
DISSERTAÇÃO DE MESTRADO

A COMPUTER VISION SYSTEM
FOR RECOGNIZING

PLANT SPECIES IN THE WILD
USING CONVOLUTIONAL NEURAL NETWORKS

René Octavio Queiroz Dias

Brasília, julho de 2017

UNIVERSIDADE DE BRASÍLIA

FACULDADE DE TECNOLOGIA

UNIVERSIDADE DE BRASÍLIA
Faculdade de Tecnologia

MASTER’S THESIS

A COMPUTER VISION SYSTEM
FOR RECOGNIZING

PLANT SPECIES IN THE WILD
USING CONVOLUTIONAL NEURAL NETWORKS

René Octavio Queiroz Dias

Master’s Thesis submitted to the Department of Mechanical

Engineering as a partial requisite to obtain

a Master’s degree in Mechatronic Systems

Examining Committee

Prof. Díbio Leandro Borges, Ph.D, CIC/UnB
Advisor

Prof. José Mauricio Santos Torres da Motta, Ph.D,
ENM/UnB
Chair Member

Prof. Bruno Luiggi Macchiavello Espinoza, Dr.,
CIC/UnB
Chair Member

FICHA CATALOGRÁFICA

DIAS, RENÉ OCTAVIO QUEIROZ
A COMPUTER VISION SYSTEM FOR RECOGNIZING PLANT SPECIES IN THE WILD USING
CONVOLUTIONAL NEURAL NETWORKS [Distrito Federal] 2017.
xvi, 64 p., 210 x 297 mm (ENM/FT/UnB, Mestre, Sistemas Mecatrônicos, 2017).
Dissertação de Mestrado - Universidade de Brasília, Faculdade de Tecnologia.
Departamento de Engenharia Mecânica

1. Aprendizagem de Máquina 2. Inteligência Artificial
3. Visão Computacional 4. Classificação de Plantas
I. ENM/FT/UnB II. Título (série)

REFERÊNCIA BIBLIOGRÁFICA
DIAS, R.O.Q. (2017). A COMPUTER VISION SYSTEM FOR RECOGNIZING PLANT SPECIES IN THE
WILD USING CONVOLUTIONAL NEURAL NETWORKS. Dissertação de Mestrado, Publicação
ENM.DM-126/2017, Departamento de Engenharia Mecânica, Universidade de Brasília, Brasília, DF,
64 p.

CESSÃO DE DIREITOS
AUTOR: René Octavio Queiroz Dias
TÍTULO: A COMPUTER VISION SYSTEM FOR RECOGNIZING PLANT SPECIES IN THE
WILD USING CONVOLUTIONAL NEURAL NETWORKS.
GRAU: Mestre em Sistemas Mecatrônicos ANO: 2017

É concedida à Universidade de Brasília permissão para reproduzir cópias desta Dissertação de Mestrado
e para emprestar ou vender tais cópias somente para propósitos acadêmicos e científicos. Os autores
reservam outros direitos de publicação e nenhuma parte dessa Dissertação de Mestrado pode ser
reproduzida sem autorização por escrito dos autores.

René Octavio Queiroz Dias
Depto. de Engenharia Mecânica (ENM) - FT
Universidade de Brasília (UnB)
Campus Darcy Ribeiro
CEP 70919-970 - Brasília - DF - Brasil

Dedication

To my parents, Rubení and René, and to my sister, Anna.

René Octavio Queiroz Dias

Acknowledgements

I would like to thank my family for their incredible support; they always have been
encouraging me to keep going forward with this project, even when I was in the brink of
giving up. A special thanks to my mother and sister, whom, in their spare time, went with
me to the field, and helped with the pictures of the plants.

I am eternally grateful to my grand-father, Joviniano, whom months before passing
way, advised me to keep studying instead of telling me how to pass through the roughness
of life. This really impressed me, especially for a person with rural background, little
instruction, and even incapable to tell what I was studying.

Thank you, professor Díbio, you offered me new perspectives in this project, and
helped me follow ahead when I got stuck or I when I had many ideas and had to select
the feasible ones.

I also want to express my gratitude to the professors and friends at Universidade
Federal de Uberlândia, Bucknell University and Universidade de Brasília, whom laid
the cornerstone which upon I built this project.

René Octavio Queiroz Dias

“Eppur si muove!",

attributed to Galileo Galilei.

ABSTRACT

Classifying plant species has been a recurrent topic in the Computer Vision community.
Visually, plants present a high level of variability, mostly because of seasonal effects, age and
background. Early classification systems had difficulties to deal with this variability and early
databases relied on simple images, using dismembered parts of the plants, such as leaves and
flowers, and a distinctive background (usually white).

With the advent of Deep Neural Networks, which proved to be very competitive as a general-
purpose classifier, we aim to assess them with a more specific-purpose database, which can be
further strained by trying to classify similar plant species in some very different poses.

We created a new database that focus on how the common user takes plant pictures. This
database, named Plantas, is meant to be highly unconstrained. Initially, it contains 50 common
different species and cultivars used in gardening worldwide, and more than 33,000 images. These
images were taken on site and download from the Internet.

Then, we train this database with the latest state of the art techniques, such as Encoding
Methods and Deep Neural Networks. We further explore neural networks by testing some recent
activation functions and also fine-tuning.

RESUMO ESTENDIDO

Classificação de plantas tem sido um problema recorrente na comunidade de Visão
Computacional. Visualmente, as plantas apresentam uma variabilidade muito grande, decorrente
principalmente de efeitos sazonais, idade e fundos. Sistemas de classificação mais antigos tinham
problemas para lidar com estas variações e seus bancos de dados usavam imagens mais simples
com apenas partes desmembradas de plantas (como folhas e flores) e fundo branco.

Com o advento das Redes Neurais Profundas, que demostraram ser bastante competitivas como
classificadores de propósito geral, o objetivo é testá-las com um banco de dados de propósito mais
específico, que podem tencionar mais estes classificadores tentando classificar espécies de plantas
similares em poses bastante diferentes.

Construiu-se um banco de dados que é focado em como o usuário comum tira retratos de plantas.
Este novo banco de dados, chamado Plantas, foi feito para ter poucas restrições. Inicialmente, há
50 espécies diferentes que são usados comumente em jardinagem, e há mais de 33.000 imagens.
Estas fotos foram tiradas in loco e da Internet.

Depois, treinou-se com técnicas recentes do estado da arte, como os Métodos de Codificação e
Redes Neurais Profundas. Nos Métodos de Codificação, são usados três codificadores: Saco de
Palavras Visuais (BoVW), Vetores Fisher (FV) e Vetores de Descritores Linearmente Agregados
(VLAD).

Nos Métodos de Codificação, há duas fases: uma aprendizagem sem-supervisão e em seguida
uma supervisionada. Em todos os métodos, o processo é parecido. Na fase sem-supervisão,
obtêm-se os descritores SIFT, retira-se uma amostra destes descritores, faz uma aprendizagem da
projeção da Análise de Componentes Principais e usa-se k-médias para agregar estas características
em k grupos, que são o número de palavras. Aqui se separa o treinamento de BoVW e VLAD
dos Vetores Fisher. Para os primeiros, cria-se uma árvore k-d para facilitar o posterior processo de
pesquisa. Para os Vetores Fisher, usa-se os grupos como inicialização dos Modelos de Mistura de
Distribuições Normais.

Na fase de aprendizagem supervisionada, passa-se uma imagem pelos processos de obtenção
dos descritores SIFT, amostragem e PCA. Então, para cada característica de uma imagem, pesquisa-
se o grupo a qual pertencente. Para BoVW, obtém-se um histograma que conta cada palavra da
imagem que tem o equivalente no dicionário. Para VLAD, obtém-se o desvio à média destas
palavras, e com Vetores Fisher, além do desvio à média, calcula-se o desvio à covariância. Estes,
representam os descritores finais que são posteriormente treinados com uma Máquina de Vetores
de Suporte Linear (Linear-SVM).

Nas redes neurais, são treinadas diferentes arquiteturas recentes como AlexNet, CaffeNet,
GoogLeNet e ResNet. Elas contêm técnicas que exploram a estrutura espacial das imagens, como

as camadas de convoluções, e usam técnicas de regularização que evitam sobreajuste — que era
algo especialmente comum em redes com muitos parâmetros — como Dropout e Normalização em
Lotes. Também foi a primeira vez em que se usou uma função de ativação que não sofre problemas
de saturação, a Unidade Linear Retificada (ReLU) que tomou o lugar de Sigmóides e Tangentes
Hiperbólicas.

Usando estas arquiteturas, faz-se experimentos para saber como elas respondem ao novo banco
de dados, e quais são as melhores especificações para obter-se a melhor acurácia e quais as razões
que uma escolha é melhor que a outra.

Nestes experimentos, funções de ativações mais recentes como a Unidade Linear Retificada
Parametrizada (PReLU) e a Unidade Linear Exponencial (ELU) foram testadas. Também, usa-se
técnicas de ajuste fino em que se reutiliza parâmetros de uma rede treinada para um certo banco de
dados em outro, também conhecido como transferência de conhecimento.

SUMMARY

1 INTRODUCTION . 1

2 RELATED WORKS . 3
2.1 PLANT CLASSIFICATION SYSTEMS . 3
2.1.1 DATABASES . 3
2.1.2 SEGMENTATION . 4
2.1.3 FEATURE DESCRIPTORS AND CLASSIFICATION . 5
2.2 CONVOLUTIONAL NEURAL NETWORKS . 6
2.2.1 ARCHITECTURES . 6
2.2.2 ACTIVATION FUNCTIONS . 7
2.2.3 ERROR OPTIMIZATION . 8
2.2.4 CLASSIFIERS . 9
2.2.5 DEPTH . 10
2.2.6 DATA AUGMENTATION . 10
2.2.7 REGULARIZATION . 11
2.2.8 MODEL AVERAGING . 12
2.2.9 FEATURE GENERALIZATION AND FINE-TUNING . 12

3 THE PLANTAS DATABASE . 13

4 ENCODING METHODS AND CLASSIFICATION . 19
4.1 DENSE SCALE-INVARIANT FEATURE TRANSFORM (DSIFT) 20
4.1.1 SIFT DESCRIPTOR . 20
4.1.2 DENSE DESCRIPTORS . 25
4.2 SAMPLING OF IMAGE DESCRIPTORS . 26
4.3 LEARNING OF PRINCIPAL COMPONENT ANALYSIS (PCA) PROJECTION . . 26
4.4 GEOMETRIC AUGMENTATION . 27
4.5 LEARNING OF VISUAL VOCABULARY . 27
4.5.1 VECTOR QUANTIZATION METHOD FOR BOVW OR VLAD 27
4.5.2 GAUSSIAN MIXTURE MODEL FOR FISHER VECTOR . 28
4.6 ENCODING IMAGES AND TRAINING THE CLASSIFIER . 28
4.6.1 BAG OF VISUAL WORDS . 28
4.6.2 FISHER VECTOR . 29
4.6.3 VECTOR OF LINEARLY AGGREGATED DESCRIPTORS . 30
4.6.4 TRAINING . 30

5 NEURAL NETWORKS . 31
5.1 FEED-FORWARD NEURAL NETWORK (FNN) . 32

x

5.2 CONVOLUTIONAL NEURAL NETWORKS (CNN) . 33
5.3 POOLING . 33
5.4 ACTIVATION FUNCTIONS . 34
5.5 OPTIMIZATION . 35
5.5.1 MAXIMUM LIKELIHOOD . 35
5.5.2 STOCHASTIC GRADIENT DESCENT . 36
5.5.3 SOFTMAX . 37
5.6 REGULARIZATION . 38
5.6.1 L2 PARAMETER REGULARIZATION (WEIGHT DECAY). 39
5.6.2 DROPOUT . 39
5.6.3 LOCAL RESPONSE NORMALIZATION . 40
5.6.4 BATCH NORMALIZATION . 40
5.7 CAFFE FRAMEWORK . 41

6 EXPERIMENTS . 43
6.1 DATABASE PREPARATION . 43
6.2 ENCODING METHODS AND CLASSIFICATION . 43
6.3 DEEP LEARNING MODELS . 44
6.3.1 ARCHITECTURES . 44
6.3.2 MODELS . 46
6.3.3 DATA SETUP . 47
6.3.4 PARAMETERS . 48
6.4 EVALUATION METRICS . 48
6.5 COMPUTER SPECIFICATIONS AND TRAINING TIME . 49

7 RESULTS AND DISCUSSION . 50

8 CONCLUSIONS . 59

REFERENCES . 61

FIGURES LIST

2.1 Illustration of the data augmentation method used by GoogLeNet for testing
purpose. This method gives a total of 144 images. ... 11

3.1 Examples of blurred and noisy images discarded by the author discretion. 13
3.2 Quantity of images per classes (species or cultivars) (DIAS; BORGES, 2016)....... 14
3.3 Image samples of the Plantas50Basic ... 15
3.4 Image samples of the Plantas50Extra.. 16
3.5 Image samples of the Plantas50Internet .. 17

4.1 On the bottom, SIFT descriptors are taken for every image at seven different
scales, then all of these descriptors are stacked in a Descriptor Matrix. In this
example, the descriptor have a total of 16 bins (2x2x4). 20

4.2 This is the part of building a visual dictionary. After we have the stacked
descriptors, we sample some of them, do a PCA, cluster these features using
k-means, being k the number of words. If we train a Fisher Vector, we can use this
clustering for an initial guess on each word mean, covariance and prior probability,
then feed a GMM (GMM is required for Fisher Vector because it needs first and
second order statistics). For Bag of Visual Words or VLAD, we build a k-d-tree
with these words, this tree is used for accelerating the query. 21

4.3 This is the part that we encode an image and train or classify it. For an image,
we take its descriptor after passing through SIFT features, sampling, PCA and
Geometric Augmentation. Then, we query the k-d-tree for Bag of Visual Words
or VLAD; or a GMM for Fisher Vector. In the Bag of Visual Words, we build a
histogram of the words found; in VLAD, we calculate the mean deviation of each
feature; and in Fisher Vector, we calculate the mean and covariance deviations.
These histogram or deviations are used to train or classify an image using a Linear
SVM. .. 22

4.4 Canonical SIFT descriptor and spatial binning functions (VEDALDI;
FULKERSON, 2008). ... 23

4.5 Affine transformation from canonical frame to the image frame (VEDALDI;
FULKERSON, 2008). ... 24

4.6 Detail of the Bag of Visual Words. First we construct an dictionary of visual
words (which is done by clustering the features into k words) then for every image
we obtain their visual word representation by querying the dictionary and counting
how many visual words are found and build the histogram. 29

xii

5.1 Example of a Convolutional Neural Network. We input an image, then apply some
filters to this input and we have the feature maps, which pass through activation
function, then by a pooling layer followed by a fully-connected layer, finally the
loss is calculated in the last layer (the size of the output is the number of classes if
Softmax is used). ... 31

5.2 Two feed-forward neural networks. .. 32
5.3 These are convolutional layers with an input with size 7 and with two features

maps. The first feature map is the result of a convolution by a filter [0,0,1], and the
second by a filter [0,1,0]. The receptive field is of size 3, and in the first feature
map, the colors represent the receptive field of each neuron. We, then, apply the
activation function to the feature map before pushing the results forward. When
the network is learning, it changes the values of the filters in order to minimize the
loss. .. 33

5.4 Example of Max Pooling ... 34
5.5 Activation functions in blue, and their derivatives in red. 34
5.6 Example of an implemented Softmax Loss Layer. ... 39
5.7 Neural Network with Dropout during training (SRIVASTAVA et al., 2014). 40
5.8 Variant of the LeNet (LECUN et al., 1989) as a Directed Acyclic Graph 42

6.1 The Inception Module and Residual Module .. 46
6.2 Fine-tuned models: Zero, Complete, SVM. In Zero, we set the learning rate to

zero to all loaded pre-trained weights and train the last layer; in Complete, we
train all layers; in SVM we take the training images descriptors of the penultimate
layer and train them using a Linear SVM... 47

7.1 Training loss and validation accuracy for 30 epochs and a step learning policy
of reducing learning rate by 10 for every 10 epochs. Training of CaffeNet and
GoogLeNet (batch size of 256 and 32, respectively) using Plantas50Basic. 53

7.2 Training loss and validation accuracy for 30 epochs and a step learning policy
of reducing learning rate by 10 for every 10 epochs. Training of Inception and
ResNet-50 (batch size of 12 and 6, respectively) using Plantas50Extended. 54

7.3 Confusion Matrix of Fisher Vector (Plantas50Basic) .. 55
7.4 Confusion Matrix of Fisher Vector (Plantas50Extended)................................... 56
7.5 Confusion Matrix of GoogLeNet-Finetuned-PReLU (Plantas50Basic) 57
7.6 Confusion Matrix of GoogLeNet-Finetuned-PReLU (Plantas50Extended)............ 58

TABLES LIST

3.1 Cameras Properties... 13
3.2 Properties of the Plantas Database ... 14
3.3 Species of Plantas Database and their taxonomic information 18

6.1 Encodings Parameters ... 44
6.2 Architecture of Krizhevsky, Sutskever & Hinton (2012) (AlexNet) 45
6.3 Architecture of Szegedy et al. (2014) (GoogLeNet) ... 45
6.4 Architecture of He et al. (2016) (ResNet) .. 45
6.5 Recorded elapsed time for training only of some classifiers (h:mm:ss) 49

7.1 Classifiers Statistics on the Test Set (DIAS; BORGES, 2016) 51

xiv

SYMBOLS LIST

Latin Symbols

B A mini-batch
L(•) Loss Function
p(•) Probability distribution
p̂(•) Empirical distribution of the data
P (•) Predicted probabilities
x An image
X A set of images and their ground-truth label
y Ground-Truth
y A ground-truth one-hot vector
ŷ The output of a layer
z A descriptor
Z A descriptor matrix

Greek Symbols

∇(•) Differential Operator
π Prior Probability
µ Mean
σ2 Variance
Σ Covariance Matrix
θ Parameters

Dimensionless Groups

e Euler’s number

Subscripts

max Maximum
min Minimum

Superscripts

− Mean value

xv

Initials

AESA Nearest Neighbor Approximating and Eliminating Search Algorithm
ANN Artificial Neural Network
BoVW Bag of Visual Words
BP Backwards Propagation of errors
B/W Black and White image
CNN Convolutional Neural Network
CPU Central Processing Unit
DAG Directed Acyclic Graph
DB Database
ELU Exponential Linear Unit
EM Expectation-maximization algorithm
FNN Feed-forward Neural Network
FV Fisher Vector
IDSC Inner Distance Shape Context
i.i.d. Independent and Identically Distributed
GMM Gaussian Mixture Model
GPU Graphics Processing Unit
HEX Hierarchical and Exclusion Graph
HoCS Histogram of Curvature over Scale
HOG Histogram of Oriented Gradients
HSV Hue-Saturation-Value Color Space
MR8 Maximum Response 8 Filter Bank
MRF Markov Random Field
PCA Principal Component Analysis
PReLU Parametric Rectified Linear Unit
RBF Radial Basis Function
RGB Red-Green-Blue Color Space
ReLU Rectified Linear Unit
SIFT Scale-Invariant Feature Transform
SDCA Stochastic Dual Coordinate Ascent
SGD Stochastic Gradient Descent
SVM Support Vector Machine
VGG Visual Geometry Group (University of Oxford)
VLAD Vector of Linearly Aggregated Descriptors
VQ Vector Quantization

1 INTRODUCTION

The Computer Vision community have been researching classification of plant species in the
last decades. The creation of a classification system needs two components: data and model. They
are intrinsically bounded and building a complex database pushes the development of models.

