
 

 

 

 

RESTARTED HOLOMORPHIC EMBEDDING POWER 

FLOW METHOD 

 

 

ALUISIO CESAR DOS SANTOS JUNIOR 

 

 

ORIENTADOR: FRANCISCO DAMASCENO FREITAS 

COORIENTADOR: LUIS FILOMENO DE JESUS FERNADES 

 

 

DISSERTAÇÃO DE MESTRADO EM ENGENHARIA ELÉTRICA 

DEPARTAMENTO DE ENGENHARIA ELÉTRICA 

 

 

 

 
 

 

 

FACULDADE DE TECNOLOGIA 

UNIVERSIDADE DE BRASÍLIA  



UNIVERSIDADE DE BRASÍLIA

FACULDADE DE TECNOLOGIA

DEPARTAMENTO DE ENGENHARIA ELÉTRICA

RESTARTED HOLOMORPHIC EMBEDDING POWER

FLOW METHOD

ALUISIO CESAR DOS SANTOS JUNIOR

ORIENTADOR: FRANCISCO DAMASCENO FREITAS

COORIENTADOR: LUIS FILOMENO DE JESUS FERNANDES

DISSERTAÇÃO DE MESTRADO EM

ENGENHARIA ELÉTRICA

PUBLICAÇÃO: PPGEE.DM � 692/2018

BRASÍLIA/DF: 09 DE MARÇO - 2018



UNIVERSIDADE DE BRASÍLIA

FACULDADE DE TECNOLOGIA

DEPARTAMENTO DE ENGENHARIA ELÉTRICA

RESTARTED HOLOMORPHIC EMBEDDING POWER

FLOW METHOD

ALUISIO CESAR DOS SANTOS JUNIOR

DISSERTAÇÃO DE MESTRADO SUBMETIDA AO DEPARTAMENTO

DE ENGENHARIA ELÉTRICA DA FACULDADE DE TECNOLOGIA

DA UNIVERSIDADE DE BRASÍLIA, COMO PARTE DOS REQUISITOS

NECESSÁRIOS PARA A OBTENÇÃO DO GRAU DE MESTRE EM

ENGENHARIA ELÉTRICA.

APROVADA POR:

BRASÍLIA/DF, 09 DE MARÇO DE 2018

ii



FICHA CATALOGRÁFICA

SANTOS JUNIOR, ALUISIO CESAR DOS

RESTARTED HOLOMORPHIC EMBEDDING POWER

FLOW METHOD

[Distrito Federal] 2018.

xiv, 109 páginas, 297 mm (ENE/FT/UnB, Mestre, Engenheiros Eletricistas,

2018). Dissertação de Mestrado � Universidade de Brasília.

Faculdade de Tecnologia. Departamento de Engenharia Elétrica.

1. Fluxo de Potência 2. Métodos Numéricos

3. Métodos Não-Iterativos 4. Método Holomorphic Embedding

I. ENE/FT/UnB II. Título

REFERÊNCIA BIBLIOGRÁFICA
Santos Junior, A. C. (2018). RESTARTED HOLOMORPHIC EMBEDDING POWER

FLOW METHOD. Dissertação de Mestrado em Engenharia Elétrica, Publicação

PPGEE.DM�692/2018, Departamento de Engenharia Elétrica, Faculdade de Tecnolo-

gia, Universidade de Brasília, Brasília, DF, 109 páginas.

CESSÃO DE DIREITOS

AUTOR: Aluisio Cesar dos Santos Junior

TÍTULO: RESTARTED HOLOMORPHIC EMBEDDING POWER FLOWMETHOD

GRAU / ANO: Mestre em Engenharia Elétrica / 2018

É concedida à Universidade de Brasília permissão para reproduzir cópias desta

dissertação de mestrado e para emprestar tais cópias somente para propósitos

acadêmicos e cientí�cos. O autor reserva outros direitos de publicação e nenhuma parte

desta dissertação de mestrado pode ser reproduzida sem a autorização por escrito do

autor.

iii



AGRADECIMENTOS

∞
Agradeço a Deus por tudo.

Agradeço aos meus pais, Aluizio (in memoriam) e Naildes, pelo esforço para que

nada me faltasse e, sobretudo, por batalharem para que pudesse ter uma boa educação.

Agradeço a minha esposa Mychelle pela paciência nos momentos ausentes e imenso

apoio e a minha �lha Liz pela fonte de inspiração.

Agradeço ao Departamento de Engenharia Elétrica da Universidade de Brasília

(UnB) pela oportunidade que me foi concedida em poder cursar um Mestrado

Acadêmico conduzido por professores altamente quali�cados e comprometidos com o

programa.

Agradeço imensamente ao professor e orientador Francisco Damasceno pela grande

motivação e apoio incondicional, porque sem o qual este trabalho não teria sido possível.

Igualmente agradeço ao professor Filomeno.

Aluisio Junior

iv



RESUMO

Esta dissertação apresenta uma formulação básica do método de �uxo de carga

com adaptação holomór�ca, do inglês Holomorphic Embedding Load-�ow Method

(HELM), com reinicialização, uma abordagem não-iterativa proposta para resolver

o problema do �uxo de carga. A formulação básica do método é implementada

computacionalmente realizando-se modi�cações na ferramenta MATPOWER tradi-

cional. A nova abordagem para o HELM foi denominada nesta dissertação de

Restarted Holomorphic Embedding Load-�ow Model (RHELM). Na sua concepção

básica, propõe-se uma técnica alternativa ao HELM que visa acelerar a convergência

do método HELM original. Nesta proposta, uma "solução semente" adotada no HELM

é atualizada a partir de valores iniciais, que por sua vez são atualizados a partir

de valores parciais aproximados de tensão nodal, a cada reinicialização. Na técnica

proposta neste trabalho, é su�ciente uma aproximação de Padé de baixa ordem como

técnica de continuação analítica, para atingir a precisão necessária para a série de

potências de tensão nodal. O método requer o cálculo de alguns poucos termos da

aproximação de Padé em oposição a uma aproximação de mais alta ordem usada para

resolver pelo método HELM original. O desempenho do modelo proposto é avaliado

para uma grande variedade de sistemas-teste, incluindo uma rede de 9241 barras. Os

resultados obtidos revelam que, em comparação com métodos iterativos tradicionais,

como o método de Newton Raphson, a formulação proposta é bastante e�ciente para

cálculos envolvendo sistemas de grande porte e pode ser uma ferramenta e�caz para

solucionar sistemas com elevado nível de carregamento. O método proposto sempre

apresenta convergência numérica para a solução, quando esta existe, diferentemente do

HELM, que pode estagnar em um valor limite, mas sem a precisão numérica esperada.

Palavras-chave: Holomorphic Embedding Load-�ow Method, �uxo de carga, con-

tinuidade analítica, aproximação de Padé, séries de potência
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ABSTRACT

This work presents the basic formulation of the Holomorphic Embedding Load

Flow Method (HELM), with restarting, a non-iterative approach proposed in order to

solve the power �ow problem. The basic formulation of the method is implemented

computationally by carrying out a modi�cation on the traditional MATPOWER tool.

A new approach for the HELM, called Restarted Holomorphic Embedding Load-�ow

Model (RHELM), is proposed to accelerate the convergence of the original HELM. In

this proposal, a "germ solution" adopted in the HELM is updated from initial values,

which in turn are updated from approximate nodal voltage partial values, with each

restart. The proposed method requires low order Padé approximant as an analytic

continuation technique to reach the required precision to the voltage power series. The

method requires the computation of a few terms of the Padé approximation as opposed

to a higher order approximation used to solve the original HELM. The performance

of the proposed method is evaluated for a wide variety of test systems including a

9241-bus network. The obtained results reveal that, in comparison with the traditional

iterative methods (based on Newton Raphson method) and the original HELM, the

proposed formulation is very e�cient and robust for computations involving low- and

large- scale systems and may be an e�ective tool for dealing with computation for

stressed systems. The proposed method always presents numerical convergence for the

solution, when it exists, unlike the HELM, which can stagnate in a limit value, but

without the expected numerical precision.

Index terms: Holomorphic Embedding Load-�ow Method, power �ow, analytic

continuation, Padé approximant, power series
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Chapter 1 INTRODUCTION

1.1 OVERVIEW AND CONTEXTUALIZATION

In Brazil, a large amount of electrical energy sources is located far away from

the main loads. Also, there is a considerable growing of renewable energy sources in

the networks. Therefore, the power network will have to change in order to be able to

allow the energy transportation from the sources to the loads in general [1].

The power �ow study is a numerical analysis for evaluating some quantities

in an interconnected power system. This mathematical tool continues to be the

focus of several investigations [2, 4�7], taking into account aspects of the modern

transformations of the electrical networks.

This kind of study is required for planning and designing of future expansion of

power systems as well as for determining operational conditions of existing systems.

The goal of the power �ow algorithm is to �nd an equilibrium point also known as

steady state operation of the electric power system. The main information obtained

from a power �ow study is the magnitude and phase angle of the voltage at each bus

and the active and reactive power �owing at each branch of the grid. To solve the

nonlinear Power Balance Equations (PBE), for many decades, only several traditional

iterative methods have been widely used, including the Gauss-Seidel (GS) method, the

Newton-Raphson (NR) method, and the Fast Decoupled Load Flow (FDLF) method

[3]. These techniques appear to work well for operating points near nominal system

conditions. Furthermore, the numerical performance of these methods is dependent

on the choice of the initial voltage guess. With an improper estimate of the starting

point, these methods may converge to an unstable equilibrium point. Consequently,

they neither guarantee to �nd a solution if one exists nor guarantee to �nd the �operable

solution�. These techniques may diverge or converge to Low Voltage (LV) solutions [4].

One major concern with these methods is that numerical divergence of iterations does

not necessarily mean the non-existence of a stable (from the point of view of voltage

stability) power �ow solution, namely High Voltage (HV) solution [5].

1



Chapter 1

In 1981 Sauer [6] proposed to calculate an approximated solution of bus voltage

based on its Taylor series expansion. On the other hand, it is not guaranteed that the

series will converge to a value that expresses the bus voltage [7].

In 2012, based on a Holomorphic Embedding Method (HEM), which is a recursive

and non-iterative mathematical tool to solve nonlinear equations, Trias [7] proposed

to apply this technique to the power �ow problem solution. The approach was called

by the author as Holomorphic Embedding Load Flow Method (HELM). Despite the

reliance on a Taylor series calculation, the approach is completely di�erent from that

proposed by Sauer. The series computed by using HELM has a too small radius of

convergence. Then, Trias proposed to use an analytical continuation [8] adjustment

in order to improve the radius of convergence. The improvement is based on the

construction of a Padé approximant (continued analytical function) [8]. The following

properties are aimed when an analytical function is used: it is guaranteed that the

technique �nds a solution if it exists; it will �nd only the operational solution; and

will unequivocally signal if no solution exists through oscillations in the rational Padé

approximation values for the voltage power series coe�cients.

The HEM and its associated theory open up new perspectives on the power

�ow study. It provides a novel and recent approach on the problems of existence or

multiplicity of solutions, and voltage collapse. In order to do that, advanced concepts

on algebraic geometry and complex analysis are used [9].

The HELM original implementation was demonstrated on systems with pure

PQ-buses and a slack-bus [7]. After this, some models also including PV-buses were

proposed [10], [11].

On the HELM formulation, the voltages at all buses and the reactive power at

the PV-buses are expressed as Maclaurin series of a complex embedding parameter

α [8]. The solution of the original problem is veri�ed when α = 1. On the other hand,

several strategies can be used to achieve the solution. But, the user must employ one

which provide the best numerical performance to �nd the results. Hence, this is a

challenge for dealing with HELM. An advantage is that, if an operation point exists

at a given loading level, the correct voltage solution will be obtained by using a Padé

approximant of the holomorphic series.

To generate the power series by using HELM, it is necessary to determine a germ
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solution. This is the solution when the parameter α is null. The germ solution for

the HELM is not analogous to the initial estimate of the solution in the NR method.

Unlike the NR initial estimate, the germ solution is obtained by evaluating a set of

equations [12].

1.2 STUDY MOTIVATION

Several works have reported advantages from the HELM approach (non-iterative

or recursive method) [7,9,39] over the iterative family methods, such as the traditional

NR. The main aspects are related to the searching for a solution on the boundary of the

maximum loading point or even for a situation when NR diverges. For instance, due

to an inadequate initial estimate. The HELM does not su�er of this constraining. On

the other hand, as this technique was proposed recently (see [7] and other references

on the subject), some works have presented contributions to improve the performance

of the technique. The best strategy to compute the voltage power series dominates the

investigations.

In some cases, a problem veri�ed on the HELM approach is the amount of the

power series coe�cients needed for computing an adequate analytic function for a given

quantity. In general, contributions of the high order power series terms are so small

that �oating point precision must be greatly extended. Even so, obtaining the �nal

solution is quite slow. In [39] it is reported studies demonstrating that even for a very

simple system, a mantissa of a 64-bit (double-precision or round-o� of the order 10−15)

�oating point is not su�cient to bene�t from the theoretically perfect convergence of

HELM.

In general the calculus are carried out taking into account handling scripts in a

given programming language. For instance, MATLAB has double-precision as default.

The computational aspects might be independent of this procedure. But, depending

on the loading level of the system the found solution can stagnate for the HELM.
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1.3 OBJECTIVE

This work proposes to use the HELM approach to solve a power �ow problem,

but considering that the germ solution is dependent of an initial bus (node) voltage and

this dependence is exploited to reduce greatly the number of coe�cients of the power

series. This �rst germ solution then is used to generate a small number of coe�cients

of the power series needed by HELM and the result is employed to compute a partial

analytical solution for the problem. As in general this �rst analytical solution has

inadequate accuracy for the required result of the power �ow problem, we propose to

turn it as a new initial voltage to compute an updated germ solution. Following, an

updated analytical solution is obtained. Again, for a very small number of coe�cients

for a voltage variable. This process goes on until a required accuracy be achieved. In

view of this characteristic of updating the germ solution we call this new method as

Restarted HELM (RHELM). The method and their variants found in the literature

do not use this strategy, since they employ only a single initial germ solution. To

demonstrate the e�cacy of the proposed method, the following speci�c objectives are

presented and investigated:

- description of the traditional power �ow method: this introductory content

aims to present main concepts associated to the classical power �ow

formulation, which is also adopted for the proposed method in this work;

- description of the original HELM and its variants: the original HELM is

presented and shown its main aspects;

- description of the RHELM: a mathematical description of the method is

made highlighting the main contributions of the purpose;

- experiments: several experiments are used to demonstrate the method

performance compared to the original HELM and NR method.

1.4 RELATED PUBLICATIONS

The investigations related to the theme of this dissertation made possible the

publication/acceptance of the following research papers in international and national

conferences, respectively:
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� A. C. Santos, F. D. Freitas and L. F. J. Fernandes, �Holomorphic Embedding

Approach as an Alternative Method for Solving the Power Flow Problem,� 2017 in

Workshop on Communication Networks and Power Systems (WCNPS), Brasília,

Brazil, 2017, pp. 1-4.

� A. C. Santos, F. D. Freitas and L. F. J. Fernandes, �Load Flow Problem

Formulation as a Holomorphic Embedding Method,� 2018 in VII Simpósio

Brasileiro de Sistemas Elétricos (SBSE), Niterói, Brazil, 2018, pp. 1-6 (accepted

paper).

1.5 ORGANIZATION

In addition to chapter 1, the text of this work is organized as follows:

� Chapter 2, where is presented the basic formulation for the general power �ow

problem and some adopted solution methodologies with focus on some well known

iterative methods;

� Chapter 3, where is presented a detailed exposition on the HELM and how the

embedding problem is considered for a traditional power �ow problem;

� Chapter 4, where is presented a basic bibliographical review about the theme

discussed in this work;

� Chapter 5, where is detailed the formulation for the RHELM, a new approach

HELM based, proposed for improving the convergence for the original HELM;

� Chapter 6, in which the main computational results are presented and

comparisons and performance reviews are performed to the NR, HELM and

RHELM model approaches; and

� Chapter 7, in which the conclusions of this work are highlighted and suggestions

for future works are presented.
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Chapter 2 ITERATIVE POWER FLOW SOLUTION

METHODS

2.1 INTRODUCTION

In this chapter, it is presented a description of the basic model for the general

power �ow problem and some adopted iterative methods to solve it. Firstly, some well

known iterative methods are presented. Subsequently, a non-iterative technique which

did not have success due its several restrictions is mentioned. Then, these conventional

methods are compared and it is introduced the motivation to apply an investigation

for non-iterative model aiming to solve the power �ow problem, called Holomorphic

Embedding Load-�ow Method.

2.2 POWER FLOW STUDY REASONS

Power �ow studies are undertaken for various reasons, some of which are well

known [15]:

� quanti�cation of line �ows and bus voltages in the system (voltage pro�le);

� e�ect investigation of change in con�guration and incorporation of changing due

to system loading;

� study of the e�ect of temporary loss of transmission capacity and(or) generation

on system loading and monitored e�ects;

� study of the e�ect of in-phase and quadrative boost voltages on system loading;

� economic system operation study;

� system loss minimization;

� transformer tap setting for economic operation;
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� possibe improvements to an existing power system by change of conductor sizes

and system voltages;

� support for system planning, operation and control as well as for contingency

analysis;

� estimate of system conditions before faults.

2.3 THE POWER FLOW PROBLEM CHARACTERISTICS

Under normal conditions electrical systems operate in their steady-state mode

and the basic calculation required to determine the characteristics of this state is a

kind of study denominated power �ow (or load �ow) problem. Therefore, the power

�ow problem consists in �nding the steady-state operating point of an interconnected

electric power system. More speci�cally, providing the load demanded at consumption

buses and the power supplied by generators, the aim is to obtain all bus voltage phasors

(for a given frequency, in general 60 Hz or 50 Hz) and complex power �owing through

all network components. These information are essential for the continuous evaluation

of the loading of a power system and for analyzing the e�ectiveness of alternative plans

for system expansion to meet increased load demand [16].

The power �ow solver is the most widely used application both in operating

and in planning environments, either as a standalone tool or as a subroutine within

more complex processes (stability analysis, optimization problems, training simulators,

etc.). During the daily grid operation, the load �ow constitutes the basic tool

for security analysis, by identifying unacceptable voltage deviations or potential

component overloading, as a consequence of both natural load evolution and sudden

structural changes. It also allows the planning engineer to simulate di�erent future

scenarios that may arise for a forecast demand.

The power �ow solution can be obtained in two stages. The �rst and most critical

one is aimed at �nding the complex voltage at all buses, for which conventional linear

circuit analysis techniques have limitations. This is a consequence of complex powers,

rather than impedances and sources, being speci�ed as binding constraints, leading

to a set of nonlinear equations. The second step simply consists of computing the

remaining variables of interest, such as active and reactive power �ows, ohmic losses,

etc., which is a trivial problem since all bus voltages are available [17].
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The load �ow problem consists of the calculation of power �ows and voltages of

a network for speci�ed terminal or bus conditions. A single-phase representation is

adequate since power systems are usually assumed as balanced for normal operation.

Four quantities are associated with each bus: the real and reactive power, the voltage

magnitude, and the phase angle. Based on assumptions of these quantities, three

types of buses are de�ned in the load �ow calculation and at a bus, two of the four

quantities are speci�ed. To solve the problem, one reference bus must be selected (the

slack-bus), to provide the additional real and reactive power to supply the transmission

losses, since these are unknown until the �nal solution be obtained. At this bus the

voltage magnitude and phase angle are known. The remaining buses of the system

are designated either as voltage controlled buses or load buses. The real power and

voltage magnitude are speci�ed at a voltage controlled bus (PV-bus), while the real

and reactive power are speci�ed at a load bus (PQ-bus) [18].

The mathematical formulation of the power �ow problem results in a system of

algebraic nonlinear equations. The form of the equations depends on the selection of

the independent variable set, i.e., voltages or currents. Thus, either the admittance

or impedance network matrices can be used. The solution of the algebraic equations

describing the power system are based, primarily, on an iterative technique because

of their nonlinearity. The solution must ful�ll Kirchho�'s laws, i.e., the algebraic sum

of all �ows at a bus must be equal zero. From a dual form, the algebraic sum of all

voltages in a closed-loop (mesh) must be equal zero [18].

2.3.1 Computation of Bus Admittance Matrix

The �rst step in developing the mathematical model describing the power �ow

in the network is the computation of a bus admittance matrix. The bus admittance

matrix is a complex n × n matrix (where n is the number of buses in the system)

constructed from admittances of the equivalent circuit elements (shunt and series) of

the circuit models of the power system. Most component models are represented by a

combination of shunt elements (connected between a bus and the reference node) and

series elements (connected between two system buses). The computation of the bus

admittance matrix follows two simple rules [19]:

� The admittance of elements connected between node i and reference is added to

the (i, i) entry of the admittance matrix;
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� The admittance of elements connected between nodes i and j is added to the (i,

i) and (j, j ) entries of the admittance matrix. In general, the negative of the

admittance is added to the (i, j ) and (j, i) entries of the admittance matrix (one

exception occurs for transformer with phase-shift).

For simple illustration on the admittance matrix construction, consider the 3-bus

transmission system shown in Figure 2.1:

Figure 2.1: 3-bus transmission system one-line diagram

Each line impedance connecting buses 1, 2 and 3 are denoted by z12, z23 and

z31, respectively. The corresponding line admittances are y12, y23 and y31. The shunt

admittance at each bus is represented, as totally capacitive, by y11, y22 and y33, since

they represents contributions of transmission lines.

According to the Kirchho�`s Current Law (KCL), the sum of all current

contributions that leaves a node is equal to the sum of the currents that arrives to the

same node. Considering the case of Figure 2.1, the branch admittances between the bus

i and j can be de�ned as yij = 1
zij

= 1
rij+jxij

, where zij is the branch impedance, and rij

and xij are the resistance and reactance composing the impedance, respectively [20].

