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FACULDADE DE TECNOLOGIA

DEPARTAMENTO DE ENGENHARIA MECÂNICA
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Abstract

The goals of this work are to investigate the cyclic stress-strain behaviour and the multiaxial

fatigue of the 304L stainless steel through fully reversed strain-controlled axial, torsional and

proportional axial-torsional experiments at room temperature and to evaluate the critical plane

fatigue models proposed by Smith, Watson and Topper (1970), and Fatemi and Socie (1988)

regarding the fatigue life and the macroscopic fatigue crack orientation. Thin-walled tubular

specimens machined after a normalization heat treatment were submitted equivalent von Mises

strain amplitudes such that 0.20% ≤ ∆εeq/2 ≤ 1.00%. Due to the rate-dependent cyclic stress-

strain behaviour of the 304L stainless steel, all experiments were performed with frequencies

(0.30–2.00 Hz) such that the equivalent von Mises strain rate was equal to 10−2 s−1. It was

observed that the secondary hardening upon proportional loads occurred only for ∆εeq/2 ≥ 0.80%,

whilst it occurred for all axial and torsional experiments. Based upon the comparison between

stress states, it was concluded that fatigue failure occurs before the secondary hardening becomes

important for proportional experiments whose ∆εeq/2 ≤ 0.60%. A Masing-type behaviour was

observed for a range of axial strain ∆ε/2 ≤ 0.40% and torsional strain ∆γsur/2 ≤ 0.61% for

axial, torsional and proportional experiments. The equivalent von Mises strain amplitude cannot

be used as a threshold since the proportional experiment whose ∆εeq/2 = 0.50% exhibits a

behaviour similar to experiments whose ∆εeq/2 < 0.50%, which does not occur for the axial

experiment with the same equivalent strain amplitude. non-proportionality upon deviatoric

stress and plastic strain spaces was observed for proportional experiments upon total strain

space. Nonetheless, an increase in stress amplitude was not observed for those experiments

when compared to axial and torsional ones, which suggests that non-proportional hardening is

related to non-proportionality upon the total strain space. There was no significant influence of

secondary hardening upon fatigue analysis since there was no significant difference between life

predictions generated from material constants obtained from different reference cycles for both

models. The investigated models predicted accurately fatigue life, but failed to predict crack

orientation for all the three strain histories.

Keywords : Multiaxial Fatigue, Cyclic Plasticity, 304L Stainless Steel, Critical Plane Models
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Resumo

Os objetivos deste trabalho são investigar o comportamento tensão-deformação ćıclico e a fadiga

multiaxial do aço inoxidável 304L por meio de ensaios axiais, torsionais e axiais-torsionais

proporcionais totalmente alternados controlados por deformação à temperatura ambiente e

avaliar os modelos de fadiga do tipo plano cŕıtico propostos por Smith, Watson e Topper

(1970), e Fatemi e Socie (1988) em relação à previsão de vida à fadiga e à orientação das

trincas macroscópicas. Corpos de prova tubulares com paredes finas usinados após o tratamento

térmico de normalização foram submetidos a amplitudes de deformação equivalente de von

Mises tais que 0.20% ≤ ∆εeq/2 ≤ 1.00%. Devido à dependência da taxa de carregamento do

comportamento tensão deformação do aço inoxidável 304L, todos os ensaios foram realizados

com frequências (0,30–2,00 Hz) tais que a taxa de deformação equivalente de von Mises fosse

igual a 10−2 s−1. Observou-se que o endurecimento secundário nos ensaios proporcionais só

ocorreu para amplitudes de deformação equivalente ∆εeq/2 ≥ 0,80%, enquanto todos os ensaios

axiais-torsionais apresentaram endurecimento secundário. Baseado na comparação entre os

estados de tensão, concluiu-se que há falha por fadiga antes que o endurecimento secundário

se torne significativo para os ensaios proporcionais cuja ∆εeq/2 ≤ 0,60%. Observou-se um

comportamento do tipo Masing para uma faixa de deformação axial ∆ε/2 ≤ 0,40% e torsional

∆γsur/2 ≤ 0,61% para ensaios axiais, torsionais e proporcionais. A deformação equivalente de

von Mises não pode ser usada como parâmetro limite para o comportamento Masing já que

o ensaio proporcional cuja ∆εeq/2 = 0,50% apresenta comportamento semelhante àquele de

ensaios cuja ∆εeq/2 ≤ 0,50%, o que não ocorre para o ensaio axial de mesma amplitude de

deformação equivalente. Observou-se não proporcionalidade nos espaços das tensões desviadoras

e das deformações plásticas para os ensaios proporcionais no espaço das deformações totais. No

entanto, não se observou um aumento na amplitude de tensão destes ensaios quando comparados

a ensaios axiais e torsionais, o que sugere que o endurecimento não proporcional está associado

à não proporcionalidade no espaço das deformações totais. Não houve influência significativa do

endurecimento secundário na análise de fadiga, já que não houve diferença significativa entre as

estimativas de vida realizadas com constantes materiais obtidas de diferentes ciclos de referência

para os dois modelos. Os modelos investigados previram a vida à fadiga com boa acurária, mas

falharam em prever a orientação das trincas para todas as três histórias de deformação.

Palavras-chave: Fadiga Multiaxial, Plasticidade Ćıclica, Aço Inoxidável 304L, Modelos de

Plano Cŕıtico
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Chapter 1 – Introduction

1.1 Motivation and objectives

Fatigue failure is an important aspect of engineering design since many components are submitted

to cyclic loading, which are usually of multiaxial nature. Hence, multiaxial experiments designed

to investigate the cyclic plasticity and the fatigue behaviour of engineering materials are essential

to predict the fatigue life of these components. Similarly, it is also necessary to develop multiaxial

fatigue models that can be applied to a wide range of complex loading, as variable amplitude

ones, and cyclic plasticity models that incorporate the material phenomena observed during

cyclic loading.

Stainless steels are steels that have at least 10.5% chromium content by mass. Those steels

exhibit an important corrosion resistance due to the presence of this chemical element, which

may be accompanied by other elements, as nickel, molybdenum and manganese. The Society of

Automotive Engineers (SAE) proposed a classification for the stainless steels based upon the

chemical content and crystalline structure. The 300 series is composed of austenitic chromium-

nickel alloys, such as the Type 302, Type 304 and Type 306.

The 304L stainless steel is a low carbon version of the Type 304 stainless steel that has many

industrial applications, like pressurized water nuclear reactors (Haddar and Fissolo, 2005; Zinkle

and Was, 2013), aeronautical (Huda and Edi, 2013; Kral et al., 2018) components, pipelines

(Martins et al., 2014), and pressure and chemical vessels (Chopra and Gavenda, 1998; Yoon et al.,

2015). Despite the widespread industrial application of this material, it exhibits many material

phenomena that are still subject of research, as the non-proportional hardening (Krempl and Lu,

1984), secondary hardening (Bayerlein et al., 1989; Mughrabi and Christ, 1997), rate-dependence

of the stress-strain behaviour (Krempl, 1979), creep and ratcheting (Taleb and Cailletaud, 2011),

and crack orientation dependent upon loading amplitude (Bannantine and Socie, 1988; Kalnaus,

2009).

In this work, several phenomena of cyclic plasticity and the multiaxial fatigue behaviour of the

304L stainless steel will be investigated. The main objectives of this work are:

• Perform fully reversed axial-torsional proportional experiments in order to supplement

the fully reversed axial and torsional experiments performed by Carneiro Junior (2017).

1



• Investigate the cyclic stress-strain behaviour of the 304L stainless steel, especially the

secondary hardening, the non-Masing behaviour and the proportionality upon the deviatoric

stress, total and plastic strain spaces.

• Analyse the influence of the secondary hardening upon fatigue life estimates, as well as

evaluate the critical plane models proposed by Smith, Watson and Topper (1970), and

Fatemi and Socie (1988) regarding crack orientation and fatigue life predictions.

1.2 Outline of the dissertation

This dissertation is composed of five chapters: in Chapter 2, a review of the phenomenon of

martensitic phase transformation, of the fatigue literature and of the cyclic plasticity of the

304L stainless steel will be introduced; in Chapter 3, the critical plane fatigue models of Smith,

Watson and Topper (1970) and Fatemi and Socie (1988), which will be used in this work,

will be briefly discussed; in Chapter 4, the experimental procedures and methodology, as well

as the program developed to post-process experimental data, will be exposed; in Chapter 5,

experimental results and the subsequent analysis will be presented and discussed; and in Chapter

6, the conclusions and suggestions for future works will be presented.
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Chapter 2 – Literature Overview

In this section, it is presented a literature review of the martensitic phase transformation, which

is the cause of the secondary hardening, a late cyclic hardening phenomenon; uniaxial and

multiaxial fatigue, as well as the fatigue cracking behaviour of the 304L stainless steel; and

the cyclic plasticity phenomena of rate-dependence, creep, ratcheting and non-proportional

hardening.

2.1 Phase transformation and secondary hardening

The 304L stainless steel is a metastable austenitic steel that may undergo martensitic transform-

ation induced by temperature or by plastic deformation at room temperature (Bayerlein et al.,

1989). Two martensitic phases have been observed upon both temperature and deformation-

induced transformations (Reed, 1962): α′-martensite, a body centred cubic (BCC) phase, and

ε-martensite, a hexagonal close-packed (HCP) phase. The α′-martensite formation may occur

directly from γ-austenite phase or from an intermediate ε-martensite, with the latter occurring

especially near stacking faults (Bayerlein et al., 1989). The α′-martensite morphology depends

upon the formation process: for the direct transformation, an elongated block shape occurs,

whilst a lathlike shape is observed for a three-stage transformation. Experimental evidence of the

formation of α′ and ε-martensite for a plastic-strain controlled tension-compression experiment

performed by Bayerlein et al. (1989) and the two α′-martensite phases observed by Hennessy et al.

(1976) after 1031 reversals of a fully reversed strain-controlled tension-compression experiment

performed at 93◦C (366K) whose ∆ε/2 = 1.5% are shown in Figures 2.1 and 2.2.

