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When an arbitrarily-shaped body is fully immersed in a liquid in equilibrium, it gets from the liquid a non-
null hydrostatic force known as buoyant force. It is an easy task to apply the divergence theorem to show that
this force agrees to that predicted by the well-known Archimedes’ principle, namely an upward force whose
magnitude equals the weight of the displaced liquid. Whenever this topic is treated in physics and engineering
textbooks, a uniform gravitational field is assumed, which is a good approximation near the surface of the Earth.
Would this approximation be essential for that law to be valid? In this note, starting from a surface integral of
the pressure forces exerted by the fluid, we obtain a volume integral for the buoyant force valid for nonuniform
gravitational fields. By comparing this force to the weight of the displaced fluid we show that the above question
admits a negative answer as long as these forces are measured in the same place. The subtle possibility, missed
in literature, of these forces to be distinct when measured in different places is pointed out.
Keywords: hydrostatics, Archimedes’ principle, divergence theorem.

Quando um corpo com uma forma qualquer encontra-se completamente submerso em um ĺıquido em equiĺıbrio,
ele recebe do ĺıquido uma força hidrostática não-nula conhecida como força de empuxo. É uma tarefa fácil aplicar
o teorema da divergência para mostrar que esta força está em acordo com aquela prevista pelo famoso prinćıpio
de Arquimedes, ou seja, uma força vertical, pra cima, cuja intensidade é igual ao peso do ĺıquido deslocado.
Sempre que este tópico é abordado em livros-texto de f́ısica e engenharia, considera-se que o campo gravitacional
é uniforme, o que é uma boa aproximação nas proximidades da superf́ıcie da Terra. Seria esta aproximação
essencial para que a lei de Arquimedes seja válida? Nesta nota, partindo da integral de superf́ıcie das forças de
pressão exercidas pelo fluido, nós obtemos uma integral de volume para a força de empuxo válida para campos
gravitacionais não-uniformes. Ao comparar esta força com o peso do fluido deslocado, nós mostramos que a
pergunta acima tem resposta negativa, desde que estas forças sejam sejam medidas no mesmo local. A possibi-
lidade sutil, não observada na literatura, dessas forças serem distintas quando medidas em lugares diferentes é
apontada aqui.
Palavras-chave: hidrostática, prinćıpio de Arquimedes, teorema da divergência.

1. Introduction

In modern texts on hydrostatics, the original propo-
sitions introduced by Archimedes describing the force
exerted by a liquid on a body immersed in it are redu-
ced to a single statement known as Archimedes’ law of
buoyancy, or simply Archimedes’ principle (AP), which
asserts that “the buoyant force (BF) exerted by a fluid
on a body immersed in it points upward and has a mag-
nitude equal to the weight of the displaced fluid” [1].
Note that Archimedes did not call his discoveries in

hydrostatics by laws, nor did present them as a con-
sequence of experiments. He, instead, treated them as
mathematical theorems, as those proposed by Euclides
for geometry [2]. This law has been thoroughly tested
experimentally since the times of Stevinus and Galileo.2

On the theoretical hand, the simple case of a symmetric
solid body (e.g., a right-circular cylinder or a rectangu-
lar block) immersed in a liquid is used in textbooks for
deriving AP from the Stevinus law (i.e., from the linear
increase of pressure with depth) [3,4]. Symmetry argu-
ments are then taken into account to show that the net

1E-mail: fabio@fis.unb.br.

2An accurate experiment for testing AP, devised by Gravesande (1688-1742), deserves citation. The experiment uses a bucket and
a metallic cylinder that fits snugly inside the bucket. By suspending the bucket and the cylinder from a balance and bringing it into
equilibrium, he then immersed the cylinder in a water container. The balance equilibrium is only restored when one fills the bucket (to
the rim) with water.

