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Investigating Upper Limb Movement Classification
on Users with Tetraplegia as a Possible
Neuroprosthesis Interface

Lucas Fonseca!, Antonio B6?, David Guiraud?, Benjamin Navarro*, Anthony Gélis®, Christine Azevedo-Coste’

Abstract—Spinal cord injury (SCI), stroke and other nervous
system conditions can result in partial or total paralysis of in-
dividual’s limbs. Numerous technologies have been proposed to
assist neurorehabilitation or movement restoration, e.g. robotics
or neuroprosthesis. However, individuals with tetraplegia often
find difficult to pilot these devices. We developed a system
based on a single inertial measurement unit located on the
upper limb that is able to classify performed movements using
principal component analysis. We analyzed three calibration
algorithms: unsupervised learning, supervised learning and
adaptive learning. Eight participants with tetraplegia (C4-
C7) piloted three different postures in a robotic hand. We
achieved 89 % accuracy using the supervised learning algorithm.
Through offline simulation, we found accuracies of 76% on the
unsupervised learning, and 88% on the adaptive one.

I. INTRODUCTION

Diseases and lesions of the nervous system can have dra-
matic consequences for patients. Cases like stroke or spinal
cord injury (SCI) can cause partial or complete paralysis of
limbs. In the worst cases, individuals lose not only lower
limbs motor capabilities, usually relying on a wheelchair for
locomotion, but also upper limb motion [7].

Numerous technologies have been proposed as solutions
for upper limbs disabilities, such as functional electrical
stimulation (FES) [2], and robotic devices [1]. However
users with tetraplegia often face challenges on controlling
these devices. Relative success has been achieved by either
simple interfaces [4] or invasive brain-computer interfaces
[12]. Whenever the user still has some controllable upper
limb motor capability, it is possible to use that to control
a device [6]. The challenge is then to identify the intended
movement performed by the user. Electromyography (EMG)
has been considered [6], [11], however muscular activity-
based control presents some issues like the need for one
sensor per muscle. Also, the presence of co-contraction
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makes it difficult to contract individual muscles and, when
FES is present, the stimulation artifacts in the EMG signal
have to be considered. Instead of muscle activity, movements
can be used as inputs. In [9], postures performed by healthy
subjects were classified using a method based on Linear
Discriminant Analysis and 2 9-DOF (degrees of freedom)
inertial measurement units (IMUs). Additionally, [5] used
multiple IMUs and a radial basis function network based
regression algorithm to control an elbow prosthesis with
residual upper limb movement on amputees. Recently, on
[10], three subjects with tetraplegia controlled a powered
wheelchair using residual shoulder movement. The method
in [10] is based on Principal Component Analysis (PCA) and
4 IMUs.

In this work we propose a system capable of associating
shoulder movements to three commands on a robotic hand.
It is based on a single IMU with only accelerometer and
gyroscope. For that, we developed three classifiers based on
PCA. Eight subjects with tetraplegia piloted the robotic hand
postures with one classifier, and the other two were later
evaluated through simulation.

II. SUBJECTS AND METHODS

Eight patients with tetraplegia were selected at Propara
Neurological Rehabilitation Center in Montpellier, France.
They had SCI levels C4-C7, American Spinal Injury Associ-
ation impairment scale A or B and stable medical condition.
They were males between 18 and 65 (39+15) years old, and
had lesion chronocity higher than 6 months (14+17 years).
The protocol was approved by a national ethical commit-
tee (CPP 2016-A00711-50) and subjects provided informed
consent prior to their participation. They had limited hand
movement, but could perform controlled shoulder movement.

For validation purposes we used the Shadow Dexterous
Hand (Shadow Robot Company, London, UK), a robotic hand
that can reproduce human movements with great fidelity. We
set up two different postures on it: in opened position (fingers
fully extended); and in closed position (fingers fully flexed)
in a grasping attitude. We also configured a rest position
(semi-flexed fingers).

One IMU (Hikob© Fox, Villeurbanne, France) was posi-
tioned either on the subject’s upper arm or shoulder depend-
ing on their ability to execute two distinct movements in a



Figure 1.

Experimental set-up.
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Figure 2. Finite state machine used to control the robotic hand depending
on the classified movement performed.

reproducible manner. The IMU communicated wirelessly
with a a computer at approximately 50 Hz. It sent 3-axis
accelerometer and 3-axis gyroscope data. No magnetometer
was used in order to simulate a scenario where low process-
ing power and power consumption are issues, e.g. if it were
implanted.

