unique possible solution for Q2 is 〈{a′, b′#X, a, b, c, d, a′, b′#Y }, {X/(a c)(a′ b′).Y }〉.

Remark 6.19. The greedy generation algorithm can then be improved by generating
solutions only for the atoms in permutation cycles in the top of ΠX .

132

Chapter 7

Nominal A, C and AC-unification
and matching

This Chapter describes an extension of the nominal C-unification/matching algorithm
(Chap. 5), by adding A and AC function symbols in the signature. A nominal C and
AC-unification algorithm is obtained by extending the system of Fig. 5.1, with the addition
of rule (≈? AC) of Fig. 7.2. A nominal A, C and AC-matching algorithm is obtained by
adding rule (≈? A) of Fig. 7.1 to the derivation system, and instantiating the set X of
protected variables with the set of rhs variables of the input problem.

In Sec. 7.1, it is presented the new rules (≈? A) and (≈? AC) (see Figs. 7.1 and 7.2)
that simplifies equations with terms which are headed, respectively, by A and AC symbols.
This rule-based approach is similar to the presented by Contejean [30], but differs from
that strategy provided in Subsec. 2.1.2 for first-order AC-unification. In the former, a set
of rules is applied to equations whose terms are headed by A, C and AC function symbols
to obtain a finite set of new simpler equations, while the least translates the problem to
the search of non-negative solutions for a set of Diophantine equations.

Additionally, in Sec. 7.2 a generator of solutions for FP problems with C and AC
function symbols is described.

Definition 7.1 (Nominal A/C/AC-unification solution). A nominal A/C/AC-unification
solution for a problem P is a pair 〈∆, δ〉 such that the conditions of Def. 5.2, of Chap. 5
(Subsec. 5.1.1), are extended, replacing ≈α,C by ≈{A,C,AC}. The set of nominal A/C/AC-
unification solutions for P is denoted by UAC(P).

7.1 Rules for nominal A, C and AC problems

In the nominal C and AC-unification and the nominal A, C and AC-matching algorithms
presented in this section, the simplification rules (≈? A) and (≈? AC) use Def. 7.2 that

133

expresses an arbitrary way of bracketing and sorting of arguments w.r.t a given function
symbol f . Properties of termination, preservation of solutions and completeness of these
rules are presented by Lems. 7.2 to 7.4.

Definition 7.2. Let s and f be, respectively, a term and a function symbol. If n = ‖s‖f ,
then 〈〈s(1), . . . , s(n)〉〉f and 〈〈s(1), . . . , s(n)〉〉f denote tuples that are constructed with the
arguments of s w.r.t. f . In the former, the elements are in an arbitrary bracketing
and sorted according to their occurrences in s, while in the latter the elements are in an
arbitrary bracketing and sorting. If n = 1, both tuples are equal to s(1).

Remark 7.1. In Def. 7.2, the tuples 〈〈s(1), . . . , s(n)〉〉f and 〈〈s(1), . . . , s(n)〉〉f are built
using the operator s(i)f of selection of arguments specified as in Fig. 4.2 of Sec. 4.1. Notice
that, according the definitions of the operators ‖t‖f and t(i)f (Figs. 4.1 and 4.2) one has that
‖fs‖f = ‖s‖f and (fs)(i)f = s(i)f . Then, also ‖f〈〈s(1), ..., s(n)〉〉f‖ = ‖〈〈s(1), ..., s(n)〉〉f‖
and ‖f〈〈s(1), ..., s(n)〉〉f‖ = ‖〈〈s(1), ..., s(n)〉〉f‖. This fact will be used in the definition of
rules of Figs. 7.1 and 7.2 to simplify the notation.

Example 7.1. Let f be an AC function symbol. For s = f〈a, f〈b, c〉〉 and t = f〈f〈a, b〉, f〈c, d〉〉

a) 〈〈s(1), s(2), s(3)〉〉f can represent either: 〈a, 〈b, c〉〉 or 〈〈a, b〉, c〉;

b) 〈〈t(1), t(2), t(3), t(4)〉〉f can represent either: 〈〈a, b〉, 〈c, d〉〉; 〈a, 〈b, 〈c, d〉〉〉; 〈〈〈a, b〉, c〉, d〉;
〈〈a, 〈b, c〉〉, d〉 or 〈a, 〈〈b, c〉, d〉〉;

c) 〈〈s(1), s(2), s(3)〉〉f can represent either: 〈a, 〈b, c〉〉; 〈a, 〈c, b〉〉; 〈b, 〈a, c〉〉; 〈b, 〈c, a〉〉;
〈c, 〈a, b〉〉; 〈c, 〈b, a〉〉; 〈〈a, b〉, c〉; 〈〈a, c〉, b〉; 〈〈b, a〉, c〉; 〈〈b, c〉, a〉; 〈〈c, a〉, b〉 or 〈〈c, b〉, a〉.

Lemma 7.1. For n = ‖s‖f , |s| ≥ |〈〈s(1), . . . , s(n)〉〉f | and |s| ≥ |〈〈s(1), . . . , s(n)〉〉f |.

Proof. The proof is by induction on the structure of s. The interesting cases are s = 〈u, v〉
and s = f u. In the former |s| = |u|+ |v|+ 1, which, by IH, is a value greater or equal to
|〈〈u(1), . . . , u(k)〉〉f | + |〈〈v(1), . . . , v(l)〉〉f | + 1 = |〈〈s(1), . . . , s(n)〉〉f |. For the latter, observe
that |f u| = |u|+ 1, which, by IH, is a value greater than |〈〈u(1), . . . , u(k)〉〉f |.

Example 7.2.

a) If s = ‖〈a, 〈b, c〉〉‖f , then ‖s‖ = 5 = ‖〈〈s(1), s(2), s(3)〉〉f‖f = ‖〈〈s(1), s(2), s(3)〉〉f‖f

b) If s = ‖f〈a, f〈b, c〉〉‖f , then ‖s‖ = 7 > 5 = ‖〈〈s(1), s(2), s(3)〉〉f‖f = ‖〈〈s(1), s(2), s(3)〉〉f‖f

Observe that, rule (≈? A) of Fig. 7.1 eliminates equations of the form fAk s ≈?

fAk t, selecting the arguments of s and t w.r.t. fAk and arranging them into tuples with
arbitrary bracketing (via Def. 7.2), respectively, in the lhs and rhs of a new equation
〈〈s(1), . . . , s(m)〉〉fA

k
≈? 〈〈t(1), . . . , t(n)〉〉fA

k
.

134

(≈? A)
〈∇,X , σ, P] {fAk s ≈? f

A
k t}〉 m = ‖s‖fA

k
, n = ‖t‖fA

k

〈∇,X , σ, P ∪ {〈〈s(1), . . . , s(m)〉〉fA
k
≈? 〈〈t(1), . . . , t(n)〉〉fA

k
}〉

Figure 7.1: (≈? A) for A function symbols

(≈? AC)
〈∇,X , σ, P] {fACk s ≈? f

AC
k t}〉 m = ‖s‖fAC

k
, n = ‖t‖fAC

k

〈∇,X , σ, P ∪ {〈〈s(1), . . . , s(m)〉〉fAC
k
≈? 〈〈t(1), . . . , t(n)〉〉fAC

k
}〉

Figure 7.2: (≈? AC) for AC function symbols

Similarly to rule (≈? A), rule (≈? AC) of Fig. 7.2 transforms equations of the form
fACk s ≈? f

AC
k t into 〈〈s(1), . . . , s(m)〉〉fAC

k
≈? 〈〈t(1), . . . , t(n)〉〉fAC

k
, selecting the arguments of

s and t w.r.t. fACk and arranging them into the tuples of the new equation. The difference
is that the arguments of the rhs tuple are arranged in an arbitrary sorting. The relations
⇒(≈?A) and ⇒(≈?AC) denote, respectively, reductions of quadruples by an application of
rules (≈? A) and (≈? AC).

Example 7.3. Let f be an A function symbol. It is considered the nominal A, C and
AC-matching algorithm applied to

P = 〈∅, ∅, id, {[a]f 〈X, f 〈Y, Z〉〉 ≈? [b]f 〈f 〈b, c〉, f 〈d, e〉〉}〉

The problem is initially simplified, by rule (≈? [ab]), to

〈∅, ∅, id, {f 〈X, f 〈Y, Z〉〉 ≈? f 〈f 〈a, c〉, f 〈d, e〉〉, a#? f 〈f 〈b, c〉, f 〈d, e〉〉}〉.

Let s and t be equal, respectively, to 〈X, f 〈Y, Z〉〉 and 〈f 〈a, c〉, f 〈d, e〉〉. Applying rule
(≈? A), one obtains a family of quadruples in the form

〈∅, ∅, id, {〈〈s(1), s(2), s(3)〉〉f ≈? 〈〈t(1), t(2), t(3), t(4)〉〉f , a#? f 〈f 〈b, c〉, f 〈d, e〉〉}〉.

Then, the possible cases of bracketing in 〈〈s(1), s(2), s(3)〉〉f and 〈〈t(1), t(2), t(3), t(4)〉〉f generate
ten leaves that are labelled form 1.1 to 1.5, and from 2.1 to 2.5, as presented below.

1.1. 〈〈s(1), s(2), s(3)〉〉f = 〈X, 〈Y,Z〉〉 and 〈〈t(1), t(2), t(3), t(4)〉〉f = 〈a, 〈c, 〈d, e〉〉〉

⇒(≈?pair) 〈∅, ∅, id, { X ≈? a , 〈Y,Z〉 ≈? 〈c, 〈d, e〉〉, a#? f 〈f 〈b, c〉, f 〈d, e〉〉}〉

⇒(≈?inst) 〈∅, ∅, {X/a}, { 〈Y, Z〉 ≈? 〈c, 〈d, e〉〉 , a#? f 〈f 〈b, c〉, f 〈d, e〉〉}〉

⇒(≈?pair) 〈∅, ∅, {X/a}, { Y ≈? c , Z ≈? 〈d, e〉, a#? f 〈f 〈b, c〉, f 〈d, e〉〉}〉

⇒(≈?inst) 〈∅, ∅, {X/a, Y/c}, { Z ≈? 〈d, e〉 , a#? f 〈f 〈b, c〉, f 〈d, e〉〉}〉

135

⇒(≈?inst) 〈∅, ∅, {X/a, Y/c, Z/〈d, e〉}, { a#? f 〈f 〈b, c〉, f 〈d, e〉〉 }〉

. . .

