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Abstract

Facial appearance affects how humans interact. It is how relatives are visually identi-
fied to determine how social interactions proceed. Humans can identify kin relations based
only on the face. Intrinsically, giving the ability to detect kin relations to computers can
improve their usefulness in our daily lives. This research proposed a solution to the kinship
verification problem with a novel non-context-aware approach using a dataset with large
age variation by applying our proposed method Deep Linear Metric Learning(DLML). Our
method leverages multiple deep learning architectures trained with massive facial datasets.
The knowledge acquired on traditional facial recognition tasks is re-purposed to feed a linear
metric learning model. The proposed method was able to achieve better performance than
other context-aware methods on tests that are inherently more difficult than the ones used on
previous methods with the UB Kinface dataset. The results show that our method can use the
knowledge of deep learning architectures trained to perform mainstream facial recognition
tasks with massive datasets to solve kinship verification on the UB Kinface database with
robustness towards large age differences present on the dataset. Our method also offers en-
hanced applicability when compared to previous methods on real-world situations, because
it removes the necessity of knowing/detecting and treating large age variations to perform
kinship verification.
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Chapter 1

Introduction

Different from the most common facial recognition approaches that mostly try to com-
pare similarity, kinship verification is more complicated to solve because people with dis-
similar appearances can be kin and people with similar appearances can be non-kin at
all [Shao et al. 2011] [Georgopoulos et al. 2018] [Kohli et al. 2017] [Lu et al. 2014]. For in-
stance, on Figure 1.1, pairs a-b and c-d are non-kin similar people, this proximity between
facial characteristics provides a complex challenge for facial recognition models because it
is necessary to identify what features can signal a kin relation to avoid false positives like the
ones that it could easily occur between pairs a-b and c-d, for example.

Despite the difficulties to perform kinship verification, humans can identify kinship re-
lations at a higher rate than chance, but it is not clear how [Dehghan et al. 2014]. In this
research is also added the additional factor of large age variations with the UB Kinface
dataset [Shao et al. 2011].

Since the old parent’s face structure is transformed when compared to when they were
young [Shao et al. 2011], the age difference increases the distance between the face of child-
old parent making it more difficult to identify the kin relation. On Figure 1.2, it is possible
to observe two examples of pairs of images (a-b and c-d) that because of the large age differ-
ences it would easily prompt a false negative if the model is based solely on the raw facial dis-
tance. The age difference present on the UB Kinface dataset makes the problem more chal-
lenging [Shao et al. 2011], and it has been treated separately by previous methods available
on the literature [Georgopoulos et al. 2018] [Kohli et al. 2017] [Xia 2012] [Yan et al. 2014]

[Yan et al. 2015] [Lu et al. 2014] [Xia et al. 2011] [Shao et al. 2011] [Kohli et al. 2012].

A key factor that inspired this research is the fact that all the other solutions for kinship
verification with large age variations using the UB KinFace database, either try to preprocess
the face of the old parent to approximate it to the child face as shown in Figure 1.3, or
trained the same method twice, one for the child-young parent pairs, and another for child-
old parents pairs like on Figure 1.4.

Our complete DLML proposed method is displayed on Figure 1.6. The method is divided

1



Figure 1.1: Images of similar non-kin people, a) to b), and c) to d) - images obtained from:
https://goo.gl/qsgRFU, https://goo.gl/6tnHkN, https://goo.gl/wAhHv8.

Figure 1.2: Images of kin people with large age difference- images obtained
from: https://goo.gl/6tnHkN, https://goo.gl/wAhHv8, https://goo.gl/AE3E4d,
https://goo.gl/fpU3Cj.

2



Figure 1.3: Approach of previous methods that approximate the old parents face from the
child face by reducing aging effects. Desired outputs are showed at last stage.

Figure 1.4: Approach of previous methods that trained and tested the same method separately
for child-young parent and child-old parent pairs with desired outputs.

Figure 1.5: Approach of of our method that it does not treat differently child-young parent
and child-old parents pairs.

3



into four stages:

• Face Alignment-MTCNN: Faces are detected and cropped using a Multi-Task Con-
volutional Neural Network(MTCNN) [Zhang et al. 2016]. The first phase will provide
a picture of the face with 160x160 size as output.

• Feature Extraction-FaceNet: The processed images are then fed onto a
FaceNet [Schroff et al. 2015] [Sandberg 2018] implementation that is going to gen-
erate embeddings of 128 dimensions of the face.

• Feature subtraction: The extracted features are subtracted to create an array of 128
dimensions that represents the distance between two faces.

• Linear model: Finally, the distance array of 128 dimensions is fed onto a linear
model that is going to provide a boolean output informing if the two people are kin or
not.

Figure 1.6: The complete proposed method to perform kinship verification.

1.1 Applications

Among the applications of kinship verification it is possible to cite:
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• On passports checks because it is necessary to differentiate kin people. Kinship verifi-
cation can be used to improve facial recognition models that are sensitive to this type
of situation [Georgopoulos et al. 2018].

• Identifying the parents of lost children and orphans to help the work of law enforce-
ment agencies [Lu et al. 2014].

• Improving target ads by using the preferences of their kin people to provide a more
personalized experience [Georgopoulos et al. 2018].

• To organize family photos detecting kin relations on pictures.

• To search for relatives in public datasets [Kohli et al. 2017].

• To allow make-up artists to modify the appearance of two people in a way that they
seem blood-related [Georgopoulos et al. 2018].

Our method offers a more practical and simple solution to all of these applications because
it discards the need for detecting large age differences.

1.2 Contributions

The contributions of this research are:

• Deep Linear Metric Learning: Until now, all the past solutions have treated kinship
verification with large age variations using the UB Kinface dataset as two separate
problems, identify a child-young parent kin relation, and identify a kin relation be-
tween child-old parent. Our novel DLML method offers a new and more practical
solution for kinship verification problem with large age variations, by using an all in
one approach that enhances applicability on real-world situations.

• Transfer learning: The results confirmed that the features extracted by our FaceNet
model trained with VGGFace2 to perform facial recognition can be re-purposed to
perform kinship verification with robustness towards large age variations present on
the UB Kinface dataset by applying our linear metric learning approach.

• Results: The results provided by this research showed that the proposed DLML
framework can identify kinship relations despite large age differences and with better
performance than multiple other methods.

1.3 Final considerations

On this chapter, the kinship verification with large age variation problem tackled by this
research was presented and explained why it is a difficult problem, the components of the

5



proposed DLML method were explained in a high level. A few applications and the main
objectives of the research were presented. The contributions of the research are also cited at
the end of the chapter.

It is important to highlight that this research does not have the purpose of discussing/ex-
ploring how the kinship relation is detected, only to perform the task. The reason for that is
because as stated by [Dehghan et al. 2014], it is not clear how humans can identify kinship
relations, because of that, trying to understand how these process works are usually treated
as a different type of research. Exploring why the kinship relation exists is an interesting
next step for this research, but it is something that on this moment has not yet explored.

6



Chapter 2

Background

This chapter will present in high level the main resources used on this research.

2.1 The Artificial Neuron

All of our architectures are based on the first artificial neuron model was presented at the
decade of 1940, [McCulloch and Pitts 1943], even today this is one of the most used models
on artificial intelligence [Goodfellow et al. 2016]. It is inspired by the brain and tries to
mimic how human neurons are activated [Rosenblatt 1958]. It can also be called the neuron
element [Widrow and Hoff 1960].

Figure 2.1: The artificial neuron

y =

j∑
i=1

wi × xi + w0 (2.1)

As shown at the Equation 2.1 the artificial neuron receives multiple inputs(x1, x2...xn),
each input is multiplied by a correspondent weight(w1, w2...wn), the results are summed up;
a bias(w0) is added to improve the freedom of the model; the outcome of this sum (y) act as
an input to an activation function that will decide if the artificial neuron should be activated
or not [Rosenblatt 1958].

7



2.1.1 Rectified Linear Unit

Our FaceNet and MTCNN models use one of the most successful activation functions,
the Rectified Linear Unit (ReLU) [Goodfellow et al. 2016]. This function is heavily inspired
by how neurons work. As presented on the Equation 2.2, the output of the artificial neu-
ron is going to be the maximum value between the sum of inputs and weights (y) and
0 [Goodfellow et al. 2016]. At the Figure 2.2, it is possible to observe that the (w0) bias
is going to set the point of activation of the output, where the output starts to increase ac-
cordingly to the input stimulus.

Figure 2.2: ReLU - Rectified Linear Unit Activation Function

Out = max(0, y) (2.2)

2.1.2 Leaky Rectified Linear Unit

−4 −2 2 4

−2

2

4

f(x)=x

f(x)=ax
x

y

Figure 2.3: Leaky ReLU function: Before activation the information the function is defined
by:f(x) = ax, and after: f(x) = x
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Our linear metric learning model activation function is a variation of the ReLU, the Leaky
Rectified Linear Unit (Leaky ReLU) [Xu et al. 2015] is used on the last stage of the model on
Figure 1.6, and it is very similar to the ReLU activation function, the only difference is that
before the activation the output is defined by a function instead of zero as shown in Figure
2.3. By using a different function before activation loss of information is avoided while the
output is not active.

2.1.3 Training

One of the main tasks on the artificial neuron model is to find the best value for the
weights that will ensure the right output; this process is called training. On training, the
artificial neuron receives inputs that have the desired outputs informed. Each time that
the output is wrong, the error is calculated by a given function, and the weights are ad-
justed [Goodfellow et al. 2016] [Rosenblatt 1958] [Widrow and Hoff 1960]. This strategy
of training is called supervised learning, and after finished, the artificial neuron can operate
without having the desired output informed [Goodfellow et al. 2016].

2.1.4 Loss

Loss functions used on training to measure the performance of the prediciton, saying
how far the answer is from the desired [Goodfellow et al. 2016]. The values provided by
this function will be used on an otimization function in order to try to find the minimum
value of the loss function by adjusting the weights. The most common optimization method
function for multi-layer ANN’s is called backpropagation.

2.2 Artificial Neural Networks-(ANN)

The artificial neuron is a feed-forward model that works as a linear classifier, and because
of that, it can only learn simple tasks. It can find out how to mimic an AND function, but it
can not learn how to classify one image. To overcome that problem researchers connected
multiple layers of artificial neurons(Figure 2.4. That way it is possible to solve complicated
problems like image classification [Goodfellow et al. 2016]. When working with images, the
inputs(i0, i1, i2, i3, i4) would usually refer to a value between 0 and 255 if the data is black
and white, or a vector of three values between 0 and 255 if the image has color information.

With the addition of more layers, the training process is more complicated. Identify
what contribution one intermediate/hidden layer has to the error on the output becomes
a challenge. It is necessary to understand what is the role of that layer in the whole
process. The most efficient way to do that task is with a technic called backpropaga-
tion [LeCun et al. 1989] [Goodfellow et al. 2016]. Since the outcome of one layer is a func-
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Figure 2.4: ANN - Artificial Neural Network

tion of the input of the previous layer, it is conceivable to use a cost function that represents
the error and using the derivatives of this function to discover how much each layer con-
tributes to the error of the output. After this information is acquired, it is possible to adjust
the weights of each layer to improve the result. When working with images, the ANN learns
how to extract features of the data on this process [LeCun et al. 2010].

2.3 Backpropagation

As the name suggests, the backpropagation algorithm is a technic to propagate errors
back. The method treats each layer of the network as an independent function, and by as-
suming that, it is possible to use the chain rule of derivatives in order to understand how each
layer is responsible for the error on the last layer [Goodfellow et al. 2016]. One of the most
common methods for backpropagation is called gradient descent, this method tries to find
the minimum of the loss function. There are also multiple variations of this method, and on
this paper the standard backpropagation and the Adam [Kingma and Ba 2015] version are
used.

2.4 Deep Learning

The first studies on artificial intelligence solved problems describing a list of formal
mathematical rules. That is also known as the classical approach to artificial intelligence.
That is exceptional for situations that it is possible to model your problem in mathematical
rules, but not useful when dealing with problems that require intuitive knowledge such as
face recognition and other computer vision tasks [Goodfellow et al. 2016].
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Deep learning is a category of machine learning that uses artificial neural networks
with many layers of artificial neurons, thus the name deep learning. Because of their
depth, these models can solve problems that require intuitive knowledge. With that, it
is possible to learn complex concepts without the necessity of model them into mathe-
matical rules. Intermediate layers can be trained efficiently using backpropagation algo-
rithms [LeCun et al. 2010]. Deep learning models can also be called the modern approach
to artificial intelligence [Goodfellow et al. 2016].

Figure 2.5: Deep neural network performing face classification - source: [Guo et al. 2016]

Figure 2.5 illustrates a trained deep neural network performing face recognition, where
the face of the person of the class P0 is submitted to the system. The system will process the
data using three hidden layers, and one output layer, to then give a positive result for the P0
output and a negative result for the remaining classes(P1, P2, P3).

With the recent advances in deep learning, computers were able to provide results that
are greater than a person in computer vision tasks such as face recognition and image classi-
fication [LeCun et al. 2010].

2.5 Convolutional Neural Networks-(ConvNets)

Convolutional neural networks are one of the most successful artificial neural net-
work architectures for feature extraction. These networks are inspired by the neocogni-
tron [LeCun et al. 2010] [Goodfellow et al. 2016], a model based on the human visual cor-
tex [Fukushima 1980].

Since proposed [LeCun et al. 1989], ConvNets have won major computer vision com-
petitions. The state-of-the-art classification algorithm with the best result on the ImageNet
Large-Scale Visual Recognition Challenge it is based on a convolutional architecture and has
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reached an error of 3.6% [Goodfellow et al. 2016]. The winner architecture of the ImageNet
2014, the inception [Szegedy et al. 2016], is used on this research.

One of the main advantages of ConvNets is the share of weights. After defining
the size of the feature extraction region(Figure 2.6), the same weights will be used to
extract the features of the input. The weight sharing improves the performance, be-
cause the training process becomes more straightforward, and the portion of memory
used to store the weights are significantly smaller than the portion used by other archi-
tectures [LeCun et al. 1989] [LeCun et al. 2010] [Goodfellow et al. 2016]. Usually, after
one or multiple convolutional layers, a pooling layer is used to reduce the dimension-
ality of the data minimizing information loss for the next layer as presented on Fig-
ure 2.6 [Goodfellow et al. 2016].

Figure 2.6: Convolutional Neural Network - source: [Guo et al. 2016]

2.6 Transfer Learning

Knowledge transfer is something that humans use to learn new complex concepts
quickly; They can use knowledge acquired from other experiences to help them under-
stand new representations and features of the world [Gutstein et al. 2008](Figure 2.7. Con-
vNets can also use the knowledge from one task to learn other tasks faster like humans
do [Ranjan et al. 2016]. The most common way to do that with machine learning algorithms,
including deep learning models, is to use the weights of an ANN or other characteristics of
the model. These trained weights have the abstract representation of the input data to perform
the feature extraction from the data.

When working with an ANN to utilize the knowledge acquired on previous tasks, it is
possible to train the last layer, what will define if the knowledge can be used for the task at
hand, is how much training is necessary to achieve good results. With image related tasks,
researches have shown that the cost of retraining a model is small [Ranjan et al. 2016].
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Figure 2.7: Different learning processes between (a) traditional machine learning and (b)
transfer learning - source: [Pan and Yang 2010]

2.7 Inception Module

The first version of the inception architecture that is used on the original FaceNet is built
with the inception module: a mix of layers that run several parallel convolutional layers and
concatenate their outputs as presented on Figure 2.8.

The main idea of the inception module is to discover how the best local sparse structure
in a convolutional network can be approximated and covered by readily available dense
components [Szegedy et al. 2015]. The main benefit of this strategy is the increase of units at
each stage without unconstrained computational complexity increase [Szegedy et al. 2015].

Figure 2.8: The Inception module - source: [Szegedy et al. 2015]
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2.8 Final considerations

On this chapter the main necessary resources to understand this research were presented,
informing the reader about the main necessary aspects to understand this research. These re-
sources are artificial neuron, ReLU activation function, Leaky ReLU activation function, the
training process for artificial neurons, ANN’s, Deep Learning, ConvNets, Transfer Learning,
Inception Module, and Inception-ResNet-v1 modules.

14



Chapter 3

Related Works

Making kin annotations is more complicated than making annotations of identity be-
cause it is necessary to work with pairs. Inherently, it is more challenging to collect
and annotate the data of the UB Kinface than the data of VGGFace2 that it is mainly
used to detect identity. This complexity led to a scarcity in large kin-related datasets
when compared to traditional datasets such as Labeled Faces on the Wild (LFW) and VG-
GFace2 [Georgopoulos et al. 2018].

There is a consensus that the UB Kinface dataset is the kinship dataset with the largest age
variations [Georgopoulos et al. 2018]; however, the original paper [Shao et al. 2011] does
not provide the values of the age differences among pairs.

All the past solutions that used UB Kinface have focused mainly on achieving good
results on the dataset, treating the child-young parent and child-old parent pairs as different
problems [Georgopoulos et al. 2018](Figure 1.3 and 1.4. The methods found in the literature
are difficult to apply in a real-world environment because they need to detect if there is a big
age difference between the two faces to decide what approach should be used.

Table 3.1 presents some of the most relevant methods evaluated on the UB-kinface
dataset [Georgopoulos et al. 2018]. In Table 3.1, the different models strategy refers to the
approach showed on Figure 1.4, and pre-process refers to the approach presented on Fig-
ure 1.3, the 5-fold and leave-one-out columns on Table 3.1 are the average accuracy of these
methods child-young parents and child-old parents, unlike our method these evaluations are
performed separately.

