

Universidade de Brasília Instituto de Ciências Biológicas Departamento de Biologia Celular Laboratório de Biologia Teórica e Computacional

# Análises de Coevolução Proteica Aplicadas ao *Docking* de Proteínas

Dissertação apresentada ao Departamento de Biologia Celular do Instituto de Ciências Biológicas da Universidade de Brasília para obtenção do grau mestre em Biologia Molecular.

# José Antonio Fiorote Santos

Orientador: Prof. Dr. Werner Treptow

Brasília, Fevereiro de 2019

## Agradecimentos

Agradeço primeiramente à minha família, que me deu o apoio que tornou este caminho possível. Um enorme agradecimento à minha mãe, Zélia, pelo seu grande carinho e sabedoria, e também à minha irmã, Gisele, pelas noites de afetuoso carteado.

Meus amigos têm grande parte desta conquista. Quero agradecê-los imensamente. Em particular, agradeço à Mariza, que conseguiu me ensinar tanto com tanta ternura, e ao Caio, que contribuiu diretamente para esse trabalho, não só num ponto de vista técnico, mas também humano.

Um agradecimento especial aos companheiros do LBTC Alessandra, Leonardo, Letícia, Mônica e Vinícius, que sempre dispuseram seu tempo para me ajudar, e um agradecimento mais especial ainda à Camila, Diego e Miguel, a quem devo uma grande parte deste trabalho.

Agradeço ao meu orientador Werner Treptow pela suporte e cuidado, e por me mostrar um caminho científico novo e gratificante.

Agradeço também aos professores da banca, que reservaram um tempo para contribuir com este trabalho.

Por fim, agradeço à CAPES e ao CNPq pelo fomento.

#### Resumo

Interações entre proteínas são críticas para diversos processos celulares. As restrições dessas interações dependem do processo fisiológico que é intermediado. Uma das abordagens mais utilizadas para resolver essas interações entre proteínas em um nível atômico é o *docking* de proteínas. No entanto, a geração de falsos-positivos é uma desvantagem bem documentada dos algoritmos de *docking*, surgindo como resultado das limitações das funções de classificação, que são baseadas na descrição das energias de solvatação e da flexibilidade das proteínas. A análise de coevolução de proteínas pode ser útil para contornar este problema.

A coevolução de proteínas surge do conceito de coevolução macromolecular e refere-se a mutações correlacionadas de aminoácidos que derivam da seleção natural. A trilha de coevolução pode ser encontrada em um alinhamento múltiplo de sequências (MSA), por meio de análises que medem a entropia de suas colunas ou as correlações das sequências homólogas da espécie. Assim, combinamos essas análises e cálculos de *docking* para melhorar a modelagem de interações proteicas.

Buscando novos desenvolvimentos na área, criamos um software, o *Docking Score Module* (DSM). Especificamente, o DSM recebe como *input* os modelos tridimensionais que são gerados pelos programas de *docking* e um MSA baseado nas proteínas que compõem esses modelos. No coração do algoritmo, novos sub-alinhamentos são gerados para cada modelo, compostos exclusivamente por posições de aminoácidos que estão na interface entre as proteínas. Para cada novo alinhamento, o DSM calcula a informação mútua (MI), definida a partir das entropias de informações de Shannon, e o coeficiente de correlação linear (r), que relata a similaridade filogenética das sequências de proteínas no MSA. O *output* consiste em um arquivo de texto com informações do trabalho submetido e um gráfico, onde os modelos são ponderados por MI ou r.

Para os estudos de caso, nós submetemos onze complexos proteicos a diferentes servidores web de docking. Em um espaço de modelos de docking e levando em consideração os valores de MI e r, os modelos mais bem classificados DSM contêm um maior número de contatos nativos e estão mais próximos do complexo alvo.

#### Abstract

Protein-protein interactions are critical for diverse cell processes. The constraints of these interactions are dependent on the physiological process which are intermediated. One of the most used approaches to solve these protein-protein interactions at the atomic level is protein docking. The generation of false positive hits is however well documented drawback of docking algorithms as a result of the limitations of the scoring function in describing solvation energies and protein flexibility. Protein coevolution analysis can be usuful to contour this problem.

Protein coevolution arises from the concept of macromolecular coevolution and refers to amino acids correlated mutations that stems from natural selection. The trail of coevolution can be find in a multiple sequence alignment (MSA), by analysis wich measure the entropy of its columns or the correlations of the species homologous sequences. Thus, we combined these analyses and docking calculations to improve docking modeling.

Looking for new developments in the field, we have created a software, the Docking Score Module (DSM). Specifically, DSM takes as input 3D models generated from docking programs and a MSA based on proteins models. At the heart of the algorithm, new sub-alignments exclusively containing amino acid positions wich are in protein-protein interface are generated for each docking model. For each new sub-alignment, DSM calculates mutual information (MI), as defined from Shannon's information entropies, and correlation index (r), which reports phylogenetic similarity of protein sequences in MSA. The output consists of a text file with job information and a plot, in wich models are weighted by MI or r.

For the case studies, we docked eleven complexes using different docking web servers. Across a space of docking model and taking into consideration the value of MI an r, best ranked models in DSM contain the biggest number of native contacts and are closer to the target complex.

# Sumário

| I –  | Introdução                                                                              | 1   |
|------|-----------------------------------------------------------------------------------------|-----|
|      | I.1 – Interação entre Proteínas                                                         | 1   |
|      | I.2 – <i>Docking</i> de Proteínas                                                       | 3   |
|      | I.3 – Coevolução                                                                        | 6   |
|      | I.3.1 – Coevolução Macroscópica                                                         | 6   |
|      | I.3.2 – Coevolução de Proteínas                                                         | 7   |
| II · | - Objetivos                                                                             | .10 |
|      | II.1 – Objetivo Geral                                                                   | .10 |
|      | II.2 – Objetivos Específicos                                                            | .10 |
| III  | – Metodologia                                                                           | .11 |
|      | III.1 – Determinação da Distância de Interface                                          | .11 |
|      | III.2 – Geração de Modelos Putativos                                                    | .12 |
|      | III.3 – Alinhamento Múltiplo de Sequências                                              | .14 |
|      | III.4 – Métricas de Coevolução                                                          | .16 |
|      | III.4.1 – Teoria da Informação                                                          | .16 |
|      | III.4.2 – Entropia e Informação Mútua                                                   | .17 |
|      | III.4.3 – Relação entre Entropia e Informação Mútu                                      | .18 |
|      | III.4.4 – Calculando a Informação Mútua entre Proteínas                                 | .20 |
|      | III.4.5 – Coeficiente de Correlação Linear                                              | .22 |
|      | III.5 – Desenvolvimento da Ferramenta Computacional                                     | .24 |
| IV   | – Resultados e Discussão                                                                | .26 |
|      | IV.1 – Impacto do Valor de de Similaridade de Sequências e da Pseudocontagem no Cálculo | de  |
| M    | т                                                                                       | .26 |
|      | IV.2 – Aliando a Filogenia à Incerteza Contida nas Posições do MSA                      | .29 |
|      | IV.2.1 – Proteínas Globulares                                                           | .29 |
|      | IV.2.2 – Casos Sensíveis                                                                | .40 |
|      | IV.3 –Docking Score Module                                                              | .46 |

| V – Conclusão e Perspectivas | 53 |
|------------------------------|----|
| Referências Bibliográficas   | 56 |
| Anexo I                      | 63 |
| Anexo II                     | 74 |

# Lista de Figuras

| Figura 1: Relação entre diferentes tipos de interações proteicas, sua afinidade de ligação e a                 |
|----------------------------------------------------------------------------------------------------------------|
| localização das proteínas envolvidas2                                                                          |
| Figura 2: Estágios de um <i>docking</i> de proteínas4                                                          |
| Figura 3: Ilustração de Sergey Ovchinnikov representando uma mutação correlata de aminoácidos                  |
| em duas colunas de um alinhamento8                                                                             |
| Figura 4: Taxa evolutiva de uma proteína globular9                                                             |
| Figura 5: Representação do contato entre dois aminoácidos11                                                    |
| Figura 6: Etapas da construção dos sub-alinhamentos15                                                          |
| Figura 7: Esquema geral de um sistema de comunicação16                                                         |
| Figura 8: Relação entre informação mútua e entropia19                                                          |
| Figura 9: Esquema geral do cálculo do coeficiente de correlação linear23                                       |
| Figura 10: Esquema geral das etapas do <i>software</i> 25                                                      |
| Figura 11: Relação entre valores de e porcentagem de contatos nativos do complexo 1BXR A-B e                   |
| seus modelos putativos utilizando diferentes valores de $\theta$ e $\lambda$                                   |
| Figura 12: Resultados dos cálculos para o complexo 1BXR A-B31                                                  |
| Figura 13: Resultados dos cálculos para o complexo 1EP3 A-B32                                                  |
| Figura 14: Resultados dos cálculos para o complexo 1TYG A-B                                                    |
| Figura 15: Resultados dos cálculos para o complexo 2VPZ A-B                                                    |
| Figura 16: Resultados dos cálculos para o complexo 2Y69 A-B                                                    |
| Figura 17: Resultados dos cálculos para o complexo 10YH I-L                                                    |
| Figura 18: Resultados dos cálculos para o complexo 1VET A-B                                                    |
| Figura 19: Resultados dos cálculos para o complexo 3ZET A-B                                                    |
| Figura 20: Resultados dos cálculos para o complexo 5F5S A-B                                                    |
| Figura 21: Resultados dos cálculos para o complexo 3OAA G-H41                                                  |
| Figura 22: Representação das subunidades $\epsilon$ (em azul) e $\gamma$ (em vermelho) no complexo proteico F1 |
| ATP-sintase de <i>E.coli</i>                                                                                   |
| Figura 23: Resultados dos cálculos para o complexo 2Y69 A-C43                                                  |

| Figura 24: Representação das subunidades 1 (em azul) e 3 (em vermelho) no complexo           |
|----------------------------------------------------------------------------------------------|
| transmembrânico citocromo C-oxidase44                                                        |
| Figura 25: Janela de abertura do DSM47                                                       |
| Figura 26: Janela exibida pelo DSM quando os arquivos fornecidos pelo usuário são válidos48  |
| Figura 27: Janela exibida pelo DSM durante os cálculos de coevolução49                       |
| Figura 28: Janela exibida pelo DSM após o término dos cálculos de coevolução50               |
| Figura 29: Exemplo do gráfico gerado pelo DSM para o cálculo dos modelos do complexo 1BXR A- |
| B gerados pelo servidor GRAMMX                                                               |
| Figura 30: Visualização do arquivo ".txt" gerado pelo DSM através do programa Gedit51        |
| Figura 31: Janela Final do DSM                                                               |
| Figura 32: UML - Docking Score Module                                                        |

# Lista de Tabelas

| Tabela 1: Relação do complexos proteicos utilizados nesse trabalho                                        |
|-----------------------------------------------------------------------------------------------------------|
| Tabela 2: Lista de servidores web de docking utilizados na geração de modelos.    13                      |
| Tabela 3: Dados dos MSAs de cada complexo45                                                               |
| Tabela 4: Valores de $rmsd$ , $MI$ , $H$ , $MI/H$ e $r$ para o complexo 1BXR A-B e seus modelos           |
| putativos gerados por diferentes servidores de <i>docking</i>                                             |
| Tabela 5: Valores de $rmsd$ , $MI$ , $H$ , $MI/H$ e $r$ para o complexo 1EP3 A-B e seus modelos putativos |
| gerados por diferentes servidores de <i>docking</i>                                                       |
| Tabela 6: Valores de $rmsd$ , $MI$ , $H$ , $MI/H$ e $r$ para o complexo 1TYG A-B e seus modelos           |
| putativos gerados por diferentes servidores de <i>docking</i>                                             |
| Tabela 7: Valores de $rmsd$ , $MI$ , $H$ , $MI/H$ e $r$ para o complexo 2VPZ A-B e seus modelos putativos |
| gerados por diferentes servidores de <i>docking</i> 67                                                    |
| Tabela 8: Valores de $rmsd$ , $MI$ , $H$ , $MI/H$ e $r$ para o complexo 2Y69 A-B e seus modelos putativos |
| gerados por diferentes servidores de <i>docking</i>                                                       |
| Tabela 9: Valores de $rmsd$ , $MI$ , $H$ , $MI/H$ e $r$ para o complexo 10YH I-L e seus modelos putativos |
| gerados por diferentes servidores de <i>docking</i> 69                                                    |
| Tabela 10: Valores de $rmsd$ , $MI$ , $H$ , $MI/H$ e $r$ para o complexo 1VET A-B e seus modelos          |
| putativos gerados por diferentes servidores de <i>docking</i> 70                                          |
| Tabela 11: Valores de $rmsd$ , $MI$ , $H$ , $MI/H$ e $r$ para o complexo 3ZET A-B e seus modelos          |
| putativos gerados por diferentes servidores de <i>docking</i> 71                                          |
| Tabela 12: Valores de $rmsd$ , $MI$ , $H$ , $MI/H$ e $r$ para o complexo 5F5S A-B e seus modelos          |
| putativos gerados por diferentes servidores de <i>docking</i> 72                                          |
| Tabela 13: Valores de $rmsd$ , $MI$ , $H$ , $MI/H$ e $r$ para o complexo 30AA G-H e seus modelos          |
| putativos gerados por diferentes servidores de <i>docking</i>                                             |
| Tabela 14: Valores de $rmsd$ , $MI$ , $H$ , $MI/H$ e $r$ para o complexo 2Y69 A-C e seus modelos          |
| putativos gerados por diferentes servidores de <i>docking</i>                                             |

# Siglas e Abreviações

- FFT Transformada Rápida de Fourier, do inglês, Fast Fourier transform;
- rmsd Raiz do Desvio Médio Quadrático, do inglês, Root Mean Square Deviation;
- MSA Alinhamento Múltiplo de Sequências, do inglês, Multiple Sequence Alignment;
- PDB Banco de Dados de Proteínas, do inglês, Protein Data Bank;
- MI Informação Mútua, do inglês, Mutual Information;
- UML Linguagem de Modelagem Unificada, do inglês, Unified Modeling Language;
- DCA Análise de Acoplamento Direto, do inglês, Direct Coupling Analysis.

## I – Introdução

## I.1 – Interação entre Proteínas

Incontáveis processos celulares são mediados por interações entre proteínas. Elas são imprescindíveis em eventos vitais como replicação, transcrição e tradução do DNA, sinalização celular, transporte, entre outros<sup>1</sup>. A revista *Science*, em um edição comemorativa<sup>2</sup> em homenagem aos seus 125 anos, elegeu 125 questões de grande importância a serem respondidas pela ciência no próximo século. Dentre elas está a pergunta "como as proteínas encontram as suas parceiras?". A relevância da caracterização de interações proteicas pode ainda ser vislumbrada pelos vários artigos encontrados na literatura, que associam esse tema à revelação de novas possibilidades em áreas como desenho racional de fármacos<sup>3–8</sup> e avanços dentro do campo da biologia sintética, em especial na engenharia de proteínas<sup>9,10</sup>.

As proteínas reconhecem-se em um ambiente "conturbado" e densamente povoado por outras estruturas biomoleculares. Embora muitas delas possam ser altamente específicas nas interações que realizam, há proteínas que podem ligar-se a várias outras parceiras. A formação de um complexo proteico também pode acontecer pela ligação de duas proteínas idênticas. Quando isso acontece, esse complexo recebe a classificação de homo-oligômero. Por sua vez, o complexo composto por proteínas diferentes é chamado de hétero-oligômero. Em sua maioria, os complexos homo-oligômeros são simétricos e estáveis, mas a estabilidade de complexos hétero-oligômeros não se encaixa em nenhum padrão, variando de acordo com a sua função, localização e estrutura<sup>11</sup>.

Podemos distinguir complexos proteicos também com base na obrigatoriedade de sua formação. Os complexos são obrigatórios quando são formados por proteínas que não apresentam estabilidade por si mesmas. Esse tipo de complexo também pode ser chamado de dobramento em duas etapas, uma vez que a formação do complexo é concomitante ao dobramento das proteínas que dele participam. Por outro lado, os complexos não-obrigatórios apresentam proteínas que têm estabilidade para existir independentemente. De maneira geral, as proteínas de um complexo obrigatório são frequentemente coexpressas e colocalizadas durante a síntese e apresentam alta

afinidade, enquanto as de um complexo não-obrigatório podem ou não migrar de compartimento antes da sua interação (**Figura 1**)<sup>12-14</sup>.



Figura 1: Relação entre diferentes tipos de interações proteicas, sua afinidade de ligação e a localização das proteínas envolvidas. Os gatilhos que controlam a oligomerização transiente estão grifados em negrito. Maiores mudanças conformacionais estão geralmente associadas a estas interações transientes. Adaptado de Nooren e colaboradores, 2003.

A interação entre proteínas pode ainda ser classificada em função da sua duração. Quando encontrada *in vivo*, uma interação permanente apresenta grande estabilidade, enquanto uma interação transiente associa-se e dissocia-se continuamente. Por consequência, as interações estrutural e funcionalmente obrigatórias são geralmente também interações permanentes. As interações não-obrigatórias, por outro lado, não apresentam uma relação direta quanto a obrigatoriedade de sua formação, podendo ser tanto permanentes quanto transitórias. Complexos transientes, em sua maioria, estão ligados a processos celulares regulatórios. Eles podem formar-se e romper-se por influência das condições do meio onde as proteínas se encontram, como pH, temperatura ou força iônica, ou ainda por um gatilho molecular específico, como os complexos dissociados por fosforilação, formados por proteínas de grande afinidade (**Figura 1**)<sup>12,15,16</sup>. Podemos

associar a duração de um complexo proteico ao valor de sua constante de dissociação  $(K_d)$ . Complexos permanentes de grande estabilidade apresentam valores de  $K_d$  na ordem de nM  $(1 \times 10^{-9})$ , enquanto complexos transientes estão na ordem de  $\mu M$   $(1 \times 10^{-6})^{13}$ .

Em última instância, a formação de um complexo proteico depende da concentração das proteínas envolvidas e da energia de ligação relativa aos estados alternativos desse complexo, sendo um reflexo das condições fisiológicas na qual ele é formado. O controle fisiológico da concentração desloca o equilíbrio da reação e é feito através de mudanças na taxa de expressão das proteínas do complexo ou de seus degradantes, ou por meio da taxa de difusão celular para proteínas não colocalizadas. Já o controle da afinidade de ligação é feito por meio da alteração do meio fisiológico, que provoca uma mudança nas propriedades físico-químicas e geométricas das interfaces das proteínas<sup>12</sup>.

## I.2 – Docking de Proteínas

Um método amplamente usado para modelagem computacional de interação entre proteínas é o *docking* de proteínas. Sugerido primeiramente em 1978, o termo "*docking*" é usado para descrever um conjunto de algoritmos computacionais que têm por objetivo encontrar o modelo mais próximo ao nativo da interação entre duas proteínas, ou seja, o complexo encontrado na natureza. Em uma visão geral, um programa de *docking* recebe os arquivos de coordenadas de uma proteína receptora A e uma proteína ligante B, e retorna um conjunto de arquivos de coordenadas tridimensionais dos modelos AB mais bem ranqueados de acordo com vários critérios, que geralmente incluem complementos esteroquímicos, eletrostáticos, formação de ligações de hidrogênio e solvatação (**Figura 2**)<sup>17-19</sup>.



Figura 2: Estágios de um docking de proteínas. Adaptado de Smith e colaboradores, 2002.

Existem três elementos chaves para a realização de um *docking* de proteínas: a representação do sistema, a busca no espaço conformacional e a classificação de potenciais modelos de solução. A representação do sistema é feita com base na função de busca utilizada<sup>20</sup>. Dentre as técnicas usadas no estágio de busca estão as baseadas na transformada rápida de Fourier (FFT, do inglês "*Fast Fourier Transformation*")<sup>21</sup>, a utilizada no programa BiGGER<sup>22</sup> e a técnica de *Geometrical Hashing*<sup>23</sup>.

Nos programas de *docking* baseados em FFT<sup>24-26</sup> e também no BiGGER, que utiliza uma função desenvolvida por Palma e colaboradores<sup>22</sup>, o sistema é representado em um *grid* cartesiano tridimensional e as proteínas são discretizadas em *voxels* (redução dos termos em inglês "*volume*" + "*pixels*"). Assim, modelos que apresentam sobreposições de *voxels* que estão no núcleo da proteína são penalizadas, enquanto os que apresentam *voxels* de interface que se posicionam lado a lado são favorecidos. Cada *voxel* pode assumir o valor 1 ou 0: 1 se a célula estiver dentro do raio de van der Waals de um átomo da proteína e 0, caso contrário<sup>27</sup>. Por sua vez, a técnica *geometric hashing* utiliza um algoritmo com representação explícita da forma das proteínas. Pontos críticos na superfície do ligante e do receptor são usados para definir quadros de coordenadas locais. As correspondências desses sistemas de coordenadas locais são classificadas pelo número de pontos críticos do ligante e do receptor que estão próximos. A busca espacial baseada na iteração da tabela faz desse o algoritmo de busca mais rápido dentre os três apresentados<sup>17,20</sup>.

A busca no espaço conformacional consiste em amostrar quais são as possíveis conformações do complexo proteico. Para isso, é preciso realizar uma exaustiva busca global das

orientações de ligação em um espaço de 6 dimensões (3D translacional + 3D rotacional). No entanto, essa busca tem um alto custo computacional devido aos inúmeros graus de liberdade de um sistema formado por duas proteínas, com uma complexidade na ordem de  $O(N^6)$ . A solução implementada pela maioria dos algoritmos de *docking* é desconsiderar inicialmente a flexibilidade das proteínas, por meio de uma técnica chamada *rigid-body docking:* uma das moléculas permanece estática, enquanto a outra move-se em torno dessa molécula fixa. Esta técnica diminui consideravelmente o problema da complexidade. A amostragem se dá por uma análise geométrica, por meio da localização de características complementares entre as superfícies das proteínas, tal como cavidades e protuberâncias locais. Como resultado dessa etapa, tem-se uma lista de complexos putativos da estrutura nativa a serem ranqueados por funções de energia<sup>17,19,20</sup>.

A etapa anterior pode produzir umas poucas centenas de modelos estericamente possíveis. A etapa de classificação, por sua vez, é responsável por afunilar esta lista por meio da discriminação de associações proteicas energeticamente favoráveis. Ao estimar a energia de ligação entre duas proteínas, o algoritmo deve levar em conta as contribuições entálpicas e entrópicas desse processo. Para isso, é comum a aplicação de técnicas heurísticas na estimativa do componente entrópico da energia livre, assim como o uso de funções potenciais simplificadas para o cálculo do componente entálpico. Outras funções de ranqueamento incluem ainda a minimização de energia conformacional e de solvatação, o termo de van der Waals na expressão de energia livre ou a contagem de ligações de hidrogênio.<sup>17,19,28–33</sup>.

Por fim, com uma quantidade reduzida de possíveis modelos, alguns algoritmos de *docking* ainda podem considerar um limitado grau de flexibilidade e introduzir, explicitamente, pequenas mudanças na superfície das cadeias laterais dos aminoácidos. Essa abordagem não diminui o desvio padrão quadrático médio (rmsd) em relação à estrutura alvo, que é uma medida da distância entre duas estruturas, mas permite a remoção de sobreposições, além de diminuir a energia livre de ligação, impactando significativamente a performance do algoritmo<sup>34–37</sup>. Por fim, os modelos são novamente ranqueados e apresentados ao usuário na forma de arquivos de coordenadas.

O *docking* feito a partir de proteínas que foram cristalizadas individualmente, o chamado *unbound docking*, é de longe mais complexo que o *bound docking*, feito a partir de proteínas que

foram cristalizadas conjuntamente. Como explicado anteriormente, algumas proteínas encontram-se desordenadas antes da formação do complexo, de modo que o processo final de dobramento das proteínas acontece juntamente com a sua interação. Os resultados de *docking* obtidos a partir de estruturas conhecidas são geralmente satisfatórios. No entanto, quando aplicamos os mesmos algoritmos para o problema de *unbound docking*, os resultados dependem da extensão da mudança conformacional das proteínas na formação do complexo<sup>20,38</sup>.

Outro problema bem documentado do *docking* de proteínas é a geração de falsos-positivos. Esse problema é um reflexo de deficiências nas funções que utilizam critérios energéticos para a classificação dos complexos. Assim, apesar de os algoritmos de *docking* encontrarem resultados muito próximos à estrutura nativa, eles não conseguem discriminá-los das falsas soluções, que são modelos bem classificados, mas estruturalmente distantes do complexo alvo. Encontrar o mínimo global de energia em uma paisagem energética tão complexa quanto a de um sistema formado por duas proteínas é uma tarefa árdua e ainda permanece como objeto de grande discussão. Grandes esforços têm sido feitos no desenvolvimento de funções mais eficientes, entretanto, esse objetivo ainda não foi plenamente alcançado<sup>17,19,20,39</sup>. O estudo de coevolução de proteínas pode lançar uma luz sobre essa questão.

