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Resumo

Sistemas concorrentes enfrentam uma ameaça à sua confiabilidade em comportamentos
emergentes, os quais não são incluídos na especificação, mas podem acontecer durante o
tempo de execução. Quando sistemas concorrentes são modelados a base de cenários, é
possível detectar estes comportamentos emergentes como cenários implícitos que, analo-
gamente, são cenários inesperados que podem acontecer devido à natureza concorrente
do sistema. Até agora, o processo de lidar com cenários implícitos pode exigir tempo
e esforço significativos do usuário, pois eles são detectados e tratados um a um. Nesta
dissertação, uma nova metodologia é proposta para lidar com vários cenários implícitos
de cada vez, encontrando comportamentos comuns entre eles. Além disso, propomos uma
nova maneira de agrupar estes comportamentos em famílias utilizando uma técnica de
agrupamento usando o algoritmo de Smith-Waterman como uma medida de similaridade.
Desta forma, permitimos a remoção de vários cenários implícitos com uma única correção,
diminuindo o tempo e o esforço necessários para alcançar maior confiabilidade do sistema.
Um total de 1798 cenários implícitos foram coletados em sete estudos de caso, dos quais
14 famílias de comportamentos comuns foram definidas. Consequentemente, apenas 14
restrições foram necessárias para resolver todos os cenários implícitos coletados coletados,
aplicando nossa abordagem. Estes resultados suportam a validade e eficácia da nossa
metodologia.

Palavras-chave: dependabilidade, cenários implícitos, sistemas concorrentes, LTSA, Smith-
Waterman, clusterização hierárquica
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Abstract

Concurrent systems face a threat to their reliability in emergent behaviors, which are not
included in the specification but can happen during runtime. When concurrent systems
are modeled in a scenario-based manner, it is possible to detect emergent behaviors as
implied scenarios (ISs) which, analogously, are unexpected scenarios that can happen due
to the concurrent nature of the system. Until now, the process of dealing with ISs can
demand significant time and e�ort from the user, as they are detected and dealt with in a
one by one basis. In this paper, a new methodology is proposed to deal with various ISs
at a time, by finding Common Behaviors (CBs) among them. Additionally, we propose
a novel way to group CBs into families utilizing a clustering technique using the Smith-
Waterman algorithm as a similarity measure. Thus allowing the removal of multiple
ISs with a single fix, decreasing the time and e�ort required to achieve higher system
reliability. A total of 1798 ISs were collected across seven case studies, from which 14
families of CBs were defined. Consequently, only 14 constraints were needed to resolve all
collected ISs, applying our approach. These results support the validity and e�ectiveness
of our methodology.

Keywords: dependability, implied scenarios, concurrent systems, LTSA, Smith-Waterman,
hierarchical clustering
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Chapter 1

Introduction

1.1 Context
A useful way to model distributed systems’ specifications is to use scenarios. A scenario
depicts how di�erent components interact to achieve a common goal. Message Sequence
Charts [3] and UML sequence diagrams [4] are two commonly used methods to design
and display these scenarios. Both of these techniques use the idea of components that
send each other messages, that is, two di�erent components that need to work together
to achieve a goal can interact synchronously or asynchronously with each other through
message passing.

Although widely used, a scenario specification can describe only partial behaviors of
a system, while its implementation has full behaviors [5]. Such limitations can lead to a
common fault in scenario specifications, which are implied scenarios. Implied scenarios
are unexpected behaviors that can emerge at runtime due to components’ interactions
that are implied in the specification [5]. That is, di�erent components believe they are
behaving correctly on its own, but the composition of all their actions together is not
included in the original specification. More formally, “implied scenarios indicate gaps in a
scenario-based specification that are the result of specifying the behavior of a system from
a global perspective yet expecting the behavior to be provided in a local component-wise
fashion by independent entities with a local view of the system” [6].

Even though implied scenarios can lead to unexpected behaviors, they are not al-
ways unacceptable behaviors [7]. An implied scenario can be a positive scenario that was
overlooked in the original specification or be indeed an unacceptable behavior. For the for-
mer, it can be simply included in the specification, while the latter has to be constrained.
Therefore, implied scenarios should be detected and validated with stakeholders [8] to de-
fine how to deal with them. If left untreated these scenarios can cause damage if they lead
to unwanted behaviors [9]. Particularly, implied scenarios can a�ect the reliability [10,11]
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and security [12] of a system. Thus, it is desirable to deal with these implied scenarios
before the system is up and running to prevent unwanted behavior. However, the pro-
cess of detecting implied scenarios has been proved to be undecidable by Chakraborty et
al. [13], meaning that there is no guarantee that the detection of all implied scenarios of
a given system will ever stop in polynomial time.

1.2 Problem
Several approaches to detect implied scenarios have been devised (e.g., [5–7,14–16]). Most
of them, however, do not go further on the process of dealing with implied scenarios, that
is, they stop their methodologies after detecting implied scenarios. In other words, they
neither suggest a solution nor try to find the root of the underlying cause. By doing so,
it can lead the user to spend a lot of time analyzing a large number of implied scenarios.
Some exceptions, such as Uchitel et al. [6], Song et al. [5], and Moshirpour et al. [16], show
the cause to the user and suggest solutions for the problem to be fixed. However, these
approaches can still output a large number of implied scenarios, which can be cumbersome
to the user. Since these approaches do not further investigate the correlation between the
implied scenarios, they could misguide the user on how to deal with such implied scenarios
at large.

1.3 Research Questions and Contributions
Based on these problems, three research questions are raised, which motivates the contri-
butions of the dissertation.

Research Question 1 Can we provide a heuristic to restrict the problem space
of implied scenarios analysis?

To answer this first question, a new methodology is proposed to fill in the literature
gap, which is achieved by finding common behaviors among implied scenarios that lead
the system to unexpected behavior. The process of detecting the common behaviors
consists of two major steps: (i) collect multiple implied scenarios and (ii) detect common
behaviors among them. For the first step, we extend the approach by Uchitel et al.
[6], where we automated the process of collecting implied scenarios, that is, instead of
detecting a single IS, our approach iteratively collects multiple distinct ISs without the
need of user interaction. From these collected implied scenarios, their underlying core
common behaviors are extracted. By these means, we restrict the problem space of the
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undecidability of implied scenario detection by treating the implied scenarios as a group,
instead of individually. Therefore, we answer Research Question 1, as we successfully
restricted the problem space that the user needs to analyze.

Research Question 2 Can we semantically group the common behaviors in a
sound manner?

Following, we group the common behaviors that were detected. This is achieved by
hierarchically clustering them, and in order to calculate the distance among the common
behaviors we use one of the several string matching algorithms that exist in the litera-
ture: the Smith-Waterman algorithm [17], widely used in bioinformatics research. This
algorithm is used to identify the best local alignment between genetic sequences, that
is, it tries to find which parts of the two DNA sequences have the most in common.
Thus, it can be successfully used to find the underlying sequences that are shared among
common behaviors. By using this algorithm, we were able to find semantically defined
groups of common behaviors, which helps the user analysis of the system. Therefore, by
these means we are able to semantically group the common behaviors, answering Research
Question 2. Furthermore, we compare the clustering results with the ones obtained using
the Levenshtein distance [18], in order to support the choice for the Smith-Waterman
algorithm.

Research Question 3 Is it possible to state there is an underlying cause among
the groups of common behaviors?

Next, a manual analysis of the groups is required. By doing so, it is possible to identify
underlying causes among common behaviors by looking at the alignments obtained with
the Smith-Waterman algorithm. Therefore, it is possible to define groups of common
behaviors that share the same underlying cause. We call such groups families of common
behaviors. If the underlying cause of a family is undesirable, that is, it deviates from the
wanted behavior of the system, it is a fault. Thus, if it is not treated, it may lead to
system failures. As a proof of concept, all underlying causes were considered to be faults.

After that, each family of common behaviors was dealt with in a single fix. In other
words, we were able to resolve all common behaviors in the family, by constraining their
underlying cause and not each one individually. By these means, we are able to success-
fully identify the underlying cause among a family of common behaviors. As a result,
we contribute to answering both Research Question 3 and a research question previously
raised by Uchitel et al. [8]: “should the entire implied scenario be constrained or is the
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unaccepted situation due to a specific subsequence of actions that appear in the implied
scenario?” In fact, our results explicitly show that it is possible to prevent unaccepted
situations by constraining specific underlying causes of common behaviors, which we can
detect by characterizing families.

Finally, in order to evaluate the proposed methodology, we performed seven case stud-
ies with system specifications reported in the literature. Throughout these case studies,
we collected a total of 1798 implied scenarios, which demanded nearly 37 hours of exe-
cution. From these implied scenarios, our methodology was able to come up with only
14 families of common behaviors, where each family required a single constraint and each
system specification required at most three constraints to prevent all collected implied
scenarios. Additionally, our methodology shows that the same 14 families could have
been found with 424 collected implied scenarios instead of the original 1798. This would
reduce the timespan of the detection process from nearly 37 hours to under 24 minutes.
Thus, the main contribution of this dissertation is the methodology which facilitates the
analysis of multiple implied scenarios.

1.4 Outline
The rest of this dissertation is structured as follows: Chapter 2 introduces and details
technical concepts used in the methodology; Chapter 3 discusses the related work in
the literature; Chapter 4 explains the proposed methodology in further details and uses
an example system to illustrate the approach; Chapter 5 shows and discusses the results
obtained through seven case studies; finally, Chapter 6 summarizes the contributions from
this dissertation and introduces some ideas for future work.
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Chapter 2

Background

In this chapter, definitions and technical concepts that are used throughout this disserta-
tion will be laid out and explained with examples, where applicable.

2.1 Scenarios
“Scenarios describe how system components, the environment and users work concurrently
and interact in order to provide system level functionality” [6]. Simply put, a scenario
is a description of a system’s action. It describes what the user expects from the system
when interacting with it. We can model entire systems based solely on scenarios that it
needs to execute, this is called a positive scenario-based model by Uchitel et al. [6].

The Boiler System [6] will be used as a running example. The Boiler System is a
system that controls the temperature inside a boiler, according to the measured pressure
by its sensor. It has the following components:

Actuator variates the temperature inside the boiler;

Control tells the actuator to act according to the last pressure measured;

Database stores the measured pressures;

Sensor measures the pressure inside the boiler.

This system performs four scenarios, and these are all accomplished by interactions
between the components. Below these scenarios are shown and the interactions between
the system’s components are described:

Initialise : Control tells Sensor to start monitoring the pressure;

Terminate : Control tells Sensor to stop monitoring the pressure;
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Figure 2.1: bMSCs representing the Boiler’s scenarios.

Register : Sensor sends Database the current pressure so it is stored and can be queried
later on;

Analysis : Control queries Database for the latest pressure and tells Actuator to alter
the boiler’s temperature accordingly.

By implementing these four scenarios, we have a system that was modeled on a
scenario-based way.

2.1.1 Message Sequence Chart

A message sequence chart (MSC) is a simple and intuitive graphical representation of a
scenario [3]. It explicitly shows the interactions between components, by showing each
one of those as a message sent from one component to another. We can use MSCs to show
the Boiler System’s scenarios described above as in Figure 2.1. As it can be seen, it is a
convenient way to exemplify the interactions that happen for a scenario to be achieved.

The MSCs shown in Figure 2.1 are said to be basic message sequence charts (bMSCs),
which describe a finite interaction between a set of components [6]. In the Initialize sce-
nario for instance, the Control instance is sending the message on to the Sensor instance.
A bMSC does not necessarily convey an order to the messages. However, in our case,
there is only one bMSC with more than one message. Therefore, the other ones have only
one possible order of execution, which is sending their only message.
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For the Analyse bMSC however, there are three messages that could lead to more
possible orders of execution. In this case, it is important to note that an instance of a
bMSC has to follow the order on which the messages are sent or received. For instance,
the Database instance can only send the data message after the query message is received.
Hence, this scenario only has one possible order as well. Formally, Definition 1 shows how
bMSCs are defined by Uchitel et al. [6].

Definition 1 [Basic Message Sequence Chart] A basic message sequence chart
(bMSC) is a structure b = (E, L, I, M, instance, label, order) where: E is a countable
set of events that can be partitioned into a set of send and receive events that we
denote send(E) and receive(E). L is a set of message labels. We use –(b) to denote L.
I is a set of instance names. M : send(E) æ receive(E) is a bijection that pairs send
and receive events. We refer to the pairs in M as messages. The function instance:
E æ I maps every event to the instance on which the event occurs. Given i œ I, we
denote {e œ E|instance(e) = i} as i(E). The function label: E æ L maps events to
labels. We require for all (e, eÕ) œ M that label(e) = label(eÕ), and if (v, vÕ) œ M and
label(e) = label(v), then instance(e) = instance(v) and instance(eÕ) = instance(vÕ).
order is a set of total orders Æi™ i(E) ◊ i(E) with i œ I and Æi corresponding to
the top-down ordering of events on instance i.

An extension of bMSCs are high-level message sequence charts (hMSCs), which pro-
vides the means for composing bMSCs [6]. These can be used to show the possible paths
of execution of a system, that is, the possible continuations after each bMSC, in a way
that it is visually and easily understood. As an example, in Figure 2.2 the hMSC for the
Boiler System is shown. It is possible to observe that the scenarios are ordered in a way
that the system delivers correct service. The formal definition of hMSCs by Uchitel et
al. [6] is presented in Definition 2.

Definition 2 [High-Level Message Sequence Charts] A high-level message sequence
chart (hMSC) is a graph of the form (N, E, s0) where N is a set of nodes, E ™ (N◊N)
is a set of edges, and s0 œ N is the initial node. We say that n is adjacent to nÕ if
(n, nÕ) œ E. A (possibly infinite) sequence of nodes w = n0, n1, ... is a path if n0 = s0,
and ni is adjacent to ni+1 for 0 Æ i < |w|. We say a path is maximal if it is not a
proper prefix of any other path.

Finally, the hMSC depicted in Figure 2.2 is a special kind of hMSC, which is called a
Positive Specification (PSpec). Simply put, a PSpec contains an hMSC, a set of bMSCc,
and a bijective function that maps one node from the hMSC to a single bMSC. The formal
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Figure 2.2: hMSC of the Boiler system specification.

definition by Uchitel et al. [6] is presented in Definition 3.

Definition 3 [Positive Message Sequence Chart Specification] A positive message
sequence chart (MSC) specification is a structure PSpec = (B, H, f) where B is a
set of bMSCs, H = (N, A, s0) is a hMSC, and f : N æ B is a bijective function that
maps hMSC nodes to bMSCs. We use –(PSpec) = {l|÷b œ B.l œ –(b)} to denote
the alphabet of the specification.

2.1.2 Labeled Transition System

A labeled transition system (LTS) is a finite state machine that has an intuitive easily
grasped semantics and a simple representation [19]. They can be used to represent the
expected order of messages exchanged by each component of a distributed system.

An LTS is a directed graph, with nodes and edges, where each node represents a state
of the system, and each edge a transition from one state to another. Edges are labeled
with the message(s) that are exchanged for that transition to happen. Finally, there is a
unique node that represents the initial state of the system (state 0), which will be denoted
in red. More formally, Definition 4 shows the definition of LTSs by Uchitel et al. [6].

Definition 4 [Labeled Transition Systems] Let States be the universal set of states
where state fi is the error state. Let Labels be the universal set of message labels
and Labels· = Labels fi · where · denotes an internal component action that is
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Figure 2.3: Each Boiler component’s LTS representing the messages exchanged.

unobservable to other components. An LTS P is a structure (S, L, —, q) where S ™
States is a finite set of states, L = –(P ) fi · , –(P ) ™ Labels is a set of labels that
denotes the communicating alphabet of P , — ™ (S\{fi} ◊ L ◊ S) defines the labeled
transitions between states, and q œ S is the initial state. We use s

læ sÕ to denote
(s, l, sÕ) œ — . In addition,we say that an LTS P is deterministic if s

læ s1 and
s

læ s2 implies s1 = s2.

Figure 2.3 shows the LTS for each component of the Boiler system. For instance, the
LTS for the Sensor shows that this component, the first message to be exchanged must be
on, then pressure, and so on. Note that each LTS contains only the messages exchanged
by that component (e.g., the LTS for the Actuator has only one state and one transition,
because that component only exchanges one message throughout all scenarios).

Finally, it is possible to combine di�erent LTSs by doing a parallel composition of
them. The resulting LTS represents the expected order of messages in the entire system.
Figure 2.4 shows the resulting LTS of the parallel composition of the LTSs in Figure 2.3.
Formally, the definition of parallel composition by Uchitel et al. [6] is presented in Def-
inition 5. The only exceptions to the rules presented are that state fi is used instead of
states (x, fi) and (fi, x) for all x œ States.

Definition 5 [Parallel Composition of LTS] Let P1 and P2 be LTSs where Pi =
(Si, Li, —i, qi). Their parallel composition is denoted P1||P2 and is an LTS (S, L, —, q)
where S = S1 ◊S2 fi{fi, ‘}, L = L1 fiL2, q = (q1, q2), and — is the smallest relation in
(S\{fi})◊L◊S that satisfies the following rules where x

aæi y denotes (x, a, y) œ —i:

s
aæ1 t

(s, sÕ) aæ (t, sÕ)
(a /œ –(L2)),

s
aæ2 t

(s, sÕ) aæ (t, sÕ)
(a /œ –(L1)),
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Figure 2.4: Resulting LTS of the parallel composition of the LTSs in Figure 2.3.

s
aæ1 tsÕ aæ2 tÕ

(s, sÕ) aæ (t, tÕ)
(a /œ (–(L1) fl –(L2))\{·}).

Finite State Process Notation

The Finite State Process (FSP) is a notation used to specify the behavior of concurrent
systems to the Labelled Transition System Analyzer (LTSA) tool1 [?]. A FSP specification
generates LTSs, such as the ones in Figures 2.3 and 2.4. FSP specifications contain
two sorts of definitions: primitive processes (e.g., individual components) and composite
processes (e.g., parallel compositions).

For primitive processes, only the notion of states, action prefix, and choice will be
used. A state represents a state in an LTS, and is named Qi (i = 0,1,2...). It is denoted
by Qi = (a), where a is either an action prefix or a choice and represents the existing
transitions that leave this state. The action prefix represents a transition in an LTS, and
is denoted by a -> b, where a is a message and b is either a message or a state. It indicates
that after a is exchanged, the LTS will either change to state b or wait for message b to be
exchanged. Finally, choice is denoted by a | b, where a is an action prefix and b is either
an action prefix or a choice . It indicates that more than one transition exist leaving that
state. Figure 2.5 shows the FSPs that generates the corresponding LTSs in Figure 2.3.

Finally, the only composite process used in this dissertation will be parallel composi-
tion. It is analogous to the parallel composition of LTSs, and it is detonated by (a||b),
where a is a primitive process, and b is either a primitive process or a parallel com-

1
Available at: https://www.doc.ic.ac.uk/ltsa/.
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Control = Q0,
    Q0 = (on -> Q1),
    Q1 = (off -> Q0

  |query -> Q2),
    Q2 = (data -> Q3),
    Q3 = (command -> Q1).

Database = Q0,
    Q0 = (pressure -> Q1),
    Q1 = (pressure -> Q1
      |query -> Q2),
    Q2 = (data -> Q0).

Actuator = Q0,
    Q0 = (command -> Q0).

Sensor = Q0,
    Q0 = (on -> Q1),
    Q1 = (pressure -> Q2),
    Q2 = (off -> Q0
      |pressure -> Q2).

Figure 2.5: Each Boiler component’s FSP.

position. The FSP corresponding to the parallel composition of the Boiler components
(Boiler = (Control||Database||Actuator||Sensor)) generates the LTS in Figure 2.4.

2.1.3 Implied Scenarios

An implied scenario (IS) is a scenario that was not included in the system’s specifica-
tion, but it occurs in every implementation of the specification [20]. It is a result from
implementing actions that are global to the system, in a local level to the components
that executes them. Because of this implementation, a component might not have enough
information locally to decide whether or not the action should be prevented, therefore it
is always performed.

An implied scenario can be classified as positive or negative [6]. A positive implied
scenario is one that although it was not included in the system specification and its
behavior was not expected, it has a desired behavior. Thus, a positive IS represents an
unexpected but acceptable behavior. In this case, the system’s specification is usually
extended with this new scenario. On the other hand, a negative implied scenario is a
scenario that was not expected and its observed behavior is harmful to the system’s
execution. That is, the system is not performing the correct service, or in other words,
performing a failure. Thus, a negative IS represents an unexpected unacceptable behavior.

However, in the present work, this distinction will be disregarded, and therefore all
ISs will be treated as a failure for simplicity since the characterization of a positive IS
requires domain-expert knowledge. Although this can introduce an unnecessary cost to
the system, as we might add constraints to the system in order to restrict behaviors that
could instead be included, this analysis is not in the scope of this work, as our goal is to
demonstrate the possibility of resolving various ISs at once.

Because of the nature of concurrent systems, implied scenarios may not happen in
every system run, as messages are not synchronized and traces of execution (order of the
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Figure 2.6: An implied scenario from the boiler system.

messages on the MSC) could be di�erent, even though the same course of action is sought.
As an example, in Figure 2.6 an implied scenario in the Boiler System is presented.

