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Resumo

As métricas objetivas de avaliação de qualidade de sinais tem o objetivo de prever a quali-

dade dos sinais percebida pelo ser humano. Uma das áreas de qualidade de maior interesse

nos últimos anos é o desenvolvimento de métricas de qualidade para sinais áudio-visuais.

A maioria das propostas nesta área estão baseadas na aferição da qualidade individual

das componentes de áudio e vídeo. Porém, o modelamento da complexa interação exis-

tente entre as componentes de áudio e vídeo ainda é um grande desafio. Nesta tese, o

objetivo é desenvolver uma métrica, baseado em ferramentas de aprendizado de máquina

(Machine Learning - ML), para a aferição da qualidade de sinais áudio-visuais. A pro-

posta utiliza como entrada um conjunto de características descritivas das componentes

de áudio e vídeo e aplica Deep Autoencoders para gerar um novo conjunto de caracterís-

ticas descritivas que representa a interação entre as componentes de áudio e vídeo. O

modelo está composto por várias fases, que realizam diferentes tarefas. Primeiramente,

são extraídos um conjunto de características descritivas que descrevem características das

componentes de áudio e vídeo. Na próxima fase, um autoencoder de duas camadas produz

um novo conjunto de características descritivas. Em seguida, uma função de classificação

mapeia as características descritivas em escores de qualidade audiovisual. Para garantir

a precisão nos resultados, o modelo é treinado utilizando um conjunto de dados que rep-

resenta todos os artefatos considerados no modelo. O modelo foi testado tanto com no

banco de dados gerado neste trabalho, como em uma base de dados extensa e pública. Os

resultados mostraram que esta abordagem obtém predições de qualidade, cujos valores

estão altamente correlacionadas com os escores de qualidade obtidos em experimentos

subjetivos.

Palavras-chave: Qualidade Audiovisual, Metricas Objetivas de Qualidade, Multimidia
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Abstract

The development of models for quality prediction of both audio and video signals is a

fairly mature field. But, although several multimodal models have been proposed, the

area of audiovisual quality prediction is still an emerging area. In fact, despite the rea-

sonable performance obtained by combination and parametric metrics, currently there is

no reliable pixel-based audiovisual quality metric. The approach presented in this work

is based on the assumption that autoencoders, fed with descriptive audio and video fea-

tures, might produce a set of features that is able to describe the complex audio and video

interactions. Based on this hypothesis, we propose a set of multimedia quality metrics:

video, audio and audiovisual. The visual features are natural scene statistics (NSS) and

spatial-temporal measures of the video component. Meanwhile, the audio features are ob-

tained by computing the spectrogram representation of the audio component. The model

is formed by a 2-layer framework that includes an autoencoder layer and a classification

layer. These two layers are stacked and trained to build the autoencoder network model.

The model is trained and tested using a large set of stimuli, containing representative

audio and video artifacts. The model performed well when tested against the UnB-AV

and the LiveNetflix-II databases.

Keywords: Audiovisual Quality, Objective Quality Metrics, Multimedia
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Chapter 1

Introduction

The great progress achieved by communication technology in the last twenty years is

reflected by the amount of multimedia services available nowadays, such as digital televi-

sion, IP-based video transmission, mobile services, etc. One of the most popular services

is Internet-based transmission, which has recently gained a huge popularity among con-

sumers of entertainment services. Recent advances on smarthphones technology have

transformed services like video conference (Skype, Google Hangout, Facebook Video,

FaceTime) and on-demand streaming media (Netflix, iTunes, Amazon) into an essential

tool for the common user. Yet, it is understood that the success of these kind of services

relies on its trustworthiness and the quality of experience of the provided service [1]. Un-

der these circumstances, the development of efficient real-time monitoring quality tools,

which can quantify the audio-visual experience (as perceived by the end user), can bring

real benefits to Internet Service Providers (ISP) and broadcast companies.

The most accurate way to determine the quality of an audio-visual content is by mea-

suring it using psychophysical experiments with human subjects (sometimes referred as

subjective experiments)[2]. These experiments are usually conducted in a controlled en-

vironment (e.g., soundproof laboratories), where a set of test stimuli (e.g., audio-visual

sequences) are presented to a group of non experts human subjects. In order to reproduce

these experiments among different labs, researchers design the experiments following a set

of recommendations that vary according to the type of experiment and test stimuli under

study. These recommendations include several instructions on topics like experimental

methodology, viewing conditions, test material and grading scale. This type of recom-

mendations are compiled in several documents by different communication agencies such

as the International Telecommunications Union (ITU) and the European Broadcasting

Union (EBU) [3]. By following these recommendations experiments can be reproduced in

different laboratories with a guaranteeing a certain level of reliance in the results.

Although subjective experiments represent the most accurate way of measuring the
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signal quality, they are expensive, time-consuming, and hard to incorporate into a design

process or an automatic control of quality. Therefore, the ability to measure audio and

video quality accurately and efficiently, without using human observers, is highly desirable

in practical applications. With this in mind, the development of fast algorithms (objective

metrics) that give an accurate prediction of the subjective quality of the media is an area

that has much to be explored.

Objective metrics use computational methods to analyse the characteristics of video

and audio signals and obtain an estimate for the perceived quality. Unfortunately, within

the signal processing community, quality measurements have been largely limited to a

few objective measures, such as peak signal-to-noise ratio (PSNR) and total squared error

(TSE). Although these metrics have a reasonable performance for signals in which every

bit is equally important, they do not provide good estimates for audio and video signals,

i.e., their estimates do not always have a good correlation with the human judgement of

quality [4, 5].

Depending on the amount of reference information used by the algorithm, objective

metrics can be classified as Full Reference (FR), Reduced Reference (RR), or No-Reference

(NR) metrics. In the FR approach, the entire reference is used to obtain an estimate of

the quality. In the RR approach, the algorithm uses only part of the reference, which

generally consists of a set of features extracted from it. In this case, the information

available at the measurement point is transmitted through an auxiliary channel. Finally,

in the NR approach, the quality estimation is obtained blindly using only the test video.

There is an ongoing effort to develop video quality metrics that are able to estimate

quality as perceived by human viewers [6, 4, 7]. Unfortunately, metrics with better results

are often FR metrics. Usually, the best performing quality metrics incorporate models of

the human visual system (HVS), such as contrast sensitivity functions, motion models,

pooling strategies, and visual attention models. To date, most of the achievements have

been in the development of complex FR video quality metrics [8, 9, 10] and much remains

to be done in the development of real-time metrics that do not require the reference signal

(NR or RR). A new trend in video quality is the development of hybrid and parametric

metrics, which are metrics that use a combination of packet information, bitstream head-

ers, and decoded video to estimate the quality [11]. Parametric metrics estimate quality

using only the information available at the receiver, like for example bitrate, frame rate,

QP, motion vectors, and network information. These metrics are generally faster than

pixel-based video quality metrics and, depending on the level of access to the bitstream,

can produce reliable results [12]. It is worth pointing out that parametric metrics are

coding and transmission dependent, reducing their applications. For example, parametric
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metrics cannot be used to predict quality for content transcoded among different com-

pression standards or bitrates.

There is also a great need for metrics that estimate quality of experience in multi-

media applications. So far, very few metrics have addressed the issue of simultaneously

measuring the quality of multimedia content (e.g., video, audio, and text). In fact, only

a small number tackle the simpler problem of developing audio-visual objective metrics

[13, 14, 15]. Among the most relevant works, we can cite the parametric NR objective

quality metrics proposed by Garcia et al. [15] and Yamagishi and Gao [16].

In this work, our goal is to develop an accurate model to assess the audiovisual quality

of a video sequence. The proposed model is based in an Autoencoder Network approach

which is composed of two main stages. The first stage consists of an audio and video

feature extraction phase, where measures that describe the audio and video signal char-

acteristics are computed. The second stage consists of a training phase formed by an

autoencoder and a classification layer trained with the sets of features extracted before.

During the training phase of the model, the autoencoder is trained using the audio and

video features as input, resulting in a low-dimensional representation of the features.

Then, using the classification function, a mapping between this new set of features and

the subjective scores associated with the audiovisual sequence is obtained. The assump-

tion is that by training the autoencoders using these audio and video features a stronger

representation of the signals can be obtained and, consequently, a more faithful descrip-

tion of the distortions affecting the signal. This might lead to a more precise prediction

of the perceived signal quality.

1.1 Problem Statement

The area of multimedia quality assessment is a multi-disciplinary area, which combines

knowledge from several domains, such as psychology, physiology, image and audio signal

processing. Although the specific area of Visual Quality is fairly mature [4, 7, 17], there

are still several challenges to be solved in the broader area of multimedia quality. In

particular, as pointed out by Pinson et al. [18], the issue of simultaneously measuring the

quality of multimedia contents (e.g. video, audio, and text) is still an open problem. In the

simpler case of audio-visual content, some work has been done on trying to understand

audio-visual quality, what resulted in a couple of subjective models [13, 14] and a few

audio-visual objective quality metrics [16, 19, 20, 21]. But, so far, few works have studied

the interaction between different audio and video components [22, 23, 24], a research topic

that has become very relevant given the popularity of audio-visual content.
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Modelling how humans perceive audio and video signals is a challenging task. This gets

even more complex when the interaction between audio and video requires a mathematical

model to represent it. The difficulty lies in the little knowledge about the cognitive pro-

cessing that humans use to interpret the interaction of this stimulus. This interpretation

is key in order to develop an accurate audiovisual quality assessment model. Consider-

ing these issues, Machine Learning paradigms arise as an appealing option to tackle the

audiovisual quality assessment problem from a different perspective. Quality assessment

methods based on ML are capable of mimicking human reactions to media distortions,

instead of explicitly modelling it. Traditionally, methods that are based on ML are com-

posed of two basic stages: (1) the computation of features describing the media distortion

and (2) a mapping of those features into quality scores. As a result, the model learns the

complex non-linear function that maps features into quality scores. Some important as-

pects need to be covered in order to successfully model these complex mapping functions.

These aspects are the definition of the feature set that describes the signal and the ML

tool to implement the mapping function.

Audio and visual descriptive features have been studied for several years and they

have been applied to different research fields, such as speech intelligibility and pattern

recognition. Its effectiveness relies on how good they are able to describe the signal

characteristics in terms of human perception. For the quality assessment field, several

audio and video quality metrics have exploited these features in order to predict the

perceived quality with very good results. As for the ML tool, it is key to select the

technique that best suits the assigned task. For the particular task of finding a way

to describe the audio and video stimulus interaction, Autoencoders can be used to find

relationships between both audio and video sets of features. This type of strategy has

been successfully used on studies to reduce and find stronger descriptive features.

It is assumed, based on the previous information, that a model composed of a set

of audio and video features applied over an autoencoder technique might produce a way

to describe the complex interaction between both audio and video stimulus. Given the

nature of this approach, its application to an audiovisual quality assessment scenario

would represent a valuable contribution.

1.2 Proposed Approach

A previous work by Soni et al. presented a deep autoencoder based method for non-

intrusive speech quality assessment [25]. The metric adopts a two-layer approach to treat

speech background noise distortions and uses audio information in the form of spectro-

grams. In the first layer, a speech spectrogram is passed on a two-layer autoencoder in
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Figure 1.1: Diagram of the proposed Deep Autoencoder Network for audio-visual quality assessment.

order to produce a low-dimensional set of new features. A mapping function between

the features and subjective scores is found using an artificial neural network (ANN). Re-

sults showed that an autoencoder approach produced better descriptive features than

Filterbank Energies (FBEs) and more accurate speech quality predictions [25].

In this work, we aim to extend the idea proposed by Soni et al., adapting it to assess

the quality of audiovisual signals. A diagram sketch of the proposed system is depicted in

Figure 1.1. First, a set of features that describe the characteristics of the audio and video

components are computed. In the next stage, a two-layer autoencoder produces a low-

dimensional set of features. At this stage, it is expected that these low-dimensional set of

features are able to describe the complex interaction between audio and video stimulus.

Then, a classification function maps the features into audiovisual quality scores. Finally,

the model output is processed and the overall audiovisual quality is computed.

1.3 Document Structure

The structure of this work is organized as follows. In Chapter 2, some basic concepts

related to the development of this work are presented. In Chapter 3, a brief revision

of the literature regarding the signal quality assessment is presented. In Chapter 4, a

set of three subjective quality experiments for this work is described. In Chapter 5, the
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proposed audiovisual quality assessment model is described. Finally, Chapter 6 presents

some conclusions of this work and the main contributions.
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Chapter 2

Basic Concepts

This chapter presents some general concepts that are employed in the development of this

work. The main idea is to familiarize the reader with the research topic and introduce

some relevant information employed on this research. Some basic concepts related to

the performance of the human visual and auditory systems are presented, in addition,

characteristics of the video and audio digital systems are described. Finally, a brief

explanation of some of the machine learning techniques employed in this work is included.

2.1 Human Visual and Auditory System

While our sensory system is constantly collecting information from our surrounding envi-

ronment, it is the way we interpret that information that influences our interaction with

the world. Human perception is referred to the way we organize, identify, and interpret

any sensory information captured from the surrounding environment [26]. Visual and au-

ditory stimuli are very important for humans because they provide essential environment

information and permit a proper interaction between humans and their surroundings. A

very brief description of the human visual and auditory perception phenomena is presented

in this section.

2.1.1 Visual Perception Phenomena

Visual perception is very important for humans, who constantly receive and process in-

formation to interact with the surrounding environment. With the objective of obtaining

quality predictions that are highly correlated with the quality as perceived as human

viewers [27], most video quality metrics take into consideration aspects of the human

visual system, and some psychophysical concepts. Next, some of the basic concepts of the

human visual system are presented, along with some of its psychophysical characteristics.
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Color Perception

The color perception in the human visual system is related to luminance sensitivity of the

photoreceptors (cones and rods) located in the retina. As it was mentioned before, rods

are more sensitive to light and are not able to distinguish between colors, i.e. they can

only recognize greyscale tones and provide information related to the shape of objects.

Given that rods are more sensitive to light, in a penumbra scenario (dim light), only rods

are actives, this type of vision is called scotopic vision. On the other hand, on a scenario

with great light exposure, cones are more active and this is known as a photopic vision.

Finally, a mesopic vision corresponds to a midterm scenario (combination of photopic and

scotopic vision) where light exposure is low but not quite dark (0.001 to 3 cd/m2), both

rods and cones are active [31].

As mentioned previously, cones are divided into three different classes according to

their sensitivity to different bands of the electromagnetic spectrum. This particular orga-

nization, also known as the trichromatic theory, is what allows humans to perceive colors.

The three types of cones are denoted as (1) Short –S, with a wavelength of 440 – 485 nm,

(2) Medium – M, with a wavelength of 500 – 565 nm, and (3) Long – L, with a wavelength

of 625 – 740 nm. The relative spectral sensitivity of the cones S, M, and L (presented as a

wave-length function) is depicted in Figure 2.1. Depending on the range they occupy on

the electromagnetic spectrum, a particular color can be attached to that particular cone:

Short (blue), Medium (green), and Long (red).

Figure 2.1: Cones relative spectral sensitivity: S (short), M (medium) e L (long). Original illustration
from [32].

Contrast Sensitivity

The ability of humans to perceive details in a particular scene is determined by the capac-

ity of the visual system to detect contrast, i.e. the difference in brightness of contiguous
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areas. Contrast sensitivity of humans is represented by the Contrast Sensitivity Function

(CSF) [33], which is obtained through subjective experiments with human participants.

The contrast value is defined as the radio between the highest and lowest luminance, as

defined by the following equation:

C =
Lmax − Lmin

Lmax + Lmin

. (2.1)

The curve of the contrast sensitivity versus the spatial frequency (gathered from exper-

iments) is presented in Figure 2.2. The graph measures the contrast threshold gathered

from comparing two stimulus at different spatial frequencies.

Figure 2.2: Curve of the Contrast Sensitivity versus the Spatial Frequency (Adults) [34].

2.1.2 Auditory Perception Phenomena (Psychoacoustics)

Human’s sense of hearing is one of the most complex and important systems in the human

body. It allows the interaction between humans and the surroundings, as well as with

other humans through speech or any particular sound [35]. It depends basically on the

processing of vibrations (which produces sound waves) and its later interpretation by the

human brain. Despite its complexity, a tremendous research effort has made possible

to understand its mechanism and, later on, modelling it for computational simulations

[36]. As with the visual quality metrics, several audio quality metrics or methods employ

aspects of the human auditory system with the objective of predicting the audio quality

perceived by humans [22]. Following, we present some basic concepts regarding the human

auditory system along with a number of psychoacoustic characteristics.

12



Psychoacoustics

Psychoacoustics studies how humans perceive different types of sound. More particu-

larly, it covers the human psychological and physiological responses to sound phenomena

(speech, music, environmental sound, etc.) [37]. These responses are mostly determined

by the sound’s wave frequency and amplitude. The frequency of a sound is referred to

the number of waves that pass a certain point in a given time. Meanwhile, the ampli-

tude is defined as the difference between the high and low pressures created in the air by

that sound wave. Sound itself can be analyzed by means of a number of characteristics

related to its frequency and its amplitude. Next, some of these characteristics are briefly

described. Figure 2.3 depicts some waveform representations of them.
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Figure 2.3: Waveform representation of some psychoacoustics.

• Pitch: Pitch is a term used to describe the perceived frequency of a sound, i.e.,

how high or low frequency present in the sound signal. For instance, a high pitch

sound is the result of short waves passing very fast by a certain point, while fewer

slower waves result in a lower pitch sound. That is, the pitch of a sound will be

determined by its frequency. Sound waves occurring at fairly consistent frequencies

will be perceived as having a definite pitch (musical tones), in contrast sound waves

that present irregular frequencies will be perceived as having an indefinite pitch

(noise).

• Duration: Duration is a term used to describe how long or short a sound is. It is

related to the time length from the moment the sound has been perceived until the

moment the sound has been identified as changed or ceased.
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• Loudness: Loudness refers to how loud or soft listeners perceive a particular sound.

How loud the sound is will depend (partially) on the sound wave’s intensity. In-

tensity is a measure of the existing energy in the sound waves and it is directly

proportional to the square of the sound wave’s amplitude. The higher the ampli-

tude the higher the volume of the perceived sound. On the other hand, a smaller

amplitude will be associated with a softer sound.

• Timbre: Timbre can be interpreted as the quality of different sounds sources (e.g.,

people clapping, a train scraping on tracks, a musical instrument, human voice,

etc.). The sound timbre describes characteristics that make possible to humans

distinguish between different wave sounds with the same pitch and loudness. For

example, the timbre will permit differentiating the sound of a flute and a clarinet

playing the same note at the same volume.

Different audio representations present audio properties in a different way. Spectro-

grams are capable of representing some audio characteristics that help the analysis of

some type of distortions. This makes them particularly relevant to the audio quality

assessment area.

Spectrograms

Spectrograms are the visual representation of sounds (or any signal) which displays the

amplitude of the frequency components over time. This representation is obtained by

using a Fast Fourier Transform (FFT), which basically decomposes the signal into their

frequency components. Figure 2.4 presents a spectrogram of a vowel letter ‘a’ along with

its waveform representation.

A spectrogram representation offers several advantages compared to other types of

visual representations like waveforms [36]. For instance, complex signals that contain

more than one frequency component are more easily analyzed using spectrograms. A

Spectrogram displays time on the horizontal axis, and frequency on the vertical Y-axis

(pitch). Additionally, the volume is represented by color depending on the color scheme

used by the spectrogram.

Spectrograms are a useful tool to analyze the timbre of a sound due to its overtones way

of representation. Due to the human speech mechanism that permits using the shape of

the mouth to produce different overtones, spectrograms representations can be exploited

in the analysis of human speech signals. Figure 2.5 presents a spectrogram comparing

vowels sounds ‘a’, ‘e’, and ‘o’, where differences on the overtones are easily observed.

Furthermore, spectrogram representations have been applied into research areas such as

speech intelligibility, speech quality, and audio quality with very good results [38, 39, 40].
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(a) ‘Waveform’

(b) ‘Spectrogram’

Figure 2.4: Waveform and Spectrogram representation of vowel ’a’.

2.2 Digital Communication Systems

In its most basic form, a digital communication system is formed by three main enti-

ties: a transmission unit, a receiver unit, and, in between, a communication channel. Its

main purpose is to transfer information from a source to a recipient through a channel or

medium. This section will briefly describe the stages of a common digital communication

system, along with some basic concepts related to the digital processing of signals. Fur-

thermore, two types of information, which are the main focus of this work, are described

in detail: the video and audio digital systems.

Figure 2.6 presents a basic diagram block of a digital communication system. As

a starting point, the first block is called the digital signal (or message source), which

in this context, is interpreted as a binary representation (0s and 1s) of the data to be

transmitted (e.g., human speech in a digital form). Such digital signal is passed on as

input to the source-coding block. At this stage, it is known that the signal samples are

highly correlated, i.e., differences between nearby samples are very little. This property is

exploited on this block in order to reduce the bitrate of the transmitted signal. In practice,

there are two types of approaches to deal with this task: a lossy coding approach (some
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(a) ‘Waveform’

(b) ‘Spectrogram’

Figure 2.5: Waveform and Spectrogram representation of vowels ‘a’, ‘e’, and ‘o’.

Figure 2.6: Basic diagram block of a digital communication system.

level of degradation is accepted), and the lossless coding [41]. Next, the output digital

signal, with a reduced bitrate, is passed on to the channel-coding block.

The main purpose of the channel-coding block is to safeguard the information trans-

mitted. Its task is to ensure, as much as possible, that there is no error in the transmitted

information when the signal is recovered and delivered to the end user. In order to

complete this task, some additional information is included in the signal; this is broadly

known as error control coding. Next, the digital information sequence, along with some

safeguard against possible errors, is passed on to the digital modulator block. In this

stage the digital signal is transformed into analog continuous pulses that are transmitted
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through the air, or the communication channel. The channel is either wired or wireless,

i.e. a co-axial cable, an optical fiber, the air, or the space. At this stage, the digital signal

is exposed to transmission errors and noise. From there, the transmitted signal, in form

of analog pulses, passes through a similar circuit in order to go back to its original form:

demodulator, channel decoder, and source decoder.

In the following lines, some important characteristics of the digital representation of

video and audio are presented, along with some common artifacts that result from its

digital processing and transmission.

2.2.1 Video Digital System

Video Coding

Data coding is an important task in the processing of digital video signals. The main

objectives are to reduce the amount of required storage space and to facilitate its trans-

mission through a stablished communication channel. In order to achieve these objectives,

several strategies are employed to compress the digital information with a minimum effect

in the quality of the processed data. There are two types of compression techniques used

with digital video: lossles and lossy. A lossless compression technique offers a perfect

reconstruction of the original signal. However, its compression rate is very low. A lossy

compression technique, on the other hand, offers a higher compression rate, which is of

great value for video digital signals. Yet, this type of strategy carries the loss of informa-

tion from the transmitted signal, which might affect the quality of the compressed signal

[42].

Most broadly used coding standards are mainly developed by two international agen-

cies: International Telecommunications Union (ITU) and the International Standards

Organization (ISO). This last one through two sub-groups, the Joint Photographic Ex-

perts Group (JPEG) and the Moving Pictures Experts Group (MPEG). Table 2.2 presents

a summarized comparison of the above mentioned video coding standards.

MPEG-1 is known as the first, lossy compression, coding standard developed by the

MPEG. This standard is considered as being highly compatible and it is still being used

for compression using Compact Disks Read-only Memory (CD-ROM). The MPEG-2 was

the second coding standard developed by the MPEG. This format is commonly used for

transmission of digital television signals, as well as movies and software distributed in

Digital Video Discs (DVD). Although newer standards are more efficient, MPEG-2 is still

very much used due to its backwards compatibility with existing hardware and software

[43].

17



Over the years the ITU presented several video coding standards grouped in the H.26x

family. The first coding standard used in practical terms was the H.261. Design improve-

ments in new coding standards led H.261 to be almost obsolete, however, it is still used as

a backward compatibility feature in several video conferencing systems [44]. Another im-

portant coding standard is the H.263, also a member of the H.26x family. This standard

was originally designed as a low-bitrate format for compressed signals in videoconferenc-

ing transmissions. It was also used in several internet applications in the form of Flash

videos. Due to the advances in new standards, H.263 is now mainly used as a compatibility

feature in the implementation of newer standards [44].

A collaboration effort between ISO and ITU agencies resulted in the H.264 video

coding standard, also known as MPEG-4/AVC (Advanced Video Coding). This standard

is, by far, the most commonly used video coding standard nowadays, as well as the most

widely supported. The H.264 provides a significant better compressing rate compared to

its predecessors (almost 50 percent at a similar quality cost) [45].

The H.265 standard, also known as High-Efficiency Video Coding (HEVC), was devel-

oped by the ITU as the successor of the H.264/AVC standard. H.265 reaches a compres-

sion rate that is almost double the value achieved by the H.264 coding standard at the

same level of video quality [46]. This particular feature is very important for video reso-

lutions above 2K, as well as for high-quality video streaming. However, its coding process

is much more complex and it requires much more resources [47]. Although adoption of

HEVC is growing, it is still far from being as popular as H.264.

