
Universidade de Brasília
Instituto de Ciências Exatas

Departamento de Ciência da Computação

Integrating Data Mining into Contextual Goal Modeling to
Tackle Context Uncertainties at Design Time

Arthur J. R. Farias

Dissertação apresentada como requisito parcial para
conclusão do Mestrado em Informática

Orientador
Prof.a Dr.a Genaína Nunes Rodrigues

Brasília
2017

Universidade de Brasília
Instituto de Ciências Exatas

Departamento de Ciência da Computação

Integrating Data Mining into Contextual Goal Modeling to
Tackle Context Uncertainties at Design Time

Arthur J. R. Farias

Dissertação apresentada como requisito parcial para
conclusão do Mestrado em Informática

Prof.a Dr.a Genaína Nunes Rodrigues (Orientador)
CIC/UnB

Prof. Dr. Li Weigang Dr. Raian Ali
CIC/UnB Bournemouth University

Prof. Dr. Bruno Luiggi Macchiavello Espinoza
Coordenador do Programa de Pós-graduação em Informática

Brasília, 24 de Novembro de 2017

Acknowledgements

I would like to thank CAPES for the financial support received, and my supervisor, Prof.a Dr.a
Genaína Nunes, for the time devoted, and for the patient, yet persistent guidance throughout this
work. I would also like to thank the Dependability Group from UnB’s Software Engineering
Lab for the several useful insights.

iii

Abstract

Understanding and predicting all context conditions the self-adaptive systems will be exposed
to during its life time and implementing appropriate adaptation techniques is a very challenging
mission. If the system cannot recognize and adapt to unexpected contexts, this can be the cause
of failures in self-adaptive systems, with possible implications of not being able to fulfill user
requirements or even resulting in undesired behaviors. Especially for dependability attributes,
this would have fatal implications. The earlier the broad range of high level context conditions
can be specified, the better adaptation strategies can be implemented and validated into the self-
adaptive systems. The objective of this work is to provide (automated) support to unveil context
sets at early stages of the software development life cycle and verify how the contexts impact
the system’s dependability attributes. This task will increase the amount of potential issues
identified that might threaten the dependability of self-adaptive systems. This work provides an
approach for the automated detection and analysis of context conditions and their correlations
at design time. Our approach employs a data mining process to suitably elicit context sets and
is relying on the constructs of a contextual goal model (CGM) for the mapping of contexts to
the system’s behavior from a design perspective. We experimentally evaluated our proposal on
a Body Sensor Network system (BSN), by simulating a myriad of resources that could lead to a
variability space of 4096 possible context conditions. Our results show that our approach is able
to elicit contexts that would significantly affect a high percentage of BSN assisted patients with
high health risk profile in fulfilling their goals within the required reliability level. Additionally,
we explored the scalability of the mining process in the BSN context, showing it is able to
perform under a minute even for simulated data at the size of over five orders of magnitude.
This research supports the development of self-adaptive systems by anticipating at design time
contexts that might restrain the achievability of system goals by means of a sound and efficient
data mining process.

Keywords: Self-adaptive systems, Context uncertainty, Data mining, Design-time, Goal models

iv

Contents

1 Introduction 1
1.1 Problem Definition . 2
1.2 Proposed Solution . 3
1.3 Evaluation . 4
1.4 Organization . 4

2 Background 5
2.1 Contexts in Self-Adaptive Systems . 5
2.2 Assurance for Self-adaptive Systems . 6

2.2.1 Dependability . 6
2.3 Contextual Goal Models . 8
2.4 Data Mining . 9

2.4.1 Association Rules . 10
2.4.2 Classification Methods . 10
2.4.3 Data Mining for Context Discovering . 14

2.5 Theoretical Overview . 14

3 Related Work 15
3.1 Context elicitation . 15
3.2 Specification and adaptation to contextual changes 16
3.3 Uncertainty definition for self-adaptive systems 16
3.4 Dependability in context-based systems . 17
3.5 Tackling uncertainty at design time . 18
3.6 Tackling uncertainty with AI methods . 18
3.7 Final Considerations About the Related work . 19

4 Running Example: Body Sensor Network 21
4.1 BSN Outline . 24

v

5 A Learning Process to Unveil Contexts for Dependability at Design Time 25
5.1 Contextual Requirements in Goal Modeling . 25
5.2 Data Mining Process . 29
5.3 Proposal Overview . 33

6 Evaluation 34
6.1 Experimental Setup . 34
6.2 Goal 1: Data mining process . 36
6.3 Goal 2: Method’s contribution . 38
6.4 Discussion . 42
6.5 Threats to validity . 45

7 Conclusion and Future Work 46

Reference List 48

vi

List of Figures

2.1 Decision tree based on the training set presented in Table 2.1 [1]. 13

4.1 Body Sensor Network visual representation [2]. 21
4.2 Body Sensor Network Feature Model [2]. 22
4.3 CGM for the BSN system . 23

5.1 Process overview of our method . 26
5.2 Overall behavior of CGM leaf-tasks (adapted from Mendonça et al. [3]) 26
5.3 Data mining process for the persistence module described in Figure 5.4 32
5.4 BSN’s CGM excerpt with associated variables (Adapted from Figure 4.3) 33

6.1 Prediction model building time for different amount of records and resources . . 39
6.2 CGM for the BSN system with detected contexts 40
6.3 Impact on the BSN goal satisfaction for patient’s high, normal and low risk states

under the contexts discovered through our data mining approach over 100,000
records. 41

6.4 Decision tree displaying the influence of some contexts in the achievement of
quality constraints . 42

vii

List of Tables

2.1 An example of a training set [1] . 12

3.1 Comparative table of the related work and their properties 20

4.1 Context operationalization for patient’s status 22

5.1 Domain failure classification and related dependability attributes 27
5.2 Example of a resource table and description of its variables 29

6.1 GQM plan . 34
6.2 Example of the resources on BSN simulation 35
6.3 False positive and false negative analysis of the generated prediction models . . . 37

viii

Chapter 1

Introduction

The consistent specification of all stakeholder needs is rarely enough to ensure the quality of
a self-adaptive system (SAS), demanding the designer the full specification of the contexts in
which such requirements shall be executed. Consequently, assuring that a system successfully
functions for all environmental conditions represents a great challenge for the software engi-
neering of self adaptive systems. Although there are some work that support the elicitation of
typical contexts [4, 5, 6], the subjective nature of the problem and the lack of information at
initial stages make it quite difficult to, anticipatively, identify all of them. To illustrate, we can
mention the conflicts among stakeholders that often lead to a system with requirements that are
neither alternative nor consistent with each other, having their operation triggered by specific
contextual conditions [5].

Like any other system, in order to guarantee the expected operation of the service provided
by a SAS, dependability attributes such as reliability, availability, safety, security and maintain-
ability must be taken into consideration [7], specially in safety-critical systems, which cannot
afford to fail. The system’s dependability and users’ satisfaction are heavily impacted by con-
text variability, and the assurance of such aspects is put in risk if the impact of the contexts are
unknown, or even if the context awareness of the system is compromised. At the same time, a
superficial domain and environment knowledge might lead to the insertion of dormant faults in
the implementation, imperceptible from a design perspective. Hence, such faults, when active,
are potential causes of failure, i.e., deviation from the correct service state. This fact empha-
sizes the need of a dependability assessment method that considers the different contexts and
user profiles a system might be exposed to at runtime.

The dependability of a self-adaptive system can also be limited by the presence of uncer-
tainty, a concept that haunts the assurance of many aspects of the software engineering process.
The unpredictability caused by the limitation in accounting for all environmental conditions at
design time is a common type of uncertainty for self-adaptation [8]. The uncertainty in contexts
can be found beyond the elicitation stage, it can be found on the monitoring of such contexts.

1

The success of the monitoring routine depends on the availability of the system’s components
and how these resources affect the performance of the system. The availability of the resources
is subject to changing environment conditions as the system gets executed [9]. As a result, un-
certainty is a worrying concept for the dependability aspect, causing degradation in the quality
of service or even failures in self-adaptive systems, possibly leading the system to have unde-
sired behaviors.

There are some tools and techniques that assist the assessment of dependability at design
time. For instance, one is able to estimate the reachability of the stakeholder needs through
the analysis of the system’s models, scanning its transitions and probabilities. However, these
techniques usually ignore important runtime factors, such as context variability and distinct user
profiles, that directly impact dependability attributes in positive or negative ways. The user’s
satisfaction is another important quality-of-service metric that is hardly ever considered in a
statical analysis, even though, in a real scenario, a SAS is supposed to operate correctly under
different context conditions, satisfying distinct users profiles.

1.1 Problem Definition

Due to the difficulty in predicting environmental conditions still at design time, there are very
few works that try to tackle the derived uncertainty at such stage [10], particularly w.r.t. con-
text variability conditions. On the other hand, many state-of-the-art contributions have been
proposed to deal with it through control and runtime adaptation [8], more precisely on runtime
context data, after the system is implemented. Although the runtime approaches may tackle the
problem within some acceptable degree of accuracy, the inspection of all possible situations has
a negative impact on the system’s performance. Moreover, it seems to be a risky strategy for
safety-critical systems, since they take a while to learn from the environment and may not be
able to adapt fast enough to avoid an interruption, putting the dependability of the application
in check. Relying only on a reactive approach to deal with such kind of uncertainty can also
be troublesome when it comes to the cost of changes and repairs, given that these costs usually
increase with the elapsed project time. A software design flaw spotted at runtime, for example,
tends to be expensive and time consuming to fix.

The relation between design-time and runtime variability, especially for SAS, still requires
improvement [4]. Information about reachability and variability, collected at design time, are
not fully reused at runtime. Nevertheless, the generation of all possible situations, exclusively at
runtime, poses a risk to the system’s performance and dependability, which indicates the need of
a design-time assessment. Such a gap is particularly critical when considering runtime aspects,
reinforcing the need to adopt a preventive approach for context elicitation and dependability
analysis.

2

To the best of our knowledge, there is no approach that applies data mining to unveil con-
text conditions at design time, when planning the self-adaptation strategies accounting for its
dependability. For complex systems, it is unfeasible to make a combinatorial exploration of
every monitored attribute and map all possible contexts afterwards, defining, for example, if-
then-else rules for every possible scenario. It is likely that such approach will result in a state
explosion problem. Despite the challenge in discovering context conditions at design time due
to the lack of data to exercise the method, we argue that analyzing context conditions from the
dependability perspective is paramount and should be done as early as possible in the system
development cycle. Differently from runtime analysis, at design time there is no sufficient data
provided yet. The use of prototypes helps one to overcome this limitation, and, at the same time,
supports the understanding of the differences of end-users in context [5]. It can potentially help
to reduce failures caused by invalid adaptations executions.

Considering the current scenario of this area, the research gap, and all the limitations de-
scribed in the previous paragraphs, we summarize the objective of this work in the following
research question.

RQ: Is it possible to support the decision making process for dependable SAS, using a data
mining process, specifically classification and association rules algorithms, to anticipate the
identification of contexts in a way that time and space limitations are surpassed?

1.2 Proposed Solution

In this work, we propose an approach that aims to identify, at design time, contexts that are
potential sources of uncertainty, i.e., contexts that can prevent the full satisfaction of some
requirements or trigger unknown behavior that should be disallowed from the perspective of
dependability. Through a data mining process we determine context sets based on requirements
knowledge that would otherwise be neglected and only be identified at runtime in the presence
of context failure. Considering goals are first class citizen of self-adaptive systems and goal
models are a common technique on how to document such goals [11], our context set discov-
ery process also considers the possible impacts on goals’ fulfilment caused by inter-contexts
combinations.

In order to abstract away the relationship between contexts and goals, we use Contextual
Goal Model (CGM) [12] to map the contexts to the system’s behavior from a design perspective.
This way, we focus on the goals’ accomplishment by modeling the system adaptation in face of
context variations including context failure ranges. Additionally, a qualitative and quantitative
context analysis is then used to update the contextual constraints into their respective nodes of
the model. The CGM is a useful artifact to carry the knowledge generated by our proposal,
allowing not only the analysis of the desired behavior of the system but also the development

3

of an adequate adaptation plan for different context. Thus, we minimize the gap between the
design-time and runtime model by keeping the CGM always up-to-date through a feedback loop
process.

1.3 Evaluation

We experimentally evaluate our approach on a simulated prototype version of a Body Sensor
Network system (BSN) [2]. We simulated twelve relevant BSN resources, that are abstract rep-
resentations of computational or environmental aspects, e.g. sensors, vital sensed data, storage
module. The resources, by a mere combinatorial approach, represents a variability space of
4096 possible combinations that may influence the current context. We generated a database
representing 100,000 patient records using a Monte Carlo method. Our approach was able to
efficiently identify 17 new relevant contexts not initially considered in the BSN case study [2].
Our results reveal the overwhelming fact that almost 84% of high risk patients profiles and
73% of normal risk patient profiles would be unattended or failed, which allows us to infer
the efficacy of our elicited contexts to significantly identify critical situations on the BSN case
study.

We also validated the scalability of the data mining process by dividing the analysis in
two different scenarios: (i) a verification concerning the load scalability, i.e., comparing the
generation time growth of the prediction model with the capability of the data mining method to
process larger and heavier datasets, and (ii) a verification concerning the functional scalability,
i.e., observing the generation time growth of the prediction model in face of the ability to expand
the scope of analysis by adding new attributes to the dataset, object of data mining. We have
noticed that the data mining process should not be an obstacle to the scalability aspect. The
method is able to perform under a minute even for simulated data at the size of over five orders
of magnitude.

