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Resumo

Com a crescente disponibilidade de equipamentos de imagens microscópicas médicas existe
uma demanda para execução eficiente de aplicações de processamento de imagens Whole
Slide Tissue Images. Pelo processo de análise de sensibilidade é possível melhorar a
qualidade dos resultados de tais aplicações, e subsequentemente, a qualidade da análise
realizada a partir deles. Devido ao alto custo computacional e à natureza recorrente das
tarefas executadas por métodos de análise de sensibilidade (i.e., reexecução de tarefas),
emergem oportunidades para reuso computacional. Pela realização de reuso computa-
cional otimiza-se o tempo de execução das aplicações de análise de sensibilidade. Este
trabalho tem como objetivo encontrar novas maneiras de aproveitar as oportunidades de
reuso computacional em múltiplos níveis de abstração das tarefas. Isto é feito pela apre-
sentação de algoritmos de reuso de tarefas grão-grosso e de novos algoritmos de reuso de
tarefas grão-fino, implementados no Region Templates Framework.

Palavras-chave: Reuso Computacional, Analise de Sensibilidade, Region Templates Frame-
work
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Abstract

With the increasingly availability of digital microscopy imagery equipments there is a de-
mand for efficient execution of whole slide tissue image applications. Through the process
of sensitivity analysis it is possible to improve the output quality of such applications, and
thus, improve the desired analysis quality. Due to the high computational cost of such
analyses and the recurrent nature of executed tasks from sensitivity analysis methods
(i.e., reexecution of tasks), the opportunity for computation reuse arises. By performing
computation reuse we can optimize the run time of sensitivity analysis applications. This
work focuses then on finding new ways to take advantage of computation reuse oppor-
tunities on multiple task abstraction levels. This is done by presenting the coarse-grain
merging strategy and the new fine-grain merging algorithms, implemented on top of the
Region Templates Framework.

Keywords: Computation Reuse, Sensitivity Analysis, Region Templates Framework
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Capítulo 1

Introduction

We define algorithm sensitivity analysis (SA) as the process of quantifying, comparing,
and correlating output from multiple analyses of a dataset computed with variations of an
analysis workflow using different input parameters [34]. This process is executed in many
phases of scientific research and can be used to lower the effective computational cost of
analysis on such researches, or even improve the quality of the results through parameter
optimization.

The main motivation of this work is the use of image analysis workflows for whole
slide tissue images analysis [20], which extracts salient information from tissue images in
the form of segmented objects (e.g., cells) as well as their shape and texture features.
Imaging features computed by such workflows contain rich information that can be used
to develop morphological models of the specimens under study to gain new insights into
disease mechanisms and assess disease progression.

A concern with automated biomedical image analysis is that the output quality of
an analysis workflow is highly sensitive to changes in the input parameters. As such,
adaptation of SA methods and methodologies employed in other fields [29, 48, 5, 16], can
help understanding image analysis workflows for both developers and users. In short,
the benefits of SA include: (i) better assessment and understanding of the correlation
between input parameters and analysis output; (ii) the ability to reduce the uncertainty /
variation of the analysis output by identifying the causes of variation; and (iii) workflow
simplification by fixing parameters values or removing parts of the code that have limited
or negligible effect on the output.

Although the benefits of using SA are many, its use in practice is limited given the
data and computation challenges associated with it. For instance, a single study using a
classic method such as MOAT (Morris One-At-Time) [29] may require hundreds of runs of
the image analysis workflow (sample size). The execution of a single Whole Slide Tissue
Image (WSI) will extract about 400,000 nuclei on average and can take hours on a single
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computing node. A study at scale will consider hundreds of WSIs and compute millions of
nuclei per run, which need to be compared to a reference dataset of objects to assess and
quantify differences as input parameters are varied by the SA method. A single analysis
at this scale using a moderate sample size with 240 parameter sets and 100 WSI would
take at least three years if executed sequentially [39]. Given how time consuming such
analysis is, there is a demand to develop mechanisms to make it feasible, such as parallel
execution of tasks and computation reuse.

The information generated with a SA method is computed by executing or evaluating
the same workflow as values of the parameters are systematically varied. As such, there
are several parameters sets which have parameters with similar values. The workflows
used on this work are hierarchical and, as such, can be broken down in routines, or fine-
grained tasks. As such, it would be wasteful if one of these routines were to be executed
on two or more evaluations generated by the SA method with the same parameters values
and inputs. Thus, the re-executions of a given routine could reuse the results of the first
execution in order to reduce the overall cost of the application.

Formally, computation reuse is the process of reusing routines or tasks results instead
of re-executing them. Computation reuse opportunities arise when multiple computation
tasks have the same input parameters, resulting in the same output, and thus making
the re-execution of such task unnecessary. Computation reuse can also be classified by
the level of abstraction of the reused tasks. Furthermore, these tasks can be combined
on hierarchical workflows, with the routines and sub-routines of which they are composed
by, being able to be fully or partially reused. Seizing reuse opportunities is done by a
merging process, in which two or more tasks are merged together, after which the repeated
or reusable portions of the merged tasks are executed only once.

Computation reuse on this work will be accomplished with the use of finer-grain tasks
merging algorithms, as opposed to the already existing coarser-grain merging method
implemented on the Region Templates Framework (RTF) platform, on which all algo-
rithms are implemented on. This platform is responsible for the distributed execution of
hierarchical workflows in large-scale computation environments.

Other works have studied computation reuse as a means to reduce overall computa-
tional cost in different ways [30, 36, 32, 47, 28, 37, 17, 18]. Although the principle of
computation reuse is rather abstract, its implementation on this work is distinct from
existing methods. Some of these methods resort to hardware implementations [36, 32],
which are not general or flexible enough for the given problem. Some apply reuse by pro-
filing the application [47], which is also impracticable on the SA domain. Finally, most
of them rely on caching systems of distinct levels of abstraction to reduce the overall cost
of the applications [28, 37, 17, 18], being too expensive to employ on the desired scale of
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distribution.
Summarizing, this work focuses on two ways of accomplishing computation reuse in

SA applications for the RTF: (i) coarse-grain tasks reuse and (ii) fine-grain tasks reuse.
The main differences between them, besides the granularity of the tasks to be reused,
are the underlying restrictions of the system used to execute these tasks. The reuse of
coarse-grain tasks can offer a greater speedup when reuse happens, but there are less reuse
opportunities. With fine-grain tasks these reuse opportunities are more frequent, however,
more sophisticated strategies need to be employed in order to deal with dependency
resolution and to avoid performance degradation due to the impact of excessive reuse to
the parallelism.

1.1 The Problem

Because of high computing demands, sensitivity analysis applied to microscopy image
analysis is unfeasible for routinely use when applied to whole slide tissue images.

1.2 Contributions

This work focuses on improving the performance of SA studies in microscopy image anal-
ysis through the application of finer-grain computation reuse on top of the coarse-grain
computation reuse.

The specific contributions of this work are presented below with a reference to the
section in which they are described:

1. A graphical user interface for simplifying the deployment of workflows for the RTF,
which is coupled with a code generator that allows the flexible use of the RTF on
distinct domains [Section 3.1];

2. The development and analysis of multi-level reuse algorithms:

(a) A coarse-grain merging algorithm was implemented [Section 3.2];

(b) A fine-grain Naïve Merging Algorithm was proposed and implemented [Section
3.3.1];

(c) The fine-grain Smart Cut Merging Algorithm was proposed and implemented
[Section 3.3.2];

(d) The fine-grain Reuse-Tree Merging Algorithm was proposed and implemented
[Section 3.3.3];
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3. Proposal and implementation of the Task-Balanced Reuse-Tree Merging Algorithm
that reduces the issue of loss of parallelism due to load imbalance provoked by the
Reuse-Tree Merging Algorithm [Section 3.3.4];

4. The performance gains of the proposed algorithms with a real-world microscopy im-
age analysis application were demonstrated using different SA strategies (e.g MOAT
and VBD) at different scales.

The contributions of Sections 3.1, 3.2 and 3.3.3 were published on the IEEE Cluster
2017 conference [2], comprising, but not restricted to the proposal of multi-level compu-
tational reuse, the proposal of the Reuse-Tree structure for fine-grain merging and the
experimental results for lower scale tests. Moreover, the contributions of Section 3.3.4
are currently being drafted for a submission for a journal publication. These contribu-
tions, which are an extension of the published work [2], includes some further analysis of
computation reuse within the scope of scalability under more challenging settings, some
limitations of the previously proposed solution for fine-grain merging, and finally, a new
approach to cope with such limitations.

1.3 Document Organization

The next section describes the motivating application, the theory behind computation
reuse and the Region Templates Framework (RTF), which was used to deploy the appli-
cation on a parallel machine and is also the tool in which the merging algorithms were
incorporated. After these considerations more relevant related work is analyzed. Section
III describes the proposed solutions for multi-level computation reuse, their implementa-
tions and optimizations. On Section IV the experimental procedures are described and the
results are analyzed. Finally, Section V closes this work with contributions and possible
future goals for its continuation.

4



Capítulo 2

Background

This chapter describes the motivating application along with the Region Templates Frame-
work, in which this work is developed, and some basic concepts of sensitivity analysis and
computation reuse. Being the contributions of this work restricted to computation reuse,
this chapter then ends with the analysis of some relevant related work on the subject.

2.1 Microscopy Image Analysis

It is now possible for biomedical researchers to capture highly detailed images from whole
slide tissue samples in a few minutes with high-end microscopy scanners, which are becom-
ing evermore available. This capability of collecting thousands of images on a daily basis
extends the possibilities for generating detailed databases of several diseases. Through
the investigation of tissue morphology of whole slide tissue images (WSI) there is the
possibility of better understanding disease subtypes and feature distributions, enabling
the creation of novel methods for classification of diseases. With the increasing number of
research groups working and developing richer methods for carrying out quantitative mi-
croscopy image analyses [14, 31, 23, 9, 12, 7, 8, 26] and also the increasingly availability of
digital microscopy imagery equipment, there is a high demand for systems or frameworks
oriented towards the efficient execution of microscopy image analysis workflows.

Figura 2.1: An example microscopy image analysis workflow performed before image
classification. Image extracted from [2].
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(a) A tissue image. (b) The segmented tissue image.

Figura 2.2: An example of tissue image segmentation.

The microscopy image analysis workflow used on this work is presented in Figure
2.1 and was proposed by [21, 22, 44]. This workflow consists of normalization (1), seg-
mentation (2), feature computation (3) and final classification (4), being the first three
analysis stages the most computationally expensive phases. The first stage is responsible
for normalizing the staining and/or illumination conditions of the image. The segmenta-
tion is the process of identifying the nucleus of each cell of the analyzed image (Figure
2.2). Through feature computation a set of shape and texture features is generated for
each segmented nucleus. At last, the final classification will typically involve using data
mining algorithms on aggregated information, by which some insights on the underlying
biological mechanism that enables the distinction of subtypes of diseases are gained.

The quality of the workflow analysis is, however, dependent of the quality of the
parameters values, with them described in Table 2.1. Therefore, in order to improve the
effectiveness of the analysis the impact of these parameters on the output of the used
workflow (Figure 2.1) should be analyzed. This impact analysis is known as sensitivity
analysis and is detailed on the following section.

2.2 Sensitivity Analysis

We define Sensitivity Analysis (SA) as the process of quantifying, comparing and correlat-
ing the input parameters of a workflow with the intent of quantifying the impact of each
input to the final output of the workflow [34]. This process is applied on several phases of
scientific research including, but not limited to model validation, parameter studies and
optimization, and error estimation [33]. The outcome of such methods, as defined in [42],
are statistics that quantify variance in the analysis results as well as measures such as
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Parameter Description Range Values
B/G/R Background detection thresholds [210, 220, ..., 240]
T1/T2 Red blood cell thresholds [2.5, 3.0, ..., 7.5]

G1/G2 Thresholds to identify [5, 10, ..., 80]
candidate nuclei [2, 4, ..., 40]

MinSize(minS) Candidate nuclei area threshold [2, 4, ..., 40]
MaxSize(maxS) Candidate nuclei area threshold [900, .., 1500]
MinSizePl
(minSPL) Area threshold before watershed [5, 10, ..., 80]
MinSizeSeg
(maxSS) Area threshold in final output [2, 4, ..., 40]
MaxSizeSeg
(minSS) Area threshold in final output [900, .., 1500]
FillHoles(FH) propagation neighborhood [4-conn, 8-conn]
MorphRecon(RC) propagation neighborhood [4-conn, 8-conn]
Watershed(WConn) propagation neighborhood [4-conn, 8-conn]

Tabela 2.1: Definition of parameters and range values: parameter space contains about
21 trillion points.

sensitivity induces that indicate the amount of variance in the analysis results that can
be attributed to individual parameters or combinations of parameters.

