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The Numerical Modeling of Thermal

Turbulent Wall Flows with the Classical
k — ¢ Model

The goal of this work is to propose a new methodology to sitatilabulent thermal wall
flows using the classical — e model. The focus of this approach is based on the manne
used to implement heat flux boundary conditions on the sditswin order to explain
and to validate this new algorithm, several test cases agsgmted, testing a great range
of flows in order to analyze the numerical response on diftephysical aspects of the
fluid flow. The proposed approach uses simultaneously a tdewall law, an analogy be-
tween fluid friction and heat transfer and an interpolatingymomial relation that is con-
structed with a data base generated on experimental rekemnd numerical simulation.
The algorithm used to execute the numerical simulationdiepthe classicak — < model
with a consolidate Reynolds and Favre averaging procesthfturbulent variables. The
turbulent inner layer can be modeled by four distinct vetpeiall laws and by one tem-
perature wall law. Spacial discretization is done by P1 arldi$bP2 finite elements and

the temporal discretization is implemented using a serpiigit sequential scheme of fi-
nite differences. The pressure-velocity coupling is niradly solved by a variation of
Uzawa'’s algorithm. To filter the numerical noises, origieatoy the symmetric treatment
of the convective fluxes, it is adopted a balance dissipatiethod. The remaining non-
linearities, due to explicit calculations of boundary citiwhs by wall laws, are treated by
a minimal residual method.

Keywords: turbulence, finite element method, wall laws, analogietulent heat flux

Introduction detached boundary layers, the valueshadre calculated with the
use of analogies between fluid friction and heat diffusioor d¢e-
Thermal turbulent flows over solid surfaces occur in many siached boundary layers the calculation is done using arpioitting
uations of industrial interest and the thermal boundaryd@@ns polynomial relation.
imposed on the boundaries of the computational grid may be®f  The good performance of classical analogies used to cédcula
types: temperature and/or heat flux. The second conditiomi® heat transfer rates on flat plates was shown by Gontijo and Fo
usual in real problems and it brings some additional diffieslto its toura Rodrigues (2006). The problem of using analogies éeitw
numerical treatment. fluid friction and heat diffusion in detached boundary |ayeas dis-
According to Chen and Jaw (1998), the high Reynotds ¢ cussed in the work of Gontijo and Fontoura Rodrigues (2087).
model is the most used turbulence model in the treatmentdofsin original approach based on the use of analogies for soltieagitob-
trial flows. To model the behavior of the flow in the internaji®n  |em of imposing heat flux boundary conditions on the high Réys
of the turbulent boundary layer, the— ¢ model uses analytical ex-, — = model was first presented by Gontijo and Fontoura Rodrigue
pressions known as wall laws. The main difficulty in simulgte. (2008) and an evolution of this method was shown by Gontijb an
thermal turbulent flow with a heat flux boundary condition e t Fontoura Rodrigues (2009). The present work shows how this n
wall using the high Reynolds — ¢ model is the absence of a heaind original method can be used to simulate thermal turbélmms
flux wall law. with heat flux boundary conditions over different geometrie
The method that we propose to solve this inconvenience is toThe solver used to execute the simulations, named Turbos2D,
calculate the convective heat transfer coefficienalong the solid g research Fortran numerical code that has been contiryudesl
boundary, and use its value to convert an imposed heat fluxnonsgloped by members of the Group of Complex Fluid Dynamics
equivalent wall temperature. This information is then gera tem- Vortex, of the Mechanical Engineering Department of thevigni
perature wall law that calculates the temperature bounztaglition  sity of Brasilia, in the last twenty years. This solver isé@sn the
in the nodes placed on the border of the computational grid. ~ adoption of the finite elements technique, under the fortimriaof
The main dlfflCU'ty is to estimate, with a gOOd accuracy, the n\Neighted residuals proposed by Ga|erkin, adopting in thﬁ'amis-
merical values of the convective heat transfer Coefficis'rntce it cretization of the calculation domain triangu|ar elemaftdhe type
strongly depends on the flow and on features like the thermatly p1 and P1-isoP2, as proposed by Brison, Buffat, Jeandel emelsS
ical properties of the fluid, the solid geometry in which theafl (1985). The P1-isoP2 mesh is obtained dividing each eleofehe
occurs and the Reynolds number of the flow. In this work, far-nop1 mesh into four new elements. In the P1 mesh only the presst
field is calculated, while all the other turbulent variabdes calcu-
Paper accepted August, 2010. Technical Editor: Eduardo Morgalto Bated with the P1-isoP2 mesh.
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Considering the uncertainties normally existing aboutithe T
tial condition of the flow field, it is adopted a temporal integon T,
scheme of the governing equations system. In the tempae ip
gration process, the initial state corresponds to the béuinof the p
flow and the final state occurs when temporal variations oforel ¢
ity, pressure, temperature and other turbulent varialitgs $n or- q;
der to reach the final state a pseudo transient occurs. Thmotam .
discretization of the governing equations is implementgdthie al- C,
gorithm of Brun (1988), wich uses a sequential semi-impfioite
differences method with truncation error of ord¢\¢) and allows D%
a linear handling of the equation system, at each time step. R

