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Resumo Estendido

Introdução:

Diffuse Optical Tomography (DOT) [5] é uma promissora nova técnica de imagiologia

funcional. Seu prinćıpio básico é similar ao da oximetria de pulso, em que luz no infraver-

melho próximo é utilizada para se estimar a saturação de oxigênio do sangue. Diferentemente

da oximetria de pulso, no entanto, a DOT é capaz de reconstruir a saturação de oxigênio em

diversos pontos dentro do corpo, informação que pode ser reunida e representada na forma

de imagens.

Por ser baseada em luz no infravermelho próximo, a DOT não emite radiação ionizante,

ao contrário da tomografia por emissão de pósitrons, e não é perigosa de ser utilizada em

pacientes com eletrônicos implantados, ao contrário da ressonância magnética funcional.

Além disto, ela é em geral relativamente mais barata e portátil do que estas outras técnicas.

Contudo, a DOT ainda não foi aceita como uma técnica de imagem robusta e confiável [1].

Como um dos principais problemas envolvidos com DOT é a qualidade das imagens

reconstrúıdas, esta técnica pode ser beneficiada pelo uso de compressive sensing (CS) [9].

Nos casos em que um sistema de aquisição satisfaz determinados critérios, o CS permite

reconstruções de sinais esparsos com maior qualidade, usando menos medidas do que técnicas

tradicionais. Nos casos em que as imagens não são esparsas no seu domı́nio original, uma

das formas de reconstrúı-las usando CS é pelo método da pré-filtragem [7, 8]. Neste método,

o processo de reconstrução da imagem é decomposto em dois estágios. No primeiro, versões

filtradas da imagem são reconstrúıdas usando CS. No segundo, a imagem é composta a

partir de suas versões filtradas.

Apesar de já ser conhecida uma formulação matemática para o problema de recuperação

de imagem em DOT que satisfaz os critérios do CS [2, 3, 6], esta formulação a prinćıpio

não permite o uso do método da pré-filtragem. Além disto, ela possui limitações no que diz

respeito ao modelo utilizado. Estas caracteŕısticas justificam o desenvolvimento de outras

formulações matemáticas que não só satisfaçam os critérios de CS, mas que também permi-

tam a utilização do método da pré-filtragem, ou que façam considerações menos restritivas

com respeito ao meio imageado.

Métodos e Resultados:

Além do desenvolvimento de uma nova formulação matemática para o problema de

imagem em DOT, que satisfizesse os critérios de CS e permitisse o uso do método da pré-

filtragem, também foram desenvolvidos os algoritmos necessários para a reconstrução de

imagens, e experimentos numéricos para avaliar estes algoritmos.

A formulação proposta para o problema de DOT melhora a formulação anterior no
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sentido de que ela considera os efeitos de borda. Esta formulação é baseada na representação

do espectro angular [4], e permite o uso do método da pré-filtragem de uma maneira similar

a como ela é utilizada em ressonância magnética.

O método de CS proposto permitiu a reconstrução de imagens esparsas no seu domı́nio

original com relações sinal-erro acima 20 dB, e em um caso particular acima de 50 dB. O

método da pré-filtragem, por sua vez, permitiu a reconstrução de imagens não esparsas no

seu domı́nio original com relações sinal-erro acima de 8 dB, e em um caso particular acima

de 12 dB.

Além disto, os experimentos numéricos mostraram que as técnicas propostas em geral

melhoraram, em termos de relação sinal erro, as reconstruções com relação a regularização

de Tikhonov, a técnica mais utilizada em DOT em situações similares.

Conclusão:

As técnicas propostas assumem que o meio é homogêneo semi-infinito e que ele contém

apenas perturbações no coeficiente de absorção. Para usar estas técnicas com êxito na

reconstrução de meios mais complexos, pode ser necessário adapta-las para que elas se

baseiem em modelos mais apropriados. As pesquisa mais recentes têm utilizado o método

dos elementos finitos para resolver o problema direto de DOT, logo idealmente as técnicas

propostas deveriam ser adaptadas para se basear em modelos obtidos pelo método dos

elementos finitos.
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Abstract

Diffuse optical tomography (DOT) is a promising new functional imaging modality.

Its basic principle is similar to pulse oximetry, in which the blood oxygen saturation is

estimated by measuring the absorption of a thin part of the body with respect to two

different wavelengths in the near infrared (NIR) range. However, DOT is capable of

recovering images of tissue oxygen saturation. Even though it is expected to extend the

reach of functional imaging to several patients with specific needs, DOT is still under

development, and has been for the last 30 years. A lot of research is being made in both

the areas of DOT hardware and software to overcome the issues related to this technique.

In the general context of medical imaging, several imaging modalities have benefited

from the theoretical developments regarding the recovery of sparse signals using com-

pressive sensing (CS). In the cases that the images are sparse in some domain, CS is

able to increase the quality of the reconstructed images, while decreasing the number of

measurements required, in comparison to the other more traditional reconstruction tech-

niques. In general, medical images are not naturally sparse, so the images are frequently

recovered in a transformed domain and then converted back to the original domain. This

is commonly carried out by a sparsifying transform, but not any transform can be used,

since CS requires that the resulting sensing matrix meet specific requirements. In the

context of magnetic resonance imaging (MRI) the prefiltering method has been used as

an alternative to an explicit sparsifying transform with particular benefits. One of the

advantages of the prefiltering method is that it uses a set of filters that act on the mea-

surements and not on the sensing matrix. As a consequence, there is no restriction on

the set of filters that can be used in the prefiltering method.

Although there is already a formulation of the DOT problem proven to satisfy the

requirements of CS under certain circumstances, this formulation does not immediately

allow the use of the prefiltering method in DOT. Moreover, there are limitations in the

assumed model that justify the search for other formulations. Therefore, we proposed the

development of another mathematical formulation for the DOT imaging problem that not

only satisfies the requirements for CS, but also allows the use of the prefiltering method

in DOT. We also proposed the development of the associated algorithms necessary for

image reconstruction, and the evaluation of the resulting techniques in simulated settings.

The proposed formulation of the DOT imaging problem improves on the previous

formulation in that it accounts for the medium boundaries. This formulation is based on

the angular spectrum representation of the diffuse photon density waves, and allows the

use of the prefiltering method in DOT in a similar manner to how it is used in MRI.

The proposed CS technique allowed the reconstruction of several sparse images in

viii



their original domains with signal to error rations (SERs) above 20 dB, and in a specific

case above 50 dB. The prefiltering method allowed the reconstruction of several images

with SERs above 8 dB, and in a specific case above 12 dB, in cases that the images

were not sparse in their original domain. Finally, the numerical experiments also showed

that the proposed techniques generally improved the reconstructions over Tikhonov reg-

ularization, the technique most commonly used in DOT in similar situations, in terms

of SER.

The proposed methods assume that the medium is an homogeneous semi-infinite

medium containing only perturbations in absorption coefficient. In order to use the

proposed techniques effectively to image more complex mediums, it may be necessary to

adapt the techniques to rely on more complex models first. The most recent research in

DOT has used the finite elements method (FEM) to solve the DOT forward problem, so

ideally the techniques should be adapted to rely on models based on the FEM.
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Notation

We use bold uppercase letters for matrices, bold lowercase letters for column vectors,

and non-bold letters for scalars. We use ˜ to indicate quantities in spatial frequency

domain, ′ and ˆ to distinguish a variable from a similar one, and ∗ to indicate recovered

quantities. We use subscripts either for indexing or to further distinguish one variable

from another. We use superscripts for exponentiation or also for further distinction.

Whenever index notation is used, the counting starts from zero (zero based indexing).

We use ∆ to indicate a quantity that is the difference of other two quantities.

In a system of linear equation, we use one dot above a matrix or vector to indicate

that either its rows or columns had been rescaled. If there are any quantities formed by

rearranging the elements, or a subset of the elements, of the matrix or vector, we also use

a dot above it to indicate that the associated quantity in the system of linear equations

had its rows or columns rescaled. Two dots indicate that this process had been repeated

in a case that it had already been done before with a different rescaling.

We reserve the characters X ,Y ,Z, X, Y, Z,X,Y,X,Y, C, R for sets and the character

F for a distribution. The characters x, y and z are the cartesian coordinates, unless

otherwise specified. The following examples give more details of the notation and define

some operators.

R , C The sets of real and complex numbers, respectively.

RI×J , CI×J The sets of real and complex I × J matrices, respectively.

RI , CI The sets of real and complex column vectors of dimension I respec-

tively.

<(z) Real part of z ∈ C. If z = a+ jb, then <(z) = a.

=(z) Imaginary part of z ∈ C. If z = a+ jb, then =(z) = b.

z Complex conjugate of z ∈ C. If z = a+ jb, then z = a− jb.
|z| Absolute value of z ∈ C. If z = a+ jb, then |z| =

√
a2 + b2.

arg(z) Angle between z ∈ C and the real axis, given by the four-quadrant

inverse tangent function [39]. If z = a+ jb, then

arg(z) =



tan−1(b/a) if a > 0

π/2 if a = 0 and b > 0

−π/2 if a = 0 and b < 0

0 if a = 0 and b = 0

π + tan−1(b/a) if a < 0

where tan−1 is the inverse of the tangent function defined over the

interval (−π/2, π/2).
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bxc Greatest integer less than or equal to x ∈ R.

x mod y Remainder after division of x ∈ R by y ∈ R [51], that is

x mod y = x− ybx/yc.

arg min
x∈C

f(x) Value or values of x ∈ C that minimize the real valued function f(x).

min
x∈C

f(x) Minimum value of the real valued function f(x), when x ∈ C.

∂f

∂t
Partial derivative of f with respect to t.

∇2f Laplacian of f , that is

∇2f =
∂2f

∂x2
+
∂2f

∂y2
+
∂2f

∂z2
.

E(a) If a is a discrete random variable, then

E(a) =
∞∑
i=0

aipi,

where a0, a1, ... are the possible outcomes of the random variable, and

pi is the probability of ai. If there are only I possible outcomes, then

E(a) =
I−1∑
i=0

aipi.

If a is a continuous random variable, then

E(a) =

∫
a′∈R

a′f(a′)da′,

where f(a′) is the probability density function of the random variable.

If a is a complex random variable, then E(a) = E(<(a)) + jE(=(a)).

For i = 0, ..., I − 1 and j = 0, ..., J − 1:

Xi The i’th matrix from a family of matrices.

xi The i’th vector from a family of vectors.

xi The i’th scalar from a family of scalars.

[x]i, or xi The i’th element of the vector x.

[X]i,j, or xi,j The element in the i’th row and the j’th column of the matrix X.

Xi The i’th element from the set X .
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X ◦Y Hadamard or entrywise product of X and Y. The matrices X and Y

must be of the same size. If X and Y are I × J , then X ◦Y is also

I × J and

[X ◦Y]i,j = [X]i,j[Y]i,j.

X> Transpose of X. If X is I × J then X> is J × I and

[X>]j,i = [X]i,j.

XH Conjugate transpose or Hermitian of X. If X is I×J then XH is J×I
and

[XH]j,i = [X]i,j.

X⊗Y Kronecker product of X and Y. If X is I × J then

X⊗Y =


[X]0,0Y . . . [X]0,J−1Y

...
. . .

...

[X]I−1,0Y . . . [X]I−1,J−1Y

.

vec(X) If x0, ...,xJ−1 are the columns of X, that is X = [x0 · · · xJ−1], then

vec(X) =


x0

...

xJ−1

.

diag(x) If x is I×1, then diag(x) is the I×I diagonal matrix with the elements

of x in the diagonal, that is

diag(x) =


x0 . . . 0
...

. . .
...

0 . . . xI−1

.

‖X‖F Frobenius norm of the matrix X. If X is I × J , then

‖X‖F =

(
I−1∑
i=0

J−1∑
j=0

|xi,j|2
)1/2

.

‖x‖p , p > 0 `p of x. If x is I × 1, then

‖x‖p =

(
I−1∑
i=0

|xi|p
)1/p

.
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SER(x∗,x) SER between a reference vector x and a recovered vector x∗

SER(x∗,x) = 10 log10

(
‖x‖2

2

‖x− x∗‖2
2

)
.

SER(x∗, x) If x[n] and x∗[n], for n = 0, ..., N − 1, are discrete finite length func-

tions, then

SER(x∗, x) = 10 log10


N−1∑
n=0

|x[n]|2

N−1∑
n=0

|x[n]− x∗[n]|2

.

<(X) Real part of X ∈ CI×J . If X = A + jB, then <(X) = A.

=(X) Imaginary part of X ∈ CI×J . If X = A + jB, then =(X) = B.

X Complex conjugate of X ∈ CI×J . If X = A + jB, then X = A− jB.

E(X) If X is I × J , then

E(X) =


E([X]0,0) . . . E([X]0,J−1)

...
. . .

...

E([X]I−1,0) . . . E([X]I−1,J−1)

.

~ The two-dimensional circular convolution.

F ,F−1 Forward and inverse Fourier transforms.

W ,W−1 Forward and inverse wavelet transforms.
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1 Introduction

Medical imaging is of paramount importance in today’s clinical practice. It provides

clinicians with images of the interior of the human body without the need of surgical

intervention. It not only makes possible the noninvasive diagnosis and monitoring of

several diseases, but it also improves surgical and treatment plannings. Such techniques

are also essential in medical research. They allow the study of the body’s normal anatomy

and function, and how they break down in unhealthy subjects.

In its early days, medical imaging provided only projection images of the body’s

interior organs. This was simpler and did not require computer processing. However, as

the limitations of this type of imaging became clear, and the development of computers

advanced, researches developed cross sectional imaging, or tomographic imaging, of the

inside of the human body. This was when techniques such as ultrasound (US), positron

emission tomography (PET), computerized tomography (CT) and magnetic resonance

imaging (MRI) were developed [8].

Several imaging techniques are available nowadays to facilitate the work of clinicians

and medical researches. With respect to their purposes, these types of imaging can

be separated into structural and functional imaging. Structural imaging is primarily

intended to reconstruct properties associated with the anatomy and morphology of the

human body, while functional imaging is primarily intended to reconstruct properties

associated with the body’s biochemestry and biological activity [1].

Imaging techniques such as US, CT and MRI are classified as structural [1]. The

properties reconstructed in each of these techniques that are associated with the body’s

anatomy and morphology are: localized acoustic impedance mismatches, in the case

of US [16]; the concentration of hydrogen along the body, in the case of MRI [55]; and

the localized absorption of light in the wavelength range from 0.008 to 0.06 nm, in the

case of CT [48]. On the other hand, imaging techniques such as electroencephalography

(EEG), magnetoencephalography (MEG), functional MRI (fMRI) and PET are classified

as functional [1, 81]. fMRI detects changes in deoxygenated hemoglobin concentration

by means of the blood oxygen level dependent (BOLD) signal [55, 66]. PET reconstructs

the locations of molecules that were injected inside the body to track their metabolism

[69]. EEG and MEG monitor, respectively, the electrical and magnetic activities of the
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brain [81].

Each structural or functional imaging technique has its advantages, disadvantages and

exclusive applications. MRI is considered the imaging modality with the highest spatial

resolution, but it requires a very expensive and bulky equipment, and the exams take a

considerable amount of time [63, 31, 35]. CT has a lower spatial resolution than MRI, but

it also has a lower cost [44]. Another disadvantage of CT is that it uses ionizing radiation,

even if in small quantities [31]. fMRI also uses the same costly and bulky equipment as

MRI [55]. Both EEG and MEG have a high temporal resolution, but a very low spatial

resolution [81]. The main disadvantage of PET is that it uses radioisotopes [69].

Due to the particularities of each of the imaging techniques, all of them tend to be

used in the hospitals nowadays. The clinician decides which screening to request based

on the risk, convenience, cost and information content of the imaging techniques.

Because of the high demands of healthcare, the research on medical imaging has

never really stopped. Great efforts are still made on improving the instruments quality,

safety, portability and cost. The approaches adopted by researchers are not limited to

further developing the existing imaging techniques, but also include the development of

completely new techniques.

One relatively new imaging technique that is still under development is diffuse optical

tomography (DOT) [42]. In contrast to CT, this imaging modality uses light from 650nm

to 950nm, which is a harmless form of radiation. Figure 1.1 shows a portion of the

electromagnetic spectrum that includes these wavelengths. They partially overlap with

the red portion of the visible spectrum, but are mostly contained in the near infrared

(NIR) range. The reason why these wavelengths are used and not other forms of safe

radiation is because light at these wavelengths experience less absorption inside biological

tissue [6, 77].

Figure 1.1. A portion of the electromagnetic spectrum containing the wavelengths
used in DOT, which partially overlap with the red portion of visible spectrum but
are mostly contained in the NIR range.

