

Universidade de Brasília Instituto de Geociências

Programa de Pós-Graduação em geociências aplicadas e Geodinâmica

VICTOR KATALINIC SAID DUTRA

Caracterização da trama magnética e do estilo estrutural do Complexo Alcalino Rio do Peixe – TO

DISSERTAÇÃO DE MESTRADO

Brasília

2018

VICTOR KATALINIC SAID DUTRA

Caracterização da trama magnética e do estilo estrutural do Complexo Alcalino Rio do Peixe – TO

Dissertação de mestrado apresentado ao Programa de Pós-Graduação em Geociências Aplicadas e Geodinâmica, como parte dos requisitos necessários à obtenção do título de Mestre em Geofísica. Orientador : Elder Yokoyama

> Brasília 2018

Dedicado a Marcello Katalinic Dutra, Eliane Said Dutra e Juliana Katalinic Said Dutra Dedicado à memória dos meus avós, Calixto João Said, Maria Aparecida Marques Said e Demilson Juvenal Dutra.

•

Agradecimentos

Agradeço aos meus pais o dom da vida e os recursos necessários para o desenvolvimento de um pleno raciocínio científico necessário a esta empreitada, assim como seu apoio psicológico e pessoal, indispensável nos momentos de tempestade. Agradeço também a todos os outros familiares que estiveram direta ou indiretamente presentes durante este tempo, Alexandre Katalinic, Marina Katalinic, Allan Dutra, Rosa Said, Lídia Said, João Calixto Said e Samir Said.

Agradeço aos irmãos de escolha: Vinícius Galvão, Gabriel Melo, Iago Graça, Frederico Leão, Cleber Peralta, Victor Paschoal, Márcio Albuquerque, Osvaldo Nunes, Bruno Mazão e Danilo Lima pela companhia indispensável ao longo dos tempos de mestrado e da vida.

Agradeço a Maria Clara Lopes pela companhia e apoio por parte do caminho.

Agradeço aos amigos Vitor Sacramento e Caio Ress pela amizade e companhia em campo. Agradeço também ao motorista Marco por sua ajuda imprescindível. Agradeço também a Eduardo Valentin por seu apoio científico genial.

Agradeço aos professores Oswaldo Araújo Filho, Nilson Francisquini Botelho, Marco Ianniruberto, Augusto Pires e Reinhardt Adolfo Fuck por sua paciência e ajuda.

Agradeço a meu orientador Elder Yokoyama pela companhia, amizade, direção científica e pessoal irrestritas. As histórias, risadas e desespero nunca serão esquecidos. Agradeço também a Daniele Brandt e Plínio Jaqueto por sua ajuda sem fim nos laboratórios do IAG/USP

Agradeço a Saya Gyi U Ba Khin e Satya Narayan Goenka pela propagação da técnica Vipassana, porto seguro nos tempos de turbulência.

Agradeço à FAP/DF, CAPES e ao INCT pelos recursos oferecidos para a plena conclusão desta pesquisa.

Ventvris Ventis,

Resumo

Corpos alcalinos possuem uma enorme variação em sua origem, alojamento, geoquímica e contexto tectônico. Dada sua diferenciada geologia em relação a outros tipos de rochas ígneas sua caracterização geralmente necessita de abordagens mais incomuns para sua compreensão. Ainda, abordagens que abranjam dados quantitativos além de dados qualitativos se fazem necessárias, sobretudo em ambientes que foram estudados somente em tempos pretéritos e que apresentam certas dificuldades em relação aos tipos de estruturas e texturas observados em campo. Para a caracterização tectônica e estrutural da Província Tocantins há ainda poucos dados acerca destes, sobretudo acerca de corpos alcalinos. Visando uma melhor compreensão e quantificação do já exposto, dados acerca de Anisotropia de Susceptibilidade Magnética (ASM), Anisotropia de Remanência Magnética (ARA) e microtectônicos foram levantados na região de Jaú do Tocantins, no Complexo Alcalino Rio do Peixe (CARP), para a correta caracterização, classificação e mensura de seu estilo estrutural e de seu alojamento. O CARP é um corpo alcalino de 30x7 km, alongado na direção Norte-Sul, composto por um núcleo nefelina-sienítico e bordas sienograníticas, majoritariamente. O corpo é ainda cortado por diversos corpos pegmatíticos de grande espessura e comprimento, historicamente reconhecidos por conter megacristais de zircão, turmalina e córindon. Os dados demonstram que, diferente do que se acreditava, os bandamentos observados na região não são puramente ígneos ou tectônicos, mas um meio termo entre estes. As foliações, assim como os lineamentos magnéticos, possuem sim uma direção preferencial com um erro associado, com dados estatísticos que demonstram que as tramas ASM e ARM possuem coaxialidade para um determinado nível de confiança. Ainda, a geologia do CARP, assim como sua correlação com corpos ígneos do oeste africano, sugere que o corpo seja mais novo do que as idades obtidas em zircão por pesquisadores anteriores.

Palavras-chaves: Anisotropia de susceptibilidade magnética. Anisotropia de remanência magnética. Tectônica. Corpos Alcalinos.

Abstract

Alkaline igneous bodies possess a wide variation on its origin, emplacement, geochemistry and tectonic contexts. Given its differentiate geology in comparison with other kinds of igneous rocks, its characteristics demand further techniques other than the traditional ones in order to obtain a robust model. Still, quantitative rather than qualitative models are made strictly necessary, especially at geological environments that haven't been focus of researches on current days and, above all, present several difficulties concerning its structures and textures observed on field. In order to obtain a better comprehension and quantification of the characteristics mentioned above, Anisotropy of Magnetic Susceptibility (AMS), Anisotropy of Anisteretic Remanence (AAR) and microtectonic data were generated at the region of Jaú do Tocantins - Brazil - Tocantins state at the Complexo Alcalino Rio do Peixe (CARP) for its correct characterization, classification and measurement of its structural style, emplacement and geologic historical moment. The CARP is an alkaline igneous body of 30x7 km of length x width stretched on the North-South direction, composed mainly by nepehline-syenites at the core and syeno-granites at its margins, mainly. The CARP is also cut by several thick and wide (meters to kilometres) pegmatites, historically recognized as zircon megacrystals, tourmaline and corundum bearers. Data demonstrates that, differently from what was first believed, observed bandings aren't purely igneous or tectonic on its origins. Foliations as well as lineations do show a preferential direction (with an associated error), with statistical data that suggest coaxiliaty between AMS and ARM data. Still, CARP's geology might be strictly correlated to similar alkaline bodies at the SW margin of Cameroon, suggesting it a new age.

Keywords: Anisotropy of magnetic susceptibility. Anisotropy of magnetic remanence. Tectonics. Alkaline Bodies

Lista de ilustrações

Figura 1 - Faixa Brasília. O pequeno retângulo vermelho na parte superior indica a área de pesquisa . Modificado de Pimentel <i>et al.</i> (2004)				
Figura 2 - Distribuição regional das rochas do embasamento. Retirado de Marques (2010)				
Figura 3 - Coluna estratigráfica com a posição da Formação Ticunzal22				
Figura 4 - Distribuição regional dos Grupos Araí e Serra da Mesa. Retirado de Marques				
(2010)				
Figura 5 - Coluna estratigráfica do Grupo Araí. Retirado de Marques (2010)28				
Figura 6 - Exemplo do furo feito pela perfuratriz portátil com dois espécimes já retirados				
e numerados à esquerda. Ainda na foto, chave de fenda usada para quebrar a base do cilindro				
e retirá-lo e esquadro de metal para que o traço de direção seja perfeitamente perpendicular				
com o de topo. Foto em planta				
Figura 7 - Quadro simplificado da resposta dos materiais quando submetidos à um campo magnético externo.(modificado de Dubey,2014)				
Figura 8 - Orientação dos eixos cristalográficos em relação aos eixos magnéticos dos				
sitemas ortorrômbico, monoclínico e triclínico. Os pontos de interrogação indicam a				
orientação possível para esse mineral, e estará correta se o mineral estiver perfeitamente				
estequiométrico. Baseado em Borradaile & Jackson (2004)40				
Figura 9 - Exemplos de dispersões de comprimento. Em todos os exemplos a direção				
média é de 52 graus. a) \mathbf{R} =0.997 b) \mathbf{R} =0.90 c) \mathbf{R} =0.75 d) \mathbf{R} =0.55 e) \mathbf{R} =0.40 f) \mathbf{R} =0.10.				
Retirado de Davis (1986)41				
Figura 10 - Localização e pontos (círculos pretos) de amostragem do CARP43				
Figura 11 - SRTM sombreada a 90 graus, sobreposta a K-percentual. O grande				
arroxeado ao meio corresponde ao CARP. Valores com cores mais quentes possuem maiores				
valores de Potássio percentual44				

Figura 12 - Visada para norte, do sul do CARP. Toda a área rebaixada ao centro corresponde ao complexo, margeado pelas serras do Grupo Serra da Mesa. Vide Figura 11. 45

Figura 13 - Exemplo do bandamento observado em campo......45

Figura 24 - Direção de Lineação, foliação e formato de elipsóide, respectivamente.61

Figura 26 - histograma reduzido (excluídos sítios CRP08 e CRP11)......63

Figura 27 - histograma total	64
Figura 28 - Teste de Komolgorov-Smirnoff.	65

Figura 31 - Comparativo entre as foliações e lineações do CARP e e dos corpos camaroneses por Nsifa *et al.* (2013)......72

Figura 33 - Estereograma de k3 (correspondente ao polo do plano da foliação).....75

Figura 35 - Modelo evolutivo gerado por Kitajima (2002), modificado em cores77

Figura 38 - Modelo genético-evolutivo petrogenético. Modificado segundo Frost (2014)

Lista de tabelas

Tabela 1 - Etapas de mapeamento (Modificado de Marques,2010)	30
Tabela 2 - Pontos de coleta e dados estruturais coletados.	48
Tabela 3 - Tabela com os dados escalares e direcionais de ASM	56
Tabela 4 - Valores médios pAAR40.	59
Tabela 5 - valores médios pAAR80	60
Tabela 6 - ANOVA correspondente.	66
Tabela 7 - Tabela ANOVA correspondente.	67
Tabela 8 - Tabela ANOVA com todos os sítios	68
Tabela 9 - Tabela ANOVA com valores anômalos retirados.	68
Tabela 10 - Teste Tukey	69
Tabela 11 - Tabela de teste de aleatoriedade, direção preferencial e erro associado.	92
Tabela 12 - Teste de coaxialidade entre AMS e ARA.	105

Lista de abreviaturas e siglas

- AMS Anisotropia de Susceptibilidade Magnética
- ANOVA Análise de Variância
- ARA Anisotropia de Remanência Anisterética
- CARP Complexo Alcalino Rio do Peixe
- CPRM Companhia de Pesquisa de Recursos Minerais
- GO Goiás
- H0-Hipótese nula
- H1 Hipótese Alternativa
- IAG Instituto de Astronomia e Geofísica
- IG-UnB Instituto de geologia da Universidade de Brasília.
- NE Nordeste
- OPC Orientação Preferencial Cristalográfica
- PIBIC Programa Institucional de Bolsas de Iniciação Científica
- SW-Sudoeste
- TF Trabalho Final de Graduação em geologia da Universidade de Brasília
- USP Universidade de São Paulo

1	Introdução				15
2		Cont	exto	Geológico Regional	17
	2.	1	Emb	pasamento	19
		2.1.2	L	Embasamento Granito-Gnaissíco	21
		2.1.2		Formação Ticunzal	21
		2.1.3	3	Suíte Aurumina	23
	2.	2	Gru	po Serra da Mesa (e Grupo Araí)	25
		2.2.2	L	Grupo Araí	26
		2.2.2	2	Grupo Serra da Mesa	29
3		Com	plex	o Alcalino Rio do Peixe (CARP)	30
		3.1.2	L	A geologia do CARP	31
4		Mat	eriais	s e métodos	33
	4.	1	Map	peamento	33
	4.	2	Mic	roscopia óptica	33
	4.	4.3 Mic		rossonda	33
	4.	4.4 Anis		otropia de susceptibilidade magnética	34
		4.4.1		O método da ASM	35
		4.4.2		Anisotropia de remanência anisterética (ARA).	37
		4.4.3		Propriedades magnéticas	38
	4.	5	Met	odologia estatística direcional	41
5		Resu	ltad	OS	43
	5.	1	Map	peamento e pontos de amostragem	43
	5.	2	Petr	ografia	49
		5.2.1		Biotita-nefelina sienito	49
		5.2.2		Sieno-granito.	53
		5.2.3		Pegmatitos	54
	5.	3	Anis	otropia de susceptibilidade magnética	55
		5.3.1		Qualidade dos dados	55
		5.3.2		Dados escalares	58
		5.3.3		Dados direcionais	59
	5.	5.4 Res		ultados Estatísticos	63
	5.	5	Dad	os direcionais estatísticos	70
6		Disc	ussão	D	71

Sumário

6.1 Comparação petrológica do CARP com outros corpos alcalinos				
6	2 As tramas do CARP	.73		
6	3 Modelos de colocação do CARP	.75		
7	Conclusões	.83		
8	Bibliografia	.85		
9	Anexos	.92		

1 Introdução

Reconstruir a morfologia do planeta em tempos pretéritos é chave para modelos que envolvem desde previsão de terremotos até o entendimento sobre mineralizações complexas (Condie,1997) A base para esses modelos é constituída pelo soma de conhecimentos geológicos e geofísicos, agrupados, essencialmente, na teoria de tectônica de placas. Desde as primeiras evidências observadas por F.B. Taylor, em 1910, e Alfred Wegener, em 1912, o movimento relativo dos continentes foi visto como algo complexo e "caótico", porém passível de reconstrução, semelhante a um quebra-cabeça. Com a evolução do raciocínio geológico e geofísico (e.g.,Vine & Mattews,1963), esta reconstrução foi tornando-se mais embasada, e estendida até praticamente chocar-se com as teorias do surgimento das primeiras "proto" placas litosféricas (Dahl-jensen et al., 1990; Harper & Jacobsen,1992; Yuan, 2015). Ainda, a partir de tais observações foi possível para Wilson (1966) caracterizar as grandes aberturas de oceanos e amalgamações de continentes em ciclos cronológicos passíveis de previsão temporal aproximada, chamados genericamente de "Ciclos de Wilson".

Em relação ao movimento das placas, sobretudo de sua porção continental, a deformação das rochas fornece indícios sobre a movimentação litosférica (Condie, 1997). Estas revelam seu histórico deformacional principalmente por meio de feições estruturais de natureza físico-química (Passchier & Trouw ,2005) manifestando-se por exemplo por meio de estruturas, texturas, relações de corte, mineralogias metamórficas, microtectônica, entre outros. Neste contexto, a deformação acontece em todas as escalas, sendo que as feições estruturais observadas em mapas ou afloramentos são fruto de interações em nível atômico e molecular, (Passchier & Trouw, 2005). Entretanto, mesmo que as rochas guardem "cicatrizes" deformacionais, nem sempre as feições estruturais são óbvias, seja em nível macroscópico ou microscópico. Sendo assim, alguns métodos geofísicos têm sido cada vez mais utilizados como uma ferramenta de investigação auxiliar em corpos que são aparentemente isotrópicos, ou não deformados (e.g., Tarling & Hrouda, 1993). Métodos como a anisotropia de susceptibilidade magnética (ASM) e a anisotropia de remanência anisterética (ARA), associados à geologia estrutural clássica, muitas vezes dão subsídios fundamentais ou podem dar evidências sobre o estado deformacional de corpos granitoides (e.g., Bouchez, 1997). Embora a utilização conjunta desses métodos já seja usual na comunidade científica, nem todos os tipos granitoides foram amplamente estudados. . Ainda, aplicação de tramas magnéticas (ASM e ARA) em corpos alcalinos é algo incipiente na literatura, tanto em termos nacionais quanto mundiais (e.g., Archanjo et al.,1994, Archanjo et al., 2012, Borradaile & Jackson,2010; Bouchez,1997, Sorensen,1974).

Corpos alcalinos geralmente marcam estágios finais dos ciclos de Wilson, sobretudo se associados a carbonatitos (Burke, Ashwal, & Webb, 2003). Sendo assim, muitos deles não apresentam deformação aparente quando, de fato, podem marcar relaxamentos e deformações posteriores às grandes zonas de sutura. Dentro deste contexto, um exemplo de corpo alcalino que poderia servir como marcador estrutural de estágios finais de colisão continental é o Complexo Alcalino Rio do Peixe (CARP). O CARP contextualiza-se em um cinturão de falhas e dobras, a Faixa Brasília, importante marcador do evento amalgamativo conhecido como Orogenia Brasiliana, que se encerrou em aproximadamente 540 Ma (e.g.,Cordani et al.,1968, Cordani et al.,1973, Almeida et al., 1973; Almeida & Hasui.,1984, Brito neves et al.,2014). Primeiramente descrita por Barbosa (1969) e abordado em detalhe geológico por Lemos (1983), e de forma mais mineral-petrológica por Kitajima (2007), o Complexo Alcalino Rio do Peixe possui idade estimada 1,5 Ga, idade de cristalização U-Pb, (Kitajima, 2007). De acordo com Kitajima (2002), as rochas do CARP apresentam principalmente texturas magmáticas com metamorfismo de baixa intensidade.

Tanto as texturas quanto a idade atribuídas ao CARP não condizem com o processo deformacional associado à Orogenia Brasiliana. Desta forma, com o intuito de contribuir para o entendimento sobre a colocação e estilo estrutural do Complexo Alcalino Rio do Peixe, a presente dissertação apresentará os resultados e interpretações provenientes dos estudos de ASM e ARA associados a dados de campo e microestruturais.

2 Contexto Geológico Regional

Neste capítulo serão descritos, de forma sucinta, os diferentes estágios evolutivos, deposicionais, metamórficos e estruturais da Faixa Brasília.

A Faixa Brasília é parte integrante da chamada Província Tocantins, a qual abarca três grandes faixas orogênicas, a saber: Faixa Brasília, Faixa Araguaia e Faixa Paraguai. O ciclo de fechamento das bacias que viriam a gerar estas três faixas é definido como "Colagem Brasiliana" por Brito Neves et al (2014), ocorrendo entre 800 Ma a 500 Ma. Trabalhos anteriores se referem a este amplo lapso temporal do evento de diversas formas (ciclo, orogenia, evolução tectônica, cinturão móvel, metamorfismo, etc.) e muitas vezes de forma indiscriminada (Brito Neves et al., 2014). As primeiras definições formais surgem no final dos anos 60, sendo, então, definido como "Ciclo Brasiliano" compreendendo um período entre 700-450 Ma, suportado por datações Rb-Sr e K-Ar. Neste caso, esta diferença foi baseada em um conhecimento geológico incipiente e esparso, de acordo com as dificuldades espaciais e tecnológicas vigentes à época (Brito neves et al., 2014, Cordani et al., 1968, Cordani et al., 1973, Almeida et al., 1973; Almeida & Hasui, 1984). De fato, o evento Brasiliano compreende uma ampla gama de eventos colisionais relacionados á convergência de placas continentais estáveis (crátons), as quais viriam a formar Gondwana Ocidental (Brito neves et al., 2014). Neste contexto, a Província Tocantins teve como principais blocos colisionais o Cráton Amazônico, o Cráton São-Francisco e Bloco Paranapanema, este ultimo situado sob a bacia do Paraná mas ainda com seu limite de crosta superior indefinido (Bernardes, 2016).

A Faixa Brasília, especificamente, é dividida em duas partes – setentrional e meridional – sendo que o CARP está situado na porção setentrional. Esta porção registra somente as interações entre o Cráton Amazônico e o Cráton São Francisco (Kitajima, 2000., Uhlein *et al.*,2012). Ambas as porções, setentrional e meridional, apresentam sub-compartimentações em zona externa (a leste) e interna (a oeste). A divisão entre a parte superior (norte) e a inferior (sul) é delimitada pelos terrenos arqueanos do Maciço de Goiás. (Pimentel *et al.*,2004), um terreno provavelmente alóctone acrescido. Outra divisão N-S sugerida é a separação pela Sintaxe dos, uma concavidade virada para *foreland* à qual refletiria dois episódios de deformação não-coaxiais entre 900-600 Ma Pirineus (Araújo Filho,2000). Quanto à divisão leste-oeste, há, na parte norte a divisão entre zona cratônica externa e interna (pois parte do cráton São Francisco faz parte desta região).

Figura 1 - Faixa Brasília. O pequeno retângulo vermelho na parte superior indica a área de pesquisa . Modificado de Pimentel *et al.* (2004).

A parte sul é conhecida como Arco de Arenópolis e o setor norte como arco de Mara Rosa. Em ambos, a convergência começa no período Toniano (entre 930-810 M.a.) com arcos de ilha intra-oceânicos e vulcanismo inicial toleítico a calci-alcalino com tonalitos e granodioritos associados (Brito Neves *et al.*, 2014). O segundo ciclo compreende o período entre 670 a 600 Ma, ainda com intrusões tonalíticas e granodioríticas calci-alcalinas, mas agora com sequências vulcano-sedimentares assim como intrusões bimodais. Metamorfismo em fácies xisto verde ocorre em torno de 630-620 Ma seguido por grande volume de intrusões gabróicas e graníticas datadas em 600-540 Ma (Brito Neves *et al.*, 2014).

Há ainda, segundo a divisão sugerida por Fuck *et al.* (2005), um núcleo metamórfico de alto grau que compreende rochas diversas como metassedimentos e granitoides metamorfizados em granulito inclusos nos Complexos Anápolis-Itauçu, Complexo Uruaçu e ainda os chamados complexos máficos ultramáficos de Barro Alto, Niquelândia e Canabrava. Finalmente temos os cinturões de dobras e empurrões constituídos por sequências sedimentares denominadas Grupo Bambuí (Costa & Branco, 1961), Grupo Paranoá (Dardenne, 1978), Grupo Vazante (Dardenne, 1979), Grupo Canastra (Barbosa, 1963), Grupo Ibiá (Barbosa *et al.*,1970), Grupo Araxá (Barbosa, 1955) e sequências decorrentes do Rifte Araí: Serra da Mesa (Marini *et al.*,1981), Araí (Dyer, 1970) e Natividade (Correia Filho & Sá,1980; Gorayeb *et al.*,1988). Finalmente, a Faixa Brasília apresenta metamorfismo crescente de Leste para Oeste, assim como transporte tectônico nesta mesma direção.

Serão agora abordadas as litologias mais importantes para a região em estudo.

2.1 Embasamento

O embasamento da porção setentrional da Faixa Brasília compreende principalmente um embasamento gnáissico, a Suíte Aurumina, e a Formação Ticunzal (Marques, 2010). O embasamento granito-gnássico permanece ainda controverso quanto à sua pertença ao chamado Terreno Almas-Cavalcante por serem reconhecidos dois blocos com características distintas e abordados a seguir. De forma geral, este embasamento granito-gnaissico é mais antigo, a Norte, com duas granitogêneses: 2,4 Ga (Fuck *et al.*,2001) e 2,2 Ga (Kuyumjian & Cruz, 2000) e a formação Ticunzal intrudida por granitos peraluminosos da Suíte Auruminas, a Sul, sendo a Suíte datada de 2,12-2,17 Ga (Botelho *et al.*,2006).

De acordo com Marques (2010) a porção sul da parte setentrional da Faixa Brasília inclui somente estes dois últimos, sendo embasado por uma amostragem sistemática ao longo do embasamento, contando com dados de análise geoquímica de rocha total e geração de idades-modelo Sm-Nd (Figura 2).

Figura 2 - Distribuição regional das rochas do embasamento. O grande corpo N-S em roxo a Oeste é o Complexo Alcalino Rio do Peixe. Retirado de Marques (2010).

2.1.1 Embasamento Granito-Gnaissíco

O embasamento granito-gnaissíco é constituído de dois blocos com características distintas, sendo um a Norte e outro a Sul. O bloco a Norte está situado entre Conceição do Tocantins e Almas, constituído por um *greenstone belt* denominado "Riachão do Ouro" (Costa, 1984) e terrenos TTG alcalinos, com as duas granitogêneses já mencionadas na introdução.

O bloco a Sul está situado entre Cavalcante e Arraias, e é formado as sequências metassedimentares da Formação Ticunzal intrudida pela Suíte Auruminas.

A porção entre estes dois blocos não é bem conhecida (Marques, 2010), e na literatura é a nomenclatura "Embasamento Granito-Gnáissico" é um caso de uma grande feição geológica que, com o tempo, desaparece á medida em que o corpo é mais bem estudado e dividido.

2.1.2 Formação Ticunzal

Inicialmente descrita por Barbosa *et al.* (1969) e posteriormente por Marini *et al.* (1978), foi denominada por "Ticunzal" somente nos levantamentos do projeto RADAM (Fernandes *et al.*,1982). Foi assim chamada pois sua área tipo está localizada na região das serras Ticunzal e Tombador, no município de Cavalcante – GO. Alvarenga (2007) relata as controvérsias científicas na distribuição desta formação, associando-as à intensa deformação sobreposta às rochas em um regime rúptil-dúctil em metamorfismo de, no mínimo, fácies anfibolito média (Fuck *et al.* 1988). Tais deformações também tornam difícil a distinção entre milonitos orto e paraderivados, algo também mencionado como origem de controvérsias. Acredita-se que a deposição dos sedimentos tenha ocorrido durante o Arqueano/Paleoproterozoico superior, inicialmente com a deposição de psamitos imaturos gradando para pelitos carbonosos (hoje xistos) imaturos em uma bacia sedimentar restrita (circulação limitada) com pouca oxigenação, o que permitiria a concentração e preservação da matéria orgânica hoje observada como grafita.

As rochas que a constituem são principalmente paragnaisses e xistos frequentemente grafitosos, quartzitos micáceos em menores proporções e ocorrências raras de conglomerados que passaram por retrometamorfismo com concentrações variáveis de quartzo, clorita, epidoto, carbonato e muscovita fina (Alvarenga, 2007). Ainda é relatada a presença de grafita de alta cristalinidade, porfiroblastos de granada e pseudomorfos de aluminossilicatos. Em relação aos metassedimentos, Botelho & Portela (2005) indicam que a composição dos paragnaisses é compatível com a geoquímica de arcóseos, o que facilitaria uma diferenciação entre os milonitos orto e paraderivados.

A idade é estimada em 2,6 a 2,8 Ga em Sm-Nd de acordo com dados preliminares de Fuck *et al.* (2002). As colunas a seguir, retiradas de Alvarenga (2007), exemplificam o empilhamento sedimentar e a posição do Fm. Ticunzal

Figura 3 - Coluna estratigráfica com a posição da Formação Ticunzal.

