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Abstract

Small satellite subsystems are in constant improvement. In order to address this issue,
the Laboratory of Application and Innovation in Aerospace Science (LAICA), located at the
University of Brasilia, developed a nanosatellite test platform. This platform can be divided
in four main subsystems: actuation and balancing systems, Helmholtz cage and attitude de-
termination system. The attitude determination system is responsible for determining the
body orientation, and consequently it has a direct impact on most of control strategies de-
signed for nanosatellites. In order to improve orientation data, which are normally embedded
with noise, four filtering strategies were employed. The utilized filters were: the Extended
Kalman Filter (EKF), Unscented Kalman Filter (UKF), Unscented Quaternion Estimator
(USQUE) and Riemannian-Spheric Additive Unscented Kalman Filter (RiSAdUKF). These
filters were evaluated with experimental data and the results were used to indicate the appro-

priated filter and attitude representation for different real situations.
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Resumo

Subsistemas de pequenos satélites estdo em constante desenvolvimento. Com o ob-
jetivo de contribuir com essas inovacdes, o Laboratério de Aplicacdo e Inovagdo em
Pesquisas Aeroespaciais (LAICA), localizado na Universidade de Brasilia, desenvolveu uma
plataforma de testes de nanossatélites. Essa plataforma pode ser dividida em quatro sub-
sistemas principais: sistemas de balanceamento e atuacdo, gaiola de Helmholtz e o sistema
de determinacdo de orientagdo. O sistema de determinacio de orientacdo € responsavel por
determinar a orienta¢do do corpo e afeta diretamente em muitas das estratégias de controle
empregadas em nanossatélites. Com o objetivo de melhorar os dados de orientacio, que nor-
malmente sdo corrompidos com ruido, quatro técnicas de filtragem foram empregadas. Os
filtros utilizados foram: o Filtro de Kalman Extendido (EKF), Filtro de Kalman Unscented
(UKF), Estimador de Quatérnio Unscented (USQUE) e o Filtro de Kalman Unscented Adi-
tivo Esférico Riemanniano (RiSAdUKF). Esses filtros foram avaliados com dados exper-
imentais e os resultados foram utilizados para indicar qual o filtro mais apropriado para

diferentes condi¢des experimentais.
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Chapter 1
Introduction

Space missions are usually expensive and involve high risks related to subsystem com-
plexity. Since the space mission Vanguard TV3 launched on 6 December 1957 until 2009,
more then 30% of the pico- and nanosatellites were distroied due to launch failure and
only 40% of the nanosatellites successfully launched had some attitude estimation system
[Bouwmeester and Guo 2010]. But due to lessons from the earlier space missions design
and from recent applications demands, the number of successful missions increased and even

universities are developing educational projects of small satellites ([Selva and Krejci 2012]).

Microssatellites’ subsystems are in constant improvement and have a direct impact on
different research areas. For example in [Giri et al. 2011], the authors used satellite data
to evaluate the status and distribution of mangrove forests. In [Bellion et al. 2016], the re-
searchers presented a new antenna, for nanosatellites, capable of covering both bands of
commands and telemetry. A recent contribution for atitude determination system research is
presented in [Garcia et al. 2017]. In that work, the authors developed and evaluated a fault
tolerant attitude determination system for nanosatellites that will be validated in a 2U-size
cubesat developed by the Brazilian Institute for Space Research (INPE).

Ground based test facilities contribute to spacecraft’ subsystems improvements. These
facilities are necessary to meet future operational requirements mitigating the risks of launch
failure [Jablonski 2014]. In order to address these issues, the Laboratory of Application and
Innovation in Aerospace Science(LAICA), located at the university of Brasilia, developed a

microssatellite test platform.

In literature, this type of simulator can be found in three main configurations: tabletop,
umbrella and dumbbell. More details about each air-bearing testbed style can be found in
[Schwartz et al. 2003]. This work deals with a tabletop configuration represented in Fig. 1.1.

As it can be seen, this type of simulator has a semi sphere mounted directly onto a flat
face whose weight is supported by pressurized air that passes through small holes in the
hemispherical base. This type of platform provides a faithful representation of space condi-

tions. Because of that, this simulator is utilized to evaluate spacecraft attitude estimation and
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Figure 1.1: Tabletop platform

control.

In the context of attitude estimation, different filtering techniques have been used to
address this issue. In literature, papers estimate the spacecraft orientation using the Ex-
tended Kalman Filter (EKF) or Unscented Kalman Filer (UKF) such as [Garcia et al. 2018],
[Garcia et al. 2012] and [Pham et al. 2015]. Other papers present quaternion filters as im-
provement for spacecraft orientation estimation such as [Crassidis and Markley 2003] and
[Menegaz 2016]. These are just some of options of algorithms used for attitude esti-
mation, a survey of filtering algorithms can be found in [Crassidis et al. 2007]. In this
work, the test-bed orientation will be estimated using four different algorithms: EKEF,
UKEF, Unscented Quaternion Estimator (USQUE) presented in [Crassidis and Markley 2003]
and Riemannian-Spheric Additive Unscented Kalman Filter (RiSAdUKF) presented in
[Menegaz 2016].

This research aims evaluating filtering techniques in order to improve LAICA’s plat-
form attitude determination system and also evaluating the advantages and disadvantages of
representing the platform orientation in Euler angles or quaternions. In the actual config-
uration, the LAICA’s platform has two different inertial measurement unities (IMUs): one
that provides measurements in Euler angles and the other one that provides measurements in
quaternions. Using the Euler angles we will estimate the platform attitude using an EKF and
UKEF. Besides, using the quaternon data from the other sensor, we will estimate the platform
orientation using the USQUE and RiSAdUKEF, which will be first-time tested under exper-
imental data. For future work, these quaternion filters could be implemented on ABACUS,

which is a professional nanosatellite control board recently acquired by LAICA.

1.1 LAICA air-bearing spacecraft simulator

LAICA’s test facility can be dived in four main parts: the Helmholtz cage, tabletop air
bearing, actuators and attitude determination system. This facility communicates with two
computers. One of them is used to control the magnetic field generated by the Helmholtz
cage and also to determine the platform attitude using a camera. The second computer is
used to run the test-bed balancing algorithm, controlling actuators such as reaction wheels

and also collecting platform orientation data from two different IMUs (see Fig.1.2).
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Figure 1.2: LAICA’s test platform

1.1.1 Helmbholtz cage

The Helmholtz cage, named after Hermann Von Helmholtz (1821-1894), presented in
[Loiola et al. 2018] consists of three coil pairs placed in an orthogonal configuration, shown
in Fig.1.3(A), which allows magnetic field generation in any direction. This structure is also
equipped with a magnetometer from Honeywell, the HMR2300, shown in Fig.1.3(B) which
is used to close the Helmholtz cage loop.

This Earth magnetic filed simulator can be used in different experiments. Some of them
are: orbit propagation, attitude control using magnetorquers and also as a noise source for
IMUs that use magnetometers. This last application is important because the Helmholtz cage
will be used to generate experimental noise in the orientation data. More details about this
application will be discussed later. In this system, the author of this master’s thesis gave

contributions in the hardware and software implementation.

Coils
Y axis

Coils
Z axis

) (B)

Figure 1.3: Helmholtz cage overview; A. Helmholtz cage; B. HMR2300 magnetometer.



1.1.2 Tabletop air-bearing

LAICA’s table top air bearing described in [Silva and Rodrigues 2015] is composed by a
semi sphere mounted directly onto a flat face whose weight is supported by pressurized air
provided by a compressor and filtered by compressed air filters (see Fig.1.4). Although it is
possible reach many orientations, this type of platform has some structural limitations. This
simulator allows rotations of 360° around z axis, but has limitations of 45° around x and y
axes. In this structure, the author of this master’s thesis did improvements in internal cable
connections also made the P64 standard on the platform in order to fixate nanosatellites. In
addition, it is important mentioning that in Brazil there are other types of simulators as for
instance the INPE air bearing table presented in [Oliveira et al. 2015].

Figure 1.4: Tabletop air bearing

1.1.3 Actuator

This facility is also equipped with the reaction wheels presented in Fig.1.5. The actuation
system, presented in [Loiola et al. 2017], is composed by three brushless motors with masses
attached. These reaction wheels are mounted along each axis direction and by conservation
of angular momentum they can change the test-bed orientation. The author of this master’s
thesis gave contributions in the electrical circuit design and software implementation of this

actuation system.

Figure 1.5: Reaction Wheels



1.1.4 Attitude determination system

LAICA’s attitude determination system provides the test-bed orientation which is ob-
tained from three different sensors: a camera and two different IMUs. The attitude deter-
mination using the camera requires a ARUCO module placed on the platform surface. In
this system, the orientation is calculated based on distortions on the matrix that represents
ARUCO’s image. More details about the camera location and system interface are presented
in Fig.1.6(A) and Fig.1.6(B).

(B)

(A)

Figure 1.6: Attitude determination using a camera; A. Frontal view; B. System interface.

The other two attitude determination algorithms utilize measurements of three axis
acelerometer, magnetometer and gyroscope from each IMU. The system using the Adafruit
9-DOF IMU utilizes the tilt-compensated eCompass algorithm, which will be explained later,
to convert sensor raw measurements into Euler angles. While the second system uses an IMU
from Yost Labs which provides a closed software to determine the orientation in quaternions
from raw measurements. A general view of each sensor and also each system interface are
presented in Fig.1.7 and Fig.1.8. In the attitude determination system, the author of this
master’s thesis got directly involved in the attitude determination using the tilt-compensated
eCompass algorithm and also operated the attitude determination software developed by Yost
Labs.
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1.2 Motivation

Attitude estimation is a fundamental and important task for many spacecraft aplications
[Cheon and Kim 2007]. Pointing control of a spacecraft antenna and Earth observation are
examples of those applications that also have a direct impact on society. The first procedure,
largely used in telecommunication, utilizes attitude estimation and control techniques to per-
form maneuvers and suppress antenna vibrations. While the second application uses the
estimated orientation to improve the spacecraft attitude control during camera shots which

are used to monitor events on Earth such as fire activity.

This research deals with attitude estimation of a spacecraft. In the literature, there are two
main approaches to represent orientation. One of them is through Euler angles. This solution
presents a singularity when the pitch angle reaches 90°. The second approach mitigates
this singularity using quaternions. That is why quaternions are largely utilized in attitude

determination especially for aerospace applications.

Although quaternions are not affected by singularity, they are affected by noise. In order
to obtain better attitude measurements, the signal, embedded with noise, must be treated. Fil-
tering literature presents different options to deal with attitude measurements corrupted by
noise. One of these options is using filters capable of deal directly with quaternions. Among
the filters designed to receive quaternions as input, there is one based on Riemannian man-
ifolds which is capable of preserving distance and angles, robust to miss-defined operations
and also has probability concepts and statistic theory well defined. For these reasons, this
new algorithm was chosen to be evaluated using data coming from LAICA’s nanosatellite

test platform.

1.3 Problem definition

Attitude determination is the process of determining the orientation of a spacecraft refer-
ring to an inertial frame [Wertz 1990]. This research will utilize a three-axis magnetometer,
accelerometer and gyroscope. But it is important to mention that other sensors can also be

used such as sun sensors or cameras.

These sensors are classified either as proprioceptive or exteroceptive sensors. A proprio-
ceptive sensor measures values internal to the system, one example of this is the gyroscope.
An exteroceptive sensor obtains information from external references, examples of this are

the magnetometer, accelerometer and sun sensors.

Both of these sensor types have advantages and disadvantages. Exteroceptive sensors
tends to be more precise when the external reference does not changes. But if this external
reference changes or is affected by another external source, this type of sensor will provide
wrong measurements. On the other hand, proprioceptive sensors are not affected by external
sources as the exteroceptive ones, but this second sensor type accumulates errors during the



time.

In order to take advantage of each sensor type, four different filtering algorithms, EKF,
UKF, USQUE and RiSAdUKF were implemented to estimating the orientation of a mi-
crosatellite tesbed. These filters were used to preform a sensor fusion which consist of using
exteroceptive sensors, three axis magnetometer and accelerometer to correct the orientation

obtained from proprioceptive sensors which in this case was the three axis gyroscope.

These exteroceptive and proprioceptive sensor data were obtained from two different
IMUs. For one of them, it was implemented the tilt-compensated eCompass algorithm,
which will be explained in the next chapter, to obtain the orientation in Euler angles from the
three axis magnetometer and accelerometer sensors. Using this orientation and the attitude
provided by integration of the Kinematic equation for Euler angles, also presented in the next
chapter, the EKF and UKF were used to estimate the testbed orientation.

For the second IMU, a software provided by Yost Labs was used to obtain the testbed
orientation in quaternions based on three axis magnetometer and accelerometer measure-
ments. Based on these unity quaternions, which will be explained in the next chapter, and in
the orientation obtained using the angular velocity vector, the USQUE and RiSAdUKF were

implemented to estimate the testbed orientation.

In order to evaluate these estimated orientations, three main experimental strategies, de-

scribed in Chapter 5, were utilized.

1.4 More applications

The results and methodology presented in this work are useful to a variety of applications.
In general, the filters techniques presented in this research can be applied for applications that
have to deal with the body orientation. In this context, some related applications for these

filters are:

Drones that operate in water, on land or air : These devices normally are equipped
with sensors to measures it’s attitude. In some operations the orientation measurement must
be precise, such as when the drone rotates a specific angle or even keeps it’s orientation on a

specific height.

Virtual reality : This type of application utilizes attitude information to determine what
region of the simulated scenario the user is looking.

Animation : Some of these systems utilize the attitude of a actor body junction to deter-

mining the animation orientation.

