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RESUMO

Título: Hybrid control for pose stabilization using dual quaternions
Autor: Hugo Tadashi Muniz Kussaba
Orientador: Prof. Dr. João Yoshiyuki Ishihara

Motivado tanto pelas vantagens da representação em dual quatérnios duais e por problemas relativos à obs-
trução topológica de se ter um equilíbrio assintótico globalmente estável, esse trabalho visa usar o formalismo
de quaternion dual e as ferramentas de sistemas dinâmicos híbridos para tratar o problema de estabilização de
pose de corpos rígidos. O grupo de Lie dos quatérnios duais proporciona um modo eficiente de representar a ci-
nemática linear e rotacional de um corpo rígido sem singularidades. Algumas estratégias híbridas são propostas
para lidar com o problema de “chattering” presente em todos os controladores por realimentação descontínuos
enquanto ao mesmo tempo garantindo atratividade global da pose de estabilização do corpo rígido.





ABSTRACT

Title: Controle híbrido para estabilização de pose usando quaternions duais
Author: Hugo Tadashi Muniz Kussaba
Supervisor: Prof. Dr. João Yoshiyuki Ishihara

Motivated both by the advantages of the dual quaternion representation and by the problems concerning
the topological obstruction to global asymptotic stability, this work addresses the rigid body pose stabilization
problem using dual quaternion formalism and dynamic hybrid systems tools. The Lie group of unit dual
quaternions provides a computationally efficient way to represent coupled linear and rotational kinematics
without singularities. Some hybrid control strategies are proposed to overcome the chattering problem present
in all discontinuous-based feedback controllers while at same time also guaranteeing global attractivity of the
stabilization pose of the rigid body.
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INTRODUCTION

1.1 POSE CONTROL OF RIGID-BODIES

The control of rigid body motion consists of attitude (or orientation) and position control. Applications
of this type of control are vast, ranging from control of mechanical systems, such as robotic manipulators, to
satellites and spacecraft. Because of this, rigid-body motion control has been extensively investigated by the
control and systems community [3, 4, 5, 6, 7, 8]. For instance, maintaining a specific orientation and position,
or changing the orientation and translation with time in a specific manner is crucial for mission effectiveness
of most spacecraft, such as pointing a satellite to a ground station (see Fig. 1.1(a)). The same is valid for
unmanned vehicles and robotic systems which rely on precise coupled attitude and positioning control. In a
welding robotic manipulator, the end-effector must not only position the welding tool in the desired trajectory
of welding, but also in a specific orientation to weld correctly (see Fig. 1.1(b)). The global control arises when
arbitrary changes in attitude and angular velocity are allowed or desired [9]. Such feature is highly desirable
for spacecraft systems, for instance, to enhance the flight envelope [10] and to allow agile maneuvers [11]. This
has applications, for example, in surveillance missions and in the recording of sports games with an unmanned
quadrotor equipped with a camera, as illustrated in Fig. 1.1(c).

(a) (b)

(c)

Fig. 1.1: Some examples where pose control is crucial: (a) Pointing a satellite antenna to a ground station.
(b) While welding, a robotic manipulator has to control not only the position of the welding tool, but also its
orientation. (c) An unmanned aerial vehicle holding a camera to record a sport game or making a surveillance
of an area must have both position and orientation precisely controlled in order to achieve its objectives.

1
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The attitude and the orientation of a rigid body is known as pose, and the coupled control of attitude and
position of a rigid-body is known as pose control of rigid-bodies, or simply, pose control. The aforementioned
problems of pose control can be classified in a stabilization problem or a tracking problem. In the case of
stabilization, one desires to maintain the rigid body in a specific pose. In the tracking problem, one desires that
the rigid body follows (that is, tracks) a desired reference attitude and a reference spatial trajectory. Moreover,
depending on how the actuation is done to the controlled system, the problem can be classified as a kinematic
control problem or a dynamic control problem. In the former case, the control inputs to the system are
the angular and linear velocity, while in the latter case the control inputs are the resulting force and torque
expressed in the rigid-body frame (more details will be seen in the end of Chapter 2).

In all of these scenarios, the configuration space of the system is not the Euclidean space Rn, but a space
of states that is a non-Euclidean differentiable manifold M: in the case that the state-space of the system is
the orientation of a rigid body, M is the manifold SO(3) of proper rotations, and in the case that the state-
space of the system is the pose of a rigid body, M is the manifold of rigid body motions SE(3). These
manifolds are special in the sense that they are also an algebraic structure named group (more details can
be seen on Appendix A), whose group operation is the composition: a rotation followed by a rotation gives
another rotation, and a rigid body motion followed by another rigid body motion gives another rigid body
motion. The group operation is compatible with the smooth structure on the manifold and we call these Lie
groups. Another important Lie groups are the unit quaternion group Spin(3) [6] and the unit dual quaternion
Lie group Spin(3) n R3 [12]. Those can be used to algebraically express rotations and rigid body motions
in a simpler way, analogously to the way complex numbers can be used to express rotations in the plane and
dual numbers translations in the planes [13]. In this thesis, we propose hybrid controllers for the rigid body
pose stabilization and tracking in the unit dual quaternion Lie group Spin(3) n R3, while dealing with the
problems of topological obstructions to global stabilization, unwinding and vulnerability of the stability to
small measurement noises.

1.1.1 Why to use quaternions and dual-quaternions?

The control and modeling of mechanical systems are intrinsically connected with the study of the efficient
descriptions of rigid-body transformations. While the tridimensional position of a rigid body—for example,
the end-effector of a rigid body, a mobile robot, etc.—can be easily described by a vector with the Cartesian
coordinates, the rigid-body orientation has multiple descriptions. Among the most used, it is worth mention-
ing the use of rotation matrices, unit norm quaternions and the Euler angles [14]. Among these descriptions,
it should be emphasized that the latter description is a minimal parameterization for the group SO(3): any
parameterization of SO(3) requires at least three parameters, since it is a three-dimensional manifold. Never-
theless, Euler angles is not a global parameterization of SO(3): there are some points where the rank (that is,
the degrees of freedom) of this parameterization is less than three, making occur a problem known as gimbal
lock [14]. This implies that Euler angles are kinematically singular in the sense that transformation from their
time rates of change to the angular velocity vector is not globally defined. Therefore, continuous control laws
using these three-parameter representation cannot be globally defined, and, as such, the use of Euler angles are
limited to local attitude maneuvers—this is a particular concern when deploying in safety-critical environments.
This problem is not exclusive to Euler angles, but for any three dimensional parameterization of SO(3): while
SO(3) is a three dimensional manifold and it is only required three parameters to describe a rotation, there does
not exist a global 3-dimensional parameterization without singular points for the rotation group. This fact is
a corollary to Brouwer’s theorem on the invariance of domain [15] (see Section B.1 of Appendix B for more
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details). It is interesting to remark that this impossibility can also be understood algebraically in the sense that
is impossible to extend the complex numbers to a three dimensional algebra (see Theorem A.1 of Appendix A
for details).

The impossibility of embedding SO(3) topologically in R4 was proved by Hopf in 1940 [16]. It is possible,
however, to embed SO(3) in R5 [15]. This parameterization, however, leads to nonlinear differential equations
and an undesirable amount of computation is necessary to obtain a rotation as an output. Another alternative
is to use many-to-one correspondences, such as the unit quaternions. This method has advantages of leading
to linear equations while using only one redundant parameter while representing the most general possible
rotation of the rigid body, that is, having no singular points. It would be reasonable to ask whether it might be
possible to obtain a many-to-one representation, using only three parameters, but still possessing the property
of being a local homeomorphism, and having no singular points. The answer is no, for this would force the
parameter set to be a covering space of SO(3), and it is known that the 3-sphere, which cannot be represented
topologically by less than 3 parameters, is the only covering space of SO(3) (in fact, it is the universal covering
space of SO(3)).

To represent a complete rigid-body transformation, that is, rotation and translation, the Cartesian vector of
position can be directly combined with one of the descriptions of rotation. This manner to represent a rigid-
body transform, however, ignores the natural coupling between translation and rotation, and in general, results
in a poor representation for the control [17]. To describe a rigid-body coupled movement in a global manner,
the homogeneous transformation matrices (HTM) to represent elements of SE(3) and the unit dual quaternions
stand out [18]. Recently, this last representation received a growing interest from the scientific community
because it is more compact than HTM (it uses only eight parameters against twelve parameters), it allows an
easy extraction of geometric parameters, and allows the use of control rules directly in the defined in a vector
field, eliminating the need to build controllers with matrix structure.

In summary, while it is possible to directly design attitude and rigid motion controllers for mechanical sys-
tems respectively using rotation matrices and homogeneous transformation matrices (HTM) [4, 19, 20], using
the unit quaternion group Spin(3) for rotations and the unit dual quaternions Spin(3)nR3 for rigid motions can
bring computational advantages because of the smaller number of parameters utilized to describe a movement.
In fact, it has been noted by some authors the following advantages: [21] concludes that employing quaternions
are more efficient and more compact that using homogeneous transformation matrices, [6] notes that normal-
izing quaternion to unit-norm quaternions is easier than using Gram-Schmidt to matrix orthogonalization, [18]
compares dual quaternions against homogeneous matrices and against Lie algebra approach and concludes that
for manipulators with high number of degree of freedoms and specially for redundant manipulators, the dual
quaternion based method are more cost effective than the homogeneous transformation, [22] shows a com-
parative study on the proportional control algorithms based on the logarithmic mapping of the HTM and the
unit dual quaternion and shows that the unit dual quaternion-based control law is higher in computational effi-
ciency, [23] compares computation of forward kinematics and Jacobian matrix for any serial manipulator based
on HTM and the dual quaternion framework and [24] compares the computation of forward kinematics and Ja-
cobian matrix for any serial manipulator, based on product of exponentials formula and unit dual quaternion
algebra, concluding that the latter method is in general more efficient in terms of computational operations and
storage. Finally, it is also interesting to remark that the quaternion and dual quaternion kinematic equations
(which will be detailed in Chapter 2) can be used to exploit the inherent passivity of rigid-body dynamics to
design control laws that does not need direct angular or linear measurements [25, 26].
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1.1.2 Why to use hybrid control?

Stabilizing a system whose state-space is not the Euclidean space Rn, but it is one of the Lie groups SO(3),
SE(3), Spin(3), Spin(3)nR3 or it is a vector bundle over theses groups, poses several challenges. In particular
(see Appendix B for more details), there does not exist a continuous vector field with a global asymptotically
stable equilibrium point defined on the groups SE(3) and Spin(3) n R3 (and on any vector bundle over these
groups) [27], or defined on the groups SO(3) and Spin(3) (and on any vector bundle over these groups) [17].
Due to this (as will be seen in more details on Chapter 3), continuous feedback controllers proposed on the
literature sums up to controllers guaranteeing only almost global stability, which has an undesired equilibrium
manifold that even being of null measure can lead to undesirable effects (see [28] for more details), or con-
tinuous controllers that guarantees global stability of the set of dual quaternions representing the same pose,
but suffers from unwinding. To achieve global stabilization of pose control using dual quaternions and at the
same time mitigating the unwinding problem, one can resort to a memoryless discontinuous feedback or to
resort to a hybrid strategy with memory. As will be detailed in Chapter 3, the discontinuous-based solutions are
extremely sensitive to noise and cause undesired chattering in the system, and even worse, to turn the system
into an unstable system. The fragility of discontinuous-based feedback to small amplitude measurement noises
stems from the non-feasibility of achieving robust global stabilization of a disconnected set of points from a
pure non-hybrid state feedback [29].

Control design using hybrid systems, however, has extra capabilities: for example, sample and hold control
(a special type of hybrid feedback) can be used to achieve stabilization that is robust to measurement noise and
fast sensor/actuator dynamics, even if such robustness is impossible using purely continuous-time feedback
[30, p. 68]. A hybrid mechanism that has been used to induce robustness with respect to measurement noise is
hysteresis switching based control [28, 31], and it is extension, bimodal control [32]. Hysteresis is a property
of a system that relates its input and output through a mechanism that keeps track of the previous input and
output values, i.e. it has memory. The framework of dynamical hybrid systems is very useful to model these
type of controllers and also to assess its robustness. Hysteresis switching control can stabilize large classes of
nonholonomic systems even though stabilization is impossible using time-invariant continuous state feedback
[33], and robust stabilization is impossible using time-invariant locally bounded feedback [34].

Summing up, despite the solid contributions in the literature on dual quaternion-based controllers in the
context of rigid body motion stabilization and tracking, existing pose controllers are either only almost global,
global but suffers from unwinding, or have lack of robustness in the sense that they are sensitive to arbitrarily
small measurement noises, or use a hybrid solution that mitigates the unwinding and chattering problems while
still being global: for the kinematic control scenario, [35, 36] present a discontinuous control law to avoid
unwinding, but this control law is prone to measurement noises of arbitrarily small amplitudes and chattering;
the controller proposed in [17] uses a hybrid solution based on the hysteresis approach of [37] mitigating the
chattering and unwinding problem, while still guaranteeing global stability; in [38] this controller is improved
by using the bimodal technique of [1]. For the dynamic control scenario, [39, 36, 2] present a controller based
on feedback linearization that uses a memoryless discontinuous-based approach and thus prone to measurement
noises of arbitrarily small amplitudes; [40] proposes a sliding-mode controller, but the tracking error is not null;
[26] proposes a controller based on the passivity technique of the attitude-only control of [25], but it suffers
from unwinding; [41] proposes an adaptive controller, but the stability of the closed-loop system is not global;
[42] presents a passivity-based solution for the finite-time stabilization of pose control, but it is not global (only
almost global); [43] proposes an adaptive solution that allows uncertainties in the inertial parameters of the
system, but this controller is not global.
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Table 1.1 summarizes the solutions proposed in the literature. It important to remark that some of these
works which are not unwinding-free propose the use of a memoryless discontinuous approach to eliminate the
unwinding, but as will be seen in Subsection 3.4, this leads to the chattering problem.

Table 1.1: Summary of pose control strategies for the dynamic control scenario and its features. The symbolX
means yes, the symbol ◦ means partially and the symbol × means no.

Controller Global Unwinding-free Chattering-free Stabilization/Tracking Kinematic/Dynamic

[35, 36] X × X Tracking Kinematic
Chapter 4 X ◦ ◦ Stabilization Kinematic

[38] X ◦ ◦ Stabilization Kinematic
Chapter 5 X ◦ ◦ Stabilization Kinematic

[40] × X × Tracking Dynamic
[39, 36, 2] X X × Tracking Dynamic

[26] X × X Stabilization Dynamic
[41] X × X Tracking Dynamic
[42] ◦ X × Tracking Dynamic
[43] ◦ × X Tracking Dynamic

Chapter 6 X ◦ ◦ Tracking Dynamic

1.2 CONTRIBUTIONS

In this work, hybrid control strategies for rigid-body pose control within the framework of dual quaternions
are proposed for the kinematic and dynamic control scenario. The hybrid strategies stem from the idea of the
hybrid kinematic control law with hysteresis switching proposed in [28] for the attitude-only control using
quaternions. This strategy is used to solve the vulnerability to small amplitude measurement noises problem
present in discontinuous control laws [29].

It is important to emphasize that, albeit some algebraic identities in quaternion algebra can be easily carried
over to the dual quaternion algebra by the principle of transference [44, 6], the proposed generalizations do not
follow by the principle of transference: the necessity of different procedures for quaternion and dual quaternion
stems from their different topologies and group structures. For example, the unit quaternion group is a compact
manifold, whereas the unit dual quaternion group is not a compact manifold. This reflects in the use of distinct
approaches to controller design (see for instance [4] and [45]). The unit dual quaternion group is not a subgroup
from Spin(3)—it is indeed the other way around—and boundedness, geodesic distance, norm properties, and
other manifold features that are valid on S3 cannot be directly carried to Spin(3) nR3.

In particular, it is worth to point out the following contributions:

• A proof that the topological obstruction for global stabilization by continuous feedback for compact
manifolds are also present in SE(3) and in the group of the unit dual quaternions (see corollaries B.2 and
B.3).

• A hybrid kinematic controller [17] which extends the hybrid kinematic controller proposed in [28] for
kinematic stabilization of quaternions to dual quaternions (see Chapter 4).
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Table 1.2: Summary of proposed controllers in this thesis.

Controller Hybrid strategy Convergence rate Control problem
Kinematic [17] Hysteretic Asymptotic Stabilization
Kinematic [32] Bimodal Exponential Stabilization
Dynamic [32] Bimodal Asymptotic Tracking

After the qualification exam of this thesis, the following contributions were also done:

• A novel hybrid kinematic controller using a novel Lyapunov function and the bimodal strategy from
[32]. Compared with the kinematic controllers proposed in [17, 38], the proposed solution to address
kinematic stabilization has an exponential convergence (see Chapter 5).

• A novel dual-quaternion controller which considers the entire dynamics of the rigid body for the stabi-
lization and tracking problem (see Chapter 6).

Table 1.2 summarizes the proposed controllers in this thesis and each one of its characteristics.

1.2.1 Published and submitted papers

During the doctorate, the following papers related to the theme of the thesis have been published:

• H. T. Kussaba, L. F. Figueredo, J. Y. Ishihara, and B. V. Adorno, “Hybrid Kinematic Control for Rigid
Body Pose Stabilization using Dual Quaternions,” Journal of the Franklin Institute, vol. 354, no. 7, pp.
2769–2787, 2017

• P. P. M. Magro, H. T. M. Kussaba, L. F. Figueredo, and J. Y. Ishihara, “Dual quaternion-based bimodal
global control for robust rigid body pose kinematic stabilization,” in Proceedings of 2017 American
Control Conference, Seattle, USA, 2017, pp. 1205–1210

Not directly related to the thesis, the following papers also have been done and published during the doctorate:

• H. T. M. Kussaba, R. A. Borges, and J. Y. Ishihara, “A new condition for finite time boundedness analy-
sis,” Journal of the Franklin Institute, vol. 352, no. 12, pp. 5514–5528, dec 2015

• H. T. M. Kussaba, J. Y. Ishihara, and R. A. Borges, “Uniform versions of Finsler’s lemma,” in Proceed-
ings of the 54th IEEE Conference on Decision and Control. IEEE, dec 2015, pp. 7292–7297

• ——, “Finite time boundedness and stability analysis of discrete time uncertain systems,” in Proceedings
of the 54th IEEE Conference on Decision and Control. IEEE, dec 2015, pp. 5972–5977

• H. T. M. Kussaba, R. A. Borges, and J. Y. Ishihara, “Parameter-Dependent Filter with Finite Time Bound-
edness Property for Continuous-Time LPV Systems,” in Proceedings of XVII Latin American Conference
on Automatic Control, Medellín, Colombia, 2016, pp. 189–194

• J. Y. Ishihara, H. T. M. Kussaba, and R. A. Borges, “Existence of continuous or constant Finsler’s vari-
ables for parameter-dependent systems,” IEEE Transactions on Automatic Control, vol. 62, no. 8, pp.
4187–4193, aug 2017
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1.3 MANUSCRIPT ORGANIZATION

An introduction to quaternion and dual quaternion algebra is given in Chapter 2. The hybrid framework
used in this work, along the basic tools that it will use it will also be given in Chapter 2. A brief explanation of
the problems arising in the control of the pose of rigid bodies is given in Chapter 3.

The main results of this work are proved and presented in chapters 4, 5 and 6: Chapter 4 presents the
kinematic controller introduced in [17]. Chapter 5 presents another kinematic controller that was obtained
after the qualification exam of this thesis. This novel kinematic controller is based in a Lyapunov function
which guarantees an exponential rate of convergence and also uses a bimodal strategy introduced in [32]. Both
kinematic controllers does not considers the full dynamics of the system. In Chapter 6 is proposed a controller
which considers the full dynamics of rigid-body pose: both the pose and the twist as a state of system, and
actuating force and torque on the system are the control inputs. The conclusion of this research is presented in
Chapter 7.

A summary of the algebraic structures used in this work is present in Appendix A. Topological results
related to obstruction of global stabilization are presented and explained in more details in Appendix B. Copies
of the published papers directly related to the thesis can be found in Appendix C.
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PRELIMINARIES

2.1 SET-VALUED ANALYSIS

Taking into account uncertainties, disturbances and modeling errors leads naturally to set-valued maps and
differential inclusions: for instance, it is usual in robust control problems that only the ranges of a parameter α
of the model is known, but the exact value of α is not known. These problems can be modeled by the family of
parametrized differential equations

ẋ(t) = f(x(t), α), α ∈ S,

which leads to the differential inclusion

ẋ(t) ∈ F (x(t)), F (x) := {f(x, α) : α ∈ S},

where S is the set of possible values of the unknown parameter α.

Differential inclusions are generated, for example, by problems concerning functions which satisfy a dif-
ferential equation to within required accuracy, by differential inequalities, by implicit differential equations, by
differential equations with discontinuous right-hand side and by problems in the theory of optimal and robust
control [51]. A system of differential inequalities

ẋi ≤ fi(x1, . . . , xn), i = 1, . . . n,

for example, can also be considered as a differential inclusion. In the context of control and systems, we have
dynamical systems of the form [52]

ẋ(t) = A(x(t))
d

dt
[B(x(t)] + C(x(t)), x(0) = x0,

in which the velocity of the state of the system depends not only upon the state x(t) of the system at time t, but
also on variations of observations B(x(t)) of the state, This leads to an implicit differential equation

f(x, ẋ) = 0,

which is equivalent to the differential inclusion ẋ ∈ F (x) with F (x) = {v | f(x, v) = 0}.

Differential inclusions are also used to study ordinary differential equations with an inaccurately known
right-hand side: if the right-hand site of a differential equation is in an ε-neighborhood of a given function
f(x), then any solution of the differential equation is a solution to the differential inclusion

ẋ ∈ f(x) + εB,

where B is a unit ball in Rn centered at zero.

Moreover, differential inclusions play a crucial role in the theory of differential equations with a discon-
tinuous right-hand side, that is, differential equations ẋ(t) = f(x(t), t) with a discontinuous function f . The
investigation of such equations is of great importance since they model the performance of various mechanical
and electrical devices as well the behavior of automatic control systems [53]. By embedding f(x, t) into a
set-valued map F (t, x) then it is possible to develop a rigorous mathematical theory of discontinuous systems
[51, 52].
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Since the dynamics of economical, social, and biological macrosystems is multivalued, differential inclu-
sions serve as natural models in macrosystem dynamics. Moreover, differential inclusions of first-order (in
particular, the Moreau’s sweeping process) encompasses several practical situations in Mechanics, such as
water falling in a cavity, the dynamics of systems with perfect unilateral constraints, and plasticity and the
evolution of elastoplastic systems [54]. Differential inclusions are also used to describe some systems with
hysteresis. In particular, the controller developed in this thesis will be based on a hybrid hysteresis technique
to avoid chattering problems.

2.1.1 Set-valued functions

A set-valued function F from X to Y (or a correspondence) is a mapping that associates to each point of
X a subset of Y , and will be denoted by the notation F : X ⇒ Y . If F (x) is a singleton (that is, a set with
only one element) for each x, then the set-valued function can be regarded as an usual single-valued function
from X to Y .

The notion of continuity of single-valued functions is not immediately extended to set-valued functions:
adapting the property of preserving converging sequences yields the notion of outer semicontinuity, while
adapting the usual ε−δ definition (pre-image of any open set is open) yields the notion of inner semicontinuity,
and these notions are not equivalent in general [55].

To define outer semicontinuity, it is necessary first to define a notion adapting the idea of convergence of
sequences for sets.

DEFINITION 2.1 [56] Let {Si}∞i=1 be a sequence of subsets of Rn. The outer limit of this sequence,
denoted by lim supSi, is the set of all accumulation points of sequences of points xi ∈ Si.

Based on the property that continuous functions preserve the limit of convergent sequences, we define outer
semicontinuity of a set-valued function as follows:

DEFINITION 2.2 [56, p. 102] A set-valued function F : Rn ⇒ Rm is outer semicontinuous at x ∈ Rn

if for each sequence {xi}∞i=1 ∈ Rn converging to x, the outer limit lim supF (xi) is contained in F (x). A
set-valued function F : Rn ⇒ Rm is outer semicontinuous (everywhere) if it is outer semicontinuous at
each x ∈ Rn. Given S ⊆ Rn, F is outer semicontinuous relative to S if the set-valued function

F �S (x) :=

F (x), if x ∈ S,
∅, if x 6∈ S,

is outer semicontinuous at each x ∈ S.

In this thesis, we will also be dealing with functions taking values in product of sets. The following lemma
will be useful to check the outer semicontinuity of such functions.
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Lemma 2.1. Let Fi : Rn ⇒ Si, i = 1, . . . , p, be set-valued functions. Let F : Rn ⇒ S1 × · · · × Sp be the
set-valued function defined by F (x) = (F1(x), . . . , Fp(x)). F is outer semicontinuous (at x, relative to S)
if and only if Fi is outer semicontinuous (at x, relative to S) for each i = 1, . . . , p.

proof.

Follows directly by the definition of outer semicontinuity using outer limits and from the identity

lim supF (xi) = lim sup(F1(xi), . . . , Fp(xi)) = (lim supF1(xi), . . . , lim supFp(xi)).

�

An alternative and important characterization of outer semicontinuity is related to the fact that the graph of
continuous functions are closed sets (see, for instance [57, p. 192]).

Theorem 2.1 Closed graph theorem

[55, p. 154] [56, p. 102] A set-valued function F : Rn ⇒ Rm is outer semicontinuous if and only if
the set

Gr(F ) := {(x, y) : x ∈ Rn, y ∈ F (x)} ⊆ Rn × Rm, (2.1)

defined as the graph of the set-valued function F , is closed. Note that the set (2.1) is the natural
generalization of the graph of a real-valued function. Moreover, F is outer semicontinuous relative to
S ⊆ Rn if and only if the set Gr �S := {(x, y) : x ∈ S, y ∈ F (x)} is relatively closed in S × Rm.

By using the closed graph theorem for set-valued functions, it is possible to easily prove that the notion of
outer semicontinuity relative to a set is weaker than outer semicontinuity everywhere.

Lemma 2.2. Let S ⊆ Rn. If a set-valued function F : Rn ⇒ Rm is outer semicontinuous everywhere,
then F is outer semicontinuous relative to S.

proof.

By Theorem 2.1, Gr(F ) is closed, thus Gr �S (F ) = Gr(F )∩ (S×Rm) is relatively closed in S×Rm. �

Based on the fact that the pre-image of open sets by continuous functions are open sets, we define a set-
valued function F : Rn ⇒ Rn to be inner semicontinuous if the set

F−1(O) := {x ∈ Rn : F (x) ∩O 6= ∅}

is open in Rn whenever O is an open set of Rn [55, p. 193].

For the development of this thesis, the notion of outer semicontinuity will be more useful (fortunately,
the property of outer semicontinuity is typically easier to verify than inner semicontinuity [55, p. 155]). In
particular, the following fact will be used several times on this thesis:
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Theorem 2.2

Let sgn be the set-valued function defined as

sgn (x) :=


{1} , if x > 0,

{−1} , if x < 0,

{−1, 1} , if x = 0.

(2.2)

The set-valued function sgn is outer semicontinuous.

proof.

Note that
Gr(sgn) = {(x,−1) : x < 0} ∪ ({0} × {−1, 1}) ∪ {(x, 1) : x > 0}

is a closed set of R2. By Theorem 2.1, sgn is outer semicontinuous. �

The following modification of this function will also be important for some of the proposed hybrid con-
trollers.

Theorem 2.3

Let A > 0. The set-valued function B : R2 ⇒ R defined by

B(x, y) := ysgn (x−Ay)

is outer semicontinuous.

proof.

Note that the function ysgn (x−Ay) can only take the following values:

ysgn (x−Ay) =


{y}, if x > Ay,

{−y, y}, if x = Ay,

{−y}, if x < Ay.

Let (x, y) ∈ R2. We will divide the proof in three cases: x > Ay, x < Ay and x = Ay.

First, suppose that x > Ay. In this case, ysgn (x−Ay) = {y}. Let {(xk, yk)}∞k=1 be an arbitrary
sequence of R2 converging to (x, y). Since limk→∞(xk, yk) = (x, y), there exists k∗ such that for all
k > k∗,

xk > Ayk.

Consequently, for k > k∗, one has that yksgn (xk −Ayk) = yk and the accumulation point of this se-
quence is {y} ⊆ ysgn (x−Ay). The case that x < Ay is similar to the previous case. Finally, if x = Ay,
then ysgn (x−Ay) = {−y, y}, but for any sequence {(xk, yk)}∞k=1, one has that yksgn (xk −Ayk) ⊆
{−y, y}, �
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Another property that will be interesting to adapt for set-valued maps is that single-valued continuous
functions maps compact sets into compact sets. Based on this property, the definition of boundedness of a
single-valued function is extended in the set-valued setting with the idea of local boundedness.

DEFINITION 2.3 [55, pp. 157-158] F is locally bounded if for any compact set K, there exists m > 0

such that F (K) ⊂ mB, where B is the closed unit ball in the Euclidean norm of the convenient dimension.

It is important to note that continuous single-valued functions are always locally bounded, since continuous
single-valued functions preserve compact sets.

2.1.2 Differential and difference inclusions

A differential inclusion is described by

ẋ ∈ F (x(t), t), x(0) = x0, (2.3)

where F is a set-valued function on Rn × R+. At each fixed time, a differential inclusion specifies that the
state derivative belongs to a set of possible directions, rather than a specific direction. If F is only a single-
valued function, (2.3) is only an ordinary differential equation. The concept of difference inclusion is defined
analogously.

Solutions of (2.3) are understood in the Carathéodory sense, that is, a solution of (2.3) is an absolutely
continuous function such that for almost every t in some interval, the derivative d

dtx(t) exists and is contained
in the set F (t, x(t)) [58, p. 384]. Roughly speaking, Carathéodory solutions relax the classical requirement
that the solution must follow the direction of the vector field (2.3) at all times by allowing (2.3) to be unsatisfied
in a set of measure zero (for more details, see [53]).

Differential (difference) inclusions will be of interest to us when dealing with differential (or difference)
equations with a discontinuous vector field f (or a discontinuous map g). In these conditions, even if the
differential equations not have solutions in the classical sense, there are generalized solutions that represent
the physical behavior of the system accurately [59]. In particular, to give an accurate picture of the behavior
of the system under small perturbations (in theses cases the effect of state perturbations on the solutions can
be quite significant since we do not have anymore any guarantee on the continuous dependence of the initial
conditions), generalized solutions expressed in terms of set-valued dynamics are used. Given the differential
(difference) equation

ẋ = f(x), (x+ = g(x))

its Krasovskii regularization is given by the differential (difference) inclusion

ẋ ∈ F (x), (x+ ∈ G(x))

where
F (x) =

⋂
δ>0

cof(x+ δB) (G(x) =
⋂
δ>0

g(x+ δB)),

where B is the closed unit ball of appropriate dimension and S denotes the topological closure of the set S. See
Fig. 2.1 for an illustration of the computation of F in a point x∗.
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The differential inclusion yielded by Krasovskii regularization introduces additional solutions (some which
are pathological) that are meaningful since they arise from arbitrarily small state perturbations that converge to
zero asymptotically. Moreover, asymptotic stability in the original system is robust if and only if asymptotic
stability holds for the regularized system [60]. For more details, the reader is referred to [55, 58].

In hybrid systems, the presence of state perturbations can dramatically change its behavior: this can oc-
curs even if the perturbation is arbitrarily small and the flow and jump map are smooth (as will be seen in
Section 2.2.3). Due to this, the notion of Krasovskii regularization will be generalized to deal with hybrid
systems.

x∗x∗ − δ x∗ + δ

f [(x∗ − δ, x∗ + δ)]

(a) (b) (c)

F (x∗)

Fig. 2.1: Regularization of a scalar discontinuous function f . (a) Graph of f near a neighborhood of x?. (b)
Image of f near a neighborhood of x?. (c) Krasovskii regularization of f evaluated at the point x∗.

2.2 DYNAMICAL HYBRID SYSTEMS

Dynamical hybrid systems refers to systems that exhibits both discrete-time and continuous-time behaviors
[60, 56]. For instance, a bouncing ball that is dropped from an initial height and bounces has a continuous-time
dynamics between each bounce, but as the ball impacts the grounds, its velocity is changed discontinuously
according to a inelastic collision rule.

In this work, the framework of [60, 56] will be used to model these systems. Distinguishing features of
this hybrid system framework includes allowing for multiple jumps at a time instant, allowing for an infinite
number of jumps in a finite amount of time (that is, a Zeno solution), and not insisting on the uniqueness of
solutions (which is natural in certain hybrid systems) [61]. Moreover, this framework captures a wide variety
of dynamic phenomena and other models for hybrid systems: hybrid automata [62, 63], switched systems
[64, 65], sampled-data systems [66] and networked control systems [67] can all be cast in the form of a hybrid
system of this framework [60, 56].

The state of a hybrid system is a combination of continuous-time states and discrete-time states. The
former change continuously, according to a flow condition, and the latter change discretely, according to a jump
condition.
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C D

Fig. 2.2: Hybrid trajectory. The blue trajectory represents a continuous evolution (the flow of the system) and
the red trajectory represents a discrete evolution (the jump of the system).

The model of a dynamical hybrid system H is determined by five objects: the flow map F , the jump map
G, a set M ⊆ Rn, the flow set C ⊆ M and the jump set D ⊆ M . The state-space of the system will be given
by C ∪D.

