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Resumo Expandido

A investigacao sobre a mudanca de uso e cobertura da terra é importante para promover
o gerenciamento criterioso do territorio, como meio de contencao de danos ambientais.
Além disso, é um processo complexo que relaciona a interagao entre sistemas ambientais,
econdmicos e sociais em diferentes escalas temporais e espaciais. O entendimento da
dinamica desses sistemas foca nao somente nas partes, mas do comportamento que emerge
da interagao entre elas. Modelo Baseado em Agente (MBA) é uma boa técnica para o
estudo desses fendmenos, uma vez que modela as interacoes entre agentes autonomos e
o seu ambiente. As simulacGes computacionais sao a técnica mais utilizada para avaliar
esses modelos, para testar explicitamente os efeitos das decisoes humanas em situacoes
complexas.

Conquanto os MBAs fornecam uma ferramenta poderosa para analisar fenémenos
emergentes, sua utilidade ¢ limitada por dificuldades na anélise dos seus resultados, o
que fomenta criticas e questionamentos sobre a contribuicao real dos frameworks para o
suporte & decisao. A ferramenta mais difundida para avaliagao é a anélise de sensibilidade,
pois quantifica os efeitos das alteracoes nos fatores de entrada do modelo nas previsoes do
modelo. Entretanto, grande parte dos métodos mais difundidos de anélise de sensibilidade
nao sao adequados ou sao insuficientes para lidar com as especificidades advindas da
complexidade dos MBAs. Dentre elas, destacam-se a estocasticidade, nao-linearidade
e a parametrizacao ad hoc, que implicam uma consideravel incerteza epistémica. Sem
uma investigacao apropriada, ha chances significativas de que os resultados derivados da
simulacao sejam a consequéncia de vieses.

Embora reconhecendo as diferencas particulares dos inimeros MBAs, a presente tese
examina se esses desafios podem ser superados, no contexto de um estudo de caso de uso
e cobertura da terra no Cerrado do Distrito Federal, usando a ferramenta multiagente
MASE-BDI (Coelho et al. [2016). O objetivo dessa tese é avaliar a aplicagdo de varias
metodologias de quantificagao de incerteza e andlise de sensibilidade na anéalise de resul-
tados de MBAs. O foco da pesquisa ¢ efetuar uma aplicacao integrada de técnicas de
andlise de incerteza e sensibilidade e avaliar os impactos que as diferencas nos tamanhos

de amostra, técnicas de amostragem e métodos de andlise de sensibilidade podem ter na
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saida do modelo. Além disso, propoe-se um workflow para que essas técnicas possam ser
aplicadas de forma organizada e sisteméatica. De modo mais abrangente, aplica-se uma
metodologia geral de avaliacdo de MBAs, que inclui diferentes abordagens para produzir
versoes simplificadas do modelo que podem ser usadas para explorar os resultados ou
realizar uma anélise exploratoria. Estas abordagens para anélise, calibracao e verificacao
do modelo requerem um grande ntmero de execucoes de simulagao de cenérios repetidos
e com muitas combinagoes de parametros e de configuracoes do modelo. Para facilitar
esse processo, foi implementada a integracao da ferramenta de simulagago MASE-BDI com
o conjunto de bibliotecas estatisticas para quantificacao de incerteza PSUADE. Houve a
criacado de um driver e de uma interface para automatizar o pré e pos-processamento de
entradas e saidas para muitas execucoes do modelo.

Todos os experimentos foram testados em um modelo espacialmente explicito de uso
e cobertura da terra. A ferramenta de simulacdo é o MASE-BDI, desenvolvido pela
Universidade de Brasilia. MASE é o acronimo para MultiAgent System for Environmental
simulation que implementa o modelo de racionalidade Belief-Desire-Intention (BDI). No
BDI, os agentes possuem crencas, um conjunto de informacgoes que se tem sobre o ambiente
que habitam e que alteram tanto a percepgao quanto o seu pensamento sobre o mundo.
Desejos, que representam as atitudes motivacionais dos agentes que os conduzem a um
curso de agao, e intencoes, que sao o conjunto de planos montados pelo agente para que
ele atinja os seus objetivos. A funcao objetivo da andlise dos resultados da simulacao
¢ uma métrica estatistica de aptiddo denominada figura de mérito (FoM), determinada
pela razao entre as mudancas na terra que foram preditas corretamente sobre a soma das
mudangas observadas (Pontius et al. 2008). Essa métrica quantifica se os acertos de um
mapa de uso e cobertura da terra sao maiores que os erros na predicao da quantidade de
conversao entre os diferentes usos e coberturas da terra e da alocacao dessas mudancas
N0 espaco.

A metodologia utilizada na tese foi incremental e evolutiva. Inicialmente, foi realizada
uma avaliacao do modelo com a utilizacao dos métodos mais difundidos na literatura:
analise de sensibilidade um-fator-de-cada-vez (OAT - One-factor-At-a-Time) para quatro
fatores de entrada e um ntmero varidvel de replicagoes. Para avaliar a qualidade da
saida do modelo, a métrica de aptidao foi avaliada por meio de intervalos de confianca.
Os resultados mostraram que apesar de ser possivel diferenciar os fatores de entrada
sensiveis e nao sensiveis, a variabilidade da saida era tao grande que a incerteza impedia
qualquer analise mais robusta. Percebeu-se que diferentes replicacoes da amostra afetavam
consideravelmente os resultados.

A revisao de literatura apresentou um cenario apelidado por [Angus and Hassani-

Mahmooei (2015) de "anarquia metodologica". Partindo da premissa que ha grandes
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discrepancias nas orientagoes provenientes da revisao de literatura, optou-se por uma in-
vestigacao profunda e abrangente dos itens que eram passiveis de influenciar os resultados
do modelo. Esse segundo passo da investigacao propos uma adaptacao e detalhamento do
workflow para anélise de saida do modelo, disponiveis na literatura. A partir da proposta
de [Pianosi et al.| (2016) propos-se uma metodologia com trés passos: 1) projeto do expe-
rimento; 2) anélise de incerteza; e 3) analise de sensibilidade. A contribuicao baseia-se
na insercao explicita de métodos para a definicao da estabilidade da variancia, ou seja, o
tamanho minimo da amostra para o estudo de caso especifico. Os pesquisadores divergem
consideravelmente sobre qual deve ser o tamanho minimo de uma amostra, dado um de-
terminado nimero de fatores de entrada. Postula-se que a variabilidade do parametro de
saida sob investigacao deve nortear essa escolha. Apenas quando a variancia atingir um
ponto de estabilidade, é possivel obter o ntimero minimo de simulacoes necessarias para
que as conclusoes sejam validas.

Além disso, os experimentos foram projetados para investigar a eficacia e eficiéncia
da estratégia de amostragem e do método de andlise de sensibilidade. Foram avaliadas
todas as possiveis combinacoes entre as estratégias de amostragem comuns na literatura
(Monte Carlo, Hipercubo Latino, Array Ortogonal, Fourier, entre outros) e os métodos de
sensibilidade (regressao, correlagao, OAT, Sobol, Teste Delta, processos gaussianos, entre
outros). Todas as possiveis combinacoes resultaram em uma miriade de simulacoes. Para
executar esse grande nimero de testes, foi necessario implementar uma integracao entre a
modelo de simulacao MASE-BDI e a ferramenta estatistica de quantificacao de incerteza
PSUADE (Tong, 2005). Dessa forma, por meio de uma interface de usuario é possivel
determinar os fatores de entrada e saida, o tamanho da amostra e a técnica de amostra-
gem. O sistema automaticamente informa esses parametros para a ferramenta e simula
cada um desses cenarios. Apos esse calculo, é possivel selecionar os métodos de analise de
incerteza e sensibilidade e calcular os respectivos indices. De forma surpreendente, mé-
todos amplamente difundidos apresentaram resultados controversos quando aplicados no
estudo de caso. Ademais, diferentes métodos de amostragem produziram diferentes saidas
para o mesmo método de analise de sensibilidade. Em alguns casos, diferentes tamanhos
de amostra indicaram resultados conflitantes para uma mesma métrica de sensibilidade.

A partir dessas observacoes é possivel afirmar que nenhum MBA pode aplicar um
método sem antes questiond-lo. Uma série de investigacoes preliminares sao obrigatorias
para garantir que os métodos de incerteza e sensibilidade sao adequados para o estudo de
caso em questao. Para tornar os experimentos mais eficientes, uma utilizacao integrada de
analise de incerteza e sensibilidade foi a op¢ao metodolodgica escolhida. Os resultados da
analise de incerteza alimentavam a anélise de sensibilidade, promovendo uma analise mais

completa das saidas do modelo. O workflow proposto é a ferramenta para guiar outros
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pesquisadores da drea de MBA e evitar que erros comuns sejam cometidos. Um exem-
plo sdo os métodos de regressao-linear e correlacao, amplamente difundidos em modelos
ecologicos, mas que se mostraram inadequados para a avaliacao do MBA em questao.

Na ultima etapa da tese, optou-se por enquadrar os experimentos em um framework
geral para avaliacao de modelos inicialmente proposto por Augusiak, Van den Brink, and
Grimm)| (2014)). "Avalidagdo"é a composi¢ao entre avaliagao e validagdo que se ancora no
ciclo de modelagem e propde atividades especificas para verificar cada passo da concepgao
e simulacao de um modelo. O foco desse trabalho concentrou-se nos métodos de verifica-
cao das saidas, andlise e corroboracao das saidas do modelo. Para cada item, fornece-se
o passo a passo de atividades, aplicadas ao modelo MASE-BDI. Para ilustrar o potencial
dessa metodologia, foram propostos dois experimentos, um exploratorio e um explana-
torio, para gerar versoes simplificadas, computacionalmente eficientes, e que exploram
comportamentos especificos do sistema em questao. A simplificagdo baseia-se na reducao
da variabilidade dos fatores de entrada, de modo a aumentar a confianca nos resultados
das predicoes. O experimento exploratério possibilitou a investigacao de comportamentos
extremos do sistema, mantendo a variabilidade dos fatores. O experimento explanatorio
reduz a variabilidade de saida. Ao refinar o fator de entrada que mais influencia o re-
sultado, foi possivel reduzir as incertezas. Ambos os experimentos mantém a média da
varidvel de saida constante.

O resultado é uma avaliacao integral do modelo, no que concerne a varidvel de saida
de interesse. A sequéncia de experimentos identificou quais os métodos mais adequados
e eficientes para o estudo de caso. Entretanto, a aplicacao desses métodos ilustra como
deveria ser uma anélise integrada de incerteza e sensibilidade em um MBA. Essa iniciativa
favorece a transparéncia e permite o escrutinio e a replicabilidade por parte da comunidade
de pesquisa. O resultado ¢ um modelo ajustado e avaliado, cuja média registrada para
funcao objetivo é maior que 51%, melhorando significativamente os resultados iniciais
obtidos com as orientagoes provenientes da literatura.

Apesar de os testes terem sido realizados em um modelo especifico, as consideracoes
podem ser generalizadas para todo o campo de pesquisa. A integracao de andlise de
incerteza e sensibilidade deve ser feita rotineiramente nos processos de avaliacao de um
modelo. Seguindo as etapas estabelecidas pelo workflow, pesquisadores podem aumentar

o nivel de confianca nos resultados de suas simulacoes e promover um uso mais racional
e eficiente dos MBAs.

Palavras-chave: anélise de incerteza, analise de sensibilidade, avaliacao integrada, vali-

dacao de modelo, modelo baseado em agentes, uso da terra



Extended Abstract

Research on land use change and land cover are essential to promote insightful manage-
ment of land use to refrain environmental damage. Also, it is a complex process that
relates to the interaction between environmental, economic and social systems at differ-
ent temporal and spatial scales. Understanding the dynamics of these systems focuses
not only on the parts but on the behavior that emerges from the interaction between
them. Agent-based model (ABM) is a useful technique for studying these phenomena
since ABMs model the interactions between autonomous agents and their environment.
Computational simulations are the most used technique to evaluate these models, to ex-
plicitly test the effects of human decisions in complex situations.

While ABMs provide a powerful tool for analyzing emerging behavior, their useful-
ness is limited by difficulties in analyzing their results, which encourages criticism and
questioning about the actual contribution of frameworks to decision support. The most
popular tool for model evaluation is sensitivity analysis, as it quantifies the effects of
the changes in the input factors of the model in the predictions of the model. How-
ever, most of the sensitivity analysis methods are not adequate or are insufficient to deal
with the specificities arising from the complexity of ABMs. Among these, we highlight
the stochasticity, non-linearity and the ad hoc parametrization of ABMs, which imply
a considerable epistemic uncertainty. Without proper investigation, there are significant
chances of finding results that can be a consequence of biases.

Although recognizing the particular differences of the numerous ABMs, this thesis
examines whether these challenges can be overcome in the context of a case study of land
use and land cover in the Cerrado of the Federal District, using the MASE-BDI multiagent
tool. The objective of this thesis is to evaluate the application of several methodologies
of uncertainty quantification and sensitivity analysis to analyze ABM output. We aim to
perform an integrated application of uncertainty and sensitivity techniques and evaluate
the impacts that differences in sample sizes, sampling techniques, and SA methods may
have on model output. In addition, a workflow is proposed so that these techniques can
be applied in an organized and systematic way. More broadly, a general ABM assessment

methodology is applied, which includes different approaches to produce simplified versions
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of the model that can be used to explore the results of the model or perform exploratory
analysis.

These approaches for model analysis, calibration, and verification require a large num-
ber of repeated scenario simulation runs, with many combinations of model parameters
and configurations. To facilitate this process, we implemented the integration of the
MASE-BDI simulation tool with PSUADE, a set of statistical libraries for uncertainty
quantification. A driver and an interface have been created to automate pre and post-
processing of inputs and outputs for many models’ runs.

All experiments were performed in a spatially explicit model of land use and land cover
change. The simulation tool is MASE-BDI, developed at the University of Brasilia. MASE
is the acronym for MultiAgent System for Environmental simulation that implements the
Belief-Desire-Intention (BDI) rationality model. In BDI, agents have beliefs, a set of
information about the environment they inhabit that change both perception and thinking
about the world. Desires, which represent the motivational attitudes of the agents and
leading them to a course of action, and, moreover, intentions, a set of plans mounted by
the agent to achieve his goals. The objective function of the output analysis is a statistical
metric called figure of merit (FoM), determined by the ratio between the changes in the
land use that were predicted correctly over the sum of the observed changes. This metric
quantifies whether the correctness of land use and land cover map is higher than the errors
in predicting the amount of conversion between the different uses and land cover and the
allocation of those changes in space.

The methodology used in the thesis was incremental. Initially, an evaluation of the
model was performed using the most used method in the literature: one-factor-at-a-time
(OAT) sensitivity analysis. We investigated four factors and sampled it within its range
with a variable number of replications. To assess the quality of the output of the model,
the fitness metrics were evaluated through confidence intervals. The results showed that
although it is possible to differentiate between the sensitive and non-sensitive input factors,
the variability of the output was so significant that the uncertainty prevented any more
robust analysis. It was found that different replications of the sample affected the results
considerably.

The literature review performed by |[Angus and Hassani-Mahmooei (2015) presented
a scenario of "methodological anarchy". Based on the premise that there are major
discrepancies in the guidelines found in the literature, we prosecuted an in-depth and
comprehensive investigation of the items that were likely to influence the results of the
model. The second step of the research proposed an adaptation and detailing of the
workflow for model output analysis. Based on the framework proposed by |[Pianosi et al.

(2016)), we tailored a methodology with three necessary steps: 1) design of experiment; 2)
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uncertainty analysis; and 3) sensitivity analysis. The contribution is the explicit insertion
of methods to define the variance stability, i.e., the minimum sample size for the specific
case study. Researchers diverge considerably on what is the minimum sample size, given a
number of input factors. We postulate that the variability of the output parameter under
investigation should guide this choice. Only when variance reaches a stability point, we
can define the minimum number of simulations necessary for the conclusions to be valid.

Besides, the experiments were designed to investigate the effectiveness and efficiency
of the sampling strategy and the method of sensitivity analysis. We assessed all possible
combinations of the sampling strategies shared in the literature (Monte Carlo, Latin Hy-
percube, Orthogonal Array, Fourier, among others) and methods of sensitivity (regression,
correlation, OAT, Sobol, Delta test, Gaussian processes, among others). To test all these
combinations resulted in a myriad of simulations. To perform this large number of tests,
it was necessary to implement integration between the MASE-BDI simulation model and
the statistical uncertainty quantification tool PSUADE (Tong, 2005). It is possible to
determine input and output factors, sample size and sampling techniques through a user
interface. The system automatically informs these parameters to the MASE-BDI tool
and simulates each of these scenarios. After the simulation, it is possible to select the
uncertainty and sensitivity analysis methods and calculate the respective indices. Sur-
prisingly, some of the methods that are used continuously in ABM presented controversial
results when applied in our case study. Also, different sampling methods produced dif-
ferent outputs for the same sensitivity analysis method. In some cases, different sample
sizes indicated conflicting results for the same sensitivity metric.

From these observations, it was possible to affirm that no ABM can apply a method
without first questioning it. Many preliminary investigations are required to ensure that
the methods chosen for uncertainty and sensitivity analyzes are reliable to the particular
case. To raise the computational efficiency of these tests, we applied an integrated use
of uncertainty analysis and sensitivity analysis as the baseline assessment. The results of
the uncertainty analysis were the input of the sensitivity analysis, promoting a complete
exploration of the model outputs. The proposed workflow is a tool to guide other ABM
researchers and prevent common mistakes from being made. An example is the methods
of linear regression and correlation, widely diffused in ecological models but which proved
inadequate for the evaluation of the ABM under study.

Finally, we chose to apply a general framework for model evaluation, initially proposed
by |Augusiak et al. (2014). "Evaludation" is the composition between model evaluation
and validation. It is anchored in the modeling cycle and proposes specific activities to
check and verify each step of the design and simulation of a model. We focused on the

last three stages of the evaludation process: model output verification, model analysis,
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and model output corroboration. For each item, we provide the step-by-step of activities,
applied to the MASE-BDI model. To illustrate the potential of this methodology, two
experiments were proposed to generate simplified, computationally efficient versions that
exploit specific behaviors of the system in question: an exploratory and an explanatory
experiment. The simplification is based on the reduction of the variability of the input fac-
tors to increase confidence in the prediction results. The exploratory experiment allowed
the investigation of boundary behaviors of the system while maintaining the variability
of the factors. The explanatory experiment reduces output variability. By refining the
input factor that most influences the result it was possible to reduce the uncertainties.
Both experiments maintain the mean of the output variable of interest.

The overall result is an integral evaluation of the model, regarding the output variable
of interest. The sequence of experiments identified the most appropriate and efficient
methods for the case study. However, the application of these methods illustrates how
integrated analysis of uncertainty and sensitivity in an ABM should be. This initiative
promotes transparency and allows scrutiny and replicability by the research community.
The result is an adjusted and evaluated model whose average for the objective function
is higher than 51%, significantly improving the initial results obtained with the literature
guidelines.

Although the tests have been performed in a specific model, the considerations can be
generalized for the entire field of research. The integration of uncertainty and sensitivity
analysis should be done routinely in the evaluation processes of a model. Following the
steps established by the workflow, researchers can increase the confidence level in the

results of their simulations and promote more rational and efficient use of ABMs.

Keywords: uncertainty analysis, sensitivity analysis, integrated assessment, model vali-

dation, agent-based model, land use
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Chapter 1
Introduction

The Earth’s environment is changing at an unprecedented pace. An important area of
research is the modeling of land use and land cover change (LUCC). These models try
to determine what are the factors of land use change, envision when changes will happen
and where, and assess how choices in public policy can influence this change. Agent-based
model (ABM) is the most applied approach in LUCC research (Matthews, Gilbert, Roach,
Polhill, & Gotts, 2007; Parker, Manson, Janssen, Hoffmann, & Deadman| 2003; Pontius,
2000; Pontius & Neeti, 2010; [Rindfuss, Entwisle, Walsh, Li, et al.l 2008} Verburg, 2006).

Agent-based modeling of social-ecological systems has been a valuable tool for under-
standing and supporting sustainable management of resources. ABM - in ecology also
referred to as individual-based model, has become a preferred modeling tool across a wide
range of fields. The main reason is that ABMs represent individual agents explicitly,
and are ideally suited for including agent diversity and interactions between individual
agents (Railsback & Volker, 2011). Also, it can capture the continuous changes due to
the feedback of internal or external factors and can take place across different temporal
and spatial scales (Schulze, Miiller, Groeneveld, & Grimm) 2017).

1.1 Motivation

LUCC models require proper computational frameworks. Model simulation is the act of
reproducing the behavior of a phenomenon in a computer environment (Parker, Berger,
& Manson, 2001). In the last two decades, computer simulation, specifically agent-based
simulation (ABS) has become indispensable in many scientific fields such as social sci-
ences, environmental sciences, economics, and computer sciences. This intensive use of
simulation is a shift in the scientific paradigm itself. Research methods usually are based

on induction, the discovery of patterns in empirical data, or deduction, the specification



of some axioms to prove logical consequences derived from them. |G. Gilbert| (1996) argues

that simulation is the third alternative to science. Axelrod (2003) states that:

Like deduction, [simulation| starts with a set of explicit assumptions. But unlike
deduction, it does not prove theorems. Instead, a simulation generates data that
can be analyzed inductively. Unlike typical induction, however, the simulated data
comes from a rigorously specified set of rules rather than a direct measurement of
the real world. While induction can be used to find patterns in data, and deduction
can be used to find consequences of assumptions, simulation modeling can be used
as an aid [to] intuition.

Computer modeling can be defined as the computer-aided construction of an abstrac-
tion of an observed system for a specific reason (Sterman) 1991). Thus, a computer sim-
ulation has the purpose of driving a model of a system with proper inputs and observing
the corresponding outputs (Bratley, Fox, Schrage, & Schouten, [1984). There are different
methodologies to build a computer model, and therefore an ABM. Each methodology at-
tempts to provide a systematic guideline to researchers. Multi-agent systems, a paradigm
from the computer science based on distributed artificial intelligence (AI), is one of the
approaches that have tried to provide robust methodologies, such as Tropos (Bresciani,
Perini, Giorgini, Giunchiglia, & Mylopoulos, 2004), Prometheus (Padgham & Winikoff,
2003), and Gaia (Wooldridge, Jennings, & Kinny, 2000)), to guide researchers in the mod-
eling process.

Regardless of ‘how’ the computer model was built, under which framework, the re-
sulting ABS presents several features which attract multidisciplinary research teams to
simulate complex and adaptive system. The idea beneath ABS is that the researcher may
be able to understand the complexity of the different components not by trying to model
it at the global level but analyzing emergent properties resulting from local interactions
between autonomous agents and the environment. This bottom-up emergence was the
new way of thinking proposed by |Epstein and Axtell (1996), which allows the researcher
to explain complex social phenomena from simple but dynamic representations. Today, a
new approach is the pattern-oriented modelling proposed by |Grimm and Railsback|(2012).

The modeling process may also have different designs. Models may be conceived
from a theoretical approach or a data-driven, descriptive approach. Theoretical models
are abstractions that try to extract the basic mechanisms and decision points of some
phenomena, usually simple enough to be used as an illustration of a specific theory or
hypothesis. This modeling approach is also known as KISS, Keep It Simple, Stupid,
which requires the modeler to make preliminary choices and to eliminate elements that
seem unimportant at first (Bommel, |2017)). Another alternative proposed by |Edmonds
and Moss (2005)), is the KIDS, Keep It Descriptive, Stupid. The authors state that the

simulated model must relate to the target phenomena in the most straight-forward way



possible, taking into account the widest possible range of evidence. This methodology
considers the key role of empirical data throughout the modeling stages.

Both modeling approaches have its limitations. In KISS, the modeler takes the risk to
eliminate information that could be fundamental to describe the structure and dynamics
of the studied system correctly. Even in simple models, there is a risk of the modeler
unintentionally introduce simulation bias. In KIDS approach there is a higher probability
because of the larger more substantial of data and assumptions. Also, a KIDS model may
become so complicated that it is not possible to explain the results.

There are many reasons for an ABM other than prediction (Epstein, 2008). The
purpose of the ABM, whether it is a simple or a descriptive approach, is a different issue
to consider. There is still much debate whether ABS should be viewed as a heuristic tool
to explore ideas, gain system understanding, and test hypothesis or whether they can also
serve as a management and decision support tool for specific case studies (Matthews et
al., 2007). Both model purposes are important and sometimes there is no clear boundary
between them. However, |Groeneveld et al.| (2017) extensive review of land use ABMs
showed that the overwhelming majority of ABMs are used for system understanding. In
fact, there is a gap in their use for solving real-world problems by guiding for the design
of management and policy strategies in specific case studies (Schulze et al., 2017). This

lack of predictive power of ABMs is still an open challenge to be overcome.

