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Abstract

The design and launch of pico- and nanosatellites – which in this work are generically
called small satellites – have been received a great impulse over the last few decades. This
new trend is now possible due to the advances in microelectronics and the reduction of
the micro-electromechanical systems prices. The CubeSat standard introduction in the mid
1990s decisively contributed to these breakthrough changes in the field. Aiming to design
and test technologies to be applied to small satellites, the Laboratório de Inovação e Ciências
Aerospaciais at Universidade de Brasília is developing a small satellite three-axis simulator
composed by an air-bearing based table and a Helmholtz cage, besides other components.
The attitude determination is a problem of a major importance for a spacecraft. In this work
an attitude determination method based on computer vision was implemented and tested at
laboratory. Using the Euler angles to evaluate its performance, this system produced results
with standard deviations smaller than 0.5o for all the three angles. Other methods imple-
mented were the TRIAD and USQUE algorithms developed in C language. The algorithms
were executed at 25 MHz in a MSP430 of the CubeSat onboard computer ABACUS, being
compared to their execution in other platforms. The execution time for TRIAD, correspond-
ing to a single sampling interval, was of about 1.7ms. For USQUE the execution time was
of about 64.5ms. The TRIAD would be very suitable for a spacecraft during the detum-
bling process, while the USQUE would be more appropriate afterwards, when the satellite
is stabilized. The present masters dissertation have made great contributions to increase the
laboratory capabilities. Furthermore, the complete and concise theoretical chapters of this
work concerning several attitude representations and related topics can be useful as a refer-
ence for new students.
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Resumo

O projeto e lançamento de pico e nanossatélites – os quais são chamados genericamente
de pequenos satélites nesse trabalho – tem sido bastante impulsionados nas últimas décadas.
Essa nova tendência é atualmente possível devido aos avanços da microeletrônica e à re-
dução no preço dos sistemas microeletromecânicos. A introdução do padrão CubseSat em
meados dos anos 1990 contribuiu decisivamente para as mudanças revolucionárias ocorri-
das nessa área. Com o objetivo de desenvolver e testar tecnologias a serem aplicadas a
pico e nanosatellites, o Laboratório de Inovação e Ciências Aerospaciais da Universidade de
Brasília está desenvolvendo um simulador de três eixos para pequenos satélites. O simulador
é composto principalmente por uma mesa com rolamento a ar e uma gaiola de Helmholtz,
além de outros componentes. A determinação de atitude é um problema de grande importân-
cia para um satélite. Neste trabalho um sistema de determinação de atitude baseado em
visão computacional foi implementado e testado em laboratório. Usando ângulos de Euler
para avaliar seu desempenho, esse sistema produziu resultados com desvios padrão inferi-
ores a 0.5o para todos os três ângulos. Outros métodos implementados foram os algoritmos
TRIAD e USQUE desenvolvidos na linguagem C. Esses algoritmos foram executados a 25
MHz em um MSP430 do computador de bordo para CubeSats ABACUS, sendo comparados
com sua execução em outras plataformas. O tempo de execução do TRIAD, correspondente
a um intervalo de amostragem, foi de aproximadamente 1,7ms. Para o USQUE o tempo de
execução foi de aproximadamente 64,5ms. O algoritmo TRIAD seria bastante adequado para
um satélite durante a fase de estabilização, enquanto o USQUE seria mais apropriado para a
fase subsequente. Esta dissertação de Mestrado deu grandes contribuições para a melhoria
dos recursos do laboratório. Ademais, os capítulos teóricos que tratam de representações de
atitude e tópicos correlatos, escritos de forma completa e concisa, poderão ser úteis como
uma referência para novos estudantes.
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Chapter 1

Introduction

Since the launch of Sputnik-1 in 1957, artificial satellites have become indispensable in-
struments to the modern world. Communications, navigation and geographic localization,
climate research and weather forecast, military and defense programs, imagery and map-
ping of the Earth, astronomical observations and other scientific studies, are some of the
applications made possible by satellites.

Nowadays, when anyone has in their hands most of the services satellites enable, their
importance continues to grow as the number of institutions from several countries pursuing
the technology to develop and launch such spacecraft. In this context, the Laboratório de
Inovação e Ciências Aeroespaciais (LAICA) at Universidade de Brasília (UnB) has joined
Brazil’s efforts to promote and dominate this field technologies.

The present masters dissertation concerns some of the researches conducted at LAICA
using its small satellite three-axis simulator facility. The next sections will give further details
about the new trend in the small satellite category, the specific problems this manuscript
addresses and its contributions.

1.1 Background and motivation

The advances in microelectronics over the last years made possible the development of
very small satellites with high technology and lower costs when compared to conventional
satellites. The interest for this satellite category received a considerable impulse in the sec-
ond half of the 1990s when Stanford University and California Polytechnic State University
introduced the CubeSat standard [Heidt et al. 2000]. A CubeSat is a cubic shaped satellite of
10 cm side which corresponds to a 1U (one unit) size definition. The CubeSat concept natu-
rally leads to modular designs, thus the extension of the 1U size to 2U, 3U and even larger
sizes are common, with each of the modules stacked together or tied in other configurations
[NASA 2015].

The general convention for satellite classification is as follows:
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• Conventional satellite: > 100 kg;

• Microsatellite: 10 - 100 kg;

• Nanosatellite: 1 - 10 kg;

• Picosatellite: 0.01 - 1 kg.

Other classes exist but for those there are disagreements about the masses ranges; only the
above last three classes seem to be well-established. CubeSats normally fall into the pico-
and nanosatellite categories. Therefore, although the term "small satellites" can be inter-
preted in a wide sense, in this manuscript it should be understood as pico- and nanosatellites,
and also as the microsatellites which come closer to the latter.

The advances in microelectronics that brought those small satellites into reality include
the diminution in electronic components size and the increased performance of micropro-
cessors, in opposition to their decreased power consumption. In addition, the utilization
of commercial-off-the-shelf (COTS) components and the price reduction of MEMS (micro-
electromechanical systems) sensors turned the projects costs extremely small.

The benefits of COTS components utilization come with the price of the great vulnerabil-
ity of the satellite systems. Conventional satellites, on the other hand, employ space qualified
components able to resist against radiation, high energy particles and large temperature vari-
ations for long periods of time. Hence, small satellite missions are not expected to have a
long duration. Indeed, the lifetime of pico- and nanosatellites are normally less than one
year[Bouwmeester and Guo 2010].

Small satellites are also limited in their communication capabilities. This is mainly due
to power constraints and antenna gain. Furthermore, ground station tracking is difficult be-
cause most of the small satellites are not capable to perform a high precision attitude control
[Bouwmeester and Guo 2010]. The main reasons for the last statement is the technology
employed, commonly a passive or active magnetic actuators which are fine for simple de-
tumbling1 but inadequate to precise control. Despite of the adopted technique, an effective
closed-loop control is only possible if the attitude is accurately estimated, and this is a major
issue for any spacecraft.

The aforementioned restrictions limit the small satellite applicability. However, the
interest for this technology continues to grow as long as the limitations are well known
and there is still room for improvements [Bouwmeester et al. 2008]. Therefore, several
works concerning specific and general issues of small satellites projects have been published
[Oliveira et al. 2013, Bouwmeester et al. 2008, Ovchinnikov et al. 2007] and a great number
of missions have been planned and executed. Indeed, in the recent work [Villela et al. 2018]
is reported that in 2012 the hundredth CubeSat was launched, and probably, the thousandth
will be launched by 2018, a 10-fold increase in five years only.

1Spacecraft detumbling refers to the process of reducing its angular velocity after the orbital insertion.
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The purposes and motivation of the first CubeSats projects were mainly educational.
Nowadays, these tiny satellite are employed in several scientific applications, specially as-
tronomy and space weather. Also, the use of CubeSats for Earth remote sensing is currently
increasing [Villela et al. 2018].

Among all the small satellite missions executed it is specially worth to mention the
Brazilian Serpens mission. This was a result of a consortium between the Brazilian Space
Agency (AEB) and a few universities under the UnB coordination [AEB 2018, UnB 2015].
The Serpens 1 nanosatelite developed was a 3U CubeSat launched in 2015. The spacecraft
orbited the Earth during six months as it collected and transmitted environmental data until
its disintegration in atmosphere [FAPESP 2016]. Figure 1.1 exhibits the Serpens CubeSat
before its launch.

Figure 1.1: Serpens 3U CubeSat. (Image from [UnB 2015])

In [Santilli et al. 2018] an interesting possible application for CubeSats constellations
was purposed partially based on the results of Serpens mission. Some of the professors
and students involved with the project are affiliated to LAICA where the well-succeed Ser-
pens mission continues to motivate the researches conducted. Also, a newer version of the
onboard computer (OBC) used in Serpens 1 and available at LAICA was employed in the
present work to implement some attitude determination algorithms.

Aiming to develop, test and implement attitude determination and control systems
(ADCS) , besides other technologies, a three-axis small satellite simulator facility is under
development at LAICA. The main components of the simulator are a three-axis air-bearing
table and a Helmholtz cage. The former is a three-degree-of-freedom rotating platform which
replicates the frictionless conditions experimented by orbiting spacecraft; the latter simulates
the Earth magnetic field a satellite can use to determine and control its own attitude. Fig-
ure 1.2 shows a general view of the main components of LAICA facility. A more detailed
description will be given in Chapter 4.

Facilities similar to LAICA’s demand intense research themselves and are subject to sev-
eral academic works [Silva et al. 2018, Chesi et al. 2013, Samuels 2014]. Nevertheless, the
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Figure 1.2: General view of the LAICA facility main components.

development of techniques and algorithms that can be applied in real life missions are the
main goals to be attained. The present dissertation goals take place between those two lines,
the facility itself and the implementation of practical satellite technologies, as will become
clear in the rest of this chapter.

In order to conclude this section, an important remark is made: the capacity to design
and build satellites, once restricted to big national space agencies and research institutes only,
are now extendible to universities and even small companies such as startups. A reality now
possible due to these breakthrough advances in the small satellite field.

1.2 Problem statement

In the last section was reported that most of the small satellites employ limited methods
for attitude control. Additionally, since the closed-loop control system is suppose to decrease
the error in the spacecraft attitude, it must be accurately determined, otherwise the actuation
will be ineffective regardless of the control algorithm applied. Therefore, the attitude deter-
mination of a satellite is a problem of major importance.

The attitude of a body is its orientation in the three-dimensional space. Of course, this
concept can be applied to several objects such as aircraft, terrestrial vehicles, robot moving
parts and spacecraft. In Chapter 2, a mathematical definition for attitude will be given, for
now, a qualitative one is sufficient to understand its relevance.

Is considered herein, as an example, a satellite at a 400 km high orbit2 around Earth
with an instrument which should be pointed to a specific location on Earth’s surface. Simple

2This is approximately the same altitude of the International Space Station (ISS) from where the Serpens 1
nanosatellite was sent into orbit.
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calculations show a pointing error of 2o (in any direction within a cone with an aperture
angle of 4o) would imply in a circular region of about 400 · (2 + 2) · π/180 = 30 km in
diameter where the instrument could possibly point to. A deviation of this magnitude could
pose significant difficulties to communications, imagery or other applications.

The sensors commonly used for attitude determination are magnetometers, accelerome-
ters, rate gyros3, sun sensors and star sensors. Of course, some of them are more suitable or
exclusive of certain applications. Accelerometers, magnetometers and gyros are commonly
used in robotics, aircraft, smartphones and any other device meant to work on Earth’s sur-
face or atmosphere. Magnetometers and gyros are also employed in spacecraft as well as sun
sensors and star sensors. The last two are more suitable for aerospace applications whilst ac-
celerometers can not be easily employed in orbiting objects, considering they measure the
(apparent) gravitational acceleration perceived by a body, which is practically zero for those
spacecraft.

The measurements nature of each sensor can be used to classify them in two groups
[Bó 2007]:

• Proprioceptive sensors; which measure inner states of the body they are attached
to, such as angular velocity and acceleration, without referring to the external world.
Inertial sensors normally fall into this group as they measure quantities related to the
inertial forces that appear to exist in the non-inertial frame of the sensor body.

• Exteroceptive sensors; which measure quantities related to references outside the sen-
sor body, such as external fields (gravitational, magnetic) and light.

Some sensors can act as proprioceptive sensors or as exteroceptive depending on the
application. Accelerometers, as an example, can be used as proprioceptive sensors since
they measure their own accelerations without referring to any external reference. However,
when employed in attitude determination, accelerometers are used to measure the external
field of gravitational acceleration4, in which case they act as exteroceptive sensors.

Estimates based on proprioceptive sensors normally tend to exhibit large errors after
some time. For instance, given an initial angular position of a body, the angular velocity mea-
sured by a gyro could be integrated in time, resulting in the body angular position. However,
signals provided by real life sensors have random components and are commonly biased.
An integration in time of the signal bias component may result in an unbounded error, turn-
ing the estimation inaccurate. Intuitively, these errors should be expected if proprioceptive
sensor measurements are used to estimate quantities defined using external references.

3Rate gyros are gyroscopes which measures the time rate of angular changes. Hereinafter in this manuscript,
they will be simply referred as gyros.

4The relationship between acceleration and gravitational field become patent when dealing with accelerom-
eters. In fact, this connection led to Einstein’s first insights concerning what would become his General Theory
of Relativity.
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Exteroceptive sensors measurements on the other hand, can be directly applied to esti-
mate externally referenced quantities. Even though possessing a random behaviour and bias,
because there is no need for time integration, the errors remain bounded. However, these
sensors are dependent of external information sources, which can be untrustable or simply
unavailable. Therefore, a satellite sun sensor is useless if the Sun is occluded by the Earth
or the Moon; or a magnetometer measurements can be highly inaccurate if the sensor is
exposed to spurious magnetic fields.

The advantages of each kind of sensor can be combined to produce more precise and
accurate measurements. Kalman filtering (KF) approaches accomplish this task by dividing
the estimation process in a prediction phase and a correction phase. In the first one, given
the current variable estimate, the filter will use proprioceptive measurements to predict the
variable value in a future instant. Considering a integration in time is often necessary with
proprioceptive measurements, this phase requires a dynamic model formulation for the pro-
cess under analysis. In the second phase, exteroceptive measurements are used to correct
the predicted estimate and this often requires a change of scale or in the reference frame.
The resulting estimated variable is a pondered value between the predicted estimation and
the exteroceptive measurements. Qualitatively speaking, if exteroceptive measurements are
corrupted by external perturbations, the proprioceptive measurements can attenuate these
effects; at the same time, exteroceptive measurements compensate the proprioceptive pre-
dictions deviations as if the filter prediction part was reset by the correction part.

The methods applied for attitude determination can be classified as deterministic and
optimal [Shuster 2004]. The first class takes a minimal set of measurements to obtain the
attitude, which means the number of observations is the same as the unknown attitude pa-
rameters [Wertz 1978]. The second class take a number of measurements greater than the
minimal set to minimize some cost function such that optimality is achieved in a statistical
sense, as referred by G. M. Lerner in [Wertz 1978]. The deterministic methods do not take
into account the random nature of measurements in their calculations, although a probabilis-
tic analysis is always possible, assuming the obtained attitude parameters are function of
random variables, (i.e., the measurements). However, in this analysis the random nature of
the observations is considered a posteriori only, the deterministic algorithms do not take it
into account in their theoretical models. Optimal methods in general model the sensors and
processes noises and include the variables statistical parameters, such as mean and covari-
ance, in their minimization procedures of the loss function.

The KF is an optimal method widely applied in several fields. Though linear in its orig-
inal formulation [Aguirre 2015], nonlinear extensions of the KF were formulated such as
the Extended Kalman Filter (EKF) and the Unscented Kalman Filter (UKF) . The EKF has
been used for attitude determination for a long time [Markley 2003] and is the workhorse
of real-time implementations for spacecraft applications [Crassidis et al. 2007]. The more
recent UKF has been adapted for attitude estimation problems either [Crassidis 2003,
Cheon and Kim 2007, Menegaz, H. M. T. 2016]. One of these proposed methods, the Un-
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scented Quaternion Estimator (USQUE) , was implemented and tested in the present work
at LAICA facility. The TRIAD algorithm and its variations is one of the most employed
deterministic methods [Shuster 2004] and was also implemented at LAICA. Further details
concerning the TRIAD algorithm and the UKF for attitude determination, with emphasis in
USQUE, will be given in Chapters 3 and 5.

1.3 Goals and contributions

The present dissertation objectives consist in implementing attitude determination tech-
niques to be applied at LAICA facility. The algorithms, software and hardware shall con-
stitute complete attitude determination systems for the experiments to be performed at the
laboratory. As explained in Section 1.1, the simulator platform itself demands intensive re-
search and the techniques implemented aims at providing an accurate attitude determination
method for the platform. Nevertheless, the main goals pursued at LAICA are the develop-
ment and testing of small satellite technologies. Therefore, the techniques implemented in
this work shall be at least partly suitable for practical satellites. The following observations
will clarify these two complementary goals:

• As explained in Section 1.2, some of the sensors employed in attitude determination
on Earth differ from those used in Space.

• Hence, methods suitable for the laboratory platform can not always be directly applied
to satellites.

• In its current state, LAICA infrastructure still does not allow the test of some common
satellite attitude determination systems.

• The TRIAD algorithm requires two vector observations to determine the attitude of a
body. In spacecraft, magnetometers, sun sensors and star trackers normally are used
to provide at least one of these vectors but currently the last two can not be tested at
LAICA.

• On the other hand, using the Helmholtz cage, magnetometers and gyros, the USQUE
algorithm can be implemented and tested.

Besides the TRIAD and USQUE algorithms, an attitude determination system based on
computer vision (ADCV) was implemented at LAICA facility. This system employs a web
camera external to ABACUS onboard computer and connected to a computer at the facility.
The ADCV is useful for algorithms evaluation, providing independent means of comparison
to the other methods.

Even though TRIAD algorithm implemented at LAICA still can not determine attitude
using sun sensors or star trackers, accelerometers can replace them for testing purposes.
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While serving to effectively determine the air-bearing platform attitude, the TRIAD can be
almost completely evaluated – the difference would lie in the software layer responsible for
collecting the sensors data.

The USQUE algorithm can be implemented and tested at LAICA. This method can be
directly applied to satellites if their OBC have enough processing power. Regardless of
hardware limitations though, an implementation in C language of this algorithm allows its
compilation for several microprocessors architectures.

Summarizing the aforementioned observations, the ADCV is an attitude determination
system adequate for laboratory implementation; the TRIAD algorithm is effective to de-
termine the platform and a spacecraft attitude as long as the proper sensors are employed;
the USQUE algorithm is capable of determining the platform and a satellite attitude. There-
fore, the present work contributes to increase the LAICA facility capabilities, specially when
considering the several practical contributions which were necessary for the experiments ex-
ecution. The present work also initiates the implementation and testing of small satellite
technologies by utilizing the CubeSat onboard computer ABACUS. Moreover, the relevance
of the TRIAD and USQUE implementation is highlighted by the fact that neither of these al-
gorithms was embedded on the Serpens CubeSat due to the short development time available
until launch. Hence, the implementation of these algorithms on an OBC of the same Serpens
OBC family represents a significant improvement for future missions. Additionally, simula-
tions performed during the development of that CubeSat suggested good results would have
been obtained if TRIAD and USQUE had been embedded on Serpens [Oliveira et al. 2014].

The first studies concerning the air-bearing table, the Helmholtz cage and the general
problem of attitude determination led to the published works listed below:

• Guimarães, F. C., da Silva, R. C., de Loiola, J. V. L., Borges, G. A., Borges, R. A.,
Battistini, S., Cappelletti, C. Aplicação do Filtro de Kalman para a Determinação
de Atitude de Plataforma de Testes de Pequenos Satélites. XIII Simpósio Brasileiro
de Automação Inteligente - SBAI, October 2017 [Guimarães et al. 2017]. In this
work an EKF approach was implemented to determine the air-bearing platform atti-
tude. The prediction part of the algorithm used a three-axis gyro measurements inte-
grated in time to obtain a first attitude estimate, represented by the three Euler angles5.
The correction was made using an attitude measurement given by a deterministic al-
gorithm, which used the three-axis accelerometer and magnetometer measurements as
the two vector observations. The results were satisfactory in spite of some limitations.
These includes the absence of a gyro bias estimation and the simplistic model adopted
for the local Earth’s magnetic field. A gyro bias estimation and the direct inclusion
of magnetometer and accelerometer measurements into the filter structure could have
yielded better results. However, the improvements attained since this publication al-
lowed to overcome such limitations in this present dissertation.

