=
UnB

Universidade de Brasilia
Instituto de Ciéncias Exatas

Departamento de Matematica

Rigidity theorems for submanifolds and
GQY-manifolds

by

Hudson Pina de Oliveira

Advisor: Xia Changyu

Brasilia

2018



Rigidity theorems for submanifolds and
GQY-manifolds

by

Hudson Pina de Oliveira

Thesis presented to the Graduate Pro-
gram of the Department of Mathematics
of the University of Brasilia, as a partial
requirement to obtain the title of PhD in
Mathematics.

Area of concentration: Geometry.

Advisor: Prof. Dr. Xia Changyu

Brasilia

2018



Ficha catalografica elaborada automaticamente,
com os dados fornecidos pelo(a) autor(a)

PH886r

Pina de AQiveira, Hudson

Rigidity theorenms for submanifolds and GQY-manifolds /
Hudson Pina de Oiveira; orientador Xia Changyu. --
Brasilia, 2018.

88 p.

Tese (Doutorado - Doutorado em Matematica) --
Uni ver si dade de Brasilia, 2018.

1. Rigidity Theorem. 2. Totally unbilical. 3. Totally
geodesic. 4. Ceneralized quasi Yamabe manifold. 5. Static
vacuum space. |. Changyu, Xia, orient. Il. Titulo.




Universidade de Brasilia
Instituto de Ciéncias Exatas
Departamento de Matematica

Rigidity theorems for submanifolds and GQY-manifolds

por

Hudson Pina de Oliveira

Tese apresentada ao Corpo Docente do Programa de Pés-Graduagdo em Matemadtica-UnB,

como requisito parcial para obtengdo do grau de

DOUTOR EM MATEMATICA

Brasilia, 21 de junho de 2018.

Comissdao Examinadora:

Vi Ulomgrgin

Prof. Dr.Xia Changyu — Orientador (MAT-UnB)

Wev Wg (/Q{t‘» Q,Q N
Profa. Dra. Wang Qiaoling (MAT-UnB)

Prof. Dr. Marcelo Almeida de Souza(UFG)

o . -

Prof. Dr. Levi Rosa Adnkmo (UFG)




All rights reserved. The total or partial reproduction of the work is prohibited

without authorization from the university, the author and the advisor.

Hudson Pina de Oliveira



A minha familia e amigos.

“Fu poderia suportar, embora nao sem dor, que tivessem morrido todos 0s meus
amores, mas enlouqueceria se morressem todos os meus amigos! A alguns deles
nao procuro, basta saber que eles existem. Esta mera condi¢cdo me encoraja a
sequir em frente pela vida (...) mas € delicioso que eu saiba e sinta que os adoro,

embora nao o declare e nao os procure.!”. (Paulo Sant’ana)



Agradecimentos

Agradeco ao meu orientador Dr. Xia Changyu pela paciéncia, incentivo e
dedicagao ao longo destes 4 anos.

Aos professores membros da banca Dr. Marcelo Almeida, Dr. Levi Rosa, Dra.
Wang Qioaling e ao Dr. Carlos M. Carrién por tornarem o meu trabalho melhor
através de suas criticas e sugestoes.

Agradeco aos professores e funcionrios do IME-Unb pelo apoio.

A todos meus amigos, que nao citarei nomes pela grande quantidade, pela
amizade e por todos os bons momentos que passamos juntos.

Ao meu amigo Adriano Bezerra. Obrigado pelas horas de estudos e compartil-
har os momentos agradaveis durante esse longo tempo.

A todos os professores do curso de Licenciatura em Matemaética da Universidade
Federal de Mato Grosso.

Finalmente Agradeco a minha familia, pois sem a ajuda deles eu nao teria
chegado onde cheguei, em especial a minha mae Maria Aparecida Pina de Oliveira
e meu Pai Jaime Gomes de Oliveira, que sempre estiveram ao meu lado. A minha

namorada Gleyca Farias Vieira, muito obrigado!



Abstract

Using Kato-type inequality for n-dimensional minimal submanifold of H"*™,
we obtain necessary conditions so that a complete minimal submanifold immersed
in H*™™ to be totally geodesic and using the Simons’ inequality to get complete
non-compact hypersurface immersed in H**! with constant mean curvature to be
totally umbilical. If M n-dimensional complete spacelike CMC hypersurfaces is im-
mersed in M (c), where ¢ = {—1,0,1}, using the norm L of the tracelles second
fundamental form and the first eigenvalue of M, we prove that M is isometric to
H(c — H?), where H is the constant mean curvature of M.

Taking a generalized quasi-Einstein manifold (GQY-manifold), in certain direc-
tions for Vu, we have p constant.

Lastly, considering (]/\4\"“, g) = M™ x¢ R, the warped product of M with R, be
a static space-time, where (M", g), n > 3, is a noncompact, connected and oriented
Riemannian manifold and use the Einstein equation with perfect fluid as a matter
field to show that the energy density in M is zero. Using known techniques, we gave
estimates of the volume growth of the geodesic balls and the validity of the weak

maximum principle.

Keywords: totally geodesic, totally umbilical, de Sitter space, Lorentz space, anti-
de Sitter space, generalized quasi-Einstein manifold, static space-time, static vacuum

space.
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Introduction

The work was divided in four parts. The first is a preliminary with results
that we found interesting and were important to obtain some results. The following
chapters contain results obtained during the PhD program.

The celebrated Bernstein theorem states that if u(z,y) is a C? function on R?

which solves the nonparametric minimal surface equation

div (Vu) =0,
V1+|Vul|?
then u is a linear function of x,y, i.e. the graph of u is a plane. It was proved
in the works of Fleming [46], Almgren [7] and Simons [90] that an entire minimal
graph in R™*! is a hyperplane provided n < 7. When n > 7 counterexamples
were found by Bombieri [15] et al. do Carmo and Peng [41] and Fisher-Colbrie
and Schoen [45] proved independently that any complete oriented stable minimal
surface in R must be a plane, which is an important generalization of the Bernstein
theorem. Recall that a minimal submanifold in a Riemannian manifold is stable if
the second variation of its volume is always nonnegative for any normal variation
with compact support. For the higher dimensional case, it is interesting to know if a
complete oriented stable minimal hypersurface in R"*!(3 < n < 7) is a hyperplane.

With respect to this problem, do Carmo and Peng proved the following result.

Theorem A.( [42]) Let M™ be a complete stable minimal hypersurface in R"1.

Suppose that
e AP
lim =

2
R—oo  R2at+2 - n

q<

i

then M is a hyperplane. Here, By(R) denotes the geodesic ball of radius R centered
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at p € M and A is the second fundamental form of M.

The proof of this result relies on Simons’ formula for the Laplacian of |A|?
which is a fundamental tool in studying rigidity of Riemannian submanifolds. Many
interesting gap theorems for Riemannian submanifolds have been proved by using
Simons’ formula during the past years. In Chapter 2| we shall use Simons’ for-
mula, the technique developed in do Carmo-Peng’s paper [42], the estimates for
first eigenvalue obtained in Cheng-Yau [43] and Cheung-Leung [39] and the Sobolev
inequality in [58] to prove rigidity theorems for minimal submanifolds in a hyper-
bolic space. By definition, the hyperbolic space H' is a simply connected complete

l-dimensional Riemannian manifold with a constant negative sectional curvature —1.

In Chapter [2] still using the ideas of Do Carmo-Peng, we study rigidity phe-
nomenon for complete non-compact hypersurfaces with constant mean curvature
(CMC hypersurfaces) in a hyperbolic space and space-like CMC hypersurfaces in a
Lorentz space forms. A hypersurface in a Lorentzian manifold is said to be space-
like if the induced metric on the hypersurface is positive definite. Let M be a CMC
hypersurface immersed in H"*!(—1) or a space-like CMC hypersurface immersed in
M (c), ¢ = {~1,0,1}. According to ¢ = 1; ¢ =0 or ¢ = —1; M !(c) is called a
de Sitter space, a Minkowski space or an anti-de Sitter space, respectively.

A complete Riemannian manifold (M", g), n > 3, is a generalized quasi-FEinstein

manifold, if there exist three smooth functions f, u and 8 on M such that
Ric+ V?f — pdf © df = By,

where Ric and V? denotes, respectively, the Ricci tensor and Hessian of the met-
ric g. This concept, introduced by Catino in [27], generalizes the m-quasi-Einstein
manifolds (see, for instance [11},63]). Inspired by [27], we will introduce a class of

Riemannian manifolds (see [28]).

In Chapter 3| consider a generalized quasi  Yamabe gradient soliton (GQY
manifold), let us point out that if 4 = 0, (3.1) becomes the fundamental equation

of gradient Yamabe soliton. For A = 0 the Yamabe soliton is steady, for A < 0
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is expanding and for A\ > 0 is shrinking. Daskalopoulos and Sesum [44] proved
that locally conformally flat gradient Yamabe solitons with positive sectional cur-
vature are rotationally symmetric. Then in [26], they proved that a gradient
Yamabe soliton admits a warped product structure without any additional hypoth-
esis. They also proved that a locally conformally flat gradient Yamabe solitons has a
more special warped product structure. Inspired by the Generalized quasi-Einstein
metrics (see [27,[63]), they started to consider the quasi Yamabe gradient solitons
(see [51,62,(100]). In [51], they introduced the concept of quasi Yamabe gradi-
ent soliton and showed that locally conformally flat quasi Yamabe gradient solitons
with positive sectional curvature are rotationally symmetric. Moreover, they proved
that a compact quasi Yamabe gradient soliton has constant scalar curvature. Lean-
dro [62] investigated the quasi Yamabe gradient solitons on four-dimensional case
and proved that half locally conformally flat quasi Yamabe gradient solitons with
positive sectional curvature are rotationally symmetric. And he proved that half
locally conformally flat gradient Yamabe solitons admit the same warped product
structure proved in [26]. Wang [100] gave several estimates for the scalar curvature
and the potential function of the quasi Yamabe gradient solitons. He also proved
that a quasi Yamabe gradient solitons carries a warped product structure. In [28],
they define and study the geometry of gradient Einstein-type manifolds. This met-
ric generalizes the GQY manifolds. In chapter |3 together with Professor Benedito

Leandro, to prove, certain conditions, that u is constant in the GQY manifolds.

In Chapter [4] together with Professors Benedito Leandro and Ernani Ribeiro, we
prove that a Riemannian manifold that satisfies the equations and it has
density energy equal to zero (¢ = 0) and implying in a volume growth of polynomial
geodesic balls and thereby validating a version of the Omori-Yau maximum principle,

introduced by Rigoli and Setti [87].



Chapter 1

Preliminary

Assuming that the reader has a certain level of understanding about the issues
approached, we started the work with concepts and equations that will be funda-

mental for a better understanding of the covered subjects.

1.1 Concepts and fundamental equations

1.1.1 Tensors

Definition 1.1 (Tensors and Tensors fields). A tensor A of order s, briefly (0,s)-

tensor, at a point p on a differentiable n-dimensional manifold M™ is a multilinear
mapping

Ap: (TyM x --- xT,M) =R

N~
S

Similarly, a (1, s)-tensor at a point p is a multilinear mapping

Ay (TyM x -+ x T,M) = T,M
S

Fix a point p € M and let 2 be a neighborhood of p € M on which it is

possible to define vectors fields Fy,--- , E, € x(M), in such a fashion that at each
q € Q, the vectors {E;(q)}7_, form a basis of T,M. We say that {E;}7" | is a moving

frame on €2 and

Ajl,"' Js T AP (Eju T 7Ejs)



CHAPTER 1. PRELIMINARY 15

are called the components of A in the frame {FE;}. The similar notation A;'-l’__ s for

a (1, s)-tensors, we have
Al Ei= Ay (Ejy, -, Ej)

J155ds

Remark 1.2. In this work we will use basically only tensors of the type (0,s) and

(1,s). More generally one considers also mized tensors, for more details see [75].

Example 1.3. A Riemannian metric g, (0,2)-tensor, yields an isomorphism of

T,M and your dual T,M* by
T,M>X —g(-,X)eT,M".

Example 1.4 (THE CURVATURE TENSOR). The curvature tensor is a
(1,3)-tensor define by

X,)Y,Z - R(X,Y,Z) := VyVXZ+VXsz—V[X7Y]Z. (1.1)
where X, Y, Z € T,M and V 1is the Levi-Civita connection of M.
The components of the curvature tensor are given by
o 0 0 ;0
R{—,— | — = R =
<8mi 8@) Oy, Zl: ik oy

ort.  art
Rijk = < - ﬁ + Z ( gjrfﬂk - F;krlrj) .
J T

8xk

By lowering the remaining upper index, we get the corresponding (0, 4)-tensor
XY, Z,W — g(R(X,Y)Z,W)
with components
o 0 o 0
<R (8%7 89@) Fr 83:1> = ZS:Rfjkgsl = Rijil-

From the definition of the tensor curvature, given X,Y,Z € T),M

R(X,Y)Z + R(Y,Z2)X + R(Z,X)Y =VyVxZVxVyZ +Vxy|Z

+VzVyZVyVzX + VX +VxVzYVzVxY +Vz Y

=Vy[X,Z]+ Vz[Y, X] + Vx[Z,Y] — V[X,Z]Y — V[YJ(}Z — V[Z,Y]X

=Y, [X,Z]]|+ [Z,[Y,X]]+ [X,[Z, Y]] = 0. (1.2)
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This equation above is known as first Bianchi identity and also, given X,Y, Z,T €
T,M:

i) (R(X,Y)Z,T)+ (R(Y,Z)X,T) + (R(Z,X)Y,T) = 0
i) (R(X,Y)Z,T) = —(R(Y,X)Z,T)
i) (R(X,Y)Z,T) = —(R(X,Y)T, Z)
iv) (R(X,Y)Z,T) = (R(Z,Y)X,T).
Showing the symmetries of the curvature tensor.

Definition 1.5. Let A be a (0, s)-tensor field (resp. a (1,s)-tensor field), and let X
be a fixed vector field. Then we define the covariant derivative of A in the direction

X by the formula

(VxA) (Y1, Y5) = Vx (A, -, Y))

=Y Vi, Y, VXY, Yig, -, Y5)
i=1
VxA is then also a (0, s)-tensor (resp. (1,s)-tensor), and VA is a (0,s+ 1)-tensor
(resp. (1,s+ 1)-tensor) by means of the formula
(VA)(Xa Yla T 7Y:9) = (VXA)(}/I) T 7Y:9)

Since A is an (1, s)-tensor, then for everyi € {1,--- ,s} and fized vectors X;, j # 1,

whose contraction (or trace) is denoted by tr(A)
n
t’I”A = Z <A(X1, cee ,Xl',l, Ej, XZ'+1, e ,Xs),Ej> (13)
j=1

trA is then a (1,s — 1)-tensor.

Example 1.6 (Ricci tensor, scalar curvature). The first contraction of the curvature

tensor R(X,Y,Z) is give by the expression

(trR)(X,Z) =tr(Y - R(X,Y, 7)) = Z(R(X, E)Z, E;)

i
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and is called the Ricci tensor Ric(X,Z). The trace of the Ricci tensor is called the

scalar curvature S. One has
S => (R(E;,E))E;, Ei).
,J

Let o C T,M be a two-dimensional subspace and z,y € o be two linearly
independent vectors the real number

(R(z,y)2,w))
[z Ayl?

K(o) = K(z,y) =

is called the sectional curvature of o at p. Where |z A y| represents the area of a
two-dimensional parallelogram determined by the pair of vectors z,y € o.