The resolution of the coupled equations of continuity and mg
mentum is done by a variant of Uzawa’s algorithm, proposed Ry
Buffat (1981). The statistical formulation, used for obtag the ,
system of average equations, is done with the simultanenpog-
ment of the Reynolds (1895) and Favre (1965) decomposifibe. p
Reynolds stress tensor is calculated by the hypothesiseditu-
lent viscosity of Boussinesq (1877), wich is modeled bythe ¢
model, proposed by Jones and Launder (1972) with the modifi;;:é
tions introduced by Launder and Spalding (1974). The teruul .
heat flux is modeled algebraically using a turbulent Prandhiper
with a constant value of 0.9. v

In the program Turbo 2D, the boundary conditions of veloci%
and temperature can be calculated by four velocity and two teu
perature wall laws. The velocity wall functions used in thisrk
are: the classical logarithm law, and the laws of Mellor @06
Nakayama and Koyama (1984), and Cruz and Silva Freire (19 7,)
The temperature wall law used is the Cheng and Ng (1982) law. 1};’?
numerical instability resultant of the explicit calcutati of veloc- /.,
ity boundary conditions is controlled by the algorithm pospd by 7,
Fontoura Rodrigues (1990). The numerical oscillationsigedl by p,.
the Galerkin formulation, resultant of the centered digza¢ion ap- Pr,
plied to a parabolic phenomenon, are cushioned by the tgeénip,
of balanced dissipation, proposed by Huges and Brooks {1279 Re,
Kelly, Nakazawa and Zienkiewicz (1976) with the numeridgoa g,
rithm proposed by Brun (1988). yt

In order to validate and quantify the consistence of theges
research code, the numerical results are compared withtansixe

€
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friction temperature

wall temperature

pressure

mean pressure by Fravre’'s decomposition
heat flux vector

heat flux on the wall

fluid’s thermal conductivity

specific heat at constant pressure
gravitational acceleration vector
Material’s derivative operator

ideal gas constant

Von Karman's constant

fluid’s thermal conductivity

turbulent thermal conductivity

fluid’s density

density mean value by Reynolds decomposition
density’s fluctuations

shear stress tensor in indicial notation
shear stresses on the wall

turbulent kinetic energy

dissipation of turbulent kinetic energy
kinematic viscosity

dynamic turbulent viscosity

dynamic viscosity

turbulent dynamic viscosity
volumetric expansion coefficient
Kronecker’s delta operator

Froude number

Mach number

Nusselt number

Prandtl number

turbulent Prandtl number

Reynolds number

turbulent Reynolds number

Stanton number

Reynolds number of the turbulent boundary layer

experimental database, including several flows over disjapome- Theoretical Formulation

tries, based on the works of Ng (1981), Vogel and Eaton (1,985)
Taylor et al. (1990), Liou et al. (1992), Buice and Eaton @R&nd
Loureiro et al.(2007).