Due to martensitic transformation, the 304L stainless steel exhibits a phenomenon called second-

ary hardening when submitted to cyclic deformation (Mughrabi and Christ, 1997). Therefore,

there may be a late increase in stress amplitude throughout strain-controlled experiments. An

important consequence is that the notion of a stabilized stress-strain hysteresis loop, which

is often used in fatigue analysis, may not be appropriated for this material. To illustrate this

phenomenon, the stress amplitude vs. the number of loading cycles for axial and torsional

strain-controlled experiments performed by Kalnaus (2009) upon a 304L stainless steel is shown

in Figure 2.3.
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Figure 2.1: (a) Bright field photography, (b) dark field α′-martensite reflection, (c) dark field
ε-martensite reflection and (d) dark field γ reflection observed after 258 loading blocks of a
plastic-strain controlled tension-compression experiment whose ∆εp/2 = 0.5% (Bayerlein et al.,
1989). Observations made by transmission electron microscope (TEM).

Figure 2.2: Two α′-martensite morphologies observed after (A) a direct transformation and (B)
a three-stage transformation (Hennessy et al., 1976). Observations made by light microscopy.
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Figure 2.3: Secondary hardening upon strain-controlled (a) axial and (b) torsional tests (Kalnaus,
2009).

Martensitic transformation does not occur for all stress states. Several authors did not ob-

serve secondary hardening upon cyclic loads and attempted to determine whether martensitic

transformation would occur based upon a total or plastic strain amplitude threshold:

1. Baudry and Pineau (1977) observed negligible secondary hardening for ∆εp/2 < 0.18% at

room temperature and for ∆εp/2 < 0.50% at 50 ◦C (323 K).

2. Bayerlein et al. (1989) observed negligible secondary hardening for ∆εp/2 < 0.30% at

room temperature.

3. Krupp et al. (2001) observed negligible secondary hardening for ∆εp/2 < 0.30% at room

temperature.

4. Kalnaus (2009) observed almost insignificant secondary hardening for fully reversed 90◦

out-of-phase non-proportional loads at room temperature for an equivalent von Mises

strain amplitude ∆εeq/2 ≤ 0.40%.

5. Colin et al. (2010) observed secondary hardening upon uniaxial experiments at room

temperature in which Rε = −1, Rε = 2 and Rε =∞ for strain amplitudes ∆ε/2 ≤ 0.25%.

6. Vincent et al. (2012) observed secondary hardening upon uniaxial experiments at room
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temperature whose ∆ε/2 ≤ 0.20%. On the other hand, it was also observed that cyclic

softening and secondary hardening are almost negligible if there is a positive mean stress,

especially for large strain amplitudes.

2.2 Fatigue

2.2.1 Uniaxial fatigue

There have been several works that investigated the uniaxial fatigue behaviour of this material:

1. Baudry and Pineau (1977) investigated the influence of temperature upon strain-life curves

up to 105 cycles and observed that low cycle fatigue life was longer at the range 50–70 ◦C

(323–348 K), and that the formation of α′-martensite accelerated both crack initiation

and propagation.

2. Colin (2010) observed that prestraining produced several shallow microcracks, with more

microcracks being observed upon High-Low than Low-High two-step sequence loading.

Nonetheless, those microcracks did not affect significantly fatigue failure, which was caused

by the presence of macrocracks. It was also observed that this material features loading

sequence effects, which was verified by Belattar et al. (2012) too.

3. Colin (2010) also observed mean stress relaxation for experiments whose Rε 6= −1, and

that they lasted longer than specimens subjected to fully reversed loadings.

4. Müller-Bollenhagen et al. (2010) investigated the very high cycle fatigue behaviour of this

material and observed no failure (up to 109 cycles) upon 304 stainless steel specimens for

∆σ/2 ≤ 250 MPa.

5. Vincent et al. (2012) investigated the high cycle fatigue behaviour of the 304L stainless

steel and observed that a stress amplitude parameter and the fatigue parameter proposed

by Smith, Watson and Topper (1970) predicted accurately fatigue life based upon the

maximum softening cycle.

2.2.2 Multiaxial fatigue

Some important work upon multiaxial fatigue of the 304L stainless steel are presented below:

1. Socie (1987) performed strain-controlled experiments upon thin-walled tubular specimens

using six different strain paths: axial, torsional, proportional, 90◦ out-of-phase, box and

two boxes. It was observed that the fatigue parameter proposed by Smith, Watson and

Topper (1970) correlated well the observed fatigue lives, which was attributed to the

agreement between the observed fatigue crack mode and the one assumed by this fatigue

model.
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2. Itoh et al. (1995) performed experiments upon thin-walled tubular specimens of 304

stainless steel using fourteen axial-torsional strain paths, including proportional and

complex non-proportional paths. It was observed a reduction up to a factor of ten upon

fatigue life for non-proportional experiments when compared to proportional paths with

equal strain amplitude. In addition, an equivalent non-proportional strain range parameter

was proposed and successfully tested in order to render unnecessary a cyclic plasticity

model that incorporates non-proportional hardening whilst estimating fatigue life.

3. Jiang (2000) verified that a proposed incremental fatigue damage model based upon the

concept of plastic strain energy could accurately predict fatigue life for the experimental

data obtained by Itoh et al. (1995) and Jiang and Kurath (1997b).

4. Shamsaei et al. (2011) performed proportional experiments upon tubular specimens with

four strain paths: three fully reversed in which the angle θ = arctan γ/
√

3ε increment

was 1◦, 15◦ and random, and a unbalanced path such that Rε = Rγ = 0 with an angle

increment of 1◦. It was observed that an additional hardening occurred for loadings in

which the angle varied randomly, whilst it does not occur for the other experiments.

Nonetheless, there was no impact upon observed fatigue life. The fatigue model proposed

by Fatemi and Socie (1988) accurately predicted both fatigue life and crack orientation.

2.2.3 Fatigue cracking behaviour

Fatigue cracking behaviour depends upon the material, the stress state and the loading amplitude

(Bannantine and Socie, 1988; Zhao and Jiang, 2008; Kalnaus, 2009; Castro and Jiang, 2016).

Jiang (2000) proposed a classification based upon the crack orientation of axial and torsional

loads, illustrated in Figure 2.4: a shear mode material exhibits crack orientations that coincide

with the orientation of the planes in which shear stress is maximum (±45◦ for axial loads, and 0

and 90◦ for torsional ones); a tensile mode material exhibits crack orientations that coincide

with the orientation of the planes in which normal stress is maximum (0 for axial loads, and

±45◦ for torsional ones); and a mixed mode material exhibits crack orientations that coincide

with the orientation of the planes in which normal stress is maximum for axial loads, and with

planes in which shear stress is maximum for torsional ones.

Bannantine and Socie (1988) observed three cracking behaviour regions for the 304 stainless

steel: region I, characterized by crack initiation upon grain boundaries and slip band, with the

nucleation of a myriad of small cracks that coalesced into a large crack; region II, characterized

by the bifurcation of region I obstructed cracks in the direction of the maximum tensile stress;

and region III, characterized by the nucleation of few cracks that bifurcated too, like cracks of

region II, and failure by crack growth instead of crack coalescence. The three regions are shown

in Figure 2.5.
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Shear mode

Tensile mode

Mixed mode

Figure 2.4: Classification of fatigue cracking behaviour according to Jiang (2000).

Figure 2.5: Cracking behaviour of 304 stainless steel tested under torsion strain-controlled
conditions (Bannantine and Socie, 1988).
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Kalnaus (2009) observed that the cracking behaviour of the 304L stainless steel is dependent

upon the load as well. For axial loads, a tensile cracking behaviour was observed, whilst for

torsional loads, cracking behaviour was dependent upon shear strain amplitude: for ∆γ/2 ≥ 0.7%,

a shear mode was observed; for ∆γ/2 < 0.7%, a tensile mode was observed. Therefore, based

upon Figure 2.4, the crack behaviour of the 304L stainless steel can be classified as mixed or

tensile mode, depending upon the strain amplitude.

2.3 Cyclic plasticity

The cyclic stress-strain behaviour of the 304L stainless steel has been extensively investigated

due to its complexity. It exhibits many effects, as rate-dependence, creep, ratcheting, non-

proportional hardening, secondary hardening, mean stress relaxation (Colin et al., 2010), pre-

hardening (Belattar et al., 2016; Colin et al., 2010) and load history dependence (Belattar et al.,

2012), etc. In this work, a review of rate-dependence, creep, ratcheting and non-proportional

hardening of the 304L stainless steel will be presented.

2.3.1 Rate-dependence, creep and ratcheting

Krempl (1979) observed that both monotonic and cyclic uniaxial behaviour of the 304L stainless

steel were dependent upon the strain or the stress rate at room temperature, and that there

is a significant inelastic strain accumulation due to creep during monotonic and cyclic loads.

Some works have evaluated whether various cyclic plasticity models could predict uniaxial and

multiaxial creep and ratcheting of the 304L stainless steel:

1. Yoshida (1990) applied a model previously developed by Liu and Krempl (1979) for cyclic

creep, which yields reasonable results for high positive mean stress.

2. Kang et al. (2004) proposed a unified visco-plastic model that accurately predicted a

uniaxial and four different non-proportional experiments.

3. Hassan et al. (2008) evaluated a modified Chaboche (Bari and Hassan, 2002) and a multi-

mechanism (Taleb et al., 2006) models for non-proportional experiments and obtained,

for single sequence loading paths, better results for the modified Chaboche than the

multi-mechanism, and, for double sequence loading path, unsatisfactory results for both

models.

2.3.2 Non-proportional hardening

Lamba and Sidebottom (1978a) performed some experiments upon annealed copper and verified

that, during non-proportional loads, there was an increase of axial peak stress up to 40 %

when compared with a uniaxial experiment with the same axial strain, a phenomenon so-called
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non-proportional hardening. Doong et al. (1990) investigated the microstructure of four materials

(1100 aluminium, OFHC copper, and type 304 and 310 stainless steel) after they were submitted

to in-phase and 90◦ out-of-phase loads, and attributed non-proportional hardening to the

change of dislocation substructures. Krempl and Lu (1984) performed four experiments in which

a loading sequence composed of axial, torsional, in-phase and 90◦ out-of-phase blocks were

applied upon a thin-walled 304L stainless steel specimen, and observed a threefold increase

upon equivalent von Mises stress amplitudes.