Past models needed discriminative images with low ambiguity. Tree leaves and plant flowers
dominated these image databases. The first for their morphological features (each tree have leaves
with distinctive shapes), and the latter for their color, texture, and also morphological structures.
Albeit the variation of flowers shape within a species challenged these models (SÖDERKVIST,
2001; WU et al., 2007; NILSBACK; ZISSERMAN, 2006; NILSBACK; ZISSERMAN, 2008;
CERUTTI et al., 2011; LAGA et al., 2012; KUMAR et al., 2012).

These features were extracted using handcrafted descriptors, and later replaced by automatic
features detectors and extractors, such as Scale-Invariant Feature Transform (SIFT) and Histogram
of Oriented Gradients (HOG) (SÖDERKVIST, 2001; WU et al., 2007; NILSBACK; ZISSERMAN,
2006; NILSBACK; ZISSERMAN, 2008; CERUTTI et al., 2011; LAGA et al., 2012; KUMAR et
al., 2012).

In recent years, with the advent of deep neural networks, we can train very complex and diverse
image databases. Krizhevsky, Sutskever & Hinton (2012), for instance, trained their network on
the 2012 ImageNet database (with 1,000 different classes such as dogs, boats, and trees) breaking
the accuracy plateau of the past years.

While models have evolved, current plant database are not fully exploiting these models
capabilities, with the exception of PlantCLEF (GOËAU; BONNET; JOLY, 2015). PlantCLEF
have a large number of species. However, it focuses on trees, ferns, and herbs only; has a small
number of samples for some species; and favors a parted plant classification (such as classifying
images of leaves, branches, fruits, etc.).

Our primary goal is to devise a system that can classify plants on site in an unconstrained way,
thus closing this gap of model and data.

First, we construct a new database, called Plantas, in which the plant pictures are taken on site,
with no white background and no dismemberment of plant parts, the only limitation being that the
plant must occupy the most part of the picture. In most cases, leaves cover the most part of the
pictures; but flowers, stems or any part of the plant might appear. We increased the diversity of
plants, including succulents, trees, vines, and ferns. And, we downloaded several images of the
selected species and manually curated them; adding variability (DIAS; BORGES, 2016).

Then, we train models using two separate approaches. In the first approach, we use the
prior state of the art in recognition (VEDALDI; FULKERSON, 2008) to serve as a baseline
classifier. These models are based on the construction of a dictionary of visual words — using

1

Scale-Invariant Feature Transform (SIFT) and k-means — followed by training using a Linear
Support Vector Machine (SVM) and one of the following methods: Bag of Visual Words (BoVW),
Fisher Vector (FV) and Vector of Locally Aggregated Descriptors (VLAD) (DIAS; BORGES,
2016; PERRONNIN; DANCE, 2007; PERRONNIN; SÁNCHEZ; MENSINK, 2010; JÉGOU et
al., 2010).

In the second approach, we aim to shed the light on the capability of deep neural networks to
train more fine-grained database such as plant species, which some species are visually very similar.
These networks usually has the following architecture: we push an image through the network
(forward pass), which passes through different layers (such as convolutional and fully-connected)
till it reaches the loss layer (which tells how off the classification has been compared to the ground
truth), then the solver uses this information and updates the network’s weights by doing a backward
pass.

We train the following deep network architectures: AlexNet, CaffeNet, GoogLeNet, Inception,
and ResNet (KRIZHEVSKY; SUTSKEVER; HINTON, 2012; JIA et al., 2014; SZEGEDY et al.,
2014; IOFFE; SZEGEDY, 2015; HE et al., 2016). Then, we further explore these architectures by
changing the common activation function Rectified Linear Unit (ReLU) to the Parametric Linear
Unit (PReLU) and Exponential Linear Unit (ELU) (GLOROT; BORDES; BENGIO, 2011; HE et
al., 2015; CLEVERT; UNTERTHINER; HOCHREITER, 2015); and assess how fine-tuning — the
use of weights trained in a different database — affects accuracy of these architectures trained on
our database (DIAS; BORGES, 2016).

The first contribution is the Plantas database, aimed to push the frontier of plant classification.
The second is the construction of a system that classify plants on site, which is derived by assessing
different recognition techniques.

In chapter 2, we describe the related works, especially about plant database construction, prior
classification systems and recent evolution of techniques in neural networks. In chapter 3, we
introduce our Plantas database. In chapter 4, we present the Encoding Methods mathematical
modeling. In chapter 5, we do the same for neural networks. In chapter 6, we describe our
experiments and in chapter 7 we present our results.

2

2 RELATED WORKS

This chapter is divided into two parts: Plant Classification Systems and Neural Networks. In
Plant Classification systems, we revise how systems of visual recognition of plant species have
been built. Most of these works are divided into three pieces: the construction of the image
database, segmentation, and systems of feature extraction.

In the second part, we revise Neural Network focused on the recent field of Deep Learning,
which is centered on Convolutional Layers. We show how these deep networks evolved in time,
and what are the new techniques involved in their success, such as Rectified Linear Unit, Dropout,
and Batch Normalization.

2.1 PLANT CLASSIFICATION SYSTEMS

2.1.1 Databases

Söderkvist (2001) created a database consisting of 1,125 leaf images of 15 Swedish trees;
averaging 75 samples per species. Scanners, adjustments, environment, and positioning varied.
These leaves, cleaned and complete, were scanned in a laboratory.

Nilsback & Zisserman (2006, 2008) created a new database, but for flowers instead. First, with
17 species and 80 images each; later increased to 103 species with a total of 8189 images. They
added difficulties by: choosing similar species; using flowers because they are non-rigid objects;
increasing intra-class variation and inter-class similarity; and varying viewpoint, scale and
illumination. The authors collected the images from the Internet and also on site; intentionally
selecting images hard to discriminate alone by color or shape, for example. However, the
background is usually greenish and flowers have very distinctive patterns and colors, which helped
to isolate the flower alone in the picture during segmentation.

Wu et al. (2007) created a database called Flavia that consists mostly of trees and some plants
with easily detachable leaves from China. It contains 1,800 clean and complete leaves of 33
species, averaging 54 leaves per species. A white background was used in all pictures, and it lacks
further information on database construction.

Belhumeur et al. (2008) built a database of tree, shrubs and some vascular plant leaves collected
by botanists in U.S. Northeast. The database is composed of three sets: The Flora of Plummers
Islands with 5,014 samples of 157 species of vascular plants; The Woody Plants of Baltimore-
Washington D.C. with 7,481 samples of 245 tree and shrubs; and The Trees of Central Park in
New York with 4,320 samples of 144 trees. The collected leaves were flattened by pressing, and
photographed with a ruler and a color chart, under correct luminosity in a laboratory. The ruler
and color chart were then removed by an automated process before use.

3

Continuing the previous work, Kumar et al. (2012), expanded the database, called now
LeafSnap. It contains 23,147 laboratory images and new 7,719 field images of 185 tree species of
the Northeastern United States, averaging 185 samples per species. For the field images, they
dismembered the leaves from the trees and used a white background, taking the pictures with
common digital cameras.

PlantCLEF (GOËAU; BONNET; JOLY, 2015) was built of images from the social network
Tela Botanica, composed by botanists that classify plant pictures sent by users. It contains 113,205
pictures of 1,000 species of herbs, trees, and ferns commonly found in France; and it is divided
into 7 sets: LeafScan, Leaf, Flower, Fruit, Stem, Entire Plant, and Branch. All sets have images
from natural environment, except LeafScan, which leaf images are taken with a white background.
Flowers and leaves are the most populated sets. The diversity of users in different places, taking
pictures in several periods of year, increases the variability compared to previous database.

2.1.2 Segmentation

In earlier classification systems, we needed to segment the leaf or the flower from the
background. Most segmentation techniques relied on the image having a distinct background,
which aids selecting the region of interest.

Back in 2001, when digital cameras were a rarity, scanner was a common device to digitize
images. Söderkvist (2001) required users of the system to take a leaf sample and put it inside a
scanner, which have white background. The image was segmented in black and white using an
empirically selected threshold value; and the leaf was the biggest body, discovered by counting
pixels. The holes were removed by selecting objects without boundaries with the background,
images were cropped to fit the leaf, and the border was sampled in point.

Nilsback & Zisserman (2006, 2008) collected some images from the Internet, which are more
cluttered and possess a more greenish background. They created two RGB distribution for the
foreground and background by labeling a subset of pixels of an image — a part of the plant and a
part of the greenery. Then, they binary segmented them by using contrast dependent prior-MRF
cost function of Boykov and Jolly (BOYKOV; JOLLY, 2001).

Wu et al. (2007) transformed RGB images with white background to grayscale and created
a RGB histogram of all pictures combined to select the threshold value that would separate the
leaves from the background. The separated images, which became black and white, were smoothed
by a noise filter and the margin of the leaves was obtained by applying a Laplacian filter.

Belhumeur et al. (2008) transformed the images from the RGB to the HSV color-space.
Because the light in a forest have a greenish hue, the white background appears green, thus, hue
was discarded. The pixels with their saturation and brightness values were separated into two
clusters: background and foreground. They initialize with k-means clustering, then perform a
real-time Expectation-Maximization (EM) on 5% of the pixels and classify the remaining pixels
according to the two calculated Gaussian distributions.

4

Kumar et al. (2012) follow a similar pattern, however instead of initializing with k-means, they
represent each pixel as a probability distribution modeled as a sum of two Gaussian distributions,
with two different means but sharing the same covariance, which increases the speed of the
EM algorithm and permits the use of 25% of the pixels. After segmentation, they remove any
near-border remaining body, and eliminate the stem searching for an elongated body in the picture.

Cerutti et al. (2011) create a Parametric Active Polygon model according to a botanic
classification of leaves (Lanceolate, Ovate, Oblong, etc.). These polygon shapes have points and
parametric settings trained to match the shape of the leaves, and are intended to segment a leaf in a
cluttered image, with other leaves or shadows. The training is initiated using the centralized pixels
— the images must be centered and vertically oriented — and is divided in two parts: leaf color and
shape. The color is modelled into shaded and lighted parts of leaves using two GMMs, and the
objective function, using color distances, tries to maximize the number of pixels while penalizing
pixels with distant colors. Shape training is initialized by ten hand-crafted initial shapes that are
left to evolve using k-means clustering.

Laga et al. (2012) use an elastic metric for the shape of leaves. The outer boundary,
represented as a Square Root Velocity function, is guaranteed to be scale invariant. The statistical
analysis of these shapes representations, using a Riemannian structure, outputs the mean shape
and the principal direction of variation within a species. Thus, they could attest the similarity
between shapes without a correct positioning, a correspondence between shapes, and the optimal
deformation that aligns shapes. However, while being more flexible than the previous works, they
used the Flavia database (WU et al., 2007), which have uncluttered images.

2.1.3 Feature Descriptors and Classification

Earlier systems needed features to train and those were obtained by using handcrafted
descriptors — which extracts geometric, color, and texture features from the images. Later, more
automated extractors, such as SIFT, became more common.

Söderkvist (2001) extracted features from the shape of leaves. The descriptors required a
B/W image or the sample points of the leaf boundary, and they were: Area, Circularity, Flusser-
moments, Hu-moments, Eccentricity, Curvature Scale Space, and Incremental Circle Transform.
These features were trained on an Artificial Neural Network (ANN) with three layers: input layer,
100 nodes hidden layer, and a 15 nodes layer corresponding to each tree species.

Nilsback & Zisserman (2006) extracted features from their 17 Flower Species database using
a Combined Histogram of Visual Words. They built three vocabularies: for shape, color, and
texture. The first through SIFT descriptors with regular grid; empirically optimizing the values of
grid spacing, support regions, and clusters. The second by changing the color-space to HSV —
which is better for illumination invariability — and clustering the images pixels using k-means.
The latter by clustering and building a histogram of features from a MR8 filter bank (VARMA;
ZISSERMAN, 2002). A linear combination of these vocabularies resulted in trainable system, and

5

the authors obtained the weights by setting one of the weights to one, while varying the others,
which they acknowledge as a suboptimal solution, however less computational expensive than
actually training the weights.

Continuing their work, Nilsback & Zisserman (2008) changed the approach to shape and
texture, which now have local and global features. For local shape, texture, and boundary, they use
SIFT descriptors of the image foreground region for the first two, and foreground boundary for the
latter; and capture the global spatial properties of the flower by extracting features using HOG on
the entire flower. Finally, they train an SVM with multiple Mercer kernels multiplied by a weight,
which learns in a one-vs-rest fashion.

Wu et al. (2007) derived 12 digital morphological features based on 5 geometric features of
the leaf. One of the geometric feature must be entered by the user, the others are determined
automatically from the leaf image. They calculate these 12 features that are further reduced to 5
using Principal Component Analysis (PCA). Then, the authors use an Artificial Neural Network
using RBF as an activation function, which is composed by 3 three layers: the first with 5 nodes
for each feature, 1800 nodes hidden layer, and 32 outputs. Although having a lower accuracy than
the state of the art at the time, it was faster.

Belhumeur et al. (2008) use a shape matching system using the Inner Distance Shape Context
(IDSC). The IDSC samples the boundary points and build a 2D Histogram for each point, which
represents the distance and angle of one sample point to all others, along a path that passes only
inside the leaf, calculated using all pairs shortest path algorithm, done off-line. The querying
calculates the χ2 distance from images sample points to all others in the others shape, and the
matching is calculated using Nearest Neighbor AESA algorithm.

Kumar et al. (2012) replace the IDSC algorithm with the Histogram of Curvature over Scale
(HoCS). HoCS calculates the area or arc-length inside a circle of some radius (or scale) for each
point in the leaf boundary. The curvature image — in the shape of number of points (x), number of
scale (y), and value of area or arc-length (z) — have each of their row (y-axis) taken as a histogram.
A nearest neighbors identifies the species by using the HoCS of the input image compared to all
others of the training set.

2.2 CONVOLUTIONAL NEURAL NETWORKS

2.2.1 Architectures

Most of modern image recognition neural networks relies on convolutional layers introduced by
LeCun et al. (1989). Convolutional neural networks take advantage of some properties of natural
signals such as: local connections, shared weights, pooling and use of many layers (LECUN;
BENGIO; HINTON, 2015). This cause a reduction of parameters and connections; improving
computational time and facilitating training (KRIZHEVSKY; SUTSKEVER; HINTON, 2012).

6

Krizhevsky, Sutskever & Hinton (2012) created the first competitive convolutional neural
network trained in a large-scale image database. In order to train such a large network, they used
GPUs optimized for convolutions. The architecture of this network combined some novel and
unusual features such as: rectified linear units, local response normalization, max-pooling, data
augmentation, and Dropout.

Averaging on multiple models was the new technique used by Clarifai, the 2013 ImageNet
Challenge image classification winner. They also used some insights provided by Zeiler & Fergus
(2013), in which de-convolutional neural network permitted to explore internal representations.
Thus, they modified the filter sizes and stride of the Krizhevsky, Sutskever & Hinton (2012)
convolutional network.

GoogLeNet emerged as the winner of the 2014 ImageNet Challenge image classification. They
worked for an increase in depth and at the same time addressing the problems that come with
it: over-fitting and computational resources. The main idea of their new Inception architecture
is to find out how an optimal local sparse structure in network can be approximated by dense
components (SZEGEDY et al., 2014). They also adopted a more aggressive data augmentation
and the removal of fully connected layers; favoring average pooling.

Simonyan & Zisserman (2014) major contribution was to increase depth using only small
convolution filters and still having competitive results. Their convolutional layers are composed
only by filters of size 3x3. Scale jittering was used for data augmentation and local response
normalization was removed.

Ioffe & Szegedy (2015) address the internal co-variate shift — which is input layer distribution
change during training — by normalizing the inputs for each training mini-batch. This serve also
as a regularizer, and Dropout became optional. Some of the changes in the network were: the
increase of learning rate, removal of dropout, acceleration of the learning decay rate, and reduction
of the photo-metric distortions.