Os paragnaisses da formação são bandados milimétrica a centimetricamente, com bandas claras mais ricas em quartzo e feldspato e bandas mais escuras mais ricas em biotita, muscovita, ilmenita e restos de granada (Alvarenga, 2007). Relata-se ainda a presença de estruturas *lit-par-lit* com a Suíte Auruminas.

Quartzo-muscovita xistos são abundantes e de granulação fina e possuem textura lepidoblástica característica onde os filossilicatos envolvem aglomerados granoblásticos de quartzo poligonal, com uma pequena porção de biotita reliquiar ainda visível. Estes Quartzomuscovita xistos estão geralmente associados a muscovita-granada xistos, que possuem fenoblastos de granada "alongados e orientados, imersos numa matriz de quartzo e muscovita fina, conferindo à rocha uma textura porfiroblástica muito característica" (Alvarenga, 2007). Ocorrem ainda clorita-muscovita-quartzo xistos, de textura granoblástica e lepidoblástica, e com bandas quartzosas.

Os grafita xistos, característicos por sua coloração cinza brilhante, possuem granulação fina e textura lepidoblástica. Os cristais apresentam alta cristalinidade e ainda, à estes xistos óxido de manganês está frequentemente associado.

Finalmente, a Formação Ticunzal tem em sua sequência níveis de metaconglomerados e micronconglomerados de matriz arenosa, estando geralmente associados a quartzitos e quartzo xistos. A matriz do micronconglomerado é composta majoritariamente por quartzo recristalizado com extinção ondulante, tendo ainda biotita, clorita, muscovita e grafita associadas. (Alvarenga, 2007).

2.1.3 Suíte Aurumina

A Suíte Aurumina, inicialmente descrita na região entre a cidade de Teresina de Goiás e o povoado de Aurumina (onde é definida sua área tipo), é constituída por mais de 15 200 km² aflorantes de tonalitos/granodioritos (Botelho *et al.*,1998). A seção tipo desta Suíte é representada por um pequeno corpo de biotita-muscovita granito alongado e milonitizado na direção N30W (Alvarenga, 2007). A definição inicial da Suíte foi como a de um grupo de granitos peraluminosos e tonalitos que intrudem de forma concordante xistos e paragnaisses da Formação Ticunzal.

As rochas representadas por granodioritos/tonalitos compostos de quartzo, plagioclásio, microclínio pertítico, muscovita e biotita, apresentam, de forma geral, foliação, granulometria média a grossa. Além disso, acessoriamente possuem zircão, apatita, monazita, thorita, ilmenita, granada e fluorita (Cuadros,2017). O índice de saturação em alumínio é maior que 1 e o conteúdo de titânio é alto nas moscovitas, o que indica de fato uma origem peraluminosa para estes magmas, além de concentrações locais de Au, U, Pd, Pt, Sn e Ta (Botelho, 1999).

De uma forma mais específica, existe uma divisão dentro da suíte em 6 membros: Au1, Au2,Au3,Au4,Au5 e Au6; sendo a primeira a mais antiga e a ultima a mais nova. Respectivamente ocorrem: muscovita monzogranito, muscovita-biotita monzogranito, biotita tonalito, biotita sienogranito, turmalina leucogranito e turmalina pegmatito. Vale mencionar que a fácies Au5 só está registrada em somente um afloramento proximamente associado coma formação Ticunzal (Cuadros,2017). Os membros Au1, Au2, Au4 e Au5 são compostos por 25 a 30% de quartzo, 30-35% microclínio, 10-15% de plagioclásio e diferentes quantidades de biotita e muscovita, sendo os sienogranitos de Au4 com as maiores quantidades de biotita.

Estes granitos/tonalitos são relatados com intrusões sin a pós-cinemáticas, sendo que Au1 e Au2 apresentam inclusive foliação interestratal na Formação Ticunzal do tipo *lit-par-lit* (Cuadros,2017). Estes mesmos membros possuem texturas magmáticas obliteradas por processos de recristalização que geram texturas proto a meso-miloníticas, nas quais os cristais de quartzo e feldspato são os porfiroclastos.

É importante mencionar que nesta região existem também rochas máficas a intermediárias, as quais não afloram em extensão suficiente para serem colocadas na grande maioria dos mapas. O único pluton que atinge tais proporções é chamado Pluton Nova Roma. Trata-se de um corpo não deformado que intrude tanto a Formação Ticunzal quanto o membro Au2 da Suíte Aurumina. Tal pluton é composto mineralogicamente por plagioclásio (50%), quartzo (20-25%), biotita (0-15%) e hornblenda (0-10%), com zircão, apatita, allanita, ilmenita como acessórios; e epidoto, muscovita e clorita como minerais de alteração. Existem ainda plútons menores, que compreendem plutons quartzo dioríticos, tonalíticos, meta-gabróicos, meta-peridotíticos e pequenas intrusões meta aluminosas tonalíticas.

Cuadros (2017) sugere que a idade mínima de cristalização da Suíte Aurumina seja entre 2.15-2.16 Ga, discordando de Fuck *et al.*(2014) que sugere 2.18 Ga. A justificativa é que o zircão usado no último trabalho mencionado tenha sido herdado do embasamento, usando-se da datação de zircões da Formação Ticunzal os quais possuem picos de idade de proveniência entre 2.19 e 2.4 Ga. O membro Au5 é mencionado como sendo o que mais possui núcleos herdados em seus zircões (Cuadros, 2017). Ainda de acordo com o mesmo autor, de acordo com os resultados apresentados por Patiño-Douce (1995), as rochas tonalíticas, granodioríticas, máficas e intermediárias tendem a apresentar um *trend* em elementos maiores relatados como sendo o mesmo da reação experimental entre metapelitos e basalto fundido em baixas pressões. Já os granitos apresentam resultados que indicam fundidos originados de fontes pelíticas e grauváticas . Apesar disso existem poucas evidências de mistura de magmas. Sendo assim, Cuadros (2017) sugere que os magmas foram gerados a partir da hibiridização resultante da interação entre as

rochas metassedimentares e os fundidos mantélicos em profundidade. Esta possibilidade também contempla a presença comum de grafita tanto nas rochas graníticas quanto tonalíticas.

Finalmente, ao contrário diversos trabalhos sugerem, nos quais granitos do tipo S seriam gerados em colisões do tipo himalaiano, os novos dados gerados por Cuadros (2017) sugerem que este magmatismo assemelha-se mais ao magmatismo observado no cinturão peraluminoso granítico do pós-país cordilheirano da América do norte, sugerindo uma configuração mais relacionada a arco magmático. Tal argumentação baseia-se em uma série de dados geoquímicos e geocronológicos calcados em semelhanças com o arco norte americano, porém com algumas diferenças importantes, como ausência de *mingling* entre magmas crustais e basálticos, pressões mais baixas para a fusão parcial, tempo de formação da fonte e fusão mais rápidas, e menor extensão da Suíte Aurumina.

2.2 Grupo Serra da Mesa (e Grupo Araí).

Envolvendo especialmente a parte sul do Complexo Alcalino Rio do Peixe, ocorrem as rochas sedimentares do Grupo Serra da Mesa. Tal sequência sedimentar é correlacionável ao estágio Pós-Rift da sequência de deposição do tipo Rift do Grupo Araí. A deposição em questão, de forma geral, ocorreu em ambiente marinho, sendo composta por sedimentos acamadados em uma plataforma marinha silico-carbonatada em dois ciclos denominados SM1 e SM2 (Marques,2010). O metamorfismo observado ocorreu em fácies anfibolito, com fortes dobramentos.

As similaridades entre os Grupos envolvem similaridade isotópica em rochas carbonáticas, com valores semelhantes em $\delta^{13}C_{PDB}$ entre 2,60 a 2,93 ‰, existem também semelhanças geocronológicas Sm-Nd que sugerem idades de fontes paleoproterozóicas entre 1,85 e 2,4 Ga. Já as idades de zircão detrítico em U-Pb possuem populações que fornecem 2,4 Ga e 1,55 Ga em idade. Por esta correlação ser importante para a compreensão do ambiente tectônico, serão abordados ambos os Grupos (Serra da Mesa e Araí), apesar do segundo não estar tão associado ao CARP quanto o primeiro.

Figura 4 - Distribuição regional dos Grupos Araí e Serra da Mesa. Retirado de Marques (2010).

2.2.1 Grupo Araí

Definido por Dyer (1970), o Grupo Araí foi descrito como uma sequência metassedimentar com intercalações de rochas vulcânicas. Este mesmo autor dividiu o Grupo em dez diferentes unidades que compunham as formações Arraias e Traíras. A base da sequência, definida como a Formação Arraias, assenta-se discordantemente sobre o embasamento granito-gnáissico, sendo composta de rochas areníticas com ocorrências restritas de rochas vulcânicas ácidas e básicas e intercalações de metassiltitos numa espessura total de aproximadamente 1000 metros. Sobreposta a Formação Arraias, ocorrem rochas predominantemente pelíticas intercaladas com rochas psamíticas e carbonáticas as quais definem a Formação Traíras e possuiriam espessura total em torno de 1200 metros.

Araújo & Alves (1979) sugerem uma redução da espessura total do Grupo para em torno de 1200 metros. Braun (1980) inclui no, denominado por ele, Supergrupo Araí, os Grupos Paranoá e Bambuí. Pimentel et al. (1991) datou as rochas vulcânicas da Formação Arraias em torno de 1,70 \pm 0,002 Ga por U-Pb.

Dardenne *et al.* (1999), propõem uma divisão do Grupo Araí baseada em, na base, uma megassequência continental correspondente ao estágio Pré-*rifte* e sequência *rift*, e uma megassequência transicional marinha, ou Pós-*rifte*, com sedimentação em plataforma marinha rasa.

Marques (2010) define a litoestratigrafia do Grupo na porção Sul do Estado de Tocantins. De acordo com o mesmo autor configura-se uma Megassequência de primeira ordem composta, da base para o topo:

A) Supersequência Pré-*rifte*: separada pelo autor em A1 e A2, sendo a primeira composta por conglomerados polimíticos e a segunda por quartzitos eólicos e conglomerados oligomíticos.

B) Supersequência Sin-*rifte*: apenas uma unidade, A3, composta por rochas metapiroclásticas.

C) Supersequência transicional: dividida nas unidades A4 e A5, sendo a primeira composta por intercalações de quartzitos, conglomerados oligomíticos e metarcóseos restritos. A segunda é composta por metapelitos, quartzitos e conglomerados oligomíticos subordinados.

D) Sequência Pós-*rifte:* dividida nas unidades A6 e A7. A primeira consiste em uma sequência de xistos cálcicos, filitos com lentes de mármore e quartzito precedidos por quartzito basal. Já a segunda consiste num quartzito sucedido por filitos, lentes de mármore impuro, ritmitos carbonosos e lentes de mármore puro.

As Supersequências A e B (A1,A2 e A3) juntas compõe a Formação Arraias, C (A4,A5) compõe a sequência de transição e D (A6 e A7) compõe a Formação Traíras. Abaixo segue a coluna estratigráfica do Grupo Araí.

Figura 5 - Coluna estratigráfica do Grupo Araí. Retirado de Marques (2010).

2.2.2 Grupo Serra da Mesa

Inicialmente definido por Marini *et al.*(1977), corresponde, de forma geral, a uma sequência espessa de quartzitos e micaxistos com espessura média de 1850 metros. Já foi correlacionado ao Grupo Araxá por Barbosa *et al.* (1969) e Fuck & Marini (1981) e, posteriormente ao Grupo Araí (Dardenne 2000, Marques 2010).

A subdivisão geral do Grupo Serra da Mesa segundo Lacerda Filho (1999) é feita em duas unidades. A unidade A, quartzítica, apresenta quartzitos finos a médios e biotita-quartzo xistos. A unidade B, meta-psamo pelítica, apresenta quartzo xistos, clorita-muscovita-quartzo xistos, magnetita-clorita-muscovita xistos e granada-clorita-muscovita xistos, intercalados com quartzitos e lentes de xistos cálcicos e mármores.

A geologia do Gr. Serra da Mesa na porção Sul do Estado de Tocantins é definida por Marques (2010) como uma sequência marinha correspondente ao estágio Pós-*rifte* do Grupo Araí, pois não apresenta os estágios intracontinentais correspondentes à Formação Arraias ou à sequência transicional. O mesmo autor divide o Grupo em também duas unidades denominadas SM1 e SM2.

A) SM1: Assentada discordantemente sobre o embasamento. Constituída por muscovitaquartzitos grossos na base ocasionais sucedidos por xistos com lentes de xistos cálcicos e mármores.

B)SM2: Quartzito sucedido por um espesso pacote de xistos com camadas de rochas calcissilicáticas e lentes de mármores impuros.

O metamorfismo na região atingiu fácies anfibolito e xisto verde alto, com intensa deformação como pode ser observado tanto pela grande quantidade de dobras em mapa quanto em xistosidades e dobras observáveis em campo.

3 Complexo Alcalino Rio do Peixe (CARP)

Por meio do Trabalho Final de Graduação (mapeamento final) da Universidade de Brasília em 2007 (TF 2007) (conhecido como folha Jaú do Tocantins, hoje muito próxima à Folha Jaú da CPRM, 2013), a região possui uma carta geológica na escala 1:100 000. Além disso, a região dispõe de produtos geofísicos obtidos pelo Projeto Serra da Mesa,como por exemplo os dados gamaespectométricos e magnetométricos. Os dados foram gentilmente cedidos pelos professores Drs. José Oswaldo de Araújo Filho e Tati Almeida. Aliado a este extenso banco de dados fornecido pela própria universidade, a tese de mestrado de Marques (2010) apresenta uma compilação dos dados obtidos antes e após o Trabalho Final de Graduação em Geologia, como pode ser visto na tabela a seguir.

Mapeamento	Dias	Escala	Ano
Água e Terra	7	1:50 000	2005
Programa de iniciação científica (PIBIC)	10	1:100 000	2006
Trabalho Final de Graduação em geologia 2007 (Projeto Jaú-Peixe)	22	1:100 000	2007
Dissertação de Marques	15	1:50 000	2007-2009

 Tabela 1 - Etapas de mapeamento (Modificado de Marques,2010)

Somados a estes, a região possui ampla descrição petrológica e mineralógica feita por Kitajima (2002) e um levantamento inicial, específico do CARP, feito por Lemos (1983), onde também foi considerada a geoquímica e petrografia. Já em relação à geologia estrutural, há ampla divergência sobre os tipos de foliação observados., dadas as diferentes texturas macroscópicas e e microscópicas, bem como a diferença de texturas diferentes em bordas diferentes e também em relação ao centro do corpo (Kitajima, 2002).

Sendo assim, além de uma contextualização e descrição geral do CARP, neste capítulo serão agora expostas as descrições petrológicas e geológicas da literatura.

3.1.1 A geologia do CARP

O Complexo Alcalino do Peixe descoberto por Barbosa et al. (1969), posteriormente definido como "monzonito nefelinítico" por Marini et al. (1977) e descrito de forma mais consistente por Lemos (1983), foi inicialmente definido como um "nefelina sienito gnaisse leucocrático, foliado e bandado", correspondendo à um corpo plutônico com dimensões aproximadas de 30x7 km (altura x largura) situado no extremo sul do Estado de Tocantins, no município de Jaú do Tocantins num retângulo de coordenadas 48°30' e 48°40' oeste e 12°42' e 13°00' sul (Figura 10). Este mesmo autor nota que as foliações são diferenciadas das bordas para o centro, sendo esta mais fortes no primeiro caso (chegando a chamá-las de bandadas) e ausente a incipiente no centro. Ainda, reconhece uma estreita banda de "quartzo sienito" e "granito gnaisses" que envolve o CARP, e em contato direto com o Grupo Serra da Mesa.

Posteriormente foi alvo de pesquisas mineralógicas e petrológicas por Kitajma (1998, 2002) onde se ressalta a importância da compreensão dos diversos processos agentes neste corpo alcalino, seja em relação à mineralizações em zircão, monazita, allanita e córindon, seja por causa de sua associação incomum e tão próxima entre rochas saturadas e insaturadas.

Kitajima (2002) define as rochas presentes no complexo em três grupos principais. As rochas do centro correspondem a biotita-nefelina sienitos bandados e foliados com taramita-nefelina sienitos associados em menor quantidade; diopsídio/biotita granitos e ferroedenita/quartzo-ferroedenita- álcali feldspato sienito nas bordas do CARP e, na borda SSE,ferroedenita-álcali feldspato granito e biotita-/ ferroedenita/ferropargasita/hendebergita-álcali feldspato .

Veios pegmatíticos quilométricos em extensão e decamétricos em espessura de diferentes gerações estão também presentes na região, a depender de suas relações de corte .Tais pegmatitos foram descritos inicialmente por Martins (1981) e novamente abordados por Kitajima (2002). Queiroz (2016) aborda de forma mais específica pegmatitos muito próximos à região em estudo em tese de doutorado nos granitos Mata Azul, e, embora a região da tese esteja situada um pouco mais a sudeste do CARP, existem diversos pontos dentro da área desta tese de mestrado. Estes pegmatitos foram intensamente explorados em tempos pretéritos, produzindo gemas de berilo e turmalina. Os principais minerais presentes nos pegmatitos, apesar disso, são K-feldspatos (alterados), quartzo e muscovita, principalmente. Minerais acessórios incluem turmalina na variedade schorlita, berilo, granada, albita e agregados ferro-manganesíferos (Queiroz, 2016). Este mesmo pesquisador afirma que o granito Mata Azul foi a fonte dos elementos necessários para a formação dos pegmatitos.

Kitajima (2002) define os plagioclásios do Complexo como principalmente membros finais albita ou ortoclásio, com a nefelina com uma composição próxima à composição de ideal de Morozewicz-Buerger. A composição da biotita é variável, indo desde flogopita até biotitas ricas em Ferro e piroxênios de composição cálcica. Composicionalmente, as rochas alcalinas variam de miaskíticas (0,65 < (Na2O + K2O)/Al2O3 < 0,99; Sørensen,1974) a agpaítica (Na2O+K2O/Al2O33 > 1,2), com índices agpaíticos variando de 0,86 a 1,14

É importante mencionar que Sørensen (1997) menciona que o termo agpaítico deve ser restrito a nefelina-sienitos peralcalinos que possuam minerais complexos de Zr e Ti, não simplesmente zircão e ilmenita. Vale ainda dizer que, de acordo com este mesmo autor, um índice agpaítico maior que 1 não é suficiente para determinar uma rocha agpaítica, dando como exemplo Wallace et al. (1990), onde duas rochas de mesmo índice (1,09) apresentavam química de rocha total praticamente idêntica, mas com assembleias distintas; sendo uma agpaítica (arfvedsonita, aegirina e eudialita) e outra miaskítica (zircão e biotita).

De acordo com Kitajima (2002) o taramita-nefelina sienito é restrito, e não foram observadas neste trabalho. O mesmo autor menciona que tais rochas foram encontradas somente em blocos rolados.

Dois tipos de nefelina sienitos foram encontrados por Kitajima (2002) sendo ambos granulometricamente médios a grossos, maciços e inequigranulares e alotriomórficos em lâmina. Um dos dois tipos é caracterizado por textura poiquilítica de taramita, a qual engloba cristais de nefelina e feldspato. A composição modal deste tipo específico é An1-3 (50%), nefelina (30%) e taramita marrom-esverdeada (20%), sendo outros minerais Biotita (2%),titanita (2%) e zircão. O outro taramita-nefelina sienito não apresenta textura poquilítica, sendo composto por An0.5-4(40%), microclínio (40%), taramita (10%), biotita (5%) e nefelina (5%),com minerais acessórios magnetita, calcita e zircão.

4 Materiais e métodos

Neste capítulo serão apresentados os materiais e os métodos utilizados nesta dissertação.

4.1 Mapeamento

Ocorreram duas etapas de campo: uma em dezembro de 2016 e outra em maio de 2018; ambas seguidas pela etapa de análise dos dados no Instituto de Astronomia e Geofísica - USP, com uma adicional em agosto de 2017. A cidade utilizada como base foi Jaú do Tocantins, e o deslocamento foi feito com a utilização das camionetes do IG-UnB. As campanhas de campo duraram em torno de nove dias, com o planejamento feito por meio da geração de mapas com auxílio de sensoriamento remoto. O método de amostragem dos testemunhos está descrito adiante neste capítulo.

Além dos testemunhos obtidos por sondagem com motosserra adaptada, foram obtidos blocos orientados com objetivo fim de micropetrografia.

4.2 Microscopia óptica

Os estudos micropetrográficos foram feitos tanto no laboratório de microscopia óptica da Universidade de Brasília quanto no laboratório de paleomagnetismo do IAG-USP, em microscópios ópticos de luz transmitida Olympus BX41. Foram utilizadas técnicas de descrições mineralógicas, texturais e microtectônicas segundo, entre outros, Passchier & Trouw (2005) e MacKenzie et al.(1995).

4.3 Microssonda

As análises foram realizadas no laboratório de microssonda eletrônica do Instituto de Geociências da Universidade de Brasília (IG-UnB). Utilizou-se o equipamento da marca JEOL, modelo Superprobe JXA-8230, acoplado com 5 cristais analisadores e detector EDS (Energy Dispersive spectrometer).

As análises foram feitas tendo por objetivo a classificação geoquímica das nefelinas e biotitas do CARP, assim como a identificação de minerais que, somente por microscopia óptica, não foram conclusivos.

4.4 Anisotropia de susceptibilidade magnética.

Quando um campo magnético é aplicado numa rocha, a susceptibilidade à magnetização não é comumente uniforme em todas as direções, e varia de acordo com a cristalografia e/ou formato dos minerais que a constituem. A diferença na facilidade (ou dificuldade) de magnetização nestas diferentes direções, dentro de uma mesma amostra, é chamada anisotropia de susceptibilidade magnética. Se o material é isotrópico não há diferença na susceptibilidade magnética do material dependente da direção, ou seja, a facilidade de adquirir a magnetização é a mesma em todas as direções (Hrouda 1982, Tarling e Hrouda 1993). Os principais fatores que afetam a anisotropia são a orientação cristalográfica preferencial (OCP) e/ou orientação preferencial dimensional. Além desses, a interação entre cristais magnéticos próximos em uma matriz pouco magnética também afeta a anisotropia magnética (Martin-Hernández *et al*, 2004).

A anisotropia de susceptibilidade magnética (ASM) possui seu primeiro estudo sistemático feito em 1907 por Voight & Kinoshita. Já em relação à sua aplicação em minerais é primeiramente reconhecida como um marcador aplicável à petrologia estrutural em 1942 por Ising e em 1954 por J. Graham, em um trabalho intitulado *Magnetic susceptibility : an unexploited element for petrofabric*. A técnica foi somente consagrada algum tempo depois, no que diz respeito à instrumentação e metodologia aplicada à geologia estrutural, nos trabalhos de Tarling & Hrouda (1993) e Borradaile & Henry (1997), que também assertam sobre a vantagem do método em marcar deformações fracas mesmo onde não há lineações nem foliações. Já em relação à rochas com deformações bem marcadas, diversos autores observam que as principais direções de susceptibilidade observadas são similares às feições estruturais,, como lineações e foliações. (Hrouda & Janak 1976; |Borradaile 1988; Averbuch *et al* 1992; Robion *et al.* 2007, Borradaile & Jackson 2010). No Brasil, a técnica foi introduzida em 1990 pelo professor Jean-Luc Bouchez, culminando na tese de Archanjo (1993) que trata de granitos da Faixa Seridó na Província Borborema. Já em rochas máficas o primeiro estudo é feito em Raposo & Ernesto (1995).

Existem ao menos três linhas principais que buscam refinar e aumentar o espectro de interpretações cabíveis à ASM. A primeira busca trazer, de forma isolada, o quanto que cada mineral participa da anisotropia total. A segunda busca as magnetizações que permanecem gravadas nas rochas, a remanência magnética, notadamente em minerais ferromagnéticos. A terceira busca uma correlação entre ASM e OPC..

4.4.1 O método da ASM

Conhecendo o campo gerado no susceptibilímetro, implica que a magnetização \vec{M} de uma rocha, induzida por um campo magnético externo fraco \vec{H} é aproximadamente uma função linear do campo indutor: $\vec{M} = \hat{k}\vec{H}$ (10), sendo \hat{k} um tensor simétrico de segunda ordem, adimensional, chamado tensor de susceptibilidade definido por Nye (1957):

$$\hat{k} = \begin{pmatrix} k_{11} & k_{12} & k_{13} \\ k_{21} & k_{22} & k_{23} \\ k_{31} & k_{32} & k_{33} \end{pmatrix} \begin{bmatrix} k_{ij} = k_{ji} \\ i, j = 1, 2, 3 \end{bmatrix}$$
(1)

Numa abordagem mais clássica, ou não-quântica, podemos explicar a existência de campos magnéticos pela órbita de um elétron em torno de um próton nuclear, gerando "mini"-correntes elétricas com "mini" momentos magnéticos. Apesar disso, a quântica prevê que este elétron geraria ondas de rádio, assim perdendo energia e finalmente caindo no núcleo, o que não é verdade. Para esta energia, então, a quântica prevê que a movimentação do elétron é indissociável, energeticamente, à um certo estado de energia, chamado quantizado (Tauxe,2016). Será exposto mais adiante como que esta susceptibilidade age nos principais minerais de acordo com seus principais eixos, mas antes se faz necessária a caracterização de tais eixos.

Os elementos não diagonais são geralmente diferentes de zero, mas pode-se encontrar uma solução na qual:

$$\hat{k} = \begin{pmatrix} k_1 & 0 & 0\\ 0 & k_2 & 0\\ 0 & 0 & k_3 \end{pmatrix} (2)$$

 $k_1 \ge k_2 \ge k_3$ são as principais susceptibilidades e suas direções são chamadas eixos principais de susceptibilidade (Winkler *et al.*,1997). A anisotropia é então definida por um elipsóide de magnitude, semelhante ao elipsóide reológico de deformação, nos quais os semi-eixos do elipsóide são representados pelos autovalores obtidos em (2).

O formato do elipsoide é dado de acordo com o chamado parâmetro T, onde T é :

$$T = \frac{2 \ln k_2 - \ln k_1 - \ln k_3}{-\ln \frac{k_1}{k_2}}$$
(3)

De acordo com estes, o elipsóide pode ser definido satisfatoriamente para a quantificação da forma. Neste parâmetro T, o resultado da equação pode variar entre -1 e 1. Se o resultado está

entre -1 e 0, implica que o elipsoide possui simetria prolata a neutra, e se entre 0 e 1, neutros a oblatos. Assim como o elipsóide de deformação, temos que se:

- $k_1 > k_2 > k_3$ o elipsóide é triaxial
- $k_1 \approx k_2 \gg k_3$ o elipsóide possui um formato oblato (panqueca).
- $k_1 \approx k_2 \approx k_3$ temos uma susceptibilidade isotrópica, e o formato é esférico.
- $k_1 \gg k_2 \approx k_3$ o elipsóide possui um formato prolato (charuto).

