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ABSTRACT

Title: Bimodal hybrid control of rigid-body attitude based on unit quaternions

Author: Paulo Percio Mota Magro

Supervisor: Prof. Jodo Yoshiyuki Ishihara

Co-Supervisor: Prof. Henrique Cezar Ferreira

Programa de Pés-graduacio em Engenharia de Sistemas Eletronicos e de Automacao
Brasilia, September 12th, 2017

The main objective of this thesis is the development of a hybrid controller capable of solving the rest-
to-rest attitude control problem with better performance than the hysteretic hybrid controller of literature in
terms of settling time or energy consumption. The hybrid nature of the controller, in this case, is an essential
requirement to achieve global control robust against measurement noise and to prevent undesirable effects such
as unwinding and chattering. The attitude is represented by a unit quaternion since it provides the minimum

number of parameters that does not present representation singularities.

It is proposed two distinct controllers, both with two binary logic variables for the control of attitude. The
first designed controller, named HY, has the main variable determined by an on-off control with hysteresis that
indicates which quaternion representation of the reference attitude should be followed and the other variable
determined by an on-off control without hysteresis that indicates the chattering prone region. This scheme
offers more opportunities of updating the main variable than the hysteretic hybrid controller, for instance, when
there is an abrupt variation in the reference attitude. As a consequence, the body is more likely to being pulled
towards the shortest rotation direction. However, this strategy restricts the way the controller is implemented
(jumps can not have higher priority than flows).

In the second proposed controller, called bimodal, both variables are determined by an on-off control with
hysteresis. The main variable indicates which quaternion representation of the reference attitude should be
followed and the other variable indicates the chattering prone region. This strategy eliminates restrictions on
the way the controller is implemented, but makes the dynamics of these variables more complex, since one
variable influences the behavior of the other. The resulting effect is that the hysteresis width of the on-off
control for the main variable adapts according to the state of the other variable being either equal or half of the
value of the hysteresis width parameter. This controller is a middle term solution in terms of cost between the
memoryless discontinuous and the hysteretic hybrid control.

It is presented a formal proof that the two proposed controls lead to global stability without unwinding and
are robust against measurement noise. The effectiveness of the controllers is shown through simulations. The
results indicate that the proposed controllers have advantages when the initial and final angular velocities are
low. In the case of the bimodal controller, even for other initial angular velocities, the energy consumption of
the system is, on average, lower compared to the hysteretic hybrid controller. Better performances in terms of
energy consumption occur when the hysteresis band is larger as is the case when cheaper sensors are used or in

noisy electromagnetic environments.

As an extension of the results mentioned above, two other contributions were proposed. One of them
refers to the problem of attitude synchronization of a network of rigid bodies (agents). A distributed control
with globally asymptotically stability property and robustness against noise measurement was proposed for an
undirected connected network (cyclic or acyclic) of agents. The other one is related to the kinematic control
of the pose of a rigid body within the unit dual quaternion group. It was proposed an extension of the bimodal
attitude controller for the pose. For both cases, formal proofs are presented and simulation results illustrate the
advantages of the proposed controllers.

Keywords: Hybrid system, Attitude control, Robustness, Unit quaternion.



RESUMO

Titulo: Controle hibrido bimodal de atitude de corpos rigidos baseado em quatérnios unitérios
Autor: Paulo Percio Mota Magro

Orientador: Prof. Jodo Yoshiyuki Ishihara

Coorientador: Prof. Henrique Cezar Ferreira

Programa de Pés-graduacio em Engenharia de Sistemas Eletronicos e de Automacao
Brasilia, 12 de setembro de 2017

Esta tese tem como objetivo principal o desenvolvimento de um controlador hibrido capaz de resolver o
problema de regulagdo de atitude de um corpo rigido (a partir do repouso) com melhor desempenho que o con-
trolador hibrido histerético existente na literatura em termos de tempo de estabilizacdo ou consumo de energia.
A natureza hibrida do controlador é um requisito essencial para se obter um controle global e robusto a ruidos
de medigdo e impedir efeitos indesejaveis como unwinding e chattering. A representagdo da atitude é feita com
quatérnio unitdrio por possuir o menor nimero de parametros (quatro) que ndo apresenta singularidades.

Propde-se dois controladores distintos, ambos com duas varidveis de estado 16gicas bindrias, para o controle
de atitude. O primeiro controlador, denominado HY, tem a varidvel principal determinada por um controle on-
off com histerese para indicar qual representacdo em quatérnio da atitude de referéncia deve ser seguida e uma
outra varidvel determinada por um controle on-off sem histerese para indicar a proximidade a regido critica
sujeita a chattering. Esse esquema oferece mais oportunidades de atualizacdo da varidvel principal que o
controlador hibrido histerético, por exemplo quando hd uma variacdo abrupta na atitude de referéncia. Isso
reduz as chances do corpo seguir na dire¢do da rotagdo mais longa. Contudo, essa estratégia impde restricdes
na forma como o controlador € implementado (jumps ndo podem ter prioridade sobre flows).

No segundo controlador proposto, denominado bimodal, ambas as varidveis sdo determinadas por um con-
trole on-off com histerese. A varidvel principal indica qual representagdo em quatérnio da atitude de referéncia
deve ser seguida e a outra varidvel indica a proximidade a regifio critica sujeita a chattering. Essa estratégia
elimina as restricdes sobre a forma de implementac¢do do controlador, porém torna a dindmica dessas varidveis
mais complexas, dado que uma varidvel interfere no comportamento da outra. O efeito resultante € que a banda
de histerese do controle on-off referente a variavel principal, se adapta de acordo com o estado da outra varia-
vel, sendo ora igual, ora a metade do valor do pardmetro banda de histerese. Esse controlador € uma solucio

intermediaria em termos de custo entre o controlador descontinuo e o controlador hibrido histerético.

Sdo apresentadas provas formais da estabilidade global do sistema e de sua robustez contra ruidos de medi-
¢do para ambos os controladores propostos. A eficacia dos controladores € mostrada por meio de simulagdes.
Os resultados indicam que os controladores propostos apresentam vantagens quando a velocidade angular ini-
cial e final € baixa. No caso do controlador bimodal, mesmo para outras velocidades angulares iniciais, o
consumo de energia do sistema €, em média, inferior quando comparado com o controlador hibrido histerético.
Melhores desempenhos em termos de consumo de energia ocorrem quando a banda de histerese € maior como

no caso em que sdo usados sensores mais baratos ou em ambientes onde hd muito ruido eletromagnético.

Como extensdo dos resultados anteriormente citados, foram propostas mais duas contribuicdes. A primeira
refere-se ao problema de sincronizacdo de atitude de uma rede de corpos rigidos (agentes). Foi proposto um
controle distribuido com propriedade de estabilidade global e assintdtica e robustez contra ruidos de medicao
para uma rede de agentes representada por um grafo ndo direcionado e conexo (ciclico ou aciclico). A segunda
estd relacionada com o controle cinemético da pose de um corpo rigido dentro do grupo de quatérnio dual
unitdrio. Foi proposta uma extensao do controlador de atitude bimodal para pose. Em ambos os casos as provas
formais sdo apresentadas e resultados de simulacdo ilustram as vantagens dos controladores propostos.

Palavras-chave: Sistemas hibridos, Controle de atitude, Robustez, Quatérnio unitdrio.
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INTRODUCTION

Rigid body attitude control is an important issue in aerospace vehicle projects (aircraft and spacecraft) as well
as in underwater vehicles, ground vehicles, robotic systems, and some other applications [1] (see Figure 1.1).
In a variety of applications, changes in operating points are necessary and consequently rest-to-rest motion is
a common desired objective [2]. In particular, when arbitrary excursions in attitude are allowed or desired, the
rest-to-rest global attitude control problem arises [1].

Figure 1.1: Examples of areas where the global attitude control can be applied: underwater vehicle and
aerospace vehicle.

The requirement of globality in this problem results in no simple solution due to the nature of the group of
all attitudes, SO(3). It is known that any 3-parameter attitude representation as Euler angles has the drawback
of having singularities [3], being valid only locally. In this context, unit quaternion has gained interest since it
provides attitude using the minimum number of parameters that does not present representation singularities'.

The state space of unit quaternions, however, is a double covering of the SO(3) — a pair of antipodal unit
quaternions corresponds to the same attitude in SO(3) — which leads, when a continuous quaternion based
controller is used, to the undesirable phenomenon known as unwinding, where the body may start at rest
arbitrarily close to the desired final attitude and yet rotate through large angles before coming to rest [5]. The
unwinding occurrence can be avoided if one uses a (memoryless) discontinuous state feedback, such as the
ones suggested by Fjellstad and Fossen [6], Fragopoulos and Innocenti [7] or Wie and Barba [8]. Although
global asymptotic stabilization is achieved, the discontinuous nature of the controller introduces a chattering
phenomenon, that consists of multiple jumps (of states) occurring at the same time and may occur in the
presence of measurement noise when the system is in a region near 180° away from the reference attitude [9].

A globally stabilizing attitude control robust to measurement noise can be achieved with a hysteresis-
based hybrid controller proposed by Mayhew et al. [10], hereafter called the hysteretic controller, using one
binary logic variable. The hysteresis width covers the chattering prone region and can be designed for a given
maximum noise magnitude. Compared with the memoryless discontinuous control, the hysteresis-based control
assures no chattering with the cost of imposing longer rotation trajectories for some initial attitudes leading to
a higher average settling time or energy consumption.

In order to have lower energy consumption for the hysteresis-based controller, one can try to reduce the
noise level received in the controller by using expensive high-precision sensors and/or attitude estimates relied
on some estimator as, for example, Kalman or particle filter. Although these solutions are effective in some
situations, there are others in which some expressive noise should be expected. On the one hand, one can
consider the increasing demand for solutions with low-cost components. Since filters — and in particular, the

IThis type of singularity contrasts with the mechanical singularity in mechanical systems [4].



particle filter — are computationally expensive [11], for embedded processors with low memory and processing
resources, usually a less effective simplified estimator should be used, resulting in higher attitude estimation
noise. On the other hand, inexpensive sensors result in higher noise levels. For example, in the experiments of
Gebre-Egziabher et al. [12], one can notice noise amplitudes around 10 degrees. If further, the system is under

electromagnetic disturbance or its angular velocity is fast, the noise level may be even higher [13].

In this study it was sought a robust globally stabilizing controller which would represent a better solution
in terms of cost when compared with the fixed width hysteresis control. Reduction of costs represented by
average settling time or energy consumption is important, for instance, in satellites and any other battery-
operated systems [14]. It is proposed two hybrid controllers with two binary logic variables (one more than
the hysteretic controller) for the rest-to-rest control of attitude represented by quaternions. The main variable
indicates which quaternion representation of the reference attitude should be followed and the auxiliary one
indicates when the current attitude is far from the chattering prone region. The main idea of the first controller
is to increase the opportunities to update the main variable when compared with the hysteretic controller. This
is accomplished by the updates induced by the second logic variable. The second controller, called bimodal,
was devised from the experience gained with the former. Its main idea is to provide the controller with some
adaptive property to the hysteresis width rather than using a fixed width as in the hysteretic controller [10]. By
introducing a more complex dynamics, the second variable also embodied the hysteresis adaptive function.

As an extension of the results described above, two other contributions were proposed: one on attitude
synchronization control for a network of rigid bodies (agents) and the other one on kinematic control for rigid-
body pose within the group of unit norm dual-quaternions.

Regarding the former extension, much research has been developed on attitude coordination control in
the last 10-15 years [15, 16, 17, 18, 19]. Compared with single-agent systems, multi-agent systems have
special advantages due to its cooperation, such as higher feasibility, accuracy, robustness, scalability, flexibility,
robustness, lower cost etc. and have a wide range of applications such as environmental monitoring, search and

rescue, space—based interferometers, material handling and so on [20].

As mentioned above, the problem of robust and global attitude stabilization for a single rigid body has been
solved a few years ago [21], but the network scenario arises much more challenges due to the inherent inter-
agent interactions. Up to now, the great majority of the studies on attitude synchronization strategy provides
at most an almost global asymptotic stable control as in [18, 17] and when it provides global control, it is not
robust to measurement noise.

To the best of the author knowledge, the only study on attitude synchronization of multiple agents that
achieves robust global synchronization is the one of Mayhew et al. in 2012 [21]. It assumes that each agent
has access only to the relative attitude between its neighbors and to its angular velocity relative to the body
frame. Its goal is to achieve stability of a synchronized state (which is not a specific absolute reference attitude)
using a hybrid feedback scheme. The advantage of not requiring inertial attitude measurements has the cost
of achieving synchronization only for connected and acyclic networks [22]. Actually, there exists a physical
obstacle to the global convergence when the graph contains cycles [22, Theorem 1].

In this study, it is proposed a distributed attitude synchronization control with globally asymptotically
stability property and robustness against noise measurement for an undirected connected network (cyclic or
acyclic) of agents. The strategy uses a quaternion representation of the inertial attitude and the hysteretic
hybrid controller with one binary logic variable, suggested by Mayhew et al. [10], for each agent, to solve the
known problems arisen when continuous or discontinuous state-feedback laws are employed such as presence

of unstable states, unwinding phenomenon and chattering.

Regarding the latter extension, the Lie groups of rigid body motions SE(3) arises naturally in the study
of aerospace and robotic systems. Stemming from the seminal work of Brockett [23] about control theory

on general Lie groups, much of the literature has been devoted to the control of systems defined on SE(3).



Although it is usual to design controllers for this system using matrices to represent elements of this Lie group
[24, 25], it has been noted by some authors that controllers designed using another type of representation,
namely, the unit dual quaternions (Spin(3)xR?), which double covers SE(3), may have advantages regarding
computational time and storage requirements [26, 27].

It is important to note that since in this case the state space of a dynamical system is a general manifold,
some difficulties to design a stabilizing controller to the system can be expected. Actually, the problem of
robust and global pose stabilization of a rigid body is not simple, but, to a certain extent, analogous to the
attitude problem.

Firstly, there is no continuous feedback controller capable of globally asymptotically stabilizing an equilib-
rium point on the manifold of the unit dual quaternion group [28].

Secondly, as the Lie group of unit dual quaternions is a double cover for the Lie group of rigid body motions
SE(3) [29, 28], it leads, when a continuous dual quaternion based controller is used, to a phenomenon similar
to the “unwinding” in SO(3) [5]: the body may start at rest arbitrarily close to the desired final pose and yet
travel to the farther stable point before coming to rest.

Lastly, even using a (memoryless) discontinuous state feedback, it is impossible to achieve robust global
asymptotic stabilization of a disconnected set of points resulted from the double covering of the SE(3) [10, 9].

There are few works on unwinding avoidance in the context of pose stabilization using unit dual quaternions
[29, 30, 31, 32]. All of them are based on a discontinuous feedback approach and are prone to chattering for
initial conditions arbitrarily close to the discontinuity.

Inspired on the hysteresis-based hybrid control of Mayhew et al. [10] applied to attitude control stabi-
lization, Kussaba et al. [28] extended it to render both coupled kinematics—attitude and translation—stable.
However, this pose controller suggested by Kussaba et al. [28] inherits the same cost, aforementioned, of im-
posing longer rotation trajectories for some initial attitudes leading to a higher average settling time or energy
consumption. The problem of energy consumption also aggravates in this context, as the coupled translation
and rotation movements consume more energy [28].

To reduce this cost, it is proposed a bimodal hybrid control law that combines the bimodal controller
proposed above for the attitude control problem and the control suggested by Kussaba et al. [28] so it represents

a compromise in terms of cost between the memoryless discontinuous controller and the hysteretic one.

1.1 CONTRIBUTIONS

The contributions of this manuscript are:

1. It is stated and proved a theorem about the problem faced by a discontinuous attitude controller in the
presence of measurement noise in the unit quaternion space (see Theorem 3.4, page 15). This result is a
correction for a theorem in [10]. In that work, the system is corrupted by noise but the measured variable
does not belong to the unit quaternion space. Consequently, the system model loses physical sense.

2. It is presented a global hybrid control of rigid-body attitude that is robust against measurement noise
that is oriented for the rest-to-rest control of attitude represented by quaternions (see Chapter 4). The
proposed controller extends a hysteretic hybrid controller of literature by introducing a new binary logic
variable state. The controller is able to detect when the reference changes abruptly and when the current
attitude is far from the reference on the initial instant. This way, it has more opportunities to determine

which quaternion representation of the reference attitude should be followed compared with the hybrid



hysteretic controller of literature and is more likely to take the shorter rotation direction. This study was
presented at the XII Simp6sio Brasileiro de Automagao Inteligente - SBAI 2015 and an online publication
of the respective article is available at http://swge.inf.br/SBAI2015/anais/413.pdf.

3. It is proposed another global hybrid control strategy for rigid-body attitude that is robust against mea-
surement noise (i.e., without chattering) using a bimodal controller (see Chapter 5). It is oriented for the
rest-to-rest control of attitude represented by quaternions, however it may present advantages in other
scenarios too. Among the global controllers, it is expected to be the most interesting choice when the
attitude noise level is significant as for example when low cost components are used or when the system
is under an electromagnetically noisy environment. The controller has two binary logic variable states.
By adapting the hysteresis width, it reduces the region where the hysteretic controller determines the
longer rotation direction without compromising the robustness and is a middle term solution in terms of
cost between the memoryless discontinuous and the hybrid hysteretic control. An article about this study
has been published in the Journal of the Franklin Institute [33].

4. It is proposed a distributed attitude synchronization control with globally asymptotically stability prop-
erty and robustness against noise measurement for an undirected connected network (cyclic or acyclic) of
agents (rigid bodies) (see Chapter 6). Due to the inherent inter-agent interactions, the controller design is
much more challenging. In literature, the great majority of the controllers suggest continuous or discon-
tinuous state-feedback laws. Since when restricted to a unique rigid body these types of control strategies
lead to systems with known problems such as unstable states, unwinding phenomenon and chattering, it
is expected that the multi-agent system presents even worse performance. To solve these problems, the
proposed control uses the hysteretic hybrid feedback of literature with one binary logic variable for each
agent and a stricter condition for the hysteresis width parameter. An article about this study has been
submitted to the International Journal of Systems Science.

5. Tt is proposed a global hybrid control strategy for the rigid-body pose kinematic problem that is robust
against measurement noise. The dual quaternion-based hybrid controller suggested in literature extends
the quaternion-based hysteretic controller which is known to have a region in the state space where the
control law pulls the body toward the longer rotation direction. The proposed strategy adapts the bimodal
attitude controller of Chapter 5 to the rigid-body pose system in order to reduce the average settling time
or energy consumption. In this context, the problem of energy consumption is aggravated as the coupled
translation and rotation movements consume more energy (see Chapter 7). This study was presented at
the American Control Conference - ACC 2017 and the article has been published [34].

1.2 MANUSCRIPT ORGANIZATION

The manuscript is organized as follows:

The second chapter introduces the reader to the kinematic and dynamic equations for rigid-bodies attitude
and to the kinematic equation for rigid-bodies motion. Besides, it briefly explains the hybrid system represen-

tation.

The third chapter describes the discontinuous controller and the hysteretic hybrid controller found in liter-
ature. It also demonstrates a theorem relative to the chattering problem faced by a discontinuous controller in

the presence of measurement noise.

Chapters 4 and 5 present the HY hybrid controller and bimodal hybrid controller with their respective
stability and chattering analysis.



Chapter 6 and 7 refer to two distinct subjects that naturally arise from the rigid-body attitude control matter.

Chapter 6 addresses the rigid-body attitude control applied to multi-agent systems in a cooperative control.
It describes the proposed controller based on the hybrid hysteretic controller of literature and proves that it
robustly globally asymptotically stabilizes the synchronized state. Chapter 7 focuses on the rigid-body pose

kinematic stabilization. It shows the proposed bimodal hybrid controller and the proofs of control stability and
robustness.

Chapter 8 presents the concluding remarks and suggestions for future work.

Appendix A presents the extended summary in Portuguese language. Appendix B shows the proofs of the

lemmas used along the text. Appendix C lists the papers published in or submitted to journals and conferences.