Governing Equations

In this work all the dependent variables of the fluid are &dat

Nomenclature

as a time average value plus a fluctuation in a determinate pbi

space and time. In order to account variations of densigyntbdel

t time variable

x;  spacial variable - component in théirection

w;  fluid velocity

u;  velocity’s mean value by Favre’s decomposition

u,  velocity fluctuation by Favre’s decomposition

us Velocity of the free stream flow

ug  friction velocity

T  fluid temperature

T temperature’s mean value by Favre’s decomposition
T, temperature of the free stream flow
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applies the well known Reynolds (1985) decomposition tGfues
and fluid density and the Favre (1965) decomposition to vigland
temperature. In the Favre (1965) decomposition a generiahla
p is defined as:

e (T,t) = (@) +¢ (T.1)
with

and " (Z,t) # 0. (1)

ABCM
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Applying the Reynolds (1895) and Favre (1965) decompasitio  The turbulent heat flux is modeled using the Fourrier law and
to the governing equations and taking the time average wli®se turbulent Prandl numbePr, equal to a constant value of 0.9 by the

equations, we obtain the mean Reynolds equations: relation:
dJp o ~
=& T (pu;) =0, (2) o or 1
ot al’l puy; PT‘t axl ( O)
9 P In Eq. (9)C,, is a constant of calibration of the model, equal to
(puw;) + =— (puju;) = — P 0.09, s represents the turbulent kinetic energy amslthe rate of dis-
ot Oz, O sipation of the turbulent kinetic energy. Onc@nde are additional
+ i [m _ pu//u;/} + Bgs, 3) variab_les, we need to know the transport equations. Theh
O0x; J equations ofx ande were deduced by Jones and Launder (1972)

where

_q(om o 20m,
u=H Ox;  Ox; 30z 7|’

and the closed system of equations of the ¢ model is given by:

@) 9p , 9(pus)

“F = , 11
o(pT) owT) o ( oT — — . . .
+ = a — pul/T" (5) 0(pu;)  ~ O(puy) Op*
ot 8.1‘1' 8% aIZ ot + Uj ag;j = — 8xi
N o (e + 2 ) (52 + 522) |+ &pes . (22
T) _ ﬁRT (6) Ox |:(Re Ret) ((’):1:] ox; ):| Fr Py ( )
In this system of equationg,is the fluid densityt is time,x; are
the space cartesian coordinates in index notafiois, the dynamic (ﬁf> 9 @f)
viscosity coefficienta is the molecular thermal diffusivityy;; is + U, —
the Kronecker’s delta operatay; is the acceleration due to gravity, ot Oz, B
T is the fluid temperaturey; is the flow velocity, is the thermal 2 Kﬁ n ﬁ) %} . (13)
conductivity, p is the fluid pressure andis the fluid stress tensor. ’ R
In these equations the tilde denotes the time-average ofatity
whereas quotation marks denote th_e f|UCtL.Jat.I0n of a quantitye 8 (k) y (or) 0 1 ok
sense of Favre (1965) decomposition. Similarly, overbarotis o + u; e or. \ Re o
the time-average of a quantity in the sense of Reynolds (1685 i i € oL B
composition. Two new unknown quantities appear, respalgtin +52 ( o gf) + 11— pe + Rff%” oL | (14)
the momentum (3) and in the energy equations (5), defineddy th
correlations between velocity fluctuations, the so-calRaynolds
Stress, given by_ the tensefpu;'u’/, and by fluctuations of_temper— 8 (pe) _9 (pe) @ 10
ature and velocity, the so-called turbulent heat flux, deffiog the ot + u; 9z 1. \ Re om,
vector—pu!/ T". ’ ’ ’
The Reynolds stress of turbulent tensions is calculatechby t —&—B‘Zi (Reiag g,fi) + £ (Call = Ceape)
x — ¢ model, proposed by Jones and Launder (1972) with the modi- .
fications introduced by Launder and Spalding (1974), given b +£ (Ces b W) , (15)
—— Oou; — 0u; _
—pulu! = (8% + 6a:i> F (1 v T) =1, (16)
2 oy
——p 04 7) where:
3(pﬁ+ﬂtaxl) js ) 2
1
t
K= uiul. ®)
and 1 [0y n ou;\ O0u;
) " Re; Oxz; Oz ) Ox;j
K 1 _ _
— - — - ou ou;
Ht = Cltp c Re; . (9) —% <pl€ + Rlet 67905) éij dz; (18)
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In Eq. (21) the terng,,- is a value obtained from the integration
process proposed by Mellor (1966) and is a function of theedim