Copyright by the Sociedade Brasileira de F́ısica. Printed in Brazil.
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force exerted by the liquid is equal to the difference of
the pressure forces exerted on the top and bottom sur-
faces, resulting in an upward force with a magnitude
that agrees to AP, which also explains the origin of the
BF. Though this proof is valid only for symmetric bo-
dies with flat, horizontal top and bottom immersed in a
liquid, it can be extended to arbitrarily-shaped bodies
by making use of the divergence theorem [5, 6]. This
derivation, in turn, can be adapted to the more gene-
ral case of inhomogeneous fluids, as shown by the first
author in a very recent work [7]. There, the BF is de-
fined as the net force exerted by a fluid on the portion
S of a body that effectively touches the fluid and then
a gradient version of the divergence theorem is applied
to the surface integral of the pressure forces, which le-
ads to a volume integral that can be easily compared
to the weight of the displaced fluid. This has validated
the use of AP for any fluid in equilibrium. In fact, it
also elucidates the origin of some known exceptions to
AP, including the so-called ‘bottom case’ (see Sec. 3 of
Ref. [7]).

Here in this note, by following the divergence the-
orem approach of Ref. [7], as shortly described above,
we show, for the more general case of an arbitrarily-
shaped body immersed in any fluid (homogeneous or
not), that the assumption of an uniform gravitational
field is not essential for the validity of the Archimedes’
law of buoyancy.

2. Buoyant force in a uniform gravita-
tional field

Let us recall the precise statement of the Archimedes’
principle, as found in modern texts [1, 4],

When a body is fully or partially submerged
in a fluid, a buoyant force B from the sur-
rounding fluid acts on the body. The force is
directed upward and has a magnitude equal
to the weight mf g of the fluid displaced by
the body.

Here, mf is the mass of the fluid that is displaced
by the body and g is the local acceleration of gravity.
Whenever this topic is discussed in textbooks, an uni-
form gravitational field is assumed. This is equivalent
to say that g is a constant, which means that

B = −mf g = mf g k̂ , (1)

is also a constant vector pointing everywhere along the
(vertical) z-axis direction, as identified in Fig. 1. In
his original propositions, Archimedes does not mention
any force field, which is a modern concept in physics [8].
He only mentions the weight of a body, treating it as

a physical quantity proportional to the amount of mat-
ter. Therefore, for Archimedes a given body would got
a constant weight, independently of its position in space
(its height, in particular). For us, moderns, a body of
fixed mass has a constant weight only when the gravi-
tational field is uniform. In fact, an uniform gravitati-
onal field is a good approximation for points near the
Earth surface.3 Rigorously speaking, this field could
only be generated by a flat Earth, as can be shown by
taking into account an analogy with the electric field of
a planar distribution of charge (edge effects being ne-
glected), as shown in the Appendix. Could Archimedes
have used a flat Earth model to derive his propositi-
ons? Though this would make his results mathemati-
cally exact, it would be a regression because the idea
of a spherical Earth,4 as suggested by Pythagoras (6th
century b.C.), was very common among Greek intel-
lectuals since 330 b.C., when Aristotle maintained it
on the basis of physical theory and observational evi-
dence [9]. Since Archimedes makes explicit references
to a spherical Earth on both the text and figures of his
On floating bodies [2], the answer to our preliminary
question is definitely negative. For instance, in Propo-
sition 2 of book I, Archimedes states that “The surface
of any fluid at rest is the surface of a sphere whose
centre is the same as that of the Earth.”

According to Newton’s law of gravitation, a spheri-
cal Earth (in fact, any spherical distribution of mass)
creates a gravitational field that points radially and de-
cays with the square of the distance to the center, hence
a nonuniform field. Let us then check if the assump-
tion of an uniform gravitational field is essential for the
validity of the Archimedes’ law of buoyancy.
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Figura 1 - An arbitrarily-shaped body fully submerged in a fluid.
Note that the unit vector n̂ is directed along the outward normal
to the (external) surface Σ of the body, changing its direction
when one goes from a point to another over Σ.