Table 2.1: Summarized comparison of some video coding standards.

Year Standard Agency Implementations
1988 H.261 ITU Videoconferencing, videotelephony
1993 MPEG-1 ISO-MPEG Video CD-ROM
1995 MPEG-2 ISO-MPEG Digital Television Transmission, Video DVD
1996 H.263 ITU Videoconferencing, videotelephony, mobile-phone videos
2003 MPEG-4/AVC (H.264) ITU, ISO-MPEG High Definition DVD, Digital TV, videoconferencing, Blu-ray, iPod Video
2013 HEVC (H.265) ITU Ultra HD Blu-ray, UHD streaming

Common Artifacts

For the present context, a video artifact is defined as an unwanted characteristic present in

the video signal that might affect the quality of the signal perceived by a particular user.

Artifacts might be introduced to the video signal during capture, coding, transmission,

reception, and delivery to the final user, as it is shown in Figure 2.7. Because of this, one

important requirement for each of these stages is to keep the negative quality impact at

a minimum in order to maintain a certain level of satisfaction. Next, some of the most

common video artifacts are listed and briefly described.

18



Figure 2.7: Video signal on the production processing phases.

Blocking This type of artifact is considered the most common visual degradation. Fig-

ure 2.8 presents a sample of a video frame containing a blocking artifact. It is produced

due to the division of frames into macroblocks of rectangular shape. These macroblocks

are coded separately from one another without considering the existence of spatial corre-

lation between them, as a result, horizontal and vertical borders appear [48].

Blur A blur distortion is shown as a reduction of edge sharpness and spatial detail

[49]. Figure 2.8 presents a sample of a video frame containing a blur artifact. It can

be introduced during the processing phase of the video (coding) as a result of a loss of

high frequency information. In addition, strong de-blocking can expose blurring artifacts

during the attempt to flatten block edges [48].

Ringing Ringing is a common form of artifact which are perceived as “halos” around

sharp edges [48]. Figure 2.8 presents a sample of a video frame containing a ringing

artifact. They are visible for most compression techniques, especially when the signal is

transformed into frequency domain. This distortion is also known as a Gibbs Phenomenon.

Ringing results from a poor reconstruction of pixel values and is more noticeable along

high contrast edges. This effect is stronger if the edges are located in areas with a generally

smooth texture [50].

Block Loss Block loss artifacts are characterized by the presence of one or several flat

color blocks in the video frame. The effect is caused by the loss of data packets during

the transmission stage. These blocks might also be substituted by an approximation of

the original blocks if an error concealment algorithm is used [21]. Figure 2.8 presents a

sample of a video frame containing a Block loss artifact.

Blackout A blackout causes the whole frame to disappear. It is produced when all

data packets of a frame are lost during the transmission. It can also be a consequence of

incorrect video recording [21].
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(a)‘Original Image’ (b) ‘Blocked Image’

(c)‘Blurred Image’ (d) ‘Ringing Effect’

(c)‘Blockloss Effect’ (d) ‘Slicing Effect’

Figure 2.8: (a) Original Image. (b) Image containing a Blocking artifact. (c) Image containing a Blur
artifact. (d) Image contaning a Ringing artifact. (e) Image containing a Block loss artifact. (f) Image
containing a Slicing artifact.

Freezing A frame freezing effect can be categorized as a basic frame freezing or a frame

freezing effect skipping. The basic frame freezing effect is composed of time-discrete

“snapshots” of the original continuous scene. This effect is also known as jerky motion

effect and it is associated with an inadequate sampling or display rate which is commonly
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used to accommodate a reduced temporal bandwidth [21]. Meanwhile, a frame freezing

without skipping corresponds to a pause of the video that does not discard any of the

following frames. This effect is produced when the available throughput is lower than the

bitrate of the media and, as a result, the media stalls until enough data is downloaded.

When the pause occurs before the media starts playing this freezing is known as “initial

loading”. But, when the pause occurs in the middle of the media reproduction it is known

as ‘stalling’ [51].

Slicing This artifact appears when a limited number of video lines (stripes) is severely

damaged. The artifact is caused by a loss of video data packets. The decoder replaces

the lost slices by using previous slices [21]. Figure 2.8 presents a sample of a video frame

containing a slicing artifact.

2.2.2 Audio Digital System

As in video digital coding, the main objective of audio digital coding is to reduce the

bitrate of the audio signal in order to reduce storage space and, more importantly, to

facilitate signal transmission. Lossy and lossless compression techniques, as it was ex-

plained before, are the approaches used to develop audio compression algorithms (audio

codecs). The basic requirements for such techniques, besides a low bitrate, are robustness

against random channel errors (packet loss) and low encoder/decoder delays, all of this

at a minimum quality impact. As in video coding, a temporal redundancy is exploited to

achieve lower bitrates. This type of redundancy is also called inter-sampling redundancy.

In general, information redundancy is reduced employing different types of methods like

coding, pattern recognition, and linear prediction [35].

In order to provide higher compression rates at a low fidelity cost, lossy compression

algorithms take advantage of some psychoacoustics characteristics. Consequently, the

fidelity of less audible sounds is sacrificed to reduce the size of the data for storage and

transmission. On the other hand, lossless compression algorithms are capable of producing

signal representations that can be decompressed to the exact digital copy of the original

audio signals. However, they can only achieve limited compression rates (around 50 – 60

percent of the original) due to the complexity of the waveforms and its rapid variations

in sound forms [52].

Over the years, the MPEG working group, mentioned previously, presented some im-

portant multimedia coding standards, most of them performing both audio and video

coding. The MPEG-1 audio part, developed for the CD-ROM quality multimedia stor-

age, is sub-divided into three layers. These three layers are increasingly complex and

efficient. MPEG-Layer III, also known as MP3, is one of the most famous (and widely
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supported) audio codecs in the market. This lossy audio codec exploits the limitations of

human hearing in order to achieve very high compression ratios at a minimal quality im-

pact [53]. Despite new audio coding improvements, MP3 continues to be a widely popular

format for sharing and playing audio content. The MPEG-2 audio part, also known as

Advanced Audio Coding (AAC), targets HDTV applications. Compared to MP3, some of

the benefits of AAC are its widely support and better sound for the same bitrate. These

features made AAC the most popular audio codec for videos. As for surround experiences,

the Dolby laboratories presented the AC-3 audio standard, which fully preserves surround

sound settings making it very popular for movie theaters and high fidelity musical equip-

ment. Table 2.2 presents a summarized comparison of the above mentioned audio coding

standards.

Table 2.2: Summarized comparison of some audio coding standards.

Year Standard Agency Implementations
1993 MPEG-1 Layer 3 (MP3) ISO-MPEG Audio CD-ROM
1995 MPEG-2 (AAC) ISO-MPEG Audio DVD, audio streaming
1999 AC-3 Dolby Laboratories Cinema, TV broadcast

Common Artifacts

Video and audio digital signals go through similar processing phases, as a result, they

are affected by similar errors that might occur during such phases. However, these errors

have a different impact on the actual data that is transmitted, resulting in different types

of artifacts that affect the perceived quality of the transmitted signal. For this particular

work, a few types of audio degradations have been considered common in a voice over IP

transmission environment. These artifacts are platform independent, that is, they occur

independently of the codec, hardware, or network [54]. Next, these artifacts are listed

and briefly described.

Background Noise

Background noise is described as any sound other than the sound being monitored. It can

be characterized as stationary or non-stationary background noise. Non-stationary noises

are commonly found in our sound environment, like traffic noise, alarms, and people talk-

ing. Audio signals can also be corrupted by static noise in the transmission channel. For

example, additive white Gaussian noise can interfere with a signal by spectrally masking

its features [55].

Figure 2.9 presents the spectrogram of an original audio file and its distorted version.

The audio clip corresponds to two sentences from a male speaker, separated by a silence of
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Figure 2.9: Spectrogram representation of Background-noise distortion (original versus distorted).

two seconds. Additionally, a one-second silence at the beginning and at the end of the clip

is present in the audio signal. Figure 2.9 shows the spectrogram of a clean audio file and

of the same file affected by background noise. Notice that the background noise occupies

the silence gaps between sentences. Moreover, the actual signal suffers some variations

due to the noise added to the signal.

Chop Speech

This type of degradation consists of speech signals in which samples are missing. Re-

garding the VoIP scenario, choppy speech is referred to speech that is affected by missing

samples. This is commonly caused by packet loss in the VoIP network. Packet Loss Con-

cealment (PLC) can be used to smooth the effects of the missing samples. As a result,

missing samples are replaced by either silence, previous samples repeated, or they are

simply skipped [54].

Figure 2.10 compares the spectrogram of a clean audio file against the same file affected

by chop speech. By observing both spectrograms, we can notice the missing samples in

the distorted version of the sound. These samples are illustrated as vertical lines in the

middle of the signal and they represent the chop in the audio.

Mute

Mute might be the audio equivalent of the Block loss artifact. Interruptions such as

mutes are among the most common distortions produced by packet loses. The detection

of mute artifacts depends on two thresholds: (1) the minimum level of signal noticeable

by the human ear and (2) the duration of the shortest silent interval perceptible as a

23



Original Sound

1 2 3 4 5 6 7 8

t (s)

150

570

1k

3.4k

8k
F

re
q

 (
H

z)

-300

-200

-100

0

Distorted Sound

1 2 3 4 5 6 7 8

t (s)

150

570

1k

3.4k

8k

F
re

q
 (

H
z)

-300

-200

-100

0

Missing Sample

(Chop)

Figure 2.10: Spectrogram representation of Chop distortion (original versus distorted).

mute artifact. It is assumed that the spectrum of the audio signal is inside the hearing

frequency range(20 Hz and 20 kHz) [56].

Clipping

A digital audio signal can be subjected to a clipping process in situations in which the am-

plitude of the signal exceeds a maximum intensity level. Clipping consists of attenuating

the incoming signal amplitudes to maintain them below the maximum allowed intensity

level. As a result, unwanted effects such as intermodulation, aliasing, and harmonic dis-

tortions are inserted [57]. Also, the presence of additional frequency components might

reduce the perceptual quality of the audio signal. During a VoIP call, amplitude changes

can arise due to a person’s high voice volume when speaking into the microphone.

Figure 2.11 presents the spectrogram of a clean audio file and of a file affected by a

clipping distortion. It can be observed that the distorted sound presents higher intensity,

which is the result of adding a frequency component to the original sound.

Echo

An echo effect is a reflection of sound, arriving at the listener some time after the original

sound. Echo effects in a voice call generally occur due to the transmitted speech being

picked up in the receiving unit’s microphone, creating a feedback loop. Strategies for echo

cancellation [58] are not completely effective since they create their own problems in the

audio signal. The ITU recommendation G.131 [59] offers guidance on how to mitigate

talker echo in transmission systems.

Figure 2.12 depicts the spectrogram of a clean audio file and of a file affected by an echo

type of distortion. By comparing both spectrograms it can be observed that the distorted
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Figure 2.11: Spectrogram representation of Clipping distortion (original versus distorted).

signal presents a certain type of propagation (signal repetitions), which was produced by

the echo. Additionally, these repeated signals occupy the gap silences between sentences

and they change the duration of the original sound.
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Figure 2.12: Spectrogram representation of Echo distortion (original versus distorted).

2.3 Machine Learning

Machine learning paradigms have gained a very important role in several research areas,

including multimedia quality assessment [60]. A machine learning approach tackles the

quality assessment problem by imitating different aspects of the HVS and HAS, rather

than modelling very complex non-linear functions. Regarding its computational demands,

most of the resources are only required during the training phase, producing light and

fast models [61]. Next, some of the most basic concepts related to machine learning are
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presented. Additionally, two techniques, which are used in the present work, are briefly

described: AutoEncoders and SoftMax function.

2.3.1 Machine Learning Basics

Machine learning algorithms can be defined as the type of algorithms that are able to

learn from certain data without being explicitly programmed. A common definition by

Mitchell [62] states that: “A computer program is said to learn from experience E with

respect to some class of tasks T and performance measure P, if its performance at tasks in

T, as measured by P, improves with experience E”. Machine learning is mainly focused on

developing computer algorithms that are able to teach themselves to evolve and change

whenever new data is presented. Considering the rate at which data is growing nowadays,

machine learning tools that can help process this data in an efficient and elegant way are

very much needed [63].

2.3.2 Types of Algorithm

Most machine learning algorithms can be classified into two categories: Supervised (task

driven) and Unsupervised (data driven). Next, some characteristics of these categories

are briefly described, additionally, Table 2.3 depicts a summarized list of some machine

learning algorithms.

Supervised Learning

Supervised learning algorithms use labelled data for training. That is, both the input

and output are known. The algorithm basically learns by comparing the input data

with the correct outputs, minimizing the errors, then it modifies the model accordingly.

Supervised learning exploits the data patterns in order to predict the outputs based on

the labels used during the training. This type of approach can be used on applications

where historical data is able to predict likely upcoming events. Regarding the task of the

algorithm, supervised learning algorithms can be classified as Regression or Classification

algorithms.

• Regression: This type of supervised learning uses the labelled data in order to make

predictions in a continuous form. Regression is a form of predictive modelling which

investigates the relationship between a dependent variable (output) and indepen-

dent variables (input). Common applications of this technique are forecasting the

weather, time series modelling, and process optimization [64].
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• Classification: This type of supervised learning uses the labelled data to make pre-

dictions in a non-continuous form. The output of the model is not always continuous

and the graph is non-linear. A classification technique learns from the input data

and then specifies which of the classes a certain input data belongs. One common

application is the task of object recognition, where the input is an image (described

as pixel brightness values) and the output is a numeric value that represents a

certain object [64].

Unsupervised Learning

Unsupervised learning uses data without any labels to train a model. The output must be

figured out by the algorithm itself. To do so, the algorithm seeks a particular structure in

the data. Once the algorithm recognizes the data structure, it makes clusters of data with

different labels. This particular approach is commonly used to identify common attributes

on a large set of items. These items are then grouped on different clusters that can be

treated or classified using some particular criteria. Considering the task they perform,

this type of algorithm can be sub-divided into two groups: Clustering and Dimensionality

Reduction.

• Clustering: Clustering uses unlabeled data in order to group similar entities together

by identifying common attributes within the data. Then, the data is organized in

clusters depending on its similarity. Once the model is trained it is capable of

identifying the cluster that any new data should belong to.

• Dimensionality Reduction: This type of algorithm aims to reduce the dimension of

the input data by removing irrelevant information from the original structure. This

technique identifies the most stronger features, in terms of information, and removes

those that are considered to carry less relevant information. This type of technique

is very much important for a pre-processing phase of the input data [64]. Its more

appealing benefit is that a reduced version of the data (in terms of dimensionality)

can be used with very little information loss.

Among the different machine learning tools available in the literature, autoencoders

drive the attention due to its capability of finding relationships among a set of descriptive

features. Next, some basic properties of this technique are presented.

2.3.3 Autoencoders

Data compression is an important topic that is used in computer vision, computer net-

working, and several other areas. As it was pointed out before, the main goal of compres-
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Table 2.3: Summarized list of Machine Learning algorithms.

Type Task Algorithm Applications
Supervised Learning Regression Simple linear regression Weather forecasting,

Polynomial Regression predict housing prices,
Support Vector Regression predicting sales of particular
Ridge Regression product next month, etc.
Lasso Regression
ElasticNet Regression
Bayesian Regression
Decision Tree Regression
Random Forest Regression

Classification K-Nearest Neighbours Customer segmentation,
Support Vector Machines audio and image categorization,
Kernel Support Vector Machines text analysis, etc.
Naive Bayes
Decision Tree Classification
Random Forest Classification

Unsupervised Learning Clustering K-Means Clustering Document classification,
Hierarchical Clustering customer segmentation,

insurance fraud detection, etc.
Dimensionality Reduction Principal Component Analysis Feature selection,

Linear Discriminant Analysis image denoissing,
Kernel Principal Component Analysis audio denoissing, etc.
AutoEncoders

sion is to convert input data into a smaller representation. The smaller representation

of the data can be used later to reconstruct an approximation of the original version.

Autoencoders are unsupervised neural-networks that use machine learning to do this

compression [65]. In other words, they are trained with the goal of copying their input to

their output. However, copying the input perfectly might not be especially useful, this is

why autoencoders are designed so that the copies generated are not perfect copies. This

particular design forces the model to prioritize aspects that should be copied, which often

leads to learning important properties of the data [64].

Traditional applications for autoencoders include dimmentionality reduction and fea-

ture learning. Another very popular technique to deal with the dimensionality reduction

is the Principal Component Analysis (PCA). There are several scenarios where using Au-

toencoders can be a better approach, for instance non-linear transformations like the one

depicted in Figure 2.14. Unlike PCA, Autoencoders can learn non-linear transformations

by using a non-linear activation function and multiple layers [66]. They are also more ef-

ficient in the sense that they can learn from several layers rather than deal with one huge

transformation as in PCA [66]. These characteristics made Autoencoders gain attention

in several research areas such as data denoising and dimensionality reduction.

Due to its ability to deal with image processing (image compression and denoising

applications), autoencoders can also be used to solve audio processing tasks in which

an image representation of the audio is used (spectrograms or neurograms). In a work

presented by Soni [25], deep autoencoders were used to extract low-dimensional features

from a speech spectrum. These features were later mapped to corresponding subjective

scores using an artificial neural network (ANN). Results showed that autoencoders were
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Figure 2.13: PCA versus Autoencoder (linear versus non-linear dimensionality reduction).

able to capture noise information better than Filterbank Energies (FBEs) [67].

Figure 2.14: Speech spectrum through an autoencoder. Original image extracted from [25].

Most recently, theoretical similarities and connections shared by autoencoders and

latent variable models have granted autoencoders an important role in deep generative

modeling [64]. They have become a very powerful tool to build deep models and to solve

complex tasks, such as audio and speech processing. It is also a very appealing approach

to solve some other problems, such as the ones related to the video quality assessment.

Figure 2.15 presents a basic structure of an Autoencoder depicting its three com-

ponents: Encoder, Code, and Decoder. In an Autoencoder, middle layers are inserted

between the input and the output. These layers have a lower dimension compared to the

input data. These three components of the autoencoder are described next.

• Encoder: The Encoder is the first component of the autoencoder, its task is to

compress the input into a latent space representation. The encoder layer produces a

compressed representation in a reduced dimension that is usually a distorted version
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Figure 2.15: Basic structure of an Autoencoder.

of the original data. The encoder is basically a neural network that receives as

input x, where x is a vector of the form x ∈ [0, 1]d, with d as the input’s dimension.

Mathematically, the encoding operation can be represented as follows:

z = fθ = a(xW + b) (2.2)

where the output z is a hidden representation of x with a dimension d′, such that, d′

is lower than d. This representation is associated with a variable θ = {W, b}, where

W and b represent the weights and the biases of the network, respectively. Finally,

a is the activation function applied to every neuron in the layer.

• Code: The next layer represents the latent space, which is a layer known as the

Code. It represents the compressed input that is fed to the next layer.

• Decoder: The third layer is called the Decoder. Its main function is to decode the

input back to its original dimension. The decoded data is a lossy reconstruction of

the original input. The decoder is another neural network that receives as input the

representation z and produces an output function whose parameters are optimized

to make the output as close as possible to the input x. Mathematically, the decoding

procedure can be represented as follows:

x′ = gφ = a(zW ′ + b′) (2.3)

where x′ is associated with a variable φ that represents the weights (W ′) and biases

(b′) of the network.
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An Autoencoder is a type of model that seeks to minimize the reconstruction error

between the input value x and the reconstructed value x′. Consequently, the training

process will focus on the minimization of a loss function L(x, g(f(x)). In this context, a

loss function is a measure of how good a model predicts an expected outcome value. Re-

garding the objective task they perform, loss functions can be classified into Classification

and Regression.

Additionally, sparsity can be encouraged to the autoencoder by adding a regulariser

term to the loss function. Sparsity is important whenever the model is required to perform

another task, for instance, classification. Then, the new cost function is formed by the

loss function plus a sparsity term, which is given by the following equation:

L′ = L + β · Ωsparsity, (2.4)

where β is the coefficient for the sparsity regularization term. Moreover, an L2 regulariza-

tion can be added when training a sparse autoencoder. Adding an L2 regularization term

to the cost function prevents the sparsity regulariser get smaller whenever the associated

weights increase and the z values decrease [68]. The resulting cost function is given by

the following equation:

L′′ = L + β · Ωsparsity + λ · Ωweights = L′ + β · Ωsparsity, (2.5)

where λ is the coefficient of the L2 regularization term. Depending on the implementation

characteristics, autoencoders can be organized in several classes. Next, some of these types

of autoencoders are briefly described.

Types of Autoencoders

Although the objective of an autoencoder is to approximate its output to its input, in

practice, it is expected that, as a result of the training, the representation z holds some

useful properties. In order to achieve this, z is forced to have a lower dimension compared

to x. This type of representation constrains the model to capture the most salient features

of the data.

For an Undercomplete Autoencoder, the learning process is restricted to minimizing

the loss function L. One particular problem with undercomplete autoencoders is that if

the encoder and decoder are given too much power capacity, then the model can perform

the copying without learning useful information about the data distribution. Regularized

autoencoders employs the loss function in order to make the model find other additional

properties instead of just copying its input.
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A Sparse Autoencoder is basically a type of autoencoder that includes a sparsity

penalty Ω(z) in its training criterion (See Equation 2.4). Sparse autoencoders are com-

monly used to learn features that are going to be used for another task, such as classifi-

cation. Autoencoders that have been regularized using sparsity penalties are trained to

respond to certain statistical features of the data that it is been trained on.

Denoising autoencoders modify the reconstruction error function, instead of just adding

a sparsity penalty Ω. It is understood that by changing the reconstruction error term the

model might learn some useful information. Taking as basis the loss function L, a denois-

ing autoencoder uses the term L(x, g(f(x̂)) to force the denoising, where x̂ is a corrupted

copy of x. As a result, denoising autoencoders are trained to undo this corruption instead

of just simply copying their input. Denoising autoencoders represent a good example of

how different useful properties can arise from varying the loss function associated with

the training model.

Training Autoencoders

There are four parameters that can be set before training an autoencoder: code size,

number of layers, loss function, and number of nodes per layers.

1. Code size: The code size represents the number of nodes in the middle layer (also

named Code). In other words, it is the target dimension of the input data, a smaller

size will result in a higher compression rate.

2. Number of layers: This parameter defines how many times the input data will be

encoded (and decoded). That is, it sets the number of encoding, as well as the

decoding procedures. The number of layers sets how deep the autoencoder is going

to be.

3. Loss Function: Among the different loss functions, two of the most important are:

the Mean Square Error (MSE) and the Binary Cross Entropy. If input values are in

the range of 0 and 1, it is common to use the binary cross entropy, otherwise, MSE

is selected.

4. Number of nodes per layer: The number of nodes per layer decreases with each

subsequent layer in the encoder and increases back in the decoder. The decoder and

encoder are symmetric in terms of the layer structure.

2.3.4 Softmax Function

Commonly, machine learning classification task relies on functions that calculate proba-

bilities to predict a target class. The softmax function is a very popular technique to deal
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with the classification problem. Basically, a softmax function calculates the probability

distribution of a particular event for n different possible outcomes. This distribution helps

to estimate the corresponding target class for a given input. A softmax function has a

range of output probabilities in the interval [0, 1], with the sum of all probabilities being

equal to 1. Then, in a multiclass problem, the class with the highest probability will be

the target class.

The mathematical representation of the softmax function is given by the following

equation:

softmax(xi) =
exp(xi)∑n

j=1exp(xj)
, (2.6)

where the numerator represents the exponential function of a given input value and the

denominator is the sum of all exponential values of the inputs.

Softmax functions are commonly used in several multiclass classification models, like

softmax regression, multiclass linear discriminant analysis, naive Bayes classifiers, and

artificial neural networks (ANN).
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Chapter 3

Multimedia Quality Assessment

Methodologies

As new types of codecs, distribution schemes, and application scenarios evolve, the qual-

ity assessment of different types of media signals (audio and video) become an even more

significant issue in consumer electronics. Since the emerge of a Quality of Experience

(QoE) approach, the traditional Quality of Service (QoS) approach is no longer the only

measurement technique for media signals. A QoE approach takes into account (in addi-

tion to QoS features) characteristics of the Human Visual System (HVS) and the Human

Auditory System (HAS). The usage of this type of approach resulted in several objective

quality metrics for digital TV [69], lower-resolution video [70], speech [59], or audio signals

in general [71]. The performance of these quality metrics is gauged by measuring their cor-

relation with human quality responses. Human perceived quality is assessed by carrying

out subjective experiments, where a group of human participants is asked to rate a series

of signal stimuli (audio, video, or audio-visual) using a particular scale. Recommendations

for conducting these subjective experiments have been published by telecommunication

agencies (ITU, EBU) and research organizations (Video Quality Experts Group - VQEG).

Although these experimental recommendations are widely accepted and used, they have

trouble representing an authentic user experience. This is why several researchers have

modified or created unique methods to deal with these particularities. The immersive

methodology proposed by Pinson [72] seeks to put the human participant into a more

natural scenario and obtain results that are more realistic.