P o= p+ 2 Kl + 1) %y + ,3,@] (19) sionless pressure gradient. Its values are obtained thriotgrpo-
3 [\Re = Re;) Oz lation of those obtained experimentally by Mellor, shownTable
1.

with the model constants given by:

C,=0,00, Cey =1,44, Cey = 1,92, Table 1. Mellor’s integration constant (1966).

C3=0,288,0,=1,0.=1,3, Pry =0,9.
p* | —0.01 | 0.00 | 0.02 | 0.05 | 0.10 | 0.20
Wall Functions & | 492 | 490 | 494 | 5.06 | 5.26 | 5.63
p* 0.25 | 0.33 | 0.50 | 1.00 | 2.00 | 10.00

The k — ¢ turbulence model is uncapable of properly represent- Epr 5.78 | 6.03 | 6.44 | 7.34 | 8.49 | 12.13
ing the laminar sub-layer and the transition regions of tlbulent
boundary layer. To solve this inconvenience, the solutaopsed in
this work is the use of wall laws, capable of properly repntisg Velocity wall law of Nakayama and Koyama (1984)
the flow in the inner region of the turbulent boundary layer.

There are four velocity and two temperature wall laws imple- |n their work Nakayama and Koyama (1984) proposed a derive
mented on the code Turbo 2D. The laws used in this simulatien gon of the mean turbulent kinetic energy equation, thatilted in
explained bellow, except for the classical log law whoséherrex- an expression to evaluate the velocity near solid bounslarigs-
planations are unnecessary. ing experimental results and those obtained by Strattft®89), the

derived equation is

Velocity wall law of Mellor (1966)

Deduced from the mean equation of Prandtl for the turbulent . 1 ts+1t—1
boundary layer and considering the pressure gradient terinte- u= [3(’5 —ts) +in (ts ) 1)} ; (24)
gration, this wall function is a primary approach to flowsttbaffer
influence of adverse pressure gradients. Its equationgespec- with
tively, for the laminar and turbulent regions

1 Y L U
u =yt 4 optyt? (20) B 3 T TP

2 20m* K C
K* — % and y*s _ 1Jf177*0>347 (25)
. 2 — where K™ is the expression for the Von Karman constant modifie
Y= K ( L+pryr = 1) by the presence of adverse pressure gradieitis, a dimensionless
11 ( 4y* ) . 1) shear stres,; = 5.445 is the log-law constant and the parameter
K\ 24pry +2VI+pTy" P is a value of t at a positiop* .

where the asterisk upper-index indicates dimensionleastiies of
velocity u*, pressure gradiept' and distance to the waji as func-
tions of scaling parameters at the near wall region, K is tha V' aApalyzing the asymptotic behavior of the

Karman constant ang,- is !\/Iellor_’s integration constant whichis ayoundary layer flow under adverse pressure gradients, Cr
function of the near-wall dimensionless pressure gradient and Silva Freire (1998) derived an expression for the vajdai

For calculation purposes the intersection of both regiere®n- he jnner region of turbulent boundary layer. The solutidrihe
sidered to be the same as the log law expressions, wftere: 4symptotic approach is

11,64. The relations between the dimensionless near wall proper-
ties and the friction velocity. ; are:

Tw 2 [Tw = 1dpy, Tw Uf, (y)
_ _ U= r——/—+-———y+ ——=in| =
T 1 w d w Lc
. Yyur . U and p* op v . 22) | K\ p = p dz [Tw| K