Health applications : The using of orientation data is increasing in the health appli-
cations such as treatments that using attitude data to evaluate patient’s equilibrium recover
after a specific treatment. Another example are systems that have robots in surgery con-



trolled by doctor located in another country and these robots use attitude estimation to avoid
undesirable vibrations created by doctors.

Vehicle navigation : Modern cars especially the autonomous ones, utilize attitude data

combine with GPS information to improve location estimation in tunnels.

Meteor observations and tracking : This application uses attitude sensor data and com-
puter vision to control the telescope orientation and keeping tracking of a specific meteor.

Agriculture of precision : For this application, the attitude data is used to improve for
example the trajectory of trucks responsible for planting seeds.

Mining : Some companies in the world already have fully automated trucks used in

operations inside mines where the GPS signal is not always available.

Military applications : In the context of military applications attitude estimation is
vastly used such missile trajectory correction, air plane stability control, autonomous guns

and so on.

Industrial instrumentation : In industry, attitude data is used to manipulating robots
to execute specific tasks for example manipulators used in the automotive industry to fix

SCTEWS.

3D reconstruction : In this type of application the differences in orientation provided by

different cameras are used to reconstruct a scene.

1.5 Results and Contributions

This research evaluated different filtering algorithms: EKF, UKF, USQUE and
RiSAJUKEF used to estimate the orientation of a spacecraft testbed. This investigation led to

some important results obtained from experimental data:
e The implemented UKF was faster than the EKF and for the proposed experiments,
both filters presented a similar answer.

e The RiSAdUKEF was capable of effectively estimating the testbed attitude for all tests.
But it was slower than USQUE which had some problems to estimate the orientation

in peak regions.

e The gyro bias estimated by the RiISAdUKF was more correct than the gyro bias esti-
mated by the USQUE.

This investigation also led to some other contributions:

e Experimental methodologies were developed to test each filter using an experimental
ground truth.



e The values of Q and R for the RiSAdUKF were chosen using a method designed to
find the covariance matrices equivalents for the tangent space which is the space used
by this filter.

Previous results already published provided the basic knowledge to achieve these final

results and contributions. The chronological order of publications is:

e Guimaraes, F. C., da Silva, R. C., de Loiola, J. V. L., Borges, G. A., Borges, R. A.,
Battistini, S., Cappelletti, C. Aplicacdo do Filtro de Kalman para a Determinacdo de
Atitude de Plataforma de Testes de Pequenos Satélites. XIII Simpdsio Brasileiro de
Automacdo Inteligente - SBAI, October 2017 [Guimaraes et al. 2017]. This work used
an EKF to estimate LAICA’s testbed orientation through the data fusion of exterocep-
tive and proprioceptive sensors.

e Loiola, J. V. L., Silva, L. M. B., Battistini, S., Borges, R. A., and Cappelletti, C. (2017).
Development of a hardware-in-the-loop test platform for nanosatellites adcs integrated
with an ukf. 4th IAA Conference on University Satellite Missions and Cubesats Work-
shop [Loiola et al. 2017]. This work presented the development of a hardware-in-the-
loop system. This system used an orbit propagator to simulate the angular variations
experienced by a spacecraft on a specific orbit. These simulated angular variations
were passed as reference to a discrete-time PD controller which had the objective of
controlling the testbed attitude around the z axis using as feedback the orientation
filtered by an UKF.

e Loiola, J. V. L., Ploeg, L. C. V,, Silva, R. C., aes, F. C. G., Borges, R. A., Borges, G.
A., Battistini, S., and Cappelletti, C. (2018). 3 axis simulator of the Earth magnetic
field. TEEE Aerospace Conference [Loiola et al. 2018]. This work presented the de-
velopment and implementation of an Earth magnetic field simulator used to emulate
the Earth magnetic field vector for different orbit points. This research also presented

an experimental strategy to measure the volume of field uniformity inside the cage.

e Silva, R. C. ; Guimaraes, F. C. ; Loiola, J. V. L. ; Borges, R. A. ; Battistini, S. ; Cap-
pelletti, C. . Tabletop testbed for attitude determination and control of nanosatellites.
Journal of Aerospace Engineering, 2018 [Silva et al. 2018]. This work presented the
design and realization of a testbed used to reproduce nanosatellite attitude motion.
In addition, an efficient automated balancing algorithm based on the Least Square

Method (LSM) was proposed and validated experimentally.

1.6 Manuscript presentation

This manuscript is divided in six chapters. The first three chapters are dedicated to pro-

vide a general view of nanosatellite test platforms constructed around the world and present-
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ing the LAICA’s platform. In addition, those chapters were designed aiming to provide a
fundamental knowledge required to understand all the concepts involved. The other three
chapters will focus on experimental procedures, results and the conclusions taken from those

analysis.

The chapter 1 starts presenting the context of nanosatellite test platforms utilized to eval-
uate nanosatellite subsystems. After that the problem in study is defined and finally the

research contributions are presented.

The chapter 2 presents the fundamental knowledge required to understand the method
used to obtain Euler angles from raw measurements of three axis acelerometer, magnetome-

ter and gyroscope and also to understand all the attitude estimation methods utilized.

The chapter 3 presents the derivation of the system dynamic model utilized to conduct
simulations. This chapter presents the singularity observed in theory, using these simula-

tions, and in experimental data.

The chapter 4 presents a detailed description of the sensors and instrumental appara-
tus utilized on the experiments. In addition this chapter presents some of the experimental

challenges solved during the process.

The chapter 5 presents the summary of the results obtained together with the evaluation

of them.

The chapter 6 presents the conclusions and some proposals for future works.
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Chapter 2

Attitude Representation and Filtering
Strategies

As previously discussed, the spacecraft attitude can be represented using Euler angles
or quaternions. But in either representation has noise embedded in the measurements. This
chapter will present more detail about each representation and present some filtering tech-

niques used to mitigate this noise effect.

2.1 Attitude and reference systems

Attitude refers to the body orientation in space which is determined using appropriated
reference systems [Wertz 1990]. In this work, we used for space frame the North-East-Down

coordinate system.

2.1.1 Body frame

In most of attitude determination aplications, the sensors’ axes are made to coincide with
the axes of the moving platform. This axes are the body frame [Noureldin et al. 2012] which
in this work will be referred by b. Some definitions, used in this work, about the body frame

are given by

e The origin coincides with the test-bed center of rotation.

e The rotation angle around the x axis is called as roll angle defined around this axis
using the right-hand rule.

e The rotation angle around the y axis is called as pitch angle defined around this axis
using the right-hand rule.
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e The z-axis is orthogonal to the other axes and completing the right-handed coordinate
system. The rotation angle around the z axis is called as yaw angle defined around this

axis using the right-hand rule.

2.1.2 North-East-Down system

A local-level frame (LLF), also known as navigation frame, is utilized to represent the
orientation of a body when it is located near the surface of the Earth [Noureldin et al. 2012].
In this work, the navigation frame will have the same properties and origin of the body frame
and axes fixed referring to Earth. Some definitions, used in this work, about this local-level

frame are given by
e The X axis points to geodetic north.
e The Y axis points to geodetic east.
e The Z axis is orthogonal to the other axes and completing the right-handed coordinate

system.

Because of these characteristics, according to [Cai et al. 2011], this navigation frame is
also called North-East-Down (NED) system.

2.2 Euler angles

The test-bed attitude can be represented by Euler angles which provide a clear physical
interpretation [Wertz 1990]. Initially it will be defined the concept of rotation matrix and

after that it will be described an algorithm to obtain Euler angles from raw measurements.

2.2.1 Rotation matrix

According to [Titterton and Weston 1997], three different rotations of a body can be
mathematically expressed as three separated direction cosine matrices

Cy Sy 0
Ry = |=S¢Y Cv 0| where represents a rotation about Z axis, 2.1
0 0 1

ce 0 —S6
Reg=10 1 0 | wheref represents a rotation about Y axis, (2.2)

S6 0 Co
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1 0 0
Ry= 10 C¢ S¢| where ¢ represents a rotation about X awis. (2.3)
0 =S¢ Co¢

Thus a transformation from the inertial frame, represented by the letter "i", to body frame,
represented by the letter "b", following the sequence ZYX, is given by

C! = RyRyRy, (2.4)
COCY COSp ~S0
CY = | —CpSy + SPpSOCY  CpCp + SpSOSy  SeCo | . (2.5)

SHS + CHpSOCY — —SdpCah + ChSASH CdpCh

Similarly, the transformation from body frame to inertial frame is given by
Cy = (C))" = RLR§ R} (2.6)

Cy =Sy 0|l |Co 0 S| |1 0 0
Ci=|Sy Cy 0 0 1 00 Cp —So (2.7)
0 0 1| |[-S6 0 Co| |0 S¢p Co¢

COCY —ChpSt)+ S6SOCY — SbS + CHpSHCY
Ci=|00Sy CopCib+ SibSOSY —S¢Cab + CHpSOSY | . (2.8)
— 50 SHCo CHCo

This result is known as rotation matrix and is used for representing a vector from the

body frame in the inertial frame.

2.2.2 Tilt-compensated eCompass algorithm

This section will present a method used to obtain the roll(¢),pitch(f) and yaw(¢) an-
gles using accelerometer and magnetometer measurements. This technique is known as
tilt-compensated eCompass algorithm and was obtained from [Ozyagcilar 2012], more in-

formation can also be found in [Bar-Itzhack and Harman 1997].

The derivation of the tilt-compensated eCompass algorithm starts with three assumptions.
Initially the accelerometer and magnetometer axes are aligned. Second, the gravitational
acceleration points to Z-axis direction. And finally, the X axis points to the direction of
greater magnetic field intensity.

These initial conditions are represented in Fig.2.1, where X;, Y; and Z; are the inertial
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axes, B is the magnetic field vector, g is gravity vector and 9, known as angle of dip, which
is the angle between the magnetic field vector and a line parallel to the ground. In addition,
it is important to mention that although ¢ changes for different earth points, this will not be

a problem because it will cancel out during the derivation.

—
—

—
—
//\
—

— " Horizontal line paralle|
—~

to the ground

Figure 2.1: Tilt-compensated eCompass algorithm initial conditions

In these conditions the accelerometer and magnetometer measurement referring to the

inertial frame, B, and G respectively are given by:

cos(9d)
B;=B| 0 |, (2.9)
sin(9)
0
G, = 1|0]. (2.10)
9

These two vectors can also be represented in the body frame using the rotation matrix

presented in Eq. (2.5)
B, = C'B; = RyRyR,B;, (2.11)
G, = C'G; = RyRyR,G,, (2.12)

where Ry, Ry, Ry, are rotation matrices referring to axes Z, Y and X respectively. The
next step in the method consist of obtain roll and pitch angle though Eq. (2.12). Multiplying
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both sides of this equation by inverse matrices [2_y[?_4, we have that:

R_gR_4Gy = R_yR_,RyRyR,G; (2.13)
R_gR_yGy = RyG; (2.14)
co 0 solft o o] [Gn cy Sv 0] [o
0 1 0|0 Cod —So| |G| =|-5¢ Ccv of |of, (2.15)
—S0 0 col |0 S¢ Co | |G 0 0 1| |g

where Gy, Gy, Gy, are components of G,. From Eq. (2.15) we have that

GyC — Gy.Shp =0 (2.16)
— tan(p) = Gty 2.17)

sz

And also

G CO + Gy SOS¢ + G4.S0CH = 0 (2.18)

_sz
tan(h) = . 2.19
= 1anl6) = & ot Gl @19

Until now the accelerometer measurements were utilized to obtain the angles ¢ and ¢
provided by Eq. (2.17) and Eq. (2.19). In order to represent a body attitude, it is also
necessary determining the yaw angle (¢). This angle can be determined using magnetometer
measurements. Multiplying Eq. (2.11) by R_¢R_, in both sides we have that:

R_QR_¢Bb = R_QR_(pR(j)ReRwBZ’ (220)
co o0 So][1 o o0 ] [By. cy Sy 0| [BCs
0 1 0|0 Cp —=S¢| |By|=|-5Sv Cy 0| ]| 0 2.21)
~S0 0 CO| |0 S¢ Co¢ | | By 0 0 1| |BS;
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Co S0S¢ SOCH| [Bue cy Sv 0] [BCs

0 Cé -S6||By|=|-50 cv o] o (2.22)
_50 C0Sé COCo| | B 0o 0 1||BS;
COByy + S0S6By, + SICHB,. CUBCy
C¢Bby — S¢By, = | =Sy BCs (2.23)
—SOBy, + C@S(bBby + COCoB,. BS;s

Considering By, := CyYBCs, By, := =Sy BCs and By, := BSs we have that

COByy + SOS¢By, + SOCHB,, By
CBy, — SOBy — | By, . (2.24)
—S0By, + COS$By, + COCHB,, By,

From the right side of Eq. (2.23) and Eq. (2.24), the yaw angle(7)) is given by a relation
between the magnetic field component in x and y direction

C¢BO§ = fo and — S@bBOg = ny, (225)
Reorganizing these two equations we have that:

_ny — SQSBbz - C’QSBby
Br,  COBy, + S0S6By, + SOCHB,,

— tan(y) = (2.26)

This final equation provides the value of 1) from magnetometer data and also verifies that
there is no need of knowing the ¢ angle because it is canceled out in Eq. (2.26).