⇒(#? atom) 〈∅, ∅, {X/a, Y/c, Z/〈d, e〉}, ∅〉

1.2. 〈〈s(1), s(2), s(3)〉〉f = 〈X, 〈Y,Z〉〉 and 〈〈t(1), t(2), t(3), t(4)〉〉f = 〈〈〈a, c〉, d〉, e〉

⇒(≈?pair) 〈∅, ∅, id, { X ≈? 〈〈a, c〉, d〉 , 〈Y,Z〉 ≈? e, a#? f 〈f 〈b, c〉, f 〈d, e〉〉}〉

⇒(≈?inst) 〈∅, ∅, {X/〈〈a, c〉, d〉}, {〈Y, Z〉 ≈? e, a#? f 〈f 〈b, c〉, f 〈d, e〉〉}〉

⇒ ⊥

1.3. 〈〈s(1), s(2), s(3)〉〉f = 〈X, 〈Y,Z〉〉 and 〈〈t(1), t(2), t(3), t(4)〉〉f = 〈〈a, c〉, 〈d, e〉〉

⇒(≈?pair) 〈∅, ∅, id, { X ≈? 〈a, c〉 , 〈Y, Z〉 ≈? 〈d, e〉, a#? f 〈f 〈b, c〉, f 〈d, e〉〉}〉

⇒(≈?inst) 〈∅, ∅, {X/〈a, c〉}, { 〈Y,Z〉 ≈? 〈d, e〉 , a#? f 〈f 〈b, c〉, f 〈d, e〉〉}〉

⇒(≈?pair) 〈∅, ∅, {X/〈a, c〉}, { Y ≈? d , Z ≈? e, a#? f 〈f 〈b, c〉, f 〈d, e〉〉}〉

⇒(≈?inst) 〈∅, ∅, {X/〈a, c〉, Y/d}, { Z ≈? e , a#? f 〈f 〈b, c〉, f 〈d, e〉〉}〉

⇒(≈?inst) 〈∅, ∅, {X/〈a, c〉, Y/d, Z/e}, { a#? f 〈f 〈b, c〉, f 〈d, e〉〉 }〉

. . .

⇒(#? atom) 〈∅, ∅, {X/〈a, c〉, Y/d, Z/e}, ∅〉

1.4. 〈〈s(1), s(2), s(3)〉〉f = 〈X, 〈Y,Z〉〉 and 〈〈t(1), t(2), t(3), t(4)〉〉f = 〈〈a, 〈c, d〉〉, e〉

⇒(≈?pair) . . . ⇒ ⊥

1.5. 〈〈s(1), s(2), s(3)〉〉f = 〈X, 〈Y, Z〉〉 and 〈〈t(1), t(2), t(3), t(4)〉〉f = 〈a, 〈〈c, d〉, e〉〉

⇒(≈?pair) . . . ⇒(#? atom) 〈∅, ∅, {X/a, Y/〈c, d〉, Z/e}, ∅〉

2.1. 〈〈s(1), s(2), s(3)〉〉f = 〈〈X,Y 〉, Z〉 and 〈〈t(1), t(2), t(3), t(4)〉〉f = 〈a, 〈c, 〈d, e〉〉〉

⇒(≈?pair) . . . ⇒ ⊥

2.2. 〈〈s(1), s(2), s(3)〉〉f = 〈〈X,Y 〉, Z〉 and 〈〈t(1), t(2), t(3), t(4)〉〉f = 〈〈〈a, c〉, d〉, e〉

⇒(≈?pair) . . . ⇒(#? atom) 〈∅, ∅, {X/〈a, c〉, Y/d, Z/e}, ∅〉

2.3. 〈〈s(1), s(2), s(3)〉〉f = 〈〈X,Y 〉, Z〉 and 〈〈t(1), t(2), t(3), t(4)〉〉f = 〈〈a, c〉, 〈d, e〉〉

⇒(≈?pair) . . . ⇒(#? atom) 〈∅, ∅, {X/a, Y/c, Z/〈d, e〉}, ∅〉

2.4. 〈〈s(1), s(2), s(3)〉〉f = 〈〈X,Y 〉, Z〉 and 〈〈t(1), t(2), t(3), t(4)〉〉f = 〈〈a, 〈c, d〉〉, e〉

136

⇒(≈?pair) . . . ⇒(#? atom) 〈∅, ∅, {X/a, Y/〈c, d〉, Z/e}, ∅〉

2.5. 〈〈s(1), s(2), s(3)〉〉f = 〈〈X,Y 〉, Z〉 and 〈〈t(1), t(2), t(3), t(4)〉〉f = 〈a, 〈〈c, d〉, e〉〉

⇒(≈?pair) . . . ⇒ ⊥

Failure cases are represented by ⊥ and are generated only when an atom term in the
rhs of an equation is associated is associated with a pair in the lhs. The corresponding
solutions obtained in each successful leaf are summarised in the following table:

Leaf label Corresponding solution
1.1 ∇ = ∅ σ = {X/a, Y/c, Z/〈d, e〉}
1.3 ∇ = ∅ σ = {X/〈a, c〉, Y/d, Z/e}
1.5 ∇ = ∅ σ = {X/a, Y/〈c, d〉, Z/e}
2.2 ∇ = ∅ σ = {X/〈a, c〉, Y/d, Z/e}
2.3 ∇ = ∅ σ = {X/a, Y/c, Z/〈d, e〉}
2.4 ∇ = ∅ σ = {X/a, Y/〈c, d〉, Z/e}

Then, the set of solutions provided by the algorithm is given by:
〈∅, {X/a, Y/c, Z/〈d, e〉}〉,
〈∅, {X/〈a, c〉, Y/d, Z/e}〉,
〈∅, {X/a, Y/〈c, d〉, Z/e}〉


Example 7.4. Let f be an AC function symbol. The nominal C and AC unification
algorithm applied to

P = 〈∅, ∅, id, {[a]f 〈X,Z〉 ≈? [b]f 〈f 〈X, Y 〉, b〉}〉

generates twelve leaves: four cases of failure (⊥) and the following eight successful leaves:

1. 〈{a#X, a#Y }, ∅, {Z/〈(a b).Y, a〉}, {(a b).X ≈? X}〉;
2. 〈{a#X, a#Y }, ∅, {Z/〈a, (a b).Y 〉}, {(a b).X ≈? X}〉;
3. 〈{a#X, a#Y }, ∅, {X/(a b).Y, Z/〈(a b)(a b).Y, a〉}, ∅〉;
4. 〈{a#X, a#Y }, ∅, {X/(a b).Y, Z/〈a, (a b)(a b).Y 〉}, ∅〉;
5. 〈{a#X, a#Y }, ∅, {X/a, Z/〈b, (a b).Y 〉}, ∅〉;
6. 〈{a#X, a#Y }, ∅, {X/a, Z/〈(a b).Y, b〉}, ∅〉;
7. 〈{a#X, a#Y }, ∅, {X/〈(a b).Y, a〉, Z/〈(a b)(a b).Y, b〉}, ∅〉;
8. 〈{a#X, a#Y }, ∅, {X/〈a, (a b).Y 〉, Z/〈b, (a b)(a b).Y 〉}, ∅〉.

The derivation for the input problem P is described below. Some derivation branches are
omitted:

137

P = 〈∅, ∅, id, { [a]f 〈X,Z〉 ≈? [b]f 〈f 〈X,Y 〉, b〉 }〉

⇒(≈?[ab]) 〈∅, ∅, id, { f 〈X,Z〉 ≈? f 〈f 〈(a b).X, (a b).Y 〉, a〉 , a#? f 〈f 〈X,Y 〉, b〉}〉

⇒(≈?AC) 〈∅, ∅, id, { 〈X,Z〉 ≈? 〈〈s(1), s(2), s(3)〉〉f , a#? f 〈f 〈X,Y 〉, b〉}〉

1. 〈〈s(1), s(2)〉〉f = 〈X,Z〉 and 〈〈t(1), t(2), t(3)〉〉f = 〈(a b).X, 〈(a b).Y, a〉〉

⇒(≈?pair) 〈∅, ∅, id, { X ≈? (a b).X , Z ≈? 〈(a b).Y, a〉, a#? f 〈f 〈X,Y 〉, b〉}〉

⇒(≈?inv) 〈∅, ∅, id, {(a b).X ≈? X, Z ≈? 〈(a b).Y, a〉 , a#? f 〈f 〈X,Y 〉, b〉}〉

⇒(≈?inst) 〈∅, ∅, {Z/〈(a b).Y, a〉}, {(a b).X ≈? X, a#? f 〈f 〈X,Y 〉, b〉 }〉

⇒(#? ...) 〈{a#X, a#Y }, ∅, {Z/〈(a b).Y, a〉}, {(a b).X ≈? X}〉

2. 〈〈s(1), s(2)〉〉f = 〈X,Z〉 and 〈〈t(1), t(2), t(3)〉〉f = 〈(a b).X, 〈a, (a b).Y 〉〉

⇒(≈?pair) 〈∅, ∅, id, { X ≈? (a b).X , Z ≈? 〈a, (a b).Y 〉, a#? f 〈f 〈X,Y 〉, b〉}〉

⇒(≈?inv) 〈∅, ∅, id, {(a b).X ≈? X, Z ≈? 〈a, (a b).Y 〉 , a#? f 〈f 〈X,Y 〉, b〉}〉

⇒(≈?inst) 〈∅, ∅, {Z/〈a, (a b).Y 〉}, {(a b).X ≈? X, a#? f 〈f 〈X,Y 〉, b〉 }〉

⇒(#? ...) 〈{a#X, a#Y }, ∅, {Z/〈a, (a b).Y 〉}, {(a b).X ≈? X}〉

. . .

8. 〈〈s(1), s(2)〉〉f = 〈X,Z〉 and 〈〈t(1), t(2), t(3)〉〉f = 〈〈a, (a b).Y 〉, (a b).X〉

⇒(≈?pair) . . . ⇒ 〈{a#X, a#Y }, ∅, {X/〈a, (a b).Y 〉, Z/〈b, (a b)(a b).Y 〉}, ∅〉

9. 〈〈s(1), s(2)〉〉f = 〈X,Z〉 and 〈〈t(1), t(2), t(3)〉〉f = 〈〈(a b).X, (a b).Y 〉, a〉; 〈〈(a b).X, a〉, (a b).Y 〉;
〈〈(a b).Y, (a b).X〉, a〉; or 〈〈a, (a b).X〉, (a b).Y 〉

⇒(≈?pair) . . .⇒ ⊥

Notice that:

• If t is such that ‖t‖f = 3, then 〈〈t(1), t(2), t(3)〉〉f represents 12 different tuples:
〈(a b).X, 〈(a b).Y, a〉〉; 〈(a b).X, 〈a, (a b).Y 〉〉; 〈(a b).Y, 〈(a b).X, a〉〉; 〈(a b).Y, 〈a, (a b).X〉〉;
〈a, 〈(a b).X, (a b).Y 〉〉; 〈a, 〈(a b).Y, (a b).X〉〉; 〈〈(a b).X, (a b).Y 〉, a〉; 〈〈(a b).X, a〉, (a b).Y 〉;
〈〈(a b).Y, (a b).X〉, a〉; 〈〈(a b).Y, a〉, (a b).X〉; 〈〈a, (a b).X〉, (a b).Y 〉 or 〈〈a, (a b).Y 〉, (a b).X〉.
In general, if t is such that ‖t‖f = n, then 〈〈t(1), . . . , t(n)〉〉f represents n! × the num-
ber of different parenthesising of the n arguments of the tuple.