There have been some attempts to incorporate this phenomenon into cyclic plasticity models:

1. Lamba and Sidebottom (1978b) compared the simulated results of three kinematic harden-

ing rules (Prager, 1955; Ziegler, 1959; Mróz, 1969) with experimental data from Lamba

and Sidebottom (1978a), and obtained unsatisfactory results for all models. However,

a combination of the Tresca yield surface and the Mróz kinematic hardening provided

excellent predictions.

2. Tanaka (1994) proposed a non-proportional parameter that depends upon a fourth-

order tensor that describes the dislocation structure, incorporated it into a viscoplastic

model developed by Chaboche and Rousselier (1983), and successfully simulated some

experimental data for the 316 stainless steel.

3. Itoh et al. (2000) proposed a model that consisted of the combination of the kinematic

hardening rules of Mróz (1969) and Ziegler (1959), and a non-proportional hardening

factor, which successfully predicted the stabilized cyclic stress-strain behaviour of fourteen

strain paths for the 304L stainless steel.
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Chapter 3 – Multiaxial Fatigue Models

In this work, two fatigue models capable of predicting both the fatigue life and the orientation

of the fatigue cracking plane will be evaluated: the multiaxial version of the Smith, Watson and

Topper (1970) and the Fatemi and Socie (1988) models. It is important to emphasize that those

models predict crack initiation, which is assumed to be a macroscopic crack. A brief review of

stresses and strains upon a thin-walled tubular specimen is presented in Appendix A.

3.1 Critical plane models

3.1.1 Smith–Watson–Topper model

Smith, Watson and Topper (1970) originally proposed a uniaxial model to consider the effect

of mean stress in fatigue life. Later, Socie (1987) proposed a multiaxial version of this model

based upon the critical plane concept. The fundamental hypothesis of this model is that the

maximum normal stress σnmax and the normal strain amplitude ∆ε/2 acting at a material plane

are the driving forces of fatigue in metals. The critical plane is the plane in which the product

between maximum normal stress and normal strain is maximum. The mathematical description

of this model is

FPSWT = σnmax
∆ε

2
= g(Nf ), (3.1)

in which g is a function of the fatigue life Nf . For a fully reversed axial load, both the maximum

normal stress and the strain amplitude maximum values occur at the plane θ = 0. For a torsional

load, the critical planes are θ = ±45◦.

3.1.2 Fatemi–Socie model

Fatemi and Socie (1988) proposed a multiaxial fatigue model that assumed the maximum shear

strain amplitude acting at a material plane to be the driving force of the fatigue crack initiation.

It is a modification of the Brown and Miller (1973) model, which depended upon principal
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strains ε1 and ε3, to consider non-proportional hardening by replacing the normal strain by the

normal stress. The mathematical description of this model is

FPFS =
∆γmax

2

(
1 + k

σnmax

σy

)
= g(Nf ). (3.2)

In Equation 3.2, ∆γmax/2 is the maximum shear strain amplitude, σnmax is the maximum normal

stress at the plane in which ∆γmax/2 is maximum, σy is the monotonic yield stress of the

material, and g(Nf ) is a function of the fatigue life. The material constant k, which correlates

axial and torsional data, could be determined by fitting experimental data of axial and torsional

of experiments and may vary throughout the loading cycles (Socie and Marquis, 1997). In this

work, it will be assumed to be a constant, as adopted by Jiang et al. (2007).

For a fully reversed axial load, the maximum shear strain amplitude occurs at the plane θ = ±45◦.

For a torsional load, it occurs at θ = 0 and θ = 90◦. Originally, Fatemi and Socie (1988) defined

the critical plane as the plane in which shear strain was maximum, which means that the critical

plane does not depend upon fatigue parameters for axial and torsional loads. Therefore, it is

possible that fatigue parameter maximum value is not the one of the critical plane. Chu (1995)

argued that, if there is any influence of the maximum stress/strain upon fatigue crack nucleation,

it should be taken into account for all planes. It follows that the critical plane could be defined

as the plane in which fatigue parameter is maximum rather than the original definition. Hence,

[
∆γ

2

(
1 + k

σnmax

σy

)]
max

= g(Nf ). (3.3)

The critical plane may now depend upon the parameter k. For the Smith–Watson–Topper model,

the critical plane for an axial or a torsional load remains the same whichever definition of critical

plane (maximum normal strain or combination of normal stress and normal strain) is assumed.

In this work, a maximization of the fatigue parameter was adopted.

3.1.3 Critical plane definition

According to Socie and Marquis (1997):

“From a mathematical point of view the maximum stress or strain exists on only

one plane. From a fatigue and fracture of materials viewpoint, any plane near the

maximum stress or strain plane will experience the effects of the applied loading.”

In the light of this point of view, critical planes may be defined as the planes in which fatigue

parameter is greater than a given percentage of the maximum fatigue parameter. In this work,

if the fatigue parameter at a given plane is such that FP ≥ 0.9FPmax, it will be considered a

critical plane, similar to Jiang et al. (2007). Note that the choice of which percentage is used is

arbitrary.
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3.2 Non-stabilized cyclic stress-strain behaviour

The stresses and strains of Equations 3.1 and 3.2 are the ones of the stabilized hysteresis loop,

which is usually assumed to be the half fatigue life cycle. However, as reported in Section 2.1,

the 304L stainless steel may exhibit secondary hardening, which means that there may be no

stabilized elastic-plastic behaviour for this material. The hysteresis loops at half fatigue life

cycle of two torsional experiments performed by Carneiro Junior (2017) are shown in Figure 3.1

Figure 3.1: Hysteresis Loops for two prescribed shear strain amplitudes at half fatigue life cycle.

The shear stress amplitude is approximately the same for two experiments whose strain amp-

litudes are significantly different. Although this may seem contradictory, it is a consequence of

the assumption that the half fatigue life cycle is representative of the whole elastic-plastic cyclic

behaviour. On the other hand, for materials whose behaviour does not vary significantly during

a test, this assumption is very reasonable. Another important consequence is that fatigue para-

meters may vary significantly during the experiments, as shown in Figure 3.2 for a 7050-T7451

aluminium alloy (Hernández, 2016) and the 304L stainless steel.
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Figure 3.2: Smith–Watson–Topper fatigue parameter during fully reversed strain-controlled test
for a 7050-T7451 aluminium alloy and the 304L stainless steel.

3.3 Fatigue life

In order to estimate fatigue life, the following three-parameter relationship is used:

(FP− FP0)
vNf = C. (3.4)

This relationship has been used by some authors (Castro and Jiang, 2016; Jiang et al., 2007;

Zhao and Jiang, 2008) and is similar to the one proposed by Manson (1965). In Equation 3.4,

FP is the fatigue parameter, and FP0, v and C are material constants. The constant FP0 may

be understood as the fatigue parameter threshold below which there is no fatigue failure.

Material constants are obtained by fitting experimental data to Equation 3.4. As a single

value of the fatigue parameter is used for a given test, the choice of which value represents an

experiment may not be straightforward. For the 7050-T7451 aluminium alloy (Fig. 3.2), as the

fatigue parameter almost does not vary, the half fatigue life cycle (or almost any other cycle) is

representative of the experiment. On the other hand, the fatigue parameter at the half fatigue

life cycle for the 304L stainless steel is somewhat different from other cycles.
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One could estimate fatigue life by adopting a single value of FP or by calculating the evolution

of a damage parameter throughout the loading cycles. For the latter, a damage rule must be

used in order to cumulate fatigue damage. In this work, a variation of Palmgren-Miner rule will

be adopted. Failure occurs when cumulative damage reaches a critical damage FDc such that

FDc =
Nest∑
i=1

FDi = 1. (3.5)

Critical damage is assumed here to be equal to one. For a load such that all cycles produce the

same damage, one can calculate the damage per cycle as follows:

1 = NestFD⇒ FD =
1

Nest

· (3.6)

One can estimate damage per cycle for a given FPi from Equations 3.4 and 3.6 as follows:

N i
est =

C

(FPi − FP0)
v ⇒ FDi =

(FPi − FP0)
v

C
· (3.7)

Therefore,

1 =
Nest∑
i=1

(FPi − FP0)
v

C
· (3.8)

One should note that, if FP is assumed to be constant, Equations 3.4 and 3.8 coincide.
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Chapter 4 – Experimental Procedures

In this work, strain-controlled fully reversed proportional axial-torsional fatigue experiments

with thin-walled tubular specimens were performed at room temperature. Experiments were

conducted until failure, which was defined as the appearance of a macroscopic fatigue crack, or

run-out, which was defined as 106 cycles. Due to the rate-dependence of the cyclic stress-strain

behaviour, all tests were performed with an equivalent von Mises strain rate of approximately

10−2 s−1. After failure, macroscopic crack orientation was determined for all specimens.

4.1 Material, heat treatment and specimens

The monotonic properties of the 304L stainless steel obtained by Carneiro Junior (2017) are

presented in Table 4.1:

Table 4.1: Monotonic properties of the 304L stainless steel (Carneiro Junior, 2017).

Yield stress Young’s modulus Ultimate tensile strength True strain at fracture

σy [MPa] E [GPa] σu [MPa] εf [%]

213 208 616 160

The 304L stainless steel was received as extruded bars whose length and diameter were 1000

mm and 19 mm, respectively. The chemical composition of the material, obtained from the

supplier, is presented in Table 4.2.

Table 4.2: Chemical composition of the 304L stainless steel, weight %

C Mn P S Si Cr Ni Mo N

0.018 1.340 0.034 0.028 0.430 18.160 8.300 0.220 0.081

In order to maintain the same conditions of the axial and torsional experiments previously

performed by Carneiro Junior (2017), the same heat treatment (normalization) process was

adopted. It was performed in a Nabertherm LHT 04/16 P310 furnace, which features a maximum

temperature of 1600 ◦C, a capacity of 4 litres and a load of 5.2 kW. The bars were cut into
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smaller bars, whose length was 125 mm, due to the size of the furnace. Batches of six bars were

placed at the centre of the furnace upon a support, and a K-Type thermocouple, connected to a

computer via a data acquisition system, was used to monitor the temperature at the vicinity

of the bars. They were heated up to 1050 ◦C, kept at this temperature for 1 h, and cooled at

room temperature. There was a discrepancy between the temperature measures of the furnace

and the thermocouple. Due to the thermocouple’s location, its measure was assumed to be the

correct one. Further details can be found in Carneiro Junior (2017).