Using the notation given above, if X,Y,Z, W € T,M C Tpﬁ are linearly

independent, denote by R and R the Ricci tensor of the M and M, respectively, we

have

Theorem 1.7 (Gauss Equation, see [16]). Letp € M C M and X,Y be orthonormal
vectors in T, M. Then

(RIX,Y)Z,W) = (R(X,Y)Z,W) + (A(X,Z), A(Y,W)) — (A(Y, Z), A(X,W))  (1.4)
where A is the 2nd fundamental form.

A result well known about the subject

Theorem 1.8 ( [16]). Let M be a n-dimensional Riemannian manifold, p a point
of M and {ey,--- ,en} an orthonormal basis of T,M. Then, since K(p,o) = K for
all o C T, M, if and only if

Rijii = ko(dadji — 0udjn)

Theorem 1.9 (Ricci equation, [76]). Let M be an n-dimensional Riemannian man-
ifold and f € C3(M) with orthonormal frame {e;}?_,, to any 1 < 1,5,k < n equality

18 worth:

fijk — fikj = Z JiRijki
=1



or simply
Fije = fing = fiRiji!
with fijr = V3 f (e, ej,er) and using the Einstein notation.
The differential Bianchi Identity is, see [14], using the Einstein notation,

ViRjtm' + VjRyim' + ViRijm' = 0. (1.5)

Contract on the indices ¢ and [
0= ViRjim' + ViRpm' + ViRijm' = ViRjtm' — VjRim + Vi Rjm
and then
ViRjim' = VRim — ViRjm. (1.6)

The above equation is also known as Bianchi identity. Now, trace on the indices k

and m,
"""V Rjkm' = 6"V jRkm — 6"V Rjm,
Since the metric is parallel, we can move the ¢ terms inside,
Vig"" Rjkm' = V9" Ry — Vg™ Rjm.
The left hand side is

Vig" " Rjkm! = Vig""g"" Rikpm
= Vig"g"" Rjrpm

= Vig"Rj, = ViR
Since ngkajm = VkR;?, so we have the second Bianchi identity:
2V R = V,R. (1.7)
It is normal in the literature to find the following situation as well;
n
> Rig = Ri
=1

that is, repeated indices means that it is adding up in these indices.
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1.1.2 The second fundamental

= n+m . . - . . .
Let f: M™ - M be an immersion , V and V the Riemannian connection

of the M and M respectively. If X,Y are local vector fields on M, we defined
A(X)Y)=VxY —VxY

where X,Y are local extensions to M.
Let v belongs to the orthogonal complement of T,M, (v € (T,M)'), the
mapping H, : T,M x T,M — R given by

H,=(AX,)Y),v), X, YeT,M
is a symmetric bilinear form.
Definition 1.10. The quadratic form 11, defined on T,M by
II,(X)=H,(X,X) (1.8)
is called the second fundamental form of f at p along the normal vector v.

We have that the bilinear form H, is associated to a linear self-adjoint

operator A, : T,M — T,M by
(AL(X),Y)=H,(X,Y) = (A(X,Y),v).
and also, taking X,Y € T,M and v € (T,M)*. Then

<A1/(X)7Y> = <A(X7Y)7V>:<§XY:V>

= <}/7 _ﬁXV%
that is,
A, =—(Vxv)'.

In Chapter [2| we will study a particular case of immersions for submanifolds,

justifying our next definitions.
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Definition 1.11. An immersion f : M — M is called to be geodesic at p € M

if for every v € (Tp]W)L the second fundamental form is identically zero at p. An

immersion f is called tottally geodesic if it is geodesic for all p € M.

Definition 1.12. An immersion f : M — M is minimal if every p € T,M and

every v € (T,M)* we have the trace of the A, is zero, that is, trA, = 0.

Now, since f

: M™ — M"™™ is an immersion, taking p € M and {E;}, an

orthonormal frame of the (TpM)L, with  C M is a neighborhood of the p, where

f is an embedding. We can write, at p,

m m

AX,Y) =) Hi(X,Y)E; =) (AX,Y),E)E,

where H; = Hg, and

H(p)

=1 i=1

A; = Ag,. We defined the mean curvature vector as

m n

= %Z ZHi(ejaej)Ei :%ZA(ej?ej)

j=1 Li=1 j=1

where {e;}" ; is an orthonormal frame of the T,M. Of course that f is minimal if

and only if H(p) =0

The next definition will be explored in the Chapter [2| Section

Definition 1.13. Let f : M" — M an isometric immersion and pE M. An

immersion f is said to be umbilical at p if exist Z € (T,M)* such that

AX,Y)=(X,V)Z, ¥YX,Y € T,M (1.10)

An immersion f is totally umbilical if f is umbilical at every p € M



Here, it’s interesting to define an important operator that involves the second
fundamental form.
Let M™ be an n-dimensional Riemannian hypersurface of WH, with denote

the trace-free second fundamental form, the operator defined by
o=A—HI,

where A is second fundamental form and H mean curvature of the M.

This operator is massively studied for problems involving rigidity and classi-
fication of hyperfurfaces in Riemannian and Semi-Riemannian manifods, for exam-
ple, see [6418,53,54.98]. The square of the trace-free operator norm is given in the
form ||> = |A|> — nH?. In Chapter [2 using a limitation for the trace-free second
fundamental form and a condition of Do Carmo, Peng (see [42]), it was possible
to show that hypersurfaces of the hyperbolic space with this property are totally
umbilical, that is, ¢ = 0.

In the Section [1.3] we will show an Simons’ inequality for M"™ mean constant
curvature hypersurfaces immersed in Q"*!(x) (space form with sectional curvature
k), involving the trace-free second fundamental form (see eq. to show the
results of the Chapter [2] Section

1.1.3 The Index Lemma

Let J be a differentiable vector field along geodesic v : [0,a] — M. We called J
of the Jacobi field if it satisfies the Jacobi Equation

J"+RH,J)y =0 (1.11)

where J” = DTEJ and J(0) = 0. If exist ¢y € (0, a] such that J(0) = J(tp) = 0, so the
point ~y(tp) is said to be conjugate to v(0) along . The maximum number of such

linearly independent fields is called the multiplicity of the conjugate point (o).

Definition 1.14 (Index form). Let v : [0,a] — M be a geodesic, V be a piecewise
differentiable vector field along . For ty € (0,a] let

to
Li,(V,V) = ; {(V’, VY —(R(Y, V)Y, V)} dt (1.12)



where V'(t) = 2V (¢).

Lemma 1.15 (Index Lemma, see |16]). Let v : [0,a] — M be a geodesic without
conjugate points to v(0) in the interval (0,a]. Let J a Jacobi field along =y, with
(J,") =0, and let V a piecewise differentiable vector field along -y, with (V,~') = 0.
Suppose that J(0) = V(0) =0 and that J(to) = V(to), to € (0,a]. Then

LI, (J,J) < Li,(V, V) (1.13)
and equality occurs if and only if V.= J on [0, to]

This Lemma is very important for the study of the estimates of the curvature
and comparison of geodesics in Riemannian manifolds, for example Rauch Theorem

(see pg. 215 in [16]). In Chapter |4 we use this lemma for to proof the Theorem

1.2 Kato-type inequality

Let M™ be an n-dimensional hypersurface in a space form Q"!(x). We choose
a local field of orthonormal frame {e4} in Q""!(k), with dual coframe w4, such
that, at each point of M™, ey, --- , e, are tangent to M™ and e, is normal to M™.

We will use the following convention for the indices:
1< ABC--- <n+1, 1Z4,5,k,--- <n.

In this setting, denoting by wap the connection forms of Q"*!(k), we have

that the structure equations of Q"*!(k) are given by:

n

dwa = ZWAz‘ A wi + WAn+1 A Wnt1, wap+wpa =0 (1.14)
=1
n+1 1 n+1
doap = Y wacAwep — 5 > Kapopwe Awp (1.15)
=1 C.D=1
Kapcp = k(6acdBp —dapdBC). (1.16)

Remember that w,4+1 = 0 on M, so Z?’:l Wn+1i A w; = dwpt1 = 0 and using

Cartan Lemma [30], we can write

Wntli = Z hijw;,  hij = hj;. (1.17)
J=1
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This gives the second fundamental form of M, A = szzl hijw; ®w; @epq1.
Furthermore, the mean curvature H of M is defined by H = % o hii.

The structure equations of M are given by

n
dwi = Zwij ANwj, wij +wji =0 (1.18)
j=1
n+1 1 n+1
dw;j = Cz_:lw@'k N Wi — B k;l Rijpiwr A w. (1.19)

Using the structure equations we obtain the Gauss Equation
Rijii = 60051 — 0i10%) + (hihji — hihji) (1.20)

where R;j; are the components of the curvature tensor of M. The components h;jy,

of the covariant derivative VA, by definition, satisfy
n n n
Z hijewr = dhij + Z hyjwii + Z hikwg;- (1.21)
k=1 k=1 k=1

The Codazzi equation and the Ricci identity are, respectively, given by

hijk = hikj (1.22)
and
hijri — hijik = Z R Rkt + Z hmi R i (1.23)
m=1 m=1

where h;;, and h;j; denote the first and the second covariant derivatives of h;;
(more details see [76]) .
The Laplacian Ah;j of h;j is defined by Ah;j = >~} hijkx. From equations

(1.22) and (1.23)), we obtain that

Ahij = Z ki + Z i R + Z i Rijk- (1.24)
k=1 k=1 k=1

Since AJA|? = 20027 =y higAhij + 307 ema h?jk), from (1.24) we get

1 n n n n
§A|A|2 = > hI+ D hijhiri + > hijhwRige + Y hijhi Rigr.  (1.25)
i k=1 k=1 k=1 k=1



Taking a (local) orthonormal frame {e;}; on M such that h;; = p;d;;

A!A\2 VAP +ZMZ (nH)y; Z Riji(pi — )% (1.26)
=1 7] 1

Using the Gauss equation ((1.20)) in the frame above, R;j;; = & + j;j15, and the facts

of easy verification

n

> (ni— py)* = 2n|AP

i,j=1
> (i — ) = —2|A]*
i,j=1
we have
—A|A|2 VAP + kn|APP — |A[* + > pi(nH) i (1.27)

=1

To conclude the demonstration, we need the following lemma

Lemma 1.16. ( [104)]) Let M be n-dimensional immersed submanifold with parallel

mean curvature in Q"T™(k), then

2
VAR = [VIAI 2 = [9]A|I%, (1.28)

So, we get the following Kato-type inequality for n-dimensional minimal

hypersurfaces of Q" (x),
2
[AJAJA] +[A[* +n]A* > = |V| A% (1.29)
U

In the Chapter [2, Section the steps for demonstrations Kato-type in-
equality are given for minimal submanifolds of the Q"™ (k), for more details see
[40,90L/103]. Placing conditions on the length of the second fundamental form and
using Kato-type inequality for minimal submanifolds of the H"*™(—1), it was possi-
ble to show that immersions with such properties are totally geodesic in H"t™(—1)

and we produced an article with these results, see [81].
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1.3 Simons’ inequality: The traceless second fundamen-

tal form

Let Q"*'(k) be the space form of constant sectional curvature x and M" a
hypersurface in Q"*!(k) with constant mean curvature H. Choose {w;}" ; be a
orthonormal frame field defined on M. Then the structure equations of M are given

by

n
dw; = Zwij N wi, wij + wj; = 0
j=1
n
dwij = sz‘k A wij + Qij, (1.30)
k=1
where
1 n
ij =—3 > Rijuwr Awi, (1.31)
k=1

the functions R;j;;; are called the components of the tensor curvature with R;jx +
Riji, = 0. For any f € C?(M), we define its gradient and hessian by the following

formulas

df = fiw
=1

Zfz’jwj = dfi+2fjwji
j=1

j=1
fi and f;; are the components of the gradient and hessian, respectively.
n
Since ¢ = Z ¢ijw; @ w; be a symmetric tensor defined on M, written on

ij=1
the frame {w;}} ;. Note that the covariant derivative of ¢;; is defined by

n n n
D G = ddij + > Grjwri + Y diktr- (1.32)
k=1 k=1 k=1
The second covariant derivative of ¢;; is defined by

D Gijuiwr = dije + Y Smikwmi T Y GimkWmj + > PigmWmik- (1.33)
=1 m=1 m=1

m=1
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Taking exterior differentiate of (1.32)), we obtain

Z Pijriwr A\ wi = Z Prej i + Z PireS -

l,k=1

Therefore,

n
> (bijrr — bijie) wi Aw = Z Pijkiwr N wy + Z Pijikwr N Wy
k=1

k=1 Lk=1
= Z Prej Ui + Z DikS s
k=1 k=1
+D 0y + > bl
=1 =1
with (1.31)
(Pijrt — ijir) = Z G Romite — Y, Gim Romjtk- (1.34)
m=1

The Laplacian of the tensor ¢;; is defined to be Y, @ik and so

n
Aij = Y bijr
k=1
n n n

= > (Gijkk — ikgr) + > (Bikjk — Pikks) + > (Pikks — Dkkij)

k=1 k=1 k=1
+ (Z ¢kk> (1.35)
k=1 ij
Since ¢;; satisfying ”Codazzi equation”
Gijk = ikj»
we have from and -
Agij = <Z ¢kk> - Z Gk Romikj — Z Gim Bonkk; - (1.36)
k=1

ij  m.k=1 m,k=1
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n n
Being |¢]? = Z gb?j and tr¢ = Z @i Then equation (|1.36)) give us

i =1 i=1
1
§¢3Pﬂ2 = |VI¢l]* + |9|Al¢]
= D Gt Y bitre)y
i k=1 ij=1
- Z GijPmkBmikj — Z Gijim Rk - (1.37)
i,5,k,m=1 i,J,k;m=1

Choose a frame field {w;}!" ; which diagonalizes ¢ at each fixed point on
M", ie. ¢ij = N\idij. Then simplifies to
1 - . 1 O
SAIBE = D0 dh+ D Niltrédi+5 D Ry —A)? (1.38)
ij,k=1 i=1 ij=1
where ¢;;, are components of the covariant derivative of the tensor ¢, and R;j;;
is the sectional curvature of the plane spanned by {e;, e;}. Since ¢ = A — HI,
therefore, ¢pe; = A\ie; = (u; — H)e;, where Ae; = pie;, i = 1,--- ,n, are they the

eigenvalues of the second form operator A. By Gauss formula, we conclude that

1 — 1 « H <
3 D Rigij(i = N)? = 5 2 (F=Aa)(Ai — Aj)? - ) DA = xy)?
ij=1 ij=1 ij=1
H? )
+5 'Zl()\i — )2 (1.39)
1=

Remember that 0 = tr¢ =Y 1" | \;, it is easy to check that

Y (i=x)? = 2nje
ij=1
DN =N = 2m Y A,
i,j=1 4,j=1
DN = N = =209t
ij=1
From the above, it follows that
1
SO = [VIgl* +[g]Al4]

= Y ot —nHY N+ n(H? + k)¢l (1.40)

ij,k=1 i=1
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In this case, it follows from ( |[17] (2.3), (2.4)) that

" 2
Z Do > 5\V|¢H2 + V|| [?

i,j,k=1
To conclude the demonstration we need the following lemma
Lemma 1.17. ( [4|]) Let A\;, i = 1,--- ,n, be real numbers such that > A; =0
and Y | A2 = 82, where B = const > 0. Then

n

n—2 3 n—2 3
S S NS
n(n—l)ﬁ S; = n(n—l)ﬂ

Proof of the lemma. We can assume that § > 0, and use the method of La-
grange’s multipliers to find the critical points of g = >, )\? subject to the condi-
tions: Y. A =0, Y0, A? = 2. It follows that the critical points are given by

the values of \; that satisfy the quadratic equation
A?—,u)\i—azo, 1=1,---,n.
Therefore, after reenumeration if necessary, the critical points are given by:
)\1:)\2:---:)\p:a>0, )\p+1:/\p+2:"-:)\n:—b<0. (1.41)
Since, at the critical points,
B2 = Y N =pa’+ (n—p)’
i
0 = Z)\i:pa—(n—p)b
i
g = Z)\? = pa® + (n — p)b°.
i

Solving the system, we have

2="TPgp g P p g_<n—pa_pb>62_
pn n(n — p) n n

It follows that g decreases when p increases. Hence g reaches a maximum when

p = 1, and the maximum of g is given by
n
maz(g) = Z N=a®— (n-1)p
i=1

= (En —1)b)3 = (n— 1> =n(n —2)(n — 1)
_ 2 p 1.42
L (1.42)



O

So we have finally the following Simons’ inequality for M"™, mean constant
curvature hypersurfaces immersed in Q" (k)

n—2

vn(n—1)

2
[#1Al¢] > ~VIoll* — [ol" - HIoP + n(H + r)lg]*. (143)

0

In the Chapter [2], section Placing conditions on the length of the trace-
free second fundamental form and using Simons’ inequality for M™ mean constant
curvature hypersurfaces immersed in H"*!(—1), it was possible to show that im-

mersions with such properties are totally umbilical in H**1(—1).