Since the main goal of objective quality metrics is to provide quality estimates that

are highly correlated with subjective responses, it is expected that the usage of this new

immersive approach in the development of objective quality metrics will result in more ac-

curate quality predictions. Moreover, subjective experiments that apply this methodology

and assess the overall multimedia perceived quality are key to develop quality metrics that
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include all media components involved. However, by revising the current literature, it is

possible to observe that most quality assessment research has been focused on individual

components (audio and video separately) [24]. On the other hand, very few proposals deal

with the audiovisual problem from an integrated perspective. Several authors tackled the

audiovisual quality problem by combining individual audio and video objective responses

[14, 15, 73, 74]. This type of approach serves as a starting point to understand how audio

and video interact and how the overall audiovisual quality is perceived. However, given

its low complexity level they are far from modeling the quality perception of a multi-

modal process that involves both visual and auditory human systems. As an alternative

to these type of limitations, the quality assessment problem has been tackled from a dif-

ferent angle using machine learning algorithms. This new type of approach exploits the

descriptive features used by several objective metrics to model the complex, non-linear

mapping functions between signal features and their quality scores [61]. The development

of new machine learning algorithms, as the rise of stronger descriptive audio and video

features helps understand the complex interaction between both modalities and promotes

the development of more accurate audiovisual quality metrics.

The remainder of this chapter is divided as follows. Section 3.1 presents a brief revision

of some subjective quality assessment methodologies in the literature. The basic structure

of these methodologies is discussed and a description of the Immersive methodology is

presented. In Section 3.2, the state of the art of various signal quality metrics (video,

audio, and audio-visual) is presented. Moreover, two important video and audio quality

metrics, that are the base for this work, are described in detail.

3.1 Subjective Quality Assessment

Traditional subjective experiments usually consist of presenting a great number of test

sequences to a set of observers. Often, a very narrow range of contents is used. These ex-

perimental methodologies generally cause fatigue and content memorization, which may

generate less accurate rating results. Pinson et al. [72] proposed an immersive exper-

imental methodology to tackle these problems. The proposed immersive methodology

increases the content diversity (number of original sequences) and makes sure that each

original content is viewed, or heard, only once by each participant.

3.1.1 Traditional Methods

Over the years, many different subjective test standards have been published by informa-

tion and communication agencies. Two of the most important around the world are the

International Telecommunications Union (ITU), and the European Broadcasting Union
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(EBU). Depending on the target application, several recommendations have been pub-

lished. For example, ITU-T Rec. 910 and ITU-R Rec. BT.500 establish subjective as-

sessment methods for evaluating video quality [75]. Similarly, EBU developed SAMVIQ

(Subjective Assessment Methodology for Video Quality) to assess the quality of video

codecs in Internet applications [76]. For the goal of measuring speech and audio quality,

ITU proposes Rec.P.1301 and Rec.P.800 for audio and speech, respectively [77, 78]. EBU

Rec.274 presents a number of methods for the subjective quality assessment of audio sig-

nals [79]. Finally, for audio-visual signals quality, ITU-T Rec.P.911 and P.913 describe

audio-visual quality assessment methods [80, 81]. Table 3.1 presents a list of the more

relevant recommendations for subjective experiments.

Table 3.1: Recommendations for subjective experiments.

Year Agency Code Name Signal Modality

1994 ITU P.85 A method for subjective performance assessment of the quality of speech voice output devices Speech
1996 ITU P.800 Methods for subjective determination of transmission quality Audio
1998 ITU P.911 Subjective audiovisual quality assessment methods for multimedia applications Audio-visual
1998 EBU R274 Tech Review: Subjective assessment of audio quality Audio
1999 EBU R22 Technical Recommendation: Listening conditions for the assessment of sound programme material Audio
2000 VQEG FRTV1 Final Report: Full Reference Television (FRTV) Phase I Video
2003 VQEG FRTV2 Final Report: Full Reference Television (FRTV) Phase II Video
2005 EBU SAMVIQ Subjective Assessment Methodology for Video Quality Video
2007 ITU BT.1788 Methodology for the subjective assessment of video quality in multimedia applications Video
2008 ITU P.910 Subjective video quality assessment methods for multimedia applications Video
2008 VQEG MM1 Final Report: Multimedia Phase I Video
2010 VQEG HDTV Final Report: High Definition Television (HDTV) Video
2012 ITU BT.500 Methodology for the subjective assessment of the quality of television pictures Video
2012 ITU P.1301 Subjective quality evaluation of audio and audiovisual multiparty telemeetings Audio
2016 ITU P.913 Methods for the subjective assessment of video quality, audio quality and audiovisual quality of Audio, Video, Audio-visual

Internet video and distribution quality television in any environment
2016 ITU P.807 Subjective test methodology for assessing speech intelligibility Speech

Minor differences aside, most documents coincide on their basic structure, for instance,

the source stimuli selection. Considering that, one of the main objectives of the subjec-

tive quality assessment experiments is the analysis of the quality of test videos (processed,

compressed, transmitted, etc.), the source stimuli selected must possess specific character-

istics that better represent the media capability (e.g., spatial-temporal characteristics for

video and phonemes for audio and speech). This type of criteria compels the selection of

stimuli content often considered “artificial”, as exemplified by Pinson [72]. Additionally,

content diversity is usually limited to a small set of sources and the length stimuli is quite

short (from 6 to 10 seconds for each stimuli).

Usually, for this type of tests, subjects are asked to rate the source stimuli and the

hypothetical reference circuit (HRC) combination. The HRC refers to a particular test

condition of the source, e.g., a fixed combination of a video (audio) bitrate level, at a net-

work condition, and a video (audio) encoding algorithm. This type of method maximizes

measurement accuracy for each individual stimulus and allows a systematic comparison

between all HRCs. Only one task is performed by the participants: to rate the perceived

quality of the current stimulus. Most of the recommendations encourage participants to
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ignore the stimulus content and focus only in the visual (or audio) quality. Given that

it has been shown in several studies that the stimulus content strongly influences human

perception of quality [82], new methodologies that take this effect into account need to

be developed and used in multimedia quality assessment.

All these limitations induced researchers to propose new methods to assess the subjec-

tive quality of signals. One of the main aspects where these variations have to take into

account is the duration of the test stimuli. Staelens based his subjective quality assess-

ment methodology on full-length movies [83]. The main goal of the method proposed by

Staelens is to present the test stimuli in the same environment and under the same con-

ditions end-users watch it. A first group of participants were asked to watch a full-length

DVD movie at home. Blocking effects, caused by packed loss and frame freezing effects

were included in test sequences. No audio degradation was included. After watching the

movie, subjects were asked to immediately fill up a questionnaire, reporting their opinion

on the visual quality of the movie. Another subjective experiment was carried out us-

ing a different group of human observers, this time using the traditional single stimulus

(SS) ACR method described in ITU-R Rec. BT.500 [84]. Shorter video sequences from

the same movies were created with the same visual impairments. These sequences were

presented to another group of subjects in a controlled laboratory environment. Results

showed a significant difference related to the detection and annoyance of the visual im-

pairments. Environment and experience conditions proved to be important factors in

quality assessment.

Another interesting methodology was proposed by Borowiak et al. [85]. Borowiak’s

methodology takes into consideration requirements to assess the QoE of multi-modal sys-

tems: 1) use of continuous sessions of long duration material, 2) suppression of an explicit

quality reference, 3) minimization of participant’s fatigue, and 4) focus on stimuli content

instead of the assessment task itself. This quality assessment methodology allows par-

ticipants to calibrate the quality level of the stimuli during playback, while degradations

are occurring. Participants were presented with long video sequences (30 minutes in aver-

age). During the reproduction of the video, automatic changes in the video quality were

presented periodically. Once the quality drop was noticed by the participant, he/she was

able to turn a knob to request a higher quality level. Rotating the knob too far made

the quality drop again, this might be considered as a penalty mechanism. This method

is based on a purely perceptual judgment.

Both Staelens and Borowiak experiments argue that traditional methodologies might

not accurately represent the quality perceived by end-users. Long duration stimuli helped

capture the attention of participants and encourage them to focus on the experience itself.

Also, presenting audio-visual content to assess only video (or audio) degradations seemed
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to be a more realistic way to capture the real experience.

3.1.2 Immersive Methodology

The immersive methodology, proposed by Pinson et al.[72], takes into consideration some

of the previously mentioned aspects and proposes a new approach for subjective exper-

imentation. This new methodology has the goal of capturing the perceived quality for

different HRCs, putting the subject in a more natural scenario.

In order to reproduce a natural scenario, certain variations for the experiment setup

were included, for instance, longer stimuli. Capturing the attention and engaging the

participant in the content matter are the main goals of using longer stimuli. Neither full-

length movies nor 30-minute clips are considered for the immersive methodology, given

that their inclusion might result in extremely long tests sessions. Instead, sequences of 30

to 60 seconds length are considered sufficient to transmit an entire idea and capture the

subjects attention, while maintaining an acceptable test session duration.

Another important consideration for the immersive methodology is the usage of audio-

visual stimuli to evaluate video-only or audio-only impairments. A video-only stimuli

provides a poor representation of the user experience for an audio-visual application (con-

sumers rarely watch videos with no sound). Certain exceptions can be made depending

of the objective of the immersive test, for example immersive tests for cell phones (audio-

only) and immersive tests for surveillance videos (video-only).

Using audio-visual stimuli has certain consequences. For instance, in an immersive

test, subjects must always be asked to rate the overall audio-visual quality. Beerends and

Caluwe at [86] showed that participants had trouble separating the audio quality from

the video quality when an audio-visual stimuli is presented. The impact of audio quality

on video quality can be controlled by evaluating impairments for one component while

keeping the quality of the other component constant. Other important consequence of

using audio-visual stimuli is the variation in the range of the mean opinion score (MOS)

values. Evaluating a component while keeping constant the other component decreases

the quality range and could cause saturation of the rating scale.

Immersive methodology seeks to reduce participant’s fatigue. As previously men-

tioned, on traditional subjective experiments a large set of stimuli processed at a number

of HRCs is presented to the subjects. Subjects have to assess the quality of stimuli cor-

responding to the same content, which leads indefectibly to boredom and stimuli memo-

rization. Figure 3.1 (a) depicts a illustration of what a traditional method would be. In

the immersive methodology, each source stimulus is presented only once to each subject.

This strategy prevents fatigue and assures that results are not influenced by stimulus

memorization. As a recommendation, the number of sources used for the experiment
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(a) ‘Traditional Methods’ (b) ‘Immersive Method’

Figure 3.1: Traditional Methods vs Immersive Method.

should be an integer multiple of the number of HRCs under study. More preferably, for

each HRC, each subject should see five to ten stimuli, which leads to a good estimate of

subject’s opinion about each HRC [82]. Figure 3.1 (b) presents an illustration of what an

immersive method would be.

The basic setup in an immersive experiment is given by a number of source stimuli

(w), a set of Hypothetical Reference Circuit - HRC (y), and a number of subjects (n).

The combination of every source stimuli and HRC results in a total of w · y stimuli. Each

subject rates w/y of these stimuli for each HRC. When all subject scores are pooled,

approximately n/y subjects rate each individual stimuli.

An immersive experiment will produce the traditional MOS (per-stimulus measure-

ment) and an MOSHRC (per-HRC measurement). For a per-stimulus measurement exper-

iment, the accuracy of the MOS value will depend on the number of subjects (n) included

in the experiment. Therefore, in a immersive experiment, its accuracy is reduced because

only a group of participants will rate a particular stimulus. Meanwhile, for a per-HRC

measurement experiment, the accuracy of the MOSHRC depends mainly on the number

of sources (w) used for the experiment. The impact of increasing the number of subjects

have a minor effect when compared to the increase of the number of source stimuli. To

give an illustration of this effect, suppose that for a certain experiment a set of five videos
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depicting sports are chosen. Increasing the number of participants will not improve the

understanding of video generally, such as movies, news, cartoons, music videos, sports or

home videos, it just increases the knowledge of those five sport videos.

One last consideration refers to the type of question made after the stimuli is pre-

sented. The immersive methodology formulates two target questions and three distractor

questions. The first target question refers to the overall perceived quality of the visual

and audio components. This question is used to calculate the MOS (MOSHRC). The

second target question refers to the stimuli content. The participant is asked to give its

opinion on the stimuli content. This type of questions helps the researcher investigate the

influence of the stimuli content on the perceived quality. Although they are not strictly

required in an immersive test, distractor questions have the goal of determining whether

or not the stimuli is acceptable for a particular application. Common distractor questions

could be related to the topic presented in the sequence (e.g., What topic was this person

discussing?) or a particular detail about the content matter (e.g., What attracted your

attention the most?).

In order to use the immersive methodology, a researcher must pay special attention to

the number of HRCs that must be included in the experiment. Stable results have been

observed on experiments using 30 to 40 participants to rate four HRCs [82]. However,

the inclusion of a high number of HRCs might result in long experimental sessions, one

possible solution is to increase the number of subjects to obtain a balance.

An immersive methodology to assess speech quality was performed by Pinson in [82].

Twenty audio-visual sequences with different content were included for the test, plus the

two sequences that were used in the training session. The test material consisted of

audio-visual sequences with a variety of people discussing various topics in response to

an interviewer. All sequences contained a dialogue containing a complete idea that could

be understood without having prior information or context of the interview. The stimuli

depicts a traditional head and shoulder format with a gray background. The selected

stimuli had a duration of 34 to 50 seconds. Four HRCs (impairment levels) were selected

for the test, which were a combination of narrow-wide band channels conditions and

four bitrate compression levels (4.75, 8.85, 12.2, and 24.0 kb/s). A total of 16 subjects

took part in the experiment. For this particular experiment, a total of 80 stimuli were

produced. Each participant rated 5 stimuli for each HRC. After pooling all subject’s

scores, each particular stimuli was rated by 4 participants. Results show the capability

of the immersive methodology to replicate results from quality experiments conducted

with traditional methodologies. Immersive MOSHRC values differed by a gain and offset,

which can be explained by the prescense of high quality videos [72].
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The immersive methodology is specially tailored for multimedia applications that re-

quire longer sequences for a better analysis, a type of application in which traditional

methodologies have limitations. For example, Garcia et al. showed the importance of

using an immersive methodology to measure the quality of long videos in adaptive stream-

ing applications [51]. Moreover, Robitza et al. used the immersive methodology to study

the impact of quality variations and stalling events[87]. Although this experiment used

66 source sequences of 1-minute, leading to experimental sessions of over an hour, results

showed that the participants’s alertness was not affected. Finally, Staelens et al. obtained

good results using the immersive methodology to perform an experiment that included

camera angle changes [88].

Although the immersive methodology cannot replace traditional methods and recom-

mendations, it provides a promising alternative for certain applications that are hard to

analyze using traditional subjective testing methods. The usage of distractor questions

can help infer the minimum level of quality that is acceptable for a particular application.

Commercial decisions on video products and services, where the vendor needs to decide

between perceived quality and cost, might benefit from using the immersive methodology.

Another application for which the immersive methodology can be used are video sys-

tems for sign language, where the layered interaction between different linguistic elements

makes it difficult to create artificial stimuli.

3.2 Objective Quality Assessment

Objective quality assessment are computational algorithms (objective metrics) that have

the goal of predicting the perceived quality of a signal stimuli. As mentioned before, the

performance of objective metrics is estimated by comparing their results with the results

gathered from subjective experiments. At the present time, the vast majority of objective

quality metrics estimate the perceived quality of the independent media components,

i.e. audio quality and video quality are measured separately. Regarding audio-visual

quality metrics, current proposals are limited to a combination of separate audio and

video quality estimations. Due to the great influence of machine learning techniques,

feature-based metrics have gained great importance in recent years. Several metrics are

now being used to provide with strong descriptive features to predict the quality of the

transmitted signal [89, 90].

This section presents a brief description of several video and audio quality objective

metrics from the literature. Additionally, one objective metric for video and one for audio,

which are the basis of this work, are described in detail. Finally, the progress attained on

the development of audio-visual quality metrics is analyzed.
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3.2.1 Video Quality Metrics

Regarding the amount of information required for quality assessment, video quality met-

rics can be organized into three categories: 1) Full-Reference (FR), 2) Reduced Reference

(RR), and 3) No-Reference (NR).

FR metrics have access to both the original and test video signals. This type of metrics

have been widely studied and they usually present good performance in predicting the

perceived quality. However, they cannot be implemented for a monitoring type of service.

Two of the most common FR metrics are the Mean Square Error (MSE) and the related

Peak Signal to Noise (PSNR). These two metrics are commonly used because of their

simplicity and straightforward mathematical definition, still, they have been criticized for

not taking into consideration aspects of the HVS. More advanced versions of these two

metrics, which include characteristics of the HVS, have been presented in the literature

[91], alongside with more complex models. For example, the Structural Similarity Index

(SSIM) predicts the perceived visual quality by comparing the luminance, contrast, and

structure information of the original and distorted image [10]. Several variations and

adaptations for video, based on SSIM, were later presented in the literature [92, 93, 94].

Another image metric is the Visual Information Fidelity (VIF) [95], the VIF uses three

models to calculate the quality of distorted images, such models are the Natural Scenes

Statistics (NSS), distortion and HVS models. An extended version that works on videos

is denoted by V-VIF. FR metrics that were originally designed to work on video sequences

are the standardized ITU-T J.144 [69] Video Quality Metric (VQM) and the Motion based

Video Integrity Evaluation (MOVIE) [96]. Table 3.2 presents an extended list of several

FR video quality metrics.

RR metrics calculate the video quality by extracting a limited amount of information

from the original video. Commonly, some quality features are extracted from the orig-

inal video and they are compared with the ones extracted from a distorted or modified

version. The Reduced Reference Entropic Differencing (RRED) metric [101] measures

the information changes between the original and distorted images by finding differences

in the entropy of their wavelets coefficients. Extended versions that work with spatial

and temporal entropic differences (SRRED and TRRED) were also proposed [102]. The

algorithm proposed by Wang and Simoncelli at [97] predicts the quality score based on

a natural image statistic model in the wavelet domain. The Kullback-Leibler distance

between the marginal probability distributions of wavelet coefficients of both original and

distorted images is used to measure the image distortion. Additionally, the RR image

quality assessment system proposed by Redi on [98], exploits color information on second

order histograms (color correlograms) to estimate the image quality. Table 3.2 presents

an extended list of several RR video quality metrics.
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Table 3.2: Overview objective quality metrics

Year Name Reference Information Information Extracted Signal Modality

2007 SSIM Full-Reference Signal-Based Video
2003 MS-SSIM Full-Reference Signal-Based Video
2011 IW-SSIM Full-Reference Signal-Based Video
2011 FSIM Full-Reference Signal-Based Video
2006 VIF Full-Reference Signal-Based Video
2004 VQM Full-Reference Signal-Based Video
2010 MOVIE Full-Reference Signal-Based Video
2012 RRED Reduced-Reference Signal-Based Video
2005 RR IQA [97] Reduced-Reference Signal-Based Video
2010 RR IQA [98] Reduced-Reference Signal-Based Video
2005 NR VQM [99] No-Reference Signal-Based Video
2003 NR VQM [100] No-Reference Signal-Based Video
2010 BIQI No-Reference Signal-Based Video
2011 BLIINDS-II No-Reference Signal-Based Video
2014 DIVINE No-Reference Signal-Based Video
2012 BRISQUE No-Reference Signal-Based Video
2016 VIIDEO No-Reference Signal-Based Video
1998 PEAQ Full-Reference Signal-Based Audio
2013 POLQA Full-Reference Signal-Based Speech
2012 VISQOL Full-Reference Signal-Based Audio
2006 P.563 No-Reference Signal-Based Speech
2013 P.1201 No-Reference Parametric Audio-visual
2011 NR AVQM [15] No-Reference Parametric Audio-visual
2014 NR AVQM [73, 14, 15, 74] No-Reference Audio-Video Combination Audio-visual

NR metrics, on the other hand, have a more difficult task since no information about

the original signal is available. NR metrics in general consist of measures of the several

features and characteristics that are common in distorted signals. Commonly, the features

used to calculate visual quality are artifact signals, such as blockiness, blurriness, and

ringing. For instance, the algorithms proposed by Wang [103] and Wu [104] estimate image

quality using only a blockiness measurement. Some other authors included other feature

measurements, such as noise and contrast, to calculate the overall visual quality [99] [100].

NR metrics that use distortion artifacts and coding parameters settings are considered

hybrid metrics. Another group of NR metrics analyses the Natural Scene Statistics (NSS).

For example, the Blind Image Quality Index (BIQI), is based on NSS and requires a

training stage before it can be used. This means that no knowledge of the distortion is

needed. Similarly, the BLind Image Integrity Notator using Discrete Cosine Transform

(DCT) Statistics (BLIINDS) [105] uses NSS of DCT coefficients to predict visual quality.

Likewise, the Blind/Referenceless Image Spatial QUality Evaluator (BRISQUE) [106],

uses NSS to assess image quality in the spatial domain. Finally, the Video Intrinsic

Integrity and Distortion Evaluation Oracle (VIIDEO) was presented as a completely blind

video quality method. The VIIDEO metric exploits the statistic naturalness of the video

frames in order to detect some irregularities and hence predict the quality of the video
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sequence [107].

Table 3.2 presents an extended list of several NR video quality metrics currently avail-

able in the literature. At present, a considerable amount of FR, RR, and NR video

quality metrics was developed. However, most of the current video quality metrics are

FR metrics.

Commonly, machine learning methods for video quality assessment rely on feature sets

derived from several objective video quality metrics in the literature. For instance, the

Distortion Identification-based Image Verity and Integrity Evaluation (DIIVINE) index

[108] uses NSS to identify the distortion type and quantify its presence on the affected

image. This particular metric was used as the base to the development of the current

audiovisual quality metric. As some of the formerly mentioned metrics, it is based on the

extraction of natural scene statistic features (NSS). Next, a detailed description of the

metric is presented, putting special care on the feature extraction process.

The divine metric, originally developed as an image quality metric, bases its approach

on the assumption that images possess certain statistical properties that are perturbed

in the presence of certain distortions. Hence, this metric attempts to predict the quality

of images by measuring the level of naturalness of these statistical properties. Given

that this analysis requires only the distorted image properties (test phase), this type of

approach represents an interesting No-Reference solution for image and video quality.

The divine metric is a 2-stage method that involves a feature extraction phase and a

distortion-specific quality assessment. After the feature extraction phase, a vector that

describes the image is passed on to perform two tasks. First, identify the probability

that the image is affected by one of the five types of distortion that the metric considers.

Second, map the feature vector into a quality score for each type of distortion, then use

the probabilistic distortion estimate to build the final quality score of the image. Figure

3.2 presents a simplified diagram of the DIIVINE metric. Next, the main stages that

compose the diivine metric are described in detail.

• Feature Extraction

Before extracting the descriptive features, the image under observation is subject

to a wavelet decomposition using the steerable pyramid method [109]. As a result,

the image is decomposed into 12 sub-bands, denoted as sθ
α, across two scale and six

orientation values, where α ∈ {1, 2}, and θ ∈ {0◦, 30◦, 60◦, 90◦, 120◦, 150◦}. Next, a

divisive normalization is applied to the set of sub-bands [110]. The main objective

is to reduce statistical dependencies between neighboring sub-bands. After this pre-

processing phase, marginal and joint statistics are computed across all sub-bands to

extract the descriptive features of the observed image. The following five procedures

are applied to extract the descriptive features:
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Figure 3.2: Diivine metric block diagram. Adapted from [108].

1. Scale and orientation selective statistics (features 1 to 24): Sub-bands coeffi-

cients are parametrized using a generalized Gaussian distribution (GGD) [111].

Coefficients for each of the 12 sub-bands are computed using the variance and

the shape-parameter values. The variance and shape-parameter produce one

feature for each of the sub-bands, leading to a set of 24 features.

2. Orientation selective statistics (features 25 to 31): Again, a GGD fitting is used

to calculate the second set of features. The GGD is fitted to the coefficients

obtained by stacking together coefficients from the sub-bands with the same

orientation (θ). Additionally, another feature is computed when all sub-bands

are stacked together. Then, features from 25 to 30 correspond to features

across scales over different orientations and feature 31 correspond to statistics

across sub-bands.

3. Correlation across scales (features 32 to 43): Given that edges are of great

importance in image quality assessment tasks, it is assumed that statistical

properties between high-pass (HP) responses and their band-pass (BP) coun-

terparts hold valuable information. The structural correlation between BP and

HP is computed for each of the 12 sub-bands. As a result, 12 new features are

computed.

4. Spatial Correlation (features 44 to 73): Based on the observation that natural

images are highly structured and that the presence of distortions affects this

structure, spatial correlation statistics of the sub-bands spatial structure are

computed. This results in 30 new descriptive features that represent the spatial
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correlation across sub-bands.

5. Across orientation statistics (features 74 to 88): This last procedure computes

features based on the statistical correlations of images across orientations. Sim-

ilar to the correlation across scales, structural correlations are calculated for

all possible pairs of adjacent orientations at the same scale. This combination

leads to a total of 15 features.

• Distortion identification and distortion-specific quality assessment

At this stage, the DIIVINE metric is able to perform two tasks. First, use the

descriptive features to estimate the probability that an observed image has one of the

distortions considered by the metric. Second, for each type of distortion considered,

a regression model maps the descriptive features of the image onto a quality score.

