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RESUMO 

O sistema nervoso autônomo (SNA) controla as funções involuntárias do corpo e seu 

desequilíbrio é associado a um risco aumentado de mortalidade cardíaca. A análise da 

variabilidade da frequência cardíaca (VFC) é comumente utilizada como um método não-

invasivo de avaliar a modulação do SNA. Medidas tradicionais de VFC se baseiam em 

análises das oscilações da frequência cardíaca (ou o seu recíproco, o intervalo entre ondas 

R consecutivas no eletrocardiograma – IRR) a cada batimento, já que o ritmo da frequência 

cardíaca (FC) é uma consequência das atividades simpática e parassimpática no nó 

sinoatrial do coração. Entretanto, essas oscilações da FC também são influenciadas por 

mecanismos que afetam a VFC, como o baroreflexo e a arritmia sinusal respiratória (ASR). 

Portanto, neste trabalho, uma análise multivariável do sistema cardiorrespiratório é usada. 

Este estudo consiste em duas partes: o desenvolvimento do laboratório de identificação do 

sistema cardiorrespiratório (CRSIDLab), uma interface gráfica para Matlab que fornece 

indicadores quantitativos da atividade do SNA a partir da análise de um modelo 

multivariável do sistema cardiorrespiratório, seguido por sua aplicação em dados obtidos 

de sujeitos nas posturas supino e de pé, ilustrando sua capacidade. O eletrocardiograma 

(ECG), pressão arterial (PA) continua e fluxo de ar de 23 sujeitos foram registrados nas 

posturas supino e de pé por 10 min e pré-processados no CRSIDLab. 

Neste trabalho as análises clássicas de VFC e variabilidade da PA (VPA) foram feitas 

através da análise da densidade espectral de potência (DEP) do IRR e da PA sistólica 

(PAS), respectivamente. O CRSIDLab implementa três métodos de análise espectral: a 

transformada de Fourier, o método de Welch e o modelo autorregressivo (AR). Todos os 

métodos foram utilizados para calcular a potência das bandas de baixa frequência (BF: 

0.04-0.15 Hz) e alta frequência (AF: 0.15-0.4 Hz), como a área sob a curva da DEP. Para a 

VFC, a razão BF/AF também foi calculada. Estimativas tradicionais de sensibilidade do 

baroreflexo (SBR) foram calculadas a partir da relação entre VFC a VPA. 

Funções de transferência espectrais foram estimadas entre a PAS e o IRR, caracterizando o 

baroreflexo, e entre o volume pulmonar instantâneo (VPI, derivado do registro de fluxo de 

ar) e o IRR, caracterizando a ASR, ou os efeitos da respiração na FC, para determinação 

dos ganhos em BF e AF. A SBR foi estimada a partir dos ganhos da função de 

transferência entre a PAS e o IRR. 
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A dinâmica entre a PA e a FC é de malha fechada, na qual a PA influencia a FC através do 

baroreflexo e a FC influencia a PA através da dinâmica circulatória. A respiração exerce 

uma influência direta sobre a FC que é mediada pelo SNA, chamada de acoplamento 

cardiorrespiratório (ACR), e também um efeito mecânico indireto mediado pelo 

baroreflexo. Enquanto análises espectrais univariáveis e bivariáveis podem ser usadas para 

avaliar esses mecanismos, são técnicas de malha aberta que são incapazes de diferenciar 

efeitos de retroalimentação dos efeitos de alimentação direta e também de separar o ACR 

das influências indiretas da respiração na FC. 

Para lidar com essas limitações, uma abordagem de identificação de sistemas foi aplicada. 

O CRSIDLab implementa três modelos: o modelo AR com entradas exógenas (ARX), o 

modelo de funções de base de Laguerre (FBL) e o modelo de funções de base de Meixner 

(FBM). As respostas ao impulso, que caracterizam a dinâmica entre cada par de variáveis, 

são calculadas a partir do modelo estimado. Esses modelos são capazes de isolar o ACR ao 

considerar ambos VPI e PAS como entradas e conseguem abrir a malha do baroreflexo 

computacionalmente pela imposição de atrasos entre a PAS e o IRR, caracterizando a 

resposta ao impulso do baroreflexo arterial (BRA). A partir dessas análises, não só o ganho 

em cada banda de frequência é fornecido através da transformada de Fourier da resposta ao 

impulso, mas também informações temporais como o atraso entre duas variáveis. 

Os resultados mostram que ficar de pé é acompanhado por uma supressão vagal e tom 

vascular simpático aumentado. Análises de correlação mostraram que as estimativas de 

ASR e SBR baseadas em análises espectrais não apresentam a mesma informação que as 

estimativas baseadas no modelo de ACR e BRA. As diferenças encontradas sugerem que 

as análises baseadas em modelo são efetivas em representar o ACR como uma medida dos 

efeitos diretos da respiração na FC e o BRA como expressão do baroreflexo independente 

da dinâmica circulatória. 

Assim, o CRSIDLab é uma ferramenta poderosa para a determinação não-invasiva de 

diferentes indicadores quantitativos do SNA. Os resultados mostram que os indicadores 

estimados refletem a fisiologia subjacente, pois ficar de pé é um estímulo simpático que 

deveria levar a supressão vagal, conforme observado. Os resultados obtidos também 

mostram que a abordagem de modelagem de sistemas multivariáveis pode fornecer 

importantes informações adicionais àquelas encontradas pelas abordagens espectrais mais 

tradicionais, podendo levar a indicadores quantitativos mais específicos do SNA.  
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ABSTRACT 

The autonomic nervous system (ANS) controls the involuntary functions of the body and 

its imbalance has been linked to increased risk of cardiac mortality. Heart rate variability 

(HRV) analysis is usually employed as a non-invasive method for assessing ANS 

modulation. Traditional measures of HRV are based on the analysis of the beat-to-beat 

oscillations in heart rate (or its reciprocal, the interval between consecutive R waves on the 

electrocardiogram - RRI), since heart rate (HR) rhythm is a consequence of sympathetic 

and parasympathetic activity on the sinoatrial node of the heart. However, these 

oscillations in beat-to-beat HR are also influenced by mechanisms, such as baroreflex and 

respiratory sinus arrhythmia (RSA), that affect HRV. Therefore, in this work, a 

multivariate analysis of the cardiorespiratory system is used. 

This study consists of two parts: the development of the cardiorespiratory system 

identification lab (CRSIDLab), a Matlab graphical user interface that provides quantitative 

indicators of ANS activity from a multivariate system model analysis of cardiorespiratory 

data, followed by its application on data obtained from subjects in supine and standing 

postures, illustrating its capabilities. Electrocardiogram (ECG), continuous blood pressure 

(BP) and airflow were recorded from 23 subjects in supine and standing postures for 10 

min and preprocessed on CRSIDLab. 

In this work the classical HRV and BP variability (BPV) analyses were performed though 

power spectral density (PSD) analysis of the RRI and the systolic BP (SBP), respectively. 

CRSIDLab implements three methods for spectral analysis: the Fourier transform, Welch 

method and AR model. All methods were used to calculate the power of the low frequency 

(LF: 0.04-0.15 Hz) and high frequency (HF: 0.15-0.4 Hz) bands, as the areas under the 

PSD curve. For the HRV, the LF/HF ratio was also calculated. Traditional baroreflex 

sensitivity (BRS) estimates were calculated from the relation between HRV and BPV in 

the LF and HF regions. 

Spectral transfer functions were estimated between SBP and RRI, characterizing 

baroreflex, and between instantaneous lung volume (ILV, derived from the airflow record) 

and RRI, characterizing RSA, or the effects of respiration on HR, for the determination of 

the LF and HF gains. BRS was estimated from the gains of the transfer function between 

SBP and RRI.  
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The dynamics between BP and HR are closed-loop, where BP influences HR through 

baroreflex and HR influences BP through circulatory dynamics. Respiration has a direct 

influence on HR that is mediated through the ANS, called the respiratory-cardiac coupling 

(RCC), and also a mechanical indirect effect mediated through baroreflex. While 

univariate and bivariate spectral analyses can be used to assess these effects, they are open-

loop techniques that are unable to differentiate feedforward from feedback effects and also 

to separate RCC from the indirect effects of respiration on HR. 

To address these limitations a system model identification approach was applied. 

CRSIDLab implements three types of models: the autoregressive with exogenous inputs 

(ARX) model, the Laguerre basis function (LBF) model, and the Meixner basis function 

(MBF) model. The impulse responses, which characterize the dynamics between each pair 

of variables, are calculated from the estimated model. These multivariate models are able 

to isolate RCC by considering both SBP and ILV as system inputs and are able to 

computationally open the baroreflex loop through the imposition of time delays between 

SBP and RRI, characterizing the arterial baroreflex (ABR) impulse response. From this 

analysis not only the gain for each frequency band is provided from the Fourier transform 

of the impulse response, but also temporal information such as delays between variables.  

The results show that standing is accompanied by significant vagal withdrawal and 

increased sympathetic vascular tone. Correlation analyses showed that the spectral-based 

RSA and BRS estimates do not present the same information as the model-based RCC and 

ABR estimates. The differences found suggest the model-based analyses are effective in 

representing RCC as a measure of the direct effects of respiration on HR and ABR as an 

expression of baroreflex that is independent from circulatory dynamics. 

Thus, CRSIDLab is a powerful tool for the non-invasive determination of different 

quantitative indicators of the ANS. The results show that all estimated indicators reflect the 

underlying physiology, in the sense that standing is a sympathetic stimulus that should lead 

to vagal withdrawal, as observed. The results obtained also show that the multivariate 

system modeling approach can provide important additional information to those found by 

the more traditional spectral analyses approaches, which could potentially lead to more 

specific quantitative indicators of the ANS. 
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1. INTRODUCTION 

The autonomic nervous system (ANS) regulates involuntary activities of the human body. 

The sympathetic and vagal branches act continuously, normally with opposing effects, to 

maintain a state of homeostasis. In the cardiorespiratory system, vagal withdrawal and 

sympathetic activation is associated to higher heart rate (HR), blood pressure (BP) and 

breathing rate, while vagal activation and sympathetic withdrawal lower those measures [1, 

2]. 

Heart rate variability (HRV) analysis has been extensively used to study the ANS, 

predicting autonomic neuropathy in diabetics and mortality after cardiac infarction [3, 4]. 

HRV studies the beat-to-beat variation of HR or its reciprocal R-R interval (RRI), given in 

milliseconds, around a mean value [3, 5]. It can be quantified through statistical, 

geometrical, and non-linear methods, and through power spectral density (PSD) analysis in 

the frequency domain [3, 4, 5].  

There are three main frequency bands defined for short-term HRV analysis, the very low 

frequency (VLF: 0-0.04 Hz), low frequency (LF: 0.04-0.15 Hz) and high frequency (HF: 

0.15-0.4 Hz), as defined by a task force of the European Society of Cardiology and the 

North American Society of Pacing and Electrophysiology assembled to develop standards 

of measurement, physiological interpretation, and clinical use of HRV [4]. While VLF 

interpretation is unclear for short-term records [4], HF is widely accepted as an indicator of 

vagal activity [3, 4, 6, 7] and LF has been suggested to reflect sympathetic activity, both 

sympathetic and vagal activities, or baroreflex activity in different studies [3, 4, 6, 8, 9]. 

There are reflex and control mechanisms, modulated by the ANS, which result in HRV. 

The two main mechanisms responsible for HRV are the arterial baroreflex (ABR), which 

modulates HR through the ANS according to inputs from arterial stretch sensors called 

baroreceptors in order to maintain BP homeostasis [10, 11], and respiratory sinus 

arrhythmia (RSA), in which HR increases with inspiration and decreases with expiration, 

due to mechanical and control level coupling [12, 13, 14]. Respiratory activity provokes 

intrathoracic pressure changes, which influence venous return to the heart, affecting BP 

[11, 15]. This mechanical effect indirectly affects HR through the baroreflex. The 

respiratory-cardiac coupling (RCC) represents the direct effects of respiration on HR, 

modulated by the ANS, excluding these indirect mechanical effects [16]. RSA has been 
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shown to relate mainly to vagal activity and to be reflected in HF HRV in different studies 

both in frequency and time domains [12, 13].  

Baroreflex sensitivity (BRS) can be assessed through different methods, in time and 

frequency domains, expressing how BP fluctuations affect HR [17]. However, since HR 

also affects BP through the mechanically and sympathetically mediated circulatory 

dynamics (CID), techniques that do not introduce sufficient delay between BP and HR 

cannot accurately represent ABR, but include the CID effects. This is true for the 

frequency domain analyses, which do not differentiate between feedforward and feedback 

mechanisms due to a lack of time-domain information, and also for traditional time domain 

techniques, such as the sequence method, which do not introduce sufficient delay. At the 

same time, if respiration is not considered as part of the system, BRS will also reflect the 

indirect effects of respiration that affect HR through BP [14, 18]. These confounding 

factors make the interpretation of results less direct. 

Therefore, a multivariate system model identification approach might be able to provide 

more comprehensive information on these mechanisms, as opposed to the univariate HRV 

analyses that take only variations in the output variable into account [14, 19, 20]. Models 

that allow the incorporation of delays between input and output enable the restraining of 

causal relationships that exist on closed-loop systems, uncoupling the different 

mechanisms that regulate the cardiorespiratory system and computationally opening the 

loop [16, 21]. For its ability to disentangle the influences of the cardiorespiratory variables 

on one another, including the closed-loop baroreflex dynamics and the direct and indirect 

influences of respiration on HR, this modeling approach has been employed by several 

studies [22, 23, 24, 25, 26]. 

There are several non-commercial programs available for HRV analysis. ECGLab [27], 

KARDIA [28], ARTiiFact [29] and Kubios HRV [30] are all examples of Matlab-based 

software, while RHRV [31] and gHRV [32] are options developed for other platforms, 

using R-programming language and Python, respectively. These programs sometimes 

provide electrocardiogram (ECG) pre-processing tools, such as filtering and QRS 

extraction, and perform different forms of HRV analysis. POLYAN [33] accepts as input 

not only the ECG, but also arterial BP and airflow, providing pairwise evaluation of the 

variables in frequency domain, which has the limitations previously discussed. HeartScope 

[34] employs a multivariate model to provide BRS estimates from the slope of the system’s 
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response to a unitary ramp, besides providing frequency domain analyses between pairs of 

variables. This BRS estimate accounts for the effects of respiration and can effectively 

separate the CID effects from the BRS index, but does not provide information such as the 

dynamics delay. It also does not provide model-based assessment of the respiration effects 

on HR. 

In this work we present the cardiorespiratory system identification lab (CRSIDLab), a 

Matlab-based toolbox for multivariate cardiorespiratory system analysis. CRSIDLab is 

built as a graphical user interface (GUI), providing visual verification of the processing 

steps. It first started being developed as an undergraduate thesis and continued through the 

present study, with the addition of methods and models and a reformulation of the interface 

to help guide the user through the various processing and analysis stages.  The software 

accepts ECG, continuous BP, and airflow or lung volume data as inputs and provides tools 

to condition the data, extract RRI from the ECG, systolic and diastolic BP (SBP and DBP, 

respectively) from the continuous BP, and transform airflow to instantaneous lung volume 

(ILV). Single variable PSD analyses are available, which can be estimated through the 

Fourier transform, the Welch method, or the autoregressive (AR) model. Time domain 

system identification can be performed for systems composed of up to three of the 

available variables in any combination. The AR model is available for univariate systems, 

while for multivariate systems the AR model with exogenous inputs (ARX), the Laguerre 

basis function (LBF) model, and the Meixner basis function (MBF) model are available. 

Once the model is estimated, the impulse response between each input and output variable 

is calculated and quantitative indicators are extracted, both directly from the impulse 

response, and from the transfer function estimated as the Fourier transform of the impulse 

response. 

The goal in developing this toolbox is to provide a rather complete non-commercial 

toolbox for researchers of both engineering and medical backgrounds to investigate the 

control and reflex mechanisms present in the cardiorespiratory system through a 

multivariate time modeling approach. The specific goal is to properly characterize RCC, as 

a measure of HRV that is independent of the direct effects of respiration, and ABR, as a 

measure of HRV that is independent of BP, since these have been shown to be among the 

most relevant dynamics that influence HRV and, for that reason, have been the aim of 

many studies. 
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To demonstrate the utility of the proposed toolbox in characterizing those dynamics, the 

toolbox is used to investigate the effects of posture on ANS indicators generated through 

CRSIDLab. The data used for the study consists of ECG, continuous BP and airflow 

records of 23 male subjects taken for 10 min in supine posture and 10 min in standing 

posture.  

The effects of posture and orthostatic stress on ANS indicators has been widely studied 

using different approaches [24, 35, 36, 37, 38, 39, 40] and, from the underlying 

physiology, a shift towards sympathetic dominance is expected in standing when compared 

to supine. Thus, our hypothesis is that the indicators related to vagal activity, such as RSA, 

RCC, HF HRV and HF BRS and ABR will be lower in standing when compared to supine 

[41, 42], while LF BPV and the HRV LF/HF ratio should be greater, as they are 

proportional to sympathetic activity. Some differences are expected between spectral 

measures of BRS and RSA when compared to the impulse response measures of ABR and 

RCC, due to the discussed limitations of spectral methods. 

The dominant causality between BP and HR shifts from CID to baroreflex upon standing. 

While the spectral BRS estimates cannot differentiate feedforward and feedback effects, as 

they are open-loop analysis methods, incorporating CID to its measure, impulse response 

analysis can [43, 44, 45, 46]. The modeling approach also allows the direct and indirect 

effects of respiration on HR, the latter mediated through ABR, to be separated, providing 

indicators of RCC, while spectral transfer function analysis will include both. The direct 

link between respiration and HR decreases in standing, while the indirect link increases 

[47, 48], which could lead to conflicting results.  

This work is divided in seven chapters, including this introduction. Chapter 2 discusses the 

physiological concepts that are relevant to the study, including the reflex and control 

mechanisms involved, how the variables relate to those mechanisms and finally presents 

the cardiorespiratory model upon which this research is based. Chapter 3 describes 

CRSIDLab, the Matlab toolbox developed as part of this study and used to process the 

data. Chapter 4 presents the methodology applied in this study, specifying the methods and 

parameters used in CRSIDLab, as well as the additional transfer function estimation 

process and the statistical tests performed. Chapter 5 presents the results obtained from 

processing the data using CRSIDLab, detailing the effects of a sympathetic stimulus on 

ANS indicators obtained from various methods by comparing supine and standing posture 
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data, while also applying correlation analyses to compare indexes calculated from the 

univariate and multivariate analyses as well as frequency and time-domain analyses. 

Chapter 6 details the discussion of those results. Finally, Chapter 7 presents the conclusion 

and future work recommendations. 
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2. PHYSIOLOGICAL CONCEPTS 

This section presents an overview of the physiological concepts that are necessary to 

understand the context of this study, its relevance and findings. 

2.1. AUTONOMIC NERVOUS SYSTEM 

The ANS modulates involuntary activities, such as the digestive system activity, 

involuntary breathing, HR and BP. The ANS is divided in two branches, the sympathetic 

and the parasympathetic or vagal nervous systems, which usually act in opposition to one 

another [1, 2]. In this study, the known effects of the ANS modulation of the 

cardiorespiratory system are used to evaluate its health. 

The sympathetic nervous system induces what is called the “fight or flight” response, 

increasing heart and respiration rates, BP and muscle contraction force, while inhibiting 

digestion and dilating pupils. The vagal nervous system, on the other hand, induces the 

“rest and digest” response, decreasing heart and respiration rates, BP and muscle 

contraction force, stimulating digestion and constricting pupils. These effects and more are 

described in Figure 2.1. Together these branches work to keep the human body in 

homeostasis, a state of physiological balance. 

Sympathetic stimulation of the heart increases both HR and the heart’s contraction force, 

which leads to increased BP. Vagal nerve fibers are mostly present on the atria, and so its 

effects on diminishing the heart’s contraction force are limited, producing little effect on 

BP [1, 15, 49]. Vagal stimulation of the heart decreases HR and may even stop heart 

activity for a short period of time. On baseline conditions, there is a dominating vagal 

activity modulating the heart, keeping its rate about 25 bpm lower than it would be if 

regulated only by the sinoatrial (SA) node, the heart’s pacemaker [15, 49]. 

The ANS modulates BP through its modulation of the heart, but also through the 

modulation of blood vessels. Sympathetic stimulation induces the constriction of most 

blood vessels, while vagal stimulation has little effect, causing only the peripheral blood 

vessels to dilate. Therefore, BP control is mainly modulated by the sympathetic nervous 

system and the vascular system is said to have a sympathetic tone [1, 2]. 
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Figure 2.1 – The ANS sympathetic and vagal branches, its innervations and effects on the 

different organs (Biological Science, 2002 [50]). 

The autonomic modulation of respiration acts mainly by dilating or constricting the 

bronchioles, stimulating or inhibiting gas exchange, respectively. Bronchi dilation is a 

result of sympathetic stimulation, while bronchi constriction results from vagal stimulation 

[1, 2]. 

Homeostatic imbalance of the ANS may lead to several physiological conditions, such as 

hypertension or Raynaud’s disease, which is characterized by intermittent reduced blood 

flow to toes and fingers and can lead to gangrene [2]. Cardiovascular mortality has been 

linked to ANS imbalance, associating increased sympathetic activity, with or without 

reduced vagal activity, to lethal arrhythmias and sudden cardiac death [51, 52]. 
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2.2. ARTERIAL BAROREFLEX 

ABR is the best known mechanism for BP homeostasis control and it is mediated by the 

ANS. Sensors that are stimulated when the walls of arteries are stretched, called 

baroreceptors, are present mainly in large arteries of the neck, thorax, the carotid sinuses 

and the aortic arch. These sensors send signals do the central nervous system indicating a 

rise in BP, causing the ANS to respond by slowing the HR through vagal stimulation of the 

heart, bringing the BP back to its normal levels. At the same time the vasoconstrictor 

center is inhibited. If the baroreceptors send no signals, this inhibiting stimulus is removed 

and sympathetic stimulation of the heart is triggered, causing HR to increase and 

vasodilation to occur, elevating the BP [10, 11]. 

The ABR is a mechanism that acts rapidly and is the major controller of BP on short term. 

An impaired baroreflex may cause orthostatic hypotension, which is characterized as 

dizziness or fainting from standing up fast, or hypertension, among other effects [10, 14].  

The BRS is a measure of baroreflex efficiency that focuses on its ability to regulate HR 

from BP fluctuations, and is usually given in ms/mmHg. Here the HR is not represented in 

the usual frequency unit (bpm), but in the reciprocal time unit, representing its period [17]. 

This representation of HR is further described in section 2.4.1.1. 

Higher BRS indicates a greater ability to respond and adapt to changes in BP, while lower 

BRS indicates lower ability to adapt, which may lead to a higher risk of strokes, 

myocardial infarction and heart failure [14]. 

2.3. RESPIRATORY SINUS ARRHYTHMIA 

RSA is the coupling of respiration effects to HR, which occurs both from a mechanical 

coupling of the cardiac and respiratory systems and from the coupling of the respiratory 

control center and the ANS. 

The intrathoracic pressure variation that happens during respiration affects the 

baroreceptors, the lung stretch sensors and the venous return to the heart. Inspiration 

decreases intrathoracic pressure, which the baroreceptors interpret as a BP drop, causing 

HR to increase via baroreflex. At the same time, the lung stretch sensors are stimulated, 

inhibiting cardiac vagal activity, leading to an increase in HR as well. Finally, the 
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increased venous return triggers the Bainbridge reflex, in which HR increases along with 

heart contraction force in response to the accumulation of blood in the atria. During 

expiration, intrathoracic pressure increases, causing opposing effects [12, 14]. 

Previous studies have found RSA to be a non-causal phenomenon, where the changes in 

HR due to respiration occur slightly before inspiration or expiration takes place [14, 19, 24, 

53]. While respiration is mainly controlled by the brainstem, it is generally acknowledged 

that RSA modulates heart activity through cardiac vagal discharge of the ANS [12, 13]. 

This suggests a neural coupling that may explain the apparent non-causal relation, where 

the ANS would respond to the intent of the respiration control center, rather than to 

inspiration or expiration itself [14, 53].   

The function of RSA is still unknown. One study proposes the theory that it promotes a 

more efficient gas exchange, providing greater blood flow while there is more gas 

available [13]. A later study suggested that RSA actually allows the heart to function with 

less strain instead of promoting a more efficient gas exchange [54]. 

2.4. CARDIORESPIRATORY SYSTEM 

The cardiorespiratory system is a combination of two other systems: the cardiovascular and 

the respiratory systems. Together they work to maintain homeostasis of blood gas on the 

body. 

The cardiovascular system is formed by the heart and the blood vessels, composing a 

delivery system that transports oxygen and nutrients to the body’s tissues and cells and 

carries away any waste to be properly filtered and disposed of. It also transports immune 

cells such as lymphocytes and antibodies [11]. Though the heart is the main responsible for 

blood circulation, acting as a pump, the blood vessels are also active in the process, being 

able to constrict or dilate and even create new paths [11, 15]. 

The main function of the respiratory system is to promote gas exchange, supplying the 

body with the oxygen needed for metabolic reactions and disposing of carbon dioxide that 

is produced by them. This gas concentration control works to maintain the pH of the body, 

which is essential for normal cell metabolism. 

These two systems are closely related at a functional level, once the cardiovascular system 

is responsible for the transportation of the gases exchanged in the lungs throughout the 
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body and the intrathoracic pressure variations generated during breathing act as a pump 

promoting the return of venous blood to the heart [11, 15]. These systems are also coupled 

through RSA, which affects both HR and BP, as described in section 2.3, which means 

respiration acts as an input to the autonomic control system modulating cardiovascular 

activity [24]. Hence, studying the cardiorespiratory system as a single system allows the 

observation of the influence that these variables have on one another [14, 19, 20]. The 

following sections describe the variables that are used in this study to model and assess the 

cardiorespiratory system. 

2.4.1. The Cardiac Cycle 

A brief description of the heart’s anatomical structure, especially regarding its conduction 

system, is necessary to describe the cardiac cycle and its ECG representation.  

Figure 2.2 illustrates the heart’s main structures as well as the pulmonary and systemic 

circulation circuits. The heart has four chambers, two atria and two ventricles. Blood enters 

the heart from the systemic circulation through the right atrium and from the pulmonary 

circulation to the left atrium. The right ventricle pumps blood to the pulmonary circulation, 

while the left ventricle pumps blood to the systemic circulation [15, 49]. 

To keep blood flow through the body, synchronized contractions are coordinated through 

the hearts conduction system, illustrated by Figure 2.3. The SA or sinus node is the heart’s 

pacemaker. It can generate action potentials spontaneously and the ANS modulates its 

activity. The action potential travels through the internodal pathways and arrives at the 

atrioventricular (AV) node, which delays the signal propagation, allowing the atria to 

evacuate all the blood before ventricular contraction. Then the signal moves on to through 

the AV bundle to the right and left bundle branches finally arriving to the Purkinje fibers, 

the final points of the conduction system, which infiltrate the ventricles to induce a strong 

contraction [15, 55]. 

This electrical activity triggers the events that compose the cardiac cycle. Before the 

beginning of the cycle, the heart is in diastole, a state of relaxation. Firing of the SA node 

starts atrial depolarization, leading to atrial systole, a state of contraction, sending the 

blood from the atria to the ventricles. After the delay induced by the AV node, the atria 

repolarize and ventricular depolarization starts, leading to the ventricular systole, pumping 
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the blood to the respective circulation circuits. Finally, the ventricles depolarize, bringing 

the whole heart to a state of diastole, ending the cycle [15, 55]. 

 

Figure 2.2 - Heart’s basic anatomy and circulatory circuits (Marieb & Hoehn, 2013 [15]). 

 

Figure 2.3 – Conduction system of the heart (Guyton & Hall, 2006 [55]). 
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2.4.1.1. Electrocardiogram 

The ECG is a record of the heart’s electrical activity, which propagates through the body 

and reaches the skin surface. Several electrodes are positioned strategically on the body to 

register this activity. Depending on the position of the electrodes, different derivations of 

the ECG are obtained, providing different information on the heart’s anatomy, health and 

functioning.  

