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Abstract
Classic comparative statics methods relies most commonly on functional form assumptions
in order to explicitly derive relations between endogenous and exogenous variables, on the
implicit function theorem when no functional form is assumed, or in duality theories when
a dual functions exists. Among the several properties an agent’s preferences may have
there are two known for it’s interesting results. First, the single-crossing property, that
allows for the ordering of a population of agents with respect to a particular classification
of the options available. And secondly, the single-peaked property, that rules out the
occurrence of condorcet cycles when the decision system is majority vote by pairs. In this
paper we characterize some sufficient and necessary conditions over choice correspondences
so that they have a pseudo-rational representation satisfying these properties.

Keywords: Single-Crossing, Single-Peak, Choice Correspondences, Pseudo-Rationality.





Resumo
Métodos clássicos de estática comparativa usualmente se baseiam em hipóteses sobre formas
funcionais para derivar explicitamente relações entre variáveis endógenas e exógenas, no
teorema da função implícita quando nenhuma forma funcional é assumida, ou em teorias de
dualidade quando existem funções duais. Entre as diversas propriedades que as preferências
de uma gente podem satisfazer existem duas conhecidas por seus resultados interessantes.
Primeiramente, a propriedade de cruzamento-único, que permite a ordenação de uma
população de agentes com respeiro a uma classificação particular às alternativas disponíveis.
E em segundo lugar, a propriedade de pico-único, que exclui a ocorrência de ciclos de
condorcet quando o sistema de decisão é a votação majoritária aos pares. Neste trabalho
nós caracterizamos as condições suficientes e necessárias sobre correspondências de escolha
para que elas possuam uma representação pseudo-racional que satisfaça estas propriedades.

Palavras-chave: Cruzamento-Único, Pico-Único, Correspondências de Escolha, Pseudo-
Racionalidade.
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1 Introduction

Classic comparative statics methods relies most commonly on functional form
assumptions in order to explicitly derive relations between endogenous and exogenous
variables, on the implicit function theorem when no functional form is assumed, or in
duality theories when a dual functions exists. As pointed by Milgrom e Shannon (1994),
these approaches relied on several strong assumptions (convexity of preferred sets or
constraint sets, smoothness of indifference curves, interior solutions, among others), which
were not necessary to achieve the comparative statics results sought, but rather only to
assure that the methods used were applicable. Indeed, Milgrom and Shannon explain
that if these assumptions were sufficient, then one could multiply the parameters by -1
and the properties of the functions would remain, although now the relation between the
endogenous variables and the parameters could certainly have changed; also the conditions
cannot be necessary, since order-preserving changes of the functions would not alter the
comparative statics results, but could alter the properties of the functions. In order to
address these problems, Milgrom and Shannon developed a theory and methods that
depend only on the order structure of the problem, what they called monotone comparative
statics.

In view of that, monotone comparative statics has several advantages. Ashworth
e Mesquita (2006) list some: first, because the conditions developed by Milgrom and
Shannon are not linked to functional forms, the results are more robust to misspecification
and allow the researcher to consider more complex models; second, because the results do
not depend on the full specification of the model, tests of empirical predictions could be
more robust; and third, it is possible to identify critical substantive assumptions to the
results, which can be evaluated against reality, as opposed to classical methods which often
rely on technical assumptions that have no substantive meaning (e.g., differentiability).

One of the conditions developed by Milgrom and Shannon to obtain monotone
comparative statics results is the single-crossing property. This is a condition both on a
parametric family of functions f : X×T → R (e.g. the objective function in an optimization
problem) and on an order of the choice space X. For instance, in the simple case where
the choices and parameters are scalars, we have that f satisfies single-crossing with respect
to the natural order on the real line if for all a > a’ and θ > θ’, f(a, θ’) ≥ f(a’, θ’)
implies f(a, θ) ≥ f(a’, θ) and f(a, θ’) > f(a’, θ’) implies f(a, θ) > f(a’, θ). Based on this
condition, Milgrom and Shannon show that the optimal choice is weakly increasing in the
parameter. This is the classic result of monotone comparative statics.1

1 This result is a simpler version, considering only functions where the choices and parameters are scalars
and the optimal choice is unique. Milgrom and Shannon actually show similar results for broader



To get an intuition for the single-crossing property, consider the parameter θ to
be aversion to risk and the choice space to be ordered from more to less riskier assets.
Then if an individual with less aversion to risk (θ’) prefers the less risky asset (a), then an
individual more averse to risk (θ) would also prefer the less risky asset. Other examples
can be found in Apesteguia, Ballester e Lu (2017).

In fact, Apesteguia, Ballester and Lu mention several applications of the single-
crossing property, even outside monotone comparative statics. Thus, given the importance
of this condition and also the relevance that Random Utility Models (RUM) have taken
in modeling heterogeneity of preferences, Apesteguia, Ballester and Lu characterized a
single-crossing RUM (SCRUM) stochastic choice function using the standard monotonicity
axiom and a centrality axiom created by them2,3. They define a SCRUM as a RUM whose
support of preferences satisfy the single-crossing property. When applied to preferences, the
single-crossing property states that, given an order � on a choice space X, the preferences
considered can be ordered such that if x �s y and s < t, then x �t y. Thus, it is similar
to the single-crossing of Milgrom and Shannon.

Apesteguia, Ballester and Lu also briefly describe the classic result of monotone
comparative statics in terms of preferences: given a collection of preferences that satisfy
the single-crossing property, we can affirm that, for every menu, the best alternatives
according to a higher ranked preference are either preferred to or equal to the best
alternatives according to a lower ranked preference. The authors then go on and develop
what would be the counterpart of the classic monotone comparative statics result in the
context of stochastic choices. Furthermore, the authors also characterize single-peaked
and single-dipped RUM stochastic choices, given the importance of these concepts as well
(for instance, for social choice and political economy).

Inspired by Apesteguia, Ballester and Lu, in this article we characterize a choice
correspondence that can be represented by a collection of preferences that satisfy the
single-crossing property. We develop our own version of the centrality axiom, applicable to
choice correspondences, and show that, together with another axiom called Pseudo-WARP,
they characterize correspondences with a single-crossing pseudo-rational representation.