Applying KCL at each bus and thus rearranging these equations, the current

9



Chapter 2

injected into each node leads to the set of equations [21]:
I1 = V1y11 + (V1 − V2)y12 + (V1 − V3)y13
I2 = V2y22 + (V2 − V1)y21 + (V2 − V3)y23
I3 = V3y33 + (V3 − V1)y31 + (V3 − V2)y32

(2.1)

which can be represented as a matrix form:
I1

I2

I3

 =


y11 + y12 + y13 −y12 −y13

−y12 y22 + y12 + y23 −y23
−y13 −y23 y33 + y13 + y23



V1

V2

V3

 (2.2)

which is also equivalent to: 
I1

I2

I3

 =


Y11 Y12 Y13

Y21 Y22 Y23

Y31 Y32 Y33



V1

V2

V3

 (2.3)

The diagonal entries are calculated as:
Y11 = y11 + y12 + y13

Y22 = y22 + y12 + y23

Y33 = y33 + y13 + y23

(2.4)

while the o�-diagonal entries are (for networks without phase-shift transformer):
Y12 = Y21 = −y12
Y13 = Y31 = −y13
Y23 = Y32 = −y23

(2.5)

For an n-bus system, the elements of the bus admittance matrix can be written

down merely by inspection of the network. The diagonal terms are determined as:

Yii =
n∑
j=1

yij (2.6)

where Yii (calculated when j = i) means the sum of all admittances connected to the

bus, while yii is the equivalent shunt admittance connected to the bus i.

The o�-diagonal terms are assumed to be of the form:

Yij = Yji = −yij (2.7)
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Extending the (2.3) to an n-bus system, the node equation for the system is

formulated in a general matrix form as [21]:

I1

I2
...

Ii
...

In


=



Y11 Y12 . . . Y1i . . . Y1n

Y21 Y22 . . . Y2i . . . Y2n
...

...
...

...

Yi1 Yi2 . . . Yii . . . Yin
...

...
...

...

Yn1 Yn2 . . . Yni . . . Ynn





V1

V2
...

Vi
...

Vn


(2.8)

The matrix representation is useful for enabling the use of computational tools in

the resolution of linear systems. The representation in (2.8) can also be written as in

(2.9) or (2.10), since the objective is to �nd the voltages in each power grid node [20].

Ibus = YbusVbus (2.9)

Vbus = Y −1busIbus (2.10)

where Ibus is the vector of the injected bus currents (i.e, external current sources). But

in case of using (2.10), if Ybus is singular, the set of equation must be determined by

using other strategy instead of computing the inverse of this matrix.

The following can be adopted in (2.9) and (2.10): the current is positive when

�owing towards the bus, and negative if it is �owing away from the bus. Vbus is the

vector of nodal bus voltages measured from the reference node (i.e., node voltages).

Ybus is known as the bus admittance matrix.

From the resolution of (2.10) it is possible to �nd the nodal voltages of the system.

However, the values of injected currents into the buses are also not known, resulting

in a problem of nonlinear equations that are usually solved by iterative methods. In

a real-world power system network, there are a large number of buses and each one is

connected to only the nearest ones, so that many of the elements outside the diagonal

matrix are null, characterizing it as a highly sparse matrix [20].

2.3.1.1 O�-nominal in-phase Tap Transformer Model

O�-nominal transformer taps (transformers with transformation ratios di�erent

from the system voltage bases at the terminals) present some special di�culties. Figure
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2.2 shows a representation for a type of an o�-nominal turns ratio transformer [19],

where Zkm is the series impedance of the transformer at nominal operation conditions

and Ikm and Imk are currents �owing from each bus of the transformer; Vk = |Vk|ejθk

and Vm = |Vm|ejθm are nodal voltages at physical buses k and m of the transformer,

while Vp = |Vp|ejθp is a nodal voltage for an internal and �ctitious node p; akm is the

o�-nominal turn ratio in pu. This a complex-valued parameter, but in this work we

consider it assuming just a positive real value.

Figure 2.2: Two winding in-phase tap transformer model

For this model the ideal transformer voltage magnitude ratio (turns ratio) must

satisfy:

Vp
Vk

= akm (2.11)

Since the transformer is assumed to have taps in phase, the condition in the ideal

transformer in (2.11) leads to θk = θp, where θk and θp are the phases of Vk and Vp,

respectively. Therefore, in this situation, akm is a real number.

The ideal transformer (the k-p part of the model) yields:

VkI
∗
km + VpI

∗
mk = 0 (2.12)

Then, by using (2.11) gives

Ikm
Imk

= −|Ikm|
|Imk|

= −akm (2.13)

which means that the complex currents Ikm and Imk are out of phase by 180◦ since

akm ∈ R. The Figure 2.3 represents the equivalent π-model for the in-phase tap

transformer in Figure 2.2.
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Figure 2.3: Equivalent π-model for in-phase transformer

Parameters A, B, and C of this model can be obtained by identifying the

coe�cients of the expressions for the complex currents Ikm and Imk associated with

the models of Figure 2.2 and 2.3.

Ikm = −akmykm(Vm − Vp) = (a2kmykm)Vk + (−akmykm)Vm (2.14)

Imk = ykm(Vm − Vp) = (−akmykm)Vk + (ykm)Vm (2.15)

or in matrix form:

[
Ikm

Imk

]
=

[
a2kmykm −akmykm
−akmykm ykm

][
Vk

Vm

]
(2.16)

As seen the matrix on the right hand side of (2.16) is symmetric. Figure 2.3

provides now the following:

Ikm = (A+B)Vk + (−A)Vm (2.17)

Imk = (−A)Vk + (A+ C)Vm (2.18)

or in matrix form: [
Ikm

Imk

]
=

[
A+B −A
−A A+ C

][
Vk

Vm

]
(2.19)

Identifying the matrix elements from the matrices in equations (2.16) and (2.19)

yields [24]:

A = akmykm (2.20)
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B = akm(akm − 1)ykm (2.21)

C = (1− akm)ykm (2.22)

A remark should be done on the o�-nominal tap position with relation to the side

of the transformer (winding at the side of bus k or m). The o�-nominal tap can be

assumed at the side of the bus m, as adopted in the previous model or at the side of

the bus k as adopted in the Matpower model default [14]. However, even in the case of

using Matpower, expressions (2.20)-(2.22) are still valid. But the user need to consider

the value 1/akm in these equations. This means that Matpower's tap ā is at the side

of the bus k and ā = 1/akm. Therefore, for this situation the same model in Figure 2.3

must be used.

2.3.2 Bus Classi�cation

A bus is a point or node at which transmission lines, loads, generators or other

devices are connected. In a power system study, every bus is associated with four

quantities, such as magnitude of voltage, |V |, phase angle of voltage, δ, active power, P ,
and reactive power, Q. Two of these bus quantities are speci�ed and the remaining two

variables are unknown. The bus types are categorized depending on its two speci�ed

variables. Thus, the system buses are generally classi�ed into three categories [25]:

Load bus: at this bus type the active and reactive powers are speci�ed. The

magnitude and the phase angle of the bus voltages are unknown. This bus type is

denominated PQ-bus. This is classi�ed as a non-generator bus whose information about

the powers can be obtained from historical data records, measurement or forecast. In

this type of bus the real and reactive power supplied to the bus (or injected power) is

assumed to be positive, while the power consumed at the bus is de�ned as negative.

Hence, the net power consumed at this bus is known and the speci�ed variables are P

and Q. Finally, the unknown variables are |V | and δ;

Generator bus: This type of bus is known as regulated voltage bus, because the

voltage magnitude at the bus is speci�ed. As a consequence it is known as voltage

controlled bus. At this bus type, the real power and voltage magnitude are speci�ed.

The bus voltage phase angle and the reactive power are to be determined. The limits

on the value of the reactive power should also be speci�ed, but this constraining has
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no in�uence on the classi�cation of the bus type. This bus type is called PV-bus.

In general this bus is associated to a generator unit in which output active power

generated is controlled by adjusting the prime mover and the voltage can be regulated

by adjusting the excitation system set-point of the generator. Often, limits are given

to the values of the reactive power depending upon the characteristics of individual

machine. As for PQ-bus, net injected power into the bus assumes a positive value,

while consumed power (case of motor) has negative values. The known variables in

this bus are P and |V | and the unknowns are Q and δ; and

Slack-bus: This bus is taken as angular reference for the system. So, the

magnitude and phase angle of the voltage are speci�ed. This bus makes up the

di�erence between the scheduled loads and generated power that are caused by losses

in the network. Hence, this bus is used as a reference in order to meet the power

balance condition at the network. The slack-bus is usually selected as a power station

with a huge capacity. This is justi�ed since it must supply the power unbalance of the

system. The known variables on this bus are |V | and δ and the unknowns are P and

Q.

For the basic 3-bus transmission system shown in Figure 2.1, bus 1 is set as slack-

bus, bus 2 is a PV-bus and bus 3 is a PQ-bus. Table 2.1 summarizes the classi�cation

of the bus system.

Table 2.1: Bus classi�cation summary

ID number Type of Bus Variables

P Q |V | δ

1 Slack Bus Unknown Unknown Known Known

2 Generator Bus (PV) Known Unknown Known Unknown

3 Load Bus (PQ) Known Known Unknown Unknown

2.3.3 Power Balance Equations

Consider a typical bus of a power system network as shown in Figure 2.4. In this

partial one-line diagram, the transmission lines are represented by their equivalent π

models where series impedances have been converted to per unit (pu) admittances on

a common MVA base [21].

15



Chapter 2

Figure 2.4: Components of a n-bus power system connected to a generic bus i

The application of the KCL to this system and speci�cally to the bus i yields:

Ii = yi0Vi + yi1(Vi − V1) + yi2(Vi − V2) + ...+ yin(Vi − Vn)

= (yi0 + yi1 + yi2 + ...+ yin)Vi − yi1V1 − yi2V2 − ...− yinVn
(2.23)

which can also be represented as:

Ii = Vi

n∑
j=0

yij −
n∑
j=1

yijVj, j 6= i (2.24)

Rewriting (2.24), yields:

Ii =
n∑
j=1

YijVj (2.25)

In equation (2.25), j includes bus i. Expressing this equation in polar form, it

can be represented as [21]:

Ii =
n∑
j=1

|Yij||Vj|∠(θij + δj) (2.26)
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where θij is the phase angle of the admittance matrix entry Yij.

The complex power at bus i is given by:

Pi − jQi = V ∗i Ii (2.27)

Substituting (2.26) for Ii in (2.27) it is obtained the next equation:

Pi − jQi = |Vi|∠− δi
n∑
j=1

|Yij||Vj|∠(θij + δj) (2.28)

Breaking up the complex equation in (2.28) into their real and imaginary parts,

it is obtained a set of nonlinear algebraic equations (also known as Power Balance

Equations) in terms of the independent variables, voltage magnitude, in pu, and phase

angle, in radians:

Pi =
n∑
j=1

|Vi||Vj||Yij|cos(θij − δi + δj) (2.29)

Qi = −
n∑
j=1

|Vi||Vj||Yij|sin(θij − δi + δj) (2.30)

2.4 SOLVING POWER BALANCE EQUATIONS

Currently, the most widely applied Power Flow solvers are the Newton-Raphson

and the Fast Decoupled Load-Flow methods. The Gauss-Seidel method for solving the

Power Flow problem was popular in the 1960s. The performance of di�erent power �ow

solution methods can be a�ected by the characteristics of the power systems, including

topology, branch parameters, load pro�le and size [22].

2.4.1 The Gauss-Seidel Family Methods

The Gauss-Seidel (GS) is the earliest proposed method used to solve the power

�ow problem. This method is developed based on the Gauss method. It is an iterative
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method used for solving a set of nonlinear algebraic equations. The method makes

use of an initial guess for value of voltage, to obtain a calculated value of a particular

variable. The initial guess value is replaced by a calculated value. The process is then

repeated until the iteration solution converges. The convergence is quite sensitive to

the starting values assumed [23].

This scheme sequentially sweeps each node, updating its complex voltage in terms

of the voltages of adjacent buses until the in�nity norm of the di�erence of the voltage

values from consecutive iterations is smaller than a speci�ed tolerance [26].

Assuming that a system has a slack-bus (bus 0) and N load buses, the power

injection at bus i can be written as:

Si = ViI
∗
i = Vi

(
N∑
j=0

YijVj

)∗
= Vi

N∑
j=0

Y ∗ijV
∗
j (2.31)

where the index for the slack-bus is assigned as 0; Si is the complex power injection at

bus i; Vi is the nodal voltage at bus i, and Yij = (Gij + jBij) is the (i,j)th admittance

matrix entry. Then the above equation can be written as:

S∗i = V ∗i

N∑
j=0

YijVj = V ∗i

(
YiiVi +

N∑
j=0,j 6=i

YijVj

)
(2.32)

Rearranging (2.32), the voltage at each load bus is given by:

Vi =
1

Yii

(
S∗i
V ∗i
−

N∑
j=0,j 6=i

YijVj

)
(2.33)

The process of updating values for the unknown voltages is illustrated in the

sequel.

V
(n+1)
1 = 1

Y11

(
S∗
1

V
(n)∗
1

− Y10V0 −
∑N

j=2 Y1jV
(n)
j

)
V

(n+1)
2 = 1

Y22

(
S∗
2

V
(n)∗
2

− Y20V0 − Y21V (n+1)
1 −

∑N
j=3 Y2jV

(n)
j

)
...

V
(n+1)
i = 1

Yii

(
S∗
i

V
(n)∗
i

− Yi0V0 −
∑i−1

j=1 YijV
(n+1)
j −

∑N
j=i+1 YijV

(n)
j

)
...

V
(n+1)
N = 1

YNN

(
S∗
N

V
(n)∗
N

− YN0V0 −
∑N−1

j=1 Y1jV
(n+1)
j

)
(2.34)
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where the superscript n in V (n)
i represents the updated result of Vi after the nth iteration

and will be used in the (n+1)th iteration. Then the in�nity norm of the di�erence of

the voltage values is used to decide whether the iteration process should be terminated

or not.

The implementation of the GS-based algorithm is relatively easy to do. In this

algorithm an LU factorization of the associated matrix is not needed. Thus, it takes a

relatively small amount of memory and has low computational complexity. Although

the computational e�ort per iteration is moderate, the convergence of this method is

linear, which means that the tolerance decreases more or less linearly with the number

of iterations (and tends to increase as the dimension N of the system increases). This

represents an important limitation for large systems, as the total computational cost,

and hence solution time, increases considerably as larger systems are solved [17].

2.4.2 The Newton-Raphson Method

The Newton-Raphson method is one largely employed for solving nonlinear

equation systems. The method is iterative and needs an initial estimate to initialize

the iterations. Its convergence is achieved when a speci�ed tolerance is obtained for

the mismatch of the balance equations.

To illustrate the method applied to a nonlinear equations represented by f(x) = 0,

x ∈ R, and f(x) ∈ R, consider an initial estimates x(0) for a set of roots of f(x) = 0. A

perturbation around the point x(0) is de�ned as ∆x(0). Then, a �rst updated solution

for the roots can be de�ned as x(1) = x(0) + ∆x(0). A new updating of this solution

leads to x(2) = x(1) + ∆x(1) and so on. Essentially, the problem consists in �nding

the true roots by a linear approximation of f(x) by causing small disturbances on

the obtained partial solutions. These numerical perturbations become smaller as the

result of the iterative process converges to a root set of the problem. So, the problem is

iterative in nature, because small disturbances are needed until the speci�ed tolerance

for convergence is reached.

For an estimate x = x(0) and a disturbance ∆x(0), there is a mismatch c ∈ R on

the root approximation in such way that

f(x(0) + ∆x(0)) = c. (2.35)
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On the other hand, the function f(x) can be expanded in a Taylor series around

x(0) [21] giving the approximation

f(x(0)) +

(
df

dx

)(0)

∆x(0) +
1

2!

(
d2f

dx2

)(0)

(∆x(0))2 + ... ≈ c (2.36)

Assuming the root x(0) is so close to the correct solution that ∆x(0) is a very

small value, then the terms of higher orders can be neglected. Thus, (2.36) can be

approximated linearly, as in (2.37), where ∆c(0) = c− f(x(0)), is the mismatch for the

solution x(0) or the residue.

∆c(0) = c− f(x(0)) '
(
df

dx

)(0)

∆x(0) ⇒ ∆x(0) ='

[(
df

dx

)(0)
]−1

∆c(0) (2.37)

Thus, the initial estimate added to increment ∆x(0) results in the updated solution

approximation x(1), given by

x(1) = x(0) + ∆x(0) (2.38)

The iterative process repeats itself until x converges, which happens when the

value of the increment becomes too small, or less than a value ε > 0, the speci�ed

tolerance for convergence. Equations (2.39), (2.40) and (2.41) can be used for describing

a general form of the Newton-Raphson method algorithm [20].

∆c(k) = c− f(x)(k) (2.39)

∆x(k) =

[(
df

dx

)(k)
]−1

∆c(k) (2.40)

x(k+1) = x(k) + ∆x(k) (2.41)

The term ( df
dx

)(k) of (2.40) de�nes the Jacobian matrix for f(x) at x = x(k).

2.4.2.1 Jacobian Matrix

The Jacobian matrix for a problem with n functions and variables xi, for i =

1, 2, ..., n, i.e., f(x) ∈ Rn, x ∈ Rn, around an initial estimate, x(0) ∈ Rn, just as in
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(2.16), is calculated as

f
(0)
1 +

(
∂f1
∂x1

)(0)
∆x

(0)
1 +

(
∂f1
∂x2

)(0)
∆x

(0)
2 + ...+

(
∂f1
∂xn

)(0)
∆x

(0)
n = c1

f
(0)
2 +

(
∂f2
∂x1

)(0)
∆x

(0)
1 +

(
∂f2
∂x2

)(0)
∆x

(0)
2 + ...+

(
∂f2
∂xn

)(0)
∆x

(0)
n = c2

...

f
(0)
n +

(
∂fn
∂x1

)(0)
∆x

(0)
1 +

(
∂fn
∂x2

)(0)
∆x

(0)
2 + ...+

(
∂fn
∂xn

)(0)
∆x

(0)
n = cn

(2.42)

Equation (2.43) is another form of (2.42). Essentially, again the goal is to �nd the

increment ∆x
(0)
i , for i = 1, 2, ..., n. In the same way, it is possible to �nd the increments

for the kth iteration. Equations (2.44), (2.45) and (2.46) describe expressions at the

kth iteration of the Newton-Raphson method for the case when exist n functions with

n variables.


c1 − (f1)

(0)

c2 − (f2)
(0)

...

cn − (fn)(0)

 =



(
∂f1
∂x1

)(0) (
∂f1
∂x2

)(0)

. . .

(
∂f1
∂xn

)(0)

(
∂f2
∂x1

)(0) (
∂f2
∂x2

)(0)

. . .

(
∂f2
∂xn

)(0)

...
...

. . .
...(

∂fn
∂x1

)(0) (
∂fn
∂x2

)(0)

. . .

(
∂fn
∂xn

)(0)




∆x

(0)
1

∆x
(0)
2
...

∆x
(0)
n

 (2.43)

∆C(k) = J (k)∆X(k) (2.44)

∆X(k) = [J (k)]−1∆C(k) (2.45)

X(k+1) = X(k) + ∆X(k) (2.46)

where ∆X(k), ∆C(k) and J (k) correspond to:

∆X(k) =


∆x

(k)
1

∆x
(k)
2
...

∆x
(k)
n

 (2.47)

∆C(k) =


c1 − (f1)

(k)

c2 − (f2)
(k)

...

cn − (fn)(k)

 (2.48)
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J (k) =



(
∂f1
∂x1

)(k) (
∂f1
∂x2

)(k)

. . .

(
∂f1
∂xn

)(k)

(
∂f2
∂x1

)(k) (
∂f2
∂x2

)(k)

. . .

(
∂f2
∂xn

)(k)

...
...

. . .
...(

∂fn
∂x1

)(k) (
∂fn
∂x2

)(k)

. . .

(
∂fn
∂xn

)(k)


(2.49)

and J (k) is again called Jacobian matrix at the kth iteration.

2.4.2.2 Newton-Raphson Power Flow Solution

The Newton-Raphson iterative method can be used to calculate the power �ow

solution by taking the power balance equations as the starting point, since both are

nonlinear. The bus 1 is assumed as the slack-bus. Then it is omitted to form the linear

system involving Jacobian and residues (mismatches).

Considering the basic nonlinear power balance equations expanded in Taylor's

series about the initial estimate and negleting all higher order terms, results in the

following set of linear equations:



∆P
(k)
2
...

∆P
(k)
n

∆Q
(k)
2
...

∆Q
(k)
n


=



∂P2

∂δ2

(k)

. . .
∂P2

∂δn

(k) ∂P2

∂|V2|

(k)

. . .
∂P2

∂|Vn|

(k)

...
. . .

...
...

. . .
...

∂Pn
∂δ2

(k)

. . .
∂Pn
∂δn

(k) ∂Pn
∂|V2|

(k)

. . .
∂Pn
∂|Vn|

(k)

∂Q2

∂δ2

(k)

. . .
∂Q2

∂δn

(k) ∂Q2

∂|V2|

(k)

. . .
∂Q2

∂|Vn|

(k)

...
. . .

...
...

. . .
...

∂Qn

∂δ2

(k)

. . .
∂Qn

∂δn

(k) ∂Qn

∂|V2|

(k)

. . .
∂Qn

∂|Vn|

(k)





∆δ
(k)
2
...

∆δ
(k)
n

∆|V (k)
2 |
...

∆|V (k)
n |


(2.50)

The Jacobian matrix gives the linearized relationship between small changes in

voltage angle ∆δ
(k)
i and voltage magnitude ∆|V (k)

i | with the small changes in real

and reactive power ∆P
(k)
i and ∆Q

(k)
i . Entries of the Jacobian matrix are the partial

derivatives of the equations for PQ- and PV-buses, evaluated, respectively, at ∆δ
(k)
i

(for buses unless the slack-bus) and ∆|V (k)
i | (only for PQ-bus). Considering a simpli�ed

form, (2.50) can be written as:
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∆P

∆Q

]
=

[
J1 J2

J3 J4

][
∆δ

∆|V |

]
(2.51)

Once the Jacobian matrix is calculated, the residues ∆P
(k)
i and ∆Q

(k)
i must be

found as:

∆P
(k)
i = P sp

i − P
(k)
i , i ∈ PQ− and PV − buses (2.52)

∆Q
(k)
i = Qsp

i −Q
(k)
i , i ∈ PQ− buses (2.53)

where P (k)
i and Q(k)

i are the active and reactive power calculated at kth iteration and

P sp
i and Qsp

i are the known (speci�ed) values for the active and reactive power at bus

i. In the PV-bus case, the variables related to reactive power are disregarded [20].