1.4 Organization

The remaining parts of this manuscript are organized as follows: In Chapter 2 we provide a
brief introduction to contexts, dependability, contextual modeling and some insights about data
mining. Chapter 3 presents major related work. Chapter 4 presents a succinct characterization
of the Body Sensor Network system, case study of our approach. In Chapter 5, we present the
core of our proposal, followed by Chapter 6, where we report the evaluation of our approach.
Finally, Chapter 7 concludes along with future work.

4

Chapter 2

Background

2.1 Contexts in Self-Adaptive Systems

The word context carries an important and pervasive concept, not restricted to the computa-
tional field. This fact sometimes mislead the communication of the meaning of context, since
it is common that people tacitly understand its definition but apply in different ways in their
researches. For the purpose of our research, there are a few suitable definitions. The first one
can be found in [13] where the author states:

“Context is any information that can be used to characterize the situation of an entity. An
entity is a person, place, or object that is considered relevant to the interaction between a
user and an application, including the user and applications themselves.” (Dey, 2001, p. 3).

Another good definition was proposed by Ali et al. in [12], where contexts are “monitorable
pieces of information about the environment in which systems operate”. In order to better un-
derstand the such definition, we need to know what environment means. Finkelstein and Savi-
gni [14] defines environment as “whatever over which we have no control”, e.g. environmental
conditions, user characteristics or availability of resources. The context analysis presented in
[12] relies on the refinement of contexts described at a high level of abstraction to a formula
of observable facts. Such methodology is suitable for adaptive and self-adaptive systems, since
their adaptation are mostly defined by verifiable facts. Different contextual information can be
monitored through means like sensors, and a context may be represented by the combination of
specific resources states. We call this process context operationalization.

The definitions above are specially adequate for our approach, once the enumeration of
contexts is an important step of the process. The focus of our work is to elicit context focusing at
the satisfaction of a required dependability level. Many attributes of dependability are entangled
with the operation of the system’s devices at an operational level. Our approach assumes as a
context, facts that are often mistaken as resource failures. In fact, they are actually situations
of an entity, with a certain probability to happen that are relevant to the interaction between the

5

user and the application. Our approach is adjustable to such specific contexts, but respects the
overall concept mentioned before.

2.2 Assurance for Self-adaptive Systems

The assurance concept we adopt in the scope of this work is the one proposed by the IEEE Stan-
dard Glossary of Software Engineering Terminology, which states that assurance is “a planned
and systematic pattern of all actions necessary to provide adequate confidence that an item or
product conforms to established technical requirements” [15]. Such definition encompasses not
only quality attributes like cost-benefit, versatility, flexibility, resiliency and energy efficiency,
but also broader software aspects such as safety, reliability and dependability [16, 17].

Before the introduction of self-adaptiveness in software systems, the assurance for software
systems was conducted at design and development time through verification, validation, test,
measurement, conformance to standards and certification [18]. Nowadays, the most acceptable
strategy to provide assurance at runtime is utilizing self-adaptation mechanisms and their capa-
bilities of self-management. However, the dynamic environment to which self-adaptive systems
are exposed creates obstacles that hinders the assurance provision in SAS [17]. To illustrate, we
can cite the uncertainty present on contexts monitoring, that can affect the ways in which the in-
formation about the environment can be gathered. Through our method, we propose to provide
assurance by the early identification of possible sources of uncertainty by means of unfore-
seen contexts, and quantify the impact on self-adaptive systems’ ability to provide assurance
evidence.

2.2.1 Dependability

Dependability is concept that is usually adopted to reference characteristics inherent to the ex-
pected behavior of a system, i.e., the capability of a system to avoid, tolerate and adapt to
failures. In order to guarantee a minimum quality-of-service level, there are some dependabil-
ity attributes that need to be considered when developing a system. Such statement is even
more valid for self-adaptive systems due to the dynamic environment to which it is exposed.
According to Avizienis et al. [7], among the aspects that compose dependability we have the
following attributes:

• Availability: readiness for correct service;

• Reliability: continuity of correct service;

• Safety: absence of catastrophic consequences on the user(s) and the environment;

• Integrity: absence of improper system alterations;

6

• Maintainability: ability to undergo modifications and repairs.

Before we advance in the characterization of dependability, the distinction between the con-
cepts that resemble to systems’ undesired traits needs to be enlightened. Basically, there are
three definitions that are commonly mistaken: fault, error and failure. The order of enumera-
tion was intentional to show a causality chain linking them. As Avizienis et al. state, a service is
a sequence of the system’s external states, thus, a service failure means that at least one external
state of the system deviate from the correct service state. We call such deviation an error, while
the adjudged or hypothesized cause of an error is called a fault, that can be internal or external
of a system.

The present work aims at assisting the analyst in a preventive way, eliciting as many con-
texts as possible and providing an adaptation plan at design time. As complement, the system
must provide, at runtime, a reactive approach to deal with the contexts that were not previously
unforeseen. Summarizing, still based on the concepts defined in [7], through the anticipated
identification of context and the impact analysis of their combinations, our work assists the
implementation of: (i) fault prevention techniques, i.e., means to prevent the occurrence or in-
troduction of faults, and (ii) fault forecasting techniques, means to estimate the present number,
the future incidence, and the likely consequences of faults.

The notion of contextual failures will be introduced in the next chapters, and to take the best
out of it, it is necessary to briefly describe the background that supported the creation of such
definition, specifically regarding its domain. According to Avizienis [7] the domain of a failure
may be seen from two distinct viewpoints, they are:

• Content failures: The content of the information delivered at the service interface devi-
ates from implementing the system function;

• Timing failures: The time of arrival or the duration of the information delivered at the
service interface deviates from implementing the system function.

When both content and timing problems are observed in a failure, it may fall into two
classes:

• Halt failure: as the name suggests, the service is halted, i.e., the system activity, if there
is any, is no longer perceptible to the users; a special case of halt is silent failure, when
no service at all is delivered at the service interface;

• Erratic failures: otherwise, i.e., when a service is delivered (not halted), but is erratic
(e.g., babbling).

For the purpose of this work, there are context violations that belong to a data domain, and
violations that belong to the time domain. Both types can lead to a interruption of the service
provided like a halt failure, but also can lead to behaviors typical of erratic failures.

7

2.3 Contextual Goal Models

When an application is planned to operate in a dynamic environments, the notion of context
must be the cornerstone of the system development. In order to build a proper self-adaptive
system blueprint, it is required to take into consideration not only the requirements and means to
achieve them, but also the contextual information that may be related to the system’s operation.
A contextual goal model (CGM) is a suitable specification for this purpose, since it is able to
represent in a simple structure the requirements to meet, the ways to meet requirements, and
factors that can affect the quality and behavior of a system. In order to better absorb the global
semantics of a contextual goal model specification, firstly, we need to understand its elements.
According to the definitions presented in [12], a CGM can be composed by:

• Actor: an actor is an entity that has goals and can decide autonomously how to achieve
them. An actor can be of different types such as human actors, software actors, or orga-
nizational actors.

• Goal: goals are a useful abstraction to represents stakeholders’ needs and expectations
and they offer a very intuitive way to elicit and analyze requirements.

• Task: a task is an atomic part responsible for the operationalization of a system goal, i.e.,
an operational means to satisfy stakeholders’ needs.

• Context: a context is a partial state of the world that is relevant to an actor’s goals. A
context is inherently partial and volatile, it is also strongly related to goals, for it changes
the current goals of a stakeholder and the possible ways to satisfy them.

• Resource: an entity data or physical device that is generated or required by an actor.
For instance: a sensor, a vital sign measurement, the storage space available in a disk
component, etc.

• AND Decomposition: an AND-decomposition is a refinement link that decomposes an
actor’s goal or task into sub-goals or sub-tasks, where all decomposed goals/tasks must
be fulfilled/executed in order to satisfy its parent entity.

• OR Decomposition: an OR-decomposition is a refinement link that decomposes an ac-
tor’s goal or task into sub-goals or sub-tasks, where at least one decomposed goals/tasks
must be fulfilled/executed in order to satisfy its parent entity.

• Means-end: a relation that indicates a means to fulfill an actor’s goal through the execu-
tion of a task.

At this point, it is important to make a distinction between resources and contexts. We
assume that a sensor that measure the environmental conditions is a system resource. Addition-

8

ally, some specific behaviors of this particular sensor can be taken as contexts. For example,
the availability or unavailability of a given resource, if it is relevant to the accomplishment of a
goal, characterize two different contexts of operation.

It is possible to achieve a system goal through different ways within a CGM. Each different
way might contain different conjunction of contexts, and each conjunction shapes the system
to fulfill a requirement in a different quality level. Each conjunction of contexts is known as
a context of a goal model variant [12]. Self-adaptive systems implement runtime routines to
choose which variant to adopt when more than one variant is applicable in the actual scenario.
Often, users prioritization is the criteria adopted to support this decision. However, this decision
process rarely is a simple task due to two major problems: the potentially large number of goal
model variants and the potentially large number of nodes in each variant. The first makes the
prioritization very time consuming, while the latter makes hard for the user to distinguish the
differences between variants [12]. Our method allows one to combine the users prioritization
or users profiles as quality measures (e.g. softgoals) with data mining techniques, aiming to
identify the most efficient variants in terms of a specific requirement.

2.4 Data Mining

To create a solid method of context elicitation, bypassing both time and space limitations, we
intend to merge the advantages of using artificial intelligence over monitored data, characteristic
of runtime approaches, with the perks of having a robust modeling process at design time. The
core of our approach relies on the data mining, analysis, and discovery of new contexts that
can possibly lead the system to inconsistent states. The object of the data mining process, at
design time, can be provided by historical data from previous executions, by a domain driven
simulated dataset through Monte Carlo, or by a prototype version, in case there are no runtime
data available.

The science of learning is present in the fields of statistics, data mining and artificial in-
telligence, intersecting with areas of engineering and other disciplines [19]. On self-adaptive
systems, this kind of technique composes the core of the application, making possible for the
system to adapt to new scenarios by learning from environmental data. In a typical operation of
a self-adaptive system, we have an outcome measurement, usually quantitative or categorical,
that we wish to predict based on a set of resources. We have a training set of data, coming
from sensors, in which we observe the outcome and resources measurements for a set of objects
(such as users of a medical monitoring service). Using this data we build a prediction model, or
learner, which will enable one to predict the outcome for new unseen objects. A good learner
is one that accurately predicts such an outcome. Afterwards, the prediction model is used to
support the system to formulate the adaptation plans.

9

2.4.1 Association Rules

Countless techniques may be used to assist the data mining process. Among the several cate-
gories of data mining methods, there is the Association Rules Method, which uses a rule-based
mechanic that allows us to discover relations between variables in large databases.

According to the definition proposed by Agrawal et al. [20], the association rule mining
process works as follows: Let I = {i1, i2, ..., im} be a set of literals, called items; Let D be a
set of transactions, where each transaction T is a set of items such that T ⊆ I; Associated with
each transaction is a unique identified, called TID. A transaction T contains X , a set of some
items in I , if X ⊆ T . An association rule is an implication of the form X ⇒ Y , where X ⊂ I ,
Y ⊂ I , and X

⋂
Y = 0.

In order to find useful rules from the set of all possible rules, constraints that measure the
significance and interest of sch rules must be applied. The most common constraints are min-
imum thresholds on support and confidence. The rule X ⇒ Y holds in the transaction set D
with confidence c if c% of transactions in D that contain X also contain Y . The rule X ⇒ Y

has support s in the transaction set D if s% of transactions in D contain X
⋃
Y .

Another important concept for association rules is the Lift. It help us to identify which rules
are useful and which are not. The lift of a rule is defined by the equation:

lift(X ⇒ Y) = supp(X ⋃
Y)

supp(X)× supp(Y) (2.1)

If the rule have a lift of 1, the probability of occurrence of the antecedent and that of the
consequent are independent of each other, i.e., no rule can be drawn involving those two events.
On the other hand, a lift higher than 1 indicates the degree to which those two occurrences
are dependent on one another, meaning that these rules are potentially useful for predicting the
consequent in future data sets.

We have adopted the Apriori algorithm [21] in our approach. It is a derivation of the as-
sociation rule category, where the rules are somewhat more general than the ones previously
described, allowing a consequent to have more than one item.

2.4.2 Classification Methods

The classification routine tackles the problem of identifying to which of a set of categories a
new observed fact belongs. It is done based in a training set of data containing observations (or
instances) whose category membership is known, i.e. it is an instance of supervised learning.
There are a few ways to measure the quality of classification methods [22]. We have adopted the
popular and well-defined measurements precision, recall, and their harmonic mean f-measure,
to evaluate our approach. In order to explain the terminology and the application of there
metrics, we list a series of important concepts regarding the classification context.

10

• Condition Positive (P): the number of real positive cases in the data;

• Condition Negative (N): the number of real negative cases in the data;

• True Positive (TP): the object classification represents a hit.
(correctly classified as true)

• True Negative (TN): the object classification represents a correct rejection.
(correctly classified as false)

• False Positive (FP): the object classification represents a false alarm.
(classified as true, but actually it is false)

• False Negative (TN): the object classification represents a miss.
(classified as false, but actually it is true)

The precision and recall are defined as:

Precision = tp
tp + fp

Recall = tp
tp + fn

RIPPER

In our work, we are applying two classification techniques to assist the context elicitation and
the measurement of the impact on system’s dependability. The first one is the JRip (implements
RIPPER algorithm) [23], a propositional rule learner that create rules for every class in the
training set and then prune these rules. The discovered knowledge in this class of algorithm
is represented in the form of IF-THEN prediction rules and are specially useful to define the
operation thresholds of some resources. The RIPPER algorithm works as follows [23, 24]: (i)
after the initialization of a list RS, the algorithm divides iteratively the training set into growing
and pruning sets in a building stage, having the stopping condition defined by the description
length of the ruleset and error rate. The grow phase, a sub stage of the building phase, consists
in growing one rule by greedily adding conditions to it until the rule is completely accurate. The
algorithm tries every possible value of each attribute and selects the condition with the highest
information gain. At the second sub stage of the building stage, in the prune phase, the algo-
rithm prunes each rule and allow the pruning of any final conditions. Once the stopping criteria
is met, and the initial ruleset {Ri} is generated, the procedure reaches the (ii) optimization stage,
in which the algorithm generates and prunes two variants of each rule Ri from randomized data
in the previous phases. One variant is generated from an empty rule while the other is generated
by greedily adding antecedents to the original rule. The smallest possible description length
for each variant and the original rule is computed. The variant with the minimal description

11

length is selected as the final representative ofRi in the ruleset. At last, (iii) the rules that would
increase the description length of the whole ruleset are deleted, while the resultant ruleset is
added to RS.