The remainder of the article is organized as follows. In Sections 2 and 3 we provide
the basic definitions and the main theorem, the characterization of the single-crossing
pseudo-rational representation. In Section 4 we characterize a related pseudo-rational
choice correspondence that admits a representation by a collection of preferences that

classes of functions, including where there are multiple optimal. But in order to expose those results,
further mathematical notation would have to be introduced.

2 The monotonicity axiom states that if an item is added to any menu, the probability, given by this
stochastic choice function, of choosing any item contained originally in this menu cannot increase.

3 Given a finite strictly linear ordered set of alternatives (X,�) and a stochastic choice function ρ, if
x � y � z and ρ(y, x, y, z) > 0, then ρ(x, x, y) = ρ(x, x, y, z) and ρ(z, y, z) = ρ(z, x, y, z).



satisfy the single-peak property. In Section 5 we conclude pointing out future extensions
and implications of the theorem which we are currently working on.





2 Setup and Definitions

Let X be a nonempty set of alternatives and ΩX the collection of nonempty subsets
of X. We interpret X as the set of all conceivable alternatives. We call each element
A ∈ ΩX a choice problem and (x,ΩX) a choice space. The idea is that the individual may
be required to make a choice from the set A. The primitive of our analysis will be a choice
correspondence c on ΩX . That is, c is a map from ΩX into ΩX such that c(A) ⊆ A for
every A ∈ ΩX .

We could say then that (X,ΩX , c) characterizes an individual or a population. For
instance, in the first case, this tuple indicates which possible choices the individual would
make in each different choice problem. Notice that a choice correspondence might indicate
that more than one element is selected in a single choice problem. We can then interpret
that which of these selected elements is in fact chosen by the decision-maker depends
on factors unknown specific to that situation and which are not modeled here. Or we
can consider a population as an aggregate decision maker and, for each choice problem
available for that population (e.g., the financial assets that are currently available for the
people in a certain country), the elements selected by c are the elements that are actually
chosen by at least one individual in that population.

The last primitives needed for our analysis are: binary relation <∗ on X and a
collection R of binary relations on X. We say that a binary relation is a linear order if it
is complete, transitive and antisymmetric. A binary relation < is complete if, for every
x, y ∈ X, we have either x < y, y < x or both. < is transitive if x < y and y < z imply
x < z. Finally, < is antisymmetric if x < y and y < x imply x = y. We also say that a
binary relation is a complete preorder if it is complete and transitive. We can then define
what it means for a choice correspondence to have a pseudo-rational representation:

Definition 1. Let (X,ΩX) be a choice space and c a choice correspondence on (X,ΩX).
We say that c has a pseudo-rational representation if there exists a collection R of complete
preorders on X such that, for every A ∈ ΩX ,

c(A) =
⋃

%∈R
max(A,%). (2.1)

We also need to define the following property:

Definition 2. An ordered collection P := {<1, . . . ,<k} of linear orders on X satisfies
the single-crossing property with respect to another linear order <∗ if, for every x, y ∈ X
with x <∗ y , if x <i y for some i ∈ {1, . . . , k}, then x <j y for every j ≥ i.



This property can be interpreted intuitively as follows. Imagine a population of
individuals choosing among several risky assets, each with its own level of risk aversion.
The relation <∗ can then be considered as a natural ordering of these assets, for instance,
x <∗ y if x is less riskier than y. If each linear order in P represents a type of individual,
based on her level of risk aversion, and P satisfies single-crossing with respect to <∗ on X,
then we can order P from less to more risk averse, and we could affirm that, if individuals
with a lower rank according to this order (i.e., with less risk aversion) prefer a less risky
asset x over a riskier asset y (that is, x <∗ y), then individuals higher ranked (i.e., more
risk averse) will also prefer x over y. As indicated in the introduction, this conclusion is
basically the classic result of monotonic comparative statics, indicating the importance of
the single-property in that context.

Based on these primitives, we can now define the representation of a decision maker
that we are going to characterize in this article:

Definition 3. Let (X,ΩX) be a choice space, c a choice correspondence on (X,ΩX), and
<∗ a linear order on X. We say that c has a single-crossing pseudo-rational representation
if there exists an ordered collection P := {<1, . . . ,<k} of linear orders on X that satisfies
the single-crossing property with respect to <∗, and is a pseudo-rational representation of
c.



3 Representation Theorem

In this chapter we provide a theorem that characterizes correspondences with a
single-crossing pseudo-rational representation. Consider the following postulates on c:

Axiom 1 (Pseudo-WARP). If x ∈ c(A) ∩B, c(B) ⊆ A, then x ∈ c(B).

Axiom 2 (Centrality). If x �∗ y �∗ z and y ∈ c({x, y, z}), then, for any A with y ∈ A,
x ∈ c(A ∪ {x}) =⇒ x ∈ c(A ∪ {x, z}) and z ∈ c(A ∪ {z}) =⇒ z ∈ c(A ∪ {x, z}).

Our Centrality axiom is similar to the one developed by Apesteguia, Ballester e
Lu (2017) in the context of stochastic choice functions. Their axiom states that, when an
alternative that is ranked in between two other alternatives (say y) according to a (possibly
natural) order has a strictly positive probability of being chosen in the presence of these
other extreme alternatives (say x, z), then the probability of one extreme alternative being
chosen in the presence of only y is the same of being chosen in the presence of y and the
other extreme alternative. In other words, the middle ground alternative carries all the
information needed to evaluate the extreme alternatives: if this information results in a
certain probability when the decision maker faces only one of the extremes and the middle
ground, the addition of another extreme does not change the probability.

Our Centrality axiom also has a similar, but somewhat different, interpretation. In
both the random choice model and the choice correspondence model, several alternatives
from which the decision maker would pick a choice in each choice problem are defined,
depending on external factors. But the main difference between the two types of models is
that the random choice model seeks to obtain information on these external factors, which
are reflected in the different probabilities that each of the possible choices in a choice
problem carry. The choice correspondence model does not provide any information as
to what could lead to the choice of one or other alternative. Because of that, we cannot
affirm that the middle ground carries all the information needed to evaluate the extreme
alternatives. We only know that, given any set where the middle ground is present, if
one of the extreme alternatives could be chosen, then this remains possible if you add the
other extreme alternative - but the model cannot say anything about whether one of them
became more or less likely to be chosen, as this is simply not modeled.