5The Euler angles representation is defined in Chapter 2.
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• Loiola, J. V. L., van der Ploeg, L. C., Silva, R. C., Guimarães, F. C., Borges, R.
A., Borges, G. A., Battistini, S., Cappelletti, C. 3 axis simulator of the Earth mag-
netic field. IEEE Aerospace Conference, March 2018 [Loiola et al. 2018]. In this
work the Earth magnetic field simulator (EMFS) under development at LAICA was
described. The simulator is composed by the Helmholtz cage, software and sensors,
and is capable of simulating the Earth magnetic field in the same way a satellite would
perceive while orbiting the planet. Since this publication, the EMFS capabilities have
been extended, although some limitations still exist. The current state of the simulator
is described in Chapter 4.

• Silva, R. C., Guimarães, F. C., Loiola, J. V. L., Borges, R. A., Battistini, S., Cap-
pelletti, C. Tabletop testbed for attitude determination and control of nanosatellites.
Journal of Aerospace Engineering, 2018 [Silva et al. 2018]. In this work – accepted
for publication – the three-axis air-bearing table and the Earth magnetic field simula-
tor at LAICA were described in details. Several balancing procedures were compared
with the LSM method employed in [Silva et al. 2016]. In addition, some results of the
tests applied to the EMFS were provided. Chapter 4 presents the concept of balancing,
which concerns to three-axis air-bearing tables.

Besides this manuscript, the main results obtained in the present dissertation have not
been published yet. At least two papers, concerning the ADCV system and the USQUE
implementation and test, respectively, are intended to be submitted soon.

1.4 Presentation of the manuscript

The present dissertation is organized in five chapters, including the present introductory
chapter.

In Chapter 2 some basic concepts are provided. They concern the necessary mathematical
framework for a formal definition of attitude and the directly related topics about rotations in
the three-dimensional space. In other words, the extensive material of that chapter consists
in a survey of several attitude representations and the related fundamental concepts, which
were extracted from classical papers and books of the field and concisely presented in the
manuscript.

In Chapter 3 the deterministic and stochastic methods of attitude determination imple-
mented in this work are described. The fundamental concepts of Chapters 2 and 3 are cer-
tainly quite useful for new students which are beginning their theoretical studies.

Chapter 4 presents the experimental elements dealt with in this present dissertation con-
text. An overview of the LAICA facility is exhibited, followed by detailed descriptions of
the three-axis air-bearing table and the Helmholtz cage. Then, the implemented system for
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attitude determination at the laboratory using computer vision is presented. The chapter ends
with a description of the nanosatellite OBC ABACUS where some algorithms were tested.

Chapter 5 describes the experimental procedures performed at LAICA and the practical
aspects involved in the implementation of the attitude determination techniques, including
some software and hardware issues. In the end of the chapter the results obtained and their
analysis are presented.

In Chapter 6 the conclusions are given.
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Chapter 2

Attitude representation

This chapter contains the fundamental concepts concerning the attitude definition and
characterization. The mathematical framework presented should be sufficient to understand
the experimental procedures of this dissertation and their results, despite of some omitted
points.

2.1 Reference frames

In Chapter 1 the attitude of a body was simply defined as its orientation in the three-
dimensional space which, for the sake of a mathematical grounding, must be understood as
being equivalent to the R3 set. In order to give a formal definition for the attitude of a body,
the term reference frame – or reference system – shall be established first, considering the
terminology vary among authors.

A reference frame in R3 is composed by a set of three linearly independent vectors be-
longing to a vector space, which turns to be the R3 itself. These vectors constitute a basis
B for R3, thus any vector in this set can be expressed in terms of them. For convenience,
normally the three vectors taken are mutually orthogonal and with unit norms, thereby con-
stituting an orthonormal basis for R3. Besides the three vectors set, an origin point O for
the reference system must be specified. In diagram representations, the origins of the three
reference vectors are conveniently fixed in O. Additionally, a right-handed reference frame
can be associated to the well-known Cartesian coordinate system represented by the axesX ,
Y and Z. The definition of a right-handed frame and the notation adopted in this work will
be given in Section 2.2.

Beyond the mathematical formalism, in practice a reference frame must be defined using
physical quantities or well-known objects, such as gravity, magnetic fields, the Earth, the
stars, the Sun, etc. The way a reference frame is defined can affect the variables measure-
ments referenced in this system. In general, these effects depend on whether the reference
frame is inertial or non-inertial.
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Inertial reference frames are a class of non-accelerated frames, which means they can
not rotate but only translate with a constant velocity. On the contrary, non-inertial reference
frames are accelerated frames, either rotating or translating with a variable velocity. The
consequence of these definitions is the acceleration of a body measured in an inertial frame
are independent of the frame movement. Indeed, Newton’s laws are only valid in an inertial
frame. In a non-inertial frame the accelerations depend on the frame movement and a body
fixed relative to this system perceives them as forces, called inertial or fictitious forces. On
the other hand, an inertial frame is an ideal concept which nowadays still leads to unsettled
questions about relative and absolute references1. In real-life applications, is only possi-
ble to define reference systems approximately inertial, which means the frame-dependent
accelerations are negligible for certain purposes.

2.1.1 Body-fixed frame

There are some reference frames frequently utilized in applied problems. The first to be
mentioned is essential for the attitude definition and is designated as the body-fixed frame,
body-frame or body-system. This reference system origin normally is placed at the body
center and the frame is fixed relative to it, as shown in Figure 2.1, where the body is a
3U CubeSat. The body-system is obviously non-inertial and the accelerations and angular
velocities measured by sensors mounted in the body will be affected by the body-frame
movement.

Figure 2.1: Body-system of a 3U CubeSat.

2.1.2 NED

Another non-inertial frame, commonly used in devices on Earth, is the North-East-Down
(NED) system [Cai et al. 2011] depicted in Figure 2.2. In this frame the Z axis points to the
center of mass (CM) of the Earth, the X axis points to the geodetic north and the Y axis
completes the right-handed frame. The system origin can be arbitrarily placed at any point
on the Earth’s surface or above it. The origin point are usually placed at the center of the

1These questions are related to the secular debate between ’substantivalism’ and ’relationism’.
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body for which the attitude must be determined. It can also be placed at some point on the
Earth’s surface while the body translates above, such as in aircraft or spacecraft applications.

Figure 2.2: NED system representation relative to the Earth.

2.1.3 Orbit reference frame

The orbit reference frame (ORF) is applied to orbiting objects, including spacecraft. This
system is represented in Figure 2.3, where the origin is placed at the CM of the body and the
Z axis points toward the CM of the Earth. The Y axis is parallel to the negative orbit normal
direction. This is the same direction of the vector k × v, where v is the spacecraft velocity
vector, k is the unit vector parallel to Z, and the symbol × denotes the vector product.
The X axis is defined in order that it completes the right-handed frame, it is also parallel
to v for circular orbits [Sidi 1997]. The direction of the Z axis in the ORF also defines
the spacecraft nadir direction. A common task of a satellite ADCS consists in pointing an
instrument toward the nadir direction.

Figure 2.3: Orbit reference frame representation relative to the Earth.
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2.1.4 ECEF

The Earth-Centered-Earth-Fixed (ECEF) system, as the name suggests, is a reference
frame fixed relative to the Earth such that its origin is placed at center of the planet and
the X axis lies in the equator plane, intersecting the prime meridian in Greenwich (i.e., at
0o latitude and 0o longitude). The Z axis is parallel to the spin axis of the Earth, pointing
to the north pole. The Y axis is chosen in order that it completes the right-handed frame
[Cai et al. 2011]. A representation of the ECEF system is exhibited in Figure 2.4.

Figure 2.4: Representation of the Earth-Centered-Earth-Fixed system.

2.1.5 ECI

The last three reference systems are non-inertial as is the body-system. All of them are
rotating frames, the NED and ORF systems translate with or around the Earth’ surface, and
the ECEF translates around the Sun; curved trajectories always implies in acceleration. For a
great number of cases the acceleration effects in these frames can be ignored. Nevertheless,
an inertial frame definition such that the system does not rotate relative to the solar system is
useful, specially for spacecraft applications. Figure 2.5 shows a representation of the Earth-
Centered-Inertial (ECI) reference system.

The origin point of ECI is fixed at the Earth center and the Z axis is parallel to the spin
axis of the planet, pointing to the north pole. The equatorial plane of the Earth is inclined
relative to its orbit plane around the Sun – by an angle of about 23.5o – called the ecliptic
plane. Therefore, the intersection of these two planes is a straight line passing through the
Earth’s center and orthogonal to its spin axis. This line direction is approximately constant
relative to the distant stars, which are the effective inertial reference used by the ECI system.
Thus, the X axis is parallel to this intersection line, pointing toward the Sun at the vernal
equinox, which marks the first day of spring in the northern hemisphere and the first day
of autumn in the southern hemisphere. For this reason, X is also called the vernal equinox
vector.
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Figure 2.5: Representation of the Earth-Centered-Inertial system.

Considering the Earth’s precessional motion due to the Sun and the nutational motion due
to the Moon2, the Z and X axes defined above are not fixed relative to the celestial inertial
reference. Consequently, these axes directions are associated to a certain date. Nowadays,
the date commonly used is specified by the J2000 standard: January 1, 2000.

Referring to the observations made concerning inertial reference frames, the ECI system
is not truly inertial, specially due to the translational movement of the Earth around the Sun.
However, considering this motion have a long period, the ECI system can be considered
inertial for most of the practical applications.

Summarizing what was exposed, the origin point of the ECI system is fixed at the Earth
center; the Z axis is parallel to the spin axis of the Earth, pointing toward the north pole;X
axis is the vernal equinox vector and the direction of both axes are associated to a specific
date; the Y axis is defined in order that it completes the right-handed frame [Sidi 1997,
Wertz 1978, Schutz et al. 2004].

2.1.6 Attitude definition

Once the commonly used reference frames have been presented, the attitude of a body is
defined as the rotation operation applied to a reference frame – not fixed to it – that makes
itsX,Y ,Z axes parallel to theX,Y ,Z axes of the body-frame, respectively.

Given two reference frames, there is an infinite number of rotation operations that can
align one frame to the other. This variety allows different mathematical representations for
the attitude. Despite of the infinitely large number of possible rotation operations, the overall
process can be unequivocally defined in a way that it depends on the two reference frames
only. Section 2.3 will present the way this unique characterization can be obtained, and some
of the different forms of attitude representation.

Before concluding this section, the terminology shall be clarified. The two reference

2The period of the precessional motion of the Earth is of 25,800 years. The nutational motion period is of
18.6 years.
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frames necessary for the attitude definition have asymmetrical roles. The body-frame is
always present, whereas the other frame is chosen accordingly to the application. Moreover,
the rotation operation is applied to this last frame which act as a reference for the attitude
determination. Therefore, since the body-frame is also a reference frame, in order to avoid
ambiguities with the word reference the terminology must be settled. Hereafter, the term
reference-system will be exclusively used to designate the frame not fixed relative to the
body, such as NED, ECEF, ORF or ECI. Analogously, the term body-system will be preferred
to designate the body-fixed frame, although the other terms might be used.

2.2 Rotations in three-dimensional space

In this section the first equations of this manuscript will be given. Firstly, the adopted
notation shall be presented.

2.2.1 Notation and conventions

• Scalars are represented by minuscule italic letters: a, b, α, β.

• Vectors are represented by bold italic letters. Unless otherwise stated, these characters
will also be minuscule: x, y, u, v.

• Matrices are represented by capital letters: A, B, Ω, Ψ.

• A matrix entries are represented by the minuscule version of the letter which represents
the matrix. The row and column indices will accompany the small case character as
subscripts: aij is the element of the ith row and the jth column of the matrix A.

• Angles are represented by minuscule Greek italic letters: φ, θ, ψ, α.

• Points and Cartesian coordinate axes are represented by capital bold italic letters: X ,
Y ,O, P .

Besides the above notations, some conventions must also be established.

A vector u ∈ Rn is represented by the ordered set of scalars {u1, u2, ..., un} (with ui ∈
R) such that u = (u1, u2, ..., un).

The vector space R3 possess a standard basis correspondent to the unit vectors (1, 0, 0),
(0, 1, 0) and (0, 0, 1). It also has the element (0, 0, 0) as an origin point. The three unit
vectors along with the origin can be seen as a standard reference frame. However, in an
experimental point of view, the standard basis is no significant unless it is associated to a
physically established reference system, such as those presented in Section 2.1. Therefore,
the fact of any basis for R3 can be expressed in terms of the standard basis has no practical
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meaning. Defining such expression would be equivalent to establish the attitude between
the two bases a priori, which is the actual problem to be addressed. In view of these obser-
vations, in this work the concept of standard basis will be dropped. Thus, any basis of R3

will be treated as being conceptually equivalent to each other, reflecting the mathematical
equivalence between reference frames in attitude determination problems.

Considering the correspondence between the reference vectors and the bases for R3, a
convention shall be established in order to settle the concepts. In the present dissertation,
the reference vectors of an orthonormal basis for R3 will be represented by the unit vectors
i, j and k. A subscript character might be used with each unit vector to distinguish them
from the unit vectors of another frame. Therefore, a vector ur ∈ R3 expressed in a basis
Br = {ir, jr,kr} ⊂ R3 can be written in terms of the unit vectors, as shown in Equation 2.1.

ur = xrir + yrjr + zrkr . (2.1)

A column or row matrix provides a convenient way to represent vectors defined as in
Equation 2.1. For consistency, only a column matrix representation will be used in this
dissertation, such that ur = [xr yr zr]

T . The superscript T denotes the matrix transposition
operation. Also, the notation for vectors, with bold minuscule italic letters, must prevails
over the matrix notation.

In order to avoid ambiguities with the commonly used notation (x, y, z), in this work the
column vector notation will be exclusively used to define the way a vector is expressed in a
certain basis, not the standard basis. Therefore, the definition in Equation 2.2 is given.

[xr yr zr]
T def

= xrir + yrjr + zrkr = ur . (2.2)

As a consequence of the definition in Equation 2.2, before introducing a column vector
and its components, the basis in which it is expressed must be provided. The unit vectors of
a frame can also be expressed as column vectors. For instance,

ir = 1 · ir + 0 · jr + 0 · kr , (2.3)

hence, ir = [1 0 0]T and of course, jr = [0 1 0]T , and kr = [0 0 1]T . The convenience of
matrix notation will be clear in the next topics.

The definitions above implies that two different vector columns can represent the same
vector. That is, the vector columns are different representations of the same vector in dif-
ferent bases of R3. The term abstract vector is often used to designate the entity which
remain invariable regardless of the basis, distinguishing this entity from its frame-dependent
representations [Shuster 1993]. In applied studies an abstract vector is associated to physical
quantities, such as velocity, acceleration, magnetic field, etc.
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Some works use different letter fonts or other variations to distinguish an abstract vector
from its representations in different bases. In the present dissertation, the abstract vector will
follow the notation for vectors already established, also being designated by simple letters
such as u, x, y, but free of accents or other symbols. An abstract vector representations
will be designated by the same letter, but with subscript or superscript symbols, or accents.
The extra symbol of an abstract vector representation will refer to the basis in which it is
expressed. Therefore, the vector ur in Equation 2.1 can be seen as a vector representation of
an abstract vector u in the basis Br. Additionally, in this manuscript the word vector used
alone will designate an abstract vector representation.

Considering a vector components constitute an ordered set, their roles are not inter-
changeable. For vectors in R3, this is associated to the right-handedness propriety. A refer-
ence frame {i, j,k} ∈ R3 is right-handed if

i× j = k, j × k = i, k × i = j . (2.4)

If the unit vector i is associated to the CartesianX axis, Equations 2.4 are equivalent to say
that j and k are associated to the Y and Z axes, respectively.

The bases for R2 and R3 considered in the subsequent exposition will always refer to
reference frames. Hence, they will always be orthonormal bases for those vector spaces. In
order to delimit the concept of basis, relating it to a reference frame, hereafter the symbol
F will be used to designate an orthonormal basis for R2 or R3. As a consequence of this
convention, the terms basis, reference frame, and its previously defined synonymous, will be
used interchangeably whenever no ambiguity is possible.

2.2.2 Rotations in R2

In order to specify how rotations can be applied to a reference frame in R3, is useful to
begin with rotations in R2. Let F1 = {i1, j1} and F2 = {i2, j2} be two reference frames
of R2. An abstract vector u, expressed in terms of the reference frame {i1, j1} such that
u1 = [x1 y1]

T ∈ R2, possesses a different set of components in the other basis F2. Let
u2 = [x2 y2]

T ∈ R2 be the representation of u in F2. The relationship between the two
representations can be found by considering the frame {i1, j1} is rotated about the origin
through a positive angle α (i.e., a counter-clockwise rotation) until it reaches the second
frame {i2, j2}, as shown in Figure 2.6, where the vector u remain fixed.

The relationship between u1 and u2 is given by Equations 2.5 and 2.6.

x2 = x1cos α + y1sinα , (2.5)

y2 = −x1sinα + y1cos α . (2.6)
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Figure 2.6: Reference frames {i1, j1} and {i2, j2} related by the angle α.

The rotation operation could have been done by rotating the {i2, j2} frame about the
origin through an angle −α. The result would still be the overlapping between the two
frames. In this case, the relationship between the two set of components can be found by
swapping their subscripts and replacing α by −α in Equations 2.5 and 2.6. Equations 2.7
and 2.8 demonstrate these changes effects:

x1 = x2cos(−α) + y2sin(−α) = x2cos α− y2sinα , (2.7)

y1 = −x2sin(−α) + y2cos(−α) = x2sinα + y2cos α . (2.8)

Once α is fixed, the rotation operation is linear over a vector components. Thus, the last
equations can be written using the matrix product as a linear operator. This results in more
compact forms shown in Equations 2.9 and 2.10.

[
x2

y2

]
=

[
cos α senα

−senα cos α

] [
x1

y1

]
, (2.9)

[
x1

y1

]
=

[
cos α −senα
senα cos α

] [
x2

y2

]
. (2.10)

A noticeable fact is that the square matrix in Equation 2.10 is the transpose of the one in
Equation 2.9. Furthermore, replacing the vector [x1 y1]

T in Equation 2.9 by the right-hand
expression in Equation 2.10 gives the following:

[
x2

y2

]
=

[
cos α senα

−senα cos α

] [
cos α −senα
senα cos α

] [
x2

y2

]
. (2.11)

Observing Equation 2.11, is clear that the product between the two square matrices is
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equal to the identity matrix. Therefore, Equations 2.12 holds:

[
cos α senα

−senα cos α

] [
cos α −senα
senα cos α

]
=

[
cos α senα

−senα cos α

][
cos α senα

−senα cos α

] T
= I2 .

(2.12)

where the I2 matrix is the identity matrix of order 2. The last Equation in 2.12 defines the
orthogonality property for matrices. Thus, any square matrix A that satisfies the condition
AAT = I is an orthogonal matrix. Also, it is easy to show that det(A) = ±1 whenever A
is orthogonal. Another property of an orthogonal matrix is that its inverse is its transpose,
that is A−1 = AT . The square matrices of Equations 2.9 and 2.10 have determinants equal to
+1. More will be said later about the properties of orthogonal matrices and their relationship
with rotations.

Figure 2.7 shows three reference frames F1 = {i1, j1}, F2 = {i2, j2} and F3 =

{i3, j3}, related by rotations about the origin through the positive angles α and β. The
frame {i2, j2} can be seen as {i1, j1} rotated through the angle α, and the frame {i3, j3}
can be seen as {i2, j2} rotated through the angle β. Equations 2.13 and 2.14 defines the
relationship between the vectors components where, as expected, the vector u3 = [x3 y3]

T

is the same fixed vector u expressed in the basis F3.