Decision Tree

The second classification method we use is the J48 classifier algorithm, which implements a
Decision Tree [1], a tree-like graph used to support the decision making process using the depth-
first strategy. J48 is an open source Java implementation of the C4.5 decision tree algorithm,
extension of the ID3 algorithm [25]. The exemplifying dataset presented in Table 2.1, proposed
by Quinlan [1], compiles some weather measurements of a series of Saturday mornings. The
attribute Class represent the feasibility of a given activity, the value P means positive, i.e., the
planed activity is feasible in that given weather, while the value N, that stands for negative,
represents the impossibility of the activity to occur. After the execution of the C4.5 algorithm
we come to a tree similar to the one depicted in Figure 2.1.

Attribute
No. Outlook Temperature Humidity Windy Class
1 sunny hot high false N
2 sunny hot high true N
3 overcast hot high false P
4 rain mild high false P
5 rain cool normal false P
6 rain cool normal true N
7 overcast cool normal true P
8 sunny mild high false N
9 sunny cool normal false P

10 rain mild normal false P
11 sunny mild normal true P
12 overcast mild high true P
13 overcast hot normal false P
14 rain mild high true N

Table 2.1: An example of a training set [1]

Basically, C4.5 relies on the concept of information entropy to build a decision tree from a
set of training data, guided by the objective of reducing the impurity in data as much as possible,
i.e., having the most instances of a subset belonging to the same class. Entropy is a measure of
the uncertainty associated with a random variable. The original entropy of a given dataset can
be achieved from a set of samples S through the formula, with C representing the set of desired
class:

12

Figure 2.1: Decision tree based on the training set presented in Table 2.1 [1].

E[D] = −
|C|∑
i=1

P (ci)log2P (ci) (2.2)

To illustrate, the entropy of a detaset D that has a 30% positive examples (P(positive)=0.3)
and 70% negative examples (P(negative)=0.7) is:

E[D] = −0.3× log20.3− 0.7× log20.7 = 0.8813 (2.3)

Analogously, the entropy of an attribute can be calculated by making the target attribute,
with n values, the root of the tree. Thus, after the partition of a dataset D into n subsets, it is
possible to calculate the entropy of an attribute with the following equation:

Eattribute[D] = −
n∑

i=1

|Di|
|D|

E[Di] (2.4)

The training data set is composed by samples already classified (attribute value and the class
it belongs to). At each node of the tree, the algorithm chooses the attribute of the data that best
splits its samples into subsets. The splitting criterion is based on the information gain value,
which is the difference of the dataset entropy and the entropy of the selected branch. The C4.5
recurs on the the smaller sublists using the information gain to make the classifying decisions.
The information gained by selecting a given attribute to partition the data can be obtained by:

gain(Attribute) = E[D]− EAttribute[D] (2.5)

13

2.4.3 Data Mining for Context Discovering

Combining the aforementioned algorithms with a requirements engineering process that consid-
ers contextual information, the learning premise can be extended to self-adaptive systems and
their resources. If we assume, for example, that a patient having a heart attack configures the
context ‘emergency’, it is possible to use Apriori to discover which resources were involved in
the activation of such context, for instance, heart beat sensor and accelerometer. Later on, JRip
is used to find rules that describe the activation of the context in terms of resource values. To
illustrate, one could discover through a pruned rule that an individual’s pulse above 140 beats
per minute indicates a risk of activating the ‘emergency’ context. Lastly, all the contexts and
resources can be mapped into a decision tree structure, giving a global perspective of the system
to the analyst, showing how such entities interact to successfully achieve the system goals. In
the next chapters we will specify the entire process and demonstrate how such combination can
take place in a sound manner. The information gain values are crucial for our work because
they represent, in a certain way, the quantification of a node’s sensitiveness. The hierarchical
view provided by the decision tree helps one to visualize the most important categories in a
higher level, assisting the prioritization and assurance of systems’ dependability attributes in
detriment of others, for different context configurations. From a context elicitation point of
view, the dependability attributes of a system, as the object of analysis, might be more sensitive
to the variability of contexts in upper nodes, indicating that the identification of such context is
paramount to observe a correct operation of the system.

2.5 Theoretical Overview

In this chapter we have presented the theoretical foundations needed to best assimilate the pro-
posal. We begun with some context definitions and their implications in self-adaptive systems.
We have learned that a context is any information that can be used to characterize the situation
of an entity. It was possible to notice that the identification and characterization of a context is
paramount to the provision of assurance for SAS, i.e., all actions necessary to provide adequate
confidence that an item or product conforms to established technical requirements. Depend-
ability is a core definition for assurance provision, as it encompasses several attributes related
to quality of service and non-functional requirements such as reliability, availability, safety,
security and maintainability. In this chapter we also have explained some points about contex-
tual goal modeling, a goal-oriented specification technique suitable to represent self-adaptive
systems and their elements. Finally, we presented the machine learning algorithms used in our
method: (i) apriori, as an association rule technique, (ii) RIPPER, as a propositional rule learner,
and (iii) J48, an open source Java implementation of the C4.5 decision tree algorithm. In the
next chapter we will present the major related work and how they are compared to our method.

14

Chapter 3

Related Work

3.1 Context elicitation

Knauss et al. [5] contribute with a study on how to derive contexts from stakeholder needs.
The authors explore the usefulness of several existing elicitation techniques such as interviews,
prototyping, scenarios, goal-based approaches, and focus groups for the identification of con-
textual requirements at design time. Their work brings some insights on the topic, including
the fact that (i) conflicts among stakeholders indicate the need for contextual requirements, (ii)
viewpoints are valuable to identify context related to requirements and to analyze contextual re-
quirements, and (iii) prototypes are particularly helpful to understand the context of conflicting
requirements in details, which motivated us to use prototyping techniques to represent a real
system operation.

Hong et al. created a methodology for the elicitation of requirements in context-aware ap-
plications [6]. The proposed method links context-awareness features with the target context by
capability matching. They divided the notion of contexts into three categories: the first category
is computing context, referring to the hardware configuration used, e.g. processors available, de-
vices accessible, and bandwidth; the second category is user context, which represents all the
human factors, e.g. user’s profile, calendars; the final category is physical context, that encom-
passes the non-computing-related information provided by a realworld environment, such as
location, time, lighting, noise levels, etc. Although we also categorize the unveiled contexts in
three classes, differently from their work, we propose a classification based on the data format
in which the context will be perceived by the autonomous controller of the SAS.

Another research on requirements elicitation considering context variability, Gómez et al. [26]
present APP STORE 2.0, an app store which applies data mining techniques to exploit crowd-
sourced information at runtime aiming at the elicitation of requirements, and improvement of
the overall quality of the delivered service. The APP STORE 2.0 involves users in a quality
feedback loop, creating value based on the end-users, while the end-users indirectly benefit

15

from APP STORE 2.0 with better apps. Our proposal, focusing on dependability elements,
considers that the elicitation of new contexts, at design time, can reveal possible uncertainties
to the adaptive system, i.e., disallowed behaviors latent in the design that can jeopardize the
requirements fulfillment at runtime.

3.2 Specification and adaptation to contextual changes

Ali et al. proposed a framework [12] that, starting from contextual requirements, involves
reasoning and goal modeling to support the adaptation of a system to different contextual con-
ditions. The choice and prioritization of the adequate goal model variant is a difficult task for
complex systems due to the potentially large number of goal model variants, and the potentially
large number of nodes in each variant. Such a limitation motived us to use data mining in this
sense. Moreover, through the feedback loop proposed in our work, one is able to verify an-
other question raised in [12], concerning the influence on context caused by the actions that the
system takes to meet its requirements and the problems it may lead to.

Villegas et al. present DYNAMICO [27], a reference model for governing control and con-
text relevance in self-adaptive systems, in which they have defined, discussed, and implemented
the preventive approach in the context of self-adaptation. The authors claim that separation of
concerns, dynamic monitoring, and runtime requirements variability are critical for satisfying
system goals under highly changing environments. In order to guarantee these aspects, DY-
NAMICO is composed of three types of feedback loops: (i) the control objectives feedback
loop, (ii) the target system adaptation feedback loop, and (iii) the dynamic monitoring feed-
back loop. In our work that a similar analysis can be done, still at design time, to identify the
resources and correlated contexts that, while available, guarantee the satisfaction of the proba-
bilistic requirements.

3.3 Uncertainty definition for self-adaptive systems

Esfahani and Malek developed a study about uncertainty in self-adaptive systems field [9] claim-
ing that, although uncertainty is sometimes taken as a second-order concept, it is not possible
to remove uncertainty of a system by focusing exclusively on its normal behavior. The work
contributes with a classification and detailed description of several software aspects that can be
considered as sources of uncertainty such as uncertainty in the objectives, uncertainty due to
model drift, uncertainty in contexts, etc. Mahdavi-Hezavehi et al. [28] propose a classification
framework for architecture-based approaches tackling uncertainty in self-adaptive systems with
multiple quality requirements. The work helps us to understand the current state of research

16

regarding uncertainty. Another work that classifies and describes uncertainties in the context of
adaptive systems was proposed by Ramirez et al. [8].

Whittle et al. claim that a more rigorous treatment of requirements explicitly relating to
self-adaptivity is needed, more specifically the uncertainty-related aspects [29]. They present
RELAX, a requirements language to explicit the presence of uncertainties in self-adaptive sys-
tems. Cheng et al. [30] take a step further and combine the RELAX specification with goal
modeling to develop requirements of an adaptive system. Additionally, they use a threat model-
ing variation to explore environmental uncertainty factors. The aforementioned researches give
us some specific targets when the subject is uncertainty mitigation. Our work corroborates the
fact that the use of data mining is a sound alternative to guide analysts to anticipate such uncer-
tainties, avoiding possible time and space limitation, inherent of the combinatorial exploration
in complex systems.

3.4 Dependability in context-based systems

From the dependability perspective, the closest in nature to our work combines contextual re-
quirements and goal models: Mendonça et al. [31] propose a method to capture contextual
failures and use that to enrich the representation of dependability requirements. The approach
mitigates the assumption about the certainty of success of a task to reach its goal by adding
contextual information about the quality of alternative tasks. However, due to the combinatorial
if-then-else rules required from expert domain knowledge for fine grained individual analysis of
contexts, the approach requires too much effort from the domain expert to guarantee an accurate
context analysis. Differently from our work, the following researches do not consider the con-
text elicitation as a means to reach dependability, however they help us in delineating the scope
of our work, considering the research gaps in dependability assessment for adaptive systems.
Grassi et.al [32] present an approach that support the assessment of performance and depend-
ability attributes through a model transformation chain that maps a “design oriented” model to
an “analysis oriented” model. Mahdavi-Hezavehi et al. [33] proposed a systematic literature re-
view concerning to architecture-based methods for handling multiple quality attributes (QAs) in
SAS. The authors say that performance and cost are the most frequently addressed set of QAs.
Lemos et al. [34] reunited some researches about the challenges in the provision of assurances
for SAS, the majority of the them are caused by the high degree of uncertainty introduced by
runtime changes.

17

3.5 Tackling uncertainty at design time

A few works propose to deal with uncertainty still at design time. Among them, Horkoff et al.

present an iterative methodology that guides the resolution of uncertainties necessary to achieve
desired levels of goal satisfaction, assuming the model as the source of such uncertainty [10].
Hassan et al. created a method that is also worth mentioning [35]. Their method consists in al-
lowing designers to make explicit links between the possible emergence of undesired surprises,
risks and design trade-offs. The objective is to provide designers of self-adaptive systems with
a basis for multi-dimensional what-if analysis to revise and improve the understanding of the
environment and its effect on non-functional requirements and thereafter decision-making. Our
major contribution in comparison to other design time approaches is the use of data mining, still
at design time, to analyze unexplored relations between resources that can be possible sources
of new contexts, verifying the impact of such contexts in the satisfaction of functional or non-
functional requirements with a view to dependability attributes.

3.6 Tackling uncertainty with AI methods

Many state-of-the-art contributions which involves artificial intelligence for dealing with un-
certainties at runtime are present in the literature. To tackle this unpredictability at execution
time, Knauss et al. proposed ACon [36]. The framework is based on machine learning and
data mining techniques and it is meant to provide an adaptation of contextual requirements at
runtime. The framework aids a self-adaptive system to adjust itself to overcome unexpected
context variability and infrastructure failures through a feedback-loop.

Esfahani et al. propose a similar approach [37], it uses machine learning to make a feature-
oriented adaptation, focusing on features instead of contextual requirements. The authors state
that domain expert’s knowledge, represented in feature-models, adds structure to on-line learn-
ing, which in turn improves the accuracy and efficiency of adaptation decisions. They deal with
uncertainty through control and runtime adaptation.