However, the trajectory of these forms of light inside biological tissue is not as the

trajectory of the X-rays of CT, which suffer little or no scattering events from source to
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detector [42]. These forms of light are intensely scattered, and in some situations can even

be detected with sources and detectors in reflection mode. Their absorption is also much

more intense than the absorption of X-rays. For these reasons, sources and detectors in

DOT are placed on the borders of the body part to be imaged, often in reflection mode

to image just a portion close to the surface. Figure 1.2 shows a comparison of CT and

DOT with respect to the general setup and light trajectories. Also, Figure 1.3 illustrates

the use of DOT to reconstruct the activity of a specific region of a subject’s brain cortex.

Figure 1.2. Comparison of CT and DOT. In CT, the light travels a straight
line from source (circle) to detector (triangle), which are kept at a certain distance
from the subject. Several measurements are taken with light impinging at several
different angles. In DOT, sources and detectors are placed on the boundary of
the body part to be imaged, often in reflection mode. The photons suffer several
scattering events before being detected. Measurements from different combinations
of sources and detectors are used to reconstruct an image.

In contrast to CT, DOT is classified as a functional imaging technique. This is because

the absorption of light in the wavelength range from 650nm to 950nm is primarily due

to the oxygenated and deoxygenated hemoglobins, which are more related to the body

function than to the body anatomy [78]. But DOT can also be used to reconstruct the

scattering intensities along the body, since this is also a predominant effect during red

and NIR light propagation. The scattering that happens inside biological tissue is caused

by cells, cell nuclei, cell organelles and surrounding fluids [29]. This information can also

be linked to the body function in some cases [89].

Current areas of DOT applications include: brain imaging, breast cancer imaging,

diagnosis of rheumatoid artritis in fingers, among others [6, 42]. In breast cancer imaging

and in functional brain imaging, the focal increases in hemoglobin concentrations caused

by angiogenesis in cancer and regional cerebral blood flow, respectively, cause a local

increase in absorption which can be detected in DOT [29, 66, 87]. In finger rheumatoid

artritis diagnosis, the presence of rheumatoid artritis cause the inflammation of the syn-

ovial fluid, which in its turn translates into changes in the synovial fluid optical properties

that can be detected in DOT [52].

There are many advantages of DOT over other functional imaging tools. It has a
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(a)

(b) (c)

Figure 1.3. Illustration of DOT in functional brain imaging. (a) Sources (circles)
and detectors (triangles) are placed over the cortex region to be imaged, in this case
the occipital lobe. (b) Some stimulus cause the activation and inflow of blood to a
specific spot of this region, which in turn causes an increase in the nearby absorption
coefficients. (c) Some reconstruction technique, usually Tikhonov regularization, is
used to recover the location and magnitude of the changes in absorption coefficient.
The numerical simulation that led to figures (b) and (c) were based on [37].
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higher temporal resolution than fMRI and PET while having a higher spatial resolution

than EEG and MEG, meaning it is midway between the other modalities [11]. If more

than one wavelength is used, DOT can recover images of oxygenated hemoglobin and

deoxygenated hemoglobin, which means DOT can inform the oxygen saturation along

the imaged region, data not provided by the other techniques [89]. Compared to PET,

this modality does not use ionizing radiation, and compared to fMRI, it can be used on

patients with implanted electronics [32]. DOT is also less susceptible to electrical noise

than EEG.

Other important advantages of DOT are that it is generally smaller, less expansive,

less restraining, less sensitive to motion and requires little to no maintenance [43]. Because

of these reasons, it can be used to study patients difficult to study using the other

imaging modalities, such as: newborns, agitated and claustrophobic patients, athletes

while exercising, persons in operatory rooms and intensive care units, the elderly, among

others [7].

1.1 History of DOT

The idea of using NIR light to examine the human body is much older than DOT [6,

77]. For example, pulse oximeters are devices very similar to DOT instruments in their

working principle that have been used in the hospitals for many decades. Such devices

continuously measure the absorption of a thin part of the body with respect to two

different wavelengths in the near infrared range, to then estimate the heart rate and the

blood oxygen saturation.

However, perharps the first major milestone towards the development of a tomogra-

phy using NIR light came with the work of Jobsis [46]. He was the first to show that it

was possible to monitor concentrations of oxygenated and deoxygenated hemoglobin in

the brain noninvasively, even though in this case there is the presence of the skull [77, 66].

This led to the development of several instruments to measure hemoglobin concentration

at a certain region of the brain cortex by illuminating the head from a spot on its surface

and then measuring the reflected light at a close spot on the surface. This practice is

named near infrared spectroscopy (NIRS) [77].

The next development came by combining several of such measurements at different

locations of the head to obtain topographic images of hemoglobin concentration spanning

large regions of the cortex [77]. The disadvantage of this simple approach, however, was

that it had no depth resolution and was very sensitive to extracerebral compartments of

the head [77].

For some time, the development of DOT was delayed by the need of better under-

5



standing about how light propagates in highly scattering mediums [43]. The radiative

transfer equation accurately models the propagation of light in highly scattering mediums,

but its application poses high computational load [42]. It was only with the widespread

acceptance of the applicability of diffusion theory in this situation that the technology

could be further developed [29]. The basic requirements are that the observation point

be sufficiently distant from the source, and that the photons undergo several scattering

events before being absorbed, which is usually true for light in the near infrared range

propagating in biological tissue [45].

Current DOT systems measure, at several different locations, light of a certain wave-

length emitted also from several different places. The resulting data include measure-

ments with sensitivity to overlapping regions. In most cases, diffusion theory is then

used to recover location dependent absorption and scattering coefficients. In some cases

these coefficients are sufficient. In cases that concentrations of oxygenated and deoxy-

genated hemoglobin must be recovered, it is necessary to repeat the measurements and

the reconstruction for a different wavelength. The two maps of absorption coefficient for

the two wavelengths are then used to recover maps of concentration of oxygenated and

deoxygenated hemoglobin.

There are three types of DOT systems: short pulse systems, radio frequency (RF)

systems and continuous wave (CW) systems [6]. Short pulse systems illuminate the tissue

in brief periods and, when they detect photons, they also measure the photon’s time of

arrival [77]. RF systems use amplitude modulated light at megahertz frequencies and

measure both the amplitude and the phase of the detected light. CW systems either

emit light at a constant amplitude or amplitude modulate at kilohertz frequencies and

measure only the amplitude of the detected light [6]. Short pulse systems contain the

most amount of information, but are the most complex systems [77]. CW systems are the

simplest and cheapest to implement, but it is proven that it cannot recover absorption

and scattering simultaneously [2].

1.2 Image Reconstruction in DOT

The passage of photons through the tissue is usually modeled by the photon diffusion

equation. Therefore, reconstruction techniques generally involve the solution of the pho-

ton diffusion equation for the fluence rate at the detector locations. This is named the

forward problem. Analytical solutions to the forward problem are available, but they are

limited to simple mediums in structure and geometry [38]. For this reason, solutions using

numerical modeling techniques, like the finite elements method (FEM) are preferred in

real life applications. In possession of a way of solving the forward problem, one attempts

to solve the inverse problem, that is, given measurements of fluence rate at the boundary
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for sources at different locations, find the distributions of absorption and scattering.

The inverse problem also can be solved in several different ways. There are lin-

ear model reconstruction techniques and nonlinear model reconstruction techniques. In

linear model reconstruction techniques, the measurements are assumed to vary linearly

with changes in the medium optical properties. This results in an underdetermined linear

system of equations that relates changes in the measurements to changes in optical prop-

erties. One can then try to recover images of changes in optical parameters by finding

special solutions to the underdetermined linear system of equations, like the least squares

solution, in which case the least squares problem must be regularized, since the inverse

problem is ill posed.

linear model reconstruction techniques require measurements in two states, one be-

fore and other after the changes in optical parameters [26]. They are primarily used in

functional brain imaging to detect changes in blood supply to specific parts of the cere-

bral cortex during different tasks [38]. Increase of blood supply to a specific area means

that area is activated [66]. linear model reconstruction techniques can be used with both

analytical and numerical forward models.

In nonlinear model reconstruction techniques, the distribution of optical parameters

is varied until the error between the experimental and calculated data using the forward

model is minimized. This constitutes a nonlinear least squares problem that also requires

some regularization technique due to the high ill-posedness of the inverse problem [42].

Even though there is a lot of interest in DOT, there are a lot of difficulties associated

with its image quality that limit its current applications. Some of the reasons why the

DOT images are of generally low quality are: 1) Due to the high complexity of the DOT

problem, and since there are many parameters that are unknown or difficult to measure,

the DOT modeling process often involves several approximations, which introduces errors

in the reconstruction [6]; 2) The most common reconstruction technique used employs

Tikhonov regularization, which has the characteristic of smoothing out the reconstructed

image, thus lowering its resolution [38]. In part because of these reasons, and also due

to the severe hardware and software requirements imposed for acceptable quality images,

the range of applications of DOT has been much more restricted than its actual potential

[21].

One solution to the second problem that has been recently adopted is the use of `1

regularization instead of `2 regularization in both the linear and nonlinear DOT least

squares problems [57, 33, 82, 71, 41, 80, 67, 4, 18, 49, 79, 85, 15]. The `1 regularization

has the characteristic of favoring sparse solutions instead of smooth ones, thus solving

the problem of smooth images.

The use of the `1 norm to regularize the DOT least squares problem is closely related
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to another reconstruction technique that has been drawing a lot of attention in the past

few years: compressive sensing (CS). CS is a technique for recovering signals from much

fewer samples than the Nyquist Shannon sampling rate by exploring its sparsity [74]. The

conditions however, are that the sensing mechanism cannot be a simple sampling of the

signal, and that it must also satisfy other requirements [19].

The current theory of CS applies to underdetermined linear systems of equations.

Therefore the area which DOT can mostly benefit from CS are in linear model recon-

struction techniques. The research in this area is still underdeveloped, with one publi-

cation only dealing with the requirements that the DOT sensing matrix must satisfy to

recover sparse signals [53]. Moreover, there is one CS related technique in particular, the

prefiltering method, which was developed in the context of Magnetic Resonance Imaging

(MRI), that has consistently outperformed some other traditional MRI reconstruction

techniques that could also be used in DOT, with some adaptation [61, 62].

The advantage of CS, and its related reconstruction techniques, is its associated

theory. The theory of CS predicts the possibility of accurate image restoration under

certain circumstances. Such reconstruction guarantees could mean a great improvement

in the image quality and reliability of DOT, at least in the context of linear model

reconstruction techniques.

1.3 Research Objectives

1.3.1 General Ojective

Although there is already a formulation of the DOT problem proven to satisfy the re-

quirements of CS under certain circumstances [53], this formulation does not immediately

allow the use of the prefiltering method in DOT. Moreover, there are limitations in the

assumed model that justify the search for other formulations. Therefore, we propose the

development of another mathematical formulation for the DOT imaging problem that not

only satisfies the requirements for CS, but also allows the use of the prefiltering method

in DOT, and possibly makes less stringent requirements about the characteristics of the

imaged region. Based on this formulation, we also propose the development of the asso-

ciated algorithms necessary for image reconstruction, and the evaluation of the resulting

techniques in simulated settings.

Note that the prefiltering methods rely on specially chosen filters operating on the

measurement domain and lead to the reconstruction of several filtered images, based on

which a final composition stage generates the desired reconstructed image. Is is worth

emphasizing that, contrary to the prefiltering approach for MRI, in DOT the measure-

ments are not samples in the frequency domain, so that a new theoretical development
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was required in order to compute the measurements associated to filtered versions of the

target image. We present this development in the following pages.

In the following, we also define a set of numerical experiments using this mathematical

formulation and present the performance results in terms of objective metrics.

1.3.2 Specific Objectives

In order to attain the general objective, we must meet the following specific goals:

1. Show that a different formulation of the DOT problem may satisfy the requirements

of CS under specific circumstances.

2. Show how to obtain measurements associated with filtered versions of the image in

this formulation of the DOT problem.

3. Develop efficient and effective algorithms for the complete prefiltering and CS tech-

niques derived from this formulation.

4. Develop numerical experiments to demonstrate the effectiveness of the proposed

algorithms.

5. Evaluate the obtained images in terms of objective metrics.

6. Compare the reconstructions obtained using the proposed techniques with the re-

constructions obtained using the state-of-the-art technique, in terms of objective

metrics.

7. Analyze and discuss the results based on the theories and principles involved with

the techniques.

1.4 Contributions

We found only one other publication in the literature that proposed a formulation of the

DOT problem and showed that this formulation could satisfy the the requirements for

CS under certain circumstances [53]. Their approach has the advantage that the DOT

problem is modeled as a multiple measurement vector (MMV) problem, while in ours it

is modeled as a single measurement vector (SMV) problem, and the successful recovery

rate of the MMV model is generally higher than that of the SMV model [54]. However,

there is no reason to assume that our approach cannot be adapted to the MMV model

as well.
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Both approaches are similar in that they assume constant scattering coefficients

throughout the medium and that they reconstruct perturbations in absorption coeffi-

cient in an otherwise homogeneous medium. Our approach further assumes that the

perturbations are small in magnitude and support due to the first Born approximation,

but we could also adopt a similar strategy as in [53] to avoid this approximation.

One of our contributions with respect to this previous publication consists of the

acknowledgement of the boundary effects. In the demonstration of their final theorem,

they assumed an infinite medium Green’s function. Therefore, even though they consid-

ered a planar detection geometry, they did not consider the effects of the boundaries. In

our approach, we use a semi-infinite medium Green’s function, which takes into account

such effects, and therefore we show that DOT satisfies the requirements of CS in a more

realistic setting with respect to the boundaries.

Furthermore, our approach allows the use of the prefiltering method in DOT. The

prefiltering method has several advantages over other reconstruction techniques. One of

them is that it is more flexible than the use of an explicit sparsifying transformation.

When a sparsifying transformation is used in CS, the sensing matrix is modified, and this

can have major effects in the eligibility for CS. The prefiltering method on the other hand

makes possible the sparsification of the images to be reconstructed without changing the

sensing matrix. This means that, no matter the set of filters used, the modified linear

system will always satisfy the requirements for CS. When using an explicit sparsifying

transform, on the other hand, sometimes a transformation effectively sparsify the image,

but the resulting system is not eligible for CS.

Our overall method is also expected to find a solution quicker than the method of

reference [53], because the SMV optimization problem is generally simpler to solve than

the MMV optimization problem [56, 83]. Our method also includes a depth compensation

matrix that is easier to compute than the one used in the references [4, 49, 65, 64]. A

depth compensation matrix is a mathematical artifice used in DOT to work around badly

scaled sensing matrices. At first, the matrix we propose only makes sense with the DOT

formulation we use, but it may be adapted to other formulations. The basic idea is to

use the known Green’s function decay with distance to rescale the sensing matrix. This

is different from the traditional technique, which uses a numerical reasoning, instead of

an analytical reasoning, to rescale the sensing matrix.

Our numerical results also contribute to the DOT literature in that, before the pub-

lication of this document, only three articles reported experimental or simulation results

of CS in DOT [27, 28, 53], and there was no mention of the prefiltering method in the

DOT literature.
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1.5 Document Structure

The next chapters are organized as follows. Chapter 2 is devoted exclusively to a literature

review. Chapter 3 is dedicated to a description of the proposed methods, the numerical

experiments and the analysis performed on the results. In Chapter 4 we present and

discuss the graphs and objective metrics obtained from the numerical experiments. In

Chapter 5 we review the main results and assumptions made in the development of the

techniques, and point out topics for future research.

The analytical DOT model on which we base our techniques is described in the Sub-

section 2.1.1. For didactic reasons we also provide a common matrix formulation derived

from this model. This matrix is frequently used together with the depth compensation

method described on Subsection 2.1.2.

The aforementioned analytical model relates the medium optical properties with the

light intensities in the three-dimensional space. If we convert the x and y dimensions

to spacial frequency domain, we obtain the angular spectrum representation, which we

describe on Subsection 2.1.3. This representation will be useful in the adaptation of the

prefiltering method to DOT.

The Section 2.2 contains a brief overview of Tikhonov regularization, the linear model

reconstruction technique most commonly used in DOT.

One of the main goals of our research was to find a DOT formulation that satisfied

the requirements for CS. In a later section, we will show that a specific DOT formulation

satisfies the requirements of the CS theorems reviewed in the Subsections 2.3.1 and 2.3.2.

The Subsection 2.3.3 reviews the algorithm that we will use to minimize the `1 norm of

the solution, The iteratively reweighted least squares (IRLS). Finally, in order to adapt

the prefiltering method to DOT, which is the other main goal of our research, we need

to understand how it works. Section 2.4 gives the details of the prefiltering method.

In the Subsection 3.1.1, we derive the matrix formulation that satisfies the require-

ments for CS and allows the use of the prefiltering method in DOT. To prevent bias

towards the surface, we introduce in the Subsections 3.1.2 a depth compensation method

specific to this formulation of the DOT problem. In the Subsection 3.1.3 is where we

actually show that this formulation satisfies the requirements for CS.

Bearing in mind that any CS reconstruction algorithm will invariably require sub-

sequent applications of the sensing matrix and its Hermitian [76], we provide efficient

methods for these two matrices in the Subsection 3.1.4.

