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Atualmente, o fasor é a ferramenta matemática mais conhecida e aplicada em sistemas elétricos
de potência. Não obstante, ele apresenta desvantagens em condições de operação não-ideais (sis-
temas desequilibrados e/ou não lineares). Dessa forma, outras representações têm sido propostas
e investigadas, tais como vetorial, tensorial, quaterniônica e as que empregam álgebra geométrica.
Esta dissertação apresenta as vantagens e desvantagens da aplicação dos quatérnios em sistemas
trifásicos. Para tanto, as bases teóricas e matemáticas são primeiramente estabelecidas. Em
seguida, tensão e corrente, em condições equilibradas e desequilibradas, são analisadas geomet-
ricamente. Adicionalmente, uma versão quaterniônica das componentes simétricas no domínio
do tempo é proposta, provendo um espaço de estados linear para a estimação delas a partir das
amostras temporais. Ressalta-se que não existe, consoante o conhecimento atual dos autores, abor-
dagem similar no domínio fasorial. Uma impedância/admitância trifásica quaterniônica também é
definida para condições equilibradas e desequilibradas. A potência resultante dessa representação
é discutida e comparada com outras teorias de potência. A componente reativa proposta é superior
à resultante das vetoriais, devido ao fato de haver um significado claro atribuido à sua direção.
Ademais, devido à sua natureza algébrica, as potências i) ativa, ii) reativa e iii) desequilibrada são
representadas em eixos ortogonais. Assim, essa teoria pode ser empregada para o desenvolvimento
de compensadores ativos de potência. Por fim, implementações quaterniônica das transformadas
de Clarke e Park são estabelecidas. Em ambos os casos, são necessários menos elementos numéri-
cos em comparação com a respectiva versão matricial tradicional. No caso de Park, o método
proposto foi aproximadamente quatro vezes mais rápido. Em suma, esta dissertação provê os
fundamentos para o desenvolvimento dos quatérnios dentro do contexto de sistemas de potência,
assim como ressalta as suas possíveis aplicações.
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Despite being the most widely known tool for power systems engineers, phasors have some
disadvantages under non-ideal operating conditions. As a result, several researchers have been
investigating other mathematical tools, for example, vectors, tensors, quaternions and geometric
algebra. This dissertation focus on quaternions, and it presents their advantages in three-phase
systems. Although, definitions for voltage and current quaternion already exists in literature,
this dissertation provides a geometrical analysis of them. It is found that three phase voltage
and current can be described as rotational elements, and their derivatives and integrals can be
mapped to products, due to H calculus. Based on this property, an innovative concept of three-
phase impedance by means of quaternions is obtained. In order to cover the basic topics of an
electrical system analysis, a power theory built on the hamiltonian algebra is briefly discussed. It
is noteworthy that the power quaternion is redefined, yielding a direct relationship with the appli-
cation of phasors in a single phase system. The proposed instantaneous reactive power definition
is proved to be superior to those existing on literature, because an explanation for its direction
can be provided. This dissertation also suggests a novel quaternion time-domain symmetrical
components theory, which provides a linear state-space model for estimation of these components
based on instantaneous samples of voltage and/or current. A similar approach in the phasorial
domain is yet to be found. At last, a quaternion version of Clarke and Park transformation is
proposed. In both cases, the number of values needed are smaller than in the traditional matrix
implementation. For the Park transform, this novel method performed approximately four times
faster. In summary, this dissertation lay out the fundamentals for quaternion research in the field
of power system as well as highlights promising applications.
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Ŷ Admittance [f]
V(t) Quaternion voltage [V]
I(t) Quaternion current [A]
S(t) Quaternion power [VA]
Z Quaternion impedance [Ω]
Y Quaternion admittance [f]
ααα Quaternion voltage locus major semi-axis direction
βββ Quaternion voltage locus minor semi-axis direction
|X| Quaternion norm of quantity “X”
X · Y Inner product between X and Y vectors
X × Y Cross product between X and Y vectors
vec() Operation of mapping a quaternion into a four dimensional

column vector

Subscripts

abc three-phase quantity
CBA inverse phase sequence
[k] k-th variable sample

xi



Superscript

ˆ Complex number (represents a phasor if applied to voltage or current)
∗ Conjugate
−1 Inverse
~ Vectorial part of a quaternion
T Vector transposition
H hermitian operation (transposition followed by conjugation)

Abbreviations

KVL Kirchhoff Voltage Law
RLC Circuit containing a resistor, an inductor and a capacitor
RMS Root Mean Square
QVL Quaternion voltage locus
QCL Quaternion current locus



Chapter 1

Introduction

1.1 Overview

According to Fourier’s law, any function can be described sine and cosine series. So, in electrical
systems, voltages and currents can be expressed, without loss of generality, as a linear combination
of sinusoidal functions. Power is defined as the amount of energy per time consumed or provided.
In a single phase circuit, instantaneous power is given by the product of instantaneous voltage
and current. This product yields, for sinusoidal systems, one unidirectional and one alternating
term, as shown in (1.1).

p(t) = P [1 + cos (2wt)] +Q sin (2wt) (1.1)

The unidirectional term (P ) is the active power, and it is equal to the load energy consumption,
or source energy supplied. The alternating term (Q) represents an exchange between source and
load, and it is named reactive power [1].

Working with voltages and currents in the time domain requires dealing with sinusoidal func-
tions. This aspect increases the complexity of calculations. For this reason, phasors were in-
troduced for steady-state studies. With this tool, derivatives and integrals are computed as a
complex number times a phasor. Additionally, trigonometric products are mapped into algebraic
ones between real numbers (i.e. the magnitudes of each phasor) followed by their angles sum.
These properties simplifies mathematical operations. As a result, phasors advent shaped the
development of the actual power system scenario. Nowadays, they are applied to almost every
problem and have become the most widely known tool for electrical engineers. However, it has
some drawbacks.

Although they represent adequately balanced systems under sinusoidal conditions, Steinmetz
noticed, in 1892, that phasorial power theory is not applicable to an arc bulb, which is a type of
lamp based on electrical discharges. The apparent power (S) squared was not equal to the sum
of the squares of active (P ) and reactive (Q) powers. Mathematically, what Steinmetz found out
was that in the mentioned case S2 6= P 2 + Q2 [2]. In this case specifically, harmonics originated
by the arc bulb were responsible for the inequality [3].
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In a three phase circuit, phasor limitations are also present under ideal conditions. Accordingly
to [3], the usual comprehension of reactive power, as an alternating flux of energy between load
and source, is not applicable for three phase systems. In fact, the physical meaning of three phase
reactive power is not yet well established.

Under unbalanced situations, power is also not yet fully comprehended and definitions are still
in discussion [3–7]. In a three phase unbalanced load consisting purely of resistors connected in
wye, instantaneous power is not constant. Actually, it has an oscillating nature [6, 7]. Moreover,
phasorial power in this case can be equal to the one resulting from a balanced case [3]. Phasorial
components, hence, fail to i) represent alternating power originated by unbalanced loads, and ii)
provide a physical meaning for the reactive quantity. If harmonics are considered simultaneously
with unbalance, then the effects of both phenomena are combined. Furthermore, since harmonics
are not linear, the superposition principle does not apply. Therefore, the resulting effects are not
the sum of the individual ones. So, phasors drawbacks becomes even more tangible.

These facts drew the attention of several researchers. As a result, power phenomenon has
been investigated considering ideal (linear time invariant systems with balanced and sinusoidal
voltages) and non ideal conditions [2–4,8–28]. Notwithstanding, a consensus of the most adequate
theory has not yet been reached. However, it is possible to observe that many works dedicated to
this issue have been proposed in the time domain [8,9,17–28]. This is a setback, because phasors
were introduced in order to simplify mathematical operations by working in the frequency. So, a
mathematical tool that operates in the time domain and that preserves the phasors advantages
previously discussed might be the most adequate choice for power systems analysis.

It is worth emphasising that besides poorly representing power, phasors are also limited to a
per phase approach. In other words, they are capable of representing only one phase at a time. In
a three-phase system, phases are mutually coupled [3]. Decoupling techniques such as Fortescue,
Clarke, Park or Karrenbauer transformations may be employed. Some phenomena, for example
harmonics, may still affect all of the decoupled voltages and currents. As a result, signal processing
needs to be repeated for each phase, and it may become unfeasible due to its computational burden.
A solution found was to make use of Clarke transformation to come up with a complex valued
signal to represent the system. Signal’s real part is equal to the alpha component and its imaginary
to the beta component. With this complex signal, frequency estimation algorithms such as the
minimum variance distortionless response (MVDR), the multiple signal classification (MUSIC) and
the complex Kalman Filter might be applied [29–32]. These approaches, nevertheless, have been
proved non-optimal in unbalanced conditions because the zero sequence is not considered, even
though it may be hazardous for transformers [33]. This highlights i) another phasor limitation,
and ii) the need for alternative approaches that are capable to deal with all phases simultaneously.

In the search for alternative representations, several mathematical tools - e.g. vectors, tensors,
geometric algebra and quaternions - have been applied to electric power system analysis and mod-
elling in order to better represent and solve power quality (PQ) problems that were traditionally
addressed via phasors [8,9,13,16–28,33–41]. Among these, quaternions (also called hypercomplex
elements) are slowly regaining attention due to i) the related mathematical advents (H calculus,
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for instance), and ii) their intensified use in several other signal processing contexts [33, 42–45].
They are capable of both representing quantities in the time domain and preserving phasors ad-
vantages [41]. Hence, they may be an adequate framework for power theories. Although they
have been applied in the power systems context, there is a literature lack regarding a complete
quaternion electrical theory.

1.2 State of the Art

Literature related to the applications of quaternions in electrical power system is still flourish-
ing. In this section, quaternion development will be briefly presented and discussed, followed by
its applications on the specified context.

Quaternions were discovered by William Rowan Hamilton in 1843. His objective was to rotate
elements in the three dimensional (R3) space via products in a similar way complex numbers do
in R2 [46]. A first approach was to use a set of three real numbers, but dividing two sets was
not well defined. A solution found was to employ four elements, in which three would act as
complex numbers representing the R3 space and one auxiliary real number. As a consequence the
non-commutative algebra of quaternions was established forming a closed mathematical group,
i.e. with operations well defined. With these definitions, he was able to execute any rotation and
scaling with products, as it was his primary objective.

According to [35], the pioneer in applying quaternions to electrical engineering was James
Clerk Maxwell, in 1865, in his electricity and magnetism treatise [47]. He wrote the equations for
the electric and magnetic fields in each axis separately and did likewise for the forces involved,
obtaining a total of 20 equations. With quaternion operators, he managed to group the sets of
three equations - one for each axis - into sets of single ones. As a result, he was able to write
general expressions that correctly represents the effects of such phenomena on all of the three axes.
However, due to the advent of vectorial calculus, his electromagnetic theory was rewritten by J.
Willard Gibbs [48] and Oliver Heaviside [49] into the known form, thereupon burying quaternion
usage in this context.

Although they remained little explored for a while, their usage has recently been rescued in
several knowledge areas. For example, in the study of rigid bodies, they are being employed for
rotations instead of matrices for the following reasons [50]: i) their representation is more compact,
using the only four necessary elements (two for the axis of rotation, one for the scaling factor and
one for the angle), instead of nine; ii) normalization is computationally less expensive; and iii)
mathematical singularities (such as the gimbal lock problem) are avoided. If rotations matrices
are used in another field, then these same arguments applies.

Nowadays, quaternions are regaining attention in the field of power systems. First, its mathe-
matical structure allows to operate the three phases simultaneously [6,41]. Phasors applies a single
complex number for representing one phase. With quaternions, three complex numbers are used,
one for each phase. Second, the advent of H calculus is causing the development of quaternion-
based algorithms that have been proved to be computationally efficient and accurate [42–45].
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Third, several theories are being developed in the time domain, so a tool that operates in this
domain is also desirable. Thus, the possibility of applying these algorithms and dealing with
all phases of the system simultaneously and in the time domain has been motivating quaternion
usage.

In 1996, [51] proposed the representation of instantaneous power via an algebraic framework
that is related to “Hamilton operators” (as stated by the authors)1. With some mathematical
manipulations, they were able to decompose current into “real” and “imaginary” components
2. The “real” current was defined as the responsible only for the active instantaneous power.
The “imaginary” part was found to be related to non active power. Authors showed that the
decomposition generates the same currents as those resulting of Willems’ power theory presented
in [25]. The authors also proposed a three-phase time varying impedance and admittance. This
last definition, nevertheless, was not explored in their study.

In 2012, [34] presented how linear transformations applied to an induction motor can be
achieved in the quaternion domain . For this purpose, he presented the equations that are com-
mom in electrical machine analysis. Then, using the quaternion representation via Pauli spin
matrices, he proposed a quaternion transformation in terms of four coefficients, which he was able
to compute after some algebraic effort. According to the author, the proposed method has the
advantage of using only 4 parameters instead of the 9 required in the traditional way.

In 2013 and 2016, [35] and [40] proposed a quaternion single phase representation in the
references. Voltage and current were defined as hypercomplex elements. The author applied the
Kirchhoff voltage law (KVL) to a RLC series circuit and the resulting time domain equation was
rewritten in the form of quaternions. For this purpose, current was defined on one axis and its
derivative and integral on another. Afterwards, he computed the root mean square (RMS) value
of the equation. Therefore, a relation between voltage and current was obtained, and a quaternion
impedance was defined as the quaternion voltage RMS divided by the scalar current RMS value.
A power quaternion equation, similar to phasors, was also proposed. The article showed how
quaternions can be used for representing and analysing a single phase circuit. However, the math
involved is more complex and the computational effort is bigger. So, the method did not present
any advantage when compared to phasors.

In 2014, [37] and [36] employed quaternions for the control of power factor and harmonics in
the project of an active power filter (APF). In order to do so, the authors proposed rewriting
instantaneous three phase voltages and currents in the quaternion basis. Power was defined as
voltage times current. Consequently, it was possible to identify, compute and compensate inactive
power. The designed APF was tested for an unbalanced non-linear load. It reduced the total
harmonic distortion (THD) from 37.45% to 8.24%. According to the authors, the implemented
strategy did not require high performance hardware and was approximately ten times faster than
those strategies based on the Akagi-Nabae pq-theory, proposed in [8].

1Although the authors did not employ the word quaternion in their work, the mathematical definitions and
operations employed are equivalent to the quaternion algebra.

2The nomenclature “real” and “imaginary” used here is the same employed by the authors. Hence they are used
with quotations marks. These expressions are not to be confused with complex numbers components.
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In [39], its is presented some more theoretical details related to the articles [36,37]. Additional
properties of the compensating current, which when added to the original ones results in balanced
and sinusoidal waveforms, were provided. More practical examples of the implemented filter were
also presented, corroborating the former conclusions.

In 2015, [38] proposed a quaternion frequency estimator for three-phase systems with the
objective of estimating the fundamental frequency considering noisy, unbalanced and distorted
situations. Applying H calculus, a discrete state space model was developed and applied in
the quaternion extended Kalman filter (QEKF) proposed in [44]. Using voltage samples, the
estimator presented a stable behaviour and was able to correctly track the fundamental frequency.
The authors employed synthetic and real-world data in order to evaluate the estimator. Voltage
unbalance, and frequency rise and decay conditions were investigated. The estimator presented
lower steady-state errors and a better dynamic perfomance than the conventional complex linear
ones based on Clarke transformation. Its overshoot and settling time were smaller. The authors
did not consider, however, harmonics effects, nor did they model the zero sequence component.

In 2017, [6] compared phasorial, tensorial and quaternion representation for power systems.
The author concluded that phasors are limited to a steady-state representation and to a per phase
analysis. On the other hand, tensors were able to represent instantaneous voltage, current and
power. Quaternions were shown to have the advantages of both of the previous tools, and to
have a more compact representation than tensors. Additionally, a quaternion theory for balanced
three-phase circuits was developed. Results were later augmented in [41].

Although voltage, current and power had been defined as hyper elements in [37], the resulting
properties from these definitions were not yet explored. In this sense, [41] presented a quater-
nion three phase circuit analysis as an extension of [6]. Voltage and current were shown to be
rotating elements in the quaternion domain. So, it was proposed to represent them via rotation
formula. Thus, derivatives and integrals were rewritten as products, and a three phase quater-
nion impedance definition was proposed and explored. A novel power quaternion, that is directly
related to the load reactance, was also proposed. This provided a physical to the reactive quan-
tity direction which lacks in vectorial theories. A complete analogy between quaternions in three
phase circuit and phasors in single phase circuits was achieved. The authors concluded that the
proposed method i) preserves the instantaneous, as well as steady-state information, ii) allows to
operate three phases simultaneously rather than one at a time, and iii) the formulae are identical
to the phasorial ones in a single phase circuit.

In 2018, [33] presented a quaternion valued signal for three phase voltage harmonics estimation.
They proposed rewriting the balanced quaternion voltage harmonics in terms of their positive,
negative and zero sequences. After noticing that all terms had an exponential associated with a
specific axis, they proposed substituting the sweeping vector (which is a complex exponential) by
one with the axis found (resulting in a quaternion exponential). With this new sweeping vector,
the authors applied the MVDR and the MUSIC algorithms for harmonics estimation. Results were
compared to the ones obtained by Clarke-based algorithms. The proposed method outperformed
the others in the sense that it was able to detect all harmonics, including zero sequence harmonics.
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Although voltage was proposed in terms of symmetrical components, the expressions are simply
supposed. There was no proof given, nor their relation to Fortescue’s definitions were shown. The
authors also did not consider the possibility of having unbalance simultaneously to harmonics.

In synthesis, quaternions have been used for i) instantaneous power representation [51], ii)
perform linear transformations of induction motor models [34], iii) analysis of single phase systems
(computation of current and power for a given circuit) [35], iv) design of an active power filter [36,
37], v) estimating electrical frequency [38], vi) computing currents and representing a three-phase
system [6, 41], and vii) harmonics estimation [33]. Although [38] decomposed voltage quaternion
into positive and negative sequences, there was no approach to the zero component. On the
other hand, [33] included the zero sequence for a balanced system with harmonics. However, the
development of the decomposition was not presented, nor the authors commented on the relation
between their definition and Fortescue’s. So, a thorough study is needed. It is also noteworthy that
a three-phase impedance for non-ideal conditions is still lacking. The same applies to an equivalent
version of Clarke and Park transformations, which are typical on power systems analysis.