PRELIMINARIES

2.1 ATTITUDE OF A RIGID BODY

The expression “attitude of an object” is usually used in Geometry and means the orientation of such object
in space [35, 36]. Rigid body is a completely “undistortable” body. More formally, a rigid body is a collection
of particles such that the distance between any two particles remains fixed, regardless of any motions of the
body or forces exerted on it [37]. In general, the attitude is described by the relationship between two right-
handed Cartesian coordinate frames, one frame, called body frame, attached to the rigid body and the other
one, called reference frame, with the same origin as the first, but having its axes parallel to a fixed-reference
or inertial frame [4, 38, 36]. According to Figure 2.1, the fixed-reference frame is O,x,.y, 2., the body frame
is Ouvw and the reference frame is Oxyz, whose axes Oz, Oy and Oz are, by definition, parallel to the axes

O,x, Oy, and O,.z, of the fixed-reference frame and whose origin coincides with the one of the body frame.
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Figure 2.1: Body frame, reference frame and fixed-reference frame example.

The attitude can be represented in several ways. One of them is the rotation matrix, which can be interpreted
as an operator that transforms the coordinates of a point from one frame to another one (passive transformation).
For instance, suppose, initially, that the body frame coincides with the reference frame and after a determined
period of time (the final moment), the body has rotated an angle 6 about axis w. Figure 2.1 illustrates the
rotation motion of a body point from point P, to P,. Let p, and p,, be the vectors that represent the coordinates
of points P, and Py, relative to a frame. As the body frame is attached to the body, p, = p,, relative to the body
frame. However, relative to the reference frame,

by, = Rpa' (2])

The rotation matrix R transforms vector p,, which represents the position of point P, relative to the body
frame, into vector p, that represents the position of the same point P, relative to the reference frame.

The rotation matrix forms a group known as the special orthogonal group of order 3, or as the rotation group
on R3,

SO3)={RecR¥*3 . RTR=RR" =1, det R = +1}.



An element of SO(3) can be parametrized by R : R x S? — SO(3), defined as
R(6,w) = exp(S(w)b),

where 6 € R represents an angle, @ € S? is a rotation axis, S” = {x € R"*! : 27z = 1} and

0 —XI3 To
S <$) = T3 0 —T 5 (22)
—T2 I 0

for z € R3. Equivalently, an element of SO(3) can be parametrized by the Rodrigues formula [37]

R0, @) = I +sin(0)S(w) + (1 — cos())S(w)?.

2.2 QUATERNION

The quaternion algebra is a four dimensional associative division algebra over R invented by Hamilton
[39], which naturally extends the algebra of complex numbers. It can represent rotations in a similar way as

the complex numbers in the unit circle can represent planar rotations [37, pages 33,34]. The elements 1, 2, 3, k
are the basis of this algebra, satisfying

~2

2P =k =yk=-1. (2.3)

i

The set of quaternions is defined as

H = {n+u1i+uzj+ual§: DT s H2, i3 € R}.
For ease of notation, the quaternion is denoted as Q € H, where

Q=n+p, with p=pd+ )+ psk

and may be decomposed into a real component and an imaginary component: R(Q) £ 1 and (Q) = p such
that Q = R(Q) + 3(Q).
Another commonly used notation is
Q= mp),

with a scalar component 77 € R and a vector component gt = (ji1, fio, pi3) € R3.

The sum of two quaternions, Q, = (7a, it,) and Q, = (1, L), is defined as

Q.+ Qp= (Na + My kg + 1)

and the multiplication of two quaternions is defined as
Q.0 Qy = (a1 — B By Nty + Tobg + Hg X ).

The conjugate of a quaternion @ is given by Q@™ = (7, — ) and the norm of a quaternion, by

1QII = V@0 Q" = ViP + il = \/n + s + i3 + 3.
Pure imaginary quaternions are given by the set

Ho = {Q € H : R(Q) =0}



which are very convenient to represent vectors of R?. Thus, an Euclidean vector p € R? can be represented in
the same way as the quaternion p € Hj or as (0, p) € Hy, using the other notation with the scalar component
zeroed.

Unit quaternions' are defined as the quaternions that lie in the subset
S*£{geM : |q =1}.

The inverse of ¢ = (), €) equals its conjugate, g~ ! = g* = (1, —€). Thus, gog~! = g 'og =1 = (1,0),

0 = (0,0,0).

The set S* forms, under multiplication, the Lie group Spin(3), whose identity element is 1 and group inverse

is given by the quaternion conjugate g*.

Given the unit quaternion

0 . .0
q= <cos ok w sin 2) , (2.4)
the mapping R : S* — SO(3) is defined by
R(q) = I + 2nS(€) + 25(€)%. (2.5)

Note that R(g) = R(—q). As the unit quaternions g and —g represent the same rotation, the unit quaternion
group double covers the rotation group SO(3).

The transformation from p, to p;, achieved by applying operator R in (2.1), can also be obtained by using
the unit quaternion q defined in (2.4) and equation [41, page 520]

(0,p,) =qo(0,p,) o q". (2.6)

2.3 KINEMATICS AND DYNAMICS OF RIGID BODY ATTITUDE

Consider a rigid body with inertia matrix .J in a rotational motion due to the action of some external torque
T € R3. Consider also two frames: the reference frame and the body frame attached to the rigid body. Given
that q represents the rigid-body attitude R € SO(3), defined as the relative rotation of a body frame to a

reference frame, the quaternion kinematic equation? is given by

1
q= 54° (0,w), 2.7

where w € R? is the angular velocity expressed in the body frame.

The angular velocity rate is calculated using the dynamic equation (Euler’s equation),

Jw=S(Jw)w+T, (2.8)

written in body coordinates [37, page 167], i.e., the torque is expressed in the body frame and the inertia matrix
is constant and calculated in the body frame (see Lemma B.1).

lAlong the text, the use of unit quaternions follows the Hamilton convention [40], that is, elements of the quaternion are ordered with
real part first, quaternion algebra satisfies 22 = 5% = k= ijk = —1(2.3), operation q o (0, v) o g* performs a passive transformation
of vector v components from local to global frame.

2For further details about rigid-body kinematic and dynamic equations refer to [37, 42].



24 ATTITUDE CONTROL PROBLEM

The attitude control problem may be established as a function of the attitude error. Supposing that g, € S?
represents the desired constant attitude reference (the desired angular velocity is w4 = 0), the attitude error is
given by g, = (1, €.) = ¢ 0 ¢ € S and the kinematic equation is described by (Lemma B.2)

. 1 1
4. = 54.° (0,w —R(q.) wy) = 59.° (0,w). (2.9)

Let X = S? x R®and 7 = (q,,w) € X. Since each physical attitude R € SO(3) is represented by a pair of

antipodal unit quaternions +-q € S3, the objective of the control becomes to stabilize the set
A= {(17 O) ) (_17 0)} cX
for the following system
. [ a.
x - .
w

by means of an appropriate choice of a feedback torque law 7, which has as information the output of the

39,0 (0,w)

J 1S (Jw+T) |’ (-10)

system (2.10) given by

y=(q,w), 2.11)
that is, ¢ and w are measured. Note that together with the desired reference, g, the state T = (q,,w) is
available for feedback.

2.5 DUAL QUATERNION

Similarly to how the quaternion algebra was introduced to address rotations in the three-dimensional space,
the dual quaternion algebra was introduced by Clifford [43] and Study [44] to describe rigid body movements.
This algebra is constituted by the set

H={qg+eq : q.¢ € H},

where q and ¢’ are called the primary part and the dual part of the dual quaternion and ¢ is called the dual unit
which is nilpotent—that is, & # 0 and €2 = 0. Given ¢ = 1+ p + e(’ + p'), define R(q) £ n + e’ and
3(q) £ p+ep, such that ¢ = R(g) +S3(g). The dual quaternion conjugate is g* = R(q) —S(q) = q* +e¢’*.
The multiplication of two dual quaternions ¢, = q; + eq} and q,=4qz + eq} is given by
4,°9,=4q,°q, +c(q, 045+ ¢ 0qy).

The subset of dual quaternions
S={q+eqd €H : |q|=1,q0q¢" +q oq* =0} (2.12)

forms a Lie group [45] called unit dual quaternions group, whose identityis1 =1+4¢0,0 =0+ 02+ 07+ 0k
and group inverse is the dual quaternion conjugate. The constraint g o ¢* + ¢’ o ¢* = 0 in (2.12) implies that

m’ +p" ' =0. (2.13)

An arbitrary rigid body displacement characterized by a rotation g € Spin(3), followed by a translation
P =Dz + Dy + pzlzz € Hy expressed in the body frame, is represented by the unit dual quaternion [29, 46]

1
g=q+85qop. 2.14)

As the displacement g is equally described by —g, the unit dual quaternions group double covers SE(3).



2.6 KINEMATICS OF RIGID BODY MOTION

Let g represent the rigid-body attitude R € SO(3), defined as the relative rotation of a body-fixed frame to
areference frame and p € Hj represent the translation expressed in the body frame. The unit dual quaternion g,
given by (2.14), describes the coupled attitude and position and the kinematic equation of a rigid body motion
is given by [46]

1
g: 520g7 (2.15)
where w = w + ew’ is called twist and is given by
w=w+e[p+wxpl, (2.16)

w € Hj is the angular velocity expressed in the body frame and p € H is the velocity expressed in the body

frame.

Note that due to the principle of transference the kinematic equations (2.7) and (2.15) are similar [47]. It is
straightforward to notice that (2.15) embodies both equation (2.7) and p = w’ — w X p.

The principle of transference may mislead one to think that every theorem in quaternions can be trans-
formed to another theorem in dual quaternions by a transference process. This is shown by counterexamples
in [47]. Therefore, properties and phenomena related to quaternion motions like topological obstructions and
unwinding may not follow by direct use of transference and have to be verified for dual quaternions [28].

2.7 HYBRID SYSTEM FRAMEWORK

Since a model of a hybrid dynamical system requires a description of the continuous-time dynamics, the
discrete-time dynamics and the regions on which these dynamics apply, the general model of a hybrid system
H is in the form [48]

{ t € F(x), zeC, 2.17)

v €G(z), xeD,

where x represents the state of the hybrid system, & € F'(z) is a differential inclusion that describes the flow,
i.e., the behavior of the hybrid system while in the set C' and 2 € G(x) is a difference inclusion that describes
the jumps, i.e., the behavior of the hybrid system while in the set D. The notation 2T represents the state  just
after transition. The objects of the model are named as follows: C' is the flow set, F' is the flow map, D is the
jump set and G is the jump map [49].

Figure 2.2 shows a solution trajectory example [48]. A solution trajectory to a hybrid system is parametrized
by both ¢, the amount of time passed, and j, to account for the number of jumps that have occurred. Subsets of
E C [0,00) x {0,1,2,...} can correspond to the domain of evolutions of hybrid systems and are called hybrid

time domains. More specifically, a subset E' is a compact hybrid time domain if
J—1
E=J ity tjrl,9)
j=0

for some finite sequence of times 0 =ty < t; <ty < ... <ty while F is a hybrid time domain if it is a union
of a finite or infinite sequence of intervals [¢;,¢;+1] x {j} with the last interval (if existent) in the form [¢;,T')
for T' € R or in the form [¢;, co) [49].
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Figure 2.2: Example of a solution trajectory to a hybrid system. Solid curves indicate flow and dashed arcs
indicate jumps.
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DISCONTINUOUS AND HYSTERETIC
CONTROLLERS

Attitude control of a rigid body is a typical nonlinear control problem and has been studied for decades [50,
8, 10], motivated especially by aerospace applications that involve maneuvers or attitude stabilization [1]. It is

also an important problem in underwater vehicles projects, ground vehicles, robotic systems etc [1].

Probably, the first systematic study of spacecraft attitude control began in 1952, which was documented in
unpublished form only (and classified as “secret”) [S1]. Beforehand, in the second half of 1940’s, many studies
in this area were sponsored by U.S. government agencies. In the open literature, one of the first paper appeared
in 1957 (the launch year of Sputnik, the world’s first artificial Earth satellite). It described the problem of
actively controlling one of the axes orientation of an artificial satellite so that it remains pointed downward
toward the Earth [51].

By 1970, anticipating future spacecraft needs, rapid and large angle reorientation was already subject to
study [52]. Later on, in 1985, it was published one of the first papers suggesting a discontinuous control feed-
back to achieve global attitude control [8]. Finally, only 26 years afterwards, in 2011, Mayhew et al. [10] noted
that for the control of [8], it is possible to find a small measurement noise which is able to induce chattering of
the state and presented a hybrid feedback control law that solved the global asymptotic stabilization problem

and was robust to measurement noise.

3.1 GLOBAL STABILIZATION BY CONTINUOUS FEEDBACK

Bhat and Bernstein [5] proved that the attitude can not be globally stabilized by means of continuous
feedback using Theorem 3.1 below and the fact that SO(3) is a compact manifold, .

Let M be a manifold of dimension m and consider a continuous vector field f on M.

Theorem 3.1 From [4, Theorem 1]

Suppose m : M — Q is a vector bundle on Q, where Q is a compact, r-dimensional
manifold with v < m. Then there exists no equilibrium of f that is globally asymptotically
stable.

An easier way to understand the impossibility of global attitude stabilization using continuous time-invariant
feedback is shown in [1, page 38] using the illustration of Figure 3.1. In this case, the manifold is the circle S!
and the problem refers to the attitude stabilization of the arm of the clock needle using a continuous feedback.
To stabilize in configuration A, a continuous force vector field, tangent to the circle, was constructed to rotate
the needle. Since the upper and lower half of the circle point in opposite direction, the vector force field must
vanish somewhere — at point B in this case. Thus, a second unstable equilibrium point is created, an unstable
one. Similarly, continuous time-invariant closed-loop vector fields create multiple closed-loop equilibria on the

rotation group SO(3) and the unit quaternion group S3.
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Figure 3.1: Example of a strategy to stabilize the arm of a clock needle at point A.

3.2 GLOBAL STABILITY VIA DISCONTINUOUS KINEMATIC AT-
TITUDE CONTROL

To simplify the problem presentation, only the kinematic attitude control is considered at first. That is, the
system is described by equation (2.9) and the goal is to design an angular velocity feedback w to stabilize the
set Ay, = {q, = 1orq, = —1}. The discontinuous feedback is motivated by the following Lyapunov function:

Vige) =2 (1= |nel).-

Function V is positive definite on S* with respect to Ay, since V (S*\ Ax) > 0and V(Aj) = 0. Considering
the following control law

w(q,) = —he., (3.1)

where h = sgn (7,) and

o _17 Ne < Oa
) Ne > 0,

(3.2)

the time derivative of V is V(q,) = — ||€||”, which is negative definite. Note that this control law pulls the

body toward the shortest rotation direction (see Figure 3.2).

The closed-loop had been proved to be globally asymptotically stable! [7]. However, when the initial
condition of the system is near the discontinuity —i.e., near n. = 0, a region near 180° away from the reference
attitude —, measurement noise can cause chattering, which consists of multiple jumps (of states) occurring at
the same time and keep the state near the discontinuity indefinitely [10]. Let R = (7)., €,) € H represent the
noise such that q,, = (g, + R) € S? be the attitude corrupted by noise R at instant ¢. Note that if 7. is near
0, the sign of 7. + 7, and the sign of 7). can be different inducing the controller to change h. This way, the
discontinuous controller is not robust to measurement noise.

!'As function V is not a continuously differentiable, LaSalle’s Theorem [53, page 117] can not be applied.
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Figure 3.2: State space representation of the discontinuous controller. Arrows indicate the direction of rotation
so the attitude is regulated to 1 or —1.

3.3 ROBUSTNESS PROBLEM

As mentioned in the previous section, in case of a discontinuous feedback law, when the initial condition
of the system is near the discontinuity, measurement noise can cause chattering and keep the state near the
discontinuity indefinitely [9, 10]. See example of chattering behavior in Figure 3.3 (Section 3.4). Therefore,
the stability is not robust to arbitrarily small measurement noise. To simplify notation, g, will be denoted as q
in this chapter.

Theorem 3.2 of Sanfelice et al. [9] proves this fact for a generic space. Before it is enunciated, it follows
some definitions.

m
Let O C R™ be an open set and let M; C R™, i € {1,...,m}, m > 1, be sets satisfying |J M; = O.
i=1

1=

Let M £ |J M; N M,, where M, is the closure of set M;.

4,5,17]
Definition 3.1. [9, Definition 2.1] A Carathéodory solution to the system & = f(x), where & € R" is the
state and f : R™ — R", on an interval I C [0,00) is an absolutely continuous function  : I — R”
that satisfies ©(¢) = f(x(t)) almost everywhere on I. Given a piecewise constant functione : I — R, a
Carathéodory solution to the system & = f(x + e) on I is an absolutely continuous function « that satisfies
x(t) = f(x(t) + e(t)) for almost every ¢ € I; equivalently, for every to € I, x(t) satisfies

x(t) =x(to) + [ f(x(r) +e(r))dr, Vtel.

Theorem 3.2 From [7, Theorem 2.6]

Lete > 0 and let K satisfy K+B(0,2¢) C O. Then, for each g € (M+B(0,¢))NK there
exists a piecewise constant function e : [0,00) — B(0,¢) and a Carathéodory solution x
to & = f (x + e) starting at x such that x(t) € (M + B(0,¢))? forall t € [0,00) such
that (1) € K for all T € [0,1].

9The sum of sets follows Minkowski sum definition, i.e., A+ B={a+b : a € A,b € B}.

Besides, Sanfelice et al. [9] affirmed that this theorem can be extended to systems of the form & =
f (z, k(x + €)), with f(-,u) locally Lipschitz uniformly over «’s in the range of .

Mayhew et al. [10] also proved this fact (robustness problem) for the discontinuous control law w(q) =
—sgn(n)e (3.1). They stated the following theorem.
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Theorem 3.3 From [8, Theorem 3.2]

Let w(q) = —sgn(n)e, M = {q € S* : n = 0}. Then for each « > 0 and each
gy € M* & (M + aB) N'S?, there exists a measurable function e : [0,00) — oB and a
Carathéodory solution q : [0,00) — S to ¢ = 3q o (0,w (q + €)) satisfying q(0) = q,
and q(t) € M* forallt € [0,00).

This theorem affirms that applying the discontinuous control law, if the initial condition of the system is
near the discontinuity (g, € M™*), there exist a noise of magnitude not higher than « such that the state will
remain near the discontinuity indefinitely. A point that stands out from these two theorems is that the feedback
variable when corrupted by the measurement noise has no guarantee to belong to the space of the variable. For
instance, the noise function suggested by Mayhew et al. [10] is e = (—asgn(n),0). Note that the feedback
depends on (q + €) ¢ S3, which is not an attitude quaternion representation and is a physical inconsistency.

As a contribution of this manuscript, in the sequel, a new theorem is stated and proved about the existence
of such noise function for the case the sum q + e is restricted to S3.

Theorem 3.4

Let w(q) = —sgn(n)e, M 2 {q € S® : n = 0}. Then for each 0 < a < /2 and each
gy € M* = (M +B(0,))NS3, there exists a measurable function e : [0,00) — B(0,a)
and a Carathéodory solution q : [0,00) — S® to ¢ = %q o (0,w (g + €e)) satisfying
q(0) =q,, (g +e) € S®and q(t) € M* forallt € [0,00).

Proof. The idea of the proof is to find function e such that the direction of w(q + €) is opposite to the
direction of w(q). This way, the body always moves toward the longest rotation direction and gets stuck at
n=0.

Let g(t) = (n, €). From Lemma B.5, it is known that the scalar component of g is limited to

2
Il < ay/1 - % —m. (3.3)

The range of m depends on «, which is restricted to® 0 < o < /2. Note that 0 < |n| < m < 1.
In order to make the direction of w(q + €) opposite to the direction of w(q), let e(t) = (n,, €,-) be defined
as

= —n+ 0 (n—sgn(n)m), (3.4)

where 8 € (0,1) so the sign of the sum 7 + 1, = [ (n — sgn(n)m) is opposite to the sign of 7 (Lemma
B.6),i.e.,
sgn(n +nr) = —sgn(n). (3.5)

The value of €, can be obtained using Lemma B.7, so as to ensure that ||e(t)|| is the minimum for the
predefined value of 7, which satisfies (g(t) + e(t)) € S®. Thus,

L=m+n) ) (3.6)
1—n?
The proof that ||e(t)|| < « follows directly from Lemma B.8.
To end the demonstration, following is the proof that the attitude g(¢) € M™* for all future time.