For this study, it is important to understand how the ECG reflects the cardiac cycle and HR 

information is extracted from it, as shown in Figure 2.4. The P wave is the firing of the SA 

node, indicating the beginning of atrial depolarization. The P-Q interval represents the 

delay induced by the AV node. The QRS complex represents the beginning of ventricular 

depolarization. Atrial repolarization occurs at the same time, but the magnitude of the QRS 

complex hides it from the ECG. The S-T segment is a period of complete ventricular 

depolarization. The T wave indicates ventricular repolarization, ending the cycle [15, 56]. 

  

Figure 2.4 – Electrocardiogram and the cardiac cycle (OpenStax College, 2013 [57]). 

Theoretically HR should be measured by the distance from consecutive P waves, but it is 

usually obtained from the distance between R waves, since its magnitude makes it a good 

candidate for automatic extraction [5]. The RRI characterizes the cardiac period, given in 

milliseconds (ms), which is inversely proportional to the HR and is the information that is 

actually used in the study. 

2.4.1.2. Ectopic Heart Beats 

The SA node, the AV node and the Purkinje fibers are formed by cells that have what is 

called an intrinsic rhythmical excitation. This means that these fibers can generate action 

potentials even if an external stimulus is absent. The SA node’s intrinsic firing rate is 

around 75 times per minute, while the AV node’s is around 50 times per minute and the 
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Purkinje fibers’ is around 30 times per minute. As the SA node has the fastest rhythm, it 

usually triggers the firing of these other cells before their intrinsic rhythms reaches a 

threshold and these cells fire on their own. Under specific conditions, such as signal 

blocks, these other cells may come to fire spontaneously [15, 55]. It is also possible for 

muscle cells to become pacemakers, forming an ectopic focus to take over the pacemaker 

function. Though this effect may come from health conditions, it also occurs due to 

substances such as caffeine and nicotine [15]. 

These premature beats generated by the firing of cells that are not the SA node are called 

ectopic beats or extrasystoles. Though the presentation of an ectopic beat on an ECG may 

vary according to its origin, they are usually characterized by a premature beat followed by 

a compensatory pause, as the regular rhythm is reestablished. An example of an ectopic 

beat followed by a compensatory pause can be seen in Figure 2.5. 

 

Figure 2.5 – Example of a presentation of an ectopic beat (EB) followed by a 

compensatory pause (CP) on an ECG record (blue), highlighting RRI durations (red). 

2.4.2. Arterial Blood Pressure 

Arterial blood pressure varies according to the cardiac cycle, but also varies throughout the 

body, with its average value decreasing as the vessels grow thinner, as show in Figure 2.6. 

The average BP in the pulmonary circulatory circuit is significantly lower than that in the 

systemic circulation circuit, which can be explained by the difference in the size of these 

circuits. The systemic circulation requires more pressure to travel through the whole body, 

requiring greater force from the ventricular contraction [11, 58]. 

EB       CP 
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Figure 2.6 – Pressure variation through blood vessels (Guyton & Hall, 2006 [58]). 

Figure 2.7 shows how the aortic BP varies within a cardiac cycle according to its events 

and its relation to the ECG. Right after the QRS complex, begins a period of isovolumetric 

contraction of the ventricles, where the ventricles have started to contract, but the pressure 

is not enough to push the blood through the valves that regulate the flow though the 

pulmonary artery and the aorta. During this period, arterial BP drops to its minimum value, 

which is the DBP. Once the valves open the ejection period starts, pumping all the blood to 

the arteries. The maximum pressure that occurs during this phase is the SBP. Though the 

ventricles are never completely empty, when there’s not enough blood to generate pressure 

these valves close once again, causing the dicrotic notch [11, 15, 59]. 

 

Figure 2.7 – Continuous BP in relation to the ECG and cardiac cycle events (adapted from 

Guyton & Hall, 2006 [49]). 
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2.4.3. Ectopic Beats and Blood Pressure 

Ectopic beats many times present with no apparent effect on the continuous BP records 

other than a timing alteration. However, in some cases an ectopic beat may occur so 

prematurely that the heart does not have enough time to fill properly, causing the following 

BP cycle to present lower amplitude than the neighboring ones or even to be completely 

suppressed. Figure 2.8 shows an example of each of these effects. It is important to notice 

that when the BP cycle has lower amplitude, as in Figure 2.8 (a), the SBP presents lower 

than expected while the DBP is actually higher. 

 

Figure 2.8 – Examples of how ectopic beats can affect blood pressure by lowering the 

amplitude of the correlated cycle (a) or suppressing it completely (b). The dashed red lines 

indicate the R-peaks position, delimiting the cardiac cycles. 

2.4.4. Airflow 

The ILV is a good representation of the respiratory cycle to identify the RSA phenomenon, 

once it is directly related to the inspiratory and expiratory activity and has a well-

documented physiological meaning.  

It is possible to measure ILV directly using methods such as volume based spirometers, but 

many times the information is provided in the form of airflow, given in liters per second 

(L/s), as is the case in this study. ILV can be obtained from airflow data through numerical 

integration [60, 61]. This process is further described in section 3.2.3. 

(a) (b) 
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Figure 2.9 shows lung volume under different breathing conditions as well as pulmonary 

capacities, which are combinations of lung volumes that have specific physiological 

interpretations. The tidal volume is the volume variation during normal breathing, which is 

usually of 0.5 L for adult males. The inspiratory reserve volume is the volume of a deep 

breath using full force, which exceeds the tidal volume. The expiratory reserve volume is 

the volume of forceful expiration beyond the regular tidal volume. Finally, the residual 

volume is the volume that remains after forceful expiration and keeps the lungs from 

collapsing [62, 63]. 

 

Figure 2.9 – Lung volumes and capacities (Guyton & Hall, 2006 [63]). 

In this study the focus is in the volume variation, not the absolute volume itself. Therefore 

the residual volume is not considered and what is mainly displayed is the tidal volume 

variation under normal breathing conditions, though in some records it is possible to 

observe events of deep breathing or forceful expiration. 

2.4.5. The Cardiorespiratory System Model 

The cardiorespiratory system and the physiological interactions that have been described 

so far can be represented by the closed-loop model proposed by Belozeroff et al. [64]. The 

representation of this model by Jo et al. [65] is shown in Figure 2.10, highlighting the part 

of the model that is the object of this study. Respiration modulates RRI through autonomic 

coupling of respiratory and cardiac control, while the mechanical coupling resulting from 
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the intrathoracic pressure changes affects BP through venous return. BP affects the RRI 

through baroreflex dynamics, but the RRI affects BP as well. 

 

Figure 2.10 – Cardiorespiratory system model (Jo et al., 2003 [65]). The dynamics in the 

dashed line box are the focus of this study. 

Each of the dynamics of this complex closed-loop system, represented by the blocks in 

Figure 2.10, may be studied individually by taking different combinations of variables as 

input and output. They can be studied individually or as part of the broader context. 

Considering this, the software developed as a part of this study, CRSIDLab, allows the 

user to choose any variable as system output and to indicate up to two other variables as 

inputs, providing maximum flexibility. 

In this study, the focus is on the part of the system within the dashed box in Figure 2.10, 

where ILV and SBP are taken as inputs and the RRI is the system output. For that purpose 

two subsystems are identified to generate the impulse response, which completely 

describes the dynamics of these systems [66]. The impulse response that represents the 

RCC dynamics is given by ℎ𝑅𝐶𝐶, while the impulse response representing the ABR 

dynamics is given by ℎ𝐴𝐵𝑅. In order to identify the subsystems, a few model options 
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implemented in CRSIDLab are used, as described in section 3.3.2. From the impulse 

responses, quantitative indicators are used to reach conclusions regarding the ANS. 

2.5. HEART RATE VARIABILITY 

HRV is the variation of the intervals between heart beats that can be observed on a beat-to-

beat basis around a mean value and result from various physiological mechanisms [5]. 

Though factors such as spontaneous firing of the heart’s pacemaker cells, circadian 

rhythms and body temperature play a role in this beat-to-beat variation, the most relevant 

of those mechanisms are modulated by the ANS, making HRV a good measure of 

sympathovagal balance [3, 5].  

HRV analysis starts from extracting the RRI from the ECG, as this is a measure of the 

beat-to-beat intervals. There are many methods described in the literature to quantify HRV 

in both time and frequency domains, including non-linear methods. In time domain the 

methods can be classified as statistical or geometrical methods, while the frequency 

domain methods are based on the analysis of the PSD of the RRI series [3, 4, 5]. This study 

focuses on frequency domain methods of estimating PSD, described in section 3.3.1, since 

its results are easier to interpret and frequency domain methods are better for assessing 

short term data [4].  

PSD analysis of short term RRI records, ranging from 2 to 5 min, focuses on three 

frequency bands: the VLF (0-0.04 Hz), the LF (0.04-0.15 Hz) and the HF (0.15-0.4 Hz) 

[4]. In this study records were taken over a 10 min period and the first 5 min were used for 

HRV analysis. 

Each of these frequency bands provides different information of the ANS activity. It is 

widely recognized that the HF band is a measure of efferent vagal activity and is related to 

RSA [3, 4, 6, 7]. However, the interpretation of the LF band is controversial, with some 

claiming that it is a measure of sympathetic activity, some claiming it reflects both 

sympathetic and vagal activity [3, 4, 6]. The LF band has also been associated with 

baroreflex activity [3, 67]. The VLF does not have an established physiological 

interpretation and its analysis should be avoided when using short term recordings [4]. 

Though the interpretation of the LF band is not a consensus, the LF/HF ratio has been 

shown to be a good measure of sympathovagal balance [4, 7]. 
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2.6. BLOOD PRESSURE VARIABILITY 

As HR, BP also fluctuates around a mean value on a beat-to-beat basis. These fluctuations, 

which can be observed on SBP, DBP, pulse pressure (PP) or mean arterial pressure (MAP) 

extracted from BP records, is called blood pressure variability (BPV). 

Respiration is one of the main influences of BPV and shows on the HF band, as it does on 

HRV. The HF band has also been related to changes in HR due to vagal activity [7]. The 

LF band is mainly influenced by what is called the 10-second-rhythm and is considered a 

measure of sympathetic vasomotor tone [67, 68, 69]. Though there are theories as to the 

mechanisms measured in the VLF band [70, 71], it is still not going to be addressed due to 

the short term nature of the data. In this study SBP is used as the variable representing BP 

information and so systolic BPV is evaluated. 

An increased BPV associated with hypertension has been studied in connection to cardiac 

events such as strokes and coronary events [72]. Increased BPV has also been linked to 

increased sympathetic drive and reduced sensitivity of arterial and cardiopulmonary 

reflexes [70, 73].  
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3. CRSIDLAB 

Part of this study consisted on the development of a Matlab-based toolbox named 

CRSIDLab (Cardiorespiratory System Identification Lab). Its development started as an 

undergraduate study and continued in the present study to include more methods. This 

chapter presents CRSIDLab and all methods implemented, some of which were later used 

to perform the ANS study, as specified in Chapter 4. 

CRSIDLab allows processing of ECG, continuous arterial BP, airflow, and lung volume 

registers and performs univariate PSD analysis as well as system model identification 

using up to three variables extracted from the data. ECG processing is based on ECGLab’s 

implementation, a Matlab-based toolbox for HRV evaluation also developed at the 

University of Brasília [27]. The GUI is built as a single unit with multiple nested tabs, 

which helps the user follow the processing flow. 

CRSIDLab is meant to be a tool for quantitative ANS evaluation for academic purposes, to 

be used by researchers of both medical and engineering backgrounds. A major concern 

during development was flexibility for the user, once the cardiorespiratory system has 

complex interactions that can be studied from different perspectives, using different 

combinations of variables.  

The main page on CRSIDLab is divided in three parts: the first allows creating a new 

patient file, which is detailed in section 3.1, or opening an existing one; the second allows 

viewing and editing the patient record, with proper identification, contact information, 

clinical and family history, information on the physical exam and protocols involved in the 

study, as well as any relevant comments; the last is a panel with an overview of the 

available data in the patient file that is currently opened.  

Figure 3.1 is a flowchart of the pre-processing and analysis flows. The user can choose to 

supply the continuous records of ECG and BP data for pre-processing or can enter the 

variables of HR, RRI, SBP or DBP for aligning and resampling, as described in section 

3.2.4, before analysis. Airflow or ILV can be supplied as respiration data. Univariate PSD 

analyses and univariate and multivariate system identification analyses are available, from 

models that can be specified by the user. The quantitative indicators are exported to text 

files that are formatted to be easily imported to statistical analysis software. 
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Figure 3.1 – Overview of the pre-processing and analysis steps. Pre-processing: raw ECG 

and BP can be filtered separately, then processed either simultaneously or individually for 

RRI, SBP and/or DBP extraction; airflow is transformed to ILV and ILV can be filtered; 

any combination of available variables can be aligned and resampled (A&R) either 

individually or as a data set. Analysis: the PSD of any resampled variable is estimated 

using the Fourier transform, the Welch method and/or an AR model; system identification 

is performed with a combination of up to three A&R variables and the impulse response is 

estimated from an AR/ARX, LBF or MBF model. 
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3.1. PATIENT DATA OBJECT AND CREATING A PATIENT FILE 

A data object was created to store and manage all data that can be generated through the 

process, allowing all information to be kept in a single file. This object, named patientData 

has a rather complex structure, detailed in Appendix A, due to the amount of data that can 

be produced and the intended flexibility for the user. 

A new patient file can be created through code, by creating a patientData object and 

adding the desired variables to the corresponding object properties, which is not 

recommended, as any mistakes may prevent the toolbox from working as expected. 

Alternatively, it can be created through the interface, which has a dedicated window, 

shown in Figure 3.2, to help build a new patient file, requiring the user to upload the 

desired variables to Matlab’s workspace and inform the type of data from a list of options 

and create the file. The user can also indicate a filename and destination folder for this new 

patient file directly in the main page. 

 

Figure 3.2 – Window that manages variables to create a new patient file. Variables 

uploaded to Matlab’s workspace are listed as options for the main variable and associated 

time vector, sampling frequency and start time. The sampling frequency and start time can 

alternatively be typed in. Variable type and specification can be selected from a list of 

options. Clicking the “View data” button opens a window to display the indicated variable 

for visual inspection. Clicking the “Refresh variables from WS” updates the options listed 

for variables selection to include any new variables that were uploaded to Matlab’s 

workspace. 
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The variables that can be imported to the patient file through the interface are raw and/or 

filtered ECG, RRI, raw and/or filtered continuous BP, SBP, DBP, raw and/or integrated 

airflow and/or ILV (detrended integrated airflow). 

While the time information associated with each variable is an optional input, it is 

recommended that both a time vector and sampling frequency are supplied. This is because 

it is not unusual for the time vector not to correspond to a precise sampling frequency due 

to numerical representation of values, for instance. As some algorithms require the 

sampling frequency as input, such as digital filter implementations or the Fourier 

transform, and some take into account the supplied time vector, such as aligning and 

resampling the data set, the best results are obtained by providing both. 

If the time vector is not supplied, one is created from the sampling frequency and the start 

time informed. If the start time is not informed, it is considered to be zero. If neither time 

vector nor sampling frequency is supplied, the sampling frequency is considered one. If a 

time vector is supplied, but not the sampling frequency, the sampling frequency is 

estimated from the given time vector as the rounded inverse of the average sampling 

interval.  

3.2. PRE-PROCESSING 

This section presents all methods regarding the pre-processing of ECG, continuous BP and 

airflow data, the extraction of variables (RRI from ECG, SBP and/or DBP from continuous 

BP and ILV from airflow data) and the aligning and resampling of the final dataset, which 

is necessary for the available analyses methods, as better explained in section 3.2.4. 

3.2.1. Filter ECG/BP data 

ECG and continuous BP data records are vulnerable to noise and, though many acquisition 

systems today perform some sort of pre-filtering, additional filtering may be necessary. 

CRSIDLab provides options for filtering the main sources of ECG and BP noise, but it is 

important to make sure protocols are in place during signal acquisition. Electrode contact, 

transducer displacement and patient motion artifacts may cause the signal to be completely 

lost for segments of time, which cannot be reversed.  
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Three noise sources are addressed for ECG filtering. Powerline interference occurs due to 

the transformation of alternate to continuous current and causes interference at powerline 

frequency and its harmonics. Electromyography (EMG) noise comes from muscle 

electrical activity that has a frequency band that overlaps with the ECG and is inevitably 

recorded. Finally, the baseline wander results from the relative movement of the electrodes 

in relation to the position of the heart, which is usually due to breathing, but may occur 

from other body movements [74, 75].  

CRSIDLab has maintained the filtering options from ECGLab [27] for the ECG: a 60 Hz 

notch filter of adjustable width tolerance from 1 to 20% to remove powerline interference; 

a low-pass filter with cut-off frequency from 20 to 60 Hz to remove EMG noise; and a 

high-pass filter with cut-off frequency from 0.001 to 1 Hz to remove baseline wander.  

The high and low-pass filters are 2nd order Butterworth filters. The notch filter is 

constructed by allocating zeros on the unit circle at 60 Hz and any harmonics within the 

frequency range and poles at the same frequencies close to the zeros. The poles are added 

to minimize the low-pass effect of the all-zeros filter. The tolerance value that can be 

adjusted by the user controls the distance between the poles and zeros. For all filters, 

forward and reverse filtering is applied so that there is no phase distortion. Figure 3.3 

shows the squared magnitude of the notch filter for 1 (blue) and 20% (green) tolerance, 

representing the filter magnitude effects after reverse and forward filtering. 

 

Figure 3.3 – 60 Hz notch filter squared magnitude for 1% width tolerance (blue) and 20% 

tolerance (green), representing the magnitude effects after reverse and forward filtering, 

with phaseless response. 
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An additional feature allows flipping the ECG vertically, so that it can be positioned 

correctly if the electrodes were inverted during acquisition. This is necessary for accurate 

RRI extraction, as explained in section 3.2.2.1. 

Figure 3.4 (a) and (b) show an example of ECG contaminated with powerline interference 

and the effects of applying a 1% width tolerance 60 Hz notch filter, respectively. Figure 

3.5 (a) shows an example of ECG contaminated with EMG noise and Figure 3.5 (b), the 

same signal after applying a 35 Hz low-pass filter. Finally, Figure 3.6 (a) and (b) present a 

wider window of the ECG record so that baseline wander can be visualized alongside the 

effects of applying a 0.01 Hz high-pass filter. 

 

Figure 3.4 – Example of ECG record contaminated with 60 Hz powerline noise (a) and 

after applying a notch filter of 1% width tolerance (b). 

 

Figure 3.5 – Example of ECG record contaminated with EMG noise (a) and after applying 

a 35 Hz low-pass filter (b). 

(a) (b) 

(a) (b) 
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Figure 3.6 – Raw ECG record (a) and after filtering for baseline wander with a 0.01 Hz 

high-pass filter (b). 

There are different ways of measuring continuous BP and so the noise present in records 

may have different sources. Powerline interference can affect BP transducers that use intra-

arterial catheters and carry conductive fluids through ground loops formed by patient 

contact with other devices [76]. High frequency noise can usually be observed in 

continuous BP records. The fundamental frequency of the BP is given by the HR and not 

more than ten harmonics are necessary to satisfactorily represent continuous BP [77, 78]. 

This means that applying a 20 Hz low-pass filter to a continuous BP record would allow a 

good enough representation of BP for HR up to 120 bpm (20 × 60 10⁄ ), while a 60 Hz 

low-pass filter can handle HR up to 360 bpm. Therefore, the low-pass filter used for EMG 

removal can be applied to the BP records to remove high-frequency noise without 

compromising the relevant information.   

An example of BP contaminated with powerline interference could not be found on the 

available database. Figure 3.7 (a) shows BP contaminated with high-frequency noise and 

Figure 3.7 (b) shows the same signal after applying a 35 Hz low-pass filter.  

(a) (b) 
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Figure 3.7 – Example of BP record contaminated with high-frequency noise (a) and after 

applying a 35 Hz low-pass filter (b). 

3.2.2. Extract variables from ECG/BP 

Variables that can be extracted from the ECG and continuous BP records can be used to 

characterize the cardiorespiratory system, as discussed in section 2.4. This can be done for 

each record individually or both simultaneously, in which case algorithms that take 

advantage of the combination of the data can be employed. There are several algorithms 

available for RRI extraction from the ECG and for SBP and DBP extraction from the 

continuous BP record. Each algorithm is described in the following sections. 

Besides automatic variable extraction options, it is possible to make manual corrections. 

The extracted variables are shown on the plots so that the user may perform visual 

inspection. RRI and SBP show as red dots on the ECG and continuous BP records, 

respectively, while the DBP shows as red asterisk. Clicking on a mark will erase it, while 

clicking on an unmarked spot creates a new mark. 

This need to differentiate SBP from DBP on manual corrections led to the introduction of 

the SBP/DBP threshold, which is a value that can be modified by the user and determines 

which part of the continuous BP plot is interpreted as SBP and which part is interpreted as 

DBP for the functions that depend on clicks on the screen. This value can be changed at 

any time, allowing the user to adapt it as needed, which is especially useful when 

correcting variables that result from ectopic beats and have values that differ too much 

from its neighbors. This threshold can be shown on the plot as a horizontal line so that the 

user has visual confirmation and knows when to adjust it. 

(a) (b) 
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Another feature in this tab is the manual indication of ectopic beats and corresponding BP 

variables. There is a menu where the user can indicate the variables that they wish to edit, 

allowing RRI, SBP and DBP to be marked as extrasystoles simultaneously. Though there 

are different ways to correlate these variables, for this purpose the one proposed by 

Rompleman and Tenvoorde [79] is used, as shown in Figure 3.8, where a heartbeat is 

considered to influence the following BP cycle. Later on, these marked values can be 

treated by interpolation or be removed if desired. If an ectopic beat occurs along with a 

compensatory pause, both should be marked for correction, the short and the long beats. 

 

Figure 3.8 – Relation between the R wave on the ECG and SBP and DBP values 

(Rompleman & Tenvoorde, 1995 [79]). 

3.2.2.1. RRI extraction 

The RRI extraction algorithms are as implemented on ECGLab [27], with a single 

modification. ECGLab’s algorithms used the module of the ECG to determine the R peak 

position for each beat, which sometimes led to S peak detection, when it presented greater 

than the R peak, or alternating detection of R and S peaks on the same record when their 

magnitudes were similar. These effects may occur depending on the ECG derivation that is 

being processed or due to physiological or anatomic variations on the subject being 
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recorded. In this implementation, only positive peaks can be found as R peaks. With the 

option to flip the data vertically in the filtering stage, the user should make sure the ECG is 

not upside down, so that the R peaks are found correctly. 

There are two algorithms that differ slightly, named the “Fast” and the “Slow” algorithms. 

The initial steps are common to both algorithms and include low-pass filtering at 17 Hz, 

which maximizes signal-to-noise-ratio (SNR) [75], and calculating the derivative of this 

filtered signal, enhancing the QRS complex that naturally presents a fast slope, and a 

subsequent low-pass filtering at 30 Hz to suppress the noise enhanced by the derivative 

[27]. Finally the signal is squared to enhance QRS even further and a moving average low-

pass filter of 17 Hz is applied to estimate the power of the 17 Hz component of each 

section. The moving-average window is set at 150 ms, as it must be large enough to 

contain at least one QRS complex, but not so large as to contain two consecutive QRS 

complexes [75]. This process assures QRS detection even when the T wave shows with 

bigger amplitude or the R wave is diminished, since it relies on the shape of the QRS 

complex, as well as its magnitude. Figure 3.9 shows an example of how this new filtered 

signal looks (green) for a given ECG record (blue), where a delay introduced by the filters 

can be seen. This issue is addressed later on by each algorithm. 

 

Figure 3.9 – ECG record (blue) and the signal obtained after QRS enhancing for R peak 

identification (green). The varying threshold is applied to the signal with enhanced QRS to 

detect the R wave. 

The next step consists of applying a varying threshold to this filtered ECG record to find 

each R peak. Both algorithms initially sweep the filtered ECG record, determining a 

threshold equal to 0.15 times the maximum value of the next 2 s. While the “Fast 
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algorithm” searches for any sample above the threshold every 10 ms, jumping 350 ms 

when one is found, the “Slow algorithm” runs through every sample above the threshold, 

searching for the maximum point, jumping 200 ms when one is found. These approaches 

affect the processing time and precision of the algorithms. 

As the filtered ECG is delayed when compared to the original ECG record, the next step is 

to find the actual R peaks from the reference obtained in the previous step. Here the two 

algorithms differ as well. While the “Fast algorithm” searches for local maximums at an 

interval from 30 ms prior to 40 ms after each index of the values above the varying 

threshold, a range of 70 ms, the “Slow algorithm” searches the 160 ms prior to each index 

found above its varying threshold. This range difference also accounts for the time and 

precision differences between the algorithms. 

Finally, the RRI is obtained from the difference in the time stamps of consecutive R waves, 

presented in milliseconds. The occurrence of each RRI is at the second R peak, or at the 

end of the interval, as is recommended by the Task Force on HRV standards [4]. Figure 

3.10 illustrates QRS detection using the “Fast algorithm” (a) and the “Slow algorithm” (b), 

with the R peaks marked as red dots on the ECG. Figure 3.10 shows an example where the 

lower precision of the “Fast algorithm” in exchange for faster processing time has resulted 

in misdetections, while the “Slow algorithm” was able to correctly identify all R peaks.  

 

Figure 3.10 – Example of RRI extraction (red) from the ECG record (blue) in a situation 

where the “Fast algorithm” fails to detect two R peaks correctly (a) while the “Slow 

algorithm” is able to identify the location properly (b), both highlighted by the black 

circles. 

(a) (b) 
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3.2.2.2. SBP extraction 

There are two methods available for SBP extraction from continuous BP records. The first 

identified on the interface as the “Waveform algorithm” and hereinafter referred to as 

method 1, was developed by Li et al. [80] and uses the first derivative of the continuous BP 

to locate a zero-crossing after the point of maximum inflection for each cycle, which 

indicates each SBP location. This algorithm is efficient in locating the region of occurrence 

of the SBP, but does not always select the absolute maximum value per cycle. Figure 3.11 

(a) shows an ECG with the extracted RRI marked as red dots, while Figure 3.11 (b) shows 

the associated BP record after SBP extraction using method 1, marked as red dots. Figure 

3.11 shows an ectopic beat that led to a BP was too low compared to neighboring values, 

leading to a misdetection, highlighted by the black circle. 

 

Figure 3.11 – ECG record (a) with extracted RRI (red dots) along with the corresponding 

BP record (b) and SBP (red dots) extracted using method 1. The highlighted BP cycle in 

(b) shows an example where method 1 failed to identify the SBP due to an ectopic beat that 

resulted in a very low BP compared with neighboring values. 

Method 2, identified in the interface as “SBP from RRI”, was developed to provide a more 

precise SBP detection, taking advantage of the possibility of processing ECG and BP 

simultaneously. It requires that RRI extraction is performed first and uses the time stamps 

of the R peaks to segment the continuous BP data and find local maximums, corresponding 

to the SBP of each cycle. This algorithm is simple and very precise, failing only in very 

specific situations. Figure 3.12 shows the same example displayed in Figure 3.11, but now 

the SBP detection is performed using method 2. The black circle that highlighted a 

(a) 

(b) 
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misdetection from method 1, now highlights a wrongful SBP detection by method 2, 

shown as red dots on the BP record (Figure 3.12 (b)), due to an ectopic beat that not only 

caused the highlighted BP to be lower, but in this case also caused part of the BP from the 

previous cycle to be included in the search region for local maximum. 

 

Figure 3.12 – ECG record (a) with extracted RRI (red dots) and the corresponding BP 

record (b) and SBP (red dots) extracted using method 2. The BP data is segmented from 

the previously extracted RRI, as indicated by the dashed red lines, to find the local 

maximums, or SBP. The highlighted SBP is a wrongful detection due to an ectopic beat 

that both altered the timing used for BP segmentation and significantly lowered the SBP of 

the following cycle. 

3.2.2.3. DBP extraction 

DBP extraction is more complicated than RRI or SBP extraction because the minimum BP 

value of a cycle does not always happen immediately before the SBP of that cycle, in 

which case it does not correspond to the DBP [81] and the DBP region of the continuous 

BP can be noisy. Thus, there are three different methods available to extract DBP that were 

developed to increase precision but maintain flexibility for the user. 

Method 1 is the “Waveform algorithm” by Li et al. [80], the same used for SBP extraction. 