Very deep networks suffer from a degradation problem: while the depth increases, accuracy
gets stalled and then decreases. This is not an over-fitting problem, and adding more layers leads
to a higher training error. He et al. (2016) introduced the deep residual framework that shortcut
connections of some layers (e.g. layer 3 has the result of layer 2 and layer 1 as input, instead of
having only layer 2 as input), helping back-propagating the signal through several layers; reducing
training error. This was the first time that more than 100 layers have been successfully trained and
obtained the best result in the 2015 ImageNet Challenge.

2.2.2 Activation Functions

In the early years, logistic sigmoid and hyperbolic tangent functions were largely used (LECUN;
BENGIO; HINTON, 2015). Logistic sigmoid were used more for biological modeling of neurons
and hyperbolic tangent for working better with multi-layer neural network. However, rectified linear
units (ReLUs) are more biologically plausible and worked better for deep networks (GLOROT;

7

BORDES; BENGIO, 2011).

Some experiments indicated that traditional deep network was hard to train (SCHMIDHUBER,
2015). Typical deep networks suffer from vanishing or exploding gradients while using standard
activation functions, because cumulative back-propagation errors would shrink or explode. This
became known as the Fundamental Deep Learning Problem (HOCHREITER, 1991;
SCHMIDHUBER, 2015).

The substitution of the traditional activation functions for rectified linear units (ReLUs)
alleviated the problem because of their linearity (GLOROT; BORDES; BENGIO, 2011). The
saturating properties of logistic sigmoid and hyperbolic tangent prevent them to train fast, so the
non-saturating ReLUs train much faster and without them would be impossible to train deep
networks (KRIZHEVSKY; SUTSKEVER; HINTON, 2012). Thus, pre-training deep supervised
network became unnecessary (LECUN; BENGIO; HINTON, 2015). Also, as computational
power increased, errors could be propagated to inner layers within reasonable time, which
mitigated the Fundamental Problem effect (SCHMIDHUBER, 2015).

The Batch Normalization technique — which ensures that the distribution of non-linearity
inputs remains more stable — makes possible the use of saturating non-linearities as the network
will be more unlikely to get trapped in a saturated mode. However, the accuracy of ReLU-based
network is still better than the sigmoid-based network (IOFFE; SZEGEDY, 2015).

By studying the properties of rectifiers, He et al. (2015) proposed a new generalization of
ReLU, called Parametric Rectified Linear Unit (PReLU). It permits a slope for negative input,
and the slope trains jointly with the model. This way, zero gradients was avoided and accuracy
increased for challenging tasks. The increase in the number of parameters is small, which avoids
the risk of over-fitting.

The Exponential Linear Unit (ELU) proposes an exponential response to a negative input
with a hyper-parameter determining the point of saturation. This pushes the mean activation to
zero and the gradient closer to the natural gradient, mitigating the problem of bias shift, which
leads the unit to oscillate; hampering learning. Because Batch Normalization addressed a similar
problem, networks with ELUs are better without it. ELUs lead to higher accuracy in earlier epochs
— especially with network that have more than 5 layers — although training in slightly more time
for the same number of epochs compared to ReLU (CLEVERT; UNTERTHINER; HOCHREITER,
2015).

2.2.3 Error Optimization

The training in a neural network occurs when we minimize the error on the training set. For
example, given some images, we want the network to correctly classify most of those images,
changing the weight values accordingly. In a supervised learning, we know beforehand an image
and its class, and after the image has been classified by the network, we analyze if it was correctly
classified. A loss (also known as cost or objective) function calculates the error between the

8

predicted class and the given class.

Back-propagation (backward propagation of errors) derives the loss function with respect to
the output of each neuron, starting from the last layers and going into the inner layers, as practical
application of the chain rule (LECUN; BENGIO; HINTON, 2015).

Gradient descent calculates the minimum by selecting a random point in the function, analyzing
the slope, and choosing the way down. The iteration stops when a local minimum is found and
the weights are updated. Throughout the 1990s, it was largely believed that gradient descend
would get stuck in poor local minimum (LECUN; BENGIO; HINTON, 2015). However, getting
in poor local minimum is a problem only for small networks and unimportant for larger networks
(CHOROMANSKA et al., 2014).

Stochastic gradient descent (SGD) trains most of deep networks, because it minimizes the loss
of a network using mini-batches of images to approximate the gradient of the loss function, and
this is faster than traditional gradient descent. Also, it is impossible to load massive database into
memory, and we can train using only chunks of it. The downside is that hyper-parameters must be
careful selected.

2.2.4 Classifiers

Softmax (a multinomial logistic regression) classifier is used by most recent networks
(KRIZHEVSKY; SUTSKEVER; HINTON, 2012; ZEILER; FERGUS, 2013; SZEGEDY et al.,
2014; SIMONYAN; ZISSERMAN, 2014; IOFFE; SZEGEDY, 2015). It outputs a normalized
class probabilities — class score sum to one — that leads to a more meaningful interpretation on
how “likely” an image belongs to a certain class. Softmax classifier uses a cross-entropy as a loss
function.

Linear Multi-class Support Vector Machine (SVM) classifier works on the basis that given
a margin, the score of the classified class must be at least this margin ahead of other classes. It
uses a hinge loss as a cost function. In practice, however, we use more the squared hinge loss
(L2-SVM) because it is differentiable. Tang (2013) claims that L2-SVM can perform better than
Softmax classifier because of the use of hinge loss instead of cross-entropy loss; however, this was
not tested on large-scale image database, such as PASCAL or ImageNet. Zeiler & Fergus (2013)
tested both SVM and a Softmax classifier for the Caltech datasets, using an ImageNet pre-trained
network, and the results were very similar for both SVM and Softmax while using networks of the
same depth.

As most of all current approaches uses multi-class classification or binary classification, Deng
et al. (2014) propose a new method of classification to capture the complexity of semantic labels.
Because of the multi-class classification nature of assuming mutually exclusive labels and of
binary classification accepting overlapping labels, this new method (HEX graphs) clearly defines
a hierarchical and exclusive labels, accepting mutual exclusion relationship, overlapping and
subsumption. HEX had better results using a modified Krizhevsky, Sutskever & Hinton (2012)

9

network than Softmax, however Softmax is still competitive.

2.2.5 Depth

Increasing depth aids a network to discriminate better and captures a higher level of abstraction.
Krizhevsky, Sutskever & Hinton (2012) created a network of depth 8 —5 convolutional and 3
fully connected layers— and removing any of the convolutional layer would lead to a increase in
error rate. Zeiler & Fergus (2013) experimented removing and modifying some of these layers
and discovered that removing the fully connected layers would not impact the model much and
removing the two middle convolutional layers also made a small difference. However, removing
both the two middle convolutional layers and the two fully connected layers increased the error by
a significant margin. Changing the size of fully connected layers had a little impact, and increasing
the size of convolutional layers improved the results, but the model over-fit.

Being tempted to increase depth and at the same time sparing some computational resources,
GoogLeNet moved from a fully connected to a sparsely connected architecture and also
implemented dimension reduction modules. These improvements made possible the expansion of
the network in depth and breadth without incurring in a large increase in computational cost
(SZEGEDY et al., 2014). On the other hand, the VGG network increased depth but using only
small 3x3 convolutions as a way to avoid an increase of computational resources. They observed
that error rate diminished with increasing depth, however a limit was found as their 16-deep and
19-deep networks scored the same (SIMONYAN; ZISSERMAN, 2014).

2.2.6 Data Augmentation

Krizhevsky, Sutskever & Hinton (2012) enlarged the database using label-preserving
transformation. First, it generated translation and horizontal reflection of images. At training, it
was extracted 224x224 patches of a 256x256 image, and their horizontal reflections as well. For
evaluating an image, the network extract five 224x224 patches (corners and center) and their
reflections for a total of ten patches. And the final prediction is the average of predictions of each
patch made by a Softmax layer. The intensities of the RGB channels of training images was
altered, making object identity invariant to changes in intensity and color of illumination.

Szegedy et al. (2014) are unclear in defining what was done in the GoogLeNet network, as
they tested several ways to augment data for training. However, some directives — some of them
inspired by the work of Howard (2013) — was given, such as: sampling different patch sizes
with different aspect ratio, use of photo-metric distortion, and random interpolation methods for
re-sizing. For testing, the image was re-sized to four scales, the shortest size being 256, 288, 320
and 352. For each of these images, three squares were taken (left, center, right). In these squares, a
224x224 cropping was done in each of the four corners and at the center. The square image was
also re-sized to 224x224. A horizontal and vertical flip was done in these resulting cropped images.
Fig. 2.1 shows the breakdown of this process.

10

(a) Scaling the shortest size of image down to 256, 288, 320 and 352 and then selecting the squares. Inside the
square is shown the four corners and center 244x244 cropping.

(b) The four five images are the four 224x224 corner and central crops of the first square of the first image. The last
is the square re-sized to 224x244. Vertical and horizontal flips of these images is also used.

Figure 2.1: Illustration of the data augmentation method used by GoogLeNet for testing purpose. This method
gives a total of 144 images.

Two approaches were used for training the VGG network: single-scale training and multi-scale
training (SIMONYAN; ZISSERMAN, 2014). In the first, the idea is the same of Krizhevsky,
Sutskever & Hinton (2012). However, two networks were trained; the smallest size of the image
was 256 in one, and 384 in the other. The patches continued to be of 224x224 pixels. In multi-scale
training, each training image is re-scaled by sampling randomly the smallest size to be between
a range of 256 and 512. The VGG network also divides their testing into single and multi-scale
evaluation. In single-scale evaluation, the image has the same smaller side of the training image,
or 384 if multi-scale training was used. In multi-scale evaluation, the testing image is re-sized
three times, being the sizes of 256, 384 and 512 that gave the best results. Then, the network is
densely run over these testing images, such as in the work of Sermanet et al. (2013). This approach
is faster than cropping at run time and lead to similar errors.

The network based on the batch normalization method shuffle the training images in a way
that prevent the same examples appearing the same mini-batch together. It also reduced the photo-
metric distortions (IOFFE; SZEGEDY, 2015). Except for these changes, the network behaves the
same way as described by Szegedy et al. (2014).

2.2.7 Regularization

Training deep network with a large-scale data can lead to over-fitting, and its avoidance was
crucial to Krizhevsky, Sutskever & Hinton (2012). The Dropout technique helped generalizing the
network. The idea is to turn off some neurons with a probability of 50%. So, these neurons do
not contribute to forward pass and in back-propagation. A different network is now sampled for
every input, and neurons learn more robust features. However, it can almost double the number of

11

iterations to converge (SRIVASTAVA et al., 2014; HINTON et al., 2012).

Dropout have been used by the majority of the recent deep networks. Szegedy et al. (2014) even
stated that it was essential to their network. However, with the new Batch Normalization method,
Dropout became optional. Because the training network produces non-deterministic values for a
training example, this aids in generalizing the network (IOFFE; SZEGEDY, 2015).

The addition of auxiliary classifiers can help the ability of a deep network to back-propagate
their gradients more effectively. Adding classifiers in inner layers encourages discrimination in
lower stages; providing extra regularization (SZEGEDY et al., 2014).

2.2.8 Model Averaging

Model averaging is the practice of averaging the output of several trained neural networks.
Clarifai network stated that averaging multiple models improved performance. GoogLeNet
averaged 7 models of their network, changing only sampling methods and the order of input
images (SZEGEDY et al., 2014). VGG team obtained their best result averaging only their two
best models and their error was slightly worse than GoogLeNet. The Batch Normalization network
averaged six networks varying on following modifications: increased the initial weights, using
Dropout and using non-convolutional, per-activation Batch Normalization with last hidden layers
of the model (IOFFE; SZEGEDY, 2015).

2.2.9 Feature Generalization and Fine-tuning

A large-scale trained network can be used for the classification of other databases. Zeiler &
Fergus (2013) propose the use of its ImageNet-trained network for the Caltech and PASCAL VOC
database. All layers of the network are kept the same, except the Softmax that is replaced. The
new layer is then quickly trained for each of these datasets with a small number of examples.
The pre-trained network beats the state of the art for Caltech datasets at the time, and offered
competitive results for PASCAL.

Oquab et al. (2014) focus more on the PASCAL VOC database and fine-tune a pre-trained
ImageNet network. First, a network based on the Krizhevsky, Sutskever & Hinton (2012) is
trained on the ImageNet dataset. Then the last fully-connected layer is removed, and two new
fully-connected layers are trained for the new database. But using only the ILSVRC’12 dataset
was not enough to beat the best PASCAL VOC’12 winners. So, some extra classes of ImageNet
that overlapped with the ones of PASCAL was used, and it finally could offer a better result.

Simonyan & Zisserman (2014) generalize their ImageNet-trained network on the Caltech and
PASCAL datasets without fine-tuning. It used the penultimate layer as image features combined
with a linear SVM classifier. The results were very competitive, and surpassed several states of the
art records.

12

3 THE PLANTAS DATABASE

The Plantas Database1 (DIAS; BORGES, 2016) contains fifty different plant species or cultivars,
located most in mid-western Brazil. The pictures were taken at public and private gardens and
parks, between December 2015 and March 2016, so mostly in summer and in beginning of spring,
Fig. 3.3.

We took the pictures considering how a common user would take them, in a mostly
unconstrained way, the limitations being to avoid large display of background (sky and soil) and to
keep the plant in the center of the picture. All pictures were taken during daylight, although the
time varied; and some were taken at different hours and days for the same species. We used
popular devices for taking these pictures: a smartphone and a digital camera, Table 3.1.

Table 3.1: Cameras Properties

Devices Apple iPhone 6 Samsung ES25
Sensor Resolution 8 Megapixels 12.2 Megapixels
Optical Sensor Size 29 mm 10.9 mm
Lens Aperture f/2.2 f/3.5-5.0

We collected images on the Internet, Fig. 3.5, increasing variability. First, we searched for plants
using their Latin binomial nomenclature and also synonyms if they had one. We automatically
discarded images with resolution below 256x256, and manually for blurred or noisy as in Fig. 3.1.

Figure 3.1: Examples of blurred and noisy images discarded by the author discretion.

We also manually verified if the plant correctly matched those searched, and if more than one
plant appeared in the picture, we selected only if the target plant was in a privileged position —
being centralized and bigger than the other. Then, we used the Geeqie software to look for repeated

1Plantas50 (Basic + Extra) by René Octavio Queiroz Dias is licensed under a Creative Commons Attribution 4.0
International License. Some of the images of Internet dataset may have copyright. Training and using recognition model for
research or non-commercial use may constitute fair use of data. We do not host any images from the Internet dataset. The
images of Plantas50 (Basic + Extra) and the Internet images link can be found at: https://github.com/reneoctavio/plantas.

13

or similar pictures.

The Geeqie software (ELLIS, 2004) searches for images with similar color content. The
algorithm creates a 32x32 array for each color channel, then it divides the picture in 32 rows and
columns (e.g. if a picture has 2048x1536, each element is 64x48). Afterwards, the average color of
each element is saved in the array and compared to the other picture. The similarity is the percent
of the correct matching of the elements of the arrays. For the author, only values greater than 0.85
are significant.

The algorithm displays the matches before deletion, thus we chose a value of 0.10 to increase
the number of matches, and we visually inspected if the images were similar, and if they were the
same we discarded the one with the lowest resolution.

Table 3.2: Properties of the Plantas Database

Set No. Photos Avg. Photos/Species Image Resolution
Plantas50Basic 9,398 ≈ 188 2048x1536, 24 bits color
Plantas50Extra 1,277 ≈ 26 2048x1536, 24 bits color
Plantas50Internet 22,661 ≈ 453 ≥ 256x256, 24 bits color
Plantas50Expanded 33,336 ≈ 667 ≥ 256x256, 24 bits color

The database was divided in three sets: Plantas50Basic (Fig. 3.3), Plantas50Extra (Fig. 3.4)
and Plantas50Internet (Fig. 3.5). The Plantas50Extended is the union of these three. The difference
between the Basic and Extra, is that the latter contains more heterogeneous characteristic (such
a bigger display of background) and is composed of discarded pictures from the Basic, but still
contains enough information to identify the species. The Internet set contains all the pictures
downloaded from the Internet. The Database has a total of 33,336 images with an average of 667
per class, Fig. 3.2.

Figure 3.2: Quantity of images per classes (species or cultivars) (DIAS; BORGES, 2016)

For all the 50 species, we also collected their tree taxonomy information from the Catalogue of
Life (ROSKOV et al., 2017) website, displayed in the Table 3.3.