1.2 Problem

The use of ABM is associated with some challenges that arise, such as data requirements,
process uncertainty, and model validity. There is a need for available datasets to reflect
the actual heterogeneity of the agents, environment, and processes that are required to
make use of ABM’s full power. Observation data can be scarce, and modelers will often
have to resort to ad hoc implementation and parametrization. The parameters of these
models exert a great influence on the performance of the models, and each represents
assumptions regarding the modeled system. How to specify the model parameters is not a
trivial problem (Duan et al., 2006). The combined effect of several factors, including errors
in observed data, method options, calibration criteria, and errors in model formulation
make parameter estimation difficult. This problem of over-parametrization aggravates this
difficulty, as the models are progressively more complex. There is a tendency to include
more and more physical layers and information, while the calibration of the models is still
done with a limited amount of data (Gan et al., 2014).

The common criticism on ABM/ABS begins with the stochasticity problem, because

some factors will change randomly or following some probabilities and therefore sometimes



the same initial parameters result in a different output. This require exploring the model
under different parameter settings. A second criticism is the subjectivity due to unclear
assumptions and because of the great amount of degrees of freedom. ABMs have solid
methodological foundations but researchers have a lot of freedom regarding the design of
agent structure, interactions, adaptations and strategies. Another aspect of the criticism
is the equifinality or identifiability problem. Multiple combinations of parameters and
discrepancy function can yield the same experimental prediction (Walter, 1987)). Besides,
there is also the dimensionality problem. Modelers tend to include more and more layers of
data and submodels just because the data is available. The computational cost increases
dramatically with the number of input parameters.

Thus, data gaps, process uncertainty, and ad hoc parameterization entail considerable
epistemic uncertainty. This raises doubts about the validity of agent-based modeling ap-
proaches, primarily, since a sharing understanding of suitable validation and calibration
procedures for ABMs has not yet been established. Other aspects of ABM validation
can include metamorphic validation (Olsen & Raunak!| 2016}, agent-based services for the
validation and calibration of multi-agent models (Y. Li, Brimicombe, & Chaol 2008), or
different validation methodologies Kliigl (2008). Behavioral validation of ABMs, if con-
ducted at all, has so far been restricted to the comparison of overall trends in simulation
datasets. While most ABM modelers perform scenario analysis, formal uncertainty and
sensitivity analysis on parameters still have rarely been used. Exceptions are the use
of Monte-Carlo techniques in connection with stochastic submodels (Valbuena, Verburg,
Veldkamp, Bregt, & Ligtenberg, [2010) or sampling of agent characteristics (Schreinemach-
ers & Berger, 2011)).

As a consequence, it is not surprising that a perceived lack of established formal mea-
sures for validation and calibration is one of the frequently cited problems of ABMs (Zim-
mermann, Heckelei, & Dominguez, [2009). Therefore, it is important to know how various
parameters influence the model behavior, especially in stochastic ABM. This requires ex-
ploring the model behavior under different parameter settings. However, running a model
for all possible parameter combinations is usually not practically feasible. If relationships
between model parameters and output are not too complex, statistical tools may be used
to gain an understanding of model behavior for various parameter settings, based on a
limited number of model runs.

All these characteristics imply that quantitative analysis should be performed to test
the veracity of the modeler’s claims, to provide transparency and to grant some scientific
rigor to the simulation results. However, a review of the application of quantitative
analysis in ABM performed by |Angus and Hassani-Mahmooei (2015)) shows that this is

still not a practice in ABM science. |Richiardi, Leombruni, Saam, and Sonnessa| (2006])



states:

Agent-based models have solid methodological foundations. However, the greater
freedom they have granted to researchers (regarding model design) has often degen-
erated in a sort of anarchy (concerning design, analysis, and presentation).

Concerning the analysis, there is a general guideline (Saltelli & Annoni, 2010) that
recommends that at least two activities should accompany modeling. The first is to char-
acterize the empirical probability density function and the confidence bounds for model
output, i.e., answer how uncertain is the inference. This task is also referred to as un-
certainty analysis (UA). The second task is to identify factors or groups of factors most
responsible for the uncertainty in the prediction, i.e., to identify where this uncertainty
is coming from. This is the sensitivity analysis (SA). SA is generally recognized as a
worthwhile step of analysis. However, the work of Shin, Guillaume, Croke, and Jake-
man| (2013) points to a standard omission on the application of this technique. Also,
according to |Saltelli and Annoni (2010), most of the times, researches perform a per-
functory quantitative analysis. Their review showed that rather often, modelers apply
popular but proven inefficient methods of UA and SA. Although not yet widespread,
UA-SA have been applied to ABMs in a few previous studies (Fonoberova, Fonoberov, &
Mezi¢|, | 20135 |[Ligmann-Zielinskal, 2013} |Ligmann-Zielinska & Sun, 2010a; Parry, Topping,
Kennedy, Boatman, & Murray, 2013]).

1.3 Research Question

The research question we want to answer is how uncertainty quantification may be applied
to improve analytical confidence in LUCC ABM outputs? To answer this question we need
to investigate which UA and SA methods should a modeler use for his ABM. The existing
reviews (Pianosi et al., |2016; ten Broeke, van Voorn, & Ligtenberg, 2016 are a good
start, but they did not consider issues such as the empirical initialization of the agents,
the limitations of data collections, the throughout empirical validation or the role of data
in the calibration and validation processes.

A second question to be answered is how the quantitative analysis of a model out-
put can help the overall validation of the model? There is much debate on the correct
approaches to validate ABMs but at the end, in the words of |Jain| (2011), one should
"not trust the results of a simulation model until they have been validated by analytical

modeling or measurements."



1.4 Objective

Although recognizing the particular differences between the numerous ABMs, this work
attempts to fill the gap between model output analysis and a general validation, to build an
empirical guide to improve confidence in data-driven ABM. Therefore, it can be advocated
that additional stages must be incorporated to the state-of-the-art reviews, to ensure
reproducibility, to incorporate observation data when available, and to avoid perfunctory
model analysis.

The present thesis examines whether these challenges can be overcome in the con-
text of a case study of LUCC in the Cerrado of the Brazilian Federal District, using
the MASE-BDI multi-agent tool. It discusses different approaches to model validation,
calibration, and uncertainty analysis to deal with the uncertainty involved using ad hoc
parametrization, especially in the initialization of the ABS. As these approaches require
large numbers of simulation run, it presents the integration of the MASE-BDI simulation
framework to a set of statistical libraries for uncertainty quantification, to automate the
pre-and post-processing of MASE-BDI model” inputs and outputs. Another contribution
is the final outputs itself. A verified and statistical sound prediction for the land use of
the Brazilian Cerrado.

The objective of this thesis is to evaluate the application of several methodologies of
uncertainty quantification in the analysis of results of ABMs. Specifically, to perform an
integrated application of UA and SA techniques and evaluate the impacts that differences
in sample sizes, sampling techniques, and SA methods may have on model output. The

accomplishment of this will result on three main contributions:

e The proposal of an empirical workflow of uncertainty quantification to perform

model output analysis, adherent to a evaluation/validation model framework;

e To evaluate the impacts that differences in sample sizes, sampling techniques, and

sensitivity analysis methods may have on model output;

e Apply those recommendations in the MASE-BDI case study, in a general experimen-
tal ABM assessment, based on observation, hypothesis testing an reproducibility to

produce more transparent, reproducible, and statistical sound ABM results.

The exploration of the model gives us a better understanding of the model significance.
Another contribution of this work is a series of scientific publications produced during this
Ph.D. The references are detailed in Appendix [A]



1.5 Thesis outline

The document is structured in a way that there is not a specific chapter of state of the
art. Each chapter tackles a review of the main research works concerning the scope of the
subject under assessment. Thus, each chapter is somehow self-contained.

The development of the thesis takes place in three stages: the literature review and
an initial investigation, followed by an extensive comparison of methods and approaches,
included in a flow to facilitate the application, and finally a general evaluation of the
model, applying best practices to generate simplified, robust, and statistically reliable
versions of the model.

Chapter [2] presents an overview of the literature on uncertainty assessment in ABS.
The MASE-BDI ABM is introduced, and the parameters used in the initialization of
the simulation were eligible as a case study. We perform initial experimentation: an
exploratory study was performed based on the One-Factor-At-a-Time (OAT) method,
which is widely used in analyses of ABMs results. The results show that even the most
popular practice in the literature may be inadequate for all ABMs. It is evident that
the method and sample size affects the model analysis. The exploratory experiment
demonstrated that the results have great uncertainty and that the predictions of the
simulation were not reliable.

In Chapter [3] more information about the MASE-BDI ABM is provided. We propose
an experimental design to search for the best methods to be applied in ABMs when com-
paring different UA and SA techniques for efficiency and effectiveness. A baseline scenario
was established and derived from several lines of research around three main issues: i)
impact of different sampling methods; ii) impact of different sample sizes; iii) impact of
different SA methods, besides the verification of the convergence between different exper-
iments. To execute this large number of simulations, we implemented the integration of
the MASE-BDI framework with PSUADE statistical calculations tool. We discuss the
discrepancy found in the literature and compare it with our results. We postulate that
the minimum sample size should be at least equal to the stability point of the variance.
Finally, we propose a workflow to perform model analysis, organizing and detailing the
activities systematically.

Chapter [4] applies the concepts of the previous chapters in the form of UA-SA inte-
grated output assessment and develops a simplified and more computationally efficient
version of an ABM. Two simplifications are proposed: exploration and explanation. Ex-
ploratory experiments make it possible to investigate the extreme behavior of the sys-
tem, maintaining the variability of the factors. Explanatory experiments reduce output
variability. In the next step, we chose to integrate these analytical experiments with a

validation structure of the model as a whole, in an "evaludation" process (evaluation +

7



validation). The steps for verifying the outputs of the model, analyzing the model and
corroborating the results are detailed and exemplified step by step to provide a guide for
similar work. This initiative promotes transparency and allows scrutiny and replicability
by the research community.

Chapter [5| discusses how the application of a UA and SA integrated assessment, orga-
nized within a workflow and viewed under a macro prism of evaluation of the modeling
process, can increase the reliability and usefulness of ABMs. The lack of specific method-
ologies for ABMs is one of the reasons that affect reliability in the results predicted by
these models. In the end, we evaluate the strengths and limitations of existing SA meth-
ods. Tt should be remembered that SA can have several goals. In the context of this thesis,
SA methods are designed to evaluate which parameters produce greater uncertainty in

the model result. Thus, it is necessary to limit the number of factors studied.



Chapter 2

Uncertainty Assessment in Agent-Based

Simulation: An Exploratory Study

Book Chapter published in:
Sukthankar G., Rodriguez-Aguilar J.
(eds) Autonomous Agents and
Multiagent Systems. AAMAS 2017.
Lecture Noles in Computer Science,
vol 10642. Springer, Cham.

2.1 Introduction

LUCC investigation is of importance to promote insightful management of Earth’s land
use to refrain environmental damage. Moreover, LUCC is a complex process that relates to
the interaction between environmental, economic and social systems at different temporal
and spatial scales. Computational frameworks are the most used techniques to simulate
LUCC models for its ability to cope with its complexity.

ABM has been incorporated into LUCC models, and many other real-world problems,
to explicitly simulate the effects of human decisions in complex situations. They are based
on the multiagent system paradigm that features autonomous entities that interact and
communicate in a shared environment. These entities perceive the environment, reason
about it and act on it to achieve an internal objective. Therefore, ABM can capture
emergent phenomena and provide an original description of the modeled system.

The Multi-Agent System for Environmental simulation (MASE) is a freeware software
developed at the University of Brasilia. MASE-BDI is an extension of MASE for ex-
ploring potential impacts of land use policies that implement a land use ABM (Ralha &
Abreu, |2017). Considering the purpose and reliance upon external data, MASE-BDI may



be characterized as a predictor-type ABS (Heath, Hill, & Ciarallo, 2009): a data-driven
model with the overall goal of performing medium to long-term predictions. MASE-BDI
simulations were calibrated to match available GIS data (Coelho et al. 2016). Simulation
results were validated according to a standard methodology for spatially explicit simula-
tions (Pontius et al.,|2008) and then compared to similar frameworks (Ralha et al., 2013]).
MASE-BDI performance was found to be higher than other 13 LUCC modeling appli-
cations with nine different traditional peer-reviewed LUCC models according to [Pontius
et al| (2008). Despite this fact, the lack of uncertainty assessment and sound experi-
mentation is the main reason for criticism and questioning about the real contribution of
frameworks to decision support for LUCC.

According to Bommel (2017), any ABS has levels of uncertainty and errors associ-
ated with it. ABS continues to harbor subjectivity and hence degrees of freedom in the
structure and intensity of agent’s interactions, learning, and adaptation (Lee et al.,2015).
There are significant chances of finding results which may be the consequence of biases.
Furthermore, almost every ABS review have expressed the need for statistical methods
to validate models and evaluate the results to improve the transparency, replicability and
general confidence in results derived from ABS. These problems continue to be underes-
timated and often neglected. Some authors such as Heath et al.| (2009), likewise, argued
that validation is one of the most critical aspects of a model building because it is the only
means that provides some evidence that a model can be used for a particular purpose.
However, at least 65% of the models in their survey were incompletely validated. Of the
models validated in some way, surprisingly less than 5% used statistical validation tech-
niques. Traditionally, ABS types of systems are difficult to analyze given their non-linear
behavior and size (Casti, 1995).

Treatment of uncertainty is particularly important and usually difficult to deal with in
the case of ABM’s stochastic models. While acknowledging the differences in data sources
and the causes of inconsistencies, there is still the need to develop methods to optimally
extract information from the data, to document the uncertainties and to assess common
methodological challenges. To look away could reinforce inconsistent results and damage
the integrity and quality of simulation results.

This work aims to discuss how uncertainty is being portrayed in ABS and to per-
form an exploratory study to use statistical methods to estimate uncertainty in an LUCC
agent-based prediction simulation tool. The MASE-BDI system will be the simulator
under study. The Cerrado case study simulations (Ralha et al., 2013) will be the basis
for the analysis. As a first investigation step, we assessed the uncertainty within the
inputs and configuration parameters of the simulation. Our final goal would be to doc-

ument, to quantify and to foresee its propagation impacts in the results. A particular

10



challenge in performing measurements is coming up with appropriate metrics. The thor-
ough experimentation and repeatability would, therefore, improve our understanding of
the uncertainty and relations among the variables that characterize a simulation. The re-
mainder of the paper is structured as follows. In Section we present some background
on uncertainty and in Section [2.3] some related work. In Section we summarize the
MASE-BDI characteristics and case study. We also present the methodology for the ex-
ploratory study. In Section we show results together with discussions. In Section

we conclude with a summary.

2.2 Overview of uncertainty in ABS

The relevance of the treatment of uncertainty is dependent on the modeling objective.
Requirements regarding model uncertainty may be less critical for social learning models,
where communication and interaction among stakeholders would be of more significance.
Conversely, parameters, measurements, and conditions used for model runs influence much
more data-based predictions of future states. Projection, forecasting and prediction mod-
els are usually very affected by the variation of a system output from observed models.

Also, there are different sources of uncertainty that can influence the prediction of a
simulation model. It can arise from simulation variability in stochastic simulation models
or from structural uncertainty within assumptions of a model. We will emphasize input
uncertainty, what McKay, Morrison, and Upton| (1999a)) defined as incomplete knowledge
of "correct" values of model inputs, including model parameters. If the inputs of a model
are uncertain, there is an inherent variability associated with the output of that model.
Therefore it is crucial to communicate it effectively to stakeholders and technical audiences
when outputting model predictions.

Uncertainty in environmental prediction simulations may limit the reliability of pre-
dicted changes. This issue is one of the recurrent conclusions of the Intergovernmental
Panel on Climate Change (IPCC). Back at 1995, IPCC stated that "uncertainties in the
simulation of changes in the physical properties have a significant impact on confidence in
projections of future regional climate change"(Houghton et al., |1996) and that was nec-
essary to reduce uncertainties to increase future model capabilities and improve climate
change estimates. Since 2010, IPCC dedicates an integral feature of its reports to the
communication of the degree of certainty within IPCC assessment findings (Mastrandrea
et al.l [2010). In the most recent report, IPCC assesses a substantially larger knowledge
base of scientific, technical and socio-economic literature to reduce uncertainty and uses
a large number of methods and formalization (IPCC| 2014). Especially for future pre-

dictions, validating a model’s predictive accuracy is not straightforward due to a lack of
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appropriate data and methods for "validation" (Kelly (Letcher) et al., 2013). That is an-
other reason why applications, frameworks, and methods of formalization in this research
area are relevant and should be promoted.

Regarding the type of modeling, there are approaches such as Bayesian networks,
able to explicitly deal with uncertainty in the interpretation of data, measurements or
conditions. In contrast, other approaches such as ABMs require the development of com-
prehensive or compelling analysis of output data and a lot of resource-intensive attention
(Lee et all [2015)). The level of testing required to develop this understanding is rarely
carried out, mainly due to time and other resource constraints (Kelly (Letcher) et al.)
2013).

Indeed, uncertainty assessment in ABM can be a hard task for even relatively small
models. Due to their inherent complexity, ABS is often perceived as a "black box", where
there is no purpose in explaining why the agents acted as they did, as long as the modeler
presents some form of validation (i.e., shows a good fit). According to Marks| (2007),
ABMs simulations can prove existence, but not in general necessity. Despite that, there is
a research effort to make ABS more transparent and to demonstrate that the simulations
behave as intended through efforts in standardization in simulation model analysis and
result sharing (Lorscheid, Heine, & Meyer} [2012). Besides from verification, uncertainty
assessment aims to increase understanding, to improve the reliability of the predicted
changes and to inform the degree of certainty of critical findings. To achieve this effort,
some techniques and methods such as uncertainty and sensitivity analysis should be part
of the modeling process.

Uncertainty Quantification (UQ) is defined as the identification, characterization,
propagation, analysis, and reduction of uncertainties. Sensitivity analysis (SA) is de-
fined as the study of how uncertainty in the output of a model can be apportioned to
different sources of uncertainty in the model input (Saltelli et al., 2008)) and is a method
to assess propagation of uncertainties. SA responds to the question of which inputs are
responsible for the variability of outputs. Local SA explores the output changes by vary-
ing one parameter at a time, keeping all the others constant. Although it is a useful
and straightforward approach, it may be location dependent. Global SA gives a better
estimate of uncertainty by varying all parameters at the same time by using probability
density functions to express the uncertainty of model parameters. Uncertainty analysis is
a related broader uncertainty propagation practice to SA. It focuses instead on quantify-
ing uncertainty in model output, addressing the variability of results. Ideally, uncertainty

and SA should be run in tandem.
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2.3 Related work

There are a growing number of attempts to assess uncertainty in ABS. However, there is
a lack of specific guidance on effective presentation and analysis of the simulation output
data. There is a variety of approaches to quantifying or reducing uncertainty. The work of
Lee et al.| (2015)) offers an overview of the state-of-the-art methods in the social simulation
area, in particular examining the issues around variance stability, SA, and spatiotemporal
analysis. Because of our interest in LUCC simulations, we chose to review how those
approaches are being applied and communicated on spatially-explicit simulations.

In Albrecht and Ramamoorthy| (2015), the authors propose an algorithm as an alter-
native to goodness-of-fit traditional validation to answer if the agents in a simulation are
behaving as expected. To them, the key to effective interaction in multi-agent applications
is to reason explicitly about the behavior of other agents, in the form of a hypothesized
behavior. This approach would allow an agent to contemplate the correctness of a hy-
pothesis. In the form of a frequentist hypothesis test, the algorithm allows for multiple
metrics in the construction of the test statistic and learns its distribution during the in-
teraction process. It is an interesting approach to addressing the uncertainties within the
model and agents behavior. We believe it would be even more useful if coupled with an
uncertainty quantification technique.

The work of |Paegelow, Camacho Olmedo, Mas, and Houet| (2014) assesses uncertainty
that is characteristic of spatially explicit models and simulations. The authors propose a
benchmarking scheme of LUCC modeling tools by various validation techniques and error
analysis. The authors investigate LUCC tools that are based on map comparisons to
analyze the accuracy of LUCC models concerning quantity, pixel by pixel correctness and
LUCC components such as persistence and change. Also, they investigated the map out-
puts of these simulations to test the fidelity of spatial patterns and the congruency of the
simulation maps from different modeling tools. Although the variability of LUCC models
does not allow strict comparisons, there is still room for improvements in methodologies,
validation and uncertainty quantification.

The work of Gan et al.| (2014) assesses model output analysis through a global SA,
a commonly used approach for identifying critical parameters that dominate model be-
haviors. They use the Problem Solving environment for Uncertainty Analysis and Design
Exploration (PSUADE) software, to evaluate the effectiveness and efficiency of widely
used qualitative and quantitative SA methods. Each method is tested using a variety
of sampling techniques to screen out the most relevant parameters from the insensitive
ones. The Sacramento Soil Moisture Accounting (SAC-SMA) model, which has thirteen
tunable parameters, is used for illustration. The South Branch Potomac River basin near

Springfield, West Virginia in the U.S. is chosen as the study area. The authors show how
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different sampling methods and SA measurements can indicate different sensitive and
insensitive parameters and that a comprehensive SA is paramount to avoid misleading
results.

The work of |J. D. Li et al.| (2013) also performed a global SA to show which model
parameters are critical to the performance of land surface models. The authors considered
forty adjustable parameters in The Common Land Model and therefore compare different
SA methods and sampling. The size of each sample would vary as well. The sampling
techniques and SA measures that were considered optimal were distinct from the results
found by |Gan et al. (2014), meaning that not all LUCC ABS propagate uncertainty the
same way.

Gao and Hailu| (2012)) integrated a recreational fishing ABM model with fuzzy logic
to incorporate uncertainties over the preferences of outcomes or criteria. Although this
work assesses the treatment of uncertainty in ABMs, the solution is based on a function
that can be used to convert observed/simulated outcomes to qualitative measurements
that reflect uncertainty regarding the outcomes.

Another approach was performed by |Le, Seidl, and Scholz (2012), also in an LUCC
model. They use the method of independent replication. In the case study, the authors
replicated the simulation 12 times for each mechanism and computed the mean values
of the impact indicators and the confidence interval (CI) at the reliability of 95%. They
used uncertainty quantification to define a minimum certainty threshold in the simulation
outputs.

Schreinemachers and Berger| (2011) proposed the Monte Carlo initialization of the
agents of the simulation that generates many possible and statistically consistent agent
populations that are used for repetitions of simulation experiments. The authors tested
the sensitivity of the LUCC simulation outcomes for crucial policy indicators. The vari-
ation of these indicators was measured by standard deviations (expressed as percentages
of the normalized mean) in fifty different agent populations for the baseline scenario.

New interesting frameworks are being created to support SA in ABS. [Herd, Miles,
McBurney, and Luck| (2015) work focus on the applicability of formal verification meth-
ods such as statistical testing of large-scale ABS. They created MC2MABS, a Monte Carlo
Model Checker for MultiAgent-Based Simulations which incorporates the idea of statisti-
cal runtime verification, a combination of runtime verification and statistical model check-
ing. The framework can provide conventional model checking for probabilistic systems by
the use of a sampling approach and the employ of statistical techniques to generalize the
results to the overall state space. Runtime verification focuses on the execution trace of
a system, using temporal logic and checking automatically.

All these authors used several indicators to measure the variability of model results
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based on changing input parameters. Table illustrates a brief comparison among
those works. MASE-BDI exploratory uncertainty assessment will be described in the
next sections. A large panel of statistical tools exist to help with the accuracy of the
predictions such as Dakotaﬂ PSUADE (Tong, 2015, UQ—PyIE] and MEME Suiteﬂ There
are initiatives to apply the potential of classic Design of Experiments (DOE) for ABS
(Kleijnen, Sanchez, Lucas, & Cioppa, 2005; [Lorscheid et al., 2012). ABS field of research
would benefit from systematic empirical research with standardized procedures, but ABS
idiosyncrasies in model output turn the task even harder. Researchers so far failed to reach
consensus and to determine sound methodological guidelines. Therefore, the studies are

still mostly investigative and exploratory.

Table 2.1: Overview of the general characteristics of each related work

Reference Model Uncertainty Methods

Albrecht et al. (2015) Generic ABS Correctness Hypothesis test and
runtime statistical verification in
the agent’s behavior

Paegelow et al.| (2014) Land use models Image statistical comparison of
pixel/maps and error analysis to
find uncertainty drivers

Gan et al.| (2014)) SAC-SMA Global SA with 15 sampling
hydrological model 9 different sample sizes and 12
SA methods

J. D. Li et al| (2013)  Land surface model  Local SA and 4 Global SA methods
with 3 sampling techniques, and 6
sample sizes

Le et al.| (2012) LUDAS: land use Independent Replications and
ABS Confidence Intervals to assess output
variation
Ralha et al.| (2013) MASE-BDI: land use Global SA with different sample
ABS configurations, independent replications,

and Confidence Intervals

'https://dakota.sandia.gov/
*http://www.uq-pyl.com/
3http://meme-suite.org/
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2.4 MASE-BDI exploratory study

The MASE Projectff] objective is to define and implement a multi-agent tool for simulating
environmental change. MASE-BDI enables modeling and simulations of LUCC dynam-
ics using a configurable user model. The multi-agent architecture is composed of three
hierarchical layers (from top to bottom) (Ralha et al., 2013): a User Interface (UI), a Pre-
processing and an Agent layer. In the agent layer, there are cell agents representing land
units hosting natural processes, such as crop/forest grow, and there are transformation
agents, representing human agents and their behavior as farmers or cattle rancher.