Subjects faced the robotic hand so they could see it react
to their movements. The set-up is illustrated on Fig. 1, where
the robotic hand is in the closed position.

Two movements were calibrated and associated to two
commands to control the robotic hand. Since there are three
different positions to be controlled by two movements, the
finite state machine depicted on Fig. 2 was employed. Each
command had to correctly classify the user’s movement to
activate the desired posture - robotic hand opened or closed
- from the rest position. When in one of these two postures,
any movement triggered the rest position.

The experimental protocol consisted of a calibration and a
validation phase. On the calibration phase, we asked users to
repeatedly perform up to four movements during 10 seconds
each. These could be any repeatable and distinct movement,
like moving the shoulder up or forward, and returning it to
the initial position. On the validation phase we asked them
to pilot the robotic hand. Each posture was comprised of two
movements: one starting on the rest position, which had to
be correctly classified by the system, and one back to the rest
position, which had only to be detected, but not classified (see
Fig. 2). Each of the two postures (open/close) was executed
5 times in a random order following our instructions.

We developed three algorithms: unsupervised learning,
supervised learning, and unsupervised adaptive learning. The
unsupervised learning algorithm collected data from the
IMU during the calibration phase and derivated it to remove
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Figure 3. Learning processes block diagram.

the steady state component and to ignore initial angular
positions. Thresholds were then calculated according to Eq.
1.
maz (45) "
2
where vector X features the raw sensor measurements and
vector 7' is the threshold vector. An overlaying moving
window of 1 second was defined. Whenever its center value
was greater than a threshold, a movement was detected and
characterized as a 6-dimension point based on the Root
Mean Square (RMS) of each of the 6 axis. A PCA is then
applied to these points and the two first principal components
are used to find two movement centroids based on the
mean 2-dimensions coordinates of all points. After that the
system calculates the centroids and points on all possible
combination of two movements. It then proposes the best
combination based on the highest score s, defined by Eq. 2.
5 = _di2 2)
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where d; » is the distance between the two centroids, and
o; is the standard deviation of the distance of all points of
movement ¢ to that movement centroid.

After calibration, the system could start classifying
new movements associating the new PCA calculated 2-
dimensional point to the closest centroid, and activating the
appropriate robotic hand command.

On the supervised learning algorithm the user performed
the previously calibrated movements and watched the robotic
hand reaction. We then observed the PCA graphical repre-
sentations of these points in real time. If the new points
seemed to appear far from the initially calibrated ones,
we recalibrated the system with them, and without the old
ones. It was also possible to arbitrarily choose each centroid
location on the 2-dimensional space. With these tools we
were able to manually tune the learning process until the
users felt they had good control over the robotic hand.

On the adaptive learning algorithm, this process of im-
proving the calibration is automated. After every new move-
ment during the validation phase, the system is recalibrated
using the new point, removing the oldest one.

Note that, differently from the supervised learning system,
the other two are completely automatic. The three systems
are summarized in Fig. 3. Users performed the experiments
with the supervised learning algorithm. All data was recorded
to later simulate the two other algorithms.



Table I
MEAN PERFORMANCE RESULT ON THE RANDOM 10 MOVEMENTS
SEQUENCE TEST. THE SUPERVISED LEARNING SYSTEM SCORES WERE
OBTAINED FROM TESTS WITH THE SUBJECTS, WHILE THE OTHER TWO
WERE SIMULATED.

Subject Performance [%]
Supervised | Unsupervised | Adaptive
pl 90 70 60
p2 100 100 100
p3 90 50 90
p4 70 70 70
pS 100 60 100
p6 70 70 80
p7 90 90 100
p8 100 100 100
Average 89 76 88
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Figure 4. Supervised learning and classification for subject p8. The two axis
represent the two principal components. Squares represent the movements
used for learning and the asterisks the movements classified by the system.
C1 and C2 are the centroids for movements 1 and 2, respectively. The circles,
for visualization purposes only, represent three standard deviations of the
euclidean distance of the squares to their centroids.

ITI. RESULTS

The average performance achieved experimentally with the
supervised algorithm and through simulation with the other
two is shown on Table I. Results were calculated as the
percentage of correctly classified commands. Note how the
unsupervised had inferior results (76%) when compared to
the supervised (89%) and adaptive (88%). Additionally, the
adaptive learning algorithm would have the best performance
were it not for patient pl.

After the initial calibration phase, it was possible to
analyze its results on a graphic that represents the two main
components of the PCA. Fig. 4 shows an example of one
experiment.