Usually, the computational cost for performing SA on a workflow is directly propor-
tional to the number of parameters it has. One way to simplify the analysis on applica-
tions with large numbers of parameters, thus reducing its cost, is through the removal of
parameters whose effect on the output is negligible.

This work focuses on using the already existing system, the Region Templates Frame-
work (RTF) [39, 42], which performs sensitivity analysis in two phases. On the first phase
the 15 input parameters (Table 2.1) are screened with a light, or less compute demanding,
SA method, used to remove the so called non-influential parameters from the next phase.
Afterwards, a second SA method is executed on the remaining parameters, on which both
first-order and high-order effects of these on the application output are quantified. This
two-phase analysis is performed since the cost of more specific approaches (e.g., VBD)
are prohibitively expensive.

This multi-phase sensitivity analysis process is approached on [33] as an alternative
to cope with costly analysis. The application case, as seen in Figure 2.1 uses a complex
model with several input parameters (see Table 2.1) and a high execution cost. As such,
it is recommended that a lighter preliminary analysis method should be executed on the
full range of input parameters, only to reduce these to a smaller subset of important
parameters. As a way to further reduce the analysis complexity on this first screening
analysis is to also drop inputs’ correlation analysis. After the execution of a screening
method, more complex and comprehensive analysis methods can be performed on a subset
of the input parameters. The chosen SA methods for this work were Morris One-At-A-
Time as a screening method [29], and Variance-Based Decomposition as a more complete
analysis.
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MOAT First-order Effect VBD First-order Effect (Main) Higher-order Effects (Total)
B -0,0108 B - -
G -0,0064 G - -
R -0,0189 R - -
T1 0,0207 T1 - -
T2 0,0417 T2 0,0006 0,0001
G1 0,8157 G1 0,2251 0,2371
G2 0,9197 G2 0,7305 0,7886
MinSize 0,0889 MinSize 0,0025 0,0056
MaxSize 0,1820 MaxSize 0,0150 0,0086
MinSizePl 0,0341 MinSizePl 0,0021 0,0022
MinSizeSeg -0,0155 MinSizeSeg - -
MaxSizeSeg -0,0184 MaxSizeSeg - -
FillHoles -0,0276 FillHoles - -
MorphRecon 0,1321 MorphRecon 0,0146 0,0129
Watershed 0,0530 Watershed 0,0018 0,0016

Tabela 2.2: Example output of a MOAT analysis with all 15 parameters and a VBD
analysis with a selection of the 8 most influential parameters. The influence of a parameter
is bounded in the interval [-1,1] and is proportional to its distance from 0 (i.e., 1 and -1
are the greatest values and 0 the smallest).

The light SA method, Morris One-At-A-Time (MOAT) [29], performs a series of runs
of the application changing each parameter individually, while fixing the remaining pa-
rameters in a discretized parameter search space. Each of the k analyzed parameters
values ranges are uniformly partitioned in p levels, thus resulting in a pk grid of parame-
ter sets to be evaluated. Each evaluation output xi of the application creates a parameter
elementary effect (EE), calculated as EEi = y(x1,...,xi+∆i,...,xk)−y(x)

∆i
, with y(x) being the

application output before the parameter perturbation. In order to account for global SA
the RTF uses ∆i = p

2(p−1) [42]. The MOAT method requires r(k + 1) evaluations, with r

in the range of 5 to 15 [15].
The second SA method, Variance-Based Decomposition (VBD) is preferably performed

after a lighter SA screening method, as the MOAT method. This is done since VBD
requires n(k + 2) evaluations for k parameters and n samples, with n lying in the order of
thousands of executions [48]. Thus, it is interesting to use a reduced number of parameters
for feasibility reasons. VBD, unlike MOAT, discriminates the the output uncertainty
effects among individual parameters (first-order) and high-order effects.

As an example, Table 2.2 provides the expected outcome of a two-steps SA of the used
workflow. The first analysis, MOAT, is performed at an earlier moment in order to screen
all parameters regarding their first-order effects or influence over the output. Afterwards,
the VBD analysis can be performed with a subset of the 8 most influential parameters,
yielding not only more precise first-order effect values but also a way to calculate higher-
order effects through the manipulation of the Total values (e.g., for a third-order effect of
T2, G1 and G2, their Total values are added together and compared with the remaining
Total values).
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Regardless of the SA method chosen, the use of large set of parameters (Table 2.1)
results in the unpractical task of performing SA on the workflow of Figure 2.1 due to
the expected cost of evaluating such large search domain. For the sake of mitigating
this infeasibility issue for performing SA on the presented workflow we can execute the
analysis on high-end distributed computing environments. Also, computation reuse can
be employed to reduce the computational cost without the need of application specific
optimizations. Both mentioned methods are described in the next sections.

2.3 Region Templates Framework (RTF)

The Region Template Framework (RTF) abstracts the execution of a workflow application
on distributed environments [39]. It supports hierarchical workflows that are composed
of coarse-grain stages, which in turn are composed by fine-grain tasks. The dependencies
between stages, and tasks of a single stage are solved by the RTF. Given a homogeneous
environment of n nodes with k cores each, any stage instance must be executed on a
single node, with its tasks being executed on any of the k cores of the same node. It is
noteworthy that, not only any node can have more than one stage instance executing on

Figura 2.3: The main components of the Region Templates Framework, highlighting the
steps of a coarse-grain stage instance execution. Image extracted from [39].
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Figura 2.4: The execution of a stage instance from the perspective of a node, showing the
fine-grain tasks scheduling. Image extracted from [39].

it, but also, there may be more than one task from the same stage running in parallel,
given that the inter-tasks dependencies are respected.

The main components of the RTF are: the data abstraction, the runtime system, and
the hierarchical data storage layer [39]. The runtime system consists of core functions
for scheduling of application stages, transparent data movement and management via the
storage layers. Figure 2.3 shows an example of the dispatch of a stage to a worker with
the data exchanges in the RTF storage layer. The RTF, with its centralized Manager,
distributes the stages to be executed to Worker nodes across the network. The hierarchical
workflow representation allows for different scheduling strategies to be used at each level
(stage-level and task-level). Fine-grain scheduling is possible at task-level in order to also
exploit variability in performance of application operations in hybrid systems. In Figure
2.4 a stage A is sent to a worker node for execution, which tasks are scheduled locally.

Still on the scheduler, the Manager schedules stages to Workers on a demand-driven
basis, with the Workers requesting work from the Manager until all stages are executed.
Since the Worker decides when they request more work, a Worker can execute one or
more stage at any given time instant, based on its underlying infrastructure. Being a
stage composed of tasks, these are scheduled locally by the Worker executing them. These
tasks differ in terms of data access patterns and computation intensity, thus, attaining
different speedups if executed on co-processors or accelerators. In order to optimize the
execution of tasks a Performance Aware Task Scheduling (PATS) was implemented [39,
44, 41, ?, 45, 11, 40, 43]. With PATS, tasks are assigned to either a CPU or GPU core
based on its estimated acceleration and the current device load.

On the data storage layer the Region Templates (RT) data abstraction is used to
represent and interchange data (represented by the collection of objects of an application
instance and the stored data of Figure 2.3). It consists of storage containers for data
structures commonly found in applications that process data in low-dimensional spaces
(1D, 2D or 3D spaces) with a temporal component. The data types include: pixels, points,
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arrays (e.g., images or 3D volumes), segmented and annotated objects and regions, all of
which are implemented using the OpenCV [4] library interfaces to simplify their use. A
RT data instance represents a container for a region defined by a spatial and temporal
bounding box. A data region object is a storage materialization of data types and stores
the data elements in the region contained by a RT instance, which may have multiple
data regions.

Access to the data elements in data regions is performed through a lightweight class
that encapsulates the data layout, provided by the RT library. Each data region of one
or multiple RT instances can be associated with different data storage implementations,
defined by the application designer. With this design the decisions regarding data move-
ment and placement are delegated to the runtime environment, which may use different
layers of a system memory to place the data according to the workflow requirements.

The runtime system is implemented through a Manager-Worker execution model that
combines a bag-of-tasks execution with workflows. The application Manager creates in-
stances of coarse-grain stages, and exports the dependencies among them. These depen-
dencies are represented as data regions to be consumed/produced by the stages. The
assignment of work from the Manager to Worker nodes is performed at the granularity of
a stage instance using a demand-driven mechanism, on which each Worker node indepen-
dently requests stages instances from the Manager whenever it has idle resources. Each
node is then responsible for fine-grain task scheduling of the received stage(s) to its local
resources.

To create an application for the RTF the developer needs to provide a library of domain
specific data analysis operations (in this case, microscopy image analysis) and implement
a simple startup component that generates the desired workflow and starts the execution.
The application developer also needs to specify a partitioning strategy for data regions
encapsulated by the region templates to support parallel computation of said data regions
associated with the respective region templates.

Stages of a workflow consume and produce Region Template (RT) objects, which are
handled by the RTF, instead of having to read/write data directly from/to stages or disk.
While the interactions between coarse-grain stages are handled by the RTF, the task of
writing more complex, fine-grained, stages containing several external, domain specific,
fine-grain API calls is significantly harder for application experts. This occurs since the
RTF works only with one type of task objects as its runnable interface, not providing
an easy way to compose stages using fine-grain tasks. The RTF also supports efficient
execution on hybrid systems equipped with CPU and accelerators (e.g, GPUs).
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2.4 Related Work on Computation Reuse

The idea of work reuse, also known as value locality [6, 25], has been employed on both
the hardware and software fronts with diverse techniques, such as value prediction [30],
dynamic instruction reuse [36] and memoization [32], with the goal of accelerating appli-
cations through the removal of duplicated computational tasks. This concept has been
used for runtime optimizations on embedded systems [47], low-level encryption value gen-
eration [28] and even stadium designing [37]. In order to further analyze these existing
approaches as to find desirable features that solve the problem approached in this work a
qualitative analysis was performed, which is summarized on Table 2.3. This analysis uses
taxonomic terms defined here to classify computation reuse approaches. The proposed
taxonomic terminology is explained on the next section in addition to a brief analysis of
each of the studied computation reuse approaches.

2.4.1 Computation Reuse Taxonomy

Implementation Level (IL)

Computation reuse can be enforced on either Software (S) or Hardware (H) levels. By
Software-Level it is meant a hardware-independent approach that can either be executed as
a static analysis before the execution of any computational task, or as a runtime approach
that performs computation reuse as the application is executed. Also, it is possible for
computation reuse to be searched on compilation-time by a customized compiler, which
is also defined as Software-Level. It is also possible for these techniques to be combined.

Application Flexibility

Here we define the Application Flexibility(AF) of an approach as either General, Partial
or Domain Specific (DS). A General approach is any that does not have domain-specific
restrictions that limits or prevents its use on different domains. The flexibility of an
approach can also be Partial, meaning that either some non-trivial adaptations need to
be employed or that anything outside its application domain will execute rather poorly. If
an approach can only be used on a rather specific environment, or under strict restrictions
it is said to be a Domain Specific approach.

Reuse Strategy

One of the most important computation reuse characteristics is how computation reuse
opportunities are found and explored. These can be defined as Predictive, Memoization
or Analytic approaches. Computation reuse can be attained through the speculative
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technique of Value Prediction [36, 6] with its implementations relying on a buffer that
contains the results of previous instructions executions, with which the value prediction
is performed.

The most common technique for computation reuse is throughMemoization, which is a
cache-based approach on which reusable tasks results are stored on a buffer for later reuse.
It is worth noting that the stored values are used as-is, unlike with Value Prediction, which
relies on the evaluation of the buffered values in order to return a reusable value. This
approach has the drawback of needing a buffer structure, which increases the complexity
of this kind of solution.

The alternative toMemoization is to find all reuse opportunities in an Analyticmanner.
This means that the reused tasks were found a priori, instead of searching the results in
a buffer as with the Memoization scheme. While this approach is considered to be the
one with the least overhead, such analysis is more difficult to be achieved.

Tasks Granularity

Still another rather important aspect of computation reuse is the Granularity of the
reusable tasks. On this work we break Task Granularity in four categories: Instruction-
Level (i.e., CPU instruction), Fine-Grain Subroutines, Coarse-Grain Routines and Full
Application. We differentiate Fine-Grain from Coarse-Grain tasks by their semantical
meaning, and as a consequence, their overall cost. If a task is big enough to have a
broader meaning (e.g., a segmentation operation) we call it a Coarse-Grain Routine. If
the task is bigger than a CPU instruction but also not big enough to have a more abstract
meaning (e.g., the preparation of a matrix on memory, or a set of loops on an algorithm)
we define them as Fine-Grain Subroutines or tasks. Finally, some approaches may only
be able to work with a Full Application execution.

