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Two-Dimensional Wigner Crystal on Helium Films:
An Indication of Quantum Melting
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Using molecular dynamics simulation (MD) we have investigated the melting of the two-dimensional Wigner
crystal on 240Å-500Å liquid helium films supported by substrates of dielectric constants εs = 2.2− 7.3.
Our results show good agreement with available theoretical and experimental results for densities below
1.0× 1010cm−2. For higher densities, we notice some disagreements suggesting that quantum effects are im-
portant in this regime of densities.
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I. INTRODUCTION

It is well established that electrons on helium surface are
an almost ideal two dimensional electron system. They form
the cleanest example of a two dimensional electron gas that,
at sufficiently low densities and temperatures (where the po-
tential dominates), will form a two dimensional electron crys-
tal called Wigner crystal[1]. In the bulk this system under-
goes a solid-liquid phase transition at a temperature Tm =
2e2(nπ)1/2/(εHe + 1)kBΓm, which is much higher than the
Fermi temperature TF = πn~2/kBm. Here εHe is the dieletric
constant of helium, m the electron mass and Γm is the plasma
parameter at the melting temperature. Therefore, such elec-
trons obey the classical Boltzmann statistics and their phase
diagram can be calculated using classical approach.

Lindeman’s melting criterion[2] tells us that the thermody-
namic state of a classical coulomb system is determined by
the quantity Γ = 〈U〉/〈K〉 which is a measure of the ratio of
the mean coulomb potential energy to mean kinetic energy.
Thus, for Γ . 1 the kinetic energy predominates and the sys-
tem behaves like an electron gas. At intermediate densities
1 . Γ . 100, the electron motion becomes highly correlated
or liquidlike. At high densities Γ & 100 the coulomb poten-
tial energy predominates and the electrons are expected to un-
dergo a phase-transition to form a periodic crystalline array.
Experimentally the liquid-to-solid transition in the bulk takes
place for a value of the coupling constant[3] Γm = 137± 15
and computer simulations by Kalia et al.[4] indicate a first-
order melting Γm = 118−130 in good agreement with exper-
iment.

Superficial electrons on helium films also form a very in-
teresting system to study the many-body properties of 2D
screened systems. In this case the screening is provided by the
image charges in the substrate beneath the film. The screening
effect can drastically change the electron-electron interacting
potential, going from 1/r to 1/r3, through varying external
parameters such as film thickness and dielectric constant of
the substrate. Peeters [5], using a phenomenological approach
got a reduction in the phase diagram of this electron system

in comparison to the bulk case. Saitoh[6] using an analyti-
cal approximation for the angular frequency of the transverse
phonon combined with the Kosterlitz-Thoules melting crite-
rion, got a melting transition in this system in agreement with
Jiang et al. experiments[7]. Cândido et al.[8] using computer
simulation, studied the thermodynamical, structural and dy-
namical properties of this two-dimensional electron system.
Experimentally, the melting temperature of the Wigner crys-
tal on thin helium films adsorbed on dielectric substrates was
measured by Jiang et al. [7] through the electron mobility and
by Mistura et al.[9] using microwave cavity technique.

In this paper, we will get back to the discussion pointed out
by the authors in a previous work [10] about the discrepan-
cies between simulational and experimental results (at elec-
tron densities higher than 1.3× 1010cm−2) that might be re-
lated to the importance of quantum effects at such regime.
The obtained results are directly compared with available ex-
perimental data by Mistura et al.[9] and Jiang et al. [7], and
theoretical results by Peeters[5] and Saitoh[6].

II. SCREENING COULOMB POTENTIAL

We consider a two-dimensional system of electrons on a
helium film of thickness d adsorbed on a substrate of dielec-
tric constante εs, interacting through a screening Coulomb
potential[11]. The electron system is immersed in a rigid, uni-
form, positive charge background to make a neutral charged
system. The interaction potential between two electrons on
the helium film with thickness d (the distance between the
electron layer and the substrate), wich incorporates the re-
markable influence of the different film thickness and sub-
strates can be obtained through the solution of Poisson equa-
tion with appropriate boundary condition, is given by

V (r) = 2e2
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where δ = (εs− εHe)/(εs + εHe), with n, εs and εHe being the
electron density, the dielectric constants of the substrate and
helium film respectively. If we approximate the dielectric con-
stant of the helium film by 1 (εHe = 1.057), the series in the
second term of Eq. 1 converges rapidly, and we can rewrite
the interaction potential as

V (r) = e2

[
1
r
− δ√

r2 +(2d)2

]
. (2)

The second term of Eq. 2 gives the screening due to the con-
stant of substrate and film thickness. For small interparticle
distances r0 ¿ d, where r0 = (πn)−1/2 is the mean distances
between electrons, the screening is negligible and one has a
Coulombic potential