Ainda com estas susceptibilidades principais pode-se obter o chamado grau de anisotropia, definido pela razão k_1/k_3 ; a lineação magnética definida pelo chamado parâmetro L, L= k_1/k_2 . A foliação magnética, dada por F= k_2/k_3 (Hrouda, 1982; Jelinek, 1981; Tarling e Hrouda, 1993).

De forma prática, são amostrados cilindros de aproximadamente 10 cm de altura por 2,5cm de diâmetro com o auxílio de uma perfuratriz portátil movida a gasolina e óleo dois tempos adaptada com uma broca diamantada de 2,5 cm de diâmetro. O cilindro de rocha será posteriormente dividido, com auxílio de uma serra circular, em cilindros menores de 2,2 cm de altura por 2,5 cm de diâmetro. Durante a etapa de retirada, é necessário que o furo seja posteriormente orientado com o auxílio de uma bússola acoplada a um inclinômetro especial, que não pode ser magnético e que possui aproximadamente o mesmo diâmetro do furo para que este seja colocado dentro da perfuração. É então traçada uma linha ao longo da altura do cilindro, e também em seu topo, para que a orientação em relação ao norte e também em relação ao topo e base não se perca.

Os espécimes são então numerados de acordo com o número do sítio e posteriormente são divididos em cilindros menores, com sua numeração de acordo com a do sítio no qual foram retirados e então colocados em um susceptibilímetro Kappabridge (modelo KLY4S, Agico Ltd.), na Universidade de São Paulo (USP), onde será medido em diversas posições para que as diferentes magnetizações sejam reconhecidas pelo mesmo equipamento e posteriormente expressas em dados numéricos absolutos e também direcionais, ou seja, temos o valor das susceptibilidades de acordo com os eixos principais, a susceptibilidade média e também um estereograma com a direção e inclinação destes principais eixos. Finalmente, após obtidos os dados, os dados de AMS gerados para os diferentes sítios de amostragem foram processados utilizando-se a metodologia estatística do tipo *Jelinek*.

Figura 6 - Exemplo do furo feito pela perfuratriz portátil com dois espécimes já retirados e numerados à esquerda. Ainda na foto, chave de fenda usada para quebrar a base do cilindro e retirá-lo e esquadro de metal para que o traço de direção seja perfeitamente perpendicular com o de topo. Foto em planta.

4.4.2 Anisotropia de remanência anisterética (ARA).

A ASM mede a anisotropia de todos os cristais presentes na rocha de acordo com a resposta intrínseca de cada tipo de cristal, seu tamanho e concentração, gerando resultados que levam em conta o somatório final de todas estas respostas. Se os três fatores mencionados anteriormente forem simplesmente o reflexo de um único evento tectônico ou ígneo, por exemplo, a quantificação desta propriedade da matéria será relativamente simples de ser quantificada (Martin-Hernández *et al*, 2004). Na maioria dos casos, porém, a composição total da ASM de uma rocha é na verdade composta de múltiplos eventos que podem, ou não, substituir totalmente uma feição ou superpor-se a ela de forma parcial. Se os eventos forem múltiplos, a trama magnética torna-se ainda mais complexa. Neste contexto, a anisotropia de remanência anisterética (ARA) é fundamentalmente responsável por diferenciar os diferentes momentos de formação de minerais magnéticos pelos quais o espécime passou. Diversas técnicas podem ser empregadas, incluindo, em diversas posições, quantificações sob diferentes campos magnéticos (ex: Hrouda e Jelinek,

1990), diferentes temperaturas (Richter e Van der Pluijm, 1994), ou uma mistura dos dois (Rochette e Fillion,1988).

De forma semelhante à ASM, a ARA é calculada por:

$$M_{ri} = \hat{k}_{rij} H_j (4)$$

Ainda de forma semelhante, a ARA também gera um elipsoide, com a diferença que esta técnica não considera a resposta de todos os minerais presentes na rocha, somente em relação àqueles portadores de remanência (e.g., Trindade *et al.*, 1999).

Nesta tese, a técnica utilizada leva em conta a anisotropia de remanência aniesterética (ARA). Em termos gerais o espécime é inicialmente desmagnetizado no equipamento LDA-3 (Agico), sendo então magnetizado em diferentes posições e, posteriormente, a magnetização adquirida é então medida no magnetômetro JR-.6 (Agico). A repetição deste procedimento é feita desmagnetizando-se a amostra e então a submetendo a um novo campo magnético e, novamente, medindo-a nas mesmas posições anteriores. Esta técnica tem como objetivo inicial tornar a distribuição da resposta magnética do espécime aleatória para então analisar a resposta do alinhamento quando o espécime é submetido à um novo campo magnético (Borradaile e Jackson, 2010).

4.4.3 Propriedades magnéticas

Quando o material/mineral responde de forma contrária, ou seja, quando a magnetização ali gerada possui orientação oposta - levemente repulsiva - e some imediatamente quando o campo externo é removido, o material é chamado diamagnético. Isto faz com que materiais diamagnéticos tenham susceptibilidade negativa, pois o campo é contrário, sendo que alguns poucos exemplos são o quartzo e a calcita (Dubey,2014).

Outros materiais , quando sujeitos a um campo magnético externo, possuem uma magnetização de mesma orientação do campo externo (susceptibilidade linearmente positiva) perdendo-a quando esse campo é removido. Hornblenda, turmalina e biotita são exemplos deste tipo de comportamento paramagnético (Dubey,2014).

Algumas poucas substâncias, com susceptibilidades muito altas, apresentam o que se chama magnetização remanente, ou seja, a magnetização permanece após a retirada do campo externo. Tais substâncias são chamadas ferromagnéticas *l.s.*, e os melhores exemplos seriam os minerais magnetita e hematita. A figura a seguir busca representar estas diferentes organizações e propriedades.

Figura 7 - Quadro simplificado da resposta dos materiais quando submetidos à um campo magnético externo.(modificado de Dubey,2014).

Como uma rocha possui diferentes minerais, e cada tipo deles com uma resposta diferente, a susceptibilidade total de uma rocha é uma soma da contribuição de todas as espécies minerais, de acordo com suas quantidades e susceptibilidades.

As susceptibilidades diamagnéticas, ou seja, a resposta de minerais como calcita, feldspatos e quartzo, são geralmente valores baixos e negativos, ou seja, apresentam orientação oposta ao campo indutor. Já em minerais como hematita, magnetita e biotita (minerais com presença de Fe) a resposta é paramagnética (de forma mais específica ambas são ferromagnéticas, sendo a primeira *spin-canted* e a segunda ferrimagnética), ou seja, possui valores positivos, onde a magnetização gerada possui orientação concordante com o campo indutor. Este tipo de magnetismo é dependente da temperatura, e se esvai à uma temperatura determinada para um elemento específico (Temperatura ou ponto de Curie), sendo sua variação de acordo com a temperatura segundo:

$$\chi = \frac{c}{T - Tc} (5)$$

Onde T é a temperatura absoluta (Kelvin), Tc é a temperatura de Curie (Kelvin), e C é a constante Curie específica do material. Como mencionado anteriormente, a anisotropia dos minerais é também dependente de seus eixos cristalográficos, ou seja, pelo sistema cristalino nos quais o cristal está inserido. Se o mineral é isométrico (cúbico), como pirita ou granada, a resposta é isotrópica, ou seja, nula. Já em sistemas ortorrômbicos os eixos principais (a,b e c) correspondem (num estado não deformado) aos eixos de susceptibilidade magnética antes mencionados; k_1,k_2 e k_3 . O comportamento de 3 sistemas cristalinos de acordo com os eixos de susceptibilidade magnéticos são resumidos na figura a seguir:

Figura 8 - Orientação dos eixos cristalográficos em relação aos eixos magnéticos dos sitemas ortorrômbico, monoclínico e triclínico. Os pontos de interrogação indicam a orientação possível para esse mineral, e estará correta se o mineral estiver perfeitamente estequiométrico. Baseado em Borradaile & Jackson (2004).

Vale mencionar que micas e anfibólios são, em geral, os principais portadores na susceptibilidade magnética de granitoides (Bouchez, 1997), especialmente se esses cristais estão tectonicamente imbricados e alinhados preferencialmente ao fluxo deformacional. Neste caso cristais de biotita, por exemplo, se alinham paralelamente à lineação magnética. Ainda, a susceptibilidade magnética depende essencialmente da fugacidade de oxigênio do magma original e de condições pós magmáticas (Viegas,2013).

Já o controle da anisotropia de remanência ocorre por dois mecanismos principais: Alinhamento das malhas cristalinas com anisotropia magneto-cristalina e alinhamento de forma de grãos ferromagnéticos. A anisotropia magneto-cristalina é uma propriedade intrínseca da matéria e surge a partir do acoplamento entre o spin e o orbital de movimento do elétron (Winkler,1997), controlando a orientação do spin em relação à orientação do cristal e determinando vetores mais facilmente, ou mais dificilmente, magnetizáveis. Como já mencionado a técnica de ARA leva em conta respostas mais individuais de cada tipo mineral.

4.5 Metodologia estatística direcional

A direção dominante de um vetor pode ser calculada a partir do chamando vetor resultante, sendo este calculado a partir do vetor resultante **R**. Este vetor resultante **R** é obtido pela soma dos senos e cossenos de cada valor direcional (vetores), na forma:

$$X_r = \sum_{1}^{n} \sin \theta i \ e \ X_r = \sum_{1}^{n} \cos \theta i \ (6)$$

A partir desta resultante média obtemos a direção média θ , calculada pela expressão:

$$\bar{\theta} = \tan^{-1}\left(\frac{X_r}{Y_r}\right) = \tan^{-1}\left(\frac{\sin\theta_i}{\cos\theta_i}\right) (7)$$

Posteriormente é necessária a padronização das amostras com tamanhos diferentes (se estas de fato o forem), onde simplesmente se divide Xr e Yr pelo número de amostras correspondentes (n), dando origem a C e S, respectivamente.

O comprimento da resultante R é calculado pela expressão

$$R = \sqrt{X^{r^2} + Y^{r^2}}$$
(8)

O comprimento da resultante é então padronizado dividindo-se pelo número total de observações, dando origem ao comprimento da resultante média \overline{R} . Este comprimento varia seu valor de 0 a 1, sendo uma medida de dispersão assemelhável à variância.

Figura 9 - Exemplos de dispersões de comprimento. Em todos os exemplos a direção média é de 52 graus. a) \overline{R} =0.997 b) \overline{R} =0.90 c) \overline{R} =0.75 d) \overline{R} =0.55 e) \overline{R} =0.40 f) \overline{R} =0.10. Retirado de Davis (1986).

O teste para aleatoriedade de dados direcionais é feito somente com o uso do \overline{R} . Este teste utiliza o conceito de parâmetro de concentração k, que é proveniente do modelo de distribuição de Von Mises, sendo este um modelo circular equivalente a um de distribuição normal, onde possui somente este parâmetro de concentração e uma direção média $\overline{\theta}$. Se k é igual a zero, as direções são equiprováveis, ou seja, à medida que este valor aumenta, aumenta a possibilidade de observarmos uma direção semelhante à da média. A partir destas estatísticas foi determinada uma tabela onde o parâmetro k é correlacionável ao \overline{R} (Davis,1986). Para, enfim, determinarmos se há uma direção preferencial ou não, precisamos somente determinar o nível de significância que queremos (nesta dissertação foi utilizado 5% por *default*), determinarmos o valor de \overline{R} e olharmos na tabela (de acordo com Gaile & Burt,1980) se este valor é maior que o \overline{R} crítico. Se este de fato for maior, rejeita-se a hipótese de aleatoriedade. No caso desta dissertação, os valores da lineação foram todos normalizados para o primeiro ou segundo quadrante do plano cartesiano, ou seja, quaisquer valores maiores que 180 graus foram diminuídos em 180 graus.

Precisa-se também saber-se se um determinado valor faz parte de um conjunto de valores, para tanto é necessário o cálculo do erro padrão da estimativa média (*Se*). Tal valor é dado por:

$$S_e = \frac{1}{\sqrt{n\bar{R}k}}$$
(9)

Para determinarmos a igualdade estatística entre duas amostras de medidas direcionais, neste caso as medidas da ASM e da ARA, por exemplo, pode-se utilizar uma comparação entre os vetores resultantes dos dois grupos de dados com o vetor resultante obtido quando juntamos os dois conjuntos em um único. Se então as duas amostras foram obtidas da mesma população, a resultante deve ser aproximadamente igual à soma das outras duas. Para tanto se faz necessário o uso de um teste **F** na forma:

$$F_{1,n-2} = \left(1 + \frac{3}{8k}\right) \frac{(n-2)(R1+R2+R3)}{(n-R1-R2)}$$
(10)

k é determinado de acordo com os valores observados na tabela para dados direcionais de Von Mises, acessível no livro de Davis (1986). Se o valor deste teste F for maior que o valor crítico determinado para certo nível de significância α , rejeita-se a hipótese de igualdade entre as direções médias dos conjuntos.

5 Resultados

Neste capítulo serão apresentados os resultados de: mapeamento; petrografia, microestuturas, e química mineral; Anisotropia magnética (ASM e ARA) e modelagem estatísitica.

5.1 Mapeamento e pontos de amostragem

Para melhor visualização espacial dos dados, a imagem abaixo mostra localização do CARP, assim como os pontos de amostragem usados nas duas etapas de campo, a de dezembro de 2017 e a de maio de 2018.

Figura 10 - Localização e pontos (círculos pretos) de amostragem do CARP. O pequeno retângulo roxo corresponde à região em estudo.

Em campo, o CARP se apresenta como uma grande área arrasada em meio às serras do Grupo Serra da Mesa (Figura 12). Os afloramentos dos nefelina sienitos são, em sua enorme maioria, lajedos esparsos e comumente pouco contínuos. mas por vezes com alguns blocos circundando os afloramentos principais. Cortes de estrada e margens de rio são, de fato, os que mais possuem afloramentos consistentes. O nefelina-sienito comumente apresenta alterações em sua superfície, de coloração escura embora a rocha fresca seja majoritariamente branca a cinza. Já o sieno-granito é rosado, muitas vezes com foliação gnaissica proeminente de direção aproximada de mergulho 330°. O bandamento observado por vezes no nefelina-sienito é confuso e observado somente em uma face do bloco, não aparentando ter continuidade em outros planos.

Figura 11 - SRTM sombreada a 90 graus, sobreposta a K-percentual. O grande arroxeado ao meio corresponde ao CARP. Valores com cores mais quentes possuem maiores valores de Potássio percentual.

Figura 12 - Visada para norte, do sul do CARP. Toda a área rebaixada ao centro corresponde ao complexo, margeado pelas serras do Grupo Serra da Mesa. Vide Figura 11.

Figura 13 - Exemplo do bandamento observado em campo.

Já os sieno-granitos foram encontrados, como esperado, nas bordas do corpo, embora não tenham sido encontrados aflorantes nas margens Leste e Oeste. Apesar disto, quando presentes apresentam afloramentos amplos e contínuos, em laje, de bandamento contínuo, intenso e sub-vertical, estando em porções mais elevadas topograficamente, embora sejam bem mais baixas que as serras do Grupo Serra da Mesa.

O perfil geológico geral do CARP, observado em campo, é exposto a seguir, com o Mapa gerado por Lemos (1983) e modificado por Kitajima (2002) que é bem distinto daquele obtidos pelos mapeamentos feitos posteriormente (Figura 2; Figura 10,Figura 14) Esta grande diferença será debatida no capítulo de discussão:

Figura 14 - Mapa de Lemos (1983) modificado por Kitajima (2002). As cores são correspondentes no mapa e no perfil, exceto para os pegmatitos. Apesar disto o perfil corresponde a um perfil genérico visto em campo, não ao mapa de Kitajima (2002).

A tabela 2 a seguir expõe as principais feições e direções encontradas nos diversos pontos de coleta.

Sítios	LITM X	LITM Y	Litologia	Foliação	Fratura	Veios
511103	1 762969	8567476	Biotita nefelina sienito	300/35_309/40	Tatara	Velos
	762865	8567508	Biotita nefelina sienito c/ handas brancas	300/55, 301/62	270/87	
	2 762505	8567042	Biotita nefelina sienito	300/ 33, 301/ 02	270/87	
	1 762020	8567838	Biotita nefelina sienito			
	762462	0567636	Biotita nofelina sienito	205/26 206/20 210/20	200/76 207/76	
	5 76/18/	8560214	Biotita nefelina sienito	255/20	230/70, 287/70	
-	7 764722	0509214	Biotita nefelina sienito	270/25 210/25		
	704733	0570420	Piotita nofolina signito	270/23, 310/23		
	703133	0571230	Diotita nefelina sienito			
1(704932	0572520	Diotita nefelina sienito			
1	J 704244	05/0500	Biotita nefelina sienito	260/82 256/75 200/80 262/40		
1.	1 701927	0500074	Biotita nefelina sienito	200/82, 250/75,290/80, 265/40		
17	2 761908	8583778	Biotita nefelina sienito	202/66 207/61 208/54	256/95 207/61	
1:	3 761982	8588142	Biotita nefelina sienito	302/66, 307/61, 308/54	256/85, 307/61	
14		85//2/8	Biotita nefelina sienito	260/76		
1	5 768010	85/6188	Biotita nefelina sienito	284/87, 294/70, 289/70, 275/70		
10	0 /63532	8564602	Biotita nefelina sienito	282/54		
1.	/ /62/13	8566500	Biotita nefelina sienito	300/42,302/44		
18	3 /62/98	856/3/0	Biotita nefelina sienito	292/30		
19	9 761738	8566928	Biotita nefelina sienito			
20	0 765116	8571092	Biotita nefelina sienito	296/45, 265/40, 300/53, 304/50, 290/55		
2:	1 766678	8571468	Biotita nefelina sienito			
22	2 761775	8586668	Biotita nefelina sienito	264/70		
23	3 762146	8586610	Biotita nefelina sienito/contato	254/55, 256/70, 260/60, 255/40, 265/60, 270/85		
24	4 761174	8584722	Sienogranito	265/90, 265/80, 257/80		
25	5 761320	8579374	Sienogranito	293/70, 274/85, 265/70, 271/85,270/90	320/75, 265/70	175, 210
26	5 763575	8577312	Biotita nefelina sienito	220/80, 220/85		
27	7 762360	8576444	Biotita nefelina sienito			
28	3 767381	8573294	Biotita nefelina sienito	290/60		
29	768405	8573682	Sienogranito	270/80		15
30	763271	8590174	Biotita nefelina sienito	360/25		
33	1 765384	8564926	Biotita nefelina sienito/contato/sieno-gran	ito		
32	2 765258	8564837	Sienogranito/rocha com granada			
33	3 764825	8564538	Biotita nefelina sienito/pegmatito			
34	4 766756	8566023	Biotita nefelina sienito/contato/sieno-gran	ito		
35	5 765059	8582687	Biotita nefelina sienito			
36	5 765879	8585994	Biotita nefelina sienito alterado			
37	7 767146	8589806	Sieno-Granito	280/50; 320/35		
38	8 765599	8583704	Nefelina sienito alterado			
39	766458	8565732	Nefelina sienito			
4(766425	8565815	Nefelina sienito			
4:	1 766838	8567281	Nefelina sienito			
42	2 766265	8566742	Sieno-Granito	330/40;320/40;350/40		
43	3 763950	8568698	Nefelina sienito			
44	4 764382	8568320	Nefelina-sienito			
45	5 762236	8584216	Nefelina sienito			
46	5 761957	8583987	Nefelina-sienito			
47	7 763372	8583171	Nefelina-sienito	250/40;300/70		
48	3 762398	8575858	Nefelina-Sienito			
49	763153	8590363	Nefelina-sienito			
50	763540	8590139	Nefelina-sienito			
5:	1 765414	8589035	Nefelina-sienito	285/70		
52	2 763734	8589777	Nefelina-sienito	270/40;260/30		
53	3 762656	8562025	Sieno-Granito	300/10;290/15		
54	4 762638	8562189	Sieno-Granito			
5	5 763634	8561262	Nefelina-Sienito	290/30:100/20:120/20		
					-	

Tabela 2 - Pontos d	le coleta e	dados	estruturais	coletados.
---------------------	-------------	-------	-------------	------------

5.2 Petrografia

Segue-se agora uma descrição petrológica, mineralógica e química sucinta de cada tipo rochoso encontrado em campo.

5.2.1 Biotita-nefelina sienito

Esta rocha define a grande massa do complexo, estando indiscriminadamente distribuída de forma aproximadamente radial elíptica em relação ao centro do corpo (Figura 10). Da mesma forma, as amostras deste tipo de rocha correspondem a grande maioria do total de furos feitos pela presente dissertação.

O biotita-nefelina sienito é leucocrático, com granulação fina a média, maciço a foliado. A foliação é principalmente definida pela intercalação entre camadas mais ricas em biotita e camadas mais ricas em nefelina + plagioclásio, muitas vezes de forma incipiente que, em algumas porções, apresenta foliação mais proeminente. Em lâmina, assim como observado por Kitajima (2002), a rocha é classificada como inequigranular e hipidiomórfica. Uma parte dos minerais apresenta extinção uniforme, enquanto parte apresenta extinção ondulante e kink-bands nos plagioclásios. Além disso, existem porções com contatos triplos entre feldspato e nefelina; da mesma forma existem sub-grãos em nefelina ,contatos cuspado-lobados em cristais de plagioclásio e feições semelhantes a annealings em cristais de nefelina. Esta rocha apresenta tanto feições ígneas quanto deformacionais em estado sólido que, as vezes, variam em questão de milímetros (Figura 15).

Figura 15 – a) Afloramento CRP09;b) biotitas, plagioclásio e nefelina com extinção ondulante,c) feições lobadas semelhantes à migração de bordas de grãos, neoblastos e d) ,e) feições de recuperação/recristalização (sub-grãos).

Composicionalmente a nefelina está presente em torno de 10% do total, biotita até 10%, plagioclásio com teor An 0.5-10 varia em proporção modal entre 50 a 60%, e microclínio 20 a 30%. Tanto pertitas quanto antipertitas ocorrem nestes minerais. A biotita apresenta ampla variação pleocróica, mas, como observado em microssonda, não apresenta ampla variação composicional nesta litologia. Zircão, allanita, magnetita, apatita e córindon estão presentes como acessórios, valendo ressaltar que o zircão pode atingir até \pm 3 mm em tamanho, embora existam

zircões na região com mais de 10 cm de diâmetro. Como minerais de alteração temos Muscovita, Cancrinita e zeólita.

Figura 16 –a)Afloramento CRP04;b) contatos ondulados de caráter essencialmente ígneo a retilíneos de caráter recristalizacional ;c) feição *kink* em plagioclásio;d) extinção ondulante com *kink* em plagioclásio e pequenos neoblastos.

Composicionalmente, a nefelina foi determinada em microssonda eletrônica como correspondente à composição de Carnegieita, como pode ser observado no diagrama da Figura 17.

Figura 17 - Composição de nefelina determinada em microssonda. Diagrama segundo Hyndman (1985) (Graus Farenheit) após metodologia de classificação de Zussman *et al.* (1992)

Figura 18 - Zircão envolto por nefelina, ao lado de biotita.

5.2.2 Sieno-granito.

Estas rochas saturadas são as que circundam o complexo de forma mais contundente em suas porções mais setentrionais, embora a distinção entre estas e os diopsídio granitos observados por Kitajima (2002) não tenha sido observada neste trabalho.

Este granito apresenta-se esbranquiçado a rosado, inequigranular, alotriomórfico a hipidiomórfico, de granulação fina a média e, em lâmina, com extinção ondulante em quartzo. A foliação é extremamente pervasiva e vertical, sobretudo na parte NW do CARP.

A composição percentual das rochas é, em média: quartzo (20-45%), plagioclásio An7-18(30 a 50%) e microclínio (50%). Quando bandada, a rocha pode apresentar até 50% de biotita em suas bandas mais máficas e menos de 1% nas bandas mais félsicas.

Figura 20 – a) Afloramento sieno-granítico; b) biotitas que definem a foliação, c) extinção ondulante em quartzo; d) contatos lobados-cuspados em quartzo.

5.2.3 Pegmatitos

A mineralogia observada é extensivamente feldspato-potássica e quartzítica, com grandes cristais (às vezes de mais de 50 cm) de biotita. O tamanho dos pegmatitos também é variável, podendo ir desde dezenas de centímetros a dezenas de metros. Exsoluções são comuns nos megacristais de K-Feldspato.

CRP 24

5.3 Anisotropia de susceptibilidade magnética

As direções estruturais magnéticas do CARP foram definidas as partir de 55 sítios de coleta, gerando um total de 372 amostras. Os dados demonstram que existem domínios em que as direções preferenciais de foliação e, sobretudo, lineação, ambas mudando de acordo com a posição geográfica dentro do corpo. A seguir serão apresentados os resultados sobre a qualidade das tramas, dados escalares e dados direcionais.

5.3.1 Qualidade dos dados

Os tensores de ASM foram obtidos a partir dos programas desenvolvidos pela empresa Agico, utilizando a aproximação estatística de Jelinek (1980). Como exposto no item 4.4.1, foram determinados os eixos principais, k1 e k3, para cada sítio. Os dados estão expostos na tabela a seguir, juntamente com os erros angulares dos semi-eixos das elipses de 95% de confiança, nominalmente "z/e".

A partir dos dados, a seguir, é possível gerar os elipsoides já mencionados no capítulo 3, assim como os estereogramas correspondentes a cada sítio. Naturalmente, existem dados de melhor e pior qualidade, que serão exemplificados logo após a exposição dos dados brutos. A quantificação estatística desta qualidade dos dados será melhor escrutinizada no item 5.4. De qualquer forma, os dados expostos na Tabela 3, possuem o parâmetro z/e, que é indicativo do erro associado a cada estereograma.