The importance of the granularity for computation reuse is that it limits the maximum
amount of reuse of any application. As an example we have a segmentation algorithm. If
we were to break it in CPU instructions and then perform a complete search for reusability
(i.e., search for all available reuse) we would attain the maximum possible reuse. However,
the potential overhead for exploiting this level of reuse is high. By grouping this low-level
operations into subroutines we reduce the number of tasks, making the search for reuse
more feasible. This grouping would also hide some reuse opportunities, effectively reducing
the reuse potential of the application.

Reusable Tasks Matching (RTM)

An easy way to improve the reuse degree of an application is by relaxating the matching
constraint for reuse. By doing this, reuse is possible even if not all tasks’ parameters
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match, unlike the most common case on which all tasks’ parameters are the Same. The
obvious consequence of doing this relaxation is that the tasks’ results will be different.
However, some applications can deal with small imprecisions of its tasks (e.g., neural
networks, multimedia applications, floating-point operations). As such, given that these
partial (or Similar) matchings respect the precision necessary for these applications which
can cope with such imprecisions, this strategy can improve the amount of reuse available.

Reuse Evaluation

Computation reuse can be analyzed either Dynamically, at runtime, of Statically before
the execution of any task.

Training Required (T)

Approaches that rely on domain-specific characteristics of applications (e.g., neural net-
works) usually require a Training step before the reuse analysis. For these approaches it
is important to be mindful of the Training cost.

Reusability Environment Scale (RES)

The reusable tasks scope is defined here as the Reusability Environment Scale. The tasks
can be reusable among a Distributed (D) environment of computing nodes or reused only
Locally (L).

2.4.2 Related Work Analysis

Sodani and Sohi [36] motivate their work by drawing a parallel of a computation reuse
buffer used to optimize instruction execution with memory cache used to optimize memory
access instructions. Their approach aims to reduce computational cost through reuse by
(i) ending the instruction pipeline earlier, thus also reducing resources conflicts, and (ii)
by breaking dependencies of later instructions, which can be executed earlier since the
necessary inputs are already present. They initially proposed their reuse buffer as a way
to reduce branch misprediction penalties. However, the effectiveness of this approach
proved itself much more powerful since the reuse frequency of other, more generic, types
of instructions also proved to be high. Their implementation focus on adding a reuse
buffer to any generic dynamically-scheduled superscalar processor, using one of the three
instruction reuse schemes proposed by them.

The approach on [36] can be used for any application domain while also being exposed
to the largest possible amount of reuse opportunities. Their incorporation of the reuse
buffer in a superscalar processor is done without impacting the pipeline critical path,
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thus having no negative impact on non-reused instructions. Nevertheless, the efficiency
of all instruction reuse schemes are heavily reliant on the buffer size. Although the used
buffer sizes tested by them are small, this dependency is a limiting factor for the approach
since smaller buffers means less reuse opportunities. Finally, the use of a hardware-based
approach limits its use even further given the difficulty to design a processor for this sole
purpose.

The work on [32], similarly to [36], also uses hardware-level memoization, but this
time with a subset of operations called trivial computation. These are potentially complex
operations that are trivialized by simple operands (e.g., integer division by two). This
strategy greatly simplifies the reuse protocol (i.e., whether an instruction is reused, inser-
tion and replacement policies) at the cost of reuse opportunities. The speedups achieved
by this approach were only significant when the application was favorable to the reuse
strategy (e.g., Ackerman-like applications with huge amounts of trivial operations, or
floating-point-intensive programs, which have naturally long-latency instructions). The
same limitations of [36] were present here as well.

Wang and Raghunathan [47] attempt to reduce the energetic cost of embedded software
on battery-powered devices through a profiling-based reuse technique with a memoization

structure. Some interesting discussions risen in their work regard reusable tasks granu-
larity and the limitations of hardware-based reuse. Hardware implementations of compu-
tation reuse are usually complex, and the use of overly fine-grained operations for reuse
may yield little or negative speedups given the overhead of memoization caches.

The methodology of [47] consists on profiling an application, generating computation
reuse regions, setting the software cache configuration, evaluating the energy expenditure
and then doing it all over again until a good enough solution is found. Only then, the
optimized application is sent to production. The concept of flexible computation reuse
regions is very powerful since it makes the application more domain-independent while
also optimizing the granularity of the reuse for any application instance. Their automated
software cache configuration is also interesting since any memoization-based technique is
heavily reliant on its size and performance.

Unfortunately [47] do not specify the cost of profiling (since for the test environment
the typical input traces of the selected benchmarks were already available), nor the cost
of configuring the computation reuse regions and the software cache. Regardless, this ap-
proach, while presenting the concepts of flexible granularity and automatic software cache
configuration / optimization, cannot be recommended for large-scale workflow execution
given its unknown-cost training step. Also, in order to distribute the computation reuse,
the software cache used by it needs to be re-thought to be compatible with this paradigm.

It is brought to our attention on [28] the cost of two-party secure-function evaluation
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(SFE) and the tendency to offload these operations from resource-constrained devices to
outside servers. In order to reduce the computational cost of these SFE operations as
well as bandwidth requirements, a system on which state is retained as to later be reused
was implemented. The reusable encrypted values can be used by a number of clients
on a distributed setting, originating from a centralized server node that implements a
memoization buffer.

Although [28] is the first approach to enable computation reuse to be done in a dis-
tributed environment, the encrypted values buffer is a bottleneck for the approach scal-
ability. In order to remove this bottleneck, the buffer can be distributed among server
nodes, which has as a consequence either (i) the buffers are coherent, and as such the
servers need to keep trading messages to enforce it, or (ii) the buffers are not coherent
and thus the reuse potential is reduced. Finally, this approach is only partially applicable
for different application domains since the granularity of the reused tasks must be rather
coarse in order to achieve good speedups. This happens because the of the big overhead
of reusing encrypted values.

Approach [17] also works with distributable reusable values, but this time with bioin-
formatics applications, which are known to be computationally expensive. The granularity
of reusable tasks is even coarser, being able to perform full end-to-end reuse of workflows.
When comparing with [28], [17] has the same limitations given its memoization-based
approach.

On [18] Santos and Santos propose the use of a software-level runtime buffer system to
cache and then reuse energy evaluations for predicting the native conformation of proteins.
The domain-specific application relies on a genetic algorithm, and as such, their approach
is tailored for this single application. A similar approach is the one of Yasoubi et al.
[51], regarding the use of memoization-based computation reuse, optimized for a specific
domain, which is neural networks on this case.

Yasoubi et al. [51] propose an offload hardware accelerator that uses clustered groups
of neurons that maximize the expected computation reuse when executing the application.
It is worth noting that the clustering is done by a k-means algorithm on software level.
The reusable tasks are hardware-level multiplication instructions that, given the multi-
processing-unit (multi-PU) architecture, disable PUs that perform repetitive operations,
thus reducing the power consumption.

The work of Connors and W.Hwu [6] exploit value locality through the combination
of a hardware buffer, an instruction set for representing different-sized reusable computa-
tional tasks and a profile-guided compiler that groups instructions into reusable tasks as to
optimize their granularity. This approach was implemented as a way to extend hardware-
only-based reuse approaches while solving the limitation of instruction-level reusable tasks
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granularity. Again, the use of dynamically-sized reusable tasks makes the approach more
flexible to different domains of applications while optimizing the reusable tasks granu-
larity for each application instance. However, in order to implement this feature the
approach on [6] limits itself by needing a complex hardware and compiler implementation
and profiling information on the domain-specific application.

Álvarez et al. [1] focus on reducing the power consumption of low-end and/or mobile
devices by applying computation reuse on multimedia applications. This is done by
exploiting the imprecision tolerance of multimedia floating-point operations at hardware-
level to reuse tasks that are similar enough, thus increasing the amount of attainable
computation reuse. Nonetheless, this “similar enough” strategy limits the usability of
this approach to multimedia applications, or applications which have a large number
of floating-point reusable operations. The same is true for approach [27], which in turn
proposes a more generic implementation that was not tailored for multimedia applications.

The first analytic computation reuse method is presented by Xu et al., on [50]. On
their work they propose a framework for Isogeometric Analysis (IGA) that reuse matrix
calculations. The reuse operations were statically analyzed a priori and are specific of
IGA, meaning that this approach, although having good speedups, cannot be applied for
other application domains.

Lepak and Lipasti [25] propose reuse of memory load instructions. This is done through
the characterization of value locality for memory instructions and the implementations of
two reuse protocols for both uniprocessed and multiprocessed environments. For unipro-
cessed systems reuse can be attained by either analyzing the value locality of specific
instructions (based on the program structure), or the locality of a particular memory
address (message-passing locality). Furthermore, they define silent stores as stores oper-
ations that do not change the system state (i.e., the written value is the same as the one
previously present on memory). Given some statistical analysis of how many silent stores
are on selected benchmarks, they set an ideal maximum reuse possible to be achieved
and, through their proposed protocols, aim to get as close as possible to these values.

Since none of the previous applications is either compatible or flexible enough to work
on the large scale bioinformatics workflows application domain, this work proposes a
novel approach to computation reuse. The proposed approach works with software-level
reuse, since it is being implemented on top of the RTF. Also, given that this application is
supposed to be executed on a large-scale cluster environment, hardware-based approaches
are impractical. Moreover, the runtime system must be light in order to execute on a large-
scale distributed environment, thus making the use of memoization impractical. Given
that the application uses hierarchical workflows, any applications of other domains need
to be converted to workflows in order to be executed by our approach, slightly impacting
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Reference IL AF Reuse Strat. Tasks Granularity RTM Reuse Eval. T RES

[30] H Flexible Predictive Instruction-Level Same Dynamic No L
[36] H Flexible Memoization Instruction-Level Same Dynamic No L

[32] H Flexible Memoization Instruction-Level
Trivial Operations Same Dynamic No L

[47] S Flexible Analytic +
Memoization

Fine-Grain
Regions of Code Same Static Yes L

[28] S Partial Memoization Coarse-Grain Same Dynamic No D
[17] S Flexible Memoization Full Application Same Dynamic No D
[18] S DS Memoization Coarse-Grain Same Dynamic No L

[51] H+S DS Memoization Instruction-Level
Complex Operations Similar Dynamic Yes L

[6] H+S Partial Memoization
Instruction-Level +

Fine-Grain
Regions of Code

Same Static +
Dynamic Yes L

[1] H Partial Memoization
Instruction-Level
Floating-Point
Operations

Similar Dynamic No L

[50] S DS Analytic Coarse-Grain Same Dynamic No L

[27] H Partial Memoization
Instruction-Level
Floating-Point
Operations

Similar Dynamic No L

[25] H Flexible Memoization Instruction-Level Same Static No L

Our Work S Partial Analytic Coarse-Grain
and Fine-Grain Same Static No D

Tabela 2.3: Taxonomic evaluation of computation reuse approaches. Implementation
Level (IL): Hardware (H) or Software (S). Application Flexibility (AF): Flexible, Partial
or Domain Specific (DS). Reuse Strategy: Predictive, Memoization or Analytic. Task
Granularity: Instruction-Level, Fine-Grain, Coarse-grain or Full Application. Reusable
Tasks Matching: Same or Similar. Reuse Evaluation: Static or Dynamic. Needs Training
Step (T). Reusability Environment Scale (RES): Local (L) or Distributed(D).

the application domain flexibility. Finally, computation reuse is achievable by a static
analytic analysis of reuse before the execution of any task, thus removing any distribution
limitations as long as the reuse analysis can be performed quickly.
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Capítulo 3

Multi-Level Computation Reuse

This work has as its main goal the development of Sensitivity Analysis (SA) optimizations
through multi-level computation reuse. This chapter analyzes computation reuse and
then describes improvements made to the Region Templates Framework (RTF), which
were implemented in order to enable the use of multi-level computation reuse. After that,
the new computation reuse approaches are described, along with their advantages and
disadvantages.

The SA studies and components that were developed and integrated into the RTF are
illustrated in Figure 3.1. An SA study in this framework starts with the definition of a
given workflow, the parameters to be studied, and the input data. The workflow is then
instantiated and executed efficiently in RT using parameters values selected by the SA
method. These values, or parameters sets, are generated separately by the user through

Figura 3.1: The parameter study framework. A SA method selects parameters of the
analysis workflow, which is executed on a parallel machine. The workflow results are
compared to a set of reference results to compute differences in the output. This process
is repeated a set number of times (sample size) with varying input parameters’ values.
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Figura 3.2: A comparison of a workflow generated with and without computation reuse.
Image extracted from [42].

a SA method statically, i.e, before the execution of any task on the RTF. The output of
the workflow is compared using a metric selected by the user to measure the difference
between a reference segmentation result and the one computed by the workflow using the
parameter set generated by the SA method. This process continues while the number of
workflow runs does not achieve the sample size required by the SA. This sample size is
effectively the number of times that the workflow will be instantiated and executed with
different input parameters’ values. The sample size is a way to limit the cost of the SA
study while maintaining its significance and accuracy. This can be done by empirically
choosing a sample size that is big enough to have accurate results but not enough that
its cost is unfordable.