Let Q2 {q €eS?:n< a}, Vam(q) = n?. Function V) is positive definite on  with respect to M, since
Vm(qg) > 0forg € 2\ M and Vy(q) =0 for g € M.
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The time derivative of function V), is given by
Viu = (VVm(9). @) - (3.7)

From the definition of Vv, VV(q) = (27, 0) and the time derivative of the attitude is given by

°(0,w(g+e)), (3.8)

»D

(Sgl’l nm 6 €m, nSgn(nm)em - Sgn(’?m)f X em) ’ (39)

N = N =

where 7,, =1 + 7, and €,,, = € + €,.. Hence,

Vi = nsgn(n+n.)e’ (€ +€,) (3.10)

o (sen(n) \/ =B ), o

—Jnl /1= B2 (m — )T =7, 3.12)

where (3.5) was used in (3.11) and €”'e = 1 — 1% was used in (3.12).

Function V is negative definite on  with respect to M.

Since ) compact, function V) is continuously differentiable and positive definite, and function Vi is
negative definite, it is possible to affirm that every solution starting in ) remains in €2 for all future time.
As M* C Q,q(t) € M* forallt € [0,00). O

@The upper limit can be deduced from (B.19) for n = 1. The theorem is senseless for o > /2 because max d(q, M) = /2
q

as shown in Lemma B.4.

The following sections refer to the dynamical system (2.10), described in Section 2.4.

3.4 DISCONTINUOUS ATTITUDE CONTROL

In order to achieve global attitude control, some authors, such as Fjellstad and Fossen [6], Fragopoulos and
Innocenti [7] and Wie and Barba [8], proposed a discontinuous feedback law like the following

71 (Y, q4) = —che. — w, (3.13)

where y is defined in (2.11), ¢ > 0 is the gain of the “proportional” term —che, and h = sgn (1,). The sgn

function is defined as in (3.2).

The value of / determines the direction of the “proportional” term so g, is regulated either to 1 = (1, 0) or
—1 = (-1, 0), as shown in Figure 3.2.

The closed-loop (2.10), (2.11) and 7 = 73, with 7; given by (3.13) had been proved to be globally
asymptotically stable [7]. However, when the initial condition of the system is near the discontinuity — i.e.,
near 7. = 0, a region near 180° away from the reference attitude —, measurement noise can cause chattering,
which consists of multiple jumps (of states) occurring at the same time and keep the state near the discontinuity
indefinitely [10]. This way, the discontinuous controller is not robust to measurement noise.

Figure 3.3 illustrates the difference in behavior when the output is corrupted by noise? for initial conditions
ne(0) =0,€.(0)=[1 2 3 ]7/V14and w(0) = 0. The chattering occurred during the first 6 seconds and

2The measured value of g included noise generated in the same way as described in Section 4.3.

16



can be observed in the graph of hn,. During the chattering behavior, the controller “believes” the sign of 7,

continually changes and, as a consequence, the system has its response lagged.

1 . : ;
v — — - with noise
S = - -~ el
~ < - no noise
_1 1 = Il e ] = = = — —
0 5 10 15 20
1- I s I— —_— —-I ——]
© -
< ___4
[N
71 C 1 1 1 7]
0 5 10 15 20

Time (s)

Figure 3.3: System behavior for the discontinuous controller when no noise is present in the output y and when
the output is corrupted by noise.

3.5 HYSTERETIC HYBRID ATTITUDE CONTROL

In order to solve the robustness problem of the discontinuous controller, Mayhew et al. [10] proposed a
hybrid control with hysteretic feedback by using the same torque feedback (3.13), but having & determined in
a different way. The idea of this controller is, instead of changing the dynamics (the value of k) just after the
sign of 1), changes, the value of h is kept unchanged until a safe distance from the discontinuity is achieved.
According to the definitions at the end of last section (Section 3.4), a safe distance means a distance so the
sign of 7. + 7, and 7. can not be different. As this behavior is more complex, a hybrid dynamic controller is
considered.

The hysteretic controller of [10] has only one state variable h € X, £ {=1,1}. The state of the overall
system is represented by 7; = (Z,h) € X; = X x X, and evolves according to (2.10), (2.11), the following
dynamics of the controller®

iLZO :i‘1601é{{f1€X13B77e2—(5}7 (3.14)
ht esgn(u) #1 € D12 {x € Xy : hne < =6}, '
where h is the value associated to h just after the state transition* and

{1}, Uy > 0,
sgn(un) £ ({1}, w1 <0,
{—1,1}. (751 =0.

The vector of inputs is U; = (7, u1) and the closed-loop law is achieved by setting

Ui = Ki(y,h,qq) = (—Chee — w,ne). (3.15)

The parameter 6 € (0, 1) represents the hysteresis half-width and provides robustness against chattering caused
by output measurement. According to [10, Theorem 5.5], 6 must be higher than 2, where « is the maximum
noise magnitude of the output measurement.

3 Along the text, the dynamics representations follow the hybrid systems framework of Goebel et al. [48], summarized in Section 2.7.
4Note that for the closed-loop approach u1 = 7e.

17



The closed system is globally asymptotically stable with respect to the set

Alz{fl c X;: qezﬁl andw:O}. (3.16)

v

L e

Figure 3.4: State space representation of the hysteretic controller (with one state variable 7). Arrows indicate
the direction of the “proportional” term of the torque (dependent on &) so the attitude is regulated to 1 or —1.
The parameter J represents the hysteresis half-width of the on-off control for state h.

Figure 3.4 shows the behavior of the hysteretic controller for a hysteresis width of 2. The state variable h

determines the “proportional” term direction of the torque feedback in order to move g, either to 1 or —1.

In the sequel, it is presented some examples of system evolution for some distinct initial conditions and
compares it when the controller is the discontinuous one. For the simulations below, the initial controller state
for the hysteretic controller was h(0) = 1 and the hysteresis parameter was set to § = 0.4. The simulations

included measurement noise® of maximum magnitude @ = 0.2.

For the scenario of Figure 3.3, with initial conditions 7.(0) = 0, €.(0) =[ 1 2 3 ]7/V14and w(0) =
0, while the discontinuous controller presents chattering, the hysteretic controller behaves as the discontinuous
controller when no noise is present. The hysteretic controller keeps the state variable h = 1 along all the way.

Figure 3.5 exemplifies the problem mentioned in [10]. It is affirmed that there is a price to pay for robust
global asymptotic stabilization with the hysteretic controller — a region in the state space where the hybrid
control law pulls the rigid body in the direction of a longer rotation. In fact, the proportional term of the
torque feedback pulls the body in the shorter rotation direction while hn, > 0. But, when h7, gets negative,
it still pulls in the same direction (the longer rotation direction now) until a safe distance (given by §) is

achieved to prevent chattering, i.e., until 7”7@ < —4. In this simulation, the initial conditions 7.(0) = —0.2,
€(0) =+/(1-022)[1 2 3 ]7/v14 and w(0) = 0 were chosen to contrast the longer rotation direction

determined by the hysteretic controller and the shorter direction taken when the controller is the discontinuous
one. The hysteretic controller keeps the state variable h = 1 along all the way whereas the discontinuous one
keeps h at —1.

The following scenario (Figure 3.6) illustrates an example with initial angular velocity different than

zero. The initial conditions were 7.(0) = —0.2, €.(0) = /(1 —-0.22)[ 1 2 3]7/V14 and w(0) =
051 2 3]%7/V14 . The control law of the discontinuous controller pulls the body toward 1, = —1

along all the way as h keeps at —1. Differently, the hysteretic controller is initiated with / = 1 and the control
law pulls the body to the opposite direction. Due to inertia, it rotates toward 7, = —1, however the angular
velocity norm decreases until 7, crosses the hysteresis threshold (hn. < —d) — see the graph of the angular
velocity. After that, the controller changes state h to —1 and the body continues rotating toward 1, = —1 . The

moment the controller changes state h can be seen on the graph of A1,

5The measured value of g included noise generated in the same way as described in Section 4.3.
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Figure 3.5: Comparison of the system behavior when the discontinuous controller and the hysteretic controller

are applied to highlight the longer rotation direction determined by the hysteretic controller.
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Figure 3.6: Comparison of the system behavior when the discontinuous controller and the hysteretic controller
are applied to highlight the behavior when the initial condition of the system is not at rest.

3.6 PROBLEM DEFINITION

The problem of robust and global attitude stabilization for rigid body has been solved. However the choice
of the best rotation direction to stabilize in order to spend less energy is not trivial. Mayhew et al. [10] affirm
that there is a price to pay with the hysteretic controller — a region in the state space where the hybrid control
law pulls the rigid body in the direction of a longer rotation. The problem that this thesis work solves is

PROBLEM

Find a controller with a better performance between settling
time and energy consumption than the hysteretic controller
suggested by [10] that keeps the robustness and global con-
trol stability.

In order to solve this problem, it is proposed two hybrid solutions by the introduction of one new mode that

is used to indicate if the system attitude is close to a critical region (the chattering prone region):
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o In Chapter 4, the first proposed hybrid controller (HY controller) is capable of reducing the energy con-
sumption of rest-to-rest applications when compared with the hysteretic hybrid controller. Being capable
of detecting when the reference changes abruptly or when the current attitude is far from the reference
on the initial instant, it has more opportunities to determine the shorter rotation direction (compared with
the hysteretic controller). But this is not always true when the initial angular velocity direction and the

shorter rotation direction are opposite.

e In Chapter 5, a middle term solution in terms of cost between the memoryless discontinuous and the
hysteretic hybrid control is proposed by introducing a new mode which also have a hysteresis structure.
This new controller, called bimodal controller, reduces the region for the longer direction mentioned
above without compromising the robustness (the controller has the same capability of noise rejection
of the hysteretic controller) and, differently from the HY controller, it does not impose any restrictions
on flow and jumps priorities. It is oriented for the rest-to-rest control of attitude, however it spend less
energy in average for other initial angular velocities.

The two proposed controllers determine the direction to stabilize based only on the attitude information. Cer-
tainly, the angular velocity should also be considered. This is still an open problem. The two articles in the
literature that takes the angular velocity into account, to the best of the author’s knowledge, is [54] and [55]. In
[54], the authors concluded that hysteretic controller presents advantages. The controller suggested in [55] is
an adapted version of the hysteretic controller. Direct comparisons was possible with an adapted version of the
bimodal controller in this manuscript (Subsection 5.3.3). The conclusions are favorable to the adapted bimodal
controller.
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FIRST PROPOSED HYBRID ATTITUDE
CONTROLLER (HY)

This chapter presents the first proposed hybrid controller (HY) capable of reducing the energy consumption
of rest-to-rest applications when compared with the hysteretic hybrid controller suggested by Mayhew et al
[10]. It has two state variables (E m) € X. x X,.. The state space of the system is now represented by
Ty = (T,h,m) € Xo = X x X, x X..

The controller objective is to globally asymptotically stabilize the set

A2:{:EQEXQ:qe:i_zlandmzlandw:O}. 4.1

Consider parameter § € (0,1). The system is given by (2.10), (2.11) and the following dynamics of the

controller:
iL:
. 0 } To € Oy,
m=20
h € sgn (up) 4.2)
7g 2 Ty € Do,
m™ € 5gn (Jug| — 9)
Cy 2 {zy€ Xo: hpe > =6 and m || > md — §/2}, (4.3)
Dy 2 {Zy € Xp: hnge < —dorm|ne| < md}, (4.4)

where m* and hT are values associated to m and h, respectively, just after state transition. The sets Co and
D, are depicted in Figure 4.1.

m A
N /\m

m m
N

v

Ne

t + t t t - + t
—1 -0 P 1 Te -1 —35/2  —/2 —5/2 6

Figure 4.1: Graphical representation of sets C'; and Ds.

The vector of inputs is Uy = (T, us2, u3) and the closed-loop system is achieved by setting

U2 - K?(yqua ﬁ7m) = (_Eﬁee — W, Ne, ﬁ) (45)

As well as in the hysteretic controller, the state / determines the “proportional” term direction of the torque
feedback in order to move g, either to 1 or —1. The state m = 1 indicates whether 7). is near £1 (|n.| > 9).
Otherwise, m = —1. Figure 4.2 shows the proposed regulation.
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Figure 4.2: State space representation of 7. and ||€. || and the proposed regulation with two state variables (h
and m). The parameter & represents the hysteresis half-width of the on-off control for state h.

The inclusion of a second discrete state variable (m) to the controller allows the state A to be updated when
m is about to be changed. For this reason, variable m was designed to be changed in two situations: whenever
the reference attitude changes significantly (and system is near steady state) and on the initial instant in case
the reference is far from the initial attitude (assuming that m(0) = 1). Apart from these two situations, the
system evolves as if the controller were the hysteretic one, since the feedback law does not depend on m and

the changes on m do not affect h (see Section 4.2).

4.1 STABILITY ANALYSIS

Considering the proposed HY controller (4.2), the system can be written as a function of the vector of
inputs, Us, as follows

H(Uy) - Ty = Fy (22,Us), @2 € Oy, 46)
2) .
i‘; € Gy (fg,UQ), Ty € Do,

where 73 = (q,,w, h,m), Us = (T,uz, u3),

34.° (0, w)
(S(Jw)w+T)
0 ;
0

Jfl
Fy (T, Us) =
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q.

Go (T2,Us) & 760
sgn (uz)
sgi (Jug| —0)

The system can also be written in the closed-loop form by substituting (4.5) into (4.6), denoted by H £
H(ICQ) Let FQ (i‘g) £ Fy (i‘Q,ICQ) and 62 (.fg) £ Gy (fQ,ICQ).

Ty =Fy(T2), Ty€ Co,

H - 4.7
f;EGQ(i‘Q), Ty € Do,
34.© (0,w)
J 1 (S (Jw)w — che, — w
Py = | 77 B mdhe ) |
0
q.
w
G (Z2) = .
sgn (1)
sgn (ne| —9)

Theorem 4.1

Let§ € (0,1) e & > 0. Then, the compact set Ay defined in (4.1) is globally asymptotically
stable for the closed-loop hybrid system H.

Proof. The proof follows in the same way as that of Theorem 5.2 of [10]. Consider the Lyapunov function
V : X9 — R, defined as

. 1
V(Z2) = 2¢(1 — hn.) + 5wTJw. (4.8)
Let V : Xp — R, V(Z2) =2¢(1 — hne) + 3w’ Jw.

Function V is positive definite on X5 with respect to Ay, since V(Z2) > 0for T € X5\ As and V(Zo) =0
for o € As.

The time derivative of V' is given by

V(Z2) = (VV(Z2), F2 (T2)) ,

T T
[ (~2¢h) 0 0 0] L —elw (newtexw) ]
_ < Jw J1 (S (Jw)w — che, — w) >
—2¢ne 7 0 7
0 0
=-—wlw<o.

4.9)
Thus, Vis negative semidefinite on X5.
Along jumps, when Ty € D, the variation of V' is given by AV (z9) = V(z]) — V(Z2) = —2én.(ht —h).
Let Dy = Dsq U Dy, where Dag £ {73 € Xo: hne < =6} and Dy, = {72 € X : m|ne| < mé}.
Hence,
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< —46(5, Ty € Do,
—4¢d, To € Doy N Doy 4.10)
, Ty € Doy \ Dag.

AV(ZEQ) =

ISVAY

As V(ig) < 0and AV (Zy) < 0 for all Zo € Xo, it follows, from Theorem 7.6 of [56], that the compact
set Ao is stable.
The conclusion that the set As is globally asymptotically stable comes when Theorem 4.7 of [56] is applied

to prove that the set Ay is the largest invariant set in W = {Z5 € Cs : V(Z2) = 0} or, equivalently, in
W ={Z2€ X2 : w=0and hn. > —6 and m || > md — 6/2}.

On W, w = 0. From (4.7), the only way to keep w = 0 is when €. = 0 (q, = +1). Using restriction
hne > —6, it follows that g, = h1 and using the other restriction, m = 1. Thus, any solution Zo(#)
approaches the largest invariant set As.

According to Theorem 4.7, the largest invariant set should include states in Wa = {Z2 € X5 : AV=10)N
Go(AV~1(0))} but note that as it is demonstrated in Section 4.2, Wa # 0 refers to the chattering prone
region (for variable m only). This is not the case for the strategy proposed in this chapter due to the
following reasons:

1. The strategy considers that, during the controller program execution, jumps do not present higher
priority than flows?;

2. The control law does not depend on m, which is the state variable that changes (see Section 4.2);

3. Flow occurs as Wa C Co N Do.

“Examples of how to implement priorities for jumps or flows in MATLAB can be found in [57].

Following is the proof that the number of jumps in variable A is bounded for any solution trajectory to the
closed loop system H defined in (6.13).
Theorem 4.2

Given any compact set K C Xo, a solution trajectory® to the hybrid system H, starting at

75(0,0) € K contains a finite number of jumps in variable h.

“The domain of a solution trajectory to a hybrid system is called hybrid time domain. Further details are found
in Section 2.7.

Proof. State h changes when h = 1 and 7, < —d or when h = —1 and 1, > §. In this case, To € Dy, and,
from (4.10), the change in V' (Z2) over the jump is at most AV; = —4¢d.
Since V(fg) < 0 along flows (see (4.9)), the maximum number of jumps is given by the maximum n; ¢
{0,1,2,...} that satisfies

Vv Vv
|AVi| ~ 4cs

njg

where V* = max V(K).

After some time, no jumps occur any more and the system behaves as a continuous dynamical system. [

So far the stability analysis has not taken into account “outer perturbations” that includes both measurement
and modeling errors [58, 10]. According to [58], a robustness analysis of  should consider perturbed systems
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(Fg, @;, C$,DS). A family of perturbed system, denoted H", is defined below [58, 10].

F;(i‘g) = @FQ(EQ,KQ(y + aB, ﬁ,m,qd)) + alB,

ég(@) ={z2€ Xy : 2 € Go(To,Ka(y + aB, h,m,q,))}, 4.11)
CS ={Ty € Xo : T(y+ aB,h,m,q,) N Cy # 0},
DS ={%y € Xy : T(y+aB, h,m,q,) N Dy # 0} (4.12)

where co denotes the closed convex hull, function 7" is defined as T : X5 x S — X, T(y, E, m,qy) = Ta,
« > 0 and B is the closed unit ball.

Following the arguments used in [10], it is possible to affirm that there exists a maximum noise magnitude
« such that the number of jumps in the perturbed system T gets bounded.

Theorem 4.3

Let 6 € (0,1) and ¢ > 0. Then, given a compact set K C Xo, there exists a™** > 0 such
that for all a € (0, a™%*], every solution trajectory to the hybrid system H, starting at

75(0,0) € K contains a finite number of jumps in variable h.

Proof. The proof of this theorem is similar to the proof of [10, Theorem 5.4].
Consider the Lyapunov function V' defined in (4.8). According to Theorem 6.5 of [58], there exists § € KL
such that every solution trajectory to the hybrid system  starting at Z»(0,0) € K,

V(Z2(t,4)) < B(V(22(0,0)),t+j) V(¢ j) € dom Ty (4.13)

Theorem 6.5 requires that the system 7 satisfies the hybrid basic conditions and that there exists an open
basin of attraction of the compact set A;. Both conditions are satisfied from Lemma B.3 (see Appendix
B) and Theorem 4.1. Once (4.13) holds, according to Theorem 6.6 of [58], for each v > 0 there exists
™ > ( such that for each o € (0, a™**], every trajectory solution of H" starting at £§(0,0) € K
satisfies

V (@5(t.4) < B(V (@5(0,0)),¢+ )+~ V(t,j) € dom 73 (4.14)

Theorem 6.6 requires that the system ' have the convergence property. [58, Theorem 5.4] ensures that

7 has this property since it satisfies the hybrid basic conditions (Lemma B.3, Appendix B). Equation

(4.14) affirms that t+1im V (z%(t,j)) € [0,7]. From Theorem 4.4, it is known that jumps may occur if
J—00

V > 426 = |AV;|. Hence, for v < 43, the number of jumps is bounded.
As Ty = (7, h, m) € Xo £ §3 x R? x X. x X,, note that the set K can not include all the set X5, since
the real set is not compact. However, it can include all initial attitudes of the body. O

4.2 CHATTERING ANALYSIS

Due to noise present in measurements, chattering may occur when jumps map the state back into the jump
set, i.e., when G5(D2) N Do # (. Considering that the output y is corrupted by noise of maximum magnitude
«, the verification should be concentrated on intersection ég(DQ" ) N DY, where 6; and DS are defined in
(4.11) e (4.12).
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Theorem 4.4

Letoo > 0,0 > 2a, 6 € (0,1). Then, Go (D) N DS # 0 and, in this set, only state variable
m can change.
Proof. It can be shown that DS = DS, U Dg;, where

D5, = {Z2€Xp:hne < —d+a},
DS, & {Zy€ Xo: mne| <md+a}.