The critical dimension was the outer diameter of the specimen in the grip end, which must

be 15 mm due to the test machine collet grip. Hence, all other dimensions were such that the

suggested dimensions presented in ASTM E2207-08 (ASTM, 2015) were respected. After the

heat treatment, specimens were machined at a computer numerical controlled (CNC) lathe. The

geometry and dimensions of the thin-walled tubular specimen are shown in Figure 4.1.
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Figure 4.1: Thin-walled tubular specimens used in fatigue experiments, all dimensions in mm
(Carneiro Junior, 2017).

After the machining, grinding was performed upon specimens at a mechanical lathe by using

sandpapers whose grit sizes ranged from 68 µm to 8.4 µm (ISO P220-P2500). Specimens

roughness parameter Ra was verified at an Olympus LEXT OLS4100 3D laser measuring

microscope, whose magnification range is from 108x to 17280x, via three roughness measures

performed along the specimen with a 50x objective, and an analogue and a digital surface

roughness testers. All measurements coincided and were inferior to 0.2 µm, the threshold imposed

by the ASTM E2207-08.

4.2 Fatigue test procedure and crack orientation

Three strain paths were investigated in this work: fully reversed axial and torsional strain-

controlled tests reported earlier (Carneiro Junior, 2017), and fully reversed proportional test
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whose λ = (∆γ/2)/(∆ε/2) =
√

3, performed in this work. Strain paths are shown in Figure 4.2.

ε

γ/
√

3
Torsional

Axial Proportional

45◦

Figure 4.2: Axial-torsional strain paths.

Inner and outer diameters of the specimens were measured three times by using a digital calliper,

and their mean value, adopted. The inner diameter was measured at the grip end, with a

reasonable variability, whilst the outer diameter was measured at the gauge length, with a small

deviation from the mean value.

In order to avoid slip of the specimens, the pressure of the hydraulic collet grip was estimated

via an equation proposed by the collet manual (MTS, 2009):

σcollet = 0.422

√
P 2 +

(
2T

Dgrip

)2

, (4.1)

in which P is the axial load in kN, T is the torque in Nm and Dgrip is the outer diameter in the

grip end in cm. Collet pressure varied from 10 MPa to 18 MPa for proportional experiments. It

was observed a significant deformation of the specimens’ grip end for a collet pressure superior

to 14 MPa. To avoid this, a small cylinder was placed inside the grip end, and no significant

deformation was observed for a collet pressure up to 20 MPa.

Before the beginning of the test, a verification procedure was adopted in order to verify whether

the extensometer was correctly installed: first, an axial load of 2 kN, within the elastic domain,

was applied; then, a torque of 8 N.m, within the elastic domain too, was applied. Both loads

lasted together approximately 200 cycles. A warm-up procedure was later introduced in order

to diminish the undesired effects upon hysteresis loops.

Strain-controlled fatigue procedure is described in ASTM (2015). Fatigue tests were designed by
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using the MTS TestSuiteTM Multipurpose Elite. During the test, axial force and torque were

monitored in order to verify whether an axial or a torsional load drop caused by the nucleation

of a fatigue crack had occurred. Tests were stopped if a) a macroscopic fatigue failure had

been observed by the user or b) a load drop of 4–5% had occurred. No compensator was used

in the experiments. For some tests, a tapered sine wave was used in order to avoid abrupt

start. Frequencies varied from 0.30 to 2.00 Hz, and no significant heating of the specimens was

observed for this range of frequencies.

In this work, the crack orientation follows the convention shown in Figure 4.3. The thick black

line represents the fatigue crack, the red dashed line is obtained by linking the extremities of

the fatigue crack, and the solid blue is a line orthogonal to the red one. The crack orientation is

the angle θ between the blue line and the specimen axis, which coincides with the direction of

the axial load.

Specimen Axis

θ

Figure 4.3: Crack orientation convention.

4.3 Equipments and softwares

All experiments were performed with an MTS 809 Axial-Torsional servo-hydraulic test system

equipped of an MTS 662.20D-05 Axial-Torsional Load Transducer, whose capacity is ±100 kN

and ±1100 Nm for axial force and torque, respectively, an MTS 646.10 Collet Grip, and an

MTS FlexTest 40 controller. In order to control total strain, an MTS 632.80F-04 Axial-Torsional

extensometer, whose gauge length is 25 mm, and travel is -2.0 % and +4.8 % for axial load, and

±5◦ for torsional angle, was used. It measures the angle of twist between the planes defining the

gauge length, which is indicated by θ in ASTM E2207-08. The axial-torsional extensometer and

the servo-hydraulic test system are shown in Figures 4.4 and 4.5.
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Figure 4.4: MTS 632.80F-04 axial-torsional extensometer.

Figure 4.5: MTS 809 axial-torsional test system.

20



4.3.1 Experimental data post-process

In order to standardize the output of experimental data and to calculate true stresses and

strains, and stress and plastic strain amplitudes based upon the definition proposed by Jiang

and Kurath (1997a), a code was developed. The hypothesis of a uniform distribution of normal

and shear stresses, which is a good approximation for thin-walled specimens, is assumed.

Normal stress and shear stress

The axial stress σ acting upon a thin-walled tubular specimen can be calculated from the axial

force P measued by the load cell, outer diameter D and inner diameter d of the specimen as

follows:

σ =
4P

π(D2 − d2)
. (4.2)

The shear stress τ acting upon a thin-walled tubular specimen can be calculated from the torque

T measured by the load cell, outer diameter D and inner diameter d of the specimen as follows:

T =

∫
A

rτ dA

T = τ

∫
A

r dA

T = τ

∫ 2π

0

∫ D/2

d/2

r rdrdθ

T = 2πτ

(
D3

24
− d3

24

)
T =

πτ(D3 − d3)
12

τ =
12T

π (D3 − d3)
· (4.3)

Note that Equation 4.3 is not the one proposed in ASTM E2207-08. Despite equally assuming

a uniform shear stress distribution, it is derived from the balance between the applied torque

and the shear stress distribution instead of considering the shear stress applied at the mean

diameter of the cross section.

Shear strain

As reported in Section 4.3, the extensometer measures the angle of twist between the planes

defining the gauge length. The shear strain γ could be calculated from diameter D, angle of

21



twist θTwist in radians, and the gauge length L as follows:

γ =
DθTwist

2L
· (4.4)

Equation 4.4 could be used to calculate shear strains at any material point of the specimen. As

fatigue crack nucleation usually occurs at the surface (Socie and Marquis, 1997), surface shear

strain γsur is more suitable for fatigue analysis. Nonetheless, the shear strain at the middle of

the specimens’ wall γmid was controlled all experiments performed by Carneiro Junior (2017),

whilst the surface one was controlled upon proportional experiments. The ratio between surface

and middle shear stress for the specimen shown in Figure 4.1 is approximately equal to 1.09.

True stress and true strain

In order to calculate the instant outer and inner diameter of the specimen, it was assumed that

transversal strain could be calculated as1

εtransversaltrue = −νelεetrue − νplε
p
true. (4.5)

Based upon the aforementioned equations, a program to calculate true stresses and strains was

developed.

Equivalent stress and plastic strain amplitudes

Stress amplitude measures are usually based upon the equivalent measures (Jiang and Kurath,

1997a), as the equivalent von Mises stress

σeq(t) =

√
3

2
||S(t)|| (4.6)

and the equivalent von Mises plastic strain

εpeq(t) =

√
2

3
||εp(t)||. (4.7)

For an axial-torsional stress state,

σ(t) =

σ(t) τ(t) 0

τ(t) 0 0

0 0 0

 . (4.8)

1It is assumed the plastic strain incompressibility, which implies νpl = 1/2.

22



The deviatoric stress tensor S can be calculated as

S(t) =


2
3
σ(t) τ(t) 0

τ(t) −1
3
σ(t) 0

0 0 −1
3
σ(t)

 (4.9)

and the plastic strain tensor εp as

εp(t) =

εp(t)
γp

2
(t) 0

γp

2
(t) −1

2
εp(t) 0

0 0 −1
2
εp(t)

 . (4.10)

The equivalent von Mises stress can be calculated as

σeq(t) =
√
σ2(t) + 3τ 2(t). (4.11)

For a proportional load, stress amplitude can be defined as

∆σeq
2

=

√(
∆σ

2

)2

+ 3

(
∆τ

2

)2

· (4.12)

The equivalent von Mises plastic strain amplitude can be calculate from the plastic strain tensor

as

εpeq(t) =

√
[εp(t)]2 +

1

3
[γp(t)]2· (4.13)

For a proportional load, plastic strain amplitude can be defined as

∆εpeq
2

=

√(
∆εp

2

)2

+
1

3

(
∆γp

2

)2

· (4.14)

For non-proportional loads, Jiang and Kurath (1997a) proposed as a measure of both stress and

plastic strain amplitudes the radii of the minimum circles that circumscribe the loading paths.

Mathematically,

σ̄a =
∆σeq

2
= Min

S0

{
Max
t

{√
3

2
||S(t)− S0||

}}
, (4.15a)

ε̄a
p =

∆εpeq
2

= Min
εp0

{
Max
t

{√
2

3
||εp(t)− εp0||

}}
. (4.15b)
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For proportional axial-torsional loads, Equations 4.12, 4.14 and 4.15 coincide. It is shown in

Figure 4.6 an illustration of the proposed measures.

Figure 4.6: Proposed amplitude measures for (a) stress and (b) plastic strain amplitude for a
non-proportional loading path (Jiang and Kurath, 1997a).

In order to calculate the stress and plastic strain amplitudes, an incremental algorithm proposed

by Dang Van et al. (1989), whose computational cost is very attractive (Bernasconi and

Papadopoulos, 2005), is used.