In the Subsection 3.1.5, we propose a sparsifying transform based on the Haar discrete

wavelet transform (DWT) that maintains the most important properties of the sensing

matrix and therefore still allows the use of CS. Later we will compare the reconstructions
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of CS using this transform with the reconstructions of the prefiltering method.

In the Section 3.2 we show how measurements associated with filtered versions of the

image can be obtained in the proposed formulation of the DOT problem, and how the

final image can be composed once the filtered versions are recovered by CS. This process

of obtaining measurements associated with filtered versions of the image, recovering the

filtered versions using CS, and then composing the the image from its filtered versions is

what constitutes the prefiltering method.

In the Section 3.3, we describe the experiments that we made to evaluate the proposed

techniques. The results of such experiments are presented on Sections 4.1 to 4.4. In the

first two of these sections, we report proof of concept reconstructions of perturbations in

two volumes of different sizes. In the third section, we evaluate the proposed techniques

in the presence of noise, and in the last section we compare different variants of our

proposed techniques to the most common DOT technique.
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2 Theoretical Background

2.1 Diffuse Optical Tomography

2.1.1 Imaging perturbations of absorption coefficient in an homogeneous semi-

infinite medium using the first Born approximation

The explanation in this section is based on the references [37, 36, 68, 48]. We begin with

the Photon Diffusion Equation, which models the passage of photons through highly

scattering mediums:

−D(r)∇2Φ(r, t) + vµa(r)Φ(r, t) +
∂Φ(r, t)

∂t
= vS(r, t), (2.1)

where

D(r) =
v

3µ′s(r)
. (2.2)

In this equation, Φ(r, t) is the photon fluence at position r = (x, y, z) and time t in

watts per square meter, S(r, t) is the isotropic source term in watts per cubic meter, v

is the speed of light in the medium in meters per second, µa is the absorption coefficient

in inverse meters, µ′s is the reduced scattering coefficient in inverse meters, D is the

photon diffusion coefficient in square meters per second, and v, µa, µ
′
s and D are all

positive [5]. It is common practice to consider only one temporal frequency ω ≥ 0

at a time. The response to a complex sinusoid S(r, t) = S(r)e−jωt is also a complex

sinusoid Φ(r, t) = Φ(r)e−jωt of the same frequency. Actual sources are real sinusoids, as

are their responses, but in this case it is simpler to consider real sinusoids as complex

sinusoids projected on the real line. That means, the actual source is <(S(r)e−jωt),

and the actual response is <(Φ(r)e−jωt). Substituting the expressions for the complex

sinusoids in equation (2.1) we get

−D(r)(∇2Φ(r))e−jωt + vµa(r)Φ(r)e−jωt − jωΦ(r)e−jωt = vS(r)e−jωt. (2.3)

Canceling out e−jωt on both sides we get

−D(r)∇2Φ(r) + vµa(r)Φ(r)− jωΦ(r) = vS(r). (2.4)
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For an homogeneous medium, D(r) = D0 and µa(r) = µa0 are constants over space. In

this case, equation (2.4) reduces to a Helmholtz equation with complex wavenumber

∇2Φ(r) + k2
0Φ(r) = − v

D0

S(r), (2.5)

where

k2
0 =
−vµa0 + jω

D0

. (2.6)

The solution to this equation, which we will call incident or homogeneous solution Φi(r),

can be obtained by means of the Green’s function as

Φi(r) =

∫
V

G(r, r′)

(
− v

D0

S(r′)

)
dr′, (2.7)

where the Green’s function is the solution of

[∇2 + k2
0]G(r, r′) = δ(r− r′), (2.8)

for specific boundary conditions. In equation (2.8), δ represents the dirac delta function.

In other words, the Green’s function contains the information of the solutions of equa-

tion (2.5) for every point source − v
D0
S(r) = δ(r− r′) with location r′ = (x′, y′, z′) in the

domain of integration V . Here we use the term source to indicate the right hand side of

equation (2.5).

In the case of an infinite medium, i.e. no boundaries, the Green’s function can be

expressed as [48]:

G(r, r′) = − ejk0‖r−r
′‖

4π‖r− r′‖
=
e−=(k0)‖r−r′‖

4π‖r− r′‖

(
−ej<(k0)‖r−r′‖

)
(2.9)

where

k0 =
√
α e j(β/2),

α = |k2
0|,

β = arg(k2
0).

(2.10)

Notice that =(k0) > 0 and <(k0) ≥ 0. Therefore, from equation (2.9), the real and imag-

inary parts of the infinite medium Green’s function for a particular r′ are damped sinu-

soidal waves emanating from r′. Figure 2.1 illustrates the solution of the equation (2.5)

when the isotropic source term is a punctual isotropic source term, S(r) = S0δ(r− rs) =

|S0|ej arg(S0)δ(r − rs), with magnitude |S0|, phase arg(S0) and location rs = (xs, ys, zs),

and the medium is infinite. The solution is basically the same as the G(r, rs), apart from

a complex number, which basically has the effect of rescaling and shifting the damped
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sinusoidal waves that are the real and imaginary parts of G(r, rs). In the figure, only the

real or the imaginary part is represented.

Figure 2.1. Illustration of the infinite medium solution when the source is an
arbitrary point source − v

D0
S(r) = − v

D0
S0δ(r − rs). In this case, the solution is a

rescaled and phase shifted version of G(r, rs), which has damped sinusoidal waves
as real and imaginary parts.

In the case of a semi-infinite medium, with the x− y plane as the boundary (z = 0)

and the top half space as the medium (z > 0), the Robin boundary condition

Φ = zb
∂Φ

∂z
at z = 0, (2.11)

is usually approximated by the Dirichlet boundary condition

Φ = 0 at z = −zb, (2.12)

where

zb =
2

3µ′s

(
1 +Reff

1−Reff

)
(2.13)

is called the extrapolated boundary and Reff is the effective reflection coefficient from

inside the medium [29]. This boundary condition can be obtained by considering an

infinite medium and implementing the method of images. In this method every source

gets a duplicate with opposite sign placed at its mirror image with respect to the plane

of zero field [36]. Doing that to equation (2.8) we get

[∇2 + k2
0]G(r, r′) = δ(r− r′)− δ(r− ri

′), (2.14)
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and the semi-infinite medium Green’s function becomes

G(r, r′) =
−1

4π‖r− r′‖
ejk0‖r−r

′‖ +
1

4π‖r− r′i‖
ejk0‖r−r

′
i‖ (2.15)

where r′i = (x′i, y
′
i, z
′
i) is the location of the source image, and

x′i = x′

y′i = y′

z′i = −z′ − 2zb

(2.16)

are the coordinates of the source image.

When there is a perturbation in absorption coefficient in an otherwise homogeneous

medium, i.e. when µa = µa0 + ∆µa(r), equation (2.4) reduces to

[∇2 + k2
0 + ∆k2(r)]Φ(r) = − v

D0

S(r), (2.17)

where

∆k2(r) =

(
−v∆µa(r)

D0

)
. (2.18)

We define the heterogeneous or scattered field as Φs(r) = Φ(r) − Φi(r). In other words,

Φs(r) is the difference in the fluence rate caused by the presence of the perturbation.

Recall that Φi(r) is the solution of equation (2.5). If we replace Φ(r) = Φs(r) + Φi(r) in

equation (2.17) we get

[∇2 + k2
0 + ∆k2(r)](Φs(r) + Φi(r)) = − v

D0

S(r),

[∇2 + k2
0](Φs(r) + Φi(r)) + ∆k2(r)(Φs(r) + Φi(r)) = − v

D0

S(r),

[∇2 + k2
0]Φs(r)− v

D0

S(r) + ∆k2(r)(Φs(r) + Φi(r)) = − v

D0

S(r),

[∇2 + k2
0]Φs(r) + ∆k2(r)(Φs(r) + Φi(r)) = 0,

[∇2 + k2
0]Φs(r) = −∆k2(r)(Φs(r) + Φi(r)),

(2.19)

which is similar to equation (2.5), except for the right hand side. Φs(r) can then be

obtained using the same Green’s function used to obtain Φi(r) by

Φs(r) =

∫
V

G(r, r′)
(
−∆k2(r′)(Φs(r′) + Φi(r′))

)
dr′. (2.20)

In this equation, the relation between ∆k2(r) and Φs(r) is not linear, but it can be consid-

ered approximately linear when Φi(r) >> Φs(r), which happens when the perturbation

∆k2(r) is not large in magnitude and support. In this case, the scattered field can be
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approximated by

Φs(r) =

∫
V

G(r, r′)
(
−∆k2(r′)Φi(r′)

)
dr′, (2.21)

which expresses a linear relationship between ∆k2(r) and Φs(r). This is known as the

first Born approximation [29]. Notice that the first Born approximation is the solution

of the equation

[∇2 + k2
0]Φs(r) = −∆k2(r)Φi(r). (2.22)

Therefore, by an analogy with the equation (2.5), the term −∆k2(r)Φi(r) can be seen

as the source of the approximate scattered field. Figure 2.2 illustrates the scattered field

estimated using the first Born approximation when the incident field of Figure 2.1 reaches

an arbitrary impulse perturbation ∆k2(r) = P0δ(r− rp) located at rp = (xp, yp, zp). The

characteristics of the scattered wave are similar to the incident wave, but with different

amplitude, phase and point of origin.

Figure 2.2. Illustration of the first Born approximation of the scattered field
when the incident field of Figure 2.1 reaches an arbitrary impulse perturbation
∆k2(r) = P0δ(r − rp). In the first Born approximation, the scattered field can
be seen as another homogeneous medium solution, with −∆k2(r)Φi(r, rs) as the
source. Therefore, the scattered wave emanating from an impulse perturbation is
similar to the incident wave of Figure 2.1, but with different amplitude, phase and
point of origin.

In diffuse optical tomography, several sources and detectors are placed at a tissue

boundary. In RF DOT systems, the sources are amplitude modulated at megahertz

frequencies. Usually, only one source is turned on at a time while the amplitude and

phase of the diffused light is measured at the detector locations. By the end one gets

a series of fluence rate amplitude and phase measurements at the detector locations for

several sources that were turned on sequentially. Each source is usually modeled as a
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point source one transport mean free path length inside the medium [45], where the

transport mean free path length is defined as ltr = 1/µ′s.

In the case that the medium can be approximated by an homogeneous semi-infinite

medium with a perturbation in absorption coefficient that is small in magnitude and

support, the imaging problem can be considerably simplified. The medium can be ap-

proximated by a semi-infinite medium if the boundary is approximately planar where the

sources and detectors are placed and if the other boundaries of the tissue are sufficiently

far away. From equation (2.7), the incident field for a punctual isotropic source term

S(r) = S0δ(r− rs) can be obtained by

Φi(r, rs) = − v

D0

∫
V

G(r, r′)S0δ(r
′ − rs)dr

′ = − v

D0

S0G(r, rs), (2.23)

where the dependency of Φi(r) on the location of the source was made explicit. The field

measured at a particular detector is a superposition of the incident field coming from

the source and the scattered field coming from the perturbations inside the medium.

Therefore, if the field measured at rd for a source turned on at rs is Φ(rd, rs), the scat-

tered field at rd for a source turned on at rs is Φs(rd, rs) = Φ(rd, rs) − Φi(rd, rs). From

equation (2.21), the scattered field Φs(rd, rs) is related linearly to ∆k2(r) by the equation

Φs(rd, rs) =

∫
V

G(rd, r
′)
(
−∆k2(r′)Φi(r′, rs)

)
dr′. (2.24)

If we assume that the Green’s function, fluence rate and perturbation in squared wavenum-

ber are constant over equal sized cubic voxels that divide the medium, this integral can

be approximated by the summation

Φs(rd, rs) =
∑
rc∈C

G(rd, rc)
(
−∆k2(rc)Φ

i(rc, rs)
)
h3, (2.25)

where rc is a voxel center, C is the set of voxels centers, and h is the voxel side. Grouping

the scattered fields for the different sources and detectors in a vector b, stacking the

perturbation in squared wavenumber for the different voxels in a vector x, using equation

(2.25) to relate vector x to each element of vector b, we get the system of linear equations

b = Ax
am,n = −G(Dt, Cn)Φi(Cn, Sq)h

3

bm = Φs(Dt, Sq)

xn = ∆k2(Cn)

m = qT + t

(2.26)
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where D and S are the sets of detector locations and source locations, respectively, and

t ∈ {0, 1, ..., T − 1}, q ∈ {0, 1, ..., Q − 1}, n ∈ {0, 1, ..., N − 1} and m ∈ {0, 1, ...,M − 1}
are the indexes for the set of detector locations, the set source locations, the set of voxels

centers C and the vector of measurements b, respectively. The relation m = qT+t simply

means that the measurements were organized such that all detector measurements for

every source were placed together. The way the measurements are organized is actually

irrelevant, as long as the lines of the matrix A are organized accordingly. Similarly,

the columns of A must be placed the same way as their respective voxels in vector

x. The system of equations (2.26) provides a means of recovering three-dimensional

images of perturbation in squared wavenumber, x, from estimates of scattered fluence

rate, b, obtained from measurements of fluence rate, using linear inversion methods such

as truncated SVD and Tikhonov regularization.

2.1.2 Depth Compensation

Although already useful, the system of equations (2.26), together with linear inversion

methods such as SVD, Tikhonov or `1-minimization, tend to underestimate the actual

depth of perturbations [4, 49, 65, 64]. To appreciate why, assume that the voxels are

ordered in vector x from smallest to largest z-coordinate. It does not matter how voxels

with same z-coordinate, here called collectively as a layer, are ordered. Then matrix A

can be decomposed as

A =
[
W0 W1 · · · WL−1

]
(2.27)

where W` is the submatrix of A that multiplies the `-th layer of x. The order of magni-

tude of the elements of W` decreases as ` increases. This is due to the increase in distance

between voxels and sources and between voxels and detectors as the z-coordinate of the

layer increases, and this is what causes the recovered images to be concentrated in the

first layers. Also the largest singular value of W`, here denoted as σ`, decreases as ` in-

creases. Therefore, one of the envisioned ways to work around this issue was to multiply

W` by a power of the largest singular value of layer L − 1 − `, this way the decay in

order of magnitude would be counterbalanced [4, 49, 65, 64]. In other words, we should

multiply A to the right by 
σγL−1I 0 · · · 0

0 σγL−2I · · · 0
...

...
. . .

...

0 0 · · · σγ0 I

 (2.28)

where γ is an adjustable real number, I is the identity matrix of size
(
N
L

)
, and 0 is

the matrix of zeros of the same size. However, since we modified the matrix A but did
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not modify the measurements, the images recovered using the modified linear system

of equations are in a different domain than the desired domain. In order to convert

the recovered images to the desired domain, they must be multiplied to the left by the

matrix (2.28).

2.1.3 Angular Spectrum Representation of Diffuse Photon Density Waves

Consider equation (2.21) again. Expanding it for the semi-infinite medium we get

Φs(x, y, z) =

∫ ∞
0

∫ ∞
−∞

∫ ∞
−∞

G(x, y, z, x′, y′, z′)A(x′, y′, z′)dx′dy′dz′, (2.29)

where

A(x, y, z) = −∆k2(x, y, z)Φi(x, y, z) (2.30)

and

G(x, y, z, x′, y′, z′) =− ejk0
√

(x−x′)2+(y−y′)2+(z−z′)2

4π
√

(x− x′)2 + (y − y′)2 + (z − z′)2

+
ejk0
√

(x−x′)2+(y−y′)2+(z+z′+2zb)2

4π
√

(x− x′)2 + (y − y′)2 + (z + z′ + 2zb)2
.

(2.31)

From now on, we will represent the Green’s function by G(x− x′, y − y′; z, z′) instead of

G(x, y, z, x′, y′, z′). According to equation (2.29), the scattered field at the boundary of

the semi-infinite medium is

Φs(x, y, 0) =

∫ ∞
0

∫ ∞
−∞

∫ ∞
−∞

G(x− x′, y − y′; 0, z′)A(x′, y′, z′)dx′dy′dz′. (2.32)

If we take the Fourier transform of this equation sequentially in the x and y dimensions

and use the convolution theorem we get

Φ̃s(ωx, y, 0) =

∫ ∞
0

∫ ∞
−∞

[∫ ∞
−∞

(∫ ∞
−∞

G(x− x′, y − y′; 0, z′)A(x′, y′, z′)dx′
)
e−jωxxdx

]
dy′dz′

=

∫ ∞
0

∫ ∞
−∞

G̃(ωx, y − y′; 0, z′)Ã(ωx, y
′, z′)dy′dz′,

Φ̃s(ωx, ωy, 0) =

∫ ∞
0

[∫ ∞
−∞

(∫ ∞
−∞

G̃(ωx, y − y′; 0, z′)Ã(ωx, y
′, z′)dy′

)
e−jωyydy

]
dz′

=

∫ ∞
0

G̃(ωx, ωy; 0, z′)Ã(ωx, ωy, z
′)dz′, (2.33)

which is called the angular spectrum representation of the scattered field Φs(x, y, 0).