Velocity wall law of Cruz and Silva Freire (1998)

v us p Ox us? w2 or dpw . Tw
with L. = V() i e (26)
The friction velocity is calculated by the relation: P dw
where the sub-indey indicates the properties at the wall, K is the
1 1 Ou; 10P Von Karman constantl.. is a length scale parameter angl is the
U \Re " . pdz; Y (23) friction veloci
e Rer) O0x; pox; riction vi ity.
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The proposed equation for the velocity, equation (26), hlas-a By Eq. (30) it is possible to convert an imposed heat flux on th
havior similar to the log law far from the separation and tazt- wall into an equivalent wall temperature by knowing the hadraof
ment points, but, close to the separation point, it gragitalhds to the local Stanton number, since
Stratford’s equation (1959).

Gz

Ty =Ts ) 32

Temperature wall law of Cheng and Ng (1982) + 2Coun St (32)
In this work it is used the temperature wall law of Cheng and Ng f there is an unheated starting length, so the thermal baynd

(19_82). For the calculation of the te_mperature profilg imgar_ wall layer begins its development under a pre-existing veldmiyndary
region, Cheng and Ng (1982) derived an expression similéieo ayer an adjustment is necessary to take into account thisipety

logarithmic law for velocity. For the laminar and turbuleegions, of the flow. The adjust proposed by Kays and Crowford (1998) ca

the equations are respectively be done on Eq. (29) resulting in the Eq. (36),
(To —1T) . , 1
f 2Pr3 \ 07
(To-T), _ L In(y*) +C
T, — Ry, "W Ng where ¢, and o denotes, respectively, the velocity and therma
with y* = =¥ (27) boundary layer thickness.

v

In equation (30) an accurate calculation of the temperajtae
whereTy is the environmental temperatuteis the normal distancedient is a difficult task since the use of wall laws producesltdss
up to the wall,v is the cinematic viscosity andy is the friction of some information in the wall region. On the other hands tif-
temperature, as defined by Brun (1988) ficulty can be avoided by employing equations (29) or (36)ergh

the local friction coefficientC' f, is calculated with the use of the

1 1 1 oT friction velocity u ¢, wich is calculated by equation (23), so:
Uufp RePr ~ RerPrr ) Oxj s
- . . Cra Tw ; 2
and the friction velocity. , is calculated by Eq. (23). 9 = ouZ with Tw = PUYy
The intersection of these regions are/at= 15, 96 and the con- > .2
stantsK y, andCy, are, respectively), 8 and12, 5. and Cro =24 (34)

The Heat Flux Boundary Condition And The x — ¢ By these calculations it is possible to estimate, with a gaod
Model curacy, the heat transfer rates in turbulent flows where thadary

layer is well structured, for example, in flows over flat ptatnd

As discussed before, imposing a heat flux boundary conditionOther geometries that don’t generate boundary layer deteh
the wall in a high Reynolds turbulence model, such as thesicals ~ The problem in using this formulation happens when we aealyz
K — e, requires a special treatment since there are no heat flux Wg flow inside or at downstream of a recirculation regiongereh
functions available. This work proposes a new method toestlis the boundary layer is not well structured and the use of gnedds
inconvenience without the need of creating a heat flux wall ehe Not & viable alternative. In these cases, Gontijo and FoatBo-

main idea is to use the Colburn (1933) analogy, Eq. (29),imase drigues (2009) developed an expression using a previouglgre
the Stanton number for non-detached boundary layers. mental work of Vogel and Eaton (1985), where the authorsistieal

turbulent flow over a heated backward facing step that haddico
tion of a constant heat flux imposed on its lower wall. Thetreta
St, = 20Pfacg 7 (29) obtained is expressed by Eg. (35).
T3

i

whereC f; is the local friction coefficient and the local Stanton numsy () = 0,00106 + 0,00912z* — 0,00895z*> + 0, 00233z**
ber can be evaluated by
with

qx
pcpuoo (Tw - Too) w* = 733 — (35)
Ty —xq
where, for a flat plate ] ] ] S
wherez defines the local coordinate in the flow directian, is the

detachment point and,. is the reattachment point.
— oT (31) Expression (35) presents good results in other geometties,
o = =0 ' ferent from the backward facing step, as the next sectiorstwilw.
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Results Crowford (1993) correlation, given by