Finally, using (2.30), it is possible to �nd the increments for the phase angle and

for the voltage magnitude and also add them to the initial estimate, as represented in

(2.54) and (2.55).

δ
(k+1)
i = δ

(k)
i + ∆δ

(k)
i , i ∈ PQ− and PV − buses (2.54)

|V (k+1)
i | = |V (k)

i |+ ∆|V (k)
i |, i ∈ PQ− buses (2.55)

New iterations are performed until max
[
|∆P (k)

i |, |∆Q
(k)
i |
]
≤ ε, with ε being the

speci�ed convergence tolerance [20].

2.4.3 The Fast Decoupled Load Flow Method

The Fast Decoupled Load Flow (FDLF) method is a variant of the NR method.

The FDLF is one of the improved methods, which is based on a simpli�cation of the

NR method and reported by Stott and Alsac in 1974 [22].

This method, like the NR method, o�ers calculation simpli�cations, fast

convergence and reliable results. As a consequence, it became a widely used method

in load �ow analysis. However, fast decoupling for some cases, for example where high

resistance-to-reactance (R/X) ratios or heavy loading (low voltage) at some buses are

present, may cause divergence in the process. This is justi�ed because the technique

besides be an approximation method, it also assumes simpli�cations on forming the

Jacobian matrix. In view of this, many e�orts and developments have been made
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to overcome these convergence obstacles. Some of them targeted the convergence of

systems with high X/R ratios, and others with low voltage buses. Three assumptions

are used to derive this method from the NR approach [26], [21]:

1) The branch conductance values are zero;

2) The magnitudes of all voltages are close to 1 pu;

3) The voltage angles across all branch are close to zero, namely sin θij ≈ 0 and

cos θij ≈ 1.

Using these assumptions, the power balance equations can be written as follows:

∂∆Pi
∂|Vj|

= −|Vi|(Gij cos θij +Bij sin θij) ≈ 0 (2.56)

∂∆Qi

∂θj
= |Vi||Vj|(Gij cos θij +Bij sin θij) ≈ 0 (2.57)

The equations (2.56) and (2.57) justify to neglect the o�-diagonal sub-matrices

of the Jacobian matrix. This method is a modi�cation of NR, taking advantage of

the weak coupling between P -δ and Q-|V | due to the high X/R ratios. The Jacobian

matrix of (2.51) is reduced to half by ignoring the element of J2 and J3. The equation

(2.51) is simpli�ed as showed in (2.58) [21] [25]:

[
∆P

∆Q

]
=

[
J1 0

0 J4

][
∆δ

∆|V |

]
(2.58)

The equation (2.58) can be broken into two independent parts, related to ∆P

and ∆Q as

∆P = J1∆δ =

[
∂P

∂δ

]
∆δ (2.59)

∆Q = J4∆|V | =
[
∂Q

∂|V |

]
∆|V | (2.60)

which can still be represented in a reduced form as:

∆P

|Vi|
= −B′∆δ (2.61)
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∆Q

|Vi|
= −B”∆|V | (2.62)

The terms B′ and B” are the imaginary parts of the bus admittance matrix Ybus.

It is equivalent to ignore all shunt connected elements for construction of J1 and J4.

Therefore, in the Fast Decoupled Load Flow method, the successive voltage magnitude

and phase angle changes are computed as [21]:

∆δ = −[B′]−1
∆P

|V |
(2.63)

∆|V | = −[B”]−1
∆Q

|V |
(2.64)

The Fast Decoupled Load Flow method exploits the approximate decoupling of

the real and the reactive power equations, and keeps the Jacobian matrix as a constant

matrix throughout the entire iteration process. This means that the Jacobian matrix for

this method is factorized only once. Thus the FDLF solution requires more iterations

than the Newton-Raphson method, but requires considerably less time per iteration,

and a power �ow solution is obtained very rapidly. This technique is very useful in

contingency analysis where numerous outages are simulated or a power �ow solution

is required for online control. Thus, this method is widely applied in real-time power

system operations. Even though the FDLF method has superior calculation speed over

the NR method, it is initial guess dependent. Hence, it presents convergence problems,

including those ones near the Saddle Node Bifurcation Point (SNBP) [21], [26].

2.4.4 Complexity Analysis Related to GS, NR and FDLF

GS and NR methods are compared considering both use Ybus as the network

model. The GS method requires the fewest number of arithmetic operations to complete

an iteration. This is because the sparsity of the network matrix and the simplicity to

obtain the solution of the nonlinear system. Consequently, this method requires less

time per iteration. For the NR method, the Jacobian matrix needs to be computed

at each iteration. For typical large systems, the time per iteration in the NR method

is roughly equivalent to 7 times that of the GS method. The time per iteration in

both these methods increases almost directly according to the buses of the network.
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The rate of convergence of the GS method is slow (linear convergence characteristic),

requiring a considerably greater number of iterations to obtain a solution than the

NR method, which has quadratic convergence characteristics and is the best among

all methods from the standpoint of convergence. In addition, the number of iterations

for the GS method increases directly as the number of buses of the network increases.

On the other hand, the number of iterations for the NR method remains practically

constant, independent of system size.

In general, the NR method needs three to �ve iterations to reach an acceptable

solution for a large-scale system. In the GS method and other iterative methods,

convergence is a�ected by the choice of slack-bus and the presence of series capacitor,

but the sensitivity of the NR method is minimal to these factors which cause poor

convergence. Therefore, for large systems the NR method is faster, more accurate

and more reliable than the GS method or any other known iterative method. In fact,

it works for any size and kind of problem and is able to solve a wider variety of ill-

conditioned problems. Its programming logic is considerably more complex and it has

the disadvantage of requiring a large computational memory even when a compact

storage scheme is used for the Jacobian and admittance matrices. In fact, it can be

made even faster by adopting the scheme of optimally renumbered buses [28], [25].

For FDLF, the convergence is geometric, two to �ve iterations are normally

required for practical accuracies, and it is faster than the formal NR method. This is

due to the fact that the elements of B′ and B” are �xed approximation to the tangents

of the de�ning functions δP/|V | and δQ/|V |. If δP/|V | and δQ/|V | are calculated

e�ciently, then the speed for iterations of the FDLF is nearly �ve times that of the

formal NR or about two-thirds that of the GS method. Storage requirements are around

60 percent of the formal NR, but slightly more than the decoupled NR method [28].

2.4.5 Motivation for Non-Iterative Methods Development

The three mainstream PF methods work very well when the system operates

under near nominal conditions. Unfortunately, these three methods become less robust

when the system operates with a voltage pro�le far from nominal, such as under a severe

contingency condition. Furthermore, these iterative methods need an appropriate guess

of the initial values. Promisingly, several non-iterative PF methods have been proposed,

though they have not been thoroughly tested [26].
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2.5 NON-ITERATIVE METHODS

Since the traditional iterative methods depend of an initial estimate and have

convergence issues, emerging non-iterative methods have been studied. In the sequel

it is discussed on the non-iterative approaches for solving the power �ow problem.

2.5.1 The Series Load Flow Method

A non-iterative method called the Series Load-Flow method was proposed by

Sauer [6]. This technique consists on determining voltage variables as a function of

explicit power series. Two di�erent approaches for computing the voltage power series

were proposed by Sauer. One of them is the explicit voltage function in terms of the

Taylor series obtained via a series recursion technique. Another, is based on a �xed-

point iteration series with initial guess of voltages zero. The method may be considered

a problem that consists in solving a nonlinear equation V = f(V ). Thus, it has the

near-Newton properties [6].

Even though the derived voltage power series from both approaches provides an

explicit form of the PF solution, thus the work developed by Sauer was essentially an

analytical representation for the iteration process. The work was extended in [29] and

the series was derived by expanding the solution function using Taylor series theory

around a feasible operating point. The solution could be explicitly expressed by the

Taylor series expansion. Hence, the load sensitivity could be performed easily by

checking the �rst-order-term coe�cient of the Taylor series. Unlike other iterative

methods, the voltage solution could be derived by one substitution once the series was

established with non-iterative characteristics. However, the solution was still initial

point dependent. A reasonable feasible point that had small PBE's mismatches was

required, otherwise the convergence of the Taylor series was not guaranteed. Finally,

the calculation of the coe�cients in the Taylor series could be computationally intensive

and impractical for large-scale system applications [4], [26].
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2.6 CONCLUSION OF THE CHAPTER

In this chapter an overview on modeling the network considering the admittance

matrix has been presented. This representation, involving the connection between

currents and nodal voltage, are essential to develop the power �ow techniques evaluated

in this work. They were introduced three conventional methods (the GS, the NR and

the FDLF methods) and a discussion on a non-iterative method (the Series Load Flow

method). The conventional methods perform reliably for the meshed system operating

at near nominal conditions, but they are initial estimate dependent, and they face

convergence issues when the system is under contingency or heavily loaded. Non-

iterative methods claim to present advantages. They help overcome the convergence

issues. As they are much less researched than the conventional methods, they beg

adequate study and are open to further development. The next chapter exploits a

subject on the direction of non-iterative method study.
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Chapter 3 THE HOLOMORPHIC EMBEDDING METHOD

3.1 INTRODUCTION

In this chapter, a non-iterative method called Holomorphic Embedding Method

(HEM) is presented and applied to solve the power �ow problem. This model is based

on the mathematical complex analysis topic and aims to �nd a solution for a nonlinear

problem in a recursive way rather than iterative.

The method is applied to the nonlinear power �ow problem in such way that

models for PQ-buses, PV-buses and a slack -bus are incorporated. In this way, it is

ensured that the equations describing the power �ow are holomorphic, which is done

with the inclusion of a complex-valued parameter α.

The analytical properties of the holomorphic functions are used to approximate

the variables as power series which is a function of an embedding parameter α. A

reference solution (germ solution) is de�ned for α = 0 and enables the calculation of

the coe�cients of the power series in a recursive way. Finally, a Padé approximation

is used in order to extend the series radius of convergence. The e�ective value of the

original function is recovered when the Padé approximant is computed for α = 1.

3.2 HOLOMORPHIC FUNCTION AND POWER SERIES COMPUTA-

TION

The formulation of the problem discussed in this chapter requires the presentation

of some de�nitions concerning holomorphic function properties which are the basis for

the expansion of these functions in power series.
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3.2.1 Holomorphic Functions

A holomorphic function is a complex-valued analytic function that is in�nitely

complex di�erentiable around every point within its domain. One important property

of it is that it can be represented by its Taylor series around a neighborhood of each

point in its domain [9].

The term holomorphic function is often used interchangeably with analytic

function. The word "analytic" is de�ned in a broader sense to denote any function

(real, complex, or of more general type) that can be written as a convergent power

series in a neighborhood of each point in its domain. The fact that all holomorphic

functions are complex analytic functions, and vice-versa, is a major theorem in complex

analysis. Holomorphic functions are also sometimes referred to as regular functions [30].

Because the fact that complex di�erentiation is linear and obeys the product,

quotient, and chain rules, it implies that the sums, products and compositions of

holomorphic functions are holomorphic, and the quotient of two holomorphic functions

is also holomorphic wherever the denominator is not zero.

3.2.2 Power Series Expansion of Holomorphic Functions

The Maclaurin series of a generic function f(α) ∈ C is generated when a Taylor

series is expanded about α equal zero [8]. Using the Maclaurin series expansion, an

holomorphic function f(α) can be expanded as a power series with an in�nite number

of terms as presented by [26]:

f(α) =
∞∑
i=0

f [i]αi =
∞∑
i=0

f (i)(α)

i!
, for |α| ≤ r (3.1)

where f (i)(α) is the ith derivative of the function f(α), f [i] is the ith coe�cient of the

power series of the function f(α), and r is a convergence radius. Assuming the voltage

function is holomorphic, it can be expanded and approximated for n terms as a power

series [8]:

V (α) =
n∑
i=0

V [i]αi, for |α| < r (3.2)

Thus the generated voltage power series contains all of the properties of the

analytic function V (α). It is need to consider that to be analytic, any function f(α)
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must satisfy the Cauchy-Riemann equations [30]. An equivalent condition in complex

domain known as Wirtinger's derivative [30] requires that:

∂f(α)

∂α∗
= 0 (3.3)

The embedding process can retain the holomorphicity only when V ∗ is embedded

with variable α∗ instead of α. This statement can be proved using the Wirtinger's

derivative. The truncated Maclaurin series expansion of the V ∗(α) and V ∗(α∗) are

expressed as [4]:

V ∗(α) = V [0]∗ + V [1]∗α∗ + ...+ V [n]∗(α∗)n

V ∗(α∗) = V [0]∗ + V [1]∗α + ...+ V [n]∗(α)n
(3.4)

The variable V ∗(α) in (3.4) is a function of α∗. Therefore, the Wirtinger equations

will not be satis�ed. The expansion of V ∗(α∗) indeed is independent of α∗ such that
∂V ∗(α∗)

∂α∗
= 0, wich implies that V ∗(α∗) in (3.4) is a holomorphic function. Thus, the

model must use the expression of V ∗i (α∗) instead of V ∗i (α) for embedding the power

balance equations holomorphically for the case of the power �ow problem [26].

The power series of the voltage as shown in (3.2), when evaluated at α = 1, gives

the solution to the original nonlinear equation set. However, if the power series has a

radius of convergence less than 1.0, then the sum of power series terms evaluated at

α = 1 will not converge. However, an analytic continuation technique may be applied

to extend this radius of convergence. This topic will be better introduced in Section

3.5.

3.3 THE BASIC POWER BALANCE EQUATIONS USING HOLOMOR-

PHIC EMBEDDING METHOD

3.3.1 Modeling for slack, PQ- and PV-buses

In a generic system with (N + 1) buses composed of a slack bus, a set of load

buses (PQ-bus) and generator buses (PV-bus), the basic models can be represented
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by a set of nonlinear equations called PBEs. For this set of bus, an index of bus i is

assigned to each one. The bus index number i = 0 is reserved to the slack-bus. Vj is

the voltage phasor of bus j and Yij is the (i, j)th entry of the bus admittance matrix,

Ybus, of the power system [9]:

� Slack-bus:

The slack-bus voltage, Vsl, can be expressed as the speci�ed slack-bus voltage V sp
0

in the power system, so:

Vsl = V sp
0 (3.5)

� Load bus (PQ-bus):

The basic equation for a load bus at bus i can be represented as:

N∑
j=0

YijVj =
S∗i
V ∗i

, i ∈ PQ− bus (3.6)

where Si is the complex power injections at bus i, and Vi is the bus voltage at

bus i.

� Generator bus (PV-bus):

For a generator bus, the voltage magnitude, |Vi| and active power output, Pi,

are known. The voltage angle and reactive power supply/consumption, Qi, are

unknown, so:

Pi = Re

(
Vi

N∑
j=0

Y ∗ijV
∗
j

)
, i ∈ PV − bus

|Vi| = V sp
i

(3.7)

3.3.2 Slack-Bus HEM

Applying the embedding parameter α in the basic PBE for a slack -bus represented

in (3.5) results in a possible HE model for this type of bus [9]:

Vsl(α) = 1 + α(V sp
0 − 1). (3.8)
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From (3.8), the power series for Vsl(α) has just two terms and the series has

maximum power α1, i.e, Vsl(α) = V0[0] +V0[1]α, where V0[0] = 1 and V0[1] = (V sp
0 −1).

Then, according to (3.8), when α = 1 results in V0(1) = V sp
0 and the original

result is recovered.

The power series coe�cient, V0[n], n = 0, 1, can be identi�ed considering the

Kronecker delta notation [9]

V0[n] = δn0 + δn1(V
sp
0 − 1) (3.9)

where it was used the Kronecker delta notation de�ned as [9]:

δni =

1, if n=i

0, if n 6= i
(3.10)

3.3.3 Load Bus (PQ-bus) HEM

Equation (3.6) describes the power balance equations required for the calculation

of state variables Vj referring to PQ-buses. In this equation it is possible to extract

the shunt contribution of the network in the bus admittance matrix Ybus. Then, the

term Ybus is separated into the sum Ybus = Yi sh + Yij tr, where Yi sh is the total shunt

admittance connected at bus i, and Yij tr, the remaining of the (i, j) entry of bus

admittance matrix associated with only the branch impedance. This way, elements

of a connection matrix of branches Yij tr and a diagonal matrix of connections with

shunts Yi sh elements are introduced [9]. Then, given Yi sh and an entry Yij:

Yij tr =

Yii − Yi sh, if i=j

Yij, if i 6= j
(3.11)

Note that in (3.11) the diagonal entries of Yij tr are determined simply removing

the shunt contribution connected to the bus i from the admittance matrix Ybus.
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Thus, the Left Hand Side (LHS) of (3.4) for the bus i (
∑N

j=0 YijVj) is broken up

in [20]:
N∑
j=0

YijVj =
N∑
j=0

Yij trVj + Yi shVi, i ∈ PQ− bus (3.12)

It is possible to impose a holomorphic condition for(3.6). With this aim, the

complex parameter α is included in this equation. In this approach, the term Yi shVi is

transferred to the Right Hand Side (RHS) of the (3.4). In this sense, (3.13) describes

the HEM for load buses [26]. It must be noted that it is used the term V ∗i (α∗) instead of

V ∗i (α) in order to satisfy the Cauchy-Riemann equations [7]. After this consideration,

the basic holomorphic embedding formulation for load buses is given by [9]:

N∑
j=0

Yij trVj(α) =
αS∗i

V ∗i (α∗)
− αYi shVi(α), i ∈ PQ− bus (3.13)

There are several ways to make a holomorphic function. It is chosen a way for

which if α = 1 the (3.6) is recovered from (3.13) [9], [26].

Since the voltages have become holomorphic functions from (3.13), they can be

written for their respective expansions in Taylor series around one point. Choosing

this point as α = 0, the result is a Maclaurin series, which is described for V (α) and

V ∗(α∗):

V (α) =
∞∑
n=0

V [n]αn (3.14)

V ∗(α∗) = V ∗[0] + V ∗[1]α + ...+ V ∗[n]αn (3.15)

Substituting the voltages from (3.13) into the power series in (3.14) and (3.15),

results in

N∑
j=0

Yij tr(Vj[0] + Vj[1]α + Vj[2]α2 + ...+ Vj[n]αn) =

=
αS∗i

(V ∗i [0] + V ∗i [1]α + V ∗i [2]α2 + ...+ V ∗i [n]αn)
−

−αYi sh(Vi[0] + Vi[1]α + Vi[2]α2 + ...+ Vi[n]αn)

(3.16)
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In the situation of (3.16) and to solve the power �ow problem, it is necessary

to identify the coe�cients of the series considering identity at both RHS and LHS of

the equation. But, a �rst procedure to be done is to compute a series to represent

the inverse of V ∗(α∗) since this inverse function arises multiplying the term αS∗i . One

strategy which can be used is to de�ne the inverse of V (α) as a power series function

denominated W (α) [33]. This procedure is performed as

W (α) =
1

V (α)
= W [0] +W [1]α +W [2]α2 + ...+W [n]αn (3.17)

Then the substitution of (3.17) in (3.16) results in

N∑
j=0

Yij tr(Vj[0] + Vj[1]α + Vj[2]α2 + ...+ Vj[n]αn) =

= αS∗i (W
∗
i [0] +W ∗

i [1]α +W ∗
i [2]α2 + ...+W ∗

i [n]αn)−

−αYi sh(Vi[0] + Vi[1]α + Vi[2]α2 + ...+ Vi[n]αn)

(3.18)

From equation (3.17), W (α)× V (α) = 1, thus this equation can also be written

as:

(W [0]+W [1]α+W [2]α2+...+W [n]αn)×(V [0]+V [1]α+V [2]α2+...+V [n]αn) = 1 (3.19)

It is possible to solve (3.19) by multiplying the power series term-by-term and then

equating the coe�cients of the same power in α. This way, as the voltage coe�cients

V [i], i = 0, 1, 2, ..., n are computed before determining W [i], then the coe�cients W [i]

are found explicitly from the coe�cients of V (α) as:



W [0]V [0] = 1 =⇒ W [0] = 1/V [0] (for α0)

W [0]V [1] +W [1]V [0] = 0 (for α1)

W [0]V [2] +W [1]V [1] +W [2]V [0] = 0 (for α2)
...

W [0]V [n] +W [1]V [n− 1] + ...+W [n]V [0] = 0 (for αn)

(3.20)
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Thus, it is possible to �nd the nth coe�cient of the series of the function W (α)

for each n ≥ 1 through the expression [9]:

W [α] = −
∑n−1

j=0 W [j]V [n− j]
V [0]

, n ≥ 1 (3.21)

Finally, for PQ-buses, considering identity at the RHS and LHS of (3.18) and

taking into account previous (n − 1) known coe�cients, the unknown n-th coe�cient

for the voltage Vi(α) is calculated as

N∑
j=0

Yij trVj[n] = S∗iW
∗
i [n− 1]− Yi shVi[n− 1] (3.22)

3.3.4 Generator Bus (PV-bus) HEM

For a generator bus the reactive power is an unknown variable. Therefore, in (3.6)

the complex power is separated into its real and imaginary parts. Thus, by separating

the terms referring to the admittance matrix and including the embedding parameter

α, it is obtained the equation [9]:

N∑
j=0

Yij trVj(α) =
αPi − jQi(α)

V ∗i (α∗)
− αYi shVi(α), i ∈ PV − bus (3.23)

The reactive power Qi(α) is a variable and so has an expansion in function of the

embedding parameter α. As matter of fact, this variable also has operational limits

(superior and inferior). On the other hand, this constraining will not be focus of this

dissertation. Therefore, the variable with free limits can be represented by a power

series

Q(α) = Q[0] +Q[1]α + ...+Q[n]αn. (3.24)

The PV-bus has controlled voltage. The idea for this kind of control is to keep the

magnitude of voltage at the bus i in a constant magnitude value, V sp
i . A possible way
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for considering the embedded equation (3.23) and also meeting the imposed voltage

constraint is to adopt the procedure proposed in [9]:

|Vi(α)|2 = Vi(α)V ∗i (α∗) = 1 + (|V sp
i |2 − 1)α, i ∈ PV − bus (3.25)

Interesting to note in (3.25) that the function |Vi(α)|2 is analytic, but |Vi(α)|
alone does not meet the criteria to be an analytic function, i.e., it does not satisfy the

Cauchy-Riemann equations or Wirtinger's derivative (see (3.3)).