Computation reuse is achieved through the removal of repeated computation tasks.
Figure 3.2 presents the comparison of a replica-based workflow generation, in which there
is no reuse, and a compact composition, generated with maximal reuse. Given that we
start generating a compact composition with no tasks on it, the first parameter set (Set
1, (i) in Figure 3.2) is added to the workflow in its entirety (i.e., all computation tasks
A-D). The second parameter set, however, has the reuse opportunities of tasks A and B
given they have the same input parameters values and input data. Thus, only the tasks
C and D for parameter set 2 are instantiated in the compact graph ((ii) in Figure 3.2).
With the current workflow state of (ii), parameter set 3 presents reuse opportunities for
tasks A, B and C, thus only needing to instantiate a single computation task (D) with
the parameters values 13 and 15 to the workflow. When comparing the workflow replica
based composition with the compact composition we can notice a decrease on the number
of executed tasks of approximately 41%, from 12 tasks to 7 tasks.
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There are two computation reuse levels used on this work, (i) stage-level, on which
coarse-grain computation tasks are reused, and (ii) task-level - with fine-grain tasks reused.
Coarse-grain computation reuse is significantly easier to implement than its fine-grained
counterpart. However, the number of parameters that two coarse-grained merging candi-
dates stages need to match for the reuse to take place is higher as when compared with
fine-grain tasks.

3.1 Graphical User Interface and Code Generator

In this work a flexible task-based stage code generator was implemented to ease the process
of developing RTF applications. This generator was created, together with a workflow
generator graphical interface - with the purpose of making the RTF more accessible to
domain-specific experts. Additionally, this code generator will simplify the application
information gathering process, necessary for merging stages instances during the process
of computation reuse.

The stage generator has as its input a stage descriptor file, formatted as Json, as shown
in Figure 3.3. A stage is defined by its name, the external libraries it needs to call in

Figura 3.3: An example stage descriptor Json file.
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Figura 3.4: The example workflow described with the Taverna Workbench.

order to execute the application domain transformations in each stage of the workflows,
the necessary input arguments for its execution and the tasks it must execute. There are
two kinds of inputs: the arguments and the Region Templates (RT). The arguments are
constant inputs, which are varied by the given SA method and represent the application
input parameter values. The RT is the data structure provided by the RTF for inter-
stage and inter-task communication. As seen on the example descriptor file, only the
RT inputs are explicitly written, while the remaining arguments can be inferred from the
tasks descriptions.

Every stage is comprised of tasks, described by (i) the external call to the library of
operations implemented by the user and (ii) its arguments. On Figure 3.3 the call for the
first task is segmentNucleiStg1 from the external library nscale. The arguments can be
one of two types, (i) constant input arguments (args), defined by the SA application or (ii)
intertask arguments (intertask_args), which are produced/consumed for/by a fine-grain
task.

With task-based stages generated, the user can instantiate workflows using the newly
generated stages. As with tasks, the RTF did not support a flexible, non-compiled solution
for generating workflows, being these workflows hardcoded into the RTF. The solution
implemented on this work was to use the Taverna Workbench tool [49] as a graphical
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interface for producing workflows and implement a parser for the generated Taverna file.
An example workflow on the Taverna Workbench is displayed on Figure 3.4.

3.2 Stage-Level Merging

The stage level merging needs to identify and remove common stage instances and build
a compact representation of the workflow, as presented in Algorithm 1. The algorithm
receives the application directed workflow graph (appGraph) and parameter sets to be
tested as input (parSets) and outputs the compact graph (comGraph). It iterates over
each parameter set (lines 3-5) to instantiate a replica of the application workflow graph
with parameters from set. It then calls MergeGraph to merge the replica to the compact
representation.

Algorithm 1 Compact Graph Construction
1: Input: appGraph; parSets;
2: Output: comGraph;
3: for each set ∈ parSets do
4: appGraphInst = instantiateAppGraph(set);
5: MergeGraph(appGraphInst.root, comGraph.root);
6: end for
7: procedure MergeGraph(appVer, comVer)
8: for each v ∈ appVer.children do
9: if (v’ ← find(v, comVer.children)) then
10: MergeGraph(v, v’);
11: else
12: if ((v’ ← PendingVer.find(v))==∅) then
13: v’ ← clone(v)
14: v’.depsSolved ← 1
15: comVer.children.add(v’)
16: if v’.deps ≥ 1 then
17: PendingVer.insert(v’)
18: end if
19: MergeGraph(v, v’);
20: else
21: comVer.children.add(v’)
22: v’.depsSolved ← v’.depsSolved+1
23: if v’.depsSolved == v’.deps then
24: PendingVer.remove(v’)
25: end if
26: MergeGraph(v, v’)
27: end if
28: end if
29: end for
30: end procedure
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The MergeGraph procedure walks simultaneously in an application workflow graph
instance and in the compact representation. If a path in the application workflow graph
instance is not found in the latter, it is added to the compact graph. The MergeGraph
procedure receives the current set of vertices in the application workflow (appV er) and
in the compact graph (comV er) as a parameter and, for each child vertex of the appV er,
finds a corresponding vertex in the children of comV er. Each vertex in the graph has a
property called deps, which refers to its number of dependencies. The find step considers
the name of a stage and the parameters used by the stage. If a vertex is found, the path
already exists, and the same procedure is called recursively to merge sub-graphs starting
with the matched vertices (lines 9-10). When a corresponding vertex is not found in
the compact graph, there are two cases to be considered (lines 11-26). In the first one,
the searched node does not exist in comGraph. The node is created and added to the
compact graph (lines 12-18). To check if this is the case, the algorithm verifies if the
node (v) has not been already created and added to comGraph as a result of processing
another path of the application workflow that leads to v. This occurs for nodes with
multiple dependencies, e.g., D in Figure 3.2. If the path (A,B,D) is first merged to the
compact graph, when C is processed, it should not create another instance of D. Instead,
the existing one should be added to the children list as the algorithm does in the second
case (lines 21-25). The PendingV er data structure is used as a look-up table to store
such nodes with multiple dependencies during graph merging. This algorithm makes k

calls to MergeGraph for each appGraphInst to be merged, where k is the number of
stages of the workflow. The cost of each call is dominated by the find operation in the
comV er.children. The children will have a size of up to n or |parSets| in the worst case.
By using a hash table to implement children, the find is O(1). Thus, the insertion of n

instances of the workflow in the compact graph is O(kn).

3.3 Task-Level Merging

On the previous section coarse-grain reuse was implemented through a stage-level merging
algorithm. This approach can by itself attain good speedups for the workflow used on this
work. However, due to the granularity of the stages there is still many reuse opportunities
which are wasted since they are not visible or even achievable on stage-level. These
opportunities are visible though on task-level, through what we define as fine-grain reuse.
This reuse can be achieved by merging stages together and removing the repeated tasks,
through what we call task-level merging. Merging at task-level, unlike stage-level, has
some limitations due to the way stages and tasks are implemented on the RTF. Tasks
are a finer-grain computational job, intended to be small activities. Although stages can
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be executed on distinct computing nodes, tasks cannot, since it would not make sense to
distribute such small tasks which communication overhead over the nodes network would
most likely outweigh the task cost itself.

With these peculiarities in mind, before we implement any fine-grain merging algo-
rithm we must first address some limitations on excessive fine-grain reuse. When excessive
task-level merging is performed the joint number of parameters and variables of a merged
stage, containing a large number of tasks, may not fit on the system memory. These
variables are most of the times intermediate data that is passed between tasks, also in-
cluding intermediate images, which are rather large for the purpose of this work. Also, it
is possible for all stages to be merged in a number smaller than the number of available
nodes, hence making some of the available resources idle. Both these problems can be
solved by limiting the maximum number of stages that can be merged (bucket size). This
limit is defined here as MaxBucketSize. Another way to enforce memory restriction is
to limit the maximum number of tasks per group of merged stages (buckets). This limit
is the MaxBuckets.

3.3.1 Naïve Algorithm

In the interest of better understanding the task-level merging problem, a naïve algorithm
was implemented to serve as a baseline for our analysis. This simplified algorithm groups
MaxBucketSize stages in buckets and attempts to merge all stages of each bucket among
themselves. This was achieved by sequentially grouping the first MaxBucketSize stages
into buckets, until there are no more stages to be merged.

Although this simple solution was quickly implemented and has a linear algorithmic
complexity its reuse efficiency is, however, highly dependent on the stages ordering. For
instance, if similar stages were to be generated close together a greater amount of reusable
computation is more likely to exist.

3.3.2 Smart Cut Algorithm (SCA)

Another strategy to create buckets of stages to be merged that was investigated is through
the use of a graph based representation (see Figure 3.5). A representation for this could
be done using fully-connected undirected graphs on which the stage instances are the
nodes and each edge is the degree of reuse between two stage instances (Figure 3.5b). By
degree of reuse we mean the number of tasks that would be reused if the two stages are
merged. With this perspective we would need only to partition this graph in subgraphs,
maximizing the reuse degree of all subgraphs. This is a well-known problem, called min-
cut [38].
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(a) Example application.
(b) Initial graph of instance
example.

(c) First cut is performed, re-
moving node c.

(d) After the next cut node
a is removed.

(e) After final cut of node
b MaxBucketSize sized sub-
graph is found.

(f) The cutting starts
over with the remaining
nodes.

Figura 3.5: An example on which SCA executes on 5 instances of a workflow application
of 6 tasks, with MaxBucketSize = 2.

Although there are many variations for the min-cut problem [38, 13], we define here
a min-cut algorithm as one that takes an undirected graph and performs a 2-cut (i.e.,
cut the graph in two subgraphs) operation, minimizing the sum of the cut edges weight.
This 2-cut operation was selected because of its flexibility and computational complexity.
First, the recursive use of 2-cuts can break a graph in any number of subgraphs. Moreover,
k-cut algorithms are not only more computationally intensive than 2-cut algorithms, but
also have no guarantees for the balancing of the subgraphs (e.g., for k = 5 on a graph with
10 nodes one possible solution is 4 subgraphs with 1 node each and 1 subgraph with 6
nodes). As such, we can implement a simple k-cut balanced algorithm by performing 2-cut
operations on the most expensive graph/subgraph until a stopping condition is reached
(e.g., number of subgraphs is reached, number of nodes per subgraph is reached). With
all these considerations only 2-cut operations are used on the proposed algorithm.

Figure 3.5 demonstrates a way to group stages into buckets using 2-cut operations.
First, the fully-connected graph in Figure 3.5b is generated given the stage instances
of Figure 3.5a. Figure 3.5c shows the result of the first 2-cut operation, on which the
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Algorithm 2 Smart Cut Algorithm
1: Input: stages; MaxBucketSize;
2: Output: bucketList;
3: while |stages| > 0 do
4: {s1,s2} ← 2cut(stages)
5: while |s1| > MaxBucketSize do
6: {s1,s2} ← 2cut(s1)
7: end while
8: bucketList.add(s1)
9: for each s ∈ s1 do
10: stages.remove(s)
11: end for
12: end while

subgraph containing only the node c is found to be the one least related to the subgraph
with the remaining nodes. This is similar to the state that c is the “least reusable” stage
among all other stages (i.e., the stage which, if selected for merging, would have highest
computational cost). Next, nodes a and b are removed until a bucket of size 2 is reached
(see Figures 3.5c and 3.5d). The previously removed nodes (a, b and c) are then put
together (Figure 3.5f) and the same cutting algorithm starts over. This process is then
repeated until all stages are grouped into buckets.

With this procedure in mind Algorithm 2 was designed. This algorithm performs
successive 2-cut operations on the graphs to divide it into disconnected subgraphs that
fit in a bucket. The cuts are performed such that the amount of reuse lost with a cut
is minimized. In more detail, the partition process starts by dividing the graph into 2
subgraphs (s1 and s2) using a minimum cut algorithm [38] (line 4). Still, after the cut,
both subgraphs may have more than MaxBucketSize vertices. In this case, another
cut is applied in the subgraph with the largest number of stages (lines 5-7), and this is
repeated until a viable subgraph (number of stages ≤ MaxBucketSize) is found. When
this occurs, the viable subgraph is removed from the original graph (lines 8-11), and the
full process is repeated until the graphs with stage instances yet not assigned to a bucket
can fit in one.

The number of cuts necessary to compute a single viable subgraph of n stages is O(n)
in the worst case. This occurs when each cut returns a subgraph with only one stage
and another subgraph with the remaining nodes. The cut then needs to be recomputed
– about n−MaxBucketSize) times – on the largest subgraph until a viable subgraph is
found. Also, in the worst case, all viable subgraphs would have MaxBucketSize stages
and, as such, up to n/MaxBucketSize buckets could be created. Therefore, the algorithm
will perform O(n2) cuts in the worst case to create all buckets. In our implementation, the
min-cut is computed using a Fibonacci heap [38] to speed up the algorithm, making each
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cut O(E + V log V ). Since the graph used is fully connected, the complexity of a single
cut in our case is O(n2) and, as consequence, the full SCA is O(n4). Although the SCA
computes good reuse solutions, its use in practice is limited because of the computational
complexity. This motivated the proposal of the strategy described in Section 3.3.3.