## I.3 – Coevolução

#### I.3.1 – Coevolução Macroscópica

Um dos fatos mais importantes elucidados pela teoria darwiniana é a auto-organização dos sistemas de organismos vivos. Os organismos se adaptam ao meio em que vivem por processos de multiplicação, herança e variação, por meio da seleção natural. A mudança dos organismos em face dessas pressões ambientais recebe o nome de evolução<sup>40</sup>. No entanto, um processo evolutivo não pode ser considerado isoladamente, uma vez que o meio em que um grupo de organismos vive é ativamente influenciado por mudanças em outros grupos. De forma que essas mudanças estão acopladas, gerando um equilíbrio dinâmico entre essas populações<sup>41</sup>, <sup>42</sup>.

O termo "coevolução" foi primeiramente explorado de forma explícita no clássico artigo de 1964 "*Butterflies and plants: a study in coevolution*", escrito por Ehrlich e Raven, e se refere a mudanças evolutivas recíprocas entre indivíduos ou grupos que interagem, dirigidas por seleção natural. Tal processo não pode ser diretamente observado, visto a extensão de sua escala temporal. Sendo assim, como podemos aprender sobre o processo de coevolução de organismos sem conhecer sua história evolutiva?<sup>43</sup> A resposta para esse questionamento, anteriormente feito por Ehrlich e Raven, está nas marcas deixadas nos sistemas dos organismos durante os processos de coevolução.

Processos de coevolução podem ser vislumbrados em grupos de organismos que estabelecem relações simbióticas, como as do tipo parasita-hospedeiro ou predador-presa. Nesses casos, as alterações morfológicas em um indivíduo são provocadas pela adaptação do outro indivíduo ao meio, de forma a manter uma vantagem evolutiva, como acontece em uma corrida armamentista<sup>40</sup>. São essas mudanças acopladas que nos permitem reconstituir a história coevolutiva desses organismos.

#### I.3.2 – Coevolução de Proteínas

As bases da teoria evolutiva foram desenvolvidas a partir de uma observação macroscópica da relação entre organismos. Em última instância, a mudança das frequências alélicas em um grupo é o produto de mutações em genes que codificam proteínas. De forma que o rastro da evolução está implícito no padrão de substituição dos aminoácidos das proteínas que, em um nível microscópico, são responsáveis pelas características macroscópicas observadas.

A interação entre dois aminoácidos, sejam da mesma proteína ou ainda de proteínas distintas, pode determinar a ocorrência de mudanças evolutivas recíprocas, pois as mudanças no primeiro aminácido podem modificar pressões seletivas que agem sobre o segundo aminoácido. Suponhamos que A e B sejam dois aminoácidos que interagem. Caso uma mudança aconteça no aminoácido A, de forma que haja uma diminuição do valor adaptativo dessa interação, essa mutação tende a não ser selecionada e, por consequência, não é observada. No entanto, se houver uma

mutação recíproca no aminácido B que mantenha ou aumente o valor adaptativo dessa interação, essas mutações tendem a ser selecionadas e observadas<sup>44</sup>, como ilustrado na **Figura 3**.



Figura 3: Ilustração de Sergey Ovchinnikov representando uma mutação correlata de aminoácidos em duas colunas de um alinhamento.

O processo de coevolução entre duas proteínas ocorre a partir da manutenção da interação entre elas, produzindo, ao longo do tempo, um conjunto de variações de suas sequências primárias. Com o crescimento exponencial de genomas sequenciados, a história coevolutiva das proteínas, implícita na sequência de suas proteínas homólogas, está mais perto de ser desvendada. A reconstituição dessas informações pode ser feita por meio da análise de um alinhamento múltiplo de sequências (do inglês *"multiple sequence alignment"* (*MSA*)) de uma proteína. O *MSA* consiste em um empilhamento de sequências primárias de proteínas homólogas alinhadas em relação às posições de seus aminoácidos. Essa disposição das sequências nos permite inferir estatisticamente quais são os resíduos de aminoácidos que são conservados e que podem ter importância funcional<sup>45</sup>, ou também para deduzir contatos tridimensionais entre proteínas<sup>46-48</sup>, revelando novas perspectivas para o *docking* de proteínas

Genes que codificam proteínas em um mesmo genoma podem possuir diferentes taxas evolutivas, decorrentes de restrições estruturais ou funcionais de seus produtos. Essa diferença da taxa de evolução também é observada ao longo de um mesmo gene, de forma que algumas posições deste gene evoluem mais rápido que outras. O trabalho de Echave e colaboradores, 2016<sup>49</sup>, mostra

que a interface é a região da proteína que apresenta uma menor taxa de mudança (**Figura 4**). Isto se deve às restrições impostas por sua interação. Logo, a interface entre duas proteínas pode nos fornecer maiores informações sobre seu processo coevolutivo.



**Figura 4: Taxa evolutiva de uma proteína globular.** Representação esquemática da estrutura de Exonuclease III de *Escherichia coli* (código do PDB: 1AKO) colorida por taxa de evolução. As setas vermelhas destacam as diferentes restrições estruturais e funcionais sobre a taxa evolutiva. Adaptado de Echave e colaboradores, 2016.

Variadas técnicas são usadas para medir a quantidade de informação coevolutiva presente nas proteínas. Elas são baseadas em modelos estatísticos e algumas abordagens levam em conta o perfil filogenético das sequências homólogas ou também a incerteza relacionada aos aminoácidos nas colunas de um MSA.<sup>50</sup> Dentre elas estão o cálculo do coeficiente linear de correção<sup>51</sup>, de dimensão filogenética, e a informação mútua<sup>47</sup>, que leva em conta a entropia de uma posição de aminoácidos. Como a diferença entre os modelos gerados pelo *docking* está na interface entre as proteínas do complexo, nós podemos usar essas metodologias, descritas no Capítulo III, para medir a quantidade de informação armazenada nessa interface para discriminar modelos em função da quantidade dos seus contatos nativos e, assim, melhorar as predições deste método.

## II – Objetivos

#### II.1 – Objetivo Geral

O presente trabalho tem como objetivo geral o desenvolver uma ferramenta computacional que combine análises de coevolução de proteínas para melhorar as predições realizadas por programas de *docking*.

#### II.2 – Objetivos Específicos

i - Implementar o algoritmo para o cálculo de informação mútua entre posições de alinhamentos.

ii – Implementar o algoritmo para o cálculo do coeficiente de correlação linear entre alinhamentos

iii – Comparar o uso isolado das métricas de coevolução com o seu uso conjunto em relação a sua capacidade de distinguir contatos nativos em uma proteína;

**iv** – Implementar uma ferramenta computacional que automatize as análises de coevolução de proteínas para modelos de *docking*.

#### III – Metodologia

#### III.1 – Determinação da Distância de Interface

Os aminoácidos que estão presentes na interface entre duas proteínas foram definidos com base em um valor da distância de contato  $r_C(A)$ . Se a distância entre os pontos de referência de dois aminoácidos de diferentes proteínas é menor ou igual à distância  $r_C$ , esses aminoácidos estão em contato e são considerados parte da interface (**Figura 5**). Neste trabalho, o ponto de referência adotado foi a coordenada do primeiro carbono da cadeia lateral ( $C\beta$ ) para todos os aminoácidos, com exceção da glicina, onde a referência considerada foi o  $C\alpha$ . O valor de  $r_C$  foi definido como 8Å com base no trabalho de Morcos e colaboradores<sup>52</sup>, sendo este o valor usado em todos os casos deste trabalho.



Figura 5: Representação do contato entre dois aminoácidos. Os  $C\beta$  (representados em amarelo) dos aminoácidos A e B são os pontos de referência destes resíduos e estão separados por uma distância de 6.76Å. Como o valor de  $r_C$  é igual à 8.0Å, estes resíduos de aminoácidos fazem contato.

#### III.2 – Geração de Modelos Putativos

O primeiro passo para a validação de um algoritmo é certificar seu funcionamento para casos conhecidos. Dessa forma, os complexos de interação já conhecida descritos na Tabela 1 (No decorrer deste trabalho, os complexos serão sempre citados pelo seu PDB Id juntamente com as letras que representam a proteína A e a proteína B no arquivo de coordenadas) foram submetidos a quatro diferentes servidores de *docking* de proteínas: GRAMMX<sup>53</sup>, HDOCK<sup>25</sup>, ROSIE<sup>54</sup> e ZDOCK<sup>55</sup>, cujos URLs estão listados na Tabela 2 (Aqui, o termo servidor refere-se ao programa que estabelece o acesso dos usuários ao algoritmo de *docking* utilizando Hypertext Transfer Protocol (HTTP), também chamado de servidor web). Esses servidores de docking foram escolhidos devido à facilidade de sua utilização. Nenhum parâmetro adicional como a indicação de sítios catalíticos ou algum tipo de restrição foi previamente informado. No entanto, a documentação do servidor ROSIE estipula uma distância máxima de 6Å entre as proteínas do complexo. Dessa maneira, submeteu-se para esse servidor o arquivo de coordenadas do complexo em sua forma nativa, enquanto para os outros servidores os aquivos de coordenadas de cada uma das proteínas foi submetido de forma separada. Para cada um dos servidores de *docking*, foram selecionados os dez modelos mais bem classificados de cada complexo, de modo que obtivemos um total de 40 modelos para a maioria dos complexos. Os complexos em negrito na Tabela 1 não foram submetidas ao servidor HDOCK e o complexo 3ZET A-B também não foi submetido ao servidor ROSIE. Sendo assim, os complexos 1YOH I-L, 1VET A-B e 5F5S A-B possuem 30 modelos putativos, e o complexo 3ZET A-B, possui 20 modelos. Os valores de rmsd em relação à estrutura nativa e a ordem de classificação dos modelos gerados por cada servidor de *docking* encontram-se no Capítulo IV e nas tabelas referentes a cada complexo, no Anexo I.

**Tabela 1: Relação do complexos proteicos utilizados nesse trabalho.** São listados o código da estrutura cristalográfica, o organismo utilizado como vetor ou do qual a proteína foi isolada, as proteínas utilizadas como *input* na geração dos modelos de *docking* e também a resolução da estrutura.

| PDB <i>ld</i> | Organismo                                                                | Proteína A                                                                         | Proteína B                                                                                | Resolução<br>da Estrutura |
|---------------|--------------------------------------------------------------------------|------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|---------------------------|
| 1BXR          | Escherichia coli –<br>strain K12                                         | Carbamoyl –<br>phosphate<br>synthetase – Chain<br>A                                | Carbamoyl –<br>phosphate<br>synthetase – Chain<br>B                                       | 2.1 Å                     |
| 1EP3          | Lactococcus lactis<br>subsp. Cremoris –<br>strain MG1363                 | Dihydroorotate<br>dehydrogenase B. –<br>Chain A                                    | Dihydroorotate<br>dehydrogenase B. –<br>Chain B                                           | 2.1 Å                     |
| 1TYG          | Bacillus subtilis –<br>strain 168                                        | Thiazole<br>synthase/ThiS<br>complex – Chain A                                     | Thiazole<br>synthase/ThiS<br>complex – Chain B                                            | 3.15 Å                    |
| 2VPZ          | Thermus<br>thermophilus –<br>strain HB27 /<br>ATCC BAA-163 /<br>DSM 7039 | Polysulfide<br>reductase – Chain A                                                 | Polysulfide<br>reductase – Chain B                                                        | 2.4 Å                     |
| 2Y69          | Bos taurus                                                               | Bovine heart<br>cytochrome c<br>oxidase re-refined –<br>Chain A                    | Bovine heart<br>cytochrome c<br>oxidase re-refined –<br>Chain B                           | 1.95 Å                    |
| 2Y69          | Bos taurus                                                               | Bovine heart<br>cytochrome c<br>oxidase re-refined –<br>Chain A                    | Bovine heart<br>cytochrome c<br>oxidase re-refined –<br>Chain C                           | 1.95 Å                    |
| 30AA          | Escherichia coli –<br>strain K12                                         | F1-ATP synthase –<br>Chain G                                                       | F1-ATP synthase –<br>Chain H                                                              | 3.26 Å                    |
| 10YH          | Homo sapiens                                                             | Antithrombin-III –<br>Chain I                                                      | Antithrombin-III –<br>Chain L                                                             | 2.62 Å                    |
| 1VET          | Mus musculus                                                             | Mitogen-activated<br>protein kinase<br>kinase 1 interacting<br>protein 1 – Chain A | Late<br>endosomal/lysos-<br>omal Mp1 interacting<br>protein – Chain B                     | 1.9 Å                     |
| 3ZET          | Salmonella<br>typhimurium<br>(strain 4/74)                               | Putative M22<br>peptidase YEAZ –<br>Chain A                                        | Probable tRNA<br>threonylcarbamo-<br>yladenosine<br>biosynthesis protein<br>GCP – Chain B | 2.31 Å                    |
| 5F5S          | Homo sapiens                                                             | Pre-mRNA –<br>splicing factor 38A –<br>Chain A                                     | Microfibrillar –<br>associated protein 1<br>– Chain B                                     | 2.4 Å                     |

 Tabela 2: Lista de servidores web de *docking* utilizados na geração de modelos. São listados o nome do servidor de *docking*, o endereço eletrônico do servidor e data do último acesso.

| Servidor                             | URL                                                                          |
|--------------------------------------|------------------------------------------------------------------------------|
| GRAMMX                               | http://vakser.compbio.ku.edu/resources/gramm/grammx/ Acessado em: 20/01/2019 |
| HDOCK                                | http://hdock.phys.hust.edu.cn/<br>Acessado em: 20/01/2019                    |
| ZDOCK                                | http://zdock.umassmed.edu/<br>Acessado em: 20/01/2019                        |
| ROSIE<br>(Rosetta<br><i>server</i> ) | http://rosie.rosettacommons.org/docking2<br>Acessado em: 20/01/2019          |

#### III.3 – Alinhamento Múltiplo de Sequências

O MSA da maioria das proteínas dos complexos citados na Tabela 1 foram obtidos diretamente do trabalho de Ovchinnikov e colaboradores<sup>48</sup>. As proteínas dos complexos grafados em negrito foram construídos a partir de uma consulta na base de dados PDB Bind, que é composto por estruturas de proteínas que sabidamente interagem na natureza. Foram considerados na seleção somente complexos que apresentavam estruturas globulares, cujas proteínas constituintes tivessem um domínio único no Pfam. A busca por sequências homólogas às das proteínas desses complexos foi feita por meio da base de dados Blast-P, utilizando um número de hits de 100.000, sem qualquer critério de tamanho ou limite de *e-value*. Essas sequências foram filtradas, de modo que os alinhamentos das proteínas de cada complexo fossem compostos por sequências oriundas das mesmas espécies, representadas apenas uma vez em cada alinhamento. Após isso, foram descartadas as sequências que apresentavam um e-value > 10<sup>-5</sup> e que possuíam um tamanho 70% menor ou 130% maior do que a média do tamanho das sequências restantes. O alinhamento das sequências foi feito mediante o uso do programa ClustalW 2.1 e todos os parâmetros foram deixados na configuração padrão. O alinhamentos da proteína A,  $MSA^A$ , e o da proteína B,  $MSA^B$ , de cada um desses complexos, foram dispostos em formas comparáveis a árvores filogenéticas que possuem a mesma ramificação. Cada  $a = \{1..., M\}$  folha na terminação do ramo representa uma sequência de uma mesma espécie em ambos os alinhamentos (Figura 6, Letra a).

Sub-alinhamentos foram gerados a partir dos alinhamentos resultantes da etapa anterior. Como discutido na introdução, a interface das proteínas guarda grande quantidade de informação evolutiva. Desta modo, os sub-alinhamentos  $MSA_{sub}^A$  e  $MSA_{sub}^B$  foram gerados unicamente a partir das colunas das posições *i* dos aminoácidos presentes na interface entre as proteínas *A* e *B* para cada modelo putativo gerado pelos servidores de *docking* (Figura 6, Letra b). Foram considerados aminoácidos de interface aqueles cujo ponto de referência encontra-se dentro de uma distância  $r_C$ de qualquer ponto de referência de um aminoácido da proteína vizinha, como discutido na Seção III.1.



Figura 6: Etapas da construção dos sub-alinhamentos. a) representação da construção do  $MSA^A$  e  $MSA^B$  a partir das proteínas A e B do complexo proteico. b) representação da construção dos sub-alinhamentos  $MSA^A_{sub}$  e  $MSA^B_{sub}$  a partir das posições dos aminoácidos que estão presentes na interface dos modelos.

#### III.4 – Métricas de Coevolução

Utilizamos os sub-alinhamentos extraídos a partir do  $MSA^A$  e  $MSA^B$  para classificar cada um dos modelos de *docking* e indicar quais modelos realizam contatos mais favoráveis. Para isso, utilizamos conjuntamente duas métricas de coevolução: a informação mútua e o coeficiente de correlação linear, como explicado no Capítulo II.

#### III.4.1 – Teoria da Informação

Originalmente proposta por Claude E. Shannon em um artigo de 1948 chamado "*A Mathematical Theory of Communications*", a teoria da informação envolve a criação de modelos descritivos dos processos de comunicação. Shannon afirma que o problema fundamental das comunicações é a reprodução exata ou aproximada, em um dado ponto, de uma mensagem emitida em outro ponto em um sistema de comunicação (**Figura 7**). O aspecto relevante dessa mensagem, entretanto, não está na sua semântica, mas no fato de que essa determinada mensagem foi selecionada em um conjunto de outras mensagens possíveis. Essa medida de liberdade na seleção de uma mensagem está ligada à sua informação<sup>56</sup>.



**Figura 7: Esquema geral de um sistema de comunicação.** A fonte de informação seleciona uma mensagem entre um conjunto de mensagens possíveis, o transmissor codifica a mensagem e a envia através de um canal de comunicação, e o receptor decodifica a mensagem a ser recebida no destino. Adaptado de Shannon, 1948.

#### III.4.2 – Entropia e Informação Mútua

Em razão de sua amplitude, o conceito de informação não pode ser contido em uma definição simples. Entretanto, para qualquer função de distribuição de probabilidades, é possível definir uma quantidade que contem propriedades que correspondam à noção de uma medida intuitiva de informação. Essa quantidade é denominada **entropia** (H), e pode ser conceituada como a medida de incerteza de uma variável estocástica.

A entropia H de uma variável estocástica discreta X de função de probabilidade  $\rho(x) = Pr \{X = x\}$ , definida no alfabeto  $\chi$  de tamanho  $|\chi|$ , é dada por:

$$H(X) = -\sum_{x} \rho(x) \ln \rho(x)$$
(1)

Estendendo a definição acima, a entropia conjunta de um par de variáveis estocásticas discretas X e Ycom distribuição conjunta p(x, y) é dada por:

$$H(X,Y) = -\sum_{x,y} \rho(x,y) \, \ln(\rho(x,y))$$
(2)

e é equivalente à entropia de uma variável mais a entropia condicional da outra variável:

$$H(X,Y) = H(X) + H(Y \mid X)$$
(3)

A entropia pode ser expressa em diferentes unidades, a depender da base do logaritmo. A entropia é expressa em *nats*, nesse caso, onde a base do logaritmo é igual a *e*. Para as bases 2, 3, 4, 5, 6, 7 e 10, por exemplo, ela é expressa respectivamente em bits, trits, quarts, quints, sexts, septs e dits. A troca de base pode ser feita pela relação  $H_b(X) = (log_b a) \times H_a(X)$ .

A partir da definição de entropia, podemos também estabelecer uma medida de dependência mútua entre duas variáveis, denominada **informação mútua** (do inglês "*mutual information*" (*MI*)

). Mais especificamente, a MI quantifica o quanto de informação pode-se obter sobre uma variável a partir da observação de outra variável. Consideremos duas variáveis estocásticas discretas  $X \in Y$ , com funções de probabilidade  $\rho(x) \in \rho(y)$ . A informação mútua entre essas duas variáveis é:

$$MI(X;Y) = \sum_{x,y} \rho(x,y) \ln \frac{\rho(x,y)}{\rho(x)\rho(y)}$$
(4)

Assim, quanto maior o valor de informação mútua, mais acopladas estão essas variáveis.

#### III.4.3 – Relação entre Entropia e Informação Mútua

Podemos reescrever a equação [4] da seguinte maneira:

$$MI(X;Y) = \sum_{x,y} \rho(x,y) \ln \frac{\rho(x\mid y)}{\rho(x)}$$
(5)

$$= -\sum_{x,y} \rho(x,y) \ln \rho(x) + \sum_{x,y} \rho(x,y) \ln \rho(x \mid y)$$
(6)

$$= -\sum_{x} \rho(x) \ln \rho(x) - \left(-\sum_{x,y} \rho(x,y) \ln \rho(x \mid y)\right)$$
(7)

$$=H(X) - H(X \mid Y)$$
(8)

Inferimos, então, que a informação mútua é a redução da incerteza da variável X pelo conhecimento da variável Y. Similarmente:

$$MI(X;Y) = H(Y) - H(Y \mid X)$$
(9)

Desta forma, conhecemos tanto de X a partir de Y quanto de Y a partir de X. Como definido na equação [3]:

$$H(X,Y) = H(X) + H(Y \mid X)$$

concluímos que:

$$MI(X;Y) = H(X) + H(Y) - H(X \mid Y)$$
(10)

logo:

$$MI(X;X) = H(X) - H(X \mid X) = H(X)$$
(11)

a informação mútua de uma variável e si mesma é a entropia desta variável. A **Figura 8** representa a relação entre H(X), H(Y), H(X,Y), H(X | Y), H(Y | X) e MI(X;Y). Note que a informação mútua entre as variáveis X e Y representa a intersecção entre as informações dessas variáveis<sup>57</sup>.



**Figura 8: Relação entre informação mútua e entropia.** Adaptado de Cover e Thomas, 2006.

#### III.4.4 – Calculando a Informação Mútua entre Proteínas

Apesar do contexto em que foi desenvolvida, a teoria da informação encontra aplicações em diversas áreas, como economia, estatística, física e também na biologia. Aplicando seus conceitos à análise de coevolução de proteínas, podemos entender cada uma das posições dos aminoácidos da sequência primária de uma proteína como um canal por onde é transmitida a informação evolutiva. Esta informação pode ser inferida a partir da distribuição das frequências sítio-específicas para cada coluna de um *MSA*: uma alta frequência de um aminoácido em uma determinada posição pode indicar que há uma pressão evolutiva que favorece a sua conservação. A informação transmitida por esse canal está relacionada ao grau de incerteza médio do aminoácido nessa posição, ou seja, a medida da conservação desse aminoácido é a medida da entropia desse canal.

Em uma estrutura tridimensional nativa, os aminoácidos realizam contatos dependendo da sua natureza química. Assim, quando acontece uma mutação deletéria em algum aminoácido e o equilíbrio químico dessa interação é desfeito, é preciso que haja uma mutação compensatória nos aminoácidos vizinhos, de modo a restabelecer a química dessa interação. Dessa forma, as distribuições de frequências de aminoácidos em diferentes posições são dependentes umas das outras. O acoplamento entre as mudanças dos aminoácidos pode ser quantificado através da medida de informação mútua.

Consideremos agora um modelo proposto por um algoritmo de *docking*, onde duas proteínas A e B interagem através de i = 1, ..., N contatos entre aminoácidos. Como mostrado anteriormente, os sub-alinhamentos  $MSA_{sub}^{A}$  e  $MSA_{sub}^{B}$  são respectivamente gerados a partir dos alinhamentos  $MSA^{A}$  e  $MSA^{B}$ . As sequências  $a = \{1..., M\}$  presentes nesses sub-alinhamentos podem ser respectivamente descritas pelos blocos de N variáveis estocásticas discretas  $X^{N} \equiv (X_{1}, ..., X_{N})$  e  $Y^{N} \equiv (Y_{1}, ..., Y_{N})$ , com funções de probabilidade  $\{\rho(x^{N}), \rho(y^{N}), \rho(x^{N}, y^{N})\}$  para cada sequência conjunta  $\{X^{N}, Y^{N}\}_{|\chi|^{2N}}$  definida no alfabeto  $\chi$  de tamanho  $|\chi|$ . Assim, a quantidade de informação que a proteína A guarda sobre a proteína B é dada pela informação mútua entre  $X^{N}$  e  $Y^{N}$ . A MI atinge seu limite inferior caso  $X^{N}$  e  $Y^{N}$  sejam totalmente independentes. Por outro lado, seu valor máximo é alcançado quando estas variáveis estão perfeitamente correlacionadas. Tais valores não devem exceder o limite da entropia de qualquer um dos blocos de variáveis  $H(X^N)$  e  $H(Y^N)$ , como pode ser visto na relação mostrada na **Figura 8**.