The jump maps for states 7 and m, when measurement noise is taken into account, are given by
ht €sgn(n. +aB)  mt esgn(|n. +aB| - )

or, equivalently, by A*n. > —a and m* |n.| > m*§ — a. Their graphical representations are shown in
Figure 4.3.
When the state Zo € D3, it jumps into the set

ég(Dga):{fgeXg: ’nefi_uﬂga}u{fgeXg: i_me>5+aandm:1}.

mt
e

Figure 4.3: Graphical representation of the jump map for A™ and m™.

When Ty € D3, it jumps into the set
Gy (DS,) ={T2€ Xo: e —hd| <a}U{Zr € Xo: hne >+ aandm =1} U
{Z2€ X2: M| <d —aandm = —1}.

As Gs(DS,) C Gy (DS,), it follows that Gy (DS) = Gy (Dg,) U G (DS,) = Gs(DS,). Note that
G, (DSg,) N DS, =0, but

é;(Dg‘b) N D3, = {5:2 c Xo: |77€ - 715| < a} ,
={Z;eXy:h=1landd—a<n. <d+a}U{Z2€Xy: h=—land —6—a<n. < —5+a}.
Hence, Gy (D) N Dg = Gy (Dg;) N (DS, UDS,) = (G5 (Dg,) N DS,) U (G5 (Dg,) N DS,) = Gy (D) N

DS, # (. Thus, chattering can occur when &y € Go (DS) N DS. Note also that only state variable m can
change in this set. O

26



The HY controller can be considered robust to measurement noise due to the following reasons:

1. The feedback law (3.13) depends on q,, w and h;
2. q, and w do not change via jumps and chattering does not occur in variable & (only in m);

3. The proposed strategy considers that, during the controller program execution, jumps do not present
higher priority than flows;

4. The region of chattering (in variable m) is a subset of Co N Ds.

Usually chattering is undesirable and causes unwanted effects as is illustrated for the discontinuous controller
in the next section.

4.3 SIMULATION RESULTS

This section presents simulation results to compare performance of the proposed controller (HY), the dis-
continuous controller and the hysteretic controller.

In each simulation, all parameters considered were the same as those used for simulations in [10] to facilitate
comparisons. The inertia matrix used was J = diag(109), ® = [ 1 2 3 ]7//14, the control gain ¢ = 1
and parameter § = 0.4. The initial state of the hysteretic controller was 2(0) = 1 and the ones of the proposed
controller (HY) were h(0) = 1, m(0) = 1. The desired reference was g, = 1 with wy = 0. The simulations
were performed in MATLAB ambient, using ordinary differential equation solver with variable integration step
(ode45) restricted to a maximum step of 1 ms.

The measured value of q (g, ) included noise and was calculated as follows: q,, = (q + bé) / ||q + bé||,,
é = e/ ||e|,, where each element e was chosen from a gaussian distribution of zero mean and unitary standard
deviation and b was chosen from a uniform distribution on the interval [0, 0.2].

Figure 4.4 e 4.5 present five graphs each. The first graph, of 7., shows the attitude evolution either to
q. = 1 or q, = —1. The second graph, of h1., shows not only the evolution to 1 but also the jumps in /. The
third one presents the variable state m of the HY controller and its jumps. The fourth one shows the evolution
of the angular velocity norm ||w|| and the last one, the energy spent by the applied control feedback strategy

The first scenario (Figure 4.4) illustrates the chattering effect on the discontinuous and the HY controllers.
The initial conditions were g(0) = (0, ®) and w(0) = 0. The chattering effect on the discontinuous controller
can be observed in the h7,. graph. It induces a lag in response and higher energy consumption. In HY, this
effect is observed in the m graph, however the system evolution is not affected. Due to the m variable, HY
controller had a chance to update the discrete variables on the initial moment (b = 1, m = —1). Consequently,
it determined a movement toward 7. = 1. Note that depending on the noise on the initial moment, HY could
have updated h to —1 and determined a movement toward 7. = —1. The system evolution for the hysteretic
controller is not shown as it coincides with the evolution for HY.

The second scenario (Figure 4.5) compares the evolution of the states for the hysteretic and the HY con-
trollers when the initial angular velocity direction coincides with the shorter rotation direction. The initial
conditions were q(0) = (—0.2,v/1 — 0.229) and w(0) = 0.3®. This simulation shows that as the initial state
of h for the hysteretic controller is 1, the control law pulls the attitude toward the longer rotation direction
(ne = 1). Thus, the angular velocity decreases, but before the movement is reversed, 7). crosses over the hys-
teresis threshold (7. < —d). At this moment, h changes to —1 and the control law pulls the attitude toward
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Figure 4.4: Comparison between the discontinuous controller and the proposed HY controller.

the shorter rotation direction (. = —1). On the other hand, HY controller decides, in the initial moments, to
change h to —1 and the feedback pulls the attitude toward the shorter direction (7. = —1) . Consequently, the
system energy consumption is higher when the hysteretic controller is applied. The system evolution for the

discontinuous controller is not shown as it coincides with the evolution for HY.

4.4 CHAPTER CONCLUSIONS

The proposed hybrid control globally asymptotically stabilizes the attitude of a rigid body and is robust
against noise measurement. It also preserves the good characteristics of the hysteretic controller by avoiding
the undesirable effects of unwinding and chattering due to measurement noise. Given that, during the controller
program execution, jumps do not present higher priority than flows, the chattering that occurs in the second
state variable m does not disturb the evolution of the system.

With one more state variable than the hysteretic controller, the HY controller is able to detect when the
reference changes abruptly or when the current attitude is far from the reference on the initial instant. This
way, it has more opportunities to determine the new state of variable h, is more likely to take the shorter
rotation direction and spend less energy.

This study was presented at the XII Simpdsio Brasileiro de Automacdo Inteligente - SBAI 2015 and an
online publication of the respective article is available at http://swge.inf.br/SBAI2015/anais/413.pdf.
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PROPOSED BIMODAL HYBRID ATTITUDE
CONTROLLER

In Chapter 4 it was shown that the introduction of a new mode m allows less expensive solutions. However, it
presents the disadvantage of having restriction in the software implementation and the chattering phenomenon
in variable m. In order to avoid chattering (and also the restriction on the software implementation), it is
proposed in this chapter that both controller states, h and also m, should have a hysteresis structure, such that,
the hysteresis half-width of the on-off control for state m is ¢ (a lower value would induce chattering) and the
one for state h is 6, € {6/2, 8}, adapted according to the state of m. The shorter width being set when state m

indicates that body has moved away from the chattering prone region.

The proposed hybrid controller, called bimodal controller, has two state variables (ﬁ, m) € X.xX., X, &
{—1,1}. As in the hysteretic controller, the state h determines the “proportional” term direction of the torque
feedback in order to move g, either to 1 or —1. The state m is introduced in order to adapt the hysteresis width

§,, of the on-off control for state h.

In the bimodal controller, it is considered the same torque feedback suggested by [54], given by
To = —che. — K, w, (5.1

where K, = KX > 0. Adding matrix K, to (3.13) gives more freedom to tune the control torque. For
practical purposes, this extra torque parameter K, allows, for instance, the design of a bounded torque and to
take into account the constraints of the angular velocity sensors, i.e., the slew rate limits [59] (see example in
Section 5.3.2).

Let the state of the system plant + controller be represented by Zo = (Z,h,m) € Xo = X x X, x X.. The
complete system is given by (2.10), (2.11) and the following dynamics of the controller:

B:
. _(()) } 52 S 027
) = (5.2)
h+6@(U2—u35/2) _
_ Ty € Dy,
m* € uzsgn (uz — uzd/2)

Cy 2 {zy € X5: (hme > —4) and (5.3)
(m = —lorhn, > —6/2) and (m = 1orhn, < 35/2)} ,
Dy 2 {7y € Xy (hne < —6) or (5.4)

(m=1and hn. < —6/2) or (m = —1and hn. > 36/2)},

where m™ and ht are values associated to m and h, respectively, just after state transition. Note that Cy =
X3 \ Ds. The sets C and D5 are depicted in Figure 5.1.
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Figure 5.1: Graphical representation of sets Cy and Ds.

The vector of inputs of the controller is Uy = (7, ua, u3) and the closed-loop is achieved by setting

Us = K:Q(ya Ba m, qd) £ (_Eﬁee - wa7nea B) (55)

The behavior of the controller can be seen in Figure 5.2.

s llecl

-1 ~5/20 6/2 1

||€e|| A

. N . : ; 776
-1-36/2-6 O 030/2 1
Figure 5.2: State space representation and the proposed regulation with two state variables (h and m). Arrows
indicate the direction of the “proportional” term of the torque (dependent on h) so the attitude is regulated to 1
or —1. The hysteresis half-width of the on-off control for state h is §/2 when m = 1 and § when m = —1.

The parameter ¢ € (0, 1) is used to define the basic hysteresis width. The state m has the effect of adapting
the hysteresis width ¢, of the on-off control for state h. Form = —1, 6, = § and the controller behaves as the
hysteretic controller (h changes when hn. < —6). For m = 1, §, = §/2 and h changes when hn, < —4/2.
This distinct behavior is what differentiates the proposed controller from the hysteretic controller by allowing
the change of state h to be anticipated and, consequently, the change of direction of the “proportional” term of
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the torque contribution towards the shorter rotation direction. The controller switches m from —1 to 1 when
hne > 36/2, that is, when the attitude is far from the chattering prone region and switches m from 1 to —1
when hn. < —3/2. Note that the controller was designed so that m switches from 1 to —1 together with the
change of h.

It will be shown in the next section that the controller globally asymptotically stabilizes the set

AQ:{:Y:QGXQ:qe:i_zl,mzlandw:O}. (5.6)

The following sections will enable us to compare performance of the bimodal controller with the hysteretic
controller. In this comparison, if both controllers use the same value of §, say, § = d, then simulation ex-
periments show that the bimodal controller spends less energy on average (see Section 5.3). If the hysteretic
controller uses § = & /2 and the bimodal controller uses § = 0 then, from Theorem 5.1 below, the bimodal con-
troller avoids chattering for measurement noise of magnitude ov < /2 while the hysteretic controller avoids
chattering only for a < /4. That is, the bimodal controller is not just the hysteretic controller with half
hysteresis width, but it is indeed a middle term solution which spends less energy in average while keeping
robustness.

5.1 STABILITY ANALYSIS

Considering the proposed bimodal controller (5.2), the system can be written as a function of the vector of
inputs, Us, as follows

’H(U) ] i‘g =I5 (i‘Q,UQ), To ECQ, 5.7)
2) .
.f';_ € Gy (fg,UQ), To € Do,

where T2 = (q,, w, }_L,’ITL), Us = (T, u2,u3),
34 © (0,w)
J NS (Jw)w+T)
0
0

By (22,Us) &

q.
w
sgn (uz — ugd/2)
us sgN (uz — u3d/2) |

Go (T2,Us) £

By substituting (5.5) in (5.7), it can be written in the closed-loop form, denoted as H £ H(K2). Let
FQ (i‘g) £ Fy (i‘g,]cg) and 62 (.fg) £ Go (.i‘g,ng).
Ty =Fo(T2), Ty€ Co,

H - 7 (5.8)
53‘;— € Gy (i‘2)7 Ty € Do,

33.° (0,w)
Ty (52) = JH(S (Jw) wo— che, — K,w) | 59
0
q.
G (7o) = v . (5.10)

sgn (ne - E5/2)
hsgn (77@ - B(S/Q)
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Theorem 5.1

Let 6 € (0,1) and € > 0. Then, the compact set As defined in 5.6 is globally asymptotically
stable for the closed-loop hybrid system H.

Proof. The proof follows in the same way as that of Theorem 5.2 in [10]. For easy presentation, let us first
consider § € (0,2/3] and the Lyapunov function V' : Xy — R, defined as

- 1
V(Zo) = 2¢(1 — hne) + §wTJw. (5.11)

Function V is positive definite on X9 with respect to As, since V(z2) > 0for Zo € X5\ Ag and V(Z2) =0
for o € As.
The time derivative of V, V, is given by

T T
[ (=2¢h) 0 0 0 } z { —elw (ew + €. x w) }
_ < Jw 7 JH (S (Jw)w — che. — K,w) >7
—2en, 0
0 0
= —wl'K,w<0. (5.12)

Thus, Vis negative semidefinite on Xs.
Along jumps, when Zo € Do,

AV (Z2) = V(Z3) — V(%2) = —2en.(h™ — h).

Let Dy = Do, U Doy U Do, where

Dy, £ {T2€ Xo: b < =0}, (5.13)
Dy, £ {Zz€Xy:m=1andhn. < —6/2}, (5.14)
Dy & {Z3€ Xs:m=—1and hn. > 35/2}. (5.15)

From (5.10), note that ht = h when Ty € Dy, and ht = —h (AV(:EQ) = 467L776) when Ty € Doy U Doy,
Hence,

AV (i) = < —4¢d,, Ta € Dag U Dy, (5.16)

0, Zo € Dy,

where §, = ¢ for Ty € Da, \ Dap and 6, = §/2 for To € Doy,
From Theorem 7.6 of [56], it follows that the compact set Aj is stable since AV (Z3) < 0 and V(Z5) < 0
for all Zo € X,. The conclusion that the set A, is globally asymptotically stable comes when Theorem
4.7 of [56] is applied to prove that the set A, is the largest invariant set in W = W; U W5, where W3 £
{Zy € Cy : V(%) = 0} and Wy 2 AV1(0) N G2(AV~1(0)). It follows that AV~1(0) = Dy, and
Go(AV~Y0)) = {z2 € X3 : m = 1 and hn, > 36/2}. Thus, Wy = () and

W:W1:{£'QEX2 : w:OandfmeZ—(Sand
(m=—1lorhn, >—6/2) and (m = 1or hn, < 35/2)}.

Let W be the largest invariant set. On W, w = 0. From (5.9), the only way to keep w = 0 is when
€. = 0. This means g, = 1. Using restriction hn. > —4, it follows that g, = h1 and using the other two
restrictions, m = 1. Thus, any solution Z2(t) approaches the largest invariant set As.

33



This controller restricts parameter ¢ to a value lower than or equal to 6* = 2/3, 6 € (0,6*]. For the
case § € (2/3,1), the system still behaves as proposed until state m changes to —1 (i.e. until the first
jump, in case m(0) = 1). Afterwards, the controller works as the hysteretic controller, since m will not
change any more. The proof of stability for this case follows by similar arguments used to prove the case
6 € (0,2/3]. O

Following is the proof that the number of jumps is bounded for any solution trajectory to the closed loop

system H defined in (6.13). In other words, no Zeno solutions (infinite number of jumps in a finite amount of

time [49, Definition 2.5] occur using the bimodal controller.

Theorem 5.2

Given any compact set K C Xo, a solution trajectory® to the hybrid system H, starting at

Z2(0,0) € K contains a finite number of jumps.

“The domain of a solution trajectory to a hybrid system is called hybrid time domain. Further details are found
in Section 2.7.

Proof. There are three types of controller state changes. The first one is when state m = —1 and only state
h changes. It happens when h=1and 7e < —§ or when h=—1and Ne > 0. In this case, Ty € Doy, \ Doy
and, from (5.16), the change in V' (Z2) over the jump is at most AV; = —4¢4.
The second one is when state 7m = —1 and only state m changes to 1. It happens when A = 1 and 7. > 34/2
or when h = —1 and Ne < —34/2. In this case, To € Dy, and AV, = 0 since V(Z2) does not depend on
state m.
The last one is when state 7 = 1 and both states, h and m, change. It happens when & = 1 and 7, < —4/2
or when h = —1 and 7e > 0/2. In this case, T € Dgy, and, from (5.16), the change in V (Z5) is at most
AV3 = —2¢§. Note that this third controller state change is only possible if the second one has happened
previously.
Summing up, V' (Z2) varies at most AV; = —4¢6 each time the controller state change occurs according to
the first type of change and at most AV, + AVs = —2¢&3 each time a sequence of two jumps occurs (second
type followed by the third type). Since V(fcg) < 0 along flows (see (5.12)), the maximum number of jumps
is given by the maximum n; € {0,1,2,...} that satisfies

2V 2V %

L+ ] =——+ 1= 1
TS AV AV 2w @ T

where V* = max V(K). The unit added on the amount of jumps refers to the case when the initial state of
m is —1 and its final state is 1.

After some time, no jumps occur any more and the system behaves as a continuous dynamical system. [

So far the stability analysis has not taken into account “outer perturbations” that includes both measurement

and modeling errors [58, 10]. According to [58], a robustness analysis of # should consider perturbed systems
(Fg, @g, C$,DS). A family of perturbed system, denoted H", is defined below [58, 10].

Fg(fQ) = m1-712(i’27lc2(y + QB, }_L7m7qd)) + an

Gy (2) ={z € Xy : z € Go(Za, Ko(y + B, h,m, q )}, (5.17)
CS = {2 € Xo : T(y+aB,h,m,q,)NCs # 0},
DS ={zy€ Xy : T(y+aB,h,m,q,) N Dy # 0} (5.18)

where €0 denotes the closed convex hull, function T is defined as T’ : Xo x S® — X, T(y, h,m, q ) = T,
« > 0 and B is the closed unit ball.
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Following the arguments used in [10], it is possible to affirm that there exists a maximum noise magnitude
« such that the number of jumps in the perturbed system " gets bounded.

Theorem 5.3

Let § € (0,1) and & > 0. Then, given a compact set K C Xo, there exists &™* > 0 such
that for all o € (0, a™"], every solution trajectory to the hybrid system H, starting at
z%(0,0) € K contains a finite number of jumps.

Proof. The proof of this theorem is analogous to the proof of [10, Theorem 5.4].
Consider the Lyapunov function V defined in (5.11). According to Theorem 6.5 of [58], there exists 3 € KL
such that every solution trajectory to the hybrid system 7 starting at Z»(0, 0) € K,

V (Z2(t, 5)) < B(V (22(0,0)),t+j) V(t,j) € dom Zo (5.19)

Theorem 6.5 requires that the system 7 satisfies the hybrid basic conditions and that there exists an open
basin of attraction of the compact set As. Both conditions are satisfied from Lemma B.3 (see Appendix
B) and Theorem 5.1. Once (5.19) holds, according to Theorem 6.6 of [58], for each v > 0 there exists
% > () such that for each a € (0,a"%], every trajectory solution of " starting at z§(0,0) € K
satisfies

V (#5(t,4)) < B(V (#5(0,0)) .t +j) +7  V(tj) € dom 73 (5.20)

Theorem 6.6 requires that the system " have the convergence property. [58, Theorem 5.4] ensures that

" has this property since it satisfies the hybrid basic conditions (Lemma B.3, Appendix B). Equation

(5.20) affirms that HHm V (Z%(t,7)) € [0,7]. From Theorem 5.2, it is known that jumps may occur if
Jj—r00

V > 2¢0 = |AVa + AVs|. Hence, for v < 2¢6, the number of jumps is bounded.

As Ty = (T,h,m) € Xy 2 S? x R? x X, x X, note that the set K can not include all the set X, since
the real set is not compact. However, it can include all initial attitudes of the body. O

5.2 CHATTERING ANALYSIS

Due to noise present in measurements, chattering is possible to occur when jumps map the state back into
the jump set, i.e., when G5(Ds) N Do # (. When this condition is met, the immediate consecutive jumps must
also be analyzed to make sure a loop occurs and the following states are mapped to the jump set continuously.
Considering that the output y is corrupted by noise of maximum magnitude «, the verification should be
concentrated on intersections @g(D‘Q") N Dg, 63 (@g(D‘Q" n Dg‘) N Dg, and so on until a loop or an empty

set is achieved, where 63 and D$ are defined in (5.17) and (5.18).

Theorem 5.4
Let o € [0,0.5) be the maximum noise magnitude and § € (2, 1). Either Gy (D) N DS =

0 or Gy (Go (D) N D) N DS = 0 for the closed-loop hybrid system H.

I Proof. Firstly consider § € (0,2/3] and let Dy = Dy U Doy U Da., where Do, Doy, and Dy, are defined
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in (5.13), (5.14) and (5.15), respectively. It can be shown that Dy = D5, U DS, U D5, where

Ds, 2 {Z2€Xo: hne < —d+a},
D3, = {5326)(2: mzlandﬁne§_5/2+a},
Dy, £ {Zy€Xy:m=—1landhn >35/2—a}.