Figure 2.7: Reference frames {i1, j1}, {i2, j2} and {i3, j3} related by the angles α and β.

[
x2

y2

]
=

[
cos α senα

−senα cos α

] [
x1

y1

]
, (2.13)

[
x3

y3

]
=

[
cos β sen β

−sen β cos β

] [
x2

y2

]
. (2.14)

Clearly, the frames {i1, j1} and {i3, j3} could be directly related by rotating the former
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through an angle (α + β). Thus, the relationship between the two frames is given by:

[
x3

y3

]
=

[
cos(α + β) sen(α + β)

−sen(α + β) cos(α + β)

] [
x1

y1

]
. (2.15)

On the other hand, replacing the vector [x2 y2]
T in Equation 2.14 by the right-hand

expression in Equation 2.13 gives the following:

[
x3

y3

]
=

[
cos β sen β

−sen β cos β

] [
cos α senα

−senα cos α

] [
x1

y1

]
. (2.16)

Therefore, the square matrix in Equation 2.15 must be equivalent to the matrix product
in Equation 2.16. This can be easily verified by multiplying the two matrices and using some
trigonometric identities. Consequently, a sequence of rotations can simply be described by
the product of the associated square matrices.

2.2.3 Rotation matrices

The results obtained for rotations in R2 can naturally be extended to R3 by observing that
the reference frames {i1, j1} and {i2, j2} depicted in Figure 2.6 can be seen as subsets of
reference frames in R3. In fact, if {i1, j1} is a subset of the frame {i1, j1,k1}, the rotation
trough the angle α in that picture can be seen as realized about the k1 vector.

Let u1 = [x1 y1 z1]
T ∈ R3 and u2 = [x2 y2 z2]

T ∈ R3 be the representations of an
abstract vector u in the bases F1 = {i1, j1,k1} and F2 = {i2, j2,k2}, respectively. If the
frame {i1, j1,k1} rotates through an angle ψ about k1, the z1 component of u1 should re-
main unchanged. The rotation procedure is depicted in Figure 2.8. Thus, extending Equation
2.9 to R3 gives Equation 2.17:

u2 = R3(ψ)u1 , (2.17)

where,

R3(ψ) =

 cos ψ senψ 0

−senψ cos ψ 0

0 0 1

 . (2.18)

The third column and the third row of the matrix in Equation 2.18 guarantees the z1
component remain unaltered. Using the correspondences i− 1, j − 2 and k− 3, the number
3 subscript in R3(ψ) indicates the rotation is taken about k.

The matrix R3(ψ) which perform a change of basis, by means of a rotation of frames,
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Figure 2.8: Rotation of {i1, j1,k1} about k1 trough an angle ψ.

is called a rotation matrix or rotation operator. Naturally, any matrix that realizes such a
change of basis is called a rotation matrix. This is also true for different dimensions; the
square matrices of order 2 in Equations 2.9 to 2.16 are also rotation matrices.

For a rotation about the i1 vector through an angle φ the rotation matrix R1(φ) is given
by Equation 2.19.

R1(φ) =

1 0 0

0 cos φ sen φ

0 −sen φ cos φ

 . (2.19)

The matrix rotation operator for a rotation about the j1 vector through an angle θ is given
by Equation 2.20.

R2(θ) =

cos θ 0 −sen θ
0 1 0

sen θ 0 cos θ

 . (2.20)

The rotation matrices of Equations 2.18 to 2.20 are orthogonal as well as the 2×2 rotation
matrices were. Regardless of the rotation axis, every rotation matrix is an orthogonal matrix.
This is due to the geometric characteristics which remain unchanged in spite of a rotation.
These characteristics are the norm (or length) of vectors and the angle between vectors.
These two parameters can be calculated using the inner product, as shown in Equations 2.21
and 2.22:

||u1||2 = uT1u1 , (2.21)

cos α = ||u1||||v1||uT1v1 , (2.22)

where u1,v1 ∈ R3 are two vectors in the same orthonormal basis F1, and α is the smaller
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angle between them. The notation || • || represents the euclidean norm of a vector.

Let A ∈ R3 be an orthogonal matrix. Equations 2.23 demonstrate that when A is multi-
plied by u1, the result is a vector with the same length:

||Au1||2 = (Au1)T (Au1) =

(uT1A
T )(Au1) = uT1 (ATA)u1 =

uT1 I3u1 = uT1u1 = ||u1||2 .

(2.23)

Since the vectors norm do not change when they are operated by an orthogonal matrix
A, the preservation of the angle between two vectors u1 and v1 can be analysed using the
inner product only, as stated by the definition in Equation 2.22. Equations 2.24 demonstrate
the inner product remain unchanged despite of the pre-multiplication by A:

(Au1)T (Av1) =

(uT1A
T )(Av1) = uT1 (ATA)v1 =

uT1 I3v1 = uT1v1 .

(2.24)

A consequence of the results above is that every rotation matrix A must be orthogonal.
The converse is not true. As mentioned before, for any orthogonal matrix B, det(B) = ±1.
In order to B be a rotation matrix, det(B) must be equal to +1 so that the right-handedness
property is preserved. The matrixR1(φ) defined in Equation 2.19 can be used to demonstrate
this fact. Given a vector u1 = [x1 y1 z1]

T in a reference frame of R3, Equations 2.25 show
the effect of applying the rotation operator R1(0) to this frame has over u1 components.
However, the sign of the 1 in the upper-left-hand corner in R1(0) is reversed. With this small
alteration, the matrix determinant is equal to −1.

−1 0 0

0 cos(0) sen(0)

0 −sen(0) cos(0)


x1y1
z1

 =

−1 0 0

0 1 0

0 0 1


x1y1
z1

 =

−x1y1

z1

 . (2.25)

The supposed rotation operator reversed the sign of the u1 first component. Neverthe-
less, u1 should have remained unchanged since the rotation angle was 0. Seeing the refer-
ence frame as a rigid structure, such operation took one frame to another not by means of a
rotation, but by deforming the original frame. Hence, the right-handed frame was taken into
a left-handed frame. Considering the special properties of the group of orthogonal matrices
with determinant equal to +1, it receives the name SO(3). Hence, the SO(3) group com-
prises all the orthogonal matrices of R3×3 with determinant equal to +1. The matrices of
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SO(3) are also called proper real orthogonal matrices.

For rotations in R2 was shown that a sequence of rotations could be described by mul-
tiplying the correspondent rotation matrices. However, the rotations was taken about the
same implicit axis Z3. For rotations in R3 the matrix product property still holds, even for
rotations taken about different axes. The demonstration of this fact is similar to the R2 case,
one must takes intermediate frames and replace the vectors obtained in each step. Equation
2.26 defines a matrix A as a product of several matrices of the form Rn, which means the
rotations are applied about one of the frame vectors i, j and k.

A = R2R1R1R3R2 . (2.26)

In Equation 2.26 the rotation angles were omitted since they are not required for the subse-
quent analysis.

Using the intermediate reference frames, the matrix product property of sequential rota-
tions in R3 arises as naturally as in the R2 case. However, unlike the 2-dimensional rotations,
it is not obvious that the matrix A is a rotation matrix. This is mainly due to the fact that
the intermediate angles – which do not belong to the same plane – can not be summed as
in Equation 2.15. Despite of this impossibility, A is indeed a rotation matrix since it is an
orthogonal matrix with det(A) = 1. In fact, given two orthogonal matrices A and B, the
product AB is also an orthogonal matrix as demonstrated in Equation 2.27.

(AB)(AB)T = (AB)(BTAT )

= A(BBT )AT = AAT = I3 .
(2.27)

Since each Rn matrix is an orthogonal matrix , the property demonstrated in Equation
2.27 implies that A is an orthogonal matrix. Also, once det(AB) = det(A)det(B) and
det(Rn) = 1, det(A) = 1. Therefore, as explained earlier, the matrix A in Equation 2.26 is
a rotation matrix.

2.2.4 Fixed axis of rotation

The matrix multiplication property for sequential rotations constitutes a procedure to
obtain a rotation matrix with a different form than the Rn ones. However, given a frame
in R3, it should be possible to rotate it freely, not exclusively about the frame vectors i,
j and k. The fact that not only matrices of the form Rn are rotation matrices, but every
orthogonal matrix with determinant equal to 1, suggests such a freedom of movement. These
observations lead to the question of whether a rotation matrix not in the shape of Rn could

3An axis can be mathematically defined using a vector parallel to it. Thus, in this work both words axis and
vector will be used to describe a rotation.
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represent a rotation about a vector different from i, j and k. This is indeed the case, as
shown in the following.

Let A ∈ R3×3 be a rotation matrix. The scalars λ which satisfy the Equation 2.28 are
called eigenvalues of A.

Av1 = λv1 , (2.28)

where v1 ∈ R3 is any vector such that v1 6= 04. It is called eigenvector of A. Equation 2.28
implies in:

Av1 − λv1 = 0 , (2.29)

(A− λI3)v1 = 0 . (2.30)

In order to the linear system of Equation 2.30 have a non-trivial solution, since v 6= 0,
the Equation 2.31 must be satisfied.

det(A− λI3) = 0 . (2.31)

The expansion of the determinant in Equation 2.31 results in a polynomial of the same
order as A, in this case a polynomial of order 3. It is called the characteristic polynomial
for A and Equation 2.31 is called a characteristic equation. Considering A is orthogonal,
Equations 2.32 demonstrate that A has at least one eigenvalue equal to 1.

det(A− I3) = 1 · det(A− I3) = det(AT )det(A− I3) =

det[AT (A− I3)] = det(ATA− AT I3) =

det(I3 − AT ) = det[(I3 − A)T ] =

det(I3 − A) = det[(−1)(A− I3)] =

− det(A− I3) .

(2.32)

Therefore,

det(A− I3) = 0 . (2.33)

Comparing Equation 2.33 to Equation 2.31, the former states that λ = 1 is an eigenvalue

4A zero written in bold face represents a vector or matrix with all entries equal to 0.
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of A. Replacing this eigenvalue in Equation 2.28, results in

Av1 = v1 . (2.34)

Since A is a rotation matrix, the left-hand side of Equation 2.34 is equivalent to apply a
rotation to the reference frame in which v1 is expressed. It implies that there exists a vector
v1 which remain unaltered after the change of reference frames performed by A. This is
only possible if v1 is parallel to the axis of rotation.

The expected result was thereby obtained. Given an arbitrary rotation matrix A, there
indeed exists a single axis about which the rotation operation is taken. This axis is parallel
to the eigenvector corresponding to the eigenvalue λ = 1, and it is called the fixed axis of
rotation.

The result presented is highlighted when compared to the sequential process of multi-
plying Rn matrices. A sequence of rotations as the one exemplified in Equation 2.26 is
equivalent to take a single rotation about the v1 vector defined in Equation 2.34.

Once the existence of the fixed axis has been established, it can be found by solving the
homogeneous linear system described in Equation 2.30 with λ = 1. That is, one must solve
the linear system of Equation 2.35.

(A− I3)v1 = 0 . (2.35)

However, directly solving the system in Equation 2.35 using common approaches do not
take into account the orthogonality of A. This property establishes several relationships be-
tween A entries, leading to a much simpler solution for the fixed axis. This simpler solution
is demonstrated in [Kuipers 1999] and it is shown in Equation 2.36.

v1 =

a23 − a32a31 − a13
a12 − a21

 . (2.36)

Applying Equation 2.36 to the matrices Rn is a good exercise to verify this equation
validity. For instance, applying Equation 2.36 to the matrix R1(φ) defined in Equation 2.19
results in

v1 =

2sin φ

0

0

 , (2.37)

where the fixed axis obtained is parallel to the rotation axis of R1 which is i = [1 0 0]T .
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2.2.5 Rotation angle about the fixed axis of rotation

Once the fixed axis of rotation was obtained, the angle of rotation about this fixed axis
must be found. In [Kuipers 1999] is demonstrated how this angle, designated as ϕ, can be
calculated. Equation 2.38 shows the result.

cos ϕ =
Tr(A)− 1

2
. (2.38)

The function Tr(A) in Equation 2.38 denotes the trace of A. Again, using Equation 2.38
with R1(φ) is helpful. Since Tr(R1(φ)) = 2cos φ+ 1, Equation 2.38 holds.

The vector found in Equation 2.37 is not an unit vector. In general, the application of
Equation 2.36 will not result in an unit vector. Nevertheless, given the total rotation angle ϕ,
the unit vector nA which defines the fixed axis of rotation – also designated as unit rotation
vector – can be calculated using Equation 2.39 [Shuster 1993].

nA =
1

2sinϕ

a23 − a32a31 − a13
a12 − a21

 . (2.39)

In Equation 2.39, sinϕ 6= 0 in order that nA can be defined. Furthermore, it should be
noticed that nA is a vector representation invariant under the change of basis realized by A.

The material presented in this section basically followed the same lines of the logical
sequence in which this subject was presented in [Kuipers 1999]. However, the mathematical
formalism was a few different. The concept of abstract vector and the explicit consideration
of the reference frames, treating them as bases for R3, make this work approach closer to the
one adopted in [Shuster 1993]. As reported earlier, the concept of abstract vector was taken
from [Shuster 1993] as well as the result in Equation 2.38. A more detailed exposition of
this section subject can be found in the before-mentioned works.

2.3 Attitude representations

In the end of Section 2.1 the attitude of a body was defined as the rotation operation which
takes the reference-system into the body-system. In Section 2.2 the rotation operation was
characterized in several ways. Consequently, there is more than one way to mathematically
describe the attitude of a body. An attitude representation is a specification about the manner
the reference-system is rotated into the body-system. The subsequent sections will present a
few of the most employed attitude representations in practice.
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2.3.1 Direction-cosine matrix

In Section 2.2 was reported that any matrix A of the SO(3) group is a rotation matrix.
Moreover, the rotation operation that takes one reference frame into another represents a
operation of a change of basis for R3. Therefore, given two orhonormal bases F1,F2 ⊂ R3

and being A the change of basis operator from F1 to F2, it can be proved that A is unique
[Meyer 2000]. That is, A depends only on the two bases. For the attitude definition, it means
the rotation matrix A depends only on the two reference frames: the one rotated (reference-
system) and the target frame (body-system).

The uniqueness ofA implies that it can be used to unambiguously describe the attitude of
a body. On the basis of this fact, the rotation matrix A constitutes an attitude representation
which naturally arose throughout the precedent analysis. Besides the rotation matrix term,
A is also called attitude matrix or direct-cosine matrix (DCM) .

The term direct-cosine matrix comes from the geometric interpretation associated to each
of its entries. Figure 2.9 shows a reference-system Fr = {ir, jr,kr} and the unit vector ib
of a body-system Fb = {ib, jb,kb}, all parting from the same origin point.

Figure 2.9: Angles between a body-system unit vector ib and the reference-system vectors.

The angles between ib and the reference-system unit vectors are also depicted in Figure
2.9. Equation 2.22 stated the relationship between the smaller angle formed by two vectors
and the inner product operation. For unit vectors it assumes a simpler form given by Equation
2.40:

cos α = 〈us,vs〉 = uTs vs , (2.40)

where us,vs ∈ R3 are unit vectors of the same basis Fs. Also, in Equation 2.40 was defined
a different notation, used in some fields, for the inner product (〈•, •〉). Thus, Equation 2.40
implies that the angle between two unit vectors can be easily obtained using the inner product
operation applied to them.
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The derivation of the DCM A corresponding to the reference-system Fr and the body-
system Fb requires a third basis such as Fs mentioned above. The procedure of change
of basis is well-known and will be omitted here, only the final result shall be provided.
This derivation can be found in [Meyer 2000] for bases and vector spaces in general, and in
[Kuipers 1999, Wertz 1978, Shuster 1993] for the applied problem of attitude determination.

In order to present a equation forA, the representations of theFr andFb reference vectors
must be provided. Let r1s , r

2
s and r3s be the vector representations in Fs of ir, jr and kr, re-

spectively. The representations of the body-system frame vectors are designated in the same
way. The vectors b1s, b

2
s and b3s are the representations of ib, jb and kb in Fs, respectively.

Equation 2.41 gives the definition of the attitude matrix in terms of the reference-system and
body-system frame vectors representations.

A =

〈b1s, r1s〉 〈b1s, r2s〉 〈b1s, r3s〉〈b2s, r1s〉 〈b2s, r2s〉 〈b2s, r3s〉
〈b3s, r1s〉 〈b3s, r2s〉 〈b3s, r3s〉

 . (2.41)

Equation 2.41 clarifies the motivation for the term direction-cosine matrix. Referring to
Equation 2.40, each entry of A is the cosine of the angle between two unit vectors, where
one is taken from the body-system and the other from the reference-system. The matrix A
is 3 × 3 as long as there are nine angles to take into account. Moreover, it must be noticed
that the order b−r used in Equation 2.41 does not need to be obeyed once the inner product
is commutative. An ordered fashion is nevertheless helpful, working as a mnemonic device
and yielding an elegant formulation.

The row-column pattern that emerges using the above-mentioned order b−r in Equation
2.41 suggests a product in the form [bs][rs]

T . The terms [bs] and [rs] designate block matrices
composed of the respective vector representations. Equation 2.42 demonstrates that such
interpretation is correct.

A =

 (b1s)
T

(b2s)
T

(b3s)
T

[ r1s r2s r3s

]
. (2.42)

The left-hand block matrix in Equation 2.42 is the above-mentioned [bs] matrix, whereas
[rs] is the right-hand block matrix. Using the transposition operation, Equation 2.42 yields
Equations 2.43.

A =
[
b1s b2s b3s

]T [
r1s r2s r3s

]
= BT

s Rs , (2.43)

where the terms Bs = [bs]
T and Rs = [rs] establish a neater notation for the block matrices.

Also, once is clear the frame vector representations are column vectors, the vertical lines
were omitted in Equation 2.43.
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Equation 2.43 is a remarkable result since it explicitly establishes the fact that the attitude
depends only on the body-system and the reference-system. In addition, it must be noticed
that the attitude do not depend on the third basis since it was arbitrarily chosen. In fact, the
TRIAD algorithm derivation presented in Section 3.1 yields a result similar to Equation 2.43
without requiring a third basis.

The mathematical description of rotations using matrices makes the DCM the most natu-
ral attitude representation. However, it requires nine values to represent the attitude, whereas
the rotations in R3 has three degrees of freedom. The constraints the orthogonality property
of the DCM imposes on its entries implies that they are not independent of each other nev-
ertheless. Thus, there are redundancy in the DCM representation. This characteristic makes
it less attractive when compared to other forms of representation. Despite of this fact, the at-
titude matrix is commonly retrieved in many algorithms to stablish the relationship between
vectors measurements from different reference frames. The advantages the DCM has for
mathematical manipulations is also worth to mention.

2.3.2 Euler angles

Some of the results presented thus far concerning rotations in R3 and the attitude problem
were first obtained by Leonhard Euler (1707-1783). A theorem proved by him states that any
reference frame can be rotated into another by means of a sequence of three rotations about
the reference vectors. Of these three, two successive rotations can not be about the same
axis. Moreover, only a twelve of the all possible sequences can be applied [Wertz 1978].

Using the already referred correspondences i− 1, j− 2, k− 3, and the rotation matrices
Rn, in this work only the sequence designated as 3− 2− 1 will be described. This sequence
corresponds to a rotation about the k vector, followed by a rotation about the new j axis, and
finalizing with a rotation about the newest x vector. The adjective new may be ambiguous. A
more precise description requires two intermediate reference frames besides the reference-
system Fr = {ir, jr,kr} and the body-system Fb = {ib, jb,kb}. Designating them as
F ′ = {i′, j ′,k′} and F ′′ = {i′′, j ′′,k′′}, the 3− 2− 1 sequence goes as follows:

• a rotation about kr through an angle ψ, taking Fr into F ′, is followed by

• a rotation about j ′ through an angle θ, taking F ′ into F ′′, which is followed by

• a rotation about i′′ through an angle φ, taking F ′′ into Fb.