As probabilidades conjuntas requeridas para o cálculo de MI foram inferidas a partir das frequências observadas  $f = \{f_{x_i,y_i}\}$ , de modo que:

$$\rho(x_i, y_i) \equiv f_{x_i, y_i} \tag{12}$$

Os cálculos das frequências simples e duplas dos aminoácidos foram baseados na metodologia proposta por Morcos e colaboradores<sup>52</sup>, onde as sequências homólogas apresentam um peso diferente, dependendo da sua similaridade. A escolha desse método teve como objetivo eliminar vieses na amostragem das sequências. As frequências duplas foram calculadas da seguinte forma:

$$fx_{i}, y_{i} = \frac{1}{M_{eff} + \lambda} \left[ \frac{\lambda}{|\chi|^{2}} + \sum_{m=1}^{M} \frac{1}{n^{m}} \,\delta_{x_{i}^{m}, y_{i}^{m}, x_{i}, y_{i}} \right]$$
(13)

onde  $n^m$  representa o número de sequências similares m'que possuem com uma certa distância de Hamming =  $\theta$  da sequência m

$$n^{m} = |m'| | 1 \le m' \le M, h(m, m') \ge \theta|$$
(14)

e

$$M_{eff} = \sum_{m=1}^{M} \frac{1}{n^m}$$
(15)

é o número de sequências primárias distinguíveis no limiar de distância  $\theta$ . O delta de Kronecker  $\delta_{x_i^m, y_i^m, x_i, y_i}$ , garante a contagem apenas de  $(x_i, y_i)$ , e é regularizado pela pseudocontagem  $\lambda^{58}$ , que corrige possíveis vieses de amostragem adicionando um valor prévio à contagem de cada

aminoácido, de modo a não permitir que a matriz de frequências seja singular. O tamanho do alfabeto  $|\chi|$  foi definido como 21, para os 20 diferentes aminoácidos e o *gap*.

De maneira análoga, as probabilidades simples  $\rho(x_i) \equiv fx_i$  e  $\rho(y_i) \equiv fy_i$  foram calculadas a partir das frequências simples:

$$\begin{cases} f_{x_iy_i} = \frac{1}{M_{eff} + \lambda} \left[ \frac{\lambda}{|\chi|} + \sum_{m=1}^{M} \frac{1}{n^m} \, \delta_{x_i^m, x_i} \right] \\ f_{x_iy_i} = \frac{1}{M_{eff} + \lambda} \left[ \frac{\lambda}{|\chi|} + \sum_{m=1}^{M} \frac{1}{n^m} \, \delta_{y_i^m, y_i} \right] \end{cases}$$
(16)

Ao final, a informação mútua foi normalizada de modo a considerar o tamanho da interface de cada modelo. Assim, o valor de informação mútua para cada sub-alinhamento foi dividido pela soma de sua entropia conjunta, de acordo com a relação explicitada na **Figura 8**.

#### III.4.5 – Coeficiente de Correlação Linear

O coeficiente de correlação linear (r) é uma quantificação da relação entre os alinhamentos da proteína A e da proteína B e foi calculado usando a fundamentação teórica proposta por Pazos e Valencia, 2001<sup>51</sup>. Os alinhamentos  $MSA_{sub}^{A}$  e  $MSA_{sub}^{B}$  foram usados para construir as matrizes  $D^{A}$  e  $D^{B}$  do tipo BLOSUM62<sup>59</sup> (**BLO**cks of Amino Acid SUbstitution Matrix) (Figura 9). A matriz foi construída utilizando funções já implementadas no Biopython 1.72<sup>60</sup> (ver Anexo II). A correlação entre essas matrizes  $D^{A}$  e  $D^{B}$  foi calculada usando a seguinte relação:

$$r = \frac{\sum_{i=1}^{n} (d_i^A - \overline{d^A}) (d_i^B - \overline{d^B})}{\sqrt{\sum_{i=1}^{n} (d_i^A - \overline{d^A})^2} \sqrt{\sum_{i=1}^{n} (d_i^B - \overline{d^B})^2}}$$
(17)

onde  $d_i^A$  e  $d_i^B$  representam os elementos das matrizes de distância  $D^A$  e  $D^B$ , respectivamente, e  $\overline{d^A}$  e  $\overline{d^B}$  são os valores médios das matrizes  $D^A$  e  $D^B$ , respectivamente.



Figura 9: Esquema geral do cálculo do coeficiente de correlação linear (r). Adaptado de Pazos e Valencia, 2001.

#### III.5 – Desenvolvimento da Ferramenta Computacional

O esquema geral das etapas do *software* desenvolvido está representado na Figura 10. A entrada é composta pelo Alinhamento Múltiplo de Sequências (MSA) de cada proteína do complexo e pelos arquivos de coordenadas dos modelos putativos, que são gerados pelos algoritmos de *docking* (Figura 10, Letra a). Em seguida, há uma validação desses arquivos de entrada através da verificação do tamanho dos alinhamentos  $MSA^A$  e  $MSA^B$ , da similaridade entre as sequências de aminoácidos de todos os modelos e também da similaridade entre as sequências de aminoácidos de todos os modelos e também da similaridade entre as sequências de aminoácidos de todos os modelos e também da similaridade entre as sequências de aminoácidos de todos os modelos e também da similaridade entre as sequências de aminoácidos de todos os modelos e também da similaridade entre as sequências de aminoácidos das proteínas e a primeira sequência de seus respectivos alinhamentos (Figura 10, Letra b). Se os os arquivos forem correspondentes, são construídos sub-alinhamentos para cada modelo a partir das posições dos aminoácidos de interface (Figura 10, Letra c), como descrito na Seção III.3. Estes sub-alinhamentos são usados para calcular o valor de MI e r de cada modelo (Figura 10, Letra d), explicitados na Seção III.4. Decorridos os cálculos, são gerados um relatório contendo os dados brutos dos resultados e um gráfico com os valores das métricas calculadas para cada modelo (Figura 10, Letra e), que, por sua vez, são retornados ao usuário (Figura 10, Letra f).

Utilizou-se a classe PDB\_Parser para a leitura de arquivos de coordenadas ".pdb" e a classe AlignIO para a leitura e tratamento de arquivos fasta, ambas do pacote Biopython 1.72<sup>60,61</sup>, uma das dependências do *software*. Após a construção dos sub-alinhamentos e a realização dos cálculos, utilizamos o pacote PyQtGraph para a plotagem dos resultados, devido à sua interação com o PyQT 5.4, utilizado para desenvolver a interface gráfica. O programa foi desenvolvido utilizando a linguagem Pyhton 3.5 devido a sua grande versatilidade no tratamento de *strings* e arquivos, além da facilidade na manipulação de matrizes que a biblioteca Scipy<sup>62</sup> oferece.



Figura 10: Esquema geral das etapas do software.

#### IV – Resultados e Discussão

# IV.1 – Impacto do Valor de de Similaridade de Sequências e da Pseudocontagem no Cálculo de *MI*

Como referido anteriormente, as proteínas dos complexos citados na **Tabela 1** foram submetidas a quatro diferentes servidores de *docking* (GRAMMX, HDOCK, ROSIE e ZDOCK) e cada um desses servidores gerou dez modelos putativos para estes complexos. Calculou-se o valor de informação mútua (MI) dos contatos de interface de cada um dos modelos utilizando os subalinhamentos gerados a partir dos MSAs das proteínas do complexo. O cálculo de MI leva em conta as frequências simples e conjuntas de aminoácidos nas colunas do MSA. No entanto, como pode haver um viés de amostragem de aminoácidos nas sequências homólogas, utiliza-se uma pseudocontagem ( $\lambda$ ) para atribuir um valor aos aminoácidos não amostrados. Além disso, o cálculo também leva em conta o número de sequências efetivas ( $M_{eff}$ ) para a repesagem do valor de cada sequência homóloga. Esse número é inferido por meio de um valor de similaridade de sequências ( $\theta$ ). Para inferir os valores a serem usados no trabalho, calculou-se os valores de MI/H dos modelos putativos do complexo 1BXR A-B para os valores de  $\theta = 0.8$ , e 1,0, e para os valores de  $\lambda$ = 0,5 e 0,1. Estes valores foram relacionados à quantidade de contatos nativos e estão representados na forma de gráfico na **Figura 11**.

A partir da observação dos gráficos, é possível perceber que o parâmetro  $\theta$  é o mais relevante para a linearidade da relação entre os valores de MI/H e número de contatos nativos dos modelos. Quando  $\theta = 1$ , o  $M_{eff}$  é igual ao número de sequências do MSA de cada proteína. As sequências homólogas podem apresentar um viés de amostragem que pode resultar da relação filogenética entre as espécies de onde provém as sequências, ou ainda devido ao sequenciamento de cepas de uma mesma espécie. Por sua vez, quando  $\theta = 0.8$ , esse viés é minimizado e a informação evolutiva pode ser melhor revelada. Então, o valor de  $\theta$  escolhido para todos os casos estudados neste trabalho foi de 0.8, o que é condizente com os valores utilizados na literatura<sup>52</sup>.
O valor de pseudocontagem  $\lambda$  tem menor influência na linearidade dos resultados, no entanto, quando  $\lambda = 0,5$ , há um maior separação entre os valores de MI/H entre os modelos, quando comparado ao  $\lambda = 0,1$ . Esta diferença pode ser significativa no algoritmo de classificação de modelos de *docking*. Portanto, os estudos de caso desse trabalho foram feitos utilizando um valor de pseudocontagem  $\lambda$  igual a 0,5.



Figura 11: Relação entre valores de MI/H e porcentagem de contatos nativos do complexo 1BXR A-B e seus modelos putativos utilizando diferentes valores de  $\theta$  e  $\lambda$ .

### IV.2 – Aliando a Filogenia à Incerteza Contida nas Posições do MSA

Foram calculados os valores de MI/H e r para todos os sistemas descritos na **Tabela 1** e para os seus respectivos modelos gerados pelos algoritmos de *docking*. Esses valores, isolados ou associados, foram relacionados aos valores do desvio estrutural (rmsd) do modelo em relação ao complexo nativo e à porcentagem de contatos nativos estabelecidos na interface do modelo, que são os contatos idênticos aos estabelecidos na interface da estrutura alvo. Os resultados obtidos estão representados graficamente nas **Figuras 12 – 20, 21 e 23** e registradas de maneira integral nas **Tabelas 4 – 14** localizadas no Anexo I.

## **IV.2.1 – Proteínas Globulares**

A partir dos resultados referentes aos complexos 1BXR A-B (Figura 12), 1EP3 A-B (Figura 13), 1TYG A-B (Figura 14), 2VPZ A-B (Figura 15), 2Y69 A-B (Figura 16), 1OYH I-L (Figura 17), 1VET A-B (Figura 18), 3ZET A-B (Figura 19) e 5F5S A-B (Figura 20), é possível inferir que os valores de MI/H e r, quando tomados isoladamente, parecem não ser bons descritores da proximidade entre um modelo putativo e sua estrutura alvo. Em vários gráficos é possível ver que modelos mais próximos à estrutura nativa possuem altos valores de MI/H ou de r, mas não conseguimos diferenciá-los dos modelos com maior desvio estrutural. No entanto, quando consideramos o produto dos valores destas duas métricas ( $MI/H \times r$ ), vemos que há, para a maioria os casos estudados nesse trabalho, uma relação direta desse valor com a porcentagem de contatos nativos estabelecidos pelo modelo e também com o seu valor de rmsd em relação à estrutura nativa.

Estes valores de coevolução estão intimamente conectados à função do complexo proteico. As funções fisiológicas impõem restrições à estrutura das proteínas, determinando a transitoriedade e obrigatoriedade de suas interações, assim, influenciando as suas taxas de evolução<sup>55,64</sup>. Muitos dos complexos descritos na **Tabela 1** têm função enzimática e participam de vias de síntese de

biomoléculas importantes para a manutenção das espécies das quais elas provém<sup>65–69</sup>. A pressão seletiva pode, então, favorecer fortemente o equilíbrio da interação proteica nesses complexos, acoplando as mutações entre os aminoácidos da interface.

Para o caso das proteínas globulares, a combinação das métricas de coevolução se mostra efetiva por que somente a região que faz parte da interface do complexo é conservada. Assim, há uma pressão seletiva que acopla somente as mutações dos aminoácidos que estão em uma região da casca das proteínas.



Figura 12: Resultados dos cálculos para o complexo 1BXR A-B. a) valores de MI/H, r e porcentagem de contatos nativos para o complexo 1BXR A-B e seus modelos putativos. b) valores do produto de MI/He r, rmsd em relação à estrutura nativa e porcentagem de contatos nativos para o complexo 1BXR A-B e seus modelos putativos. A cor de cada ponto representa a porcentagem de contatos nativos, enquanto sua forma representa o servidor de *docking* no qual ele foi gerado. Estes resultados estão integralmente registrados na **Tabela 4**, no Anexo I.



Figura 13: Resultados dos cálculos para o complexo 1EP3 A-B. a) valores de MI/H, r e porcentagem de contatos nativos para o complexo 1EP3 A-B e seus modelos putativos. b) valores do produto de MI/He r, rmsd em relação à estrutura nativa e porcentagem de contatos nativos para o complexo 1EP3 A-B e seus modelos putativos. A cor de cada ponto representa a porcentagem de contatos nativos, enquanto sua forma representa o servidor de *docking* no qual ele foi gerado. Estes resultados estão integralmente registrados na **Tabela 5**, no Anexo I.



Figura 14: Resultados dos cálculos para o complexo 1TYG A-B. a) valores de MI/H, r e porcentagem de contatos nativos para o complexo 1TYG A-B e seus modelos putativos. b) valores do produto de MI/He r, rmsd em relação à estrutura nativa e porcentagem de contatos nativos para o complexo 1TYG A-B e seus modelos putativos. A cor de cada ponto representa a porcentagem de contatos nativos, enquanto sua forma representa o servidor de *docking* no qual ele foi gerado. Estes resultados estão integralmente registrados na **Tabela 6**, no Anexo I.



Figura 15: Resultados dos cálculos para o complexo 2VPZ A-B. a) valores de MI/H, r e porcentagem de contatos nativos para o complexo 2VPZ A-B e seus modelos putativos. b) valores do produto de MI/He r, rmsd em relação à estrutura nativa e porcentagem de contatos nativos para o complexo 2VPZ A-B e seus modelos putativos. A cor de cada ponto representa a porcentagem de contatos nativos, enquanto sua forma representa o servidor de *docking* no qual ele foi gerado. Estes resultados estão integralmente registrados na **Tabela 7**, no Anexo I.



Figura 16: Resultados dos cálculos para o complexo 2Y69 A-B. a) valores de MI/H, r e porcentagem de contatos nativos para o complexo 2Y69 A-B e seus modelos putativos. b) valores do produto de MI/He r, rmsd em relação à estrutura nativa e porcentagem de contatos nativos para o complexo 2Y69 A-B e seus modelos putativos. A cor de cada ponto representa a porcentagem de contatos nativos, enquanto sua forma representa o servidor de *docking* no qual ele foi gerado. Estes resultados estão integralmente registrados na **Tabela 8**, no Anexo I.



Figura 17: Resultados dos cálculos para o complexo 10YH I-L. a) valores de MI/H, r e porcentagem de contatos nativos para o complexo 10YH I-L e seus modelos putativos. b) valores do produto de MI/Her, rmsd em relação à estrutura nativa e porcentagem de contatos nativos para o complexo 10YH I-L e seus modelos putativos. A cor de cada ponto representa a porcentagem de contatos nativos, enquanto sua forma representa o servidor de *docking* no qual ele foi gerado. Estes resultados estão integralmente registrados na **Tabela 9**, no Anexo I.



Figura 18: Resultados dos cálculos para o complexo 1VET A-B. a) valores de MI/H, r e porcentagem de contatos nativos para o complexo 1VET A-B e seus modelos putativos. b) valores do produto de MI/He r, rmsd em relação à estrutura nativa e porcentagem de contatos nativos para o complexo 1VET A-B e seus modelos putativos. A cor de cada ponto representa a porcentagem de contatos nativos, enquanto sua forma representa o servidor de *docking* no qual ele foi gerado. Estes resultados estão integralmente registrados na **Tabela 10**, no Anexo I.



Figura 19: Resultados dos cálculos para o complexo 3ZET A-B. a) valores de MI/H, r e porcentagem de contatos nativos para o complexo 3ZET A-B e seus modelos putativos. b) valores do produto de MI/He r, rmsd em relação à estrutura nativa e porcentagem de contatos nativos para o complexo 3ZET A-B e seus modelos putativos. A cor de cada ponto representa a porcentagem de contatos nativos, enquanto sua forma representa o servidor de *docking* no qual ele foi gerado. Estes resultados estão integralmente registrados na **Tabela 11**, no Anexo I.



Figura 20: Resultados dos cálculos para o complexo 5F5S A-B. a) valores de MI/H, r e porcentagem de contatos nativos para o complexo 5F5S A-B e seus modelos putativos. b) valores do produto de MI/He r, rmsd em relação à estrutura nativa e porcentagem de contatos nativos para o complexo 5F5S A-B e seus modelos putativos. A cor de cada ponto representa a porcentagem de contatos nativos, enquanto sua forma representa o servidor de *docking* no qual ele foi gerado. Estes resultados estão integralmente registrados na **Tabela 12**, no Anexo I.

#### IV.2.2 – Casos Sensíveis

Alguns modelos que possuem baixo desvio estrutural não puderam ser discriminados mesmo utilizando o produto das duas métricas de coevolução. Este foi o caso dos modelos putativos do complexo 3OAA G-H (**Figura 21**). O complexo 3OAA G-H é formado pelas unidades  $\gamma$  e  $\epsilon$  da F1 ATP–sintase de *E.coli*. Como visto na **Figura 22**, essas subunidades também estão em contato com outras proteínas quando encontradas na natureza. Sendo a F1 ATP–sintase um complexo altamente conservado, várias regiões da casca dessas subunidades  $\gamma$  e  $\epsilon$  também são conservadas. Assim, não é possível discernir o sinal coevolutivo que resulta da ligação das subunidades  $\gamma$  e  $\epsilon$  do sinal que vem da sua interação com as outras proteínas da F1 ATP–sintase.

Outro caso é o do complexo 2Y69 A-C (Figura 23), formado pelas unidades 1 e 3 do complexo transmembrânico citocromo C-oxidase encontrado em bovinos. Apesar de pertencer à mesma estrutura do complexo 2Y69 A-B (Figura 16), que apresentou bons resultados, a interação entre as cadeias A e C acontece em meio a membrana fosfolipídica Figura 24, que, por sua vez, impõe restrições à natureza química dos aminoácidos que estão na casca das proteínas. Também aqui é difícil separar a informação evolutiva que decorre da interação das cadeias A e C da informação que resulta da interação das cadeias com a membrana.



Figura 21: Resultados dos cálculos para o complexo 3OAA G-H . a) valores de MI/H, r e porcentagem de contatos nativos para o complexo 3OAA G-H e seus modelos putativos. b) valores do produto de MI/He r, rmsd em relação à estrutura nativa e porcentagem de contatos nativos para o complexo 3OAA G-H e seus modelos putativos. A cor de cada ponto representa a porcentagem de contatos nativos, enquanto sua forma representa o servidor de *docking* no qual ele foi gerado. Estes resultados estão integralmente registrados na **Tabela 13**, no Anexo I.



Figura 22: Representação das subunidades  $\epsilon$  (em azul) e  $\gamma$  (em vermelho) no complexo proteico F1 ATP-sintase de *E.coli*.



Figura 23: Resultados dos cálculos para o complexo 2Y69 A-C . a) valores de MI/H, r e porcentagem de contatos nativos para o complexo 2Y69 A-C e seus modelos putativos. b) valores do produto de MI/He r, rmsd em relação à estrutura nativa e porcentagem de contatos nativos para o complexo 2Y69 A-C e seus modelos putativos. A cor de cada ponto representa a porcentagem de contatos nativos, enquanto sua forma representa o servidor de *docking* no qual ele foi gerado. Estes resultados estão integralmente registrados na **Tabela 14**, no Anexo I.



Figura 24: Representação das subunidades 1 (em azul) e 3 (em vermelho) no complexo transmembrânico citocromo C-oxidase.

Outro ponto a ser considerado durante as análises de coevolução, além da estrutura e função das proteínas, é a qualidade do MSA. O alinhamento deve ser feito de modo que possamos recuperar as informações coevolutivas nele implícitas. Como o as análises de coevolução utilizam modelos estatísticos, o tamanho do MSA contribui diretamente para a acurácia da predição. Em um trabalho de  $2013^{70}$ , Kamisetty e colaboradores sugerem que uma boa predição baseia-se em um número de sequências cinco vezes maior que o número de pares estabelecidos. O número de sequências total, o número de sequências efetivas ( $M_{eff}$ ) (equação [15]) e a média de pares para os modelos de cada complexo estão registrados na **Tabela 4**. Para os complexos desse trabalho, levando em conta o  $M_{eff}$ , os modelos do complexos 2Y69 A-C , 1VET A-B, 3ZET A-B e 5F5S A-B não obedecem a esta razão. No entanto, o insuficiente número de sequências ainda não explica bem a falha na distinção dos modelos, visto o sucesso na distinção de modelos mais próximos ao nativo nos complexos 1VET A-B, 3ZET A-B e 5F5S A-B, e a falha no caso do complexo 3OAA G-H, que apresenta uma razão entre  $M_{eff}$  e número médio de pares superior a cinco.

**Tabela 3: Dados dos** MSAs **de cada complexo**. Para cada complexo, estão listados o número de sequências presentes no MSA de cada proteína, o  $M_{eff}$  para o  $\theta$  = 0,8, a média de pares de contato dos modelos putativos com  $r_C = 0.8$ Å e a razão entre o  $M_{eff}$  e o número médio de pares de contato.

| Complexo | Número de<br>sequências | Meff  | Número médio de pares<br>de contato dos modelos<br>putativos | Meff /<br>Número<br>médio de<br>Pares |
|----------|-------------------------|-------|--------------------------------------------------------------|---------------------------------------|
| 1BXR A-B | 1004                    | 492,1 | 96,6                                                         | 5,095                                 |
| 1EP3 A-B | 552                     | 436,2 | 84,4                                                         | 5,168                                 |
| 1TYG A-B | 746                     | 479,2 | 69,8                                                         | 6,866                                 |
| 2VPZ A-B | 676                     | 437,9 | 86,2                                                         | 5,080                                 |
| 2Y69 A-B | 1484                    | 712,2 | 128,6                                                        | 5,538                                 |
| 2Y69 A-C | 863                     | 403,0 | 123,6                                                        | 3,260                                 |
| 30AA G-H | 886                     | 603,4 | 86,8                                                         | 6,952                                 |
| 10YH I-L | 713                     | 574,1 | 82,3                                                         | 6,975                                 |
| 1VET A-B | 264                     | 64,4  | 86,1                                                         | 0,748                                 |
| 3ZET A-B | 363                     | 197,6 | 82,0                                                         | 2,410                                 |
| 5F5S A-B | 326                     | 49,1  | 34,5                                                         | 1,424                                 |

## **IV.3** – Docking Score Module

O *software* desenvolvido recebeu o título de *Docking Score Module* (DSM) e apresenta uma interface que possibilita ao usuário selecionar diretamente os arquivos de coordenadas gerados por programas de *docking* e os arquivos de alinhamentos através da navegação entre diretórios. O código fonte do programa encontra-se no Anexo II, juntamente com o UML das classes do programa (**Figura 34**). Em seguida são apresentadas as janelas do DSM em etapas sequenciais de utilização. Os registros foram feitos durante os cálculos dos modelos do complexo 1BXR A-B gerados pelo servidor GRAMMX.

A Figura 25 mostra a janela inicial do DSM após a sua iniciação. Os aquivos referentes às coordenadas dos modelos de *docking* e com extensão ".pdb" são selecionados pelo botão "select" (Figura 25, marcação em vermelho 1), que abre uma janela de navegação entre diretórios. Os botões "select" (Figura 25, marcações em vermelho 2 e 3) também abrem janelas de navegação entre diretórios para a seleção do arquivos com extensão ".fas" referentes ao alinhamentos múltiplos de sequências das proteínas A e B. Após isso, utiliza-se a caixa de texto (Figura 25, marcação em vermelho 4) para inserção de um nome para a identificação do trabalho e dos arquivos de saída. Caso não seja preenchido, o identificador é composto pela palavra "job" juntamente com a data e o horário em que o trabalho (execução dos cálculos das análises de coevolução) foi iniciado. Em seguida, atribui-se um valor à pseudocontagem lambda ( $\lambda$ ) utilizando a caixa de seleção (Figura 25, marcação em vermelho 5). Esse valor é utilizado no cálculo de frequência dos aminoácidos (equações [13] e [16]). O intervalo se seleção do  $\lambda$  vai de 0.1 à 1.0 em incrementos de 0.1, e seu valor padrão é igual a 0,5. Também atribui-se um valor de similaridade de sequência ( $\theta$ ) (equação [14]), utilizando a caixa de seleção (Figura 25, marcação em vermelho 6). Esse número é utilizado para inferir o número efetivo de sequências  $(M_e f f)$  (equação [15]). O intervalo se seleção do  $\theta$  vai de 0,1 à 1,0 em incrementos de 0,1, com valor padrão igual a 0,8. Utilizamos a caixa de seleção seguinte (Figura 25, marcação em vermelho 7) para selecionar o valor da distância de contato  $(r_C)$  (Seção III.1). Seu padrão é igual a 8,0. Por último, podemos selecionar nas caixas de marcação (**Figura 25, marcação em vermelho 8**) quais funções serão computadas pelo programa.



Figura 25: Janela de abertura do DSM.