On the basis of the foregoing, quaternion applications in power systems needs further investi-
gation, as evidenced by the literature. Hence, the main motivations for the development of this
dissertation are i) the topicality, ii) the lack of systematic studies in this area, and iii) the pos-
sibility of laying the mathematical basis for the usage of quaternion-based algorithms in power
systems.

1.3 Objectives

The main objective of this dissertation is to provide a novel three phase circuit theory based on
Hamilton non commutative algebra. For this purpose, it is expected to i) define quaternion voltage,
current, “impedance“ 3 (passive elements in delta or wye and transmission lines with and without
electrical coupling) and power in the time domain; ii) propose a quaternion version for symmetrical
components; iii) provide a quaternion implementation of Clarke and Park transformations; and
iv) indicate possible applications in up to date researching problems.

This dissertation is expected to lay a theoretical foundation, that will support future devel-
opment of quaternion-based solutions for power systems. Despite the absence of this foundation
in the literature, a few researchers managed to apply this tool. So, with this work, it is ex-
pected to boost the development of such solutions and, hopefully, to provide better power quality
world-wide.

1.4 Contributions

The contributions of this dissertation are divided into two groups:
3The concept of three phase quaternion impedance is not to be confused with the phasorial one. Although it

also represents the load voltage and current relationship, the quaternion impedance is defined in the time domain,
rather than the frequency domain, and it represents all phases elements of the load.

6



1. A novel three-phase circuit theory based on quaternions is proposed and established. Voltage,
current and power definitions provided in [21,33,34,36,38,39] are systematically investigated
and related to other theories whenever is possible. A quaternion version of Fortescue’s the-
ory is proposed in the time domain. Three-phase quaternion impedance and admittance are
generalized for both balanced and unbalanced conditions. With exception to the symmet-
rical components theory developed, these results were published in the 18th International
Conference of Harmonics and Quality of Power [41].

2. A quaternion implementation of Clarke and of Park transformations based on rotation for-
mula is provided. Both are proven to be storage efficient, and the Park version is shown to
perform better than its classic matricial transformation.

1.5 Dissertation Organization

This dissertation is organised into 6 chapters.

Chapter 1 presents the need for alternative mathematical tools in order to better represent and
operate power systems. Phasors main advantages and limitations are discussed. In this context,
quaternion is suggested as a feasible option that still needs further investigation. Next, literature
regarding its applications in power systems is revisited. Finally, the dissertation objectives and
its organization are provided.

Chapter 2 provides the necessary theoretical foundations and the methodology adopted in this
work. Quaternion mathematical definitions as well as its properties are presented. The relation
between real matrices and quaternions is discussed. Additionally, methods to alternate from
one framework to the other are investigated. At last, the methods for the theory development are
presented along with those applied for the simulations and for comparing the developed algorithms.

Chapter 3 presents the quaternion definition for time-domain voltage and current. A geomet-
rical approach, based on a three-dimensional hypercomplex space, is evaluated and the advantages
and disadvantages of such representation are discussed.

Chapter 4 proposes a novel circuit theory. A novel quaternion symmetrical components equiv-
alent to Fortescue’s [52] is developed. A generalized three-phase quaternion impedance and ad-
mittance definitions are shown for passive loads and transmission lines with and without electrical
coupling for both balanced and unbalanced conditions. Next, the electrical power defined in the
H space is addressed with focus on its interpretation. Its relation to other power theories is dis-
cussed. At last, a geometrical interpretation of Clarke and Park transformations based on [53]
are presented. Their implementations via quaternions are proposed and compared against their
classical version.

In chapter 6, conclusions and guidelines for future research are provided.
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Chapter 2

Theoretical Background
In this chapter, the theoretical background neces-
sary for the understanding of this dissertation is
provided along with the methods applied. First,
quaternion definitions are examined. Then, the
existing link between real matrices and quater-
nions is presented along with a technique to
change from one type of representation to the
other. At last, the methods employed for develop-
ing and validating the theory hereby proposed are
presented.

2.1 Quaternion Definitions

Quaternions are a system of numbers that composes the Hamiltonian (or the hypercomplex)
space denoted by H and named after the mathematician William Rowan Hamilton. He discovered
quaternions in 1843 in the search to represent three dimensional (R3) elements in a similar way R2

elements can be represented by complex numbers. In other words, he wanted to rotate elements
by means of products [46]. A first approach was to use sets of three real numbers, but division was
not well defined. A solution found was to employ three complex units representing the R3 space
and one auxiliary real number. As a consequence the non-commutative algebra of quaternions
was established forming a closed mathematical group. With these definitions, it was possible to
execute any rotation and scaling with products.

2.1.1 The Standard Quadranomial Form

A quaternion (q) is defined by a set of four real numbers, e.g. {a0, a1, a2, a3}. The standard
quadranomial form for q is

a = a0 + a1x + a2y + a3z, (2.1)

in which x,y and z are the H basis and are commonly used to denote individual axes of a three
dimensional reference frame.
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Figure 2.1: Example of the purely vectorial quaternion a representation.

Similarly to complex numbers, quaternions can be decomposed in their real and vectorial
(instead of imaginary) parts as

Re(a) = a0 (2.2)

~a = a1x + a2y + a3z. (2.3)

If its real part is null, the quaternion is said to be purely vectorial, and it can be geometrically
represented. Actually, the real part usually act as an auxiliary element to perform rotations,
and purely vectorial quaternions are employed for representing three-dimensional quantities. An
example is provided in Figure 2.1. In this dissertation, quaternions are denoted by bold letters. An
arrow above them denotes their vectorial part (which is also a quaternion, but a purely vectorial
one).

2.1.2 Sum and Subtraction

Considering two arbitrary quaternions a and b given by a = a0 + a1x + a2y + a3z and
b = b0 + b1x + b2y + b3z, their sum and subtraction are operated term by term,

a + b = (a0 + b0) + (a1 + b1)x + (a2 + b2)y + (a3 + b3) z (2.4)

a − b = (a0 − b0) + (a1 − b1)x + (a2 − b2)y + (a3 − b3) z. (2.5)

These operations are associative, i.e.

a + (b + c) = (a + b) + c (2.6)

a − (b − c) = (a − b)− c. (2.7)

Similarly to real numbers, addition is commutative and subtraction is not, hence the following
equalities

a + b = b + a (2.8)

a − b = − (b − a) . (2.9)
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2.1.3 Product

The main obstacle for the quaternion theory advent was division and product operations.
Hamilton solved this problem by using four elements, in which three would act as complex numbers
and one as a real number. This idea is present in the governing quaternion equation

x2 = y2 = z2 = xyz = −1 (2.10)

Hamilton originally employed the letters i, j and k to represent the orthonormal basis. In this
dissertation, in order to avoid nomenclature ambiguity, i will be used for current in the time
domain and the quaternion basis will be denoted by x, y, and z.

Hamilton derived all other product rules from (2.10). As a result, 16 rules were established.
They are summarized in Table 2.1, in which the first column denotes the left multiplier and the
first row the right multiplier since H is non-commutative.

Table 2.1: Quaternion Product Rules. First column denotes the left multiplier and the first row
the right multiplier.

Product r x y z
r r2 rx ry rz
x rx −1 z −y
y ry −z −1 x
z rz y −x −1

An alternative method for multiplying two quaternions is based on the inner and on the cross
product. The former is computed as

~a · ~b = a1b1 + a2b2 + a3b3 (2.11)

and the latter is given by the following determinant

~a × ~b =

∣∣∣∣∣∣∣
x y z
a1 a2 a3

b1 b2 b3

∣∣∣∣∣∣∣ (2.12)

or equivalently
~a × ~b = (a2b3 − a3b2)x + (a3b1 − a1b3)y + (a1b2 − a2b1)z. (2.13)

The cross product can also be computed following the cyclic product rule illustrated in Figure
2.2. Clockwise products (in the same direction of the arrows) are positive and counter-clockwise
are negative.

Combining the inner and outer products, quaternion multiplication is computed as

ab = Re(a)Re(b)− ~a · ~b︸ ︷︷ ︸
Re(ab)

+Re(a)~b + ~aRe(b) + ~a × ~b︸ ︷︷ ︸
−→
ab

. (2.14)
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Figure 2.2: Cross product cyclic rule.

Substituting (2.11) and (2.13) into (2.14), yields

ab =(a0b0 − a1b1 − a2b2 − a3b3)+ (2.15)

x (a0b1 + a1b0 + a2b3 − a3b2)+

y (a0b2 − a1b3 + a2b0 + a3b1)+

z (a0b3 + a1b2 − a2b1 + a3b0)

It is worth mentioning that quaternion product is non commutative because of the cross
product, i.e.

~a × ~b = −~b × ~a. (2.16)

But associative properties remains. So, the computation order does not change the result

a(bc) = (ab) c. (2.17)

2.1.4 Norm

The quaternion norm (length, absolute value or magnitude) is a real number (a scalar) defined
according to the Euclidean norm. It is given by

|a| =
√
a20 + a21 + a22 + a23. (2.18)

This definition may differ from author to author, some of them consider the square root employed
in this dissertation [?, 35, 38,40,43,44], while others do not [21,36,39].

2.1.5 Conjugate

Complex number conjugate changes the signal of the imaginary part. In the case of quater-
nions, the vectorial part that is changed. It is denoted as

a∗ = Re(a)− ~a. (2.19)

It is noteworthy that if a is purely vectorial, then conjugating is equivalent to multiplying it by
(−1)

a∗ = −~a = −a. (2.20)
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It is related to the norm by
aa∗ = a∗a = |a|2. (2.21)

Conjugation can be employed for extracting the real and the vectorial part of a quaternion.
Its real part is obtained by the average

Re (a) = a + a∗

2
(2.22)

and the vectorial part by the difference

~a =
a − a∗

2
. (2.23)

Taking into account conjugate and product operations, it is possible to prove that conjugation
inverts the product order in a similar way that the transposition of matrices invert the order in
which they are operated.

Quaternion: (ab)∗ = b∗a∗ (2.24)

Matrix: (AB)T = BTAT (2.25)

2.1.6 Inverse

Division between any two mathematical elements can be defined as the product between the
first and the second’s inverse. Thus, defining the quaternion inverse is equivalent to defining its
division operation. Any element times its inverse should be equal to one

aa−1 = 1. (2.26)

If both sides of (2.26) are left multiplied by a∗ and property (2.21) is applied, then

a∗aa−1 = a∗ (2.27)

|a|2a−1 = a∗. (2.28)

Since |a|2 is a real number (a scalar), it is possible to divide the former equation by it. Hence,
quaternion inverse is computed as

a−1 =
a∗

|a|2 . (2.29)

Similarly to the conjugation, taking the inverse of a quaternion product changes the operating
order. In other words,

(ab)−1 =
(ab)∗

|ab|2 (2.30)

=
b∗a∗

|a|2|b|2 (2.31)

=
b∗

|b|2
a∗

|a|2 (2.32)

= b−1a−1. (2.33)
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2.1.7 The Polar Form

Like complex numbers, a quaternion (a) can also be represented in a polar form, given by

a = |a|edθ = |a| (cos (θ) + d sin (θ)) , (2.34)

in which d is a purely vectorial quaternion with unitary norm and θ is the angle between the real
axis and d.

Conjugating in the polar form is achieved by changing the sign of d or θ.

2.1.8 Rotation Quaternion

As aforementioned, quaternions are employed for representing elements in a three dimensional
reference frame. One of Hamilton’s objectives was to rotate and scale elements in the R3. If one
attempts to use any method based on transformation matrices, he will find that at least nine
elements are needed during computation, when actually only four - i.e. two for specifying the
axis, one for the scale factor and another for the angle - are needed. So, in terms of memory,
quaternions are more effective because only the necessary number of information is stored.

In the H domain, clockwise rotation 1 of an element around an axis d by an angle θr is
computed as

arot = RaR∗ (2.35)

in which a is the original element, arot is the rotated one and R is the rotation quaternion that is
given by

R = cos
(
θr
2

)
+ d sin

(
θr
2

)
= ed θr

2 . (2.36)

It is noteworthy that if the quaternion is rotated along a perpendicular axis, (2.35) can be
simplified into

arot = edθra. (2.37)

2.1.9 Derivatives and Integrals

In this dissertation, H calculus will be applied in relation to a scalar. In other words, only
quaternion derivative and integrals with respect to a real number will be discussed. Information
regarding these operations with respect to another quaternion can be found in [43]. Derivatives
and integrals are applied term by term. If a(t) = a0(t) + a1(t)x + a2(t)y + a3(t)z, then

da(t)
dt

=
da0(t)

dt
+

da1(t)

dt
x +

da2(t)

dt
y +

da3(t)

dt
z (2.38)∫

a(t)dt =
∫

a0(t)dt+

(∫
a1(t)dt

)
x +

(∫
a2(t)dt

)
y +

(∫
a3(t)dt

)
z. (2.39)

1A rotation is considered as clockwise, if an observer face to face with the axis of rotation observes the elements
being rotated clockwise. Face to face, in this context, means that in this position the axis is pointing out to him.
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It is worth mentioning that all calculus rules, such as the chain rule, applies normally.

It is noteworthy that derivatives of quaternions describing circular motions are equal to mul-
tiplying them by their angular momentum. So, if such a quaternion is represented in the polar
form as

a = |a|enθ (2.40)

and its angle changes over time while its norm is held constant, then

da(t)
dt

= ndθ

dt
a. (2.41)

More specifically, if the angle changes at a constant rate, it can be rewritten in terms of an angular
frequency (w)

θ = wt (2.42)

then its derivative is
da(t)
dt

= nwa (2.43)

and its integral is ∫
a(t)dt = −n 1

w
a. (2.44)

A quaternion moving circularly over time around a perpendicular axis n and with a constant
magnitude and constant angular speed (w) can be expressed accordingly to (2.37) as

V(t) = enwtVt0, (2.45)

in which Vt0 is the quaternion value at the time instant equal to zero. Therefore, it is possible to
demonstrate that

dV(t)

dt
= nwV(t) (2.46)∫

V(t)dt = −n 1

w
V(t). (2.47)

In other words, the quaternion derivative and integral are mapped into a product.

2.2 Matrices and Quaternions

In this section the link between quaternion and matrix representations will be discussed. Since
quaternions are usually employed for three dimensional representation, consider vec(·) as a one-
by-one mapping from H to R4. Mathematically,

vec(a) =
[
a0 a1 a2 a3

]T
, (2.48)

i.e. the vec(·) operator takes each quaternion coefficient and stacks them in a vector. The inverse
operation maps from the R4 back to H and is given by

vec−1

([
a0 a1 a2 a3

]T)
= a0 + a1x + a2y + a3z (2.49)
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With this mapping, a quaternion product can be rewritten in terms of a matricial product via

the Hamilton operators
+
H (·) and

−
H (·)

vec (ab) =
+
H (a) vec (b) =

−
H (b) vec (a) . (2.50)

Manipulating (2.15), Hamilton operators are found to be

+
H (a) =


a0 −a1 −a2 −a3

a1 a0 −a3 a2

a2 a3 a0 −a1

a3 −a2 a1 a0

 (2.51)

−
H (b) =


b0 −b1 −b2 −b3

b1 b0 b3 −b2

b2 −b3 b0 b1

b3 b2 −b1 b0

 . (2.52)

It is noteworthy that
+
H and

−
H are anti-symmetrical matrices with non-zero diagonal. There-

fore, any transformation given by a matrix in this format can be mapped into a quaternion
product. Furthermore, with these operators, any quaternion expression can be rewritten in terms
of matrices.

The mapping from matrices to quaternion, however, is not as straightforward. Consider the
generalized condition where the matricial equality

p0

p1

p2

p3


︸ ︷︷ ︸
vec(p)

=


M00 M01 M02 M03

M10 M11 M12 M13

M20 M21 M22 M23

M30 M31 M32 M33


︸ ︷︷ ︸

M


h0

h1

h2

h3


︸ ︷︷ ︸

vec(h)

(2.53)

needs to be mapped into H.

One solution is to map each element from the matrix to a quaternion product. This can be
achieved using the property that the real part of hx is equal to −h1. Applying it in conjunction
with (2.22) yields

h1 = −(hx) + (hx)∗

2
. (2.54)

This result can be generalized for any of h elements, as

hk =
hδδδk + δδδ∗kh∗

2
,∀k ∈ {0, 1, 2, 3} (2.55)

in which

δδδk =



1, if k = 0

−x, if k = 1

−y, if k = 2

−z, if k = 3

(2.56)
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The first row of (2.53) can be rewritten as

p0 =
3∑

k=0

M0k
hδδδk + δδδ∗kh∗

2
. (2.57)

Since p = p0 + p1x + p2y + p3z, then

p =

3∑
k=0

[
3∑

l=0

Mkl
hδδδk + δδδ∗kh∗

2

]
δδδ∗k. (2.58)

After performing this mapping, further algebraic simplification can be achieved if necessary.

A special case worthy of note is the matrix M ∈ R3x3 representing a rotation. In this case the
matricial mapping to the quaternion domain is performed by the computation of the axis and the
angle of rotation. The axis (d) is invariant to the rotation, so in the matricial form

Md = d, (2.59)

(M − I) d = 0 (2.60)

Therefore d is the eigenvector of M associated with the eigenvalue of 1.

The angle of rotation (θr) can be computed from the trace (i.e. the sum of the diagonal
elements) of the rotation matrix as

Tr (M) = 1 + 2 cos (θr) (2.61)

θr = acos

(
Tr (M)− 1

2

)
. (2.62)

With the axis and angle, the quaternion implementation is given by (2.35).