V (r) =
e2

r
. (3)

If instead the electrons are far apart, r0 À d, and we have

V (r) =
e2(1−δ)

r
+

2δe2d2

r3 +
6δe2d4

r5 + · · · . (4)

Note that for a metallic substrate, εs = ∞ where δ = 1, the
interaction is between dipoles of strenght p = 2ed composed
of electrons and their images in the substrate

V (r) =
2e2d2

r3 . (5)

III. MOLECULAR DYNAMICS PROCEDURE

In this work most of the molecular dynamics calculations
were performed on a system of 100 electrons with a few runs
of 484 and 784 electrons to study size effects. The finite
size effect is investigated by changing the system size and
the thermodynamical behavior in an infinite system is derived
from its extrapolation. The initial positions of the electrons
are in a triangular lattice which is accommodated in a rec-
tangular box with periodic boundary condictions to eliminate
the surface effects. Because of the long-range nature of the
electron-electron and electron-background interacting poten-
tial we employ the Ewald summation which splits the poten-
tial into a long-range and a short-range part. The long-range
part is handled in k space, while the short range part in the
real space. We have used the fifth-order predictor-corrector
algorithm to integrate Newton’s equation of motion with the
MD time step varying from 10−12 to 10−15 sec, since it has
some scale dependence on the electron densities. The opti-
mum time step leads to a conservation of the total energy of
1 part in 104 after several thousands time step runs. The time
averages of the physical quantities were obtained over 120000
time steps after the system has reached the equilibrium. The
transition temperature is obtained performing a simulation in
two steps: (i) a sequence of runs in cascade coming down
from high to low temperatures at time step fixed and stop-
ing when the system freezes at the temperature Tf reezes, (ii)
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FIG. 1: The melting temperature as a function of the electron density
for dielectric constants of 2.2 and 3.9.

a sequence of runs starting at very low temperature (tringu-
lar lattice) with the time step fixed stopping when the system
melts at the temperature Tmelting. The transition temperature
is given by Tf reeze < Tm < Tmelting. In the discussion of the
results below we call Tm, the transition temperature, as the
melting temperature.

IV. RESULTS AND DISCUSSIONS

Figures 1-3 show the melting temperature as a function of
the electron density at several film thicknesses and dielectric
constants of the substrates. Because it is quite difficult to
plot all the available data (simulational, theoretical and ex-
perimental) in one single graphic, we will discuss the results
using three separate plots. Fig. 1 shows our simulation re-
sults and Saitoh’s[8] and Peeters’s[7] theoretical results. One
can notice an agreement with Saitoh’s and a disagreement
with Peeters’s. This can be justified as being a possible dou-
ble counting in the calculation of Tm by Peeters, as already
pointed by Saitoh. In Fig. 2 we campare our results to Jiang’s
et al.[10] experiment. To emphasize the differences between
the three types of results we add to this plot the theoretical
results by Saitoh. There is a good agreement between the
three types of results, except at the density 1.3× 1010cm−2.
In Fig. 3 we give a comparison with the experiment by Mis-
tura et al.. For densities below 5×109cm−2 we obtain a good
concordance. Again, for densities higher than 1× 1010cm−2

the results do not agree, even though the differences in Tm at
such densities are almost within the uncertainty in the exper-
imental measuremment. We also show in this figure the good
concordance with Saitoh’s theoretical results for all densities
studied. A possible explanation for such discrepancies could
be that quantum effects are important at such densities, which
corroborates the measuremments taken by Günzler et al.[12]
using microwave cavity technique at T = 1.2K. These mea-
surements show an abrupt increase of the electron mobility at
electron densities near 1011cm−2, which is suggested as quan-
tum melting of the Wigner solid. In addition to this point,
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FIG. 2: The melting temperature as a function of the electron density
for different film thicknesses and dielectric constant of 7.3. The solid
line is the bulk limit.
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FIG. 3: The melting temperature versus the electron density for difer-
ent film thicknesses and two dielectric constants (2.2 and 3.9).

we note that the change in entropy on melting is found to be
decreasing as one increases (decreases) the density or the di-
electric constant of the substrate (the film thichness). It might
imply that transition becomes continuous at higher densities.

V. CONCLUSIONS

We have shown in this work that the MD is able to re-
produce the experimental measurements of the melting tem-
perature in the two-dimensional electrons on thin liquid He
films for densities below 1.0×1010cm−2. For higher densities
we notice some discrepancies with the available experimental
measuremments, suggesting that at such densities quantum ef-
fects are important and our results using classical molecular
dynamics method might be beyond its applicability.
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