The Cerrado-LUCC model of MASE-BDI is used as a test problem. The simulations
depict the land use and cover changes of the most endangered biome in Brazil. The
Cerrado is the second largest biome in South America and harbors significant endemism
and biodiversity. The landscape has been undergoing severe transformation due to the
advance of cattle ranching and soy production. The Cerrado-LUCC simulation model
was documented and described employing the standard ODD-protocol (Overview, Design
concepts, and Details) (Grimm et al., 2006, [2010) to promote transparency and replica-
bility. We also applied empirically grounding ABM mechanisms for the characterization
of agent behaviors and attributes in socio-ecological systems (Smajgl, Brown, Valbuena,
& Huigen, 2011). In this article, we provide some core information about MASE-BDI and
the Cerrado-LUCC Model, mainly about the parameters and outputs. Readers who are
interested in the details of this model and the implementation of MASE-BDI multi-agent
system should refer to Ralha et al.| (2013) and Ralha and Abreu (2017)), respectively.

The input of the simulation is a couple of grid raster maps consisting of the land cover
of the region, from two different time periods (a reference map of the initial time ¢, and
a reference map of a subsequent time ¢;). Also, each simulation carries a set of maps
to describe the physical characteristics of the environment, such as water courses, water
bodies, slope, buildings, highways, environmental protected areas, and territorial zoning
maps.

The simulations are calibrated from the two time-steps and project the land use and
cover change for future steps. The result of a MASE-BDI simulation is a couple of
predicted maps (Figure , with the allocation of change and a set of metrics calculated
during runtime. The resulting image is submitted to a goodness-of-fit measurement, and
the quality and errors of the quantity of change and allocation of land use change are

calculated.

4Software Availability: http://mase.cic.unb.br/
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Figure 2.1: A land cover predicted map of the Cerrado in Federal District, Brazil

Methodology

The objective is to perform exploratory analysis, based on classical statistics, to reduce
uncertainty and to understand how the model behaves. MASE-BDI LUCC model is un-
der input uncertainty investigation, to calculate their influence in the simulation output.
For exploratory purposes, we want insight on the parameters that affect the multi-agent
system implementation, so we selected a subset of Cerrado-LUCC model inputs for this
demonstration. The subset of input parameters of the multi-agent system is displayed
in Table 2.2} T'A-Number of Transformation Agents, TG- Number of Group Transfor-
mation Agents, [ F- Potential of Individual Exploration and GE- Potential of Group
Exploration. These parameters characterize the instantiation of MASE-BDI agents and
therefore, should be analyzed regarding uncertainty. For the sake of clarity, a brief note
on the terminology of the word input. We are aware that the ODD protocol
, classifies input as an amount of data that is added during a simulation. The
word input has a more general use in this manuscript. We use the words input, parameter
and factor to describe any entry of the model, such as a submodel, or an initialization
configuration. The MASE-BDI input configuration parameters are the initial conditions

to start a simulation.
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Table 2.2: MASE-BDI multi-agent input configuration parameters

ID Parameter Description Range
I1 TA Number of Transformation Agents [1, 100]
12 TG Number of Group Transformation Agents [10, 100]
I3 IE Potential of Individual Exploration |1, 500]
14 GE Potential of Group Exploration [1, 1500]

The number of transformation agents is a parameter that reflects the number of com-
putational agents (in the multi-agent system paradigm) instantiated in a simulation run.
In this study case, one agent does not represent one single individual. The Cerrado-
LUCC model was formulated based on an empirical characterization of agent behaviors,
proposed by Smajgl et al. (2011), with two necessary steps: the development of behav-
ioral categories and the scaling to the whole population of agents. TA was derived from
the Brazilian Agricultural Census of 2006 and comprises a set of Producer legal status.
The range of 1 to 100 is an abstraction to the 3407 register producers in the region that
may be active or inactive in a given period. The details of this agent characterization
are thoroughly illustrated in Ralha et al.| (2013)). Likewise, a particular type of agent
is TG, which represent not an individual but an organization, cooperative, business or
so. The range is an abstraction of the 548 group producers, 10 of which have permanent
exploration licenses. All the explanation of this parameters are described within the ODD
protocol (Grimm et al., 2010) in the work of Ralha et al.| (2013).

The potential of exploration, individual or of a group, represent the impact an agent
can produce in the natural vegetation cover of a cell during a step. In the Cerrado LUCC
Model, considering the deforestation process, the potential of exploration is again an
abstraction for the amount of m?® of wood that can be obtained from a particular grid
cell, until a theoretical limit that represents resource depletion.

In addition to the final LUCC maps, the simulation generates a set of metrics as re-
sults, mainly spatial analysis measurements, which includes pixel by pixel comparison,
a quantitative and an allocation agreement. Those measurements are specific statistical
LUCC indices to determine the produced map accuracy, proposed by |Pontius et al.| (2008).
It includes an objective function called the figure of merit (FoM), a ratio between correct
predicted changes and the sum of observed and predicted changes. To evaluate the re-
sponse of the model to the different parameters, the experiments considered the outputs
described in Table and tried to identify and quantify the influence of the simulation
input configurations on the model outputs. The identification (ID) of each of the outputs
follows the numbering of its generation in the file .csv produced by MASE-BDI at the

end of each simulation.
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Table 2.3: MASE-BDI output parameters

ID Output Description

01 ™ Total time of the simulation

04 FoM Figure of Merit

05 IPA Image Producer’s Accuracy

06 IUA Image User’s Accuracy

o7 WC Pizel’s Wrong Change: observed change predicted as persistence

08 RC Pizel’s Right Change: observed change predicted as change

09 WP Pizel’s Wrong Persistence: observed persistence predicted as change

To identify and analyze these uncertainties we performed a method of elementary
effects (EE) of global SA on the MASE-BDI LUCC model. For this calculation, we
used the software package developed by [Tong| (2015) called PSUADE, containing various
methods for parameter study, numerical optimization, uncertainty analysis and SA.

Screening methods are based on a discretization of the inputs in levels, allowing a
fast exploration of the system behavior (looss & Lemaitre| |2015). This type of method
aims to identify the non-influential inputs with a small number of model calls. The most
used screening method is based on the one-parameter-at-a-time (OAT) design, where each
input is varied while fixing the others. The simplicity is one of OAT’s advantages, but
there are drawbacks when applying to ABM. For one, it does not consider parameter
interactions and may cover a slight fraction of the input space. Nevertheless, OAT is still
one of the most applied SA technique in ABMs.

The EE method we chose to apply is the Morris method (MOAT) proposed by [Mor-
ris| (1991) and refined by Campolongo and Braddock| (1999), an expansion of the OAT
approach that forsakes the strict OAT baseline. It means that a change in one input is
maintained when examining a switch to the next input and the parameter set is multi-
ply repeated while randomly selecting the initial parameters settings. EFE is suited for
spatially explicit simulations, usually computationally expensive models with large input
sets.

MOAT allows classifying the inputs into three groups: inputs having a negligible effect,
inputs having substantial linear effects without interactions and inputs having significant
non-linear and interaction effects. In overall effect and interaction effect of each parameter
can be approximated by the mean p and standard deviation o of the gradients of each
parameter sampled from 7, the number of replications.

The MOAT sampling technique was designed for the particular MOAT method. The
work of |Gan et al| (2014) details how the MOAT sampling works: the range of each

parameter is partitioned into p — 1 equal intervals. Thus the parameter space is an n-
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dimension p-level orthogonal grid, where each parameter can take on values from these p
determined values.

First, r points are randomly generated from the orthogonal grid; and then, for each of
the r points, other sample points are generated by perturbing one dimension at a time.
Therefore, sample size will be (n+1)-r. For the sampling size, Levy and Steinberg| (2010))
report that one needs at least 10-n samples to identify key factors among the parameters.

To avoid the effect size on the sample, we determined a minimum sample size of
800(= 20 - 4), for four inputs. For MOAT sampling we used 160 replications, resulting in
sample size of 800 (= (4 + 1) - 160).

Moreover, as in other stochastic models, it is not advisable to conclude from a single
MASE-BDI simulation run. For an initial uncertainty assessment, we applied the method
of independent replications proposed by (Goldsman and Tokol (2000). We run the model
approximately eighty-five thousand times (an arbitrary choice to explore all the input
parameter space) and randomly clustered the results into five independent replication
groups. We computed the mean values of the outputs and their Cls at the reliability of
95%. Another approach to estimating the uncertainty of the model output is to study
the variance in the model outputs by using the Coefficient of Variation (CV) (the ratio of
the standard deviation o of a sample to its mean ), to compare the variance of different

frequency distributions.

2.5 Results

In the current work, we analyzed four input parameters, displayed in Table regarding
the multi-agent configuration of MASE-BDI LUCC model. First, we present the results
of the SA. Figure[2.2] presents the EE of CERRADO-LUCC model parameters. Figure[2.2]
(left) illustrates the modified means of MOAT gradients and also their spreads based on
Monte Carlo bootstrapping. The results show that GE and T'A are the most sensitive
parameters in term of having the largest average median (26.466 and 25.205, respectively).
The other two parameters have median sensitivities close to zero, denoting the impact of
these parameters on the simulation output is minimal.

Figure (right) is a MOAT diagram that shows a consensus view among mean
and standard deviation o of the gradients of each parameter sampled from r. The more
sensitive the parameter, the closer it is to the upper right corner of the graph. These
results show a positive correlation between input and output uncertainties. Since GFE
and T'A describe the amount of land transformation in a simulation, high values of these

parameters will increase the model output. GFE is the most sensitive parameter, followed
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Figure 2.2: Parameter sensitivity rankings of MOAT method

by T'A. To understand and to reduce uncertainty within this two variables will, therefore,
reduce the uncertainty of the simulation as a whole.

GFE represents the amount of land cover that is transformed by a group of human
agents in a cell of the map. GF is a sensitive value for it indicates the voracity and velocity
of the current land exploitation, what will directly affect the result of the simulation. GE
is probably sensitive because the socio-economic groups responsible for large-scale cattle
ranching and permanent agriculture are the principal driver of deforestation in Cerrado.
Their rates of land change are more significant than the number of groups, what explain
TG as an insensitive parameter to the output. As for T'A, the more agents one instantiates
in a simulation, the more land cover will be affected, the higher will be the land use
transformation rates. Conversely, the potential of exploration of a single individual is less
determinant than the number of single individuals acting on the land, with SA indicating
T A a sensitive and I E as an insensitive parameter.

To investigate MOAT sensitivity results, we used different replications times r and
different levels p to know for sure the relevance of the parameters as displayed in Fig.
It is possible to see that even within the same method, results may vary. The results for
four replications are not very consistent with the other replication results, mainly with
the mean. The results with » = 56, » = 108 and r» = 160 present minor variations. We
can infer that four replications are not enough to identify the parameters sensitivity in the
MASE-BDI model successfully and therefore the number of replications should be higher
to be effective.

Table[2.4]is a summary of the Basic Output Statistics of the MASE-BDI LUCC model.
Each replication is assigned by i = [1..5], the sample mean from the coefficient variation

by C'V;, and the mean of all replications by Z. We performed independent replications to
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Figure 2.3: Sensitivity of parameters at different replication times r

verify the variation of the indicators, and for an initial analysis, we consider this variation
as noise (uncertainty). Any impact conclusions in predictions can only be drawn if the
changes in standards are greater than the uncertainty rate. Therefore, we have a first
threshold to define if some result is valid, compared to the simulations behavior.

We also estimated the expected average FoM for simulations, using the five replication
grouped results (b = 5). Considering the Zroyy = 43.87 and the estimated Variance
Vi = 100.99, we have an approximately 100(1 — a)% two-sided CI for 6, according to
the formalization proposed by |Goldsman and Tokol (2000). For level a = 0.05, we have
to.025.4 = 2.78, and gives [31.39,56.34] as a 95% CI for the expected FoM for MASE-BDI

simulations.

Table 2.4: Coefficient of variation for MASE-BDI outputs

Output ey CVe OV CVy CVs | Z

Time 0.300 0.130 0.250 0.260 0.200 | 0.230
Figure of Merit 0.015 0.011 0.008 0.007 0.090 | 0.100
Producer’s Accuracy | 0.015 0.011 0.008 0.007 0.009 | 0.010
User’s Accuracy 0.006 0.005 0.004 0.004 0.003 | 0.004
Wrong Change 0.030 0.030 0.030 0.030 0.020 | 0.030
Wrong Persistance 0.007 0.007 0.008 0.008 0.013 | 0.009
Right Change 0.015 0.011 0.008 0.008 0.009 | 0.010

2.6 Conclusions

In this study, we first identified the most sensitive parameters for the MASE-BDI LUCC
model using MOAT SA. We investigated some proper sampling design and sample size
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needed for MOAT screening the parameters effectively. Although these conclusions are
model-specific, it corroborates possible variation among sampling techniques and SA
methods.

This paper is the first exploratory study towards quantifying uncertainty within MASE-
BDI simulations. Following experiments must be done to promote more standardization
to this effort through the application of Design of Experiments. We look forward to in-
vestigating further on the model parameters, analyzing the remaining inputs besides the
agent’s quantities and their impacts.

The presented results allow us to understand the uncertainty when defining the pa-
rameters of the simulation of the LUCC model under study. Our feeling is that the
uncertainty is very high which means that either model need to improve dramatically
or LUCC policy need to be reevaluated. Most simulation tools fail to validate models
and to state the uncertainty in simulation results. Consequently, policymakers and the
general public develop opinions based on misleading research that fails to give them the
appropriate interpretations required to make informed decisions. The efforts to assess
ABMs through statistical methods are paramount to corroborate and improve the level

of confidence of the research that has been made in LUCC simulation.
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Chapter 3

An empirical workflow to integrate
uncertainty and sensitivity analysis to
evaluate agent-based simulation

outputs

Full article published in Journal
Environmental Modelling & Software,
v. 107, p. 281-297, 2018.

3.1 Introduction

As cited in the literature, LUCC systems are dynamic, stochastic, and characterized by
nonlinear and non-monotonic relationships between constant changing entities (Parker et
al.,|2003; Rindfuss, Entwisle, Walsh, An, et al., 2008; [Verburg, [2006). Besides, ABMs have
been used as a natural metaphor to model LUCC dynamics, since they capture emergent
phenomena and provide an original description of the modeled system (Murray-Rust,
Rieser, Robinson, Mili¢i¢, & Rounsevell, 2013 |Ralha et al., |2013; [Schreinemachers &
Berger, [2011). However, ABMs are prone to uncertainty because they reflect the intrinsic
randomness of environmental, physical, and social events. The uncertainty may also
arise because of insufficient knowledge, lack of data, observation errors, measurements
used to parametrize the model, or from vague premises of the model (Ligmann-Zielinska,
Kramer, Cheruvelil, & Soranno, 2014; |Lilburne & Tarantola, [2009)). As a result, one could
argue whether there is any quality in model predictions due to high uncertainty and the

considerable number of assumptions imposed by ABMs models.
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In this scenario, UA and SA are currently popular topics in ABMs as well as for many
other complex systems (Pappenberger, Beven, Ratto, & Matgen, |2008). They are valuable
tools in understanding LUCC models and deriving decisions on strategies to reduce model
uncertainty. UA provides the variability of model results. SA presents which factors are
responsible for this variability. This variability may be expressed quantitatively in terms
of "elasticity" of performance concerning parameter levels. High sensitivities (elasticities)
give cause for concern about the reliability of a model (Dayananda, Irons, Harrison,
Herbohn, & Rowland}, 2002)). A factor is any source of uncertainty in the modeling process,
including model structure, initial conditions, and input parameters. Using the terminology
proposed by the |[National Research Council| (2012)), uncertainty quantification (UQ) is the
process of quantifying uncertainties in a computed quantity of interest (QOI), with the
goals of accounting for all sources of uncertainty and quantifying the contributions of
specific sources to the overall uncertainty, i.e., UA and SA applied in tandem.

Although UA and SA applications are rising, most ABMs struggle with a shortage of
testing in general, mainly due to time and other resource constraints (Kelly (Letcher) et
al.,2013)). |Lee et al.| (2015) argue that while a modeler invests a lot of time and effort in the
development of ABMs, the output analysis is not always considered as deserving the same
resource-intensive attention. According to a survey carried out by [Heath et al.| (2009),
less than 5% of ABM publications present any statistical validation techniques. |Angus
and Hassani-Mahmooei| (2015) argue that one possible cause for this "methodological
anarchy" derives from the fact that, with so many possible degrees of freedom within an
ABM, the responsibility to ensure and to demonstrate that a model is structurally sound
and the prediction is reliable falls into each modeler.

We present a UQ workflow to integrate UA and SA in the evaluation of agent-based
simulation outputs. We illustrate the use of this workflow in a particular spatial explicit
LUCC case study in the framework Multi-Agent System for Environmental simulation,
MASE-BDI (Coelho et al.| (2016]). We apply general practices that should be a routine, to
improve the level of confidence in results and to promote more rational and efficient use
of ABMs. We may cite that broader and more complete workflows for the application of
SA were already proposed, such as Pianosi et al. (2016]) and Norton| (2015). The UA-SA
integrated proposal is what set our manuscript apart. We argue that UA should be used
as an input to SA, in a broader process of UQ. Also, we noticed some conflicting results
when we compared relevant studies on SA, mainly regarding the experimental setup. Ta-
ble summarizes the studies found in the literature (Vanrolleghem, Mannina, Cosenza,
& Neumann| 2015)(1), |Gan et al| (2014)(2), Wang, Li, Lu, and Fang (2013)(3), Yang
(2011)(4), Pappenberger et al. (2008))(5), Y. Tang, Reed, Wagener, and van Werkhoven
(2007)(6). Some authors have compared different SA methods and experimental setup,
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which are presented in the different lines of the table.

Table 3.1: Selected applications of sensitivity analysis

approaches.

Reference Research No. Sampling SA No.
Field factors method runs

1 Urbain 17 MOAT MOAT 3000
drainage FAST E-FAST 3000

LH SRC 2800

2 Watershed 13 MC SPEA 3000
MC SRC 3000

MOAT MOAT 3000

METIS MARS 3000

METIS SOT 3000

MC DT 400

LH DT 400

OA DT 529

OALH DT 529

LPTAU DT 3000

METIS DT 3000

METIS GP 3000

FAST FAST 2777

rLH McKey 2890

SOBOL-QR  SOBOL 3000

3 Crop growth 47 FAST E-FAST 2049
4 Watershed 5 SOBOL-QR SOBOL 18000
MC MOAT 3000

MC LR 3000

MC RSA 3000

SOBOL-QR SDP 500

5 Flood 6 rLH SOBOL 8192
inundation rLH MOAT 12000

rLH Entropy-based 3000

rLH RSA 5000

Continued on next page
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Reference Research No. Sampling SA No.

Field factors method runs
6 Watershed 18 SOBOL-QR SOBOL 8192
IFFD ANOVA 1000

LH RSA 10000

LP PEST 10000

Where: MOAT = Morris screening One-at-A-Time; (E-)FAST = (Extended) Fourier Am-
plitude Sensitivity Testing; (r)LH = (replicated) Latin Hypercube; SRC= Standardized
Regression Coefficient; MC = Monte-Carlo; LR = Linear Regression; SPEA = Spear-
man Correlation Coefficient; MARS = Multivariate Adaptive Regression Splines; SOT =
Sum-of-Trees; DT = Delta ¢ Test; OA = Orthogonal Array; OALH = Orthogonal Array-
based Latin Hypercube; TFFD = Tterated Fractional Factorial Design; SOBOL-QR =
Sobol quasi-random; RSA = Regionalized Sensitivity Analysis; LP = Local Perturbation;
PEST = Parameter Estimation Software.

Table illustrates a glimpse of the myriad of possible combinations of strategies for
sampling the model parameter space and SA methods, to quantify the impacts of sampled
parameters on the model QOI. We understand that there is no combination of sampling
and SA method that fits all applications. Thus, the work of |Gan et al. (2014) shows
that different sample strategies can even produce different outputs regarding the same
SA method. Also, it seems that there isn’t a clear relationship between the number of
factors and the number of necessary runs to compute SA. Furthermore, in some cases, the
number of runs used in the same sampling and SA method is not even in the same order
of magnitude. For example, [Pianosi et al.| (2016) recommend > 1000 x M model runs
to calculate variance-based SA, such as FAST, where M is the number of input factors
subject to SA. Neither Wang et al. (2013) nor [Vanrolleghem et al. (2015) nor Gan et
al. (2014) executed this many number of runs. The first used a sample of size 2049 for
a 47-factor problem (instead of > 47,000), while the second used a sample size of 3000
for a 17-factor problem (instead of > 17,000). The third used a sample size of 2777 for
a 13-factor problem (instead of > 13,000). One could ask whether the number of runs
should be based on something more than M.

In this manuscript, we will test different experimental strategies for a UQ workflow
and discuss their relative benefits and limitations. A baseline scenario was developed,
and we performed a comprehensive investigation of the impacts that differences in sample

sizes, sample techniques, and SA methods may have on the QOI. In this work, we address
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the research question: how UA and SA may be applied to improve users’ understanding
of the uncertainty and relations among input and output responses in LUCC agent-based
simulations? We are interested in finding which parameters are responsible for the most of
the results’ variability; if there is convergence when different SA techniques are applied;
and finally, if there is a minimum sample size to achieve it. Although the statistical
techniques are applied in a specific agent-based simulator, the methods described are
quite general and may illustrate their application in another research.

In Section we provide an overview of the different methods regarding variance
stability, parameter space exploration, UA, and SA. We also present the proposed UQ
workflow in Section In Section [3.3] we describe the MASE-BDI framework and LUCC
model used as a case study, followed by the experimental design. We present the results
compared to related work. We discuss challenges and provide some assessment to extrap-
olate our finding into more general conclusions, to produce more robust or parsimonious
models, as well as to make models more defensible in the face of scientific or technical
controversy (Section [3.4). Finally, in Section [3.5] we summarize our findings and outline

future work.

3.2 Materials and methods

The methods we applied in the case study are presented in this section alongside their
experimental design. The UQ experiments have the objective to perform an output anal-
ysis on spatial stochastic models, to measure uncertainty and to reduce it. Ultimately,
we want to understand better how the model behaves and expand our confidence in the

response of a LUCC model.

3.2.1 Variance stability

Agent-based simulations are often stochastic, and therefore any analytical exercise requires
an outcome pool drawn from a sufficient number of samples. It is only possible to draw
conclusions if the output mean and variance reaches relative stability. Otherwise, the
statistics could harbor too much uncertainty to be reliable (Lee et al. 2015). Moreover,
some ABM simulations (MASE-BDI included) can take longer run times, which makes
the execution of large samples prohibitive. Hence, knowing the minimum sample size to
reach variance stability can be more compelling to modelers.

There are many methods to assess variance stability (Law & Kelton, 2000; Lee et al.|
2015). We chose to apply the method proposed by |[Lorscheid et al. (2012]), whose strategy
is to assess stability from metrics on an outcome for a sequence of sample sizes. The

proposed metric relies on the functional ratio between the variance and the sampled mean.
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The coefficient of variation ¢y is a dimensionless and normalized metric used to measure
the uncertainty surrounding the variance, i.e., used for the analysis of experimental error
variance. It is defined as the ratio of the standard deviation of a number of measurement
s to the arithmetic mean p )
cy = m (3.1)
If ¢y is obtained from a small sample, e.g., it will vary more than if each sample
contained far more runs. Lorscheid et al| (2012) propose a fixed epsilon (E) to limit cy.
This is done by calculating the c¢y’s of different sized set of simulation runs, in ascending
order of size. The sample size at which the difference between consecutive cy s falls below
the determined criterion F, and remains so, is considered a minimum sample size or the
minimum number of simulation runs for ABMs. This is the point of variance stability.
These points should be obtained for all ABM outputs, thereby the minimum number of

runs for the ABMs is the maximum of these points (Lee et al. 2015)
Nonin = argmaty,|cy” —cy"'| < E,¥x and Vm > n,

where n is the sample size; n,,;, is the estimated minimum number of required simulation
runs; x is a distinct output; and m is some sample size for which the cy is calculated.
Thus, we apply the Lorscheid et al. (2012) method to establish the minimum sample size

that guarantees that variance stability is achieved.

3.2.2 Parameter space exploration

Sampling methods provide a systematic exploration of the parameter space that guaran-
tees the sample to have specific statistical or structural properties. The purpose of these
methods is to actively reduce the number of parameter sets that are considered but still
chose space-filling points in the design space (Thiele, Kurth, & Grimm| 2014a)). For a
complete revision of sampling methods, readers can refer to Gong et al.| (2015); [Kleijnen
et al.| (2005)); Saltelli et al.| (2008). In this manuscript, the most common sampling designs
are illustrated and applied in the UQ process.