Equations (3.23) and (3.25), then characterize the basic HEM for the power

balance equation of typical generator buses.

Repeating the methodology used for load buses, the voltages Vj(α), Vi(α), V ∗i (α∗)

and the reactive power Qi(α) are replaced in (3.23) and (3.25) by their respective

Maclaurin power series, so that it is obtained the result [20]:

N∑
j=0

Yij tr(Vj[0] + Vj[1]α + Vj[2]α2 + ...+ Vj[n]αn) =

=
αPi − j(Qi[0] +Qi[1]α +Qi[2]α2 + ...+Qi[n]αn)

(V ∗i [0] + V ∗i [1]α + V ∗i [2]α2 + ...+ V ∗i [n]αn)
−

−αYi sh(Vi[0] + Vi[1]α + Vi[2]α2 + ...+ Vi[n]αn)

(3.26)

Using (3.17) and evaluating the coe�cients of W (α) from (3.21), equation (3.26)

becomes:

N∑
j=0

Yij tr(Vj[0] + Vj[1]α + Vj[2]α2 + ...+ Vj[n]αn) =

= (αPi − j(Qi[0] +Qi[1]α +Qi[2]α2 + ...+Qi[n]αn)×

×(W ∗
i [0] +W ∗

i [1]α +W ∗
i [2]α2 + ...+W ∗

i [n]αn)−

−αYi sh(Vi[0] + Vi[1]α + Vi[2]α2 + ...+ Vi[n]αn)

(3.27)

The coe�cients of same power index from RHS and LHS in (3.27) are matched to

compute a generic coe�cient n, Vi[n], given that the coe�cients until n− 1 are known.

Then a general equation for unknown coe�cient of Vi[n] and Qi[n] is

N∑
j=0

Yij trVj[n] = PiW
∗
i [n− 1]− j

n−1∑
k=1

Qi[k]W ∗
i [n− k]− Yi shVi[n− 1] (3.28)
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It can be demonstrated [9] that in (3.28) the germ solution for Qi(α) is zero, i.e.

Qi[0] = 0. This justify the reason why the RHS summation index starts from k = 1

instead zero in in (3.28).

Observing (3.28), it is noted that Vi and Qi are unknown variables. Hence, Qi

appears as an additional variable in the problem formulation. Therefore, it is needed to

include an additional expression in the equation system. This requirement is ful�lled

by adding the voltage constraint equation [26]:

(Vi[0] + Vi[1]α + Vi[2]α2 + ...+ Vi[n]αn)×

×(V ∗i [0] + V ∗i [1]α + V ∗i [2]α2 + ...+ V ∗i [n]αn) = 1 + (|V sp
i |2 − 1)α

(3.29)

By equating the coe�cients of the same power index of α on both side of the

equation (3.28), it is possible to �nd the coe�cients from equation (3.30), assuming

that Vi[0] = 1, i = 0, 1, ..., N , resulting in equation (3.31) [26]:


Vi[0]V ∗i [0] = 1

Vi[0]V ∗i [1] + Vi[1]V ∗i [0] = |V sp
i |2 − 1∑n

k=0 Vi[k]V ∗i [n− k] = 0, for n = 2, 3, 4, ...

(3.30)


Vi[0] = 1

V ∗i [1] + Vi[1] = 2Vi re[1] = |V sp
i |2 − 1

V ∗i [n] + Vi[n] = 2Vi re[n] = −
∑n−1

k=1 Vi[k]V ∗i [n− k], for n = 2, 3, 4, ...

(3.31)

The germ solution (for n = 0) is then Vi[0] = 1, i = 0, 1, ..., N . The very single

result is obtained of straightforward way (without no additional computation), because

it was adopted the embedded model (3.8) for the slack-bus and the fact that there is no

shunt admittance or load for the system [7]. Physically, it means that the system then

operates at this state as if there was a single generator with voltage 1 pu and all other

bus operating at no load. Evidently, in this state all bus must also operates at voltage

of 1 pu. Note also in (3.31) that the real part, Vi re[n], of the complex quantity Vi[n]

is directly calculated based on known coe�cient values computed previously. But, the

imaginary part of the same voltage phasor, Vi im[n], stays unknown.

Finally, it is obtained the equation (3.32) which represents the real part of the

coe�cients of voltage power series for PV-buses [33].
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Vi re[n] =


1, if n = 0

|V sp
i |

2−1
2

, if n = 1

−1
2

∑n−1
k=1 Vi[k]V ∗i [n− k], for n = 2, 3, 4, ...

(3.32)

3.3.5 Power Series Expansion Resulting After Applying HEM

The �nal solution for the power balance equations holomorphically embedded is

obtained after the calculation of the coe�cients for the power series of the functions

Vi(α) and Qi(α) as [26]:

Vi(α) = Vi[0] + Vi[1]α + ...+ Vi[n]αn

i ∈ PQ− bus ∪ PV − bus ∪ slack − bus
(3.33)

Qi(α) = Qi[0] +Qi[1]α + ...+Qi[n]αn, i ∈ PV − bus (3.34)

So, besides the initial terms, Qi[0] and Vi[0] called germ solution, the remaining

coe�cients need to be calculated until a required precision be reached (this will be

signaled by the result to be computed by an analytical approach of Padé). Or a

maximum number of coe�cients is achieved. These coe�cients are then used by an

analytic continuation technique in order to improve the convergence radius of the power

series.

3.3.5.1 The Germ Solution

The germ solution for a general system with (N + 1) buses is calculated

establishing α = 0 (3.8), (3.13) and (3.23) for PQ-buses, PV-buses and slack-bus,

respectively. Thus, in summary, the germ solution can be obtained by solving this set

of equations [26]:
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N∑
j=0

Yij trVj[0] = 0, i ∈ PQ− bus

N∑
j=0

Yij trVj[0] = −jQi[0]W ∗
i [0], i ∈ PV − bus

Vi[0]V ∗i [0] = 1, i ∈ PV − bus

V0[0] = 1, slack − bus

(3.35)

Considering (3.35), the germ solution is then represented by the coe�cients [26]:

Vi[0] = 1, i ∈ PQ− bus ∪ PV − bus ∪ slack − bus

W ∗
i [0] = 1, i ∈ PQ− bus ∪ PV − bus

Qi[0] = 0, i ∈ PV − bus

(3.36)

3.3.5.2 General Coe�cients for the Power Series

The general holomorphic embedding formulation for each value of a coe�cient

related to a degree n of α is given by [9]:

� Slack bus (slack):

V0[n] =


1, if n=0

V sp
i − 1, if n=1

0, if n=2,3,4,...

(3.37)

� Load bus (PQ-bus):
N∑
j=0

YijVj[n] = S∗iW
∗
i [n− 1]− Yi shVi[n− 1], for n ≥ 1, i ∈ PQ− bus (3.38)

� Generator bus (PV-bus):
N∑
j=0

Yij trVj[n] = PiW
∗
i [n− 1]− j

n−1∑
k=1

Qi[k]W ∗
i [n− k]− Yi shVi[n− 1] (3.39)

Vi re[n] =


1, if n=0
(V sp

i )2−1
2

, if n=1, i ∈ PV − bus

−1
2

∑n−1
k=1 Vi[k]V ∗i [n− k], if n=2,3,4,...

(3.40)

with Vi[n] = Vi re[n] + jVi im[n].
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The set of equations (3.38)-(3.40) is separated into real, Vi re[n], and imaginary

parts, Vi im[n], generating a linear system that have to be solved recursively for a given

number of terms until getting a required precision. After this, the result must be

transformed by using an analytic continuation technique as will be demonstrated later.

3.4 HEM MATRIX REPRESENTATION

In the previous sections models for the power �ow by the Holomorphic Embedding

Method for the three types of buses were presented for an electrical power system. In

this section the purpose is to lump the models into a single matrix representation. For

the sake of simplicity, the three bus system of Figure 3.1 is considered. In this system,

bus 1 is the slack-bus; bus 2 is a PV-bus; and bus 3 is a PQ-bus.

Figure 3.1: 3-bus system for illustrating the application of the Holomorphic Embedding
Method

Initially, the bus admittance matrix, containing only branch elements (no shunt

connection) is formed. An entry of this matrix, Yij tr, is separated into real and

imaginary parts as:

Yij tr = Gij +Bij (3.41)
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where Gij and Bij are the conductance and susceptance of the entry Yij tr, respectively.

The power balance equations holomorphically embedded and the bus admittance

matrix are separated into real and imaginary parts and the unknown variables are

moved to the left hand side. After this consideration, the recursive relation for

determining the general coe�cients for the basic three-bus system of Figure 2.1 is

represented in a matrix form as showed in equation (3.42).



1 0 0 0 0 0

0 1 0 0 0 0

G21 −B21 0 −B22 G23 −B23

B21 G21 1 G22 B23 G23

G31 −B31 0 −B32 G33 −B33

B31 G31 0 G32 B33 G33





V1 re[n]

V1 im[n]

Q2[n]

V2 im[n]

V3 re[n]

V3 im[n]


=



δn0 + δn1(V
sp
i − 1)

0

re
{
P2W

∗
2 [n− 1]− j

∑n−1
k=1 Q2[k]W ∗

2 [n− k]− Y2 shV2[n− 1]
}

im
{
P2W

∗
2 [n− 1]− j

∑n−1
k=1 Q2[k]W ∗

2 [n− k]− Y2 shV2[n− 1]
}

re {S∗3W ∗
3 [n− 1]− Y3 shV3[n− 1]}

im {S∗3W ∗
3 [n− 1]− Y3 shV3[n− 1]}


−



0

0

G22

B22

G32

B32


V2 re[n], n = 0, 1, ...

(3.42)

where V2 re[n] is calculated using (3.32).

Note that after splitting the equations into real and imaginary parts, for a system

with N buses, 2N holomorphically embedded equations are necessary. Hence, the

admittance matrix, Ytr, has dimension 2N × 2N .

3.5 ANALYTIC CONTINUATION AND PADÉ APPROXIMANT

The Power Balance Equations in their basic form, as presented by (3.5) to (3.7)

do not satisfy Cauchy-Riemann equations. Hence, they are non-holomorphic. In HEM

the voltage or reactive power function is embedded using a complex parameter, α,

such that the resultant system of equations is holomorphic. This allows the voltage or

reactive power function to be expressed as Taylor's series whose radius of convergence
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are unknown. Analytic continuation techniques need to be applied to extend the

convergence radius. Analytic continuation is studied in complex analysis and is de�ned

as the technique for extending the domain of a given analytic function. When the

power �ow problem is evaluated using HEM, analytic continuation must be used to

represent the voltage power function outside the radius of convergence of the power

series representation [33].

When solving the power balance equations holomorphically embedded according

to (3.8), (3.13) and (3.23) for a system of (N+1) buses as suggested in previous topics,

basically two problems are handled. The �rst one is to determine the amount of terms

(power series coe�cients) needed to achieve the correct solution at α = 1. The second

one concerns the convergence of the voltage power series: if the convergence radius is

less than 1, which is generally true, the power series do not converge to the desired

values [7]. Then, it is not enough to make α = 1 and replace this value in the power

series equations to �nd the solution of the power �ow problem.

In order to circumvent this situation, there are some methods employed for

analytic continuation which can be used to increase the radius of convergence of the

power series function. An appropriated technique widely used is the Padé approximant

method. The maximal analytic continuation of a power series can be achieved by

calculating its diagonal or near-diagonal Padé approximant (depending the number of

poles and zeros of the continued fraction). The Padé approximant can be written as

a rational function of two polynomials which is computed from the �nite power series

truncated at a maximum number of terms. An analytical identity for this rational

fraction is de�ned as [9], [27]:

[L/M ]α =
a[0] + a[1]α + ...+ a[L]αL

1 + b[1]α + ...+ b[M ]αM
=

L+M∑
n=0

f [n]αn (3.43)

where L and M are related to the numerator (zeros) and denominator (poles) of the

rational function in α, respectively, and n is the degree of the power series; the power

series maximum number of terms required to match with the the Padé approximant is

(L+M).

From Stahl's convergence theory, the diagonal or near-diagonal Padé approx-

imants yields the maximal analytic continuation (analytic continuation over the

maximal domain of the function). Hence, it provides the convergence guarantee relied
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on by the Holomorphic Embedding Load Flow Method [35]. In other words, if a solution

of the power balance equations exists, the Padé approximant is guaranteed to converge.

Otherwise, if the Padé approximant does not converge, the system of PBE does not

have a solution. This means that the power system is beyond the voltage collapse point

and is non-operable [4]. One advantage of this method is that the power series of the

variable α is approximated by a rational approximant as a function of α. This rational

approximant may then be evaluated for an arbitrary value of α, giving that f(α) is

known [34], [35].

A near-diagonal Padé approximant is a rational approximant whose the module

of the di�erence between the numerator and denominator polynomial degree are equal

1, i.e. (|L−M | = 1), whereas in diagonal Padé approximant the numerator and

denominator polynomial degree are equal, i.e. (L = M). Both diagonal or near-

diagonal sequence of Padé approximants have been proved to converge to the desired

solution [7], [11], but in this work the approximation to the diagonal of the Padé matrix

(diagonal Padé approximant) was the method chosen. This method, in addition to

generally not needing many terms to achieve good accuracy for the convergence of the

power series, also makes it possible to reach the maximum analytical continuation for

a power series function [32].

Then, for �nding the analytic continuation for a voltage power series, for example,

�rstly the basic problem consists in computing the coe�cients V [n] of the voltage

power series. Secondly, from the power series it is needed to determine the coe�cients

a[i], i = 0, 1, 2, , L and b[j], j = 1, 2, ,M of the polynomial rational fraction. Finally,

the voltage V (1) is computed, i.e., the value when α = 1 is the voltage value of

interest [7], [32].

The function V (α) is approximated by the truncated power series in (3.44) until

the degree L+M . So L+M+1 coe�cients are known (LHS of the equation). However,

there are L+M + 2 coe�cients due to the polynomials at numerator and denominator

on the RHS of the equation (unknown variables). Then, in order to �nd these unknown

coe�cients, one of the variables at the RHS is chosen as being a free variable. Then,

b[0] = 1 is chosen [33].

V (α) = V [0] + V [1]α + ...+ V [L+M ]αL+M =
a[0] + a[1]α + ...+ a[L]αL

b[0] + b[1]α + ...+ b[M ]αM
(3.44)
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Multiplying both sides of (3.44) by the polynomial b(α) and assuming b[0] = 1,

it is obtained the relation

(
1 + b[1]α + ...+ b[M ]αM

)
×
(
V [0] + V [1]α + ...+ V [L+M ]αL+M

)
=

a[0] + a[1]α + ...+ a[L]αL
(3.45)

By identifying the coe�cients of α at both sides of (3.45), a general relation

among the variables is obtained as

V [0] = a[0]

V [1]b[0] + V [0]b[1] = a[1]

V [2]b[0] + V [1]b[1] + V [0]b[2] = a[2]
...∑L

k=0 V [k]b[L− k] = a[L]

(3.46)

By equating the coe�cients from L+ 1 to L+M in (3.43) results in



b[M ]V [L−M + 1] + b[M − 1]V [L−M + 2] + ...+ b[1]V [L] + V [L+ 1] = 0

b[M ]V [L−M + 2] + b[M − 1]V [L−M + 3] + ...+ b[1]V [L+ 1] + V [L+ 2] = 0
...

b[M ]V [L] + b[M − 1]V [L+ 1] + ...+ b[1]V [L+M − 1] + V [L+M ] = 0

(3.47)

The system in (3.47) can be represented into a matrix form by [26]:


V [L−M + 1] V [L−M + 2] . . . V [L]

V [L−M + 2] V [L−M + 3] . . . V [L+ 1]
...

...
. . .

...

V [M ]V [L] V [L+ 1] . . . V [L+M − 1]




b[M ]

b[M − 1]
...

b[1]

 = −


V [L+ 1]

V [L+ 2]
...

V [L+M ]


(3.48)

Analytic continuation applied to power series through using Padé approximation

leads to the handling of matrix which can be severely ill-conditioned. Especially, when

the order of the Padé approximant is increased [34]. Other drawback is that the Padé
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approximant introduces spurious poles on the transfer function represented by the

rational fraction and these poles do not correspond to the singularities of the original

function. The results evaluated near such poles are misleading [8]. Furthermore, the

Padé matrix becomes too large to yield an accurate result in such way that many

terms in the series needs to be included [26]. Despite these drawbacks a great impact

on expanding the convergence radius of the problem is the key point which justify the

use of the Padé approximant.

In summary the original Holomorphic Embedding model applied for solving the

power �ow problem follows this solution process:

1. Construct the bus admittance matrix Ybus using sparsity techniques;

2. Split the Ybus into shunt (Ysh) and series (Ytr) matrices, composed of only shunt

and branch connection, respectively;

3. Generate the Power Balance Equations for Slack-, PQ- and PV-buses holomor-

phically embedded;

4. Use the germ solution Vi[0] = 1, Wi[0] = 1 and Qi[0] = 0 as the initial term for

the power series in α;

5. Construct the matrix of the recursive relation with the PBE holomorphically em-

bedded separated into real and imaginary parts for �nding the other coe�cients

[n] of the power series;

6. Apply an analytic continuation technique to the power series, as Padé approx-

imant, and make α = 1 to get the solution; if the major voltage mismatch is

less than a speci�ed tolerance error, the �nal solution was reached; otherwise,

calculate extra terms to the power series until getting the �nal solution.

It is important to mention that if the Padé approximation does not converge for

α = 1, unequivocally, the power �ow problem does not have solution [33].

The Figure 3.2 illustrates a �owchart about the original holomorphic embedding

power �ow implementation solution method.
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Figure 3.2: Original holomorphic embedding power �ow solution �owchart

3.6 2-BUS TUTORIAL CASE

The electric network in Figure 3.3, taken from [33], consists of a two-bus system

and is presented here to illustrate step-by-step the application of the method of

adapting the load �ow equations using the parameter holomorphic α, as described

in the previous sections. In this system, the active power consumed at bus 2, P2, is

dependent of the voltages V1 and V2, and also to the transmission line impedance. The

following data are known: the source voltage, V1, and the impedance which is assumed

purely resistive, R. The active power, P2, is also given. The voltage V2 is the unknown
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variable in the problem.

Figure 3.3: 2-bus test-system for illustrating the HEM application

Thus, the power balance equation in this example is simply given by [33]:

P2 = V2I2 =
V2 (V1 − V2)

R
(3.49)

Therefore, it is necessary to solve the following nonlinear equation for the

unknown variable V2:

V 2
2 − V2V1 +RP2 = 0 (3.50)

Considering that R = 1.0 pu, P2 = 0.16 pu and V1 = 1.0 pu, it is obtained the

following equation:

V 2
2 − V2 + 0.16 = 0 (3.51)

The exact solution for (3.51) consists of the operating values (HV ) 0.8 pu or the

(LV ) 0.2 pu. The parameter α is included in (3.51), so that V 2
2 − V2 = −0.16α. Note

that by setting α at the unit value, equation (3.51) is retrieved in its original form.

Now, by expressing the voltage V2 as a holomorphic function of the complex

parameter α, it is obtained:

V2(α) = 1− 0.16α

V2(α)
(3.52)

Since V2(α) is holomorphic in α, this variable can be represented as a power series:

V2(α) = V2[0] + V2[1]α + ... + V2[n]αn. The germ solution is obtained when α = 0.
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Therefore, V2[0] = 1. In this sense, W2(α) is de�ned as the inverse series of the voltage

V2(α), given by:

W2(α) =
1

V2(α)
= (W2[0] +W2[1]α + ...+W2[n]αn) (3.53)

and W2(0) = 1
V2(0)

= 1.

Starting from (3.52) and using the inverse voltage series W2(α), it is determined

[33]:

V2[0] + V2[1]α...+ V2[n]αn = 1− 0.16α (W2[0] +W2[1]α + ...+W2[n]αn) (3.54)

Then, by equating the coe�cients of the two sides of the equation (3.54), it is

obtained the coe�cients of the voltage power series V2(α) as a recursive process:

V2[0] = 1; W2[0] = 1
V2[0]

= 1, for n = 0

V2[n] = −0.16W2[n− 1], for n ≥ 1
(3.55)

The coe�cients of the voltage power series starting with the germ solution

obtained for n = 0. The terms W2[n] are calculated from (3.21). The accuracy of

the result depends on the amount of terms n calculated. For the problem in question,

the terms of the series for V2(α) up to the fourth degree are:

V2(α) = 1− 0.16α− 0.0256α2 − 0.0082α3 − 0.0033α4 + ... (3.56)

In general, by making α = 1 in (3.56) and summing the coe�cients of the series,

even for a large number of terms, it is found that the result obtained di�ers from the

solution V2 of the bus voltage. A Padé approximation of V2(α) is then calculated and

the value of V2 when α = 1 is determined. Assuming an error tolerance of 10−8 to the

exact HV value V2 = 0.8 pu, 12 coe�cients are required to the voltage power series,

which leads to a Padé approximation with L = M = 6.

The diagonal Padé approximant for bus 2 is evaluated as:
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V2(α) =
1− 1.9200α + 1.4080α2 − 0.4915α3 + 0.0826α4 − 0.0059α5 + 0.001α6

1− 1.7600α + 1.1520α2 − 0.3441α3 + 0.0459α4 − 0.0022α5 + 0.0000α6

(3.57)

which, for α = 1, gives V2(α) = 0.8∠0◦ pu.

3.7 CONCLUSION OF THE CHAPTER

In this chapter, the problem formulation based on the holomorphic embedding

model (HEM) was presented for evaluating the HEM applied to the load �ow

(HELM) problem. A general linear system was also determined to evaluate the

voltage or reactive power coe�cients for the slack -, PQ- and PV-buses. For a better

understanding of the problem solution using the HEM, the description based on a

simple three-bus electric system was presented. It was also demonstrated how to obtain

the Padé approximant, which is an analytical continuation technique. This is a process

to enlarge greatly the radius of convergence of the power series for HELM. This a

required procedure to obtain the �nal solution to the problem, unless a tolerance error.