Após a seleção dos arquivos, o campo de diagnóstico (Figura 26, marcação em vermelho 1) exibe o caminho de todos os arquivos selecionados, caso estes sejam válidos, ou uma mensagem de erro, caso contrário. A validação ocorre mediante a verificação da distância de Hamming entre as sequências primárias das proteínas presentes nos modelos e as sequências de referência de seus respectivos alinhamentos múltiplos. Esta distância não deve ser superior a 1%, de forma que o algoritmo pode trabalhar com uma margem de imprecisão nas sequências. Caso os arquivos sejam válidos, o botão "Run" (Figura 26, marcação em vermelho 2) é ativado e o usuário pode iniciar o trabalho. 😣 🗖 🔲 🛛 Docking Score Module

| User Upload                                        |        | Diagnostics 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
|----------------------------------------------------|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Docking Models Coordinates (.pdb) Select           |        | dsm >> docking files: ['/home/jfiorote/Mestrado/Data/1BXR_AB/<br>GRAMMX/models/1bxr_model_10.pdb', '/home/jfiorote/Mestrado/<br>Data/1BXR_AB/GRAMMX/models/1bxr_model_9.pdb', '/home/jfiorote/<br>Mestrado/Data/1BXR_AB/GRAMMX/models/1bxr_model_8.pdb', '/<br>home/jfiorote/Mestrado/Data/1BXR_AB/GRAMMX/models/<br>1bxr_model_7.pdb', '/home/jfiorote/Mestrado/Data/1BXR_AB/<br>GRAMMX/models/1bxr_model_6.pdb', '/home/jfiorote/Mestrado/Data/<br>1BXR_AB/GRAMMX/models/1bxr_model_5.pdb', '/home/jfiorote/ |  |  |
| Protein A Multiple Sequence Alignment (.fas)Select |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| Protein B Multiple Sequence Alignment (.fas)Select |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| User Preferences                                   |        | Mestrado/Data/1BXR_AB/GRAMMX/models/1bxr_model_4.pdb', '/<br>home/jfiorote/Mestrado/Data/1BXR_AB/GRAMMX/models/                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| Job name: 1bxr_grammx                              |        | 1bxr_model_3.pdb', '/home/jfiorote/Mestrado/Data/1BXR_AB/<br>GRAMMX/models/1bxr_model_2.pdb', '/home/jfiorote/Mestrado/Data/                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
| Set parameters: λ - Pseudocounter =                | 0,50 🗘 | dsm >> MSA A file: /home/jfiorote/Mestrado/Data/1BXR_AB/files/                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
| θ - Sequence Similarity =                          | 0,80 📮 | 1BXR_A.fas<br>>> 1004 sequences<br>dsm >> MSA B file: /home/ifiorote/Mestrado/Data/1BXR_AB/files/                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
| Contact Distance (Å) =                             | 8      | 1BXR_B.fas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| Select functions: 🧭 Mutual Information             |        | >> 1004 sequences                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
| 🧭 Linear Correlation                               |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| Run                                                |        | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
| Save Job Save Pl                                   | ot     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|                                                    |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|                                                    |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|                                                    |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| www.lbtc.unb.br                                    |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|                                                    |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|                                                    |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |



O trabalho é iniciado através do clique no botão "Run". Durante os cálculos, o mesmo widget é convertido em um botão de cancelamento (Figura 27, marcação em vermelho 1) enquanto os outros widgets são inativados, de maneira que não é mais possível alterar qualquer informação. São exibidas no campo de diagnóstico as informações pertinentes ao trabalho, como o nome selecionado para o trabalho na janela de abertura, o valor de similaridade de sequências ( $\theta$ ) escolhido e o número efetivo de sequências ( $M_{eff}$ ). Caso o usuário deseje o cancelar o trabalho, ele deve clicar no botão "Cancel" e confirmar sua escolha na caixa de diálogo subsequente.



Figura 27: Janela exibida pelo DSM durante os cálculos de coevolução.

Decorrido o trabalho, o botão "Cancel" é alterado para o botão "Plot" (Figura 28, marcação em vermelho 1), que tem a função de exibir um gráfico com os valores de *MI/H* e *r*. A Figura 29 mostra o gráfico gerado na ocasião deste trabalho. Os dados dos resultados são exibidos na janela de diagnóstico e também estão disponíveis em um relatório gerado. Este relatório pode ser salvo em formato de texto ".txt" através do clique no botão "Save Job" (Figura 28, marcação em vermelho 2), agora ativo. Este botão abre a navegação entre diretórios usando como nome padrão para o arquivo o identificador inserido no campo "Job name". Como dito anteriormente, caso ele não tenha sido preenchido, o nome padrão é composto pela palavra "*job*" juntamente com a data e o horário em que o trabalho foi iniciado. A Figura 30 mostra a visualização do arquivo texto gerado neste exemplo.

#### 😣 🗐 🗉 🛛 Docking Score Module

| User Upload                                                                                                                                                           | Diagnostics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Docking Models Coordinates (.pdb)SelectProtein A Multiple Sequence Alignment (.fas)SelectProtein B Multiple Sequence Alignment (.fas)Select                           | dsm >> docking files: ['/home/jfiorote/Mestrado/Data/1BXR_AB/<br>GRAMMX/models/1bxr_model_10.pdb', '/home/jfiorote/Mestrado/<br>Data/1BXR_AB/GRAMMX/models/1bxr_model_9.pdb', '/home/<br>jfiorote/Mestrado/Data/1BXR_AB/GRAMMX/models/<br>1bxr_model_8.pdb', '/home/jfiorote/Mestrado/Data/1BXR_AB/<br>GRAMMX/models/1bxr_model_7.pdb', '/home/jfiorote/Mestrado/<br>Data/1BXR_AB/GRAMMX/models/1bxr_model_6.pdb', '/home/<br>jfiorote/Mestrado/Data/1BXR_AB/GRAMMX/models/                                             |
| User Preferences         Job name:         1bxr_grammx         Set parameters:         λ - Pseudocounter         θ - Sequence Similarity         Contact Distance (Å) | 1bxr_model_5.pdb', '/home/jfiorote/Mestrado/Data/1BXR_AB/<br>GRAMMX/models/1bxr_model_4.pdb', '/home/jfiorote/Mestrado/<br>Data/1BXR_AB/GRAMMX/models/1bxr_model_3.pdb', '/home/<br>jfiorote/Mestrado/Data/1BXR_AB/GRAMMX/models/<br>1bxr_model_2.pdb', '/home/jfiorote/Mestrado/Data/1BXR_AB/<br>GRAMMX/models/1bxr_model_1.pdb']<br>dsm >> MSA A file: /home/jfiorote/Mestrado/Data/1BXR_AB/files/<br>1BXR_A.fas<br>>> 1004 sequences<br>dsm >> MSA B file: /home/jfiorote/Mestrado/Data/1BXR_AB/files/<br>1BXR_B.fcr |
| Select functions: 🗹 Mutual Information                                                                                                                                | >> 100A sequences<br>dsm >> Job 1bxr_grammx:<br>dsm >> θ = 0.8; Meff = 492.13704348366355<br>dsm >> Results:<br>dsm >> 1bxr model 10.pdb MI = 14.163975708236592 r=                                                                                                                                                                                                                                                                                                                                                     |
| Plot<br>Save Job 2 Save Plot                                                                                                                                          | 1 0.37471244T0985054<br>dsm >> 1bxr_model_9.pdb MI = 14.295500978840035 r =<br>0.4192319427533432<br>dsm >> 1bxr_model_8.pdb MI = 16.747618017036547 r =<br>0.50947374T9581449<br>dsm >> 1bxr_model_7.pdb MI = 13.29525005440792 r =<br>0.3735144383182199<br>dsm >> 1bxr_model_6.pdb MI = 17.156061819958094 r =<br>0.4702031513918293<br>dsm >> 1bxr_model_5.pdb MI = 14.850360188724032 r =<br>0.3115431682111352<br>dsm >> 1bxr_model_4.pdb MI = 21.026500245746206 r =<br>0.47178620976282265                      |

Figura 28: Janela exibida pelo DSM após o término dos cálculos de coevolução.



Figura 29: Exemplo do gráfico gerado pelo DSM para o cálculo dos modelos do complexo 1BXR A-B gerados pelo servidor GRAMMX.

| 😣 🖨 💷 1bxr_grammx_t0.8_l0.5.txt (~/) - gedit                                          |      |  |  |  |
|---------------------------------------------------------------------------------------|------|--|--|--|
| Open - Fl                                                                             | Save |  |  |  |
| job = 1bxr_grammx                                                                     |      |  |  |  |
| theta = 0.8                                                                           |      |  |  |  |
| udels = ['1byc model 10 pdb' '1byc model 0 pdb'                                       |      |  |  |  |
| '1bxr model 8.pdb', '1bxr model 7.pdb', '1bxr model 6.pdb',                           |      |  |  |  |
| '1bxr model 5.pdb', '1bxr model 4.pdb', '1bxr model 3.pdb',                           |      |  |  |  |
| '1bxr_model_2.pdb', '1bxr_model_1.pdb'j                                               |      |  |  |  |
| mi = [14.163975708236592, 14.295500978840035,                                         |      |  |  |  |
| 16.747618017036547, 13.295250054407919, 17.156061819958094,                           |      |  |  |  |
| 14.850360188724032, 21.026500245746206, 22.990080927315709,                           |      |  |  |  |
| 28.920295439008237, 55.154092920880103]<br>b = [522 35100643350783 502 66750475347521 |      |  |  |  |
| 567.89020505498888.478.02529012836101.407.95959456532302.                             |      |  |  |  |
| 470.15436440996234, 707.98134012029993, 639.27171937010155,                           |      |  |  |  |
| 771.04538858379738, 767.2910777914359]                                                |      |  |  |  |
| mi/h = [0.027115819695538657, 0.02843927304653689,                                    |      |  |  |  |
| 0.029490943615438608, 0.027812859128934022,                                           |      |  |  |  |
| 0.042053335792329415, 0.031586137049607194,                                           |      |  |  |  |
| 0.029099229420013531, 0.03590292504534488,                                            |      |  |  |  |
| $r = \begin{bmatrix} 0 & 37471244109850538 & 0 & 41923194275334319 \end{bmatrix}$     |      |  |  |  |
| 0.50947374195814488. 0.3735144383182199. 0.4702031513918292                           | в.   |  |  |  |
| 0.3115431682111352, 0.47178620976282265, 0.5048126200907567                           | Β,   |  |  |  |
| 0.55191648859189202, 0.70691426243031186]                                             | -    |  |  |  |
| n_of_pairs = [99, 96, 108, 90, 83, 92, 137, 126, 154, 170]                            |      |  |  |  |
| pairs = [[[797, 23], [798, 103], [799, 22], [799, 103], [799                          | 9,   |  |  |  |
| 104], [/99, 106], [800, 103], [800, 100], [800, 104], [801,                           |      |  |  |  |
| Plain Text 🔻 Tab Width: 8 🔻 🛛 Ln 8, Col 1 🔍                                           | INS  |  |  |  |

Figura 30: Visualização do arquivo ".txt" gerado pelo DSM através do programa Gedit.

Após a geração do gráfico, o DSM exibe a sua janela final e o botão "Plot" e convertido em "Restart" (**Figura 31, marcação em vermelho 1**). Assim, o usuário pode iniciar outro trabalho, caso queira. O gráfico gerado também pode ser salvo em um arquivo do tipo *Scalable Vector Graphics* ".svg", navegando nos diretórios por meio do botão "Save Plot"(**Figura 31, marcação em vermelho 2**).

Para o caso mostrado nesse exemplo, onde utilizou-se os modelos do complexo 1BXR A-B gerados pelo servidor GRAMMX, o gráfico representado na **Figura 29** indica ao usuário que a solução número 1 possui o maior valor de r e também de MI/H. Desta forma, o modelo número 1 é indicado como o modelo mais próximo ao complexo alvo. De fato, podemos verificar que este modelo tem o menor desvio estrutural dentre os 10 modelos propostos (**Tabela 4**).

😣 🗖 🗊 🛛 Docking Score Module

| User Upload                                                                                                                                 |          | Diagnostics                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|---------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Docking Models Coordinates (.pdb)SelectProtein A Multiple Sequence Alignment (.fas)SelectProtein B Multiple Sequence Alignment (.fas)Select |          | dsm >> docking files: ['/home/jfiorote/Mestrado/Data/1BXR_AB/<br>GRAMMX/models/1bxr_model_10.pdb', '/home/jfiorote/Mestrado/<br>Data/1BXR_AB/GRAMMX/models/1bxr_model_9.pdb', '/home/<br>jfiorote/Mestrado/Data/1BXR_AB/GRAMMX/models/<br>1bxr_model_8.pdb', '/home/jfiorote/Mestrado/Data/1BXR_AB/<br>GRAMMX/models/1bxr_model_7.pdb', '/home/jfiorote/Mestrado/<br>Data/1BXR_AB/GRAMMX/models/1bxr_model_6.pdb', '/home/<br>jfiorote/Mestrado/Data/1BXR_AB/GRAMMX/models/ |
|                                                                                                                                             |          | 1bxr_model_5.pdb', '/home/jfiorote/Mestrado/Data/1BXR_AB/<br>GRAMMX/models/1bxr_model_4.pdb', '/home/jfiorote/Mestrado/                                                                                                                                                                                                                                                                                                                                                     |
| tab approx                                                                                                                                  |          | Data/1BXR_AB/GRAMMX/models/1bxr_model_3.pdb', '/home/                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Job name: Tbxr_grammx                                                                                                                       |          | jfiorote/Mestrado/Data/1BXR_AB/GRAMMX/models/                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Set parameters: λ - Pseudocounter                                                                                                           | = 0,50 🗘 | GRAMMX/models/1bxr model 1.pdb']                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                             |          | dsm >> MSA A file: /home/jfiorote/Mestrado/Data/1BXR_AB/files/                                                                                                                                                                                                                                                                                                                                                                                                              |
| o - Sequence Similarity                                                                                                                     | = 0,80 - | 1BXR_A.ras                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Contact Distance (Å)                                                                                                                        | = 8 🗘    | dsm >> MSA B file: /home/jfiorote/Mestrado/Data/1BXR_AB/files/                                                                                                                                                                                                                                                                                                                                                                                                              |
| Select functions: Mutual Information                                                                                                        |          | 1BXR_B.fas >> 1004 sequences                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                             | '        | dsm >> Job 1bxr_grammx:                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Linear Correlation                                                                                                                          |          | dsm >> 0 = 0.8; Meff = 492.13704348366355                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                             |          | dsm >> 1bxr_model_10.pdb MI = 14.163975708236592 r =                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Restart                                                                                                                                     |          | 1 0.3747124410985054                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Course to be                                                                                                                                | aug Diat | 0.4192319427533432                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Save Job S                                                                                                                                  | ave Plot | dsm >> 1bxr_model_8.pdb MI = 16.747618017036547 r =                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                             |          | dsm >> 1bxr model 7.pdb MI = 13.29525005440792 r =                                                                                                                                                                                                                                                                                                                                                                                                                          |
| -S <sup>2</sup>                                                                                                                             |          | 0.3735144383182199                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                             | de       | dsm >> 1bxr_model_6.pdb MI = 17.156061819958094 r =                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                             | ional    | dsm >> 1bxr_model_5.pdb MI = 14.850360188724032 _ r =                                                                                                                                                                                                                                                                                                                                                                                                                       |
| www.lbtc.unb.b                                                                                                                              | r        | 0.3115431682111352                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| -                                                                                                                                           |          | dsm >> 1bxr_model_4.pdb MI = 21.026500245746206 r =<br>0.47178620976282265                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                             |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

Figura 31: Janela Final do DSM.

# V – Conclusão e Perspectivas

Podemos ver nos resultados que o algoritmo, ao tratar de interações entre proteínas globulares, é capaz de atribuir uma alta pontuação para modelos de *docking* mais próximos à estrutura alvo. Precisamos, no entanto, minimizar os efeitos indiretos no cálculo da informação mútua. Um ponto a considerar é a decomposição da covariância entre os aminoácidos. A informação mútua mede a covariância geral entre posições de um MSA. Fares e colaboradores e seu trabalho de 2008<sup>71</sup> sugerem que a covariância entre duas posições de um alinhamento pode ser dividida em cinco diferentes frações:

$$C_{ij} = C_{philogeny} + C_{structure} + C_{function} + C_{interactions} + C_{stochastic}$$

A fração  $C_{philogeny}$  se refere ao conceito de dependência histórica entre duas espécies na natureza aplicado às posições dos aminoácidos. As frações  $C_{structure}$  e  $C_{function}$  agem na manutenção dos sítios funcionais e são difíceis de distinguir, pois não são mutualmente excludentes. A parte  $C_{interactions}$  confunde-se com as outras, pois geralmente reflete algum componente funcional ou estrutural. Esta parte leva em conta que a variação no nível da sequência em sítios que estão envolvidos na interação entre proteínas. Por último, a fração  $C_{stochastic}$  pode ser originada a partir da convergência da dinâmica mutacional das posições de aminoácidos. Esse efeito pode ser muito significativo quando a inferência da covariância é feita a partir de um MSA de baixa qualidade ou com poucas sequências<sup>72</sup>. Apesar da composição da covariância entre aminoácidos não ter sido desmembrada em nossos estudos, podemos supor que o efeito de ruído pode ser grande parte do sinal detectado no caso dos modelos que possuem alto rmsd em relação à estrutura alvo e altos valores de  $MI/H \times r$ .

A teoria baseada no trabalho de Fares e colaboradores<sup>68</sup> já vem sendo desenvolvida por Werner e colaboradores, onde a informação mútua pode ser dada por:

$$MI_{r_C < 8}/N_{r_C < 8} = MI_{coev} + MI_{evol} + MI_{rand}$$

onde  $N_{r_C \leq 8}$  é o número de contatos do conjunto, selecionados de acordo com uma distância  $r_C$ ,  $MI_{coev}$  é a parcela estimada de coevolução e abrange as frações de estrutura, função e interação. A  $MI_{evol}$  é a parcela derivada da evolução e abrange a fração que decorre da filogenia, e  $MI_{rand}$  é a parcela derivada de fatores estocásticos.

A parte da informação mútua estocástica pode ser calculada pela seguinte relação:

$$MI_{rand} = \frac{\langle MI_{r_c} > 8(X; Y \mid z_{rand}) \rangle}{N_{rC>8}}$$

onde  $z_{rand}$  é a média de informação mútua para diferentes modelos de coevolução estocásticos. Estes cálculos tem um alto custo computacional, de forma que ainda é preciso estender um pouco mais seu período de implementação.

Outro ponto a ser considerado é a métrica da covariância. A informação mútua baseia-se em um modelo estatístico local, onde todas as interações são consideradas independentes. Como discutido anteriormente, há diversos tipos de restrições que limitam o padrão de substituição dos aminoácidos em uma proteína. Essas amarras não são levadas em conta na MI, de forma que algumas das correlações detectadas por este método são correlações indiretas. Suponha que alguma posição *i* esteja diretamente acoplada com uma posição *j* que, por sua vez, esteja acoplada com uma posição *k*. Mesmo sem um acoplamento direto, as posições *i* e *k* irão mostrar covariância. Esse efeito pode tornar-se pronunciado se houver uma grande quantidade de acoplamentos indiretos em um  $MSA^{52,73}$ .

Para solucionar esse problema, outra métrica a ser implementada no DSM é o análise de acoplamento direto (do inglês "*direct coupling analysis*" (DCA)). Este método estatístico global<sup>52</sup> pode distinguir quais interações decorrem de um acoplamento direto entre os resíduos. Porém, ainda é preciso ainda adaptar a DCA ao nosso problema. Ela foi desenvolvida dentro de uma dimensão intraproteica, de modo que, antes da sua implementação propriamente dita, é preciso entender como este método funciona quando se trata de uma interação entre duas proteínas distintas.

Mesmo com as melhorias a serem implementadas, o DSM já é uma ferramenta funcional. A expectativa para a sua disponibilização, juntamente com a redação do artigo sobre este trabalho, está dentro de um médio prazo, pois outros testes serão feitos para ratificar a eficácia do algoritmo. Também é preciso de tempo para a construção dos alinhamentos para os novos estudos de caso, visto que estes testes serão conduzidos utilizando um número bem maior de complexos.

# **Referências Bibliográficas**

- Bustin, S. Molecular Biology of the Cell, Sixth Edition; ISBN: 9780815344643; and Molecular Biology of the Cell, Sixth Edition, The Problems Book; ISBN 9780815344537. *Int. J. Mol. Sci.* 16, 28123–28125 (2015).
- 2. 125th Anniversary Issue: Science Online Special Feature. Available at: http://www.sciencemag.org/site/feature/misc/webfeat/125th/. (Accessed: 10th September 2018)
- Bienstock, R. J. Computational Drug Design Targeting Protein-Protein Interactions. *Current Pharmaceutical Design* (2012). Available at: http://www.eurekaselect.com/76583/article. (Accessed: 21st October 2017)
- 4. Coelho, E. D. & Oliveira, J. P. A. and J. L. From Protein-Protein Interactions to Rational Drug Design: Are Computational Methods Up to the Challenge? *Current Topics in Medicinal Chemistry* (2013). Available at: http://www.eurekaselect.com/109234/article. (Accessed: 27th October 2018)
- Fry, D. C. Targeting Protein-Protein Interactions for Drug Discovery. in *Protein-Protein Interactions: Methods and Applications* (eds. Meyerkord, C. L. & Fu, H.) 93–106 (Springer New York, 2015). doi:10.1007/978-1-4939-2425-7\_6
- 6. Small molecules, big targets: drug discovery faces the protein–protein interaction challenge | Nature Reviews Drug Discovery. Available at: https://www.nature.com/articles/nrd.2016.29. (Accessed: 25th December 2018)
- 7. Elucidating the druggable interface of protein–protein interactions using fragment docking and coevolutionary analysis | PNAS. Available at: https://www.pnas.org/content/113/50/E8051. (Accessed: 25th December 2018)
- 8. Reaching for high-hanging fruit in drug discovery at protein–protein interfaces | Nature. Available at: https://www.nature.com/articles/nature06526. (Accessed: 25th December 2018)
- 9. Foo, J. L., Ching, C. B., Chang, M. W. & Leong, S. S. J. The imminent role of protein engineering in synthetic biology. *Biotechnol. Adv.* **30**, 541–549 (2012).
- Glasscock, C. J., Lucks, J. B. & DeLisa, M. P. Engineered Protein Machines: Emergent Tools for Synthetic Biology. *Cell Chem. Biol.* 23, 45–56 (2016).

- Jones, S. & Thornton, J. M. Principles of protein-protein interactions. *Proc. Natl. Acad. Sci. U.* S. A. 93, 13–20 (1996).
- 12. Nooren, I. M. A. & Thornton, J. M. Diversity of protein–protein interactions. *EMBO J.* 22, 3486–3492 (2003).
- La, D., Kong, M., Hoffman, W., Choi, Y. I. & Kihara, D. Predicting permanent and transient protein-protein interfaces. *Proteins* 81, 805–818 (2013).
- Jones, S. & Thornton, J. M. Protein-protein interactions: A review of protein dimer structures. *Prog. Biophys. Mol. Biol.* 63, 31–65 (1995).
- 15. Predicting Protein–Protein Interactions from the Molecular to the Proteome Level Chemical<br/>Reviews (ACS Publications). Available at:<br/>https://pubs.acs.org/doi/abs/10.1021/acs.chemrev.5b00683. (Accessed: 18th December 2018)
- 16. Structural Characterisation and Functional Significance of Transient Protein–Protein Interactions - ScienceDirect. Available at: https://www.sciencedirect.com/science/article/pii/S0022283602012810?via%3Dihub. (Accessed: 19th December 2018)
- Ehrlich, L. P. & Wade, R. C. Protein-Protein Docking. in *Reviews in Computational Chemistry* 61–97 (Wiley-Blackwell, 2001). doi:10.1002/0471224413.ch2
- Méndez, R., Leplae, R., Maria, L. D. & Wodak, S. J. Assessment of blind predictions of protein–protein interactions: Current status of docking methods. *Proteins Struct. Funct. Bioinforma.* 52, 51–67 (2003).
- 19. Smith, G. R. & Sternberg, M. J. E. Prediction of protein-protein interactions by docking methods. *Curr. Opin. Struct. Biol.* **12**, 28–35 (2002).
- Halperin, I., Ma, B., Wolfson, H. & Nussinov, R. Principles of docking: An overview of search algorithms and a guide to scoring functions. *Proteins Struct. Funct. Bioinforma.* 47, 409–443 (2002).
- 21. Harrison, R. W., Kourinov, I. V. & Andrews, L. C. The Fourier-Green's function and the rapid evaluation of molecular potentials. *Protein Eng. Des. Sel.* **7**, 359–369 (1994).
- 22. Palma, P. N., Krippahl, L., Wampler, J. E. & Moura, J. J. BiGGER: a new (soft) docking algorithm for predicting protein interactions. *Proteins* **39**, 372–384 (2000).