1.4 Warped Product

Let’s turn our attention to a class of metrics on the product variety B x F.

Let’s define the warped product (see [14}/75]).

Definition 1.18. Let be (B, ¢g) and (F, gr) be Riemannian manifolds and f > 0
a function on B. The warped product M = B x; F'is a product manifold B x F

with metric
g=r"gp+ (7" f)c"gr,

where 7 and o are projections of B x F' in B and F, respectively. Explicitly, for

u, v € Ty )M, we have

9(u,v) = gp(dr(u), dr(v)) + (f o m)’gr(do(u), do(v)).

Remark 1.19. If f is a constant equal to 1, we say that M is a Riemannian product
and g the product metric. When a manifold M can not be written as Riemannian
product of the others two manifolds we say that it is irreducible.

The fibers p x F' = 771(p) and the leaves B x ¢ = 0~ 1(q), with p € B and

q € F are submanifolds of M. The warped product metric is characterized by
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1. For each ¢ € F, the mapping 7|(B X ) is an isometry onto B,

2. For each p € B, the mapping o|(p x F') is a positive homothety onto F', with
scale factor 1/f(p).

3. For each (p,q) € M, the leaf B x ¢ and the fiber p x F' are orthogonal in (p, ¢),

so we can decompose T(;, )M in direct sum
TppM = Tip.g) (B X 0) & Tip ) (p X F).

We will call the vectors tangent to leaves of the horizontal and tangent to the
fibers are vertical. If v € T, M denoted by hor(v) and ver(v) the components

horizontal e vertical de v, respectivamente.

Remark 1.20. For a product manifold B x F, denoted by §(B) the set of differ-

entiable functions on B, We have the following notions of lifting
1. If h € §(B), the lift h for Bx Fish=honr € F(B x F).

2. If v € T,B and ¢ € F so the lift ¥ do the v in (p,q) is the only vector in
Tp,q)(B X q), such that dr(7) = v.

3. If X € X(B), the lift of X to B x F is the only vector field X whose value at
each point (p, q) is the lift of X (p) to (p,q). This field is differentiable and is
the only element of X(B x F), such that dr(X) = X e do(X) = 0. Denoted
by £(B) the lift set elements of the X(B) to B x F.

Functions, tangents vectors and differentiable fields onto F' can be lift to B x F

similarly using the projection o.

Here, are some results about the warped product that will be very important

throughout the text. These results can be found in |75].

Lemma 1.21. If h € §(B), so the gradient of the lift hom of h to M = B x; F is
the lift to M of the gradient of h on B.

Denoting the Riemannian connections of the M, B e F by V, VZ e VI |

respectively, we can relate them as follows:
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Proposition 1.22. Let M = B x; F a warped product. If X,Y € £(B) and
V,W € £(F), so

1. VxY € £(B) is the lift of VXY from B,

2. VxV =vyx =Xy,

3. hor(VyW) = — 1w f,

4. ver(VyW) € £(F) is the lift of VEW from F,

where V f is the gradient of f in the metric g.

We will now present a result that relates the curvatures of M with the base

curvatures B, at the leaves F'.

Proposition 1.23. Let M = B x; I be a warped product with tensor curvature R.
Let RP and R the pullback of the tensor curvature of B and F, respectively. If
X,Y,Z € £(B) and U,V,W € £(F), so

1. R(X,Y)Z € £(M) is the lift of RB(X,Y)Z € £(B) from B,

2. RV, X)Y = w‘/, where V2 is Hessian of the warped product M, Which
coincides with the Hessian of B in horizontal vector,
3. RIX,)Y)V =RV, W)X =0,
4. Rx, V)W =By vy,
5. RU,V)W = RE(@U, V)W — SLZDqw, uyv — (w, v)u},
As a result of the above result, we’ll show how the Ricci tensor of the warped

product, Ric. We denoted Ric? and Ric! the pullback of the Ricci tensor of B and

F' respectively.

Corollary 1.24. About a warped product M = B x¢ F with n = dim(F) > 1, if

X, Y are horizontal and V, W wvertical, so

1. Ric(X,Y) = RicB(X,Y) - ”w



2. Ric(X,V) =0,
3. Ric(V,W) = Ric"(V, W) — (V,W){28L 4+ L:(n — 1)(V/,V )},
onde Apf is the laplacian of the f on B.

The above mentioned results demonstrations can be found in [14] and [75].

1.5 Weighted Manifolds and the Index

Let (M™' g, e/du) be a smooth metric measure space, which is a (n + 1)-
dimensional Riemannian manifold with a weighted volume form efdu on M, where
f is a smooth function on M and du is the volume element induced by the metric g.
In this work, we denote by ”bar” all quantities on (M™! g), for instance V and Ric
are the Levi-Civita connection and the Ricci curvature tensor for g, respectively. In

(M™*1 g, efdp), the Bakry-Emery-Ricci curvature tensor will be defined by
Rics == Ric+ V' f.
where V° f is the Hessian of f for g.

Remark 1.25. In literature it is common to find the definition of the weighted
manifold as (M™1,G, e~ fdu). At the end of this section we will better understand

that defining a weight manifold is directly related to the manifold in question.

Now, consider an n-dimensional smooth immersion h : £" — M"! we
know that h induces a metric ¢ = h*g on ¥, thus h : (X", g) — (M"*!,g) is an
isometric immersion. Here V, Ric, A and do denote, respectively, the Levi- Civita
connection, the Ricci curvature tensor, the Laplacian, and the element volume form
of (X, 9).

The restriction of the function f on ¥ give us a weighted measure efdo on
), and hence (X, g,e/do) is a smooth metric measure space. Associated with this

metric we have the weighted Laplacian, or drift Laplacian Ay on ¥, defined by

Asu = Au+ (Vf,Vu).
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The second fundamental form A : T,¥ x T,X — R is given by
AX,Y) = (VxY,v)v

wherep € ¥, X,Y € T,%, vis aunit normal vector at p. Taking a local orthonormal
frame {e;}" | of 3, the components of A are a;; = A(e;,ej) = (Ve,v,¢€;), and the

shape operator is
AX =Vxv, X €T3,
Moreover, the Mean curvature H of X is
n
H=1tr(A) = Z Q.-
i=1

It is well known that in (¥, g, e/do) the weighted mean curvature Hy of the

hypersurface ¥ is defined by
Hy=H+ (Vfv), with veXt
3 is a f-minimal hypersurface if
H+ (Vf,v)=0. (1.44)
We define the weighted volume of X by

Vi(E) = /Z el do. (1.45)

Let F': 3 X (—&,e) — M be a variation of ¥, i.e., F' is a map with compact
support such that F(xz,0) = z for all x € ¥. An immersed hypersurface ¥ in
(M, g, efdy) is called f-minimal if

% li=0 V(F(%,t)) =0 (1.46)

for all variations F' of ¥. Therefore, ¥ is a f-minimal hypersurfaces of M if and
only if it is a critical point of the weighted volume functional.

Moreover, an immersed hypersurface ¥ C M is called L -stable if f-minimal
and

d2

5 im0 VA(F(M,1) > 0 (1.47)
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for all variations F' of 3.

We consider the following useful lemma.

Lemma 1.26. [70,80] For a L¢-stable hypersurface ¥ of M the following inequality

holds for any smooth function n € C§°(X):
[0 = (AP + Riegv)leldo = o, (1.48)
b
or equivalently

/ —n[Asn + (A + Rics(v,v))nle! do = —/ nLneldo > 0. (1.49)
b b

Now we assume that X is a two-sided hypersurface, that is, there is a globally-

defined unit normal v on ¥. The Ly operator on X is given by
Ly:= Af+(|A|2+mf(u, v)). (1.50)

The operator Ly is called L-stability operator of ¥. Therefore, we can associate
the problem of L -stability with the Index Problem. Since Ay is self-adjoint in the
weighted space L%(e/do), we may define a symmetric bilinear form By on C§°(X)

by

Byo.¥) = - /E oLybed do
_ /E[<V¢,V¢>—(|A[2+Ricf(1/,1/))¢w]efda. (1.51)

Definition 1.27. The Ly-index of ¥, denoted by Lg-ind(X), is defined to be the

mazximum of the dimensions of negative definite subspaces for By, that is

Ly-ind(X) = sup Ljy-ind(S2),
Qccs
In particular, using Lemmam Y is L-stable if and only if L¢-ind(X) = 0.
Furthermore, from Lemma we may define the Dirichlet problem for Ly on a

compact domain € C X:

Liu=—Xu, uecCi(Q); ulpn=0.



and that the first eigenvalue of the Dirichlet problem for L operator is given by

M) = in JsIVaP = (AP + Ricy (v.)?)e! do-
neCE (2)\{0} Joreldo

Therefore, if the first eigenvalue of the Dirichlet problem for the stability
operator Ly is non-negative for all compact, 2 CC X, we have that ¥ is L-stable, or
yet, if the number of negative (Dirichlet) eigenvalues of Ly over supremum compact
domains of ¥ is zero, L¢-ind(X) = 0, which implies that ¥ is Ls-stable .

Following we present a small motivation for the study of weighted manifolds.

1.5.1 Motivation

Weighted volume measures arise naturally from the study of conformal defor-
mation of a Riemannian metric. Let (M,g) be an n-dimensional and complete
Riemannian manifold, and let A, and 4 denote the Laplace-Beltrami operator and

the Riemannian volume measure respectively. In a local chart, write g = (gi;). Then

0 0
ij —
g 9 V99 oz, and dug = /gdx

A = 1
9= .
\/gi,jzl v

where (¢¥) = (g;;)~! and g = det(g;;). Suppose the metric g is conformally de-
formed by a positive smooth function ¢ on M, that is, let g be a new metric on M

defined by, X, Y € TM
9(X,Y) = pg(X,Y)
Then the volume measure pg is the weighted volume measure gagug and
-1 n
By =7 {8+ (5 1) Ving}
and the transformed formula of Ricci curvature is given by ( See [14])
) ) n—2 n—2
Ricg = Ricy— THess(lmp) + TVlncp ® Ving
1 —2
—= {Aglmp + n\Vlnap\Q} g
2 n

where the hessian and gradient are computed using the metric g.
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We want to establish geometric results relating to the metric g by using the
data associated to the original metric g. To this end we need a concept of curvature
associated to a weighted Laplacian. Such a concept has been introduced by Bakry
and Emery [13]. Let L be a diffusion operator. Then the metric I" and the curvature

operator I'y are defined by
O(fg) = 4 {L(fg)~ FLg— gLf}
Dafi) = 4 {EN(fg) ~T(Lfg) ~T(Lg, )}

respectively.

Then if L = Ay, we have (cf. |13] Proposition 3, p. 187)

L(f,9) = (V£ Vg)

and
To(f,g9) = (Hess(f), Hess(g)) + (Ric + Hess(h))(Vf,Vg) Vf,g € C*(M)

We call Ric, = Ric — Hess(h) the ”"Ricci curvature” of the weighted Laplacian
Ap. It is natural to generalize known results for A to Ay, using Ric — Hess(h). For

example we have the following several well known results using Ricci curvature.

Theorem 1.28 ( [99]). Every non-compact manifold with non-negative Ricci cur-

vature possesses infinite volume.

Theorem 1.29 ( [71]). Let M be an n-dimensional and complete Riemannian man-

ifold, and Ric > k? for some positive constant k. Then M is compact and the

diameter d(M) < \/nk~!.
The following simple example shows that such results are no longer true for
a weighted Laplacian if we replace Ricci curvature by Ric — Hess(h).
Example 1.30. Let M = R? be the Euclidean space with the standard metric, and
let h(z,y) = —(2% +y?). Then Ric — Hess(h) = 2 but
Vol (M) = /M eMdady < oo

although M is non-compact, where Volp(M) < oo, the volume associated to Ayp,.

Moreover, Theorem does not hold if we replace Ricci curvature by Ric—Hess(h).



Chapter 2

Minimal submanifolds and

CMC hypersurfaces

In this Chapter we present results obtained from studies related to do Carmo-Peng’s
theorem, thus achieving conditions for having totally geodesic immersions or totally
umbilical immersions in submanifolds of the hyperbolic space and conditions for
a complete non compact CMC hypersurface in M{LH(C), where ¢ = {—1,0,1}, is
isometric hyperbolic space H"(—r2).

The first section is the result of studies with Prof. Dr. Xia and is based on work

of the H. Pina and C. Xia [81].

2.1 Rigidity of complete minimal submanifolds in a hy-

perbolic space

We shall use Simons’ formula, the technique developed in do Carmo-Peng’s pa-
per [17], the estimates for first eigenvalue obtained in Cheng-Yau [43] and Cheun-
gLeung [39] and the Sobolev inequality in [58] to prove rigidity theorems for minimal

submanifolds in a hyperbolic space. Our results are as follows

Theorem 2.1. Let M be an n-dimensional complete immersed minimal submanifold

in H™ such that (n? — 6n + 1) +8/m > 0 and let d be a constant satisfying



1. ifm=1 and n = 2, then

2. ifm=1and n > 3, then

3. ifm>2 andn > 5, then

de(n;n1)2 (1—\/1—(7147‘1)2(1—7371)1+\/1—m4nl)2(1—&)).

Suppose that

S,y 1Al
li s 100 R ) 2.1
m sup s , (2.1)
and
d—142)= if m=1,
sup |A|*(z) < D(n,m,d) = ( ") 2 d (22)
= PO O —n), if mz2,

then M 1is totally geodesic.

Theorem 2.2. Let M be an n-dimensional complete immersed minimal submanifold

in H"T™ such that (n? — 6n + 1) + 8/m > 0. Suppose that

| Al
lim sup 7IBP (#) =

0 2.3
R—o0 R? ' ( )

where d is a constant satisfying

1. ifm =1 and n > 3, then

e <(n1)7(n2)(n1));

n n

2. 4fm>1andn > 5, then

1e 0 (1 e A (- 2) e e s (- 2))

There exists a positive constant C' which depends only on n, m, and d such that if

/M A" < C, (2.4)

then M s totally geodesic.
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2.1.1 Proof of the main theorems

Before proving the results, let us recall some known facts we need.
Let M be a complete submanifold immersed in a simply connected space
form M™™(k) of constant curvature k. We adopt the usual convention on the

range of the indices
1<ABC,---<n+m, 1<i,jk --<n, n+1<a,pf,7 - <n+m.

Choose a local orthonormal adapted frame {e,} in M™ ™™ (k), so that, when
restricted to M"™, the vectors e,, are perpendicular to M. Let {wa} and {wap}
be the dual basis to {e4} and the connection forms on M"™t™(k), respectively.