Since there are many methods to explore the parameter space, readers may have an
overview of those sampling methods in Appendix including: Monte Carlo sampling
(MC), Latin Hypercube (LH), Orthogonal Array (OA), Orthogonal Array-based Latin
Hypercube (OALH), METIS sampling, Fourier sampling algorithm, LP7 (LPTAU), Sobol
Extended (SOBOL), Morris one-at-a-time (MOAT).
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3.2.3 Uncertainty analysis

UA evaluates and quantifies how the variability of input factors propagates through the
model and affects the variability of output values (Ligmann-Zielinska et al., 2014). UA can
also answer if there are any discontinuities associated with the distribution of results (Iman
& Helton, [1988), plot the distribution itself, calculate the average output, the standard
deviation, the quantiles of its distribution, and confidence bounds. An overview of the
UA process can be found in Appendix [C]

For the proposed UA, the only parameters considered relevant are the ones related to
the QOI and previously selected as input factors of interest. All the other model factors
and information fed into the model are disregarded, i.e., they do not vary, thereby they
cannot cause variation in the output. However, the model outputs Y; are non-deterministic
because of the stochastic component derived from the emergence of the agent’s behav-
ior. Therefore, to ensure robustness, each vector (a9, 30 ) of the output must be
evaluated regarding the mean and the variance (Dosi, Pereira, & Virgillito, 2017). This
confirmation is executed by a given number of model runs but with the same parameters
configuration (ten Broeke et al. 2016).

After the UA quantified the magnitude of the resulting uncertainty in the model
predictions due to uncertainties in model inputs, the next step in the UQ workflow would

be to perform SA.

3.2.4 Sensitivity analysis

SA is the study of "how uncertainty in the output of a model can be apportioned to
different sources of uncertainty in the model input" (Saltelli et al. |2008)). The authors
show that each measure of sensitivity may produce its ranking of factors by importance.

There are different methods of SA, and each one has advantages and limitations. In the
particular case of SA in spatial models, we incorporated the general guidelines provided
by [Lilburne and Tarantolal (2009). It is clear from their work that each SA method has
sampling and pre-processing technique requisites. Therefore, a careless combination of
methods will result in inefficient and inappropriate results. Also, not all of the methods
are capable of providing sensitivity index for non-monotonic input-output dependencies
typically observed in ABMs (Fonoberova et al., 2013; [ten Broeke et al., [2016). Therefore,
we selected ten well-known methods of qualitative and quantitative SA. They were applied
in MASE-BDI to verify if they were capable of providing those indexes for the LUCC
model.

In general, gradient and linear-regression-based SA are known as qualitative meth-

ods, since they use some heuristic to represent the relative sensitivity of the parameters.
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We will assess the Morris one-of-a-time screening method (MOAT) (Morris|, |1991) and
some correlation analysis, such as Spearman (SPEA) (Spearman, Con, & Pagel 1904)
and the standard regression coefficient (SRC). Variance-based methods are classified as
quantitative methods because they tell the sensitivity of a parameter by calculating the
impact of this parameter on the total variance of the model outputs (Saltelli, Taran-
tola, Campolongo, & Rattol |2004). We will assess three variance-based SA techniques:
SOBOL (Sobol’, 1993)), FAST (Cukier, Fortuin, Shuler, Petschek, & Schaiblyl |1973), and
McKay (McKay, Morrison, & Upton, 1999b). Also, we compare response-surface meth-
ods, such as Sum-of-Trees (SOT) (Breiman, Friedman, Olshen, & Stone, [1984; (Chipman,
George, & McCulloch| [2012)), Multivariate Adaptive Regression Splines (MARS) (Fried-
man, 1991), and Gaussian Process (GP) (Gibbs & MacKay, (1997). Other screening
method such as the Delta § Test (DT) (Pi & Peterson, 1994), are also assessed. The
overall mechanisms of each method are discussed in Appendix [D} The implementations
of each technique are not provided due to space constraint, but readers may refer to |Gan
et al.| (2014); Tong| (2005)) for details.

3.2.5 UA-SA integrated workflow

The integration of UA-SA has been applied to ABMs in a few relevant studies (Fonoberova
et al., 2013; |[Ligmann-Zielinska et al., 2014; |Ligmann-Zielinska & Sun| 2010b; |Parry et al.|
2013), that argue that a systematic evaluation of ABMs must comprise of an integrated
approach to quantification of model output variability and its sensitivity to inputs. We
followed the terminology of the National Research Council (2012) and called this process
UQ: the process of quantifying uncertainties associated with a model QOI, to account for
all sources of uncertainty (UA) and quantifying the contributions of specific sources to the
overall uncertainty (SA). Figure presents an overview of the UQ integrated workflow,
with UA and SA as part of the modeling process, adapted from the original one proposed
by [Ligmann-Zielinska et al.| (2014).

Analyzing the workflow, we argue that UA should be used as an input to SA, in a
broader process of UQ. ABM input factors are often diverse, and the stochasticity makes
multiple model runs a paramount step of the ABM’s output evaluation. Once the modeler
defines what is the QOI to be investigated, UA should be incorporated in the modeling
process to indicate what is the variability of the QOI outcomes. The next step would
be to test the sensitivity of model response to changes in the factors. This discovery
could identify interactions among factors, factor fixing and prioritization that could lead
to a model simplification, the reduction of output variance or the improvement of model

accuracy.
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This larger UQ process involves many smaller tasks, so a more detailed workflow
is presented in Figure Pianosi et al| (2016) proposed a practical workflow for the
application of SA, with four fundamental group of activities: i) experimental setup; ii)
input sampling; iii) model evaluation; and iv) post-processing. This work presents a state-
of-the-art review and a very concise guide to good practices for readers. However, ABMs
have specific characteristics, mainly due to stochasticity, uncertainties, equifinality, and
because of the complex system applications. We took [Pianosi et al.| (2016) work as a
guideline and tailored the level of effort and estimation to fit ABM needs. The main

difference is the simplification of the SA tasks and the incorporation of the UA tasks.

Uncertainty Quantification:
How do the various sources of error and uncertainty feed into uncertainty in the model-based prediction of the QOI?

o mm mm mm mm e e e e e e e e o mm Em mm e e e = e e e e e e e e e e e e e = e = = =

Uncertainty Analysis:
INPUT What is the variability of the QOI?

Multiple Model Runs

Distribution of the QOI

TR

Hi

Factors: - ~ )
Parameter Distributions

Layer§ (Maps) Decomposition of Result Variability

Functions <

Agent behavior Sensitivity Analysis:

Finite-state machine J

Which factors are responsible for the variability of the QOI?
7

Figure 3.1: Overview of the modeling process, including UQ, UA and SA specific ques-
tions. Source: Adapted from (Ligmann-Zielinska et al.| 2014)).

Because a portion of ABM uncertainty is irreducible, a comprehensive evaluation of
ABM uncertainty should assume that code verification, model-parameter calibration and
validation have been successfully accomplished before UQ process begins for a QOI. The
UQ workflow for ABMs (Figure is composed of three basic steps: experimental setup,
UA, and SA. We maintained the terminology proposed by Pianosi et al. (2016) as (*) in
Figure [3.2] The first step of the workflow regards the experimental setup with basic
choices: i) defining the QOI - the modeler must specify what the QOI for the problem at
hand is; ii) select the input factors of interest; and iii) specify the range or distribution
probability of each factor. The fourth task iv) is to determine variance stability - which
represents the minimum number of simulation runs that accurately report the descriptive

statistics.
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In the second step of the workflow, the UA is composed of three tasks that summarize
what is needed to discover what is the variability of the QOI in an ABM. After choos-
ing the sampling strategy, the modeler would run multiple simulations (the minimum
number of runs is provided by the last task of the experimental setup - define variance
stability). ABM modelers usually choose factor values randomly from their respective
range/distribution. As a result, UA produces a distribution of the QOI. The last task is
to use this distribution to quantify the variability of the QOI, i.e., the use of descriptive

statistics to analyze the model outputs.

——————————————————

<_‘ Define the Quantity of Interest (QOI)
H

i <—{ Select the input factors of interest
' EXPERIMENTAL !

Specify the range/distribution of the input
SETUP  |¢ |specfytherang P :%
ple

<— Determine variance stability (minimum sam
[ size/number of runs)

__________________

h 4
<—‘ Choose the sampling strategy
<—{ Run multiple simulations

Factor Priorization
or
Factor Fixing

UNCERTAINTY
ANALYSIS

<—{ Quantification of variability in QOI

v
Choose the sampling-based SA method

<—‘ Choose the sampling strategy (*Input Sampling

SENSITIVITY <—{ Obtain input’s relative importance
ANALYSIS <—{ Check model behavior (*Model Evaluation)

|Assess convergence (*Post Processing)

Figure 3.2: A UQ workflow for the application of UA + SA. Source: Adapted from (Pianosi
et al., 2016).

The third step is a simplification of Pianosi et al.| (2016]) original workflow. It all begins
with the selection of the SA method. Although the original work proposed a classification
system based on the SA purpose, the literature shows that, for ABMs, this choice is
somewhat model-specific. We decided to leave this decision to the modeler and tested
many different methods to see the impacts of the SA method in our case study. The next
task would be to define the input variability space by choosing the sampling strategy to
be applied. There are several sampling methods, and although MC is still the most used
sampling strategy, we tested different combinations of well-known techniques, such as MC
and SOBOL, and also tailored sampling strategies to see if there would be an impact on

the sensitivities outcomes.
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The number of model runs required to perform SA is usually a rough estimation of
a function of the number of factors subject to SA. We postulate that this minimum
sample size should be equal or larger to the variance stability number of runs defined
in the experimental setup step. We also test this empiric assumption and discuss it in
later sections (Sections and [3.4). This is what is necessary to obtain the factor’s
relative importance. The workflow’s last two steps are checkpoints defined by [Pianosi et
al.| (2016) to evaluate the model (check model behavior) and to assess convergence (check
whether sensitivity estimates are independent of the size of the sample and if they would
take similar values if we used independent samples). These steps inform us about the
reliability of the results.

We applied the presented UQ workflow for ABMs in a case study. We tested several
combinations of methods, sampling strategies, and sample sizes. In Section we will

present the application and the experimental setup designed for this application.

3.3 A land-use case study

MASHTis an agent-based simulation tool developed at the University of Brasilia, Brazil.
MASE enables modeling and simulations of LUCC dynamics using a configurable model
and both top-down and bottom-up (Grimm), 1999) model structures simultaneously. MASE
enables multiple types of agents with different behaviors to represent the interaction be-
tween agents with autonomy, the physical environment, and its relations (Ralha & Abreu,
2017). MASE has the overall goal of performing medium to long-term LUCC predictions.
It also allows assisting decision-making processes related to LUCC.

We run the experiments in MASE-BDI, which is a freeware software extension of
MASE that introduces cognitive reasoning-oriented agents through the implementation
of the BDI rationality (Bratman, |1987). MASE-BDI was implemented in JADEX multi-
agent platform (Braubach, Pokahr, & Lamersdorf, 2005). In the BDI model, agents have
beliefs, a set of information about the world it inhabits, that changes both the perception
and thinking about the world. Desires represent the motivational attitudes of agents,
capturing the agent’s wishes and driving the course of its actions. An agent can also
make plans related to its intention to achieve its goals. This multi-agent reasoning model
is defined as means-end-reasoning (Wooldridge, [2009)).

The MASE-BDI architecture is composed of three layers (from top to bottom): a user
interface, a utility layer, and an agent layer. The first provides an optional graphical

interface (models and simulation parameters can also be defined directly in a configura-

!Project Website:http://mase.cic.unb.br/
Software availability:https://gitlab.com/InfoKnow/MASE/MASE-BDI/SourceCode

34


http://mase.cic.unb.br/
https://gitlab.com/InfoKnow/MASE/MASE-BDI/SourceCode

tion file) and a JADEX control center of the BDI model. The utility layer groups a set
of modules to control the pre-processing of the maps and input of the geographic infor-
mation. It also provides the simulation parameter automatic tuning, which is a complex
and error-prone task in ABMs. The parameter adjustment is performed by employing
efficient optimization algorithms to tune the simulation model parameters, concerning
a user-defined single or multi-objective function of interest. Still, in the utility layer, a
module of validation is responsible for evaluating the final simulation output maps and
metrics (Coelho et al., 2016)).

In the agent layer, we have an organization of hierarchical agents. The GRID Manager
controls the general aspects of the simulation. The Spatial Manager controls the agents
responsible for representing and updating the spatial environment. The Transformation
Agents are computational entities accountable for moving, exploring, and reasoning about
the space according to their internal goals and beliefs. The Transformation Manager rules
and resolves the conflict due to the competition among transformation agents concurring
for the same environmental resources. Readers who are interested in details of the MASE-

BDI architecture, agent design and implementation may refer to |Coelho et al.| (2016).

3.3.1 The Cerrado Federal District study area

The Federal District of Brazil (5, 789km?) and its Cerrado (Brazilian savanna) coverage
is the study area in this article. The simulations depict the land changes of the region
(Figure[3.3), the most endangered biome in Brazil, and the second largest biome in South
America harboring significant biodiversity. This area has been undergoing severe trans-
formation due to the advance of cattle ranching and soy production, being an attractive
study area for land use simulations. To allow replicability, the Cerrado LUCC simula-
tion model was documented and described using the ODD protocol (Overview, Design
concepts, and Details protocol) (Grimm et al., [2006). The characterization of agent be-
haviors and attributes in socio-ecological systems were applied by empirically grounding
ABM mechanisms (Smajgl et al., |2011). A complete conceptual and methodological de-
scription of the model is available in Ralha et al.| (2013).

The initialization data for the simulation is a couple of Landsat-derived grid raster
maps consisting of the land cover of the region, from two different time periods (an initial
and a final map). Furthermore, the user must adjust a set of initialization parameters
of the multi-agent system, such as the number of agents that will explore the landscape
(transformation agents), their typology (cattle ranchers and farmers), and characteristics
of the initial behavior of those agents. The simulations are performed in steps, where
each step corresponds to the measure of time defined by the user. In this example, one

step equals to one week in chronological time. The user also determines the size of a
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Figure 3.3: A land use map of the Cerrado study area in Federal District, Brazil. Data

by (GDFL 2009).

plot or cell. Here, the total area of study was divided into plots of one hectare. The
physical environment is spatially represented by a set of layers of geographical informa-
tion data (shapes or raster files), such as rivers, lakes, slopes, building areas, highways,
environmental protected areas, and regional zoning maps of the area. The aggregation
of these geographical features determines the physical environment of any given point in
the simulation grid. The transformation agents represent humans performing activities
of cattle ranchers and farmers, with their behavior and beliefs, explicitly changing the
natural landscape to achieve their internal goals (e.g., production expansion, sustainable
exploration).

The simulations are calibrated by the simulation parameter automatic tuning tool,
adjusting the parameters to best fit the observed change from the two initial maps. The
outcome of the simulation is a result of the emergence of the agent’s action within the
duration of a simulation, determined by the user. The final landscape is a result of the
emergence of the agent’s effects on the land.

MASE-BDI is a spatially explicit framework because the results comprise of the quan-
tity of land cover change and the spatial allocation of the change (which plots were chosen
by the agents to initiate or expand their cattle ranching or farming business). The result
of any MASE-BDI simulation is a couple of predicted maps with the spatial allocation of
the land change, and the quantity of change - a set of metrics calculated during runtime,

such as the total amount of land change. At the end of each simulation, the resulting
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image is submitted to a goodness-of-fit measurement, and the quality and errors of the
quantity of change and allocation of land use change are calculated.

MASE-BDI produces stochastic simulations, which mean that the same input to the
model may lead to a different result in the quantity and allocation of change. Therefore,
the same set of parameters must be run several times to raise the confidence that the

results are representative.

3.3.2 LUCC goodness-of-fit

According to Thiele et al. (2014a)) there are two strategies for fitting model parameters
to observational data: best-fit and categorical calibration. MASE-BDI applies the first
strategy, in which we must find the parameter combination that best fit the data. The
quality measure is one exact value obtained from the observational data, so it is easy to
determine which parameter set leads to the lowest difference.

Pontius et al.| (2008) define the most common quality measure for LUCC spatial ex-
plicit simulations; hence it is used in MASE-BDI. Although there is not a universally
agreed-upon criterion to evaluate the goodness-of-fit of validation maps, the performance
of the simulation model is done objectively by computing the sources of error of prediction
maps.

A set of map comparisons is responsible for the evaluation of the model. [Pontius,
Huffaker, and Denman| (2004) indicate that three maps are necessary: i) a reference map
of the initial time t¢; ii) a reference map of a subsequent time ¢;; and iii) a prediction
map of the subsequent time ¢;. There are three possible two-map comparisons, picking

two maps at a time:

e Comparison between the reference map of time ¢ty and the reference map of time #;:
characterizes the observed change in the maps, which reflects the dynamics of the

landscape;

e Comparison between the reference map of time ¢y and the prediction map of time
t1: characterizes the model’s predicted change, which reflects the behavior of the

model;

e Comparison between the reference map of time ¢; and the prediction map of time

t1: characterizes the accuracy/error of the prediction’s accuracy /error.

The total disagreement between any two maps that share a categorical variable is
computed in terms of quantity disagreement and location disagreement (Pontius et al.|
2004). Quantity disagreement derives from differences between the maps regarding the

number of pixels for each category. Location disagreement is the difference that could be
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resolved by rearranging the pixels spatially within one map so that its agreement with
the other map is as broad as possible. The sum of them both is the total disagreement.

To illustrate the methodology, we present the Brazilian Federal District Map with only
two land cover categories: natural vegetation (the Cerrado), and developed (areas char-
acterized by 30% or greater of constructed materials, e.g., asphalt, concrete, buildings).
Considering these two categories, the comparison of pixels may result in the categories
presented in Figure |3.4: error due to observed vegetation predicted as developed; correct
due to observed developed predicted as developed; correct due to observed vegetation
predicted as vegetation; and error due to observed developed predicted as vegetation.

According to Pontius et al.| (2008), the most accurate applications are the ones where
the amount of observed net change in the reference maps is larger. The Figure of Merit
(FoM) is the ratio of the amount of correctly predicted pixels of change to the sum of all
pixels

RightChange

FoM =
© WrongPersistence + RightChange + WrongGaining + WrongChange’

where Wrong Persistence is the area of error due to observed change predicted as persis-
tence; Right Change is the area of correct due to observed change predicted as change;
Wrong Gaining is the area of error due to observed change predicted as wrong gaining
category; and Wrong Change is the area of error due to observed persistence predicted as
change.

FoM is a statistical measurement that can range from 0% - meaning no overlap between
observed and predicted change, to 100% - meaning perfect overlap between observed and
predicted change. When the amount of correctly predicted change is larger than the sum
of the various types of error, FoM is greater than 50%. FoM is the best-fit quality measure
of this manuscript. It is also the QOI chosen to illustrate the UQ workflow for ABM, as
the first task of the experimental setup step.

It is worth mentioning that Pontius et al. (2008)) set a testing benchmark, based
on statistical methods for map comparison of 13 applications of different popular peer-
reviewed land change models. The results show that in 12 of the 13 LUCC models
predictive maps, the amount of error is more significant than the amount of correctly
predicted change at the resolution of raw data. In contrast, MASE-BDI was able to
surpass these statistics, presenting results that show high quality in the accuracy of their
predictions (FoM> 50). The complete explanation of the MASE simulation results using
Pontius’ statistical techniques of map comparison to land change models is presented
in Ralha et al.| (2013)).
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Figure 3.4: The Brazilian Federal District maps of: a) observed change 2002-2008, regard-
ing the difference in observed land change within this period, produced from the input
data itself; b) predicted chance 2002-2008, results produced by the simulated model; and
¢) prediction error 2008, generated when maps a) and b) are compared.

3.3.3 MASE-BDI and UQ tool integration

Previous work demonstrates that the initialization of the agents may have a substantial

effect on the land dynamics and into the final simulation outcome (Lorscheid et al.| 2012).

Therefore, it was paramount to use a framework to control, calculate, trace, manage
uncertainties, and finally make the output analysis feasible. The MASE-BDI framework
itself does not provide the modeler with the means to statistically analyze the results.
The difficulty to perform many different samplings, UA and SA analysis, may lead to
a shortage of testing and finally to a perfunctory UQ. To avoid this pitfall, we chose a
statistical platform that provided the tools needed to execute both UA and SA steps in
the proposed UQ workflow for ABM (Figure [3.2)).

Among the different UQ platforms available, we chose PSUADEﬂ as the best fit to inte-
grate with MASE-BDI, based on its smooth coupling with external models and variability

2http://computation.llnl.gov/casc/uncertainty_quantification/
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and availability of UA and SA methods.

PSUADE is a software package composed of three main components: a sample gener-
ator with the experimental design techniques; a driver to control the simulator execution
environment; and an analysis toolset (Tong, 2005). The execution environment created
by PSUADE allows sequential or parallel automatic simulation executions. We stylized
the use of PSUADE by creating a Python driver to provide an interface for linking MASE-
BDI’ simulation executable code and PSUADE. Also, we created a graphical user inter-
face (GUI) that clusters all PSUADE and MASE-BDI configurations, in a straightforward
unified interface that encapsulates all the configuration complexity of both PSUADE and
MASE-BDI. Users may edit the configurations of the model or the UQ analysis without
having to handle directly the configuration files.

Figure [3.5] shows the flow of activities for MASE-BDI to work autonomously with the
PSUADE tool, beginning with the configuration of the simulation and the UQ design of
experiments, following through the generation of samples in PSUADE that are going to
be the input of the multiple MASE-BDI simulations. All the MASE outputs are stored
and compiled so the UA and SA chosen techniques would be applied. The U(Q integration
modules where designed to be model/framework independent, so that it can be coupled
with PSUADE in any other model and platforms other than MASE-BDI. The codes of

the implementationf| are available to the research community.

3.3.4 Experimental setup

The application of the UQ workflow follows a sequence of steps that were presented in
general terms in Section |3.2.5] Next, we describe the individual choices and methods used
in a specific ABM application, the LUCC model simulated in MASE-BDI. We will present

the choices we made at each step, and maybe help other modelers with our example.

Define the Quantity of Interest (QOI)

The first task of the experimental setup, the definition of the QOI, was determined as the
output FoM, as described in Section [3.3.2] FoM was chosen as the QOI of our investigation
as it represents the quality of our simulation predictions. The higher the FoM, the better
fitted is the prediction.

Select the input factors of interest

Regarding the simulation data, a baseline scenario with fixed variables was selected for the

LUCC model to investigate the initialization parameters of MASE-BDI. For this purpose,

3https://gitlab.com/InfoKnow/MASE/MASE-BDI/SourceCode/tree/master/MASE-PSUADE
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Figure 3.5: Activity diagram of MASE-Driver-GUI, PSUADE, MASE-Driver, and MASE-
BDI tools.

there are no alterations in the geographic information in the simulated environment. All
simulations were performed with only two types of transformation agents: cattle ranchers
and farmers.

The input factors of interest refer to the number of agents initialized in a simulation,
their initial state, and their behavior. These parameters characterize the instantiation of
MASE-BDI agents, and therefore users may lack familiarity with those variables. The
MASE-BDI provides a default value for the simulations, obtained through the calibration
of the model. Therefore, these parameters are often a "black box" to users, and precisely
because of this, can be an extra source of uncertainty.

The number of transformation agents (TA) is a parameter that reflects the number of
computational agents (in the multi-agent system paradigm) instantiated in a simulation
run. In this case study, one agent does not represent one single individual. TA was
derived from data of the Brazilian Agricultural Census of 2006 and comprises a set of
Producer legal status. The range of 1 to 100 is a percentage representation to the 3407
registered producers in the region. The MASE-BDI user must inform how many agents
may be active or inactive in a given period. The details of those agent’s characterization

are thoroughly illustrated in |[Ralha et al. (2013). Likewise, the number of transformation
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group agents (TG) is an initial parameter which represents not an individual but an
organization, cooperative, business, and so on. The range is an abstraction of the 548
group producers, ten of which have permanent exploration licenses.

The potential for exploration, individual or of a group, represents the impact an agent
can produce in the natural vegetation cover of a cell during a step. In the Cerrado LUCC
Model, considering the deforestation process, the potential of exploration is again an
abstraction for the wood volume per hectare (m?.ha™!) of wood that can be obtained
from a particular grid cell, until a nominal limit that represents resource depletion. The
parameters of Table will be the input for the UQ process.

Specify the range of the input

To illustrate the third task of the experimental setup step, Table presents the four
parameters that will vary in each run of the simulation. They were the selected input

factors of interest, and the specification of the range of the input is presented in Table [3.2]

Table 3.2: MASE-BDI multi-agent initialization configuration parameters.

Parameter Description Distribution Lower bound Upper bound
TA No. of Transformation Agents Uniform 1 100

TG No. of Transformation Group Agents Uniform 10 100

IE Potential of Individual Exploration  Uniform 1 500

GE Potential of Group Exploration Uniform 500 1500

In addition to the final LUCC maps, a MASE-BDI simulation generates 11 metrics as
results. To evaluate the model response to the different parameters, FoM will be used as
the objective function and the output to be analyzed in the UQ process. Nevertheless,
another five variables were selected to observe the influence of the simulation input con-

figurations on the model outputs. The experiments considered the outputs described in
Table 3.3l

Table 3.3: MASE-BDI output parameters.