We can now state the main theorem of our article:

Theorem 1. A choice correspondence c satisfies Pseudo-WARP and Centrality if, and only
if, there exists an ordered collection P := {<1, . . . ,<k} of linear orders on X that satisfies
the single-crossing property with respect to <∗ and is a pseudo-rational representation of c.





4 Single-Peakness

As is well-known in the social choice and political economy literature, when
preferences satisfy single-peakness, one can assure that condorcet cycles will not occur
when the decision system is majority vote by pairs. Furthermore, one can guarantee
that the social choice will be that of the median voter. Similar to Apesteguia, Ballester
e Lu (2017), we also characterize a choice correspondence that can be represented by
a collection of preferences that satisfy single-peakness. We also show that to achieve a
representation satisfying single-peakness requires stronger versions of the Centrality axiom
used in Theorem 1 and two additional axioms.

First we define single-peakness with respect to a particular order. In this context:

Definition 4. A collection P := {<1, . . . ,<k} of linear orders on X satisfies the single-
peak property with respect to <∗ on X if ∀ <i∈ P, whenever y <∗ x <∗ max(X,<i) or
max(X,<i) <∗ x <∗ y, then we must have x <i y.

In words, given a peak according to a certain order, the alternatives on each side
of the peak, according to the natural order, must be ordered by closeness to the peak:
the closer they are, the better they are. We could interpret this in terms of political
positions, for instance. Consider several policy proposals, ordered from the most liberal to
the least liberal. If the choice correspondence representing the choices of the individuals
in this society satisfy the single-peak property, then we can say that each individual has a
preference such that, given its most preferred alternative, say a middle ground between the
most and least liberal policies, it will prefer alternatives in each side that are closer to this
middle ground over more extreme alternatives. On the other hand, individuals with more
extreme tastes prefer policies closer to their tastes (but not the other extreme policies).

We must now introduce a formal definition of neighbors according to the main order,
<∗, and the axioms that we need to characterize a pseudo-rational choice correspondence
that admits a representation by a collection of orders satisfying single-peakness:

Definition 5. Let A be a choice problem and x ∈ X. We say that y is x’s neighbor in
A, or y ∈ N(A, x), if y ∈ A \ {x}, and for no z ∈ A \ {x} it is true that y �∗ z �∗ x or
x �∗ z �∗ y.

Axiom 3 (Strong Centrality). If x � y � z and y ∈ A, then x ∈ c(A ∪ {x}) =⇒ x ∈
c(A ∪ {x, z}) and z ∈ c(A ∪ {z}) =⇒ z ∈ c(A ∪ {x, z}).

Axiom 4 (Neighbors). If x ∈ c(A), then N(A, x)∩ c(A \ {x}) 6= ∅, provided that A 6= {x}.



Axiom 5 (Archimedian Centrality). If y2 <∗ y1 �∗ x �∗ z1 <∗ z2 and x ∈ c({y2, x, z2}),
then either x ∈ c({y2, x, z1}) or x ∈ c({y1, x, z2}).

The necessity of the Neighbors axiom is clear when we consider the example above
of the policies ordered from more to less liberal. As we stated, individuals that have single-
peak preferences must prefer alternatives close to their preferred alternatives. Therefore,
when deprived of their preferred alternative in a choice problem, their second option must
be the one closer to their preferred alternative. Its intuitive meaning is thus clear. Now,
Strong Centrality is very similar to the weaker version above, but has a meaning more
related to the single-peak property. If x is chosen when y is present, then one could
interpret that at least one individual prefers x over y. For the preferences of this individual
to obey single-peakness, then, she must also prefer y over z, since z is worse according to
the main order. Hence she must choose again x when faced with the same choice problem,
but with the addition of z. Finally, Archimedian Centrality axiom indicates that when a
middle-ground option x is chosen in the presence of more extreme ones like y2 and z2, it
will remain being chosen in the presence of at least one of its closer but still more extreme
neighbors, like y1or z1. In other words, if x is perceived as a good choice among y2 and z2,
but not so when y1 is available, it indicates that at least one agent in this hypothetical
population would like to choose something in between x and y2, so we should expect that
when faced with an option between y2, x and z1 she would keep perceiving x as a good
choice.

Theorem 2. A choice correspondence satisfies Pseudo-WARP, Strong Centrality, Neigh-
bors and Archimedian Centrality if, and only if, it has a single-peak pseudo-rational
representation.

It is imediate from theorem 2 that if a choice correspondence has a single-peak
pseudo-rational representation then it must also have a single-crossing pseudo-rational
representation. It’s possible, though, to go further. In the proof of theorem 2 we allow
the collection of preferences P to contain every single preference relation that satisfies
single-peak and does not violate the pseudo-rational representation of c, but by carefully
choosing and ordering a subset of this collection of preferences we are able to arrive
in a collection P ′ that also satisfies single-crossing without loosing the pseudo-rational
representation of c and, evidently, the single-peak property of it’s preference relations. This
result implies that any choice correspondence that admits a single-peak pseudo-rational
representation also admits a single-peak single-crossing pseudo-rational representation, as
stated in the following theorem.

Theorem 3. A choice correspondence satisfies Pseudo-WARP, Strong Centrality, Neigh-
bors and Archimedian Centrality if, and only if, it has a single-peak and single-crossing
pseudo-rational representation.



5 Conclusion

Following Apesteguia, Ballester e Lu (2017), we characterized pseudo-rational
choice correspondences that have a representation by collections of preferences satisfying
the single-crossing and single-peak properties. Whereas Apesteguia, Ballester and Lu
provided a characterization of a stochastic choice model, our characterization does not
model probabilities among the possible choices in each choice problem. Therefore, it may
be useful when the researcher does not have this data. As seen above, the single-crossing
property is most important in the context of comparative statics, because it allows one
to obtain results that are robust to misspecification of functional forms, what is called
monotone comparative statics. The single-peak property is mostly known for its role in
the median voter theorem, according to which, if all citizens have preferences that are
single-peaked with respect to a natural order of the policies being chosen, then the choice
by voting on pairs of options will be the preferred option of the voter with the median
preferences.