Restricting these forms to M™, we have

L o, g a _ o
Wi = hU(JJ, h‘l]_h‘]z?

and

Riji = c(0ixj1 — 6udj) + > hiphSy — hhS,
(0%
) . 1
A= hjw' @w! @ eq, H= Ezh%%
(]

. . k
VA:h%ka®wj®w ®€aa h%k: 36]7

where we have used the Einstein’s summation convention, A is the second funda-

mental form, R;;; are the components of the Riemannian curvature tensor, ﬁ is the

a

mean curvature vector of M and h L), are the components of the covariant derivative

of h% Let

2
A EENDY <Z hz)

7:7.]‘7&
be the squared length of the second fundamental form and the mean curvature of

M, respectively. With these notations, the Gauss Equation has the shape:

« a a «
W — S = > Wi Rewr — Y hi Ryj.
t t
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When M is minimal, that is, # = 0, using the definition of the Laplacian of hf},
the Gauss and Codazzi equations, we can obtain the well-known Simons’ formula
(cf. [40], [90]):
%A|A|2 = [VAP +nc AP + > tr(A*A% — APA*)? = " 1r(AAP),  (2.5)
a, a,B
where VA2 = >~ (h&;)? and A% = (h)nxn.

1,5,k
The last terms in the above expression can be estimated as (cf. [40], [90],

[103])

D tr(A*AP — APA™)? =N (A% A%) < b(m)|A%, (2.6)
o, o, B
with b(1) = 1, and b(m) = 3 if m > 2
Recalling that AJA|? = 2|A|A|A| + 2|V|A|[?, using (2.6), Lemma and
taking k = —1, we get the following Kato-type inequality for n-dimensional minimal

submanifold of H"*(—1):

[AJAJA] + b(m) | A[* + n| AP? > %\VIAH2 (2.7)
Setting 1 = %, we have
AJA|" = n(n — VA" VIA[]? + | A" AlA]. (2.8)
Multiplying by |A|" and using , we have
[APAJA[T = A" (n(n = DIA" V| A[]® + | A" AJA]) (2.9)

—1
- HT\VIA!”\Q+n\A|2”’2\AIA!A\

nm — 2
> (1 - > IVIA|"|? = (nm + nb(m)| A]*)| A]*
nnm

Let ¢ be a function in C§°(M). Multiplying (2.9) by ¢* and integrating on M, we

get

i 2 2 2\ 2 2
<1_ )/M¢‘V’A‘"' < /M<m7+nb<m>\Ar )24 (2.10)

nmn

+ / G2 A[TA|A]".
M
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It then follows from divergence theorem that

_mn—2 2 1|2 _ 2 n2 _ n n
(1 ) /vamu < /M¢|V|A\| 2 /M¢1A\ (Y6, VIA") +

nmn

+ / (nap -+ mb(m) | A2) 2| AP,
M

That is,

(2-’”"‘2)/ PVIAP < —2/ olA"(Vo, V|A]") (2.11)
M M

nmn
+ [ (o nbim) AR) A
M
The following estimates for the first eigenvalue are important tools for us.

Lemma 2.3. ( [45/) Let M be a complete Riemannian manifold. Suppose that
there are numbers a and ¢ such that, for all geodesic balls B,(r) of radius r around
some point p, Vol(By(r)) < cr®. Then liminf; o 4°A1(B(2Y)) is bounded, where
A1 (Bp(2%) is the first Dirichlet eigenvalue of the Laplacian of B,(2%). In particular,
lim inf, 00 721 (Bp(r)) is bounded and

2
A (M) = inf S V7]

Sy VT 2.12
feH (M), f£0 [y (2.12)

Lemma 2.4. ([101)]) Let M be a complete simply connected Riemannian manifold
with sectional curvature Ky < —1 and let N be an n-dimensional complete non-
compact submanifold immersed in M. Assume that the mean curvature vector of N
satisfies |[H|(z) < (n—1)/n < 1,Vz € N. Then

(n—1—nl)?

A(M) > 1

(2.13)
The Sobolev inequality below is needed in the proof of Theorem

Lemma 2.5. (See [58]) Let M be an n-dimensional complete hypersurface in a
Hadarmard manifold M with mean curvature H. There exists a positive constant a

which depends only on n such that

</M|¢|"nl>n;1 S“/M(|W’|+¢H)7 (2.14)
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for any ¢ € HE(M).
Now we are ready to prove the main results in this section.
Proof of Theorem From , we can find a sufficiently small € > 0 such
that

2
9 < _nm—2 (n—1) B )
nb(m)|A[*(z) +nn < <2 o > I eVeeM  (2.15)

We have from Lemma 2.4] that

4
APg? < / V(o|AIM)2. 2.16
A < s [ wieiam) (216)
Substituting (2.15)) and (2.16)) into (2.11)), we get
(2—”“”‘2> [ wiape (2.17)
nmn M
mn — 2 4e
< — n n _ _ my(2.
< 2 [ olap@o vl + (2- "0 ) [ welap)
That is,
el M (2.18)
=12 |

<2 /M GIA" (Y6, VIAI") + (14 6) /M APV,

where § =1 — mn=2 _ _dc _ Combining (2.18)) with Young’s inequality
(n—1)

nmn

€ 20, (=1 2 2
% [ GAr©evIAY < 5 [ AP+ Bl [ japnve,

€
we infer

(n

—1)2
36/ VAR < (1454 g / A2V |2 (2.19)
(n—1)% Ju € M
Fix a point p € M and choose ¢ to be a cut-off function with the properties

0<6<1, V4| < =, ¢{ Loon BlR) (2.20)
R 0 on M\ B,(2R)

One can then easily get from (2.19) that

i

P

VAPPSR < / V] A2
) M

2n
(n— 1) (n=1) 5\ Jp,em 14l
< Bl (el n— a21)
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Taking R — oo and using (2.1), we conclude that V|A| = 0, that is, |A| =
¢ = const. If ¢ # 0, we know from ([2.1)) that
. Vol[B,(R)]
1 p
R
It then follows from Lemmal[2.3|the A; (M) = 0 which contradicts with (2.13)). Hence
|A| = 0.

= 0. (2.22)

2(n—1)
Proof of Theorem Replacing ¥ by ¢ 72 in (2.14)), we get

2(n 1) n r_zl 2<n 1)

using the Holder’s inequality, we have

2\ V|2 9.23
(/Mrwr ) < a [ vu (2.23)

2
where a1 = [aﬂn_l)} . Taking n = 4,9 = |A|"¢, with ¢ € C5°(M), we get

n—2
([owo=)™ < af waror. oo

2
n

Setting v = ( I} M ]A]") and using Holder’s inequality again we obtain

fooe < () (funa)”

< any [ V(4P (2.25)
M
Combining (2.11]), (2.13)) and (2.25)) we have
( ) [ #miare < -2 [ olapve.viap + (2.26)
nmn M

(o + 755 ) [ 9.

that is,

<2—m”‘2—l>/ FIVIAPE < 20 -1) / OA["(Vo, VIA") + (2.27)
M M

nmn
0 / APV 2.
M



where
4dnn

l=mnb —.
77a17+(n71)2

Observe that the condition on the number d = 27 in Theorem [2.2] implies that

mn — 2 4nn

2 — > 0.

nmn (n—1)2

Now let us take the constant C' in Theorem ([2.2)) as

9 _ mn=2 4ann 3
C = nmn (n—1)2
nbay '

With this choice for C| it is easy see that if (2.4)) holds then

2_mn—2

—1>0.
nmn

Hence, we can find a £ > 0 so that

(2_mn—2_l> S ¢
nmn

Consequently, we have

(2.28)

(2.29)

2 n|2 o n n 2n 2
¢ /M¢|vrA\| < o1 /M¢1A| (V. VAP +1 /MA| Vo2 (2.30)

For any o > 0, it holds

2 2 ‘l — 1’ 2 2
2(0-1) [ olAP(Vo,VIAP < i =1lo [ FOIAPE -+ [ jaPve,

(2.31)

Making an appropriate choice for o so that |l — 1| < %, we can deduce from 1)

and (2.31) that there exists a constant § > 0 such that

/ SV < 6 / APV
M M

(2.32)

One can now define the cut-off function as in (2.20]) and use the same arguments as

in the proof of the final part of Theorem [2.1] to show that M is totally geodesic.
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2.2 CMC hypersurfaces in hyperbolic space and semi-

Riemannian manifolds

This section is the result of studies with Prof. Dr Xia, Prof. Dr. Wang and Prof.
Dr. Adriano and is based on work H. Pina and C. Xia [81]. I would like to thank
you for your contributions.

An important issue in differential geometry is to investigate relations between
the geometric structure and the geometric invariants of submanifolds. A pioneering
work in this direction due to Simons [90] states that if M is an n-dimensional closed
minimal submanifold in an (n 4+ m)-dimensional unit sphere with squared norm of
the second fundamental form less than n/(2—1/m), then M is totally geodesic. The
proof of this result is based on so-called Simons’ formula about the Laplacian of the
squared norm of the second fundamental form of the minimal submanifolds. The
appearance of Simons’ formula is a landmark in the theory of submanifolds. The
generalizations of Simons’ formula have been widely used to prove rigidity theorems
for submanifolds. Many interesting gap results have been proven during the past
years.

In this section, we study rigidity phenomenon for complete non-compact hyper-
surfaces with constant mean curvature (CMC hypersurfaces) in a hyperbolic space
and space-like CMC hypersurfaces in a Lorentz space form. Before stating our re-
sults, let us fix some notations. Let H"*!(—1) be the (n + 1)-dimensional complete
Riemannian manifold with constant sectional curvature —1 and let M (c) denote
the Lorentzian space form with constant sectional curvature ¢ € {—1,0,1}. Accord-
ingtoc=1,c=0o0r c = —1, M{‘H(c) is called a de Sitter space, a Minkowski
space or anti-de Sitter space, respectively. A hypersurface in a Lorentzian manifold
is said to be space-like if the induced metric on the hypersurface is positive definite.
Let M be an n-dimensional complete CMC hypersurface immersed in H"!(—1)
or an n-dimensional space-like CMC hypersurface immersed in M{”l(c). In both
cases, we denote by A and H = %trA the second fundamental form and the mean

curvature of M, respectively. Without loss of generality, we will assume throughout
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this paper that H > 0. Let (,) be the Riemannian metric on M and ¢ the traceless

second fundamental form of M which is defined by
(pX,Y) = (AX,)Y) - H(X,Y), VXY € T,M, pec M.
In the first part of this paper, we consider CMC hypersurfaces in a hyperbolic space.

Theorem 1. Let M be a n(> 2,# 3)-dimensional complete non-compact CMC

hypersurface immersed in H" 1 (—1) such that

n(n—1) —2\/(n—2)(6n—9).

o
< n2 +dn—8

(2.33)

Suppose that
Sy 191

lim sup ——%—— 2

R—+o00

=0, (2.34)

for some d satisfying
1— H?) )(H? -1
(n —(l—nH (1 \/1+ n—l—nH) : ’ (2:35)

2)(H? — 1)
1 1
+\/ * n—l—nH) >’

where B,(R) denotes the geodesic ball of radius R centered at p € M. If

- n — —n 2
sup <\¢I2+"(”)HI¢I> < —nndQ)( 1d 1) i - 12),(2.36)

xeM ( — 1)

then M 1is totally umbilical.

In next result we replace the point-wise condition (1.10) by a global condition,

that is, the L"-norm of |¢| on M.

Theorem 2. Let M be a n(> 3)-dimensional complete non-compact CMC' hyper-
surface immersed in H"1(—1). Suppose that (2.34) is satisfied for a constant d
such that

2n(1 — H? 1— H? n—2)(1— H2
2Ot (1m0 1 2 b
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with

n(n—1) —2\/(n—2)(6n—9).

o
< n2 +dn—8

(2.38)

If there exists a positive constant C' which depends only on n, H, and d such that

/ g < C, (2.39)
M

then M s totally umbilical.
In the next section, we will cover ~CMC hypersurfaces in semi-Riemannian

manifolds M{""(c), with constant curvature ¢ € {~1,0,1}.

CMC Hypersurfaces in M (c)

When the ambient spacetime is Lorentz-Minkowski space M]"1(0) = L"! and the
spacelike hypersurface is given as a graph of a certain function u, the condition of

constant mean curvature H is written in terms of u as follows:

(1 — |[Vul®)Au + (V20)(Vu, Vu) = nH(1 — [Vu?)2,  |Vu2 <1
where, V, V2 and A denote the gradient, Hessian and Laplacian of M, respectively.
Cheng and Yau [38], to show that if M be a maximal, so the only entire solutions
to that equation are linear. The case H # 0, which has a completely different
behaviour, was extensively studied by [2,92].

In 1977 Goddard, conjectured the following: Every complete spacelike CMC
hypersurface in M7t (1) = SPT!(1) must be totally umbilical. The first result
in this direction was obtained by J. Ramanathan [84], 1987, he proved that if a
complete spacelike CMC hypersurface in M3(1) with H? < 1, then the surface is
totally umbilical. Akutagawa [2], 1987, has proved that Goddard’s conjecture is
true in M} (c), with ¢ > 0, when n = 2 and H? < cor n > 3 and H? < 4(7;;21).
Montiel [68], 1988, exhibited examples of complete spacelike CMC hypersurfaces in
M’f“ (1) with H? > 4("71;21) and being non totally umbilical, the so-called hyperbolic

cylinders, which are isometric to the Riemannian product M} *(c1) x M{ (cz), where
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c1 >0, ca <0and é + é = 1. Montiel to showed example: Consider the spacelike

hypersurface embedded into S’f“ given by

M"={z eS|~z +ai+ - +aj =—sinh’r}

with r > 0 and 1 < k < n. M is isometric to the Riemannian product HF (1-—

coth?r) x S**#(1 — tanh?r) with mean curvature

4(n—1)

1 2
HZZﬁ(cothr+(n—1)tanhr) > 5

n

Then the Goddard’s Conjecture is not always true. The following theorem is
generalizations of the [38] and can be seen as an extension of Goddard’s conjecture
for complete non-compact spacelike CMC hypersurfaces in MI"H(C), where ¢ =

{-1,0,1}.

Theorem 3. Let M be an n(> 3)-dimensional non-compact complete spacelike CMC
hypersurface immersed in Mf“(c), c € {-1,0,1}. Suppose that l) is satisfied

for constant d such that

(n—1)(H?> —¢) — /(n —1)2(H% — ¢)2 — H%(n? — 4n + 5)(H% — ¢)
nH?(n? —4n +5)

< 3 = 16)1(7%— %) < (2.40)
(n—1)(H?—c¢)++/(n—1)2(H%2 — ¢)2 — H2(n2 — 4n + 5)(H? — ¢)

nH?%(n? — 4n +5) ’

with

xeM n(n — 1) n—2 4
If the first eigenvalue of Laplacian of M satisfies

- n2H2d? n2—4n+5
16(n—2) \n(d—1)+2)/"’

inf <|¢|2 o MHM)’ —{—n(c—H2)> > _ (n2_47’L—|—5> nH2' (241)

A1(M) (2.42)

in additional for ¢ =1 if H > gggf; Then M = H"(c — H?), c = {-1,0,1}.

The next theorem extends the result obtained by J. Ramanathan [84] for surfaces

in M3 (c).
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Theorem 4. Let M be a non-compact complete space-like CMC' surface immersed

in M3(c), ¢ = {—1,0,1}. Suppose that (2.34)) is satisfied with a constant d satisfying

de (0, ;) (2.43)

and the first eigenvalue of M bounded by

d(H? - ¢)

)\1(M) > 5 s

(2.44)

with H > 1 if c=1. Then M = H?(c — H?).