The continuous behavior or flow of a hybrid system is modeled by a differential equation ẋ = f(x) (or,
more general, a differential inclusion ẋ ∈ F (x)), which is called the flow map, while the discrete behavior or
jumps is modeled by a difference equation x+ = g(x) (or, more general, a difference inclusion x+ ∈ G(x)),
which is called the jump map. When the current state of system is in the flow set C, the transition of the states
is done by the flow map, while if the current state of system is in the jump set D, the transition of the states
is done by the jump map. Fig. 2.2 illustrates a possible trajectory realized by the state of a hybrid dynamical
system.

In addition, to guarantee the well-posedness of the solutions of the system and to analyze the stability
of the system and assure the invariance of this stability regarding state perturbations, we will require some
regularity conditions on the data of hybrid systems, called hybrid basic conditions [30] (also known as Basic
Assumptions in [60, 56]).

DEFINITION 2.4 (hybrid basic conditions) [60, p. 43][30, p. 39] Consider a hybrid system H =

(C,F,D,G) on M ⊆ Rn. The hybrid system H is said to satisfy the hybrid basic conditions if the
following conditions are satisfied:

1. M ⊆ Rn is an open set.

2. C and D are relatively closed sets in M .

3. F : M ⇒ Rn is outer semicontinuous relative to C and locally bounded on M , and for all x ∈ C,
the set F (x) is nonempty and convex.

4. G : M ⇒M is an outer semicontinuous relative to D and locally bounded on M , and for all x ∈ D,
the set G(x) is nonempty.

Remark 2.1. To the best of the author knowledge, the hybrid basic assumptions on Definition 2.4 is the one with
the weakest hypothesis in the literature. As will be seen in the future chapters, the hybrid systems presented in
this work will satisfy stronger hypothesis that imply the hybrid basic conditions. For instance, all the hybrid

14



systems in this work will have M = Rn, so condition 1. will be always valid, and in this case, C and D must
be closed sets of Rn to satisfy condition 2.

It also be useful to remark that if F (resp. G) is outer semicontinuous everywhere, then F (resp. G) is outer
semicontinuous relative to C (resp. D) by Lemma 2.2. Moreover, if F is a single-valued continuous function,
then F satisfies all conditions of condition 3. of Definition 2.4. Similarly, if G is a single-valued continuous
function, then G satisfies all conditions of condition 4. of Definition 2.4.

In summary, a hybrid systemH is given by the constrained differential inclusions

H :
ẋ ∈ F (x) , x ∈ C,

x+ ∈ G (x) , x ∈ D.
(2.4)

Note that the sets C and D are not necessarily disjoint, and when the state is in C ∩D, the system can flow or
jump: the solutions of a hybrid dynamical system are possibly non-unique. It is also important to remark that
C ∪D = M is not necessarily true. In the case the trajectory of the system reach the complement of C ∪D in
M , the solution will not be able to evolve forward.

Remark 2.2. Note that by definition, the setM only has to contain the flow setC and the jump setD. The reader
can then ask, why not always choose M as the smallest set possible containing C and D, that is, M = C ∪D?
As will be seen during this thesis, the state-spaces C ∪ D of the hybrid systems developed in this thesis will
always be a proper closed subset of Rn. Thus, the choice M = C ∪D implies the violation of condition 1. of
Definition 2.4 (note that Rn is a connected space, so the only simultaneously open and closed subsets of Rn

are the empty set ∅ and Rn [57, p. 226]).

The next section will explore with more detail the notion of solution in the context of hybrid dynamical
systems.

2.2.1 Solutions to hybrid systems

A solution to a hybrid system will be described simultaneously by its discrete and continuous evolution:
one real variable will be used to describe the amount of time passed and another integer variable will describe
the number of jumps that have occurred. Thus, a natural choice to parameterize a solution to a hybrid system
is to use a subset of R∗+ × N. However, not every subset of R∗+ × N will make sense to describe an evolution
of a hybrid system: if a solution already jumps twice in the first two seconds, then it will not make sense to
ask what is the state of this particular solution after four seconds and the first jump. The next definition states
precisely the construction of a time domain in the hybrid system framework.

DEFINITION 2.5 [30, Def. 2.2] A compact hybrid time domain is a subset E ⊂ R∗+ × N such that

E =

J−1⋃
j=0

([tj , tj+1], j)

for some finite increasing sequence of times 0 = t0 ≤ t1 ≤ t2 ≤ · · · ≤ tJ . A subset E ⊂ R∗+ × N is a
hybrid time domain if for all (T, J) ∈ E, E ∩ ([0, T ]× {0, 1, . . . , J}) is a compact hybrid domain.

Remark 2.3. It is interesting to remark that Definition 2.5 does not exclude solutions that jump more than twice
in the same instant of time. It is physical reasonable to consider these solutions. For instance, in a Newton’s
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cradle with three balls, when the left ball impacts the middle ball, the velocity jumps from 0 to a positive value,
but since the middle ball transfers the impact to the right ball in an almost instantaneous time (so it is reasonable
to consider in the hybrid model that these two events occurs at the same instant of time), the velocity jumps to
0 again [68].

Given a hybrid systemH, its solutions will be a function from an hybrid time domain to the state-space M
satisfying (2.4) in the Caratheodory sense: in each interval Ij associated to the j-th jump (that is, an interval
Ij such that Ij × {j} = E ∩ (R∗+ × {j}), the function t 7→ x(t, j) is absolutely continuous on each compact
subinterval of Ij . On each such Ij , this function is differentiable almost everywhere. Roughly speaking, this
means that solution is not required to follow the direction of the vector field at all times, that is, the differential
inclusion need not be satisfied on a set of a measure zero.

DEFINITION 2.6 [30, p. 17] Let E be a hybrid time domain. A hybrid arc is a function x : E → M

if E is a hybrid time domain and if for each fixed j ∈ N, the function t 7→ x(t, j) is locally absolutely
continuous on the interval

Ij = {t ∈ R∗+ : (t, j) ∈ E}.

The hybrid time domain E associated to a hybrid arc x : E →M will be denoted by dom(x).
A solution to the hybrid systemH given by (2.4) is a hybrid arc satisfying [60, p. 40]

1. x(0, 0) ∈ C ∪D.

2. For each j ∈ N such that Ij has non-empty interior,

ẋ(t, j) ∈F (x(t, j)) for almost all t ∈ Ij ,
x(t, j) ∈C for all t ∈ [min Ij , sup Ij).

3. For each (t, j) ∈ E such that (t, j + 1) ∈ E,

x(t, j + 1) ∈G(x(t, j)),

x(t, j) ∈D

The following classification of solutions to a hybrid system is important:

DEFINITION 2.7 [30, Definition 2.4] A hybrid arc x that is a solution to the hybrid systemH is called:

• nontrivial, if dom(x) contains at least one point different from (0, 0)

• maximal, if it cannot be extended, that is, there is no other solution x′ whose domain dom(x′)

contains dom(x) as a proper subset and such that x′ ≡ x on dom(x).

• complete, if dom(x) is unbounded.

Existence and uniqueness of solutions of a hybrid system is a more subtle issue for hybrid systems than
it is for classical systems: there are reasons to consider models that do not have solutions from some initial
conditions and that do not have unique solutions. Nevertheless, the existence of nontrivial solutions from
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a point x0 ∈ C ∪ D amounts to the existence of a classical discrete-time nontrivial solution or a classical
continuous-time nontrivial solution. This is stated exactly in the next theorem.

Theorem 2.4

[60, p. 44] Suppose that H satisfies the hybrid basic conditions (see Definition 2.4) and that x0 ∈ Rn

is such that x0 ∈ D or there exists a nontrivial solution z to ż ∈ F (z), z(0) = x0. Then there exists a
nontrivial solution x toH with x(0, 0) = x0.

Regarding the structure of the maximal solutions, we have the following characterization.

Theorem 2.5

[60, p. 44] Suppose that H satisfies the hybrid basic conditions (see Definition 2.4) and for each
x0 ∈ C ∪D there exists a nontrivial solution toH starting from x0. Let x be a maximal solution toH.
Then exactly one of the following three cases holds:

1. x is complete.

2. x blows up in finite hybrid-time, that is, there exists T ∈ R∗+ and J ∈ Z such that (T, J) 6∈
dom(x) and limt→T |x(t, J)| → ∞.

3. x eventually jumps out of C ∪ D, that is, there exists T ∈ R∗+ and J ∈ Z such that (T, J) ∈
dom(x) and x(T, J) 6∈ C ∪D.

2.2.2 Stability of hybrid systems

As the hybrid controllers for hybrid systems usually include discrete logic variables (such as timers, coun-
ters and memory states) that do not converge to a single point, the typical design problem will be of stabilizing
a set rather than just a single point. In particular, in the framework of quaternion and dual quaternion we will
want to stabilize a set of two points that represents the same rotation (or pose).

In order to do stability analysis, we can use generalizations of classical Lyapunov theorems. In fact, the
usual Lyapunov-based control design tools for classical pure continuous-time and pure discrete-time systems
(see for instance [69]) can also be generalized for hybrid systems satisfying the hybrid basic conditions. These
hybrid Lyapunov tools, however, guarantees a weaker notion of stability that does not require the completeness
of all solutions of the hybrid system. This notion of stability is stated in the next definition.

DEFINITION 2.8 [30, Def. 4.1] Given a hybrid systemH with state-space M and a compact set A ⊆M ,

• A is pre-stable if for each ε > 0 there exists δ > 0 such that any solution x toHwith ‖x(0, 0)‖A ≤ δ
satisfies ‖x(t, j)‖A ≤ ε for all (t, j) ∈ dom(x).

• A is pre-attractive if there exists δ > 0 such that any solution x to H with ‖x(0, 0)‖A ≤ δ is
bounded with respect to M and if x is complete, then x(t, j)→ A as t+ j →∞.

17



• A is pre-asymptotically stable if its both pre-stable and pre-attractive.

• A is asymptotically stable if it is pre-asymptotically stable and there exists δ > 0 such that any
maximal solution x toH with ‖x(0, 0)‖A ≤ δ is complete.

For a pre-asymptotically stable set A, the pre-basin of attraction (also known as basin of pre-attraction
[60]) of A is the set of all x ∈ C ∪ D from which all solutions are bounded with respect to M and the
complete ones converge to A.

Remark 2.4. Let H be a hybrid system satisfying the hybrid basic conditions (see Definition 2.4). If for each
x ∈ D, we have that ∅ 6= G(x) ⊂ C ∪ D, and for each x ∈ C, there exists ε > 0 such that the differential
inclusion ẋ ∈ F (x) has a Caratheodory solution in the interval (0, ε), then all maximal solutions to H are
complete [30, p. 42] and pre-asymptotically stability is equivalent to asymptotically stability.

The next theorem generalizes the classical stability analysis based on Lyapunov functions to the context of
hybrid systems. First, we define what is a Lyapunov function candidate in the hybrid systems framework.

DEFINITION 2.9 [60, p. 62] Given the hybrid system H on the state-space M ⊂ Rn and the compact set
A ⊂M , the function V : M → R is a Lyapunov function candidate for (H,A) if:

1. V is continuous and nonnegative on (C ∪D) \ A.

2. V is continuously differentiable on an open set O such that C \ A ⊂ O.

3. The following limit is satisfied:
lim
x→A

V (x) = 0.

Theorem 2.6

[60, p. 62] Let H be a hybrid system satisfying the hybrid basic conditions (see Definition 2.4) and
A ⊂M a compact set satisfying G(A ∩D) ⊂ A. If there exists a Lyapunov-function candidate V for
(H, A) such that

1. ∇V (x)T f(x) < 0 for all x ∈ C \ A, f ∈ F (x),

2. V (g(x))− V (x) < 0 for all x ∈ D \ A, g ∈ G(x) \ A,

then the set A is pre-asymptotically stable and the basin of pre-attraction of A contains every forward
invariant, compact set.

Asymptotic stability can also be characterized using a class of functions called comparison functions, and
in particular, of a class namedKL-class. Those functions are standard in the analysis of stability and robustness
of classical non-hybrid systems [70] and will also be useful in the hybrid setting. Next, we state the definition
of KL-class functions.
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DEFINITION 2.10 A continuous function β : R∗+ ×R∗+ → R∗+ belongs to the set KL and it is said to be a
KL-class function (or shortly, a KL-function) if

• for each s ≥ 0, the map r 7→ β(r, s) is non-decreasing and zero at zero;

• for each r ≥ 0, the map s 7→ β(r, s) is non-increasing and tends to zero when s tends to infinity.

The pre-asymptotic stability of a compact set will be described by bounding a proper indicator function,
which will be defined next.

DEFINITION 2.11 Let A ⊂ Rn be a compact set and let O be an open set of Rn containing A. A
continuous function ω : O → R≥0 is a proper indicator for A in O if ω(x) = 0 if and only if x ∈ A and
if (xi)i∈N is a sequence in O with either limxi = ∞ or limxi ∈ ∂O, where ∂O denotes the boundary of
O, then limω(xi) =∞.

The next theorem states the characterization of pre-asymptotic stability of a compact set in terms of KL
functions and a proper indicator function on the compact set. This theorem will be useful to state a robustness
result for hybrid systems (see Theorem 2.9).

Theorem 2.7

[60, Theorem 14] LetH be a hybrid system satisfying the hybrid basic conditions (see Definition 2.4)
and A ⊂ M a pre-asymptotically stable, compact set with basin of pre-attraction given by BA. Then
for each function ω that is a proper indicator for A on BA, there exists β ∈ KL such that each solution
x starting in BA satisfies

ω(x(t, j)) ≤ β(ω(x(0, 0), t+ j), for all (t, j) ∈ dom(x). (2.5)

Note that the bound defined by the KL-function β in (2.5) decreases as the time progress since β is non-
decreasing in the second argument. By this and by continuity of β, for any ε > 0 there is a sufficiently large
T ≥ 0 (possibly depending on the solution x) such that ω(x(t, j)) < ε for any t+ j ≥ T . Since ω is a proper
indicator function for the set A, this implies that any solution x starting in the basin of pre-attraction of BA is
nearing the compact set A as the system evolves.

2.2.3 Generalized solutions and robustness of hybrid systems

In many situations, a control system is affected by perturbations and uncertainties that can possibly destroy
the desired behavior for the system. In practice, the sensors of the system are never perfect and in every
implemented system, noise arises in the measurements. It is also a common situation that not every physical
parameter is exactly known: uncertainties, variations, or disturbances on these physical parameters lead to
the called parametric uncertainty of the model. In these settings, the objective of the controller is not only
guarantee a good operation in a nominal system, but to guarantee the good operation in a family of systems

19



possibly arising from these disturbances.

In hybrid systems, the effect of state perturbations on the dynamics can be quite dramatic. In particular,
even if the flow map and the jump map are smooth, the asymptotic stability is not robust to perturbations. To
illustrate this, consider the hybrid system of Example 2.1.

EXAMPLE 2.1 [60, Example S7] Consider a hybrid system with data given by

C = [0, 1], F (x) = −x for all x ∈ C,
D = (1, 2], G(x) = 1 for all x ∈ D.

(2.6)

It is interesting to remark that F and G are single-valued continuous functions. Note that a small perturba-
tion in data, namely, closing the set D, changes the globally asymptotically stability of the origin. Indeed,
the hybrid system with

C = [0, 1],F (x) = −x for all x ∈ C,
D = [1, 2],G(x) = 1 for all x ∈ D.

(2.7)

has a solution starting at x = 1 that remains at 1 and does not flow to the origin. The same occurs if the
flow map of (2.6) is replaced by G(x) = 1 + ε with ε > 0:

0 1 2 0 1 2
(a) (b)

Fig. 2.3: Example of a non-robust hybrid system. The blue continuous arrow represents the flow of
the solution and the red dashed arrow represents the jumps of the solution. (a) The origin is globally
asymptotically stable in hybrid system given by (2.6). (b) After taking the closure of the jump set, the
origin is not more globally asymptotically stable: there is a solution starting at 1 that remains at 1 through
an infinite number of jumps.

To take into account these small perturbations that change the dynamics of the system, the analysis is
carried on a regularization of the original hybrid system; this regularized hybrid system includes the solutions
of the original system and also includes solutions that can arise from arbitrarily small perturbations in the data
(C,F,D,G) of the original hybrid system. This regularization is done in a way that generalizes the Krasovskii
regularization procedure of Section 2.1.2.

DEFINITION 2.12 [30, Def. 3.10] The Krasovskii regularization of the hybrid systemH on state-space
M with data (C,F,D,G) is the hybrid system Ĥ

Ĥ :
ẋ ∈ F̂ (x) , x ∈ Ĉ,

x+ ∈ Ĝ (x) , x ∈ D̂.
(2.8)
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with data given by
Ĉ :=C ∩M,

F̂ (x) :=
⋂
δ>0

cof((x+ δB) ∩ C), for all x ∈ Ĉ,

D̂ :=D ∩M,

Ĝ(x) :=
⋂
δ>0

G((x+ δB) ∩D), for all x ∈ D̂.

Fig. 2.4 illustrates the construction of Ĉ and D̂ by using the Krasovskii regularization.

δ Ĉ

C

Fig. 2.4: Enlarged set Ĉ generated by Krasovskii regularization.

Since C ⊂ Ĉ, D ⊂ D̂, F (x) ⊂ F̂ (x) for all x ∈ C and G(x) ⊂ Ĝ(x) for all x ∈ D, the solutions
of H are also solutions to Ĥ (when this is the case we say that the hybrid system Ĥ contains H). The extra
solutions of Ĥ can be obtained as the limit of solutions perturbed by admissible state perturbations with size
converging to zero [30]. Briefly speaking, an appropriately limit of a sequence of solutions to H generated
with state perturbation decreasing in magnitude turns out to be solutions to the regularized hybrid system Ĥ.
Conversely, any solution to the regularized system can be approximated, with arbitrary precision, with solutions
to the original system generated with state perturbations [30].

Hybrid systems satisfying the hybrid basic conditions are already regularized. In fact, the Krasovskii reg-
ularization is the smallest hybrid system Ĥ containing H that satisfies the hybrid basic conditions [30]. For
these systems, there are theoretical and practical guarantees on the robustness of pre-asymptotic stability (we
will see it in Theorem 2.9). To state them, we first need to define the concept of σ-perturbation of a hybrid
system.

DEFINITION 2.13 [71] Given a hybrid system H with data (C,F,D,G) and a continuous function σ :

Rn → R∗+, the σ-perturbation ofH is the hybrid systemHσ with data given by

Cσ :={x ∈M : (x+ σ(x)B) ∩ C 6= ∅},
Fσ(x) :=coF ((x+ σ(x)B) ∩ C) + σ(x)B for all x ∈ Cδ,
Dσ :={x ∈M : (x+ σ(x)B) ∩D 6= ∅},

Gσ(x) :={y ∈M : y ∈ g + σ(g)B, with g ∈ G((x+ σ(x)B) ∩D)}, for all x ∈ Dδ.

21



In particular, if σ(x) is constant, say, σ(x) = δ, then

Gδ(x) = G((x+ δB) ∩D) + δB, for all x ∈ Dδ.

Remark 2.5. The mappings Fσ and Gσ may be set valued at points x where σ(x) > 0, even when F and G are
single-valued mappings.

The perturbed system Hσ contains the unperturbed hybrid system H, and the extra solutions of Hσ can be
linked to solutions that arise due to parameter variations, measurement noise and external disturbances [60].
For instance, consider a external disturbance d that is bounded in norm by a value M > 0. The solutions of

ẋ = F (x) + d

are contained in the set of solutions of ẋ ∈ F (x) + MB. Taking σ(x) = M , F (x) + MB ⊂ Fσ(x) for all
x ∈ Cσ . Thus, the solutions perturbed by external disturbances are contained in the M -perturbation ofH.

A feature of hybrid systems satisfying the basic hybrid conditions (in other words, hybrid systems that are
equal to its own Krasovskii regularization) is that pre-asymptotic stability of compact sets are preserved under
the presence of small amplitude σ-perturbations. This is stated in the next theorem.

Theorem 2.8

[60, Theorem 15] LetH be a hybrid system satisfying the hybrid basic conditions (see Definition 2.4)
andA be a compact set pre-asymptotically stable with basin of pre-attraction given by BA. There exists
a continuous function σ : Rn → R∗+ satisfying σ(x) > 0 for x ∈ BA such that, for the σ-perturbed
hybrid systemHσ , the compact set A is pre-asymptotically stable with basin of pre-attraction BA.

By Theorem 2.8 there exists a continuous function σ such that the perturbed system Hσ still preserves the
pre-asymptotic stability of compact sets. Note that if σ(x) ≤ σ(x) for all x ∈ Rn, then the perturbed system
Hσ also preserves the pre-asymptotic stability of compact sets, since the solutions of Hσ are also solutions
of Hσ . In particular, if the hybrid system satisfies the basic assumptions, then its stability is not fragile to
admissible state perturbations with size converging to zero.

Note that the previous Theorem 2.8 guarantees robustness of the stability of the system concerning a par-
ticular σ-perturbation (the theorem only concludes that there exists a particular function σ such that A is still
pre-asymptotically stable in Hσ). In this sense, the value of σ(x) could be very small for every x ∈ Rn. What
can be said for arbitrary perturbations σ with amplitude σ(x) of any size? The next theorem gives a robustness
guarantee for σ-perturbations with a constant σ (but with arbitrary amplitude). Roughly speaking, the stability
is preserved in a practical sense that solutions that starts close to A can be made to still stay close to A within
a desired accuracy. Moreover, the solutions can be made to decay in the same rate that the nominal system.

Theorem 2.9

[60, Theorem 17] LetH be a hybrid system satisfying the hybrid basic conditions (see Definition 2.4)
and A be a compact set pre-asymptotically stable with basin of pre-attraction given by BA. If there
exists β ∈ KL and a proper indicator function ω for A on BA such that, for all solutions starting in
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BA,
ω(x(t, j)) ≤ β(ω(x(0, 0), t+ j) for all (t, j) ∈ dom(x), (2.9)

then for each ε > 0 and compact set K ⊆ BA, there exists δ > 0 such that each solution of the
σ-perturbation ofH starting in K satisfies

ω(x(t, j)) ≤ β(ω(x(0, 0), t+ j) + ε for all (t, j) ∈ dom(x). (2.10)

The property concluded in this theorem is referred to as semiglobal and practical: semiglobal because (2.10)
is valid for every compact set K ⊆ BA (although not for the entire basin of attraction BA if it is not compact),
and practical because the value of ε can be made small to within a required accuracy. In general, for practical
purposes, it will suffice to choose a sufficiently small ε to have a good performance for the system. Fig. 2.5
illustrates Theorem 2.9.

K

A

H

(a)

K

Hδ

(b)

A

ε

Fig. 2.5: Illustration of the practical stability of Theorem 2.9. (a) Nominal hybrid system H. (b) Perturbed
hybrid system by a constant δ-perturbation.

Note that the estimate given by the KL-function β guarantees that, when the data of H is perturbed by a
constant δ, every solution of Hδ is such that it approaches A + εB when t + j, with (t, j) ∈ dom(x), grows
unbounded. It is also interesting to note that the KL-function β is the same in (2.9) and in (2.10). This means
that the decay rate of β can be still preserved (at least in a practical and semi-global sense) in the perturbed
system.

2.3 QUATERNIONS

The quaternion algebra is a four-dimensional associative division algebra over R introduced by Hamilton
[72] to algebraically express rotations in the three-dimensional space.

DEFINITION 2.14 The algebra of quaternions, whose set is denoted by H, is the four-dimensional al-
gebra over R generated by the basis elements, 1, ı̂, ̂ and k̂, whose multiplication is defined pairwise as in
Table 2.1.
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Table 2.1: Multiplication table of the elements of the canonical basis of H. The multiplication is not
commutative and the multiplication order is row times column.

1 ı̂ ̂ k̂

1 1 ı̂ ̂ k̂

ı̂ ı̂ −1 k̂ −̂
̂ ̂ −k̂ −1 ı̂

k̂ k̂ ̂ −ı̂ −1

As a first comment, it is important to notice that the multiplication of this algebra is not commutative. This
is not unreasonable, however, as we will use quaternions to represent rotations in the three-dimensional space
and composition of rotations is depends on the order that those are done. It is also interesting to note that the
quaternions are the only finite dimensional, associative and division algebra over the real numbers which is not
commutative (see Appendix A for more details, in special Theorem A.2).

An arbitrary element of H is spanned by the basis 1, ı̂, ̂ and k̂, and is given by

q := η + ı̂µ1 + ̂µ2 + k̂µ3 =


η

µ1

µ2

µ3


where η, µ1, µ2, µ3 ∈ R are called the Euler symmetric parameters or the Euler-Rodrigues parameters
[73, p.2].

For ease of notation, the quaternion q = η + ı̂µ1 + ̂µ2 + k̂µ3 may also be denoted as

q = η + µ, with µ = ı̂µ1 + ̂µ2 + k̂µ3, (2.11)

or in terms of its coordinates, as the block vector

q =

[
η

µ

]
= (η,µ), (2.12)

where η ∈ R and µ = (µ1, µ2, µ3) ∈ R3. Both notations are equivalent and will be used interchangeably in
this work.

By linearly extending the multiplication defined in Table 2.1, the quaternion multiplication between two
arbitrary quaternions q1 = η + µ and q2 = η′ + µ′ is explicitly given by

q1q2 =
(
η + ı̂µ1 + ̂µ2 + k̂µ3

)(
η′ + ı̂µ′1 + ̂µ′2 + k̂µ′3

)
=

(ηη′ − µ1µ
′
1 − µ2µ

′
2 − µ3µ

′
3) + ı̂ (ηµ′1 + µ1η

′ + µ2µ
′
3 − µ3µ

′
2)

+̂ (ηµ′2 − µ1µ
′
3 + µ2η

′ + µ3µ
′
1) + k̂ (ηµ′3 + µ1µ

′
2 − µ2µ

′
1 + µ3η

′) . (2.13)

In terms of its components, the multiplication (2.13) can also be expressed in block vector notation as

q1q2 =

[
η

µ

][
η′

µ′

]
=

[
ηη′ − µTµ′

ηµ′ + η′µ+ µ× µ′

]
,
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where the right-hand side is a block vector with the first component in R and the second component in R3. The
notation × stands for the cross product between two vectors of R3.

An arbitrary quaternion may be decomposed into a real component and an imaginary component: given
q ∈ H, we define Re (q) := η and Im (q) := µ. Thus, q = Re (q) + Im (q). Pure imaginary quaternions
are the quaternions in the set

H0 := {q ∈ H : Re (q) = 0}

and they are very convenient to represent vectors of R3 within the quaternion formalism by means of the
following isomorphism between H0 and R3:

q = ı̂µ1 + ̂µ2 + k̂µ3 7→ vec(q) = (µ1, µ2, µ3). (2.14)

Both cross product and dot product are defined for elements of H0 and they are analogous to their counterparts
in R3. More specifically, given u,v ∈ H0, the dot product is defined as

u · v := −uv + vu

2
, (2.15)

and the cross product is defined by
u× v :=

uv − vu
2

. (2.16)

It is direct to verify that vec(u)T vec(v) = u · v and that vec(u)× vec(v) = u× v. Finally, it is possible to
define a multiplication between matrices and pure imaginary quaternions using the vec mapping: the multiplica-
tion of a matrixA ∈ R3×3 by a quaternion q ∈ H0 is the vector quaternion defined asAq := vec−1 [A(vec(q)].
When there is no risk of ambiguity, we identify the quaternion q ∈ H0 with its vectorial representation vec(q)

and omit the vec symbol.

2.3.1 Unit quaternions

The quaternions with the most interesting properties are those with unit norm. First, we will define what is
a norm in the algebra of quaternions.

DEFINITION 2.15 The quaternion norm of q = η + µ is defined as

‖q‖ :=
√
qq∗,

where q∗ := η − µ is the quaternion conjugate of q.

Unit quaternions are defined as the quaternions that lie in the subset of H given by

S3 := {q ∈ H : ‖q‖ = 1} .

Consider q = η + µ. As ‖q‖ = 1 if and only if

qq∗ = η2 + µ · µ = η2 + µ2
1 + µ2

2 + µ2
3 = 1,

the set S3 can be naturally identified with the 3-dimensional unit sphere.

Under quaternion multiplication, the set S3 of unit quaternions forms a group whose identity element is 1

and the inverse q−1 of an arbitrary quaternion q is given by the quaternion conjugate q∗. In fact, this group has
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a natural structure as a manifold for which the group operations are smooth, so it is in fact a Lie group [6]. In
this work we will refer to this Lie group by Spin(3).

Analogously to the way complex numbers are used to represent rotations in the plane [13], unit quater-
nions can be used to represent rotations in the three-dimensional space. An arbitrary rotation θ around an
unit norm axis (nx, ny, nz) is represented by the unit quaternion r = cos (θ/2) + sin (θ/2)n, where n =

vec−1(nx, ny, nz) = ı̂nx + ̂ny + k̂nz . To rotate a vector v ∈ R3 by an angle θ about the the axis (nx, ny, nz)

using the right-hand convention, one first represent v by the pure imaginary quaternion v = v1 ı̂ + v2̂ + v3k̂

using the isomorphism (2.14). Expressing this rotation as the quaternion r, the rotated vector (expressed as a
pure imaginary quaternion) is given by rvr∗. This operation is illustrated in Fig. 2.6.

n = (nx, ny, nz)

θ

v

v′

Fig. 2.6: Rotation represented by a unit quaternion r = cos (θ/2) + sin (θ/2)n. The vector v is rotated an
angle θ about the axis (n1, n2, n3) resulting in the vector v′.

Remark 2.6. It is important to remark that the operation v 7→ rvr∗ can also be interpreted as a coordinate
transformation between frames. If frame F1 is obtained by rotating F0 by a quaternion ρ01, and p0,p1 ∈ H0

are respectively the quaternion representations of the point p with respect to the frames F0 and F1 , then

p1 = ρ0∗1 p0ρ01.

Moreover, one can explicitly calculate a rotation matrix R ∈ SO(3) from an unit quaternion q = η + µ

through Rodrigues’ rotation formula [6]:

R = I + 2η bµc× + 2
(
bµc×

)2
, (2.17)

where bµc× is the matrix representation of the linear operation v 7→ µ× v, that is,

bµc× :=

 0 −µ3 µ2

µ3 0 −µ1

−µ2 µ1 0

 .
The mapR : Spin(3)→ SO(3) which maps q to R according to (2.17) gives a surjective group homomor-

phism between Spin(3) and SO(3). This map fails to be a group isomorphism, since q and −q maps to the
same rotation matrix—this is the only way it fails to be a isomorphism, however, as the pre-image R−1(R) is
exactly {q,−q} [6]. Due to this last property, we say that the unit quaternion group double covers the rotation
group SO(3). In other words, the unit quaternion −q also represents the same rotation associated to q.
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2.3.2 Rotation kinematics

Since unit quaternions describe the attitude of a rigid body, they are used to represent a rotation between
the body frame and the inertial frame. In this sense, the kinematic equation of a rotation represented by the unit
quaternion q is expressed as

q̇(t) =
1

2
q(t)ω(t), (2.18)

where ω(t) ∈ H0 is the quaternion representation of the angular velocity of the rigid body (given in the body
frame) in instant t [74]. Although in this thesis we use directly the quaternion product in (2.18), it is interesting
to remark that the kinematic equation of rotation can also be expressed in vectorial form in terms of Hamilton
operators [74] or in terms of a Jacobian [25]. Moreover, the Jacobian has orthogonality properties which can be
used to derive passivity properties that are useful for designing attitude controllers (see [25] for more details).

Remark 2.7. Supposing that ω(t) ∈ H0 for all t ≥ 0, the differential equation (2.18) is always well-posed for
q(0) ∈ Spin(3). This is due to the fact that (2.18) defines a left-invariant vector field over Spin(3) (see [75] for
more details, in particular Proposition 5.3.1)

Remark 2.8. The angular velocity velocity ω can be obtained from the quaternion q and its derivative q̇ as
follows:

ω(q̇) = 2q−1q̇.

2.4 DUAL QUATERNIONS

Similarly to how the quaternion algebra was introduced to address rotations in the three-dimensional space,
the dual quaternion algebra was introduced by Clifford and Study [76, 77]1 to describe rigid body movements.

DEFINITION 2.16 The algebra of dual quaternions, whose set is denoted by H, is generated by the basis
elements, 1,̂ı, ̂, k̂, ε, εı̂, ε̂ and εk̂, whose multiplication is defined pairwise as in Table 2.2.

Table 2.2: Multiplication table of the elements of the canonical basis of H. The multiplication is not
commutative and the multiplication order is row times column.

1 ı̂ ̂ k̂ ε εı̂ ε̂ εk̂

1 1 ı̂ ̂ k̂ ε εı̂ ε̂ εk̂

ı̂ ı̂ −1 k̂ −̂ εı̂ −ε εk̂ −ε̂
̂ ̂ −k̂ −1 ı̂ ε̂ −εk̂ −ε εı̂

k̂ k̂ ̂ −ı̂ −1 εk̂ ε̂ −εı̂ −ε
ε ε εı̂ ε̂ εk̂ 0 0 0 0

εı̂ εı̂ −ε εk̂ −ε̂ 0 0 0 0

ε̂ ε̂ −εk̂ −ε εı̂ 0 0 0 0

εk̂ εk̂ ε̂ −εı̂ −ε 0 0 0 0

1In truth, this is controversial [6]: the construction of dual quaternions is usually attributed to Clifford himself by the kinematic
community citing [76], however it seems that the construction was due to Study [77]. The confusion probably arises because in [76]
Clifford introduces the biquaternions, also known as double quaternions. The algebra relevant to SE(3), however, is the dual quaternion
algebra, which is also sometimes called the biquaternion algebra.
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The basis elements 1,̂ı, ̂ and k̂ multiplies as the quaternions (see Table 2.1), and the basis element ε, called
the dual unit, commutes with every other element of the algebra and is nilpotent, that is, ε 6= 0 and ε2 = 0.