It locates a zero-crossing before the point of maximum inflection of the first derivative of 

the continuous BP, which indicates each DBP location. This algorithm is also efficient in 

locating the region of occurrence of the DBP, performing well for noisy records. Figure 

3.13 displays the same example used for the SBP detection methods with the DBP 

extracted by method 1 marked as red asterisks (Figure 3.13 (b)). As was the case with 

(a) 

(b) 
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method 1 for SBP detection, the DBP from the highlighted BP, which results from an 

ectopic beat, could not be detected. 

 

Figure 3.13 – ECG record (a) with extracted RRI (red dots) along with the corresponding 

BP record (b) and DBP (red asterisks) extracted using method 1. The highlighted BP cycle 

in (b) shows an example where method 1 failed to identify the SBP due to an ectopic beat 

that resulted in a very low BP compared with neighboring values. 

Method 2 is an alternative for those who wish to process BP data individually, but want 

more precise measures. It is identified as “DBP from SBP”, requiring the previous 

extraction of SBP and using the time stamp of each SBP to segment the BP data and search 

for local minimums. Method 2 is not recommended for data that is especially noisy on the 

DBP region or that present a systematic issue such as a very low dicrotic notch. Figure 

3.14 illustrates the use of this algorithm, showing the previously extracted SBP as red dots, 

used to segment the BP data for the extraction of DBP, indicated through red asterisks. The 

highlighted DBP in Figure 3.14 is an example of misdetection caused by a low dicrotic 

notch combined with a rising BP trend, causing the dicrotic notch to be lower than the 

following DBP. 

Method 3 is an attempt to improve the results from method 2 by narrowing the search 

region for the DBP. It is identified as “DBP from RRI and SBP” and requires the previous 

extraction of both RRI and SBP. The time stamps are used to isolate the areas between one 

R peak and the following SBP, which is the region where the DBP should occur. This is 

the most precise of the methods presented, but it is still sensitive to high frequency noise in 

this region. Figure 3.15 illustrates the algorithm by showing the ECG record (a) with the 

(a) 

(b) 
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previously extracted RRI marked as red dots together with the corresponding BP (b) with 

the previously extracted SBP marked as red dots. The yellow areas are the search areas, 

delimited by the dashed lines representing the RRI and SBP time stamps, where local 

minimums are found and marked as red asterisks. The highlighted DBP is an example of 

misdetection due to noise on the DBP region. 

 

Figure 3.14 – BP record with the previously extracted SBP (red dots), which are used in 

method 2 to segment the BP data, as indicated by the red dashed lines, and find local 

minimums (red asterisks). The highlighted DBP is a misdetection due to a low dicrotic 

notch combined with a rising low frequency trend. 

 

Figure 3.15 – ECG record (a) with extracted RRI (red dots) along with the corresponding 

BP record (b), SBP (red dots) and DBP (red asterisks) extracted using method 3. The 

search region for each DBP, delimited by the previously extracted RRI and SBP, is shown 

in yellow (b). The highlighted BP cycle in (b) shows an example where method 3 

wrongfully detects the DBP due to noise in the search region. 

(a) 

(b) 
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3.2.3. Pre-process respiration data 

The respiration data processing flow differs from those of ECG and continuous BP, thus it 

is performed separately. 

If airflow data is available, given in liters per second, the first step is to convert it to lung 

volume information. For this purpose, numerical integration of the data is performed. The 

integration introduces a drift, which may be due to temperature and humidity differences in 

the air coming into and out of the lungs, to the fact that usually more oxygen is absorbed in 

the lungs than carbon dioxide is expelled, air leakages or even calibration and sensor 

response issues [61]. To remove this trend, linear and polynomial detrending are available, 

as well as a high-pass filter of low cut-off frequency, as these drifts can usually be 

approximated to a line or a low frequency curve [61]. Polynomial order can be set in the 

range of 1 to 10 and the high-pass filter cut-off frequency can be set between 0.01 and 

0.15 Hz. It is possible to visually compare the effects of these methods through the GUI 

before selecting the one that better suits the data. Figure 3.16 (a) shows an example of 

integrated airflow with the resulting trend and the results from detrending the data (b) 

using linear detrend (blue), polynomial detrend of order 3 (green) and a high-pass filter 

with cut-off frequency of 0.01 Hz.  

 

Figure 3.16 – Integrated airflow presenting a drift after integration (a) and the results after 

applying the detrending methods (b): linear detrend (blue), polynomial detrend of order 3 

(green) and high-pass filter with cut-off frequency of 0.01 Hz (red). 

Though the integration has the effect of a low-pass filter [75], some ILV data still present 

high-frequency noise after integration. If the data was acquired as volume directly, there 

may be some noise as well. Therefore, a low-pass filter with cut-off frequency ranging 

(a) (b) 
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from 1 to 4 Hz is provided for ILV if necessary. The effects of two different cut-off 

frequencies can be visually inspected through the GUI in comparison to the unfiltered 

signal to help set the value that is better adjusted for the data. 

Figure 3.17 shows a raw airflow record (a), the integrated airflow before detrending (b) 

and the detrended ILV (c), as an example of transforming airflow (L/s) to ILV (L). 

 

Figure 3.17 – The raw airflow (a), given in L/s, is integrated (b) to present volume 

information in L. The trend resulting from the transformation is removed, in this case using 

a 0.01 Hz high-pass filter, resulting in the instantaneous lung volume (c). 

3.2.4. Align and resample data set 

The RRI, SBP and DBP time series are points extracted from the ECG and continuous BP 

records that are unevenly sampled, as they occur on a varying beat-to-beat basis. As one 

RRI is only indicated at the instant of the R peak that ends the interval, the first SBP and 

DBP samples available always occur before the first RRI sample. The ILV record, on the 

other hand, is evenly sampled at a high sampling frequency, thus its first sample is 

available before and its last sample after any of the other data. 

(a) (b) 

(c) 
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CRSIDLab has two analysis approaches available. The frequency domain PSD can be 

estimated using three different methods: the Fourier transform, the Welch method and the 

AR model. Both the Fourier transform and Welch methods apply the Fourier transform to 

the data, assuming it to be evenly sampled [5, 82, 83]. Time domain impulse response can 

be calculated from three different models: the AR/ARX model, the LBF model and the 

MBF model. These methods not only require the data to be evenly sampled, but for 

multivariate analysis assumes that all samples are aligned, meaning an index corresponds 

to the same time stamp for all data [14, 37]. The data set needs to be aligned and resampled 

in order to meet those requirements. 

In this tab, the user can choose how to handle the ectopic beat related variables marked on 

the “Extract variables from ECG/BP” tab, as described in section 3.2.2, address the issues 

regarding the data borders that arise from the fact that the registers begin and end at 

different times and select one of the available methods for resampling the data. All of these 

features are detailed in the next sections. It is also possible to convert the RRI (ms) to HR 

(bpm) after resampling, which is done by adjusting the time scale and inverting the values. 

3.2.4.1. Ectopic beats and corresponding BP variables 

Ectopic beats do not result from the ANS modulation of HR and its effects are reflected in 

the BP data, both in timing and magnitude, as discussed in section 2.4.3. Though it is 

recommended that ectopic-free records are used, as editing may significantly alter PSD 

analysis [4], it is not always possible to get the necessary amount of data for a study where 

no ectopic beats happen. 

If the user chooses to edit the ectopic beats or related BP variables, there are two options 

available. The first one is to remove those samples from the data, which may be the best 

approach if there is a large number of ectopic beats. The second one is to estimate those 

samples based on the neighboring ones using cubic splines interpolation, which is the usual 

approach [5, 82]. The time axis is also interpolated in order to fully correct the ectopic beat 

effects. Selecting any of these options updates the plots on the interface in real time, so that 

the results of applying each method can be evaluated before resampling. 

Figure 3.18 shows an example of ectopic beats and corresponding SBP and the effects of 

applying each of the correction options. In all of the plots, the first ectopic beat and 

following compensatory pause are highlighted in yellow and the second in orange. Figure 
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3.18 (a,c,e) shows the RRI series while Figure 3.18 (b,d,f) show the corresponding SBP 

series. Figure 3.18 (a,b) show the RRI and SBP series without intervention. Figure 3.18 

(c,d) shows the results from removing the ectopic variables. Finally, Figure 3.18 (e,f) 

shows the effects of applying cubic splines to estimate the variables. 

 

Figure 3.18 – Examples of the effect of ectopic beat related variables on RRI (a,c,e) and 

corresponding SBP (b,d,f) and the effects of the available correction methods. The yellow 

background highlights the first ectopic beat and related SBP, while the orange background 

highlights the second ectopic beat and related SBP. Ectopic beats as they present on RRI 

and SBP records (a,b), after removal (c,d) and after interpolation (e,f). 

3.2.4.2. Data borders 

There are two main issues regarding the data borders when aligning a data set: the fact that 

the records begin and end at different times and that some of the resampling algorithms 

cannot extrapolate the data, being unable to estimate the first and last samples. 

Considering this scenario the user is given two tools. The first is to indicate the start and 

end points desired for the resampled data set. The start and end points can be selected as 

the first or last sample of one of the available variables. The end point can also be 

(b) 

(d) 

(f) 

(a) 

(c) 

(e) 
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determined by the desired number of samples. The points selected as start and end of the 

resampled data set are shown on the plots as vertical grey lines in real time to aid the user. 

The second tool provides two methods to complete the data borders. The first option is 

called constant padding, where the edge sample is repeated until the necessary segment is 

completed. The second method is called symmetric extension, where the borders are 

mirrored at their limits, assuming that the variations around that edge values should be 

similar [84]. The border extension is also shown on the plots as a red continuance of the 

data for the data that have segments of missing borders in real time. 

Figure 3.19 shows the first five seconds of a data set consisting of RRI, SBP and ILV with 

the data extensions in red, as shown on the GUI, showing RRI and SBP extension through 

constant padding (a) and symmetric extension (b). The grey line marks the latest starting 

variable, RRI, which could be used to truncate all variables.  

 

Figure 3.19 – Example of border gaps at the beginning of time aligned RRI, SBP and ILV 

records. The gaps in RRI and SBP are filled (red) using constant padding (a) and 

symmetric extension (b), while the grey line delimits the latest starting signal, RRI, which 

could be used as reference to truncate all records. 

(a) (b) 
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3.2.4.3. Resampling algorithms 

Before addressing the resampling algorithms it is important to discuss the sampling 

frequency. The Nyquist criterion states that the sampling frequency should be at least twice 

the signals highest frequency for it to be well represented, therefore it is necessary to 

evaluate the HR of all subjects before selecting a sampling frequency. Most studies use 

frequencies from 2 to 4 Hz to resample the data, which assumes the highest HR to be 60 

and 120 bpm respectively, but values as low as 1 Hz and as high as 10 Hz can be found in 

the literature [5], assuming the highest HR to range from 30 to 300 bpm. On that account, 

CRSIDLab allows the user to indicate a resampling frequency within this range. 

The selected sampling frequency is used to create a new time vector, with time stamps that 

correspond to the position of the samples that must be estimated to generate the resampled 

data. This time vector is the same for all records being simultaneously processed, so that 

they also aligned in time. 

Resampling the RRI time series may introduce undesirable artifacts to the analysis of the 

data, once the method employed makes an assumption regarding the relationship between 

points. Usually, this resampling is performed using linear or cubic splines interpolation [5, 

82], and so both methods are available on the toolbox.  

These techniques, however, have been shown to overestimate the LF components and 

underestimate HF components, leading to an overestimation of the LF/HF ratio. These 

effects are greater using linear interpolation and aggravated as the number of ectopic beats 

increase [82]. Berger et al. [85] proposed an algorithm for resampling RRI that was shown 

to produce a PSD estimate relatively free of artifacts when compared to other methods by 

using an integral pulse frequency modulation (IPFM) model. This algorithm is adapted in 

CRSIDLab to resample all unevenly sampled data, including SBP and DBP and is 

described below. 

Resampling algorithm proposed by Berger et al 

The traditional tachometer signal, as presented in Figure 3.20 (b) from the corresponding 

ECG in Figure 3.20 (a), is the equivalent of applying a zero-order hold to a sequence of 

inverse RRI, which can be performed in real time. This causes the step duration to be 

correlated to the previous RRI instead of the current one. DeBoer, Karemaker & Strackee 

[8] showed that this delay incurs in a biased estimate of the HR and can lead to phase shifts 
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in multivariate analysis. The algorithm proposed by Berger et al. [85] is based on a 

tachometer in which the inverse RRI is maintained for its own duration, avoiding these 

distortions [8]. This tachometer can be seen in Figure 3.21 (c), which illustrates the 

proposed algorithm and is further described ahead. 

 

Figure 3.20 – ECG record (a) and the traditional tachometer generated from it (b), which is 

obtained by applying a zero-order hold to the RRI. 

The discontinuities in the tachometers introduce artifacts that can be attenuated through a 

low-pass filter [8]. The Berger algorithm has the same result as applying the low-pass filter 

𝑊, described as a function of the discrete frequency 𝑓 by: 

 
𝑊(𝑓) = [

sin(2𝜋𝑓 𝑓𝑟⁄ )

2𝜋𝑓 𝑓𝑟⁄
]

2

, (3.1) 

which has an anti-aliasing effect, passing very little power over the Nyquist frequency 

𝑓𝑟 2⁄ , where 𝑓𝑟 is the chosen resampling frequency. This filtering process is equivalent to 

performing a convolution of the tachometer in Figure 3.21 (c) and a rectangular window of 

length 2 𝑓𝑟⁄ , however, the proposed algorithm avoids the convolution. 

Initially, a window of length 2 𝑓𝑟⁄  is centered at the sample that is to be estimated. The 

final value of the 𝑖𝑡ℎ HR sample, 𝑟𝑖, is given by 

 
𝑟𝑖 =

𝑓𝑟
2

× 𝑛𝑖, (3.2) 

in which 𝑓𝑟 is the selected resampling frequency and 𝑛𝑖 is the number of RRIs inside the 

given window. 

Figure 3.21 illustrates the algorithm highlighting the windows for estimating samples at the 

instants 𝑡1 and 𝑡2. The window for estimating the sample at 𝑡1 falls entirely within the 

(a) 

(b) 
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interval identified as 𝐼2 and is of length 𝑎, where 𝑎 is given in the same time unit as the 

RRIs. Therefore, the number of RRIs within this window is given by 𝑎 𝐼2⁄ . Noting that the 

window length equals two sampling intervals, 2 𝑓𝑟⁄ , the final value for the sample at 𝑡1is 

then 1 𝐼2⁄ , the inverse of the interval itself, by Equation (3.2). This HR signal is not scaled 

in beats per minute, but beats per second. The window centered at 𝑡2 falls partly on interval 

𝐼3 and partly on the interval 𝐼4 and so the number of RRIs is given by 𝑏 𝐼3⁄ + 𝑐 𝐼4⁄ . Since 

both windows are the same length, 𝑎 = 𝑏 + 𝑐 = 2 𝑓𝑟⁄ .  

 

Figure 3.21 – Illustration of the algorithm proposed by Berger et al. [85] where evenly 

sampled HR (b) is derived from an ECG record (a) based on the tachometer (c). The 

number of beats in a window of length 𝑎 =  2 𝑓𝑟⁄  is counted and then multiplied by 𝑓𝑟 2⁄ . 

For 𝑡1 the number of beats is given by 𝑎 𝐼2⁄  and for 𝑡2 by (𝑏 𝐼3⁄ ) + (𝑐 𝐼4⁄ ) (adapted from 

Berger et al., 1986 [85]). 

This algorithm was developed do generate an evenly sampled HR signal. On CRSIDLab it 

has been modified so that it can be used to resample RRI without necessarily converting it 

to HR and so the same logic can be applied to resampling SBP and DBP. The user can 

require the RRI to be converted to HR after resampling, which is done by taking its inverse 

and adjusting the time scale. 

In this implementation, instead of counting the number of intervals and multiplying by half 

the resampling frequency, the 𝑖𝑡ℎ RRI sample 𝑟𝑖 is given by taking the normalized lengths 

of the window segments that fall on different intervals and multiplying it by the 

corresponding intervals. Thus, in Figure 3.21 the window length is given by 𝑎 and the 

(a) 

(b) 

(c) 
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interval value at 𝑡1 is 1 × 𝐼2, which is the interval itself, as expected. At 𝑡2, however, there 

are two segments, 𝑏 and 𝑐 and so the interval value is given by (𝑏 𝑎⁄ ) × 𝐼3 + (𝑐 𝑎⁄ ) × 𝐼4, 

in which (𝑏 + 𝑐) 𝑎⁄ = 1. This process is used for SBP and DBP as well. 

Figure 3.22 shows an ECG record (a) with the R peak positions indicated by the dashed red 

lines and the corresponding tachometer (b, blue) and resampled RRI (b, green), as 

proposed by Berger et al. Figure 3.23 shows the continuous BP (blue) with the adapted 

tachometers for SBP and DBP (green) as well as the resampled SBP and DBP (red). 

 

Figure 3.22 – ECG record (a) with the corresponding tachometer (blue) and resampled RRI 

(green) for 𝑓𝑟 = 4 using the adapted Berger algorithm. The red dashed lines indicate the R-

peaks position. 

(a) 

(b) 
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Figure 3.23 – Example of the adapted Berger algorithm used to resample SBP and DBP 

(red) extracted from the BP record (blue) and the equivalent adapted tachometers (green). 

3.3. ANALYSIS 

This section presents all methods available to perform the univariate PSD analysis as well 

as the univariate or multivariate system identification. To perform these analyses, the 

variables must be resampled and, for multivariate systems, time aligned. 

3.3.1. Power Spectral Density 

The PSD describes how the power of a given signal is distributed on a frequency spectrum. 

The PSD of the RRI provides a measure of HRV [5, 4, 14] while the PSD of variables 

related to BP, such as SBP and DBP, provide measures of BPV [67, 70, 86]. 

CRSIDLab presents three different methods for PSD estimation: the classic Fourier 

transform approach, the Welch method and the AR model. CRSIDLab has various window 

options, to address the issue of spectral leakage, further addressed in section 3.3.1.1. 

The user can select any combination of PSD methods to be displayed simultaneously on 

the GUI, which makes it easier to select parameters for the AR model and Welch methods. 

Sections 3.3.1.2, 3.3.1.4 and 3.3.1.3 discuss the three methods for PSD estimation while 

section 3.3.1.5 presents the quantitative indicators derived from the PSD. 
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3.3.1.1. Windowing 

The non-parametric methods are based on the Fourier transform, which assumes that the 

signals under analysis are infinite and periodic. However, only a finite part of a signal can 

be digitized and processed in a computer and this truncation introduces artifacts to the PSD 

estimation [5, 83, 87]. 

Windowing is performing the multiplication of a signal and a window in time domain, 

which is equivalent to convolution in the frequency domain. Truncating the signal can be 

interpreted as applying a rectangular window, of value 0 outside the duration of the records 

and value 1 for its duration, to the original infinite data. As the spectral components of the 

window show on the PSD of a signal, the discontinuities introduced to the data edges by 

such rectangular window produce spectral leakage, where the power of a given frequency 

leaks to the nearby frequencies [83, 87]. 

For a window to cause no alteration to the PSD of a signal, it would have to have a unit 

impulse spectrum. Windows other than the rectangular window might help attenuate the 

discontinuity of the edges. By comparing the frequency response of a window to a unit 

impulse it is possible to evaluate how it affects the PSD of that signal. The larger the 

mainlobe, the more neighboring frequencies are averaged together, resulting in a lower 

resolution PSD with less defined peaks. The sidelobes determine how much distant 

frequencies are merged into the PSD. Therefore, a window of narrow mainlobe and low 

sidelobes would be preferred [87]. 

CRSIDLab has five window options: rectangular, Bartlett, Hanning, Hamming and 

Blackman. Time and frequency representations of these windows are presented in Figure 

3.24 (a) through (d), respectively. 

While the rectangular window presents the narrowest mainlobe, it also has the least 

sidelobe attenuation. The Blackman window, on the other hand, offers the greatest sidelobe 

attenuation, however it also has the largest mainlobe. While choice of window is a 

tradeoff, it has little effect on HRV analysis [83]. 

On CRSIDLab a window is applied to the whole signal before performing PSD estimation 

using the Fourier transform method and a window is applied to each segment of the data 

before performing PSD estimation using the Welch method. 
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Figure 3.24 – Time function and frequency response of the available windows: (a) 

rectangular, (b) Bartlett, (c) Hanning, (d) Hamming and (e) Blackman. 

(a) 

(b) 

(c) 

(d) 

(d) 
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3.3.1.2. Fourier Transform 

The autocorrelation of a signal represents how the signal correlates with lagged versions of 

itself, providing information on the characteristics of that signal. The autocorrelation 

function has maximum value at 0 lags and is symmetrical in relation to 0 lags. Signals that 

vary rapidly and have short memory will present autocorrelation functions that approach an 

impulse, as is the case with white noise, while signals with longer memories will present 

broader autocorrelation functions [88]. The expected value of a wide sense stationary 

(WSS) process can be represented by its time average and so the autocorrelation function 

𝑟𝑥𝑥 for a discrete WSS signal 𝑥 of 𝑁 samples can be expressed as a function of the discrete 

index 𝑘 by: 

 

𝑟𝑥𝑥(𝑘) =
1

𝑁
∑𝑥(𝑛)𝑥(𝑛 + 𝑘)

𝑁

𝑛=1

. (3.3) 

The PSD, 𝑆𝑢𝑢, is defined as the Fourier transform of the autocorrelation function of a 

signal [87] and so can be estimated for discrete frequency values 𝑓 through  

 

𝑃̂(𝑓) = 𝑆𝑢𝑢(𝑓) = ∑𝑟𝑥𝑥(𝑘)𝑒
−𝑗2𝜋𝑓𝑘

𝑁

𝑁

𝑘=1

, 𝑓 = 0,… ,𝑁 2⁄ , (3.4) 

where 𝑃̂ is the estimated PSD and 𝑗 is the imaginary unit. By expanding Equation (3.4) 

with the autocorrelation function in Equation (3.3) and manipulating the expression, it 

becomes 

 

𝑃̂(𝑓) =
1

𝑁
∑∑𝑥(𝑛)𝑥(𝑛 + 𝑘)

𝑁

𝑛=1

𝑒
−𝑗2𝜋𝑓𝑘

𝑁

𝑁

𝑘=1

  

 

𝑃̂(𝑓) =
1

𝑁
∑𝑥(𝑛 + 𝑘)𝑒

𝑗2𝜋𝑓(𝑛−𝑘)
𝑁 ∑𝑥(𝑛)𝑒

−𝑗2𝜋𝑓𝑛
𝑁

𝑁

𝑛=1

𝑁

𝑘=1

  

 
𝑃̂(𝑓) =

1

𝑁
𝑋∗(𝑓)𝑋(𝑓) =

1

𝑁
|𝑋(𝑓)|2, (3.5) 

where 𝑋 is the Fourier transform of the signal 𝑥 and 𝑋∗ its complex conjugate. Equation 

(3.5) is usually the operation performed for PSD estimation using the fast Fourier 

transform (FFT) algorithm. This PSD is also called a periodogram [89]. 
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The real spectral resolution, or the distance between each frequency point on the frequency 

axis of a Fourier transform PSD, ∆𝑓, is determined by the number of samples of the signal, 

𝑁, and its sampling frequency, 𝑓𝑠, as: 

 
∆𝑓 =

𝑓𝑠
𝑁
. (3.6) 

This resolution can be increased by calculating the FFT over a greater number of points. 

To be able to use more points than the signal has, zero-padding is performed, considering 

the data outside of the sampled window to be zero. This increase in resolution is then 

obtained by interpolation on the estimation process and is only apparent, as it does not add 

any new information, but does produce better looking spectra [87]. 

If the signal is windowed before applying the FFT, the resulting PSD is called a modified 

periodogram. In the modified periodogram, the Fourier transform of a signal windowed by 

a window 𝑤 through time-domain convolution or frequency-domain multiplication is 

calculated [89]. This modified periodogram, 𝑃̂𝑀, is expressed as 

 

𝑃̂𝑀(𝑓) =
1

𝑁𝑈
|∑𝑥(𝑛)𝑤(𝑛)𝑒

−𝑗2𝜋𝑓𝑛
𝑁

𝑁

𝑛=1

|

2

, 𝑓 = 0, … , 𝑁 2⁄ . (3.7) 

The window introduces a bias to the periodogram, which is corrected by the added 

constant term 

 

𝑈 =
1

𝑁
∑|𝑤(𝑛)|2.

𝑁

𝑛=1

 (3.8) 

The frequency resolution then becomes dependent on the chosen window, with windows of 

larger mainlobes and reduced sidelobes leading to a smoother PSD, however of lower 

resolution [89]. 

In CRSIDLab the user can indicate the number of points for the Fourier transform. The 

software suggests a value that is the next power of two from the signals length, since FFT 

performs faster in such case [87]. 

3.3.1.3. Welch method 

The Welch method produces a smoother PSD by taking the Fourier transform PSD of 

possibly overlapping segments of the signal and then averaging these PSDs at each 
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frequency point [90]. This spectrogram better reflects the global characteristics of that 

signal and has greater statistical reliability than the Fourier transform PSD [87]. 

To perform the Welch method, the selected window is applied to each segment before 

computing that segment’s modified periodogram using the Fourier transform. For a signal 

of length 𝑁, if each segment has 𝐿 samples and an offset of 𝐷 samples between segments 

(resulting in 𝐿 − 𝐷 overlapping samples), the number of segments, 𝐾, is given by: 

 
𝐾 =

𝑁 − 𝐿

𝐷
+ 1. (3.9) 

The Welch PSD can be expressed both explicitly and in terms of the modified periodogram 

𝑃̂𝑀, described by Equation (3.7), calculated for each set of 𝐿 samples with 𝐷 overlapping 

samples [89], as: 

 

𝑃̂𝑊(𝑓) =
1

𝐾𝐿𝑈
∑|∑𝑥(𝑛 + 𝑖𝐷)𝑤(𝑛)𝑒

−𝑗2𝜋𝑓𝑛
𝐿

𝐿

𝑛=1

|

2𝐾

𝑖=1

=
1

𝐾
∑𝑃̂𝑀

(𝑖)(𝑓).

𝐾

𝑖=0

 (3.10) 

As the Fourier transform is performed on each segment of length 𝐿 the frequency 

resolution would then be as indicated by Equation (3.6) for 𝑁 = 𝐿, if a rectangular window 

is used. Since 𝐿 is necessarily smaller than 𝑁, this results in a reduced frequency resolution 

when compared to the Fourier transform PSD [89, 91]. However, the apparent resolution 

can be improved by calculating the transform of each segment using a greater number of 

points through zero-padding. If another window is used, then the frequency resolution 

depends on the window. 

In CRSIDLab the user can indicate the number of samples of each segment and the number 

of overlapping samples, besides the number of points for the Fourier transform. 

3.3.1.4. AR model 

The Fourier transform does not consider the fact that the signal used to estimate the PSD 

usually contains noise, incorporating the noise characteristics into the PSD [91]. A 

parametric approach based on a model produces a smoother PSD estimate and, since the 

PSD is derived from the model, produces accurate estimates even when there are a small 

number of samples, which may be necessary to ensure stationarity [4].  

The AR model is suitable for narrowband signals [91] and widely applied to HRV analysis 

[22, 70, 86]. It can be represented by  
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𝑦(𝑘) = −∑𝑎𝑛𝑧

−𝑛𝑦(𝑘)

𝑛𝑎

𝑛=1

+ 𝑒(𝑘), (3.11) 

in which 𝑦 is the signal as a function of the discrete index 𝑘, 𝑒 represents the noise 

function, 𝑧−1 is the discrete backwards shift operator, 𝑛𝑎 is the model order and 𝑎𝑛 are the 

coefficients that need to be estimated to determine the model. 

The AR model may also be expressed as an all-pole filter [86] with transfer function 

 
𝐻(𝑧) =

1

1 + ∑ 𝑎𝑛𝑧−𝑛𝑛𝑎
𝑛=1

. (3.12) 

Once the coefficients are estimated, the AR model PSD, 𝑃̂𝐴𝑅, is described as a function of 

the coefficients or as a function of the filter transfer function by: 

 
𝑃̂𝐴𝑅(𝑓) =

𝜎̂2

|1 + ∑ 𝑎̂𝑛𝑒−𝑗2𝜋𝑓𝑛𝑛𝑎
𝑛=1 |2

= 𝜎̂2 ∙ |𝐻(𝑧)|2, (3.13) 

in which 𝜎̂2 is the estimated variance of the white noise input and 𝑎̂𝑛 are the estimated 

model coefficients [14, 89, 92].  