Most of the attempts to solve kinship verification have used shallow machine
learning methods like [Chergui et al. 2018], [Dehghan et al. 2014], [Yan et al. 2014],
[Yan et al. 2015], [Xia et al. 2011], [Shao et al. 2011], [Kohli et al. 2012], [Xia 2012],
[Lu et al. 2014]. The only deep learning method evaluated on the UB Kinface dataset used
about 600,000 images for train on feature extraction [Kohli et al. 2017], more than five times
less than our method that used more than three million images from VGGFace2 as shown on
Table 5.1).
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Table 3.1: Results of other methods on the UB Kinface dataset

Method 5-fold Strategy
fcDBN [Kohli et al. 2017] 91.75% Different models

Visual Attr. [Xia 2012] 82.50% Only child-old par.
DMML [Yan et al. 2014] 72.25% Different models
PDFL [Yan et al. 2015] 67.30% Different models

MNRML [Lu et al. 2014] 67.05% Different models
TL [Xia et al. 2011] 60.00% Pre-process

TSL [Shao et al. 2011] 56.50% Pre-process
SSRW [Kohli et al. 2012] 53.90% Different models

One of the few deep learning methods available on literature that performed kinship
verification on the UB Kinface dataset is called Filtered Contractive Deep Belief Network
(fcDBN) [Kohli et al. 2017]. fcDBN is also , to the best of our knowledge, the state of
the art method for most of the publicly available datasets, this method used for the first
time external datasets to teach the model how to extract facial features to perform kinship
verification [Georgopoulos et al. 2018].

In the first stage of fcDBN, the features of each facial region are learned from outside
training data. These are learned through the filtered contractive DBN (fcDBN) approach.
The learned representations are combined in a compact representation of the face in the
second stage. Finally, a multi-layer neural network is trained using these learned feature
representations for supervised classification of kin and non-kin [Kohli et al. 2017].

fcDBN was tested on the UB Kinface dataset using five-fold cross-validation and
achieved 92.00% of accuracy on child-young parents pairs and 91.50% accuracy on child-old
parents pairs [Kohli et al. 2017], 91.75% on average.

The research responsible for publishing the UB Kinface dataset [Shao et al. 2011] used
a method called Transfer Subspace Learning(TSL) that uses local Gabor filters to extract
features. These features are used to determine if parent and children have similar eyes,
noses or mouths. With the extracted key points, six ratios of common regions distances
are obtained, e.g., eye-to-eye versus eye-nose distance. The TSL method performs context-
aware tests reducing the divergence between child-old parent by using the child-young parent
as an intermediate set.

The research presented in [Shao et al. 2011] extracted the features using Gabor filters on
each local region. These features are used to determine if parent and children have similar
eyes, noses or mouths. With the extracted key points, six ratios of common regions distances
are extracted e.g: eye-to-eye versus eye-nose distance. Following a principle that says that
these distances are inherited mainly from parents. Structural information is also extracted
and following a principle that says that old parent’s structural face is transformed from the
one when they were young, because of that a transfer subspace learning method was applied
to mitigate the degrading factor. To fully utilize all features, a new strategy called Cumu-
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lative Match Characteristic (CMC) is used: features are added in several rounds according
to the one that can maximize the difference of recognition performance of child-old parents.
After extracting and select the features that will be used for classification a metric learning
approach is used, this process will try to use the selected features to choose what features
should determine if the two people are kin or not. On their research, they also presented two
human baselines for kinship verification that are 53.17% and 56.00%. With 5-fold cross-
validation, with 40 positive pairs and 40 negative pairs being left to test the accuracy result
56.5%. With leave-one-out protocol, the achieved accuracy was 69.67% [Shao et al. 2011].
The human baseline shows that the problem tackled by this research is a difficult one.

Another example of research on kinship verification is [Lu et al. 2014]; this paper pro-
posed a novel model called Neighborhood Resulsed Metric Learning(NRML). In this case,
the relations were separated into four different types: father-son (F-S), father-daughter (F-
D), mother- son (M-S), and mother-daughter (M-D) kinship relations. The strategy used by
this method tries to repulse interclass samples (without kinship relation) with the higher sim-
ilarity that lie in a neighbourhood and approximate the intraclass samples, using the more
discriminative information for solve the problem. They also used multiple feature descriptors
to try to improve the performance of the method, in this case, it was called Neighborhood
Resulsed Metric Learning(MNRML)

Our method differs from fcDBN on the architectures used (MTCNN and FaceNet), on
the dataset used to train the network how to extract facial features (VGGFace2). However,
the main difference between our DLML and all the previous methods including fcDBN is
the fact that our method can detect kin relations on the UB Kinface dataset without treating
any age difference, offering enhanced applicability.

Metric learning is used because is one of the most sucessfull methods to solve the kinship
verification problem, since it does not need as many data as deep learning methods, and it
can separate what features are relevant to detect a kin relation [Georgopoulos et al. 2018].

Furthermore, in our case, to show how expressive the extracted features of our method are
to perform kinship verification on the UB Kinface, our last stage is a simple linear artificial
neural network.

3.1 Final considerations

In this chapter, the method from the original UB Kinface dataset is pre-
sented [Shao et al. 2011], other methods evaluated on the UB Kinface dataset are also pre-
sented and compared to the method proposed in this research. Another important topic ap-
proached on this chapter is the state of the art method on the UB Kinface dataset and how
this method differs from the proposed DLML method.
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Chapter 4

Method: Deep Linear Metric
Learning-(DLML)

Previous methods [Kohli et al. 2017], [Xia 2012], [Yan et al. 2014], [Yan et al. 2015],
[Lu et al. 2014], [Xia et al. 2011], [Shao et al. 2011], [Kohli et al. 2012], have trained and
evaluated their solutions on child-young parents pairs and child-old parents pairs separately.
In this research the contrary is done using the proposed DLML method, making the cross-
validation with the whole dataset. This approach is inspired by the fact that ConvNets are
bioinspired by the human brain [LeCun et al. 2010] that is the responsible for identify kin-
ship relations, thus they can execute intuitive tasks like kinship verification without the need
to be informed what is the age difference of two people.

It is also important to highlight that the phases of the proposed method are not connected,
each phase generates an output, that is later used as the input of the next phase. This decision
was made in order to try to maximize flexibility during research.

4.1 Hardware and Environment

All the experiments were performed on a laptop with the following configuration:

• Processor: Intel(R) Core(TM) i7-4720HQ CPU @ 2.60GHz

• Memory: 16Gb of memory

• GPU: GTX970M

All the code developed and from third-parties was developed using Python with environment
parameters to allow to run commands via shell script.

The Tensorflow version used was compiled to use multiple sets of instructions that are
specific to the GPU, and it improves the performance of the GPU calculations using CUDA.
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Measuring by the time necessary to perform facial alignment on the LFW images with the
MTCNN architecture, the custom version provided a performance six times better than the
general GPU version of Tensorflow, and 21 times better than the CPU version on the same
hardware as presented on Table 4.1.

Table 4.1: Tensorflow time to process LFW dataset with MTCNN

Version LFW time (seconds)
CPU 441
GPU 126
GPU for GTX-970M 21

TensorFlow is an open source software library for machine learning that uses data-flow
graphics. Nodes represent math operations and the graph edges represent the multidimen-
sional data arrays (tensors) that flow among them. This is a flexible architecture that allows
deployment of computation to one or more CPUs or GPUs in desptops, servers, or mobile
devices without the need of rewriting code. TensorFlow also includes TensorBoard, a data
visualization toolkit that is used to generated graphs on this research [Community 2018].

Tensorflow 12.0 was compiled specifically for the GPU GTX-970M using CUDA 10,
Python 3.7 and GCC-7.

4.2 Datasets

In this section, the datasets used in the research are explored and some of the necessary
operations. All data used will be formed by unconstrained images (on the wild).

4.2.1 Training Datasets for Deep Learning

The images of all the datasets do not have a standard size, to convert and align the face
of all images to the necessary 160x160px size to use on the FaceNet implementation used on
this research [Sandberg 2018], the MTCNN implementation provided by [Sandberg 2018]
is used. This model uses the weights of the original MTCNN [Zhang et al. 2016] on a Ten-
sorFlow implementation.

4.2.2 VGGFace2

The VGGFace2 is a large-scale face dataset with large age variations, composed of
3.31 million images of 9131 subjects. It has an average of 362.6 images for each sub-
ject [Cao et al. 2017]. Only the training portion of VGGFace2 that has 8631 classes
and approximately 3.14 million images was used to train the FaceNet implementa-
tion [Sandberg 2018]. On Table 5.1 it is displayed how many images compose the training
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portion of the VGGFace2 dataset. The features of VGGFace2 are what initially inspired our
use of young and old parents images without any special treatment to large age differences.
It is assumed that the final model would be robust to large age variations because the VG-
GFace2 has a high variation on this aspect. 59.3% of the images of VGGFace are from male
subjects as presented on Figure 4.1.

Figure 4.1: Gender balance on VGGFace2 dataset (59.3% male), (40.7% female)-
source: [Cao et al. 2017]

Because the data limitation of kinship datasets and the necessity of data for deep learn-
ing methods, it is necessary to use a dataset with a different main purpose than the one
of this research, VGGFace2 is used to train and validate FaceNet to extract facial features.
FaceNet and VGGFace2 will allow us to leverage the superiority of deep learning models
stated by [Georgopoulos et al. 2018] on the kinship verification task.

4.2.3 Labeled Faces on the Wild-LFW

Labeled Faces on The Wild(LFW) was also used additionally as a test dataset for FaceNet
on training. LFW has 1680 classes with two or more distinct photos [Huang et al. 2017];
these classes are used to test FaceNet performance on intervals of five epochs of training.
Tests are made with this dataset because it is one of the main benchmarks for facial recog-
nition tasks [Learned-Miller et al. 2016]. The results obtained on this tests are not used to
adjust the weights of the network, only to assess the performance of the trained model with-
out bias.

4.2.4 The UB Kinface dataset

UB KinFace dataset is used to perform cross-validation for kinship verification. The
dataset is made of 200 group of images composed by old parents, young parents, and chil-
dren(total of 600 images). Most of the pictures of young parents are in grayscale because
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of the technology available at the time of the photos; there are also other examples of iso-
lated grayscale images. In Figure 4.2 examples of pictures from the UB Kinface dataset are
exhibited.

Figure 4.2: The UB Kinface dataset [Shao et al. 2011]

The types of kinship relations are not evaluated separately because nearly 80% of the
relations are father-son relations as presented on the statics of the dataset at Figure 4.3.

Figure 4.3: Statics of the UB Kinface dataset- source: [Shao et al. 2011]
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4.3 Multi-Task Cascaded Convolutional Network
(MTCNN)

Figure 4.4: The complete three phase process of the MTCNN - source: [Zhang et al. 2016]

Figure 4.5: Detailed version of MTCNN architecture - source: [Zhang et al. 2016]

An MTCNN implementation [Sandberg 2018] is used to perform facial alignment be-
cause it provides good performance on hard examples like various poses, illuminations, and
occlusions [Zhang et al. 2016]. The MTCNN architecture first resizes the image to different
scales to build an image pyramid which will be the input of a three-phase cascade frame-
work [Zhang et al. 2016]. The complete framework can be seen on Figure 4.4 and a detailed
version of the MTCNN architecture can be seen on Figure 4.5. The MTCNN facial alignment
process is described as follow.
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• Proposal Network (P-Net) On the first stage, a fully convolutional neural network find
the candidate facial windows and the bounding box regression vectors. These candi-
dates are found estimating the borders of the face. After that, a non-maximum sup-
pression (NMS) is applied to merge highly overlapped candidates [Zhang et al. 2016].

• Refine Network (R-Net) On the second stage all candidates are processed by another
network which discards a significant number of false candidates, executes calibration
with bounding box regression, and performs NMS [Zhang et al. 2016].

• Identify Facial Landmark It is similar to the second network, but in this case, the
goal is to identify face regions with more supervision, providing five facial landmarks
as output [Zhang et al. 2016]

The goal of the research is not performing facial alignment, so, a pre-trained
model [Sandberg 2018] that uses the weights provided by the authors of the MTCNN pa-
per [Zhang et al. 2016] is used.

The post-MTCNN images will be a stretched version of the face with the size 160x160.
The reason to use the stretched face is is that the necessary features for FaceNet are kept after
transformation [Schroff et al. 2015], and this allows FaceNet to have the standard input size
of 160x160.The The "Original color images" are composed by these images.

These aligned face images of the UB Kinface dataset will also be used to create a new
dataset that consists of all the images converted to grayscale(grayscale images. This dataset
has the purpose of analyzing the impacts of different channel patterns on the results.

4.4 Converting UB Kinface to grayscale

During tests with the original images from UB Kinface, the results showed that the vari-
ance on color channel patterns present on the UB Kinface dataset (colorful and grayscale
images) increased the distance between faces and decreased the performance of the linear
model. To overcome this increase in distance because of color patterns a grayscale version
of the UB Kinface dataset was created.

To create the grayscale version of images that are used for experiments, the algorith
presented on List 6.10 is executed.

List 4.1: Algorithm that generates grayscale images

1 f u n c t i o n c r e a t e _ a n d _ s a v e _ g r a y s c a l e _ i m a g e s ( s o u r c e _ i m a g e _ p a t h ,
o u t p u t _ i m a g e _ p a t h ) {

2 img = l o a d ( s o u r c e _ i m a g e _ p a t h )
3 img_gray = t o _ g r a y s c a l e ( img )
4 save_ image ( o u t p u t _ i m a g e _ p a t h )
5 }
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6

7 f u n c t i o n p r o c e s s _ d a t a s e t ( a rgumen t s ) {
8 f o l d e r _ p a t h _ l i s t = l o a d _ a l l _ f o l d e r s ( a r g s . r o o t _ d i r _ d a t a s e t )
9 o u t p u t _ p a t h = a rgumen t s . o u t p u t _ d i r _ d a t a s e t

10 f o r ( f o l d e r _ p a t h i n f o l d e r _ p a t h _ l i s t ) {
11 i m a g e _ p a t h _ l i s t = l o a d _ a l l _ f i l e s ( f o l d e r _ p a t h )
12 f o l d e r _ o u t p u t _ p a t h = o u t p u t _ p a t h + f o l d e r _ p a t h
13 f o r ( image_pa th i n i m a g e _ p a t h _ l i s t ) {
14 s o u r c e _ i m a g e _ p a t h = f o l d e r _ p a t h + image_pa th
15 o u t p u t _ i m a g e _ p a t h = f o l d e r _ o u t p u t _ p a t h + image_pa th
16 c r e a t e _ a n d _ s a v e _ g r a y s c a l e _ i m a g e s ( s o u r c e _ i m a g e _ p a t h ,

o u t p u t _ i m a g e _ p a t h )
17 }
18 }
19 }

4.5 FaceNet

The FaceNet architecture used in this research(Table 4.2) has shown one of the best
performances on some of the most relevant facial recognition benchmarks like LFW and
Youtube Faces Database [Schroff et al. 2015]. Another key factor that inspired the use of
FaceNet is the fact that the network generates an array of facial embeddings, assuming the
principle that this array can be applied to other purposes, in this research it was used to
perform kinship verification.

4.5.1 Inception-ResNet-v1 modules

On the FaceNet implementation used on this research, the Inception-ResNet-v1 is used,
this version reduces the computational cost and offers better performance. This Inception
version also offers better accuracy and better convergence on training [Szegedy et al. 2016].

The main difference between the classical Inception and the ResNet version is the use
of residual connections, that consists in using the output of the previous layer as a direct
input to the next layer, with convolutions being performed on paralel [Szegedy et al. 2016].
Residual connections can be observed on Figure 4.6, Figure 4.7, and Figure 4.8.

The Inception-ResNet-v1 is composed of 3 types of inception modules(layers). The first
one is the Inception-A that is presented on Figure 4.6, it has a grid of 35x35.

The second one is the Inception-B that is presented on Figure 4.7, it has a grid of 17x17.

The third one is the Inception-C that is presented on Figure 4.8, it has a grid of 8x8.

To extract features on FaceNet, convolutional, pooling, and inception layers are used as
shown at Table 4.2. The convolutional and pooling are done on the first stage; the inception
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Figure 4.6: Inception-A layer for Inception-ResNet-v1 - source: [Szegedy et al. 2016]

Figure 4.7: Inception-B layer for Inception-ResNet-v1 - source: [Szegedy et al. 2016]
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Figure 4.8: Inception-C layer for Inception-ResNet-v1 - source: [Szegedy et al. 2016]

layer is responsible for extracting mid-level features.

The Reduction-A(layer 13) and Reduction-B(layer 23) layers on Table 4.2 are basically
elaborated pooling layers.

FaceNet creates an array of 128 dimensions of the face; those dimensions are used on
training to create an abstract representation of the face that it is called anchor. The anchor
will have a maximum distance of all representations of that face. It is possible to see the
FaceNet method in a simple perspective on Figure 4.9.

Figure 4.9: FaceNet original model structure [Schroff et al. 2015]

On training, the original paper [Schroff et al. 2015] used a triplet loss function. The
training process increases the distance of negative samples and approximates the positive
samples as shown in Figure 4.10 [Schroff et al. 2015].

Triplet loss is computationally more costly than training as a softmax classifier using
cross-entropy loss and training as a classifier can still offer good results [Parkhi et al. 2015].
On this research, Facenet was trained as a softmax classifier with cross-entropy loss.

On the original FaceNet paper the architecture used was a non-ResNet version
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Table 4.2: The FaceNet architecture used on this research

stage layer type
1 to 3 3 x Convolution
4 Max pooling
5 to 7 3 x convolution
8 to 12 5x Inception-A
13 Reduction-A
13 to 22 10x Inception-B
23 Reduction-B
24 to 28 5x Inception-C
29 Average pooling
30 Flattening layer
31 Fully connected

Figure 4.10: Anchors on the training process [Schroff et al. 2015]

of the inception architecture [Schroff et al. 2015]. In this research, the Inception-
Res1Net-v1 architecture is used because it provides better performance and conver-
gence [Szegedy et al. 2016]. The FaceNet implementation used is based on the NN3 archi-
tecture of the original paper [Schroff et al. 2015]. This network has input size of 160x160.