The unexpected part, that is, the cause of the implied scenario, is that Control tries to
execute the Analysis scenario before a pressure from the current system run is registered.
Therefore, it will tell the Actuator to variate the temperature according to a pressure that
does not represent the system’s current state.

Finally, to formally define what is an implied scenario, we use Definitions 6 to 10 from
Uchitel et al. [6]. These definitions show that an implied scenario is a system execution
that is not modeled in PSpec but arises in every architecture model of PSpec. That is,
it is an unexpected execution that happens in all implementations of PSpec.

Definition 6 [Execution] Let P = (S, L, —, q) be a LTS. An execution of P is a
sequence w = q0l0q1l1... of states qi and labels li œ L such that q0 = q and qi

liæ qi+1

for all 0 Æ i < |w/2|. An execution is maximal if it cannot be extended to still be an
execution of the LTS. We also define ex(P ) = {w | w is an execution of P}.

Definition 7 [Projection] Let w be a word w0w1w2w3... and A an alphabet. The
projection of w onto A, which we denote w|A, is the result of eliminating from the
word w all elements wi in A.

Definition 8 [Trace and Maximal Trace] Let P be a LTS. A word w over the
alphabet –(P ) is a (maximal) trace of P if there is an (maximal) execution e œ ex(P )
such that w = e|–(P ). We use tr(e) to denote the projection of an execution on the
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alphabet of a LTS. We also define tr(P ) = {w | w is a trace of P} and L(P ) = {w|w
is a maximal trace of P}.

Definition 9 [Architecture Models] Let PSpec = (B, H, f) be a positive MSC
specification with instances I, and let Ai with i œ I be LTSs. We say that an LTS
A is an architecture model of PSpec only if A = (A1|| ... ||An), –(Ai) = –(i), and
L(PSpec) ™ L(A).

Definition 10 [Implied Scenarios] Given a positive MSC specification PSpec, a
trace w /œ L(PSpec) is an implied scenario of PSpec if for all trace y and for all
architecture model A of Pspec, w.y œ L(A) implies w.y /œ L(PSpec).

2.2 Clustering
Another important background required in this work is the one regarding the notion of
clustering. Clustering is a data-mining technique used to group datapoints in a dataset.
In other words, it is a method to group elements in an unsupervised way. After obtaining
the separate groups, the user still has to analyze the results and figure out why those
elements were clustered together. A simple definition of the clustering process is given in
Matteucci [1]: "the process of organizing objects into groups whose members are similar
in some way".

A good clustering result is such that the cluster elements are very similar to each
other, and very dissimilar to other clusters’ elements. This way a good separation between
clusters is observed and the elements within a cluster are clearly similar.

In Figure 2.7 a simple clustering process is shown, where on the left side of the image
the elements are all separate, and on the right side, after clustering, four clusters can be
clearly seen.

Figure 2.7: Example of a clustering technique, taken from [1].
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2.2.1 Hierarchical Clustering

As defined by Ward [21], Hierarchical Grouping – later called Hierarchical Clustering
by Johnson [22] – is “a procedure for forming hierarchical groups of mutually exclusive
subsets, each of which has members that are maximally similar with respect to specified
characteristic”. There are two types of hierarchical clustering [23]: agglomerative and
divisive. The former starts with N clusters, containing 1 element each, and groups clusters
one by one until there is only one cluster. The latter starts with 1 cluster, containing
all N elements, and splits the existing clusters until there are N clusters, containing 1
element each.

The agglomerative hierarchical clustering is a method where members of a dataset
(datapoints) are grouped hierarchically, with the most similar datapoints (or groups of
datapoints) being merged before the less similar ones. This similarity is often measured
by a distance metric, which means that the lower the score between two datapoints, the
more similar they are.

This process is recursive [22] and consists of four steps: (i) calculate the similarity
(or distance) between all members of the current dataset; (ii) find the most similar pair
between those members; (iii) replace those two members with a new one, which merely is
the two grouped together; (iv) go to (i) if there is more than one member in the current
dataset. In the end, there will be a single member of the dataset, which is a group
containing all individual datapoints that made up the original dataset. The interesting
result, however, is being able to see the step-by-step grouping of members, which facilitates
the detection of subgroups in the dataset.

The divisive hierarchical clustering is a method where all members start in the same
cluster, and then are split into smaller clusters until each member is in a cluster by
itself. One possible way to achieve this is by using the DIvisive ANAlysis Clustering
(DIANA) [24], where the largest cluster is broken down in every step. First, the element
e that is most dissimilar to the other ones is selected and removed from that cluster;
Then, the remaining elements that are more similar to e than to the other remaining ones
are also moved to that new cluster. This process is repeated until all elements have been
separated.

However, because the initial merges of small-size clusters in the agglomerative ap-
proach correspond to high degrees of similarity, its results are more understandable than
the ones obtained by the divisive approach [25]. Therefore, as the clustering results will
serve as a reference to the user in our methodology, it is essential that its results be un-
derstandable and help the user to analyze the elements grouped. Thus, the agglomerative
approach is used and from here on hierarchical clustering will be used to refer to the
agglomerative approach.
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Coordinates of example datapoints in x and y axis.

A B C D E
x 1 0 2 4.5 6
y 2 1 1 6 6

Figure 2.8: Plot of example datapoints.

As an example, let us consider five datapoints in a 2-dimensional plot. These points
are represented in Figure 2.8 and their coordinates are shown in Table 2.1. To apply the
algorithm, it is required to have the similarity between the elements. Table 2.2 shows
the Euclidean distance between these points. With this information, the first pair to be
grouped could be either A and B or A and C, as they have the smallest distance between
them with 1.41. Without loss of generality, A and B will be the first elements to be
grouped.

The question now is how to calculate the similarity between a group of datapoints
({A, B}) and other datapoints. In fact, there are multiple ways to achieve this, such
as: (i) complete linkage clustering [26], which calculates the distance between a group of
elements E and another element eÕ as the maximum possible distance of e œ E and eÕ;
(ii) single linkage clustering [26], where the distance between a group of elements E and
another element eÕ is the minimum possible distance of e œ E and eÕ; and (iii) Ward’s

Euclidean distances between example datapoints.

A B C D E
A 0
B 1.41 0
C 1.41 2.0 0
D 5.32 6.73 5.59 0
E 6.40 7.81 6.40 1.5 0
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Euclidean distances after first recursion.

{A ,B} C D E
{A, B} 0
C 2.0 0
D 6.73 5.59 0
E 7.81 6.40 1.50 0

Figure 2.9: Dendrogram showing the order of grouping.

method [21], which calculates the increase in variance if two clusters were merged. The
method used to exemplify will be the “complete linkage clustering” [26].

By using the complete linkage method, the highest distance between a member of the
group and another member is kept, that is, the distance between {A, B} and C will be
2.0, as that is the maximum value between 1.41 (dist(A, C)) and 2.0 (dist(B, C)). This
way, the distances after the first recursion are shown in Table 2.3. The process is then
repeated with these new distances, and the next members to be grouped will be D and E,
as these datapoints have a distance of 1.50, which is the lowest distance on this current
dataset.

The final result of the whole process is shown in Figure 2.9. This kind of graph is
called a dendrogram, which provides a useful visual way to analyze hierarchical clusters,
allowing a di�erent analysis of the dataset. For instance, on this example, it is clear that
two groups are formed, as A, B, and C are much closer to one another than they are to
D and E. Similarly, D and E are more similar to each other than to the other 3 points.

16



2.3 Smith-Waterman Algorithm
The Smith-Waterman algorithm (SW), first introduced by Smith & Waterman in [17],
proposes to “find a pair of segments, one from each of two long sequences, such that there
is no other pair of segments with greater similarity” [17]. In other words, SW tries to find
the best local alignment between two sequences, local in the sense that this alignment can
be shorter than the sequences, that is, it might find only a small part of the sequences
where they are most similar. It is widely used in bioinformatics research to calculate the
similarity between genetic sequences.

The algorithm can be broken down into two steps: (i) calculate the scoring matrix;
and (ii) traceback the best alignment from the highest value in the matrix.

Therefore, firstly it is needed to calculate the scoring matrix (SM). The SM is a (n+1)
by (m + 1) matrix, where n and m are the lengths of the sequences to be compared. The
first column and row are filled with zeros, while the rest of the matrix is filled according to
the recurrence equation shown in Equation (2.1), where, A and B are the sequences being
compared, and s(Ai, Bj) checks if Ai and Bj are the same element. If they are it returns
MATCH, if not it returns MISMATCH. Lastly, GAP , MATCH, and MISMATCH

are defined by the user.

SMi,j = max

Y
________]

________[

SMi≠1,j + GAP

SMi,j≠1 + GAP

SMi≠1,j≠1 + s(Ai, Bj)

0

(2.1)

Simply put, each cell SMi,j is calculated with basis on previously calculated values
– SMi≠1,j, SMi≠1,j≠1, and SMi,j≠1 – but only one of these values is used at most. If
the upper-left diagonal value (SMi≠1,j≠1) is used, then it indicates that both sequences
are reading their elements (i.e., Ai, Bj); thus, it is considered whether Ai = Bj, and a
value (MATCH or MISMATCH) is used to calculate SMi,j accordingly. However, if
the upper value (SMi≠1,j) is used, only A is reading its element, as it goes from Ai≠1 to
Ai while Bj is constant. Analogously, for the left value (SMi,j≠1) Ai is constant and Bj≠1

changes to Bj. For these two last cases, a penalty (GAP ) for not considering elements
from both sequences is used to calculate SMi,j.

After the whole SM has been populated, we can find the best local alignment. This is
achieved by doing a traceback from the highest value found in the SM, which is the score
of the best alignment. First, we have to find the highest value in SM, which represents
the end of the best alignment. Let us assume (k, l) is such position. Starting from this
position, the traceback is executed by finding the highest value among SMk≠1,l, SMk≠1,l≠1,
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G C T C G
0 0 0 0 0 0

A 0 0 0 0 0 0
C 0 0 3 1 3 1
T 0 0 1
G 0 3 1
A 0 1 0

�2

(a) single cell calculation

G C T C G
0 0 0 0 0 0

A 0 0 0 0 0 0
C 0 0 3 1 3 1
T 0 0 1 6 4 2

G 0 3 1 4 3 7
A 0 1 0 2 1 5

�1

(b) scoring matrix

Best Alignment:
C T — G

C T C G

Score: 7

�1

(c) alignment and score

Figure 2.10: Example results for the Smith-Waterman algorithm.

and SMk,l≠1. The cell with the highest value among those is a part of the alignment,
and thus it is included in the traceback. This procedure is repeated with each new cell
included until the next new cell has a value of zero. Finally, the alignment is the reversed
sequence of cells included (as the first cell represents the end of the alignment), where
movements in the horizontal consider only one sequence, vertical movements consider the
other sequence, and diagonal movements consider both sequences.

As an example, let A = ACTGA, B = GCTCG, MATCH = 3, MISMATCH = -3,
and GAP = -2. Figure 2.10a shows the calculation for a single cell, in this case, SM4,4.
The arrows represent which neighbors cells that can help to fill this one. From the left
(SM4,3) and above (SM3,4) cells, the GAP penalty would apply, so both send a value of
1+(-2). For the diagonal cell (SM3,3), we need to check if Ai is equal to Bj. In this case,
both are ‘T’, and thus, we would use the MATCH value. Therefore, this cell would send
3+3. Now that we have calculated all possible values using the neighbors, we pick the
maximum from {-1, -1, 6, 0} and update this cell.

The whole scoring matrix is shown in Figure 2.10b. The highlighted cell is the highest
value calculated. Thus we start from that position (4,5). From there on, we find the
highest values among the top, left, and upper-left neighbors and do so until we get to a
cell filled with 0. The arrows demonstrate this process until the last non-zero value is
found.

After this traceback, we can find the best alignment and score. The score is merely
the highest value in the scoring matrix, which is 7 in this case. To find the alignment,
we reverse the traceback found and add the positions read from A and B. Note that if
the move is either horizontal or vertical, then a GAP must be added. Figure 2.10c shows
both the score and the best alignment found.

Although in this dissertation SW will be used to find similar sequences of messages
instead of genetic ones, no adjustments are required from the original algorithm. For
instance, two sequences of messages from AÕ and BÕ the Boiler System could be aligned
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by simply changing the input from A and B to AÕ and BÕ in the above example.
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Chapter 3

Related Work

The work that originally introduced Implied Scenarios (ISs) was done by Alur et al. [27].
They proposed a method to detect a single IS given a set of basic message sequence
charts (bMSCs) but did not support high-level message sequence charts (hMSCs), thus
eliminating the analysis of infinite system behaviors. After an IS was detected, the user
has to adjust the system specification and can do a new search for ISs. One of the main
di�erences from our approach is that we allow the user to use hMSCs, which allows the
user to specify infinite system behaviors. Also, our approach can collect multiple scenarios
at once, which is not possible with their approach. Finally, our approach goes into further
analysis regarding the implied scenarios by trying to find common behaviors among them.
By these means, we can reduce the problem space that the user has to analyze.

Uchitel et al. [6, 8, 20, 28, 29] later extended the work by Alur et al. [27]. Their work
used hMSCs to accommodate loops and compositions of bMSCs, allowing infinite system
behaviors. The detection process also detected only one IS at a time, but allowed the user
to include or remove the detected IS automatically, if the user classifies it as positive or
negative. Their work, however, may su�er from state explosion problem. Although our
proposed methodology extends the detection process of the works by Uchitel et al. for
the first steps, we further advance on the analysis process by finding common behaviors
among multiple implied scenarios.

Letier et al. [30] continue Uchitel et al. work with the notion of Input-Output implied
scenarios (I/O ISs). I/O ISs are a particular kind of ISs, where components are restricting
messages that were supposed to be only monitored. According to [30], however, they
cannot do so. Because this approach is based on Uchitel et al. [6], it shares the same
drawbacks when compared to our proposal. Our work goes further on the analysis process
by finding common behaviors among multiple implied scenarios, besides being able to
collect multiple implied scenarios automatically. However, they detect a special kind of
implied scenarios that we do not; the I/O implied scenarios.
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Muccini [7] proposes a di�erent method to detect ISs, by analyzing non-local choices.
Succinctly, non-local choices are points in an MSC specification where a component is
not sure about which message to send, as it does not have the necessary information.
His approach does not su�er from state explosion, because it applies a structural, syn-
tactic, analysis of the specifications as opposed to the behavioral, model-based analysis
by Uchitel et al. [6]. He also claims to discover and display all the implied scenarios in
the system specification with a single execution. However, all ISs detected are due to
non-local choices, and since “non-local choices are special cases of implied scenarios” [29],
not all implied scenarios might have been found. Furthermore, he does not go into fur-
ther analysis, whereas our approach searches for common behaviors among the implied
scenarios, which can lead to a considerable reduction in the problem space.

Castejón and Braek [31] propose a di�erent method to detect ISs, by using UML 2.0
collaborations [4]. In such collaborations, components can be o�ered roles to execute
actions. However, each component only plays ideally one role at a time. Their approach
analyses the collaboration diagrams, searching for points where components are o�ered
roles while they are already busy playing another. Therefore, these points represent ISs
in the specification. However, their approach also detects only one IS at a time and does
not further analyze the results obtained.

Chakraborty et al. [13] proposes a similar method to detect ISs as Uchitel et al. [6].
The di�erence lies in that they extend the traces of execution (i.e., sequences of messages
exchanged) until the end of the system execution, whereas in the approach by Uchitel et
al. the traces are stopped at the message an IS is detected. However, their approach only
detects ISs, as it does not further analyses the result nor suggests solutions. Finally, it is
proved in this work that “the problem of detecting implied scenarios for general MSG’s
is undecidable”, where a Message Sequence Graph (MSG) is merely an hMSC.

The work by Song et al. [5] proposes a method to not only detect ISs but also find which
point in the specification leads to them. It supports di�erent kinds of communication
between components, unlike all the above works which use synchronous communication,
and also supports I/O implied scenarios. They propose a method to detect ISs by using
graphs that represent the required order of messages for each component. Thus, when
inconsistencies are found, they represent ISs, and edges that make such inconsistencies are
pointed as the causes. Therefore, this approach can point the user to the fault underlying
the implied scenarios. However, their work does not find similarity among the implied
scenarios. Thus, it does not allow the user to reduce the problem space that has to be
analyzed.

Moshirpour et al. [16, 32] propose another method to detect ISs. They model states
for each agent (i.e., component) that represents their local views during each step of the
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execution – “let the current state of the agent to be defined by the messages that the
agent needs in order to perform the messages that come after its current states” [32].
Then, they analyze all modeled states to find special states where “the agent becomes
confused as to what course of action to take” [16]. These special states are similar to
non-local choices, where an agent does not have enough local information to decide the
correct action. Therefore, ISs occur when there exist such special states. Their approach
detects one IS at a time, does not suggest solutions to detected ISs, and does not go into
further analysis after ISs are successfully detected.

Fard et al. [33] propose a di�erent method to detect ISs. They cluster the interactions
between components to find points in the specification where a lack of information might
happen. Also, this is the first work in the literature that classifies implied scenarios into
di�erent categories, and they use such classifications to propose a generic architecture
refinement method for them. Their approach also points to the probable cause of ISs,
similarly to Song et al. [5]. However, their work does not find similarity among the
implied scenarios; thus it does not allow the user to reduce the problem space that has to
be analyzed.

Reis [34] proposes a method to generate test cases based on detected implied scenarios
of a system. Similarly to our methodology, their methodology uses the approach by Uchitel
et al. to detect the implied scenarios and tries to group the implied scenarios in order to
generate fewer test cases than one for each implied scenario. This grouping is achieved
by converting graphs of the exchanged messages to basic regular expressions, that is, the
graphs are converted into sequences where the loops are annotated, so it is possible to
find implied scenarios that di�er from each other because of loops. However, the implied
scenarios are detected and analyzed on a one-by-one basis, which does not restrict the
problem space the user needs to analyze. Furthermore, no solutions are suggested to
resolve the implied scenarios.

Table 3.1 shows the key points of comparison among existing approaches and our
proposal. Most of these works focus on the detection of ISs; however, few of them do
a further analysis after the detection of the ISs. Taking this into consideration, our
methodology does not introduce a novel method to detect ISs, as there are many works
with this goal that can be used. Its focus lies on the analysis after detecting the ISs, which
can be improved to require less time and e�ort from the user to achieve better results.
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Table 3.1: Related work comparison

Research Year Type of
detected errors

Modeling Solutions
suggested

Restrict problem
space analysis

Alur et al. 1996 implied scenario State Machine x x

Muccini 2003 various implied scenarios
due to non-local choices

Modeling NL choice x x

Uchitel et al. 2004 implied scenario FSP + LTS arch. refinement,
FSP constraint

x

Letier et al. 2005 implied scenario FSP + LTS arch. refinement,
FSP constraint

x

Castejón and Braek 2006 implied scenario Sub-role sequences x x
Chakraborty et al. 2010 implied scenario State Machine x x
Song et al. 2011 implied scenario Graph comparison provides reasons x
Moshirpour et al. 2012 implied scenario State Machine x x

Fard and Far 2014 async. concatenation,
various implied scenarios

Interaction Modeling generic arch.
refinement

x

Reis 2015 implied scenario FSP + LTS x x

Our Work 2018 various implied scenarios,
common behaviors among ISs

FSP + LTS
characterization,
arch. refinement,
FSP constraint

yes
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Chapter 4

Methodology

In this chapter, our proposed methodology will be laid out and explained in details. First,
in Section 4.1 an overview of the entire methodology is presented, including step-by-step
details. In Section 4.2, the steps that require more in-depth explanations are thoroughly
detailed. Finally, in Section 4.3 one guiding example is used to exemplify our approach.

4.1 Overview
Our proposed methodology consists of seven steps, which are shown in Figure 4.1. The
methodology starts at step 1, where the user models the scenarios of the system. This
step requires user interaction, as he/she needs to use their domain expertise to model
such scenarios correctly. As a proof of concept, we used the LTSA-MSC tool [28] to allow
the user to perform this step. After the system is modeled, it is possible to detect implied
scenarios (ISs) in the specification, which is also achieved by using the LTSA-MSC tool
through Uchitel et al. [6] approach.

However, in order to detect various ISs without the need of user input after each one,
the detection process of the LTSA-MSC tool was adapted 1. The adapted version keeps
the original detection process of the LTSA-MSC tool. However, instead of interacting
with the user after each IS is detected, as it happens with the original tool, the adapted
version iteratively collects various ISs and exports all detected ISs to a file, without the
need of user input throughout this process.

Therefore, in step 2, various ISs are collected from the system specification and ex-
ported. After this process completes and exports the ISs, the next step (3) is to detect
common behaviors (CBs) among the ISs. Nonetheless, it is possible that no IS is detected
in the system modeled by the user. If that is the case, and no ISs were collected, the
process finishes, as there are no elements to be analyzed.