Sítio	N	Km	Pa	arâmetros	ASM médi	OS		Autovetor	es médios	
			L	F	P	Т	Km	ах	Km	iin
							Dec/Inc	z/e	Dec/inc	z/e
CRP1	7	3,82x10^-4	1.058	1.091	1.154	0.196	134,5/86.3	13,7/6.1	20,4/1.5	15,3/5.4
CRP2	5	2,12x10^-4	1.049	1.108	1.162	0.372	322,4/80.5	8,8/2.4	213,9/3.0	12/1,0
CRP3	6	3.9x10^-5	1.055	1,179	1.243	0.466	121.5/70.3	4.4/2.7	24.8/2.4	34.0/3.2
CRP4	7	1.39x10^-4	1.028	1.157	1.19	0.684	186.8/89.0	5.4/2.1	22.5/1.0	36.1/4.5
CRP5	7	3.34x10^-5	1.085	1.073	1.165	-0.1	99.4/55.1	38.8/3.6	194.2/3.3	4.3/3.4
CRP6	6	2.12x10^-4	1.054	1.081	1.139	0.141	112.1/53.8	29.7/1.1	209.0/5.0	5.8/1.7
CRP7	7	1.95x10^-4	1.035	1.107	1.146	0.486	85.6/57.4	8.1/3.1	180.5/3.1	16/5.1
CRP8	6	4.69x10^-2	1.047	1.394	1.46	0.767	109.2/24.3	5.6/1.1	13.7/12.1	33.8/1.2
CRP9	7	3.62x10^-4	1.104	1.122	1.243	0.019	159.7/78.2	29.7/4.2	4.8/10.7	15.5/4.8
CRP10	5	5,57x10^-4	1,13	1,111	1,273	0,02	141,8/0,4	21,8/11,9	232,0/29,8	48,3/11,6
CRP11	7	3.11x10^-3	1.237	1.133	1.425	0.275	276.3/31.5	49.0/5.3	174.5/18.4	6.2/3.5
CRP12	7	1.65x10^-4	1.065	1.099	1.17	0.217	220.9/72.0	33.7/13.8	12.0/15.9	19.0/7.6
CRP13	6	2.54x10^-4	1.089	1.041	1.134	-0.382	226.2/51.1	16.8/11	0.6/29.4	20.0/9.5
CRP14	4	1,30x10^-4	1,052	1,036	1,09	-0,261	?	?	?	?
CRP15	6	1,11x10^-3	1,134	1,103	1,253	-0,103	273,7/18,8	21,5/8,4	3,8/0,5	12,4/8,4
CRP16	9	4,96x10^-4	1,118	1,047	1,17	-0,396	269,5/1,4	62,7/11,8	179,5/0,3	16,7/5,2
CRP17	6	2,12x10^-4	1,06	1,091	1,157	0,194	295,0/74,4	27,2/2,0	202,9/0,6	2,7/1,9
CRP18	11	1,47x10^-4	1,055	1,102	1,162	0,286	172,5/78,1	19,9/4,9	15,8/10,9	11,8/5,5
CRP19	9	3,22x10^-4	1,051	1,129	1,186	0,401	130,5/77,4	7,4/3,0	15,1/5,5	21,8/3,2
CRP20	6	1,49x10^-4	1,032	1,103	1,138	0,501	117,4/76,9	13,4/4,5	2,1/5,7	12,8/3,9
CRP21	9	2,08x10^-4	1,05	1,119	1,177	0,45	92,0/15,3	23,8/8,8	342,3/50,9	53,6/17,7
CRP22	8	6,67x10^-4	1,11	1,077	1,197	-0,203	252,2/1,8	14,3/6,3	342,3/4,3	8,6/5,8
CRP23	9	2,35x10^-4	1,031	1,087	1,121	0,44	46,8/16,2	72,0/61,1	316,4/1,6	63,7/41,8
CRP24	11	7,03x10^-5	1,028	1,117	1,148	0,597	263,3/10,6	24,9/13,4	358,0/24,0	38,3/21,3
CRP25	8	2,81x10^-4	1,024	1,127	1,155	0,673	269,7/19,0	10,7/6,6	175,7/11,5	23,/7,1
CRP26	5	4,48x10^-4	1,036	1,105	1,144	0,483	74,2/62,0	16,9/8,0	342,1/1,1	46,6/12,7
CRP27	8	3,76x10^-4	1,074	1,037	1,114	-0,337	85,0/54,4	29,5/5,1	353,8/0,9	10,0/5,4
CRP28	6	2,43x10^-4	1,042	1,099	1,144	0,358	66,8/24,9	17,3/5,4	324,2/25,2	15,3/6,8
CRP29	7	4,19x10^-4	1,058	1,091	1,155	0,186	235,9/16,3	29,0/8,7	348,0/52,1	12,3/2,8
CRP30	6	3,28x10^-4	1,062	1,126	1,196	0,325	193,0/54,9	8,9/1,6	351,1/33,1	9,0/1,5
CRP31	9	6,44x10^-4	1,037	1,129	1,171	0,512	325,4/77,3	28,2/2,6	208,1/5,9	32,2/2,5
CRP32	10	1,57x10^-4	1,022	1,031	1,054	0,068	290,8/8,6	77,9/19,7	29,2/44,2	43,3/30,2
CRP33	8	3,16x10^-4	1,024	1,042	1,067	0,17	126,9/69,2	50,5/20,2	236,2/7,2	47,8/21,6
CRP34	10	3,44x10^-4	1,016	1,025	1,041	0,109	114,1/28,4	9,9/5,1	213,6/17,0	10,1/5,0
CRP35	6	8,2x10^-4	1,053	1,099	1,158	0,301	270,3/29,1	16,5/5,0	27,2/39,1	19,8/6,4
CRP36	6	1,97x10^-4	1,003	1,006	1,009	0,359	134/2,/38,4	38,3/9,0	236,6/15,1	25,1/19,3
CRP37	6	6,77x10^-5	1,04	1,058	1,1	0,144	142,2/59,0	3,5/1,5	23,3/16,2	8,8/2,2
CRP38	8	5,95x10^-4	1,006	1,03	1,037	0,649	13,3/50,7	17,1/11,3	119,3/12,7	50,6/13,7
CRP39	7	3,37x10^-4	1,043	1,075	1,124	0,163	269,0/57,2	33,5/0,8	175,4/2,3	11,3/2,9
CRP40	7	3,16x10^-5	1,044	1,108	1,157	0,377	319,7/65,3	17,6/11,4	175,4/20,5	62,5/15,8
CRP41	6	2,41x10^-4	1,037	1,068	1,107	0,309	105,5/77,8	21,3/11,6	14,1/0,3	36,1/7,9
CRP42	10	1,29x10^-4	1,03	1,063	1,094	0,291	83,4/35,8	17,5/10,8	240,3/35,5	40,4/17,0
CRP43	6	2,21x10^-4	1,053	1,152	1,213	0,469	118,6/60,5	22,1/4,1	22,9/3,2	9,3/4,2
CRP44	5	2,92x10^-4	1,088	1,02	1,11	-0,635	262,4/73,0	24,3/6,4	127,9/12,1	50,9/11,8
CRP45	6	1,41x10^-4	1,046	1,098	1,149	0,335	285,7/37,3	27,7/3,8	19,3/4,6	19,2/7,4
CRP46	5	2,08x10^-4	1,074	1,103	1,182	0,081	270,2/57,7	31,8/7,0	26,2/15,5	65,9/9,9
CRP47	5	2,25x10^-4	1,038	1,09	1,131	0,378	250,5/38,5	9,2/7,9	44,5/48,5	37,1/7,4
CRP48	5	2,56x10^-4	1,045	1,055	1,102	0,077	358,9/69,9	50,3/9,6	184,3/20,1	20,6/16,4
CRP49	5	1,35x10^-4	1,008	1,01	1,018	0,078	21,3/43,1	39,9/6,1	244,6/37,8	17,8/2,5
CRP50	4	4,13x10^-4	1,059	1,113	1,178	0,302	/ 100.0/61.5	? 57.0/0 7	? 102 4/1 4	? 20.4/5.5
CRP51	5	4,4x10^-5	1,049	1,108	1,163	0,369	100,3/61,3	57,0/9,7	192,4/1,1	20,1/5,1
CRP52	4	4,03x10^-4	1,054	1,135	1,197	0,404	r a a /ac =	1	(110 = /== -	ŕ
CRP53	5	1,9/x10^-6	1,084	1,137	1,237	0,081	0,8/29,5	28,9/13,8	116,7/38,0	25,2/17,4
CRP54	5	5,94x10^-7	1,169	1,109	1,3	-0,123	2/8,//72,2	37,4/6,4	65,2/15,0	41,0/11,4
CRP55	7	z,29x10^-4	1,159	1,146	1,213	0,399	14,6/83,3	10,9/8,7	220,5/6,1	25,1/6,6

Tabela 3 - Tabela com os dados escalares e direcionais de ASM

Parâmetros; L: lineação magnética = k_1/k_2 ; F: foliação magnética = k_2/k_3 ; P: grau de anisotropia = k_1/k_3 ; T: parâmetro de forma = $(2\eta_2 - \eta_1 - \eta_3)/(\eta_1 - \eta_3)$ onde $\eta_x = \ln_x$

Dados com baixo erro geralmente apresentam melhor agrupamento dos pólos aos planos (Figura 21). Nota-se que, especialmente k1 (correspondente à lineação magnética), apresenta uma tendência melhor de agrupamento quando colocamos todos os dados no mesmo estereograma. Já quando os dados não possuem boa qualidade, a dispersão é ampla (Figura 22)

Figura 21 - CRP 01. Diagrama de P vs T e estereogramas. Exemplo de elipsóide majoritariamente oblato, com bom agrupamento de k3 e k1.

Figura 22 – CRP23. Diagrama de P vs T e estereogramas. Exemplo de elipsóide oblato, com agrupamento ruim de k3 e k1.

No estereograma com todos os pólos aos planos, a direção de k1 está amplamente distribuída entre as direções NE/NW, enquanto os polos k3 (correspondentes aos polos dos planos da foliação) apresentam, majoritariamente, direção de mergulho de foliação para NW, como é observado nas medidas feitas em campo, e como pode ser visto na Tabela 2 - Pontos de coleta e dados estruturais coletados. O estereograma a seguir mostra a direção média total de 372 medidas.

Figura 23 - Estereograma total das medidas, com pólos aos planos médios (K3) de todas as 372 medidas.

Observa-se que a foliação mergulha predominantemente para NW, enquanto a lineação assume um valor aproximadamente N-S. Estas medidas são observáveis nas medidas estruturais com bússola em campo, em diversos casos.

5.3.2 Dados escalares

Os dados escalares representam os valores dos principais parâmetros de anisotropia obtidos após a aplicação do método estatístico escolhido, que neste caso o de Hext-Jelinek. Além disso, por meio de análise conjunta entre dois ou mais parâmetros foi possível identificar algumas relações de esforço e deformação, que foram imprescindíveis na interpretação tectônica final. Para

melhor visualização, os dados foram divididos por litologias e por fácies. Os parâmetros considerados foram P, T e Km, onde: Km = susceptibilidade magnética média (K1+K2+K3)/3; P = grau de anisotropia (K1/K3); T = parâmetro de forma = $(2\eta_2-\eta_1-\eta_3)/(\eta_1-\eta_3)$ onde $\eta_x=\ln k_x$ Chadima & Jelinek (2009).

Não há diferenciação óbvia entre os dois tipos de rocha presentes no Complexo Alcalino Rio do Peixe. A variação em susceptibilidade magnética varia de 4,69x10⁻² a 5,94x10⁻⁷ SI com a maior parte dos valores na região de aproximadamente 10⁻⁴ SI. Já o grau de anisotropia P varia de 3,004 a 1,003, com a enorme maioria (mais de 90%) dos valores entre 1,0 e 1,2, aparentemente não tendo relação com a posição geográfica no corpo. A Figura 24 demonstra que há variação em relação a serem oblatos ou prolatos, mas, como demonstrado na mesma figura, a maioria dos elipsoides apresenta forma geral oblata. Esta visualização foi gerada a partir de uma escolha, aonde, se a grande maioria das réplicas é oblata, a representação é oblata e vice-versa. No caso de uma diferença muito pequena, é colocado o formato majoritário com a componente minoritária.

O processamento estatístico de Km, com seus diferentes parâmetros e formas de distribuição serão tratados adiante, assim como o tratamento estatístico dos dados direcionais.

5.3.3 Dados direcionais

A posição geográfica dos elipsoides no CARP demonstra o resultado final da metodologia apresentada no capítulo 3. Como forma de compreender melhor a mineralogia mais atuante, foram também gerados dados AAR expostos na tabela a seguir. Como será melhor explorado no tópico 5.5, esta técnica também é utilizada para determinarmos casos de .trama inversa.

Sítio	Parâmetros médios pAAR 0-40				Autovetores médios				
	L	F	Р	Т	Amax		Ami	n	
					Dec/Inc	z/e	Dec/	/Inc	z/e
CRP01	1,019	1,071	1,092	0,573	217/26	78/24	63/6	1	55/22
CRP05	1,253	1,113	1,394	-0,355	255/1,4	19,1/5,2	345,2	2/6,3	38,7/8,8
CRP11	1,016	1,225	1,245	0,852	151,5/10,2	81,9/5,5	255,	6/53,7	28,5/5,8
CRP12	1,119	1,077	1,205	-0,204	16,3/18,2	31,5/4,5	261,	0/52,3	40,2/13,8
CRP14									
CRP16	1,311	1,139	1,494	-0,349	35,5/21,9	11,4/7,1	250,	0/26,5	34,5/6,5
CRP21	1,146	1,043	1,195	-0,526	5,3/6,8	26,6/13,0	95,4	/0,7	40,8/7,6
CRP23	1,031	1,084	1,117	0,449	161,2/18,9	56,0/55,2	56,3,	/36,9	55,9/32,6
CRP24 0-20	1,046	1,072	1,121	0,211	278,6/16,9	68,6/63,7	186,	6/6,4	68,3/59,9
CRP24 20-60	1,281	1,156	1,48	-0,262	152,4/6,5	37,3/14,7	244,:	3/16,3	63,0/6,6
CRP30	1,422	1,187	1,687	-0,346	355,4/32,9	17,9/2,9	163,	7/56,6	52,3/4,4

|--|

Parâmetros; L: lineação magnética = k_1/k_2 ; F: foliação magnética = k_2/k_3 ; P: grau de anisotropia = k_1/k_3 ; T: parâmetro de forma = $(2\eta_2 - \eta_1 - \eta_3)/(\eta_1 - \eta_3)$ onde $\eta_x = \ln_x$

Sítio	Parâmetro	os médios	pAAR 0-40		Autovetores médios			
	L	F	Р	Т	Amax		Amin	
					Dec/Inc	z/e	Dec/Inc	z/e
CRP01	1,299	1,116	1,45	-0,409	152,5/14,7	29,3/12,4	59,6/10,9	61,0/19,7
CRP05	1,919	3,014	5,785	0,257	238,5/3	38,4/2,1	342,1/77,4	12,4/9,6
CRP11	1,131	1,301	1,471	0,364	93/39,2	48,9/28,1	222,7/38,0	48,5/13,9
CRP12	1,155	1,263	1,458	0,237	63,7/6,3	54,3/8,5	333,2/4,7	14,7/8,1
CRP14								
CRP16	1,501	1,153	1,73	-0,481	325,3/12,4	22,1/12,2	221,4/47,5	31,9/12,5
CRP21	1,077	1,106	1,191	0,151	131/33,6	53,6/10,3	222,3/1,8	57,3/3,1
CRP23	1,429	1,449	2,07	0,019	164,5/72,6	35,7/6,0	296,0/11,8	39,5/19,3
CRP24 60-90	2,12	11,871	25,165	0,534	193,3/21,9	56,5/20,4	290,2/16,8	58,8/26
CRP30	2,135	1,769	3,777	-0,142	328,1/4,6	25,5/8,7	63,8/50,9	32,6/7,2

Tabela 5 - valores médios pAAR80

 $\begin{array}{l} \textbf{Parâmetros;} \hspace{0.1cm} L: \hspace{0.1cm} lineação \hspace{0.1cm} magnética = k_1/k_2 \hspace{0.1cm}; F: \hspace{0.1cm} foliação \hspace{0.1cm} magnética = k_2/k_3 \hspace{0.1cm}; P: \hspace{0.1cm} grau \hspace{0.1cm} de \hspace{0.1cm} anisotropia = k_1/k_3 \hspace{0.1cm}; T: \hspace{0.1cm} parâmetro \hspace{0.1cm} de \hspace{0.1cm} forma = (2\eta_2 \hspace{-0.1cm}-\hspace{-0.1cm} \eta_3)/(\hspace{0.1cm} \eta_1 \hspace{-0.1cm}-\hspace{-0.1cm} \eta_3) \hspace{0.1cm} onde \hspace{0.1cm} \eta_x \hspace{-0.1cm}= \hspace{-0.1cm} ln_x \hspace{0.1cm} \end{array}$

Figura 24 - Direção de Lineação, foliação e formato de elipsóide, respectivamente.

Em campo, são observadas algumas poucas dobras métricas, simétricas e apertadas, de direção de eixo aproximado N010, condizentes com diversos pares conjugados que indicam direção de compressão aproximada NW-SE. De forma mais proeminente, às vezes se encontra uma foliação pronunciada e por vezes incipiente e confusa, mas que quando é possível medi-la, apresenta direção de mergulho média de 283/57 graus, com uma distribuição de valores quase gaussiana normal. Da mesma forma, ainda condizente com o eixo de dobras, temos uma direção média de lineação de 100/30 (plano axial paralela), embora esta tenha sido observada somente na parte sul do complexo em raros afloramentos.

Figura 25 - Dobra de eixo 020/10 em nefelina sienito.

Os dados direcionais magnéticos são análogos ao observado em campo e, de forma mais consistente, permitem observar uma tendência estrutural, Como pode ser observado na Figura 24, o transporte de massa, indicado pelas setas de lineação é condizente com uma compressão de direção NW-SE. Ainda, podemos, de forma prática, dividir o corpo em três segmentos, setentrional, central e meridional de acordo com as características direcionais geradas pela ASM.

Nota-se que na região central do CARP existe uma maior concentração de elipsoides prolatos. Isto acontece porque com a progressão da deformação, com consequente dobramento e extensão do corpo em direção N-S, o centro é mais estirado do que comprimido, pois se o transporte de massa é também na direção N-S (aproximadamente) os extremos do corpo estarão em contato direto com anteparos, enquanto que o centro pode se esticar de forma mais independente. Ainda, grosseiramente, o corpo se assemelha a um sigmoide que, caso o componente seja de fato sinistral (Marques, 2010), possui fraturas R, fraturas estas que são observadas em sensores remotos.

As partes norte e sul, apesar de algumas poucas diferenças, guardam mais semelhanças entre si do que com a parte central. Ambas possuem as foliações W mais condizentes, assim como uma direção média aproximada de lineação NE-SW.

5.4 <u>Resultados Estatísticos</u>

Os dados serão inicialmente expostos em dois histogramas; um em escala reduzida (excluídas as grandes anomalias positivas) e outro histograma com a abrangência total dos dados de susceptibilidade. O parâmetro avaliado é exatamente κ m, ou susceptibilidade magnética média.

Figura 26 - histograma reduzido (excluídos sítios CRP08 e CRP11).

Figura 27 - histograma total.

Os histogramas possuem claramente uma concentração em torno de valores menores. Apesar disto, existe uma pequena quantidade de dados de pequena freqûencia, mas de altos valores superiores, fazendo com que o histograma não aparente ser tão coerente, podendo ocultar quaisquer suposições que se tenha sobre o tipo de distribuição observado nos dados.

Agora com estes dados podemos analisar a forma de distribuição. O teste de Komolgorov-Smirnoff é um teste que pode comparar a função de distribuição acumulada empírica com a distribuição esperada se os dados seguem uma distribuição normal. Se a diferença observada é adequadamente grande, o teste vai rejeitar a hipótese nula de normalidade população. Se a distribuição é normal, os dados devem seguir a linha vermelha do gráfico. A próxima imagem demonstra a não adequação dos dados em relação a uma distribuição normal. Além disso, o valor de P (<0,010) é menor que o valor crítico de \approx 1,35, ou seja, neste caso temos evidências para dizer, com 95 % de certeza, que a distribuição de Km do CARP não segue uma distribuição normal.

Figura 28 - Teste de Komolgorov-Smirnoff.

Iremos agora comparar as diferentes réplicas. No caso deste trabalho vale relembrar que cada Sítio possui três cilindros. Cada um destes três cilindros é dividido em três pequenos cilindros. A pesquisa possui 55 sítios, que, embora se busque uma regularidade, nem sempre permitem que nove pequenos cilindros saiam de todos eles. Alguns destes sítios inclusive podem possuir mais que 9 pequenos cilindros

Como podemos observar nas imagens acima, a pesquisa possui um total de 372 amostras, diferente do valor esperado de 495. Para que se gere a estatística direcional no software Anisoft, são necessárias pelo menos 5 réplicas. Busca-se sempre retirar as nove réplicas esperadas de cada sítio, mas quando há dificuldades busca-se retirar pelo menos 5.

Buscando uma melhor visualização, seguem duas tabelas ANOVA. Uma com o intervalo do CRP1 ao CRP 26 e a outra do CRP 26 ao CRP 55. Isto teve que ser feito pois o gráfico fica ininteligível com mais de 45 intervalos.

Figura 29 – Gráfico anova CRP01-CRP26

Tabela	6 -	ANOVA	correspondente.
--------	-----	-------	-----------------

Fonte da variação	Graus de liberdade	Soma dos quadrados	Quadrados médio	Valor F
Fator	25	12594802840	503792114	251,30
Erro	158	316752500	2004763	
Total	183	12911555340		

Figura 30 - Gráfico ANOVA, intervalo CRP26-CRP55.

Fonte da variação	Graus de liberdade	Soma dos quadrados	Quadrados médio	Valor F
Fator	29	6797706	234404	4,68
Erro	162	8119399	234404	
Total	191	14917105		

Fonte da variação	Fonte da Graus de variação liberdade		Quadrados médio	Valor F
Fator	54	12852311516	238005769	231,57
Erro	316	324786082	1027804	
Total	370	13177097597		

Tabela 8 - Tabela ANOVA com todos os sítios.

Como podemos novamente discriminar, existe uma grande anomalia no sítio CRP08 e uma um tanto menor no ponto CRP11. Em compensação, se retirarmos os valores anômalos obtidos nos sítios CRP08 e CRP11, uma tabela ANOVA muito distinta.

Fonte da variação	Graus de liberdade	Soma dos quadrados	Quadrados médio	Valor F
Fator	52	14765221	283947	2,32
Erro	305	37333132	122404	
Total	357	52098353		

Tabela 9 - Tabela ANOVA com valores anômalos retirados.

No gráfico plotado do intervalo CRP01-CRP26 gerado para visualização da tabela ANOVA, e pela própria tabela, temos obviamente um valor muito alto de P e dois picos principais, um em CRP08 e outro em CRP11. Se retirarmos estes valores anômalos a escala da distribuição muda drasticamente, tornando os desvios padrões mais agrupados, assim como as médias, que se tornam mais facilmente observáveis. É também notável uma queda drástica no valor do parâmetro F, do teste F.

A tabela ANOVA busca determinar a aceitação ou negação de hipóteses. No caso, se o valor do teste F é é inferior ao valor crítico (no caso escolhido, em um nível de significância 5%, com 52 graus de liberdade no numerador e 305 graus no denominador, o valor é aproximadamente 1,45) aceita-se a hipótese H0, onde existem evidências para dizermos que as médias são todas iguais. Como observado, mesmo com a retirada dos valores mais anômalos, o valor de F é mais alto que o valor de Fcrítico, caindo no campo de aceitação da hipótese H1, resultando que pelo menos uma das médias é, estatisticamente, diferente das demais.

Dando prosseguimento à caracterização do agrupamento dos dados, foi gerado um teste de médias de Tukey, Calculado a partir da Diferença Mínima Significativa.

Fator	Ν	Média	Agrupamento	Fator	Ν	Média	Agrupamento
CRP01	8	381,5	С	CRP26	5	448	С
CRP02	5	212,5	С	CRP27	8	376	С
CRP03	6	30,85	С	CRP28	6	234	С
CRP04	7	139,4	С	CRP29	7	419	С
CRP05	7	334,2	С	CRP30	6	328,1	С
CRP06	5	211,7	С	CRP31	9	644	С
CRP07	7	194,9	С	CRP32	10	157,1	С
CRP08	6	46877	А	CRP33	8	315,9	С
CRP09	7	362,2	С	CRP34	10	344,5	С
CRP10	5	557	С	CRP35	6	820	С
CRP11	7	3109	В	CRP36	6	196,8	С
CRP12	7	165,3	С	CRP37	6	67,7	С
CRP13	6	254	С	CRP38	8	595	С
CRP14	4	130,1	С	CRP39	7	337,3	С
CRP15	6	1112	ВC	CRP40	7	31,63	С
CRP16	9	496	С	CRP41	6	240,9	С
CRP17	6	211,9	С	CRP42	10	129	С
CRP18	11	147,27	С	CRP43	7	216,7	С
CRP19	9	321,8	С	CRP44	5	292,1	С
CRP20	6	148,7	С	CRP45	5	131,5	С
CRP21	9	208,2	С	CRP46	5	208,4	С
CRP22	8	667	С	CRP47	5	252,1	С
CRP23	9	234,8	С	CRP48	5	255,7	С
CRP24	11	70,31	С	CRP49	5	135,47	С
CRP25	8	281	С	CRP50	4	413	С
CRP26	5	448	С	CRP51	5	43,99	С
CRP27	8	376	С	CRP52	4	402,9	С
CRP28	6	234	С	CRP53	5	1,97	С
CRP29	7	419	С	CRP54	5	-0,59	С
CRP30	6	328,1	С	CRP55	7	229	С

Tabela 10 - Teste Tukey.

Como esperado, CRP08 e CRP11 definiram grupos próprios, e o resto foi, ou colocado em um novo grupo (C) ou entre o grupo definido por CRP 11 (B) e o restante dos valores (grupo C).

5.5 Dados direcionais estatísticos

As tabelas e seus devidos resultados seguirão em anexo ao final deste estudo. O cálculo gerado nas tabelas fornece tanto a resultante de todos os vetores, quanto seu ângulo de direção média (Θ barra). Deste teste, como pode ser observado no anexo 1, se aceita a hipótese H0, ou seja, há evidências o suficiente para dizermos com 95 % de certeza que há uma direção preferencial em K1 e para K3 provavelmente (visto que a tabela de Gaile & Burt (1980) não contempla um N>100, mas os valores decrescem á medida em que N aumenta), situada entre um ângulo determinado com um erro associado de 1,17 ± 9,22 para K1 (correspondente à lineação magnética) e um valor de 179±38,5 para K3 (correspondente do pólo ao plano da foliação magnética). É importante ressaltar que este teste estatístico tem como pressupostas distribuições uni modais e de Von Mises, uma aproximação circular vetorial a uma distribuição normal.