Equation (2.33) is the main equation of diffraction tomography with diffuse photon den-

sity waves [30], one of the earliest approaches to diffuse optical tomography.
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2.2 Tikhonov Regularization

This section gives a brief overview of the most common method in DOT: Tikhonov

regularization [40]. Consider a general linear forward model

bη = Ax + n, (2.34)

where x ∈ Cn is a vector of interest, bη ∈ Cm is a vector of observations contaminated

with noise, n ∈ Cn is the noise vector, and A ∈ Cm×n is the forward model matrix. When

m > n, the vector x is frequently approximated by the least squares solution, which can

be described as the minimizer of the optimization problem

min
x̂∈Cn

(‖Ax̂− bη‖2
2). (2.35)

However, if the number of equations is not large enough with respect to the number of

unknowns, this method results in overfitting [50]. One way to prevent overfitting is to

add a term to the objective function to penalize solutions with large `2 norm. This is

known as Tikhonov regularization. The Tikhonov regularized least squares solution can

be described as the minimizer of the problem

min
x̂∈Cn

(‖Ax̂− bη‖2
2 + λ2‖x̂‖2

2), (2.36)

where λ > 0 is the Tikhonov regularization parameter. The solution to this problem can

be calculated by

xλ = (AHA + λ2I)−1AHbη. (2.37)

The Tikhonov regularization parameter has to be chosen for each specific problem. Some

methods for choosing the regularization parameter are the L-curve method and the cross

validation method [75][23].

2.3 Compressive Sensing

Consider the underdetermined linear system of equations

b = Ax̂ (2.38)

where b ∈ Cm, x̂ ∈ Cn, A ∈ Cm×n and m� n. Solving this system for x̂ is an ill-posed

problem since there are infinitely many solutions possible. However, suppose that the

desired solution x has no more than s nonzero entries, or, in other words, that x is s-

sparse. In some situations it is possible to find x by searching for the sparsest solution
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possible. What are such situations is one of the main concerns of compressive sensing, a

research field that first saw the light of day in the 21st century.

The field of compressive sensing is essentially concerned with two questions [34, 24]:

• What matrices A allow us to recover the s-sparse vector x by searching for the

sparsest solution?

• What algorithms can we use to search for the sparsest solution?

In the next sections we will provide a group of matrices A, and one algorithm, that

will allow us to recover x from b = Ax when m � n. We will use the fact that

minimizing the `1 norm, defined as ‖x̂‖1 =
∑n−1

i=0 |x̂i|, or the `p quasinorms, defined as

‖x̂‖p = (
∑n−1

i=0 |x̂i|p)1/p for 0 < p < 1, tend to coincide with minimizing the `0 function,

defined as ‖x̂‖0 =
∑

x̂i 6=0 |x̂i|0, which is the same as searching for the sparsest solution

possible [24].

2.3.1 Incoherent Sampling Theorem

Let a be a random column vector on Cn with probability distribution F , that is a =

[a0 a1 ... an−1]> ∼ F , and let E[aaH] = I. Define the coherence parameter µ(F ) as

the smallest number such that max0≤i≤n−1 |ai|2 ≤ µ(F ) holds either deterministically or

stochastically [13]. Let a0, a1, ... am−1 be a sequence of realizations of a, which we will

call sensing vectors, and let A be the matrix

A =


aH

0

aH
1
...

aH
m−1

 , (2.39)

which we will call sensing matrix. Then the incoherent sampling theorem reads:

Theorem 2.3.1 [13, 12] Let x be a fixed but otherwise arbitrary s-sparse vector in Cn.

Assume that the sensing vectors are isotropic (E[aaH] = I) and let b = Ax be the data

vector. Pick any scalar β > 0. If the number of equations obeys

m ≥ Cβ · µ(F ) · s · log n (2.40)

then x is the unique minimizer to min
x̂∈Cn
‖x̂‖1 s.t. b = Ax̂ with probability at least 1 −

5/n− e−β. Further, Cβ may be chosen as C0(1 + β) for some numerical constant C0.

One example of situation in which the isotropy condition is satisfied is when the rows
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of matrix A are selected from the rows of a matrix
√
nU, where U is unitary [14]. The

isotropy in this situation can be proven by the following argument: suppose all rows

are selected such that A =
√
nU; in this case AHA/n = E[aaH]; since also AHA/n =

(
√
nU)H(

√
nU)/n = UHU = I, then E[aaH] = I . The coherence parameter in this

case is µ(F ) = max
0≤i,j≤n−1

|
√
n ui,j|2 = n max

0≤i,j≤n−1
|ui,j|2. From the theorem it is clear that

the smaller µ(F ) the smaller the number of equations needed. In this case it reaches

its minimum µ(F ) = 1 when the rows of U are maximally spread, that is when all its

elements have absolute value equal 1/
√
n, and reaches its maximum µ(F ) = n when the

rows of U are minimally spread, that is when all but one of its elements have absolute

value different from zero and equal to 1. Therefore the theorem requires that the sensing

vectors be spread so that the number of equations can be low.

In a particular application, U is further decomposed as the product of two other

unitary matrices,

Φ =


φH

0

φH
1
...

φH
n−1

 (2.41)

and

Ψ =

ψ0 ψ1 · · · ψn−1

 (2.42)

such that U = ΦΨ, where the set of vectors {φ0,φ1, ...,φn−1} is called the sensing basis,

and the set of vectors {ψ0,ψ1, ...,ψn−1} is called the sparsifying basis [14]. In this case

the coherence parameter can also be calculated as µ(F ) = nmax
i,j
|〈φi,ψj〉|2, which is

small when there is little similarity between the sensing basis vectors and the sparsifying

basis vectors, and is large when there is considerable similarity between them.

2.3.2 Restricted Isometry Property

Theorem 2.3.1 gives conditions under which it is possible to recover exactly sparse signals.

However, in most applications, the signals we are interested in are only approximately

sparse. The essential questions of compressive sensing then becomes: what matrices A

allow us to accurately recover the approximately s-sparse vector x by searching for the

sparsest solution possible, and what algorithms can we use to search for the sparsest

solution.
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Even though there is an adaptation of Theorem 2.3.1 for approximately sparse signals,

it assumes that the signals are real-valued [13]. In general we are interested in recovering

signals that are complex-valued. Another way of addressing the questions of compressive

sensing is by means of the restricted isometry property (RIP) [24]. Assume that the

columns of A had been normalized to have unit `2-norm. The matrix A is said to satisfy

the RIP of order s with parameter δs if there is some δs ∈ (0, 1) such that

(1− δs)‖x̂‖2
2 ≤ ‖Ax̂‖2

2 ≤ (1 + δs)‖x̂‖2
2 (2.43)

for every s-sparse vector x̂. The following theorem gives conditions under which ac-

curate recovery of approximately s-sparse complex-valued signals is possible using `1-

minimization.

Theorem 2.3.2 [3] Suppose that A satisfies the RIP of order 2s with δ2s ≤ 0.3. Then

the solution x`1 to min
x̂∈Cn
‖x̂‖1 s.t. b = Ax̂ satisfies

‖x`1 − x‖2
2 ≤ C0

‖x− xs‖2
1

s
(2.44)

where xs is the vector obtained by setting all but the s largest entries of x to zero, and

C0 > 0 is a constant given by

C0 = 4

(
1 + δ2s

1− 3δ2s

)2

(2.45)

Similarly to when we discussed the Incoherent Sampling Theorem, matrices con-

structed by selecting rows of a unitary matrix also satisfy the RIP with high probability,

provided that some conditions are met. These conditions are given in Theorem 2.3.3.

Theorem 2.3.3 [3] Let U be any n×n unitary matrix. Choose a subset Ω of cardinality

m
def
= |Ω| uniformly at random from the set {0, ..., n−1}. Further, let A be the m×n matrix

obtained by sampling m rows of U corresponding to the indices in Ω and renormalizing

the resulting columns so they have unit `2-norms. For each integer n, s > 2, and for any

t > 1 and any δs ∈ (0, 1), let

m ≥ (C3 · µ2
U · t · s · log n) · log(t · s · log n) · log2 s (2.46)

then the subsampled matrix A satisfies the RIP of order s with parameter δs with prob-

ability exceeding 1 − 10e−C4·δ2s ·t. Here µU
def
=
√
nmax

i,j
|ui,j| is termed the coherence of the

unitary matrix U, and C3, C4 > 0 are absolute constants that do not depend on m, n,

or s.
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2.3.3 Iteratively Reweighted Least Squares

The iteratively reweighted least squares (IRLS) algorithm [17, 60] uses the result that

the minimizer of the problem  min
x̂∈Cn

x̂HWx̂

s.t. b = Ax̂
, (2.47)

where W is a diagonal matrix, is

xw = W−1AH(AW−1AH)−1b. (2.48)

Suppose an hypothetical case in which the diagonal elements of W could be chosen

as Wii = |x̂i|p−2, for p > 0. Then problem (2.47) would be equivalent to min
x̂∈Cn
‖x̂‖pp

s.t. b = Ax̂
. (2.49)

Even though we cannot choose Wii = |x̂i|p−2, we can choose Wii = |x̂0
i |p−2, where x̂0 is

an approximation to x̂. We can then start an iterative process in which at iteration k > 1

we choose Wii = |x̂k−1
i |p−2, where x̂k−1 is the solution found in the previous iteration.

This process can be shown to converge. In practice, instead of (2.48), one computes

xw = QAH(AQAH)−1b. (2.50)

where Qii = |x̂k−1
i |2−p. Since x̂k−1 is expected to have many elements close to zero, which

may be a problem for the inversion in (2.50), one starts by adding some relatively large

regularization parameter µ to every element in the diagonal of Q, then reduces µ every

time the algorithm converges and the regularization parameter becomes less needed [60].

2.4 Prefiltering Method

The prefiltering method is an image reconstruction technique built upon the theory of

compressive sensing that uses concepts of filterbanks to promote signal recovery [61]. An

analysis filterbank is a signal processing device that decomposes a signal into other sig-

nals, each carrying information from one frequency sub-band of the original signal [86].

Figure 2.3 shows the basic structure of a typical separable two-dimensional analysis fil-

terbank, used in image processing. This filterbank consists of four branches. In both the

first and the second branches, the columns of the input image are low pass filtered, with

the rows of the resulting image being low pass filtered in the first branch and high pass
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filtered in the second. Conversely, in both the third and fourth branches the columns of

the input image are high pass filtered, with the rows of the resulting image being low pass

filtered in the third branch and high pass filtered in the fourth. For this reason, these

branches are labeled respectively LL, LH, HL, and HH. After filtering one dimension,

that dimension is also downsampled by a factor of two, in this filterbank. Figure 2.3 also

shows the sub-bands of the original image spectrum ideally isolated in each branch.

Figure 2.3. Typical separable two-dimensional analysis filterbank, with four
branches. To the right, we represent the sub-bands ideally isolated in each branch.

The low pass filter and the high pass filter of Figure 2.3 are usually chosen so that

the decomposition is invertible. A common choice of low pass filter and high pass filter

are the Haar analysis filters h0 = [1 1]> and h1 = [1 − 1]>. The same decomposition

can also be obtained by convolving the input image with each of the filters

h0h
>
0 =

[
1 1

1 1

]
, h0h

>
1 =

[
1 −1

1 −1

]
,

h1h
>
0 =

[
1 1

−1 −1

]
, h1h

>
1 =

[
1 −1

−1 1

]
,

(2.51)

and then downsampling both the rows and the columns. These filters basically correspond

to a moving average, a derivative in the horizontal direction, a derivative in the vertical

direction and a derivative in the diagonal direction.

The basic idea of the prefiltering method is to reconstruct filtered versions of the

image instead of the image itself, in situations where the filtered versions are sparser

than the original image. If a set of filters that covers the whole spectrum of the image

is used, such as the set of filters (2.51), then the image can be reconstructed from its

filtered versions by a composition stage that basically consists of taking each piece of the

image’s spectrum from the spectrum of one of its filtered versions. This is illustrated in

Figure 2.4. Before any Fourier coefficient from any filtered version is used to compose the

image spectrum, it is divided by the matching Fourier coefficient from the corresponding

filter to undo any distortions caused by the nonideal magnitude and phase responses of
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the filters.

Figure 2.4. Schematic representation of how the spectrums of the filtered versions
are used to obtain the image spectrum in the prefiltering method.

The prefiltering method assumes that one can obtain measurements associated with

filtered versions of the image to be reconstructed. It was developed in the context of

magnetic resonance imaging (MRI), in which case it is straightforward to compute these

measurements, since the data acquired from an MRI scanner correspond to samples in

the frequency domain [58]. They are computed multiplying corresponding points of the

image spectrum and filter spectrum, since, according to the convolution theorem, product

point by point in the frequency domain corresponds to filtering in the space domain [70].

These measurements computation procedure is feasible even in the context of incomplete

information as it is performed point by point whereas if it was performed in the space

domain the convolution would require complete information.

Since in the MRI case the measurements are already samples in the frequency domain,

the Fourier coefficients derived from the filtered versions are used only to fill the gaps

in the image spectrum not sampled during data acquisition. Furthermore, since the LL

filtered version is not expected to be sparse, it is not reconstructed and its part of the

spectrum is obtained from the other filtered versions. It is important to note that the

procedure of Figure 2.4 was idealized thinking of ideal filters. True filters are not sensitive

only to the parts indicated in Figure 2.4. Therefore, in practice, the composition stage

is implemented by choosing for a given part of the spectrum the contribution from the

filtered version whose filter has the largest magnitude at that position. This allows us to

use only a subset of the filters (2.51). Figure 2.5 represents schematically the prefiltering

method in the MRI case, implemented using a subset of the filters (2.51).
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Figure 2.5. Exemplification of the prefiltering method in the MRI case. The data
acquisition process is modeled by a linear system of equations b = Ax, where b
are the measurements, x are the image pixels, and A are selected rows from the
two-dimensional DFT matrix. F{·} represents a filter’s two-dimensional DFT, with
the filter zero padded to the same size as the image, and ◦ represents filtering in
frequency domain.
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3 Methodology

3.1 Compressive Sensing with the Angular Spectrum Repre-

sentation of Diffuse Photon Density Waves

3.1.1 Matrix Formulation of the Imaging Problem with Measurements in the An-

gular Spectrum Representation

In this section, as well as in the next sections, we will use the concepts of circular convo-

lution [72], Kronecker [10, 9, 73, 88] and Hadamard [10, 88] products, Frobenius matrix

norm [10, 73] and the vec [10, 73, 88] and diag [73, 88] operations. Notice that we

use the diag operation defined in [73, 88] that acts on vectors, and not the one defined

in [10, 73, 88] that acts on matrices.

Our objective in this section is to obtain a matrix equivalent for the same relationship

expressed in equation (2.33). For this, consider equation (2.32) again, which we reproduce

here for convenience

Φs(x, y, 0) =

∫ ∞
0

∫ ∞
−∞

∫ ∞
−∞

G(x− x′, y − y′; 0, z′)A(x′, y′, z′)dx′dy′dz′. (3.1)

The Green’s function decays rapidly in every direction, and therefore after some distance

it can be considered approximately zero. Assume that G(x, y; 0, z) is zero whenever

|x| > lg/2, |y| > wg/2, or z > hg, which means G(x, y; 0, z) is nonzero for a rectangular

parallelepiped, whose length, width and height are lg, wg and hg respectively. The region

for which A(x, y, z) is nonzero is basically determined by ∆k2(x, y, z), which we do not

know a priori. However, suppose we can affirm that ∆k2(x, y, z) is zero for |x−x0| > lA/2,

|y−y0| > wA/2, or z > hA, or outside a rectangular parallelepiped of length lA, width wA,

height hA, and locations in the x and y axes equal to x0 and y0. Call this the volume of

interest (VOI). Then, Φs(x, y, 0) is zero for |x−x0| > lA/2+lg/2 or |y−y0| > wA/2+wg/2,

or outside a rectangle of length (lg + lA), and width (wg + wA). This is due to the

convolutions in the x and y dimensions. Suppose we discretize the medium in equal sized

rectangular parallelepiped voxels of length and width h and height } and that the Green’s

function, fluence rate, and perturbation in squared wavenumber are constant over each
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of these voxels. Also suppose that lg = Jg1h, wg = Jg2h, hg = J3}, lA = JA1 h, wA =

JA2 h, hA = J3} and that Jg1 and Jg2 are odd numbers. Define the discrete finite length

functions

G[j1, j2, j3] =


G(Xj1 ,Yj2 ; 0,Zj3), for j1 = 0, ..., Jg1 − 1,

j2 = 0, ..., Jg2 − 1 and

j3 = 0, ..., J3 − 1

0, otherwise

Xj1 = j1h+
h

2
− Jg1h

2
,

Yj2 = j2h+
h

2
− Jg2h

2
,

Zj3 = j3} +
}
2
,

(3.2)

A[j1, j2, j3] =


A(Xj1 , Yj2 , Zj3), for j1 = 0, ..., JA1 − 1,

j2 = 0, ..., JA2 − 1 and

j3 = 0, ..., J3 − 1

0, otherwise

Xj1 = j1h+
h

2
− JA1 h

2
+ x0,

Yj2 = j2h+
h

2
− JA2 h

2
+ y0,

Zj3 = j3} +
}
2
,

(3.3)

where j1 = 0, ..., (J1 − 1), j2 = 0, ..., (J2 − 1) and j3 = 0, ..., (J3 − 1). Many times

in discrete domain, it is the circular convolution that is the most appropriate rather

than the linear convolution. However equation (3.1) implies a linear convolution between

the functions (3.2) and (3.3) as well, in order for the result to be a sampled version of

Φs(x, y, 0). Fortunately, we can make their circular convolution coincide with their linear

convolution by choosing J1 = Jg1 + JA1 − 1 and J2 = Jg2 + JA2 − 1. Then

Φs[j1, j2] =

J3−1∑
j′3=0

J2−1∑
j′2=0

J1−1∑
j′1=0

G[ (j1−j′1) mod J1 , (j2−j′2) mod J2 , j
′
3 ]A[j′1, j

′
2, j
′
3]h2}, (3.4)

where

Φs[j1, j2] = Φs(Xj1 ,Yj2 , 0),

Xj1 = j1h+
h

2
− J1h

2
+ x0,

Yj2 = j2h+
h

2
− J2h

2
+ y0.