Remark 1.1 An important result due to Cheng-Yau states that the first eigen-
value of a complete non-compact Riemannian manifold with polynomial volume
growth is zero (Cf. [43], [66]). Combining this result with the Calabi- Cheng-Yau
theorem (Cf. |21], [34]) we know that the mean curvature H of M in Theorems 1.3,
1.4 and 1.5 is not zero since A\;(M) > 0. The following theorem considers maximal

immersions in anti de-Sitter space M} (—1).

Theorem 5. Let M be an n (> 2)-dimensional complete mazimal spacelike hyper-

surface immersed in M7 (—1). Suppose that

1
lim — Alt=0 2.45
R%HJrrloo R2 /Bp(R) | | ’ ( )

where d is a positive constant such that

n;l cd< (n—l?n(n—Q)

(2.46)

where By(R) is the geodesic ball centred inp € M. If the first eigenvalue of Laplacian
of M bounded lower by

(2.47)

then M s totally geodesic.

2.3 Proof of the main theorems - H""!(—1)

From the definition of the traceless part of second fundamental form of M, that is,

¢ = A — HI, we have |¢|> = |A|?> — nH?. Both parts of this work we will consider
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H > 0, otherwise simply reverse the orientation of M. Cheung and Zhou [19] get

the following Simons’ type inequality for traceless second fundamental form:

2 n(n — 2)
Alg| > = 2@t — ———=H|¢|* + n(H* - 1)|¢|. 2.4
oialol = 2IVI01R ol = SE=BHloP na - Do 2a)
Taking 6 = %H and B = n(H? — 1) then the above inequality is rewritten as
2
[#lAlg] > ~[VIgl[* — [g]* - OloI" + Blol. (2.49)

By (2.49), we compute

9I7Alg]7 = |¢|7div(V[¢]7)

-1
= T VI87)% + oo 2 el Al¢)

g

g

—1 20 _
IV[6]7]? + ;!W” ?|V[g]|? (2.50)

g

. (|¢’20+2 - 9’¢‘20+1 + 6’¢‘20)
= (1222 10 — o (o + 046l - )l

where o is a nonnegative constant. Let f € C§°(M). Multiplying (2.50) by f? and

integrating on M, we obtain

- n=2 o2 2 2| o o 2 _ 2| 4120
(1 )/er«m 2 < [ Pieraier o [ (o +olol - 5) 210

no

Applying the divergence theorem in inequaliy above we obtain

—2
(2—nm, ) /MIV!qbl"l%f2 < -2 /M|¢!”f<V|¢|",Vf>+ (2.51)
+o [ (167 + o161 = B) 216,
M

Proof of Theorem I} From (2.33)), (2.35) and (2.36) taking d = 20, we can find

€ > 0 sufficiently small in

cefo(2-n=2)(no1onH) 2.52
(0 (-") ) (25

no 4o

such that

_ _ o 2
612+ 0lg] — 8 < <2— ”m2) no1-niy . (2.53)
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Substituting in (2.51)) we have

o n—2 0|2 £2 o o o
(2 ) /M\V|¢| 2P < 2 /Mr¢| F167, Y f) (2.54)

no

.\ <<2 B nn—gg) (n— 14—nH)2 _a€> /M Lo

Taking v = M, by Lemmas and we get

We can taking f = 4|7 f in inequality above and substituting in (2.54)) we have

-2
<2— nm, )/M|V|¢>|”|2f2 < —2/M|¢|"f<V|¢|”,Vf> (2.55)

+((2-222) - %) [ 9o,

Oi o2 p2 o o 20 2
- /M\w 22 < 2 /Mw FVI6, V) + (5 + 1) /Mw V£, (2.56)

So we got the following inequality

where 6 =1 — ”n—_f — "75 Using Young’s inequality in 1) we have

3oe

v 0|2 £2 4l 2 20 2
[ vierEr < @1 2 [ ePoss e

Fix a point p € M we can choose f to be a cut-off function with the properties

1 1 on By(R)
R 0 on M\ B,(2R).
One can then easily get from (2.57) that

I

P

Taking R — +o00, by (2.34)) we conclude that V|¢| = 0, that is, |¢| = ¢, where c is
constant. If ¢ # 0, we know again from ([2.34]) that
) Vol[By(R)]
lim sup ——-—=
R—o0 R?
It then follows from Lemma the A;(M) = 0, which contradicts with (2.13]).
Hence |¢| = 0. O

4 4
Vg2 < / VISP < D41+ Ds2) / 6PV 2 (2.59)
R) M 30—6 g€ M

=0. (2.60)
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2(n—1)

Proof of Theorem [2| Let ¢ € H}(M), ¢ > 0. Replacing ¢ by ¥ =2 in (2.14

and using Holder’s inequality, we get

(/ wf’é>"s(z1/ (Vo] +wH)?, (2.61)
M M

2
where a1 = [aQ(n_l)} . Taking ¢ = |¢|? f, with f € Cg°(M), f > 0in (2.61), we

n—2

get

VR
S
=
S
=

3 ()
i

N————
AN

a / V(617 £)| + 6] FH)? (2.62)
M

IN

2a, /M (V17 F)1? + |o|* £2H?) .

2
Setting A = ([}, |¢[") ™, we then get from Hélder’s inequality that

/ ’¢‘20’+2f2
M

n—2

([ W)i ([ qorn®=) "

2014 /M (IV (617 ) + |62 2H?) (2.63)

IN

IN

Taking & > 0, returning in (2.51]) and using the Young’s inequality

02 2
9] + £
€

flo| <
ol < -+ 5,

we get,

_n=2 o122 & _ o .
<2 no ) /M’W! =2 /Mw F(VIel7, V) + (2.64)

o(1+ Z) [ oo (5-8) [ o

Using (2.61)), (2.62) and (2.63) in (2.64) we have

_n72 0|2 p2 _ p o
<2 )/M|V|¢| |°f* < 2/M 9|7 F(V|o|7, Vf) + (2.65)

no

sanho (142 / IV(fl6|°)2 + |2a1A0 1+ A e (5 75) / o>
! 2 ) Jus ! 2 2 v '
Taking v = %, we have from Lemma and 1} that

_n_2 o2 £2 - o o
(2 ) [ welrr =2 [ el awior.vn @o0)

no

vo[pun (145) (142 4 2 (5-9)] [ wusiemr
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We soon have

no

_n_Q_U o2 §2 ok — RV A v/

(2 n)/Mww 22 < 2(ow 1>/M\¢\ FV167. V)
oK 20 2 .
+ /M|¢>r v, (2.67)

62 H? 1 /e
”:201A<1+25> <1+’7>+7<2_B)'

Then for each ¢ > 0, using (2.37)) and ([2.38)) we can take the constant C' in Theorem
as

where

2_n=240(g_¢ 2
C = no 27 ( 2)2 (268)
2010 (1 + 9—5) (1 + HT)
So that if (2.39) holds then
—2
<2 _n ) — ok > 0. (2.69)
no
Hence, we can find a p > 0 such that
(2—"_2> — oK > p. (2.70)
no
Consequently,
p [ 6P < 2Aon=1) [ 16l (71017 V) (27)

20’v 2.
tox /Mw i
For any § > 0, it holds
Ao — 1) / B VIO, V) < ok — 115 / V161722
M M
‘fm—l, 20 2
A [ opevsr ()

Making an appropriate choice for § so that |k — 1|0 < p, we can deduce from (2.72))

that there exists a constant Cy > 0 such that

[wieres < o [ vt .13
M M

One can now use the same arguments as in the proof of the final part of Theorem

to show that M is totally umbilical. O
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2.4 Proof of the main theorems - M/ (c)

Consider the inequality deduced by Montiel in [69] for spacelike CMC hypersurfaces
in M7 (c):

n(n —2)
vn(n —1)

Since that H is constant, in [60] we have the following Kato’s inequality:

SOl > V6P + o (W - HI6| +n(c - H?)) Cen

Lemma 2.6. Let M be an spacelike hypersurface immersed in M{‘H(c) with parallel

mean curvature, then
2
Vol* = VIl = ~|V]ell* (2.75)

On the other hand, H constant provides us with VA = V¢ and V|A|? = V|¢|2.

So, using we can rewrite (2.74]) as follows
n(n —2)
n(n —1)

Taking 6 = nn=2) 17 and B = n(c— H?) then the above inequality is rewritten as

[¢lAlg] > %NW + o (W - H|g| +n(c— H2)> . (276)

n(n—1)
B1A11 > 2 V16l + 6P (16f” - 610l + ). (2.77)

Similarly to what was done in , by we compute
ool < (1= "2 ) V161" + o (0~ ol6] + F) o, (2.78)

where « is a nonnegative constant. The following Lemma is a important tools for

us.

Lemma 2.7. [1] - Let M™ a complete spacelike hypersurface in WH(C). If M
has {u}, {p, v} as a set of its main curvatures, with p and v constants, then M is

1sometric
(i) Umbilical hypersurface
R" = {z € M} " (c);ns1 = 0}

or
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(ii) Buclidean product space of R™ and hyperbolic space H"~™(—r?), i.e.,
1 - 1
R™ x H*™™(—r?) = { e My (0); Z o} —apg = _Tg}
i=m+1

Proof Theorem (3| Let f € C§°(M). Multiplying (2.78) by f? and integrating on

M, we obtain

<1_

By (2.41)) exists € > 0 such that

— n? —4n+5\ nH?
—\¢\2+9!¢\—/3<< ) e
n—2 4

n—2 a2 g2 12 2| 1120
2) [ welrr < a [ (cloP ol -B) Ploe (219
2 aA a.
+/Mf!¢| 191

Applying the Divergence Theorem in (2.79)) and using Young’s inequality we have

(2-222-e) [ wiorer < 2 [ wariope (2.50)
2 2
+a<(” nf”f) ni )/ Plope.

Taking f = f|¢|* in (2.11]) and using Young’s inequality we obtain

2 20 - L TE€ 2| 12 a2 2
a [ Pope < 228 | vPlore + e /M\V!qﬁllf- (281)

Note that it is possible to obtain € > 0 such that 2 — — ¢ > 0. Multiplying
- by (14 ¢) and ( - by 2 — == — ¢ and joining these inequalities we get

h (2= e) e (" nﬂ”) ME-asal [ <

< (1+¢) <2 - "T_QQ —e+ i) /M IV 202 (2.82)

We can taking d = 2a. Rearranging the therms in (2.82]) we have
—(n—2 24
[Al <nd<n>> _d <nn+5) nH? (2.83)

no 8 n—2

2_4 H2
(o™ n+5\n i lae /f%\d

on=2_ _ 1 2| 41d
<1492 e+ ) [ vseer

no
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By (2.40) and (2.42)) for ¢ = {—1,0,1}, case ¢ = 1 consider H? > ("_1)2, we have

2(n—2)
—(n— 2 _
A (nd (n 2)) d (n 4n+5> H?

no 8 n—2

2_4n+5\ nH?
— |« i nt n +M+14+¢e) >0.
n—2 4

Therefore, exists a constant C' such that (2.83)) give us

/ ot < c / V1216l (2.84)
M M

One can then easily get from ([2.84) and using the cut-off function (2.58) that

/BP(R)qb\ds/MfQIqﬁrdscl/B(

V£l (2.85)
p(R)
Taking R — +oo and using (2.34)), we conclude that |¢| = 0 in M, that is, M is

totally umbilical. Since that H is constant, we can observe that M is isoparametric.
By Lemma[2.7, M is isometric to R or H"(—r2). By hypothesis \; (M) > 0, which
shows us that M is isometric to H"(—r2). The fact that M has constant mean
curvature and the eigenvalues of the second fundamental form are all equal, implies
that —r? = ¢ — H2. O
Proof Theorem @ When n = 2 the inequality becomes

6% Alg|* > |V]|** + alg** T2 + 2a(c — H?)|p|*. (2.86)

Let g a nonegative constant and f € C§°(M). Multiplying (2.86) by f2|#|?%® and

integrating on M, we obtain
[ A9l < 2a(m® -0 [ Pl —a | pioperieasn
M M M
+ [ Ploferreapp.
M
Applying the Divergence Theorem and by Young’s inequality in(2.87]) we get
yng g y g y g
1
(2(g+1) - 6)/ IVIg|*?| g 2 < / V£ 4 (2.83)
M €JM
2a(H2 _c)/ f2|¢’2(q+1)a _a/ f2’¢‘2(q+1)a+2'
M M
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d
Since d := 2(q+ 1), it’s possible to obtain € > 0 such that — —e =2(¢+1) —e > 0.
a

d
Multiplying (2.88]) by (¢ + 1)(¢ + 1+ €) and (2.31) by ( — 5) and joining these
a

inequalities we have

d d
(S-c)a [ ol < (5-2) D [ o spior

@D 110 | wspio

€

20(H? — ¢)(g+1)(g+1+¢) / 21|
M

+

(gt 1)(g 1 4e) /M £20]4.

For a quick calculation in expression above we can obtain
d d 2 2 2| 41d
M+ —(c—H")—¢ ()\1 +d(H” — c)) f4lol* +(2.89)
o 2a M

ot Dt 1re) [ Plopr <UD (D ginie) [ o

By (2.43]) and (2.44)) we get

d d? 9 9
a)\l—l—%(c—H ) —e (M +d(H”—c)) >0,

with H > 1 if ¢ = 1. So exists a positive constant C; such that (2.89) can be

rewritten as

/ Pl < o / V121l (2.90)
M M

Using the same argument in the final of the Theorem [3| we have that M is to-
tally umbilical, as the eigenvalues of the second fundamental form are all equal and
A (M) > 0, by Lemma 2.7 M = H?(c — H?). O
Proof of Theorem [5 Since that ¢c = —1 and H =0 in we get

2
[AJAJA] = Z[VIAJ + [A]* (JA]° = n). (2.91)

Let a a nonnegative constant. As already done in previous results, by (2.91]) we

compute

n—2 o o
|A|*A|A]> > <1 - ) IV|A|Y)? + « (|A|2 —n) | A%, (2.92)
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Let f € C§°(M). Multiplying (2.92) by f? and integrating over M, we obtain

n—2 a2 2
(1-"22) [ v1ars

IN

o AZ_ 2A2a

a/Mu 2= n)f2A|
21AI*ALA|.

+/Mf| A4

/ FAPAAP + na / 2APe
M M

IN

Applying the Divergence Theorem and Young’s inequality in inequality above, we

_9 1
(222 =e) [warrs < (142) [ wsriapesna [ Fape e

Taking f = f|A|* in (2.11]) and using Young inequality

get,

1
M / plape < 1Ee / VFPIAP + (14 e) / VAR (2.04)
M € M M

-2
Note that it is possible to obtain € > 0 such that 2 — n—e € > 0. Multiplying
no

2.93 by (1+¢) and (2.94) by 2 —

— ¢ and joining these inequalities we have

[Al <2 - ”n_a2 - 5) — na(1+ 5)] /M F2lAPe <
<% (3 - ”n‘cf) | wseiape (2.95)

€

Since d = 2a, by (2.46]) and (2.47)) exist a constant C' > 0 such that

/ Al < c / VAL (2.96)
M M

Set the cut-off function as in (2.58)). As already done in previous results, provided
that (2.45) is satisfied, we concluded that |A] = 0 on M, that is, M is totally

geodesic. Therefore isometric to a hyperbolic space H"(—1). O



Chapter 3

Generalized quasi Yamabe

gradient Solitons

This section is the result of studies with Prof. Dr. Benedito L. N. and is based on
work of the B.L. Neto and H. Pina [64]. Thank you for your contribution.