ID Output Description

1 FoM Figure of Merit

2 IPA Image Producer’s Accuracy

3 IUA Image User’s Accuracy

4 WC Wrong Change: observed change predicted as persistence

5) RC Right Change: observed change predicted as change

6 WP Wrong Persistence: observed persistence predicted as change
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Variance stability determination

The last task in the experimental setup step of the UQ process is to define the minimum
sample size through the determination of variance stability.

From a pool of over 138,800 model runs that were executed, 31, 815 runs represent the
baseline scenario where only the four input variables vary (Factor Fixing of inputs pre-
sented in Table . The s and the p for this fixed parameter set are already substantially
smaller (Equation . We sampled from this fixed set to apply the variance stability
methodology proposed by |Lorscheid et al.| (2012). In this multivariate setting, we com-
pared the ¢y (rounded to 1\1000) of differently sized set of runs (increased iteratively),
n € {10, 50, 100, 500, 800, 1000, 5000, 10000}.

The outcome drawn from runs of different sample techniques may affect variance
stability. For clarification, we applied the proposed methodology with random (Monte
Carlo) (Table and quasi-random sampling (Table [3.5]). We selected E = 0.01 as the

limit of cy.

Table 3.4: Coefficient of Variation at differently sized set of runs of Monte-Carlo samples

Output n

10 50 100 500 800 1000 5000 10000
Figure of Merit 0.063 0.082 0.076 0.090 0.082 0.095 0.091 0.092
Producer’s Accuracy 0.143 0.138 0.143  0.149 0.141 0.146 0.151  0.152
User’s Accuracy 0.130 0.122 0.125 0.120 0.121 0.121 0.121  0.122
Wrong Change 0.602 0.485 0.593 0.585 0.575 0.578 0.568  0.572
Right Change 0.143 0.138 0.143 0.149 0.141 0.156 0.151 0.152

Wrong Persistence 0.229 0.242 0.236 0.242 0.244 0.254 0.250  0.250

Table 3.5: Coefficient of Variation at differently sized set of runs of Quasi-Random samples

Output n

10 50 100 500 800 1000 5000 10000
Figure of Merit 0.018 0.117 0.075 0.093 0.091 0.087 0.091 0.094
Producer’s Accuracy 0.089 0.184  0.135 0.152  0.148 0.147 0.151 0.152
User’s Accuracy 0.124 0.125 0.122 0.123 0.119 0.123 0.122 0.121
Wrong Change 0.121  0.593  0.547 0.5567 0.561  0.570 0.579 0.574
Right Change 0.089 0.184 0.135 0.152 0.149 0.147 0.152 0.153

Wrong Persistence 0.1564 0.291 0.229 0.252 0.248 0.246 0.248 0.251

Although both means for FoM were roughly the same (MC FoM p = 50.59; QR
FoM p = 50.57), the minimum number of runs were somewhat different for almost every
output. For each outcome of interest {FoM, PA, UA, WC, RC, WP} the respective point

43



of stability were {5000, 50, 50, 500, 5000, 100} applying random sampling (Table [3.4)),
and {800, 800, 50, 500, 800, 800} applying quasi-random sampling (Table 3.5). The
highlighted values (italic) on Table and are the cy that fall below the defined
E. Therefore, the minimum number of runs for the Cerrado LUCC model would be 5000
MC random samples or 800 QR samples. Since we are looking for efficiency, 800 will be

considered the minimum sample size (number of runs).

3.3.5 The methods for UA

In the second step of the UQ workflow, there are three tasks. The first one, to choose a
sampling strategy, derives from the findings of the variance stability task. We chose the
quasi-random sampling design since it was more effective in the definition of a minimum
sample size. The second task of the UA step is to run multiple simulations of the model
under study. Again, we used the findings of the experimental setup step as the minimum
sample size. Therefore, 800 simulation runs were performed.

The third task is the quantification of variability in QOI We performed descriptive
statistics and statistics of dispersion of the outcomes to draw some UA conclusions for the
second step of the UQ workflow. We will present the results only for the QOI: the FoM
output. First, four initial moments of the sample are derived: the first moment (x = 50.57,
standard error of y = 0.16), summarizing the central tendency of the stochastic model;
the second moment (variance); the third moment (skewness); and the fourth moment
(kurtosis). The results are summarized in Table [3.6] Also, the data set has o = 4.62.
To explore the variability of the simulation results, we performed UA by examining the
observed distribution of the FoM of the sample resulting simulations. Figure sum-
marizes the empirical density and the cumulative distribution function of the experiment
(800 model runs).

Table 3.6: Moments results of MASE-BDI model’s objective function value - Figure of
Merit.
Mean Variance Skewness Kurtosis

50.57 21.33 -3.01 12.20

A Cullen and Frey graph (a squared skewness-kurtosis plot) is presented to illustrate
whether the FoM followed a particular distribution. The data was bootstrapped using
Monte Carlo samples to consider the uncertainty of the estimated values of kurtosis and
skewness. Figure is a plot with 1000 boot values. The diagram indicates that the
skewness and kurtosis are consistent with a beta theoretical distribution, but the interval

of FoM (not in the interval [0, 1]) disprove it. The data does not necessarily follow any
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Figure 3.6: Observed distribution of Figure of Merit output. Histogram of empirical
density of the data (left) and the cumulative distribution (right).

particular distribution, which means that the normality assumption and other known
distributions do not refer to the observed data. Rather, the assumption is that the process
that produces the data is a distributed process. So that process, likewise, can never be
precisely normal because of asymmetries, discreteness, and boundness of the observable
data.

3.3.6 SA experimental setup

For the last step of our proposed UQ workflow, multiple combinations of different sample
strategies and sensitivity methods were tested to answer our research questions (Sec-
tion regarding SA. Instead of arbitrarily choosing an SA method (task 1: choose
the sampling-based SA method) and the sampling strategy (task 2: choose the sampling

strategy), we decided to test multiple combinations of techniques. The configuration of
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the experiments is presented in Table [3.7] following a similar experimental design of what
was proposed by Fonoberova et al.| (2013) and followed by |Gan et al.| (2014).
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Figure 3.7: Bootstrapped Cullen and Frey graph of FoM results kurtosis and squared
skewness.

We established the minimum quasi-random sample size of N = 800 runs as a guideline
for the other sampling techniques. The differences among the sample size in Table |3.7
were due to the requisites of each sampling technique. The sample size for MC, METIS,
and LH was assigned as 800 since there are no prerequisites for these techniques. The
sample size of OA was set to 841(= 1 x 29?).

For MOAT and SOBOL, 160 and 140 replications were used, resulting in samples of
size 800 and 840, respectively. For the FAST technique, the maximum harmonic is M, = 6
and the maximum frequency w,,.. = 41, when n = 4. Thus, the maximum size of the
FAST sample for four inputs is 493. We decided to keep the FAST sample experiment,
even though it disregards the variance stability calculation, as an open question of the

experiment.
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Table 3.7: Experimental configuration for the comparison of sensitivity analysis methods.

Sensitivity Analysis Sampling

Type Method Sensitivity measurement Technique Size
Gradient MOAT  Modified Mean and Standard Deviation MOAT 800
Linear-regression CA Spearman Correlation Coefficient (SPEA) MC 800
RA Standardized Regression Coefficient (SRC) MC 800

Response-surface SOT SOT score of sensitivity METIS 800
MARS  MARS score of sensitivity METIS 800

GP GP score of sensitivity METIS 800

Other DT Delta score of sensitivity MC 800
Variance Sobol Sobol First and Total Indexes SOBOL 840
FAST First order index FAST 493

McKay-1 First order correlation coefficient LH 841

McKay-2 Second order correlation coefficient OA 841

To avoid an ad hoc definition on the sample size, we applied the same method presented
in Section [3.2.T] by fixing all input parameters and choosing an £ = 0.001. A quasi-random
sample of 50 runs was determined as sufficient to qualify the model results for this given
set of parameters. The next tasks of the SA step are to obtain input’s relative importance,
to check model behavior and to assess convergence. Those are presented and discussed in

the following Section.

3.4 Output analysis results and discussion

To continue to execute the following tasks of our SA step, we must perform many tests
and simulation. The global SA of all model outputs was performed using the MASE-
Driver-PSUADE integration. The primary data obtained from the execution of each of

the simulations are available for checking, reviewing, and replicating the experimentsﬂ

Input’s relative importance

The method of global gradient SA is presented in Figure Results from both methods
of linear-regression-based SA are presented in Figure Response surface SA methods
are presented in Figure [3.10] The sensitivity scores represent the first-order indices, i.e.,
the contribution to the output variance by every single input alone. If the parameters
are normalized [0, 1], then the most sensitive parameters get a score next to 1 while the

least sensitive ones get a score next to 0. The vertical axis in these figures denotes the

4Simulation results and UQ raw data: https://gitlab.com/InfoKnow/MASE/MASE-BDI/
SourceCode/tree/master/PSUADEY,20Raw’20Data
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MASE-BDI input parameters used in the experiments. The simulations were performed
according to the experiment design (Table . The color scale of each grid indicates the

order of sensitivity from low to high; that is, light colors for low data values and dark

1
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Figure 3.8: Heat map of MOAT gradient-based sensitivity analysis for MASE-BDI simu-
lations, where TA - No. of Transformation Agents, TG - No. of Transformation Group
Agents, IE - Potential of Individual Exploration, and GE - Potential of Group Exploration.

colors for high data values.
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Figure [3.11] presents the compilation of all qualitative SA methods regarding one
single output: FoM. FoM was chosen as the QOI of our investigation, as presented in
Section [3.3.4 The results of the variance-based (quantitative) SA methods for the FoM
output are summarized in Table [3.8

To address the minimum sample size to detect the most sensitive variables efficiently,
SA was calculated at different sample sizes for each SA method. We illustrate the appli-
cation of MARS SA technique, exclusively for the FoM output, with different sampling
methods and sampling sizes, as presented in Figure [3.12l The final result for minimum

sample sizes and sampling methods are compiled in Table [3.9]

Check model behavior and assess convergence

The application of UA and SA offers a valuable complement to each other, and their

close relation in ABMs has been proven by [Fonoberova et al, (2013); Ligmann-Zielinska)
et al. (2014); |Pianosi et al.| (2016). Since the Cerrado LUCC model is stochastic, there

is intrinsic uncertainty in the model even when all model parameters are fixed. One of

the main concerns of our work was to find the minimum number of model evaluations,
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Figure 3.9: Heat map of linear-regression-based sensitivity analysis methods for MASE-
BDI simulations, where TA - No. of Transformation Agents, TG - No. of Transformation
Group Agents, IE - Potential of Individual Exploration, and GE - Potential of Group
Exploration.

Table 3.8: Percentage of the variability of the results for each input based on variance-
based SA results for FoM output.

Method Sensitivity Measure Input %

TA TG IE GE
FAST Total-effect index 61.72 0.17 0.12 37.99
McKay-1 First-order Correlation Coefficient 59.31 0.94 1.03 38.72
McKay-2 Second-order Correlation Coefficient 51.59 1.65 0.86 45.90
Sobol-1 First-order index 57.59 0 0 42.41
Sobol-t Total-order index 54.89 0.03 0.01 45.07

i.e., the number of simulation runs that were required to secure the stability of output

variance. We chose to apply the methodology brought by Lorscheid et al. (2012) and
discussed by Lee et al.| (2015).
Regarding the minimum number of runs in MASE-BDI, the found problem-specific

point of stability was 800. This result stays in the middle of the typical find in the

literature for a small number of inputs. The |Gan et al.| (2014) analysis is based on the

10-n rule, where n=number of input factor subject to SA. Pianosi et al. (2016) argue that

the number of runs depends on the SA purpose, that should be around 1 to 1000-n. When
the purpose is screening the parameters through variance-based methods, the theoretical
minimum number of runs should be 1000 - n.

From the results, it is clear that some statistical estimation must be done before
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Table 3.9: Minimum sample sizes for each sampling technique.

Sensitivity Analysis Sampling

Type Method Technique Size
Gradient MOAT MOAT 100
Response-Surface SOT MC 400
LH 400

LPTAU 400

METIS 800

OALH 361

MARS MC 200

LH 200

LPTAU 400

METIS 800

OA 361

OALH 361

GP MC 200

LH 200

LPTAU 400

METIS 400

OA 361

OALH 361

Variance FAST FAST 493
SOBOL SOBOL 400

McKay OA 400

OALH 400

arbitrarily choosing a sample size and calculating descriptive and dispersion statistics. To
neglect this previous analysis may lead to statistical pitfalls, such as results too uncertain
to be reliable. Some other customary approach to determine minimum sample size may
presuppose normality, and therefore its efficiency becomes sensitive to the shape of the
distribution. This assumption is particularly relevant for the reason that ABMs and
most real data often don’t conform to parametric distributions. Moreover, as sample size
increases, any theoretical distribution would likely be rejected.

Another interesting discovery found was that the definition of a sampling technique
might alter the minimum sample size required to reach variance stability. The most
common sampling approach involves a UA that summarizes the results of Monte Carlo
simulation based on simple random sampling. We investigated one other scenario with

quasi-random sampling and found that, for our particular case, the minimum sample size
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using random sampling is larger than the minimum found using a quasi-random sampling
design. Similar findings were described in other areas of application, such as financial
models (Niederreiter, Hellekalek, Larcher, & Zinterhof, |1998)) and statistical circuit anal-
ysis (Singhee & Rutenbar, 2010). These results are in sync with the current trend of
the use of quasi-random sampling in ABM (Ligmann-Zielinska et al.| [2014; Saltelli et al.|
2008), as it generates samples more uniformly over the parameter space.

Notwithstanding, in our investigation of SA techniques, we decided to test a broader
combination of sampling techniques and sensitivity methods. This exercise is another
guideline to be regarded, since there are sampling methods that best fit some SA methods
and others that are inefficient or inappropriate. The design of the SA experiments must
consider it to avoid perfunctory SA.

Very distinct results arise from the comparison of different SA methods in the Cerrado
LUCC model. Not every method was able to identify the most sensitive parameters,
such as the linear-regression-based techniques, SPEA and SRC, and the response-surface
technique DT. For the most part, every other technique identified TA (Table as the
most critical parameter for all outputs, therefore answering the initial question of which
parameters are responsible for most of the results’ variability. Almost every technique
also identified GE (input parameter 4) as an important parameter to most of the outputs.
The most significant influence of GE is on the producers’ accuracy, and in the pixel wrong
change, right change, and wrong persistence. It is also clear across the different methods
that TG and IE (input parameter 2 and 3) are entirely insensitive, hence not essential to
explain the variability in the outputs.

These results show a positive correlation between input and output uncertainties and
present consistency of the screening results and physical interpretations. Since GE and
TA describe the amount of land transformation in a simulation, high values of these
parameters will increase the model output values. GE is the most sensitive parameter,
followed by TA. To understand and to reduce uncertainty within these two variables will,
therefore, reduce the uncertainty of the simulation as a whole. GE represents the amount
of land cover that is transformed by a group of human agents in a cell of the map. GE is
a sensitive value as it indicates the voracity and velocity of the current land exploitation,
which will directly affect the result of the simulation. GE was found as highly sensitive in
every SA method. Therefore, this result proves that the model is coded in such a way that
it behaves similarly to reality because the socio-economic groups responsible for large-scale
cattle ranching and permanent agriculture are the principal driver of deforestation in the
Cerrado (McAlpine, Etter, Fearnside, Seabrook, & Laurance, 2009; Smith, Winograd,
Gallopin, & Pachicol 1998)). SA is used to prove this similarity between our model and

the observed drivers of change.
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For qualitative SA methods, both linear-regression and gradient-based sensitivity were
able to identify the non-significant parameters. Regarding the most important parameter,
there are some discrepancies. We can highlight four findings. First, MOAT, MARS, SOT,
and GP got similar results for most of the outputs. Second, SPEA and SRC presented
very similar results, but differ from the other methods regarding TA and GE. We argue
that traditional methods, such as correlation and regression analysis, are not suitable for
nonlinear and non-monotonic problems like the MASE-BDI model. Third, the results from
DT appear very different from that of other methods. The DT evaluation metrics were
not able to screen the parameters correctly. Fourth, GP results were consistent in three
of four input parameters. The divergences in the importance of GE may be attributed to
the GP algorithm optimal configuration, but further investigation is required.

Regarding variance-based SA methods, the results were robust for all methods, in-
dicating TA and GE the two parameters that explain almost all the output variation.
Considering the FoM output, TA was responsible for over 57% of the output variation,
followed by GE, that explains about 42% of the output variation. Both TG and IE
combined are respounsible for less than 1% of the variance. There is a consensus among
variance-based results denoting that quantitative SA is more robust than qualitative SA.
The divergences in qualitative SA may be explained by the use of heuristics to represent
the relative sensitivity of the parameters.

For the SA comparison, the general finding on every approach is described. Moreover,

the discrepancies and similarities of the related work (Table are also summarized:

MOAT: The gradient-based SA technique was able to identify the elementary effects of
the inputs correctly, and it seems to be ideal for screening purposes. The downside is
that the interaction effects are not included. (Gan et al.| (2014)) found similar results
in a study case with three times more parameters. We were able to find consistent
results with the minimum number of simulation runs, but |[Lilburne and Tarantola
(2009) argue that the sample generation is not straightforward. A blind adoption

of MOAT may not be representative since it is not a global SA practice.

Linear-regression: {ten Broeke et al| (2016) and |Lilburne and Tarantola (2009) agree
that regression is a simple technique that can describe relationships, which yield
insight into model behavior. The bad performance of the SPEA and SRC regression
methods was also found by Gan et al. (2014)), which may demonstrate that for these

case studies, the regression model does not fit well to the particular ABMs.

Response-surface: These qualitative SA methods were very efficient to indicate the
sensitive variables at a low computational cost (low number of runs). A discrepancy
was found compared to the work of |Gan et al.| (2014)). In the Cerrado LUCC model,
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the DT method performed poorly, while in the related work there were no such
problems. On the contrary, |Gan et al. (2014) discarded the use of GP because it
was not able to find the sensitive parameters, a situation that did not happen in
our study case. Response-surface methods are based on heuristics, and maybe these
heuristics are more problem-specific, and a general guideline of use of any particular

technique should not be endorsed before scrutiny.

Variance-based: The techniques with the higher computational cost were the ones with
more consensus among them. They were all capable of finding the most sensitive
parameters, and this result is corroborated by different works: (Gan et al. 2014;
Lilburne & Tarantola), 2009; [Saltelli et al., 2008} ten Broeke et al.l 2016; Thiele et
al., 2014al).

MC and LH were the sampling methods with better efficacy for qualitative SA meth-
ods, identifying the most sensitive parameters with a sample size of 200. All the quanti-
tative SA achieved the same result with the sample size of 400. From the results, we can
attest that qualitative methods are more efficient, i.e., find the sensitive parameters in
fewer model evaluations. The main disadvantage is that there is no consensus among the
methods, and in some cases, the resulting importance ranking of the parameters is quite
the opposite. Fonoberova et al. (2013) argue that the use of surrogate models in ABMs
may be an alternative to increase confidence in qualitative SA methods. Conversely, the
results of all quantitative methods were broadly the same and the methods seemed more
robust. They were all based on variance decomposition and were capable of computing
parameter first-order effects, but it takes larger samples to do so. Quantitative methods,
such as Sobol, are indeed more accurate, but at a higher computational cost, e.g.(Gan
et al., 2014). For models with a larger number of parameters than the Cerrado LUCC

model, one must evaluate the trade-off between accuracy and cost.

3.5 Conclusions

We investigated the various impacts that UA and SA experimental design have on ABM
outputs. The results show that, although much of the analysis is problem-specific, there
are known challenges that can be overcome by the use of statistical methods. Related
work comparison illustrates general practices that should be a routine, both to improve
the level of confidence in results derived from ABMs and to promote more rational and
efficient use of ABMs. We suggest performing a specific investigation of the problem,
aiming to test the robustness of the results. One should begin with an investigation of the

number of simulation runs required to secure the stability of output variance, followed by
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a design of experiments selection (quasi-random sampling). It was clear that the quantity
of samples has several ramifications to experimental design and the quality of the analysis.
These steps must be done before UA. The results of UA should be explored in a global
variance-based qualitative SA, such as Sobol.

We also investigated the impact that sampling techniques, sample sizes, and SA meth-
ods may have on the model output analysis. We identified the most significant and non-
significant parameters of the MASE-BDI model. By applying gradient-based, variance-
based, and linear-regression-based SA, we verified that TA is the parameter responsible
for most of the variability of MASE-BDI results. Although the results were similar across
the different SA approaches, they also showed that not any technique can be used without
being tested and compared with others beforehand. Choice of analysis methods and sam-
pling heavily impact model parameter sensitivities. Regarding ABMs, it seems that there
is no single method able to embrace all models. The best-fit method is still dependable
on the model and the goal of the experiment.

UA and SA were found to be essential tools for analyzing and evaluating ABMs, in
particular in the LUCC context on the Cerrado LUCC model. Other than assuring the
model predictions are correct, we believe those methods should be used for model cor-
roboration to help researchers check, e.g., if the assumptions are fragile, if the inferences
are robust, or if the variables are overly dependent. Regarding this matter, we imple-
mented a comprehensive UQ through the integration of MASE-BDI and PSUADE. We
were able to improve the Cerrado LUCC model factor prioritization setting, to identify
which factor was most deserving of further analysis or measurement, and to assess the
ABM parameter elasticity. As a future work, we are interested in identifying critical or
otherwise interesting regions in the space of the input factors. Also, we search to uncover
factors which interact, and which may therefore generate extreme values.

An ABM may be used for learning purposes, role-playing games, to understand the
dynamics of a process, or to investigate different scenarios and configurations. Despite the
research area, the number of parameters or the size of the model, there is room to apply UA
and SA routinely, as a part of the modeling process or even in the model’s operational use.
It is time to make the methodology of agent-based modeling more robust and the analysis
of results collected with ABMs more scientific. To this end, all expressions describing the
systematic and methodological analysis of the responses and behaviors of the model, and
the mapping between its inputs and its outputs (such as robustness checking, variability,

UA or SA), are to be disseminated to the community and to be applied on a regular basis.
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Figure 3.10: Heat map of response surface methods of sensitivity for MASE-BDI simu-
lations, where TA - No. of Transformation Agents, TG - No. of Transformation Group
Agents, IE - Potential of Individual Exploration, and GE - Potential of Group Exploration.
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Exploration, and GE - Potential of Group Exploration.
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Chapter 4

"Evaludation" of agent-based
simulation output to improve analytical

confidence

Full article under review in Journal
Simaulation Modelling Practice and

Theory.

4.1 Introduction

ABMs are acknowledged for modeling complex systems, and simulations are commonly
used to understand the dynamics and behavior of socio-ecological systems, such as LUCC.
Realistic modeling and simulation of those systems must include the non-deterministic
features of the system, i.e., the model must embrace the existence of uncertainty in the
system or the environment, or human interaction with the system (Oberkampf, DeLand,
Rutherford, Diegert, & Alvin, [2002).

Although ABMs provide a powerful tool for analyzing uncertain emergent phenomena,
its utility is limited by difficulties in model analysis. ABMs simulations become rapidly
complicated, what makes difficult to demonstrate the model is realistic and reliable. Sig-
nificant drivers of this complexity are the number of factors, potential interactions between
factors and possible non-linear effects (N. Gilbert & Troitzschl [2005).

Rather often, ABMs are too complex and not at all appropriately validated to add
value to informed decision making. Conversely, some ABMs are broadly applied without
employing basic mechanisms of quality assurance(Grimm et al., |2014). These opposite
realities stem from a not yet established culture of documentation, testing, replicability,

and validation in ABMs. Even though almost all ABM and simulation review have ex-
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pressed the need for statistical methods to evaluate the confidence of the results, these
problems continue to be shortly tested and performed almost perfunctorily. One way to
address these issues is standardization(Lorscheid et al., 2012).

Sensitivity analysis (SA) is referred to as a critical tool to help this type of model
analysis because it quantifies the effects of changes in model parameters and inputs on
the model predictions. However, existing methodologies of SA may be insufficient or
not well-suited for a proper ABM analysis. Uncertainty Analysis (UA) is another set of
methods that can be used to improve model legitimacy. Both SA and UA are closely
related. Some authors such as Saltelli et al.| (2008)) suggest that the discrimination is that
UA focuses on quantifying the uncertainty in the output of the model, while SA focuses
on apportioning output uncertainty to the different sources of uncertainty (input factors).

UA and SA have been successfully used in tandem to simplify ABMs applications such
as |Ligmann-Zielinska et al. (2014),Fonoberova et al| (2013))/Parry et al. (2013),Ligmann-
Zielinska and Sun (2010b). The work of Ligmann-Zielinska et al| (2014) argue that any
systematic evaluation of ABM uncertainty should meet three modeling objectives: i) the
use of UA to evaluate the validity of simulation results; ii) the use of SA to generate a
more parsimonious model; and iii) to prioritize input data refinement by identifying the
ABM factors that are mostly responsible for model output variability.