Finally, each distortion-specific quality score is weighted by the probability that a

specific distortion is present in the observed image. In the end, an overall quality

score of the observed image is computed.

3.2.2 Audio Quality Metrics

Audio quality metrics can be separated into two categories, intrusive and non-intrusive;

that is, Full-Reference and No-Reference respectively, if compared to video quality met-

rics. Intrusive audio quality metrics compare the original signal with a degraded version

that has been processed. Early methods like the Signal to Noise Ratio (SNR) are unable

to emulate human’s judgment on the perceived audio quality. The Perceptual Evalua-

tion of Audio Quality (PEAQ) [71], which was standardized as ITU-R BS.1387, uses a

psychoacoustic model and a cognitive model to estimate the perceived quality. The psy-

choacoustic model provides the cognitive model with a number of model output variables

that are mapped to an objective difference grade (ODG) quality score via a multi-layer

neural network. Two versions of this technique were presented: a basic version, which

is optimized for speed, and an advanced version, which has an improved accuracy. An

advanced version of the Perceptual Evaluation of Speech Quality (PESQ) [112] resulted

on the Perceptual Objective Listening Quality Assessment (POLQA) [113]. The same

logic used in PESQ was used in POLQA, that is, an alignment of the original and the

distorted signals is made, and then both metrics are compared using a perceptual model.

POLQA was designed for speech quality assessment and it can be used on a narrowband

mode (300 – 3400 Hz) or superwideband mode (50 – 14000 Hz). Currently, the authors

are working to develop an adapted audio quality version of POLQA.

Though promising results have been presented, there is still a lot of work on the devel-

opment of accurate non-intrusive audio quality metrics. Table 3.2 presents an extended
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list of several intrusive and non-intrusive audio quality metrics currently available. To

the present, none non-intrusive audio quality metrics has been standardized by the ITU.

The development of such type of metrics is still an active area of research. The ITU-T

standard P.563 for single-ended speech assessment [114] represents the most important

achievement for this area. The first step of the P.563 algorithm consists on processing

the test signal using a voice activity detector (VAD). This first step serves to identify

speech signals and estimate their speech levels. Then, the signal is analyzed and a set

of 51 characteristic signal parameters is obtained. Next, it classifies the signals using a

set of distortion classes that are based on a restricted set of key parameters. The main

distortion classes include ‘unnatural speech’, ‘noise’, and ‘interruptions, mutes, clippings’.

The key parameters and the assigned main distortion class are used to estimate the speech

quality.

The capacity of spectrograms to represent important audio and speech characteristics

makes them an important tool for audio and speech quality assessment. For instance, an

intrusive approach named Virtual Speech Quality Objective Listener (VISQOL) [39] has

been adapted for audio quality testing resulting in VISQOLAudio. Both VISQOL and its

audio version measures the signal quality by comparing the similarity of the spectrograms

obtained from the original and degraded signals. The algorithm uses the Neurogram

Similarity Index Measure (NSIM), a metric inspired on the visual SSIM metric. This

audio metric was used as the base for the development of the current audiovisual quality

metric. Next, a detailed description of the VISQOL metric is presented.

The VISQOL metric, originally developed to assess speech quality, compares 2-D rep-

resentations (spectrograms) of the speech signal in order to predict the speech quality.

Overall, the metric compares the spectrograms of the distorted signal and a clean refer-

ence version of the same signal. The level of similarity of both spectrograms is measured

by using an NSIM index, later on, such similarity response is mapped to an objective

quality scale, refered as QMOS. Figure 3.3 depicts a block diagram presenting the five

major stages of the VISQOL metric, which are described next.

• Pre-processing

First, the degraded signal y(t) is scaled to match the power level of the reference

signal x(t). Next, spectrogram representations of both degraded and reference sig-

nals are extracted by using a Short-term Fourier transform (STFT). The degraded

and reference spectrograms, denoted as ‘d’ and ‘r’ respectively, are passed on as

input to the second stage of the metric.

• Patch alignment
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Figure 3.3: Visqol metric block diagram. Adapted from [115].

At this phase, the reference spectrogram is segmented into patches of 30 frames (480

ms), as illustrated in Figure 3.4. Additionally, a simple voice activity detector is

used to identify active patches. Then, the NSIM is used to time align the patches

from the reference signal with the corresponding areas of the degraded spectrogram.

The NSIM is calculated for each reference patch and the test spectrogram patch

(frame by frame), thus identifying the higher similarity value for NSIM. Figure 3.4

illustrates how a patch from the reference signal is tested along the distorted signal,

additionally, NSIM values for each frame are plotted.

Figure 3.4: Visqol patch alingnment and NSIM similarity. Original illustration from [115].

• Predicting warp
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As an additional process, alternative patches are created 1% and 5% longer and

shorter than the reference patches. These patches are denoted as warped patches

and they are included in the NSIM comparison. If the similarity score of the warped

patch is higher than a regular patch, then the warped patch similarity is kept.

• Similarity comparison

All higher similarity values corresponding to all patches are then averaged to form

the signal similarity estimate. The similarity value between two spectrograms, r and

d, is defined with a weighted function of intensity (l), contrast (c), and structure

(s), given by:

NSIM(r, d) = l(r, d)α · c(r, d)β · s(r, d)γ (3.1)

where α, β, and γ are set to 1 for a basic version of the metric.

• Mapping similarity to objective quality

A sigmoid mapping function is used to translate the similarity estimate of the signal

into an objective quality score QMOS. As in traditional MOS scores, QMOS ranges

from 1 to 5.

3.2.3 Audio-visual Quality Metrics

At the present, there is no reliable metric available for measuring the overall audio-

visual quality of signals. A parametric model that uses information extracted from packet

headers and network information has been standardized as ITU-T Rec. P.1201 [116].

A similar approach [15], uses impairment factors, which quantify the quality-impact of

different types of degradations. Such impairment factors are computed using information

extracted from the bitstream or packet headers. Since parametric models are codec and

transmission dependent, these methods are less generally applicable.

A large group of audio and video quality metrics has been revised in the preceding

sections. All these metrics assume only a single modality, either audio or video. Given

the progress on the assessment of audio and video quality separately, several studies have

proposed models for audio-visual quality that consist of simple linear combinations of

audio and video quality scores. Several studies rely on a commonly used combination

model given by the following equation [14, 15, 73, 74]:

Qualityav = α1 + α2 · Qualitya + α3 · Qualityv + α4 · Qualitya · Qualityv. (3.2)

Moreover, different types of combination strategies have been proposed in order to obtain

more accurate results. Becerra et al. [74] proposed two different strategies are used to
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combine the audio and video quality values. The first strategy uses a weighted minkowski

function given by the following equation:

Qualityav = (α1 · Qualityp
a + α2 · Qualityp

v)
1

p . (3.3)

while the second strategy uses a power-based model given by the following equation:

Qualityav = (α1 + α2 · Qualityp1

a · Qualityp2

v ). (3.4)

Despite the strategies used for combination, it is important to understand how the

auditory and visual stimuli are perceived and at what stage in the human perceptual

process they are fused. Table 3.2 presents an extended list of the several combination-

based audio-visual quality metrics.

More recently, a large group of artifact indicators was developed by the Monitoring Of

Audio-Visual quality by key Indicators (MOAVI) [21]. MOAVI is a subgroup of the VQEG

formed to develop NR models for monitoring audio-visual service quality. These artifact

indicators are classified in four groups (based on their origin), such groups are capturing,

processing, transmission, and displaying. They can be calculated by analyzing the media

signal, or by using parametric (bit-stream) measurements. The list of considered artifacts

includes blocking, blurring, ringing, freezing and block missing, for video signals; and

clipping, noise and mute for audio signals.

3.3 Databases for Multimedia Quality Assessment

The availability of databases with diverse media content is a key factor in the media

quality assessment field. These databases are fundamental to the development of com-

putational quality assessment methods, more specifically on tasks like training, testing,

and benchmarking. It is desired that media databases possess: 1) relevant types of degra-

dations commonly found on a real transmission scenario, 2) signal characteristics from

common multimedia applications, and 3) subjective quality ratings from human observers

gathered in psychophysical experiments. However, most of these material remains private,

and the few publicly available databases are not adequate to the research demands. More

particularly, most databases are restricted to audio-only and video-only content, disre-

garding the need for audio-visual material [24]. Table 3.3 depicts a summarized list of

some of the publicly available databases in the literature. Next, some of those databases

are briefly described in the following lines.

• Audio Databases
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Table 3.3: Summarized list of some of the publicly available databases in the literature.

Subjective ratings
Component Database Audio Video Audiovisual Year
Audio ITU93 [117] Yes No No 1993

MPEG95 [118] Yes No No 1995
Live Music [119] Yes No No 2013
Blizzard Challenge [120] Yes No No 2016
TCD-VoIP [54] Yes No No 2015

Video Live VQ [121] No Yes No 2010
VQEG HDTV [122] No Yes No 2010
CVD2014 [123] No Yes No 2014

Audiovisual VQEG-MM2 [124] No No Yes 2012
UnB-Audiovisual Database [125] Yes Yes Yes 2013
INRS [126] No No Yes 2016
Live-NFLX-II [127] No No Yes 2018

1. ITU93 [117]: This database is composed of seven audio sequences (Asa Jin-

der, bagpipe, bass clarinet, castanets, harpsichord, German male speech, and

violin). The original audio sequences are processed at different coding algo-

rithms and bitrate values to generate the test sequences of the database. A

total of 42 sequences, which were rated by 33 human listeners, are available in

the database.

2. Live Music Dataset [119]: This database is composed of two sets of live

music recordings containing four types of music gender: rock, pop, electronic,

and country. The first set corresponds to 500 original music recordings, while

the second set corresponds to 2400 synthetically degraded music recordings.

Sixty (60) subjects with normal hearing provided subjective responses using a

web-based interface.

3. TCD-VoIP [54]: The TCD-VoIP dataset includes some common degradations

encountered in a voice over IP transmission. Degradations are considered as

“platform-independent” as they are not influenced by the codec, hardware, or

network in use. The dataset contains five types of degradations: 1) background

noise, 2) competing speakers, 3) echo effects, 4) amplitude clipping, and 5)

choppy speech. For each type of degradation, a number of test conditions are

set. These test conditions are applied to a set of speech samples, resulting

in the TCD-VoIP dataset. A total of 384 audio sequences were rated by 24

human listeners.

• Video Databases

1. Live VQ [121]: The Live Video Quality database includes a set of 15 video-

only source sequences. These sequences are then processed to a number of

conditions, including different codes (MPEG-2 and H.264) and simulated trans-
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mission over IP and wireless network conditions. Video sequences were rated

by 38 human observers.

2. VQEG HDTV [122]: This database is composed of five publicly available sub-

sets. Test conditions include several bitrate compression values, compressed

using two codecs: MPEG-2 and H.264. Additionally, two network impairments

are included: slicing error and freeze error.

• Audiovisual Databases

1. UnB AudioVisual Database [125]: Six source high definition videos, with

accompanying audio, were used to build this database. The videos were 8

seconds long, had a resolution of 1280x720, a color space of 4:2:0, and a frame

rate of 30 frames per second (fps). The database was sub-divided into three

subsets. For the first subset, sequences had only the video component with

no audio and they were compressed using an H.264 codec at different (video)

bitrate values. For the second subset, sequences had only the audio component

with no video and they were compressed using an MPEG-1 layer 3 codec, at

different (audio) bitrate values. Finally, for the third subset, both audio and

video components were compressed using the bitrate values from the previous

setups, both components were processed individually. All three sub-sets were

rated by a group of 45 human observers and their responses were collected.

2. VQEG-MM2 [124]: The database consists of data gathered from six different

international laboratories associated with VQEG, resulting in ten sets of audio-

visual subjective values. The database sequences contained audio and video

components and they were degraded using different levels of audio and video

rate compression. Audiovisual sequences were rated by almost 189 participants

(from all six laboratories).

3. Live-NFLX-II [127]: This database was built using a set of 15 source high

definition videos with accompanying audio. The selected audiovisual content

covers a number of genres such as documentary, sports, music, and video games.

Different network conditions were simulated in order to recreate common trans-

mission errors. Additionally, client adaptation strategies were included such as

bitrate adaptation, buffering adaptation, and quality adaptation. A total of

420 video sequences were rated by 65 human observers and their responses

were gathered.

The development of more public available audio-visual databases is crucial for the

area of video quality and quality of experience. This work tries to bridge this gap by
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presenting three large new audio-visual databases containing several types of audio and

video degradations. The three databases are considered as up-to-date material and it

is expected to contribute to the development of new audio-visual quality methods. In

the next chapter, we describe the experiments performed with the goal of creating this

dataset.
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Chapter 4

Immersive Audio-visual Quality

Experiments

Subjective responses from human participants are key to the development of media quality

metrics. The collected data is fundamental during the training and testing of the proposed

method. Moreover, the test material associated with these responses must reflect the scope

of the metric being developed. That is, the test material must cover some particular

characteristics such as the type of component (e.g., audio, video, audiovisual, etc.), the

context under test (types of degradation), the content under test (e.g., video conferencing,

movies, sports transmissions, documentaries, etc.), etc. Given the limited number of

databases and subjective responses available in the literature, and considering the need

for a tailored test material for the development of an audiovisual quality metric, we

conducted three subjective experiments in this work. It is expected that these experiments

will contribute to the development of the audiovisual quality assessment field.

For all three experiments, groups of human observers rated the audio-visual quality of a

set of video sequences. All three experiments applied the immersive method described be-

fore. For the first experiment, visual artifacts degraded the video component, meanwhile,

the audio component didn’t suffer any type of degradation. In the second experiment,

the audio component was subject to signal artifacts while the video component remained

untouched. Finally, in the last subjective experiment, both audio and video components

were subject to the same types of degradation used for the previous two experiments. For

all three experiments, subjects were asked to rate the overall audio-visual quality.

The remainder of this chapter is divided as follows. In Section 4.1 a brief summary

of the related work is presented. In Section 4.2, the source material used in all three

experiments is described. In Section 4.3, the visual and audio degradations considered

for this study are presented. In Section 4.4, the experimental apparatus and the physical

conditions are described in detail. In Section 4.5, the experimental methodology is pre-
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sented. In Section 4.6, some statistical analysis methods are described. Sections 4.8, 4.9,

and 4.8 present the experimental results for experiments 1, 2 and 3 respectively. Finally,

Section 4.11 presents a general discussion on the results from all three experiments.

4.1 Related Work

Several subjective experiments have been conducted with the purpose of better com-

prehending the impact of different impairments on perceived quality of different media

components such as video, audio, and audio-visual. Regarding the video component, a

number of studies have explored the effect of packet-loss and frame-freezing errors on

perceived quality. Staelens et al. [128] presented a methodology to evaluate the effects of

frame-freezing and packet-loss errors using full-length movies. They performed a subjec-

tive experiment with 56 non-expert viewers, who rated a total of 80 DVDs on typical home

viewing conditions. Results from the study showed that frame-freezing errors were less

noticeable when compared to packet-loss errors, suggesting that participants were more

tolerant towards visual impairments (packet-loss errors) when placed on a more natural

viewing context. Moorthy et al. [129] conducted a broader study on different mobile

platforms addressing several types of impairments including: video compression, wireless-

channel packet-loss, frame-freezing, rate adaptation, and temporal dynamics. Responses

from a group of 30 participants were gathered using a video-only dataset. The study con-

cluded that participants preferred few longer stalling events than many shorter stalling

events. Nevertheless, the results also suggest that the consumer preference depends on

the type of content being displayed (e.g., sports and video conference).

As for the impact of audio distortions in the perceived quality, several studies have

been conducted with the objective of comparing different noise scenarios and their corre-

sponding impact [130, 131]. For instance, Wendt et al [132] explored the speech intelligi-

bility comparing two different scenarios. The level of comprehension was measured using

speech sentences syntactically complex under different levels of background noise. It was

observed that participants were more affected by the level of noise than the complexity

of the sentences. It is understood that a background noise type of distortion remains as a

determinant factor in the perceived audio quality. Moreover, the TCD-VoIP database was

used on a subjective experiment with the objective of studying several VoIP degradations

[54]. Speech samples were subjected to five (5) types of distortion: background noise,

clipping, competing speaker effects, echo effects, and chop speech. The study treated

degradations in isolation. The main focus was on how the distortions impact varied at

different levels. Results showed that echo and background noise distortions had a heavier
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impact on the perceived quality. Meanwhile, clip, chop, and competing speaker effect had

a midterm impact.

With regards to the audio-visual quality, several subjective experiments have been

conducted in order to contribute to the theoretical and practical understanding of the

perceived audio-visual quality [9, 14, 15]. Although early experiments have suggested a

dominant influence of the video component in the overall audio-visual quality, it has been

argued that this influence is not the same on all types of applications, e.g., video confer-

ence services [14]. What’s more, additional studies have confirmed that the interaction

between the audio and video components is heavily influenced by some other factors (hu-

man, technological, and contextual) that are detailed further in this paper. Researchers

have tried to tackle these influential factors by proposing new methods to assess the sub-

jective audio-visual quality. For example, Staelens and Borowiak have tried to capture

the attention of participants and encourage them to focus on the experiment itself by

using long duration audio-visual stimuli [85, 88]. There is a limited number of experi-

ments, aiming to study the overall audiovisual quality, where both the audio and video

components are processed and degraded. Usually, only the video component is subjected

to degradations leaving the audio component unimpaired, then, audiovisual subjective

scores are collected under these conditions [127]. Some few studies have explored the

overall audiovisual quality in a context where both audio and video component suffered

individual distortions. Pinson and Becerra [125, 133] conducted subjective experiments

employing audiovisual sequences on which both audio and video components suffered dis-

tortions due to heavy audio and video compression. Results showed the dominance of

the video component in the overall perceived quality, however, it was also observed the

impact of the audio component on several types of media content.

Based on these previous results, it is possible to conclude that further studies are

needed to analyze the relationship between different types of impairments and their effect

on the perceived quality. There are several studies attempting to explore the audiovisual

quality on common network scenarios. However, most of them ignore the audio component

and the effect of the distortions on the overall quality. This work targets these particular

issues and explores a number of distortions (audio and video) often neglected in the

current literature. More specifically, we use the immersive methodology to analyze the

quality of a set of audio-visual sequences, with a considerable variety of content, degraded

by some of the aforementioned types of audio and video impairments. Next, details about

the designing of three audio-visual quality experiments are presented.
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4.2 Source Stimuli

One-hundred and forty (140) high-definition video sequences (with accompanying audio)

were used as the source to build the three datasets of this study. They were distributed

among all experiments in the following manner: sixty (60) video sequences for experiment

1, forty (40) for experiment 2, and forty (40) for experiment 3. Some of these 140 sequences

were generated from parsing larger videos. These videos were gathered from four (4)

different websites (listed on Table 4.1). Table 4.1 presents a list of all twenty seven (27)

types of video content and the sequences produced using these type of sequences. A

pre-processing phase was necessary to standardize some of the video characteristics, such

as spatial and temporal resolution, and color space configuration. For this study, we

considered a spatial resolution of 1280x720 (720p), a temporal resolution of 30 frames per

second (fps), and a color space format of 4:2:0. As for the audio component, the bit-depth

and sample frequency were set to 16 bits and 48 kHz, respectively. It is worth mentioning

that none of the gathered videos had characteristics below the ones mentioned (Table 4.1

describes all original video characteristics). The stimuli were 19 to 68 seconds long, with

an average length of 36 seconds. Representative frames of all 140 videos are depicted in

Annex A.

The selection of the source stimuli was made following some of the recommendations

found on the Final Report on the validation of objective models multimedia quality as-

sessment (phase 1) of the Video Quality Experts Group (VQEG) [134]. The document

highlights the importance of a good distribution of the spatial and temporal activity of the

video stimuli. Figure 4.1 presented the spatial and temporal measures computed for all

one-hundred videos from experiments 1, 2 and 3 respectively, as defined by Ostaszewska

and Kloda [135].

As for the audio component, special attention was paid to the diversity of the content.

Stimuli containing a variety of music, speech, smooth and rough sounds were considered

during the selection stage. An audio classification was made using the algorithm pro-

posed by Giannakopoulos [136]. The algorithm divides the audio streams into several

non-overlapping segments and classifies each segment into one of the following classes:

music, speech, others1 (low environmental sounds: wind, rain, etc.), others2 (sounds with

abrupt changes, like a door closing), others3 (louder sounds, mainly machines, and cars),

gunshots, fights, and screams. Figure 4.2 presents the audio classification for all three

experiments to form a better idea of how the different types of audio are distributed. As

it can be observed, there is a good distribution of audio content among all video sequences

for all three experiments.

Annex C lists all source stimuli and a brief description of the audio and video con-

tent, along with the length of each sequence. The length difference observed among the
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Figure 4.1: Source videos spatial and temporal information measures

sequences backs up the intention of presenting videos capable of transmitting an entire

idea.

4.3 Media Degradations

The source sequences were subjected to some video and audio types of distortions. Such

distortions were selected by the researchers based on previous studies from the literature

and a particular interest in studying some specific types of distortions. The video compo-

nent of the sequence was subjected to three types of distortions: video coding, packet loss,

and frame freezing. As for the audio component, source sequences were subjected to four

types of distortions: background noise, clipping, echo, and chop. This section describes

all these types of degradations and reports the sequence processing used to generate the

stimuli pools for all three databases.

4.3.1 Video Degradations

Coding Artifacts (compression)

Coding artifacts are the result of the application of lossy data compression. Among the

most common coding artifacts we can cite blocking, blurring and ringing artifacts [32].

In this work, we selected two coding standards to compress each of the source stimuli:

the H.264/MPEG-4 Advance Video Coding (AVC) and the H.265 High Efficiency Video
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(a) ‘Experiment 1’

(b) ‘Experiment 2’

(c) ‘Experiment 3’

Figure 4.2: Audio classification of video sequences. Eight (8) audio classes are considered: music, speech,
others1 (low enviromental sounds: wind, rain, etc.), others2 (sounds with abrupt changes, like a door clos-
ing), others3 (louder sounds, mainly machines, and cars), gunshots, fights, and screams. (a) Experiment
1 (60 sequences). (b) Experiment 2 (40 sequences). (c) Experiment 3 (40 sequences)

Coding (HEVC) [137, 138]. Four bitrate levels were chosen for each coding standard

which were labeled as Low, Medium, High, and Very High. An empirical criteria was

used to select these bitrate values, which consisted of visually examining video sequences

compressed at a number of bitrate levels and chosing four very clear quality levels, taking

into account previous works found in the literature [51, 139]. Table 4.2 presents all four

bitrate values used for each codec. We used the reference implementations of AVC and
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HEVC presented in [140, 141]. The encoder parameters used for both coding standards

are listed in the Annex D.

Table 4.2: Bitrate values for each codec

Low Medium High Very High

H.264/AVC 500 Kb 800 Kb 2 Mb 16 Mb
H.265/HEVC 200 Kb 400 Kb 1 Mb 8 Mb

Packet Loss

Packet loss occurs when one or more packets fail to reach their destination during trans-

mission or storage. The impairment caused by a packet loss depends on the encoding

parameters, how the decoder handles errors, the packetization strategy, and the video

content. This might cause flickering and blocking artifacts, which typically last for a

few seconds, depending on the number and type of lost packet [142]. For the present

experiment, all videos were first encoded using AVC (H.264) and HEVC (H.265) codecs.

Then, packet loss artifacts were generated by dropping Network Abstraction Layer (NAL)

packets from the video bit-stream similarly to what was previously done in other works

[143]. In this experiment, we used the software NALTools, which was developed to insert

a packet loss distortion in a video bitstream and has been used in several packet loss re-

lated studies [143, 144]. In order to avoid the generation of unrealistic strong artifacts, the

standard error concealment algorithm of the corresponding codec [143] was used, which

basically replaces a lost packet by the co-located packet from the previous frame during

decoding. Five packet loss ratios were considered for this experiment: 1%, 3%, 5%, 8%,

and 10%. These values replicate a real transmission scenario found in video streaming

applications [142, 145].

Frame Freezing

A frame freezing effect can be experienced on a progressive download of a video service,

such as Video on Demand (VoD) and Youtube. Such types of video services are based

on reliable transport mechanisms like the Transmission Control Protocol (TCP). In TCP,

any lost or delayed packets are detected and a resend request is sent by the client. As

a consequence, any user of progressive download services does not experience packet loss

distortions contrary to what happens in the case of non-reliable transport mechanisms,

such as User Datagram Protocol (UDP). When the available throughput is lower than the

bitrate of the media, the reproduction will stall until enough data has been downloaded.

This effect is perceived by the end users as freezing without skipping, commonly known
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as rebuffering or stalling. The freezing effect is also experienced before the media starts

its reproduction, this is known as the ‘initial loading’.