1
The adapted version is available at https://github.com/cbdm/Implied_Scenarios.

24

https://github.com/cbdm/Implied_Scenarios


collected. 
ISs?

yes

 
 

wanted.
behavior? no unresolved 

CBs? no

no

build architecture
model and detect
implied scenarios

(ISs) 

detect common
behaviors (CBs)

among ISs

build new
constrained
architecture

model

model system
scenarios 

yes

yes

create behavior
constraint

classify families
of CBs

Figure 4.1: Steps of the proposed methodology.
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If there were collected ISs, in step 3 the CBs among the ISs are detected. The CBs are
groups of ISs share common traces among them. Because the LTSA-MSC tool produces
the implied scenarios in the form of error traces [5], that is, sequences of exchanged
messages until an error occurs, the CBs are defined as shared sequences of messages
among various ISs. This step is further explained in Section 4.2.1.

Next, step 4 first finds the similarities between the detected CBs. Because the CBs
are sequences of messages, the SW algorithm will be used to find the most similar CBs.
After finding the similarity, the CBs are hierarchically clustered to find groups of similar
CBs; thus facilitating the manual user analysis. Following, the user manually analyses
the results. The similarities and clustering of the CBs allow he/she to classify families of
CBs that have the same cause and thus can be resolved together. Section 4.2.2 further
explains the process of finding similarities among CBs and the classification of families of
CBs.

After the user manages to classify a family of CBs, he/she needs to analyze if that
family contains positive or negative CBs, that is, if the behavior the family represents is
wanted or unwanted. If it is a positive behavior, then the ISs of the CBs were wanted
scenarios that were overlooked [8] during system modeling. Thus, the user needs to go
back to the modeling (step 1) and add new scenarios that represent the family of CBs.
However, if the family represents a negative behavior, then he/she needs to remove the
CBs from the system, which is achieved by creating constraints [6] in step 5, which are
added to a list of constraints. This treatment process is repeated while there are CBs
that have not been resolved. That is, there are CBs that have not been included in the
specification nor prevented with constraints. The treatment of families of CBs is further
explained in Section 4.2.3.

Finally, after all families of CBs have been dealt with, a new architectural model is
generated in step 6, which no longer contains the detected families of CBs, by conducting
a parallel composition of the architectural behavior LTS with the LTS for the constraints
created. This results in a constrained architectural model, which does not allow for the
previously collected ISs to happen.

4.2 Detailed Steps
In this section, the novel steps that require further explanations are presented.

4.2.1 Detecting Common Behaviors

The detection of common behaviors (CBs) is based on the hypothesis that whenever the
same message is exchanged, the system reaches a same abstract state of correctness (a
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non-error state). In other words, if a message m is exchanged more than once, it did not
take the system to di�erent abstract states, unless it led the system to an error in one of
its occurrences. Consequently, other messages that were exchanged between the di�erent
occurrences of m did not impact the system considerably, as the system was able to reach
the same abstract state again.

These assumptions are made because LTSA-MSC produces the implied scenarios in
the form of error traces [5]. That is, the tool used to collect ISs detects them as sequences
of exchanged messages until an error occurs, which means that the last message caused
the IS. This last message is called the proscribed message [29]. Therefore, the messages
exchanged before the proscribed message do not lead the system to an error state, and
thus their repetition is not relevant for finding the common behavior of an IS, because
they keep the system in an abstract non-error state.

Hence, the messages that happen between repeated messages in the common behavior
are removed, which results in the removal of loops of messages. That is, each message
appears at most once in a common behavior. The single exception to this is the proscribed
message, which is added without checking for repetitions. With that in mind, a common
behavior is defined in Definition 11.

Definition 11 [Common Behavior] Given a set of Implied Scenarios S, if there is
a minimal trace of execution (that includes the initial state of L(Spec)) c, where
’s œ S, c ´ s and c ”œ L(Spec), c is said to be the common behavior among elements
of S.

The detection of CBs among ISs is performed by mean of Algorithm 1. The algorithm
takes as input a list of ISs and outputs a list of CBs. In line 2, an empty list CBs is
initialized, which will store the detected CBs. Line 3 starts a loop that will be executed
for each IS in the list that was taken as input. Therefore, for each IS, an empty behavior
current_behavior is created in line 4.

Next, as i is a sequence of messages, it starts a loop over the messages of IS in
line 5. In line 6 it is checked if each message message has been already included in
current_behavior. If it has not been included yet, that is, message is a new message,
then it is added to the end of current_behavior in line 15. If message is already included
in current_behavior, then in line 7 it is checked if message is the last message of the
IS (i.e., the proscribed message). If message is the proscribed message, it is added to
the end of current_behavior in line 8. However, if message has already been included
in current_behavior and is not the proscribed message, the loop in lines 10-12 removes
all messages between the current occurrence of message and the previous one, which
is achieved by removing the last message of current_behavior until the last message is
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ALGORITHM 1: Common behaviors detection process
1 findCBs (ISs)

input : ISs – a list of implied scenarios
output: CBs – a list of common behaviors

2 CBs = [];
3 foreach IS œ ISs do
4 current_behavior = [];
5 foreach message œ IS do
6 if message œ current_behavior then
7 if message = IS.last_message() then
8 current_behavior.append(message)
9 else

10 while current_behavior.last() ”= message do
11 current_behavior.remove_last()
12 end
13 end
14 else
15 current_behavior.append(message)
16 end
17 end
18 if current_behavior ”œ CBs then
19 CBs.append(current_behavior)
20 end
21 end
22 return CBs
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message.
After the loop for each message in IS ends in line 17, current_behavior is the CB of

IS. Therefore, in line 18 it is checked if current_behavior is already included in the list
of common behaviors, and if it is not, current_behavior is added to CBs. Finally, after
the loop for each IS ends in line 21, the algorithm returns the list CBs, which contains
the unique CBs among the ISs in line 22. Additionally, an example of the application of
this algorithm is provided in Section 4.3.2.

4.2.2 Classifying Families of Common Behaviors

After the common behaviors are filtered out among the collected ISs, it is necessary
to check if any similar ones could be resolved together. In our proposal, hierarchical
clustering is used to group detected common behaviors. By doing so, it helps the user
to analyze which groups are similar, as hierarchical clustering shows the grouping order
of the elements, and consequently, which common behaviors should be considered similar
before analyzing other pairings.

However, it is first needed to define a similarity score between common behaviors. It
is important to use a scoring method that is sensitive to the order of messages, as they
represent a sequence of system states that lead to an error. Nevertheless, it is also essen-
tial to consider that due to the concurrent nature of the systems studied, the ordering of
messages might be partially di�erent in di�erent executions of the same behavior. There-
fore, the Smith-Waterman algorithm [17] is used, as it returns the best local alignment
between two common behaviors and a score for that alignment, which illustrates what
similarities they have while allowing the addition of gaps in the sequences, which helps to
accommodate the matching of the same message in di�erent orders. However, contrary to
the metrics usually used in hierarchical clustering, the most similar the pair is, the higher
the score will be. Thus, the dissimilarity function in Equation (4.1) is used.

dissimilarity(cb1, cb2) = 1
SW (cb1, cb2) + Á

(4.1)

Because our dissimilarity function should return lower scores for the more similar pairs,
and it is based on the Smith-Waterman algorithm score, which returns higher scores for
the most similar pairs, the inverse of the SW score ( 1

SW ) is used. The use of the inverse
is possible because SW always returns an integer score Ø 0, thus there are no negative
values. Additionally, to avoid a possible division by zero, an insignificantly small non-zero
value Á is added to the SW score.

The values 3, -3, and -2, were respectively defined for MATCH, MISMATCH, and
GAP in an empirical manner. As “in a distributed system, it is sometimes impossible
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to say that one of two events occurred first” [35], it makes sense that a gap is penalized
less than a mismatch in our domain. This happens because when analyzing sequences of
exchanged messages, the same messages might appear out of order in di�erent sequences,
and a gap might indicate merely an out of order execution. Conversely, in bioinformatics
mismatches are usually penalized less than gaps [36], as gaps are considered to be rarer
than mismatches [37].

By using the dissimilarity function, a matrix of dissimilarities is then created contain-
ing the dissimilarities between all pairs of common behaviors detected in a system. This
matrix is then used alongside Ward’s method [21] to hierarchically cluster the common
behaviors. Finally, a dendrogram showing the order of grouping is then exported, as well
as the alignments found by the Smith-Waterman algorithm.

These results allow the user to manually identify clusters of common behaviors that
are so similar that it is possible to resolve them together, which we call families of common
behaviors. A family of CBs is formally defined in Definition 12. The treatment can be
either an architectural refinement that includes CBs in PSpec (e.g., the inclusion of new
scenarios to the system specification), or a constraint that removes CBs from PSpec. The
treatment will be further explained in Section 4.2.3. Finally, a treatment resolves a CB
if after the treatment is applied to the system, the ISs that constitute the CB are not
observed in the system.

Definition 12 [Family of Common Behaviors]
Given a cluster of Common Behaviors C, if there is a treatment t that ’c œ C,

t resolves c, then C is said to be a family of common behaviors.

4.2.3 Treating Families of Common Behaviors

After that the families of common behaviors are known, we need to deal with them in
some way. According to [6], there are positive and negative implied scenarios. Positive
ISs, are scenarios that were overlooked during the design of the system, that is, they are
acceptable scenarios that were not included. This kind of IS can be treated by merely
including the acceptable behaviors in the system’s specification. On the other hand,
negative ISs are unwanted behaviors. This kind of IS needs to be treated in a di�erent
manner, where guarantees that they will not happen are added to the specification.

Consequently, families of CBs can also be positive or negative, as they can be classified
the same way as the ISs that constitute it. Therefore, if a family of CBs is positive, it
can be resolved with an architectural refinement, which is the inclusion of the behavior
the family describes in the original model of the system. However, if a family of CBs is
negative, it has to be removed from the system model, which is achieved by creating LTS
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ALGORITHM 2: Checks if a trace can be reached in an LTS.
1 trace_check (⁄, ÿ)

input : ⁄ – an LTS (S, L, —, q), ÿ – a trace
output: reached – a boolean indicating if ÿ happens in ⁄

2 reached = True;
3 cs = q;
4 foreach message œ ÿ do
5 if ÷ns|(cs, message, ns) œ — then
6 cs = ns;
7 else
8 reached = False;
9 break;

10 end
11 end
12 return reached

constraints [29]. An LTS constraint is an LTS that when composed with the architectural
model, removes unwanted behaviors.

In our methodology, although, we believe it would be possible to create the constraints
automatically after the user has classified the families, the creation of such constraints has
not been automated yet. Because the classification of families of CBs is a manual process,
the user needs to use their domain knowledge to create the constraints. Therefore, the
creation of the constraint is prone to human error. Hence, to make sure that the con-
straints indeed remove the collected ISs, a script that analyzes LTSs was developed. This
script is shown in Algorithm 2, and tests whether a trace can happen in the constrained
model.

Algorithm 2 receives an LTS ⁄ and a trace ÿ as input, and checks if ÿ can happen in
⁄. Lines 2 and 3 are initializations, as in line 2 the return variable reached is initialized
as True, and in line 3 the current state cs is initialized as the initial state q of ⁄. Next,
it starts a loop (line 4) that goes through each message of ÿ.

For each message, it checks if a transition from the cs to a next state ns exists (line
5). If there is such a transition, it moves the current state to the next one (i.e., cs = ns)
in line 6. If there is not, it sets reached to False in line 8, and as there is no transition
for the current message, the loop is broken, because there is no transition from cs labeled
with message (line 9).

After the loop is finished (line 11), it returns reached (line 12). reached is True if
there were always a next state ns for each message in ÿ, and thus ÿ can happen in ⁄, or
False if the ÿ cannot happen in ⁄.

By doing so, it is possible to verify that the traces of collected ISs have been removed
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from the system model, and thus the ISs will not happen at runtime. However, it is not
enough to check that unwanted behaviors are removed, as it is also vital to verify that
the expected behaviors are preserved. Therefore, it is essential to check if the traces of
expected behaviors are also reached in all system models, which can also be achieved with
Algorithm 2. These traces of expected behaviors are generated utilizing Algorithm 3.

Algorithm 3 receives a positive specification PSpec and outputs a subset of all expected
behaviors of the specification. However, because it can be impossible to list all behaviors
due to the loops allowed, the only loops considered are the ones of the type S æ S Õ

æ S, which are unrolled once. Firstly, the algorithm initializes the variables expected,
which contains the behaviors, next, which contains the next nodes of H to be visited, and
visited, which contains the nodes of H already visited.

Next, the main loop goes through all nodes of H while there are unvisited nodes, in
line 5. It removes the next node to be visited and stores it in current, in line 6, includes
the nodes that are reachable from current in next, in line 7, and finally includes current

in the set of already visited nodes, in line 8. A loop goes through each simple path sp

(i.e., a sequence of nodes without loops) that reaches the current node from the initial
node s0, in line 9. All paths in expected that are a prefix of sp are removed from expected

in lines 10 and 11, and then sp is added to expected in line 14 if it is not a prefix of any
other paths in expected. This makes sure that all paths included are maximal paths, as
the non-maximal ones are extended with each new sp considered.

Lastly, the loops S æ S Õ æ S are included in the behaviors encountered. A new set
is created – looped_behaviors –, so that the new paths are not included in the set being
analyzed, as that would generate an infinite loop, in line 18. This is achieved by going
through each pair of nodes (si, sj) that are connected with edges (si, sj) and (sj, si) œ E,
in line 19. Next, another loop goes through each path sp that contains si, in line 20, and
expands each position of sp that contains si to si,sj,si and includes it in looped_behaviors,
in lines 21 and 22. These new behaviors are included in expected, in line 25, which is then
returned in line 26.

Finally, as a proof of concept, all implied scenarios collected throughout this disser-
tation are considered to be negative. This way, even though acceptable behaviors that
might have been simply overlooked were removed, it shows that it is possible to resolve all
detected unexpected behaviors applying the same treatment. Therefore, the only kind of
treatment used were FSP constraints. There are examples of the creation of constraints
further in Section 4.3 and Chapter 5.

32



ALGORITHM 3: Lists the expected traces of the expected behaviors of a system
positive specification.
1 expected_behaviors (PSpec)

input : PSpec – a positive specification (B, H, f), where B is a set of bMSCs,
H is an hMSC (N, E, s0), and f is is a bijective function that maps
hMSC nodes to bMSCs.

output: expected – a set containing the expected traces in H
2 expected = {s0};
3 visited = {s0};
4 next = {x|÷(s0, x) œ E, x ”œ visited};
5 while next ”= ÿ do
6 current = next.pop(0);
7 next.append({x|÷(current, x) œ E, x ”œ visited});
8 visited.append(current);
9 foreach simple_path sp = sc0, sc1, ..., scn | ’ 0 Æ i < n ÷(sci, sci + 1) œ E,

’ 0 Æ i < n ’ 0 Æ j < n sci = scj ¡ i = j, sc0 = s0, scn = current do
10 foreach spj œ expected | ÷w = sck, sck+1, ... and spj.w = sp do
11 expected.remove(spj);
12 end
13 if ” ÷ spj œ expected, w = sck, sck+1, ... | sp.w = spj then
14 expected.append(sp)
15 end
16 end
17 end
18 looped_behaviors = ÿ;
19 foreach (si, sj) | ÷(si, sj) œ E, ÷(sj, si) œ E, si ”= sj do
20 foreach sp = sc0, sc1, ..., scn œ E | ÷ 0 Æ k < n sk = si do
21 spÕ = sc0, sc1, ..., sck≠1, sci, scj, sck, sck+1, ..., scn;
22 looped_behaviors.append(spÕ);
23 end
24 end
25 expected.append(looped_behaviors);
26 return expected
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4.3 Example
To illustrate our approach, let us take the Boiler System as guiding example. The Boiler
System model has been previously introduced, in Chapter 2. Hence, step 1 is skipped, as
the model is already known.

4.3.1 Collecting Implied Scenarios

The LTSA-MSC tool is used to collect implied scenarios. Figure 4.2 shows the Boiler
System opened in the tool, and the highlighted button on the upper right, opens the
dialog to start collecting ISs, which is shown in Figure 4.3a. This window asks the user
to input how many ISs he/she wishes to collect. In this example, the number of ISs to
collect was set to 10.

After the 10 ISs have been collected (or the tool failed to collect more ISs), a window
tells the user the collection process finished, how many ISs were collected, and how much
time was spent. This latter window is shown in Figure 4.3b, which indicates that 10 ISs
were indeed collected, and the collection process took 3.651s. The collected ISs are also
exported to a text file, such as the one shown in Figure 4.4.

4.3.2 Detecting Common Behaviors

Next, after the IS collection, the common behaviors among the ISs are detected. For
instance, take the first IS shown in Figure 4.4: on,pressure,o�,on,query. It is also shown
as MSC in Figure 4.5a. When Algorithm 1 is applied to this single IS, the two dashed on
messages in Figure 4.5a will be detected as a loop. Thus, the messages that are between
this repetition will be removed. After this removal, the detected CB for this IS is shown
in Figure 4.5b.

This common behavior shows that the cause of the analyzed implied scenario is that
Control is querying the last measured pressure, but Sensor has not registered anything
since the system started running, which means that Control might decide to act based on
old information that might not represent the current state of the system anymore, which
correctly describes IS from Figure 4.5a.

Finally, after applying Algorithm 1 to all 10 collected ISs, only two common behaviors
are detected. The ones shown in Figure 4.5b (CB0) and Figure 4.6 (CB1). Notice that a
CB can be an IS, but that is not always true. For instance, the CB0 was not detected as
an IS, while CB1 was the second IS collected.
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Figure 4.2: Boiler model opened in the LTSA-MSC tool.

(a) Start of IS collection. (b) End of IS collection.

Figure 4.3: Dialogs of start and finish of IS collection process.
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ID: [ordered messages]

0: [on, pressure, off, on, query]
1: [on, pressure, query, data, command, off]
2: [on, pressure, pressure, off, on, query]
3: [on, pressure, pressure, query, data, command, off]
4: [on, pressure, pressure, pressure, off, on, query]
5: [on, pressure, off, on, pressure, off, on, query]
6: [on, pressure, pressure, pressure, query, data, command, off]
7: [on, pressure, pressure, pressure, pressure, off, on, query]
8: [on, pressure, query, data, command, pressure, off, on, query]
9: [on, pressure, off, on, pressure, query, data, command, off]
10: [on, pressure, off, on, pressure, pressure, off, on, query]
11: [on, pressure, pressure, off, on, pressure, off, on, query]
12: [on, pressure, pressure, pressure, pressure, query, data, 
command, off]
13: [on, pressure, pressure, pressure, pressure, pressure, off, on, 
query]
14: [on, pressure, off, on, pressure, pressure, query, data, 
command, off]

Figure 4.4: The collected ISs for the Boiler example.

Sensor Database Control Actuator
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(a) First Boiler IS.

Sensor Database Control Actuator

on

query

(b) Detected CB.

Figure 4.5: Example of a common behavior detection.
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Figure 4.6: Second CB for the Boiler system.
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on query

0 0 0

on 0 3 1

pressure 0 1 0

query 0 0 4

data 0 0 3

command 0 0 1

off 0 0 0

�1

(a) sw matrix

Best Alignment:

on, ———, query

on, pressure, query

Score: 4

�1

(b) alignment and score

Figure 4.7: Smith-Waterman applied to Boiler’s common behaviors.

Figure 4.8: Dendrogram for the Boiler example.

4.3.3 Classifying Families of Common Behaviors

Because only two CBs were detected, it is only needed to apply the Smith-Waterman
algorithm to this pair of common behaviors. The results are shown in Figure 4.7. In
Figure 4.7a the result matrix of the Smith-Waterman algorithm is shown. By doing the
traceback from the highest score, the alignment presented in Figure 4.7b is obtained.
Finally, using Equation (4.1), the dissimilarity between the CBs is 0.25. Hence, the
dendrogram shown in Figure 4.8 is obtained.

By analyzing the best alignment found for the pair of common behaviors, it is possible
to see that they do not happen because of the same problem. For the first one (CB0),
implied scenarios that share this behavior happen because of a query message before a
new pressure is registered in the current run of the system, and thus the system might
adjust to an outdated pressure.
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Figure 4.9: LTS of the constraint used to treat Boiler’s first common behavior.

The result of the alignment for the second common behavior (CB1) however, has the
pressure message before a query is carried out, thus, this erratic behavior would not be
observed. Therefore, because these common behaviors do not happen because of the same
problem, they are not in the same family, and thus, for the Boiler system, two families of
common behaviors are defined, each with a single common behavior.

4.3.4 Treating a Family of CBs

As an example, we will focus on the family which contains CB0. Thus, a constraint was
created to treat this family, and is shown in Figure 4.9. The LTS visually shows what
this constraint guarantees. Its starting state is state 0, and this will be composed with
the starting state of the LTS specification. It stays in state 0 for all messages in the
specification alphabet but ‘on’, that is, as long as the message being sent is not ‘on’, this
constraint will not interfere with the system execution. In other words, all messages other
than ‘on’ are ignored. However, whenever an ‘on’ message is sent, the transition to state
1 occurs. From state 1, the only accepted transition is going back to state 0, via message
‘pressure’. This means that when an ‘on’ message is sent, the following one has to be
‘pressure’. Otherwise, this constraint will not accept it.

This clearly resolves the issue of CB0, because ‘pressure’ no longer appears after any
‘on’. Now that this common behavior has been treated, take a look at Figure 4.5. Con-
sider that both sequences are a collected IS, and obviously would have the same common
behavior, as they are simply partial steps of the detection process. This constraint pre-
vents those two scenarios to happen, as they both have the same problem, a query of
outdated information. That is, just as our hypothesis suggested, one treatment was able
to resolve multiple ISs that share the same CB.