An arbitrary element q of H can always be written as a sum of a quaternion with another quaternion
multiplied by the dual unit ε, that is,

q = q + εq′, with q, q′ ∈ H.

Thus, the product of two arbitrary dual quaternions q
1

= q1 + εq′1 and q
2

= q2 + εq′2 can be computed by

q
1
q
2

= q1q2 + ε(q1q
′
2 + q′1q2).

For ease of notation, the dual quaternion

q = η + ı̂µ1 + ̂µ2 + k̂µ3 + εη′ + εı̂µ′1 + ε̂µ′2 + εk̂µ′3 (2.19)

may also be denoted as
q = η + µ+ ε

(
η′ + µ′

)
, (2.20)

with µ = ı̂µ1 + ̂µ2 + k̂µ3 and µ′ = ı̂µ′1 + ̂µ′2 + k̂µ′3. We can also denote the dual quaternion (2.19) by
stacking its coordinates in a block vector:

q =


η

µ

η′

µ′

 = (η,µ, η′,µ′), (2.21)

where in this case µ and µ′ should be interpreted as (µ1, µ2µ3) and (µ′1, µ
′
2, µ
′
3) by means of the isomorphism

(2.14). Both notation (2.20) and (2.21) will be used interchangeably in this work.

By linearly extending the multiplication defined in Table 2.2, the multiplication between two arbitrary
quaternions

q1 = η1 + µ1 + η′1 + µ′1

and
q2 = η2 + µ2 + η′2 + µ′2

is explicitly given by
η1

µ1

η′1
µ′1



η2

µ2

η′2
µ′2

 =


η1η2 − µT1 µ2

η1µ2 + η2µ1 + µ1 × µ2

η1η
′
2 + η′1η2 − µT1 µ′2 − µ′1 Tµ2

η1υ2 + η′1µ2 + η′2µ1 + η2µ
′
1 + µ1 × µ′2 + µ′2 × µ2

 , (2.22)

The term defined as P
(
q
)

:= η + µ is known as the primary component of q, and the term defined
as D

(
q
)

:= ε
(
η′ + µ′

)
is known as the dual component of q. An arbitrary dual quaternion may also be

decomposed into a real component and an imaginary component: given q ∈ H, we define Re
(
q
)

:= η+εη′

and Im
(
q
)

:= µ+ εµ′. Thus, q = Re
(
q
)

+ Im
(
q
)
.

Pure imaginary dual quaternions , also called dual vector quaternions, are given by the set

H0 :=
{
q ∈ H : Re

(
q
)

= 0
}
.
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As will be seen soon, the pure imaginary dual quaternions are very convenient to represent lines in the spaces
and also the twist, which will be defined in (2.30). Both cross product and dot product can be defined for
elements of H0 by extending the definitions (2.15) and (2.16): given u,v ∈ H0, the dot product is defined as

u · v := −uv + vu

2
, (2.23)

and the cross product is defined as
u× v :=

uv − vu
2

. (2.24)

2.4.1 Unit dual quaternions

Analogously to the quaternions, the dual quaternions with the most interesting properties are those with
unit norm. First, we will define what is a norm in the algebra of dual quaternions.

DEFINITION 2.17 Let q ∈ H and suppose q = η + µ + ε(η′ + µ′). The dual quaternion norm of q is
defined as ∥∥q∥∥ :=


√(

η2 + ‖µ‖2
)

+ ε2
(ηη′+µTµ′)√

(η2+‖µ‖2)
, if P

(
q
)
6= 0,

0, if P
(
q
)

= 0.

Remark 2.9. The dual quaternion norm isn’t a norm in the usual sense. First, the image of the dual quaternion
norm is not contained in R, but in the set

D :=
{
q ∈ H : Im

(
P
(
q
))

= 0 and Im
(
D
(
q
))

= 0
}
.

Second, it is not positive definite: there exists q 6= 0 such that
∥∥q∥∥ = 0. In fact, the set of dual quaternions

with zero norm is the non-empty set given by

O :=
{
q ∈ H : P

(
q
)

= 0
}
.

Consider q = η + µ+ ε(η′ + µ′). We have that
∥∥q∥∥ = 1 if and only if

η2 + ‖µ‖2 = 1,

ηη′ + µTµ′ = 0.
(2.25)

In honor of Study, the set S defined by (2.25) is called Study quadric [6].

Under dual quaternion multiplication, the set S of unit dual quaternions forms a Lie group [12], which will
be refered as the unit dual quaternions group Spin(3) n R3, whose identity element is 1 and group inverse is
the dual quaternion conjugate of q defined as q∗ := Re

(
q
)
− Im

(
q
)
.

An arbitrary rigid displacement characterized by a rotation represented by a quaternion q ∈ Spin(3), with
q = cos (θ/2) + sin (θ/2)n, followed by a translation p ∈ H0, with p = px ı̂ + py ̂ + pz k̂, is represented by
the unit dual quaternion [23, 39]

q = q + ε
1

2
qp. (2.26)

Similarly, the rigid motion could also be represented by a translation p followed by a rotation q [78] resulting
in the dual quaternion

q = q + ε
1

2
pq. (2.27)
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The quaternions p and p are related by the transformation p = qpq∗. It is also important to observe that in
either (2.26) and (2.27) can can be recovered from the dual quaternion q. In fact, by taking the dual part of
both sides (2.26) yields

D
(
q
)

=
1

2
qp,

and by multiplying this last equation on the left side by 2q∗ gives

p = 2q∗D
(
q
)
. (2.28)

Similar reasoning can be applied to (2.27) to yield

p = 2D
(
q
)
q∗.

In this thesis, we will always represent an arbitrary rigid displacement in the form of (2.26).

As is already known, the rotation of a vector ~v to a vector ~v′ can be written by means of unit quaternions
as the product v′ = qvq∗, where v′ = vec−1(~v′) and v = vec−1(~v) are the pure imaginary quaternions
representing vectors ~v and ~v′ (see Figure 2.6). This form allows the concatenation of rotations to be represented
by a simple quaternion product. Unfortunately, no such quaternion representation exists for a general rigid
transformation that includes translation. The introduction of dual quaternions allows a rigid-transformation
rule as simple as the one for pure rotations; however, not for a vector, but for an arbitrary line in space. It is
possible to prove that each line in the three-dimensional space correspond to a dual quaternion by the means of
Plücker coordinates [6, pp. 115-117]. Briefly, a line la in space with direction~l ∈ S2 through a point ~p ∈ R3

can be represented by the pure imaginary dual quaternion

la = l+ ε(p× l),

where l = vec−1(~l) and p = vec−1(~p) are the quaternion representation of vectors~l and ~p. The term (p× l)
is called the moment of line la.

Let q be the dual quaternion representation of the rigid motion (R, t) ∈ SO(3)×R3 (see (2.26)). Applying
the rotation R followed by the translation ~t to the line la results in a novel line whose direction and moment
are respectively the primary and dual part of the pure imaginary dual quaternion [79, p. 6]

l′a = qlaq
∗.

Remark 2.10. It is important to remark that the operation l 7→ qlq∗ can also be interpreted as a coordinate
transformation between frames. If frame F1 is obtained by the rigid displacement of the frame F0 by a dual
quaternion ρ0

1
, and l0, l1 ∈ H0 are respectively the pure imaginary dual quaternion representations of the line

l with respect to the frames F0 and F1 , then

l1 =
(
ρ0
1

)∗
l0ρ0

1
.

In addition, one can explicitly calculate an element R of SE(3) given in its homogeneous representation
[80]

R =

[
R p

0 1

]
,

where R is a rotation and p is the translation vector, from an unit dual quaternion q through the mapping

q = η + µ+ ε(η′ + µ′) 7→ R =

[
I + 2η bµc× + 2

(
bµc×

)2
2 (ηµ′ − η′µ− µ× µ′)

0 1

]
.

Analogously to unit quaternions, the unit dual quaternions group double covers SE(3) and any displacement q
can also be described by −q.
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2.4.2 Rigid body kinematic equations

Analogously how the unit quaternion describes the kinematic equation of a rotation, the unit dual quaternion
q can be used to describe the kinematics equation of coupled attitude and position. This is shown in the next
lemma.

Lemma 2.3. [78] The first order kinematic equation of a rigid body motion in the inertial frame is given
bya

q̇ =
1

2
qω, (2.29)

where ω ∈ H0 is the twist in body frame given by

ω = ω + ε [ṗ+ ω × p] . (2.30)

aTo lighten the notation, the time dependence will be omitted when it is clear by context.

proof.

The time derivative of (2.26) is

2q̇ =2q̇ + ε (q̇p+ qṗ) (2.31)

Substituting (2.18) into (2.31),

2q̇ =2

(
1

2
qω

)
+ ε

[(
1

2
qω

)
p+ qṗ

]
=qω + ε

(
qṗ+

1

2
qωp

)
(2.32)

=qω + εq

[
ṗ+

(
1

2
ωp

)]
(2.33)

=qω + εq

[
ṗ+

(
ω × p+

1

2
pω

)]
(2.34)

=qω + ε

[
1

2
qpω + q (ṗ+ ω × p)

]
(2.35)

=

(
q + ε

1

2
qp

)
[ω + ε (ṗ+ ω × p)] . (2.36)

Hence,

q̇ =
1

2
qω.

�

Remark 2.11. Supposing that ω(t) ∈ H0 for all t ≥ 0, the differential equation (2.18) is always well-posed for
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any q(0) ∈ Spin(3)nR3. This is due to the fact that (2.29) defines a left-invariant vector field over Spin(3)nR3

(see [75] for more details, in particular Proposition 5.3.1).

Remark 2.12. The twist ω can be recovered from the dual quaternion q and its derivative q̇ as follows:

ω = 2q−1q̇.

It is also interesting to note that (2.30) implies that D (ω) = ṗ + ω × p, which gives a simple way to recover
the velocity from the twist:

ṗ = D (ω)− P (ω)× p. (2.37)

Remark 2.13. Even using a variable-step solver to solve (2.29), the norm of unit dual quaternion may drift
from 1. To avoid numerical errors in the numeric integration of (2.29), [81, pp.36-37] proposes to perform
the numeric integration in the tangent space and then project to the dual quaternion group using the following
numeric scheme:

xk = exp

(
Tξ(t)

2

)
xk−1,

where ξ(t) = ω(t) + ε(v(t) + p(t)× ω(t)), with x(t) = r(t) + ε 12p(t)r(t), and T is the integration step.

The remarkable similarity between equations (2.18) and (2.29) is due to the principle of transference ,
whose various forms as stated in [44] can be summarized in mathematical terms as [6, Sec 7.6]: “All repre-
sentations of the group SO(3) become representations of SE(3) when tensored with the dual numbers.” This
means that several properties and algebraic identities of SO(3) and the quaternions can be carried to SE(3) and
the dual quaternions algebra, respectively.

The principle of transference may mislead one to think that every theorem in quaternions can be transformed
to another theorem in dual quaternions by a transference process. However, this is not the case, as shown by
counterexamples in [44]. Therefore, properties and phenomena related to quaternion motions like topological
obstructions and unwinding may not follow by direct use of transference and have to be verified for dual
quaternions.

The same can be said in the context of controller design for dual quaternions: although [26] shows that
(2.18) has passivity properties similar to (2.29) and that the extension of the passivity approach of [25] from
quaternions to dual quaternions is straightforward (for stabilization only, but not tracking), the extension of
other control techniques for quaternions to dual quaternions can be complicated. For instance, for designing a
Lyapunov-based control one must take into account the dual terms of the dual quaternion and this information
can not be extracted directly from Lyapunov functions used for attitude control using quaternion. Indeed, the
kinematic controller proposed in Chapter 4 has the same primary part of the kinematic controller proposed in
Chapter 5, but the dual part of these kinematic controllers are very different, and is due to this difference in
dual part that the latter controller has exponential convergence while the former not.

2.4.3 Rigid body dynamic equations

In classical mechanics, the Newton-Euler equations describe the combined translational and rotational dy-
namics of a rigid body [82]. The Newton equation gives the translational dynamics while Euler equation gives
the rotational dynamics of the rigid-body. Those equations can be combined in a single equation described by
dual quaternions.
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Considering a coordinate frame whose origin coincides with the body’s center of mass, the Newton equation
for translational dynamics can be expressed in quaternions by

d(mṗ)

dt
= f (2.38)

where p ∈ H0 is the quaternion representation of the translation of the rigid-body (expressed in body frame),
f ∈ H0 is the quaternion representation of the external force actuating in the rigid body (expressed in body
frame) and m > 0 is the mass of the body. Supposing that the mass of the rigid-body does not vary with the
time (an assumption that is made for the rest of the text), (2.38) simplifies to

p̈ =
f

m
, (2.39)

Recalling that the multiplication of a matrix A ∈ R3×3 by a quaternion q ∈ H0 is the vector quaternion
Aq = vec−1 [A(vec(q)], the Euler equation for rotational dynamics of a rigid body can be expressed by
quaternions as

ω̇ = J−1
(
bJωc× ω + τ

)
, (2.40)

where ω ∈ H0 is the quaternion representation of the angular velocity of the rigid body (expressed in the body
frame), τ ∈ H0 is the quaternion representation of external torque actuating in the rigid body (expressed in
body frame) and J ∈ R3×3 is the moment of inertia of the rigid body about the center of mass.

Note that the time derivative of the twist (2.30) is

ω̇ =ω̇ + ε (ω̇ × p+ ω × ṗ+ p̈) . (2.41)

Substituting (2.39) and (2.40) into (2.41), yields the Newton-Euler equations expressed by a single dual
quaternions equation:

ω̇ = ω̇ + ε (ω̇ × p+ ω × ṗ+ f/m) , (2.42)

=
[
J−1 (S(Jω)ω + τ )

]
+ ε

{[
J−1 (S(Jω)ω + τ )

]
× p+ ω × ṗ+ f/m

}
. (2.43)

With respect to a coordinate frame located at point X that is fixed in the body and not coincident with the
center of mass, the Newton-Euler equations assume a more complex form and the translational and angular
acceleration are coupled:

f = mp̈X −m bcc× ω̇ +m bωc× bωc× c
τ = m bcc× p̈X +

(
J −m bcc× bcc×

)
ω̇ + bωc×

(
J −m bcc× bcc×

)
ω

where p̈X ∈ H0 is the quaternion representation of the acceleration expressed in the frame located at point X
and c ∈ H0 is the quaternion representation of the location of the center of mass expressed in the body frame.

In the following chapters, we will design controllers that considers only the kinematic equation (2.29) (the
twist is considered to be an input to the system) and a tracking controller that consider the kinematic equation
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(2.29) and also the dynamic2 equation (2.43) for the derivative of the twist (the twist is considered to be a
state of the system and the inputs are the force and torque). The former controllers can be considered to be a
single layer of a more complex controller which generates the twist for the system, while the latter controller
is a controller that consider the full dynamic of the system. Controllers that only consider (2.29) will be
denominated kinematic controllers, and controllers that consider (2.29)-(2.43) will be denominated dynamic
controller.

2The expression dynamic here should be understood in the mechanics sense, that is, forces and torques are present in the equation.
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CHALLENGES OF RIGID-
BODY POSE STABILIZATION AND PRIOR WORK

3.1 INTRODUCTION

In this chapter, we briefly review the challenges of rigid-body pose stabilization and the disadvantages of
previous solutions using memoryless discontinuous-based controllers

3.2 A TOPOLOGICAL OBSTRUCTION TO GLOBAL STABILIZATION
BY CONTINUOUS FEEDBACK

It is well known that controllability of a linear system implies its stabilizability–in fact, one can design
a smooth feedback to stabilize the system [83]. However, as was pointed out by Brockett, some non-linear
systems cannot be asymptotically stabilized by smooth (or even continuous) static state feedback control laws
[84]. This is not simply a lack of controllability: it might happen that, while every state can be steered to the
origin by some control law, these control laws cannot be stitched together in a continuous manner to yield a
globally defined stabilizing feedback [65].

Brockett’s criterion states that the domain of attraction of an asymptotically stable equilibrium must be
homeomorphic to Rn for some n [84] (see also [65, p. 79] for more details). Since a sufficiently small neigh-
borhood of an equilibrium point has the same topological properties as Rn, this means that such an obstruction
to continuous stabilization has nothing to do with the properties of the state space and is instead embedded
into the systems equations [65]. While Brockett’s criterion refers to the impossibility of local asymptotic
stabilization by a continuous (time-invariant) state feedback, global asymptotic stabilization by a continuous
state feedback depends strongly on the global topology of the state space M. More details can be seen in
Appendix B.

In scenarios where the state space of the dynamical system is not the Euclidean space Rn but a general
differentiable manifoldM—which is the case of SE(3) and Spin(3)nR3—the topology of the state spaceM
may obstruct the existence of a globally asymptotically stable equilibrium point in any continuous vector field
defined onM: in [27] it is proved that ifM has the structure of a vector bundle over a compact manifold L,
then no continuous vector field onM has a globally asymptotically stable equilibrium. In particular, this means
that it is impossible to design a continuous feedback that globally stabilizes the pose of a rigid body, as in this
case the closed-loop system state space manifoldM = SO(3)× R3 × R6 is a trivial bundle over the compact
manifold SO(3). In this work, it is proved that the same topological obstruction is also present in the group of
unit dual quaternions since its underlying manifold is a trivial bundle over the unit sphere S3 (see Theorem B.3
in Subsection 2.4.2).

To surpass this topological obstruction using continuous controllers, one may try to:

1. stabilize the set of opposite quaternions (respectively dual quaternions) that represents the same attitude
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(respectively pose), leading to the problem of unwinding (as will be seen in Subsection 3.3), or

2. use a solution that only guarantees an almost global stabilization (for instance, [43]), which may lead to
an undesired equilibrium manifold that even being of null measure can lead to undesirable effects (see
[28] for more details).

As will be seen in Subsection 3.4 other options are to use a memoryless discontinuous feedback (leading to the
problem of vulnerability to arbitrarily small measurement noises) or to resort to a hybrid strategy with memory
(which is the case of this work), which mitigates the unwinding problem while reducing the vulnerability to
measurement noises.

3.3 THE UNWINDING PHENOMENA

The unwinding phenomena happens when a rigid body starts arbitrarily close to the desired final attitude and
yet unnecessarily rotate through large angles before coming to rest in the desired attitude [9]. Unwinding can
be highly undesirable in practical uses, particularly in aerospatial applications, since it can lead to unnecessary
fuel consumption.

As saw in the previous section, it is impossible to design a continuous feedback that globally stabilizes the
attitude of a rigid body, as in this case the state-space of closed-loop system isM = SO(3)× R3, and this is a
trivial bundle over the compact manifold SO(3). The same can be said for the group of unit quaternions because
its underlying manifold is the 3 dimensional sphere S3, which is also a compact manifold. Nevertheless, since
the quaternions 1 and −1 represent the same attitude, one may try to design a control law which achieves the
asymptotically stability of these points in closed-loop. However, in view of that the Euler characteristic of S3
is 0, the Poincaré-Hopf index theorem [85, p. 35] (see Appendix B for more details) rules out the possibility of
the existence of a continuous vector field over S3 where {−1, 1} are asymptotically stable equilibrium points.

An example of this approach is [25], wherein the authors propose a PD controller to solve the attitude
tracking problem in the dynamic control scenario. For the case of the stabilization problem, the equilibrium
points of the closed-loop system are given by the set

{(q, ω) ∈ S3 × R3 : (q, ω) ∈ {(−1, 0), (1, 0)}}. (3.1)

By using LaSalle invariance principle, [25] proves that every trajectory of the closed-loop system with this
controller converges to the set given in (3.1). This, however, does not imply that each one of these equilibrium
points are asymptotically stable: as a corollary of the Poincaré-Hopf index theorem [85, p. 35] (see Appendix B
for more details), if there are two equilibrium points in S3 ×R3 and one of these equilibrium points are stable,
the other must be unstable. This leads to the problem named as unwinding in the literature [86].

Fig. 3.1 illustrates how unwinding happens and how it is undesirable. Suppose that one wishes to stabilize
a rigid body in the final rest attitudes represented by the quaternions 1 and −1 and a controller is designed in
such way that the closed-loop vector field in S3 has −1 and 1 as equilibrium points. As a result of the above
discussion, one of those equilibrium points must be unstable: without loss of generality, assume that point 1 is
unstable. If the rigid body starts in an attitude represented by a quaternion A which is very near to 1, the vector
field on S3 will push the body towards the quaternion −1 instead of promptly stabilizing it at quaternion 1.
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1−1 η

‖µ‖

A

Fig. 3.1: Illustration of unwinding problem using a continuous controller. The unit-norm quaternion q =

η + µ represents the current attitude of the satellite illustrated in the figure. Since η2 + ‖µ‖2 = 1, this
quaternion is in the unit half-circle of the figure. Supposing that the initial attitude of the satellite is described
by quaternion A and point 1 is unstable, the satellite will rotate towards the further equilibrium point −1,
although the quaternions −1 and 1 describe the same attitude.

Due to the two-to-one covering map between Spin(3) n R3 and SE(3), the unit dual quaternion group is
endowed with a double representation for every pose in SE(3), and the same analysis can be done in the dual
quaternion framework. Neglecting the double covering yields to an unwinding-like problem whereby solutions
close to the desired pose in SE(3) may travel farther to the unit dual quaternion representing the same pose
[35].

A way to avoid the unwinding problem and also the topological obstruction to global stabilization is to
use discontinuous feedback laws (in the sense of [59]): this is the approach done in [87, 88, 89, 90, 91, 92]
within the context of quaternions, and in [35, 36, 39, 2] within the context of dual quaternions. This approach,
however, has a disadvantage: it is highly sensitive to arbitrarily small amplitude measurement noises. This
problem can greatly affect the performance as well the stability of the system, as will be seen in the next
section.

3.4 DISCONTINUOUS CONTROLLERS AND THE VULNERABILITY
TO SMALL AMPLITUDE MEASUREMENT NOISES PROBLEM

In most applications of control systems, the designer must take into account the presence of noise in the
measurements: usually those are yielded from sensors which are frequently corrupted by noise. Neglecting the
measurement noise in the design of the control system can degrade the performance of the system and may
even lead to instability.
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As saw in the Section 3.2, it is impossible to design a continuous feedback that globally stabilizes the pose
of a rigid body. Thus, one has to resort to non-continuous feedback: this is done for instance in [35, 36, 39,
2] within the framework of dual quaternions. All of these works, however, use a discontinuous sign-based
approach that is very fragile to measurement noise. In fact, in the presence of a small random measurement
noise it may happen that, near the discontinuity point, we misjudge which side of this point we are currently
on and start moving toward it instead of away from it. If this happens often enough, the solution will oscillate
around the discontinuity point and may never reach the origin [65].

Fig. 3.2 illustrates this vulnerability to measurement noise. Suppose one has to stabilize the attitude (respec-
tively pose) of the rigid body in a desired position represented by the quaternions (respectively dual quaternions)
−1 and 1, which represent the same attitude (respectively pose). A naive approach to the problem would be to
take the rigid body to 1 if it is nearer to 1 and to take the rigid body to −1 if it is nearer to −1: in this way,
unwinding is avoided. However, suppose noise corrupts the measurement at point A and the sensors falsely
output that the system is at point B. This makes the system flow in direction of point 1 instead of −1, even if
it is nearer to point −1 (see Fig. 3.2(a)). If the noise corrupts the measurement again at point B and makes the
measure be the point A, then the system will flow in direction of point −1 instead of point 1 (see Fig. 3.2(b)).
This could repeat indefinitely, preventing the stability of the system. Note also that points A and B could be
very near to each other: this imply that even an arbitrarily small measurement noise of this type could lock the
system in a region within A and B, not allowing the system settle at point 1 or −1.

1−1
η

‖µ‖

A B

(a)

1−1
η

‖µ‖

A B

(b)

Fig. 3.2: Illustration of chattering problem when using a discontinuous vector field to control the attitude of a
satellite. The unit-norm quaternion q = η + µ represents the current attitude of the satellite illustrated in the
figure. Since η2 + ‖µ‖2 = 1, this quaternion is in the unit half-circle of the figure. (a) In this state, the real
attitude of satellite is described by quaternion A. However, due to noise, the measurement sensor outputs that
the satellite is quaternion B, causing it to rotate in the wrong direction. (b) In this state, the real attitude of
satellite is described by quaternion B. However, due to noise, the measurement sensor outputs that the satellite
is quaternion A, causing it to rotate again in the wrong direction.

At first glance, it seems that the measurement noise discussed above is not natural to occur in an infinite
time horizon, but this is not unlikely if one consider a scenario of malicious cyberattacks and sabotages [93, 94].
Moreover, even if the measurement noise corrupt the system during a short finite time horizon, this noise can
lead to chattering, that is, undesired oscillations that degrades the performance of the system. Depending on the
frequency of these oscillations, the chattering can be very harmful to the system, generating high heat losses in
power circuits and high wear of moving mechanical parts.

This vulnerability is even more relevant when dealing with dual quaternion-based controllers: the discon-
tinuity of the controller not only affects the rotation, but may also disturb and deteriorate the trajectory of the
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system translation. In this context, extremely small noises may also lead to chattering, performance degrada-
tion—and in the worst case, prevent stability.

To illustrate this, consider the discontinuous control law proposed in [36, 35] for the stabilization problem
in the kinematic control scenario. In terms of the components of the measured dual quaternion q = η + µ +

ε
(
η′ + µ′

)
, the control law is a twist feedback given by1

ω=

−2k
[
acos(η) µ

‖µ‖+εv
]
, if η≥0,

−2k
[
(acos(η)− π) µ

‖µ‖+εv
]
, if η<0,

(3.2)

where v = ηµ′−η′µ−µ× µ′ and k is a proportional gain.

Albeit this control law avoids unwinding, a careful look reveals a strong sensitivity around attitudes that are
up to π away from the desired attitude about some axis—that is, η = 0. In view of Theorem 2.6 of [29], one can
see that such control law isn’t robust in the sense that arbitrarily small measurement noises can force η to stay
near to 0 for initial conditions within its neighborhood. Indeed, similar to Theorem 3.2 of [28], one can even
exhibit an explicit noise signal to persistently trap the system about a fixed pose, thus preventing its stability.
To illustrate the sensitivity of pure discontinuous state feedback controllers, we introduce a simple case study
in which the trajectory of (2.29) is simulated using the discontinuous control law (3.2) in the presence of a
random measurement noise2—the results are shown in Fig. 3.3. As can be seen during the initial 20 seconds,
which is the time the noise afflicts the system, the trajectory of the closed-loop system exhibits chattering in the
neighborhood of the discontinuity around η = 0. Furthermore, the chattering influence over the system is not
restricted to the trajectory of the attitude and may also impact on the resulting trajectory of the translation, as
shown in Fig. 3.3(b). In other words, the lack of robustness of a discontinuous solution may lead to chattering
in orientation and to additional disturbances in the translation of the rigid motion in the presence of arbitrarily
small random noises.

It is important to remark that this discussion is not exclusive to the kinematic control scenario, and that
in Chapter 6 a numerical example where the chattering phenomenon happens for a discontinuous control law
(precisely, [2]) proposed to the dynamic control scenario will be shown.

1The discontinuous kinematic control law in [36, 35] contains a typo that has been fixed in [2]. It is also important to remark that
different from (3.2), in [36, 35, 39, 2] the controller is expressed in terms of the logarithm of a unit dual quaternion.

2The simulation has been performed in accordance with the procedures described in Section 4.3 of the next chapter. It is interesting to
point out that the choice of the numerical integrator for the simulation is very important, as a bad choice of numerical integration can lead
to drifting of the quaternion manifold [95, 96] or numerical chattering [97], which degrades the chattering problem. Following [28], the
MATLAB ode45 variable-step numerical integration method was used to perform these simulations.
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Fig. 3.3: Time-simulation of discontinuous control law (3.2) in presence of a random measurement noise (note
that the measurement noise is turned off after 20 seconds of simulation). (a) Trajectory of the rotation unit
quaternion r = η + µ = η + µ1 ı̂ + µ2̂ + µ3k̂ and switches s(t) along time t. (b) Trajectory of the three-
dimensional translation elements p = p1 ı̂+ p2̂+ p3k̂.
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FIRST PROPOSED HYBRID SOLUTION FOR A
ROBUST KINEMATIC CONTROLLER

4.1 INTRODUCTION

In this chapter, the control design problem for globally stabilizing a rigid body coupled rotational and
translational kinematics is addressed using the solution published in [17]. Part of the results presented here
are also presented in in Chapter 6 from Figueredo’s thesis [98], who co-authored [17]. Different from [17] and
Chapter 6 from [98], the proofs of the theoretical guarantees of the controller proposed in [17] will be presented
with more details in this chapter.

The proposed controller copes with the topological constraint inherent from the unit dual quaternion param-
eterization while also ensuring robustness against measurement noises. To avoid the unwinding phenomenon
and the lack of robustness from pure discontinuous solutions, we appeal to the hybrid system formalism of
[60, 56] described in Section 2.2 of the preliminaries. To solve the problem of robust global asymptotic stabi-
lization of (2.29), we propose a generalization to the hysteresis-based hybrid control law of [28] that extends
the attitude stabilization to render both coupled kinematics—attitude and translation—stable.

The system studied in this chapter is described by the kinematic equation

q̇ =
1

2
qω,

where q ∈ S is the state of the system, ω ∈ H0 is the input of the system, and the measurement output is

y := q.

4.2 KINEMATIC HYBRID CONTROL LAW FOR ROBUST GLOBAL
POSE STABILITY

As will be proved in Theorem 4.1, it is possible to use a Lyapunov-based approach to derive a feedback
control law that solves the problem of global stabilization of rigid-body pose. The proposed control law is
defined as

ωf1 := −k1hµ− εk2ηµ′, (4.1)

where k1, k2 ∈ R∗+ are control gains and h ∈ {−1, 1} is a memory state with hysteresis characterized by a
constant parameter δ ∈ (0, 1). Based on the hysteretic strategy of [28], the memory state h has its dynamics
defined by

ḣ := 0, when
(
q, h

)
are such that hη ≥ −δ,

h+ ∈ sgn (η) , when
(
q, h

)
are such that hη ≤ −δ,

(4.2)

where sgn is the set-valued function defined in (2.2).
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1−1 η

‖µ‖

δ−δ

h = 1

h = −1

Fig. 4.1: Illustration of the hysteretic control strategy. The unit-norm quaternion q = η + µ represents the
current attitude of the satellite illustrated in the figure. Since η2 + ‖µ‖2 = 1, this quaternion is in the unit
half-circle of the figure. The discrete variable h indicates if the target equilibrium should be −1 or 1. The state
variable h will only change according to the hysteretic curve of Fig. 4.2(a).

As illustrated in Fig. 4.1, the idea behind the memory state h is to indicate if the rigid-body should move
to the pose described by the unit dual quaternion −1 or should move to the pose described by its opposite dual
quaternion, i.e. the unit dual quaternion 1.

The jump set defined on (4.2) models a hysteretic curve, illustrated by Fig. 4.2(a). The state h will only
change its value from −1 to 1 if η gets larger than δ. Similarly, h will only change its value from 1 to −1

if η gets smaller than −δ. Intuitively, this means that if η = 0, a small change in η will not be sufficient to
change the target equilibrium point. It is important to note that if δ tends to 0, the controller will behave as
the discontinuous controller illustrated in Fig. 3.2 of the previous chapter. In this case, when the state variable
η is close to 0, an arbitrary small change of η immediately changes the target equilibrium point causing the
problem of chattering, as illustrated by Fig. (b). Moreover, if δ tends to 1, then the controller will behave
as the continuous controller illustrated in Fig. 3.1 of the previous chapter, and will be more prone to suffer
an unwinding-like behavior. Thus, the choice of the parameter δ is made considering a trade-off between
protection against measurement noises and avoiding unwinding-like behavior.

Denoting the state-space of the hysteretic memory by Xc := {−1, 1}, let X1 := S × Xc and denote
x̄ := (q, h). In terms of the hybrid formalism (2.4), the closed loop system made by (2.29), (4.1) and (4.2) is
characterized by the hybrid system

H̄1 :
˙̄x = F (x̄) , x̄ ∈ C,

x̄+ ∈ G (x̄) , x̄ ∈ D,
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η

h

δ−δ

1

−1

(a) (b)

η

h

1

−1

Fig. 4.2: Curves illustrating how the state h changes according to the state variable η. (a) Hysteresis curve for
δ > 0. (b) When δ tends to 0, the hysteresis curve will behave as the graph of the sgn function, that is, without
memory and with a discontinuity on η = 0.

with flow map F : R9 → R9 and flow set C ⊆ R9 given by1

F
(
q, h

)
=

(
1

2
qω, 0

)
, C =

{(
q, h

)
∈ X1 : hη ≥ −δ

}
, (4.3)

and jump map G : R9 → R9 and jump set D ⊆ R9 given by

G
(
q, h

)
∈
({
q
}
, sgn (η)

)
, D =

{(
q, h

)
∈ X1 : hη ≤ −δ

}
, (4.4)

where ωf1 is defined as in (4.1) and h as in (4.2).