Table 4.3: Organization of all Frame Freezing parameters

Level Events Pos1 Pos2 Pos3 Len1 Len2 Len3

Low S1 1 2 2

Medium
S2 2 1 3 1 3
S3 2 2 3 2 2

High
S4 3 1 2 3 2 2 3
S5 3 1 2 3 3 3 2

For the present experiment, three parameters were considered for creating a frame

freezing effect: 1) number of freezing events, 2) position of the freezing events in the

sequence, and 3) length of the freezing event. Each video sequence was likely to have

one, two or three freezing events. As for the position of the events, three possible options

were chosen: “1”, “2” and “3”. The positions resulted from dividing by three the total

length of the video sequence and multiplying it by: zero, one and two. A freezing event

located at position “1” represents the initial loading experienced before the video starts

playing. Finally, the length for the freezing events were fixed at 1, 2 and 4 seconds. All

three parameters (number, position and length) were then organized and combined in

order to represent the level of discomfort perceived by the user. The levels were set as

“S1”, “S2”, “S3”, “S4” and “S5”, going from the least annoying combination (S1) to the

most annoying combination (S5). Table 4.3 presents the organization of all parameters

and their representation on this scale.

The initial loading and the stalling were inserted in the 480 codified videos using

Avisynth (http://avisynth.nl). Avisynth is a powerful tool for video post-production; it

is based on a script system allowing advanced non-linear editing. Regarding the audio

component, silence was inserted using a faded in and out effect to avoid artifacts at the

silence boundaries. Figure 4.3 presents a graphic illustration sample of all five levels of

freezing distortion.

4.3.2 Audio Degradations

Four types of audio degradations were selected for this study: background noise, clipping,

echo, and chop. The TCD-VoIP dataset [54] served as a reference to produce this set

of audio distortions. The study had the goal of recreating some of the streaming audio

degradations from the TCD-VoIP dataset on an audio-visual scenario.
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Figure 4.3: Freezing levels of distortion.

Background Noise

As defined previously, background noise describes any sound that is not the sound under

study. This study focuses on the called Non-stationary background noise, which is com-

monly found in our sound environment (e.g., traffic noise, alarms, and people talking).

As mentioned before, this study takes the TCD-VoIP setup to recreate some of their

test conditions by following the same processing method. The TCD-VoIP database uses

four types of common noise: car noise, road noise, speech babble noise, and office noise.

Samples for the car, road, and office noise were taken from a database of noise samples

built by The European Telecommunications Standards Institute (ETSI). Meanwhile, the

speech babble noise was created by combining random speech samples from the TSP

speech database [146].

Four types of Background Noise (e.g. babble, car, road, and office) were added to the

original signal at different SNR levels. Thus, two varying parameters were considered for

this type of degradation: the type of background noise and the SNR level associated with

the noise. Four combinations were selected, each one corresponding to a particular test

condition. Table 4.4 details the four test conditions and their corresponding parameters.
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Table 4.4: Audio Degradations and Parameters.

Degradation Conditions Parameters Range
Chop 4 Rate 1, 2, 5 (chops/s)

Period 0.02, 0.04 (s)
Mode previous, zeros

Clip 4 Multiplier 11, 15, 25, 55
Echo 4 Alpha 0.175, 0.3, 0.5 (%)

Delay 25, 100, 140, 180 (ms)
Feedback 0, 0.8 (%)

Noise 4 Noise type car, babble, office, road
SNR 15, 10, 5 (dB)

Clipping

As described before, a clipping type of distortion appears when a transmitted signal

exceeds the maximum amplitude level permitted. This situation is handled by cutting

the signal (clipping) to maintain a permitted level of amplitude. As a result, some samples

become clipped and the signal quality gets compromised. On a VoIP call, the amplitude

level might rise above the permitted limit due to a person’s high voice volume when

speaking into the microphone. The TCD-VoIP dataset creates this effect raising the

amplitude level of the sequences by some constant, making that some sequence samples

get clipped.

For this study, the clipping effect was generated by amplifying the signal using a mul-

tiplying factor. Four values of the amplitude multiplier were used to generate the test

conditions. Table 4.4 details these four test conditions and their corresponding parame-

ters.

Echo

In a voice call, an echo effect normally occurs when a microphone picks up audio signals

and send them back to its origin, thus creating a feedback loop. The TCD-VoIP database

uses an echo scenario where copies of the signal being transmitted are picked up at the

receiving microphone and then added to a returning signal. To simulate an echo effect,

delayed versions of the signal at different SNR values were added to the original signal.

Following the TCD-VoIP dataset processing, the echo effect was produced by adding

delayed versions of samples to the original signal. Three parameters were varied to gener-

ate different levels of distortion: 1) Alpha, the amplitude percentage of the first delayed

version with respect to the original, 2) Delay, the time length between the first delayed

version and the original, and 3) Feedback, the percentage reduction of the subsequent

delayed versions. Four combinations were selected, each one corresponding to a partic-
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ular test condition. Table 4.4 details the four test conditions and their corresponding

parameters.

Chop

A chop type of degradation is referred to transmitted signals with missing samples. The

TCD-VoIP focus its study on the effect of missing samples due to hardware overload. One

particular example of this scenario might be a CPU being overloaded during a voice call

(e.g., video conferencing, smartphone call, etc.) causing the loss of some samples. For

this setup, missing samples were handled with three types of approach: substitute the

missing samples by silence, substitute the missing samples with previous repeated ones,

or skyping the missing samples.

For this study, three parameters were varied to produce different levels and types of

choppy speech: 1) Period, which sets the length of the discarded samples, 2) Rate, which

indicates the frequency of the sample discard, and 3) Mode, which states how the discarded

samples are handled. Four combinations were selected, each one corresponding to a

particular test condition. Table 4.4 details the four test conditions and their corresponding

parameters.

The above-described video and audio degradations, and the test conditions associated

with each of them were used as the base to build all three audiovisual datasets. Source

stimuli were processed according to different test conditions and they received a particular

HRC number for each of the three experiments. These test conditions (HRCs) will be

further presented on the subjective experiments description.

4.4 Apparatus and Physical Conditions

All three experiments were conducted at the University of Brasília (UnB), in a recording

studio of the Núcleo Multimedia e Internet (NMI) of the Department of Engineering

(ENE). Sound isolation was guaranteed during the experiment and only one participant

was allowed during each experimental session. Hardware equipment consisted of a desktop

computer, an LCD monitor, and a set of earphones. Additionally, a dedicated sound card

(Asus Xonar DGX 5.1) was used to provide participants with an optimal sound experience

(in terms of hardware). Detailed specifications of the equipment are presented in Table

4.5. The dynamic contrast of the monitor was turned off, the contrast was set at 100

and the brightness at 50. The room had the lights dimmed to avoid any light reflected

on the monitor. The subjects were seated straight ahead of the monitor, centered at or

slightly below eye height for most subjects. The distance between the subject’s eyes and
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Table 4.5: Equipment specifications

Equipment Technical Details
Monitor Samsung SyncMaster P2370

Resolution: 1,920x1,080; Pixel-response rate: 2ms;
Contrast ratio: 1,000:1; Brightness: 250cd/m2

Earphones Sennheiser Hd 518 Headfone
Impedance: 50 Ohm; Sound Mode: Stereo;
Frequency response: 14–26,000Hz;

Sound Card Asus Xonar DGX 5.1

the video monitor was set at three screen heights, which is a conservative estimate of the

viewing distance according to the ITU-T Recommendation BT.500.1 [75].

The experiments were run using a quality assessment software developed by the Grupo

de Processamento Digital de Sinais (GPDS), which was also used to record the subject’s

data (source code available at http://www.gpds.ene.unb.br/). The experimental inter-

face was design using a client server model based on the HTML standard (version 5),

using PHP, javascript, and a Postgresql database. The client-server model consists of

a web server and a postgresql database running on the same station where the content

is reproduced (HTML5 player). For all three experiments, the experimental session was

controlled and started by the browser using a HTML5 interface to communicate with the

server.

All three experiments were performed with volunteers from the University of Brasília,

most of them were graduate students from the Computer Science and Electrical Engineer-

ing Departments. They were considered naïve of most kinds of digital video defects and

the associated terminology. No vision or hearing tests were performed on the subjects,

unimpaired hearing was a pre-requirement, moreover, participants were asked to wear

glasses or contact lenses if they needed them to watch TV. Details about participants

gender and age are presented in Table 4.6.

Table 4.6: Details about participants.

Experiment Participants Female Male Age Range
Experiment 1 60 18 42 19-36
Experiment 2 40 15 25 21-36
Experiment 3 42 16 26 20-34

4.5 Experimental Methodology

As mentioned before, recommendations presented in the immersive method [72] were used

for the set of experiments. Overall, the entire experimental session was divided into three

sub-sessions: 1) Display Session, 2) Training Session, and 3) Main Session.
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(a)‘Quality scale’ (b) ‘Content scale’

Figure 4.4: ACR Quality and Content scales.

• Display Session

For the display session, participants were presented with a set of original source

video and their corresponding degraded versions (test conditions). The objective

of this session was to familiarize the participant with the quality interval of the

test sequences in the experiment. The display session considered an original source

stimuli and the corresponding degraded versions of the sequence associated with a

test condition (HRC). This procedure was repeated for each type of degradation

considered in the experiment. As soon as the display session was over, a brief pause

was made by the researcher to ask participants if they have perceived the difference

between all test conditions and degradations, with the purpose of guaranteeing the

consistency of the participants grading.

• Training Session

In the training session, subjects performed the same tasks performed in the main

session. The goal of the training session was to expose subjects to sequences with

impairments and give them a chance to try out the data entry procedure. After ob-

servers were presented with the test stimuli, they were asked to answer two questions

using two rating scales. The first question concerned the participant’s perception

of the overall audio-visual quality. To answer this question, participants were pre-

sented with a five-point Absolute Category Rating (ACR) scale ranging from 1 to

5. The five-point on this quality scale were labelled (in Portuguese) as “Excellent”,

“Good”, “Fair”, “Poor”, and “Bad”. Figure 4.4 depicts an image of the scale used

for this experiment. The second question aims to gather information about the par-

ticipant’s personal opinion about the content. To answer this question, participants
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Welcome Message Register Display Session

Training SessionMain Session

Optional Pause

End of Experiment

Figure 4.5: Steps of the video quality assessment experiment.

were presented with another five-point ACR scale, in which the five points of this

content scale are labelled as “Intriguing”, “Interesting”, “Neutral”, “Uninteresting”,

and “Boring”. These labels were inspired by the immersive speech experiment pre-

sented by Pinson et al. [72]. Figure 4.4 depicts an image of the two scales used

in the experiments. Two training trials were included for this session. Once the

training session was over, the participants were asked if they fully understood the

functionality of the score entry interface.

• Main Session

In the main session, the actual experimental task was performed. Figure 4.5 presents

an illustration of the several steps of the experiments. Participants were presented

with a number of sequences, out of the entire stimuli pool of the corresponding ex-

periment. None of the presented videos had content equal to another video. For each

session, participants were able to assess five stimuli for each HRC. Approximately

five subjects rated each single stimuli, from the entire pool of test videos. The time

of the experimental session was limited to 50 minutes. A break was introduced in

the middle of the main session to allow the subjects to rest.
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4.6 Statistical Analysis Methods

The judgments given by the subjects to any test sequence are called subjective scores.

Traditionally, the data is first processed by calculating the mean opinion score (MOS).

To obtain this value, subjective scores of all observers are averaged for each of the test

stimuli. For this group of experiments, two different scores where gathered: the quality

and content scores. These scores were averaged according to the type of HRC (ten HRCs

and two anchors) and the original video sequences (sixty different sequences).

The Mean Quality Score (MQS) with respect to the set of HRCs is given by:

MQSHRC(j) =
1

n
·

n∑

i=0

Sj(i), (4.1)

where Sj(i) is the score reported by the ith subject for the jth element of the set HRC =

{1, 2, . . . , 12} and n is the total number of subjects. In other words, MQSHRC(j) gives the

average average quality score for the j − th HRC, measured over all subjects and contents

originals. A similar notation is used for the Mean Content Score (MCS):

MCSHRC(j) =
1

n
·

n∑

i=0

Sj(i). (4.2)

Therefore, MCSHRC(j) gives the average content scores for the j − th HRC, measured over

all subjects and contents originals.

4.7 Internal Consistency of the Results

The confidence levels are calculated, for each of the scores (MQS and MCS) of all three

experiments. A high level of variability in the scores given by different subjects may

indicate a low confidence level, thereby a low reliability of the results. Therefore, in order

to evaluate the reliability of the results of the immersive methodology, we analyse the

agreement among subjects on the questions. More specifically, we analyze the variation

of: 1) the quality scores among all HRCs (MQSHRC) and 2) the content score among all

HRCs (MCSHRC).

One of the most common measure techniques for internal consistency (reliability) is

the Cronbach’s alpha [147]. This coefficient is used as an estimate of the reliability of

a psychometric test [148, 149]. The α coefficient ranges from 0 to 1, a greater value is

interpreted as a greater internal consistency, i.e. more reliability. For coefficients in the

range from 0.00 to 0.69 the internal consistency is considered poor, from 0.70 to 0.79 fair,

from 0.80 to 0.89 good, and from 0.90 to 1 excellent. Table 4.7 presents the Cronbach’s

alpha coefficients for all MQSHRC and MCSHRC of all three experiments.
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Table 4.7: Cronbach’s α of both MQSHRC and MCSHRC questions for all three experiments.

Score Analysis Cronbach’s α Experiment
MQSHRC per-HRC 0.924 Experiment 1
MCSHRC per-HRC 0.858 Experiment 1
MQSHRC per-HRC 0.893 Experiment 2
MCSHRC per-HRC 0.841 Experiment 2
MQSHRC per-HRC 0.896 Experiment 3
MCSHRC per-HRC 0.864 Experiment 3

For Experiment 1, the coefficient value for the MQSHRC on the per-HRC analysis

was 0.924. The coefficient of MCSHRC for the same analysis (per-HRC) was 0.858. This

suggests that subjects agreed more on the quality score than on the content score when the

quality levels, represented by the HRCs, were shifted. As for Experiment 2, the coefficient

for MQSHRC was 0.893, meanwhile the coefficient of MCSHRC was 0.841. Although the

level of agreement is lower, this is still considered a good level of consistency. Finally,

Experiment 3 coefficients of MQSHRC and MCSHRC were 0.896 and 0.864 respectively. As

previous experiments, the level of consistency is good.

Given these results, it can be concluded that the MQS and MCS scores gathered

during the group of experiments are highly reliable. This validates the use of the immersive

method and encourages the execution of more experiments using this type of methodology.

4.8 Subjective Experiment 1 (video-only)

In this experiment, a group of volunteers was presented with a set of audio-visual sequences

and were asked to rate the perceived quality of those sequences. The sequences were

subjected to three types of distortions: video coding, packet loss, and frame freezing.

The source pool used for the experiment consisted of a set of high definition audio-visual

sequences. Impairments were only inserted into the video component, while the quality

of the audio component remained constant. The objective of this particular experiment is

to analyse different types of source degradations and compare the transmission scenarios

where they occur. Given the nature of these degradations, the analysis is focused on

the visual component of the sequence. The experiment was conducted using the basic

directions of the immersive methodology described in the previous section. Although

the experiment used the guidelines of the immersive methodology, some of the traditional

recommendations were also considered for certain aspects of the experiment [84, 80]. This

section describes the aim of the experiment, a list of the test conditions used to build the

test pool stimuli, and an analysis of the gathered data from the experiment.

70



4.8.1 Test Conditions

For this experiment, video sequences were subject to impairments caused by compressing

the original video at different bitrate levels (and codec algorithms), introducing packet

losses simulating errors in the transmission, and frame freezing simulating degradations

caused by delays in transmission. Users of progressive download services, in which any lost

or delayed packets are detected and requested back, do not experience packet loss related

video distortions. They do, however, experience playout pauses (frame freezing) when

the available throughput is lower than the bitrate of the media. Since frame freezing and

packet loss related video distortions do not occur simultaneously in a real transmission

context [51], two groups of HRCs were considered. The first group combines artifacts

produced by compression with packet loss video distortions (HRC1 to HRC5). The second

group combines artifacts produced by compression with frame freezing effects (HRC6 to

HRC10). Additionally, two video sequences compressed at extremely high bitrate levels,

with no packet loss video distortions or frame freezing effects, worked as anchors to help

participants recognize the entire range of quality used for the experiment. These anchors

represented the equivalent of a no degraded sequences. The inclusion of these anchors

might ease one of the drawbacks of the immersive method, which states that presenting

audio-visual stimuli in an only-video study might cause saturation of the range scale.

Sixty (60) source stimuli were considered for the experiment, they all were subject to

compression at four (4) different bitrate levels (low, medium, high, and very high) using

two (2) coding algorithms (H.264 and H.265). This process resulted in four-hundred and

eighty (480) video sequences (source stimuli x bitrate levels x codecs). Since the packet

loss and the frame freezing cannot be present at the same transmission scenario (they

both use different transmission mechanisms), two (2) groups of HRC combinations were

formed. The first group considers the coding artifacts and the packet loss distortions,

while the second group combines the coding artifacts and the frame freezing effects.

Regarding the first HRC group, five (5) combinations of bitrate levels and codecs

were chosen, these five combinations represented five levels of quality. For each of these

combinations a packet loss ratio was assigned (1%, 3%, 5%, 8%, and 10%). This resulted

in five (5) HRCs which are presented in Table 4.8. These five HRCs are replicated for all

sixty (60) source stimuli, resulting in three hundred (300) test stimuli.

As for the second HRC group, another five combinations of bitrate levels and codecs

were used. It is worth mentioning that no combination used for the first group was used in

the second group. Each of these five encoding combinations was paired with one of the five

levels of the frame freezing discomfort scale (S1, S2, S3, S4, and S5). Five HRCs resulted

from this combination. A more detailed display of these combinations is presented on

Table 4.9. These five HRCs are replicated for all sixty source stimuli, resulting in three
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Table 4.8: First group of HRCs.

HRC Codec Bitrate (kb/s) PLR

HRC1 H.264 500 10%
HRC2 H.265 400 8%
HRC3 H.264 2000 5%
HRC4 H.265 1000 3%
HRC5 H.265 8000 1%

Table 4.9: Second group of HRCs.

HRC Codec Bitrate (kb/s) Freezing

HRC6 H.265 200 S5
HRC7 H.264 800 S4
HRC8 H.265 1000 S3
HRC9 H.264 2000 S2

HRC10 H.264 16000 S1

hundred (300) test stimuli.

As it was mentioned before, in order to ease a possible saturation on the range scale

due to the usage of audio-visual stimuli, two anchors were considered. These two anchors

were encoded using the H.264 and H.265 codecs at extremely high bitrate levels. These

anchors are replicated for all sixty source stimuli, resulting in one hundred and twenty

(120) test stimuli. Figures 4.7 and 4.7 presents sample frames of the two HRCs groups

used for this experiment.

Pooling all test stimuli, seven hundred and twenty (720) test videos were generated

for this experiment. It is important to mention that for each test session, the participant

was presented with only 60 test stimuli of the 720 available. Each participant observed

the content corresponding to an original sequence only once.

4.8.2 Experimental Results

Results of the experiment are presented and discussed in the following lines. As pointed

out before, participants answered two questions about the video sequences they watched.

The first question had the goal of collecting the opinion of the participant with respect to

the audio-visual quality of the sequence (quality score). The second question gathered

information about the participant’s opinion about the content of the sequence (content

score). Results were organized in terms of the HRCs considering two scenarios: Coding-

PacketLoss scenario and Coding-Freezing scenario.
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(a)‘HRC 1’ (b) ‘HRC 2’ (c) ‘HRC 3’

(d) ‘HRC 4’ (e) ‘HRC 5’ (f) ‘ANC 1’

Figure 4.6: Sample frames of the firts group of HRCs.

Results

Two main scenarios were considered for the organization of the HRCs used in this exper-

iment. The first scenario, which corresponds to HRCs from 1 to 5 (including the anchor

1), presented coding impairments and distortions due to packet loss (see Table 4.8). The

second scenario, which corresponded to HRCs from 6 to 10 (including the anchor 2),

presented coding impairments and frame freezing distortions (see Table 4.9).

• Coding-PacketLoss Scenario

Figure 4.8 (a) presents the MQSHRC values, including a 95% confidence interval, for

the coding-packeloss scenario. Each HRC is paired with a bitrate level and a packet

loss rate (HRC1 = 500kb/s - 10%, HRC2 = 400kb/s - 8%, HRC3 = 2000kb/s -

5%, HRC4 = 1000kb/s - 3%, HRC5 = 8000kb/s - 1%). As it can be observed, the

MQSHRC increases along with most of the BR and PLR combinations. Such increase

is not seen for HRCs 1 and 2, in fact, only a small difference (with no statistical

significance) is observed between them. An early analysis might suggest that this

difference is caused by the coding algorithm used on the HRCs and its response to

the packet loss insertion algorithm. The MQSHRC values fall on the range of 1.95
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(a)‘HRC 6’ (b) ‘HRC 7’ (c) ‘HRC 8’

(d) ‘HRC 9’ (e) ‘HRC 10’ (f) ‘ANC 2’

Figure 4.7: Sample frames of the second group of HRCs.
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Figure 4.8: (a) MQSHRC for the coding-packeloss scenario. (b) MQSHRC according the Packet loss rate.
HRC1: BR = 500kb/s, PLR = 10%. HRC2: BR = 400kb/s, PLR = 8%. HRC3: BR = 2000kb/s,
PLR = 5%. HRC4: BR = 1000kb/s, PLR = 3%. HRC5: BR = 8000kb/s, PLR = 1%. ANC1: BR
= 64000kb/s, PLR = 0%. Legend: BR1 = bitrate coded with H.264, BR2 = bitrate coded with H.265,
PLR = packet loss rate.
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and 4.30 with no evidence of scale saturation. This suggests that participants were

able to distinguish between the different levels of impairments used for this scenario.

Figure 4.8 (b) depicts the MQSHRC as a function of the packet loss rate values

(PLR). The figure displays the different HRCs for both H.264 and H.265 codecs. It

can be observed that the MQSHRC drops as the PLR is increased and the bitrate

is decreased. However, a very similar MQSHRC value is observed for two different

cases. The MQSHRC for HRC4 (PLR = 3% , BR = 1000kb/s, and Codec = H.265),

does not exhibit a statistical difference when compared to the HRC3 (PLR = 5% ,

BR = 2000kb/s, and Codec = H.264). From previous studies [150, 139], it is known

that a similar subjective quality is expected for a video encoded with H.265 with

a 50% bitrate savings compared to a video encoded with H.264. Such behaviour is

observed for HRC4 and HRC3 (1000kb/s, H.265 and 2000kb/s, H.264), although

it is worth pointing out that, they both differ on their packet loss rate values (3%

and 5%). This might indicate that the coding algorithms responded differently to

packet loss impairments. From the literature [151, 152], it has been shown that

H.265 is very sensitive to packet losses and less error resilient when compared to

H.264. This might explain why a higher PLR (5% for HRC3) does not exhibit a

significant difference when compared to a lower PLR (3% for HRC4). On these

grounds, it is easy to explain the difference observed on the MQSHRC for HRC2

(PLR = 8% , BR = 400kb/s, and Codec = H.265) and HRC1 (PLR = 10% , BR

= 500kb/s, and Codec = H.264). For this case, the sensitiveness of the H.265 to a

packet loss is having a greater effect on MQSHRC than the bitrate.

For this first scenario, it has been observed that the video bitrate, the coding al-

gorithm, and the PLR all have an important impact on the perceived audio-visual

quality (MQSHRC). However, for certain rates of packet looses, the coding algorithm

is proven to be highly determinant.

• Coding-Freezing Scenario

Figure 4.9 (a) presents the MQSHRC values, including a 95% confidence interval,

for the coding-freezing scenario. Each HRC is paired with a frame freezing level of

distortion, denoted by the number of pause events (N), the position of the pause

event (P), and the length of the pause events (L). Detailed descriptions of the

frame freezing levels of distortion are presented in Table 4.3 and Figure 4.3. It can

be observed that the MQSHRC increases for a high bitrate (BR) level and a low

pause frequency, i.e. number of pause events (N). This steep increasing pattern is

observed along all HRCs. The MQSHRC values are on the range of 1.92 and 4.55
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Figure 4.9: (a) MQSHRC for the coding-freezing scenario. (b) MQSHRC according the Number of pause
events. HRC6: BR = 200kb/s, N = 3, P = 1-2-3, L = 3-3-2. HRC7: BR = 800kb/s, N = 3, P = 1-2-3,
L = 2-2-3. HRC8: BR = 1000kb/s, N = 2, P = 2-3, L = 2-2. HRC9: BR = 2000kb/s, N = 2, P =
1-3, L = 1-3. HRC10: BR = 200kb/s, N = 1, P = 1, L = 2. ANC2: BR = 32000kb/s, N = 0, P = 0,
L = 0. Legend: BR1 = bitrate coded with H.264, BR2 = bitrate coded with H.265, N = Number of
pause events, P = Position of the pause events, L = Length of he pause events.

with no evidence of scale saturation. This suggests that participants were able to

distinguish between the different levels of impairments used for this scenario.