The angles φ, θ and ψ are called Euler angles and they are the three parameters used
to describe the attitude in this form of representation. The Greek letters φ, θ and ψ are
traditionally adopted to represent the rotations about the i, j, and k vectors, respectively,
and can be used as alias to designate them. Additionally, the terms row, pitch and yaw angles
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are commonly used to refer to the same respective angles φ, θ and ψ5.

The Euler angles representation can be mathematically formulated in terms of the rotation
matrices Rn. The process is similar to the one applied to obtain Equation 2.16 in the R2

case. Each rotation is applied to take one frame to the next, until the last intermediate frame
is taken into the body-system. The process result is equivalent to the direct application of
the matrix product property for rotation sequences, as in the example of Equation 2.26. The
final rotation matrix A is given by Equations 2.44.

A(φ, θ, ψ) = R1(φ)R2(θ)R3(ψ) =1 0 0

0 cos φ sen φ

0 −sen φ cos φ


cos θ 0 −sen θ

0 1 0

sen θ 0 cos θ


 cos ψ senψ 0

−senψ cos ψ 0

0 0 1

 . (2.44)

The matrix multiplication in Equation 2.44 yields

A(φ, θ, ψ) =

 cψcθ sψcθ −sθ
cψsθsφ − sψcφ sψsθsφ + cψcφ cθsφ

cψsθcφ + sψsφ sψsθcφ − cψsφ cθcφ

 , (2.45)

where, the short notation s• = sin(•) and c• = cos(•) was employed in Equation 2.45.

The Euler angles representation uses the minimum set of three parameters to describe
the attitude. On the other hand, singularities occur for certain angles, which means the
Euler angles are not unique for such orientations. Therefore, if the body-system is static
relative to the reference-system and the attitude is determined, the singularity implies that
there are more than one triple (φ, θ, ψ) able to represent that attitude. If the body-system
moves relative to the reference-system, some of the Euler angles time rates tend to infinity.

The singularities occur even limiting the angles ranges to avoid the trigonometric func-
tions periodicity, which is always necessary when dealing with angles and rotations. The sin-
gularity is intrinsic to this form of representation, and any other that uses only the minimum
set of three parameters. In fact, as demonstrated in [Stuelpnagel 1964], every parametriza-
tion of rotations in R3, using only three parameters and which is global, thereby possessing
a finite number of parameters associated to a single rotation, have singular points where the

5In [Kuipers 1999] the author emphasizes that the widespread terms row, pitch and yaw are improperly used
in most of the cases. The argument is made in favour of the terms heading angle for ψ, elevation angle for θ,
and bank angle for φ. However, these terms seem to be appropriate only for reference-systems not placed at
the body center. This would be the case for a NED system with an origin point placed on the Earth’s surface,
while the body center translates above the earth as in an aircraft or spacecraft application. This interpretation
is suggested by the referred work itself, where an aircraft application always emerges in the arguments. The
utilization of the terms yaw, pitch and roll, does seem to be appropriate for body centred reference-systems such
as ORF. These terms are also applicable when a NED system is placed at the body center, as in smartphones
applications, or as in the modelling of the air-bearing satellite table at LAICA, described in Chapter 4.
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three parameters are not uniquely defined. Thus, regardless of the sequence of rotation, a
singularity always occurs for certain angles. They depend on the sequence of rotation. For
the 3−2−1 sequence the singularity occurs when θ = ±90o or odd multiple of these values.

As an example of the singular points meaning, the triples (−90o, 90o, 0o) and
(0o, 90o, 90o) represent the same attitude. Thus, if a body-system attitude is defined by
(0, 90o, 90o − εψ), with 0 < εψ � 1, and it rotates to the attitude given by (0, 90o, 90o + εψ),
its change in orientation could be accounted as (0o, 0o, 2εψ). However, since the interme-
diate attitude can also be given by (−90o, 90o, 0o), the frame movement could be described
as going from (−90o + εφ, 90o, 0o) to (0o, 90o, 90o + εψ), where 0 < εφ � 1. That is, the
orientation change could be regarded as (90o − εφ, 0, 90o + εψ). Therefore, the so called
singularity is associated not only to the non-uniqueness of the parameters, but also to their
discontinuity for small changes in attitude.

Other forms of attitude representation which use more parameters than the minimum
avoid the singularity problem. In fact, one can observe that the Euler angles triples
(−90o, 90o, 0) and (0, 90o, 90o) applied to Equation 2.45 result in the same DCM. This would
be true for another attitude representation with a redundant number of parameters. On the
basis of this fact, the Euler angles representation is not commonly used in any application
where the body is capable to move freely in space. Nevertheless, they are useful to repre-
sent small variations in attitude – for a stabilized spacecraft, for example – or with objects
that can not reach the singular angles. Indeed, the Euler angles are frequently used with
the air-bearing satellite platform at LAICA, once its movements are mechanically bounded.
Furthermore, this form of representation are often used for graphic visualization, once their
geometric interpretation is straightforward.

2.3.3 Euler symmetric parameters and quaternions

The DCM representation is the same rotation matrix. The Euler angles are associated
to sequential rotations about the reference vectors. Both representations come directly from
two different ways to characterize a rotation in R3. The last characterization presented in
Section 2.2 was given in terms of the fixed axis of rotation and the total angle of rotation.
These elements can be used as a form of attitude representation.

The unit rotation vector components plus the total rotation angle, result in four possible
parameters for the attitude representation. This redundant number of variables can lead to
an attitude representation free of singularities and with less parameters than the DCM. The
Euler-Rodrigues symmetric parameters – more commonly known as the Euler symmetric
parameters – consist in an attitude representation based on the four parameters η1, η2, η3 and
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η4, given by Equations 2.46:

η1η2
η3

 = η = nbrsin
(ϕ

2

)
, η4 = cos

(ϕ
2

)
, (2.46)

where nbr defines the principal axis of the rotation which takes the reference-system Fr to
the body-system Fb, and ϕ is the total rotation angle. Also, it must be clear that the column
vector [η1 η2 η3]

T is a vector representation in Fr or Fb – it is invariant under the two bases.

The Euler-Rodrigues symmetric parameters are clearly not independent of each other,
and this is a manifestation of the redundancy in the attitude parametrization. Indeed, since
nbr has unit norm, the four parameters satisfy the constraint stated by Equations 2.47.

η21 + η22 + η23 + η24 = ||η||2 + η24 = ||nbr||2sin2
(ϕ

2

)
+ cos2

(ϕ
2

)
= 1 . (2.47)

The utilization of the Euler symmetric parameters as the four components of a quater-
nion leads to an extremely convenient form of attitude representation. A quaternion q is an
ordered 4-tuple of scalars such that q = (q1, q2, q3, q4), with qi ∈ R. Given two quaternions
q′ = (q′1, q

′
2, q
′
3, q
′
4) and q = (q1, q2, q3, q4), the quaternion addition operation is defined in

Equation 2.48.

q + q′ = (q1 + q′1, q2 + q′2, q3 + q′3, q4 + q′4) . (2.48)

The quaternion multiplication operation is designated by the symbol ⊗. If q′′ = q′ ⊗ q,
the q′′ components are given by Equations 2.49.

q′′1 = q4q
′
1 + q′4q1 − (q′2q3 − q′3q2),

q′′2 = q4q
′
2 + q′4q2 − (q′3q1 − q′1q3),

q′′3 = q4q
′
3 + q′4q3 − (q′1q2 − q′2q1),

q′′4 = q′4q4 − (q′1q1 + q′2q2 + q′3q3) .

(2.49)

A more convenient formulation of Equation 2.49 can be found if the quaternion compo-
nents q1, q2 and q3 are regarded as a column vector q = [q1 q2 q3]

T . This terminology can
lead to confusion with the vector representation definition given in Equation 2.2. However,
such notation is convenient when dealing with rotations. Hence, a quaternion can be seen as
a block column matrix of order 4 such that q = [q q4]

T 6. The term q is called the vector

6The differentiation between a column vector matrix used in general and a vector representation in a certain
basis, shall be clear from the context.
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part of the quaternion, and the remaining component q4 is its scalar part. Equations 2.50
establish the more compact definition of the quaternion product.

q′′ =

[
q′′

q′′4

]
=

[
q′

q′4

]
⊗

[
q

q4

]
=

[
q4q
′ + q′4q − q′ × q
q′4q4 − 〈q′, q〉

]
. (2.50)

The definition in Equation 2.50 highlights the non-commutativity of the quaternion prod-
uct provided that the vector product is non-commutative. The multiplication definition
given is not the one traditionally used since Hamilton invented the quaternions in 1843
[Shuster 2008]. For the attitude representation point of view, the product operation stated
by Equation 2.50 is convenient nevertheless.

The norm of a quaternion q, denoted as ||q||, is defined by Equation 2.51.

||q|| =
√
q21 + q22 + q23 + q24 . (2.51)

The complex conjugate q∗ of a quaternion q is defined as in Equation 2.52.

q∗ =

[
−q
q4

]
. (2.52)

The identity for quaternion addition is 0 = [0 0 0 0]T , since q + 0 = q. The identity
for quaternion multiplication is 1 = [0 0 0 1]T , because q ⊗ 1 = 1 ⊗ q = q. Therefore,
the multiplicative inverse q−1 of q is such that q ⊗ q−1 = q−1 ⊗ q = 1. Using the complex
conjugate of a quaternion, q−1 can be written as in Equation 2.53.

q−1 =
q∗

||q||2
. (2.53)

As mentioned earlier, the quaternions are useful when their components are taken as the
Euler symmetric parameters, as shown in Equations 2.54:

q =

[
q

q4

]
=

[
η

η4

]
, (2.54)

where the equality q = η states the relationship between the vector part of the quater-
nion and the unit rotation vector nbr. This demonstrate the convenience of the notation
q = [q1 q2 q3]

T , provided that the quaternion vector part can be interpreted as a vector
representation in Fr and Fb.

A quaternion defined as in Equation 2.54 is called a quaternion of rotation. The quater-
nions utilization as containers for the Euler symmetric parameters provides an useful alge-
braic apparatus for this form of attitude representation. In fact, quaternions are employed
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as quaternions of rotations in such extent that in some works they seem to be synonymous.
However, a quaternion is an algebraic concept by its own nature, as it was conceived by
Hamilton.

Despite of the fact that a quaternion is not necessarily a quaternion of rotation, if its
components satisfy a similar constraint of the one given by Equations 2.47, such quaternion
can be associated to a rotation. Therefore, the constraint in Equations 2.47 when applied to
a quaternion of rotation gives ||q|| = 1. Thus, a quaternion of unit norm, or simply a unit
quaternion, can always be associated to a rotation in the same way a proper real orthogonal
matrix can. An important consequence of the unit norm constraint is q−1 = q∗, which is
analogous to the property A−1 = AT of orthogonal matrices7.

The are several ways to write the attitude matrix as a quaternion of rotation function. In
order to give the first formulation, the matrices Ξ(q) ∈ R4×3 and Ψ(q) ∈ R4×3 are defined
by Equations 2.55 and 2.56.

Ξ(q) =

[
q4I3 + [q×]

−qT

]
, (2.55)

Ψ(q) =

[
q4I3 − [q×]

−qT

]
. (2.56)

The term [u×], where u = [u1 u2 u3]
T , is a skew-symmetric matrix defined as

[u×] =

 0 −u3 u2

u3 0 −u1
−u2 u1 0

 . (2.57)

The matrix [u×] given by Equation 2.57 can be used to defined the vector product as a
matrix operation. Let v = [v1 v2 v3]

T be a vector of R3, Equation 2.58 demonstrate this
vector product property.

[u×]v =

 0 −u3 u2

u3 0 −u1
−u2 u1 0


v1v2
v3

 =

u2v3 − u3v2u3v1 − u1v3
u1v2 − u2v1

 = u× v . (2.58)

Given the above definitions, the attitude matrix A(q) written as a quaternion of rotation
function can be defined as in Equation 2.59.

A(q) = ΞT (q)Ψ(q) . (2.59)

7This analogy is even more remarkable with an unitary complex matrix H which has the property H−1 =
H∗, where H∗ is its conjugate transpose.
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Expanding the terms in Equation 2.59 and applying the matrix product yields a second
formulation for A(q), stated by Equation 2.60.

A(q) = (q24 − ||q||2)I3 + 2qqT − 2q4[q×] . (2.60)

Given an attitude matrix A, Equation 2.60 shows the two quaternions q and −q can be
associated to A. Hence, the quaternions of rotations are not unique, corresponding to a 2-1
attitude parametrization. However, unlike the Euler angles, such non-uniqueness does not
means the Euler symmetric parameters possess singular values because it do not imply in
discontinuities. Indeed, the four-dimensional quaternion of rotation representation is locally
homeomorphic8 with the SO(3) group [Stuelpnagel 1964].

The last formulation of A(q) is obtained by writing the Equation 2.60 in terms of the
quaternion components and performing the matrix operations. This procedure result is shown
in Equation 2.61.

A(q) =

2(q21 + q24)− 1 2(q1q2 + q3q4) 2(q1q3 − q2q4)
2(q1q2 − q3q4) 2(q22 + q24)− 1 2(q2q3 + q1q4)

2(q1q3 + q2q4) 2(q2q3 − q1q4) 2(q23 + q24)− 1

 . (2.61)

The description of sequential rotations can be obtained by multiplying the two correspon-
dent quaternions of rotation. Let q∗1 and q2∗ be two quaternions of rotation. The first repre-
sents the rotation which takes a reference frame F1 to the frame F∗; the second quaternion
parametrizes the rotation which takes F∗ to the reference frame F2. The product property
of rotation matrices states that A(q2∗)A(q∗1) is the rotation matrix of the single equivalent
rotation of F1 into F2. The corresponding rule for the quaternions of rotation is given by
Equations 2.62:

A(q2∗)A(q∗1) = A(q2∗ ⊗ q∗1) = A(q21) , (2.62)

where q21 is the quaternion of rotation which parametrize the single rotation that takes F1 to
F2.

The quaternion of rotation is an attitude representation free of singularities and has less
parameters than the DCM. As a consequence, the number of operations in several equations
– such as Equation 2.62 – is considerably smaller. Also, the microprocessors finite-precision
arithmetic tends to violate the unit norm and orthogonality constraints in software implemen-
tations of the equations. The first constraint is easier to attend than the second, which is an-
other advantage worth to mention. When compared to the Euler angles, besides the absence
of singularities, the quaternions of rotations do not require the computation of trigonometric

8In a simplist definition, a continous mapping between two sets is a homeomorphism if it is invertible and
its inverse is also continuous [Do Carmo 2010].
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functions, which imposes a high computational burden. Owing to these characteristics, the
quaternions of rotation have been the most employed form of attitude representation over the
last few decades [Crassidis et al. 2007].

2.3.4 Rodrigues parameters and Gibbs vector

The Rodrigues parameters constitute a form of attitude representation based on the min-
imum set of three parameters. This means that singularities exist for certain attitudes. This
characteristic along with other disadvantages limit their practical utilization. However, the
Rodrigues parameters are used as intermediate parametrization in several algorithms, includ-
ing USQUE filter. Thus, it will be briefly described.

The Rodrigues parameters ρ1, ρ2, and ρ3 are simply obtained by dividing the Euler sym-
metric parameters η1, η2 and η3 by η4, as shown in Equations 2.63.

ρ =

ρ1ρ2
ρ3

 =
η

η4
=

1

η4

η1η2
η3

 . (2.63)

The vector ρ defined in Equation 2.63 is also called the Gibbs vector. Of course, the
Gibbs vector can be written as in Equation 2.64.

ρ = nbrtan
(ϕ

2

)
. (2.64)

The quaternion of rotation q = [η η4]
T can be retrieved from Gibbs vector applying

Equations 3.27.

q =

[
q

q4

]
=

[
η

η4

]
=

1√
1 + ||ρ||2

[
ρ

1

]
. (2.65)

The Gibbs vector is clearly not defined for odd multiples of 180o. This singular point can
be moved to the odd multiples of 360o changing Equation 2.63 as in Equation 2.66.

% =
q

1 + q4
. (2.66)

The vector % components in Equation 2.66 are called the modified Rodrigues pa-
rameters (MRP) . This modification applied to the Gibbs vector was generalized in
[Schaub and Junkins 1996], considering the geometric interpretation inherent in MRP. In
fact, the modified Rodrigues parameters can be seen as the result of a stereographic projec-
tion of a four-dimensional hypersphere with unit radius onto a three-dimensional hyperplane.
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This interpretation was extended in the before-mentioned work resulting in Equation 2.67:

p =
q

a+ q4
, (2.67)

where a ∈ R, a 6 1. The vector p components are designated as the generalized Rodrigues
parameters (GRP) . The quaternion of rotation can be retrieved from the GRP using Equa-
tions 2.68 and 2.69.

q4 =
−a||p||2 +

√
1 + ||p||2(1− a2)

1 + ||p||2
, (2.68)

q = (a+ q4)p . (2.69)

2.3.5 Rotation vector

The last form of attitude parametrization described in this manuscript is the rotation vec-
tor, which is a three-parameter representation. It has not been much applied except as an
intermediate quantity used in conversions between other forms of attitude representation. In-
deed, in this work the rotation vector is employed to carry the attitude data between software
layers of the ADCV system. Equation 2.70 gives the rotation vector ϕ definition:

ϕ = nbrϕ , (2.70)

where ϕ is in radians. Of course, nbr is the unit rotation vector which defines the fixed
axis of rotation, and ϕ is the total rotation angle. Limiting the range of ϕ in order that the
parametrization is global, discontinuities occurs as expected. For instance, if −π < ϕ 6 π,
the rotation vector direction changes abruptly when a small rotation from (π− ε) to (−π+ ε)

is taken, where 0 < ε 6 1.

2.3.6 Attitude error

This topic is dedicated to the important problem of quantifying the attitude error. For
attitude determination algorithms, an evaluation of the attitude error is important to increase
or decrease the attitude estimate in the next time step. In closed-loop controllers the attitude
error is used as an input to the control action.

The desired value for the attitude in attitude determination problems is the real value of
the body orientation. Thus, the attitude error can be seen as being the rotation that takes
the real attitude to the attitude estimate. Let Fr and Fb be the reference-system and the
body-system. Also, let F̂b be the estimated reference frame for the body-system. Hence, the
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attitude error can be defined as the rotation which takes Fb to F̂b. When the three reference
frames are considered, there is a sequence of two rotations. Firstly, Fr is rotated onto Fb,
which is then rotated onto F̂b. The first rotation can be represented by a DCMAbr, the second
rotation, which defines the attitude error, can be represented by the attitude error matrix δA.
Using the product property for rotation sequences yields Equation 2.71:

Âbr = (δA)Abr , (2.71)

where Âbr parametrizes the single rotation that takes Fr directly to F̂b, which is the attitude
estimate for the body. Thus, the attitude error matrix can be given by Equation 2.72.

(δA) = ÂbrA
−1
br = ÂbrA

T
br . (2.72)

Using the corresponding quaternions of rotation q̂br, δq, and qbr, the property shown in
Equation 2.62 results in Equations 2.73.

Âbr = (δA)Abr ⇔ q̂br = δq ⊗ qbr . (2.73)

Therefore, the attitude estimate is related to the real attitude by a multiplicative error.
Using the quaternion inverse, the quaternion product in Equation 2.73 yields

δq = q̂br ⊗ q−1br = q̂br ⊗ q∗br , (2.74)

where the correspondence q−1 = q∗ was used in Equation 2.74.

Equation 2.74 is commonly employed in attitude determination algorithms such as EKF
[Markley 2003] and USQUE [Crassidis 2003]. Furthermore, it must be noticed that when
there is no estimation error, δA = I3 and δq = [0 0 0 1]T = 1.