Welsh et al. [38] merges the uncertainty mapping with runtime resolution for the realization
of requirements-aware systems through REAssuRE. The authors claim that the combination
of requirements awareness with requirements monitoring and self adaptive capabilities should
help optimize goal satisfaction even in the presence of changing run-time context. They in-
clude claims to support the reasoning over uncertainty. REAssuRE is able to reason about how
design-time assumptions affect goal realization strategies, as evidence for or against design-time
assumptions is gathered by claim monitoring.

Sharifloo et al. [39] argue that design-time uncertainty on how the context might change
may mean that a DSPL lacks adaptation rules or configurations to properly reconfigure itself at

18

runtime. To cope with this limitation, they propose a feedback approach through an adaptive
system model that combines learning of adaptation rules with evolution of the DSPL configu-
ration space.

Our method leverage the use of data mining, prototyping and contextual goal modeling to
assist the elicitation of contexts related to dependability attributes, dealing with possible sources
of uncertainty at early stages of the software development lifecycle, adopting a preventive-like
behavior.

3.7 Final Considerations About the Related work

The related work presented in this chapter corroborate with the statement that an early iden-
tification of possible context conditions and the quantification of their impact on the system’s
behavior is critical to support the development of a dependable software. However, the lack
of information at design time makes the identification of such conditions a great challenge for
the software engineering of self-adaptive systems. In the scope of our work, such a challenge
is tightly related to the concept of uncertainty, that begins at the elicitation stage and extends
itself to runtime through the monitoring of the current context. Throughout this chapter, we
have listed some related work that propose alternatives to the problem described above, regard-
ing the challenges of context elicitation, dependability, specification, and adaptation of SAS to
contextual changes, as well as uncertainty modeling and management in self-adaptive systems.
Table 3.1 summarizes the most important properties and characteristics of each related work
and how they differ from each other and from our method. In the next chapter we will describe
our running example w.r.t. its components, features, and objectives.

19

Work by: Appl.
Stage

Goal-
oriented

Dependability-
oriented

Context
elicitation

Techniques
applied

Hong et al., 2005 [6] Design No No No Reasoning

Cheng et al., 2009 [30] Design Yes No No
Goal modeling, RELAX,
threat modeling variation

Grassi et.al, 2009 [32] Design No Yes No
Model transformation,
reasoning

Villegas et al., 2010 [27] Design No No No Reasoning, feedback loops
Welsh et al., 2011 [38] Runtime Yes No No Claims
Esfahani et al., 2013 [37] Runtime Yes No No Machine learning
Horkoff et al., 2014 [10] Design Yes No No Reasoning

Knauss et al., 2014 [5] Design Yes No Yes
Combined requirements
elicitation techniques

Mendonça et al., 2014 [31] Design Yes Yes Yes Goal modeling, reasoning

Hassan et al., 2015 [35] Design No No No
Multi-dimensional
what-if analysis

Knauss et al., 2016 [36] Runtime No No Yes
Machine learning,
data mining

Gómez et al., 2017 [26] Runtime No No Yes
Data mining, path analysis,
topic modeling, feedback

Present work Design Yes Yes Yes Data mining,
goal modeling

Table 3.1: Comparative table of the related work and their properties

20

Chapter 4

Running Example: Body Sensor Network

Without loss of generality, we illustrate the concepts of our approach throughout this work using
the example of the Body Sensor Network (BSN). Figure 4.1 shows how a BSN is organized.
Wireless sensors are connected to a person. There may be a central node (Control Sensor)
responsible for preprocessing the data collected, filtering redundancy, or translating communi-
cation protocols. The other sensors are the following: Accelerometer (Acc.), ECG (for heart
rate and electrocardiogram curve), Oximeter (for blood oxidation and blood oxidation curve,
called SPO2), and Temperature (Temp.).

Figure 4.1: Body Sensor Network visual representation [2].

The main objective of a BSN system is to continuously monitor the vital signs of an indi-
vidual adjusting its configuration according to the patient’s health risk status. The individual’s
health risk can be classified into low risk, normal, or high risk category. The patient’s risk
status maps to a quality goal of BSN. Each health risk requires a minimum quality level to
be considered trustworthy, while each different configuration of BSN provides a different level
of reliability to the operation. Figure 4.2 illustrates the feature model that represents our case
study. It takes into consideration a configuration in which all resources, that is, sensors and their
information type are present. However, one or more resources might be unavailable at certain
moments depending on the reliability of each device.

Patients with different profiles should be able to wear the system, and, over time, these pro-
files or even the subsidiary medical knowledge may evolve. Hence the quality goals needs to
adjust according to each profile. The ranges of the sensors involved in the operationalization of

21

Figure 4.2: Body Sensor Network Feature Model [2].

the patient status was defined by a health expert and declaratively expressed in the aforemen-
tioned work [2]. Table 4.1 shows how the sensors’ values relate to the patient’s health risk. If
at least one of the resources’ measurements is at high range, the patient health status is defined
as high risk. If the previous scenario does not happen, and if at least one of the resources’ mea-
surements is at normal range, the patient health status is defined as normal risk. On the other
hand, if none of the aforementioned scenarios is active, the patient health status is defined as
low risk.

Sensor Information Sensor Information Ranges
Oxygenation: 100 > low > 94 > normal > 90 > high > 0
Pulse Rate: high > 120 > low > 80 > high > 0
Temperature: 50 > high > 38 > normal > 37 > low > 35 > normal > 30 > high > 0
Fall: if (Fall = ‘yes’) −→ Patient’s status = high risk

Table 4.1: Context operationalization for patient’s status

The CGM presented in Figure 4.3 depicts the goals to be achieved by the Body Sensor Net-
work, which is meant to detect emergencies on a patient based on its monitored data following
works [2, 40]. The root goal is “G1: Detect Emergency”, which is performed by the actor Body
Sensor Network. The root goal is divided into two subgoals: “G2: Patient status is monitored”
and “G3: Sampling rate is adjusted”. G2 is refined to “G4: Vital signs are processed”, and
further, G4 is divided into other two subgoals: “G5: Vital signs are monitored” and “G6: vital
signs are analysed”. Such goals are then further decomposed, within the boundary of the BSN
actor, to finally reach executable tasks. The only context present in the first version of the CGM
is the aforementioned “Patient Status”, represented by the IC (Initial Context) label and mapped
to subtree of goal G3. The IC may assume three possible values, low, normal and high risk.
The execution of the task T3 will depend on the current context value, that is, the higher the
patient’s risk, the lower the sampling interval must be.

22

Figure 4.3: CGM for the BSN system

Considering the relationship between context and requirements, context can influence deci-
sions about different aspects of the system [12]. Using the BSN case study to introduce these
concepts, we have:

• Requirements to meet: if the context “patient is in a high risk state” is present, the
processing unit has to speed up the sampling rate of the patient’s vital signs, increasing
the frequency of data gathering to guarantee the required satisfaction level. On the other
hand, if the context “patient is in a low risk state” applies, the processing unit can slow
down the sampling rate and even deactivate some resources to save battery.

• Ways to meet requirements: The BSN has several variants to identify the current patient
health status, basically, it can be identified by any combination of the vital signs: blood
oxygenation, pulse rate, temperature and fall. Each variant requires a set of valid contexts,
such as “sensor SPO2 is available” and “sensor ECG is deactivated”.

• Quality of each way: As we will notice on next chapters, different configurations of the
BSN contexts (e.g. set of available sensors) provide different reliability levels. Knowing
that, it is reasonable for a high risk state patient to require a configuration with a higher re-
liability level, while a patient in a low state risk can be more flexible in terms of observed
contexts.

23

4.1 BSN Outline

Throughout this chapter he have described BSN, a medical device composed by four distinct
sensors (accelerometer, electrocardiogram sensor, oximeter, and temperature sensor) whose ob-
jective is continuously monitor the vital signs of an individual adjusting its configuration ac-
cording to the patient’s health risk status, that can be classified into low risk, normal, or high

risk category. The patient status is defined after the analysis of a set of conditions (oxygena-
tion, pulse rate, temperature, fall detection), taking as base a operationalization list defined by
a domain expert such as the one presented in Table 4.1. The structure and behavior of the BSN
are depicted in Figure 4.3, which shows six goals, twenty tasks and a single context condition
that triggers the system’s adaptation. We have seen that such context can influence decisions
about different aspects of the system, especially the (i) requirements to meet, (ii) ways to meet
requirements, and (iii) quality of such ways. In the next chapter we will describe the approach
itself, detailing how the contexts are categorized, and how the data mining process is integrated
with the CGM to find points of interests that can potentially turn into new contexts.

24

Chapter 5

A Learning Process to Unveil Contexts for
Dependability at Design Time

Our method aims at assisting the development process of dependable self-adaptive systems, by
reducing as much as possible, at design time, the effects of unknown context variability. Figure
5.1 depicts the process. Based on the CGM structure in addition to the operationalization values
of sensed information, we propose an analysis process using an adequate subset of data mining
algorithms to extract a list of relevant contexts and their related variables, tasks and/or goals.
As object of the mining process at design time, we create an execution dataset from a domain
based simulation. Such operational information can be provided by: (i) external sources, e.g.
execution logs, test cases, data sheets of similar systems; (ii) internal sources, e.g. data gener-
ated by a Monte Carlo simulation; or (iii) prototype version. Knowing the contexts and their
operationalization, we reapply the data mining methods to provide a quantitative impact of the
contexts interaction into the goal achievability, given some contextual constraints. A context
analysis is then made in order to update the CGM by inserting the contextual constraints into
their respective nodes, i.e., the tasks that have their operation modified by the specific context
variability.

5.1 Contextual Requirements in Goal Modeling

In our work, we consider the system behavior is fulfilled by means of the goals tree structure of
the CGM. Each goal may be further refined by child subgoals, which are ultimately realized by
leaf-tasks. As such, each leaf-task of the CGM dynamically realizes its following parent goals
following a finite state machine previously defined in [3]. The concept of context dependency
and how it is related to the system resources and their variables is encompassed by our approach,
and we propose an extension of the aforementioned state machine for such purpose.

25

Scope
Definition

Data Analysis

CGM System’s Valid
Data (d1...d2)

Input Proposal Stage OutcomeArtifact

Discovered
Contexts
(c1...cn)

Update

Contexts
Analysis

Data Mining

Data Mining

Correlated Variables
(v1, v2), …, (v1,…,vm)

Operationalizations
(op1, op2, op3, …,opn)

Correlated Contexts
(c1, c2), …, (cx,…,cy)

Starting Point

Update

Human-in-the-loop

Figure 5.1: Process overview of our method

While some contexts in the CGM are directly related to the fulfilment of system goals, other
contexts focus on meeting quality constraints [41]. We have adapted a finite state machine from
GODA [3], a goal-oriented dependability analysis framework, to represent the operationaliza-
tion of a CGM’s task in face of different kinds of contexts, described in Figure 5.2. Our proposal
introduces the path highlighted in red of the state machine, while the other paths had been al-
ready covered in [3]. From Figure 5.2 it can be noticed that, if there is a context that should
be considered, its knowledge anticipation is paramount to the fulfilment of a task and therefore
to its parent goals. An unsatisfied context hinders not only the execution of a task, but may
also have a cascading error effect, compromising the fulfilment of the overall systems goal. In
our work, we analyze not only the context implication from the local perspective of a task, but
also from the global perspective of the tasks and their interactions towards the system’s goal
fulfilment.

Initial

Success

Skipped

Running

Failure

Yes

Fail

Succeed

Context
Conditions
Satisfied?

No

Context
Failure

Fail

Skip

Run

Context
Dependent?

Yes

No

Run

Figure 5.2: Overall behavior of CGM leaf-tasks (adapted from Mendonça et al. [3])

Initially, the system may try to execute or simply skip to the next task, changing its state
to Skipped, following the task’s behavior rule. If the system attempts to execute a task, it is
verified whether the task operation depends on any kind of context configuration. If the task is

26

independent of context, the system proceeds to Running state. Otherwise, we check whether the
context is satisfied or not in order to proceed to Running or Context Failure. Even if the system
satisfies the context constraints and proceeds to a running state, the system may still have a
minor probability of failure (Failure state). This chance is related to cyber-physical limitations
and operational uncertainty, for instance, a routing device failing to send a message due to a
layer of dust in its antenna. However, if the system does not present any operational issue, the
task executes successfully.

If the task is not skipped, and fails to satisfy its context conditions we say that a context

failure happened. Following Avizienis et al. domain failure classification [7], context failures
may characterize either a time or a data or both domains. A time domain failure happens in
our approach when, for example, a resource is unavailable at the time it is requested. A data
domain failure happens when the requested data is out of the specified range of operation, char-
acterizing, for example, a data integrity issue. We consider that safety may be also another
dependability attribute related to both domain failure types for the context since a failure in
the context characterizes a failure in the environment [7], which could render catastrophic con-
sequences. Table 5.1 summarizes the levels of domain failure and their related dependability
attributes.

Domain Attribute Consequence

Time
Availability
Safety

If all sensors are not available then the
patient’s data cannot be collected

Data
Integrity
Safety

If all monitored data are out of range
then the patient status cannot be defined

Table 5.1: Domain failure classification and related dependability attributes

A context may assume one out of multiple possible values at a given moment and the en-
vironmental values that define each context may also vary through time. We call this context

variability. Based on the context failure classification adopted, our method is able to deal with
context variability by discovering new patterns and adjusting the valid ranges required for the
operationalization of the contexts along time. On the other hand, our method also acknowledges
the concept of context information unavailability, that indicates a situation in which the system
is incapable of identifying the current context value due to the lack of information provided
by the monitoring resources. Hence, context information that falls into this case are labeled as
unavailable. The distinction between a context variability situation and a context information
unavailability situation is made by the data analyst, with the pattern occurrence rate taken as
indicative parameter.