Example 1 [Mapping to a real matrix product the quaternion equality p = RhR−1, in which R
is given in (2.36) and h = h0 + h1x + h2y + h3z.]
Applying the Hamilton operators, the mapping gives

vec (p) =
+
H (R)

−
H (R∗) vec (h) = Rvec (h)

=


R0 −R1 −R2 −R3

R1 R0 −R3 R2

R2 R3 R0 −R1

R3 −R2 R1 R0




R0 −(−R1) −(−R2) −(−R3)

(−R1) R0 (−R3) −(−R2)

(−R2) −(−R3) R0 (−R1)

(−R3) (−R2) −(−R1) R0

 vec (h)

=


|R|2 0 0 0

0 R2
0 +R2

1 −R2
2 −R2

3 −2(R0R3 −R1R2) 2(R0R2 −R3R1)

0 2(R0R3 −R1R2) R2
0 −R2

1 +R2
2 −R2

3 −2(R0R1 −R2R3)

0 −2(R0R2 −R3R1) 2(R0R1 −R2R3) R2
0 −R2

1 −R2
2 +R2

3

 vec (h)

It is noteworthy that the lower matrix 3x3 indicated by the dashed lines is in the format of a
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rotation matrix. Its trace, which is given by

Tr
(
M [3x3]

)
= 3R2

0 −
(
R2

1 +R2
2 +R2

3

)
= 3 cos2

(
θr
2

)
− |d|2 sin2

(
θr
2

)
= 3 cos2

(
θr
2

)
− sin2

(
θr
2

)

= 2

cos2
(
θr
2

)
︸ ︷︷ ︸

1+cos(θr)
2

+ cos2
(
θr
2

)
− sin2

(
θr
2

)
︸ ︷︷ ︸

cos(θr)

= 1 + 2cos (θr) ,

is equivalent to (2.61), as it was expected because the given quaternion equality is the rotation
formula.

The theory discussed in this chapter is sufficient to deal with most of the challenges associated
with Hamiltonian algebra. In the following chapter, the electrical circuit theory proposed in this
dissertation is presented.
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Chapter 3

Voltage and Current: A Geometrical
Analysis

In this chapter quaternion voltage and current
are presented. Their geometrical loci in a com-
plete period are investigated. Their time deriva-
tive and integral are provided. At last, the related
geometrical quantities and how they are related
to the unbalance are discussed via two examples.
This geometrical approach is also shown to be ap-
plicable to any periodic and three-phase quantity.

3.1 Balanced Conditions

According to [36,38], three-phase quaternion voltage is denoted by

V(t) = va(t)x + vb(t)y + vc(t)z, (3.1)

in which

va(t) =
√
2Va cos(wt) (3.2)

vb(t) =
√
2Vb cos(wt− 120° + φb) (3.3)

vc(t) =
√
2Vc cos(wt+ 120° + φc) (3.4)

are instantaneous voltages with reference to a neutral point, Va, Vb, Vc are the RMS value for
phases A, B and C, respectively, w is the electrical frequency in rad/s and φb and φc are phase
displacements. If voltages are balanced, then φb = φc = 0 and Va = Vb = Vc.

Analogously, current is denoted by

I(t) = ia(t)x + ib(t)y + ic(t)z, (3.5)

in which ia(t), ib(t) and ic(t) refer to line currents flowing through phases a, b and c, respectively.

19



If voltage and current measurements are digital, i.e. constituted of samples, then the contin-
uous time is substituted by the discrete variable

t[k] = kTS , (3.6)

in which TS is the time sampling interval and k is the sample number. In this condition, voltage
for phase “A” is

va[k] =
√
2Va cos(wkTS). (3.7)

In fact, any quantity can be rewritten by replacing t with kTS . In this dissertation, variables
continuous form is adopted. However, they can be easily mapped into the digital domain by
applying (3.6). So, the entire theory is applicable for sampled values of either voltage or current.

The theory hereby developed applies actually to any periodic three-phase quantity. A partic-
ular case that might be of interest is the electromagnetic flux, because it is responsible for the
functioning of electrical machines. Usually, the fluxes obtained in induction motors are coplanar
and spaced of 120°. If they were to be perpendicular to other, a different electrical machine with
the stator windings displayed in three orthogonal planes in the three-dimensional space should be
built. This geometrical investigation can provide further insights on whether or not such machine
would work and if it could actually be better than the actual ones.

It is worth mentioning that V(t) and I(t) are purely vectorial. Thus, it is possible to fully
represent them graphically in a three dimensional reference frame. Since these quantities are
time varying and periodic, their graphical representation is also time varying and periodic. The
set of points resulting from the trajectory described by the end of the quaternion voltage in a
complete period is named the quaternion voltage locus (QVL), and it is a closed curve. Similarly,
the current trajectory is defined as the quaternion current locus (QCL). Figure 3.1 (in which n
is the quaternion orthogonal to the voltage plane) shows the concept of the quaternion voltage
behaviour and its locus.

A time varying visualization of the quaternion voltage is given by Figure 3.2. In the digital
version of this dissertation, it is an animated figure that can be visualized using an appropriate
PDF reader, e.g. Adobe Acrobat Reader. In the printed version, it is constituted of six different
frames that gives an overall ideia of the dynamics involved.

Following this concept, steady-state1 three phase voltages (or currents 2) can be fully described
in terms of the ellipse plane direction, major and minor semi-axis magnitude and the direction of
one of those axis (since they are perpendicular to each other). Therefore, it seems that in this
alternative representation four quantities are needed to represent the three phase voltages. In
the phasorial domain, five real quantities are required: three magnitudes and two angles (since
one is the angular reference). Comparing these two representations, a mislead conclusion is that
there is a gain in the quaternion approach, in terms of reducing the required quantities needed
to represent the system voltages. It is worth mentioning that the ellipse plane and its semi-axes

1The QVL is a steady-state representation because each voltage period corresponds to a QVL.
2In this and the following two sections, voltages are considered during the development. But the developed

theory is also applicable to currents
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Figure 3.1: General concept of a balanced quaternion voltage and its locus.

Figure 3.2: Animated balanced quaternion voltage and its locus.
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directions are given by purely vectorial quaternions, each one with three real elements. Since they
have unit norm, each one can be specified by two elements. For instance, if n = n1x + n2y + n3z
and n1 and n2 are defined, then n3 is computed as

|n| =
√

n2
1 + n2

2 + n2
3 = 1 (3.8)

n3 =
√

12 − n2
1 − n2

2. (3.9)

Thus, the total amount of real quantities in the proposed representation is actually six: two for
the ellipse plane orientation, two for the magnitude of both semi-axes and two for their direction.
Therefore, there is a loss in terms of storage needed to fully portray the system because one more
real element is needed in contrast to the five required in the phasorial representation.

Although not being efficient from the perspective of storage, this geometric quaternion-based
representation may still be advantageous in some other aspects and, therefore, needs further
investigation. One of the motivations was to come up with quantities that may be related to the
unbalance in order to quantify it. In this sense, each of the geometric quantities and how they
relate to traditional phasor variables will be presented.

Any given plane is determined by i) n, which has unit norm and is ortogonal to the plane,
and ii) c, that is a constant regarding a relation between n coefficients and where this plane may
intersect the three-dimensional axes. Mathematically, its equation is

n · [rx + sy + tz] = c (3.10)

in which (r, s, t) represents a point within it. So, computing the QVL plane is achieved by deter-
mining both the constant c and the quaternion n. This can be done solving

Re(nV(t)) = n · V(t) = c. (3.11)

It is possible to prove that c is always zeros if there is not a DC value in any of the considered
phases. Since we are not interested in the DC offset phenomenon, this proof will not be given for
the sake of simplicity. However, it is relatively simple to prove that c is zero for balanced and
unbalanced conditions.

As previously mentioned, voltages are sinusoidal, which is a bi-dimensional group of functions.
This means that any sinusoidal function can be written in terms of two other functions, usually
the cosine and the sine. In this sense, vc(t) is always a linear combination of va(t) and vb(t), and
vice versa. Mathematically,

vc(t) = cava(t) + cbvb(t) (3.12)

in which ca and cb are constants. Substituting

ca = −n1

n3
(3.13)

cb = −n2

n3
(3.14)
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yields
n1va(t) + n2vb(t) + n3vc(t) = n · V(t) = 0 (3.15)

that is exactly (3.11) with c = 0. Therefore, only n need to be computed.

Although (3.15) has three unknown variables (n1, n2 and n3) and it is a single equation, it
has a unique solution. From (3.15) it is possible to come up with several other equations because
the equality is held for any time instant. In this case, this linear system can be composed of an
unlimited number of equations and with only three variables. Thus, it is possible to solve it. In
order to employ the minimum equations required, three voltage samples are considered, resulting
in the homogeneous system

Vabc(t1,2,3)

 n1

n2

n3

 =

 va(t1) vb(t1) vc(t1)

va(t2) vb(t2) vc(t2)

va(t3) vb(t3) vc(t3)


 n1

n2

n3

 =

 0

0

0

 . (3.16)

Since vc is always a linear combination of va and vb, one of the equations given in (3.16) can be
eliminated. This means that this problem has infinite solutions, which are formed by the basis
of Vabc(t1,2,3). Hence, only two samples are required to solve it by determining the null space of
Vabc(t1,2)

n = null(Vabc(t1,2)). (3.17)

Despite being algebrically feasible, this computation is not performed in the quaternion domain.

In this sense, a method for determining the QVL plane based on also two voltage samples and
on the quaternion domain is proposed. Since the plane intersects the origin, the whole quaternion
is within it. Considering that the cross product always outputs a third vector (in this case,
a purely vectorial quaternion) orthogonal to the previous ones, then the vectorial part of the
product between voltage at two different time instants yields a quaternion proportional to n.

−−−−−−−→
V(t1)V(t2) = V(t1)× V(t2) ∝ n (3.18)

So, n can be obtained with only two voltage samples by normalizing the product in order for it
to has a unitary norm. It is noteworthy that nw is the angular momentum of the quaternion
voltage. In this sense, computation of n via the cross product method requires two samples with
an angular shift lower than 180°. Otherwise it will have an opposite direction of the actual angular
momentum. In other words, wt2 ≤ wt1 + 180°. So a general expression is

n =
V(t1)× V(t2)

|V(t1)||V(t2)|
. (3.19)

For balanced voltages, Va = Vb = Vc = V and φb = φc = 0. If wt1 = 0 and wt2 =
π
2 , then

V(t1) =
√
2V

[
x − 1

2
y − 1

2
z
]

(3.20)

V(t2) =
√
2V

[
0 +

√
3

2
y −

√
3

2
z
]
. (3.21)
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Therefore, the orthogonal quaternion n for the balanced case is proportional to

nbal ∝ V(t1)× V(t2) (3.22)

∝ 2V 2

[(√
3

4
+

√
3

4

)
x +

(√
3

2
− 0

)
y +

(
0 +

√
3

2

)
x
]

(3.23)

∝ 2V 2

[√
3

2
x +

√
3

2
y +

√
3

2
x
]
. (3.24)

Because n is unitary,
nbal =

x + y + z√
3

. (3.25)

Therefore, the QVL plane for a balanced condition is determined . This result means the QVL
is equally distributed along each axis. This was expected, since each voltage is represented by an
axis and they are balanced.

Both methods for determining n were implemented on Matlab [54] and compared using the code
attached in Appendix I. The demanded computational time for each method can be determined
statistically. As it depends on the computer memory status and the numerical values used, it
can be considered a random variable. So, a Monte Carlo simulation constituted with a thousand
loops for 4096 unbalanced conditions was performed. For this purpose, a computer with a student
license of Matlab [54] was employed. The magnitude of negative and zero sequences were uniformly
varied between 0 and 0,5 pu, and the positive was varied from 0,5 to 1,5 pu. Angles between 0
and 360° were considered.

Results are presented in Table 3.1.

Table 3.1: Comparison of the computation time needed for the null space and the cross product
methods for determing the QVL plane, i.e. n.

Time Null Space Cross Product
Avarage (µs) 41,49 6,61
Variance (ns) 3,51 0,33

In order to verify if the amount of data is sufficient, the average demanded computational time
is plotted for each iteration and shown on Figure 3.3. As it approaches smoothly the final value
obtained, adding new samples would not change significantly the results obtained. Therefore, it
is correctly to state that the cross product method was approximately 6 times faster than the the
null space. So, the former method is better than the latter, since it is faster and needs the same
amount of inputs.

In order to determine the QVL geometrical shape, its norm will be investigated. Applying
(2.18) in (3.1) and considering a balanced condition,

|V|bal(t) =
√
2V 2 cos2(wt) + 2V 2 cos2(wt− 120°) + 2V 2 cos2(wt+ 120°) (3.26)

|V|bal(t) =
√
2V 2 [cos2(wt) + cos2(wt− 120°) + cos2(wt+ 120°)] (3.27)
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Figure 3.3: Cumulative average for the demanded computational time of the QVL plane via the
cross product method.

Applying the trigonometric property

cos2(x) = 1 + cos(2x)
2

(3.28)

to the former equation yields

|V|bal(t) =

√
2V 2

[
3

2
+ cos(2wt) + cos(2wt− 240°) + cos(2wt+ 240°)

]
. (3.29)

Because cos(−240°) = cos(120°), then

|V|bal(t) =

√
2V 2

[
3

2
+ cos(2wt) + cos(2wt+ 120°) + cos(2wt− 120°)

]
. (3.30)

and since the sum of varying over time cosines with equally spaced angular shifts is always zero,
then

|V|bal(t) =
√
3V. (3.31)

It is noteworthy that quaternion voltage norm is constant over time and is equal to the line voltage
(phase-to-phase) magnitude. This means that the minimum and maximum values of the norm
are the same. So, the QVL shape is a circle or equivalently an ellipse with null eccentricity (e)
defined as

e =

√
1− b2

a2
, (3.32)
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in which a and b are the major and minor semi-axes magnitudes, respectively. In this case, there
is no meaning in determining the semi-axes directions. So, the QVL for balanced conditions has
been fully described.

As a result of the QVL being a circle, quaternion voltage (Vbal) can be written in terms
of quaternion rotations, accordingly to (2.35). Moreover, since rotation is executed around a
perpendicular axis, it can be reduced to the format of (2.37). Therefore, this dissertation proposes

Vbal(t) =
√
3V enwtqp (3.33)

in which qp is the direction of Vbal(t = 0) and is computed as

qp ∝ V

(
x − 1

2
y − 1

2
z
)

(3.34)

qp =
2x − y − z√

6
. (3.35)

All QVL parameters have been computed for balanced conditions. The locus has been proved
to be a circle inside the nbal plane, and it represents the voltage behaviour for a cycle. Thus, the
circle equation in a three dimensional frame is given by(

2x− y − z√
6

)2

+

(
y − z√

2

)2

=
(√

3V
)2

∀ (x, y, z) ∈ R3, s.t. x+ y + z = 0, (3.36)

and it conveys all of the steady-state information about the system voltage magnitudes and angles.

As a remark from (3.33), it is possible to come up with an evolution equation for a voltage
state-space model. Rewriting (3.33) in the discrete form

V[k] =
√
3V enwkTSqp, (3.37)

then voltage at instant k + 1 is equal to

V[k + 1] =
√
3V enw(k+1)TSqp (3.38)

V[k + 1] =
√
3V enwTsenwkTSqp (3.39)

(3.40)

and finally,

V[k + 1] = enwTsV[k]. (3.41)

It is worth mentioning that V[k+1] is linear in relation to V[k]. Hence the state transition matrix
is in this case would be equal to enwTs and the model is said to be linear. This highlights the
feasibility of using quaternions as voltage or current estimators. Nevertheless, this is not further
investigated because it is beyond the scope of this dissertation.

Another outcome from (3.33) is that the voltage time derivative is given by

dVbal(t)

dt
= nwVbal(t). (3.42)
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Similarly to phasors, quaternion representation also maps derivatives into products. Moreover,
(3.42) contains time derivative for all phases. This outputs was expected, since the derivative of
a circular quaternion is equivalent to left multiplying it by its angular momentum, as previously
discussed in (2.46).

Likewise, quaternion voltage integral with respect to the time is also mapped into a product

∫
Vbal(t)dt = −n

w
Vbal(t). (3.43)

As aforementioned, the theory hereby developed applies to any periodic three-phase quantity.
A particular case that must be considered is the electromagnetic flux. Consider an electrical
machine with stator windings perpendicular to each other in the three-dimensional space, instead
of coplanar and spaced of 120°. In this condition, the resultant flux rotates with the electrical
frequency. Moreover, it has a higher magnitude due to the orthogonality. If the windings are
coplanar, some components cancel out, reducing its total value. Nonetheless, other aspects of such
machine are still to be discussed, for example the construction aspects, the armature reaction and
the impacts of voltage unbalance in its performance.

The methodology developed to determine the geometrical parameters of the QVL can also
be applied to the analysis of the flux inside usual electrical machines with coplanar windings. A
systematic investigation of such phenomenon might give physical interpretations to the effects of
voltage unbalance on these equipments. As a consequence, another unbalance factor might be
developed. This is suggested for future research.

3.2 Unbalanced Conditions

In this section, quaternion voltage and current are investigated under unbalanced situations.
The previous development will be extended for the general case, in which magnitudes are not
necessarily equal to each other, neither angles are equally shifted of 120°. Figure 3.4 shows a QVL
for balanced, amplitude unbalanced and phase unbalanced conditions. It is worth mentioning that
there is a change in the plane direction as well as in its eccentricity. The balanced circle becomes
an ellipse.

In order to ratify those visual conclusions drawn from Figure 3.4, QVL parameters will be
analytically computed. Firstly, n will be computed, followed by the major and minor semi-axes
magnitudes. Lastly, the direction of the semi-axes will be determined. The ellipse equation for
the QVL will also be presented.

Quaternion n can be computed following the cross product approach presented in (3.19).
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Figure 3.4: QVL for balanced, amplitude unbalanced and phase unbalanced conditions

Considering t1 = t and t2 = t+∆t, then

n ∝ V(t)× V(t+∆t) (3.44)

n ∝ [vb(t)vc(t+∆t)− vc(t)vb(t+∆t)]x (3.45)

+ [vc(t)va(t+∆t)− va(t)vc(t+∆t)]y

+ [va(t)vb(t+∆t)− vb(t)va(t+∆t)] z.