2.3.7 Attitude kinematics

This section concludes with the relationship between the attitude parameters time rates
and the angular velocities measured in the body-system. These quantities can be measured
by proprioceptive sensors mounted in the body such as gyros. The fact that is possible
to estimate how the attitude parameters change in time using the body angular velocities
is quite intuitive. However, since the attitude is an exteroceptive quantity by its own, is
expected that the relationship between the attitude parameters time rates and the angular
velocities depends also on the current attitude. This is the case indeed, as shown by Equation
2.75 which expresses the relationship between the quaternion of rotation time derivative and
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the vector of angular velocities ωb measured in the body-system.

q′(t) =
dq(t)

dt
=

1

2
Ξ(q(t))ωb(t) . (2.75)

In Equation 2.75, the terms q′ and ωb must be seen as column matrices, being Ξ(q) a
4 × 3 matrix. Equation 2.75 demonstrates that q′(t) can be calculated using the angular
velocities measurements, being also dependent of the current attitude given by q(t) through
Ξ(q(t)).

The roles of q and ωb in Equation 2.75 can be swapped using the matrix Ω(ωb) ∈ R4×4

as in Equation 2.76.

q′(t) =
1

2
Ω(ωb(t))q(t) =

1

2

[
−[ωb×] ωb

−ωTb 0

]
q(t) . (2.76)

Regarding ωb as the vector part of a quaternion with scalar part equal to 0, Equations
2.75 and 2.76 can be rewritten in terms of the quaternion product as given by Equation 2.77.

q′(t) =
1

2

[
ωb

0

]
⊗ q(t) . (2.77)

The quaternion of rotation time derivative equations are essential to formulate dynamic
models of rotating objects. The previous kinematics relationships can be derived by calculat-
ing the limit δq/δt→ q′(t) with δt→ 0, where δq is the error quaternion described earlier.
These derivations and further details about the kinematics equations of different attitude rep-
resentations can be found in [Shuster 1993].
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Chapter 3

Attitude determination methods

In Chapter 2 different forms of attitude representations were presented. This chapter
describes two classes of methods employed to determine the attitude of a body using mea-
surements provided by sensors. The attitude determination algorithms normally dependent
on the attitude representation chosen. The TRIAD method presented in Section 3.1 utilizes
the DCM parametrization, whereas the USQUE method presented in Section 3.2 is based on
the quaternions of rotation.

3.1 Deterministic methods for attitude determination

As reported in Chapter 1, the attitude determination methods can be classified as de-
terministic and optimal. The deterministic methods employ a minimum number of mea-
surements to determine the attitude. The most important consequence of the deterministic
methods approaches is the absence of a stochastic modelling in the algorithms derivation. If
the sensors are not precise in face of the environment noise, the deterministic methods may
not be effective. Still, when such conditions are not encountered they can be useful, spe-
cially due to the soft computational effort these methods often require. Moreover, a previous
treatment of the measurements, such as the application of simple low-pass filters, along with
a well-executed calibration, can improve the deterministic algorithms results.

3.1.1 TRIAD algorithm

The TRIAD algorithm is a general method proposed in the short work [Black 1964] in
the early days of the space race. It requires two sets of three mutually orthogonal unit vectors.
The algorithm name1 comes from the fact that each of the vectors set is called a triad. One of
the sets is obtained using two linearly independent abstract vectors observations taken in the

1The name TRIAD apparently was given to this algorithm years after it was proposed in 1964. In
[Wertz 1978] it is simply referred as an algebraic method to solve the three-axis attitude determination problem.
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reference-system. The other triad is associated to the correspondent vector representations
measured in the body-system. Thus, let µ and ν be two abstract vectors, being µr and νr
the correspondent vectors measured in the reference-system, and µb and νb the same abstract
vectors represented in the body-system. Equations 3.1 shows how the triad in the reference-
system can be stated.

ur =
µr
||µr||

, vr =
µr × νr
||µr × νr||

, wr = ur × vr . (3.1)

In Equation 3.1, {ur,vr,wr} is the triad taken in the reference-system. Clearly, ur is
orthogonal to µr × νr; in the same way, wr is orthogonal to the unit vector ur × vr. The
correspondent triad expressed in the body-system is analogously defined, as in Equation 3.2.

ub =
µb
||µb||

, vb =
µb × νb
||µb × νb||

, wb = ub × vb . (3.2)

Let A be the attitude matrix associated to the body-system and the reference-system.
Equations 3.3 demonstrate the relationship between the two triads.

ub = Aur, vb = Avr,wb = Awr . (3.3)

Equations 3.3 can be written as the single Equation 3.4 by defining the two block matrices
Mr = [ur|vr|wr] and Mb = [ub|vb|wb].

Mb = AMr . (3.4)

Thus, the DCM can be calculated using Equations 3.5.

A = MbM
−1
r = MbM

T
r . (3.5)

The roles of the µ and ν vector representations are asymmetrical in the triads definitions.
The observations of µ are more relevant than the ν ones. As pointed out in [Wertz 1978],
this suggests that the vector representations of µ should be taken as the more accurate mea-
surements. On the other hand, if they have similar accuracy, the modifications given by
Equations 3.6 can be utilized.

ub =

µb

||µb||
+ νb
||νb||∣∣∣∣∣∣ µb

||µb||
+ νb
||νb||

∣∣∣∣∣∣ , vb =

µb

||µb||
− νb
||νb||∣∣∣∣∣∣ µb

||µb||
− νb
||νb||

∣∣∣∣∣∣ , wb = ub × vb . (3.6)

The reference-system triad can be defined using the same procedure. However, the appli-
cation of Equation 3.6 is more critical for the body-system vectors, which are measured by
sensors mounted in the body. The vectors observed in the reference-system are normally pro-
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vided by databases built with high-precision instruments and models of the Earth’s magnetic
and gravitational fields, astronomical records, etc.

The TRIAD method requires two sets of a minimum of two vectors. The attitude deter-
mination is a problem of three degrees of freedom nonetheless. In a first look the TRIAD
method should not be considered deterministic since it requires a greater number of mea-
sures. As explained in [Shuster 2004] and [Wertz 1978], the TRIAD method effectively uses
only three values to determine A provided that some irrelevant information is discarded in
the triads construction and in Equation 3.5. Hence, the TRIAD algorithm is an authentic
deterministic method.

In order to conclude this section, the similarity between Equations 3.5 and Equations
2.43 is pointed out. Nevertheless, even though the relationship A = BT

s Rs is meaningful
from a theoretical point of view it is not practical. Indeed, it requires a third basis in addition
to those associated to the reference-system and the body-system, leading to the problem of
how the reference vectors can be expressed in it. That is, the first attitude determination
problem originates other two, and the solution would be postponed indefinitely. Equations
3.5 do not demand a third basis, but it seems that they have the disadvantage of requiring
sensors measurements. However, such disadvantage does not exist, once in practice the
reference systems definitions – implicitly used in the product BT

s Rs – also depend on several
instruments and observations. Chapter 5 describes the experimental apparatus utilized to
establish a local reference-system at LAICA facility. The same chapter gives a description
of the TRIAD software implementation realized in the present work.

3.2 Stochastic methods for attitude estimation

In Chapter 1 the optimal methods for attitude determination were defined as those in
which a number of observations greater than the minimum necessary is used. This allows the
variables statistical parameters, such as mean and standard deviation, to be estimated. These
parameters can thus be used as metrics to minimize some cost function in order that the
optimality is achieved. In view of this definition, the optimal methods can also be classified
as stochastic methods in the sense that the variables are treated as random variables. Of
course, this concept could be applied to any practical problem, thus the exposition given in
the following topics is quite general. In the end of this section the USQUE filter will be
described, a stochastic method specifically designed for the attitude determination problem.

3.2.1 Random variables and stochastic processes

Stochastic processes treat physical quantities as random variables. The term random does
not mean the variables behaviour is unknowable or unpredictable. Randomness implies that
the values assumed by physical quantities can not be known with absolute certainty but only
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by means of probabilities. Nevertheless, in Engineering problems a good knowledge of the
variables probabilistic behaviour may be sufficient to build functional, robust solutions, in
spite of the uncertainties.

The probabilistic behaviour of a continuous random variable is modelled by a probability
density function (PDF) pX , defined by Equations 3.7.

pX(x) > 0;∫ ∞
−∞

pX(τ)dτ = 1;

P (a < X 6 b) =

∫ b

a

pX(τ)dτ .

(3.7)

In Equations 3.7 P (x ∈ C) is the probability of the variable X be in C ⊂ R, where the set
C is considered left-open2.

A PDF function is characterized by its statistical moments. The first moment x of a
random variable X is defined as x = E[X], where E designate the statistical expectation, or
mean, of X . The second central moment of X is defined as E[(X − x)2] and corresponds to
the variance σ2 of X , being σ its standard deviation. A Gaussian or normal random variable
X is modelled by the PDF defined in Equation 3.8.

pX(x) =
1

σ
√

2π
exp

[
−(x− x)2

2σ2

]
. (3.8)

The parameters x and σ in Equation 3.8 are the first moment and the second central mo-
ment of X , respectively. Therefore, a Gaussian random variable is completely characterized
by these two moments. The notation X ∼ N(x, σ2) is commonly used to indicate that X is
a Gaussian random variable with mean x and variance σ2.

Stochastic algorithms often consider the quantities are Gaussian. Such assumption is
justified in a physical and mathematical point of view by the Central Limit Theorem3. Also,
a Gaussian random variable requires only two moments to be completely characterized and
this is typically the maximum that can be estimated in practice [Maybeck 1979]. Hence,
a stochastic method designed to estimate a random variable X ∼ N(x, σ2) actually seeks
estimates for x and σ2. With these two parameters the probability ofX be in a certain interval
can be calculated. For instance, for a Gaussian random variable, P (x−3σ < x 6 x+3σ) ≈
99.73%.

The interval (x− 3σ, x+ 3σ] is commonly used to evaluate the convergence of an algo-

2The set C is actually a Borel subset of R [Hajek 2015].
3The description and derivation of the Central Limit Theorem can be found in [Hajek 2015] and several

other books concerning probability theory.

44



rithm. Thus, if the real mean fell into this (estimated) interval the algorithm would converge4.
However, the convergence is not the unique requisite. An optimal method must obtain an es-
timate of the mean with a minimum error, which implies the variance of the estimated vari-
able is also minimum. For example, if an algorithm yields x = 10o and σ = 50o as estimates
for a body single-axis attitude, the fact that P (10o − 150o < x 6 10o + 150o) ≈ 99.74% is
useless. On the other hand, if the values x = 10o and σ = 0.5o are obtained, the probability
P (10o − 1.5o < x 6 10o + 1.5o) ≈ 99.74% becomes meaningful.

A random vector X is composed by multiple random variables. A n-size random vector
is Gaussian if its PDF is in the form given in Equation 3.9.

pX(x) =
1

(2π)n/2
√
det(CX)

exp

[
−1

2
(x− x)C−1X (x− x)T

]
. (3.9)

The mean vector x is defined in Equations 3.10. The n× n matrix CX is the covariance
matrix of X defined in Equations 3.11.

x = E[X] = [E[X1] E[X2] ... E[Xn]]T . (3.10)

CX = E[(X − x)(X − x)T ] =
E[(X1 − x1)2] ... E[(X1 − x1)(XN − xN)]

E[(X2 − x2)(X1 − x1)] ... E[(X2 − x2)(XN − xN)]
... ...

...
E[(XN − xN)(X1 − x1)] ... E[(XN − xN)2]

 .
(3.11)

Thus, the covariance matrix can be written as in Equation 3.12:

CX =


σ2
1 ... σ1N

σ21 ... σ2N
... . . . ...

σN1 ... σ2
N

 , (3.12)

where σij = σji. The covariance matrix is not only symmetric, but also positive semidefinite.
If two components of X are independent of each other, σij = 0. Thus, if the components of
X are mutually independent, CX is diagonal. Equations 3.10 and 3.12 show that a random
vector can be used to estimate the mean and the variance of multiple random variables at the
same time. This is the approach employed by state space estimation algorithms such as the
KF.

4An interval of the form (x− λ, x+ λ] is called a confidence region for x [Bar-Shalom et al. 2001].
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A stochastic process consists in a random vector X(t) which changes with time. There-
fore, at each time tk, X(tk) is a different random vector. Physical quantities such as posi-
tion, velocity, and the attitude parameters can be modelled as stochastic processes. Hence, a
stochastic method applied to estimate these variables must seek their statistical moments at
each time. If at any given instant tk the quantities are Gaussian random vectors, the algorithm
must estimate the mean x(t) and covariance CX(t) for each tk.

3.2.2 Kalman filter

The Kalman filter is an optimal method for stochastic estimation. It is optimal in the
sense that it minimizes the variances of the estimation errors. In fact, the KF is the best
linear estimator of such minimization problem as shown in [Simon 2006]. Also, the KF is a
state space estimator such that the variables to be estimated constitute the state space vector,
which is modelled as a random vector. The state space model adopted by the KF is defined
as in Equations 3.13 and 3.14.

xk+1 = f(xk,uk,wk, tk) , (3.13)

yk = h(xk,vk, tk) . (3.14)

The vector xk in Equations 3.13 and 3.14 is the state space vector, where xk = x(tk) and
the variables are treated as discrete-time quantities (k ∈ Z). The vector uk is the input of the
system and yk is the output. The random vectors wk and vk correspond to the process and
the measurement noises, respectively, both white, zero-mean and uncorrelated. The function
f relate quantities of different instants, it therefore corresponds to a dynamical model for
xk. The function h establishes the relationship between xk and the output yk, which usually
comprises measurements from sensors. In its original formulation, the KF consider f and h
linear. However, since the attitude determination is an inherently nonlinear problem, f and
h will be considered nonlinear in this work.

The noises wk and vk can be considered additive in certain applications. Thus, the state
space equations are written as in Equations 3.15 and 3.16.

xk+1 = f(xk,uk, tk) +wk , (3.15)

yk = h(xk, tk) + vk . (3.16)

The KF aims to estimate the mean and covariance of the conditional density function
(CDF) of xk, conditioned on the measurements taken at consecutive instants y1,y2, ...,ym
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(m 6 k). This CDF is designated as pxk|y1,...,ym . The input uk is not necessarily a random
vector, if it is however, the CDF is also conditioned on uk. The form of this CDF is usually
not known, even if xk is Gaussian. The propagated random vector xk+1 will be also Gaussian
only if f is linear. As explained earlier, the random vectors are assumed to be Gaussian
nevertheless, thus the problem becomes tractable and only the mean and the covariance are
needed.

The estimation procedure of the KF is divided in a prediction and a correction parts.
In the former, the algorithm calculates an estimate x̂−k for the mean of pxk|y1,...,yk−1

, as in
Equation 3.17.

x̂−k := E[xk|y1, ...,yk−1] . (3.17)

The symbol := indicates that x̂−k is not the true expectation but an estimate for it. The
term x̂−k is an a priori estimate and in this part the KF work as a predictor (m < k). In
the correction part, the algorithm calculates an a posteriori estimate x̂+

k for the mean of
pxk|y1,...,yk , as in Equation 3.18.

x̂+
k := E[xk|y1, ...,yk] . (3.18)

In Equation 3.18 the KF work as a filter (m = k). The covariances P−k and P+
k of the

estimation errors of x̂−k and x̂+
k are defined by Equations 3.19 and 3.20.

P−k := E[(xk − x̂−k )(xk − x̂−k )T ] , (3.19)

P+
k := E[(xk − x̂+

k )(xk − x̂+
k )T ] . (3.20)

Equations 3.19 and 3.20 show that the covariance matrices P−k and P+
k are also estimates

for the covariance matrices of pxk|y1,...,yk−1
and pxk|y1,...,yk . For the linear case P+

k 6 P−k
5,

thus the filter produces a better estimate by incorporating the current measurements yk. Ad-
ditionally, the filter is optimal because it minimizes Tr(Pk). For the nonlinear cases, these
properties are approximately true. The matrix P−k is calculated in the prediction part of the
KF, whereas P+

k is calculated in the correction part. Hence, the algorithm outputs are x̂k and
Pk. The procedures stated by the KF will be describe in details in the context of the USQUE
filter.

5The inequality A 6 B means B −A > 0, thus the matrix (B −A) is positive semidefinite.
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3.2.3 Unscented transformation

The exended Kalman filter was proposed to solve nonlinear spacecraft navigation prob-
lems in the late 1960s, only a few years after Rudolf E. Kálmán (1930-2016) have estab-
lished the algorithm which bears his name [Simon 2006]. The unscented Kalman filter is
a completely different nonlinear approach proposed in the mid 1990s by S. J. Julier, J. K.
Uhlmann and colaborators, who presented the new method in several papers and reports
[Julier and Uhlmann 1994, Julier et al. 1995, Julier and Uhlmann 1997, Julier et al. 2000,
Julier and Uhlmann 2004]. This topic focus on the UKF on which the USQUE filter is based.

The UKF uses the unscented transformation (UT) to estimate x̂k and Pk . The EKF an-
alytically linearise the functions f and h to approximate the nonlinear problem to a linear
one. On the other hand, the fundamental idea behind the UT is such that should be easier to
statistically approximate a Gaussian distribution than it is to approximate an arbitrary non-
linear function [Julier and Uhlmann 1994]. Given several realizations of x and y, estimates
for x and σ2 could be obtained using the well-know formulas of the sample mean and the
sample covariance [Bar-Shalom et al. 2001]. However, dealing with a large number of sam-
ples at each time step is not practical [Aguirre 2015]. Thus, the UT provides a small set of
representative samples, called sigma points, such that their sample mean approximates the
mean of the original Gaussian PDF up to the third order – better than EKF – whereas their
sample covariance matches the original covariance up to the second order. This is the same
approximation obtained by EKF, but the UT has the advantage that it does not require the
computation of the f and h Jacobian functions.

Given a Gaussian random vector xwith known mean x and covariance P , the UT defines
the sigma points X [i] defined by Equations 3.21:

X [0] = x ;

X [i] = x+
[√

(n+ λ)P
]
∗i
, i = 1, 2, ..., n ;

X [n+ i] = x−
[√

(n+ λ)P
]
∗i
, i = 1, 2, ..., n ;

(3.21)

where n is the size of x and λ is a scalar parameter. The term
√
A denotes any matrix such

that (
√
A)(
√
A)T = A. Thus, the term [

√
A]∗i designates the ith-column of such matrix6.

The Cholesky factorization is often applied to obtain
√
A.

Let z be a random vector such that z = g(x). The (2n + 1) sigma points X [i] can be
transformed into new sigma points Z[i] by the function g using Equation 3.22.

Z[i] = g(X [i]) . (3.22)

6If the definition of
√
A is such that (

√
A)T (

√
A) = A, its rows must be taken to calculate the sigma points.
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The mean and covariance of z is subsequently approximated by ẑ and Pz, which are
respectively a weighted sample mean and a weighted sample covariance of the transformed
sigma points. These estimates are shown in Equations 3.23 and 3.24:

ẑ =
2n∑
i=0

WiX [i] , (3.23)

Pz =
2n∑
i=0

Wi(Z[i]− ẑ)(Z[i]− ẑ)T , (3.24)

where the weights Wi are defined by Equations 3.25.

W0 =
λ

n+ λ
,

Wi =
1

2(n+ λ)
.

(3.25)

The scalar λ allows the filter to be more precisely adjusted. This constant can be used to
reduce the effect of high order moments, which are discarded by the UT approximation
[Julier and Uhlmann 1997]. The application of the UT to the Kalman filter will be demon-
strated in the USQUE filter description.

3.2.4 Unscented quaternion estimator

The unscented quaternion estimator was proposed in [Crassidis 2003]. The estimator is
an application of the UKF principles to the attitude determination problem. However, the
direct utilization of the UT to the quaternion of rotation of a body violates the unit norm
constraint, due to the summations of the weighted sample mean and the weighted sample
covariance. In view of this fact, in USQUE the quaternion of rotation is not directly estimated
but the attitude error, which is represented by a generalized Gibbs error vector. This form
of attitude parametrization is not subjected to any similar constraint, thus the UT and the
weighted sample formulas can be applied. On the other hand, the propagation in time – that
is, the filter prediction part – is realized using the kinematics equations for the quaternions of
rotation. The output equation is also applied using the quaternion of rotation. Consequently,
conversions between these different forms of representation is required. When the overall
procedure is considered, the USQUE algorithm works as if it was two filters such that each
filter estimates different quantities; one estimates the Gibbs error vector, whereas the other
estimates the quaternion of rotation. Hereafter, the quaternion of rotation will be simply
called quaternion, as long as it is exclusively applied as a form of attitude representation.
The USQUE procedure is depicted in Figure 3.1. The left side shows the Gibbs error vector
evaluation, whereas the right side shows the quaternion evaluation.
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Figure 3.1: High-level view of the USQUE algorithm. The black arrows denote conversions
between the attitude representations.