In addition, to make sure that the ISs from CB0 have been removed, a constrained
architecture model is built by composing the constraint created with the original model.
The constrained architecture model is shown in Figure 4.10. The only transition labeled
with the message on is from state 0 to state 1, and the only transition outgoing from
state 1 is to state 2 with pressure. Therefore, in the constrained architecture model the
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Figure 4.10: LTS of the Boiler constrained architecture model.

behavior on, query does not happen, as there are no three states s0, s1, s2 that satisfies
the transitions (s0, on, s1) and (s1, query, s2) in the constrained model.

Finally, Algorithm 2 is used to verify that the collected ISs have been removed in
the constrained architecture model. Figure 4.11 shows that all collected ISs are indeed
reachable in the original architectural model, while Figure 4.12 shows which ISs are reach-
able in the constrained architecture model2. Furthermore, the two expected behaviors of
the system generated with Algorithm 3 are preserved in the constrained model. These
behaviors are:

• init, Initialise, Register, Terminate

• init, Initialise, Register, Analysis, Register, Terminate

which are then expanded with the messages of each scenario. Therefore, the traces reached
by Algorithm 2 are:

• on,pressure,o�

• on,pressure,query,data,command,pressure,o�

As shown in the previous analysis of the LTS, all the ISs of CB0 have been removed.
Therefore, the constraint introduced has resolved CB0. However, CB1 can still happen
in the constrained model, which indicates that another constraint needs to be introduced
to the system. This second constraint will be further detailed in Section 5.2.2.

2
In the following uses of this approach, only the ‘RESULTS SUMMARY’ part will be shown, as it

summarizes the relevant information regarding CBs
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### Expected Behaviors

    0:on,pressure,off: reached
    1:on,pressure,query,data,command,pressure,off: reached

----------

### Common Behavior 0

    0:on,pressure,off,on,query: reached
    2:on,pressure,pressure,off,on,query: reached
    4:on,pressure,pressure,pressure,off,on,query: reached
    5:on,pressure,off,on,pressure,off,on,query: reached
    7:on,pressure,pressure,pressure,pressure,off,on,query: reached
    8:on,pressure,query,data,command,pressure,off,on,query: reached

----------

### Common Behavior 1

    1:on,pressure,query,data,command,off: reached
    3:on,pressure,pressure,query,data,command,off: reached
    6:on,pressure,pressure,pressure,query,data,command,off: reached
    9:on,pressure,off,on,pressure,query,data,command,off: reached

----------
----------

RESULTS SUMMARY:

Expected Behaviors -> traces reached: 2 out of 2
Common Behavior 0 -> traces reached: 6 out of 6
Common Behavior 1 -> traces reached: 4 out of 4

Total traces reached: 12 out of 12

Figure 4.11: Traces reached in the Boiler original model.
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### Expected Behaviors

    0:on,pressure,off: reached
    1:on,pressure,query,data,command,pressure,off: reached

----------

### Common Behavior 0

    0:on,pressure,off,on,query: NOT reached
    2:on,pressure,pressure,off,on,query: NOT reached
    4:on,pressure,pressure,pressure,off,on,query: NOT reached
    5:on,pressure,off,on,pressure,off,on,query: NOT reached
    7:on,pressure,pressure,pressure,pressure,off,on,query: NOT reached
    8:on,pressure,query,data,command,pressure,off,on,query: NOT reached

----------

### Common Behavior 1

    1:on,pressure,query,data,command,off: reached
    3:on,pressure,pressure,query,data,command,off: reached
    6:on,pressure,pressure,pressure,query,data,command,off: reached
    9:on,pressure,off,on,pressure,query,data,command,off: reached

----------
----------

RESULTS SUMMARY:

Expected Behaviors -> traces reached: 2 out of 2
Common Behavior 0 -> traces reached: 0 out of 6
Common Behavior 1 -> traces reached: 4 out of 4

Total traces reached: 6 out of 12

Figure 4.12: Traces reached in the Boiler constrained model.
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Chapter 5

Evaluation

In this chapter, a total of seven case studies are tested to validate the proposed methodol-
ogy. These case studies were selected because they were already explored in the literature,
and provide a range of complexity for the specifications. The most simple system specifi-
cations are the A Passenger Transportation System [6] and Semantic Search Multi-Agent
System [16], where each system has only two scenarios and no loops, while the most
complex ones are the eB2B and Global System for Mobile Mobility Management System,
where each system has over 10 unique scenarios and multiple loops. The other three sys-
tems – (i) Boiler System [6], (ii) Cruise Control System [19], and (iii) Distributed Smart
Camera System [2] – are a middle point between the two extremes, where (i) and (ii)
contains four scenarios each and various loops, while (iii) contains five scenarios but no
loops.

The rest of this chapter is structured as follows: firstly, Section 5.1 details the specifica-
tions of the equipment used for the tests; secondly, Section 5.2 shows a detailed analysis
of the seven di�erent system specifications analyzed; finally, Section 5.3 discusses the
obtained results across all studied systems.

5.1 Setup
All experiments were executed in the same machine, running macOS 10.12.6, 16 GB of
memory, and a 2.7 GHz Intel Core i7 processor. Additionally, Java heap space was set to
4GB for the LTSA-MSC tool to run.1 For each system, the same analysis was repeated
with up to 25, 50, 75, 100, 125, 150, and up to 500 collected implied scenarios. However,
for some systems, it was not possible to repeat the analysis with a varying number of ISs
collected. Thus, the collection process was repeated ten times with the same number of
ISs. Finally, without loss of generality, all collected implied scenarios were considered to

1
All files needed to replicate these can be found at https://github.com/cbdm/Implied_Scenarios.
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be negative and thus were resolved with constraints. That is, we created constraints to
avoid the faults of the observed behaviors. This is only to show that it is possible to treat
multiple ISs at once.

5.2 Case Studies

5.2.1 Case Study 1: A Passenger Transportation System

System Description

A Passenger Transportation System (APTS), introduced by Uchitel et al. [6], consists of
high-speed vehicles that transport one person at a time and Passengers can only embark
at terminals where they select the destination terminal [6]. The system contains two
scenarios represented by bMSCs (shown in Appendix A.1), and an hMSC that connects
the two, which is depicted in Figure 5.1. The VehicleAtTerminal scenario describes what
happens when the passenger requests for the vehicle while both are at the same terminal,
and the VehicleNotAtTerminal scenario when the passenger is at one terminal while the
vehicle is at a di�erent one. Finally, the components of this system are two passengers,
two terminals, one vehicle and a control center.

Analysis

Initially, by using the LTSA-MSC tool, a total of 25 implied scenarios were to be collected.
However, the tool was only able to collect 9 ISs in the specification. That is, even though
a larger collection of ISs was desired, the tool was only able to detect 9 ISs in the system
specification, which prevented repeated analysis with other numbers of ISs. Therefore,
the collection process was repeated to try to collect 25 ISs nine more times. However, the

Figure 5.1: hMSC for APTS specification.
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ID: [ordered messages]

0: [passenger2.terminal2.buyTicket, passenger1.terminal1.buyTicket]
1: [passenger1.terminal1.buyTicket, passenger2.terminal2.buyTicket]
2: [passenger2.terminal2.buyTicket, terminal2.passenger2.displayGate, terminal2.vehicle.setDestination]
3: [passenger2.terminal2.buyTicket, terminal2.passenger2.displayGate, passenger1.terminal1.buyTicket]
4: [passenger1.terminal1.buyTicket, terminal1.controlcentre.requestVehicle, 
passenger2.terminal2.buyTicket]
5: [passenger2.terminal2.buyTicket, terminal2.passenger2.displayGate, passenger2.vehicle.enter, 
passenger1.terminal1.buyTicket]
6: [passenger2.terminal2.buyTicket, terminal2.passenger2.displayGate, passenger2.vehicle.enter, 
terminal2.vehicle.setDestination, passenger1.terminal1.buyTicket]
7: [passenger2.terminal2.buyTicket, terminal2.passenger2.displayGate, passenger2.vehicle.enter, 
terminal2.vehicle.setDestination, vehicle.terminal2.departReq, passenger1.terminal1.buyTicket]
8: [passenger2.terminal2.buyTicket, terminal2.passenger2.displayGate, passenger2.vehicle.enter, 
terminal2.vehicle.setDestination, vehicle.terminal2.departReq, terminal2.vehicle.departAck, 
passenger1.terminal1.buyTicket]

Figure 5.2: ISs collected for APTS.

RESULTS SUMMARY:

Expected Behaviors -> traces reached: 2 out of 2
Common Behavior 0 -> traces reached: 1 out of 1
Common Behavior 1 -> traces reached: 1 out of 1
Common Behavior 2 -> traces reached: 1 out of 1
Common Behavior 3 -> traces reached: 1 out of 1
Common Behavior 4 -> traces reached: 1 out of 1
Common Behavior 5 -> traces reached: 1 out of 1
Common Behavior 6 -> traces reached: 1 out of 1
Common Behavior 7 -> traces reached: 1 out of 1
Common Behavior 8 -> traces reached: 1 out of 1

Total traces reached: 11 out of 11

Figure 5.3: Traces reached in APTS original model.

same 9 ISs were collected in every repetition, and they were also detected in the same
order.

The collection process took on average 3.895 seconds, with a standard deviation
of 0.108s, and the collected ISs are shown in Figure 5.2. Each message follows the
structure: component1.component2.message, which means that component1 sent mes-
sage to component2. This notation is used to di�erentiate messages such as passen-
ger1.terminal1.buyTicket and passenger2.terminal2.buyTicket. Finally, Figure 5.3 shows
that all collected ISs can happen in the original model, as well as the expected behaviors
listed by Algorithm 3.

After the collection of ISs, the process to detect common behaviors was done. However,
each IS had a unique CB, and thus the number of elements was not reduced. Therefore,
the CBs detected are equivalent to the ISs shown in Figure 5.2. With the CBs detected,
the Smith-Waterman algorithm is applied to all possible pairs, and the dissimilarity is
calculated. Next, the dendrogram in Figure 5.4. The process of detecting CBs, applying

44



Figure 5.4: Dendrogram for APTS.

Figure 5.5: First constraint for APTS.

the SW algorithm to the pairs of CBs, clustering the CBs, and exporting the dendrogram
took 0.33s.

Next, a manual analysis of the obtained results is required. The analysis starts from
the less dissimilar pair (i.e., the lowest hight in the dendrogram), which is the pair of CBs
7 and 8. By looking at the sequence of messages of each CB (ISs 7 and 8 from Figure 5.2),
it is noticeable that they share most of their massages. Also, their first message indicates
that Passenger 2 bought a ticket, and the last message indicates that Passenger 1 bought
a ticket. This behavior is unexpected, as in the system description only one passenger
should be transported at a time. Therefore, the constraint in Figure 5.5 is created.

This constraint makes sure that after Passenger 2 buys a ticket, Passenger 1 is not
allowed to buy a ticket. To reduce space, q is used as the set of all messages in the model.
q1 and q2 are then defined as, respectively, q \{passenger2.terminal2.buyT icket} and
q \{passenger1.terminal1.buyT icket}. This means that in state 0, the LTS allows for
all messages to be exchanged, but when passenger2.terminal2.buyTicket is observed, the
transition to state 1 occurs. In state 1, all the messages are allowed, except for passen-
ger1.terminal1.buyTicket. In other words, the constraint allows everything until Passenger
2 buys a ticket, from then on it prohibits Passenger 1 from buying a ticket. Additionally,
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RESULTS SUMMARY:

Expected Behaviors -> traces reached: 2 out of 2
Common Behavior 0 -> traces reached: 0 out of 1
Common Behavior 1 -> traces reached: 1 out of 1
Common Behavior 2 -> traces reached: 1 out of 1
Common Behavior 3 -> traces reached: 0 out of 1
Common Behavior 4 -> traces reached: 1 out of 1
Common Behavior 5 -> traces reached: 0 out of 1
Common Behavior 6 -> traces reached: 0 out of 1
Common Behavior 7 -> traces reached: 0 out of 1
Common Behavior 8 -> traces reached: 0 out of 1

Total traces reached: 5 out of 11

Figure 5.6: Traces reached in APTS first constrained model.

Figure 5.7: Second constraint for APTS.

Figure 5.6 shows that both CB 7 and 8 have been removed after this first constraint
restricts the model. Alongside them, CBs 0, 3, 5, and 6 have also been removed, as they
had the same cause (i.e., Passenger 1 buying a ticket after Passenger 2), which indicates
that CBs 0,3,5,6,7,8 are a part of the same family.

Hence, only CBs 1, 2, and 4 remain untreated. Amongst these three CBs, the most
similar pair is of CBs 1 and 4. Thus this is the next behavior analyzed. Through a similar
analysis, it is noticeable that these two CBs exhibit a similar behavior to the first family,
where both passengers buy a ticket. However, instead of Passenger 2 buying it first, now
it is Passenger 1. Therefore, the constraint shown in Figure 5.7 is created.

Analogously to the first constraint, this constraint makes sure that after Passenger 1
buys a ticket, Passenger 2 is not allowed to buy a ticket. Similarly, q1 and q2 are the same
as defined previously. This means that in state 0, the LTS allows for all messages to be
exchanged, but when passenger1.terminal1.buyTicket is observed, the transition to state 1
occurs. In state 1, all the messages are allowed, except for passenger2.terminal2.buyTicket.
In other words, the constraint allows everything until Passenger 1 buys a ticket, from then
on it prohibits Passenger 2 from buying a ticket. Additionally, Figure 5.8 shows that both
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RESULTS SUMMARY:

Expected Behaviors -> traces reached: 2 out of 2
Common Behavior 0 -> traces reached: 0 out of 1
Common Behavior 1 -> traces reached: 0 out of 1
Common Behavior 2 -> traces reached: 1 out of 1
Common Behavior 3 -> traces reached: 0 out of 1
Common Behavior 4 -> traces reached: 0 out of 1
Common Behavior 5 -> traces reached: 0 out of 1
Common Behavior 6 -> traces reached: 0 out of 1
Common Behavior 7 -> traces reached: 0 out of 1
Common Behavior 8 -> traces reached: 0 out of 1

Total traces reached: 3 out of 11

Figure 5.8: Traces reached in APTS second constrained model.

Figure 5.9: Third constraint for APTS.

CB 1 and 4 have been removed after this second constraint restricts the model, which
shows that they are part of the same family.

Thus, only CB 2 is left untreated, whose unexpected behavior is that the destination
is set before the passenger enters the vehicle. This is noticed by analyzing the bMSCs
of the system, which are shown in Appendix A.1. Therefore, to prohibit this behavior of
happening, a third constraint is created, which is shown in Figure 5.9.

This constraint makes sure that either a passenger enters the vehicle or a terminal
orders the vehicle before a destination is set. To reduce space, q3 and q4 were respectively
defined as Equation (5.1) and Equation (5.2), where cc is controlcentre, p1 is passenger1,
p2 is passenger2, t1 is terminal1, t2 is terminal2, and v is vehicle. In state 0, the constraint
allows all messages except for a setDestination. However, if either a passenger enter the
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RESULTS SUMMARY:

Expected Behaviors -> traces reached: 2 out of 2
Common Behavior 0 -> traces reached: 0 out of 1
Common Behavior 1 -> traces reached: 0 out of 1
Common Behavior 2 -> traces reached: 0 out of 1
Common Behavior 3 -> traces reached: 0 out of 1
Common Behavior 4 -> traces reached: 0 out of 1
Common Behavior 5 -> traces reached: 0 out of 1
Common Behavior 6 -> traces reached: 0 out of 1
Common Behavior 7 -> traces reached: 0 out of 1
Common Behavior 8 -> traces reached: 0 out of 1

Total traces reached: 2 out of 11

Figure 5.10: Traces reached in APTS third constrained model.

vehicle or a terminal orders the vehicle, the transition to state 1 occurs. In state 1, the
constraint allows all messages, however, if a destination is set by either terminal, the
transition to state 0 occurs, which prohibits another destination to be set until a new
order or passenger enters the vehicle.

3ÿ
=

4ÿ
\{cc.t2.orderV ehicle, p1.v.enter, p2.v.enter} (5.1)

4ÿ
=

ÿ
\{t1.v.setDestination, t2.v.setDestination} (5.2)

Finally, Figure 5.10 shows that after the third constraint restricts the model, all de-
tected CBs are removed, consequently, all collected ISs. Therefore, all 9 collected ISs were
resolved with only 3 constraints. Furthermore, the expected behaviors were not prevented
with the constraints.

Summary

The LTSA-MSC tool was only able to collect 9 ISs in the APTS specification, which makes
it impossible to vary the number of ISs collected. Furthermore, the process of detecting
CBs did not reduce the number of elements to be analyzed, as 9 CBs were detected for the
9 ISs. However, using the similarity between CBs, 3 families of CBs were defined, and a
constraint for each one was created. By these means, all collected ISs were resolved with
only three constraints. Thus, supporting the hypothesis that various ISs can be treated
together.
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Table 5.1: Time spent and # of CBs per ISs for Boiler

number of ISs 25 50 75 100 125 150 500
collection time (h:m:s) 0:00:20.315 0:00:46.597 0:01:39.417 0:03:05.82 0:05:39.565 0:09:18.535 7:35:51.831

number of CBs 2 2 2 2 2 2 2
clustering time (s) 0.318115 0.318115 0.318115 0.318115 0.318115 0.318115 0.318115

5.2.2 Case Study 2: Boiler System

System Description

The Boiler system has been previously presented in Chapter 2. It was introduced by
Uchitel et al. [6], and describes a system that controls the temperature inside a boiler to
keep the pressure inside thresholds. It is composed of 4 components: actuator, control,
database, and sensor. It has four scenarios, which were previously shown in Figure 2.1.

Analysis

For the Boiler System, the LTSA-MSC tool was able to collect a variable number of ISs.
Therefore, Table 5.1 shows how many ISs were collected in the first line, how long it
took to collect the ISs in the second line, and how many CBs were defined with the ISs
in the third line. Additionally, the time spent applying the SW algorithm, calculating
the dissimilarity, clustering the CBs, and exporting the dendrogram was 0.318115s for all
cases, and all the steps are independent of the number of ISs in this case, as they only
take the CBs as input, and the number of CBs remained constant.

Although the number of ISs increased, the number of detected CBs remained constant
among the collected ISs. Besides, the analysis started in Section 4.3 also detected the
same 2 CBs using only 10 ISs. Therefore, it is possible to extend that analysis, which
already showed that the two CBs are distinct, and thus there are two families of CBs,
each one with a single CB. Therefore, the first constraint for the Boiler is the one created
previously, which is shown in Figure 4.9. This constraint prevents that query is sent right
after on, as it makes sure that there is a pressure between them, which is the unexpected
behavior of the first CB.

Without loss of generality, the analysis will be continued using 500 collected ISs, as that
was the most ISs collected, and to show that the methodology can scale to more elements.
Additionally, Figure 5.11 shows that in the original model the expected behaviors and all
500 ISs can happen at runtime, while Figure 5.12 shows that after the first constraint
restricts the model, all 308 ISs that share the first CB are removed. Thus, the constraint
is correctly defined.

Therefore, only the second CB needs to be treated. The second CB consists of
on,pressure,query,data,command,o�. Through an analysis of this sequence of messages,
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RESULTS SUMMARY:

Expected Behaviors -> traces reached: 2 out of 2
Common Behavior 0 -> traces reached: 308 out of 308
Common Behavior 1 -> traces reached: 192 out of 192

Total traces reached: 502 out of 502

Figure 5.11: Traces reached in Boiler original model.

RESULTS SUMMARY:

Expected Behaviors -> traces reached: 2 out of 2
Common Behavior 0 -> traces reached: 0 out of 308
Common Behavior 1 -> traces reached: 192 out of 192

Total traces reached: 194 out of 502

Figure 5.12: Traces reached in Boiler first constrained model.

and the system scenarios, it is noticed that the unexpected behavior is for the system to
turn o� right after the actuator is told to control the temperature by the message com-
mand. Hence, a constraint is created to prevent that the message o� is sent right after
command, as in the original model at least one message pressure should happen between
them. This constraint is shown in Figure 5.13.

The second constraint starts in state 0, where only o�, on, pressure, and query are
allowed, that is, all messages except data and command. This happens because data and
command are only exchanged in the Analysis scenario, and that scenario starts with query.
Therefore, they are prevented unless the scenario starts, which is perceived by observing
the message query, which makes the transition to state 1 occurs.

From state 1 onwards, only the sequence of messages that are in the Analysis scenario
are allowed, as the message query indicated that this scenario is executing. Therefore,
the transitions until state 3 follow the order of messages of the scenario (i.e., query, data,
command). Thus, state 3 represents the state when the system has finished executing
the Analysis scenario. According to the Boiler hMSC, the following scenario should be
Register, which contains only one message – pressure – therefore the message pressure
takes the LTS back to the initial state – state 0.

Finally, to make sure that the second constraint has prevented the ISs that share the
second CB, Figure 5.14 shows that all 192 ISs of the CB have been avoided in runtime
after the second constraint restricts the model. Thus the constraint has been created
correctly.