There are still several extensions that can be done. Most immediately, we are
working on developing a more elegant characterization of the single-peaked pseudo-rational
choice correspondence. We are also working on obtaining representation theorems in a
world of menus. For instance, if the individuals have preferences over menus of policies, like
in the case of a social security reform in which the congress must approve a menu of policies
among which the voter will choose one to validate it’s retirement, we want to characterize
when a choice correspondence over this menus will have a single-crossing and single-peak
representation. With respect to the single-peakness, we believe this could be useful in
modeling preferences over political parties, since they can, in principle, [also] be interpreted
as menus of policies. Also, we are working on an application of the single-crossing and
single-peak properties to the context of categories, where the individuals divide the world
in categories and, each time they have to make a decision, they pick the most preferred
option in a certain category - the choice of the category being determined by factors
outside the model.

At last, we have already seen in the introduction that it is possible to obtain mono-
tone comparative statics results using preferences only, in a world with finite alternatives,
which is the world we are considering here. As described by Apesteguia, Ballester e Lu
(2017), given a collection of preferences over risky assets that satisfy the single-crossing pro-
perty, we can affirm that, for every asset, the best alternative for an individual with more
risk aversion is either less riskier than or equal to the best alternative for an individual with
less risk aversion. But, as seen in the introduction, the literature on monotone comparative
statics is mostly based on objective functions (e.g., utility or profit functions) that satisfy



a single-crossing property, instead of preferences. Therefore, further extensions that would
be interesting, and we are working on, involve characterization theorems for arbitrary
choice spaces and theorems that allow us to obtain representations of the single-crossing
preferences through a family of objective functions that satisfy single-crossing as defined
by the literature on monotone comparative statics.
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A Proofs

A.1 Proof of Theorem 1
[Necessity] Suppose P := {<1, . . . ,<k} is a collection of linear orders on X that

satisfies the single-crossing property with respect to <∗ and is a pseudo-rational representa-
tion of c. As already shown by Aizerman e Malishevski (1981), this implies that c satisfies
Pseudo-WARP. Now consider x, y, z ∈ X such that x �∗ y �∗ z and y ∈ c({x, y, z}),
and an arbitrary A ⊆ X, such that y ∈ A. If x ∈ c(A ∪ {x}), by the representation
we must have x �j w, ∀w ∈ A (in particular x �j y), for some <j∈ P. Also, because
of y ∈ c({x, y, z}) and the single-crossing property, we must have y �i x and y �i z

for some i < j. But then, again because of the single-crossing property, we must have
y �j z, implying by transitivity of <j that x �j z and, by the representation, that
x ∈ c(A ∪ {x, z}).

For the second part, if z ∈ c(A ∪ {z}), then we must have z �i w, ∀w ∈ A (in
particular z �i y), for some <i∈ P . Also, because of y ∈ c({x, y, z}) and the single-crossing
property, we must have y �j z and y �j x for some j > i. The, by the single-crossing
property, we must have y �i x, implying by transitivity of <i that z �i x and, by the
representation, that z ∈ c(A ∪ {x, z}).

[Sufficiency] Suppose c is a choice correspondence that satisfies Pseudo-WARP and
Centrality. Define a binary relation < by x < y if, and only if, x <∗ y and x ∈ c({x, y})
or {x} = c({x, y}). We begin with the following claim:

Claim 1. The relation < is a linear order such that c satisfies Centrality with respect to
<.

Proof of Claim. Suppose c satisfies centrality with respect to <∗ , x < y < z and y ∈
c({x, y, z}). Then, by Pseudo-WARP, y ∈ c({x, y}), y ∈ c({y, z}) wich implies x <∗ y . If
y, z = c({y, z}), then we would also have z �∗ y. If {y} = c({y, z}), then ∀A ⊆ X with
y ∈ A, z /∈ c(A∪ {z}). We must then have that c satisfies centrality with respect to <. ‖

From now on, whenever we refer to Centrality, we mean Centrality with respect to
<.

Define a binary relation <1⊆ X × X by x <1 y if, and only if, x < y and
{x} = c({x, y}) or y � x and x ∈ c({x, y}). We note that <1 is complete and anti-
symmetric. We need the following claim:

Claim 2. The relation <1 is a linear order.



Demonstração. We only need to show that <1 is transitive. Suppose, thus, that x <1 y

and y <1 z. If x = y or y = z, there is nothing to prove, so suppose that x �1 y and y �1 z.
If y /∈ c({x, y}) and z /∈ c({y, z}), then Pseudo-WARP implies that c({x, y, z}) = {x}.
Now Pseudo-WARP implies that c({x, z}) = c({x, y, z}) and, consequently, x <1 z. If
y ∈ c({x, y}) and z ∈ c({y, z}), then we must have y � x, z � y, x ∈ c({x, y}) and
y ∈ c({y, z}). By the transitivity of <, we learn that z � x. If x /∈ c({x, y, z}), Pseudo-
WARP implies that c({x, y, z}) = {y, z}. But then Centrality plus x ∈ c({x, y}) implies
that x ∈ c({x, y, z}), which is a contradiction. We learn that x ∈ c({x, y, z}). Now
Pseudo-WARP implies that x ∈ c({x, z}) and, since z � x, we learn that x <1 z. Now
suppose that y /∈ c({x, y}), but z ∈ c({y, z}). By Pseudo-WARP, y /∈ c({x, y}) implies
that y /∈ c({x, y, z}). By the definition of <1, z ∈ c({y, z}) implies that z � y and
y ∈ c({y, z}). Now, by Pseudo-WARP, we must have x ∈ c({x, y, z}), which, again by
Pseudo-WARP, gives us that x ∈ c({x, z}). We cannot have x � z and z ∈ c({x, y, z}),
otherwise Centrality would imply that y ∈ c({x, y, z}) which is not true. We conclude
that x <1 z if x � z. Since x ∈ c({x, z}), we also get that x <1 z if z � x. We are
left with the case y ∈ c({x, y}) and z /∈ c({y, z}). In this case, we must have y � x and
x ∈ c({x, y}). Also, Pseudo-WARP implies that z /∈ c({x, y, z}). Now Pseudo-WARP
implies that c({x, y, z}) = {x, y} and another application of Pseudo-WARP implies that
x ∈ c({x, z}). If z � x, we immediately get x <1 z. If x � z, then Centrality would imply
that z ∈ c({x, y, z}) if z ∈ c({x, z}). Since z /∈ c({x, y, z}), we learn that z /∈ c({x, z})
and, consequently, x <1 z. We conclude that <1 is a linear order. ‖

We can now prove the following claim:

Claim 3. For every A, if x ∈ max(A,<1), then x ∈ c(A).

