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Abstract: Aluminium alloys form many important structural components, and the addition of
alloying elements contributes to the improvement of properties and characteristics. The objective
of this work is to study the influence of thermal variables on the microstructure, present phases,
microhardness, dynamic modulus of elasticity, and damping frequency in unidirectional solidification
experiments, which were performed in situ during the manufacturing of Al–0.8 Nb and Al–1.2 Nb
(wt.%) alloys. Experimental laws for the primary (λ1) and secondary (λ2) dendritic spacings for
each alloy were given as a function of thermal variables. For Al–0.8%wt Nb, λ1 = 600.1(Ṫ)−1.85 and
λ2 = 186.1(VL)−3.62; and for Al–1.2%wt Nb, λ1 = 133.6(Ṫ)−1.85 and λ2 = 55.6(VL)−3.62. Moreover,
experimental growth laws that correlate the dendritic spacings are proposed. An increase in dendritic
spacing influences the solidification kinetics observed, indicating that metal/mold interface distance
or an increase in Nb content lowers the liquidus isotherm velocity (VL) and the cooling rate (Ṫ). There
is also a small increase in the microhardness, dynamic modulus of elasticity, and damping frequency
in relation to the composition of the alloy and the microstructure.

Keywords: Al–Nb alloys; microstructure characterization; dendritic spacing; unidirectional
solidification

1. Introduction

Materials engineering still faces major challenges in the modern world. There are a great variety
of metal alloys, many of which are used due to their excellent properties. The importance of metallurgy
field is evident, all metals, except for sintered parts, undergo a process of phase transformation and
solidification during manufacturing, whether they are cast into shaped molds or produced into ingots.
Alloys are studied with the aim to reduce weight, improve the combinations of mechanical properties,
and predict their mechanical behaviour, such as damping capacity. Damping has practical engineering
importance in limiting the amplitude of vibration at resonance conditions, and thereby reducing the
probability of fatigue failure or it is capable to increase fatigue lives. Turbine blades, crankshafts,
and overhead conductors are the typical applications where knowledge about damping capacity is
crucial [1–6].

Nowadays, Nb applications in aluminum alloys continuously increase, with about 10% growth
per year in the energy, automotive, and construction sectors [7]. The alloys contained in their Nb
composition attract interest because of the potential to resist different types of corrosive media, from
marine atmospheres to oxidizing atmospheres [8–10].
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Brazil has the largest niobium reserves in the world, with 98.53% of the world total [7]. Alloys with
Nb addition show that they may be a promise in the substitution of Ni-based alloys. Al–Nb known
system properties are desirable in order to show where its application will be better. The literature
review indicates that information on the subject is limited such as, microstructural and mechanical
properties, dynamic properties, thermal properties, intermetallic formed, among others [11,12].

When it comes to non-ferrous alloys, such as Ni–Ti–Nb–Al, recent studies have shown that the
casting of aluminium promotes the diffusion of Nb. Thus, the high-temperature mechanical properties
of alloys with structural Nb additions can be altered and possibly improved by rapid solidification
under supercooled conditions. The process can be used to obtain finer and more homogeneous
microstructures, as well as to change the path of solidification and reduce the formation of fragile
phases. Hutchinson et al. observed that the addition of a small amount of Nb (<0.1 wt.%) to Al alloys
causes significant variations in the mechanical properties [13–16].

However, the Al–Nb binary system attracts interest, although there is limited information
on the thermodynamic properties and some phases still without complete identification [4,12,17].
Hu et al. [11] in their review of the Al–Nb system, show that one of the most important information
in the experimental phase diagram comes from the work of Jorda et al. [18]. In this context, recent
studies propose that the solubility limits of Al3Nb, AlNb3, and AlNb2 phases are higher than the
values accepted in the literature [12,17,19].

New solid phase emergence characterizes the beginning of solidification. The emergence and
subsequent growth of solid particles characterizes the microstructure formation in metals and metal
alloys at successive moments, such that kinetics, thermal, chemical, and thermodynamic aspects are
strongly related [20].