The jump maps for states » and m, when measurement noise is taken into account, are given by
ht esgn(ne +aB—hé/2)  mT € hsgn(ne + aB — hd/2)

and their graphical representations are shown in Figure 5.3.

-1 —5/2 15/2 1 e 1 —5/2 | 6/2 1 e
— o
mt (/_1 = 1) Anz+ (7; — _1)
| | H RN ' ' ' N
) : ! —> . } - —>
-1 —6/2 16/2 1 e -1 —6/2 | §/2 1 T

Figure 5.3: Graphical representation of the jump map for h™ and m™.

In the sequel, the evolution of state Z» is analyzed after it enters the jump set D'
When the state o € D5, it jumps into the set

G5 (DS,) = {72 € Xo: m=—land hn. > 6 — a}.
A further jump may occur if Gy (Dg,) N DS # 0, i.e.,
(G5(D5.) N D5, ) U (G5 (Ds,) N Ds, ) U (G5 (D5,) N D5.) #0.
As Gy (DS,) N DS, = 0 and Gy (DS,) N DS, = 0,
G5 (Dg,)N DS =Gy (Dg,) N DS, = {72 € Xo: m=—1and hn. >35/2 —a}. (5.21)
Proceeding with the following jump,

ég (ég(Dga) ﬂDS‘C) = {5:2 € Xy: m=1and hn, > 35/2 — a}.

As Gy (ég(Dg‘a) N Dg“c) N D§ = (), the state Z is mapped outside D.
When the state To € D, it jumps into the set

G5 (DSy) = {2 € Xo: m=—1and hn. > §/2 —a}.
Note that Gy (Dg,) N DS, = 0 and Gy (DS,) N DS, = 0, but

Gy (DS,)N DS, = {7y € Xo: m=—1and hn. > 35/2 — a}.
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This is the same set as (5.21). As already analyzed, states in this set are mapped outside Ds'.
And finally, when the state Zo € D3, it jumps into the set

Gy (Dg) = {z,€ Xo: m=1and hn. > 35/2—a}.

But Gy (DS.) N Dy = 0.

Hence, no chattering can occur using the bimodal controller strategy. The same conclusion is obtained for
the case § € (2/3,1) by following the same arguments and noting that Do. = () and, as a consequence,
Dg. = 0. O

Note that, from Theorem 5.4, the condition on parameter § which avoids chattering, given a measurement
noise of maximum magnitude a**, is § > 2a"™**. This is the same condition for the hysteretic controller
[10, Theorem 5.5].

5.3 SIMULATION RESULTS

This section presents simulation results to compare performance of the bimodal, the hysteretic and the
discontinuous controller in three distinct scenarios: one using an arbitrary rigid body model and the other two

using realistic models of a quadrotor mini-helicopter and a spacecraft reported in literature.

The simulations were performed in MATLAB ambient, using ordinary differential equation solver with
variable integration step (ode45) restricted to a maximum step of 1 ms.

The measured value q,,, of the attitude quaternion g included noise and was calculated' as follows: q,, =
(g +be)/|q+bel, e = e/le|l, where each element e € R* was chosen from a gaussian distribution
of zero mean and unitary covariance matrix and b € R was chosen from a uniform distribution on either
the interval [0, 0.2] (for Sections 5.3.1 and 5.3.2) or interval [0, 0.1] (for Section 5.3.3). In both cases, b is
independent of e. The initial controller state for the hysteretic controller was h(0) = 1 and for the bimodal

controller, 7(0) = 1 and m(0) = 1. The desired reference was g, = 1 with w; = 0.

5.3.1 Rigid body

This scenario refers to an arbitrary rigid body whose motion is described by (2.10) with inertia matrix J =
diag(109), ® = [ 1 2 3 ]¥/+/14. It is compared the evolution of the system for the hysteretic controller,
given by (3.14) and (3.15), and for the proposed bimodal controller, given by (5.2) and (5.5). For tuning of
the controller parameters, ¢ and K, it may be better to start by the derivative gain K. According to the time
derivative of the Lyapunov function (5.12), the higher the derivative gain, the faster the convergence. Clearly,
high derivative gain may not be possible due to measurement noise influence (the control performance can
be degraded) or physical constraints (bounds on control action, slew rate limits etc). In the latter case, refer
to [59] for a strategy of tuning. Afterwards, the proportional gain ¢ may be chosen so that the system gets
underdamped, if possible. This way the system reaches near the reference faster (and oscillates) and moves
away from the discontinuous region (—§ < 7, < §). The advantage is that the final value of h may be
determined faster as well as the quaternion representation of the reference attitude 1 or —1. Here, for easy
comparison, the control parameters used, for both controllers, were the same as those used in [10]: ¢ = 1,
K, = I3, I3 is the identity matrix of dimension 3, and the hysteresis parameter § = 0.4.

Firstly it is presented an overview of the difference of energy spent when the controllers are applied as a

'The formula used equals the one used in [10] to facilitate comparisons.
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function of the initial state on a contour graph to illustrate the regions where each controller is advantageous.

LetE(t) =4/ [, Ot 7T rdt represent the energy spent by the applied feedback control and £, (40) and &,(40)
represent the energy spent when the hysteretic and the bimodal controller is applied, respectively, up to 40
s. Figure 5.4 shows a contour graph of the difference between the energy spent when the bimodal and the
hysteretic controller is applied (A€ = &,(40) — £,(40)) as a function of 7. (0) and 2 that represent the initial
conditions g(0) = (1.(0), /1 — 7.(0)2?) and w(0) = Q. Q and 7.(0) ranges from —2 to 2 and —1 to 1,
respectively, in steps of 0.05. The simulations were performed up to 40 s, supposed to be enough for the system
to reach near steady state.

A€ ranges from —0.8 to 0.8 units. Negative values mean that less energy is spent when the bimodal
controller is applied and positive values when the hysteretic controller is applied. Areas of the graph in lighter
colors represent negative values whereas the ones in darker colors represent positive values. For reference,
the higher values of &£ (40) and &,(40) were about 5 units, located at (€2, 7,(0)) around (-2, —1), (—2,1),
(2,-1), (2,1). Difference in the energy spent (AE) between -0.06 and 0.06 was considered irrelevant due to
the noise included in the simulation.

1 0.8
0.5F 0.4
= 0.06
~ 0
= 1-0.06
-0.5 1-0.4
-1 0.8

Figure 5.4: Difference between the energy spent when the bimodal and the hysteretic controller is applied (AE)
as a function of the initial conditions, represented by 7. (0) and Q.

The proposed bimodal controller aimed to improve performance for the rest-to-rest case (2 = 0). Figure
5.4 confirms the bimodal controller is advantageous even when the initial angular velocity norm () is near
zero. Regarding the other initial conditions, note that the areas in lighter colors are larger than the ones in darker
colors. So, in a context of arbitrary initial condition, the bimodal controller would be more advantageous on

average.

The area in black, where the hysteretic controller spends less energy, refers to a region of the state space
where the control law pulls the rigid body in the direction of the longer rotation and the initial angular velocity
is favorable, i.e., in the same direction. This condition illustrates that the choice of state / is not trivial and
should also depend on the angular velocity. This improvement is left for future research.

Figure 5.5 exemplifies a condition that presents a distinctive initial condition where the body presents a
relatively high initial angular velocity to show that the bimodal controller may be viable in such conditions.
The initial conditions were g(0) = (0.5,v/1 — 0.52®) and w(0) = —1.50.

This simulation shows that the movement of both controllers coincided during the first seconds (state A did
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Figure 5.5: Comparison between the hysteretic and the proposed bimodal controller for a relatively high initial

angular velocity norm.

not change). After having completed almost one revolution, the bimodal controller changed state 4 when 7,
crossed over its hysteresis threshold (7. < —4/2). Then, it continued rotating towards 7. = —1. On the other
hand, the hysteretic controller kept state 7 unchanged. As a result, the body returned to 7, = 1, the direction
of the longer rotation, and spent more energy.’

5.3.2 Quadrotor mini-helicopter

This scenario compares the state evolution of a quadrotor mini-helicopter from a rest position (hovering)
for the three controllers. The model of the plant and the control parameters used were the same as those used
by [59]. The kinematic and dynamic equations are

9 | _ 34.° (0,w) (522)
w NS (hww—Te+T) | '

where J;, = 10~ 3diag([ 8.28 8.28 15.7 |) kg m? is the inertia matrix of the quadrotor. The vector 7 is
the gyroscopic effect that appears in lightweight constructions and is given by

4
Ta =Y Je(wx )(-1) s, (5.23)
=1

2This simulation exemplifies a contrasting feature between the bimodal and the HY controller (Chapter 4). The reference remained
fixed, the bimodal and the hysteretic controller determined the same value for the variable h during the initial instants and different values
afterwards. HY controller would have determined the same value for A as the hysteretic controller.
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where J, = 3.4 x 1075 kg m? is the inertia of the rotor, Z; is the unit vector in the direction of the body-frame
z-axis and s; represents the rotational speed of rotor i. The relationship between the rotor speed and the torque
T is given by

0 d 0 —db s?

_ 2

T d 0 d 0 s5 ’ (5.24)
t. E -k k -k s3
b b b b 52

where d = 0.225 m, b = 29.1 x 1075 kgmrad 2, k = 1.14 x 10~% kg m? rad 2 and ¢, is a component of
the total thrustt =[ 0 0 ¢, |7 expressed in the body frame. The position equations are omitted as they are
beyond the scope of this work.

The plant model is different from (2.10) due to the presence of the gyroscopic effect 7. The contribution
of this effect in (5.22) is minimum as the inertia of the rotor is very small. The control law does not need
modifications and the stability analysis is almost the same from that of Section 5.1 since the extra term T is
canceled during the time derivative V calculation (5.12).

To make a fair comparison, the torque feedback (5.1) was applied to all the controllers. The control pa-
rameters used were ¢ = 0.075 and K,, = diag([ ¢/p1 ¢/p2 ¢/p3 ]), p1 = p2 = 4.2 and p3 = 1.74. As
commented in [59], these parameters were chosen so the stability is not affected by the limits of the angular

velocity sensors. The hysteresis parameter was set to = 0.4 for the hysteretic and bimodal controller.
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Figure 5.6: Comparison between the discontinuous and the proposed bimodal controller for the quadrotor.

Figure 5.6 illustrates the chattering behavior when the discontinuous controller is applied and compares it
with the bimodal controller. The hysteretic controller is not shown as it behaves as the bimodal one. The initial
conditions were g(0) = (0, 0 0 1 ]¥) and w(0) = 0, i.e., the yaw angle was 180° from the reference.
The desired thrust was ¢, > 4.59 N to compensate the quadrotor weight. The graphs of 7, and the angular
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velocity norm ||w|| show that the discontinuous system had its response lagged due to the chattering on variable
h (caused by measurement noise) for over than 1 s. Recall that, as mentioned in Section 3.4, there exists a noise
that keeps the state near the discontinuity (7. = 0) indefinitely. On the other hand, the bimodal controller kept
state h unchanged at 1 (as well as state m) and the body moved toward 1. The last graph, of 7, shows only the
T, component of the torque T = (7, T, 7,) for both controllers as the other components stayed near 0.
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Figure 5.7: Comparison between the hysteretic and the proposed bimodal controller for the quadrotor.

Figure 5.7 presents the behavior of the bimodal and the hysteretic controllers. The initial conditions were
q(0) = (=0.2,v/1-0.22 0 0 1 ]7)andw(0) = 0. For the hysteretic controller only, this initial condition
belongs to that region of the state space where the control law pulls the rigid body in the direction of the longer
rotation. Consequently, hysteretic and bimodal controllers made the rigid body take a different direction of
rotation from the beginning. Note in the graph of the angular velocity norm ||w|| that the system with the

bimodal controller converges faster.

5.3.3 Spacecraft

Here, it is intended to show that for controllers with analogous structure of the hysteretic controller (3.14)
and (3.15), the bimodal philosophy can be easily adapted to obtain a new controller with expected advantages
similar to that of the bimodal controller (5.2) and (6.10). Consider the scenario of a spacecraft attitude control
studied by [55]. The plant model is given by (2.10) and the torque feedback is given by

T = Jw, — S(Jw)w, — kT eng — ku(w — w,), (5.25)
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where w, = wq — YT\ engs eng = [ (1 —hne) € |75 kg, kw,v > 0 and

hel ]

T =
4 ned + S(e.)

The hysteretic controller for this plant is given by

B hio ‘?16051%{@}6X13 ]7177702—(5}7 (526)
ht esgi(us) 1 € Dg £ {1 € X1 : hy < =6}
where
Ny = kqne — ’yeZJ(w —wyq)/2 (5.27)

and the vector of inputs Uy = (7, us1) set to Kq1 (¥, b, qy) = (Ts, 7o)

Note that (3.14) turns to (5.26) by changing 7. to 7, and the vector of inputs U; (3.15) turns to U,y by
changing 7, (3.13) to 74 (5.25) and 7, to n,. The same analogy was applied to obtain the adapted bimodal
controller for this plant, given by

h=0 } Za € Cyo,

o

. om 5o (5.28)
S s2 — Usg _

sgn (usa — Us30/2) } %y € Do,

mt € ug3 5N (Us2 — us30/2)

Cyo 2 {:Eg € Xo: (fmg > —5) and
(m = —lorhn, > 75/2) and (m =1orhn, < 36/2)},
Dy £ {Z € X3 : (hn, < =6) or
(m=1and hny < —6/2) or (m = —1and hn, > 36/2)}

and the vector of inputs Ugy = (T, us2, us3) set to Kea(y, h,m, q,) = (Ts, 15, h).

Note also that 7, (5.27) depends on both the attitude and the angular velocity. For the rest-to-rest case,
when w(0) = 0, 7,(0) = 71.(0) and, in the beginning, jump sets Ds; = Dy (3.14) and Dsy = D5 (5.4).
Hence, if the initial attitude is near 7. (0) = —d/2 as is the case illustrated in Figure 5.7, the same behavior of
the controllers is expected, that is, each of them makes the rigid body take a different direction of rotation from

the beginning, with the hysteretic controller determining a rotation to the longer direction.

Figures 5.8 and 5.9 show the evolution of the system for the hysteretic and the adapted bimodal controllers
when 7, is near —§/2 (so the controllers determine a different direction of rotation from the beginning) but
w # 0. Two symmetric initial attitudes were chosen and the average energy consumption was evaluated. The
parameters used for the simulations for both controllers were the same: the inertia matrix of the spacecraft
J = diag([ 4.35 4.33 3.664 ])kgm?, k, = 1, k, = 2 and v = 1. The hysteresis parameter was set to
§ = 0.2. The initial conditions for Figure 5.8 were q(0) = (—0.4,v/1 — 0.42%,), v, =[ 3 —4 5 ]7//50)
and w(0) = —0.160, and for Figure 5.9, q(0) = (0.4,v/1 — 0.42%,) and w(0) = 0.275®,. The graph of 7,
of Figure 5.8 shows that the adapted bimodal controller made the spacecraft rotate to the shorter direction and,
according to the last graph, less energy was spent (£,(15) = 4.5 and £,(15) = 6.4). The opposite occurred for
Figure 5.9 (£,(15) = 6.1 and &,(15) = 5.1). Based on the average of energy spent by the controllers in both
simulations, it is possible to affirm the adapted bimodal controller spends less energy on average.

Finally it is presented an overview of the difference of energy spent when the controllers are applied as a

function of the initial state on a contour graph to illustrate the regions where each controller is advantageous.

LetE(t) =4/ [, Ot 7T rdt represent the energy spent by the applied feedback control and £, (20) and &,(20)
represent the energy spent when the hysteretic and the bimodal controller is applied, respectively, up to 20
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Figure 5.8: Comparison between the hysteretic and the proposed bimodal controller for the spacecraft. Initial

condition 7. = —0.4 and 7, near —0.1.

s. Figure 5.10 shows a contour graph of the difference between the energy spent when the bimodal and the
hysteretic controller is applied (AE = &,(20) — £,(20)) as a function of 7. (0) and €2 that represent the initial
conditions g(0) = (7¢(0), /1 — 1.(0)2?,) and w(0) = Qv,. 2 and 7.(0) ranges from —2 to 2 and —1 to 1,
respectively, in steps of 0.1. The simulations were performed up to 20 s, supposed to be enough for the system
to reach near steady state. The hysteresis parameter was set to 6 = 0.4 to facilitate comparison with Figure 5.4.

AE ranges from —0.8 to 0.8 units. Negative values mean that less energy is spent when the bimodal
controller is applied and positive values when the hysteretic controller is applied. Areas of the graph in lighter
colors represent negative values whereas the ones in darker colors represent positive values. For reference,
the higher values of &;,(20) and &,(20) were about 7 units, located at (2,7,(0)) around (-2, —1), (—2,1),
(2,—-1), (2,1). Difference in the energy spent (AE) between -0.06 and 0.06 was considered irrelevant due to

the noise included in the simulation.

As well as it happened to the simulations of Subsection 5.3.1, Figure 5.10 confirms the bimodal controller
is advantageous even when the initial angular velocity norm ({2) is near zero. Regarding the other initial
conditions, note that the areas in lighter colors are larger than the ones in darker colors. So, in a context of

arbitrary initial condition, the bimodal controller would be more advantageous on average.
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Figure 5.9: Comparison between the hysteretic and the proposed bimodal controller for the spacecraft. Initial
condition 7, = 0.4 and 7, near —0.1.

5.4 CHAPTER CONCLUSIONS

In this chapter, the bimodal hybrid controller was proposed. It is well suited for the rest-to-rest attitude
control of a rigid body with globally asymptotically stability property. The proposed controller can be seen as
a middle term solution between the memoryless discontinuous and the hysteretic hybrid controller. Differently
from the less costly discontinuous controller, the bimodal controller is robust in the sense of having capability
of avoiding chattering due to measurement noise. Compared with the unimodal hysteretic hybrid controller,
while both keep robustness and stability, the bimodal spends less energy in average.

It was also shown that the bimodal philosophy can be extended for other controllers which have one hys-
teretic mode. A bimodal controller is expected to be the most interesting choice when the attitude noise level
may be expressive as for example when low cost components are used or when the system is under an electro-

magnetically noisy environment.

An article about the study of this chapter has already been published in the Journal of the Franklin Institute
[33].
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Figure 5.10: Difference between the energy spent when the bimodal and the hysteretic controller is applied
(A€) as a function of the initial conditions, represented by 7. (0) and €.
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ROBUST GLOBAL DISTRIBUTED ATTITUDE
CONTROL FOR MULTIPLE RIGID BODIES

Rigid-body attitude control applied to multi-agent systems in a cooperative control is an area that has also
been studied for decades. In 1978, Labeyrie [60] proposed a stellar interferometer formation from free-flying
telescopes. Research on multiple mobile robot (and multi-vehicle) systems initiated in the late 1980’s [61]
and increased in the 1990’s thanks to the development of inexpensive and reliable wireless communications
systems [62]. In the late 1990’s and early 2000’s, an area that became highly active was the cooperative control
of multiple aircraft, especially unmanned aerial vehicles (UAVs) [62]. Much research has been developed on
attitude coordination control in the last 10-15 years [15, 16, 17, 18, 19] but the great majority of them suggested
continuous or discontinuous state-feedback laws that present known problems such as unstable states, unwind-
ing phenomenon and chattering. In this chapter, it is proposed a distributed attitude synchronization control
with globally asymptotically stability property and robustness against noise measurement for an undirected
connected network (cyclic or acyclic) of rigid bodies (agents). The strategy uses a quaternion representation of
the attitude and the hysteretic hybrid feedback with one binary logic variable, suggested by [10] (see Section
3.5), for each agent.!

6.1 PRELIMINARIES

6.1.1 Attitude kinematics and dynamics of a group of n-agents

For a group of n-agents, in which it is associated an index 7 = 1,2,...,n for each agent, let g, and w;
represent, respectively, the attitude and the angular velocity of the agent ¢ relative to each body frame and let

g, represent a fixed reference attitude with angular velocity wg = 0 for all the agents.