The following lemma proves that the hybrid system H̄1 made by (2.29), (4.1) and (4.2) satisfies the hybrid
basic conditions (see Definition 2.4), which helps to prove the stability of the system and its robustness.

Lemma 4.1. The maps F and G, and the sets C and D defined on (4.3)-(4.4) satisfy the following proper-
ties:

1. C and D are closed sets in R9.

2. F : R9 → R9 is continuous.

3. G : R9 ⇒ R9 is an outer semicontinuous set-valued mapping, locally bounded and G
(
q, h

)
is

nonempty for each
(
q, h

)
∈ D.

proof.

Setting δ ∈ (0, 1), consider the continuous map τ : R9 → R given by τ (x1, . . . , x8, y) = yx1 + δ.
The restriction τ |X1

: X1 → R of this map to X1 is also continuous [99, Theorem 8]. Moreover, by the
definition of the sets C and D, we have that

C = τ |−1X1
([0,+∞)) ,

D = τ |−1X1
((−∞, 0]) .

1It is important to observe that we are interpreting (q, h) as a block vector of R9 using notation (2.21) for q. That is why the domain
of F is in R9 and C is a subset of R9.
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Since the preimage of a closed set under a continuous mapping is closed, C and D are closed in X1.
We also have that X1 is closed in R9. In fact, consider the continuous functions p, d : R8 → R given
respectively by

p(η, µ1, µ2, µ3, η
′, µ′1, µ

′
2, µ
′
3) = [η, µ1, µ2, µ3][η, µ1, µ2, µ3]T − 1,

d(η, µ1, µ2, µ3, η
′, µ′1, µ

′
2, µ
′
3) = [η, µ1, µ2, µ3][η′, µ′1, µ

′
2, µ
′
3]T .

(4.5)

By the definition of p and d in (4.5), one has that S = p−1({0}) ∩ d−1({0}). Since {0} is a closed set of
R, the sets p−1({0}) and d−1({0}) are closed and their intersections are closed. Thus, S is closed in R8.
Moreover, the set {−1, 1} is closed in R, therefore the Cartesian product X1 = S ×Xc is closed in R9.
Thus, since X1 is closed in R9, C and D are also closed in R9.

By using (2.22), the map F in terms of vector components (η,µ, η′,µ′, h) is given by

F (η,µ, η′,µ′, h) =
1

2


k1hµ · µ
−ηk1hµ

k2ηµ · µ′ + k1hµ
′ · µ

−η2k2µ′ − η′k1hµ− k2ηµ× µ′ − k1hµ′ × µ
0

 .

On the account that each component of F is a polynomial in variables (η,µ, η′,µ′, h), one has that F is
continuous.

We now prove that G is outer semicontinuous. By Lemma 2.1 it suffices to prove that each component
of G is outer semicontinuous. The map

(
q, h

)
7→ q is a projection, thus it is continuous [99]. The map(

q, h
)
7→ sgn (η) is outer semicontinuous by Theorem 2.2. Furthermore, G is locally bounded because

given any compact set K⊂ R9, one has that G(K) ⊂ K × {−1, 1}. Thus, G(K) is bounded. Finally, by
the definition of G, one has that G(q, h) is nonempty for every (q, h) ∈ D. �

Remark 4.1. Note that Lemma 4.1 implies the hybrid basic conditions of Definition 2.4 by Remark 2.1.

Next, we prove that the set {±1} is an asymptotically stable set for the closed-loop system.

Theorem 4.1

With feedback ω defined as in (4.1), the set

A1 := {(q, h) ∈ X1 : q = h1}

is globally asymptotically stable for the closed-loop systemH (that is, the system made by (2.29), (4.1)
and (4.2)).

proof.

Let us regard the Lyapunov candidate function V : X1 → R∗+ given by

V (q, h) = 2 (1− hη) + η′2 + ‖µ′‖2 . (4.6)

The term 2(1 − hη) of the Lyapunov function is based on the kinematic controller of [28], while the
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quadratic term η′2 + ‖µ′‖2 is a novel term introduced to also consider the stabilization of the dual part of
the dual quaternion. It is interesting to remark that is not necessary to add the quadratic term ‖µ‖2 in (4.6),
since when η = 1 or η = −1, one has that ‖µ‖ must be 0 to respect the unit-norm quaternion restriction
given by η2 + ‖µ‖2 = 1.

Since η ∈ [−1, 1] and h ∈ {−1, 1}, one has that (1− hη) ≥ 0. Therefore, V is a positive semidefinite
function. The condition V = 0 implies 0 ≤ 2 (1− hη) = −η′2 − ‖µ′‖2 ≤ 0 which yields η′ = 0, µ′ = 0

and hη = 1, that is, V = 0 if and only if (q, h) ∈ A. Hence, V is a positive definite function on X1 with
respect to A. Taking the time-derivative of V yields

V̇ = −2hη̇ + 2η′η̇′ + 2µ′ · µ̇′

= −h2k1 ‖µ‖2 − η2η′2k2 − η2 ‖µ′‖2 k2 ≤ 0.

In addition, V̇ = 0 if and only if q ∈ {±1}.

Moreover, V also decreases over jumps of the closed loop system since for hη < −δ < 0 one has that

V (q, h+)− V (q, h) = 4hη < 0. (4.7)

Thus, asymptotically stability of the set A1 follows from Lemma 4.1 and by Theorem 2.6. It is also
important to highlight that the closed-loop differential equation is well-posed [7, Prop. 2.1] as the chosen
ω is in the Lie algebra of the Lie group Spin(3) nR3. �

Remark 4.2. At a first glance, one could imagine that due to the transference principle [44], the extension of
rotation stabilizers (e.g., the ones of [45, 28]) to full rigid body stabilizers would be trivial, only requiring the
substitution of adequate variables as in (2.18) and (2.29). However, for stability analysis based on Lyapunov
functions, this supposition does not even make sense, since a Lyapunov function is a real-valued function and
never a dual-number valued function. As a consequence, stabilization in Spin(3) n R3 using dual quaternions
required one independent study from the quaternion stabilization analysis in Spin(3). The necessity of different
procedures for quaternion and dual quaternion is also inferred by remembering that due to the fact that SO(3)

is compact and SE(3) is not, it was required one controller design procedure for each case in [4].

Similarly to the rotation controllers proposed in [28], the proposed pose controller does not exhibit an
infinite number of jumps in a finite amount of time, that is, a Zeno behavior [60]. This is shown in the next
theorem.

Theorem 4.2

For any compact set K ⊂ X1, if x̄ is a solution ofH with initial state in K, then the number of jumps
is bounded.

proof.

Since V is a hybrid Lyapunov function, it follows that

0 ≤ V (x̄ (t, j)) ≤ V (x (0, j)) (4.8)

By (4.7), V decreases exactly 4hη after a single jump. This means that after the jth jump, V will decrease
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by
V (x̄ (0, j))− V (x̄ (0, 0)) = 4hηj < −4δj. (4.9)

Combining inequalities (4.8) and (4.9) gives

0 ≤ V (x̄(0, 0))− 4δj. (4.10)

Finally, since V is continuous and K is compact, there exists V ∗ such that V ∗ = maxx∈K V , yielding

V (x̄(0, 0))− 4δj ≤ V ∗ − 4δj. (4.11)

By combining (4.10) and (4.11), one has that 0 ≤ V ∗ − 4δj, implying that for any solution with initial
state in K,

j ≤
⌈
V ∗

4δ

⌉
.

�

By Lemma 4.1, the closed-loop hybrid system satisfies the hybrid basic conditions. Theorem 2.8 guarantees
that the asymptotically stability of set {±1} is not fragile with relation to arbitrarily small perturbations on the
data of the system. The robustness of the closed-loop system can also be characterized in terms of practical
KL-stability in the presence of constant σ-perturbations: given ρ > 0, the σ-perturbation, with σ(x) = ρ, of
the hybrid system H̄1 is

Cσ :={x̄ ∈ R9 : (x̄ + ρB) ∩ C 6= ∅},
Fσ(x) :=coF ((x̄ + ρB) ∩ C) + ρB for all x̄ ∈ Cρ,
Dσ :={x̄ ∈ R9 : (x+ ρB) ∩D 6= ∅},

Gσ(x) :=G((x̄ + ρB) ∩D) + ρB, for all x̄ ∈ Dρ.

The resistance of the closed-loop system against these perturbations will be expressed in Theorem 4.3 by
bounding the Lyapunov function by aKL-class function. This bound guarantees practical stability for perturbed
solutions starting from arbitrarily large subsets of the basin of attraction of {±1} [60].

Theorem 4.3

Let V be as in (4.6). Then there exists a class-KL function β such that for each compact set K ⊂ X1

and ∆ > 0 there exists ρ∗ > 0 such that for each ρ ∈ (0, ρ∗], the solutions x̄ρ from K of the perturbed
system H̄ρ = (Cρ, Fρ, Dρ, Gρ) satisfy

V (x̄ρ (t, j)) ≤ β (V (x̄ρ (0, 0)) , t+ j) + ∆, ∀ (t, j) ∈ dom x̄ρ. (4.12)

proof.

We have that V is a proper indicator function of the compact set A1 in X1. From Theorem 2.7, there exists
a KL-function β such that for all solutions x̄ of H̄1,

V (x̄ (t, j)) ≤ β (V (x̄ (0, 0)) , t+ j) , ∀ (t, j) ∈ dom x̄.

From this and from Lemma 4.1, the bound on V (x̄ρ (t, j)) given by (4.12) follows by Theorem 2.9. �
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Remark 4.3. Is important to note that S is not a compact set, due to the translation components of unit dual
quaternions. However, the compact set K of Theorem 4.3 can be chosen as large as the control designer
wants, provided it is still is compact and is inside X1. Thus, Theorem 4.3 guarantees “global” stabilization
in a practical sense, since projects of physical systems will naturally have an upper bound to the norm of
translations.

Remark 4.4. Differently from the Lyapunov function proposed in [28] for its hybrid kinematic controller, the
proposed Lyapunov function (4.6) exploits the non-compactness of the Study quadric S: using this property,
the Lyapunov function is already a proper indicator function, enabling a direct proof of Theorem 4.3. Explicitly,
it is due to the terms ζ2 + ‖υ‖2 of the proposed Lyapunov that V is a proper indicator function. Only the term
2 (1− hη), which is exactly the Lyapunov proposed in [28] for kinematic stabilization of S3, does not tend to
infinity even in the boundary of S3.

4.3 NUMERICAL SIMULATIONS

In this section, the effectiveness of the proposed hybrid technique for robust global stabilization of the rigid
body motion is demonstrated in four different numerical simulations.2 The numerical simulations presented
here is exactly the same of the numerical simulations of [17] and they will be reproduced here for convenience
of the reader. The first simulation considers the robustness of the proposed controller against chattering. The
second simulation shows the influence of the design parameter δ in the execution of the controller. The last two
simulations consider a more practical situation using a robotic manipulator.

We first illustrate the proposed controller global stability and robustness against measurement noises. To
this aim, a simulation is performed using the hybrid feedback controller (4.1), with hysteresis parameter δ =

0.3, and the pure discontinuous controller (3.2) of [36, 35] for the kinematic control scenario using the same
proportional gain k = 0.08. For this particular scenario, we assume an initial condition,

q
0

= 0.001 + ı̂0.72 + ̂0.06 + k̂0.69 + ε
(
−55.15−ı̂2.52+̂36.71−k̂0.59

)
,

which was chosen arbitrarily, located in the neighborhood of η = 0, and a measurement noise over η set to
N (0, 0.16), that is, a Gaussian random variable with zero mean and 0.16 variance. Fig. 3.3 illustrates the
result from the discontinuous controller (3.2) whereby one can clearly see the problematic noise influence—for
instance, the excess of switches causing chattering for up to 20 seconds and the consequent convergence lag.
In contrast, the proposed hybrid feedback controller ensures a robust performance without chattering as shown
in Fig. 4.3.

To further highlight the absence of chattering and performance improvements from the hybrid feedback
solution (4.1)—regardless the initial and noise conditions and the control parameters—a second scenario is
devised with initial condition

q
0

= 0.001 + ı̂0.78 + ̂0.57 + k̂0.28 + ε
(
−1.28+ı̂1.50−̂2.44+k̂0.77

)
and a zero mean Gaussian measurement noise over η with a 0.1 standard deviation, which was also chosen
arbitrarily. The results illustrating the trajectory of η from both the discontinuous and hybrid controllers—set
with the same control gain, k = 2—are shown in Fig. 4.4.

2The results of the simulations were computed using MATLAB environment and the DQ_robotics toolbox (http://dqrobotics.
sourceforge.net/). The code of the simulations are available at https://htadashi.github.io/code/KFIA15.zip.
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of η and µ (dashed line). (b) Trajectory of the three-dimensional translation elements p = p1 ı̂+ p2̂+ p3k̂.
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Fig. 4.5: The number of switches with regard to the hysteresis parameter δ is shown in (a), while the switches
along time s(t) are illustrated in (b) for different values of δ.

To illustrate the influence of the design parameter δ over the switches along time of the closed-loop system
(2.29), a set of simulations is performed using the hybrid controller (4.1) with different values for δ. For
these simulations, we assume the same initial condition, control gain, and measurement noise as defined in the
former scenario. As shown in Fig. 4.5(a), larger hysteresis parameters yield a smaller number of switches, as
one would expect. As shown in Fig. 4.5(b), it is also interesting to highlight that the number of switches tends
to decrease along time as η converges to the equilibrium.

Moreover, to elucidate the influence of the hysteresis parameter δ with regard to the unwinding phe-
nomenon, a different scenario is simulated using (4.1) with δ = 0.15 and δ = 0.95 and with a proportional
gain k = 5. We assume an initial state with η close to −1 and h = 1. As shown in Fig. 4.6, very large values
of δ may induce the stabilization to η = 1, which leads to needless motions and control efforts compared to the
case of δ = 0.15.

Lastly, as a concluding example, and to assess the effectiveness of the proposed solution in a more practical
context, we designed a simple robot manipulator kinematic control task. To this aim, we considered a 6-DOF
manipulator, the Comau SMART SiX robot, and two simple control tasks whereby the end-effector of the robot
manipulator is regarded as a rigid body and described within the unit dual quaternion framework.3

In the first control setting, the end-effector of the manipulator q
m

, described within unit dual quaternions
framework, is expected to hold the same current configuration—hence, the desired pose q

d
= q

m
—in the

presence of different sensor readings. In this case, it is rather ordinary to have readings in the antipodal config-
uration of the current pose, that is, −q

m
. To illustrate the behavior of different controllers—with gain equally

set to k = 5—within this particular case, that is, q
d

= −q
m

, we set the manipulator to a random configuration
and sought to stabilize the system using a continuous feedback controller, a discontinuous controller, and the
proposed hybrid controller (with δ = 0.1). The simulated result can be observed in Figs. 4.7 and 4.8, which
illustrate the rigid motion of the manipulator’s end-effector. Clearly, the continuous feedback controller failed

3Further information on how to describe and map the end-effector’s rigid motion using unit dual quaternions can be found in [23].
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to maintain the same end-effector configuration, exhibiting the unwinding phenomenon which yields needless
motions—as observed in Fig. 4.9.4 Such phenomena could be avoided by simply enforcing a discontinuous
controller or by using the proposed hysteresis-based hybrid control strategy.

Nonetheless, as was observed in Fig. 4.4, the discontinuous sign-based approach is particularly sensi-
tive to measurement noises. Hence, the second control task was devised to illustrate the behavior of the
robot manipulator in the presence of measurement noises. In this scenario, both controllers were supposed
to take the end-effector pose from an initial pose, represented by q

0
= − 0.31 − ı̂0.67 + ̂0.67 − k̂0.05 +

ε
(
−0.06−ı̂0.31−̂0.31+k̂0.40

)
and corresponding to a rotation angle of (π + 0.63) rad around the axis

(−
√

2/2,−
√

2/2, 0) followed by a translation of (−0.39,−0.29,−1.09), to a desired pose, represented by
q
d
=ı̂0.707 + ̂0.707 + ε

(
0.28−ı̂0.38+̂0.38+k̂0.28

)
and corresponding to a rotation angle of π rad around

the axis (
√

2/2,
√

2/2, 0) followed by a translation of (−0.79, 0.00,−1.07). The error between these poses
are represented by the dual quaternion q

e
= q∗

m
q
d
, where q

m
is the measured dual quaternion. In addi-

tion, the measurement noise over η was set to N (0, 0.09) and the control gain for both controllers were set to
k = 0.020—the hysteresis parameter was set to δ = 0.1. Fig. 4.10 illustrate the rigid motion of the manipula-
tor’s end-effector and the behavior of both controllers. It is easy to see that the problematic noise influence is
restricted to the discontinuous controller—resulting in undesired chattering and delaying the closed-loop con-
vergence. As expected, the proposed hybrid solution ensures robust performance, that is, a trajectory without
chattering.

4.4 CHAPTER CONCLUSIONS

In this chapter, a kinematic controller for the rigid body stabilization problem was presented. To prove the
stability of this controller, a Lyapunov function that exploits the structure of the group of unit dual quaternions
was proposed. Moreover, this controller was simulated and compared to the discontinuous controller of Chap-
ter 3. Simulation results show that the proposed controller is robust against measurement noises and, different

4Since the discontinuous and hybrid feedback controllers successfully hold the same end-effector pose, the corresponding trajectories
of the robot were not shown in this figure because they are constant. A video comparing the trajectories generated by the three different
controllers can be seen in https://youtu.be/F8Ky6OJ6qHg.

5A video showing the motion of the robot can be seen in the link https://youtu.be/1RBfPXDVR-Y.
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from discontinuous-based feedback controllers, it also avoids the problem of sensitivity of the global stabiliza-
tion property to chattering. The proposed solution was also simulated in a simple robot manipulator kinematic
control task to assess the controller in a more practical context. The results of this chapter have been published
in [17].

To control the pose of the system, it was assumed that the designer can use the twist as an input to the
system (2.29). It should be mentioned that in Chapter 6, this assumption will be dropped and a dynamic
controller which considers both the pose and the twist as a state of system will be proposed: in this scenario,
the resulting force and torque on the system will be the input. The next chapter will present another kinematic
controller that was obtained after the qualification exam of this thesis. This novel kinematic controller will be
based in another Lyapunov function which guarantees an exponential rate of convergence.
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BIMODAL KINEMATIC CONTROLLER WITH
EXPONENTIAL CONVERGENCE

5.1 INTRODUCTION

The previous controller presented in the last chapter does not have a theoretical guarantee of a exponential
rate of decay for stability. In this chapter, we use a novel Lyapunov function to derive a new controller for
the system, and prove that this new proposed controller has an exponential rate of convergence. The hysteretic
controller strategy suggested in the previous chapter uses only one state variable h ∈ Xc (whereXc = {−1, 1})
to determine the rotation direction so the system is regulated either to −1 or 1. In this chapter we also use the
bimodal hybrid strategy from [32] . It uses two state variables (h, b) ∈ Xc×Xc as shown in Fig. 5.1. The state
h determines the rotation direction as in the hysteretic controller. The state b is introduced in order to adapt the
hysteresis width of the on-off control for state h in such a way that the width gets shorter whenever the attitude
gets relatively far from the chattering prone region, that is, the region corresponding to η = 0. This bimodal
strategy spends less energy in average while keeping the same robustness margin [32]. It should be remarked
that the novel Lyapunov function introduced in this chapter could also be used with a hysteretic controller with
only one state variable to produce a controller with exponential rate of decay for stability.

5.2 BIMODAL CONTROLLER WITH EXPONENTIAL CONVERGENCE

The space-state of the closed-loop system is given by X2 := S × Xc × Xc, and the state x̄2 ∈ X2 is
represented by x̄2 = (q, h, b). As will be proved in Theorem 5.1, it is possible to use a Lyapunov-based
approach to derive a feedback control law that solves the problem of global stabilization of rigid-body pose and
also has exponential rate of convergence. The twist feedback law for the kinematic equation (2.29) is given by

ωf2 := −k1hµ− ε
(
k2
2
p+ k1hµ× p

)
, (5.1)

where k1, k2 > 0 are the controller gains. Compared with the feedback controller of the last chapter (see (4.1)),
this controller uses directly the translation of the rigid-body in the dual part.

The closed-loop system is defined by the hybrid systemH2 given by

q̇ = 1
2qωf2

ḣ = 0

ḃ = 0

 x̄2 ∈ C2,

q+ = q

h+ ∈ sgn (η − hδ/2)

b+ ∈ h sgn (η − hδ/2)

 x̄2 ∈ D2,

(5.2)
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Fig. 5.1: State space representation of the quaternionic part of the bimodal controller. Arrows indicate the
direction of the rotation. (Figure based on Fig. 5.2 of [1]).

where the sgn function is defined as in (2.2), and the jump set is given by D2 := D2a ∪D2b ∪D2c, with

D2a := {x̄2 ∈ X2 : hη ≤ −δ}, (5.3)

D2b := {x̄2 ∈ X2 : b = 1, hη ≤ −δ/2}, (5.4)

D2c := {x̄2 ∈ X2 : b = −1, hη ≥ 3δ/2}, (5.5)

and the flow set is C2 := X2 \D2, where K denotes the topological closure of the set K (see [99] for more
details). The jump set D2 models the varying hysteresis (whose width is regulated according to the discrete
state variable b) shown in Fig. 5.1. For more details, the reader is referred to [1].

The following lemma proves that the hybrid system H2 satisfies the hybrid basic conditions (see Defini-
tion 2.4).

Lemma 5.1. The maps F2 : R10 → R10 and G2 : R10 ⇒ R10 given by

F2(q, h, b) =

(
1

2
qωf2, 0, 0

)
, G2(q, h, b) ∈

({
q
}
, sgn (η − hδ/2) , hsgn (η − hδ/2)

)
,

and the sets C2 and D2 satisfy the following properties:

1. C2 and D2 are closed sets.

2. F2 is continuous.

3. G2 is an outer semicontinuous set-valued mapping, locally bounded and G2(q, h, b) is nonempty for
each (q, h, b) ∈ D2.
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proof.

First we prove that C2 and D2 are closed sets: D2 is the finite union of the sets D2a, D2b and D2c defined
in (5.3)-(5.5). Since D2a, D2b and D2c are closed sets (the proof is similar to the proof of Lemma 4.1),
D2 is also a closed set. C2 is the topological closure of the set X2 \D2, thus by definition of topological
closure, its closed.

Next, we prove that F2 is continuous. Since ωf ∈ H0, we can write it as ωf = ω1 + εω2. By using
(2.22), the map F in terms of vector components (η,µ, η′,µ′, h, b) is given by

η̇

µ̇

η̇′

µ̇′

ḣ

ḃ


= F2



η

µ

η′

µ′

h

b


=

1

2



−µTω1

η1ω1 + µ× ω1

−µTω2 − µ′Tω1

ηω2 + η′ω1 + µ× ω2 + µ′ × ω1

0

0


, (5.6)

Note that F2 is a continuous mapping since each of its components are polynomial.

We now prove thatG2 is outer semicontinuous. By Lemma 2.1 it suffices to prove that each component
of G2 is outer semicontinuous. The map

(
q, h

)
7→ q is a projection, thus it is continuous [99]. The maps

(q, h, b) 7→ sgn (η − hδ/2) and (q, h, b) 7→ hsgn (η − hδ/2) are outer semicontinuous by Theorem 2.3.
Moreover, given any compact set K ⊂ S ×Xc ×Xc, we have that G2(K) ⊆ S ×Xc ×Xc, thus G2 is
locally bounded. Finally, G2(q, h, b) is nonempty for each (q, h, b) ∈ D2 by definition of G2 and D2. �

Remark 5.1. Note that Lemma 5.1 implies the hybrid basic conditions of Definition 2.4 by Remark 2.1.

5.3 STABILITY ANALYSIS OF THE BIMODAL KINEMATIC CON-
TROLLER

In this section, we prove that the proposed hybrid bimodal control globally exponentially stabilizes the pose
of a rigid body even in the presence of measurement noise.

Theorem 5.1

Let δ ∈ (0, 1) and k1, k2 > 0. The compact set A2 = {x̄2 ∈ X2 : q = h1, b = 1} is globally
exponentially stable for the closed-loop hybrid systemH2.

proof.

For easy presentation, let us first consider δ ∈ (0, 2/3 ]. Let q := η + µ+ ε(η′ + µ′), and V2 : X2 → R
be defined as

V2(x̄2) = 2(1− hη) + ‖p‖2/4, (5.7)

where p = 2q∗D
(
q
)

is the translation of the rigid-body represented as a quaternion. As b = 1 whenever
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q = ±1 and as p = 0 if and only if η′ = 0 and µ′ = 0, it follows that V2(x̄2) > 0 for x̄2 ∈ X2 \A2 and
V2(x̄2) = 0 for x̄2 ∈ A2. Hence, the function V2 is positive definite on X2 with respect to A2.

Replacing the twist feedback ωf2 given in (5.1) into (2.37) yields

ṗ = D
(
ωf2

)
− P

(
ωf2

)
× p =

k2
2
p+ k1hµ× p− k1hµ× p =

k2
2
p. (5.8)

Thus, the time derivative V̇2 of V2 is given by

V̇2(x̄2) = −2hη̇ + p · ṗ/2 (5.9)
(5.6)
= −2h

(
−1

2
µ · ω

)
+ p · ṗ/2 (5.10)

(5.8)
= −2h

(
−1

2
µ · ω

)
+ p ·

(
−k2

2
p

)
/2 (5.11)

= hµ · (−k1hµ)− k2p · p/4 (5.12)

= −k1h2µ · µ− k2‖p‖2/4 (5.13)

= −k1‖µ‖2 − k2‖p‖2/4. (5.14)

Thus, V̇2 is negative definite on X2 with respect to A2.

Along jumps, when x̄2 ∈ D2, since q+ = q,

∆V2(x̄2) = V2(x̄+
2 )− V2(x̄2) = −2η(h+ − h).

Let D2 = D2a ∪ D2b ∪ D2c, where D2a, D2b and D2c are respectively defined in (5.3), (5.4) and (5.5).
Thus,

∆V2(x̄2)

≤ −4δa, x̄2 ∈ D2a ∪D2b,

= 0, x̄2 ∈ D2c,

where

δa :=

δ, if x̄2 ∈ D2a \D2b,

δ/2, if x̄2 ∈ D2b.

From Lemma 5.1 and Theorem 7.6 of [100], it follows that the compact setA2 is stable since ∆V2(x̄2) ≤
0 and V̇2(x̄2) < 0 for all x̄2 ∈ X2.

To conclude that the set A2 is globally asymptotically stable, it is necessary to apply Theorem 4.7
of [100] to prove that the set A2 is the largest invariant set in W = W1 ∪ W2, where W1 := {x̄2 ∈
C2 : V̇2(x̄2) = 0} and W2 := ∆V2

−1(0) ∩G2(∆V2
−1(0)), G2(x̄2) = x̄+

2 . It follows that W1 = A2,
∆V2

−1(0) = D2c and G2(∆V2
−1(0)) = {x̄2 ∈ X2 : b = 1 and hη ≥ 3δ/2}. Thus, W2 = ∅, W = A2

and any solution x̄2(t) approaches the largest invariant set A2.

The proof is valid for δ ∈ (0, 2/3]. For the case δ ∈ (2/3, 1), the system still behaves as proposed until
the first jump. Afterward, it will behave as the hysteretic controller, since b will not change anymore.

Following is the proof that the set A2 is globally exponentially stable. Using (5.14) and the fact that
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the norm of the unit quaternion is 1,

V̇2 = −k1(1− η2)− k2‖p‖2/4
≤ max{−k1,−k2}

[
(1− η2) + ‖p‖2/4

]
≤ max{−k1,−k2}

[
(1− hη)(1 + hη) + ‖p‖2/4

]
≤ max{−k1,−k2}

[
2(1− hη)

(1 + hη)

2
+ ‖p‖2/4

]
≤ max{−k1,−k2}

[
2(1− hη)

(1− δ)
2

+ ‖p‖2/4
]

≤ max{−k1,−k2}
(1− δ)

2

[
2(1− hη) + ‖p‖2/4

]
≤ max{−k1,−k2}

(1− δ)
2

V2,

where it was used that (1− η2) = (1− hη)(1 + hη) and that 0 < 1− δ ≤ 1 + hη. �

Differently from memoryless discontinuous controllers, the next theorem states that the stability of the set
A2 is not sensitive to arbitrarily small constant σ-perturbations. The proof follows from the same reasoning of
Theorem 4.3.

Theorem 5.2

Let V2 be as in (5.7). Then there exists a class-KL function β such that for each compact set K2 ⊂ X2

and ∆ > 0 there exists ρ∗ > 0 such that for each ρ ∈ (0, ρ∗], the solutions x̄2ρ fromK2 of the perturbed
system H̄2ρ satisfy

V2 (x̄2ρ (t, j)) ≤ β (V2 (x̄2ρ (0, 0)) , t+ j) + ∆, ∀ (t, j) ∈ dom x̄2ρ. (5.15)

The analysis of either the presence of Zeno solutions (infinite number of jumps in a finite amount of time)
or chattering are only related to the rotation. The rotation evolution follows the primary part of (2.29), that is,
it follows the same kinematic equation for quaternions (2.18). Replacing (5.1) into (2.18) yields

q̇ =
1

2
(η + µ)(−k1hµ)

=
k1
2
h(‖µ‖2 − ηµ).

Note that q̇ depends only on q and the dynamics of h. On the other hand, the dynamics of h and b depend
only on η, that is, the body rotation. Hence, we conclude that jumps on state variables h and b depend only
on the rotation evolution. Since this dynamics is exactly the same of the bimodal controller of [32], it follows
directly from Theorems 3.2 and 3.3 of [32] that no Zeno solutions occur even when constant σ-perturbations
(see Definition 2.13) are taken into account, provided that the amplitude of the perturbation is sufficiently small.
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Fig. 5.2: Block diagram of the closed-loop system.

5.4 NUMERICAL SIMULATIONS

This section presents simulation results to compare performance among the novel kinematic controller from
this chapter and the hybrid controllers of [17] (Chapter 4) and [38], which uses the twist feedback proposed in
[17], but coupled with the bimodal mechanism proposed in [1]. To maintain fairness, all simulated controllers
have been implemented with the same control gains k1 = 3 and k2 = 1.2. The hysteresis parameter defined
for the controllers was set to δ = 0.40.

The initial pose of the controllers was set to q(0) = −0.2 + 0.48ı̂ + 0.20̂ + 0.83k̂ and p(0) = −0.33ı̂−
0.50̂+2.94k̂. The initial discrete state for the hybrid controller of [17] was set to h(0) = 1, while the proposed
bimodal controller and the bimodal controller of [38] was set to h(0) = 1 and b(0) = 1. Moreover, to illustrate
the robustness of the proposed controller and the performance of all three controllers, measured noise have been
included to the value of q and was calculated as follows: qm = (q + zê) / ‖q + zê‖, ê = e/ ‖e‖, where each
component of e ∈ R4 was chosen from a Gaussian distribution of zero mean and unitary standard deviation and
z ∈ R was chosen from a uniform distribution on the interval [0, 0.2]. Following [28], the solver ode45 from
MATLAB was used for performing the numerical integration. The block diagram of the closed loop system is
illustrated in Fig. 5.2.

The next figures show the results of the simulation of the three controllers, that is, the one from [17], [38]
and the proposed controller. In all the legend of the next four figures, ωf1,hys indicates the controller from
[17], ωf1,bim indicates the controller from [38] and ωf2,bim indicates the controller proposed in this chapter.

Fig. 5.3 illustrates the evolution of the real primary part of the dual quaternion in each controller. Since the
evolution of the rotational parameters for the proposed kinematic controller and for the controller from [38]
are the same, they have exactly the same behavior. The controller proposed in [17], however, takes a different
direction of rotation from the proposed controller and the controller proposed in [38]. For [17] only, the initial
condition belongs to a region of the state space where the control law pulls the rigid body in the direction of
the longer rotation.
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Fig. 5.3: Trajectory of the real primary part of the dual quaternion q.

In Fig. 5.4 it is shown the evolution of the norm of the angular velocity of these controllers. Since the
primary part of the twist feedback of the proposed controller and the controller of [38] are the same, the
rotation movement has the same behavior. It is important to notice that the proposed controller in this chapter
and the controller proposed in [38] use less control effort (in terms of the norm of the angular velocity at each
time) than the controller suggested in [17].

60



Fig. 5.4: Evolution of the norm of angular velocity ω.

Fig. 5.5 shows the evolution of the rigid-body translation under the three controllers. The variable ps =

qpq∗ is the translation expressed in the reference frame. As can be seen in this figure, the proposed controller
causes the rigid body to come closer to the origin faster than the hybrid controllers of [38] and [17].
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Fig. 5.5: Evolution of the norm of position expressed in the reference frame.

Finally, in Fig. 5.6 it is shown the evolution of the norm of velocity under the three controllers. While the
angular velocity norm evolves in the same way for the proposed controller and the controller of [38], the norm
of the velocity evolves differently: it is clear from this figure that much less effort is used for the proposed
controller. Besides, note that for the proposed controller, ‖ṗ‖ = (k2/2)‖p‖ (from (5.8)) does not depend
on q and its measured noise. Thus, differently from the controllers of [17] and [38], the evolution of ‖ṗ‖ it
completely chattering free.
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Fig. 5.6: Evolution of the norm of position expressed in the reference frame.