Demonstração. This is true by definition when |A| = 2. We proceed by induction. Suppose
the claim is true whenever |A| ≤ n and fix A such that |A| = n+ 1 and x ∈ max(A,<1).
Since <1 is a linear order, this implies that x �1 y for every y ∈ A \ {x}. If there is
y ∈ A such that x � y, then the definition of <1 implies that y /∈ c({x, y}) and, by
Pseudo-WARP, c(A) ⊆ A \ {y}. Now Pseudo-WARP and the induction hypothesis imply
that x ∈ c(A \ {y}) ⊆ c(A). The only remaining case is when y � x for every y ∈ A \ {x}.
Let z ∈ A be such that z � w for every w ∈ A \ {z}. If c(A) = {z}, then Pseudo-WARP
implies that c({x, z}) ⊆ c(A), which is a contradiction. We conclude that c(A) 6= {z}. If
there exists y ∈ A\{x, z} such that y ∈ c(A), then Centrality and the induction hypothesis
imply that x ∈ c(A). If there does not exist such a y, then we must also have x ∈ c(A),
because c(A) 6= {z}. ‖

Now fix i ∈ N \ {1} and let’s make the following induction hypotheses:



Induction Hypotheses. The collection {<1, . . . ,<n} is an ordered set of linear
orders on X that satisfies single-crossing with respect to < and such that

n⋃
i=1

max(A,<i) ⊆ c(A)

for every choice problem A.

Enumerate the elements of X according to <n. That is, x1 <n · · · <n xk. Let
i ∈ N be the first natural number such that xi+1 � xi and xi+1 ∈ c({xi, . . . , xk). Define
<n+1:= (<n \{(xi, xi+1)}) ∪ {(xi+1, xi)}. It is easy to see that <i+1 is a linear order such
that max(A,<i+1) ⊆ c(A) for every A ∈ 2X \{∅} and (<1, . . . ,<n) satisfies single-crossing.
This observation gives us an inductive procedure to build an ordered set {<1, . . . ,<n}
of linear orders that satisfies single-crossing and such that max(A,<i) ⊆ c(A) for every
A ∈ 2X \ {∅} and every i ∈ {1, . . . , n}.

Let {<1, . . . ,<n} be the collection of linear orders constructed by the inductive
procedure above. We need the following claim:

Claim 4. If {<1, . . . ,<n} is the collection of linear orders constructed by the inductive
procedure above, then <n=<.

Proof of Claim. Suppose the claim is not true. Let x be the <n −minimal element for
which there exists y ∈ X with x �n y, but y � x. In fact, by the minimality of x, there
exists such y such that x is the <n-successor of y.1 If there exists z ∈ L(y,�n) with
y � z � x and z ∈ c({x, y, z}), then y ∈ c(L(x,<n)) whenever y ∈ c(L(x,<n) \ {x}), by
Centrality. But L(x,<n)\{x} = L(y,<n) and we know that y ∈ c(L(y,<n)). Otherwise, let
A := {z ∈ L(y,�n) : z /∈ c(L(x,<n))}. By Pseudo-WARP, c(L(x,<n)) = c(L(x,<n) \ A).
Define also B := {z ∈ L(y,�n) : y � x � z}. Successive appliactions of Centrality give us
that y ∈ c(L(x,<n) \A) if y ∈ c(L(x,<n) \ (A∪B)). But L(x,<n) \ (A∪B) = {x, y} and
we know that y ∈ c({x, y}). We have already seen this implies that y ∈ c(L(x,<n) \A) =
c(L(x,<n)). But then we should have an <n+1 with y �n+1 x, which is a contradiction. ‖

We now need the following claim:

Claim 5. For any distinct x, y, z ∈ X with x � y � z and y ∈ c({x, y, z}), and any
i ∈ {1, . . . , n}, it cannot be true that z �i x �i y.

Proof of Claim. Suppose the claim is not true and let i∗ be the minimal i ∈ {1, . . . , n}
such that there exist x, y, z ∈ X with x � y � z, y ∈ c({x, y, z}) and z �i∗ x �i∗ y. By
the minimality of i∗ and the construction of the collection {<1, . . . ,<n}, we must have
that
1 By ŵ being the successor of w with respect to <i∗−1 we mean that ŵ �i∗−1 w and for no w̃ ∈ X it is

true that ŵ �i∗−1 w̃ �i∗−1 w.



1. z �i∗−1 y �i∗−1 x;

2. there exist no w, ŵ ∈ X with w <i∗−1 y, w � ŵ, ŵ being the successor of w with
respect to <i∗−1 and w ∈ c(L(ŵ,<i∗−1));2,3

3. x ∈ c(L(y,<i∗−1)).