A qualitative description of the process shown in Figure 3.1 is given below, where the
USQUE algorithm is compared to UKF.

1. The common UKF starts with the sigma points calculation. In USQUE this part is
applied to the Gibbs error vector.

2. The UKF proceeds with the nonlinear transformations associated to the functions f
and h from the state space model, resulting in a set of transformed sigma-point state
space vectors and sigma-point outputs. In USQUE the nonlinear transformations are
applied to quaternions, thus a conversion between the attitude representations is re-
quired, yielding a set of sigma-point quaternions and sigma-point outputs.

3. The UKF applies the weighted sample formulas to the transformed sigma points to
estimate the predicted statistical moments of the state space vector and the output
vector (a priori estimates). In USQUE these formulas can be applied to the Gibbs
error vector only, therefore a new conversion is needed in order that the transformed
sigma-point quaternions yields transformed sigma points for the Gibbs error vector.
The before-mentioned statistical moments are subsequently calculated for the Gibbs
error vector.

4. The UKF uses the statistical moments to compute the Kalman gain, which is employed
to update – resulting in a posteriori estimates – the mean and covariance predicted in
the correction part of the filter; this is the end of the UKF execution at that sample
time. In USQUE the same procedure is applied to the predicted mean and covariance
of the Gibbs error vector, but the filter proceeds with a last conversion to calculate the
corrected quaternion; the execution for that sample time is thus finished.

After the above description, the details can be given. The USQUE filter takes a gen-
eralized Gibbs error vector δp as part of the state space vector x. Given the quaternion
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q = [qT q4]
T associated to a body attitude, the purposed definition for δp is stated in terms

of the error quaternion δq = [δqT δq4]
T . The relationship between the two parametrization

errors is shown in Equation 3.26:

δp = c · δq

a+ δq4
, (3.26)

where a is the stereographic projection parameter of the GRP, presented in Section 2.3, and
c is a scale factor, which is allowed provided that the δp norm is not constrained. The value
chosen for c is c = 2(a + 1), thus ||δp|| is equal to ϕ for small angles, where ϕ is the total
angle of rotation. The error quaternion δq is calculated from δp using Equations 3.27.

δq4 =
−a||δp||2 + c

√
c2 + ||δp||2(1− a2)

c2 + ||δp||2
,

δq =
(a+ δq4)δp

c
.

(3.27)

In USQUE the input u of the state space model corresponds to the vector of propriocep-
tive angular rates ω. These quantities are measured by a three-axis rate integrating gyro. The
random behaviour of this sensor measurements is modelled by Equations 3.28.

ω(t) = ω0(t) + β(t) + ξv(t) ,

β′(t) = ξu(t) ,
(3.28)

where ω0(t) contains the real angular rates of the body and ω(t) comprises the quantities
measured by the sensor. In addition, β(t) is the sensor bias, whereas ξv(t) and ξu(t) are
white, independent and Gaussian process noises, such that

E[ξv(t)ξ
T
v (τ)] = I3σ

2
vδ(t− τ) ,

E[ξu(t)ξ
T
u (τ)] = I3σ

2
uδ(t− τ) ,

(3.29)

where δ(t − τ) is the Dirac delta function. From the model above, the a posteriori estimate
ω̂+
k for the angular velocities and the a priori estimate β̂−k for the bias can be computed using

Equations 3.30.

ω̂+
k = ωk − β̂+

k ,

β̂−k+1 = β̂+
k .

(3.30)
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In Equations 3.30 ωk is the measurement given by the gyro sensor. Thus, Equations 3.30
perform an online calibration of the gyro. The bias vector β̂+

k is estimated by USQUE in
order that the angular rates can be accurately incorporated to the model. Hence, the state
space vector x̂k is defined by Equation 3.31.

xk =

δpk
βk

 = X k[0] . (3.31)

Besides X [0], the other sigma points X [i] are partitioned into two sigma-point vectors as
shown in Equation 3.32.

X k[i] =

X δp
k [i]

X β
k [i]

 . (3.32)

The quaternion estimate q̂+k is propagated in time – yielding a predicted estimate – using
Equations 3.33 and 3.34. Denoting the gyro sampling interval as ∆t, these equations are the
discrete-time equivalent of the kinematic equation given in Section 2.3 by Equation 2.76.

q̂−k+1 = Ω(ω̂+
k )q̂+k , (3.33)

Ω(ω̂+
k ) =

cos(0.5||ω̂+
k ||∆t)I3 − [ψ̂+

k ×] ψ̂+
k

−ψ̂+T

k cos(0.5||ω̂+
k ||∆t)

 . (3.34)

In Equation 3.34, the vector ψ̂+
k is parallel to ω̂+

k , as shown in Equation 3.35.

ψ̂+
k = sin(0.5||ω̂+

k ||∆t)
ω̂+
k

||ω̂+
k ||

. (3.35)

The state vector sigma points X δp
k [i] are converted into sigma-point error quaternions

using Equation 3.27. The sigma-point error quaternions are used to calculate the sigma-
point quaternions afterwards, using the multiplicative error property, as shown in Equations
3.36.

q̂+k [0] = q̂+k ,

q̂+k [i] = δq+k [i]⊗ q̂+k .
(3.36)

Equations 3.36 implies that δq+k [0] = [0 0 0 1]T , which in turn requires that X δp
k [0] be equal

to zero. This requirement is imposed at the beginning of the algorithm at each sample time
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execution. After propagated in time, the sigma-point quaternions are utilized to calculate the
predicted sigma-point error quaternions, using the quaternion inverse (δq−k+1[i])

−1.

The quaternion and angular velocities equations presented above can be written in the
form of the dynamic state space model equation, as shown in Equation 3.37.

qk+1 = f(qk,ωk, tk) +wk = Ω(ωk)qk +wk . (3.37)

The additive process noise wk in USQUE is modelled as a zero-mean Gaussian stochas-
tic process. That is, wk ∼ N(0, Qk), where Qk is the covariance matrix of wk: Qk =

E[wkw
T
k ]. Therefore, the matrix Qk can be computed using Equation 3.38.

Qk =

(σ2
v∆t+ 1

3
σ2
u∆t

3)I3 −(1
2
σ2
u∆t

2)I3

−(1
2
σ2
u∆t

2)I3 (σ2
u∆t)I3

 . (3.38)

In UKF, when the process noise is additive, as in Equation 3.37, the matrix Qk is simply
added to the predicted covariance matrix P−k . However, in [Crassidis 2003] the authors
propose a different procedure. Parting from the continuous-time process noise w(t), they
compute a new covariance matrix Qk using an approximation for the integration over the
sampling interval. The matrix Qk derivation depends on the attitude kinematic models and
the matrix Qk. Assuming the approximation ||∆tω̂+

k || � 1|| is valid, the result obtained in
that work is given by Equation 3.39:

Qk =
∆t

2

(σ2
v − 1

6
σ2
u∆t

2)I3 03

03 σ2
uI3

 , (3.39)

where 03 is a 3× 3 matrix with all entries equal to 0. The matrix Qk is used in the USQUE
algorithm instead of Qk.

The output equation of the state space model in USQUE regards as the output yk the
measurements obtained from N exteroceptive sensors mounted in the body. Let µib be the
3 × 1 vector measurement provided by the ith−sensor. Of course, µib is expressed in the
body-system. The correspondent vector expressed in the reference-system is designated as
µir. Therefore, using the relationship between the quaternion of rotation and the attitude
matrix, the vector measurement µib is given by Equation 3.40.

µib = A(q)µir + vib . (3.40)

The additive measurement noise vib is modelled as a zero-mean Gaussian stochastic pro-
cess such that vib ∼ N(0, Ri

k), where the covariance matrix Ri
k is equal to σ2

i I3. Equation
3.40 is very convenient since it can be applied to any three-axial sensor which provides vector
observations. The measurements of theN sensors can be concatenated using block matrices,
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as shown in Equation 3.41, which was written in the form of the state space output equation.

yk = h(qk, tk) + vbk =


A(q)µ1

r

A(q)µ2
r

...
A(q)µNr


k

+


v1b
v2b
...
vNb


k

. (3.41)

Obviously, the complete covariance matrix Rk of vb is such that Rk =

diag[σ2
1I3 σ2

2I3 ... σ2
NI3]

T . The vectors µir are considered constants, which means
they are treated as parameters of the function h. The validity of this assumption depends
on the application. For instance, if a three-axis accelerometer is used as an exteroceptive
sensor and the reference-system is fixed relative to Earth’s surface, the hypothesis above is
valid. On the other hand, for a spacecraft orbiting the Earth, if a three-axis magnetometer
is employed, the magnetic field measured in any reference-system will be a function of the
spacecraft position around Earth. In such case, the application of Equation 3.41 simply
ignores the vectors µir dynamics.

Once the basic definitions were provided, the systematic procedure in USQUE can be
presented. The algorithm in what follows will be described as a list of instructions. This
form of organization is useful for software implementation. The overall procedure is divided
in three parts: initialization, prediction, and correction. The first part is executed only once.
The other two parts are executed at each sample time. Thus, after the correction part is
executed, the algorithm returns to the prediction part for the next instant.

INITIALIZATION

(Do once)

1. Choose initial values for q̂+0 and β̂+
0 .

2. Choose an initial value for the 6 × 6 covariance matrix P+
0 . The upper-left 3 × 3

submatrix of P+
0 is associated to attitude error angles, and the gyro parameters σu and

σv.

3. Choose the stereographic projection parameter a and set c = 2(a+ 1).

4. Calculate the matrix Qk using σu, σv, and the gyro sampling interval ∆t. Set this
matrix as a constant object.

5. Set the matrix Rk as Rk = diag[σ2
1I3 σ

2
2I3 ... σ

2
NI3]

T , using the sensors variances σ2
i .

Set this matrix as a constant object.

6. Choose the parameter λ.

7. Set x+
0 =

[
0T β+T

0

]T
.
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PREDICTION

(Do at each sample time)

1. Calculate the sigma points using Equations 3.42 (unlike the UT, the authors of
[Crassidis 2003] recommend using the matrix Qk twice in USQUE).

X k[0] = x̂+
k ;

X k[i] = x̂+
k +

[√
(n+ λ)(P+

k +Qk)

]
∗i
, i = 1, 2, ..., n ;

X k[n+ i] = x̂+
k −

[√
(n+ λ)(P+

k +Qk)

]
∗i
, i = 1, 2, ..., n .

(3.42)

2. Calculate the sigma-point error quaternions using Equations 3.43.

δq+4k [i] =
−a
∣∣∣∣∣∣X δp

k [i]
∣∣∣∣∣∣2 + c

√
c2 +

∣∣∣∣∣∣X δp
k [i]

∣∣∣∣∣∣2 (1− a2)

c2 +
∣∣∣∣∣∣X δp

k [i]
∣∣∣∣∣∣2 ;

δq+k [i] =
(a+ δq+4k [i])

c
X δp

k [i], i = 1, 2, ..., 2n .

(3.43)

3. Calculate the sigma-point quaternions using Equations 3.44.

q̂+k [0] = q̂+k ;

q̂+k [i] = δq+k [i]⊗ q̂+k [0] .
(3.44)

4. Calculate the sigma-point angular rates using Equation 3.45.

ω̂+
k [i] = ωk −X β

k [i] . (3.45)

5. Calculate the matrix Ω(ω̂+
k [i]) for each sigma-point angular velocity.

6. Propagate the sigma-point quaternions forward in time using Equation 3.46.

q̂−k+1[i] = Ω(ω̂+
k [i])q̂+k [i] . (3.46)

7. Calculate the propagated sigma-point error quaternions using Equation 3.47.

δq−k+1[i] = q̂−k+1[i]⊗ (q̂−k+1[0])−1 . (3.47)
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8. Calculate the sigma-point outputs using Equations 3.48, where the attitude matrix A
must be evaluated for each sigma-point quaternion.

Yk+1[i] = h(q−k+1[i], tk) =


A(q−[i])µ1

r

A(q−[i])µ2
r

...
A(q−[i])µNr


k+1

. (3.48)

9. Calculate the propagated sigma points using Equations 3.49.

X δp
k+1[0] = 0 ;

X δp
k+1[i] = c ·

δq−k+1[i]

a+ δq−4k+1
[i]

;

X β
k+1[i] = X β

k [i] .

(3.49)

10. Calculate the predicted mean for the state vector xk+1 applying the weighted sample
mean formula to the propagated sigma points, as in Equation 3.50.

x̂−k+1 =
1

n+ λ

(
λX k+1[0] +

1

2

2n∑
i=1

X k+1[i]

)
. (3.50)

11. Calculate the predicted covariance matrix applying the weighted sample covariance
formula to the propagated sigma points, as in Equation 3.51 (here the matrix Qk is
added again).

P−k+1 =
1

n+ λ

[
λ(X k+1[0]− x̂−k+1)(X k+1[0]− x̂−k+1)

T

+
1

2

2n∑
i=1

(X k+1[i]− x̂−k+1)(X k+1[i]− x̂−k+1)
T
]

+Qk .
(3.51)

12. Calculate the predicted output applying the weighted sample mean formula to the prop-
agated sigma-point outputs, as in Equation 3.52, where a more compact form is written
using the weights Wi defined earlier.

ŷ−k+1 =
2n∑
i=0

WiYk+1[i] . (3.52)

CORRECTION

(Do at each sample time)
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1. Calculate the output covariance matrix P yy
k+1 applying the weighted sample covariance

formula to the propagated sigma-point outputs, as in Equation 3.53.

P yy
k+1 =

2n∑
i=0

Wi(Yk+1[i]− ŷ−k+1)(Yk+1[i]− ŷ−k+1)
T . (3.53)

2. Calculate the innovation ϑk+1 using the sensors measurements yk+1 and the predicted
output ŷ−k+1 as in Equation 3.54.

ϑk+1 = yk+1 − ŷ−k+1 . (3.54)

3. Calculate the innovation covariance matrix P ϑϑ
k+1 using Equation 3.55.

P ϑϑ
k+1 = P yy

k+1 +Rk+1 . (3.55)

4. Calculate the cross-correlation matrix P xy
k+1 applying the weighted sample cross-

correlation formula to the propagated sigma points, and the propagated sigma-point
outputs, as in Equation 3.56.

P xy
k+1 =

2n∑
i=0

Wi(X k+1[i]− x̂−k+1)(Yk+1[i]− ŷ−k+1)
T . (3.56)

5. Calculate the Kalman gain Kk+1 using Equation 3.57.

Kk+1 = P xy
k+1(P

ϑϑ
k+1)

−1 . (3.57)

6. Use Equation 3.58 to update the state vector x−k+1 yielding the corrected value x+
k+1.

x̂+
k+1 = x̂−k+1 +Kk+1ϑk+1 . (3.58)

7. Use Equation 3.59 to update the covariance matrix P−k+1 yielding the correct value
P+
k+1.

P+
k+1 = P−k+1 −Kk+1P

ϑϑ
k+1K

T
k+1 . (3.59)

8. The corrected state vector is such that x̂+
k+1 =

[
δp̂+Tk+1 β̂+T

k+1

]T
. Thus, calculate the
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corrected error quaternions using Equations 3.60.

δq+4k+1
=
−a
∣∣∣∣δp̂+k+1

∣∣∣∣2 + c
√
c2 +

∣∣∣∣δp̂+k+1

∣∣∣∣2 (1− a2)

c2 +
∣∣∣∣δp̂+k+1

∣∣∣∣2 ;

δq+k+1 =
(a+ δq+4k+1

)

c
δp̂+k+1 .

(3.60)

9. Use Equation 3.61 to update the quaternions q̂−k+1 yielding a corrected value q̂+k+1.

q̂+k+1 = δq+k+1 ⊗ q̂
−
k+1[0] . (3.61)

10. Reset δp̂+k+1 to zero for the next propagation.

11. Go back to the PREDICTION part or finish the algorithm.

The present section is concluded with a few last comments. Equations 3.58 and 3.59 are
the core of any KF filter approach. They consist in a simple linear update rule in which the
predicted value and the output measurements are weighted accordingly to their probabilistic
behaviour. The Kalman gain work as the weight in the update rule, which gives to the KF
its remarkable properties. In USQUE the predicted value is computed using proprioceptive
measurements. The estimates are then corrected by the exteroceptive measurements, as de-
scribed in Chapter 1. Moreover, Equation 3.58 has the general form of a moving average
filter, which is a low-pass filter. Therefore, the KF smooths the quantities comprised in the
state vector as long as it minimizes the estimated covariance, thereby reducing the effect of
high-frequency noises. The USQUE filter requires only one exteroceptive sensor, whereas
the TRIAD algorithm demands two exteroceptive vector measurements. On the other hand,
a gyro is needed in the prediction part of the USQUE algorithm. A deterministic method
such as TRIAD can yield good results. However, when noise environments are excessive or
the sensors have limited precision, a stochastic method such as USQUE can provide more
accurate and precise results, but with the price of a higher computational burden.
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Chapter 4

Small satellite three-axis simulator
facility

This chapter presents the main components of LAICA facility. Of these, the most impor-
tant is the three-axis air-bearing table, followed by the Helmholtz cage. However, the main
practical contributions of the present dissertation concern the system of attitude determina-
tion based on computer vision, and the ABACUS onboard computer as well, both recently
incorporated into the laboratory.

4.1 Facility overview

Figure 4.1: LAICA facility overview.

Figure 4.1 provides an overview of LAICA facility. This figure is a schematic represen-
tation of the Figure 1.2 presented in Chapter 1. The components represented in this figure
are listed below:
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1. Three-axis air-bearing table.

2. Air compressor.

3. Helmholtz cage.

4. Power supplies.

5. Web camera.

6. Personal computer (PC) .

7. ABACUS OBC.

8. Sensors.

9. Actuators.

The components above can be briefly described as in the following:

• the three-axis air-bearing table rotates over a thin layer of pressurized air provided by
the compressor;

• the coils of the Helmhotz cage, fed by the power supplies, create a controlled magnetic
field at its center;

• the camera placed above the table is employed to determine its attitude using computer
vision software and markers;

• the ABACUS OBC is used to run attitude determination and control algorithms. It also
reads sensors data and outputs control signals to actuators.

• The sensors are utilized to measure magnetic fields, accelerations and angular veloci-
ties. Some of them are embedded on ABACUS board.

• The actuators can control the air-bearing table attitude. Today, they consist of a set of
reaction wheels and magnetorquers.

• The whole facility is integrated by two computers (only one is shown in Figure 4.1).
The air-bearing table balancing algorithms, the control software of the Helmholtz cage,
and the CV software are all executed in these computers. They also are employed to
perform on-line and off-line analysis of the experiments.

The sensors utilized in this work belong to ABACUS board, thus they are described in
Section 4.5. Furthermore, since the actuators are not employed in this dissertation, only a
brief description of them is given in that same section in the context of ABACUS capabilities.
The other components of the facility are also described in their respective sections.
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4.2 Three-axis air-bearing table

The three-axis air-bearing table is a testbed for testing small satellite technologies. Air-
bearing equipments have been used for testing and simulation purposes for over 50 years,
since the beginning of the space race [Schwartz et al. 2003]. Air-bearings are utilized to
simulate the virtually frictionless space environment a spacecraft encounter, in the same way
spherical and cylindrical roller bearings are employed to reduce the friction between mechan-
ical parts. Once in orbit, a satellite can not be fixed or receive maintenance. Furthermore,
a satellite can be operated remotely only, thus it requires a high degree of autonomy. These
capabilities can be design aided and safely tested by air-bearing platforms. In the small satel-
lites context, such approach helps saving costs whilst preventing an expensive launch of an
untested and possibly defective spacecraft.