Figure 4.9 (b) presents the MQSHRC as a function of the number of pause events

(N). The figure presents the different HRCs for both H.264 and H.265 codecs. For

the particular case of HRC8 and HRC9 (same number of pause events), it can be

inferred that the MQSHRC difference was determined by the position (P) and length

(L) of the pause events, since a certain equivalence is expected in terms of bitrate

[150, 139]. For HRC9, the pause events were located at positions “1” and “3”, and

their durations were 1 and 3 seconds respectively. For HRC8, the pause events

were located at positions “2” and “3”, and their durations were 2 seconds for both

pauses. By comparing these values, we can see that a short pause at the beginning

of the playout (initial loading) is less annoying than a pause during the playout.

Such affirmation is verified by several studies in the literature [153]. For the case

of HRC6 and HRC7 (same number of pause events), the higher difference might

be attributed to their bitrate levels (200kb/s and 800kb/s) and the positions and

duration of both HRCs. For HRC6, the pause events were located at positions “1”

, “2” and “3”, and their durations were 3, 3, and 2 seconds respectively. For HRC7,

the pause events were located at positions “1” , “2” and “3”, and their durations

were 2, 2, and 3 seconds respectively. Clearly, a higher initial loading affected the
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perceived quality.

On the basis of these results, we conclude that there is an additive impact of pauses

and video bitrate on the perceived audio-visual quality. Such impact can be deter-

mined by the number of pause events and their position and duration.
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Figure 4.10: MCSHRC for both scenarios. All MCS were averaged in terms of HRC.

• Content Score Results

Regarding the MCS, Figures 4.10 (a) and 4.10 (b) present the MCSHRC for each

HRC corresponding to both coding-packetloss and coding-freezing scenarios. As

pointed out before, the five points of the content scale are labeled as “Intriguing”

= 5, “Interesting” = 4, “Neutral” = 3, “Uninteresting” = 2, and “Boring” = 1.

It is observed that the range of values for the MCSHRC values gets reduced, for

both scenarios, and it fluctuates around a “Neutral” value. Such drop is caused

by the averaging of all content responses over all of HRCs. This averaging helps to

distinguish among different HRC levels in terms of MQSHRC, but it does not provide

a good representation of the MCSHRC when all video contents are “averaged”.

Although the MCSHRC range is smaller, it is possible to observe a pattern on both

values of the figures. The MCSHRC varies as the level of impairment varies (HRC).

This behaviour suggests that participant’s opinion about the content is in accor-

dance with its opinion about its quality. Such behaviour is better visualised in

Figure 4.11 where the evolution of both MQSHRC and MCSHRC are plotted along all

HRCs. These results reinforce the premise that participant’s perception of quality

are influenced, at a certain level, by the video content [82, 154].

In spite of the existence of a mutual impact of the video content and quality level, it

is not yet possible to uncover the mechanisms behind this impact. It is clear though,
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that the usage of a content analysis methods, combined with quality assessment for

audio and video, would certainly improve the performance of the audio-visual quality

estimation.
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Figure 4.11: Evolution of both MQSHRC and MCSHRC scores along all HRCs.

Figure 4.12 presents the MQS values obtained for each of the HRCs, along with the

single user scores for experiment 1. It can be observed that for most of the test condi-

tions, the results gathered are more consistent, i.e., the spread of points is smaller. More

particularly, test conditions where the perceived quality got higher responses presented

more consistent results.

Objective Comparison

Additionally, the NR video quality metric VIIDEO [107] was used to predict the MQS of

the sequences. For presentation purposes, results from the VIIDEO metric were scaled

in the interval (1,5). Figure 4.13 shows a scatter plot comparing the predicted quality

using the VIIDEO metric and the MQSHRC results organized according to the packet

loss and frame-freezing scenarios. The overall Pearson correlation coefficient achieved is

ρ = 0.87. It is observed that the coding-freezing scenario presents a subtle advantage on

the MQSHRC.

Finally, Figure 4.14 (a) presents a scatter plot comparing subjective results of the

MQSHRC and MCSHRC for the two scenarios (coding-packetloss and coding-freezing). It

is observed that, participants gave higher MQSHRC and MCSHRC responses to the coding-

freezing scenario compared to the coding-packetloss scenario. These results show that

participants were more tolerant to pauses during the video playout than to severe visual

distortions (blocking, slicing, blockloss) caused by packet loss. Such tolerance is reflected
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Figure 4.12: Mean Quality Score (MQS), and its respective spread of scores, for the different Hypothetical
Reference Circuit (HRC) degradations.

also on the MCSHRC, suggesting that the participant’s opinion of the content is affected

by visual distortions present in the videos.

4.9 Subjective Experiment 2 (audio-only)

In this experiment, we used the immersive methodology to perform a subjective exper-

iment with the goal of estimating the quality of audio-visual sequences. Quality scores

were gathered for a set of audio-visual sequences with distortions only in the audio com-

ponent. The TCD-VoIP dataset [54] served as a reference to produce a new audio-visual

dataset with only-audio distortions: the Im-AV-Exp2. The experiment had the goal of

recreating some of the streaming audio degradations from the TCD-VoIP dataset on an

audio-visual scenario and analyzing the effect of such degradations on the perceived audio-

visual quality. More importantly, the experiments had the goal of testing the effect of

the visual content on the overall quality. Findings from these experiments will be used

to analyse the relationship between streaming and compression artifacts on audio-visual

quality. This section describes the aim of the experiment, list the test conditions used

to build the test pool stimuli, and performs an analysis of the gathered data from the

experiment.
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Figure 4.13: Scatter plot showing the objective estimates from the NR video metric VIIDEO versus the
MQSHRC for both scenarios. Overall correlation ρ = 0.87.

4.9.1 Test Conditions

As mentioned before, four common streaming types of degradations were considered for

this particular experiment. The Im-AV-Exp2 dataset was built following the same pro-

cessing method used in the TCD-VoIP dataset. For each type of degradation, four test

conditions were selected from the TCD-VoIP dataset and presented as a particular Hy-

pothetical Reference Circuit (HRC). These test conditions were selected empirically with

the goal of covering the entire range of quality observed in the TCD-VoIP dataset. As a

result, sixteen (16) HRC arrangements were obtained. The HRCs were organized accord-

ing to the type of degradation. Additionally, one test condition without degradations was

used as an anchor (ANC) to help participants establish the range of quality used in the

experiment. Next, a brief description of the degradations and the procedure used in the

experiment is presented.

• Background Noise

Four types of Background Noise (e.g. babble, car, road, and office) were added to

the original signal at different SNR levels. Four combinations were selected, each

one corresponding to a particular HRC (HRC1 to HRC4). Table 4.10 details the

four HRCs, their corresponding parameters, and the anchor test condition (ANC1).

• Chop

Three parameters were varied to produce different levels and types of choppy speech:

1) Period, which sets the length of the discarded samples, 2) Rate, which indicates

the frequency of the sample discard, and 3) Mode, which states how the discarded

samples are replaced. Four combinations were selected, each one corresponding
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Figure 4.14: (a) Scatter plot comparing subjective results of MQSHRC and MCSHRC for the two scenarios.
(b) Scatter plot comparing the predicted MQSHRC (VIIDEO) versus the subjective MCSHRC for the two
scenarios.

to a particular HRC (HRC5 to HRC8). Table 4.10 details the four HRCs, their

corresponding parameters, and the anchor test condition (ANC2).

• Clipping

A clipping effect was produced by amplifying the signal using a multiplying factor.

Four values of the amplitude multiplier were used to generate the HRCs (HRC9 to

HRC12). Table 4.10 details these four HRCs, their corresponding parameters, and

the anchor test condition (ANC3).

• Echo

An echo effect was produced by adding delayed versions of samples to the original

signal. Three parameters were varied to generate different levels of distortion: 1)

Alpha, the amplitude percentage of the first delayed version with respect to the

original, 2) Delay, the time length between the first delayed version and the original,

and 3) Feedback, the percentage reduction of the subsequent delayed versions. Four

combinations were selected, each one corresponding to a particular HRC (HRC13

to HRC16). Table 4.10 details the four HRCs, their corresponding parameters, and

the anchor test condition (ANC4).

4.9.2 Experimental Results

Results of the experiment are presented and discussed in the following lines. The partic-

ipant’s opinion with respect to the audio-visual quality of the sequences in Experiment 2

is organized in terms of the HRCs considering all four audio degradations: Background
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Table 4.10: HRC corresponding parameters used in Im-AV-Exp2. Anchor test conditions (ANC).

BG Noise Noise SNR (dB)
HRC1 car 15
HRC2 babble 10
HRC3 office 10
HRC4 road 5
ANC1 - -
Chop Period (s) Rate (chops/s) Mode
HRC5 0.02 1 previous
HRC6 0.02 2 zeros
HRC7 0.04 2 previous
HRC8 0.02 5 zeros
ANC2 - - -
Clipping Multiplier
HRC9 11
HRC10 15
HRC11 25
HRC12 55
ANC3 -
Echo Alpha (%) Delay (ms) Feedback (%)
HRC13 0.5 25 0
HRC14 0.3 100 0
HRC15 0.175 140 0.8
HRC16 0.3 180 0.8
ANC4 - - -

noise, Clipping, Chop, and Echo. Additionally, results are compared against the subjec-

tive results of the TCD-VoIP database.

Results

This section presents the analysis of the degradation conditions (i.e. Echo, Chop, Clip,

Noise degradations), which are considered service aspects that may be affected during

streaming. Figure 4.15 presents the Mean Quality Score (MQS), including a 95% con-

fidence interval, for all HRCs corresponding to the four audio distortions. Results are

grouped according to the corresponding audio distortion type. Anchor test conditions are

highlighted in white.

For the Background Noise distortion type, each HRC corresponds to a combination

of a noise type and an SNR value, as detailed in Table 4.10. It can observed that the

quality scores rarely reach 3 points in the MQS scale. These results are in accordance with

previous results that showed that, for noise SNR values bellow 20dB, the quality scores

are around 3 points or less [54]. The MQS values vary from 2 to 3 points. Analyzing the

parameters, it can be observed that sequences with an SNR value below 15dB obtained

quality scores smaller than 3 points. For the particular case of HRC2 and HRC3, which

both present the same SNR value (10dB), it can be observed that the babble noise was

more annoying than the office noise. Such behavior is again in accordance with results from
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Figure 4.15: MQS for all four distortions. See HRC specifications in Table 4.10.

previous (audio-only) experiments [54]. Regarding the MQS corresponding to sequences

affected by road noise, the poor quality scores might be attributed to the low SNR noise

value (5dB).

For the Chop distortion, each HRC corresponds to a combination of three parameters

(rate, period, and mode), as detailed in Table 4.10. It can be noticed that the MQS

values vary from 2.5 to 3.5, with the MQS values decreasing from HRC5 to HRC8. This

behavior seems to be closely related to the chop rate value. An analysis of the parameters

suggests that the perceived quality decreases as the chop rate increases, independently of

the chop mode. In particular, for a fixed rate of 2 chops/second, repeating previous por-

tions of samples (previous mode) is slightly more annoying than inserting silence portions

(zeros mode). For the particular case of HRC8, where the chop rate corresponds to 5

chops/seconds, MQS fluctuates around 2.5 points. This result is again in accordance with

earlier (audio-only) experiments, which have shown that a chop rate of 3 chops/second

leads to quality scores below 3 points [54]. Comparing the MQS in terms of the chop mode

and of the chop period, it can be observed that inserting silence portions (zero mode) with

a period of 0.02s is the equivalent of repeating portion samples (previous mode) with a

period of 0.04s. Comparing both chop modes, at a fixed period of 0.02s, showed that

using a zero mode produces lower quality scores than using a previous mode.

For the Clip distortion type, the MQS values vary between the 3 and 1.5 points in the

MQS scale. All four HRCs values decrease from HRC9 to HRC12. As it can be observed,

clipped distortions have quality scores below 3 for all four condition levels. Such results

might suggest that clipped distortions are perceived as more severe. For the particular

case of HRC9 and HRC10, where the multipliers values are 11 and 15, respectively, quality

scores below the 3 points are observed. These results are particularly interesting since

previous (audio-only) experiments found similar quality scores for multiplying factors

above 18 [54].
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Figure 4.16: Mean Quality Score (MQS), and its respective spread of scores, for the different Hypothetical
Reference Circuit (HRC) degradations.

For the Echo distortion type, each HRC corresponds to a combination of three pa-

rameters (alpha, delay, and feedback), as detailed in Table 4.10. The MQS values vary

between 3.7 and 1.7 points in the MQS scale. Although the HRCs quality values decrease

from HRC13 to HRC16, an abrupt drop in MQS is observed between HRC14 and HRC15.

For this particular case, it can be observed that the presence of a feedback affects con-

siderably the perceived quality. These results were also observed in previous audio-only

studies, where the inclusion of a feedback produced the lowest quality scores [54].

An analysis of the parameters shows that the feedback factor has a strong influence on

the perceived quality. Sequences with a feedback factor of 0.8% have quality scores below

3 points in the MQS scale. It can also be observed that the variation of the echo alpha

value impacts only sequences with a feedback factor. Perceived quality values fluctuate

between 1.5 and 4 in the MQS scale. By comparing the quality scores obtained for HRC13

and HRC14, we notice that a certain balance can be reached by using a large amplitude

factor with a short delay (0.5% and 25 ms) or a lower amplitude with a larger delay

(0.3% and 100 ms). Regarding the results corresponding to HRC15 and HRC16, a large

amplitude factor combined with a large delay (0.3% and 180 ms) results in lower quality

scores (HRC16).

Figure 4.16 presents the MQS values obtained for each of the HRCs, along with the

single user scores for experiment 2. It can be observed that for most of the test conditions,

the results gathered are not as consistent as the ones obtained in experiment 1. With the

exception of the anchor test conditions (ANC1, ANC2, ANC3 and ANC4), the spread of

the score points was high. This might suggest that there was less agreement regarding
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audio types of distortion compared to the agreement observed for experiment 1 where

distortions were inserted only in the video component.

Comparison of Datasets

As mentioned earlier, the Im-AV-Exp2 dataset was built by recreating, in the audio

component of the audio-visual stimuli, a number of test conditions of the TCD-VoIP

dataset. In this section, we compare the objective and subjective quality responses for

both datasets. It is worth pointing out that there are obvious differences between the

two datasets. First, the TCD-VOIP dataset contains only speech audio sequences, while

the Im-AV-Exp2 dataset contains speech, sport, movies, and music audios in audio-visual

sequences. Second, the two datasets used different experimental methodologies to collect

the subjective scores. Despite these differences, a comparison of theses two datasets can

provide interesting insights regarding the impact of the visual component on the overall

quality perception, when the stimuli contains streaming degradations (only) in the audio

component.

To perform this comparison, we used two versions of an objective quality metric to

establish a similar measure for both datasets. In TCD-VoIP, the VISQOL speech model

[115] was used to estimate the speech quality of the stimuli. Meanwhile, in Im-AV-

Exp2, the VISQOLAudio quality metric [40] was used to obtain the quality of the audio

component of the stimuli. Then, we compared the subjective quality scores, MQS (Im-

AV-Exp2) and MOS (TCD-VoIP), of both datasets with the corresponding VISQOL

objective scores, VISQOL (Im-AV-Exp2) and VISQOL (TCD-VoIP). Figure 4.17

depicts scatter-plots showing comparisons of these objective and subjective scores. In the

graphs, data from both datasets are plotted, with points corresponding to the different

types of degradations being identified by different colors.

Figures 4.17 (a) and (b) show the subjective scores versus the VISQOL scores for

the Im-AV-Exp2 and TCD-VoIP datasets, respectively. Notice that the VISQOL metric

tends to over-estimate the quality for all degradations in both datasets. Interestingly,

we observe that VISQOL ranked all degradations in the same order for both datasets,

i.e. Chop degradations were rated as less annoying, followed by Clip, Echo, and Noise

degradations. These results show that the characteristics of the audio degradations seem

to be affecting the perceptual quality of the stimuli of both datasets in a similar way.

Figure 4.17 (c) depicts a scatter-plot of the VISQOL scores for TCD-VOIP versus the

VISQOL scores for Im-AV-Exp2. From the plot in this figure, we can notice that, in both

datasets, there is a consistency of the results corresponding to the Chop degradations

(identical results would correspond to points in the diagonal traced line). It is worth

pointing out that the VISQOL scores for the Chop degradations had high values (over
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Figure 4.17: Subjective-Objective comparison for Im-AV-Exp2 and TCD-VoIP.

0.9 for both datasets). Regarding the Clip degradations, the VISQOL scores obtained

for the TCD-VoIP dataset were higher than the VIQOL scores obtained for the Im-AV-

Exp2 dataset (i.e. points are above the diagonal line). The VISQOL scores for Echo and

Noise degradations, on the other hand, were smaller for the TCD-VoIP dataset than for

the Im-AV-Exp2 dataset (i.e. points below the diagonal line). This result shows that,

although the sample conditions for both datasets were generated using the same technique,

the content had an influence on the perceived quality, causing a quality increase (Clip)

or decrease (Chop and Noise) for speech content (TCD-VoIP) to general audio content

(Im-AV-Exp2).

Figure 4.17 (d) depicts a scatter-plot of subjective scores for TCD-VOIP versus the

subjective scores for Im-AV-Exp2. The comparison is made between the audio-only quality

scores, MOS(TCD-VoIP), and the corresponding audio-visual scores, MQS(Im-AV-Exp2).
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Notice that, although these quality scores come from different experiments with different

content and different conditions, there is again a consistency between the audio-only and

audio-visual scores for the Clip and Chop degradations, with only a few exceptions are far

from the diagonal line (HRC7, HRC9, and HRC10). The subjective scores for the Noise

degradations lie below the diagonal line, but not too far from it. It is interesting to note

that, for the Echo degradations, the audio-only subjective scores are consistently higher

than the audio-visual scores (i.e. points are below the diagonal line). This suggests that

the video component has a more pronounced impact for Echo degradations, acting as a

masking factor and producing higher quality scores. In other words, the Echo degradation

had a smaller impact on the perceived overall quality of audio-visual stimuli than on the

perceived audio quality of of audio-only stimuli. This result seems to be in agreement with

previous studies [155] where participants rated echo distortions as imperceptible during

video calls, i.e., in the presence of a visual component.

4.10 Subjective Experiment 3 (audiovisual)

The main goal of this work is to study the impact that combinations of audio and visual

degradations have on the perceived quality of audio-visual signals. With this goal, we

performed a psycho-physical experiment to estimate the overall quality of audio-visual

sequences containing combinations of audio-only and video-only degradations. We used an

immersive experimental methodology [72] to reduce user fatigue, produce a more realistic

scenario and, as a consequence, obtain robust quality scores. Considering the limited

number of databases that contain audio-visual content with realistic degradations and

the associated quality scores, the second objective of this work is to build a large audio-

visual database and make this database available for the researcher community. This

section describes the motivation of this experiment, it lists the test conditions employed

to build the third dataset of this work and performs an analysis of the collected data.

4.10.1 Test Conditions

A large stimuli pool was built by processing the original dataset. To generate the test

stimuli pool, we introduced audio and video distortions in the audio and video compo-

nents, respectively, of the original sequences. The video distortions were Bitrate compres-

sion, Packet-Loss, and Frame-Freezing. The video stimuli was compressed using H.264

and H.265 video codecs, with varying bitrates. With respect to Packet Loss and Frame-

Freezing distortions, since these types of distortions do not occur simultaneously, the

videos either contained one or another type of distortion. The Packet-loss distortions

were generated by dropping packets from the bitstream at different rates (PLR), while
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the Frame freezing distortions were generated by inserting pauses with different lengths.

The test conditions were organized to produce a set of 16 Hypothetical Reference Circuits

(HRCs). Table 4.11 shows the parameters and types of degradations of each HRC.

With respect to the audio component of the test stimuli, four (4) common streaming

audio degradation types were introduced: Background noise, Chop, Clip, and Echo. These

types of degradations, along with the insertion procedure, were inspired by the TCD-VoIP

dataset [54]. The TCD-VoIP dataset includes some common degradations encountered in

a voice over IP transmission. Degradations are considered as “platform-independent” as

they are not influenced by the codec, hardware, or network in use. For this experiment,

a sample of the test conditions used by the TCD-VoIP dataset was selected and inserted

to the audio component of the original sequences. For each type of distortion (noise,

chop, clip, and echo), two test conditions were selected and distributed along the 16 HRC

arrangements. Additionally, 4 test conditions (ANC) were included as anchors. Table

4.11 shows the details of the HRCs and their corresponding parameters.

Altogether, 40 source stimuli were processed at 20 different test conditions (including

4 anchor conditions). This resulted in 800 different audio-visual sequences with different

audio and video distortions. It is important to mention that, for each test session, the par-

ticipant was presented with only 40 test stimuli of the 800 test sequences, as recommended

by the immersive method.

4.10.2 Experimental Results

Results of the experiment are presented next. The participant’s opinion with respect to

the audio-visual quality of the sequences in Experiment 3 is organized in terms of the

HRCs considering all audio and video degradations. Additionally, some objective quality

metrics are used to compare the results and analyze the interaction between audio and

video predicted quality.

Results

Figure 4.18 presents the MQS values collected from the subjective experiment. In Figure

4.18 (a) the MQS values are grouped according to the audio distortions (chop, clip, echo,

and noise), meanwhile in Figure 4.18 (b) the values are grouped according to the video

degradations (packet-loss and frame-freezing). It can be observed in this figure that most

HRCs obtained quality scores equal or below 3.5, while the anchors sequences (ANC)

obtained quality scores well above 4. Considering the different types of audio degrada-

tions, Clip degradations obtained slightly lower quality scores on average, while Echo test

condition HRC16 received the lowest quality score. Additionally, by observing the gaps
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(a) HRCs grouped by audio degradations.

(b) HRCs grouped by video degradations.

Figure 4.18: Mean Quality Score (MQS) for the different combinations of audio and video degradations
(Table 1 describes each HRC).

between the distortion levels for Clip and Echo distortions, we noticed that the differences

between neighboring HRCs were roughly constant, while the differences between neigh-

boring HRCs for Noise and Chop seemed more irregular. This might suggest that Noise

and Chop degradations were more sensitive to variations, i.e., varying the distortion level

for these distortions had a higher impact on the perceived quality.

In Figure 4.18 (b), where MQS scores were organized according to the different types

of video degradations, we notice that there is a clear difference between the MQS values

obtained for the Packet-loss and Frame-freezing distortions. On average, Frame-freezing

distortions seemed to have a lower impact on the perceived quality than Packet-loss dis-

tortions. However, by observing the gaps between both types of distortions, variations of

Frame-freezing distortion levels seemed to have a heavier impact on the perceived qual-

ity. In other words, varying the levels of distortion for Frame-freezing produced a more

pronounced drop of quality, when compared to a variation in Packet-loss distortion.

For the case of audio degradations, no particular degradation was identified as having

a determinant effect on the perceived quality. As already mentioned, for the case of

video degradations, Packet-loss had a stronger influence on the perceived audio-visual
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Figure 4.19: Mean Quality Score (MQS), and its respective spread of scores, for the different Hypothetical
Reference Circuit (HRC) degradations.

quality. Therefore, in terms of combined degradations, audio degradations combined with

Packet-loss had a stronger impact on the overall audio-visual quality.

Figure 4.16 presents the MQS values obtained for each of the HRCSs, along with the

single user scores for experiment 3. It can be observed that for more ‘degraded’ HRC

(see Table 4.11), the results are more consistent, i.e., the spread of points is smaller. But,

for HRCs that received a MQS value around the center of the scale, the scores provided

by participants varied more, resulting in a larger standard deviations around the average

value.

Objective Quality Comparison

We compare the subjective scores with the objective results gathered from one audio

and one video quality metrics. Naturally, the subjective scores correspond to the overall

audio-visual quality, while the quality scores predicted by the objective metrics represent

the quality of a particular component (audio or video). Also, it is worth pointing out

that the subjective scores are distributed on a five-point rating scale (ACR), while the

scores predicted by the objective metrics do not have the same range, which might lead

to scale calibration bias. Despite these issues, the comparison between subjective and

objective scores can provide interesting insights concerning the predicted quality and

their interaction with the overall audio-visual perceived quality.

The DIIVINE quality metric [108] was selected to predict the quality of the video

component of the stimuli. The DIIVINE metric was originally developed as an image

quality assessment metric, for this work, a video implementation was used by averaging

the quality predictions for every frame in the video. Figure 4.20 depicts the scatter-plots

of the subjective scores versus the corresponding DIIVINE scores, organized according

to the types of degradation. In general terms, and independent if it is an audio or a
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Figure 4.20: Scatter plot of audio-visual subjective scores (MQS) versus video objective scores (produced
by DIIVINE).

video degradation, the scatter-plots presented a moderate negative correlation between

the subjective audio-visual (MQS) and the DIIVINE scores. It seems that the DIIVINE

metric tended to overestimate the video quality of sequences, since most points fall below

the red line in the graph (this being interpreted as better quality). While MQS values

occupied most of the rating scale (1 to 5), DIIVINE scores were concentrated on the

middle of their scale (0 to 1). Despite this characteristic, DIIVINE scores varied along

the MQS values, showing a good consistency.