3.3.3 Reuse Tree Merging Algorithm (RTMA)

Still on graphs, a natural way to display hierarchical structures is with trees. Using tasks
as nodes on this tree, subtrees with the same parent node indicates that all child task
nodes of said parent node use its output. As such, if we constructed a tree with several
stages, we are able to easily see the reuse opportunities, lying in the nodes with more
than one child node. Moreover, each level of the tree would represent a given task, which
can be instantiated with different parameters sets.

Detailing this structure, each level of the tree represents a task, and if a stage s shares
a parent node on level k with s′, this implies that all tasks from 1 to k are the same for
both stages, an thus reusable among themselves (i.e., same computational task with the
same inputs). This structure is defined as a Reuse Tree, with every node being defined
by its level (or height), its parent, its children and a reference to the stage responsible for
its generation.

Reuse-Tree Generation

On a SA example we have a workflow w that is instantiated n times with different pa-
rameters (w1, w2, ..., wn). Each workflow wi is composed by m stages sij with i ∈ [1, n]
and j ∈ [1, m]. A reuse-tree is then generated for each j-th stage level. The reuse-tree
for a given stage level can be generated by iteratively inserting one stage instance after
the other on the reuse-tree. Initially, a stage is represented as a tree on which every node
has a single child and each node represents a task instantiation for that stage. Further-
more, any given node has as its parent a task that it is dependent on. Every stage is
inserted one task node at a time. If, for a given task node, there already exists on the
tree another node representing the same task with the same parameter inputs, said task
node is not created, but instead the insertion process carries on from the equivalent node,
characterizing task reuse.

As an example, Figure 3.6 demonstrates the insertion of a stage (stage x) with the
stage workflow and the parameters of each stage instance defined in Figure 3.6a, and the
starting reuse tree in Figure 3.6b. Starting at the root node, its children (1 and 2) are
searched for reuse opportunities for the first task (Figure 3.6c). Since node 2 represents
all stages whose task 1 has as its input p1 = 8 the first task of x can be reused through
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(a) Example application.
(b) Initial reuse tree for the
instance example.

(c) Searching for reuse on the
first task.

(d) Searching for reuse on
the second task. (e) Inserting a new node, 6. (f) Inserting the leaf node x.

Figura 3.6: An example where node x is inserted on the existing reuse tree. Figure 3.6a
defines the tasks of which each stage is composed by and presents the parameters’ values
for each stage instance.

it. The search for reuse of the second task is then performed on the children of node 2
(Figure 3.6d). Since node’s 2 only child, node 5, cannot be reused for stage x’s second task
(values for p2 of stages d and x are different), a new node representing this non-reusable
task is created (node 6) as shown in Figure 3.6e. Finally, since node 6 is new, there are
no more reuse opportunities from it, thereby, a single child node must be created for each
of the remaining non-reusable tasks (Figure 3.6f).

The Merging Implementation

In order for a merging algorithm to be implemented on top of the Reuse Tree structure
we must take advantage of its hierarchical characteristics. Given that we want to bundle
together buckets of stages of exactly MaxBucketSize stages we must start with the
deepest stages and move up. Figure 3.7a shows an example of a Reuse Tree with 12 stages
and 3 tasks each. Stages a, b and c have two out of three reusable tasks, and as such,
given a MaxBucketSize = 3, should be put together in the same bucket. Meanwhile,
stages d through i have one out of three reusable tasks. To maximize the reuse, stages
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(a) Initial reuse tree. (b) Reuse Tree after select procedure.

(c) Reuse Tree after the selected merge-
able leaf nodes are pruned and added to
the bucket list.

(d) Reuse tree after the childless parents
are recursively removed.

(e) Reuse tree after move-up procedure.

Figura 3.7: An example of Reuse Tree based merging with MaxBucketSize 3. The merged
stages of each step are shown below the tree on the bucket list.

d, e, f and g should be together, as should stages h and i. Since MaxBucketSize = 3,
only 3 stages out of d, e, f and g can be put together, not mattering which 3 stages. This
merger is seen in Figure 3.7c. After the merger of d, e and f , stage g is left alone, having
as its best option, reuse-wise, to be put together with h and i. As such, it is visible that
the merging should happen in a bottom-up fashion.

The Reuse Tree Merging Algorithm (RTMA), listed on Algorithm 3, was implemented
in three steps, (i) bucket candidates selection (line 6), (ii) tree pruning (line 7) and
(iii) move-up operation (line 9), which are performed iteratively until the whole tree is
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Algorithm 3 Reuse-Tree Merging Algorithm (RTMA)
1: Input: stages; maxBucketSize;
2: Output: bucketList;
3: bucketList ← ∅;
4: rTree ← GenerateReuseTree(stages)
5: while rTree.height > 2 do
6: leafsPList ← GenerateLeafsParentList(rTree)
7: newBuckets ← PruneLeafLevel(rTree, leafsPList, maxBucketSize)
8: bucketList ← bucketList ∪ newBuckets
9: MoveReuseTreeUp(reuseTree, leafsPList)
10: end while
11: while rTree.root.children 6= ∅ do
12: newBucket ← ∅
13: newBucket.add(removeFirstChildren(rTree.root.children));
14: bucketList ← bucketList ∪ newBucket
15: end while
16: return bucketList

consumed. If at the end of the main loop (line 5) there are still any non mergeable stages,
those will be converted to one-stage buckets (lines 12-13) and then inserted on the final
solution (line 14).

The first step of the algorithm (Algorithm 3, line 6) is to get a list of all parents of
leaf nodes. In Figure 3.7c we can see the selected parents (5-10). With the leaf’s parents
list the pruning step makes as many MaxBucketSize sized buckets as possible and then
remove them from the reuse tree. The procedure PruneLeafLevel (line 7) attempts to
make buckets for each leaf parent node. As stated before, the new buckets must have
an exact size of MaxBucketSize, thereby, if the parent node does not have at least
MaxBucketSize children will not create a bucket with them. Given that the parent has
enough children, a number of MaxBucketSize children will be bundled together as a new
bucket to later be added to the solution pool. On Figure 3.7c the two formed buckets are
shown: {a, b, c} and {d, e, f}. Each time a leaf node is added to the current new bucket,
it is then removed from the parent children list, and as a consequence, removed from the
tree, as seen on Figure 3.7d.

If a parent node ends up grouping all of its children in buckets, it must be removed
from the tree (node 5 on Figure 3.7c). This process is performed recursively by removing
the given childless parent node and then checking if the removal of the current parent also
makes its parent childless. If this is the case the parent node removal must continue on
its parent (node 1 of Figure 3.7c is also removed, as seen on Figure 3.7d).

The final step of merging is to move the leaf nodes up one level in order to enable the
creation of new buckets. The operation MoveReuseTreeUp (Algorithm 3, line 9) is done
by taking each of the previously selected parent nodes and moving all of its children to
its parent’s children list (e.g., nodes g, h and i of Figure 3.7d are moved to parent node
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2, as seen on Figure 3.7e). After that, the current node is remove from its parent (e.g.,
nodes 6 and 7 of Figure 3.7d are removed from parent node 2, as seen on Figure 3.7e).
After all nodes from the parent list are removed and its children are moved up the tree
height is updated (line 6).

Algorithmic Complexity

Assuming an empty tree, the GenerateReuseTree performs the insertion of n stage
instances with k tasks each. In the worst case of a stage insertion there is no reuse
whatsoever, resulting in the creation of the maximum number of nodes. In this case,
given that m < n stage instances were already added, the next stage will perform m

comparisons, looking for a reuse opportunity. After no opportunities are found k nodes
will be created. This results in kn new nodes generated and n(n + 1)/2 nodes traversed
in total, and as a consequence, GenerateReuseTree is O(n2).

The n(n + 1)/2 nodes traversed is due to a linear search for reusable tasks on a given
level with m stages instances. It is possible to further reduce this cost by performing this
reuse check on a hash table on which the key is a combination of all parameters’ values.
By doing this hash table search the cost of each insertion will be O(1), thus resulting in
the overall time complexity of O(kn).

The analysis of the actual merging algorithm can be split in the three operations
performed on the reuse tree. Starting with the select operation, on the worst case, there
will be one child per stage (i.e., no reuse on the first task), resulting in n nodes visited. On
this case, the number of children of each node beyond the first level will be one, resulting
in k − 2 extra nodes visited. As a result we have that that GenerateLeafsParentList

runs in O(nk) per iteration, or O(nk2), for there are exactly k − 1 iterations.
For the pruning step the most expensive operation is the one of adding a stage to a

solution bucket. Knowing that the exact number of bucket insertions must be at most
n for the whole merging algorithm, we get the complexity O(n) for all iterations of the
pruning step.

At last, the complexity of the move-up step will be calculated by the amount of times
a leaf node is moved from the current node child list to its parent. Independently to the
structure of the tree, given that it has n leaf nodes, all of them will be moved once per
move-up operation. Given that there are exactly k − 1 iterations, we have O(nk).

The RTMA complexity is then dominated by tree generation algorithm since it is
O(n2), versus the joint complexity of the other three steps, O(nk2 + nk + n). This
happens because n � k by the order of hundreds to thousands times greater. With
such time complexity, the RTMA is expected to be scalable enough in order to be a
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viable solution. Furthermore, if the hash table optimization of GenerateReuseTree
is implemented, then the time complexity becomes O(nk2).

3.3.4 Task-Balanced Reuse-Tree Merging Algorithm (TRTMA)

Given the nature of the chosen SA application and its scale (in terms of compute cost and
resources utilization), if the scale of resources is high enough, or the chosen SA method
requires a sample size small enough, the ratio of buckets per computing node (or core)
may become low. This may lead to imbalance, and thereafter performance degradation.
This happens since the RTMA naturally reduces the parallelism of the application due to
its grouping of stages. To solve this problem, a task-wise balanced version of RTMA was
designed and implemented, the Task-Balanced Reuse-Tree Merging Algorithm (TRTMA).
The TRTMA will be presented in five parts. First a general idea of the imbalance problem
and how to solve it is presented. Then, algorithmic details are presented, followed by the
complexity analysis of the TRTMA. Finally, some optimizations are described along with
a qualitative analysis of the achievable results of the TRTMA.

General Idea

In more details, the RTMA balances its buckets stage-wise. This means that the buckets
generated by it have similar (or most of the times, the same) number of stages. As such,
buckets imbalance comes from the difference on the number of tasks that two buckets
with the same number of stages can have. This difference is a consequence of distinct
reuse patterns on a reuse-tree structure, which in turn leads to different numbers of tasks
for buckets with the same number of stages.

Given this imbalance of stage-wise balanced buckets, the TRTMA can be seen as an
improvement of the RTMA on which task-wise balancing is enforced. In order to do so,
the TRTMA also uses the reuse-tree structure, while trying to achieve the best balancing
for MaxBuckets buckets. The change of the MaxBucketSize parameter to MaxBuckets

helps the usability of the algorithm since the maximum number of buckets is a higher-level
concept than the maximum number of stages per buckets.

The TRTMA is implemented in three steps. On the first two, the MaxBuckets number
of buckets is achieved to then be balanced task-wise on a third step. The tree steps are
defined as: Full-Merge, Fold-Merge and Balance.

Full Merge is the first attempt at achieving MaxBuckets buckets. It is done by
traversing the reuse-tree on a top-down fashion, attempting to find a task-level on which
there are at least MaxBuckets nodes. The full process can be seen on Figure 3.8, on
which MaxBuckets = 3 is used. Figure 3.8a shows a simple initial reuse-tree. On the
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first level of tasks there are only two nodes (1 and 2), meaning that the next level should
be searched (see Figure 3.8b). The next level has the exact number of tasks (nodes 2, 4
and 5) and, as such, the buckets can be generated by the leaf-nodes on branches at this
level (see Figure 3.8c). Finally, the buckets are generated on Figure 3.8d.

(a) Initial reuse-tree. (b) Attempt of
Full-Merge from root
node results in two
buckets.

(c) Attempt of
Full-Merge on the
children of previous
attempt results in
three buckets.

(d) Merger is per-
formed since the cor-
rect number of buck-
ets was achieved.

Figura 3.8: Simple example of Full-Merge on which MaxBuckets is 3 and the exact
division os stages is reached.