Molten metals have a common structural form, which is dendritic growth and dendrites cooling
degree, by interfering with the size and shape of the structure, which directly influences the mechanical
properties, corrosion resistance, and subsequent heat treatments of the molten products. These
structures are formed with solute content very different from the average of the alloy. This difference
in solute concentration from the center of the dendrites to the interdendritic region is caused by the
difference in solubility between the liquid and solid phases [21].

The determination of thermal parameters that act during solidification—such as temperature
gradient (GL), liquidus isotherm velocity (VL), and cooling rate (Ṫ)—is important due to the growth of
cellular structures at slow cooling rates. If the GL is smaller and the VL is increasing, the supercooled
region is extended and the cellular structures begin to transform into dendritic structures [22–24].
In the solidification process, one of the paramount parameters is the dendritic spacing, λ. This
affects both the microsegregation and the development of secondary phases within the interdendritic
regions, and thus influences the mechanical properties of the structure [25]. Under some processing
conditions, substantial heat extraction occurs that leads to a change in dendritic morphology, resulting
in grain nucleation or lateral growth (giving primary (λ1) and secondary (λ2) dendritic arms). During
solidification, the microstructural formation depends on the local thermal field, specifically the thermal
gradient and the rate of solidification. With the local thermal conditions, the solidification morphology
is generally characterized as planar, cellular, or dendritic [26].

This study evaluates the in situ production of two alloys, Al–0.8 Nb and Al–1.2 Nb (wt.%), which
were solidified in an ascending unidirectional solidification device to obtain a consistent microstructure.
The fusion, present phases, and the correlation with the thermal parameters were evaluated, and the
dynamic elastic modulus, damping frequency, and microhardness were analyzed as a function of
the microstructure.

2. Experimental Procedure

Experiments were carried out with Al–0.8 Nb and Al–1.2 Nb (wt.%) alloys. The alloys were
prepared with commercially pure metals; the bulk percentages of the major elements, obtained
by X-ray fluorescence spectrometry (Shimadzu EDX 720 HS, Kyoto, Japan), are shown in Table 1.
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The composition of the two alloys was designed by stoichiometric calculation, and all elements were
weighed by an analytical balance with a precision of 0.01g. Then, the metals were melted in an electric
furnace for dissolution of the components and homogenization of the alloys.

Table 1. Chemical composition (wt.%) of the metals used to prepare the alloys.

Metals Al Nb Fe Si S Ca Ho Ni Others

Aluminium balance - 0.23 0.3 0.03 - - - 0.04
Niobium - balance - - - 0.31 0.17 0.06 -

A schematic representation of the unidirectional solidifying device is shown in Figure 1. It is
constituted by a cooling system (1, 2, and 3), a mold plate (4), and an ingot (5). The ingot is made of
314 stainless steel and has a square cross-section of 65 mm and a length of 100 mm and a 3 mm wall
thickness. The mold plate was manufactured using a 1020 steel plate with 3 mm thickness. The cooling
system is coupled to the mold plate to keep the temperature constant (at 23 ◦C) during the experiment.
This device was kept inside a furnace capable of reaching a temperature of 1200 ◦C by means of two
independently controlled zones of electrical resistance. The ingot was instrumented with seven type K
thermocouples, positioned at 8, 10, 14, 18, 22, 27, and 35 mm from the refrigerated mold plate, which
were connected to a data logger interface with a computer and the temperature data were acquired.
Thermal data acquired in the casting were monitored during solidification with a frequency of 1 Hz.
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Figure 1. Schematic drawing of the unidirectional solidification device. 1—Water inlet, 2—water outlet,
3—cooling chamber, 4—plate mold, 5—ingot.

The alloy was previously prepared in a muffle furnace, where the liquidus temperature (TL)
was measured, and subsequently poured into the mold in the liquid state. For the experiment, the
alloy was remelted inside the experimental furnace, avoiding the convection caused by the initial
leak. The cooling system was triggered when the temperature of the first thermocouple reached a
value 5% higher than the measured TL, ensuring that the whole alloy was in the liquid state, thus
promoting solidification in a vertical and ascending manner. The mold plates were polished to ensure
the same contact surface with the solidified metal for both alloys. In this way, the procedures and
analyses performed resemble and corroborate with the recent solidification studies found in the
literature [27–36].