50



Figure 5.13: Second constraint for Boiler.

RESULTS SUMMARY:

Expected Behaviors -> traces reached: 2 out of 2
Common Behavior 0 -> traces reached: 0 out of 308
Common Behavior 1 -> traces reached: 0 out of 192

Total traces reached: 2 out of 502

Figure 5.14: Traces reached in Boiler second constrained model.

Summary

The LTSA-MSC tool was able to collect various numbers of ISs in the Boiler specification,
which allowed the analysis of Table 5.1. It shows that even though more ISs were collected,
the same CBs were detected. Because the manual analysis uses the CBs, detecting more
ISs does not help in the analysis if the extra ISs do not have di�erent CBs. Therefore, the
10 ISs collected in Section 4.3 would su�ce for the analysis of this system. Even more
so, the constraints created based on the CBs of those 10 ISs were able to remove all 500
ISs collected later, which shows that the detected CBs successfully describe the causes of
unexpected behaviors in the system.

5.2.3 Case Study 3: Cruise Control System

System Description

The Cruise Control System (Cruiser) was introduced by Magee and Kramer [19], and is
a system that can maintain a car in a constant speed. It allows the user to restart the
system (Scen1 ), clear the speed (Scen2 ), decrease the set speed (Scen3 ), and increase the
set speed (Scen4 ). The hMSC of the system is shown in Figure 5.15 and the individual
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Figure 5.15: hMSC for Cruiser specification.

Table 5.2: Time spent and # of CBs per ISs for Cruiser

number of ISs 25 50 75 100 125 150 500
collection time (h:m:s) 0:00:26.612 0:01:07.325 0:02:38.328 0:05:10.123 0:07:41.147 0:12:19.951 9:26:55.046

number of CBs 18 18 18 18 18 18 18
clustering time (s) 0.497454 0.497454 0.497454 0.497454 0.497454 0.497454 0.497454

bMSCs are shown in Appendix A.3. The Cruiser hMSC allows any of the four scenarios
to happen from init, and after the scenario has finished it goes back to init, which allows
for any arrangement of scenarios to happen.

Analysis

The LTSA-MSC tool was able to collect a varying number of ISs in the Cruiser specifica-
tion. Therefore, Table 5.2 shows how many ISs were collected in the first line, how long
it took to collect the ISs in the second line, and how many CBs were defined with the
ISs in the third line. Additionally, the time spent applying the SW algorithm, calculating
the dissimilarity, clustering the CBs, and exporting the dendrogram was 0.497454s for
all cases, which is shown in the fourth line. That happens because all these steps are
independent of the number of ISs in this case, as they only take the CBs as input, and
the number of CBs remained constant.

A total of 18 CBs were detected using the 500 collected ISs, and are shown in Fig-
ure 5.16. In addition, Figure 5.17 shows that all collected ISs and expected behaviors are
reached in the original model. After using the Smith-Waterman algorithm and clustering
the detected CBs, the dendrogram in Figure 5.18 is obtained. Next, the most similar pair
of CBs is analyzed, which is the pair CB 12 and CB 13 with a dissimilarity of 0.047.

The CBs 12 and 13 share almost all of their messages, with the only di�erence being
the last one, which tells us that the messages brake and o� could not have been preceded
by the previous messages. A further analysis of the scenarios shown in Appendix A.3
confirms such suspicion. The Cruiser bMSCs show that before break there should be a
message enableControl, and before o� there should be either enableControl, (speed æ
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0: ['engineOn', 'clearSpeed', 'engineOff']

1: ['engineOn', 'speed', 'clearSpeed', 'speed']

2: ['engineOn', 'speed', 'clearSpeed', 'on']

3: ['engineOn', 'clearSpeed', 'on', 'recordSpeed', 'enableControl', 'off']

4: ['engineOn', 'clearSpeed', 'on', 'recordSpeed', 'speed', 'enableControl', 'brake']

5: ['engineOn', 'clearSpeed', 'on', 'recordSpeed', 'speed', 'enableControl', 'accelerator']

6: ['engineOn', 'clearSpeed', 'on', 'recordSpeed', 'enableControl', 'speed', 'off']

7: ['engineOn', 'clearSpeed', 'on', 'recordSpeed', 'enableControl', 'speed', 'brake']

8: ['engineOn', 'clearSpeed', 'on', 'recordSpeed', 'enableControl', 'brake', 'speed']

9: ['engineOn', 'clearSpeed', 'on', 'recordSpeed', 'enableControl', 'accelerator', 
'disableControl']

10: ['engineOn', 'clearSpeed', 'on', 'recordSpeed', 'speed', 'accelerator']

11: ['engineOn', 'clearSpeed', 'on', 'recordSpeed', 'speed', 'brake']

12: ['engineOn', 'clearSpeed', 'on', 'recordSpeed', 'enableControl', 'speed', 'setThrottle', 
'off']

13: ['engineOn', 'clearSpeed', 'on', 'recordSpeed', 'enableControl', 'speed', 'setThrottle', 
'brake']

14: ['engineOn', 'clearSpeed', 'on', 'recordSpeed', 'enableControl', 'brake', 'disableControl', 
'speed']

15: ['engineOn', 'clearSpeed', 'on', 'recordSpeed', 'speed', 'setThrottle', 'brake']

16: ['engineOn', 'clearSpeed', 'on', 'recordSpeed', 'speed', 'setThrottle', 'accelerator']

17: ['engineOn', 'clearSpeed', 'on', 'recordSpeed', 'enableControl', 'speed', 'accelerator', 
'setThrottle', 'disableControl', 'speed']

Figure 5.16: CBs detected for Cruiser.
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RESULTS SUMMARY:

Expected Behaviors -> traces reached: 12 out of 12
Common Behavior 0 -> traces reached: 46 out of 46
Common Behavior 1 -> traces reached: 39 out of 39
Common Behavior 2 -> traces reached: 39 out of 39
Common Behavior 3 -> traces reached: 29 out of 29
Common Behavior 4 -> traces reached: 24 out of 24
Common Behavior 5 -> traces reached: 24 out of 24
Common Behavior 6 -> traces reached: 24 out of 24
Common Behavior 7 -> traces reached: 24 out of 24
Common Behavior 8 -> traces reached: 24 out of 24
Common Behavior 9 -> traces reached: 24 out of 24
Common Behavior 10 -> traces reached: 35 out of 35
Common Behavior 11 -> traces reached: 35 out of 35
Common Behavior 12 -> traces reached: 20 out of 20
Common Behavior 13 -> traces reached: 20 out of 20
Common Behavior 14 -> traces reached: 20 out of 20
Common Behavior 15 -> traces reached: 29 out of 29
Common Behavior 16 -> traces reached: 29 out of 29
Common Behavior 17 -> traces reached: 15 out of 15

Total traces reached: 512 out of 512

Figure 5.17: Traces reached in Cruiser original model.

Figure 5.18: Dendrogram for Cruiser.
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Figure 5.19: First constraint for Cruiser.

enableControl æ speed), or (speed æ enableControl æ speed æ setThrottle). Therefore,
a constraint to make sure that brake and o� appear only in the appropriate places is
created, which is shown in Figure 5.19.

To reduce space, let q1 = q \ {speed, enableControl}, where q is the set of all mes-
sages in the specification. In state 0, the constraint allows all messages to be exchanged,
but when either speed or enableControl are observed, respectively, a transition occurs to
either state 1 or 5. State 1 checks if the message following speed is enableControl, that is,
if the sequence of messages that allow o� is observed, and thus the transition to state 2
occurs. If it is not, the other possible messages after speed according to the specification
take the LTS back to state 0. In state 2 it is known that the precondition to o� happened,
thus the sequences (state 2 æ state 3 æ state 0) and (state 2 æ state 3 æ state 4 æ
state 0) allow the message o� to happen in an appropriate place. In state 5, the possible
continuations after enableControl in the specification take the LTS back to state 0. That
is, from state 5, brake, o�, or on make the transition to state 0 occurs, where speed makes
the transition to state 6 occurs, where setThrottle takes the LTS back to state 0.

Figure 5.20 shows that CBs 4, 5, 6, 7, 9, 10, 11, 12, 13, 15, 16, and 17 have been
completely removed. Interestingly, however, is the fact that some ISs from the remaining
CBs have also been removed, but not all of them. Through further analysis of these ISs,
it is possible to notice that the constraint restricted some behavior of the individual ISs,
but not from their CBs.

Take the following IS for instance: engineOn, clearSpeed, on, recordSpeed, enableControl,
speed, accelerator, setThrottle, disableControl, engineO�, engineOn, clearSpeed, engineO�.
After removing the loops of messages, the detected behavior for this IS is CB 0 (i.e.,engineOn,
clearSpeed, engineO� ). Although the messages of the CB have not been restricted,
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RESULTS SUMMARY:

Expected Behaviors -> traces reached: 12 out of 12
Common Behavior 0 -> traces reached: 26 out of 46
Common Behavior 1 -> traces reached: 20 out of 39
Common Behavior 2 -> traces reached: 20 out of 39
Common Behavior 3 -> traces reached: 20 out of 29
Common Behavior 4 -> traces reached: 0 out of 24
Common Behavior 5 -> traces reached: 0 out of 24
Common Behavior 6 -> traces reached: 0 out of 24
Common Behavior 7 -> traces reached: 0 out of 24
Common Behavior 8 -> traces reached: 16 out of 24
Common Behavior 9 -> traces reached: 0 out of 24
Common Behavior 10 -> traces reached: 0 out of 35
Common Behavior 11 -> traces reached: 0 out of 35
Common Behavior 12 -> traces reached: 0 out of 20
Common Behavior 13 -> traces reached: 0 out of 20
Common Behavior 14 -> traces reached: 12 out of 20
Common Behavior 15 -> traces reached: 0 out of 29
Common Behavior 16 -> traces reached: 0 out of 29
Common Behavior 17 -> traces reached: 0 out of 15

Total traces reached: 126 out of 512

Figure 5.20: Traces reached in Cruiser first constrained model.

the IS itself had the messages accelerator and setThrottle out of order, according to
Scen4. Thus, when the possible messages after enableControl were set to {brake, o�, on,
(speedæsetThrottle)}, the sequence speed æ accelerator æ setThrottle was avoided after
enableControl, which removed the IS, even though the detected CB was not a�ected.

Therefore, the CBs 0, 1, 2, 3, 8, and 14 remain unresolved and are the next to be
treated. Out of these CBs, the most similar pair is CB 8 and CB 14, with a dissimilarity
of 0.052. Analyzing their messages, it is noticeable that both share the same messages
until brake. According to Scen3, which is the only scenario where brake happens, shows
that it should be followed by disableControl æ engineO�. Thus, a constraint is created
to make force that ordering of message. The constraint is shown in Figure 5.21.

To reduce space, let q2 = q \{disableControl,enableControl}. State 0 allows all
messages to be exchanged, while waiting for either disableControl or enableControl to
trigger a transition. If the former is observed, the transition to state 1 occurs. In state
1, the only message after disableControl is allowed (i.e., engineO� ), which takes the LTS
back to state 0 and prohibits the cause of CB 14 to happen. If enableControl is observed
in state 0, the transition to state 2 occurs. This state allows the possible sequences
of messages after enable control to happen, which are: speed, (on æ recordSpeed æ
enableControl æ o� ), and (brake æ disableControl æ, engineO� ). This last sequence
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Figure 5.21: Second constraint for Cruiser.

restricts the occurrence of speed after brake, which was the cause of the CB 8.
Figure 5.22 shows that CBs 3, 8, and 14 have been removed. Thus, only CBs 0, 1, and

2 are unresolved. Through a comparison of all three CBs, it is noticeable that they have
fewer messages than the other detected CBs. Because of their length, the messages they
share, and the Cruiser scenarios, it is noticeable that they happen because of a wrong
order in the start of the scenarios, as all scenarios start with engineOn. However, Scen1
also contains a restart in the middle of the scenario, that is, it contains both engineO�
and engineOn in a sequence. Therefore, a constraint to restrict the possible messages right
after engineOn is created, considering the ‘in-scenario’ restart that happens in Scen1. The
constraint is shown in Figure 5.23.

To reduce space, let q3 = q \ {engineOn, setThrottle}, where q is the set of all the
messages in Cruiser specification. State 0 allows all messages while waiting for engineOn
or setThrottle to trigger a transition. If setThrottle is observed, the transition to state 1
occurs. State 1 checks if the following message is disableControl, because this sequence
(setThrottle æ disableControl) is the distinctive sequence that describes the ‘in-scenario’
restart that happens in Scen1. Therefore, if disableControl is observed in state 1, the
sequence of states (2 æ 3 æ 4 æ 0) allow the correct messages to happen after the
restart. If any of the other possible messages after setThrottle is observed, the transition
back to state 0 occurs. Again from state 0, if engineOn is observed, the transition to state
7 occurs. State 7 allows either (clearSpeed æ on), which is the start of Scen1, Scen3, and
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RESULTS SUMMARY:

Expected Behaviors -> traces reached: 12 out of 12
Common Behavior 0 -> traces reached: 26 out of 46
Common Behavior 1 -> traces reached: 20 out of 39
Common Behavior 2 -> traces reached: 20 out of 39
Common Behavior 3 -> traces reached: 0 out of 29
Common Behavior 4 -> traces reached: 0 out of 24
Common Behavior 5 -> traces reached: 0 out of 24
Common Behavior 6 -> traces reached: 0 out of 24
Common Behavior 7 -> traces reached: 0 out of 24
Common Behavior 8 -> traces reached: 0 out of 24
Common Behavior 9 -> traces reached: 0 out of 24
Common Behavior 10 -> traces reached: 0 out of 35
Common Behavior 11 -> traces reached: 0 out of 35
Common Behavior 12 -> traces reached: 0 out of 20
Common Behavior 13 -> traces reached: 0 out of 20
Common Behavior 14 -> traces reached: 0 out of 20
Common Behavior 15 -> traces reached: 0 out of 29
Common Behavior 16 -> traces reached: 0 out of 29
Common Behavior 17 -> traces reached: 0 out of 15

Total traces reached: 78 out of 512

Figure 5.22: Traces reached in Cruiser second constrained model.

Figure 5.23: Third constraint for Cruiser.

58



RESULTS SUMMARY:

Expected Behaviors -> traces reached: 12 out of 12
Common Behavior 0 -> traces reached: 0 out of 46
Common Behavior 1 -> traces reached: 0 out of 39
Common Behavior 2 -> traces reached: 0 out of 39
Common Behavior 3 -> traces reached: 0 out of 29
Common Behavior 4 -> traces reached: 0 out of 24
Common Behavior 5 -> traces reached: 0 out of 24
Common Behavior 6 -> traces reached: 0 out of 24
Common Behavior 7 -> traces reached: 0 out of 24
Common Behavior 8 -> traces reached: 0 out of 24
Common Behavior 9 -> traces reached: 0 out of 24
Common Behavior 10 -> traces reached: 0 out of 35
Common Behavior 11 -> traces reached: 0 out of 35
Common Behavior 12 -> traces reached: 0 out of 20
Common Behavior 13 -> traces reached: 0 out of 20
Common Behavior 14 -> traces reached: 0 out of 20
Common Behavior 15 -> traces reached: 0 out of 29
Common Behavior 16 -> traces reached: 0 out of 29
Common Behavior 17 -> traces reached: 0 out of 15

Total traces reached: 12 out of 512

Figure 5.24: Traces reached in Cruiser third constrained model.

Scen4, or (speed æ clearSpeed æ engineO� ), which is the complete Scen2. Finally, all
CBs are successfully removed after the third constraint restricts the model, as shown in
Figure 5.24.

Summary

The LTSA-MSC tool was able to collect various numbers of ISs in the Boiler specification,
which allowed the analysis of Table 5.2. It shows that even though more ISs were collected,
the same CBs were detected. Because the manual analysis uses the CBs, detecting more
ISs does not help in the analysis if the extra ISs do not have di�erent CBs. Furthermore,
the SW algorithm and clustering made possible for the 18 detected CBs to be characterized
in 3 families, which allowed the treatment of all collected ISs with only 3 constraints. Thus
supporting the hypothesis that multiple ISs can be treated together.

However, unlike the previous case studies, the created constraints did not restrict
general behaviors (such as querying the database after turning the system on, in Sec-
tion 5.2.2), but instead restricted the order that the messages could appear to fit the
modeled scenarios. Although it is possible that an architectural refinement would be bet-
ter suited to remove the collected ISs, this analysis is not in the scope of this dissertation.
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Figure 5.25: hMSC for SmartCam specification.

5.2.4 Case Study 4: Distributed Smart Camera System

System Description

The Distributed Smart Camera System (SmartCam) was first introduced by Esterle et
al. [38], and describes the functionality of a system where multiple cameras interact so
that an object is tracked by only one camera at a time while making sure that the camera
tracking is the best one suited for the task. The cameras are arranged in two di�erent
manners, which are called Architectures. The model was later detailed by Al-Azzani [2],
using four cameras and a single object, which are the five components of the system.
The SmartCam model used for analysis is the Architecture 2 laid out by Al-Azzani [2],
which is shown in Figure 5.25. The model consists of five scenarios, where each one
describes the interactions between the cameras for a di�erent trajectory of the object.
The individual bMSCs and the trajectories they depict are shown in Appendix A.4, and
were first presented in [34].

Analysis

A total of 9 ISs were collected in the SmartCam specification using the LTSA-MSC tool.
That is, the tool was unable to collect more than the 9 ISs, which makes it impossible to
vary the number of collected ISs. Therefore, the collection process was repeated to try to
collect 25 ISs nine more times. However, unlike in the APTS case study, the ISs were not
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ID: [ordered messages]

0: [camera2.object.sees_obj, camera4.object.sees_obj, camera2.camera1.ask_confidence, camera2.camera4.ask_confidence, 
camera1.camera2.no_confidence]
1: [camera3.object.sees_obj, camera3.camera1.ask_confidence, camera1.camera3.no_confidence, camera3.object.start_tracking, 
camera3.object.loses_obj, camera1.object.sees_obj, camera3.camera1.start_search, camera1.camera3.found_obj, 
camera3.camera1.ask_confidence, camera1.camera3.send_confidence, camera3.camera1.allow_tracking, camera1.object.start_tracking, 
camera1.object.loses_obj, camera1.camera3.start_search]

2: [camera3.object.sees_obj, camera3.camera1.ask_confidence, camera1.camera3.no_confidence, camera3.object.start_tracking, 
camera1.object.sees_obj, camera3.object.loses_obj, camera3.camera1.start_search, camera1.camera3.found_obj, 
camera3.camera1.ask_confidence, camera1.camera3.send_confidence, camera3.camera1.allow_tracking, camera1.object.start_tracking, 
camera1.object.loses_obj, camera2.object.sees_obj]

3: [camera3.object.sees_obj, camera3.camera1.ask_confidence, camera1.camera3.no_confidence, camera3.object.start_tracking, 
camera1.object.sees_obj, camera3.object.loses_obj, camera3.camera1.start_search, camera1.camera3.found_obj, 
camera3.camera1.ask_confidence, camera1.camera3.send_confidence, camera3.camera1.allow_tracking, camera1.object.start_tracking, 
camera1.object.loses_obj, camera1.camera2.start_search]

4: [camera3.object.sees_obj, camera3.camera1.ask_confidence, camera1.camera3.no_confidence, camera3.object.start_tracking, 
camera3.object.loses_obj, camera1.object.sees_obj, camera3.camera1.start_search, camera1.camera3.found_obj, 
camera3.camera1.ask_confidence, camera1.camera3.send_confidence, camera3.camera1.allow_tracking, camera1.object.start_tracking, 
camera1.object.loses_obj, camera4.object.sees_obj, camera4.camera2.ask_confidence]

5: [camera3.object.sees_obj, camera3.camera1.ask_confidence, camera1.camera3.no_confidence, camera3.object.start_tracking, 
camera3.object.loses_obj, camera1.object.sees_obj, camera3.camera1.start_search, camera1.camera3.found_obj, 
camera3.camera1.ask_confidence, camera1.camera3.send_confidence, camera3.camera1.allow_tracking, camera1.object.start_tracking, 
camera1.object.loses_obj, camera4.object.sees_obj, camera1.camera3.start_search]

6: [camera3.object.sees_obj, camera3.camera1.ask_confidence, camera1.camera3.no_confidence, camera3.object.start_tracking, 
camera3.object.loses_obj, camera1.object.sees_obj, camera3.camera1.start_search, camera1.camera3.found_obj, 
camera3.camera1.ask_confidence, camera1.camera3.send_confidence, camera3.camera1.allow_tracking, camera1.object.start_tracking, 
camera1.object.loses_obj, camera4.object.sees_obj, camera2.object.sees_obj]

7: [camera3.object.sees_obj, camera3.camera1.ask_confidence, camera1.camera3.no_confidence, camera3.object.start_tracking, 
camera1.object.sees_obj, camera3.object.loses_obj, camera3.camera1.start_search, camera1.camera3.found_obj, 
camera3.camera1.ask_confidence, camera1.camera3.send_confidence, camera3.camera1.allow_tracking, camera1.object.start_tracking, 
camera1.object.loses_obj, camera1.camera3.start_search, camera2.object.sees_obj]

8: [camera3.object.sees_obj, camera3.camera1.ask_confidence, camera1.camera3.no_confidence, camera3.object.start_tracking, 
camera3.object.loses_obj, camera1.object.sees_obj, camera3.camera1.start_search, camera1.camera3.found_obj, 
camera3.camera1.ask_confidence, camera1.camera3.send_confidence, camera3.camera1.allow_tracking, camera1.object.start_tracking, 
camera1.object.loses_obj, camera4.object.sees_obj, camera1.camera2.start_search, camera1.camera3.start_search, 
camera2.object.sees_obj, camera2.camera1.found_obj, camera1.camera2.ask_confidence]

Figure 5.26: ISs collected for SmartCam.

always detected in the same order. In five of the ten tests, the ISs were detected in the
same order as the one shown in Figure 5.26, while in the other five tests, the only change
was that IS 3 was detected before IS 2. Nevertheless, the same 9 ISs were collected in all
ten tests.