The adaptive learning algorithm was simulated with points
from the validation phase. Fig 5 shows the performance
obtained along all steps of the learning process. Note how
the performance seems to further improve after the seventh
point.
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Figure 5. Adaptive learning algorithm process. The average best result was
achieved when learning from 9 points. For comparison purposes, the red
dashed line indicate the unsupervised learning system performance, and the
yellow dashed line represent the supervised learning system performance.

IV. DISCUSSION

We developed a system capable of classifying two shoulder
movements performed by persons with tetraplegia with 89%
accuracy. Even though the performance achieved by [9]
(96%) was greater, tests were done only on able-bodied
subjects. Both [8] and [3] used multiple IMUs and EMG,
with many more features than this work, to classify upper
limb movement with LDA, the latter achieving results close
to 80% on a 6 classes scenario. It is expected users with
tetraplegia to have lower dexterity than healthy subjects, but
our results indicate that, given more training for both users
and system, better results are achievable. Furthermore, in
comparison to the EMG approach, our system is capable of
classifying multiple movements with a single IMU.

During the calibration phase, graphical visualizations as
presented on Fig. 4 helped to assess the supervision process
and manually tune the calibration. This, therefore, was a
subjective process. Still, we were able to tune the system so
the supervised learning algorithm presented the best results,
while the unsupervised learning method presented the worst,
highlighting the importance of the supervision on learning
tasks with low informations level.

It was clear the difference in subject attitude and per-
formance between the calibration (no feedback) and the
validation (visual feedback from the robotic hand) phases.
It was not unusual for them to change the movements
then. When that happened, if no supervision was allowed,
we would see results as the one shown on Fig. 6. That
explains some of the bad performances, as subject p5’s on
the unsupervised algorithm. Nevertheless, these are also the
cases when the adaptive learning performs best because it is
capable of forgetting those initial trials and “focus” only on
the recent ones. Note how p5’s performance improves both
on the supervised and adaptive algorithms. Were the adaptive
algorithm working on real time, we expect its performance
would improve in a similar manner as depicted on Fig. 5.
Still, visual feedback representing a deeper functioning of
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Figure 6. Unsupervised learning system test for subject pS. Note how almost
all movements were classified as Movement 1, and they were significantly
different than those initially calibrated (square points).

the system and user’s performance may be beneficial [10].

Observing Fig. 5, we can see the performance only im-
proves after many new points are considered for learning.
It possibly happens because the system still recalls the
original, outdated points. As soon as the new points become
a majority, their cumulative weight overcomes the old ones.
It is also important to note that the adaptive learning system
is fully automated, which can be an advantage on real world
scenarios, when a user would possibly calibrate and operate
it without specialized assistance. Since only the supervised
learning system was tested by the subjects, and not the
adaptive, such scenarios are yet to be evaluated.

Although no subject had cognitive impairments, some of
them presented difficulties on operating the system. Most
of them had never seen a robotic hand, and none was
ever able to control one. In deed, novel technologies and
control interfaces may initially be hard to use [10]. As a
result, sometimes they lost focus on the task, and performed
careless movements. That was particularly true for subject p6.
Once again, in this case, we can see a slight improvement
when using the adaptive learning system, highlighting the
importance of the algorithm adaptability, either supervised
or not.

In a larger clinical trial, our system should be adapted
to control a more functional neuroprosthesis, e.g. FES on
forearm to control grasping. The current finite state machine
requires every posture to return to the rest position before
performing a new one, which was useful for the algorithm
evaluation, but is not practical. In addition, triggering the
predefined movements works well for complex tasks as
grasping, but lacks fine control like proportional force or hand
opening range. This, too, could be addressed with residual
shoulder movement [10], and could even be integrated in
a larger finite state machine. Nevertheless, the simple set-
up of a single commercial IMU and flexible, quick learning
algorithm provide easy adaptation and scalability.

V. CONCLUSION

Complex neuroprosthesis can be controlled by residual
movement in users with tetraplegia. We developed a system
capable of classifying different shoulder movements using a
single wireless IMU with only accelerometer and gyroscope.
We found that results close to 90% could be achieved either
by a supervised system or by a unsupervised adaptive system
with minimum user training. Regardless of the approach,
the calibration process is simple and fast. To the extend of
our knowledge, this is the first work to perform movement
classification experiments where subjects with tetraplegia
controlled a robotic hand. Future works include longer train-
ing and sessions with functional daily life activities.
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