The position paper of Hamilton, ElSawah, Guillaume, Jakeman, and Pierce| (2015)
describes a concrete advantage of this integrated assessment: to develop simplified or
more computationally efficient versions of ABMs. Where the original model is complex,
speeding up computation might allow more runs to be made to allow exploration of un-
certainty, or might allow the model to be used in an interactive setting with stakeholders.
The simplification might also help identify dominant characteristics of the system that
are not otherwise obvious, or allow the efficient derivation of model properties, such as
sensitivities to changes in inputs.

This work presents a systematic and standardized procedure for ABM research based
on the model analysis workflow proposed by Abreu and Ralha (2018]), composed of the
design of experiments, UA and SA, focusing on their usefulness for the output analy-
sis of LUCC ABMs. We applied those techniques in an LUCC ABM, on a particular
case study of the Brazilian Cerrado. The results are simplified versions of the model,
which can be used to explore model outcomes or conduct an exploratory analysis. Every
step is documented for improving the effectiveness of communication, transparency, and
reproducibility of our experiments.

For the sake of clarity, we do not imply that a simpler model is more likely to be true
or get closer to the essence of the matter. In the interest of ABMs principles of model

building, we seek model simplifications only if and when the model and evidence justify
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this. The simplification is grounded in objective principles such as the reduction of vari-
ability. We characterized this modeling approach as KIDS (Keep It Descriptive, Stupid)
and defined by [Edmonds and Moss (2005)): we start with a straightforwardly descriptive
model, based on evidence and resources, and then allows progressive development later
(including simplification and abstraction).

Also, we contextualize the model analysis in a general framework for model "evalu-
dation" (evaluation + validation) proposed by |Augusiak et al. (2014), anchored on the
modeling cycle. This new terminology describes the entire approach of assessing a model’s
quality and reliability. This framework proposes specific activities to document, check and
verify each step of the design and simulation of a model. We focused on the last three
stages of the evaludation process: model output verification, model analysis (based on the
best-practices proposed by |Abreu and Ralhal (2018)), and model output corroboration.
For each item, we provide the step-by-step of activities, applied to the case study model.
We chose a framework of validation (catch-all term), so it is clear to decision-makers
whether our model is a sufficiently good representation of our real system counterpart,
and what criteria were used to answer this question. Therefore, we aim to provide enough
information so that our model predictions could be more policy relevant.

In Section we describe the UA and SA techniques, as well as the modeling and
validation cycle considered in this manuscript. Also, we formulate and detail our inte-
grated empirical proposal. Section presents a portrait of the LUCC study-case. In
Section [4.4] the evaludation of our framework is presented. In Section we present a
step-by-step view of the model simplification process and discuss our results. Finally, we

conclude and present some future research work (Section [4.6]).

4.2 Materials and methods

Every assessment of ABM output must begin with the definition of the quantity of interest,
the output metric that provides insights about the model quality. In LUCC models, the
metric is often related to the quality of the predicted maps generated through simulation.
In this Section, we describe the methods that are going to be applied in the model analysis
workflow, such as the output metric, the uncertainty analysis and the sensitivity strategies,
and how they are integrated. We present our experimental design and provide context
about how the model analysis should be understood as a task under a model evaludation

framework.
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4.2.1 LUCC goodness-of-fit metric

There are several verification techniques designed for spatial models. Social-ecological
models need to be calibrated with spatially explicit data. Most spatial LUCC models use
LUCC maps based on remote sensing as a starting point. We chose calibration tools that
use aggregated values and spatial explicit validation methods, like the method proposed
by [Pontius et al. (2008). The authors developed several statistical LUCC indexes to
determine accuracy (goodness-of-fit), including the Null Model Hypothesis, a reference for
the LUCC model accuracy that corresponds to only persistence. Also a Figure of Merit
(FoM), a ratio between correct predicted changes and the sum of observed and predicted
changes. This methodology will be used in the steps four (model output verification) and
six (model output corroboration) of the evaludation framework.

The underlying principle of those techniques (Pontius & Millones, 2011) (O’Neill &
Niu, 2017) is the distinction between the quantity of change of a land use type and the
location where these land use changes take place. The accuracy of the model is measured
by the level of agreement between the reference (real) and the predicted (simulated) maps.
The method compare: 1) a reference map of the initial time ¢¢; 2) a reference map of the
subsequent time ¢;; and 3) a prediction map of the subsequent time ;. Those references
and predicted maps are compared, pixel by pixel, and classified into percent correct and
percent error.

These components allow the calculation of the FoM measurement that expresses the
overlap between the observed and predicted change. This value ranges from 0 (no overlap)

to 100 (perfect overlap).

4.2.2 Uncertainty analysis

From the modeling perspective, uncertainty is the lack of exact knowledge, regardless of
what is the cause of this deficiency (Refsgaard, van der Sluijs, Hgjberg, & Vanrolleghem,
2007). One of the main sources of uncertainty are the model factors. Factors comprise
various uncertain model components including variables, parameters, spatial data (maps)
and functions, which often influence model behavior (Lorscheid et al.l 2012)). According to
Saltelli et al.| (2008)), UA focuses on quantifying uncertainty in model output and usually
precedes SA. Monte Carlo, based on random sampling, is the most common UA approach
in ABMs.

In Abreu and Ralhaj (2018), we developed a baseline scenario of the same case study
and performed a wide-ranging investigation of the impacts that differences in sample
sizes, sample techniques, and SA methods may have on ABM model output. After a

comprehensive study of the behavior of different sampling methods in the case study, we
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chose to use Sobol Extended (SOBOL) (Saltelli, 2002), which is a replicated version of low-
discrepancy sequences (quasi-random samples). The SOBOL sampling strategy generates
a uniform distribution in probability space, a qualitatively random distribution, filling
previously unsampled regions of the probability function. This is done with two random
r - n sample matrices My and M,, 1, where r is the number of replications and n is the
number of input factors. Therefore, the total number of sample points is (n + 2) - 7.
The use of SOBOL is in sync with the current trend of use of quasi-random sampling in
ABM (Ligmann-Zielinska et al., 2014) (Saltelli et al., |2008)), because it generates samples
more uniformly over the parameter space and comprises variation reduction techniques
that artificially manipulate the sampling procedure.

ABMs are stochastic, and therefore the experimental error variance in estimation must
be assessed as part of the model analysis. The stochasticity in model outcomes requires
that any analytical exercise must be drawn from a sufficient number of samples. We
adopted the concept of variance stability proposed byLorscheid et al. (2012) and Field
and Hole| (2003), where variance measures can determine the needed number of runs
required per setting of a given simulation. We chose the coefficient of variation cy as
our measure and obtained 800 as the minimum sample size of our LUCC model for a
determined quantity of interest (QOI) (Abreu & Ralhal 2018)).

Selecting an appropriate sample design and the sample size is paramount since UA and
SA are computationally expensive. Sampling methods provide a systematic exploration
of the parameter space that guarantees the sample to have specific statistical or structural
properties. The purpose of these methods is to reduce the number of parameter sets that
are considered, but still chose space-filling points in the design space (Thiele, Kurth, &
Grimm, [2014b).

4.2.3 Sensitivity analysis

SA consists of studying the effects of changes in the input on the output of a model. We
adopted the application goals for SA which are common for ABM research, as proposed
by Broeke, van Voorn, and Ligtenberg (2016)): 1) to gain insight in how patterns and
emergent properties are generated in the ABM; 2) to examine the robustness of emergent
properties; and 3) to quantify the variability in ABM outcomes resulting from model
factors.

Uusitalo, Lehikoinen, Helle, and Myrberg (2015) argue that the fundamental purpose
of SA is to alter model input of the model and study the subsequent changes in model
output. If the output values change little, the output is robust to changes in QOI within
the model. It can indicate that the uncertainty about the QOI is relatively small. Con-

versely, if QOI changes markedly when factors change within their reasonable range, then
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it is a sign that there is substantial uncertainty about the variable’s value (Uusitalo et
all, 2015).

There are various methods of SA, and each one has advantages and limitations. In the
particular case of SA in spatial ABMs, we incorporated the general guidelines provided
by Lilburne and Tarantola (2009) and Fonoberova et al.| (2013). We have already tested
and compared different SA methods, as presented in Abreu and Ralhal (2018). Following
these results, we selected the SOBOL variance-based global SA method (Sobol’, 1993)).

The SOBOL method decompose the output variance V (y) that assumes that the input

factors are independent, hence, model free,
V) =3 VOV +Y V), + -+ Vijm (4.1)
where the partial variance is defined as
Vi = Vi (Bo_(yl)), (4.2)

with z; denoting all parameters except for z;. If V; is large, the expected model outcome
strongly varies depending on z;, indicating the factor to be sensitive. Sensitivity indices

are defined by considering the partial variance relative to the total variance,
Ssi = —. (4.3)

The first-order index represents the main effect contribution of each input factor to
the variance output. The total effect of a variable would be the total contribution to the
output variation, that is its first-order effect plus all higher-order effects due to interaction.
Higher-order sensitivity indices are defined by computing the partial variance over two or

more parameters instead of a single parameter.

4.2.4 Integrated assessment of UA and SA

The coupled use of UA and SA has many objectives and has been successfully applied
in different context in ABMs through the literature ( |Abreu and Ralhaj (2018)), Abreu
and Ralhal (2017)), O’Neill and Niu (2017), Fonoberova et al.| (2013), DeJonge, Ascough,
Ahmadi, Andales, and Arabi| (2012),|Ligmann-Zielinska and Sun|(2010a)), |Crosetto, Taran-
tola, and Saltelli (2000)). We chose to employ Ligmann-Zielinska et al.| (2014 quantitative
UA-SA systematic evaluation of ABM uncertainty to meet three modeling objectives: 1)
The use of UA to evaluate the validity of simulation results; 2) The use of SA to generate

a more parsimonious model; and 3) to prioritize input data refinement by identifying the
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ABM factors that are mostly responsible for model output variability (using both UA and
SA).

In this framework, UA is applied to check the variability of the results in a stochas-
tic baseline model (Figure . Therefore it is possible to improve model rightfulness,
where the distribution of results informs the expected value validated against independent
data, the variance around the mean and the extreme results. The SA is then applied to
indicate which factors are responsible for the variability of results in two different set
of experiments: exploratory and explanatory. Both are simpler versions of the baseline
ABM.

In the ezploratory experiment, the input space is restricted to the inputs that pro-
duced the most of the variance of the baseline ABM, creating a practical model with
output distribution similar to the initial model. The benefit of this experiment is the
possibility to simulate low-probability, but high-consequence events that may be of high
policy relevance. In the explanatory experiment, the framework proposes the refinement
of the most influential input value, resulting in a model that is less spread but preserve
the mean of the output. |[Ligmann-Zielinska et al| (2014) argue that to improve model
performance and provide a scientific explanation it is necessary to reduce output vari-
ability to achieve the necessary accuracy. This explanatory analysis would expose the
smallest number of inputs influencing the steady state of the modeled system. To explain
(different from predict) itself is a reason to model (Epstein, [2008)), because it could bring
to light the system-wide regularities which manifest themselves through the mean of the

output of interest.

4.2.5 FEvaludation of environmental models

Evaludation is the terminology proposed by |Augusiak et al.| (2014) to describe the entire
process of assessing a model’s quality and reliability. It is based on the modeling cycle,
and it is composed of six fundamental steps: 1) data evaluation; 2) conceptual model
evaluation; 3) implementation verification; 4) model output verification; 5) model analysis;
and 6) model output corroboration. A simplified representation is presented in Figure

Data evaluation is a critical step for scrutinizing the quality of numerical and qualita-
tive data used for model development and testing. It includes the data used to parametrize
the model via calibration, to define the conceptual model, to design the model structure,
to formalize expert knowledge in probabilistic if-then rules, among others. Data is a
significant source of uncertainty, and therefore data themselves do not always represent
the real system sufficiently well. As Augusiak et al.| (2014)) evince, "a model cannot be
expected to provide more accuracy and clarity than what has been used to develop it in

the first place”.
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Figure 4.1: Framework for coupling uncertainty and sensitivity analysis of ABMs. Exper-
iments to apply variance decomposition to (A) simplify a baseline stochastic model, and
(B) to maintain its exploratory power embodied in outcome variability or (C) to improve
its exploratory power by reducing its outcome variability. Source: (Ligmann-Zielinska et
al., [2014)).
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Conceptual

Data evaluation

Model output
verification

Figure 4.2: Representation of the evaludation steps of model development proposed by
Augusiak et al.| (2014). The modeling cycle presents the terminology for model qual-
ity assurance and it is an adaptation of the work of |[Refsgaard and Henriksen| (2004))
and Schlesinger; (1979)).

Conceptual model evaluation is the step created to examine the simplifying assump-
tions underlying a model’s design. The assumptions include the spatial and temporal
scales, the choice of environment, entities and processes to be represented, and even def-
initions about the stochasticity and interactions. The conceptual model is prone to bias
due to the modeler subjectivity, judgment, and lack of awareness. The third evaludation
step is the implementation verification. It concerns to test the model’s implementation in
equations and as a computer program. This element is concerned not only in checking for
code errors and bugs but also for detachment due to vagueness in the model description.

The model output verification is an assessment of "how well model output matches
observations" for a model is to be a good representation of the real system. However, re-
searchers should be aware of what degree calibration, initial states of the model, and data
sampling were involved in obtaining good fits of model output and data. Model analysis is
the fifth step and regards the exploration of the sensitivity to changes in the computerized
model parameters. Also to make sure that the emergence results, produced by the behav-

iors and processes of the model, were understood. Finally, model output corroboration
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is responsible for comparing the model outcome, often predictions, to independent data

and patterns not used in the model conception and calibration.

ugusiak et al. ropose this set of terms and "quality assessment" processes to
'Augusiak et al.| (2014) propose this set of t d "quality t" p t

ensure the reduction of avoidable uncertainties, to establish a control framework of the
model, to improve communication (to peer researchers, decision-makers, non-technical
audiences), to promote transparency of the capabilities/limitations of a model, and to
raise the confidence of the model’s results. However, the authors highlight that it is not

possible to create a fool-proof protocol considering the complexity of environmental issues.

4.2.6 Proposal

We apply the general evaludation process proposed by Augusiak et al.| (2014)) to promote

transparency and to improve the overall quality of the simulation results. We focused on
presenting the details of the verification, model analysis and model output corroboration

steps of the evaludation process. The overview of each step is presented in Figure [1.3
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Figure 4.3: Integrated uncertainty and sensitivity assessment applied to the evaludation
steps within the modeling cycle.

We used the most efficient sampling strategy, UA and SA methods for our specific
land use study case (Abreu & Ralhal [2018). These methods were applied in a UA-SA
integrated assessment of an LUCC case study. As proposed by [Ligmann-Zielinska et al.|
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(2014), we seek to build two simplified and more computationally efficient versions of
our ABM. The exploratory experiment provides the opportunity to investigate extreme
system behavior. The explanatory experiment improves model performance and provides
scientific explanation necessary to reduce output variability and improve analytical con-
fidence.

Every step is applied aiming a more robust and concise model, focusing the reduction
of variability within the ABM outputs. What sets apart this scientific contribution is that
this simplification is focused on the reduction of variability of initialization configuration
of ABM simulation. Each step of the evaludation is documented, as well as each step
of the integrated assessment. This way we can demonstrate the robustness of the ABM

simulation outputs.

4.3 ABM land use case study

An overview of the case study is provided so the reader can understand the ABM and
its results. We will focus only on the ABM initialization variables as factors in the
experiments. The description of the parameters and its impacts will be restricted to this

dimension of uncertainty.

4.3.1 MASE-BDI computation modeling platform

Many environmental ABM simulation tools perform land change using the agent’s ap-
proach, but few are using rational agents. Considering that agent’s cognitive reasoning and
decision making can be executed within the Belief-Desire-Intention (BDI) model (Brat-
man, |1987) the options are even fewer. Thus, this work uses the Multi-Agent System
for Environmental (MASE)[| simulation tool (Ralha et al 2013) which was extended by
introducing rationality to agents with the BDI model resulting in the MASE-BDI (Coelho
et al., [2016). MASE-BDI allow multiple types of agents with different behaviors to repre-
sent the interactions and relations between agents and the physical environment consid-
ering spatially explicit models in the context of land change. A complete methodological
description of MASE is available in [Ralha et al| (2013). In Coelho et al,| (2016)), the
MASE-BDI implemented architecture with the description of the agents’ reasoning model

and an auto-tuning module is presented.

'MASE Project Website: http://mase.cic.unb.br/
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4.3.2 LUCC model description

The MASE-BDI LUCC model is a socio-ecological ABM with the purpose of exploring
how the land cover is affected by external disturbances such as the individual behavior
of agents and changes in land use policies and regulations. It is a spatially explicit
model where the real landscape is represented by a set of geographic information system
(GIS) derived maps. This model has a hybrid framework because it allows researchers
and stakeholders to explore land change from the emergence of individual decision-making
(farmers and ranchers will be based on the BDI mentalistic approach) and from a top-down
perspective (regional spatial planning). The LUCC model presented herein is committed
to the Transparency and Openness Promotion (TOP) guidelines (Nosek et al., 2015) and
all the model code, maps and data are available for reproducibilityﬂ This paper provides
an overview of the conceptual model. For a full description of the model in the ODD
protocol (Grimm et al. 2006) for ABM communication, readers can refer to Ralha et al.
(2013).

Figure presents the structure of MASE-BDI conceptual model using a UML Class
diagram with properties/attributes sit at the top and methods/operations at the bottom.
Note that the SimulationManager, SpatialManager, TransformationManager, and Trans-
formationAgent inherit from BDIAgent through an implementation relationship. The
FarmerAgent and the RancherAgent implement the TransformationAgent through a gen-
eralization relationship being an individualAgent or a GroupAgent. The SimulationMan-
ager instantiates the SpatialManager and TransformationManager. The SpatialManager
manages the simulation GRID that contains Proximal Matrix. The GRID and Proximal
Matrix contain Cell (composition - each simulation Cell has an instance of the GRID
and Proximal Matrix). The GRID can call Proximal Matrix’s properties or methods.
The TransformationManager implements the conflict resolution of the Transformation-
Agent’s, while the TransformationAgent checks the Proximal Matrix attributes before
movement. The TransformationAgent occupies and transforms the Cell’s (aggregation),
while the TransformationManager instantiates and manages the TransformationAgents
(composition).

The land cover change result from the emergence of the individual decision making of
the ranchers and farmers. Each step of the simulation corresponds to a week in chrono-
logical time. The basic spatial unit is a plot, representing 1ha of the GIS map. During the
model setup, the simulation GRID is loaded with the reference map of the initial time ¢,
and a set of GIS layers, representing the environment such as hydrology (lakes and rivers),
landscape, railways, highways, slope, streets and buildings, environment protected areas,

territorial zoning maps, etc. The sum of the physical layers creates a proximal matrix that

2Model availability: https://gitlab.com/InfoKnow/MASE/MASE-BDI/SourceCode
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is perceived by the agents and is part of their beliefs. The farmer and rancher agents (TA
- Transformation agents) are associated with various socio-demographic and economic
factors (capacity of exploration, capacity of production, land tenure) and assigned to a
plot.

A simple activity diagram for the TA is presented in Figure [4.5] A first step is to be
assigned to a plot, where the agent may choose to explore the land or move to a more
attractive plot of the neighborhood. If there is competition, the conflict is brought to a
solution by a higher entity. TAs have their behavior and beliefs, explicitly changing the
natural landscape to achieve their internal goals.
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Figure 4.5: Transformation Agents Activity Diagram.

4.3.3 Case study: ABM of the Cerrado Federal District anthropic

land use

Brazil’s Cerrado is the country’s second-largest biome, and the most bio-diverse and
threatened savannah on the planet. This biome has already lost 48.2% of its original
vegetation cover and is being affected by an intense process of habitat fragmentation. The
high rates of vegetation loss and deforestation are attributed to unsustainable agricultural

activities such as soy production and cattle ranching. This over-exploitation poses a
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continuous threat to numerous animal and plant species, especially to an estimated 20%
of endemic species.

The Federal District is the only Brazilian state that has its territory entirely covered
by the Cerrado biome. All of its 5, 789km? territory is inserted in the Environmental
Protected Area (EPA) of the Central Plateau, as presented in Figure Therefore,
the Federal District Spatial Plan must comply with various environmental management
guidelines, from the federal, regional and local governments. This overlapping in attribu-
tion creates a peculiar scenario, in which farmers and ranchers receive multiples incentives
and penalties depending on the land use, the specific area of the territory and the scale

of the land exploration.

—— Hydography
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B Lakes -
[ EPA St. Bartolomeu River Basinl.,
[ |EPA Gama\Cabeca Veado Basin
[ EPA Cafuringa

[T EPA Paranoa Lake

\ EPA Central Plateau

Figure 4.6: Federal District Environmental Protected Areas.  Source: Adapted
from (IBRAM| 2014).

The case study considers the participation of farmers and ranchers as land transforma-
tion agents that move and explore the land within the DF territory. The transformation
agents have different beliefs, desires, and intentions and may comply with the given DF
spatial plan.

A random distribution of agent behaviors usually initialized ABM simulations. In some

cases, empirical data should be used to bring the model closer to reality. However,

and Van Bavel (2017) argue that one of the primary challenges of ABM initialization

of the population of agents is that there is no set of data that contains every possible
behavior. Therefore, researchers must elaborate a strategy to initialization, that can be
purely random, utopian data-driven or, in most of the cases, something in between. In this
case study, there are four initialization factors, presented in Table[4.T] that are responsible
for a significant portion of output variability (Abreu & Ralhaj 2018)). We start with a
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simple random initialization and will adjust the range of the factors based on the feedback

provided by the evaludation process. This way we can use empirical data not only for the

verification but also for the initialization.

Table 4.1: Input factors of the MASE-BDI simulations of the land use case study.

Factor Description Distribution Range

TA No. of Transformation Agents Uniform 1-100
TG No. of Transformation Group Agents Uniform 10 - 100
IE Potential of Individual Exploration Uniform 1-500
GE Potential of Group Exploration Uniform 500 - 1500

4.4 MASE-BDI LUCC model evaludation

We use model evaludation to improve the overall confidence of the models’ results. The

following items describe a summary of the steps that were performed in the evaludation

process. The focus of this manuscript, model verification, analysis, and corroboration,
will be detailed in Section and the predictive modeling capability of the MASE-BDI
LUCC model will be discussed.

Data evaluation: The LUCC model was calibrated to experimental data. Also, the

available data for the parametrization of the model parts were taken from peer-
reviewed literature and expert interviews. The empirical characterization of agent
behavior was performed according to the Smajgl et al| (2011) methodology and
is described in details in [Ralha et al. (2013). We used parallel auto-tuning algo-
rithms to evaluate the search space of over six million parameter combinations, and
quickly tune the simulation model, regardless of the QOI used (Coelho et al., 2016).
However, spatially explicit sets of data are scarce and are available in different tem-
poral and spatial resolutions. We had to manually transform the spatial data into
the same scale and group it in the same temporal window. Qualitative observed

patterns were also used to design the overall model structure.

Conceptual model evaluation: The design and assumptions of the LUCC model sim-

ulated in MASE-BDI model are built over an existing model of the dynamics of the
agricultural frontier in the Amazon and savannas of Brazil (Cerrado), proposed by
Smith et al.| (1998) and presented in Ralha et al.| (2013). The conceptual model
design is described on the ODD (Overview, Design concepts, and Details) Protocol,
designed by |Grimm et al.| (2010)) to standardize the published description of ABMs.
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Implementation verification: In order to verify and guarantee that the model code
works according to the ODD model description, we performed a series of code checks,
unitary tests, and compilation tests. Moreover, visual testing through MASE-BDI
interface was carried out. The computational efficiency was verified with stress tests,

with extreme parameters values.

Model output verification: In this study, we performed calibration of the initialization
parameters to optimize the FoM goodness-of-fit metric to our initial data set. We
adopted the terminology proposed by [Trucano, Swiler, Igusa, Oberkampf, and Pilch
(2006), where calibration ultimately is an optimization under uncertainty problem.
Therefore, we formulated the calibration problem to explicit acknowledges model
uncertainty. We adjusted the set of parameters associated with the model code so
that the model agreement is maximized to a set of experimental data. The spatial
explicit index metrics such as the null hypothesis and FoM were our QOI, i.e.,
the calibration considered not only the quantity of land use change but also the
allocation of change in the spatial grid. Each step of the model output verification
is described in Section .51l

Model analysis: Although there is a relatively high computational time for each simu-
lation, a comprehensive SA was performed. The sensitivity of the model outcomes
was evaluated in a set of simulations covering different sampling strategies, sample
sizes and SA methods (Abreu & Ralha), 2018)). In this manuscript, we conducted
an SA to explore the behavior of the model regarding the simulation initialization
parameters, i.e., factors that were not directly determined from the literature. The
model analysis is presented in Section and has two main objectives: under-
stand the emergence of model outputs to produce a simplified and computational

efficient version of the model (exploratory and explanatory).