To perform testing on the LFW dataset on every epoch of training, the
"Pair Matching" protocol with "Unrestricted, with labeled outside data" provided
by [Huang and Learned-miller 2014] is used. The 1680 classes with more than two images
are used to form pairs of images without overlapping. These pairs will test the distance be-
tween the two embeddings created by the network. A class with four images, for instance,
will have two pairs of images to evaluate, [0,1] and [2,3]. This distance is calculated using
the euclidean distance between the two embeddings(L2 norm) as described on Eq. 4.1, with
pi as one of the embeddings and qi as the other.

[htpb]L2 =

√√√√ 127∑
i=0

(pi − qi)2 (4.1)

The test results on LFW during training are not used to adjust the network weights, only
to assess the performance of FaceNet.
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4.6 Linear metric learning for kinship verification

The last stage tackles the fact that facial features of similar people lie in a close neigh-
borhood, but this does not necessarily mean that these two people are kin, and the contrary
is also true. Enters the last phase of our method with the metric learning approach that tries
to learn what are the right feature differences to detect kin and a non-kin people.

The extracted features of two images are subtracted forming positive difference pairs
like [[1,201], [2,402], ...], and negatives such as [[1,225], [2, 561]]. Considering 1 to 200 as
children, 201 to 400 as young parents, and 401 to 600 as old parents.

Figure 4.11: The linear model that receives the non-negative difference array

List 4.2: Function that generates the model

1 f u n c t i o n c r e a t e _ n e t w o r k ( i n p u t _ a r r a y , s i z e _ i n p u t = 128 , n _ c l a s s e s = 2 ,
keep_prob = 0 . 4 ) {

2 l a y e r _ 1 = d e n s e _ l a y e r ( i n p u t _ a r r a y , s i z e _ i n p u t , a c t i v a t i o n =
l e a k y _ r e l u )

3 d r o p o u t _ l a y e r = d r o p o u t ( l a y e r _ 1 , keep_prob )
4 l a y e r _ 2 = d e n s e _ l a y e r ( d r o p o u t _ l a y e r , n _ c l a s s e s , a c t i v a t i o n =

l e a k y _ r e l u )
5 p r e d i c t i o n = so f tmax ( l a y e r _ 2 )
6 r e t u r n p r e d i c t i o n
7 }

The non-negative result of the subtraction is fed into the linear model of Figure 4.11 that
it will perform the kinship verification. The same model is also presented at List 6.5. This
model has 128 inputs (same size as the embeddings provided by FaceNet). The first layer
has the size of 128x1 with bias unities, and it uses the Leaky Rectified Linear Unit(Leaky
ReLu) activation function [Xu et al. 2015].

Next, a fully connected layer with only two outputs finalizes the model, also using the
Leaky ReLU activation function. Finally, a softmax function is used to perform the boolean
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prediction of kin or non-kin.

On training, dropout [Goodfellow et al. 2016] is applied after the first layer, the cross-
entropy loss function showed on Eq. 4.2 and List 6.6 is used being yi the predicted value
provided by the model, and yli as the expected value. The classical standard backpropagation
algorithm with gradient descent [LeCun et al. 1989] performs optimization of the network
during training as shown by the function List 6.7 that it creates the optimizer.

−
∑
i

yli · log(yi) (4.2)

List 4.3: Cost function for the linear model

1 f u n c t i o n c r e a t e _ c o s t _ f u n c t i o n ( model , e x p e c t e d _ v a l u e ) {
2 c o s t _ f u n c t i o n = sum ( e x p e c t e d _ v a l u e ∗ l o g ( model )
3 r e t u r n c o s t _ f u n c t i o n
4 }

List 4.4: Optimizer for the linear model

1 f u n c t i o n c r e a t e _ o p t i m i z e r ( l e a r n i n g _ r a t e , c o s t _ f u n c t i o n ) {
2 o p t i m i z e r = G r a d i e n t D e s c e n t O p t i m i z e r ( l e a r n i n g _ r a t e , c o s t _ f u n c t i o n )
3 r e t u r n o p t i m i z e r
4 }

4.7 Final considerations

This chapter presents the hardware used and all the datasets used on this re-
search(VGGFace2, LFW, and UB Kinface), the number of images on these datasets is ex-
plored, some of specific the characteristics of these datasets are presented, and the available
statistics of each dataset are exhibited.

On this chapter it is also presented the proposed DLML method is explained in detail,
talking about the specifics of each architecture (MTCNN, FaceNet, linear metric learning
model). The fact that MTCNN is not trained as part of this research is explained. The
training of the FaceNet architecture is explained, and a comparison between the softmax
method used by this research and the triplet loss from original paper is made. The linear
metric learning model is explained in detail, and the main algorithms are presented.
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Chapter 5

Experiments and results

This section will explore the tasks and experiments made in this research, show and
discuss the results of these experiments.

5.1 Face Alignment

Even though face alignment is not a part of the main purpose of this research, it is a
necessary step to perform feature extraction with FaceNet and kinship verification with the
linear model. MTCNN was the architecture choosed because deep ConvNets architectures,
to the best of our knowledge, are the state of the art solution to deal with unconstrained
images [Goodfellow et al. 2016], MTCNN has also consistently outperformed the state-of-
the-art methods across several challenging benchmarks [Zhang et al. 2016]. MTCNN was
also used on the original VGGFace2 article [Cao et al. 2017] to perform facial alignment.

Since face alignment is not one of the main tasks of this research, the model
used was the one that it is provided with the FaceNet implementation used on this re-
search [Sandberg 2018]; this model is implemented using Tensorflow, the original is im-
plemented on Matlab [Zhang et al. 2016]. However, the authors from the original paper
published the original code and model as open-source, and the implementation used in this
research imports the weights of the original model into the new implementation.

Facial alignment is performed using MTCNN for three datasets: VGGFace2(FaceNet
training), LFW(FaceNet testing), and UB Kinface (kinship verification cross-validation). To
process the images of the datasets MTCNN is executed for each dataset.

That is a –margin option on the implemented code, the margin would add additional
space between the border and the detected face of the image. The margin option was kept as
0 because about half of the images on UB Kinface have face area smaller than 160x160px,
adding a margin would reduce even further the quality of half of the post-MTCNN facial im-
ages, that it already had to be reduced on 311 of 600 cases(51.83%) to stretch to 160x160px.
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The post-MTCNN images of all datasets will have 160x160px, that size is necessary to
use the images as input on the FaceNet architecture, the images will be a stretched version
of the aligned face to fit on this dimension. On Figure 5.1 it is possible to see samples of
images from UB Kinface before and after facial alignment. The MTCNN implementation
used also provides information about the facial bounding boxes detected on the images; this
allows calculating the size of the facial area for each image.

Figure 5.1: Image samples from the UB Kinface database before and after facial alignment
with MTCNN

The performance of the MTCNN pre-trained model [Sandberg 2018] on the three
datasets is exhibited on Table 5.1, the before column shows how many images were available
before facial alignment, the after shows how many were successfully aligned, and the per-
formance is calculated by comparing how many of the images were processed successfully.

Table 5.1: Performance of MTCNN on datasets

Before After Performance
VGGFace2 3,141,890 3,138,862 99.90%
LFW 13,233 13,233 100%
UB Kinface 600 600 100%

From a total of 3,155,723 images 3,152,695(99.90%) images were successfully aligned
as presented on Table 5.1. These results showed that the MTCNN architecture performed
well on the unconstrained(on the wild) image data used on this research; the post-MTCNN
images will allow the next necessary steps(feature extraction and kinship verification) to take
place.

5.2 Feature extraction with FaceNet

This section will discuss the training, testing, validation, and use of FaceNet on this
research to extract features from facial images.
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Because of the specific size and border used on our research to avoid decreasing in image
quality, and the large age variation present on our data for kinship verification (UB Kinface)
we had to train our own model to perform feature extraction with VGGFace2, this model is
tested on LFW and it is responsible for creating the 128x600 dimensions array of features of
the 600 images of the UB Kinface dataset.

5.2.1 Training

FaceNet is trained with a total of 500 epochs, each epoch has 1000 batches and each
batch has 40 images.

To improve performance and avoid overfitting the fixed image standardiza-
tion(normalization) [Goodfellow et al. 2016] technic and dropout [Goodfellow et al. 2016]
are used. Table 5.2 displays the empirical learning rate used for training with the Adam
optimizer [Kingma and Ba 2015].

Table 5.2: Empirical learning rate for FaceNet training

Epoch Learning Rate
0-99 0.1

100-299 0.05
300-399 0.005
400-499 0.0005

5.2.2 Validation

A portion of 0.01% of the VGGFace2 is used for validation on training to calculate the
loss and adjust the weights using the Adam optimizer [Kingma and Ba 2015]. The total sum
of the cross-entropy loss can be seen in Figure 5.3. The cross entropy loss value of every
batch can be observed in Figure 5.2.

5.2.3 Testing

The accuracy of testing on LFW exhibited at Figure 5.4 is calculated every five epochs
using the euclidean distance. After completing training, tests are run again on LFW using
the euclidean distance; the accuracy was 98.83%.

After trained with a softmax classifier at the last layer [Parkhi et al. 2015], FaceNet was
able to successfully detect and export the features for the 600 images of the UB Kinface
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Figure 5.2: Cross entropy on training using VGGFace2

Figure 5.3: Total loss on training using VGGFace2

Figure 5.4: Testing accuracy on LFW every five epochs
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Table 5.3: Sample of the extracted features from the facial images on the UB Kinface using
FaceNet

Feature 0 Feature 1 ... Feature 127
Image 0 (Child) -0.027277473360300064 -0.08217132836580276 ... 0.06560494750738144

... ... ... ... ...
Image 200 (Young-parent) 0.10031850636005402 -0.0060198549181222916 ... 0.08803482353687286

... ... ... ... ...
Image 230 (Young-parent) -0.0584646500647068 -0.12933146953582764 ... 0.08840493857860565

... ... ... ... ...
Image 400 (Old-parent) 0.15667474269866943 -0.13348889350891113 ... -0.04572216048836708

... ... ... ... ...
Image 493 (Old-parent) -0.016640465706586838 0.03600674122571945 ... -0.10782409459352493

... ... ... ... ...
Image 600 (Old-parent) -0.060755062848329544 -0.03715011477470398 ... 0.0024316716007888317

dataset. The values will range from -1 to 1 because of normalization, and this values will be
used to create the non-negative array that it will serve as input for the linear metric learning
model. On Table 5.3 it is possible to see the structure of the extracted features and a sample
of the values.

When presented with a grayscale image, FaceNet will basically represent the grayscale
image in three color channels, keeping the grayscale aspect of the data. Even though FaceNet
was trained and tested with colorful images from the VGGFace2 and LFW datasets respec-
tively, the results on the kinship-verification cross-validation showed that FaceNet was able
to extract expressive features from grayscale images.

5.3 Cross-validation on the kinship verification linear met-
ric learning model

Because of the size of UB Kinface dataset, it is recommended to use cross-validation
methods to perform tests [Georgopoulos et al. 2018], since if tested with only one model,
the results could easily be biased because of the small amount of data. Because of the cross-
validation approach, there are also multiple models instead of just one.

The dataset used for cross-validation is composed of 800 image features pairs as de-
scribed on Table 5.4, the dataset is mounted in a balanced way that follows the structure:
[true child-old parent, false child-old parent, false child-young parent, true child-young par-
ent, true child-old parent, ...].

The negative child-young parent’s pairs are composed of non-kin pairs between child
and other young parent individuals, the negative child-old parent’s pairs are made of non-kin
pairs of child and old parent individuals. This pattern will repeat throughout the 800 available
samples to assure that the tests are well balanced between the four types of examples, that
way on each cross-validation cycle, there will always be a balanced number of type examples
on training and testing.
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Table 5.4: Number of examples used for cross-validation

Type of Relations Positive Negative
Child-young parent 200 200
Child-old parent 200 200

Table 5.5: Non-negative distance array that is used as input for the linear model

Pair Type Distance 0 Distance 1 ... Distance 127
0-400 True Child-Old Parent 0,18395221605897 0,066887825727463 ... 0,111327107995749
0-493 False Child-Old Parent 0,010637007653713 0,102607809007168 ... 0,173429042100906
0-230 False Child-Old Parent 0,031187176704407 0,062730401754379 ... 0,022799991071224
0-200 True Child-Young Parent 0,127595979720354 0,060581212863326 ... 0,022429876029492
1-401 True Child-Old Parent 0,102011129260063 0,246223147958517 ... 0,049301842227578

... ... ... ... ...

A sample of the non-negative array that measures the distance between image features of
the UB Kinface is presented on Table 5.5; The array will repeat the presented structure on
every 4 items until it reaches the combination of number 800, it is also possible to observe
that the child image is used as anchor to generate the 4 types of relations for each iteration.
This structure is what guarantees that the data for cross-validation-cycles have a balanced
number of types of examples on the training and testing parts.

The cross-validation data is created by iterating through the array of 800 distances em-
beddings in an orderly manner. For the leave-one-out protocol, for example, 80 images are
used for test per cycle: cycle 1: 0-79, cycle 2: 80-159, ... ; The rest of the data is always
used for training. Because of the balanced aspect of the dataset, the cross-validation cycle
will not be biased to a specific type of relation. For the five-fold-cross validation, the same
process is executed but with 160 images for test per cycle.

Table 5.6: Training parameters for the linear model

Learning Rate Epochs Batch Size Dropout
0.07 10 10 0.4%

The 800 pairs of images of the UB Kinface are tested with the 5-fold cross-validation
protocol and leave-one-out protocol with the original images and grayscale images; these
tests will create a total of 15 different models (10 for leave-one-out and 5 for five-fold) for
original images and 15 models for the grayscale images. The training parameters used to
train the models are showed on Table 5.6.

The results for all the leave-one-out cycles can be seen on Table 5.7, and the results for
all the five-fold cycles are presented on Table 5.8.

On Table 5.7, it is possible to observe that the leave-one-out protocol with grayscale
images offered the best accuracy on very cycle of tests, it is also possible to see decrease
in accuracy, precision and recall with the original images because of heterogeneous color
patterns present on the UB Kinface dataset, this characteristic also generated a few outliers
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Table 5.7: Results of all the leave-one-out cross-validation cycles with original and grayscale
images

Leave-one-out cross-validation results
Original images Grayscale images

Cycle Test pair interval Accuracy Precision Recall Accuracy Precision Recall
0 0-79 0.488 0.491 0.700 0.725 0.688 0.825
1 80-159 0.438 0.368 0.175 0.788 0.795 0.775
2 160-239 0.462 0.467 0.525 0.675 0.646 0.775
3 240-319 0.462 0.468 0.550 0.662 0.638 0.750
4 320-399 0.400 0.278 0.125 0.700 0.674 0.775
5 400-479 0.412 0.360 0.225 0.638 0.593 0.875
6 480-559 0.512 0.516 0.535 0,725 0.705 0.775
7 560-639 0.488 0.490 0.600 0.750 0.685 0.925
8 640-719 0.438 0.429 0.375 0.725 0.680 0.850
9 720-799 0.563 0.568 0.525 0.762 0.698 0.925

Table 5.8: Results of all the five-fold cross-validation cycles with the original and grayscale
images

Five-fold cross-validation results
Original images Grayscale images

Cycle Test Pair Interval Accuracy Precision Recall Accuracy Precision Recall
0 0-159 0.412 0.436 0.600 0.681 0.704 0.625
1 160-319 0.419 0.240 0.750 0.688 0.636 0.875
2 320-479 0.400 0.389 0.350 0.681 0.649 0.788
3 480-639 0.431 0.441 0.513 0.625 0.601 0.750
4 640-799 0.419 0.440 0.600 0.694 0.663 0.788

on the original images with precision and recall (0.278 for precision and 0.125 for recall).
Most of the cycles had similar results, on the grayscale images, for instance, the maximum
accuracy difference between two cycles is 0.15 (15.00%), the maximum precision difference
is 0.157 (15.70%), and the maximum recall distance is 0.175 (15.50

The results presented for accuracy with grayscale images at Table 5.7 showed that the
proposed method, on every cycle of the cross-validation process, has better accuracy then the
human baseline, consistently performing kinship verification on the UB Kinface dataset; The
precision values show that the DLML proposed method offers better than 60% performance
on 90% of the cycles to detect positive kinship pairs when considering all positive pairs on the
data, that means that on most cycles the model is correct on 60% of times. The recall values
showed that on every cycle the model identifies above 75% of positive kinship relations.

On Table 5.8 it is possible to observe that on the five-fold cross-validation tests the model
performs better with the homogeneous grayscale color dataset created, accuracy and preci-
sion are always above 60.00% , that means that on more than 60.00% of time the answer
is right, and more than 60% of the positive examples classified the model are correct. Con-
sidering the recall, it is also possible to affirm that on 80.00% of cycles the model correctly
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classifies a kinship relation on more than 70.00% of cases.

The overall experiment results are exhibited on Table 5.9 and Table 5.10, the exhibited
values are the average of all the values obtained during the cross-validation cycles.

Table 5.9: Five-fold cross-validation overall results

5-fold
Accuracy Precision Recall

Original color images 41.63% 38.93% 42.75%
Grayscale images 67.38% 65.06% 76.50%

Observing the five-fold cross-validation grayscale images results presented by Table 5.9,
it is possible to observe the models are right on average on 67.38% of occasions, that the
models are right on average on 68.01% of cases classified as a positive kinship-relation
between pairs. It is also possible based on the recall to observe that the models classified
correctly 76.50% of all the positive cases.