Denoting the x term as qx for the ease of notation,

qx = vb(t)vc(t+∆t)− vc(t)vb(t+∆t) (3.46)

and expanding its terms, it is rewritten as

qx = 2VbVc [cos (wt− 120° + φb) cos (w (t+∆t) + 120° + φc) (3.47)

− cos (wt+ 120° + φc) cos (w (t+∆t)− 120° + φb)] .

Applying the property

cos (a+ b) = cos (a) cos (b)− sin (a) sin (b) (3.48)

with a = wt+ 120° + φc and b = w∆t, then qx becomes

qx = 2VbVc (3.49)

{cos (wt− 120° + φb) [cos (wt+ 120° + φc) cos (w∆t)− sin (wt+ 120° + φc) sin (w∆t)]

− cos (wt+ 120° + φc) cos (w (t+∆t)− 120° + φb) } .

Applying once more the property (3.48) with a = wt− 120° + φb and b = w∆t,

qx = 2VbVc (3.50)

{cos (wt− 120° + φb) [cos (wt+ 120° + φc) cos (w∆t)− sin (wt+ 120° + φc) sin (w∆t)]

− cos (wt+ 120° + φc) [cos (wt− 120° + φb) cos (w∆t)− sin (wt− 120° + φb) sin (w∆t)]} .
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Notice that the terms cos (wt+ 120° + φc) cos (wt− 120° + φb) cos (w∆t) cancel out. So, the ex-
pression is reduced to

qx = 2VbVc sin (w∆t) (3.51)

{cos (wt+ 120° + φc) sin (wt− 120 + φb)− cos (wt− 120° + φb) sin (wt+ 120° + φc)} .

Applying the trigonometric property

sin (a+ b) = sin (a) cos (b) + sin (b) cos (a) (3.52)

with a = wt− 120° + φb and b = − (wt+ 120° + φc), yields

qx = 2VbVc sin (w∆t) sin (wt− 120° + φb − wt− 120° − φc) . (3.53)

Since sin(−240°) = sin(120°), then

qx = 2VbVc sin (w∆t) sin (120° + φb − φc) (3.54)

The y and z terms are computed analogously. Hence, n is proportional to

n ∝ 2 sin (w∆t) [ VbVc sin (120 + φb − φc)x (3.55)

+ VcVa sin (120 + φc)y

+ VaVb sin (120− φb) z ]

It is worth mentioning that an even more compact expression can be achieved by noticing that
angular shifts between phases are equal to

θab = 120◦ − φb (3.56)

θbc = 120◦ + φb − φc (3.57)

θca = 120◦ + φc, (3.58)

in which θxy refers to the angular displacement from y to x. Substituting these expressions into
(3.55) and normalizing the right hand side,

n =
1

|n0|
[VbVc sin (θbc)x + VcVa sin (θca)y + VaVb sin (θab) z] (3.59)

in which n0 is a normalization parameter given by

|n0| =
√

V 2
a V

2
b sin2 (θab) + V 2

b V
2
c sin2 (θbc) + V 2

a V
2
c sin2 (θca). (3.60)

So, the QVL plane for any unbalanced condition has been obtained. As a way of testing (3.59),
it can applied to the balanced case and compared to the results of the previous section. It should
exactly match (3.25). So, substituting Va = Vb = Vc = V and θab = θbc = θca = 120° in (3.60),

|n0|bal = V 2 sin (120°)
√
3 (3.61)
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and applying this last equation in (3.59), the plane direction is found to be

nbal =
V 2 sin (120°) (x + y + z)

V 2 sin (120°)
√
3

=
x + y + z√

3
. (3.62)

As expected, results for nbal computed in section 3.1 and computed via the general equation in
this section are exactly the same. Therefore, nbal is a particular case of (3.59).

It is worth mentioning that n may be thought of as a indicator of the less “dominant” phase
voltage. In other words, if phase “C” is equal to zero, then n will have the direction of the axis
associated with phase “C”, i.e. n = z. The “predominant” voltages, on the other hand, are those
closer to the plane or equivalently those with lower n coefficients. This assertive still needs further
investigation because both magnitudes and angles affects this quaternion. In section 4.1, this will
be discussed under the point of view of Fortecue’s theory.

Heretofore, the QVL plane has been determined. The semi-axes magnitudes and directions,
nonetheless, still remains unknown. These parameters will now be determined. For this purpose, a
generic ellipse equation is discussed. Then, the quaternion norm is computed in order to determine
its maximum and minimum values, which are the semi-axes magnitudes. Their directions are
computed by determining the moment they occur and substituting it in the voltage expression
(3.1).

Since the quaternion voltage describes an ellipse, it can be written in terms of the following
parametric ellipse equation

V = Vα cos (wt) [cos (φd)q1 + sin (φd)q2] + Vβ sin (wt) [− sin (φd)q1 + cos (φd)q2] , (3.63)

in which its plane is q1q2 and the major semi-axis is displaced of q1 by φd as shown in Figure 3.5.
In the above equation, the quaternion voltage maximum absolute value (equivalently, its norm)
is considered to happen in t = 0. However, this is a restriction that may not be satisfied. In the
most general case, maximum occurs in tmax, which may be rewriten as

tmax =
φt

w
. (3.64)

Therefore, voltage ellipse is given by

V =Vα cos (wt− φt) [cos (φd)q1 + sin (φd)q2] + Vβ sin (wt− φt) [− sin (φd)q1 + cos (φd)q2] .

(3.65)

The semi-axes directions are given by

ααα = cos (φd)q1 + sin (φd)q2 (3.66)

βββ = − sin (φd)q1 + cos (φd)q2. (3.67)

As discussed previously, the ellipse plane has been provided. The semi-axes magnitudes and
directions are yet to be determined. Namely, q1, q2, φt, φd, Vα and Vβ are computed next.
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Figure 3.5: Arbitrary ellipse in the plane q1q2 with major and minor semi-axes denoted by Vα

and vβ, respectively

Notice, that the only restrictions for q1 and q2 is that they are contained in the QVL plane
and that they are perpendicular to each other. In this sense, they may be arbitrarily chosen. If q1

is chosen to be the quaternion voltage direction when its maximum occurs, then φd will be zero
and ααα = q1 and βββ = q2.

In order to determine βββ, consider that n is pointing out from the Figure 3.5 and that βββ

is counter-clockwise ahead of ααα. Using the properties i) the cross products always yields an
orthogonal quaternion, and ii) the quaternion product is equal to the cross product if quaternions
are purely vectorial and orthogonal to each other, then βββ can be determined as βββ = nααα. So, ααα
needs to be determined. For this purpose, maximum and minimum voltage norm will be computed,
followed by the computation of the time instant they occur.

The norm can be related to the voltage magnitudes of each phase. As a matter of fact, the
norm increases accordingly to the voltage levels. For an unbalanced condition, it is given by

|V|2(t) = v2a(t) + v2b (t) + v2c (t) (3.68)

= 2V 2
a cos2 (wt) + 2V 2

b cos2 (wt− 120° + φb) + 2V 2
c cos2 (wt+ 120° + φc) . (3.69)

Applying (3.28), the previous equation turns into

|V|2(t) = 2V 2
a

[
1 + cos (2wt)

2

]
+ 2V 2

b

[
1 + cos (2wt− 2θab)

2

]
+ 2V 2

c

[
1 + cos (2wt+ 2θca)

2

]
(3.70)

= V 2
a + V 2

b + V 2
c + V 2

a cos (2wt) + V 2
b cos (2wt− 2θab) + V 2

c cos (2wt+ 2θca) , (3.71)

31



and it can be rewritten in terms of its RMS value and an oscillating component. Voltage norm
RMS value is given by

|V|RMS =

√
1

T

∫ T

0
|V|2(t)dt (3.72)

=
√
V 2
a + V 2

b + V 2
c . (3.73)

Therefore, voltage norm can be rewritten as

|V|2(t) = |V|2RMS + |V|2osc cos (2wt+ φosc) (3.74)

in which the |V|osc represents an oscillating component of the norm and can be computed by the
trigonometric sum

|V|2osc cos (2wt+ φosc) = V 2
a cos (2wt) + V 2

b cos (2wt− 2θab) + V 2
c cos (2wt+ 2θca) . (3.75)

Making use of phasors to represent this sum,

|V|2osc cos (2wt+ φosc) = Re
(
|V|2osc φosc

)
(3.76)

= Re
(
V 2
a 0° + V 2

b −2θab + V 2
c 2θca

)
. (3.77)

In this sense, the following phasorial equality must be solved

|V|2osc φosc = V 2
a 0° + V 2

b −2θab + V 2
c 2θca. (3.78)

From (3.78), |V|2osc and φosc can be computed as the absolute and angle values, respectively. It
is noteworthy that this equality can be illustrated geometrically, as in Figure 3.6. Applying the
Pythagorean theorem, |V|2osc is

|V |2osc =

√[
V 2
a + V 2

b cos(2θab) + V 2
c cos(2θca)

]2
+
[
V 2
b sin(2θab)− V 2

c sin(2θca)
]2 (3.79)

Likewise, φosc can be computed as the arc tangent of the vertical cathetus over the horizontal one,
i.e.

φosc = arctan
(

V 2
c sin(2θca)− V 2

b sin(2θab)
V 2
a + V 2

b cos(2θab) + V 2
c cos(2θca)

)
. (3.80)

It is worth mentioning that since arctan(·) is limited in [−π
2 ; +π

2 ], then the signs of both cathetus
from Figure 3.6 must be considered in order to compute the correct value of φosc. For instance,
if φosc = 180°, the vertical cathetus magnitude will be nil In this condition, if the cathetus sign
are not considered, then the right hand side of (3.80) will be equal to zero. This can be solved in
Matlab [54] by using the atan2 function.

So, major and minor semi-axis magnitudes, i.e. maximum and minimum values of voltage
norm, have been computed and are given by

Vα =
√
|V|2RMS + |V|2osc (3.81)

Vβ =
√
|V|2RMS − |V|2osc. (3.82)
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Figure 3.6: Geometric representation for the oscillatory voltage norm component in terms of its
magnitude and angle.

It is noteworthy that in balanced cases |V|osc = 0. Thus, QVL is a circle with the voltage norm
RMS value as its radius, in accordance with the theory developed in the previous section.

Up to now, QVL plane and semi-axes magnitudes have been determined. So, remais to be
computed its semi-axes directions, which are related to the angular displacement between phase
quantities. In order to do this, the time instant in which occurs the maximum voltage norm will be
computed. The major semi-axis direction (ααα) is obtained by evaluating quaternion voltage given
by (3.1) and then normalizing it. The minor semi-axis (βββ), as previously mentioned, is obtained
by the product

βββ = nααα. (3.83)

The time instant in which occurs the maximum norm is the value that makes the argument of
the oscillating component in (3.74) equal to zero, i.e.

tmax = −φosc

2w
. (3.84)

Substituting (3.80) in the previous equation and considering that the arctan is a pair function
(i.e. arctan (−x) = −arctan (x)), then

tmax =
1

2w
arctan

(
V 2
b sin(2θab)− V 2

c sin(2θca)
V 2
a + V 2

b cos(2θab) + V 2
c cos(2θca)

)
. (3.85)

With these equations, it is possible to determine QVL parameters for both balanced and
unbalanced conditions. Its ellipse equation is given by

α2

V 2
α

+
β2

V 2
β

= 1,∀(x, y, z) ∈ R3,⊥n = 0 (3.86)

in which n, α and β (not in bold letters) represents the (x, y, z) ∈ R3 of the line orthogonal to the
QVL plane and the major and minor semi-axes, respectively.

Two examples are strategically defined in order to provide simple mathematical computations
and also to provide insights on different unbalance conditions. They are presented hereupon.

Example 2 [Amplitude Unbalance]
In this example the effects of an amplitude unbalance on the QVL will be discussed. Considering
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Va = 1 pu and Vb = Vc = 0, 5 pu and phases equally displaced (i.e. θab = θbc = θca = 120°), then
the QVL plane (n), computed accordingly to (3.59), is

n =
1

n0

[
1

2
.
1

2
sin (120°)x +

1

2
.1 sin (120°)y + 1.

1

2
sin (120°) z

]
(3.87)

=
1

n0

[√
3

8
x +

√
3

4
y +

√
3

4
z
]

(3.88)

=
1

n0
.

√
3

8
[x + 2y + 2z] (3.89)

The normalization parameter n0, that is given by (3.60), is equal to

n0 =

√
12
(
1

2

)2

sin2 (120°) +
(
1

2

)2(1

2

)2

sin2 (120°) + 12
(
1

2

)2

sin2 (120°) (3.90)

=
1

2
sin (120°)

√
1 +

1

4
+ 1 (3.91)

=
1

2
sin (120°)

√
9

4
(3.92)

=
1

2
.

√
3

2
.
3

2
= 3

√
3

8
. (3.93)

So,
n =

x + 2y + 2z
3

. (3.94)

The quaternion n is closer to those axes associated with lower magnitudes phases (Vb and Vc)
because its y and z components are higher. Considering that n is orthogonal to the QVL, it is
correct to state that the plane is closer to x, as shown in Figure 3.7. This was expected, since
phase “A” voltage magnitude is higher. Thus it should influence the QVL plane the most.

The voltage norm RMS value, accordingly to (3.73), is

|V|RMS = 12 +

(
1

2

)2

+

(
1

2

)2

(3.95)

=

√
3

2
. (3.96)

The oscillating component magnitude, given by (3.79), is

|V|osc =

√√√√√
√√√√[1 + (1

2

)2

cos (240°) +
(
1

2

)2

cos (240)

]2
+

[(
1

2

)2

sin (240°)−
(
1

2

)2

sin (240°)
]2

(3.97)

=

√√√√√[
1 +

1

4

(
−1

2

)
+

1

4

(
−1

2

)]2
+ 02 (3.98)

=

√
1− 2

8
(3.99)

=

√
3

2
(3.100)
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Figure 3.7: QVL for the magnitude unbalanced condition of Example 2. Balanced QVL is pre-
sented for comparison. Major and minor semi-axes denoted ααα and βββ are in blue and red colors.

and the phase computed via (3.80) is

φosc = arctan

( (
1
2

)2 sin (240°)−
(
1
2

)2 sin (240°)
1 +

(
1
2

)2 cos (240°) +
(
1
2

)2 cos (240)

)
(3.101)

= arctan

(
0

1 +
(
1
2

)2 cos (240°) +
(
1
2

)2 cos (240)

)
(3.102)

= artan(+0). (3.103)

Since the vertical cathetus of the Figure (3.6) is zero and the horizontal is positive, the angle from
the geometrical interpretation is

φosc = 0. (3.104)

Therefore, voltage norm maximum occurs at tmax = 0.

Quaternion major semi-axis direction is parallel (denoted by the ‖ symbol) to the quaternion
voltage direction at t = tmax.

ααα ‖ V(t = tmax = 0) (3.105)

‖ (1 cos (0))x +

(
1

2
cos (0− 120°)

)
y +

(
1

2
cos (0 + 120°)

)
z (3.106)

‖ x − 1

4
y − 1

4
z (3.107)
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Normalizing the right hand side of the previous equation,

ααα =
4x − y − z

3
√
2

(3.108)

The direction of the minor semi-axis is determined applying (3.83)

βββ = nααα (3.109)

=
x + 2y + 2z

3

4x − y − z
3
√
2

(3.110)

=
[2y (−z)− 2z (−y)] + [2z4x − x (−z)] + [x (−y)− 2y4x]

9
√
2

(3.111)

=
0x + 9y − 9z

9
√
2

(3.112)

=
y − z√

2
. (3.113)

The last quantity to be determined are the semi-axes magnitudes. By (3.81) and (3.82), they
are equal to

Vα =

√√√√(√3

2

)2

+

(√
3

2

)2

(3.114)

=

√
3

2
+

3

4
=

3

2
(3.115)

Vβ =

√√√√(√3

2

)2

−

(√
3

2

)2

(3.116)

=

√
3

2
− 3

4
=

√
3

2
(3.117)

Eccentricity in this case is given by

e =

√
1− 3

9
(3.118)

e =

√
6

3
≈ 0, 82. (3.119)

Therefore, all quantities related to the QVL with magnitude unbalance have been computed.
The ellipse equation for this example is(

4x−y−z

3
√
2

)2
(
3
2

)2 +

(
y−z√

2

)2
(√

3
2

)2 = 1, ∀(x, y, z) ∈ R3, x+ 2y + 2z = 0. (3.120)

Example 3 [Phase Unbalance]
In this example the effects of a phase unbalance on the QVL will be discussed. Considering
Va = Vb = Vc = 1 pu and θab = θca = 90° and θbc = 180°, then the QVL plane (n), computed
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Figure 3.8: QVL for the phase unbalanced condition of Example 3. Balanced QVL is presented
for comparison. Major and minor semi-axes are denoted ααα and βββ in blue and red colors.

accordingly to (3.59), is

n =
1

n0
[1 sin (180°)x + 1 sin (90°)y + 1 sin (90°) z] (3.121)

=
1

n0
[0x + y + z] . (3.122)

The normalization parameter n0, that is given by (3.60), is equal to

n0 =
√

1 sin2 (90°) + 12 sin2 (180°) + 12 sin2 (90°) (3.123)

=
√
1 + 0 + 1 =

√
2. (3.124)

So,
n =

y + z√
2

(3.125)

The quaternion n is closer to the y and z directions, since its coefficients are higher. Considering
that n is orthogonal to the QVL, it is correct to say that the plane is closer to x, as shown in
Figure 3.8. This can be thought of as a result from phases b and c being closer (angularly) to
phase a, which is parallel to x.

The voltage norm RMS value, accordingly to (3.73), is

|V|RMS =
√
12 + 12 + 12 (3.126)

=
√
3. (3.127)
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The oscillating component magnitude, given by (3.79), is

|V|osc =

√√
[1 + 12 cos (180°) + 12 cos (180)]2 + [12 sin (180°)− 12 sin (180°)]2 (3.128)

=

√√
[1 + (−1) + (−1)]2 + 02 (3.129)

= 1 (3.130)

and the phase computed via (3.80) is

φosc = arctan

(
12 sin (180°)− 12 sin (180°)

1 + 12 cos (180°) + 12 cos (180)

)
(3.131)

= arctan

(
0

1 + (−1) + (−1)

)
(3.132)

= arctan(−0) (3.133)

= 180°. (3.134)

Therefore, voltage norm maximum occurs at tmax = 180°
2w .