4.4 Rate-dependence and fatigue test design

As mentioned in Section 2.3.1, the cyclic stress-strain behaviour of the 304L stainless steel

depends upon the strain rate. Therefore, in order to all tests be performed under the same

conditions, frequencies were such that the equivalent von Mises strain rate was close to 10−2

s−1, the strain rate used by Carneiro Junior (2017). The von Mises equivalent strain can be

calculated as

εeq(t) =

√
2

3
||ε(t)|| =

√
2

3
||εe(t) + εp(t)||· (4.16)

Assuming that εp � εe,

εeq(t) =

√
2

3
||εp(t)|| =

√
ε2(t) +

γ2(t)

3
· (4.17)

Tests will be performed with a constant ratio between shear strain amplitude ∆γ/2 and axial

strain amplitudes ∆ε/2 of
√

3. Therefore,
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∆εeq
2

=

√(
∆ε

2

)2

+

(
1√
3

∆γ

2

)2

=

√
∆ε

2

2

+
∆ε

2

2

=
√

2
∆ε

2
· (4.18)

Axial and shear strain amplitudes can be calculated by using Equation 4.18:

∆ε

2
=

√
2

2

∆εeq
2

(4.19a)

∆γ

2
=
√

3

(√
2

2

∆εeq
2

)
=

√
3

2

∆εeq
2
· (4.19b)

For a sinusoidal load, axial and shear strain can be calculated for a given instant t, angular

frequency ω and phase angle φ as follows:

ε(t) =
∆ε

2
sin(ωt), (4.20a)

γ(t) =
∆γ

2
sin(ωt+ φ)· (4.20b)

The equivalent strain at a given instant can be calculated as follows:

εeq(t) =

√[∆ε

2
sin(ωt)

]2
+

1

3

[∆γ

2
sin(ωt+ φ)

]2
εeq(t) =

√[∆ε

2
sin(ωt)

]2
+
[ 1√

3

∆γ

2
sin(ωt+ φ)

]2
εeq(t) =

√[∆ε

2
sin(ωt)

]2
+
[∆ε

2
sin(ωt+ φ)

]2
εeq(t) =

∆ε

2

√
sin2(ωt) + sin2(ωt+ φ). (4.21)

For a proportional test,

εeq(t) =
∆ε

2

√
2| sin(ωt)|. (4.22)

Hence, the equivalent strain rate can be calculated as follows:

ε̇eq(t) =
∆ε

2

√
2ω sign[sin(ωt)] cos(ωt). (4.23)

Since the strain rate is not constant, it will be assumed for calculations that strain rate is equal
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to its maximum value. Therefore,

ε̇eq =
∆ε

2

√
2ω. (4.24)

One can calculate strain rate as a function of temporal frequency f = ω/2π as follows:

ε̇eq =
∆ε

2

√
2ω =

∆ε

2

√
2ω2πf ⇒ ε̇eq = 2

√
2π

∆ε

2
f. (4.25)
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Chapter 5 – Results and Discussions

5.1 Fatigue life

For all the analysis presented in this chapter, true stresses and strains were used. A summary of

fatigue experiments is presented in Table 5.1. The stress values listed were taken from the cycle

that corresponds to the half fatigue life. The equivalent strain amplitude, defined in Section

4.3.1, vs. the number of cycles to failure for the axial, torsional and proportional experiments,

and the fit (∆εeq/2− ε0)vNf = C for the three strain paths are shown in Figure 5.1.

Figure 5.1: Equivalent strain amplitude vs. fatigue life for axial, torsional and axial-torsional
proportional loading.

Based upon the results shown in Figure 5.1, fatigue life cannot be predicted by using the same

equivalent strain amplitude for the three strain paths since torsional experiments last longer than

axial experiments, which last longer than proportional ones for the same prescribed equivalent

strain amplitude.

27



Table 5.1: Fatigue test data for the 304L stainless steel.

Strain Path Specimen ID ∆εeq/2 [%]a ∆ε/2 [%] ∆γ/2 [%]a ∆σ/2 [MPa]b σm [MPa]b ∆τ/2 [MPa]b τm [MPa]b θ[◦] f [Hz] Nf [Cycles]

Axialc

UN14 1.00 1.00 - 377 -6 - - -5 0.15 643

UN19 0.80 0.80 - 320 -5 - - -d 0.18 1,635

UN06 0.50 0.50 - 261 -1 - - 0 0.50 4,218

UN17 0.35 0.35 - 203 -4 - - 0 1.40 33,880

UN24 0.28 0.28 - 200 -1 - - 0 2.00 88,900

UN12 0.20 0.20 - 176 -11 - - - 7.00 >1,901,074

Torsionalc

TU20 1.00 - 1.73 - - 225 0 0 0.15 855

TU29 1.00 - 1.73 - - 256 0 0 0.15 1,800

TU26 0.75 - 1.30 - - 192 1 0 0.30 2,007

TU21 0.50 - 0.87 - - 207 0 0 0.50 18,230

TU23 0.35 - 0.61 - - 155 0 45 1.40 132,071

TU28 0.28 - 0.48 - - 173 0 - 2.00 >1,889,057

TU22 0.20 - 0.35 - - 129 -3 - 2.00 >2,017,640

Proportional

TU40 1.00 0.71 1.22 304 -8 128 2 0 0.30 461

TU37 0.80 0.57 0.98 266 -7 112 2 10 0.40 780

TU33 0.60 0.42 0.73 235 -6 99 2 0 0.60 830

TU41 0.60 0.42 0.73 234 -7 97 2 0 0.60 1,200

TU32 0.50 0.35 0.61 209 -9 90 2 5 0.80 2,000

TU35 0.40 0.28 0.49 197 -8 85 3 0 1.00 5,100

TU36 0.30 0.21 0.37 186 -13 80 1 20 1.20 35,000

TU42 0.24 0.17 0.29 180 -19 78 3 30 1.75 70,000

TU38 0.20 0.14 0.24 156 -23 74 2 35 2.00 148,700

a Middle section shear strain for torsional, and surface shear strain for proportional.
b Obtained from the hysteresis loop at half fatigue life.
c Data taken from Carneiro Junior (2017).
d Failure outside the gauge section.
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5.2 Cyclic stress-strain behaviour

In this section, the secondary hardening, the Masing behaviour and the proportionality upon

the plastic strain and deviatoric stress spaces will be analysed.

5.2.1 Secondary hardening

The evolution of the equivalent stress amplitude throughout the loading cycles for axial, torsional

and proportional axial-torsional loading conditions is shown in Figure 5.2. There was secondary

hardening upon all axial and torsional experiments, including those in which specimens did not

fail (∆εeq/2 = 0.20% for axial, and ∆εeq/2 = 0.20% and ∆εeq/2 = 0.28% for torsional loading).

On the other hand, secondary hardening was observed only for proportional experiments whose

∆εeq/2 ≥ 0.80%.

In order to investigate whether the evolution of secondary hardening throughout the loading

cycles was similar for the three strain histories, the equivalent stress amplitude vs. the percentage

of fatigue life for axial, torsional and proportional axial-torsional loading conditions is shown

in Figure 5.3, in which the arrow denotes run-out, and the cross denotes fatigue failure. The

maximum softening, assumed to be the initiation of the secondary hardening, occurred before

0.2Nf for all experiments in which secondary hardening was very pronounced (all torsional

experiments and axial experiments whose ∆εeq/2 = 0.20, 0.80 and 1.00%). Therefore, any

analysis that considers the stabilized cycle as the half fatigue life will include the effects of

secondary hardening. This may be incoherent since there may be no secondary hardening at all

for a range of strain amplitudes, as discussed in Section 2.1.

To investigate whether the evolution of stress amplitude was different for proportional loading,

it is shown in Figure 5.4 a comparison between the evolution of stress amplitude for axial,

torsional and proportional experiments whose ∆εeq/2 = 0.20% and ∆εeq/2 = 1.00%. It may

be argued that secondary hardening was not significant for some strain amplitudes because

fatigue failure occurs before it becomes important, similarly to both torsional experiments whose

∆εeq/2 = 1.00%, in which there was additional hardening for the one which lasted the most.

This may sustain the hypothesis that secondary hardening occurs if a cumulative threshold

value of a given variable is achieved, not if the strain amplitude is greater than a plastic or a

total strain amplitude threshold.

It was also investigated whether the secondary hardening affects axial and shear stresses equally

for proportional loading. Axial and shear stresses normalized by the maximum axial or shear

stress amplitude vs. the percentage of fatigue life for the two proportional experiments that

exhibited secondary hardening are shown in Figure 5.5. It was observed that the increase upon

axial and torsional stresses is qualitatively similar, but it occurs later for the shear than for the

axial stress for both strain amplitudes.
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Figure 5.2: Equivalent stress amplitude vs. number of loading cycles for strain-controlled axial,
torsional and proportional loading.
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Figure 5.3: Equivalent stress amplitude vs. fatigue life percentage for strain-controlled axial,
torsional and proportional loading.
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Figure 5.4: Equivalent stress amplitude vs. number of loading cycles for ∆εeq/2 = 0.20% and
∆εeq/2 = 1.00%.

Figure 5.5: Normalized stress amplitude vs. fatigue life percentage for proportional experiments
whose ∆εeq/2 = 0.80% and ∆εeq/2 = 1.00%.

5.2.2 Masing behaviour

Carneiro Junior (2017) observed that the 304L does not exhibit a Masing-type behaviour for

the investigated range of equivalent strain amplitudes (0.2–1.0 %). The plastic equivalent strain

range vs. the equivalent stress range for axial, torsional and proportional loading is shown in

Figures 5.6 and 5.9. Loops were obtained from the maximum softening cycle to minimize the

influence of the secondary hardening.

32



Figure 5.6: Axial stress range vs. axial plastic strain range for axial loading.

Figure 5.7: Shear stress range vs. plastic shear strain range for torsional loading.
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Figure 5.8: Axial stress range vs. axial plastic strain range for proportional loading.

Figure 5.9: Shear stress range vs. plastic shear strain range for proportional loading.

Loops from axial and proportional experiments whose axial strain amplitude ∆ε/2 < 0.40% were

geometrically similar, as shown in Figure 5.10. On the other hand, there was no similarity between
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torsional and proportional loading for a range of equivalent strain amplitudes ∆εeq/2 = 0.30–

0.50%, as shown in Figure 5.11.

Figure 5.10: Axial stress range vs. axial plastic strain range for axial and proportional loading
for selected amplitudes.