In order to examined the macro and microstructures, metallographic techniques were used
according to ASTM E3-11 [37]. The ingots were sectioned on a midplane, grinded, polished, and
etched with a Flick solution (10 mL HF, 15 mL HCL, and 10 mL H2O) for macroscopy examination.
The evaluated microstructures were taken from the center of the ingot to ensure directionality
for the measurement of dendritic spacings by the method proposed by Gunduz and Çadirli [38].
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Transverse sections, perpendicular to the growth direction, from the directionally solidified specimens
at different positions along the ingot length were polished and etched with Keller solution (2 mL
HF, 3 mL HCL, 5 mL HON3, and 190 mL H2O) for measurement of primary dendritic spacings and
longitudinal section for measurement of secondary dendritic spacings. The image processing was
carried out using the Olympus LEXT OLS 4000 confocal laser microscope (Shinjuku, Japan). At least
40 measurements were performed for each selected position for l1 and 50 measurements for l2, for both
alloys. For the determination of the dynamic elastic modulus and damping frequency, the impulse
excitation technique was used (Sonelastic, ATCP Physical Engineering) following ASTM E1876-09 [39].
For the microhardness test, 20 random indentations were performed on each sample with 50 gf load
with an EmcoTest microdurometer (model DuraScan 20) according to the norm ASTM E384-08 [40].
X-ray diffraction (XRD, Bruker Smart Apex) was carried out over a wide range of diffraction angles
(2θ = 20◦ to 120◦), with an angular pitch of 0.05◦ and a counting time per point equal to 2.4 s.

3. Results and Discussions

3.1. Thermal Variables

Figure 2a,b shows the typical cooling curves acquired during the upward directional solidification
for alloys Al–0.8 Nb and Al–1.2 Nb (wt.%) and the liquidus temperature (TL) measured for alloys
were 645.8◦ and 653.39◦ (Celsius), respectively. It can be observed that the Al–0.8 wt.% Nb alloy
solidifies more quickly than Al–1.2 wt.% Nb, probably as a function of thermal diffusivity and solute
redistribution. The experimental cooling curves refer to thermocouples located at specific distances
(P in mm) from the cooled metal/mold interface.
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Figure 2. Experimental cooling curves for (a) Al–0.8 Nb and (b) Al–1.2 Nb (wt.%) alloys during
unsteady-state directional solidification.

By plotting the time at which the liquidus isotherm passes through a certain position against the
height of the corresponding thermocouple, velocity curves of the liquidus isotherm were obtained
as a function of position, as shown in Figure 3. The cooling rate (Ṫ) was obtained by dividing the
temperature difference by the time difference (Ṫ = ∆T/∆t) of the two points as the liquidus isotherm
passed their positions [41] according to Figure 4.



Metals 2019, 9, 713 5 of 15Metals 2019, 9, x FOR PEER REVIEW 5 of 16 

 

0 5 10 15 20 25 30 35 40
1,0

1,1

1,2

1,3

1,4

1,5

1,6

1,7

1,8

1,9

2,0
 Al0.8% wtNb
 VL=2.325(PL)-0.144

 Al1.2% wtNb
 VL=1.940(PL)-0.144

V
L(m

m
/s

)

Position (mm)  

Figure 3. Speed of the liquidus isotherm. 

 

Figure 4. Cooling rate as a function of position from the metal/mold interface. 

The curves of the thermal variables VL and Ṫ (Figures 4 and 5) have a decreasing profile from the 
moment they move away from the metal/mold interface. This phenomenon occurs as the solidified 
layer creates a solid/liquid interface, thereby increasing the thermal resistance of the solid, making it 
difficult for heat to travel toward the mold. The thermal gradient at the front of the solid/liquid 
interface indicates how the temperature is distributed per unit length, as shown in Figure 5. 

 

Figure 5. Thermal gradient as a function of position from the metal/mold interface. 

Figure 3. Speed of the liquidus isotherm.