The collection process took on average 04.306 seconds, with a standard deviation of
0.068s. The collected ISs are shown in Figure 5.26, and each message follows the structure:
component1.component2.message, which means that component1 sent message to compo-
nent2. This notation is used to di�erentiate messages such as camera1.object.sees_obj and
camera2.object.sees_obj. Finally, Figure 5.27 shows that all collected ISs and expected
behaviors can happen in the SmarCam original model.

The common behavior detection process detected 9 CBs, which indicates that each
IS has its unique CB. Thus, there was not a reduction of the elements to be analyzed.
However, by applying the Smith-Waterman algorithm to the pairs of CBs and clustering
the CBs, the dendrogram shown in Figure 5.28 indicates that CB 0 (which contains only
IS 0) is very dissimilar to the other elements. Furthermore, it shows that some pairs of
CBs are quite similar. This process of detecting CBs, applying the SW algorithm to the
pairs, clustering the CBs, and generating the dendrogram took 0.327333 seconds.

Therefore, the analysis starts with the most similar pair of CBs, which is the pair 5 and
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RESULTS SUMMARY:

Expected Behaviors -> traces reached: 5 out of 5
Common Behavior 0 -> traces reached: 1 out of 1
Common Behavior 1 -> traces reached: 1 out of 1
Common Behavior 2 -> traces reached: 1 out of 1
Common Behavior 3 -> traces reached: 1 out of 1
Common Behavior 4 -> traces reached: 1 out of 1
Common Behavior 5 -> traces reached: 1 out of 1
Common Behavior 6 -> traces reached: 1 out of 1
Common Behavior 7 -> traces reached: 1 out of 1
Common Behavior 8 -> traces reached: 1 out of 1

Total traces reached: 14 out of 14

Figure 5.27: Traces reached in the SmartCam original model.

Figure 5.28: Dendrogram for SmartCam.
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Figure 5.29: First constraint for SmartCam.

8, with a dissimilarity of 0.045. Indeed, through manual analysis of the messages of ISs 5
and 8, it is possible to see that many messages are shared. In fact, when their sequences
of messages are compared to the bMSCs, it is clear that they are following Scenario5.
However, after camera1.object.loses_obj, camera1 should ask camera2 and camera3 to
start searching, strictly in that order according to Scenario5. Nonetheless, camera1 asks
the cameras in the wrong order. This happens because in Scenario2 the order is inverted,
and camera1 does not have enough information to choose the right order.

This error could be easily fixed with an architectural refinement, by making camera1
always send the messages in a standard order. However, as all collected ISs are considered
to be negative in this dissertation, a constraint is created to prevent this behavior. This
is achieved by analyzing the di�erences between Scenario2 and Scenario5, which can be
used to make the system aware of which order should be followed. The constraint is
presented in Figure 5.29.

To reduce space, q1 and q2 are respectively defined as q \ {camera3.object.loses_obj}
and q \ {camera1.object.loses_obj}, where q is the set of all messages of the specifica-
tion. In state 0, the constraint allows all messages to be exchanged, however when cam-
era3.object.loses_obj is observed the transition to state 1 occurs. State 1, checks which
message follows camera3.object.loses_obj, as this message is di�erent among Scenario2
and Scenario5. If the message exchanged is camera1.object.sees_obj, then it is Scenario5
and the transition to state 2 occurs. If it is not, then the transition to state 0 occurs.
Similarly to state 0, state 2 allows all messages to happen, but observes for the message
camera1.object.loses_obj. When this message is observed, the transition to state 3 occurs.
States 3 and 4 merely force the order of messages to be camera1.camera2.start_search,
camera1.camera3.start_search.

After this constraint restricts the original model, CBs 1, 4, 5, 6, and 8 are removed, as
Figure 5.30 shows, which indicates that these five CBs had the same cause, which was that
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RESULTS SUMMARY:

Expected Behaviors -> traces reached: 5 out of 5
Common Behavior 0 -> traces reached: 1 out of 1
Common Behavior 1 -> traces reached: 0 out of 1
Common Behavior 2 -> traces reached: 1 out of 1
Common Behavior 3 -> traces reached: 1 out of 1
Common Behavior 4 -> traces reached: 0 out of 1
Common Behavior 5 -> traces reached: 0 out of 1
Common Behavior 6 -> traces reached: 0 out of 1
Common Behavior 7 -> traces reached: 1 out of 1
Common Behavior 8 -> traces reached: 0 out of 1

Total traces reached: 9 out of 14

Figure 5.30: Traces reached in SmartCam first constrained model.

Figure 5.31: Second constraint for SmartCam.

camera1 was following Scenario2 while the other components were following Scenario5.
Therefore, only CBs 0, 2, 3, and 7 are left to be resolved.

Among the unresolved CBs, 1 and 7 are the most similar, with a dissimilarity of
0.047, and thus will be analyzed next. Through a manual analysis of the CBs 1 and 7,
it is noticed that camera1 gets the order of messages wrong, similarly to the previous
case. However, in this case, camera1 runs Scenario5 while the other components run
Scenario2. Therefore, camera1 should ask camera3 and camera2 to start the search, in
that order. Consequently, a second constraint is created, which is shown in Figure 5.31.

Analogously to the first created constraint, the di�erent messages between Scenario2
and Scenario5 are used to check which order should be followed. Thus, both constraints
are very similar. To reduce space q3 is defined as q \ {camera3.object.loses_obj}, where
q is the set of all messages in the specification, while q2 is the same as previously
defined for the first constraint. In state 0, the constraint allows all messages to be ex-
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RESULTS SUMMARY:

Expected Behaviors -> traces reached: 5 out of 5
Common Behavior 0 -> traces reached: 1 out of 1
Common Behavior 1 -> traces reached: 0 out of 1
Common Behavior 2 -> traces reached: 0 out of 1
Common Behavior 3 -> traces reached: 0 out of 1
Common Behavior 4 -> traces reached: 0 out of 1
Common Behavior 5 -> traces reached: 0 out of 1
Common Behavior 6 -> traces reached: 0 out of 1
Common Behavior 7 -> traces reached: 0 out of 1
Common Behavior 8 -> traces reached: 0 out of 1

Total traces reached: 6 out of 14

Figure 5.32: Traces reached in SmartCam second constrained model.

changed, however when camera1.object.sees_obj is observed the transition to state 1 oc-
curs. State 1, checks which message follows camera1.object.sees_obj, as this message is
di�erent among Scenario2 and the other scenarios. If the message exchanged is cam-
era3.object.loses_obj, which indicates it is Scenario2, the transition to state 2 occurs. If
it is not, then the transition to state 0 occurs. Similarly to state 0, state 2 allows all
messages to happen, but observes for the message camera1.object.loses_obj, which makes
the transition to state 3 to occur. States 3 and 4 merely force the order of messages to
be camera1.camera3.start_search, camera1.camera2.start_search.

After this constraint restricts the model, CBs 2, 3, and 7 are removed, as Figure 5.32
shows, which indicates that these three CBs had the same cause, which was that camera1
was following Scenario5 while the other components were following Scenario2. Therefore,
only CB 0 is left to be resolved.

Finally, CB 0 is analyzed, as it is the only unresolved CB. It is noticeable that IS 0
is the only one that starts with camera2.object.sees_obj, while the other ISs start with
camera3.object.sees_obj. By further analyzing the sequence of messages of IS 0 and the
bMSCs (shown in Appendix A.4), it is perceivable that the order of messages should
follow Scenario1. However, in Scenario1 camera2 and camera4 should ask the confidence
of the other cameras before sending their confidence. This order is not observed in IS 0, as
camera1 sends a message to camera2 before camera4 sends an ask_confidence message.

Therefore, the third constraint is created to restrict this behavior, which is shown
in Figure 5.33. To reduce space, let q4 be q \ {camera2.object.sees_obj}, where q is
the set of all messages in the specification. In state 0, the constraint allows all messages
to be exchanged, however when camera2.object.sees_obj is observed the transition to
state 1 occurs. State 1, checks which message follows camera2.object.sees_obj, as this
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Figure 5.33: Third constraint for SmartCam.

RESULTS SUMMARY:

Expected Behaviors -> traces reached: 5 out of 5
Common Behavior 0 -> traces reached: 0 out of 1
Common Behavior 1 -> traces reached: 0 out of 1
Common Behavior 2 -> traces reached: 0 out of 1
Common Behavior 3 -> traces reached: 0 out of 1
Common Behavior 4 -> traces reached: 0 out of 1
Common Behavior 5 -> traces reached: 0 out of 1
Common Behavior 6 -> traces reached: 0 out of 1
Common Behavior 7 -> traces reached: 0 out of 1
Common Behavior 8 -> traces reached: 0 out of 1

Total traces reached: 5 out of 14

Figure 5.34: Traces reached in SmartCam third constrained model.

message is di�erent among Scenario1 and the other scenarios. If the message exchanged
is camera4.object.sees_obj, which indicates it is Scenario1, the transition to state 2 occurs.
If it is not, then the transition to state 0 occurs. States 2, 3 and 4 merely force that all
ask_confidence messages are sent before all other messages. Finally, after applying the
third constraint to the model all CBs and ISs are removed, as shown in Figure 5.34.

Summary

The LTSA-MSC tool was only able to collect 9 ISs in the SmartCam specification, which
makes it impossible to vary the number of ISs collected. Furthermore, the process of
detecting CBs did not reduce the number of elements to be analyzed, as 9 CBs were
detected for the 9 ISs. However, using the similarity between CBs in the manual analysis,
it was possible to detect 3 families of CBs, and the creation of a constraint for each. By
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Table 5.3: Time spent and # of CBs per ISs for eB2B

number of ISs 25 50 75 100 125 150 417
collection time (h:m:s) 0:00:27.804 0:01:32.477 0:03:50.922 0:09:01.721 0:14:45.148s 0:26:31.832 14:26:14.450

number of CBs 15 19 20 21 21 21 21
clustering time (s) 0.458030 0.542243 0.554717 0.562235 0.562235 0.562235 0.562235

these means, all collected ISs were resolved with only three constraints. Thus, supporting
the hypothesis that various ISs can be treated together.

However, similarly to the previous case study (Section 5.2.3), the created constraints
did not restrict general behaviors (such as querying the database after turning the system
on, in Section 5.2.2), but instead restricted the order that the messages could appear to
fit the modeled scenarios. Although it is possible that an architectural refinement would
be better suited to remove the collected ISs, this analysis is not in the scope of this
dissertation.

5.2.5 Case Study 5: eB2B System

System Description

The eB2B system “is a system that allows access to an ERP (Enterprise Resource Plan-
ning) system, through a web interface” [39], which allows the user to interact with the
system through a web browser. The hMSC of the eB2B system is shown in Figure 5.35.
The hMSC has a small adaptation from the original hMSC presented in [39], which is the
addition of the Logout and ShutDown scenarios. The individual bMSCs are detailed in
Appendix A.5.

The eB2B hMSC first starts up the system and then allows the user to login to the
system. After the login succeeds, the user can either logout (which leads the system to
shutdown) or enter the main loop of the system. In this loop, the user can use some
criteria to find information and then view the details of the information.

Analysis

The LTSA-MSC tool was able to collect various numbers of ISs in the eB2B specification,
which allowed the analysis of Table 5.3. It shows that even though more ISs were collected,
the same CBs were detected starting at 100 ISs. However, the tool was unable to collect
500 ISs, as it ran out of memory when it searched for the 418th IS. That is, the trace of
execution got so long without errors, that the tool could not extend it anymore with its
available space. Therefore, the maximum number of ISs collected for eB2B is 417, which
will be used for the analysis. Figure 5.36 shows that all 417 ISs and expected behaviors
are reached in the LTS of the original model, and thus can happen at runtime.
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Figure 5.35: hMSC for eB2B specification.
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RESULTS SUMMARY:

Expected Behaviors -> traces reached: 12 out of 12
Common Behavior 0 -> traces reached: 96 out of 96
Common Behavior 1 -> traces reached: 59 out of 59
Common Behavior 2 -> traces reached: 6 out of 6
Common Behavior 3 -> traces reached: 6 out of 6
Common Behavior 4 -> traces reached: 5 out of 5
Common Behavior 5 -> traces reached: 5 out of 5
Common Behavior 6 -> traces reached: 42 out of 42
Common Behavior 7 -> traces reached: 30 out of 30
Common Behavior 8 -> traces reached: 5 out of 5
Common Behavior 9 -> traces reached: 5 out of 5
Common Behavior 10 -> traces reached: 5 out of 5
Common Behavior 11 -> traces reached: 30 out of 30
Common Behavior 12 -> traces reached: 5 out of 5
Common Behavior 13 -> traces reached: 5 out of 5
Common Behavior 14 -> traces reached: 5 out of 5
Common Behavior 15 -> traces reached: 27 out of 27
Common Behavior 16 -> traces reached: 18 out of 18
Common Behavior 17 -> traces reached: 27 out of 27
Common Behavior 18 -> traces reached: 18 out of 18
Common Behavior 19 -> traces reached: 9 out of 9
Common Behavior 20 -> traces reached: 9 out of 9

Total traces reached: 429 out of 429

Figure 5.36: Traces reached in the eB2B original model.
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  0: ['run', 'enterPwd', 'authenticate', 'query', 'data', 'shutdown']
  1: ['run', 'enterPwd', 'authenticate', 'query', 'data', 'xml', 'shutdown']
  2: ['run', 'enterPwd', 'authenticate', 'query', 'data', 'failed', 'shutdown']
  3: ['run', 'enterPwd', 'authenticate', 'query', 'data', 'verified', 'shutdown']
  4: ['run', 'enterPwd', 'authenticate', 'query', 'data', 'failed', 'html', 'shutdown']
  5: ['run', 'enterPwd', 'authenticate', 'query', 'data', 'verified', 'html', 'shutdown']
  6: ['run', 'enterPwd', 'authenticate', 'query', 'data', 'xml', 'html', 'shutdown']
  7: ['run', 'enterPwd', 'authenticate', 'query', 'data', 'xml', 'html', 'orderHeader', 'shutdown']
  8: ['run', 'enterPwd', 'shutdown']
  9: ['run', 'enterPwd', 'authenticate', 'query', 'data', 'verified', 'html', 'logout', 'shutdown']
  10: ['run', 'enterPwd', 'authenticate', 'query', 'data', 'verified', 'html', 'search', 'shutdown']
  11: ['run', 'enterPwd', 'authenticate', 'query', 'data', 'xml', 'html', 'orderHeader', 'action', 'shutdown']
  12: ['run', 'enterPwd', 'authenticate', 'query', 'data', 'verified', 'html', 'search', 'action', 'shutdown']
  13: ['run', 'enterPwd', 'authenticate', 'query', 'data', 'verified', 'html', 'logout', 'action', 'shutdown']
  14: ['run', 'enterPwd', 'authenticate', 'shutdown']
  15: ['run', 'enterPwd', 'authenticate', 'query', 'data', 'xml', 'html', 'back', 'shutdown']
  16: ['run', 'enterPwd', 'authenticate', 'query', 'data', 'xml', 'html', 'orderDetails', 'shutdown']
  17: ['run', 'enterPwd', 'authenticate', 'query', 'data', 'xml', 'html', 'back', 'action', 'shutdown']
  18: ['run', 'enterPwd', 'authenticate', 'query', 'data', 'xml', 'html', 'orderDetails', 'action', 'shutdown']
  19: ['run', 'enterPwd', 'authenticate', 'query', 'data', 'xml', 'html', 'itemDetails', 'shutdown']
  20: ['run', 'enterPwd', 'authenticate', 'query', 'data', 'xml', 'html', 'itemDetails', 'action', 'shutdown']

Figure 5.37: CBs detected for eB2B.

Using the 417 collected ISs, 21 CBs are detected, which are depicted in Figure 5.37.
After using the SW algorithm and clustering the CBs, the dendrogram in Figure 5.38 is
obtained. Next, the most similar pair of CBs is analyzed. However, there are six pairs of
CBs tied as the most similar, all with a dissimilarity score of 0.04 ( 1

25). They are: CBs 7
and 11; CBs 9 and 13; CBs 10 and 12; CBs 15 and 17; CBs 16 and 18; CBs 19 and 20.
Without loss of generality, the first pair, CBs 7 and 11, will be analyzed.

The CBs 7 and 11 share most of their messages, with the only di�erence being that
CB 7 ends with orderHeader æ shutdown while CB 11 has an extra message between
those two, ending with orderHeader æ action æ shutdown. Furthermore, by analyzing
the ending of all 21 detected CBs, it is noticeable that all of them end with shutdown,
which is an indication that the cause of the CBs is related to the message shutdown.

According to the eB2B specification (Appendix A.5), the message shutdown only ap-
pears in the scenario ShutDown. The hMSC (Figure 5.35) specifies that this scenario
can only happen after the Logout scenario. However, logout is the first message of the
Logout scenario, which does not show up in any of the CBs. Therefore, a constraint can
be created to prevent shutdown from happening before a logout.

Therefore, the constraint presented in Figure 5.39 is introduced. To reduce space,
q1 and q2 were respectively used instead of q \ {logout, shutdown} and q \ {html,
shutdown}. In state 0, the constraint allows the system to exchange all messages, except
for shutdown. If logout is observed, then the transition to state 1 occurs. In state 1, again,
all messages except for shutdown are allowed, and when html is observed, the transition
to state 2 occurs. In state 2, the only message allowed is shutdown, which starts the
transition to state 0.

In other words, what the constraint does, is to restrict the occurrence of shutdown
until the Logout scenario has ended. The Logout scenario starts with logout and ends
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Figure 5.38: Dendrogram for eB2B.

Figure 5.39: Constraint for eB2B.

when the user gets an html response (i.e., html). Therefore, when the LTS constraint
reaches state 2, the Logout scenario has finished and thus shutdown can happen.

After applying the constraint to the original model, all 21 CBs are removed as shown
in Figure 5.40, which shows that the constraint was correctly created. Also, this indicates
that all detected CBs are part of the same family, as all of them are caused by the
occurrence of shutdown out of place. Finally, note that in this case study, the same
constraint could have been created if using only 15 CBs (i.e., 25 ISs) as the problem with
the shutdown message would still be observable.

Summary

The LTSA-MSC tool was able to collect a varying number of ISs in the eB2B specification
successfully, which allowed the analysis of Table 5.3. The table shows that, for the eB2B,
even though the CBs increase at first, eventually there is a point where the number of
detected CBs stabilizes. This indicates that it would not be necessary to detect more
than ISs to realize the same analysis, as the same CBs were detected with 100, 125, 150,
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RESULTS SUMMARY:

Expected Behaviors -> traces reached: 12 out of 12
Common Behavior 0 -> traces reached: 0 out of 96
Common Behavior 1 -> traces reached: 0 out of 59
Common Behavior 2 -> traces reached: 0 out of 6
Common Behavior 3 -> traces reached: 0 out of 6
Common Behavior 4 -> traces reached: 0 out of 5
Common Behavior 5 -> traces reached: 0 out of 5
Common Behavior 6 -> traces reached: 0 out of 42
Common Behavior 7 -> traces reached: 0 out of 30
Common Behavior 8 -> traces reached: 0 out of 5
Common Behavior 9 -> traces reached: 0 out of 5
Common Behavior 10 -> traces reached: 0 out of 5
Common Behavior 11 -> traces reached: 0 out of 30
Common Behavior 12 -> traces reached: 0 out of 5
Common Behavior 13 -> traces reached: 0 out of 5
Common Behavior 14 -> traces reached: 0 out of 5
Common Behavior 15 -> traces reached: 0 out of 27
Common Behavior 16 -> traces reached: 0 out of 18
Common Behavior 17 -> traces reached: 0 out of 27
Common Behavior 18 -> traces reached: 0 out of 18
Common Behavior 19 -> traces reached: 0 out of 9
Common Behavior 20 -> traces reached: 0 out of 9

Total traces reached: 12 out of 429

Figure 5.40: Traces reached in eB2B constrained model.
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and 417 ISs. Additionally, by a further analysis, it is possible that the same constraint
that was created using the 21 CBs as a basis, could be achieved using only the 15 CBs
detected with 25 ISs. By these means, the user would be able to save time and e�ort from
collecting unnecessary extra ISs. Finally, through the analysis of the created constraint,
it is clear that all 21 detected CBs are a part of the same family. Thus, all the collected
ISs share the same cause.