14

Figure 3.3: Image samples of the Plantas50Basic

15

Figure 3.4: Image samples of the Plantas50Extra

16

Figure 3.5: Image samples of the Plantas50Internet

17

Table 3.3: Species of Plantas Database and their taxonomic information

Species Kingdom Phylum Class Order Family Genus
Agave americana ’Marginata’ Plantae Tracheophyta Liliopsida Asparagales Asparagaceae Agave
Agave angustifolia Plantae Tracheophyta Liliopsida Asparagales Asparagaceae Agave
Agave attenuata Plantae Tracheophyta Liliopsida Asparagales Asparagaceae Agave
Agave ovatifolia Plantae Tracheophyta Liliopsida Asparagales Asparagaceae Agave
Allamanda blanchetii Plantae Tracheophyta Magnoliopsida Gentianales Apocynaceae Allamanda
Allamanda cathartica Plantae Tracheophyta Magnoliopsida Gentianales Apocynaceae Allamanda
Alpinia purpurata Plantae Tracheophyta Liliopsida Zingiberales Zingiberaceae Alpinia
Anthurium andraeanum Plantae Tracheophyta Liliopsida Alismatales Araceae Anthurium
Beaucarnea recurvata Plantae Tracheophyta Liliopsida Asparagales Asparagaceae Beaucarnea
Begonia × hybrida Plantae Tracheophyta Magnoliopsida Cucurbitales Begoniaceae Begonia
Bismarckia nobilis Plantae Tracheophyta Liliopsida Arecales Arecaceae Bismarckia
Bougainvillea glabra Plantae Tracheophyta Magnoliopsida Caryophyllales Nyctaginaceae Bougainvillea
Buxus microphylla Plantae Tracheophyta Magnoliopsida Buxales Buxaceae Buxus
Callistemon spp Plantae Tracheophyta Magnoliopsida Myrtales Myrtaceae Callistemon
Clerodendrum × speciosum Plantae Tracheophyta Magnoliopsida Lamiales Lamiaceae Clerodendrum
Codiaeum variegatum ’Aureo-maculatum’ Plantae Tracheophyta Magnoliopsida Malpighiales Euphorbiaceae Codiaeum
Cordyline fruticosa Plantae Tracheophyta Liliopsida Asparagales Asparagaceae Cordyline
Cupressus sempervirens Plantae Tracheophyta Pinopsida Pinales Cupressaceae Cupressus
Cycas revoluta Plantae Tracheophyta Cycadopsida Cycadales Cycadaceae Cycas
Cycas thouarsii Plantae Tracheophyta Cycadopsida Cycadales Cycadaceae Cycas
Davallia fejeensis Plantae Tracheophyta Polypodiopsida Polypodiales Davalliaceae Davallia
Dianella ensifolia Plantae Tracheophyta Liliopsida Asparagales Xanthorrhoeaceae Dianella
Dieffenbachia amoena Plantae Tracheophyta Liliopsida Alismatales Araceae Dieffenbachia
Dracaena marginata Plantae Tracheophyta Liliopsida Asparagales Asparagaceae Dracaena
Duranta erecta ’Gold Mound’ Plantae Tracheophyta Magnoliopsida Lamiales Verbenaceae Duranta
Dypsis lutescens Plantae Tracheophyta Liliopsida Arecales Arecaceae Dypsis
Echeveria glauca Plantae Tracheophyta Magnoliopsida Saxifragales Crassulaceae Echeveria
Eugenia sprengelii Plantae Tracheophyta Magnoliopsida Myrtales Myrtaceae Eugenia
Hibiscus rosa-sinensis Plantae Tracheophyta Magnoliopsida Malvales Malvaceae Hibiscus
Impatiens hawkeri Plantae Tracheophyta Magnoliopsida Ericales Balsaminaceae Impatiens
Ixora coccinea Plantae Tracheophyta Magnoliopsida Gentianales Rubiaceae Ixora
Ixora coccinea ’Compacta’ Plantae Tracheophyta Magnoliopsida Gentianales Rubiaceae Ixora
Justicia brandegeana Plantae Tracheophyta Magnoliopsida Lamiales Acanthaceae Justicia
Leea guineensis Plantae Tracheophyta Magnoliopsida Vitales Vitaceae Leea
Loropetalum chinense Plantae Tracheophyta Magnoliopsida Saxifragales Hamamelidaceae Loropetalum
Monstera deliciosa Plantae Tracheophyta Liliopsida Alismatales Araceae Monstera
Nematanthus wettsteinii Plantae Tracheophyta Magnoliopsida Lamiales Gesneriaceae Nematanthus
Nerium oleander Plantae Tracheophyta Magnoliopsida Gentianales Apocynaceae Nerium
Ophiopogon jaburan Plantae Tracheophyta Liliopsida Asparagales Asparagaceae Ophiopogon
Philodendron imbe Plantae Tracheophyta Liliopsida Alismatales Araceae Philodendron
Philodendron martianum Plantae Tracheophyta Liliopsida Alismatales Araceae Philodendron
Phoenix roebelenii Plantae Tracheophyta Liliopsida Arecales Arecaceae Phoenix
Podocarpus macrophyllus Plantae Tracheophyta Pinopsida Pinales Podocarpaceae Podocarpus
Rhapis excelsa Plantae Tracheophyta Liliopsida Arecales Arecaceae Rhapis
Rhododendron simsii Plantae Tracheophyta Magnoliopsida Ericales Ericaceae Rhododendron
Russelia equisetiformis Plantae Tracheophyta Magnoliopsida Lamiales Plantaginaceae Russelia
Strelitzia reginae Plantae Tracheophyta Liliopsida Zingiberales Strelitziaceae Strelitzia
Syngonium angustatum Plantae Tracheophyta Liliopsida Alismatales Araceae Syngonium
Zamioculcas zamiifolia Plantae Tracheophyta Liliopsida Alismatales Araceae Zamioculcas
Zinnia peruviana Plantae Tracheophyta Magnoliopsida Asterales Asteraceae Zinnia

18

4 ENCODING METHODS AND CLASSIFICATION

Some encoding methods served as baseline to compare with convolutional neural networks
trained on the Plantas database. These methods were: Bag of Visual Words (BoVW), Vector of
Locally Aggregated Descriptors (VLAD), and Fisher Vectors (FV) (VEDALDI; FULKERSON,
2008; PERRONNIN; DANCE, 2007; PERRONNIN; SÁNCHEZ; MENSINK, 2010; JÉGOU et
al., 2010).

We break these methods in two parts: an unsupervised and a supervised learning process. For
the first part, we obtain a dictionary of visual words that later we will query with visual words
extracted from images. For the last, we train a Linear SVM with the query response and the image
label.

The dictionary is built with the following steps: we obtain several descriptors for each training
image using a Dense SIFT (Fig. 4.1); we sample some of these descriptors for each image and
stack the remaining descriptors together in a Descriptor Matrix; we, then, reduce the
dimensionality by learning the Principal Component Analysis (PCA) projection with possible
whitening regularization; geometric augmentation can be appended as feature (Fig. 4.2).

We can obtain the dictionary of visual words based on the Descriptor Matrix by following one
of these approaches: Vector Quantization (VQ) or Gaussian Mixture Model (GMM). We use the
first for Bag of Visual Words (BoVW) or Vector of Linearly Aggregated Descriptors (VLAD) and
the latter for Fisher Vector (FV).

In Vector Quantization, with a previously selected number of words, we create a dictionary
of visual words using k-means clustering, being the number of clusters the number of words, and
to accelerate the query, we build a k-d-tree using these clusters centers. The Gaussian Mixture
Model have a similar structure, we launch the clusters using k-means, and use these clusters’ mean,
variance, and priors as an initial guess of the GMMs. After some iterations, the GMMs output its
own clusters (or modes), with their respective mean, variance and prior probability (Fig. 4.2).

In supervised learning, we obtain the visual words of each image by passing through the
process of obtaining the Dense SIFT descriptors, sampling, PCA, and geometric augmentation.
Then, we query the dictionary for the visual words, and the output depends on the method. The
Bag of Visual Words outputs a histogram of counted visual words. VLAD gives, for each image,
their visual words deviation from the mean for every visual word in the dictionary; and Fisher
Vector provides the mean and covariance deviation. Then, for each image label, we train a Linear
SVM with the image final descriptor (Fig. 4.3).

19

Figure 4.1: On the bottom, SIFT descriptors are taken for every image at seven different scales, then all of these
descriptors are stacked in a Descriptor Matrix. In this example, the descriptor have a total of 16 bins (2x2x4).

4.1 DENSE SCALE-INVARIANT FEATURE TRANSFORM (DSIFT)

4.1.1 SIFT Descriptor

Lowe (2004) developed the SIFT algorithm in four stages: scale-space extrema detection,
keypoint localization, orientation assignment, and keypoint descriptor. The first three stages detect
important points, and this was a way to avoid calculating the descriptors for several points and
scales. However, in Dense SIFT, we densely sample points at steps and scales determined by the
user, then we apply the last stage to the selected points.

In Dense SIFT (DSIFT), all samples points have the same scale and orientation, and the
parameters are the spatial bin size and sampling steps (the distance of one keypoint to another, in
pixels). The size of a spatial bin, in pixels, is mσ, where σ is the scale and m the magnification
factor. Thus, DSIFT alone is scale variant and we must use several bin sizes to have different

20

Figure 4.2: This is the part of building a visual dictionary. After we have the stacked descriptors, we sample some
of them, do a PCA, cluster these features using k-means, being k the number of words. If we train a Fisher Vector,
we can use this clustering for an initial guess on each word mean, covariance and prior probability, then feed a
GMM (GMM is required for Fisher Vector because it needs first and second order statistics). For Bag of Visual
Words or VLAD, we build a k-d-tree with these words, this tree is used for accelerating the query.

scales and become more invariant (VEDALDI; FULKERSON, 2008).

The histogram has three dimensions: two spatial and one orientation. We use 4 bins for each
spatial dimension (x, y), and 8 orientation bins, which were determined empirically. The descriptor
of each keypoint have a total of 128 bins (LOWE, 2004).

To construct a keypoint descriptor, we calculate the gradient magnitude and orientation at
each image sample point around a keypoint, which are further weighted by the Gaussian window
centered on the keypoint — so, large changes in the boundaries of the histogram impact little.
Then, we accumulate these samples into orientation histogram for each spatial bin. To avoid
boundary effects, a sample is projected into neighboring bins proportionally to the distance (in
units of histogram bin spacing) of the sample from the bin center, which is calculated by trilinear
interpolation (LOWE, 2004; VEDALDI; FULKERSON, 2008).

We used the VLFeat framework (VEDALDI; FULKERSON, 2008), which notation we follow.

21

Figure 4.3: This is the part that we encode an image and train or classify it. For an image, we take its descriptor
after passing through SIFT features, sampling, PCA and Geometric Augmentation. Then, we query the k-d-tree for
Bag of Visual Words or VLAD; or a GMM for Fisher Vector. In the Bag of Visual Words, we build a histogram of
the words found; in VLAD, we calculate the mean deviation of each feature; and in Fisher Vector, we calculate the
mean and covariance deviations. These histogram or deviations are used to train or classify an image using a Linear
SVM.

For the scale-space, we use the Gaussian function as kernel, so let gσ be a variable-scale Gaussian:

gσ(x, y) =
1

2πσ2
exp

(
−1

2

x2 + y2

σ2

)
. (4.1)

Let Iσn(x, y) be the input image and because of its finite resolution is assumed to be pre-
smoothed at σn = 0.5 (this value is the minimum needed to prevent significant aliasing (LOWE,
2004)). Thus, the Gaussian scale space — which is the collection of smoothed images — is:

Iσ = g√
σ2−σ2

n
∗ Iσn , σ ≥ σn, (4.2)

where ∗ is the convolution signal.

The SIFT descriptor is a 3D spatial histogram of the images gradients at the local region, let
J(x, y) be the gradient field at a scale σ, thus:

J(x, y) = ∇Iσ(x, y) =
[
∂Iσ
∂x

∂Iσ
∂y

]
. (4.3)

22

The canonical frame — which the x,y axes are centered on the local region of the descriptor not
on the axes of the image — of the descriptor have each spatial bin with side one and the descriptor
and images axes are the same, as in Fig. 4.4. Let Nθ, Nx and Ny be the number of orientation,
x-axis, and y-axis bins.

Figure 4.4: Canonical SIFT descriptor and spatial binning functions (VEDALDI; FULKERSON, 2008).

Let i, j, and t be the indexes of the x-axis, y-axis and orientation bins, respectively, and their
centers are:

xi = i− Nx − 1

2
, 0 ≤ i ≤ Nx − 1, (4.4)

yj = j − Ny − 1

2
, 0 ≤ j ≤ Ny − 1, (4.5)

θt =
2π

Nθ

t, 0 ≤ t ≤ Nθ − 1. (4.6)

The contribution of each sample to its neighboring bins, can be done using trilinear
interpolation:

w(z) = max(0, 1− |z|), (4.7)

wang(z) =
+∞∑

k=−∞

w

(
Nθ

2π
z +Nθk

)
. (4.8)

The density map of these weighted contribution is:

23

f(θ, x, y) = |J(x, y)|δ(θ − ∠J(x, y)). (4.9)

Weighting by the Gaussian window of σwin, the histogram is then:

h(t, i, j) =

∫
gσwin(x, y)wang(∠J(x, y)−θt)w(x−xi)w(y−yj)f(θ, x, y)|J(x, y)|dxdy. (4.10)

This histogram is l2 normalized, clamped at 0.2, and l2 normalized once more. The first unit
normalization is meant to reduce the effects of illumination change; however, non-linear changes
occur because of camera saturation or illumination changes that affect 3D surfaces with differing
orientation by different amounts, which leads to clamping and a re-normalization. The value of 0.2

was determined empirically by the author (LOWE, 2004).

In order to rotate and translate from the canonical frame to the image frame (Fig. 4.5), let
x̂ = [cx̂ ŷ]T be a coordinate in the canonical frame and x = [cx y]T be a coordinate in the image
frame, thus:

x = Ax̂ + T, (4.11)

Îσ̂(x̂) = IAσ̂(x). (4.12)

Figure 4.5: Affine transformation from canonical frame to the image frame (VEDALDI; FULKERSON, 2008).

The descriptor can be calculated in the image or canonical frame as:

h(t, i, j) =

∫
gσ̂win(x̂)wang(∠Ĵ(x̂)− θt)wij(x̂)|Ĵ(x̂)|dx̂

=

∫
gAσ̂win(x− T)wang(∠J(x)A− θt)wij(A−1(x− T))|J(x)A|dx,

(4.13)

24

being the product of two spatial binning function:

wij(x̂) = w(x̂− x̂i)w(ŷ − ŷj). (4.14)

4.1.2 Dense Descriptors

Because multiple keypoints only change their position and have no orientation, we can simplify,
thus:

x = mσx̂ + T, (4.15)

where m is the magnification factor, and mσ is the descriptor bin size in pixels.

The kernels are defined as:

ki(x) =
1√

2πσwin

exp

(
−1

2

(x− xi)2

σ2
win

)
w
(x

mσ

)
, (4.16)

kj(y) =
1√

2πσwin

exp

(
−1

2

(y − yj)2

σ2
win

)
w
(y

mσ

)
. (4.17)

Now, the histogram becomes:

h(t, i, j) = (kikj ∗ J̄t)

(
T +mσ

[
xi
yj

])
, (4.18)

J̄t(x) = wang(∠J(x)− θt) |J(x)|. (4.19)

If a Flat Window is used instead of Gaussian Windowing, the samples themselves are projected
to the bins without being penalized by the Gaussian. However, the whole bin is then reweighed by
the average Gaussian window of that bin (VEDALDI; FULKERSON, 2008). If a Flat Window is
used, this can be further simplified, being σwin the side of the window, then:

k(z) =
1

σwin

w
(z

mσ

)
, (4.20)

h(t, i, j) = (k(x)k(y) ∗ J̄t)

(
T +mσ

[
xi
yj

])
. (4.21)

25

4.2 SAMPLING OF IMAGE DESCRIPTORS

Initially, we calculate the number of descriptors per image that will be selected:

Number of Selected Descriptors =
Number of Words ∗ Number of Samples per Word

Number of Images

For BoVW, it was selected a number of samples per word of 200 and for the others, 1000.
Then, we select, randomly, a subset of the descriptors for each image according to the number of
selected descriptors calculated beforehand.

Bag of Visual Words is less discriminative than its counterparts (zero-order estimator), and this
means that it needs more visual words to match the higher dimensionality representation of Fisher
Vector and VLAD. Because the dictionary of visual words have a greater number of entries, the
number of samples per word needs to be lower due to the extensive use of computational resources
(PERRONNIN; DANCE, 2007).

4.3 LEARNING OF PRINCIPAL COMPONENT ANALYSIS (PCA) PROJECTION

If a number of PCA dimension is used or whitening is selected, then the PCA projection is
calculated. First, we calculate the sample mean z̄m for every descriptor. Be the descriptor matrix
Zn,m, n the number of descriptors and m the number of features of all images, the new data matrix,
zero centered is:

Z′n,m = Zn,m − 1n,1 ∗ z̄Tm,1. (4.22)

Then, we calculate the covariance matrix Qn,n:

Qm,m =
1

n− 1
Z′
T
n,m · Z′n,m. (4.23)

Now, we calculate the eigenvalues and eigenvectors of the covariance matrix. Let Vm,m be
the matrix of eigenvectors that diagonalize the covariance matrix Qm,m, being Dm,m the diagonal
matrix:

V−1m,mQm,mVm,m = Dm,m. (4.24)

In this step, we sort the eigenvalue matrix Dm,m in a decreasing fashion. Then also organize
the eigenvector matrix Vm,m according to this sorting. Then, if whitening is used, we sum each
eigenvalue by the whitening regularization number multiplied by the maximum eigenvalue of the

26

matrix, afterwards, we calculate a standard deviation vector s and update the matrix Vm,m such as:

s = [s1, . . . , sm], sj =
√
Djj, (4.25)

Vm,m = Vm,m � 1m,1 · s1,m, (4.26)

where � is the element-wise division.

We limit now the size of the columns of the matrix to the number of chosen PCA dimensions,
d, so, Vm,m becomes Vm,d. And, the transformed descriptors matrix is:

Z̃n,d = Z′n,m ·Vm,d. (4.27)

4.4 GEOMETRIC AUGMENTATION

If we use the Geometric Augmentation, we simply concatenate the coordinates (x, y) of the
center of each frame to the descriptors matrix, and ensure that the frames coordinates and the
descriptors are normalized.

4.5 LEARNING OF VISUAL VOCABULARY

4.5.1 Vector Quantization Method for BoVW or VLAD

In this approach, we learn a visual vocabulary with k-means clustering using Elkan’s algorithm
(ELKAN, 2003) and L2 distance, being the k the number of visual words. Then, we index the
clustered words as a forest of 2 trees using k-d-tree, a norm of L2, and splitting the data around the
median. The k-d-tree is used to speed-up the search of a word in the dictionary.

The k-d tree is a binary tree that partition space. Basically, for the first dimension we split the
set in two parts by the median of this dimension. And for each half set, we split it again using the
median for the second dimension until we reach k dimension in their leaves. The dimensions to be
split is usually selected by the dimension with the greatest variance first.