Several test cases were used to validate this methodology in of ¢ 9/107 ~1/9
der to show its generality. First it is shown the good perfamnce Sty = ;/3 1— () ] , (36)
of analogies in cases where there is no boundary layer detauh 2Pr x

Following are addressed problems of using classical aredaghen ) ) o )
the boundary layer is not well structured. Thereafter, istiown Wherez is the distance from the beginning of the plate gnidl the
the arguments taken into account to develop a new approa:czﬂ-to“”heated starting length. The nl_JmerlcaI value of_ the lotahiBn
culate the Stanton number inside a recirculation region fimally, Number was calculated by two different ways, using Egs. &)
this approach is tested for different geometries that inchaundary (36) called in Fig. (1), respectively, numerical 1 and nuoar2.
layer detachment. A mesh study was done for each test case difjmain idea of the works of Taylor et al. (1990) is to evauat
more details on the numerical process can be found in theeviastth® influence of a thermal boundary layer starting over aldgeel
Dissertation of Gontijo (2009). velocity boundary layer in the behavior of the heat transétes
over a plate with low temperature gradients. In these cdabese
Use of analogies on flat plates with unheated starting lenggh is a difference ofl8 K" between the temperature of the plate and o
and low temperature gradients the free stream flow. The numerical P1-isoP2 mesh used taitexec
the simulations had 18447 nodes and 35872 elements. Inakés c
First it is shown the performance of the Colburn analogy & tkhe wall law used for velocity was the classic logarithm lavd or
estimation of the local Stanton number for four differerst teases, temperature the wall law of Cheng and Ng (1982), since there a
based on the experimental works of Taylor et al. (1990). Is tmo significative pressure gradients imposed by this gegméttis
work the authors made several measurements of the localo8tapossible to notice that the use of the Colburn (1933) anabadgu-
number over a heated flat plate. The plate ad» long. The flow lated by Eq. (36) produces better results. The explanatiothfs
is considered two-dimensional in the midle section and &lecity behavior consists on the fact that the derivatives of teatpeg in
of the free stream flow i8/, = 28m/s. The results presented inthe normal direction of the plate are not taken on the waikeithe
Fig. (1) show the behavior of four different test cases, vayyhe use of a high Reynolds model restrict the numerical simuitattd a
initial unheated starting length. certain distance above it.

Analogies in an isothermal flat plate with high temperature

gradients
0.004 T T 0.004p— T
° Numerical 1 o Numerica\ 1 . )
v Emenasl . Bosinena In order to validate the use of the Colburn (1933) analogy ir
£ - - - Empirical correlatior £ = - - Empirical correlation]

problems where the temperature and velocity fields are eduglie
to a high temperature gradient, a simulation of a problermdtred-
ied by Ng (1981) is presented. In this test case a flat plate26fn

long, heated in a constant temperaturel 250K, receives a flow
of air with a free stream velocity af0, 7m /s and with an uniform

0001 i T 0001 o o temperature 0293 K. In this work the range of the local Reynolds
'(?5 F(*; number is placed between0 10° < Re, < 7.8 10°. There is a
0004 : 0.004 : : difference of957K between the temperature of the plate and of the
Numerca2 Numerc2 free stream flow. It was used a P1-isoP2 mesh with 6499 nodes a
TR A st L o 12672 elements. The simulation was done with the classiclaval

0.003 .

for velocity and the wall law of Cheng and Ng (1982) for temper
ature. Figure (2) shows the variation of the local Stantomioer
through the plate calculated by the same way as those froifathe
lor et. al (1990) test case.
, , - In the legend of Fig. (2) the experimental values are takem fr
e Re, the work of Ng (1981) and the numerical values are obtainetthéy
© @ same way that in the Taylor et al. (1990) test case. The behalbt
Figure 1. Local Stanton number for Taylor et al. (1990) testec Served is the same, the use of the Colburn (1933) analogylatdd
U = 28 - Isothermal plate (a¥=0,36 m (b),£=0,76 m (c) and by Eq. (36) is the best option to estimate the heat transfesrét is
£=1,36 m (d). important to notice that the Colburn analogy works well ewdren
the temperature gradients involved are very strong.