5.5 CHAPTER CONCLUSIONS

This chapter presents a novel control strategy for the motion of rigid bodies that guarantees global stabil-
ity of the closed-loop kinematics. The result, based on the exploitation of hybrid theory tools and the unit
dual quaternion manifold characteristics, enlarges the applicability of hybrid theory improving the closed-loop
performance of the rigid body kinematics. In contrast to the existing literature of memoryless discontinu-
ous controllers, the proposed kinematic controller ensures robust global exponential stability of the rigid body
kinematics whilst also ensuring that the global attractivity of the stabilization pose does not exhibit chattering.
Simulation results show that the proposed controller is robust against measurement noises and, different from
memoryless discontinuous-based feedback controllers, it also avoids the problem of sensitivity of the global
stabilization property to chattering. Moreover, the numerical simulations show the advantage of the proposed
controller over the hybrid kinematic controllers of [17] (presented in the last chapter) and the controller of [38],
both of which do not present exponential decaying stability.

To control the pose of the system, it was again assumed that the designer can use the twist as an input to the
system (2.29). In the next chapter, this assumption will be dropped and a dynamic controller which considers
both the pose and the twist as a state of system will be proposed.
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HYBRID DYNAMIC CONTROLLER

6.1 INTRODUCTION

In the controllers presented on the previous chapters, the state of the dynamical system was the unit dual
quaternion describing the rigid-body pose, and the input was done directly by the twist. On more common
scenarios, the input of the system is done by forces and torques actuating in the system, while the complete
state of the system is the unit dual quaternion describing the rigid-body pose and the twist.

Moreover, in these scenarios, it is common to have a more general control problem than stabilization that
is the tracking problem. The goal of this problem is to design a torque and force feedback such that the pose
of the controlled rigid body tracks a desired reference attitude and a reference spatial trajectory. This problem
is interesting for example, in the context of a surveillance mission where an unmanned vehicle equipped with
a camera is required to scout a predefined trajectory and to film in predefined orientations. In the case that
the desired pose to be tracked is described by the constant dual-quaternion 1, the tracking problem yields the
particular case of stabilization problem.

This chapter presents a hybrid dynamic controller that solves the tracking problem. As a direct consequence,
this controller also solves the stabilization problem by specializing this tracking controller. This is stated on
Section 6.5. In the next section, we will derive the dynamics of the tracking problem.

6.2 DYNAMICS OF THE POSE TRACKING PROBLEM

For this problem, we will assume that the current attitude of the rigid-body, represented by quaternion q,
the velocity angular of the system, represented by quaternion ω, and the current translation and velocity of
the system, represent by quaternions p and ṗ are available to measurement. In other words, the vector of
measurements are given by

y = (q,ω,p, ṗ). (6.1)

Let N > 0, P > 0 and C ⊂ R3 be a compact set containing the closed ball max{N,P}B. To derive
the pose tracking dynamics, suppose the body should track the following desired bounded reference trajectory
given by state x̄d =

(
q
d
,ωd, ṗd

)
∈ Xd, whereXd := S×C×C is the state-space of the desired configuration.

It is assumed that state xd to be tracked has the following dynamics:
q̇
d

= 1
2qdωd,

ω̇d ∈ NB,

p̈d ∈ PB,
(6.2)

where q
d

= qd + ε 12qdpd is the desired pose, qd is the desired attitude, pd is the desired translation expressed
in the desired frame, and ωd = ωd + ε (ṗd + ωd × pd) is the desired twist, ωd is the desired angular velocity
and ṗd is the desired velocity, both of them expressed in the desired frame. Since the dynamic equations will
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only make sense if all of its variables are expressed in the same frame (in the particular case, we shall express
all the variables in the body frame), it is important to express these variables in the appropriated frame. Suppose
that a variable xd is expressed in the desired frame. According to Remark 2.10, one can express xd in the body
frame by the variable xbd := q∗

e
xdqe. The superscript b, in xbd, means that the variable coordinates are referred

to the body frame. It is important to note that [ẋ]b 6= d
dt [x

b]. To simplify notation, [ẋ]b is denoted as ẋb.

We shall define now the error variables, expressed in the body frame. The error variables will be denoted
with a subscript e and for convenience will never appear with the superscript b, since those variables always
will be expressed in the body frame. Let qe = ηe + µe be the attitude error, q

e
= qe + εq′e be the pose error

defined as the error between the current configuration q and the desired configuration q
d
, calculated as follows

q
e

= q∗
d
q. (6.3)

To obtain the dynamics of the error states, we will derive expressions for q̇
e

and ω̇e in function of the states(
q
e
,ωe, qd,ωd, ṗd

)
. The development of these expressions will follow [101], but for convenience of the

reader, we will present here the derivations of these expressions with more details. For the reader interested
in the final expression of the pose tracking problem, it is recommended to jump this subsections to subsec-
tion 6.2.3.

6.2.1 Dual quaternion error kinematics

In this section, we will derive a equation for q̇
e

in function of the states q
e

and ωe. Using (6.3) and
substituting (2.26) and (6.2) into it,

q
e

=

(
qd + ε

1

2
qdpd

)∗(
q + ε

1

2
qp

)
=

(
q∗d − ε

1

2
pdq

∗
d

)(
q + ε

1

2
qp

)
(6.4)

=q∗dq + ε
1

2
(q∗dqp− pdq∗dq) (6.5)

=q∗dq + ε
1

2

[
(q∗dq)p− (q∗dq) (q∗dq)

∗
pd (q∗dq)

]
(6.6)

=q∗dq + ε
1

2
q∗dq

[
p− (q∗dq)

∗
pd (q∗dq)

]
(6.7)

=qe + ε
1

2
qe (p− q∗epdqe) (6.8)

=qe + ε
1

2
qe
(
p− pbd

)
(6.9)

=qe + ε
1

2
qepe, (6.10)

where
pe := p− pbd = p− q∗epdqe (6.11)

is the translation error. The time derivative of (6.3) is

q̇
e

=q̇∗
d
q + q∗

d
q̇ (6.12)
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Substituting (2.29) and (6.2) into (6.12), yields

q̇
e

=

(
1

2
q
d
ωd

)∗
q + q∗

d

(
1

2
qω

)
=

1

2

(
q∗
d
qω − ωdq∗dq

)
(6.13)

=
1

2

[(
q∗
d
q
)
ω −

(
q∗
d
q
)(
q∗
d
q
)∗
ωd

(
q∗
d
q
)]

(6.14)

=
1

2
q
e

(
ω − q∗

e
ωdqe

)
(6.15)

=
1

2
q
e

(
ω − ωbd

)
(6.16)

=
1

2
q
e
ωe, (6.17)

where
ωe := ω − ωbd = ω − q∗

e
ωdqe (6.18)

is the twist error. The state-space of the error states (q
e
,ωe) will be denoted by Xe := S ×H0.

It is interesting to remark the similarity of (6.17) with (2.29), that is, the kinematics of error is the same of
the kinematics of the actual state dynamics. It is also interesting to remark that the primary part of q̇

e
is

q̇e =
1

2
qe (ω − q∗eωdqe)

=
1

2
qe
(
ω − ωbd

)
=

1

2
qeω

b
e, (6.19)

where
ωe := ω − ωbd = ω − q∗eωdqe (6.20)

is the angular velocity error.

We derive now some expressions for the time derivatives of the translation error that will also be important
in the next sections. Applying the time derivative in both sides of (6.11) results in

ṗbe =ṗ− q̇∗epdqe − q∗eṗdqe − q∗epdq̇e (6.21)

Replacing (6.19) and (6.20) in (6.21) yields

ṗbe = ṗ−
(

1

2
qeω

b
e

)∗
pdqe − q∗eṗdqe − q∗epd

(
1

2
qeω

b
e

)
= ṗ+

1

2
ωbeq

∗
epdqe − q∗eṗdqe − q∗epd

(
1

2
qeω

b
e

)
= ṗ− ṗbd +

1

2
ωbep

b
d −

1

2
pbdω

b
e

(2.24)
= ṗ− ṗbd + ωbe × pbd, (6.22)

Applying the time derivative in both sides of (6.22) results in

p̈be =p̈−
(
p̈bd + ṗbd × ωbe

)
+ ω̇be × pbd + ωbe ×

(
ṗbd + pbd × ωbe

)
=f/m− p̈bd + ω̇be × pbd + 2ωbe × ṗbd + ωbe ×

(
pbd × ωbe

)
. (6.23)
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6.2.2 Dynamics of the twist error

In this section we will express the derivative of the twist errorωe in terms of the states
(
q
e
,ωe, qd,ωd, ṗd

)
and the input variables (τ ,f), where τ is the quaternion representation of external torque actuating in the rigid
body and f is the quaternion representation of the external force actuating in the rigid body, both expressed in
body frame. In order to derive those equations, we first express the desired twist in the body frame in function
of the desired translation and the translation error, and the desired angular velocity:

ωbd = q∗
e
ωdqe

(6.10)
=

(
qe + ε

1

2
qepe

)∗
[ωd + ε (ṗd + ωd × pd)]

(
qe + ε

1

2
qepe

)
=

(
q∗e − ε

1

2
peq

∗
e

)
[ωd + ε (ṗd + ωd × pd)]

(
qe + ε

1

2
qepe

)
=

{
q∗eωd + ε

[
q∗e (ṗd + ωd × pd)−

1

2
peq

∗
eωd

]}(
qe + ε

1

2
qepe

)
= q∗eωdqe + ε

[
q∗e (ṗd + ωd × pd)−

1

2
peq

∗
eωd

]
qe + εq∗eωd

1

2
qepe

= ωbd + ε

[
q∗eṗdqe + q∗e (ωd × pd) qe −

1

2
pe (q∗eωdqe)

]
+ ε

1

2
(q∗eωdqe)pe

= ωbd + ε

[
ṗbd + (q∗eωdqe)× (q∗epdqe)−

1

2
peω

b
d

]
+ ε

1

2
ωbdp

b
e

= ωbd + ε

(
ṗbd + ωbd × pbd +

1

2
ωbdpe −

1

2
peω

b
d

)
(2.24)
= ωbd + ε

(
ṗbd + ωbd × pbd + ωbd × pbe

)
. (6.24)

Thus, the twist error given in (6.18) is

ωe = ω − ωbd
(2.30)
= ω + ε (ṗ+ ω × p)− ωbd

(6.24)
= ω + ε (ṗ+ ω × p)−

{
ωbd + ε

[
ṗbd + ωbd ×

(
pbd + pe

)]}
(6.25)

= ω − ωbd + ε
[
ṗ+ ω × p− ṗbd − ωbd ×

(
pbd + pe

)]
(6.26)

= ωe + ε
[
ṗ+

(
ωe + ωbd

)
×
(
pe + pbd

)
− ṗbd − ωbd ×

(
pbd + pe

)]
(6.27)

= ωe + ε
[
ṗ+ ωe ×

(
pe + pbd

)
+ ωbd ×

(
pe + pbd

)
− ṗbd − ωbd ×

(
pbd + pe

)]
(6.28)

= ωe + ε
(
ṗ− ṗbd + ωe × pbd + ωe × pe

)
(6.29)

By replacing (6.22) in (6.29), one has that

ωe =ωe + ε (ṗe + ωe × pe) , (6.30)

and consequently,
ω̇e = ω̇e + ε (p̈e + ω̇e × pe + ωe × ṗe) . (6.31)

67



We compute (6.31) in two steps: first the primary part, then the dual part. The primary part of (6.31) is

P (ω̇e) = ω̇e
(6.20)
=

d

dt
[ω − q∗eωdqe]

= ω̇ − q̇∗eωdqe − q∗eω̇dqe − q∗eωdq̇e
= ω̇ +

1

2
ωeq

∗
eωdqe −

1

2
q∗eωdqeωeqe − q∗eω̇dqe

= ω̇ +
1

2
ωeω

b
d −

1

2
ωbdωe − q∗eω̇dqe

(2.24)
= ω̇ + ωe × ωbd − ω̇bd

(2.40)
= J−1

(
bJωc× ω + τ

)
− ω̇bd + ωe × ωbd

(6.18)
= J−1

(⌊
Jωe + Jωbd

⌋
×

(
ωe + ωbd

)
+ τ

)
− ω̇bd − ωbd × ωe

= J−1
(
bJωec× ωe +

⌊
Jωbd

⌋
× ωe −

⌊
ωbd
⌋
× Jωe +

⌊
Jωbd

⌋
× ω

b
d + τ

)
−ω̇bd + J−1

⌊
Jωbd

⌋
× ω

b
d

= J−1
(
bJωec× +

⌊
Jωbd

⌋
× −

⌊
ωbd
⌋
× J − J

⌊
ωbd
⌋
×

)
ωe

+J−1
⌊
Jωbd

⌋
× ω

b
d − ω̇bd + J−1τ . (6.32)

The dual part is

D (ω̇e) = p̈e + ω̇e × pe + ωe × ṗe
(6.23)
= f/m− p̈bd + ω̇be × pbd + 2ωbe × ṗbd + ωbe ×

(
pbd × ωbe

)
+ ω̇be × pbe + ωbe × ṗbe (6.33)

6.2.3 Full dynamics of tracking problem

By (6.2), (6.12), (6.32) and (6.33), the full dynamics of the problem can be described by the system

˙̄xe =


q̇
e

ω̇e
q̇
d

ω̇d

p̈d

 ∈ Fe (x̄e, τ ,f) , (6.34)

with

Fe (x̄e, τ ,f) :=



{
1
2qeωe

}
{ω̇e}{
1
2qdωd

}
NB
PB


,

where

ω̇e = P (ω̇e) + εD (ω̇e)
(6.32)
= J−1

[
bJωec× +

⌊
Jωbd

⌋
× −

⌊
ωbd
⌋
× J − J

⌊
ωbd
⌋
×

]
ωe + J−1

⌊
Jωbd

⌋
× ω

b
d − ω̇bd + J−1τ +

εD (ω̇e)
(6.33)
= J−1

[
bJωec× +

⌊
Jωbd

⌋
× −

⌊
ωbd
⌋
× J − J

⌊
ωbd
⌋
×

]
ωe + J−1

⌊
Jωbd

⌋
× ω

b
d − ω̇bd + J−1τ +

ε
(
f/m− p̈bd + ω̇e × pbd + 2ωe × ṗbd + ωe ×

(
pbd × ωe

)
+ ω̇e × pe + ωe × ṗe

)
, (6.35)
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and the inputs are given by the torque τ and force f . Recalling that each physical pose (R,p) ∈ SO(3)×R3 is
described by a pair of antipodal unit dual quaternions ±q ∈ S, the objective of a tracking controller is to find
an appropriate choice of feedback torque τ and an appropriate choice of feedback force f to stabilize the set{

x̄e =
(
q
e
,ωe, qd,ωd, ṗd

)
∈ Xe ×Xd : q

e
= ±1 , ωe = 0 + ε0

}
. (6.36)

In the next section we will see how to make this choice.

6.3 PROPOSED BIMODAL HYBRID DYNAMIC POSE TRACKING
CONTROLLER

The proposed dynamic controller strategy adapts the bimodal hybrid controller strategy used in (5.2) for the
kinematic control. It will also use two discrete state variables (h, b) ∈ Xc ×Xc which have the same function
as those in (5.2). The state-space of the controlled system is X3 := (Xe ×Xd)×Xc×Xc, and the state of the
system will be denoted concisely by x̄3 = (x̄e, h, b).

The augmented system is given by (6.34), (6.1) and the following bimodal controller dynamics

ḣ = 0

ḃ = 0

}
x̄3 ∈ C3,

h+ ∈ sgn (u1 − u2δ/2)

b+ ∈ u2 sgn (u1 − u2δ/2)

}
x̄3 ∈ D3,

(6.37)

where u1 ∈ R and u2 ∈ R are inputs to the controller that will be soon defined, sgn is defined as in (2.2), and
the jump set is given by D3 := D3a ∪D3b ∪D3c, with

D3a := {x̄3 ∈ X3 : hηe ≤ −δ} , (6.38)

D3b := {x̄3 ∈ X3 : b = 1, hηe ≤ −δ/2} , (6.39)

D3c := {x̄3 ∈ X3 : b = −1, hηe ≥ 3δ/2} (6.40)

and the flow set is C3 := X3 \D3.

The vector of inputs of the augmented system is U = (τ ,f , u1, u2) and closed-loop hybrid system is
achieved by setting

U =
(
τ fb,ffb, ηe, h

)
, (6.41)

where τ fb is the proposed torque feedback given by

τ fb := −k1hµe −
⌊
Jωbd

⌋
× ω

b
d + Jω̇bd −Kωωe, (6.42)

with gains k1 (a real-valued positive number) and Kω (a symmetric positive definite matrix), and where ffb is
the proposed force feedback given by

ffb := −1

2
k2pe −m

[
−p̈bd + ω̇e × pbd + 2ωe × ṗbd + ωe ×

(
pbd × ωe

)]
−Kṗṗe, (6.43)

with gains k2 (a real-valued positive number) and Kṗ (a symmetric positive definite matrix).

It will be shown in the next section that the set

A3 =
{
x̄3 ∈ X3 : q

e
= h1 , ωe = 0 , b = 1

}
. (6.44)

is globally asymptotically stable under the closed-loop dynamics.
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6.4 DYNAMICS STABILITY ANALYSIS

In this section, we prove that the proposed hybrid bimodal tracking control globally asymptotically stabi-
lizes the pose of a rigid body even in the presence of measurement noise. Replacing the proposed controller
input (6.41) on (6.35) yields the primary and dual part of ω̇e in closed loop:

P (ω̇e) = J−1
{[
bJωec× +

⌊
Jωbd

⌋
× −

⌊
ωbd
⌋
× J − J

⌊
ωbd
⌋
×

]
ωe − k1hµe −Kωωe

}
, (6.45)

D (ω̇e) = −1

2
k2pe/m−Kṗṗe/m+ ω̇e × pe + ωe × ṗe. (6.46)

By using (6.45) and (6.46) in (6.34), and combining the dynamics of (6.34) and the dynamics of the bimodal
strategy (6.37), the closed-loop system H3 has flow set C3, jump set D3, and the following flow map F3 and
jump set G3:

F3 (x̄3, h, b) :=



{
1
2qeωe

}
{ω̇e}{
1
2qdωd

}
NB
PB
{0}
{0}


,

G3 (x̄3, h, b) :=



{q
e
}

{ωe}
{q

d
}

{ωd}
{ṗd}

sgn (ηe − hδ/2)

h sgn (ηe − hδ/2)


.

As will be seen in Lemma 6.1, the closed-loop hybrid system H3 satisfies the hybrid basic conditions (see
Definition 2.4).

Lemma 6.1. The maps F3 and G3, and the sets C3 and D3 satisfy the following properties:

1. C3 and D3 are closed sets.

2. F3 is outer semicontinuous, locally bounded, and F3(x̄3, h, b) is nonempty and convex for each
(x̄3, h, b) ∈ C3.

3. G3 is outer semicontinuous, locally bounded and G3(x̄3, h, b) is nonempty for each (x̄3, h, b) ∈ D3.

proof.

First we prove that C3 and D3 are closed sets: D3 is the finite union of the sets D3a, D3b and D3c defined
in (5.3)-(5.5). Since D3a, D3b and D3c are closed sets (the proof is similar to the proof of Lemma 4.1),
D3 is also a closed set. C3 is the topological closure of the set X3 \D3, thus by definition of topological
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closure, its closed.

To prove that F3 is outer semicontinuous, it suffices to prove that each component of F3 is outer
semicontinuous (see Lemma 2.1). By the use of the same argument of Lemma 5.1, one can show that the
maps (x̄3, h, b) 7→ 1

2qeωe and (x̄3, h, b) 7→ 1
2qdωd are continuous (and thus, outer semicontinuous). The

map (x̄3, h, b) 7→ 0 is also continuous, since it is a constant function. Finally, by using (6.45) and 6.46 it
is possible to prove that (x̄3, h, b) 7→ ω̇e is also continuous.

The graphs of the maps (x̄3, h, b) 7→ NB and (x̄3, h, b) 7→ PB are, respectively, X3 ×NB and X3 ×
PB. Since the product of closed sets are closed, both of these sets are closed. It follows by Theorem 2.1
that these maps are outer semicontinuous. Thus, all components of F3 are outer semicontinuous, and
consequently, F3 is outer semicontinuous. F3(x̄3, h, b) is also convex-valued for any (x̄3, h, b) ∈ X3, since
its components are single-valued maps (thus, sets consisting of only a point) or the maps (x̄3, h, b) 7→ NB
and (x̄3, h, b) 7→ PB. These last two maps are also convex-valued, since the set rB is convex for any
r > 0. Moreover, F3(x̄3, h, b) is nonempty for each (x̄3, h, b) ∈ C3 by definition of F3 and C3.

We prove now thatG3 is outer semicontinuous. All of the maps (x̄3, h, b) 7→ {qe}, (x̄3, h, b) 7→ {ωe},
(x̄3, h, b) 7→ {q

d
}, (x̄3, h, b) 7→ {ωd} and (x̄3, h, b) 7→ {ṗd} are projections, thus are continuous

[99]. The maps (x̄3, h, b) 7→ sgn (ηe − hδ/2) and (x̄3, h, b) 7→ h sgn (ηe − hδ/2) are outer semicon-
tinuous by Theorem 2.3. Since each component of G3 is outer semicontinuous, it follows that G3 is
outer semicontinuous by Lemma 2.1. Moreover, any compact set K of X3 is contained in a set of
the format K1 × Xc × Xc, where K1 is a compact set. By definition of G3, we have that G3(K) ⊆
G3(K1 × Xc × Xc) ⊆ K1 × Xc × Xc. Thus, G3 is locally bounded on X3. Finally, G3(x̄3, h, b) is
nonempty for each (x̄3, h, b) ∈ D3 by definition of G3 and D3. �

Remark 6.1. Note that Lemma 6.1 implies the hybrid basic conditions of Definition 2.4 by Remark 2.1.

The next theorem proves the stability of the closed-loop hybrid systemH3.

Theorem 6.1

Let δ ∈ (0, 1) and k1, k2 > 0. The compact set A3 defined in (6.44), is globally asymptotically stable
for the closed-loop hybrid systemH3.

proof.

For simplifying the presentation, let us first consider δ ∈ (0, 2/3 ]. Let V3 : X3 → R be defined as

V3(x̄3) = 2k1(1− hηe) + k2‖pe‖2/4 +
1

2
ωTe Jωe +

1

2
mṗTe ṗe. (6.47)

The first two terms of (6.47) is based on the Lyapunov proposed for the kinematic controller of the previous
chapter (see (5.7)). The third term is the angular energy of the error system and is commonly used in
attitude tracking problems (for instance, [102, 25]), and the last term is the kinetic energy of the error
system. The last two terms have also been used in the Lyapunov proposed in [26].

Due to the same reasoning of Theorem 5.1, and that ωe = 0 if and only if ωe = 0 and ṗe = 0, it
follows that V3(x̄3) > 0 for x̄3 ∈ X3 \A3 and V3(x̄3) = 0 for x̄3 ∈ A3. Hence, V3 is positive definite on
X3 with respect to A3.
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The time derivative V̇3 of V3 is given by

V̇3(x̄3) =− 2k1hη̇e + k2pe · ṗe/2 + (Jωe) · ω̇e +mṗe · p̈e (6.48)

Using (6.32), (6.23) and the fact that

A :=
(
bJωec× +

⌊
Jωbd

⌋
× −

⌊
ωbd
⌋
× J − J

⌊
ωbd
⌋
×

)
is skew-symmetric, one has that

V̇3(x̄3) = −2k1hη̇e + k2pe · ṗe/2 + ω̇e · (Jωe) +mṗe · p̈e
(6.32)
= −2k1hη̇e + k2pe · ṗe/2 +

[
J−1Aωe + J−1

(⌊
Jωbd

⌋
× ω

b
d − Jω̇bd + τ

)]
· (Jωe) +mṗe · p̈e

= −2k1hη̇e + k2pe · ṗe/2 +
[(⌊

Jωbd
⌋
× ω

b
d − Jω̇bd + τ

)]
· (ωe) +mṗe · p̈e

(6.19)
= −2k1h

(
−1

2
µe · ωe

)
+ k2pe · ṗe/2 +

[⌊
Jωbd

⌋
× ω

b
d − Jω̇bd + τ

]
· ωe +mṗe · p̈e

= −2k1h

(
−1

2
µe · ωe

)
+ k2pe · ṗe/2 +

[⌊
Jωbd

⌋
× ω

b
d − Jω̇bd + τ

]
· ωe +mṗe · p̈e

(6.23)
= −2k1h

(
−1

2
µe · ωe

)
+ k2pe · ṗe/2 +

[⌊
Jωbd

⌋
× ω

b
d − Jω̇bd + τ

]
· ωe +

mṗe ·
[
f/m− p̈bd + ω̇e × pbd + 2ωe × ṗbd + ωe ×

(
pbd × ωbe

)]
= k1hµe · ωe +

[⌊
Jωbd

⌋
× ω

b
d − Jω̇bd + τ

]
· ωe +

k2pe · ṗe/2 +m
[
f/m− p̈bd + ω̇e × pbd + 2ωe × ṗbd + ωe ×

(
pbd × ωe

)]
· ṗe

=
[
k1hµe +

⌊
Jωbd

⌋
× ω

b
d − Jω̇bd + τ

]
· ωe +{

m
[
−p̈bd + ω̇e × pbd + 2ωe × ṗbd + ωe ×

(
pbd × ωe

)]
+ k2pe/2 + f

}
· ṗe

Using the proposed controller feedbacks (6.42) and (6.43) yields

V̇3(x̄3) =−Kṗṗe · ṗe −Kωωe · ωe
=−Kṗ‖ṗe‖2 −Kω‖ωe‖2.

Thus, V̇3 is negative semidefinite on X3 with respect to A3. Along jumps, when x̄3 ∈ D3, since q+
e

= q
e
,

∆V3(x̄3) = V3(x̄+
3 )− V3(x̄3) = −2ηe(h

+ − h).

Let D3 = D3a∪D3b∪D3c, where D3a, D3b and D3c are respectively defined in (6.38), (6.39) and (6.40).
Thus,

∆V3(x̄3) =

≤ −4δa, x̄3 ∈ D3a ∪D3b,

0, x̄3 ∈ D3c,

where δa = δ for x̄3 ∈ D3a \D3b and δa = δ/2 for x̄3 ∈ D3b.

From Lemma 6.1 and by Theorem 7.6 of [100], it follows that the compact set A3 is stable since
∆V3(x̄3) ≤ 0 and V̇3(x̄3) ≤ 0 for all x̄3 ∈ X3.
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To conclude that the set A3 is globally asymptotically stable, it is necessary to apply Theorem 4.7 of
[100] to prove that the set A3 is the largest invariant set in W = W1 ∪W2, where W1 := {x̄3 ∈ C3 :

V̇3(x̄3) = 0} and W2 := ∆V3
−1(0) ∩G3(∆V3

−1(0)), with G3(x̄3) := x̄+
3 . It follows that ∆V3

−1(0) =

D3c and
G3(∆V3

−1(0)) = {x̄3 ∈ X3 : b = 1 , hηe ≥ 3δ/2}.

Thus, W2 = ∅ and

W = W1 = {x̄3 ∈ X3 : ṗe = 0 and ωe = 0 and (hηe ≥ −δ) and

(b = −1 or hηe ≥ −δ/2) and (b = 1 or hηe ≤ 3δ/2)} .

From (6.45) and (6.46), the only way to keep ωe ≡ 0 and ṗe ≡ 0 is when µe = 0 and pe = 0.
This means q

e
= ±1. Using the restriction hηe ≥ −δ, it follows that q

e
= h1 and using the other

two restrictions, b = 1. Thus, any solution x̄3(t) approaches the largest invariant set A3. This controller
restricts parameter δ to (0, 2/3 ]. For the case δ ∈ (2/3, 1), the system still behaves as proposed until
the first jump. Afterward, it will behave as the hysteretic controller with only one mode, since b will not
change anymore. �

Differently from memoryless discontinuous controllers, the next theorem states that the stability of the set
A3 is not sensitive to arbitrarily small constant σ-perturbations. The proof follows from the same reasoning of
Theorem 4.3.

Theorem 6.2

Let V3 be as in (6.47). There exists a class-KL function β such that for each compact setK3 ⊂ X3 and
∆ > 0 there exists ρ∗ > 0 such that for each ρ ∈ (0, ρ∗], the solutions x̄3ρ from K3 of the perturbed
system H̄3ρ satisfy

V3 (x̄3ρ (t, j)) ≤ β (V3 (x̄3ρ (0, 0)) , t+ j) + ∆, ∀ (t, j) ∈ dom x̄3ρ. (6.49)

It was proved in the end of Section 5.3 that the analysis of either the presence of Zeno solutions (infinite
number of jumps in a finite amount of time) or chattering are only related to the rotation quaternion. The
same idea applies here, and as corollary, no Zeno solutions occur even when constant σ-perturbations (see
Definition 2.13) are taken into account, provided that the amplitude of the perturbation is sufficiently small.

6.5 STABILIZING CONTROLLER

The stabilization problem is a particular case of the tracking problem with qd = 1, ωd = 0, ω̇d = 0,
pd = 0, ṗd = 0 and p̈d = 0. In this case, the dynamics of the system is simply described by (2.29) and (2.43),
that is,

q̇ =
1

2
qω,

ω̇ =
[
J−1 (S(Jω)ω + τ )

]
+ ε

{[
J−1 (S(Jω)ω + τ )

]
× p+ ω × ṗ+ f/m

}
,

(6.50)
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where the states of the system are given by (q,ω) ∈ X , and the input are made by force f and torque q. The
state-space of the system coupled with the controller isX3s := X×Xc×Xc, with the states denoted concisely
by x̄3s := (q,ω, h, b). The stabilizing controller is given by the dynamics

ḣ = 0

ḃ = 0

}
x̄3s ∈ C3s,

h+ ∈ sgn (u1 − u2δ/2)

b+ ∈ u2 sgn (u1 − u2δ/2)

}
x̄3s ∈ D3s,

(6.51)

with the jump set given by D3s := D3as ∪D3bs ∪D3cs, with

D3as := {x̄3s ∈ X3s : hη ≤ −δ} , (6.52)

D3bs := {x̄3s ∈ X3s : b = 1, hη ≤ −δ/2} , (6.53)

D3cs := {x̄3s ∈ X3s : b = −1, hη ≥ 3δ/2} (6.54)

and the flow set is C3s := X3s \D3s. As a corollary of Theorem 6.1, by using the feedback torque and force
given by

τ fb = −k1hµ−Kωω,

ffb = −1

2
k2p−Kṗṗ,

and (u1, u2) = (ηe, h), the set

A3s :=
{

(q,ω, h, b) ∈ X ×Xc ×Xc : q = h1 , ω = 0 , b = 1
}

is globally stable under the combined dynamics of (6.50)-(6.51).

6.6 NUMERICAL SIMULATIONS

In this section, the proposed dynamic controller is compared with the dynamic controller of [2] in the
presence and absence of measurement noise in q. The initial pose in both scenarios was set to q(0) = −0.01 +

0.09ı̂ + 0.76̂ + 0.64k̂ and p(0) = 0.19ı̂ − 1.09̂ + 2.79k̂. The inertial matrix of the rigid body expressed
in the body frame is J = diag

([
1 0.63 0.85

])
and the mass of the rigid body is m = 1. The controller

parameters of [2] were also set as in [2]. The proposed dynamic controller parameters were set to k1 = 3,
k2 = 120, Kω = 1.2 I and Kṗ = 100 I . The initial discrete states of the proposed controller were set to
h(0) = 1 and b(0) = 1.
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Fig. 6.1: Comparison between dynamic controllers in the presence (red dashed line) and absence (blue solid
line) of disturbances. The left graphics show the time evolution of the dynamic controller proposed in [2] and
the right graphics show the time evolution of the proposed dynamic controller.

Fig. 6.1 compares the time evolution of the rotation quaternion and the translation expressed in the reference
frame. It illustrates how measurement noise influences the behavior of a memoryless discontinuous controller
such as the one suggested in [2], especially the rotation. The procedure to add the measurement noise to
simulations is the same as the one of Section 5.4. Following the suggestion of [103], a implicit numerical
integrator (ode23 in MATLAB) was used to simulate the controller of [2] to avoid the additional chattering
caused by numerical errors. It is important to remark that the simulation was also made using the ode45
numerical integrator of MATLAB, and the graphics of the figures did not change.

The discrete state variable for both controllers is also shown in this figure. The λ variable is used as the
switching variable of the dynamic controller from [2]. While in the absence of noise scenario the λ variable is
constant and equal to −1, in the presence of noise, it chatters and causes a lag in the rotation evolution. This is
not the case of the discrete states h and b of the proposed hybrid dynamic controller, which does not change.
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Fig. 6.2: Compared total control effort (force and torque) between proposed dynamic hybrid controller (right
plot) and the memoryless discontinuous controller of [2] (left plot).

In addition of achieving a better performance and successfully avoiding chattering due to noise, the pro-
posed hybrid controller also demands considerably less control effort compared to [2]. Fig. 6.2 compares the
use of control effort for both controllers—herein, the control effort related to the required torque is calculated

by
√∫ t

0
τTfb(s)τfb(s) ds, whilst the force by

√∫ t
0
fTfb(s)ffb(s) ds. While the presence of noise causes a sig-

nificant difference in both overall torque and force employed in the controller of [2], it has little effect over
the proposed controller. Moreover, even in absence of external disturbances, the memoryless discontinous
controller of [2] requires more force compared to the proposed hybrid controller.