For the experiment, it is used a form of randomized k-d tree (VEDALDI; FULKERSON, 2008).
Each tree is made independently, and we select the dimension randomly among the five with
largest variance. The query uses a best bin first algorithm, which is an approximate way to find
nearest neighbors in high dimensional spaces.

27

4.5.2 Gaussian Mixture Model for Fisher Vector

The Gaussian Mixture Model is a collection of K Gaussian distribution and each one of them
represents a cluster (or mode). For this case, the clusters are the number of visual words, the
collection being a dictionary (VEDALDI; FULKERSON, 2008).

According to Vedaldi & Fulkerson (2008), to sample from a Gaussian Mixture Model, we
sample the component index, k ∈ {1, . . . , K}, from the prior probability πk and also the vector z ∈
Rd from the k-th distribution p(z|µk,Σk), µk the mean and Σk the covariance of the distribution.
The model have the parameters θ = (πk,µk,Σk; k). The density probability can be found by
marginalizing the component index k, such as:

p(z|θ) =
K∑
k=1

πkp(z|µk,Σk), (4.28)

p(z|µk,Σk) =
1√

(2π)d det Σk

exp

(
−1

2
(z− µk)

TΣ−1k (z− µk)

)
. (4.29)

Being Z = (z1, . . . , zn) the descriptor matrix, maximizing the log-likelihood for the learning
of the model can be done as:

θML = arg max
θ

Ez∼p̂ log p(z;θ), (4.30)

=
1

n

n∑
i=1

log
K∑
k=1

πkp(zi|µk,Σk), (4.31)

where p̂ is the sample distribution of the data. This is solved by using the Expectation Maximization
algorithm (DEMPSTER; LAIRD; RUBIN, 1977; VEDALDI; FULKERSON, 2008), and for the
experiments, the clusters are initialized using k-means clustering.

4.6 ENCODING IMAGES AND TRAINING THE CLASSIFIER

After the learning of visual words, we proceed to encode images using the Bag of Visual Words,
Fisher Vector and Vector of Linearly Aggregated Descriptors methods and train them using Linear
SVM.

4.6.1 Bag of Visual Words

For an image, the Bag of Visual Words searches the k-d tree for the image visual words, and for
every word in the dictionary, it counts how many of them was found in the image. Thus, an image
has a histogram of visual words it contains for each visual word entry (Fig. 4.6). This histogram is

28

used as a descriptor for later training.

Figure 4.6: Detail of the Bag of Visual Words. First we construct an dictionary of visual words (which is done by
clustering the features into k words) then for every image we obtain their visual word representation by querying
the dictionary and counting how many visual words are found and build the histogram.

4.6.2 Fisher Vector

The Fisher Kernel can be modified to be used in image recognition. The image is characterized
as a gradient vector derived from a Gaussian Mixture Model of visual words. This gradient vector
can be used later for training in a discriminative classifier, such as SVM (PERRONNIN; DANCE,
2007; PERRONNIN; SÁNCHEZ; MENSINK, 2010; VEDALDI; FULKERSON, 2008).

Let zi ∈ Rd be a descriptor of an image taken from the descriptor matrix, Zn,d, and
θ = (πk,µk,Σk; k = {1, . . . , K}) be the parameters of the GMM distributions. The posterior
probability, the GMM associates each zi to a mode k, is (VEDALDI; FULKERSON, 2008):

qij =
exp

(
−1

2
(zi − µk)

TΣ−1k (zi − µk)
)∑K

t=1 exp
(
−1

2
(zi − µt)TΣ−1k (zi − µt)

) , (4.32)

where j = {1, 2, . . . , d} are the dimensions.

The mean and covariance deviation vectors are:

uij =
1

n
√
πk

n∑
1=1

qij
zji − µjk
σjk

, (4.33)

vjk =
1

n
√
πk

n∑
1=1

qij

[(
zji − µjk
σjk

)2

− 1

]
. (4.34)

The Fisher Vector stacks these vectors for each of the modes:

Φ(I) =



...
uk
...

vk
...


(4.35)

29

4.6.3 Vector of Linearly Aggregated Descriptors

This is similar to Fisher vectors. However, it has some differences such as it does not keep
second-order features information and it can use k-means (VEDALDI; FULKERSON, 2008).

Let zi ∈ Rd be a descriptor of an image taken from the descriptor matrix, Zn,d, using a visual
dictionary constructed by k-means clustering or GMM. Let qik the strength association of xi to
cluster mean µk, it must obey the following restrictions:

qij ≥ 0, (4.36)
K∑
k=1

qij = 1. (4.37)

The residuals which encodes features from x are:

vk =
n∑
i=1

qij(zi − µk). (4.38)

These residuals are then staked:

Φ(I) =


...

vk
...

 , (4.39)

and normalized.

In our experiments, we used square-rooting, which we apply the following function, f , to every
scalar:

f(x) = sign(x)
√
|x|. (4.40)

4.6.4 Training

We used the Linear Support Vector Machine (SVM) for the supervised learning of the model.
The input of the Linear SVM is the histogram or deviations calculated and the label of the training
images.

The Linear SVM was trained using the Stochastic Dual Coordinate Ascent algorithm (SHALEV-
SHWARTZ; ZHANG, 2013). We used L2 Parameter Regularization and Hinge-Loss.

30

5 NEURAL NETWORKS

Earlier methods required image descriptors before training a supervised classifier. However,
deep neural networks can learn from raw data (LECUN; BENGIO; HINTON, 2015).

Training a neural network from raw data could be computationally expensive, especially in the
absence of convolutional layers, which cut memory footprint by using shared weights. Although,
by principle, a network with less connections are less expressive, convolutional layers exploit
connections of local structures, which are enough to learn the most expressive features in most
cases. For example, some pixels located at the beginning of an image is unlikely to have any
correlation with pixels much further ahead.

Another improvement is that by expanding the depth of a network, it can learn more complex
abstractions than those learned by shallow layers, which are usually common filters, such as edge
and color detectors.

Current deep neural networks are divided into layers, which some are: the input layer, the
fully-connected layer, the convolutional layer, the pooling layer and the loss layer.

Most architectures follow closely the same structure (Fig. 5.1): we forward input data (raw
images) that passes through some convolutional layers and pooling layers till they reach some
fully-connected layer that will output to a loss layer.

The loss function calculates how far the predicted output is from the ground-truth, and we
need to minimize this function with respect to the parameters to train the network. This is an
optimization problem that we will solve using Stochastic Gradient Descent in most cases.

Figure 5.1: Example of a Convolutional Neural Network. We input an image, then apply some filters to this input
and we have the feature maps, which pass through activation function, then by a pooling layer followed by a fully-
connected layer, finally the loss is calculated in the last layer (the size of the output is the number of classes if
Softmax is used).

31

Gradient Descent uses gradients to push the parameters in the direction that reduces the loss
function to a minimum. If the function is convex — which is not the case for most deep neural
networks models —, it can converge to a global minimum, if not, only a local minimum can be
guaranteed. However, for deep neural networks, this is usually not a problem (CHOROMANSKA
et al., 2014). We face a trade-off in choosing a learning rate: if it is high, the loss will decrease
fast, however, it might not converge to a local minimum; and if it is too low, the training can take a
long time.

We calculate these gradients using back-propagation. Because, in neural network, a layer is a
function of the activation of the anterior layer, which is a function of the input of that layer and so
on, we used the chain rule of calculus to pass the partial derivatives from the very bottom to the
very top of the network in order to update the parameters.

In next sections, we discuss the theoretical background of the deep neural network.

5.1 FEED-FORWARD NEURAL NETWORK (FNN)

For a feed-forward neural network, let ai be the nodes of the anterior layer (A) and pj the
nodes of posterior layer (P). Also, let wai,pj be the weights that connect the interlayer nodes, and
bj the bias of the node. So, a pj node will have a value of the activation function that receives the
weighted sum of the outputs of the previous layer, as in Eq. 5.1. The anterior and posterior layers
can be any two subsequent layers, including input and output layers. An example of a feed-forward
network is shown in Fig. 5.2.

pj = f

(∑
ai∈A

wai,pjai + bj

)
(5.1)

a1

a2

a3

Layer A

p1

p2

p3

Layer P

wai,pj

(a) A fully connected feed-forward neural network.
(b) A local connected feed-forward neural
network.

Figure 5.2: Two feed-forward neural networks.

32

5.2 CONVOLUTIONAL NEURAL NETWORKS (CNN)

Convolutional Neural Networks (CNNs) are feed-forward neural networks, which are used
mostly for two-dimensional input, such as images. These networks are composed by convolutional
layers and have basically three components: input, trainable filters (or weights), and feature maps.
The input is convoluted by some trainable filters that produce a feature map. These feature maps
are tied to a spatial configuration of the image — information of images are usually packed together
and not scattered — thus a local connected network is used.

Receptive field, stride, number of feature maps are parameters required in order to build a
convolutional layer. Receptive field is the number of incoming connections that a neuron has.
If a neuron has three receptive fields, it means that there are three neurons in the previous layer
connected to it. Stride determines how the neurons will receive overlapping information as can be
seen at Fig. 5.3. Higher strides lead to a higher dimensional reduction. The numbers of feature
maps will be the numbers of trainable filters chosen for this layer.

1

1

1

1

0

0

0

Input

1

1

0

0

0

Feature
Map 1

1

1

1

0

0

Feature
Map 2

(a) Stride = 1.

1

1

1

1

0

0

0

Input

1

0

0

Feature
Map 1

1

1

0

Feature
Map 2

(b) Stride = 2.

Figure 5.3: These are convolutional layers with an input with size 7 and with two features maps. The first feature
map is the result of a convolution by a filter [0,0,1], and the second by a filter [0,1,0]. The receptive field is of size
3, and in the first feature map, the colors represent the receptive field of each neuron. We, then, apply the activation
function to the feature map before pushing the results forward. When the network is learning, it changes the values
of the filters in order to minimize the loss.

5.3 POOLING

Pooling is a common technique used after the feature maps are obtained, and is applied to their
activated output. It has two parameters: stride and filter size. The filter size corresponds to the
size of the region that it will pass through an image, and the stride is how far a selected region is
from another. For the values inside a region, they will be averaged if it is an average pooling, or
the highest number will be chosen, if it is a max-pooling operation. Fig. 5.4 is an example of a
max-pooling operation with stride 2 and filter 2x2 for a random 4x4 matrix.

33

Figure 5.4: Example of Max Pooling

5.4 ACTIVATION FUNCTIONS

We tested the following activation functions: the Rectified Linear Unit (ReLU) (GLOROT;
BORDES; BENGIO, 2011; KRIZHEVSKY; SUTSKEVER; HINTON, 2012), the Parametric
Rectified Linear Unit (PReLU) (HE et al., 2015), and the Exponential Linear Unit (ELU)
(CLEVERT; UNTERTHINER; HOCHREITER, 2015).

Let ŷ be the output of a layer (e.g. if it is a convolution layer, ŷ is the feature map), the ReLU,
PReLU and ELU functions are respectively:

f(ŷ) = max(0, ŷ), (5.2)

f(ŷ) =

ŷ if ŷ > 0

aŷ if ŷ ≤ 0
, (5.3)

f(ŷ) =

ŷ if ŷ ≥ 0

α(eŷ − 1) if ŷ < 0
. (5.4)

(a) Rectified Linear Unit (b) Parametric Rectified Linear
Unit (a = 0.1)

(c) Exponential Linear Unit (α =
1)

Figure 5.5: Activation functions in blue, and their derivatives in red.

34

5.5 OPTIMIZATION

In optimization, the solver is obliged to change the weights (or parameters) of the network to
minimize a loss (or objective) function. A naïve way is to randomly change the weights and save
the configuration that minimize the loss. However, this would take a very long time to obtain a
good solution — because the number of weights of a deep network is massive —, and a more
plausible way is to minimize the loss function by taking the derivatives w.r.t. the weights. These
gradients will inform the solver the way it need to change the weights to minimize the loss.

Stochastic Gradient Descent needs the derivatives to minimize the loss and update the weights
which are calculated by a backward pass of the network called backpropagation. Backpropagation
applies the chain rule of calculus by stacking derivatives of functions inside functions (almost all
layers have a function, and we have functions applied to functions).

The choice of loss layer depends on how a system will classify its input. In this case, we have
a system with several independent classes (e.g. species) and we want the ground truth class to
have the highest score possible and the others the lowest possible. We can take a probabilistic view
and say that the last layer provides a probability score for each class and we consider that the last
layer provides unnormalized probabilities. We use the Softmax function as way to normalize these
scores, so that all these probabilities sums to one and that each probability is between 0 and 1.
This can be seen as the parameter estimation by using Maximum Likelihood (ML), which is the
same as minimizing the negative log-likelihood (NLL).

5.5.1 Maximum Likelihood

For a collection of training images X = {(x1, y1), . . . , (xn, yn)}, let x be an image and y its
ground-truth, p(x;θ) be a parametric family of probability distributions, the maximum likelihood
estimator is (GOODFELLOW; BENGIO; COURVILLE, 2016):

θML = arg max
θ

n∏
i=1

p(xi;θ), (5.5)

θML = arg max
θ

n∑
i=1

log p(xi;θ). (5.6)

We can rescale the function dividing by n and obtain:

θML = arg max
θ

Ex∼p̂ log p(x;θ), (5.7)

where p̂ is the empirical distribution of the training images.

Generalizing for the case of estimating the conditional P (y|x;θ) and assuming the examples
to be i.i.d. (GOODFELLOW; BENGIO; COURVILLE, 2016), the estimator can be rewritten as:

35

θML = arg max
θ

n∑
i=1

logP (yi|xi;θ). (5.8)

5.5.2 Stochastic Gradient Descent

Gradient Descent is an optimization algorithm, which we try to minimize a function by taking
its derivative. The derivative calculates the slope of a function at a particular point, and we move
in the direction of the slope to get closer to the minimal of a loss function (by modifying the
parameters) in this case.

If the function is not convex, this algorithm cannot guarantee that it moves towards the global
minimum, only to a local minimum. The scale of the descent must be carefully selected to avoid
being trapped in a poor local minimum. Thus, it cannot be large so it passes over the minimum,
and also not small, because it would take a long time to converge.

Most deep learning problems have very large datasets and it is impossible to load and push
it forward at once. Thus, Stochastic Gradient Descent divides the dataset in several batches
drawn uniformly. The gradient is an expectation, and it can be approximated by a mini-batch
(GOODFELLOW; BENGIO; COURVILLE, 2016).

Let X = {(x1, y1), . . . , (xn, yn)} be a batch of images, x be an image with its ground-truth y,
and p̂ the empirical distribution of data; the loss function is:

L(θ) = − 1

n

n∑
i=1

logP (yi|xi;θ), (5.9)

The gradient is computed as:

g = ∇θL(θ) = − 1

n
∇θ

n∑
i=1

logP (yi|xi;θ). (5.10)

5.5.2.1 Backpropagation

To calculate these gradients, we need to take the derivatives from the last layer to the top, and
these layers are composed by function of a function of a function, etc. Thus, we use the chain rule
of calculus to calculate these derivatives, and this chain rule is backpropagation.

This is a recursive application of the chain rule of calculus, where derivatives are calculated by
taking several known derivatives (GOODFELLOW; BENGIO; COURVILLE, 2016). Formalizing,
let a ∈ Rm and b ∈ Rn; g : Rm → Rn and f : Rn → R. If b = g(a) and c = f(b), then:

36

∂c

∂ai
=
∑
j

∂c

∂bj

∂bj
∂ai

, (5.11)

∇ac =

(
∂b

∂a

)T

∇bc. (5.12)

5.5.2.2 Momentum

The momentum algorithm (Alg. 1) can accelerate learning by accumulating an exponentially
decaying moving average of past gradients and keeping moving in that direction, which is called
the velocity v (GOODFELLOW; BENGIO; COURVILLE, 2016). Then, for α as learning rate,
and µ as momentum, which weighs the previous velocity, the update of parameters is given by:

v← µv − αg, (5.13)

θ ← θ + v. (5.14)

Algorithm 1 Stochastic Gradient Descent (SGD) with momentum (GOODFELLOW; BENGIO;
COURVILLE, 2016)
Require: Learning rate α, momentum parameter µ.
Require: Initial parameter θ, initial velocity v.

1: while stopping criterion not met do
2: Sample a mini-batch of n examples from the training set {(x1, y1), . . . , (xn, yn)}
3: Compute gradient estimate: g← − 1

n∇θ
∑

i logP (yi|xi;θ)
4: Compute velocity update: v← µv − αg
5: Apply update: θ ← θ + v

5.5.3 Softmax

For Softmax (Fig. 5.6), let ŷi be the predicted unnormalized log probabilities of an image,
where ŷi,k = log P̃ (yi = j|xi;θ), the predicted probabilities is given by:

P (yi = j|xi;θ) =
exp(ŷi,j)∑
k exp(ŷi,k)

. (5.15)

This implies that for every image, the probabilities for each label must be between 0 and 1, and
the sum of all probabilities have to be 1. The loss is calculated as:

L(θ; X) = − 1

n

n∑
i=1

logP (yi|xi;θ). (5.16)

37

For an image, its loss is zero when the predicted label is the same of ground truth label. The
loss with the Softmax, then, becomes:

L(θ; X) = − 1

n

n∑
i=1

[
ŷi,j − log

∑
k

exp ŷi,k

]
, (5.17)

where j is the ground-truth label.