Table 5.10: Leave-one-out, overall cross-validation results

Leave-one-out
Accuracy Precision Recall

Original color images 46.62% 44.34% 42.00%
Grayscale images 71.50% 68.01% 82.50%

Considering the leave-one-out cross-validation grayscale images results presented by Ta-
ble 5.10, it is possible to observe the models are right on average on 71.50% of occasions,
that on average the models are right on 68.01% of cases classified as a positive kinship-
relation between pairs. It is also possible based on the recall values to observe that the
models classified correctly 82.50% of all the positive cases.

The results presented on Table 5.9 and Table 5.10 confirmed that the heterogeneous color
pattern of the images on the UB Kinface dataset compromised the performance of the linear
metric learning model, creating additional distance between the arrays of features of the im-
ages. The grayscale images showed that with only features extracted from grayscale images
it is possible to surpass the human baseline and other methods evaluated on the UB Kinface
dataset.

5.4 Final considerations

On this chapter the actions performed on this research are explored in detail, the rea-
sons for the use of each technic are presented, all the training processes are explained and
the available data presented. There is also explanations and samples of how the cross-
validation datasets are created and organized, and examples of how images are processed
by the MTCNN implementation.

37



The results of all the cross-validation cycles the experiments are presented and the mean-
ing of these results are explored in detail by making comparisons between grayscale and
colorful images. These results also justify decisions taken during this research.
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Chapter 6

Conclusions

Our results showed that on the UB Kinface database our Deep Linear Metric Learning
method can be used to solve the kinship verification problem, even when there are large age
differences, increasing the applicability of the model in a real-world environment.

The proposed method shows robustness to the mix of old and new image data present in
the database. The presented method performs directly on kinship verification with large age
variations, without the need for retraining relations separately on child-young parents and
child-old parents as seen in other approaches.

By comparing the results between the original color images and the grayscale images on
Table 5.9 and Table 5.10, it is possible to verify that even though the features are extracted
with a network that it is trained with colorful facial images, the difference of the extracted
features provided by FaceNet, when dealing with pair of images in color and grayscale,
decreases the performance of the proposede linear model because the distance created by
different color channel patterns impacts how expressive the features are to the linear model.
This difference led to a worse performance on the images with the original color (colorful
and grayscale mixed) than when all images are converted to grayscale.

Despite FaceNet being trained with colorful images, it provides good feature extraction
for grayscale images of the UB Kinface database, since these features allowed the linear
metric learning stage to achieve good performance with grayscale images.

Comparing the achieved results on Table 5.9 and Table 5.10 with the results of other
methods on Table 3.1, it is possible to observe that our proposed DLML method has very sim-
ilar accuracy to the fourth best method PDFL with 5-fold cross-validation, 67.30% against
67.38% of the presented method.

With the leave-one-out protocol, our method ranks as the best performance with 71.50%
of accuracy. Our DLML method is also superior to the human baseline performance of
56.00%; These results showed that the Deep Linear Metric Learning approach can be used
in the kinship verification with large age variations without tackling separately large age dif-
ferences. Finally, by discarding the necessity of detecting and treating large age differences
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our method offers an enhanced all-in-one solution to the kinship verification problem.

6.1 Future Work

The proposed solution showed promising results on the dataset for kinship verification
with a large age variation. Further and larger datasets will continue to become available, and
for sure further testings would be necessary, especially in order to try to evaluate mother and
father’s different influences on facial inherited features.

Explore the results of other methods with the same or similar approach in order to better
assess the performance of our method.

Explore and develop other training methods to extract different features and possibly
combine layers for evaluating performance on different subset problems.
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Appendix

List 6.1: Complete linear model code

1 from _ _ f u t u r e _ _ import p r i n t _ f u n c t i o n
2

3 import d a t e t i m e
4 import os
5 import s y s
6 import a r g p a r s e
7 import f a c e _ d i s t a n c e _ c a l c
8 import d a t a s e t
9 import t e n s o r f l o w as t f

10 from e x p o r t _ e m b e d d i n g s import s a v e _ f i l e _ n p y _ c s v
11 import numpy as np
12

13 os . e n v i r o n [’TF_CPP_MIN_LOG_LEVEL’ ] = ’3’

14

15 TXT_TRAIN_SUFFIX = ’ train’

16 TXT_TEST_SUFFIX = ’ test’

17 TXT_MODEL = ’Models’

18 TXT_RESULTS_ARRAY_SUMM_FILE_NAME = ’results_array_summ.npy’

19 TXT_HP_ARRAY_FILENAME = ’hp_array.npy’

20

21 t f . summary . F i l e W r i t e r C a c h e . c l e a r ( )
22

23

24 def p a r s e _ a r g u m e n t s ( a rgv ) :
25 p a r s e r = a r g p a r s e . Argumen tPa r se r ( )
26 p a r s e r . add_argument (’data_dir’ , type = s t r ,
27 help =’Enter the directory with the embeddings’ )
28 p a r s e r . add_argument (’dataset_type’ , type = i n t ,
29 help =’Enter the type of dataset to process \n 0:

KinFaceV2\n 1: IMDB or CACD2000’ )
30 p a r s e r . add_argument (’--distance_metric’ , type = i n t ,
31 help =’Enter how you wish to calculate the

distance’ + \
32 ’\n 0: Euclidean Distance\n 1: Cosine

Similarity’ ,
33 d e f a u l t =0)
34 p a r s e r . add_argument (’--distances_name_kinfacev2’ , type = s t r ,
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35 help =’Enter the name of the archive with the

distances of the KinfaceV2 dataset’ ,
36 d e f a u l t = f a c e _ d i s t a n c e _ c a l c .

DISTANCE_LIST_NAME_KINFACEV2)
37 p a r s e r . add_argument (’--n_folds’ , type = i n t ,
38 help =’Enter the number of folds you would like to

test’ ,
39 d e f a u l t =5)
40 p a r s e r . add_argument (’--learning_rate’ , type = f l o a t ,
41 help =’Enter the learning rate value that you

would like to use during trainning, default is

0.03’ ,
42 d e f a u l t = 0 . 0 3 )
43 p a r s e r . add_argument (’--n_epoch’ , type = i n t ,
44 help =’Enter the number of epochs you would like

to use on training’ ,
45 d e f a u l t =15)
46 p a r s e r . add_argument (’--batch_size’ , type = i n t ,
47 help =’Enter the batch size you would like to use

on training’ ,
48 d e f a u l t =20)
49 p a r s e r . add_argument (’--size_input’ , type = i n t ,
50 help =’Enter the input size of the data’ ,
51 d e f a u l t =128)
52 p a r s e r . add_argument (’--n_classes’ , type = i n t ,
53 help =’Enter number of classes on data’ ,
54 d e f a u l t =2)
55 p a r s e r . add_argument (’--display_step’ , type = i n t ,
56 help =’Enter number steps that it will take to

show the loss’ ,
57 d e f a u l t =2)
58 p a r s e r . add_argument (’--keep_prob’ , type = f l o a t ,
59 help =’Enter the dropout value that you would like

to use during trainning, default is 0.3’ ,
60 d e f a u l t = 0 . 3 )
61 p a r s e r . add_argument (’--verbose’ , type = s t r 2 b o o l ,
62 n a r g s =’?’ ,
63 help =’False to not show model details, True to

print details ’ ,
64 d e f a u l t = F a l s e )
65 p a r s e r . add_argument (’--store’ , type = s t r 2 b o o l ,
66 n a r g s =’?’ ,
67 help =’False store model, True to print details’ ,
68 d e f a u l t = F a l s e )
69 p a r s e r . add_argument (’--exploration_mode’ , type = s t r 2 b o o l ,
70 n a r g s =’?’ ,
71 help =’Explore the best hyper parameters’ ,
72 d e f a u l t = F a l s e )
73 re turn p a r s e r . p a r s e _ a r g s ( a rgv )
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74

75 def s t r 2 b o o l ( v ) :
76 i f v . lower ( ) in (’yes’ , ’true’ , ’t’ , ’y’ , ’1’ ) :
77 re turn True
78 e l i f v . lower ( ) in (’no’ , ’false’ , ’f’ , ’n’ , ’0’ ) :
79 re turn F a l s e
80 e l s e :
81 r a i s e a r g p a r s e . ArgumentTypeError (’Boolean value expected’ )
82

83

84 def c r e a t e _ a d d i t i o n a l _ d a t a s e t _ e v a l _ k i n f a c e v 2 ( d a t a s e t ) :
85 TXT_DESC_ADD_DATASET = [’ Child-Young_Fathter’ , ’ Child-Old_Father’ ]
86 d a t a s e t _ a r r a y _ e v a l = [ ]
87 # Embeddings , Labe l s , D e s c r i p t i o n
88 d a t a s e t _ c h i l d _ y o u n g = [ d a t a s e t . d a t a s e t _ c h i l d _ y o u n g _ p a r e n t s .

ge t_embedd ings_np ( ) ,
89 d a t a s e t . d a t a s e t _ c h i l d _ y o u n g _ p a r e n t s .

g e t _ o n e _ h o t _ e x p e c t e d _ r e s u l t s ( ) ,
90 TXT_DESC_ADD_DATASET [ 0 ] ]
91 d a t a s e t _ a r r a y _ e v a l . append ( d a t a s e t _ c h i l d _ y o u n g )
92 d a t a s e t _ c h i l d _ _ o l d = [ d a t a s e t . d a t a s e t _ c h i l d _ o l d _ p a r e n t s .

ge t_embedd ings_np ( ) ,
93 d a t a s e t . d a t a s e t _ c h i l d _ o l d _ p a r e n t s .

g e t _ o n e _ h o t _ e x p e c t e d _ r e s u l t s ( ) ,
94 TXT_DESC_ADD_DATASET [ 1 ] ]
95 d a t a s e t _ a r r a y _ e v a l . append ( d a t a s e t _ c h i l d _ _ o l d )
96 re turn d a t a s e t _ a r r a y _ e v a l
97

98

99 def c r e a t e _ d a t a _ d e s c r i p t i o n ( i n d e x e s , s i z e _ t r a i n , s i z e _ d a t a ) :
100 TXT_TRAIN = ’Train’

101 TXT_TEST = ’Test’

102 d a t a _ d e s c r i p t i o n = [ ]
103 f o r i in range ( s i z e _ d a t a ) :
104 aux = i n d e x e s [ i ]
105 aux_desc = [ aux [ 0 ] , aux [ 1 ] ]
106 i f i < s i z e _ t r a i n :
107 aux_desc . append (TXT_TRAIN)
108 e l s e :
109 aux_desc . append ( TXT_TEST )
110 d a t a _ d e s c r i p t i o n . append ( aux_desc )
111 re turn d a t a _ d e s c r i p t i o n
112

113

114 def c r e a t e _ c r o s s _ v a l i d a t i o n _ d a t a s e t ( d a t a s e t , n _ f o l d s , f o l d ) :
115 embeds = d a t a s e t . a l l _ d a t a s e t . ge t_embedd ings_np ( )
116 l a b e l s = d a t a s e t . a l l _ d a t a s e t . g e t _ o n e _ h o t _ e x p e c t e d _ r e s u l t s ( )
117 i n d e x e s = d a t a s e t . a l l _ d a t a s e t . g e t _ i n d e x e s ( )
118 # D e f i n e s p o s i t i o n s on t h e d a t a s e t
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119 s i z e _ d a t a = embeds . shape [ 0 ]
120 s i z e _ f o l d = s i z e _ d a t a / / n _ f o l d s
121 s i z e _ t r a i n = s i z e _ d a t a − s i z e _ f o l d
122 b e g i n = s i z e _ f o l d ∗ f o l d
123 end = b e g i n + s i z e _ f o l d
124

125 # p r i n t ( " D a t a s e t s i z e i s { } , n _ f o l d : { } , f o l d _ s i z e : { } , b e g i n : { } ,
end : { } " . f o r m a t (

126 # s i z e _ d a t a , n _ f o l d s , s i z e _ f o l d , begin , end ) )
127 # C r e a t e s t h e s l i c e s o f t h e d a t a s e t
128 t e s t _ e m b e d = embeds [ b e g i n : end ]
129 t e s t _ l a b e l s = l a b e l s [ b e g i n : end ]
130 t e s t _ i n d e x e s = i n d e x e s [ b e g i n : end ]
131

132 t r a i n _ e m b e d = np . c o n c a t e n a t e ( ( embeds [ : b e g i n ] , embeds [ end : ] ) , a x i s =0)
133 t r a i n _ l a b e l s = np . c o n c a t e n a t e ( ( l a b e l s [ : b e g i n ] , l a b e l s [ end : ] ) , a x i s =0)
134 t r a i n _ i n d e x e s = np . c o n c a t e n a t e ( ( i n d e x e s [ : b e g i n ] , i n d e x e s [ end : ] ) , a x i s

=0)
135 # Rearrange d a t a s e t
136 e m b e d s _ f i n a l = np . c o n c a t e n a t e ( ( t r a in_embed , t e s t _ e m b e d ) , a x i s =0)
137 l a b e l s _ f i n a l = np . c o n c a t e n a t e ( ( t r a i n _ l a b e l s , t e s t _ l a b e l s ) , a x i s =0)
138 i n d e x e s _ f i n a l = np . c o n c a t e n a t e ( ( t r a i n _ i n d e x e s , t e s t _ i n d e x e s ) , a x i s =0)
139 d a t a _ d e s c r i p t i o n = c r e a t e _ d a t a _ d e s c r i p t i o n ( i n d e x e s _ f i n a l , s i z e _ t r a i n ,

s i z e _ d a t a )
140 a d d _ d a t a s e t _ a r r a y _ e v a l = c r e a t e _ a d d i t i o n a l _ d a t a s e t _ e v a l _ k i n f a c e v 2 (

d a t a s e t )
141 # p r i n t ( l e n ( d a t a _ d e s c r i p t i o n [ s i z e _ t r a i n : ] ) )
142 # p r i n t ( d a t a _ d e s c r i p t i o n [ s i z e _ t r a i n : ] )
143 re turn e m b e d s _ f i n a l , l a b e l s _ f i n a l , s i z e _ t r a i n , d a t a _ d e s c r i p t i o n ,

a d d _ d a t a s e t _ a r r a y _ e v a l
144

145

146 def g e n e r a t e _ m o d e l _ f o l d e r _ d a t e ( d a t a _ d i r ) :
147 m o d e l _ r o o t = os . p a t h . j o i n ( d a t a _ d i r , TXT_MODEL)
148 d a t e _ s t r = d a t e t i m e . d a t e t i m e . now ( ) . s t r f t i m e ("%Y-%m-%d_%H-%M-%S" )
149 m o d e l _ r o o t _ d a t e = os . p a t h . j o i n ( mode l_ roo t , d a t e _ s t r )
150 re turn m o d e l _ r o o t _ d a t e
151

152 def p r o c e s s _ r e s u l t s _ a r r a y ( r e s u l t s _ a r r a y ) :
153 TXT_DESC_RESULTS_ARRAY_SUMM = \
154 [’...’ , ’avg’ , ’median’ , ’max’ , ’index_max’ , ’min’ , ’index_min’ ,

’std’ , ’var’ ]
155 r e s u l t s _ a r r a y _ s u m m = [TXT_DESC_RESULTS_ARRAY_SUMM]
156 f o r i t em in r e s u l t s _ a r r a y :
157 desc = i t em [ 0 ]
158 d a t a = i t em [ 1 : ]
159 avg = np . a v e r a g e ( d a t a . a s t y p e ( np . f l o a t 6 4 ) )
160 median = np . median ( d a t a . a s t y p e ( np . f l o a t 6 4 ) )
161 index_max = np . argmax ( d a t a . a s t y p e ( np . f l o a t 6 4 ) )
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162 max_val = d a t a [ index_max ] . a s t y p e ( np . f l o a t 6 4 )
163 index_min = np . argmin ( d a t a . a s t y p e ( np . f l o a t 6 4 ) )
164 min_va l = d a t a [ index_min ] . a s t y p e ( np . f l o a t 6 4 )
165 s t d = np . s t d ( d a t a . a s t y p e ( np . f l o a t 6 4 ) )
166 v a r = np . v a r ( d a t a . a s t y p e ( np . f l o a t 6 4 ) )
167 a u x _ a r r a y = [ desc , avg , median , max_val , index_max , min_val ,

index_min , s t d , v a r ]
168 r e s u l t s _ a r r a y _ s u m m = np . append ( r e s u l t s _ a r r a y _ s u m m , [ a u x _ a r r a y ] ,

a x i s =0)
169 re turn r e s u l t s _ a r r a y _ s u m m
170

171

172 def c r e a t e _ h p _ a r r a y ( a rgs , h p _ e x p l o r e _ a r r a y = None ) :
173 i f not a r g s . e x p l o r a t i o n _ m o d e :
174 h p _ a r r a y = [
175 a r g s . l e a r n i n g _ r a t e ,
176 a r g s . n_epoch ,
177 a r g s . b a t c h _ s i z e ,
178 a r g s . s i z e _ i n p u t ,
179 a r g s . n _ c l a s s e s ,
180 a r g s . d i s p l a y _ s t e p ,
181 a r g s . keep_prob
182 ]
183 e l s e :
184 h p _ a r r a y = [
185 h p _ e x p l o r e _ a r r a y [ 0 ] ,
186 h p _ e x p l o r e _ a r r a y [ 1 ] ,
187 h p _ e x p l o r e _ a r r a y [ 2 ] ,
188 a r g s . s i z e _ i n p u t ,
189 a r g s . n _ c l a s s e s ,
190 a r g s . d i s p l a y _ s t e p ,
191 h p _ e x p l o r e _ a r r a y [ 3 ]
192 ]
193 re turn h p _ a r r a y
194

195 def p r o c e s s _ h p _ a r r a y ( h p _ a r r a y ) :
196 d e s c _ h p _ a r r a y = [
197 ’learning_rate’ ,
198 ’n_epoch’ ,
199 ’batch_size’ ,
200 ’size_input’ ,
201 ’n_classes’ ,
202 ’display_step’ ,
203 ’keep_prob’ ,
204 ]
205 hp_array_summ = np . a r r a y ( [ d e s c _ h p _ a r r a y , h p _ a r r a y ] )
206 re turn hp_array_summ
207