In our method, the context conditions are divided into different categories following the con-
text grammar defined in Listing 5.1. The types of context conditions depend on the resources
involved in their operationalization and how they interact to do so. The conditions can be clas-

27

sified into: Crange, Cfuzzy, and Cboolean classes. The operation submitted to a Crange condition
expects a numeric value (integer or float) between the range specified in the task or goal to be
considered apt to proceed to the running state (e.g. Oxygenation = {oxyg ∈ < | 0 ≤ oxyg ≤
100}). There is also a possibility of an upper or lower bound range (e.g. Battery level ≥ 15). A
task or goal under a Cfuzzy condition expects a specific enumeration that represents the context
in a given moment (e.g. Patient State = “Low Risk” or “Normal Risk” or “High Risk”). Details
of the fuzzy context approach can be found in [31]. Finally, the Cboolean class is a context con-
dition in which a variable can assume boolean values only (e.g. USB is available = “TRUE” or
“FALSE”). Listing 5.1 specifies the context grammar addressing such context types adopted in
our method.

Listing 5.1: Context grammar and syntax rules

<Context> ::= <Id> | <Expr>
<Expr> ::= <Expr> <op_v> <Value> | <Expr> <op_r> <Range> | <Expr> <op_e> <Expr>

|’(’ Expr ’)’
<op_r> ::= ’<’ | ’<=’ | ’>’ | ’>=’
<op_v> ::= ’=’ | ’!=’
<op_e> ::= ’&’ | ’|’
<Value> ::= <Range> | <Fuzzy> | <Bool>
<Range> ::= <Int> | <Float>
<Fuzzy> ::= <Var>
<Bool> ::= (’TRUE’|’FALSE’)
<Var> ::= (’a’..’z’|’A’..’Z’)
<Int> ::= <Digit>|<Int>
<Float> ::= <Int>’.’<Int>
<Id> ::= <Var><Int> | <‘!’><Var><Int>
<Digit> ::= ‘0’..‘9’

In order to adjust the domain information to our application, we categorize the data into
a resources type table describing the variables present in the CGM in accordance with our
context grammar, described in Listing 5.1. Table 5.2 presents an excerpt of a type table and
some illustrative variables applicable to the BSN domain. The column Variable represents the
measurable aspects of a given resource that are involved somehow in the accomplishment of
tasks and goals. The leaf nodes of the BSN’s feature model (Figure 4.2) represent well some
of those variables. The Type column in Table 5.2 refers to the computational abstraction and
classification of an environmental resource. For instance, the availability of some devices (e.g.
SPO2, ECG, TEMP, ACC, WiFi) are represented as a boolean data type. Meanwhile, to describe
the individual’s vital signs (e.g. Temperature, Pulse Rate, Oxygenation), a valid numerical range
is defined following context operationalization of the BSN previously presented in Table 4.1.

28

There is also the fuzzy data type, which may represent, for instance, the strength of the WiFi
signal or the patient health status in a higher level of abstraction.

Variable Type Value Description
SPO2 Boolean TRUE SPO2 sensor is available
Temperature Range 0≤T≤50 Patient’s temperature is within the valid range
Wi-Fi Signal Fuzzy Strong Wi-Fi signal level is strong
Patient Status Fuzzy Low Risk Individual has a low health risk

Table 5.2: Example of a resource table and description of its variables

Independently of the context class, a failure of a context can be represented by the character
‘!’, placed before the corresponding id. However, for each class there is a specific interpreta-
tion. For the boolean class, the reasoning is straightforward, i.e., Cboolean means TRUE, while
!Cboolean means FALSE. The interpretation works the same way, for instance, Cboolean might
indicate the availability of a resource, while !Cboolean indicates its unavailability. The process
is analogue for the Crange class. Even though the context constraint consists in the expectation
of a numerical value belonging or not to an specific range (e.g. 0 ≤ oxyg ≤ 100), the practical
implication converges to a binary decision, i.e., Crange represents the range constraint being
respected (e.g. oxyg = 98), while !Crange represents the violation of such constraint (e.g. oxyg

= 103). Lastly, a Cfuzzy class can assume one out of multiple values (e.g. Bluetooth signal

strength = “weak” or “normal” or “strong”). The failure of such context, i.e. !Cfuzzy, represents
the absence of one of the predefined context possibilities, implying the unavailability of the
resource or variable analyzed.

5.2 Data Mining Process

In a nutshell, having the system’s CGM as input, the core of our approach relies on the data
mining, discovery and analysis of new contexts that can lead the system to inconsistent states.
In this section we provide a coarse grained stepwise perspective of our context mining process
through Algorithm 1.

Starting the algorithm, it receives a CGM as input parameter. In addition, the resources
syntax table, such as the illustrated Table 5.2, is also taken as input parameter, and contains a list
of the system’s resources with the respective variables name, data type and the possible value. In
case of the actual runtime data or the data generated by the prototype is not being used, in line 3,
the dataset is created, object in which will be executed the data mining process. Via the Monte
Carlo method, the first step of the process is to generate the dataset (simdata) from a probability
distribution of choice based on domain information1. For BSN, the Gaussian distribution was

1In case runtime data or data coming from similar systems is available, this step can be skipped.

29

Algorithm 1 ContextsMining
Input: ResourcesSyntaxTable resources_table, CGM cgm
Output: ContextList, ProbabilityReport

1: CorrelatedVariables varlist← NULL
2: OperationalizationRules operlist← NULL
3: Dataset simdata← resources_ranges.monteCarlo()
4: for all n in cgm do
5: varlist.push(simdata.associationRule(n))
6: simdata← simdata.filter(varlist)
7: operlist.push(simdata.JRip(n), n.id)
8: end for
9: ContextList contexts←processRules(operlist)

10: for all records in simdata do
11: records.replace(contexts)
12: end for
13: for all n in cgm do
14: if contexts.getContextId(n.id) != NULL then
15: cgm← cgm.insert(contexts.getContextId(n.id))
16: else
17: return
18: end if
19: ContextList context_relations← simdata.classify()
20: ProbabilityReport probability_list← simdata.getQuantitativeAnalysis(context_relations)
21: end for

adopted to represent most of the variables2. In line 4, we begin the CGM tree traversal to visit
each CGM node (goal or task) and verify via data mining how the CGM nodes and its variables
interact to successfully execute the parent tasks/goals, that is, which variable configurations of
the lower tasks lead to system’s goals fulfilment and which do not. We run through the CGM
using a post-order depth-first search (DFS). In line 5 we apply Apriori [21] as an association rule
method to detect correlated resources, which are updated into varlist. The adoption of Apriori in
our approach is paramount to optimize the search space of the possible resources combinations
that could be part of a new arising context (line 6). The Apriori helps to isolate the only variables
involved in a particular routine. Thus, to discover contexts in this particular area, there is no
need to carry unrelated variables to the next mining routine, bringing unnecessary complexity
to the process. After defining the search space through the previous method, we apply a ruler
method to quantify those correlations and generate the operationalization list (operlist). We
use JRip algorithm [23] for such functionality (line 7). JRip is particularly useful to analyze
resources represented by numerical values, like sensor measurements. Additionally, the current

2It should not be a threat to validity since there are plenty of well known probabilistic distributions available in
the literature [42] suitable to create different arranges of datasets, each one semantically related to the respective
domain.

30

node’s id is also aggregated to the operlist. Through the aforementioned process, one will
assist the CGM’s update by simplifying the identification of the nodes in which the contexts
conditions shall be inserted.

In line 9 we create a context list which corresponds to a contextual syntax table formed by
a context id associated to the corresponding rules in operlist. Then, we update in line 11 the
simulated dataset by replacing any occurrence of the rule by its corresponding context id present
in contexts. This routine significantly aids visualizing the results on further steps.

Approaching the end, in lines 13 and 14, the CGM starts to be traversed again, verifying
if the visited node has any associated context. If the node has a related context, the CGM
is updated in line 15 and the contexts ids are inserted into their corresponding node. This
part belongs to the semantic association step of the data mining process and relies on human
interaction to link the discovered contexts with the corresponding goals through the CGM.

The next step is then to discover how different context combinations influence the success
or failure of a CGM task or goal. This routine can be executed in parallel with the previous
one (line 15), since the input artifact here is the dataset itself, modified only in line 11. In
line 19, a classifier routine runs through either J48 [1] or JRip for such purpose. This step,
combined with the one in line 20, provides a quantitative impact of the contexts interaction into
the goal achievability, given the contextual constraints. This knowledge is useful to develop
better adaptation plans, focusing on the system’s most common and problematic operations.

Figure 5.3 exemplifies how the algorithm works for the transformation of the runtime or sim-
ulated data into useful information to define contexts with a model having the task T1.3 realized
by tasks T1.31 and T1.32 following Figure 4.3. In the first step of illustrating the dynamics of
the algorithm process, represented by (1) in Figure 5.3, is to apply the Association Rule method
over the dataset in stage (a) of Figure 5.3 in order to discover the correlation between variables.
It would be possible to verify, as described in (b), that variables like Disk_Availability, related
to the leaf task T1.31, and Disk_Space, related to the task T1.32, work together to successfully
achieve the parent task T1.3. The application of the Apriori method (1) enhances the efficiency
of the JRip procedure (2), filtering only the attributes that are somehow related to the target
node. Noticing the clear relation between the two variables and task T1.3, the three variables
(T1.3, Disk_Availability and Disk_Space) are isolated and the ruler method JRip is applied over
the specific attributes on step (2). The returned rules detail how these two variables relate with
each other and how they cooperate to complete task T1.3. A possible rule generated by JRip
could be translated to: “every time the storage device is unavailable, the disk space is unknown”
or “every time the disk space is below 100MB, the task T1.3 fails”. The rules and relations that
imply in tasks’ or goals’ failures are counted during the process, generating a probability report
as presented in artifact (c), pointing out to the likelihood of an event to occur. After the CGM
traversal, the data analyst has enough material to study and come up with the most sensitive

31

Raw
Dataset

1. Apriori
Target node: T1.3

1. Disk_Availability = Unavailable 4821 ⇒ T1.3 = Failure 4821;
2. Disk_Availability = Available 95179 ⇒ T1.3 = Failure 121;
3. Disk_Availability = Available 95179 ⇒ T1.3 = Success 95058;
4. Disk_Space ⇒ T1.3

2. JRip
Target node: T1.3

1. (Disk_Availability = Unavailable) ⇒ T1.3 = Failure (100%);
2. (Disk_Availability = Available) ⇒ T1.3 = Success (99,87%);
3. (Disk_Space < 0.1) ⇒ T1.3 = Failure (100%);
4. (Disk_Space >= 0.1) ⇒ T1.3 = Success (100%)

A: Disk is available
(Disk_Availability = Available);
Type: Boolean

B: There is storage space available
(0.1 <= Disk_Space <= 4.0).
Type: Range

4. Replace resource values by the corresponding context id [A | !A | B | !B]

3. Analysis

Contextual
Dataset

5. J48
Target node: T1.3

a) b)

c)
d)

e) f)

Success (95058)

Failure (4821)

Failure (121)

Disk_Space

Disk_Availability

!B

A!A

B

Figure 5.3: Data mining process for the persistence module described in Figure 5.4

variables and possible bottlenecks of the system. After the analysis in (3), the contextual syntax
table (d) is produced to express the relation types of the newly discovered contexts. To illustrate,
a record of a syntax table could be expressed as: B (context id); Boolean (context type); “There
is storage space available” (context description); If Disk_Space ≥ 100MB and Disk_Space ≤
4GB then B is true, else B is false (contextual operationalization rules). The contexts ids are
placed by the analyst in the corresponding refinements of the CGM. Meanwhile, in step (4) the
rules that represent a given context in the dataset are also replaced by the respective context id.
For example, in every record of the simulated dataset where the disk has no storage available,
i.e., the Disk_Space value is below the defined threshold, the corresponding resource value is
replaced by the tag ‘!B’. The same happens to every other context present in the context list.
At last, having a dataset only in terms of contexts ids (e), it is possible to advance to step (5)
and apply J48 to create a decision tree and discover how the possible context variants behave
in terms of different aspects of the system in step (5) of Figure 5.3. The decision tree in (f)
indicates how the variables Disk_Space and Disk_Availability relates to the contexts ‘A’ and
‘B’ to fulfil the target node T1.3. Analyzing the decision tree (f), one can notice a red leaf box
represented by Failure (4821), which signalizes the fail rate of T1.3 due to unavailability of the

32

storage device, including almost 4.8% of the total amount. The second red box, Failure (121),
indicates that the task T1.3 fails due to lack of storage space in approximately 0.12% of the ex-
ecutions. On the other hand, the green box labeled as Success (95058) shows the success rate of
task T1.3 when both contexts are satisfied, representing approximately 95.06% of the records.
Figure 5.4, illustrates the refinement of task T1.3 (an excerpt of Figure 4.3), which persists the
data of the BSN sensors information either on a database or on a file system storage.

T1.3: Persist
data to database

T1.31: Fetch
database

T1.32: Store
sensors

measurements

‘A’
satisfied?

Context
Failure

Running
T1.31

Success

FailureFail

Succeed

No

Yes

A

‘B’
satisfied?

Context
Failure

Running
T1.32

Success

FailureFail

Succeed

No

Yes

B

Figure 5.4: BSN’s CGM excerpt with associated variables (Adapted from Figure 4.3)

5.3 Proposal Overview

We have started this chapter explaining the general structure of the feedback loop that depicts
our approach. The CGM structure combined with the operationalization values of sensed in-
formation are the basis of the analysis process. We use an adequate subset of data mining
algorithms to extract a list of relevant contexts and their related variables, tasks and/or goals.
We have proposed an extension for the finite state machine from GODA, in a way that each task
is subject to a context verification before its execution. The violation of a context constraint can
be considered either a time domain failure, or a data domain failure. In the scope of our work,
the contexts were categorized into C_range, C_fuzzy, and C_boolean. Later on the chapter
we have presented the algorithm of context mining, and offered a brief example of the method
applicability. In the next chapter we evaluate our method in terms of reliability and scalability
of the data mining process, and w.r.t. the method’s contribution itself.