30



Equation (3.4) can be seen as a numerical approximation of equation (3.1) using Riemann

sums. The convergence of the Riemann sums to the integrals is not rapid [25], so the grid

intervals h and } have to be made particularly small in order to achieve low approximation

errors. For other more efficient numerical integration methods see [25].

If we take the discrete Fourier transform of equation (3.4) with respect to j1 and j2

sequentially and use the circular convolution theorem we get

Φ̃s[k1, j2] =

J3−1∑
j′3=0

J2−1∑
j′2=0

J1−1∑
j1=0

J1−1∑
j′1=0

G[ (j1 − j′1) mod J1 , (j2 − j′2) mod J2 , j
′
3 ]A[j′1, j

′
2, j
′
3]

 e
−j2πk1j1

J1

h2}

=

J3−1∑
j′3=0

J2−1∑
j′2=0

G̃[ k1 , (j2 − j′2) mod J2 , j
′
3 ]Ã[k1, j

′
2, j
′
3]h2},

Φ̃s[k1, k2] =

J3−1∑
j′3=0

J2−1∑
j2=0

J2−1∑
j′2=0

G̃[ k1 , (j2 − j′2) mod J2 , j
′
3 ]Ã[k1, j

′
2, j
′
3]

 e
−j2πk2j2

J2

h2}

=

J3−1∑
j′3=0

G̃[k1, k2, j
′
3]Ã[k1, k2, j

′
3]h2},

(3.5)

where k1 = 0, ..., J1 − 1 and k2 = 0, ..., J2 − 1. From equation (3.5), the normalized

two-dimensional discrete Fourier transform Φ̃s[k1, k2]/
√
J1J2 of Φs[j1, j2] can be obtained

from
Φ̃s[k1, k2]√

J1J2

=

J3−1∑
j′3=0

√
J1J2

G̃[k1, k2, j
′
3]√

J1J2

Ã[k1, k2, j
′
3]√

J1J2

h2} (3.6)

where G̃[k1, k2, j
′
3]/
√
J1J2 and Ã[k1, k2, j

′
3]/
√
J1J2 are the normalized two-dimensional dis-

crete Fourier transforms of G[j1, j2, j3] and A[j1, j2, j3] with respect to j1 and j2. Define

the matrices

[Aj3 ]j1, j2 = A[j1, j2, j3], (3.7)

[Ãj3 ]k1, k2 =
Ã[k1, k2, j3]√

J1J2

, (3.8)

[G̃j3 ]k1, k2 =
√
J1J2

G̃[k1, k2, j3]√
J1J2

h2}, (3.9)

B̃k1, k2 =
Φ̃s[k1, k2]√

J1J2

(3.10)

and the vectorized versions of such matrices as

xj3 = vec(Aj3), (3.11)
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x̃j3 = vec(Ãj3), (3.12)

g̃j3 = vec(G̃j3), (3.13)

b̃ = vec(B̃). (3.14)

Equation (3.6) can then be written in matrix form as

B̃ =

J3−1∑
j3=0

G̃j3 ◦ Ãj3 (3.15)

and in vectorized form asb̃

 =

diag(g̃0) diag(g̃1) · · · diag(g̃J3−1)




x̃0

x̃1

...

x̃J3−1

 (3.16)

where ◦ is the Hadamard product, or the entrywise product. The process of taking the

normalized discrete Fourier transform of A[j1, j2, j3] with respect to j1, and then taking

the normalized discrete Fourier transform of the result with respect to j2, can be expressed

layer by layer in matrix form as

Ãj3 = FJ1Aj3F
>
J2
, (3.17)

and in vectorized form as

x̃j3 = (FJ2 ⊗ FJ1)xj3 (3.18)

where FJ1 and FJ2 are the normalized DFT matrices of sizes J1 and J2, respectively, ⊗ is

the Kronecker product, and when moving from equation (3.17) to equation (3.18), we used

the identity vec(ABC) = (C> ⊗A) vec(B). Then equation (3.16) can be expanded tob̃

 =

diag(g̃0) diag(g̃1) · · · diag(g̃J3−1)




F2D 0 · · · 0

0 F2D · · · 0
...

...
. . .

...

0 0 · · · F2D




x0

x1

...

xJ3−1

 (3.19)

where F2D = (FJ2 ⊗ FJ1) is the normalized two-dimensional DFT matrix of this case.

This equation can be more compactly written as

b̃ = ΓΘx. (3.20)

where Γ is the matrix to the left, Θ is the matrix to the right and x = [x>0 x>1 · · ·x>J3−1]>.

32



3.1.2 Depth Compensation

Reconstruction algorithms based on equation (3.19) also tend to underestimate the actual

depth of perturbations, as did those based on equation (2.26). This time, it is the order of

magnitude of the elements of diag(g̃j3) that decreases as j3 increases. To counteract this

issue, we use a similar but different method than Section 2.1.2. Recall that G[j1, j2, j3] is

G(Xj1 ,Yj2 ; 0,Zj3) =

− ejk0
√

(Xj1 )2+(Yj2 )2+(0−Zj3 )2

4π
√

(Xj1)2 + (Yj2)2 + (0−Zj3)2
+

ejk0
√

(Xj1 )2+(Yj2 )2+(0−(−Zj3−2zb))2

4π
√

(Xj1)2 + (Yj2)2 + (0− (−Zj3 − 2zb))2
,

(3.21)

where

k0 =
√
α e j(β/2),

α = |k2
0|,

β = arg(k2
0),

(3.22)

and

k2
0 =
−vµa0 + jω

D0

,

v > 0,

µa0 > 0,

D0 > 0,

ω ≥ 0,

(3.23)

whenever it is nonzero. We can write equation (3.21) in terms of the real and imaginary

parts of k0 as

G(Xj1 ,Yj2 ; 0,Zj3) =

− e(−=(k0)+j<(k0))
√

(Xj1 )2+(Yj2 )2+(0−Zj3 )2

4π
√

(Xj1)2 + (Yj2)2 + (0−Zj3)2
+
e(−=(k0)+j<(k0))

√
(Xj1 )2+(Yj2 )2+(0−(−Zj3−2zb))2

4π
√

(Xj1)2 + (Yj2)2 + (0− (−Zj3 − 2zb))2
.

(3.24)

Since k2
0 belongs to the second quadrant of the complex plane, then k0 belongs to the

first quadrant due to the way it was defined in equation (3.22). More precisely <(k0) ≥ 0

and =(k0) > 0, where <(k0) = 0 when ω = 0. Therefore the imaginary part of k0

is responsible for the exponential decay of the Green’s function, while the real part is

responsible for the oscillating behavior. If we ignore the oscillations, we can approximate
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the decay along the z-axis by

λj3 =

∣∣∣∣−e−=(k0)Zj3

4πZj3
+
e−=(k0)(Zj3+2zb)

4π(Zj3 + 2zb)

∣∣∣∣ . (3.25)

Therefore we multiply diag(g̃j3) not by the largest singular value of diag(g̃J3−1−j3), but

by

λj3
−1 =

∣∣∣∣−e−=(k0)Zj3

4πZj3
+
e−=(k0)(Zj3+2zb)

4π(Zj3 + 2zb)

∣∣∣∣−1

. (3.26)

In other words, we multiply Γ to the right by

Λ =


λ−1

0 I 0 · · · 0

0 λ−1
1 I · · · 0

...
...

. . .
...

0 0 · · · λ−1
J3−1I

 , (3.27)

where I is the identity matrix of size (J1 · J2), and 0 is the matrix of zeros of the same

size. When we modify Γ we are essentially assuming an hypothetical situation in which

the sensing matrix and the vector that generated the measurements were others than the

actual ones. Notice that if we simultaneously multiply Γ to the right by Λ and Θx to

the left by Λ−1 we do not modify the measurements, since

ΓΛΛ−1Θx = ΓΘx = b̃. (3.28)

Also notice that

Λ−1Θx = ΘΛ−1x, (3.29)

due to the way that Θ and Λ were defined. Therefore, we assume an hypothetical sensing

mechanism Γ̇Θ and an hypothetical image ẋ such that

b̃ = Γ̇Θẋ, (3.30)

where Γ̇ = ΓΛ and ẋ = Λ−1x. After recovering ẋ∗ by some reconstruction method, we

recover x∗ by the matrix vector product x∗ = Λẋ∗, where * indicates recovered quantities.

3.1.3 Compressive Sensing Guarantees of Accurate Recovery

Multiply both sides of equation (3.30) to the left by a diagonal rescaling matrix Π that

normalizes the rows of Γ̇. This results in

.

b̃ = Γ̈Θẋ, (3.31)
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where
.

b̃ = Πb̃ and Γ̈ = ΠΓ̇. The matrix Θ in equation (3.31) is unitary, while the matrix

Γ̈ has orthonormal rows. Also the nonzero elements of the rows of Γ̈ are evenly space,

while the nonzero elements of the columns of Θ are juxtaposed. Due to this structural

difference, we expect the products of the columns of Θ with the rows of Γ̈ to be low. If

we manage to complete the set of orthonormal row vectors such that the products of the

columns of Θ with these rows remain low, we satisfy theorem 2.3.1 for a small µ(F ) and

theorem 2.3.3 for a small µU .

One way of completing the set of orthonormal row vectors of Γ̈ and keeping its

products with the columns of Θ low is by realizing: first that every row of Γ̈ has J3

nonzero locations that do not overlap with the J3 nonzero locations of any other row, and

second that, considering only the nonzero elements, each row of Γ̈ is a J3-dimensional

vector, and we can find J3 − 1 vectors in CJ3 that are orthogonal to it. The nonzero

elements of the new rows found this way are also evenly spaced, as were the nonzero

elements of the original rows of Γ̈, and therefore we expect the products of these new

rows with the columns of Θ to be as low as before. Figure 3.1 illustrates Γ̈ as a selection

of rows from a unitary matrix found this way.

Theorem 2.3.3 also requires that the columns of the sensing matrix be unit norm. We

can satisfy this requirement by pretending that the sensing matrix that generated the

measurements was Γ̈ΘΩ and the vector that generated the measurements was ẍ = Ω−1ẋ,

where Ω is a diagonal rescaling matrix that normalizes the columns of Γ̈Θ. That is, we

assume that the vector of measurements
.

b̃ was obtained by

.

b̃ = Γ̈ΘΩẍ. (3.32)

We then try to recover ẍ by solving the optimization problem ẍ∗ = arg minˆ̈x∈Cn ‖ˆ̈x‖1

subject to
.

b̃ = Γ̈ΘΩˆ̈x, and ẋ by calculating the matrix vector product ẋ∗ = Ωẍ∗, where

the superscript * indicates recovered quantities.

3.1.4 Efficient Method for the Sensing Matrix and its Hermitian

The matrix Ω that normalizes the columns of Γ̈Θ can be expressed as

Ω =


diag(o0)

diag(o1)
. . .

diag(oJ3−1)

 (3.33)
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Figure 3.1. The proposed sensing matrix can be seen as a selection of rows from
a unitary matrix. More specifically, it can be seen as the product of two matrices,
where the matrix to the right is unitary, and the matrix to the left has rows selected
from a unitary matrix.

where [oj3 ]i , for i = 0, ..., (J1 · J2 − 1) and j3 = 0, ..., (J3 − 1) , is the inverted

norm of the (J1J2j3 + i)’th column of Γ̈Θ. Define Oj3 as the J1 × J2 matrix such that

vec(Oj3) = oj3 . Also, let v and w denote two vectors with the same size as ẍ, and c and

d two vectors with the same size as
.

b̃. Define Vj3 and Wj3 as the J1 × J2 matrices such

that [v>0 ,v
>
1 , · · · ,v>J3−1]> = v and [w>0 ,w

>
1 , · · · ,w>J3−1]> = w where vj3 = vec(Vj3) and

wj3 = vec(Wj3). Also define C and D as the J1 × J2 matrices such that vec(C) = c and

vec(D) = d. With these definitions, the efficient method for the sensing matrix in (3.32)

applied to the vector v transforms the vectors vj3 back into their matrix forms, Vj3 , then

computes

C =

J3−1∑
j3=0

¨̃Gj3 ◦ F{Oj3 ◦Vj3}, (3.34)

and returns C in its vectorized form, c . In equation (3.34), the operator F{·} represents

the normalized two-dimensional DFT, and ◦ the entrywise product. The Hermitian of
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the sensing matrix in (3.32) is
diag(o0) 0 · · · 0

0 diag(o1) · · · 0
...

...
. . .

...

0 0 · · · diag(oJ3−1)




F−1
2D 0 · · · 0

0 F−1
2D · · · 0

...
...

. . .
...

0 0 · · · F−1
2D




diag(¨̃g0)

diag(¨̃g1)
...

diag(¨̃gJ3−1)

 (3.35)

where we used the identity (AB)H = BHAH, and the facts that a diagonal matrix is

equal to its transpose, and the Hermitian of a unitary matrix is equal to its inverse. The

efficient method for the matrix (3.35) applied to the vector d transforms the latter into

the matrix D then computes

Wj3 = Oj3 ◦ F−1

{
¨̃Gj3 ◦D

}
, (3.36)

for j3 = 0, ..., (J3 − 1) , converts each matrix Wj3 into its vectorized form wj3 , and

returns them stacked into w. In the expressions above, (·) indicates complex conjugation,

and F−1{·} the normalized inverse two-dimensional DFT. Note that F and F−1 can

be efficiently computed using the fast Fourier transform and the inverse fast Fourier

transform.

3.1.5 CS with a Sparsifying Transform

Recall that our proposed equation for the DOT forward problem with the measurements

in angular spectrum representation, in its pure form, is the equation (3.20):

b̃ = ΓΘx. (3.37)

This equation can also be written for x in an arbitrary domain:

b̃ = ΓΘT−1Tx. (3.38)

Notice that, if the image is not exactly or approximately sparse in its original domain, it

may be possible to make it exactly or approximately sparse by choosing an appropriate

sparsifying transform T. In the next section, we propose an optode arrangement to make

the real and imaginary parts of the layers of the image more gradient sparse, so that

they are sparsified by three of the Haar filters (2.51). Therefore, consider a sparsifying

transform T that takes the 1-level 2D Haar discrete wavelet transform (DWT) [84] of

each layer of the image.

The 1-level 2D Haar DWT of the layer Aj3 can be obtained by first transforming
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the columns of Aj3 , which can be expressed by WJ1,1Aj3 , where WJ1,1 is the 1-level 1D

Haar DWT matrix of size J1, and then transforming the rows of the result, which can

be expressed by WJ1,1Aj3W
>
J2,1

, where WJ2,1 is the 1-level 1D Haar DWT matrix of

size J2. In matrix-vector product, this can be expressed by (WJ2,1 ⊗WJ1,1)xj3 , where

xj3 = vec(Aj3). Therefore, considering all layers at once:

Tx =


W2D 0 · · · 0

0 W2D · · · 0
...

...
. . .

...

0 0 · · · W2D




x0

x1

...

xJ3−1

 (3.39)

where W2D = WJ2,1 ⊗WJ1,1 is the 1-level 2D Haar DWT matrix of this case. If we

consider only normalized DWTs, then the matrices WJ1,1, WJ2,1, W2D and T are all

orthogonal matrices.

Notice that the matrix ΘT−1 has the same block diagonal structure as Θ. Also

notice that, if we consider only normalized DWTs, then the matrix ΘT−1 is also unitary.