To facilitate the calculation of the gradients, we call a one-hot vector, yi, the ground-truth
vector of an image, which the position of the correct class has a value of one, and the others zero.
For example, if the correct class of an image is 5, the one-hot vector at position 5 will have a value
of 1, and the other positions will be 0. We can rewrite the Softmax function and loss as:

P (yi,j = 1|xi;θ) =
exp(ŷi,j)∑
k exp(ŷi,k)

, (5.18)

L(θ; X) = − 1

n

n∑
i=1

∑
j

yi,j logP (yi,j|xi;θ). (5.19)

Now, we calculate the gradient of a single image (at position i) and a single label (at position j)
w.r.t. the input of Softmax (using back-propagation), which is:

∂Li
∂ŷi,j

=
∑
k

∂Li
∂P (yi,k|xi;θ)

∂P (yi,k|xi;θ)

∂ŷi,j
, (5.20)

=
1

n
[P (yi,j|xi;θ)− yi,j] . (5.21)

We can rewrite the gradient of an image as a subtraction of the normalized predicted output
from the ground-truth vector, such as:

(∇ŷL)i =
1

n
[P (yi|xi;θ)− yi] . (5.22)

5.6 REGULARIZATION

Over-fitting is common in learning deep representations of a neural network, because of
massive number of parameters. To mitigate this risk, we can use some regularization techniques
that penalizes training in order to generalize better for testing sets.

38

Figure 5.6: Example of an implemented Softmax Loss Layer.

5.6.1 L2 Parameter Regularization (Weight Decay)

Weight Decay increases the variance of input values, which are not considered so valuable
anymore; thus, resulting in gradients with smaller magnitude that change little the value of the
parameters. This is useful with small datasets because the network will be penalized if it tries
to exactly fit the input. In the end, it will generalize better to unseen data (GOODFELLOW;
BENGIO; COURVILLE, 2016). We add the last term to the objective function, such as:

L̃(θ; X) = L(θ; X) + α
1

2
||θ||22, (5.23)

where α is the weight decay parameter. Low α increases the value of data and increase the chance
of over-fitting, while a very high α can even impede the network to learn.

5.6.2 Dropout

The contributions of Dropout (Fig. 5.7) are twofold: it prevents over-fitting by adding noise to
the hidden units, and combine several sampled neural networks — because the neurons are shut
down with given chance, this is equivalent to train several different networks (HINTON et al.,
2012; SRIVASTAVA et al., 2014; GOODFELLOW; BENGIO; COURVILLE, 2016).

Let ŷ be the output of a layer and p be the probability of a node to output one, the dropout can
be described as:

r ∼ Bernoulli(p), (5.24)

ỹ = r ◦ ŷ, (5.25)

where ◦ is the element-wise multiplier.

39

The neurons are shutdown during training with probability p. However, during test phase, the
neurons are never shut down, instead, the weights are multiplied by p (SRIVASTAVA et al., 2014).

Figure 5.7: Neural Network with Dropout during training (SRIVASTAVA et al., 2014).

5.6.3 Local Response Normalization

According to Krizhevsky, Sutskever & Hinton (2012), Local Response Normalization aids
in generalization, despite ReLUs not requiring normalization (because of their non-saturating
property). Let aix,y be the activity of a neuron by applying the kernel i at position (x, y), the
response normalized is:

bix,y = aix,y/

k + α

min(N−1,i+n/2)∑
j=max(0,i−n/2)

(ajx,y)
2

β

, (5.26)

where n are the adjacent kernel maps at the same spatial position, and N is the number of kernels.
The constants k, α, and β are hyper-parameters that can be determined by the validation set
(KRIZHEVSKY; SUTSKEVER; HINTON, 2012).

5.6.4 Batch Normalization

During back-propagation, the gradients update the parameters considering that other layers are
not updating theirs at the same time. However, in practice, they do, and this can lead to unpredicted
results, especially for deep models. One way to resolve is by building a n-th order optimization
algorithm, but this is very expensive. Batch normalization re-parametrize these deep models,
mitigating this coordination problem, which is done by keeping responses as a unit Gaussian (zero
mean and unit variance) (IOFFE; SZEGEDY, 2015; GOODFELLOW; BENGIO; COURVILLE,
2016).

For a mini-batch of activations of a layer Bn,m, being n the number of examples and m the

40

number of activations, we normalize on each activation:

B′ =
Bn,m − µm

σm
, (5.27)

where µ and σ are the mean and standard deviation of each activation.

During training, they are calculated as:

µ =
1

n

∑
i

Bi,:, (5.28)

σ =

√
1

n

∑
i

(B− µ)2i . (5.29)

This information is kept during training time by a moving average. Because normalizing to a
unit Gaussian diminishes the expressive power of a network, a per-channel bias, β, and scaling
factor, γ, can be learned (GOODFELLOW; BENGIO; COURVILLE, 2016; IOFFE; SZEGEDY,
2015; JIA et al., 2014). The final output is:

B′ = γB′ + β. (5.30)

5.7 CAFFE FRAMEWORK

We chose Caffe Framework (JIA et al., 2014) to test how some current deep learning models
would respond to our new database. The framework was developed as a compositional model for
deep neural networks. They call Net a complete model with Layers that an architecture might have.
Because of the flux of information of forward and back-propagation, the framework designed a
data holder, called Blob, which also has the ability of synchronization between the CPU and GPU
memory.

The Blob was designed with computer vision applications in mind. So, they have a 4D format,
with the shape of (N ×K ×H ×W), being N the batch size, K the number of channels, H the
height, and W the width. However, the user can modify any kind of data before inputting it to the
network. The Blob allocate two arrays, the data and diff, the first for forwarded data, and the latter
holds the computed gradient (JIA et al., 2014).

The Layer is where the operations occurs, for example, it can convolve filters and apply
non-linearities. It takes its input through bottom connections and output through top connections.
Setup, forward, and backward are the phases that must be computed. In setup, the layers and their
connection are initialized once. Forward computes the output based on the input and send to top.
Backward computes the gradient w.r.t. the input given the gradient w.r.t. the top and send it to the
bottom, if the layer has parameters, also computes the gradient w.r.t. its parameters and stores it
(JIA et al., 2014).

41

The Net is a directed acyclic graph (DAG) of its layers (Fig. 5.8), and its responsible for
initializing the blobs and layers and ensuring the correctness the forward and backward passes, the
gradients used in back-propagation is calculated by automatic differentiation (JIA et al., 2014).

Figure 5.8: Variant of the LeNet (LECUN et al., 1989) as a Directed Acyclic Graph

The Solver is responsible for calling forward and backward passes in order to train the network,
using a specific method, such as Stochastic Gradient Descent. It needs some parameters such as
the learning policy, number of iterations, when to save snapshots of the network, and the interval to
test the network. The Solver is also responsible for updating the parameters of the network seeking
to minimize training loss (JIA et al., 2014).

42

6 EXPERIMENTS

The experiments are divided into two separate stages: in the first we train some models using
Linear SVM and the encoded images to serve as baseline models; in the latter we use deep neural
networks.

In the first stage, we encode these images using three different methods: Bag of Visual Words,
Fisher Vector, and VLAD. We create models varying the type of encoding method and with or
without Geometric Augmentation.

In the second stage, we choose some common deep learning architectures. Then, for each
architecture we create models that varies the type of activation function and in some we also test
fine-tuning, in which we load pre-trained weights.

These two stages are not connected, thus they have different database set-up. In this chapter,
we present how we prepare the image database for each stage, the parameters selected for each
model, and the models variants.

6.1 DATABASE PREPARATION

For each model, we trained using two different datasets: Plantas50Basic and Plantas50Extended.
They were divided into training, validation, and testing sets in a 70%, 15%, and 15% fashion. We
shuffled the images before assigning them to their sets. A cross-validation scheme was discarded
because of the expensive computational cost involved for the size of this database, which is large
enough to avoid it (GOODFELLOW; BENGIO; COURVILLE, 2016). We estimate that using a
k-fold cross-validation, for k = 10, would take at least 45 days to finish training and testing.

For the encoding methods, we reduced the images’ height to 256 pixels while keeping their
aspect ratio. And, for neural networks, we resized them to 256x256 pixels. These files are
compressed using the JPEG format with different rates of compression. However, these images
are transformed to raw BGR 8-bits before being input to a network (which gives 192 kBytes per
image if 256x256).

6.2 ENCODING METHODS AND CLASSIFICATION

We trained three encoding methods to serve as baselines: Bag of Visual Words, Fisher Vector,
and VLAD (VEDALDI; FULKERSON, 2008; PERRONNIN; SÁNCHEZ; MENSINK, 2010;
JÉGOU et al., 2010). We used Geometric Augmentation in all three, and also tested an additional
Fisher Vector model without it (DIAS; BORGES, 2016). In total, we trained four models: BoVW-

43

Aug, Fisher Vector, Fisher Vector-Aug, and VLAD-Aug.

For all these experiments, we calculated DSIFT descriptors for seven different scales (S),
S = {2− 1

2
i, i ∈ [0, 1, . . . , 6]}; a step of 4 pixels, which means the center distance of one frame

to the next; and bins 8 pixels wide. Each descriptor has 128 features (4 x-axis, 4 y-axis, and 8
orientation dimensions).

The Linear SVM was solved using SDCA (SHALEV-SHWARTZ; ZHANG, 2013), with ε =

0.001, a bias multiplier of 1, a maximum number of iterations of 100∗Number of Training Images,
and λ = 1

Number of Training Images . We used half of the number of words prescribed by the VLFeat
framework (VEDALDI; FULKERSON, 2008), because we have less classes than Caltech101, to
which database this system was devised.

Table 6.1: Encodings Parameters

Model Num. of Words Geometric Ext. PCA Dim. Whitening Whit. Reg.
BoVW-Aug 2048 Yes 100 Yes 0.01
Fisher Vector 128 No 80 No -
Fisher Vector-Aug 128 Yes 80 No -
VLAD-Aug 128 Yes 100 Yes 0.01

6.3 DEEP LEARNING MODELS

6.3.1 Architectures

For training a neural network with our Plantas database, we considered that all plants are
independent of each other, so the network outputs scores for each of the 50 species or cultivars
(DIAS; BORGES, 2016).

We chose to test several different architectures instead of going with the most recent and
successful, because, the deeper the architecture, the higher the chance of over-fitting a middle-
sized database (≈ 33, 000 images), and simpler network might work better with a smaller dataset.
We tested the following architectures: AlexNet, CaffeNet, GoogLeNet, Inception, and ResNet
(KRIZHEVSKY; SUTSKEVER; HINTON, 2012; JIA et al., 2014; SZEGEDY et al., 2014; IOFFE;
SZEGEDY, 2015; HE et al., 2016).

AlexNet (Table 6.2) was the first deep neural network to win the ImageNet Challenge in 2012,
spurring new developments in the field. The major innovation was the use of Dropout and massive
parallelization computation of Convolutional Layers (KRIZHEVSKY; SUTSKEVER; HINTON,
2012). The CaffeNet is the modified version of AlexNet developed by the Caffe framework, which
basically just swap the place of the Local Response Normalization with Max Pooling operations
(JIA et al., 2014).

GoogLeNet introduces the Inception module (Fig. 6.1a), which permitted the creation of more
deep network without increasing memory footprint (Table 6.3) (SZEGEDY et al., 2014). The

44

Inception architecture is GoogLeNet with Batch Normalization and some other minor modifications.
Inception is also the first deep network to be trained without Dropout (IOFFE; SZEGEDY, 2015).

He et al. (2016) (Table 6.4) address propagation degradation problem by short-cutting
connections of one layer to some more ahead of it, instead of just stacking layers, such as in
Fig. 6.1b.

Table 6.2: Architecture of Krizhevsky, Sutskever &
Hinton (2012) (AlexNet)

Type Kernel/Stride Output Size
Convolution 11x11/4 96x55x55
LRN 96x55x55
Max Pooling 3x3/2 96x27x27
Convolution 5x5/1 256x27x27
LRN 256x27x27
Max Pooling 3x3/2 256x13x13
Convolution 3x3/1 384x13x13
Convolution 3x3/1 384x13x13
Convolution 3x3/1 256x13x13
Max Pooling 3x3/2 256x6x6
Linear 4096
Dropout (50%) 4096
Fully-Connect. 4096
Dropout (50%) 4096
Fully-Connect. 1000
Softmax 1000

Table 6.3: Architecture of Szegedy et al. (2014)
(GoogLeNet)

Type Kernel/Stride Output Size
Convolution 7x7/2 112x112x64
Max Pooling 3x3/2 56x56x64
Convolution 3x3/1 56x56x192
Max Pooling 3x3/2 28x28x192
Inception (3a) 28x28x256
Inception (3b) 28x28x480
Max Pooling 3x3/2 14x14x480
Inception (4a) 14x14x512
Inception (4b) 14x14x512
Inception (4c) 14x14x512
Inception (4d) 14x14x528
Inception (4e) 14x14x832
Max Pooling 3x3/2 7x7x832
Inception (5a) 7x7x832
Inception (5b) 7x7x1024
Average Pooling 7x7/1 1024
Dropout (40%) 1024
Fully-Connect. 1000
Softmax 1000

Table 6.4: Architecture of He et al. (2016) (ResNet)

Layer Name Output Size 18-layer 34-layer 50-layer 101-layer 152-layer
Conv-1 112x112 7x7, 64, stride 2

Conv-2_x 56x56
3x3 max pooling, stride 2[

3× 3, 64
3× 3, 64

]
× 2

[
3× 3, 64
3× 3, 64

]
× 3

 1× 1, 64
3× 3, 64
1× 1, 256

× 3

 1× 1, 64
3× 3, 64
1× 1, 256

× 3

 1× 1, 64
3× 3, 64
1× 1, 256

× 3

Conv-3_x 28x28
[
3× 3, 128
3× 3, 128

]
× 2

[
3× 3, 128
3× 3, 128

]
× 4

1× 1, 128
3× 3, 128
1× 1, 512

× 4

1× 1, 128
3× 3, 128
1× 1, 512

× 4

1× 1, 128
3× 3, 128
1× 1, 512

× 8

Conv-4_x 14x14
[
3× 3, 256
3× 3, 256

]
× 2

[
3× 3, 256
3× 3, 256

]
× 6

 1× 1, 256
3× 3, 256
1× 1, 1024

× 6

 1× 1, 256
3× 3, 256
1× 1, 1024

× 23

 1× 1, 256
3× 3, 256
1× 1, 1024

× 36

Conv-5_x 7x7
[
3× 3, 512
3× 3, 512

]
× 2

[
3× 3, 512
3× 3, 512

]
× 3

 1× 1, 512
3× 3, 512
1× 1, 2048

× 3

 1× 1, 512
3× 3, 512
1× 1, 2048

× 3

 1× 1, 512
3× 3, 512
1× 1, 2048

× 3

1x1 average pooling, 1000, fully-connected, softmax

45

6.3.2 Models

We called Default for models we trained without modification, following their implementation
in the Caffe framework, or using the author given training files in the case of ResNet. Then, we
tested the effect of some recent Activation Functions, namely: Rectified Linear Unit (ReLU),
Parametric Rectified Linear Unit (PReLU), and Exponential Linear Unit (ELU) (GLOROT;
BORDES; BENGIO, 2011; HE et al., 2015; CLEVERT; UNTERTHINER; HOCHREITER, 2015).
We appended their acronym in the model name (DIAS; BORGES, 2016).

Then, we tested fine-tuned techniques, which we divided into three: Zero Method, SVM
Method, and Complete Training Method. In the first, we zero all layers’ learning rate, except the
last, which is trained on a new dataset. In the second, we take the descriptor of the penultimate
layer and train using a Linear SVM. And, in the latter, we train the whole network, as if we were
training from scratch (Fig. 6.2) (DIAS; BORGES, 2016).

We used the pre-trained models of CaffeNet and GoogLeNet of the Berkeley Vision and
Learning Center (JIA et al., 2014) and the pre-trained model of ResNet of He et al. (2016) on the
2012 ImageNet Challenge database.

We trained 23 deep learning models, of 5 architectures:

• AlexNet: AlexNet-Default;

• CaffeNet: CaffeNet-Default, CaffeNet-Finetuned, CaffeNet-Finetuned-SVM,
CaffeNet-Finetuned-Zero, CaffeNet-PReLU;

• GoogLeNet: GoogLeNet-Default, GoogLeNet-ELU, GoogLeNet-Finetuned,
GoogLeNet-Finetuned-PReLU, GoogLeNet-Finetuned-SVM, GoogLeNet-Finetuned-SVM,
GoogLeNet-PReLU;

• Inception: Inception-Default, Inception-ELU, Inception-PReLU;

• ResNet: ResNet-50-Default, ResNet-50-Finetuned, ResNet-50-Finetuned-SVM,
ResNet-50-PReLU, ResNet-101-Finetuned-SVM, ResNet-152-Finetuned-SVM.

(a) Inception module (IOFFE; SZEGEDY, 2015). (b) Residual module (HE et al., 2016).

Figure 6.1: The Inception Module and Residual Module

46

Figure 6.2: Fine-tuned models: Zero, Complete, SVM. In Zero, we set the learning rate to zero to all loaded pre-
trained weights and train the last layer; in Complete, we train all layers; in SVM we take the training images
descriptors of the penultimate layer and train them using a Linear SVM.

6.3.3 Data Setup

A training epoch happens when all the images of the training database have been presented to
the network just once. In the training phase, for every epoch, we crop the images and randomly
mirror them. So, for every epoch the image is cropped once and might have been mirrored. The
position of cropping is random for every epoch and every image. We crop the 256x256 pixels
images down to 224x224 pixels for every architecture — except for AlexNet, cropped to 227x227
pixels.

During validation, only a central crop without mirroring is taken. In testing, we resize the
images, instead of cropping. While in training and validation we crop to augment data, in testing
we only resize to keep the most information of the image.

The chances of only getting background information while cropping are very slim. A plant
occupies the most part of the image, and the image have its area reduced to a maximum of 24%
and this is most border area.

A per-pixel mean subtraction operation is done before forwarding these images.

47

6.3.4 Parameters

For AlexNet and CaffeNet, the Local Response Normalization had the following parameters:
Local Size = 5, α = 0.0001, and β = 0.75. The biases had an initial value of 0.1, and the weights
were initialized by using a Gaussian with σ = 0.01. GoogLeNet and Inception used the Glorot
& Bengio (2010) method for weight initialization, and biases initialized to 0.2. He et al. (2015)
initialization was used for ResNets and networks with ELU.