33

Chapter 6

Evaluation

In this chapter we evaluate our approach by means of an adaptation of the Goal-Question-
Metric (GQM) methodology [43]. The adaptation of the GQM plan consists in the addition of
a new column containing some general results. The questions that are relevant to evaluate our
approach and its results are divided into two major parts: one regarding the algorithms used in
the data mining process itself and the other regarding the efficacy of the method as a whole.
The research questions are detailed in Table 6.1.

Goal 1: Data mining process
Question Metric Results

1.1 How reliable are the answers
provided?

Precision and
Recall Rates

Precision: 0.969
Recall: 0.968

1.2 How does the data mining scale
over the amount of records and
simulated resources?

Execution time Upper bound: 10
seconds (100,000
records)

Goal 2: Method’s contribution
Question Metric Results

2.1 Can our approach substantially
identify new contexts related to
dependability for the BSN?

Number of new
contexts.

17 new contexts

2.2 What is the impact of the newly
identified contexts on the BSN goals’
satisfaction ?

% reliability
satisfaction for
levels of patient
health risks.

Low Risk 100%;
Normal Risk 27%;
High Risk 16%.

Table 6.1: GQM plan

6.1 Experimental Setup

We evaluate our approach on the BSN case study, where the Patient Status is taken as the initial
context and act as a trigger to activate the adaptation plans. Our approach intends to derive new

34

contexts from the combination of this specific context and the system goals. The patient status
can be defined by processing the data gathered from sensors in different configurations.

For the operationalization of the patient status, there are three possible risk states: low, nor-

mal or high. The objective of the BSN is to adjust the sampling rate (data gathering of patient’s
measurements) based on the patient’s status and its required reliability, according to [44, 2].
The initial adaptation rules are defined as follows: if the patient presents a high risk status, his
vital signs shall be checked every minute in order to ensure his safety. If the patient status is
processed as normal risk, the sensor data collecting rate must be five minutes. At last, if the
patient is in a low risk state, a verification of his vital signs every fifteen minutes is enough to
guarantee his safety.

To demonstrate the applicability of our approach, we developed the BSN prototype, after
building its CGM previously presented in Figure 4.3, having only the patient status as its initial
context. The prototype was developed in Python and the experiments were processed in an Intel
Core i7 5500U, 2.4GHz, 6GB DDR3. The prototype assisted in simulating the data sent by the
sensing devices to the processing unit. The processing unit works as an autonomous controller,
processing the simulated measurements defining a health status according to the policies. The
adaptation plans adopted after the processing step are sent to the effectors, that manages the
user’s vital signs sampling rate according to his status. Table 6.2 shows the variables simulated
by the BSN prototype and the respective data type.

Simulated Resource Domain Data Type
Physical Availability Available / Unavailable
Logical Availability Available / UnavailableSPO2

Oxygenation integer: gauss(97,3)
Physical Availability Available / Unavailable
Logical Availability Available / UnavailableECG

Pulse Rate integer: gauss(100,10)
Physical Availability Available / Unavailable
Logical Availability Available / UnavailableTEMP

Temperature integer: gauss(36,0.8)
Physical Availability Available / Unavailable
Logical Availability Available / UnavailableACC

Fall Yes / No
Bluetooth Signal Level Strong / Average / Weak / Unavailable

Wi-Fi Signal Level Strong / Average / Weak / Unavailable
USB Physical Availability Available / Unavailable

Physical Availability Available / Unavailable
Storage Device

Storage Space float:[0.00 - 4.00]
Battery Charge Level Integer:[0 - 100]

Patient Status Health Risk Low Risk / Normal Risk / High Risk / Unmapped

Table 6.2: Example of the resources on BSN simulation

35

After setting the prototype resources and the operation logic, we applied the Monte Carlo
Method. The operation range of each resource is analyzed and taken as parameter to support its
simulation. Then, following the adequate distribution for each variable, the database that will
be used on data analysis stage is created. For instance, one could use the Monte Carlo method
allied with the Gaussian distribution to simulate the individual’s heart beat data, mimicking a
working pulse sensor over time. The variable value associated to each resource arise from a sim-
ulation of 100,000 records. A record is a line of the dataset, that contains the resources values
in a given moment, like a snapshot of the system status at the time. In this case, the necessary
elements to identify the patient’s health status. Each record is composed by a set of different
vital signs measurements of a fictitious person based on a well known patient guide [45], fol-
lowing the work reported in [44] and valid sets of resources configurations available online1.
The undesired behaviors of the simulated sensors were classified in two groups: unavailability
(unexpected interruption of the component’s operation) and outlier detection (monitored data
out of expected range). This classification helps the mining process to identify how the contexts
influence the occurrences of undesired behaviors. For the purpose of replicating our evaluation,
all the artifacts of this experiment are available at a GitHub repository2.

6.2 Goal 1: Data mining process

Question 1.1: How reliable are the answers provided? Weka [24] was the selected tool to
assist the analysis of our case study. Before starting a data mining procedure we must firstly ver-
ify whether the techniques applied are adequate and the data preprocessing was done correctly
or not. We focus on three pillars: (i) accuracy, that represents the prediction model efficiency
in correlating an outcome with the attributes in the provided data; (ii) reliability, that represents
how well the prediction model will behave in face of different datasets; and (iii) usefulness,
that tells the applicability of a given method in extracting useful information from a dataset.
Summarizing, the data mining stage begins with the validation of both, the generated data and
the data mining techniques that we should apply. To measure the accuracy of the data mining
process, we take into consideration metrics as precision and recall. As means to quantify the
reliability of the answers provided we executed the prototype ten times, generating ten different
datasets to be analyzed. In order to measure usefulness, we applied five known classification
methods (J48, JRip, One-R, Decision Table and Bayes Net) for each dataset.

We chose the operationalization of Patient State context as the prediction object for the
classifying process. Each dataset has one hundred thousand records. For this test, the chosen
resources to represent the record was: <Oxygenation, Pulse Rate, Temperature, Position, Fall,

1https://code.google.com/p/spl-model-checking/
2https://github.com/ArthurJRF/UnB-Dissertation-Artifacts.git

36

Patient State>. The training and testing phases were based on a ten fold Cross-Validation, a
technique to evaluate predictive models by partitioning the original sample into a training set to
train the model, and a test set to evaluate it. As we can see by the results demonstrated in Table
6.3, all tested methods performed well in terms of precision and recall. Although the adopted al-
gorithms (J48 and JRip) performed very similarly in terms of precision and recall in comparison
with the Decision Table and Bayes Net, the J48 and JRip provide us fundamental tools for our
method, i.e. the decision tree and the operationalization rules. Our false-positive(fp) and false-
negative(fn) results are described in terms of precision (tp/tp+fp) and recall (tp/tp+fn). The
minimum support and minimum confidence level defined for Apriori algorithm was 0.55 and
0.9 respectively. Picking the appropriate values for support and confidence is a tricky job, given
that it depends on the domain knowledge. Since we are dealing with a medical application, we
empirically established a balance of support and confidence value in order to get an adequate
set of new rules. For instance, if the support and confidence values are too high, very few or no
rules will be returned by the association rule method, and one might lose useful insights. On
the other hand, if the values are low, the algorithm will probably return many rules, however it
is likely that the majority of them will not aggregate any helpful information.

J48 JRip One-R Decision Table Bayes Net

Precision Mean 0.969 0.969 0.850 0.969 0.969
StdDev 5.6765E-04 5.1640E-04 1.595E-03 5.6765E-04 5.1640E-04

Recall Mean 0.968 0.968 0.828 0.968 0.968
StdDev 5.6765E-04 6.7495E-04 1.912E-03 5.6765E-04 6.7495E-04

Table 6.3: False positive and false negative analysis of the generated prediction models

Considering that we are dealing with a medical system, the low rate of false negative and
false positive is crucial for a good classifier. Running this classification routines as a prelim-
inary validation, we verified a very low rate of false positives and negatives, proportionally
speaking. We also can state that we achieved satisfactory marks (the worst prediction model
has precision and recall values above 96%), considering the non-deterministic property of some
variables. Such marks indicate that the utilization of these data mining routines is significantly
more valuable than a random guess or a naïve approach to extract information from the dataset.

Question 1.2: How does the data mining scale over the amount of records and simulated
resources? A scalability test was applied utilizing the J48 and JRIP, since they have rendered
more suitable for the BSN domain following the analysis in Question 1.1. We noticed that there
are two possible ways to affect the time consumption of the data mining process. The first one
is related to the increasing number of records that shall be analyzed simultaneously. Figure 6.1a
presents the outputs of our scalability test. We defined the amount of six simulated variables
responsible for the operationalization of the Patient Status context (Oxygenation, Pulse Rate,

37

Temperature, Position, Fall and Patient State), and varied the number of records, measuring the
average time of ten replications for each configuration.

The second parameter that may influence the performance of the mining process is the num-
ber of resources (e.g. sensors, battery, storage) in each record. Figure 6.1b shows a scalability
test on the number of resources necessary to operationalize a single context, i.e., the number of
different sensors measurements involved in the generation a context. Since we focused on sen-
sitiveness to resource variability on this part of the analysis, we fixed the dataset size to 100,000
records, and we varied the number of resources, conducting the experiment ten times for each
configuration. We chose tasks T1.1, T1.2 and T1.3 in Figure 4.3 to illustrate this analysis, since
these tasks encompass the majority of resources and represent the core of system’s operation.

Results in Figure 6.1 show that, in terms of time scalability, the mining process is slightly
more sensitive to variation on records amount than to variation on resources amount, since the
time variation coefficient of the former is higher in comparison to the latter. Nevertheless, based
on the obtained results, the data mining time process shall not be a problem, considering the
BSN domain and the considerable amount of 100,000 records exercised. In fact, considering
that even for records as big as six orders of magnitude, our analysis showed that the results were
processed under two minutes. Even though the JRip processing time extrapolates 100 seconds
for 106 records, the actual result is approximately four minutes. The capability to afford this
processing time will depend on the application.

6.3 Goal 2: Method’s contribution

Question 2.1: Can our approach substantially identify new contexts related to depend-
ability for the BSN? Figure 6.2 presents the improved CGM, i.e. the BSN with new context
constraints discovered in the process. The new elicited contexts are those from C1 to C17.
Therefore, our method supported the identification and operationalization of 17 new contexts
for BSN not present in previous published results of the BSN [2, 44]. The initial conception of
the BSN had only the initial context, that after the method became C18: Patient Status, ruler of
the system adaptation. Given this improvement, it is possible to state that we successfully met
the initial intention of giving a starting point to the software architect in the identification of the
contexts to which the system may be exposed, taking into account the ranges that could render
undependable contexts. In the next question we explore how important such contexts were to
validate if the BSN fulfils its goals for varying patients’ health risks.

Question 2.2 What is the impact of the newly identified contexts on the BSN goals’ satis-
faction? In real scenarios, the achievement of the main goal is useless if the quality constraint
is not satisfied. On the BSN, its major quality constraint is its reliability, where each set of

38

(a) Number of Records vs Time

(b) Number of Resources vs Time

Figure 6.1: Prediction model building time for different amount of records and resources

resources configurations has a reliability level. And each patient’s health risk state must have
a one or few possible resource configuration. Following reported data3, we set the minimum
reliability level required for each patient state as: 95% for low risk, 96% for normal risk and
97% for high risk. Considering the reliability reported data ranges from approximately 95% to
99%, our set of reliability ranges means that at most 5% probability of failure for the resources
is acceptable for the low risk patient, at most 4% probability of failure is acceptable for the

3https://code.google.com/p/spl-model-checking/

39

Figure 6.2: CGM for the BSN system with detected contexts

medium risk and at most 3% probability of failure is acceptable for the high risk patient. We
should note that our choice for such reliability ranges is based on the reported reliability ranges
and should not represent a threat to validity since it could be adjusted to vary in accordance
with the domain expert requirement. In the BSN case study, such resources are reported as
features following a Software Product Line approach. For example, a configuration <!SP02,
TEMP, ECG, ACC, Pos, !Oxy, Fall, PulseRate, Temperature>, that has 95.31% of reliability,
means that all resources and variables but SPO2 and Oxygenation are present and its reliability
level would suffice to satisfy the quality constraint of a patient in a low risk state. However,
it wouldn’t meet our threshold for the required reliability level of a normal or high risk state
patient.

In Figure 6.3 we report the results on the percentage of patients’ health risk state that are
either satisfied or not considering the elicited contexts for the BSN following our method for
100,000 patient records where 8.8% of the records fall in the profile of high risk, 25.7% of
normal risk and 62.8% of low risk. Moreover, 2.7% of the records identified critical operational
failure in the system, which would render a crash of the BSN for all patients’ health risk. Results

40

depicted in Figure 6.3 show the alarming fact that only the low risk profiles would be completely
satisfied, while almost 84% of high risk profiles and 73% of normal risk profiles would be
violated (not attended). In other words, the high percentage of violations on both high and
normal risk states allows us to infer that our elicited contexts do have a significant impact
to identify critical situations, which was not previously taken into consideration on the BSN
works. Figure 6.3 also shows the non-identified state of some quality constraints, regarding its
satisfaction or violation. The amount of non-identified states corresponds to the 4.62% of the
total executions and it is related to the uncertainty of the prediction model, inherent to the data
mining method.