Therefore, we can make adaptations to the system of equations (3.38), similar to those

that we made in the Sections 3.1.2 and 3.1.3 for the system of equations (3.20), to

depth compensate the layers of the matrix Γ and to satisfy the requirements of the

Theorems 2.3.1 and 2.3.3. Furthermore, the efficient methods for the resulting sensing

matrix and its Hermitian are similar to those of Section 3.1.4, but with the inclusion of

the efficient methods for the 1-level 2D Haar DWT matrix and its Hermitian, which are

based on the fast wavelet transform and the inverse fast wavelet transform.

3.2 Prefiltering Method with the Angular Spectrum Rep-

resentation of Diffuse Photon Density Waves

In Section 3.1.1, we had already represented the layers of the discrete signal (3.3) by the

matrices

[Aj3 ]j1, j2 = A[j1, j2, j3]. (3.40)

In this section, we will also define the matrices

[Gj3 ]j1, j2 = G[j1, j2, j3]h2}, (3.41)

and

[B]j1, j2 = Φs[j1, j2], (3.42)
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to represent respectively the layers of the discretized Green’s function, and the scattered

field at the boundary. With these definitions, equation (3.4) can be written as

B =

J3−1∑
j3=0

Gj3 ~ Aj3 , (3.43)

where ~ represents the circular convolution. Filtering both sides of equation (3.43) with

a purely real discrete two-dimensional finite impulse response filter H, zero padded to

the same size as the measurements, we obtain

B ~ H =

(
J3−1∑
j3=0

Gj3 ~ Aj3

)
~ H,

B ~ H =

J3−1∑
j3=0

[(Gj3 ~ Aj3) ~ H] ,

B ~ H =

J3−1∑
j3=0

[Gj3 ~ (Aj3 ~ H)] ,

B ~ H =

J3−1∑
j3=0

{Gj3 ~ [<(Aj3) ~ H + j=(Aj3) ~ H]} .

(3.44)

That is, filtering the measurements by a purely real filter corresponds to filtering sepa-

rately the real and imaginary parts of the layers of the image to be reconstructed. The

same result could also have been obtained in frequency domain, by filtering both sides of

equation (3.15) by the same filter:

B̃ ◦ H̃ =

(
J3−1∑
j3=0

G̃j3 ◦ Ãj3

)
◦ H̃ ,

B̃ ◦ H̃ =

J3−1∑
j3=0

[(
G̃j3 ◦ Ãj3

)
◦ H̃

]
,

B̃ ◦ H̃ =

J3−1∑
j3=0

[
G̃j3 ◦

(
Ãj3 ◦ H̃

)]
,

B̃ ◦ H̃ =

J3−1∑
j3=0

{
G̃j3 ◦

[
F {<(Aj3)} ◦ H̃ + jF {=(Aj3)} ◦ H̃

]}
,

(3.45)

where H̃ is the filter’s frequency response, and F{·} represents the normalized two-

dimensional DFT.

There are some important takeaways from equations (3.44) and (3.45). First of

all, even though the measurements are not samples of the image in frequency domain,

measurements associated with filtered versions of the image can still be obtained by
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filtering the measurements either in space or frequency domain. Second, the signal’s

filtered versions obtained correspond to variants of the signal filtered in the x and y

dimensions only. Third, while in the MRI case the prefiltering method based on the set

of filters (2.51) assumed that the image was gradient sparse, in this case both the real

and imaginary parts of the image have to be gradient sparse for the prefiltering method

to work, because this is the only case in which the filtered versions of the image can also

be sparse.

The signal to be reconstructed is the signal (3.3). It corresponds basically to the

product point by point of the incident field with the perturbation in squared wavenum-

ber. While the perturbation in squared wavenumber is purely real, the incident field

contains overdamped waves as real and imaginary parts [29], meaning they are basically

monotonically decreasing functions in every direction from the source. If the perturba-

tion in squared wavenumber is an homogeneous perturbation of a particular shape, then

the signal (3.3) is proportional to the incident field inside the region delimited by the

perturbation, and zero outside it. This means that at the borders of the perturbation,

both its real and imaginary parts will have large gradients and inside the perturbation

they will have gradients that depend basically on the decay of the incident field.

Suppose we use an optode arrangement such as the one in [20] to image a volume

with a disc perturbation inside it. This setup is represented in Figure 3.2a for a partic-

ular choice of volume, perturbation and optode arrangement dimensions. The real and

imaginary parts of the signal to be reconstructed, at a line parallel to the x axis passing

through the center of the disc perturbation, is shown in Figure 3.2b. Lines with different

orientations or at different layers would show similar profiles. As indicated, the real and

imaginary parts still have large gradients inside the perturbation. This is due to the

medium being illuminated by a single source, which causes the incident field to be far

from uniform at any plane parallel to the surface. One option to make it more uniform,

is to turn on several sources in different locations at the same time, for example using the

optode arrangement of Figure 3.3a. For this arrangement, the real and imaginary parts

are more gradient sparse, as can be inferred from Figure 3.3b.

The advantage of the optode arrangement of Figure 3.3a compared to one that con-

tains sources in the middle of the arrangement is that both the charge coupled device

(CCD) camera and the sources can be closer to the surface. For example, for the ar-

rangement of Figure 3.2a to be possible, it is necessary to move the source away from

the surface, then rotate it 10◦ from the surface normal in order to give space for a CCD

camera that is also positioned at approximately the same distance from the surface as

the source. This way the beam of light, which is assumed collimated, can intersect the

surface at the middle of the area imaged by the CCD camera [20].
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(a)

(b)

Figure 3.2. (a) Imaging setup based on [20]. Each square represents 64 detectors
and the diamond represents a source. The shaded volume corresponds to the imaged
volume. The blue disc represents a perturbation in absorption coefficient. The real
and imaginary parts of the image to be reconstructed along the red line crossing
the perturbation is shown in (b).
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(a)

(b)

Figure 3.3. (a) Proposed imaging setup. Each square represents 64 detectors and
each diamond represents a sources. The shaded volume corresponds to the imaged
volume. The blue disc represents a perturbation in absorption coefficient. The real
and imaginary parts of the image to be reconstructed along the red line crossing
the perturbation is shown in (b).
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The problem of composing the image from its filtered versions can be analyzed layer

by layer. In theory the spectrum of each layer can be obtained from its filtered versions as

indicated in Figure 2.4. In practice however, the LL filtered version is not reconstructed

because it is not expected to be sparse. The lack of a LL filtered version can be circum-

vented by realizing that the filters are not completely insensitive to the other parts of the

spectrum, even though they are particularly sensitive to specific parts. The spectrums

of the filters (2.51) are nonzero for the regions indicated in Figure 3.4. Therefore, at

these regions, the spectrums of the filtered versions can be divided point by point by the

corresponding filter spectrum, and the coefficients found can be used to fill the unknown

coefficients of the image spectrum.

The prefiltering method can be implemented even using only a single filter. However,

there are regions from the spectrum in which only specific filters are nonzero, and therefore

only them can provide coefficients for that regions. That is the case for example of the zero

frequency component, which only the LL filtered version can provide. Therefore, every

time a filter is removed from the prefiltering method, a specific part of the spectrum is

lost. Images are still recovered by assuming zero the unknown parts of the spectrum,

but errors are introduced for every lacking filtered version. In the case that only the LL

filtered version is not recovered, the zero frequency component can still be recovered by

adjusting the background level to have zero mean, thus reducing the reconstruction error.

The image spectrum is composed from the filtered versions respecting the following

rule: the filter with largest magnitude response at a given region defines the filtered

version used to reconstruct this region. Therefore, for example, if at a given region the

HH filter has a larger magnitude response than the LH and HL filters, then the HH

filtered version will be used to reconstruct this region. This results in the divisions of

the image spectrum among the filtered versions depicted in the Figures 3.5a and 3.5b,

when only the LH and HL filters are used, and when the LH, HL and HH filters are used,

respectively.

After selecting which filtered version will provide the Fourier coefficients for which

part of the spectrum, these coefficients must be divided by the matching coefficients

from the corresponding filter. Since the filter spectrum has very small coefficients close

to the regions it is zero, the filtered version coefficients should also be close to zero at

these regions. If they are just a small amount larger than they should be, then they can

explode when we divide by the filter coefficients. To avoid this, we approximate to zero

any filtered version coefficient with absolute value below a certain threshold δ.
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Figure 3.4. The domain of the DFTs of the set of filter (2.51), divided in 16
rectangular regions. The regions for which the DFTs of the filters h1h

>
1 , h1h

>
0 ,

h0h
>
1 and h0h

>
0 are nonzero are indicated by HH, HL, LH, and LL respectively.

The filters are assumed to be zero padded to size J1 × J2.
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(a)

(b)

Figure 3.5. Divisions of the image spectrum among the filtered versions when:
(a) only the LH and HL filters are used; (b) the LH, HL and HH filters are used.
The regions labeled with an LH are reconstructed using the LH filtered version,
the regions labeled with an HL are reconstructed using the HL filtered version,
and so on.
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3.3 Numerical Experiments

In Chapter 4, we will present results from simulation experiments designed to evaluate the

methods of Sections 3.1 and 3.2. In these experiments, we use the light properties and the

medium optical parameters listed in Table 3.1, which were based on the references [37, 36].

We will simulate perturbations in absorption coefficient inside two differently sized

volumes of interest (VOIs). The perturbations in the first volume, which we will refer to

as the small volume, will be reconstructed assuming the geometric parameters listed in the

Table 3.2. On the other hand, the perturbations in the second volume, which we will refer

to as the large volume, will be reconstructed assuming the geometric parameters listed

in the Table 3.3. In both cases, we will assume that there are five sources equally spaced

in each side of the detection array, resulting in a total of twenty sources. The Figures 3.6

and 3.7 illustrate the small and the large volumes and the optode arrangements used to

reconstruct them.

The perturbations in absorption coefficient will have the shapes specified in the Fig-

ure 3.8. Each image that will be reconstructed will contain one or more of these perturba-

tions. The properties of all the considered images are listed in Table 3.4. Notice that the

images reconstructed correspond to the VOI zero padded in the first and second dimen-

sions, because these are the images reconstructed by the algorithms of the Sections 3.1

and 3.2.

In the next chapter, we will first report specific reconstructions of perturbations,

either in the small volume or in the large volume. In the graphs that we will report later,

we will consider only perturbations in the small volume to reduce the computational

load, but in these initial reconstructions, we will also consider perturbations in the large

volume.

Our primary aim with these initial reconstructions is to confirm what we predicted on

Section 3.1: 1) that specific exactly sparse signals could be perfectly recovered using the

proposed technique, and 2) that specific approximately sparse signals could be accurately

recovered using the proposed technique. The approximately sparse signals that we will

try to reconstruct correspond to the filtered versions of the image, in the context of the

prefiltering method. Our secondary aim is to verify the effectiveness of the complete

prefiltering method described in the Section 3.2 using all three of the LH, HL and HH

filters.

In case of perfect recovery of an exactly sparse signal, the error would be zero, but

since the reconstruction algorithms are iterative, it is unlikely that we will get a zero

error. However, if we get a signal to error ratio (SER) of a few tens of dBs, and the

`1 norm of the reconstructed signal is higher but close to that of the true signal, this
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Table 3.1. Light and medium properties used in the simulations.

Parameter Value Units

v 2.189781× 1010 cm/s
µa0 0.041 1/cm
µ′s0 10 1/cm
ω 2π(200× 106) rad/s

Reff 0.4664 -
∆µa 0.139 1/cm
D0 7.29927× 108 cm2/s
zb 0.18321 cm
`tr 0.1 cm

∆k2 -4.17 1/cm2

Table 3.2. Geometric parameters assumed when reconstructing perturbations in
the small volume.

Parameter Value Units

h 0.012 cm
JA1 , J

A
2 86 -

lA, wA 1.032 cm
Jg1 , J

g
2 171 -

lg, wg 2.052 cm
J1, J2 256 -

(lg + lA), (wg + wA) 3.084 cm
} 0.16 cm
J3 6 -

hA, hg 0.96 cm
x0, y0 0 cm

Table 3.3. Geometric parameters assumed when reconstructing perturbations in
the large volume.

Parameter Value Units

h 0.035 cm
JA1 , J

A
2 86 -

lA, wA 3.01 cm
Jg1 , J

g
2 87 -

lg, wg 3.045 cm
J1, J2 172 -

(lg + lA), (wg + wA) 6.055 cm
} 0.15 cm
J3 20 -

hA, hg 3 cm
x0, y0 0 cm
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Figure 3.6. A representation of the small volume, shaded, and the optode arrange-
ment used to reconstruct it. Each square represents 64 detectors and each diamond
represents a source. This optode arrangement has a total of 65536 detectors and 20
sources. The perturbation in absorption coefficient is only illustrative. Its actual
shape, size and location will depend on the experiment.
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Figure 3.7. A representation of the large volume, shaded, and the optode arrange-
ment used to reconstruct it. Each square represents 64 detectors and each diamond
represents a source. This optode arrangement has a total of 29584 detectors and 20
sources. The perturbation in absorption coefficient is only illustrative. Its actual
shape, size and location will depend on the experiment.

Figure 3.8. Generic representation of the perturbations in absorption coefficient
that will be considered in Chapter 4. Some perturbations will have the shape of
the rectangular prism to the left, and others will have the shape of the hexagonal
prism to the right. In the top left corner and the bottom left corner are the frontal
and top views of the rectangular prism, respectively, and in the top right corner
and the bottom right corner are the frontal and top views of the hexagonal prism,
respectively.
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Table 3.4. Properties of the images of perturbation in absorption coefficient that
will be considered in Chapter 4. d1 and d2 refer to the dimensions specified in
Figure 3.8 for the rectangular prism and the hexagonal prism perturbations.

image VOI object object object object centroid object image image
identifier size shape d1(cm) d2(cm) x, y (cm) z (cm) layers sparsity size†

I S rect. 0.1 0.1 0 0.56 1 256 393216
II S rect. 0.125 0.2 0 0.48 2 800 393216
III S rect. 0.2 0.2 0 0.56 3 3468 393216
IV S rect. 0.3 0.3 0 0.56 3 7500 393216
V S rect. 0.4 0.4 0 0.56 4 21780 393216
VI L rect. 0.3 0.2 0 1.5 2 648 591680
VII L rect. 0.6 0.3 0 1.5 4 4624 591680
VIII S hex. 0.1 0.1 0 0.56 1 180 393216
IX S hex. 0.2 0.2 0 0.56 3 2088 393216
X S hex. 0.3 0.3 0 0.56 3 4644 393216
XI S hex. 0.4 0.4 0 0.56 4 13688 393216

XII S
rect. 0.05 0.05 −0.25 0.359 1

128 393216
rect. 0.05 0.05 +0.25 0.679 1

XIII S
rect. 0.1 0.1 −0.25 0.359 1

545 393216
rect. 0.1 0.1 +0.25 0.679 1

XIV S
rect. 0.15 0.15 −0.25 0.359 2

2500 393216
rect. 0.15 0.15 +0.25 0.679 2

XV S
rect. 0.2 0.2 −0.25 0.359 2

4624 393216
rect. 0.2 0.2 +0.25 0.679 2

† This size corresponds to the VOI zero padded in the first and second dimensions. This is the 3D image
actually reconstructed by the algorithms.
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indicates that the algorithm is converging to the true solution.

If, however, the `1 norm is lower than that of the true signal, then the algorithm will

not converge to the true solution. That is because the IRLS algorithm searches for the

solution with minimum `1 norm inside the space of solutions of the system of equations.

Therefore if, in any iteration of the IRLS algorithm, we get a signal with `1 norm lower

than the true signal, then the true solution is not the one with lowest `1 norm.

The case for approximately sparse signals is particularly different. The theory does

not predict exact recovery of approximately sparse signals, but it predicts the recovery

of specific approximately sparse signals with a certain accuracy. We can compute the

predicted error bounds from the equations (2.44) and (2.45), to check if the error is

below predicted value.

In the next chapter, we also report graphs intended to evaluate the proposed tech-

niques under different amounts of noise, and to compare different variants of the proposed

techniques with Tikhonov regularization. These different variants correspond to CS with

and without the sparsifying transform of Section 3.1.5, and to the prefiltering method

using different combinations of the Haar filters.

3.3.1 General Procedures

We start our experiments by generating the image of perturbation in absorption coef-

ficient. We start with an image that is zero everywhere, and then define one or more

regions where the perturbation in absorption coefficient is 0.139 cm−1. The regions that

we consider have the shapes illustrated in Figure 3.8.

We calculate the sparsity of the image to be reconstructed by counting the nonzero

elements of the image of perturbation in absorption coefficient. Even though the images

that we will primarily reconstruct are of perturbation in squared wavenumber multiplied

by the negative of the incident field and not of perturbation in absorption coefficient,

their sparsities are the same. Strictly speaking the filtered versions of the image to be

reconstructed also have approximately the same sparsity as the image itself, but their

advantageous property is that they can be well approximated by a few of its nonzero

elements, the ones with relatively large absolute values. We estimate how many elements

of the filtered versions have relatively large absolute values by filtering the perturbation

in absorption coefficient and counting the nonzero elements, even though the filtered

versions we will reconstruct are of perturbation in squared wavenumber multiplied by the

negative of the incident field and not of perturbation in absorption coefficient, because

the locations we expect the gradients to be largest are the same.