2.2.3 Kinematic equation

The orientation of a body can be propagated in time using the angular velocity vector.
According to [Titterton and Weston 1997] and [Thomson 1961], it is possible express a an-

gular velocity vector

(2.27)

in terms of ¢, # and ¢». This relation can be obtained by the sum of three main parts. First,
it is considered the derivative of the rotation around the x axis. After that, it is considered the
derivative of the rotation around the y, but before adding this new term, this vector should

be multiplied by 2, in order to represent this vector in the new frame generated by the fist
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rotation. And finally, the derivative of the rotation around the Z should be multiplied by
R4 Ry to take into account the second and the first rotation. The general equation is given by

Wy ¢ 0 0
wy| =0 +Ry | 8] +RyRe | 0] . (2.28)
W, 0 0 W

This equation can be reorganized and expressed as

¢ 1 singtan® cosoptand| | Yz
0| = |0 cos ¢ —sin ¢ wy | (2.29)
U 0 singsech cospsect

which is the kinematic equation for Euler angles.

2.3 Quaternions

The orientation can also be represented by quaternions. According to [Kuipers 1999],
this parametrization is a good choice to represent rotations. Comparing it with other repre-

sentations such as Euler angles, quaternions are not affected by singularity.

2.3.1 Quaternion Algebra

Quaternions, originally presented in [Hamilton 1848], represent an extension of complex

numbers. According to [Cohn 2003], the quaternion algebra (H) is generated by it’s basis
_>
elements l,?,? and k.

These elements are related by the follow rule:

2= =k =1jk=—1. (2.30)

And every element q € H is represented as

q:=qo+ @i+ @) + gsk, (2.31)

where qo, q1,q2,q3 € R are called Euler symmetric parameters. Analogously to com-
plex numbers, quaternions have a real part Re(q) := ¢y and an imaginary part Im(q) :=
[ ¢ qg]T. This is the quaternion notation that will be used in this work. But
the reader should note that quaternion notations may change in other works such as
[Crassidis and Markley 2003] and [Leeghim et al. 2010]. Using the notation defined in this
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section , the sum of two quaternions ¢ := ¢ + cl% + 025 + 031% andd := dy+dyi + dzj + dgl%
is given by:

ctd:=cotdy+ (1 £di)i+ (¢ £ do)j + (5 £ d3)k (2.32)

and the multiplication is defined as

c® d = (Codo — C1d1 — ngg — C3d3) -+ (COdl -+ d0C1 + ngg - ngg)%
+ (C()d2 - Cldg + ngo + ngl)j + (Codg + Cld2 — Cle + ngo)l;‘. (233)

In addition, considering that q,q~' € H, the q~! is inverse if and only if q ® q~! =
q~! ® q = 1. The equation of the inverse is given by:

*

=]

q ' =75, for |q|#0, (2.34)
lall
where the conjugate is
q" = Re(q) — 1nIm(q). (2.35)
And the norm is defined as
lall := v/ Re(q)? = Im(q)"Im(q). (2.36)

Only a subgroup of quaternions are used to represent rotations. According to
[Menegaz 2016], if ||q|| = 1, we call q as quaternion of rotation or unity quaternion. But
although unit quaternions form a group under quaternion multiplication, it does not form a
group under the sum nor the scalar multiplication [Altmann 2005]. Considering a rotation of

an angle ¢ around a unit vector n*, the quaternion of rotation is defined by
) )
q= cos(g) + Zmn*sm(g). (2.37)

2.3.2 Rotation matrix from inertial to body frame

Unity quaternions are used to represent the quaternion rotation operator L,(v). Accord-
ing to [Kuipers 1999], this operator is defined as the product between the conjugate unity
quaternion g*, a vector v € R3 and the unity quaternion q.

Lq(v) = q"vgq. (2.38)
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This rotation is interpreted as a frame rotation of a angle 1) around g axis. Which means
that if we apply this rotation operator to a vector v defined in the inertial frame, this vector
can be expressed in the body frame as a vector W. Therefore, the Eq. (2.38) can be rewritten
as

W = Ly(v) = (2q5 — Vv +2(v - Im(q))Im(q) + 2q0(v x Im(q)), (2.39)

where Im(q) = +q1i + q2J + g3k and

(2¢5 — Do = 0 2(q2 — 1) 0 vy (2.40)
0 0 2A2-1] |vy

2(1% 20192 2q193 Ux
2(” : Im(q))[m(q) = |2q142 2q§ 24243 Vy (2.41)
20193 2qo2qs3 2(J§ Vz

0 29093 —2qoq2 Ux
2q0(v X Im(q)) = | —2qoqs O 2q0q1 | |vy (2.42)
2042 —2qo¢1 0 vz

Using these equations, W can be rewritten as

Ux

W =Rl |vy (2.43)

Uz

202 —1+2¢7 20142 +2q0q3 2193 — 2q0q2 | |vx
W = 12q1q2 — 290035 2q5 —1+2¢5 2q2q3 + 2q0q1 | |vy | (2.44)
20103 + 20002 2g2g3 — 2qoq1 23 — 1+ 243 | |vz

where R? is the quaternion rotation matrix which transfer a vector from inertial to body frame

263 — 14247 2142+ 29093 2q1q3 — 29042
R} = |2q1q2 — 2q0G3 262 — 1+ 263 2qq5 + 2¢0q1 | - (2.45)
20103 + 20002 2¢2g3 — 2901 2q5 — 1+ 243

2.3.3 Kinematic equation

Quaternions can also be propagated in time. According to [Kuipers 1999] unity quater-

nions can be propagated in time using the angular velocity vector and the previous unity
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quaternion.

0 —wy —wy —w, Qo
@: w, 0 w, —wyl| ¢ (2.46)
dt |w, —w. 0w | |@]|’ '
W, wy —w, 0 q3
or
-1 —42 —G3
di 1| a —a o] "
e e PR (2.47)
dt 2| g @ —q
Wy
—q2 1 q0

Where w,, means angular velocity referring to axis n and qq, q1, ¢2, g3 are the quaternions
terms from the previous instant.

2.4 Extended Kalman Filter (EKF)

The version of the EKF implemented was obtained from [Simon 2006]. This version is

described as follows. First, consider the prediction and measurement models given by:

X = fkfl(kaly Uk—1, wkq) (2.43)

where x;_; 1s the 3 x 1 state vector and y, is the 3 x 1 measurement vector. we also
assume that

wy, ~ (0, Q) (2.50)

v, ~ (0, Ry) (2.51)

where () and R are process and measurement noise covariance. In this filter, the state

vector at time k is given by the Euler angles

Xp—1 = [¢k71 Or—1 ¢k71]T- (2.52)
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And, the process model receives as input the angular velocity vector u;, given by:

Up1 = |wy | - (2.53)

Using an aproximation of the process model for small values of time sample (AT') pre-
sented in [Titterton and Weston 1997], we can write Eq. (2.48) as:

P Pr—1 1 singtan® cosptand| |Yrr—
0| = [0_1] + |0 cos ¢ —Ssin ¢ Wy oy | AT + wy—1. (2.54)
Vi V1 0 singsecl cospsech

wzkfl

Observe that this equation is a simplified version of the process model because it does not
take into account the gyro bias. A more robust process model is presented in section 2.6.1.
In addition, this filter also assumes that y, = [¢, 0, 1;)". This means thaty, = x;, 4 vj.

The filter is initialized with:

Xg = E(x0) (2.55)

Py = E[(xo — X3 )(xo — X3)"] (2.56)

After that for k=1,2,... the follow steps should be performed:

The follow partial derivatives are calculated,

o1
Fpg=—— 2.57
k—1 ox ‘Xk—17 ( )

Of
L=l (2.58)

Considering F;_1,. the element of line i and column j of the jacobian matrix, Fj_; is

given by:

Fi1,, =1+ At - tan0(wycos ¢ — w,sin @) (2.59)

Fj_1,, = At - sec® O(w,sin ¢ + w,cos ¢) (2.60)
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Fi_1,, = — At(wysin ¢ + w,cos @) (2.61)

Fi_1, = At - secO(wycos ¢ — w,sin ¢) (2.62)
Fi_1,, = At - sec - tan O(wysin ¢ + w.cos ¢) (2.63)
Fr_1,, = Dgfsz =1 (2.64)

Fi1,, = Dyfos =0 (2.65)

In addition is easy to see that L, _; = I3, where the notation /3 means: the identity matrix
of order 3.

The next step is updating the predicted state estimation and estimation-error covariance

matrix

P, =F, P, F|  +L,.,Q. L], (2.66)

X, = f_1 (X, up_1,0) (2.67)

After, because the measurement model is linear, the optimum values of the Kalman gain,
measurement update of the state estimate and the error covariance are given by the classic

Kalman filter:

K, = P, H] (H,P H] + R;)"", (2.68)
i =X, +Kily, — Hixy ], (2.69)
P, = (I - K;H,)P,. (2.70)
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2.5 Unscented Kalman Filter (UKF)

The version of the UKF implemented was obtained from [Simon 2006]. This version is

described as follows. First, consider the system model given by:

X1 = f(Xg, up, t) + wi (2.71)

Vi = hy (X, ti) + vy (2.72)

where x;, 1s the 3 x 1 state vector and y,, is the 3 X 1 measurement vector. we also assume
that

vr ~ N(0, Ry) (2.74)

where () and R are process and measurement noise covariance. In this filter the state vector

at time k is given by the Euler angles

Xp = [op O U] (2.75)

In addition, the process model receives as input the angular velocity vector uy given by:

Way

we = |wy | - (2.76)

Wz,

Using the process model proposed by [Titterton and Weston 1997], we can write Eq.
(2.71) as:

Pht1 Pk 1 singtan® cosptanf| |Wax
Opir| = [0k + |0 cos ¢ —sin ¢ Wy, | AT + wy. 2.77)
Vrst i 0 singsec cospsect| |,
2k
In addition, this filter also assumes that 'y, = [¢r 0, 3]7. This means that y, =

X + Vk.
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The filter initialization is done as follows:

X5 = E(xo) (2.78)

Py = E[(xo — X3 ) (X0 — X )] (2.79)

In order to propagate the state estimate and covariance, the following time update equa-
tions are used:

First the sigma points should be chosen using the best guess of mean X;_, and covariance
P, .

0 =% +x0 =12 (2.80)

0 =(/nPf )T i=1,..n (2.81)
) = —(/nP_ )T i=1,..n (2.82)

where these sigma points are also known as Cubature point set
[Arasaratnam and Haykin 2009].  But this is just one of the variations of the UKF
proposed by [Julier and Uhlmann 2004], more information about other variations can be
found in [Menegaz 2016].
Now the sigma points can be used to propagating the estimated state f(,(f) using the non-
linear system equation f(-):
(1)

£ = £, ) (2.83)

From 2.83, the a priori state can be obtained by:

2n

1 (i
=5 % (2.84)

n=1

And the a priori error covariance is computed doing

- 1
P

e =g 2 X E - %)+ Qi (2.85)
n=1

From this point will be implemented the measurement update equations. But, because the

measurement model is linear, the optimum values of the Kalman gain, measurement update
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of the state estimate and the error covariance are given by the classic Kalman filter:

K, =P, H} (H,P, H{ + R;)™ ", (2.86)
X =x, + Kily, — Hixi |, (2.87)
P, = (I - K,H,)P, . (2.88)

2.6 Process and measurement models utilized in USQUE

and Riemannian filter

This section will present the process and measurement models utilized in USQUE and
Riemannian filters. After that, it will present a generalization of the Rodrigues parameters
which will be used in USQUE. Initially, doing some adaptations in Crassidis notation, a
T

quaternion can be given as q = [qo o7]T witho = [¢1 ¢ ¢3]7 = ésin(v/2) and gy =

cos(v/2), where e is the rotation axis and v is the rotation angle.

2.6.1 Process model

In order to obtain the process model, we started with the quaternion Kinematics equation

for continuous time

q(t) = 5ElQ@)w(?), (2.89)

where w is a 3X1 angular velocity vector and

—q1 —G2 —g3
—_ Qb —q3 Q2
=(q) = : (2.90)
qs3 do —q1
-4 q1 qo

After preforming a trapezoidal discretization of Eq. (2.89), the quaternion prediction

equation in terms of ;" and §;" is given by

Grr1 = Q@) (2.91)
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with,
B cos(OB0] | A Ty — [ x]

Qo) =
G = cos(0.5107 180 g

(2.92)

where ¢ = sin(0.5]|@7 || At)@; /|| || and At is the sampling interval.

Until now, we do have the model to estimate quaternions given by Eq. (2.91), but we also
aim estimating the gyro bias. In order to do that, we used a giroscope model widely used in

the literature given by:

w(t) = w(t) + B(t) +nu(t) (2.93)

B(t) = nu(t) (2.94)

where @(t) is the continuous-time angular velocity and 7,(t) and 7,(t) are independent

white-noise processes with:

E{n,(t)n, (1)} = L3a3026(t — 7) (2.95)

E{n.(t)nl (1)} = Isu3026(t — 7) (2.96)

where (¢t — 7) is the Dirac delta function. Based on the postupdate B,j, the postupdate
angular velocity and propagated gyro bias are given by:

wi =y — B (2.97)

B =B (2.98)

Using Eq. (2.98) and Eq. (2.91), the complete process model is given by:

qdy
Br

where @y, «» N ([0]¢x1, Q) is the process noise with

+ @, (2.99)

Q(@Z—ﬁ O [x—1
0 | | Br—1

At

Q="

v 6w

(2.100)

2
O3x3 Uu[3

(0'2 — lg2At2)[3 03X3]

where At is the time sample.
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2.6.2 Measurement model (USQUE)

According to [Crassidis and Markley 2003], the discrete-time attitude observations for N

measurements are given by:

A(Q)Tl 141
A(Q)Tz Vo

(2.101)

<
I
_I_

Ag)rn ] | VN
where 7; is the ith 3X1 reference vector and v; is the ith sensor gaussian error-vector and
206 — 14267 2q12 + 290q3  2¢143 — 2G0q2

A(Q) = |21q2 — 2003 205 — 14243 2¢2q3 + 2q04: | - (2.102)
20143 + 2q0q2  2q2q3 — 2901 2G3 — 1+ 243

In addition, the reference vectors 71, 7 and r3 are given by:

rn=1[1 0 0 (2.103)
rp,=1[0 1 0] (2.104)
rs=[0 0 1" (2.105)

Therefore using Eq. (2.101) and Eq. (2.103)- Eq. (2.105), the final measurement model

is given by:

A(q)r 1

Yk = |A(Qr2| + |12 (2.106)
A(q)rs V3

Ry = diag[o} o5 ... 03] (2.107)
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2.6.3 Measurement model (RiSAdUKF)

Using an similar aproach presented in [Menegaz 2016], the measurement model was

defines as:

qy

s,

_ [[4><4 O3x3
Yk =

03X3 03x3

where 1,4 is the identity matrix, q, and [ are the quaternion and the bias vector at time

k and wy, is a vector composed by gaussian variables.