The attitude error of agent ¢ relative to the common reference attitude is given by
Q0 = (10, €i0) = g © q;- (6.1)

The relative attitude between agent ¢ and j, R;; = RjTRi = R(g;;), is represented by the relative quater-

nion
q;; = (mij,€ij) = q; 0 q; (6.2)
which satisfies the following kinematic equation
) 1
q;; = iqij 0 (0, wj), (6.3)
where the relative angular velocity w;; is
Wij = Wi — Rz;wj (64)

Let X = S® x R? and z; = (q;9,w;) € X. Since each physical attitude R € SO(3) is represented by a
pair of antipodal unit quaternions +q € S3, the objective of the control, for each agent, becomes to stabilize
the set

A, ={(1,0),(-1,0)} c X

The author informs that applying the hysteretic controller suggested by [10], instead of the bimodal controller proposed in Chapter 5,
leads to better results due to restrictions arisen when using the Lyapunov function (6.20).
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for the following agent equation

. q;
&= .’LO
w;

by means of an appropriate choice of a feedback torque law 7;. The output of the agent ¢ is assumed to be

1o 0,w;)
=F;(z;,7i) = 200 © (0, wi 6.5
(@i, Ti) l TS (i) wi 4 70) | (6.5)

Yi = (qiawi)7 (66)

that is, g; and w, are supposed to be measured. The output together with the desired fixed reference, g, and

the states z; = (g, w;) of its neighbors are assumed to be available for feedback.

6.1.2 Graph theory

The interaction topology among agents is usually modeled by a graph G = (V, €, G) where V = {1,2,...,n}
is the set of agents, £ C V x V is the set of directed edges and G = [g;;] € R™*™ is the adjacency matrix.
The adjacency element is defined as g;; = 0 and for ¢ # j, g;; = 1if (¢,5) € € and 0 otherwise. A di-
rected edge from agent i to agent j, (4, j), represents a unidirectional information exchange link from agent
7 to agent j, that is, agent j can receive or obtain information from agent ¢. An undirected graph is a graph
where (i,7) € £ < (j,1) € &, i.e., its adjacency matrix is symmetric. A path is a sequence of distinct agents
(1,12, ...,1%,) such that consecutive agents (i;,4;41) € £. An undirected graph is connected if there is a path
between every pair of distinct agents. Agent ¢ communicates with agent j if j is a neighbor of ¢. The set of
neighbors of agent ¢ is denoted by N; = {j € V : (i,j) € £} and |V;| denotes the number of neighbors or
the degree of agent ¢. Further details about Graph Theory can be found in [63]. In this study, it is assumed that
if information flows between agents in one direction it also occurs in the opposite direction and the interaction

topology is modeled by an undirected connected graph.

6.1.3 Multiple agents attitude coordination control

An example of continuous distributed control law for attitude synchronization of multiple agents is the one
suggested by Ren [17], which brings the angular velocity to zero under an undirected communication graph.

Ren’s study assumed that the information available for each body i is gy, (g;,w;) and (q;,w;), where j € N;.
The strategy consists of applying the following torque feedback 7; to the ith agent.
T; = —kgeip — Dgiw; — Zgij laij€ij + bij(wi —wj)], (6.7)
j=1

where kg > 0, Dg; = Dgi > 0, a;; = aj; > 0and b;; = bj; > 0. Parameters kg, Dg;, a;; and b;; are the
control gains.

Theorem 3.1 of [17] states that if the undirected graph G is connected and if kg > 2?21 gijai;, then
q; = q; — qp and w; — w; — 0 asymptotically, Vi # j. The proof used the following Lyapunov function

V=kaY llgo— 1P+ 53 guailla, — 12+ 5 Y ol Jwr ©8)
i=1 =1 j=1 i=1

Unfortunately the author did not draw attention to the fact that there are two equilibrium points: (1, 0)
which is stable and (—1, 0) which is unstable. The fact that the feedback law (6.7) is continuous leads to the
undesirable phenomenon known as unwinding, where the agent may start at rest arbitrarily close to the desired
final attitude and yet rotate through large angles before coming to rest [5]. So, if, for some reason, the attitude
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error of agent ¢ is close to —1, then the unwinding phenomenon may occur. Moreover, if the other agents are
close to the reference, agent ¢ may spend too much time to move away from the unstable equilibrium point
region since the feedback torque of agent ¢ depends on €;9 and €;; which are close to 0. The problem gets
worse if measurement noise is taken into account. In this case, the state of agent ¢ may remain near the unstable

equilibrium point for an indefinite period of time. This case is exemplified in Section 6.4.

In the next section, it is proposed a modification in the feedback law (6.7) to accommodate the hysteretic
hybrid controller suggested by [10] in the multiple agents scenario. This way, both equilibrium points, g;,; = 1
and q,;, = —1, for each agent 7, become stable and the control becomes global and robust.

6.2 PROPOSED HYBRID ATTITUDE CONTROLLER

This study proposes a global and robust distributed control law for attitude synchronization of multiple
agents. The strategy uses the hysteretic hybrid controller suggested by [10] with one state logic variable h; €
X. = {1,—1} and vector of inputs U; = (7, u;) for each agent s.

The state of the subsystem plant + controller of agent i is represented by 7; = (q;,w;, hi) € X =
S? x R? x X,,i = 1,2,...,n. Each subsystem evolves according to (6.5), (6.6), the following dynamics of

the controller? , _
hi=0  zeC;2{zeX™: hio> 0},

_ 6.9
hjesgin(uz) .’EEDié{.’EEXnI hmzog—&}, ©9)
where hf is the value associated to h; just after state transition,
{1} R U; > 0,
s@ () = {1}, w <0,
{—1, 1} s U = 0
and the closed-loop law
Ui :’C(yi7q05hi>qj7wj) é (Tivni())a j EM (610)

The parameter §; € (0, 1) represents the hysteresis half-width and provides robustness against chattering caused

by output measurement.
The feedback torque 7; is given by
T; = —kgihi€io — Dgiw; — Zgij [aijhihjeij + bij(wi - R;‘Fjwj)] , (6.11)
j=1

where the control gains kg; > 0, Dg; = Dgi > 0, a;; = aj; > 0and b;; = bj; > 0. Note that, differently

from (6.7), RZ; multiplies w; in the torque equation because the coordinates of w refers to the agent-j frame.

Figure 6.1 shows the behavior of the subsystem for a hysteresis width of 2§;. The state variable h; deter-
mines the torque feedback so the agent attitude g, is regulated either to 1 or —1.

Let the state of the whole system be represented by T = (%1, To,...,T,) € X™. Tt will be shown in the

next section that the controller globally asymptotically stabilizes the set

A=N"_,4 A 2{zeX":z;=(1,0,1)o0rz; =(-1,0,—-1)}. (6.12)

2 Along the text, the dynamics representations follow the hybrid systems framework of Goebel et al. [48], summarized in Section 2.7.
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Figure 6.1: Agent : state space representation and the proposed regulation. The hysteresis half-width of the

on-off control for state h; is 6;.

6.3 STABILITY ANALYSIS

Considering the proposed controller (6.9) the agent-i subsystem can be written in closed-loop form, denoted
by H;, as

HT ' (6.13)
: Y. zeD,

%in © (07 wl)

0
di0
Gi (%) = w; . (6.15)
sgn (nio)

Before describing the complete system, by grouping all the agents, its necessary to define the flow and jump
sets as C' = N, C; and D = Ui, D;, respectively. Note that more than one jump can occur simultaneously
and the jump map is not straightforward. Let the set of agents whose state of h; is about to change be defined

as
T@E) 2{icV:zeD;} (6.16)

and Go (7;) = | q, wl' n |7 represent a mapping that keeps the state variables of agent i unchanged.

Motivated by the mapping suggested in [21], the jump map of Z is defined as

r@ = J{n@), (6.17)
€T
Where%(i) = [ ’y}; ’}/;I;L ]T, Yij :éo (i’j),j ;ﬁzand'y“ :éz (fl)

The complete system, denoted as H, is given by

5. 1i=F@®, z€C

: - (6.18)
T eG(), ¥ ,

where F (2) £ [ F) (z1) Fo(z,) " and G (z) £ T'(z)
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Theorem 6.1

Let o < 0.5 be the maximum measurement noise magnitude. If the graph G is connected,
kg > 2 Z?:l Gij Qi and d; € ((5:, 1),

" i Aij
§F = max {Qa, M} , (6.19)

kai

then the compact set A defined in (6.12) is globally asymptotically stable for the closed-loop

hybrid system H and the control is robust to measurement noise.

Proof. LetV : X" > R,

B n n n 1 n
z) = ; 2kai(1 — hinio) + ;;gijai]‘(l — hihjnig) + 3 ;%TJiwr (6.20)
Note that (6.8) is a special case of (6.20) when kg; = kgand h; = 1,0 =1,...,n

Function V is positive definite on X™ with respect to A, since V(X") > 0forz € X" and V(7)) = 0 &
7 € A (Lemma B.10).

Along flows, z € C, the time derivative of function V" is given by

= 2ZkGl znzO Zzguauh h]nu + Zw Jiw; (6.21)

=1 j5=1
= Z kaihiw] €0 + = Z Zgua”h hj(wi€i;) + Z w! (S (Jiw;) w; + 75), (6.22)
1=15=1 1=1
= Z kGILh w €;0 + - Z Zgwamh h g ij)eij + Z w;-TT,'. (623)
=1 j5=1 =1
In (6.22), it was used the fact that 7);; = ée”wlj and (6.14). In (6.23), it was applied (6.4) and that

wl'S (J;w;) w; = 0 since the matrix S (J;w;) is skew-symmetric.
As R;j€;; = €;; (Lemma B.9), the second summation simplifies to

= Z Z gijaijhihj(w! —wl Rij)e;; = Z Z gijaiihih;( wlei;. (6.24)

=1 j=1 =1 j=1
Developing (6.24) as in [17, Theorem 3.1],

5 Z Z wa”h h W?)Eij :§ Z Z gijaijhihjw?eij — 5 Z Zgjiajihjhiwlreji, (625)
i=1 j=1 i=1j=1 j=11i=1
1 n n 1 n n
:5 szT Zgijaijhihjeij + 5 Zw;f Zgijaijhihjeij,
i=1 J=1 i=1 j=1
(6.26)
= Z sz Z gijaijhihjeij. (627)
i=1 j=1
In (6.26), equalities g;; = g;; and a;; = a;; were used and that €;; = —¢€;; (from a,, = q;jl = q;fj).
Substituting (6.27) in (6.23),
V(z) = Z w! | kgihi€io + Zgijaijhihjfij + Ty (6.28)
i=1 j=1
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and, finally, using the torque definition 7; (6.11) in (6.28),

— i LI.J;Tl)Gl(.Uz — i i gijbijw?(wi — R;‘gwg) (629)
i=1

i=1 j=1

Developing the last term of (6.29),

ZZ gijbijwl (w; — ZZgUbUw RTwJ) + %ZZgijbijwiT(wi - R;f’;wj),

i=1j=1 i=1 j=1
(6.30)
*Zzgwbw“’ Rfjwj) + %Zzgjibjiwf(wj — RlLw,),
i=1j=1 i=1 j=1
(6.31)
1 n n
=5 2D gisbi [w] (wi — Rijw)) —w] (Rijw; —w))],  (632)
i=1 j=1

1 n n
=5 > gihij [w] (wi — Rfjw;) — w] Rij(wi — Riw;)], (6.33)

i=1 j*l

*ZZQU i [(@F — Wl Rij)(w; — REw;)] (6.34)

7.1]1

=3 Zzgubuﬂwv il (6.35)

7,1]1

In (6.32), equalities g;; = gs5, bj; = b;; and R]TZ- = R;; were used. Now, substituting (6.35) into (6.29),

Z w!'Dgiw; — = Z ngbm lw; — wj||2. (6.36)

11_]1

H I

Note that function V is negative semidefinite on X" with respect to 4, since V(:f) < Oforallz € X" and
Viz)=0ow; =0,i=1,...,n
Along jumps, T € D,

AV (z)=V(zT) - V(), (6.37)

where 7+ = (], 23,...,2}) € X
From (6.15), q;; = q,0, wi = w; and h;" = —h;. It follows that

j Z 2sz 7710 Z Z z]azj hlh])nz] (638)

In the first summation in (6.38), hj =+ h; whenever Z; € D;, i.e., wheni € T (6.16). Regarding the second
summation, hj' hj # h;hj wheni € T and j ¢ T and vice-versa. Therefore,

= 2kai(h = hanio — Y > gijaii(hF b} — hihy)ni;—

1€T i€T j¢T
Z Z gijaij (h = hih;)mi;
igT JET
=4 " kaihinio +2) Y gijaishihinig +2Y Y gijaijhihin; (6.39)
1€T i€T j¢T i¢T JeT

As aij = aji, gij = gji and 1y = 1,

Z Z Gijaijhihing = Z Z gjiajihihing = Z Z Gijaiihihni;. (6.40)

€T j¢T JET €T i¢T JET
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Hence,

AV (z) =4 Z kaihinio + Z gijaighihng; | . (6.41)
€T J¢T

Since € D, according to (6.9) h;n;o < —0; and given that h;hjn;; < 1,

ieT FENI\T

Suppose that the following restriction is considered,

i ij Qij 1 Gij i
6i>ZJeNi93 j 221_193 ]’ (6.43)
kg kg

so that AV (z) < 0,Vz € X™. Thus, from Theorem 7.6 of [56], it follows that the compact set A is stable
since AV(Z) < 0and V(Z) < 0 for all Z € X". The conclusion that the set A is globally asymptotically
stable comes when Theorem 4.7 of [56] is applied to prove that the set A is the largest invariant set in

W={zeC:V(z) =0} (6.44)

In the largest invariant set, V = 0. From (6.36), w; = 0, i = 1,...,n. Using (6.14) and then (6.11), it
follows that 7; = 0 and
kai€io + Z 9ijQij€ij = 0. (6.45)
j=1
Left multiplying both members in (6.45) by e% and using the fact that €;; = 1j0€;0 — ni0€j0 — €50 X €;o,

n

kgi€hein + Zgijaije%(njoﬁio — 1i0€j0 — €50 X €0) = 0, (6.46)
J=1
n n
el | kai + Z nj09i;aij | €0 — €19 Z Ni0gijai; | €50 = 0. (6.47)
j=1 J=1

Since (6.47) is valid for all 4,2 = 1, ..., n, the following equation holds.

@ (PeIs)g =0, (6.48)
where @ is the Kronecker product, ¢, = [el, €&y ... €&y |7, P = [pi] € R™ ", p;; = kai +

Z;—Ll 1;09i50i; and pi; = —1:0G:5 ;-
Applying Gerschgorin Theorem [64] and supposing that

kai > 2 gijaij, (6.49)
j=1

matrix P ® I3 gets strictly diagonally dominant and positive definite. Hence, ¢; = 0 is the only solution to
(6.48). Asaresult, ;o =0,7=1,...,nand q;,; = 1 or g;; = —1 are candidates for the largest invariant
set. Finally, using restriction € C' from (6.44), it follows that q;, = h;1.
Summing up, any solution Z(¢) approaches the largest invariant set A (6.12) as long as hypotheses (6.49) and
(6.43) are satisfied. Regarding the robustness of the control, the proof is a direct application of Theorem
5.4 and 5.5 of [10] to the system H where it is proved that the number of jumps is bounded and the
chattering phenomenon is eliminated if o € [0,0.5) and §; € (2, 1). Both restrictions on §; are satisfied if
0; € (87, 1), where

7}7 1 Qi
57 = max {Qa, Za—lgiﬂ} .
kai
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The restriction ¢; < 1 allows variable h; to switch between 1 and —1. If §; > 1 and h;(0) = 1 for all
agents, the controller behaves as suggested by [17]. Note that if a;; < kg; and b;; < kg, the interactions
among the agents become too weak according to the torque feedback expression (6.11). In the limit, when
ai; = 0 and b;; = 0, subsystem H; gets independent from the other subsystems and behaves as a single agent
using the controller suggested by [10].

Corollary 6.1

Let o < 0.25 be the maximum measurement noise magnitude. Then if the graph G is
connected, kq; > 2 Z;-lzl Gijaq; and 6; € [0.5,1), the proposed controller (6.9) robustly
globally asymptotically stabilize the set A defined in (6.12).

Corollary 6.1 affirms that if o < 0.25 and restriction (6.49) is satisfied, there exists J; and it is possible to
make the system robustly globally asymptotically stable. This is an interesting conclusion since the stability
does not depend on inertial matrices, initial attitudes and angular velocities, number of agents and so on. Note
that when the dynamics of one subsystem depends on other subsystems dynamics, it is not obvious that the
“potential” function of the system, V' (6.20), decreases after every jump. Another important conclusion is
that scalability is not a problem for the proposed controller. If the number of neighbors |Aj| is limited as
well as parameters a;;, then there is no need to increase k¢g,. Regarding the convergence time, it depends on
parameters Dg; and b;;, according to (6.36). The only restrictions on these parameters are the physical bounds
on the torque. Note also that the assumption that the graph G should be connected is not necessary, however it
is maintained so that in future works the reference attitude is made available to only a subset of agents as well
as in the study of [18].

The next section contrasts performance of the continuous controller of literature, outlined in Subsection
6.1.3, and the proposed controller. Comparisons with the other hybrid controller of literature [21] was not
possible as its goal is to stabilize a synchronized state and the goal of the proposed controller is to stabilize a
reference attitude.

6.4 SIMULATION RESULTS

This section presents simulation results to compare performance of the proposed hysteretic hybrid con-
troller (6.9)—(6.10)—(6.11) and the continuous controller suggested by [17] (6.7), hereafter referred as hybrid
and continuous controllers, respectively. Two scenarios are considered, the first one illustrates some of the
problems that may arise when the control strategy uses a continuous state feedback torque to stabilize discon-
nected reference points (q;, = £1). The second one exemplifies a situation where the problems faced by the
continuous controller in the previous scenario is not present to highlight the other advantages of the hybrid
controller.

The topology of communication is shown in Figure 6.2. It is a simple cycle graph with nodes labeled from
1 to 6 referring to the agents.
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Figure 6.2: Topology of communication.

Table 6.1: Inertial matrices of the agents

Ji | [10.10.1;0.10.10.1;0.1 0.1 0.9] kg.m?

Jo | [1.50.20.3;0.20.9 0.4; 0.3 0.4 2.0] kg.m?

J3 | [0.80.10.2;0.10.70.3;0.20.3 1.1] kg.m?

Jy | [120.30.7;0.30.90.2;0.7 0.2 1.4] kg.m?

Js | [0.90.150.3;0.15 1.20.4; 0.3 0.4 1.2] kg.m?
Js | [1.10.350.45;0.35 1.0 0.5; 0.45 0.5 1.3] kg.m?

The corresponding adjacency matrix is

010001
101000

G_|0 10100 6.50)
001010
000101
(1000 1 0|

In each simulation, the inertia matrices considered are shown in Table 6.1 (the same as in [17]) and the
control parameters were kg; = 1, Dg; = I3, a;; = 0.24 and b;; = 0.25, % = 1,...6. The other parameters
of the hybrid controller were chosen as §; = 0.5 and h;(0) = 1. The desired fixed reference was q, =
(+/0.8475, (—0.2,0.15, —0.3)) with wg = 0.

The simulations were performed in MATLAB ambient, using ordinary differential equation solver with
variable integration step (ode45) restricted to a maximum step of 1 ms.

The measured value of the attitude of each agent, q; = (;,,, €;,, ), included noise and was calculated as
follows: q;, = (q;, + &) /|a;, +bé|
distribution of zero mean and unitary covariance matrix and b was chosen from a uniform distribution on the

,» € = e/ ||e]|, where each element e was chosen from a gaussian

interval [0, 0.2] (independently of e).