138

• In the failure cases, X is associated with a term whose set of variables contains X,
but this term is different from a suspension.

As showed in Exs. 7.3 and 7.4, the nominal C, AC-unification and nominal A, C and
AC matching algorithms through simplification rules (≈? A) and (≈? AC) are extremely
inefficient. Many derivation branches should be avoided in a reasonable implementation.
For the moment, the the goal in these rule based algorithms is just to obtain simple sets of
rules that would be easy to formalise to be terminating, sound and complete (see Lems. 7.2
to 7.4). Algorithmic improvements regarding efficiency will be subject of future work.

Lemma 7.2 (Termination of ⇒(≈?A) and ⇒(≈?AC)). Both rules (≈? A) and (≈? AC) are
terminating.

Proof. Using well-founded induction and the same measure |P| of the proof of Lem. 5.2,
one concludes that if either P ⇒(≈?A) Q or P ⇒(≈?AC) Q, then for E = A,AC, P =
〈∇,X , σ, P ′〉, Q = 〈∇,X , σ,Q〉, P ′ = P] {fEk s ≈? f

E
k t} and

Q = P∪{〈〈s(1), . . . , s(m)〉〉fA
k
≈? 〈〈t(1), . . . , t(n)〉〉fA

k
or 〈〈s(1), . . . , s(m)〉〉fAC

k
≈? 〈〈t(1), . . . , t(n)〉〉fAC

k
}.

Then in both cases:

1. |V ar(P ′≈)| = |V ar(Q≈)|;

2. |P ′≈| ≥ |Q≈|+ 2 > |Q≈|, since at least two function symbols fEk are eliminated, and
|s| ≥ |〈〈s(1), . . . , s(n)〉〉fE

k
|, and either |t| ≥ |〈〈t(1), . . . , t(n)〉〉fA

k
| or |t| ≥ |〈〈t(1), . . . , t(n)〉〉fAC

k
|.

Lemma 7.3 (Preservation of solutions by ⇒(≈?A) and ⇒(≈?AC)).
If either P ⇒(≈?A) Q or P ⇒(≈?AC) Q, and 〈∆, δ〉 ∈ UAC(Q) then 〈∆, δ〉 ∈ UAC(P).

Proof. (sketch)
For P ⇒(≈?A) Q or P ⇒(≈?AC) Q, with E = A or AC, P = 〈∇,X , σ, P] {fEk s ≈?

fEk t}〉 and

Q = 〈∇,X , σ, P ∪ {〈〈s(1), . . . , s(m)〉〉fA
k
≈? 〈〈t(1), . . . , t(n)〉〉fA

k
}〉 or

Q = 〈∇,X , σ, P ∪ {〈〈s(1), . . . , s(m)〉〉fAC
k
≈? 〈〈t(1), . . . , t(n)〉〉fAC

k
}〉.

Except for the third condition of Def. 7.1, all other conditions are proved trivially. For
the third condition, given 〈∆, δ〉 ∈ UAC(Q), observe that

∆ ` fAk sδ ≈{A,C,AC} fAk 〈〈s(1)δ, . . . , s(m)δ〉〉fA
k
and ∆ ` fAk tδ ≈{A,C,AC} fAk 〈〈t(1)δ . . . , t(n)δ〉〉fA

k
, and

139

∆ ` fACk sδ ≈{A,C,AC} fACk 〈〈s(1)δ, . . . , s(m)δ〉〉fAC
k

and ∆ ` fACk tδ ≈{A,C,AC} fACk 〈〈t(1)δ, . . . , t(n)δ〉〉fAC
k
.

But, because 〈∆, δ〉 ∈ UAC(Q), one has either

∆ ` 〈〈s(1)δ, . . . , s(m)δ〉〉fA
k
≈{A,C,AC} 〈〈t(1)δ, . . . , t(n)δ〉〉fA

k
or

∆ ` 〈〈s(1)δ, . . . , s(m)δ〉〉fAC
k
≈{A,C,AC} 〈〈t(1)δ, . . . , t(n)δ〉〉fAC

k
,

which implies that either

∆ ` fAk 〈〈s(1)δ, . . . , s(m)δ〉〉fA
k
≈{A,C,AC} fAk 〈〈t(1)δ, . . . , t(n)δ〉〉fA

k
or

∆ ` fACk 〈〈s(1)δ, . . . , s(m)δ〉〉fAC
k
≈{A,C,AC} fACk 〈〈t(1)δ, . . . , t(n)δ〉〉fAC

k
.

Finally, by transitivity of ≈{A,C,AC} (Lem. 4.8) and Def. 2.24, one concludes that either
∆ ` (fAk s)δ ≈{A,C,AC} (fAk t)δ or ∆ ` (fACk s)δ ≈{A,C,AC} (fACk t)δ, which completes the
proof of the third condition of Def. 7.1 for rules (≈? A) and (≈? AC) respectively.

The completeness of rule ⇒(≈?A) is showed (in Lem. 7.4) only for the case where the
set of protected variables X contains the rhs variables of the problem (the matching case).
This restriction is necessary because rule (≈? A) does not capture all infinite solutions that
may be generated in A-unification (see Subsec. 2.1.2). For instance, let f be an A function
symbol in the input problem P = 〈∅, ∅, id, {f〈X, a〉 ≈? f〈a,X〉}〉. Rule (≈? A) transforms
P into 〈∅, ∅, id, {〈X, a〉 ≈? 〈a,X〉}〉, that generates a unique solution 〈∅, {X/a}〉. However,
a complete solutions set for P would include:

〈∅, {X/f〈a, a〉}〉; 〈∅, {X/f〈a, f〈a, a〉〉}〉; 〈∅, {X/f〈f〈a, a〉, f〈a, a〉〉}〉; etc.

Lemma 7.4 (Completeness of⇒(≈?A) and⇒(≈?AC)). Let P = 〈∆,X , σ, P 〉 be a quadruple
that is not in ⇒≈-nf and either P has occurrences of A function symbols or Rvar(P) ⊆ X .
If 〈∆, δ〉 ∈ UAC(P), then there exists Q, such that P ⇒≈ Q and 〈∆, δ〉 ∈ UAC(Q).

Proof. (sketch) The proof is by case analysis on the derivation rules of ⇒υ. Except for
cases of rules (≈? A) and (≈? AC), the proof is covered in Lem. 5.2. For these remaining
cases:

• If P = P ′]{fAk s ≈? f
A
k t} and Rvar(P) ⊆ X , then, for the third condition of Def. 7.1

one has ∆ ` fAk sδ ≈{A,C,AC} fAk t, which implies that there exists 〈〈s(1), . . . , s(m)〉〉fA
k

and 〈〈t(1), . . . , t(n)〉〉fA
k
, such that ∆ ` 〈〈s(1)δ, . . . , s(m)δ〉〉fA

k
≈{A,C,AC} 〈〈t(1), . . . , t(n)〉〉fA

k
.

140

Thus

Q = 〈∇,X , σ, P ′] {〈〈s(1)δ, . . . , s(m)δ〉〉fA
k
≈? 〈〈t(1), . . . , t(n)〉〉fA

k
}〉;

• Similarly, if P = P ′] {fACk s ≈? f
AC
k t}, then there exists 〈〈s(1), . . . , s(m)〉〉fAC

k
and

〈〈t(1), . . . , t(n)〉〉fAC
k

, such that ∆ ` 〈〈s(1)δ, . . . , s(m)δ〉〉fAC
k
≈{A,C,AC} 〈〈t(1)δ, . . . , t(n)δ〉〉fAC

k
.

Thus

Q = 〈∇,X , σ, P ′] {〈〈s(1)δ, . . . , s(m)δ〉〉fAC
k
≈? 〈〈t(1)δ, . . . , t(n)δ〉〉fAC

k
}〉.

From this, one concludes that all conditions of Def. 7.1 are satisfied for 〈∆, δ〉.

7.2 Solutions for nominal AC FP problems

Derivations by the nominal C-unification algorithm extended with rules of Figs. 7.1 and
7.2 also result in a set of FP problems. This affirmation can be proved by a similar analysis
that one presented in the proof of Lem. 5.5. Then combinatorial solutions for these FP
problems must also include the A and AC function symbols of the signature. For this
reason, the definition of epc is changed in Def. 7.3, adding item 4 in the construction of
combinatorial solutions with AC function symbols. It is verified that a complete set of
solutions for AC FP problems may be infinite. Then, as in Chap. 6, nominal AC-unification
has also been showed at least infinitary. As mentioned in Rmk. 6.9, the notion of more
general than (denoted by �) and complete set of solutions given by Def. 2.26 are now
extended to be used in the context of the ≈{A,C,AC} relation.

Definition 7.3 (Extended Pseudo-cycle with C and AC function symbols). Let π.X ≈? X

and Z a set of variables. The AC extended pseudo-cycles (denoted by AC epc) κ for π
relative to Z are inductively defined from the permutation cycles of π as follows:

1. κ = (Y), for any variable not occurring in Z, is an AC epc for π;

2. κ = (a0 · · · ak−1) is an AC epc for (a0 · · · ak−1) a permutation cycle in π such that
k = 2l, for l > 0, called a trivial extended pseudo-cycle of π.

3. κ = (A0 ... Ak−1), for a length k ≥ 1, is an AC epc for π, if the following conditions
are simultaneously satisfied:

(a) i. each element of κ is of the form Bi ?Bj, where ? is a commutative function
symbol in the signature, and Bi, Bj are different elements of κ′, an AC epc

141

for π; in this case, κ will be called a first-instance extended pseudo-cycle
of κ′ for π; or

ii. each element of κ is of the form Bi ? Cj for any commutative symbol ?,
where Bi and Cj are elements of κ′ and κ′′ AC epc’s for π, which might
both be the same, but κ is not a first-instance AC epc for π; or

iii. each element of κ is of the form 〈Bi, Cj〉, where Bi and Cj are elements of
κ′ and κ′′ AC epc’s for π, which might both be the same; or

iv. either each element of κ is of the form g Bi or each element is of the form
[e]Bi, where g is a non commutative function symbol in the signature and
e /∈ dom(π), and each Bi is an element of κ′ an AC epc for π; or

v. each element of κ is of the form [aj]Bi, where aj are atoms in κ′ =
(a0 · · · ak′−1) a trivial AC epc for π, and Bi elements of κ′′ an AC epc for
π; and

(b) for ∇′ = ∪Y ∈Var(κ){dom(π)#Y },

i. it does not hold that ∇′ ` Ai ≈{A,C,AC} Aj for i 6= j, 0 ≤ i, j ≤ k − 1; and
ii. for each 0 ≤ i ≤ k − 1 one has that ∇′ ` π(Ai) ≈{A,C,AC} A(i+1)modk.

4. Let ? be an AC function symbol and s(1) = A0, . . . , s(n) = Ak−1 in κ = (?〈〈s(1), . . . , s(n)〉〉?).
For a length k ≥ 1, κ is a unitary AC epc for π, if (A0 ... Ak−1) is an AC epc for π.