6.7 CHAPTER CONCLUSIONS

This chapter presents a novel tracking controller which consider the complete dynamics of rigid-body, that
is, which considers the twist not as an input, but as a state of the system. Compared with the dynamic controllers
of [28, 31], the proposed dynamic controller controls both the attitude and the coupled translational dynamics.
Moreover, the quaternion-based controllers proposed in [28] has a drawback in the scenario of systems with
restricted energy storage and power supply, such as satellites: some initial attitudes yields unnecessary longer
rotation trajectories, leading to a higher average settling time and/or energy consumption. As discussed in [17],
the energy consumption of the system is aggravated when the translation movement is also considered. To
address this problem, the proposed dynamic controller extends the bimodal strategy proposed in last chapter to
the dynamic setting. This technique allows a trade-off in terms of cost between a memoryless discontinuous
controller and the hysteretic-based controllers proposed in [28, 17]. To illustrate the advantage of the pro-
posed hybrid dynamic controller, numeric comparisons contrast it with the memoryless discontinuous dynamic
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controller of [2]. As seen in the simulations, only the controller of [2] suffers from rotation lag, induced by
chattering in the presence of small magnitude measurement noises.
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CONCLUSION

This thesis presented novel hybrid control strategies for the motion of rigid bodies that guarantee global stability
and also simultaneously mitigates chattering and unwinding problems. The result, based on the exploitation of
hybrid theory tools and the unit dual quaternion manifold characteristics, enlarges the applicability of hybrid
theory to non-Euclidean manifolds and improves the closed-loop performance of the rigid body kinematics
and dynamics, which is critical to real-world applications. Furthermore, due to the high applicability of pose
controllers, it is expected that the results presented here to be relevant to the control of manipulators, mobile
robots, satellite and spacecraft tracking and stabilization problems.

In addition, the controllers presented in this thesis open the doors to further investigations and extensions
that are important and whose results may have several practical consequences. For instance, one possible
line of research would be to extend the proposed controllers in this thesis to the cooperative control of multi-
agent systems, that is, the simultaneous control of many autonomous systems cooperating together in order to
perform a task: a large number of unmanned aerial vehicles may have as a objective to synchronize their pose
or to form certain patterns of positioning between them. Such missions are very important, for example, in
military strategies and tactics. Moreover, as the task is distributed to many autonomous agents, the cooperative
control paradigm provides a high redundancy and can prevent the possibility of compromising an entire task
because of a failure in a single agent. Therefore, the cooperative control architecture is a scalable and flexible
solution that can excel at tasks where high fault tolerance is desired. Examples of such tasks include risky
scenarios such as the removal of explosive mines in minefields and the exploration of hazardous environments
such as the damaged Fukushima nuclear power plants in Japan [104]. Another reason to use the cooperative
control paradigm is that it may be impracticable to set up a structure to control the pose of the robots in a
centralized mode due to the location of the task, as in the cases of space or submarine exploration. In the case
of space exploration, it is worth mentioning the possibility of using multiple independent space telescopes to
form a stellar interferometer and achieve unprecedented image resolutions, advancing the state of the art of
astronomy [105].

Another further work would be to enhance the dynamic control law proposed in Chapter 6. It is important
to note that the control law presented in this chapter depends on full knowledge of the inertial parameters of
the model (that is, the mass and the inertia matrix of rigid body expressed in some frame). In many practical
situations, the inertial parameters of the system are not available a priori or they are time-varying (for instance,
a rocket will have a considerable loss of mass since the fuel will be expelled during flight). Thus, a controller
which does not require the knowledge of inertial parameters such as the one proposed in [25, 106] for attitude-
only control or an adaptive solution such as the ones proposed in [41, 43] for pose control is highly desirable.
To the best of the author knowledge, no hybrid solution has been proposed in this context.

Finally, the proposed dynamic controller in Chapter 6 requires that the linear and velocity measurements
are available. This may not be true in some practical situations, due to a sensor malfunction or simply be-
cause the vehicles or manipulators are not equipped with linear or angular velocity sensors. This justifies the
investigation of hybrid pose controllers that are free of angular and velocity measurements, such as the non-
hybrid approaches made in [25] for attitude-only control using quaternion and [26] for pose control using dual
quaternions.
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APPENDIX

79



ALGEBRAIC STRUCTURES

In this appendix one can have a quick glance of definitions and properties of some algebraic structures that may
be used during the reading of this book.

DEFINITION A.1 (Group) [107, p.31] A group (G, �, 1G) is defined by a set G, a single binary operation
� : G × G → G (named the group operation), and a element 1G ∈ G (the identity element) that satisfies
the following axioms:

G1 [Associative] For all a, b, c ∈ G we have

(a � b) � c = a � (b � c) ;

G2 [Identity Operation] For all a ∈ G, we have

a � 1G = 1G � a = a;

G3 [Inverse Element] For all a ∈ G, there exists an inverse element in G (denoted by a−1) such that

a � a−1 = a−1 � a = 1G.

Remark A.1. To simplify notation, groups are usually referred only by the pair (G, �) or the set G.

The follow properties are valid for all groups:

Proposition A.1. [107, p.29] The identity of the group is unique.

Proposition A.2. [107, p.31] For all g ∈ G, there exists an unique inverse element g−1.

Groups whose operation behave nicely with regard to commutativity have a special name.

DEFINITION A.2 (Abelian Group) [107, p.41] A group (G, �) is called an Abeliana group if for all
a, b ∈ G the following property is valid:

Ab1 [Commutative Law] For all a, b ∈ G we have a � b = b � a.
aIn homage to the mathematician Niels Henrik Abel who studied the relationship between some groups and impossibility of

solving quintic equations by radicals.

Some maps between groups are special in the sense that they preserve the group operation. This is made
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precise in definition.

DEFINITION A.3 (Group Homomorphism) [107, p.58] A map φ : (G, �, ε)→ (H, ◦, e) between group is
called a group homomorphism if it satisfies:

H1 For all a, b ∈ G, we have φ (a � b) = φ (a) ◦ φ (b).

As the group operation is preserved, the identity element is also preserved by homomorphisms:

Proposition A.3. [107, p. 59] If φ : (G, �, ε) → (H, ◦, e) is a homomorphism, then φ (ε) = e and
φ
(
g−1

)
= φ−1 (g) for all g ∈ G.

DEFINITION A.4 [107, p.37] If a is a bijective map, the group homomorphism is said to be an isomor-
phism. Two groups G and H are isomorphic if there exists an isomorphism between G and H . If this
occurs, we denote G ' H to indicate that they are isomorphic.

DEFINITION A.5 (Subgroup) [107, p.31] A subgroup (H, �, 1H) of (G, �, 1G) is a subset of G that is also
a group under the same group operation – we use the notation H ≤ G to indicate that H is a subgroup of
G.

Some examples of groups comes from special sets of matrices:

EXAMPLE A.1 The group GL (n,R) made by invertible n × n real matrices and whose operation is the
multiplication between matrices.

EXAMPLE A.2 The subgroup SO(n) of GL (n,R). The underlying set of this subgroup is made by
orthogonal matrices with unitary determinant. The subgroup operation is multiplication between matrices.

It is interesting to note that these groups in the last examples have a differentiable structure, in the sense
that GL (n,R) and SO(n) are real smooth manifolds. Moreover, the multiplication map between matrices and
the map that sends a matrix to its inverse are compatible with the differentiable structure of these manifolds.
Groups having these smoothness properties are known as Lie groups. Other important Lie groups that are used
in this thesis is the Lie group of the unit quaternions [6] and the Lie group of the unit norm dual quaternions
[12]. For more details of Lie groups and its applications in control theory and robotics, the reader is referred to
[6, 7].

Another important algebraic structure is that of a vector space over a field. First, it is necessary to define a
field.

81



DEFINITION A.6 [107, p.91] A field (F,⊕,⊗, 1F, 0F) consists of a set F with functions⊕,⊗ : G×G→ G

and elements 0F, 1F ∈ F satisfying the following properties:

F1 (F,⊕, 0F) is an Abelian group (see Definition A.2).

F2 (F− {0F} ,⊗, 1F) is an Abelian group (see Definition A.2).

F3 The operation ⊗ must distribute with the operation ⊕, that is, for all x, y, z ∈ F:

x⊗ (y ⊕ z) = (x⊗ y)⊕ (x⊗ z).

F4 0F ⊗ x = x⊗ 0F for any x ∈ F.

DEFINITION A.7 (Vector Space) [107, p.165] A vector space V over a field (F,⊕,⊗, 1F, 0F) is the 4-tuple
(V,+, ·, 0V ) such that 0V ∈ V and the functions + : V × V → V (known as addition between vectors)
and · : F× V → V (known as product by scalar) satisfies the following properties:

V1 (V,+, 0V ) is an Abelian group (see Definition A.2).

V2 The scalar product must distribute with the addition between vectors, that is, for all v, w ∈ V and
α ∈ F:

α · (v + w) = α · v + α · w.

V3 The operation of⊕ in F must distribute with the scalar product also, that is, for all α, β ∈ F and v ∈ V :

(α⊕ β) · v = α · v + β · v.

V4 There is a kind of associative property between the scalar product and the operation ⊗ of F, that is, for
all α, β ∈ F and v ∈ V :

α · (β · v) = (α⊗ β) · v.

V5 The multiplicative identity of F must satisfy for all v ∈ V :

1F · v = v.

If the field can be implied by context, it is common to omit it. A vector space may be equipped with a
well-behaved function that measures the size of the vector, in the sense that a vector can be greater or smaller
than other vectors.

DEFINITION A.8 (Normed Vector Space) [108, p.275] A normed vector space is a vector space equipped
with a function ‖·‖ : V → R denominated as norm such that the following are satisfied:

N1 [Positive Definiteness] The norm must be positive definite, that is, for all x ∈ V − {0V } we have

‖x‖ > 0.
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N2 [Positive Scalability] The norm must be compatible with the scalar product in the sense that for all
α ∈ F and x ∈ V we have

‖αx‖ = |α| ‖x‖ ,

where | · | : F→ R is a chosen norm in F.

N3 [Triangle Inequality] The triangle inequality must hold, i.e.: for all x, y ∈ V ,

‖x+ y‖ ≤ ‖x‖+ ‖y‖ .

The vector space may also have a richer structure equipping it with an operation of multiplication between
the vectors - such is the case of the cross product between vectors in R3, for example.

DEFINITION A.9 (Algebra) [109] An algebra A over a field F is a vector space over the same field
equipped with a bilinear function � : A × A → A, where bilinear means that the function must obey
the following property:

A1 [Bilinearity] For all x, y, z ∈ A and α, β ∈ F we have:

(α · x+ β · y)�z = α · (x�z) + β · (y�z) and z� (α · x+ β · y) = α · (z�x) + β · (z�y) .

An algebra is called an associative algebra when the function � is associative, and it is called a division
algebra if for any element a ∈ A and any non-zero element b ∈ A there exists precisely one element x ∈ A
with a = bx and precisely one element y ∈ A such that a = yb.

In order to represent rotations in three dimensions in a similar way that complex numbers represent rotations
in the plane, it is naturally to ask if it is possible to have a algebra with dimension 3 over the field of real numbers
that extends the complex numbers. As showed in the next proposition, the answer is no:

Theorem A.1

[110, pp. 3-4] A algebra over the field of real numbers with dimension 3 that extends the complex
numbers does not exist.

proof.

Suppose the contrary and let (1, i, j) be a basis of such algebra, such that i2 = −1. Since the multiplication
in an algebra is closed, we have that

ij = α0 + β0i+ γ0j, (A.1)

with α0,β0,γ0∈ R. Multiplying both sides in the left by i:

−j = i2j = i (ij) = i (α0 + β0i+ γ0j) = α0i− β0 + γ0 ij︸︷︷︸
(A.1)

.
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Substituting ij by α0 + β0i+ γ0j:

(α0γ0 − β0) + (α0 + β0γ0) i+
(
γ20 + 1

)
j = 0,

which implies that γ20 + 1 = 0, contradicting that γ0 ∈ R. �

As discussed in the Chapter 2, the algebra of quaternions does extends the complex numbers and can be
used to represent rotations in the three-dimensional space. The quaternions can also be uniquely be character-
ized by being the only finite dimensional, associative and division algebra over the real numbers which is not
commutative. This is the content of Frobenius’ Theorem:

Theorem A.2

The only associative and division algebras over the real numbers are (up to isomorphism) the field of
real numbers, the field of complex numbers and the algebra of the quaternions. [110, p.21-24]

proof.

LetD be a n-dimensional division algebraa over R. For n = 1,D is equivalent to the field of real numbers.
Thus, suppose that n > 1.

Since n > 1, the set D∩RC is not empty and thus exists a ∈ D such that a /∈ R. For such a, we claim
that there exists γ, δ ∈ R such that [1/γ (a+ δ)]

2
= −1. Indeed, the n + 1 elements 1, a, a2, . . . , an are

linearly independent over R, that is, it is possible to write

α0 + α1a+ α2a
2 + . . .+ αna

n (αi ∈ R)

where not every αi is 0. Let f be the polynomial defined as

f (x) = α0 + α1x+ α2x
2 + . . .+ αnx

n.

By the fundamental theorem of algebra, f splits as a product of linear or quadratic factors with real coeffi-
cients, that is

f (x) = f1 (x) . . . fr (x) .

Since f (a) = f1 (a) . . . fr (a) = 0 and D is a division algebra, it follows that a can’t be the root of a
linear factor, because

a− r = 0 (r ∈ R)

implies that a ∈ R which contradicts that a /∈ R. Hence, a is the root of a quadratic polynomial, say

a2 + αa+ β = 0 (α, β ∈ R) .

Thus, for δ = α/2 we have that (a+ δ)
2

= δ2 − β; Since a /∈ R, the discriminant of the quadratic
polynomial is

∆ := α2 − 4β = 4δ²− 4β = 4
(
δ2 − β

)
< 0,

which implies that δ2 − β < 0. In other words, (a+ δ)
2

= −γ2 where γ ∈ R, γ 6= 0 and the claim
follows.
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For n = 2, by the claim it is possible to choose a basis 1, I for D over R such I2 = −1. Thus, for this
case D is isomorphic to the field of complex numbers.

Suppose now that n > 2. By using again the claim, we can choose a basis 1, I, J, . . . of D over R such
that

I2 = −1, J2 = −1, . . .

Thus, I + J and I − J satisfies quadratic equations, say:

(I + J)
2

+ α1 (I + J) + β1 = 0,

(I − J)
2

+ α2 (I − J) + β2 = 0. (A.2)

Summing both equations:

(α1 + α2) I + (α1 − α2) J + β1 + β2 − 4 = 0.

Since 1, I, J are linearly independent, α1 = α2 = 0. Thus, from (A.2):

(I + J)
2

+ β1 = I2 + IJ + JI + J2 + β1 = IJ + JI + β1 − 2 = 0 =⇒ IJ + JI = 2− β1 ∈ R.

Defining µ as the real number µ := 1
2 (IJ + JI) and using again (A.2), we have that:

(I + J)
2

= 2µ− 2, (I − J)
2

= −2µ− 2.

Since I + J and I − J are not real numbers, we have that ±2µ− 2 < 0. Consequently:

1− µ2 =
1

4
(2µ− 2) (−2µ− 2) > 0.

Let
i = I, j =

J + µI√
1− µ²

.

Therefore,
i2 = −1, j2 = −1, ij = ji

and 1, i, j, . . . forms a basis of D over R.

The product ij can’t be written as a linear combination of 1, i, j, for otherwise we would have a
contradiction (cf. Theorem A.1). Thus n ≥ 4 and k := ij can be considered as the fourth element of the
basis. Hence, if n = 4, D is isomorphic to the algebra of quaternions.

Suppose now that n > 4. Thus D has a fifth element of the basis ` such that `2 = −1. As before,

i`+ `i = µ1, j`+ `j = µ2 k`+ `k = µ3

where µ1, µ2 and µ3 are real numbers. Thus,

`k = ` (ij) = (`i) j = (µ1 − i`) j = µ1j − i (µ2 − j`) = µ1j − µ2i+ k`.
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Summing `k in both sides, it is obtained:

2`k = µ1j − µ2i+ µ3.

Multiplying over k in the right, it follows that

−2` = µ1i+ µ2j + µ3k,

contradicting the fact that ` is linearly independent of i, j, k. �
aTo lighten the notation, along this proof it is assumed that algebra refers to an associative algebra.

Some special algebras are related to Lie groups and are called Lie algebras. Its definition is given next.

DEFINITION A.10 (Lie algebra) [109] A Lie Algebra g is an algebra such that its multiplication between
vectors, entitled by Lie bracket and usually denoted by [·, ·], satisfies the following additional identities:

LA1 [Skew-symmetry] For every x ∈ g,
[x, x] = 0F

LA2 [Jacobi Identity] For every x, y, z ∈ g,

[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0F

Familiar examples are the Euclidean space R3 with the multiplication given by the cross product and
GL (n,R) with the commutator between matrices A and B given by [A,B] = AB −BA.

Lie’s fundamental theorems describe a relation between Lie groups and Lie algebras. In particular, any Lie
group gives rise to a canonically determined Lie algebra (concretely, the tangent space at the identity); and,
conversely, for any finite-dimensional Lie algebra there is a corresponding connected Lie group (Lie’s third
theorem) [111]. In the next examples we shall see how compute the Lie algebras of the Lie groups Spin(3) and
Spin(3) nR3.

EXAMPLE A.3 Let q ∈ Spin(3) be a curve
be given by q = η + µ. Since q ∈ Spin(3), we have that q∗q = 1. Thus,

q̇∗q
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RESULTS ON TOPOLOGY

In this appendix, some topological definitions and results that are related to this thesis are presented. In this sec-
tion, by a manifold it is meant a smooth, positive dimensional, connected manifold without boundary [109].
The following definitions we will also be used: a homeomorphism is a continuous and invertible map be-
tween topological spaces (in particular, manifolds) such that its inverse is also continuous. A diffeomorphism
between manifolds is a differentiable and invertible map whose inverse is also differentiable.

B.1 THE IMPOSSIBILITY OF A GLOBAL THREE DIMENSIONAL
PARAMETERIZATION FOR SO(3)WITHOUT SINGULAR POINTS

In this section we prove that is impossible to have a global 3-dimensional parameterization without singular
points for the rotation group. To find a 1−1 global parameterization of the rotation group using k parameters it
is necessary to embed the rotation group SO(3) in the Euclidean space Rk, that is, to find a differentiable 1− 1

map with differentiable inverse which carries SO(3) into Rk, and use the image points as representatives of
the rotation matrices. As a corollary of the next theorem, we will see that there is no diffeomorphism between
SO(3) and R3.

Theorem B.1 Brouwer’s theorem on the invariance of domain

[112, p. 254] If U is an open subset of Rn and f : U → Rn is an injective continuous map, then
V = f(U) is open and f is a homeomorphism between U and V .

Corollary B.1. [15] There is no diffeomorphism between R3 and SO(3).

proof.

Since SO(3) is a 3-dimensional manifold, each point r ∈ SO(3) has a neighborhood Ur which is home-
omorphic to an open subset of R3. If there were a homeomorphism h : SO(3) → R3, then h(Ur) would
be open in R3 by Brouwer’s theorem, so h(SO(3)), being the union of all h(Ur) for r ∈ SO(3), would
be open in R3. But SO(3) is compact, and h is continuous, so h(SO(3)) should be compact. This con-
tradicts with the fact that no Euclidean space contains an open compact subset, so there can exist no such
homeomorphism. As a consequence, there is also no diffeomorphism between SO(3) and R3. �

B.2 A TOPOLOGICAL OBSTRUCTION TO GLOBAL STABILITY

In this section we consider continuous vector fields f defined on manifolds L such that the initial value
problem

ẋ(t) = f(x(t)), x(0) ∈ L,
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is well-posed. In this case, this vector field defines a continuous map ψ : [0,∞)× L → L satisfying

ψ(0, x) =x,

ψ(t, (ψ(τ, x)) =ψ(t+ τ, x),

for all t, τ ∈ [0,∞) and x ∈ L. This map is called a semiflow of the system and it is a generalization of the
idea of state transition matrix for linear systems [113].

To connect the existence of global stabilizing feedbacks with the topology of the system, the notion of
contractibility of the state space manifold will be defined next.

DEFINITION B.1 A set (resp. manifold) L is a contractible set (resp. manifold) if there exists a point
x0 ∈ L and a continuous mapping H : [0, 1] × L → L such that H(0, x) = x and H(1, x) = x0 for all
x ∈ L. In case of existence, the map H is said to be a homotopy.

Intuitively, a contractible set is one that can be continuously shrunk to a point x0 within that set. For dimen-
sions 1 and 2, contractible manifolds are very easy to describe: all contractible manifolds are homeomorphic to
a open ball with the correspondent dimension. However, in higher dimensions this characterization is not true
anymore: already in dimension 3 there is a manifold that is contractible but not homeomorphic to a ball in R3

[114].

As we will see in the next theorem, contractibility of state-space is a necessary condition for the system to
be globally asymptotically stable.

Theorem B.2

Consider a continuous-time system ẋ = f(x) defined on some state space L ⊆ Rn. If the system is
globally asymptotically stable, then L is a contractible set.

The homotopy mapping H can be constructed in a natural way using the semiflow ψ of the system:

H(t, x) =

ψ(− ln(1− t), x), t ∈ [0, 1),

x0, t = 1.
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H(1, x) = x0

L

H(0, x4)

H(0, x5)

H(0, x1)

H(0, x2)

H(0, x3)
H(0.5, x1)

H(0.5, x5)

H(0.5, x4)

H(0.5, x2)

H(0.5, x3)

Fig. B.1: Homotopy mapping H induced by the semi-flow of the system in a neighborhood of the global
equilibrium point x0. The map is illustrated for points x1, . . . x5 at times t = 0 and t = 0.5. At time t = 1, the
map x 7→ H(1, x) is equal to the constant map x0.

The last theorem restricts the class of manifolds that can be the state-space of a (continuous) globally
asymptotically stable system. In particular, the next theorem states that no compact non-trivial (that is, made
by more than one point) manifold (such as the case of S3, the underlying manifold of the unit quaternion group)
has a continuous vector field with a globally asymptotically stable equilibrium point.

Theorem B.3

[115, p. 83] Let M be a manifold whose underlying set is not a single point. If M is compact, then M
is not contractible.

When dealing with feedback, the closed-loop state space is augmented: for instance, in the case of kinematic
attitude control, the open-loop state space is SO(3) and the closed-loop state space is SO(3)× R3. The latter
is a first example of a real vector bundle over the SO(3).

DEFINITION B.2 A (real) vector bundle is a triple (E,B, π) consisting of topological spaces E (total
space), B (base space) and a continuous surjective map π : E → B such that

• For each point x ∈ B, the preimage (also called fiber) of π at x has the structure of a vector space
over the field of reals. That is, the set Ex := π−1 (x) is a vector space over R.

• (Local trivialization) At any point x ∈ B, there exists a neighborhood U of x and homeomorphism
Φ: π−1 (U)→ U × Rk satisfying

– PrU ◦ Φ = π, where PrU : U × Rk → Rk is the projection (x, y) 7→ x.

– for each q ∈ U , Φ|Eq : Eq → {q} × Rk is a vector space isomorphism.

Remark B.1. When there is no possibility of confusion, we will indicate vector bundles only by the total space
E and say that E is a vector bundle over the base space B.

The local trivialization condition in the definition of vector bundle express that every vector bundle, at least
locally, has the structure of a product X × Rn, where X is the base space. When the vector bundle has the
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product structure globally, we have a first example of a vector bundle.

EXAMPLE B.1 The product space X × Rk with the projection π : X × Rk → X is a vector bundle with
E = X × Rk and B = X . This vector bundle is called the trivial bundle over X . If X = S1 and k = 1,
the trivial bundle can be identified with a cylinder, as illustrated in Fig. B.2.

Φ

U

U × R1

U

π |U

B = S1
E

π

Fig. B.2: Example of a vector bundle: the trivial bundle given by S1 × R.

The next example is a vector bundle which is locally equivalent to the trivial bundle given by S1 × R, but
globally has a different topological structure.

EXAMPLE B.2 The Möbius bundle, illustrated in Fig. B.3, is a example of a vector bundle which is not
the trivial bundle.

Φ

U

U × R1

U

π |U

B = S1
E

π

Fig. B.3: Möbius bundle.

The Möbius bundle and the cylinder are not homeomorphic: cutting the base circle from the cylinder
results in a disconnected space, but cutting the base circle from the Möbius strip results in a connected
space, as shown in Fig. B.4.
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Fig. B.4: Cutting Möbius strip along the base circle.

The next theorem from [27] generalizes Theorem B.2 for vector bundles whose base space are compact
manifolds: if the a vector bundle built over this compact manifold has a globally asymptotically stable equilib-
rium point, it would be possible to induce a globally asymptotically stable equilibrium point on the the compact
manifold, contradicting Theorem B.3. This is illustrated in Fig. B.5 for the case that E is the cylinder.

B = S1

E

π

π(x0)

x0

Fig. B.5: Semi-flow induced in the base space by the semi-flow on the bundle.

Theorem B.4

[27] LetM be a manifold of dimension m and consider a continuous vector field f onM. Suppose
π : M → L is a vector bundle over L, where L is a compact, r-dimensional manifold with r ≤ m.
Then there exists no equilibrium point of f that is globally asymptotically stable.

As a corollary from Theorem B.4, continuous vector fields over SE(3) cannot have a global asymptotic
equilibrium point. This fact is proved next.

Corollary B.2. If f is a continuous vector field defined on SE(3), then there exists no equilibrium point of f
that is globally asymptotically stable.

proof.

The underlying manifold of Lie group SE(3) is SO(3) × R3, which can be seen as a trivial bundle over
SO(3), that is the vector bundle π : SO(3)× R3 → SO(3). By Theorem B.4 there is no equilibrium point
of f that is globally asymptotically stable. �
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The same obstruction for global asymptotic stability by means of continuous vector fields is present on
Spin(3) nR3. This is stated and proved in Corollary B.3.

Corollary B.3. Let f be a continuous vector field defined on the underlying manifold S of the Lie group of
unit dual quaternions. Then there exists no equilibrium point of f that is globally asymptotically stable.

proof.

For an arbitrary unit dual quaternion element q ∈ S, with q = q+εq′ = η+µ+ε (η′ + µ′), it is possible
to verify by direct calculation that the constraint qq′∗ + q′q∗ = 0 implies

ηη′ + µ · µ′ = 0. (B.1)

Furthermore, since ‖q‖ = 1, then q lies in S3. In addition, H is isomorphic to R4 as a vector space,
which implies that q′ ∈ H lies in a three-dimensional hyperplane, with q being its normal vector, due to
constraint (B.1). In this sense, S can be regarded as the product manifold S3 × R3 [116].

The product S3 × R3 equipped with the projection S3 × R3 → S3 given by q 7→ q yields a vector
bundle S3×R3 onto S3, namely the trivial bundle [109]. Since S3 is compact, it follows from Theorem B.4
that there is no equilibrium point of any continuous vector field f that is globally asymptotically stable. �

Remark B.2. Corollaries B.2 and B.3 extends to any rigid transformation with some rotational degrees of
freedom, as it is still possibly to write the state space as a vector bundle over the compact rotational manifold.

B.3 POINCARÉ-HOPF INDEX THEOREM

In the last section was demonstrated the impossibility of the existence of a point of equilibrium which is
globally asymptotically stable. In this section, Poincaré-Hopf index theorem will be used to characterize the
type of the equilibrium point (or points) of a vector field [117, p.63]. The index of an isolated zero of a vector
field is an integer that helps to describe the behavior of the vector field around this zero.

DEFINITION B.3 [118, p. 309] Consider a continuous vector field v defined on an oriented Euclidean
plane and suppose its zeros are finite and isolated. Consider a small oriented circle C around a zero, say
xo, such that no other zeros lie inside this circle (nor in the boundary). Consider a point p in the boundary
of this circle. As the point p traverses the circle in the positive direction, the vector v(p) will also rotate
continuously during the motion. When the point returns to its original position, so does the vector, but in
doing so, it may complete several revolutions in one direction or the other. The number of revolutions it
undergoes is called the index of x0, and it is denoted by indv,C,p(x0). In computing the index a revolution
is counted positive if the vector rotates in the direction given by the orientation of the plane and negative in
the opposite case.

It is possible to prove that the index is independent of the circle C and the initial point p chosen in Defini-
tion B.3. Because of this, we denote the index of x0 by simply indv(x0). In the plane, the index takes the value
−1 if x0 is a saddle-like equilibrium point and takes value +1 if x0 is a source or sink-like equilibrium point.
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This is illustrated in Fig. B.6.

f2(x, y) = (−x, y)f1(x, y) = (x, y)

(a) (b)

(c) (d)

Fig. B.6: Vector fields on R2 and computation of its indices. All of the vector fields has an unique isolated
equilibrium point in (0, 0). (a) Vector field defined by f1(x, y) := (x, y). The equilibrium point can be seen to
be unstable and source-like. (b) Vector field defined by f2(x, y) := (−x, y). The equilibrium point can be seen
to be unstable and saddle-like. (c) Computation of indf1(0, 0): following the vector field f1 counterclockwise
along a circle gives a single complete revolution counterclockwise, thus indf1(0, 0) = 1. (d) Computation of
indf2(0, 0): following the vector field f2 counterclockwise along a circle gives a single complete revolution
clockwise, thus indf1(0, 0) = −1.

The idea of index can be generalized to vector fields defined on manifolds (for more details of the con-
struction, see [85, p. 34]). In the same way, if the index is −1, the equilibrium point associated to the vector
fields is a saddle point, and if the index is +1, it is a source or sink point. The next theorem, Poincaré-Hopf
index theorem, can be used to relate a topological property, the Euler characteristic [109, p. 433], to the sum of
indexes of zeros of a vector field.

Theorem B.5 Poincaré-Hopf theorem

[85, pg.35] Let M be a compact orientable manifold and v a continuous vector field defined on M
with p isolated zeros given by x1, . . . , xp. The following formula is valid:

p∑
i=1

indv(xi) = χ (M)

where χ (M) is the Euler characteristic of M .

By examining vector fields in a sufficiently small neighborhood of a source of a sink, we see that sources
and sinks contribute integer amounts (the index) to the total, and they must all sum to 0. In the case of S3, we
have that its Euler characteristic χ(S3) = 0 (for details, see [109]). This implies that if a continuous vector
field on S3 has two equilibrium points and one of the equilibrium points is asymptotic stable (corresponding to
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a sink equilibrium point and a positive index), then the another equilibrium point must have a negative index,
that is, it must be unstable (it is a source-like equilibrium point or a saddle-like equilibrium point).

In the context of the attitude stabilization problem for the kinematic control scenario, the closed-loop state
space is S3. This implies the non-existence of a continuous static controller that guarantees that the only equi-
librium points for the closed-loop system are −1 and 1, and with both of them simultaneously asymptotically
stable. For dynamic controllers, the state-space is S3×R3, a non-compact manifold. While Theorem B.5 does
not applies directly to non-compact manifolds1, it still can be used to show that the unwinding problem remains
even in the scenario of dynamic control. In fact, it is impossible to have a continuous vector field in S3 × R3

with equilibrium points given by

{(q, ω) ∈ S3 × R3 : (q, ω) ∈ {(−1, 0), (1, 0)}}

and both of them asymptotically stable. Indeed, suppose for the sake of contradiction thatX is such continuous
vector field and define S0 := {(q, ω) ∈ S3 × R3 : (q, ω) ∈ S3 × {0}}. Note that X |S0

is a continuous
vector field (the restriction of any continuous vector field is continuous) over the compact set S0, whose Euler
characteristic is 0. By applying Theorem B.5 the result follows.

Finally, the same reasoning can be applied to the case of pose control using dual quaternions, where the
state-space is S (in the case of kinematic control) or S × R6 (in the case of dynamic control).

1Albeit not used here, it is interesting to remark that there is a generalization of Poincaré-Hopf theorem for non-compact manifolds.
For more details, see [119].
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Abstract 

In this paper, we address the rigid body pose stabilization problem using dual quaternion formalism. 
We propose a hybrid control strategy to design a switching control law with hysteresis in such a 
way that the global asymptotic stability of the closed-loop system is guaranteed and such that the 
global attractivity of the stabilization pose does not exhibit chattering, a problem that is present in all 
discontinuous-based feedback controllers. Using numerical simulations, we illustrate the problems that 
arise from existing results in the literature—as unwinding and chattering—and verify the effectiveness 
of the proposed controller to solve the robust global pose stability problem. 
© 2017 The Franklin Institute. Published by Elsevier Ltd. All rights reserved. 

1. Introduction 

Rigid body motion and its control have been extensively investigated in the last 40 years 
because of its applications in the theory of mechanical systems, such as robotic manipulators, 
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satellites and mobile robots. Research has largely focused on the study of models and control 
strategies in the Lie group of rigid body motions SE(3) and its subgroup SO(3) of proper 
rotations [1–4] . 