We claim that there must exist w ∈ X such that w � z, z �i∗−1 w <i∗−1 y and
w ∈ c(L(z,<i∗−1)). To see that, suppose that there does not exist w such that w � z,
z �i∗−1 w �i∗−1 y and w ∈ c(L(z,<i∗−1)). Let A := {w ∈ X : z �i∗−1 w �i∗−1 y and w /∈
c(L(z,<i∗−1))}. By Pseudo-WARP, c(L(z,<i∗−1)) = c(L(z,<i∗−1) \ A). Now let B :=
{w ∈ X : z � w and z �i∗−1 w �i∗−1 y}. Since z ∈ c(L(z,<i∗−1)), z ∈ c({y, w, z}) for
every w ∈ B. Now successive applications of Centrality give us that y ∈ c(L(z,<i∗−1) \A)
if y ∈ c(L(z,<i∗−1) \ (A ∪ B)) = c(L(y,<i∗−1) ∪ {z}). Since x ∈ c(L(y,<i∗−1)) and
y ∈ c({x, y, z}), Centrality implies that x ∈ c(L(y,<i∗−1) ∪ {z}). Now let C := {ŵ ∈
X : x �i∗−1 ŵ and ŵ /∈ c(L(y,<i∗−1) ∪ {z})} and D := {ŵ ∈ X : x �i∗−1 ŵ and ŵ ∈
c(L(y,<i∗−1)∪{z})}. By Pseudo-WARP, c(L(y,<i∗−1)∪{z}) = c((L(y,<i∗−1)∪{z})\C).
Now, fix ŵ ∈ D. By Pseudo-WARP, this implies that ŵ ∈ c({x, ŵ, z}), so, the minimality
of i∗ implies we cannot have that x � ŵ � z. That is, either ŵ � x � y or y � z � ŵ.
Now successive applications of Centrality give us that y ∈ c((L(y,<i∗−1) ∪ {z}) \ C) if
y ∈ c((L(y,<i∗−1)∪{z})\(C∪D)). But notice that (L(y,<i∗−1)∪{z})\(C∪D) = {x, y, z},
so we know that y ∈ c((L(y,<i∗−1) ∪ {z}) \ (C ∪ D)). As we have argued above, this
implies that y ∈ c((L(y,<i∗−1) ∪ {z}) \ C) = c(L(y,<i∗−1) ∪ {z}). In turn, this implies
that y ∈ c(L(z,<i∗−1) \A) = c(L(z,<i∗−1)) and, consequently, it is always true that there
exists w ∈ X such that w � z, z �i∗−1 w <i∗−1 y and w ∈ c(L(z,<i∗−1)). Fix, then, a
w ∈ X with w � z, z �i∗−1 w <i∗−1 y and w ∈ c(L(z,<i∗−1)). Let ŵ be the successor of
w with respect to <i∗−1. We cannot have ŵ � w, otherwise we would have a contradiction
to the minimality of i∗. But then we arrive at a contradiction to 2 above. This proves the
claim. ‖

We can now prove the following result:

Claim 6. For any A ∈ 2X \ {∅}, if y ∈ c(A), then there exists <i∈ {<1, . . . ,<n} with
y ∈ max(A,<i).

Proof of Claim. Let B := {x ∈ A : x �n y} = {x ∈ A : x � y} and C := {z ∈ A : y �n

z} = {z ∈ A : y � z}. By Pseudo-WARP, y ∈ c({x, y, z}) for every x ∈ B and z ∈ C. Let
i∗ be the first i ∈ {1, . . . , n} such that y �i∗ z for every z ∈ C. By Claim 5, we must have
y �i∗ x for every x ∈ B. Consequently, {y} = max(A,<i∗). ‖
2 By ŵ being the successor of w with respect to <i∗−1 we mean that ŵ �i∗−1 w and for no w̃ ∈ X it is

true that ŵ �i∗−1 w̃ �i∗−1 w.
3 Notation. For any ŵ ∈ X and any preorder <, by L(ŵ,<) we mean the set {w̃ ∈ X : ŵ < w̃} and by

U(ŵ,<) we mean the set {w̃ ∈ X : w̃ < ŵ}.



This shows that c has the desired representation, except that, for now, we only
know that {<1, . . . ,<n} satisfies single-crossing with respect to <. We conclude the proof
with the following claim:

Claim 7. The collection {<1, . . . ,<n} satisfies single-crossing with respect to <∗.

Demonstração. Suppose x, y ∈ X are such that x �∗ y and x �i y for some i ∈ {1, . . . , n−
1}. If x � y, then x �j y for every j ≥ i by the fact that {<1, . . . ,<n} satisfies single-
crossing with respect to <. If y � x, then we must have that {y} = c({x, y}), by the
definition of <. But then we would have y �j x for every j ∈ {1, . . . , n}, which is a
contradiction. We conclude that {<1, . . . ,<n} satisfies single-crossing with respect to <∗.

‖

This concludes the proof of the theorem.

A.2 Proof of Theorem 2
[Necessity] Suppose P := {<1, . . . ,<k} is a collection of linear orders on X that

satisfies the single-peak property with respect to <∗ and is a pseudo-rational representation
of c.

Claim 8. c satisfies Pseudo-Warp.

Proof of Claim. Suppose x ∈ c(A)∩B and c(B) ⊆ A. We must have that there is a linear
order <i∈ P , such that {x} = max(A,<i). As c(B) ⊆ A, max(B,<i) ⊆ A, which implies
{x} = max(B,<i) and x ∈ c(B).

Claim 9. c satisfies Strong-Centrality.

Proof of Claim. Given x <∗ y <∗ z and an arbitrary set A such that y ∈ A, if x ∈
c(A ∪ {x}), then we must have that, for some <i, x <i y. But then, by single-peakness,
we cannot have z <i x, since: if z is the peak of <i, we should have y <i x, and if z is
not the peak, either the peak if below z in <∗and we would also have y <i x, or the peak
is above z and we would have either y <i x or x <i y <i z. Therefore, we must have
x ∈ c(A ∪ {x, z}), and Strong Centrality is satisfied.

Claim 10. c satisfies Neighbors.

Proof of Claim. Also, given an arbitrary A such that |c(A)| > 1. If x ∈ c(A), then we
must have that x = max(A,<i) for some <i. Suppose the second best in A according to
<iis not a neighbor of x. If this second best in below x in <∗, then it is inverted with the
below-neighbor of x, which can happen only if the peak is also below this second best in



<∗, contradicting x = max(A,<i), due to single-peakness. If this second best is above x in
<∗, then we would have that it is not inverted with the neighbor of x in A according to <i,
which can happen only if the peak is above x, but that would contradict x = max(A,<i)
again.

Claim 11. c satisfies Archimedian Centrality.