Remark 7.2. Observe that, Item 4 of Def. 7.3 allows the construction of unitary AC
epc’s, arranging the elements of a previous arbitrary AC epc. Thus, differently from C FP
equations, not only k-cycles whose length is power of two, but any k-cycle with arbitrary
length can generate infinite unitary AC epc’s. Moreover, Thm. 7.1 shows that each of
these unitary AC epc’s is associated to a solution for the corresponding AC FP equation.

The definition of the set of generated solutions for singleton AC FP problems, denoted
also by 〈∆,X , {π.X ≈? X}〉SolG , is a simple adaptation of Def. 6.5 that considers the
extended definition of AC epc (Def. 7.3).

Example 7.5. Let f be an AC function symbol. The (current) example shows a derivation
for the input quadruple P.

P = 〈∅, ∅, id, {[a][d][b][d]f〈[c][d]X, f〈[a][b]X, [b][c]Y 〉〉 ≈? [d][a][a][b]f〈f〈[b][c]X, [a][d]X〉, [c][a]Y 〉 }〉

⇒(≈?[ab]) 〈∅, ∅, id,


[d][b][d]f〈[c][d]X, f〈[a][b]X, [b][c]Y 〉〉 ≈?

[d][d][b]f〈f〈[b][c](a d).X, [d][a](a d).X〉, [c][d](a d).Y 〉 ,
a#? [a][a][b]f〈f〈[b][c]X, [a][d]X〉, [c][a]X〉

〉

142

⇒(≈?[aa]) 〈∅, ∅, id,


[b][d]f〈[c][d]X, f〈[a][b]X, [b][c]Y 〉〉 ≈?

[d][b]f〈f〈[b][c](a d).X, [d][a](a d).X〉, [c][d](a d).Y 〉 ,
a#? [a][a][b]f〈f〈[b][c]X, [a][d]X〉, [c][a]Y 〉

〉

⇒(≈?[ab]) 〈∅, ∅, id,


[d]f〈[c][d]X, f〈[a][b]X, [b][c]Y 〉〉 ≈?

[d]f〈f〈[d][c](a b d).X, [b][a](a b d).X〉, [c][b](a b d).Y 〉 ,
a#? [a][a][b]f〈f〈[b][c]X, [a][d]X〉, [c][a]Y 〉,
b#? [b]f〈f〈[b][c](a d).X, [d][a](a d).X〉, [c][d](a d)Y 〉


〉

⇒(≈?[aa]) 〈∅, ∅, id,


f〈[c][d]X, f〈[a][b]X, [b][c]Y 〉〉 ≈?

f〈f〈[d][c](a b d).X, [b][a](a b d).X〉, [c][b](a b d).Y 〉 ,
a#? [a][a][b]f〈f〈[b][c]X, [a][d]X〉, [c][a]Y 〉,
b#? [b]f〈f〈[b][c](a d).X, [d][a](a d).X〉, [c][d](a d).Y 〉


〉

⇒(≈?AC) 〈∅, ∅, id,


〈〈s(1), s(2), s(3)〉〉f ≈? 〈〈t(1), t(2), t(3)〉〉f ,

a#? [a][a][b]f〈f〈[b][c]X, [a][d]X〉, [c][a]Y 〉,
b#? [b]f〈f〈[b][c](a d).X, [d][a](a d).X〉, [c][d](a d).Y 〉

〉
Let s and t be, respectively, equal to 〈[c][d]X, f〈[a][b]X, [b][c]Y 〉〉 and
〈f〈[d][c](a b d).X, [b][a](a b d).X〉, [c][b](a b d).Y 〉 The previous application of rule AC generates
twenty-four branches, with six different successful leaves. Between these, just one results in a FP
problem with infinite AC combinatorial solutions over 4-cycles. A derivation branch that gives
rise to this case is presented below.

⇒(≈?pair)2× 〈∅, ∅, id,


[c][d]X ≈? [d][c](a b d).X , [a][b]X ≈? [b][a](a b d).X, [b][c]Y ≈? [c][b](a b d).Y ,
a#? [a][a][b]f〈f〈[b][c]X, [a][d]X〉, [c][a]Y 〉,
b#? [b]f〈f〈[b][c](a d).X, [d][a](a d).X〉, [c][d](a d).Y 〉

〉

⇒(≈?[ab]) 〈∅, ∅, id,


[d]X ≈? [d](a b c d).X , [a][b]X ≈? [b][a](a b d).X, [b][c]Y ≈? [c][b](a b d).Y ,
c#? [c](a b d).X,
a#? [a][a][b]f〈f〈[b][c]X, [a][d]X〉, [c][a]Y 〉,
b#? [b]f〈f〈[b][c](a d).X, [d][a](a d).X〉, [c][d](a d).Y 〉


〉

⇒(≈?[aa]) 〈∅, ∅, id,


X ≈? (a b c d).X , [a][b]X ≈? [b][a](a b d).X, [b][c]Y ≈? [c][b](a b d).Y ,
c#? [c](a b d).X,
a#? [a][a][b]f〈f〈[b][c]X, [a][d]X〉, [c][a]Y 〉,
b#? [b]f〈f〈[b][c](a d).X, [d][a](a d).X〉, [c][d](a d).Y 〉


〉

⇒(≈?inv) 〈∅, ∅, id,


(d c b a).X ≈? X, [a][b]X ≈? [b][a](a b d).X , [b][c]Y ≈? [c][b](a b d).Y ,
c#? [c](a b d).X,
a#? [a][a][b]f〈f〈[b][c]X, [a][d]X〉, [c][a]Y 〉,
b#? [b]f〈f〈[b][c](a d).X, [d][a](a d).X〉, [c][d](a d).Y 〉


〉

143

⇒(≈?[ab]) 〈∅, ∅, id,


(d c b a).X ≈? X, [b]X ≈? [b](b d).X , [b][c]Y ≈? [c][b](a b d).Y ,
a#? [a](a b d).X, c#? [c](a b d).X,
a#? [a][a][b]f〈f〈[b][c]X, [a][d]X〉, [c][a]Y 〉,
b#? [b]f〈f〈[b][c](a d).X, [d][a](a d).X〉, [c][d](a d).Y 〉


〉

⇒(≈?[aa]) 〈∅, ∅, id,


(d c b a).X ≈? X, X ≈? (b d).X , [b][c]Y ≈? [c][b](a b d).Y ,
a#? [a](a b d).X, c#? [c](a b d).X,
a#? [a][a][b]f〈f〈[b][c]X, [a][d]X〉, [c][a]Y 〉,
b#? [b]f〈f〈[b][c](a d).X, [d][a](a d).X〉, [c][d](a d).Y 〉


〉

⇒(≈?inv) 〈∅, ∅, id,


(d c b a).X ≈? X, (d b).X ≈? X, [b][c]Y ≈? [c][b](a b d).Y ,

a#? [a](a b d).X, c#? [c](a b d).X,
a#? [a][a][b]f〈f〈[b][c]X, [a][d]X〉, [c][a]Y 〉,
b#? [b]f〈f〈[b][c](a d).X, [d][a](a d).X〉, [c][d](a d).Y 〉


〉

⇒(≈?[ab]) 〈∅, ∅, id,


(d c b a).X ≈? X, (d b).X ≈? X, [c]Y ≈? [c](a c b d).Y ,

b#? [b](a b d).Y, a#? [a](a b d).X, c#? [c](a b d).X,
a#? [a][a][b]f〈f〈[b][c]X, [a][d]X〉, [c][a]Y 〉,
b#? [b]f〈f〈[b][c](a d).X, [d][a](a d).X〉, [c][d](a d).Y 〉


〉

⇒(≈?[aa]) 〈∅, ∅, id,


(d c b a).X ≈? X, (d b).X ≈? X, Y ≈? (a c b d).Y ,

b#? [b](a b d).Y, a#? [a](a b d).X, c#? [c](a b d).X,
a#? [a][a][b]f〈f〈[b][c]X, [a][d]X〉, [c][a]Y 〉,
b#? [b]f〈f〈[b][c](a d).X, [d][a](a d).X〉, [c][d](a d).Y 〉


〉

⇒(≈?inv) 〈∅, ∅, id,



(d c b a).X ≈? X, (d b).X ≈? X, (d b c a).Y ≈? Y ,

b#? [b](a b d).Y , a#? [a](a b d).X , c#? [c](a b d).X ,

a#? [a][a][b]f〈f〈[b][c]X, [a][d]X〉, [c][a]Y 〉 ,
b#? [b]f〈f〈[b][c](a d).X, [d][a](a d).X〉, [c][d](a d).Y 〉


〉

⇒(#? a[a])5× 〈∅, ∅, id, {(d c b a).X ≈? X, (d b).X ≈? X, (d b c a).Y ≈? Y }〉

Example 7.6 (Continuing Ex. 7.5). Let ∗ and ◦; ? and •; and f and g; be, respectively
C, AC and syntactic function symbols. C function symbols used in infix notation. Unitary
AC epc’s for the equations: 1. (d c b a).X ≈? X; 2. (d b).X ≈? X; and 3. (d b c a).Y ≈? Y ,
generated via Def. 7.3, can be given, respectively, by:

1. (d ∗ b) ◦ (c ∗ a); ?〈〈a, b〉, 〈d, c〉〉; ?〈〈〈a, Z〉, 〈b, Z〉〉, 〈〈d, Z〉, 〈c, Z〉〉〉;
?〈〈〈fa, Z〉, 〈fb, Z〉〉, 〈〈fd, Z〉, 〈fc, Z〉〉〉;
?〈〈〈fa, (d∗b)◦(c∗a)〉, 〈fb, (d∗b)◦(c∗a)〉〉, 〈〈fd, (d∗b)◦(c∗a)〉, 〈fc, (d∗b)◦(c∗a)〉〉〉;

2. Z ◦ (d ∗ b); ?〈〈b, 〈W,Z〉〉, d〉; ?〈〈W0, 〈b, Z〉〉, 〈〈d, Z〉,W1〉〉;
(g Z) ◦ ([e]d ∗ [e]b); •〈〈(g Z) ◦ ([e]d ∗ [e]b), b〉, 〈(g Z) ◦ ([e]d ∗ [e]b), d〉〉;
〈•〈〈(g Z) ◦ ([e]d ∗ [e]b), b〉, 〈(g Z) ◦ ([e]d ∗ [e]b), d〉〉,W 〉;

144

3. (d∗c)◦(b∗a); (fd∗fc)◦(fb∗fa); ?〈〈〈a, b〉, c〉, d〉; ?〈〈〈g〈a, Z〉, g〈b, Z〉〉, g〈c, Z〉〉, g〈d, Z〉〉.

Theorem 7.1 (Soundness of solutions for singleton AC FP problems).
Each 〈∇, {X/s}〉 in 〈∆,X , {π.X ≈? X}〉SolG is a solution for 〈∆,X , {π.X ≈? X}〉.