- Fischer, D., Lin, S. L., Wolfson, H. L. & Nussinov, R. A geometry-based suite of moleculardocking processes. J. Mol. Biol. 248, 459–477 (1995).
- 24. Vakser, I. A. Evaluation of GRAMM low-resolution docking methodology on the hemagglutinin-antibody complex. *Proteins Struct. Funct. Bioinforma.* **29**, 226–230 (1997).
- Yan, Y., Zhang, D., Zhou, P., Li, B. & Huang, S.-Y. HDOCK: a web server for protein–protein and protein–DNA/RNA docking based on a hybrid strategy. *Nucleic Acids Res.* 45, W365–W373 (2017).
- 26. Pierce, B. G., Hourai, Y. & Weng, Z. Accelerating protein docking in ZDOCK using an advanced 3D convolution library. *PloS One* **6**, e24657 (2011).
- Katchalski-Katzir, E. *et al.* Molecular surface recognition: determination of geometric fit between proteins and their ligands by correlation techniques. *Proc. Natl. Acad. Sci. U. S. A.* 89, 2195–2199 (1992).
- Chen, R. & Weng, Z. A novel shape complementarity scoring function for protein-protein docking. *Proteins Struct. Funct. Bioinforma.* 51, 397–408 (2003).
- 29. Protein docking along smooth association pathways. Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC58518/. (Accessed: 5th November 2018)
- 30. Shoichet, B. K. & Kuntz, I. D. Protein docking and complementarity. *J. Mol. Biol.* **221**, 327–346 (1991).
- 31. Jackson, R. M. & Sternberg, M. J. E. A Continuum Model for Protein–Protein Interactions: Application to the Docking Problem. *J. Mol. Biol.* **250**, 258–275 (1995).
- 32. Jackson, R. M., Gabb, H. A. & Sternberg, M. J. Rapid refinement of protein interfaces incorporating solvation: application to the docking problem. *J. Mol. Biol.* **276**, 265–285 (1998).
- Camacho, C. J., Gatchell, D. W., Kimura, S. R. & Vajda, S. Scoring docked conformations generated by rigid-body protein-protein docking. *Proteins Struct. Funct. Bioinforma*. 40, 525–537 (2000).
- Pons, C., Grosdidier, S., Solernou, A., Pérez-Cano, L. & Fernández-Recio, J. Present and future challenges and limitations in protein–protein docking. *Proteins Struct. Funct. Bioinforma.* 78, 95–108 (2010).

- 35. Andrusier, N., Mashiach, E., Nussinov, R. & Wolfson, H. J. Principles of flexible protein– protein docking. *Proteins Struct. Funct. Bioinforma*. **73**, 271–289 (2008).
- 36. Bonvin, A. M. Flexible protein-protein docking. Curr. Opin. Struct. Biol. 16, 194-200 (2006).
- Li, L., Chen, R. & Weng, Z. RDOCK: Refinement of rigid-body protein docking predictions. *Proteins Struct. Funct. Bioinforma.* 53, 693–707 (2003).
- Vajda, S. & Kozakov, D. Convergence and combination of methods in protein-protein docking. *Curr. Opin. Struct. Biol.* 19, 164–170 (2009).
- 39. Use of pair potentials across protein interfaces in screening predicted docked complexes Moont 1999 Proteins: Structure, Function, and Bioinformatics Wiley Online Library. Available at: https://onlinelibrary.wiley.com/doi/full/10.1002/%28SICI%291097-0134%2819990515%2935%3A3%3C364%3A%3AAID-PROT11%3E3.0.CO%3B2-4. (Accessed: 5th November 2018)
- 40. The Selfish Gene: 40th Anniversary Edition. (Oxford University Press, 2016).
- 41. Van Valen, L. Molecular evolution as predicted by natural selection. J. Mol. Evol. 3, 89–101 (1974).
- 42. Dieckmann, U. & Law, R. The dynamical theory of coevolution: a derivation from stochastic ecological processes. *J. Math. Biol.* **34**, 579–612 (1996).
- 43. Ehrlich, P. R. & Raven, P. H. Butterflies and Plants: A Study in Coevolution. *Evolution* **18**, 586–608 (1964).
- 44. Lovell, S. C. & Robertson, D. L. An Integrated View of Molecular Coevolution in Protein– Protein Interactions. *Mol. Biol. Evol.* 27, 2567–2575 (2010).
- 45. Capra, J. A. & Singh, M. Predicting functionally important residues from sequence conservation. *Bioinformatics* **23**, 1875–1882 (2007).
- 46. Lewis, A. C. F., Saeed, R. & Deane, C. M. Predicting protein–protein interactions in the context of protein evolution. *Mol. Biosyst.* **6**, 55–64 (2009).
- 47. Martin, L. C., Gloor, G. B., Dunn, S. D. & Wahl, L. M. Using information theory to search for co-evolving residues in proteins. *Bioinformatics* **21**, 4116–4124 (2005).
- 48. Ovchinnikov, S., Kamisetty, H. & Baker, D. Robust and accurate prediction of residue–residue interactions across protein interfaces using evolutionary information. *eLife* **3**, e02030 (2014).

- 49. Echave, J., Spielman, S. J. & Wilke, C. O. Causes of evolutionary rate variation among protein sites. *Nat. Rev. Genet.* **17**, 109–121 (2016).
- 50. de Juan, D., Pazos, F. & Valencia, A. Emerging methods in protein co-evolution. *Nat. Rev. Genet.* 14, 249–261 (2013).
- 51. Pazos, F. & Valencia, A. Similarity of phylogenetic trees as indicator of protein–protein interaction. *Protein Eng. Des. Sel.* **14**, 609–614 (2001).
- 52. Morcos, F. *et al.* Direct-coupling analysis of residue coevolution captures native contacts across many protein families. *Proc. Natl. Acad. Sci.* **108**, E1293–E1301 (2011).
- 53. GRAMM-X public web server for protein–protein docking | Nucleic Acids Research | Oxford Academic. Available at: https://academic.oup.com/nar/article/34/suppl\_2/W310/2505594. (Accessed: 4th February 2019)
- 54. Lyskov, S. & Gray, J. J. The RosettaDock server for local protein–protein docking. *Nucleic Acids Res.* **36**, W233–W238 (2008).
- 55. Pierce, B. G. *et al.* ZDOCK server: interactive docking prediction of protein-protein complexes and symmetric multimers. *Bioinforma. Oxf. Engl.* **30**, 1771–1773 (2014).
- 56. A Mathematical Theory of Communication Shannon 1948 Bell System Technical Journal -Wiley Online Library. Available at: https://onlinelibrary.wiley.com/doi/abs/10.1002/j.1538-7305.1948.tb01338.x. (Accessed: 27th October 2018)
- 57. Elements of Information Theory, 2nd Edition. *Wiley.com* Available at: https://www.wiley.com/en-us/Elements+of+Information+Theory%2C+2nd+Edition-p-9780471241959. (Accessed: 16th January 2019)
- 58. Biological Sequence Analysis by Richard Durbin. Available at: https://www.cambridge.org/core/books/biological-sequenceanalysis/921BB7B78B745198829EF96BC7E0F29D. (Accessed: 3rd February 2019)
- 59. Eddy, S. R. Where did the BLOSUM62 alignment score matrix come from? *Nat. Biotechnol.* **22**, 1035–1036 (2004).
- 60. Cock, P. J. A. *et al.* Biopython: freely available Python tools for computational molecular biology and bioinformatics. *Bioinformatics* **25**, 1422–1423 (2009).

- 61. Hamelryck, T. & Manderick, B. PDB file parser and structure class implemented in Python. *Bioinformatics* **19**, 2308–2310 (2003).
- 62. Oliphant, T. E. Python for Scientific Computing. Comput. Sci. Eng. 9, 10–20 (2007).
- 63. Bloom, J. D., Labthavikul, S. T., Otey, C. R. & Arnold, F. H. Protein stability promotes evolvability. *Proc. Natl. Acad. Sci.* **103**, 5869–5874 (2006).
- 64. Structure, function, and evolution of transient and obligate protein–protein interactions. Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1182425/. (Accessed: 3rd February 2019)
- 65. Carbamoyl Phosphate Synthetase: Closure of the B-Domain as a Result of Nucleotide Binding,
  Biochemistry (ACS Publications). Available at: https://pubs.acs.org/doi/pdf/10.1021/bi982517h.
  (Accessed: 3rd February 2019)
- 66. Rowland, P., Nørager, S., Jensen, K. F. & Larsen, S. Structure of Dihydroorotate Dehydrogenase
  B: Electron Transfer between Two Flavin Groups Bridged by an Iron-Sulphur Cluster. *Structure*8, 1227–1238 (2000).
- 67. Settembre, E. C. *et al.* Thiamin Biosynthesis in Bacillus subtilis: Structure of the Thiazole Synthase/Sulfur Carrier Protein Complex,. *Biochemistry* **43**, 11647–11657 (2004).
- Kurzbauer, R. *et al.* Crystal structure of the p14/MP1 scaffolding complex: How a twin couple attaches mitogen-activated protein kinase signaling to late endosomes. *Proc. Natl. Acad. Sci.* 101, 10984–10989 (2004).
- Kaila, V. R. I. *et al.* A combined quantum chemical and crystallographic study on the oxidized binuclear center of cytochrome c oxidase. *Biochim. Biophys. Acta BBA Bioenerg.* 1807, 769–778 (2011).
- 70. Assessing the utility of coevolution-based residue–residue contact predictions in a sequence-<br/>and structure-rich era. Available at:<br/>http://www.pnas.org.ez54.periodicos.capes.gov.br/content/110/39/15674.full. (Accessed: 7th<br/>December 2017)
- Codoñer, F. M. & Fares, M. A. Why Should We Care About Molecular Coevolution? *Evol. Bioinforma. Online* 4, 29–38 (2008).

- 72. A Novel Method for Detecting Intramolecular Coevolution: Adding a Further Dimension to

   Selective
   Constraints
   Analyses
   |
   Genetics.
   Available
   at:

   http://www.genetics.org/content/173/1/9.long. (Accessed: 5th February 2019)
- Weigt, M., White, R. A., Szurmant, H., Hoch, J. A. & Hwa, T. Identification of direct residue contacts in protein–protein interaction by message passing. *Proc. Natl. Acad. Sci.* 106, 67–72 (2009).
# Anexo I – Resultados dos Estudos de Caso

Tabela 4: Valores de rmsd, MI, H, MI/H e r para o complexo 1BXR A-B e seus modelos putativos gerados por diferentes servidores de *docking*.

| Servidor | Modelo | rmsd      | MI Total | H Total   | MI/H    | r       |
|----------|--------|-----------|----------|-----------|---------|---------|
| Х        | Nativo | 0         | 50,11983 | 693,80222 | 0,07224 | 0,68621 |
|          | 1      | 2,18822   | 55,15409 | 767,29108 | 0,07188 | 0,70691 |
|          | 2      | 81,46600  | 28,92030 | 771,04539 | 0,03751 | 0,55192 |
|          | 3      | 52,77658  | 22,99008 | 639,27172 | 0,03596 | 0,50481 |
|          | 4      | 82,62280  | 21,02650 | 707,98134 | 0,02970 | 0,47179 |
|          | 5      | 79,81957  | 14,85036 | 470,15436 | 0,03159 | 0,31154 |
| GRAININA | 6      | 59,11638  | 17,15606 | 407,95959 | 0,04205 | 0,47020 |
|          | 7      | 106,76657 | 13,29525 | 478,02529 | 0,02781 | 0,37351 |
|          | 8      | 76,58395  | 16,74762 | 567,89021 | 0,02949 | 0,50947 |
|          | 9      | 100,35320 | 14,29550 | 502,66759 | 0,02844 | 0,41923 |
|          | 10     | 100,74359 | 14,16398 | 522,35101 | 0,02712 | 0,37471 |
|          | 1      | 0,54300   | 54,16112 | 754,08097 | 0,07182 | 0,71511 |
|          | 2      | 60,76893  | 25,02138 | 526,05780 | 0,04756 | 0,46358 |
|          | 3      | 83,13728  | 29,85664 | 595,89526 | 0,05010 | 0,58602 |
|          | 4      | 76,94186  | 14,45101 | 337,66241 | 0,04280 | 0,35641 |
| нроск    | 5      | 68,55561  | 16,61189 | 326,46226 | 0,05088 | 0,37680 |
| HDOCK    | 6      | 61,63171  | 13,48409 | 323,08397 | 0,04174 | 0,29274 |
|          | 7      | 14,92326  | 23,47843 | 316,30457 | 0,07423 | 0,62629 |
|          | 8      | 98,75919  | 10,68456 | 289,11396 | 0,03696 | 0,44187 |
|          | 9      | 103,08092 | 15,61314 | 474,94313 | 0,03287 | 0,41415 |
|          | 10     | 101,81568 | 12,36222 | 296,98977 | 0,04163 | 0,33364 |
|          | 1      | 2,77530   | 38,24088 | 527,72846 | 0,07246 | 0,66337 |
|          | 2      | 5,00445   | 26,50625 | 379,35995 | 0,06987 | 0,55240 |
|          | 3      | 4,94064   | 25,99888 | 369,21907 | 0,07042 | 0,55594 |
|          | 4      | 4,86355   | 23,46014 | 326,32603 | 0,07189 | 0,51549 |
| ROSIE    | 5      | 5,05647   | 20,66097 | 297,33986 | 0,06949 | 0,55499 |
| ROOL     | 6      | 4,16746   | 21,74143 | 310,17467 | 0,07009 | 0,53213 |
|          | 7      | 36,87152  | 6,07177  | 131,59056 | 0,04614 | 0,28207 |
|          | 8      | 5,55870   | 24,52939 | 350,74745 | 0,06993 | 0,54333 |
|          | 9      | 5,20526   | 15,95095 | 228,19898 | 0,06990 | 0,53479 |
|          | 10     | 5,02390   | 17,33038 | 252,01184 | 0,06877 | 0,60088 |
|          | 1      | 2,55619   | 50,27297 | 685,35993 | 0,07335 | 0,63917 |
|          | 2      | 4,73504   | 35,37194 | 535,62385 | 0,06604 | 0,54143 |
|          | 3      | 4,98357   | 50,89336 | 768,62620 | 0,06621 | 0,64812 |
|          | 4      | 59,28601  | 26,00552 | 498,38117 | 0,05218 | 0,40742 |
| 7DOCK    | 5      | 90,23189  | 24,53072 | 514,95550 | 0,04764 | 0,50790 |
| ZDOCK    | 6      | 13,07288  | 17,33632 | 302,65457 | 0,05728 | 0,42681 |
|          | 7      | 6,21535   | 42,06120 | 585,18832 | 0,07188 | 0,58939 |
|          | 8      | 86,41090  | 15,77823 | 402,61361 | 0,03919 | 0,44120 |
|          | 9      | 108,50024 | 19,02321 | 457,65562 | 0,04157 | 0,41247 |
|          | 10     | 59,92193  | 22,88292 | 542,02280 | 0,04222 | 0,34792 |

| Servidor | Modelo | rmsd     | MI Total | H Total   | MI/H    | r       |
|----------|--------|----------|----------|-----------|---------|---------|
| Х        | Nativo | 0        | 24,67180 | 439,73311 | 0,05611 | 0,72694 |
|          | 1      | 2,25191  | 26,82051 | 483,43137 | 0,05548 | 0,73503 |
|          | 2      | 8,34263  | 25,82626 | 481,20942 | 0,05367 | 0,73546 |
|          | 3      | 44,99174 | 28,34506 | 532,67182 | 0,05321 | 0,56119 |
|          | 4      | 58,99828 | 19,50126 | 418,43972 | 0,04660 | 0,50902 |
|          | 5      | 61,93951 | 24,11257 | 447,48263 | 0,05388 | 0,63826 |
| GRAMINIX | 6      | 50,04640 | 20,25319 | 424,39048 | 0,04772 | 0,56264 |
|          | 7      | 48,27326 | 12,25802 | 405,34139 | 0,03024 | 0,24151 |
|          | 8      | 58,65607 | 22,45849 | 464,83003 | 0,04832 | 0,45755 |
|          | 9      | 53,20958 | 20,62709 | 407,69398 | 0,05059 | 0,61200 |
|          | 10     | 54,96478 | 17,25004 | 481,90551 | 0,03580 | 0,34836 |
|          | 1      | 0,52971  | 25,53440 | 447,24355 | 0,05709 | 0,71139 |
|          | 2      | 0,97396  | 27,63873 | 489,93784 | 0,05641 | 0,72007 |
|          | 3      | 6,76421  | 22,73319 | 417,90299 | 0,05440 | 0,73330 |
|          | 4      | 8,24303  | 18,86660 | 343,35503 | 0,05495 | 0,69808 |
|          | 5      | 56,30980 | 14,14661 | 413,22887 | 0,03423 | 0,36055 |
| HDUCK    | 6      | 58,18789 | 18,65481 | 403,27903 | 0,04626 | 0,54785 |
|          | 7      | 28,90113 | 15,35888 | 290,70374 | 0,05283 | 0,59817 |
|          | 8      | 59,18753 | 13,45352 | 341,15215 | 0,03944 | 0,43252 |
|          | 9      | 5,17960  | 19,46334 | 349,09360 | 0,05575 | 0,63483 |
|          | 10     | 58,44264 | 15,58007 | 348,09495 | 0,04476 | 0,49382 |
|          | 1      | 1,27083  | 22,84456 | 395,66101 | 0,05774 | 0,71005 |
|          | 2      | 1,31802  | 22,26906 | 385,89051 | 0,05771 | 0,73083 |
|          | 3      | 1,56694  | 22,08768 | 380,49171 | 0,05805 | 0,72336 |
|          | 4      | 1,59216  | 20,46920 | 351,88270 | 0,05817 | 0,72026 |
| POSIE    | 5      | 1,25549  | 19,93958 | 347,92083 | 0,05731 | 0,71710 |
| RUSIE    | 6      | 1,67353  | 19,16063 | 332,85242 | 0,05756 | 0,72556 |
|          | 7      | 3,14521  | 18,99254 | 329,44415 | 0,05765 | 0,69298 |
|          | 8      | 1,54132  | 18,86725 | 322,77222 | 0,05845 | 0,70106 |
|          | 9      | 1,60416  | 18,51232 | 317,69412 | 0,05827 | 0,70708 |
|          | 10     | 2,16088  | 18,74225 | 322,07709 | 0,05819 | 0,65370 |
|          | 1      | 2,91697  | 27,99784 | 514,66265 | 0,05440 | 0,72841 |
|          | 2      | 3,74080  | 32,16960 | 586,83060 | 0,05482 | 0,75082 |
|          | 3      | 5,16557  | 25,41595 | 503,04274 | 0,05052 | 0,71702 |
|          | 4      | 6,07119  | 21,29012 | 400,85523 | 0,05311 | 0,72272 |
| 70000    | 5      | 5,56764  | 26,67406 | 496,96241 | 0,05367 | 0,72060 |
| ZDUCK    | 6      | 7,78344  | 22,50676 | 396,14678 | 0,05681 | 0,73503 |
|          | 7      | 44,72924 | 21,69783 | 452,99097 | 0,04790 | 0,47952 |
|          | 8      | 28,71300 | 20,39503 | 400,76583 | 0,05089 | 0,67949 |
|          | 9      | 6,40477  | 29,23793 | 548,24895 | 0,05333 | 0,72691 |
|          | 10     | 29.64298 | 11,25790 | 279,67808 | 0.04025 | 0.44964 |

Tabela 5: Valores de rmsd, MI, H, MI/H e r para o complexo 1EP3 A-B e seus modelos putativos gerados por diferentes servidores de *docking*.

| Servidor | Modelo | rmsd     | MI Total | H Total   | MI/H    | r       |
|----------|--------|----------|----------|-----------|---------|---------|
| Х        | Nativo | 0        | 23,36036 | 383,40769 | 0,06093 | 0,58159 |
|          | 1      | 2,18130  | 23,85867 | 387,49000 | 0,06157 | 0,58159 |
|          | 2      | 32,00004 | 18,52290 | 409,44694 | 0,04524 | 0,52893 |
|          | 3      | 36,82898 | 9,80558  | 327,24741 | 0,02996 | 0,24702 |
|          | 4      | 20,94498 | 11,89946 | 319,04582 | 0,03730 | 0,47089 |
|          | 5      | 33,25182 | 17,17585 | 326,45611 | 0,05261 | 0,47070 |
| GRAMINA  | 6      | 63,49081 | 9,15946  | 283,73019 | 0,03228 | 0,36973 |
|          | 7      | 18,04462 | 14,25247 | 335,55657 | 0,04247 | 0,52784 |
|          | 8      | 20,29048 | 17,24167 | 302,46868 | 0,05700 | 0,69607 |
|          | 9      | 62,81004 | 14,65703 | 308,10592 | 0,04757 | 0,34092 |
|          | 10     | 30,66498 | 19,16027 | 388,96563 | 0,04926 | 0,55525 |
|          | 1      | 0,71143  | 23,27286 | 372,03265 | 0,06256 | 0,54173 |
|          | 2      | 0,66809  | 23,19300 | 372,61754 | 0,06224 | 0,54173 |
|          | 3      | 60,83894 | 11,49167 | 303,06885 | 0,03792 | 0,24699 |
|          | 4      | 6,15279  | 21,52313 | 356,17638 | 0,06043 | 0,64185 |
| ироск    | 5      | 56,82685 | 8,73917  | 206,43249 | 0,04233 | 0,33233 |
| HDUCK    | 6      | 32,15646 | 11,24540 | 301,13568 | 0,03734 | 0,41259 |
|          | 7      | 66,18844 | 10,52828 | 272,93009 | 0,03858 | 0,32624 |
|          | 8      | 39,07931 | 16,48440 | 325,67559 | 0,05062 | 0,43162 |
|          | 9      | 48,31024 | 15,17215 | 284,55309 | 0,05332 | 0,35758 |
|          | 10     | 66,53800 | 6,94422  | 233,96682 | 0,02968 | 0,14904 |
|          | 1      | 1,69244  | 23,40317 | 382,08765 | 0,06125 | 0,59401 |
|          | 2      | 1,21084  | 23,38319 | 382,75162 | 0,06109 | 0,58159 |
|          | 3      | 0,46247  | 23,25454 | 377,24780 | 0,06164 | 0,58600 |
|          | 4      | 6,30990  | 15,95104 | 270,71212 | 0,05892 | 0,66587 |
| DOSIE    | 5      | 5,56069  | 12,54743 | 195,77820 | 0,06409 | 0,60966 |
| RUSIE    | 6      | 6,31971  | 12,76046 | 205,64546 | 0,06205 | 0,65541 |
|          | 7      | 6,16392  | 14,59063 | 235,75094 | 0,06189 | 0,65387 |
|          | 8      | 6,13824  | 14,67859 | 223,40548 | 0,06570 | 0,68803 |
|          | 9      | 5,62263  | 13,39607 | 214,98972 | 0,06231 | 0,64275 |
|          | 10     | 5,19227  | 13,74141 | 213,89742 | 0,06424 | 0,64497 |
|          | 1      | 2,39178  | 28,68616 | 486,34258 | 0,05898 | 0,59651 |
|          | 2      | 1,87165  | 26,72663 | 440,78407 | 0,06063 | 0,57293 |
|          | 3      | 3,15334  | 25,96844 | 423,81841 | 0,06127 | 0,56934 |
|          | 4      | 4,52259  | 23,80601 | 426,08344 | 0,05587 | 0,51152 |
| 70004    | 5      | 4,54428  | 26,70698 | 430,04205 | 0,06210 | 0,61001 |
| ZDUCK    | 6      | 3,89106  | 24,33825 | 390,39427 | 0,06234 | 0,57140 |
|          | 7      | 5,15653  | 27,15918 | 440,74743 | 0,06162 | 0,65551 |
|          | 8      | 5,61287  | 28,85911 | 456,06911 | 0,06328 | 0,61167 |
|          | 9      | 3,81670  | 29,56020 | 473,89718 | 0,06238 | 0,58944 |
|          | 10     | 9.84953  | 29.25260 | 530.60508 | 0.05513 | 0.62749 |

Tabela 6: Valores de rmsd, MI, H, MI/H e r para o complexo 1TYG A-B e seus modelos putativos gerados por diferentes servidores de *docking*.