208
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209 def t r a i n _ k i n f a c e v 2 ( a rgs , h p _ e x p l o r e _ a r r a y = None ) :
210 d a t a _ a r r a y , s i z e = f a c e _ d i s t a n c e _ c a l c . l o a d _ d a t a ( a r g s . d a t a _ d i r )
211 d a t a s e t _ k i n f a c e = d a t a s e t . Da tase tKinFaceV2 ( d a t a _ a r r a y , s i z e , a r g s .

d i s t a n c e _ m e t r i c )
212 h p _ a r r a y = c r e a t e _ h p _ a r r a y ( a rgs , h p _ e x p l o r e _ a r r a y )
213 # [ embed , l a b e l s , s i z e _ t r a i n , d a t a _ d e s c r i p t i o n ]
214 # i n p u t _ d a t a _ k i n f a c e _ m o d e l = c r e a t e _ d a t a _ k i n f a c e v 2 ( d a t a s e t _ k i n f a c e )
215 m o d e l _ f o l d e r _ d a t e = g e n e r a t e _ m o d e l _ f o l d e r _ d a t e ( a r g s . d a t a _ d i r )
216 r e s u l t s _ a r r a y = [ ]
217 s t a r t e d = F a l s e
218 f o r i in range ( a r g s . n _ f o l d s ) :
219 m o d e l _ r o o t _ d a t e _ i t e r = os . p a t h . j o i n ( m o d e l _ f o l d e r _ d a t e , s t r ( i ) )
220 i n p u t _ d a t a _ k i n f a c e _ m o d e l = c r e a t e _ c r o s s _ v a l i d a t i o n _ d a t a s e t (

d a t a s e t _ k i n f a c e , a r g s . n _ f o l d s , i )
221 r e s u l t s = t r a i n _ k i n s h i p _ m o d e l ( i n p u t _ d a t a _ k i n f a c e _ m o d e l ,

m o d e l _ f o l d e r _ d a t e = m o d e l _ r o o t _ d a t e _ i t e r ,
222 h p _ a r r a y = hp_a r r ay ,
223 # [ l e a r n i n g _ r a t e , epoch , b a t c h _ s i z e

, s i z e _ i n p u t , n _ c l a s s e s ,
d i s p l a y _ s t e p ]

224 v e r b o s e = a r g s . v e r b o s e )
225 i f not s t a r t e d :
226 c o l = [ [ x ] f o r x in r e s u l t s [ : , 0 ] ]
227 r e s u l t s _ a r r a y = c o l
228 s t a r t e d = True
229 c o l = [ [ x ] f o r x in r e s u l t s [ : , 1 ] ]
230 r e s u l t s _ a r r a y = np . append ( r e s u l t s _ a r r a y , co l , a x i s =1)
231 r e s u l t s _ a r r a y _ s u m m = p r o c e s s _ r e s u l t s _ a r r a y ( r e s u l t s _ a r r a y )
232 hp_array_summ = p r o c e s s _ h p _ a r r a y ( h p _ a r r a y )
233 s a v e _ f i l e _ n p y _ c s v ( m o d e l _ f o l d e r _ d a t e , TXT_HP_ARRAY_FILENAME,

hp_array_summ )
234 s a v e _ f i l e _ n p y _ c s v ( m o d e l _ f o l d e r _ d a t e , TXT_RESULTS_ARRAY_SUMM_FILE_NAME

, r e s u l t s _ a r r a y _ s u m m )
235 t e s t _ a c c = r e s u l t s _ a r r a y _ s u m m [ 1 ] [ 1 ]
236 t e s t _ a c c = f l o a t ( t e s t _ a c c ) ∗100
237 p r i n t ("Average accuracy on test is: {:.2f}" . format ( t e s t _ a c c ) )
238 m o d e l _ f o l d e r _ d a t e _ f i n a l = c r e a t e _ a c c _ m o d e l _ f o l d e r _ d a t e (

m o d e l _ f o l d e r _ d a t e , t e s t _ a c c )
239 os . rename ( m o d e l _ f o l d e r _ d a t e , m o d e l _ f o l d e r _ d a t e _ f i n a l )
240

241

242 def c r e a t e _ a c c _ m o d e l _ f o l d e r _ d a t e ( m o d e l _ f o l d e r _ d a t e , t e s t _ a c c ) :
243 p o i n t e r = m o d e l _ f o l d e r _ d a t e [ −1: : −1] . f i n d ("/" )
244 m o d e l _ f o l d e r _ d a t e _ f i n a l = "{}{:.2f}_{}" . format (
245 m o d e l _ f o l d e r _ d a t e [:− p o i n t e r ] ,
246 t e s t _ a c c ,
247 m o d e l _ f o l d e r _ d a t e [− p o i n t e r : ]
248 )
249 re turn m o d e l _ f o l d e r _ d a t e _ f i n a l
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250

251

252 def explore_mode ( a r g s ) :
253 l e a r n i n g _ r a t e _ a r r a y = [ 0 . 0 3 , 0 . 0 5 , 0 . 0 7 , 0 . 0 9 , 0 . 1 ]
254 n _ e p o c h _ a r r a y = [ 6 , 10 , 14 , 18]
255 b a t c h _ s i z e _ a r r a y = [ 1 0 , 40 , 80]
256 k e e p _ p r o b _ a r r a y = [ 0 . 4 , 0 . 6 , 0 . 7 , 0 . 8 , 0 . 9 , 1 . 0 ]
257 f o r l e a r n i n g _ r a t e in l e a r n i n g _ r a t e _ a r r a y :
258 f o r n_epoch in n _ e p o c h _ a r r a y :
259 f o r b a t c h _ s i z e in b a t c h _ s i z e _ a r r a y :
260 f o r keep_prob in k e e p _ p r o b _ a r r a y :
261 h p _ e x p l o r e _ a r r a y = [ l e a r n i n g _ r a t e , n_epoch ,

b a t c h _ s i z e , keep_prob ]
262 t r a i n _ k i n f a c e v 2 ( a rgs , h p _ e x p l o r e _ a r r a y )
263

264

265 def main ( a r g s ) :
266 i f a r g s . d a t a s e t _ t y p e == 0 :
267 i f not a r g s . e x p l o r a t i o n _ m o d e :
268 t r a i n _ k i n f a c e v 2 ( a r g s )
269 e l s e :
270 explore_mode ( a r g s )
271

272

273

274 " " "ML Model " " "
275 def c r e a t e _ n e u r a l _ n e t ( x , s i z e _ i n p u t , n _ c l a s s e s , keep_prob ) :
276 wi th t f . name_scope (’model’ ) a s scope :
277

278 # C r e a t e s _ w e i g h t s and b i a s e s
279 l a y e r _ 1 = t f . l a y e r s . dense (
280 x , s i z e _ i n p u t , a c t i v a t i o n = t f . nn . l e a k y _ r e l u ,
281 name=’Layer_1’ ) # pass t h e f i r s t v a l u e from i t e r . g e t _ n e x t ( )

as i n p u t
282 d r o p o u t _ l a y e r = t f . nn . d r o p o u t ( l a y e r _ 1 , keep_prob ,
283 name=’Dropout_Layer’ )
284 l a y e r _ 2 = t f . l a y e r s . dense ( d r o p o u t _ l a y e r , n _ c l a s s e s , a c t i v a t i o n = t f

. nn . l e a k y _ r e l u ,
285 name=’Layer_2’ )
286 p r e d i c t i o n = t f . nn . so f tmax ( l a y e r _ 2 , name=’prediction’ )
287 re turn p r e d i c t i o n
288

289

290 def c r e a t e _ c o s t _ f u n c t i o n ( model , y ) :
291 wi th t f . name_scope (’Cost’ ) a s scope :
292 # Cross e n t r o p y l o s s
293 c o s t _ f n = − t f . reduce_sum ( y ∗ t f . l o g ( model ) )
294 cost_summ = t f . summary . s c a l a r (’Cost_Function’ , c o s t _ f n )
295 re turn c o s t _ f n , cost_summ
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296

297

298 def c r e a t e _ o p t i m i z e r ( l e a r n i n g _ r a t e , c o s t _ f u n c t i o n ) :
299 wi th t f . name_scope (’train’ ) a s scope :
300 o p t i m i z e r = t f . t r a i n . G r a d i e n t D e s c e n t O p t i m i z e r ( l e a r n i n g _ r a t e ) .

min imize ( c o s t _ f u n c t i o n )
301 re turn o p t i m i z e r
302

303

304 def c r e a t e _ e v a l u a t i o n _ f n ( model , y ) :
305 wi th t f . name_scope (’evaluation’ ) a s scope :
306 " " " check a c c u r a c y " " "
307 c o r r e c t _ p r e d i c t i o n = t f . e q u a l ( t f . argmax ( model , 1 ) , t f . argmax ( y , 1 ) )
308 # a c c u r a c y _ v a l , a c c u r a c y _ f n = t f . reduce_mean ( t f . c a s t (

c o r r e c t _ p r e d i c t i o n , t f . f l o a t 3 2 ) )
309 a c c u r a c y _ v a l , a c c u r a c y _ f n = \
310 t f . m e t r i c s . a c c u r a c y ( l a b e l s = t f . argmax ( y , 1 ) , p r e d i c t i o n s = t f .

argmax ( model , 1 ) )
311 r o c _ v a l , r o c _ f n = t f . m e t r i c s . auc ( t f . argmax ( y , 1 ) , t f . argmax ( model

, 1 ) )
312 p r e c i s i o n _ v a l , p r e c i s i o n _ f n = t f . m e t r i c s . p r e c i s i o n ( t f . argmax ( y ,

1 ) , t f . argmax ( model , 1 ) )
313 r e c a l l _ v a l , r e c a l l _ f n = t f . m e t r i c s . r e c a l l ( t f . argmax ( y , 1 ) , t f .

argmax ( model , 1 ) )
314 # Summary
315 accuracy_summ = t f . summary . s c a l a r (’Accuracy’ , a c c u r a c y _ v a l )
316 roc_score_summ = t f . summary . s c a l a r (’ROC’ , r o c _ v a l )
317 p r e c i s i o n _ v a l _ s u m m = t f . summary . s c a l a r (’Precision’ , p r e c i s i o n _ v a l

)
318 r e c a l l _ v a l _ s u m m = t f . summary . s c a l a r (’Recall’ , r e c a l l _ v a l )
319 #To u n d e r s t a n d t h i s o r d e r s e e TXT_ACC_ARRAY on f u n c t i o n :

p r o c e s s _ e v a l u a t i o n
320 v a l u e s = [ a c c u r a c y _ v a l , r o c _ v a l , p r e c i s i o n _ v a l , r e c a l l _ v a l ]
321 f u n c t i o n s = [ a c c u r a c y _ f n , roc_ fn , p r e c i s i o n _ f n , r e c a l l _ f n ]
322 summaries = [ ]
323 re turn v a l u e s , f u n c t i o n s
324

325

326 def c r e a t e _ p o s i t i v e _ f a l s e _ f n ( model , y ) :
327 wi th t f . name_scope (’positive_false_numbers’ ) a s scope :
328 t r ue_p_n , t r u e _ p _ f n = t f . m e t r i c s . t r u e _ p o s i t i v e s ( t f . argmax ( y , 1 ) ,

t f . argmax ( model , 1 ) )
329 f a l s e _ p _ n , f a l s e _ p _ f n = t f . m e t r i c s . f a l s e _ n e g a t i v e s ( t f . argmax ( y ,

1 ) , t f . argmax ( model , 1 ) )
330 t r ue_n_n , t r u e _ n _ f n = t f . m e t r i c s . t r u e _ n e g a t i v e s ( t f . argmax ( y , 1 ) ,

t f . argmax ( model , 1 ) )
331 f a l s e _ n _ n , f a l s e _ n _ f n = t f . m e t r i c s . f a l s e _ n e g a t i v e s ( t f . argmax ( y ,

1 ) , t f . argmax ( model , 1 ) )
332 # Summary

51



333 t rue_p_n_summ = t f . summary . s c a l a r (’True_Positive’ , t r u e _ p _ n )
334 fa lse_p_n_summ = t f . summary . s c a l a r (’False_Positive’ , f a l s e _ p _ n )
335 t rue_n_n_summ = t f . summary . s c a l a r (’True_Negative’ , t r u e _ n _ n )
336 fa lse_n_n_summ = t f . summary . s c a l a r (’False_Negative’ , f a l s e _ n _ n )
337 # To u n d e r s t a n d t h i s o r d e r s e e TXT_POSITIVE_FALSE on f u n c t i o n :

p r o c e s s _ p o s i t i v e _ f a l s e
338 q u a n t i t i e s = [ t rue_p_n , f a l s e _ p _ n , t r ue_n_n , f a l s e _ n _ n ]
339 f u n c t i o n s = [ t r u e _ p _ f n , f a l s e _ p _ f n , t r u e _ n _ f n , f a l s e _ n _ f n ]
340 re turn q u a n t i t i e s , f u n c t i o n s
341

342

343 def p r o c e s s _ p o s i t i v e _ f a l s e ( p o s i t i v e _ f a l s e _ r e s u l t , s i z e , s u f f i x , v e r b o s e =
F a l s e ) :

344 " " " To change t h e o r d e r o f t h e i t e n s on t h e a r r a y i s n e c e s s a r y t o
change t h e v a r i a b l e : TXT_POSITIVE_FALSE " " "

345 TXT_POSITIVE_FALSE = [’True positive’ , ’False positive’ , ’True

negative’ , ’False negative’ ]
346 TXT_SIZE = ’Size of the sample’

347 # S p e c i f i c s t a t i s t i c s name
348 p o s i t i v e _ f a l s e _ a r r a y = [ [ TXT_SIZE + s u f f i x , s i z e ] ]
349 i f v e r b o s e :
350 p r i n t (’{}: {}’ . format ( TXT_SIZE , s i z e ) , end=’ | ’ )
351 f o r i in range ( l e n ( p o s i t i v e _ f a l s e _ r e s u l t ) ) :
352 desc = TXT_POSITIVE_FALSE [ i ] + s u f f i x
353 v a l u e = p o s i t i v e _ f a l s e _ r e s u l t [ i ]
354 i f v e r b o s e :
355 p r i n t (’{}: {}’ . format ( desc , v a l u e ) , end = ’ | ’ )
356 p o s i t i v e _ f a l s e _ a r r a y . append ( [ desc , v a l u e ] )
357 i f v e r b o s e :
358 p r i n t ( )
359 re turn p o s i t i v e _ f a l s e _ a r r a y
360

361

362 def p r o c e s s _ e v a l u a t i o n ( e v a l u a t i o n _ v a l u e _ a r r a y , s u f f i x , v e r b o s e = F a l s e ) :
363 TXT_EVAL_ARRAY = [’Accuracy’ , ’ROC’ , ’Precision’ , ’Recall’ ]
364 e v a l _ a r r a y = [ ]
365 f o r i in range ( l e n (TXT_EVAL_ARRAY) ) :
366 desc = TXT_EVAL_ARRAY[ i ] + s u f f i x
367 v a l u e = e v a l u a t i o n _ v a l u e _ a r r a y [ i ]
368 i f v e r b o s e :
369 p r i n t (’{}: {}’ . format ( desc , v a l u e ) , end=’ | ’ )
370 e v a l _ a r r a y . append ( [ desc , v a l u e ] )
371 i f v e r b o s e :
372 p r i n t ( )
373 re turn e v a l _ a r r a y
374

375

376 def c r e a t e _ h i s t o g r a m _ v a r i a b l e s ( ) :
377 wi th t f . v a r i a b l e _ s c o p e ("Layer_1" , r e u s e =True ) :
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378 w e i g h t s = t f . g e t _ v a r i a b l e (’kernel’ )
379 b i a s = t f . g e t _ v a r i a b l e (’bias’ )
380 w_1 = t f . summary . h i s t o g r a m ("Weights_1" , w e i g h t s )
381 b_1 = t f . summary . h i s t o g r a m ("Biases_1" , b i a s )
382 wi th t f . v a r i a b l e _ s c o p e (’Layer_2’ , r e u s e =True ) :
383 w e i g h t s _ 2 = t f . g e t _ v a r i a b l e (’kernel’ )
384 b i a s _ 2 = t f . g e t _ v a r i a b l e (’bias’ )
385 w_2 = t f . summary . h i s t o g r a m ("Weights_2" , w e i g h t s _ 2 )
386 b_2 = t f . summary . h i s t o g r a m ("Biases_2" , b i a s _ 2 )
387 re turn [ w_1 , b_1 , w_2 , b_2 ]
388

389

390 def c r e a t e _ t x t _ s u m m a r y ( name , v a l u e ) :
391 i f ( v a l u e − i n t ( v a l u e ) ) != 0 :
392 t x t = ’{:.10f}’ . format ( v a l u e )
393 e l s e :
394 t x t = ’{}’ . format ( i n t ( v a l u e ) )
395 summary_op = t f . summary . t e x t ( name , t f . c o n v e r t _ t o _ t e n s o r ( t x t ) )
396 re turn summary_op
397

398

399 def c r e a t e _ a r r a y _ f e e d _ e v a l ( d a t a s e t _ a r r a y , x , y , b a t c h _ s i z e , keep_prob ) :
400 a r r a y _ f e e d = [ ]
401 f o r d a t a s e t in d a t a s e t _ a r r a y :
402 a u x _ a r r _ f e e d = [ { x : d a t a s e t [ 0 ] , y : d a t a s e t [ 1 ] , b a t c h _ s i z e :

d a t a s e t [ 0 ] . shape [ 0 ] , keep_prob : 1 . 0 } , d a t a s e t [ 2 ] ]
403 a r r a y _ f e e d . append ( a u x _ a r r _ f e e d )
404 re turn a r r a y _ f e e d
405