Figure 6.3: Impact on the BSN goal satisfaction for patient’s high, normal and low risk states
under the contexts discovered through our data mining approach over 100,000 records.

Through the decision tree presented in Figure 6.4, as an outcome of the J48 algorithm, we
are able to see the previous analysis from a different perspective, aggregating some knowledge
that was not explicit before. The orange box, labeled Oper. Failure, illustrates an unavailable
context information, indicating that the system had no information enough to characterize the
context as one of the three possible patient states. The leaf nodes were colored differently to
distinguish the context configurations that, for a specific patient risk, lead to the fulfilment of
the reliability threshold (green) from those that does not achieve the required level (red). The
numbers in the leaf nodes refer to the amount of records found in the dataset in such context
configuration. The nodes with two numerical values, refer to the true positive amount (node’s
left-hand side) and false positive amount (node’s right-hand side), generated by the prediction
model. The false negative values are related to the amount of non-identified states mentioned
before.

41

Figure 6.4: Decision tree displaying the influence of some contexts in the achievement of
quality constraints

6.4 Discussion

Although there are some tools and methods (e.g. model checkers) that provide us the reacha-
bility value of every modeled path in a system, these methods disregard fundamental aspects of
runtime behavior that are tightly related to the fulfillment of self-adaptive system goals, such
as context conditions or distinct user profiles. The data mining process proposed in our work
comes to fill this gap, defining the scope of interest and limiting the system analysis to the
practical scope of its use. The method manages the analysis considering distinct user profiles,
context variability, and the presence of new contexts.

The decision tree, presented in Figure 6.4, is used to show the contrast between the initial
reliability analysis, through a probabilistic model checker, and the characteristics of the system
in a real scenario, considering different user profiles, each one requiring a distinct reliability
level to be satisfied. Statically, one could estimate the reliability of a system ignoring the user
profiles or contexts inherent to runtime. However, such analysis is almost useless when it is
necessary to analyze the system behavior in a given profile of use and/or under a specific con-
text of operation. That is the real gain of applying a data mining process over the prototype
operation.

A model checking process or even a SAT solver could provide us a generic reachability
value of a given goal, disregarding contexts and user profiles. On the other hand, using the BSN
case study to illustrate, through our method we are able to identify that, for a patient diagnosed
with a severe heart disease, in a high risk profile in most part of the time, the ECG sensor is the
most relevant device, and its dependability shall be prioritized. On the other hand, for a patient

42

with occasional blood oxygenation falls, that is in a low risk state most part of the time, the
ECG sensor is the most sensitive. Despite the fact that the individual reliability of each sensor
is 99.9%, the reachability of the goals and the satisfaction level of each patient will depend on
the current context configuration, i.e., the active sensors and their corresponding valid data.

The quantitative analysis and the reliability values found in the present work are based on
a parametric formula embedded on the BSN prototype. Each context represents a variable that
can be replaced in the formula. For each record, the prototype verifies the current configuration,
replaces the variables in the formula, and calculate the reliability. The current reliability is
then compared with the required threshold for that specific patient status. The verification is
made for each record, and the data to generate the decision tree is provided. The decision tree
encompasses the reliability distribution according to the user profile, defining the contexts and
resources that are relevant to that user and the configurations that are not, being useful to create
a dependable adaptation policy for each situation.

Before we conclude, there is another topic that is worth discussing and still needs some
clarification: the relevance of context elicitation for decision making in face of uncertainty. As
mentioned before, not identifying some contexts still at early stages of software development
can make the system prone to uncertainty. In possession of the new contexts and the analysis
of their impact in the system’s goals, the analyst has a sound source of information to support
the decision making process and to adequately plan the system adaptation. In this sense, some
action shall be taken to maintain the quality of the service provided and avoid some undesired
events. To illustrate such actions we will take the example previously defined in Figures 5.3
and 5.4 and the uncertainty taxonomy proposed by Ramirez et al. [8] to demonstrate how the
present work supports the decision making process and the policy specification in different
stages of operation: requirements, design and runtime. We explain how to address each of these
stages as follows.

Requirements: We have learned that the disk availability and storage space contexts are de-
terminant to the success of the root goal. We also noted some missing requirements in the
persistence module. It can be natural to conclude by pure reasoning that, in order to store data
into a database, the storage device must be available (context A). However, it can be tricky
to have the same insight for other situations. The process showed us that the size of the data
can oscillate through the iterations, hence, to avoid the system to run out of space (failure of
context B), it is necessary to define a threshold (e.g. 100 MB) to trigger a contingency routine
that, for instance, frees the memory by erasing old data. The data mining process combined
with the CGM enables the creation of an objective criteria, minimizing ambiguity and dubious
interpretations of the stakeholder needs.

43

The elicitation of contexts relying on a combinatorial analysis is not a feasible alternative.
The same for SAT solvers. Although the context conditions can be described by propositional
logic formulas, their representation would not be intuitive. For instance, while it takes only one
variable to express the patient risk state (e.g. Patient State = “Low Risk” or “Normal Risk”
or “High Risk”) in a decision tree, a more complex notation is required through a boolean
representation [(x1 ∧¬x2 ∧¬x3) ∨ (¬x1 ∧ x2 ∧¬x3) ∨ (¬x1 ∧¬x2 ∧ x3)] where x1, x2 and x3

correspond to Low Risk, Normal Risk and High Risk respectively. Such representation would
not be of any use to the designer in complex systems. Another reason why SAT solvers are
not suitable to this kind of analysis is due to the nature of some operations. For instance, in
some cases, a weak Wi-Fi signal can be enough to satisfy a given goal. However, for the same
configuration in a different moment, a weak Wi-Fi could not be enough. Via data mining we
can represent such situations using the true positives and false positives rates. On the other
hand, in a boolean satisfiability problem such fact could lead to mathematical contradiction
(e.g. xi ∧ (¬xi)) due to the non-deterministic nature of the operation.

Design: The knowledge unveiled by the data mining process over the prototype data enables
one to identify unexplored design alternatives and adjust the system implementation accord-
ingly. The method can also assist the analyst in discarding irrelevant design decisions with
respect to requirements. The analysis revealed that, if the context A fails, there is no point in
execute the following task (T1.32) and try to store the data. It is more reasonable to retry the
access to the storage device within an interval ∆t, without worrying about the storage mode
(SQL, memory or file) since they make no difference from the requirements perspective.

Evidently, the analyst relies on the SLA (Service Level Agreement) to calculate the trade-
off and decide whether is worth to tackle the contextual failures. For instance, if the failure
tolerance of the system is ρ = 0.2%, a contextual fault tolerance would have to be adopted to
avoid disk unavailability, that has a fail rate of 4.82%. On the other hand, individually speaking,
it would not be necessary to tackle the contextual failure related to lack of storage space, since
its fail rate is equal to 0.12%.

Another use for the combination data mining / contextual goal modeling is the constant
verifiability of the design regarding the satisfaction of the requirements. The majority of in-
adequate implementations can be exposed through a simulation, by forcing certain variables
combinations that are very unlike to occur in a real scenario. Such execution variants can ini-
tiate unknown behaviors that should not be allowed. On the other hand, many unpredicted
events are often labeled as exception paths, when in fact, they are alternative ways to achieve a
requirement. All these knowledge can be useful for the designer at modeling stage.

44

Runtime: The unpredictability of the environment is, perhaps, the hardest uncertainty source
to tackle. It is a fact that many events and conditions in the environment cannot be anticipated.
To this matter, our proposal can be useful in the sense of giving a starting point to the analyst,
guiding the conjecture of the possible causes for each discovered context. For instance, the
failure of context A indicates the unavailability of the storage device. Based on that, the analyst
can apply other elicitation techniques, such as wide-field ethnography, allied to the requirements
information to come up with possible reasons (e.g. power outage, data center flood, fire, etc.)
that can lead the storage device to the degraded state.

Finally, the method can be useful even at runtime for decision planing. Although problems
such as sensing failure, noise, imprecision or inaccuracy are usually caused by physical lim-
itations, the method proposed in our work assists the identification of such bottlenecks and,
abstracting the causes, can base the response policy for whenever such problems take place. To
illustrate, the rate of false positives and false negatives returned by the data mining process can
be a strong indicator of divergence between a measured value and its real value.

6.5 Threats to validity

Construct validity – In order to assure we provide a reliable and sound input data for our
evaluation, we relied on a reported sound case study (BSN) and its published available data. In
addition, the generated input information for the patients record used well-established Monte
Carlo simulation method on the reported input data. Despite all the care we took to avoid
the generation of unrealistic data, we cannot guarantee that the generated data will perfectly
represent a real scenario. Further study must be done in order to verify such representation.
Internal validity – In our evaluation, based on the published information of the BSN we were
able to model not only the contextual goal model that reflects the BSN architecture goals but
also to vary the sensed data and perceive a significant impact on the outcomes. Therefore,
the modeling structure showed itself efficient to adequately evaluate our approach and identify
new relevant contexts for the BSN. However, unveiling all the contexts involved in a system’s
operation is inherently NP-complete, which could represent a threat to the completeness of the
elicited contexts and consequently to the overall dependability of the system.
External validity – Although our approach is not tailored to be domain specific, we do reckon
the limitation of the evaluation since it was applied in the specific case of the BSN. Further eval-
uation of the approach must be performed to evaluate the actual applicability of our approach
for generalization purposes.

45

Chapter 7

Conclusion and Future Work

In this work we have illustrated a preventive approach that assists the unveiling of contexts at
early stage of software development. The concept of context is becoming a important part of
the requirements definition for self-adaptive systems through the use of so called contextual
requirements. Missing out to identify important context conditions early on in the development
life cycle leads to missing requirements that might become very important for the satisfaction
of user needs. Moreover, failing in predicting contexts, at design time, might be catastrophic
for the system’s dependability when it is being executed, hindering the assurance of attributes
such as reliability, availability, safety, security and maintainability.

In order to avoid a combinatorial exploration, typical of design time verification approaches,
the use of data mining methods over the system’s prototype was quite useful to reduce the search
space formed by the countless combinations of environmental and computational resources. We
evaluated the proposal on the previously published BSN case study and, we were able to verify
a significant increase on the mapped contexts amount, before the implementation stage. As
a result, the new and relevant elicited contexts were indispensable to prevent relevant system
goals to render fulfilled.

Further research is necessary to generalize the applicability of our approach to other systems
as well, expanding the reach to other domains. For future analysis, we plan to quantitatively
analyze the impact and and criticality of new contexts from the system’s dependability perspec-
tive. Self-adaptive systems can highly benefit from this kind of analysis, guiding its adaptation
by the reports generated by our method. Some improvements for this proposal and potential
new contributions regarding the early applicability of learning methods to assure dependability
are planned for future work, more specifically:

• Support the assurance for real-time self adaptive systems: the ability of the process
described in our work to discover hidden patterns in data can potentially assist the iden-
tification and quantification of the impact that some contexts have on the satisfaction of
real-time constraints in self-adaptive systems. Such study could help us to validate prop-

46

erties defined still at design time, contributing to minimize the research gap related to
the model checkers’ limitation in analyzing the system’s behavior considering contextual
conditions.

• Integration with GODA: complementing the previous item, we intend to integrate our
method with GODA framework and then, taking contexts into consideration, estimate the
reachability of the system goals in face of context variability via model verification.

• Analyze user profiles as contexts: we want to verify the feasibility of adapting our
method to enlighten design decision with a view to users’ satisfaction, instead of focusing
exclusively on dependability aspects. Since the users can achieve their objectives through
different paths in distinct contexts, we want to verify the applicability of a prediction
model to, based on the users’ profiles knowledge, estimate the context conditions in which
the user satisfaction would be maximized.

• Unsupervised learning to improve the method: finally, we aim at the exploration of
different learning techniques, especially unsupervised such as clustering, to enhance the
context unveiling process and improve the pattern discovery capability.