Figure 4.20 shows that sequences affected by Packet-loss degradations (HRCs 13, 14,

and 16) resulted in a lower quality, according to the DIIVINE metric. The same graph

suggests that sequences with a Frame-freezing type of degradation (HRCs 1, 2, 5, and

6) were less affected in terms of quality. Naturally, regarding the audio distortions, no

particular behavior was observed in terms of a higher or lower quality for a specific audio

degradation. However, it can be observed that video degradations tend to group around

similar conditions. This tendency is only broken for two cases that correspond to Noise

and Chop audio degradations (HRCs 10 and 8), which suggests an influence of audio

distortions on the perceived audio-visual quality.

VISQOLAudio was chosen as the audio quality metric [40]. Figure 4.21 depicts the

scatter-plots of the subjective audio-visual quality scores (MQS) versus the VISQOLAudio

scores, organized according to the audio and video types of degradation. In general terms,

and considering that this comparison is made between audio and audio-visual scores, no

particular pattern was observed. VISQOLAudio also seemed to overestimate the quality

for most conditions (most marks fall above the red line), which is expected since only the

audio component is being measured.
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Figure 4.21: Scatter plot of audio-visual subjective scores (MQS) versus audio objective scores (produced
by VISQOLAudio).

In Figure 4.21 it can be observed a clear difference between sequences affected by

Frame-freezing and Packet-loss distortions. Again, similarly, video conditions tended to

group around each other, but not as ‘strongly’ as it was seen in Figure 4.20. Regarding

the type of audio degradations, Figure 4.21 shows that Chop sequences got higher quality

scores.

Finally, both VISQOLAudio and DIIVINE scores were compared. Figure 4.22 depicts

a scatter-plot of these scores, organized by the types of audio and video degradations.

The graph shows a disperse negative relationship between both sets of scores. It can be

observed that scores remained spread in the middle of the rating scale. It can be noticed

that frame-freezing conditions (HRCs 10, 12, and 15) presented lower audio and video

quality predictions.

4.11 General Discussion and Conclusions

In this Section, results from all three subjective experiments are compared. Equivalent test

conditions are grouped in order to verify their results among all three experiments. The

main objective of this section is to analyze the impact of the perceived quality by observing

the results from different audio and video test conditions among all three experiments.

For this particular section, the labels assigned to the Hypothetical Reference Circuits

(HRC) for experiments 1, 2 and 3, were redefined. This was done with the objective

of comparing the HRCs from different experiments. Table 4.12 presents the parameters

for the video component along with the video test condition labels. For the purpose
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Figure 4.22: Scatter plot of audio objective scores (prduced by VISQOLAudio) versus video objective
scores (produced by DIIVINE).

of comparing different databases, we use the term Video Test Condition (V-TC) that

replaces the previously used HRC.

Similarly, Table 4.13 presents the parameters for the audio component along with the

audio test condition labels. As in the video component, the term Audio Test condition

replaced the previous term HRC.

4.11.1 Audio and Video Distortion Impact

Figure 4.23 compares the MQS and MCS responses collected from experiments 1 and 3 for

the video test conditions. They were organized according to the type of distortion (packet

loss and frame freezing). Figure 4.23 (a) depicts the results for the packet loss type of

distortion. It can be observed that for the same video test conditions responses were lower

Table 4.12: Parameter details for the video test conditions.

Packet Loss
Video Test Condition Codec Bitrate (kb/s) PLR
V-TC1 H.264 500 10%
V-TC2 H.265 400 8%
V-TC3 H.264 2000 5%
V-TC4 H.265 1000 3%
V-TC5 H.265 8000 1%
V-TC0 H.264 64000 -
Frame Freezing
Video Test Condition Codec Bitrate (kb/s) Freezing
V-TC6 H.265 200 S5
V-TC7 H.264 800 S4
V-TC8 H.265 1000 S3
V-TC9 H.264 2000 S2
V-TC10 H.264 16000 S1
V-TC0 H.265 32000 -
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Table 4.13: Parameter details for the audio test conditions..

Background Noise
Audio Test Condition Noise SNR (dB)
A-TC1 car 15
A-TC2 babble 10
A-TC3 office 10
A-TC4 road 5
A-TC0 - -
Chop
Audio Test Condition Period (s) Rate (chops/s) Mode
A-TC5 0.02 1 previous
A-TC6 0.02 2 zeros
A-TC7 0.04 2 previous
A-TC8 0.02 5 zeros
A-TC0 - - -
Clipping
Audio Test Condition Multiplier
A-TC9 11
A-TC10 15
A-TC11 25
A-TC12 55
A-TC0 -
Echo
Audio Test Condition Alpha (%) Delay (ms) Feedback (%)
A-TC13 0.5 25 0
A-TC14 0.3 100 0
A-TC15 0.175 140 0.8
A-TC16 0.3 180 0.8
A-TC0 - - -

when the audio component was distorted (experiment 3). This impact is more pronounced

for video test conditions V-TC2 and V-TC5. As for the frame freezing distortion, Figure

4.23 (b) presents a similar behavior. For the same test conditions, quality responses with

audio distortions presented lower quality scores. These graphs confirm that there is a

clear impact of the audio component in terms of the perceived quality. As observed,

audio distortion affected both types of video distortion (packet loss and frame freezing)

in the same manner. Moreover, given that the analysis is made based on a test condition

configuration, it can be implied that this impact affected the overall quality regardless of

the content. However, this last assumption should be reviewed with a larger number of

test conditions and a deeper analysis of the content.

Regarding the participant’s personal opinion about the content (MCS), Figures 4.23

(c) and (d) presented a similar behaviour compared to the quality scores (MQS). However,

they are not statistically significant so no real conclusion can be made about these results.

Figure 4.24 compares the MQS responses gathered from experiments 2 and 3 for

the audio test conditions. As in the video analysis, results were organized according to

the audio type of distortion: background noise, chop, clip and echo. Figure 4.24 (a)

presents the results for the background noise type of distortion. Aside from the A-TC0

test condition, no particular difference can be spotted between results from experiment 2
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(a) MQS - Packet Loss (b) MQS - Frame Freezing

(c) MCS - Packet Loss (d) MCS - Frame Freezing

Figure 4.23: MQS and MCS responses collected from experiments 1 and 3 for the video test conditions.

and 3. This result might suggest that the background noise distortion had an equivalent

impact on the audiovisual quality when compared to the test conditions on experiment

3 that included both audio and video distortions. Similarly, Figure 4.24 (b) presents the

results for the chop distortion. Results for the A-TC8 test condition shows a difference

between results when the video component has been distorted. This might suggest that

a chop type of distortion by itself doesn’t have a strong impact on the overall quality.

Figure 4.24 (c) depicts the results for the clipping type of distortion. Results from this

figure are similar to the one saw on the background noise scenario. This might suggest

that a clipping distortion levels the perceived quality of a test condition where the video

and audio components have been distorted. Finally, Figure 4.24 (d) presents the results

for the echo type of distortion. No particular behaviour can be spotted from this figure.

Test condition A-TC14 suggests that the video distortion had a higher impact on the

perceived quality. Meanwhile, test condition A-TC16 suggests that the echo distortion had

an equivalent impact on the overall quality compared to the audio and video distortions

combined. Overall, no particular conclusion can be made based on these results. Results

showed that some types of audio distortion have a greater impact compared to others.

More particularly, background noise and clipping levelled the quality impact that audio

and video distortions had. Further analysis is needed in order to conclude this assumption.

A similar comparison is depicted in Figure 4.25 considering the MCS for experiments
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(a) MQS - Noise (b) MQS - Chop

(c) MQS - Clip (d) MQS - Echo

Figure 4.24: MQS responses collected from experiments 2 and 3 for the audio test conditions.

2 and 3. Similar behaviour was observed, however, since the differences are not statically

significant, no conclusion can be made regarding these results. Additionally, Figure 4.26

presents scatter plots of the results from experiment 1, 2, and 3. From Figure 4.26 (a),

we notice that there is a positive correlation between both sets of results. As it was

observed in the previous analysis, scores from Experiment 1 (video only degradation)

had higher quality responses when compared to the scores from Experiment 3 (audio and

video distortions), which can be noticed by observing the values above the red line. This

behavior was observed for both types of video distortions: packet loss and frame freezing.

Figure 4.26 (b) depicts a scatter plot comparing scores from Experiment 2 and Ex-

periment 3. From this figure, it can be noticed a subtle positive correlation between both

score sets. As it was observed in the previous analysis, most of the test conditions ob-

tained higher quality scores for the case of Experiment 2 (audio only distortion) as seen

in the values above the red line. However, some test conditions (A-TC 9 and A-TC1)

presented lower scores equivalent to the results obtained in experiment 3.
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(a) MCS - Noise (b) MCS - Chop

(c) MCS - Clip (d) MCS - Echo

Figure 4.25: MCS responses collected from experiments 2 and 3 for the audio test conditions.
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Figure 4.26: MQS results from experiment 1 and 3.
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Chapter 5

Deep Autoencoder model for

audio-visual quality assessment

This Chapter presents the proposed No-Reference audiovisual quality model for objective

evaluation of audiovisual quality. Along with the NR audiovisual quality model, two

additional quality models are presented in this work: one NR audio quality model and one

NR video quality model. The novelty of the proposed metrics lies in using an autoencoder

approach to extract low-dimensional features from the audio and video components of the

signal and then finding a mapping between those features and subjective scores using a

classification function.

Figure 5.1 presents a block diagram of the proposed approach. The diagram depicts

both training and testing phases of the three models, which uses a set of audiovisual

sequences and the corresponding subjective quality scores gathered in psychophysical

experiments. Sets of audio and video features, which have relevant audio and visual

characteristics associated, are extracted from these signals in the first diagram block.

Then, the set of features are used to train a network model in the second diagram block,

which consists of two-layer blocks, namely an autoencoder and the classification layers.

The output of this training phase is an Autoencoder Network that is able to predict

the quality of a sequence. It is important to emphasize that the training of the audio

model is made using only the signal audio features, while the video model is trained using

the visual features. For the present work, the video set of features is a set of natural

scene statistics (NSS) used in several image and video quality metrics [108, 107], plus

the spatial and temporal information associated to the video sequence. As for the audio

features, a spectrogram (2-D representation) is used as a feature source to describe the

audio component of the signal. These sets of features, both audio and video, represents

the input of the entire quality assessment model.

One important issue to consider when using ML paradigms is the training of the
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Figure 5.1: Simplified block diagram of the Autoencoder Network approach.

system and its prediction accuracy. A good composition of the training stimuli requires

the construction of a sufficiently large and representative set of the audiovisual stimuli

with a broad set of distortions. For such purpose, as described in Chapter 4, three

large datasets were constructed and their corresponding quality scores were gathered on

a set of subjective quality experiments. Altogether, the three datasets sum a total of

two-thousand-three-hundred and twenty (2320) different audiovisual sequences which are

used for the training and testing of the proposed models.

The proposed set of Auteoncoder Network models is tested against several FR and NR

video, audio and speech quality metrics. Considering the reduced number of audiovisual

quality metrics in the literature, this model constitutes an important contribution that

serves as a reference to the development of new quality assessment methods.

The remainder of this Chapter is organized as follows. In Section 5.1, the visual

and audio feature extraction procedures are presented. In Section 5.2, the Autoencoder

Network approach is described along with the overall structure of the proposed quality

metrics. Then, in Section 5.3, the quality metrics performance is presented. Finally,

Section 5.4 presents the conclusions of this chapter.
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5.1 Feature Extraction

5.1.1 Visual Features

In order to obtain a set of visual features that are able to describe the visual characteristics

(and distortions) of the video sequence under analysis, the present work relied on two

commonly used properties: 1) a set of natural scene statistics, and 2) spatial and temporal

information. Altogether, they formed the set of features used as input for the video quality

model. Next, some details about the extraction and the organization of the features are

presented.

• Natural Scene Statistics Features (f1 – f88)

Natural scene statistics are widely used to describe regularities (or irregularities) in

a still image. Its usage has been extended to videos and they have become the base

of several image and video quality metrics [108, 107]. Given its distortion-agnostic

nature, these type of features can be employed to describe several types of visual

distortions, including video coding, packet loss, and frame freezing [108, 105].

In the present work, we used the feature extract function from the Diivine image

quality metric implementation [108] to extract a total of eighty-eight (88) features.

A detailed description of all 88 features can be found in Chapter 3. For each frame

of the video under analysis, a set of 88 features is extracted. This resulted in an

88-by-n matrix (n being the number of video frames), that represents the NSS set

of features.

• Spatial and Temporal Features (f89 – f90)

In order to capture the spatial and temporal characteristics of the video sequence,

we used the algorithm presented by Ostaszewska and Kloda [135] to compute the

spatial and temporal information. These values describe the video behavior along

the time and characterize some important visual distortions, more specifically frame

freezing distortion. Again, spatial and temporal values are computed for each frame

of the video (n) which results in a 2-by-n matrix, that represents the spatial and

temporal features.

Next, both sets of features are merged to form the visual set of features of a single

video sequence, represented by a 90-by-n matrix. Figure 5.2 depicts the visual set of

features for a single video sequence.
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Figure 5.2: Visual Set of Features composed of NSS features and Spatial and Temporal features.

5.1.2 Audio Features

With the objective of getting a set of features capable of describing and characterizing

audio distortions, a spectrogram representation is used as the feature source for this

model. It is basically a time-frequency color intensity representation of the audio activity.

Spectrograms have been used on several studies related to speech intelligibility and noise

suppression with good results [25, 39, 55]. Some details about the spectrogram computing

are presented next.

• Spectrograms Features (f1 – f25)

The use of spectrograms as a descriptive source of the audio signal was inspired by

the Visqol speech and audio metrics [39]. The spectrogram extraction function from

the Visqol implementation is used to obtain a 25-by-m matrix, where 25 represent

the number of frequency bands and m is the number of audio samples of the signal.

Each column of the spectrogram provides a set of 25 descriptive values corresponding

to each sample of the audio signal. Figure 5.3 depicts a sample of the spectrogram

matrix extracted from the audio signal.

Figure 5.3: Sample of the Spectrogram Matrix extracted from the audio signal.
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5.1.3 Audiovisual Features

In order to describe the characteristics and the distortions associated to the audio and

video components of an audiovisual sequence, both audio and visual descriptive features

used in the previously are merged to build one large set of audiovisual features. That

is, the visual set of features, composed of the NSS features and the spatial and temporal

features, and the audio set of features, represented by the spectrogram of the audio signal

are grouped to produce an audiovisual set of descriptive features. Some details about the

combination of these sets of features are presented next.

• Audiovisual Features (f1 – f115)

In order to build the audiovisual set of features, the same extraction procedure

described previously is followed. Once the visual features (90-by-n matrix) and the

audio features (25-by-m matrix) are obtained, they are merged together to compute

a total of 115 descriptive features. However, given that the number of video frames

(n) and the number of audio samples (m) are not the same, a scaling process is

required to perfectly match these two sets before merging them.

For the present work, the selected approach to uniformize the length of the two ma-

trices is to replicate the values of the matrix that has the shorter length so it matches the

other matrix. Since the number of frame videos (n) is smaller compared to the number

of audio samples (m), values of the visual feature set are replicated to match the audio

feature set. Figure 5.4 presents a graphic explanation of this scaling procedure. Once the

length of both sets matches, they are merged to form a 115-by-m matrix, denoted as the

audiovisual features set, where 115 is the sum of the 90 visual features and the 25 audio

features.

Figure 5.4: Simplified illustration presenting the scaling procedure to match the visual and audio feature
matrices.
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(a)

(b)

Figure 5.5: (a) Target Quality Group Matrix representing the 4 quality group intervals. (b) Sequence
with subjective score of 1.65 is assigned the quality group 1, interval [1,2]. Sequence with subjective score
of 3.52 is assigned the quality group 3, interval [3,4].

5.1.4 Training Input

Additionally, an extra target set is built using the subjective score associated with the

signal under analysis. This set represents the target quality score that is going to be used

during the training of the model, more specifically, during the classification phase. The

target set is represented by a zeros and ones 4-by-n matrix, where 4 represents the number

of quality groups and n is the number of frames of the video sequence. For the case of

the training of the audio and audio-visual models, the value of n is replaced by m, which

corresponds to the number of audio samples of the signal. There are 4 quality groups,

which denote the ranges of scores presented in an ACR quality scale. The target set is

built by taking the subjective score associated with the video sequence and assign this

value to its corresponding quality group. For example, a sequence that has a subjective

score of 1.65 is assigned the quality group 1 since the score is in the interval < 1, 2 >,

while a sequence with a subjective score of 3.52 is assigned to the quality group 3 since

the score is in the interval < 3, 4 >. Then, the row corresponding to the quality group

is set to one and the rest is set to zero. Figure 5.5 depicts some examples of this setup.

Considering that each column represents a video frame (or an audio sample), this setup

guarantees that each frame (or sample) has only one quality group associated. Later on,

during the training of the model, this target set is used to map the corresponding quality

group of each frame (sample) in the signal.

Finally, the descriptive feature and target sets of all training signals are concatenated
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to build two large global sets, i.e., a global feature set and global target quality set. Figure

5.6 depicts an illustration of both global feature and target sets. The global features set is

represented by a 90-by-N matrix, where 90 denotes the number of visual features and N

represents the sum of the number of frames of all video sequences. Again, for the case of

the training of the audio and audiovisual model, the value of N is replaced by M , which

denotes the sum of all audio (audio model) and audiovisual (audiovisual model) samples

of each signal considered for the training. Meanwhile, the global target set is represented

by a 4-by-N matrix, where 4 represents the number of quality target groups (M for the

audio and audiovisual models). These two global sets served as input for the training

of the model at different stages. The global feature set is passed to the autoencoder,

meanwhile, the global target set is used during the classification phase.

5.2 Network Model

5.2.1 Model Training

Once the global sets are built, the model is trained using these elements as input. The

training phase consists basically of two main layers: 1) the autoencoder layer, which

receives the global feature set as input, and 2) the classification layer, which receives a

low-dimensional set of features and the global target set as input. Finally, the trained

models resulting from these two layers are stacked together and re-trained to form the

resulting network model. Next, we detail these two layers.

• Autoencoder Layer

This first layer has the objective of training a model to produce a low-dimensional

representation of the input features. For this purpose, we train an autoencoder

Figure 5.6: Feature and Target matrices concatenation to build the Global Feature Set and Global Target
Quality Set.
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network, which is formed by two sub-layers (two autoencoders). The ability of

the autoencoder to find important properties during the training of the data is

exploited and it is expected that this new low-dimensional feature representation is

able to characterize the visual and audio distortions of the signal, as the interactions

between both audio and video components.

The autoencoder receives the global feature set as input (see Table 5.1). Using this

set of features as input the first autoencoder is trained using a different hidden layer

size (see Layer size #1 from Table 5.1). This means that the output of this first

training is a matrix, denoted as Features 1. Along with this new set of features,

a trained autoencoder is also available, which is denoted as Autoencoder 1. The

next autoencoder is trained using as input the Features 1 set. This autoencoder

uses a different hidden layer size(see Layer size #2 from Table 5.1) and the result

is a matrix, denoted as Features 2. Also, a second trained autoencoder, denoted as

Autoencoder 2, is produced after this second training stage. Table 5.1 depicts some

additional parameters considered for the training of the model.

Overall, the output of this autoencoder layer is composed of: 1) two trained autoen-

coders (Autoencoder 1 and Autoencoder 2), and 2) two sets of features (Features 1

and Features 2). From this group of elements, only the Features 2 set are used as

input in the following classification layer. As for the rest of elements, they are used

during the overall training of the network model. Figure 5.7 depicts a simplified

diagram of the autoencoder layer.

• Classification Layer

This layer has the objective to find a mapping between the input set of features and

the subjective scores of the corresponding video sequences. In order to obtain this

Table 5.1: Training parameters for the Video, Audio, and Audiovisual Autoencoder Network Models (N
sum of number of frames of all videos, M sum of number of all audio samples.

Layer Parameters Video Model Audio Model Audiovisual Model
Autoencoder Layer Input 90-by-N matrix 25-by-M matrix 115-by-M matrix

Layer size #1 50 18 60
Layer size #2 20 10 25
Decoder transfer function Linear Linear Linear
L2 weigth regularization 0.001 0.001 0.001
Sparsity Regularization 4 4 4
Sparsity Proportion 0.05 0.05 0.05

Classification Layer Input 20-by-N matrix 10-by-M matrix 25-by-M matrix
4-by-N matrix 4-by-M matrix 4-by-M matrix

Loss Function Cross Entropy Cross Entropy Cross Entropy
Additional Info Training Set Experiment 1 Experiment 2 Experiment 3

# sequences 720 800 800
Method 10-fold CV 10-fold CV 10-fold CV
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Figure 5.7: Detailed block diagram of the training phase of the Autoencoder Network approach.

mapping, a softmax function for classification is used to discover the quality group

corresponding to the set of features.

The classification layer receives the Features 2 set and the target set as input (see

Table 5.1). The resulting classification function, denoted as Soft Net, is trained to

map a set of features onto a probabilities matrix. The mapped matrix has values

between 0 and 1 which represent the probability of a single video frame belonging to

a quality group (highest probability value will be the target quality group). Figure

5.7 depicts a diagram of this classification layer.

Once the autoencoders (Autoencoder 1 and Autoencoder 2) and the classification

function (Soft Net) are trained, they are stacked to form the model network, denoted as

Autoencoder Network Model. Then, the autoencoder network is trained using the global

feature and the global target sets. Figure 5.7 presents a diagram of this final training

phase.

The resulting model is capable of predicting the corresponding quality group for every

frame of the video sequence. An additional output processing phase is required in order

to compute the overall video quality of a single video sequence.
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5.3 Model Performance

In order to test the Autoencoder Network, it is first required the extraction of the descrip-

tive features from the signal sequence under test. The global set of features is passed to

the trained autoencoder network. The output is a matrix which contains the probability

values in the interval [0, 1] of a frame belonging to a quality group. In order to estimate

the overall video quality of the sequence, the probabilities output need to be processed.

Figure 5.8 presents a simplified illustration of the output processing stage. First, the

maximum value and its corresponding row index are calculated for each column in the

probabilities matrix. Then, a vector is built by adding the index and the max value

for each column in the vector. In other words, for each column (representing a video

frame or and audio sample) the corresponding quality group index is summed with the

corresponding probability value resulting in a quality value in the interval [1, 5]. Finally,

the quality scores of all frames of the video, or samples of the audio, are averaged and the

overall signal quality score is computed.

Figure 5.8: Simplified illustration of the output processing stage applied to the results of the Autoen-
coder Network model.

Three quality metrics were obtained based on the trained autoencoder network mod-

els: 1) video, 2) audio, and 3) audiovisual. As it was presented before (see Table 5.1),

the autoencoder network models were trained and tested using sequences from all three

experiments: Experiment 1, Experiment 2 and Experiment 3. A total of 720 (Experiment

1), 800 (Experiment 2), and 800 (Experiment 3) audiovisual sequences are employed

along with a 10-fold cross-validation method to test the models results. These results

are compared against a set of popular FR and NR video quality metrics from the liter-

ature. The FR video quality metrics considered are: SSIM (video adaptation) [92], and

PSNR (video adaptation). The NR video metrics considered are: VIIDEO [107], DI-

108



IVINE (video adaptation) [108], BIQI (video adaptation) [156], NIQE (video adaptation)

[157], and BRISQUE (video adaptation) [158].

As for the audio quality metric, results are compared against a set of popular FR and

NR audio and speech quality metrics from the literature. The FR audio quality metrics

considered are: VisqolAudio [40] and PEAQ [159], additionally, the speech metric Visqol

[39] is also considered. Finally, the NR speech quality metric P.563 [114] is considered for

this testing phase.

Finally, for the audiovisual metric, the same FR and NR video quality metrics were

used for comparison. Similarly, the same set of audio quality metrics were used to verify

its performance against the proposed audiovisual model. One last group of audiovisual

combination models are considered for comparison: Linear, Minkowski, and Power audio-

visual models. These models (introduced in Chapter 3), take as input the results from

one video and one audio objective metrics: DIIVINE and P.563.

Table 5.2 presents the Pearson and Spearman correlation coefficients (PCC and SCC),

along with the root mean square errors (RMSE) gathered from testing the FR and NR

video quality metrics and the first proposed metric: the video autoencoder metric. The

results are organized according to the video type of distortion for a better analysis. As can

be observed, the proposed model has the best performance in the overall analysis achieving

high correlation coefficients at a low error margin. Regarding the packetloss distortion,

the proposed model also presents the best performance achieving correlation coefficients

above 0.93. As for the frame freezing distortion, both DIIVINE and the proposed model

presented the best performance. For a better visualization of the results, Figure 5.9 (a)

and (b) shows bar plots of the average PCC and SCC values (over the 10 folds) for all

metrics. Notice that, for all the metrics tested, the PCC and SCC results provided by

the proposed video metric are the highest and have the smallest variation, which means

that their results are very consistent.