| Servidor | Modelo | rmsd     | MI Total | H Total   | MI/H    | r       |
|----------|--------|----------|----------|-----------|---------|---------|
| Х        | Nativo | 0        | 9,78562  | 207,59685 | 0,04714 | 0,46739 |
|          | 1      | 37,72402 | 17,87833 | 315,05103 | 0,05675 | 0,58516 |
|          | 2      | 36,76073 | 17,34776 | 407,20879 | 0,04260 | 0,55130 |
|          | 3      | 41,12182 | 16,19444 | 382,08349 | 0,04238 | 0,56528 |
|          | 4      | 17,80064 | 14,43994 | 338,44827 | 0,04267 | 0,41308 |
|          | 5      | 41,44783 | 18,35241 | 354,69804 | 0,05174 | 0,55292 |
| GRAMMA   | 6      | 40,31641 | 11,76301 | 270,08035 | 0,04355 | 0,48644 |
|          | 7      | 37,62245 | 12,76398 | 369,19959 | 0,03457 | 0,47283 |
|          | 8      | 35,95856 | 11,55295 | 317,73326 | 0,03636 | 0,34196 |
|          | 9      | 41,64521 | 10,63719 | 308,28763 | 0,03450 | 0,44414 |
|          | 10     | 41,51316 | 15,87107 | 316,57093 | 0,05013 | 0,51643 |
|          | 0      | 0,33071  | 10,01029 | 212,82317 | 0,04704 | 0,49226 |
|          | 1      | 10,78067 | 13,84198 | 245,53202 | 0,05638 | 0,62762 |
|          | 2      | 43,34034 | 14,50621 | 301,25823 | 0,04815 | 0,53727 |
|          | 3      | 18,88986 | 15,64599 | 300,30717 | 0,05210 | 0,50374 |
| нроск    | 4      | 28,72086 | 15,10937 | 261,53907 | 0,05777 | 0,59205 |
| HDOCK    | 5      | 41,36775 | 18,11088 | 384,22240 | 0,04714 | 0,58987 |
|          | 6      | 28,17000 | 13,76347 | 243,31514 | 0,05657 | 0,57266 |
|          | 7      | 31,19185 | 15,38484 | 264,21447 | 0,05823 | 0,59066 |
|          | 8      | 1,42973  | 12,48128 | 263,18765 | 0,04742 | 0,52982 |
|          | 9      | 29,46642 | 9,85614  | 268,80176 | 0,03667 | 0,38702 |
|          | 1      | 9,05271  | 8,81420  | 211,20373 | 0,04173 | 0,47194 |
|          | 2      | 21,65802 | 7,58546  | 160,17077 | 0,04736 | 0,49157 |
|          | 3      | 7,45892  | 6,96974  | 167,18663 | 0,04169 | 0,43483 |
|          | 4      | 11,54267 | 8,48913  | 189,69656 | 0,04475 | 0,49388 |
| ROSIE    | 5      | 19,92635 | 7,65412  | 177,92268 | 0,04302 | 0,47073 |
| I TOOLE  | 6      | 9,00196  | 7,72034  | 170,78177 | 0,04521 | 0,39385 |
|          | 7      | 1,07988  | 8,60242  | 187,93631 | 0,04577 | 0,46829 |
|          | 8      | 4,22750  | 10,56413 | 229,47016 | 0,04604 | 0,48380 |
|          | 9      | 20,80886 | 6,37132  | 128,95588 | 0,04941 | 0,52976 |
|          | 10     | 21,15945 | 8,28440  | 181,30098 | 0,04569 | 0,48989 |
|          | 1      | 34,59880 | 16,07956 | 311,72260 | 0,05158 | 0,54166 |
|          | 2      | 37,27650 | 20,70822 | 358,48213 | 0,05777 | 0,58834 |
|          | 3      | 44,27268 | 16,31510 | 344,92975 | 0,04730 | 0,48914 |
|          | 4      | 48,24964 | 13,72565 | 300,85698 | 0,04562 | 0,26193 |
| ZDOCK    | 5      | 41,45028 | 19,87081 | 381,11835 | 0,05214 | 0,52814 |
| 22001    | 6      | 50,51942 | 8,94431  | 183,75300 | 0,04868 | 0,16950 |
|          | 7      | 34,55696 | 15,31389 | 335,21732 | 0,04568 | 0,47883 |
|          | 8      | 40,11567 | 20,31729 | 392,33814 | 0,05179 | 0,52217 |
|          | 9      | 39,19139 | 15,33819 | 300,09548 | 0,05111 | 0,59426 |
|          | 10     | 35,93018 | 19,74792 | 391,83997 | 0.05040 | 0.55335 |

Tabela 7: Valores de rmsd, MI, H, MI/H e r para o complexo 2VPZ A-B e seus modelos putativos gerados por diferentes servidores de *docking*.

| Servidor | Modelo | rmsd     | MI Total | H Total    | MI/H    | r       |
|----------|--------|----------|----------|------------|---------|---------|
| Х        | Nativo | 0        | 64,60610 | 1209,35283 | 0,05342 | 0,86297 |
|          | 1      | 0,44875  | 68,36598 | 1289,25686 | 0,05303 | 0,87862 |
|          | 2      | 13,91467 | 37,31134 | 799,30709  | 0,04668 | 0,72401 |
|          | 3      | 59,33742 | 30,99755 | 676,02816  | 0,04585 | 0,75583 |
|          | 4      | 57,03286 | 25,40191 | 566,82675  | 0,04481 | 0,69044 |
|          | 5      | 13,51905 | 29,39415 | 630,50109  | 0,04662 | 0,73961 |
| GRAMMA   | 6      | 58,21637 | 24,08393 | 591,53632  | 0,04071 | 0,76647 |
|          | 7      | 51,81720 | 28,88670 | 668,60491  | 0,04320 | 0,75668 |
|          | 8      | 21,34093 | 25,44294 | 600,60108  | 0,04236 | 0,73286 |
|          | 9      | 77,49424 | 17,62954 | 610,53275  | 0,02888 | 0,79696 |
|          | 10     | 6,45071  | 39,93673 | 776,76626  | 0,05141 | 0,78415 |
|          | 1      | 0,38667  | 64,63411 | 1207,92032 | 0,05351 | 0,86679 |
|          | 2      | 0,50964  | 68,73122 | 1281,92068 | 0,05362 | 0,86496 |
|          | 3      | 5,58367  | 29,63158 | 626,26216  | 0,04731 | 0,74312 |
|          | 4      | 79,33230 | 15,24545 | 523,68312  | 0,02911 | 0,78683 |
| ироск    | 5      | 54,29158 | 12,25709 | 456,98803  | 0,02682 | 0,65378 |
| HDUCK    | 6      | 44,12736 | 23,79455 | 509,14159  | 0,04673 | 0,72999 |
|          | 7      | 52,64659 | 16,20388 | 416,45863  | 0,03891 | 0,55832 |
|          | 8      | 64,44655 | 15,44844 | 492,03589  | 0,03140 | 0,65629 |
|          | 9      | 53,06673 | 19,77097 | 521,12638  | 0,03794 | 0,52841 |
|          | 10     | 55,85469 | 17,86594 | 477,55355  | 0,03741 | 0,69933 |
|          | 1      | 3,38289  | 36,79499 | 716,08722  | 0,05138 | 0,85085 |
|          | 2      | 3,25479  | 37,78804 | 724,97653  | 0,05212 | 0,85930 |
|          | 3      | 3,02486  | 33,26610 | 635,07694  | 0,05238 | 0,80802 |
|          | 4      | 4,33922  | 29,61852 | 501,86191  | 0,05902 | 0,75323 |
| ROSIE    | 5      | 5,62297  | 28,36346 | 495,92065  | 0,05719 | 0,72668 |
| ROSIL    | 6      | 4,71251  | 26,91565 | 476,08878  | 0,05653 | 0,74404 |
|          | 7      | 50,97955 | 1,42884  | 37,12582   | 0,03849 | 0,08599 |
|          | 8      | 7,52299  | 21,96412 | 398,00613  | 0,05519 | 0,70555 |
|          | 9      | 6,26725  | 25,41211 | 447,57903  | 0,05678 | 0,73937 |
|          | 10     | 8,02559  | 20,36155 | 375,57005  | 0,05422 | 0,70658 |
|          | 1      | 2,69774  | 77,70458 | 1362,80176 | 0,05702 | 0,89069 |
|          | 2      | 56,61472 | 17,19736 | 541,16809  | 0,03178 | 0,67345 |
|          | 3      | 77,28600 | 19,56505 | 656,69964  | 0,02979 | 0,80815 |
|          | 4      | 48,05544 | 22,45247 | 658,12991  | 0,03412 | 0,73915 |
|          | 5      | 65,64400 | 23,65223 | 734,09115  | 0,03222 | 0,66060 |
| ZDOCK    | 6      | 61,55315 | 17,68386 | 638,63032  | 0,02769 | 0,64946 |
|          | 7      | 52,27491 | 32,48659 | 854,81928  | 0,03800 | 0,74541 |
|          | 8      | 43,74703 | 42,69678 | 899,06387  | 0,04749 | 0,78068 |
|          | 9      | 59,08335 | 15,55139 | 507,62453  | 0,03064 | 0,58792 |
|          | 10     | 48,87935 | 18,47219 | 518,24229  | 0,03564 | 0,58007 |

Tabela 8: Valores de rmsd, MI, H, MI/H e r para o complexo 2Y69 A-B e seus modelos putativos gerados por diferentes servidores de *docking*.

| Servidor | Modelo | rmsd      | MI Total | H Total   | MI/H    | r       |
|----------|--------|-----------|----------|-----------|---------|---------|
| Х        | Nativo | 0         | 12,88751 | 359,83892 | 0,03581 | 0,62587 |
|          | 1      | 0,63396   | 13,01391 | 359,71993 | 0,03618 | 0,61358 |
|          | 2      | 58,76893  | 13,05124 | 598,38032 | 0,02181 | 0,25001 |
|          | 3      | 94,64998  | 14,02444 | 551,24085 | 0,02544 | 0,43395 |
|          | 4      | 51,36621  | 17,23528 | 662,50995 | 0,02602 | 0,81168 |
|          | 5      | 60,74833  | 15,45095 | 642,15142 | 0,02406 | 0,48998 |
| GRAMMA   | 6      | 118,39006 | 17,36519 | 532,51495 | 0,03261 | 0,49279 |
|          | 7      | 104,03479 | 16,63537 | 571,13910 | 0,02913 | 0,46143 |
|          | 8      | 69,35757  | 12,17550 | 495,83062 | 0,02456 | 0,28530 |
|          | 9      | 73,08819  | 13,13946 | 419,30176 | 0,03134 | 0,42603 |
|          | 10     | 92,84541  | 19,07593 | 563,86826 | 0,03383 | 0,56345 |
|          | 1      | 1,43766   | 12,70194 | 354,77638 | 0,03580 | 0,62587 |
|          | 2      | 1,94738   | 12,68339 | 354,64355 | 0,03576 | 0,63372 |
|          | 3      | 1,17250   | 12,39142 | 344,31743 | 0,03599 | 0,62587 |
|          | 4      | 3,52644   | 12,52150 | 356,16042 | 0,03516 | 0,63060 |
| DOCIE    | 5      | 0,68707   | 12,31012 | 338,88449 | 0,03633 | 0,62732 |
| RUSIE    | 6      | 2,23616   | 12,27303 | 345,13399 | 0,03556 | 0,61865 |
|          | 7      | 6,94236   | 11,95804 | 336,10125 | 0,03558 | 0,64327 |
|          | 8      | 6,04613   | 11,48435 | 319,72689 | 0,03592 | 0,61113 |
|          | 9      | 2,54227   | 12,20063 | 338,77789 | 0,03601 | 0,59829 |
|          | 10     | 1,44890   | 11,75634 | 329,54096 | 0,03567 | 0,59396 |
|          | 1      | 6,78514   | 17,79658 | 477,38662 | 0,03728 | 0,64365 |
|          | 2      | 116,98582 | 8,73411  | 284,73201 | 0,03067 | 0,29387 |
|          | 3      | 112,01656 | 8,07768  | 302,40719 | 0,02671 | 0,34597 |
|          | 4      | 45,67249  | 18,10849 | 472,62700 | 0,03831 | 0,71909 |
| 70004    | 5      | 114,82874 | 7,86646  | 262,85436 | 0,02993 | 0,29980 |
| ZDOCK    | 6      | 109,05186 | 12,24868 | 451,28337 | 0,02714 | 0,38822 |
|          | 7      | 7,26178   | 16,37435 | 443,30842 | 0,03694 | 0,68256 |
|          | 8      | 12,50082  | 15,86344 | 430,15043 | 0,03688 | 0,67982 |
|          | 9      | 50,13633  | 15,31975 | 524,04356 | 0,02923 | 0,59557 |
|          | 10     | 110,88330 | 9,85661  | 336,78253 | 0,02927 | 0,51248 |

Tabela 9: Valores de rmsd, MI, H, MI/H e r para o complexo 10YH I-L e seus modelos putativos gerados por diferentes servidores de *docking*.

| Servidor | Modelo | rmsd     | MI Total | H Total   | MI/H    | r       |
|----------|--------|----------|----------|-----------|---------|---------|
| Х        | Nativo | 0        | 30,64013 | 464,94785 | 0,06590 | 0,89276 |
|          | 1      | 0,47320  | 30,93798 | 469,75530 | 0,06586 | 0,89222 |
|          | 2      | 22,62362 | 22,37528 | 349,13322 | 0,06409 | 0,88090 |
|          | 3      | 23,14933 | 22,07905 | 344,71479 | 0,06405 | 0,84410 |
|          | 4      | 10,18292 | 21,31154 | 332,85365 | 0,06403 | 0,86945 |
|          | 5      | 19,81645 | 24,27264 | 388,23117 | 0,06252 | 0,85124 |
| GRAININA | 6      | 19,33679 | 23,30018 | 352,51956 | 0,06610 | 0,74696 |
|          | 7      | 36,71198 | 19,09095 | 321,15282 | 0,05945 | 0,87332 |
|          | 8      | 20,79438 | 17,26362 | 267,66012 | 0,06450 | 0,82251 |
|          | 9      | 40,45727 | 24,93144 | 421,66953 | 0,05913 | 0,82317 |
|          | 10     | 22,54176 | 20,07935 | 304,89384 | 0,06586 | 0,76834 |
|          | 1      | 0,72116  | 27,75165 | 423,93956 | 0,06546 | 0,89087 |
|          | 2      | 1,08985  | 27,93743 | 426,04019 | 0,06557 | 0,88166 |
|          | 3      | 3,24774  | 24,53478 | 384,24536 | 0,06385 | 0,89266 |
|          | 4      | 1,09004  | 25,90418 | 391,99497 | 0,06608 | 0,87585 |
| DOSIE    | 5      | 3,35804  | 25,61950 | 397,59341 | 0,06444 | 0,89932 |
| RUSIE    | 6      | 2,27173  | 23,66137 | 368,94904 | 0,06413 | 0,89726 |
|          | 7      | 2,06669  | 25,27978 | 393,56547 | 0,06423 | 0,89735 |
|          | 8      | 3,30474  | 20,02446 | 290,99189 | 0,06881 | 0,86987 |
|          | 9      | 3,13299  | 19,28313 | 304,99145 | 0,06323 | 0,89681 |
|          | 10     | 4,00315  | 20,26125 | 313,04041 | 0,06472 | 0,88736 |
|          | 1      | 2,86182  | 31,85779 | 491,17239 | 0,06486 | 0,88480 |
|          | 2      | 2,96058  | 31,21358 | 491,89943 | 0,06346 | 0,89248 |
|          | 3      | 2,88400  | 42,94547 | 652,60379 | 0,06581 | 0,90054 |
|          | 4      | 7,27093  | 26,88544 | 428,67980 | 0,06272 | 0,84977 |
| 70000    | 5      | 12,02390 | 29,00800 | 462,38117 | 0,06274 | 0,89153 |
| ZDUCK    | 6      | 21,00268 | 29,52386 | 482,01556 | 0,06125 | 0,88141 |
|          | 7      | 6,44615  | 28,84184 | 454,53015 | 0,06345 | 0,91604 |
|          | 8      | 21,54700 | 27,07903 | 426,68311 | 0,06346 | 0,87958 |
|          | 9      | 14,04008 | 24,31009 | 378,17304 | 0,06428 | 0,87142 |
|          | 10     | 20,05164 | 34,68263 | 559,68300 | 0,06197 | 0,88231 |

Tabela 10: Valores de rmsd, MI, H, MI/H e r para o complexo 1VET A-B e seus modelos putativos gerados por diferentes servidores de *docking*.

| Servidor | Modelo | rmsd     | MI Total | H Total   | MI/H    | r       |
|----------|--------|----------|----------|-----------|---------|---------|
| Х        | Nativo | 0        | 28,85532 | 497,33500 | 0,05802 | 0,64111 |
|          | 1      | 0,43047  | 31,44015 | 546,30296 | 0,05755 | 0,64642 |
|          | 2      | 64,60040 | 15,13947 | 432,13853 | 0,03503 | 0,52564 |
|          | 3      | 66,59539 | 13,71332 | 399,93281 | 0,03429 | 0,49656 |
|          | 4      | 29,96139 | 25,68105 | 414,76380 | 0,06192 | 0,60743 |
|          | 5      | 12,29256 | 26,69517 | 478,77351 | 0,05576 | 0,68441 |
| GRAMMA   | 6      | 78,31339 | 10,60642 | 316,50830 | 0,03351 | 0,38341 |
|          | 7      | 25,31356 | 25,19012 | 403,40594 | 0,06244 | 0,64641 |
|          | 8      | 35,31819 | 24,02341 | 416,52421 | 0,05768 | 0,60632 |
|          | 9      | 65,75690 | 13,15449 | 392,97683 | 0,03347 | 0,59157 |
|          | 10     | 25,63438 | 19,25037 | 372,63632 | 0,05166 | 0,49709 |
|          | 1      | 2,10475  | 32,03649 | 564,12867 | 0,05679 | 0,64782 |
|          | 2      | 7,29972  | 28,64543 | 477,77104 | 0,05996 | 0,63043 |
|          | 3      | 53,16295 | 13,65987 | 288,47695 | 0,04735 | 0,59665 |
|          | 4      | 68,05671 | 14,56592 | 366,29877 | 0,03977 | 0,41997 |
| 70004    | 5      | 6,92726  | 25,95168 | 466,52055 | 0,05563 | 0,64338 |
| ZDOCK    | 6      | 27,23154 | 12,12818 | 249,70831 | 0,04857 | 0,46983 |
|          | 7      | 33,07157 | 14,61626 | 303,51275 | 0,04816 | 0,54635 |
|          | 8      | 19,63485 | 20,94391 | 449,87199 | 0,04656 | 0,63486 |
|          | 9      | 23,83879 | 13,85898 | 285,43187 | 0,04855 | 0,41451 |
|          | 10     | 31,54210 | 19,97404 | 431,00197 | 0,04634 | 0,61066 |

Tabela 11: Valores de rmsd, MI, H, MI/H e r para o complexo 3ZET A-B e seus modelos putativos gerados por diferentes servidores de *docking*.

| Servidor | Modelo | rmsd     | MI Total | H Total   | MI/H    | r       |
|----------|--------|----------|----------|-----------|---------|---------|
| Х        | Nativo | 0        | 8,01794  | 108,62972 | 0,07381 | 0,80688 |
|          | 1      | 50,45901 | 14,54184 | 207,41438 | 0,07011 | 0,57638 |
|          | 2      | 46,65118 | 11,48481 | 162,41179 | 0,07071 | 0,67702 |
|          | 3      | 43,43495 | 18,55848 | 246,90388 | 0,07516 | 0,76245 |
|          | 4      | 37,97095 | 16,76304 | 222,15205 | 0,07546 | 0,76254 |
|          | 5      | 56,41646 | 14,42020 | 207,63042 | 0,06945 | 0,62604 |
| GRAMMA   | 6      | 44,92567 | 12,71619 | 179,96186 | 0,07066 | 0,72074 |
|          | 7      | 2,32890  | 7,67737  | 104,34404 | 0,07358 | 0,80779 |
|          | 8      | 28,55534 | 14,64768 | 187,70032 | 0,07804 | 0,61238 |
|          | 9      | 46,17104 | 14,19401 | 192,64831 | 0,07368 | 0,68206 |
|          | 10     | 53,62406 | 14,41210 | 201,18389 | 0,07164 | 0,31888 |
|          | 1      | 8,02861  | 11,10131 | 149,21043 | 0,07440 | 0,81312 |
|          | 2      | 16,97367 | 14,57556 | 210,63797 | 0,06920 | 0,84898 |
|          | 3      | 4,76123  | 9,42620  | 127,55357 | 0,07390 | 0,78492 |
|          | 4      | 16,77915 | 14,13519 | 200,43005 | 0,07052 | 0,83106 |
| DOSIE    | 5      | 22,11725 | 13,30533 | 175,31961 | 0,07589 | 0,83293 |
| RUSIL    | 6      | 4,56610  | 8,41944  | 118,61003 | 0,07098 | 0,81574 |
|          | 7      | 6,94566  | 7,88336  | 108,13187 | 0,07291 | 0,82212 |
|          | 8      | 10,86190 | 8,76935  | 123,18831 | 0,07119 | 0,78648 |
|          | 9      | 4,78419  | 7,09441  | 88,68157  | 0,08000 | 0,74800 |
|          | 10     | 21,90630 | 14,97299 | 205,00553 | 0,07304 | 0,83380 |
|          | 1      | 3,87037  | 12,12434 | 164,50337 | 0,07370 | 0,82253 |
|          | 2      | 10,35034 | 10,50245 | 145,79004 | 0,07204 | 0,73258 |
|          | 3      | 1,88671  | 10,11254 | 136,25206 | 0,07422 | 0,78465 |
|          | 4      | 59,38614 | 12,18203 | 179,27685 | 0,06795 | 0,73913 |
|          | 5      | 64,96775 | 9,42654  | 122,11796 | 0,07719 | 0,54396 |
| ZDUCK    | 6      | 36,34544 | 6,69380  | 94,95544  | 0,07049 | 0,67270 |
|          | 7      | 29,95659 | 13,55000 | 188,71636 | 0,07180 | 0,70952 |
|          | 8      | 39,37932 | 10,11326 | 134,53225 | 0,07517 | 0,56061 |
|          | 9      | 3,58734  | 7,13864  | 96,47515  | 0,07399 | 0,83187 |
|          | 10     | 67,17562 | 7,08451  | 97,25967  | 0,07284 | 0,57959 |

Tabela 12: Valores de rmsd, MI, H, MI/H e r para o complexo 5F5S A-B e seus modelos putativos gerados por diferentes servidores de *docking*.

| Servidor | Modelo | rmsd     | MI Total | H Total    | MI/H    | r       |
|----------|--------|----------|----------|------------|---------|---------|
| Х        | Nativo | 0        | 35,34395 | 904,88508  | 0,03906 | 0,70203 |
|          | 1      | 0,42828  | 38,03862 | 976,85205  | 0,03894 | 0,70819 |
|          | 2      | 6,33635  | 16,91599 | 390,29576  | 0,04334 | 0,59431 |
|          | 3      | 71,79626 | 18,83839 | 467,47762  | 0,04030 | 0,57958 |
|          | 4      | 33,59546 | 18,95677 | 535,70719  | 0,03539 | 0,55528 |
|          | 5      | 6,73998  | 20,64433 | 546,94941  | 0,03774 | 0,68221 |
| GRAININA | 6      | 60,40608 | 17,29731 | 558,06989  | 0,03099 | 0,51420 |
|          | 7      | 52,65519 | 14,75468 | 367,77388  | 0,04012 | 0,53131 |
|          | 8      | 50,58595 | 21,03575 | 455,03272  | 0,04623 | 0,55197 |
|          | 9      | 47,19949 | 13,88728 | 355,67075  | 0,03905 | 0,60723 |
|          | 10     | 25,18080 | 15,20946 | 487,28558  | 0,03121 | 0,45998 |
|          | 1      | 1,32045  | 35,94527 | 920,46027  | 0,03905 | 0,70025 |
|          | 2      | 1,40377  | 37,52128 | 961,24310  | 0,03903 | 0,70960 |
|          | 3      | 4,52583  | 19,90732 | 531,07366  | 0,03749 | 0,54282 |
|          | 4      | 45,79199 | 15,29435 | 348,18483  | 0,04393 | 0,45883 |
| Проск    | 5      | 28,93011 | 9,62691  | 360,93489  | 0,02667 | 0,51508 |
| HDOCK    | 6      | 69,77486 | 10,96262 | 280,77683  | 0,03904 | 0,32641 |
|          | 7      | 44,98163 | 14,86268 | 362,18307  | 0,04104 | 0,51016 |
|          | 8      | 44,96164 | 8,14047  | 292,81214  | 0,02780 | 0,34003 |
|          | 9      | 45,12724 | 11,88700 | 407,71999  | 0,02915 | 0,53702 |
|          | 10     | 50,00306 | 8,44011  | 296,87395  | 0,02843 | 0,56086 |
|          | 1      | 5,75930  | 12,82718 | 355,82963  | 0,03605 | 0,50835 |
|          | 2      | 21,68804 | 10,82790 | 355,17545  | 0,03049 | 0,40360 |
|          | 3      | 15,13461 | 11,53729 | 312,76497  | 0,03689 | 0,36437 |
|          | 4      | 7,90942  | 8,54524  | 270,34056  | 0,03161 | 0,52344 |
| ROSIE    | 5      | 10,04947 | 8,40394  | 270,53090  | 0,03106 | 0,63094 |
| RUSIE    | 6      | 12,28738 | 8,42635  | 240,65776  | 0,03501 | 0,51922 |
|          | 7      | 44,58963 | 8,28701  | 270,81217  | 0,03060 | 0,33114 |
|          | 8      | 27,53770 | 10,65456 | 301,14461  | 0,03538 | 0,58354 |
|          | 9      | 6,25770  | 11,27426 | 309,48381  | 0,03643 | 0,36360 |
|          | 10     | 23,34147 | 8,01973  | 262,97332  | 0,03050 | 0,46092 |
|          | 1      | 2,10751  | 40,72060 | 1001,39778 | 0,04066 | 0,69310 |
|          | 2      | 39,40734 | 7,80339  | 284,92587  | 0,02739 | 0,49002 |
|          | 3      | 48,53128 | 9,52347  | 343,92681  | 0,02769 | 0,50953 |
|          | 4      | 41,26620 | 12,86115 | 346,96735  | 0,03707 | 0,57705 |
| 700CK    | 5      | 48,05610 | 13,13594 | 413,27600  | 0,03178 | 0,54541 |
| ZDOCK    | 6      | 51,81950 | 17,72614 | 532,44142  | 0,03329 | 0,62564 |
|          | 7      | 18,33218 | 17,43972 | 514,36118  | 0,03391 | 0,62538 |
|          | 8      | 5,51482  | 24,61097 | 671,96898  | 0,03663 | 0,68491 |
|          | 9      | 45,98769 | 11,97129 | 402,70756  | 0,02973 | 0,59346 |
|          | 10     | 27.79308 | 14.34667 | 418.24659  | 0.03430 | 0.60904 |