A complete Riemannian manifold (M™,g), n > 3, is a generalized quasi Yam-
abe gradient soliton (GQY manifold), if there exist a constant A and two smooth

functions, f and p, on M, such that
(R—Ng = V*f — pdf @ df (3.1)

where R denotes the scalar curvature of the metric g and df is the dual 1-form of

V f. In a local coordinates system, we have
(R—=N)gij = ViVf —uVifV;f. (3.2)

When f is a constant function, we say that (M™,g) is a trivial generalized quasi

Yamabe gradient soliton. Otherwise, it will be called nontrivial.

As it was said in the introduction, the essence of this chapter is to demonstrate

the following Theorem. We will see that it has several consequences

99
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Theorem 3.1. Let (M"™, g), n > 3, be a nontrivial complete generalized quasi

Yamabe gradient soliton satisfying . Then,

1 must be constant on each connected component of M or (3.3)

Vu and Vf are parallel. (3.4)

Catino, Mastrolia, Monticella and Rigoli [28] showed that a complete general-
ized quasi Yamabe gradient soliton (M", g) has a warped product structure without
any hypothesis over g (we recommend Theorem 5.1 on 28] to reader (see also [26])).

As a consequence of Theorem we have

Theorem 3.2. [51] Let (M", g)n>3, be a nontrivial complete connected general-
ized quasi Yamabe gradient soliton satisfying and , with positive sectional

curvature. Then
(a) if n =3, (M", g) is rotationally symmetric;
(b) ifn>5and W =0, (M", g) is rotationally symmetric.

Theorem 3.3. [69] Let (M*, g) be a nontrivial complete connected half locally
conformally flat generalized quasi Yamabe gradient soliton satisfying and ,

with positive sectional curvature. Then, M* is rotationally symmetric.

Theorem 3.4. [51] Let (M™, g), n > 3, be a nontrivial compact connected gen-
eralized quasi Yamabe gradient soliton satisfying and . Then, the scalar

curvature R of the metric g is constant.

From Theorem 3.1} we show that a nontrivial complete connected generalized
quasi Yamabe gradient soliton admits a warped product structure (see Proposition
. In the special case when (M™,g) is locally conformally flat, we can say more
about the warped product structure (see [26,29,/44.|51}/100]).

Theorem 3.5. Let (M™, g), n > 3, be a nontrivial complete connected generalized
quasi Yamabe gradient soliton satisfying and . Suppose f has no critical
point and is locally conformally flat, then (M™,g) is the warped product

(Ra d?“Q) X |Vl (Nn_lv gN)
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where u = e M | and (N""1,g) is a space of constant sectional curvature.

Therefore, when p is constant on equation (3.1]), from the above theorems

we also have a classification to the gradient Yamabe solitons.

3.1 Proof of Theorem [3.1]

In this section we first recall some basic facts on tensors that will be useful in
the proof of our main results. We then prove our Theorem (3.1} For operators
S, T : H — H defined over an n-dimensional Hilbert space H, the Hilbert-Schmidt

inner product is defined according to
(S,T) = tr(ST*), (3.5)

where tr and * denote, respectively, the trace and the adjoint operation.
For a Riemannian manifold (M™, g), n > 3, the Weyl tensor W is defined by

the following decomposition formula

1
Rz’jkl = Wijkl + m(Rikgﬂ + legik — Rilgjk — Rjkgil)
R
_m(gﬂgik — gugir), (3.6)

where R;jj; stands for the Riemannian curvature operator. In [25], Cao and Chen

introduced a covariant 3-tensor D given by

1
Digi - = —5 (R Vif = RxV;f) + m(RuVlfgjk ~ RV fgir)
R
m(vifgjk = Vifgir)- (3.7)

The tensor D is skew-symmetric in its first two indices and trace-free, i.e.,
Dijr = —Djgx and  g“ Dy, = g Diji. = ¢’* Diji = 0.
We will show how these two tensors are related.

In order to set the stage for the proof that follows let us recall some equations

for any dimension. Moreover, since

Vil VP =2ViV [V f, VP =¢VifV;f and Af=g"V;V;f
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the trace of is given by
Af = plVI?=n(R—-)) (3.8)
and
(R~ NVif = 3 ViV ~ ulV P94 (39)
Taking the covariant derivative of we get
nViR = Vi(Af) = (ViuV > + pVil V). (3.10)
Now, taking the covariant derivative in we get
ViRgjr = ViViVif — [VipVifVif + ViV fVif +VifViVif)l.  (3.11)
Contracting over ¢ and k, and using the Ricci equation we obtain
ViR = RyV'f + Vi(Af) = |g*ViuVifV;f +p (;Vﬂvfl? + Afvjfﬂ :
From and and the above equation one has

V,R = levlf+nij+vju|Vf\2+gvjwfy?

9 VinV e fVif = np(R = NVif — 2|V PV f.
Then, from (3.9)) we can infer
(n—1)V;R = —RuV'f—|Vf[V;u
T+ ViVt + pln— D(R - V]V . (3.12)

Lemma 3.6. Let (M™,g) be an n-dimensional generalized quasi Yamabe gradient

soliton satisfying . Then we have:

IVfI?

n—1

WiV'f = Dijp+ (VipV;fVf — V;uVifVif) + (

g(Vu, V)
n—1

) (9 Vjn — gjx Vi)
+ (9ixVif — 9tV f).

where D1 is defined from .
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Proof. We may use equation (3.2 to obtain

ViRgjx — ViR = ViViVif —V;ViVif +u(VifViVif —V;fViVif)
+ (ViuVifVif —=ViuV;fVif).

Then, by Ricci identity, we get

ViRgjr — VjRgix = RiyuV'f+p(VifViVif —V;fViVif)

+ (VjuVifVif = VipVfVif).
Now, from (3.2) we have

ViRgjr — VjRgix = RiyuV'f+p(R—N(Vifgjr — V;ifair)

+ (ViuVifVif = ViuV;fVif).
It then follows from (3.6)) that

ViRgjx — VjRgix = WiyuV'f+

(n—2) (RikVjf — RjiVif)

1 R
+W(levlfgik — Rz’lvlfgjk) - m(vj'fgik — vifgjk)

+u(R =N (Vifgj = Vifox) + (ViuVifVif —ViuV;fVif). (3.13)

From (3.12)), we obtain

1 V2
ViRgjr, — V;Rgir = ) (RjNV' fgir — RaV' fan) + (nfl)(vjugik — Viug;x)

1
+ r_l)(vjﬂvikaf - viﬂvjkaf) +
+ (R =N (Vifgjr —V;foir) +

Vi,V
g(nﬂi_lf)(gjkvif = 9k V;f). (3.14)
Combining (3.13) and (3.14)), we finish the proof of Lemma O]

We define the 3-tensor E as follows

2
Eijr = (VipNVifVif —V;uVifVif) + <‘nv’_f|1> (9ikVjn — gk Vip)
Vu,V
+g(n“_’1f)(gjkvif — giVif). (3.15)
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Taking into account this definition, we deduce from Lemma, [3.6] that
Wi V' f = Dyji, + Eijy.. (3.16)

Proof of Theorem [3.1] Since the Weyl tensor and the 3-tensor D are trace free, i.e.
gjkWijkl = gjkDijk = 0 contracting 1) over j and k, we get

from (3.17)) we have

0= (B2 IVI2 (WUl V1P - oV 77). (3.18)

Considering f nontrivial, from the above equation we can conclude that:

I) If g(Vu,Vf) =0, ie., Vf and Vu are orthogonal, Theorem it is true.
IT) On the other hand, if g(Vu, V) # 0 from (3.18) we obtain

IVuP|V* = g(Vu, VF)? =0

which means that Vu and V f are parallel.

3.2 The warped product structure

Following the steps in [26], we can prove that a GQY manifold admits a warped
product structure without any additional hypothesis over M. From Theorem by

using a conformal change of variable on (3.1)) (u = e™*f), we get
pu(R — N)g = V3u. (3.19)

Cheeger and Colding [29] characterized the warped product structure of (3.19). We

will sketch the proof of such warped product structure here for completeness.
Consider the level surface ¥ = f~!(c) where c is any regular value of the

potential function f. Suppose that I is an open interval containing ¢ such that f

has no critical point. Let Uy = f~1(I). Fix a local coordinates system

(1,22, ,an) = (1,02, ,0n)
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in Uy, where (63,---,0,) is any local coordinates system on the level surface X,
and indices a, b, c,- - - range from 2 to n. Then we can express the metric g as
2 1 2
ds df + gab(fa H)deadeba

VP
where g5 (f, 0)d0,d0y is the induced metric and 6 = (0o, -- - , 6,) is any local coordi-
nates system on Y.. From (3.9

SValVIP = [(R =) + plVSPIVaf =0.

Since |V f|? is constant on ¥, we can make a change of variable

df

"=

so that we can express the metric g in Uy as
ds® = dr® + ga(r,0)d0,d0,.
Let Vr = %, then |Vr|=1and Vf = f’(r)% on Uy. Then,
Vor0r = 0. (3.20)
Now, by and , it follows that
(R—A) = V2[(0r,0r) — p(df @ df)(dr,0r) = f"(r) — u(f'(r)*. (3.21)

Whence, from Theorem and (3.21)), we can see that R is also constant on X..
Moreover, since g(V f,0,) = 0, from (3.1) the second fundamental formula on ¥, is
given by

vavbf o (R - )‘)

hapy = —g(Or,Vo0p) = = Jab- 3.22
Therefore, from (3.21)) and (3.22)) we have
f'(r) = n(f'(r))?

hap = Yab- 3.23
70) 329

From ((3.23)) the mean curvature is given by

f"(r) — u(f'(r))

H=(n-1 3.24
(n - I (321
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wich is also constant on Y.

Furthermore, from the second fundamental formula on Y., we have that
hay = —9(0r, Vads) = —9(r, Ty0) = —Tgy (3.25)
On the other hand,

1,0
Loy = —59"" 5 Gab- (3.26)

Therefore, from (3.23)), (3.25) and (3.26) we get

" r) — /7“ 2
5" () f,gn()f( ) oy = %gab. (3.27)

Hence, it follows from (3.27) that

gab(ﬁ 9) = (fle_uf)zgab(rm 9)7

where the level set {r = 79} corresponds to ¥, = f~1(r), for any regular value rq
of the potential function f.
Therefore we can announce the following result analogous to the Proposition

2.1 in [26] (we also recommend [44,100]).

Proposition 3.7. Let (M"™,g) be a nontrivial complete connected generalized quasi
Yamabe gradient Yamabe soliton,  satisfying the GQY equation , and let

Y. = f~1(c) be a reqular level surface. Then

(1) The scalar curvature R and |V f|? are constants on ..

(2) The second fundamental form of ¥. is given by

H

hab = n— lgalr (328)

3) The mean curvature H = (n —1 (B=A) s constant on Ye.
V£l

(4) In any open neighborhood Ul = f_l((a,ﬁ) of X¢ in which f has no critical

points, the GQY metric g can be expressed as
ds? = dr® + (f'(r)e )’ gay

where (fa,---,0,) is any local coordinates system on ¥. and  g(r,0) =

Gab(T0,0)d0,dBy is the induced metric on X. = r~1(rp).
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Proof of Theorem[3.5. Consider the warped product manifold, by Proposition
(3.7)

(M™,g) = (I,dr*) x (N"", ), (3.29)

where ds?> = dr? + (¢)%g. Fix any local coordinates system 6 = (f2,---,6,) on
N™! and choose (x1, 72, -+ ,2,) = (1,02, ,0,). Now (see [14,(26,75]) the scalar
curvature formulas of (M™,g) and (N"~1, g) are related by
L <¢) 5"
R=¢“"R-—(n—-1)(n—-2)—] —2(n—1)—.
¢ )
Therefore, since ¢ = f'e */ from Theorem and Proposition we have that R
does not depend on #. Then R is constant.
Moreover, the Weyl tensor W for an arbitrary warped product manifold
is given by (see [14}26,75)):

Wiap = _ﬁRab + mgalﬂ (3.30)
Wiabe = 0, (3.31)

and
Wabed = OWabed- (3.32)

Where W denotes the Weyl tensor of (N"~1, §). Therefore, since the warped product
manifold (3.29)) is locally conformally flat, i.e. W = 0, from (3.30)) and (3.32)) we see
that NV is Einstein and W = 0. Then, from (3.6) we have

_ R

Roped = m(gbdgac — GvcJad)-

Since R is constant, we get that Rgpcq is also constant. Thus N is a space form.
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Bounds on volume growth in

static vacuum space

This section is the result of studies with Prof. Dr. Benedito L.N., Prof. Dr. Ernani
B. [65]. Thank you for your contributions.
Let (]\/4\”+1,§) = M™ x# R, the warped product of M with R, be a static

space-time endowed with
§=—f%dt* +yg, (4.1)

where (M™, g), n > 3, is a noncompact, connected and oriented Riemannian mani-
fold, and f : M™ — (0, +00) is a positive smooth warped function. In this approach,

the Einstein equation with perfect fluid as a matter field is given by

Ric— =g = (n+pn®@n+ pd, (4.2)

[\D‘m>

where Ric and R stand for the Ricci tensor and the scalar curvature with respect
to g, respectively; whereas 1 is a 1-form with g(n,n) = —1 whose associated vector
field represents the flux of the fluid. Moreover, u and p are nonnegative smooth
functions, namely the energy density and pressure, respectively; for more details,

we refer the reader to [55] and [57]. At the same time, it follows from Proposition

equations (4.1) and (4.2) that

fRic=V2f (4.3)
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as well as

n—1 n—2

- (Af - z(n_l)Rf) , (4.4)

where Ric stands for the traceless of Ric. Besides, A denotes the Laplacian and R

u=§ and pf =

is the scalar curvature with respect to g (cf. [14,/61}/75]).

In the sequel, we shall present a simple proof that the energy density p vanishes
on the boundary ¥ of manifolds M" satisfying and . Here, ¥ is compact
(possibly with boundary). More precisely, we have established the following result.

Theorem 4.1. Let (M", g, f) be a Riemannian manifold satisfying and .
Then the energy density p =0 on X.

In order to proceed, we remember that when p and p vanish in we
obtain the well-known static vacuum FEinstein equations. Indeed, following the ter-
minology used in [8,9},55], we deduce from and that a semi-Riemannian
manifold (]\/4\ ,§) is Ricci-flat (i.e., Ric = 0) if and only if the (positive) warped

function f and the metric g satisfy the static vacuum equations
fRic=V?f and Af=0. (4.5)

In this case, it is easy to check that the scalar curvature R is identically zero. These
equations have been extensively studied in classical general relativity. Some explicit
examples can be found in [8,9,57] and [61].

It should be point out that if a manifold (M™, g) satisfying is geodesi-
cally complete, then the warped function f must be constant. Therefore, in the
spirit of [8,9] and [55], throughout this article we consider non trivial solution to
, which are connected and complete up to the boundary, or equivalently, com-
plete away from the horizon (cf. Theorem 3.2 in [8], or Theorem in Section
see also [9] p. 996). In addition, we assume that the boundary ¥ is compact,
non-empty and such that g and f extends smoothly to . We remember that the set
¥ = {f = 0} is called the horizon. We further highlight that ¥ may be defined as
the set of limit points of Cauchy sequences on (M", g) on which f converges to 0

(cf. 19]). In general relativity, the horizon is closely related with the event horizon,
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i.e., the boundary of a black hole. For a comprehensive reference on such a subject,
we indicate, for instance [8,9,(14,55,(57] and [59].