2.6.4 Rodrigues parameters

In addition, the local error-quaternion 6q = [0qy o’ ]” is obtained using Rodrigues

parameters:

dp = floo/(a+ dqo)]. (2.109)

The inverse transformation is given by:

—a || op |2+ I A=) 5
Sar — 2.110
g 1 Top | (110

So= f(a+dq)dp (2.111)

2.7 Unscented Quaternion Estimator(USQUE)

The version of the USQUE implemented was proposed by [Crassidis and Markley 2003].
Initially consider the discrete-time nonlinear models given by:

Xpt+1 = f(Xk, ]{7) + W, (2112)

Y. = h(xg, k) + vg, (2.113)

where x;, € R™! and y, € R™*! and f and h are nonlinear models of prediction and
correction respectively. In addition, wy and v, are considered zero mean Gaussian noise

with co-variance matrices respectively given by (; and Ry. In this work the state vector is

29



defined as

B

where 0p € R3*! is the error in generalized Rodrigues parameters, and 3 € R3**! is the
p g g p

x 2 Fp] , 2.114)

gyro-bias. The relation between the error in generalized Rodrigues parameters p and the
quaternion error 6q = [0qy  do”] is given by:

—a | op |* +fV/f2+ (1 —a?) | op |?
Sqo = e To T , 2.115)

do = f'(a+dg)dp, (2.116)

where a is a parameter from 0 to 1 and f is a scale factor. The sigma points in terms of state
vector are defined as

Xk(i) = i (1) (2.117)
Xp(i) |

where (i) refers to the attitude error part and () refers to the gyro-bias part. Given the

state estimated X; and the matrices P, and

~ At (o2 = 102A); 0
L= At |(ow = 5o A oy (2.118)
2 033 o.l3
the computation of sigma points is done as follows
o)  2n columns from + \/(n + N[P + Qul, (2.119)
considering
xk(0) = %X, (2.120)
the states will be given by:
i (1) = ox (i) + X1, (2.121)

where ) is a parameter that determines how spread are the sigma points.
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2.7.1 Attitude propagation

First, the sigma points Xip (1) are converted into quaternions

—a || X (0) | +f\/f2 + (1 —a2) | x;"(0) |12

245, (1) = P06 P - e
Sof (i) = [ (a+ dqg (1)x3F (4), (2.123)
and
8q;; (1) = [, (1) S0i (1)) (2.124)
Assuming that
ay (0) = g, (2.125)

the new quaternion can be obtained by multiplying the error quaternion by the current esti-
mate.
Gy (1) = dqif (i) @ G- (2.126)

After that, the quaternion can be propagated in time using the angular velocity vector:

Gy (1) = QL (9)]g;¢ (7). (2.127)

Using this result the quaternion error can be propagated by:

01 (1) = Gy (1) @ [Gpy (0)] 7 (2.128)

Based on Eq. (2.128) the quaternion error can be maped into Rodrigues parameters using

N
Xio (i) = f % (2.129)
Xes1 (1) = X4 (). (2.130)

2.7.2 Prediction calculations

Based on x4 it is possible to obtain the state vector predicted X, ; by

2n
. 1 1 ,
X1 = Y /\{)\XkJrl(O) + 5 ZIXk+1(Z)}, (2.131)
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and the predicted co-variance matrix of the propagated states is given by:

2n
_ 1 . L 1 N e N e —
Pia= Y )\[Xk+1(0)—xk+ﬂ[Xk+1(0)—xk+1]T+§ Z[Xkﬂ(i)—xkﬂ][Xk+1(l)—xk+1}T}+Qk-
i=1
(2.132)
After that the predicted measurements are obtained by:
1 1 2n
Vi1 = R—H{)\%H(O) +3 ; Ye+1(2)}, (2.133)
where vi41(2) = h(xk41(2), k).
The co-variance matrix associated with the predicted measurements is given by:
Yy 1 &~ o= T 1 N o N_ o 1T
P = n—H{)‘[’Yk-&-l(O)_Yk—i-l][’716—1-1(0)_)%—0—1] ‘1”5 Z[%H(@)—%H][7k+1(2)_Yk+1] }
i=1
(2.134)
. 1 A, R o I
Py = "t )\{)\[Xkﬂ(o)—xmﬂ[%H(O)—Yk;ﬂ] +§ Z[Xk+1(2)—xk+1][7k+1(l)—3’k+1] }
=1
(2.135)
P, =P 4+ R (2.136)
2.7.3 Correction step
The Kalman gain is calculated
K, =P/ (P/) ! (2.137)
x{ =x; + Ki(¥, — %) (2.138)
P/ =P, — K,P}’K] (2.139)
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2.8 Riemannian-Spheric Additive Unscented Kalman Fil-
ter(RiSAdUKF)

Recent achievements on Unscented Kalman filtering theory for Riemannian manifolds
presented in [Menegaz 2016], had led to the RiISAdUKEF. This filter was proposed under a
consistent theory and also presented a better performance when compared with other quater-
tion filters. This Riemannian filter is initialized with the following states &gy := T, and
Pl = P? . After that, for k = 1,2, ... the following steps should be performed:

Initially it is obtained the sigma representation for the states represented on the tangent
space(TM) by:

{XzT/i\/[ 1|k— LW o .}7, 1 gRl([O]an17 me_l‘k_l) (2140)
where, o refers to the sigma method presented in appendix E .

After obtaining these sigma points on tangent space, they are represented on canonical

space using the exponential mapping given by:

k—1]k—1 - .
xi = eapls | (TBtoCB(( M i), i =1, Ny (2.141)

where, T'BtoC B refers to the transformation from tangent basis to canonical basis presented

in appendix I and emp?fkillkfl refers to the exponential mapping presented in appendix B.

Based on this in canonical basis representation, we can calculate the state’s predicted

sigma points by:

xit = A0aTY, i=1 L N (2.142)

)

Until now, we do have predicted quaternions given by Xk‘k ', The next step consists of
finding the mean of these quaternions using a optimization algorithm to find the quaternion

which has the smallest distance from the other quaternions. This can be done doing

Ny

L1 = argmjlv? w; mdzsﬁ(xf'f a). (2.143)
ac My
i=1

where the previous equation was implemented using the gradient descent algorithm pre-
sented in appendix C.

After that, we have to find the predicted covariance estimate represented on the tangent

space by:

N1
P = w“(CBtoTB(logs: O + Q. (2.144)

=1

33



where [og refers to the logarithm mapping presented in appendix B.

Based on this predicted covariance, the regenerated predicted states represented on the
tangent space can by obtained by:

O wi™ wie WPy = o Ry ([0, 1, PEFY) i =1,..., N,. (2.145)

y Mo

After that, we do using the exponential mapping to convert from the tangent space to

canonical space by:

X" i=eapl  (TBtoCB([ 1)), i=1,.., Na. (2.146)

Now, we can calculate the measurement’s predicted sigma points through

AL = Y, =1, N (2.147)

where hy, for this work, assume the form presented in 2.108.

And based on these measurement’s predicted sigma points, we can calculate the mea-

surement’s predicted estimate by:

No
Gt = argmin > wPmdist* (77" b). (2.148)
Yoi=1

After that, the measurement’s estimated predicted covariance and the estimated predicted

cross-covariance are given by:

N2
Hk|k— c ey K|k—
P =y "w? ((JBtoTB(logng_l(%.l "M ()T + Ry, (2.149)
i=1
and
No
Py =) wi(CBtoT Bllogy:,  (xi"* ")(CBtoTBllogg: (3" ).
i=1
(2.150)

Based on these two matrices we can calculating the Kalman Gain by:

Gy, i= (PHF1)(PHF1)=1, (2.151)
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After that, the Kalman Gain is used to correct state estimated on the tangent space by:

~TM ._ ~TM e

Ty = Tpjp—r + Gk(CBtOTB(ZOQQZM,l<Qk)))~
And the corrected covariance of the estimate at &y ,_; is given by:

o kel kg S klk— Sklk—
Pog ™ = PR — (G P (G
After that, the corrected state estimation is given by:
Ty = ea:pzlkfl(TBtoCB(:%a],y))

And finally the state’s corrected covariance estimate at &y is given by:

kIR &k k-1

pklk . _ ~ ~
Psci: = PT(Pw;c ,mk“{,l, mk|k)

where PT refers to the parallel transport of a matrix presented in appendix H.
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Chapter 3
Simulator dynamic model

In order to simulate each attitude representation advantages and disadvantages, this sec-
tion will present the mathematical derivation of a nanosatellite test platform dynamic model.
Initially, there will be defined basic terms and equations. These equations will be presented
as propositions followed by their proofs. After that, those definitions and propositions will
be used to describe the model.

Figure 3.1: Angular momentum references frames

Fig.3.1 illustrates the rotation of a body composed by m; infinitesimal masses placed
in distances p; from O placed at the center of a xyz reference frame. According to
[Nussenzveig 2002], the angular momentum can be understood as a linear momentum ap-
plied to a mass point located at a certain distance from the rotation axis. Mathematically, the
angular momentum, which in this work is represented by the vector [, is defined as the cross
product between a distance vector p; and a linear velocity vector v; experienced by a mass

m,; times this mass

This is the main definition that will be used from now. In order to derive the table dynamic
model, some propositions must be addressed.

Proposition 1: The time rate of change of the angular momentum vector [ about a fixed

point O is equal to the total external torque 7T', about O, generated by external forces acting
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on the system

dl

— = Tewternai- 32
0 ternal (3.2)

Proof:

Based on [Greenwood 1965] and using Eq. (3.1), the angular momentum can be ex-
pressed as a cross product between a distance vector p; and a linear velocity vector v; times
a mass m;

l; = pi X m; p, (3.3)

where p; is used to denote the first derivative of p;, which is equal to v;. Once you
know the angular momentum of an infinitesimal particle, the total angular momentum can

be obtained by the contribution of all body particles

Uotat = » L. (34)
=1

From Eq. (3.3) and Eq. (3.4), the first derivative of the total angular momentum is

expressed as the first derivative of the sum of all /;

d(Z?:l pi X m; p;)

Liotal = 3.5

total i (3.5

Liotal = Z pi X m; p; + Z pi X m; pi. (3.6)
i=1 i=1

By definition, the cross product between two identical vectors is zero, so p; X p; = 0

and because of this

Liotal = Z pi X M Pi. (3.7)

=1

Assuming that internal forces sum up to zero

bo = Y pi X F, (3.8)

i=1

where F; represents external forces acting on the system. From Eq. (3.8), the first deriva-

tive of the total angular moment, in this work also represented by I, is equal to the sum of all
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external torques acting on the body.

ltotal = l = Te:vternal- (39)

This result is important and later it will be used to connect the body angular momentum

equation with the external torques considered in the model.

Proposition 2:The angular momentum of a body is given by the product between the body

tensor of inertia I and the angular velocity vector w.

l=lw. (3.10)

Proof:

From [Greenwood 1965] we have that the angular momentum is given by:

l:/px(wxp)dm. (3.11)

In order to provide an explicit description of inertia tensor terms, the Eq. (3.11) will be
expanded. Let p and w be the follow vectors:

p=xt+yj+ zk, (3.12)

W = Wyt + wyJ + w.k. (3.13)
So w x pis given by:
t 7 k
WXPp=|w, w w |=(2wy—yw.)i+ (2w, — 2w,)J + (yw, — zwy)k  (3.14)
x Yy =z

Following the same process p X (w X p) can be written as

i J k
pX(wxp)= x Y z (3.15)

(2wy —yws) (2w, — 2wy)  (Yw, — Twy)
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px (wxp)=[y*+ 2w, — zyw, — T2W,]1
+H—yaw, + (27 + 2°)wy, — yzw.]j
+H—zrw, — zyw, + (2% + y*)w, k.

Applying Eq. (3.16) in Eq. (3.11), we have that:

/ p X (wx p)dm = [/ (y? + 2*)wedm — / ryw,dm —/ rzw,dm|i
+[—/ yrwedm + / (z° + 2*)w,dm — / yzw,dm)j

+[—/ zxwxdm—/ zywydm—i-/(xQ—I—yQ)wzdm]k:.

(3.16)

(3.17)

At this point we can define the products and moments of inertia. The moments of inertia

are defined as follows:

I, = / (y2 + 22)w$dm,
I, = / (2% + 2w, dm,

I, = / (2% + y*)wdm.