Proof of Claim. Suppose x ∈ c({x, y2, z2}) and y2 <∗ y1 �∗ x �∗ z1 <∗ z2. This implies
there is <i∈ P with x ∈ max({x, y2, z2},<i), x �i y2 and x �i z2. Let x̂ := max(X,<i).
The single-peakedness of <i implies that either x̂ <i x �i z1 or x̂ <i x �i y1. But then,
we must have that either x ∈ max({x, y2, z1}) or x ∈ c({x, y1, z2}), which proves the
claim.

[Sufficiency] Suppose c satisfies Strong Centrality, Pseudo-WARP, Neighbors and
Archimedian Centrality. Take w1 ∈ c(X) and let N := |X|. For each n ∈ {1, 2, . . . , N −1},
choose wn+1 ∈ c(X \ {w1, . . . , wn}) ∩N(X \ {w1, . . . , wn−1}, wn). Notice that Neighbors
guarantees there will always be a wn+1 to be chosen this way. Let <i:= {(wn, wn+1) ∈
X ×X : n ∈ {1, 2, . . . , N − 1}} and P be the collection of every linear order <i that can
be defined this way. Because of it’s construction <i must satisfy single-peak with respect
to <∗ and Pseudo-WARP implies that ∀ <i∈ P ,∀B ∈ ΩX ,max(B,<i) ⊆ c(B). We must
now show that for each A ∈ ΩX and each x ∈ c(A) there is a linear order <i∈ P such that
x ∈ max(A,<i).

Fix some choice problem A and some x ∈ c(A). If x ∈ c(X), define x := w1 and
we are done. Suppose then x /∈ c(X). If we have that ∀y ∈ A, x <∗ y and ∃w ∈ c(X)
with w <∗ x, then define w := w1 and again by the construction of <i we must have that
x ∈ max(A,<i). The same argument is valid when we have that ∀y ∈ A, y <∗ x and
∃w ∈ c(X) with x <∗ w.

We need now the following claim.

Claim 12. Let A,B ∈ ΩX . If x ∈ c(A) ∩ B and for every y ∈ c(B) there exists z ∈ A
with x � z < y or y < z � x, then x ∈ c(B).

Proof of Claim. As c satisfies Pseudo-WARP and Strong Centrality and for every y ∈ c(B)
there exists z ∈ A with x � z < y or y < z � x, then successive applications of Strong
Centrality give us that x ∈ c(A∪c(B)). Now, as x ∈ c(A∪c(B))∩B and c(B) ⊆ A∪c(B),
then Pseudo-WARP implies x ∈ c(B).

By claim 12 we must have that if x ∈ c(A) and ∀y ∈ A, x <∗ y but now for no
w ∈ c(X) it is true that w <∗ x, then there must be w ∈ c(X) with x <∗ w �∗ y,
otherwise claim 12 would imply x ∈ c(X). And again, the same argument is valid



when ∀y ∈ A, y <∗ x and c(X) ∩ L(x,<∗) = ∅. In these cases, as x ∈ c(A), taking
y ∈ N(A, x), claim 12 also implies that x ∈ c(U(x,<∗) ∪ L(y,< ∗)), when x �∗ y, and
x ∈ c(U(y,<∗) ∪ L(x,< ∗)), when y �∗ x.

We now proceed to the following claim:

Claim 13. If x ∈ c(A), y ∈ N(A, x), w ∈ c(X), with x �∗ w �∗ y and x ∈ c(U(x,<∗

) ∪ L(y,< ∗)) or y �∗ w �∗ x and x ∈ c(U(y,<∗) ∪ L(x,< ∗)), then we must have that
∃ <i∈ P with x ∈ max(A,<i).

Proof of Claim. Suppose we have the first case, that is, x ∈ c(A), y ∈ N(A, x), w ∈
c(X), with x �∗ w �∗ y and x ∈ c(U(x,<∗)∪L(y,< ∗)). Take w1 := w. Then there must
be a set {w1, . . . , wn} ⊆ X \ (U(x,<∗)∪L(y,< ∗)) with x ∈ N(X \ {w1, . . . , wn−1}, wn)∩
c(X \ {w1, . . . , wn}), so that we can define x := wn+1 and, as A ⊆ X \ {w1, . . . , wn},
x ∈ max(A,<i), where <i∈ P is a linear order derived from the set {w1, . . . , wn+1} as
above.

With claim 13 and the preceding arguments, we prove that ∃ <i∈ P such that
x ∈ max(A,<i) whenever x ∈ (max(A,<∗) ∪ min(A,<∗)). We must now prove that
the result is also valid when x ∈ c(A) \ (max(A,<∗) ∪ min(A,<∗)). In this case, we
must have that ∃y, z ∈ A with {y, z} = N(A, x). Let {ŷ, ẑ} := N(X, x) such that
y <∗ ŷ �∗ x �∗ ẑ <∗ z. Then Archimedian Centrality gives us that either x ∈ c({y, x, ẑ})
or x ∈ c({ŷ, x, z}). In each case successive applications of Strong Centrality imply that
x ∈ c(U(y,<∗) ∪ L(x,<∗)), in the first case, or x ∈ c(U(x,<∗) ∪ L(z,<∗)), in the second.
If we have that x ∈ c(U(y,<∗) ∪ L(x,<∗)), then Pseudo-WARP implies that ∃w ∈
c(X) \ (U(y,<∗) ∪ L(x,<∗)), otherwise we would have x ∈ c(X). Now, claim 13 implies
that there is <i∈ P such that x ∈ max(A,<i). The case where x ∈ c(U(x,<∗)∪L(z,<∗))
is similar and with it we conclude the proof of the theorem.

A.3 Proof of Theorem 3

[Sufficiency] Suppose c satisfies Strong Centrality, Pseudo-WARP, Neighbors and
Archimedian Centrality. We have already proved that in this setting c has a single-peak
representation P, we will show now that it is possible to make changes to P so that it
also satisfies single-crossing without losing the representation property. For that let P be
defined as in the proof of theorem 2, in the sense that it contains every preference relation
that satisfies single peak and does not violate the pseudo-rational representation of c.
Let P ′ = {<1, . . . ,<m} ⊆ P be a ⊇ -maximal subset of P that satisfies single-crossing,
which means that, if y �∗ x and y �i x then y �j x,∀ �j∈ P ′ with j > i. We must
show that for an arbitrary choice problem A ∈ ΩX and x ∈ c(A), there is <i∈ P ′ such



that x ∈ max(A,<i). Suppose then, by contradiction, that for no <∈ P ′ it is true that
x ∈ max(A,<). We proceed with the following claim:

Claim 14. If x ∈ (max(A,<∗) ∪ min(A,<∗)) ∩ c(A), then ∃ <l∈ P ′ such that x ∈
max(A,<l).