0.001

The use of analogies in a recirculation region

In the legend the experimental result is obtained from thekwo To check the behavior of the heat transfer rates inside ecteci
of Taylor et al. (1990), empirical correlation denotes treey&K and lation region and the performance of analogies in this snait

112/ Vol. XXXIII, No. 1, January-March 2011 ABCM
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sional form of the Nusselt number that for a channel can beueal
lated by the following relation:

0.005

Numerical 1
Numerical 2
. Experimental

2q. PrH

Nuy,=——"——"——— 37
& T uCy(Tw — Tywir) (37)
oo B TR In the equation aboveYu, represents the local Nusselt number,
. q.. is the local heat fluxPr is the Prandtl number of the fluid, H
i is the height of the channel, affd, is the temperature of the wall.
ooopb o v o Combining Eq. (37) with the Colburn (1933) analogy, Eqg. (30)
0 0.05 X (m) 01 015 and with the definition of the local Stanton number, wherehihikk

temperature may be taken as
Figure 2. Local Stanton number for Ng (1981) test case.

Ty + Too
2 )

was selected a test case based on the works of Liou et al. X199 possible to establish a relation between the local Bltissimber

In this test case, artificial roughness elements callelare used to g4 the friction velocity as

induce the flow separation, increasing the turbulence $ewetl, by

consequence, the heat transfer rates. The ribbed chaodetdin .

this work presents a Reynolds number of 12600. The velogity o Ne. — APrsui, H 39

witch the Reynolds number was calculated.igm /s and the height e = Viey (39)

of the rib is0.008m. The P1-isoP2 mesh used on the simulations

had 3739 nodes and 7200 elements. In the experimental work ofThe values Owu%‘ shownin Fig. (3), are the Ipcal Nusselt num-
gers for a channel without the presence of the Ribs, cakdilay the

Liou et al. (1992), the rib was made of aluminum and it was éeba ittus-Boelit tion. It ible to ob ; t
by a thermal film in its underside, providing a condition ohstant blt\L/\J/S- oetter egu;a '08' 'S POSS tel c? ct) serve ac? h ri;n;n
heat flux. The top part of the channel was insulated, so arbatica etween numerical and experimental data in non detac =9

wall was created. The height of the rib represents twentgguer g)l?ges A, BI anddC). Inside the recirc(ljjlatior: zo_rl]ﬁ_s, the idbe
of the height of the channel. Figure (3) shows the behavidhef olburn analogy does not present good results. This wasdlex-

heat transfer rates along the channel. In the legend of Bigthe pected, since analogies between fluid friction and heastearcan

experimental values are taken from the work of Liout et &09Q). only be done in a well structured boundary layer. The resilEsg.
(3) show the necessity of an alternative treatment to estimath a

good accuracy, the behavior of the local Stanton numbergions
of the flow where the boundary layer is not well structurekk n-
side recirculation zones and after the reattachment of d@dary
layer, as the following test case will illustrate.

Touir = (38)

experimental
log law
Mellor’s law
Koyama's law
CSF's law

Nu/Nu_s
w

B
¢

oo 9]

(a)

15k

Y/h
=

Y R —
\/\J—/\‘—\P

0
X/h

Figure 3. Nusselt number along the bottom wall (a), strectirthe

recirculation regions (b).

(b)

An approach to estimate the Stanton number in detached
flows

In order to propose a new methodology to estimate the loc:
Stanton number inside a recirculation region, the experiaievork
of Vogel and Eaton (1985) was set as the benchmark to devei®p t
approach. In this test case a backward facing step, withghhef
0.038m is heated in the bottom plate with a constant heat flux o
270W/m?. The Reynolds number based on the height of the ste
is 27023. The free stream velocity of the flowli$.3m/s. The
P1-isoP2 mesh used to execute the simulation has 4191 nndes
8016 elements. Figure (4) shows the behavior of the localt&ta
number when calculated by the use of the Colburn analogy Héi
havior suggests that after the reattachment point the lmyrayer
is being restructured. This restructure occurs in a reda has
approximately the same length of the recirculation region.