Metals 2019, 9, x FOR PEER REVIEW 5 of 16 

 

0 5 10 15 20 25 30 35 40
1,0

1,1

1,2

1,3

1,4

1,5

1,6

1,7

1,8

1,9

2,0
 Al0.8% wtNb
 VL=2.325(PL)-0.144

 Al1.2% wtNb
 VL=1.940(PL)-0.144

V
L(m

m
/s

)

Position (mm)  

Figure 3. Speed of the liquidus isotherm. 

 

Figure 4. Cooling rate as a function of position from the metal/mold interface. 

The curves of the thermal variables VL and Ṫ (Figures 4 and 5) have a decreasing profile from the 
moment they move away from the metal/mold interface. This phenomenon occurs as the solidified 
layer creates a solid/liquid interface, thereby increasing the thermal resistance of the solid, making it 
difficult for heat to travel toward the mold. The thermal gradient at the front of the solid/liquid 
interface indicates how the temperature is distributed per unit length, as shown in Figure 5. 

 

Figure 5. Thermal gradient as a function of position from the metal/mold interface. 

Figure 4. Cooling rate as a function of position from the metal/mold interface.

The curves of the thermal variables VL and Ṫ (Figures 4 and 5) have a decreasing profile from the
moment they move away from the metal/mold interface. This phenomenon occurs as the solidified
layer creates a solid/liquid interface, thereby increasing the thermal resistance of the solid, making
it difficult for heat to travel toward the mold. The thermal gradient at the front of the solid/liquid
interface indicates how the temperature is distributed per unit length, as shown in Figure 5.
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To ensure sequential solidification along the ingot and to prevent the growth of equiaxial grains in
areas of constitutional sub-cooling within the molten liquid, a high thermal gradient is needed during
the solidification process [42]. This gradient also reduces segregation and allows the materials to be
used at higher operating temperatures [43].

3.2. Macrostructure

Figure 6 shows the solidification macrostructure of alloys Al–0.8%wt Nb and Al–1.2%wt Nb.
The macrostructure is composed of columnar grains. This directionality is due to the flow of heat
extraction, which confirms the unidirectional solidification. The amount of Nb studied does not seem
to be enough to cause grain refinement under the solidification conditions of the experiments.
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3.3. Microstructure

Figure 7 shows the optical images of the longitudinal and transverse microstructures of the alloys
Al–0.8%wt Nb and Al–1.2%wt Nb. The images are associated with thermal parameters such as, VL

and Ṫ, and the dendritic spacings λ1 and λ2. The higher the velocities and cooling rates, the nearer the
plate mold gives a refinement of the microstructure. Once the thermal resistance increases due to the
formation of the solidified layer, the dendritic formation profile increases. As such, the primary and
secondary dendritic spacings increase along the ingot; however, it is possible to identify that although
the alloy with 1.2%wt Nb presents lower rates and velocities this also has smaller spacings, which
leads to believe that Nb may have influenced this parameter.
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Figures 8 and 9 show the values of the experimental laws of the primary and secondary dendritic
spacing for alloys Al–0.8%wt Nb and Al–1.2 Nb as a function of the distance from the plate mold.
The error bar is related to the standard deviation obtained from 50 measurements for each position.
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metal/mold interface, for alloys Al–0.8%wt Nb and Al–1.2 Nb.

Figures 10 and 11 show the correlation of the thermal parameters with the experimental values
of the primary dendritic spacing (λ1) for alloys Al–0.8%wt Nb and Al–1.2 Nb as a function of the
cooling rate. The figure indicates that with more refined spacings, there is an increase in the values of
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these thermal parameters. It can be observed from Figures 10 and 11 that there is a high correlation
coefficient (R2 > 0.9) between the points and the plotted curve.Metals 2019, 9, x FOR PEER REVIEW 9 of 16 
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Figures 12 and 13 show the experimental values of the secondary dendritic spacing (λ2) for alloys
Al–0.8 Nb and Al–1.2 Nb (wt.%) as a function of the liquidus isotherm velocity. The functions obtained
for the experimental law of growth’s spacing λ2 characterize potential functions, where there is a high
coefficient of correlation (R2 > 0.9) between the points and the plotted curve.
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3.4. Characterisation: Microhardness, Dynamic Modulus of Elasticity, Damping Frequency, and XRD