Figure 5.11: Axial stress range vs. axial plastic strain range for axial and proportional loading
for selected amplitudes.
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Note that the 304L stainless steel exhibits a Masing behaviour for plastic axial and shear strain

range for axial, torsional and proportional loading. For axial loading, it occurs for ∆εp ≤ 0.5%,

similar to proportional experiments. This coincidence is also observed upon shear loops of

torsional and proportional experiments such that ∆γp ≤ 1.0%. Therefore, it may be argued

that the deviation from the Masing behaviour occurs if the plastic axial or shear strain range

is greater than an axial or a torsional amplitude threshold. The equivalent von Mises strain

amplitude cannot be used as a threshold parameter since for ∆εeq/2 = 0.50% the material

exhibits a Masing-type behaviour for the proportional experiment, whilst this is not observed

for the axial one.

5.2.3 Proportionality

The definition of proportional loading may be based upon total strain, plastic strain or deviatoric

stress spaces (Jiang and Kurath, 1997a). Non-proportional hardening parameters are usually

related to stress and plastic strain measures, which may yield some inconsistent results since

there may be some loading proportional upon the total strain space and non-proportional on

the plastic strain and deviatoric stress space. From a mathematical point of view, a proportional

loading can be defined as a loading such that

A(t) = Ao$(t), (5.1)

in which $(t) is a given function of t. As a consequence, the eigenvectors of A are the same

for all time instants. From a solid mechanics point of view, it means that principal stresses

or strains, depending upon which tensor is used to define proportionality, occur at the same

material plane for all time instants. The strain tensor components for a proportional loading

can be written as

ε(t) =
∆ε

2
$(t), (5.2a)

γ(t) =
∆γ

2
$(t)· (5.2b)

The ratio between those components is

ε(t)

γ(t)
=

∆ε/2

∆γ/2
⇒ ε(t) =

1√
3
γ(t) =

λ√
3
ε(t), (5.3)

which is the parametric equation of a straight line whose slope angle is arctan(λ/
√

3) upon an

orthonormal coordinate system whose base is [ε ~e1,(γ/
√

3) ~e2].

For strain-controlled experiments, as those performed upon this work, proportionality is usually

defined for the total strain tensor. The total strain, the plastic strain and the stress paths

of some proportional experiments obtained at maximum softening, in order to minimize the
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influence of secondary hardening, are shown in Figures 5.12–5.14.

Figure 5.12: Total strain paths for selected proportional experiments.

Figure 5.13: Plastic strain paths for selected proportional experiments.
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Figure 5.14: Stress paths for selected proportional experiments.

Based upon the results shown in Figures 5.13 and 5.14, there may be neither stress nor plastic

strain proportionality given that there is total strain proportionality, which means that, from a

stress and plastic strain point of view, those experiments are non-proportional. As discussed in

Section 2.3.2, the 304L stainless steel exhibits non-proportional hardening. Nonetheless, stress

amplitudes were similar for axial, torsional and proportional experiments for the maximum

softening cycle, as shown in Figure 5.15.

Figure 5.15: Equivalent stress amplitude vs. equivalent plastic strain amplitude for minimum
softening.
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5.3 Fatigue models

5.3.1 Determination of the material constants

Run-out data

Run-out data is a set of experiments that were halted by the user, even if fatigue failure has not

occurred, after a predetermined number of cycles. Therefore, if the test had not been interrupted,

fatigue failure might have occurred. Hence, it is argued that run-out experiments should not be

used to obtain fatigue constants, as one does not know their fatigue life, only that N > Nrun−out.

Error functions

Let Nf and Nest be the observed and estimated life of a given fatigue experiment. The absolute

error can be calculated as

δN = Nest −Nf (5.4)

and the relative error as

erel =

∣∣∣∣∣Nest −Nf

Nf

∣∣∣∣∣· (5.5)

It is usual upon fatigue analysis to quantify the error as the ratio between estimated and

observed lives as F = Nest/Nf . Therefore, absolute error can be rewritten as

δN = Nf (F − 1), (5.6)

and relative error as

erel =

∣∣∣∣∣FNf −Nf

Nf

∣∣∣∣∣⇒ erel = |F − 1|· (5.7)

The ordinary least square method minimize the error function

E =
n∑
i=1

δ2i =
[
N i
obs(F − 1)

]2 · (5.8)

Due to the Nf factor, the error contribution of a given experiment is dependent upon fatigue

life and F , which may yield contradictory results. For two fatigue experiments N1 and N2 whose

observed fatigue lives are 1×104 and 1×105 cycles and whose estimated fatigue lives are 9×104
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and 2×105 cycles, respectively, error can be calculated as

E = (9× 104 − 1× 104)2 + (2× 105 − 1× 105)2 = (8× 104)2 + (10× 104)2· (5.9)

From a fatigue analysis point of view, life estimate for N2 is much better (factor of 2) than for

N1 (factor of 9). However, if the error function proposed in Equation 5.8 is adopted, error for

N2 is actually greater than for N1, which means that high cycle fatigue error contribution is

more significant than the low cycle one, even if its observed-estimated life ratio is significantly

smaller. If a relative error function is adopted,

E ′ =

∣∣∣∣∣9× 104 − 1× 104

1× 104

∣∣∣∣∣+

∣∣∣∣∣2× 105 − 1× 105

1× 105

∣∣∣∣∣ = 8 + 1· (5.10)

The relative error may be misleading too. Let N3 be a fatigue experiment, and N1
est = 0.1N3

and N2
est = 10N3 two life estimates. The absolute relative error can be calculated as

E ′ = |0.1− 1|+ |10− 1| = 0.9 + 9· (5.11)

Again, two experiments with the same F ratio have distinct errors. Therefore, a logarithmical

error function is proposed:

E ′′ =

∣∣∣∣∣ ln
(
Nest

Nf

) ∣∣∣∣∣ (5.12)

For N1 and N2,

E ′′ = | ln 9|+ | ln 2|, (5.13)

and for N1
est and N2

est,

E ′′ = | ln 0.1|+ | ln 10| = | − ln 10|+ | ln 10| = 2 ln 10· (5.14)

Hence, the logarithmical error function does not distinguish between conservative and non-

conservative errors, whilst the relative error does. However, for the same F ratio, the relative error

associated to a conservative estimate is greater than the one associated with a non-conservative

one. As a consequence, if this error function is adopted, the error associated to conservative

estimates will dominate the fit, whilst non-conservative life estimates will not have the same

importance. From an engineering point of view, this is the worst scenario, since there may be a

trend to underestimate fatigue life. Therefore, the logarithmical error function was adopted in

this work. The fit of Smith–Watson–Topper model for the three discussed error functions at

half fatigue life, and the observed vs. estimated life for these three set of material constants are
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shown in Figures 5.16 and 5.17, respectively. Note that there are no conservative life estimates

for the relative error, whilst the least square fit predict almost perfectly experiments whose

Nf ≥ 1× 104 cycles, but fails to predict (F > 2) experiments whose Nf ≤ 2× 103 cycles.

Figure 5.16: Smith–Watson–Topper material constants obtained from three different error
functions at half fatigue life.

Figure 5.17: Life prediction for the Smith–Watson–Topper model for three different sets of
material constants obtained from different error functions at half fatigue life.
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Choice of stabilized cycle influence

In order to assess the influence of the choice of the stabilized cycle upon fatigue life estimate, the

material constants of the Smith–Watson–Topper model were obtained from five reference cycles:

three percentages of the fatigue life (0.2Nf , 0.5Nf and 0.8Nf ), the cycle of maximum softening

and the cycle in which fatigue parameters was equal to the average fatigue parameter of a given

experiment. It is shown in Figure 5.18 the material constants of the Smith–Watson–Topper

model for those cycles.

Figure 5.18: Smith–Watson–Topper material constants for different reference cycles.

For the Smith–Watson–Topper model, there was no significant difference for experiments in

which secondary hardening was not very pronounced, whilst there was a reasonable difference

for ∆εeq = 0.80% and ∆εeq = 1.00%. Nonetheless, as shown in Figure 5.19, the ratio f is less

than 2 (represented by the dashed lines) for life estimates obtained from material constants of

half fatigue life cycle for all selected cycles.

For the Fatemi–Socie model, the value of k was obtained by performing multiple fits with a set

of predetermined value for k. The fit whose logarithm error was minimum was selected. The

material constants of the Fatemi–Socie model obtained from 0.2Nf , 0.5Nf , 0.8Nf and the cycle

of maximum softening are shown in Figure 5.20. As for the Smith–Watson–Topper model, the

ratio F is less than 2 for almost all life estimates obtained from material constants of 0.5Nf

cycle for all selected cycles, shown in Figure 5.21.
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Figure 5.19: Smith–Watson–Topper fit for half fatigue life.

Figure 5.20: Fatemi–Socie material constants for different reference cycles.
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Figure 5.21: Fatemi–Socie fit for half fatigue life.

5.3.2 Life predictions

Smith–Watson–Topper model

It is shown in Figures 5.22–5.26 the fatigue life estimates for the five sets of material constants

shown in Figure 5.18. The dash-dot line represents the factor of two, whilst the dashed one

represents the factor of four.

The average logarithmic error of life estimates, which does not consider run-out data, were
¯E ′′MS = 0.3768 (F̄ = 1.44), ¯E ′′0.2 = 0.4339 (F̄ = 1.54), ¯E ′′0.5 = 0.4426 (F̄ = 1.55), ¯E ′′0.8 = 0.4084

(F̄ = 1.50), and ¯E ′′avg = 1.0426 (F̄ = 2.83). For stabilized cycles defined as a percentage of fatigue

life, errors were similar, which suggests that there is almost no influence of secondary hardening

upon fatigue life percentage obtained from reference cycles defined as a percentage of the fatigue

life.

For the maximum softening estimates, the two torsional experiments whose life predictions were

such that F > 2 were obtained for experiments that exhibited significant secondary hardening.

On the other hand, there was an almost perfect estimate the other torsional experiment whose

∆εeq = 1.00%, which featured significant secondary hardening too. Therefore, it seems that life

estimates for torsional loading such that F > 2 are not caused by the secondary hardening.

Two out of four torsional loading that exhibited shear cracking mode and the one whose mode

44



was tensile were predicted accurately (F < 2) for the maximum softening life estimates. For the

reference cycle 0.2Nf , F > 2 for the shear mode experiment. Therefore, it may be argued that

torsional life estimates such that F > 2 are not associated with the cracking mode.