There are several different methods that can be used to estimate the AR coefficients, such 

as the Yule-Walker, the covariance, the modified covariance and the Burg methods. 

CRSIDLab employs the Burg method that finds the coefficients by minimizing the sum of 

the squares of forward and backward prediction errors and ensures model stability by 

performing the minimization sequentially in respect to the reflection coefficients [89]. 

The AR PSD resolution using the Burg method does not depend on the signal length or the 

window employed, as is the case with the non-parametric methods, once the PSD is 

generated from the model and the Burg method does not require windowing, as is the case 

with the Yule-Walker method [89, 91]. Therefore, the resolution can be as high as desired 

by controlling the number of points for Fourier transform calculation [83]. 

In CRSIDLab, the user can indicate the order for the AR model to be estimated. To select 

the ideal order, it may be advisable to go to the system identification tab to estimate an AR 

model from a range of orders using one of the criteria available for optimization and then 

return to perform the PSD with the selected order. 



51 

 

3.3.1.5. Quantitative indicators 

The quantitative indicators calculated from the PSD using any of the methods described 

are given as the power for three frequency ranges (VLF, LF and HF) and includes the total 

power, which is the sum of the three, and the LF/HF ratio. The power is calculated as the 

area under the PSD curve. The default values defining those frequency bands are the ones 

recommended by the Task Force on HRV standards of measurement, physiological 

interpretation, and clinical use [4] and used in many studies [26, 64, 65, 82], with VLF 

ranging from 0 to 0.04 Hz, LF from 0.04 to 0.15 Hz and HF from 0.15 to 0.4 Hz. These 

values, however, can be edited by the user, as other frequency ranges have been described 

and used in studies [6, 70, 93]. 

The areas are presented in three different units: as absolute power, given in the squared 

unit of the signal under analysis; relative power, given as a percentage of the total power; 

and normalized power of LF, 𝐿𝐹𝑛, and HF, 𝐻𝐹𝑛, obeying the rule 𝐿𝐹𝑛 + 𝐻𝐹𝑛 = 100. 

These quantitative indicators are stored to the patient file but can also be exported to a text 

file. This text file is formatted to be imported to spreadsheets, using tab as a separator. 

Figure 3.25 shows an example of HRV estimate through the PSD of a RRI record using the 

Fourier transform (blue), the Welch method (green) and the AR model (black). Table 3.1 

shows all of the quantitative indicators generated from the estimates. 

 

Figure 3.25 – Example of HRV estimates as the PSD of and RRI using the Fourier 

transform with 2048 points using a Hanning window (blue), the Welch method with 256 

samples per segment and 50% overlap using a Hanning window (green) and an AR model 

of order 20 (black). The red lines delimit the frequency bands of interest: very low 

frequency (VLF: 0-0.04 Hz), low frequency (LF: 0.04-0.15 Hz) and high frequency (HF: 

0.15-0.4 Hz). 



52 

 

Table 3.1 – Quantitative indicators extracted from the PSDs of an RRI series, presented in 

Figure 3.25. The absolute (ms
2
), relative (%) and normalized areas of the very low 

frequency (VLF: 0-0.04 Hz), low frequency (LF: 0.04-0.15 Hz) and high frequency (HF: 

0.15-0.4 Hz) as well as the total area (0-0.4 Hz) are provided along with the LF/HF ratio 

for the PSDs calculated from the Fourier transform (FFT), the Welch method and AR 

model. 

Method Units Total VLF LF HF LF/HF 
       

FFT Absolute (ms
2
) 994.4792  395.144  492.8588  106.4765  

4.6288  Relative (%) 100  39.734  49.599 10.707 
Normalized 1  - 82.234  17.766  

Welch Absolute (ms
2
) 868.8014  304.435  461.4905  102.8759  

4.4859  Relative (%) 100  35.041  53.118  11.841  
Normalized 1  - 81.771  18.229  

AR model Absolute (ms
2
) 962.3406  321.3646 534.2732 106.7029 

5.0071 Relative (%) 100  33.394  55.518  11.088  
Normalized  1  - 83.353  16.647  

 

3.3.2. System Identification 

CRSIDLab allows multiple systems to be created from the same data set, with any 

combination of variables, and multiple models to be estimated for each system, using 

different methods and parameters. Therefore, the system identification process is divided 

in two steps: creating a system and estimating a system model. Each step is described in 

the following sections. 

3.3.2.1. Create a new system 

The first step to creating a new system is to determine the system variables. CRSIDLab 

lists the available aligned and resampled variables in three different popup menus: one for 

the output variable, one for the first input variable and one for the second input variable, as 

indicated on the interface. To ensure a valid system is created, the output variable must be 

indicated first, followed by the first and second inputs, if desired. The following topics 

discuss the issues that must be observed when creating a new system. 

Model validation 

When estimating a model from a range of parameters, CRSIDLab uses the cross-validation 

approach, in which only a part of the system is used to estimate the coefficients that 

determine the model, hereafter referred to as estimation data. The remaining part of the 

data set, the validation data, is used to simulate the model and the mean squared error 

(MSE) between the measured and the predicted output is calculated from the validation 
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data set. Finally, a criterion is used to select the optimum model based on this error 

estimate. This process avoids over-parametrization and modeling noise [94, 95].  

Thus, after selecting the variables to compose a system, the percentage of data for model 

estimation can be indicated. It is possible to set 100% of the data as estimation data, in 

which case cross-validation is not performed. It is possible to create multiple systems 

consisting of the same combination of variables but with different portions for the 

estimation and validation data sets on CRSIDLab. 

Noise and Stationarity 

Once the validation and estimation data sets are determined, a 0.5 Hz low-pass Kaiser filter 

(passband 0-0.5 Hz, stopband 0.7-1 Hz and less than 0.01 ripple in both bands) can be 

applied to remove high-frequency noise, considering that the cardiorespiratory dynamics of 

interest fall within this range [14, 19].  

Slow trends should be removed from the data before system identification to avoid 

overestimation of LF power and ensure stationarity [95]. Though short-term records, 

ranging from 2 to 5 min, can be considered stationary [4], CRSIDLab does not restrict data 

length, allowing the analysis of longer records. Hence, a polynomial detrend can be 

performed before moving on to the analysis.  

Cardiovascular variability is a small signal study, focusing on variations around a basal 

value [96] and for the model estimation to be successful, the offset component needs to 

either be removed from the estimation data set or expressed explicitly in the model, which 

is unnecessarily complicated [97]. Thus, whether polynomial detrending is applied or not, 

the mean is removed from the signals. Also for this reason, detrending is only performed 

after the validation and estimation data sets are specified, so that the sets can be detrended 

separately, ensuring the estimation data has zero mean. 

Once a system is created, system identification using one of the available parametric 

models can be performed. If the system has no input variables, the only model available is 

the AR model. If the system has at least one input, then there are three model options: the 

ARX, LBF and MBF models. Each of these models is discussed in the following sections. 
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3.3.2.2. Autoregressive model with exogenous inputs 

The ARX model can be interpreted as a simplification of the Box-Jenkins model that 

assumes that the input(s) and the noise present in the system are filtered by the same 

dynamics, which happens when noise is introduced to a closed-loop system [98]. The ARX 

model is sometimes called an AR with moving average (ARMA) model, considering the 

moving average applied to the exogenous input [24]. Many studies have employed this 

model, either identified as ARX or ARMA, to characterize cardiorespiratory dynamics [14, 

24, 23, 64, 65, 99, 100]. 

Figure 3.26 shows a block diagram of a two-input ARX model, where the difference 

equations are represented by the polynomials 𝐴, 𝐵1 and 𝐵2 in the 𝑧-domain, 𝑧−1 is the 

backwards shift operator and 𝑘 is the discrete time index [98]. The variables 𝑢1 and 𝑢2 are 

the inputs, while 𝑒 is an error component and 𝑦 is the output.  For a single input ARX 

model the 𝑢2 input and the corresponding block are removed, while for an AR model 𝑢1, 

𝑢2 and the corresponding blocks are removed. 

 

Figure 3.26 – Block diagram of a two-input ARX model. 

The ARX model in Figure 3.26 can be described through 

 𝐴(𝑧−1)𝑦(𝑘) = 𝐵1(𝑧
−1)𝑢1(𝑘) + 𝐵2(𝑧

−1)𝑢2(𝑘) + 𝑒(𝑘), (3.14) 

in which the polynomial 𝐴(𝑧−1) is given by 

 𝐴(𝑧−1) = 1 + 𝑎1𝑧
−1 +⋯+ 𝑎𝑛𝑎𝑧

−𝑛𝑎 (3.15) 

and the polynomials 𝐵1(𝑧
−1) and 𝐵2(𝑧

−1) are of the format 

𝐵1 𝑧
−1 

𝐴(𝑧−1)
 𝑢1(𝑘) Σ 𝑦(𝑘) 

𝐵2 𝑧
−1 

𝐴(𝑧−1)
 𝑢2(𝑘) 

1

𝐴(𝑧−1)
 

𝑒(𝑘) 
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 𝐵(𝑧−1) = 𝑏0 + 𝑏1𝑧
−1 +⋯+ 𝑏𝑛𝑏𝑧

−𝑛𝑏 . (3.16) 

In Equations (3.15) and (3.16), 𝑛𝑎 and 𝑛𝑏 are the orders of the polynomials and 𝑎𝑖, 𝑖 =

1, … , 𝑛𝑎 and 𝑏𝑗 , 𝑗 = 0,… , 𝑛𝑏 are the coefficients that need to be estimated. For a two-input 

system, different orders may be selected for each input. 

In systems with exogenous inputs it is also possible to include a delay, allowing the 

description of causal relationships between the variables, which enables the separation of 

feedforward and feedback components [14, 23, 24]. This might be interpreted as a 

computational way of opening the loop, since all records are acquired at a closed-loop 

condition [21]. Each output sample can be described as a function of past output samples 

and delayed input samples, with 𝑛𝑘1 and 𝑛𝑘2 representing the delays from each input and 

𝑛𝑏1 and 𝑛𝑏2 their respective orders, as 

 

𝑦(𝑘) = ∑𝑏1𝑛𝑧
−𝑛𝑢1(𝑘 − 𝑛𝑘1)

𝑛𝑏1

𝑛=0

+ ∑𝑏2𝑛𝑧
−𝑛𝑢2(𝑘 − 𝑛𝑘2)

𝑛𝑏2

𝑛=0

− ∑𝑎𝑛𝑧
−𝑛𝑦(k)

𝑛𝑎

𝑛=1

+ 𝑒(k). 

(3.17) 

3.3.2.3. Orthogonal basis function models 

Another model structure that can be considered for cardiorespiratory system estimation is 

the finite impulse response (FIR) filter models. FIR filter models are similar to ARX 

models where the autoregressive polynomial 𝐴(𝑧−1) = 1 [98]. The FIR model structure 

for systems with two inputs is shown in Figure 3.27 and described mathematically by: 

 

𝑦(𝑘) = ∑𝑏1𝑛𝑧
−𝑛𝑢1(𝑘 − 𝑛𝑘1)

𝑛𝑏1

𝑛=0

+ ∑𝑏2𝑛𝑧
−𝑛𝑢2(𝑘 − 𝑛𝑘2)

𝑛𝑏2

𝑛=0

+ 𝑒(k), (3.18) 

where the output signal 𝑦 is described as a function of the discrete index 𝑘, 𝑒 is the error 

component, inputs 𝑢1and 𝑢2 have corresponding orders 𝑛𝑏1 and 𝑛𝑏2 and associated delays 

𝑛𝑘1 and 𝑛𝑘2 with the coefficients 𝑏1𝑛 and 𝑏2𝑛 to be estimated. 

The FIR model structure, illustrated in Figure 3.27, is linear in its parameters, as is the 

ARX model structure, which means that the coefficients can be estimated through a least-

squares approach. The FIR model structure also presents independent parametrizations of 

the process and noise, which is not true for the ARX model since the AR term 
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characterizes both dynamics. This property eliminates bias introduced to the process model 

due to the noise component, but typically increases the order needed to characterize the 

system’s dynamics [101]. 

 

Figure 3.27 – Block diagram of a two-input FIR model. 

The FIR model filter bank is typically of the form 𝑧−1, which is a short memory filter, 

requiring high orders to describe the system’s dynamics. The necessary order to describe a 

system can be reduced by employing a more complex filter bank, with longer memory, 

reducing the variance of the estimate [102, 103]. The selection of orthogonal basis 

functions (OBF) as filter banks provide models that are robust even to colored noise [104]. 

Thus the modified FIR model, or linear OBF model is shown in Figure 3.28 

 

Figure 3.28 – Block diagram of the linear Orthogonal Basis Functions model. 

𝐵1 𝑧
−1  

 

𝑢1(𝑘) Σ 𝑦(𝑘) 

𝐵2 𝑧
−1  

 

𝑢2(𝑘) 

𝑒(𝑘) 

Σ 

𝑂𝐵𝐹0 𝑏10 

𝑂𝐵𝐹1 𝑏11 

⋮ ⋮ 

𝑂𝐵𝐹𝑛𝑏1−1 𝑏1𝑛𝑏1−1 

𝑢1(𝑘) 

𝑂𝐵𝐹0 𝑏20 

𝑂𝐵𝐹1 𝑏21 

⋮ ⋮ 

𝑂𝐵𝐹𝑛𝑏2−1 𝑏2𝑛𝑏2−1 

𝑢2(𝑘) 

𝑦(𝑘) 

𝑒(𝑘) 
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The linear OBF model is described by: 

 

𝑦(𝑘) = ∑ ∑ 𝑏1𝑛𝑂𝐵𝐹𝑛(z) ∗ 𝑢1(𝑘 − 𝑖 − 𝑛𝑘1)

𝑛𝑏1−1

𝑛=0

𝑀−1

𝑖=0

+ ∑ ∑ 𝑏2𝑛𝑂𝐵𝐹𝑛(𝑧) ∗ 𝑢2(𝑘 − 𝑖 − 𝑛𝑘2)

𝑛𝑏2−1

𝑛=0

𝑀−1

𝑖=0

+ 𝑒(𝑘), 

(3.19) 

in which 𝑀 is the system memory length, describing the length of the impulse response, 

𝑛𝑏1 and 𝑛𝑏2 represent the number of basis functions used to represent the data and 𝑂𝐵𝐹𝑛 is 

the 𝑛𝑡ℎ order OBF. The choice of appropriate OBFs, with a morphology that is compatible 

with the underlying dynamics, requires a small number of functions to represent the system 

and allows accurate model estimates from a reduced number of samples [102]. There are 

two sets of OBFs available in CRSIDLab, the LBF and MBF, described below. 

- Laguerre Basis Functions (LBF) 

LBFs behave in a way that is compatible with physiological systems response, oscillating 

with a gradual decrease in amplitude until stabilizing at zero [102]. The discrete 𝑘𝑡ℎ order 

LBF is as described by: 

 
𝐿𝑘(z) =

𝑧√1 − 𝑝2

𝑧 − 𝑝
(
1 − 𝑝𝑧

𝑧 − 𝑝
)
𝑘

, (3.20) 

in which 𝑝 (0 < 𝑝 < 1) is a pole that can be adjusted to determine longer and more 

oscillating the responses as it approaches the maximum limit [105]. Figure 3.29 illustrates 

the effects of the pole parameter by showing the first five LBFs (orders 0 to 4) for a pole 

of 0.6 (a) and 0.8 (b). In CRSIDLab the Laguerre functions are generated recursively from 

the zero order function, by multiplying the exponential term. 

- Meixner Basis Functions (MBF) 

LBFs start off from non-zero values, which may not be optimal for physiological systems 

with slower responses. The MBFs are a set of basis functions that introduce an extra 

parameter to the LBF set that determines how late the functions start to fluctuate, providing 

the desired slow initial onset. This extra parameter is called the generalization order and, 

when its value is set to zero, the MBF set is identical to the LBF set [19, 102]. Figure 3.30 

illustrates the first 5 MBFs (orders 0 to 4) for the generalization orders of 1 (a) and 5 (b) 

with a fixed pole value of 0.8. 
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Figure 3.29 – Laguerre basis functions of order 𝑘 ranging from 0 to 4 for 𝑝 = 0.6 (a) and 

𝑝 = 0.8 (b). A pole value closer to 1 yields a longer settling time for the basis function set. 

 

Figure 3.30 – Meixner basis functions for 𝑝 = 0.8 with orders 𝑘 ranging from 0 to 4 for 

generalization order 𝑛 = 1 (a) and 𝑛 = 5 (b). Higher generalization orders cause the basis 

function set to have a slower initial onset. 

Though LBFs have a rational 𝑧-transfrom, the same cannot be said for other MBFs and so, 

in CRSIDLab, Meixner-like functions are implemented from an orthogonal transformation 

of the LBFs as proposed by Den Brinker [105]. To generate 𝑘 Meixner-like functions of 

generalization order 𝑛, 𝑘 + 𝑛 + 1 LBFs must be multiplied by the transformation matrix 

 𝐴(𝑛) = {𝑐ℎ𝑜𝑙(𝑈𝑛{𝑈𝑛}𝑇)}−1𝑈𝑛, (3.21) 

(a) 

(b) 

(a) 

(b) 
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in which 𝑈 is the square matrix of dimensions 𝑘 + 𝑛 + 1  

 

𝑈 =

[
 
 
 
 
1 𝑝 0 … 0
0 1 𝑝 … 0
0
⋮
0

0
⋮
0

1 … 0
⋮ ⋱ ⋮
0 … 1]

 
 
 
 

, (3.22) 

and 𝑝 is the same pole used to generate the LBFs. The Cholesky factorization indicated in 

Equation (3.21) produces a lower triangular matrix and the final transformation matrix 𝐴(𝑛)
 

is of dimensions 𝑘 × (𝑘 + 𝑛 + 1). 

Inputs decorrelation for OBF models 

When ILV and a BP variable are inputs and RRI or HR is the output of a system, the inputs 

are coupled through the mechanical effects of respiration on BP, as can be seen on the 

cardiorespiratory system model described in section 2.4.5 and shown in Figure 2.10. In this 

is the case, a three-step procedure is used as an attempt to uncouple the effects of the 

interaction between the input variables and thus improve model accuracy [19].  

The first step is to remove the effects of ILV on BP, which may be represented by SBP or 

DBP variables. An ARX model with ILV as input and BP as output is estimated, with no 

delay and orders that are the equivalent to the range of 1.5 to 5 seconds, adjusted according 

to the sampling frequency. This model is then used estimate the BP from ILV and the 

resulting BP is subtracted from the measured BP, generating a BP uncorrelated with the 

ILV, BPunc. A temporary OBF model is then estimated with the parameters chosen by the 

user, having ILV and BPunc as inputs and RRI or HR as output. 

The second step is to use the temporary model to estimate the part of the RRI or HR that is 

explained by BPunc and remove it from the RRI or HR. This new variable is identified as 

RRIILV or HRILV. Then an OBF model is estimated from a system that has ILV as input and 

RRIILV or HRILV as output. 

This model is used to estimate RRIILV or HRILV from ILV and subtract this predicted 

output from RRI or HR, resulting in a new variable called RRIBP or HRBP. Finally, an OBF 

model is estimated from a system that has BP as input and RRIBP or HRBP as output.  

All the models estimated on this three-step process are estimated through a least-squares 

approach, further described in section 3.3.2.4, and selected from a range of parameters 

using some criterion chosen by the user. The final model is given by the combination of 
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the coefficients found from the relation between ILV and RRIILV or HRILV, characterizing 

RCC, and from the relation between BP as input and RRIBP or HRBP, characterizing ABR. 

3.3.2.4. Model estimation: least-squares minimization 

For output-only systems, the AR model coefficients are estimated using the Burg method, 

described in section 3.3.1.4, for a given model order. If a two input model is estimated, 

with the exception of the system with ILV and BP as inputs for the OBF case (section 

3.3.2.3), a single input model is estimated from the first indicated input to the output, the 

influence from this input is removed from the output, and a single input model is estimated 

from the second indicated input to the modified output. 

The ARX and OBF coefficients are estimated using least-squares minimization for a given 

order, in the ARX case, or number of basis functions, in the OBF case. A model can be 

described in the matrix form 

 𝑦 = Φ𝜃 + 𝑒 (3.23) 

if it is a linear function of its parameters [106, 107]. In Equation (3.23), 𝑦 is the system 

output, Φ is the regression matrix with the samples from the inputs and output that 

compose the output signal, 𝜃 is a vector with the parameters to be estimated and 𝑒 is the 

error component. Considering a single-input ARX model, Φ becomes 

Φ(k, : ) = [−𝑦(𝑘 − 1) … −𝑦(𝑘 − 𝑛𝑎) 𝑢(𝑘 − 𝑛𝑘) … 𝑢(𝑘 − 𝑛𝑘 − 𝑛𝑏)], (3.24) 

where the number of columns is the number of parameters to be estimated. The 

corresponding 𝜃 vector is then given by 

 𝜃 = [𝑎1 … 𝑎𝑛𝑎 𝑏0 … 𝑏𝑛𝑏]𝑇 . (3.25) 

For OBF functions the output is not formed by samples of the inputs and output, but by a 

combination of filtered versions of each input, filtered using OBFs of different orders. In 

this case, Φ becomes the matrix 

 Φ = [𝑢1
(0)𝑇

… 𝑢1
(𝑛𝑏1−1)𝑇

𝑢2
(0)𝑇

… 𝑢2
(𝑛𝑏2−1)𝑇], (3.26) 

in which each column represents a filtered input and the order of the basis function used to 

filter the input is indicated in parenthesis as superscripts. The number of columns still 

represents the number of parameters to be estimated and the corresponding 𝜃 vector is 

given by  
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 𝜃 = [𝑏10 … 𝑏1𝑛𝑏1−1 𝑏20 … 𝑏2𝑛𝑏2−1]
𝑇 . (3.27) 

For OBF functions the values 𝑛𝑏1 and 𝑛𝑏1 represent the number of basis functions used, 

instead of the order as is the case with ARX, which is why the parameters indexing range 

from 0 to 𝑛𝑏1 − 1 or 𝑛𝑏2 − 1, representing the order of OBFs. 

Least-squares minimization consists of minimizing the MSE between the measured and 

predicted outputs. MSE can be described as a function of the selected model, 𝑀, the 

parameters 𝜃 and the inputs represented by 𝑢 [106] as: 

 

𝑉𝑁 𝑀, 𝜃, 𝑢(𝑘) =
1

𝑁
∑[𝑦(𝑘) − 𝑦̂(𝜃, 𝑘)]2
𝑁

𝑘=1

, (3.28) 

where 𝑦̂ is the predicted output. If the model output is a linear function of its parameters, 

the MSE can be rewritten as: 

 
𝑉𝑁(𝜃) =

1

𝑁
(𝑦 −Φ𝜃)𝑇(𝑦 − Φ𝜃) 

            =
1

𝑁
(𝑦𝑇𝑦 − 2𝜃𝑇Φ𝑇𝑦 + 𝜃𝑇Φ𝑇Φ𝜃). 

(3.29) 

To minimize the MSE, it is derived in relation to 𝜃 and set equal to zero, resulting in 

 𝜕𝑉𝑁
𝜕𝜃

=
2

𝑁
(Φ𝑇Φ𝜃 −Φ𝑇𝑦) = 0 

Φ𝑇Φ𝜃 = Φ𝑇𝑦 

𝜃 = (Φ𝑇Φ)−1Φ𝑇𝑦, (3.30) 

were 𝜃 is the vector of estimated coefficients. This is the analytical form of finding the best 

estimate for the model coefficients for given orders or numbers of basis functions and 

delays. 

3.3.2.5. Model optimization 

In CRSIDLab the user can select the orders, numbers of basis functions and delays to 

generate a model estimate, but it is also possible to indicate a range of parameters to be 

tested so that the optimal model can be selected. 

If that is the case, the model coefficients 𝜃 are calculated for each possible combination of 

parameters using the estimation data set and then the cost function, the MSE given by 
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Equation (3.29), is calculated for the validation data set. This is the cross-validation 

approach discussed in section 3.3.2.1, which results in more accurate models [94, 95].  

Some criterion can then be used to select the optimal model based on the cost function. 

The simplest criterion is to select the model that minimizes the cost function, without 

taking the model complexity into account. This criterion is available in CRSIDLab and is 

called “Best fit”. This approach, however, may lead to overfitting, incorporating noise to 

the modeled output [108]. Therefore, it is interesting to use a criterion that penalizes model 

complexity, lowering the variance of the model estimation [109]. As several studies use 

either Akaike’s information criterion (AIC) [23, 21, 70, 99] or Rissanen’s minimum 

description length (MDL) [14, 19, 64, 100] to select the best model to characterize the 

cardiorespiratory system, these criteria have been included.  

AIC is an estimate of the information lost by using the proposed model. The model is 

selected by minimizing the cost function 

 
𝐴𝐼𝐶 = log(𝑉) +

2𝑑

𝑁
, (3.31) 

in which 𝑉 is the cost function, 𝑑 is the length of 𝜃, indicating the number of estimated 

coefficients, and 𝑁 is the number of samples used for model estimation [108]. 

MDL is a criterion that selects the model that minimizes the number of parameters and 

residual variance [14]. The model is selected by minimizing the cost function  

 
𝑀𝐷𝐿 = 𝑉 (1 +

𝑑 log(𝑁)

𝑁
). (3.32) 

A measure of fit between the measured and predicted outputs is presented as a form of 

model validation once the model is selected and estimated. The fit is given in percentage as 

a function of the normalized root mean squared error (NRMSE) 

 
fit(%) = 100 × (1 −

‖𝑦 − 𝑦̂‖

‖𝑦 − 𝑦̅‖
), (3.33) 

in which  𝑦 is the measured output, 𝑦̂ is the predicted output and 𝑦̅ is the mean value of the 

measured output. 
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3.3.2.6. Impulse response and quantitative indicators 

The impulse response, ℎ, is a complete representation the dynamic response of a system 

and can be used to predict the output of a system, 𝑦, for a given input, 𝑢, through the 

numerical convolution 

 

𝑦(𝑘) = ∑ ℎ(𝑛)𝑢(𝑘 − 𝑛)

𝑀−1

𝑛=0

, (3.34) 

in which 𝑀 is the impulse response length. The Fourier transform of an impulse response 

is the transfer function of a system in the frequency domain [110, 111, 112]. The impulse 

response is obtained by simulating the model using a unit impulse as input. If the model 

has two inputs, two impulse responses are calculated.  

The impulse response for an input-output pair using the ARX model is described by 

 

ℎ𝐴𝑅𝑋(𝑘) = −∑𝑎𝑛ℎ𝐴𝑅𝑋(𝑘 − 𝑛) + ∑𝑏𝑛𝑢(𝑘 − 𝑛𝑘 − 𝑛)

𝑛𝑏

𝑛=0

𝑛𝑎

𝑛=1

, (3.35) 

with autoregressive order 𝑛𝑎 determining the number of estimated coefficients 𝑎𝑛 and the 

exogenous input order 𝑛𝑏 determining the number of estimated coefficients 𝑏𝑛 with 

associated delay 𝑛𝑘. 

The impulse response of OBF models is given as the weighed sum of OBFs [14, 16, 102] 

 

ℎ𝑂𝐵𝐹(𝑘) = ∑ 𝑏𝑛𝑂𝐵𝐹𝑛(𝑘)

𝑛𝑏−1

𝑛=0

, (3.36) 

in which case 𝑛𝑏 is the number of basis functions used and 𝑂𝐵𝐹𝑛 is the 𝑛𝑡ℎ order OBF. 

From each impulse response quantitative indicators that characterize the relationship 

between the variables are calculated. Figure 3.31 (a) shows the three indicators that are 

extracted directly from the impulse response. The impulse response magnitude (IRM) is 

defined as the difference between the maximum and minimum values of the impulse 

response. The response latency (L) is the time difference from the instant that the impulse 

is applied to the first response. Finally, the time-to-peak duration (Tpeak) is the time 

difference from the first response to the first major peak or trough [14, 64]. 