Before proceeding it is important to recall the definition of quasi-Einstein
manifolds which is closely related to the problem of building Einstein manifolds.
To be precise, a complete Riemannian manifold (M™, g), n > 2, will be called m-
quasi- Binstein manifold, or simply quasi-Finstein manifold, if there exist a smooth
potential function f on M™ and a constant A satisfying the following fundamental
equation

1
Ric} = Ric+ V*f — —df @ df = Ag. (4.6)
m

It is easy to check that 1-quasi-Einstein manifolds with A = 0 are static vacuum
spaces, that is, it becomes Eq. (4.5). Indeed, considering the function u = et
on M", we immediately get Vu = —uVf as well as V2f — df @ df = —%VQu
and these equations confirm our remark. Moreover, it is easy to see that a co-quasi-
FEinstein manifold means a gradient Ricci soliton. Ricci solitons model the formation
of singularities in the Ricci flow and correspond to self-similar solutions; for more
details see, for instance, |23]|. Following the terminology of Ricci solitons, a quasi-
Einstein metric g on a manifold M"™ will be called expanding, steady or shrinking,
respectively, if A < 0, A = 0 or A > 0. For more details see, for instance, [10,14.22,83]
and [85].

A classical theorem due to Calabi [20] and Yau [99] asserts that the geodesic
balls of complete non-compact manifolds with non negative Ricci tensor have at
least linear growth, that is,

Vol(By(r)) > cr,

for any r > 79 where 7 is a positive constant and B,(r) is the geodesic ball of
radius r centered at p € M"™ and c is a constant that does not depend on r. In [72],
Munteanu and Sesum obtained the same type of growth for steady gradient Ricci
soliton. While Barros et al. [10] were able to prove the same type of growth for steady
m-quasi-Einstein manifold (with m # 1). The classical Bishop volume comparison

theorem guarantees that the geodesic balls of complete non-compact manifolds with
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non negative Ricci tensor must have the following growth rates
cir” > Vol(By(r)),

for some positive constant ¢; and r > 0 sufficiently large. In [24], H.-D. Cao and D.
Zhou proved an analog of Bishop’s theorem for gradient shrinking solitons. While
Munteanu and Sesum [72] showed that the geodesic balls of steady gradient Ricci
soliton have at most exponential volume growth, namely, there exist uniform con-

stants ¢, a and rg so that for any r > ro we have
Vol(By(r)) < ce™VT.

As well known, volume growth rate is an important piece of geometric information.
In this spirit, we obtain an upper bound on the growth of volume of geodesic balls for
spatial factor of a static space which is similar to Bishop’s estimate. More precisely,

we have established the following result.

Theorem 4.2. Let (M", g, f), n > 3, be a Riemmanian manifold satisfying .

Then there exist uniform constants a and ro so that for any r > rg
Vol(By(r)) < cr™t,
where c¢ is the volume of the unitary ball.

For what follows, we remember that the Omori-Yau maximum principle
(at infinity) is a very powerful tool in Geometric Analysis and it is related to a
number of properties of the underlying Riemannian manifold, ranging from the
realm of stochastic analysis to that of geometry and PDEs. In [79], Pigola, Rigoli and
Setti extended the Omori-Yau maximum principle to a larger class of manifolds and
operators, see [79, Remark 1.2 & Examples 1.13, 1.14]. In particular, Pigola, Rigoli
and Setti [78.[79] introduced the concept of weak Omori- Yau maximum principle as

follows.

Definition 4.3. Let (M", g) be a Riemannian manifold. We say that the weak

Omori-Yau mazimum principle holds if for every function w € C2(M)  with
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*

u*: = supy;u < oo, there exists a sequence {xy} C M, k =1,2,..., such that,

for every k.
u(zg) >u* —1/k and Au(zy) < 1/k.

It is worthwhile to remark that the validity of the Weak maximum principle (at
infinity) implies, for instance, stochastic completeness (cf. [79,80]). Recall that the

L-Laplacian operator, or simply (-Laplacian, is given by
Lou = div(|Vu| (| Vul) V), (4.7)

for some function u € C1(M). Notice that if the vector field in brackets is not
C', then the divergence in must be considered in distributional sense. The
p-Laplacian arises from the Euler-Lagrange equation associated to the energy func-
tional
Aw) = [ o(val).

where ¢(t) = fg ©(s)ds. Notice that when ¢(t) = ¢ in the ¢-Laplacian re-
duces to Laplace-Beltrami operator Au. On the other hand, when ¢(t) = t*~! in
the o-Laplacian become the p-Laplacian  div(|Vu[P=2Vu), p > 1. Further,
when () = 1/(1 + t?), it becomes the generalized mean curvature operator,
div (i) 0> 0.

Inspired in the weak maximum principle to the Laplacian A, Rigoli and
Setti [87] studied its validity for the p-Laplacian operator. They were able to prove
under suitable geometric assumptions a weak version of the Omori-Yau maximum
principle for the p-Laplacian. For more details on this subject, we refer the reader
to [87].

Next, as an application of Theorem we have established a weak maxi-

mum principle at infinity for the p-Laplacian Riemmanian manifold satisfying (4.5)).

Theorem 4.4. Let (M",g, f), n > 3, be a Riemmanian manifold satisfying (4.5).
Let u be a smooth function on M™ with u* = sup; u < +00 and such that the vector
field |Vu|~to(|Vu|)Vu is of class at least C1. Then the weak mazimum principle at
infinity holds for o-Laplacian on M™.



It is interesting to observe that the regularity condition in the statement of
Theorem [£.4] is certainly satisfied in the case of the Laplacian, p-Laplacian or the

generalized mean curvature operator once u is assumed to be at least C?.

4.1 Background

In order to set the stage for the proof of the main results we shall present some
lemmas which will be useful for the establishment of the desired results. To start

with, we recall a lemma that can be found in [8,55].

Lemma 4.5 ( [8,55]). Let (M, g, f) be a Riemannian manifold satisfying and
. Then there is no critical point of f in 3.

Proof. Since the proof is short, we include its proof here for the sake of completeness.
To begin with, from we obtain that Af = 0 in X. Next, consider Crit(f) =
{zx € M;(Vf)(xz) = 0}. Further, since Af = 0 in ¥ we may use Hopf’s lemma
(cf. |48]) to conclude that |V f| > 0 for any p € ¥. Whence, Crit(f) N%E = 0, which
finishes the proof of the lemma. O

In the sequel we recall a well known result due to Anderson [8] which plays

a crucial role in the to prove of Theorem

Theorem 4.6 ( [8], Theorem 3.2). Let (M", g, f) be a solution to the static vacuum
equations .

1. Suppose that (M™,g) is a complete Riemannian manifold and f > 0 on M™,

then M™ must be flat, and f is constant.

2. LetU C M be any domain with smooth boundary on which f > 0. Assume that
r(z) = distpy(x,0U), for x € U. Then there is an absolute constant K < 400
such that

Vil K
)

(4.8)

where the constant K does not depend on the domain U (since f >0 on U),

or on the static vacuum solution (M", g).



To conclude this section we recall a result due to Rigoli and Setti [87] which

will be used in the proof of Theorem [4.4]

Theorem 4.7 ( [87]). Let M™ be a complete Riemannian manifold. Suppose that

lim inf log Vol(By(r))

lim inf e < o0, (4.9)

for some § > 0, and let u be a smooth function on M"™ such that u* = supu < +o0.
In addition, assume that the vector field X = |Vu|o(|Vu|)Vu is of class at least C*.
Then there exists a sequence {xp} C M, k=1,2,..., such that

*

o u(xp) — u*,
o Lou(xy) < 1/k.

Now we are ready to prove the main results.

4.1.1 Proof of the Main Results

Proof of Theorem To begin with, we rewrite (4.3) in local coordinates as

follows
R Af

In particular, it is not difficult to check from (4.10)) that

2 1 Af
fRyV;f = SVilV P = —=Vif, (4.11)
where éij = Ri]’ - %gij'

On the other hand, take the covariant derivative of (4.10) and then use the

well-known Ricci identity V;V,;V f —V,;V;Vif = R;j1uV,f to achieve

F(ViRjx — ViRix) + (RixVif — R Vif) = RiumVif

+% (V](Af)gm - Vi(Af)gjk> .(4.12)

Hereafter, by using the twice contracted second Biachi identity (eq. (1.7))), we
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get
1 ik
§VjR = g VZ-Rjk
. R R
ik
= 9"V {Rj — 9kt ngjk}
) o . R
= ¢"ViRj +g" (gjkvin) -
Therefore,
kv 7 n—2
g ViRjk = m VjR. (4.13)

The trace over ¢ and k of (4.12)) gives
g {(szjk —VRix) + (RjxVif — Rikvjf)} =g {Rijklvlf+
1
(VAN — VilANgn) ) (@414)

Using 1' and the fact glkRzk =0, we have

1
In the sequel, it is easy to check that, from (4.11]) and (4.15)), on ¥ = {f = 0},
we have
1 A
vilvsP - 2= (4.16)
n
and
R
=i, (4.17)
Whence, it follows from Eq. (4.17)) that
R
P = g0, V). (118)

Upon integrating (4.18)) over ¥ we may use Lemma jointly with Stoke’s formulae

to infer

Roge - ) of
_/gn—lwﬂ _/Zg(v(Af%Vf)— /Z(Af) + | Af (4.19)

os O’
where n = %. But, from 1} we have Af = 0 on ¥ and then Eq. (4.16) jointly

with Lemma guarantees that |V f|? is a non null constant on Y. Next, since
2 = R is nonnegative, it suffices to substitute these informations into (4.19) to

conclude that 4 = 0 on Y. This gives the requested result.
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O

In the sequel we shall present the proof of Theorem which was mainly
inspired in the trend of Munteanu and Wang [73| as well as Munteanu and Sesum
[72].

Proof of Theorem Firstly, we denote by

dV\ewpm(r,g) = J(x,r 0)drdf

the volume form in the geodesic polar coordinates centered at x as for » > 0 and 6

a tangent vector field on x € M and
r =d(zo,x), for mzy€ M.

From now on we omit the dependence on 6. In this approach, it is known that

J/
AT = j(T)

Now, let v(s) be a minimizing geodesic starting from x, such that v(0) = x.
In particular, given any orthonormal basis {E,-}?;ll such that 7/ L E; at v(s), Y; is
the Jacobi fields along v with Y;(0) = 0 and Y;(s) = E;. From this, it is known that

n—1

Ar =" L(Y,Yy).

i=1
By using the Index lemma, for any piecewise differentiable vector field W; along -,

we get,
LY, Y:) < /0 {g(Wi, Wi)(s) — g(R(+', Wi)y/, Wi)(s) }ds.

Now, if E; is the parallel unit field generated by Y;(t) and p is a piecewise differen-

tiable function, taking W; = pFE;, we deduce

(Y. Y) < /0 ()? — W2g(R(Y B Eo)}(s)ds.

Whence, by taking the trace over i, with X = +/(s), we arrive at

t
Ar < /0 {(n—1)(i)? = *Ric(X, X)}ds.
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Proceeding, since Ar = {], we may express ((s) = 7 to infer
J' (n—1) 1 [t .
7(1&) < T t2/0 s“Ric(X, X )ds (4.20)

on the other hand, since f is positive, we use the static vacuum equation (4.5)) to

obtain
1
Ric(X,X) = ?VQ f(X, X)
N (S M\
Gy
/ / /
This substituted into (4.20)) yields
J’ n—1 1!
7(t) < - t2 s <f> (s)ds.
where f(s) = f(y(s)) and 0 < s < t. Therefore, upon integrating by parts we achieve
J n—1 f’ f!
T < t2/ s)ds (0. (4.21)

Moreover, we already know from Eq. |D (see also Theorem 3.2 in [8]) that <f7l)
is bounded from above. This combined with (4.21]) gives

J’ n—1 f’

f/
0

T‘*‘tg f()dS—T()

=t 2 ), " \Us ¢
n—1 2K K n-1+3K
S oty v T T

which can be rewritten as

n—143K

!/
(log J(t)) < "
Hereafter, upon integrating from s = 1 to s = sg we infer

J(1) < n—1+3K

J(1) ~

From here it follows that

Area (Bg,(r)) < Area (Byg,(1)) pnIBK (4.22)
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To conclude, it suffices to integrate to obtain

Vol(By,(r)) < er™te,
where c is the volume of the unitary ball and a is constant.

O

Proof of Theorem [4.4] We start invoking Theorem [1.2] to deduce that there exists

positive constants a, ¢ and rg so that for any r > rg
Vol(By(r)) < ert.

Fasily one verifies that

log Vol(By(r)) < log cr™te

rl+o = rl+o
log c log r
— —T1+6+(n+a)—rl+6.

Letting r — 400 we obtain

lim inf log Vol(By())

< H-00.
r—-+00 7“1+6

Therefore, it suffices to apply Theorem to conclude that there exists a sequence
(xn) C M,n=1,2,..., such that

u(xy) — u*
and

1
Lou(zy,) < e

This is what we wanted to prove



Bibliography

1]

Abe, K. Koike, N. Yamaguchi, S.: Congruence Theorems for Proper semi-
Riemannian hipersurfaces in a real space form. Yokohama Math. J., v. 35, p.

123-136, 1987.

K.Akutagawa, On spacelike hypersurfaces with constant mean curvature in the

de-Sitter space, Math. Z.196(1987) 13-19.

A. Jr. Brasil, A. G. Colares and O. Palmasa, Characterization of hyperbolic
cylinders in the de Sitter space, Tohoku Math. J. 48 (1996), 23-31

H. Alencar, M.P. do Carmo, Hypersurfaces with constant mean curvature in

spheres, Proc. Amer. Math. Soc. 120(4) (1994) 1223-1229.

H. Alencar, A. Rocha, The f-Stability Index of the Constant Weighted Mean
Curvature Hypersurfaces in Gradient Ricci Solitons. arXiv:1701.00373 (2017).

L. J. Alias, S. C. Garca-Martinez, On the scalar curvature of constant mean
curvature hypersurfaces in space forms, J. Math. Anal. Appl. 363 (2010) 579-
587.

F. J. Jr. Almgren, Some Interior Regularity Theorems for Minimal Surfaces

and an Extension of Bernstein’s Theorem, Ann. Math. (2) 84(1966) 277-292.

M. Anderson, Scalar curvature, metric degenerations and the static vacuum

Einstein equations on 3-manifolds. Geom. and Funct. Anal. 9 (1999), 855-967.

M. Anderson, On the Structure of Solutions to the Static Vacuum Einstein

Equations. Ann. Henri Poincaré. 1 (2000) 995-1042.

79



BIBLIOGRAPHY 80

[10]

[11]

[12]

[13]

[14]

[15]

[18]

[19]

[20]

[21]

A. Barros, R. Batista, and Jr. Ribeiro, Bounds on Volume Growth of Geodesic
Balls for Einstein Warped Products. Proc. Amer. Math. Soc. 143 (10) (2015)
4415-4422.

Barros, A., and Ribeiro Jr, E., Characterizations and integral formulae for
generalized m-quasi-Einstein metrics Bull. Braz. Math. Soc., New Series 45

311, 325-341 (2014).

] R. Bartnik: Existence of maximal surfaces in asymptotically flat space-times,

Comm. Math. Phys. 94 (1984), 155-175.

D. Bakry, M. Emery, Diffusions hypercontractive, in Stminaire de Probabiiitts
XIX, Lect Notes in Math. 1123 (1985), 117-206.

A. Besse, Einstein manifolds, Springer-Verlag, Berlin Heidelberg (1987).

E. Bombieri, E. De Giorgi, E. Giusti, Minimal Cones and the Bernstein Prob-
lem, Invent. Math.; 7 (1969) 243-268.

M. do Carmo, Geometria Riemanniana. Projeto Euclides - IMPA, 2005.

M. do Carmo. C. K. Peng, Stable complete minimal hypersurfaces, Proc. 1980
Beijing Symp. (eds.) S. S. Chern, W. Wu, Gordon and Breach Science Pub.
1349-1358.