The products of inertia are given by:
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From those definitions, the Eq. (3.17) can be written as:

/ p x (wx p)dm = [Izw, + Lywy, + L,w,]

+Lyews + Lyywy + 1w, g (3-24)
Hpwy + Lywy + Low, k.
Now, defining the tensor of inertia as:
Ixx Ixy ]a:z
I'=11, I, I, (3.25)
[zx Izy [zz 3%3
The Eq. (3.24) can be written as:
l=1w. (3.26)

3.1 Angular momentum first derivative referring to the
center of rotation

From Eq. (3.26), the angular momentum equation referring to the center of rotation is
given by:

l, =Ilw. (3.27)
The first time derivative of Eq. (3.27) is given by:

di, :
i o)y +w x 1y, (3.28)

where (1), refers to the body frame. From Eq. (3.27) we can express the first angular

momentum derivative as:

dl,

—=1otwx Iw. (3.29)
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3.2 Dynamic equations

The propositions presented until now shown two main facts. First, the angular momen-
tum time derivative is equal to external torques shown in Eq. (3.2). After that, the second
proposition shows that the angular momentum could be expressed as the product between
the tensor of inertia times the angular velocity vector shown in Eq. (3.26). Furthermore,
as shown in Eq. (3.29) the derivative of the angular momentum refering to the center of
rotation was obtained in terms of body tensor of inertia, angular velocity vector and it’s first
derivative. This subsection has the objective of put together all those conclusions, in order
to generate a model that relates external torques with the body tensor of inertia.

But before that, some considerations must be made. First, this platform can be modeled
as a rigid body with center of mass (CM) located at a certain distance from the center of
rotation (CR). In addition, this model have two reference systems. One of them XYZ is fixed
referring to earth, also called inertial frame. And the second one xyz is fixed referring to
the table and presented in Fig.3.2. In another words, this second frame rotates with the ta-
ble. These rotations are presented in Fig.3.5, Fig.3.3 and Fig.3.4 which represent successive

rotations of roll, pitch and yaw respectively.

Figure 3.2: Body frame representation
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(A)

(B)

Figure 3.3: Graphical representation; A. Initial position; B. Roll rotation.

(A)

z

Y
(B)
Figure 3.4: Graphical representation; A. Initial position; B. Pitch rotation.

From now, the inertial reference frame will be refereed by the letter "i" and the body

frame by the letter "b".

Continuing the derivation of the table dynamic equation,we can rewrite Eq. (3.29):

dl,

E:Iw+wxlw. (3.30)

From proposition one and second newtons law, external torques are related with the an-

gular momentum by

&l

T=—.
dt

(3.31)

The resulting external torque 1" presented in Eq. (3.31) can be written as the sum of three

main external torques

T= Tactuators + Tgravitational + Taerodynamia (332)

where T, ctuators refers to torques generated by components connected to the table, for
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(A) (B)

Figure 3.5: Graphical representation; A. Initial position; B. Yaw rotation.

example actuator such as reaction wheels, Ty, quitational T€Presents the gravitational torque

and Tgerodynamicdrift Tepresents the aerodynamic torque.

From Eq. (3.30), Eq. (3.31) and Eq. (3.32) we have that

di,

E:[u’:—i—wx[u:T. (3.33)
where
I:m:wx + Ixywy + ]aczwz
lw=| I w, + Iyw, + L,w, |, (3.34)
Izmwx + [zywy + [zzwz
and

T=[T, T, T.". (3.35)

Reorganizing Eq. (3.33) we can obtain the angular momentum first derivative in terms

of the inertia tensor, external torque vector and angular velocity vector:

dw

== I'T - w x Iw). (3.36)

This format of the platform dynamic equation is a important result because it will be used

in the next section to run numerical simulations.

3.3 Numerical simulations and experimental verification

According to [Tewari 2007], considering the rotation sequence 3-2-1, the Euler angles
reach the singularity region when § = +90°. This section has the objective of showing
the singularity in Euler angles and also to show that quaternions can avoid it. In order to
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address this issue, the singularity effect was simulated (see subsection 3.3.1) and after that
it was designed an experiment to observe this effect in experimental data collected from the

platform (see subsection 3.3.2).

3.3.1 Simulation

The simulation block diagram is presented in Fig.3.6. As it can be seen, This Theoretical

model block receives as input the stop time, initial angles and initial angular velocities.

Stoptime

¢ e
8o —~  Theoretical — ~ ©
v, — model e
Wy ~ Wy
wyo — Y,

o wz

Wy o,
Figure 3.6: Simulation block diagram

Based on these inputs, the program integrates the first derivative of the angular velocity
vector and orientation using Eq. (3.36), (3.37) and (3.38). The result of this integration will

be the new orientation and angular velocity vector used in the next iteration.

¢ 1 singtan® cosoptand| | Yz
0| = |0 cos ¢ —sin ¢ Wy | - (3.37)
o

0 singsec cososech w.

—q1 —G2 —Qq3 w
dg 1 — N
aq _ 1L qo q3 G2 w, | (3.38)
dt 2 q3 q —q1 w

—q2 1 qo

Initially, we evaluated the attitude propagation using the kinematics model based on Euler
angles. Even before simulating, just by matrix terms inspection, we observed that the matrix

terms sin ¢ tan 6 and sin ¢ sec § would increase indefinitely when 6 approaches 90°.

As we expected, this singularity was observed during simulations presented in Fig.(3.7).
This figure has a singularity flag activated when | cos(f) |< 0.07. As it can be seen, when
the cos 0 approaches zero, the angle values of Yaw and Roll diverge to almost 200 degrees.
In addition, it should be point out that this value does not go to infinity just because Matlab
approximates cos(90°) by 6.1232 x 10717

The second evaluation was done using the propagation matrix based in quaternions. The
simulation was designed in order to lead the system to the singularity region observed pre-
viously. The simulation result, presented in Fig.3.8 shows that when the pitch angle reaches

absolute values closer to 90°, the values of roll and yaw are not affected by the singularity.
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Figure 3.7: Singularity observed in Roll and Yaw
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Figure 3.8: Singularity avoidance using quaternion
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3.3.2 Experimental verification

In order to observe the singularity effect on experimental data, the platform was initially
placed on a horizontal position and the IMUs were placed with an initial angle, referring
to the surface of the platform, such that it was possible reach values of 6 closer to 90° (see

Fig.3.9).
/_\ IMU

Figure 3.9: Schematic view of the experiment

The experiment consisted of rotating the platform around the Y axis in order to reach
pitch angles closer to 90°. From theory, the singularity happens in this specific orientation.
As it can be seen in Fig.3.10, when the absolute value of pitch reaches angles closer to 90°

the singularity happens and affects roll and yaw measurements as it was expected.

200

Roll
Pitch | 4
Yaw

100 |

50

Angles (degree)
o

-50

-100

-150

-200 1 1 1 1 1

Tempo (s)

Figure 3.10: Singularity observed in Roll and Yaw

46



But the same does not happens when the orientation was parameterized with quaternions.
As it can be seen in Fig.3.11, when 6 reaches values closer to 90° the singularity was avoided.

Avoidance singularity

Pitch [ |

Angles (degree)

-40 b

-80

Il Il Il
5 10 15 20 25
Tempo (S)

Figure 3.11: Singularity avoidance using quaternion

47



Chapter 4
System Architecture

This section is dedicated to the subsystems utilized in this research. This chapter will pro-
vide a detailed description of the two attitude determination systems embedded on LAICA’s
platform. One of them was developed in the University of Brasilia (UNB) using a 9DOF
IMU from Adafruit. The second one was obtained from Yost Labs.

Initially, it will be described the sensors utilized for each attitude determination system.
After that, it will presented hardware project for each system followed by sensor calibration

procedures. Finally, it will be discussed some experimental issues and the solutions applied.

4.1 Sensors

4.1.1 9DOF IMU from Adafruit

This 9DOF IMU from Adafruit integrates one of the atittude determination systems in
LAICA’s facility. The location of this sensor is illustrated in illustrated in Fig.4.1. As it can
be seen, this sensor is located closer to the center of rotation and is utilized to measure the
platform orientation. This orientation is calculated based on three axis measurements from

accelerometers, gyroscopes and magnetometers.

These sensors are encapsulated in two electronic devices, which are a LSM303DLHC and
a L3GD20. The specifications of those components are presented in table 4.1. In addition,
it is important to mention that those specifications were set in order to meet the platform’s
expected operation range, but they can also be adjusted to different ranges through register

settings.
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IMU

Figure 4.1: IMU location

Table 4.1: LSM303DLHC and L3GD?20 settings

System parameters specifications
Sample time 0.1s
Temperature range —40°C to 85°C
Accelerometer scale +2¢g
Gyro scale +250%sec
Gyro bias not specified
Compass scale +1.3 Gauss
Magnetic resolution 2 mGauss

Orientation range 360" about all axes

Supply voltage 3V

4.1.2 9DOF IMU from Yost Labs

The second inertial measurement unity used to measure the platform orientation was

produced by Yost Labs. The location and a upper view of this unity are presented in Fig.4.2.

This IMU is a closed solution certificated under Industry Canada(IC)Radio Standards

Specification(RSS). And some of the important specifications are presented in table 4.2.
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IMU

Figure 4.2: spaceSensor

Table 4.2: Yost Labs IMU specifications

System parameters specifications
Sample time 0.01s
Temperature range —40°C to 85°C
Orientation accuracy +1°
Orientation resolution < 0.08Y
Orientation repeatability < 0.085%for all directions
Accelerometer scale +2¢g
Gyro scale +250%/sec
Gyro bias 2.5%/hr average for all axes
Compass scale +1.3 Gauss
Orientation range 360" about all axes
Supply voltage 5V
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4.2 Hardware configuration

The hardware configuration used by each inertial measurement unity is different. In
order to provide a better description of each hardware solution, the following subsections

will focus on each configuration separately.

4.2.1 Hardware configuration for Adafruit IMU

The schematic view of the hardware configuration used for Adafruit’s IMU is presented
in Fig.4.3. This picture shows to big blocks that communicates through XBees. The PC
block represents the client side. In this side, the operator receives the orientation data from
the XBee, processes this information on Matlab and sends or not a command to the platform.
On the platform side, we do have an arduino, powered by a 12V DC battery, responsible for

collecting data from IMU’s gyroscopes, magnetometers and accelerometers.

After collecting this data, this microcontroller uses the tilt-compensated eCompass algo-
rithm to converts this measurements into Euler angles. After this process, the arduino sends
the orientation, represented in Euler angles, to the client side. In addition, this system is also
used in the balancing system. for this use, the microcontroller utilizes motor drivers, con-
nected to moving masses, to displace the center of mass. More details about the real circuit

are presented in Fig.4.4.

PC Tabletop platform

CPU[<|XBege| | .| IXB Power Supply
‘— >> << E (12V DC battery )

Mat‘lib@ L ‘ ‘

Arduino |5 | IMU

vy

Motor Motor Motor
Driver Driver Driver

[T | LI || 1T

|| Y= || —=

MotorPower Supply
(2V DC battery)

Figure 4.3: Adafruit’s IMU schematic
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(A) (B)

Figure 4.4: Hardware configuration; A. Platform inside view; B. Circuit upper view.
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4.2.2 Hardware configuration for Yost Labs IMU

The schematic view of Yost Labs’ IMU is presented in Fig.4.5. This picture shows the
data flux inside the inertial measurement unity. First, raw measurements are collected from
3- axis magnetometer, gyro and compass. After that, this data is corrected with the initial
calibration settings. The result of this operation is sent to a filter to generate the final orien-
tation.

USB Host System
A

Data-logging

LiPo Battery |«

Processor
USB Interface > @

‘ Final Orientation

Non-volatile
. Calibration and
Filter |€——
Performance
A Settings

Scale ,Bias, Normalization and Error
compensation

A A
3 -Axis 3 -Axis 3 -Axis
Accelerometer Gyro Compass

Figure 4.5: Yost Labs’ IMU schematic
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4.3 Calibration procedures

4.3.1 Calibration procedures for Adafruit IMU and HMR2300

The calibration process applied to the Adafruit IMU and HMR2300 consisted of three
main parts. First, each sensor was rotated in all directions until the magnetometer measure-
ments formed an almost complete ellipsoid (see Fig.4.6 and Fig.4.7). After, based on this
data, the offset parameters and scale factors, presented in Table(4.3) and Table(4.4), are cal-
culated using the Hard-iron and scale factor compensation presented in appendix F. Based
on these parameters and on the laboratory magnetic field intensity, which is about 267, the
corrected magnetic field vector was obtained. About the laboratory magnetic field intensity,
it was measured using another HMR2300 magnetometer calibrated by Honeywell. In addi-
tion, it was verified that this measurement was also coherent with the magnetic field intensity
provided by the WMM (Wold Magnetic Model) from the National Oceanic and Atmospheric
Administration (NOAA) [NOAA 2018].
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Figure 4.6: Magnetometer calibration of Adafruit’s IMU

Table 4.3: Adafruit’s IMU calibration parameters

Parameters Values

Of fset, 3477 uT
Of fset, -11.8123 uT
Of fset, 4.9395 T

Scale,, 29.9352
Scale, 29.3514
Scale, 27.4197
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-40

Figure 4.7: Magnetometer calibration of HMR2300

Table 4.4: HMR2300 calibration parameters

-100

Parameters Values
Of fset, -65 uT
Of fset, 0.6589 uT
Offset, -61.61 uT

Scale,, 25.41
Scale, 26.73
Scale, 27.26
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4.3.2 Calibration procedures for Yost Labs IMU

The calibration of the Yost Labs IMU consisted of running the sphere calibration wizard,
which is a closed software, presented in Fig.4.8. This picture shows the result of magne-
tometer calibration which consisted of rotating the IMU in all directions until the system
drown a complete sphere of green arrows.

g Sphere Calibration Wizard - X

Move the sensor around. Try fo create a sphere with the green amows.
‘Samples Taken: 812 Eslimated Densily: 16 Finish Reset Cancel

Figure 4.8: Sphere Calibration
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Chapter 5
Tests and results

This section evaluates and compares the estimated orientation obtained using the EKF,
UKF, USQUE and RiSAdUKEF, which in this chapter will be referred as Riemannian filter.
As it can be seen in Fig.5.1, the data used by these filters were obtained from two sensors.
The Yost Labs sensor, in the left, provides the orientation in quaternions, while the Adafruit
sensor, in the right, provides the orientation in Euler angles.