In the next chapter a bibliographical review is done on works involving HELM

and veri�ed progress in recent years on the subject.
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Chapter 4 STATE OF THE ART ON SOME HELM

APPROACHES

4.1 INTRODUCTION

The holomorphic embedding procedure for calculating the solution of the power

�ow problem appeared in 2012 [7]. But even before the subject had been studied

however having limited repercussions in the academic environment. In this chapter is

presented a bibliographical review concerning some works published in the literature

on the theme. Several researches are recent and have motivated this dissertation.

4.2 BIBLIOGRAPHICAL REVIEW

Up to now, some contributions identi�ed to the holomorphic embedding method

with application for solving the power �ow problem are summarized in the sequel. The

presentation was prioritized per year, given that research on the subject is fairly recent.

Of course, covering all the works already published on the topic is an arduous task and

so the description in question is a standout survey by the author.

� 2009-2011: There were registered two U.S. Patents, number 7,519,506 B2

(Apr. 14, 2009) and number 7,979,239 B2 (Jul. 12, 2011), which introduced

an alternative technique to iterative methods, proposed by Trias for solving the

power �ow problem [37].

� 2012: Trias [7] proposed in a paper a novel non-iterative power �ow method,

known as the Holomorphic Embedding Load Flow Method (HELM). The method

allows the determination of the HV/operational solution of the problem (if it

exists). The purpose was applied to a simple two-bus system. The method

unequivocally signals if no solution exists through oscillations in the rational

approximation of the voltage power series [7].
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� 2013: The paper [38] presents an improved method for calculating the unstable

equilibrium point for a two-bus system using a holomorphic embedding model.

The focus of this paper is to prove mathematically that if a unstable equilibrium

point solution exists, the method is guaranteed to arrive at that and only that

solution. If no solution exists, then such characteristic is demonstrated by

oscillations is the series form of the solution.

The paper [11] introduces a PV-bus model, compatible with the Holomorphic

Embedding (HE) approach, for solving the Power Balance Equations (PBE) and

suggests a remedy for the precision problems that arises with HE in modeling

the PV- bus. Because the PBE in traditional form are non-analytic due to the

presence of the complex-conjugate operator, many powerful tools applicable to

the analytic functions cannot be used. Holomorphism is obtained by embedding

the PBE into a bigger problem in such a way as to render the embedded problem

analytic.

� 2014: The master thesis [33], presented by Muthu Kumar, describes the

Holomorphic Embedding Load Flow Method in a detailed approach. Software to

implement the HE method was developed using MATLAB and numerical tests

were carried out on small and medium sized systems to validate the approach.

Implementation of di�erent analytic continuation techniques is included and their

relevance in applications such as evaluating the voltage solution and estimating

the bifurcation point (BP) is discussed. The ability of the HE method to trace

the PV-curve of the system is identi�ed.

� 2015: The doctoral dissertation [4], presented by Yang Feng, developes a non-

iterative algorithm for solving the power �ow (PF) problem using the holomorphic

embedding method. It was demonstrated that the technique is able of �nding

the HV solution, while avoiding converging to LV solutions nearby which is a

drawback to all other iterative solutions. The detailed implementation of the

HE method is discussed and modi�ed holomorphically embedded formulations

are proposed to �nd the LV/large-angle solutions of the PF problem. It is

theoretically proven that the proposed method is guaranteed to �nd a total

number of 2N solutions to the PF problem and if no solution exists, the

algorithm is guaranteed to indicate such by the oscillations in the maximal

analytic continuation of the coe�cients of the voltage power series obtained.

The master thesis [26], presented by Yuting Li, explains in details the connection

between mathematical theory of the Holomorphic Embedding Method and its

application to power �ow calculation. With the existing bus-type-switching
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routine, the models of phase shifters and three-winding transformers are proposed

to enable the HE algorithm to solve practical large-scale systems. A study

parameter β is introduced in the embedding formula βα + (1 − β)α2. By

varying the value of β, numerical tests of di�erent embedding formulations

are conducted on several network systems, and is demonstrated that the best

numerical performance is obtained for β values varying between 0.80 to 1.0.

Trias, in the paper [10], establishes additional details on the theoretical foun-

dations of the Holomorphic Embedding Method. Starting from a fundamental

projective invariance of the power-�ow equations, it is shown how to devise

holomorphicity-preserving embeddings that allows regarding the power �ow

problem as essentially a study in algebraic curves. Complementing this algebraic-

geometric viewpoint, which lays the foundation of the method, it is shown how

to apply standard analytic techniques (power series) for practical computation.

Stahl's theorem on the maximality of the analytic continuation provided by Padé

approximants then ensures the completeness of the method. On the other hand,

it is shown how to extend the method to accommodate smooth controls, such as

the ubiquitous generator-controlled PV-bus.

The master thesis [39], presented by Benedikt Schmidt, explains how the

Holomorphic Embedding Method can be applied to solve the PF problem and

compares it to the iterative methods. Experimental results show that the superior

convergence behavior of HELM enables the load-�ow calculation of grids closer

to their border of stability than with any other iterative method. This is made

possible by a trade-o� with respect to runtime through special settings. With

default settings HELM delivers already more accurate results in comparable

runtime to the iterative methods. The author describes the importance of taking

into account high precision for the variables, since a huge number of coe�cients

are necessary in order to have an adequate accuracy in the results.

� 2016: The paper [9] does a complete description of the Holomorphic Embedding

Method and its application to the PF problem. It is shown that the HEM

represents a distinct class of nonlinear equation solvers that are recursive, rather

than iterative. As such, for any given problem, there are an in�nite number of

HEM formulations, each one with di�erent numerical properties and precision

demands. The paper provides an intuitive understanding of HEM and apply

one variant to the power-�ow problem. It is introduced one possible PV-

bus model compatible with the HEM and examines some features of di�erent

holomorphic embeddings, giving step-by-step details of model building, germ
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solution calculation, and recursive algorithm.

The paper [13] from Trias and Marín extends the Holomorphic Embedding Load

�ow Method from AC to DC-based systems. Through an appropriate embedding

technique, the method is shown to extend naturally to DC power transmission

systems, preserving all the constructive and deterministic properties that allow

it to obtain the white branch solution in an unequivocal way. Its applications

extend to nascent meshed HVDC networks and also to power distribution systems

in more-electric vehicles, ships, aircraft, and spacecraft. In these latter areas, it is

shown how the method can cleanly accommodate the higher-order nonlinearities

that characterize an I-V curves of many devices. The case of a photovoltaic

array feeding a constant-power load is given as an example. The extension to the

general problem of �nding DC operating points in electronics is also discussed,

and exempli�ed on a diode model.

The paper [40] exposes the modeling and mathematical fundamentals of the

embedded AC power �ow problem with voltage control and exponential load

model in the complex plane. It is showed that modeling the action of network

controllers, that regulate the magnitude of voltage phasors, is a challenging task

in the complex plane as it has to preserve the framework of holomorphicity for

obtaining of these complex variables with �xed magnitude. The paper presents

two distinct approaches to modeling the voltage control of generator nodes.

Exponential (or voltage-dependent) load models are crucial for accurate power

�ow studies under stressed conditions. It is exploited the theory of analytic

continuation, especially the monodromy theorem for resolving issues that have

plagued conventional numerical methods for decades. The work is focused on

the indispensable role of Padé approximant for analytic continuation of complex

functions, expressed as power series, beyond the boundary of convergence of

the series. Also, it is explained the zero-pole distribution of these rational

approximant which serves as a proximity index to voltage collapse identi�cation.

The paper [41] cites that original HELM paper [7] dealt only with PQ buses,

while a second paper [11] showed how to include PV-buses but su�ered from

serious accuracy problems. The work proposes to �ll this gap by providing several

models capable of solving general networks, with computational results for the

standard IEEE test cases provided for comparison. In addition, it is proposed

a new derivation of the theory behind the method and investigated some of the

claims made in the original HELM paper from Trias [7].

The paper [42] presents three di�erent true non-linear reduction methods to
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obtain network equivalents for radial (distribution-type) networks using the

holomorphically embedded power �ow algorithm. The proposed reduction

methods are applied in the paper to reduce a radial distribution system and

provide a two-bus-model equivalent which accurately models the real and reactive

power load seen at the transmission network due to random changes in the

distribution system load. Numerical results are provided for a radial 14-bus

system to show the accuracy of the proposed methods in preserving voltages and

slack-bus power. The approach is shown to have better performance than Ward

reduction, even when the loads are increased in a random manner.

The paper [43] proposes to obtain an optimal loading of the generating units

using particle swarm optimization along with Holomorphic Embedded Load Flow

technique, under consideration of equality and inequality constraints of di�erent

units and power �ow. It is considered the IEEE 30-bus system to verify the

e�ectiveness of the proposed approach. The simulation results are compared

with the results obtained from NR method.

The paper [12] proposes four di�erent HEM-based methods to estimate the

Saddle-Node Bifurcation Point (SNBP) of a power system, and makes a

comparison in terms of accuracy as well as computational e�ciency. All of these

methods rely on an important property of a Padé approximant, which is the

maximal analytic continuation of the given function. Predicting the SNBP of a

power system has become more critical as the power-system loading has increased

in many places without a concomitant increase in transmission resources and the

biggest advantage of the HEM is that convergence is guaranteed, even at the

SNBP.

� 2017: The paper [32] presents results of the implementation and description

of the basic formulation for the Holomorphic Embedding Load Flow Method

(HELM). The basic formulation is implemented by generation of an interface to

use the data structure of the traditional MATPOWER, which is a free code tool

developed in Matlab. Additionally, the same data �les of this tool are used as

input data for study carried out in the work. Also, the output results are adapted

to have similar characteristics to the MATPOWER's output. Experiments and

results for seven power systems demonstrate the validity of the tool HELM based.

The paper [44] presents the results of a comparison of the well-established power-

�ow algorithms as Gauss-Seidel, Newton-Raphson, Dishonest Newton-Raphson,

Decoupled Load Flow, Fast Decoupled Load Flow and the new Holomorphic

Embedding Load Flow Method (HELM). The algorithms are assessed using
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several PQ-bus power �ow test cases. The focus of the analysis is on the precision

of the solutions of the algorithms and the required computation time. The

comparison shows some disadvantages of HELM and motivates a new Adaptive

Hybrid Approach that combines the Holomorphic Embedding Load Flow Method

and iterative algorithms to merge the bene�ts of both techniques. The Adaptive

Hybrid Approach is able to calculate precise solutions for every test case without

starting values and is on average faster than the Newton-Raphson method while

being more �exible than every other algorithm considered. It is also shown that

the Adaptive Hybrid Approach yields the correct solution like HELM if it exists.

The letter [45] cites that the Holomorphic Embedding Method may encounter the

precision issue, i.e. the nontrivial round-o� errors caused by the limited digits

used in computing the power-voltage (P-V) curve for a heavily loaded power

system. The letter proposes a multi-stage scheme to solve such a precision issue

and calculate an accurate P-V curve. The scheme is veri�ed on the New England

39-bus power system and benchmarked with the result from the traditional

continuation power �ow method.

The paper [46] proposes an online steady-state voltage stability assessment

scheme to evaluate the proximity to voltage collapse at each bus of a load

area. Using a non-iterative holomorphic embedding method (HEM) with a

proposed physical germ solution, an accurate loading limit at each load bus can

be calculated based on online state estimation on the entire load area and a

measurement-based equivalent for the external system. The HEM employs a

power series to calculate an accurate Power-Voltage (P-V) curve at each load bus

and accordingly evaluates the voltage stability margin considering load variations

in the next period. An adaptive two-stage Padé approximants method is proposed

to improve the convergence of the power series for accurate determination of the

nose point on the P-V curve with moderate computational burden.

The doctoral dissertation [47], presented by Shruti Rao, applies the HEM

for estimating the saddle-node bifurcation point (SNBP) of a system and for

developing reduced-order network equivalents for distribution systems. Di�erent

ways of accelerating the convergence of the power series obtained as a part of

HELM, are explored. Also, the local-measurement-based methods of estimating

the SNBP are studied.

The paper [48] cites that network reduction is an e�ective tool for reducing the

complexity of many analysis, design and optimization problems. However, many

of the conventional reduction methods are only accurate at the base case. When
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the operating condition changes, the reduced model does not match the full model

performance because linearization is used somewhere in the process. The paper

proposes a new reduction method that preserves the model's nonlinear structure

using the holomorphic embedding technique to generate network reductions which

are accurate over a broader range of operating conditions. When applied to

the power �ow problem, simulation results show that the proposed method can

signi�cantly improve bus-voltage and branch-�ow accuracy, matching the full-

model power-�ow solution exactly when moving along the so-called α-line.

The paper [49] cites that the development of appropriate load �ow model of

Flexible AC Transmission System (FACTS) devices is an important issue for

proper planning, control, and protection of power system. In order to evaluate

the e�ects of FACTS devices in load �ow problem by HELM technique, it is

necessary to develop HELMmodeling of these devices. The paper presents HELM

modeling of Thyristor-based FACTS controllers, i.e., Static Var Compensator

(SVC), Thyristor Controlled Switched Capacitor (TCSC), Thyristor Controlled

Voltage Regulator (TCVR), and Thyristor Controlled Phase Angle Regulator

(TCPAR). It is also investigated the modeling, white germ solution along with

recursive formula and controlling FACTS devices operation bounds.

The paper [50] proposes a multi-dimensional HEM that derives analytical

multivariate power series to approach true power �ow solutions. The proposed

method embeds multiple independent variables into power �ow equations and

hence can respectively scale power injections or consumptions of selected buses

or groups of buses. Then, via a physical germ solution, the method can represent

each bus voltage as a multivariate power series about symbolic variables on the

system condition so as to derive approximate analytical power �ow solutions. The

method has a non-iterative mechanism unlike the traditional numerical methods

for power �ow calculation. Its solution can be derived o�ine and then evaluated

in real time by plugging values into symbolic variables according to the actual

condition, so the method �ts better into online applications such as voltage

stability assessment.

4.3 BIBLIOGRAPHICAL REVIEW SYNTHESIS

Table 4.1 summarizes some highlighted subjects explored in each reference

considered in this chapter.
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Table 4.1: Bibliographical Review Synthesis

Main Contributions Identi�ed

Reference P
A
A

O
E
F

D
C
A

LV
SS

O
A
C
T

P
V
B
C

O
L
D
M

E
T
C

SN
B
P

M
IU

C

Trias (2012) X � � � � � � � X �

Feng & Tylavsky (2013) � � � X X X � � X �

Subramanian et al. (2013) � � � � X X � � X �

Subramanian (2014) X � � � X X � � X �

Feng (2015) X � � X X X � � X �

Li (2015) X X � � X X X � � X

Trias (2015) X � � � � X � � � �

Schmidt (2015) � � � � X X � X � �

Rao et al. (2016) X X � X � X � X X X

Trias & Marín (2016) X X X � � � X X X X

Baghsorkhi & Suetin (2016) X � � � X X � � X �

Wallace et al. (2016) X � X � � X � X � X

Rao and Tylavsky (2016) X � � � � X � � X �

Shukla et al. (2016) X � � � � X � � � �

Rao and Tylavsky (2017) X X � � � X � � X X

Santos et al. (2017) X � � � � X � � � X

Sauter et al. (2017) X � � � � X � X � X

Wang et al. (2017) X X � � � X � � � �

Liu et al. (2017) X X � � � X � X X X

Rao (2017) X X � X X X X X X X

Zhu et al. (2017) X X � � � X X � X �

Kejani & Gholipour (2017) X X � � � X X X � �

Liu et al. (2017) X X � � � X � � � X

Legend:

PAA: Padé Approximant Application; PVBC: PV-Bus Considered;

OEF: Other Embedding Formulation; OLDM: Other Load/Devices Modelling;

DCA: Direct Current Approach; ETC: Execution Time Comparison;

LVSS: Low Voltage Solution Study; SNBP: Saddle Node Bifurcation Point;

OACT: Other Analytic Continuation Tech-

niques;

MIUC: MATPOWER Implementation or

Used for Comparison
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4.4 CONCLUSION OF THE CHAPTER

This chapter has presented a bibliographical review on works related to progress

on HELM. A detailed description of references covering works published since 2012 is

exhibited.

In the next chapter, it is proposed an alternative method to the original HELM.

In this new purpose the germ solution is updated according to the approximated results

of the computed voltages.
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Chapter 5 RESTARTED HOLOMORPHIC EMBEDDING

POWER FLOW METHOD

5.1 INTRODUCTION

An alternative approach to the original HELM is presented and discussed in this

chapter. It is proposed a di�erent way of computing the power series terms associated to

the HELM in the sense that the germ solution now is updated instead to be considered

just once. This strategy allows to handle a reduced number of coe�cients of the voltage

power series, since they are computed again, but with a higher degree of accuracy than

considering just one germ solution. As a result of this procedure, after determining

a very few bus voltage power series terms (e.g., we have proposed no more than six

terms) this data is used to compute a Padé approximant and partial bus voltages. Then

this partial computed voltages are used to restart the process again as if another germ

solution were generated. In view of this characteristics the technique was denominated

as Restarted HELM (RHELM).

5.2 THE RESTARTED HOLOMORPHIC EMBEDDING METHOD

The original HELM applied to a multi-bus system uses a germ solution to generate

series of complex-valued voltages at PQ- and PV-buses besides reactive power at

PV-buses [30]. The series of the quantities are directly used to determine a Padé

approximant. In most cases, a Padé approximant of higher order is required. This is

a concern with respect to accuracy of high order terms without considering extended

precision on computations. Furthermore, it would be valuable to have a germ solution

but assuming that the system is on load (in the original HELM problem formulation,

the germ solution is obtained at no load and only a connected voltage source is on

at the slack-bus). Taking into account these two main aspects and following the nice

idea of embedding the load �ow equations [7], we propose an alternative approach

for embedding these equations. In our approach we have used injected power for

formulating the balancing equations instead of injected current, as adopted in [7], [9].
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Again, the system is supposed to have (N + 1) bus and the slack-bus is the number 0.

Hence the embedded equations for PQ-buses are modi�ed as follows:

Vi(α)I∗i (α∗) = αSi − αY sh∗
i |Vi(α)|2 + (1− α)Ŝi (5.1)

where Ii(α) =
∑N

j=0 YijVj(α); |Vi(α)|2 = Vi(α)V ∗i (α∗); Ŝi = V
(0)
i I

(0)∗
i is an initial

complex power injected at bus i; I(0)i =
∑N

j=0 YijV
(0)
j , is an initial current injected at

bus i; V (0)
i is an estimated voltage adopted in several real world tools as Matpower [14],

not necessarily a guess as employed for iterative methods like Newton's method.

Note that in (5.1) V (0)
i is given or loaded from a �le as done in MATPOWER as

an estimated value for initializing NR method. In other words, when α = 0 an initial

current injected at each bus I(0)i is computed and the associated starting (�ctitious)

power Ŝi can also be computed and this value must be exactly the same one at the

LHS of the equation. This also works on as a germ solution for the power in analogy

with germ solution for the voltage in the original HELM idea. At the situation when

V
(0)
i = 1 (�at start in classical NR method for power �ow), the germ solution of the

conventional HELM is used. However, in our work, it is proposed to use a value of

voltage not necessarily limited to the value 1, aiming to have greater �exibility in the

search for more precise results. For example, using a value very close to the exact one

would expect faster convergence. This value close to the exact one could be found by

applying the own HELM as a starting process for RHELM.

As obtained for HELM, the equation embedding for PV-buses in RHELM is also

not straightforward. Speci�cally and similarly as for HELM two restrictions need to

be satis�ed. But, both constraints related to active power and controlled voltage are

used.

A possible embedding equation for the constraining active power at PV-bus is

proposed as:

Vi(α)I∗i (α∗) + V ∗i (α∗)Ii(α) = 2α
[
Pi − real(Y sh

i )|Vi(α)|2
]

+ 2(1− α)P̂i (5.2)

where P̂i = real(Ŝi) at PV-buses and Y sh
i can be interpreted as a shunt admittance

due to a contribution of load at the bus i represented by constant impedance.

The voltage magnitude constraint is now proposed as:

Vi(α)V ∗i (α∗) = |V (0)
i |2 + α

[
(V sp

i )2 − |V (0)
i |2

]
(5.3)
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where V sp
i is the speci�ed voltage magnitude at PV-buses.

The reactive power at bus i also stays implicitly estimated. Say, Q̂i = imag(Ŝi).

But, this variable is not needed in the sequence of the calculus. Finally, the expression

(5.3) is also satis�ed, because Vi[0]V ∗i [0] = |V (0)
i |2 was the imposed condition in view

of the initial condition. Additionally, when α = 1 both terms (1 − α)Ŝi in (5.1) and

(1− α)P̂i in (5.2) vanish. Therefore, we expect the result numerically agrees with the

solution of the power �ow problem.

In (5.3), note that |V (0)
i | is not necessarily the unit, as adopted in several HELM

approaches [9], [4], [26], [39]. In the HELM case, the no load condition of buses leads to

voltages be equal to voltage of the slack-bus. This is not true when the system is under

load, as assumed for RHELM. Then, in case of PV-buses as in the embedded equation in

(5.3), this model must be evaluated considering voltages with real and imaginary parts

(remember that for HELM, just the real part is su�cient), since V (0)
i = V

(0)
i re + jV

(0)
i im

and |V (0)
i |2 = (V

(0)
i re)

2 + (V
(0)
i im)2. Hence, this additional information works on as an

improvement on the solver, because more numerical content is added in the direction

of the problem solution.

Once the power series coe�cients are known for this initial germ solution

(coe�cients at n = 0), a process to compute the other coe�cients, i.e. for n > 0,

is detailed in the sequel.

5.2.1 Situation for n = 1

We start detailing the case where n = 1 as for PQ-bus as for PV-bus. Then for

PQ-buses and considering (5.1), the power series coe�cients have to be deduced from

the expression for degree 1 for α:

Vi[1]Ii[0]∗ + Vi[0]Ii[1]∗ = (Si − Y sh∗
i Vi[0]Vi[0]∗)− Ŝi (5.4)

with Ii[1] =
∑N

j=0 Yij trVj[1].