Although it is usual to design attitude and rigid motion controllers for mechanical systems 
respectively using rotation matrices and homogeneous transformation matrices (HTM) [3] , it 
has been noted by some authors that a non-singular representation, namely the unit quaternion 

group Spin(3) for rotations and the unit dual quaternions Spin (3) � R 

3 for rigid motions can 

bring computational advantages [4–6] . 
In scenarios where the state space of the dynamical system is not the Euclidean space R 

n 

but a general differentiable manifold M —which is the case of SE(3) and Spin (3) � R 

3 —
some difficulties in designing a stabilizing closed-loop controller may arise. For instance, the 
topology of M may obstruct the existence of a globally asymptotically stable equilibrium 

point in any continuous vector field defined on M : in [1] it is proved that if M has the 
structure of a vector bundle over a compact manifold L , then no continuous vector field on 

M —indeed, nor in L —has a globally asymptotically stable equilibrium. In particular, this 
means that it is impossible to design a continuous feedback that globally stabilizes the pose 
of a rigid body, as in this case the closed-loop system state space manifold is a trivial bundle 
over the compact manifold SO(3). The same topological obstruction is also present in the 
group of unit dual quaternions since its underlying manifold is a trivial bundle over the unit 
sphere S 

3 (see Theorem 1 in Section 2.3 ). 
On the other hand, due to the two-to-one covering map Spin (3) � R 

3 → SE (3) , the unit 
dual quaternion group is endowed with a double representation for every pose in SE(3). 
Neglecting the double covering yields to the problem of unwinding whereby solutions close to 

the desired pose in SE(3) may travel farther to the antipodal unit dual quaternion representing 

the same pose [7] . There are few works on unwinding avoidance in the context of pose 
stabilization using unit dual quaternions [7–10] . All of them are based on a discontinuous 
sign-based feedback approach. 

As shown by [11] for the particular case of Spin(3), the discontinuous sign-based approach 

may, however, be particularly sensitive to measurement noises, and despite achieving global 
stability, global attractivity properties may be detracted with arbitrarily small measurement 
noises. As one would expect, the same happens with Spin (3) � R 

3 and this will be shown in 

Theorem 1 . 
As verified in Section 3 , in Spin (3) � R 

3 the lack of robustness is even more relevant as the 
discontinuity of the controller not only affects the rotation, but may also disturb and deteriorate 
the trajectory of the system translation. In this context, even extremely small noises may lead 

to chattering, performance degradation—and in the worst case, prevent stability. Summing 

up, despite the solid contributions in the literature on dual quaternion based controllers in the 
context of rigid body motion stabilization, tracking, and multi-agent coordination [7–10,12–
15] , control of manipulators and human–robot interaction [16–21] , and satellite and spacecraft 
tracking [22–24] , it is important to emphasize that existing pose controllers are either stable 
only locally (as we show in Section 2 ) or have lack of robustness in the sense that they 

are sensitive to arbitrarily small measurement noises (as we illustrate in Section 5 ). In other 
words, the topological constraints from Spin (3) � R 

3 , most of them inherited from SE(3), 
still pose a challenge—the extension from results on attitude control to the problem of pose 
control is not trivial—and there exists no result in the literature that ensures robust global 
stability. 
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1.1. Contributions 

In this paper, a generalized robust hybrid control strategy for the global stabilization of 
rigid motion kinematics within unit dual quaternions framework is proposed. The strategy 

stems from the idea of the hybrid kinematic control law with hysteresis switching proposed 

in [11] to solve the non-robustness issue for quaternions. It is important to emphasize that, 
albeit some algebraic identities in quaternion algebra can be easily carried over to the dual 
quaternion algebra by the principle of transference [4,25] , the proposed generalization does 
not follow by the principle of transference. In fact, counterexamples shown in [25] illustrate 
the failure of the transfer principle outside the algebraic realm. 

In summary, whereas unit quaternions are used to model only attitude and perform a double 
cover for the Lie group SO(3), unit dual quaternions model the coupled attitude and position 

and perform a double cover for the Lie group SE(3). The necessity of different procedures 
for quaternion and dual quaternion stems from their different topologies and group struc- 
tures. For example, the unit quaternion group is a compact manifold, whereas the unit dual 
quaternion group is not a compact manifold. This reflects in the use of distinct approaches 
to controller design (see for instance [3] ). It is also interesting to highlight that due to SO(3) 
being compact, it has a natural bi-invariant metric, but the same cannot be said from SE(3) 
as it does not possess any bi-invariant metric. The unit dual quaternion group is not a sub- 
group from Spin(3)—it is indeed the other way around—and boundedness, geodesic distance, 
norm properties, and other manifold features that are valid on S 

3 cannot be directly carried 

to Spin (3) � R 

3 . In this sense, the extension of control results to Spin (3) � R 

3 is not trivial, 
which is reflected by the gap between quaternion based results and dual quaternion based 

controllers—where the double covering map is often neglected [6,12–15] . To overcome this 
context, we introduce a novel Lyapunov function that exploits the algebraic constraints inher- 
ent from the unit dual quaternion manifold, and a new robust hybrid stabilization controller 
for rigid motion using Spin (3) � R 

3 is derived. 

1.2. Notation 

Lowercase bold letters represent quaternions, such as q . Underlined lower case bold letters 
represent dual quaternions, such as q . The following notations will also be used: 
R set of real numbers; 
R ≥0 set of non-negative real numbers; 
B closed unit ball in the Euclidean norm; 
H set of quaternions; 
H 0 set of pure imaginary quaternions; 
H � D set of dual quaternions; 
SO(3) 3-dimensional Lie group of rotations; 
SE(3) 3-dimensional Lie group of rigid body motions; 
Spin(3) Lie group of unit norm quaternions; 
Spin (3) � R 

3 Lie group of unit norm dual quaternions; 
S 

3 underlying manifold of unit norm quaternions; 
S underlying manifold of unit norm dual quaternions; 
KL class of continuous functions β : R ≥0 × R ≥0 → R ≥0 such that for each fixed 

s , the function β( r , s ) is strictly increasing and β( 0, s ) = 0 and for each fixed 

r , the function β( r , s ) is decreasing and lim s→∞ 

β( r, s ) = 0; 



2772 H.T.M. Kussaba et al. / Journal of the Franklin Institute 354 (2017) 2769–2787 

‖ · ‖ Euclidean norm; 
u · v dot product between pure imaginary quaternions u and v ; 
u × v cross product between pure imaginary quaternions u and v ; 
co (·) closure of the convex hull; 
X + Y Minkowski sum between the sets X and Y ; 
x + denotes the next state of the hybrid system after a jump; 

2. Preliminaries 

In this section, we provide for the reader basic concepts and a brief theoretical background 

regarding quaternions and dual quaternion representation for rigid body motion. We also 

present the topological constraints—which affect any mathematical structure that represents 
rigid motion—imposed by dual quaternions. 

2.1. Quaternions 

The quaternion algebra is a four-dimensional associative division algebra over R intro- 
duced by Hamilton [26] to algebraically express rotations in the three-dimensional space. The 
elements 1, ̂ ı , ̂  j , ̂  k are the basis of this algebra, satisfying 

ˆ ı 2 = ˆ j 2 = 

ˆ k 2 = ˆ ı ̂ j ̂  k = −1 , 

and the set of quaternions is defined as 

H � { η + ̂  ı μ1 + ̂  j μ2 + 

ˆ k μ3 : η, μ1 , μ2 , μ3 ∈ R } . 
Consider a quaternion q = η + ̂  ı μ1 + ̂  j μ2 + 

ˆ k μ3 ; for ease of notation, it may be denoted as 

q = η + μ, with μ = ˆ ı μ1 + ̂  j μ2 + 

ˆ k μ3 . 

In addition, it may be decomposed into a real component and an imaginary component: 
Re( q ) � η and Im( q ) � μ, such that q = Re ( q ) + Im ( q ) . The quaternion conjugate is given by 

q 

∗ � Re ( q ) − Im ( q ) . Pure imaginary quaternions are given by the set 

H 0 � 

{ q ∈ H : Re ( q ) = 0 

} 
and are very convenient to represent vectors of R 

3 within the quaternion formalism by means 
of a trivial isomorphism, which implies H 0 

∼= 

R 

3 . Both cross product and dot product are de- 
fined for elements of H 0 and they are analogous to their counterparts in R 

3 . More specifically, 
given u , v ∈ H 0 , the dot product is defined as 

u · v � −u v + v u 

2 

, 

and the cross product is given by 

u × v � 

u v − v u 

2 

. 

The quaternion norm is defined as ‖ q 

‖ � 

√ 

q q 

∗. Unit quaternions are defined as the quaternions 
that lie in the subset 

S 

3 � 

{ q ∈ H : ‖ q 

‖ = 1 

} . 
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The set S 

3 forms, under multiplication, the Lie group Spin(3), whose identity element is 
1 and group inverse is given by the quaternion conjugate q 

∗. 
Analogously to the way complex numbers are used to represent rotations in the plane, unit 

quaternions represent rotations in the three-dimensional space. Indeed, an arbitrary rotation 

θ around an axis n = ˆ ı n x + ̂  j n y + 

ˆ k n z is represented by the unit quaternion r = cos ( θ/ 2 ) + 

sin ( θ/ 2 ) n . Furthermore, since the unit quaternion group double covers the rotation group 

SO(3), the unit quaternion −r also represents the same rotation associated to r [4] . 

2.2. Dual quaternions 

Similarly to how the quaternion algebra was introduced to address rotations in the 
three-dimensional space, the dual quaternion algebra was introduced by Clifford and Study 

[27,28] to describe rigid body movements. This algebra is constituted by the set 

H � D � 

{
q + ε q 

′ : q , q 

′ ∈ H 

}
, 

where ε is called the dual unit and is nilpotent—that is, ε � = 0, but ε 2 = 0. Given q = η + μ + 

ε(η′ + μ′ ) , we define Re ( q ) � η + εη′ and Im ( q ) � μ + ε μ′ , such that q = Re ( q ) + Im ( q ) . 

The dual quaternion conjugate is q 

∗ � Re ( q ) − Im ( q ) . 
Under dual quaternion multiplication, the subset of dual quaternions 

S � 

{
q + ε q 

′ ∈ H � D : ‖ q 

‖ = 1 , q q 

′∗ + q 

′ q 

∗ = 0 

}
, (1) 

forms a Lie group [14] called unit dual quaternions group Spin (3) � R 

3 , whose identity is 1 

and group inverse is the dual quaternion conjugate. 
An arbitrary rigid displacement characterized by a rotation r ∈ Spin(3), with r = 

cos ( θ/ 2 ) + sin ( θ/ 2 ) n , followed by a translation p ∈ H 0 , with p = p x ̂  ı + p y ̂  j + p z ̂  k , is rep- 
resented by the unit dual quaternion [5,9] 2 

q = r + ε 
1 

2 

r p . 

The unit dual quaternions group double covers SE(3) and thus any displacement q can also 

be described by −q . 

2.3. Description of rigid motion and topological constraints 

Since unit quaternions describe the attitude of a rigid body, they are used to represent a 
rotation between the body frame and the inertial frame. In this sense, the kinematic equation 

of a rotation represented by the unit quaternion q is expressed as 

˙ q = 

1 

2 

q ω , (2) 

where ω ∈ H 0 is the angular velocity given in the body frame [30] . 
Similarly, the unit dual quaternion q describes the coupled attitude and position. The first 

order kinematic equation of a rigid body motion in the inertial frame is given by 

˙ q = 

1 

2 

q ω , (3) 

2 Similarly, the rigid motion could also be represented by a translation p followed by a rotation r [29] resulting in 
the dual quaternion q = r + (1 / 2) ε p r . Both p and p are related by p = r p r ∗. 
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where ω is the twist in body frame given by 

ω = ω + ε 
[ ˙ p + ω × p 

]
. (4) 

The remarkable similarity between Eqs. (2) and (3) is due to the principle of transference, 
whose various forms as stated in [25] can be summarized in modern terms as [4, Sec 7.6] : 
“All representations of the group SO(3) become representations of SE(3) when tensored with 

the dual numbers.” This means that several properties and algebraic identities of SO(3) and 

the quaternions can be carried to SE(3) and the dual quaternions algebra, respectively. 
The principle of transference may mislead one to think that every theorem in quaternions 

can be transformed to another theorem in dual quaternions by a transference process. How- 
ever, this is not the case, as shown by counterexamples in [25] . Therefore, properties and 

phenomena related to quaternion motions like topological obstructions and unwinding may 

not follow by direct use of transference and have to be verified for dual quaternions. 
We first verify that Spin (3) � R 

3 presents an obstruction for the global asymptotic stability 

of a continuous vector field on its underlying manifold. 

Theorem 1. Let f be a continuous vector field defined on the underlying manifold S of the 
Lie group of unit dual quaternions. Then there exists no equilibrium point of f that is globally 
asymptotically stable. 

Proof. For an arbitrary unit dual quaternion element q ∈ S , with q = q + ε q 

′ = η + μ + 

ε 
(
η′ + μ′ ), as defined in Eq. (1) , it is possible to verify by direct calculation that the constraint 

q q 

′∗ + q 

′ q 

∗ = 0 implies 

ηη′ + μ · μ′ = 0. (5) 

Furthermore, since ‖ q 

‖ = 1 , then q lies in S 

3 . In addition, H is isomorphic to R 

4 as a vector 
space, which implies that q 

′ ∈ H lies in a three-dimensional hyperplane, with q being its 
normal vector, due to constraint Eq. (5) . In this sense, S can be regarded as the product 
manifold S 

3 × R 

3 [31] . 
The product S 

3 × R 

3 equipped with the projection S 

3 × R 

3 → S 

3 given by q �→ q yields 
a vector bundle S 

3 × R 

3 onto S 

3 , namely the trivial bundle [32] . Since S 

3 is compact, it 
follows from Theorem 1 of [1] (for the reader’s convenience, this theorem is reproduced in 

Theorem 8 of the Appendix) that there is no equilibrium point of any continuous vector field 

f that is globally asymptotically stable. �

3. Prior work on pose stabilization 

Due to the topological constraint described in Theorem 1 , there is no continuous state 
feedback controller on S that can globally asymptotically stabilize (Eq. ( 3 )) to a rest configu- 
ration. Indeed, the two-to-one covering map from Spin (3) � R 

3 to SE(3) renders a closed-loop 

system with two distinct equilibria q e and −q e . 
Since both ± q e correspond to the same configuration in SE(3), solutions neglecting 

the double cover (see, for example, [12–15,17,18] ) are expected to exhibit the unwinding 

phenomenon [1] , that is, solutions starting arbitrarily close to the desired pose in SE(3)—
represented by both stable and unstable points in Spin (3) � R 

3 —may travel to the farther 
stable point instead to the nearest unstable point (see, for example, Fig. 5 ). The sole contri- 
butions in the sense of avoiding the unwinding and stabilizing (Eq. ( 3 )) to the set { ± 1} are 
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Fig. 1. ( a ) Trajectory of the rotation unit quaternion r in terms of η and μ (dashed line) with switches along 
time between the discontinuous control laws in Eq. (6) represented by s ( t ). ( b ) Trajectory of the three-dimensional 
translation elements p = p 1 ̂ ı + p 2 ̂ j + p 3 ̂ k . 

based on a pure discontinuous control law introduced in [7–9] . In terms of the components 
of q = η + μ + ε(η′ + μ′ ) , this discontinuous control law is given by 

3 

ω = 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

−2k 

[
acos (η) 

μ

‖ μ‖ + ε v 
]
, if η≥0 , 

−2k 

[
( acos (η) − π) 

μ

‖ μ‖ + ε v 
]
, if η< 0 , 

(6) 

where v = ημ′ −η′ μ−μ × μ′ and k is a proportional gain. 
Albeit this control law avoids unwinding, a careful look reveals a strong sensitivity around 

attitudes that are up to π away from the desired attitude about some axis—that is, η = 0. In 

view of Theorem 2.6 of [33] , one can see that such control law isn’t robust in the sense that 
arbitrarily small measurement noises can force η to stay near to 0 for initial conditions within 

its neighborhood. Indeed, similar to Theorem 3.2 of [11] , one can even exhibit an explicit 
noise signal to persistently trap the system about a fixed pose, thus preventing its stability. 
To illustrate the sensitivity of pure discontinuous state feedback controllers, we introduce a 
simple case study in which the trajectory of Eq. (3) is simulated using the discontinuous 
control law (Eq. ( 6 )) in the presence of a random measurement noise 4 —the results are shown 

in Fig. 1 . The trajectory of the closed-loop system exhibits chattering in the neighborhood of 
the discontinuity—that lies in η = 0—as a result of the measurement noise. The performance 
degradation stems from infinitely fast switches in Eq. (6) . Furthermore, the chattering influence 
over the system is not restricted to the attitude error and may also impact on the resulting 

trajectory of the translation, as shown in Fig. 1 (b). In this sense, the lack of robustness of a 
discontinuous solution may lead to chattering in orientation and to additional disturbances in 

the translation of the rigid motion in the presence of arbitrarily small random noises. 

3 The discontinuous kinematic control law in [7–9] contains a typo that has been fixed in [10] . Different from Eq. 
(6) , in [7–10] the controller is expressed in terms of the logarithm of a unit dual quaternion. 

4 The simulation has been performed in accordance with the procedures described in Section 5 . 
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4. Kinematic hybrid control law for robust global pose stability 

In this section, we address the control design problem for globally stabilizing a rigid 

body coupled rotational and translational kinematics with no representation singularities. 
The proposed solution copes with the topological constraint inherent from the Spin (3) � R 

3 

parametrization while also ensuring robustness against measurement noises. 
To avoid the unwinding phenomenon and the lack of robustness from pure discontinuous 

solutions, we appeal to the hybrid system formalism of [34] . This formalism combines both 

continuous-time and discrete-time dynamics and is useful to formally analyze hysteresis-based 

control laws, such as the proposed solution. A hybrid system is given by the constrained 

differential inclusions 

˙ x ∈ F ( x ) , x ∈ C, 

x + ∈ G ( x ) , x ∈ D, 
(7) 

where x + denotes the next state of the hybrid system after a jump. The flow map F and the 
jump map G are set-valued functions, respectively, modeling the continuous and the discrete 
time dynamics of the system. The flow set C and the jump set D are the respective sets 
where the evolution occur. The following concepts of set-valued analysis will also be used: a 
set-valued mapping F is outersemicontinuous if its graph is closed and F is locallybounded—
that is, if for any compact set K , there exists m > 0 such that F ( K ) ⊂ mB , where B is the 
closed unit ball in the Euclidean space of the convenient dimension [35] . For more details, 
the reader is referred to [34,36] . 

To solve the problem of robust global asymptotic stabilization of Eq. (3) , we propose 
a generalization to the hysteresis-based hybrid control law of [11] that extends the attitude 
stabilization to render both coupled kinematics—attitude and translation—stable. The proposed 

control law is defined as 

ω � −k 1 h μ − εk 2 ημ′ , (8) 

where k 1 , k 2 ∈ R 

∗
+ 

are control gains and h ∈ {−1 , 1 } is a memory state with hysteresis char- 
acterized by a parameter δ ∈ (0, 1). The memory state h has its dynamics defined by 

˙ h � 0, when ( q , h) are such that hη ≥ −δ, 

h 

+ ∈ sgn ( η) , when ( q , h) are such that hη ≤ −δ, 
(9) 

where sgn is the set-valued function defined as 

sgn ( s ) � 

⎧ ⎨ 

⎩ 

{ 1 

} , s > 0, 

{ −1 

} , s < 0, 

{ −1 , 1 

} , s = 0. 

In terms of the hybrid formalism (Eq. ( 7 )), the closed loop system made by Eqs. (3), (8) and 

(9) is characterized as 

F ( q , h) = 

(
1 

2 

q ω , 0 

)
, C = { ( q , h) ∈ 

(
Spin (3) � R 

3 ) × {−1 , 1 } : hη ≥ −δ} , 

G ( q , h) ∈ ( q , sgn ( η) ) , D = { ( q , h) ∈ 

(
Spin (3) � R 

3 
) × {−1 , 1 } : hη ≤ −δ} , 

(10) 

where ω is defined as in Eq. (8) and h as in Eq. (9) . 
Consider μ = ˆ ı μ1 + ̂  j μ2 + 

ˆ k μ3 and μ′ = ˆ ı μ′ 
1 + ̂  j μ′ 

2 + 

ˆ k μ′ 
3 . The map from H � D to R 

8 

given by 
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q = η + μ + ε 
(
η′ + μ′ ) �→ vec ( q ) = [ η, μ1 , μ2 , μ3 , η

′ , μ′ 
1 , μ

′ 
2 , μ

′ 
3 ] 

T (11) 

is a vector space isomorphism whose inverse will be denoted by vec . 
The Hamilton operator [5,31] provides a matrix representation for the algebraic multipli- 

cation through the map 

+ 

H : H � D → R 

8 ×8 satisfying 

vec ( q 

1 
q 

2 
) = 

+ 

H ( q 

1 
) vec ( q 

2 
) (12) 

for any q 

1 
, q 

2 
∈ H � D . Explicitly, the Hamilton operator is given by 

q = q + ε q 

′ �→ 

+ 

H ( q ) = 

⎡ 

⎣ 

+ 

H 4 ( q ) 0 4 
+ 

H 4 ( q 

′ ) 
+ 

H 4 ( q ) 

⎤ 

⎦ , 

where 
+ 

H 4 : H → R 

4×4 is the map 

q = η + ̂  ı μ1 + ̂  j μ2 + 

ˆ k μ3 �→ 

+ 

H 4 ( q ) = 

⎡ 

⎢ ⎢ ⎣ 

η −μ1 −μ2 −μ3 

μ1 η −μ3 μ2 

μ2 μ3 η −μ1 

μ3 −μ2 μ1 η

⎤ 

⎥ ⎥ ⎦ 

. 

Let x = (x 1 , . . . , x 8 ) ∈ R 

8 and y ∈ R . Based on Eqs. (11) and (12) , the maps F and G of 
Eq. (10) induce the function 

� F : R 

9 → R 

9 and the set-valued mapping 

� G : R 

9 ⇒ R 

9 given by 

� F ( x , y) = 

(
1 

2 

+ 

H 

(
vec ( x ) 

)
vec 

(
ω 

)
, 0 

)
, � G ( x , y) ∈ ( x , sgn ( x 1 ) ) , (13) 

where 

vec 
(
ω 

) = [0, −k 1 hx 2 , −k 1 hx 3 , −k 1 hx 4 , 0, −k 2 x 1 x 6 , −k 2 x 1 x 7 , −k 2 x 1 x 8 ] 
T . 

Similarly, the sets C and D of Eq. (10) induce the subsets � C and 

� D of R 

9 given by 

� C = 

{
( x , y ) ∈ R 

8 × R : ( x , y ) ∈ S × {−1 , 1 } and yx 1 ≥ −δ
}
, 

� D = 

{
( x , y ) ∈ R 

8 × R : ( x , y ) ∈ S × {−1 , 1 } and yx 1 ≤ −δ
}
. 

(14) 

The following lemma proves that the hybrid system induced by Eqs. (3), (8) and (9) satisfies 
some properties which helps to prove the stability of the system and its robustness. 

Lemma 2. The maps � F and 

� G defined on Eq. (13) and the sets � C and 

� D defined on Eq. 
(14) satisfy the following properties: 

1. � C and 

� D are closed sets in R 

9 . 
2. � F : R 

9 → R 

9 is continuous. 
3. � G : R 

9 ⇒ R 

9 is an outer semicontinuous set-valued mapping, locally bounded and 

� G ( x , h ) 

is nonempty for each ( x , h ) ∈ 

� D . 

Proof. The proof is based on Lemma 5.1 of [11] . Setting δ ∈ (0, 1), consider the con- 
tinuous map τ : R 

9 → R given by τ ( x 1 , . . . , x 8 , y ) = yx 1 + δ. The restriction τ | S ×{−1 , 1 } : 
S × {−1 , 1 } → R of this map to S × {−1 , 1 } is also continuous [37, Theorem 8] . 
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Moreover, by the definition of the sets � C and 

� D , we have that 

� C = τ | −1 
S ×{−1 , 1 } ( [0, + ∞ ) ) , 

� D = τ | −1 
S ×{−1 , 1 } ( (−∞ , 0] ) . 

Since the preimage of a closed set under a continuous mapping is closed, � C and 

� D are closed 

in S × {−1 , 1 } . We also have that S × {−1 , 1 } is closed in R 

9 . In fact, consider the continuous 
functions p, d : R 

8 → R given respectively by 

p(η, μ1 , μ2 , μ3 , η
′ , μ′ 

1 , μ
′ 
2 , μ

′ 
3 ) = [ η, μ1 , μ2 , μ3 ][ η, μ1 , μ2 , μ3 ] 

T − 1 , 

d(η, μ1 , μ2 , μ3 , η
′ , μ′ 

1 , μ
′ 
2 , μ

′ 
3 ) = [ η, μ1 , μ2 , μ3 ][ η

′ , μ′ 
1 , μ

′ 
2 , μ

′ 
3 ] 

T . 

By the definition of p and d , S = p 

−1 ({ 0} ) ∩ d 

−1 ({ 0} ) . Since {0} is a closed set of R , the 
sets p 

−1 ({ 0} ) and d 

−1 ({ 0} ) are closed and their intersections are closed. Thus, S is closed in 

R 

8 . Moreover, the set {−1 , 1 } is closed in R , therefore the Cartesian product S × {−1 , 1 } is 
closed in R 

9 . 
Since S × {−1 , 1 } is closed in R 

9 , � C and 

� D are also closed in R 

9 . On the account that 
each component of � F is a polynomial, the map 

� F is continuous. 
The graph of the set-valued mapping 

� G is given by { ( x , y, z) : z ∈ 

� G ( x , y ) } = R 

8 × R ×
R 

8 × {−1 , 1 } . Since this set is closed, it follows by definition that � G is outer semicontinuous. 5 

Furthermore, � G is locally bounded because given any compact set K ⊂ R 

9 , � G (K ) ⊂ K ×
{−1 , 1 } and thus � G (K ) is bounded. Finally, by the definition of � G , � G ( x , y) is nonempty for 
every ( x , y) ∈ 

� D . �
Theorem 3. With ω defined as in Eq. (8) , the equilibrium points of the closed loop system 

made by Eqs. (3) , (8) and (9) are ± 1 and the set { ± 1} is asymptotically stable. 

Proof. Using the control law Eqs. (8) –(9) in Eq. (3) , the closed-loop system is 

˙ q = ˙ η + 

˙ μ + ε 
( ˙ η′ + 

˙ μ′ ), with ˙ η = 

1 

2 

k 1 h 

‖ μ‖ 2 , 

˙ μ = −1 

2 

ηk 1 h μ, ˙ η′ = 

1 

2 

( k 1 h + k 2 η) μ′ · μ, 

˙ μ′ = 

1 

2 

[
( k 1 h − k 2 η) μ × μ′ − k 1 hη′ μ − k 2 η

2 μ′ ]. (15) 

To find the equilibria of Eq. (15) , note that ˙ q = 0 implies μ = 0. From the unit sphere 
constraint (Eq. ( 1 )), it also follows that η = ±1 whereby we can find that μ′ = 0. In this 
context, the constraint (Eq. ( 5 )) also renders η′ = 0. Hence, the set of equilibrium points of 
Eq. (15) is the set { ± 1}. 

To study the stability of the set of equilibrium points { ± 1}, let us regard the Lyapunov 

candidate function 

V ( q , h) = 2 ( 1 − hη) + η′ 2 + 

∥∥μ′ ∥∥2 
. (16) 

Since η ∈ [ −1 , 1 ] and h ∈ 

{ −1 , 1 

} , one has that ( 1 − hη) ≥ 0. Therefore, V is a positive 
semidefinite function. The condition V = 0 implies 0 ≤ 2 ( 1 − hη) = −η′ 2 − ∥∥μ′ ∥∥2 ≤ 0 which 

yields η′ = 0, μ′ = 0 and hη = 1 , that is, q = ±1 . Hence, V is a positive definite function. 

5 The graph of a set-valued mapping F : X ⇒ Y is defined by {( x , y ) ∈ X × Y : x ∈ X , y ∈ F ( x )}. F is outer 
semicontinuous if its graph is a closed set of X × Y [11] . 
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Taking the time-derivative of V and using (15) yields 

˙ V = −2h ̇  η + 2η′ ˙ η′ + 2 μ′ · ˙ μ′ 

= −h 

2 k 1 ‖ μ‖ 2 − η2 η′ 2 k 2 − η2 
∥∥μ′ ∥∥2 

k 2 ≤ 0. 

In addition, ˙ V = 0 if and only if q ∈ { ± 1}. Moreover, V also decreases over jumps of the 
closed loop system since for hη < −δ < 0 one has that 

V ( q , h 

+ ) − V ( q , h) = 4hη < 0. 

Thus, asymptotically stability of the set { ± 1} follows from Lemma 2 and by Theorem 20 

of [34] . It is also important to highlight that the closed-loop differential equation is well-posed 

[38, Prop. 2.1] as ω is in the Lie algebra of Spin (3) � R 

3 . �

Remark 4. At a first glance, one could imagine that due to the transference principle [25] , 
the extension of rotation stabilizers (e.g., the ones of [11,39] ) to full rigid body stabilizers 
would be trivial, only requiring the substitution of adequate variables as in Eqs. (2) and (3) . 
However, for stability analysis based on Lyapunov functions, this supposition doesn’t even 

make sense, since a Lyapunov function is a real-valued function and never a dual-number val- 
ued function. As a consequence, stabilization in Spin (3) � R 

3 using dual quaternions required 

one independent study from the quaternion stabilization analysis in Spin(3). The necessity of 
different procedures for quaternion and dual quaternion is also inferred by remembering that 
due to the fact that SO(3) is compact and SE(3) is not, it was required one controller design 

procedure for each case in [3] . 

Similarly to the rotation controllers proposed in [11] , the proposed pose controller doesn’t 
exhibit Zeno behavior [34] . This is shown in the next lemma. 

Lemma 5. For any compact set K ⊂ S × { −1 , 1 

} , if x is a solution of Eqs. (3) , (8) and 

(9) with initial state in K , then the number of jumps is bounded. 

Proof. Similar to Theorem 5.3 of [11] . �

The stability robustness will be characterized by the system’s resistance against α- 
perturbations: given α > 0, the α-perturbation of the hybrid system given by 

� F , � G as in 

Eq. (13) , and 

� C , � D as in Eq. (14) , is given by 

� C α � 

{ 

x ∈ R 

9 : ( x + αB ) ∩ 

� C � = ∅ 

} 

, 

� F α( x ) � co 

� F 

(
( x + αB ) ∩ 

� C 

)
+ αB , for all x ∈ 

� C α, 

� D α � 

{ 

x ∈ R 

9 : ( x + αB ) ∩ 

� D � = ∅ 

} 

, 

� G α( x ) � 

{ 

v ∈ R 

9 : v ∈ g + αB , g ∈ 

� G 

(
(x + αB ) ∩ 

� D 

)} 

, for all x ∈ 

� D α, 

where co X denotes the closure of the convex hull of the set X . These perturbations, as 
illustrated in [34] , include both measurement and modeling error. 

The lack of sensitivity to these perturbations will be expressed in Theorem 6 by bounding 

the Lyapunov function by a class- KL function. This bound guarantees practical stability for 
perturbed solutions starting from arbitrarily large subsets of the basin of attraction of { ± 1} 
[34] . 
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Theorem 6. Let V be as in Eq. (16) . Then there exists a class- KL function β such that for 
each compact set K ⊂ S × { −1 , 1 

} and 
 > 0 there exists α∗ > 0 such that for each α ∈ 

(0, α∗], the solutions x α from K of the perturbed system H α = ( � C α, � F α, � D α, � G α ) satisfy 

V ( x α( t, j ) ) ≤ β( V ( x α( 0, 0 ) ) , t + j ) + 
, ∀ ( t, j ) ∈ dom x α

Proof. We have that V is a proper indicator function 

6 of the compact set { (1 , 1) , (−1 , −1) } 
in S × { −1 , 1 

} . From [34, Theorem 14] , there exists a class- KL function β such that for all 
solutions x of S × { −1 , 1 

} , 
V ( x ( t, j ) ) ≤ β( V ( x ( 0, 0 ) ) , t + j ) , ∀ ( t, j ) ∈ dom x. 

From this and from Lemma 2 , the KL bound on V ( x α( t , j )) follows now by [34, Theo- 
rem 17] . �

Remark 7. Differently from the Lyapunov function proposed in [11] for its hybrid kinematic 
controller, the proposed Lyapunov function (Eq. ( 16 )) exploits the non-compactness of S to 

be a proper indicator function, enabling the direct proof of Theorem 6 . 

5. Numerical simulations 

In this section, the effectiveness of the proposed hybrid technique for robust global sta- 
bilization of the rigid body motion is demonstrated in four different numerical simulations. 7 

The first simulation considers the robustness of the proposed controller against chattering. 
The second simulation shows the influence of the design parameter δ in the execution of 
the controller. The last two simulations consider a more practical situation using a robotic 
manipulator. 

We first illustrate the proposed controller global stability and robustness against measure- 
ment noises. To this aim, a simulation is performed using the hybrid feedback controller (Eq. 
( 8 )), with hysteresis parameter δ = 0. 3 , and the pure discontinuous controller (Eq. ( 6 ))—
using the same proportional gain k = 0. 08 . For this particular scenario, we assume an ini- 
tial condition, q 

0 
= 0. 001 + ̂  ı 0. 72 + ̂  j 0. 06 + 

ˆ k 0. 69 + ε( −55 . 15 −ˆ ı 2. 52 + ̂ j 36 . 71 −ˆ k 0. 59) , which 

was chosen arbitrarily, located in the neighborhood of η = 0, and a measurement noise over 
η set to N (0, 0. 16) , that is, a Gaussian random variable with zero mean and 0.16 variance. 
Fig. 1 illustrates the result from the discontinuous controller (Eq. ( 6 )) whereby one can clearly 

see the problematic noise influence—for instance, the excess of switches causing chattering 

for up to 20 s and the consequent convergence lag. In contrast, the proposed hybrid feedback 

controller ensures a robust performance without chattering as shown in Fig. 2 . 
To further highlight the absence of chattering and performance improvements from the 

hybrid feedback solution (Eq. ( 8 ))—regardless the initial and noise conditions and the control 
parameters—a second scenario is devised with initial condition q 

0 
= 0. 001 + ̂  ı 0. 78 + ̂  j 0. 57 + 

ˆ k 0. 28 + ε( −1 . 28 + ̂ ı 1 . 50 −ˆ j 2. 44 + ̂

 k 0. 77) and a zero mean Gaussian measurement noise over η
with a 0.1 standard deviation, which was also chosen arbitrarily. The results illustrating the 

6 Following [36, p. 145] , a proper indicator function of a compact set A in an open set O ⊇ A is a continuous 
function on O which is positive definite with respect to A and such that it tends to infinity as its argument tends to 
infinity or to the boundary of O. 