The air-bearing testbeds can be planar or spherical. The former simulates the negligible
forces imposed to translational motion in space, whereas the latter simulates the practically
torque-free conditions of rotational motion in that environment. An example of a planar
air-bearing platform can be found in [Ivanov et al. 2018]. An example of a highly compact
spherical air-bearing can be found in [Chesi et al. 2013]. The LAICA facility testbed is a
spherical air-bearing table with three degrees of freedom in rotational motion. Therefore,
this platform is very suitable to develop and test techniques of attitude determination and
control. Figure 4.2 shows a double-view picture of the LAICA air-bearing table. The left
side of the figure shows the table from the top, whereas the right side shows it from the
bottom.

Figure 4.2: Double-view picture of the air-bearing table.

Spherical air-bearing platforms have two concentric spherical parts separated by a thin
air film. One of them act as a cup shaped base supporting the other part, which can rotate
almost freely. The spherical base has six small holes through which the pressurized air flows
from the air compressor. Figure 4.3 shows the spherical base with the small holes and the air
compressor. The left side of Figure 4.4 shows the rotating hemisphere of the air-bearing; the
right side shows the two parts together.

In order to reproduce the low gravitational torque conditions encountered by orbiting
spacecraft, the air-bearing table center of mass must be coincident with its center of rotation
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Figure 4.3: Spherical base of the testbed air-bearing (left side) and the air compressor (right
side).

Figure 4.4: Rotating hemisphere of the testbed air-bearing (left side) and the two parts to-
gether (right side).

(CR) . Figure 4.5 depicts the relationship between the CM, the CR and the gravitational
torque applied to the air-bearing table. In Figure 4.5 the gravitational torque is given by r ×
Mg, where M is the total mass of the platform, and r is the vector parting from CR toward
the CM – the point where the force due to gravity is applied. Of course, the components of
the gravitational acceleration vector g depend on the reference frame adopted. Therefore,
the smaller ||r|| is, the smaller is the gravitational torque applied.

The testbed CM position can be adjusted using the movable mass units (MMU) . There
are three of these devices attached to the table, and their CM can be dislocated along to the
reference frame vectors of the platform. Thus, moving the CM of the three MMU allows
the total CM of the testbed to be shifted relative to the CR, which is fixed and located at the
center of the air-bearing hemisphere. Figure 4.6 shows the three MMU of the platform. In
the top left corner these devices are shown together with their respective reference axis. The
right side of the figure shows the MMU relative to Z in details. In the bottom part of the
figure the MMU relative toX is depicted. The Y MMU is similar to this last one.

The procedure of approaching the CM to the CR is called balancing. There are several
algorithms employed to reduce the distance between these two points, one of them can be
found in [Silva et al. 2016]. A detailed description of the LAICA air-bearing table is given
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Figure 4.5: The gravitational torque applied to the testbed and its dependency on the CM
and CR positions.

Figure 4.6: Movable mass units of the air-bearing table.

in [Silva and Rodrigues 2015]. That work provides details concerning the technical specifi-
cations of the air-bearing table components, including the air compressor and its accessories,
besides the procedures to assemble the platform.

4.3 Earth Magnetic Field Simulator

The Earth magnetic field simulator at LAICA is composed by a Helmholtz cage, three
power supplies, software applications and a three-axis magnetometer. The EMFS purpose
consists in simulating the Earth’s magnetic field perceived by a spacecraft orbiting the planet.
The core of the EMFS is the Helmholtz cage, which is a cubic structure mounted using three
parallel pairs of square coils. Each pair produces a magnetic field approximately constant
along the axis orthogonal to the coils planes. Figure 4.7 shows the Helmholtz cage and the
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power supplies on the left.

Figure 4.7: Helmholtz cage (center) and the three power supplies (left).

Each power supply is connected to one pair of coils, providing the electric current respon-
sible for generating the magnetic field. The three power supplies are controlled by a single
PC through GPIB interfaces. The software MATLAB R© is utilized to send the commands
to the power supplies and to close the Helmholtz cage control loop through a three-axis
magnetometer.

Earth’s magnetic field can be reproduced using the wrldmagm function of MATLAB.
This function takes as inputs the latitude, the longitude, and the altitude associated to a pre-
specified orbit. This function calculates the Earth’s magnetic field using the World Magnetic
Model (WMM) [NOAA 2015a]. This model is based on databases updated every 5 years,
considering the magnetic field of the planet changes with time. The current database is
valid within the period 2015-2020 [NOAA 2015b], and owing to this reason the wrldmagm
function also takes as input the year when the simulation occurs.

Figure 4.8 shows a scheme representing one pair of coils and a Cartesian system fixed at
the bottom coil center. The square coils, parallel to each other, have a side length of L and
the distance between them is D. The two coils are connected in series, thus the current I
through them is the same and flows in the same direction.

The magnetic field B generated by the pair of coils in Figure 4.8 can be calculated
using the Biot-Savart’s law, as shown in [Batista et al. 2017] and [Loiola et al. 2018]. The
Z-component ofB along the Z axis, B(z), is given by Equation 4.1:

B(z) =
4µ0NI

πL

[
f

(
z

L/2

)
+ f

(
D − z
L/2

)]
, (4.1)
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Figure 4.8: Model of one Helmholtz cage pair of coils. (Retrieved from [Loiola et al. 2018])

where the auxiliary function f(γ) is defined in Equation 4.2.

f(γ) =
1

(γ2 + 1)
√
γ2 + 2

. (4.2)

One of the requisites of the Helmholtz cage design consists in establishing a constant
magnetic field within a certain region inside the cage. Considering the Taylor series ex-
pansion of B(z) about the cage center z0 = D/2, the approximation of this function as a
constant can be analysed using the derivatives of B(z). The odd order derivatives of B(z)

is equal to zero at z0. Since the concavity of functions is associated to their second or-
der derivatives, if B′′(z0) = 0, the approximation of B(z) as a constant function can be
achieved. Equation 4.3 shows the expression for B′′(z0).

d2B(z0)

dz2
=

8µ0NI

πL

(
2

L

)2 [
f ′′
(
D

L

)]
. (4.3)

In Equation 4.3,N is the number of turns in each coil and µ0 is the magnetic permeability
of the medium. Therefore, in order that B′′(z0) = 0, the second derivative of the auxiliary
function f must be equal to zero at D/L. Equation 4.4 exhibits the expansion of f ′′.

d2f(γ)

dγ2
=

2(6γ6 + 18γ4 + 11γ2 − 5)

(γ2 + 1)3(γ2 + 2)5/2
. (4.4)

Consequently, f ′′ is zero if the sixth order polynomial in the numerator of Equation 4.4
is zero. This polynomial have only one real positive root given by γ ≈ 0.5445. Therefore,
if γ = D/L = 0.5445, the desired approximation can be achieved. The Helmholtz cage
of LAICA was built observing the relationship D = 0.5445L, the results obtained were
published in [Loiola et al. 2018]. One of the tests results are reproduced in Figure 4.9, it
shows the relationship between the Y -component ofB with the position y along the Y axis.
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Figure 4.9: Values of the Y -component of B along the Y axis. (Retrieved from
[Loiola et al. 2018])

The uniformity region of the magnetic field is of about ±0.5m around the cage center, as
can be seen in Figure 4.9. Thus, considering the three pairs of coils, there is an almost cubic
region of 1m side length within which the magnetic field is approximately homogeneous.

This section concludes with the Helmholtz cage specifications, given in Table 4.1.

Pair axis N L (m) Resistance (Ω) Max. current (A)
X 20 2.5 6.6± 0.1 6.0
Y 20 2.5 6.8± 0.1 6.0
Z 20 2.5 6.9± 0.1 6.0

Table 4.1: Helmholtz cage specifications.

4.4 Attitude determination with computer vision

The attitude determination technique based on computer vision implemented at LAICA
is a method utilized to determine the attitude of a planar object using fiducial markers and a
camera. Images of a known pattern of fiducial markers printed on a plane are captured by a
camera and processed in software. The markers pattern seems to be distorted in the images
due to the relative position and orientation of the planar object with respect to the camera.
Measuring these perspective projections distortions in the images allows the planar object
attitude to be estimated.

The relationship between the three Cartesian coordinates of a point in the physical world
and its correspondent two coordinates in an image can be found using the pinhole camera
model. This model assumes that only a single light ray parting from a point in space reaches
the camera image plane – or projective plane – through a single hole. In CCD (charge-
coupled-device) cameras, the image plane coincides with the matrix of sensors which convert
the light intensity in digital values [Forsyth and Ponce 2003]. With this assumption, the
image is always focused and a first relationship between the coordinates can be obtained
using a simple similarity between triangles. The pinhole model is depicted in Figure 4.10
where two frames are shown: the camera image frame Fi = {ii, ji,ki} and the physical
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world frame Fr = {ir, jr,kr}. Moreover, the optical axis part from the image plane toward
the pinhole, being orthogonal to the former.

Figure 4.10: Pinhole camera model representation. (Adapted from
[Bradski and Kaehler 2008])

Figure 4.10 shows that the image is inverted with respect to the object. In order to
simplify the equations, the model shown in Figure 4.11 is used instead. In this model the light
rays part from the object toward the pinhole, intersecting the image plane placed between
them.

Figure 4.11: Modified version of the pinhole camera model representation. (Adapted from
[Bradski and Kaehler 2008])

Let f be the focal length of the camera, which is the distance between the pinhole and the
image plane. The relationship between the coordinates of points in physical world (xr, yr, zr)
and the image coordinates (xi, yi) is given by Equations 4.5.

xi = f
xr
zr
,

yi = f
yr
zr
.

(4.5)

The focal camera focal length is not necessarily the same in ii and ji directions due to
the fact that the CCD sensors are rectangular, not square. Also, in practice the pinhole and
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the origin point of the image frame are not aligned to each other. Therefore, Equations 4.5
must incorporate the focal length fx and the offset cx in ii direction, the focal length fy and
the offset cy in ji direction. These modifications result in Equations 4.6.

xi = fx
xr
zr

+ cx ,

yi = fy
yr
zr

+ cy .
(4.6)

Equations 4.5 can be written using matrices, yielding Equation 4.7.

[
xi

yi

]
=

1

zr

[
fx 0 cx

0 fy cy

][
xr

yr

]
. (4.7)

Real cameras do not use simple pinholes to capture images since the intensity of the light
rays inside the camera would be very small. Cameras use lenses to focus the light, which
allows the image to be rapidly formed due to the higher light intensity. On the other hand,
in practice a lens introduces distortions in the images that must be corrected. There are two
basic distortions that must be compensated. The first is the radial distortion which occur
due to the fact that spherical lenses do not have one single focal point. Thus, the further a
point is from the optical axis the more it is dislocated in the image plane. The second is
the tangential distortion which occurs because the image plane is not perfectly orthogonal to
the optical axis. The radial distortion can be compensated using Equation 4.8, whereas the
tangential distortion can be corrected using Equation 4.9 [Bradski and Kaehler 2008].

xcomp = x(1 + k1r
2 + k2r

4 + k3r
6) ,

ycomp = y(1 + k1r
2 + k2r

4 + k3r
6) ;

(4.8)

xcomp = x+ [2p1y + p2(r
2 + 2x2)] ,

ycomp = y + [p1(r
2 + 2y2) + 2p2x] .

(4.9)

In the last equations, r =
√
x2 + y2.

The four parameters fx, cx, fy and cy are called the camera intrinsic parameters. They
are normally not provided by the camera manufacturer and neither are the distortion param-
eters k1, k2, k3, p1 and p2. However, a calibration procedure allows these parameters to be
estimated. The OpenCV software library provides functions that can be used to estimate
the camera intrinsic and distortion parameters. Besides the functions, a complete calibration
application is available, requiring the utilization of fiducial markers. A chessboard pattern
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is often employed as a fiducial marker, where the corners of the black and white squares
are identified by the application. The calibration procedure goes as follows: a chessboard
pattern printed in a flat surface is positioned in front of a web camera in several orientations.
The application periodically captures an image of the chessboard and, in the end, it calcu-
lates all of the nine unknown parameters of the camera. Figure 4.12 shows a sequence of
images of the chessboard pattern during the calibration procedure. The bottom right part of
the figure shows the exact moment when the application captures an image, exhibiting the
correspondent negative counterpart of the original one.

Figure 4.12: Chessboard pattern of fiducial markers used during the calibration procedure.

The previous analysis considered the frames Fi and Fr aligned to each other. When they
are not, the relative orientation between them can be found. If the camera frame is regarded
as the body-system and the physical world frame is the reference-system, this is equivalent of
founding the camera attitude. Equation 4.10 shows the relationship between the coordinates
of a point in the physical world and the correspondent coordinates in the image, where the
two frames are rotated and translated relative to each other.

xiyi
1

 = s

fx 0 cx

0 fy cy

0 0 1

[A t
]

xr

yr

zr

1

 . (4.10)

In Equation 4.10, s is a scale factor and A is the rotation matrix which takes Fr to Fi. The
vector t is the translation vector representing the position of the Fr origin point expressed in
Fi.

The attitude together with the translation vector comprise the camera pose, which is a
concept widely employed in robotics. Given a set of points – provided by a fiducial marker
– with known positions in Fr and the correspondent points in Fi, the camera pose can be
estimated. The chessboard pattern can be used in the pose estimation, however, in this work
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the fiducial markers provided by the ArUco library are utilized. This software is available as
a free third-party library of OpenCV and is based on the fiducial markers system proposed in
[Garrido-Jurado et al. 2014]. The authors themselves implemented the ArUco library, which
provides several functions for generating different markers, identifying them, and estimating
the camera pose, besides other features. In ArUco, the markers are grouped in dictionaries
accordingly to some common characteristics. Figure 4.13 shows two markers from different
dictionaries.

Figure 4.13: ArUco markers of 4 bits (left) and 6 (bits).

Each ArUco marker is a matrix of white and black squares. The marker on the left side
of Figure 4.13 is a 4× 4 marker with a border of one square in length, and the other markers
from its dictionary possess the same characteristics. The size of the marker determines its
number of bits. Therefore, the marker on the left side of Figure 4.13 has 4 bits, whereas the
one on the right side has 6 bits. Moreover, each marker has an index number which is unique
within the dictionary. The markers in Figure 4.13 are those of index 0 in their respective
dictionaries.

The ArUco library provides a function to estimate the camera pose using a single marker,
requiring the camera intrinsic parameters, which must be found first. If several markers -
from a single dictionary - are exhibited in an image, this function outputs the estimated pose
of each marker found. This feature allows the utilization of various markers to estimate the
pose of a flat object. If the markers are placed and aligned on the object surface, the pose
of each marker can be combined to estimate the object pose more accurately. Figure 4.14
exhibits the ArUco library utilization for pose determination. In the left side of this figure,
the estimated attitude parameters – given as Euler angles and rotation vector components –
were printed in the terminal window. The left side shows the 6-bits ArUco markers identified,
while the 4-bit marker is not recognized since it belongs to a different dictionary. The frames
in Figure 4.14 was drawn online using a function provided by the ArUco library, turning this
software into an augmented reality application. Also, another function draws the index of
each marker and a rectangle around it.

Figure 4.15 shows the utilization of the same markers to estimate the camera pose relative to
the board, which is hold in several orientations.

The software of the ADCV system was implemented in C++ language using the ArUco
library and the OpenCV functions. Furthermore, a socket communication was employed for
online transmitting the attitude data to MATLAB, where they are stored and analysed. The
camera of the ADCV system is the C170 web camera of Logitech – Table 4.2 describes some
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Figure 4.14: Camera attitude determination using ArUco markers of 6 bits.

Figure 4.15: Camera attitude relative to a board hold in different orientations.

of its features. The tests applied to evaluate the ADCV system are described in Chapter 5.

Connection USB 2.0
Diagonal field of view 58o

Focal length 2.3 mm
Resolution 1024× 768 pixels

Table 4.2: Characteristics of the web camera utilized with the ADCV system.

4.5 ABACUS onboard computer

The onboard computer ABACUS was developed by the startup company Gauss Srl based
in Rome, Italy. The company was founded by former members of the GAUSS research
group at the Scuola di Ingegneria Aerospaziale of the Sapienza - Università di Roma. The
ABACUS OBC was designed as a multi-purpose platform to attend different satellite projects
needs. Figure 4.16 exhibits two views of the LAICA ABACUS OBC – version 2017 – used
in the present dissertation.
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Figure 4.16: Two views of LAICA ABACUS OBC 2017 mounted into a case provided by
Gauss Srl.

In Figure 4.16 the board is mounted into a case provided by the manufacturer. Figure
4.17 shows two views of the board, exposed this time.

Figure 4.17: Two views of LAICA ABACUS OBC 2017.

The main components of ABACUS OBC are the MCU (microcontroller unit)
MSP430F5438A-EP of Texas Instruments, the FPGA Spartan-3E of Xilinx, and the iner-
tial measurement unit (IMU) MPU-9250 of InvenSense Inc. The last device is composed
by a three-axis magnetometer, a three-axis gyro and a three-axis accelerometer, all of them
encapsulated into a single chip, which is used to estimate the attitude of the board. Figure
4.18 depicts the reference frames of ABACUS IMU. The accelerometer and the gyro frames
are aligned with each other, whereas the magnetometer frame is in an opposed direction due
to the manner the chip is mounted on the board. Table 4.3 describes the main characteristics
of the ABACUS IMU.

Parameter Gyroscope Accelerometer Magnetometer
Resolution 16 bits 16 bits 14 bits

Full scale range ±250 o/s ±2g ±4800µT

Table 4.3: Characteristics of ABACUS IMU.

The ABACUS MSP430 is a 16-bit RISC MCU which can run in a frequency up to 25
MHz. This chip is used in this work to run the attitude algorithms written in C language.
The FPGA Spartan-3E can run in a frequency up to 100 MHz, thus being suitable for heavy
computational operations. Besides the higher processing speed, the FPGA can improve the
performance of programs that can be parallelized, such as those which perform matrix al-
gebra operations. Despite of these benefits, the FPGA is not employed in this dissertation,
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Figure 4.18: Body-system vectors of the ABACUS sensors.

however it is intended to be adopted in future works. Table 4.4 describes the main features
of ABACUS related to the MSP430.

Figure 4.19: JTAG programmer MSP-FET.

The MSP430 MCU is programmed using the MSP-FET JTAG emulation tool of Texas
Instruments, shown in Figure 4.19. The IDE (interface development environment) Code
Composer Studio (CCS) of the same manufacturer is the environment where the applications
written in C can be debugged, compiled and loaded into the board.

MCU 16 bits RISC 25 MHz
Memory 16 KB SRAM + 256 KB Flash

I/O 45 + 16 GPIOs

Communication
2× I2C
2× SPI

4× COM ports
Storage 16 MB Flash (ext.)
Other 3-channel DMA

Table 4.4: MSP430 related features of ABACUS.
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Chapter 5

Experimental procedures

This chapter presents the experimental procedures executed in the laboratory besides the
practical issues concerning the algorithms implementation.

5.1 Local reference-system

Chapters 2 and 3 established that the reference-system is associated to reference objects
or physical quantities, such as the magnetic field, gravitational acceleration, distant stars, etc.
On the other hand, the body-system is associated to the sensors mounted on the body. For
instance, the ABACUS IMU establishes the board body-system as depicted in Figure 4.18.
Provided that the body attitude is measured with respect to the reference-system, in order to
test attitude determination algorithms in laboratory, a local reference-system located at the
facility must be established first.

In this work the reference-system is defined using the gravitational acceleration and a tar-
get fixed at one of the laboratory walls. Figure 5.1 shows an apparatus mounted to establish
the reference-system at LAICA facility.

Figure 5.1: Apparatus adopted to physically establish the reference-system at the laboratory.