In addition, in order to emulate magnetic disturbances experienced by a nanosatellite,
we induced random magnetic field variations using a Helmholtz cage. As will be shown in
the next section, this magnetic field variations generate disturbances in the orientation data
which were sent to the filters.

The orientation data represented in Euler angles were filtered using the UKF and EKF
filters. While the orientation data represented in quaternions were filtered using the USQUE
and Riemannian filters. In order to evaluate these estimated angles, three tests were proposed,

as will be explained in the following sections.

Quaternions

o
Euler angles

Helmholtz Cage **NOISEK}\/ ‘

/ /

‘usouz‘ ’Riemanian‘ ‘ EKF ‘ ‘ UKF ‘

Figure 5.1: Methodology schematic view



5.1 Magnetic field variation effects on sensor data

The experiment presented in this section consisted in generating magnetic field varia-
tions using the Helmholtz cage while the sensor was kept on a fixed orientation. The initial
objective was observing the effects of magnetic field variations and depending of this re-
sult, we could use magnetic field to generate magnetic field disturbances experienced by a

microsatellite under real conditions.

As it can be seen in Fig.5.2 and Fig.5.3, initially the sensor provided a fixed initial orien-
tation. After about twenty seconds, the magnetic field was constantly increased. Although
the sensor was kept on a fixed orientation during the experiment, the orientation data indi-

cated movements in x and y axes.

This wrong angle variation was observed until the Helmholtz cage was turned off, that
happened at about 109 seconds. After that, the sensor started to measure it’s initial orien-
tation. This experiment evidenced that the sensors are directed affected by magnetic field
variations and also showed that these variations could be used to emulate magnetic distur-
bances observed in space. Although these magnetic variations are not big during an orbit
trajectory, it can be significant when the microsatellite has to use magnetorquers in the actu-

ation system.

uaternions
15 Q .
—W
—X
1 v
—Z
X
N
I osr
>
+
=
T
0
2
c
o
I
2 05
©
=]
o
-1k
15 | | | | |
0 20 40 60 80 100 120
Tempo (s)

Figure 5.2: Magnetic disturbance in quaternions
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Figure 5.3: Magnetic disturbance in Euler angles
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5.1.1 Experimental setup for filter evaluation

In order to evaluate each filter performance, three different experiments were conducted
for each algorithm:

Experiment 1:

Initially the testbed is kept in the horizontal position. After that, the Helmholtz cage is
used to generate noise in the orientation data. Based on the data collected, the filter consis-
tency is evaluated using the normalized state estimation error squared (NEES), presented in
appendix G and referred in this work as (d2) or Chi values. The objective of this experiment
is finding the values of Q and R matrices that provides a consistent filter answer.

Experiment 2: For this experiment, Q and R must be assumed constant and equal to
those found in Experiment 1. Initially, the testbed is kept in the horizontal position with a pro-
tractor fixed in the platform. One example of this configuration can be seen in see Fig.5.6(A).
After that, using the same magnetic field described in Experiment 1, the testbed should be ro-
tated by a known angle, each axis at a time. A schematic view of the experiment and a graph-
ical view of the sensor and filter output are presented in Fig.5.4 and Fig.5.5. Observe that the
angular variation generated by the movement will be measured using a protractor and a IMU.
The variation measured by the protractor is given by the difference between the initial and
final angle value measured by this instrument 9pmtmctor<t H = Gpmtmctor(to) = AbOp,otractor-
In addition, the same angular variation must be measured by an IMU. This sensor data is
passed through a filter to estimate the angular variation, which is given in terms of it’s initial

and final corrected state estimated values 9k| E— éo‘_l = Af Filter-

The objective of this experiment is evaluating the angular variation obtained from each
filter and comparing with the angular variation measured with the protractor for the follow
rotations:

e A rotation of 20 degrees around the x axis (see Fig.5.6).
e A rotation of 30 degrees around the y axis (see Fig.5.7).

e A rotation of 8 degrees around the z axis (see Fig.5.9).

In order to do the last angular variation, around z axis, some setups must be done. In order
to guaranty a variation of 8° around the z axis, an initial target setup presented in Fig.5.8
should be done. This procedure consisted of placing two targets in positions specified by a

variation of 8° measured using a protractor in the center of the platform.

After placing the targets, a laser point should be used to drive the platform from one
target to the other as shown in Fig.5.9. Therefore when the laser reach the second target, the
platform rotated 8° around the z axis.

Experiment 3: The next experiment consists of keeping the same magnetic field inter-

ference and allowing the testbed to have free movements. The objetive of this experiment is
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Figure 5.5: Result schematic view

evaluating each filter behavior under a more realistic situation.

In the next sections, these three experimental setups will be used to compare the UKF
with the EKF and in other set of experiments it will be compared the USQUE and the Rie-
mannian filter.
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Figure 5.6: A. Initial position; B. Rotation of 20 degrees in roll.

(A) (B)
Figure 5.7: A. Initial position; B. Rotation of 30 degrees in pitch.

——

X

Figure 5.8: Initial target setup used to make rotations around the z axis
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(A) (B)
Figure 5.9: A. Initial position; B. Rotation of 8 degrees in yaw.
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5.1.2 Comparison between the attitude estimated using the UKF and
EKF

Experiment 1: Initially, the testbed was fixed in the horizontal position. In order to
create experimental noise, we generated random magnetic pulses using two power supplies
that provided a voltage output with a distribution N(2.5,3). In addition, we also measured

the generated magnetic field using the magnetometer (HMR2300) ( see Fig.5.10).
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Figure 5.10: Magnetic field generated by the Helmholtz cage.

After collecting the orientation data under these circumstances, we tried different values
of Q and R matrices in order to keep about 95% of the Chi values under the probabilistic
limit. As it can be seen in Fig.5.11(A) and Fig.5.11(B) either Chi values are mostly spread
and located under the three degree of freedom limit. To be more specific 96.7% of the UKF
Chi values and 96.4% of the EKF Chi values are located bellow the limit.

This procedure lead us to the values of R and Q given by:

891 0 O 873 0 0
Rukrpy=1] 0 801 0 Rexrmy=| 0 801 0. (5.1)
0O 0 9 0 0 81
and
023 0 0 0.225 0 0
Qurkry=1| 0 037 0 Quexm=| 0 03650 0 |. (52
0 0 027 0 0 0.2646

64



20 T T T

* a2
18r * limite | 7

Time (s)

(a) UKF chi square values

T
* d2
limite | 7

Time(s)

(b) EKEF chi square values

Figure 5.11: Chi square test

After determining the values of Q and R, we compared the orientation estimated by each
filter for the first experiment. As it can be seen in Fig.5.12, there were some spikes in the
sensor signal. Some of these spikes were caused by problems in the magnetometer, which
sometimes sends wrong measurement values equal or close to zero for all axes resulting in
wrong values of ¢ = 0, as happened in T=8.67s. In addition, besides the noise coming from
the other sensors or even by external magnetic interference, this signal was also affected by
the magnetic noise generated by the Helmholtz cage. Furthermore, this picture also shows
that for these experimental conditions, both filters presented a similar and smoother answer

than the original sensor signal for the angles of roll, pitch and yaw.
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Figure 5.12: Filters output

66



Experiment 2:

As it was explained in section 5.1.1, the experiment 2 started with a rotation around
the x axis. Initially, the platform was kept on a horizontal position. In this orientation,
the protractor measured ¢ protractor(ty) = 90° and after the rotation the protractor measured
) Protractor(t;) = 110°, so the angular variation measured was A} p,oracior = 20°, which is

the angular variation that we expect observing using the sensor.

The sensor data and the filters’ outputs are presented in Fig.5.13. In this picture, the UKF
estimated value started in about (]30‘_1 = 1.333%, which was the first sensor measurement,
and after the movement, the estimated value reached g557|57 = 22.62Y, resulting in an angular
variation of A¢yr = 21.28° (see Fig.5.13(a)). In addition, this picture also shows that
the EKF estimated value started in about ¢30|,1 = 1.333° and reached ¢f57‘57 = 22.65°,
resulting in an angular variation of A¢rrr = 21.31° (see Fig.5.13(b)). Observe that both
filters provided a much smooth answer and the variation measured by the filters was more
precise than the variation given by the sensor. Although there was a difference between the
measured filters variation and the protractor variation A¢yxr — Adpromractor = 1.28° and
Aok r — A protractor = 1.319, part of this difference was probably caused by small errors

coming from the sensor and protractor.

Furthermore, the filter performance was also evaluated using the +0 bound as shown
in [Mirzaei and Roumeliotis 2008] and [Guimaraes et al. 2017], where the values of ¢ were
obtained from the diagonal terms of the state covariance matrix Fy;. As it can be seen in
Fig.5.13, both filters were capable of keeping their estimated values under the +0 bound

which indicates that both filters were tuned with appropriate values of Q and R.

The second rotation was done around the y axis. First, the platform started in the horizon-
tal position. In this initial orientation, the protractor measured an initial value 0 p, o qctor(ty) =
90°. After the rotation, the protractor measurement reached 6 Protractor(t;) = 60°. So, the an-
gular variation measured by the protractor was Afp,oiractor = 30°, which is the angular

variation that we expect observing using the sensor.

As it can be seen in Fig.5.14, the UKF estimated value started in about HAO‘_l = 3.599°,
which was the first sensor measurement, and after the movement, the estimated value reached
é22|22 = 34.47°, resulting in an angular variation of Ay r = 30.87Y (see Fig.5.13(a)). In
addition, this picture also shows that the EKF estimated value started in about éo\_1 = 3.5990
and reached é57\ 57 = 34.44°, resulting in an angular variation of Afgxr = 30.84° (see
Fig.5.13(b)). Although there was a difference between the measured filters variation and the
protractor variation A0y g r — AOproiractor = 0.87° and AOpx r — Abprotracior = 0.84°, part
of this difference was probably caused by small errors coming from the sensor and protractor.

In addition, these pictures also show that both filters had a similar behavior and also their
estimated values were always kept inside the 0 bound, which indicates that both were well

conditioned.

After that, the third rotation was done around the z axis. The experiment started with the
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Figure 5.13: Rotation of 20 degrees around the x axis

platform in the horizontal position with a laser pointing to the first target. In this orientation
the protractor started measuring v pyotractor(to) = 120°. After that, the laser pointing was used
to guide the platform from one target to the other. In this new configuration the protractor
measured Y pyotractor(s 5 = 112°, resulting in an angular variation of AvYp,omractor = 8°,

which is the angular variation that we expect observing using the sensor.

The data collected from the sensor and the filters output are presented in Fig.5.15. As
it can be seen, the UKF estimated value started in about 120|_1 = 7.79%, which was the first
sensor measurement, and after the movement, the estimated value reached 1ﬂ36|36 = 1.182°,
resulting in an angular variation of Avyxr = 6.6° (see Fig.5.13(a)). Furthermore, this
picture also shows that the EKF estimated value started in about @EOH = 7.79° and reached
1&36|36 = 1.078Y, resulting in an angular variation of AvYpxr = 6.71° (see Fig.5.13(b)).
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Figure 5.14: Rotation of 30 degrees around the y axis

Although there was a difference between the filters’ variation and the protractor variation
AYyr — Aprotractor = 1.4° and AYpgr — AYpromractor = 1.29°, part of this difference
was probably caused by small errors coming from the sensor and protractor.

Furthermore, these pictures also show that both filters had a similar behavior and also
their estimated values were always kept inside the 0 bound, which indicates that both were
well conditioned.
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Figure 5.15: Rotation of 8 degrees around the z axis
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After, it was plotted the estimated measurement residuals for each rotation (see Fig.5.16,

Fig.5.17 and Fig.5.18). As it can be seen in these pictures, both filters presented similar

values of mean and standard deviation also presented in Table 5.1. From this table, we see

that although the estimated measurement residuals mean, for both filters, is close to zero,

it is not zero, which indicates that both estimators present a small tendency which could

be caused by the simplicity of the adopted model since both filters present almost the same

mean.

Table 5.1: Mean and standard deviation for the estimated measurement residuals of the UKF

and EKF
Rotation Filter | Parameter | value
UKF mzan 00 32079600
(¢ — ¢) for a rotation of 20° around the X axis ' 5
EKE mean 0.246
o 0.3086°
o | 12
(60 — 0) for a rotation of 30° around the Y axis —
BKF mean 0.204
o 0.429°
x|
(¢p — 1) for a rotation of 8° around the Z axis ' 5
EKE mean —0.471
o 0.324°
) )
g g |
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Figure 5.16: A. UKF (¢ — qg) for a rotation of 20° around X axis.; B. EKF (¢ — d;) for a

rotation of 20° around X axis.
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Experiment 3:

After conducting these controllable tests, we allowed the platform to have free move-

ments. The results of this experiment are shown in Fig.5.19.
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Figure 5.19: Experimental data and UKF output for the platform moving freely

In this picture, some important observations are evidenced by arrows A, B, C. First, from
arrow A, we observed that the estimated orientations presented a slight difference but still
reasonable when peak regions are affected by noise of high amplitude. But, when the signal
is affected by noise of low amplitude, both filters are capable of providing a smoother and
similar answer as shown by arrow B. In addition, arrow C shows that both filters provided a
faster and similar answer when the orientation provided by the sensor changed from —180°
to 180°. About this last region, it is important calculating the smallest value of ¢ — 1/3
because the orientation data provided by the sensor has a discontinuity, it jumps from —180°
to 180°. At this point, the reader should notice that this discontinuity region is caused by
trigonometric functions whose results are in the | — 180°, 180°] interval. It is not verified in
the experimental platform. Furthermore, we also observed the time processing of these two
algorithms. The UKF spent about 0.18s to process input data vectors of size 651 x 1 while
the EKF spent about 0.2296s to process the same amount of data.
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5.1.3 Covariance matrices equivalents for the tangent space

This subsection will present a procedure to obtain approximate values of Q and R matri-
ces in the tangent space, used in the Riemannian filter. This method facilitates the choice of
Q and R values for this filter because it provides a way to transfer the notion that we have of

degrees angles into the tangent space.