Figure 5.22: Smith–Watson–Topper life estimates for 0.2Nf .

Figure 5.23: Smith–Watson–Topper life estimates for 0.5Nf .
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Figure 5.24: Smith–Watson–Topper life estimates for 0.8Nf .

Figure 5.25: Smith–Watson–Topper life estimates for maximum softening.
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Figure 5.26: Smith–Watson–Topper life estimates for average fatigue parameter.

Fatemi–Socie model

It is shown in Figures 5.27–5.30 the life estimates for the four sets of material constants shown

in Figure 5.20. The dash-dot line represents the factor of two, whilst the dashed one represents

the factor of four.

Figure 5.27: Fatemi–Socie life estimates for 0.2Nf .
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Figure 5.28: Fatemi–Socie life estimates for 0.5Nf .

Figure 5.29: Fatemi–Socie life estimates for 0.8Nf .

48



Figure 5.30: Fatemi–Socie life estimates for maximum softening.

The average logarithmic error of life estimates was ¯E ′′MS = 0.4024 (F̄ = 1.50), ¯E ′′0.2 = 0.4295

(F̄ = 1.54), ¯E ′′0.5 = 0.4088 (F̄ = 1.50), and ¯E ′′0.8 = 0.4164 (F̄ = 1.52). This result suggests that

there is no influence of secondary hardening upon the life estimates for the Fatemi–Socie model.

5.3.3 Critical plane orientation

As discussed in Section 3.1, the Smith–Watson–Topper model predicts θ = 0 and θ = ±45◦

for axial and torsional loading, respectively. For Fatemi–Socie model, θ depends upon k. The

observed and predicted crack orientation for both models are shown in Figures 5.31-5.36.

Photographs of the observed fatigue cracks are shown in Appendix B.

The Smith–Watson–Topper model predicts all axial, one torsional and three proportional, an

accuracy of approximately 44 %. The Fatemi–Socie models did not predict any crack orientation

accurately, including the torsional loading whose ∆εeq/2 > 0.35%, which seems incoherent since

the 304L stainless steel exhibits a shear cracking mode. The Fatemi–Socie model originally is

shear-based, as it defines the critical plane as the plane in which shear strain is maximum. If

the critical plane is defined as the plane in which fatigue parameter is maximum, the cracking

mode assumed by the model depends upon k. For the proportional loading, there is a smooth

transition between crack modes, which is tensile for low strain amplitudes and mixed for all

other amplitudes.
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Figure 5.31: Observed and predicted fatigue crack angle based upon the Smith–Watson–Topper
for axial loading.

Figure 5.32: Observed and predicted fatigue crack angle based upon the Smith–Watson–Topper
for torsional loading.
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Figure 5.33: Observed and predicted fatigue crack angle based upon the Smith–Watson–Topper
for proportional loading.

Figure 5.34: Observed and predicted fatigue crack angle based upon the Fatemi–Socie for axial
loading.
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Figure 5.35: Observed and predicted fatigue crack angle based upon the Fatemi–Socie for
torsional loading.

Figure 5.36: Observed and predicted fatigue crack angle based upon the Fatemi–Socie for
proportional loading.
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5.4 Further discussion

5.4.1 Hysteresis Loops

During proportional experiments, the shape of hysteresis loops was not impeccable, especially

the torsion one, as presented in Figure 5.37.

Figure 5.37: Shear hysteresis loops for selected proportional experiments.

It was observed that force and torque waveforms were poor at the point in which imperfections

had appeared. Hence, several solutions to mitigate this problem have been tested:

1. The influence of specimens’ grip area was tested. There was no significant difference

between loops obtained from tests in which 25 mm or all the grip end were placed inside

the collet.

2. Since force and torque waveforms seemed to be the problem, a tuning upon force and

torque was performed, with no success at all.

3. A warm-up of the test machine was introduced. With no specimen, a displacement of

0.8 mm and an angle of 6◦ were prescribed upon the collet before the proper test. This

solution has been reasonably successful.

Even after the introduction of the warm-up, there were still some problems with the hysteresis

loops. It was observed that prescribed waveforms degenerated slightly throughout the test,

causing imperfections upon loops that were previously impeccable.
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5.4.2 Cyclic stress-strain behaviour

As reported in Section 2.1, the secondary hardening is associated with a martensitic trans-

formation. Therefore, a rigorous modelling of this phenomenon must consider some quantity

associated with martensite, as volume or mass fraction, for example. It was assumed in this

work that the secondary hardening starts at the minimum softening cycle, which may not be

true since there may be a competition between the cyclic softening and the secondary hardening.

From this point of view, the maximum softening may be understood as the moment in which

the hardening associated with this phase transformation overcomes the cyclic softening, not the

initiation of the secondary hardening.

According to Mughrabi and Christ (1997), one of the hypotheses of the Masing-type behaviour

is that there are no microstructural changes during the loading cycles, which means that it can

only occur if the same microstructure prevails. In this work, the analysis of the Masing behaviour

was performed at the maximum softening, which means that there was no significant martensitic

transformation if the above-mentioned hypothesis for the initiation of the secondary hardening is

verified. Therefore, the crystalline structure is similar for all the compared experiments and the

deviation from the Masing behaviour cannot be attributed to the martensitic transformation.

For the proportional experiments, which were non-proportional upon deviatoric stress and

plastic strain spaces, equivalent stress amplitudes were similar to those of axial and torsional

experiments for the maximum softening cycle, a result that must be analysed with caution.

Since non-proportionality is not very pronounced, especially for the plastic strain space, the

increase of the stress amplitude associated with non-proportional hardening may be very mild.

Another possible interpretation is that the non-proportional hardening is associated with total

strain non-proportionality. If the latter interpretation is correct, an important consequence is

that non-proportional hardening models based upon the deviatoric stress and plastic strain

spaces will predict a stress amplitude greater than the observed, especially for the 304L stainless

steel, whose additional hardening due to non-proportionality is very pronounced.

5.4.3 Fatigue analysis

The three parameter equation used to estimate fatigue life assumes the hypothesis that there is

a fatigue limit, which may affect significantly the error due to the asymptotic behaviour of this

equation, investigated here for the Smith–Watson–Topper model:

1. Let FP1
0 = 0.456 MPa, FP2

0 = 0.460 MPa and FP3
0 = 0.464 MPa be three values of FP0

that can be rounded to 0.47 MPa. For the proportional experiment whose ∆εeq = 0.20%,

FP = 0.4661 MPa for the average fatigue cycle analysis, and life estimates for the three

values of FPo are N1
est = 1.73 106 cycles, N2

est = 3.39 106 cycles and N3
est = 1.37 107

cycles, a ratio N3
est/N

1
est ≈ 8. If this proportional and a torsional experiments whose life

estimates were very poor are not taken into account, ¯E ′′avg = 0.3623 (F̄ = 1.44) for the
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original FP0 = 0.47 MPa, similar to the maximum softening analysis.

2. Let FP1 and FP2 be two fatigue parameters such that FP1 = 0.476 MPa and FP2 = 0.484

MPa, which can be both rounded to 0.48 MPa. Life estimates obtained for the material

constants from the average fatigue parameter are N1
est = 3.50 106 cycles and N2

est = 1.13

106 cycles, a ratio of approximately 3. For FP3 = 0.99 MPa and FP4 = 1.00 MPa, N3
est =

9.25 103 cycles and N4
est = 9.02 103 cycles, a ratio of approximately 1.0, which means

that low cycle experiments are far less sensitive to numerical errors.

Therefore, one shall assess carefully the error of life estimates whose fatigue parameter is close

to FP0 since they are much more sensitive to numerical errors than other experiments.

Despite their diametrically opposed hypotheses, life estimates for both models are quite similar.

This suggests that there is no influence of the reference cycle upon fatigue life estimates. A

more rigorous life estimate method is the integration of the damage throughout the cycles, as

presented in Equation 3.8. However, this approach has an important drawback: if the cumulative

damage calculated up to fatigue life is less than 1, there must be an extrapolation of the fatigue

parameter evolution throughout the loading cycles in order to estimate fatigue life. Whichever

extrapolation is adopted, there is an additional hypothesis that may contribute to errors upon

fatigue life estimates, as one does not know how the material would have behaved had it not

failed (e.g. the secondary hardening evolution may not be similar to the one observed hitherto).

Since life estimates obtained from a reference cycle were very good, this analysis is not necessary.

Due to the mixed cracking mode, it was expected that both models could not predict crack

orientation for axial and torsional loading, especially due to the crack mode change observed

upon low strain amplitudes for torsional experiments. Nonetheless, fatigue life was estimated

accurately for the three strain paths, which may lead to the following question: have both models

been successful? The Fatemi–Socie model failed to predict crack orientation for all experiments,

although life predictions were correct, which may argue in favour of a pragmatic outlook. On

the other hand, a rigorous interpretation, which is assumed by this author, may argue that both

critical planes and fatigue life must be predicted accurately due to the physical nature of these

models.

Axial experiments whose ∆εeq/2 ≥ 0.80% exhibited multiple fatigue cracks, similar to the

Region I-type behaviour of the 304 stainless steel investigated by Bannantine and Socie (1988).

For torsional experiments, a Region II-type behaviour without multiple cracking may have

been observed for ∆εeq/2 = 0.50 and 0.75% since there was bifurcation after the fatigue crack

had reached a certain length, and a Region-III-type behaviour occurred for ∆εeq/2 = 0.35%.

Axial experiments whose ∆εeq/2 ≤ 0.60% and torsional ones whose ∆εeq/2 ≥ 0.50% exhibited

the same crack orientation of Region I experiments, although multiple cracking did not occur.

Therefore, it may be argued that axial and torsional loading have displayed a behaviour similar

to the one of the 304 stainless steel investigated by Bannantine and Socie (1988).

For proportional experiments, the fatigue crack of specimen 304LTU35, whose ∆εeq/2 = 0.40%,

is of special interest: the direction of propagation changes after a certain length, a Region
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II-type behaviour without multiple cracking. On the other hand, proportional experiments

whose ∆εeq/2 < 0.40% did not exhibit a Region III-type behaviour and only displays a crack

orientation change. For experiments whose ∆εeq/2 ≥ 0.40%, fatigue cracking was similar to the

one observed for axial experiments whose ∆εeq/2 ≤ 0.60%

The smooth crack orientation change related by Kalnaus (2009) was not observed for torsional

experiments. Unlike torsional and proportional loading, axial loads exhibited only tensile mode,

which may suggest that this behaviour is not directly linked to equivalent strain amplitudes,

but somehow to shear strain amplitudes. It is shown in Figure 5.38 the crack orientation for

torsional and proportional experiments vs. the prescribed surface shear strain amplitude.