Quaternion major semi-axis direction is parallel to the quaternion voltage direction at t = tmax.
Thus,

ααα ‖ V(t = tmax =
180°
w

) (3.135)

‖ (1 cos (90°))x + 1 cos (90° − 90°)y + 1 cos (90 + 90°) z (3.136)

‖ 0x + 1y − 1z (3.137)

=
y − z√

2
. (3.138)

The direction of the minor semi-axis is determined applying (3.83)

βββ = nααα (3.139)

=

(
y + z√

2

)(
y − z√

2

)
(3.140)

=
[y (−z)− zy] + [0] + [0]

2
(3.141)

= −x. (3.142)

The last quantity to be determined are the semi-axes magnitudes. By (3.81) and (3.82), they
are equal to

Vα =

√(√
3
)2

+ (1)2 (3.143)

=
√
4 = 2 (3.144)

Vβ =

√(√
3
)2

− (1)2 (3.145)

=
√
2 (3.146)
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Eccentricity, in this case, is given by

e =

√
1− 2

4
(3.147)

e =

√
2

2
≈ 0, 71. (3.148)

Therefore, all quantities related to the QVL with angular unbalance have been computed.

The ellipse equation for this example is(
y−z√

2

)2
(2)2

+

(
−x√
2

)2
(√

2
)2 = 1, ∀(x, y, z) ∈ R3, y + z = 0 (3.149)

The results from examples 2 and 3 are summarized in Table 3.2. It is noteworthy that phase
unbalance doesn’t change the norm rms value. This was expected due to the fact that (3.73) depends
only on phase magnitudes. Therefore, it measures the system voltage levels. Additionally, it can
be used to identify the type of unbalance occurring.

The QVL plane displacement (θn) with regard to the balanced plane is shown to be related to
the zero sequence component, expressed in terms of

VUF0 =
V0

V1
, (3.150)

in which V0 and V1 are the zero and positive sequence magnitudes from Fortescue’s theory. This
will be further explained in the next sections. But, the basic idea is that this component is the only
one that acts perpendicularly to the QVL balanced plane. So, it is responsible for the increase in
θn.

The major semi-axis magnitude was higher in the phase unbalanced condition, which also
presented a slightly higher unbalance factor VUF, which is given by

VUF =
V2

V1
, (3.151)

being V2 the negative sequence. For this analysis, it is important to notice that VUF quantifies the
unbalance. Comparing both unbalanced cases, example 3 presented quantities with higher value,
with exception of the eccentricity. This analysis suggests, therefore, several quantities that may be
employed as unbalance factors in substitution to the traditional VUF. A thorough investigation,
however, still needs to be performed. The relationship of these quantities with electrical phenomena
on loads supplied by unbalanced sources (the temperature on an induction motor, for example) is
suggested for evaluation in future researches.

Considering the QVL plane of each example, example 3 presented a higher plane displacement
in relation to the balanced condition. It also presented a higher zero sequence component in relation
to the positive,

VUF0 =
V0

V1
, (3.152)

in which V0 is the zero sequence symmetrical component magnitude from Fortescue’s thoery.
This may indicate a relation between these two quantities. As aforementioned, section 4.1 will
analytically show that the QVL plane is indeed associated with the zero sequence.
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Table 3.2: QVL parameters for different conditions.

Quantity Balanced case Amplitude Unbalance (Ex 2) Phase Unbalance (Ex 3)
VUF 0 0,25 0,27
VUF0 0 0,25 0,37

n x+y+z√
3

x+2y+2z
3

y+z√
2

θn 0 15, 79° 35, 26°
|V|RMS

√
3

√
3
2

√
3

|V|osc 0
√
3
2 1

Vα

√
3 3

2 2

Vβ

√
3

√
3
2

√
2

e 0 0,82 0,71
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Chapter 4

Symmetrical Components, Passive
Elements and Power

In this chapter, a quaternion time-domain ver-
sion of Fortescue’s symmetrical components is
proposed. A three-phase quaternion impedance
is defined for both balanced and unbalanced con-
ditions. A novel hypercomplex model for trans-
mission lines with and without mutual coupling
is also presented. For this purpose, electrical cir-
cuits equations in the time domain are investi-
gated and then rewritten by means of quaternions.

4.1 Symmetrical Components

In this section, symmetrical components, introduced by Fortescue [52], are presented. Then,
a corresponding quaternion version is proposed, and its relation with the traditional theory is
discussed. Moreover, the proposed version allows to model symmetrical components in a linear
state-space model.

According to [12], supply quality is associated with the utility voltages deviation from their
nominal parameters. Loading quality, on the other hand, is associated with the loads distorted
generated currents. Usually, both phenomenona generate unbalanced currents and, consequently,
deteriorate power supply of nearby region. This shows the electrical coupling between phases.
Therefore, a per phase approach is not possible. As a workaround, Fortescue introduced the
symmetrical components [52]. With it, he was able to represent one set of n unbalanced phasors
into n sets of n balanced phasors. Furthermore, electrical coupling can be eliminated for several
conditions. Hence, it is also considered a decoupling method.

For three phase systems, the balanced sets are named positive, negative and zero sequences,
as illustrated by Figure 4.1. Since these sets are also balanced, only one phasor of each set is
actually meaningful. In other words, any system can be completely characterized by V̂a0, V̂a1 and
V̂a2. Subscript “a” is usually dropped for the ease of representation.
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Figure 4.1: Unbalanced set of three phasors being represent by three sets of three balanced phasors.
The first set is the positive sequence, the second is the negative and the third is the zero.

In this dissertation, complex numbers are denoted with a hat above it. Consequently, phasors
notation is also a hat. Symmetrical components are computed via the Fortescue inverse matrix
(F−1) as  V̂0

V̂1

V̂2


︸ ︷︷ ︸

V012

=
1

3

 1 1 1

1 â â2

1 â2 â


︸ ︷︷ ︸

F−1

 V̂a

V̂b

V̂c

 ,

︸ ︷︷ ︸
Vabc

(4.1)

in which â is the rotation element given by â = 1 120°. It should be noticed that Fortescue matrix
is composed of complex numbers, not phasors. In other words, although â is a complex element,
it is not associated with the rotating complex exponential ejwt, in which j is the imaginary unit.

The positive sequence can be thought of as a set of phasors with sequence ABC rotating
clockwise. Negative sequence might be considered as i) a set of CBA phasors rotating clockwise,
or ii) ABC phasors rotating counter-clockwise. Finally, zero sequence is interpreted as a set of
parallel phasors, i.e. with the same angle, rotating clockwise.

It is noteworthy that (4.1) is the power variant transformation. In other words, power com-
puted with phase quantities is different by a scale factor from that computed with sequence
components. According to [5], complex power is given by

ˆSabc = Vabc
T Iabc

∗, (4.2)
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in which Vabc is a column vector formed by stacking voltage phasors, Iabc likewise. So, they are not
represented with the hat notation. Rewriting the right hand side in terms of voltage and current
sequences

ˆSabc = (FV012)
T F ∗I012

∗ (4.3)

= V012
TF TF ∗I012

∗ (4.4)

(4.5)

and since F TF ∗ = 3I3×3, then

ˆSabc = 3V012
T I012

∗ = 3 ˆS012 (4.6)

(4.7)

A power invariant transform version is given by

Finv =
1√
3

 1 1 1

1 â2 â

1 â â2

 =
1√
3
F. (4.8)

This matrix fulfills the following property of invariant complex transformations

FH
invFinv = I, (4.9)

in which the H superscript denote the hermitian, and it is computed as its conjugate transposed.
With this transformation, power in both domain are equivalent

ˆSabc = ˆS012. (4.10)

With these concepts in mind, a quaternion version of this theory will be investigated.

For a balanced set of voltages with ABC sequence, it was possible to rewrite them as a rotating
element, as presented in section 3.1. This condition yields a positive sequence component. In the
quaternion domain, it is, therefore, expressed as

V1(t) =
√
3V1e

nbalwtqp, (4.11)

in which nbal is given by (3.25) and qp by (3.35).

As previously stated, negative sequence can be thought of as a CBA voltage system. In this
condition, the QVL is equal to the previous case. The quaternion angular momentum will also
be equal, but with opposite sign, i.e. (−nbal)w. In other words, it will rotate in the opposite
direction of the previous case.

In this condition, voltages are given by

va,CBA(t) =
√
2V cos (wt) (4.12)

vb,CBA(t) =
√
2V cos (wt+ 120°) (4.13)

vc,CBA(t) =
√
2V cos (wt− 120°) . (4.14)
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The QVL plane n can be computed via the cross product method, with samples at the time
instants wt1 = 0 and wt2 = 90°. Applying it for the CBA systems and considering the voltage
norm is equal to (3.31), then nbal is

nCBA =
1

3V 2

[√
2V

(
1x − 1

2
y − 1

2
z
)]

×

[
√
2V

(
0x −

√
3

2
y +

√
3

2
z
)]

(4.15)

=
2

3

(
−
√
3

4
−

√
3

4

)
x +

(
−
√
3

2

)
y +

(
−
√
3

2

)
z (4.16)

= −x + y + z
3

(4.17)

= −nbal. (4.18)

The quaternion orthonormal to the plane in this condition was found to be the negative of the
one found in the ABC balanced condition. This means that the angular momentum in this case is
the negative of the ABC sequence. In other words, quaternion voltage is rotating in the opposite
direction.

In this condition, QVL is also a circle. Hence, the negative sequence quaternion is given by

V2(t) =
√
3V2e

−nbalwtqp (4.19)

If voltages have the same magnitude and angle, then they represent a zero sequence component,
and they are given by

va,0(t) =
√
2V cos (wt+ φ) (4.20)

vb,0(t) =
√
2V cos (wt+ φ) (4.21)

vc,0(t) =
√
2V cos (wt+ φ) . (4.22)

The zero sequence quaternion voltage can be written as

V0(t) =
√
3
√
2V cos (wt+ φ)nbal. (4.23)

Combining the polar representation in (2.34) and the method for extracting its real part presented
in (2.22), the previous equation turns into

V0(t) =
√
3V0

enbal(wt+φ) + e−nbal(wt+φ)

√
2

nbal. (4.24)

Considering that all symmetrical components may occur simultaneously and with different
magnitudes and angles, then a general equation for quaternion voltage is given by

Vsym(t) =
√
3V0

enbal(wt+θ0) + e−nbal(wt+θ0)

√
2

nbal︸ ︷︷ ︸
zero sequence

+
√
3V1e

nbal(wt+θ1)qp︸ ︷︷ ︸
positive sequence

+
√
3V2e

−nbal(wt+θ2)qp︸ ︷︷ ︸
negative sequence

(4.25)

= V0 + V1 + V2, (4.26)

in which θ0, θ1 and θ2 are the angles of each sequence computed by the F−1 matrix.
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In order to determine how these components are related to Fortescue’s theory, it will be
considered that the quaternion voltage x, y and z components are equal to voltage on phases A,
B and C, respectively. Exponential quaternions, qp and nbal in (4.25) are rewritten in terms of
the x, y and z. So, applying (2.34) in (4.25) and considering qn = nbalqp

Vsym(t) =
√
3 {V0 [cos (wt+ θ0)n] + (4.27)

V1 [cos (wt+ θ1)qp + sin (wt+ θ1)qn] +

V2 [cos (wt+ θ2)qp − sin (wt+ θ2)qn]} .

Substituting the values of nbal (3.25) and qp (3.35) and qn = y−z√
2

in the previous equations, then
the term of x is given by

√
2Va cos (wt) =

√
2 [V0 cos (wt+ θ0) + V1 cos (wt+ θ1) + V2 cos (wt+ θ2)] . (4.28)

If the above elements are rewritten as phasors, then

V̂a = V0∠θ0 + V1∠θ1 + V2∠θ2. (4.29)

It is noteworthy that this is equivalent to the obtained via Fortescue matrix. Analysing phase “B”
voltage, or equivalently, the y term of (4.27),

√
2Vb cos (wt− 120 + φb) =

√
2 {V0 cos (wt+ θ0)+ (4.30)

V1

[
cos (wt+ θ1)

(
−1

2

)
+ sin (wt+ θ1)

√
3

2

]
+

V2

[
cos (wt+ θ2)

(
−1

2

)
− sin (wt+ θ2)

√
3

2

]
}

applying the cossine of the sum property (3.48), then
√
2Vb cos (wt− 120 + φb) =

√
2 [V0 cos (wt+ θ0) + V1 cos (wt+ θ1 − 120°) + V2 cos (wt+ θ2 + 120°)] .

(4.31)
Using phasorial notation,

V̂b = V0∠θ0 + â2V1∠θ1 + âV2∠θ2. (4.32)

Likewise for phase “C”,

V̂c = V0∠θ0 + âV1∠θ1 + â2V2∠θ2. (4.33)

Gathering these phasorial equalities in a matrix form, yields V̂a

V̂b

V̂c

 =

 1 1 1

1 â2 â

1 â â2


︸ ︷︷ ︸

F

 V0∠θ0
V1∠θ1
V2∠θ2

 , (4.34)

which is equal to (4.1) inverse. So, the symmetrical components (V0, V1, V2, θ0, θ1 and θ2) in the
quaternion formulation given by (4.25) have been proved to be the same as those provided by the
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Figure 4.2: Animated unbalanced quaternion voltage and its locus in terms of its symmetrical
quaternion components.

Fortescue’s power variant transformation. It is noteworthy that if the
√
3 factor was neglected in

(4.25), then the obtained components would be equal to those obtained with the power invariant
transformation.

The quaternion symmetrical components dynamics and how they add up to the voltage are
shown in Figure 4.2. In the virtual version of this dissertation, it is an animated figure that may
be visualized using an appropriate PDF reader, such as Adobe Acrobat Reader DC. In the printed
version, several frames are shown in order to give an intuition of the dynamics involved. As
indicated by (4.25) and visible in Figure 4.2, quaternion positive and negative sequences rotates
in opposite directions and are contained in the balanced QVL plane. It is also observable that
the zero component oscillates parallel to nbal. So, the results obtained analytically in (4.25) are
supported by Figure 4.2.

Since the only component that is not contained in the QVL balanced plane is the zero se-
quence, then this component is responsible for plane changes. The negative sequence is the main
responsible for changing the QVL format. If θ2 = θ1, then maximum of both positive and negative
sequence occurs at the same time instant. As a result, the ellipse major semi-axis is given by the
time instant related to their angle, i.e. tmax = θ1

w . So, it is clear that these angles are related to
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Figure 4.3: QVL Analyser app designed in Matlab.

the ellipse semi-axes directions.

In order to confirm these results, a QVL analyser application (app) was developed using
Matlab [54]. This app takes as inputs Fortescue’s symmetrical components magnitudes and angles.
It outputs a three dimensional visualization of the unbalanced QVL and the balanced one, along
with a two dimensional front view of the ellipse. It also computes the major and minor semi-axes
magnitudes, the voltage norm RMS value and the magnitude of its oscillating part and the plane
direction. Figure 4.3 shows the app window.

It was possible to note that if V0 = 0, then n is always the balanced one. In this condition, V2

changes the ellipse eccentricity, deforming the QVL shape. However, if V0 6= 0, then the negative
sequence also alters the n direction. This can be explained by the fact that adding any quaternion
that is not on the same plane as the voltage will result in a plane direction change. It was also
noted that V0 does influence the ellipse eccentricity, because under unbalanced situations the zero
sequence is not totally perpendicular to the balanced QVL. The negative sequence effects on its
format, however, is considerably higher. For example, if V1 = 1 pu, V2 = 0 pu and V0 = 0, 5 pu,
then e ≈ 0, 5774. In the opposite condition, in which V2 = 0, 5 pu and V0 = 0 pu, then e ≈ 0, 9428.

A remark from (4.25) is that voltage derivative can be computed by

dV(t)

dt
=

√
3V0w sin (wt+ θ0)nbal + nbalwV1 − nbalwV2 (4.35)

= nbalwV+
0 − nbalwV−

0 + nbalwV1 − nbalwV2, (4.36)
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in which V+
0 and V−

0 are

V+
0 =

√
3V0

enbal(wt+θ0)

√
2

nbal (4.37)

V−
0 =

√
3V0

e−nbal(wt+θ0)

√
2

nbal, (4.38)

and they represent zero sequence associated to the quaternion exponential with positive and
negative nbal, respectively. Notice that they are the output of a mathematical decomposition.
Actually, they do not have a clear interpretation.

It is noteworthy that quaternions maps three-phase voltage derivatives, for both balanced and
unbalanced conditions, into products. Integrals can be computed likewise. It is highlighted that
phasors also have the capability of turning a time derivative into a product. However, they operate
only one phase at a time. So, the former tool is better than the latter because it allows calculus
on all phases simultaneously with quaternion products. Moreover, it may be an appropriate
framework for the development of power theories, since it is in the time domain and yet retain
phasor simplification properties.

As a consequence from (4.36), it is possible to come up with a linear state space model for the
quaternion symmetrical components. Consider the following vector of quaternion variables

x =
[

V+
0 V−

0 V1 V2

]T
. (4.39)

Its evolution equation is given by

ẋ =


nw 0 0 0

0 −nw 0 0

0 0 nw 0

0 0 0 −nw


︸ ︷︷ ︸

A

x+ η, (4.40)

in which A is the evolution matrix and η ∈ H4 is the state noise. An appropriate observation
model could be

V =
[
1 1 1 1

]
︸ ︷︷ ︸

H

x+ v, (4.41)

in which H is the observation matrix and v ∈ H is the measurement noise. It is noteworthy that
this proposed state space model is linear. It is possible to apply it for estimating the symmetrical
components and, indirectly, the phasors magnitudes and angles, via the Fortescue transformation.
This discussion, nevertheless, is beyond the scope of this dissertation and it is suggested for further
investigations.
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Figure 4.4: System consisting of an ideal power supply connected via three wires to a balanced
load consisting of three RLC impedances connected in wye.