Proof. The proof is by case analysis on the definition of AC epc. Cases of items
1 to 3 are trivially adapted from the proof of Lem. 6.6. For item 4, observe that
∇ ` π(Ai) ≈{A,C,AC} A(i+1)modk and then, because ? is an AC function symbol, ∇ `
π(? 〈〈A0, . . . , Ak−1〉〉?) ≈{A,C,AC} ? 〈〈A0, . . . , Ak−1〉〉?.

Theorem 7.2 (Completeness of solutions for singleton AC FP problems).
Let 〈∆,X , {π.X ≈? X}〉 be a singleton AC FP problem with a solution 〈∇, {X/s}〉. Then
there exists 〈∇′, {X/t}〉 ∈ 〈∆,X , {π.X ≈? X}〉SolG such that 〈∇′, {X/t}〉 � 〈∇, {X/s}〉.

Proof. The proof is by induction on the structure of s. All the analysis is already done
in the proof of Lem. 6.7, except when s = ? t, where ? is an AC function symbol. For
this case, ∇ ` π · (? t) ≈{A,C,AC} ? t. Observe that, for n = ‖s‖?, ∇ ` π · (? t) ≈{A,C,AC}
?〈〈π · s1, . . . , π · sn〉〉? and ∇ ` ? t ≈{A,C,AC} ?〈〈s1, . . . , sn〉〉?. Then, by transitivity of
≈{A,C,AC} (Lem. 4.8), one has

∇ ` 〈〈π · s1, . . . , π · sn〉〉? ≈{A,C,AC} 〈〈s1, . . . , sn〉〉?.

This last assertion is possible only if either, for i = 1..n, ∇ ` π · si ≈{A,C,AC} si or
there exists j 6= i in {1, . . . , n}, such that ∇ ` π ·si ≈{A,C,AC} sj. The former case is covered
by items 3.iii) and 3.iv), and the latter by item 4 of Def. 7.3.

Example 7.7 (Continuing Ex. 7.6). Let S0, S1 and S2 be, respectively, equal to:


(d ∗ b) ◦ (c ∗ a), ?〈〈a, b〉, 〈d, c〉〉, ?〈〈〈a, Z〉, 〈b, Z〉〉, 〈〈d, Z〉, 〈c, Z〉〉〉,
?〈〈〈fa, Z〉, 〈fb, Z〉〉, 〈〈fd, Z〉, 〈fc, Z〉〉〉,
?〈〈〈fa, (d ∗ b) ◦ (c ∗ a)〉, 〈fb, (d ∗ b) ◦ (c ∗ a)〉〉, 〈〈fd, (d ∗ b) ◦ (c ∗ a)〉, 〈fc, (d ∗ b) ◦ (c ∗ a)〉〉〉

 ,

Z ◦ (d ∗ b), ?〈〈b, 〈W,Z〉〉, d〉, ?〈〈W0, 〈b, Z〉〉, 〈〈d, Z〉,W1〉〉, (g Z) ◦ ([e]d ∗ [e]b),
•〈〈(g Z) ◦ ([e]d ∗ [e]b), b〉, 〈(g Z) ◦ ([e]d ∗ [e]b), d〉〉,
〈•〈〈(g Z) ◦ ([e]d ∗ [e]b), b〉, 〈(g Z) ◦ ([e]d ∗ [e]b), d〉〉,W 〉

 ,
{(d∗c)◦(b∗a), (fd∗fc)◦(fb∗fa), ?〈〈〈a, b〉, c〉, d〉, ?〈〈〈g〈a, Z〉, g〈b, Z〉〉, g〈c, Z〉〉, g〈d, Z〉〉}.

The sets {{X/e} | e ∈ S0}, {{X/e} | e ∈ S1}, {{Y/e} | e ∈ S2} contain solutions for
the respective singleton problems: 〈∅, ∅, {(d c b a).X ≈? X}〉, 〈∅, ∅, {(d b).X ≈? X}〉 and
〈∅, ∅, {(d b c a).Y ≈? Y }〉.

145

Definition 7.4 (General AC-matchers). Let si, for i = 1..k, be terms. A general AC-
matcher δ is defined as a C, AC-most general solution for the C, AC-unification problem
{si =? Z}i=1..k, where Z is a new variable for si, with i = 1..k.

Remark 7.3. Def. 7.4 can be seen as an extension of Def. 6.6 that uses a first-order C,
AC-unification algorithm, instead of just first-order C-unification. Such algorithm can be
obtained by the combination of algorithms presented in Subsec. 2.1.2 of Chap. 2.

The following Def. 7.5 is an adaptation of Def. 6.7.

Definition 7.5 (Generated solutions for a variable in AC FP problems). Let the AC FP
problems for X in P be given by 〈∇,X , πi.X ≈? X〉, for πi ∈ ΠX , and such that |ΠX | = k.
If there exist

• solutions 〈∇i,X , {X/ti}〉 ∈ 〈∇,X , πi.X ≈? X〉SolG for each AC FP problem and

• a most general AC-matcher δ of the terms {ti}i=1..k with X as new variable

such that the problem 〈∅,∪(a#Y)∈∇′′{a#Y δ}〉, where ∇′′ := ∪ki=1∇i, has a solution 〈∇′, ∅〉,
then one says that 〈∇′, {X/Xδ}〉 is a generated solution for X. The set of all generated
solutions is denoted by [X]PG.

Example 7.8 (Continuing Exs. 7.5 and 7.7).
Let Q be equal to 〈∅, ∅, id, {(d c b a).X ≈? X, (d b).X ≈? X, (d b c a).Y ≈? Y }〉, then
{X/(d ∗ b) ◦ (c ∗ a)}, {X/ ? 〈〈a, b〉, 〈d, c〉〉} and {X/ ? 〈〈〈a, Z〉, 〈b, Z〉〉, 〈〈d, Z〉, 〈c, Z〉〉〉} ∈
[X]QG, since for δ0, δ1 and δ2, respectively, equal to

{Z/c ∗ a}, {W/a, Z/c} and {W0/〈a, Z〉,W1/〈c, Z〉},

one has that: (d ∗ b) ◦ (c ∗ a) ≈C,AC Z ◦ (d ∗ b)δ1; ?〈〈a, b〉, 〈d, c〉〉 ≈C,AC ?〈〈b, 〈W,Z〉〉, d〉δ2;
and ?〈〈〈a, Z〉, 〈b, Z〉〉, 〈〈d, Z〉, 〈c, Z〉〉〉 ≈C,AC ?〈〈W0, 〈b, Z〉〉, 〈〈d, Z〉,W1〉〉δ3.

Definition 7.6 (Generated Solutions for AC FP problems). Let P be an AC FP problem.
The set of generated solutions for P, denoted as [P]SolG, is defined as the set that contains
all solutions of the form〈 ⋃

X∈V ar(P)
∇X ,

⋃
X∈V ar(P)

{X/sX}
〉
, where each 〈∇X , {X/sX}〉 ∈ [X]PG.

Example 7.9 (Continuing Exs. 7.6 and 7.8). For instance, the pairs:
〈∅, {X/(d ∗ b) ◦ (c ∗ a), Y/(d ∗ c) ◦ (b ∗ a), (fd ∗ fc) ◦ (fb ∗ fa)}〉;
〈∅, {X/ ? 〈〈a, b〉, 〈d, c〉〉, Y/ ? 〈〈〈a, b〉, c〉, d〉}〉;
〈∅, {X/ ? 〈〈〈a, Z〉, 〈b, Z〉〉, 〈〈d, Z〉, 〈c, Z〉〉〉, Y/ ? 〈〈〈g〈a, Z〉, g〈b, Z〉〉, g〈c, Z〉〉, g〈d, Z〉〉}〉;
〈∅, {X/(d ∗ b) ◦ (c ∗ a), Y/ ? 〈〈〈g〈a, Z〉, g〈b, Z〉〉, g〈c, Z〉〉, g〈d, Z〉〉}〉;

146

〈∅, {X/ ? 〈〈a, b〉, 〈d, c〉〉, Y/ ? 〈〈〈a, b〉, c〉, d〉}〉;
〈∅, {X/?〈〈〈a, Z〉, 〈b, Z〉〉, 〈〈d, Z〉, 〈c, Z〉〉〉, Y/?〈〈〈g〈a, Z〉, g〈b, Z〉〉, g〈c, Z〉〉, g〈d, Z〉〉}〉; are
in UAC(Q).

Remark 7.4. Considering FP AC problems and AC-matchers, instead of FP C problems
and C-matchers, the proofs of Cors. 7.1 and 7.2 are trivially adapted, respectively, from
the proofs of Cors. 6.1 and 6.2. Then these new proofs are omitted.

Corollary 7.1 (Soundness and completeness of gen. sol. for a variable in AC FP problems).
Let P = 〈∆,X , P 〉 be an AC FP problem. Any solution in [X]PG is a solution of each AC
FP equation for X in P. If 〈∇, {X/s}〉 is a solution for each AC FP equation for X in P
then there exists 〈∇′, {X/Xδ}〉 ∈ [X]PG such that 〈∇′, {X/Xδ}〉 � 〈∇, {X/s}〉.

Corollary 7.2 (Soundness and completeness of generated solutions for AC FP problems).
Let P be an AC FP problem. Any solution in the set of solutions [P]SolG is a correct
solution of P. For any 〈∇, δ〉 solution of P there exist a pair 〈∇′, σ〉 ∈ [P]SolG such that
〈∇′, σ〉 � 〈∇, δ〉.

Remark 7.5. Given Lems. 7.3 and 7.4, and Cor. 7.2, and since the simplification rules
of nominal unification modulo AC has AC FP problems as successful leaves, where each of
these problems may have infinite solutions, one concludes that nominal unification modulo
AC is also at least infinitary.

147

Chapter 8

Conclusion and future work

Formalisations in Coq and OCaml implementations of nominal A, C and AC equality-
checking (Chap. 4), C-matching and C-unification (Chap. 5) were developed. Specially
for equality-checking, the soundness of the ≈{A,C,AC} was proved and an algorithm was
automatically extracted from the specification. Execution tests were performed comparing
the extracted implementation with an improved one. The development of these algorithms
allowed proposing upper bounds: for the syntactic case with A symbols; for the case that
includes A and C symbols; and, for the case that include A, C and AC symbols.

The nominal C-unification algorithm that transforms an input problem P into a family
of sets of FP problems was proved sound and complete. In Chap. 6, it is showed that
each of these sets may have infinite solutions in the standard presentation as pairs of the
form 〈∇, σ〉. A sound and complete generator of solutions for nominal C FP problems
was provided. Also a sound and complete nominal C-matching algorithm was obtained
instantiating a set of protected variables with the right-hand side variables of the input
problem P. Nominal C-matching has been showed finitary. Moreover, an extension
to nominal C and AC-unification and nominal A, C and AC matching was presented
in Chap. 7, where it has been showed that FP problems with AC function symbols
may also have infinite solutions. From this, one concludes that nominal C and nominal
AC-unification are both in the class of at least infinitary problems.