The first scenario (Figure 6.3) compares the evolution of the attitude error scalar component (7);9) of each
agent ¢. The initial conditions are described in Table 6.2. To emphasize the problems arisen when an agent
is near an unstable equilibrium point, agent 4 attitude was submitted to a specific measurement noise e,
llea|l < 0.2, between 0.6 and 10 s. During this period of time, the measured value of its attitude was calculated
as q, = q, + ey, where e4 was such that the vector components of the measured attitude error, €40,,, had the
opposite sign of the vector components of €49 when g, approached —1. More precisely, e4 was calculated so
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Table 6.2: Initial condition of the agents for the first scenario

i 4;(0) wi(0)
1 (sin(—m/6), (cos(—m/6),0,0)) (0,0,0)
2 (sin(m/6), (0,0, cos(7/6))) (0,0,0)
3 (cos(m/6), (0,sin(7/6),0)) (0,0, — cos(/6))
4 | (—0.7181, (0.4943, —0.1144,0.4763)) | (0.7,0.1v/2,0.7)
5| (sin(r/4), (0,cos(/4),0) | (0,— cos(r/4),0)
6 (cos(mw/4), (sin(7/4),0,0)) (1,0,0)

Table 6.3: Initial condition of the agents for the second scenario

i q;(0) w;(0)

1| (sin(—m/6), (cos(—7/6),0,0)) (0,0,0)

2 (cos(m/6), (0, sin(7/6),0)) (0,0,0)

3 | (—sin(m/4),(0,0,—cos(m/4))) | (0,0, cos(7/6))
4 (cos(m/4), (sin(m /4),0,0)) (0.35,0.05v/2,0.35)
5 (sin(m/4), (0, cos(m/4),0)) (0, cos(m/4),0)
6 | (sin(—m/4),(0,0,cos(—7/4))) (1,0,0)

that €40,, = (1 — 0.199/||€40||)€40. This example demonstrates that the continuous controller is not robust to
arbitrary noise of small magnitude. After reaching an attitude near the unstable point, the resulting torque of
agent 4 pulled its attitude toward the unstable point. Besides, after noise e4 vanishes, it lasted too much time to
move away from the unstable point region and come to rest at the stable point (unwinding phenomenon). On the
other hand, the hybrid controller changed h; and h4 to —1 from the beginning and determined the movement
of the respective agents toward the shorter rotation direction.

The second scenario compares the attitude error of all the agents (Figure 6.4) and their respective angular
velocities (Figure 6.5). The initial conditions are described in Table 6.3. The agents reached the reference faster
when the hybrid controller was used since the control law pulls agents 1, 3 and 6 toward the shorter rotation
direction. State of variables h; and hg was changed to —1 at the beginning. Agent 3 controller, however, kept
hs unchanged at 1 for approximately 0.35 s and started moving toward 739 = —1 due to its initial angular
< —0.5), hs was changed to —1 and the
control law pulled its attitude error toward —1. The change in h3 is more noticeable in the w3_ graph.

velocity. As soon as 739, crossed over the hysteresis threshold (730

m m

6.5 CHAPTER CONCLUSIONS

In this chapter, it was proposed a hybrid distributed attitude synchronization control with globally asymp-
totically stability property and robustness against noise measurement for an undirected connected network
(cyclic or acyclic) of agents. Application of a hybrid controller solution is much challenging due to the inher-
ent inter-agent interactions. The strategy counted on the hysteretic hybrid controller suggested by Mayhew et
al. [10] and the robust global stability was obtained at the cost of having one more restriction on the hysteresis
half-width parameter 6;.
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Figure 6.3: Evolution of the first component of the attitude of the agents in the first scenario. In the upper
graphic (continuous controller), a specific noise of magnitude lower than 0.2 was applied to agent 4 between
0.6 and 10 s. The lower graphic refers to the hybrid controller.

Results from simulation contrast the continuous controller and the hybrid controller and show that the
longer rotation direction is avoided in the hybrid scheme when the initial state is near an equilibrium point,
decreasing the settling time. Results also emphasize some problems arisen when a continuous state-feedback
law is applied such as the unwinding phenomenon and the lagged response when the state of an agent is near
an unstable point of equilibrium.

An article about the study of this chapter has been submitted to the International Journal of Systems Science.
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Figure 6.4: Evolution of the attitude q;, = (70, €;0) of the agents in the second scenario, where €;0 =

(€0, €0, €i0, ). The graphics on the left refers to the continuous controller and the others on the right to the

hybrid one.
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Figure 6.5: Evolution of the angular velocity w; = (w;,, Wi, , w;_ ) of the agents in the second scenario. The
graphics on the left refers to the continuous controller and the others on the right to the hybrid one.
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CONCLUSIONS

In this manuscript, two hybrid controllers were proposed in order to improve the solution in terms of cost when
compared with the fixed width hysteresis control of literature. Both of them are well suited for the rest-to-rest
attitude control of a rigid body with globally asymptotically stability property.

The first proposed controller (HY) offers more opportunities of updating the main logic variable that indi-
cates which quaternion representation of the reference attitude should be followed, when compared with the
hysteretic hybrid controller, and is more likely to take the shorter rotation direction and spend less energy.
However, it presents the disadvantage of having restrictions on flow and jumps priorities. As long as jumps do
not have higher priority than flows, robustness against noise measurements is achieved despite the chattering
that may occur in the auxiliary variable.

The second proposed controller, called bimodal, supersedes the HY controller for not having the mentioned
drawback and can be seen as a middle term solution between the memoryless discontinuous and the hysteretic
hybrid controller. Differently from the less costly discontinuous controller, the bimodal controller is robust in
the sense of having capability of avoiding chattering due to measurement noise. Compared with the unimodal
hysteretic hybrid controller, while both keep robustness and stability, the bimodal spends less energy in av-
erage. It was also shown that the bimodal philosophy can be extended for other controllers which have one
hysteretic mode. The bimodal controller is expected to be the most interesting choice when the attitude noise
level may be expressive as for example when low cost components are used or when the system is under an
electromagnetically noisy environment.

Two other studies were added as an extension of the studies described above.

The first study refers to the attitude synchronization control for a network of rigid bodies (agents). It was
proposed a hybrid distributed control with globally asymptotically stability property and robustness against
noise measurement for an undirected connected network (cyclic or acyclic) of agents. Application of a hybrid
controller solution is much challenging due to the inherent inter-agent interactions. The strategy counted on
the hysteretic hybrid controller of literature and the robust global stability was obtained at the cost of having
one more restriction on the hysteresis half-width parameter ;. Results from simulation show that the longer
rotation direction is avoided when the initial state is near an equilibrium point, decreasing the settling time. It
is also emphasized that the great majority of the studies suggest a continuous state-feedback law strategy which
are prone to problems such as the unwinding phenomenon and the lagged response when the state of an agent

is near an unstable point of equilibrium.

The second one refers to the kinematic control for rigid-body pose within the group of unit norm dual-
quaternions. It is presented a novel control strategy for robust global rigid body kinematic stabilization. To
address the topological obstruction to global stability inherent to any rigid body representation—which renders
the unwinding phenomenon in the case of unit quaternions and unit dual quaternions—it is exploited an hybrid
control technique based on hysteresis, called bimodal, which ensures solution without chattering, with the
introduction of two binary logic state memory variable that reduces the liability of having the solution trajectory
travel to the farther antipodal equilibrium.

8.1 FUTURE WORK

As an extension to the present work, the author suggests:
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. A global hybrid control strategy for rigid-body pose problem that is robust against measurement noise,
using the kinematic and dynamic equations to describe the pose motion;

. A distributed pose synchronization control of agents with globally asymptotically stability property and
robustness against noise measurement;

. A global hybrid control strategy for rigid-body attitude problem that is robust against measurement noise,
using a control law based on the attitude and the angular velocity;

. Adapt the multi-agent distributed attitude control of Chapter 6 to the consensus problem (i.e. attitude

synchronization problem only, as in [21]);
. Extend the rest-to-rest attitude and pose control problem to allow tracking;

. Extend the multi-agent cooperative pose control problem to allow scenarios where the agents are coupled
and subject to holonomic constraints.
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RESUMO ESTENDIDO EM LINGUA
PORTUGUESA

O controle de atitude de um corpo rigido € um quesito importante em projetos de veiculos aeroespaciais (aero-
naves e naves espaciais) assim como em projetos de veiculos submarinos, terrestres e em aplicagcdes de sistemas
roboéticos, dentre outros [1]. Em uma gama de aplicagdes, mudangas no ponto de operacao sao necessdrias e
consequentemente resolver o problema de regulacdo a partir do estado inicial em repouso € um objetivo co-
mum desejado [2]. Em particular, quando excursdes arbitrarias na atitude sdo desejadas ou permitidas, surge o
problema de se projetar um sistema de controle globalmente estavel [1].

O controle global de atitude é um problema desafiante a comecar pela escolha apropriada de uma represen-
tacdo para a atitude. E sabido que da gama existente de representacdes de atitude, nenhuma representacio em
tr€s pardmetros do SO(3) — como € o caso dos frequentemente utilizados angulos de Euler — é globamente nio
singular e isso € um obstdculo para se conseguir a estabilidade global [3]. Neste contexto, o quatérnio unitdrio
se torna interessante por representar a atitude com o menor nimero de pardmetros possivel sem singularidades.

O espaco de estados do quatérnio unitdrio € uma dupla cobertura do SO(3) — um par de quatérnios unitérios
antipodais correspondem a mesma atitude em SO(3) — que leva, quando um controlador continuo baseado em
quatérnio unitdrio € usado, a um fendmeno indesejado conhecido como unwinding, em que o corpo pode estar
em repouso arbitrariamente préximo 2 atitude final desejada e, ainda assim, rotacionar grandes angulos antes de
chegar ao repouso [5]. Esse efeito pode ser evitado usando-se uma realimentagio de estado descontinua (sem
memodria), tal como as sugeridas por Fjellstad and Fossen [6], Fragopoulos and Innocenti [7] ou Wie and Barba
[8]. Apesar da estabilizag@o global assintdtica ser alcangada, a natureza descontinua do controlador introduz
o fendmeno chattering, que consiste em multiplos saltos (de estado) ocorrendo a0 mesmo tempo, e que pode
ocorrer na presencga de ruido de medi¢do quando o sistema estd em uma regido préxima de 180° da atitude de

referéncia [9].

Um controle de atitude com a propriedade de estabilidade assintdtica e global e robustez contra ruidos de
medicdo (ou seja, estes ruidos ndo levam a fendmenos de chattering) foi obtido com o controlador hibrido
de comportamento histerético sugerido por Mayhew et al. [10]. denominado controlador histerético, usando
uma varidvel 16gica bindria. O tamanho da banda de histerese que cobre a regido propensa a chattering pode
ser projetado para um determinado nivel maximo de ruido, Comparado com o controlador descontinuo (sem
memoria), o controlador histerético consegue eliminar o chattering ao custo de impor trajetérias de rotacio
mais longas para algumas condi¢des iniciais de atitude levando a um maior tempo médio de estabilizacido ou

consumo de energia.

Para reduzir o consumo de energia para o controlador histerético, uma alternativa seria reduzir o nivel de
ruido recebido no controlador utilizando-se sensores de alta precisdo de precos elevadors e/ou estimadores de
atitude baseados na filtragem de Kalman ou de Particulas. Apesar dessas solugdes serem efetivas em determi-
nadas situagdes, hd outras em que um ruido expressivo ji € esperado., De um lado, tem-se a demanda crescente
por solucgdes baratas com componentes baixo custo. Como filtros — especialmente o Filtro de Particulas, sdo
computacionalmente “caros” [11] — para processadores embedded com pouca memdria e recursos computaci-
onais, geralmente um estimador simplificado e pouco efetivo € usado, resultando em um ruido de estimacao de
atitude alto. Por outro lado, sensores de baixo custo resultam em um nivel maior de ruido. Por exemplo, no
experimento de Gebre-Egziabher et al. [12], € possivel observar ruidos de amplitude em torno de 10 graus. Se,
além disso, o sistema estiver imerso em um ambiente com excesso de ruido eletromagnético ou se a velocidade
angular for alta, o nivel de ruido é ainda maior [13].
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Neste estudo, procurou-se um controlador com a propriedade de estabilidade global e robusta que repre-
sentasse uma melhor solu¢cdo em termos de custo quando comparado com o controlador de banda de histerese
fixa. Redugdo de custo representada por tempo médio de estabilizacao ou consumo de energia € importante,
por exemplo, em satélites ou sistemas operados por bateria [14]. Propde-se dois controladores distintos, ambos
com duas varidveis de estado 16gicas bindrias (uma a mais que o controlador histerético) para o controle de
atitude representado por quatérnio, O primeiro controlador, denominado HY, tem a varidvel principal determi-
nada por um controle on-off com histerese para indicar qual representacido em quatérnio da atitude de referéncia
deve ser seguida e uma outra variavel auxiliar determinada por um controle on-off sem histerese para indicar
a proximidade a regido critica sujeita a chattering. Esse esquema oferece mais oportunidades de atualizacio
da varidvel principal que o controlador hibrido histerético, por exemplo quando hd uma variacio abrupta na
atitude de referéncia ou no momento inicial quando a atitude de referéncia estd longe da atitude inicial. Isso
reduz as chances do corpo seguir na dire¢do da rotacdo mais longa. Contudo, essa estratégia impde restricdes
na forma como o controlador é implementado. Prova-se que o sistema pode apresentar chattering na varidvel

auxiliar e que esse chattering ndo afeta a robustez do sistema se “jumps” ndo tiverem prioridade sobre “flows”.

No segundo controlador proposto, denominado bimodal, ambas as varidveis sdo determinadas por um con-
trole on-off com histerese. A varidvel principal indica qual representacdo em quatérnio da atitude de referéncia
deve ser seguida e a outra varidvel indica a proximidade a regido critica sujeita a chattering. Essa estratégia
elimina as restri¢cdes sobre a forma de implementac¢do do controlador, porém torna a dindmica dessas varidveis
mais complexas, dado que uma varidvel interfere no comportamento da outra. O efeito resultante € que a banda
de histerese do controle on-off referente a varidvel principal, se adapta de acordo com o estado da outra varia-
vel, sendo ora igual, ora a metade do valor do pardmetro banda de histerese. Esse controlador € uma solucao

intermedidria entre o controlador descontinuo e o controlador hibrido histerético.

Sao apresentadas provas formais de que ambos os controladores deixam o sistema com as seguintes propri-

edades:

e cstabilidade assintética e global;
e sem unwinding;

e robustez contra ruidos de medi¢d@o (sem chattering).

A eficdcia dos controladores é mostrada por meio de simulagdes. Em alguns casos foram utilizados modelos
realistas reportados em literatura. Embora os resultados indiquem que o desempenho dos controladores pro-
postos apresentam vantagens para a configurac@o rest-to-rest, os controladores continuam apresentando bom
desempenho mesmo quando a velocidade angular inicial e final ndo sdo nulas, desde que relativamente baixas.
No caso do controlador bimodal, mesmo para outras velocidades angulares iniciais, o consumo de energia do
sistema €, em média, inferior ao consumo do controlador hibrido histerético. Melhores desempenhos ocorrem
quando a banda de histerese € maior como no caso em que sdo usados sensores mais baratos ou em ambientes

onde hd muito ruido eletromagnético.

Como extensdo dos resultados descritos acima, duas outras contribui¢des foram propostas: uma sobre
controle de sincronizacdo de atitude de uma rede de corpos rigidos (agentes) e outra sobre controle cinematico
de pose de corpo rigido dentro do grupo de quatérnios duais de norma unitdria.

Com relacdo a primeira contribui¢do, muita pesquisa tem sido desenvolvida em controle de coordenagéo de
atitude nos ultimos 10-15 anos [15, 16, 17, 18, 19]. Comparado com o sistema com um sé agente, 0s sistemas
multiagentes t€ém vantagens interessantes como viabilidade de ser implementado, producdo de resultados mais
exatos, robustos, menor custo etc., além de ter uma gama de aplicagdes como monitoramento de ambientes,

procura e resgate, interferdmetros espaciais, manuseio de materiais dentre outras [20].

Como mencionado acima, o problema de estabilizacdo global e robusta de atitude, para um tnico corpo

75



rigido, foi resolvido ha poucos anos [10], mas a estabilizacdo em um cendrio de uma rede de agentes traz
muito mais desafios devido as intera¢des existentes entre os agentes. Até o momento, a maioria dos estudos
sobre estratégias de sincronizacdo de atitude sdo capazes de promover uma estabilizacdo quase global como
em [18, 17] e quando € global, ndo € robusta a ruidos de medi¢do.

O tnico estudo em sincronizag¢do de atitude de multiplos agentes, que o autor tem conhecimento, e que
realiza uma sincronizacio global e robusta é o de Mayhew et al. (2012) [21]. Assume-se que cada agente
tem acesso somente a atitude relativa entre seus vizinhos e a sua velocidade angular em relagc@o ao sistema de
coordenadas do corpo. Seu objetivo € alcancgar a estabilidade de um estado sincronizado (que nao é uma atitude
de referéncia absoluta especifica) usando um esquema de realimentacdo hibrida. A vantagem de ndo requerer
sensores para medi¢des de atitude inercial tem o custo de se obter a sincronizagdo apenas para redes conexas
e aciclicas [22], pois existe um obstaculo fisico para a convergéncia global quando o grafo contém ciclos [22,
Theorem 1].

Neste estudo, propde-se um controle de sincronizacdo de atitude distribuido com a propriedade de esta-
bilidade assintética e global e robustez contra ruidos de medi¢do para uma rede de agentes representada por
um grafo ndo direcionado e conexo (ciclico ou aciclico). A estratégia usa o quatérnio como representagdo da
atitude inercial e uma realimentacdo hibrida histerética com uma varidvel l6gica bindria, sugerida por Mayhew
et al. [10], para cada agente, a fim de resolver os conhecidos problemas que surgem quando uma lei de rea-
limentacdo de estados, continua ou descontinua, € empregada como presenga de estados instaveis, fendmeno
“unwinding” e “chattering”. O custo de se utilizar esta estratégia € o surgimento de mais uma restricdo no
parametro da banda de histerese d; no controlador de cada agente.

Os resultados das simulacdes contrastam o controlador continuo com o controlador hibrido proposto e
mostram que a direcdo de rotacdo mais longa € evitada no caso do esquema hibrido quando o estado inicial
estd préximo a um ponto de equilibrio, reduzindo o tempo de estabilizacdo. Além disso, eles enfatizam alguns
dos problemas provenientes da lei de realimentacdo continua como o atraso na resposta quando o estado de um

agente estd muito préximo a um ponto de equilibrio instdvel.

Com relagdo a segunda contribuicdo, o grupo de Lie do deslocamento de um corpo rigido aparece natural-
mente no estudo de sistemas aeroespaciais e robdticos. A partir do trabalho inicial de Brockett [23] sobre teoria
de controle em grupos de Lie gerais, grande parte da literatura foi dedicada ao controle de sistemas definidos no
SE(3). Embora seja usual projetar controladores para este sistema usando matrizes para representar elementos
deste grupo de Lie [24, 25], alguns autores observaram que os controladores projetados usando-se um outro
tipo de representacdo, a saber, o quatérnio dual unitrio para SE(3), podem apresentar vantagens em relacio ao
tempo computacional e aos requisitos de armazenamento [26, 27].

E importante observar que, como neste caso o espago de estado de um sistema dindmico é uma variedade
genérica, algumas dificuldades sdo esperadas para se projetar um controlador capaz de estabilizar o sistema.
Na verdade, o problema da estabilizagdo robusta e global de pose de um corpo rigido nio € simples, mas é, de
certa forma, analogo ao problema de atitude.

Em primeiro lugar, ndo existe um controlador com realimentagdo continua capaz de estabilizar assintotica-

mente e globalmente um ponto de equilibrio na variedade do grupo quatérnio dual unitario [28].

Em segundo lugar, como o grupo de Lie de quatérnio dual unitario é uma cobertura dupla do grupo de
Lie de deslocamento de corpo rigido SE(3) [29, 28], induz-se, quando um controlador continuo baseado em
quatérnio dual € usado, um fendmeno similar ao de "unwinding" em SO(3) [5]: o corpo rigido pode iniciar do
repouso em uma pose arbitrariamente perto da final desejada e, ainda, ser conduzido para o ponto de equilibrio

estdvel e mais afastado antes retornar ao repouso.

Por fim, mesmo usando uma realimentacdo de estado descontinua (sem memoria), é impossivel obter uma

estabilizagd@o global e robusta de um conjunto de pontos ndo conexos, provenientes da cobertura dupla do SE(3)
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[10, 9].

Ha poucos estudos em que se tenta eliminar o problema de “unwinding” no contexto de estabilizacdo de
pose usando quatérnio dual unitdrio [29, 30, 31, 32]. Todos sugerem realimentacao descontinua e sdo propensos
a “chattering” para condicdes iniciais arbitrariamente préximas da descontinuidade.