4.2 Loads

4.2.1 Without Mutual Coupling

This subsection is based on [41], in which a three-phase balanced wye load is studied. This
approach also applies to delta (∆) loads and works both on three and four wire systems as will
be shown.

The author of this dissertation proposed a balanced quaternion impedance in [41]. For this
purpose, he considered a load consisting of three RLC impedances connected in wye as shown in
Figure 4.4. In this case, Ra = Rb = Rc = R, La = Lb = Lc = L and Ca = Cb = Cc = C. Then he
applied the Kirchhoff Voltage Law (KVL) for each phase. Since the system is balanced, the set of
equations obtained are equal to

va(t) = Ria(t) + L
dia(t)

dt
+

1

C

∫
ia(t)dt (4.42)

vb(t) = Rib(t) + L
dib(t)

dt
+

1

C

∫
ib(t)dt (4.43)

vc(t) = Ric(t) + L
dic(t)

dt
+

1

C

∫
ic(t)dt. (4.44)

In the quaternion format, the three-phase voltage and current, given by (3.1) and (3.5), are related
by (the time index is dropped for the ease of representation, however quantities are still in the
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time domain)

V = RI + L
dI
dt

+

∫
Idt. (4.45)

Applying (3.42) and (3.43) for the current in the former equation,

V =
(
R+ nwL− n

wC

)
I, (4.46)

in which n is considered equal to nbal. The subscript “bal” is omitted for notation simplification.

Just as in single-phase circuits, the three-phase quaternion impedance is defined as the element
relating voltage and current, more specifically, voltage right divided by current.

Z = VI−1 (4.47)

It is worth mentioning that despite voltage and current being time variant in (4.47), the impedance
is constant for balanced conditions and depends only on load parameters. This is expected since
the load is linear and time invariant (LTI). If the quaternion element was found to be a time varying
element, this would be an inappropriate definition because it could lead to the misunderstanding
that the load is time variant, though it is not.

Additionally, all impedance association rules applies similarly to the phasorial theory. However,
the fact that the product is not commutative should be regarded. For the series RLC circuit under
discussion, the impedance is

Z = R+ n
(
wL− 1

wC

)
. (4.48)

Its real part is equal to the resistive elements in the circuit. Its vectorial part, which have x, y and
z components, is equivalent to the reactive elements. So, it is correct to state that the imaginary
unit employed via phasors is substituted by the complex element n.

The quaternion admittance can be defined as the inverse of the impedance,

Y = Z−1 (4.49)

Y = IV−1. (4.50)

In this specific case,

Y =
R− n

(
wL− 1

wC

)
R2 +

(
wL− 1

wC

)2 . (4.51)

Theorem 1 [Parallel association rule]
If two three-phase loads are in parallel, then the equivalent admittance is equal to the sum of the
individual ones. The voltage over both loads is equal and the total amount of current drawn from
the source (I) is the sum of the currents of each load (IL1 and IL2). So,

Yeq = IV−1 (4.52)

= (IL1 + IL2)V−1 (4.53)

= YL1 + YL2. (4.54)
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This dissertation further the results presented both in [6,41] because unbalanced conditions are
considered. If the supply voltage is unbalanced, then the currents are likely to be also unbalanced.
Hence, (4.46) does not apply because (3.42) is valid only for balanced conditions. In this case,
symmetrical components proposed in this work can be used. Although (3.42) does not apply, the
quaternion voltage derivative can be rewritten according to (4.36). So the impedance must be
computed in the sequence domain, rather than the phase domain. Making use of phasor as an
auxiliary tool,  V̂a

V̂b

V̂c


︸ ︷︷ ︸

Vabc

=

 Ẑp 0 0

0 Ẑp 0

0 0 Ẑp


︸ ︷︷ ︸

Zabc

 Îa

Îb

Îc


︸ ︷︷ ︸

Iabc

(4.55)

(
F−1Vabc

)︸ ︷︷ ︸
V012

=
(
F−1ZabcF

)︸ ︷︷ ︸
Z012

(
F−1Iabc

)︸ ︷︷ ︸
I012

(4.56)

V012 = Z012I012, (4.57)

in which

Z012 =

 Ẑp 0 0

0 Ẑp 0

0 0 Ẑp

 . (4.58)

In this case, positive, negative and zero sequence impedances are equal to the phase impedance.
The imaginary part of the complex impedance, its reactive part, is associated with the time deriva-
tive/integral of the voltage. Applying the derivatives of (4.36) each complex sequence impedance
can be rewritten as a quaternion. Besides changing the imaginary unit j multiplying the reactances
into the quaternion axis n, there are also sign changes, accordingly to the sequence multiplying it.
For example, if the impedance is being multiplied by the negative sequence, the imaginary unit is
substituted by the negative of n. So, it can be shown that voltage is

V = Z0I+0 + Z∗
0I−0 + Z1I1 + Z2I2, (4.59)

in which the quaternion impedances in the sequence domain are

Z1 = Z∗
2 = Z0 = Z =

[
R+ n

(
wL− 1

wC

)]
. (4.60)

It is noteworthy that since the system has only three wires, the zero sequence current is always
null.

A four-wire system can be generalized from a wye load with an impedance to the ground
(Ẑn = Rn + jXn). Considering a per phase complex impedance Ẑp = R + jX, the impedance
matrix (Zabc) is

Zabc =

 Ẑp + Ẑn Ẑn Ẑn

Ẑn Ẑp + Ẑn Ẑn

Ẑn Ẑn Ẑp + Ẑn

 . (4.61)
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Applying the Fortescue transformation,

Z012 =

 Ẑp + 3Ẑn 0 0

0 Ẑp 0

0 0 Ẑp

 . (4.62)

So, quaternion voltage is given by

V = Z0I+0 + Z∗
0I−0 + Z1I1 + Z2I2, (4.63)

in which

Z0 = (R+ 3Rn) + n (X + 3Xn) (4.64)

Z1 = Z∗
2 = R+ nX (4.65)

A similar approach for the admittance can be developed and results are analogous. So, this will
not be shown in this dissertation for the sake of simplicity.

4.2.2 With Mutual Coupling

As an outcome of (4.25) proposed in this dissertation, the mutual coupling can also be con-
sidered in the quaternion representation.

Consider a balanced load with a proper complex impedance denoted by Zp = Rp + jXp and
with mutual coupling denoted by Ẑm = Rm + jXm. Fortescue symmetrical transformation can
be applied to decouple the system. So, following the method applied in (4.55 through 4.57) and
considering

Zabc =

 Ẑp Ẑm Ẑm

Ẑm Ẑp Ẑm

Ẑm Ẑm Ẑp

 , (4.66)

then the sequence impedances are

Z012 =

 Ẑp + 2Ẑm 0 0

0 Ẑp − Ẑm 0

0 0 Ẑp − Ẑm

 . (4.67)

Expressing current as a combination of positive and negative sequences and applying (4.36),
then the quaternion voltage can be expressed as

V = [(Rp −Rm) + n (Xp −Xm)] I1 + [(Rp −Rm)− n (Xp −Xm)] I2. (4.68)

The zero sequence is not considered due to the fact of the analysis being performed on a three-wire
system. Nevertheless, a four-wire system can be considered by including this impedance in this
last equation.
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4.2.3 Unbalanced Impedance

Any unbalanced passive element can be represented by the C3×3 impedance matriz

Zabc =

 Ẑaa Ẑab Ẑca

Ẑab Ẑbb Ẑbc

Ẑca Ẑbc Ẑcc

 , (4.69)

in which Ẑxx is the proper impedance of phase “X”, and Ẑxy is the mutual impedance between
phases “X” and “Y”. Since voltage and current can be unbalanced, the system will be investigated
in the symmetrical sequences domain. So, the impedance matrix is now given by

Z012 =

 Ẑ00 Ẑ01 Ẑ02

Ẑ10 Ẑ11 Ẑ12

Ẑ20 Ẑ21 Ẑ22

 . (4.70)

The expressions for each matrix term are not shown for the sake of simplicity. Notice that Z012

is not a symmetrical matrix like Zabc. As previously discussed, each of this terms can have their
equivalent in the quaternion domain by simply changing the imaginary unit for the quaternion
plane direction of the term multiplying it. For example, the term Ẑ01 relates zero sequence voltage
to the positive sequence current. Therefore, its quaternion version is given by

Z01 = R01 + nwX01, (4.71)

in which R and X are the resistive and reactive components, respectively. If the term Ẑ02 is
considered, then it ca nbe given by

Z02 = R02 − nwX02. (4.72)

Considering the aforementioned modifications, the quaternion impedance matrix is defined as

Z012 =

 Z00 Z01 Z02

Z10 Z11 Z12

Z20 Z21 Z22

 . (4.73)

Differently from a balanced element, the off-diagonal elements may not be nil. This means that
a positive sequence current can generate zero and/or negative sequences voltages and vice-versa.
However, each element rotates in a different direction or plane. In other words, multiplying I1 by
Z01 generates a positive sequence voltage, rather than the expected zero sequence. Consequently,
the system cannot be solved in the time domain. At least, not in the usual way.

As a workaround, the basis matrix

B =

 nbal 0 0

0 qp 0

0 0 1

 (4.74)
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can be employed to change the rotation of the sequence components in conjunction with a modified
impedance given by

Zmod =

 Z00
Z01√

2

−qpZ02√
2√

2Z10 Z11 −qpZ12√
2qpZ20 qpZ21 Z22

 . (4.75)

After some algebraical manipulations, the quaternion voltage in terms of the system current
is

V012 =

{[
Zmod

(
IT012BH

)T ]T B
}T

, (4.76)

with V012 =
[

V+
0 V1 V2

]T
and with I012 defined likewise. The upper index H denotes the

hermitian operation, which is achieved by a conjugation followed by a transposition. As V0 is
composed of two rotating elements with equal magnitudes, only V+

0 is used for computations.
And the quaternion voltage is obtained as

V = V+
0 −

(
V+

0

)∗
+ V1 + V2 (4.77)

Given the system impedance and voltage, the current can be computed analogously using the
admittance instead of the impedance.

It is noteworthy that this method allows to operate the system in the time domain rather than
the frequency as it is usually performed with phasors. Although operating all phases simultane-
ously, each of the symmetrical components is solved separately. If the voltage is unbalanced, V012

needs to be first estimated in order to apply this method. On the other hand, if the source is
balanced, the voltage samples can be directly substituted in V012, eliminating the aforementioned
estimation process.

4.3 Transmission lines

In this section, a quaternion model for transmission lines with and without mutual electrical
coupling is proposed. It is worth emphasizing that the results presented in this section are an
outcome of the proposed symmetrical components theory.

Consider the same system employed in section 4.2, but with a transmission line connecting
the supply and the load, as shown in Figure 4.5. If the transmission line is balanced and perfectly
transposed, its complex impedance matrix is equal to (4.66). in which Ẑp is the cable proper
impedance, and Ẑm is the mutual impedance between cables. In order to decouple this system,
the Fortescue transformation can be applied resulting in (4.67). The voltage drop over the line
is equivalently to (4.63). Therefore, the quaternion impedance for a transmission line has been
presented.
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Figure 4.5: Three-phase system consisting of a source, a transmission line and a load.

4.4 Active, Reactive and Apparent Power

In this section, the quaternion power, as defined by [6, 41], is presented and discussed. After-
wards, a symmetrical decomposition of the power is proposed.

According to [6, 41], power is defined as

S(t) = V(t)I∗(t). (4.78)

Substituting the values of voltage (3.1) and current (3.5),

S(t) = pabc(t) + Q(t), (4.79)

in which the real part pabc(t) is the instantaneous active power given by

pabc(t) = vaia + vbib + vcic (4.80)

and the vectorial part Q(t) is the quaternion instantaneous reactive power given by

Q(t) = −~U ×~I = qax + qby + qcz, (4.81)

qa = vcib − vbic, (4.82)

qb = vaic − vcia, (4.83)

qc = vbia − vaib. (4.84)

It is noteworthy that the proposed definition for the quaternion power employs the current
conjugate, rather than the current itself employed in [37]. As a consequence, (4.81) is equivalent to
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the negative of Peng’s reactive power presented in [22]. This will be shown to be more appropriate
in the following analysis.

Considering the RLC circuit from Figure 4.4, and substituting the voltage by (4.46),

S = ZII∗ (4.85)

S =

[
R+ n

(
wL− 1

wC

)]
II∗. (4.86)

Applying the property (2.21), the power is

S =
(
R|I|2

)
+ n

[(
wL− 1

wC

)
|I|2
]
. (4.87)

It is observable that the reactive power is in the same direction of the impedance vectorial part,
which corresponds to the reactance effects. This relation is equivalent to the existing in the
phasorial domain. So, the predominance of capacitors or inductors is clearly shown through
the direction of the quaternion reactive power. Nonetheless, the proposed definition is more
appropriate than Nos’. Additionally, it gives a meaning to the reactive power direction that lacks
in vectorial power theories, such as [8, 9, 22]. It is worth mentioning that this quantity accounts
for any phenomena that displaces the quaternion current in relation to the voltage, for example
any distortion that may occur.

The power norm will now be investigated and its relation to others theories will be discussed.
Since the real and vectorial parts are orthogonal to each other,

|S|2 = p2abc + |Q|2. (4.88)

The power norm can be rewritten in terms of voltage and current norm, which are given by (3.74),
as

|S|(t) = |V||I|. (4.89)

It is noteworthy that under unbalanced conditions, they present an oscillatory behaviour. So,
power norm will behave likewise. If the apparent power is defined as the RMS value of this norm,
then

SQ = |S|RMS =

√
1

T

∫ T

0
|S|2dt (4.90)

=

√
1

T

∫ T

0
|V|2|I|2dt (4.91)

=

√
1

T

∫ T

0

[
|V|2RMS + |V|2osc cos (2wt+ φosc)

] [
|I|2RMS + |I|2osc cos (2wt+ φI,osc)

]
dt. (4.92)

The mean value of a cosine harmonic is null, so the integration of the product of |V|RMS and
|I|osc is null. Therefore, the apparent power is rewritten as

SQ =

√
1

T

∫ T

0

[
|V|2RMS |I|2RMS + |V|2osc|I|2osc cos (2wt+ φosc) cos (2wt+ φI,osc)

]
dt (4.93)
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and applying the property

cos (a) cos (b) = 1

2
[cos (a+ b) + cos (a− b)] (4.94)

with a = 2wt+ φosc and b = 2wt+ φI,osc

SQ =

√
1

T

∫ T

0

{
|V|2RMS |I|2RMS + |V|2osc|I|2osc

1

2
[cos (φosc − φI,osc) + cos (4wt+ φoscφI,osc)]

}
dt

(4.95)

=

√[
|V|2RMS |I|2RMS +

1

2
|V|2osc|I|2osc cos (φosc − φI,osc)

]
(4.96)

Under unbalanced voltage conditions, |V|osc is not zero. Thus, |I|osc may not be zero, even
for a balanced resistive load. If the load is unbalanced, then the currents generated are likewise.
Therefore, the proposed apparent power SQ accounts for both supply and load unbalance.

It is noteworthy that, under conditions that generate a null oscillatory norm component, this
definition is equivalent to Buchholz’s (SB) and that was extended by Czarnecki (SC) in [13].
Czarnecki’s definition is based on vectors inner product. However, it can be rewritten in the
quaternion theory because quaternions are used for representing the same three-dimensional, or
three-phase, voltage vector. It is given by

SC = |V|RMS |I|RMS . (4.97)

The main difference between these two definitions is that in Czarnecki’s the RMS is computed
before the voltage and current product and in the proposed one the RMS is computed after
their product. It is noteworthy that the RMS values of three-phase voltage and current are not
influenced by phase unbalance as shown in (3.73). So, SQ, in contrast to SC , accounts for any
given unbalance. Whether or not the angle unbalance should be accounted in the apparent power
is still under investigation.

Power can also be computed in terms of symmetrical components as follows

S =
(
V+

0 + V−
0 + V1 + V2

) (
I+0 + I−0 + I1 + I2

)∗ (4.98)

= V1I∗1 + SU , (4.99)

in which the first term of the right hand side is the quaternion power for balanced conditions and
the last term is the unbalanced power.

It can be shown that SU is not decoupled. In other words, a given sequence voltage multiplies a
different sequence current. This happens even for a circuit that can be decoupled. In the phasorial
theory, however, power is expected to be the sum of each individual sequence contribution, without
these crossed terms.

The real part of SU represents an active power pu(t), and it is given by the inner products
of voltage and current elements (except for the term V1 · I1). Since V1 and V2 are on the same
plane, which is perpendicular to V0, then

pu(t) = p0(t) + V1 · I∗2 + V2 · I∗1 + p2(t), (4.100)
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in which p0(t) and p2(t) are the zero and negative sequence active powers, respectively. It is
noteworthy that V1I2 and V2I1 have nil mean value. So, these terms are not responsible for load
energy consumption. Actually, they represent only a power exchange between source and load.

The instantaneous active power can be related to Czarnecki’s CPC power theory, first presented
in [13] and later discussed in [55]. As shown in [55], in three-wire systems, p(t) is reduced into

p(t) = P +D cos (2wt+ ϕ) , (4.101)

in which D is the Czarnecki’s unbalanced power and ϕ is function of the ratio between positive
and negatives components. It should be highlighted that the CPC power theory does not clarify
the relationship of D and the symmetrical components. This relation is first presented in this
dissertation, and it was possible due to the geometrical visualization provided by quaternions.
The term P is composed of the active power, and it is responsible for the energy consumption.
The term D corresponds to the unbalanced terms V1I2 and V2I1.

The vectorial part of SU accounts only the cross products terms. The positive and negatives
sequence interactions outputs a quaternion parallel to nbal. On the other hand, the products
involving the zero sequence are perpendicular to nbal, as shown on (4.102) through (4.104).

Q = Q1 + Qu0 + Qu2︸ ︷︷ ︸
Qu

(4.102)

Qu0 = V0 × (I1 + I2) + (V1 + V2)× I0 V0 × (I1 + I2) + (V1 + V2)× I0︸ ︷︷ ︸
Term perpendicular to nbal

(4.103)

Qu2 = V1 × I∗2 + V2 × (I∗1 + I∗2)V1 × I∗2 + V2 × (I∗1 + I∗2)︸ ︷︷ ︸
Term parallel to nbal

(4.104)

Therefore, the direction of Q indicates the system unbalance.