Model output corroboration: It is hard to find data that can be used to corroborate
model results, given the spatiotemporal resolution of the LUCC simulations. Only
recently the Brazilian Environmental Ministry published data from different years

that could finally be used to corroborate the model. The experiments are presented

in Section

4.4.1 Design of experiment

We designed three sets of experiments to verify and analyze the model: a baseline exper-

iment, an exploratory, and an explanatory experiment described as follows.

e In the baseline experiment, we run 138,800 runs using all four factors;
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e In the exploratory experiment (1680 runs), we performed SOBOL SA and included
the factors that highly impacts the FoM output;

e In the simplified explanatory experiment (1680 runs), we perform a variance reduc-
tion by fixing the most influential factor from the baseline experiment, leaving the

remaining factors unchanged.

Finally, a corroboration experiment was performed. All simulations were run using
high-performance computing at the University of Brasilia. Factor samples were produced
using the quasi-random SOBOL experimental design. The sample size considers the
variance stability for £ = 0.001, as presented in Section SOBOL S and ST indices,
as long as all the UA were calculated using an integrated implementation of MASE-BDI
and PSUADE software package (Tong, |2005).

4.5 Results and discussion

The results of our ABM simulations are land use maps and a set of calculated metrics,
such as FoM, a goodness-of-fit metric. The spatially-explicit output is a simulated raster
map of the predicted LUCC change, illustrated in Figure [4.7, an example result from the
baseline experiment. The different colors show the predicted land use cover produced by
simulation. Figure .8 represent a summary of the goodness-of-fit of the simulations runs.
As proposed by [Pontius et al.| (2008), each bar is a rectangular Venn diagram where the
solid and cross-hatched central segments represent the intersection of the observed change
and the predicted change, while the central solid black segment is the change that the
model predicts correctly. When FoM > 50%, it means the amount of correctly predicted
change is larger than the sum of the various types of error, and the model is more accurate
than the null model.

Figure [4.8] exemplify some contrasting results due to the variation of initialization
parameters. In Simulation n°55 (Simb5), a result obtained from TA=55 agents, FoM is
55 whereas Simulation n°5, a result obtained from TA=5 agents, FoM drops dramatically
to 19. It is clear that this is still not a well-calibrated model. A brief analysis would
show that variation in the initialization of the simulation may result in radical changes
of significant consequence to the simulation results. We use UA-SA integration to clarify

this results and focus on the causes of variability.

4.5.1 Model output verification

To investigate what is the variability of results we performed UA in our baseline sample to
examine the distribution of the QOI. Table 4.2| summarizes descriptive statistics for FoM,

74



oy~ o

& R :‘E ; \ Al (] Anthropic use
se ] R e

R . Body of water

. 9 - A
Ei“{};j\" -\‘ -y . @ Natural vegetation
fa SR %3 E‘ O |

Figure 4.7: A land cover predicted map produced from a simulation on the Cerrado LUCC
model in Brazilian Federal District, showing the changes from the year 2002 to 2008.

the moments and its errors. The first moment is the mean, denoted by u = EX. The
second central moment is the variance. The third moment, or skewness () is the measure
of the lopsidedness of the distribution. Kurtosis, the fourth central moment is a measure
of the heaviness of the tail of the distribution, compared to the normal distribution of the
same variance. Figure summarizes the empirical density of the FoM output on the

baseline experiments simulations.

Table 4.2: Uncertainty Quantification: moments results of MASE-BDI model’s FoM.

Mean (Error) Variance Skewness Kurtosis

41.58 (0.57) 268.17 -1.34 3.25

Still, regarding the UA, the null hypothesis (Hy = p are equal) would confirm that all
ABM representations are equivalent, but the experiments were considered being signifi-
cantly different from any other (one way ANOVA (F'(15,64125) = 625, p = 0, p < 0.05)).
This result refutes the assumption that all ABM representations were equivalent. How-
ever, UA alone does not provide the influence of the individual factors on the accuracy
of the final map. We were interested in knowing the influence of each factor on the FoM
variability. Figure 4.10|shows simple representations of pie charts of the S and ST indices
for Sobol.

It is clear that TA is the most relevant factor that influences the output of the model,

followed by TG. We needed to calibrate the input factors aiming to reduce the sampling

75



A\ ERROR DUE TO OBSERVED PERSISTENCE PREDICTED AS CHANGE T
o
Il CORRECT DUE TO OBSERVED CHANGE PREDICTED AS CHANGE - 2 c
%/ ERROR DUE TO OBSERVED CHANGE PREDICTED AS PERSISTENCE Q 3 E
= =, w
. o
observed change predicted change o o 2
A -+ (q I'e)
A A 3 c £
B 5 o
K ‘ ¥ 2 <
N NN \
Sim 55 \\ \\\\ N\ | 5562 84
AA\N\\\ NN

§&\\\\\\\§&\\\\\\\\\\\§§&\\\\\\§§ 19 20 80

0 5 10 15 20 25 30
PERCENTAGE OF LANDSCAPE

Figure 4.8: Sources of percent correct and percent error in different runs of the MASE-BDI
simulations.

variance. Thus, we used an empirical approach to calibration as an optimization problem.
We generated a quasi-random sample and performed a total of 138,800 simulation runs
to adjust the range of the input factor. To further investigate the TA factor, we produced
a scatter plot (Figure for the visualization of the relationship between the FoM (z
axis) and the number of agents, TA (y axis). It is possible to see that there is much noise
in FoM when TA< 40. The same observations were generated for the visualization of TG.
The maximization of FoM was considered the optimization function, and we generated a

set of range restrictions on the input factors, as presented in Table [4.3]

Table 4.3: Initialization configuration parameters post-calibration.

Parameter Description Distribution Lower bound Upper bound
TA No. of Transformation Agents Uniform 40 80

TG No. of Transformation Group Agents Uniform 10 100

IE Potential of Individual Exploration  Uniform 1 500

GE Potential of Group Exploration Uniform 400 1000

Table presents the experimental design henceforth referred to as the baseline ex-
periment. The limitations imposed in the inputs initial range are presented in Figure[4.12|
The distribution of the FoM after the calibration is presented in Figure Table [4.4
summarizes the moments for the baseline experiment. Now the results of no simulation run
is significantly different from any other (one way ANOVA (F'(1,1185) = 0.746, p = 0.39,
p > 0.05)). We can confirm that in the baseline experiment all ABM representations are

equivalent given the significance level of 0.05.
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Figure 4.9: Empirical density of the baseline experiment simulation’ results of the FoM
distribution.

Table 4.4: Moments result for the baseline experiment, considering the calibrated input

factors.
Mean (Error) Variance Skewness Kurtosis

51.91 (0.57) 0.99 0.98 3.06

4.5.2 Model output analysis

The model analysis aims to explore the sensitivity to changes in the computerized model
parameters and includes a description and a justification of the scenarios explored. We
used the variance to evaluate FoM variability, and the results show that the variance of

the second and third experiments are approximately equal (Table [4.5]).

Table 4.5: Uncertainty Analysis: Means and Variance of Figure of Merit

Mean Variance
Experiment 1: Baseline 51.91 0.99
Experiment 2: Exploratory 51.98 0.97
Experiment 3: Explanatory 51.03 0.34

The first SA experiment is the simplified exploratory, in which the input factors with
little or no influence on the variance decomposition are fixed. After our baseline SA
analysis, we chose to fix the input parameter TG= 45 and TE= 250, the mean values

for those factors. Due to their influence, TA and TG were not changed. Since FoM is
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Figure 4.10: Sensitivity analysis of FoM output in the baseline experiment.

almost insensitive to variations in T'G and IE, the fixation of those factors has almost zero
influence in FoM output distribution. The results of the SA are presented in Figure [4.14].
In fact, the baseline experiment and the simplified exploratory experiment distributions
are nearly identical, including their means and variances. Also, the variance decomposition
generated S and ST indices consistent with the baseline model.

The second scenario is the simplified explanatory, in which the most influential input
factor is fixed. We set TA=55 (an arbitrary choice based on the best FoM). The results
of the SA are presented in Figure [4.15] In this experiment, we want to explore how our
ABM behaves when we fix the most sensitive initialization parameter. The results show
that the mean is roughly the same, but the dispersion around the mean highly decreases.
Also, because we fixed the most sensitive input factor, SA shows that only part of the

variance decomposition can be apportioned to individual factors.

4.5.3 Model output corroboration

Model output corroboration is responsible for comparing the LUCC model predictions
to independent data not used in the model conception and calibration. This step of
the model evaludation is only possible because a new set of data of the Federal District
land cover was released in 2017 by the Brazilian Environmental Ministry (Brasil, [2015),
composed of maps and satellite images of each year varying from 2009 to 2015. Before
this official release, the only available data was from 2002 to 2008, and it was what we
used to test, verification and calibration.

We run our baseline experiment from 2009 to 2015. The results show FoM= 51,84,
with a total of 462, 76ha of new anthropic land cover change, added to the original map.

The external data from 2009 to 2015 reported nearly 4km? of anthropic land change in
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Figure 4.11: Scatter plot of the relationship between FoM and TA in 138,800 simulation
runs.

the study area. Considering the simulation results of u = 4.62km? of land cover change,
we have that the simulated result is about 15% higher than the reported government
land cover change. Since our experimental design uses a more uniform (quasi-random)
sampling, we can infer that the calculated mean of land change is indeed the true (accu-
rate) measure of central tendency. Therefore, we considered that the independent data
promoted the model output corroboration.

Figure[4.16)illustrates the analytical procedure of map comparison proposed by [Pontius
et al.| (2008)) to corroborate the allocation of changes in the land use. In the map (a), we
examined the difference between a reference map of 2009 and the reference map of the
year 2015. In the map (b) we examined the difference between the reference map of 2009
and the prediction map for 2015. We wish to investigate whether the model predicts the
land changes accurately. If the model were to predict the observed change correctly, then
figures (a) and (b) would be equal. Finally, figure (c¢) examines the difference between
the reference map of 2009 and the prediction map of 2009. Most of the error is location
disagreement, which occurs primarily because the model predicts land change at the wrong

locations.
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Figure 4.12: Distribution boxplots of the input factors (top) before the calibration and
(bottom) after the calibration process.

4.5.4 Discussion

The UA results show that a change from factor TA=55 to TA=5 can raise the error
due to observed persistence predicted as change in up to 290%. This radical changes of
significant consequence to the simulation demonstrate the importance of assessing ABM
initialization. Moreover, the choice of the objective function or QOI in an ABM can have
a great impact on the identifiability of model parameters. i.e., the optimum QOI may
not be given by a maximum in the parameter space, but rather by a complex interaction
structure, in which many different combinations of the parameters are equally able to
provide best fitting model simulations (Saltelli et al., [2004)). Although the initialization in
ABM can be tackled by gathering experimental data, the modeler cannot build a complete,

exact image of a real system and has to simplify some processes and representations.

80



Density

52 24
Figure of Merit

Figure 4.13: Density plot of the distribution of FoM outputs in the baseline experiment.

There will be underdetermination of the model due to epistemic uncertainty but also by
the amount and quality of data. According to Cobelli and DiStefano (1980)), the only way
to uniquely identify model parameters, the number of conditional equations derived from
applying a model to a dataset has to be higher than the number of parameters, and there
must be sufficient variation in observations.

The UA results in the baseline experiment disclose another critical issue on ABMs:
overfitting. In an overfitted model, the factors are chosen and calibrated to reproduce also
the deviations present in the dataset, leading to an optimal fit in the calibration dataset,
but deteriorating prediction in other situations (Forster, |2000). Modelers have to deal
with the trade-off between aiming for a perfect fit and the risk of deteriorating predictive
capacity for other samples. Zucchini (2000) argues that modelers should understand
calibration as a problem of maximizing the expected accuracy of prediction for any sample,
rather than finding an optimum fit to observed sample. It is necessary for the ABM for
LUCC community of researchers to discuss what is an expected accuracy in a set of
measurements and maps.

Regarding the SOBOL sensitive indices, S and ST, the variance decomposition results
for the exploratory experiment is consistent with the baseline experiment. This simpli-
fication is more computationally efficient and could lead to a complete model analysis.

It is also worth mentioning that variance remains almost the same between the baseline
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Figure 4.14: Sensitivity analysis of FoM output in the simplified exploratory experiment.
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Figure 4.15: Sensitivity analysis of FoM output in the simplified explanatory experiment.

and the exploratory experiments. We can infer that the exploratory simplification of our
model can be used in analysis without the loss of variability necessary when evaluating
LUCC policies. This simplification maintains the resulting variability and therefore can
be used to identify less probable but highly consequential policy scenarios, as shown by
Ligmann-Zielinska et al.| (2014)).

On the contrary, the explanatory simplification version of the model maintains the
same mean but reduces the variability. This is a consequence of the refinement of data
because the most sensitive factor was fixed. The benefit of this approach is to mimic a
scenario in which we obtain exceptionally accurate data for the most sensitive factor. It
could be used to analyze the behavior and interactions of the other variables, and raise
our understanding of other social and ecological processes of the LUCC region dynamics.

We agree with the assumption that says that it is best to reveal the complexity of a
problem through the simulation instead of through the model structure. These simplifica-

tions may provide a more robust and concise model, focusing the reduction of variability
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Figure 4.16: Sources of percent correct and percent error in different runs of the MASE-
BDI simulations.

within the ABM outputs. One of the contributions of this manuscript is to show a real
application of the use of objective principles such as the reduction of variability to simplify
the model when data justify this approach. To focus on the initialization configuration
of an ABM within an evaludation process may also help other researchers that face this
common challenges.

Regarding model output corroboration, it is clear that just the mere fact of comparing
model outputs to independent new data is neither sufficient nor necessary to make a model
more useful to policymakers and to conclude to its validity. However, is one more step

towards a more reliable model and predictions.

4.6 Conclusions

Despite the limitations and even though the presented analysis was done over a particular
simulator, we conclude that important feedback can arise from the application of a broader

evaluation process to improve the level of confidence in ABMs simulation outputs. The
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transparency of the sound statistic tests may contribute to a systematic treatment of
uncertainty and better modeler-user communication.

Researchers for descriptive and predictive purposes have used ABMs but still, have
limited use in policy-making. This may be explained by the lack of confidence in the
accuracy of predictions. This UA-SA integrated assessment, applied within an evalu-
dation framework is an effort to open the ABMs "black box", to make the predictions
more transparent and to improve analytical confidence. This approach serves as a tool
for better-informed ABM building and using of its results. Output uncertainty can be
reduced if we can improve the quality of the data on the most sensitive factors. There are
limitations to this approach, such as the choice of a QOI, in our case, the FoM goodness-
of-fit metric. The investigation of another output could alter the results and the most
influential factors. Also, changes in the distribution of the input factors may also result
in different relative contributions to the outputs. This will lead to a future investigation
of the output space. We are also interested if we can make our simplified versions of
the model pass the"falsifiability" test. We will test different theories to see if there is
any failure in the expected basic patterns of the model. Moreover, the study of changing
landscape patterns involve calculating the indices for images of a landscape taken at sev-
eral different times in history and then observing how these indices vary over time. As of
today, the information on the landscape at each step of the simulation is not persisted in
the MASE-BDI framework. LUCC ABMs based on cellular-automata usually persist this
information. We will consider refactoring the code to gather this information for further

analysis of the spatial and temporal complexity.
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Chapter 5
(General Discussion

ABMs are favorite for modeling complex phenomena. However, the credibility, and utility
of ABMs are hampered by the lack of model analysis, transparency, and reproducibility of
ABMs. It is partly due to the non-existence of a fit-all methodology for model validation.
Also, there is a lack of experimentation, supported by a wide range of arguments. Some
arguments suggest that experimentation is too difficult, useless, or that it cost too much.
By the number of tests, simulations, experiments, and runs that were performed in this
thesis, one can understand why there is so little experimentation in ABM community.

A first question to be answered is: ABMs have to be validated at all? Only if the
answer is yes, we can argue that there is not enough of model analysis. Refsgaard et al.
(2007) argue, regarding Popper’s scientific, philosophical school, that models cannot be
verified or validated. Despite the terminology, we do not seek for absolute certainty, but to
consider the conclusions as admissible. Balci (1998) defines validation as substantiating
that the model, within its domain of applicability, behaves with satisfactory accuracy
consistent with the study objectives.

All of those insights must be the result of different experimentation. Concerning
that topic, |Tichy (1998) proposes an exciting discussion. The author states that no
amount of experimentation provides proof with absolute certainty. However, experiments
must be used for theory testing and exploration. To cite another computer scientist, Mr.
Dijkstra (Dijkstra, [1970), an experiment can only show the presence of bugs in a theory,
not their absence. Therefore we advocate that quantitative analysis of model outputs is
mandatory to probe the influence of model assumptions, to understand model results, to
ensure repeatability, and to raise the credibility of ABM as a science.

The usefulness of simulation models is limited by the ability of the modeler to demon-
strate the robustness of the model results. OAT analysis is the most popular SA technique
used in ABM. In Chapter [2] we were able to find the most influential factors but at a high

uncertainty. The uncertainty was so high that the confidence intervals indicated that most
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of the results did not meet the minimum goodness-of-fit criteria. This experiment should
suffice to indicate that the current level of experimentation on ABMs is not enough. This
kind of shallow analysis does more harm than good. Modelers should be aware that even
a widespread technique should not be applied without questions. The proposed UA-SA
workflow register a sequence of steps that must be assessed in any model analysis: What
is the point of variance stability? Which is the best sampling strategy? What is the vari-
ability of my results? Which SA measure should I apply? What factors are responsible
for most of the variability of the output? These questions can help to disseminate the
proposed workflow and evaluation guidelines.

Another common argument is that this type of comprehensive investigation cost too
much, regarding time or computational resources. One could argue that more costly is to
publish a paper with unvalidated claims. The review works (Angus & Hassani-Mahmooei,
2015; |Heath et al., [2009)) show us that most modelers are publishing untested frameworks,
and this is one of the reasons ABMs are continuously criticized. The results of this thesis
do not suggests that every ABM idea must be experimented, but testing can help build a
reliable base of knowledge and reduce uncertainties. Also, testing can lead to unexpected
insights and quickly eliminate fruitless approaches and erroneous assumptions (Tichy,
1998). Researchers should probe the importance of the research question. Besides, the
insights gained from previous experiments are availed in the next iterations. All of the
experiments that we had to undergo in Chapter [3| gave us the understanding of how
MASE-BDI works regarding the factors under investigation. In Chapter [4 most of the
initial investigation was reused, therefore reducing the so-called high cost.

The discourse that ABM complexity is so high that a researcher may lose track of how
the model works can also be debated. If there are too many variables to control and too
much uncertainty, is more of a reason to execute those disciplinary experiments. We agree
with [Tichy| (1998) when he states that eschewing experimentation because of difficulties
is not acceptable science. However, it is essential to have in mind that experiments are
always be flawed in some way. Experiments may be based on unrealistic assumptions,
researchers may manipulate the data, or it might be tough to quantify the QOI. Despite

these problems, the flaws may be reduced by a description of robust experimentation.

5.1 Contributions

In this thesis, we achieved the proposed objective of evaluation of the application of
several methodologies of uncertainty quantification in the ABM output analysis. We

performed an integrated application of UA and SA techniques and evaluated the impacts
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that differences in sample sizes, sampling techniques, and SA methods may have on model

output. To summarize, we highlight the following contributions of this thesis:

e Important feedback can arise from the application of a broader evaluation process

to improve the level of confidence in ABM simulation outputs;

e The empirical workflow can promote transparency and sound statistics tests, that
may contribute to a systematic treatment of uncertainty and better modeler-user

communication;

e UA-SA integrated assessment as a communication tool can open the model "black-

box";

e Parameter and Methodological uncertainty can effectively be reduced by the appli-

cation of these guidelines;

e The validation and model output corroboration of the Cerrado LUCC MASE-BDI
model is an important tool for understanding land-use dynamics and for policy

decision-making in Brazil.

In our proposed empirical workflow to perform model output analysis, we organized
a set of tasks under a macro prism of validation/evaluation of an ABM. The application
of this workflow can be generalized and applied in all ABM, because the tasks and steps
may be used as a guideline to assess the uncertainty of any kind of model. We advocate
that the model may be evaludated, but only about site-specific applications and to pre-
specified goodness-of-fit criteria, limited in terms of space, time, boundary conditions and
types of application. The elaboration of this workflow aims to improve the quality of ABM
studies by reducing the gap between the perceived need to improve ABMs credibility and
the lack of commonly agreed modeling guidelines.

UA and SA were found to be essential tools for analyzing and evaluating ABMs, in
particular in the LUCC context on the Cerrado LUCC model. Other than assuring the
model predictions are correct, those methods were used for model corroboration to help
researchers to check if the assumptions were fragile, if the inferences were robust, and if the
variables were overly dependent. Regarding this matter, we implemented a comprehensive
UQ through the integration of MASE-BDI and PSUADE. We were able to improve the
Cerrado LUCC model factor prioritization setting and to create simplified scenarios to
explore different parameter space regions. We also created a version of the model that
helped us to explain the behavior of the system under pre-defined variance restrictions.
All of the results were analyzed and validated by specialists.

We also reflected that most experiments relies on a single figure of merit. The inves-

tigation of another output could alter the results and the most influential factors. Also,
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changes in the distribution of the input factors may result in different relative contribu-
tions to the outputs. Although we are aware of the limitations, we think we benefit either
way. An interesting definition is attributed to Enrico Fermi: "there are two possible out-
comes: if the results confirm the hypothesis, then you have made a measurement. If the
result is contrary to the hypothesis, then you have made a discovery". Following this logic,
in either case a conclusion can be made. New conclusions come from the experiments on
new ouput metrics.

Finally, an important property of good models is simplicity. A good model does not
just define new useful quantities. It also leaves out many useless ones. Note that we
are saying simple rather than simplistic. We agree with the KIDS methodology and will
create simplified versions of the model only if the data or the results explicitly points in
that direction.

Despite the limitations and even though the presented analysis was done over a par-
ticular simulator, we conclude that important feedback can arise from the application
of a broader evaluation process to improve the level of confidence in ABMs simulation
outputs. The transparency of the sound statistic tests may contribute to a systematic

treatment of uncertainty and better modeler-user communication.

5.2 Future Work

As a future work, we are interested in identifying critical or otherwise interesting regions
in the space of the input factors. Also, we would like to search to uncover factors which
interact, and may therefore generate extreme values.

Also, calling a model validated does not make it valid. Researchers must continue to
work toward finding ways to improve agent-based simulations. In this thesis we explored
the parameter input space. In our future work, we look forward to investigate the output
space and see if the model that we consider ‘valid’ in this manuscript would also pass
the “fasifiability” test. On the same note, another interesting future work for MASE-BDI
would be to test contrasting theories to see if there is fail in the expected basic patterns
of the model.

We marginally assessed the spatial and temporal complexity of the model under a
qualitative aspect, based on Agarwal et. al (2001) framework described in Ralha et
al. Ralha et al| (2013). The Cerrado LUCC model objective is to assess the landscape
dynamic having the mainly to human behavior drivers. It was out of the thesis’ scope
to characterize the dynamics of patchy spatiotemporal mosaics, but it is something that
we would like to look into. Moreover, the study of changing landscape patterns involve

calculating the indices for images of a landscape taken at several different times in history
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and then observing how these indices vary over time. As of today, the information of the
landscape at each step of the simulation is not persisted in the MASE-BDI framework.
We will consider re-factoring the code to gather this information for further analysis of
the spatial and temporal complexity.

Until now, we have been working with parameter and methodological uncertainty.
The next big breakthrough would be to extend our work to investigate the uncertainty
within model structure. Another step would be an attempt to balance empirical validity,
the base of this manuscript, with face validity, an approach that checks if processes and
outcomes are reasonable and plausible within the frame of theoretic basis and implicit

knowledge of system experts or stakeholders.
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Appendix B

Parameter space exploration

Sampling methods provide a systematic exploration of the parameter space that guar-
antees the sample to have specific statistical or structural properties. The purpose of
these methods is to actively reduce the number of parameter sets that are considered but
still chose space-filling points in the design space (Thiele et al., 2014a). For a complete
revision of sampling methods, readers can refer to (Gong et al. (2015); Kleijnen et al.
(2005); |Saltelli et al.| (2008). In this manuscript, the most common sampling designs are
illustrated and applied in the UQ process.

Monte Carlo

Monte Carlo sampling (MC) (Metropolis & Ulam), 1949) method is the most common class
of computational techniques based on repeated random sampling to obtain N numerical
approximations of a specified distribution function of an unknown probabilistic entity.

However, larger sample sizes are required to explore the parameter space fully.

Latin Hypercube

Latin Hypercube (LH) (McKay, Beckman, & Conover, [1979) is a 1-dimensionally space-
filling method, also known as stratified sampling method without replacement. When
sampling a function of n variables, the range of each variable is divided into p equally
probable intervals, with a total of p sample points. Therefore, each sample point is the only
one in each interval. LH method selects sample points in the interior of the hypercube
of p levels. LH can capture more variability in the sample space than simple random

sampling.
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Orthogonal Array

Orthogonal Array (OA) (Owen, |1992) is a 2-dimensionally space-filling method that uses a
general fractional factorial design to improve LH. The OA design extends to ¢ dimensional
margins the univariate stratification properties of LH. That is, for a n-dimension, p-level

parameter space, a t-strength OA sampling generates p' sample points, when ¢ < n.