Since there exists a correspondence between higher-order patterns and nominal unifica-
tion, an interesting topic of future work is the comparison between these two problems
in the presence of AC function symbols. Intuitively, nominal AC-unification seems be
infinitary, however higher-order patterns unification modulo AC is known as being of
type 0 (zero) [18, 59]. If one presents solutions as pairs of fixed-point constraints and
substitutions [10], nominal C-unification returns to the finitary class. This suggests that
using this representation in nominal AC-unification would also bring it to the finitary
class.

148

Other subjects of future work are the development of more efficient implementations for
nominal equality-checking, matching and unification modulo algorithms. These implemen-
tations would make use of other data structures to represent nominal terms, permutations,
freshness, substitutions, nominal constraints, etc. Also, efficient strategies for simplifying
A and AC equations in unification and matching should be investigated. The process of
automatic code extraction presented in Sec. 4.5 could be applied to the formalised unifica-
tion and matching algorithms. These algorithms should be specified through well-founded
recursive definitions operating over trees whose nodes are labelled with quadruples. The
equivalence between this new specification and the inductive one, provided by equ sys,
fresh sys, unif step and match step (resp., Defs. 5.4, 5.5, 5.9 and 5.13), should be proved.
One method to prove this equivalence would be checking that each branch of a tree
obtained by the recursive algorithm corresponds to a unif step (or a match step) reduction.
For further developments, the use of other proof assistants such as PVS or Isabelle/HOL
should be considered, as well as the adoption of a more direct strategy in the formalisation
of the algorithms. This strategy would consist in proving sound and completeness directly
from recursive definitions.

It remains to be formalised the algorithms of nominal C and AC-unification and nominal
A, C and AC matching, as well as the combinatorial part for FP problems presented in
Chaps. 6 and 7. Both formalisations should be non-trivial, since the former relies on the
exponential possible associations on the lhs and rhs arguments of the AC function symbols
that occurs in the equations, and the former would be based on algebraic properties of
k-cycles.

Another interesting topic of future work is to explore how nominal syntax could affect
the Manakin’s [50] proof of the decidability of first-order A-unification. Also, investigating
A-unification in the particular cases where it is finitary is an interesting subject of future
work. For instance, problems without atom terms that play the role of constants could
simulate A-elementary unification in the nominal syntax.

It is also matter of interest, the extension of these algorithms to other equational
theories such as those that include D, U and I. Finally, applications to nominal rewriting
and narrowing and types in the nominal syntax are interesting topics. Specially, DU
theories could be applied to the di Cosmo’s system [34]. Also nominal anti-unification and
nominal disunification modulo equational theories are interesting subjects of future work.

149

References

[1] T. Aoto and K. Kikuchi. Nominal Confluence Tool. In Proc. of the 8th Int. Joint Conf.:
Automated Reasoning (IJCAR), volume 9706 of LNCS, pages 173–182. Springer, 2016.
4

[2] A. B. Avelar, A. L. Galdino, F. L. C. de Moura, and M. Ayala-Rincón. First-order
unification in the PVS proof assistant. Logic Journal of the IGPL, 22(5):758–789,
2014. 5

[3] M. Ayala-Rincón, W. Carvalho-Segundo, M. Fernández, and D. Nantes-Sobrinho.
Nominal C-Unification. In Proc. of the 27th Int. Symp. Logic-Based Program Synthesis
and Transformation (LOPSTR), volume 10855 of LNCS, pages 235–251. Springer,
2017. 5, 7, 72, 107

[4] M. Ayala-Rincón, W. Carvalho-Segundo, M. Fernández, and D. Nantes-Sobrinho. On
Solving Nominal Fixpoint Equations. In Proc. of the 11th Int. Symp. on Frontiers of
Combining Systems (FroCoS), volume 10483 of LNCS, pages 209–226. Springer, 2017.
7, 107

[5] M. Ayala-Rincón, W. de Carvalho Segundo, M. Fernández, and D. Nantes-Sobrinho.
A formalisation of nominal α-equivalence with A and AC function symbols. ENTCS,
332:21–38, 2017. 6, 44

[6] M. Ayala-Rincón, W. de Carvalho Segundo, M. Fernández, and D. Nantes-Sobrinho.
A Formalisation of Nominal α-equivalence with A, C, and AC Function Symbols.
TCS, 2019. Accepted manuscript in Theoretical Computer Science. 6, 44

[7] M. Ayala-Rincón, M. Fernández, W. Carvalho-Segundo, and D. Nantes-Sobrinho. A
Formalisation of Nominal C-Matching through Unification with Protected Variables.
In Pre-proc. of Logical and Semantic Frameworks with Applications (LSFA), to appear
in ENTCS, pages 29–41. Elseviser, 2018. 7, 72

[8] M. Ayala-Rincón, M. Fernández, M. J. Gabbay, and A. C. Rocha Oliveira. Checking
Overlaps of Nominal Rewriting Rules. ENTCS, 323:39–56, 2016. 4

[9] M. Ayala-Rincón, M. Fernández, and D. Nantes-Sobrinho. Nominal Narrowing. In
Proc. of the 1st Int. Conf. on Formal Structures for Computation and Deduction
(FSCD), volume 52 of LIPIcs, pages 11:1–11:17. SDLZI, 2016. 6

[10] M. Ayala-Rincón, M. Fernández, and D. Nantes-Sobrinho. Fixed-Point Constraints for
Nominal Equational Unification. In Proc. of the 3rd Int. Conf. on Formal Structures

150

for Computation and Deduction (FSCD), volume 108 of LIPIcs, pages 7:1–7:16. SDLZI,
2018. 7, 148

[11] M. Ayala-Rincón, M. Fernández, and A. C. Rocha-oliveira. Completeness in PVS of
a Nominal Unification Algorithm. ENTCS, 323:57–74, 2016. 5, 32

[12] M. Ayala-Rincón, M. Fernández, A. C. Rocha-Oliveira, and D. L. Ventura. Nominal
essential intersection types. Theoretical Computuper Science, 737:62–80, 2018. 5

[13] B. Aydemir, A. Bohannon, and S. Weirich. Nominal Reasoning Techniques in Coq.
ENTCS, 174(5):69–77, 2007. 6

[14] F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge UP, 1998. 19

[15] F. Baader and W. Snyder. Unification Theory. In Handbook of Automated Reasoning
(in 2 volumes), pages 445–532. Elsevier and MIT Press, 2001. 3

[16] A. Baumgartner, T. Kutsia, J. Levy, and M. Villaret. Nominal Anti-Unification. In
Rewriting Techniques and Applications, (RTA), pages 57–73. SDLZI, 2015. 4

[17] D. Benanav, D. Kapur, and P. Narendran. Complexity of Matching Problems. J. of
Sym. Computation, 3(1/2):203–216, 1987. 3, 22, 62, 71

[18] A. Boudet and E. Contejean. AC-Unification of Higher-Order Patterns. In Proc. of
Principles and Practice of Constraint Programming, volume 1330 of LNCS, pages
267–281. Springer, 1997. 148

[19] A. Boudet, E. Contejean, and H. Devie. A New AC Unification Algorithm with an
Algorithm for Solving Systems of Diophantine Equations. Logic in Computer Science,
pages 289–299, 1990. 3

[20] T. Braibant and D. Pous. Tactics for Reasoning Modulo AC in Coq. In In Proc. of
the 1st. Int. Conf. on Certified Programs and Proofs (CPP), volume 7086 of LNCS,
pages 167–182. Springer, 2011. 6

[21] K. F. Brandt, A. Schlichtkrull, and J. Villadsen. Formalization of First-Order Syntactic
Unification. In Pre-proc. of the 32nd Int. Workshop on Unification (UNIF), 2018. 5

[22] W. E. Byrd and D. P. Friedman. αKanren: A Fresh Name in Nominal Logic
Programming. In Proc. of the Workshop on Scheme and Functional Programming,
pages 79–90, 2007. 4

[23] C. F. Calvès. Complexity and implementation of nominal algorithms. PhD Thesis,
King’s College London, 2010. 4

[24] C. F. Calvès and M. Fernández. Matching and Alpha-Equivalence Check for Nominal
Terms. J. of Computer and System Sciences, 76(5):283–301, 2010. 4, 64, 69, 70

[25] C. F. Calvès and M. Fernández. The First-order Nominal Link. In Proc. of the 20th
Int. Symp. Logic-based Program Synthesis and Transformation (LOPSTR), volume
6564 of LNCS, pages 234–248. Springer, 2011. 4, 31

151

[26] J. Cheney. αProlog User’s Guide & Language Reference Version 0.3 DRAFT, 2003. 4

[27] J. Cheney. Relating nominal and higher-order pattern unification. Proceedings of the
19th international workshop on Unification (UNIF 2005), 2005. 4

[28] J. Cheney. Equivariant unification. J. of Autom. Reasoning, 45(3):267–300, 2010. 4

[29] M. Clausen and A. Fortenbacher. Efficient Solution of Linear Diophantine Equations.
J. of Sym. Computation, 8(1-2):201–216, 1989. 3

[30] E. Contejean. A Certified AC Matching Algorithm. In Proc. of the 15th Int. Conf.
on Rewriting Techniques and Applications (RTA), volume 3091 of LNCS, pages 70–84.
Springer, 2004. 6, 133

[31] E. Copello, E. Tasistro, N. Szasz, A. Bove, and M. Fernández. Principles of Alpha-
Induction and Recursion for the Lambda Calculus in Constructive Type Theory.
ENTCS, 323:109–124, 2016. 6

[32] CoqTeam. The Coq Proof Assistant Reference Manual, 2019. 32

[33] T. H. Cormen, C. E. Leiserson, R. Rivest, and C. Stein. Introduction to Algorithms.
The MIT Press, 2009. 71

[34] R. Di Cosmo. Second Order Isomorphic Types: A Proof Theoretic Study on Second
Order lambda-Calculus with Surjective Paring and Terminal Object. Inf. Comput.,
119(2):176–201, 1995. 149

[35] F. Durán, S. Eker, S. Escobar, N. Martí-Oliet, J. Meseguer, and C. L. Talcott.
Associative unification and symbolic reasoning modulo associativity in maude. In
Proc. of Rewriting Logic and Its Applications (WLRA), volume 11152 of LNCS, pages
98–114. Springer, 2018. 6

[36] S. M. Eker. Associative-Commutative Matching Via Bipartite Graph Matching. The
Computer J., 38:381–399, 1995. 3

[37] S. M. Eker. Associtative-Commutative Rewriting on Large Terms. In Rewriting
Techniques and Applications, (RTA), volume 2706 of LNCS, pages 14–29, 2003. 3

[38] François Fages. Associative-Commutative Unification. J. of Sym. Computation,
3:257–275, 1987. 3, 22