The final indicator, the dynamic gain (DG), is obtained from the magnitude of the Fourier 

transform of the impulse response (the transfer function) as shown in Figure 3.31 (b). 
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The DG is calculated for a frequency band ranging from 𝑓1 to 𝑓2, where 𝐻(𝑓) is the 

Fourier transform of the impulse response through 

 
DG =

1

𝑓2 − 𝑓1
∫ |𝐻(𝑓)|

𝑓2

𝑓1

𝑑𝑓. (3.37) 

When the limit frequency values are not a part of the spectrum, cubic splines interpolation 

is used before calculating the integral. The DG is calculated for the LF and HF bands, 

0.04-0.15 Hz and 0.15-0.4 Hz respectively, as well as the total value for the range 0.04-

0.4 Hz [14, 64]. 

 

Figure 3.31 – Quantitative indicators extracted from the impulse response (a) and from the 

Fourier transform of the impulse response, or transfer function (b). From the impulse 

response (a), the impulse response magnitude (IRM), response latency (D) and time-to-

peak duration (Tpeak) are calculated. From the transfer function (b), the dynamic gain 

(DG) is calculated (Jo, 2002 [14]).  

(a) (b) 
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4. METHODOLOGY 

With CRSIDLab fully implemented, the second part of this study investigates data from a 

group of twenty-three obese boys, as described by Lesser et al. [113]. All subjects had a 

body mass index (BMI) greater than or equal to the 95𝑡ℎ percentile for their age and 

gender. ECG, continuous BP and airflow were recorded for 10 min in two different 

conditions: supine and standing postures. These records were used to generate different 

autonomic quantitative indicators, both in time and frequency domains. 

The data processing is mostly performed using CRSIDLab. The processing flow is 

represented by Figure 3.1. Besides the analyses performed through CRSIDLab, transfer 

function estimation in the frequency domain using the relation between the PSD of the 

output variable and the cross-power spectral density (CPSD) between the output and input 

variables is also performed, as described in section 4.4. 

Once the quantitative indicators are obtained, statistical analyses, described in section 4.6, 

are used to verify whether the autonomic indicators can correctly measure the effect of 

different postures on the ANS. The results show that the influence of posture on the 

calculated autonomic indices is consistent with the underlying physiology and previous 

studies, supporting CRSIDLab as a toolbox capable of providing quantitative indicators of 

ANS activity. 

4.1. EXPERIMENTAL PROTOCOL 

The experimental protocol consisted of measuring ECG, continuous BP and airflow for 10 

min, first in supine position, after each subject had been in this position for at least 5 min. 

Then, the measurements were taken in standing posture for another 10 min, also after the 

subjects had assumed such posture for at least 5 min. The 5 min period before recording 

allows hemodynamic balancing, so that the measurements reflect steady-state responses 

rather than transient responses [25]. Subjects maintained normal breathing patterns during 

the experiment. 

ECG was recorded using the standard three-lead configuration and amplified using a 

BMA-200 amplifier (CWE Inc., Ardmore, USA). Airflow was recorded through a mask 

covering the nose and mouth of the subjects attached to pneumotachometer model 3700 
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(Hans Rudolph, Kansas City, USA). The continuous BP was recorded using Nexfin HD 

(BMEYE B.V., Amsterdam, The Netherlands), providing a non-invasive measure. All 

signals were acquired through the 12-bit analogue to digital converter (ADC) DAQPad-

6020E (National Instruments, Austin, USA) and sampled at 512 Hz [25].  

There are inter-patient factors that can influence HRV, such as genetics and family history, 

sex, age, medical condition and level of fitness [5]. Likewise, BPV is influenced by age, 

gender, BMI and mean BP [114]. The database used is considerably homogenous in 

relation to these inter-patient influences. 

4.2. CARDIORESPIRATORY VARIABLES ANALYZED 

As discussed in section 2.4, there are different variables that can be used to characterize the 

cardiorespiratory cycle duration and pressure information. 

In this study RRI is used to characterize the cardiac cycle instead of HR because of the 

linear relation between RRI and the frequency of vagal activity, while both HR and RRI 

have a non-linear relation to the frequency of sympathetic activity [6]. 

Respiration is the main influence on HF BPV, but produces little effect when BPV is 

measured through DBP. Similarly, the 10-second-rhythm is the main influence of LF BPV, 

however this effect has little influence when BPV is measured through PP [67]. 

Furthermore, studies that employ a system modeling approach mostly use SBP to 

characterize the BP information [14, 21, 23, 24, 26, 46, 64, 115, 116] and, therefore, SBP 

is also employed in our study. 

4.3. METHODS EMPLOYED FROM CRSIDLAB 

CRSIDLab offers a variety of methods and range of parameters for the user to choose 

according to the requirements of the study and the data being analyzed. In this section the 

methods employed from CRSIDLab and related parameters are presented. 

4.3.1. Pre-processing 

Both raw ECG and continuous BP records were filtered using the low-pass filter with 35 

Hz cut-off frequency, removing EMG noise from the ECG and high frequency noise from 
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the continuous BP. ECG did not present baseline wander. After low-pass filtering, both 

ECG and BP did not present powerline interference, requiring no further filtering stages. 

RRI was extracted from ECG using the “Slow algorithm”, since processing time was not 

an issue and it performed better on our data set than the “Fast algorithm”. SBP was 

extracted from the continuous BP records using method 2, in which the BP data is 

segmented from previously extracted RRI data points. Method 2 was chosen to take 

advantage of processing both records simultaneously, presenting precise results. After 

automatic extraction, manual correction was performed through visual inspection when 

necessary. Any ectopic beats and corresponding SBP were also manually indicated. 

Airflow was converted to ILV through integration and detrending was performed using a 

0.02 Hz high-pass filter. We observed that lower cut-off frequencies were insufficient for 

some of the data and the other methods, linear and polynomial detrend, did not perform 

well for all records in our data set. Many of the presented trends were not linear and a 

single polynomial order did not produce consistent results across subjects as did the high-

pass filter. 

All data sets were aligned and resampled, as detailed in section 3.2.4, without truncating 

the data borders to ensure that all registers would have the same length. Ectopic beats in 

the ECG and the related SBP data points were interpolated using cubic splines. The 

borders were completed using constant padding. The adapted Berger algorithm was used to 

resample both RRI and SBP. Saini et al. [117] showed that linear interpolation and cubic 

splines introduce phase shifts to HRV estimates, shifting the power to lower frequencies, 

and that this effect is attenuated when using the algorithm described by Berger et al. [85].  

ILV was resampled using cubic splines. 

The highest HR among the data was considered for the choice of sampling frequency. The 

subject identified as AMD0038 presented RRI as low as 453 ms on a standing posture, 

which is equivalent to a HR of 132.45 bpm. Converting bpm to Hz yields a heart 

frequency of 2.2075 Hz, requiring a sampling frequency of at least 4.415 Hz to accurately 

represent the signal according to the Nyquist criterion. Clifford [5] suggests using a 7 Hz 

resampling frequency, considering the fact that the human heart beat can exceed 180 bpm, 

resulting in 2100 points for 5 min records. In this case, the first 2048 points could be used 

for PSD estimation. In this study, a 7 Hz resampling frequency was chosen. 
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4.3.2. PSD analysis 

For PSD estimation only the first 5 min of each 10 min data sets was used, since this is the 

recommended duration for this type of analysis [4].  

All three available methods, the Fourier transform, the Welch method, and the AR model, 

were used to estimate HRV and BPV, for a comprehensive demonstration of the toolbox 

use. HRV was calculated from the PSD of the RRI series, whereas BPV was obtained from 

the PSD of the SBP series. The Fourier transform was calculated over 2048 points for all 

three methods, considering the data had 2100 points after resampling. For both the Fourier 

transform and the Welch method, a Hanning window was applied to the data or data 

segments, since it one of the most used in this type of study, presenting the necessary 

sidelobe attenuation while providing a spectrum of good resolution [4, 83]. 

Due to the lack of standardization for segment duration in estimating HRV using the 

Welch method, Singh et al. [118] evaluated the effects of the segment duration and found 

that, for data resampled at 4 Hz, segment lengths of 256 samples (64 s) with 50% overlap 

provides an estimate that is both smooth and shows clearly outlined peaks when compared 

to segments of 128, 512 and 1024 samples. For data resampled at 7 Hz, 64 s is equivalent 

to 448 samples and so the next power of two was used, yielding segments of 512 samples 

with 50% overlap. 

For AR model order selection, model orders ranging from 1 to 50 were tested for both RRI 

and SBP for all subjects from data in both postures, and the NRMSE between the measured 

and predicted outputs was calculated. The results are presented in Figure 4.1 as the mean 

NRMSE ± standard deviation as a function of model order. Blue represents the NRMSE of 

the models estimated from supine data, while red is the NRMSE of the models estimated 

from standing data. For both variables in both postures the NRMSE seems to stabilize for 

orders greater than 20, which is within the range of recommended orders [4]. Therefore, 

we chose to use a model order of 20 for estimation of the PSDs using the AR model. 

The quantitative indicators used for statistical analysis are the absolute areas in the LF and 

HF bands for both HRV and BPV measures, identified as 𝐻𝑅𝑉𝐿𝐹,  𝐻𝑅𝑉𝐻𝐹, 𝐵𝑃𝑉𝐿𝐹, and  

𝐵𝑃𝑉𝐻𝐹, respectively. For HRV, the LF/HF ratio, 𝐻𝑅𝑉𝐿𝐹 𝐻𝐹⁄ , is also analyzed. 
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Figure 4.1 – AR model order effects on NRMSE between measured and predicted outputs 

for RRI (a) and SBP (b) records expressed as mean NRMSE ± standard deviation for both 

supine (blue) and standing (red) postures. 

4.3.3. System identification 

System identification was performed using the three available models, the ARX, Laguerre 

and Meixner basis functions, and for this approach the full 10 min of data were used. For 

each subject at each posture, a system consisting of an RRI output with both ILV and SBP 

as inputs was built to estimate the RCC and ABR impulse responses. 50% of the data was 

used for model estimation, corresponding to the first 5 min of the records, and the other 

50% was used for model validation. To determine the percentage of data used for model 

estimation and validation, tests were performed for ARX models using 50, 60, 70, and 

80% of the data set for model estimation. The results are presented in Figure 4.2, which 

shows the NRMSE between measured outputs and the outputs estimated from the models  

standard deviation as a function of the percentage of data used for model estimation. The 

NRMSE for the data recorded in supine posture is shown in blue, and for the data recorded 

in standing, red. The results show that the mean NRMSE and its standard deviation 

increase with increasing percentage of data used for estimation. The other parameters used 

for this test, such as orders and delays, were the same as those used to estimate the ARX 

models, as described next. 

A 0.5 Hz low-pass Kaiser filter was applied to the data, followed by a polynomial detrend 

of order 5, as used in previous studies [14, 19, 64], in order to ensure stationarity. Previous 

(a) 

(b) 
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studies have considered the delay between SBP and RRI to be in the 0.5 to 1 s range, while 

the delay between ILV and RRI has been shown to be in the range of −2 to 1 s [14, 19]. 

For data sampled at sampling frequency of 7 Hz, this is equivalent to testing delays from 3 

to 7 samples for the ABR impulse response and from −14 to 7 samples for the RCC 

impulse response. These ranges were used for the estimation of all impulse response 

models. 

 

Figure 4.2 – Effects of the percentage of data used for model estimation in the NRMSE 

between measured and predicted outputs expressed as mean NRMSE ± standard deviation 

for subjects in supine (blue) and standing (red) postures using an ARX model with the ILV 

and SBP as inputs and the RRI as output. 

The aforementioned parameters were used to generate all models. Sections 4.3.3.1 and 

4.3.3.2 discuss the parameters that are specific for each model structure used. Once all of 

the parameters to be tested are set, the models are selected using the MDL criterion, as 

used in many studies in this area for providing the shortest description of data, minimizing 

the number of parameters and residual variance [14, 19, 25, 64, 100]. 

Once the impulse responses ℎ𝑅𝐶𝐶 and ℎ𝐴𝐵𝑅 are generated, the quantitative indicators IRM 

and DG (total, LF, and HF), derived from the estimated impulse responses, are calculated. 

For ℎ𝑅𝐶𝐶, the indicators are identified as 𝑅𝐶𝐶𝐼𝑅𝑀, 𝑅𝐶𝐶𝑇𝑂𝑇, 𝑅𝐶𝐶𝐿𝐹 and 𝑅𝐶𝐶𝐻𝐹, 

respectively, while for the ℎ𝐴𝐵𝑅 they are identified as 𝐴𝐵𝑅𝐼𝑅𝑀, 𝐴𝐵𝑅𝑇𝑂𝑇, 𝐴𝐵𝑅𝐿𝐹 and 

𝐴𝐵𝑅𝐻𝐹, respectively. 

4.3.3.1. ARX models 

For ARX models the range of orders to be tested should also be set. Since the data is 

filtered and detrended before the identification procedure, an additional study to evaluate 
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the effect of ARX model order on NRMSE, similar to the one presented in section 4.3.2, 

was performed. Initially an AR model was estimated for the RRI data. Figure 4.3 (a) shows 

the resulting NRMSE as a function of this model order. Then, single input models were 

estimated for ILV and SBP as inputs and RRI as output, with the autoregressive order set 

to zero, as the autoregressive influence encompasses the effects of both inputs. These 

models would estimate the fraction of RRI data dependent on each input exclusively. 

Figure 4.3 (b) and (c) show the resulting NRMSE as a function of model order for ILV and 

SBP as inputs, respectively. In these figures, the blue line represents supine data, while the 

red line represents data in the standing posture. The remaining parameters, such as the 

delays associated with each input, the percentage of data used for model estimation and the 

criterion used to select the optimum model, were set as previously described and orders 

from 1 to 50 were tested. These results show an abrupt change in NRMSE up to around 

order 5, while NRMSE is practically stable for model order above 20. Therefore, the order 

selection range for both the autoregressive component and the exogenous inputs was set to 

be tested from 5 to 20 samples for the ARX model estimation. 

Comparing Figure 4.3 (a) to Figure 4.1 (a), it is possible to see how the filtering and trend 

removal preformed before system estimation result in more accurate models, as both the 

NRMSE mean values and the standard deviation decrease when these pre-processing steps 

are applied. 
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Figure 4.3 – (a) Model order effects on NRMSE between measured and predicted outputs 

for an AR model for RRI; (b) a model with ILV input and RRI output without an AR 

component; and (c) a model with SBP input and RRI output without an AR component, 

obtained in both supine (blue) and standing (red) postures. The mean NRMSE for each 

group at each order is presented with the error bars indicating the standard deviation. 

4.3.3.2. LBF and MBF models 

For LBF and MBF models, the system memory length and pole can be selected and a range 

of number of basis functions can be set. The pole should be selected so that the highest 

order basis function approaches zero close to the memory length [119]. Based on previous 

work that evaluated linear LBF models for cardiorespiratory system identification, 5 to 12 

basis functions are used for both LBF and MBF models [14]. To find the best memory 

length, tests were performed for memories of 50 to 200 samples (7.14 to 28.6 s) in steps 

of 25 samples using LBF models. The poles were adjusted for each memory length. The 

results, shown in Figure 4.4, are inconclusive in terms of providing insight into the 

selection of an appropriate memory length, since there seems to be no relation between 

system memory length and decreased NRMSE.  

(a) 

(b) 

(c) 
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Figure 4.4 – Effects of the system memory length in the NRMSE between measured and 

predicted outputs expressed as mean NRMSE ± standard deviation for subjects in supine 

(blue) and standing (red) postures using a LBF model with ILV and SBP as inputs and the 

RRI as output. 

Another way to gain insight into the appropriate memory length is to analyze the impulse 

responses generated through the ARX models. For this purpose, all ARX model impulse 

responses were averaged and are shown in blue along with the corresponding standard 

deviations, in red, for supine and standing postures in Figure 4.5 (a) and (b), respectively, 

in which ℎ𝑅𝐶𝐶 is presented on top and ℎ𝐴𝐵𝑅 on the bottom for each condition. Previous 

studies have used a memory length of 50 samples for data resampled at 2 Hz [14, 19, 26], 

corresponding to 25 s, which would be equivalent to 175 samples for data resampled at 7 

Hz. However, increasing memory length increases the model computation time. As there 

seems to be no significant impulse response content above 20 s for both ℎ𝑅𝐶𝐶 and ℎ𝐴𝐵𝑅 in 

supine and standing conditions, a memory length of 140 is selected. 

The pole of 0.82 was selected through visual inspection for LBF functions, allowing all 12 

basis functions to die out approximately at the chosen memory length of 140 samples, as 

shown in Figure 4.6. 

Finally, the MBF generalization orders are tested from 0 to 5, based on previous studies 

[25, 26, 116]. The pole in this case is set to ensure the highest order basis function 

approaches zero close to the system memory length for the highest generalization order 

and the pole 0.76 was chosen, as shown in Figure 4.7. 
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Figure 4.5 – ARX model impulse responses ℎ𝑅𝐶𝐶 and ℎ𝐴𝐵𝑅 for subjects in supine (a) and 

standing (b) postures presented as mean value (blue) ± standard devitaion (red). 

 

Figure 4.6 – Pole selection of 𝑝 = 0.82 for the first 12 Laguerre basis functions, ranging 

from orders 0 to 11, with a system memory of 140, so that the last basis function 

approaches zero close to the memory length.  

 

Figure 4.7 – Pole selection of 𝑝 = 0.76 for the first 12 Meixner basis functions, ranging 

from orders 0 to 11, with a system memory of 140 and a generalization order of 5, so that 

the last basis function approaches zero close to the memory length.  

(a) (b) 
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4.4. TRANSER FUNCTION ESTIMATION 

Though transfer function estimation in the frequency domain is not implemented on 

CRSIDLab, it is the classical approach to estimating RSA and BRS, having been employed 

in many studies [22, 36, 37]. Therefore, this approach is implemented to further validate 

the results found by performing impulse response analyses through CRSIDLab.  

The transfer function provides a characterization of a system in the frequency domain. To 

calculate the transfer function, first the definition of cross-correlation and the relationship 

between cross-correlation and autocorrelation must be addressed. 

The cross-correlation is similar to the autocorrelation, but instead of representing how a 

signal correlates with the lagged versions of itself, it represents how two signals correlate 

to each other with different lags, providing information on the similarity between them 

[88]. The cross-correlation between two signals 𝑥 and 𝑦 of length 𝑁, 𝑟𝑥𝑦, is given by: 

 

𝑟𝑥𝑦(𝑘) =
1

𝑁
∑𝑥(𝑛)𝑦(𝑛 + 𝑘)

𝑁

𝑛=1

. (4.1) 

The point of maximum cross-correlation is an indicator of the time delay between two 

variables and the cross-correlation between a signal and sinusoids of varying frequencies 

can be used to decompose the signal similarly to performing a Fourier transform [88]. The 

Fourier transform of the CPSD, 𝑆𝑢𝑦, is given as a function of the discrete frequency 𝑓 by: 

 

𝑆𝑢𝑦(𝑓) = ∑𝑟𝑥𝑦(𝑘)𝑒
−𝑗2𝜋𝑓𝑘

𝑁

𝑁

𝑘=1

, 𝑘 = 0,… ,𝑁 2⁄ . (4.2) 

In a similar process as the one described from the autocorrelation function, the final 

expression for the Fourier transform of the cross-correlation can be found through 

mathematical manipulation: 

 

𝑆𝑢𝑦(𝑓) =
1

𝑁
∑∑𝑦(𝑛)𝑥(𝑛 + 𝑘)

𝑁

𝑛=1

𝑒
−𝑗2𝜋𝑓𝑘

𝑁

𝑁

𝑘=1

  

 

𝑆𝑢𝑦(𝑓) =
1

𝑁
∑𝑥(𝑛 + 𝑘)𝑒

𝑗2𝜋𝑓(𝑛−𝑘)
𝑁

𝑁

𝑘=1

∑𝑦(𝑛)𝑒
−𝑗2𝜋𝑓𝑛

𝑁

𝑁

𝑛=1

  



76 

 

 
𝑆𝑢𝑦(𝑓) =

1

𝑁
𝑋∗(𝑘)𝑌(𝑘). (4.3) 

Suy in equation (4.3) represents the CPSD or cross-spectrum [106]. In this equation 𝑋∗ is 

the complex conjugate of the Fourier transform of the signal 𝑥 and 𝑌 is the Fourier 

transform of 𝑦. Describing an output signal 𝑦 as the convolution sum in Equation (3.34) 

and substituting this expression on the cross-correlation considering the lagged version of 

𝑦, 𝑦(𝑛 + 𝑘), Equation (4.1) becomes 

 

𝑟𝑥𝑦(𝑘) =
1

𝑁
∑𝑥(𝑛) ∑ ℎ(𝑚)𝑥(𝑛 + 𝑘 −𝑚)

𝑀−1

𝑚=0

𝑁

𝑛=1

  

 

              = ∑ ℎ(𝑚)
1

𝑁
∑𝑥(𝑛)𝑥(𝑛 + 𝑘 −𝑚)

𝑁

𝑛=1

𝑀−1

𝑚=0

  

 

= ∑ ℎ(𝑚)𝑟𝑥𝑥(𝑘 − 𝑚),          

𝑀−1

𝑚=0

 (4.4) 

where 𝑁 is the length of 𝑥 and 𝑀 is the length of the impulse response ℎ. Equation (4.4) is 

called the Wiener-Hopf equation [112] and substituting it into the CPSD, Equation (4.3) 

becomes 

 

𝑆𝑢𝑦(𝑓) = ∑ ∑ ℎ(𝑚)𝑟𝑥𝑥(𝑘 − 𝑚)

𝑀−1

𝑚=0

𝑒
−𝑗2𝜋𝑓𝑘

𝑁

𝑁

𝑘=1

  

 

𝑆𝑢𝑦(𝑓) = ∑ ℎ(𝑚)𝑒
−𝑗2𝜋𝑓𝑘

𝑁

𝑀−1

𝑚=0

∑𝑟𝑥𝑥(𝑘 − 𝑚)𝑒
−𝑗2𝜋𝑓(𝑘−𝑚)

𝑁

𝑁

𝑘=1

  

 𝑆𝑢𝑦(𝑓) = 𝐻(𝑓)𝑆𝑢𝑢(𝑓), (4.5) 

where 𝑟𝑥𝑥 is the autocorrelation function of signal 𝑥, 𝑆𝑢𝑢 is the Fourier transform of 𝑟𝑥𝑥 

(PSD) and 𝐻 is the Fourier transform of the impulse response ℎ, or the transfer function. 

The transfer function 

 
𝐻̂(𝑓) =

𝑆̂𝑢𝑦(𝑓)

𝑆̂𝑢𝑢(𝑓)
 (4.6) 

can be estimated from the estimated cross and autocorrelation estimates, 𝑆̂𝑢𝑦 and 𝑆̂𝑢𝑢, 

respectively. 
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We perform transfer function estimation using the Fourier transform and the Welch 

methods. In this study the transfer function is estimated for the two subsystems of interest: 

the ABR, in which SBP is the input to RRI, and RSA, in which ILV is the input to RRI. 

Both Fourier transform and Welch methods are used. The quantitative indicators used for 

statistical analysis of the RSA are the areas of the magnitude response of the transfer 

functions for the LF and HF frequency bands, 𝑅𝑆𝐴𝐿𝐹 and 𝑅𝑆𝐴𝐻𝐹. BRS is calculated from 

the areas from the ABR transfer functions, as described in the following section. 

4.5. BAROREFLEX SENSITIVITY INDEXES 

There are a few BRS indicators that can be calculated based on PSD, transfer function and 

impulse response analyses. Pagani et al. [120] first proposed the 𝛼𝐿𝐹 and 𝛼𝐻𝐹 indexes: 

 

𝛼𝐹𝐵 = √
∫ 𝑃̂𝑅𝑅𝐼(𝑘)𝑑𝑘
𝑓2
𝑓1

∫ 𝑃̂𝑆𝐵𝑃(𝑘)𝑑𝑘
𝑓2
𝑓1

, (4.7) 

where the frequency band FB can be defined in the LF or HF frequency bands, by 

appropriate choice of the minimum and maximum frequencies 𝑓1 and 𝑓2, respectively. The 

𝛼𝐿𝐹 and 𝛼𝐻𝐹 indexes are descriptors of baroreflex gain, calculated from the PSD estimates 

of RRI and SBP for each frequency band, 𝑃̂𝑅𝑅𝐼 and 𝑃̂𝑆𝐵𝑃, respectively. These indexes 

assume that changes in LF(HF) RRI are caused by changes in LF(HF) SBP. Lucini et al. 

[121] proposed the overall 𝛼-index:  

 
𝛼 =

𝛼𝐿𝐹 + 𝛼𝐻𝐹

2
 (4.8) 

as a measure of overall BRS gain, calculated as the mean value of the LF and HF bands. 

The BRS can also be calculated from the spectral transfer function between SBP and RRI 

as: 

 
𝐵𝑅𝑆𝐹𝐵 =

𝐴𝐵𝑅𝐹𝐵

𝑓2 − 𝑓1
, (4.9) 

where 𝐴𝐵𝑅𝐹𝐵 is the power (area) of a frequency band defined by the minimum frequency 

𝑓1 and the maximum frequency 𝑓2. This is a measure of how the RRI varies in response to 

changes in SBP for a given frequency band and presents indexes with the same units as 
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those produced by Equation (4.7), ms/mmHg [17]. The overall 𝛼-index is determined for 

the transfer function from the average between 𝐵𝑅𝑆𝐿𝐹 and 𝐵𝑅𝑆𝐻𝐹, the 𝐵𝑅𝑆𝛼 indicator. 

The BRS as defined in Equation (4.9) is the same as the impulse response DG indicator, 

shown in Equation (3.37), which is already given as an output through CRSIDLab, and so 

the final BRS indicators are the 𝐴𝐵𝑅𝐿𝐹, 𝐴𝐵𝑅𝐻𝐹 and 𝐴𝐵𝑅𝑇𝑂𝑇, described in section 4.3.3. 

4.6. STATISTICAL ANALYSIS 

In this study the same groups of subjects are evaluated under different conditions. To 

verify whether the mean values of the indicators differ on a significant level for the 

subjects in supine and standing postures, a repeated measures analysis of variance 

(ANOVA) test was applied to compare the quantitative indicators. 

The repeated measures ANOVA assumes that the data sets have normal distribution and 

equal variance. Therefore, before performing the ANOVA test, the data sets are tested for 

normality using the Shapiro-Wilk test [122], which was shown to be more powerful than 

other similar tests even with a small number of samples [123]. Data that did not pass the 

normality test were log or square-root transformed [124]. All transformed data were found 

to be normal and to have equal variance (Brown-Forsythe test) [125]. 

Finally, the Pearson correlation [126] 

 
𝑟 =

∑ (𝑋𝑖 − 𝑋̅)(𝑌𝑖 − 𝑌̅)𝑛
𝑖=1

√∑ (𝑋𝑖 − 𝑋̅)2𝑛
𝑖=1 ∑ (𝑌𝑖 − 𝑌̅)2𝑛

𝑖=1

 
(4.10) 

between two data series 𝑋𝑖 and 𝑌𝑖, 𝑖 = 1,… , 𝑛, of mean values 𝑋̅ and 𝑌̅ is used to assess the 

correlation between indicators that are reported to be associated. It is widely acknowledged 

that HF HRV is a measure of vagal activity related to RSA [3, 4, 6, 7], and some have 

claimed LF HRV reflects baroreflex activity [3, 67]. Recent studies have suggested that the 

reliability of traditional BRS estimates is highly dependent on the dominant causality 

between BP and HR and that the dominant causality shifts according to posture [47, 44]. 

Thus, the correlation analyses were performed between RSA/RCC and HRV indicators and 

between BRS/ABR and HRV indicators on both LF and HF for supine and standing 

postures. The correlation between LF spectral BRS and impulse response ABR indicators 

was also calculated in supine and standing postures to address the causality issue.  
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5. RESULTS 

The results from the statistical analysis of the indicators presented are shown in this 

chapter. The variables analyzed include spectral HRV and BPV measures, as well as 

measures based on the impulse response and its corresponding spectrum (the system’s 

transfer function). Correlation analyses between corresponding indicators using different 

techniques, as well as between LF and HF components of different indices, are performed 

to evaluate the differences and/or commonalities between related metrics. 

All of the methods available in CRSIDLab for PSD analysis and model estimation were 

employed for a full demonstration of the toolbox. It is not the purpose of this study to 

compare the results from the different methods available for each analysis approach 

(univariate PSD, spectral transfer function and impulse response analyses), but to compare 

the results from each of these techniques. 