Por meio de outro teste estatístico, e buscando reiterar a relação observada na literatura entre a anisotropia de susceptibilidade magnética (ASM) e a anisotropia de remanência anisterética (ARA), outro método foi utilizado na caracterização do Complexo Alcalino Rio do Peixe, buscando-se um teste de igualdade entre duas amostras de medidas direcionais (Tabela RP, no anexo). Neste caso o teste foi uma forma estatística de testar a coaxialidade entre os dois métodos, pois se os minerais estiverem muito deformados, a trama magnética torna-se inversa. Isto acontece porque se um eixo cristalográfico se torna muito pequeno em detrimento de uma grande extensão de outro eixo, este eixo que se tornou menor tornar-se á o eixo de maior susceptibilidade. (eixo k1 se inverte com eixo k3).Como pode-se observar no Anexo 2, a hipótese H0 foi aceita com 99 % de certeza, ou seja, há evidências estatísticas suficientes para afirmarmos a coaxialidade entre os valores de ASM e ARA. Este teste é comumente feito de maneira qualitativa, pois a ARA, com seus resultados, também fornece estereogramas que apontam as direções dos eixos, apesar disto, neste caso não parecem ser coaxiais visualmente.

6 Discussão

6.1 Comparação petrológica do CARP com outros corpos alcalinos

Como demonstrado na seção 5, as rochas apresentam tanto feições ígneas quanto feições microtectônicas e de recristalização de forma consistente. Em um contexto deformacional temos uma deformação tanto magmática quanto em estado sólido (*magmatic to solid state deformation*) em um contexto semelhante ao encontrado por Nsifa *et al* (2013) em Camarões. As semelhanças do CARP com três corpos estudados no Camarões (*Mont de Élephant, Eboundja e Roucher du Loup*) pelo mesmo autor são notáveis, onde os corpos são colocados como sincinemáticos a 590 Ma, com seus magmas derivados, majoritariamente, de fusão parcial do manto litosférico sub-continental, num contexto direcional sinistral associado à zona de cisalhamento Camarões SW. As semelhanças incluem a direção dos corpos, o tipo de rocha a qual os corpos alcalinos intrudem (No caso os 3 corpos intrudem o Grupo Yaoundé – também quartzitos e micaxistos), eixos de dobra variando entre 10 a 40 graus e duas gerações de sienitos pegmatíticos.

Figura 31 - Comparativo entre as foliações e lineações do CARP e e dos corpos camaroneses por Nsifa *et al.* (2013).
As semelhanças microtectônicas merecem destaque especial. Embora a foliação em lâmina seja mais evidente em Nsifa *et al* (2013), também são encontrados cristais sem nenhum tipo de deformação interna, cristais com feições de recristalização *sub-solidus* próxima à *solidus* (com deformação das lamelas em plagioclásio e textura heterogranular formada por pequenos neoblastos de feldspato) e feições ortognaissicas nas porções de borda do corpo. De acordo com estes autores, estas feições atestam o alojamento tardi a pós-tectônico para os três corpos estudados. Além disso, os dados de ASM, especialmente entre os maciços *Eboundja* e *Roucher du Loup*, assemelham-se aos dados direcionais encontrados no CARP, mas não somente; ambos apresentam componentes ferromagnéticos (Km > $500x10^{-6}$, dominado por magnetita) quanto paramagnéticos (geralmente Km < $500x10^{-6}$). Apesar desta semelhança, é importante recordar da Tabela 3 que a enorme maioria dos componentes do CARP é dominada por uma componente Ferromagnética. Sendo assim, no caso do CARP a anisotropia é majoritariamente controlada pela magnetita.

O CARP também possui semelhanças com o Complexo Plutônico Alcalino Ruvubu Superior (CPARS) também em Camarões (Decrée *et al.*,2015), a saber, seu grande tamanho (no caso do CARP 30x7 km, e do CPARS 25x10 km) e seu contorno razoavelmente elíptico. Este corpo também é colocado como sintectônico, mas tendo sido acomodado por grandes e amplas zonas de cisalhamento associadas à quebra de Rodínia (aproximadamente 1 Ga).

6.2 As tramas do CARP

Os histogramas possuem claramente uma concentração em torno de valores menores. Apesar disto, a grande quantidade de dados de pequena freqûencia, mas de altos valores superiores, faz com que o histograma não aparente ser tão coerente, podendo ocultar quaisquer suposições que se tenha do tipo de distribuição observado nos dados.

Com o auxílio do gráfico de distribuição de Komolgorov-smirnoff, temos um valor de p menor que 0,010, um valor baixo. Observa-se também que a distribuição dos dados segue, majoritariamente, uma reta ascendente quase perpendicular ao eixo X, afastando-a assim da linha oblíqua que caracteriza uma distribuição normal neste tipo de gráfico.

No gráfico ANOVA do intervalo CRP01-CRP55 gerado para visualização da tabela ANOVA, e pela própria tabela, temos obviamente um valor muito alto de P e dois picos principais, um em CRP08 e outro em CRP11. Se retirarmos estes valores anômalos, a escala da distribuição muda drasticamente, tornando os desvios padrões agrupados, assim como as médias,

mais facilmente observáveis. É também notável uma queda drástica no valor do parâmetro F, do teste F.

Os dados direcionais são conclusivos. O anexo 1 representa os resultados dos testes de direção preferencial, tanto para k1 quanto para k3. Em ambos a hipótese H1 é aceita, negando a hipótese nula de aleatoriedade.

O teste estatístico de coaxialidade entre ASM e ARA buscou atingir uma comprovação de quantitativa para a determinação de inversão de trama, sendo então observada pela aceitação de H0. O diagrama de roseta (Fig. 31) a seguir demonstra como, qualitativamente, podemos ver direções preferenciais.

Figura 32 - Diagrama de roseta com as direções preferenciais, de k1 (correspondente à lineação magnética). Importante mencionar que no diagrama à esquerda a escala é relativa ao comprimento da pétala, e no à direita a escala é relativa à área

Da mesma forma segue um estereograma com os contornos e as direções principais de k3 (correspondente à foliação). Vale mencionar que os pontos observados são os polos dos planos de foliação magnética.

Figura 33 - Estereograma de k3 (correspondente ao polo do plano da foliação).

Como observado por Santos (2016) em tese acerca dos megacristais de zircão que ocorrem na região, a assinatura de elementos terras rara indicam, em maioria, origem crustal. Além disso, o estudo sugere que todas as amostras passaram por processos de hidrotermalismo e que nenhum zircão, em Gráfico Ce/Ce*, cai no campo dos nefelina sienitos e/ou pegmatitos. Como estes dois últimos possuem máxima expressão regional, e aliada ao já exposto fato da assinatura crustal, sugere-se que a idade de 1,5 Ga proposta por Kitajima (2002) possa ser proveniente de cristais de zircão herdados da rocha encaixante.

6.3 Modelos de colocação do CARP

Corpos alcalinos geralmente dão origem a corpos circulares (Sorensen,1974), já o CARP é um corpo alongado de 30x7 km cuja a idade de 1,5 Ga e história de deformação são contrastantes. Além disso, existem feições a sul nas quais os pegmatitos não apresentam uma relação de corte com o nefelina sienito muito clara. Embora isto ocorra de forma muito evidente em outras partes do corpo, na parte sul, o processo parece ter sido mais concomitante que posterior. Ainda, temos a tese de Martins (1981) que afirma sobre os pegmatitos, que estes estão geneticamente relacionados aos respectivos eventos magmáticos que geraram as rochas alcalinas e os granitos pegmatóides. Queiroz (2016) datou os pegmatitos da suíte Mata Azul (pequenos corpos de até aproximadamente 4 km), próxima ao CARP, em idades entre 510 e 560 Ma. É importante ainda mencionar que Marques (2010) estende a possível deposição de carbonatos do

Serra da Mesa e da Formação Traíras entre 1,8 e 1,55 Ga, encontrando idades mínimas em zircão de 1,5 Ga em diversas amostras. Este mesmo autor coloca que o CARP e a sub-província Tocantins seriam a fonte para estes zircões mais novos, mas em seu modelo não coloca, em 1.5 Ga, o complexo alcalino como já exposto à intempéries, o que torna tal possibilidade remota.

Figura 34 - Modelo de Marques (2010) para a instalação do CARP. Em 1290 Ma o corpo ainda não se encontra exposto.

Kitajima (2002) afirma ter encontrado xenólitos do Grupo Serra da Mesa dentro do Nefelina sienito do CARP, dificultando mais ainda esta tese. O mesmo autor postula que houve duas gerações do nefelina sienito, uma teria 1,5 Ga e a segunda que se estenderia de 1,5 até 0.6 Ga com intrusão concomitante do sieno granito. É muito improvável que uma intrusão ígnea se estenda por tanto tempo. Acredita-se que o autor tenha se utilizado deste artifício para conseguir conciliar as evidências geocronológicas com as geológicas. Apesar disto, em um princípio semelhante ao da navalha de Occam, devemos acreditar que esta é uma difícil possibilidade. Ainda, se o corpo fosse

tão antigo quanto 1.5 Ga, esperaríamos mais feições rúpteis em campo e em lâmina, visto que o corpo teria muito tempo para se resfriar e posteriormente ser afetado pelo evento Brasiliano. Segue abaixo o modelo proposto por Kitajima (2002) acerca da geração dos magmas.

Figura 35 - Modelo evolutivo gerado por Kitajima (2002), modificado em cores .

Seguindo a lógica das pesquisas de Nsifa *et al.* (2013) e Decrée *et al.* (2015), sugere-se que o corpo tenha sido alojado em um contexto sin-tectônico sinistral, sendo possível encontrar feições presentes no elipsoide de deformação clássico. As feições microtectônicas sugerem um contexto de alta cristalização que, embora o corpo já possuísse características de sólido, ainda estava quente

o suficiente para apresentar feições deformacionais dúcteis. Abaixo, segue-se uma imagem que busca exemplificar as relações com o elipsoide.

Figura 36 - As feições em amarelo são observáveis em sensoriamento remoto. A direção dos pares conjugados, assim como dos pegmatitos, foi desenhada segundo uma direção média observada em campo.

.O transporte de massa na direção N-S (Figura 24), majoritariamente, aponta para um escape condizente com a direção proposta de esforço. Tal esforço aproximadamente Leste-Oeste é reflexo da grande zona de cisalhamento trans-brasiliana, em modelo semelhante ao observado por Nsifa *et al.* (2013) no Camarões em relação à zona de cisalhamento do Oeste da África. Sugere-se que tal esforço tenha gerado fraturas extensionais profundas (podendo gerar bacias *pull-apart* ou não) que forneceriam uma queda de pressão litostática suficiente para que corpos mais profundos ascendessem.

É notável que as direções de k1 tendem a mudar sua direção nas bordas do CARP, assim como é notável a maior presença de elipsoides prolatos mais próximos ao centro do corpo (Figura 24). Isto pode acontecer pois o embasamento somado com a cobertura sedimentar podem ter agido como anteparos, ou limites, quando da deformação do CARP e fazendo com que neste caso, o eixo de maior esforço se deslocasse para perpendicular ao anteparo, gerando dobras de eixo E-W. A presença de um maior número de elipsoides prolatos ao centro também é fruto desta interação com as rochas encaixantes, pois é de se esperar que o centro do corpo tenha mais espaço para se alongar do que as bordas.

Figura 37 - À esquerda, temos duas pequenas lascas do nefelina sienito envoltas pelos pegmatitos. Na foto à direita temos um bloco maior, do mesmo nefelina sienito, mais bandado. A última imagem, apesar de ser em um bloco deslocado, demonstra algo observável em vários outros afloramentos: os veios de quartzo acompanham a foliação dos nefelina sienitos, sendo também anteriores aos pegmatóides da região.

Um modelo petrogenético profundo e abrangente é uma tarefa complexa, mesmo porque quando se lida com rochas alcalinas esta tarefa é ainda mais difícil. Apesar disto sugere-se que, ainda lidando com as semelhanças, o CARP seja adequável aos *Mont de Élephant, Eboundja* e

Roucher du Loup, sendo que, para isto, seria necessária a análise das razões La/Nb, Ba/Nb e Zr/Nb. De qualquer forma a baixa taxa de sílica e a ampla presença de nefelina sugerem uma componente mantélica. Sabe-se que corpos alcalinos com alta concentração de Zr e Nb são característicos de ambientes intracontinentais relacionados à extensões ou transcorrências (Thompson & Fowler, 1986). Ainda, acerca dos magmas parentais, Frost (2014) afirma que pequenos graus de fusão crustal podem dar origem a granitos ferroanos e , ainda, a assimilação de fundidos crustais produzidos pela diferenciação de toleítos também pode dar origem ao mesmo tipo de granitos. Finalmente, a mistura de fundidos crustais com nefelina sienitos podem dar origem a granitos peralcalinos. Como na Figura 36 a seguir:

Figura 38 - Modelo genético-evolutivo petrogenético. Modificado segundo Frost (2014)

Dos resultados obtidos sugere-se que a transcorrência seja mais provável, sendo ainda mais uma semelhança com os três maciços camaroneses mencionados. Sugere-se o modelo de evolução aproximado, a seguir.

Em a) temos a propagação de uma falha transtrativa a partir do momento cisalhante imposto à região, e também de acordo com uma região enfraquecida, seja pela presença de fraturas preexistentes ou heterogeneidades litológicas e/ou químicas presentes na região. Em b) temos o aprofundamento da fratura em resposta aos avanços cisalhantes sinistrais gerados pela falha em superfície. É neste momento que a extensão horizontal da falha atinge a porção inferior da crosta e superior do manto, gerando espaço e descompressão suficientes para que magmas menos evoluídos possam ascender à porções mais rasas dos horizontes reológicos. Em c) esta ascensão causa a fusão parcial e *mixing* de tais magmas menos evoluídos com as rochas presente em regiões rasas, fazendo com que o magma sieno-granítico se forme e se aloje. Com a progressão da ascensão magmática, as forças de empuxo vertical fazem com que os magmas mais profundos empurrem os magmas mais félsicos em direção ás bordas, fazendo com que estes comecem a se acumular no centro do corpo. Com a progressão do cisalhamento sinistral temos o formato final do corpo, com a geração de eixos de dobras em foliações antes expostos, em e).

7 Conclusões

Acerca da petrologia e microtectônica observa-se um estilo de deformação em fase final de cristalização, onde o corpo ígneo estava em estado avançado sólido, mas ainda quente o suficiente para que houvesse deformação dúctil. Tais feições são correlacionáveis à especialmente duas regiões da África ocidental.

Quanto à distribuição estatística, inicialmente observa-se que a distribuição dos dados não segue uma distribuição normal. Existem dois (talvez três) sítios que diferem muito do resto observado, os sítios CRP 08 e CRP 11. É possível que isto tenha ocorrido devido à um erro laboratorial ou à concentração de magnetita nestes sítios . É indiscutível a mudança do valor de F na tabela anova quando estas amostras são retiradas. No primeiro caso temos, obviamente pelo gráfico, que aceitar a hipótese (H1) que pelo menos uma das médias é diferente. Já no segundo caso temos que, estatisticamente as médias das amostras são mais próximas em relação ao parâmetro. Apesar de tudo, podemos concluir que boa parte das amostras, ao menos, faz parte da mesma população gerando certa homogeneidade pelo menos em relação a Km.

Em relação aos dados direcionais propriamente ditos, temos de fato uma foliação magnética que mergulha, preferencialmente, de forma suave para noroeste. Tal observação é compatível com as foliações observadas em campo, embora os mergulhos observados em campo possuam, geralmente, mergulhos mais altos do que os observados nos contornos gerados no estereograma da Figura 33. A lineação magnética do corpo também é consistente, mas nem sempre seu correspondente geológico é observável em campo. Os valores dos dados direcionais foram medidos e associados à um erro direcional, fazendo com que possa se afirmar que o corpo possui direções preferenciais de fluxo.

A coaxialidade dos dados ASM e ARA, assim como os valores altamente paramagnéticos do corpo caracterizam de forma consistente o Complexo Alcalino Rio do Peixe. Não houve inversão da trama magnética e a magnetita é a maior responsável pela resposta anisotrópica magnética. O transporte de massa ocorre majoritariamente na direção Norte-Sul, sendo limitado pelas rochas anfitriãs. O caimento médio das foliações magnéticas foi definido com um grau de certeza de 95%, assim como a lineação magnética, em um valor médio com um erro associado em 1,17 \pm 9,22 para K1 (correspondente à lineação magnética) e um valor de 179 \pm 38,5 para K3 (pólo ao plano da foliação magnética).

Sugere-se um estudo mais aprofundado do tempo de residência crustal do magma associado à esta intrusão. Acredita-se que tenha sido um tempo relativamente curto, mas fazendo com o que o corpo tenha passado por seu último momento deformacional após estar já estar em estágio avançado de cristalização, sendo possível então a coexistência das feições ígneas e microtectônicas observadas. Ainda sugere-se que sejam gerados dados acerca da espessura crustal da região, pois, se esta possuir um forte gradiente termal (e/ou menor espessura), haveria mais uma evidência de que pequenas ascensões do manto astenosférico (a partir de fraturas) teriam dado origem a fluxos de calor suficientes para gerar fusão parcial e consequente enriquecimento e diferenciação de magmas. Este magma poderia ser o magma parental dos nefelina-sienitos, e os diferenciados, os sieno-granitos.

8 Bibliografia

ALVARENGA, Carlos José Souza de et al (Coord.). Geologia da folha Cavalcante SD.23-V-C-V. Goiânia: CPRM, 2007. Escala 1:100.000. Programa Geologia do Brasil - PGB; Programa Levantamentos Geológicos Básicos do Brasil - PLGB.

ARAÚJO V.A. & ALVES A.C. 1979. Projeto Canabrava – Porto Real. CPRM. In: Mello G. A. & Souza M. T. 1995. Projeto Paraná - Área 6. Relatório de Graduação, Instituto de Geociências, Universidade de Brasília, 72p.

ARCHANJO, C.J., BOUCHEZ, J.-L., CORSINI, M., VAUCHEZ, A., 1994. The Pombal granite pluton: Magnetic fabric, emplacement and relationships with the Brasiliano strike-slip setting of NE Brazil (Paraiba State). *Journal of Structural Geology*, *16* (3):323-335.

AVERBUCH, O., FRIZON DE LAMOTTE, D. & KISSEL, C. 1992. Magnetic fabric as a structural indicator of the deformation path within a fold thrust structure: a test case from the Corbieres (NE Pyrenees, France). *Journal of Structural Geology*, **14**, 461-474.

BARBOSA, O. 1955. Guia das Excursões. In: CONGR .BRAS. GEOL, 9, 1955. São Paulo. SBG. Not.3.

BARBOSA, O. 1963. Geologia econômica e aplicada a uma parte do Planalto Central Brasileiro. DNPM/PROSPEC.

BARBOSA, O.; BRAUN, O.P.G.; DYER, R.C.; CUNHA, C.A.B.R. 1970. Geologia da região do Triângulo Mineiro. DNPM/DFPM. 140p. (Boletim 136).

BERNARDES, Renato Borges. Modelo de velocidade sísmica de ondas P da crosta e manto superior ao longo do perfil PABBRISE, estado de São Paulo. 2015. vi, 92 f., il. Dissertação (Mestrado em Geologia)—Universidade de Brasília, Brasília, 2015.

BORRADAILE, G. J. 1988. Magnetic susceptibility, petrofabrics and strain. *Tectonophysics*, **156**, 1-20.

BORRADAILE, G.J. AND HENRY, B., 1997. Tectonic applications of magnetic susceptibility and its anisotropy. *Earth Science Reviews*, 42 (1/2): 49:43.

BORRADAILE, G.J., JACKSON, M., 2010. Structural geology, petrofabrics and magnetic fabrics (AMS, ARA, AIRM). *Journal of structural geology 32 (2010) 1519-1551*.

BORRADAILE,G.J., JACKSON, M. 2004. Anisotropy of magnetic susceptibility (AMS): magnetic petrofabrics of deformed rocks. In: MARTIN-HERNANDEZ, F., L/JNEBURG, C. M., AUBOURG, C. & JACKSON, M. (eds) 2004. *Magnetic Fabric.*" *Methods and Applications*. Geological Society, London, Special Publications, 238, 299 360. 0305-8719/04/\$15.00 ,~_3 The Geological Society of London 2004.

BOTELHO, N.F., ALVARENGA, C.J.S., MENSES P.R., D'EL REY SILVA, L.J.H.,1999. Suíte Aurumina: Uma suíte de granitos paleoproterozóicos, peraluminosos e sin-tectônicos na Faixa Brasília. *In:*SBG, *Simpósio de geologia do Centro Oeste*,7,Brasília,*Anais* pp 17

BOTELHO, N.F., FUCK, R.A., DANTAS, E.L., LAUX, J.L., JUNGES, S.L., 2006 The Paleoproterozoic Aurumina granite Suite, Goiás and Tocantins, whole rock geochemistry and U-Pb and Sm-Nd isotopic constrain. The Paleoproterozoic Record of the São Francisco Craton. Brazil, IGCP 509, 9-21

BRITO NEVES B.B., FUCK R.A., PIMENTEL M.M. 2014. The Brasiliano collage in South America: a review. Brazilian Journal of Geology, 44(3):493-518.

CONDIE, K. C. 1997. Plate Tectonics and Crustal Evolution, 4th ed. x + 282 pp. Oxford: Butterworth/Heinemann.

CONSTABLE, C. & TAUXE, L. 1990. The bootstrap for magnetic susceptibility tensors. *Journal of Geophysical Research*, 96(6), 8383-8395.

CORDANI, U.G., 1968. Esboço da geocronologia Pré-Cambriana da América do Sul. Anais acad. Bras. Ciên., 40 (supl):47-51

CORDANI U.G. 1973. Evolução Geológica pré-Cambriana da faixa costeira do Brasil, entre Salvador e Vitória. Tese de Livre Docência, Instituto de Geociências, Universidade de São Paulo, São Paulo, 98p.

CORREA FILHO, F.C.L & SÀ, A.M. 1980. Projeto Natividade: Goiânia, conv. DNPM/CPRM (Relatório Final).

COSTA J. B. S. 1984. Aspectos litoestruturais e evolução crustal da região Centro-Norte de Goiás. Centro de Geociências da Universidade Federal do Pará, Belém, Tese de Doutoramento, 210p.

COSTA M.T. & BRANCO J.J.R. 1961 .Introdução. In: Branco, J.J.R. (Ed.). Roteiro para a excursão Belo Horizonte - Brasília. In: SBG, Congresso Brasileiro de Geologia, Belo Horizonte, v. 15, p.1-119

CRUZ, E. L. C. C. & KUYUMJIAM, R. M. 1999. Mineralizações auríferas filoneanas do terreno granitogreenstone do Tocantins. Rev. Bras. Geoc., 29(3):291-298

CUADROS JIMÉNEZ, Federico Alberto. Relações petrogenéticas entre a Suíte granítica Aurumina e sua encaixante, a Formação Ticunzal, no setor setentrional da zona externa da Faixa Brasília. 2017. vi, 101 f., il. Tese (Doutorado em Geologia)—Universidade de Brasília, Brasília, 2017.

DARDENNE M. A., CAMPOS J. E. G., ALVARENGA C. J.S. DE, MARTINS F. A. L., BOTELHO N. F. 1999. A seqüência sedimentar do Grupo Araí na região da Chapada dos Veadeiros, Goiás. In: Simpósio de Geologia do Centro Oeste, 7,e Simpósio de Geologia de Minas Gerais, 10, Brasilia., Atas, p. 100.

DARDENNE MA1978. Síntese sobre a estratigrafia do Grupo Bambuí no Brasil Central. In: Congresso Brasileiro de Geologia, 30., 1978. Recife. Anais... Recife, Sociedade Brasileira de Geologia, v. 2, p. 597-610.

DARDENNE, MA1979. Les mineralisations de plomb, zinc, fluor du Protérozoïque Supérieur dans le Brésil Central. Thèse de Doctorat d'État, Université de Paris 6, 251 p.

DAVIS, J.C., Statistics and Data Analysis in Geology John Wiley & Sons, Inc. New York, NY, USA ©1973 ISBN:0471198951

DECRÉE, S., BOULVAIS, P., COBERT, C., BAELE J. M., MIDENDE, G., GARDIEN, V., TACK, L., NIMPAGARITSE, G., DEMAIFFE. D. 2015. Structurally-controlled hydrothermal alteration in the syntectonic Neoproterozoic Upper Ruvubu Alkaline Plutonic Complex (Burundi):Implications for REE and HFSE. *Pre-Cambrian Research* 269 (2015) 281-295.

DEER, W. A. & ZUSSMAN, J. (JACK), 1924- & HOWIE, R. A. & DEER, W. A & HOWIE, R. A et al. (1992). An introduction to the rock-forming minerals (2nd ed). Longman Scientific & Technical; New York, NY : Wiley, Harlow, England

DUBEY, A.K. 2014. Understanding an Orogenic Belt: structural evolution of the Himalaya. *Springer International, Cham.*

DYER, R.C. 1970 Grupo Araí - Um Grupo de Metamorfitos do Centro-Leste de Goiás. Revista da Escola de Minas, Ouro Preto, v.28, (2), p.55-63, 1970.

FROST, B.R., FROST,C.D. (2014) Essentials of Igneous and Metamorphic Petrology. Cambridge University Press. 314 pgs.

FUCK R.A., DANTAS E.L., PIMENTEL M.M., JUNGES S.L., HOLLANDA M.H.B.M., MORAES R., ARMSTRONG R.A., 2002. Crosta continental paleoproterozóica no embasamento da porção norte da Faixa Brasília: novos dados Sm-Nd e U-Pb. In: SBG, Congr. Bras. Geologia, 41, João Pessoa, Anais, p.308.

GAILE, G. L. and BURT J. E. (1980): Directional statistics. Norwich. (Concepts and Techniques in Modern Geography; 25)

GORAYEB P.S.S, COSTA J.B.S, LEMNOS R. L., GAMA JR. T., BEMERGUY R.L., HASUI Y. 1988. O Pré Cambriano da Região Natividade, GO. Revista Brasileira de Geociências, 18: 391-397.

GRAHAM, J. W. 1954. Magnetic anisotropy, an unexploited petrofabric element. *Bulletin of the Geological Society of America*, 65, 1257-1258.

HALGEDAHL, S.L. 1989. Magnetic domains in the *Encyclopedia of solid Earth Geophysiscs*, edited by D. Jones. (Van Nostrand Reinhold Company, New York) 706-721.

HROUDA, F. 1982. Magnetic anisotropy of rocks and its application in geology and geophysics. *Geophysical Surveys*, 5, 37-82.

HROUDA, F., JANAK, F., REJL, L. & WEISS, J. 1971. The use of magnetic susceptibility anisotropy for stimating the ferromagnetic mineral fabrics of metamorphic rocks. *Geologische Rundschau*, 60, 1124-42.

HYNDMAN, D. W. Petrology of igneous and metamorphic rocks.1985. McGraw-Hill Higher Education, 1985.786 páginas

ISING, G. 1942. On the magnetic properties of varved clay. Arkiv för Matematik. Astronomi och Fysik 29A, 1-37.

JELINEK, V. 1981. Characterization of the magnetic fabrics of rocks, *Tectonophysics*, 79, T63-T67.