[39] E. Fairweather, M. Fernández, N. Szasz, and A. Tasistro. Dependent Types for
Nominal Terms with Atom Substitutions. In Int. Conf. on Typed Lambda Calculi and
Applications, (TLCA), pages 180–195. SDLZI, 2015. 5

[40] M. Fernández and M. Gabbay. Curry-Style Types for Nominal Terms. In Int. Work.
on Types for Proofs and Programs (TYPES), volume 4502 of LNCS, pages 125–139.
Springer, 2006. 5

[41] M. Fernández and M. J. Gabbay. Nominal Rewriting. Information and Computation,
205(6):917–965, 2007. 4, 5

152

[42] M. J. Gabbay and A. M. Pitts. A New Approach to Abstract Syntax with Variable
Binding. Formal Aspects of Computing, 13(3-5):341–363, 2002. 3

[43] D. Kapur and P. Narendran. NP-Completeness of the Set Unification and Matching
Problems. In 8th International Conference on Automated Deduction (CADE), volume
230 of LNCS, pages 489–495. Springer, 1986. 3, 22

[44] D. Kapur and P. Narendran. Matching, Unification and Complexity. SIGSAM
Bulletin, 21(4):6–9, 1987. 3, 22

[45] D. Kapur and P. Narendran. Complexity of Unification Problems with Associative-
Commutative Operators. J. of Autom. Reasoning, 9(2):261–288, 1992. 3, 22

[46] R. Kumar and M. Norrish. (Nominal) Unification by Recursive Descent with Triangular
Substitutions. In Proc. of the 1st Int. Conf. of Interactive Theorem Proving (ITP),
volume 6172 of LNCS, pages 51–66. Springer, 2010. 5

[47] D. Larchey-Wendling and J.-F. Monin. Simulating Induction-Recursion for Partial Al-
gorithms. Accepted to TYPES. Available at https://members.loria.fr/DLarchey/
files/papers/TYPES_2018_paper_19.pdf, 2018. 61

[48] J. Levy and M. Villaret. An Efficient Nominal Unification Algorithm. In Proc. of the
21st Int. Conf. on Rewriting Techniques and Applications (RTA), volume 6 of LIPIcs,
pages 209–226. SDLZI, 2010. 4, 31

[49] J. Levy and M. Villaret. Nominal unification from a higher-order perspective. ACM
Trans. Comput. Log., 13(2):10:1–10:31, 2012. 4

[50] G. S. Makanin. The Problem of Solvability of Equations in a Free Semigroup. Math.
USSR Sbornik, 32(2):129–198, 1977. 17, 22, 149

[51] A Martelli and U. Montanari. Unification in linear time and space: A structured
presentation. Technical report, Ist. di Elaborazione delle Informazione, Consiglio
Nazionale delle Ricerche, Pisa, Italy, 1976. Internal Rep. B76-16. 3, 16, 22

[52] A. Martelli and U. Montanari. An Efficient Unification Algorithm. ACM Transactions
on Programming Languages and Systems, 4(2):258–282, 1982. 16

[53] D. Miller. A logic programming language with lambda-abstraction, function variables,
and simple unification. J. Log. Comput., 1(4):497–536, 1991. 4

[54] T. Nipkow. Equational Reasoning in Isabelle. Science of Computer Programming,
12(2):123–149, 1989. 6

[55] T. Nipkow. Functional unification of higher-order patterns. In Proc. of the Eighth
Annual Symp. on Logic in Computer Science (LICS), pages 64–74. IEEE, 1993. 4

[56] M. S. Paterson and M. N. Wegman. Linear Unification. J. of Computer and System
Sciences, 16(2):158–167, 1978. 3, 4, 16, 22

[57] A. M. Pitts. Nominal Logic, a First Order Theory of Names and Binding. Information
and Computation, 186(2):165–193, 2003. 3, 22

153

https://members.loria.fr/DLarchey/files/papers/TYPES_2018_paper_19.pdf
https://members.loria.fr/DLarchey/files/papers/TYPES_2018_paper_19.pdf

[58] A. M. Pitts. Nominal Sets: Names and Symmetry in Computer Science. Cambridge
UP, 2013. 3

[59] Z. Qian and K. Wang. Modular AC unification of higher-order patterns. In Proc. of
the First Int. Conf. Constraints in Computational Logics, volume 845 of LNCS, pages
105–120. Springer, 1994. 148

[60] J. A. Robinson. A Machine-Oriented Logic Based on the Resolution Principle. J. of
the ACM, 12(1):23–41, 1965. 3, 13, 22

[61] A. C. Rocha-Oliveira. Unificação, confluência e tipos com interseção para sistemas de
reescrita nominal. PhD thesis, Universidade de Brasília (UnB), 2016. 5, 32

[62] Sagan, B. E. The Symmetric Group: Representations, Combinatorial Algorithms, and
Symmetric Functions. Springer, 2nd edition, 2001. 107

[63] M. Schmidt-Schauß, T. Kutsia, J. Levy, and M. Villaret. Nominal Unification of
Higher Order Expressions with Recursive Let. In Post-proc. of the 26th Int. Sym. on
Logic-Based Program Synthesis and Transformation (LOPSTR 2016), volume 10184
of LNCS, pages 328–344. Springer, 2017. 7

[64] J. H. Siekmann. Unification of Commutative Terms. In Proc. of the Int. Symposium
on Symbolic and Algebraic Manipulation, volume 72 of LNCS, pages 22–29. Springer,
1979. 3, 18

[65] M. Sozeau. Subset Coercions in Coq. In Proc. of the Int. Work. on Types for Proofs
and Programs (TYPES), volume 4502 of LNCS, pages 237–252. Springer, 2006. 61

[66] M. Sozeau. Equations: A Dependent Pattern-Matching Compiler. In Proc. of the
1st Int. Conf. of Interactive Theorem Proving (ITP), volume 6172 of LNCS, pages
419–434. Springer, 2010. 58

[67] M. E. Stickel. A Unification Algorithm for Associative-Commutative Functions. J. of
the Association for Computing Machinery, 28(3):423–434, 1981. 3, 19, 22

[68] E. Tiden and S. Arnborg. Unification Problems with One-Sided Distributivity. J. of
Sym. Computation, 3:183–202, 1987. 22

[69] C. Urban. Nominal Techniques in Isabelle/HOL. J. of Autom. Reasoning, 40(4):327–
356, 2008. 5

[70] C. Urban. Nominal Unification Revisited. In Proc. of the 24th Int. Work. on
Unification (UNIF), volume 42 of EPTCS, pages 1–11, 2010. 5, 32

[71] C. Urban and C. Kaliszyk. General Bindings an Alpha-Equivalence in Nominal
Isabelle. Logical Methods in Computer Science, 8:1–35, 2012. 6

[72] C. Urban, A. M. Pitts, and M. J. Gabbay. Nominal Unification. Theoretical Computer
Science, 323(1-3):473–497, 2004. 3, 4, 5, 26, 31, 32

[73] Z. Qian. Linear Unification of Higher-Order Patterns. Theory and Practice of Software
Development, pages 391–405, 1993. 4

154

Appendix A

The hierarchy of the Coq formalisation is presented in the diagram of Fig. A.1. Below, for
each file of the formalisation, a short description is given:

• Basics.v - Necessary results on arithmetics and lists that are not in the standard
libraries of Coq;

• Terms.v - The nominal syntax of terms (see Fig. 3.1);

• Perm.v - Permutation action over atoms and terms (see Defs. 2.19 and 2.20);

• Disagr.v - The disagreement sets of permutations (see Def. 2.21);

• Tuples.v - The operators for obtaining the number of arguments, selecting an
element and deleting an element of a tuple, which are given, respectively, by the
recursive definitions TPlength, TPith and TPithdel (see Figs. 4.1 to 4.3 and
Lem. 4.1);

• Fresh.v - The freshness relation given by the inductive definition fresh (see Fig.
3.2);

• w Equiv.v - The auxiliary nominal “weak” α-equivalence (see Fig. 3.5);

• Alpha Equiv old.v - Proof of the soundness of the nominal α-equivalence (see
Fig. 3.3 and Lems. 3.3, 3.10 and 3.11) according to Urban’s weak α-equivalence
Isabelle/HOL approach;

• Alpha Equiv.v - Proof of the soundness of the nominal α-equivalence (see Fig. 3.3
and Lems. 3.3, 3.16 and 3.17) according to Rocha-Oliveira’s PVS direct approach;

• Equiv.v - The inductive definition equiv that extensions nominal α-equivalence with
A, C and AC function symbols (see Fig. 4.8);

• AACC Equiv rec.v - Recursive versions of fresh and equiv with an automatic
executable OCaml code extraction (see Sec. 4.5);

155

https://github.com/wtonribeiro/nominal-ac/blob/master/Basics.v
https://github.com/wtonribeiro/nominal-ac/blob/master/Terms.v
https://github.com/wtonribeiro/nominal-ac/blob/master/Perm.v
https://github.com/wtonribeiro/nominal-ac/blob/master/Disagr.v
https://github.com/wtonribeiro/nominal-ac/blob/master/Tuples.v
https://github.com/wtonribeiro/nominal-ac/blob/master/Fresh.v
https://github.com/wtonribeiro/nominal-ac/blob/master/w_Equiv.v
https://github.com/wtonribeiro/nominal-ac/blob/master/Alpha_Equiv_old.v
https://github.com/wtonribeiro/nominal-ac/blob/master/Alpha_Equiv.v
https://github.com/wtonribeiro/nominal-ac/blob/master/Equiv.v
https://github.com/wtonribeiro/nominal-ac/blob/master/AACC_Equiv_rec.v

• Equiv Tuples.v - Results about equiv and operators TPlength, TPith and TPithdel
(see Lem. 4.7);

• AACC Equiv.v - Soundness of equiv (see Lems. 4.6, 4.8 and 4.9 and Cor. 4.1);

• C Equiv.v - Specific lemmas about the nominal α, C-equivalence (see Lems. 4.2 to
4.5);

• Problems.v - Definitions of unification problem and set of solutions (see Defs. 5.1
and 5.2);

• Substs.v - Substitutions and lemmas about the α, C-equivalence and composition
of substitutions (see Lem. 5.6);

• C Unif.v - Transformation systems for simplifying freshness constraints and equa-
tions (⇒# and⇒≈) which are the basis of the definition of the nominal C-unification
algorithm (see Figs. 5.5 and 5.5);

• C Unif Termination.v - Termination of ⇒# and ⇒≈ (see Lem. 5.2);

• C Unif Soundness.v - Soundness of ⇒# and ⇒≈ (see Thm. 5.1);

• C Unif Completeness.v - Completeness of ⇒# and ⇒≈ (see Thm. 5.2);

• C Matching.v - The nominal C-matching algorithm and its termination, soundness
and completeness (see Sec. 5.2).