5.1. HRV AND BPV 

HRV was quantified from frequency analysis of the RRI, as discussed in section 3.3.1, 

using the Fourier transform, the Welch method, and the AR model. In all cases, there is a 

significant decrease in 𝐻𝑅𝑉𝐻𝐹 in standing posture compared to supine, which is a measure 

of vagal activity [3, 4, 6, 7], as shown in Figure 5.1. 

Figure 5.2 illustrates the increase found in 𝐻𝑅𝑉𝐿𝐹/𝐻𝐹 upon standing. 𝐻𝑅𝑉𝐿𝐹/𝐻𝐹 is a 

measure of sympathovagal balance, where an increase indicates a shift towards dominant 

sympathetic activity and a decrease indicates a shift towards dominant vagal activity [4, 7].  

BPV was quantified from the frequency analysis of SBP, also through the Fourier 

transform, Welch method and AR model. While 𝐵𝑃𝑉𝐿𝐹 is believed to be a measure of 

sympathetic vascular tone [67, 68, 69], the interpretation of 𝐵𝑃𝑉𝐻𝐹 is more controvertial 

[70], as further discussed in chapter 6. Both indicators showed a statistically significant 

increase in standing posture compared to supine from all three spectra, as shown in Figure 

5.3 and 5.4. 
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Figure 5.1 – High frequency heart rate variability, 𝐻𝑅𝑉𝐻𝐹 (0.15-0.4 Hz), for supine and 

standing postures calculated as the power spectral density (PSD) of the R-R interval (RRI) 

using the Fourier transform, the Welch method, and the AR model. The decrease in 𝐻𝑅𝑉𝐻𝐹 

in standing is an indicator of tonal vagal withdrawal. 
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Figure 5.2 – Heart rate variability LF/HF ratio, 𝐻𝑅𝑉𝐿𝐹/𝐻𝐹, for supine and standing postures 

calculated as the power spectral density (PSD) of the R-R interval (RRI) using the Fourier 

transform, the Welch method, and the AR model. The increase in 𝐻𝑅𝑉𝐿𝐹/𝐻𝐹 in standing 

indicates a shift towards dominant sympathetic activity in sympathovagal balance. 

𝑝 < 0.001 𝑝 < 0.001 𝑝 < 0.001 

𝑝 < 0.001 

𝑝 < 0.001 𝑝 < 0.001 
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Figure 5.3 – Low frequency blood pressure variability, 𝐵𝑃𝑉𝐿𝐹 (0.04-0.15 Hz), for supine 

and standing postures calculated as the power spectral density (PSD) of systolic blood 

pressure (SBP) using the Fourier transform, the Welch method, and the AR model. The 

increase in 𝐵𝑃𝑉𝐿𝐹 upon standing indicates increased sympathetic vasomotor tone. 
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Figure 5.4 – High frequency blood pressure variability, 𝐵𝑃𝑉𝐻𝐹 (0.15-0.4 Hz), for supine 

and standing postures calculated as the power spectral density (PSD) of systolic blood 

pressure (SBP) using the Fourier transform, the Welch method, and the AR model. The 

meaning of the increase in 𝐵𝑃𝑉𝐻𝐹 upon standing is not a consensus among researchers. 

𝑝 < 0.001 
𝑝 < 0.001 

𝑝 < 0.001 

𝑝 < 0.001 
𝑝 < 0.001 

𝑝 < 0.001 
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5.2. RCC AND RSA 

Quantitative indicators for RSA, presented in section 4.4, were obtained from the spectral 

transfer functions, estimated through both the Fourier transform and the Welch methods. 

The respiratory cardiac coupling, RCC, was quantified from the impulse responses 

generated from the ARX, LBF, and MBF models, as described in section 3.3.2. 

Impulse response analysis is able to isolate the direct effects of respiration from the 

indirect effects, which are mostly mechanical and mediated through ABR (section 2.3), by 

having both ILV and SBP as model inputs [14]. Therefore, while RSA is a measure of both 

direct and indirect effects of respiration on HR, RCC quantifies the direct effects only. 

5.2.1. Frequency domain transfer function 

RSA transfer function analysis was performed through the Fourier transform and Welch 

methods. 𝑅𝑆𝐴𝐿𝐹 showed a significant decrease from supine to standing using both 

methods, as shown in Figure 5.5. Saul et al. [37] showed that 𝑅𝑆𝐴𝐿𝐹 is responsive under 

vagal blockade, suggesting both sympathetic and vagal branches act in LF. 
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Figure 5.5 – Low frequency respiratory sinus arrhythmia, 𝑅𝑆𝐴𝐿𝐹 (0.04-0.15 Hz), 

quantifying the direct and indirect effects of respiration on heart rate, for supine and 

standing postures calculated from the transfer function estimated the Fourier transform, 

and Welch method. The interpretation of the decrease verified in 𝑅𝑆𝐴𝐿𝐹in standing posture 

reflex combined vagal and sympathetic activity changes. 

𝑝 = 0.036 

𝑝 = 0.032 
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Figure 5.6 shows that there was also a significant decrease in 𝑅𝑆𝐴𝐻𝐹 upon standing. RSA 

is generally accepted as a measure of vagal activity [12, 13] and  𝑅𝑆𝐴𝐻𝐹 was shown to be 

absent during vagal blockade [37].  
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Figure 5.6 – High frequency respiratory sinus arrhythmia, 𝑅𝑆𝐴𝐻𝐹 (0.15-0.4 Hz), 

quantifying the direct and indirect effects of respiration on heart rate, for supine and 

standing postures obtained from the transfer function estimated using the Fourier 

transform, and Welch method. The decrease in 𝑅𝑆𝐴𝐻𝐹 in standing indicates tonal vagal 

withdrawal. 

5.2.2. Impulse response 

Since the impulse response is a reflection of the dynamic properties of the system, as 

addressed in section 3.3.2.6, impulse response analysis allows the verification of the 

dynamic response, besides gain. Table 5.1 presents the impulse response latency (mean ± 

standard deviation) for the RCC impulse response in both supine and standing postures. No 

significant difference was observed. Nevertheless, in all models a negative latency between 

ILV and RRI is observed. This result is in accordance to the apparent non-causal 

relationship between ILV and RRI, reported by a number of previous studies [14, 24, 53]. 

The, 𝑅𝐶𝐶𝐼𝑅𝑀 index, related to gain of the impulse response, showed a significant decrese 

from supine to standing, as presented in Figure 5.7, using either model. Being an overall 

indicator of the direct effects of respiration on HR, it is mainly an indicator of vagal 

activity [12, 13].  

𝑝 < 0.001 

𝑝 < 0.001 
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Table 5.1 – Respiratory-cardiac coupling (RCC) impulse response latency for subjects in 

supine and standing positions obtained from ARX, LBF and MBF models presented as 

mean value ± standard deviation. There is no significant difference between postures, but 

the selection of negative delays implies a non-causal relationship. 

Posture ARX model LBF model MBF model 

Supine −0.801 ± 0.546 −1.975 ± 0.412 −2.044 ± 0.281 

Standing −0.770 ± 0.603 −1.913 ± 0.641 −2.012 ± 0.626 
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Figure 5.7 – Respiratory-cardiac coupling impulse response magnitude, 𝑅𝐶𝐶𝐼𝑅𝑀, as an 

overall measure of gain quantifying the direct effects of respiration on heart rate, for supine 

and standing postures, obtained from the impulse response estimated using the ARX, LBF, 

and MBF models. The decreased 𝑅𝐶𝐶𝐼𝑅𝑀 found in standing posture indicates vagal 

withdrawal. 

The 𝑅𝐶𝐶𝑇𝑂𝑇, a measure of the area under the curve (the transfer function gain) of both LF 

and HF bands combined, obtained from the spectral analysis of the impulse response as 

described in section 3.3.2.6, also showed a significant decrease from supine to standing, as 

shown in Figure 5.8. As the 𝑅𝐶𝐶𝐼𝑅𝑀, it is mainly an indicator of vagal activity [12, 13]. 

Both the LF and HF components of RCC, 𝑅𝐶𝐶𝐿𝐹 and 𝑅𝐶𝐶𝐻𝐹, respectively, similarly show 

a significant decrease upon standing, as shown in  Figure 5.9 and Figure 5.10. The 

interpretation of those indicators mainly correspond to the 𝑅𝑆𝐴𝐿𝐹 and 𝑅𝑆𝐴𝐻𝐹, respectively, 

however in RCC analysis only the direct effects of respiration are reflected, while in RSA 

analysis an increase or decrease may be due to the indirect effects, which are mostly 

mechanical and not mediated by the ANS [14].  
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Figure 5.8 – Respiratory-cardiac coupling total dynamic gain, 𝑅𝐶𝐶𝑇𝑂𝑇 (0.04-0.4 Hz), as an 

overall measure quantifying the direct effects of respiration on heart rate, for supine and 

standing postures, obtained from the impulse response estimated using the ARX, LBF and, 

MBF models. The decrease in 𝑅𝐶𝐶𝑇𝑂𝑇 upon standing indicates vagal withdrawal. 
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Figure 5.9 – Respiratory-cardiac coupling low frequency dynamic gain, 𝑅𝐶𝐶𝐿𝐹 (0.04-0.15 

Hz), quantifying the direct effects of respiration on heart rate, for supine and standing 

postures obtained from the impulse response estimated using the ARX, LBF, and MBF 

models. The meaning of the decrease in 𝑅𝐶𝐶𝐿𝐹 upon standing results from the interaction 

of sympathetic and vagal activity shifts.  
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Figure 5.10 – Respiratory-cardiac coupling high frequency dynamic gain, 𝑅𝐶𝐶𝐻𝐹 (0.15-0.4 

Hz), quantifying the direct effects of respiration on hear rate, for supine and standing 

postures obtained from the impulse response estimated using the ARX, LBF, and MBF 

models. The decrease in 𝑅𝐶𝐶𝐻𝐹 upon standing is an indicator of vagal withdrawal. 

5.3. ABR AND BRS 

The quantitative indicators for BRS were obtained in the frequency domain as the square 

root of the HRV/BPV ratio, obtained from PSD analysis using the Fourier transform, the 

Welch method, and the AR model (section 3.3.1), and also obtained from transfer 

functions, estimated through the Fourier transform and Welch methods. Both methods are 

described in section 4.5. The impulse response indicators of ABR were estimated from the 

ARX, LBF, and MBF models (section 3.3.2.6). 

The relationship between BP and HR is essentially closed-loop, as illustrated in Figure 

2.10. Indices of BRS obtained from spectral analyses are, by definition, unable to 

disentangle the feedforward and feedback paths involved in the baroreflex dynamics, since 

the temporal relationship between BP and HR is not preserved by this technique [115]. 

Impulse response based modeling, on the other hand, by considering the current output to 

be dependent upon only past and present, but not future measures of the outputs in the 

model definition, essentially “open the loop” mathematically [44, 47]. Thus, the ABR 

indices more correctly quantify the open-loop effects of SBP on RRI, and not the other 

way around. 
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5.3.1. Power spectral density 

BRS indicators were calculated from the square root of the HRV/BPV ratio, obtained from 

PSD analyses using the Fourier transform, the Welch method, and the AR model. The 𝛼𝐿𝐹 

index, considered a measure of both sympathetic and vagal activities [24, 37], presented 

significant decrease upon standing, as shown in Figure 5.11. 
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Figure 5.11 – Low frequency baroreflex sensitivity, 𝛼𝐿𝐹 (0.04-0.15 Hz), calculated as the 

square root of the HRV/BPV ratio, obtained from power spectral density (PSD) analysis 

using the Fourier transform, the Welch method, and the AR model, for subjects in supine 

and standing postures. The decrease in 𝛼𝐿𝐹 in standing reflects both vagal and sympathetic 

activities. 

The 𝛼𝐻𝐹 index also showed significant decrease in standing, as illustrated in Figure 5.12. 

This is considered to be a purely vagal indicator [24, 37].  

Finally, Figure 5.13 shows that the overall 𝛼 index was also reduced in standing when 

compared to supine. Though the overall 𝛼 indicator takes both frequency ranges into 

account, presenting information on both ANS branches, it is generally considered a 

measure of reflex vagal activity [41, 42].  

 

𝑝 < 0.001 𝑝 = 0.001 

𝑝 < 0.001 

α
L
F
 (

m
s
/m

m
H

g
)  



88 

 

Fourier Welch AR model

a
H

F
 (

m
s
/m

m
H

g
)

0

10

20

30

40

Supine
Standing

 
Figure 5.12 – High frequency baroreflex sensitivity, 𝛼𝐻𝐹 (0.15-0.4 Hz), calculated as the 

square root of the HRV/BPV ratio, obtained from power spectral density (PSD) analysis 

using the Fourier transform, the Welch method, and the AR model, for subjects in supine 

and standing postures. The decrease in 𝛼𝐻𝐹 in standing is related to decreased vagal 

activity. 
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Figure 5.13 – Overall baroreflex sensitivity, 𝛼, calculated as the mean value between low 

frequency (0.04-0.15 Hz) and high frequency (0.15-0.4 Hz) sensitivities, 𝛼𝐿𝐹 and 𝛼𝐻𝐹 for 

subjects in supine and standing postures. 𝛼𝐿𝐹 and 𝛼𝐻𝐹 were calculated as the square root of 

the HRV/BPV ratio in each frequency band, obtained from power spectral density (PSD) 

analysis using the Fourier transform, the Welch method, and the AR model. The 

diminished reflex vagal activity in standing is indicated by the decrease in 𝛼. 
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5.3.2. Frequency domain transfer function 

BRS transfer function was estimated from the Fourier transform and Welch methods. 

These indicators directly relate to those obtained through the relation between HRV and 

BPV. 𝐵𝑅𝑆𝐿𝐹, as illustrated in Figure 5.14, significantly decreased upon standing, reflecting 

the effects of both sympathetic and vagal activities. 
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Figure 5.14 – Low frequency baroreflex sensitivity, 𝐵𝑅𝑆𝐿𝐹 (0.04-0.15 Hz), calculated 

from the transfer functions estimated using the Fourier transform, and the Welch method, 

for subjects in supine and standing postures. The reduction in 𝐵𝑅𝑆𝐿𝐹 in standing results 

from shifts in both vagal and sympathetic activities. 

𝐵𝑅𝑆𝐻𝐹 significantly decreased in standing posture compared to supine, as shown in Figure 

5.15, suggesting vagal withdrawal.   

Figure 5.16 illustrate the results found for 𝐵𝑅𝑆𝛼, showing a significant decrease upon 

standing and is mostly an indicator of reflex vagal activity. 
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Figure 5.15 – High frequency baroreflex sensitivity, 𝐵𝑅𝑆𝐻𝐹 (0.15-0.4 Hz), calculated from 

the transfer functions estimated using the Fourier transform, and the Welch method, for 

subjects in supine and standing postures. The decrease in 𝐵𝑅𝑆𝐻𝐹  in standing relates to 

vagal activity withdrawal. 
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Figure 5.16 – Overall baroreflex sensitivity, 𝐵𝑅𝑆𝛼, calculated as the mean value between 

low frequency (0.04-0.15 Hz) and high frequency (0.15-0.4 Hz) sensitivities, 𝐵𝑅𝑆𝐿𝐹 and 

𝐵𝑅𝑆𝐻𝐹, for subjects in supine and standing postures. 𝐵𝑅𝑆𝐿𝐹 and 𝐵𝑅𝑆𝐻𝐹 were calculated in 

each frequency band from the transfer functions estimated using the Fourier transform, and 

the Welch method. 𝐵𝑅𝑆𝛼 is proportional to reflex vagal activity. 
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5.3.3. Impulse response 

The ABR impulse response was estimated from the ARX, LBF and MBF models. All ABR 

indicators related to the impulse response showed a significant decrease in standing. The 

𝐴𝐵𝑅𝐼𝑅𝑀 gain, an indicator of overall BRS gain, shown in Figure 5.17, presented significant 

decrease for all models.  
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Figure 5.17 – Arterial baroreflex impulse response magnitude, 𝐴𝐵𝑅𝐼𝑅𝑀, as a measure of 

overall gain calculated from the impulse responses estimated through the ARX, LBF, and 

MBF models, for subjects in supine and standing postures. 

The overall 𝐴𝐵𝑅𝑇𝑂𝑇 gain, determined from the transfer function calculated from the 

impulse response in both the LF and HF regions, also significantly diminished in standing 

compared to supine, as illustrated in Figure 5.18. 

Figure 5.19 shows the results for the 𝐴𝐵𝑅𝐿𝐹 gain. A significant decrease was only verified 

for the 𝐴𝐵𝑅𝐿𝐹 calculated from the ARX impulse response, but not from LBF and MBF. 
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Figure 5.18 – Arterial baroreflex total dynamic gain, 𝐴𝐵𝑅𝑇𝑂𝑇 (0.04-0.4 Hz), as an overall 

measure of gain calculated from the impulse responses estimated through the ARX, LBF, 

and MBF models, for subjects in supine and standing postures. 
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Figure 5.19 – Arterial baroreflex low frequency dynamic gain, 𝐴𝐵𝑅𝐿𝐹 (0.04-0.15 Hz), 

calculated from the impulse responses estimated through the ARX, LBF, and MBF models, 

for subjects in supine and standing postures. 

As for the 𝐴𝐵𝑅𝐻𝐹 component, there was a significant decrease from supine to standing for 

all models, as shown in Figure 5.20.  
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Figure 5.20 – Arterial baroreflex high frequency dynamic gain, 𝐴𝐵𝑅𝐻𝐹 (0.15-0.4 Hz), 

calculated from the impulse responses estimated through the ARX, LBF, and MBF models, 

for subjects in supine and standing postures. 

5.4. CORRELATION ANALYSES 

This section presents the results from the correlation analyses that were performed between 

pairs of indicators, as described in section 4.6. 

5.4.1. HRV and RSA/RCC 

HRV indicators were correlated to both RSA and RCC indicators, in both HF and LF in 

supine and standing postures, as detailed in the next subsections. The correlations were 

performed between the indicators obtained from all available methods for each case. 

5.4.1.1. HF supine 

In supine posture, both the 𝑅𝑆𝐴𝐻𝐹 index, calculated from the spectral transfer functions, 

and 𝑅𝐶𝐶𝐻𝐹, calculated from the Fourier transform of the impulse responses, showed a 

strong positive correlation to the 𝐻𝑅𝑉𝐻𝐹 (0.809 ≤ 𝑟 ≤ 0.863, 𝑝 < 0.001), as shown in 

Table 5.2. 
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Table 5.2 – Pearson’s correlation coefficients and level of significance between 𝐻𝑅𝑉𝐻𝐹, 

and both HF indicators of respiratory sinus arrhythmia (RSA) obtained from subjects in 

supine posture: 𝑅𝑆𝐴𝐻𝐹, which quantifies direct and indirect effects of respiration on HRV 

and is derived from transfer function analysis, and 𝑅𝐶𝐶𝐻𝐹, the respiratory-cardiac coupling 

(RCC), which accounts only for the direct influence of respiration on HRV and is derived 

from impulse response analysis. 

      

𝐻𝑅𝑉𝐻𝐹 
(supine) 

  𝑅𝑆𝐴𝐻𝐹 (supine)  𝑅𝐶𝐶𝐻𝐹 (supine) 

  Fourier  Welch  ARX  LBF  MBF 

Fourier   0.809***  0.860***  0.845***  0.814***  0.810*** 

Welch   0.812***  0.861***  0.850***  0.814***  0.810*** 

AR   0.815***  0.863***  0.851***  0.812***  0.814*** 
            

***𝑝 < 0.001. 

𝐻𝑅𝑉𝐻𝐹 also showed strong correlation to the overall RCC gain indicator 𝑅𝐶𝐶𝐼𝑅𝑀, 

calculated from the impulse responses (0.756 ≤ 𝑟 ≤ 0.805, 𝑝 < 0.001). These 

correlations are presented in Table 5.3. 

Table 5.3 – Pearson’s correlation coefficients and level of significance between 𝐻𝑅𝑉𝐻𝐹 

and the impulse response magnitude (IRM), as a measure of overall gain of the respiratory-

cardiac coupling (RCC), quantifying the direct effects of respiration on HRV through 

impulse response analysis, from subjects in supine posture. 

    

𝐻𝑅𝑉𝐻𝐹 
(supine) 

  𝑅𝐶𝐶𝐼𝑅𝑀 (supine) 

  ARX  LBF  MBF 

Fourier   0.762***  0.756***  0.805*** 

Welch   0.785***  0.761***  0.799*** 

AR   0.788***  0.758***  0.797*** 
        

***𝑝 < 0.001. 

5.4.1.2. HF standing 

Both 𝑅𝑆𝐴𝐻𝐹, calculated from the transfer functions, and 𝑅𝐶𝐶𝐻𝐹, calculated from the 

impulse responses, also correlated strongly and positively to 𝐻𝑅𝑉𝐻𝐹 in standing posture 

(0.772 ≤ 𝑟 ≤ 0.905, 𝑝 < 0.001), as shown in Table 5.4.  

There was a strong correlation between 𝐻𝑅𝑉𝐻𝐹 and the overall RCC gain indicator 𝑅𝐶𝐶𝐼𝑅𝑀 

(0.700 ≤ 𝑟 ≤ 0.903, 𝑝 < 0.001), presented in Table 5.5. 
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Table 5.4 – Pearson’s correlation coefficients and level of significance between 𝐻𝑅𝑉𝐻𝐹 

and both HF indicators of respiratory sinus arrhythmia (RSA) obtained from subjects in 

standing posture: 𝑅𝑆𝐴𝐻𝐹, which quantifies direct and indirect effects of respiration on 

HRV and is derived from transfer function analysis, and 𝑅𝐶𝐶𝐻𝐹, the respiratory-cardiac 

coupling (RCC), which accounts only for the direct influence of respiration on HRV and is 

derived from impulse response analysis. 

      

𝐻𝑅𝑉𝐻𝐹 
(stand) 

  𝑅𝑆𝐴𝐻𝐹 (stand)  𝑅𝐶𝐶𝐻𝐹 (stand) 

  Fourier  Welch  ARX  LBF  MBF 

Fourier   0.885***  0.900***  0.823***  0.808***  0.772*** 

Welch   0.891***  0.905***  0.838***  0.831***  0.798*** 

AR   0.889***  0.904***  0.837***  0.837***  0.808*** 
            

***𝑝 < 0.001. 

Table 5.5 – Pearson’s correlation coefficients and level of significance between 𝐻𝑅𝑉𝐻𝐹 

and the impulse response magnitude (IRM), as a measure of overall gain, of the 

respiratory-cardiac coupling (RCC), quantifying the direct effects of respiration on HRV 

through impulse response analysis, from subjects in standing posture. 

    

𝐻𝑅𝑉𝐻𝐹 
(stand) 

  𝑅𝐶𝐶𝐼𝑅𝑀 (stand) 

  ARX  LBF  MBF 

Fourier   0.893***  0.747***  0.700*** 

Welch   0.903***  0.781***  0.732*** 

AR   0.902***  0.789***  0.727*** 
        

***𝑝 < 0.001. 

While the correlations between 𝐻𝑅𝑉𝐻𝐹 and 𝑅𝑆𝐴𝐻𝐹 are stronger in standing, the 

correlations between 𝐻𝑅𝑉𝐻𝐹 and 𝑅𝐶𝐶𝐻𝐹 are stronger in the supine posture. Although the 

differences between the corresponding coefficients for each posture are small, they are 

consistent across all methods. An example of these findings is illustrated in Figure 5.21, 

comparing the correlations between 𝐻𝑅𝑉𝐻𝐹 (Fourier transform) and both 𝑅𝑆𝐴𝐻𝐹 (Fourier 

transform) (Figure 5.21 (a,c)), and 𝑅𝐶𝐶𝐻𝐹 (MBF model) (Figure 5.21 (b,d)), in supine 

(Figure 5.21 (a,b)), and standing (Figure 5.21 (c,d)) postures. While some of correlations 

between 𝐻𝑅𝑉𝐻𝐹 and 𝑅𝐶𝐶𝐼𝑅𝑀 are stronger in standing, others are stronger in supine posture. 
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Figure 5.21 – Correlations between 𝐻𝑅𝑉𝐻𝐹 obtained from the Fourier transform method 

and 𝑅𝑆𝐴𝐻𝐹, which quantifies direct and indirect effects of respiration on HRV and is 

derived from the Fourier transform transfer function (a,c); and between 𝐻𝑅𝑉𝐻𝐹  obtained 

from the Fourier transform method and 𝑅𝐶𝐶𝐻𝐹, which accounts only for the direct 

influence of respiration on HRV, referred to as respiratory-cardiac coupling (RCC), 

derived from the Meixner basis function (MBF) impulse response (b,d). Comparing the 

correlations in supine (a,b) and standing (c,d) postures, it is shown that while the 

correlation between 𝐻𝑅𝑉𝐻𝐹 and 𝑅𝑆𝐴𝐻𝐹  is stronger in standing posture, the opposite is true 

between 𝐻𝑅𝑉𝐻𝐹  and 𝑅𝐶𝐶𝐻𝐹. 

5.4.1.3. LF supine 

In supine posture there were no significant correlations between 𝐻𝑅𝑉𝐿𝐹, and 𝑅𝑆𝐴𝐿𝐹 

calculated from the spectral transfer functions. Comparing 𝐻𝑅𝑉𝐿𝐹 and 𝑅𝐶𝐶𝐿𝐹, estimated 

from the impulse response, significant correlations were only found for 𝑅𝐶𝐶𝐿𝐹 estimated 

from LFB and MBF models, but not between the spectral 𝐻𝑅𝑉𝐿𝐹 index estimated from the 

Fourier transform PSD and 𝑅𝐶𝐶𝐿𝐹 estimated from the MBF model. The significant 

correlations were weak to moderate (0.416 ≤ 𝑟 ≤ 0.562, 𝑝 < 0.05), as shown in Table 

5.6.  
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Table 5.6 – Pearson’s correlation coefficients and level of significance between 𝐻𝑅𝑉𝐿𝐹, 

and both LF indicators of respiratory sinus arrhythmia (RSA) obtained from subjects in 

supine posture: 𝑅𝑆𝐴𝐿𝐹, which quantifies direct and indirect effects of respiration on HRV 

and is derived from transfer function analysis, and 𝑅𝐶𝐶𝐿𝐹, the respiratory-cardiac coupling 

(RCC), which accounts only for the direct influence of respiration on HRV and is derived 

from impulse response analysis. 

      

𝐻𝑅𝑉𝐿𝐹 
(supine) 

  𝑅𝑆𝐴𝐿𝐹 (supine)  𝑅𝐶𝐶𝐿𝐹 (supine) 

  Fourier  Welch  ARX  LBF  MBF 

Fourier   0.164  0.294  0.296  0.428*  0.381 

Welch   0.284  0.453  0.392  0.562**  0.536** 

AR   0.172  0.309  0.269  0.447*  0.416* 
            

*𝑝 < 0.05; **𝑝 < 0.01. 

𝐻𝑅𝑉𝐿𝐹 is moderately correlated to the overall indicator 𝑅𝐶𝐶𝐼𝑅𝑀 (0.450 ≤ 𝑟 ≤ 0.608, 𝑝 <

0.05), as shown in Table 5.7. 

Table 5.7 – Pearson’s correlation coefficients and level of significance between 𝐻𝑅𝑉𝐿𝐹 and 

the impulse response magnitude (IRM), as a measure of overall gain, of the respiratory-

cardiac coupling (RCC), quantifying the direct effects of respiration on HRV through 

impulse response analysis, from subjects in supine posture. 

    

𝐻𝑅𝑉𝐿𝐹 
(supine) 

  𝑅𝐶𝐶𝐼𝑅𝑀 (supine) 

  ARX  LBF  MBF 

Fourier   0.485*  0.558**  0.548** 

Welch   0.500*  0.572**  0.608** 

AR   0.450*  0.514*  0.502* 
        

*𝑝 < 0.05; **𝑝 < 0.01. 