3For instance, the gravitational field at the top of Mount Everest (8, 850 m) is only 0.3% smaller than that at sea level.
4The Earth’s radius was first estimated by Eratosthenes in 240 b.C. His result is surprisingly accurate (less than 2% distinct from

modern measurements).
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3. Buoyant force in a nonuniform gra-
vitational field

When a nonuniform gravitational field is taken into ac-
count, we of course cannot use mf g for representing
the weight of the displaced fluid because its magnitude
is not a constant anymore. However, by dividing the
region previously occupied by the displaced fluid in a
large number N of small elements, each with a volume
∆Vf = Vf/N , and then taking the limit as N → ∞,
one finds that the weight of any differential element of
displaced fluid is dWf = dmf g = ρ g dVf . The (total)
weight of the displaced fluid is then given by

Wf =

∫
Vf

ρ g dVf , (2)

where Vf is the volume of the displaced fluid, ρ = ρ(r)
is the density of the fluid, and g = g(r) is the spatially
variable gravitational field on the region occupied by
the body, r being the position vector that locates the
differential element of volume. Now, all we have to do
is to determine the BF acting on the body and compare
it to the weight Wf , above. For this, we follow Ref. [7],
starting by defining the BF as the net pressure force
that a fluid exerts on the part S of the (external) sur-
face of a body that is effectively in contact to the fluid.
This corresponds to the following general formula for
BF evaluations, valid for arbitrarily-shaped bodies to-
tally5 or partially immersed in a fluid in equilibrium:6

B ≡ −
∫
S

p n̂ dS , (3)

where p = p(r) is the fluid pressure and n̂ = n̂(r) is the
outward normal unit vector at a point P of the surface
S, as indicated in Fig. 1. The minus signal comes from
the direction of the pressure force exerted by the fluid
at a point P of S, which is that of the inward normal
to S by P , thus opposite to n̂. This integral can be
easily evaluated for a body with a symmetric surface
immersed in a liquid, but it appears to be intractable
analytically in the more general case of an arbitrarily-
shaped body, due to the dependence of the direction of
n̂ on the position over S, which depends on the (ar-
bitrary) shape of S, as indicated in Fig. 1. However,
this task can be easily worked out for a body fully sub-
merged if one takes into account the following gradient
version of the divergence theorem [10].

3.1. Gradient theorem

Let R be a bounded region in space whose boundary S
is a closed, piecewise smooth surface which is positively

oriented by a unit normal vector n̂ directed outward
from R. If f = f(r) is a scalar function with continu-
ous partial derivatives in all points of an open region
that contains R (including S), then7∮

S

f n̂ dS =

∫
R

∇f dV . (4)

At the only appendix of Ref. [7], the usual form of
the divergence theorem is taken into account for pro-
ving the above theorem. The advantage of using this
theorem is that it allows for a prompt conversion of the
surface integral in Eq. (3) into a volume integral of ∇p ,
which, in virtue of the hydrostatic equation [5], can be
written as

∇p = ρ(r) g(r) . (5)

On putting f(r) = −p(r) in the integrals of the gradi-
ent theorem, Eq. (4), one finds

−
∮
S

p n̂ dS = −
∫
Vf

∇p dVf . (6)

The surface integral above is, according to our defini-
tion, the BF itself whenever the surface S is closed, i.e.
when the body is fully submerged in a fluid. In this
case, by substituting the pressure gradient in Eq. (5)
on the right-hand side of Eq. (6), one finds

B = −
∫
Vf

∇p dVf = −
∫
Vf

ρ g dVf . (7)

As the density of our arbitrary fluid can change with po-
sition, the pressure gradient will be integrable over Vf

whenever the product ρ(r) g(r) is a continuous func-
tion of position in all points of Vf , in conformity to the
hypothesis of the gradient theorem, a condition usually
satisfied by a fluid in equilibrium. Within this condi-
tion, the comparison of the volume integrals found in
Eqs. (2) and (7) promptly yields B = −Wf , thus con-
firming the validity of AP. Of course, we have to modify
the AP statement slightly in order to adapt it to co-
ver nonuniform gravitational fields, which can be done
by correcting the direction of the BF from “directed
upward” to “directed oppositely to the weight of the
displaced fluid” and removing the expression “mf g,”
in agreement to the discussion that precedes Eq. (2).
Note that the former is the only modification needed for
validating the Archimedes original propositions, more
specifically his Propositions 5–7 [2].