We then compute the nonzero values of the discretized Green’s function (function (3.2))
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by equation (3.21). In order to simulate measurements, we also need to define the values

of the signal to be reconstructed (signal (3.3)) inside the VOI, which are

A(Xj1 , Yj2 , Zj3) = −∆k2(Xj1 , Yj2 , Zj3)Φ
i(Xj1 , Yj2 , Zj3), (3.46)

for j1 = 0, ..., (JA1 − 1), j2 = 0, ..., (JA2 − 1), and j3 = 0, ..., (J3 − 1). The perturbation in

squared wavenumber and incident field inside the VOI are respectively

∆k2(Xj1 , Yj2 , Zj3) =
−v∆µa(Xj1 , Yj2 , Zj3)

D0

, (3.47)

and

Φi(Xj1 , Yj2 , Zj3) =

Q∑
q=1

Φi
q(Xj1 , Yj2 , Zj3), (3.48)

where the incident field is the result of Q sources turned on at the same time. We simulate

each source as point source with unit amplitude and zero phase moved one transport mean

free path length from the boundary to inside the medium. Therefore, the incident field

for each source can be computed by

Φi
q(Xj1 , Yj2 , Zj3) =

−v
D0

(
− ejk0

√
(Xj1−Xq)2+(Yj2−Yq)2+(Zj3−`tr)2

4π
√

(Xj1 − Xq)2 + (Yj2 − Yq)2 + (Zj3 − `tr)2

+
ejk0
√

(Xj1−Xq)2+(Yj2−Yq)2+(Zj3−(−`tr−2zb))2

4π
√

(Xj1 − Xq)2 + (Yj2 − Yq)2 + (Zj3 − (−`tr − 2zb))2

)
,

(3.49)

where Xq and Yq are the coordinates of source q in the x-y plane, and `tr is the transport

mean free path length.

We then obtain the matrices (3.9) by taking the normalized DFT of the Green’s

function in the first and second dimensions and multiplying the result by h2}
√
J1J2 . In

order to compensate for the decay in the order of magnitude of G̃j3 as j3 increases, we

redefine these matrices as
˙̃Gj3 =

G̃j3

λj3
, (3.50)

and simultaneously redefine the layers of the image as

Ȧj3 = Aj3λj3 , (3.51)

so the measurements are unchanged. We next normalize the rows of the matrix Γ̇ by

making

[ ¨̃Gj3 ]k1, k2 =
[ ˙̃Gj3 ]k1, k2√

J3−1∑
j3=0

(
[ ˙̃Gj3 ]k1, k2

)2
(3.52)

52



and the columns of the matrix Γ̈Θ by making the diagonal elements of matrix (3.33)

equal to

[oj3 ]i = ‖ ¨̃Gj3 ◦ F{Ei}‖F

−1

(3.53)

where Ei is the J1 × J2 matrix such that vec(Ei) = ei , where ei is the i’th column of

the identity matrix of size (J1 · J2). Recall that ‖ · ‖F represents the Frobenius matrix

norm. We also have to redefine the elements of the image as

[Äj3 ]j1, j2 =
[Ȧj3 ]j1, j2
[Oj3 ]j1, j2

, (3.54)

where Oj3 is the J1 × J2 matrix such that vec(Oj3) = oj3 . Finally we simulate measure-

ments using the efficient method for the sensing matrix

˙̃B =

J3−1∑
j3=1

¨̃Gj3 ◦ F{Oj3 ◦ Äj3}, (3.55)

where F{·} and ◦ represent respectively the normalized two-dimensional DFT and the

Hadamard, or entrywise, product. To obtain measurements associated with a version of

the image modified by a filter H, we multiply ˙̃B point by point with the filter’s frequency

response H̃. With the new measurements occupying the place of ˙̃B, the steps for the

reconstruction of a filtered version are the same as those for the reconstruction of the

image directly.

Note that, in our simulations, we generate directly
.

b̃ or, in other words, rescaled

frequency domain measurements of scattered fluence rate. In practice however, we would

obtain space domain measurements of scattered fluence rate mixed with incident fluence

rate. Therefore, we would have to subtract the estimated incident fluence rate at the de-

tectors from the measurements, take the normalized two-dimensional DFT, and perform

the rescaling

[ ˙̃B]k1, k2 =
[B̃]k1, k2√

J3−1∑
j3=0

(
[ ˙̃Gj3 ]k1, k2

)2
, (3.56)

to obtain the rescaled frequency domain measurements of scattered fluence rate
.

b̃.

Next, we attempt to recover the image, or filtered versions of it, using the IRLS

algorithm. Let the superscript * indicade recovered quantities. After recovering the

image or one of it’s filtered versions, we undo the side effects of column normalization by

performing the set of operations

[Ȧ∗j3 ]j1, j2 = [Ä∗j3 ]j1, j2 · [Oj3 ]j1, j2 , (3.57)
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and the side effects of depth compensation by

A∗j3 =
Ȧ∗j3
λj3

. (3.58)

In case A∗j3 , Ȧ∗j3 and Ä∗j3 refer to a filtered version, we note that it is A∗j3 that must

be used in the composition stage of the prefiltering method, never Ä∗j3 . Finally, when

A∗j3 already refers to the unfiltered image, we can estimate the perturbation in squared

wavenumber and the perturbations in absorption coefficient inside the VOI by

∆k2∗(Xj1 , Yj2 , Zj3) =
A∗(Xj1 , Yj2 , Zj3)

−Φi(Xj1 , Yj2 , Zj3)
(3.59)

and

∆µa
∗(Xj1 , Yj2 , Zj3) =

∆k2∗(Xj1 , Yj2 , Zj3)

(−v/D0)
, (3.60)

for j1 = 0, ..., (JA1 − 1), j2 = 0, ..., (JA2 − 1), and j3 = 0, ..., (J3 − 1).

In the next chapter, when we calcular the SER(∆k2∗,∆k2), we consider only the

values inside the VOI. When we calculate SER(ẍ∗, ẍ) we consider also the values outside

of the VOI.

3.3.1.1 CS with a Sparsifying Transform

The steps we follow in the CS reconstructions with the sparsifying transform T defined

in the Section 3.1.5 are very similar to the steps we follow in the CS reconstructions with

no sparsifying transform. The only remarks are: right after calculating the signal (3.3),

we transform its layers to the wavelet domain. As a consequence, every instance of F{·}
is replaced by F{W−1{·}} and every instance of F−1{·} is replaced by W{F−1{·}} in

the efficient methods for the sensing matrix and its Hermitian, where W{·} and W−1{·}
represent, respectively, the efficient method for the normalized 1-level 2D Haar DWT,

and efficient method for the normalized inverse 1-level 2D Haar DWT. The elements of

the matrix (3.33) cannot be computed by (3.53) anymore. Instead, we calculate them by

the method that is always applicable, which is by applying the efficient method for the

sensing matrix on each column of the appropriate identity matrix, and then taking the

norms of the resulting vectors. Finally, after recovering the layers of the signal in (3.58),

we convert them back from the wavelet domain to the space domain, before continuing

from equation (3.59) onwards.
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3.3.1.2 Tikhonov Regularization

In some of the experiments, we report reconstructions of Tikhonov regularization as well.

The parameters used in these reconstructions are not different than the parameters used in

the other reconstructions (Tables 3.1 and 3.2), but some of the specific procedures that we

developed for our proposed techniques are not repeated in the Tikhonov reconstructions.

We opted to do so both because it gave better results and to comply with the state of

the art.

In our proposed techniques, we assume that all sources are turned on, in phase, and

at the same time, while the detectors take the measurements. We also assume that the

measurements are converted from space to spatial frequency domain after acquisition. In

our reconstructions using Tikhonov regularization, on the other hand, we assume that the

sources are turned on separately, instead of at the same time, and that the measurements

remain in space domain.

Notice that in the first case, the number of measurements is equal to the number of

detectors, while in the second case, the number of measurements is equal to the number of

detectors times the number of sources. This means that if we use with Tikhonov the same

optode arrangement that we use with the other techniques, the number of measurements

for this technique will be much greater than for the other techniques. Therefore, in order

to make the number of measurements equal for all techniques, we use with Tikhonov

the optode arrangement of Figure 3.9. This optode arrangement was obtained from the

optode arrangement of Figure 3.6 by removing the center sources of each side, and taking

one in every 16 detectors.

Mathematically, the system of equations that we use with Tikhonov regularization is

similar to the system of equations (2.26), but with the definitions
am,n = −G[ (j1 − j′1) mod J1 , (j2 − j′2) mod J2 , j

′
3 ]Φi

q[j
′
1, j
′
2, j
′
3]h2}

bm = Φs
q[j1, j2]

xn = ∆k2[j′1, j
′
2, j
′
3]

(3.61)

where Φs
q[j1, j2] is the signal (3.4) when only the source q is turned on, Φi

q[j
′
1, j
′
2, j
′
3] and

∆k2[j′1, j
′
2, j
′
3] is the decomposition of the signal (3.3) when only the source q is turned on

(both are zero whenever A[j′1, j
′
2, j
′
3] is zero), G[j1, j2, j3] is the signal defined in (3.2),

n is the index of the triple (j′1, j
′
2, j
′
3), m is the index of the triple (j1, j2, q), q ∈ {0, ..., 15},

j′1 ∈ {0, ..., 255}, j′2 ∈ {0, ..., 255}, j′3 ∈ {0, ..., 5}, j1 ∈ {3, 7, 11, 15, ..., 255}, and

j2 ∈ {3, 7, 11, 15, ..., 255}.

The resulting matrix A associated with this system of equations is too large to be

stored, so we use an efficient method that can be described by: for source q, multiply point
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by point the input vector with the vectorized incident field; apply the efficient method

described in Section 3.1.4 (for Ω an identity matrix); before vectorizing the result, take

the normalized inverse two-dimensional DFT; select the values corresponding to where

the measurements are taken; vectorize the result; repeat this process for every other

source and stack the results in a single vector.

The efficient method that we use for AH can be described by: for source q, take the

subvector of the input vector from (4096q) to (4096q + 4095); interleave this vector with

zeros where measurements were not taken; apply the method described in Section 3.1.4

for the matrix (3.35) (for Ω an identity matrix), but before the first product point by

point, take the normalized two-dimensional DFT; multiply the result point by point with

the conjugate of the incident field; repeat this process for every source and sum all the

resulting vectors.

The depth compensation method we use with Tikhonov is again one of the present in

the DOT literature, and not the one we use in our proposed techniques. More specifically,

we use the depth compensation described in the Section 2.1.2. When the matrix A is too

large to be stored, we have to use an efficient method to calculate the largest singular

value of W`, for ` = 0, ..., L − 1. We use the power method [59] to compute the largest

eigenvalue of the matrix WH
` W`, and take the square root of the result to obtain the

largest singular value of W`. In every iteration of the power method, we use efficient

methods for W` and WH
` that we derived from the efficient methods for A and AH.

In experiments that we performed, the values of γ that resulted in the highest SERs

were about γ = 0.5. Therefore, we use this exponent of the singular values in the depth

compensation of the matrix A.

Call Ȧ the depth compensated matrix. The efficient method for Ȧ is simply the

previously described method for A, preceded by the efficient method for the matrix (2.28),

which is simply a product point by point. The efficient method for ȦH, on the other hand,

is simply the previously described method for AH, but followed by the efficient method

for the matrix (2.28).

We used the L-curve method to determine the Tikhonov regularization parameter.

For each image that we intended to reconstruct using Tikhonov regularization, we varied

the regularization parameter from 10−0, 10−1, 10−2, . . . until 10−10 and visually chose the

value closest to the corner of the L-curve. However, the L-curve had no visual corner

in the cases that the noise was zero. This may happen when the uncorrelated noise in

the measurements does not dominate the highly correlated geometry noise in the forward

matrix [47]. Therefore, in these cases we chose the value of λ found by the L-curve method

when the noise was close to zero. More specifically, when the standard deviation of the

noise in the real and imaginary parts of the measurements was 1.67% the value of the real
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or imaginary part. As a consequence, in the reconstructions of the next chapter, we use

λ = 10−8 in all cases that the noise is zero. We also use λ = 10−8 when we reconstruct

the images II and III with 1.67% noise and when we reconstruct the image II with 3.33%

noise. In all other reconstructions with noise we use λ = 10−7.

Figure 3.9. Optode arrangement used with Tikhonov regularization. Each square
represents one detector, and each diamond represents one source. This optode
arrangement has a total of 4096 detectors and 16 sources.
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4 Results and Discussion

4.1 Reconstructions of Perturbations in the Small Volume

In this section, we report the reconstructions of the images I and IV of Table 3.4 using the

methods of Sections 3.1 and 3.2 and the parameters of Tables 3.1 and 3.2. The image I

was selected to emphasize the capabilities of CS and the image IV, the capabilities of the

prefiltering method. In the reconstructions of this section, we did not use any sparsifying

transform and we used all three of the LH, HL and HH filters in the prefiltering method.

Also, the regularization parameter of the IRLS algorithm was initialized to 1 and reduced

by a factor of 10 after every 30 iterations. The algorithm was interrupted when the

regularization parameter reached 10−7.

The reconstruction of the image I using CS resulted in an SER(ẍ∗, ẍ) of 55.2 dB,

with ‖ẍ∗‖1 = 14.982 and ‖ẍ‖1 = 14.976. The facts that the SER is a few tens of dBs, the

`1 norm is close to that of the true signal, and that the reconstructed image looks like

the true image, as can be seen from Figures 4.1a and 4.1b, suggest that the algorithm

was converging to the true solution. This indicates that the proposed formulation of the

DOT problem does indeed satisfy the requirements for CS. In other words, this indicates

the sensing matrix satisfy the RIP of order 2s with δ2s ≤ 0.3 for this level of sparsity.

Other parameters related to this reconstruction are given in Table 4.1.

The reconstruction of the image IV using CS resulted in an SER(ẍ∗, ẍ) of -0.8 dB,

with ‖ẍ∗‖1 = 359.87 and ‖ẍ‖1 = 442.27. Since the `1 norm is lower than that of the true

signal, we can affirm that the algorithm was converging to a solution different than the

true solution. This suggests that the level of sparsity of this image is too high for this

method and this number of measurements or, in other words, that the sensing matrix

does not satisfy the RIP of order 2s with δ2s ≤ 0.3 for this level of sparsity. Parts of the

original and recovered images for this reconstruction are given in Figures 4.2a and 4.2b,

while other parameters are given in Table 4.2.

The reconstruction of the image IV using the prefiltering method resulted in an

SER(∆k2∗,∆k2) of 8.5 dB. this is a great improvement in SER compared to CS, and the

reconstructed image looks much more like the true image, as can be seen in Figure 4.3b.

other parameters related to this reconstruction are given in the Table 4.3. The filtered
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versions were reconstructed with SERs 8.5 dB, 8.5 dB and 12.0 dB. Table 4.3 also includes

the squared `2 norm of the error of reconstruction for each filtered version, and error

bounds obtained using the equations (2.44) and (2.45), with s calculated as described in

Section 3.3, and the pessimistic estimate δ2s = 0.3.

The reconstruction errors satisfy the bounds guaranteed by the RIP of order 2s

with parameter δ2s = 0.3. In fact, they might satisfy the bounds for a much lower

parameter, since the reconstruction errors were much lower than the calculated bounds.

Theorem 2.3.3 states that, if the number of measurements is high enough, then the sensing

matrix satisfies the RIP of order 2s with parameter δ2s ≤ 0.3 with high probability, and

Theorem 2.3.2 states that, if the RIP of order 2s with parameter δ2s ≤ 0.3 is satisfied, then

the minimizer recovers the signal with an error bound that depends on δ2s. Therefore,

since all the reconstruction errors were lower than the calculated error bounds, we have

reasons to assume that the sensing matrix does indeed satisfy the RIP of order 2s with

parameter δ2s ≤ 0.3.

Table 4.1. Parameters related to the reconstruction of the image I using CS.

SER(ẍ∗, ẍ) SER(∆k2∗,∆k2) ‖ẍ∗‖1 ‖ẍ‖1

55.2 dB 55.1 dB 14.982 14.976

Table 4.2. Parameters related to the reconstruction of the image IV using CS.

SER(ẍ∗, ẍ) SER(∆k2∗,∆k2) ‖ẍ∗‖1 ‖ẍ‖1

-0.8 dB -1.0 dB 359.87 442.27

Table 4.3. Parameters related to the reconstruction of the image IV using the
prefiltering method.