KITAJIMA, L.F.W. 2002. Mineralogia e petrologia do Complexo Alcalino de Peixe-Tocantins. *Tese de doutoramento*, UnB, Brasília. LAUNEAU, P. & CRUDEN, A. R. 1998. Magmatic fabric acquisition mechanisms in a syenite: results of a combined anisotropy of magnetic susceptibility and image analysis study. *Journal of Geophysical Research*, 103(B3), 5067-5089.

MACKENZIE W.S., DONALDSON, C.H., GUILFORD C., 1995. Atlas of igneous rocks and their textures. Harlow, Longman. 148p.

MARINI O.J., FUCK R.A., DANNI J.C., DARDENNE MA1981. A evolução geotectônica da Faixa Brasília e do seu embasamento. In: Simpósio Sobre o Cráton do São Francisco e suas Faixas Marginais. Salvador, SBG, Anais, p.100-115.

MARINI, O.J FUCK.R.A ., DARDENNE M.A., FARIA A. 1977 Contribuição à geologia do Pré-Cambriano da porção central de Goiás. Revista Brasileira de Geociências, São Paulo, v.7, (4), p.304-324,.

MARQUES, Gustavo Campos. Geologia dos grupos Araí e Serra da Mesa e seu embasamento no sul do Tocantins. 2009. 122 f. Dissertação (Mestrado em Geologia)-Universidade de Brasília, Brasília, 2009.

MARTIN-HERNANDEZ, F., LUNEBURG, C. M., AUBOURG, C. & JACKSON, M. . 2004. Magnetic Fabric: Methods and Applications. *Geological Society, London, Special Publications*, 238.

MARTINS, J.P.A. 1981. Pegmatitos do Complexo Alcalino Rio do Peixe - Goiás. 1981. 102 f. Dissertação (Mestrado) - Universidade Federal do Pará, Centro de Geociências, Belém, 1981. Programa de Pós-Graduação em Ciências Geofísicas e Geológicas.

NSIFA, N.E., TCHAMÉNI, R., NÉDÉLEC, A., SIQUEIRA, R., POUCLET, A., BASCOU, J. (2013), Structure and petrology of Pan-African nepheline syenites from the South West Cameroun; implication for their emplacement mode, petrogenesis and geodynamic significance. J. Afr. Earth Sci. 87, 44-58.

NYE, J. F. 1957. Physical properties of crystals. Clarendon Press, Oxford.

O'REILLY, W. 1984. Rock and Mineral Magnetism. Blackie, Glasgow.

PASSCHIER, C. W.; TROUW, R. A. J., Microtectonics. Springer-Verlag, Nova York, 2005.

PIMENTEL M.M., YOST H., FUCK R.A. 2004. O embasamento da Faixa Brasília e o Arco Magmático de Goiás. In: V. Mantesso-Neto, A. Bartorelli, C.D.R. Carneiro, B.B. Brito Neves (eds). Geologia do Continente Sul-Americano: evolução da obra de Fernando Flávio Marques de Almeida. Ed. Beca, São Paulo, p.355-368.

RAPOSO, M.I.B. AND ERNESTO, M., 1995. Anisotropy of magnetic susceptibility in the Ponta Grossa dike swarm (Brasil) and its relationship with magma flow directions. *Physics of the Earth and Planetary Interiors*, 87: 183-196.

RICHTER, C. & VAN DER PLUIJM, B. A. 1994. Separation of paramagnetic and ferromagnetic susceptibilities using low temperature magnetic susceptibilities and comparison with high field methods. *Physics of the Earth and Planetary Interiors*, **30**,209-226.

ROBION P, GRELAUD S, FRIZON DE LAMOTTE D .2007. Pre-folding magnetic fabrics in fold-and-thrust belts: why the apparent internal deformation of the sedimentary rocks from the Minervois Basin (NE Pyrenees, France) is so high compared to the Potwar Basin (SW Himalaya, Pakistan) *Sed Geol 196:181–200*

ROCHETTE, P. & PILLION, G. 1988. Identification of multicomponent anisotropies in rocks using various field and temperature values in a cryogenic magnetometer. *Physics of the Earth and Planetary Interiors*, 51, 379-386.

SANTOS, E.J. & BRITO NEVES, B.B. - 1984 - Província Borborema. In: Almeida, F.F.M. & Hasui, Y., eds: O Pré-cambriano do Brasil. São Paulo, Edgard Blucher, 123-186.

SORENSEN, H., Ed. (1974) The alkaline rocks. John Wiley, London.

TARLING, D. H. & HROUDA, F. 1993. The magnetic anisotropy of rocks. *Chapman & Hall, London*.

TAUXE, L, BANERJEE, S.K., BUTLER, R.F. AND VAN DER VOO R. 2016. Essentials of Paleomagnetism, 4th Web Edition, 2016.

THOMPSON, R.N., FOWLER, M.B., 1986. Subduction-related shoshonitic and ultrapotassic magmatism: a study of Siluro–Ordovician syenites from the Scottish Caledonides. Contrib. Mineral. Petrol. 94, 507–522.

TRINDADE, R., RAPOSO, M., ERNESTO, M., SIQUEIRA, R., 1999. Magnetic susceptibility and partial anhysteretic remanence anisotropies in the magnetite-bearing granite pluton of Tourão, NE Brazil. *Tectonophysics* 314,443-468.

VIEGAS, L.G.F. 2013 Mecanismos de deformação e cronologia de eventos na zona de cisalhamento patos (Província Borborema, Nordeste do Brasil). *Tese de doutoramento*. Universidade de São Paulo, Instituto de geociências,111 pg.

VINE, F. J; MATTHEWS, D. H. (1963). "Magnetic Anomalies Over Oceanic Ridges (PDF)". Nature. 199 (4897): 947–949VOIGHT, W. & KINOSHITA, S. (1907). *Bestimmung absoluter Werte von Magnetiserungszahlen, inbesondere fur Kristalle. Annals of Physics, 24, 492-514.*

WILSON, J.T.(1966).Did the Atlantic Ocean close and then re-open? Nature, 211 (1966), pp. 676-681

WINKLER, A., FLORINDO, F., SAGNOTTI, L. & SARTI, G. (1996). Inverse to normal magnetic fabric transition in an upper Miocene marly sequence from Tuscany, Italy. *Geophysical Research Letters*, 23, 909-912.

9 Anexos

Lineação	K1dec	K1inc	SenØ	Cos	Foliação	K3dec	senO	cosθ	
CRP01A1	25,6	2,2	0,432085749	0,90183	CRP01A1	313,7	-0,72297	0,690882	
CRP01A2	26,6	2,1	0,447759088	0,89415	CRP01A2	314,1	-0,71813	0,695913	
CRP01B1	30,1	9,1	0,501510737	0,86515	CRP01B1	149,4	0,509041	-0,86074	
CRP01B2	26	6,9	0,438371147	0,89879	CRP01B2	168,3	0,202787	-0,97922	
CRP01C1	175,5	3,1	0,078459096	-0,9969	CRP01C1	107,9	0,951594	-0,30736	
CRP01C2	5,7	0,9	0,09931975	0,99506	CRP01C2	94,3	0,997185	-0,07498	
CRP01A1	21,9	3,6	0,372987783	0,92784	CRP01A1	253,9	-0,96078	-0,27731	
CRP01A3	31,2	0,3	0,518027009	0,85536	CRP01A3	164,3	0,2706	-0,96269	
CRP02A1	212	2,1	-0,529919264	-0,848	CRP02A1	307,7	-0,79122	0,611527	
CRP02A2	18,6	2,3	0,318959309	0,94777	CRP02A2	295,4	-0,90334	0,428935	
CRP02B1	41,9	2,6	0,667832555	0,74431	CRP02B1	11,7	0,202787	0,979223	
CRP02B2	37,5	3,2	0,608761429	0,79335	CRP02B2	339	-0,35837	0,93358	
CRP02C	229	6,2	-0,75470958	-0,6561	CRP02C	1,7	0,029666	0,99956	
CRP03A1	16,1	3,4	0,277314653	0,96078	CRP03A1	115	0,906308	-0,42262	
CRP03A2	111,6	18,6	0,929776486	-0,3681	CRP03A2	102,4	0,976672	-0,21474	
CRP03B1	20,8	3,3	0,355106962	0,93483	CRP03B1	118,9	0,875465	-0,48328	
CRP03B2	7,5	8,8	0,130526192	0,99144	CRP03B2	118,3	0,880477	-0,47409	
CRP03C1	27,5	5,7	0,461748613	0,88701	CRP03C1	139,6	0,64812	-0,76154	
CRP03C2	57,2	2,7	0,840566603	0,54171	CRP03C2	141,2	0,626604	-0,77934	
CRP04A1	20	6	0,342020143	0,93969	CRP04A1	178,3	0,029666	-0,99956	
CRP04A2	23,4	6,4	0,397147891	0,91775	CRP04A2	224,7	-0,70339	-0,7108	
CRP04A3	15,3	2,3	0,26387305	0,96456	CRP04A3	214,3	-0,56353	-0,8261	

Tabela 11 - Tabela de teste de aleatoriedade, direção preferencial e erro associado.

CRD0/B1	172.8	10	0 12533323/	-0 9921	CRD0/B1	27.1	0 155515	0 800213	
	172,0	4,5	0,123333234	0,9921	CRP04D1	56.7	0,435345	0,890213	
	170 60	4,0	0,003730474	0,3370		246 5	0,033007	0,349023	
	00	2,1	0,927103035	0,37401		240,5	-0,91700	-0,59675	
	67,3	1,2	0,922538089	0,38591	CRP04C2	201,2	-0,36162	-0,93232	
CRPUSA1	18,7	6,6	0,320612991	0,94721	CRPU5A1	92,7	0,99889	-0,04711	
CRP05A2	20,8	2,7	0,355106962	0,93483	CRP05A2	106	0,961262	-0,27564	
CRP05B1	16,3	2,3	0,280666709	0,95981	CRP05B1	295,3	-0,90408	0,427358	
CRP05B2	11,9	2,2	0,206204185	0,97851	CRP05B2	102,6	0,975917	-0,21814	
CRP05C1	10,4	9,8	0,180519145	0,98357	CRP05C1	88,2	0,999507	0,031411	
CRP05C2	15,2	4,3	0,262189179	0,96502	CRP05C2	99,7	0,985703	-0,16849	
CRP05C3	11,8	1,4	0,204496052	0,97887	CRP05C3	100,4	0,983571	-0,18052	
CRP06A1	27,2	2,1	0,457097927	0,88942	CRP06A1	115,7	0,901077	-0,43366	
CRP06A2	24,4	3,5	0,41310443	0,91068	CRP06A2	117,1	0,890213	-0,45554	
CRP06B1	24,2	4,6	0,409923034	0,91212	CRP06B1	103,8	0,971134	-0,23853	
CRP06C1	33,6	8,2	0,553391549	0,83292	CRP06C1	343,5	-0,28402	0,95882	
CRP06C2	33,3	8	0,549022818	0,83581	CRP06C2	335,7	-0,41151	0,911403	
CRP07A1	168,7	12,6	0,195946144	-0,9806	CRP07A1	93,7	0,997916	-0,06453	
CRP07A2	163,6	15,1	0,282341457	-0,9593	CRP07A2	95	0,996195	-0,08716	
CRP07B1	175,5	7,9	0,078459096	-0,9969	CRP07B1	72,8	0,955278	0,295708	
CRP07B2	2,6	6,4	0,045362988	0,99897	CRP07B2	82,1	0,990509	0,137445	
CRP07B3	175,6	6,3	0,076719028	-0,9971	CRP07B3	73,1	0,956814	0,290702	
CRP07C1	26,5	12,7	0,446197813	0,89493	CRP07C1	89,4	0,999945	0,010472	
CRP07C2	34,2	17,9	0,562083378	0,82708	CRP07C2	87,4	0,998971	0,045363	
CRP08A1	161,3	52,4	0,320612991	-0,9472	CRP08A1	108,2	0,949972	-0,31233	
CRP08A2	73,7	53,4	0,959805292	0,28067	CRP08A2	111,9	0,927836	-0,37299	
CRP08B1	16,2	0,4	0,278991106	0,96029	CRP08B1	106,3	0,959805	-0,28067	
CRP08B2	19	1,2	0,325568154	0,94552	CRP08B2	109,4	0,943223	-0,33216	
CRP08C1	19,9	0,5	0,34037955	0,94029	CRP08C1	110,1	0,939094	-0,34366	
CRP08C2	20,5	4,4	0,350207381	0,93667	CRP08C2	108,7	0,94721	-0,32061	
CRP06B2	26,5	3,1	0,446197813	0,89493	CRP06B2	109	0,945519	-0,32557	

CRP09A1	29.7	12.6	0 495458668	0 86863	CRP09A1	254 3	-0 96269	-0 2706	
CRP09A2	26.7	5.4	0.449318999	0.89337	CRP09A2	277.1	-0.99233	0.123601	
CRP09A3	14.3	5.1	0.246999013	0.96902	CRP09A3	254.6	-0.9641	-0.26556	
CRP09B1	162.2	21.1	0.305695305	-0.9521	CRP09B1	80.3	0.985703	0.168489	
CRP09B2	176.7	10.2	0.057564027	-0.9983	CRP09B2	253.8	-0.96029	-0.27899	
CRP09C1	7.1	13.6	0.123601477	0.99233	CRP09C1	147.8	0.532876	-0.84619	
CRP09C2	11.5	12	0.199367934	0.97992	CRP09C2	105	0.965926	-0.25882	
CRP10A1	168.2	8.9	0.204496052	-0.9789	CRP10A1	77.8	0.977416	0.211325	
CRP10B1	34.8	38.2	0.570713568	0.82115	CRP10B1	261.8	-0.98978	-0.14263	
CRP10B2	127.3	43.5	0.795473481	-0.606	CRP10B2	232.3	-0.79122	-0.61153	
CRP10C1	57.2	32.9	0.840566603	0.54171	CRP10C1	145.7	0.563526	-0.8261	
CRP10C2	133,3	21,9	0,727772758	-0,6858	CRP10C2	36	0,587785	0,809017	
CRP11A1	8,5	10,9	0,147809411	0,98902	CRP11A1	288,5	-0,94832	0,317305	
CRP11A2	169,2	18,2	0,187381315	-0,9823	CRP11A2	299,4	-0,87121	0,490904	
CRP11A3	134,7	14,4	0,710799474	-0,7034	CRP11A3	343,3	-0,28736	0,957822	
CRP11B1	134	36,2	0,7193398	-0,6947	CRP11B1	304,8	-0,82115	0,570714	
CRP11B2	129,3	31,6	0,77384021	-0,6334	CRP11B2	295,7	-0,90108	0,433659	
CRP11C1	175,6	42,1	0,076719028	-0,9971	CRP11C1	262,8	-0,99211	-0,12533	
CRP11C2	176,1	19,9	0,068015291	-0,9977	CRP11C2	270,7	-0,99993	0,012217	
CRP12A1	21,9	38,1	0,372987783	0,92784	CRP12A1	244,6	-0,90334	-0,42894	
CRP12A2	18,1	36,6	0,31067643	0,95052	CRP12A2	241,8	-0,8813	-0,47255	
CRP12B1	15,7	7,8	0,270600446	0,96269	CRP12B1	269,8	-0,99999	-0,00349	
CRP12B2	4,5	33,7	0,078459096	0,99692	CRP12B2	223,6	-0,68962	-0,72417	
CRP12C1	29,2	3,3	0,487859659	0,87292	CRP12C1	110,7	0,935444	-0,35347	
CRP12C2	11,7	1,3	0,202787295	0,97922	CRP12C2	93,6	0,998027	-0,06279	
CRP12C3	30,6	2,2	0,509041416	0,86074	CRP12C3	102,4	0,976672	-0,21474	
CRP13A1	149,1	34,5	0,513541252	-0,8581	CRP13A1	65,8	0,91212	0,409923	
CRP13A2	160	52	0,342020143	-0,9397	CRP13A2	208	-0,46947	-0,88295	
CRP13B1	22	25,2	0,374606593	0,92718	CRP13B1	231,8	-0,78586	-0,61841	
CRP13B2	14	31,3	0,241921896	0,9703	CRP13B2	257,7	-0,97705	-0,21303	

CRP13C1	172 4	21.4	0 13225639	-0 9912	CRP13C1	227.1	-0 73254	-0 68072	
CRP13C2	172,4	21,4	0 133986185	-0 991	CRP13C2	243 4	-0 89/15	-0.44776	
CRP14A1	30.4	82.8	0 506033764	0.86251	CRP14A1	256 5	-0 97237	-0 23345	
CRP14R1	13	69.4	0.224951054	0,00231	CRP14B1	112 5	0,97297	-0 38268	
CRD1/B2	5.2	56	0.00063258	0,07407	CRD1//R2	112,5	0.8829/18	-0.46947	
CRP 1402	J,2 10 1	60 5	0,0000000000000000000000000000000000000	0,55500	CRP1462	156.2	0,002545	-0,40347	
CRD15A1	167.0	05,5	0,04412505	-0 9778	CRD15A1	103.2	0,403545	-0,22835	
CRP15A1	176.2	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0,203018303	-0,5778	CPD15A2	280.0	-0.08106	0.189095	
CDD15R1	170,3	43,4	0,004332308	1	CPD15R1	280,5	-0,58150	0,006981	
CRP15D1 CRD15R2	12.2	0,4	0,001745328	L 0 07218	CRP15B1	270,4	-0,99990	0,000381	
CRP15D2	5.0	21	0,230049737	0,97318		104.9	0,97887	-0.25545	
CRP15C1	5,5	11.2	0,102792537	0,9947	CRPISCI CPD15C2	274.2	-0.00721	0,72228	
	166 5	11,Z	0,104328403	0,99432		274,2	-0,99731	0.06452	
	175 5	0,0	0,233443304	-0,9724	CRP10A1	200,5	-0,99792	-0,00433	
	175,5	2,2 17.2	0,078459090	-0,9909	CRP10AZ	207,5	-0,99009	-0,04711	
	161.4	10	0,292571705	0,9505	CRP10A3	90,0 252.4	0,900220	-0,13233	
	101,4	1,8	0,318959309	-0,9478	CRP10B1	252,4	-0,95319	-0,30237	
CRP16B2	168,9	2,8	0,192521967	-0,9813	CRP16B2	258,9	-0,98129	-0,19252	
CRP16B3	100,7	/	0,230049737	-0,9732	CRP16B3	251,3	-0,94721	-0,32061	
CRP16C1	18,6	4,4	0,318959309	0,94777	CRP16C1	106,5	0,95882	-0,28402	
CRP16C2	19,7	4,5	0,337095258	0,94147	CRP16C2	108,2	0,949972	-0,31233	
CRP16C3	19,8	3,4	0,338/3/92	0,94088	CRP16C3	108,9	0,946085	-0,32392	
CRP1/A1	25,9	0,5	0,436801788	0,89956	CRP1/A1	295	-0,90631	0,422618	
CRP1/A2	24	2	0,406/36643	0,91355	CRP1/A2	296,7	-0,89337	0,449319	
CRP1/B	24,8	0,7	0,419452082	0,90778	CRP1/B	293,5	-0,91/06	0,398749	_
CRP17C	20	2,2	0,342020143	0,93969	CRP17C	286,8	-0,95/32	0,289032	
CRP17D	22,8	0,6	0,387515586	0,92186	CRP17D	110,1	0,939094	-0,34366	_
CRP17E	22	2,9	0,374606593	0,92718	CRP17E	101,5	0,979925	-0,19937	
CRP18A1	23	18,6	0,390731128	0,9205	CRP18A1	172,2	0,135716	-0,99075	_
CRP18A2	19,1	18,4	0,327217899	0,94495	CRP18A2	161	0,325568	-0,94552	
CRP18A3	19,1	20,7	0,327217899	0,94495	CRP18A3	151,9	0,471012	-0,88213	

CRP18A4	5,7	22,4	0,09931975	0,99506	CRP18A4	155,2	0,419452	-0,90778	
CRP18B1	0,9	3,6	0,015707317	0,99988	CRP18B1	283,8	-0,97113	0,238533	
CRP18B2	2,5	7,8	0,043619387	0,99905	CRP18B2	310,7	-0,75813	0,652098	
CRP18B3	8,7	9,9	0,15126082	0,98849	CRP18B3	312,6	-0,7361	0,676876	
CRP18C1	11,5	15,3	0,199367934	0,97992	CRP18C1	127,4	0,794415	-0,60738	
CRP18C2	11,3	16,4	0,195946144	0,98061	CRP18C2	152,9	0,455545	-0,89021	
CRP18C3	12,6	14,9	0,218143241	0,97592	CRP18C3	192,4	-0,21474	-0,97667	
CRP18C4	12,5	13,2	0,216439614	0,9763	CRP18C4	147,9	0,531399	-0,84712	
CRP19A1	15,6	9,2	0,268919821	0,96316	CRP19A1	181,4	-0,02443	-0,9997	
CRP19A2	4,9	8,4	0,085416923	0,99635	CRP19A2	153,9	0,439939	-0,89803	
CRP19A3	165,2	5,4	0,255445758	-0,9668	CRP19A3	119,3	0,872069	-0,48938	
CRP19B1	3,6	6,2	0,06279052	0,99803	CRP19B1	141,3	0,625243	-0,78043	
CRP19B2	2,8	10,4	0,04884977	0,99881	CRP19B2	143	0,601815	-0,79864	
CRP19B3	0,1	11	0,001745328	1	CRP19B3	142,8	0,604599	-0,79653	
CRP19C1	36,4	1,5	0,593418887	0,80489	CRP19C1	123,4	0,834848	-0,55048	
CRP19C2	33,7	2,4	0,554844427	0,83195	CRP19C2	117,2	0,889416	-0,4571	
CRP19C3	37,1	7,4	0,603207988	0,79758	CRP19C3	110,1	0,939094	-0,34366	
CRP20A1	178,5	7	0,026176948	-0,9997	CRP20A1	64,8	0,904827	0,425779	
CRP20A2	172	1,7	0,139173101	-0,9903	CRP20A2	75,8	0,969445	0,245307	
CRP20A3	3,8	3,2	0,0662739	0,9978	CRP20A3	87,4	0,998971	0,045363	
CRP20B	7,1	10,6	0,123601477	0,99233	CRP20B	158,3	0,369747	-0,92913	
CRP20C	30,6	13,5	0,509041416	0,86074	CRP20C	170,1	0,171929	-0,98511	
CRP20D1	11,7	14,4	0,202787295	0,97922	CRP20D1	149,9	0,501511	-0,86515	
CRP21A1	308	64,6	-0,788010754	0,61566	CRP21A1	78	0,978148	0,207912	
CRP21A2	101,9	72,5	0,978508985	-0,2062	CRP21A2	76,9	0,973976	0,226651	
CRP21A3	126,2	66,6	0,806960312	-0,5906	CRP21A3	78,8	0,980955	0,194234	
CRP21B1	55,5	75,6	0,824126189	0,56641	CRP21B1	92,1	0,999328	-0,03664	
CRP21B2	49,5	63	0,760405966	0,64945	CRP21B2	105,1	0,965473	-0,2605	
CRP21B3	40,3	74,7	0,64678978	0,76267	CRP21B3	93,7	0,997916	-0,06453	
CRP21C1	130,7	74,4	0,758134336	-0,6521	CRP21C1	114,4	0,910684	-0,4131	

CDD31C3	14.0	<u>ээ</u> г		0.00000	CDD21C2	262.0	0.00424	0.10000	
CRPZICZ	14,8	32,5	0,255445758	0,96682	CRP2IC2	263,9	-0,99434	-0,10626	
CRP21C3	314	43,4	-0,/193398	0,69466	CRP21C3	85,7	0,997185	0,074979	
CRP22A1	167,8	5,1	0,211324796	-0,9774	CRP22A1	256,6	-0,97278	-0,23175	
CRP22A2	165,8	1,5	0,245307386	-0,9694	CRP22A2	76	0,970296	0,241922	
CRP22A3	165,4	0,5	0,252069358	-0,9677	CRP22A3	75,2	0,966823	0,255446	
CRP22B1	154,4	17,2	0,432085749	-0,9018	CRP22B1	242	-0,88295	-0,46947	
CRP22B2	151,8	0,2	0,472550765	-0,8813	CRP22B2	241,8	-0,8813	-0,47255	
CRP22B3	152,6	0,3	0,460199785	-0,8878	CRP22B3	62,4	0,886204	0,463296	
CRP22C1	166,2	0,1	0,238533458	-0,9711	CRP22C1	76,2	0,971134	0,238533	
CRP22C2	165,6	1,1	0,248689887	-0,9686	CRP22C2	255,5	-0,96815	-0,25038	
CRP23A1	164,3	0,4	0,270600446	-0,9627	CRP23A1	74,8	0,965016	0,262189	
CRP23A2	155,2	8,7	0,419452082	-0,9078	CRP23A2	79,8	0,984196	0,177085	
CRP23A3	159,8	3,3	0,345298199	-0,9385	CRP23A3	73,7	0,959805	0,280667	
CRP23B1	175,5	2,2	0,078459096	-0,9969	CRP23B1	264	-0,99452	-0,10453	
CRP23B2	168,3	8,8	0,202787295	-0,9792	CRP23B2	254,3	-0,96269	-0,2706	
CRP23B3	163,9	0,4	0,277314653	-0,9608	CRP23B3	254	-0,96126	-0,27564	
CRP23C1	96,2	21,7	0,994150964	-0,108	CRP23C1	3,5	0,061049	0,998135	
CRP23C2	83,5	8,6	0,993571856	0,1132	CRP23C2	353,3	-0,11667	0,993171	
CRP23C3	86,7	17,6	0,998341817	0,05756	CRP23C3	177,4	0,045363	-0,99897	
CRP24A1	32,1	5,4	0,53139858	0,84712	CRP24A1	301,1	-0,85627	0,516533	
CRP24A2	27,9	5	0,467929814	0,88377	CRP24A2	297,1	-0,89021	0,455545	
CRP24A3	7,8	73,8	0,135715572	0,99075	CRP24A3	302,3	-0,84526	0,534352	
CRP24B1	15,7	41,6	0,270600446	0,96269	CRP24B1	265,5	-0,99692	-0,07846	
CRP24B2	163,7	14,5	0,280666709	-0,9598	CRP24B2	77,2	0,975149	0,221548	
CRP24C1	155,3	16,7	0,417867074	-0,9085	CRP24C1	238,9	-0,85627	-0,51653	
CRP24C2	163,3	24,1	0,28736052	-0,9578	CRP24C2	242,5	-0,88701	-0,46175	
CRP24D1	162,7	15,2	0,297374874	-0,9548	CRP24D1	250,4	-0,94206	-0,33545	
CRP24D3	161,7	32,4	0,313992456	-0,9494	CRP24D3	72,8	0,955278	0,295708	
CRP24D3	162,9	11,1	0,294040325	-0,9558	CRP24D3	251,9	-0,95052	-0,31068	
CRP24E	7,6	4,4	0,13225639	0,99122	CRP24E	274,5	-0,99692	0,078459	