Results in Figs. (4.a) and (5) marked as experimental aentak
from the work of Vogel and Eaton (1985). The results of Figa)4
suggest that it is possible to calibrate a polynomial retato cal-

In this work, the wall heat flux is calculated in the non dimermulate the local Stanton number, inside the recirculatgion from
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diffuser of Buice and Eaton (1995) and the turbulent flow @D

oo Numerical hill, studied by Loureiro et al. (2007). The boundary coiutis

0000 b - v Fremend used to execute these simulations are illustrated in F&ysar(d (7).

E/—‘;( F ° ) ° ® o . * o

0.002 W . |

F \ =0
@ o 16 15 26 .
X Ko Calculation domain P_0
€
4 Tac y
= X P
> —
q =4,

(b)

Figure 6. Geometry and boundary conditions of the Buice atdrc

(1995) diffuser.
Figure 4. Numerical and experimental behavior of the Stantan-
ber (a), streamlines of the flow (b).
Qu_0v_0k_de_0T_p_
0y 0y 0y dy 0dy
0.006 u} This approach
] Experimental
u
%0.004 | Ly ) . .
e o o
) .0 @ &g oo ; Calculation Domain o0
o002 o7 U § Lend Felela €
0 T, A
a
X/h q =( L q =0
q =4y

Figure 5. Adjusts obtained by the proposed relation.

Figure 7. Geometry and boundary conditions of the Loureiral.e
(2007) 2D hill.

the detachment point to a distance of twice the recirculatione

length, based on the physical reality of the backward fasteg of ) ,

Vogel and Eaton. This relation is given by Eq. (35). By usinigt " the experimental works of Buice and Eaton (1995) anc
equation the behavior of the local Stanton number, in a siti  LOureiro et al. (2007), the thermal field is not consideredeyt
done with the Cruz and Silva Freire wall law, is shown in Fi). ( Studied only the dynamical field. What was done to create two ne
The adjust obtained with Eq. (35) shows a good accuracy leetwleSt cases based on these experimental works was to caléusat
numerical and experimental values and the transition freenise of 1€ dynamical field of these flows, without inputing any thatm
this equation to the calculation with the Colburn analogsrimoth, Poundary condition. Then, a simulation with an imposed tants
after the restructuring region of the boundary layer. Imgportant €mperature on the wall was executed. After this step, tubvag

to say that the necessary length for the boundary layeurating lent thermal energy ipjected in the flow is calculated by rneiag
is still an open problem and needs further studies. Howets, the temperature profiles before and after the heated watler Atis

methodology turns viable the simulation of turbulent tharfiows St€P. an équivalent heat flux was calculated and imposee isetime
with the high Reynolds: — ¢ model with wall laws and heat quxwa‘,II' Wh.ere the constant temperature condition was |mp.o§.;d
boundary conditions. In order to validate this methodolaggther d0ing this procedure it is expected that the same energgteyen
geometries with boundary layer detachment, the next sestiows the flow, by the constant temperature boundary conditiomistbe

its performance in an asymmetric plane diffuser and on a gmothiected by the equivalent constant heat flux conditions itipor-
hill. tant to say that in both cases occur the boundary layer deeah

In order to obtain an accurate behavior of the velocity amapier-
Extension of this new approach to other detached flows in- ature fields inside the recirculation regions, the law of whal of
duced by different geometries Cruz and Silva Freire (1998) was used in both cases. This lasv w
the one with the best performance among all the laws of thé we
In order to extend this methodology to other geometriestew tested. These results were published in the master’s tisiser of
test cases were proposed, based on studies of the asymptatréc Gontijo (2009), where more details can be found.
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this work has provided good results.

Expected profile Expected profile
This approach . This approach
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