In summary, the quaternion representation allows to portray the instantaneous power as well
as i) the active, ii) the reactive, and iii) the unbalanced power. Additionally, theses terms are
associated with the i) real axis, ii) nbal, and iii) (qp,qn) plane. So, they are orthogonal to each
other. This is expected to simplify the process of filtering out these elements.
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Chapter 5

Signal Transformation
This chapter will discuss Clarke and Park trans-
formations in a geometrical framework. After-
wards, a quaternion implementation of both of
them is proposed.

In the study of electrical machines, transformations are usually applied in order to simplify
mathematical operations [56]. As previously discussed, they can also be applied to map the three-
phase voltage into a bi-dimensional complex signal, which can be processed by means of complex
algebra algorithms [29–32].

The study of electrical machines needs a geometrical perspective due to the machine con-
struction aspects. As a result, the Clarke transformation was developed for a two-dimensional
(R2) analysis [57]. However, this specific R2 analysis for can be considered as one among other
possible approaches. Gataric in [58], extended this cartesian analysis for polyphase systems by
using the three-dimensional space (R3). As a result, both Clarke and Park transformations can
be interpreted in the R3, as presented in [53].

Three-phase voltage without zero sequence component is within the plane that is orthogonal
to nbal, as discussed in sections 3.1 and 4.1. Moreover, section 4.1 proved that quaternion zero
sequence component is parallel to nbal and perpendicular to the QVL balanced plane. It can be
shown that the Clarke transformation is equivalent to rotating the reference frame to lie within
this plane. In other words, x, y and z are mapped to qp, qn and nbal.

This equivalence will be shown step-by-step based on [53]. The initial reference frame is
illustrated in Figure 5.1, extracted from [53]. The axis nomenclature in the figure are the same
used in the reference. They are equivalent to the x, y and z used in this dissertation. Making z
or C orthogonal to the QVL balanced plane is achieved by moving C to the corner of the box of
Figure 5.1. This can be performed in terms of elementary rotations1.

Rotating C clockwise around A by 45° yields Figure 5.2, extracted from [53]. This can be

1These are said to be elementary because they are executed around one of the system coordinates axes.
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Figure 5.1: Initial reference frame before Clarke Transformation.

achieved through the following matrix

K1 =

 1 0 0

0 cos(−45°) sin(−45°)
0 − sin(−45°) cos(−45°)

 . (5.1)

Rotating the AYC’ frame counter clockwise around Y by 35, 26° yields the Clarke reference
frame shown in Figure 5.3, extracted from [53]. This is achieved by

K2 =

 cos(35, 26°) 0 − sin(35, 26°)
0 1 0

sin(35, 26°) 0 cos(35, 26°)

 . (5.2)

So, the equivalent matrix is obtained by the product TC = (K2) (K1)

TC =

√
2

3

 1 −1
2 −1

2

0
√
3
2 −

√
3
2

1√
2

1√
2

1√
2

 . (5.3)

It is noteworthy that (5.3) is equivalent to the Clarke power invariant transformation matrix, as
it was the objective. Additionally, applying this to the frame x, y and z outputs qp, qn and nbal,

√
2

3

 1 −1
2 −1

2

0
√
3
2 −

√
3
2

1√
2

1√
2

1√
2


 x

y
z

 =


2x−y−z√

6
y−z√

2
x+y+z√

3

 =

 qp

qn

nbal

 . (5.4)
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Figure 5.2: Reference frame after a clockwise rotation of C around A by 45°.

Figure 5.3: Resulting reference frame after Clarke transformation.
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Therefore it is proven that the Clarke transformation is equivalent to translating the reference
frame to the QVL plane.

Since the Clarke transformation can be interpreted as a rotation, it can be performed in the
quaternion domain. In order to do so, the equivalent axis and angle of rotation must be determined.
It is worth mentioning that there are an infinite number of transformations that maps the z axis
to be perpendicular to the QVL balanced plane, and Clarke is one of them.

The axis of rotation (d ∈ R3) can be computed as the eigenvector of the rotation matrix
associated with the eigenvalue of 1, accordingly to (2.60). In this case it is

d = vec (d) ≈
[
0, 7693 −0, 5903 0, 2445

]
. (5.5)

The angle of rotation, given by (2.62), is

θr ≈ 56, 60°. (5.6)

In the quaternion domain, the reference change can be achieved through the product

vec−1 (TC(v)) = RfCvR−1
fC , (5.7)

in which v represents an arbitrary axis and

RfC = ed θr
2 . (5.8)

In order to confirm these results, this quaternion rotation can be applied to each axis separately
and then check if they are correctly mapped to qp, qn and nbal. These computations were made
in Matlab and are not presented here for the sake of simplicity. The results obtained were

RfCxR−1
fC = qp (5.9)

RfCyR−1
fC = qn (5.10)

RfCzR−1
fC = nbal (5.11)

as it was expected. However, the α and β components are obtained by applying this transformation
on the quaternion voltage, rather than the reference frame itself.

Rotating the reference while keeping a vector still is equivalent to rotating the vector in the
opposite direction. This is shown in the example 4.

Example 4 [Difference between reference and vector rotation]

Consider rotating the vector v = x around y by 90°. The result is vrot = −z. On the other
hand, if the reference is rotated around y by the same angle, then the new reference is given by
xrot = −z, yrot = y and zrot = x. The original vector is then given by v = 1x = zrot. Table 5.1
shows this difference. Therefore, in order to achieve an equivalence between these rotations, the
angle employed must have its sign changed.
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Table 5.1: Comparison of vector and reference rotation around y by 90°.

Original vector Rotated vector Rotated reference
v = x vrot = −z v = zrot

So, in order to apply the Clarke transformation via quaternions, the angle of rotation employed
must be the negative of the one found in (5.6). Therefore, the α and β components are

Vαβ0 = vec−1
([

0 Vα Vβ V0

])
= RCVR−1

C , (5.12)

in which RC is name the quaternion Clarke rotational and is given by

RC = R∗
fC . (5.13)

Since there are two ways of computing this transformation, it is important to know which
method is more computationally efficient. Both methods were implemented in Matlab and com-
pared by the method applied for computing the QVL normal quaternion n in section 3.1. For
more details, reader is referred to the code used, which is attached in the Appendix II.

Figure 5.4 presents a box plot for the computational time demanded for each method. The
red line shows the mean value. The lower and upper part of the body represents the 25th and
75th percentil limits, respectively. The whisker represent the maximum and minimum values.
The outliers have been removed for a better visualization. The quaternion method demanded
an average computational time approximately six times higher than the matrix implementation,
2, 4.10−5s and 0, 4.10−5s, respectively. Additionally, the former presented a higher body interval.
Although the quaternion method performed poorly, in terms of computation time, it requires only
three elements stored (two for the axis of rotation and one for the angle) instead of the 9 elements
in the matrix implementation. Figure 5.5 shows that the cumulative average for the demanded
computational time in the quaternion implementation approaches smoothly and stabilizes around
the time value obtained. Therefore, the number of conditions simulated has been shown to be
enough for trustworthy results. Due to the large amount of data, the abscissa has been plotted in
a log scale for better visualization. This same analysis was repeated for its classical version and
results were analogous.

The Park transformation, known as DQ0, is also very important for electrical machine analysis
[57]. It is usual to think of it as a change from a stationary reference frame to a non-stationary one
in the two dimensional space. The angular speed of the new coordinate system is considered equal
to the synchronous speed of the machine under analysis. However, this can be interpreted in the
three-dimensional space, likewise. It is observable that it can be achieved through two subsequent
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Figure 5.4: Comparison of the Clarke transformation implemented via matrix and via quaternions.
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Figure 5.5: Cumulative average for the demanded computational time of the Clarke quaternion
implementation. The red dashed line indicates the final average value obtained.
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transformations given by

TP =

 cos(θ) sin(θ) 0

− sin(θ) cos(θ) 0

0 0 1


︸ ︷︷ ︸

KP

√
2

3

 1 −1
2 −1

2

0
√
3
2 −

√
3
2

1√
2

1√
2

1√
2


︸ ︷︷ ︸

TC

(5.14)

=

√
2

3

 cos(θ) cos(θ − 120°) cos(θ + 120°)
− sin(θ) − sin(θ − 120°) − sin(θ + 120°)

1√
2

1√
2

1√
2

 , (5.15)

in which TP is the Park power invariant matrix. It is worth mentioning that KP represents a
rotation around the “z” axis, that is equivalent to the quaternion z. Since it is performed after
the Clark transformation, the rotation actually occurs around the vector orthogonal to the QVL
balanced plane. In other words and using the quaternion notation, KP is equivalent to

R[Kp] = ez θ
2 . (5.16)

As previously mentioned, the angular speed used is equal to the synchronous. So, the angle
θ is substituted by θ = wt, in which w is the electrical angular frequency. Similarly to (5.12),
the DQ0 transformation can be achieved via quaternions, regarding that the voltages are being
rotated instead of the reference, i.e.

Vdq0 = vec−1
([

0 Vd Vq V0

])
= R−1

[Kp]R
−1
fCVRfCR[Kp]. (5.17)

With some algebraic effort, it can be shown that the Park transformation axis and angle of rotation
are time varying. So, although it is possible to achieve a more compact equation instead of (5.17),
this will not be done for the sake of simplicity.

Both methods were implemented on Matlab, using the code in Appendix III, and the demanded
computational time for each of them is compared, as shown in Figure 5.6. For this purpose, the
Monte Carlo simulation previously discussed was run. It is noteworthy that the average demanded
time via quaternion is approximately 4 times faster and its variance is 5, 3 times lower. Moreover,
this implementation requires storing 6 values (two for RfC axis, 1 for its angle, and likewise
for R[Kp]) instead of the 9 required in (5.15). Figure 5.7 shows that the cumulative average for
the demanded computational time in the quaternion implementation approaches smoothly and
stabilizes around the time value obtained. Therefore, the number of conditions simulated has
been shown to be enough for trustworthy results. Due to the large amount of data, the abscissa
has been plotted in a log scale for better visualization. This same analysis was repeated for its
classical version and results were analogous.

This chapter discussed the application of quaternions to perform Clarke and Park transfor-
mations, which are typical in the analysis of electrical machines. It has been shown that in both
cases, the quaternion version is more efficient from the storage perspective because less variables
are needed. For the Park transform, it performed approximately 3,6 times faster than the matrix
version. Therefore, application of this novel implementation on control algorithms is suggested
for future research.
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Figure 5.6: Comparison of the Park transformation implemented via matrix and via quaternions.
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Figure 5.7: Cumulative average for the demanded computational time of the Park quaternion
implementation. The red dashed line indicates the final average value obtained.
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Chapter 6

Conclusions

This dissertation addressed the representation of a three-phase power system in the Hamilton
number system H instead of phasors. The objectives were to i) define voltage, current, passive
elements and power as quaternions, ii) propose a novel symmetrical components theory, iii) pro-
vide a quaternion implementation of Clarke and Park transformations, and iv) indicate possible
applications in up to date researching problems.

Definitions of voltage and current proposed in [36,38] were investigated with a geometrical point
of view. It was observed that the quaternion voltage and current locus, QVL and QCL, respectively
conveys steady state information about the system. This representation is not as compact as the
phasorial one, because an additional real element is needed, which does not contribute with new
information. Nonetheless, it offers a wide range of quantities that were shown to be related to
the voltage unbalance. Therefore, they may be employed for quantifying this phenomenon. So,
as a future research, it is suggested to investigate the relation of these quantities to the physical
impacts on an induction motor and then compare it to the VUF. The methodology employed can
also be repeated to characterize the geometrical aspects of the flux in usual electrical machines.
Finally, it was shown that if the stator windings are disposed perpendicular to each other, then
the total amount of rotating flux is higher because no components cancel out. So, a new type of
electrical machine can be developed in the future.

Next, a novel quaternion symmetrical component decomposition was proposed. In contrast to
Gou’s definition [33], it was shown to be equivalent to Fortescue’s theory. Additionally, it made
possible to map derivatives and integrals into products, thus enabling a generalized three phase
impedance definition. It is noteworthy that, in this new version, the components are represented in
the time domain, rather than the frequency domain as in its traditional version. As a consequence,
a linear state space model was achieved. Applying it to the dynamic estimation of the sequence
components magnitudes and phases is suggested for future research. With these components, the
phasors can be indirectly estimated. The usage of the model for harmonics quantification and for
electrical frequency determination is also suggested for further research.

As discussed in the author’s previous works [6, 41], the quaternion theory allows to represent
three phase quantities in one mathematical entity. Moreover, currents can be computed in the
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time domain without solving differential equations. Exploring this characteristic for transient
studies is also suggested for future investigation.

Afterwards, the instantaneous power as defined in [6, 41] was investigated. It was shown that
this definition allows to explain the reactive power direction. Hence, it is more appropriate than
those based solely on three-dimensional temporal vector such as Peng’s presented in [22]. An
apparent power was proposed as the RMS value of the power norm. The differences between
this quantity and the one resulting from Czarnecki’s definition [13] were shown. A disscussion on
whether or not the former is more appropriate than the latter is suggested for future investigations.
It was also shown that the unbalanced power is not decoupled, even for decoupled systems. This
means that different components interacts producing and/or absorbing power. For example, there
are power terms originated from positive sequence voltage multiplying negative sequence current.
With the phasorial theory, this phenomenon cannot be observed. Therefore, this is an advantage
of quaternion representation. Additionally, active, reactive and unbalanced power are represented
orthogonally.

In the last section of chapter 4, Clarke and Park transformations were investigated. A geomet-
rical interpretation of both of them was presented based on [53]. Then, an equivalent quaternion
implementation is proposed. It required only three and six variables, for Clarke and Park re-
spectively, instead of the nine required in their classical matrix version. Although the quaternion
required a longer computational time for the Clarke implementation, it was approximately 3, 6

times faster in the case of the Park algorithm. Therefore, further investigations on this Park
implementation, and its possible applications are suggested as research topics.

In summary, this dissertation consolidated the electrical circuit theory based on the hyper-
complex non-commutative Hamilton algebra. The main contributions were the generalization of
the quaternion impedance, the development of a novel symmetrical components theory and a new
implementation of Clarke and Park transformations. As a consequence, estimation of electrical
voltage and/or current parameters, such as frequency, magnitude and phase, are suggested for
future research. Applications for the novel Park transform are also indicated as a feasible and
required investigation.
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I. MATLAB CODE FOR COMPARISON OF THE
QVL PLANE COMPUTATION METHOD.

1 %% This f i l e i s intended to compare the performance o f the n u l l space
2 % method f o r determining the quatern ion n and the c r o s s product method

.
3
4 addpath Functions /
5
6 %% E l e c t r i c a l parameters
7
8 f = 60 ;
9 w = 2∗ pi ∗ f ;

10 Nsamp = 64 ; % # of samples per c y c l e
11 Cycles = 1 ; % # of s imulated c y c l e s
12 t = ( 0 : Nsamp∗ Cycles −1)/(Nsamp∗ f ) ;
13
14 %% Unbalance parameters
15
16 Ncases = 15625 ; % # of unbalanced ca s e s
17
18 V0 = l i n s p a c e ( 0 , . 5 , Ncases ^(1/6) ) ;
19 V1 = l i n s p a c e ( . 5 , 1 . 5 , Ncases ^(1/6) ) ;
20 V2 = l i n s p a c e ( 0 , . 5 , Ncases ^(1/6) ) ;
21 theta . V0 = deg2rad ( l i n s p a c e (0 ,360 , Ncases ^(1/6) ) ) ;
22 theta . V1 = deg2rad ( l i n s p a c e (0 ,360 , Ncases ^(1/6) ) ) ;
23 theta . V2 = deg2rad ( l i n s p a c e (0 ,360 , Ncases ^(1/6) ) ) ;
24
25 [ V0 , V1 , V2 , theta . V0 , theta . V1 , theta . V2 ] = ndgrid (V0 , V1 , V2 , theta .

V0 , theta . V1 , theta . V2) ;
26
27
28 %% Monte Carlo Simulat ion
29 t1 = [ ] ; t2 = [ ] ; t1_avg_behaviour = [ ] ; t2_avg_behaviour = [ ] ;
30
31 f o r cond = 1 : Ncases
32
33 %% Mapping from Sequence to Phase v a r i a b l e s
34 f a s o r . V012 = [ V0( cond ) ∗ exp (1 i ∗ theta . V0( cond ) ) ;
35 V1( cond ) ∗ exp (1 i ∗ theta . V1( cond ) ) ;
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36 V2( cond ) ∗ exp (1 i ∗ theta . V2( cond ) ) ] ;
37
38 f a s o r . Vabc = sym2abc ( f a s o r . V012 ) ;
39
40 %% Mapping to the time domain
41
42 va = sq r t (2 ) ∗ r e a l ( f a s o r . Vabc (1 ) . ∗ exp (1 i ∗w∗ t ) ) ;
43 vb = sq r t (2 ) ∗ r e a l ( f a s o r . Vabc (2 ) . ∗ exp (1 i ∗w∗ t ) ) ;
44 vc = sq r t (2 ) ∗ r e a l ( f a s o r . Vabc (3 ) . ∗ exp (1 i ∗w∗ t ) ) ;
45
46 Vabc = [ va ; vb ; vc ] ;
47
48 f o r c = 1 :1 e3
49
50 t i c ;
51 A = [ Vabc ( : , 1 ) , Vabc ( : , 2 ) ] . ' ;
52 n1 = n u l l (A) ;
53 t1 ( end+1) = toc ;
54
55 t i c ;
56 n2 = c r o s s (Vabc ( : , 1 ) , Vabc ( : , 2 ) ) ;
57 n2 = n2 . / norm( n2 ) ;
58 t2 ( end+1) = toc ;
59
60 l t 1 = length ( t1_avg_behaviour ) ;
61 i f l t 1 == 0
62 t1_avg_behaviour ( end+1) = t1 ( end ) ;
63 t2_avg_behaviour ( end+1) = t2 ( end ) ;
64 e l s e
65 t1_avg_behaviour ( end+1) = ( t1_avg_behaviour ( end ) ∗ l t 1 + t1 ( end )

) / ( l t 1 + 1) ;
66 t2_avg_behaviour ( end+1) = ( t2_avg_behaviour ( end ) ∗ l t 1 + t2 ( end )

) / ( l t 1 + 1) ;
67 end
68 % t1_avg_behaviour ( end+1) = mean( t1 ( t1 >0) ) ;
69 % t2_avg_behaviour ( end+1) = mean( t2 ( t1 >0) ) ;
70 % t1_var_behaviour ( c , cond ) = var ( t1 ( t1 >0) ) ;
71 % t1_var_behaviour ( c , cond ) = var ( t2 ( t1 >0) ) ;
72
73
74 end
75 end

78



76
77 toc
78
79 t1_avg = mean( t1 ( : ) )
80 t2_avg = mean( t2 ( : ) )
81
82 t1_var = var ( t1 ( : ) )
83 t2_var = var ( t2 ( : ) )
84
85
86 %% Save . mat workspace
87
88 save ( ' Cases / Resu l t s /Computing_n_Comparison . mat ' ) ;
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II. MATLAB CODE FOR COMPARISON OF MATRIX AND
QUATERNION IMPLEMENTATION OF CLARKE

TRANSFORM.