Figure 5.38: Crack orientation vs prescribed shear strain amplitude for torsional and proportional
experiments.

There is an almost linear relation between the crack orientation and the strain amplitude for

proportional loading whose ∆γsur/2 < 0.80%. As there is only one torsional experiment at this

range, any attempt to verify whether torsional loading exhibit the same trend will demand more

experimental data.

Both the Smith-Watson-Topper and the Fatemi–Socie models incorporate stresses and strains

into their mathematical formulation. Due to secondary hardening, models that incorporate only

stress measures at a given reference cycle may yield very similar life estimates for two experiments

whose observed lives are completely different, as for the torsional loading of ∆γmid/2 = 0.87%

and ∆γmid/2 = 0.48% (Fig. 3.1).
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Chapter 6 – Conclusions and Sugges-

tions for Future Work

Conclusions

In this work, proportional axial-torsional experiments have been performed. The cyclic stress-

strain behaviour of the 304L stainless steel has been investigated through a Masing behaviour

analysis, a comparison between secondary hardening observed upon axial, torsional and propor-

tional experiments, and the stress and plastic strain proportionality. Fatigue life and critical

plane orientation predictions from the critical plane models of Smith–Watson–Topper and

Fatemi–Socie have been compared with axial, torsional and proportional experimental data for

the 304L stainless steel. The following conclusions have arisen:

1. Significant or mild secondary hardening was observed for all axial and torsional experiments.

For proportional ones, only a mild hardening occurred for ∆εeq/2 ≥ 0.80%. Based upon

the comparison between stress states, the absence of hardening may be attributed to the

occurrence of fatigue failure prior to the initiation of the secondary hardening.

2. A Masing-type behaviour was observed for ∆εp ≤ 0.5% and ∆γp ≤ 1.0%. The equivalent

von Mises strain amplitude cannot be used as a threshold since there is a Masing-type

behaviour for the proportional experiment whose ∆εeq/2 ≥ 0.50%, whilst it does not occur

for the proportional one with the same equivalent amplitude.

3. Proportional loads are non-proportional upon stress and plastic strain spaces. Despite

the absence of stress amplitude increase for the maximum softening cycle, it is not clear

whether non-proportional hardening is very mild or nonexistent since non-proportionality

is not very pronounced.

4. For the same equivalent strain amplitude, torsional experiments last longer than axial

ones, which last longer than proportional experiments. This result is similar to the one

observed for axial, torsional and non-proportional experiments by Kalnaus (2009).

5. There has been no significant difference between life estimates obtained from multiple

reference cycles and between both fatigue models investigated. The Smith–Watson–Topper

model predicted approximately 56% of the observed macroscopic crack orientations for
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axial, torsional and proportional experiments accurately, whilst the Fatemi–Socie model

failed to predict all crack orientations.

6. The cracking behaviour of the 304L stainless steel exhibits some trends that are similar to

the behaviour of the 304 stainless steel investigated by Bannantine and Socie (1988), as

the multiple fatigue cracks observed for axial experiments whose ∆εeq ≥ 0.80% and the

bifurcation for the torsional load whose ∆εeq ≤ 0.75%. A smooth crack orientation change

has been observed for proportional experiments, similar to the one observed by Kalnaus

(2009) for torsional loads.

Suggestions for future work

Some suggestions for future work are presented below:

1. Investigation the non-proportional hardening through fully reversed 90◦ out-of-phase

non-proportional experiments upon thin-walled tubular specimens in order to obtain the

material constants of the Tanaka (1994) model.

2. Performed unbalanced stress and strain-controlled multiaxial fatigue experiments upon

thin-walled tubular specimens in order to verify whether cyclic plasticity models, like the

one proposed by Zhang and Jiang (2008), can predict both ratcheting and mean stress

relaxation.

3. Perform creep-ratcheting tests similar to those of Taleb and Cailletaud (2011) upon

thin-walled tubular specimens for torsional, proportional and non-proportional loads.

4. Perform stress-controlled fatigue test upon notched specimens submitted to fully reversed

and unbalanced loads.

5. Predict fatigue life and crack orientation of all these experiments through the Smith–

Watson–Topper, Fatemi–Socie and the Jiang (2000) models.

6. Quantify the volume or the mass fraction of martensite for axial, torsional, proportional

and non-proportional specimens in order to model the secondary hardening.
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Appendices



Appendix A – Stresses and Strains

In this section, stresses and strains for axial and torsional experiments upon thin-walled tubular

specimens are obtained. As fatigue crack is usually a surface phenomenon, a material point at

the specimens’ surface under plane stress state and φ = π/2 are assumed, as well as plastic

incompressibility, which yields tr(εp) = 0. A three-dimensional orthonormal base xyz is adopted.

A.1 Axial load

For an axial load upon a linear elastic isotropic material, stress tensor σ could be written as

follows:

σ(t) =

σx(t) 0 0

0 0 0

0 0 0

 . (A.1)

The elastic component of the strain tensor ε could be calculated as follows:

εe(t) =

εex(t) 0 0

0 −νεex(t) 0

0 0 −νεex(t)

 . (A.2)

The plastic component of the strain tensor ε could be calculated as follows:

εp(t) =

εpx(t) 0 0

0 −1
2
εpx(t) 0

0 0 −1
2
εpx(t)

 . (A.3)
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Total strain could be calculated as the sum of elastic and plastic strains.

ε(t) = εe(t) + εp(t) =

εex(t) 0 0

0 −νεex(t) 0

0 0 −νεex(t)

+

εpx(t) 0 0

0 −1
2
εpx(t) 0

0 0 −1
2
εpx(t)


ε(t) =

εex(t) + εpx(t) 0 0

0 −νεex(t)− 1
2
εpx(t) 0

0 0 −νεex(t)− 1
2
εpx(t)

 . (A.4)

In order to obtain the normal and shear stresses at a given plane, the stress and strain

transformation equations could be used. Normal and shear stress can be calculated as follows:

σ′x(t) =
σx(t)

2
+
σx(t)

2
cos 2θ, (A.5a)

τ ′xy(t) = −σx(t)
2

sin 2θ. (A.5b)

Normal and shear total strains can be calculated as follows:

ε′x(t) =

[
2εex(t)(1− ν) + εpx(t)

4

]
+

[
2εex(t)(1 + ν) + 3εpx(t)

4

]
cos 2θ, (A.6a)

γ′xy(t)

2
= −

[
2εex(t)(1 + ν) + 3εpx(t)

4

]
sin 2θ. (A.6b)

Normal and shear plastic strains can be calculated as follows:

ε′px (t) =
εpx(t)

2

[(
1 + cos 2θ

2

)
+ cos 2θ

]
, (A.7a)

γ′pxy(t)

2
= −3εpx(t)

4
sin 2θ. (A.7b)
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A.2 Torsional load

For a torsional load upon a linear elastic isotropic material, stress tensor σ could be written as

follows:

σ(t) =

 0 τxy(t) 0

τxy(t) 0 0

0 0 0

 . (A.8)

The elastic component of the strain tensor ε could be calculated as follows:

εe(t) =

 0
γexy(t)

2
0

γexy(t)

2
0 0

0 0 0

 . (A.9)

The plastic component of the strain tensor ε could be calculated as follows:

εp(t) =

 0
γpxy(t)

2
0

γpxy(t)

2
0 0

0 0 0

 . (A.10)

Total strain could be calculated as the sum of elastic and plastic strains.

ε(t) = εe(t) + εp(t) =

 0
γexy(t)

2
0

γexy(t)

2
0 0

0 0 0

+

 0
γpxy(t)

2
0

γpxy(t)

2
0 0

0 0 0


ε(t) =

1

2

 0 γexy(t) + γpxy(t) 0

γexy(t) + γpxy(t) 0 0

0 0 0

 . (A.11)

In order to obtain the normal and shear stresses at a given plane the stress and strain trans-

formation equations could be used. Normal and shear stress can be calculated as follows:

σ′x(t) = τxy(t) sin 2θ, (A.12a)

τ ′xy(t) = τxy(t) cos 2θ. (A.12b)
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Normal and shear total strains can be calculated as follows:

ε′x(t) =

[
γexy(t) + γpxy(t)

2

]
sin 2θ, (A.13a)

γ′xy(t)

2
=

[
γexy(t) + γpxy(t)

2

]
cos 2θ. (A.13b)

Normal and shear plastic strains can be calculated as follows:

ε′px (t) =
γpxy(t)

2
sin 2θ, (A.14a)

γ′pxy(t)

2
=
γpxy(t)

2
cos 2θ. (A.14b)
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Appendix B – Observed Fatigue Cracks

B.1 Axial Loading

304LUN14 - ∆εeq/2 = 1.00 % 304LUN14 - ∆εeq/2 = 1.00 %

304LUN06 - ∆εeq/2 = 0.50 % 304LUN17 - ∆εeq/2 = 0.35 %

304LUN24 - ∆εeq/2 = 0.28 %

V



B.2 Torsional Loading

304LTU20 - ∆εeq/2 = 1.00 % 304LTU29 - ∆εeq/2 = 1.00 %

304LTU26 - ∆εeq/2 = 0.75 % 304LTU21 - ∆εeq/2 = 0.50 %

304LTU23 - ∆εeq/2 = 0.35 %

VI



B.3 Proportional Loading

304LTU40 - ∆εeq/2 = 1.00 % 304LTU37 - ∆εeq/2 = 0.80 %

304LTU41 - ∆εeq/2 = 0.60 % 304LTU33 - ∆εeq/2 = 0.60 %

304LTU32 - ∆εeq/2 = 0.50 % 304LTU35 - ∆εeq/2 = 0.40 %

304LTU36 - ∆εeq/2 = 0.30 % 304LTU42 - ∆εeq/2 = 0.24 %

304LTU38 - ∆εeq/2 = 0.20 %

VII
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