However, there are cases on which a perfect number of MaxBuckets cannot be
achieved (see Figure 3.9). On these cases, the Full-Merge step brakes stages in a num-
ber of buckets greater than MaxBuckets (see Figure 3.9b). The MaxBuckets number
of buckets is then achieved by the merging of b −Mb buckets, with b being the current
number of buckets and Mb the MaxBuckets goal on the next step (see Figure 3.10).

Fold-Merge, as demonstrated on Figure 3.10, merges the buckets with the smallest
cost in a fold-like operation. Given that the buckets are sorted by decreasing order,
according to the cost (number of tasks), we can imagine that a line of these buckets is
folded on a folding pivot, between Mb and Mb + 1 (see Figure 3.10), with Mb being
the MaxBuckets value. By doing this we are reducing the maximum bucket cost of the
merged buckets, and thus reducing the amount of imbalance. It is important to notice

(a) Initial reuse-tree. (b) Attempt of Full-Merge
from root node results in four
buckets.

(c) After Fold-Merge the cor-
rect number of buckets is
reached.

Figura 3.9: Another example of Full-Merge and Fold-Merge on which MaxBuckets is 3
and the exact division of stages cannot be reached by Full-Merge.
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Figura 3.10: An example of a Fold-Merging of buckets b1-b6. Initially we start with b = 6
buckets, trying to achieve Mb = 4 buckets. In order to do so b−Mb merger operations are
performed. The task cost of the buckets follows the ordering b1 ≥ b2 ≥ b3 ≥ b4 ≥ b5 ≥ b6.

that although the folding-fashion on which the buckets are merged is not necessary, its
use mitigates the initial imbalance of the MaxBuckets buckets, therefore reducing the
cost of balancing these buckets.

On the example of Figure 3.9b four buckets are achieved through the Full-Merge
procedure. As such, the Fold-Merge would then take the two last buckets and merge
them together, resulting in the buckets of Figure 3.9c.

Balance is the last step of the TRTMA. The balancing of buckets is done by searching
for improvement operations on the reuse-tree grouped in the initial buckets outputted by
the previous steps. An improvement operation is defined as a node of the reuse-tree
(imp), which leaf nodes (or stages) can be sent from an original big reuse-tree node
(bigRT ) to a small one (smallRT ), resulting in newImbal ≤ oldImbal, with newImbal

being the imbalance on the number of tasks after the imp operation, and oldImbal the
initial imbalance before the imp operation.

However, there are cases on which an improvement is found but it cannot positively
impact the overall solution of buckets. For example, the cost TaskCost(smallRT ∪ imp)
may be the same as TaskCost(bigRT ), meaning that imp had some degree of reuse with
bigRT and thus, the cost of imp is greater on smallRT than on bigRT . On this case
this improvement will reduce the imbalance but will not reduce the makespan of the
application (i.e., the maximum number of tasks of all buckets). This is defined as a false
improvement, or false balance operation, and since these can only increase the overall
application cost, they will never be applied. As an example, two buckets b1 and b2 have
initial costs 4 and 7, and thus 3 tasks of imbalance. After a given improvement their costs
are 7 and 5 respectively. The imbalance is now of 2 tasks, which may be “better”, but
does not improves the makespan, which remains the same.

The full balance of a pair of buckets is achieved by attempting to find and applying
valid improvements until there are no more improvements. Each improvement-search
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(a) Initial reuse-tree with 3
buckets of costs 8, 9 and 5,
respectively.

(b) Buckets of greatest and
smallest cost values are se-
lected for balance, with cur-
rent imbalance of 4 and max
cost 9.

(c) The balance operation of
sending node 6 children to
smallRT is attempted, re-
sulting in an imbalance of 7.

(d) After the bad selection of
node 6, balancing with node
7 is also done, resulting in an
imbalance of 3 but still hav-
ing a max cost 9.

(e) As a final attempt, by
sending node S9 to smallRT
we have an imbalance of 0
and max cost 8, making it a
viable balancing operation.

(f) After the balancing oper-
ation of sending node S9 to
smallRT we have the buckets
with updated costs 8, 8 and
8.

Figura 3.11: An example of the Balance step on which there are 3 buckets to be balanced.

iteration is executed for a pair of the two ends of the current bucketList, which should be
sorted in a non-ascending order with respect to cost (number of unique tasks). These are
defined as bigRT and smallRT , and are the buckets with the greatest and smallest task
costs respectively. If a single improvement attempt fails, then the balance step finishes.
This single improvement attempt operation is defined as SingleBalance.

A SingleBalance operation consists in traversing the bigRT subtree in a breadth-first,
bottom-up fashion in the search for a node that can be sent from bigRT to smallRT ,
characterizing an improvement. The reason for this traversal order is that lower nodes
on the reuse-tree will have at most the same number of leaf nodes of its parent and thus,
finer-grain nodes are balanced earlier.

The full Balance process is exemplified on Figure 3.11. Starting with an initial reuse-
tree of Figure 3.11a, the bigRT and smallRT buckets are selected, with task costs 9 and 5,
respectively, and thus resulting in an imbalance of 4 (see Figure 3.11b). Several nodes are
searched as improvement candidates. When trying an improvement operation of node 6,
the resulting buckets {S8, S9} and {S4, S5, S6, S7, S10, S11} would have costs 4 and 11,
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resulting in a new imbalance of 7, making this operation impracticable (see Figure 3.11c).
Another alternative is the improvement of node 7. This results in buckets {S4, S5, S6, S7}
and {S8, S9, S10, S11}, and costs 6 and 9. This improvement operation results in an
imbalance of 3, which is better than the previous imbalance of 4. However, the maximum
task cost still remains at 9, meaning this is a false improvement and hence, an invalid
balancing operation since the makespan has not changed (see Figure 3.11d). Finally, by
applying the improvement of leaf-node S9 (which could be any of the nodes in the interval
[S4, S9]) the resulting buckets would be {S4, S5, S6, S7, S8} and {S9, S10, S11}, both
with cost 8 and thus, 0 of imbalance (see Figure 3.11e). Given that this last improvement
operation was the best found, it is applied (see Figure 3.11f). Since it is impossible
to improve the imbalance of 0, the next SingleBalance attempt will not find any valid
improvement, consequently ending the Balance step.

Algorithmic Implementation Details

On this section the Balance and SingleBalance algorithms will be detailed since they are
the most complex of all previously presented algorithms. Going through in a bottom-up
fashion, SingleBalance is detailed in Algorithm 4.

The SingleBalance algorithm (see Algorithm 4) is divided into two parts, the recursion
loop (lines 9-22) and the current level search loop (lines 23-29). Since the nodes are
searched on a bottom-up breadth-first fashion, the first loop is responsible for recurring
the SingleBalance operation on each of bigRT child nodes (lines 9-10). The stop-condition
for this recursion is when an empty bigRT is passed to SingleBalance, thus returning an
empty improvement.

If an improvement is found (lines 11-13) it is then set as the new current best improve-
ment (lines 13-16). Finally, the second loop (lines 23-29) goes through the current level
children attempting to find improvements (lines 24-28), after which, the best improvement
is returned (line 30) if any was found, or an empty improvement if no solution was found
(line 8).

The Balance algorithm (see Algorithm 5) is implemented by repeatedly attempting
to find an improvement from SingleBalance (line 8) until either an invalid improvement
is returned (false balancing) or an empty improvement is returned (line 10). If any of
those conditions apply then the Balance algorithm ends and returns the current state of
bucketList (line 21). It is worth noting that the bucketList input must be a non-ascending
ordered data structure, being this algorithm implemented with a C++ multiset container
with the task cost of each bucket as their keys. The reasons for choosing this structure
is threefold: (i) it is sorted on insertions (with insertion O(log(n))), (ii) it has a direct
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Algorithm 4 Balancing algorithm for two tree nodes (SingleBalance)
1: Input: currChildren; bigRT; smallRT; imbal;
2: Output: improvement;
3: while |currChildren| = 1 and | currChildren.first().children| > 0 do
4: currChildren ← currChildren.first()
5: end while
6: uniqueChildren ← ∅
7: uniqueChildrenCosts ← ∅
8: improvement ← ∅
9: for each children c ∈ currChildren do
10: recSol ← SingleBalance(c, smallRT, imbal)
11: if recSol 6= ∅ then
12: recImbal ← | TaskCost(bigRT \ recSol) - TaskCost(smallRT ∪ recSol) |
13: if recImbal < imbal then
14: improvement ← recSol
15: imbal ← recImbal
16: end if
17: end if
18: if TaskCost(c) /∈ uniqueChildrenCosts then
19: uniqueChildrenCosts ← uniqueChildrenCosts ∪ TaskCost(c)
20: uniqueChildren ← uniqueChildren ∪ c
21: end if
22: end for
23: for each children c ∈ uniqueChildren do
24: currImbal ← | TaskCost(bigRT \ c) - TaskCost(smallRT ∪ c) |
25: if currImbal < imbal then
26: imbal ← currImbal
27: improvement ← c
28: end if
29: end for
30: return improvement

access operation on the beginning and end of the list (O(1)), and (iii) the keys are not
unique.

The first step of Balance is to select bigRT and smallRT (Algorithm 5, lines 5-6).
The selection of bigRT is done by taking the first bucket of bucketList. For smallRT we
can either select the last bucket of bucketList (i.e., one of the buckets with the smallest
task cost) or search among the buckets of bucketList with the smallest cost for the one
with the greatest reuse with bigRT . The later selection strategy can potentially result in
more and better improvement opportunities available. The used approach was the last-
bucket-selection with a full analysis on the impact of different smallRT selection methods
discussed further ahead.

After selecting bigRT and smallRT , both are used on SingleBalance in order to search
for an improvement on the current state of bucketList (Algorithm 5, line 8). The returned
improvement, if returned, is then validated (lines 9-10). If no improvement is returned, or
if the returned improvement is a false balancing then the algorithm finishes its execution
and returns the bucketList as it currently is (lines 17-21). Otherwise, the improvement is
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Algorithm 5 The Balance step of the TRTMA
1: Input: bucketList;
2: Output: bucketList;
3: bucketList is a sorted data structure by descending cost (e.g., multiset)
4: while true do
5: bigRT ← bucketList.first()
6: smallRT ← selectSmallRT(bucketList)
7: imbal ← TaskCost(bigRT) - TaskCost(smallRT)
8: improvement ← SingleBalance(bigRT.children, bigRT, smallRT, imbal)
9: newMksp ← Max(TaskCost(bigRT \ improvement), TaskCost(smallRT ∪ improvement))
10: if improvement 6= ∅ and newMksp < TaskCost(bigRT) then
11: bucketList ← bucketList \ smallRT
12: bucketList ← bucketList \ bigRT
13: smallRT ← smallRT ∪ improvement
14: bigRT ← bigRT \ improvement
15: bucketList ← bucketList ∪ smallRT
16: bucketList ← bucketList ∪ bigRT
17: else
18: break
19: end if
20: end while
21: return bucketList

applied to bucketList (lines 11-16) and the algorithm searches for another improvement.
Given the necessity for the ordering of bucketList, bigRT and smallRT are removed from
bucketList (lines 11-12), updated (lines 13-14) and then re-inserted on bucketList on the
right position (lines 15-16).

Algorithmic Complexity

In order to calculate the computational complexity of the TRTMA we must first define a
worst-case scenario on which the number of improvement attempts is maximum. One of
this cases is defined in Figure 3.12 with O(n) maximum improvement operations. This is
the case on which n/2 − 1 of the n/2 buckets start with exactly one stage, and a single
remaining bucket starts with n− b+1, with b = MaxBuckets. On this situation n− b−1
stages of the last bucket will be sent to another bucket on SingleBalance operations.
Assuming that SingleBalance balances every pair of buckets with the minimum impact
(improvements of exactly one stage), it will take n − b − 1 balancing operations for all
buckets to reach the final stable state of two stages per bucket. Thus, O(n) improvement
operations.

For each improvement operation there is a selection step for bigRT and smallRT , their
update, and a SingleBalance call. The selection is done in O(1) for both subtrees since
we are accessing the first and last elements of bucketList (Algorithm 5 lines 5-6). The
update, which is comprised of two removal operations and two insertion operations are
done in O(log(n)) since bucketList is an ordered data structure based on trees (Algorithm
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5 lines 11-16). For the SingleBalance call, exactly one balancing attempt is done for each
traversed node on the worst case. Since for a graph with height k and n leaf nodes the
number of nodes is bounded by O(kn), we have a final complexity of O(n log(n) + kn2).
Also, given that n� k the time complexity will be dominated by O(n2).

Optimizations

It is possible to reduce the cost of SingleBalance through two optimizations, already
implemented on Algorithm 4: (i) single child pruning and (ii) unique sibling selection.

If a reuse-tree node rtn is being visited by SingleBalance, and rtn has only a single
child node rtn′, then the improvement operation for both rtn and rtn′ are the same. As
such, we can prune rtn from the search by moving down the subtree until either a leaf node
is reached or a reuse-tree node with more than one child is found. This is implemented
on Algorithm 4, lines 3-5.