This procedure consists of representing a quaternion from the sphere in S? into the tan-
gent space, as it can be seen in Fig.5.20. This picture shows that there is a function that takes

¢ and maps it into the tangent space as g’ based on a reference quaternion q.

Tangent space

Sphere in s?

Figure 5.20: Tangent space
This function, obtained from [Menegaz 2016], is given by:

TS a 0 B Ocos ()
g7 = ny(9) = sin(&)g sin(0) e (5.3)

where
= arccos({q, g))- (5.4)

The procedure to find the approximate values of Q and R for tangent space is divided
in five different steps as it can be seen in Fig.5.21. The first step consisting of building
a 3 x 3 diagonal matrix, where each diagonal term refers to a state variance. After that
it is created a vector composed by the square root of the diagonal terms. The third step
consisting of changing the vector representation from Euler angles to quaternion. After that,
this quaternion is represented in the tangent space through the log function presented in
Eq. (5.3) using the base [I 0 0 0]”. And finally, the generated vector is represented
in the tangent basis using the transformation matrix Tﬂé presented in appendix 1. This last
operation will provide g represented in the tangent space. Based on this vector, the Ry,
represented in the tangent space will be given by a diagonal matrix formed by the square of
each term of g7 as can be seen in the step 5 of Fig.5.21.

As it can be seen in the Fig.5.21, the methodology was represented using the matrix R,

but the same process can also be done to the matrix Q.
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5.1.4 Attitude estimation using the USQUE and Riemannian filter

This section will present the platform attitude estimated using the USQUE and Rieman-
nian filters. These filters received quaternions as input and provided the output in quater-
nions. But, in order to facilitate the comprehension, we changed the output representation
from quaternions to Euler angles.

Experiment 1:

Initially, following the experiment 1 setup decribed in section 5.1.1, we analyzed the
filters’ performance using the consistence method presented in appendix G obtained from
[Bar-Shalom et al. 2004]. Using this method, we found the values of Q and R to keep 95%
of the Chi values under the probabilistic limit (see Fig.5.22(A)). But after testing the filter
performance for a rotation of 30° around the y axis, we observed, for example, that the
USQUE could not follow the system dynamic (see Fig.5.22(B)).
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Figure 5.22: A. Chi square test for USQUE.; B. USQUE output for a rotation of 30° around
y axis.

Since the filters could not follow the sensor signal dynamic, we had to choose different
values of Q and R in order to improve each filter performance.

e Q and R matrices for the Riemannian filter: Initially, R was considered to be a diag-
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onal matrix composed by the squared variance of each sensor axis, which is almost 1
degree for all axes, obtained from the sensor datasheet. After that, we used the covari-
ance matrices equivalents for the tangent space described in section 5.1.3 to map the
matrices Q and R in the tangent space. The best obtained values of Q and R expressed

in the tangent space are given by:

5.4¢~6 0 0
R(Riemannian) = 0 555 0 (5.5)
0 0 5.4e ¢
[ 1.08¢7 0 0 0 0 0 ]
0 1.09¢7 0 0 0 0
0 0  1.08¢7 0 0 0
Q(Riemannian) = B
0 0 0 2242 0 0
0 0 0 0 2.24e 2 0
|0 0 0 0 0 2242,

(5.6)

Observe in Fig.5.23, that for these matrices, the Riemannian filter could effectively

follow the system dynamic and also reduce the sensor noise.
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— Riemannian

-10 -

-15 1

pitch(degree)

-20 [

-25

-30 [

-35¢
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Figure 5.23: Riemannian output for a rotation of 30" around y axis.

e Q and R matrices for the USQUE: Initially, we used the Q matrix format presented in
[Crassidis and Markley 2003].

- At [(02—g02A); 0
Q= 5|7~ amBO V| (5.7)

2 O3x3 03[3
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where o, was tested considering values between (0.31623 x 107> and 0.31623 x 1077),
while o, was tested considering values between (3.1623 x 1073 and 3.1623 x 1071°).
Considering this, after testing different values of Q and R, the USQUE presented the

best answer using the following matrices:

8.7¢713 0 0
Rwsque) = 0 6.9¢~13 0 . (5.8)
0 0 1.7¢8
[ 11713 0 0 —1.2¢2 0 0 |
0 1.1e713 0 0 —1.2¢72 0
0 0 1.1e713 0 0 —1.2¢72
Qusqur) = g 0 0 " 0 0
0 —1.2¢7% 0 0 1.1e719 0
0 0 —1.2¢72 0 0 1.1e719

i (5.9)

Observe in Fig.5.24, that for these matrices, the USQUE could effectively follow the

system dynamic and also reducing the sensor noise.

pitch(degree)

. . . . . .
6 8 10 12 14 16 18
Time(s)

Figure 5.24: USQUE output for a rotation of 30° around y axis.

Experiment 2:

Initially, as we did for the UKF and EKF, the experiment 2 started with a rotation around
the x axis. First, the platform was kept on a horizontal position. In this orientation, the
protractor measured @propractor(ty) = 90° and after the rotation, the protractor measured
@ Protractor(t H = 110, so the angular variation measured was A®pyotractor = 20°, which

is the angular variation that we expect observing using the sensor.

7



The sensor data and the filters output are presented in Fig5.25. As it can be seen, the
USQUE estimated value started in about ¢Eo|—1 = 0.091°, which was the first sensor mea-
surement, and after the movement, the estimated value reached (/311|11 = 20.37%, result-
ing in an angular variation of A¢ysour = 20.279°. While the Riemannian filter esti-
mated value started in about g50|,1 = 0.091° and reached élllll = 20.48°, resulting in
an angular variation of A@giemanian = 20.38°. Although there was a difference between
the filters’ variation and the protractor variation A¢ysoue — A@prrotractor = 0.279° and
A@ piemanian — NG protractor = 0.38°, part of this difference was probably caused by small
errors coming from the sensor and protractor. In addition, this picture also shows the Rie-

mannian filter provides a smoother answer than the USQUE.

roll(degre€

8.6 8.8 9 9.2 9.4 9.6 8

Dados

25+ Riemannian |
—— USQUE

6 6.5 7 7.5 8 8.5 9 9.5 10 10.5
Time(s)

Figure 5.25: Rotation of 20° around x axis.

The second rotation was around the y axis. Initially, the platform was placed in a hori-
zontal position. Using the protractor we measured an initial angle value 6 p,otractor(to) = 90°.
After the rotation, the protractor measurement reached 0 p,otractor(s n= 60°. So, the angular
variation measured by the protractor was Afp,oracior = 30°, which is the angular variation

that we expect observing using the sensor.

The results of this experiment are presented in Fig.5.26. This picture shows that the
USQUE estimated value started in about 90‘_1 = 0.71°, which was the first sensor mea-

surement, and after the movement, the estimated value reached 917‘17 = —30.28°, result-
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ing in an angular variation of Afysour = 30.99°. While the Riemannian filter esti-
mated value started in about HAO‘_I = 0.71° and reached é17|17 = —30.43°, resulting in
an angular variation of AOg;emanien = 51.14%. Although there was a difference between
the filters” variation and the protractor variation A0ysoue — AOprotractor = 0.99° and
AO riemanian — AOprotractor = 1.14°, part of this difference was probably caused by small
errors coming from the sensor and protractor. In addition, in the zoom, this picture shows
the Riemannian filter provides a smoother answer than the USQUE.
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Figure 5.26: Rotation of 30° around y axis.

After that, the third rotation was done around the z axis. For this experiment, the testbed
was initially kept in a horizontal position with the laser pointing to the first target. In this
orientation, the protractor started measuring v protractor(ty) = 120°.  After that, the laser
pointing was used to guide the platform from one target to the other. In this new config-
uration the protractor measured ¥ pyotractor(t;) = 112, resulting in an angular variation of

AYprotractor = 8°, which is the angular variation that we expect observing using the sensor.

As it can be seen in Fig.5.27, the USQUE estimated value started in about ¢0|_1 =
—0.3%, which was the first sensor measurement, and after the movement, the estimated value
reached 1/323|23 = 7.83°, resulting in an angular variation of AvYusoue = 8.13". While the
Riemannian filter estimated value started in about 1@0|_1 = —0.3% and reached 1223&3 = 7.95,
resulting in an angular variation of AYg;emanian = 8.25°. Although there was a difference
between the filters’ variation and the protractor variation AYysoue — AVprotractor = 0.13%
and A piemanian — AUprotractor = 0.259, part of this difference was probably caused by

small errors coming from the sensor and protractor.
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Figure 5.27: Rotation of 8° around Z axis.
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After, it was plotted the estimated measurement residuals for each rotation (see Fig.5.28,
Fig.5.29 and Fig.5.30). As it can be seen in these pictures, both filters presented similar
values of mean and standard deviation also presented in Table 5.2. From this table, we see
that although the estimated measurement residuals mean, for both filters, is close to zero, it
is not zero, which indicates that both estimators have a small tendency.

Table 5.2: Mean and standard deviation for the innovation of the UKF and EKF

Rotation Filter Parameter | value
RiSAJUKF mza“ gggég
(¢ — ¢) for a rotation of 20° around the X axis —
USQUE mean 0.01
o 0.4980°
RiSAdUKF mzan _005(3
(60 — 0) for a rotation of 30° around the Y axis —
USQUE mean —0.188
o 0.454°
RiSAJUKF mzan 6%9?3510
(1 — @) for a rotation of 8° around the Z axis ' 150
USQUE mean 0.045
o 0.503°
B os B 1l i I \ i
g, T gl T Y
e mm T IIWHIIL.M;'MU.M A
0 2 4 6 Tlfne © 10 12 14 16 0 2 4 6 TI?ne( ) 10 12 14 16
(A) (B)

Figure 5.28: A. Riemannian (¢ — (;AS) for a rotation of 20° around X axis.; B. USQUE (¢ — ngS)
for a rotation of 20° around X axis.
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Figure 5.29: A. Riemannian (f — é) for a rotation of 30° around Y axis.; B. USQUE (0 — é)
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Figure 5.30: A. Riemannian (¢ — @ZA)) for a rotation of 8° around Z axis.; B. USQUE (¢ — 1@)
for a rotation of 8° around Z axis.
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Experiment 3:

The next experiment consisted in allowing the platform to move freely. For the roll
angles, both filters presented a very similar answer. But in the peak that happened in about
Is, the USQUE got a bit lost but quickly recovered (see Fig.5.31). In addition, in terms
of pitch angles, the difference was more significant. For this axis, the Riemannian filter
presented a much smooth answer. Furthermore, the USQUE presented some problems during
the estimation of peak values (see Fig.5.32). And finally, considering yaw angles shown in

Fig.5.33, both filters presented a similar answer with a difference of about 1 degree.

This experiment showed that both filters were capable of following the signal dynamic
and providing a smooth answer on emulated real conditions. Furthermore, it is worth men-
tioning that these filters presented different time processing. The Riemannian filter spent
73.57s to process input data vectors of size 563 x 1 while the USQUE spent 10.989s to

process the same amount of data.
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Figure 5.31: Free rotation.

In addition, these filters also provided the estimated gyro bias shown in Fig.5.34 and
Fig.5.35. According to the datasheet, this sensor has an average bias of 2.5°/hr for all axes,
which can also be expressed in (radian/second) doing %288 (rad/s) = 1.2 x 10°(rad/s).
Considering the datasheet information, the Riemannian filter presented a better estimation of
the gyro bias reaching values of order 10~°(rad/s) while USQUE reached values of order

10~ (rad/s) (see Fig.5.34 and Fig.5.35).
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Chapter 6
Conclusion

In chapter 3, after deriving the testbed dynamic model, we showed in simulations and

experiments, the singularity effect. These observations lead to some well know conclusions:

e Considering the rotation sequence 3-2-1, the Euler angles are affected by singularity
when the pitch angle reaches £90°.

e Quaternions are not affected by singularity.

But the interesting point was observing that in simulation, the singularity was not as
abrupt as it was in reality. This happens because Matlab approximates cos(90°) by 6.1232 x
10717, While in the tilt-compensated eCompass algorithm, the tan(¢) was implemented
using the atan2 function, which generates the abrupt variations observed in experimental
data.

Up to this point, we concluded that Euler angles provide a clear physical interpretation
of the testbed orientation and that naturally the platform will not reach the singularity due
to it’s limitation of +45° in x and y axes. But if we decide representing the orientation of a
small satellite which has an initial angle, referring to the surface of the platform, such that it
was possible reach values of 6 closer to 90°, we can easily reach the singularity. In addition,
in the context of small satellites that will operate in space, the singularity region is easily

reachable. Therefore, as possible, quaternions could be used to avoid the singularity.