Orthogonal Array-based Latin Hypercube

Orthogonal Array-based Latin Hypercube (OALH) (B. Tang, [1993) uses orthogonal arrays
to construct Latin hypercubes. In other words, the samples go through a stratification
process to produce samples that have been both orthogonalized and stratified. This
sampling scheme provides more suitable designs for computer experiments and numerical

integration than general LH sampling.

METIS

METIS sampling (Karypis & Kumar, [1998) is an m-directional space-filling method that
is a part of a set of multilevel partitioning algorithms designed for partitioning irregular
graphs, partitioning large meshes and computing fill-reducing ordering of sparse matrices.

METIS can partition an unstructured graph into a user-specified number k of parts.

Fourier

Fourier sampling algorithm (Cukier et al.l |1973) was designed specifically for the Fourier
Amplitude Sensitivity Test (FAST). In this method, the parameter space is explored peri-
odically with interference-free frequencies. It takes a small number of correlated random
samples from a signal and processes them efficiently to produce an approximation of the
discrete Fourier transform (DFT) of the signal. The minimum sample size of FAST is
N =2 M, - wpnaz + 1, where M is the maximum harmonic (in general 4 or 6) and w,q.

is the maximum frequency which is determined by the number of inputs.

LPr

LP7 (LPTAU) (Statnikov & Matusov, 2002) is a quasi-random (QR) sampling method,
i.e., the samples are generated from a finite subset of low-discrepancy sequence of points.
These samples are not random, in the sense of being completely unpredictable. However,
they are like random points in the sense that they are uniformly distributed across a n-
dimensional space. LPTAU explores the parameter space using partitions of the parameter

ranges on the base of two.
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Sobol Extended

Sobol Extended (SOBOL) (Saltelli, 2002; Sobol, 2001) is a replicated version of low-
discrepancy sequences (quasi-random). SOBOL generates a uniform distribution in prob-
ability space, a qualitatively random distribution, filling previously unsampled regions of
the probability function. This is done with two random r - n sample matrices My and

M, 11, therefore, the total number of sample points is (n + 2) - r.

Morris one-at-a-time

Morris one-at-a-time (MOAT) (Morris|, [1991) sampling was designed specifically for MOAT
SA and is similar to SOBOL. The range of each parameter is divided into p — 1 equal
intervals. Next, r points are generated from the n-dimension, p — 1-orthogonal grid. For
each one, other sample points are generated by perturbing one dimension at a time, until
all dimensions have been varied for only one time, with a (n+1)-r total number of sample

points.
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Appendix C

Uncertainty Analysis

The uncertainty analysis assesses a confidence bound on the output estimation by quan-
tifying the uncertainty associated with the model response due to uncertainties in the
model input. To achieve this results we follow the necessary steps of UA summarized
by Saltelli et al. (2008):

1. Start from a model parameter o N(@, o, ), which reads: after estimation, the dis-

tribution of « is known, with mean @ and standard deviation o,;
2. Assume that all the parameters (3, 7, ...) are independent of each other;

3. Draw a sample from the respective distributions of each parameter. In other words,

2

produce a set of row vectors (o), 3), ) in a way that (a',a?,...,a™)) is a sample

from N(@,0,). Likewise for all parameters

ORI BN ()
a® gD 4@

a(N_l) /B(N_l) fy(N_l)
a®™ g W)

4. Run the model for all vectors (a9, 3U), ..} thereby producing a set of N values of
a model output Y}
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By executing these steps, it is possible to quantify the impact of input uncertainties on
the model response and assess whether or not the response meets the required standards of
precision. Although Monte Carlo is the most used method, there are many other methods
available to generate the samples and estimations required by UA. Some interesting UA
applications and experimental design are described in the literature: (Fonoberova et al.|
2013), (Saltelli et al., 2008)),(Lilburne & Tarantola, 2009), (Crosetto et al., 2000). The
expected means and variance are quantified to each parameter. Additionally, a histogram
of the output variable can be displayed, thus thoroughly describing the stochastic features
of the model output. The overall computational cost of UA depends basically on the cost

of the model evaluations, which is linked to the complexity of the model itself.
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Appendix D

Sensitivity Analysis Methods

Many techniques for SA have been proposed, and a thorough description of the techniques
can be found in Saltelli et al.| (2008]). Regardless of the technique, [Saltelli and Annoni
(2010) present a guideline on how to avoid perfunctory SA, which we applied throughout

the manuscript. A brief description of the methods applied is found next.

Morris one-at-a-time

The Morris one-of-a-time screening method (MOAT) (Morris, [1991) may be regarded as
a gradient-based global SA as the final measure is obtained by averaging local measures,
the elementary effects (EE). It is composed of individually randomized one-at-a-time
experiments that calculate two sensitivity measures of the gradients of each parameter
sampled from r local changes. The mean p assesses the overall influence of the factor
on the output. The standard deviation o estimates the ensemble of the factor’s effects,
whether nonlinear or due to interactions with other factors. EE provides the information
that the effects for a given parameter may be: i) negligible, ii) linear and additive, or
iii) nonlinear or involved with interactions with other factors. MOAT can be much faster

than other variance-based SA techniques.

Variance-based SA techniques

We assessed three variance-based SA techniques: SOBOL (Sobol’, 1993), FAST (Cukier et
all [1973), and McKay (McKay et al., 1999b). In general, they have higher computational
cost than qualitative SA, but some exciting features to ABMs are that variance-based SA
measures are model independent, and provide the investigation of interaction effects. The
first-order index represents the main effect contribution of each input factor to the variance
output. The total effect of a variable would be the total contribution to the output

variation, that is its first-order effect plus all higher-order effects due to interaction. In
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the SOBOL method, the variance may be attributed to a single input (first-order /main-
effect) or by the interaction of two or more inputs (second-order-effect). The sum of
those contributions is the total effect of a parameter. To decompose the variance, FAST
varies different parameters at different frequencies and applies a Fourier transformation
to measure each parameter contribution. McKay uses analysis of variance (ANOVA) to
calculate a correlation ratio, that is a ratio of the variance of a parameter and the total
variance of the output. The significance of the parameter increases with the correlation

ratio.

Linear-regression-based SA techniques

Linear-regression-based SA decomposes the variance of the model outcomes by fitting a
regression function of the input parameters to these outcomes. Therefore, the simulation
outcomes are described concerning input-output relationships, which can be validated
using standard statistical measures such as R?. Correlation Analysis (CA) measures the
parameter sensitivity through correlations coefficients, such as [Spearman et al.| (1904).
Regression Analysis (RA) makes the same measures using the standard regression coeffi-
cient (SRC), to estimate the result from a regression analysis that has been normalized
so that the variances of the dependent and independent variables are equal to one. The

efficacy of this methods relies on the input-output being somewhat linear or monotonic.

Response-surface SA techniques

The methods Sum-of-Trees (SOT), Gaussian Process (GP), and Multivariate Adaptive
Regression Splines (MARS), are considered response-surface or surrogate models, from
which it is possible to obtain relative scores of the total effects of a parameter. Those
methods provide a mapping from parameters to outputs. SOT (Breiman et al., [1984;
Chipman et al., [2012) is a tree-based Bayesian method. A single regression tree model is
obtained by the use of a recursive binary partition of the parameter space. The created
balanced binary tree, in which the variables are split to cause the maximum decrease in
the residual sum of squares, has each terminal node with a minimum number of sample

points. The variable with the larger number of splits is considered the most sensitive one.

Non-parametric regression SA techniques

MARS (Friedman) 1991) is a non-parametric regression able to model nonlinearities and
interactions between parameters. It is considered an extension of the tree method be-
cause after partitioning the space it builds localized regressions (first and second-order).

For each model, a score (generalizes cross-validation) is computed. It will remove each
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parameter and recalculate the model score. The larger the score, the more important is

the removed parameter.

Gaussian SA techniques

GP is an implementation of the Tpros algorithm, proposed by (Gibbs & MacKay, [1997).
GP is a method for regression using Gaussian process priors which allow exact Bayesian
analysis using matrix manipulations. The theory behind the method states that points
that are close on parameter space give rise to similar response values. Thus, it is possible

to identify the influence of the parameters on the model response.

Tailored SA techniques

The DT (Pi & Peterson) [1994) is a method that establishes dependencies in continuous
functions given a sequence of measurements ¢, an estimate of noise variance when a subset
of variables in the sample are selected for regression. The approach is based on calculating
conditional probabilities from vector component distances. It has been proved that adding
unrelated variables or withdrawing related ones will increase 6. Hence, the subset of all

variables that minimize noise variance is considered the most sensitive.
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Appendix E

PSUADE: Configuration Files

Input file

Example of a psuade.in configuration file. The INPUT section defines the inputs, their
ranges, and distributions. When the distribution is not informed, the uniform distribution
is chosen as default. The OUTPUT section defines the order and name of the output
variables. In the METHOD section, it is possible to observe that the MOAT sampling
technique is set to 800 samples. The APPLICATION section specifies the direct call to
the MASE-Driver, which will control the interface between the PSUADE and the MASE-
BDI executions. The last section of the PSUADE file, the ANALYSIS section, does not
present any method in this example. This allows the generated sample results to be saved
to a psuadeData file that can be stored. Multiple analysis can be performed by command

line or graphical interface.

PSUADE

INPUT

dimension 4

variable 1 transformationAgentQty = 1 100
variable 2 transformationAgentGroupPercentage = 10 100
variable 3 individualExploration = 1 500
variable 4 groupExploration = 1 1500

END

OUTPUT

dimension 11

variable 1 time

variable 2 qtyAgents

variable 3 percentageAgents
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variable 4 figureOfMerit
variable b producersaccuracy
variable 6 usersaccuracy
variable 7 wrongchange
variable 8 rightchange
variable 9 wrongpersistance

variable 10 nullModel
variable 11 simulatedNullModel
END

METHOD

sampling = MOAT
num_samples = 800
num_replications = 1
num_refinements = 0
refinement_size = 10000000
reference_num_refinements = 0
refinement_type =
randomize

random_seed = 12504321

END

APPLICATION

driver = ./MASE-Driver.py
END

ANALYSIS

analyzer output_id =1
printlevel 4

END

END

Call to MASE-Driver

The following code is an example of a call from PSUADE to the MASE-driver. Each of
the 800 samples is sequentially passed to MASE-BDI framework to be simulated. Each
line of the call is a parameter that corresponds to a simulation input. The order of the

parameters are the ones specified in the psuade.in file.

4
4.4077203315252991e+00
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2.
3.
5.

3059819407323289e+01
3939929566939020e+02
3074622200728061e+02

Output file

This is an example of the psuadeData output file, which contains the simulation outputs
for each of the samples that were generated in the configuration file. The psuadeData
output file has an additional section, when compared to psuade.in: PSUADE I10. This
section contains all sample points and their results. The first line of this section consists
of three numbers, respectively: the number of input parameters, the number of output
parameters and the number of runs of the simulation.

In our example, 800 samples were generated. The following file was edited to show
only the results of the first two samples, to illustrate how the integration of PSUADE
and MASE-BDI works. Eleven values are displayed in each simulation, concerning the

simulation results for each one of the outputs. The order of the factors is the order defined

in the psuade.in file.

PSUADE_IO (Note :

4 11 800

11

w

W = = Nk P N o0 O NN O W N

.4000000000000000e+01
.0000000000000000e+01
.3366666666666663e+02
.0066666666666663e+02
.9891000000000000e+04
.8000000000000000e+01
.0000000000000000e+01
.1069961502892660e+01
.5050423090297905e+01
.7597757119669467e+01
.0478709634191286e+00
.4464230784458840e+01
.18102826025638216e+01
.6274513386997056e-01
.38568153565957343e-01

.4000000000000000e+01

inputs not true inputs if pdf ~
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.0000000000000000e+01
.3366666666666663e+02
.0066666666666663e+02
.5760000000000000e+04
.8000000000000000e+01
.0000000000000000e+01
.0855483774199428e+01
.5022603454271469e+01
.70381575681091738e+01
.1529446520538098e+00
.4456921310466861e+01
.1817592076530193e+01
.6274513386997056e-01
.3970536728584002e-01
>>>Edited file. Only two results were presented to illustrate the output
file.<<

N = = N 00 O O m O N O W =

[

PSUADE_IO
PSUADE
INPUT

dimension = 4

variable 1 transformationAgentQty = 1.0000000000000000e+00
1.0000000000000000e+02

variable 2 transformationAgentGroupPercentage = 1.0000000000000000e+01
1.0000000000000000e+02

variable 3 individualExploration = 1.0000000000000000e+00
5.0000000000000000e+02

variable 4 groupExploration = 1.0000000000000000e+00
1.5000000000000000e+03
END
OUTPUT

dimension = 11

variable 1 time

variable 2 qtyAgents

variable 3 percentageAgents

variable 4 figureOfMerit

variable 5 producersaccuracy
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END

variable
variable
variable
variable
variable

variable

METHOD

#

H = H =

= OH O H H O H OB H OH H O H OH OH OB H R H R B H R K R OH

sampling
sampling
sampling
sampling
sampling
sampling
sampling
sampling
sampling
sampling
sampling
sampling
sampling
sampling
sampling
sampling
sampling
sampling
sampling
sampling
sampling
sampling
sampling
sampling
sampling
sampling
sampling
sampling

sampling

6
7
8
9

usersaccuracy
wrongchange
rightchange

wrongpersistance

10 nullModel

11 simulatedNullModel

MC
FACT
LH

0A
OALH
MOAT
SOBOL
LPTAU
METIS
FAST
BBD
PBD
FF4
FFb
CCI4
CCI5
CCIF
CCF4
CCF5
CCFF
CcCcc4
CCC5
CCCF
SFAST
UMETIS
GMOAT
GMETIS
SPARSEGRID
LSA
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RFF4
RFFb5

num_samples = 400

sampling

sampling

num_replications = 1
0
10000000

reference_num_refinements = 0

num_refinements

refinement_size

# refinement_type = adaptive
randomize

# randomize_more
random_seed = 12504321

END

APPLICATION
driver = ./MASE-Driver.py
opt_driver = NONE
aux_opt_driver = NONE
ensemble_driver = NONE

ensemble_opt_driver = NONE

max_parallel_jobs =1
min_job_wait_time = 1
max_job_wait_time = 1000000

# nondeterministic

# launch_only

# limited_launch_only

# gen_inputfile_only

# ensemble_run_mode

# Jlaunch_interval = 1

# save_frequency = 1000000

END

ANALYSIS

# analyzer method = Moment

# analyzer method = MainEffect

# analyzer method = TwoParamEffect

# analyzer method = ANOVA

# analyzer method = GLSA

# analyzer method = RSFA

# analyzer method = MOAT
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H O H H = H OH H OH H OH B H R H R H K B H R B R

= H O H O H OH B H R = KR B H R

analyzer method = Sobol

analyzer method = Correlation
analyzer method = Integration
analyzer method = FAST
analyzer method = FF

analyzer method = PCA
analyzer method = ARSMGP
analyzer method = FORM
analyzer method = RSMSoboll
analyzer method = RSMSobol2
analyzer method = RSMSobolTSI
analyzer method = Bootstrap
analyzer method = RSMSobolG
analyzer method = ARSMNN
analyzer method = ARSM
analyzer method = REL
analyzer method = AOPT
analyzer method = GOWER
analyzer method = DELTA
analyzer method = ETA
analyzer method = ARSM
analyzer method = LSA
analyzer output_id =1

analyzer rstype = MARS

analyzer rstype = linear
analyzer rstype = quadratic
analyzer rstype = cubic
analyzer rstype = quartic

analyzer rstype = selective_regression

analyzer rstype = GP1

analyzer rstype = GP2

analyzer rstype = SVM

analyzer rstype = PWL
analyzer rstype = TGP
MARSBag
EARTH

sum_of_trees

analyzer rstype

analyzer rstype

analyzer rstype
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analyzer

rstype

Legendre

H O H H = H OH H OH H OH B H R H R H K B H R B R

analyzer rstype = user_regression
analyzer rstype = sparse_grid_regression
analyzer rstype = Kriging

analyzer rstype = splines

analyzer rstype = KNN

analyzer rstype = RBF

analyzer rstype = Acosso

analyzer rstype = Bssanova

analyzer rstype = psuade_regression
analyzer rstype = RBFBag

analyzer rs_legendre_order = -1
analyzer rs_mars_num_bases = -1
analyzer rs_mars_interaction = -1
analyzer rs_num_mars = -1

analyzer rs_kriging mode = -1
analyzer rs_kriging_tol = -1
analyzer opt_save_history

analyzer opt_use_history

analyzer regression_wgt_id = -1

graphics

sample_graphics

analyzer threshold = 1.000000e+00

rs_max_pts = 10000

analyzer rs_constraint = psData indexFile Lbnd Ubnd

analyzer moat_constraint = psData indexFile Lbnd Ubnd

= H O H O H OH B H R = KR B H R

analyzer rs_index_file = indexFile
optimization method = crude
optimization method = txmath
optimization method = appspack
optimization method = minpack
optimization method = sm
optimization method = mm
optimization method = mm_adaptive
optimization method = bobyqa
optimization method = sce
optimization method = moo
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# optimization method = ouu

# optimization method = ouul

# optimization method = ouu2

# optimization num_local_minima = 0

# optimization use_response_surface

# optimization print_level = 0

# optimization num_fmin = 0

# optimization output_id = 0

# optimization max_feval = 10000

# optimization deltax = 1.0e-6

# optimization fmin = not defined

# optimization cutoff = not defined

# optimization tolerance = not defined
printlevel 4

# file_write matlab

# wuse_config file = NONE

# wuse_input_pdfs

# constraint_op_and

END

END

PSUADE analysis

An example of the PSUADE analysis is presented in the following extract. METIS size
800 sampling is loaded into memory and the tests are performed with the Delta Test
(DT) sensitivity metric, which obtains the prioritization of the parameters according to

the sensitivity of the simulation outputs.

>k 3k >k 5k >k ok ok sk ok ok 3k ok 5k ok sk >k ok >k ok ok sk 3k ok ok ok ok >k ok >k ok ok sk ok sk Sk ok Sk ok sk >k ok >k sk ok sk k ok ok ok ok >k ok >k ok ok sk ok ok sk ok ok ok ok kok ok sk k ok k
* Welcome to PSUADE (version 1.7.5)
K 3k >k ok >k 5k >k sk sk sk sk ok Sk sk sk sk ok sk sk sk sk sk ok koK Sk sk sk sk sk sk sk sk sk ko Sk sk sk sk sk sk sk sk sk sk ok ko sk sk ok sk sk sk sk sk sk skok skok ok ko sk k sk ki sk
PSUADE - A Problem Solving environment for

Uncertainty Analysis and Design Exploration (1.7.5)
(for help, enter <help>)

psuade> load psDataMETIS800
readApplication WARNING: app driver ./MASE-Driver.py not found.
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load complete : nSamples = 800
nlnputs = 4
nOutputs = 11

psuade> delta_test

Enter output number (1 - 11) =4

No transformation (e.g. log) on sample inputs nor outputs.
stk ok ok sk sk skskok ok ok sk o ok ok sk sk skok sk sk sk ok ks ok sk sk ok skok sk ok ok ok sk sk sk sk sk sk ok ko sk sk skok sk sk sk ok ok ok ok ok
DeltaTest for variable selection

This test has the characteristics that the more important
a parameter is relative to the others, the smaller the
subset is at the end of the test (sharp zoom into the most
important subset).

Thus, the purpose of this test is to identify a subset of
important parameters.

Note: If both nInputs and nSamples are large, this test

may take a long time to run. So, be patient.)

Current best solution for output 4:

To stop the search, create a psuade_stop file in local directory.

1110 = 1.531177e+02

1001 =5.777625e+00 (1 of 100)
1001 =5.777625e+00 (2 of 100)
1001 =5.777625e+00 (3 of 100)
\vdots

1001 =5.777625e+00 (100 of 100)

K3k 3k ok >k ok 3k ok ok ok ok ok ok ok ok sk ok 5k ok ok Sk ke ok sk ok >k ok ok Sk sk ke sk ok ok sk ok sk ok 3k ok ok Sk ok ok sk ok ok sk ok 5k Sk ok ok ke ok sk ok >k sk ok ok ok ok ok ko sk ok k k

Final Selections (based on 3 neighbors) =

Rank 1 =>10 01 : delta = b5.7776e+00
Rank 2 =>11 01 : delta = 3.0144e+01
Rank 3 =>1011 : delta = 3.2172e+01
Rank 4 => 1111 : delta = 5.3933e+01
Rank 5 =>1 00 0 : delta = 1.3737e+02
Rank 6 =>1 01 0 : delta = 1.4299%e+02
Rank 7 => 110 0 : delta = 1.4644e+02
Rank 8 => 1110 : delta = 1.5312e+02
Rank 9 => 0011 : delta = 1.7724e+02
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Rank 10 => 0 0 0 1 : delta = 1.8211e+02

Delta test ranking is now in matlabdelta.m.

Order of importance (based on 20 best configurations):

(D)Rank
(D)Rank
(D)Rank
(D)Rank

1 : input 1 (score = 89 )

2 : input 4 (score = 87 )
3 : input 2 (score = 26 )
4 : input 3 (score = 25 )

%k 2k ok ok 2k 3k ok ok ok ok ok ok ok ok ok ok ok koK ok >k k ok sk ok ok ok ok ok ok ok ok ok ok k ok ok k ok sk ok ok ok ok sk ok ok ok ok koK ok ok k ke kook sk kook sk ok ok skok ko ok kok

Final test

using the most important parameters incrementally:

3.137032e+02
1.373724e+02
5.777625e+00
3.014355e+01
5.393320e+01

Kk 3k ok >k ok 3k ok ok ok ok ok ok ok ok >k ok 5k ok ok Sk ke ok sk ok ok sk ok Sk sk ke sk ok ok sk ok sk ok 3k ok ok Sk ok ok sk ok ok sk ok Sk dk ok ok sk ok sk ok >k 3k ok ok ok ok ok ok ok sk Rk k

AnalysisManager: analysis metric = 5.78e+00
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Appendix F

MASE-Driver

Configuration file

The following description is an excerpt of the configuration file that MASE-Driver uses
to run the multiple simulations at MASE-BDI.

"sampling_methods": [
e,
"FACT",
"LH",
"OA",
"DALH",
"MOAT",
"SOBOL" ,
"LPTAU",
"METIS",
"FAST",
"BBD",
"PBD",
"FF4",
"FF5",
"CCI4",
"CCI5",
"CCIF",
"CCF4",
"CCF5",
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"CCFF",
"Cccc4",
"CCCh",
"CCCF",
"SFAST",
"UMETIS",
"GMOAT",
"GMETIS",

"SPARSEGRID",

"LSA",
"RFF4",
"RFF5"

1,

"refinement_types": [

"adaptive"

1,

"lastConfiguration": {

"output_variables": [

{

"mame" :

}:

"mame":

"mame" :

"name" :

"name" :

"name" :

"time"

"qtyAgents"

"percentageAgents"

"figureOfMerit"

"producersaccuracy"

"usersaccuracy"
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}
1,

"name": "wrongchange"

"name": "rightchange"
"name'": "wrongpersistance"
"name": '"nullModel"

"name": "simulatedNullModel"
"name": "steps"

"input_variables": [

{

"lowerBound": "1",
"name": "transformationAgentQty",

"upperBound": "100"

"lowerBound": "10",
"name": "transformationAgentGroupPercentage",

"upperBound": '"100"

"lowerBound": "1",
"name": "individualExploration",

"upperBound": "500"

"lowerBound": "1",

"name": '"groupExploration",
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"upperBound'": "1500"

]
1,
"psuadeLocation": "/pathToPsuadeInstallFolder/psuade",
"maselLocation": "/pathToMaseFolder/MASE-murl. jar"

Output file

The results presented in the output file are generated by MASE-BDI framework as a
result of a simulation. The predicted maps are also generated and stored in a directory.
The MASE-Driver captures each of these results and sends it automatically to PSUADE.
The results can be analyzed in PSUADE with multiple UA and SA metrics.

6490

8

23
6.921068396839571
7.09748464124261
73.57606344628695
0.6697305545149708
1.8648295522033496
24.409683834793704
0.26274513386997056
0.25079414389308674
365
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Appendix G

Software and Data Availability

MASE-BDI Software:

https://gitlab.com/InfoKnow/MASE/MASE-BDI/SourceCode/tree/master/MASE-BDI

PSUADE-MASE Software:

https://gitlab.com/InfoKnow/MASE/MASE-BDI/SourceCode/tree/master/MASE-PSUADE

Data Availability

The primary data derived from the model analysis are available for review, and replica-
bility. The data is organized first by sampling method and then by sensitivity measure.
The data is available at: https://gitlab.com/InfoKnow/MASE/MASE-BDI/SourceCode/
tree/master/PSUADEY,20Raw/20Datal or at following QR code:

Figure G.1: Link to the primary data used in the model analysis
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