Furthermore, it is noticeable that any leaf node on the interval of S4-S9 of Figure 3.11e
would result in the same balancing outcome (an imbalance of 0 with all buckets with cost
8). As such, it would be interesting if we pruned all nodes that would result in the same
outcome. This can be, and is, achieved by verifying both the number of children and
the cost of two nodes. If both values are the same than we have similar (or non-unique)

Figura 3.12: A general worst-case reuse-tree representation on which we have all n stages
divided into b buckets. On this case we have b − 1 buckets with exactly one stage, and
thus cost k. Hence, the last bucket has n− b + 1 stages. For this last bucket we assume
the single and uniform reuse of the first r task, having no reuse for the remaining k − r
tasks. This is the worst-case for balancing applications.
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Figura 3.13: An example reuse-tree that can be used to illustrate possible prunable nodes.
E.g., the use of nodes 4, 5, 6, or 10, 11 as an improvement attempt results in the same
outcome (cost 3), making them interchangeable, as with nodes 7, 8 or 9 (cost 4), or nodes
12-22 (cost 3).

nodes, meaning that only one of the nodes must be searched. This strategy is currently
implemented locally, meaning that only sibling nodes are verified, which can be seen using
Figure 3.13. This implementation is present on Algorithm 5 on lines 18-21 and 23. For
each child node traversed on SingleBalance, its task cost is calculated and, if it is unique
(line 18), the matching child is added to a list of unique children (lines 19-20) to later be
consumed (line 23).

By verifying prunable nodes locally it is meant that a node can only be pruned if
the equivalent (repeated) search node is a sibling. On Figure 3.13 this means that when
searching the children of node 1, only node 4 would be further searched, being node 12
searched afterwards, ignoring nodes 5 and 6. As the search progresses, on the search of
the children of node 2, only the nodes 7 and 15 would also be searched. Finally, nodes
9 and 10, and their children would be searched as well. However, by keeping a list of
searched nodes, uniquely ordered by their children count and overall cost, it is possible
to extend this strategy to a global scope, thus removing the sibling-only prunable node
restriction. While using local prune on the reuse-tree of Figure 3.13 would result in the
search of 11 nodes (1, 4, 12, 2, 7, 15, 3, 9, 19, 10 and 21), a global prune scheme would
result in 7 nodes searched (1, 4, 12, 2, 7, 15, 3).

In order to implement a global scope prune algorithm there is the need for both children
count and overall cost metrics. Assuming that the reuse-tree of Figure 3.13 does not have
the subtree of node 3, both subtrees of nodes 1 and 2 would have the same overall cost
(6). Thus, by considering only the overall cost, subtree 2 would not be searched, resulting
in the missed opportunity of balancing with subtree 7 which has a cost of 4 (from the
root node), an impossible value to achieve with only subtree 1 (which can achieve a costs
3 with nodes 1, 4 and 12, or 5 with nodes 1, 4, 12, 5 and 13). Likewise, by only verifying
the children count on a reuse-tree with only the subtrees of nodes 1 and 3 we would come
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to the same fallacy of pruning a necessary subtree (this time, subtree of node 3), hence,
making it necessary the use of both metrics.

Discussion on Additional Optimizations and Limitations

A limiting factor of the TRTMA is the smallRT selection strategy. By trying an improve-
ment with only a single smallRT we may miss some better improvement opportunities,
which may lead to better makespan values or even more balanced final results. The first
possibility of improvement in the selection strategy arises from when two buckets of the
same task cost can have different balancing outcomes when balancing with a given bigRT .
This is exemplified on Figure 3.14a, where we have three buckets: b1 = {S1, S2, S3},
b2 = {S4} and b3 = {S5}, and either buckets b2 or b3 can be selected as smallRT since
they have the same cost, 3. If bucket b3 is selected then the TRTMA would finish prema-
turely since it does not exist an improvement between b1 and b3 that reduces the existing
imbalance of 3 with max cost 6. However, for buckets b1 and b3 we have imp = S3 which
results in b1 = {S1, S2} and b2 = {S3, S4} with costs 5 and 5, thus showing a missed
improvement opportunity.

This problem can be solved by selecting smallRT as the bucket with the lowest task
cost and also the highest reuse with bigRT . This solution was implemented and, across
all tests, had negligible impact on the reuse attained by the TRTMA. Moreover, having
to compare all smallRT candidates with bigRT has the execution time complexity O(n),
since on the worst-case scenario we have n/2− 1 buckets with one stage each (see Figure

(a) Choosing the bucket with S5 results in
a the premature finish of the TRTMA since
there is not a single improvement between
buckets b1 and b3.

(b) Choosing to balance buckets b2 and b3 re-
sults in an imbalance of 1 with max cost 8 (imp
= {S7}), while balancing b2 and b1 results in
an imbalance of 0 with max cost 7 (imp =
{S7}).

Figura 3.14: Two examples of bad selection of smallRT using the last-bucket strategy.
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3.12). Although the time complexity for TRTMA would not be changed, we would be
increasing the reuse analysis execution cost to not achieve any benefits.

The second kind of missed improvements is shown in Figure 3.14b, on which the
selection of smallRT as one of the buckets with the smallest task cost (i.e., b3) results
in missing the balancing of smallRT = b1, both with bigRT = b2. By attempting to
balance b2 and b3 there exists no valid improvement. However, with b2 and b3 we have
imp = S7, which results in buckets b2 and b3 with new cost 7 for both, improving the
previous maximum task cost of 8.

In order to solve this problem the reuse between a single bigRT and all remaining
buckets would need to be calculated, which is basically an exhaustive search for all valid
balancing and would have a combinatory-like time complexity. Preliminary testing has
shown that the last-bucket selection strategy already achieves reuse degrees of close to
95% of the reuse achieved by the RTMA for MaxBucketSize = n, for n stages. As such,
neither of these extra-reuse problems are worth being solved.
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Capítulo 4

Experimental Results

This chapter presents the experimental results of all proposed algorithms, regarding scal-
ability, bucket cost balancing, the impact of different Sensitivity Analysis methods on
reuse and the impact of the bucket size on run time.

4.1 Experimental Environment

We evaluated the proposed algorithms using a set of tissue images from brain cancer
studies [21]. The images were divided into 4K×4K tiles for concurrent execution. The
image analysis workflow consisted of normalization, segmentation and comparison stages.
The comparison stage computes the difference between masks generated and a reference
mask set, created using the application default parameters. The experimental evaluations
were conducted on two distributed memory machine environments. The first is the TACC
Stampede cluster, with each node having dual socket Intel Xeon E5-2680 processors, an
Intel Xeon Phi SE10P co-processor and 32GB RAM. The nodes are inter-connected via
Mellanox FDR Infiniband switches. Stampede uses a Lustre file system accessible from
all nodes. The second environment is the PSC Bridges cluster. Each node has a dual
socket Intel E5-2695 and 128 GB RAM. Bridges uses a Pylon file system accessible from
all nodes. The application and middleware codes were compiled using Intel Compiler 13.1
with “-O3” flag in both cases. All experiments were replicated at least 5 times and any
claims for equivalence or difference between two algorithms of a given group were asserted
through a t-test (two-tailed, not assuming homoscedasticity), on which P < 0.001 was
chosen as the condition for assuming the difference to be statistically significant.
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4.2 Impact of Multi-level Computation Reuse for Mul-
tiple SA Methods

This section presents the impact of the computation reuse to the performance of the
MOAT and VBD SA methods. We first compute MOAT on all the application parameters,
because it demands a smaller per parameter sampling to exclude those parameters that are
non-influential to the output from the VBD. Most of the experiments in this section were
executed using a small number of machines, because this section intended to detail the
gains with the reuse optimizations. However, Sections 4.4 and 4.5 present experimental
results for runs with large numbers of nodes.

4.2.1 Impact of Multi-level Computation Reuse for MOAT

Figure 4.1 presents the execution times of MOAT studies with parameter sample sizes
varying from 160 to 640, which were executed using only 6 Stampede nodes to demonstrate
the impact of the optimizations. The parameters were generated with a quasi-Monte
Carlo sampling using a Halton sequence, which is known to provide a good coverage of
the parameter space. These experiments use MaxBucketSize set to 7, and the execution
times refer to the makespan and also include the cost to perform the computation reuse
analysis and I/O. For the task level merging approaches, the time spent by the merging
algorithm is shown in the upper part of the graph bars. Additionally, five application
versions were executed: the “No reuse” that employs the replica based composition, the
“Stage level” performs reuse only of stage instances, and the “Task Level” that reuses fine-

Figura 4.1: Impact of the computation reuse for different strategies as the sample size of
the MOAT analysis is varied. E.g., s150 means that the experiment had 150 executions
of the given workflow.
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grain tasks and is executed with the Naïve, SCA, and RTMA algorithms. The TRTMA
was not included on this analysis since for this scale it has the same performance as
RTMA.

The results presented in Figure 4.1 show that all application versions that reused
computation significantly outperformed the baseline “No reuse” version. The “Stage
Level” reached a speedup of up to 1.85× on top of the “No reuse”, while the application
versions with “Task Level” reuse have higher gains. The “Task Level - Naïve” is only
slightly better than the “Stage Level” (1.08× faster in the best case, being statistically
distinct based on a t-test). This result is attributed to the highly order dependent nature
of the naïve approach. The “Task Level” with SCA and RTMA, on the other hand, have
remarkable speedups of up to, respectively, 1.39× and 1.5× on top of the “Stage Level”
reuse only.

It is also noticeable from Figure 4.1 that the performance gains with RTMA increase
as the sample size grows and, as a consequence, more reuse opportunities are available.
In the SCA algorithm, however, the opposite behavior is observed. This is a result of the
higher costs of executing SCA to compute the stages to be merged, which offsets the gains
with the actual execution of the application after the merging. The time taken by Naïve,
SCA, and RTMA to compute the reuse are shown on the top of their bars on Figure 4.1.
For a sample of size 640, the time taken by SCA is about 26% of the entire execution. It
is also interesting to see that although the RTMA takes a much shorter time to compute
the merging choices, it provides solutions as good as the ones returned by the SCA. In
the best case, RTMA attained a speedup of up to 2.61× on top of the “No reuse” version.

Regarding the atained reuse on the tested algorithms, both SCA and RTMA achieved
values around 33% of reuse. This value is the raw value of tasks that were not executed
due to a merging algorithm. As such, the speedup of 1.5× of RTMA on top of “Stage
Level” reuse, which is greater than the 33% of reuse, is justified by the variable cost of
each task. This means that the of 33% of tasks that were not executed, or reused, were
comprised of expensive tasks. A further analysis on the costs of tasks and the impact this
variance has on the implemented approaches is present on Section 4.5.1

4.2.2 Impact of Multi-level Computation Reuse for VBD

The performance of the proposed optimizations for the VBD are presented in Figure 4.2.
The VBD was executed using the 8 remaining parameters (the original parameter set con-
tains 15 parameters) that were not discarded in the MOAT analysis. VBD requirements
are of the order of hundreds to thousands runs per parameter. As such, the sample size
in this experiment is higher and was varied from 2000 to 10000 runs, whereas the same
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Figura 4.2: Impact of the computation reuse strategies for the VBD SA method.

application versions used with MOAT were evaluated. In order to accelerate this analysis,
we have increased the number of nodes to 16 Stampede nodes.

As presented in Figure 4.2, the relative performance of the application versions is
similar to that observed with MOAT, except for the task level merging using SCA. Given
that the sample size used in VBD is much higher, the SCA was not even able to finish
computing the reuse to start up the actual execution of the workflow in 14000 secs. The
RTMA had speedups of at most 2.9× against the “No Reuse” approach, and 1.51× on
top of “Stage Level”. These speedups were consistent with the ones found in the MOAT
analysis. Similarly, the reuse for the VBD experiments was of at most 35% for 10000
executions for the RTMA.

4.3 SA Methods Reuse Analysis

For all previous computation reuse tests which used the VBD method, the experiments
were generated with the Latin Hypercube Sampler (LHS). Since the computation reuse on
this work is highly reliant on the generated experiments, some sensitivity analysis methods
were analyzed regarding their maximum reuse potential. Among them, in addition to
LHS, the Monte-Carlo (MC) and Quasi-Monte-Carlo (QMC) methods were analyzed.
The results are presented in Table 4.1. This analysis is only performed for VBD given
its continuous ranges of parameter values, which would present itself with less potential
reuse when compared to MOAT methods and their discrete parameter value ranges.
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Sample Size 200 600 1000
MC 36.35% 36.46% 36.40%
LHS 36.62% 36.44% 36.44%
QMC 35.10% 34.44% 33.48%

Tabela 4.1: Maximum computation reuse potential for MC, LHS and QMC methods with
different sample sizes. For VBD, the number of experiments is 10 × SampleSize. The
reuse percentages represent fine-grain reuse after coarse-grain reuse, meaning that only
fine-grain reuse is being shown.