After observing the advantages and disadvantages of each parametrization of the attitude,
in Chapter 5 we evaluated four filtering algorithms. EKF and UKF were the first two. From
the results, we concluded that:

e The consistency method presented in Appendix G provided an easier way to choose

the values of Q and R matrices.

e Both filters presented coherent estimated angular variations Af ;.. compared with
the angular variations obtained from the protractor A p,.oirqctor When the platform was

rotated each axis at the time.
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e The implemented UKF was faster than the EKF and for the Experiment 3 both filters

presented an almost equal answer.

After that, the quaternion filters were evaluated and the results led to the following con-

clusions:

e The method to determine approximate values of Q and R for the tangent space pre-
sented in section 5.1.3 provided an easy way to determine the values of Q and R ma-
trices for the Riemannian filter.

e Both filters also presented coherent estimated angular variations A6 ;.. compared
with the angular variations obtained from the protractor A8 p,.oirqctor When the platform

was rotated each axis at the time.

e The RiSAdUKEF was capable of effectively estimating the testbed attitude for all tests.
But it was slower than USQUE which had some problems to estimate the orientation

in peak regions when the testbed preformed free movements.

e The gyro bias estimated by the RISAdUKF was more correct than the gyro bias esti-
mated by the USQUE.

In addition, it is worthy mentioning that all the filters were capable of providing a
smoother and more precise answer compared with the sensors’ output. This suggests that
in order to obtain the same orientation result, the user either can save money in sensor and

spend in processing or spend money in sensor and save in processing.
These conclusions are summarized in the following table:

Table 6.1: Summarized results

Input Algorithms If the user has If the user reaches  If the user has
limited processing 6 = 90" high processing
Euler angle EKF X
UKF X
Quaternions USQUE X X
RiSAdUKF X X

6.1 Future work

For future work, this research can be extended by the following evaluations:

e The USQUE and RiSAdUKEF filters could be implemented on ABACUS which is a
professional nanosatellite control board. This implementation would improve the com-

prehension of each filter behaviour under limited processing conditions.
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e In RiSAdUKEF, the gradient descent algorithm could be substituted by another faster
optimization algorithm. This would keep the advantages of this filter and also improve
the filter behavior under limited processing conditions.

e Different control techniques could be implemented on ABACUS using the estimated
orientation from theses filtering algorithms.
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Appendix A

Sensors

This section will provide fundamental concepts and specifications about the sensors uti-

lized to obtain the platform attitude.

In order to address this issue, the platform was equipped with a inertial measurement
unity (IMU) fabricated by Adafruit. This component was placed in the test platform center of
rotation as it can be seen in Fig.A.1, where xyz are the IMU axes. This inertial measurement
unity provides three different types of output, which are acceleration, magnetic orientation
and angular velocity. Each of these measurements is provided through three components in
IMU axes. The sum of all output is equal to nine different measurements, that is why this
type of sensor is referred as 9DOF.

IMU

Figure A.1: IMU location

This IMU obtains those measurements from two different electronic devices, which are
a LSM303DLHC and a L3GD20. The specifications of those components are presented in
table A.1 In addition it is important to mention that those specifications are in the platform
expected range operation, but they can be adjusted to different ranges through register set-
tings.

The LSM303DLHC is composed by a 3D digital linear acceleration sensor and a 3D dig-
ital magnetic sensor. In order to better understand those components, their work principles
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Table A.1: LSM303DLHC and L3GD20 settings

Components Sensor Range Measurement unit
LSM303DLHC Magnetometer -1.3+— 1.3 Gauss
Accelerometer 22 g

L3GD20 Gyroscope -250 — 250 degree/s

will by presented. The accelerometer is composed by three proof masses aligned with each
axis of the system case. Each one of those mass is connected to two springs which allow the
mass movement along each axis direction as it can be seen in Fig.A.2. In order to measure
the displacement from the equilibrium position, the mass is connected to a electric circuit
in such way that the mass movement is associated by a variable resistance. And based on
the voltage variations it is obtained a relation between the voltage and acceleration on that

direction.

smu@/ 7

PROPORTIONAL

TO SPECIFIC
FORCE
~

Figure A.2: A single axis accelerometer

SPRING

The other sensor is the magnetometer, which has two main construction principles. The
first one is based in the Hall effect principle, which states that a magnetic field applied
perpendicularly to a current flow generates a voltage difference across the conductor shown
in Fig.A.3.A. The second principle is the magneto-resistive effect, which is observed in some
magnetic field sensitive materials shown in Fig.A.3.B. The main structural configuration of a
magnetometer is composed by three of these materials aligned with each axis of the system

case.

Finally, the L3GD20 is a low-power three-axis angular rate sensor also known as
gyroscope. This sensor is developed based on the Coriolis force. According to
[Frautschi et al. 2007], this force is considered as an inertial force that acts on a object that
is in motion relative to a rotating frame. In another words, when a object is rotating there is a
force orthogonal to the axis of rotation. If the body axes is rotating in clockwise direction, the
force acts to the left of the object motion and If the body axes is rotating in counterclockwise
direction, the force acts to the right of the object motion. Based on that, a mass, connected
by springs, is placed on the plane orthogonal to axis of rotation as shown in Fig.A.4. The

displacement from the equilibrium position is used to measure the angular velocity.
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Multimeter

(A)

Figure A.3: Theoretical conception of principles used to construct a magnetometer; A. Hall
effect; B. Magneto-resistive effect.

CAPACITOR

Figure A.4: Coriolis effect
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Appendix B

Exponential and logarithm mapping of
the S~ ! applyed in the Riemannian
Filter

According to [Menegaz 2016], the exponential mapping (expfl(gTS )), used to mapping

vectors from tangent basis to the sphere(in canonical basis {e, ..., e, }) of R™) is given by

TS

e g .
expy(9"®) == qeos(||g"||) + HgTsHsm(HgTSH)~ (B.1)
Now, lets p = exp(g”*), so, for
075 .= arccos({qp)), (B.2)

The inverse mapping called logarithm mapping (In}) is given by

HTS QTSCOS(HTS)
o -1 _
Ing(p) := epy (v) = sin(QTS)p B sin(679) q

(B.3)
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Tangent space

Sphere in s?

Figure B.1: Exponential and logarithm mapping
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Appendix C

Gradient descent algorithm applyed in
the Riemannian Filter

According to [Menegaz 2016] the predicted quaternion Xy;—; € 53 can be obtained
using the intrinsic gradient descent algorithm presented in [Pennec 1998]. This algorithm
consists of the following steps:

Step 1:

Initially choose a threshold € € R, ¢ > 0 and choosing the initial candidate

q:= fr(Xp—1je—1) (C.1)
Step 2:
Forl1 <i:< N:
N
e/ ==Y wlQtoRoV(x," ' @q7"). (C.2)
i=1
Step 3:
While (|[e”]| > ¢)
(a) Choose a new candidate
q := RoVtoQ(¢") ® q, (C.3)
After that repeat the step 2.
Step 4:
)A(k‘k_l =q. (C4)
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Appendix D

Vector parametrization for unit
quaternions applyed in the Riemannian
Filter

Some times computations of unity quaternions lead to computational problems. Accord-
ing to [Menegaz 2016], one convenient way to deal with this issue is to use vector parameter-
izations of the S® such as rotation vectors. This author shows that quaternions are expressed

in rotations vectors as follows. Initially, consider a quaternion q := [y ¢]”, so:

The equations that express a quaternion in rotation vectios is given by:

QtoRoV (q) := qp,y = 2arccos(qo) (D.1)

2
ol
where qp,,, 1s the result of the parameterization and o is the imaginary part of the quaternion.

In addition, the inverse transformation is given by:

RoVtoQ(qhy) =9 (D.2)
where,
q = COS(HQROVH)—Fim Qf}%oV in(HqRoVH) (D3)
2 HQROV” 2
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Appendix E

Sigma sets method applyed in the
Riemannian Filter

In the Riemannian Filter, the sigma sets were calculated using the methodology presented
in [Julier and Uhlmann 2004]. This methodology consist of the following algorithm:

Step 1:

Initially for (N = 2n + 1), where n is the number of states that you have, We have to
choose a wy < 1. For the Riemannian filter we choose wy = %
Step 2:

For i=1,...,n:

1— _
W = Wiy = ——0 =X (E.1)
2n
— n
Xz:X+( 1 PXX)a (E2)
— n
Xi+n = X - ( 1 PXX)~ (E3)
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Appendix F

Hard-iron and scale factor compensation

According to [Microelectronics 2010], a magnetometer can be calibrated using the fol-

lowing method. First, considering the soft-iron effect negligible, the ellipsoid generated by

3D rotations are not tilted. The equation of this ellipsoid is given by:

(M, — Xo)? n (M, — Yp)? n (Mz — Zp)?

a? b2 c?

= R?

where

Xo, Yo and Z; are the offset generated by hard-iron distortion.

M, M, and M, are the magnetic sensor raw measurements.

e a, b and c are the semi-axis lengths.

R is the magnetic field strength constant.

From Eq. (F.1)

2X
2%,

@27,
M2=[M, M, M, —M? —M? 1] Cia

RS TS

2 P2 2 a’v2 a2
a” R = Xg — =Yg — =40

(F.1)

, (F2)

After collecting n magnetic field measurements, the Eq. (F.2) can be written as:

anl = [H]nXGXGXI
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Applying the last square method

X =[H"H)'H'W.
So, the offset components caused by hard-iron disturbance are given by:

X@) , _ XE)

2)
2X (4)

s
I
=
I

Now, let
A:=a*R* = X(6) + Xo+ X(4)Y7 + X(5) 23,
B:=—

X(4)

A
X(5)

and also let the magnetic measurements less the offsets be defined as:

me = Mz - X07

My, := M, — Yo,

M,, =M, — Z,.
So,

M2 M? M2
TT + vy + 2z 1
A B C

From the ellipsoid equation theory, the scale factors are given by:

SC, = VA,
SC, = VB,
SC, =+C.
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Therefore, the final magnetic field unity vector components are given by:

M,
My = —==, F.16
M,
My, = S—éf’ (F.17)
Y
M
M,,, = === F.18
SC(Z ( )
Then,
M2, +M, + M, =1 (F.19)

Finally, in order to obtain the corrected magnetic field vector, this unity vector given by
the components M, M,,, and M., must be multiplied by local magnetic field intensity.

104



Appendix G

Practical evaluation of consistency

In this section will be presented a method, derived based on linear filters, used to evaluate
the consistency of an estimator obtained from [Bar-Shalom et al. 2004]. According to this

author a state estimator is consistent if it satisfy the follow assumptions

e First, the expectation of the difference between the state in the instant k minus the the
predicted value for that instant must be zero

Elz(k) — @ (k|k)] = 0. (G.1)

e Second, The expectation of this difference squared is equals to the state covariance

matrix
El[x(k) — @(k|k)][x(k) — &(k[k)]"] = P(k|k). (G.2)
Under the linear Gaussian assumption:

plr(k)| 2% = Nlw(k); @ (klk), P(k|k)]. (G3)

The normalized state estimation error squared (NEES) is given by
d2(k) = [z(k) — 2 (k|k)]" P(k|k) " [x(k) — @ (k|k)]. (G4
In order to evaluate the filter consistency. The NEES should be calculated for each inter-
action and about (95%) of these values should be below the probability level. This probability
level is obtained from the normalized chi square distribution taking into account the distri-

bution degree of freedom, which is equal to the number of states, and probability desired,

which is normally considered to be 0.95.
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Appendix H

Parallel transport

In order to represent a vector in different tangent space, the Riemannian filter uses par-
allel transpotations. This method transports vectors and matrices from tangent space of a
quaternion to the tangent space of other quaternion. This section will present the parallel

transport of vectors a matrices explained in [Menegaz 2016].

H.0.1 Parallel transport of a vector

Given the quaternions q and r € H and assuming that v = logy, the parallel transport of
a vector from ¢ € T,5™ ! to T,.5" ! is given by:

T

Tsn—l . I/T 14 T 1% 14
T = — _ +— —'—[——_ . H.l
¢ asin(V) ¢+ opeos(vNa’C + (= e (D

H.0.2 Parallel transport of a matrix

Assuming that X and ( are the eigenvalues and eigenvectors of a matrix P € 7,5 xT,S?,
the parallel transport from 7, S® to 7.5 of the covariance matrix P is obtained following the

following steps:
e Step 1: The parallel transport from 7,5 to T,.5® of the eigenvectors of P is done using

Eq. (H.1)

T T

T. X 14 v T v v
S v I— 22 e H.2
¢ 2= —qsin(l)C 4+ peos(vDa’C+ (= i ()

e Step 2: Using the parallel transportation of eigenvectors from step 1, the parallel trans-
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portation of the matrix P is given by:

3
PT'I‘ — Z ACTT(CTT)T- (H3)
=1
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Appendix I

Transformations between tangent basis
and canonical basis

According to [Menegaz 2016] the transformation from tangent basis to canonical ba-
sis (TBtoCB) and the transformation from canonical basis to tangent basis (CBtoTB) are
obatined as follows:

First, it is necessary calculating the transformation matrix 77, which will send vectors

from the tangent basis to canonical basis. This matrix is given by:

Tie = |XHe [Xfe [XHe [Xfc|. (L)

where [X1]c = (q)c and [X]]c is given by the parallel transport of the vectors e; of the
tangent space of [I 0 0 0] para g, considering i=2,3 and 4.

Using 17,c, the transformation of basis are given by:

e (TBtoCB)

Ve =Trec[V]e 1.2)

e (CBtoTB)

VL = (Tre) ' V]e (L3)
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