Tabela 13: Valores de rmsd, MI, H, MI/H e r para o complexo 30AA G-H e seus modelos putativos gerados por diferentes servidores de *docking*.

| Servidor | Modelo | rmsd     | MI Total | H Total    | MI/H    | r       |
|----------|--------|----------|----------|------------|---------|---------|
| Х        | Nativo | 0        | 56,53563 | 995,90066  | 0,05677 | 0,82876 |
|          | 1      | 0,41135  | 62,47407 | 1087,59008 | 0,05744 | 0,82962 |
|          | 2      | 74,97321 | 29,05911 | 725,80809  | 0,04004 | 0,68794 |
|          | 3      | 56,83171 | 20,97178 | 528,94200  | 0,03965 | 0,74909 |
|          | 4      | 37,64346 | 30,40657 | 690,98769  | 0,04400 | 0,80859 |
|          | 5      | 43,14142 | 33,74801 | 615,62561  | 0,05482 | 0,80849 |
| GRAMMA   | 6      | 34,50925 | 27,55703 | 478,62319  | 0,05758 | 0,75647 |
|          | 7      | 64,31672 | 27,78356 | 666,16813  | 0,04171 | 0,77415 |
|          | 8      | 50,63936 | 19,64479 | 443,95649  | 0,04425 | 0,65974 |
|          | 9      | 60,68787 | 21,64756 | 542,81674  | 0,03988 | 0,50264 |
|          | 10     | 73,93504 | 22,29979 | 428,40804  | 0,05205 | 0,81612 |
|          | 1      | 0,34877  | 56,77450 | 995,23994  | 0,05705 | 0,82654 |
|          | 2      | 0,51662  | 59,49817 | 1041,77554 | 0,05711 | 0,83159 |
|          | 3      | 69,65576 | 24,20364 | 410,24477  | 0,05900 | 0,80838 |
|          | 4      | 43,60828 | 21,31466 | 444,95666  | 0,04790 | 0,73298 |
| ироск    | 5      | 34,30569 | 21,63994 | 384,68332  | 0,05625 | 0,69175 |
| HDUCK    | 6      | 69,07533 | 17,24054 | 310,00138  | 0,05561 | 0,80945 |
|          | 7      | 74,01598 | 19,87136 | 377,13686  | 0,05269 | 0,78499 |
|          | 8      | 72,67232 | 14,19735 | 293,33262  | 0,04840 | 0,71220 |
|          | 9      | 71,17114 | 16,69119 | 433,98444  | 0,03846 | 0,64372 |
|          | 10     | 75,28078 | 18,99209 | 388,89438  | 0,04884 | 0,80215 |
|          | 1      | 1,16503  | 44,92876 | 798,90435  | 0,05624 | 0,81595 |
|          | 2      | 1,78713  | 40,77247 | 747,21572  | 0,05457 | 0,80034 |
|          | 3      | 1,79877  | 42,14717 | 734,94336  | 0,05735 | 0,81208 |
|          | 4      | 1,81334  | 39,99065 | 702,73786  | 0,05691 | 0,81523 |
| POSIE    | 5      | 1,77968  | 38,14414 | 669,04079  | 0,05701 | 0,79943 |
| ROSIL    | 6      | 1,70231  | 33,29072 | 573,66563  | 0,05803 | 0,80497 |
|          | 7      | 4,85194  | 25,34251 | 464,42233  | 0,05457 | 0,76677 |
|          | 8      | 3,07295  | 28,87428 | 472,15730  | 0,06115 | 0,74907 |
|          | 9      | 3,59543  | 24,12585 | 421,96791  | 0,05717 | 0,77340 |
|          | 10     | 37,10186 | 20,10165 | 376,12457  | 0,05344 | 0,60489 |
|          | 1      | 1,65884  | 65,48764 | 1104,82424 | 0,05927 | 0,84470 |
|          | 2      | 76,33500 | 26,18530 | 553,52395  | 0,04731 | 0,70236 |
|          | 3      | 70,11675 | 23,46699 | 411,87060  | 0,05698 | 0,78681 |
|          | 4      | 74,50252 | 31,32446 | 624,91591  | 0,05013 | 0,76680 |
|          | 5      | 73,51429 | 35,42714 | 679,35906  | 0,05215 | 0,81468 |
| ZDOCK    | 6      | 70,64044 | 33,80355 | 829,48550  | 0,04075 | 0,76467 |
|          | 7      | 44,11952 | 16,44876 | 504,54933  | 0,03260 | 0,57659 |
|          | 8      | 68,23035 | 27,30657 | 458,05263  | 0,05961 | 0,83101 |
|          | 9      | 69,79732 | 44,07557 | 765,86494  | 0,05755 | 0,77223 |
|          | 10     | 31,80129 | 36,20859 | 669,56995  | 0,05408 | 0,82332 |

Tabela 14: Valores de rmsd, MI, H, MI/H e r para o complexo 2Y69 A-C e seus modelos putativos gerados por diferentes servidores de *docking*.

## Anexo II – Código Fonte do DSM e UML

#### Docking\_Score\_Module.py

```
from MainWindow import MainWindow
from PyQt5 import QtWidgets
import sys
def main():
```

app = QtWidgets.QApplication(sys.argv)
GUI = MainWindow()
GUI.show()
sys.exit(app.exec\_())

main()

#### MainWindow.py

```
from Manager import Manager
from Docking import Docking
from MSA import MSA
from PyQt5 import QtWidgets
from PyQt5.QtWidgets import *
from PyQt5.QtGui import *
from PyQt5.QtCore import *
import pyqtgraph as pg
import datetime as dt
from time import sleep
import traceback, sys
import numpy as np
class WorkerSignals(QObject):
    finished = pyqtSignal()
    error = pyqtSignal(tuple)
    progress = pyqtSignal(int)
class Worker(QRunnable):
    def ___init__ (self, function):
        super(Worker, self).__init__()
        self.function = function
        self.signals = WorkerSignals()
    @pyqtSlot()
    def run(self):
        try:
            self.function()
        except:
            traceback.print_exc()
            exctype, value = sys.exc_info()[:2]
            self.signals.error.emit((exctype, value, traceback.format_exc()))
```

```
finally:
            self.signals.finished.emit()
class MainWindow(QWidget):
    .....
    Define the interface for Docking Score Module.
    .....
   def ___init___(self):
       super() .__init__()
        self.initUI()
        self.threadpool = QThreadPool()
        print("Multithreading with maximum %d threads" %
self.threadpool.maxThreadCount())
        self.___manager_objct = Manager()
    def initUI(self):
        self.setGeometry(100, 100, 900, 700)
        self.setWindowTitle("Docking Score Module")
        self.setWindowIcon(QIcon('icon.png'))
    #define widgets
        #top layout labels
        self.__PDB_lbl = QLabel("Docking Models Coordinates (.pdb)", self)
        self.__msaA_lbl = QLabel("Protein A Multiple Sequence Alignment (.fas)", self)
        self.__msaB_lbl = QLabel("Protein B Multiple Sequence Alignment (.fas)", self)
        #mid layout labels
        self.__job = QLabel("Job name:")
        self.___values = QLabel("Set parameters: ")
        self.__lambda = QLabel("\u03BB - Pseudocounter
                                                                  =", self)
        self.__theta = QLabel("\u03B8 - Sequence Similarity =", self)
        self.__cutoff = QLabel("Contact Distance (\u00c5)" + 6 * " " + " =", self)
        self.__funcs = QLabel("Select functions:")
        #logo
        self.label = QLabel(self)
        self.__logo = QPixmap('logo.png')
        self.label.setPixmap(self.__logo)
        #buttons
        self.__PDB_btn = QtWidgets.QPushButton("Select...", self)
        self.___PDB_btn.setFixedWidth(80)
        self.__PDB_btn.clicked.connect(self.openPDBs)
        self.__msaA_btn = QtWidgets.QPushButton("Select...", self)
        self.__msaA_btn.setFixedWidth(80)
        self.__msaA_btn.clicked.connect(self.openMsaA)
        self.__msaB_btn = QtWidgets.QPushButton("Select...", self)
        self.__msaB_btn.setFixedWidth(80)
        self.__msaB_btn.clicked.connect(self.openMsaB)
```

```
self.___save_job_btn = QtWidgets.QPushButton("Save Job", self)
        self.___save_job_btn.setEnabled(False)
        self.__save_job_btn.clicked.connect(self.save_job)
        self.___save_job_btn.setStyleSheet("; border: 2px solid white;")
        self.___save_plot_btn = QtWidgets.QPushButton("Save Plot", self)
        self.___save_plot_btn.setEnabled(False)
        self.__save_plot_btn.clicked.connect(self.save_plot)
        self.___save_plot_btn.setStyleSheet("; border: 2px solid white;")
        self.___runButton = QtWidgets.QPushButton("Run!", self)
        self.__runButton.setStyleSheet("background-color: #e6e6e6; border: 2px solid
white; color: #ffffff")
        self.___runButton.setMinimumHeight(40)
        self.___runButton.setEnabled(False)
        #text boxes
        self.__jobTxt = QLineEdit(self)
        self.__jobTxt.setStyleSheet("background-color: #ffffff")
        self.__lambdaBox = QDoubleSpinBox(self)
        self.__lambdaBox.setStyleSheet("background-color: #ffffff")
        self.__lambdaBox.setRange(0.1, 1)
        self.___lambdaBox.setDecimals(2)
        self.__lambdaBox.setSingleStep(0.1)
        self.__lambdaBox.setValue(0.5)
        self.__lambdaBox.setFixedWidth(60)
        self.___thetaBox = QDoubleSpinBox(self)
        self.__thetaBox.setStyleSheet("background-color: #ffffff")
        self.__thetaBox.setRange(0.1, 1)
        self.___thetaBox.setDecimals(2)
        self.___thetaBox.setSingleStep(0.1)
        self.___thetaBox.setValue(0.8)
        self.___thetaBox.setFixedWidth(60)
        self.___cutoffBox = QSpinBox(self)
        self.__cutoffBox.setStyleSheet("background-color: #ffffff")
        self.___cutoffBox.setRange(0, 50)
        self.___cutoffBox.setValue(8)
        self.__cutoffBox.setFixedWidth(60)
        #diagnostics_widget
        self.___txt = QTextEdit(self)
        self.__txt.setStyleSheet("color: #ffffff; background-color: #000000; border: 2px
solid white")
       self.__txt.setReadOnly(True)
        self.___txt.setFixedWidth(500)
        QToolTip.setFont(QFont('SansSerif', 10))
        self.__lambdaBox.setToolTip("Pseudocounter value. Must be between <b>0.1</b> and
<b>1</b>.")
       self.__thetaBox.setToolTip("Sequence similarity value. Must be between <b>0.1</b>
and <b>1</b>.")
       self.__cutoffBox.setToolTip("Distance between interprotein amino acids wich forms
a contact.")
        #checkboxes
        self.__cbMI = QtWidgets.QCheckBox("Mutual Information", self)
        self.___cbMI.toggle()
        #self.__cbDI = QtWidgets.QCheckBox("Direct Information", self)
        #self.___cbDI.toggle()
```

```
self. cbr = OtWidgets.OCheckBox("Linear Correlation", self)
        self.___cbr.toggle()
    #define layout
        #top left
        for widget in [self.__PDB_lbl, self.__msaA_lbl,
self.__msaB_lbl]:widget.setMinimumHeight(30)
        self.__topgroupbox = QtWidgets.QGroupBox("User Upload")
        self.__topgroupbox.setStyleSheet("background-color: #e6e6e6")
        self.__uploads_grid = QtWidgets.QGridLayout()
        self.__uploads_grid.addWidget(self.__PDB_lbl, 0, 0)
        self.__uploads_grid.addWidget(self.__msaA_lbl, 1, 0)
        self.__uploads_grid.addWidget(self.__msaB_lbl, 2, 0)
        self.__uploads_grid.addWidget(self.__PDB_btn, 0, 1)
        self.__uploads_grid.addWidget(self.__msaA_btn, 1, 1)
        self.__uploads_grid.addWidget(self.__msaB_btn, 2, 1)
        self.__topgroupbox.setLayout(self.__uploads_grid)
        #mid left
        for widget in [self.__jobTxt, self.__lambdaBox, self.__thetaBox,
                       self.__cutoffBox, self.__cbMI, self.__cbr] :
widget.setMinimumHeight(30)
        self.___midgroupbox = QtWidgets.QGroupBox("User Preferences")
        self.__midgroupbox.setStyleSheet("background-color: #e6e6e6")
        self.__param_grid = QtWidgets.QGridLayout()
        self.__param_grid.addWidget(self.__job, 0, 0)
        self.__param_grid.addWidget(self.__jobTxt, 0, 1)
        self.__param_grid.addWidget(self.__values, 1, 0)
        self.__param_grid.addWidget(self.__lambda, 1, 1)
        self.__param_grid.addWidget(self.__lambdaBox, 1, 2)
        self.__param_grid.addWidget(self.__theta, 2, 1)
        self.__param_grid.addWidget(self.__thetaBox, 2, 2)
        self.__param_grid.addWidget(self.__cutoff, 3, 1)
        self.__param_grid.addWidget(self.__cutoffBox, 3, 2)
        self.__param_grid.addWidget(self.__funcs, 4, 0)
        self.__param_grid.addWidget(self.__cbMI, 4, 1)
        self.__param_grid.addWidget(self.__cbr, 5, 1)
        #self.__param_grid.addWidget(self.__cbDI, 6, 1)
        self.___midgroupbox.setLayout(self.___param_grid)
        self.___save_btn_hlayout = QtWidgets.QHBoxLayout()
        self.___save_btn_hlayout.addWidget(self.___save_job_btn)
        self.___save_btn_hlayout.addWidget(self.___save_plot_btn)
        #bottom - left
        self.___bottom_hlayout = QtWidgets.QHBoxLayout()
        self.__bottom_hlayout.addStretch(0)
        self.__bottom_hlayout.addWidget(self.label)
        self.__bottom_hlayout.addStretch(0)
        #general - left
        self.__left_vlayout = QtWidgets.QVBoxLayout()
        self.__left_vlayout.addWidget(self.__topgroupbox)
        self.__left_vlayout.addWidget(self.__midgroupbox)
        self.__left_vlayout.addWidget(self.__runButton)
        self.__left_vlayout.addLayout(self.__save_btn_hlayout)
        self.__left_vlayout.addLayout(self.__bottom_hlayout)
```

```
#general - right
        self.___rightgroupbox = QtWidgets.QGroupBox("Diagnostics")
        self.___rightgroupbox.setStyleSheet("background-color: #e6e6e6")
        self.___right_grid = QtWidgets.QGridLayout()
        self.__right_grid.addWidget(self.__txt, 0, 0)
        self.___rightgroupbox.setLayout(self.___right_grid)
        self.___right_vlayout = QtWidgets.QVBoxLayout()
        self.___right_vlayout.addWidget(self.___rightgroupbox)
        #general layout
        self.___gen_hlayout = QtWidgets.QHBoxLayout()
        self.__gen_hlayout.addLayout(self.__left_vlayout)
        self.__gen_hlayout.addLayout(self.__right_vlayout)
        self.setLayout(self.__gen_hlayout)
    #define actions
    def button_manager(self):
        self.___runButton.disconnect()
        self.___runButton.clicked.connect(self.run)
        if self.__manager_objct.valid_align_A and self.__manager_objct.valid_align_B and
self.___manager_objct.valid_dockings:
            self.___runButton.setText("Run")
            self.__runButton.setStyleSheet("background-color: #00cc99; border: 2px solid
white; color: #ffffff")
            self.___runButton.setEnabled(True)
            self.___running = False
    def turn_cancel_btn(self):
        self.___runButton.disconnect()
        self.__runButton.setText("Cancel")
       self.___runButton.setStyleSheet("background-color: #ff3300; border: 2px solid
white; color: #ffffff")
        self.___runButton.clicked.connect(self.warning)
    def warning(self):
       buttonReply = QMessageBox.question(self, 'Cancel Run', "Are you sure?",
                                           QMessageBox.Yes | QMessageBox.No,
QMessageBox.No)
        if buttonReply == QMessageBox.Yes:
            self.cancel()
    def cancel(self):
        time = d = dt.datetime.now()
        msg = "\n>> Cancel Job:\n>> {} interrupted at
{}\n".format(self.__manager_objct.job_name,
                                                                     d.strftime("%H:%M:
%S"))
        self.update_diagnostics(self.__manager_objct.txt + msg)
        self.___runButton.setEnabled(False)
        self.widgets_on_run(True)
        self.___manager_objct.cancel = True
        self.button_manager()
```

```
def turn plot btn(self):
        if not self.__manager_objct.cancel:
            self.___manager_objct.output()
            self.update_diagnostics(self.__manager_objct.txt)
            self.___runButton.disconnect()
            self.___runButton.setText("Plot")
            self.__runButton.setStyleSheet("background-color: #3399ff; border: 2px solid
white; color: #ffffff")
            self.__runButton.clicked.connect(self.plot)
    def turn_restart_btn(self):
        self.___runButton.disconnect()
        self.___runButton.setText("Restart")
        self.__runButton.setStyleSheet("background-color: #ffcc00; border: 2px solid
white; color: #ffffff")
        self.__runButton.clicked.connect(self.restart())
    def restart(self):
        self.___manager_objct.restart
        self.button_manager()
    def plot(self):
       self.__plotWidget = pg.plot(self.__manager_objct.r_list,
self.__manager_objct.mi_list, size=10, pen=pg.mkPen(None), symbol='o',
brush=pg.mkBrush(0, 191, 255, 100), title="Docking Score Module -
{}".format(self.__manager_objct.job_name))
        self.__plotWidget.setLabel("left", "MI/H (nats)")
        self.__plotWidget.setLabel("bottom", "r")
        for i, mi in enumerate(self.__manager_objct.mi_list):
            label = pg.TextItem(text=str(self.__manager_objct.models_list[i]),
color=(200, 200, 200), html=None, anchor=(0,0), border=None, fill=None, angle=0,
rotateAxis=None)
            label.setPos(self.__manager_objct.r_list[i], self.__manager_objct.mi_list[i])
            self.__plotWidget.addItem(label)
        self.___save_plot_btn.setEnabled(True)
        self.turn_restart_btn()
    def update_diagnostics(self, txt):
        self.__txt.setText(txt)
    def finish_job(self):
        self.turn_plot_btn()
        self.___save_job_btn.setEnabled(True)
    def openPDBs(self):
        options = QFileDialog.Options()
        options |= QFileDialog.DontUseNativeDialog
        docking_list, _ = QFileDialog.getOpenFileNames(self, "Select docking solutions",
```

```
"","PDB Files (*.pdb);;All Files
```

```
(*)",
                                                        options=options)
        if docking_list:
            self.__manager_objct.set_docking_list(docking_list)
            self.update_diagnostics(self.__manager_objct.txt)
            self.button_manager()
   def openMsaA(self):
        options = QFileDialog.Options()
        options |= QFileDialog.DontUseNativeDialog
        alignment, _ = QFileDialog.getOpenFileName(self, "Select chain A alignment",
                                                    "", "FASTA Files (*.fas);;All Files
(*)",
                                                    options=options)
        if alignment:
            self.___manager_objct.MSA_A(alignment)
            self.update_diagnostics(self.__manager_objct.txt)
            self.button_manager()
   def openMsaB(self):
        options = QFileDialog.Options()
        options |= QFileDialog.DontUseNativeDialog
        alignment, _ = QFileDialog.getOpenFileName(self, "Select chain B alignment",
                                                    "", "FASTA Files (*.fas);;All Files
(*)",
                                                    options=options)
        if alignment:
            self.___manager_objct.MSA_B(alignment)
            self.update_diagnostics(self.__manager_objct.txt)
            self.button_manager()
   def savefile(self):
        options = QFileDialog.Options()
        options |= QFileDialog.DontUseNativeDialog
        filename, _ = QFileDialog.getSaveFileName(self, "Save Job",
                                                   self.___manager_objct.job_name,"All
Files (*);;Text Files (*.dat)", options=options)
        return filename
   def save_job(self):
        filename = self.savefile()
        if filename:
            self.___manager_objct.savejob(filename)
   def save_plot(self):
       options = QFileDialog.Options()
        options |= QFileDialog.DontUseNativeDialog
        filename, _ = QFileDialog.getSaveFileName(self,"Save Plot",
"{}.svg".format(self.__manager_objct.job_name),"svg Files (*);;Image Files (*.svg)",
options=options)
```

self.\_\_plotWidget.writeSvg(filename)

```
def checkParameters(self):
    self.update_diagnostics(self.__manager_objct.txt)
    self.__manager_objct.job_name = self.__jobTxt.text()
    self.___manager_objct.set_lambda(self.___lambdaBox.value())
    self.__manager_objct.set_theta(self.__thetaBox.value())
    self.__manager_objct.set_cutoff(self.__cutoffBox.value())
    if self. cbMI.isChecked():
        self.___manager_objct.set_MI(True)
    #if self.__cbDI.isChecked():
        #self.__manager_objct.set_DI(True)
    if self.__cbr.isChecked():
        self.___manager_objct.set_r(True)
def widgets_on_run(self, T):
    self.___PDB_btn.setEnabled(T)
    self.___msaA_btn.setEnabled(T)
    self.__msaB_btn.setEnabled(T)
    self.__jobTxt.setEnabled(T)
    self.__lambdaBox.setEnabled(T)
    self.___thetaBox.setEnabled(T)
    self.___cutoffBox.setEnabled(T)
    self.___cbMI.setEnabled(T)
    #self.___cbDI.setEnabled(T)
    self.___cbr.setEnabled(T)
def instantiate(self):
    self.___manager_objct.run()
def run(self):
    self.turn_cancel_btn()
    self.widgets_on_run(False)
    self.checkParameters()
    self.__manager_objct.calculate_Meff
    self.update_diagnostics(self.__manager_objct.txt)
    worker = Worker(self.instantiate)
    worker.signals.finished.connect(self.finish_job)
    self.threadpool.start(worker)
```

#### Manager.py

from PDBReader import PDBReader
from MSA import MSA
from Verifier import Verifier
from Docking import Docking
from Coevolution import Coevolution
from Output import Output
from PyQt5.QtCore import \*
from Bio import AlignIO, SeqIO
import datetime as dt
from scipy import spatial
import numpy as np
import multiprocessing as mp

class Manager(QMutex):

```
Manage rotines of API and interact with UI.
    .....
   def ___init___(self):
        super(Manager, self).___init___()
        self.__mtx = QMutex()
        self.___cancel = False
        self.__txt = ""
        self.__docking_list = []
        self.__MSA = MSA()
        self.___checker = Verifier()
        self.__pdbReader_list = []
        self.___valid_dockings = False
        self.___valid_align_A = False
        self.___valid_align_B = False
        self.__job_name = None
        self.__lambda = 0.5
        self.___theta = 0.8
        self.___cutoff = 8
        self.__MI = False
        self.__DI = False
        self.__r = False
        self.__docking_results = []
   @property
   def cancel(self):
        self.__mtx.lock()
        cancel = self.___cancel
        self.__mtx.unlock()
        return cancel
   @cancel.setter
   def cancel(self, T):
       self.__mtx.lock()
        self.__cancel = T
        self.__mtx.unlock()
   def update_txt(self, msg):
       self.__txt += "dsm >> {}\n".format(msg)
   @property
   def txt(self):
        return self.__txt
   def MSA_A(self, MSA_file):
       msa = self.__MSA.set_MSA_A(MSA_file)
       msg1 = "MSA A file: {}\n>> {} sequences".format(MSA_file,
self.__MSA.MSA_A_numseqs)
       msg2 = "A alignment and pdb A protein are incompatibles"
       msg3 = "MSA A file invalid. Enter a multiple sequence alignment file"
        if msa:
            if self.___valid_dockings:
```