406

407 def t r a i n _ k i n s h i p _ m o d e l ( i n p u t _ d a t a , m o d e l _ f o l d e r _ d a t e ,
408 h p _ a r r a y = [ 0 . 0 7 , 10 , 10 , 128 , 2 , 1 , 0 . 4 ] ,
409 v e r b o s e = F a l s e , s t o r e =True ,
410 c a l c _ p o s i t i v e _ f a l s e = F a l s e ) :
411 " " " hp_array i s formed by [ l e a r n i n g _ r a t e , epoch , b a t c h _ s i z e ,

s i z e _ i n p u t , n _ c l a s s e s , d i s p l a y _ s t e p , k e e p _ p r o b _ v a l ]
412 " " "
413 LOG_DIR_NAME = ’logs’

414 MODEL_DIR_NAME = ’model’

415 DATA_DESC_NAME = ’data_desc.npy’

416 RESULTS_SUMM_NAME = ’results_sum.npy’

417

418 # S e p a r a t e s da ta from i n p u t _ d a t a
419 embeds = i n p u t _ d a t a [ 0 ]
420 l a b e l s = i n p u t _ d a t a [ 1 ]
421 s i z e _ t r a i n = i n p u t _ d a t a [ 2 ]
422 d a t a _ d e s c r i p t i o n = i n p u t _ d a t a [ 3 ]
423 a d d _ d a t a s e t _ a r r a y _ e v a l = i n p u t _ d a t a [ 4 ]
424
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425

426 # S e p a r a t e s hyper Parame te r s
427 h p _ l e a r n i n g _ r a t e = h p _ a r r a y [ 0 ]
428 hp_epoch = h p _ a r r a y [ 1 ]
429 h p _ b a t c h _ s i z e = h p _ a r r a y [ 2 ]
430 h p _ s i z e _ i n p u t = h p _ a r r a y [ 3 ]
431 h p _ n _ c l a s s e s = h p _ a r r a y [ 4 ]
432 h p _ d i s p l a y _ s t e p = h p _ a r r a y [ 5 ]
433

434 k e e p _ p r o b _ v a l = h p _ a r r a y [ 6 ]
435

436 # C r e a t e s
437 l o g _ d i r = os . p a t h . j o i n ( m o d e l _ f o l d e r _ d a t e , LOG_DIR_NAME)
438 m o d e l _ d i r = os . p a t h . j o i n ( m o d e l _ f o l d e r _ d a t e , MODEL_DIR_NAME)
439 os . m a k e d i r s ( m o d e l _ d i r )
440 model_path_name = os . p a t h . j o i n ( mode l_d i r , MODEL_DIR_NAME)
441

442 # TF graph i n p u t
443 b a t c h _ s i z e = t f . p l a c e h o l d e r ( t f . i n t 6 4 , name=’batch_size’ )
444 x = t f . p l a c e h o l d e r ( t f . f l o a t 3 2 , [ None , h p _ s i z e _ i n p u t ] , name=’x’ ) #

m n i s t da ta image
445 y = t f . p l a c e h o l d e r ( t f . f l o a t 3 2 , [ None , h p _ n _ c l a s s e s ] , name=’y’ )
446 keep_prob = t f . p l a c e h o l d e r ( t f . f l o a t 3 2 , name=’keep_prob’ )
447 d a t a s e t _ 1 = t f . d a t a . D a t a s e t . f r o m _ t e n s o r _ s l i c e s ( ( x , y ) ) . b a t c h (

b a t c h _ s i z e ) . r e p e a t ( )
448 k e e p _ p r o b _ t r a i n _ d i c t = { keep_prob : k e e p _ p r o b _ v a l }
449 k e e p _ p r o b _ t e s t _ d i c t = { keep_prob : 1 . 0 }
450

451 t r a i n _ d a t a = ( embeds [ : s i z e _ t r a i n ] , l a b e l s [ : s i z e _ t r a i n ] )
452 t e s t _ d a t a = ( embeds [ s i z e _ t r a i n : ] , l a b e l s [ s i z e _ t r a i n : ] )
453

454 i t e r a t o r = d a t a s e t _ 1 . m a k e _ i n i t i a l i z a b l e _ i t e r a t o r ( )
455 f e a t , l b l = i t e r a t o r . g e t _ n e x t ( )
456

457 # C re a t e a model
458 model = c r e a t e _ n e u r a l _ n e t ( f e a t , h p _ s i z e _ i n p u t , h p _ n _ c l a s s e s ,

keep_prob ) # So f tmax
459

460 c o s t _ f n , cost_summ = c r e a t e _ c o s t _ f u n c t i o n ( model , l b l )
461 i f s t o r e :
462 t r a i n _ s u m m _ o p _ h i s t = c r e a t e _ h i s t o g r a m _ v a r i a b l e s ( )
463

464 # g r a d i e n t d e s c e n t
465 o p t i m i z e r = c r e a t e _ o p t i m i z e r ( h p _ l e a r n i n g _ r a t e , c o s t _ f n )
466

467 e v a l u a t i o n _ v a l u e s _ a r r a y , e v a l u a t i o n _ f n _ a r r a y = c r e a t e _ e v a l u a t i o n _ f n (
model , l b l )

468 i f c a l c _ p o s i t i v e _ f a l s e :
469 p o s i t i v e _ f a l s e _ n _ a r r a y , p o s i t i v e _ f a l s e _ f n _ a r r a y =
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c r e a t e _ p o s i t i v e _ f a l s e _ f n ( model , l b l )
470

471 # I n i t i a l i z e v a r i a b l e s
472 i n i t = t f . g roup ( t f . g l o b a l _ v a r i a b l e s _ i n i t i a l i z e r ( ) , t f .

l o c a l _ v a r i a b l e s _ i n i t i a l i z e r ( ) )
473

474 s a v e r = t f . t r a i n . Save r ( )
475

476 # Launch graph
477 wi th t f . S e s s i o n ( ) a s s e s s :
478 s e s s . run ( i n i t )
479 f e e d _ t r a i n = {x : t r a i n _ d a t a [ 0 ] , y : t r a i n _ d a t a [ 1 ] , b a t c h _ s i z e :

h p _ b a t c h _ s i z e }
480 s e s s . run ( i t e r a t o r . i n i t i a l i z e r , f e e d _ d i c t = f e e d _ t r a i n )
481 i f s t o r e :
482 summary_wr i t e r = t f . summary . F i l e W r i t e r (
483 l o g d i r = l o g _ d i r ,
484 graph = s e s s . g raph )
485 f o r i in range ( hp_epoch ) :
486 t o t a l _ b a t c h = i n t ( s i z e _ t r a i n / h p _ b a t c h _ s i z e )
487 # P r o c e s s a l l b a t c h e s
488 f o r j in range ( t o t a l _ b a t c h ) :
489 _ , c o s t = s e s s . run ( [ o p t i m i z e r , c o s t _ f n ] , f e e d _ d i c t =

k e e p _ p r o b _ t r a i n _ d i c t )
490 # C a l c u l a t e l o g s
491 i n d e x = i ∗ t o t a l _ b a t c h + j
492 i f s t o r e :
493 summary_h i s t = s e s s . run ( t r a i n _ s u m m _ o p _ h i s t , f e e d _ d i c t

= k e e p _ p r o b _ t r a i n _ d i c t )
494 summary_cost = s e s s . run ( cost_summ , f e e d _ d i c t =

k e e p _ p r o b _ t r a i n _ d i c t )
495 summary_wr i t e r . add_summary ( summary_cost , i n d e x )
496 # W r i t e h i s t o g r a m l o g s f o r each i n t e r a t i o n
497 f o r i t em in summary_h i s t :
498 summary_wr i t e r . add_summary ( i tem , i n d e x )
499 # Shows s t a t u s on d i s p l a y _ s t e p
500 i f v e r b o s e and i % h p _ d i s p l a y _ s t e p == 0 :
501 p r i n t (’Interation: {:04d} | Cost: {} ’ . format ( i + 1 ,

c o s t ) )
502 i f v e r b o s e :
503 p r i n t (’Training completed!’ )
504 " " " B u i l d s t h e d i c t i o n a r i e s t o p r o c e s s e v a l u a t i o n " " "
505 f e e d _ d a t a s e t _ e v a l = [ [ t e s t _ d a t a [ 0 ] , t e s t _ d a t a [ 1 ] , TXT_TEST_SUFFIX

] ,
506 [ t r a i n _ d a t a [ 0 ] , t r a i n _ d a t a [ 1 ] ,

TXT_TRAIN_SUFFIX ] ]
507 f e e d _ d a t a s e t _ e v a l . e x t e n d ( a d d _ d a t a s e t _ a r r a y _ e v a l )
508 f e e d _ a r r a y _ e v a l = c r e a t e _ a r r a y _ f e e d _ e v a l ( f e e d _ d a t a s e t _ e v a l , x , y ,

b a t c h _ s i z e , keep_prob )
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509 " " " S t a r t s E v a l u a t i o n " " "
510 i f v e r b o s e :
511 p r i n t (’Starting evaluation on deisgned datasets ’ )
512 r e s u l t s = [ ]
513 f o r f e e d in f e e d _ a r r a y _ e v a l :
514 a u x _ f e e d = f e e d [ 0 ]
515 s u f f i x = f e e d [ 1 ]
516 s i z e = a u x _ f e e d [ b a t c h _ s i z e ]
517 i f v e r b o s e :
518 p r i n t (’Starting feed:{}’ . format ( s u f f i x ) )
519 s e s s . run ( i t e r a t o r . i n i t i a l i z e r , f e e d _ d i c t = a u x _ f e e d )
520 # Run graph o p e r a t i o n s
521 e v a l u a t i o n _ a r r a y = s e s s . run ( e v a l u a t i o n _ f n _ a r r a y , f e e d _ d i c t =

k e e p _ p r o b _ t e s t _ d i c t )
522 e v a l _ a r r a y _ i d e n t = p r o c e s s _ e v a l u a t i o n ( e v a l u a t i o n _ a r r a y ,

s u f f i x , v e r b o s e )
523 r e s u l t s . e x t e n d ( e v a l _ a r r a y _ i d e n t )
524 i f c a l c _ p o s i t i v e _ f a l s e :
525 p o s i t i v e _ f a l s e _ a r r a y = s e s s . run ( p o s i t i v e _ f a l s e _ f n _ a r r a y ,

f e e d _ d i c t = k e e p _ p r o b _ t e s t _ d i c t )
526 p o s _ f a l s e _ a r r a y _ i d e n t = p r o c e s s _ p o s i t i v e _ f a l s e (

p o s i t i v e _ f a l s e _ a r r a y , s i z e , s u f f i x , v e r b o s e )
527 r e s u l t s . e x t e n d ( p o s _ f a l s e _ a r r a y _ i d e n t )
528 i f s t o r e :
529 f o r r e s u l t in r e s u l t s :
530 summary_op = c r e a t e _ t x t _ s u m m a r y ( r e s u l t [ 0 ] , r e s u l t [ 1 ] )
531 txt_summ = s e s s . run ( summary_op , f e e d _ d i c t =

k e e p _ p r o b _ t e s t _ d i c t )
532 summary_wr i t e r . add_summary ( txt_summ , 0 )
533 r e s u l t s = np . a r r a y ( r e s u l t s )
534 # Saves model
535 i f s t o r e :
536 s a v e r . s ave ( s e s s , model_path_name , w r i t e _ m e t a _ g r a p h =True )
537 # Saves d e s c r i p t i o n o f da ta used
538 s a v e _ f i l e _ n p y _ c s v ( l o g _ d i r , DATA_DESC_NAME, d a t a _ d e s c r i p t i o n )

# Save da ta desc
539 # Saves t h e r e s u l t s
540 s a v e _ f i l e _ n p y _ c s v ( l o g _ d i r , RESULTS_SUMM_NAME, r e s u l t s )
541 p r i n t (’Data saved on: {}’ . format ( m o d e l _ f o l d e r _ d a t e ) )
542 summary_wr i t e r . c l o s e ( )
543 t f . r e s e t _ d e f a u l t _ g r a p h ( )
544 re turn r e s u l t s
545

546 i f __name__ == ’__main__’ :
547 main ( p a r s e _ a r g u m e n t s ( s y s . a rgv [ 1 : ] ) )

List 6.2: Complete FaceNet model source code with Inception-ResNet-v1

1 # C o p y r i g h t 2016 The TensorFlow A u t h o r s . A l l R i g h t s R e s e r v e d .
2 #
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3 # L i c e n s e d under t h e Apache L i c e n s e , V e r s i o n 2 . 0 ( t h e " L i c e n s e " ) ;
4 # you may n o t use t h i s f i l e e x c e p t i n c o m p l i a n c e w i t h t h e L i c e n s e .
5 # You may o b t a i n a copy o f t h e L i c e n s e a t
6 #
7 # h t t p : / / www. apache . org / l i c e n s e s / LICENSE−2.0
8 #
9 # U nl e s s r e q u i r e d by a p p l i c a b l e law or agreed t o i n w r i t i n g , s o f t w a r e

10 # d i s t r i b u t e d under t h e L i c e n s e i s d i s t r i b u t e d on an "AS IS " BASIS ,
11 # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND , e i t h e r e x p r e s s or i m p l i e d

.
12 # See t h e L i c e n s e f o r t h e s p e c i f i c language g o v e r n i n g p e r m i s s i o n s and
13 # l i m i t a t i o n s under t h e L i c e n s e .
14 #

==============================================================================

15

16 " " " C o n t a i n s t h e d e f i n i t i o n o f t h e I n c e p t i o n R e s n e t V1 a r c h i t e c t u r e .
17 As d e s c r i b e d i n h t t p : / / a r x i v . org / abs / 1 6 0 2 . 0 7 2 6 1 .
18 I n c e p t i o n −v4 , I n c e p t i o n −ResNet and t h e Impac t o f R e s i d u a l C o n n e c t i o n s
19 on L e a r n i ng
20 C h r i s t i a n Szegedy , Se rg e y I o f f e , V i n c e n t Vanhoucke , A l ex Alemi
21 " " "
22 from _ _ f u t u r e _ _ import a b s o l u t e _ i m p o r t
23 from _ _ f u t u r e _ _ import d i v i s i o n
24 from _ _ f u t u r e _ _ import p r i n t _ f u n c t i o n
25

26 import t e n s o r f l o w as t f
27 import t e n s o r f l o w . c o n t r i b . s l i m as s l i m
28

29 # I n c e p t i o n −Resne t−A
30 def b lock35 ( ne t , s c a l e = 1 . 0 , a c t i v a t i o n _ f n = t f . nn . r e l u , scope =None , r e u s e =

None ) :
31 " " " B u i l d s t h e 35 x35 r e s n e t b l o c k . " " "
32 wi th t f . v a r i a b l e _ s c o p e ( scope , ’Block35’ , [ n e t ] , r e u s e = r e u s e ) :
33 wi th t f . v a r i a b l e _ s c o p e (’Branch_0’ ) :
34 tower_conv = s l i m . conv2d ( ne t , 32 , 1 , scope =’Conv2d_1x1’ )
35 wi th t f . v a r i a b l e _ s c o p e (’Branch_1’ ) :
36 tower_conv1_0 = s l i m . conv2d ( ne t , 32 , 1 , scope =’Conv2d_0a_1x1’

)
37 tower_conv1_1 = s l i m . conv2d ( tower_conv1_0 , 32 , 3 , scope =’

Conv2d_0b_3x3’ )
38 wi th t f . v a r i a b l e _ s c o p e (’Branch_2’ ) :
39 tower_conv2_0 = s l i m . conv2d ( ne t , 32 , 1 , scope =’Conv2d_0a_1x1’

)
40 tower_conv2_1 = s l i m . conv2d ( tower_conv2_0 , 32 , 3 , scope =’

Conv2d_0b_3x3’ )
41 tower_conv2_2 = s l i m . conv2d ( tower_conv2_1 , 32 , 3 , scope =’

Conv2d_0c_3x3’ )
42 mixed = t f . c o n c a t ( [ tower_conv , tower_conv1_1 , tower_conv2_2 ] , 3 )
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43 up = s l i m . conv2d ( mixed , n e t . g e t _ s h a p e ( ) [ 3 ] , 1 , n o r m a l i z e r _ f n =None
,

44 a c t i v a t i o n _ f n =None , scope =’Conv2d_1x1’ )
45 n e t += s c a l e ∗ up
46 i f a c t i v a t i o n _ f n :
47 n e t = a c t i v a t i o n _ f n ( n e t )
48 re turn n e t
49

50 # I n c e p t i o n −Resne t−B
51 def b lock17 ( ne t , s c a l e = 1 . 0 , a c t i v a t i o n _ f n = t f . nn . r e l u , scope =None , r e u s e =

None ) :
52 " " " B u i l d s t h e 17 x17 r e s n e t b l o c k . " " "
53 wi th t f . v a r i a b l e _ s c o p e ( scope , ’Block17’ , [ n e t ] , r e u s e = r e u s e ) :
54 wi th t f . v a r i a b l e _ s c o p e (’Branch_0’ ) :
55 tower_conv = s l i m . conv2d ( ne t , 128 , 1 , scope =’Conv2d_1x1’ )
56 wi th t f . v a r i a b l e _ s c o p e (’Branch_1’ ) :
57 tower_conv1_0 = s l i m . conv2d ( ne t , 128 , 1 , scope =’Conv2d_0a_1x1