For the activation functions, the a parameter of PReLU was set to 0. The α parameter of ELU
was initially set to 1, then we also tested for the values of 0.5 and 0.1, because of convergence
problems.

The batch sizes were 100 for AlexNet, 256 for CaffeNet, 128 for CaffeNet-PReLU, 32 for
GoogLeNet, 12 for Inception, and 6 for ResNet-50. Because of the GPU fixed memory and deeper
models occupying more memory, we had to reduce the batch size accordingly.

We trained all networks for 30 epochs, using Stochastic Gradient Descent (SGD) with a step
policy that every 10 epochs the learning rate was divided by ten. The initial learning rate was of
0.01, the weight decay of 0.0005, and momentum to 0.9.

The Fined-tuned SVM models were trained separate from the neural network. First, for every
fine-tuned neural network, we saved the descriptors of the penultimate layer for every training
image. Then, we trained a linear SVM on these descriptors. The penalty parameter was set to
C = 1.0, we used the squared hinge loss function, L2 normalization, one vs. rest classification and
1,000 iterations, which is the default of the scikit-learn framework (PEDREGOSA et al., 2011;
FAN et al., 2008).

6.4 EVALUATION METRICS

All metrics used weigh on the number of species images, thus, a class with more images have a
bigger impact on the overall results. There are different ways of weighting, but we chose this one
because recall is equivalent to accuracy, and accuracy is a common metric in the machine learning
field. The importance is to keep consistency when comparing different architectures, by choosing
always the same metric.

Consider that Y is the set of predicted pairs, Ŷ the set of true pairs, L the set of labels, Yl the
subset of Y with label l, and Ŷl the subset of Ŷ with label l, we define P and R as:

P (Yl, Ŷl) =
|Yl ∩ Ŷl|
|Y|

, (6.1)

R(Yl, Ŷl) =
|Yl ∪ Ŷl|
|Ŷl|

. (6.2)

48

If Yl or Ŷl is empty, consider P = 0 or R = 0, respectively. Let p(r) be the precision as
a function of recall, the following equations calculate the precision, recall and mean average
precision:

Precision =
1∑

t∈L |Ŷt|

∑
l∈L

|Ŷl|P (Yl, Ŷl), (6.3)

Recall =
1∑

t∈L |Ŷt|

∑
l∈L

|Ŷl|R(Yl, Ŷl), (6.4)

mAP =
1∑

t∈L |Ŷt|

∑
l∈L

|Ŷl|
∫ 1

0

pl(rl)drl. (6.5)

6.5 COMPUTER SPECIFICATIONS AND TRAINING TIME

The computer used is an Intel® Core™ i5-4440 CPU @ 3.10GHz, 8GB RAM DDR3 @
1.6GHz, NVIDIA GTX 980 Ti 6GB, SanDisk SSD 128 GB. The operating system is Ubuntu 12.04
LTS and Caffe was compiled using CUDA 7.5, CuDNN, and Intel MKL. The elapsed time for
training of some models can be seen at Table 6.5.

Table 6.5: Recorded elapsed time for training only of some classifiers (h:mm:ss)

Classifier Plantas50Basic Plantas50Extended
AlexNet-Default 0:12:32 0:42:47
CaffeNet-Default 0:10:49 0:44:50
CaffeNet-ELU 0:10:19 0:39:52
CaffeNet-Finetuned 0:10:40 0:39:57
CaffeNet-Finetuned-Zero 0:14:01 0:41:29
CaffeNet-PReLU 0:12:01 0:41:35
GoogLeNet-Default 0:18:55 1:06:41
GoogLeNet-ELU 0:18:52 1:06:33
GoogLeNet-Finetuned 0:18:52 1:06:29
GoogLeNet-Finetuned-ELU 0:18:46 1:06:24
GoogLeNet-Finetuned-PReLU 0:20:47 1:13:30
GoogLeNet-Finetuned-Zero 0:12:15 0:42:58
GoogLeNet-PReLU 0:20:44 1:13:25
Inception-Default 0:50:34 2:58:10
Inception-ELU 0:50:37 2:58:12
Inception-PReLU 0:52:56 3:07:33
ResNet-50-Default 1:41:56 5:59:59
ResNet-50-Finetuned 1:42:00 6:03:21
ResNet-50-PReLU 1:47:36 6:18:11

49

7 RESULTS AND DISCUSSION

For the specific purpose of classifying plants, the encoding methods are still competitive
(Table 7.1). For the Plantas50Basic set, Fisher Vector had an accuracy of 94.4%, better than any
deep neural network without fine-tuning, except for Inception-PReLU with 94.9% accuracy.
However, for a set with higher variability, such as the Plantas50Extended, the most recent
architectures showed better results. Inception and ResNet, in their default configuration, had
88.5% and 81.5% accuracy, which is an improvement over Fisher Vector with 77.5% accuracy.
Although, Fisher Vector performed better than earlier architectures such as AlexNet (71.9%) and
GoogLeNet (68.6%).

Geometric Augmentation, comparing only using Fisher Vector, decreases accuracy for
Plantas50Basic, and almost no effect for Plantas50Extended. A hypothesis, is that for the Basic
dataset, the photos taken tries to center on the plant alone, and the plant occupies most of the space
of the picture, thus the descriptors taken are similar, and their position might add a position
constraint that is unnecessary. In the Extended set, the images are more cluttered, and the position
might matter more in order to pack the plant descriptors together, and segregate those that are
unrepresentative of the plant (Table 7.1).

Fisher Vector as being calculated on first and second order (mean and variance deviations),
showed the importance of higher order of discrimination than VLAD that is calculated on mean
deviation only, and Bag of Visual Words that are calculated by counting words and building a
histogram, being a zero-order estimator.

One of the major problems that affected deep neural networks was over-fitting. Because these
networks have a massive number of parameters, they can almost ‘memorize’ the whole dataset and
fail to generalize to unseen data. And, the smaller the database, the higher chance of over-fitting,
and that was one of the concerns with our middle-sized database (≈ 33,000 images). However,
the recent advances in regularizing these networks was enough to train our Plantas database from
scratch with little over-fitting. Over-fitting occurs when the loss decreases but the accuracy stalls.
In Figs. 7.1 and 7.2, the validation set accuracy kept increasing, while training loss decreased.

Deeper architectures, such as ResNet, should have learned more discriminative features than
Inception for example. However, for both Basic and Extended sets, Inception had better accuracy
than ResNet in the Default configuration. This could be explained by an impaired batch statistics
because of smaller batch size (6 vs. 12), as this might be the reason of the noisier loss curve for
ResNet (Fig. 7.2b). Another reason is that more data are needed to fully exploit the expressivity of
deep models, especially because deeper layers (highly discriminative) take a much longer time to
learn than shallower layers (DIAS; BORGES, 2016).

Fine-tuned models have much better accuracy. For computer vision applications, the
convolutional neural networks learn some features that can be universally used for any application.

50

Table 7.1: Classifiers Statisticsa on the Test Set (DIAS; BORGES, 2016)

Classifier
Plantas50Basic Plantas50Extended

mAP
Top 1 Top 5

mAP
Top 1 Top 5

Precision Recall Precision Recall Precision Recall Precision Recall
AlexNet-Default 77.9% 72.1% 72.4% 94.9% 94.8% 77.8% 72.2% 71.9% 92.9% 92.7%
CaffeNet-Default 56.4% 50.1% 52.5% 86.5% 85.6% 71.1% 67.0% 65.7% 90.3% 89.9%
CaffeNet-ELUb 69.6% 64.0% 63.5% 92.5% 92.1% 70.7% 66.6% 65.7% 89.6% 89.2%
CaffeNet-Finetuned 99.2% 97.4% 97.3% 99.5% 99.5% 93.7% 88.8% 88.5% 98.0% 97.9%
CaffeNet-Finetuned-Zero 97.3% 93.0% 92.9% 99.6% 99.6% 86.1% 80.0% 79.8% 96.3% 96.2%
CaffeNet-PReLU 83.9% 79.0% 78.3% 95.8% 95.7% 83.8% 78.6% 78.1% 94.3% 94.2%
CaffeNet-Finetuned-SVM 95.9% 94.2% 94.1% 99.5% 99.5% 80.6% 77.9% 77.9% 94.5% 94.5%
GoogLeNet-Default 74.9% 70.8% 71.2% 94.1% 93.9% 72.7% 68.8% 68.6% 91.6% 91.4%
GoogLeNet-ELUb 79.6% 76.0% 76.6% 95.6% 95.4% 74.2% 70.8% 70.4% 91.8% 91.5%
GoogLeNet-Finetuned 99.8% 98.4% 98.3% 100% 100% 96.9% 93.8% 93.6% 98.8% 98.8%
GoogLeNet-Finetuned-PReLU 99.9% 99.3% 99.2% 100% 100% 97.6% 94.6% 94.5% 99.2% 99.2%
GoogLeNet-Finetuned-Zero 97.6% 94.5% 94.2% 99.9% 99.9% 86.6% 82.0% 81.8% 95.9% 95.8%
GoogLeNet-PReLU 93.5% 89.4% 89.1% 98.7% 98.6% 87.7% 82.2% 81.7% 95.9% 95.7%
GoogLeNet-Finetuned-SVM 95.1% 94.6% 94.4% 99.5% 99.4% 75.4% 76.3% 76.1% 92.3% 92.2%
Inception-Default 97.6% 93.3% 93.0% 99.5% 99.5% 93.3% 88.7% 88.5% 97.5% 97.5%
Inception-ELUb 96.9% 92.6% 92.4% 99.3% 99.3% 90.0% 84.7% 84.2% 96.8% 96.7%
Inception-PReLU 98.1% 94.9% 94.9% 99.5% 99.5% 93.7% 89.0% 88.7% 97.7% 97.7%
ResNet-50-Default 85.0% 87.6% 81.3% 97.6% 93.2% 86.0% 82.7% 81.5% 95.3% 94.7%
ResNet-50-Finetuned 99.7% 98.1% 98.0% 99.9% 99.9% 95.9% 92.2% 92.1% 98.4% 98.4%
ResNet-50-PReLU 85.8% 87.6% 83.3% 96.8% 94.1% 89.6% 84.0% 83.2% 96.3% 96.2%
ResNet-50-Finetuned-SVM 99.4% 98.6% 98.6% 99.9% 99.9% 90.5% 88.3% 88.2% 97.5% 97.5%
ResNet-101-Finetuned-SVM 99.3% 98.7% 98.6% 100% 100% 90.3% 88.4% 88.3% 97.6% 97.6%
ResNet-152-Finetuned-SVM 99.4% 99.2% 99.1% 100% 100% 90.3% 89.2% 89.1% 97.4% 97.4%
BoVW-Aug 75.5% 77.6% 77.5% 95.1% 95.0% 51.6% 53.2% 53.7% 79.7% 79.6%
Fisher Vector 95.7% 94.6% 94.4% 99.7% 99.6% 80.5% 77.5% 77.5% 93.7% 93.6%
Fisher Vector-Aug 94.1% 93.2% 92.9% 99.5% 99.4% 80.1% 77.8% 77.7% 92.5% 92.4%
VLAD-Aug 87.9% 87.2% 87.0% 98.2% 98.1% 61.9% 61.2% 61.0% 84.4% 84.3%

a These statistics weigh on test examples for each class. All images of the test set are used in the calculation of these metrics.
b For CaffeNet-ELU (Plantas50Basic), α = 0.5, for others α = 0.1.

It is already known, for example, that the shallower layers learn edge and colors filters, and deeper
layers learn more specific representations. Because the network has already learned a several
features, when we train it in a new database, there is no need to learn similar features again, and
the network proceeds to learn the deeper layers that are more discriminative. This knowledge
transfer also impacts the regularization of a network and aids in convergence. Thus, small and
middle-sized database can be trained without fears of severe over-fitting.

We adopted three different policies for fine-tuning: Complete, Zero, and SVM. For all
architectures tested, Linear SVM performed worst. This mean that despite the pre-loaded
parameters having several features, in order to achieve better accuracy, some database specific
features also must be learned; and this explain why Complete is superior to Zero as well, it has
more parameters to learn something new, or to adapt their current features to be more database
specific (DIAS; BORGES, 2016).

Despite Inception being the best for our Plantas database in plain configuration, depth is
important for fine-tuning. Deeper networks pre-trained on the 2012 ImageNet Challenge had
better results. For instance, take the fine-tuned SVM architectures trained on Plantas50Extended,
CaffeNet, GoogLeNet, ResNet-50, ResNet-101, and ResNet-151 has the following accuracies:
77.9%, 76.1%, 88.2%, 88.3%, 89.1%. Deeper networks can learn more distinct features and
thus can generalize better to other databases, and we believe that very deep networks trained

51

with massive data can learn enough to be able to transfer this knowledge to any kind of visual
classification problem, obtaining high accuracies with little information on the new database
(DIAS; BORGES, 2016). However, the existent large-scale database showed signs of over-fitting
on very deep networks, such as the ResNet with 1202 layers (HE et al., 2016).

The Parametric Rectified Liner Unit (PReLU) bettered the accuracies in every architecture
tested. It was most beneficial to shallower networks, for example, as in Table 7.1, CaffeNet and
GoogLeNet improved their accuracies by a large margin compared to the ResNet-50. Empirically,
according to He et al. (2015), PReLU parameter a have a larger distance from zero in the first
convolutional layer, and because it is composed mostly by Gabor-like filters (edge, texture
detectors), the negative and positive output are respected. The trend is that for deeper layers, the a
parameters starts going towards zero, thus privileging more non-linear systems. This way, the
model is more informative in shallower layers and more discriminative in deeper ones (HE et al.,
2015). We might conclude that shallower networks benefit the most because it releases the
constraints of their shallow layers to be less informative than it should be; and because deeper
networks have more parameters, they are less penalized by having more ‘opportunities’ to
distribute throughout the network this informative behavior.

Exponential Rectified Unit (ELU) was tested using CaffeNet, GoogLeNet and Inception.
Because ELU have little effect if trained in a network with Batch Normalization (CLEVERT;
UNTERTHINER; HOCHREITER, 2015), Inception converged. However, the others diverged
using α = 1 and weights initialized by Gaussian, Glorot & Bengio (2010) and He et al. (2015).
CaffeNet converged using α = 0.5 and Gaussian for Plantas50Basic set, and α = 0.1 and Gaussian
for Plantas50Extended. GoogLeNet converged using α = 0.1 and Xavier. We could not explore
the full possibilities of ELU; however, we can say that higher α gets closer to the accuracy of
PReLU and distance itself from ReLU, but we are incapable of testing the capability of ELUs
having a higher accuracy in earlier epochs using our current configuration (DIAS; BORGES,
2016).

The images of Plantas database was taken during one season (Summer in Brazil) and only
by a few people, thus we increased variability by adding images from the Internet of the selected
species. However, this is error-prone because we are uncertain that some species were correctly
selected, and also some species are much more common than others, and the database became
unbalanced. Increased variability did challenge more the classifiers, for example, in the confusion
matrix of Fisher Vector (Figs. 7.3 and 7.4) for the Extended set, there is much more confusion than
the Basic. However, for our best model, GoogLeNet-Finetuned-PReLU (Figs. 7.5 and 7.6), there
are low confusion even for the Extended set, thus, the error of selecting wrong images impaired
little. And, although the database is now skewed, accuracy is not inflated by a good classified
species with more images than others.

We can also affirm that is little background effect in aiding classification for two reasons: our
images display very different background inside the same species, and there is similar background
for different species.

52

(a) CaffeNet (Plantas50Basic)

(b) GoogLeNet (Plantas50Basic)

Figure 7.1: Training loss and validation accuracy for 30 epochs and a step learning policy of reducing learning rate
by 10 for every 10 epochs. Training of CaffeNet and GoogLeNet (batch size of 256 and 32, respectively) using
Plantas50Basic.

53

(a) Inception (Plantas50Extended)

(b) ResNet-50 (Plantas50Extended)

Figure 7.2: Training loss and validation accuracy for 30 epochs and a step learning policy of reducing learning
rate by 10 for every 10 epochs. Training of Inception and ResNet-50 (batch size of 12 and 6, respectively) using
Plantas50Extended.

54

Figure 7.3: Confusion Matrix of Fisher Vector (Plantas50Basic)

55

Figure 7.4: Confusion Matrix of Fisher Vector (Plantas50Extended)

56

Figure 7.5: Confusion Matrix of GoogLeNet-Finetuned-PReLU (Plantas50Basic)

57

Figure 7.6: Confusion Matrix of GoogLeNet-Finetuned-PReLU (Plantas50Extended)

58

8 CONCLUSIONS

The Plantas database was built with the aim of offering several images of plant species taken
in an uncontrolled environment and favoring the point of view of the common user. It contains 50
commonly cultivated species or cultivars, and about 33 thousand images.

The database is divided into three sets: Basic, Extra, and Internet. The first is composed by
high-quality images centered on the plants and without much noise or clutter. The Extra contains
some discarded images of Basic, but still have recognizable plants. Then, we added the Internet
set, which contains images of these plants taken from the Internet and manually curated. This way,
we increased variability, however, the database is now more unbalanced in regard to images per
species.

Despite the increased unbalance, the classifiers showed little confusion between species, which
indicates a high level of discrimination and small impact in accuracy measurement by species with
large quantity of images.

The Fisher Vector method showed that descriptors containing high-order features have a great
effect in classification, and it has obtained a higher accuracy than Bag of Visual Words and VLAD,
which have less complex descriptors.

For non-fine-tuned models, Encoding Methods showed to be very competitive against neural
networks, especially Fisher Vector, which have the best result in plain classifiers configuration
(94.4% acc.), second only to the Inception with PReLU (94.9% acc.) in modified networks.
However, for a more complex dataset (Plantas50Extended), recent deep neural networks surpass
by large margins the Fisher Vector method (77.5% acc.). And the best result is Inception-PReLU
with 88.7% accuracy.