156

https://github.com/wtonribeiro/nominal-ac/blob/master/Equiv_Tuples.v
https://github.com/wtonribeiro/nominal-ac/blob/master/AACC_Equiv.v
https://github.com/wtonribeiro/nominal-ac/blob/master/C_Equiv.v
https://github.com/wtonribeiro/nominal-ac/blob/master/Problems.v
https://github.com/wtonribeiro/nominal-ac/blob/master/Substs.v
https://github.com/wtonribeiro/nominal-ac/blob/master/C_Unif.v
https://github.com/wtonribeiro/nominal-ac/blob/master/C_Unif_Termination.v
https://github.com/wtonribeiro/nominal-ac/blob/master/C_Unif_Soundness.v
https://github.com/wtonribeiro/nominal-ac/blob/master/C_Unif_Completeness.v
https://github.com/wtonribeiro/nominal-ac/blob/master/C_Matching.v

AACC_Equiv.v

AACC_Equiv_rec.v

Alpha_Equiv.v

Basics.v

C_Equiv.v

C_Matching.v

Alpha_Equiv_old.v

C_Unif.v

C_Unif_Completeness.v C_Unif_Soundness.v C_Unif_Termination.v

Disagr.v

Equiv.v

Equiv_Tuples.v

Fresh.v

LibTactics.v

Perm.v

Problems.vSubsts.v

Terms.v

Tuples.v

w_Equiv.v

Figure A.1: Dependencies diagram of the files of the Coq formalisation.

157

Index

⇒# and ⇒≈, 73
≈{A,C,AC} equality-checking implementations, 54
≈{A,C,AC} execution tests, 61
α and A tests, 65
α tests, 64
α, A and C tests, 66
α, A, C and AC equality-checking, nominal, 43
α, A, C and AC tests, 67
α-equivalence rules, nominal, 24
α-equivalence, nominal, 23
(≈? A), 132
(≈? AC), 132

A, C and AC-unification, first-order, 16
A-unification, first-order, 16
A, C and AC-unification and matching, nominal,

131
abstraction, nominal term, 22
AC-unification, first-order, 19
algorithm for checking ≈{A,C,AC}, 55
application, nominal term, 22
arity, function symbol, 10
atom, 22
atom, nominal term, 22
atoms of interest in C FP problems on a variable,

128

basic properties ofM = (aij)k−1×k, 110
bracketing, 131

C-matching, nominal, 92
C-unification and matching, nominal, 71
C-unification with protected variables, nominal,

72
C-unification, first-order, 17

characterisation ofM = (aij)k−1×k, 112
combinatorial solutions, 114
complete set, first-order solutions, 13
completeness of ⇒(≈?A) and ⇒(≈?AC), 138
completeness ofM = (aij)k−1×k, 112
completeness of solutions for singleton AC FP

problems, 142
completeness of solutions for singleton C FP

problems, 121
complexities, first-order problems, 22
complexity, nominal unification, 30
composition, substitution, 12
constant, 10
constraints, nominal, 25
Coq proof assistant, 31

derivation tree, 77
difference set, 24
domain, substitution, 12

empty tuple, nominal term, 22
equality judgement, 24
equality-checking, first-order, 12
equational property, 10
extended pseudo-cycle, 115
extended pseudo-cycle correspondence for π and

π2, 119
extended Pseudo-cycle with C and AC function

symbols, 139

finitary (ω), type, 13
first-instance pseudo-cycle matrix, 109
formalisation approaches, comparing, 41
freshness, 23
freshness context, 23

158

freshness judgement, 24
freshness rules, 24
function symbol, 10

general AC-matchers, 143
general C-matchers, 124
general solutions for C FP problems, 114
generated solutions for a variable, 124
generated solutions for AC FP problems, 144
generated solutions of singleton C FP problems,

118

hierarchy of the Coq formalisation, 152

image, substitution, 12
improvements in the generation of solutions for

C FP problems, 127
independent solutions, 13
infinitary (∞), type, 13

minimal-complete, first-order solutions, 13
more general first-order solution, 13
more general nominal C solution, 114
more general nominal solution, 27

nominal C-unification, OCaml implementation,
78

nominal constraints, 25
nominal fixed point problems, 106
nominal syntax, 22
nominal triple, 25
nominal unification, termination, 27
NP-completeness, first-order C-unification, 18
NP-completeness, nominal C-unification, 91

pair, nominal term, 22
permutation, 22
permutation action, atoms, 23
permutation action, terms, 23
permutation cycles in the top of ΠX , 128
permutation factor, 127
preservation of solutions by⇒(≈?A) and⇒(≈?AC),

137

problem, first-order, 11
problem, syntactic first-order, 11
protected variables, nominal C-matching, 92
pseudo-cycle, 106, 107
pseudo-cycle C equivalence, 108

reduction strategy, nominal unification, 28
rewriting notation, first-order, 14
rewriting notation, nominal, 28
rules for nominal A, C and AC problems, 131

set of variables of a pair, 13
set size, 11
signature, 10
size, set of nominal constraints, 27
solution for a nominal C-matching problem, 93
solution for quadruples and unification prob-

lems, nominal, 72
solution, first-order unification/matching, 12
solution, nominal, 26
solutions for nominal AC FP problems, 138
sorting, 131
soundness and completeness of generated solu-

tions for a variable, 125
soundness and completeness of generated solu-

tions for a variable in AC FP problems,
144

soundness and completeness of generated solu-
tions for AC FP problems, 144

soundness and completeness of generated solu-
tions for C FP problems, 126

soundness of solutions for singleton AC FP prob-
lems, 142

soundness of solutions of singleton C FP prob-
lems, 118

specification & formalisation, 31
(≈α A), 47
(≈α AC), 48
(≈α C), 47
α equality-checking, 31
(≈α app), 47

159

UC andMC equivalence, 93
NF, 74
equ sys, 75
equiv rec, 59
fresh rec, 58
fresh sys, 76
iter, 58
match leaf, 93
match path, 93
match step, 92
tr clos, 74
equiv, 43, 48, 49
leaf, 88
unif path, 88
unif step, 88
TPithdel, 44, 45
TPith, 44
TPlength, 44
alpha equiv, 34
fresh, 33
w equiv, 37
alpha-equivalence, 34
automatic code extraction, 57
basic properties of freshness, 39
basic properties over permutations with

ds(π, π′) = ∅, 39
C-unification, nominal, 71
characterisation of successful leaves, 84
characterisation of successful matching leaves,

97
combination of AC arguments, 52
completeness of ⇒µ, 95
completeness of ⇒∗µ, 96
completeness of T〈∆,X ,P 〉, 86
correctness of equiv rec, 60
decidability of ⇒µ, 94
equivalence of ∼ω, 36
equivalence of equiv(S), for S ⊆ {0, 1, 2},

53
equivariance of ≈α through ∼ω, 37

equivariance of ≈{A,C,AC}, 51
equivariance of ≈α by the direct approach,

40
equivariance of ∼ω, 36
extension of ≈α, 47
freshness, 33
freshness preservation of ≈α, 33
freshness preservation of ∼ω, 36
freshness preservation under ≈{A,C,AC}, 51
intermediate transitivity for ≈α with ∼ω,

36
intermediate transitivity for ≈{A,C,AC} with
≈α, 51

intersection emptyness preservation with
rhs variables by ⇒µ, 94

invariance under ≈α, 33
inversion of permutations over ≈α, 40
main properties of ⇒υ, 88
matching-step, 92
nominal syntax, 32
permutation, 32
preservation of Rvar by ⇒µ, 94
preservation of solutions by ⇒≈, 81
preservation of solutions by ⇒#, 79
preservation of solutions by ⇒µ, 95
preservation of valid quadruples by ⇒µ, 94
reflexivity of ≈α, 35
reflexivity of ≈{A,C,AC}, 52
reverse of ≈{A,C,AC}, 50
second intermediate transitivity for ≈α, 37
soundness of ≈{A,C,AC}, 50
soundness of ⇒∗µ, 96
Soundness of T〈∆,X ,P 〉, 85
symmetry of ≈α by the direct approach, 40
symmetry of ≈α through ∼ω, 38
symmetry of ≈{A,C,AC}, 53
termination of ⇒µ, 94
termination of ⇒≈ and ⇒#, 77
transitivity of ≈α by the direct approach,

41

160

transitivity of ≈α through ∼ω, 38
transitivity of ≈{A,C,AC}, 52
tuples, operations over, 44
tuples, properties the operators over, 46
unification-step, 88
valid quadruples, preservation, 76
weak alpha-equivalence, 37

substitution, 12
substitution action, first-order problem, 12
substitution action, first-order term, 12
substitution action, nominal term, 26
substitutions and permutations commute, 26
successful leaves, 84
suspension, nominal term, 22
swapping, 22
syntactic function symbol, 10
syntax, first-order, 10

term size, first-order, 11
term size, nominal, 23
term, first-order, 10
term, nominal, 23
term, syntactic first-order, 10
termination of ⇒(≈?A) and ⇒(≈?AC), 136
termination, first-order C-unification, 17
termination, first-order syntactic unification, 13
triple, nominal, 25
type classification, 13
type classification, first-order problems, 22
type, first-order C-unification, 18
type, nominal unification, 30

unification algorithm, first-order, 14
unification rules, equations, nominal, 27
unification rules, equations, nominal C, 73
unification rules, freshness constraints, nominal,

28
unification rules, freshness constraints, nominal

C, 74
unification, first-order, 10
unification, nominal, 25

unification, Robinson algorithm, 14
unification, syntactic first-order, 13
unitary (1), type, 13
upper bounds for ≈{A,C,AC}, 63, 68

valid quadruple, 76
variables, set of, 11
variables, set of, nominal constraints, 27
variables, set of, nominal triple, 27

weak α-equivalence rules, 36

zero (0), type, 13

161

	Dedicatória
	Agradecimentos
	Acknowledgements
	Epigraph
	Resumo
	Abstract
	Introduction
	Related work
	Contribution summary
	Organisation

	Background
	First-order unification
	First-order syntactic unification
	First-order A, C and AC-unification

	Nominal syntax
	Freshness and the nominal -equivalence
	A rule-based nominal unification algorithm

	Specification and Formalisation in Coq: the case of nominal equality-checking
	Soundness of using a weak -equivalence
	Soundness of without using
	Comparing the two formalisation approaches

	Nominal , A, C and AC equality-checking
	Operations over tuples
	Extension of the rules for
	Formalisation of the soundness of {A,C,AC}
	A naive implementation of the {A,C,AC} equality-checking algorithm
	Automatic code extraction
	Execution tests
	Upper bounds

	Nominal C-unification and matching
	Formalisation of nominal C-unification with protected variables
	Basic formalised notions and results on nominal C-unification
	Main formalised results for C-unification

	Nominal C-matching
	Basic notions on nominal C-matching and auxiliary formalised properties
	Main formalised results for nominal C-matching

	Nominal fixed point problems
	Generating combinatorial solutions via pseudo-cycles
	General solutions for C FP problems.
	Soundness and completeness of the generator
	Improvements in the generation of solutions

	Nominal A, C and AC-unification and matching
	Rules for nominal A, C and AC problems
	Solutions for nominal AC FP problems

	Conclusion and future work
	References
	Appendices
	