In (5.4) the current Ii[1] can be expressed in function of voltages Vj[1], j =

0, 1, 2, ..., N .
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Following (5.2) and (5.3), the PV-buses equations are:

Vi[1]Ii[0]∗+Vi[0]Ii[1]∗+Vi[1]∗Ii[0]+Vi[0]∗Ii[1] = 2(Pi−real(Y sh∗
i )Vi[0]Vi[0]∗)−2P̂i (5.5)

Vi[1]Vi[0]∗ + Vi[0]Vi[1]∗ = |V sp
i |2 − |V

(0)
i |2 (5.6)

As veri�ed in (5.4), there also exist products Vi[1]Ii[0]∗ and their conjugated terms

in (5.3) and (5.6). This means that a common point between equations for PQ- and PV-

buses for the power series coe�cient calculation in RHELM would be the development

of voltage and current in function of power series. We will demonstrate later that

the current variables can be eliminated along the solution process in such way that

only voltage needs to be handled until �nalize the computation of a Padé approximant

(process for enlarging the radius of convergence as in HELM). i.e., current power series

coe�cients are a redundant computational burden. Obviously, the current coe�cients

can be updated, since currents and voltages are related by the admittance matrix.

On the other hand, It is noteworthy to point out that this calculation is unnecessary,

because only I(0)i needs to be used for determining a germ solution. But this solution

is necessary only in the initial stage of calculation for new coe�cients of an updated

power series. This occurs for example when restarting the calculation process again,

by using an updated and more accurate germ solution, in order to re�ne the obtained

solution. The idea is to reinitialize the process whenever a maximum allowed number

of coe�cients of the power series is reached without an acceptable numerical solution

being reached.

At �rst, the equations (5.4)-(5.6) should be solved for real-valued unknowns

Vi re[1], Vi im[1], Ii re[1] and Ii im[1], with Vi[1] = Vi re[1] + jVi im[1] and Ii[1] =

Ii re[1] + jIi im[1].

Developing equation (5.4), it is obtained:

{Vi re[0]Ii re[1] + Vi im[0]Ii im[1]}+ j {−Vi re[0]Ii im[1] + Vi im[0]Ii re[1]}+

+ {Vi re[1]Ii re[0] + Vi im[1]Ii im[0]}+ j {−Vi re[1]Ii im[0] + Vi im[1]Ii re[0]} =

(Si − Ŝi)− Y sh∗
i Vi[0]Vi[0]∗ (5.7)
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Equation (5.7) can be put as:

[
Vi re[0] Vi im[0] Ii re[0] Ii im[0]

Vi im[0] −Vi re[0] −Ii im[0] Ii re[0]

]
.


Ii re[1]

Ii im[1]

Vi re[1]

Vi im[1]

 =

[
real(γ1i[1])

imag(γ1i[1])

]
(5.8)

where γ1i[1] = (Si − Ŝi)− Y sh∗
i Vi[0]Vi[0]∗ = (Si − Ŝi)− Y sh∗

i |Vi[0]|2.

At the same way, (5.6) assumes the following real-valued form:

[
Vi re[0] Vi im[0]

]
.

[
Vi re[1]

Vi im[1]

]
=
[
γ2i[1]

]
(5.9)

where γ2i[1] = 1
2
(|V sp

i |2 − |V
(0)
i |2) and for (5.5)

[
Vi re[0] Vi im[0] Ii re[0] Ii im[0]

]
.


Ii re[1]

Ii im[1]

Vi re[1]

Vi im[1]

 =
[
γ3i[1]

]
(5.10)

where γ3i[1] = (Pi − P̂i)− real(Y sh∗
i )|Vi[0]|2.

5.2.2 Situation for n = 2

Now, consider the case where n = 2 as for PQ-bus as for PV-bus. Then for

PQ-buses and considering again (5.1), the power series coe�cients have to be deduced

from the expression for degree 2 for α. Then for the bus i:

Vi[2]Ii[0]∗ + Vi[1]Ii[1]∗ + Vi[0]Ii[2]∗ = −Y sh∗
i (Vi[1]Vi[0]∗ + Vi[0]Vi[1]∗) (5.11)

with Ii[2] =
∑N

j=0 Yij trVj[2].

Keeping only unknowns at the LHS of (5.11), this equation is modi�ed to:

Vi[2]Ii[0]∗ + Vi[0]Ii[2]∗ = −Vi[1]Ii[1]∗ − Y sh∗
i (Vi[1]Vi[0]∗ + Vi[0]Vi[1]∗) (5.12)

Developing (5.12) in the same way as in (5.7) it is obtained:
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[
Vi re[0] Vi im[0] Ii re[0] Ii im[0]

Vi im[0] −Vi re[0] −Ii im[0] Ii re[0]

]
.


Ii re[2]

Ii im[2]

Vi re[2]

Vi im[2]

 =

[
real(γ1i[2])

imag(γ1i[2])

]
(5.13)

where γ1i[2] = −Vi[1]Ii[1]∗ − Y sh∗
i |Vi[1]|2.

Following (5.2) and (5.3), the PV-buses equations for n = 2 are given by:

Vi[2]Ii[0]∗ + Vi[1]Ii[1]∗ + Vi[0]Ii[2]∗ + Vi[2]∗Ii[0] + Vi[1]∗Ii[1] + Vi[0]∗Ii[2] =

− 2real(Y sh∗
i )(Vi[1]Vi[0]∗ + Vi[0]Vi[1]∗) (5.14)

Vi[2]Vi[0]∗ + Vi[1]Vi[1]∗ + Vi[0]Vi[2]∗ = 0 (5.15)

Similarly, developing equation (5.15), yields:

[
Vi re[0] Vi im[0]

]
.

[
Vi re[2]

Vi im[2]

]
=
[
γ2i[2]

]
(5.16)

where γ2i[2] = −1
2
(Vi[1]Vi[1]∗).

At the same way, (5.14) assumes:

[
Vi re[0] Vi im[0] Ii re[0] Ii im[0]

]
.


Ii re[2]

Ii im[2]

Vi re[2]

Vi im[2]

 =
[
γ3i[2]

]
(5.17)

where γ3i[2] = −1
2
(Vi[1]Ii[1]∗ + Vi[1]∗Ii[1])− real(Y sh∗

i )(Vi[1]Vi[0]∗ + Vi[0]Vi[1]∗).

5.2.3 Situation for n > 2

Considering a generic n, the power series coe�cients need to be deduced from

the expressions for degree n for α. For PQ-buses and considering again (5.1):
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Vi[n]Ii[0]∗ + Vi[0]Ii[n]∗ +
n−1∑
j=1

Vi[n− j]Ii[j]∗ = −Y sh∗
i

n−1∑
j=0

Vi[n− j − 1]Vi[j]
∗ (5.18)

with Ii[n] =
∑N

j=0 Yij trVj[n].

The equation (5.18), with only unknowns at the LHS, is modi�ed to:

Vi[n]Ii[0]∗ + Vi[0]Ii[n]∗ = −
n−1∑
j=1

Vi[n− j]Ii[j]∗ − Y sh∗
i

n−1∑
j=0

Vi[n− j − 1]Vi[j]
∗ (5.19)

Developing (5.19) in the same way as in (5.7) yields:

[
Vi re[0] Vi im[0] Ii re[0] Ii im[0]

Vi im[0] −Vi re[0] −Ii im[0] Ii re[0]

]
.


Ii re[n]

Ii im[n]

Vi re[n]

Vi im[n]

 =

[
real(γ1i[n])

imag(γ1i[n])

]
(5.20)

where γ1i[n] = −
∑n−1

j=1 Vi[n− j]Ii[j]∗ − Y sh∗
i

∑n−1
j=0 Vi[n− j − 1]Vi[j]

∗.

Following (5.2) and (5.3), the PV-buses equations for n are given by:

Vi[n]Ii[0]∗+Vi[0]Ii[n]∗+
n−1∑
j=1

Vi[n−j]Ii[j]∗+Vi[n]∗Ii[0]+Vi[0]∗Ii[n]+
n−1∑
j=1

Vi[n−j]∗Ii[j] =

− 2real(Y sh∗
i )

n−1∑
j=0

Vi[n− j − 1]Vi[j]
∗ (5.21)

Vi[n]Vi[0]∗ + Vi[0]Vi[n]∗ +
n−1∑
j=1

Vi[n− j]Vi[j]∗ = 0 (5.22)

Similarly, developing equation (5.22), it is obtained:[
Vi re[0] Vi im[0]

]
.

[
Vi re[n]

Vi im[n]

]
=
[
γ2i[n]

]
(5.23)

where γ2i[n] = −1
2

∑n−1
j=1 Vi[n− j]Vi[j]∗.

At the same way, (5.21) is represented as:

[
Vi re[0] Vi im[0] Ii re[0] Ii im[0]

]
.


Ii re[n]

Ii im[n]

Vi re[n]

Vi im[n]

 =
[
γ3i[n]

]
(5.24)
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where γ3i[n] = −1
2
(
∑n−1

j=1 Vi[n− j]Ii[j]∗+
∑n−1

j=1 Vi[n− j]∗Ii[j])−real(Y sh∗
i )

∑n−1
j=0 Vi[n−

j − 1]Vi[j]
∗.

5.3 THREE-BUS TUTORIAL SYSTEM

In order to illustrate the construction of the linear system related to the (5.8)-

(5.10), consider the 3-bus system presented in Section 3.4. In the illustrative example

the bus 1 was chosen as the slack-bus. The equations for this system when n = 1 are

represented in the form of:



0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

−1 0 0 0 G21 −B21 G22 −B22 G23 −B23

0 −1 0 0 B21 G21 B22 G22 B23 G23

0 0 −1 0 G31 −B31 G32 −B32 G33 −B33

0 0 0 −1 B31 G31 B32 G32 B33 G33

0 0 0 0 0 0 V2 re[0] V2 im[0] 0 0

V2 re[0] V2 im[0] 0 0 0 0 I2 re[0] I2 im[0] 0 0

0 0 V3 re[0] V3 im[0] 0 0 0 0 I3 re[0] I3 im[0]

0 0 V3 im[0] −V3 re[0] 0 0 0 0 −I3 im[0] I3 re[0]



×



I2 re[1]

I2 im[1]

I3 re[1]

I3 im[1]

V1 re[1]

V1 im[1]

V2 re[1]

V2 im[1]

V3 re[1]

V3 im[1]



=



(V sp
0 − 1)

0

0

0

0

0

γ22[1]

γ32[1]

real(γ13[1])

imag(γ13[1])



(5.25)

Equation (5.25) can be arranged in a compact form considering only speci�c

blocks according to the type of bus and whether the variable is either current or voltage.

In the example, N = 2, but for a generalized system with (N + 1) buses, a possible

arrangement is:
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
02×2N I2 02×2N

−I2N Yb0 Yb1

T1 02N×2 T2


[
Ii re,im[1]

Vi re,im[1]

]
=


(V sp

0 − 1)

0

02N×1

b2N×1

 (5.26)

where I2 is the identity matrix of order two; Yb0 is the two-column matrix generated

from the real-valued form of Yb tr taking the �rst two columns and deleting the �rst

two rows (the �rst bus is assumed as slack-bus); Yb1 is equal to the real-valued form

of Yb tr unless both their �rst two columns and two rows. T1 and T2 are order two

block-diagonal matrices, T1i, T2i, i = 1, 2, ..., N constructed according partition of the

system of equations (5.25) and b2N×1 is a vector formed from the γ′s constant as for

instance in equations (5.25).

From (5.26 ) it is possible to apply a block Kron reduction considering as pivot

the block 2 × 1 (an identity matrix) of the linear system coe�cient matrix in that

equation. So the reduced linear system is transformed to

[
I2 02×2N

T1Yb0 (T2 + T1Yb1)

] [
Vi re,im[1]

]
=


(V sp

0 − 1)

0

b

 (5.27)

As matter of fact in (5.27) it is needed to solve just the linear system associated

to PQ- and PV-buses, since from this equation we have the result for the slack-bus as

V0 re[1] = (V sp
0 − 1) and V0 im[1] = 0. Therefore, the �nal linear system which must be

solved for 2N equations and 2N unknowns is:

[
(T2 + T1Yb1)

]


V1 re[1]

V1 im[1]
...

VN re[1]

VN im[1]


= (b− T1Yb0

[
(V sp

0 − 1)

0

]
) (5.28)

The set of equations (5.28) has the same dimension as the resulting linear system

used to compute the power series coe�cients for HELM (see for example (3.42), which

is the case where N = 2). Also, it has the same sparsity pattern when we consider

two-block submatrices, since matrices T1 and T2 are block-diagonal. In (3.42) the linear

system coe�cients is essentially dependent of the entries of the matrix Yb tr. On the

other hand, the linear system coe�cients (T2 +T1Yb1) in (5.28) works on as a weighted

Yb tr, since it depends on this matrix and the germ solution of voltages and currents.
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Therefore, it can change if the germ solution is restarted with another set of values.

It is quite true that a new LU factorization becomes necessary every time the germ

solution is changed. In the original HELM the process always use just a germ solution.

This means that only one LU factorization is needed. But, it may be a limitation as

will be shown through results of experiments.

5.3.1 General coe�cient recursive relation for n > 1

We consider now the case of power series coe�cients for n > 1. Again expressions

(5.1) to (5.3) are evaluated.

For n > 1, general recursive relations to the expressions of PQ- and PV-buses are

identi�ed:

� PQ-buses:

[
Vi re[0] Vi im[0] Ii re[0] Ii im[0]

Vi im[0] −Vi re[0] −Ii im[0] Ii re[0]

]
.


Ii re[n]

Ii im[n]

Vi re[n]

Vi im[n]

 =

[
real(γ1i[n])

imag(γ1i[n])

]
(5.29)

where γ1i[n] = −
∑n−1

j=1 Vi[n− j]I∗i [j]− Y sh∗
i |Vi[n− 1]|2.

� Voltage constraint in PV-buses:

[
Vi re[0] Vi im[0]

]
.

[
Vi re[n]

Vi im[n]

]
=
[
γ2i[n]

]
(5.30)

where γ2i[n] = −1
2

∑n−1
j=1 Vi[n− j]V ∗i [j].

� PV-buses:

[
Vi re[0] Vi im[0] Ii re[0] Ii im[0]

]
.


Ii re[n]

Ii im[n]

Vi re[n]

Vi im[n]

 =
[
γ3i[n]

]
(5.31)

where γ3i[2] = −1
2
(Vi[1]Ii[1]∗ + Vi[1]∗Ii[1])− real(Y sh∗

i )(Vi[1]Vi[0]∗ + Vi[0]Vi[1]∗).
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In view of (5.29), (5.30) and (5.31), the coe�cients of the linear system at the

LHS of the equations has in common the dependency of the germ solution values (Vi[0]

and Ii[0]). This means that for a generic power series coe�cient associated to a degree

n in α, the related linear system is of the type Ax = γ and A is kept constant, unless

a restarted on the germ solution is activated. Only the vector γ is updated in the

computation of each power series coe�cient.

The computation of any coe�cient can be done by a set of equation as in (5.25)

by computing the solution of a linear system Ax = γ, with A kept constant and by

updating the vector γ according to the coe�cients associated a given degree in α of

interest.

5.3.2 Linear System Variables Reduction

The set of equations (5.29) comprises two real-valued expressions and four-valued

unknown variables for PQ-buses only. While (5.30) and (5.31) are other two set of

real-valued equations and four-valued unknown variables, but associated speci�cally to

PV-buses. The slack-bus does not contribute with equations along this process. Then,

considering the total number of PV- and PQ-buses N , a total of 2N equations are

formed. In the meantime, 4N unknown variables are associated to these equations.

Therefore, another set with 2N equations is necessary in order to equalize the number

of equations with the number of unknowns. This requirement is achieved by joining

the current equations to the already highlighted equations for the PV- and PQ-buses.

The injected current equations at each bus i as a function of nodal voltages in

the real-valued form can be written as:[
Ii re[n]

Ii im[n]

]
=

Nb∑
j=0

[
Gij −Bij

Bij Gij

] [
[Vi re,im[n]]

]
(5.32)

where [Vi re,im[n]]T = [V0 re[n] V0 im[n] V1 re[n] V1 im[n] ... VN re[n] VN im[n]] is a

vector of real and imaginary components of a number n of nodal voltage power series

coe�cients, respectively. The voltage at slack-bus is V0[n] = V0 re[n] + jV0 im[n].
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5.3.2.1 Algorithm for Reduction of Variables

1. Establish the voltage starting conditions for each bus (Vi = i, ..., N), de�ne the

slack bus voltage as V sp
0 and calculate I(0)i =

∑N
j=0 YijV

(0)
j , Ŝi = V

(0)
i I

(0)∗
i and

P̂i = real(Ŝi) at PV-buses;

2. Calculate the coe�cients for n = 1, since for n = 0, the voltages are stipulated

and the currents and Ŝ are calculated from I(0) = YbusV
(0);

� Expressions for PQ-buses:

Ti1 =

[
V 0
i re V 0

i im

V 0
i im −V 0

i re

]
; Ti2 =

[
I0i re I0i im

−I0i im I0i re

]
(5.33)

γ1i[n] =

(Si − Ŝi)− Y sh∗
i |Vi[0]|2, n = 1

−
∑n−1

j=1 Vi[n− j]I∗i [j]− Y sh∗
i |Vi[n− 1]|2, n > 1

(5.34)

� Expressions for PV-buses:

Ti0 =
[
V 0
i re V 0

i im

]
; ak re =

γ
(0)
2i [n]

V
(0)
i re

; ak im =
V

(0)
k im

V
(0)
k re

, k ∈ PV (5.35)

γ2i[n] =

1
2
(|V sp

i |2 − |V
(0)
i |2), n = 1

−1
2

∑n−1
j=1 Vi[n− j]V ∗i [j], n > 1

(5.36)

γ3i[n] =

(Pi − P̂i)− real(Y sh∗
i )|Vi[0]|2, n = 1

−
∑n−1

j=1 Vi[n− j]I∗i [j]− real(Y sh∗
i )|Vi[n− 1]|2, n > 1

(5.37)

3. De�ne the bus type (PQ-bus or PV-bus). The linear system matrix is di�erent,

according to this de�nition;

� Expression for PQ-buses:

N∑
j=1

j∈PQ,j 6=i

[
Gij −Bij

Bij Gij

][
Vj re

Vj im

]
+

{[
Gii −Bii

Bii Gii

]
+ T−1i1 Ti2

}[
Vi re

Vi im

]
+

+
N∑
k=1
k∈PV

[
−Gikak im −Bik

−Bikak im Gik

]
Vk im =

[
γ̂i1 re

γ̂i1 im

]
= −

[
Gi0

Bi0

]
V0 re −

N∑
k=1
k∈PV

[
Gik

Bik

]
ak re + T−1i1

[
γi1 re

γi1 im

]
(5.38)
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� Expression for PV-buses:

N∑
j=1

j∈PQ,j 6=i

Ti0

[
Gij −Bij

Bij Gij

][
Vj re

Vj im

]
+

N∑
k=1
k∈PV

Ti0

[
Gik −Bik

Bik Gik

][
−ak im

1

]
Vk im+

+

{
Ti0

[
Gii −Bii

Bii Gii

]
+ I0i im − I0i reai im

}
Vi im =

γi1 im − qiV0 re = −I0i reai re − Ti0

[
Gii

Bii

]
ai re −

N∑
k=1
k∈PV

Ti0

[
Gik

Bik

]
ak re (5.39)

with qi =
[
V 0
i re V 0

i im

] [Gi0

Bi0

]
.

4. Actualization

� for bus i as a PQ-bus: keep constant the two lines of

[
Gij −Bij

Bij Gij

]
,

updating only the (i, i) block and the coe�cients at PV-buses. The product[
Gik −Bik

Bik Gik

][
−ak im

1

]
is used to generate the two coe�cient elements of

Vk im, updating also the elements of the block (i, i);

� for bus i as a PV-bus: Firstly, multiply all of the blocks 2 × 2 by Ti0. The

coe�cients of Vk im are obtained using this result multiplied by

[
−ak im

1

]
.

The (i, i) element have also to be calculated properly.

5.3.3 Padé approximant

After computing the power series coe�cient an analytic continuation function

is computed based on a determination of a Padé approximant. For the RHELM a

reduced number of coe�cient is suggested. This avoid to use values of coe�cient

very small/high. The computation carried out as proposed ensure that high precision

required for the computation (as required for HELM when stringent operational

conditions are veri�ed) is unnecessary.

Since a Padé approximant is computed, the values for Vi(α) for α = 1 are

evaluated. We propose to use this partial value as starting value for an updated germ

solution in order to restart the computation. Hence, this value is the updated Vi[0],
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which is used to compute Ii[0] and Ŝi. This allows that a new power series be computed

leading to an associated Padé approximant. The process continues until a prescribed

precision is reached. In general, we propose no more than 6 coe�cients to be used at

each restarted procedure.

5.3.4 Summary of RHELM Solution Process

In summary the proposed Restarted Holomorphic Embedding model applied for

solving the power �ow problem follows this solution process:

1. Construct the bus admittance matrix Ybus using sparsity techniques;

2. Generate the Power Balance Equations for Slack-, PQ- and PV-buses holomor-

phically embedded using injected power Ŝi = V
(0)
i I

(0)∗
i ;

3. Use the germ solution Vi[0] = V
(0)
i , where V (0)

i is an estimated voltage adopted

in several real world tools as Matpower [14], (not necessarily a guess as employed

for iterative methods like Newton's method), as the initial term for the power

series in α;

4. Construct the matrix of the recursive relation with the PBE holomorphically

embedded separated into real and imaginary parts for �nding the other coef-

�cients [n] of the power series contemplating until 3 pairs, chosen by the user

(n = 2; or n = 4; or n = 6), as initial coe�cients;

5. Apply an analytic continuation technique to the reduced power series, as Padé

approximant, and make α = 1 to get the solution; if the major voltage mismatch

is less than a speci�ed tolerance error, the �nal solution was reached; otherwise,

using the last voltage solution as an updated germ, restart the calculation of

extra terms, again chosen by the user (n = 2; or n = 4; or n = 6), as new power

series coe�cients for each restarting, until getting the �nal solution.