CRP25A1	8,5	11,9	0,147809411	0,98902	CRP25A1	284,6	-0,96771	0,252069	
CRP25A2	161,1	60,7	0,323917418	-0,9461	CRP25A2	276	-0,99452	0,104528	
CRP25B1	9	1,9	0,156434465	0,98769	CRP25B1	277,8	-0,99075	0,135716	
CRP25B2	15,4	17,5	0,265556117	0,9641	CRP25B2	280,6	-0,98294	0,183951	
CRP25C1	162,5	16,6	0,3007058	-0,9537	CRP25C1	259,5	-0,98325	-0,18224	
CRP25C2	169,5	12,6	0,182235525	-0,9833	CRP25C2	262,2	-0,99075	-0,13572	
CRP25D1	165,4	14,2	0,252069358	-0,9677	CRP25D1	258,7	-0,98061	-0,19595	
CRP25D2	166,2	18,7	0,238533458	-0,9711	CRP25D2	262,6	-0,99167	-0,1288	
CRP26A1	142,2	6,4	0,612907054	-0,7902	CRP26A1	59,5	0,861629	0,507538	
CRP26A2	14	22,4	0,241921896	0,9703	CRP26A2	33,1	0,546102	0,837719	
CRP26B1	154,6	33,8	0,428935133	-0,9033	CRP26B1	122	0,848048	-0,52992	
CRP26B2	57,3	22,5	0,841510782	0,54024	CRP26B2	94,4	0,997053	-0,07672	
CRP26C1	170,9	11,4	0,158158067	-0,9874	CRP26C1	51,4	0,78152	0,62388	
CRP27A1	171	10,8	0,156434465	-0,9877	CRP27A1	91	0,999848	-0,01745	
CRP27A2	165,7	5,2	0,246999013	-0,969	CRP27A2	82,9	0,992332	0,123601	
CRP27A3	165,7	2,1	0,246999013	-0,969	CRP27A3	71,1	0,946085	0,323917	
CRP27B1	163,5	0,1	0,284015345	-0,9588	CRP27B1	73	0,956305	0,292372	
CRP27B2	172,1	4,4	0,137444546	-0,9905	CRP27B2	110	0,939693	-0,34202	
CRP27C1	1,8	5,5	0,031410759	0,99951	CRP27C1	91,3	0,999743	-0,02269	
CRP27C2	6,1	14,7	0,106264071	0,99434	CRP27C2	89,4	0,999945	0,010472	
CRP27C3	5	1,3	0,087155743	0,99619	CRP27C3	94,6	0,996779	-0,0802	
CRP28A1	154,8	17,6	0,425779292	-0,9048	CRP28A1	71,9	0,950516	0,310676	
CRP28A2	153,2	20,5	0,450877541	-0,8926	CRP28A2	70,7	0,943801	0,330514	
CRP28B1	159,4	26,1	0,351841648	-0,9361	CRP28B1	85,4	0,996779	0,080199	
CRP28B2	160	18,3	0,342020143	-0,9397	CRP28B2	80,7	0,986856	0,161604	
CRP28C1	132,3	6,6	0,739631095	-0,673	CRP28C1	44,7	0,703395	0,710799	
CRP28C2	128	24,6	0,788010754	-0,6157	CRP28C2	50,6	0,772734	0,634731	
CRP29A1	165,3	58,2	0,253757945	-0,9673	CRP29A1	217,8	-0,61291	-0,79016	
CRP29A2	162,6	56,2	0,299040792	-0,9542	CRP29A2	220,5	-0,64945	-0,76041	
CRP29B1	163,5	56,6	0,284015345	-0,9588	CRP29B1	97,6	0,991216	-0,13226	

CRP29B2	152,7	68,8	0,458649554	-0,8886	CRP29B2	94,1	0,997441	-0,0715	
CRP29C1	174,6	30,9	0,094108313	-0,9956	CRP29C1	234,5	-0,81412	-0,5807	
CRP29C2	165	33,6	0,258819045	-0,9659	CRP29C2	241,1	-0,87546	-0,48328	
CRP29C3	171,8	39,9	0,142628934	-0,9898	CRP29C3	256,1	-0,97072	-0,24023	
CRP30A1	173,3	33,4	0,116670737	-0,9932	CRP30A1	170,9	0,158158	-0,98741	
CRP30A2	167,1	30,6	0,223250116	-0,9748	CRP30A2	203,2	-0,39394	-0,91914	
CRP30B1	12,7	34,8	0,219846204	0,97553	CRP30B1	181,8	-0,03141	-0,99951	
CRP30C1	160,8	28,6	0,328866647	-0,9444	CRP30C1	187,3	-0,12706	-0,99189	
CRP30C2	159,4	30,7	0,351841648	-0,9361	CRP30C2	185,1	-0,08889	-0,99604	
CRP30D	176,4	37,2	0,06279052	-0,998	CRP30D	205,7	-0,43366	-0,90108	
CRP31A2	13,5	15,4	0,233445364	0,97237	CRP31A2	306,3	-0,80593	0,592013	
CRP31A3	10,8	17,6	0,187381315	0,98229	CRP31A3	309,4	-0,77273	0,634731	
CRP31A4	8,2	15,7	0,142628934	0,98978	CRP31A4	307,4	-0,79441	0,607376	
CRP31B1	95,6	11,3	0,9952274	-0,0976	CRP31B1	99,3	0,986856	-0,1616	
CRP31B2	91,1	10,2	0,999815712	-0,0192	CRP31B2	109,1	0,944949	-0,32722	
CRP31B3	92,6	7,3	0,99897057	-0,0454	CRP31B3	117,9	0,883766	-0,46793	
CRP31C1	100	42,6	0,984807753	-0,1736	CRP31C1	190,4	-0,18052	-0,98357	
CRP31C2	132,7	24,2	0,734914595	-0,6782	CRP31C2	32,8	0,541708	0,840567	
CRP31A1	19,7	6,7	0,337095258	0,94147	CRP31A1	300,9	-0,85806	0,513541	
CRP32A1	59,4	27,1	0,860742027	0,50904	CRP32A1	146,3	0,554844	-0,83195	
CRP32A2	44,8	7,2	0,70463421	0,70957	CRP32A2	317,6	-0,6743	0,738455	
CRP32A3	24,3	65,9	0,411514359	0,9114	CRP32A3	261,3	-0,98849	-0,15126	
CRP32A4	39,8	62,4	0,640109699	0,76828	CRP32A4	210,2	-0,50302	-0,86427	
CRP32B1	166,6	18	0,231747903	-0,9728	CRP32B1	243,6	-0,89571	-0,44464	
CRP32B2	168,6	23,9	0,19765734	-0,9803	CRP32B2	220	-0,64279	-0,76604	
CRP32C1	93,1	31,7	0,99853667	-0,0541	CRP32C1	169,5	0,182236	-0,98325	
CRP32C2	64,9	3,1	0,905568799	0,4242	CRP32C2	156,1	0,405142	-0,91425	
CRP32C3	157,4	39,5	0,384295323	-0,9232	CRP32C3	88	0,999391	0,034899	
CRP32C4	1,3	30,3	0,022687334	0,99974	CRP32C4	28,5	0,477159	0,878817	
CRP33A1	143,5	52,3	0,594822787	-0,8039	CRP33A1	288,8	-0,94665	0,322266	

CRP33A2	85,6	18,4	0,997052752	0,07672	CRP33A2	337,1	-0,38912	0,921185	
CRP33A3	90,8	32,4	0,999902524	-0,014	CRP33A3	309,5	-0,77162	0,636078	
CRP33B1	122,2	15	0,846193166	-0,5329	CRP33B1	72,2	0,952129	0,305695	
CRP33B2	23,5	13	0,398749069	0,91706	CRP33B2	81	0,987688	0,156434	
CRP33C1	62,7	24,9	0,888617233	0,45865	CRP33C1	140,9	0,630676	-0,77605	
CRP33C2	89,2	16,2	0,999902524	0,01396	CRP33C2	159,1	0,356738	-0,9342	
CRP33C3	166	28,1	0,241921896	-0,9703	CRP33C3	111,6	0,929776	-0,36812	
CRP34A1	3,9	0,7	0,068015291	0,99768	CRP34A1	94,4	0,997053	-0,07672	
CRP34A2	12,2	3,6	0,211324796	0,97742	CRP34A2	104,5	0,968148	-0,25038	
CRP34B1	27,9	1,9	0,467929814	0,88377	CRP34B1	117,1	0,890213	-0,45554	
CRP34B2	28,3	1,8	0,474088209	0,88048	CRP34B2	119,2	0,872922	-0,48786	
CRP34C1	32,5	25,7	0,537299608	0,84339	CRP34C1	84	0,994522	0,104528	
CRP34C2	38,2	24,8	0,618408395	0,78586	CRP34C2	114,2	0,91212	-0,40992	
CRP34D1	34	11,9	0,559192903	0,82904	CRP34D1	117,5	0,887011	-0,46175	
CRP34D2	35,2	11,5	0,576432316	0,81714	CRP34D2	118,5	0,878817	-0,47716	
CRP34E1	31,3	20	0,519519112	0,85446	CRP34E1	121,3	0,854459	-0,51952	
CRP34E2	34,9	32,5	0,572145873	0,82015	CRP34E2	123,3	0,835807	-0,54902	
CRP35A1	3,1	43,6	0,054078813	0,99854	CRP35A1	232,9	-0,79758	-0,60321	
CRP35A2	62,7	54,9	0,888617233	0,45865	CRP35A2	284,4	-0,96858	0,24869	
CRP35B1	28,3	34,9	0,474088209	0,88048	CRP35B1	276,9	-0,99276	0,120137	
CRP35B2	162,8	23,5	0,29570805	-0,9553	CRP35B2	243,5	-0,89493	-0,4462	
CRP35C1	63,1	41,3	0,89179753	0,45243	CRP35C1	293,4	-0,91775	0,397148	
CRP35C2	16	25,5	0,275637356	0,96126	CRP35C2	272,9	-0,99872	0,050593	
CRP36A1	92,6	36,5	0,99897057	-0,0454	CRP36A1	158	0,374607	-0,92718	
CRP36B1	52,8	39,2	0,796529918	0,6046	CRP36B1	131,3	0,751264	-0,66	
CRP36B2	54,6	32,5	0,815127796	0,57928	CRP36B2	135,2	0,704634	-0,70957	
CRP36C1	20,5	65,5	0,350207381	0,93667	CRP36C1	103,5	0,97237	-0,23345	
CRP36C2	168,7	78	0,195946144	-0,9806	CRP36C2	101	0,981627	-0,19081	
CRP36A2	66,3	9,1	0,915662593	0,40195	CRP36A2	139,2	0,653421	-0,757	
CRP37A1	33,2	8,8	0,547563223	0,83676	CRP37A1	138,1	0,667833	-0,74431	

CRP37B1	18,2	17,2	0,312334919	0,94997	CRP37B1	145,2	0,570714	-0,82115	
CRP37B2	11,8	19,5	0,204496052	0,97887	CRP37B2	140,4	0,637424	-0,77051	
CRP37C1	23,5	16,5	0,398749069	0,91706	CRP37C1	144	0,587785	-0,80902	
CRP37A2	33,2	10,8	0,547563223	0,83676	CRP37A2	138	0,669131	-0,74314	
CRP37C2	23,7	20,2	0,401947777	0,91566	CRP37C2	145,1	0,572146	-0,82015	
CRP38A1	162,6	40,3	0,299040792	-0,9542	CRP38A1	13,6	0,235142	0,971961	
CRP38B1	80,7	31,7	0,986855716	0,1616	CRP38B1	45,5	0,71325	0,700909	
CRP38B2	8,1	46,9	0,140901232	0,99002	CRP38B2	350,9	-0,15816	0,987414	
CRP38C1	58,1	36,7	0,848971688	0,52844	CRP38C1	29,6	0,493942	0,869495	
CRP38C2	138,9	18,6	0,657375246	-0,7536	CRP38C2	208,1	-0,47101	-0,88213	
CRP38A2	172,7	44,2	0,127064609	-0,9919	CRP38A2	15,6	0,26892	0,963163	
CRP38B3	21,9	35,4	0,372987783	0,92784	CRP38B3	347,8	-0,21132	0,977416	
CRP38C3	42,9	42,3	0,680720869	0,73254	CRP38C3	212	-0,52992	-0,84805	
CRP39A1	176,3	5	0,064532308	-0,9979	CRP39A1	241,4	-0,87798	-0,47869	
CRP39B1	178,4	8,8	0,027921639	-0,9996	CRP39B1	275,3	-0,99572	0,092371	
CRP39B2	173,1	7	0,120136839	-0,9928	CRP39B2	271,3	-0,99974	0,022687	
CRP39C1	169,3	13,5	0,185666615	-0,9826	CRP39C1	270,7	-0,99993	0,012217	
CRP39A2	174,2	3	0,101056297	-0,9949	CRP39A2	250,8	-0,94438	-0,32887	
CRP39B3	176,2	11	0,0662739	-0,9978	CRP39B3	278,7	-0,98849	0,151261	
CRP39C2	174	15,6	0,104528463	-0,9945	CRP39C2	273,5	-0,99813	0,061049	
CRP40A1	42	19,5	0,669130606	0,74314	CRP40A1	335,1	-0,42104	0,907044	
CRP40A2	39,3	20,1	0,633380873	0,77384	CRP40A2	327,4	-0,53877	0,842452	
CRP40B1	151,3	25,6	0,480223497	-0,8771	CRP40B1	329,3	-0,51054	0,859852	
CRP40C1	174,6	25,4	0,094108313	-0,9956	CRP40C1	296,9	-0,8918	0,452435	
CRP40A3	102,9	22,3	0,974761194	-0,2233	CRP40A3	176,4	0,062791	-0,99803	
CRP40B2	149,2	18,4	0,512042865	-0,859	CRP40B2	273,3	-0,99834	0,057564	
CRP40C2	6,4	6,7	0,111468932	0,99377	CRP40C2	309,4	-0,77273	0,634731	
CRP41A1	42,1	0,1	0,670426619	0,74198	CRP41A1	132,4	0,738455	-0,6743	
CRP41A2	89,2	11,1	0,999902524	0,01396	CRP41A2	224,2	-0,69717	-0,71691	
CRP41B1	62,1	2,2	0,88376563	0,46793	CRP41B1	145,6	0,564967	-0,82511	

CPD41C1	2	10.1	0.053325056	0 00962	CBD41C1	27/1	0.00744	0.071407	
	3	12,1	0,052335950	0,99803	CRP4ICI	274,1	-0,99744	0,071497	
CRP41C2	1/8,5	26,5	0,026176948	-0,9997	CRP41C2	269,6	-0,99998	-0,00698	
CRP41B2	106,2	16,5	0,960293686	-0,279	CRP41B2	70,6	0,943223	0,332161	
CRP42A1	62,5	56,9	0,887010833	0,46175	CRP42A1	48,9	0,753563	0,657375	
CRP42B1	174,8	14,6	0,09063258	-0,9959	CRP42B1	316	-0,69466	0,71934	
CRP42B2	101,5	72,6	0,979924705	-0,1994	CRP42B2	66,3	0,915663	0,401948	
CRP42C1	22,2	29,4	0,377840787	0,92587	CRP42C1	83,7	0,993961	0,109734	
CRP42C2	33	25,1	0,544639035	0,83867	CRP42C2	97,8	0,990748	-0,13572	
CRP42D1	37	9,9	0,601815023	0,79864	CRP42D1	108	0,951057	-0,30902	
CRP42A2	38,7	54,5	0,625242656	0,78043	CRP42A2	75,7	0,969016	0,246999	
CRP42B3	150,8	29,3	0,487859659	-0,8729	CRP42B3	71,3	0,94721	0,320613	
CRP42D2	44,6	33,6	0,702153053	0,71203	CRP42D2	118,9	0,875465	-0,48328	
CRP42C3	23	20,8	0,390731128	0,9205	CRP42C3	89,7	0,999986	0,005236	
CRP43A1	13,9	7,4	0,240228042	0,97072	CRP43A1	76,9	0,973976	0,226651	
CRP43A2	15	3,1	0,258819045	0,96593	CRP43A2	76,9	0,973976	0,226651	
CRP43B1	16,5	7,5	0,284015345	0,95882	CRP43B1	120	0,866025	-0,5	
CRP43C1	25,2	15,3	0,425779292	0,90483	CRP43C1	127,6	0,79229	-0,61015	
CRP43C2	19,7	13,5	0,337095258	0,94147	CRP43C2	120,2	0,864275	-0,50302	
CRP43B2	22,9	8	0,38912395	0,92119	CRP43B2	128,4	0,783693	-0,62115	
CRP44A1	12,3	6,3	0,213030386	0,97705	CRP44A1	296,9	-0,8918	0,452435	
CRP44A2	127,6	2,8	0,792289643	-0,6101	CRP44A2	214,7	-0,56928	-0,82214	
CRP44B1	172	0,6	0,139173101	-0,9903	CRP44B1	264,2	-0,99488	-0,10106	
CRP44C1	106,8	20,5	0,957319498	-0,289	CRP44C1	201,7	-0,36975	-0,92913	
CRP44C2	99,7	17,1	0,985703469	-0,1685	CRP44C2	350,5	-0,16505	0,986286	
CRP45A1	129,2	65,1	0,774944489	-0,632	CRP45A1	282,1	-0,97778	0,209619	
CRP45A2	121,8	71,3	0,849892693	-0,527	CRP45A2	274,2	-0,99731	0,073238	
CRP43B2	22,9	8	0,38912395	0,92119	CRP43B2	128,4	0,783693	-0,62115	
CRP45B1	27,2	5,4	0,457097927	0,88942	CRP45B1	290,1	-0,93909	0,34366	
CRP45C1	5,3	16,1	0,092370587	0,99572	CRP45C1	293,9	-0,91425	0,405142	
CRP45C2	38,7	17,7	0,625242656	0,78043	CRP45C2	288,2	-0,94997	0,312335	

Capítulo 9 - Anexos 103

CRP46A1	1	3,8	0,017452406	0,99985	CRP46A1	267,9	-0,99933	-0,03664	
CRP46B1	161,9	14,5	0,31067643	-0,9505	CRP46B1	266	-0,99756	-0,06976	
CRP46C1	65,5	2,8	0,909961271	0,41469	CRP46C1	152,5	0,461749	-0,88701	
CRP46C2	68,7	0,3	0,931691228	0,36325	CRP46C2	158,5	0,366501	-0,93042	
CRP46D1	154,2	19,5	0,435231099	-0,9003	CRP46D1	264,9	-0,99604	-0,08889	
CRP47A1	45,7	42,1	0,715692734	0,69842	CRP47A1	266,9	-0,99854	-0,05408	
CRP47B1	59,5	49,9	0,86162916	0,50754	CRP47B1	240,3	-0,86863	-0,49546	
CRP47B2	6,7	33,8	0,116670737	0,99317	CRP47B2	243,7	-0,89649	-0,44307	
CRP47C1	172,8	24,2	0,125333234	-0,9921	CRP47C1	250,8	-0,94438	-0,32887	
CRP47D1	100,2	39,7	0,984195608	-0,1771	CRP47D1	265,7	-0,99719	-0,07498	
CRP48A1	160,6	4	0,332161132	-0,9432	CRP48A1	73,1	0,956814	0,290702	
CRP48B1	176,6	6,4	0,059306374	-0,9982	CRP48B1	104,2	0,969445	-0,24531	
CRP48C1	0,5	37,9	0,008726535	0,99996	CRP48C1	321,3	-0,62524	0,78043	
CRP48C2	174,2	36,8	0,101056297	-0,9949	CRP48C2	320,1	-0,64145	0,767165	
CRP48A2	27,8	16,2	0,46638664	0,88458	CRP48A2	359,3	-0,01222	0,999925	
CRP49A1	147	8,7	0,544639035	-0,8387	CRP49A1	40,4	0,64812	0,761538	
CRP49A2	64	43,6	0,898794046	0,43837	CRP49A2	153,6	0,444635	-0,89571	
CRP49B1	66,9	48	0,919821497	0,39234	CRP49B1	343,8	-0,27899	0,960294	
CRP49C1	64,7	39,3	0,90408255	0,42736	CRP49C1	354,7	-0,09237	0,995725	
CRP49C2	57,5	51,1	0,843391446	0,5373	CRP49C2	21,1	0,359997	0,932954	
CRP50A1	170,5	45	0,165047606	-0,9863	CRP50A1	223,3	-0,68582	-0,72777	
CRP50B1	168,2	40,1	0,204496052	-0,9789	CRP50B1	235	-0,81915	-0,57358	
CRP50C1	0,1	6,8	0,001745328	1	CRP50C1	253,1	-0,95681	-0,2907	
CRP50C2	1	12,2	0,017452406	0,99985	CRP50C2	257	-0,97437	-0,22495	
CRP51A1	174,6	11,1	0,094108313	-0,9956	CRP51A1	84	0,994522	0,104528	
CRP51B1	15,2	4	0,262189179	0,96502	CRP51B1	102,1	0,977783	-0,20962	
CRP51B2	13,7	3,4	0,236838146	0,97155	CRP51B2	107,4	0,95424	-0,29904	
CRP51C1	54	6	0,809016994	0,58779	CRP51C1	307,8	-0,79016	0,612907	
CRP51C2	59,4	8,4	0,860742027	0,50904	CRP51C2	271,1	-0,99982	0,019197	
CRP52A1	23,1	35,1	0,392337117	0,91982	CRP52A1	248,9	-0,93295	-0,36	

Capítulo 9 - Anexos 104

CRD52B1	7 1	37.8	0 123601/177	0 00233		CRD52B1	255	-0 96593	-0 25882	
CRD52C1	1.8	27 /	0,123001477	0,00255		CRD52C1	255	-0 99055	-0 137//	
CRD52C2	10 /	/3.6	0.1805101/5	0,0000			202,1	-0 00056	0,13744	
CDD52A1	106.4	20.0	0,180515145	-0.2822			271,7	-0,55550	0,025000	
CDDE2A2	122.2	12.0	0,333313373	0,2025		CDDE2A2	0,5	0,10007	0,300200	
	100,2	15,0	0,728908027	-0,0645			0,7C	0,012907	0,790155	
CRP53D1	167.1	20,2	0,074302388	-0,7385		CRP53D1	202,8	-0,38752	-0,92180	
CRP53BZ	167,1	19,8	0,223250116	-0,9748		CRP53B2	283,8	-0,97113	0,238533	
CRP53C1	141,6	70,1	0,62114778	-0,7837		CRP53C1	344,1	-0,27396	0,961741	
CRP54A1	83,1	10,7	0,992757342	0,12014		CRP54A1	348,2	-0,2045	0,978867	
CRP54A2	84,4	22	0,9952274	0,09758		CRP54A2	247,5	-0,92388	-0,38268	
CRP54B1	10,5	25,7	0,182235525	0,98325		CRP54B1	93,6	0,998027	-0,06279	
CRP54C1	27,4	15,3	0,460199785	0,88782		CRP54C1	152	0,469472	-0,88295	
CRP54C2	18,2	16,4	0,312334919	0,94997		CRP54C2	134,4	0,714473	-0,69966	
CRP55A1	249	6,9	-0,933580426	-0,3584		CRP55A1	45,6	0,714473	0,699663	
CRP55A2	73,4	14,1	0,958322574	0,28569		CRP55A2	95,5	0,995396	-0,09585	
CRP55B1	39,1	12,1	0,630675807	0,77605		CRP55B1	39,3	0,633381	0,77384	
CRP55B2	39	11,7	0,629320391	0,77715		CRP55B2	54,5	0,814116	0,580703	
CRP55C1	32,1	10,2	0,53139858	0,84712		CRP55C1	335,6	-0,4131	0,910684	
CRP55C2	31,4	5,2	0,521009632	0,85355		CRP55C2	317,7	-0,67301	0,739631	
CRP55C3	3,1	8,2	0,054078813	0,99854		CRP55C3	240,1	-0,8669	-0,49849	
soma			147,2282936	62,3315				23,25613	-35,5786	
teta barra					1,17031006					179,4211
R					159,879299					42,50513
Rbarra					0,42978306					0,114261
R crítico 5% Gaile &	0,17									0,17
Burt 1980; N=100										
k (De acordo com tabela D	avis)				0,927					0,22
Há evidências para a existé	ència de u	ma direç	ão							
preferencial!										

Lineação	K1dec	K1inc	SenO	Cos⊖	lineação	K1dec	K1inc	SenO	Cos⊖			
ASM					ARM							
CRP01A1	205,6	2,2	0,43209	0,90183	CRP01A1	157,1	19,2	0,38912395	-0,92119	RP	seno	COS
CRP01A2	206,6	2,1	0,44776	0,89415	CRP01A2			0	0		-0,43209	-0,90183
CRP01B1	30,1	9,1	0,501511	0,865151	CRP01B1	45,9	18,7	0,718126298	0,695913		-0,44776	-0,89415
CRP01B2	26	6,9	0,438371	0,898794	CRP01B2	246,6	1,3	0,917754626	-0,39715		0,501511	0,865151
CRP01C1	355,5	3,1	-0,07846	0,996917	CRP01C1	181,4	3,8	0,024432178	-0,9997		0,438371	0,898794
CRP01C2	185,7	0,9	-0,09932	-0,99506	CRP01C2			0	0		-0,07846	0,996917
CRP01A1	21,9	3,6	0,372988	0,927836	CRP01A1			0	0		-0,09932	-0,99506
CRP01A3	31,2	0,3	0,518027	0,855364	CRP01A3	157,5	28,6	0,382683432	-0,92388		0,372988	0,927836
CRP02A1	212	2,1	-0,52992	-0,84805	CRP02A1			0	0		0,518027	0,855364
CRP02A2	198,6	2,3	-0,31896	-0,94777	CRP02A2			0	0		-0,52992	-0,84805
CRP02B1	221,9	2,6	-0,66783	-0,74431	CRP02B1			0	0		-0,31896	-0,94777
CRP02B2	217,5	3,2	-0,60876	-0,79335	CRP02B2			0	0		-0,66783	-0,74431
CRP02C	229	6,2	-0,75471	-0,65606	CRP02C			0	0		-0,60876	-0,79335
CRP03A1	16,1	3,4	0,277315	0,960779	CRP03A1			0	0		-0,75471	-0,65606
CRP03A2	291,6	18,6	-0,92978	0,368125	CRP03A2			0	0		0,277315	0,960779
CRP03B1	20,8	3,3	0,355107	0,934826	CRP03B1			0	0		-0,92978	0,368125
CRP03B2	7,5	8,8	0,130526	0,991445	CRP03B2			0	0		0,355107	0,934826
CRP03C1	27,5	5,7	0,461749	0,887011	CRP03C1			0	0		0,130526	0,991445
CRP03C2	237,2	2,7	-0,84057	-0,54171	CRP03C2			0	0		0,461749	0,887011
CRP04A1	20	6	0,34202	0,939693	CRP04A1			0	0		-0,84057	-0,54171
CRP04A2	23,4	6,4	0,397148	0,917755	CRP04A2			0	0		0,34202	0,939693
CRP04A3	15,3	2,3	0,263873	0,964557	CRP04A3			0	0		0,397148	0,917755

Tabela 12 - Teste de coaxialidade entre AMS e ARA.