’ )
58 tower_conv1_1 = s l i m . conv2d ( tower_conv1_0 , 128 , [ 1 , 7 ] ,
59 scope =’Conv2d_0b_1x7’ )
60 tower_conv1_2 = s l i m . conv2d ( tower_conv1_1 , 128 , [ 7 , 1 ] ,
61 scope =’Conv2d_0c_7x1’ )
62 mixed = t f . c o n c a t ( [ tower_conv , tower_conv1_2 ] , 3 )
63 up = s l i m . conv2d ( mixed , n e t . g e t _ s h a p e ( ) [ 3 ] , 1 , n o r m a l i z e r _ f n =None

,
64 a c t i v a t i o n _ f n =None , scope =’Conv2d_1x1’ )
65 n e t += s c a l e ∗ up
66 i f a c t i v a t i o n _ f n :
67 n e t = a c t i v a t i o n _ f n ( n e t )
68 re turn n e t
69

70

71 # I n c e p t i o n −Resne t−C
72 def b l oc k8 ( ne t , s c a l e = 1 . 0 , a c t i v a t i o n _ f n = t f . nn . r e l u , scope =None , r e u s e =

None ) :
73 " " " B u i l d s t h e 8 x8 r e s n e t b l o c k . " " "
74 wi th t f . v a r i a b l e _ s c o p e ( scope , ’Block8’ , [ n e t ] , r e u s e = r e u s e ) :
75 wi th t f . v a r i a b l e _ s c o p e (’Branch_0’ ) :
76 tower_conv = s l i m . conv2d ( ne t , 192 , 1 , scope =’Conv2d_1x1’ )
77 wi th t f . v a r i a b l e _ s c o p e (’Branch_1’ ) :
78 tower_conv1_0 = s l i m . conv2d ( ne t , 192 , 1 , scope =’Conv2d_0a_1x1

’ )
79 tower_conv1_1 = s l i m . conv2d ( tower_conv1_0 , 192 , [ 1 , 3 ] ,
80 scope =’Conv2d_0b_1x3’ )
81 tower_conv1_2 = s l i m . conv2d ( tower_conv1_1 , 192 , [ 3 , 1 ] ,
82 scope =’Conv2d_0c_3x1’ )
83 mixed = t f . c o n c a t ( [ tower_conv , tower_conv1_2 ] , 3 )
84 up = s l i m . conv2d ( mixed , n e t . g e t _ s h a p e ( ) [ 3 ] , 1 , n o r m a l i z e r _ f n =None

,
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85 a c t i v a t i o n _ f n =None , scope =’Conv2d_1x1’ )
86 n e t += s c a l e ∗ up
87 i f a c t i v a t i o n _ f n :
88 n e t = a c t i v a t i o n _ f n ( n e t )
89 re turn n e t
90

91 def r e d u c t i o n _ a ( ne t , k , l , m, n ) :
92 wi th t f . v a r i a b l e _ s c o p e (’Branch_0’ ) :
93 tower_conv = s l i m . conv2d ( ne t , n , 3 , s t r i d e =2 , padd ing =’VALID’ ,
94 scope =’Conv2d_1a_3x3’ )
95 wi th t f . v a r i a b l e _ s c o p e (’Branch_1’ ) :
96 tower_conv1_0 = s l i m . conv2d ( ne t , k , 1 , s cope =’Conv2d_0a_1x1’ )
97 tower_conv1_1 = s l i m . conv2d ( tower_conv1_0 , l , 3 ,
98 scope =’Conv2d_0b_3x3’ )
99 tower_conv1_2 = s l i m . conv2d ( tower_conv1_1 , m, 3 ,

100 s t r i d e =2 , padd ing =’VALID’ ,
101 scope =’Conv2d_1a_3x3’ )
102 wi th t f . v a r i a b l e _ s c o p e (’Branch_2’ ) :
103 t o w e r _ p o o l = s l i m . max_pool2d ( ne t , 3 , s t r i d e =2 , padd ing =’VALID’ ,
104 scope =’MaxPool_1a_3x3’ )
105 n e t = t f . c o n c a t ( [ tower_conv , tower_conv1_2 , t o w e r _ p o o l ] , 3 )
106 re turn n e t
107

108 def r e d u c t i o n _ b ( n e t ) :
109 wi th t f . v a r i a b l e _ s c o p e (’Branch_0’ ) :
110 tower_conv = s l i m . conv2d ( ne t , 256 , 1 , scope =’Conv2d_0a_1x1’ )
111 tower_conv_1 = s l i m . conv2d ( tower_conv , 384 , 3 , s t r i d e =2 ,
112 padd ing =’VALID’ , s cope =’Conv2d_1a_3x3’

)
113 wi th t f . v a r i a b l e _ s c o p e (’Branch_1’ ) :
114 tower_conv1 = s l i m . conv2d ( ne t , 256 , 1 , scope =’Conv2d_0a_1x1’ )
115 tower_conv1_1 = s l i m . conv2d ( tower_conv1 , 256 , 3 , s t r i d e =2 ,
116 padd ing =’VALID’ , s cope =’Conv2d_1a_3x3

’ )
117 wi th t f . v a r i a b l e _ s c o p e (’Branch_2’ ) :
118 tower_conv2 = s l i m . conv2d ( ne t , 256 , 1 , scope =’Conv2d_0a_1x1’ )
119 tower_conv2_1 = s l i m . conv2d ( tower_conv2 , 256 , 3 ,
120 scope =’Conv2d_0b_3x3’ )
121 tower_conv2_2 = s l i m . conv2d ( tower_conv2_1 , 256 , 3 , s t r i d e =2 ,
122 padd ing =’VALID’ , s cope =’Conv2d_1a_3x3

’ )
123 wi th t f . v a r i a b l e _ s c o p e (’Branch_3’ ) :
124 t o w e r _ p o o l = s l i m . max_pool2d ( ne t , 3 , s t r i d e =2 , padd ing =’VALID’ ,
125 scope =’MaxPool_1a_3x3’ )
126 n e t = t f . c o n c a t ( [ tower_conv_1 , tower_conv1_1 ,
127 tower_conv2_2 , t o w e r _ p o o l ] , 3 )
128 re turn n e t
129

130 def i n f e r e n c e ( images , k e e p _ p r o b a b i l i t y , p h a s e _ t r a i n =True ,
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131 b o t t l e n e c k _ l a y e r _ s i z e =128 , w e i g h t _ d e c a y = 0 . 0 , r e u s e =None ) :
132 ba tch_norm_params = {
133 # Decay f o r t h e moving a v e r a g e s .
134 ’decay’ : 0 . 9 9 5 ,
135 # e p s i l o n t o p r e v e n t 0 s i n v a r i a n c e .
136 ’epsilon’ : 0 . 0 0 1 ,
137 # f o r c e in−p l a c e u p d a t e s o f mean and v a r i a n c e e s t i m a t e s
138 ’updates_collections’ : None ,
139 # Moving a v e r a g e s ends up i n t h e t r a i n a b l e v a r i a b l e s c o l l e c t i o n
140 ’variables_collections’ : [ t f . GraphKeys . TRAINABLE_VARIABLES ] ,
141 }
142

143 wi th s l i m . a r g _ s c o p e ( [ s l i m . conv2d , s l i m . f u l l y _ c o n n e c t e d ] ,
144 w e i g h t s _ i n i t i a l i z e r = s l i m . i n i t i a l i z e r s .

x a v i e r _ i n i t i a l i z e r ( ) ,
145 w e i g h t s _ r e g u l a r i z e r = s l i m . l 2 _ r e g u l a r i z e r (

w e i g h t _ d e c a y ) ,
146 n o r m a l i z e r _ f n = s l i m . batch_norm ,
147 n o r m a l i z e r _ p a r a m s = batch_norm_params ) :
148 re turn i n c e p t i o n _ r e s n e t _ v 1 ( images , i s _ t r a i n i n g = p h a s e _ t r a i n ,
149 d r o p o u t _ k e e p _ p r o b = k e e p _ p r o b a b i l i t y , b o t t l e n e c k _ l a y e r _ s i z e =

b o t t l e n e c k _ l a y e r _ s i z e , r e u s e = r e u s e )
150

151

152 def i n c e p t i o n _ r e s n e t _ v 1 ( i n p u t s , i s _ t r a i n i n g =True ,
153 d r o p o u t _ k e e p _ p r o b = 0 . 8 ,
154 b o t t l e n e c k _ l a y e r _ s i z e =128 ,
155 r e u s e =None ,
156 scope =’InceptionResnetV1’ ) :
157 " " " C r e a t e s t h e I n c e p t i o n R e s n e t V1 model .
158 Args :
159 i n p u t s : a 4−D t e n s o r o f s i z e [ b a t c h _ s i z e , h e i g h t , wid th , 3 ] .
160 n u m _ c l a s s e s : number o f p r e d i c t e d c l a s s e s .
161 i s _ t r a i n i n g : whe ther i s t r a i n i n g or n o t .
162 d r o p o u t _ k e e p _ p r o b : f l o a t , t h e f r a c t i o n t o keep b e f o r e f i n a l l a y e r .
163 r e u s e : whe ther or n o t t h e ne twork and i t s v a r i a b l e s s h o u l d be

r e u s e d . To be
164 a b l e t o r e u s e ’ scope ’ must be g i v e n .
165 scope : O p t i o n a l v a r i a b l e _ s c o p e .
166 R e t u r n s :
167 l o g i t s : t h e l o g i t s o u t p u t s o f t h e model .
168 e n d _ p o i n t s : t h e s e t o f e n d _ p o i n t s from t h e i n c e p t i o n model .
169 " " "
170 e n d _ p o i n t s = {}
171

172 wi th t f . v a r i a b l e _ s c o p e ( scope , ’InceptionResnetV1’ , [ i n p u t s ] , r e u s e =
r e u s e ) :

173 wi th s l i m . a r g _ s c o p e ( [ s l i m . batch_norm , s l i m . d r o p o u t ] ,
174 i s _ t r a i n i n g = i s _ t r a i n i n g ) :
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175 wi th s l i m . a r g _ s c o p e ( [ s l i m . conv2d , s l i m . max_pool2d , s l i m .
avg_pool2d ] ,

176 s t r i d e =1 , padd ing =’SAME’ ) :
177

178 # 149 x 149 x 32
179 n e t = s l i m . conv2d ( i n p u t s , 32 , 3 , s t r i d e =2 , padd ing =’VALID

’ ,
180 scope =’Conv2d_1a_3x3’ )
181 e n d _ p o i n t s [’Conv2d_1a_3x3’ ] = n e t
182 # 147 x 147 x 32
183 n e t = s l i m . conv2d ( ne t , 32 , 3 , padd ing =’VALID’ ,
184 scope =’Conv2d_2a_3x3’ )
185 e n d _ p o i n t s [’Conv2d_2a_3x3’ ] = n e t
186 # 147 x 147 x 64
187 n e t = s l i m . conv2d ( ne t , 64 , 3 , scope =’Conv2d_2b_3x3’ )
188 e n d _ p o i n t s [’Conv2d_2b_3x3’ ] = n e t
189 # 73 x 73 x 64
190 n e t = s l i m . max_pool2d ( ne t , 3 , s t r i d e =2 , padd ing =’VALID’ ,
191 scope =’MaxPool_3a_3x3’ )
192 e n d _ p o i n t s [’MaxPool_3a_3x3’ ] = n e t
193 # 73 x 73 x 80
194 n e t = s l i m . conv2d ( ne t , 80 , 1 , padd ing =’VALID’ ,
195 scope =’Conv2d_3b_1x1’ )
196 e n d _ p o i n t s [’Conv2d_3b_1x1’ ] = n e t
197 # 71 x 71 x 192
198 n e t = s l i m . conv2d ( ne t , 192 , 3 , padd ing =’VALID’ ,
199 scope =’Conv2d_4a_3x3’ )
200 e n d _ p o i n t s [’Conv2d_4a_3x3’ ] = n e t
201 # 35 x 35 x 256
202 n e t = s l i m . conv2d ( ne t , 256 , 3 , s t r i d e =2 , padd ing =’VALID’ ,
203 scope =’Conv2d_4b_3x3’ )
204 e n d _ p o i n t s [’Conv2d_4b_3x3’ ] = n e t
205

206 # 5 x I n c e p t i o n −r e s n e t −A
207 n e t = s l i m . r e p e a t ( ne t , 5 , b lock35 , s c a l e = 0 . 1 7 )
208 e n d _ p o i n t s [’Mixed_5a’ ] = n e t
209

210 # Reduc t ion−A
211 wi th t f . v a r i a b l e _ s c o p e (’Mixed_6a’ ) :
212 n e t = r e d u c t i o n _ a ( ne t , 192 , 192 , 256 , 384)
213 e n d _ p o i n t s [’Mixed_6a’ ] = n e t
214

215 # 10 x I n c e p t i o n −Resne t−B
216 n e t = s l i m . r e p e a t ( ne t , 10 , b lock17 , s c a l e = 0 . 1 0 )
217 e n d _ p o i n t s [’Mixed_6b’ ] = n e t
218

219 # Reduc t ion−B
220 wi th t f . v a r i a b l e _ s c o p e (’Mixed_7a’ ) :
221 n e t = r e d u c t i o n _ b ( n e t )
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222 e n d _ p o i n t s [’Mixed_7a’ ] = n e t
223

224 # 5 x I n c e p t i o n −Resne t−C
225 n e t = s l i m . r e p e a t ( ne t , 5 , b lock8 , s c a l e = 0 . 2 0 )
226 e n d _ p o i n t s [’Mixed_8a’ ] = n e t
227

228 n e t = b l oc k8 ( ne t , a c t i v a t i o n _ f n =None )
229 e n d _ p o i n t s [’Mixed_8b’ ] = n e t
230

231 wi th t f . v a r i a b l e _ s c o p e (’Logits’ ) :
232 e n d _ p o i n t s [’PrePool’ ] = n e t
233 # p y l i n t : d i s a b l e =no−member
234 n e t = s l i m . avg_pool2d ( ne t , n e t . g e t _ s h a p e ( ) [ 1 : 3 ] ,

padd ing =’VALID’ ,
235 scope =’AvgPool_1a_8x8’ )
236 n e t = s l i m . f l a t t e n ( n e t )
237

238 n e t = s l i m . d r o p o u t ( ne t , d ropou t_keep_prob ,
i s _ t r a i n i n g = i s _ t r a i n i n g ,

239 scope =’Dropout’ )
240

241 e n d _ p o i n t s [’PreLogitsFlatten’ ] = n e t
242

243 n e t = s l i m . f u l l y _ c o n n e c t e d ( ne t , b o t t l e n e c k _ l a y e r _ s i z e ,
a c t i v a t i o n _ f n =None ,

244 scope =’Bottleneck’ , r e u s e = F a l s e )
245

246 re turn ne t , e n d _ p o i n t s

List 6.3: Reduction-A code from FaceNet on Table 4.2

1 def r e d u c t i o n _ a ( ne t , k , l , m, n ) :
2 wi th t f . v a r i a b l e _ s c o p e (’Branch_0’ ) :
3 tower_conv = s l i m . conv2d ( ne t , n , 3 , s t r i d e =2 , padd ing =’VALID’ ,
4 scope =’Conv2d_1a_3x3’ )
5 wi th t f . v a r i a b l e _ s c o p e (’Branch_1’ ) :
6 tower_conv1_0 = s l i m . conv2d ( ne t , k , 1 , s cope =’Conv2d_0a_1x1’ )
7 tower_conv1_1 = s l i m . conv2d ( tower_conv1_0 , l , 3 ,
8 scope =’Conv2d_0b_3x3’ )
9 tower_conv1_2 = s l i m . conv2d ( tower_conv1_1 , m, 3 ,

10 s t r i d e =2 , padd ing =’VALID’ ,
11 scope =’Conv2d_1a_3x3’ )
12 wi th t f . v a r i a b l e _ s c o p e (’Branch_2’ ) :
13 t o w e r _ p o o l = s l i m . max_pool2d ( ne t , 3 , s t r i d e =2 , padd ing =’VALID’ ,
14 scope =’MaxPool_1a_3x3’ )
15 n e t = t f . c o n c a t ( [ tower_conv , tower_conv1_2 , t o w e r _ p o o l ] , 3 )
16 re turn n e t

List 6.4: Reduction-B code from FaceNet on Table 4.2

1 def r e d u c t i o n _ a ( ne t , k , l , m, n ) :
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2 wi th t f . v a r i a b l e _ s c o p e (’Branch_0’ ) :
3 tower_conv = s l i m . conv2d ( ne t , n , 3 , s t r i d e =2 , padd ing =’VALID’ ,
4 scope =’Conv2d_1a_3x3’ )
5 wi th t f . v a r i a b l e _ s c o p e (’Branch_1’ ) :
6 tower_conv1_0 = s l i m . conv2d ( ne t , k , 1 , s cope =’Conv2d_0a_1x1’ )
7 tower_conv1_1 = s l i m . conv2d ( tower_conv1_0 , l , 3 ,
8 scope =’Conv2d_0b_3x3’ )
9 tower_conv1_2 = s l i m . conv2d ( tower_conv1_1 , m, 3 ,

10 s t r i d e =2 , padd ing =’VALID’ ,
11 scope =’Conv2d_1a_3x3’ )
12 wi th t f . v a r i a b l e _ s c o p e (’Branch_2’ ) :
13 t o w e r _ p o o l = s l i m . max_pool2d ( ne t , 3 , s t r i d e =2 , padd ing =’VALID’ ,
14 scope =’MaxPool_1a_3x3’ )
15 n e t = t f . c o n c a t ( [ tower_conv , tower_conv1_2 , t o w e r _ p o o l ] , 3 )
16 re turn n e t

List 6.5: Function that generates the model

1 import t e n s o r f l o w as t f
2 " " "ML Model " " "
3 def c r e a t e _ n e u r a l _ n e t ( x , s i z e _ i n p u t , n _ c l a s s e s , keep_prob ) :
4 wi th t f . name_scope (’model’ ) a s scope :
5