It is important to mention that if the Padé approximation does not converge for α = 1,

unequivocally, the power �ow problem does not have solution [33].

The Figure 5.1 illustrates a �owchart about the proposed restarted holomorphic

embedding power �ow implementation solution method.
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Figure 5.1: Restarted-HELM power �ow solution �owchart

5.4 CONCLUSION OF THE CHAPTER

In this chapter, an improving technique to accelerate the convergence of the

holomorphic embedding power �ow model was presented. A detailed description about

the method was highlighted. The alternative method was denominated restarted

HELM, because despite to use the conventional HELM approach, it has a characteristic

of allowing updating germ solution. This speci�c updating of partial solution provides

properties to the method for better process of convergence.

The main di�erence on the proposed method was demonstrated in relation to the
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HELM idea. In the next chapter, applications are used to demonstrate the e�ectiveness

of the method presented in this chapter and results for comparison with the original

Holomorphic Embedding solution model and also with the traditional iterative solution

method Newton-Raphson (NR).
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Chapter 6 EXPERIMENTS AND RESULTS

6.1 INTRODUCTION

In this chapter, the Restarted Holomorphic Embedded Load-FlowModel (RHELM)

is applied for solving the power �ow problem. The method is used to compute the power

�ow solution for di�erent systems and their results are compared with those obtained

by the original HELM [7] and the Newton-Raphson method.

The technique was implemented by using the same data pattern (input/ouput)

of MATPOWER tool [14]. The original MATPOWER tool contains the solution

technique based on Newton-Raphson method only. Thus, both the formulations of

the original Holomorphic Embedding Load Flow Method (HELM) and RHELM were

implemented on the MATPOWER. The HELM and NR methods are used in this

work as a reference for comparison of results obtained by RHELM. Cases for normal

operating conditions and situations in which there is an increase in the load of the

buses to verify the variation of the voltage with the load are evaluated.

The MATLAB® computing environment was used as a tool to perform the

simulations. The MATLAB's default double-precision �oating-point mantissa was kept

on running MATPOWER (no other type of accuracy with respect to the mantissa

length to represent the �oating-point number was studied). MATPOWER is a

compatible package developed in MATLAB environment that allows the power �ow

calculation [14].

Several experiments are carried out in order to highlight the bene�ts of the

proposed technique.
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6.2 COMPUTATIONAL ENVIROMENT

in this section, the available computational environment is discussed. All

computational implementations uses the MATLAB as base.

6.2.1 MATPOWER Structure as a Simulation Tool for Developing HELM

and RHELM Models

The power balance equations of the power �ow problem holomorphically embed-

ded was implemented by using the same MATPOWER's input and output data format.

This structure assures an adequate tool to compare simulation results implemented in

the own MATPOWER tool and by using HELM model presented in Chapter 3 and

also the proposed Restarted HELM (RHELM) technique presented in Chapter 5.

The MATPOWER is a free and open source code whose script is in MATLAB.

Taking advantage of this idea, in this work a script was developed to explore the

same MATPOWER's data structure and then incorporated in this free software.

Therefore, a new interface to carry out similar computations with respect to bus

voltage and power �ow computations was unnecessary to develop. The only information

transmitted to MATPOWER is a command calling new functions HELM or RHELM.

The main di�erence with relation to the implemented techniques is that the traditional

MATPOWER works just on the iterative NR method to solve PBEs, while in the

modi�ed code the problem is solved considering the methodology based on HELM and

RHELM. All input data are case.m �les as presented in the MATPOWER's platform.

The input data �le contains system parameters as transmission line impedance, shunt

admittances and other quantities [14].

6.3 A 3-BUS ILLUSTRATIVE GENERAL SYSTEM STUDY

6.3.1 Description of the system model

The electric network in Figure 2.1 presented in Section 2.3, consists of a general

three-bus (Slack -, PQ-, and PV-buses) system and is used here for illustrating details
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of the Holomorphic Embedding Load Flow Method. The study preserves the same

basic procedures when applied to real-world large-scale systems [26].

The data of transmission lines (branches) and buses are shown, in Table 6.1

and Table 6.2. In Table 6.1, R, X and B are, respectively, the resistance, reactance

and shunt susceptance. In Table 6.2, the bus type follows the same standard from

MATPOWER, where bus types 1, 2 and 3 represent load (PQ-bus), generator (PV-

bus) bus and slack -bus respectively. Pd and Qd are the active and reactive power

demanded by loads connected to each bus. Pg and Qg are the active and reactive

power supplied by generators connected to the slack - or PV-buses. The term V sp is

the speci�ed voltage in a PV-bus or slack -bus.

Table 6.1: Transmission Line Branch Data Speci�cation for the 3-bus System

From Bus To Bus R (pu) X (pu) B (pu)

1 2 0.05 0.15 0.02

1 3 0.02 0.10 0.02

2 3 0.08 0.40 0.01

Table 6.2: Bus Data Speci�cation for the 3-bus System

Bus Bus Type Pd Qd Pg Qg V sp

ID MTP (MW) (Mvar) (MW) (Mvar) (pu)

1-slack -bus 3 - - - - 1.00

2-PV-bus 2 70 30 200 0 1.03

3-PQ-bus 1 180 50 - - -

The Figure 6.1 shows the MATPOWER's input data (data mask) for the 3-bus

System.

The admittance matrix Ybus of this system (all data in pu of the 100 MVA power

base and 230 kV, according to Figure 6.1) is given by:

Ybus =


3.9231− j15.5954 −2.0000 + j6.0000 −1.9231 + j9.6154

−2.0000 + j6.0000 2.4808− j8.3888 −0.4808 + j2.4038

−1.9231 + j9.6154 −0.4808 + j2.4038 2.4038− j12.0042

 pu (6.1)
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Figure 6.1: MATPOWER's input data for the 3-bus system

The shunt elements of the Ybus, represented by Yii sh are:

Yii sh =


j0.0200

j0.0150

j0.0150

 pu (6.2)

The matrix Yij tr, which is the Ybus, unless the shunt components is

Yij tr =


3.9231− j15.6154 −2.0000 + j6.0000 −1.9231 + j9.6154

−2.0000 + j6.0000 2.4808− j8.4038 −0.4808 + j2.4038

−1.9231 + j9.6154 −0.4808 + j2.4038 2.4038− j12.0192

 pu (6.3)

The power �ow problem based on the HELM methodology and the system with

the data of Tables 6.1 and 6.2 can be solved from (3.42) and uses terms from Yii sh and

Yij tr. The coe�cients for n = 0, as already mentioned, can be found from the germ

solution. The other coe�cients, for generic n terms, are evaluated once the quantities

in n− 1 and the real components of voltage in the PV buses Vi re[n] are known. These

voltage Vi re[n], therefore, need to be calculated initially, as described in Section 3.4.
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

1 0 0 0 0 0

0 1 0 0 0 0

−2.0000 −6.0000 0 8.4038 −0.4808 −2.4038

6.0000 −2.0000 1 2.4808 2.4038 −0.4808

−1.9231 −9.6154 0 −2.4038 2.4038 12.0192

9.6154 −1.9231 0 −0.4808 −12.0192 2.4038





V1 re[n]

V1 im[n]

Q2[n]

V2 im[n]

V3 re[n]

V3 im[n]


=



δn1(V
sp
i − 1)

0

re
{

1.3W ∗
2 [n− 1]− j

∑n−1
k=1 Q2[k]W ∗

2 [n− k]− 0.015V2[n− 1]
}

im
{

1.3W ∗
2 [n− 1]− j

∑n−1
k=1 Q2[k]W ∗

2 [n− k]− 0.015V2[n− 1]
}

re {(−1.8 + j0.5)W ∗
3 [n− 1]− 0.015V3[n− 1]}

im {(−1.8 + j0.5)W ∗
3 [n− 1]− 0.015V3[n− 1]}


−



0

0

2.4808

8.4038

−0.4808

2.4038


V2 re[n], n = 1, 2, ...

(6.4)

Once the coe�cients are obtained, the resulting series for the voltages at the 3

buses and the reactive power in bus 2 are approximated using (3.44) that corresponds

to the analytic continuation by Padé approximant to the power series, resulting in a

division of polynomials. The coe�cients of these polynomials are found by (3.46) to

(3.48). Finally, the solution for each variable can be evaluated in α = 1 for a tolerance

error of 1× 10−8 for the voltage mismatch. In MATPOWER this tolerance is a metric

to evaluate the accuracy of power mismatch in pu of the the NR method. To reach

this tolerance error, 16 coe�cients of the power series are calculated. Consequently,

the diagonal Padé approximant have 8th order, i.e., M = N = 8, which can also be

represented as a Padé approximant [8/8].

For illustration, the voltage power series for the voltage at bus 2 is given by:

V2(α) = 1 + (0.0304 + j0.1094)α + (−0.0064− j0.0034)α2 + (0.0006 + j0.0007)α3 + ...

+(2.209e−12 + j4.616e−12)α16

(6.5)

The diagonal Padé approximant for bus 2 is evaluated as:

V2(α) =
1 + (−0.5777 + j0.0572)α + ...+ (2.2952e−7 + j2.3838e−7)α8

1 + (−0.6082− j0.0522)α + ...+ (5.672e−8 + j1.7236e−7)α8
(6.6)
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which, for α = 1, gives V2(α) = 1.030∠5.949◦ pu.

It is important to mention that both coe�cients for the power series and for the

rational polynomial fraction are complex numbers.

Table 6.3 presents the �nal results for the 3-bus system.

Table 6.3: Results for the 3-bus System

Bus Voltage Generation Load

Mag Ang P Q P Q

(pu) (deg) (MW) (MVAr) (MW) (MVAr)

1 1.000 0.000 59.43 65.83 - -

2 1.030 5.949 200.00 51.64 70.00 30.00

3 0.921 -7.248 - - 180.00 50.00

Total 259.43 117.47 250.00 80.00

The output data with the results for the 3-bus system provided by MATPOWER

is shown in Figure 6.2.

Figure 6.2: MATPOWER's output data for the 3-bus system
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The voltages have a �xed modules for buses 1 and 2, as expected. The slack -

bus and the PV-bus, provide su�cient active and reactive power to supply the loads.

The di�erence between the generated power and the power consumed in the loads

correspond to the losses in the lines, which is also obtained in the output of the modi�ed

MATPOWER tool for HELM model.

6.4 2-BUS TEST-SYSTEM STUDY

In order to evaluate the results of solutions obtained by the studied methods

in comparison to traditional NR, including loading up to near the point of voltage

collapse and above this point, a study was made considering the generic 2-bus system

of Figure 6.3. The study was conducted of two ways. At the �rst strategy, the loading

at bus 2 was incremented until divergence has been occurred. In the second study,

the load was kept constant, but the impedance Z of the interconnection circuit was

modi�ed simulating a contingency at the circuit. All experiments aim to evaluate the

performance of the non-iterative methods HELM and the proposed one RHELM. The

NR method was employed as iterative method.

Figure 6.3: 2-bus system for analysis of convergence and existence of solutions by NR, HELM
and RHELM

The exact (analytic) value of the voltage at bus 2 was computed in order to

be used as reference for comparison of the results of the iterative and non-iterative

numerical methods.

The current I2 injected at bus 2 is I2 = (V2−V1)/Z. The injected complex power

at bus 2 is S = V2I
∗
2 . Then, the expression V2(V

∗
2 − V ∗1 ) = Z∗S = ρ + jλ must be

satis�ed. In view of this details, we have the complex-valued equation |V2|2 − V2V ∗1 −
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ρ− jλ = 0. Assume that V = V2. So, since V1 is a known real-valued voltage, this can

be broken into two real-valued equations given by

V 2
re + V 2

im − V1Vre − ρ = 0 (6.7)

Vim = −λ (6.8)

From (6.8) the imaginary part of V is always Vim = −λ. Then from (6.7), the

real part of V is computed by:

Vre =
V1
2
± a, a =

√
(V1/2)2 − (λ2 − ρ) (6.9)

From (6.9) it is evident that when a assumes a complex value, the value Vre

becomes meaningless from the point of view of real numbers. This information can be

used to determine whether the numerical problem is divergent for iterative methods

or the the result obtained for the voltage Padé approximant oscillates. When a is zero

means that the two roots in (6.9) are equals. Then HV and LV solutions coincides.

This is equivalent to �nd the voltage collapse point of the system. However, at this

point the classical NR method diverges, since the Jacobian matrix is singular.

6.4.1 Study for Di�erent Loadings

Experiments were carried out by considering three cases. For these cases an

impedance Z = 0.1 + j0.2 pu was used. The methods NR, HELM and RHELM were

evaluated. The method HELM computes the coe�cients and from this the voltage

Padé approximant is obtained. For a Padé approximant order, for example [1/1], two

coe�cients of the power series are necessary.

With relation to the RHELM, we perform an initial run to compute a power

series coe�cients followed by a Padé approximant determination. This result is used

to initialize a restarting process and generate an updated germ solution. It is possible

to use only two coe�cients for the initial run (before the restarting process). From

the �rst restarting, a �xed number of coe�cients are always established by the user

in function of the highest polynomial degree and a Padé approximant of degree M,

[M/M ], is calculated. But, the user can select this number of coe�cients according to

the experiments. The highest order degree of the initial power series coe�cients are
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designated as N0, the restarting number as Rn and the degree order of power series

terms per restarting is assigned as NR. In this simulation, for convenience, six initial

power series terms (N0 = 6) and each restart (Rn) with other six coe�cients (NR = 6)

were kept.

The system was analyzed in its original con�guration (case 1 - even for this load

level note that the operational point is far from the ideal conditions, say near voltage 1.0

pu) and its condition was evaluated for an absolute tolerance error between the value

of voltage V2 calculated accurately and by the Padé approximation. Up to 35 terms

were allowed for each Padé order. For this nominal situation the NR method converged

with 6 iterations and the HELM and the RHELM obtained the same voltage solution,

reaching a tolerance error of 6.3×10−9 and 1.5×10−9, respectively. The Padé order for

the HELM was [32/32]. The RHELM required only 1 restarting (Rn = 1). Then, the

orders of Padé for this case were: [3/3] (for the �rst run); and [3/3] (for the �rst and

single restarting). This means that only 12 coe�cients were needed to determine the

results, but 6 at a time per polynomials and a single restarting. Therefore, a number

very reduced of coe�cients were evaluated if compared to the 64 coe�cients required

for the HELM. Note that just Padé approximant at most order 6 was needed in this

evaluation for RHELM.

In the loading level 2 (case 2) the load was increased by 4.0%. In this last

operating condition, the system had �nite result for the voltage only by the RHELM

method, whereas both the original HELM (�nd results with Padé order [35/35], but

with tolerance 1.1 × 10−2) and the NR methods diverged until 10 iterations. The

RHELM obtained the solution with an error of 6×10−15 and required only 4 restarting

([3/3] + 4× [3/3]). Again, only Padé approximant of order [3/3] were adopted and the

degree a of polynomial for the power series has order 6. For this case 30 coe�cients,

which is equivalent to 5 polynomial each one of order 6. The system was also analyzed

under a situation of severe overload, for 50% above the load condition from the case 1

(case 3). For this situation no operational voltage was found. In fact, for this condition

the term a computed by using (6.9) has a complex value, con�rming the lack of real-

valued solution for the problem.

The results are summarized in Table 6.4. Column 1 indicates the case analyzed

and column 2 the value of the load used. Columns 3 and 4 show the voltage magnitude

and angle obtained by the NR/HELM/RHELM solution methods. Column 5 represents

the maximum error tolerance speci�ed for the voltage deviation in relation to the
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exact value. Column 6 indicates the number of iterations by NR or whether this

method diverges (represented by �DIV�). Column 7 represents the error obtained by

the HELM method. Finally, Columns 8 to 11 represent the initial number of coe�cients

N0 before the restarts, the number of coe�cients NR by each restarting of the RHELM,

the restarting number Rn, and the error obtained by the RHELM method for this

con�guration, respectively.

Table 6.4: Convergence results by NR × HELM × RHELM for di�erent load levels

Load Voltage V2 Max MTP HELM RHELM

Case P+jQ Mag Ang Spec. (NR) Error Con�g. Error

(pu) (pu) (deg) Error It. N◦ ||V ||∞ N0 NR Rn ||V ||∞
1 1.00+j0.600 0.618 -13.092 1e-8 6 6.3e-9 6 6 1 1.5e-9

2 1.04+j0.624 0.522 -16.211 1e-8 DIV 1.1e-2 6 6 4 6e-15

3 1.50+j0.900 - - 1e-8 DIV DIV 6 6 9 DIV

The Figure 6.4 illustrates graphically the deviation between the exact value of the

voltage at bus 2 and the value calculated by the RHELM and HELM as the number of

coe�cients is increased and the order of a polynomial of the Padé approximation for

the three levels of loading. From this point all vertical plot are assumed in log10 (base

10 logarithmic) scale.

The results of Table 6.4 and Figure 6.4 indicate that the RHELM has a better

convergence than the original HELM in the original situation (case 1), reaching 1.5×
10−9, and the solution coincides with that obtained by the traditional MATPOWER

(NR). For case 2, it is observed that the traditional MATPOWER (NR) does not

converge for a speci�ed error tolerance of 1 × 10−8 and a limit of 10 iterations. The

HELM reached a poor convergence of 1.1×10−2. The RHELM signals that the solution

exists and is observed a too much better convergence result, reaching 6× 10−15.

In case 3, all methods diverge, con�rmed by the exact evaluation previously

detected. For the non-iterative methods the results are evidenced for both the HELM

and RHELM through oscillations in the rational fraction of Padé approximant as

observed in [9], [12].
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Figure 6.4: Errors obtained for di�erent load levels by the RHELM and HELM for case 1 to
3 for a maximum Padé order L =M = 35

6.4.2 Study with Di�erent Parameters for the Interconnection Circuit

In this section the in�uence of the interconnection circuit impedance Z is

evaluated (only the reactance was changed). The load at bus 2 was kept constant

with the value S = 1.0 + j0.60 pu.

The results are summarized in Table 6.5. Column 1 indicates the case analyzed

and column 2 the value of the impedance used. Columns 3 and 4 show the exact voltage

magnitude and angle obtained analytically. Column 5 represents the maximum error

tolerance speci�ed for the voltage deviation in relation to the exact value. Column 6

indicates the number of iterations by NR or whether this method diverges (represented

by �DIV�). Column 7 represents the error obtained by the HELM method. Finally,

columns 8 to 11 the initial number of coe�cients N0 before the restarting, the number

of coe�cients NR by each restarting of the RHELM, the number of restarts Rn, and

the error obtained by the RHELM, respectively.

Figure 6.5 illustrates graphically the deviation between the exact value of the

voltage at bus 2 and the calculated value by the HELM and RHELM as a function of
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Table 6.5: Convergence results by NR × HELM × RHELM for di�erent line reactances

Impedance Voltage V2 Max MTP HELM RHELM

Case R+jX Mag Ang Spec. (NR) Error Con�g. Error

(pu) (pu) (deg) Error It. N◦ ||V ||∞ N0 NR Rn ||V ||∞
1 0.1+j0.20000 0.618 -13.092 1e-8 6 6.3e-9 6 6 1 1.5e-9

2 0.1+j0.21100 0.546 -16.061 1e-8 8 8.4e-4 6 6 3 5.5e-16

3 0.1+j0.21166 0.524 -16.816 1e-8 DIV 1.0e-2 6 6 4 8.1e-15

the number of coe�cients and the order of the Padé approximant (up to L = M = 35)

for the three values of impedance Z.

0 5 10 15 20 25 30 35
−16

−14

−12

−10

−8

−6

−4

−2

0

Padé Approximant Order

A
bs

ol
ut

e 
E

rr
or

Voltage Error for Padé Approximant

 

 

RHELM_case1
HELM_case1
RHELM_case2
HELM_case2
RHELM_case3
HELM_case3

Figure 6.5: Errors obtained for di�erent transmission line con�gurations by the RHELM and
HELM for case 1 to 3 for a maximum Padé approximant order L =M = 35

For the case 1 the NR method needed 6 iterations to converge. The HELM and

the RHELM obtained the same voltage solution, reaching a tolerance error of 6.3×10−9

and 1.5× 10−9, respectively. It is important to cite that this case 1 is the same of the

previous subsection. So, the Padé order for the HELM was L = M = 32 and only

1 restarting was necessary for the RHELM, besides the initial process computation.

For the case 2 and considering the tolerance error of 1 × 10−8, the system had �nite

result for the voltage by the RHELM and NR. The original HELM did not achieve the

required accuracy, since the error obtained for it was 8.4 × 10−4. The NR methods
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required 8 iterations to converge. The RHELM obtained the solution with an error of

5.5 × 10−16 and 3 restarting. The system was also analyzed under a critical situation

near the voltage collapse. Even for this new situation, the system had �nite result

for the voltage only by the RHELM, whereas the original HELM (with an error of

1.0× 10−2) and the NR method diverged up to 10 iterations. On the other hand, the

RHELM obtained the solution with an error of 8.1× 10−15 using only 4 restarting.

6.5 ANALYSIS FOR MULTIBUS TEST SYSTEMS

This section aims to extend the investigation considering experiments with larger

system models usually adopted as benchmark for tests.

All investigations cover tests involving the accuracy and convergence related to

the studied methods. Hence, in order to evaluate the performance of the solution

convergence for both the RHELM and HELM, several test system models were

evaluated by applying the proposed approach RHELM, the original HELM, and NR

method all making use of the own or modi�ed MATPOWER input/output interface

[14].