7 The results of the simulations were computed using MATLAB environment and the DQ_robotics toolbox ( http: 
// dqrobotics.sourceforge.net/ ). 
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Fig. 2. Numerical example for the hybrid controller: ( a ) Trajectory of the rotation unit quaternion r in terms of η
and μ (dashed line). ( b ) Trajectory of the three-dimensional translation elements p = p 1 ̂ ı + p 2 ̂ j + p 3 ̂ k . 

Fig. 3. Trajectory of η with hybrid feedback controller (Eq. ( 8 )) and discontinuous controller (Eq. ( 6 )) over time. 

trajectory of η from both the discontinuous and hybrid controllers—set with the same control 
gain, k = 2—are shown in Fig. 3 . 

To illustrate the influence of the design parameter δ over the switches along time of the 
closed-loop system (Eq. ( 3 )), a set of simulations is performed using the hybrid controller (Eq. 
( 8 )) with different values for δ. For these simulations, we assume the same initial condition, 
control gain, and measurement noise as defined in the former scenario. As shown in Fig. 4 (a), 
larger hysteresis parameters yield a smaller number of switches, as one would expect. As 
shown in Fig. 4 (b), it is also interesting to highlight that the number of switches tends to 

decrease along time as η converges to the equilibrium. 
Moreover, to elucidate the influence of the hysteresis parameter δ with regard to the un- 

winding phenomenon, a different scenario is simulated using Eq. (8) with δ = 0. 15 and 

δ = 0. 95 and with a proportional gain k = 5 . We assume an initial state with η close to 

−1 and h = 1 . As shown in Fig. 5 , very large values of δ may induce the stabilization to 

η = 1 , which leads to needless motions and control efforts compared to the case of δ = 0. 15 . 
Lastly, as a concluding example, and to assess the effectiveness of the proposed solution in 
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Fig. 4. The number of switches with regard to the hysteresis parameter δ is shown in ( a ), while the switches along 
time s ( t ) are illustrated in ( b ) for different values of δ. 

Fig. 5. Influence of the hysteresis parameter δ on unwinding—η converges to the farther stable point when the value 
of δ increases. 

a more practical context, we designed a simple robot manipulator kinematic control task. To 

this aim, we considered a 6-DOF manipulator, the Comau SMART SiX robot, and two simple 
control tasks whereby the end-effector of the robot manipulator is regarded as a rigid body 

and described within the unit dual quaternion framework. 8 

In the first control setting, the end-effector of the manipulator q m 

, described within unit 
dual quaternions framework, is expected to hold the same current configuration—hence, the 
desired pose q 

d 
= q 

m 

—in the presence of different sensor readings. In this case, it is rather 
ordinary to have readings in the antipodal configuration of the current pose, that is, −q 

m 

. 

8 Further information on how to describe and map the end-effector’s rigid motion using unit dual quaternions can 
be found in [5] . 
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Fig. 6. Trajectory of the rotation unit quaternion r in terms of η and μ using the proposed hybrid controller ( left ), 
the discontinuous controller ( center ), and the continuous feedback controller ( right ). The unwinding phenomenon 
arises only on the continuous feedback controller. 

Fig. 7. Trajectory of the three-dimensional translation error using the hybrid ( solid line ), the discontinuous ( red 
dashed line ) and the continuous controller ( magenta dashed line ). (For interpretation of the references to colour in 
this figure legend, the reader is referred to the web version of this article.) 

To illustrate the behavior of different controllers—with gain equally set to k = 5 —within 

this particular case, that is, q 

d 
= −q 

m 

, we set the manipulator to a random configuration 

and sought to stabilize the system using a continuous feedback controller, a discontinuous 
controller, and the proposed hybrid controller (with δ = 0. 1 ). The simulated result can be 
observed in Figs. 6 and 7 , which illustrate the rigid motion of the manipulator’s end-effector. 
Clearly, the continuous feedback controller failed to maintain the same end-effector configu- 
ration, exhibiting the unwinding phenomenon which yields needless motions—as observed in 

Fig. 8 . 9 10 Such phenomena could be avoided by simply enforcing a discontinuous controller 
or by using the proposed hysteresis-based hybrid control strategy. 

Nonetheless, as observed in Fig. 3 , the discontinuous sign-based approach is particularly 

sensitive to measurement noises. Hence, the second control task was devised to illustrate the 
behavior of the robot manipulator in the presence of measurement noises. In this scenario, 
both controllers were supposed to take the end-effector pose from an initial pose, represented 

9 Since the discontinuous and hybrid feedback controllers successfully hold the same end-effector pose, the corre- 
sponding trajectories of the robot were not shown in this figure because they are constant. A video comparing the 
trajectories generated by the three different controllers can be seen in the supplementary material. 
10 A video showing the motion of the robot is included in the supplementary material. 
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Fig. 8. Simulation snapshots of the continuous controller, when the desired robot pose, represented by q , is changed 
to the same pose, but now represented by −q . The unwinding phenomenon can be observed in contrast to maintaining 
the desired pose. In all snapshots, the light red robot represents the initial robot configuration. (For interpretation of 
the references to colour in this figure legend, the reader is referred to the web version of this article.) 

by q 

0 
= − 0. 31 − ˆ ı 0. 67 + ̂  j 0. 67 − ˆ k 0. 05 + ε( −0. 06 −ˆ ı 0. 31 −ˆ j 0. 31 + ̂

 k 0. 40) and corresponding 

to a rotation angle of (π + 0. 63) rad around the axis (−√ 

2 / 2, −√ 

2 / 2, 0) followed by a 
translation of (−0. 39 , −0. 29 , −1 . 09) , to a desired pose, represented by q 

d 
= ̂ ı 0. 707 + ̂  j 0. 707 + 

ε(0. 28 −ˆ ı 0. 38 + ̂ j 0. 38 + ̂

 k 0. 28) and corresponding to a rotation angle of π rad around the axis 
( 
√ 

2 / 2, 
√ 

2 / 2, 0) followed by a translation of (−0. 79 , 0. 00, −1 . 07) . The error between these 
poses are represented by the dual quaternion q 

e 
= q 

∗
m 

q 

d 
, where q m 

is the measured dual 
quaternion. In addition, the measurement noise over η was set to N (0, 0. 09) and the control 
gain for both controllers were set to k = 0. 020—the hysteresis parameter was set to δ = 

0. 1 . Fig. 9 illustrate the rigid motion of the manipulator’s end-effector and the behavior 
of both controllers. It is easy to see that the problematic noise influence is restricted to 

the discontinuous controller—resulting in undesired chattering and delaying the closed-loop 

convergence. As expected, the proposed hybrid solution ensures robust performance, that is, 
a trajectory without chattering. 

6. Conclusion 

In this paper, a kinematic controller for the rigid body stabilization problem was presented. 
To prove the stability of this controller, a Lyapunov function that exploits the structure of 
the group of unit dual quaternions was proposed. Moreover, this controller was simulated 

and compared to another kinematic controller based on dual quaternions that has recently 

been presented in the literature. Simulation results show that the proposed controller is robust 
against measurement noises and, different from discontinuous-based feedback controllers, it 
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Fig. 9. The left figure shows the trajectory of the rotation error in terms of the scalar part η using the hybrid ( solid 
line ) and the discontinuous controller ( red dashed line ). The right figure shows the trajectory of the three-dimensional 
translation elements p = p 1 ̂ ı + p 2 ̂ j + p 3 ̂ k with reference given in dotted blue line. (For interpretation of the references 
to colour in this figure legend, the reader is referred to the web version of this article.) 

also avoids the problem of sensitivity of the global stabilization property to chattering. The 
proposed solution was also simulated in a simple robot manipulator kinematic control task to 

assess the controller in a more practical context. 
In other scenarios it is possible that the input to the system is done by torques and forces 

instead of the generalized velocity. Further work will aim to incorporate the inertial parameters 
in the controller design. 
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Appendix 

Theorem 8 [1] . Let M be a manifold of dimension m and consider a continuous vector field 

f on M . Suppose π : M → L is a vector bundle on L , where L is a compact, r-dimensional 
manifold with r ≤ m. Then there exists no equilibrium of f that is globally asymptotically 
stable. 
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Supplementary material associated with this article can be found, in the online version, at 
10.1016/j.jfranklin.2017.01.028. 
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Dual quaternion-based bimodal global control for robust rigid body
pose kinematic stabilization

Paulo P. M. Magro, Hugo T. M. Kussaba, Luis F. C. Figueredo and João Y. Ishihara

Abstract— A hybrid bimodal controller for rigid body pose
stabilization within the group of unit norm dual-quaternions is
proposed in this paper. Using two binary logic state variables,
this hysteresis-based controller represents a middle term solu-
tion between the memoryless discontinuous controller and the
fixed-width hysteretic one. The proposed strategy is novel within
the dual-quaternions framework and addresses three common
difficulties that appears in the literature of pose and attitude
stabilization: global stability, robustness against chattering
and against unwinding. The efficacy and performance of the
proposed controller are illustrated with numerical examples.

I. INTRODUCTION

In the study of aerospace and robotic systems, the Lie
groups of rigid body motions SE(3) and its subgroup SO(3)
of proper rotations arise naturally. Stemming from the sem-
inal work of [1] about control theory on general Lie groups,
much of the literature has been devoted to the control
of systems defined on SO(3) and SE(3). Although it is
usual to design controllers for these systems using matrices
to represent elements of these Lie groups [2], [3], it has
been noted by some authors that controllers designed using
another type of representation, namely, the unit quaternions
for SO(3) and the unit dual quaternions for SE(3), may
have advantages regarding computational time and storage
requirements [4], [5].

It is important to note that since in this cases the state
space of a dynamical system is not the Euclidean space
R

n but a general manifold, some difficulties to design a
stabilizing controller to the system can arise. For instance,
the topology of the manifold may be an obstacle to the
existence of a global asymptotically stable equilibrium point
in any continuous vector field defined on the manifold [6]. In
particular, it is impossible to design a continuous feedback
that globally stabilizes the attitude of a rigid body [6].

To avoid this topological obstruction in SO(3), one should
resort to non-continuous feedback: this is what was done,
for instance, in [7], [8]. As noted in [9], however, non-
hybrid strategies are prone to chattering and are not robust
to arbitrarily small measurement noise since it is impossible
to use pure discontinuous state feedback to achieve robust
global asymptotic stabilization of a disconnected set of points
[10].

To tackle the problem of robust global attitude control, a
quaternion-based hybrid controller with hysteretic memory
was suggested in [9]. However, the cost for using the

This work is partially supported by the Brazilian agencies CAPES, CNPq and
FINATEC. The authors are with the Department of Electrical Engineering, University
of Brası́lia, UnB, 70910-900, Brası́lia, DF, Brazil, ppmmagro@uol.com.br, htkuss-
aba@ieee.org, figueredo@ieee.org, ishihara@ene.unb.br .

hysteretic controller is longer rotation trajectories for some
initial attitudes leading to a higher average settling time or
energy consumption. For satellites and other systems with
limited energy, this problem is yet more critical [11].

The aforementioned problems also occur in the dual
quaternion framework, as the Lie group of unit dual quater-
nions is a double cover for the Lie group of rigid body
motions SE(3) [12], [13]. Moreover, in [13] it was verified
that the lack of robustness in the context of dual quaternions
is even more important, as the discontinuity of the controller
not only affects the rotation of the rigid body, but may
also degrade the trajectory of its translation. The problem of
energy consumption also aggravates in this context, as the
coupled translation and rotation movements consume more
energy. Thus, to address the robust global stability problem
of rigid bodies we propose a hybrid control law, called
bimodal, that extends the hysteretic controller suggested by
[13] and represents a compromise in terms of cost between
the memoryless discontinuous controller and the hysteretic
one.

II. PRELIMINARY

A. Quaternion

The quaternion algebra is a four dimensional associative
division algebra over R invented by Hamilton [14], which
naturally extends the algebra of complex numbers. The
elements 1, î, ĵ, k̂ are the basis of this algebra, satisfying

î2 = ĵ2 = k̂2 = îĵk̂ = −1

and the set of quaternions is defined as

H ,

{

q = η + µ1 î+ µ2ĵ + µ3k̂ : η, µ1, µ2, µ3 ∈ R

}

.

For ease of notation, it may be denoted as

q = η + µ, with µ = µ1î+ µ2ĵ + µ3k̂

In addition, it may be decomposed into a real component
and an imaginary component: ℜ(q) , η and ℑ(q) , µ such
that q = ℜ(q)+ℑ(q). The quaternion conjugate is given by
q∗ , ℜ(q)−ℑ(q).

The multiplication of two quaternions q1 = η1 + µ1 and
q2 = η2 + µ2 is given by

q1q2 = (η1η2 − µ1 · µ2) + (η1µ2 + η2µ1 + µ1 × µ2).

Pure imaginary quaternions are given by the set

H0 , {q ∈ H : ℜ(q) = 0}
which are very convenient to represent vectors of R3.
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The quaternion norm is defined as ‖q‖ ,
√
qq∗. Unit

quaternions are defined as the quaternions that lie in the
subset

S3 , {q ∈ H : ‖q‖ = 1} , 1 = 1 + 0î+ 0ĵ + 0k̂.

The set S3 forms, under multiplication, the Lie group
Spin(3), whose identity element is 1 and group inverse is
given by the quaternion conjugate q∗. As the unit quaternions
q and −q represent the same rotation, the unit quaternion
group double covers the rotation group SO(3).

B. Dual Quaternions

Similarly to how the quaternion algebra was introduced
to address rotations in the three-dimensional space, the dual
quaternion algebra was introduced by Clifford [15] and Study
[16] to describe rigid body movements. This algebra is
constituted by the set

H , {q + εq′ : q, q′ ∈ H} ,

where q and q′ are called the primary part and the dual part
of the dual quaternion and ε is called the dual unit which is
nilpotent—that is, ε 6= 0 and ε2 = 0. Given q = η + µ +

ε(η′ +µ′), we define ℜ(q) , η+ εη′ and ℑ(q) , µ+ εµ′,
such that q = ℜ(q)+ εℑ(q). The dual quaternion conjugate
is q∗ , ℜ(q)− εℑ(q).

The multiplication of two dual quaternions q
1
= q1+εq′

1

and q
2
= q2 + εq′

2 is given by

q
1
q
2
= q1q2 + ε(q1q

′

2 + q′

1q2).

The subset of dual quaternions

S = {q + εq′ ∈ H : ‖q‖ = 1, qq′∗ + q′q∗ = 0} (1)

forms a Lie group [17] called unit dual quaternions group,
whose identity is 1 = 1 + ε0, 0 = 0 + 0î + 0ĵ + 0k̂ and
group inverse is the dual quaternion conjugate.

An arbitrary rigid displacement characterized by a rotation
q ∈ Spin(3), followed by a translation p ∈ H0, with p =
px î+ py ĵ + pzk̂, is represented by the unit dual quaternion
[12], [18]

q = q + ε
1

2
qp.

As the displacement q is equally described by −q, the unit
dual quaternions group double covers SE(3).

C. Rigid Motion Description

Using Hamilton convention [19], let q represent the rigid-
body attitude R ∈ SO(3), defined as the relative rotation
of a body-fixed frame to a reference frame. The quaternion
kinematic equation is

q̇ =
1

2
qω, (2)

where ω ∈ H0 is the angular velocity expressed in the body
frame [18].

Similarly, the unit dual quaternion q describe the coupled
attitude and position. The kinematic equation of a rigid body
motion is given by [18]

q̇ =
1

2
qω, (3)

where ω is called twist and is given by

ω = ω + ε [ṗ+ ω × p] (4)

and p is the translation expressed in the body frame.
Let q , q + εq′ and ω , ω + εω′. It is straightforward

to notice that (3) embodies both equation (2) and ṗ = ω′ −
ω × p.

III. HYBRID POSE CONTROL

The problem of robust and global pose stabilization of
rigid-bodies is not simple. Firstly, there is no continuous
feedback controller capable of globally asymptotically sta-
bilizing an equilibrium point on the manifold of the unit
dual quaternion group S [13].

Secondly, S double covers SE(3), that is, q and −q

corresponds to the same pose in SE(3), and this leads, when
a continuous dual quaternion based controller is used, to a
phenomenon similar to “unwinding” in SO(3) [6]: the body
may start at rest arbitrarily close to the desired final pose
and yet travel to the farther stable point before coming to
rest.

Lastly, even using a (memoryless) discontinuous state
feedback, it is impossible to achieve robust global asymptotic
stabilization of a disconnected set of points resulted from the
double covering of the SE(3)[9], [10].

There are few works on unwinding avoidance in the
context of pose stabilization using unit dual quaternions [12],
[20], [21], [22]. All of them are based on a discontinuous
feedback approach and are prone to chattering for initial
conditions arbitrarily close to the discontinuity.

Inspired on the hysteresis-based hybrid control of [9] ap-
plied only to attitude control stabilization, [13] extended it to
render both coupled kinematics—attitude and translation—
stable.

According to [9], there is a price to pay for robust
global asymptotic stabilization of attitude using the hysteretic
controller—a region in the state space where the hybrid
control law pulls the rigid body in the direction of a longer
rotation. The pose controller suggested by [13] inherits the
same behavior. We propose a hybrid control law, called
bimodal, devised to reduce this price. Actually, the bimodal
control halves the hysteresis width in certain situations and
is a middle term solution between the hysteretic hybrid
control and the discontinuous control (equivalent to the
hysteretic control with zero-width hysteresis). This control
may be especially useful in applications which use low-cost
sensors and requires larger hysteresis width due to attitude
measurement noise magnitude. For such applications, the
standard deviation in attitude error may reach 10◦ [23].

1206



A. Hybrid Hysteretic Controller

The hysteretic controller strategy for plant (3), suggested
by [13], uses only one state variable h ∈ Xc , {−1, 1} that
determines the rotation direction so the system is regulated
either to −1 or 1 (see Fig. 1).

The state of the system is represented by x1 = (q, h) ∈
X1 , S ×Xc. The controller is given by the feedback law

ω , −k1hµ− εk2ηµ
′, (5)

where k1, k2 > 0 are the control gains and the dynamics1 of
h is defined by

ḣ = 0 x1 ∈ C1 , {x1 ∈ X1 : hη ≥ −δ} ,
h+ ∈ sgn (η) x1 ∈ D1 , {x1 ∈ X1 : hη ≤ −δ} , (6)

where h+ is the value associated to h just after the state
transition and

sgn (η) =











{1} , η > 0,

{−1} , η < 0,

{−1, 1} , η = 0.

The parameter δ ∈ (0, 1) represents the hysteresis half-
width and provides robustness against chattering caused by
noise in the output measurement. Note that, as commented
in Section II-C, the primary part of (3) equals (2). As a
consequence, the rotation evolves as the control suggested
by [9]. When hη gets negative, the feedback determines that
the body rotates in the longer rotation direction until a safe
distance is achieved to prevent chattering, i.e., until hη ≤ −δ.

The closed-loop hybrid system, denoted as H1, is formed
of equations (3), (5) and (6).

10-1 δ0 1−δ−1

η

h = −1

h = 1

‖µ‖

Fig. 1. State space representation of the hysteretic controller (with one state
variable h). Arrows indicate the direction of the rotation so the attitude is
regulated to 1 or −1.

B. Hybrid Bimodal Controller

The proposed bimodal controller strategy uses two state
variables (h,m) ∈ Xc × Xc as shown in Fig. 2. The
state h determines the rotation direction as in the hysteretic
controller. The state m is introduced in order to adapt the
hysteresis width δa ∈ {δ/2, δ} of the on-off control for state
h in such a way that the width gets shorter whenever the
attitude is relatively far from the chattering prone region
(η = 0).

1Along the text, the dynamics representations follows the hybrid systems
framework of [24].

Let the state of the system be represented by x2 =
(q, h,m) ∈ X2 , S × Xc × Xc. The bimodal controller
is given by the feedback law (5) and the dynamics of h and
m are defined by

ḣ = 0
ṁ = 0

}

x2 ∈ C2,

h+ ∈ sgn (η − hδ/2)
m+ ∈ h sgn (η − hδ/2)

}

x2 ∈ D2,
(7)

C2 , {x2 ∈ X2 : (hη ≥ −δ) and

(m = −1 or hη ≥ −δ/2) and (m = 1 or hη ≤ 3δ/2)} ,
D2 , {x2 ∈ X2 : (hη ≤ −δ) or

(m = 1 and hη ≤ −δ/2) or (m = −1 and hη ≥ 3δ/2)} ,
where m+ and h+ are values associated to m and h, respec-
tively, just after state transition. Note that C2 = X2 \D2.

The closed-loop hybrid system, denoted as H2, is formed
of equations (3), (5) and (7).

δ 10

= 1 m = −1

m = 1

−3δ/2−1 3δ/2

δ/2 10−1

−δ

−δ/2

h = −1

h = 1

‖µ‖

h = 1

h = −1

‖µ‖

η

η

Fig. 2. State space representation of the bimodal controller (with two state
variables, h and m). Arrows indicate the direction of the rotation so the
attitude is regulated to 1 or −1.

IV. STABILITY ANALYSIS

In this section, we prove that the proposed hybrid bimodal
control globally asymptotically stabilizes the pose of a rigid
body even in the presence of measurement noise.

Theorem 4.1: Let δ ∈ (0, 1) and k1, k2 > 0. The compact
set A2 defined below (8), is globally asymptotically stable
for the closed-loop hybrid system H2.

A2 =
{

x2 ∈ X2 : q = h1,m = 1
}

. (8)

Proof: For easy presentation, let us first consider δ ∈
(0, 2/3]. Let q , η + µ+ ε(η′ + µ′) and V : X2 → R,

V (x2) = 2(1− hη) + ‖p‖2/4. (9)

As m = 1 whenever q = ±1 and as p = 0 if and only
if η′ = 0 and µ′ = 0, we have that V (x2) > 0 for x2 ∈
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X2 \ A2 and V (x2) = 0 for x2 ∈ A2. Hence function V is
positive definite on X2 with respect to A2.

The time derivative V̇ of V is given by

V̇ (x2) = −2hη̇ + p · ṗ/2 (10)

= −h2k1‖µ‖2 − k2ηp · µ′/2 (11)

= −k1‖µ‖2 − k2η(q
∗q′) · µ′ (12)

= −k1‖µ‖2 − k2η
2(η′2 + ‖µ′‖2) (13)

So, V̇2 is negative definite on X2 with respect to A2. Besides,
observing that the time derivative of ‖p‖2 is lower than or
equal to zero, we can conclude that the distance of the body
along time always decreases, except when η = 0.

Along jumps, when x2 ∈ D2, since q+ = q,

∆V (x2) = V (x+

2 )− V (x2) = −2η(h+ − h).

Let D2 = D2a ∪D2b ∪D2c, where

D2a , {x2 ∈ X2 : hη ≤ −δ} , (14)

D2b , {x2 ∈ X2 : m = 1 and hη ≤ −δ/2} , (15)

D2c , {x2 ∈ X2 : m = −1 and hη ≥ 3δ/2} . (16)

Thus,

∆V (x2) =

{

≤ −4δa, x2 ∈ D2a ∪D2b,

0, x2 ∈ D2c,

where δa = δ for x2 ∈ D2a\D2b and δa = δ/2 for x2 ∈ D2b.
From Theorem 7.6 of [25], it follows that the compact

set A2 is stable since ∆V (x2) ≤ 0 and V̇ (x2) < 0 for all
x2 ∈ X2.

To conclude that the set A2 is globally asymptotically
stable, it is necessary to apply Theorem 4.7 of [25] to
prove that the set A2 is the largest invariant set in W =
W1 ∪ W2, where W1 , {x2 ∈ C2 : V̇ (x2) = 0} and
W2 , ∆V −1(0) ∩G2(∆V −1(0)), G2(x2) , x+

2 . It follows
that W1 = A2, ∆V −1(0) = D2c and G2(∆V −1(0)) =
{x2 ∈ X2 : m = 1 and hη ≥ 3δ/2}. Thus, W2 = ∅,
W = A2 and any solution x2(t) approaches the largest
invariant set A2.

This controller restricts parameter δ to (0, 2/3]. For the
case δ ∈ (2/3, 1), the system still behaves as proposed until
the first jump. Afterward, it will behave as the hysteretic
controller, since m will remain fixed thereafter.

Following we will show that the analysis of either the
presence of Zeno solutions (infinite number of jumps in a
finite amount of time) or chattering are only related to the
rotation.

The rotation evolution follows the primary part of (3). As
pointed out in Section II-C, it follows the same kinematic
equation for quaternions (2). Substituting (5) into (2),

q̇ =
1

2
(η + µ)(−k1hµ)

=
1

2
(k1h‖µ‖2 − k1hηµ).

Note that q̇ depends only on q and the dynamics of h. On
the other hand, the dynamics of h and m depend only on

the body rotation (η). Hence, we conclude not only that
the rotation is independent of the translation but also that
jumps on state variables h and m depend only on the rotation
evolution.

The proof that no Zeno solutions occur even when “outer
perturbations”—that includes both measurement and model-
ing errors [26], [9] are taken into account—is similar to the
proofs of Theorem 5.3 and Theorem 5.4 of [9] and will not
be proved here.

A. Chattering Analysis

Due to noise present in measurements, chattering is pos-
sible to occur when jumps map the state back into the jump
set, i.e., when G2(D2) ∩ D2 6= ∅, G2(x2) = x+

2 . As the
number of discrete states is higher than one, h and m, the
immediate consecutive jumps must also be analyzed to make
sure the following states are mapped to the jump set again.
Considering that the output q is corrupted by noise of max-
imum magnitude α, the verification should be concentrated
on intersections Gα

2 (D
α
2 ) ∩Dα

2 , Gα
2 (Gα

2 (D
α
2 ) ∩Dα

2 ) ∩Dα
2 ,

and so on until a loop or an empty set is achieved, where Gα
2

and Dα
2 are the sets G2 and D2, respectively, expanded to

accommodate noise of maximum magnitude α as exemplified
in [26, Example 5.3].

Theorem 4.2: Let α > 0, δ > 2α, δ ∈ (0, 1). Then, either
Gα

2 (D
α
2 ) ∩ Dα

2 = ∅, or Gα
2 (G

α
2 (D

α
2 ) ∩ Dα

2 ) ∩ Dα
2 = ∅ for

system H2.
This proof is not presented here due to space restrictions.
The theorem affirms that after two jumps, at most, the state is
mapped outside the jump set and no loop (chattering) occurs.

V. NUMERICAL SIMULATIONS

This section presents simulation2 results to compare per-
formance among the discontinuous controller, the hysteretic
controller, and the proposed bimodal controller. To this aim,
two different scenarios considering an initial pose defined in
a region near 180◦ away from the desired attitude have been
depicted whereby the different behavior is expected.

To maintain fairness, all simulated controllers have been
implemented with the same control gains k1 = 1 and k2 = 1.
The initial state of the hysteretic controller has been set to
h(0) = 1 and the ones of the bimodal controller were set to
h(0) = 1, m(0) = 1. The hysteresis parameter defined both
for the hysteretic and bimodal controllers was set to δ = 0.4.
Please note that by setting the hysteresis parameter to δ = 0
yields a discontinuous control law.

Moreover, to illustrate the robustness of the proposed con-
troller and the performance of all three controllers, additional
measured noise have been included to the value of q (qm)
and was calculated as follows: qm = (q + bê) / ‖q + bê‖,
ê = e/ ‖e‖, where each component of e ∈ R

4 was chosen
from a Gaussian distribution of zero mean and unitary
standard deviation and b ∈ R was chosen from a uniform
distribution on the interval [0, 0.2].

2All simulations have been performed in MATLAB ambient, using
ordinary differential equation solver with variable integration step (ode45)
restricted to a maximum step of 1 ms.
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Fig. 3. Rotation comparison between the discontinuous and bimodal
controllers.

In the first scenario, the performance of the proposed
bimodal controller is investigated against perturbations on
the measurement signal and compared to the discontinuous
controller. The initial pose in this case was set to q(0) = 0+
(1î+2ĵ+3k̂)/

√
14 and p(0) = −0.24î+1.76ĵ+6.2k̂. Figs.

3 and 4 illustrate the results from both controllers. Clearly,
the chattering phenomenon occurs solely when using the
discontinuous control law whereby the resulting controller
takes more than 0.5 s to set the final equilibrium point (in
this case to −1)—in other words, it takes a considerable
amount of time to travel away from its discontinuity at η = 0.
The translation p was also affected. During the period of
chattering, the system got stuck around the initial condi-
tions resulting in a convergence lag. The proposed bimodal
controller, on the other hand, presents a robust response as
expected for both rotation and translation convergence.

The last scenario compares the state evolution between
the hysteretic and the bimodal controller. To investigate the
liability of the controllers to being pulled to the direction of
longer rotation, the initial conditions were q(0) = −0.2 +√
1− 0.22(1î+2ĵ+3k̂)/

√
14 and p(0) = −0.24î+1.76ĵ+

6.2k̂. The consequence of such initial conditions is that it
belongs to the hysteresis region from the hysteric controller
and therefore the result from such controller travels to the
further antipodal equilibrium. As shown in Figs. 5 and 6, the
hysteretic and bimodal controllers made the rigid body take a
different direction of rotation from the beginning. Regarding
the energy spent, if we take the area below the graph of the
angular velocity norm, ‖ω‖, it is possible to affirm that the
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Fig. 4. Evolution of the translation components of p = pxî+ px ĵ + pxk̂

for the discontinuous and bimodal controllers.

bimodal controller spent less energy.

VI. CONCLUSIONS

This work presented a novel control strategy for robust
global rigid body kinematic stabilization using a dual quater-
nion framework. To address the topological obstruction to
global stability inherent to any rigid body representation—
which renders the unwinding phenomenon in the case of unit
quaternions and unit dual quaternions—this paper exploited
an hybrid control technique based on hysteresis, which en-
sures solution without chattering, in addition to introducing
a novel state memory variable that reduces the liability of
having the solution trajectory travel to the farther antipodal
equilibrium.
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for the hysteretic and bimodal controllers.

[10] R. Sanfelice, M. Messina, S. Emre Tuna, and A. Teel, “Robust hybrid
controllers for continuous-time systems with applications to obstacle
avoidance and regulation to disconnected set of points,” in Amer.
Control Conf., 2006, pp. 3352–3357.

[11] A. Fu, E. Modiano, and J. Tsitsiklis, “Optimal energy allocation and
admission control for communications satellites,” IEEE/ACM Trans.
Netw., vol. 11, no. 3, pp. 488–500, Jun. 2003.

[12] D.-P. Han, Q. Wei, and Z.-X. Li, “Kinematic control of free rigid
bodies using dual quaternions,” Int. J. Autom. Comput., vol. 5, no. 3,
pp. 319–324, 2008.

[13] H. T. M. Kussaba, L. F. C. Figueredo, J. Y. Ishihara, and B. V. Adorno,
“Hybrid kinematic control for rigid body pose stabilization using dual
quaternions,” J. Franklin Inst., 2017, to be published.

[14] W. R. Hamilton, “On quaternions, or on a new system of imaginaries
in algebra: Copy of a letter from Sir William R. Hamilton to John T.
Graves, esq. on quaternions,” Philos. Mag., vol. 25, no. 3, pp. 489–
495, 1844.

[15] W. K. Clifford, “A preliminary sketch of biquaternions,” in Proc.
London Math. Soc., 1871, pp. 381–395.

[16] E. Study, “Von den bewegungen und umlegungen,” Mathematische
Annalen, vol. 39, no. 4, pp. 441–565, 1891.

[17] X. Wang, D. Han, C. Yu, and Z. Zheng, “The geometric structure of
unit dual quaternion with application in kinematic control,” J. Math.
Anal. Appl., vol. 389, no. 2, pp. 1352–1364, 2012.

[18] Y. Wu, X. Hu, D. Hu, T. Li, and J. Lian, “Strapdown inertial navigation
system algorithms based on dual quaternions,” IEEE Trans. Aerosp.
Electron. Syst., vol. 41, no. 1, pp. 110–132, 2005.
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Outer semicontinuous, 9

Plücker coordinates, 30
Poincaré-Hopf theorem, 93
Pre-asymptotically stable, 17
Pre-attractive, 17
Pre-stable, 17
Primary component, 28
Principle of transference, 32
Proper indicator, 19
Pure imaginary dual quaternions, 28

Real component
of dual quaternion, 28
of quaternion, 25

Rodrigues’ rotation formula, 26

σ-perturbation, 21
solution in Carathéodory sense, 12
Study quadric, 29
Subgroup, 81

Trivial bundle, 90
Twist, 31

Unit quaternions, 25

Vector bundle, 89
Vector space, 82

Normed, 82
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