Capítulo 9 - Anexos 106

CRP04B1	172,8	4,9	0,125333	-0,99211	CRP04B1			0	0	0,263873	0,964557
CRP04B2	176	4,6	0,069756	-0,99756	CRP04B2			0	0	0,125333	-0,99211
CRP04C1	68	2,1	0,927184	0,374607	CRP04C1			0	0	0,069756	-0,99756
CRP04C2	67,3	1,2	0,922538	0,385906	CRP04C2			0	0	0,927184	0,374607
CRP05A1	198,7	6,6	-0,32061	-0,94721	CRP05A1	116,4	41,6	0,89571176	-0,44464	0,922538	0,385906
CRP05A2	200,3	2,7	-0,34694	-0,93789	CRP05A2	261,9	4,3	0,990023658	-0,1409	-0,32061	-0,94721
CRP05B1	196,3	2,3	-0,28067	-0,95981	CRP05B1	77,8	3,6	0,977415894	0,211325	-0,34694	-0,93789
CRP05B2	11,9	2,2	0,206204	0,978509	CRP05B2	242,3	12,4	0,885393626	-0,46484	-0,28067	-0,95981
CRP05C1	190,4	9,8	-0,18052	-0,98357	CRP05C1	266	23,6	-0,99756405	-0,06976	0,206204	0,978509
CRP05C2	195,2	4,3	-0,26219	-0,96502	CRP05C2			0	0	-0,18052	-0,98357
CRP05C3	191,8	1,4	-0,2045	-0,97887	CRP05C3			0	0	-0,26219	-0,96502
CRP06A1	207,2	2,1	-0,4571	-0,88942	CRP06A1			0	0	-0,2045	-0,97887
CRP06A2	24,4	3,5	0,413104	0,910684	CRP06A2			0	0	-0,4571	-0,88942
CRP06B1	204,2	4,6	-0,40992	-0,91212	CRP06B1			0	0	0,413104	0,910684
CRP06C1	213,6	8,2	-0,55339	-0,83292	CRP06C1			0	0	-0,40992	-0,91212
CRP06C2	213,3	8	-0,54902	-0,83581	CRP06C2			0	0	-0,55339	-0,83292
CRP07A1	348,7	12,6	-0,19595	0,980615	CRP07A1			0	0	-0,54902	-0,83581
CRP07A2	343,6	15,1	-0,28234	0,959314	CRP07A2			0	0	-0,19595	0,980615
CRP07B1	175,5	7,9	0,078459	-0,99692	CRP07B1			0	0	-0,28234	0,959314
CRP07B2	182,6	6,4	-0,04536	-0,99897	CRP07B2			0	0	0,078459	-0,99692
CRP07B3	175,6	6,3	0,076719	-0,99705	CRP07B3			0	0	-0,04536	-0,99897
CRP07C1	206,5	12,7	-0,4462	-0,89493	CRP07C1			0	0	0,076719	-0,99705
CRP07C2	214,2	17,9	-0,56208	-0,82708	CRP07C2			0	0	-0,4462	-0,89493
CRP08A1	341,3	52,4	-0,32061	0,94721	CRP08A1			0	0	-0,56208	-0,82708
CRP08A2	253,7	53,4	-0,95981	-0,28067	CRP08A2			0	0	-0,32061	0,94721
CRP08B1	16,2	0,4	0,278991	0,960294	CRP08B1			0	0	-0,95981	-0,28067
CRP08B2	19	1,2	0,325568	0,945519	CRP08B2			0	0	0,278991	0,960294
CRP08C1	19,9	0,5	0,34038	0,940288	CRP08C1			0	0	0,325568	0,945519
CRP08C2	200,5	4,4	-0,35021	-0,93667	CRP08C2			0	0	0,34038	0,940288
CRP06B2	206,5	3,1	-0,4462	-0,89493	CRP06B2			0	0	-0,35021	-0,93667

Capítulo 9 – Anexos 107

CRP09A1	29,7	12,6	0,495459	0,868632	CRP09A1			0	0	-0,4462	-0,89493
CRP09A2	26,7	5,4	0,449319	0,893371	CRP09A2			0	0	0,495459	0,868632
CRP09A3	14,3	5,1	0,246999	0,969016	CRP09A3			0	0	0,449319	0,893371
CRP09B1	342,2	21,1	-0,3057	0,952129	CRP09B1			0	0	0,246999	0,969016
CRP09B2	356,7	10,2	-0,05756	0,998342	CRP09B2			0	0	-0,3057	0,952129
CRP09C1	7,1	13,6	0,123601	0,992332	CRP09C1			0	0	-0,05756	0,998342
CRP09C2	11,5	12	0,199368	0,979925	CRP09C2			0	0	0,123601	0,992332
CRP10A1	168,2	8,9	0,204496	-0,97887	CRP10A1			0	0	0,199368	0,979925
CRP10B1	34,8	38,2	0,570714	0,821149	CRP10B1			0	0	0,204496	-0,97887
CRP10B2	127,3	43,5	0,795473	-0,60599	CRP10B2			0	0	0,570714	0,821149
CRP10C1	237,2	32,9	-0,84057	-0,54171	CRP10C1			0	0	0,795473	-0,60599
CRP10C2	133,3	21,9	0,727773	-0,68582	CRP10C2			0	0	-0,84057	-0,54171
CRP11A1	188,5	10,9	-0,14781	-0,98902	CRP11A1	172,1	5,5	0,137444546	-0,99051	0,727773	-0,68582
CRP11A2	169,2	18,2	0,187381	-0,98229	CRP11A2	135	18,2	0,707106781	-0,70711	-0,14781	-0,98902
CRP11A3	134,7	14,4	0,710799	-0,70339	CRP11A3			0	0	0,187381	-0,98229
CRP11B1	134	36,2	0,71934	-0,69466	CRP11B1	85,5	26,5	0,996917334	0,078459	0,710799	-0,70339
CRP11B2	129,3	31,6	0,77384	-0,63338	CRP11B2	89,8	29	0,999993908	0,003491	0,71934	-0,69466
CRP11C1	355,6	42,1	-0,07672	0,997053	CRP11C1	348,7	24,4	0,195946144	0,980615	0,77384	-0,63338
CRP11C2	176,1	19,9	0,068015	-0,99768	CRP11C2			0	0	-0,07672	0,997053
CRP12A1	21,9	38,1	0,372988	0,927836	CRP12A1	345,7	21,3	0,246999013	0,969016	0,068015	-0,99768
CRP12A2	18,1	36,6	0,310676	0,950516	CRP12A2	28,5	61,8	0,47715876	0,878817	0,372988	0,927836
CRP12B1	15,7	7,8	0,2706	0,962692	CRP12B1	33,5	7,3	0,551936985	0,833886	0,310676	0,950516
CRP12B2	4,5	33,7	0,078459	0,996917	CRP12B2	356,5	35	-0,06104854	0,998135	0,2706	0,962692
CRP12C1	209,2	3,3	-0,48786	-0,87292	CRP12C1	31,6	11,2	0,523985906	0,851727	0,078459	0,996917
CRP12C2	191,7	1,3	-0,20279	-0,97922	CRP12C2			0	0	-0,48786	-0,87292
CRP12C3	210,6	2,2	-0,50904	-0,86074	CRP12C3			0	0	-0,20279	-0,97922
CRP13A1	329,1	34,5	-0,51354	0,858065	CRP13A1			0	0	-0,50904	-0,86074
CRP13A2	340	52	-0,34202	0,939693	CRP13A2			0	0	-0,51354	0,858065
CRP13B1	22	25,2	0,374607	0,927184	CRP13B1			0	0	-0,34202	0,939693
CRP13B2	14	31,3	0,241922	0,970296	CRP13B2			0	0	0,374607	0,927184

Capítulo 9 - Anexos 108

CRP13C1	352,4	21,4	-0,13226	0,991216	CRP13C1			0	0	0,241922	0,970296
CRP13C2	352,3	21,3	-0,13399	0,990983	CRP13C2			0	0	-0,13226	0,991216
CRP14A1	30,4	82,8	0,506034	0,862514	CRP14A1	315,7	28,7	0,698415285	0,715693	-0,13399	0,990983
CRP14B1	13	69,4	0,224951	0,97437	CRP14B1	265,9	49,7	0,997440783	-0,0715	0,506034	0,862514
CRP14B2	5,2	56	0,090633	0,995884	CRP14B2	226,7	70,2	0,727772758	-0,68582	0,224951	0,97437
CRP14C1	40,1	69,5	0,644124	0,764921	CRP14C1	311,6	54,7	-0,74779809	0,663926	0,090633	0,995884
CRP15A1	347,9	9,9	-0,20962	0,977783	CRP15A1			0	0	0,644124	0,764921
CRP15A2	176,3	43,4	0,064532	-0,99792	CRP15A2			0	0	-0,20962	0,977783
CRP15B1	180,1	0,4	-0,00175	-1	CRP15B1			0	0	0,064532	-0,99792
CRP15B2	13,3	4	0,23005	0,973179	CRP15B2			0	0	-0,00175	-1
CRP15C1	5,9	31	0,102793	0,994703	CRP15C1			0	0	0,23005	0,973179
CRP15C2	6	11,2	0,104528	0,994522	CRP15C2			0	0	0,102793	0,994703
CRP16A1	166,5	6,8	0,233445	-0,97237	CRP16A1	346,8	12,7	-0,22835087	0,973579	0,104528	0,994522
CRP16A2	175,5	2,2	0,078459	-0,99692	CRP16A2	354,7	37	0,092370587	0,995725	0,233445	-0,97237
CRP16A3	197	17,3	-0,29237	-0,9563	CRP16A3			0	0	0,078459	-0,99692
CRP16B1	161,4	1,8	0,318959	-0,94777	CRP16B1	345,9	21,8	0,243615012	0,969872	-0,29237	-0,9563
CRP16B2	348,9	2,8	-0,19252	0,981293	CRP16B2	349	20,4	0,190808995	0,981627	0,318959	-0,94777
CRP16B3	346,7	7	-0,23005	0,973179	CRP16B3			0	0	-0,19252	0,981293
CRP16C1	198,6	4,4	-0,31896	-0,94777	CRP16C1	195,2	1,7	0,262189179	-0,96502	-0,23005	0,973179
CRP16C2	199,7	4,5	-0,3371	-0,94147	CRP16C2			0	0	-0,31896	-0,94777
CRP16C3	199,8	3,4	-0,33874	-0,94088	CRP16C3			0	0	-0,3371	-0,94147
CRP17A1	25,9	0,5	0,436802	0,899558	CRP17A1			0	0	-0,33874	-0,94088
CRP17A2	204	2	-0,40674	-0,91355	CRP17A2			0	0	0,436802	0,899558
CRP17B	24,8	0,7	0,419452	0,907777	CRP17B			0	0	-0,40674	-0,91355
CRP17C	20	2,2	0,34202	0,939693	CRP17C			0	0	0,419452	0,907777
CRP17D	202,8	0,6	-0,38752	-0,92186	CRP17D			0	0	0,34202	0,939693
CRP17E	202	2,9	-0,37461	-0,92718	CRP17E			0	0	-0,38752	-0,92186
CRP18A1	23	18,6	0,390731	0,920505	CRP18A1			0	0	-0,37461	-0,92718
CRP18A2	19,1	18,4	0,327218	0,944949	CRP18A2			0	0	0,390731	0,920505
CRP18A3	19,1	20,7	0,327218	0,944949	CRP18A3			0	0	0,327218	0,944949
Capítulo 9 - Anexos 109

CRP18A4	5,7	22,4	0,09932	0,995056	CRP18A4			0	0	0,327218	0,944949
CRP18B1	180,9	3,6	-0,01571	-0,99988	CRP18B1			0	0	0,09932	0,995056
CRP18B2	182,5	7,8	-0,04362	-0,99905	CRP18B2			0	0	-0,01571	-0,99988
CRP18B3	188,7	9,9	-0,15126	-0,98849	CRP18B3			0	0	-0,04362	-0,99905
CRP18C1	11,5	15,3	0,199368	0,979925	CRP18C1			0	0	-0,15126	-0,98849
CRP18C2	11,3	16,4	0,195946	0,980615	CRP18C2			0	0	0,199368	0,979925
CRP18C3	12,6	14,9	0,218143	0,975917	CRP18C3			0	0	0,195946	0,980615
CRP18C4	12,5	13,2	0,21644	0,976296	CRP18C4			0	0	0,218143	0,975917
CRP19A1	15,6	9,2	0,26892	0,963163	CRP19A1			0	0	0,21644	0,976296
CRP19A2	4,9	8,4	0,085417	0,996345	CRP19A2			0	0	0,26892	0,963163
CRP19A3	345,2	5,4	-0,25545	0,966823	CRP19A3			0	0	0,085417	0,996345
CRP19B1	3,6	6,2	0,062791	0,998027	CRP19B1			0	0	-0,25545	0,966823
CRP19B2	2,8	10,4	0,04885	0,998806	CRP19B2			0	0	0,062791	0,998027
CRP19B3	359,9	11	-0,00175	0,999998	CRP19B3			0	0	0,04885	0,998806
CRP19C1	216,4	1,5	-0,59342	-0,80489	CRP19C1			0	0	-0,00175	0,999998
CRP19C2	213,7	2,4	-0,55484	-0,83195	CRP19C2			0	0	-0,59342	-0,80489
CRP19C3	217,1	7,4	-0,60321	-0,79758	CRP19C3			0	0	-0,55484	-0,83195
CRP20A1	178,5	7	0,026177	-0,99966	CRP20A1			0	0	-0,60321	-0,79758
CRP20A2	172	1,7	0,139173	-0,99027	CRP20A2			0	0	0,026177	-0,99966
CRP20A3	183,8	3,2	-0,06627	-0,9978	CRP20A3			0	0	0,139173	-0,99027
CRP20B	7,1	10,6	0,123601	0,992332	CRP20B			0	0	-0,06627	-0,9978
CRP20C	30,6	13,5	0,509041	0,860742	CRP20C			0	0	0,123601	0,992332
CRP20D1	11,7	14,4	0,202787	0,979223	CRP20D1			0	0	0,509041	0,860742
CRP21A1	308	64,6	-0,78801	0,615661	CRP21A1	157,4	3,1	0,384295323	-0,92321	0,202787	0,979223
CRP21A2	281,9	72,5	-0,97851	0,206204	CRP21A2	195,2	41	0,262189179	-0,96502	-0,78801	0,615661
CRP21A3	306,2	66,6	-0,80696	0,590606	CRP21A3			0	0	-0,97851	0,206204
CRP21B1	235,5	75,6	-0,82413	-0,56641	CRP21B1	350	0,6	0,173648178	0,984808	-0,80696	0,590606
CRP21B2	229,5	63	-0,76041	-0,64945	CRP21B2	359,5	3,8	0,008726535	0,999962	-0,82413	-0,56641
CRP21B3	240,3	74,7	-0,86863	-0,49546	CRP21B3			0	0	-0,76041	-0,64945
CRP21C1	310,7	74,4	-0,75813	0,652098	CRP21C1	25,3	12,2	0,427357863	0,904083	-0,86863	-0,49546

Capítulo 9 - Anexos 110

CRP21C2	14,8	32,5	0,255446	0,966823	CRP21C2			0	0	-0,75813	0,652098
CRP21C3	314	43,4	-0,71934	0,694658	CRP21C3			0	0	0,255446	0,966823
CRP22A1	347,8	5,1	-0,21132	0,977416	CRP22A1			0	0	-0,71934	0,694658
CRP22A2	345,8	1,5	-0,24531	0,969445	CRP22A2			0	0	-0,21132	0,977416
CRP22A3	165,4	0,5	0,252069	-0,96771	CRP22A3			0	0	-0,24531	0,969445
CRP22B1	334,4	17,2	-0,43209	0,901833	CRP22B1			0	0	0,252069	-0,96771
CRP22B2	331,8	0,2	-0,47255	0,881303	CRP22B2			0	0	-0,43209	0,901833
CRP22B3	152,6	0,3	0,4602	-0,88782	CRP22B3			0	0	-0,47255	0,881303
CRP22C1	346,2	0,1	-0,23853	0,971134	CRP22C1			0	0	0,4602	-0,88782
CRP22C2	345,6	1,1	-0,24869	0,968583	CRP22C2			0	0	-0,23853	0,971134
CRP23A1	344,3	0,4	-0,2706	0,962692	CRP23A1	203	24,7	0,390731128	-0,9205	-0,24869	0,968583
CRP23A2	335,2	8,7	-0,41945	0,907777	CRP23A2	329,5	12,1	0,507538363	0,861629	-0,2706	0,962692
CRP23A3	339,5	3,3	-0,35021	0,936672	CRP23A3			0	0	-0,41945	0,907777
CRP23B1	355,5	2,2	-0,07846	0,996917	CRP23B1	181,9	0,2	0,033155178	-0,99945	-0,35021	0,936672
CRP23B2	348,3	8,8	-0,20279	0,979223	CRP23B2	9,6	25,1	0,166768747	0,985996	-0,07846	0,996917
CRP23B3	163,9	0,4	0,277315	-0,96078	CRP23B3			0	0	-0,20279	0,979223
CRP23C1	96,2	21,7	0,994151	-0,108	CRP23C1	101,4	3,6	0,980271175	-0,19766	0,277315	-0,96078
CRP23C2	83,5	8,6	0,993572	0,113203	CRP23C2			0	0	0,994151	-0,108
CRP23C3	86,7	17,6	0,998342	0,057564	CRP23C3			0	0	0,993572	0,113203
CRP24A1	32,1	5,4	0,531399	0,847122	CRP24A1	67,7	30,7	0,925209718	0,379456	0,998342	0,057564
CRP24A2	27,9	5	0,46793	0,883766	CRP24A2	326,6	24,9	-0,55048074	0,834848	0,531399	0,847122
CRP24A3	187,8	73,8	-0,13572	-0,99075	CRP24A3			0	0	0,46793	0,883766
CRP24B1	15,7	41,6	0,2706	0,962692	CRP24B1	152,3	8,5	0,464842046	-0,88539	-0,13572	-0,99075
CRP24B2	343,7	14,5	-0,28067	0,959805	CRP24B2	332,8	16,8	0,457097927	0,889416	0,2706	0,962692
CRP24C1	335,3	16,7	-0,41787	0,908508	CRP24C1	295,7	8,4	0,901077021	0,433659	-0,28067	0,959805
CRP24C2	343,3	24,1	-0,28736	0,957822	CRP24C2			0	0	-0,41787	0,908508
CRP24D1	342,7	15,2	-0,29737	0,954761	CRP24D1			0	0	-0,28736	0,957822
CRP24D3	341,7	32,4	-0,31399	0,949425	CRP24D3			0	0	-0,29737	0,954761
CRP24D3	342,9	11,1	-0,29404	0,955793	CRP24D3			0	0	-0,31399	0,949425
CRP24E	7,6	4,4	0,132256	0,991216	CRP24E			0	0	-0,29404	0,955793

Capítulo 9 – Anexos 111

CRP25A1	188,5	11,9	-0,14781	-0,98902	CRP25A1	0	0	0,132256	0,991216
CRP25A2	161,1	60,7	0,323917	-0,94609	CRP25A2	0	0	-0,14781	-0,98902
CRP25B1	9	1,9	0,156434	0,987688	CRP25B1	0	0	0,323917	-0,94609
CRP25B2	15,4	17,5	0,265556	0,964095	CRP25B2	0	0	0,156434	0,987688
CRP25C1	162,5	16,6	0,300706	-0,95372	CRP25C1	0	0	0,265556	0,964095
CRP25C2	169,5	12,6	0,182236	-0,98325	CRP25C2	0	0	0,300706	-0,95372
CRP25D1	165,4	14,2	0,252069	-0,96771	CRP25D1	0	0	0,182236	-0,98325
CRP25D2	166,2	18,7	0,238533	-0,97113	CRP25D2	0	0	0,252069	-0,96771
CRP26A1	322,2	6,4	-0,61291	0,790155	CRP26A1	0	0	0,238533	-0,97113
CRP26A2	194	22,4	-0,24192	-0,9703	CRP26A2	0	0	-0,61291	0,790155
CRP26B1	334,6	33,8	-0,42894	0,903335	CRP26B1	0	0	-0,24192	-0,9703
CRP26B2	237,3	22,5	-0,84151	-0,54024	CRP26B2	0	0	-0,42894	0,903335
CRP26C1	170,9	11,4	0,158158	-0,98741	CRP26C1	0	0	-0,84151	-0,54024
CRP27A1	351	10,8	-0,15643	0,987688	CRP27A1	0	0	0,158158	-0,98741
CRP27A2	345,7	5,2	-0,247	0,969016	CRP27A2	0	0	-0,15643	0,987688
CRP27A3	165,7	2,1	0,246999	-0,96902	CRP27A3	0	0	-0,247	0,969016
CRP27B1	163,5	0,1	0,284015	-0,95882	CRP27B1	0	0	0,246999	-0,96902
CRP27B2	352,1	4,4	-0,13744	0,990509	CRP27B2	0	0	0,284015	-0,95882
CRP27C1	181,8	5,5	-0,03141	-0,99951	CRP27C1	0	0	-0,13744	0,990509
CRP27C2	186,1	14,7	-0,10626	-0,99434	CRP27C2	0	0	-0,03141	-0,99951
CRP27C3	185	1,3	-0,08716	-0,99619	CRP27C3	0	0	-0,10626	-0,99434
CRP28A1	334,8	17,6	-0,42578	0,904827	CRP28A1	0	0	-0,08716	-0,99619
CRP28A2	333,2	20,5	-0 <i>,</i> 45088	0,892586	CRP28A2	0	0	-0,42578	0,904827
CRP28B1	339,4	26,1	-0,35184	0,93606	CRP28B1	0	0	-0,45088	0,892586
CRP28B2	340	18,3	-0,34202	0,939693	CRP28B2	0	0	-0,35184	0,93606
CRP28C1	312,3	6,6	-0,73963	0,673013	CRP28C1	0	0	-0,34202	0,939693
CRP28C2	308	24,6	-0,78801	0,615661	CRP28C2	0	0	-0,73963	0,673013
CRP29A1	345,3	58,2	-0,25376	0,967268	CRP29A1	0	0	-0,78801	0,615661
CRP29A2	342,6	56,2	-0,29904	0,95424	CRP29A2	0	0	-0,25376	0,967268
CRP29B1	343,5	56,6	-0,28402	0,95882	CRP29B1	0	0	-0,29904	0,95424

Capítulo 9 – Anexos 112

CRP29B2	332,7	68,8	-0 <i>,</i> 45865	0,888617		CRP29B2			0	0	-0,28402	0,95882
CRP29C1	354,6	30,9	-0,09411	0,995562		CRP29C1			0	0	-0,45865	0,888617
CRP29C2	345	33,6	-0,25882	0,965926		CRP29C2			0	0	-0,09411	0,995562
CRP29C3	351,8	39,9	-0,14263	0,989776		CRP29C3			0	0	-0,25882	0,965926
CRP30A1	353,3	33,4	-0,11667	0,993171		CRP30A1	355,4	30	-	0,996779	-0,14263	0,989776
									0,080198924			
CRP30A2	347,1	30,6	-0,22325	0,974761		CRP30A2	335,3	22,4	0,417867074	0,908508	-0,11667	0,993171
CRP30B1	12,7	34,8	0,219846	0,975535		CRP30B1	344,8	32,3	0,262189179	0,965016	-0,22325	0,974761
CRP30C1	340,8	28,6	-0,32887	0,944376		CRP30C1	331,1	28,2	0,483282383	0,875465	0,219846	0,975535
CRP30C2	339,4	30,7	-0,35184	0,93606		CRP30C2			0	1	-0,32887	0,944376
CRP30D	356,4	37,2	-0,06279	0,998027		CRP30D	24,9	38,2	0,421035813	0,907044	-0,35184	0,93606
soma			-11,4752	39,7746					1,508718964	13,05524	-0,06279	0,998027
teta barra					0,280879492				0,115053849		0,389124	-0,92119
R					41,39685442				13,14213044		0,718126	0,695913
Rbarra					0,194351429				0,268206744		-0,91775	-0,39715
k					0,387				0,53		-0,02443	-0,9997
kcrítico=0,22					há direção				há direção		0,382683	-0,92388
									pref.			
											0,895712	-0,44464
											-0,99002	-0,1409
											0,977416	0,211325
											-0,88539	-0,46484
											-0,99756	-0,06976
											0,137445	-0,99051
											0,707107	-0,70711
											0,996917	0,078459
											0,999994	0,003491
											-0,19595	0,980615
											-0,247	0,969016
											0,477159	0,878817

Capítulo 9 – Anexos 113

0,551937	0,833886
-0,06105	0,998135
0,523986	0,851727
-0,69842	0,715693
-0,99744	-0,0715
-0,72777	-0,68582
-0,7478	0,663926
-0,22835	0,973579
-0,09237	0,995725
-0,24362	0,969872
-0,19081	0,981627
-0,26219	-0,96502
0,384295	-0,92321
-0,26219	-0,96502
-0,17365	0,984808
-0,00873	0,999962
0,427358	0,904083
-0,39073	-0,9205
-0,50754	0,861629
-0,03316	-0,99945
0,166769	0,985996
0,980271	-0,19766
0,92521	0,379456
-0,55048	0,834848
0,464842	-0,88539
-0,4571	0,889416
-0,90108	0,433659
-0,0802	0,996779
-0,41787	0,908508
-0,26219	0,965016

Capítulo 9 - Anexos 114

	-0,48328	0,875465
	0,421036	0,907044
soma	-12,984	50,82984
R	52,46194	
Rbarra	0,2	
k	0,4	
teste F	2,633804	
F	7,88	
crítico		

Figura 40 - Estereogramas ASM 1-12

Figura 41 - Estereogrmas ASM 13-24.

Figura 42 - Estereogramas ASM 25-36.

Figura 43 - Estereogramas ASM 37-45.

Figura 44 - Estereogramas ASM 46-55.

Figura 45 - Prancha comparativa entre ARA e ASM no intervalo 01 a 12.

Figura 46 - Prancha comparativa entre ARA e ASM no intervalo 14 a 21.