5.2.6 Case Study 6: Global System for Mobile Mobility Man-
agement System

System Description

The Global System for Mobile Mobility Management System (GSM) was introduced by
Leue et al. [40], specifies a system that keeps track of the location of GSM devices while
allowing them to make and receive calls. It consists of four components, fourteen unique
MSCs, and an hMSC that shows how they interact. However, in the description of
the system specification, Leue et al. [40] describe some restrictions. For instance, if
CallSetupReq is executed on the second level of bMSCs from the top, then MobileOrCS

has to be chosen on the lower level. Thus, even though our model has the same fourteen
unique bMSCs, some of them are repeated to accommodate these restrictions. Figure 5.41
shows our resulting hMSC, which has some repeated bMSCs (e.g., Accept1, Accept2,
and Accept3). All individual bMSCs are included in the appendix of this dissertation
(Appendix A.6). In this hMSC, three major loops can be identified from ConnReq:

1. CallSetupReq æ Identify/Authenticate æ Accept/Reject æ Encrypt/MobileORCS
æ MobileOrCR/MobileTrCR;

2. PagingResp æ Identify/Authenticate æ Accept/Reject æ Encrypt/MobileTrCS æ
MobileOrCR/MobileTrCR;

3. LocUpdReq æ Identify/Authenticate æ Accept/Reject æ Encrypt/LocationUpd

The first describes the routine of the user initiating a call; the second describes the
routine of the user receiving a call; and the third describes the routine of the network
updating the location of the user. The two bottom scenarios (MobileOrCR, MobileTrCR)
indicate that a call has been terminated (i.e., Call Release), and thus return to the
ConnReq so a new routine can start. LocationUpd also indicates the end of a routine,
where the location has been successfully updated, and thus a new routine can start from
ConnReq.
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Figure 5.41: GSM hMSC.
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Table 5.4: Time spent and # of CBs per ISs for GSM

number of ISs 25 50 75 100 125 150 357
collection time (h:m:s) 0:00:20.481 0:01:13.231 0:03:03.483 0:06:16.618 0:11:29.86 0:19:05.32 5:27:31.018

number of CBs 16 16 16 16 16 16 16
clustering time (s) 0.841828 0.841828 0.841828 0.841828 0.841828 0.841828 0.841828

Analysis

The LTSA-MSC tool was able to collect various numbers of ISs in the GSM specification,
which allowed the analysis of Table 5.4. It shows that even though more ISs were collected,
the same CBs were detected. However, the tool was unable to collect 500 ISs, as it ran
out of memory when it searched for the 358th IS. That is, the trace of execution got so
long without errors, that the tool could not extend it anymore with its available space.
Therefore, the maximum number of ISs collected for GSM is 357, which will be used for
the analysis. Figure 5.43 shows that all 357 ISs and expected behaviors are reached in
the LTS of the original model, and thus can happen at runtime.

Therefore, it is needed to analyze the 16 detected CBs, which are shown in Figure 5.42.
Now, the Smith-Waterman algorithm is applied to all possible pairs of the CBs detected.
By using the dissimilarity function and Ward’s method, the dendrogram in Figure 5.44 is
obtained. The most similar pairs were CBs 14 and 15, with a dissimilarity of 1

91 .
Next, we can start looking at the most similar common behaviors, which are CBs 14

and 15, according to our dendrogram. By looking at their traces, it is possible to see that
they share a very large prefix, until the last three messages:
channelReq, immAssign, pageResp, pageRspAck, pageRspReq, procAccessReq, provideImsi,
identityReq, identityResp, imsiAck, authenticate, authenReq, authenResp, authenComplt,
serviceAccept, setCipherMode, cipherModeCmnd, cipherMode, ciphModeCmplt, ciphCm-
plt, callSetup, callSUp, confirm, conf, addCmplt, alerting, alert, alrt, conct

Even more, they also have the same last three messages (answer, discon, release).
However, the three last messages are in a di�erent order. Their shared messages tell us
that both CBs are executing the following bMSCs:

init, ConnReq, PagingResp, Identify2, Authenticate2, Accept2, Encrypt2, MobileTrCS

At the end of the receiving call routine, only one out of MobileOrCR and MobileTrCR

should happen according to GSM’s specification (Figure 5.41). In addition, discon is the
first message of MobileOrCR, and release is the first message of MobileTrCR. This
tells us that in both CBs, both scenarios are starting, which is not allowed in the original
specification. Leue et al. [40], details these scenarios as call releases (CR), that is, the
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0:channelReq,immAssign,callSetup,callSetupReq,callSetUp,authenticate,authenReq,authenResp,authenComplt,ser
viceAccept,assignComnd,assigned,assignCmplt,assignCmpt,initialMsg,addCmpltMsg,alerting,answerMsg,connect,c
onnectAck,discon,release

1:channelReq,immAssign,callSetup,callSetupReq,callSetUp,authenticate,authenReq,authenResp,authenComplt,ser
viceAccept,assignComnd,assigned,assignCmplt,assignCmpt,initialMsg,addCmpltMsg,alerting,answerMsg,connect,c
onnectAck,release,discon

2:channelReq,immAssign,pageResp,pageRspAck,pageRspReq,procAccessReq,authenticate,authenReq,authenResp,auth
enComplt,serviceAccept,callSetup,callSUp,confirm,conf,addCmplt,alerting,alert,alrt,conct,discon,answer,rel
ease

3:channelReq,immAssign,pageResp,pageRspAck,pageRspReq,procAccessReq,authenticate,authenReq,authenResp,auth
enComplt,serviceAccept,callSetup,callSUp,confirm,conf,addCmplt,alerting,alert,alrt,conct,answer,release,di
scon

4:channelReq,immAssign,callSetup,callSetupReq,callSetUp,provideImsi,identityReq,identityResp,imsiAck,authe
nticate,authenReq,authenResp,authenComplt,serviceAccept,assignComnd,assigned,assignCmplt,assignCmpt,initia
lMsg,addCmpltMsg,alerting,answerMsg,connect,connectAck,discon,release

5:channelReq,immAssign,callSetup,callSetupReq,callSetUp,provideImsi,identityReq,identityResp,imsiAck,authe
nticate,authenReq,authenResp,authenComplt,serviceAccept,assignComnd,assigned,assignCmplt,assignCmpt,initia
lMsg,addCmpltMsg,alerting,answerMsg,connect,connectAck,release,discon

6:channelReq,immAssign,callSetup,callSetupReq,callSetUp,authenticate,authenReq,authenResp,authenComplt,ser
viceAccept,setCipherMode,cipherModeCmnd,cipherMode,ciphModeCmplt,ciphCmplt,assignComnd,assigned,assignCmpl
t,assignCmpt,initialMsg,addCmpltMsg,alerting,answerMsg,connect,connectAck,discon,release

7:channelReq,immAssign,callSetup,callSetupReq,callSetUp,authenticate,authenReq,authenResp,authenComplt,ser
viceAccept,setCipherMode,cipherModeCmnd,cipherMode,ciphModeCmplt,ciphCmplt,assignComnd,assigned,assignCmpl
t,assignCmpt,initialMsg,addCmpltMsg,alerting,answerMsg,connect,connectAck,release,discon

8:channelReq,immAssign,pageResp,pageRspAck,pageRspReq,procAccessReq,provideImsi,identityReq,identityResp,i
msiAck,authenticate,authenReq,authenResp,authenComplt,serviceAccept,callSetup,callSUp,confirm,conf,addCmpl
t,alerting,alert,alrt,conct,discon,answer,release

9:channelReq,immAssign,pageResp,pageRspAck,pageRspReq,procAccessReq,provideImsi,identityReq,identityResp,i
msiAck,authenticate,authenReq,authenResp,authenComplt,serviceAccept,callSetup,callSUp,confirm,conf,addCmpl
t,alerting,alert,alrt,conct,answer,release,discon

10:channelReq,immAssign,pageResp,pageRspAck,pageRspReq,procAccessReq,authenticate,authenReq,authenResp,aut
henComplt,serviceAccept,setCipherMode,cipherModeCmnd,cipherMode,ciphModeCmplt,ciphCmplt,callSetup,callSUp,
confirm,conf,addCmplt,alerting,alert,alrt,conct,discon,answer,release

11:channelReq,immAssign,pageResp,pageRspAck,pageRspReq,procAccessReq,authenticate,authenReq,authenResp,aut
henComplt,serviceAccept,setCipherMode,cipherModeCmnd,cipherMode,ciphModeCmplt,ciphCmplt,callSetup,callSUp,
confirm,conf,addCmplt,alerting,alert,alrt,conct,answer,release,discon

12:channelReq,immAssign,callSetup,callSetupReq,callSetUp,provideImsi,identityReq,identityResp,imsiAck,auth
enticate,authenReq,authenResp,authenComplt,serviceAccept,setCipherMode,cipherModeCmnd,cipherMode,ciphModeC
mplt,ciphCmplt,assignComnd,assigned,assignCmplt,assignCmpt,initialMsg,addCmpltMsg,alerting,answerMsg,conne
ct,connectAck,discon,release

13:channelReq,immAssign,callSetup,callSetupReq,callSetUp,provideImsi,identityReq,identityResp,imsiAck,auth
enticate,authenReq,authenResp,authenComplt,serviceAccept,setCipherMode,cipherModeCmnd,cipherMode,ciphModeC
mplt,ciphCmplt,assignComnd,assigned,assignCmplt,assignCmpt,initialMsg,addCmpltMsg,alerting,answerMsg,conne
ct,connectAck,release,discon

14:channelReq,immAssign,pageResp,pageRspAck,pageRspReq,procAccessReq,provideImsi,identityReq,identityResp,
imsiAck,authenticate,authenReq,authenResp,authenComplt,serviceAccept,setCipherMode,cipherModeCmnd,cipherMo
de,ciphModeCmplt,ciphCmplt,callSetup,callSUp,confirm,conf,addCmplt,alerting,alert,alrt,conct,discon,answer
,release

15:channelReq,immAssign,pageResp,pageRspAck,pageRspReq,procAccessReq,provideImsi,identityReq,identityResp,
imsiAck,authenticate,authenReq,authenResp,authenComplt,serviceAccept,setCipherMode,cipherModeCmnd,cipherMo
de,ciphModeCmplt,ciphCmplt,callSetup,callSUp,confirm,conf,addCmplt,alerting,alert,alrt,conct,answer,releas
e,discon

Figure 5.42: CBs detected for GSM.

76



RESULTS SUMMARY:

Expected Behaviors -> traces reached: 26 out of 26
Common Behavior 0 -> traces reached: 46 out of 46
Common Behavior 1 -> traces reached: 46 out of 46
Common Behavior 2 -> traces reached: 44 out of 44
Common Behavior 3 -> traces reached: 43 out of 43
Common Behavior 4 -> traces reached: 21 out of 21
Common Behavior 5 -> traces reached: 20 out of 20
Common Behavior 6 -> traces reached: 19 out of 19
Common Behavior 7 -> traces reached: 18 out of 18
Common Behavior 8 -> traces reached: 18 out of 18
Common Behavior 9 -> traces reached: 18 out of 18
Common Behavior 10 -> traces reached: 14 out of 14
Common Behavior 11 -> traces reached: 14 out of 14
Common Behavior 12 -> traces reached: 10 out of 10
Common Behavior 13 -> traces reached: 10 out of 10
Common Behavior 14 -> traces reached: 8 out of 8
Common Behavior 15 -> traces reached: 8 out of 8

Total traces reached: 383 out of 383

Figure 5.43: Traces reached in GSM original model.

Figure 5.44: Dendrogram for GSM.
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user’s call has been finished. The di�erence between them is that one describes the
scenario in which the user ends the call (MobileOrCR), and the other describes when the
network ends the call (MobileTrCR).

Therefore, the start of both CR scenarios in CBs 14 and 15 tells us that either the
user or the network is trying to end a call that has already been finished, thus resulting
in unexpected behavior. This cannot happen according to the specification, as only one
call release scenario can happen for each call. This way, it is possible to resolve both CBs
at once by limiting the system to always execute only one of those two scenarios for each
call. Additionally, through manual analysis of the 16 detected CBs for the GSM System,
it is noticeable that all common behaviors share that same problem. That is, every IS
detected for this system, happened because both Call Release scenarios were executing
concurrently. Therefore, for GSM we have a single family of common behaviors, which
contains all detected CBs, consequently, all collected implied scenarios.

From the manual analysis, it is known that all detected CBs are in the same fam-
ily, and happen because both call release (CR) scenarios are occurring concurrently at
runtime. Thus, we created a single constraint to prevent both CR scenarios from hap-
pening together. Figure 5.45 shows the constraint created to resolve this problem. To
reduce space, let q represent all messages in the system’s alphabet, q1 is used to repre-
sent all messages in the system’s alphabet with the exception of {release, discon} (i.e.,
q1 = q \{release, discon}). Analogously, q2 = q1 \{channelReq}. This other message
(channelReq) is removed from q2 because it is used for the transition that goes from state
1 to state 0.

Succinctly, this constraint does not interfere with the system unless either call release
scenarios start, which is detected by observing either discon or release. When either
message is exchanged, the transition to state 1 occurs. In state 1 we prohibit the system
to start another call release routine, that is, all messages are allowed but discon and
release (q2). When channelReq is observed, the system is getting ready to start a new
routine (i.e., start a call, receive a call, or update location), and thus a call release scenario
can happen in the future. Therefore, channelReq makes the transition to state 0 occurs.

Since only one CR scenario will happen when this constraint is applied to the original
GSM specification, all CBs have been dealt with using this same constraint. Consequently,
by constraining the model in such way, all ISs will also be prevented during runtime.
Therefore, to make sure that the collected ISs have been avoided Algorithm 2 is used.
Figure 5.46 shows that the collected ISs cannot happen at runtime after the model is
constrained by the created constraint. Thus, the family of CBs was well defined, as all
CBs were resolved with the same treatment, which was the creation of a constraint.
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Figure 5.45: LTS of GSM’s constraint.

RESULTS SUMMARY:

Expected Behaviors -> traces reached: 26 out of 26
Common Behavior 0 -> traces reached: 0 out of 46
Common Behavior 1 -> traces reached: 0 out of 46
Common Behavior 2 -> traces reached: 0 out of 44
Common Behavior 3 -> traces reached: 0 out of 43
Common Behavior 4 -> traces reached: 0 out of 21
Common Behavior 5 -> traces reached: 0 out of 20
Common Behavior 6 -> traces reached: 0 out of 19
Common Behavior 7 -> traces reached: 0 out of 18
Common Behavior 8 -> traces reached: 0 out of 18
Common Behavior 9 -> traces reached: 0 out of 18
Common Behavior 10 -> traces reached: 0 out of 14
Common Behavior 11 -> traces reached: 0 out of 14
Common Behavior 12 -> traces reached: 0 out of 10
Common Behavior 13 -> traces reached: 0 out of 10
Common Behavior 14 -> traces reached: 0 out of 8
Common Behavior 15 -> traces reached: 0 out of 8

Total traces reached: 26 out of 383

Figure 5.46: Traces reached in GSM constrained model.
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Figure 5.47: hMSC of S.S. MAS.

Summary

A varying number of ISs were collected in the GSM specification, which allowed the
analysis in Table 5.4. The table shows that even though a large number ISs were collected,
few CBs were detected. Because the manual analysis uses the CBs, detecting more ISs
does not help in the analysis if the extra ISs do not have di�erent CBs. It is shown
that the constraint created with basis on the detected CBs is able to remove all collected
ISs. That is, the family of CBs was correctly characterizing the cause of a multitude
of emergent behaviors. This shows that is possible to remove multiple ISs when their
common cause is correctly identified.

5.2.7 Case Study 7: Semantic Search Multi-Agent System

System Description

The Semantic Search Multi-Agent System (S.S. MAS) was introduced by Moshirpour et
al. [16]. It describes a system which receives queries from the user, and if the system
already knows the answer to the query it returns so (MSC1), if not, the system firstly
learns the answer and then returns (MSC2). The hMSC is shown in Figure 5.47. The S.S.
MAS hMSC merely allows for either scenario to happen, that is, it allows for the user to
query the system, and then the system acts accordingly to whether or not it knows the
answer to the query.

The system originally has 5 components: User, Query Handler (QH), Concept Learner
(CL), Repository (Rep), and Peer. However, because QH and CL send messages to
themselves, which is not allowed in the LTSA-MSC tool, two auxiliary components were
created: QHaux and CLaux. The bMSCs of these system are shown in Appendix A.7.
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ID: [ordered messages]

0: [user.qh.enterQuery, qh.qhaux.extractConcepts, 
qhaux.qh._extractConcepts, qh.cl.sendConcept, qh.rep.sendConcept, 
rep.qh.returnResults, cl.claux.newConcepts]

1: [user.qh.enterQuery, qh.qhaux.extractConcepts, 
qhaux.qh._extractConcepts, qh.cl.sendConcept, qh.rep.sendConcept, 
cl.claux.newConcepts, rep.qh.returnResults]

2: [user.qh.enterQuery, qh.qhaux.extractConcepts, 
qhaux.qh._extractConcepts, qh.cl.sendConcept, qh.rep.sendConcept, 
cl.claux.newConcepts, claux.cl._newConcepts, rep.qh.returnResults]

3: [user.qh.enterQuery, qh.qhaux.extractConcepts, 
qhaux.qh._extractConcepts, qh.cl.sendConcept, qh.rep.sendConcept, 
cl.claux.newConcepts, claux.cl._newConcepts, 
cl.qh.newConceptsDetected, rep.qh.returnResults]

4: [user.qh.enterQuery, qh.qhaux.extractConcepts, 
qhaux.qh._extractConcepts, qh.cl.sendConcept, qh.rep.sendConcept, 
cl.claux.newConcepts, claux.cl._newConcepts, 
cl.qh.newConceptsDetected, cl.peer.startLearning, 
rep.qh.returnResults]

5: [user.qh.enterQuery, qh.qhaux.extractConcepts, 
qhaux.qh._extractConcepts, qh.cl.sendConcept, qh.rep.sendConcept, 
cl.claux.newConcepts, claux.cl._newConcepts, 
cl.qh.newConceptsDetected, cl.peer.startLearning, 
peer.cl.learnConcepts, rep.qh.returnResults]

Figure 5.48: Collected ISs for S.S. MAS.

Analysis

The LTSA-MSC tool was only able to collect a total of 6 ISs for the S.S. MAS, which
are shown in Figure 5.48. That is, even though a larger collection of ISs was desired, the
tool was only able to detect 6 ISs in the system specification, which prevented repeated
analysis with other numbers of ISs. Therefore, the collection process was repeated to
try to collect 25 ISs nine more times. However, the same 6 ISs were collected in every
repetition, and they were also detected in the same order.

The collection process took on average 3.213s, with an standard deviation of 0.118s,
and the collected ISs are shown in Figure 5.48. Each message follows the structure:
component1.component2.message, which means that component1 sent message to com-
ponent2. This notation is used to di�erentiate messages such as qh.cl.sendConcept and
qh.rep.sendConcept. Finally, Figure 5.49 shows that all collected ISs and expected behav-
iors can happen in the original model.

After the collection of ISs, the process to detect common behaviors was done. How-
ever, like for APTS and SmartCam, each IS had a unique CB, and thus the number of
elements was not reduced. Therefore, the CBs detected are equivalent to the ISs shown
in Figure 5.48. With the CBs detected, the Smith-Waterman algorithm is applied to all
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RESULTS SUMMARY:

Expected Behaviors -> traces reached: 2 out of 2
Common Behavior 0 -> traces reached: 1 out of 1
Common Behavior 1 -> traces reached: 1 out of 1
Common Behavior 2 -> traces reached: 1 out of 1
Common Behavior 3 -> traces reached: 1 out of 1
Common Behavior 4 -> traces reached: 1 out of 1
Common Behavior 5 -> traces reached: 1 out of 1

Total traces reached: 8 out of 8

Figure 5.49: Traces reached in S.S. MAS original model.

Figure 5.50: Dendrogram for S.S. MAS.

possible pairs, and the dissimilarity is calculated. Next, the dendrogram in Figure 5.50.
The process of detecting CBs, applying the SW algorithm to the pairs of CBs, clustering
the CBs, and exporting the dendrogram took 0.315s.

Next, a manual analysis of the obtained results is required. The analysis starts from
the less dissimilar pair (i.e., the lowest hight in the dendrogram), which is the pair of CBs 4
and 5. By looking at the sequence of messages of each CB (ISs 4 and 5 from Figure 5.48),
it is noticeable that they share most of their messages. Also, because they have the
message cl.claux.newConcepts, they both indicate that a new concept was queried, and
thus they should learn that concept and update the repository. However, before they
return the results, the repository should be updated with this new concept. Therefore,
the constraint shown in Figure 5.51 is created.

To preserve space, q1 and q2 were respectively used instead of q \ {cl.rep.updateRep,
rep.qh.returnResults} and q \ {rep.qh.returnResults}, where q is the set of all messages
in the S.S. MAS specification. The constraint starts in state 0 and allows all messages
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Figure 5.51: Initial constraint for S.S. MAS.