Figure 14 shows the obtained microhardness values for alloys Al–0.8 Nb and Al–1.2 Nb (wt.%) as
a function of the primary dendritic spacing. The microhardness measurements along the ingot did not
show significant changes with the change in microstructure, remaining at an average value of 42.7 HV
for Al–0.8%wt Nb alloy and 44 HV for Al–1.2%wt Nb alloy. There is no difference in the microhardness
values as the volumetric amount of the intermetallic is insufficient to strengthen the microstructure.
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Figure 15 shows the experimental values obtained by the impulse excitation test for the (a)
modulus of elasticity, (b) the damping frequency, and (c) damping, in relation to the position of the
metal/mold interface. Both the internal and external variables are directly dependent on the rate of
heating and cooling, frequency, grain size, and the presence of precipitates [44–46]. The addition of
Nb provided an approximately 70% increase in Al–1.2 wt.% Nb alloy’s damping (Figure 15c) forming
a larger number of Al3Nb as shown by XRD. It indicates that the precipitate can be the reason of
this increase.Metals 2019, 9, x FOR PEER REVIEW 12 of 16 
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Figure 15. (a) The modulus of elasticity, (b) the damping frequency, and (c) damping, in relation to the
position of the metal/mold interface.

The XRD analyses presented in Figure 16 were performed with the objective of characterising the
crystalline phases present in the microstructure of the alloys. According to the Elliott [47] diagram,
the intermetallic phase identified using XRD was Al3Nb, as shown in Figure 16. The intensity of the
Al3Nb peaks in the studied alloys confirms that the Al–0.8 wt.% Nb alloy has a smaller volumetric
fraction of the Al3Nb solid solution. Thus, the damping seems to be influenced by the quantity of this
volumetric fraction. Furthermore, Figure 14a–c suggests that it may also influence the microhardness.
However, there was no significant change in the modulus of elasticity, as shown in Figure 15a.



Metals 2019, 9, 713 13 of 15Metals 2019, 9, x FOR PEER REVIEW 13 of 16 

 

20 40 60 80 100 120

Nb AlAl3Nb

2θ

 Al0.8% wtNb

Al3Nb

Nb

Al3Nb

Al

Al

Al3Nb
Al3Nb

Al3Nb

In
te

ns
ity

 (a
.u

)

 Al1.2% wtNb

Al3Nb

 

Figure 16. X-ray diffraction (XRD) of the alloys Al–0.8 Nb and Al–1.2 Nb (wt.%). 

4. Conclusions 

The Nb content in the alloy influenced the characteristics related to the solidification kinetics, 
indicating that with the Nb addition, the spacings were more refined with the decrease in the values 
of the thermal parameters (𝑇ሶ  and VL). The primary dendritic growth of the alloys Al–0.8 Nb and Al–
1.2 Nb (% wt), solidified in the upward unidirectional solidification device, can be represented by the 
experimental laws: λ1 = 600.1(𝑇ሶ )−1.85 and λ1 = 133.6(𝑇ሶ )−1.85, respectively. The experimental laws obtained 
for secondary dendritic growth: λ2 = 186.1(VL)−3.62 and λ2 = 55.6(VL)−3.62, respectively for 0.8%wt Nb and 
1.2%wt Nb. 

The Nb content and the thermal variables had tiny influence on the microhardness values, with 
average values of 42.7 HV and 44 HV, respectively for alloys with 0.8%wt Nb and 1.2%wt Nb. 

The increase in the volumetric fraction of Al3Nb seems to influence the damping frequency and 
the damping, with increases of 18% and 70%, respectively. However, no significant differences were 
observed in the elastic modulus (71.07 GPa and 72.16 GPa, respectively for 0.8%wt Nb and 1.2%wt 
Nb) indicating that further studies are needed to clarify the influence of Al3Nb on the Al–Nb alloy 
properties.  
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