5.4.1.4. LF standing 

Table 5.8 presents the correlation results in the standing posture between 𝐻𝑅𝑉𝐿𝐹 and both 

𝑅𝑆𝐴𝐿𝐹 and 𝑅𝐶𝐶𝐿𝐹. The only non-significant correlations were those between 𝐻𝑅𝑉𝐿𝐹 and 

𝑅𝐶𝐶𝐿𝐹 estimated from either the ARX or the MBF models, and the correlation between 

𝐻𝑅𝑉𝐿𝐹 estimated from the Welch method and 𝑅𝐶𝐶𝐿𝐹 estimated from the ARX model. The 

significant correlations were weak to moderate (0.417 ≤ 𝑟 ≤ 0.607, 𝑝 < 0.05).  
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Table 5.8 – Pearson’s correlation coefficients and level of significance between 𝐻𝑅𝑉𝐿𝐹, 

and both LF indicators of respiratory sinus arrhythmia (RSA) obtained from subjects in 

standing posture: 𝑅𝑆𝐴𝐿𝐹, which quantifies direct and indirect effects of respiration on HRV 

and is derived from transfer function analysis, and 𝑅𝐶𝐶𝐿𝐹, the respiratory-cardiac coupling 

(RCC), which accounts only for the direct influence of respiration on HRV and is derived 

from impulse response analysis. 

      

𝐻𝑅𝑉𝐿𝐹 
  𝑅𝑆𝐴𝐿𝐹  𝑅𝐶𝐶𝐿𝐹 

  Fourier  Welch  ARX  LBF  MBF 

Fourier   0.489*  0.578**  0.305  0.446*  0.377 

Welch   0.460*  0.607**  0.358  0.493*  0.417* 

AR   0.451**  0.584**  0.426*  0.513*  0.440* 
            

*𝑝 < 0.05; **𝑝 < 0.01. 

𝐻𝑅𝑉𝐿𝐹 is also moderately correlated to the overall indicator 𝑅𝐶𝐶𝐼𝑅𝑀 (0.448 ≤ 𝑟 ≤

0.663, 𝑝 < 0.05), using any method, as shown in Table 5.9. 

Table 5.9 – Pearson’s correlation coefficients and level of significance between 𝐻𝑅𝑉𝐿𝐹 and 

the impulse response magnitude (IRM), as a measure of overall gain, of the respiratory-

cardiac coupling (RCC), quantifying the direct effects of respiration on HRV through 

impulse response analysis, from subjects in standing posture. 

    

𝐻𝑅𝑉𝐿𝐹 
  𝑅𝐶𝐶𝐼𝑅𝑀 

  ARX  LBF  MBF 

Fourier   0.547**  0.511*  0.448* 

Welch   0.607**  0.560**  0.544** 

AR   0.663***  0.546**  0.595** 
        

*𝑝 < 0.05; **𝑝 < 0.01; ***𝑝 < 0.001. 

Comparing the supine and standing correlations shown in tables Table 5.6 and Table 5.8, it 

is clear from the correlation coefficients that the correlations are stronger in standing than 

supine for 𝑅𝑆𝐴𝐿𝐹. There is no clear trend when comparing correlations between HRV and 

both 𝑅𝐶𝐶𝐿𝐹 and the overall 𝑅𝐶𝐶𝐼𝑅𝑀 in terms of whether the stand or supine postures 

present stronger correlation coefficients. 

5.4.1.5. LF and HF correlations 

For all supine indices, the correlations between the corresponding HF indices were 

stronger than between the associated LF indices. For example, Figure 5.22 shows the 

correlation plots in for the HF (Figure 5.22 (a,b,c)) and LF (Figure 5.22 (d,e,f)) 
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components. In particular, Figure 5.22 (a) and (d) show the correlation between the HF and 

LF components of HRV (AR model) and RSA (Fourier transform), respectively. Figure 

5.22 (b) and (e) illustrate the correlation between the HF and LF components of HRV 

(Welch method) and RCC (MBF model). Finally, Figure 5.22 (c) and (f) show the 

correlation between the HF and LF components of HRV (Welch method) vs. 𝑅𝐶𝐶𝐼𝑅𝑀 

(ARX model). For all supine indices, the results show that the RSA and RCC indicators 

correlate more strongly to HRV in the HF than in the LF band. Likewise, the correlation 

between HRV and the overall indicator 𝑅𝐶𝐶𝐼𝑅𝑀 is also stronger for the HF components. 
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Figure 5.22 – Correlations for supine posture between HRV obtained from the AR model 

and respiratory sinus arrhythmia (RSA), which quantifies direct and indirect effects of 

respiration on HRV, derived from the Fourier transform transfer function (a,d); between 

HRV obtained from the Welch method and respiratory-cardiac coupling (RCC), which 

accounts only for the direct influence of respiration on HRV, from the MBF impulse 

response (b,e); and between HRV obtained from the Welch method and the impulse 

response magnitude (IRM) , as a measure of overall gain, from the ARX impulse response 

(c,f). The correlations are stronger in HF (a,b,c) compared to LF (d,e,f) for all 

combinations. 

Figure 5.23 illustrates the correlations between the same variables presented in Figure 

5.22, but for the standing posture data. In standing posture the same tendencies as those 
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found for the supine posture are observed, with all correlations presenting stronger 

coefficients in HF rather than on the LF band.  

These findings are consistent with the hypothesis that HF HRV reflects respiratory activity 

[3, 4, 6, 7], as the correlations between those mechanisms and HRV are strong in this 

frequency band. It is also consistent with the fact that respiratory mechanisms are 

considered mainly vagally mediated dynamics, as discussed in section 2.3. 
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Figure 5.23 – Correlations for standing posture between HRV obtained from the AR model 

and respiratory sinus arrhythmia (RSA), which quantifies direct and indirect effects of 

respiration on HRV, derived from the Fourier transform transfer function (a,d); between 

HRV obtained from the Welch method and respiratory-cardiac coupling (RCC), which 

accounts only for the direct influence of respiration on HRV, from the MBF impulse 

response (b,e); and between HRV obtained from the Welch method and the impulse 

response magnitude (IRM), as a measure of overall gain, from the ARX impulse response 

(c,f). The correlations are stronger in HF (a,b,c) compared to LF (d,e,f) for all 

combinations. 
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but in supine correlation depended on the methods used. These results will be presented in 

the following subsections. 

5.4.2.1. HF supine 

The correlations between 𝐻𝑅𝑉𝐻𝐹 and the spectral BRS estimate, 𝛼𝐻𝐹, as well as those 

between 𝐻𝑅𝑉𝐻𝐹 and 𝐵𝑅𝑆𝐻𝐹 obtained from spectral transfer functions, in supine, are 

moderate to strong (0.695 ≤ 𝑟 ≤ 0.787, 𝑝 < 0.001). These results are presented in Table 

5.10. 

Table 5.10 – Pearson’s correlation coefficients and level of significance between indicators 

of 𝐻𝑅𝑉𝐻𝐹, and both baroreflex sensitivity (BRS) indicators, in supine posture: 𝛼𝐻𝐹, 

calculated as the square root of the ratio between HRV and BPV powers, derived from 

PSD analyses; and 𝐵𝑅𝑆𝐻𝐹, derived from the transfer function analysis. 

          

𝐻𝑅𝑉𝐻𝐹 
(supine) 

  𝛼𝐻𝐹 (supine)  𝐵𝑅𝑆𝐻𝐹 (supine) 

  Fourier  Welch  AR  Fourier  Welch 

Fourier   0.760***  0.787***  0.783***  0.704***  0.777*** 

Welch   0.742***  0.783***  0.778***  0.698***  0.767*** 

AR   0.731***  0.782***  0.780***  0.695***  0.758*** 
            

***𝑝 < 0.001. 

The correlations between 𝐻𝑅𝑉𝐻𝐹 and 𝐴𝐵𝑅𝐻𝐹 (obtained from the impulse responses), were 

weaker than those observed between 𝐻𝑅𝑉𝐻𝐹 and the spectral BRS estimates (0.605 ≤ 𝑟 ≤

711, 𝑝 < 0.01). 𝐻𝑅𝑉𝐻𝐹 also showed a stronger correlation to the overall ABR gain 

indicator and 𝐴𝐵𝑅𝐼𝑅𝑀 (0.518 ≤ 𝑟 ≤ 0.770, 𝑝 < 0.05). These correlations are shown in 

Table 5.11. 

Table 5.11 – Pearson’s correlation coefficients and level of significance between 𝐻𝑅𝑉𝐻𝐹 

and both indicators derived from the arterial baroreflex (ABR) impulse response, obtained 

in supine posture: 𝐴𝐵𝑅𝐻𝐹 , and 𝐴𝐵𝑅𝐼𝑅𝑀, the impulse response magnitude (IRM) as a 

measure of overall gain. 

      

𝐻𝑅𝑉𝐻𝐹 
(supine) 

  𝐴𝐵𝑅𝐻𝐹 (supine)  𝐴𝐵𝑅𝐼𝑅𝑀 (supine) 

  ARX  LBF  MBF  ARX  LBF  MBF 

Fourier   0.711***  0.626**  0.631**  0.757***  0.613**  0.569** 

Welch   0.691**  0.610**  0.610**  0.758***  0.585**  0.518* 

AR   0.698***  0.605**  0.604**  0.770***  0.590**  0.520* 
              

*𝑝 < 0.5; **𝑝 < 0.01; ***𝑝 < 0.001. 
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5.4.2.2. HF standing 

Table 5.12 shows the correlations between  𝐻𝑅𝑉𝐻𝐹 and both 𝛼𝐻𝐹 and 𝐵𝑅𝑆𝐻𝐹. All results 

show a strong positive correlation (0.826 ≤ 𝑟 ≤ 0.888, 𝑝 < 0.001).  

Table 5.12 – Pearson’s correlation coefficients and level of significance between indicators 

of 𝐻𝑅𝑉𝐻𝐹, and both baroreflex sensitivity (BRS) indicators, in standing posture: 𝛼𝐻𝐹, 

calculated as the square root of the ratio between HRV and BPV powers, derived from 

PSD analyses; and 𝐵𝑅𝑆𝐻𝐹, derived from the transfer function analysis. 

          

𝐻𝑅𝑉𝐻𝐹 
(stand) 

  𝛼𝐻𝐹 (stand)  𝐵𝑅𝑆𝐻𝐹 (stand) 

  Fourier  Welch  AR  Fourier  Welch 

Fourier   0.875***  0.888***  0.886***  0.855***  0.851*** 

Welch   0.843***  0.875***  0.877***  0.829***  0.835*** 

AR   0.837***  0.873***  0.881***  0.826***  0.839*** 
            

***𝑝 < 0.001. 

Table 5.13 shows the correlations between 𝐻𝑅𝑉𝐻𝐹 and both 𝐴𝐵𝑅𝐻𝐹 and 𝐴𝐵𝑅𝐼𝑅𝑀 (0.465 ≤

𝑟 ≤ 569, 𝑝 < 0.05). These correlations are weaker than those obtained between 𝐻𝑅𝑉𝐻𝐹 

and the spectral BRS estimates shown in table 5.12. In particular, while the correlations 

between 𝐻𝑅𝑉𝐻𝐹 and all 𝐴𝐵𝑅𝐻𝐹 indices were significant, the 𝐻𝑅𝑉𝐻𝐹 indices were only 

significantly correlated to the overall ABR gain indicator estimated from the ARX impulse 

response (0.539 ≤ 𝑟 ≤ 0.555, 𝑝 < 0.01). 

Table 5.13 – Pearson’s correlation coefficients and level of significance between 𝐻𝑅𝑉𝐻𝐹 

and both indicators derived from the arterial baroreflex (ABR) impulse response, obtained 

in standing posture: 𝐴𝐵𝑅𝐻𝐹 , and 𝐴𝐵𝑅𝐼𝑅𝑀, the impulse response magnitude (IRM) as a 

measure of overall gain. 

      

𝐻𝑅𝑉𝐻𝐹 
(stand) 

  𝐴𝐵𝑅𝐻𝐹 (stand)  𝐴𝐵𝑅𝐼𝑅𝑀 (stand) 

  ARX  LBF  MBF  ARX  LBF  MBF 

Fourier   0.465*  0.510*  0.548**  0.539**  0.290  0.173 

Welch   0.466*  0.551**  0.562**  0.537**  0.341  0.233 

AR   0.476*  0.564**  0.569**  0.555**  0.354  0.240 
              

*𝑝 < 0.5; **𝑝 < 0.01. 

Figure 5.24 shows the correlations between 𝐻𝑅𝑉𝐻𝐹 (Fourier transform) and the spectral 

BRS indicators, 𝛼𝐻𝐹 (Fourier transform) and 𝐵𝑅𝑆𝐻𝐹 (Fourier transform), in both postures. 

The correlations between 𝐻𝑅𝑉𝐻𝐹 and 𝛼𝐻𝐹 (Figure 5.24 (a,c)), and between 𝐻𝑅𝑉𝐻𝐹 and 
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𝐵𝑅𝑆𝐻𝐹 (Figure 5.24 (b,d)) are illustrated for supine (Figure 5.24 (a,b)) and standing 

(Figure 5.24 (c,d)) postures. These results show that the correlations between the indices 

are stronger in standing posture. 
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Figure 5.24 – Correlations between 𝐻𝑅𝑉𝐻𝐹  and spectral baroreflex sensitivity (BRS) 

indicators, all obtained from the Fourier transform: 𝛼𝐻𝐹, which quantifies BRS from the 

square root of the ratio between HRV and BPV powers, obtained from PSD analysis (a,c); 

and 𝐵𝑅𝑆𝐻𝐹, calculated from the transfer function analysis (b,d). The correlations are 

stronger in standing posture for spectral indicators (c,d) than supine (a,b). 

Figure 5.25 shows the correlations between 𝐻𝑅𝑉𝐻𝐹 (Fourier transform) and the ABR 

(ARX model) indicators. In this case, the supine indices showed stronger correlations. 

Figure 5.25 (a,e) illustrates the correlations between 𝐻𝑅𝑉𝐻𝐹 and 𝐴𝐵𝑅𝐻𝐹 and Figure 5.25 

(b,d) shows the correlations between 𝐻𝑅𝑉𝐻𝐹 and 𝐴𝐵𝑅𝐼𝑅𝑀, in supine (Figure 5.25 (a,b)) and 

standing (Figure 5.25 (e,f)) postures.  
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Figure 5.25 – Correlations between 𝐻𝑅𝑉𝐻𝐹 obtained from the Fourier transform and 

arterial baroreflex (ABR) ARX impulse response indicators: 𝐴𝐵𝑅𝐻𝐹 (c,g); and 𝐴𝐵𝑅𝐼𝑅𝑀, 

which is a measure of overall gain (d,h). The correlations are stronger in supine posture 

(a,b), rather than standing (e,f). 

5.4.2.3. LF supine 

In supine posture, 𝐻𝑅𝑉𝐿𝐹 correlates positively to the spectral BRS indicators 𝛼𝐿𝐹 and also 

to 𝐵𝑅𝑆𝐿𝐹, obtained from spectral transfer functions, for all methods available (0.418 ≤

𝑟 ≤ 0.662, 𝑝 < 0.05), as shown in Table 5.14.  

Table 5.14 – Pearson’s correlation coefficients and level of significance between indicators 

of 𝐻𝑅𝑉𝐿𝐹, and both baroreflex sensitivity (BRS) indicators, in supine posture: 𝛼𝐿𝐹, 

calculated as the square root of the ratio between HRV and BPV powers, derived from 

PSD analyses; and 𝐵𝑅𝑆𝐿𝐹, derived from the transfer function analysis. 

          

𝐻𝑅𝑉𝐿𝐹 
(supine) 

  𝛼𝐿𝐹 (supine)  𝐵𝑅𝑆𝐿𝐹 (supine) 

  Fourier  Welch  AR  Fourier  Welch 

Fourier   0.607**  0.662**  0.431*  0.559**  0.640** 

Welch   0.573**  0.626**  0.418*  0.557**  0.631** 

AR   0.644***  0.643***  0.485*  0.526**  0.595** 
            

*𝑝 < 0.05; **𝑝 < 0.01; ***𝑝 < 0.001. 
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Table 5.15 shows the positive correlations found between 𝐻𝑅𝑉𝐿𝐹 and 𝐴𝐵𝑅𝐿𝐹, estimated 

from the impulse response (0.390 ≤ 𝑟 ≤ 0.560, 𝑝 < 0.05). The overall 𝐴𝐵𝑅𝐼𝑅𝑀 indicator 

obtained from the ARX model showed no significant correlation to the 𝐻𝑅𝑉𝐿𝐹 indicators. 

The 𝐻𝑅𝑉𝐿𝐹 estimated from the Fourier transform and Welch methods and 𝐴𝐵𝑅𝐼𝑅𝑀 

calculated from LBF and MBF impulse responses present moderate correlations (0.414 ≤

𝑟 ≤ 0.503, 𝑝 < 0.05). 

Table 5.15 – Pearson’s correlation coefficients and level of significance between 𝐻𝑅𝑉𝐿𝐹 

and both indicators derived from the arterial baroreflex (ABR) impulse response, obtained 

in supine posture: 𝐴𝐵𝑅𝐿𝐹  and 𝐴𝐵𝑅𝐼𝑅𝑀, the impulse response magnitude (IRM) as a 

measure of overall gain. 

      

𝐻𝑅𝑉𝐿𝐹 
(supine) 

  𝐴𝐵𝑅𝐿𝐹 (supine)  𝐴𝐵𝑅𝐼𝑅𝑀(supine) 

  ARX  LBF  MBF  ARX  LBF  MBF 

Fourier   0.494*  0.498*  0.453*  0.251  0.470*  0.414* 

Welch   0.452*  0.556**  0.560**  0.172  0.503*  0.471* 

AR   0.390*  0.490*  0.491*  0.162  0.341  0.253 
              

*𝑝 < 0.05; **𝑝 < 0.01. 

Correlation between the impulse response 𝐴𝐵𝑅𝐿𝐹 indicator and the spectral BRS indicators 

𝛼𝐿𝐹 and was significant for two of the nine combinations of methods, and between 𝐴𝐵𝑅𝐿𝐹 

and 𝐵𝑅𝑆𝐿𝐹, estimated from the spectral transfer function, for three of the six combinations. 

The significant correlations were moderate (0.416 ≤ 𝑟 ≤ 0.679, 𝑝 < 0.05), as shown in 

Table 5.16,  

Table 5.16 – Pearson’s correlation coefficients and level of significance between the 

impulse response indicator of arterial baroreflex (ABR) 𝐴𝐵𝑅𝐿𝐹 , and the baroreflex 

sensitivity (BRS) indicators obtained from spectral methods in supine posture: 𝛼𝐿𝐹, 

calculated as the square root of the ratio between HRV and BPV, and 𝐵𝑅𝑆𝐿𝐹, obtained 

from the transfer function analysis. 

          

𝐴𝐵𝑅𝐿𝐹 
(supine) 

  𝛼𝐿𝐹 (supine)  𝐵𝑅𝑆𝐿𝐹 (supine) 

  Fourier  Welch  AR  Fourier  Welch 

ARX   0.416*  0.384  0.351  0.355  0.305 

LBF   0.402  0.435*  0.344  0.464*  0.679*** 

MBF   0.281  0.303  0.165  0.350  0.523* 
            

*𝑝 < 0.05; ***𝑝 < 0.001. 
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5.4.2.4. LF standing 

Table 5.17 presents the correlation results between 𝐻𝑅𝑉𝐿𝐹 and both 𝛼𝐿𝐹 and 𝐵𝑅𝑆𝐿𝐹 in 

standing posture. For all methods correlations were strong (0.650 ≤ 𝑟 ≤ 0.792, 𝑝 <

0.001).  

Table 5.17 – Pearson’s correlation coefficients and level of significance between indicators 

of 𝐻𝑅𝑉𝐿𝐹, and both baroreflex sensitivity (BRS) indicators, in standing posture: 𝛼𝐿𝐹, 

calculated as the square root of the ratio between HRV and BPV powers, derived from 

PSD analyses; and 𝐵𝑅𝑆𝐿𝐹, derived from the transfer function analysis. 

          

𝐻𝑅𝑉𝐿𝐹 
(stand) 

  𝛼𝐿𝐹 (stand)  𝐵𝑅𝑆𝐿𝐹 (stand) 

  Fourier  Welch  AR  Fourier  Welch 

Fourier   0.792***  0.773***  0.735***  0.650***  0.778*** 

Welch   0.763***  0.772***  0.748***  0.657***  0.777*** 

AR   0.758***  0.760***  0.753***  0.688***  0.762*** 
            

***𝑝 < 0.001. 

The correlation between 𝐻𝑅𝑉𝐿𝐹 and 𝐴𝐵𝑅𝐿𝐹, obtained from the impulse responses, 

presented in Table 5.18, was significant for all methods (0.433 ≤ 𝑟 ≤ 0.705, 𝑝 < 0.05). 

Correlation between 𝐻𝑅𝑉𝐿𝐹 and the overall ABR gain indicator 𝐴𝐵𝑅𝐼𝑅𝑀were only 

significant for the 𝐴𝐵𝑅𝐼𝑅𝑀 estimated from the LBF model (0.529 ≤ 𝑟 ≤ 0.550, 𝑝 <

0.01). 

Table 5.18 – Pearson’s correlation coefficients and level of significance between 𝐻𝑅𝑉𝐿𝐹 

and both indicators derived from the arterial baroreflex (ABR) impulse response, obtained 

in standing posture: 𝐴𝐵𝑅𝐿𝐹 , and 𝐴𝐵𝑅𝐼𝑅𝑀, the impulse response magnitude (IRM) as a 

measure of overall gain. 

      

𝐻𝑅𝑉𝐿𝐹 
(stand) 

  𝐴𝐵𝑅𝐿𝐹 (stand)  𝐴𝐵𝑅𝐼𝑅𝑀 (stand) 

  ARX  LBF  MBF  ARX  LBF  MBF 

Fourier   0.433*  0.700***  0.696***  0.309  0.529**  0.219 

Welch   0.437*  0.685***  0.666***  0.288  0.550**  0.193 

AR   0.450*  0.705***  0.672***  0.319  0.549**  0.216 
              

*𝑝 < 0.05; **𝑝 < 0.01; ***𝑝 < 0.001. 

Table 5.19 shows the correlation between spectral BRS indicators, 𝛼𝐿𝐹 and 𝐵𝑅𝑆𝐿𝐹, and the 

impulse response indicators 𝐴𝐵𝑅𝐿𝐹. The correlations were strong for all indicators and 

methods (0.549 ≤ 𝑟 ≤ 0.860, 𝑝 < 0.05). 
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Table 5.19 – Pearson’s correlation coefficients and level of significance between the 

impulse response indicator of arterial baroreflex (ABR) 𝐴𝐵𝑅𝐿𝐹 , and the baroreflex 

sensitivity (BRS) indicators obtained from spectral methods in standing posture: 𝛼𝐿𝐹, 

calculated as the square root of the ratio between HRV and BPV, and 𝐵𝑅𝑆𝐿𝐹, obtained 

from the transfer function analysis. 

          

𝐴𝐵𝑅𝐿𝐹 
(stand) 

  𝛼𝐿𝐹 (stand)  𝐵𝑅𝑆𝐿𝐹 (stand) 

  Fourier  Welch  AR  Fourier  Welch 

ARX   0.594**  0.596**  0.617**  0.549**  0.613** 

LBF   0.850***  0.835***  0.843***  0.811***  0.860*** 

MBF   0.817***  0.799***  0.813***  0.767***  0.832*** 
            

**𝑝 < 0.01; ***𝑝 < 0.001. 

 

In LF, correlations between 𝐻𝑅𝑉𝐿𝐹 and the spectral BRS indicators, 𝛼𝐿𝐹 and 𝐵𝑅𝑆𝐿𝐹, were 

stronger in standing posture, as was the case in HF. As an example, Figure 5.26 shows the 

correlation plots for supine (Figure 5.26 (a,b)) and standing (Figure 5.26 (c,d)) postures for 

the LF band. Figure 5.26 (a) and (c) illustrate the correlation between 𝐻𝑅𝑉𝐿𝐹 (Welch 

method) and 𝛼𝐿𝐹 (AR model) for supine and standing postures, respectively. Figure 5.26 

(b) and (d) show the correlation between 𝐻𝑅𝑉𝐿𝐹 (AR model) and 𝐵𝑅𝑆𝐿𝐹 (Welch method), 

for supine and standing postures.  
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Figure 5.26 – Correlations between 𝐻𝑅𝑉𝐿𝐹 estimated through the Welch method and 𝛼𝐿𝐹, 

which quantifies baroreflex sensitivity (BRS) from the square root of the ratio between 

HRV and BPV powers, obtained from PSD analysis using the AR model (a,c); and 

between 𝐻𝑅𝑉𝐿𝐹 estimated using the AR model and 𝐵𝑅𝑆𝐿𝐹, calculated from the Welch 

method transfer function analysis (b,c). The correlations are stronger in standing (c,d) 

rather than supine (a,b) posture. 

Stronger correlations were found in standing posture between 𝐻𝑅𝑉𝐿𝐹 and both 𝐴𝐵𝑅𝐿𝐹 and 

the overall 𝐴𝐵𝑅𝐼𝑅𝑀. Figure 5.27 shows correlation plots representing those relations in 

supine (Figure 5.25 (a,b)) and standing (Figure 5.27 (c,d)) postures. Figure 5.27 (a) and (c) 

illustrate the correlations between 𝐻𝑅𝑉𝐿𝐹 (Fourier transform) and 𝐴𝐵𝑅𝐿𝐹 (MBF model), 

while Figure 5.27 (b) and (d) show the correlation between 𝐻𝑅𝑉𝐿𝐹 (Fourier transform) and 

𝐴𝐵𝑅𝐼𝑅𝑀 (LBF model). 
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Figure 5.27 – Correlations between 𝐻𝑅𝑉𝐿𝐹 obtained from the Fourier transform and arterial 

baroreflex (ABR) impulse response indicators: 𝐴𝐵𝑅𝐿𝐹, obtained from the Meixner basis 

function (MBF) impulse response (a,c); and 𝐴𝐵𝑅𝐼𝑅𝑀, which is a measure of overall gain, 

obtained from the Laguerre basis function (LBF) impulse response (b,d). The correlations 

are stronger in standing (c,d) rather than supine (a,b) posture. 

Finally, the correlations between the impulse response indicator 𝐴𝐵𝑅𝐿𝐹 and spectral 

indexes 𝛼𝐿𝐹 and 𝐵𝑅𝑆𝐿𝐹 were much stronger in standing posture than supine, as illustrated 

in Figure 5.28 for supine (Figure 5.28 (a,b)) and standing (Figure 5.28 (c,d)) postures. 

Figure 5.28 (a) and (c) show the correlation between 𝐴𝐵𝑅𝐿𝐹 (MBF model) and 𝛼𝐿𝐹 (Welch 

method), while Figure 5.28 (a) and (c) show the correlation between 𝐴𝐵𝑅𝐿𝐹 (MBF model) 

and 𝐵𝑅𝑆𝐿𝐹 (Fourier transform). 
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Figure 5.28 – Correlations between the arterial baroreflex (ABR) Meixner basis function 

(MBF) impulse response 𝐴𝐵𝑅𝐿𝐹 and spectral baroreflex sensitivity (BRS) indicators: 𝛼𝐿𝐹, 

which quantifies BRS from the square root of the ratio between HRV and BPV powers, 

obtained from PSD analysis using the Welch method (a,c); and 𝐵𝑅𝑆𝐿𝐹, calculated from the 

Fourier transfer function analysis (b,d). The correlations are stronger in standing (c,d) 

rather than supine (a,b) posture. 

5.4.2.5. LF and HF correlations 

The correlations between HRV and spectral BRS estimates are stronger in the HF than in 

the LF band for both supine and standing postures. Figure 5.29 shows examples of results 

found in supine posture. Figure 5.29 (a) and (c) show the correlation plot between 𝛼𝐻𝐹 and 

𝛼𝐿𝐹 (AR model) and the corresponding HRV (Welch method) power. Figure 5.29 (b) and 

(d) show the correlation plot between HRV (Fourier transform) and BRS (Fourier 

transform) for the HF and LF components, respectively. Figure 5.30 brings the same 

correlations presented in Figure 5.29, but for the standing posture. 
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Figure 5.29 – Correlations for supine posture between HRV obtained from the Welch 

method (a,c) and Fourier transform (b,d), and spectral baroreflex sensitivity (BRS) 

indicators: 𝛼𝐻𝐹/𝛼𝐿𝐹, which quantifies BRS from the square root of the ratio between HRV 

and BPV powers, obtained from PSD analysis using the AR model (a,c); and 

𝐵𝑅𝑆𝐻𝐹/𝐵𝑅𝑆𝐿𝐹, calculated from the Fourier transfer function analysis (b,d). The 

correlations are stronger in HF (a,b) rather than LF (c,d). 
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Figure 5.30 – Correlations for standing posture between HRV obtained from the Welch 

method (a,c) and the Fourier transform (b,d), and spectral baroreflex sensitivity (BRS) gain 

indicators: 𝛼𝐻𝐹/𝛼𝐿𝐹, which quantifies BRS from the square root of the ratio between HRV 

and BPV powers, obtained from PSD analysis using the AR model (a,c); and 

𝐵𝑅𝑆𝐻𝐹/𝐵𝑅𝑆𝐿𝐹, calculated from the Fourier transfer function analysis (b,d). The 

correlations are stronger in HF (a,b) rather than LF (c,d), but the difference is small. 