X. Chao, Complete spacelike hypersurfaces in the De Sitter space, Osaka J.
Math. 50 (2013), 715-723.

L. F. Cheung, D. Zhou, Stable constant mean curvature hypersurfaces in R"+!

and H"*1 Bull. Braz. Math. Soc. (N.S.) 36 (2005), 99-114.

E. Calabi, On manifolds with non-negative Ricci curvature II. Notices Amer.

Math. Soc., 22 (1975) A205.

E. Calabi, Examples of Bernstein problems for some nonlinear equations. 1970
Global Analysis (Proc. Sympos. Pure Math., Vol. XV, Berkeley, Calif., 1968)
pp- 223-230 Amer. Math. Soc., Providence, R.I.



BIBLIOGRAPHY 81

22]

[23]

[24]

[25]

[31]

[32]

J. Case, Y. Shu, G. Wei, Rigidity of quasi-Einstein metrics. Diff. Geom. Appl.
29 (2011) 93-100.

H-D. Cao, Recent progress on Ricci solitons. Adv. Lect. Math. 11(2) (2010)
1-38.

H-D. Cao, D. Zhou, On complete gradient shrinking Ricci solitons. J. Diff.
Geom. 85 (2010) 175-185.

Cao, H.-D., Chen, Q.: On locally conformally flat gradient steady Ricci soli-
tons. Trans. Am. Math. Soc. 237772391 (2012).

Cao, H.-D., Sun, X., Zhang, Y.: On the structure of gradient Yamabe solitons.
Math. Res. Lett. 19, 767-774 (2012).

Catino, G.: Generalized quasi-Einstein manifolds with harmonic Weyl tensor.

Math. Zeits. Volume 271, Issue 3, 751-756 (2012).

Catino, G., Mastrolia, P., Monticella, D. D., Rigoli, M.: On the geometryof
gradient Einstein-type manifolds. ArXiv14023453v1 (2014)

J. Cheeger, T. Colding, Lower bounds on Ricci curvature and the almost

rigidity of warped products. Ann. of Math. (2) 144 (1996), no. 1, 189-237.

E. Cartan, Familles de surfaces isoparamétriques dans les espaces a courbure

constante. Ann. Mat. P. Appl. 17 (1938) 177-191.

C-W. Chen, A. Deruelle, Structure at infinity of expanding gradient Ricci soli-
ton, Asian J. Math. 19(5) (2015) 933-950.

B.Y. Chen, K. Ogiue, On totally real submanifolds, Trans. Amer. Math. Soc.
193 (1974) 257-266.

X. Cheng, D. Zhou, Stability properties and gap theorem for complete f-minimal
hypersurfaces, Bull. Braz. Math. Soc. (N.S.) 46(2) (2015), 251-274.

S. Y. Cheng, S. T. Yau, Maximal spacelike hypersurfaces in the Lorentz-
Minkowski space, Ann. of Math. 104 (1976), 407-419.



BIBLIOGRAPHY 82

[35]

[36]

[37]

[41]

[42]

Q. M. Cheng, S. Ishikawa, A characterization of the Clifford minimal hypersur-
faces, Proc. Amer. Math. Soc. 127 (1999) 819-828.

Y. Choquet, A. E. Fischer and J. E. Marsden, Maximal hypersurfaces and
positivity of mass, Proc. of the Enrico Fermi Summer School of the Italian

Physical Society, J. Ehlers, Ed., North-Holland, 1979.

Y. Choquet-Bruhat, Maximal submanifolds and submanifolds of constant ex-
trinsic curvature of a Lorentzian manifold, Ann. Scuola Norm. Sup. Pisa 3

(1976), 361-376.

S.-Y. Cheng and S.-T. Yau, Maximal spacelike hypersurfaces in the Lorentz-
Minkowski spaces, Annals of Mathematics, 104 (1976), 407-419

L.F. Cheung, P.F. Leung, Eigenvalue estimates for submanifolds with bounded
mean curvature in the hyperbolic space, Math. Z. 236 (2001) 525-530.

S.S. Chern, M.P. do Carmo, S. Kobayashi, Minimal submanifolds of a sphere
with second fundamental form of constant length, in: Functional Analysis and

Related Fields, Springer (1970) 59-75.

M. P. do Carmo, C. K. Peng, Stable Complete Minimal Surfaces in R? are
Planes, Bull. Am. Soc. Math. 1 (6) (1979) 903-906.

M. P. do Carmo, C. K. Peng, Stable complete minimal hypersurfaces. - Proc.
Beijing Symp. Differential Equations and Differential Geometry 3 (1980) 1349-
1358.

S.Y. Cheng, S.T. Yau, Differential equations on Riemannian manifolds and

their geometric applications, Comm. Pure Appl. Math. 28 (1975) 333-354.

P. Daskalopoulos, N. Sesum, The classification of locally conformally flat Yam-

abe solitons. Adv. Math. 240, 346-69 (2013).

D. Fisher-Colbrie, R. Schoen, The Structure of Complete Minimal Surfaces in
3-Manifolds with non-negative Scalar Curvature, Comm. Pure Appl. Math.;

33(2)(1980) 199-21.



BIBLIOGRAPHY 83

[46]

[47]

[48]

[49]

[54]

[56]

W. H. Fleming, On the Oriented Plateau Problem, Rend. Circ. Math. Palermo;
11(2)(1962) 69-90.

H. P. Fu, Bernstein type theorems for complete submanifolds in space forms,

Math. Nachr. 208 2-3 (2012) 236-244.

D. Gilbarg, N. Trudinger, Elliptic Partial Differential Equation of 2nd Order,
2nd edn. Springer, Berlin (1983).

E. De Giordi, Una estensione del teorema di Bernstein - Ann. Sc. Norm. Super.

Pisa CL. Sci. 19(3)(1965) 79-85.

H-P Fu, Bernstein type theorems for complete submanifolds in space forms,

Math. Nachr. 285, No. 2-3, 236 - 244 (2012).

G. Huang, H. Li, On a classification of the quasi Yamabe gradient solitons.

Methods Appl. Anal. 21, 379-390 (2014).

A. J. Goddard, Some remarks on the existence of spacelike hypersurfaces of
constant mean curvature, Math. Proc. Cambridge Phil. Soc. 82 (1977), 489-
495.

J.N. Gomes, H.F. Lima, F.R. Santos, M.A.L. Veldsquez, On the complete linear
Weingarten spacelike hypersurfaces with two distinct principal curvatures in

Lorentzian space forms, J. Math. Anal. Appl. 418 (2014) 248-263.

J.N. Gomes, H.F. de Lima, M. A. L. Velasquez, Complete Hypersurfaces with
Two Distinct Principal Curvatures in a Space Form, Results. Math. Online

First.

S. Hwang, J. Chang, G. Yun, Nonexistence of multiple black holes in static
space-times and weakly harmonic curvature. Gen. Relativity and Grav. 48 (9)

(2016) 120.

R.S. Hamilton, The Ricci flow on surfaces, Contemp. Math 71(1) (1988) 237-
261.



BIBLIOGRAPHY 84

[57]

[58]

[59]

[62]

[63]

[64]

W. Hawking, G. Ellis, The large scale structure of space-Time. Cambridge Univ.
Press, (1973).

D. Hoffman, J. Spruck, Sobolev and isoperimetric inequalities for Riemannian

submanifolds, Comm. Pure Appl. Math. 27 (1975) 715-727.

W. Israel, Event horizons in static vacuum space-time. Phys. Rev. 164, (1967)

1776-1779.

S. Tlias, B. Nelli, M. Soret, Caccioppoli’s inequalities on constant mean cur-
vature hypersurfaces in Riemannian manifolds, Ann. Global Anal. Geom., 42

(2012), 443-471.

O. Kobayashi, M. Obata , Conformally-flatness and static space-time, in: Man-
ifolds and Lie Groups, in: Progress in Mathematics, 14, Birkhuser, (1981) 197-
206.

B. Leandro Neto, A note on (anti-)self dual quasi Yamabe gradient solitons.

Results. math. 71 (2017), 527-533.

B. Leandro Neto, Generalized quasi-Einstein manifolds with harmonic anti-self

dual Weyl tensor. Archiv. Math, 106 (2016), 489-499 .

B. Leandro Neto, H. Pina, Generalized quasi Yamabe gradient solitons, Dif.

Geom. and its Aplic. 49 (2016), 167-175

B. Leandro Net, H. Pina, E. Ribeiro Jr., Bounds on volume growth in static

vacuum space (preprint).

P. Li, Geometric analysis, Cambridge Stud. Adv. Math. 134, Cambridge Univ.
Press, 2012.

J. Milnor, A note on curvature and fundamental group, J. Diff. Geom. 2 (1968),
1-7



BIBLIOGRAPHY 85

[68]

[69]

[70]

[71]

S. Montiel, An integral inequality for compact spacelike hypersurfaces in the de
Sitter space and applications to the case of constant mean curvature, Indiana

Univ. Math. J. 37 (1988) 909-917.

S. Montiel, A characterization of hyperbolic cylinders in the de Sitter space,
To6hoku Math. J. 48 (1996) 23-31.

F. Morgan, Manifolds with density. Notices Am. Math. Soc., 52 (2005) 853-858.

S. B. Myers, Riemann manifolds with positive mean curvature, Duke Math, J.

8 (1941), 401-404.

O. Munteanu and N. Sesum, On gradient Ricci solitons. J. Geom. Anal. 23

(2013) 539-561.

O. Munteanu and J. Wang, Analysis of weighted Laplacian and applications to
Ricci solitons. Comm. Anal. and Geom. 20 (2012) 55-94.

N. M. B. Neto, Q. Wang, C. Xia, Rigidity of complete minimal hypersurfaces
in a hyperbolic space, Ann. Acad. Sci. Fenn. Math. 40(2015) 659-668.

B. O’Neill, Semi-Riemannian geometry with applications to relativity. Aca-

demic Press (1983).

W. P. Oliveira, Caracterizacao de Hipersuperficies tipo espago com curvatura
média constante e duas curvaturais principais no espaco anti-de Sitter, Masters

dissertation UFC 31/07/2013.

M. A. C. Petricio, Cheeger-Gromoll Decomposition Theorem, Masters disser-

tation, ufal 14 de dezembro de 2007

S. Pigola, M. Rigoli, A. G. Setti, A remark on the maximum principle and
stochastic completeness. Proc. Amer. Math. Soc. 131 (2003), 1283-1288.

S. Pigola, M. Rigoli, A. G. Setti, Maximum principles on Riemannian manifolds

and applications. Mem. Amer. Math. Soc. 174 (2005), no. 822, x+99pp.



BIBLIOGRAPHY 86

[80]

[81]

[82]

S. Pigola, M. Rigoli, A. G. Setti, Some non-linear function theoretic properties
of Riemannian manifolds. Rev. Mat. Iberoam. 22 (2006), no. 3, 801-831.

H.O. Pina, C. Xia, Rigidity of complete minimal submanifolds in a hyperbolic
space, Manuscripta Math. (2018), 1-10.

Pina, H., C. Xia, A. C. Bezerra and Q. Wang, CMC hypersurfaces in H**! and

spacelike CMC hypersurfaces in M}"*!(c), (preprint).

7. Qian, Estimates for weighted volumes and applications. Quart. J. Math.
Oxford (2) 48 (1997) 235-242.

J. Ramanathan, Complete spacelike hypersurfaces of constant mean curvature

in the de Sitter space, Indiana Univ. Math. J. 36 (1987), 349-359.

M. Ranieri, E. Ribeiro Jr., Bach-flat noncompact steady quasi-Einstein mani-

folds. Archiv der Math. 108 (2017) 507-519.

C. Rosales, A. Canete, V. Bayle, F. Morgan, On the isoperimetric problem in
Euclidean space with density. Calc. Var. PDE 31 (2008), 27-46.

M. Rigoli, A. G. Setti, Liouville type theorems for ¢ —subharmonic functions.
Rev. Mat. Iberoam. 17 (2001) 471-520.

Y. B. Shen, X. H. Zhu, On stable complete minimal hypersurfaces in R"*1. -
Amer. J. Math. 120, 1998, 103-116.

Y. B. Shen, X. H. Zhu, On complete hypersurfaces with constant mean curva-
ture and finite Lp-norm curvature in R™*! Acta Math. Sin. (Engl. Ser.) 21(2005)
631-642.

J. Simons, Minimal varieties in Riemannian manifolds, Ann. of Math. (2) 88

(1968) 62-105.

S. Stumbles, Hypersurfaces of constant mean extrinsic curvature, Ann. of

Physics 133 (1981), 28-56.



BIBLIOGRAPHY 87

[92] A. Treibergs, Entire spacelike hypersurfaces of constant mean curvature in

Minkowski space, Invent. Math. 66 (1982), 39-56.

[93] Y. L. Xin, L. Yang, Curvature estimates for minimal submanifolds of higher

codimension. Chinese. Ann. Math., 30B(4), 379-396(2009)

[94] H. W. Xu, On closed minimal submanifolds in pinched Riemannian manifolds.

Trans. Amer. Math. Soc. 347 (1995), 1743-1751

[95] H. W. Xu, L. Tian, A new pinching theorem for closed hypersurfaces with
constant mean curvature in S"*1. Asian J. Math. 15 (2011), 611-630

[96] H. W. Xu, Z. Y. Xu, The second pinching theorem for hypersurfaces with
constant mean curvature in a sphere. Math. Ann. 356, 869-883(2013)

[97] H. C. Yang, Q. M. Cheng, Chern’s conjecture on minimal hypersurfaces. Math.
Z. 227, 377-390(1998)

[98] S-T. Yau, Submanifolds with constant mean curvature. Amer. J. Math. 96,
346-366(1974).

[99] S-T. Yau, Some Function-Theoretic Properties of Complete Riemannian Man-
ifolds and their Applications to Geometry. Indiana Univ. Math. J. 25 (1976)
659-670.

[100] Wang, L. F., On noncompact quasi Yamabe gradient solitons. Diff. Geo. Appl.
31, 337-348 (2013).

[101] C. Xia, Q. Wang, Complete submanifolds of manifolds of negative curvature.

Ann. Glob. Anal. Geom. 39 (2011) 83-97.

[102] C. Xia, Q. Wang, Gap theorems for minimal submanifolds of a hyperbolic
space, J. Math. Anal. Appl. 436 (2016) 983-989

[103] Y. L. Xin, Curvature estimates for submanifold with prescribed Gauss image

and mean curvature, Cal. Var. Partial Differ. Equ. 37 (2010) 385 - 405.



BIBLIOGRAPHY 88

[104] Y. L. Xin, L. Yang, Curvature estimates for minimal submanifolds of higher

codimension, Chin. Ann. Math. Ser. B 30 (4)(2009) 379-396.



	Preliminary
	Concepts and fundamental equations
	Tensors
	The second fundamental
	The Index Lemma

	Kato-type inequality
	Simons' inequality: The traceless second fundamental form
	Warped Product
	Weighted Manifolds and the Index
	Motivation


	Minimal submanifolds and CMC hypersurfaces
	Rigidity of complete minimal submanifolds in a hyperbolic space
	Proof of the main theorems

	CMC hypersurfaces in hyperbolic space and semi-Riemannian manifolds 
	Proof of the main theorems - Hn+1(-1)
	Proof of the main theorems - Mn+11(c)

	Generalized quasi Yamabe gradient Solitons
	Proof of Theorem 3.1
	The warped product structure

	Bounds on volume growth in static vacuum space
	Background
	Proof of the Main Results