6 # C r e a t e s _ w e i g h t s and b i a s e s
7 l a y e r _ 1 = t f . l a y e r s . dense (
8 x , s i z e _ i n p u t , a c t i v a t i o n = t f . nn . l e a k y _ r e l u ,
9 name=’Layer_1’ ) # pass t h e f i r s t v a l u e from i t e r . g e t _ n e x t ( )

as i n p u t
10 d r o p o u t _ l a y e r = t f . nn . d r o p o u t ( l a y e r _ 1 , keep_prob ,
11 name=’Dropout_Layer’ )
12 l a y e r _ 2 = t f . l a y e r s . dense ( d r o p o u t _ l a y e r , n _ c l a s s e s , a c t i v a t i o n = t f

. nn . l e a k y _ r e l u ,
13 name=’Layer_2’ )
14 p r e d i c t i o n = t f . nn . so f tmax ( l a y e r _ 2 , name=’prediction’ )
15 re turn p r e d i c t i o n

List 6.6: Cost function for the linear model

1 def c r e a t e _ c o s t _ f u n c t i o n ( model , y ) :
2 wi th t f . name_scope (’Cost’ ) a s scope :
3 # Cross e n t r o p y l o s s
4 c o s t _ f n = − t f . reduce_sum ( y ∗ t f . l o g ( model ) )
5 cost_summ = t f . summary . s c a l a r (’Cost_Function’ , c o s t _ f n )
6 re turn c o s t _ f n , cost_summ

List 6.7: Optimizer for the linear model

1 def c r e a t e _ o p t i m i z e r ( l e a r n i n g _ r a t e , c o s t _ f u n c t i o n ) :
2 wi th t f . name_scope (’train’ ) a s scope :
3 o p t i m i z e r = t f . t r a i n . G r a d i e n t D e s c e n t O p t i m i z e r ( l e a r n i n g _ r a t e ) .

min imize ( c o s t _ f u n c t i o n )
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4 re turn o p t i m i z e r

List 6.8: Script to process dataset images

1 python3 f a c e n e t / s r c / a l i g n / a l i g n _ d a t a s e t _ m t c n n . py \
2 o r i g i n _ f o l d e r \ # O r i g i n a l images from d a t a s e t
3 o u t p u t _ f o l d e r \ # A l i g n e d f a c i a l images r e s i z e d t o 160 x160
4 −−i m a g e _ s i z e 160 \
5 −−margin 0 \
6 −−r andom_order \
7 −−gpu_memory_f r ac t i on 0 . 7

List 6.9: Script to create grayscale images

1 python3 f a c e n e t / p r o c e s s _ d a t a s e t s / KinFaceW / c o n v e r t _ g r a y _ s c a l e . py \
2 UB_Kinface_mtcnnpy_160_0 \
3 UB_Kinface_mtcnnpy_160_0_pb

List 6.10: Code that generates grayscale image(convertgrayscale.py)s

1 import os
2 import s y s
3 import a r g p a r s e
4 import cv2
5

6 def p r o c e s s _ s a v e _ p b ( s r c _ i mg _pa th , o u t _ i m g _ p a t h ) :
7 img = cv2 . imread ( s r c _ i m g _ p a t h )
8 img_gray = cv2 . c v t C o l o r ( img , cv2 .COLOR_BGR2GRAY)
9 cv2 . i m w r i t e ( ou t_ img_pa th , img_gray )

10

11 def p r o c e s s _ d a t a s e t ( a r g s ) :
12 f o l d e r _ l i s t = [ f f o r f in os . l i s t d i r ( a r g s . s r c _ d i r ) i f os . p a t h . i s d i r (

os . p a t h . j o i n ( a r g s . s r c _ d i r , f ) ) ]
13 f o r f in f o l d e r _ l i s t :
14 p r i n t (’Processing folder {}...’ . format ( f ) )
15 s r c _ f o l d e r = os . p a t h . j o i n ( a r g s . s r c _ d i r , f )
16 s r c _ f i l e _ l i s t = [ f f o r f in os . l i s t d i r ( s r c _ f o l d e r ) i f os . p a t h .

i s f i l e ( os . p a t h . j o i n ( s r c _ f o l d e r , f ) ) ]
17 o u t _ f o l d e r = os . p a t h . j o i n ( a r g s . o u t _ d i r , f )
18 i f not os . p a t h . e x i s t s ( o u t _ f o l d e r ) :
19 os . m a k e d i r s ( o u t _ f o l d e r )
20 f o r img_pa th in s r c _ f i l e _ l i s t :
21 s r c _ i m g _ p a t h = os . p a t h . j o i n ( s r c _ f o l d e r , img_pa th )
22 o u t _ i m g _ p a t h = os . p a t h . j o i n ( o u t _ f o l d e r , img_pa th )
23 p r o c e s s _ s a v e _ p b ( s r c _ i mg _p a th , o u t _ i m g _ p a t h )
24

25

26

27 def p a r s e _ a r g u m e n t s ( a rgv ) :
28 p a r s e r = a r g p a r s e . Argumen tPa r se r ( )
29 p a r s e r . add_argument (’src_dir’ , type = s t r ,
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30 help =’Enter the dir where the dataset is’ )
31 p a r s e r . add_argument (’out_dir’ , type = s t r ,
32 help =’Enter the dir where the dataset in gray

scale is going to be saved’ )
33 re turn p a r s e r . p a r s e _ a r g s ( a rgv )
34

35 def main ( a r g s ) :
36 p r o c e s s _ d a t a s e t ( a r g s )
37

38 i f __name__ == ’__main__’ :
39 main ( p a r s e _ a r g u m e n t s ( s y s . a rgv [ 1 : ] ) )

List 6.11: Script that trains FaceNet

1 python3 f a c e n e t / s r c / t r a i n _ s o f t m a x . py \
2 −− l o g s _ b a s e _ d i r f a c e n e t / t r a i n e d / vgg2_mtcnn_160_0_2 / l o g s /20180530−033902 \
3 −−m o d e l s _ b a s e _ d i r f a c e n e t / t r a i n e d / vgg2_mtcnn_160_0_2 / models

/20180530−033902 \
4 −−d a t a _ d i r MTCNN_Aligned / f a c e n e t _ 1 6 0 _ 0 / v g g f a c e 2 _ t r a i n _ 1 6 0 _ 0 / \
5 −− l f w _ d i r MTCNN_Aligned / f a c e n e t _ 1 6 0 _ 0 / l fw_160_0 / \
6 −−i m a g e _ s i z e 160 \
7 −−model_def models . i n c e p t i o n _ r e s n e t _ v 1 \
8 −−o p t i m i z e r ADAM \
9 −− l e a r n i n g _ r a t e −1 \

10 −−max_nrof_epochs 500 \
11 −−b a t c h _ s i z e 40 \
12 −−k e e p _ p r o b a b i l i t y 0 . 4 \
13 −−u s e _ f i x e d _ i m a g e _ s t a n d a r d i z a t i o n \
14 −− l e a r n i n g _ r a t e _ s c h e d u l e _ f i l e f a c e n e t / d a t a /

l e a r n i n g _ r a t e _ s c h e d u l e _ c l a s s i f i e r _ v g g f a c e 2 . t x t \
15 −−w e i g h t _ d e c a y 5e−4 \
16 −−e m b e d d i n g _ s i z e 128 \
17 −− l f w _ d i s t a n c e _ m e t r i c 0 \
18 −−v a l i d a t i o n _ s e t _ s p l i t _ r a t i o 0 . 0 1 \
19 −−v a l i d a t e _ e v e r y _ n _ e p o c h s 5 \
20 −−gpu_memory_f r ac t i on 0 . 8

List 6.12: Functions that generate the cross-validation dataset for each cycle

1 import numpy as np
2 def c r e a t e _ d a t a _ d e s c r i p t i o n ( i n d e x e s , s i z e _ t r a i n , s i z e _ d a t a ) :
3 TXT_TRAIN = ’Train’

4 TXT_TEST = ’Test’

5 d a t a _ d e s c r i p t i o n = [ ]
6 f o r i in range ( s i z e _ d a t a ) :
7 aux = i n d e x e s [ i ]
8 aux_desc = [ aux [ 0 ] , aux [ 1 ] ]
9 i f i < s i z e _ t r a i n :

10 aux_desc . append (TXT_TRAIN)
11 e l s e :
12 aux_desc . append ( TXT_TEST )
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13 d a t a _ d e s c r i p t i o n . append ( aux_desc )
14 re turn d a t a _ d e s c r i p t i o n
15

16

17 def c r e a t e _ c r o s s _ v a l i d a t i o n _ d a t a s e t ( d a t a s e t , n _ f o l d s , f o l d ) :
18 embeds = d a t a s e t . a l l _ d a t a s e t . ge t_embedd ings_np ( )
19 l a b e l s = d a t a s e t . a l l _ d a t a s e t . g e t _ o n e _ h o t _ e x p e c t e d _ r e s u l t s ( )
20 i n d e x e s = d a t a s e t . a l l _ d a t a s e t . g e t _ i n d e x e s ( )
21 # D e f i n e s p o s i t i o n s on t h e d a t a s e t
22 s i z e _ d a t a = embeds . shape [ 0 ]
23 s i z e _ f o l d = s i z e _ d a t a / / n _ f o l d s
24 s i z e _ t r a i n = s i z e _ d a t a − s i z e _ f o l d
25 b e g i n = s i z e _ f o l d ∗ f o l d
26 end = b e g i n + s i z e _ f o l d
27

28 # p r i n t ( " D a t a s e t s i z e i s { } , n _ f o l d : { } , f o l d _ s i z e : { } , b e g i n : { } ,
end : { } " . f o r m a t (

29 # s i z e _ d a t a , n _ f o l d s , s i z e _ f o l d , begin , end ) )
30 # C r e a t e s t h e s l i c e s o f t h e d a t a s e t
31 t e s t _ e m b e d = embeds [ b e g i n : end ]
32 t e s t _ l a b e l s = l a b e l s [ b e g i n : end ]
33 t e s t _ i n d e x e s = i n d e x e s [ b e g i n : end ]
34

35 t r a i n _ e m b e d = np . c o n c a t e n a t e ( ( embeds [ : b e g i n ] , embeds [ end : ] ) , a x i s =0)
36 t r a i n _ l a b e l s = np . c o n c a t e n a t e ( ( l a b e l s [ : b e g i n ] , l a b e l s [ end : ] ) , a x i s =0)
37 t r a i n _ i n d e x e s = np . c o n c a t e n a t e ( ( i n d e x e s [ : b e g i n ] , i n d e x e s [ end : ] ) , a x i s

=0)
38 # Rearrange d a t a s e t
39 e m b e d s _ f i n a l = np . c o n c a t e n a t e ( ( t r a in_embed , t e s t _ e m b e d ) , a x i s =0)
40 l a b e l s _ f i n a l = np . c o n c a t e n a t e ( ( t r a i n _ l a b e l s , t e s t _ l a b e l s ) , a x i s =0)
41 i n d e x e s _ f i n a l = np . c o n c a t e n a t e ( ( t r a i n _ i n d e x e s , t e s t _ i n d e x e s ) , a x i s =0)
42 d a t a _ d e s c r i p t i o n = c r e a t e _ d a t a _ d e s c r i p t i o n ( i n d e x e s _ f i n a l , s i z e _ t r a i n ,

s i z e _ d a t a )
43 a d d _ d a t a s e t _ a r r a y _ e v a l = c r e a t e _ a d d i t i o n a l _ d a t a s e t _ e v a l _ k i n f a c e v 2 (

d a t a s e t )
44 # p r i n t ( l e n ( d a t a _ d e s c r i p t i o n [ s i z e _ t r a i n : ] ) )
45 # p r i n t ( d a t a _ d e s c r i p t i o n [ s i z e _ t r a i n : ] )
46 re turn e m b e d s _ f i n a l , l a b e l s _ f i n a l , s i z e _ t r a i n , d a t a _ d e s c r i p t i o n ,

a d d _ d a t a s e t _ a r r a y _ e v a l

List 6.13: Inception-A source code for Inception-ResNet-v1

1 import t e n s o r f l o w as t f
2 # I n c e p t i o n −Resne t−A
3 def b lock35 ( ne t , s c a l e = 1 . 0 , a c t i v a t i o n _ f n = t f . nn . r e l u , scope =None , r e u s e =

None ) :
4 " " " B u i l d s t h e 35 x35 r e s n e t b l o c k . " " "
5 wi th t f . v a r i a b l e _ s c o p e ( scope , ’Block35’ , [ n e t ] , r e u s e = r e u s e ) :
6 wi th t f . v a r i a b l e _ s c o p e (’Branch_0’ ) :
7 tower_conv = s l i m . conv2d ( ne t , 32 , 1 , scope =’Conv2d_1x1’ )
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8 wi th t f . v a r i a b l e _ s c o p e (’Branch_1’ ) :
9 tower_conv1_0 = s l i m . conv2d ( ne t , 32 , 1 , scope =’Conv2d_0a_1x1’

)
10 tower_conv1_1 = s l i m . conv2d ( tower_conv1_0 , 32 , 3 , scope =’

Conv2d_0b_3x3’ )
11 wi th t f . v a r i a b l e _ s c o p e (’Branch_2’ ) :
12 tower_conv2_0 = s l i m . conv2d ( ne t , 32 , 1 , scope =’Conv2d_0a_1x1’

)
13 tower_conv2_1 = s l i m . conv2d ( tower_conv2_0 , 32 , 3 , scope =’

Conv2d_0b_3x3’ )
14 tower_conv2_2 = s l i m . conv2d ( tower_conv2_1 , 32 , 3 , scope =’

Conv2d_0c_3x3’ )
15 mixed = t f . c o n c a t ( [ tower_conv , tower_conv1_1 , tower_conv2_2 ] , 3 )
16 up = s l i m . conv2d ( mixed , n e t . g e t _ s h a p e ( ) [ 3 ] , 1 , n o r m a l i z e r _ f n =None

,
17 a c t i v a t i o n _ f n =None , scope =’Conv2d_1x1’ )
18 n e t += s c a l e ∗ up
19 i f a c t i v a t i o n _ f n :
20 n e t = a c t i v a t i o n _ f n ( n e t )
21 re turn n e t

List 6.14: Inception-B source code for Inception-ResNet-v1

1 import t e n s o r f l o w as t f
2 # I n c e p t i o n −Resne t−B
3 def b lock17 ( ne t , s c a l e = 1 . 0 , a c t i v a t i o n _ f n = t f . nn . r e l u , scope =None , r e u s e =

None ) :
4 " " " B u i l d s t h e 17 x17 r e s n e t b l o c k . " " "
5 wi th t f . v a r i a b l e _ s c o p e ( scope , ’Block17’ , [ n e t ] , r e u s e = r e u s e ) :
6 wi th t f . v a r i a b l e _ s c o p e (’Branch_0’ ) :
7 tower_conv = s l i m . conv2d ( ne t , 128 , 1 , scope =’Conv2d_1x1’ )
8 wi th t f . v a r i a b l e _ s c o p e (’Branch_1’ ) :
9 tower_conv1_0 = s l i m . conv2d ( ne t , 128 , 1 , scope =’Conv2d_0a_1x1

’ )
10 tower_conv1_1 = s l i m . conv2d ( tower_conv1_0 , 128 , [ 1 , 7 ] ,
11 scope =’Conv2d_0b_1x7’ )
12 tower_conv1_2 = s l i m . conv2d ( tower_conv1_1 , 128 , [ 7 , 1 ] ,
13 scope =’Conv2d_0c_7x1’ )
14 mixed = t f . c o n c a t ( [ tower_conv , tower_conv1_2 ] , 3 )
15 up = s l i m . conv2d ( mixed , n e t . g e t _ s h a p e ( ) [ 3 ] , 1 , n o r m a l i z e r _ f n =None

,
16 a c t i v a t i o n _ f n =None , scope =’Conv2d_1x1’ )
17 n e t += s c a l e ∗ up
18 i f a c t i v a t i o n _ f n :
19 n e t = a c t i v a t i o n _ f n ( n e t )
20 re turn n e t

List 6.15: Inception-C source code for Inception-ResNet-v1

1 import t e n s o r f l o w as t f
2 # I n c e p t i o n −Resne t−C
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3 def b l oc k8 ( ne t , s c a l e = 1 . 0 , a c t i v a t i o n _ f n = t f . nn . r e l u , s cope =None , r e u s e =
None ) :

4 " " " B u i l d s t h e 8 x8 r e s n e t b l o c k . " " "
5 wi th t f . v a r i a b l e _ s c o p e ( scope , ’Block8’ , [ n e t ] , r e u s e = r e u s e ) :
6 wi th t f . v a r i a b l e _ s c o p e (’Branch_0’ ) :
7 tower_conv = s l i m . conv2d ( ne t , 192 , 1 , scope =’Conv2d_1x1’ )
8 wi th t f . v a r i a b l e _ s c o p e (’Branch_1’ ) :
9 tower_conv1_0 = s l i m . conv2d ( ne t , 192 , 1 , scope =’Conv2d_0a_1x1

’ )
10 tower_conv1_1 = s l i m . conv2d ( tower_conv1_0 , 192 , [ 1 , 3 ] ,
11 scope =’Conv2d_0b_1x3’ )
12 tower_conv1_2 = s l i m . conv2d ( tower_conv1_1 , 192 , [ 3 , 1 ] ,
13 scope =’Conv2d_0c_3x1’ )
14 mixed = t f . c o n c a t ( [ tower_conv , tower_conv1_2 ] , 3 )
15 up = s l i m . conv2d ( mixed , n e t . g e t _ s h a p e ( ) [ 3 ] , 1 , n o r m a l i z e r _ f n =None

,
16 a c t i v a t i o n _ f n =None , scope =’Conv2d_1x1’ )
17 n e t += s c a l e ∗ up
18 i f a c t i v a t i o n _ f n :
19 n e t = a c t i v a t i o n _ f n ( n e t )
20 re turn n e t
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