4.4 Impact of Max Bucket Size

This section presents the impact of varying the MaxBucketSize parameter on the exe-
cution times. As shown in Figure 4.3, an increase in MaxBucketSize leads to smaller
execution times because of the larger number of merging opportunities. This increase
has, however, a threshold, after which the maximum reuse for the experiment is achieved
(usually arround 33% of reuse, which results in speedups close to 1.5×).

However, it interesting to notice that the variation in execution times as a result of
the bucket size changes, when comparing the two ends (MaxBucketSize 2 and 8), is
up to 12%, which shows that “Task Level” reuse can achieve significant gains even with
small bucket sizes. This is result shows the viability of fine-grain reuse for execution
environments on which there is a limited amount of memory available.

A large-scale SA experiment using the sample size of 240, 4,276 4K×4K image tiles,
and 128 Stampede computing nodes, using all optimizations and the “No reuse”, “Stage
Level”, and “Task Level RTMA” versions of the workflow attained execution times of,
15,681s, 12,544s and 6,173s, respectively.

Figura 4.3: Impact of varying MaxBucketSize from 2 to 8.

It is important to highlight that the task level merging reduces the number of stage
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instances up to MaxBucketSize times, and the parallelism as a consequence. This could
affect the application scalability if the number of stage instances after the merging was
not sufficient to completely use the parallel environment.

4.5 The Effect of the Merging on Scalability

This section evaluates the case on which performing merging operations may lead to poor
scalability due to loss of parallelism. This problem is caused by the load imbalance of
executing a different number of buckets on each node and can be triggered by either
increasing the amount of merging performed or by increasing the number of nodes used.
The later case was reproduced in Figure 4.4 with the MOAT SA method and a sample
size of 1000, with up to 256 Worker Processes/nodes (WP).

This performance degradation caused by excessive merging, as seen with the parallel
efficiency of the RTMA on Figure 4.5, is aggravated by the variable cost of different buckets
generated by the RTMA. The workflow used on this work had its stages broken into finer-
grain tasks in order to mitigate this variance on the costs. Since the RTMA generate
buckets that are balanced stage-wise, but not task-wise, this difference in the number of
tasks per bucket may lead to imbalance on environments with a low stages-per-worker
ratio. This imbalance leads to a reduction of parallelism and, thereafter, degradation
on the performance of the application due to load imbalance among nodes. On these

Figura 4.4: Comparison of the “no fine-grain reuse” (NR) approach with the RTMA
and TRTMA. RTMA uses MaxBucketSize 10, while TRTMA uses MaxBuckets 3× the
number Worker Processes (WP). The execution times for WP > 32 were zoomed in a
separated figure for the purpose of better visualization.

49



Figura 4.5: Combination of Stages per Worker Processes (S/W) and parallelism efficiency
values. The S/W ratio for TRTMA was fixed as 3 for all WP values. The parallelism
efficiency was calculated based on the previous execution (e.g. for WP 64, it is the
execution time for WP 32 vs WP 64).

cases the Task-Balanced Reuse-Tree Merging Algorithm (TRTMA) could be employed to
extenuate this problem.

Still on Figure 4.5 it is visible that if the stages-per-worker ratio becomes low enough,
the RTMA parallel efficiency drops to an extent on which it performs worse than not
performing any fine-grain reuse at all. The values of stages-per-worker ratio (S/W),
parallel efficiency and TRTMA reuse, compiled on Figure 4.5, show that regardless the
reuse algorithm employed, for the highest WP values the S/W ratio becomes low enough
to impact the parallelism. This is true not only to RTMA, which becomes worse than
“No Reuse” (NR) after WP 64, but also for NR itself. This loss of parallelism in NR is an
indication of the imbalance between stages without reuse caused by the variance on the
cost of tasks of the same level, but different inputs. Given that, the NR parallel efficiency

Worker Processes (WP) 8 16 32 64 128 256
Speedup TRTMA vs NR 1.33 1.34 1.27 1.12 1.04 1.01
TRTMA reuse 32.96% 32.96% 32.11% 30.58% 28.23% 10.73%

Tabela 4.2: Speedup of the TRTMA vs the “No Reuse” (NR) approach.
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values can be seen as the upper bound for any approach, since the reuse degree cannot
increase for bigger WP values, nor can the parallel efficiency.

The TRTMA approach manages to improve on the RTMA parallel efficiency through
bucket balancing, resulting in it not becoming worse than NR (see Figure 4.5 and Fig-
ure 4.4). The speedups that TRTMA achieves on top of NR lowers as WP increases,
becoming negligible for WP values of at least 128 (see Table 4.2). Given that for WP
256 the TRTMA attained 10.73% of reuse, the speedup should either match this value or
come close to it. This phenomenon of lack of performance is cause by another source of
imbalance on buckets.

4.5.1 The Impact of Variable Task Cost

By taking another look at Figure 4.5 we can notice that the loss of parallelism due to
imbalance starts at WP 32 for the RTMA and TRTMA approaches. This indicates that
there exists another source of imbalance, for merging algorithms only, that affects RTMA
harder than TRTMA and that is unaffected by TRTMA balancing techniques. It was
found that this imbalance comes from the difference in the cost of tasks of different levels.

Task t1 t2 t3 t4 t5 t6 t7 Total
Avg Exec Time (s) 1.14 1.99 0.65 0.33 0.76 3.76 0.86 9.51
Percentual 12.03% 20.90% 6.92% 3.49% 8.02% 39.59% 9.05% 100%

Tabela 4.3: An empirical evaluation on the costs of each task of which a stage is composed
of. This approximation was generated with the purpose of showing the relative cost of
the tasks, not being suitable as a absolute cost approximation.

As shown in Table 4.3, the costs of the task which compose a stage are not constant.
As such, buckets which are balanced by the number of tasks may still be susceptible to
imbalance. An example of such case is presented in Figure 4.6. There, we have two
buckets with the same number of tasks, but with different topologies. The first bucket
was generated with three stages that attained maximum reuse, while the second had only
two stages with less reuse. By using the TRTMA, the difference of execution cost between
them of around 25% would go unnoticed. This imbalance is enough to impact the parallel
efficiency of an application through load imbalance. Effectively, this problem just makes
the imbalance of buckets by tasks visible on an earlier S/W ratio.

Altogether, three sources of imbalance affects the maximum achievable parallel ef-
ficiency: (i) differently sized buckets (same stage count but different task count), (ii)
buckets with the same size (task count) but different topologies, and (iii) same tasks
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(a) Two example buckets and their reuse trees. Bucket 1 was the result of the merger
of three stages, while Bucket 2 had two stages initially.

Task t1 t2 t3 t4 t5 t6 t7 Total
Bucket 1 0.12 0.20 0.06 0.03 0.08 0.39 0.27 1.18
Bucket 2 0.12 0.20 0.06 0.03 0.08 0.79 0.18 1.48

(b) Sum of relative costs of tasks for each bucket. For a bucket containing only a single
stage, and thus 7 tasks, the total cost would be 1.

Figura 4.6: An example case on which two buckets with the same number of tasks have
different execution costs. This is due to the difference in the cost of different tasks. In
this example Bucket 1 should execute 1.25× faster than Bucket 2.

having variant execution costs, which happens if two stages with the same topology and
task count can have significantly different costs. The (i) problem is already solved by the
TRTMA, while (ii) and (iii) can only be solved if we have an approximation of the costs
of each task a priori.
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Capítulo 5

Conclusion

This work has proposed new algorithms that optimize Sensitivity Analysis (SA) through
multi-level computation reuse. These algorithms were employed to optimize SA on a med-
ical imaging analysis workflow, executed on large scale computation environments. Three
fine-grain computation reuse algorithms were implemented, along with optimizations in
order to deal with balancing, level of parallelism available and memory constraints.

The application selected for evaluating the proposed optimizations was a microscopy
image analysis workflow. This workflow was chosen given its relevance [39, 42, 24, 35],
having a large sample space (around 21 trillion parameter combinations). The workflow
is comprised of three stages, with the most expensive operation (segmentation) being
composed of seven finer-grain tasks. On this workflow distinct SA methods were applied
(MOAT and VBD) with several experiment generation methods (Section 4.3). Also,
these analysis were tested on a large scale environment, running the Region Templates
Framework (RTF) with at most 256 worker processes.

The RTF received two main improvements. The first is a way to easily generate
workflows compatible with the RTF. This was achieved by using a descriptor file for the
definition of each stage of the workflow, with a GUI to build and compose workflows
based on this descriptor. These workflow compositions are performed with the assist
of the Taverna Workbench [49], which provides an easy way to generate workflows for
application experts.

Although computation reuse was an already studied strategy to reduce computational
cost (Section 2.4), it was different from what was proposed by this work. The referenced
approaches would either need a training step to be executed before the main applica-
tion, which would be rather inefficient for a large scale workload such as the one used
on this work; or perform computation reuse through caching methods, which would be
too expensive to be employed on large scale computation environments. As such, the
algorithms proposed on this work fill these limitations by performing computation reuse,

53



in a lightweight manner.
Computation reuse was implemented and evaluated in two levels, stage-level and task-

level. Stage-level computation reuse, implemented with a coarse-grain merging algorithm,
was already proposed on previous works [39, 42] and re-implemented in this work. Al-
though it already reduced the overall runtime by a large factor, some other computation
reuse opportunities were unachievable through coarse-grain merging. Therefore, task-level
computation reuse, implemented with fine-grain merging algorithms, was employed. One
important feature of the fine-grain merging algorithms was that they could be used on
top of coarse-grain merging results, augmenting their performance.

Out of the three fine-grain merging algorithms proposed, implemented and evaluated
the Reuse-Tree Merging Algorithm (RTMA, Section 3.3.3) stood out as an efficient ap-
proach. The RTMA achieved both high reuse factor (around 35%) and low execution
cost, when compared with the remaining approaches.

It was identified that task balancing could be a problem if the ratio of tasks per
core was low. In order to solve this problem a new approach based on the RTMA was
implemented. This new approach, the Task-Balanced Reuse Tree Algorithm (TRTMA),
was implemented to behave as the RTMA if the raw number of tasks is large enough
that maximum parallelism is achieved, while also not degrading its performance if the
tasks-per-core ratio was low. Moreover, the TRTMA was implemented with the intent to
take only into consideration parallelism issues, by adjusting the MaxBuckets parameter,
which can be automatically chosen on runtime to optimize the application makespan while
also taking the memory restrictions into consideration, thus reducing the dependency on
the end user.

All algorithms were tested at first with the MOAT and VBD SA methods in order
to assert their performance on real-world applications. It was shown that even though
coarse-grain merging already had great speedups (from 1.85× to 1.9×), fine-grain reuse
managed to improve this values, achieving aggregate speedups between 1.39X to 1.51X
on top of coarse-grain merging results, amounting to speedups of up to 2.89X. However,
it is worth noting that the Smart Cut Algorithm (SCA) execution cost did not scale well,
making this approach unfeasible for large scale setups.

The impact of the MaxBucketSize constraint on the performance of the applica-
tion was also analyzed, proving that the RTMA can be employed on heavily memory-
constrained environments while also achieving good speedups. Since the TRTMA al-
gorithm was equivalent to the RTMA on regular, large scale setups, only the worst-case
scenario was tested. It was shown that even on this case, the TRTMA would always follow
the best-case behavior. Finally, in order to validate the existence of computation reuse
opportunities in the use case applications, and therefore validate the use of the proposed

54



algorithms as a way to improve the makespan said applications, different SA experiment
generators were tested in order to verify their maximum reuse degree. It was shown that
across all cases the reuse degree was high enough to justify the use of computation reuse
algorithms.

As a future work other application workflows would be to studied. For those appli-
cations the extensibility and ease of generating a new workflow from scratch would be
observed. Then, it would be interesting to see the impact on reuse of differently structured
workflows.

Another way to further optimize the workflow execution time through computation
reuse is to perform balancing of buckets not by task count, but using the actual tasks
costs. This approach would yield the best result, since there is not be any other source of
loss of parallelism through the imbalance of buckets. However, cost analyzing is a difficult
task which requires instrumentation and monitoring of such tasks [46, 10, 19], returning
an estimation of these tasks costs. As such, the performance of this task-cost balancing
can only be as good as the estimative of the tasks costs.

Furthermore, by balancing the buckets by task cost the bucket sizes could be limited
only by parallelism and memory restrictions. The parallelism limitation is trivial to im-
plement, being the number of buckets at least the number of worker processes. Again, the
estimation is where the difficulty lies, being this memory consumption value rather hard
to be found through static analysis [3]. However, a task-cost balanced, memory-limited
algorithm would attain not only maximum reuse, but maximum theoretical speedup since
all limitations of computation would be solved.
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