Table 5.3 presents the Pearson and Spearman correlation coefficients, along with the

root mean square errors gathered from testing the FR and NR audio and speech quality

metrics and the proposed audio autoencoder model. The results are organized according

to the four audio types of distortion for a better analysis. As can be observed, the proposed

model has a fair performance in the overall analysis comparable to the standardized P.563

speech metric. Regarding the type of distortion, the proposed model presents a fair level

of prediction for distortions like noise, clip, and echo. For a better visualization of the

results, Figure 5.10 (a) and (b) depicts bar plots of the overall PCC and SCC values (over

the 10 folds) for all metrics. Besides the high correlation values presented by the proposed

metric, it can observed that results presented a small variation on both PCC and SCC

coefficients. This shows that the results are very consistent compared to the rest of the
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Table 5.2: Pearson and Spearman Correlation Coefficients (PCC and SCC), and Root Mean Square Error
(RMSE) gathered from testing the FR and NR video quality metrics on the database from Experiment
1.

Type Metric Measure Packet-Loss Frame-Freezing All
Full-Reference PSNR PCC 0.8352 0.7482 0.4508

SCC 0.8857 0.7714 0.4615
RMSE 8.1694 12.7864 10.7292

SSIM PCC 0.8886 0.2741 0.2423
SCC 0.9429 0.3714 0.2378
RMSE 2.8559 2.3673 2.6230

No-Reference DIIVINE PCC -0.9173 -0.9101 -0.8835
SCC -0.9429 -0.8857 -0.8951
RMSE 2.5274 2.8885 2.7139

VIIDEO PCC -0.6728 -0.5962 -0.6393
SCC -0.7714 -0.4286 -0.6923
RMSE 2.3137 2.6892 2.5084

BIQI PCC -0.8490 -0.8597 -0.8568
SCC -0.9429 -0.8857 -0.9161
RMSE 33.8984 31.3417 32.6451

NIQE PCC -0.7382 -0.9204 -0.8485
SCC -0.7714 -0.8857 -0.8811
RMSE 1.9239 1.7098 1.8200

BRISQUE PCC -0.8135 -0.9254 -0.8800
SCC -0.7714 -0.9429 -0.8741
RMSE 44.8406 41.5565 43.2298

DAE-Video PCC 0.9332 0.8959 0.8966
SCC 0.9429 0.9143 0.9175
RMSE 0.4281 0.4995 0.4681

(a) PCC (b) SCC

Figure 5.9: Box plot of the Pearson and Spearman Correlation Coeficients (PCC and SCC) gathered
from testing the FR and NR video quality metrics on the database from Experiment 1.

literature metrics.

Table 5.4 presents the Pearson and Spearman correlation coefficients, along with the

root mean square errors gathered from all video quality metrics under test. Similarly,

Table 5.5 presents the same set of results gathered from the audio quality metrics under
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Table 5.3: Pearson and Spearman Correlation Coefficients (PCC and SCC), and Root Mean Square Error
(RMSE) gathered from testing the FR and NR audio quality metrics on the database from Experiment
2.

Type Metric Measure Noise Chop Clip Echo All
Full-Reference VISQOL PCC 0.9851 0.9914 0.9939 0.9082 0.8416

SCC 1.0000 1.0000 1.0000 0.9000 0.8740
RMSE 2.0110 2.2403 1.8804 2.3340 2.1240

VISQOLAUDIO PCC 0.9820 0.9928 0.9993 0.8979 0.8541
SCC 1.0000 1.0000 1.0000 0.9000 0.8740
RMSE 1.9841 2.2387 1.8736 2.3177 2.1113

PEAQ PCC 0.8262 0.8841 0.8701 0.5915 0.7689
SCC 0.9000 1.0000 1.0000 1.0000 0.9011
RMSE 5.7925 5.7104 5.7503 6.1188 5.8452

No-Reference P.563 PCC 0.7626 0.8508 0.9886 0.9253 0.7486
SCC 0.8000 0.9000 1.0000 0.6000 0.6974
RMSE 0.7987 1.1537 0.8855 1.0952 0.9941

DAE-Audio PCC 0.8291 0.3632 0.9149 0.8711 0.7312
SCC 0.8200 0.2600 0.7700 0.7300 0.7082
RMSE 0.9725 1.0216 0.9497 1.1910 1.0502

(a) PCC (b) SCC

Figure 5.10: Box plot of the Pearson and Spearman Correlation Coeficients (PCC and SCC) gathered
from testing the FR and NR video quality metrics on the database from Experiment 2.

test. Both tables present results organized according to the type of distortion of interest.

From Table 5.4, it can be observed that the proposed audiovisual model presents a good

performance, in comparison to the other video quality metrics. In general, the proposed

model achieves a correlation above 0.88 at low error rates. Regarding the type of dis-

tortion, the model presented a better performance for frame freezing (0.91) compared to

packetloss (0.86). As for Table 5.5, results show a clear advantage of the proposed model

in comparison to the audio and speech quality metrics. This advantage was expected

since audio and speech metrics use only the audio component of the sequence to predict

the perceived quality. Regarding the audio distortions, the model presented a better per-

formance for chop and echo distortions (0.92 and 0.90). As for the combination models,

the proposed method also performs better and shows a clear advantage.
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Table 5.4: Pearson and Spearman Correlation Coefficients (PCC and SCC), and Root Mean Square Error
(RMSE) gathered from testing the FR and NR video quality metrics on the database from Experiment
3.

Type Modality Metric Measure Packet-Loss Frame-Freezing All
Full-Reference Video Psnr PCC 0.8997 0.8629 0.7694

SCC 0.9455 0.8833 0.7368
RMSE 19.2054 16.5837 18.0728

Video SSIM PCC 0.8563 0.3899 0.3620
SCC 0.8500 0.3727 0.3579
RMSE 2.7378 2.2027 2.4579

No-Reference Video DIIVINE PCC -0.8071 -0.8647 -0.8344
SCC -0.8182 -0.5167 -0.7519
RMSE 2.4662 2.9484 2.6939

Video VIIDEO PCC -0.7968 -0.9883 -0.8496
SCC -0.6729 -0.9234 -0.7834
RMSE 2.2337 2.6804 2.4449

Video BIQI PCC -0.8575 -0.9022 -0.8310
SCC -0.9382 -0.6000 -0.8799
RMSE 34.8427 32.6918 33.8917

Video NIQE PCC -0.7608 -0.9332 -0.8394
SCC -0.7798 -0.7289 -0.7195
RMSE 2.9388 2.4057 2.7119

Video BRISQUE PCC -0.7094 -0.9525 -0.8395
SCC -0.6360 -0.9662 -0.7728
RMSE 45.1371 41.4226 43.5049

Audiovisual Linear PCC 0.3919 0.5501 0.4431
SCC 0.2455 0.6333 0.3368
RMSE 10.5249 11.0035 10.7430

Audiovisual Minkowski PCC 0.2912 0.4594 0.3422
SCC 0.2091 0.6333 0.3143
RMSE 1.9879 2.4289 2.1973

Audiovisual Power PCC -0.6273 -0.6938 -0.6616
SCC -0.6727 -0.4333 -0.6075
RMSE 24.2614 23.7806 24.0462

Audiovisual DAE-AV PCC 0.8638 0.9167 0.8819
SCC 0.8773 0.9050 0.8904
RMSE 0.5931 0.5718 0.5850

For a better visualization of the results, Figure 5.11 (a) and (b) depicts bar plots

of the overall PCC and SCC values (over the 10 folds) for all metrics. Besides the high

correlation values presented by the proposed metric, it can observed that results presented

a small variation on both PCC and SCC coefficients. This shows that the results are very

consistent compared to the rest of the literature metrics.

These results backup the use of the autoencoder network approach for the signal

quality assessment. Further tests can be performed by using different types of training

parameters, which might lead to better results. Seeing that, it is clear that this is still an

open task which might lead to new quality assessment methods.

5.3.1 LiveNetflix-II Database Analysis

In order to validate the autoencoder network approach, the audiovisual quality model was

tested on a second database (LiveNetflix-II Database), provided by the Laboratory for

Image and Video Engineering (LIVE) at the University of Texas at Austin (UT Austin)
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Table 5.5: Pearson and Spearman Correlation Coefficients (PCC and SCC), and Root Mean Square Error
(RMSE) gathered from testing the FR and NR audio quality metrics on the database from Experiment
3.

Type Modality Metric Measure Noise Chop Clip Echo All
Full-Reference Audio VISQOLAudio PCC 0.7945 0.9909 0.7429 0.6844 0.6008

SCC 0.7000 1.0000 0.4928 0.5218 0.4781
RMSE 2.4702 2.2047 2.0815 2.2300 2.2464

Speech VISQOL PCC 0.6102 0.9915 0.5084 0.4963 0.4236
SCC 0.7000 1.0000 0.4928 0.5218 0.4645
RMSE 2.6143 2.2045 2.1639 2.3136 2.3341

Audio PEAQ PCC 0.7573 0.9347 0.8261 0.7096 0.7689
SCC 0.2000 1.0000 0.3189 0.3479 0.3437
RMSE 6.3196 5.1643 5.9748 6.0418 5.9704

No-Reference Speech P.563 PCC 0.7305 0.9964 0.9413 0.7752 0.7037
SCC 0.8000 1.0000 0.8407 0.4638 0.6367
RMSE 1.3415 1.3252 1.2310 1.2004 1.2650

Audiovisual Linear PCC 0.4520 0.9649 0.7718 0.0409 0.4431
SCC 0.6000 1.0000 0.3143 -0.2571 0.3368
RMSE 10.9449 10.7825 10.6525 10.6429 10.7430

Audiovisual Minkowski PCC 0.3032 0.9109 0.6881 -0.2842 0.3422
SCC 0.6000 1.0000 0.1429 -0.2571 0.3143
RMSE 2.3585 2.2612 2.0770 2.1419 2.1973

Audiovisual Power PCC -0.7187 -0.6990 -0.5271 -0.8383 -0.6616
SCC -0.6000 -0.5000 -0.6000 -0.7714 -0.6075
RMSE 23.7961 24.0376 24.2251 24.0783 24.0462

Audiovisual DAE-AV PCC 0.8879 0.9252 0.8794 0.9044 0.8819
SCC 0.9200 1.0000 0.8629 0.9086 0.8904
RMSE 0.5764 0.6125 0.5406 0.6013 0.5850

(a) PCC (b) SCC

Figure 5.11: Box plot of the Pearson and Spearman Correlation Coeficients (PCC and SCC) gathered
from testing the FR and NR video quality metrics, plus three Audiovisual combination models, on the
database from Experiment 3.

[127]. This database is composed of four hundred and twenty (420) sequences with audio

and video components at a Full HD resolution (1920 x 1080, 4:2:0, 24 fps). The videos

were processed from 15 source sequences at 7 different network conditions and 4 bitrate

adaptation strategies. No audio degradations were included. A total of 65 subjects rated

the overall audiovisual quality of the sequences. Regarding the content, a diverse set of

content material was used, such as action, documentary, video games, and sports. Figure
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(1) (2) (3) (4) (5)

(6) (7) (8) (9) (10)

(11) (12) (13) (14) (15)

Figure 5.12: Sample frames of the original videos from the LiveNetflix-II database.

5.12 depicts a set of representative frames of the original videos from the LiveNetflix-II

database.

The same FR and NR video quality metrics used for comparison previously were also

tested on the LiveNetflix-II database. Table 5.6 presents the Pearson and Spearman

correlation coefficients, along with the root mean square errors gathered from all quality

metrics under test. Results show that the proposed method performs better than the

other audio and video quality metrics achieving correlation coefficients above 0.85. These

results prove that the proposed model responds well and is able to produce accurate

predictions on a external database. Figures 5.13 (a) and (b) present the bar plots for

the average PCC and SCC values (over the 10 folds) for the tested metrics. As with the

test database (Experiment 3), results show that the proposed metric’s correlation values

varied very little across the simulations, which shows the consistency of the metric. We

believe the proposed metric can be used in real-time streaming environments, specially in

cases where audio distortions are expected to happen.

5.4 Discussion and Conclusions

Overall, this Chapter presented a set of three NR quality models: 1) a video quality

model, 2) an audio quality model, and 3) an audiovisual quality model. These models

were built following an autoencoder network approach, and they used the audiovisual

material, along with their subjective scores, used in the subjective experiments presented

in Chapter 4. The models were trained using a two-layer autoencoder plus a classification

function.

In general, the proposed quality models presented good results when predicting the

perceived quality of signals. More particularly, the NR video and audiovisual quality
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Table 5.6: Pearson and Spearman Correlation Coefficients (PCC and SCC), and Root Mean Square Error
(RMSE) gathered from testing the FR and NR audio quality metrics, plus three Audiovisual combination
models, on the external database LiveNetflix-II.

Type Metric Measure All
Full-Reference PSNR PCC 0.6981

SCC 0.6911
RMSE 32.2445

SSIM PCC 0.7333
SCC 0.7123
RMSE 2.3024

No-Reference DIIVINE PCC -0.8364
SCC -0.8106
RMSE 2.6126

VIIDEO PCC -0.6598
SCC -0.7153
RMSE 2.5265

BIQI PCC -0.4263
SCC -0.4724
RMSE 38.3084

NIQE PCC -0.7550
SCC -0.7701
RMSE 3.8324

BRISQUE PCC -0.7271
SCC -0.7115
RMSE 56.2907

DAE-AV PCC 0.8611
SCC 0.8599
RMSE 0.5929

(a) PCC (b) SCC

Figure 5.13: Box plot of the Pearson and Spearman Correlation Coeficients (PCC and SCC) gathered
from testing the FR and NR audio quality metrics, plus three Audiovisual combination models, on the
external database LiveNetflix-II.

models showed better performance when they were compared to the FR and NR video

quality metrics and some audio-visual methods found in the literature. As for the audio

quality model, its results were comparable to the standardized speech NR quality metric.

These results proved the value and capacity of the proposed models to predict the quality

of signals. For the particular cases of the audio and the audiovisual NR quality models,
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they represent an important contribution to the area of audio-visual quality assessment.
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Chapter 6

Conclusions

In this work, our goal was to investigate how to estimate the audiovisual quality using a no

reference autoencoder network approach. Inspired by previous works in the area [25], our

proposal used a set of audio and video feature descriptors as input to estimate the overall

audiovisual quality. These sets of features were passed on to a two-layer autoencoder that

produced a set of features of low dimension. Then, a classification function mapped these

features into subjective scores. As a final stage, the output of the model was processed

to compute the overall audiovisual quality.

For these experiments, a large group of audiovisual sequences were processed to add

different types of video and audio distortions, such as video coding, packet loss, and

frame freezing (visual component), and background noise, clip, echo, and chop (audio

component). This resulted in a test pool of 720 (Experiment 1), 800 (Experiment 2),

and 800 (Experiment 3) audiovisual sequences with their corresponding subjective scores.

The experiment results helped us analyze the level of impact certain artifacts have on the

perceived quality of the signal and the interaction between audio and video distortions.

Based on the proposed approach, three different NR models were presented: a NR

video quality model, a NR audio quality model, and a NR audiovisual quality model, this

was focus of the present work. The training of the models was described and their corre-

sponding results were compared against several FR and NR metrics from the literature.

Finally, the NR audiovisual quality model was tested on an external audiovisual database.

6.1 Summary of the Contributions

The main contributions of this work are:

• Generation and publication of three large databases of audio-visual stimuli, contain-

ing different audio and video distortions, and their corresponding subjective data.

These databases can be used for:
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– Comparison of audio-visual techniques,

– Training new ML-based quality assessment techniques,

– Exploring how humans perceive different types of artifacts, like for example

coding, packet loss and frame freezing artifacts.

• Development of a NR video quality assessment model based on an Autoencoder

Network approach. The model is able to predict, at a fair level of accuracy, the

perceived video quality for a variety of common visual distortions.

• Development of a NR audio quality assessment model based on an Autoencoder

Network approach. This model has a significant potential to produce better results

and it represents an important contribution given its non-intrusive nature.

• Development of a NR audiovisual quality assessment model based on an Autoen-

coder Network approach. This model is able to predict, at a good level of accuracy,

the perceived audiovisual quality over a variety of common audio and video dis-

tortions. This model is the main focus of this work, representing an important

contribution given the reduced number of models available in the current litera-

ture. Additionally, because of its non-intrusive nature, it serves as a base to the

development of better and more complex audiovisual quality assessment tools.

6.2 Future Work

Some activities for future work include:

• NR Video Quality Model

– Refining the training parameters to achieve the best possible performance of

the model.

– Searching and testing additional visual features with the objective of increasing

the set of descriptive features of the model.

– Training the model on different video databases in order to verify its perfor-

mance on different content and visual distortions.

• NR Audio Quality Model

– Refining the training parameters to achieve the best possible performance of

the model.
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– Searching and testing additional audio features with the objective of increasing

the set of descriptive features of the model.

– Training the model on different audio (speech) databases in order to verify its

performance on different content and audio distortions.

– Revise the model performance using a content classification module. More

specifically, by classifying and training individual models for specific content

like music, speech, and environmental sound.

• NR Audiovisual Quality Model

– Refining the training parameters to achieve the best possible performance of

the model.

– Searching and testing additional audio and visual features with the objective

of increasing the set of descriptive features of the model.

– Training the model on different audiovisual databases in order to verify its

performance on different content and audiovisual distortions.

– Explore the adaptation of the proposed approach with the objective of dealing

with the audio and video synchronization problem.
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Videos
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Figure I.1: Sample frames of original videos used in Experiment 1.
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Figure I.2: Sample frames of original videos used in Experiment 2.
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Figure I.3: Sample frames of original videos used in Experiment 3.
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Anexo II

Source Stimuli, Content Description
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Table II.1: Video content description

Sequence Sequence Length Video Content Audio Content Content Id

v01 Guy Sleeping 00:56 Random People Music 1
v02 Flamenco (Seq1) 00:33 People dancing Music 2
v03 Big Buck Bunny (Seq1) 00:37 Computer graphics Music, surround sound 3
v04 Big Buck Bunny (Seq2) 00:38 Computer graphics Music, surround sound 3
v05 Elephant (Seq1) 01:08 Computer graphics Music, speech, surround sound 4
v06 Elephant (Seq2) 00:42 Computer graphics Speech , surround sound 4
v07 France Tourism (Seq1) 00:39 Random people, landscape surround sound 7
v08 WomanDay (Seq1) 00:34 Slow motion scenes Soft music 18
v09 Taiwan (Seq1) 00:34 Landscape, fast motion Soft music 22
v10 Barca vs Atletic (Seq1) 00:39 Sports (Soccer match) Speech (narrative, background noise) 20
v11 FootMusic (Seq1) 00:33 Rock band playing rock music 17
v12 Atlanta Betline (Seq1) 00:43 Landscape, people talking Speech 15
v13 Taiwan (Seq2) 00:34 Landscape night, fireworks rock music 22
v14 Netflix El Fuente (Seq1) 00:35 Random people, landscape Music 24
v15 Box interview NTIA (Seq1) 00:31 Boxing, people talking Speech, surround sound 6
v16 Honey Bees (Seq1) 00:38 Bees in nature Music 11
v17 Barca vs Atletic (Seq2) 00:38 Sports (Soccer match) Speech (narrative, background noise) 20
v18 WomanDay (Seq2) 00:34 Slow motion scenes Soft music 18
v19 France Tourism (Seq2) 00:33 Random people, landscape surround sound 7
v20 Kenpo Strikes NTIA 00:31 Sports (kempo performance) minimal surround sound 8
v21 Box interview NTIA (Seq2) 00:33 Boxing, people talking Speech, surround sound 6
v22 Taipei Fireworks (Seq1) 00:55 Landscape night Soft music 21
v23 WomanDay (Seq3) 00:34 Slow motion scenes Soft music 18
v24 Taiwan (Seq2) 00:34 Landscape, fast motion Soft music 22
v25 Old Town Car NTIA 00:22 People, car car sound, speech 9
v26 Netflix El Fuente (Seq2) 00:35 Random people, landscape Music 24
v27 Barca vs Atletic (Seq3) 00:50 Sports (Football match) Speech (narrative, background noise) 20
v28 NTIA Violin (Seq1) 00:30 Violin performance Speech, violin music 23
v29 Netflix El Fuente (Seq3) 00:40 Random people, landscape Music 24
v30 Atlanta Betline (Seq2) 00:54 Landscape, people talking Speech 15
v31 Puppies (Seq1) 00:34 Puppies Music, surround sound 10
v32 Taiwan (Seq3) 00:34 Landscape, fast motion Soft music 22
v33 Big Green Rabbit 00:30 Computer graphics Music 13
v34 Movie Trailer Sintel 00:35 Computer graphics Speech, music, surround sound 5
v35 Honey Bees (Seq2) 00:42 Bees in nature Music 11
v36 Atlanta Betline (Seq3) 00:54 Landscape, people talking Speech 15
v37 Atlanta Betline (Seq4) 00:38 Landscape, people talking Speech 15
v38 Netflix El Fuente (Seq4) 00:40 Random people, landscape Music 24
v39 Landscape Fast 00:37 Landscape, fast motion Music 12
v40 Barca vs Atletic (Seq4) 00:40 Sports (Soccer match) Speech (narrative, background noise) 20
v41 FoxBird 00:30 Computer graphics Speech, music 16
v42 Fishing Florida (Seq1) 00:33 Random fishing scenes Music 14
v43 Kenpo NTIA 00:28 Sports (kempo performance) minimal surround sound 8
v44 Taipei Fireworks (Seq2) 00:51 Landscape night, fireworks rock music 21
v45 WomanDay (Seq4) 00:34 Slow motion scenes Soft music 18
v46 Netflix El Fuente (Seq5) 00:33 Random people, landscape Music 24
v47 NTIA Violin (Seq2) 00:33 Violin performance Speech, violin music 23
v48 Puppies (Seq2) 00:47 Puppies Music, surround sound 10
v49 Netflix El Fuente (Seq6) 00:33 Random people, landscape Speech, music 24
v50 Barca vs Atletic (Seq4) 00:40 Sports (Soccer match) Speech (narrative, background noise) 20
v51 Netflix El Fuente (Seq7) 00:49 Random people, landscape Music 24
v52 Food 00:37 Dishes and people Soft music 19
v53 France Tourism (Seq3) 00:33 Random people, landscape surround sound 7
v54 Netflix El Fuente (Seq8) 00:34 Random people, landscape Speech, music 24
v55 FootMusic (Seq2) 00:33 Rock band playing rock music 17
v56 Fishing Florida (Seq2) 00:33 Underwater scenes Music, speech, surround sound 14
v57 Big Buck Bunny (Seq3) 00:36 Computer graphics Music, surround sound 3
v58 Box interview (Seq3) 00:33 Boxing, people talking Speech, surround sound 6
v59 Elephant (Seq3) 00:40 Computer graphics Music, speech, surround sound 4
v60 Flamenco (Seq2) 00:33 People dancing Music 2
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Anexo III

Encoder parameters: AVC - HEVC
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Table III.1: Encoder parameters - AVC

Input YUV file : VideoFile.yuv

Output H.264 bitstream : CodedFile.264
Output YUV file : YuvFile.yuv
YUV Format : YUV 4:2:0
Frames to be encoded : 0
Freq. for encoded bitstream : 30
PicInterlace / MbInterlace : 0/0
Transform8x8Mode : 1
ME Metric for Refinement Level 0 : SAD
ME Metric for Refinement Level 1 : SAD
ME Metric for Refinement Level 2 : Hadamard SAD
Mode Decision Metric : Hadamard SAD
Motion Estimation for components : Y
Image format : 1280x720 (1280x720)
Error robustness : On
Search range : 32
Total number of references : 1
References for P slices : 1
References for B slices (L0, L1) : 1, 1
Sequence type : IPPP (QP: I 6, P 6)
Entropy coding method : CAVLC
Profile/Level IDC : (100,40)
Motion Estimation Scheme : EPZS
EPZS Pattern : Large Diamond
EPZS Dual Pattern : Extended Diamond
EPZS Fixed Predictors : All P
EPZS Aggressive Predictors : Disabled
EPZS Temporal Predictors : Enabled
EPZS Spatial Predictors : Enabled
EPZS Threshold Multipliers : (1 0 1)
EPZS Subpel ME : Basic
EPZS Subpel ME BiPred : Basic
Search range restrictions : none
RD-optimized mode decision : used
Data Partitioning Mode : 1 partition
Output File Format : H.264/AVC Annex B Byte Stream Format
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Table III.2: Encoder parameters - HEVC

Input File : VideoFile.yuv

Bitstream File : CodedFile.265
Reconstruction File : YuvFile.yuv
Real Format : 1280x720 30Hz
Internal Format : 1280x720 30Hz
Frame/Field : Frame based coding
Frame index : 0 (0 frames)
CU size / depth : 64 / 4
RQT trans. size (min / max) : 4 / 32
Max RQT depth inter : 3
Max RQT depth intra : 3
Min PCM size : 8
Motion search range : 32
Intra period : 16
Decoding refresh type : 0
QP : 32
Max dQP signaling depth : 0
Cb QP Offset : 0
Cr QP Offset : 0
QP adaptation : 0 (range=0)
GOP size : 4
Internal bit depth : (Y:8, C:8)
PCM sample bit depth : (Y:8, C:8)
RateControl : 1
TargetBitrate : 204800
KeepHierarchicalBit : 2
LCULevelRC : 1
UseLCUSeparateModel : 1
InitialQP : 0
ForceIntraQP : 0
Max Num Merge Candidates : 5
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