SER(ẍ∗, ẍ) SER(∆k2∗,∆k2) ‖ẍ∗ − ẍ‖2
2

C0‖ẍ− ẍs‖2
1

s
s

LH 8.5 dB 8.5 dB† 0.2 6.1 306
HL 8.5 dB 8.5 dB† 0.2 6.1 306
HH 12.0 dB 8.5 dB† 8.2× 10−4 0.2 12

† This value corresponds to the composed image using all the filtered versions.
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(a)

(b)

Figure 4.1. (a) Layers of the VOI of the image I. (b) Reconstructed layers of the
VOI of the image I using CS. Black indicates a perturbation in squared wavenumber
of 10 cm−2 and white a perturbation in squared wavenumber of −10 cm−2.
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(a)

(b)

Figure 4.2. (a) Layers of the VOI of the image IV. (b) Reconstructed layers of the
VOI of the image IV using CS. Black indicates a perturbation in squared wavenum-
ber of 10 cm−2 and white a perturbation in squared wavenumber of −10 cm−2.
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(a)

(b)

Figure 4.3. (a) Layers of the VOI of the image IV. (b) Reconstructed layers of the
VOI of the image IV using the prefiltering method. Black indicates a perturbation in
squared wavenumber of 10 cm−2 and white a perturbation in squared wavenumber
of −10 cm−2.
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4.2 Reconstructions of Perturbations in the Large Volume

In this section, we report the reconstructions of the images VI and VII of Table 3.4 using

the methods of Sections 3.1 and 3.2 and the parameters of Tables 3.1 and 3.3. The images

were again selected to emphasize the capabilities of CS and the prefiltering method. In

the reconstructions of this section, we did not use any sparsifying transform and we used

all three of the LH, HL and HH filters in the prefiltering method. Also, the regularization

parameter of the IRLS algorithm was initialized to 1 and reduced by a factor of 10 after

every 30 iterations. The algorithm was interrupted when the regularization parameter

reached 10−12.

The VOI size in this section was selected to better approximate the conditions in

brain imaging. In brain imaging the imaged region must reach at least about 1.5 cm in

order for brain cortex activation to be detectable. This minimum distance is based on

the facts that the depth of maximum sensitivity is approximately half the source detector

separation [81], and commonly used source detector distances that result in clear brain

activity are between 3 and 4 cm [89].

The reconstruction of the image VI using CS resulted in an SER(ẍ∗, ẍ) of 20.8 dB.

These and other parameters are listed in Table 4.4. This value of SER and the `1 norm of

the reconstructed signal suggest that the algorithm was converging to the true solution.

We emphasize, however, that to reach this level of SER we had to reduce the minimum

regularization parameter of the IRLS algorithm compared to the value we used in the

previous section.

Also, we had to reduce the size of the Green’s function relative to the size of the

VOI in order to achieve higher levels of SER. When reconstructing the small VOI, we

assumed that the Green’s function had roughly twice the size of the VOI in the x and y

dimensions. However, when reconstructing the large VOI, we assumed that the Green’s

function had roughly the same size as the VOI in the x and y dimensions. This is

because the region where the Green’s function was considered nonzero was already large

enough. Considering the Green’s function nonzero for a region larger than this resulted

in a decrease in the reconstruction SER.

The reconstructions of the image VII using CS and using the prefiltering method

resulted in the parameters listed in the Tables 4.5 and 4.6, respectively. Again, we selected

an image which CS was not capable of recovering. All filtered versions of this image were

reconstructed with an SER of 10.5 dB. The final SER after the composition stage and

after all other steps was SER(∆k2∗,∆k2) = 9.3 dB. The filtered versions reconstruction

errors and the bounds predicted by the RIP of order 2s with parameter δ2s = 0.3 are

listed in Table 4.6. Since all the reconstruction errors were below the predicted bounds,

this suggests that the RIP of order 2s with parameter δ2s = 0.3 is satisfied by the sensing

63



matrix.

The portion of the image VI corresponding to the VOI is depicted in Figures 4.4a.

This same portion as reconstructed by CS is shown in Figure 4.4b. The portion of the

image VII corresponding to the VOI is depicted in Figure 4.5a or 4.6a. This same portion

as reconstructed by CS is shown in Figure 4.5b, and as reconstructed by the prefiltering

method, is shown in Figure 4.6b.

Table 4.4. Parameters related to the reconstruction of the image VI using CS.

SER(ẍ∗, ẍ) SER(∆k2∗,∆k2) ‖ẍ∗‖1 ‖ẍ‖1

20.8 dB 19.7 dB 6.850× 10−2 6.847× 10−2

Table 4.5. Parameters related to the reconstruction of the image VII using CS.

SER(ẍ∗, ẍ) SER(∆k2∗,∆k2) ‖ẍ∗‖1 ‖ẍ‖1

-2.7 dB -2.1 dB 0.425 0.530

Table 4.6. Parameters related to the reconstruction of the image VII using the
prefiltering method.

SER(ẍ∗, ẍ) SER(∆k2∗,∆k2) ‖ẍ∗ − ẍ‖2
2

C0‖ẍ− ẍs‖2
1

s
s

LH 10.5 dB 9.3 dB† 4.0× 10−7 9.7× 10−5 280
HL 10.5 dB 9.3 dB† 4.0× 10−7 9.7× 10−5 280
HH 10.5 dB 9.3 dB† 7.3× 10−9 5.8× 10−6 16

† This value corresponds to the composed image using all the filtered versions.
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(a)

(b)

Figure 4.4. (a) Layers of the VOI of the image VI. (b) Reconstructed layers of the
VOI of the image VI using CS. Black indicates a perturbation in squared wavenum-
ber of 10 cm−2 and white a perturbation in squared wavenumber of −10 cm−2.
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(a)

(b)

Figure 4.5. (a) Layers of the VOI of the image VII. (b) Reconstructed layers of the
VOI of the image VII using CS. Black indicates a perturbation in squared wavenum-
ber of 10 cm−2 and white a perturbation in squared wavenumber of −10 cm−2.
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(a)

(b)

Figure 4.6. (a) Layers of the VOI of the image VII. (b) Reconstructed layers of the
VOI of the image VII using the prefiltering method. Black indicates a perturbation
in squared wavenumber of 10 cm−2 and white a perturbation in squared wavenumber
of −10 cm−2.
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4.3 The Effect of Noisy Measurements

Since many approximations were made during the modeling process, and since in real life

applications the measurements are always contaminated with noise, a relevant question

is how different amounts of noise affect the reconstructions of CS and the prefiltering

method. To partially answer this question, we selected two images, image II and image III

of Table 3.4, and subsequently added noise with more variance to the measurements.

We added noise to each measurement real and imaginary part. The noise in the real

part was taken from a zero mean gaussian distribution. Similarly for the noise in the

imaginary part. In both cases the standard deviation of the noise varied from 0% to

11.67% of either the real or the imaginary part.

In the reconstructions of this section, we did not use any sparsifying transform. The

regularization parameter of the IRLS algorithm was initialized to 1 and reduced by a

factor of 10 after every 15 iterations until the regularization parameter reached 10−7.

To assess the robustness to noise of the CS method, we used the image II. Figure 4.7

shows the CS method reconstruction SER when the noise varied from 0% to 11.67%. As

a matter of comparison, we also included a curve for Tikhonov regularization. The SERs

in this graph are of reconstructed images of perturbation in squared wavenumber with

respect to true images of perturbation in squared wavenumber, that is, SER(∆k2∗,∆k2).

Figure 4.8 is the same as Figure 4.7, but in this case it is the robustness to noise of

the prefiltering method that is evaluated, and the image used is image III.

The reconstruction SER of CS initially decayed rapidly from 35 dB to 22 dB, when

the noise increased from 0% to 1.67%, but after that it decayed more slowly, reaching the

mark of 10 dB when the noise reached the level of 11.67%. Similarly, the reconstruction

SER of the prefiltering method using the LH, HL and HH filters initially decayed rapidly

from 13 dB to 8 dB, when the noise increased from 0% to 1.67%, but after that it decayed

more slowly, reaching the mark of approximately 7 dB when the noise reached the level

of 11.67%.

Figure 4.8 also contains curves for the prefiltering method using subsets of the LH,

HL and HH filters. Note that, at 0% noise, the reconstruction SERs of some prefiltering

methods were approximately the same as the reconstruction SER of Tikhonov regular-

ization, but after the 1.67% noise level, all possible prefiltering methods outperformed

Tikhonov regularization.
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Figure 4.7. The effect of different amounts of noise on the reconstruction of the
image II using CS.

Figure 4.8. The effect of different amounts of noise on the reconstruction of the
image III using the prefiltering method.

4.4 Comparisons with the State-of-the-Art technique

This section is intended to compare different variants of the proposed techniques with

Tikhonov regularization. The images reconstructed in this section are the images I, III,

IV, V, VIII, IX, X, XI, XII, XIII, XIV and XV. In the reconstructions of this section,
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the regularization parameter of the IRLS algorithm was initialized to 1 and reduced by

a factor of 10 after every 15 iterations until the regularization parameter reached 10−7.

Figures 4.9, 4.10 and 4.11 show the SER curves obtained for the different methods

when we varied the sizes of a rectangular prism perturbation, two rectangular prism

perturbations and an hexagonal prism perturbation, respectively. The SERs in these

graphs are of reconstructed images of perturbation in squared wavenumber with respect

to true images of perturbation in squared wavenumber, that is, SER(∆k2∗,∆k2).

Notice that, in most cases, the SER of Tikhonov regularization was lower than the

SER of one of the proposed techniques. The only exceptions being when the dimensions

d1 and d2 of the rectangular prism perturbation were 0.3 cm or 0.4 cm, and when the

dimensions d1 and d2 of the hexagonal prism perturbation were 0.4 cm. The SER of

the CS method with no sparsifying transform was higher than the SER of Tikhonov

regularization only when the dimensions d1 and d2 of the perturbations were 0.15 cm

or less. This is due to the requirement that the image be sparse in its original domain.

However, the highest SER obtained using this proposed method was more than twice the

highest SER obtained using Tikhonov regularization.

Figure 4.9 includes an SER curve for the CS method using the sparsifying transform

of Section 3.1.5. Compared to the SERs of the prefiltering method using different com-

binations of filters, the use of this method generally resulted in lower values of SER. If

we consider only the prefiltering method using the LH, HL and HH filters, then it always

resulted in lower levels of SER. One possible explanation is that the sparsifying transform

of Section 3.1.5 uses all of the Haar filters, even the LL filter, which does not sparsify

the image. The prefiltering method, on the other hand, uses only the filters that sparsify

the image. Notice that, even without the DC component, and sometimes other parts of

the image spectrum, the SERs of the prefiltering method using different combinations of

filters, were still generally higher than the SERs of the CS method using the Haar DWT.

In general, the SERs of the prefiltering method were highest when all three of the

LH, HL and HH filters were used. However, the maximum loss in SER caused by the

removal of the HH filter was of 0.3 dB (Figure 4.9, for d1 and d2 equal to 0.1 cm). Losses

of this magnitude were more common for the hexagonal prism perturbation, which has

diagonal edges, and therefore more frequency content in the HH part of the spectrum.
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Figure 4.9. SER curves obtained for different variants of the proposed techniques
and for Tikhonov regularization when the size of a specific rectangular prism per-
turbation was varied.
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Figure 4.10. SER curves obtained for different variants of the proposed techniques
and for Tikhonov regularization when the sizes of two specific rectangular prism
perturbations were varied.
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Figure 4.11. SER curves obtained for different variants of the proposed tech-
niques and for Tikhonov regularization when the size of a specific hexagonal prism
perturbation was varied.
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5 Conclusion

In Chapter 3, we showed that a particular formulation of the DOT problem satisfies the

requirements for CS, and that this same formulation allows us to use the prefiltering

method in DOT. We also designed numerical experiments to verify the usefulness of the

proposed techniques. These numerical experiments consisted of a few proof of concept

reconstructions, and graphs to compare different variants of the proposed techniques with

the state-of-the-art.

In order to obtain more reconstructions in a lesser amount of time, the majority of

the volumes reconstructed had dimensions 1 cm by 1 cm by 1 cm. In some experiments,

this volume was increased to approximately 3 cm by 3 cm by 3 cm. Using the proposed

techniques, we were able to reconstruct images containing the first volume with SERs as

high as 55 dB, and images containing the second volume with SERs as high as 20 dB.

The prefiltering method was able to increase the SER to about 9 dB in cases that the

SER of CS was about -2 dB.

In general, the Thikhonov SER was higher than the other methods SERs for large

perturbations, the CS SER was higher than the other methods SERs for small pertur-

bations, and the prefiltering method SER was higher than the other methods SERs for

medium sized perturbations. The SER of the prefiltering method using the Haar filters

was higher than the SER of CS using the Haar DWT for all sizes of a specific perturba-

tion. Also, the prefiltering method SER was highest when all three of the LH, HL and

HH filters were used, but the loss in SER caused by the removal of the HH filter did not

exceed 0.3 dB.

The effect of noise on the CS reconstruction was such that the reconstruction SER

of a particular signal reduced from 35 dB to 10 dB when the standard deviation of the

noise in the real and imaginary parts of the measurements achieved 12%. The effect of

this same amount of noise on the prefiltering method reconstruction, on the other hand,

was such that the reconstruction SER of another particular signal reduced from 13 dB

to 7 dB.

Our numerical experiments confirm that CS and the prefiltering method can be used

with our proposed model. In some cases, the reconstruction SER and the `1 norm indi-

74



cated that the CS algorithm was converging to the true solution. In the cases that it was

not, we were able to increase the SER by using the prefiltering method.

5.1 Limitations

In the development of the proposed techniques, we assumed an homogeneous semi-infinite

medium with a small perturbation in absorption coefficient, in magnitude and support.

The semi-infinite medium assumption is accurate if the tissue boundary has a small

curvature where the sources and detectors are placed and if the other boundaries of the

tissue are far away. Then the tissue can be approximated by a semi-infinite medium in a

region close to the sources and detectors.

The assumption that the medium is homogeneous could be made if only the outermost

layers of the cerebral cortex were imaged, since in this case the imaged volume could

be considered approximately homogeneous [66]. In noninvasive studies, however, this

assumption cannot be made [66].

The choice to reconstruct only perturbations in absorption coefficient, in its turn, is

based on the fact that in many applications of DOT, the scattering coefficient changes

negligibly with time while the absorption coefficient does not [66]. This is because the

scattering coefficient is associated with the properties of cells, cell nuclei, cell organelles

and surrounding fluids [29], while the absorption coefficient is associated with changes

in oxygenated and deoxygenated hemoglobin, which in turn are associated with regional

cerebral blood flow and angiogenesis in cancer [53], two of the most studied phenomenon

using DOT.

Finally, the small perturbation assumption is associated with the Born approxima-

tion. The Born approximation assumes that the scattered field is small. This can only

be true if the perturbation is small in magnitude and in support. The perturbations of

absorption coefficient generally of interest in DOT range from 0.02 cm−1 to 0.3 cm−1 [68].

The Born approximation is valid only for perturbations with magnitude of about 0.1 cm−1

or less [68]. Also, the larger the perturbation is support, the lower the magnitude of the

perturbation has to be in order to the Born approximation to be valid.

Our proposed techniques also assume that the changes in absorption coefficient are

zero outside the volume where they are unknown, or at least until a distance corresponding

to the assumed size of the Green’s function. If this is not true, then the measurements will

be contaminated by scattered fields coming from other locations, increasing the amount

of noise.

In brain imaging, this assumption corresponds to considering that cortical areas
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nearby the cortical area of interest are not activated by the task under study. In breast

cancer imaging, the breast could be embedded in a box filled with matching material,

such as an intralipid with optical properties similar to those of the breast [30], in which

case the perturbations in the medium optical parameters outside of the breast would be

zero.

5.2 Future research

One possible way of improving the model is to use the finite elements method (FEM)

to derive the Jacobian matrix of the forward model. This would allow to consider much

more complex geometries and initial distributions of optical parameters, which could be

infered by subject specific MRI images or a registered 3D atlas head model [22].

However, we showed only that a specific DOT Jacobian matrix satisfies the require-

ments for CS. This Jacobian matrix relates small changes in absorption coefficient in a

semi-infinite homogeneous medium to changes in measurements in angular spectrum rep-

resentation. In order to use the same techniques with a FEM forward matrix, one would

have to show that the resulting forward matrix also satisfies the requirements for CS.

Furthermore, the prefiltering method assumes that it is possible to obtain measurements

associated with filtered versions of the image. One would also have to demonstrate this

to be possible with the FEM forward model in order to use the prefiltering method.

Even though it has not been demonstrated yet that a FEM forward matrix satisfies

the requirements for CS and that it is possible to obtain measurements associated with

filtered versions of the image, the fact that we were able to show this for other DOT

forward matrices, even if simpler ones, makes us hypothesize that it is also possible to

show this for more generic matrices.

A natural follow up to our study would be to evaluate the proposed techniques with

experimental data. Our numerical simulations could be replicated with a customly de-

signed imaging phantom and a customly designed DOT instrument.

Other possibility would be to use them directly in brain imaging, for example, and

compare their reconstructions with other similar, but more established, imaging modali-

ties, such as fMRI. However, it may be necessary to first improve the model assumed by

the techniques before using them effectively in human functional imaging.
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