Demonstração. Suppose x ∈ max(A,<∗) ∩ c(A) and let ŵ1 := max(c(X),<∗) and for
each i < |X|, ŵi+1 := max(c(X \ {ŵ1, . . . , ŵi})∩N(X \ {ŵ1, . . . , ŵi−1}, ŵi),<∗). Let now
<l:= {(wi, wi+1) ∈ X2 : i ∈ {1, . . . , |X| − 1}}. As <l satisfies single-peak and in no way
violates the pseudo-rational representation of c, we must have that <l∈ P. Note then
that, if for some <i∈ P and x, y ∈ X it is true that both x <i y and x <∗ y, then either
ŵ1 <∗ x <∗ y or x <∗ ŵ1 <∗ y and in both cases we must have x <l y. As we chose <i

arbitrarily, this implies that <l satisfies single-crossing with respect to <∗ towards any
other preference in P and, by the ⊇-maximality of P ′, <l∈ P ′. Finally, as x ∈ c(A), by
the theorem 2, there must be <j∈ P such that x �j y,∀y ∈ A \ {x}, and then we ought
to have x ∈ max(A,<l). The proof when x ∈ min(A,<∗) ∩ c(A) is symmetrical.

Let then y, z ∈ N(A, x) be such that y <∗ x <∗ z. Note we must have that
∀ <∈ P ′, either z < x or y < x. Let also j := max{n ∈ N : z �n x, and <n∈ P ′}, which
implies that, as P ′ satisfies single crossing, ∀k < j, z �k x and ∀k > j, y �k x, and let
z∗ := max(X,<j) and y∗ := max(X,<j+1), which implies y∗ �∗ x �∗ z∗. We will show
that ∃ <i∈ P , such that x ∈ max(A,<i) and {<1, . . . ,<j,<i,<j+1, . . . ,<m} satisfies
single crossing. Archimedian Centrality implies that either x ∈ c(U(x,<∗) ∪ L(z,<∗))
or x ∈ c(U(y,<∗) ∪ L(x,<∗)). Suppose then x ∈ c(U(x,<∗) ∪ L(z,<∗)) \ c(X) and take
w1 ∈ N(c(X), x) such that y∗ �∗ x �∗ w1 <∗ z∗.4 Notice now that, if w1 �∗ b, then, by
Strong Centrality, y∗ �j+1 w1 �j+1 b, and, in the same way, if b �∗ w1, then z∗ <j w1 �j b.
We now need the following claim to proceed.

Claim 15. (@)Suppose w1, . . . , wn ⊆ M(x, z,�∗)5 is an ordered set in which wk+1 ∈
c(X \ {w1, . . . , wk}) ∩ N(X \ {w1, . . . , wk−1}, wk) for all k < n, wk+1 �∗ wk implies
wk �j wk+1, wk �∗ wk+1 implies wk �j+1 wk+1 and whenever there are a, b ∈ X fulfilling
these conditions, we take wk := max({a, b},<∗). We must then have that either x ∈
c(X\{w1, . . . , wn})∩N(X\{w1, . . . , wn−1}, wn) and wn �j x or there is wn+1 ∈M(x, y,�∗

)∩c(X\{w1, . . . , wn})∩N(X\{w1, . . . , wn−1}, wn) such that if wn+1 �∗ wn then wn �j wn+1

and ifwn �∗ wn+1 then wn �j+1 wn+1.

Demonstração. As wn ∈M(x, z,�∗), if x /∈ c(X\{w1, . . . , wn})∩N(X\{w1, . . . , wn−1}, wn),
we either have x �∗ wn �∗ z∗ or x �∗ z∗ �∗ wn �∗ z and, since �j satisfies single-peak and
z �j x, which in both cases implies wn �j x. Suppose then x /∈ c(X\{w1, . . . , wn})∩N(X\
4 The case where x ∈ c(X) is rather trivial.
5 Where M(x, z,�∗) := {a ∈ X : x �∗ a �∗ z}.



{w1, . . . , wn−1}, wn), as x ∈ c(U(x,<∗) ∪ L(z,<∗)) we must have that M(x, z,�∗) 6= ∅.
Take then wn+1 ∈ max(M(x, y,�∗)∩c(X \{w1, . . . , wn})∩N(X \{w1, . . . , wn−1}, wn),<∗).
If we have that y∗ �∗ wn �∗ wn+1, then, by single-peakness of �j+1, wn �j+1 wn+1. If,
otherwise, wn+1 �∗ wn, we must have that either wn+1 �∗ wn <∗ z∗ or wn+1 �∗ w1 <∗

z∗ �∗ wn. In the first case we get that wn �j wn+1 by single-peakness of �j. For the
second case, as wn+1 �∗ wn−1 �∗ wn, we must have wn �j wn+1, otherwise we should have
taken wn+1 instead of wnon the previous step.

With claim @ we prove we can form a sequence of alternatives {w1, . . . , wn, x}
that satisfies single peak, if we consider wk �i wk+1,∀k ≤ n, in no way violates either the
pseudo-rational representation or the single-crossing property towards �j or �j+1 and
for which x = max(A,�i). To conclude the proof we proceed by choosing the following
alternatives in a way that wk+1 = max(N(X \ {w1, . . . , wn, x, . . . , wk−1}, wk),�j). As
max(B,�j) ⊆ c(B), this does not violate the pseudo-rational representation. If now
we have that wk �∗ wk+1, we must have y∗ �j+1 wk �j+1 wk+1, and if wk+1 �∗ wk

then z∗ �j wk �j wk+1 so that <i:= {(wk, wk+1) ∈ X2 : k ∈ {1, . . . , |X| − 1}} and
{<1, . . . ,<j,<i,<j+1, . . . ,<m} satisfies single-crossing, contradicting the ⊇ −maximality
of P ′.
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