The device shown in Figure 5.1 is composed by a flat acrylic sheet fixed on a camera
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tripod. Also, two protractors are mounted orthogonally to the acrylic surface, where two
ArUco markers are affixed to. The tool used to measure the angles in each protractor acts as a
pendulum, allowing the adjustment of the acrylic inclination accordingly to the gravitational
acceleration. Therefore, two orientation angles can be established using these protractors.
The other angle is defined using a target affixed at one of the laboratory walls and a common
laser pointer. A cylindrical piece of plastic is mounted at the acrylic center and the laser
pointer is fixed on its top. The plastic piece is free to rotate, thus it is used to indicate the
third angle using a third protractor placed between the piece and the acrylic. Figure 5.2
contains a picture of the apparatus, where the plastic piece, the laser pointer and the third
protractor are shown in details.

Figure 5.2: Plastic piece, the laser pointer and the protractor used to define the third orienta-
tion angle.

Rotating the acrylic in one direction and rotating the plastic piece in the opposite direc-
tion, in order that the laser keeps pointing to the target on the wall, allows the measurement
of the third angle. The relative movement between the piece and the acrylic determines this
angle. Figure 5.3 shows the laser pointing to the target.

Figure 5.3: Laser pointing to the wall target.

The ArUco markers are used to align the camera frame to the physical reference-system.
Hence, after the camera alignment, the ADCV reference-sytem can be used as the local
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reference-system, replacing the apparatus. As a consequence of this definition, the X and
Y axes of the local reference-system are orthogonal to the gravitational acceleration. The
X points in the opposite direction of the wall target and the Z axis is parallel to the gravita-
tional acceleration, but pointing in the opposite direction. Thus, the local reference-system
is similar to the NED system.

5.2 Testing of the attitude determination system based on
computer vision

The main purpose of the ADCV system is to determine the air-bearing table attitude.
The camera is fixed on the laboratory ceiling above the air-bearing base. The performance
of the ADCV system was evaluated using the apparatus described in Section 5.1. At each
step of the experimental procedures, only one angle measured by the apparatus was changed.
Therefore, the correspondence between the variable angle and the ADCV measures, given
as Euler angles, could be easily established.

Figure 5.4 shows a picture of the computer screen while the ADCV system estimated the
attitude of the reference-system apparatus.

Figure 5.4: ADCV system determining the attitude of the reference-system apparatus.

In the first test, the apparatus yaw angle was changed in steps of 5o in the approximate
range [−25o, 25o]. Figure 5.5 shows the results obtained. The red line in the graph of Figure
5.5 corresponds to a linear curve fitting given by y = 0.9995x + 0.6549. The mean of the
standard deviation comprising all of the ADCV measurements is 0.0266o. Thus, the yaw
angle determination is quite accurate.

Figure 5.6 shows the results obtained for the roll angles measured in the range
[−20o, 20o], also in steps of 5o. The linear curve shown is defined by y = 1.0845x− 1.0935.
The standard deviation comprising all of the roll measurements is 0.4015o. As expected, the
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Figure 5.5: Protractor yaw angles versus ADCV yaw angles.

roll angles determined by the ADCV system have greater variance than the yaw angles due
to the fact that these last ones correspond to rotations about the camera optical axis.
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Figure 5.6: Protractor roll angles versus ADCV roll angles.

The pitch angles determination apparently has inferior quality. Figure 5.7 depicts the
results, where the angles were measured in the range [−15o, 20o]. The linear curve shown
is defined by y = 0.8559x + 1.3574. The standard deviation comprising all of the pitch
measurements is 0.3246. The standard deviation of the pitch angle was smaller than the roll
angle. On the other hand, the slop of the linear curve for the pitch angle was less closer to 1.

The last test applied to the ADCV system concerns the yaw angle also. However, in this
case the angles were changed in steps of 1o in the range [−5o, 5o]. Figure 5.8 shows the
graph obtained. The linear curve shown is defined by y = 1.0055∗x+ 0.7821. The standard
deviation comprising all of the yaw measurements is 0.0248o, which is approximately the
same obtained in the first test. Table 5.1 summarize the results obtained with all the ADCV
tests.
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Figure 5.7: Protractor pitch angles versus ADCV pitch angles.
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Figure 5.8: Protractor yaw angles versus ADCV yaw angles in steps of 1o.

Euler angle Range Step Linear fitting σ
Yaw [−25o, 25o] 5o y = 0.9995x+ 0.6549 0.0266o

Row [−20o, 20o] 5o y = 1.0845x− 1.0935 0.4015o

Pitch [−15o, 20o] 5o y = 0.8559x+ 1.3574 0.3246
Yaw (higher precision) [−5o, 5o] 1o y = 1.0055 ∗ x+ 0.7821 0.0248o

Table 5.1: Summary of the ADCV tests results.

The results presented in this section have demonstrated the high accuracy of ADCV. One
of the difficulties posed by this system is the alignment of the camera accordingly to the tri-
pod device. Even extremely small movements of the laser pointer led to great displacements
with respect to the wall target. Also, the system is affected by different lighting conditions
and the quality of the printed markers. Moreover, the tests performed were static, which
means the markers were hold steady during the tests. Dynamic tests using the air-bearing
table are intended to be realized in the future.

78



5.3 Algorithms implementation in C language

This section describes some practical aspects concerning the algorithms implementation
in C language. The TRIAD algorithm and specially the USQUE filter employ several matrix
operations. Unlike research tools such as MATLAB, such operations can not be readily per-
formed in C language. Even though libraries are available to realize these operations, they
are designed to be adopted in different situations, thereby not taking advantage of some spe-
cific characteristics of TRIAD and USQUE formulation. Moreover, in order to execute these
algorithms in a MCU or limited processors, optimizations concerning the memory utilization
and the execution speed must be realized. Such optimizations are only possible by designing
libraries to attend the specific needs of the algorithms. Hence, two basic libraries were imple-
mented in this work to be used as a background to TRIAD and USQUE algorithms. Figure
5.9 exhibits a diagram representing the algorithms and the libraries developed. The library
in the bottom left was developed to perform the matrix operations, such as matrix product
and addition, the Cholesky factorization, etc. The library represented in the bottom right
of the figure contains functions to realize the conversion between attitude representations,
quaternion operations and others.

Figure 5.9: Schematic representation of the TRIAD and USQUE implementation and the
two libraries developed.

In an algebraic point of view, one of the most distinguishable properties of USQUE
and any other KF approach is the presence of several symmetric matrices. In order to save
memory, the symmetric matrices of the Linear Algebra library are stored as lower triangular
matrices, provided that the upper part of a symmetric matrix is identical to the lower part,
except for its main diagonal. Figure 5.10 shows how the symmetric matrices are stored
in memory. They are actually a sequence of contiguous address positions, where the first
element of each line is taken at increased positions with respect to the first element of the
previous line. Thus, aN×N symmetric matrix occupies only (N+1)N/2 memory positions.
In Figure 5.10 the arrows represent C pointers; the matrix is stored as an array of these
pointers.

Such definition of symmetric matrices as a sequence of bytes explores the benefits of
the locality of access. This concept is based on the fact that if a memory position was ac-
cessed by the program, a contiguous position is likely to be accessed too. In processors

79



Figure 5.10: Schematic representation of the space occupied by a symmetric matrix in mem-
ory in the Linear Algebra library.

which possess cache memories the locality of access can reduce the execution time of a soft-
ware [Patterson and Hennessy 2007]. Simple MCU such as the MSP430 do not have cache
memories, however the algorithms implemented in C can be executed in several processors
which can take advantage of locality of access. Figure 5.11 shows the same symmetric ma-
trix represented in a logical manner. The blue arrows exemplify the manner in which the
software must go through each of the matrix lines. Since the symmetric matrix lines can not
be accessed in an usual way, several matrix operations functions were specifically designed
to treat these matrices. Besides of saving space, the utilization of such definitions does not
implies in a higher execution time for the matrix operations.

Figure 5.11: Logical representation of a symmetric matrix in the Linear Algebra library.

Of course, besides the above definition, the diagonal matrices are stored as vectors only in
the library.

Some of the USQUE equations should not be directly applied in practical computations.
Equation 5.1 reproduces the Kalman gain definition of the UKF, which is the same definition
adopted in USQUE.

Kk+1 = P xy
k+1(P

ϑϑ
k+1)

−1 . (5.1)

It is not recommended to calculate the inverse of P ϑϑ
k+1 and then post multiply the result

80



with P xy
k+1. An efficient way to compute the Kalman gain is by solving the linear system writ-

ten in the unusual form XA = B. Therefore, the Kalman gain are the solutions of the linear
system Kk+1P

ϑϑ
k+1 = P xy

k+1, which can be efficiently solved using the LU factorization of
P ϑϑ
k+1 [Meyer 2000]. This is the method adopted in the Linear Algebra library implemented.

Another KF equation that should not be directly applied in practice is reproduced in
Equation 5.2.

P+
k+1 = P−k+1 −Kk+1P

ϑϑ
k+1K

T
k+1 . (5.2)

The Equation 5.2 used to update the covariance matrix is written in this way in papers
and books to emphasizes the fact that such operation preserves the positive semidefiniteness
characteristic of Pk+1. In order to update Pk+1 in software, a simpler version can be derived.
Replacing the definition of the Kalman gain given in Equation 5.1 and considering that P ϑϑ

k+1

is symmetric, the update rule of the covariance matrix can be written as in Equation 5.3.

P+
k+1 = P−k+1 −Kk+1(P

xy
k+1)

T . (5.3)

Numerical computations of Pk+1 can violate its positive semidefiniteness characteristic.
Is not easy to force such matrix to always be positive semidefinite, however a simple ap-
proach can be adopted to avoid this problem. The matrix Pk+1 is made symmetric after each
update. Thus, although this not ensures the positive semidefiniteness, since every of these
matrices is symmetric, the operation to force it to be symmetric can be helpful. The proce-
dure adopted is given by Equation 5.4, where the matrix B is always symmetric regardless
of A.

B =
(A+ AT )

2
. (5.4)

Another error that the finite-precision arithmetic of processors can introduce. It consists
in the violation of the unit norm constraint for quaternions of rotation or the orthogonality
property of the attitude matrices. In order to ensure these constraints are obeyed, the brute-
force normalization defined by Equation 5.5 is applied to the quaternions estimates. A similar
procedure for DCM is not easy to apply. Is recommended that the DCM is converted into a
quaternion and the normalization is applied in the sequence. If is necessary, the normalized
quaternion can then be converted back into a DCM.

All the functions of the implemented libraries were validated using MATLAB. That is,
the same operations performed by the C software was realized in MATLAB and the results
were compared.

q =
q′

||q′||
. (5.5)
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5.4 Algorithms tests and results

Figure 5.12 illustrates the methodology adopted in the experiments using the ABACUS
OBC. The air-bearing table requires that the devices mounted in it use wireless communi-
cation, considering the table must be free to rotate. The ABACUS board does not possess a
built-in wireless communication peripheral, thus a Raspberry Pi 3 Model B board was uti-
lized to establish such interface. This board have a built-in WiFi chip able to connect to the
laboratory network. The connection between ABACUS and the Raspberry is not direct, nev-
ertheless. It is established through the UART-USB converter CP2102. In the software point
of view, a software was implemented in Raspberry using the termios.h library to access the
CP2102 device driver. In ABACUS the functions provided by the Gauss Srl manufacturer
was used to transmit and receive data. A socket network application was also implemented
in C for the Linux Operating System of the Raspberry. The socket network allows the data
to be directly transmitted to MATLAB and commands to be received from it.

Figure 5.12: Communication architecture used in the experiments with ABACUS.

Figure 5.13 exhibits a picture of ABACUS, the CP2102 converter and the Raspberry
mounted together in a single structure. The Raspberry was power supplied by a battery
mounted in the table. Two pins of the Raspberry provided the power source to feed ABA-
CUS. The red and black wires shown in Figure 5.13 provides the power source to ABACUS.
The purple, green and blue wires establish the UART connection between the ABACUS
UART and the CP2102 converter, which in turns is connected to one of the Raspberry USB
ports.

The left side of Figure 5.14 shows the ABACUS-Raspberry structure with an ArUco
marker fixed on its top. The right side of this figure shows the ABACUS-Raspberry structure
mounted on the air-bearing table surface, which allows the ADCV to estimate the device
attitude.

Before the tests realization the air-bearing table was manually balanced and the X coil
of the Helmholtz cage was turned on with 6A. Then, the table was put into motion in order
that it could rotate slowly.
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Figure 5.13: ABACUS, the CP2102 converter and the Raspberry mounted in a single struc-
ture.

Figure 5.14: ABACUS-Raspberry structure with an ArUco marker in detail (left) and
mounted in the air-bearing table (right).

After these steps, the IMU data were collected. Unfortunately, the experiments executed
in laboratory showed that the interval between consecutive data acquisitions was of about
1 second. This was due to the protocol adopted to transmit the data from ABACUS to
MATLAB and the limitations of the UART libraries provided by the ABACUS manufacturer.
With such a high sampling interval, the attitude algorithms could not be adequately tested.
Despite of the aforementioned problem, the data obtained by ABACUS IMU was received
by MATLAB through the socket network and saved. Furthermore, the IMU data collected
were used with TRIAD and USQUE algorithms implemented, their performances were also
compared after executing them in different platforms.

Figure 5.15 shows the graph of ABACUS gyro measurements in degrees per second.
Since the table was balanced, the higher values of angular velocities were measured by the
gyro Z axis, that is, the rotation occurred mainly about the Z axis, as shown in the graph.
Figure 5.16 shows the measurements obtained by ABACUS accelerometer in meters per
second squared. The Z axis values shown in Figure 5.16 are mainly due to the gravitational
acceleration. Figure 5.17 shows the measurements obtained by ABACUS magnetometer.
While the table was rotating, mainly about the Z axis, the magnetometer X and Y axes
measured the magnetic field produced by the cage. This is the reason why the Z axis mea-
surements are smaller than the others.
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Figure 5.15: Measurements obtained by ABACUS gyro.

The data collected by the accelerometer and the magnetometer were used as inputs to
TRIAD algorithm to determine the table attitude. Figure 5.18 shows the values obtained by
TRIAD. At each sample time, the algorithm calculates the DCM of the table attitude. In
Figure 5.18 only the three entries of the DCM main diagonal are shown.

Figure 5.19 shows the values of the q1 component of the table quaternion of rotation. The
results do not seem to contain valuable information about the attitude, probably due to the
high sampling interval mentioned before. However, the convergence of the correspondent
variance values, which are shown in Figure 5.20, confirms the convergence of the algorithm.

Figure 5.21 shows the values of the gyro bias components estimated by USQUE. The
correspondent variance values shown in Figure 5.22 demonstrate the algorithm convergence.

The TRIAD and USQUE algorithms implemented in C were executed in the operat-
ing systems Windows 10 and Linux (Ubuntu 16.05) – in the same hardware – besides the
MSP430 of ABACUS, of course. In addition, the execution performances were compared to
the same algorithms implemented as MATLAB scripts. Table 5.2 compares the size of the
algorithms executable for each platform and the mean execution time. This last parameter
correspond to the time execution of only one sample time.

The executable for the MSP430 has the greatest size because it incorporates all the li-
braries included in the implementation, while in the other cases is possible to use libraries
linked at execution time. Also, the MSP430 does not support floating point operations in
hardware, therefore, they are performed through software thereby increasing the size of the
final executable files. Furthermore, is important to mention that the execution of USQUE in
MSP430 required the utilization of double floating point precision (64 bits), otherwise the
algorithm fails during Cholesky factorization or other linear algebra operation.
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Figure 5.16: Measurements obtained by ABACUS accelerometer.

Platform TRIAD
(size)

USQUE
(size)

TRIAD
(exec. time)

USQUE
(exec. time)

W10 VS Intel i7
2.5 GHz 8GB 58 kB 67 kB 0.004 ms 0.029 ms

Linux GCC Intel i7
2.5 GHz 8GB 99.8 kB 120.6 kB 0.0007 ms 0.019 ms

MATLAB Intel i7
2.5 GHz 8GB - - 0.098 ms 1.765 ms

CCS MSP430
25 MHz 16kB 387.3 kB 587.5 kB 1.674 ms 64.45 ms

Table 5.2: Algorithms performances and characteristics.

The execution times described in Table 5.2 demonstrate that the algorithms are able to be
adopted in real missions. On the other hand, USQUE execution time is quite high, making
it not recommendable in situations where the spacecraft rotates rapidly. However, TRIAD
and USQUE could be employed together in a satellite. The faster TRIAD could be executed
right after launch, when the spacecraft normally rotates with high angular velocities and an
attitude determination with great precision is not critical. After stabilization – that is, the
detumbling process – the satellite tends to move slowly, thus the more robust USQUE could
be used to estimate the attitude with a higher precision.
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Figure 5.17: Measurements obtained by ABACUS magnetometer.
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Figure 5.18: Values of the table DCM main diagonal.
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Figure 5.19: q1 component of the table quaternion of rotation obtained by USQUE.
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Figure 5.20: Elements of the covariance matrix P correspondent to the table quaternion of
rotation.
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Figure 5.21: Gyro bias values estimated by USQUE.
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Figure 5.22: Elements of the covariance matrix P correspondent to the gyro bias.
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Chapter 6

Conclusion

In this work different attitude determination techniques were implemented. The air-
bearing table and the Helmholtz cage of LAICA facility were employed to perform the ex-
periments. One of the methods implemented was the ADCV system, based on computer
vision. This method is executed using a web camera and a PC completely separated from the
air-bearing table and the CubeSat devices mounted on its surface. The other methods were
the TRIAD and USQUE algorithms implemented in C language, making them suitable for a
MCU such as the MSP430 of the CubeSat onboard computer ABACUS, which is mounted
on the air-bearing table.

The camera frame of the ADCV system was adjusted with a local reference-system phys-
ically established using the gravitational acceleration and a target fixed at the laboratory,
which works as the North pole for a NED system. The Euler angles were used to evaluate
ADCV. This method produced accurate results with standard deviations smaller than 0.5o

for all the three angles. However, the adjustment of the camera frame was difficult and not
always effective. As a future work, an algorithm for an automatic adjustment of the camera
frame through software could be implemented. Finally, the ADCV system has been success-
fully used already in several works at LAICA. Considering that different attitude algorithms
employ the same IMU sensors, the ADCV system provides independent attitude measure-
ments obtained by a completely different approach. This allows an even evaluation of several
attitude determination algorithms which use body mounted sensors.

The TRIAD and USQUE algorithms implemented in C, unlike those written using MAT-
LAB or Python, are flexible and can be executed in several processors and operating systems,
such as ABACUS, a Raspberry Pi, a Linux or Windows PC, etc. The performance tests have
shown that those algorithms can be utilized by CubeSats which use ABACUS as the OBC.
The algorithms execution time for each sample instant establish a lower bound for the sam-
pling interval, which in turns must be small enough in view of the spacecraft dynamics.

The TRIAD execution time of about 1.7ms demonstrate the possibility of its utilization
when the satellite rotates rapidly, which usually occurs right after launch, before the detum-
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bling process. The interval of 1.7ms allows a sampling rate of about 588 Hz, being adequate
for a speed of about 294 rotations per second (RPS), accordingly to the Nyquist’s limit.
Also, during detumbling a high precision attitude determination is not critical, which makes
TRIAD very suitable for this phase.

The USQUE execution time of about 64.5ms is quite high, posing an upper bound of
about 15.5 Hz for the sampling rate, which is adequate for a speed of about 31 RPS. Despite
of this fact, USQUE is still suitable for a spacecraft after detumbling, since a speed of 31
RPS is very high for a stabilized satellite. A high precision attitude estimation is a more
critical requirement after stabilization, when the satellite initiates the regular operation for
which it was designed. Thus, the more robust USQUE method would be appropriate for this
phase.

The ABACUS FPGA is a device with high processing power which have not been used
in any work at LAICA. Moreover, the FPGA is highly suitable to perform matrix operations,
which are abundant in algorithms such as USQUE. Thus, its utilization in future works is
recommended since it could significantly increase the algorithms performances, specially
USQUE.

The LAICA facility is still under development, despite of the fact that several improve-
ments have been made over the approximate three years of its existence. The published
works and this masters dissertation itself prove the advances achieved, even though new fea-
tures are under planning. Among others, these features include: a complete control of the
magnetic field generated by the EMFS, the test of sun sensors, and the implementation of
attitude control systems using the reaction wheels and other actuators.
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