47

Reference List

[1] Quinlan, J.R.: Induction of decision trees. Mach. Learn. 1(1), 81–106 (Mar 1986) vii, viii,
12, 13, 31

[2] Pessoa, L., Fernandes, P., Castro, T., Alves, V., Rodrigues, G.N., Carvalho, H.: Building
reliable and maintainable dynamic software product lines: An investigation in the body
sensor network domain. Information & Software Technology 86, 54–70 (2017) vii, 4, 21,
22, 35, 38

[3] Mendonça, D.F., Rodrigues, G.N., Ali, R., Alves, V., Baresi, L.: GODA: A goal-oriented
requirements engineering framework for runtime dependability analysis. Information &
Software Technology 80, 245–264 (2016) vii, 25, 26

[4] Muñoz-Fernández, J.C., Knauss, A., Castañeda, L., Derakhshanmanesh, M., Heinrich,
R., Becker, M., Taherimakhsousi, N.: Capturing ambiguity in artifacts to support require-
ments engineering for self-adaptive systems. In: Joint Proceedings of REFSQ-2017 Work-
shops, Doctoral Symposium, Research Method Track, and Poster Track co-located with
the 22nd International Conference on Requirements Engineering: Foundation for Soft-
ware Quality (REFSQ 2017), Essen, Germany, February 27, 2017. (2017) 1, 2

[5] Knauss, A., Damian, D., Schneider, K.: Eliciting contextual requirements at design time:
A case study. In: 4th IEEE International Workshop on Empirical Requirements Engineer-
ing, EmpiRE 2014, Karlskrona, Sweden, August 25, 2014. pp. 56–63 (2014) 1, 3, 15,
20

[6] Hong, D., Chiu, D.K.W., Shen, V.Y.: Requirements elicitation for the design of context-
aware applications in a ubiquitous environment. In: Proceedings of the 7th International
Conference on Electronic Commerce, ICEC 2005, Xi’an, China, August 15-17, 2005. pp.
590–596 (2005) 1, 15, 20

[7] Avizienis, A., Laprie, J., Randell, B., Landwehr, C.E.: Basic concepts and taxonomy of
dependable and secure computing. IEEE Trans. Dependable Sec. Comput. 1(1), 11–33
(2004) 1, 6, 7, 27

[8] Ramirez, A.J., Jensen, A.C., Cheng, B.H.C.: A taxonomy of uncertainty for dynamically
adaptive systems. In: 7th International Symposium on Software Engineering for Adaptive
and Self-Managing Systems, SEAMS 2012, Zurich, Switzerland, June 4-5, 2012. pp. 99–
108 (2012) 1, 2, 17, 43

48

[9] Esfahani, N., Malek, S.: Uncertainty in self-adaptive software systems. In: Software Engi-
neering for Self-Adaptive Systems II - International Seminar, Dagstuhl Castle, Germany,
October 24-29, 2010 Revised Selected and Invited Papers. pp. 214–238 (2010) 2, 16

[10] Horkoff, J., Salay, R., Chechik, M., Sandro, A.D.: Supporting early decision-making in
the presence of uncertainty. In: IEEE 22nd International Requirements Engineering Con-
ference, RE 2014, Karlskrona, Sweden, August 25-29, 2014. pp. 33–42 (2014) 2, 18,
20

[11] Filieri, A., Maggio, M., Angelopoulos, K., D’Ippolito, N., Gerostathopoulos, I., Hempel,
A.B., Hoffmann, H., Jamshidi, P., Kalyvianaki, E., Klein, C., Krikava, F., Misailovic, S.,
Papadopoulos, A.V., Ray, S., Sharifloo, A.M., Shevtsov, S., Ujma, M., Vogel, T.: Software
engineering meets control theory. In: Proceedings of the 10th International Symposium
on Software Engineering for Adaptive and Self-Managing Systems. pp. 71–82. SEAMS
’15, IEEE Press, Piscataway, NJ, USA (2015) 3

[12] Ali, R., Dalpiaz, F., Giorgini, P.: A goal-based framework for contextual requirements
modeling and analysis. Requir. Eng. 15(4), 439–458 (2010) 3, 5, 8, 9, 16, 23

[13] Dey, A.K.: Understanding and using context. Personal and Ubiquitous Computing 5(1),
4–7 (2001) 5

[14] Finkelstein, A., Savigni, A.: A framework for requirements engineering for context-aware
services. In: In Proc. of 1 st International Workshop From Software Requirements to
Architectures (STRAW 01). pp. 200–1 (2001) 5

[15] Ieee standard glossary of software engineering terminology. ieee std 610.12-1990 (1990)
6

[16] Weyns, D., Bencomo, N., Calinescu, R., Cámara, J., Ghezzi, C., Grassi, V.M., Grunske,
L., Inverardi, P., Jézéquel, J.M., Malek, S., Mirandola, R., Mori, M., Tamburrelli, G.:
Perpetual assurances for self-adaptive systems (2016) 6

[17] de Lemos, R., Garlan, D., Ghezzi, C., Giese, H., Andersson, J., Litoiu, M., Schmerl, B.,
Weyns, D., Baresi, L., Bencomo, N., Brun, Y., Camara, J., Calinescu, R., Cohen, M.B.,
Gorla, A., Grassi, V., Grunske, L., Inverardi, P., Jezequel, J.M., Malek, S., Mirandola, R.,
Mori, M., Müller, H.A., Rouvoy, R., Rubira, C.M.F., Rutten, E., Shaw, M., Tamburrelli,
G., Tamura, G., Villegas, N.M., Vogel, T., Zambonelli, F.: Software engineering for self-
adaptive systems: Research challenges in the provision of assurances. In: de Lemos, R.,
Garlan, D., Ghezzi, C., Giese, H. (eds.) Software Engineering for Self-Adaptive Systems
III, vol. 9640. Springer (2017) 6

[18] Cheng, B.H.C., Eder, K.I., Gogolla, M., Grunske, L., Litoiu, M., Müller, H.A., Pellic-
cione, P., Perini, A., Qureshi, N.A., Rumpe, B., Schneider, D., Trollmann, F., Ville-
gas, N.M.: Using models at runtime to address assurance for self-adaptive systems. In:
Models@run.time - Foundations, Applications, and Roadmaps [Dagstuhl Seminar 11481,
November 27 - December 2, 2011]. pp. 101–136 (2011) 6

49

[19] Hastie, T., Tibshirani, R., Friedman, J.H.: The elements of statistical learning: data min-
ing, inference, and prediction, 2nd Edition. Springer series in statistics, Springer (2009)
9

[20] Agrawal, R., Imielinski, T., Swami, A.N.: Mining association rules between sets of items
in large databases. In: Proceedings of the 1993 ACM SIGMOD International Conference
on Management of Data, Washington, D.C., May 26-28, 1993. pp. 207–216 (1993) 10

[21] Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large databases.
In: VLDB’94, Proceedings of 20th International Conference on Very Large Data Bases,
September 12-15, 1994, Santiago de Chile, Chile. pp. 487–499 (1994) 10, 30

[22] Powers, D.: Evaluation: from precision, recall and f-measure to roc, informedness,
markedness & correlation. Journal of Machine Learning Technologies 2, 37–63 (01 2011)
10

[23] Cohen, W.W.: Fast effective rule induction. In: Machine Learning, Proceedings of the
Twelfth International Conference on Machine Learning, Tahoe City, California, USA, July
9-12, 1995. pp. 115–123 (1995) 11, 30

[24] Frank, E., Hall, M.A., Holmes, G., Kirkby, R., Pfahringer, B.: WEKA - A machine learn-
ing workbench for data mining. In: The Data Mining and Knowledge Discovery Hand-
book., pp. 1305–1314 (2005) 11, 36

[25] Salzberg, S.L.: C4.5: Programs for machine learning by j. ross quinlan. morgan kaufmann
publishers, inc., 1993. Machine Learning 16(3), 235–240 (Sep 1994) 12

[26] Gómez, M., Adams, B., Maalej, W., Monperrus, M., Rouvoy, R.: App store 2.0: From
crowdsourced information to actionable feedback in mobile ecosystems. IEEE Software
34(2), 81–89 (2017) 15, 20

[27] Villegas, N.M., Tamura, G., Müller, H.A., Duchien, L., Casallas, R.: DYNAMICO: A
reference model for governing control objectives and context relevance in self-adaptive
software systems. In: Software Engineering for Self-Adaptive Systems II - International
Seminar, Dagstuhl Castle, Germany, October 24-29, 2010 Revised Selected and Invited
Papers. pp. 265–293 (2010) 16, 20

[28] Mahdavi Hezavehi, S., Avgeriou, P., Weyns, D.: Chapter 3 - a classification framework of
uncertainty in architecture-based self-adaptive systems with multiple quality requirements.
In: Managing Trade-Offs in Adaptable Software Architectures, chap. 3Managing Trade-
Offs in Adaptable Software Architectures, pp. 45–77. Morgan Kaufmann (01 2017) 16

[29] Whittle, J., Sawyer, P., Bencomo, N., Cheng, B.H.C., Bruel, J.: RELAX: incorporating
uncertainty into the specification of self-adaptive systems. In: RE 2009, 17th IEEE In-
ternational Requirements Engineering Conference, Atlanta, Georgia, USA, August 31 -
September 4, 2009. pp. 79–88 (2009) 17

[30] Cheng, B.H.C., Sawyer, P., Bencomo, N., Whittle, J.: A goal-based modeling approach
to develop requirements of an adaptive system with environmental uncertainty. In: Model
Driven Engineering Languages and Systems, 12th International Conference, MODELS
2009, Denver, CO, USA, October 4-9, 2009. Proceedings. pp. 468–483 (2009) 17, 20

50

[31] Mendonça, D.F., Ali, R., Rodrigues, G.N.: Modelling and analysing contextual failures
for dependability requirements. In: 9th International Symposium on Software Engineering
for Adaptive and Self-Managing Systems, SEAMS 2014, Proceedings, Hyderabad, India,
June 2-3, 2014. pp. 55–64 (2014) 17, 20, 28

[32] Grassi, V., Mirandola, R., Randazzo, E.: Software engineering for self-adaptive systems.
chap. Model-Driven Assessment of QoS-Aware Self-Adaptation, pp. 201–222. Springer-
Verlag, Berlin, Heidelberg (2009) 17, 20

[33] Mahdavi-Hezavehi, S., Durelli, V.H.S., Weyns, D., Avgeriou, P.: A systematic litera-
ture review on methods that handle multiple quality attributes in architecture-based self-
adaptive systems. Information & Software Technology 90, 1–26 (2017) 17

[34] de Lemos, R., Garlan, D., Ghezzi, C., Giese, H., Andersson, J., Litoiu, M., Schmerl, B.,
Weyns, D., Baresi, L., Bencomo, N., Brun, Y., Camara, J., Calinescu, R., Cohen, M.B.,
Gorla, A., Grassi, V., Grunske, L., Inverardi, P., Jezequel, J.M., Malek, S., Mirandola, R.,
Mori, M., Müller, H.A., Rouvoy, R., Rubira, C.M.F., Rutten, E., Shaw, M., Tamburrelli,
G., Tamura, G., Villegas, N.M., Vogel, T., Zambonelli, F.: Software engineering for self-
adaptive systems: Research challenges in the provision of assurances. In: de Lemos, R.,
Garlan, D., Ghezzi, C., Giese, H. (eds.) Software Engineering for Self-Adaptive Systems
III, vol. 9640. Springer (2017) 17

[35] Hassan, S., Bencomo, N., Bahsoon, R.: Minimizing nasty surprises with better informed
decision-making in self-adaptive systems. In: 10th IEEE/ACM International Symposium
on Software Engineering for Adaptive and Self-Managing Systems, SEAMS 2015, Flo-
rence, Italy, May 18-19, 2015. pp. 134–145 (2015) 18, 20

[36] Knauss, A., Damian, D., Franch, X., Rook, A., Müller, H.A., Thomo, A.: Acon: A
learning-based approach to deal with uncertainty in contextual requirements at runtime.
Information & Software Technology 70, 85–99 (2016) 18, 20

[37] Esfahani, N., Elkhodary, A.M., Malek, S.: A learning-based framework for engineering
feature-oriented self-adaptive software systems. IEEE Trans. Software Eng. 39(11), 1467–
1493 (2013) 18, 20

[38] Welsh, K., Sawyer, P., Bencomo, N.: Towards requirements aware systems: Run-time res-
olution of design-time assumptions. In: 26th IEEE/ACM International Conference on Au-
tomated Software Engineering (ASE 2011), Lawrence, KS, USA, November 6-10, 2011.
pp. 560–563 (2011) 18, 20

[39] Sharifloo, A.M., Metzger, A., Quinton, C., Baresi, L., Pohl, K.: Learning and evolution in
dynamic software product lines. In: Proceedings of the 11th International Symposium on
Software Engineering for Adaptive and Self-Managing Systems, SEAMS@ICSE 2016,
Austin, Texas, USA, May 14-22, 2016. pp. 158–164 (2016) 18

[40] Nunes, V., Mendonça, D., Rodrigues, G., Alves, V.: Towards compositional approach
for parametric model checking in software product lines. In: International Workshop on
Architecting Dependable Systems (WDAS’13). SBC (2013) 22

51

[41] Guimarães, F.P., Rodrigues, G.N., Ali, R., Batista, D.M.: Planning runtime software adap-
tation through pragmatic goal model. Data & Knowledge Engineering pp. – (2017) 26

[42] Casella, G., Berger, R.L.: Statistical inference. Duxbury/Thomson Learning, 2nd ed edn.
(2002) 30

[43] van Solingen, R., Basili, V., Caldiera, G., Rombach, H.D.: Goal Question Metric (GQM)
Approach. John Wiley & Sons, Inc. (2002) 34

[44] Rodrigues, G.N., Alves, V., Nunes, V., Lanna, A., Cordy, M., Schobbens, P., Sharifloo,
A.M., Legay, A.: Modeling and verification for probabilistic properties in software prod-
uct lines. In: 16th IEEE International Symposium on High Assurance Systems Engineer-
ing, HASE 2015, Daytona Beach, FL, USA, January 8-10, 2015. pp. 173–180 (2015) 35,
36, 38

[45] Beth israel hospital - mit database patient guide, http://physionet.org/
physiobank/database/mghdb/patient-guide.shtml 36

52

http://physionet.org/physiobank/database/mghdb/patient-guide.shtml
http://physionet.org/physiobank/database/mghdb/patient-guide.shtml

	Acknowledgements
	Abstract
	Introduction
	Problem Definition
	Proposed Solution
	Evaluation
	Organization

	Background
	Contexts in Self-Adaptive Systems
	Assurance for Self-adaptive Systems
	Dependability

	Contextual Goal Models
	Data Mining
	Association Rules
	Classification Methods
	Data Mining for Context Discovering

	Theoretical Overview

	Related Work
	Context elicitation
	Specification and adaptation to contextual changes
	Uncertainty definition for self-adaptive systems
	Dependability in context-based systems
	Tackling uncertainty at design time
	Tackling uncertainty with AI methods
	Final Considerations About the Related work

	Running Example: Body Sensor Network
	BSN Outline

	A Learning Process to Unveil Contexts for Dependability at Design Time
	Contextual Requirements in Goal Modeling
	Data Mining Process
	Proposal Overview

	Evaluation
	Experimental Setup
	Goal 1: Data mining process
	Goal 2: Method's contribution
	Discussion
	Threats to validity

	Conclusion and Future Work
	Reference List