In supine posture, the correlations between HRV and impulse response ABR indicators 

were stronger in HF, as the examples in Figure 5.31 show. Figure 5.31 (a) and (c) illustrate 

the correlation plot between HRV (AR model) and ABR DG (ARX model) for 

corresponding HF and LF bands, respectively. Figure 5.31 (b) and (d) show the plot for the 

correlation between HF and LF components of HRV (Fourier transform) and 𝐴𝐵𝑅𝐼𝑅𝑀 

(MBF model).  
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Figure 5.31 – Correlations for supine posture between HRV obtained from the AR model 

(a,c) and Fourier transform (b,d), and arterial baroreflex (ABR) impulse response gain 

indicators obtained from the ARX impulse response (a,b), and 𝐴𝐵𝑅𝐼𝑅𝑀, as a measure of 

overall gain, from the Meixner basis function (MBF) impulse response (c,d). The 

correlations are stronger in HF (a,b) rather than LF (c,d). 

In standing posture, significant coefficients were only found for the ABR estimated from 

the ARX model in HF and in the LF, only for the ABR estimated from the LBF model. The 

correlations between HRV and ABR DG were stronger in supine posture for the ARX 

model estimates, and in standing postures for LBF and MBF models. As an example of 

each behavior, Figure 5.32 shows the correlation between HRV (AR model) and ABR DG 

(ARX model) (Figure 5.32 (a,c)) and between HRV (Fourier transform) and ABR DG 

(LBF model) (Figure 5.32 (b,d)), in the HF (Figure 5.32 (a,b))  and LF (Figure 5.32 (c,d)) 

bands. 
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Figure 5.32 – Correlations for standing posture between HRV obtained from the AR model 

(a,c) and Fourier transform (b,d), and arterial baroreflex (ABR) impulse response gain 

indicators obtained from the ARX impulse response (a,b), and from the Laguerre basis 

function (LBF) impulse response (c,d). The correlations are slightly stronger in HF for the 

ARX impulse response indicators (a), but are much stronger in LF for LBF impulse 

response indicators (d). 
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6. DISCUSSION 

The results point towards vagal withdrawal accompanied by a shift towards dominating 

sympathetic activity in standing, which is a sympathetic stimulus, compared to supine 

posture, in which the vagal tone is dominant. The database used for this study consists of 

subjects that are obese, but otherwise healthy. While level of fitness and BMI are factors 

that affect the ANS [5, 114], with evidence of reduced vagal and sympathetic activities in 

children [127, 128], our results regarding the effects of posture change were similar to 

those found by studies focusing on healthy non-obese subjects [24, 35, 36, 37, 38, 39, 129].  

A number of studies have assessed the effects of postural changes associated with 

autonomic blockade to investigate vagal and sympathetic activity. In many studies of ANS 

response, drugs that selectively block one of the branches of the ANS are used to help 

differentiate the effect of a stimulus on each branch. In such studies, atropine is usually 

administered as a vagal blocker, while propranolol is used as a sympathetic blocker. For 

instance, Pomeranz et al. [35] combined the administration of those pharmacological 

agents with posture changes to determine how ANS responds using spectral measures of 

HRV. The study showed that there are both sympathetic and vagal activities in the LF 

region. Sympathetic activity appears to be a strong influence in LF in standing posture, but 

not in supine, while vagal activity is a strong influence in both postures. On the HF region 

of the RRI spectrum, vagal blockade resulted in a reduction of more than 90% of the area 

for both postures, while sympathetic blockade had no significant effects. Similar results 

were found by other studies [37, 129].  

In our study, the HRV analysis showed a significant decrease in 𝐻𝑅𝑉𝐻𝐹 (𝑝 < 0.001 for all 

methods) as well as a significant increase in 𝐻𝑅𝑉𝐿𝐹/𝐻𝐹 (𝑝 < 0.001 for all methods) in 

standing posture when compared to supine. While the 𝐻𝑅𝑉𝐿𝐹/𝐻𝐹 increase indicates a shift 

in sympathovagal balance towards dominant sympathetic activity, the decrease in 𝐻𝑅𝑉𝐻𝐹 

indicates an associated vagal withdrawal [4, 7, 35, 40]. These results are in accordance 

with the aforementioned study by Pomeranz et al. However, the shift towards dominant 

sympathetic activity could be a consequence exclusively from the vagal withdrawal or 

there could be a combined increase in sympathetic drive. 
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BPV analysis showed significant increase in both 𝐵𝑃𝑉𝐿𝐹 (𝑝 < 0.001 for all methods) and 

𝐵𝑃𝑉𝐻𝐹 (𝑝 < 0.001 for all methods) from supine to standing. While several studies have 

shown that LF BPV is a measure of sympathetic vascular tone [67, 68, 69], HF 

interpretation is more controversial. Studies with animals have suggested that HF is 

mediated through the vagal system [7], while studies with patients who had heart transplant 

and therefore suffered cardiac denervation showed little alteration to HF BPV, suggesting 

that the mechanical effects of respiration may have a primary role [70, 130]. It has also 

been suggested that LF reflects myogenic vascular function, as well as sympathetic 

vascular tone and that the endothelial stress-induced release of nitric oxide is reflected in 

HF [131, 132]. 

The increase observed in 𝐵𝑃𝑉𝐿𝐹 in standing indicates an increase in sympathetic 

vasomotor tone, while the increase in HF could be an indication of elevated sympathetic 

drive. Moreover, the increase in 𝐵𝑃𝑉𝐿𝐹 was greater than that observed in 𝐵𝑃𝑉𝐻𝐹, as also 

observed in other studies [40, 130]. Increased BPV has also been shown to be a predictor 

of reduced sensitivity of arterial and cardiopulmonary reflexes [70, 73], as confirmed by 

the verified decrease in RCC/RSA and ABR/BRS indicators in standing compared to 

supine posture. 

RSA and BRS have also been assessed by associating the use of atropine and propranolol 

with different postures. Combining the supine position with propranolol provides a state of 

pure vagal activity, and combining the standing position with atropine results in a pure 

sympathetic condition. While drugs are chosen to block the opposing SNA branch, the 

posture is intended to increase activity of the unblocked branch. Applying this 

methodology and using the transfer function analysis for the determination of RSA and 

BRS, Mullen et al. [39] showed that both RSA and BRS are reduced in standing-atropine 

(sympathetic) condition compared to supine-propranolol (vagal) and also that in standing-

atropine the activity is restricted to LF for both transfer functions. They also showed that 

under double blockade, both RSA and BRS were practically inexistent. These results have 

been verified by several other studies [24, 37, 36, 38].  

The RSA and RCC indices estimated in the current study presented consistent results, even 

though the first encompasses both direct and indirect effects of respiration on HR, while 

the latter models exclusively the direct effects. A significant decrease in standing posture 

when compared to supine was found for all RSA and RCC indicators, in all methods used. 
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The reduction in HF indicators was also greater than in LF indicators. This has also been 

observed in previous studies under autonomic blockade [24, 36, 37, 38, 39]. RSA is 

generally a measure of vagal tone, even if there is a sympathetic component to the LF, and 

thus these results indicate a significant decrease in tonal vagal activity, as would be 

expected from the underlying physiology. Though the LF indicators may represent 

combined sympathetic and vagal activities, due to their lack of specificity, a decrease or 

increase in this index cannot be directly related to sympathetic tone.  

For most of the estimated models, the cardiorespiratory modeling approach resulted in a 

negative delay between ILV and RRI. This result has also been reported in previous 

studies, suggesting a control level coupling between those variables, where RRI responds 

to the intent of respiration rather than respiration itself [14, 24, 53]. 

In order to verify how spectral HRV indices relate to the respiratory and baroreflex 

mechanisms, as those are the main mechanisms that influence HRV, correlation analyses 

were applied. Respiratory activity, whether quantified through RSA or RCC, correlated 

more strongly to HRV on the HF band than on the LF band. 𝐻𝑅𝑉𝐻𝐹 correlated more 

strongly to the overall 𝑅𝐶𝐶𝐼𝑅𝑀 than 𝐻𝑅𝑉𝐿𝐹 did. These results may be a reflection of the 

fact that RSA and RCC are mechanisms mainly modulated by the vagal system and that 

respiration is a major contributor to HF HRV [3, 4, 6, 7]. 

Using a closed-loop multivariate dynamical adjustment model (CLMDA), Porta et al. [48] 

showed that the direct link between respiration and HR gradually decreases proportionally 

to head-up tilt table angles, while the indirect link mediated by ABR increased. A greater 

tilt angle is related to a stronger sympathetic postural stimulus and a more pronounced 

vagal withdrawal. The correlations between HRV and the impulse response based RCC 

were mostly weaker in standing posture than supine. As RCC measures only the direct 

effects of respiration, a weaker correlation in standing is in agreement with a decrease in 

this direct link, as observed from the tilt table experiment. 

The correlations between HRV and the transfer function based RSA, however, was 

stronger in standing than supine posture in both HF and LF. This was consistent across all 

methods, though the differences found were small. The fact that correlations were stronger 

standing is probably due to the incorporation of indirect effects of respiration on RSA, 

since the indirect link between respiration and HR increases while the direct link decreases 

in this condition. These findings support the validity of RCC as a measure of the direct 
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effects of respiration on HR and show that even though RSA and RCC showed similar 

statistical trends between postures, they do bring different information. 

Finally, the correlations between HRV and the overall 𝑅𝐶𝐶𝐼𝑅𝑀 remained similar between 

supine and standing conditions, whether on HF or LF, with some relations showing a slight 

increase and others a slight decrease in either posture. 

Baroreflex was assessed from the square-root of the HRV/BPV power ratio, in addition to 

transfer function and impulse response analyses. A significant decrease was found for all 

of the HF and overall BRS and ABR indicators from supine to standing. As observed in the 

RSA, RCC, and spectral HRV measures, the reduction on the HF indicators (𝛼𝐻𝐹, 𝐵𝑅𝑆𝐻𝐹 

and 𝐴𝐵𝑅𝐻𝐹) is larger than that observed on the LF (𝛼𝐿𝐹, 𝐵𝑅𝑆𝐿𝐹 and 𝐴𝐵𝑅𝐿𝐹). Overall, 

baroreflex indices are a measure of reflex vagal activity, while RSA and HRV are 

measures of tonic vagal activity, which is suppressed by sympathetic activity [41, 42]. BRS 

is also known to inversely correlate to sympathetic activity [133], indicating increased 

sympathetic activity in standing as compared to supine, which is consistent with all of the 

data that points towards a sympathetic dominance in this posture. 

The interpretation of the LF BRS indicators, however, is more complex than that of HF 

indices, since the results were not consistent among the methods available. While a 

significant decrease was found for all spectral LF indicators, 𝛼𝐿𝐹 and 𝐵𝑅𝑆𝐿𝐹, the model 

based 𝐴𝐵𝑅𝐿𝐹 only showed significant decrease from supine to standing when estimating 

the impulse response from the ARX model, but not from LBF and MBF models. Some 

considerations must be made to interpret these results. 

There is a closed-loop relationship between BP and RRI, that presents both feedback and 

feedforward components. Porta et al. [18] reported that estimating BRS through spectral 

methods leads to biased measures. This is reflected in an overestimation that was attributed 

to the incorporation of respiratory effects and the inability to differentiate between the 

feedforward and feedback effects, incorporating CID into the BRS estimate, when 

compared to the indices obtained through a modeling approach that impose delays and 

consider the respiration as an exogenous input. Therefore, spontaneous spectral BRS 

estimates are only reliable when causality is dominant on the baroreflex path. Our results 

reflect these findings, as the values found through both spectral methods (PSD and transfer 

function) presented higher absolute values than those found through any of the models. 

Recent studies have shown not only that the baroreflex causality (BP→RRI) is dominant in 
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standing posture, while in supine the dominance shifts to the CID (RRI→BP) path [45, 43], 

but also that this shift is proportional to graded head-up tilt [44, 46]. Our correlation 

analyses can help further understand the results considering the causality issue. 

Correlations between HRV and spectral BRS estimates were stronger in the HF than in the 

LF band. The correlations between HRV and impulse response ABR indicators, however, 

differed according to the posture. In supine, correlations were stronger in HF than in LF, 

while in standing this was only the case for the ARX model, but not for the LBF and MBF 

models. Correlations between HRV and the overall 𝐴𝐵𝑅𝐼𝑅𝑀 were mostly not significant 

for standing data, but in supine were stronger in HF than in LF. A high correlation to HRV 

HF is expected, as baroreflex in generally a measure of reflex vagal activity, as discussed. 

The fact that the correlations were stronger in LF in standing posture for the impulse 

response estimates could be due to the causality shift. The ARX model estimates were the 

only ones among the impulse response estimates that did not present this behavior and at 

the same time were the only indicators to show significant decrease in LF. The ARX model 

is the only one for which the uncoupling procedure is not performed during model 

estimation, thus these effects could be due to the indirect effects of respiration mediated 

through baroreflex, which are included in the ARX model, but not the LBF or MBF 

models, as the indirect link between respiration and HR is known to increase in standing 

[47, 48]. 

In the HF, the correlations between HRV and spectral BRS estimates were weaker in 

supine posture than standing, but the opposite was true between HRV and impulse 

response ABR estimates. 

Correlations in the LF components between HRV and BRS estimates were stronger in 

standing posture compared to supine. This was also verified between standing vs. supine 

HRV and ABR estimates. The only exceptions were for 𝐴𝐵𝑅𝐿𝐹 calculated from the ARX 

model and the 𝐴𝐵𝑅𝐼𝑅𝑀 calculated from the MBF model, for which no significant 

correlation was found in standing. Spectral and impulse response indicators correlate 

strongly in standing, but in supine there are only a few significant correlations and much 

weaker. This suggests that spectral and impulse response baroreflex estimates bring more 

similar information in the standing posture, when the baroreflex path is the dominating 

causality on the closed-loop dynamics between SBP and RRI, but decorrelate when CID 

becomes the dominating path, in supine posture. 
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Therefore, we cannot conclude that LF baroreflex gain, which reflects both sympathetic 

and vagal activities, is in fact decreased in standing, as the spectral estimates cannot 

accurately represent the reflex mechanism in supine posture. The decrease verified through 

the ARX model could be due to the indirect effects of respiration, while there was no 

decrease in the indicators obtained from the LBF and MBF models, which do not quantify 

those effects. 

These results show that posture changes not only affect the gains of control and reflex 

mechanisms, but also the dominant causality on closed-loop relationships of the 

cardiorespiratory system. This reinforces the importance of studying the cardiorespiratory 

system as a whole and how the modelling approach can be used to clarify the relationship 

between those interacting variables.  
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7. CONCLUSION AND RECOMMENDATIONS 

This study is composed of two parts, the development of CRSIDLab and its application on 

investigating the effects of posture changes on the ANS indicators.  

Traditional HRV and BPV analyses consider only the fluctuation of these output variables 

and do not account for any interactions and reflex mechanisms, but are able to provide 

information on vagal and sympathetic tone. Classical HRV analysis showed an increase in 

HF with a decrease in the LF/HF ratio, leading to the conclusion that there is a shift 

towards sympathetic dominance associated with a reduction in vagal activity in standing 

compared to supine posture [4, 7, 35, 40]. A higher sympathetic vasomotor tone in 

standing is implied from the increase in LF BPV [67, 68, 69]. But while from the classical 

HRV analysis it can be concluded that there is a reduction in vagal activity in standing 

compared to supine posture, RCC/RSA and ABR/BRS analyses allows the discrimination 

between tonal and reflex activities [41, 42]. 

Transfer function analysis provides insights into the RSA and BRS regulatory mechanisms, 

but since this is an open-loop approach, there are limitations to the conclusions that can be 

drawn. This was made apparent through the correlation analyses, which showed, for 

instance, that the correlation between RSA and HR is stronger in standing, when the direct 

link between respiration and HR is weaker, but the indirect link is stronger [48], indicating 

the incorporation of these effects on the RSA estimate.  

The system model identification approach, on the other hand, brings the possibility of 

modeling both respiratory and BP influences on HRV simultaneously, allowing the 

discrimination between direct effects of respiration, characterized by the RCC impulse 

response, and the indirect effects mediated through ABR. This is demonstrated by the fact 

that the correlations between HRV and RCC were stronger in supine, as is the direct link 

between respiration and HR, which was not the case for the RSA estimates. The imposition 

of time delays allows the restraining of causal and non-causal relations, separating the 

feedforward and feedback components, providing a way to computationally opening the 

loop. This was demonstrated by the fact that the correlations between BRS and ABR 

indicators were not significant in supine, when CID (RRI→BP) is the dominating causality 

in the closed-loop relationship between BP and HR, but were significant in standing, when 

the baroreflex path (BP→RRI) is the dominating causality [18, 43, 44, 45, 46], showing 
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that the ABR estimates seem to represent the baroreflex dynamics exclusively. Being able 

to differentiate between those regulating mechanisms provides sensible tools to further 

assess ANS response under different circumstances. These results are compatible with the 

physiology, demonstrating that CRSIDLab is effective in providing quantitative indicators 

of ANS activity. 

There are limitations to the analyses proposed by this study and implemented on this 

toolbox. Previous studies have shown that second order nonlinearities provide considerable 

contribution, especially to the analysis of frequencies below 0.1 Hz, improving model 

accuracy and allowing for the observation of other dynamics involved [14, 134]. There has 

been some interest in studying the nonlinear relationships between the cardiorespiratory 

variables, employing Laguerre and Meixner basis functions to perform the expansion of 

Volterra-Wiener kernels [16, 19, 24, 25, 65, 116]. Since Laguerre and Meixner basis 

functions are already implemented, this would be a reasonable addition, complementing 

the current functionalities of the toolbox in future work. 

Another limitation is that the methods employed rely on the assumption of stationarity, 

which not only delimits the duration of data records and requires processing such as the 

removal of slow trends, but also are unable to evaluate transient responses. Implementing 

time-varying models and alternatives for HRV analysis [19, 135] in future work can help 

to overcome those limitations. 

There are many other possibilities for future work based on this research. Regarding 

CRSIDLab, it is always possible to include more methods and also variables that could be 

relevant, such as PP and MAP from BP. Currently system identification is performed based 

on cross-validation and with the use of some criterion to select the best model out of a 

given set. This process can be further improved by adding other constraints to the model 

selection process, such as residuals analysis and stability bounds. 

Of all the indicators presented, the only one that is widely considered as a measure of 

sympathetic activity is LF BPV. All of the other indicators that do relate do the 

sympathetic branch, such as LF HRV, LF RCC and LF BRS, are either considered 

measures of both sympathetic and vagal branches, or present some controversy as to its 

interpretation. Therefore, without an invasive approach or use of pharmacological agents, 

few deductions can be made as to how sympathetic activity changes in response to any 

intervention. Chalacheva [134] has proposed an expansion of the cardiorespiratory model 
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presented in Figure 2.10 to explicitly incorporate the part of baroreflex that modulates total 

peripheral resistance as a measure of sympathetic activity. Therefore, another possible 

expansion of toolbox could include a measure of peripheral resistance, such as those 

obtained from peripheral arterial tonometry and laser Doppler flowmetry, as suggested by 

Chalacheva, as well as the necessary conditioning steps, to allow the identification of this 

dynamic. 

Finally, we conclude that the presented modeling approach does provide means to 

disentangle the complex relationships of the cardiorespiratory system and is effective in 

differentiating feedback and feedforward effects, as well as isolating confounding 

mechanisms that exist in the cardiorespiratory dynamics. We also conclude that the 

presented CRSIDLab can effectively provide quantitative indicators of the ANS that are 

compatible with the knowledge available today. 
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A. PATIENT DATA OBJECT DESCRIPTION 

The patient data object is composed of several different objects, created so that the 

information can be better organized. Table A.1 describes most of the objects that compose 

the patientData object, but the dataUnit, varUnit and ilvUnit objects are described on 

Table A.2, Table A.3 and Table A.4, since these are the objects that contain the actual data. 

The patientSys object is also described separately along with the sysModel object and the 

imResp object in Table A.5, Table A.6 and Table A.7. 

Table A.1 – patientData object description 

Object property Description 

info patientInfo object containing the information on the patient record. As 

the property names are self-explanatory, they are listed below: 

ID, name, age, gender, origin, address, phone, email, date, protocol, 

physExam (physical exam), clinHis (clinical history), famHis (family 

history).  

sig patientSig object. 

Property Description 

ecg ecgData object. 

Property Description 

raw Raw ECG stored in a dataUnit object. 

filt Filtered ECG stored in a dataUnit object. 

rri RRI stored in a varUnit object. 
  

bp bpData object. 

Property Description 

raw Raw BP stored in a dataUnit object. 

filt Filtered BP stored in a dataUnit object. 

sbp SBP stored in a varUnit object. 

dbp DBP stored in a varUnit object. 
  

rsp rspData object. 

Property Description 

raw Raw airflow stored in a dataUnit object. 

int Integrated airflow stored in a dataUnit 

object. 

ilv ILV stored in an ilvUnit object. 

filt Filtered ILV stored in an ilvUnit object. 
  

  

sys Structure that contains fields that are patientSys objects. 
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dataUnit object 

The dataUnit object, described in Table A.2, is the object in which raw and filtered ECG 

and BP data as well as raw and integrated airflow data is stored. 

Table A.2 – dataUnit object description 

Object property Description 
 

data 
 

Double array with the actual data. 

time Double array with the time stamp corresponding to data. 

fs Double indicating the sampling frequency of the data. 

specs Structure with any further information to describe data. For raw data, 

specs is an empty struct. For other type of data, specs vary according to 

the nature of the data. 
  

ilvUnit object 

The ilvUnit object is the object in which ILV and filtered ILV is stored. It has the same 

properties of a dataUnit object with added properties, as described below. 

Table A.3 – ilvUnit object description 

Object property Description 
 

aligned 
 

alignedUnit data 

Property Description 

psd psdUnit object. 

Property Description 

psdFFT Double array with the Fourier transform 

PSD of the ILV or filtered aligned data. 

psdAR Double array with the AR model PSD of 

the ILV or filtered aligned data. 

psdWelch Double array with the Welch method PSD 

of the ILV or filtered aligned data. 

freq Double array with the time stamp of the 

PSDs. 

specs Structure with information on the 

parameters of the PSDs. 
  

dataUnit dataUnit object storing aligned variable data. 
 

  

dataUnit dataUnit object storing variable data. 
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varUnit object 

The varUnit object is the object in which RRI, SBP and DBP is stored. It has the same 

properties of an ilvUnit object with added properties, as described in Table A.4. 

Table A.4 – varUnit object description 

Object property Description 
 

ectopic 
 

Double array with the indexes of ectopic beat related variables on the 

data property of this object’s ilvUnit properties. 

index Double array with the indexes of the variables on the data property of 

this object’s ilvUnit properties in relation to the record it was extracted 

from. 

ilvUnit ilvUnit storing the variable data and the variable PSD data. 
  

 

patientSys object 

The patientSys object, described in Table A.5, is the object in which a system is stored, 

composing the sys property of the patientData object’s structure fields. 

Table A.5 – patientSys object description 

Object property Description 
 

data 
 

iddata object containing the system itself with the experiments 

Estimation data and Validation data, if less than 100% of the data was 

set for estimation. 

trends iddata object containing the trends extracted from the system with the 

experiments Estimation data and Validation data, if less than 100% of 

the data was set for estimation. 

models Structure that contains fields that are sysModel objects. 
  

sysModel object 

The sysModel object, described in Table A.6, is the object in which a model is stored, 

composing the models property of the patientSys object’s structure fields. The sysImResp 

object which composes the imresp property is described in Table A.7. 

Table A.6 – sysModel object description 

Structure field Description 
 

name 
 

String identifying model tag in the format modelX, where X is a 

sequential number. 
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type String identifying model type (AR, ARX, LBF or MBF). 

outputData Cell array containing the system output for estimation and validation (if 

any). 

outputName Cell string identifying output variable (RRI, HR, SBP, DBP or ILV). 

outputUnit Cell string identifying output unit (ms, bpm, mmHg, L). 

inputName Cell string identifying input variable(s) (RRI, HR, SBP, DBP and/or 

ILV). 

inputUnit Cell string identifying input unit(s) (ms, bpm, mmHg and/or L).  

ts Double indicating the sampling interval. 

order Double array indicating the order of each term or the number of basis 

functions used for each term in the format [na nb1 nb2]. For LBF or MBF 

models na = 0. 

delay Double array indicating the delays of each input in samples in the format 

[nk1 nk2]. 

theta Double array with the estimated model coefficients. 

sysMem Double indicating system memory length. Empty for AR/ARX models. 

pole Double indicating pole used to generate basis functions. Empty for 

AR/ARX models. 

genOrd Double indicating generalization order used to generate basis functions. 

Empty for AR/ARX or Laguerre basis function models. 

fit Double array indicating the fit between measured and predicted output for 

estimation and validation data. 

simOutEst Predicted output for estimation data set (iddata object). 

simOutVal Predicted output for validation data set (iddata object). 

imResp imResp data object containing the system impulse response(s). 

notes String describing the system and model. 
 

 

imResp object 

The imResp object, described in Table A.7, stores the model’s impulse response data. 

Table A.7 – imResp object description 

Object property Description 
 

impulse 
 

Cell array with the impulse response. If there are two inputs, the impulse 

response for the first input can be accessed in impulse{1} and the 

response for the second input in impulse{2}. 

time Double array with the impulse response’s time stamp. 

indicators Structure (described below) with the indicators extracted from the 

impulse response(s). 
 

 

dataUnit.specs 
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The dataUnit object, described in Table A.2 presents a specs property that is a struct with 

different fields, depending on the data type. Table A.8 presents the fields for each data type 

along with a brief description. Data types that are not addressed present an empty struct as 

the specs property. 

Table A.8 – specs property fields according to the type of data in a dataUnit object 

Data type Field in specs Description 

Filtered ECG / BP notch Notch filter tolerance. 

lowPass Low-pass filter cut-off frequency. 

highPass High-pass filter cut-off frequency (ECG only). 

RRI / SBP / DBP type String identifying the record from which the variable 

was extracted. This field must correspond to one of the 

two options: raw, filt. If it is non-existent, CRSIDLab 

will consider raw. 

algorithm String indicating the algorithm used to extract the 

variables. Can be set by the user as preferred. 

ILV/Filtered ILV method Struct with at least one field, id, and a possible second 

complimentary field, fc or order. 

Field Description 

id String indicating the detrending 

method applied. 

fc or order If method.id is High-pass filter, 

additional field fc must exist, 

indicating the filter’s cut-off 

frequency.  

If method.id is Polynomial, additional 

field order must exist, indicating the 

polynomial order. 
  

 

Aligned variables method String indicating the method used to resample the 

variable. 

 ectopic String indicating how ectopic beats and related 

variables were handled. 

 type Exclusive for aligned and resampled variable 

originating from RRI: indicates whether aligned RRI 

output is RRI or HR. 

 border Struct with two fields, start and end. 

 Field Description 

start Struct with two fields, ref and value. 

Field Description 

ref String indicating the 

variable used as 

reference for the end of 

the aligned data set, or 

indicating the number of 

samples was set. 
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value End of the aligned data 

set, given in seconds. 
  

 

 

end 

 

 

Struct with two fields, ref and value. 

Field Description 

ref String indicating the 

variable used as reference 

for the start of the aligned 

data set. 

value Start of the aligned data 

set, given in seconds. 
  

  

method  String indicating the method used to complete border 

samples. 

tag  Aligned variable identification as will be shown on 

CRSIDLab for user selection. Standard form reads: 

A&R VAR data (X Hz – Y samples) 

VAR: RRI, HR, SBP, DBP, ILV, Filtered ILV. 

X: Frequency used to resample the variable. 

Y: Number of samples after resampling. 
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