RESULTS SUMMARY:

Expected Behaviors -> traces reached: 1 out of 2
Common Behavior 0 -> traces reached: 0 out of 1
Common Behavior 1 -> traces reached: 0 out of 1
Common Behavior 2 -> traces reached: 0 out of 1
Common Behavior 3 -> traces reached: 0 out of 1
Common Behavior 4 -> traces reached: 0 out of 1
Common Behavior 5 -> traces reached: 0 out of 1

Total traces reached: 1 out of 8

Figure 5.52: Traces reached in S.S. MAS first constrained model.

except for returnResults. This is done to prevent results from being returned before the
repository is updated. Therefore, when the update is observed (updateRep), the transition
to state 1 occurs. In state 1, all messages are allowed to be exchanged. However, when
returnResults is observed, the transition to state 0 occurs, in order to require a new update
before new results are returned.

This constraint removes the unwanted behaviors, as shown in Figure 5.52. In fact,
all 6 detected CBs are removed by adding the required update before returning the re-
sults. However, unlike the constraints for the other systems, one wanted behavior is also
restricted – as not always the repository will be updated before returning results. That
happens because there are no required updates if there are no new concepts to be learned.
In other words, the constraint in Figure 5.51 restricts the return of results only to when
new concepts are learned, and thus the repository is updated.

Hence, an alteration is required in the first constraint. Because the behavior of waiting
for the repository update is wanted, when there are new concepts, a new message is added
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Figure 5.53: Altered constraint for S.S. MAS.

to the transition from state 0 to state 1 – cl.claux.noNewConcepts. This change is done
to allow the return of results to happen after either the system detected that there is no
need of learning new concepts or the system has already learned the new concepts and
updated its repository. Therefore, the initial constraint from Figure 5.51 is altered to the
constraint shown in Figure 5.53.

The only change made from the initial constraint is the removal of cl.claux.noNewConcepts
from q1, which makes q3 = q1 \ {cl.claux.noNewConcepts}, and the addition of the same
message in the transition from state 0 to state 1. By these means, state 0 allows all mes-
sages but returnResults, which can only be exchanged in state 1. To get to state 1, the
system needs to exchange either cl.claux.noNewConcepts which indicates that it already
knows all necessary concepts, or cl.rep.updateRep, which indicates that there were new
concepts, but they have already been included in the repository.

Therefore, the fixed constraint preserves the wanted behaviors modeled in the system,
as well as removes the unwanted ones, which is returning results before the system is
ready. Finally, after constraining the original model with this new constraint, all CBs are
removed as seen in Figure 5.54.

Summary

The LTSA-MSC tool was only able to collect only 6 ISs in the S.S. MAS specification,
which makes it impossible to vary the number of ISs collected. Furthermore, the process
of detecting CBs did not reduce the number of elements to be analyzed, as 6 CBs were
detected for the 6 ISs. However, using the similarity between CBs and through further
analysis, it became clear that all detected CBs shared the same cause, which was the
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RESULTS SUMMARY:

Expected Behaviors -> traces reached: 2 out of 2
Common Behavior 0 -> traces reached: 0 out of 1
Common Behavior 1 -> traces reached: 0 out of 1
Common Behavior 2 -> traces reached: 0 out of 1
Common Behavior 3 -> traces reached: 0 out of 1
Common Behavior 4 -> traces reached: 0 out of 1
Common Behavior 5 -> traces reached: 0 out of 1

Total traces reached: 2 out of 8

Figure 5.54: Traces reached in S.S. MAS second constrained model.

incorrect return of results. Thus, a single family was defined. Therefore, it was ultimately
possible to remove all collected ISs with a single constraint.
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5.3 Discussion
Table 5.5 shows the summary of the obtained results for all case studies. For all systems,
we tried to collect a varying number of ISs up to 500. Accordingly, in the second column, #
of ISs of Table 5.5 the maximum number of implied scenarios that were actually collected
is shown. Then, in Collection, the time spent collecting the ISs with the LTSA-MSC
tool is presented. Next, in Clustering column accounts for the total time spent on: (1)
detecting common behaviors, (2) calculating the distance for all possible pairs with the
SW algorithm, (3) clustering them, and (4) exporting the dendrogram. Finally, in CBs

column, the number of detected common behaviors for the system, and in Constraints

column the number of constraints needed to resolve said common behaviors.
It is important to note that the time required to detect common behaviors, as well

as to apply the Smith-Waterman algorithm, cluster all pairs, and export the dendrogram
for all experiments never reached 1s. Because it is much smaller than times observed in
the collection process with the LTSA tool, this part of the process does not contribute
significantly to the time necessary for our methodology.

From the results presented in Table 5.5, for APTS, S.S. MAS, and SmartCam the
tool could not collect more implied scenarios, that is, the tool collected all detectable ISs
following the Uchitel et al. approach. When analyzing these systems, there are as many
common behaviors as implied scenarios, which did not reduce the number of elements
that had to be analyzed. However, the process of finding families of common behaviors
did help, as only seven constraints were needed to resolve all 24 ISs across these systems.

On the other hand, for the other four systems,i.e. Boiler, Cruiser, eB2B, and GSM,
it is possible that the tool would collect more implied scenarios than the ones detected.
Even more, the time spent collecting them was rather large, and for eB2B and GSM
systems, the tool ran out of memory and aborted the execution, collecting only 417 and

Table 5.5: Summary of results across all systems studied

System # of ISs Collection (h:m:s) Clustering (s) CBs Constraints
APTS 9 0:00:03.895 0.331548 9 3
Boiler 500 7:35:51.831 0.318115 2 2
Cruiser 500 9:26:55.046 0.497454 18 3
eB2B 417 14:26:14.450 0.562235 21 1
GSM 357 5:27:31.018 0.841828 16 1
S.S. MAS 6 0:00:03.213 0.315708 6 1
SmartCam 9 0:00:04.306 0.327333 9 3
Total 1798 36:56:43.759 3.186659 81 14
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Table 5.6: Number of CBs detected per number of ISs collected

System up to 25 ISs 50 ISs 75 ISs 100 ISs 125 ISs 150 ISs up to 500 ISs
APTS 9 - - - - - -
Boiler 2 2 2 2 2 2 2
Cruiser 18 18 18 18 18 18 18
eB2B 15 19 20 21 21 21 21
GSM 16 16 16 16 16 16 16
S.S. MAS 6 - - - - - -
SmartCam 9 - - - - - -

Table 5.7: Time (h:m:s) to collect n implied scenarios

System 100 ISs up to 500 ISs
Boiler 0:03:05.820 7:35:51.831
Cruiser 0:05:10.123 9:26:55.046
eB2B 0:09:01.721 14:26:14.450
GSM 0:06:16.618 5:27:31.018
Total 0:23:34.282 36:56:32.345

357 implied scenarios, respectively. However, IS collection could still be counting if the
tool had more memory available.

Additionally, for these four systems, there is a significant decrease from the number of
implied scenarios collected to the number of common behaviors detected, which facilitates
the analysis process for the user. Furthermore, as Table 5.6 shows, the number of common
behaviors detected remains the same starting at 100 implied scenarios collected for all four
systems, that is, there is no point in detecting more than 100 ISs as the manual analysis
and treatment take only common behaviors in consideration. In fact, only eB2B requires
that many implied scenarios, as for Boiler, Cruiser, and GSM, 25 would su�ce.

Thus, it would be possible to get the same results (i.e., CBs and constraints) by using
only 25 ISs for the Boiler, Cruiser, and GSM systems, and only 100 ISs for the eB2B
system, as the same common behaviors are detected by using either 25/100 or up to 500
ISs. Nevertheless, consider that for all these four systems 100 implied scenarios were
collected. By doing so, the time spent by the collection process would drastically drop,
as shown in Table 5.7, while the time required for analysis and treatment would not be
a�ected, as for those processes only the detected CBs are used as input, and these would
remain the same. This way, the other steps of the methodology would not be a�ected
and only 1% of the original time would be required in the collection process.

Therefore, the obtained results support the validity of our proposal. Table 5.5 shows
that our proposed methodology facilitates the analysis process for the user, as for the
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studied systems they would only need to analyze at most 4.5% of the cases (81 CBs
instead of 1798 ISs). Even more so, since there are families with more than one CB, this
number goes down even further to 14 families (0.7%). Also, by looking at the number
of common behaviors detected, it would also allow the user to stop collecting implied
scenarios when he/she notices a constant number of CBs, which would decrease the time
spent collecting ISs. This way, our approach can decrease the time required to collect
ISs, and, after the collection process, it facilitates the treatment process by reducing the
number of elements analyzed.

Furthermore, except for the Boiler system, the analysis to define families of common
behaviors allowed us to define fewer constraints than the actual number of common be-
haviors they resolved. For instance, a single constraint for the eB2B system resolved all
21 common behaviors, which consequently resolved all 417 collected implied scenarios in
the system specification.

Nonetheless, the methodology still requires the user’s input. For instance, notice that
at first, it looks that there are two distinct groups of CBs for the GSM system. However
the dissimilarity between these two groups is around 0.15, which is smaller than the
dissimilarity in the Boiler example, which was 0.25. From this information, we conclude
that all 16 CBs in the GSM system are more similar to each other than the only two
CBs in the Boiler example. Further studies could be performed to explore means to
automatically define families of CBs.

Additionally, we validated the choice for the Smith-Waterman algorithm by comparing
the clustering results presented with the clustering results obtained by using the Leven-
shtein distance [18] as the distance metric. The two clustering results were compared to
the groups obtained by the definition of families of CBs, using the Jaccard index [41]. The
Jaccard index is a similarity metric that can be used to compare how close two clustering
results are to each other, and it ranges from 0 to 1 with a higher index indicating more
similar results. Therefore, we compare the clusterings obtained with the Smith-Waterman
algorithm and the Levenshtein distance to the families of CBs obtained, to discover which
similarity metric (Levenshtein or Smith-Waterman) gets a closer result to the families
desired.

The results of the comparisons are shown in Table 5.8, where the second column shows
the Jaccard index comparing the families of CBs to the clustering using Levenshtein
distance, and the third column shows the Jaccard index comparing the families of CBs to
the clustering using Smith-Waterman. The clustering with Smith-Waterman obtained a
better result in four out of the seven case studies, while the clustering with Levenshtein
was better in only one, and they were equal in two cases.

Furthermore, it is important to note that in the Boiler case study, the similarity
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Table 5.8: Clustering results comparison

System Levenshtein Smith-Waterman
APTS 0.38 0.50
Boiler 0.00 0.00
Cruiser 0.62 0.53
eB2B 0.32 0.54
GSM 0.30 0.30
SmartCam 0.40 0.41
S.S.MAS 0.25 1.00

is 0 for both clustering results. Given that only two elements are clustered, further
information is needed for the purpose of providing a more accurate clusterization outcome.
However, the manual analysis of such elements shows that their behavior regard two
distinct families. Even in this case, the Smith-Waterman algorithm helps the definition
of families, as it explicitly shows which specific parts of the CBs are similar, as it was
shown in Section 4.3.3.

Finally, it is noticeable in the case studies that the constraints for the Cruiser and
SmartCam are created to make sure that a required ordering in the messages is followed.
For instance, camera1 sends start_search first to camera3 in Figure 5.31 and to camera2
in Figure 5.29, even though camera1 sends start_search to both camera2 and camera3
in both constraints. On the other hand, for the other studied systems, the constraints
are created based on the overall system behavior that should not happen (e.g., the call is
being ended twice in GSM). Therefore, it indicates that an architectural refinement might
be better suited than constraints for the Cruiser and SmartCam, as the behaviors might
be positive and the di�erent ordering of messages is only due to the concurrency nature
of the system. Furthermore, the lack of modularity in the bMSCs (i.e., few bMSCs with
lots of messages) makes it di�cult for more e�ective constraints to be created. However,
these considerations are out of the scope of this work.

5.3.1 Threats to Validity

The first threat that could be raised in our work may regard its performance. Some
might worry that SW might slow down our proposal, since there is a lot of e�ort in
bioinformatics research to speed up the Smith-Waterman algorithm. However, in the
bioinformatics domain, the SW algorithm is applied to find local alignments between
huge DNA sequences, usually sequences with millions of elements. In the scope of our
work, we will unlikely face sequences of such magnitude. In fact, among our case studies
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the time to run the whole analysis script (which includes SW) did not reach 1s for none
of the case studies.

Another drawback that is possible due to SW is that when lengthy common behaviors
are compared, they might be found to be similar even though they may not share the same
faulty behavior. This happens because they can have a considerable overlap of messages,
possibly stemmed from poorly modularized hMSCs that could be split into more cohesive
bMSCs. Nevertheless, this is a design issue and is out of scope of our work to deal with
such drawback. Further studies could be performed to investigate the core causes of such
issue.

Still on SW, as seen in the Boiler system analysis, the best alignment might provide an
acceptable behavior, that is, when the given sequences are similar, they do not represent
an error. Therefore, it is crucial that a domain expert manually analyze the outputted
results.

Regarding the ability to generalize our methodology, it was not meant to deal with
I/O implied scenarios, nor use a di�erent communication scheme other than synchronous.
For that purpose, it would be possible to use Song et al.’s [5] approach to detect implied
scenarios instead of LTSA-MSC, which is used in our approach. In that case, it might
require some tuning in the detection of common behaviors and how to find similarity
between them.

Finally, LTSA-MSC cannot proceed on the ISs detection process of manually con-
strained FSP models. To turn around such issue, we have provided means to automat-
ically compare the original architecture model and the constrained one to check if the
latter had satisfactorily removed only the traces that could lead to the detected implied
scenarios. In all case studies, it had been validated that the valid traces detected by
Algorithm 3 had been preserved. We should note that, due to the NP-complete nature
of implied scenario analysis, this might not always be possible since a feedback loop in
the implied scenario detection process could still reveal the presence of other undetected
implied scenarios.
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Chapter 6

Conclusion & Future Work

We have proposed a methodology to deal with multiple implied scenarios (ISs) at large.
Our approach facilitates the manual analysis required by the user, as he/she has to analyze
a considerably smaller number of elements. This is achieved by detecting shared behaviors
among the ISs, which we call Common Behaviors (CBs). Furthermore, we introduce a
dissimilarity function that allows for the similar CBs to be grouped into families, further
reducing the elements to be analyzed. By these means, our approach allows the user
to investigate the cause of multiple ISs, which consequently allows he/she to deal with
various ISs at once.

Additionally, we performed seven case studies with system specifications found in the
literature. Throughout these experiments, we were able to collect 1798 ISs and remove
all the ISs with only 14 constraints by using our approach. These results support the
e�ectiveness of the proposed methodology, as it was possible to treat multiple ISs with
the same fix. Furthermore, the experiments show that it might be possible to stop the
collection of ISs at an earlier point, as after a certain point in all of our experiments, the
collected ISs were merely a variation of the ones that had already been collected.

Our goal in this work has been to reach a point where the ISs analysis process can
converge to a heuristic to guide the solution space. As our results suggest, there might
be a point where new ISs detected are simply a variation of the ones already collected
for a system. As a future work, one could use common behaviors to detect the point
where no new information is encountered given a certain time threshold. For instance,
as our results suggest, 100 ISs would have su�ced, and in every experiment that number
was achieved under 10 minutes. Additionally, an extension to our work could provide
an alternative way to generate the constraints for the whole family automatically. If
that is possible, the stopping point for the detection process could become trivial, as
after every CB detected, a new constraint could be generated and composed with the
constrained model. Additionally, we should mention that other IS detection approaches
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found in the literature. Therefore, it would be also desirable to provide means to adapt
our methodology to benefit from such approaches, especially the one proposed by Song
et al. [5], given its comprehensiveness.

Furthermore, to leverage further analysis in an automated manner could take place by
integrating our approach into the LTSA-MSC tool with support to other clustering and
alignment algorithms other than those applied in this work. Also, it could be interesting
to get the user input on whether each family of common behaviors is wanted or not, as
this would eliminate the cost of restricting acceptable behaviors that we disregarded in
this work.

Moreover, it would be interesting to check the impact of the clustering results in the
manual analysis. In order to observe this impact, the analyses that were done for the case
studies could be repeated, but instead of initiating the process with the most similar pair
of CBs, the starting point could be randomized. By these means, it would be possible
to check if the clustering result is a good reference for the manual analysis. As if better
results are obtained by starting with the most similar pair, the clustering results have a
significant impact on the manual analysis.

Additionally, we should note that there are many other alignment algorithms in the
literature that we did not explore, such as Neighbor-joining [42] and BLAST [43], which
could be viable options to find similarity among CBs. Therefore, even though, in our
case studies, the Smith-Waterman performed better than the Levenshtein distance, there
might be other alignment algorithms that can provide an even better dissimilarity measure
than the Smith-Waterman. We believe, however, that local alignment algorithms should
obtain better results than global ones, as the goal is to find a subsequence of messages
causing the fault.

Particularly, a multiple alignment algorithm, such as Clustal W [44], could tell us the
similarity between the identified CBs, instead of a pairwise approach. Finally, we envision
that an extension of our approach could be to provide quantitative reliability analysis of
the system followed by a sensitivity analysis of the ISs. This way, it would be possible to
find which CBs have a higher impact on the system’s overall reliability.
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Appendix A

Systems Scenarios

A.1 A Passenger Transportation System (APTS)

Figure A.1: APTS’s hMSC.
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Figure A.2: bMSC for APTS’s VehicleAtTerminal scenario.
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Figure A.3: bMSC for APTS’s VehicleNotAtTerminal scenario.
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A.2 Boiler

Figure A.4: Boiler’s hMSC.
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Figure A.5: bMSC for Boiler’s Analysis scenario.
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Figure A.6: bMSC for Boiler’s Initialise scenario.
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Figure A.7: bMSC for Boiler’s Register scenario.

101



Terminate

Sensor Database Control Actuator

off

Figure A.8: bMSC for Boiler’s Terminate scenario.
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A.3 Cruise Control (Cruiser)

Figure A.9: Cruiser’s hMSC.
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Figure A.10: bMSC for Cruiser’s Scen1.
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Figure A.11: bMSC for Cruiser’s Scen2.
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Figure A.12: bMSC for Cruiser’s Scen3.
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Figure A.13: bMSC for Cruiser’s Scen4.
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A.4 Distributed Smart Camera (SmartCam)

Figure A.14: SmartCam’s hMSC.
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Figure A.15: bMSC for SmartCam’s Scenario1.
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Figure A.16: Trajectory depicted in SmartCam’s Scenario1, taken from [2].
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Figure A.17: bMSC for SmartCam’s Scenario2.
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Figure A.18: Trajectory depicted in SmartCam’s Scenario2, taken from [2].
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Figure A.19: bMSC for SmartCam’s Scenario3.
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Figure A.20: Trajectory depicted in SmartCam’s Scenario3, taken from [2].
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Figure A.21: bMSC for SmartCam’s Scenario4.
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Figure A.22: Trajectory depicted in SmartCam’s Scenario4, taken from [2].
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Figure A.23: bMSC for SmartCam’s Scenario5.

115



Figure A.24: Trajectory depicted in SmartCam’s Scenario5, taken from [2].
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A.5 eB2B

Figure A.25: eB2B’s hMSC.
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Figure A.26: bMSC for eB2B’s Back1, Back2, and Back3 scenarios.
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Figure A.27: bMSC for eB2B’s Criteria scenario.
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Figure A.28: bMSC for eB2B’s DetailsView scenario.
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Figure A.29: bMSC for eB2B’s FailedLogin scenario.
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Figure A.30: bMSC for eB2B’s HeaderView scenario.
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Figure A.31: bMSC for eB2B’s ItemDetails scenario.
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Figure A.32: bMSC for eB2B’s Login scenario.
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Figure A.33: bMSC for eB2B’s Logout scenario.
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Figure A.34: bMSC for eB2B’s ShutDown scenario.
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Figure A.35: bMSC for eB2B’s StartUp scenario.
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A.6 Global System for Mobile Mobility Management
(GSM)

Figure A.36: GSM’s hMSC.
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Figure A.37: bMSC for GSM’s Accept1, Accept2, Accept3 scenarios.
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Figure A.38: bMSC for GSM’s Authenticate1, Authenticate2, and Authenticate3 scenar-
ios.
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Figure A.39: bMSC for GSM’s CallSetupReq scenario.
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Figure A.40: bMSC for GSM’s ConnReq scenario.
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Figure A.41: bMSC for GSM’s Encrypt1, Encrypt2, and Encrypt3 scenarios.
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Figure A.42: bMSC for GSM’s Identify1, Identify2, and Identify3 scenarios.
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Figure A.43: bMSC for GSM’s LocationUpd scenario.
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Figure A.44: bMSC for GSM’s LocUpdReq scenario.
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Figure A.45: bMSC for GSM’s MobileOrCR scenario.
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Figure A.46: bMSC for GSM’s MobileOrCS scenario.
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Figure A.47: bMSC for GSM’s MobileTrCR scenario.
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Figure A.48: bMSC for GSM’s MobileTrCS scenario.
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Figure A.49: bMSC for GSM’s PagingResp scenario.
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Figure A.50: bMSC for GSM’s Reject1, Reject2, and Reject3 scenarios.
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A.7 Semantic Search Multi-Agent System (S.S. MAS)

Figure A.51: S.S. MAS’s hMSC.
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Figure A.52: bMSC for S.S. MAS’s MSC1
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Figure A.53: bMSC for S.S. MAS’s MSC2
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