1 %% This f i l e performs the Clarke t rans fo rmat ion v ia matrix and v ia
2 % quatern ion f o r s e v e r a l balanced and unbalanced co n d i t i o n s . Both
3 % implementat ions are compared .
4
5 c l o s e a l l ;
6 c l e a r ;
7 c l c ;
8
9 addpath ( genpath ( ' Funct ions / ' ) ) ;

10
11 %% E l e c t r i c a l parameters
12
13 f = 60 ;
14 w = 2∗ pi ∗ f ;
15 Nsamp = 64 ; % # of samples per c y c l e
16 Cycles = 1 ; % # of s imulated c y c l e s
17 t = ( 0 : Nsamp∗ Cycles −1)/(Nsamp∗ f ) ;
18
19 %% Unbalance parameters
20
21 Ncases = 4096 ; % # of unbalanced ca s e s
22
23 V0 = l i n s p a c e ( 0 , . 5 , round ( Ncases ^(1/6) ) ) ;
24 V1 = l i n s p a c e ( . 5 , 1 . 5 , round ( Ncases ^(1/6) ) ) ;
25 V2 = l i n s p a c e ( 0 , . 5 , round ( Ncases ^(1/6) ) ) ;
26 theta . V0 = deg2rad ( l i n s p a c e (0 ,360 , round ( Ncases ^(1/6) ) ) ) ;
27 theta . V1 = deg2rad ( l i n s p a c e (0 ,360 , round ( Ncases ^(1/6) ) ) ) ;
28 theta . V2 = deg2rad ( l i n s p a c e (0 ,360 , round ( Ncases ^(1/6) ) ) ) ;
29
30 [ V0 , V1 , V2 , theta . V0 , theta . V1 , theta . V2 ] = ndgrid (V0 , V1 , V2 , theta .

V0 , theta . V1 , theta . V2) ;
31
32
33 %% D e f i n i t i o n o f Clarke Matrix Transformation and the equ iva l en t

quatern ion
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34
35 T = sq r t (2/3) ∗ [ 1 −1/2 −1/2;
36 0 sq r t (3 ) /2 −s q r t (3 ) /2 ;
37 1/ sq r t (2 ) 1/ sq r t (2 ) 1/ sq r t (2 ) ] ;
38
39 % Axis o f r o t a t i o n
40 [ eigVec , e igVal ] = e i g (T) ;
41 d = ( eigVec ( : , 1) ) ;
42 q . d = quatern ion (d) ;
43 % Angle o f r o t a t i o n
44 theta_r = acos ( ( t r a c e (T) − 1 ) / 2) ;
45
46 % Quaternion r o t a t i o n
47 Rt = R( − [0 ;d ] , theta_r ) ;
48 Rtinv = Rinv ( − [0 ;d ] , theta_r ) ;
49 q . Rt = quatern ion (Rt) ;
50 q . Rtinv = quatern ion ( Rtinv ) ;
51
52
53 %% Monte Carlo Simulat ion
54 NrunMonteCarlo = 1e3 ;
55 t1 = [ ] ; t2 = [ ] ; t1_avg_behaviour = [ ] ; t2_avg_behaviour = [ ] ;
56 f o r cond = 1 : Ncases
57
58 %% Mapping from Sequence to Phase v a r i a b l e s
59 f a s o r . V012 = [ V0( cond ) ∗ exp (1 i ∗ theta . V0( cond ) ) ;
60 V1( cond ) ∗ exp (1 i ∗ theta . V1( cond ) ) ;
61 V2( cond ) ∗ exp (1 i ∗ theta . V2( cond ) ) ] ;
62
63 f a s o r . Vabc = sym2abc ( f a s o r . V012 ) ;
64
65 %% Mapping to the time domain
66
67 va = sq r t (2 ) ∗ r e a l ( f a s o r . Vabc (1 ) . ∗ exp (1 i ∗w∗ t ) ) ;
68 vb = sq r t (2 ) ∗ r e a l ( f a s o r . Vabc (2 ) . ∗ exp (1 i ∗w∗ t ) ) ;
69 vc = sq r t (2 ) ∗ r e a l ( f a s o r . Vabc (3 ) . ∗ exp (1 i ∗w∗ t ) ) ;
70
71 Vabc = [ va ; vb ; vc ] ;
72 q . Vabc = quatern ion (Vabc ) ;
73 Vabc_Quat = [ z e r o s (1 ,Nsamp∗ Cycles ) ; Vabc ] ;
74
75 f o r c = 1 : NrunMonteCarlo
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76 % Via matr i ce s
77 t i c ;
78 V_T = T ∗ Vabc ;
79 t1 ( end+1) = toc ;
80
81 % Via quatern ions
82 t i c ;
83 V_TQuat = qproduct ( qproduct (Rt , Vabc_Quat) , Rtinv ) ;
84 t2 ( end+1) = toc ;
85
86 % Graphical i n v e s t i g a t i o n o f the avg and var o f the computat ional time
87 % regard ing each Monte Carlo loop
88
89
90 l t 1 = length ( t1_avg_behaviour ) ;
91 i f l t 1 == 0
92 t1_avg_behaviour ( end+1) = t1 ( end ) ;
93 t2_avg_behaviour ( end+1) = t2 ( end ) ;
94 e l s e
95 t1_avg_behaviour ( end+1) = ( t1_avg_behaviour ( end ) ∗ l t 1 + t1 ( end )

) / ( l t 1 + 1) ;
96 t2_avg_behaviour ( end+1) = ( t2_avg_behaviour ( end ) ∗ l t 1 + t2 ( end )

) / ( l t 1 + 1) ;
97 end
98 % t1_avg_behaviour ( c , cond ) = mean( t1 ( t1 >0) ) ;
99 % t2_avg_behaviour ( c , cond ) = mean( t2 ( t2 >0) ) ;

100 % t1_var_behaviour ( c , cond ) = var ( t1 ( t1 >0) ) ;
101 % t1_var_behaviour ( c , cond ) = var ( t2 ( t2 >0) ) ;
102
103
104 % t i c ;
105 % V_teste = RotateVectorQ ( q . Rt , Vabc ) ;
106 % t3 ( c , cond ) = toc ;
107 %
108 %
109 % t i c ;
110 % q .V_TQuat = q . Rt ∗ q . Vabc ∗ q . Rtinv ;
111 % t4 ( c , cond ) = toc ;
112
113 end
114 end
115
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116 t1_avg = mean( t1 ( : ) )
117 t2_avg = mean( t2 ( : ) )
118 % t3_avg = mean( t3 ( : ) )
119 % t4_avg = mean( t4 ( : ) )
120
121 t1_var = var ( t1 ( : ) )
122 t2_var = var ( t2 ( : ) )
123
124
125 %% Graphical Comparison
126
127 h = boxplot ( [ t1 ( : ) , t2 ( : ) ] , ' Labe ls ' , { ' Matrix ' , ' Quaternion ' } , ' Symbol

' , ' ' ) ;
128 s e t (h , { ' l inew ' } , {1 . 5} ) ;
129 y l a b e l ( ' Computational demanded time ( s ) ' , ' f o n t s i z e ' , 16) ;
130 x l a b e l ( ' Method ' , ' f o n t s i z e ' , 16) ;
131 % t i t l e ( ' Comparison o f Two d i f f e r e n t Clarke Implementations ' ) ;
132
133
134 %% Save . mat workspace
135
136 save ( ' Cases / Resu l t s /Clarke_Comparison . mat ' ) ;
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III. MATLAB CODE FOR COMPARISON OF MATRIX AND
QUATERNION IMPLEMENTATION OF PARK TRANSFORM.

1 %% This f i l e performs the Park t rans fo rmat ion v ia matrix and v ia
2 % quatern ion f o r s e v e r a l balanced and unbalanced co n d i t i o n s . Both
3 % implementat ions are compared .
4
5 c l o s e a l l ;
6 c l e a r ;
7 c l c ;
8
9 addpath ( genpath ( ' Funct ions / ' ) ) ;

10
11 %% E l e c t r i c a l parameters
12
13 f = 60 ;
14 w = 2∗ pi ∗ f ;
15 Nsamp = 64 ; % # of samples per c y c l e
16 Ncyc les = 1 ; % # of s imulated c y c l e s
17 t = ( 0 : Nsamp∗ Ncycles −1)/(Nsamp∗ f ) ;
18
19 %% Unbalance parameters
20
21 Ncases = 4096 ; % # of unbalanced ca s e s
22
23 V0 = l i n s p a c e ( 0 , . 5 , round ( Ncases ^(1/6) ) ) ;
24 V1 = l i n s p a c e ( . 5 , 1 . 5 , round ( Ncases ^(1/6) ) ) ;
25 V2 = l i n s p a c e ( 0 , . 5 , round ( Ncases ^(1/6) ) ) ;
26 theta . V0 = deg2rad ( l i n s p a c e (0 ,360 , round ( Ncases ^(1/6) ) ) ) ;
27 theta . V1 = deg2rad ( l i n s p a c e (0 ,360 , round ( Ncases ^(1/6) ) ) ) ;
28 theta . V2 = deg2rad ( l i n s p a c e (0 ,360 , round ( Ncases ^(1/6) ) ) ) ;
29
30 [ V0 , V1 , V2 , theta . V0 , theta . V1 , theta . V2 ] = ndgrid (V0 , V1 , V2 , theta .

V0 , theta . V1 , theta . V2) ;
31
32
33 %% D e f i n i t i o n o f Park Matrix Transformation and the equ iva l en t

quatern ion
34 f o r c = 1 :Nsamp ∗ Ncycles
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35 P{c} = sq r t (2/3) ∗ [ cos (w∗ t ( c ) ) cos (w∗ t ( c ) − 2∗ p i /3)
cos (w∗ t ( c ) + 2∗ pi /3) ;

36 −s i n (w∗ t ( c ) ) −s i n (w∗ t ( c ) − 2∗ p i /3) −s i n (w∗ t ( c ) + 2∗ pi
/3) ;

37 1/ sq r t (2 ) 1/ sq r t (2 ) 1/ sq r t (2 ) ] ;
38 end
39
40 % Clarke t rans fo rmat ion
41 T = sq r t (2/3) ∗ [ 1 −1/2 −1/2;
42 0 sq r t (3 ) /2 −s q r t (3 ) /2 ;
43 1/ sq r t (2 ) 1/ sq r t (2 ) 1/ sq r t (2 ) ] ;
44
45
46 % Axis o f r o t a t i o n f o r Clarke t rans fo rmat ion
47 [ eigVec , e igVal ] = e i g (T) ;
48 d = ( eigVec ( : , 1) ) ;
49 q . d = quatern ion (d) ;
50 % Angle o f r o t a t i o n f o r Clarke t rans fo rmat ion
51 theta_r = acos ( ( t r a c e (T) − 1 ) / 2) ;
52
53 % The second part o f the Park r o t a t i o n i s ach ieved v ia an z r o t a t i o n

o f wt .
54
55 % Quaternion Clarke r o t a t i o n a l
56 RC = R( − [0 ;d ] , theta_r ) ;
57 RCinv = Rinv ( − [0 ;d ] , theta_r ) ;
58 q .RC = quatern ion (RC) ;
59 q . RCinv = quatern ion (RCinv) ;
60
61 % Park Kp r o t a t i o n a l
62 Rp = R( − [ 0 ; 0 ; 0 ; 1 ] , w∗ t ) ;
63 Rpinv = Rinv ( − [ 0 ; 0 ; 0 ; 1 ] , w∗ t ) ;
64 q .Rp = quatern ion (Rp) ;
65 q . Rpinv = quatern ion ( Rpinv ) ;
66
67
68 %% Monte Carlo Simulat ion
69 NrunMonteCarlo = 1e3 ;
70 t1 = [ ] ; t2 = [ ] ; t1_avg_behaviour = [ ] ; t2_avg_behaviour = [ ] ;
71 f o r cond = 1 : Ncases
72
73 %% Mapping from Sequence to Phase v a r i a b l e s
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74 f a s o r . V012 = [ V0( cond ) ∗ exp (1 i ∗ theta . V0( cond ) ) ;
75 V1( cond ) ∗ exp (1 i ∗ theta . V1( cond ) ) ;
76 V2( cond ) ∗ exp (1 i ∗ theta . V2( cond ) ) ] ;
77
78 f a s o r . Vabc = sym2abc ( f a s o r . V012 ) ;
79
80 %% Mapping to the time domain
81
82 va = sq r t (2 ) ∗ r e a l ( f a s o r . Vabc (1 ) . ∗ exp (1 i ∗w∗ t ) ) ;
83 vb = sq r t (2 ) ∗ r e a l ( f a s o r . Vabc (2 ) . ∗ exp (1 i ∗w∗ t ) ) ;
84 vc = sq r t (2 ) ∗ r e a l ( f a s o r . Vabc (3 ) . ∗ exp (1 i ∗w∗ t ) ) ;
85
86 Vabc = [ va ; vb ; vc ] ;
87 q . Vabc = quatern ion (Vabc ) ;
88 Vabc_Quat = [ z e r o s (1 ,Nsamp∗ Ncycles ) ; Vabc ] ;
89
90 f o r c = 1 :1 e3
91 % Via matr i ce s
92 t i c ;
93 f o r l = 1 :Nsamp ∗ Ncycles
94 V_T( : , l ) = P{ l } ∗ Vabc ( : , l ) ;
95 end
96 t1 ( end+1) = toc ;
97
98 % Via quatern ions
99 t i c ;

100 V_TQuat = qproduct ( qproduct (Rp, qproduct ( qproduct (RC, Vabc_Quat) ,
RCinv) ) , Rpinv ) ;

101 t2 ( end+1) = toc ;
102
103 % Graphical i n v e s t i g a t i o n o f the avg and var o f the computat ional time
104 % regard ing each Monte Carlo loop
105
106 l t 1 = length ( t1_avg_behaviour ) ;
107 i f l t 1 == 0
108 t1_avg_behaviour ( end+1) = t1 ( end ) ;
109 t2_avg_behaviour ( end+1) = t2 ( end ) ;
110 e l s e
111 t1_avg_behaviour ( end+1) = ( t1_avg_behaviour ( end ) ∗ l t 1 + t1 ( end )

) / ( l t 1 + 1) ;
112 t2_avg_behaviour ( end+1) = ( t2_avg_behaviour ( end ) ∗ l t 1 + t2 ( end )

) / ( l t 1 + 1) ;
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113 end
114 % t1_avg_behaviour ( c , cond ) = mean( t1 ( t1 >0) ) ;
115 % t2_avg_behaviour ( c , cond ) = mean( t2 ( t2 >0) ) ;
116 % t1_var_behaviour ( c , cond ) = var ( t1 ( t1 >0) ) ;
117 % t1_var_behaviour ( c , cond ) = var ( t2 ( t2 >0) ) ;
118
119 % t i c ;
120 % V_teste = RotateVectorQ ( q .Rp, RotateVectorQ ( q .RC, Vabc ) ) ;
121 % t3 ( c , cond ) = toc ;
122 %
123 %
124 % t i c ;
125 % q .V_TQuat = q .Rp . ∗ q .RC .∗ q . Vabc . ∗ q . RCinv . ∗ q . Rpinv ;
126 % t4 ( c , cond ) = toc ;
127
128 end
129 end
130
131 %% Computation o f avarage and var iance va lue s
132
133
134 t1_avg = mean( t1 ( : ) ) %#ok<∗NOPTS>
135 t2_avg = mean( t2 ( : ) )
136 % t3_avg = mean( t3 ( : ) )
137 % t4_avg = mean( t4 ( : ) )
138
139 t1_var = var ( t1 ( : ) )
140 t2_var = var ( t2 ( : ) )
141 % t3_var = var ( t3 ( : ) )
142 % t4_var = var ( t4 ( : ) )
143
144 f p r i n t f ( ' \nComputation v ia quatern ions was in avarage %.2 f t imes

f a s t e r than v ia matr i ce s . \ n ' , t1_avg/t2_avg ) ;
145 f p r i n t f ( ' \ nVariance o f the quatern ion method was %.2 f lower than the

matrix one . \ n ' , t1_var/t2_var ) ;
146
147
148
149 %% Graphical Comparison
150
151 h = boxplot ( [ t1 ( : ) , t2 ( : ) ] , ' Labe ls ' , { ' Matrix ' , ' Quaternion ' } , ' Symbol

' , ' ' ) ;
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152 s e t (h , { ' l inew ' } , {1 . 5} ) ;
153 y l a b e l ( ' Computational demanded time ( s ) ' , ' f o n t s i z e ' , 16) ;
154 x l a b e l ( ' Method ' , ' f o n t s i z e ' , 16) ;
155 % t i t l e ( ' Comparison o f Two d i f f e r e n t Park Implementations ' ) ;
156
157
158 %% Save . mat workspace
159
160 % save ( ' Cases / Resu l t s /Park_Comparison . mat ' ) ;
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