.....

```
checker = Verifier()
                if checker.validate_MSA(self.__pdbReader_list[0].fasta[0],
                                     self.__MSA.ref_msa_A):
                    self.___valid_align_A = True
                    self.update_txt(msg1)
                else: self.update_txt(msg2)
            else: self.update_txt(msg1)
        else: self.update_txt(msq3)
   def MSA_B(self, MSA_file):
        msa = self.__MSA.set_MSA_B(MSA_file)
       msg1 = "MSA B file: {}\n>> {} sequences".format(MSA_file,
self.__MSA.MSA_B_numseqs)
       msg2 = "B alignment and pdb B protein are incompatibles"
        msg3 = "MSA B file invalid. Enter a multiple sequence alignment file"
        if msa:
            if self.__valid_dockings:
                checker = Verifier()
                if checker.validate_MSA(self.__pdbReader_list[0].fasta[1],
                                     self.___MSA.ref_msa_B):
                    self.___valid_align_B = True
                    self.update_txt(msg1)
                else: self.update_txt(msg2)
            else: self.update_txt(msg1)
        else: self.update_txt(msg3)
   @property
    def calculate_Meff(self):
        cv = Coevolution()
        cv.set_theta(self.__theta)
        cv.Meff(self.__MSA)
        self.update_txt("\u03B8 = {}; Meff = {}".format(self.__theta, self.__MSA.Meff))
   def set_docking_list(self, docking_list):
        """ Instantiate PDBReaders objects from docking list. """
        self.__docking_list = docking_list
        self.__pdbReader_list = [PDBReader(docking) for docking in docking_list]
        msg1 = "docking files: {}".format(docking_list)
        msg2 = "docking models must have exactly same proteins."
        msg3 = "A alignment and pdb A protein are incompatibles"
        msg4 = "B alignment and pdb B protein are incompatibles"
        checker = Verifier()
        val_models = checker.validate_models(self.__pdbReader_list)
        val_A = True
        val_B = True
        if self.___valid_align_A and val_models:
            if not checker.validate_MSA(self.__pdbReader_list[0].fasta[0],
self.__MSA.ref_msa_A):
                val_A = False
                self.update_txt(msg3)
        if self.__valid_align_B and val_models:
            if not checker.validate_MSA(self.__pdbReader_list[0].fasta[1],
self.__MSA.ref_msa_B):
```

```
val B = False
            self.update_txt(msg4)
    if val_models and val_A and val_B:
        self.___valid_dockings = True
        self.update_txt(msg1)
    else: self.update_txt(msg2)
def make calculations(self, docking_file):
    """ Instantiate Coevolution object for calculations. """
    coordinates = PDBReader(docking_file)
    docking = Docking(coordinates, self.___cutoff)
    docking_name = docking_file.split("/")[-1]
    cv = Coevolution()
    cv.set_lambda(self.__lambda)
    if self.___MI and not self.cancel:
        cv.MI(self.__MSA, docking)
    if self.__DI and not self.cancel:
       cv.DI(self.__MSA, docking)
    if self.__r and not self.cancel:
       msa_a = self.__MSA.MSA_A_fasta(docking.A_ICs, docking.name)
        msa_b = self.__MSA.MSA_B_fasta(docking.B_ICs, docking.name)
        docking.r = cv.correlation(msa_a, msa_b)
    return(docking)
def run(self):
    """ Instantiate Pool object for paralelize calculations. """
    pool = mp.Pool()
    self.__docking_results = pool.map(self.make_calculations, self.__docking_list)
    pool.close()
    pool.join()
    print("look! I'm running!!")
def output(self):
    """ Print results of calculations for each docking model. """
    self.__out = Output(self.__job_name,
                 self.__docking_results,
                 self.__theta,
                 self.__lambda,
                 self.__MI,
                 self.__DI,
                 self.__r)
    self.update_txt("Results:")
    for i, model in enumerate(self.__out.models):
        msg = str(model)
        if self.__MI:
           msg += " MI = {} ".format(self.__out.mis[i])
        if self.__DI:
            msg += " DI = {} ".format(self.__out.rs[i])
        if self.__r:
            msg += " r = {} ".format(self.__out.rs[i])
```

```
self.update_txt(msg)
    print(self.__out.scoring_list)
def savejob(self, filename):
    self.__out.pairs_for_vmd(filename)
    self.__out.w_file(filename)
@property
def restart(self):
   pass
@property
def job_name(self):
    return self.__job_name
@job_name.setter
def job_name(self, name):
    if name:
       self.__job_name = name
    else:
        d = dt.datetime.now()
        self.__job_name = "j_{}".format(d.strftime("%Y%m%d%H%M%S"))
    self.update_txt("Job {}:".format(self.__job_name))
def set_lambda(self, value):
    self.__lambda = value
def set_theta(self, value):
    self.___theta = value
def set_cutoff(self, value):
   self.___cutoff = value
def set_MI(self, T):
   self._MI = T
def set_DI(self, T):
   self.__DI = T
def set_r(self, T):
   self.__r = T
def set_dfile(self, T):
   self.__gen_dfile = T
def set_plot(self, T):
    self.__plot = T
```

```
@property
def valid_dockings(self):
    return self.__valid_dockings
```

```
@property
def valid_align_A(self):
    return self.__valid_align_A
```

```
@property
def valid_align_B(self):
    return self.__valid_align_B
```

```
@property
def models_list(self):
    return self.__out.models
```

```
@property
def mi_list(self):
    return self.__out.mis
```

```
@property
def di_list(self):
    return self.__out.dis
```

```
@property
def r_list(self):
    return self.__out.rs
```

## PDBReader.py

```
from Bio.PDB import *
from Bio.PDB.Polypeptide import three_to_one
class PDBReader():
    """
    Parse PDB file
    """
    def __init__(self, pdb_file):
        """
        Create PDBREader object
        """
        self.__complex = str(pdb_file)
        self.__res_list = [[], []]
        self.__fasta_res_list = []
```

```
self.__res_id_list = []
        self.__parser()
        self.__get_ids_list()
   def ___parser(self):
        """ Instance a PDBParser object and make a list of residues for each chain. """
        pdb = PDBParser(QUIET=True)
        structure = pdb.get_structure(self.__complex, self.__complex)
        self.___model = structure[0]
        chain_res_list = [Selection.unfold_entities(chain, "R") for chain in
self.__model]
       for i, chain in enumerate(chain_res_list):
            for aa in chain:
                if is_aa(aa.get_resname(), standard=True):
                    self.__res_list[0].append(aa) if i == 0 else
self.___res_list[1].append(aa)
   def __get_ids_list(self):
        """ Get a list of residues ids. """
        for chain in self.___res_list:
            res_id = []
            for residue in chain:
                if is_aa(residue.get_resname(), standard=True):
                    res_id.append(residue.get_id()[1])
            self.___res__id__list.append(res__id)
   @property
   def complex(self):
       return self.__complex
   @property
   def chain_residues_list(self):
        """ Return a list of a residues list for each chain. """
        return self.__res_list
   @property
   def id_list(self):
        """ Return a list of a residues list ids for each chain. """
        return self.__res_id_list
   @property
   def missing_ids(self):
        """ Get missing ids in pdb. """
        missing_ids = []
        for idx in (self.__res_id_list):
            start, end = idx[0], idx[-1]
            missing_ids.append(sorted(set(range(start, end + 1)).difference(idx)))
```

```
return missing_ids
@property
def fasta(self):
    """ Return a list of one letter residues list for each chain"""
    for chain in self.__res_list:
        fasta_chain = []
        for res in chain:
            if is_aa(res.get_resname(), standard=True):
               fasta_chain.append(three_to_one(res.get_resname()))
        fasta_chain = ''.join(fasta_chain)
        self.__fasta_res_list.append(fasta_chain)
        return self.__fasta_res_list

    @property
def atoms(self):
        return Selection.unfold_entities(self.__model, "A")
```

#### MSA.py

```
from Bio import AlignIO
import numpy as np
import os
class MSA:
    0.0.0
    Receive a MSA.fasta alignment, parse and return the positions of information
channels.
    ......
    def ___init___(self):
        self.__MSA_A_file = None
        self.__MSA_B_file = None
        self.__MSA_A = None
        self.__MSA_B = None
        self.___encoded_MSA_A = np.empty((0, 0))
        self.__encoded_MSA_B = np.empty((0, 0))
        self.___aa_code = {"A": 0, "R": 1, "N": 2, "D": 3, "Q": 4,
                          "E": 5, "G": 6, "H": 7, "L": 8, "K": 9,
                          "M": 10, "F": 11, "S": 12, "T": 13, "W": 14,
                          "Y": 15, "C": 16, "I": 17, "P": 18, "V": 19,
                          "-": 20, ".": 20, "B": 2, "Z": 4, "X": 20, "J": 20}
        self.__q = 21
        self.__sequence_weight = np.empty([0, 0])
        self.__Meff = 0
    def ___set_encoded(self, msa):
        encoded = np.empty((len(msa), len(msa[0])), dtype=np.int16)
        for idx, aa in np.ndenumerate(msa):
            aa = aa.upper()
```

```
encoded[idx] = int(self. aa code[aa])
       return encoded
   def set_MSA_A(self, file_name):
       try:
           self.__MSA_A = AlignIO.read(file_name, "fasta")
       except:
           return False
       self.__MSA_A_file = file_name
       self.___encoded_MSA_A = self.___set_encoded(self.__MSA_A)
       if self.__MSA_B and len(self.__MSA_B) != len(self.__MSA_A):
           return False
       else:
           return True
   def set_MSA_B(self, file_name):
        try:
           self.__MSA_B = AlignIO.read(file_name, "fasta")
       except:
           return False
       self.__MSA_B_file = file_name
       self.___encoded_MSA_B = self.___set_encoded(self.__MSA_B)
       if self.__MSA_A and len(self.__MSA_A) != len(self.__MSA_B):
           return False
       else:
           return True
   def encoded_MSA(self, IC_list):
       encoded_msa = np.take(np.concatenate((self.__encoded_MSA_A,
self.___encoded_MSA_B), axis=1), IC_list, axis=1)
       return encoded_msa
   @property
   def ref_msa_A(self):
       a = self.__MSA_A[0].format("fasta").rsplit()[1:]
       a = "".join(a)
       return a
   def MSA_A_fasta(self, ics, name):
       temp = ""
        for seq in self.__MSA_A:
            temp += ">" + seq.id + "n"
           line = ""
            for i in ics:
               line += seq[i]
            temp += line + "\n"
       with open("msa_A_{}.fas".format(name), 'w') as fl:
            fl.write(temp)
       fl.close()
       msa_A = AlignIO.read("msa_A_{}.fas".format(name), "fasta")
       #os.remove("msa_A_{}.fas".format(name))
       return msa_A
```

```
def MSA_A(self, ICs):
```

```
return np.take(self.__encoded_MSA_A, ICs, axis=1)
@property
def MSA_A_sz(self):
   return self.___encoded_MSA_A.shape[1]
@property
def MSA A numseqs(self):
   return self.___encoded_MSA_A.shape[0]
@property
def ref_msa_B(self):
   b = self.__MSA_B[0].format("fasta").rsplit()[1:]
   b = "".join(b)
   return b
def MSA_B_fasta(self, ics, name):
    temp = ""
    for seq in self.__MSA_B:
        temp += ">" + seq.id + "\n"
        line = ""
        for i in ics:
           line += seq[i]
        temp += line + "\n"
    with open("msa_B_{}.fas".format(name), 'w') as fl:
        fl.write(temp)
    fl.close()
    msa_B = AlignIO.read("msa_B_{}.fas".format(name), "fasta")
    #os.remove("msa_B_{}.fas".format(name))
    return msa_B
def MSA_B(self, ICs):
    return np.take(self.__encoded_MSA_B, ICs, axis=1)
@property
def MSA_B_sz(self):
   return self.__encoded_MSA_B.shape[1]
@property
def MSA_B_numseqs(self):
   return self.__encoded_MSA_B.shape[0]
@property
def num_of_seqs(self):
    return self.__encoded_MSA_A.shape[0]
@property
def full_encoded(self):
   return np.concatenate((self.__encoded_MSA_A, self.__encoded_MSA_B), axis=1)
@property
def sequence_weight(self):
   return self.___sequence_weight
@sequence_weight.setter
def sequence_weight(self, vector):
    self.___sequence_weight = vector
@property
def Meff(self):
```

```
return self.___Meff
@Meff.setter
def Meff(self, Meff):
   self.__Meff = Meff
@property
def q(self):
   return self.<u>q</u>
@property
def reset(self):
    self.__MSA_A_file = None
    self.__MSA_B_file = None
    self.__MSA_A = None
    self.__MSA_B = None
    self.__encoded_MSA_A = np.empty((0, 0))
    self.___encoded_MSA_B = np.empty((0, 0))
    self.___sequence_weight = np.empty([0, 0])
    self.___Meff = 0
```

## Docking.Py

```
from Bio.PDB import *
import numpy as np
class Docking():
    0.0.0
    Contain the information about docking complex.
    .....
    def __init__(self, PDBReader_Objct, cutoff = 8):
        .....
        Create a Docking object.
        0.0.0
        self.___cutoff = cutoff
        self.___PDB_reader = PDBReader_Objct
        self.__chain_res_list = PDBReader_Objct.chain_residues_list
        self.___chain_A = self.___chain_res_list[0]
        self.__chain_B = self.__chain_res_list[1]
        self.___name = ""
        self.___atom_list = []
        self.___contact_pairs = []
        self.__ICs = []
        self._MI = 0
        self._h = 0
        self._r = 0
        self.__DI = 0
        self.___ref_atoms()
        self.___contacts()
```

```
def ___ref_atoms(self):
    """ Select a list of atoms of reference for NeighborSearch object. """
    for chain_res_list in self.__chain_res_list:
        for residue in chain_res_list:
            if is_aa(residue):
                if residue.has_id("CB"):
                    self.___atom_list.append(residue["CB"])
                else:
                    self.___atom_list.append(residue["CA"])
def correct_shift(self, residue):
    """ Correct residue id for iteration. """
    A_shift = self.__chain_A[0].get_id()[1]
    B_shift = self.__chain_B[0].get_id()[1]
    res_id = 0
    if residue in self.___chain_A:
        if self.__PDB_reader.missing_ids[0]:
            for i in self.___PDB_reader.missing_ids[0]:
                if residue.get_id()[1] > i:
                    res_id -= 1
        res_id += residue.get_id()[1] - A_shift
    else:
        if self.__PDB_reader.missing_ids[1]:
            for i in self.__PDB_reader.missing_ids[1]:
                if residue.get_id()[1] > i:
                    res_id -= 1
        res_id += residue.get_id()[1] - B_shift + len(self.__chain_A)
    return res_id
def ___contacts(self):
    """ Make a list of contact pairs. """
    ns = NeighborSearch(self.__atom_list)
    for atom in self.__atom_list:
        if atom.get_parent() in self.__chain_A:
            neighbors = ns.search(atom.get_coord(), self.__cutoff, "R")
            for res in neighbors:
                if res not in self.__chain_A:
                    self.__contact_pairs.append((atom.get_parent(), res))
@property
def ICs(self):
    """ Return residues id of the complex interface. """
    flat_list = [res for pair in self.__contact_pairs for res in pair]
    ICs = list(set(map(self.correct_shift, flat_list)))
```

```
return ICs
    @property
    def contact_map(self):
        """ Return contact map array with correct ids. """
        c_map = np.asarray([list(map(self.correct_shift, pair)) for pair in
self.__contact_pairs])
       return c_map
    @property
    def A_ICs(self):
       A = [i[0] for i in self.__contact_pairs]
        A = sorted(list(set(map(self.correct_shift, A))))
        return A
    @property
    def shift_B_ICs(self):
        B = [i[1] for i in self.__contact_pairs]
        B = sorted(list(set(map(self.correct_shift, B))))
        return B
    @property
    def B_ICs(self):
        B = [i[1] for i in self.___contact_pairs]
        B = sorted(list(set(map(self.correct_shift, B))))
        B = list(map(lambda x: x - len(self.__chain_A), B))
       return B
    @property
    def pairs_wtt_correction(self):
       pairs = [list(map(lambda x: x.get_id() [1], pair)) for pair in
self.___contact_pairs]
       return pairs
    @property
    def name(self):
       return self.___name
   @name.setter
    def name(self, name):
       self.___name = name
   @property
    def MI(self):
       return self.__MI
    @MI.setter
    def MI(self, value):
       self.__MI = value
   @property
    def h(self):
       return self.<u>   h</u>
   @h.setter
    def h(self, value):
       self.__h = value
   @property
    def MI_by_h(self):
       return self.___MI / self.___h
```

```
@property
def MI_by_npairs(self):
    return self.__MI / len(self.__contact_pairs)
@property
def r(self):
   return self.__r
@r.setter
def r(self, value):
   self.___r = value
@property
def DI(self):
   return self.__DI
@DI.setter
def DI(self, value):
   self.__DI = value
@property
def n_pairs(self):
    return len(self.__contact_pairs)
```

## Verifier.py

```
from Bio.PDB import *
from Bio import pairwise2
from Bio import AlignIO, SeqIO
import Levenshtein
class Verifier():
    .....
    Verify and correct the iteration of the PDB chain.
    .....
    def ___init___(self):
        pass
    def align_identity(self, seq1, seq2):
        """ Calculate distance between sequences. """
        distance = Levenshtein.ratio(seq1, seq2)
        return True if distance > 0.98 else False
    def is_alignment(self, align):
        align = AlignIO.read(align, "fasta")
        return True if align else False
    #TODO
    def sincronizes_gap(self):
```

```
""" Sicronize gaps in MSA an PDB sequence. """
pass
def validate_models(self, pdbs):
    for model in pdbs:
        AIsEqual = self.align_identity(pdbs[0].fasta[0], model.fasta[0])
        BIsEqual = self.align_identity(pdbs[0].fasta[1], model.fasta[1])
        if not AIsEqual or not BIsEqual: return False
    return True
def validate_MSA(self, pdb, msa):
    isEqual = self.align_identity(pdb, msa)
    return True if isEqual else False
```

### Output.py

```
from Docking import Docking
from Bio.PDB import *
import matplotlib.pyplot as plt
import numpy as np
import glob, imp
class Output():
    0.0.0
    Manager output.
    0.0.0
    def ___init__(self, jobname, model_list, theta, lambda_, valid_mi, valid_di, valid_r):
        self.__job_name = jobname
        self.__model_list = model_list
        self.___PDB_REF = "1bxr1.pdb"
        self.__models = []
        self.___valid_mi = valid_mi
        self.__valid_di = valid_di
        self.__valid_r = valid_r
        self.___mis = []
        self.__hs = []
        self.___mis_norm_h = []
        self.___n_pairs = []
        self.__mis_norm_pairs = []
        self.___dis = []
        self.__rs = []
        self.__parameters = {"t": theta, "l": lambda_}
        self.___make_lists()
    def __make_lists(self):
        for model in self.__model_list:
            self.___models.append(model.name)
            self.___mis.append(model.MI)
            self.__hs.append(model.h)
            self.__mis_norm_h.append(model.MI_by_h)
```

```
self.__n_pairs.append(model.n_pairs)
            self.__mis_norm_pairs.append(model.MI_by_npairs)
            self.___dis.append(model.DI)
            self.___rs.append(model.r)
   def w_file(self, filename):
        with open("{}_t{}_1{}.dat".format(filename, round(self.__parameters["t"], 2),
round(self.__parameters["1"], 2)), 'w') as f:
            f.write("theta = {}\nlambda = {}\n".format(self.__parameters["t"],
self.__parameters["1"]))
            f.write("models = {}\n".format(self.__models))
            if self.__valid_mi:
                f.write("mi = {}\n".format(self.__mis))
                f.write("h = {}\n".format(self.__hs))
                f.write("mi/h = {}\n".format(self.__mis_norm_h))
                f.write("n_of_pairs = {}\n".format(self.__n_pairs))
                f.write("mi/npairs = {}\n".format(self.__mis_norm_pairs))
            if self.__valid_di:
                f.write("DIs = {}\n".format(self.___dis))
            if self.__valid_r:
                f.write("r = {}\n".format(self.__rs))
        f.close()
   @property
    def scoring_list(self):
       res_list = [(model.name, model.MI, model.DI, model.r) for model in
self.__model_list]
       return res_list
   @property
   def models(self):
       return self.__models
   @property
   def mis(self):
       return self.___mis
   @property
   def dis(self):
       return self.___dis
   @property
   def rs(self):
       return self.___rs
```

## Coevolution.py

```
import math
import numpy as np
from scipy import spatial
from Bio.Phylo.TreeConstruction import DistanceCalculator
from Bio import AlignIO
import timeit
```

class Coevolution():

```
.....
    Implement direct coupling analisys for a docking solution.
    .....
    def ___init___(self):
        """ Create Coevolution object for calculations. """
        self.__theta = 0
        self.__lambda = 0
        self.___site_freq = np.empty((0, 0))
        self.__pair_freq = np.empty((0, 0, 0, 0))
    def set_theta(self, value):
        self.___theta = value
   def set_lambda(self, value):
        self.__lambda = value
   def Meff(self, msa):
        """ Calculate effective number of independent sequences in msa, the sequences
weight and set these values in msa objct. """
        hamming_distance = spatial.distance.pdist(msa.full_encoded, "hamming")
        weight_matrix = spatial.distance.squareform(hamming_distance < (1.0 -</pre>
self.__theta))
       msa.sequence_weight = 1.0 / (np.sum(weight_matrix, axis=1) + 1.0)
        msa.Meff = np.sum(msa.sequence_weight)
    def sitefreq(self, msa, ICs):
        """ Calculate the single site frequencies in encoded MSA. """
        if not msa.Meff:
            self.Meff(msa)
        site_freq = np.zeros((len(ICs), msa.q), dtype=float)
        for i in range(len(ICs)):
            vec = np.bincount(msa.encoded_MSA(ICs)[:, i], weights=msa.sequence_weight)
            site_freq[i, 0:vec.size] = vec
        site_freq /= msa.Meff
        self.__site_freq = (1 - self.__lambda) * site_freq + self.__lambda / msa.q
    def pairfreq(self, msa, ICs):
        """ Calculate the double site frequencies in encoded MSA. """
```

```
if not msa.Meff:
            self.Meff(msa)
        pairfreq = np.zeros((len(ICs), msa.q, len(ICs), msa.q),dtype=float)
        encoded = msa.encoded_MSA(ICs)
        pairfreq = np.zeros((len(ICs), msa.q, len(ICs), msa.q),dtype=float)
        for a in range(msa.num_of_seqs):
            for i in range (len(ICs)):
                for j in range(len(ICs)):
                    pairfreq[i, encoded[a, i], j, encoded[a, j]] +=
msa.sequence_weight[a]
        pairfreq /= msa.Meff
        pair_freq = (1 - self.__lambda)*pairfreq + self.__lambda/(msa.q * msa.q)
        for i, aa in enumerate(ICs):
            for am_i in range(msa.q):
                for am_j in range(msa.q):
                    if (am_i==am_j):
                        pair_freq[i,am_i,i,am_j] = self.__site_freq[i,am_i]
                    else:
                        pair_freq[i,am_i,i,am_j] = 0.0
        self.__pair_freq = pair_freq
    def MI(self, msa, docking):
        """ Calculate mutual information for a protein complex. """
        ICs = docking.A_ICs + docking.shift_B_ICs
        self.sitefreq(msa, ICs)
        self.pairfreq(msa, ICs)
        #enc = msa.encoded_MSA(ICs)
        #with open("enc_{}.py".format(docking.name), 'w') as f:
            #f.write(str(enc[0, :].tolist()))
        contact_map = docking.contact_map
        A_ICs = docking.A_ICs
        B_ICs = docking.shift_B_ICs
        nA = len(A_ICs)
        nB = len(B_ICs)
        mi_matrix_pp = np.zeros((nA, nB), dtype=float)
        h_matrix = np.zeros((nA, nB), dtype=float)
        for i, col_i in enumerate(A_ICs):
            for j, col_j in enumerate(B_ICs):
                tmp1 = (np.sum(self.__pair_freq[i, :, j + nA, :] *
                np.log(self.__pair_freq[i, :, j+nA, :] /
                (np.transpose(np.broadcast_to(self.__site_freq[i, :], (msa.q, msa.q))) *
                np.broadcast_to(self.__site_freq [j + nA, :], (msa.q, msa.q))))))
                tmp2 = (np.sum(self.__pair_freq[i, :, j + nA, :] *
np.log(self.__pair_freq[i, :, j + nA, :]))) * -1
                if any((x == [col_i, col_j]).all() for x in contact_map):
                    mi_matrix_pp[i,j] = tmp1
```
```
h_matrix[i,j] = tmp2
               docking.MI = np.sum(mi_matrix_pp)
        docking.h = np.sum(h_matrix)
        print("MI = {}, MI/h = {}".format(np.sum(mi_matrix_pp),
np.sum(mi_matrix_pp)/np.sum(h_matrix)))
    def correlation(self, msaA, msaB):
        """ Calculate the correlation value for the distance arrays of chains. """
        calculator = DistanceCalculator('blosum62')
        dm_A = calculator.get_distance(msaA)
        dm_B = calculator.get_distance(msaB)
        av_A = np.average(dm_A)
        av_B = np.average(dm_B)
        num = 0
        den_A = 0
        den_B = 0
        num_of_seqs = len(msaA)
        for i in range(num_of_seqs):
            for j in range(num_of_seqs):
                num += (dm_A[i, j] - av_A) * (dm_B[i, j] - av_B)
                den_A += (dm_A[i, j] - av_A)**2
               den_B += (dm_B[i, j] - av_B)**2
        r = num / (np.sqrt(den_A) * np.sqrt(den_B))
        print("r = {}".format(r))
        return r
```



Figura 32: UML - Docking Score Module