For each test system case analyzed in this section, a graphical result is presented

considering the absolute error obtained for the Padé approximant voltage for the

RHELM (continuous line) and for the HELM model (dotted) line. Both methods are

limited for a 15 Padé approximant order, i.e., the �nal solution for each method may

contain up to n = 30 power series degrees. If a tolerance error (1 × 10−8) is reached,

it means that the solution of the non-iterative methods RHELM and/or HELM are

both the same. Again this tolerance is computed in relation to the determined voltage

solution obtained by MATPOWER (result used as reference voltage). For the RHELM

3 quantities are set: N0, which is the initial polynomial degree before the restart, the

NR, which is the the degree order of the polynomial series by each restarting, and the

Rn, which is the restarting number with NR. All initial germ solution for RHELM

coincides with those ones adopted as guess for running the case in MATPOWER. For

the HELM it is considered the error obtained for a polynomial coe�cient until it reaches

the tolerance error of (1 × 10−8) or the error obtained for a limit of a 15 degree Padé

approximant order.
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6.5.1 9-Bus System

The IEEE 9-bus system consists of 9 buses, 3 generators, 3 power transformers,

6 lines and 3 loads. The convergence results for the RHELM model with an initial

quantity of power series degree (N0 = 4) and allowing a number of restarts (Rn = 1)

with a number (NR = 6) of coe�cients for each restart as well the results for the HELM

model applied for this system is represented in Figure 6.6.
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Figure 6.6: Solution convergence results by the RHELM and the original HELM methods for
the 9-bus system

For this case the NR method needed 4 iterations to converge. The HELM and the

RHELM obtained the same voltage solution, reaching a tolerance error of 3.3× 10−10

and 5.0× 10−15, respectively. The Padé order for the HELM was [L = M = 6].

6.5.2 14-Bus System

The IEEE 14-bus test case has 14 buses, 5 generators, and 11 loads. The

convergence results for the RHELM model with a initial quantity of power series terms

(N0 = 4) and allowing a number of restarts (Rn = 1) with a number (NR = 4) of

coe�cients for each restart as well the results for the HELM model applied for this

system is represented in Figure 6.7.

For this case the NR method needed 4 iterations to converge. The HELM and the

RHELM obtained the same voltage solution, reaching a tolerance error of 4.7 × 10−9

and 8.4× 10−10, respectively. The Padé order for the HELM was [L = M = 10] and 1

restarting was necessary for the RHELM.
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Figure 6.7: Solution convergence results by the RHELM and the original HELM methods for
the 14-bus system

6.5.3 39-Bus System

The IEEE 39-bus test system contains 39 buses, 32 transmission lines, 24

transformers and 10 generators. The convergence results for the RHELM model with

an initial degree of power series (N0 = 2) as well as the results for the HELM model

applied for this system are represented in Figure 6.8. It is important to cite that none

restart was necessary for the RHELM in this case.
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Figure 6.8: Solution convergence results by the RHELM and the original HELM methods for
the 39-bus system with N0 = 2, Rn = 0 and NR = 0

Only for illustration, the Figure 6.9 represents the situation where for an initial

degree of the power series terms (N0 = 2) it was allowed a number of restarts (Rn = 1)

with a number (NR = 2) of coe�cients. For this single restart, it is evident that

the solution obtained by the RHELM would be reached without the necessity of any

restart.
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Figure 6.9: Solution convergence results by the RHELM and the original HELM methods for
the 39-bus system with N0 = 2, Rn = 1 and NR = 2

For this case in both situations the NR method needed 1 iteration to converge

and the HELM and RHELM obtained the same voltage solution. The HELM achieved

a tolerance error of 3.2 × 10−9 with a Padé order of [L = M = 6]. The RHELM in

the �rst situation (N0 = 2) reached a tolerance error of 1.4× 10−9 and none restarting

was necessary, getting a Padé order of [L = M = 1], whereas the starting solution is

already the converged solution with the required precision. In the second situation,

the RHELM, with a con�guration of N0 = 2, Rn = 1 and NR = 2, obtained an yet too

better performance of 3.6× 10−12 with a Padé order of [L = M = 2].

6.5.4 118-Bus System

The IEEE 118-bus test system consists of 118 buses, 54 synchronous machines,

20 of which are compensators and 15 motors. The convergence results for the RHELM

model with an initial degree of power series terms (N0 = 4) and allowing a number of

restarts (Rn = 1) with a number (NR = 4) of coe�cients for each restart as well as the

results for the HELM model applied for this system is illustrated in Figure 6.10.

For this case the NR method needed 4 iterations to converge. The HELM and the

RHELM obtained the same voltage solution, reaching a tolerance error of 4.3 × 10−9

and 1.6 × 10−11, respectively. The Padé order for the HELM was [L = M = 6] and 1

restarting was necessary for the RHELM.
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Figure 6.10: Solution convergence results by the RHELM and the original HELM methods
for the 118-bus system

6.5.5 300-Bus System

The IEEE 300-bus test system contains 69 generators, 306 transmission lines,

174 transformers and 197 loads. The convergence results for the RHELM model with

an initial degree of power series terms (N0 = 4) and allowing a number of restarts

(Rn = 2) with a number (NR = 4) of coe�cients for each restart as well as the results

for the HELM model applied for this system is exhibited in Figure 6.11.
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Figure 6.11: Solution convergence results by the RHELM and the original HELM methods
for the 300-bus system

For this case the NR method needed 5 iterations to converge. The HELM did not

converge, reaching an error of 2.2×10−4 which is outside of the limit of 1.0×10−8. The

RHELM obtained the same voltage solution of the NR method, reaching a tolerance

error of 2.8× 10−9 with 2 restarts.
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6.5.6 1354-Bus System

The network contains 1354 buses, 260 generators, and 1991 branches. The

convergence results for the RHELM model with an initial quantity of power series

terms (N0 = 2) and allowing a number of restarts (Rn = 6) with a number (NR = 2)

of coe�cients for each restart as well the results for the HELM model applied for this

system is represented in Figure 6.12. Concerning the RHELM, note that for this system

we have used only 2 terms for the power series, either at �rst stage before restarting

or along the restarting.
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Figure 6.12: Solution convergence results by the RHELM and the original HELM methods
for the 1354-bus system

For this case the NR method needed 4 iterations to converge. The HELM did not

converge, reaching an error of 4.6×10−4 which is outside of the limit of 1.0×10−8. The

RHELM obtained the same voltage solution of the NR method, reaching a tolerance

error of 2.6× 10−13 with 6 restarts.

6.5.7 9241-Bus System

The 9241-Bus system represents a more complex European transmission network

and it contains 9241 buses, 1445 generators, and 16049 branches. The convergence

results for the RHELM model with a initial quantity of power series terms (N0 = 2)

and allowing a number of restarts (Rn = 6) with a number (NR = 2) of coe�cients

for each restart as well the results for the HELM model applied for this system is

represented in Figure 6.13. Again only polynomials with 2 terms were used for the

RHELM.
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Figure 6.13: Solution convergence results by the RHELM and the original HELM methods
for the 9241-bus system

For this case the NR method needed 5 iterations to converge. The HELM did not

converge, reaching an error of 5.0×10−3 which is outside of the limit of 1.0×10−8. The

RHELM obtained the same voltage solution of the NR method, reaching a tolerance

error of 1.4× 10−9 with 6 restarts.

6.5.8 Other Experiments with Smaller Number of Restarting

In this subsection we have done other experiments for the 300-, 1354- and 9241-

bus systems in order to investigate how the number of restarting on RHELM cause

in�uence on the performance of the method. Table 6.6 presents two cases (case 1 and

case 2 ), where this evaluation is analyzed.

From Table 6.6 in case 1, it is observed that there is more restarting than in case

2, although the order of the degrees of the polynomials are smaller in case 1. However,

the RHELM determines the expected solution with error speci�ed in both cases. This

fact illustrates the numerical robustness of the method for this �exibility with respect

to the amount of restarting and the degrees of the power series polynomials. The

smaller the number of restarting, the less number of LU factorization is required in

the calculation process. This reduces the computational cost since the execution time

in the LU factorization is much higher than the calculation of the coe�cients of the

power series, as will be shown later.

Figures 6.14, 6.15 and 6.16 ilustrate plots on the voltage absolute error for

the 300-, 1354- and 9241-bus models, respectively. It is observed that despite the
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Table 6.6: Results of experiments for di�erent restarting evaluated on the 300-, 1354- and
9241-bus models

Case 1 Case 2 (NR = 6)

Model N0 Rn NR Error N0 Rn Error

300 4 2 4 2.8× 10−9 4 1 1.8× 10−9

1354 2 6 2 2.6× 10−13 2 1 7.1× 10−9

9241 2 6 2 1.4× 10−9 2 2 4.8× 10−10

reduced number of restarting along the numerical calculation of the voltage power series

coe�cients (and consequently the Padé approximant), the RHELM always reaches a

correct solution when this exists. Also, the restarting process speed-up the process of

convergence characteristic, which is not veri�ed on HELM. Therefore, the �exibility

in being able to explore the characteristics of the germ solution is one of the strong

points of the proposed method. Another aspect to highlight is that RHELM performed

well for all size of system studied in this work. On the contrary, HELM has failed for

converging to the speci�ed tolerance error for the three biggest systems studied in this

Master's Dissertation.
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Figure 6.14: Solution convergence results by the RHELM when Rn = 1 for the 300-bus system

It is important to cite that the time convergence is a problem to the original

HELM [9]. The code implemented for the RHELM shows to be faster than the HELM.

However, both techniques are relatively slower when compared to the NR method. But

the advantage of the RHELM is that it demands a few order Padé approximant for

reaching the required precision and it preserves the same advantages of the original

HELM, ensuring, unequivocally to �nd a solution if it exists.
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Figure 6.15: Solution convergence results by the RHELM when Rn = 1 for the 1354-bus
system
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Figure 6.16: Solution convergence results by the RHELM when Rn = 2 for the 9241-bus
system

6.6 EXECUTION TIME CHARACTERISTICS

In this section the problem of execution time related to speci�c characteristics

of each one of the RHELM, HELM and NR method is evaluated. We have chosen

to perform experiments on the 39-, 118-, 300-, 1354- and 9241-bus models. Smaller

systems present computation burden very reduced in such way that the computational

cost may be neglected. The characteristics of the 39- and 118-bus models were

discussed in Subsection 6.5.3 and 6.5.4, respectively. For the bigger systems, we explore

the characteristics presented in case 2 shown in Table 6.6.
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All execution times were observed in seconds. The metric to measure these times

took into account the execution of speci�c loops for calculations. These speci�c loops

were considered for those parts with higher calculation burden for each one of the

methods. So details on calculations of each method are highlighted. All the calculation

were repeated according to the size of the system and taken the mean of the execution

time. So the information is already the execution mean time obtained for each method.

For the 39-, 118- and 300-bus model, we repeated the calculation 1000 times. But for

higher systems as 1354- and 9241-models the repetition was carried out 100 times. All

computations were carried out in MATLAB on AMD Intel® CoreTM i7 CPU with 2.5

GHz and 16 GB RAM.

Table 6.7 yields the execution time, in seconds, for main partial computational

and total burden related to RHELM numerical implementation. The partial parts are

called Reduction, LUPQR, Solver and Padé. The last row of the table gives the total

execution time fr the method. Each partial part are described as follows:

Reduction: process which is carried out to convert systems such as

(5.12) into (5.15); the system is reduced from 4N unknowns to 2(N-

1) unknowns;

LUPQR: perform the factorization LUPQR of the matrix of the linear

system coe�cients;

Solver: perform the solution of a linear system by using the LUPQR factors

�nding before;

Padé: perform an economy-size computation of the Padé approximants

(until 6 degrees are allowed).

Table 6.7: Execution time relative to the computational burden performed by RHELM for
the 39-, 118-, 300-, 1354- and 9241-bus systems

Type 9241 1354 300 118 39

Reduction 0.4604 0.0139 0.0031 0.00119 3.0× 10−4

LUPQR 0.2508 0.0174 0.0037 0.00136 2.3× 10−4

Solver 0.1205 0.0085 0.0020 7.2× 10−4 1.1× 10−4

Padé 0.0082 9× 10−4 2.7× 10−4 1.3× 10−4 3.1× 10−5

Total 0.858 0.0408 0.0091 0.0034 6.8× 10−4
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Table 6.8 yields the execution time, in seconds, for main partial computational

and total burden related to HELM numerical implementation. The partial parts

considered for this method are the factorization LUPQR, the solver and Padé

computations. Again, the last row of the table gives the total execution time required

by the method.

Table 6.8: Execution time relative to the computational burden performed by HELM for the
39-, 118-, 300-, 1354- and 9241-bus systems

Type 9241 1354 300 118 39

LUPQR 0.0859 0.0095 0.0017 7.2× 10−4 2.5× 10−4

Solver 0.202 0.0113 0.0032 2.6× 10−4 1.7× 10−4

Padé 27.55 3.003 0.6924 0.0099 0.00494

Total 28.044 3.023 0.6974 0.0109 0.00537

Finally, Table 6.9 yields the execution time, in seconds, for main partial compu-

tational and total burden related to NR numerical implementation on MATPOWER.

Now, the partial parts considered for this method are the mismatch, Jacobian

construction and solver computations. Again, the last row of the table gives the total

execution time.

Table 6.9: Execution time relative to the computational burden performed by NR method for
the 39-, 118-, 300-, 1354- and 9241-bus systems

Type 9241 1354 300 118 39

Mismatch 4.4× 10−3 3.3× 10−4 1.54× 10−4 6.1× 10−5 1.5× 10−5

Solver 0.4595 0.03066 0.0067 0.00211 2.0× 10−4

Jacobian 0.0708 0.00719 0.0017 5.6× 10−4 9.4× 10−5

Total 0.5347 0.03817 0.0086 0.00273 3.12× 10−4

Table 6.10 exhibits the ratio of the execution time with relation to the execution

time of the NR method. The RHELM require cost computational almost similar to

the NR method. So we can consider it as competitive at this level with NR. Besides

it has the characteristics of the HELM solution. The HELM, on the other hand is

very intensive for large-scale systems. A hard cost is demanded to compute the Padé

approximant.

From these results it is demonstrated the high e�ciency of the RHELM

performance compared to the original HELM. Considering only the biggest system
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Table 6.10: Ratio of the execution time with relation to the execution time of the NR method

Method 9241 1354 300 118 39

RHELM 1.60 1.07 1.06 1.25 2.17

HELM 52.4 79.19 81.0 3.99 17.2

(9241-bus model), we observe that the ratio of the total execution time between the

RHELM and NR method is about 1.6. On the other hand, when this ratio is for the

HELM this �gure goes to 52.4. This last result agrees with high intensive computational

cost reported in [9] for HELM and the high computational cost to determine the Padé

approximant. In that paper a ratio of 55.8 for the 300-bus model and 8.5 for the 118-bus

model was found. The authors in [9] reported an improving on the Padé implementation

for the HELM results, but it reduced the ratio for 12.3 and 5.0, respectively.

It is important to cite that the time convergence is a problem to the original

HELM [9]. The code implemented for the RHELM shows to be considerably faster

than the HELM. But the advantage of the RHELM is that it demands just a few

order Padé approximant for reaching the required precision and it preserves the same

advantages of the original HELM, ensuring, unequivocally to �nd a solution if it exists.

6.7 CONCLUSION OF THE CHAPTER

In this chapter experiments implemented to assess the performance of RHELM

was assessed. Several results show the superior performance compared to HELM.

Evaluation of execution mean time has demonstrated that the RHELM is competitive

with NR method and presents the HELM bene�t characteristics.

It is demonstrated that the RHELM accelerates the solution convergence when

compared with the HELM. Thus it is necessary less terms of the voltage power series

and, consequently, a low order Padé approximant to get the same solution that would

be obtained by the HELM and NR methods. Exactly, the proposed scheme of restarting

the HELM presented in this work, has a great impact on the convergence process.

It was also demonstrated the advantages of the HELM and, consequently, the new

approach RHELM, which maintains the same advantages in addition to have the faster
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convergence property. Thus, it was showed that the non-iterative methods guarantees

the existence of the solution if one exists and signals unequivocally if no solution exists.
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Chapter 7 CONCLUSION

7.1 GENERAL CONCLUSIONS

This work presented the basic formulation for the general power �ow problem,

some conventionally adopted solution for iterative methods and also a recently non-

iterative method based on an Holomorphic Embedding Method (HEM). This technique

consists on embedding a given set of equation through a variable known as embedding

parameter, α. The problem is formulated in such way that for the equivalent problem

evaluated for an unitary value of α we recover the solution of the original problem.

The HEM application to the power �ow problem was called HELM [7]. This

method treats the power �ow representation in two steps: �rstly, a power series for

approximating the voltage is calculated. But, in general these power series has very

small convergence radius at the value of the embedding parameter. Then, due to

the need to expand the radius of convergence, a transformation is sought by analytic

continuation technique. Hence, in a second stage the power series is converted into

a rational fraction of polynomials denominated Padé approximant. Therefore, the

approximated numerical solution is veri�ed when the embedding parameter is set in

the unit.

The HELM is based on the computation of the power series from a single germ

solution. This solution is equivalent to have the same slack-bus voltage replicated for all

bus, since no shunt connection and no load are assumed to be connected to the buses.

For systems with high level of loading the coe�cients of the voltage power series can

stagnate in a very small absolute value. This fact also contributes to a stagnation of

the analytic function for the embedding parameter unitary without a speci�ed error

tolerance being achieved. Some works need to extend the precision of the �oating-point

mantissa numbers besides the double-precision usually dealt with in MATLAB to get

adequate results [39].

In this work we propose to modify the HELM by including initial values associated

to a germ solution and restarting the process with an updated germ solution which
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has better information about the desired solution. This way we called this alternative

method as Restarted HELM (RHELM). The change in HELM has provided a signi�cant

improvement in the convergence process for the solution of interest of the problem and

maintains the characteristic of the HELM when it is veri�ed that the problem has no

real solution. A mark of our proposal is to work with power series of very low order. So,

the computations are carried out only on the MATLAB environment without needing

to extend the double-precision accuracy adopted by this tool.

In the RHELM a �rst germ solution is used to generate a power series in general

quadratic or no more than bi-quadratic. Di�erently of HELM approach, the germ

solution is applied to a network which allows the computation of an initial current at

each bus (in the original HELM all currents are zero, since initially the problem is

treated at no load). This �rst germ solution can be generated by applying the own

conventional HELM. So, in our approach each germ solution is initial value dependent.

The closer the initialization is to the solution, the better the convergence process.

This means less number of restarting or even none. Still for the initial germ solution,

after calculating the voltages power series, then a rational fraction based on a Padé

approximant is computed for this power series. The result for an embedding parameter

unitary allows to generate a �rst approximation of the bus voltages. Then this result of

voltages is used as initial values for a �rst restarting process, where an updated power

series is determined. The same determination for the Padé approximant is veri�ed

and also the computation of the approximated bus voltage by �xing again the new

embedding parameter at unit. The process continues in restarting until a prescribed

error tolerance is reached.

RHELM o�ers advantages and possibilities to reach the required solution

precision with a few terms of the Padé approximant (di�erently of HELM) and a very

reduced number of restarting. The proposed method always presents convergence for

the solution when it exists. Also, presents similar characteristics to the HELM when

the power �ow has no real-valued solution. The method was tested for system of low-

and large-scale size and always presented fast and robust characteristic of convergence,

even for operations near the point of voltage collapse.

The description of the information in the manuscript was gathered in some

chapters with the theoretical basis on the subject and a chapter in which experiments

are presented for demonstrating the e�ectiveness of the proposed methodology.
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The Chapter 1 presented the contextualization of the power �ow study impor-

tance, the existing solution methods, the motivation and objectives for the approach

proposed in this work.

The Chapter 2 described the power �ow problem formulation and some methods

applied for solving it, since the traditional well known iterative methods, as Gauss

Seidel (GS) method, Newton-Raphson (NR) method and Fast Decoupled Load Flow

(FDLF) method, until a non iterative method (Series Load Flow), which did not have

success for real power systems magnitude. Some inherent problems associated with

the iterative methods were exposed. These conventional methods perform reliably for

the meshed system operating at near nominal conditions, but they are initial estimate

dependent, and they face convergence issues when the system is under contingency or

heavily loaded.

The Chapter 3 described the formulation based on the non iterative, but recursive

technique, Holomorphic Embedding Method (HEM), which applied to the load �ow

problem (HELM). For a better understanding of the problem solution using the HEM,

the description based on a simple three-bus electric system was presented. It was also

demonstrated how to obtain Padé approximant, an analytical continuation technique

which is a process to enlarge greatly the radius of convergence of the power series for

HELM. This is a required procedure to obtain the �nal solution to the problem, unless

a tolerance error. They have explained the advantages of the HELM, which is not

dependent on an initial solution guess and guarantees to �nd the operational solution

if it exists and unequivocally signals if the problem does not have this solution.

The Chapter 4 presented a bibliographical review on works related to progress

on HELM. A detailed description of references covering works published since 2012 is

presented. It was inferred with this literature review that the HELM still motivate

investigations on the theme.

The Chapter 5 presented in details the improving technique proposed in this

work. The proposed method aims to accelerate the convergence of the holomorphic

embedding power �ow model, called Restarted HELM (RHELM). The alternative

method was denominated Restarted HELM, because despite to use the conventional

HELM approach, it has a characteristic of allowing updating the germ (initial seed)

solution. It was demonstrated that this speci�c updating of partial solution provides

characteristics to the method for optimizing the convergence process.
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The Chapter 6 presented the implementation results, discussion emphasizing

performance comparisons involving the proposed RHELM, HELM and Newton-

Raphson methods. It was demonstrated that the RHELM accelerates the solution

convergence when compared with the HELM. Thus it is necessary less terms of the

voltage power series and, consequently, a low order Padé approximant to get the same

solution that would be obtained by the HELM and NR methods. Several test systems

were employed for carrying out experiments aiming to demonstrate the performance of

the proposed technique.

7.2 FUTURE WORK SUGGESTIONS

The HELM method was launched recently and has several investigations for

getting new approaches to improve this novel non-iterative technique for solving the

power �ow problem. Therefore, some research still deserves attention. The technique

proposed in this work (RHELM) aims to accelerate the convergence using a low order

Padé approximant to the original HELM. But this new approach is also HELM-based

and demands some improvements, among which it is cited:

� The inclusion of di�erent type of load modeling, since in this work only the

constant power model was assumed;

� The consideration of the operational limits to the reactive power sources and

other devices;

� The assessment of other analytic continuation techniques for providing higher

precision to decrease the round-o� errors during the calculation of the voltage

power series;

� The study for applying the RHELM and HELM to aid the identi�cation of the

weakest bus of the power system, aiming to estimate the voltage collapse point;

and also,

� The inclusion of the HVDCmodeling and implementations for power �ow analysis

on direct current systems.
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