Inspirado no controle hibrido baseado em histerese de Mayhew et al. [10] desenvolvido apenas para es-
tabilizacdo do controle de atitude, Kussaba et al. [28] projetou uma extensdo desse controlador para obter
a estabilidade da atitude e translacdo de forma acoplada. No entanto, este controlador de pose sugerido por
Kussaba et al. [28] herda o mesmo custo do controlador histerético de atitude, mencionado anteriormente,
de impor trajetérias de rotagdo mais longas para determinadas atitudes iniciais, fazendo com que o tempo de
estabilizagcdo ou consumo de energia seja maior. Além disso, o problema do consumo de energia também se

agrava neste contexto, pois 0os movimentos casados de translacdo e rotacdo consomem mais energia. [28].

Para reduzir esse custo, propde-se uma lei de controle bimodal hibrido que combine o controlador bimodal
de atitude proposto acima e o controle sugerido por Kussaba et al. [28] de modo que ele represente uma solugéo
intermedidria em termos de custo entre o controlador descontinuo e o histerético.

Os resultados de simulagdo comparam a evolucdo do sistema quando o controlador utilizado é o bimodal
com os controladores descontinuo e o histerético. Uma ideia do consumo de energia pode ser obtida a partir da

drea embaixo da curva do grafico do médulo da velocidade angular quando cada controlador € utilizado.

As contribuicdes desta tese sao:

1. Enuncia-se um teorema sobre um problema que ocorre com o controlador de atitude descontinuo na
presenca de ruidos de medicdo no espaco do quatérnio unitario (veja Teorema 3.4, pdgina 15). Este
resultado é uma corre¢do em um teorema de [10] em que o sistema estd corrompido por ruido, porém a
varidvel medida ndo pertence ao espaco do quatérnio unitdrio. Consequentemente, o modelo do sistema

perde o sentido fisico.

2. Apresenta-se um controle de atitude (representada por quatérnios) de um corpo rigido, que € hibrido e
global, além de ser robusto a ruidos de medicdo, voltado para casos em que a velocidade angular inicial
e final € zero (veja Capitulo 4). O controlador proposto estende um controlador hibrido histerético da
literatura introduzindo uma nova varidvel de estado l6gica e bindria. O controlador é capaz de detectar
quando a atitude de referéncia muda abruptamente ou quando a atitude inicial estd distante da atitude de
referéncia. Desta forma, ele tem mais oportunidades de determinar qual representagdo em quatérnio da
atitude de referéncia deve ser seguida em comparag@o com o controlador hibrido histerético da literatura
e tem mais chances de seguir pela direcdo de rotagdo mais curta. Este estudo foi apresentado no XII
Simpdsio Brasileiro de Automacao Inteligente - SBAI 2015 e o respectivo artigo estd publicado online,
disponivel em http://swge.inf.br/SBAI2015/anais/413.pdf.

3. Apresenta-se uma outra estratégia de controle de atitude de corpo rigido, hibrido e global, que é robusto
a ruidos de medicdo (ou seja, ndo ha chattering) por meio do controlador denominado bimodal (veja
Capitulo 5). Ele é apropriado para casos em que a velocidade angular inicial e final sdo zero e tem
a atitude represenada por quatérnio, Porém, ele também apresenta vantagens para condic¢des iniciais
genéricas. Dentre os controladores globais, presume-se que ele seja 0 mais interessante quando o nivel
de ruido na medicdo da atitude é expressivo como, por exemplo, quando sensores/componentes de baixo
custo sio usados ou quando o sistema estd imerso em ambientes onde ha muito ruido eletromagnético. O
controlador possui duas varidveis de estado 16gicas bindrias. Por conseguir adaptar a banda de histerese,
ele reduz a regido onde o controlador hibrido histerético determina a direcdo de rotagdo mais longa,
sem comprometer a robustez, sendo uma solug@o intermedidria em termos de custo entre o controlador
descontinuo e o hibrido histerético. Um artigo sobre este estudo foi publicado na revista Journal of the
Franklin Institute.
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4. Propde-se um controle de sincronizagdo de atitude distribuido para uma rede de corpos rigidos (agentes)
representada por um grafo ndo direcionado e conexo (ciclico ou aciclico) que apresente uma estabilidade
global e assintdtica (veja Capitulo 6). Devido as inerentes interacdes entre os agentes, o projeto do
controlador é muito mais desafiador. Na literatura, a grande maioria dos controladores sugerem leis
de realimentacdo de estado continuas ou descontinuas. Como no caso restrito a um tnico corpo rigido
estes tipos de estratégias de controle levam o sistema a apresentar problemas bem conhecidos como
estados instaveis, fendmeno unwinding e chattering, é esperado que, no caso de sistemas multiagente,
haja problemas de desempenho ainda piores. Para resolver estes problemas, o controlador proposto usa
como base o controlador histerético hibrido da literatura com uma varidvel 16gica bindria e uma restri¢ao
mais forte para o parAmetro banda de histerese. Um artigo a respeito deste estudo foi submetido a revistal
International Journal of Systems Science.

5. Propde-se uma estratégia de controle hibrido global para resolver o problema cinematico de rotacdo e
translacio de um corpo rigido e seja robusto a ruidos de medigao (veja Capitulo 7). O controlador hibrido
baseado em dual quatérnio sugerido na literatura estende o controlador histerético baseado em quatérnio
que, como se sabe, tem um regido do espaco de estados onde a lei de controle forca o movimento para a
direcdo de rotacdo mais longa, gastando-se mais energia que o necessdrio. A estratégia proposta adapta
o controlador de atitude bimodal do Capitulo 5 ao sistema de pose de um corpo rigido a fim de reduzir,
em média, o tempo de estabilizacdo ou consumo de energia. Neste contexo, o problema de consumo
de energia é mais grave, pois 0 movimento de rotacdo e translagdo estdo acoplados, consumindo mais
energia (veja Capitulo 7). Este estudo foi apresentado no American Control Conference - ACC 2017 e o
respectivo artigo foi publicado nos anais do evento.
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PROOFS OF SOME LEMMAS

In this appendix, the lemmas used along the text are demonstrated.

Lemma B.1 Euler’s equation in body coordinates

Let J® represent the constant inertia matrix calculated in the body frame, T represent the
external torque expressed in the body frame and w" represent the current angular velocity
of the body frame as seen from the reference frame and expressed in the body frame. The

dynamic equation, known as the Euler’s equation, written in body coordinates, is given by

Jab =8 (JPwb) Wb + 70 (B.1)

the angular momentum [65] expressed in the body frame L?,

Lb :wab

LY =Jb0°.

As L = RL", taking its time derivative,

L =RLY,
L =RL*+ RL".

Using that R= RS(w") [37, page 52], (B.2) and (B.3),
L =RS(w®)(J°w’) + R(J%&P).
As the torque T equals the time derivative of the angular momentum and 7 = R7? ,
T=R[S (W) (J'w) + I,

JPa? =RTr - S (") (J'w’),
=S (J'w") (') + 7.
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Proof. Consider that variable with a superscript letter b is expressed in the body frame. Absence of this

superscript letter indicates the variable is expressed in the reference frame. Taking the time derivative of

(B.2)
(B.3)

(B.4)
(B.5)

(B.6)

(B.7)

(B.8)
(B.9)



Lemma B.2 Quaternion kinematic equation for the attitude error

Let q represent the current attitude, w be the current angular velocity, q, represent the
desired attitude and wq be the desired angular velocity. Given that the attitude error is

defined as q, = qj; o q, the kinematic equation for the attitude error is

) 1
q. = iqe © (07w6)7 (BIO)

where w, = w — R(q,)Twq.

Proof. Take the time derivative of the attitude error,

q.=q;°4q,
4. =q3°0q9+q;°q.

Substituting the kinematic equation (2.7) into (B.12),

. 1 - . (1
q. = §qd0(0,wd) oq+gq;o §q0(0,w) ,
1 * 1 *
=—5(0,wd)oqdoq+§qdoq0(0,w),
1 1
:iqe o (O,W) - §(O7wd) o qea
1 *
:iqe o [(0,(4)) —q.° (vad) o qe] ;

:%qe 0 [(0,w) — (0, R(q")wa)] ,

:%QG © [(07 w — R(qe)de)] .

Lemma B.3 Hybrid basic conditions

Let T = (qe,w) € X, X = S? x R3, 7y = (Z,h,m) € X x {1,-1} x {1,—1} and H,
defined either in (4.7) or in (5.8), be a closed-loop autonomous hybrid system. The hybrid
system H satisfies the hybrid basic conditions (Assumption 6.5 of [49])

(A1) C5 and D5 are closed sets;

(A2) Fy : R™ = R" is outer semicontinuous, locally bounded, convex-valued, and
FQ(:E2) 75 [Z)for all To € Cy;

(A3) G5 : R™ = R” is outer semicontinuous, locally bounded and Go (Z2) # O for all
ZTo € Ds.

Proof. The hybrid system H satisfies:

(B.11)
(B.12)

(B.13)

(B.14)
(B.15)
(B.16)
(B.17)

(B.18)

e (A1), D is the union of a finite number of closed sets that results in a closed set [66] and Cs is the

intersection of closed sets that results in a closed set [66].

e (A2), Iy is continuous in Cy. Consequently, it is outer semicontinuous and locally bounded [49,
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page 102]. Clearly it is also convex-valued and non empty for every Zs € Cs.

e (A3), the graph of G is closed. According to [49, Lemma 5.10], a set-valued mapping is outer
semicontinuous if and only if the graph of the mapping is closed . Also G5 is clearly bounded in
[—1,1] and non empty for all Zp € Ds.

O

The purpose of the following lemma is to find the minimum « such that ¢ € M + aB. The idea is to find
out a relation between « and 7.

Lemma B.4

Let M2 {qeS?:n=0}and q = (n,€) € S? be a fixed attitude. Then, the distance
between q and the set M is

d(g, M) = inf |lg—aq,ll=Ig-q,l=12-2v1-n% (B.19)
q,EM

Proof. Let q,, = (0,€w) € M. Asq —q,, = (n,€) — (0,€) = (1€ — €,) and [|q,,|* = [[(0, €u)[* =
|l€w||?, the problem of finding distance d can be solved by finding €, which is a solution of

. 2
min € — € .
Hewnzzlu(n’ Wl

Let f(€w) = ((n,€ — €w), (1, € — €,)) and h(€y) = (€, €4) — 1.
Theorem of Weierstrass [67, page 8] assures existence of a global minimum since f(€,,) is continuous and
the set {€,, € R? : h(€,) = 0} is compact.
f(€y) is differentiable and h(e,,) is continuously differentiable at any point €,, € R3. Also, V¢, h(€l) =
2€;, # 0 is linearly independent and satisfies the regularity condition. Using Lagrange optimality condi-
tions theorem [67, page 52]

L€y, A) = f(€w) + Ah(€y).

The minimum can be found by solving the system

Ve, L(€;,,\") = 0 (B.20)
VaL(€5, ) = 0 (B.21)
From (B.20),
—2(e—€)+2\€, = 0, (B.22)
(1+X)e, = e (B.23)

From (B.23), if \* = —1, it is required that € = 0, that is, ¢ = £1 = (%1, 0). In this case, the minimum is
achieved for any €, € S? and the distance d = /2.
For \* # —1, from (B.23)

€
— . B.24
€ =1 Y ( )

From (B.21), (€, € ) = 1. Substituting (B.24) into this equation,
_fee) (B.25)

(T4 A%

1+X)? = (ee), (B.26)
1+N = +£/1- 72 (B.27)
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Thus, substituting (B.27) into (B.24), €, = +=—=-—. This results into two possible solutions. Clearly, the

\/1—n?

solution that minimizes the problem is achieved when q}, = (O, 162) .
n

The distance d is

dlg. M) = llg—q,l. (B.28)
1

= 1—— €], (B.29)

H(n ( \/1—772> )

2
= e (1) Jel? (B.30)

V1-n? ’ '
2 1

= 2 1-— 1—n2 B.31
77+< 1—772+1772>< ), (B.31)
= 2 —2¢y/1—n2. (B.32)
This equation also holds for ¢ = =1 when \* = —1. Note that the maximum distance is d = V2. O

A geometrical interpretation of distance d is the line segment PQ shown in Figure B.1. Let ¢ = (m, €,,,).

Thus, ||q — q% || = H(m, (1 - ﬁ) e) H Since H(l - ﬁ) eH = |VI-m2-1| H%m?
|1 — /1 — m?| is represented by the size of the line segment QR and line segment RP has size |m/, then
llg — q;, || has the size of segment PQ.

PQ° = RP +QR° (B.33)

\/m2 + (1 — 1= m2)2 (B.34)
2-2v1—m? (B.35)

Allell
Q

llem |

)f}

0 m

Figure B.1: Geometrical representation of distance d from g = (m, €, ).

The lemma that follows looks for the maximum 7 such that ¢ € M + B(0, ).
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Let M2 {qeS®:n=0},qg=(n€) € M* 2 {(M+B(0,0)) NS*} and a > 0. Then

2
| < ay/1— QZ‘ (B.36)

Proof. Let o* be the distance between g and M. From Lemma B .4, a* = /2 — 21/1 — 52, which depends
only on 7. As B(0, «) is an open ball, « > «o* and q € M*,

2-2/1—n2 < a, (B.37)
2-2/1—-n2 < a2 (B.38)
Oz2
1—n2 > == (B.39)
Ot4
1—n? > 1—a2+z, (B.40)
4
2 < a?— O‘Z, (B.41)
a2
Inl < ay/1-— T (B.42)
O

Let |n| < m, 8 € (0,1) and n, = —n + B(n — sgn(n)m). Then sgn(n + n,.) = —sgn(n).

Proof.

nr =—n+ B(n —sgn(n)m), (B.43)
n+n. =B(n — sgn(n)m). (B.44)

Multiplying both sides of (B.44) by sgn(n),

sen(n) (n + n-) =B(sgn(n)n — sgn(n)sgn(n)m). (B.45)

Since sgn(n)n = |n| and sgn(n)sgn(n) = 1,

sgn(n) (n +n-) =B(In| —m). (B.46)

Using the constraints of the lemma, || < m and 8 > 0,

sgn(n) (n +n,) <0. (B.47)

Hence, sgn(n + 1) # sgn(n) or sgn(n + 1) = —sgn(n). O
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Lemma B.7

Let ¢ = (n,€) € S? be a fixed attitude and Q, = (1, €.) € H be a measurement noise

with 1. fixed. Given that |n| < 1 and |n + 1| < 1, the minimum magnitude of noise, | Q%||,
such that q + Q7 still represents an attitude, is achieved when
1— o)
Q= |n., ("7%7) “1]e]. (B.48)
L—=n

Proof. The problem requires to find Q7 that is a solution of

min, Q.-

la+Q.l?=1

Since ||Q.||> = n2+||€.||? and 7. is known and fixed, minimizing ||Q. || is equivalent to minimizing ||€. ||?.
Asq+ Q, = (n+ ne, € + €.), the minimization problem above is equivalent to

. 2

lere D a1l

Let f(e.) = (€c,€.) and h(e,) = (€ + €0, € + €.) — 1+ (1 +1.)°.
Theorem of Weierstrass [67, page 8] assures existence of a global minimum since f(€.) is continuous and
the set {€. € R? : h(e.) = 0} is compact.
f(€.) is differentiable and h(e.) is continuously differentiable at any point €, € R3. Also, V¢ h(e}) =
2 (e + €) is linearly independent since € + €, # 0 due to restrictions | + .| < 1 and ||g + Q.|| = 1.
Hence, the regularity conditions are satisfied.
Using Lagrange optimality conditions theorem [67, page 52]

L€, \) = f(€ee) + Ah(ee).

The minimum can be found solving the system

Ve L(eX,\") =0 (B.49)
VaL(eX, ) =0 (B.50)
From (B.49)
2, + 2\ (e+€;) = 0, (B.51)
(1+\)e = —Ne (B.52)
For A\* = —1, e = 0. This solution is not possible due to restriction || < 1.
For \* # —1,
Ae
= B.53
Ce 14 A* ( )
€
o= B.54
€+e€ T (B.54)
From (B.50), (€ + €, €+ €*) = 1 — (1) + 1,)°. Substituting (B.54) into this equation,
<6> €> 2
UL, 1= (n+n)°, (B.55)
(1 +)\*)2 (77 n )
1 -7 2
= 1—(n+n.)", (B.56)
(1 n )\*)2 (n+n )
2
LY G el U /0 (B.57)
14 A% 1—n?
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Then, substituting (B.57) into (B.54),

1— e)’
ete = =+ (”7‘:?7)6, (B.58)
L—=n
€ = oz €. .
From the two possible solutions, the one which minimizes ||e.||? is
66 = 1_7772 — €. .
O
Lemma B.8
Letq = (ne) € S}, 0<a < V2 Be(0,1),m=a/l-% > |y GivenQ, =
(Ne, €e), Ne = —1 + B (n — sgn(n)m), €. = ( % — 1) €, then the magnitude of
Q. Q.
Proof. The first part of the proof calculates ||@, ||as a function of parameters 3, m and 7.
5 2
1—(n+ne)
2 — 2 -\ v e 1
QP = w2+ o
Substituting ||€]|? by (1 — 7?),
1= (g +n.)? 1= (n+n.)
QI = e (AL g IEOERD ) ), B.61)

= 2-29% — 2y — 24/ 1 — (n+1e)° /1 — 2. (B.62)

Now, substituting 7, by its definition,

1Qul =2 (1= = o1+ 5 0 sentym) = 1 = (50— senlym) VI= I ) @i

=2 (1= 0P + Blalm - w ~ 57 (0= senlpm) VI 7). (B.64)

Multiplying expression (17 — sgn(n)m)> by sgn(n)? = 1,
2 (1302 4 Blalm = /1= 9 ety ~mP VI ) @65
2 (14 81l (m = ) = /1= 52 m ) VI=F ) (B.66)

The last part of the proof considers that the inequality || Q.|| < « holds and looks for some inconsistencies.
Using Lemma B.4, it follows that ||@,||* < 2 — 2v/1 — m? and

lQ.II*

2 (14 81l (m = ) = /1= 3 = ) VI ) <2 2/Tmm @)
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VI—m2 + Bl (m— lnl) < \/1+ 822 (m — [n])? = B2 (m — In))* — 2

As m > |n)|, both sides of the inequality are non negative and can be squared,

—m?+ 28 (m — n)) V1—m2 < —B%(m—n|)* —n%
28| (m —[n)) V1—m2 < —B2(m—|n)*+ (m+n]) (m—|n]).

Dividing both sides by (m — |n]),
28l vV1-m? < (1=B%)m+(1+p%)nl.
Squaring both sides again, as both of them are non negative,

(1= B%)*m* +2(1 = B2) (1 + B)m |nl + (1 + B%)*n?,
(1= B%)*m? +2(1 = B*) (1 + B)m |n| + (1 - 5%)*n*.

4322 (1- m2)

<
_4B%Pm? <

(B.63)

(B.69)

(B.70)

B.71)

Since the left side of the inequality is negative and the right side is positive, the inequality holds. Thus, it is

proved that | Q.|| < a.

The following lemmas refer to the multi-agent control chapter (Chapter 6).

O

Let qij = (77'L'j, €ij) = q;f °q; and Rij = R?R, = R(qij). Then Rijeij = €;j.

Proof. Using (2.5),
Rijei; = (14 2n;;S(ei;) + 25(ei)?) €3,
=eij + 205 S (€ij)€i; + 28 (€i5) €.

As S(Eij)éij =€ X €5 = 0,

Rijeij :Ei]’.

Let J; = JZT >0, kg; > 0, aij > 0, x; = (qio,wi,hi) c X éS:’, x R3 x {1,—1}, =
1,2,...,n, 2= (T1,Z2,...,%,) € X"andV : X" — R,

V(f) = ZZkGi(l - hi"h’o) + ZZaij(l - hihjmj) + %Zw?Jiwi.
=1

i=1 i=1 j=1

A=A, Ai2{zeX": 2;=(1,0,1)orz; = (-1,0,-1)}.
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Proof. As J; is a positive definite matrix, w! Jyw; = 0 <= w; = 0. Hence, >, w! Jiw; =0 <
w;=0,i=1,...,n.

Regarding the first summation, 1 — h;n;0 = 0 <= h;n;p = 1. Multiplying both sides by h; and since
h? = 1, it follows that ;o = h; and g;5 = (h;,0) = h;1. Therefore, >\ | 2ki(1 — hinig) = 0 <
Qo ="hil,i=1,...n.

Finally, the second summation is a consequence of the previous restriction.

hihjni; =hih;(njomio + €€in),
=h;hjnjonio,
—hih;h;hi,
=h;h; = 1.

Hence, the summand 1 — h;h;n;; equals 0.
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