Note that the potential energy minimization tech-
nique cannot be used for deriving the AP in these ca-
ses since it works only for incompressible fluids [11].
Of course, the same result would be found by assu-
ming that the body is fully submerged in a single fluid

5Of course, when the body is fully submerged in a fluid, the surface S of contact coincides with the entire external surface of the
body.

6We are assuming a piecewise smooth surface S and that p(r) n̂(r) is integrable over S, a condition fulfilled in most practical
situations.

7We are using here a general version of the theorem which is valid for piecewise smooth surfaces. This version covers bodies in which
S is not smooth in all points, as e.g. rectangular blocks and cylinders.
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whose density is not a continuous function of position,
but only a piecewise continuous function, with a leap
discontinuity at the interface between the fluids.

As the weight, in general, changes with the position
in a nonuniform gravitational field, we point out that
Propositions 5–7 of Archimedes On floating bodies [2],
in which he explicitly mentions the “weight of the fluid
displaced,” will be valid only if this weight is measu-
red at the same place where fluid has been displaced,
otherwise it can be different from the buoyant force,
which would erroneously suggest that AP is invalid.
This subtle point is overlooked in textbooks.

4. Conclusions

In this note, we show that the BF predicted by AP can
be derived from the hydrostatic equation for a body of
arbitrary shape, submerged in any fluid, even in a no-
nuniform gravitational field, under certain continuity
conditions usually satisfied in applications. For this, we
have made use of a theorem for the gradient of scalar
fields to convert the surface integral of the pressure
forces exerted by the fluid into a volume integral of
the gradient of the fluid pressure [7]. The hydrostatic
equation is then applied to substitute this gradient by
the product of the fluid density and the gravitational
field, yielding a volume integral for the net pressure
force that is equal to the opposite of the weight of
the displaced fluid, in agreement to AP. A priori, this
result can be applied in geologic studies, e.g. accu-
rate modeling of the isostasy phenomenon [12], and
astrophysics, e.g. in the study of objects attracted by
the gravitational field of giant stars and black holes,
or in any physical system in which the gravitational
field changes significantly with position. As our vector
calculus approach is not so advanced, it could well be
explored in undergraduate courses.

Appendix

Gravitational field of a planar, uniform distribu-
tion of mass

The Gauss’s law of electrostatics, namely
∮
S
E · n̂ dS =

Qin/ϵ0, ϵ0 being the permittivity of free space, allows
for a simple derivation of the electric field created by
a planar plate uniformly charged with a surface charge
density σ. By taking S as the surface of a right-circular
cylinder whose central axis is perpendicular to the char-
ged plane, it is easy to show that (see, e.g., Ref. [1,

p. 617])

|E| = σ

2 ϵ0
= 2π k σ , (8)

where k = 1/(4π ϵ0) is the Coulomb constant. Being
the planar distribution of charge horizontal, we have
E = 2π k σ k̂ in every point above the xy plane, hence
an uniform electric field.

From the similarity between the Coulomb’s law for
the electrostatic force and the Newton’s law for the gra-
vitational force (always attractive), it is easy to deduce
that ∮

S

g · n̂ dS = − 4πGMin , (9)

where G is the gravitational constant and Min is the
mass enclosed by the surface S. By analogy with the
electric field, the gravitational field created by a planar,
uniform distribution of mass is then

|g| = 2πG σ (10)

where σ is now the areal mass density. Therefore,
g = −2πG σ k̂ in every point above our horizontal
plate, which shows that the gravitational field genera-
ted there is uniform.
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