Fine-tuning is the technique that impacts the most in accuracy increase. For instance, for the
Plantas50Extended set, GoogLeNet-Default had an accuracy of 68.6% that jumped to 98.8%; and
this happens for every network. The best overall classifier is GoogLeNet-Finetuned-PReLU, with
99.2% accuracy in Plantas50Basic and 94.5% accuracy in Plantas50Extended.

Parametric Rectified Linear Unit (PReLU) benefited all networks, especially the shallower
ones. This can be attributed to more flexibility that networks have to learn more informative
than discriminative features in its shallow convolutional layers, which absence penalizes shallow
network more. We could not assess the Exponential Linear Unit (ELU) because of diverging
problem that occurs when α = 1.

Comparing to the whole known world of plant species, our Plantas database contains only
50 species and thus can be view as a low complexity database and current neural networks can
tell them apart with some ease, and that increasing greatly the number of species, these networks
might have a harder time differentiating between very similar species. However, we have two

59

examples of very similar plants that the networks made little confusion: Allamanda blanchetti
and Allamanda cathartica; Ixora coccinea and Ixora coccinea ‘Compacta’. Thus, increasing the
number of similar species seems to be feasible for current networks.

Our first contribution was to create an image database of plant species more complex than
previous databases and with a focus on the common user. We also attest that: this database can be
trained using the latest technologies of object recognition, such as deep neural networks and Fisher
Vector, and offer reliable classifiers for future deployment; Fisher Vector method is competitive
for classifying our database; fine-tuning models with pre-trained weights on general-purpose
database improves our specific-purpose models; Parametric Rectified Linear Unit improves the
tested models trained with our database; our database suffered little overfitting.

Topics for further exploration, beyond expanding the number of species, are: to develop more
lightweight networks for mobile deployment while maintaining accuracy, and explore structural
learning using the taxonomy tree and the known hierarchical learning that occurs in deep neural
networks.

60

REFERENCES

BELHUMEUR, P.; CHEN, D.; FEINER, S.; JACOBS, D.; KRESS, W.; LING, H.; LOPEZ, I.;
RAMAMOORTHI, R.; SHEOREY, S.; WHITE, S.; ZHANG, L. Searching the world’s herbaria:
A system for visual identification of plant species. In: . [s.n.], 2008. p. 116–129. Disponível em:
<http://graphics.cs.berkeley.edu/papers/Ramamoorthi-STW-2008-10/>.

BOYKOV, Y. Y.; JOLLY, M. P. Interactive graph cuts for optimal boundary amp; region segmentation of
objects in n-d images. In: Proceedings Eighth IEEE International Conference on Computer Vision. ICCV
2001. [S.l.: s.n.], 2001. v. 1, p. 105–112 vol.1.

CERUTTI, G.; TOUGNE, L.; VACAVANT, A.; COQUIN, D. A parametric active polygon for leaf
segmentation and shape estimation. In: 7th International Symposium on Visual Computing. Las Vegas,
United States: [s.n.], 2011. p. 1. Disponível em: <https://hal.archives-ouvertes.fr/hal-00622269>.

CHOROMANSKA, A.; HENAFF, M.; MATHIEU, M.; AROUS, G. B.; LECUN, Y. The loss surface of
multilayer networks. CoRR, abs/1412.0233, 2014. Disponível em: <http://arxiv.org/abs/1412.0233>.

CLEVERT, D.; UNTERTHINER, T.; HOCHREITER, S. Fast and accurate deep network
learning by exponential linear units (elus). CoRR, abs/1511.07289, 2015. Disponível em:
<http://arxiv.org/abs/1511.07289>.

DEMPSTER, A. P.; LAIRD, N. M.; RUBIN, D. B. Maximum likelihood from incomplete data via the em
algorithm. JOURNAL OF THE ROYAL STATISTICAL SOCIETY, SERIES B, v. 39, n. 1, p. 1–38, 1977.

DENG, J.; DING, N.; JIA, Y.; FROME, A.; MURPHY, K.; BENGIO, S.; LI, Y.; NEVEN, H.; ADAM,
H. Large-scale object classification using label relation graphs. In: Computer Vision–ECCV 2014. [S.l.]:
Springer International Publishing, 2014. p. 48–64.

DIAS, R. O. Q.; BORGES, D. L. Recognizing plant species in the wild: deep learning results
and a new database. In: 2016 IEEE International Symposium on Multimedia (ISM). Los Alamitos,
CA: IEEE Computer Society, 2016. p. 197–202. ISBN 978-1-5090-4571-6/16. Disponível em:
<https://doi.org/10.1109/ISM.2016.0047>.

ELKAN, C. Using the triangle inequality to accelerate k-means. In: Proceedings of the Twentieth
International Conference on International Conference on Machine Learning. AAAI Press, 2003. (ICML’03),
p. 147–153. ISBN 1-57735-189-4. Disponível em: <http://dl.acm.org/citation.cfm?id=3041838.3041857>.

ELLIS, J. Geeqie Image Viewer - Similarity Function. 2004. <https://github.com/BestImageViewer/geeqie/
blob/master/src/similar.c>.

FAN, R.; CHANG, K.; HSIEH, C.; WANG, X.; LIN, C. Liblinear: A library for large linear
classification. Journal of Machine Learning Research, v. 9, p. 1871–1874, 2008. Disponível em:
<http://jmlr.org/papers/volume9/fan08a/fan08a.pdf>.

GLOROT, X.; BENGIO, Y. Understanding the difficulty of training deep feedforward neural networks.
In: TEH, Y. W.; TITTERINGTON, M. (Ed.). Proceedings of the Thirteenth International
Conference on Artificial Intelligence and Statistics. Chia Laguna Resort, Sardinia, Italy:
PMLR, 2010. (Proceedings of Machine Learning Research, v. 9), p. 249–256. Disponível em:
<http://proceedings.mlr.press/v9/glorot10a.html>.

61

http://graphics.cs.berkeley.edu/papers/Ramamoorthi-STW-2008-10/
https://hal.archives-ouvertes.fr/hal-00622269
http://arxiv.org/abs/1412.0233
http://arxiv.org/abs/1511.07289
https://doi.org/10.1109/ISM.2016.0047
http://dl.acm.org/citation.cfm?id=3041838.3041857
https://github.com/BestImageViewer/geeqie/blob/master/src/similar.c
https://github.com/BestImageViewer/geeqie/blob/master/src/similar.c
http://jmlr.org/papers/volume9/fan08a/fan08a.pdf
http://proceedings.mlr.press/v9/glorot10a.html

GLOROT, X.; BORDES, A.; BENGIO, Y. Deep sparse rectifier neural networks. In: GORDON,
G. J.; DUNSON, D. B. (Ed.). Proceedings of the Fourteenth International Conference on
Artificial Intelligence and Statistics (AISTATS-11). Journal of Machine Learning Research
- Workshop and Conference Proceedings, 2011. v. 15, p. 315–323. Disponível em: <http:
//www.jmlr.org/proceedings/papers/v15/glorot11a/glorot11a.pdf>.

GOËAU, H.; BONNET, P.; JOLY, A. LifeCLEF Plant Identification Task 2015. In: CEUR-WS (Ed.).
CLEF 2015. toulouse, France: [s.n.], 2015. (CLEF2015 working notes, v. 1391). Disponível em:
<https://hal.inria.fr/hal-01182795>.

GOODFELLOW, I.; BENGIO, Y.; COURVILLE, A. Deep Learning. [S.l.]: MIT Press, 2016.
<http://www.deeplearningbook.org>.

HE, K.; ZHANG, X.; REN, S.; SUN, J. Delving deep into rectifiers: Surpassing human-level performance
on imagenet classification. In: Proceedings of the 2015 IEEE International Conference on Computer
Vision (ICCV). Washington, DC, USA: IEEE Computer Society, 2015. (ICCV ’15), p. 1026–1034. ISBN
978-1-4673-8391-2. Disponível em: <http://dx.doi.org/10.1109/ICCV.2015.123>.

HE, K.; ZHANG, X.; REN, S.; SUN, J. Deep residual learning for image recognition. In: 2016 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR). [S.l.: s.n.], 2016. p. 770–778.

HINTON, G. E.; SRIVASTAVA, N.; KRIZHEVSKY, A.; SUTSKEVER, I.; SALAKHUTDINOV, R.
Improving neural networks by preventing co-adaptation of feature detectors. CoRR, abs/1207.0580, 2012.
Disponível em: <http://arxiv.org/abs/1207.0580>.

HOCHREITER, S. Untersuchungen zu dynamischen neuronalen netzen. Diploma, Technische Universität
München, 1991.

HOWARD, A. G. Some improvements on deep convolutional neural network based image classification.
CoRR, abs/1312.5402, 2013. Disponível em: <http://arxiv.org/abs/1312.5402>.

IOFFE, S.; SZEGEDY, C. Batch normalization: Accelerating deep network training by reducing internal
covariate shift. CoRR, abs/1502.03167, 2015. Disponível em: <http://arxiv.org/abs/1502.03167>.

JÉGOU, H.; DOUZE, M.; SCHMID, C.; PÉREZ, P. Aggregating local descriptors into a compact
image representation. In: CVPR 2010 - 23rd IEEE Conference on Computer Vision & Pattern
Recognition. San Francisco, United States: IEEE Computer Society, 2010. p. 3304–3311. Disponível em:
<https://hal.inria.fr/inria-00548637>.

JIA, Y.; SHELHAMER, E.; DONAHUE, J.; KARAYEV, S.; LONG, J.; GIRSHICK, R.; GUADARRAMA,
S.; DARRELL, T. Caffe: Convolutional architecture for fast feature embedding. arXiv preprint
arXiv:1408.5093, 2014.

KRIZHEVSKY, A.; SUTSKEVER, I.; HINTON, G. E. Imagenet classification with deep convolutional
neural networks. In: PEREIRA, F.; BURGES, C.; BOTTOU, L.; WEINBERGER, K. (Ed.). Advances
in Neural Information Processing Systems 25. Curran Associates, Inc., 2012. p. 1097–1105. Disponível
em: <http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.
pdf>.

KUMAR, N.; BELHUMEUR, P. N.; BISWAS, A.; JACOBS, D. W.; KRESS, W. J.; LOPEZ, I.; SOARES, J.
V. B. Leafsnap: A computer vision system for automatic plant species identification. In: The 12th European
Conference on Computer Vision (ECCV). [S.l.: s.n.], 2012.

LAGA, H.; KURTEK, S.; SRIVASTAVA, A.; GOLZARIAN, M.; MIKLAVCIC, S. J. A riemannian elastic
metric for shape-based plant leaf classification. In: Digital Image Computing Techniques and Applications
(DICTA), 2012 International Conference on. [S.l.: s.n.], 2012. p. 1–7.

62

http://www.jmlr.org/proceedings/papers/v15/glorot11a/glorot11a.pdf
http://www.jmlr.org/proceedings/papers/v15/glorot11a/glorot11a.pdf
https://hal.inria.fr/hal-01182795
http://www.deeplearningbook.org
http://dx.doi.org/10.1109/ICCV.2015.123
http://arxiv.org/abs/1207.0580
http://arxiv.org/abs/1312.5402
http://arxiv.org/abs/1502.03167
https://hal.inria.fr/inria-00548637
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf

LECUN, Y.; BENGIO, Y.; HINTON, G. Deep learning. Nature, Nature Publishing Group, a division of
Macmillan Publishers Limited. All Rights Reserved., v. 521, n. 7553, p. 436–444, 05 2015. Disponível em:
<http://dx.doi.org/10.1038/nature14539>.

LECUN, Y.; BOSER, B.; DENKER, J. S.; HENDERSON, D.; HOWARD, R. E.; HUBBARD, W.;
JACKEL, L. D. Backpropagation applied to handwritten zip code recognition. Neural Comput., MIT
Press, Cambridge, MA, USA, v. 1, n. 4, p. 541–551, dez. 1989. ISSN 0899-7667. Disponível em:
<http://dx.doi.org/10.1162/neco.1989.1.4.541>.

LOWE, D. G. Distinctive image features from scale-invariant keypoints. International Journal of Computer
Vision, v. 60, n. 2, p. 91–110, 2004. ISSN 1573-1405. Disponível em: <http://dx.doi.org/10.1023/B:
VISI.0000029664.99615.94>.

NILSBACK, M. E.; ZISSERMAN, A. A visual vocabulary for flower classification. In: Computer Vision
and Pattern Recognition, 2006 IEEE Computer Society Conference on. [S.l.: s.n.], 2006. v. 2, p. 1447–1454.
ISSN 1063-6919.

NILSBACK, M.-E.; ZISSERMAN, A. Automated flower classification over a large number of classes. In:
Proceedings of the Indian Conference on Computer Vision, Graphics and Image Processing. [S.l.: s.n.],
2008.

OQUAB, M.; BOTTOU, L.; LAPTEV, I.; SIVIC, J. Learning and transferring mid-level
image representations using convolutional neural networks. In: Proceedings of the 2014
IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC, USA: IEEE
Computer Society, 2014. (CVPR ’14), p. 1717–1724. ISBN 978-1-4799-5118-5. Disponível em:
<http://dx.doi.org/10.1109/CVPR.2014.222>.

PEDREGOSA, F.; VAROQUAUX, G.; GRAMFORT, A.; MICHEL, V.; THIRION, B.; GRISEL, O.;
BLONDEL, M.; PRETTENHOFER, P.; WEISS, R.; DUBOURG, V.; VANDERPLAS, J.; PASSOS, A.;
COURNAPEAU, D.; BRUCHER, M.; PERROT, M.; DUCHESNAY, E. Scikit-learn: Machine learning in
Python. Journal of Machine Learning Research, v. 12, p. 2825–2830, 2011.

PERRONNIN, F.; DANCE, C. Fisher kernels on visual vocabularies for image categorization. In: 2007
IEEE Conference on Computer Vision and Pattern Recognition. [S.l.: s.n.], 2007. p. 1–8. ISSN 1063-6919.

PERRONNIN, F.; SÁNCHEZ, J.; MENSINK, T. Improving the fisher kernel for large-scale
image classification. In: . Computer Vision – ECCV 2010: 11th European Conference on
Computer Vision, Heraklion, Crete, Greece, September 5-11, 2010, Proceedings, Part IV. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2010. p. 143–156. ISBN 978-3-642-15561-1. Disponível em:
<http://dx.doi.org/10.1007/978-3-642-15561-1_11>.

ROSKOV, Y.; ABUCAY, L.; ORRELL, T.; NICOLSON, D.; BAILLY, N.; KIRK, P.; BOURGOIN, T.;
DEWALT, R.; DECOCK, W.; WEVER, A. D.; NIEUKERKEN, E. v.; ZARUCCHI, J.; PENEV, L. (Ed.).
Species 2000 & ITIS Catalogue of Life, 30th April 2017. 2017. Species 2000: Naturalis, Leiden, the
Netherlands. ISSN 2405-8858. Disponível em: <www.catalogueoflife.org/col>.

SCHMIDHUBER, J. Deep learning in neural networks: An overview. Neural Networks, v. 61, p. 85–117,
2015. Published online 2014; based on TR arXiv:1404.7828 [cs.NE].

SERMANET, P.; EIGEN, D.; ZHANG, X.; MATHIEU, M.; FERGUS, R.; LECUN, Y. Overfeat: Integrated
recognition, localization and detection using convolutional networks. CoRR, abs/1312.6229, 2013.
Disponível em: <http://arxiv.org/abs/1312.6229>.

SHALEV-SHWARTZ, S.; ZHANG, T. Stochastic dual coordinate ascent methods for regularized loss.
J. Mach. Learn. Res., JMLR.org, v. 14, n. 1, p. 567–599, fev. 2013. ISSN 1532-4435. Disponível em:
<http://dl.acm.org/citation.cfm?id=2502581.2502598>.

63

http://dx.doi.org/10.1038/nature14539
http://dx.doi.org/10.1162/neco.1989.1.4.541
http://dx.doi.org/10.1023/B:VISI.0000029664.99615.94
http://dx.doi.org/10.1023/B:VISI.0000029664.99615.94
http://dx.doi.org/10.1109/CVPR.2014.222
http://dx.doi.org/10.1007/978-3-642-15561-1_11
www.catalogueoflife.org/col
http://arxiv.org/abs/1312.6229
http://dl.acm.org/citation.cfm?id=2502581.2502598

SIMONYAN, K.; ZISSERMAN, A. Very deep convolutional networks for large-scale image recognition.
CoRR, abs/1409.1556, 2014. Disponível em: <http://arxiv.org/abs/1409.1556>.

SÖDERKVIST, O. Computer Vision Classification of Leaves from Swedish Trees. Dissertação (Mestrado) —
Linköping University, 581 83 Linköping, Sweden, 2001.

SRIVASTAVA, N.; HINTON, G.; KRIZHEVSKY, A.; SUTSKEVER, I.; SALAKHUTDINOV, R. Dropout:
A simple way to prevent neural networks from overfitting. Journal of Machine Learning Research, v. 15, p.
1929–1958, 2014. Disponível em: <http://jmlr.org/papers/v15/srivastava14a.html>.

SZEGEDY, C.; LIU, W.; JIA, Y.; SERMANET, P.; REED, S.; ANGUELOV, D.; ERHAN, D.;
VANHOUCKE, V.; RABINOVICH, A. Going deeper with convolutions. CoRR, abs/1409.4842, 2014.
Disponível em: <http://arxiv.org/abs/1409.4842>.

TANG, Y. Deep learning using support vector machines. CoRR, abs/1306.0239, 2013. Disponível em:
<http://arxiv.org/abs/1306.0239>.

VARMA, M.; ZISSERMAN, A. Classifying images of materials: Achieving viewpoint and
illumination independence. In: . Computer Vision — ECCV 2002: 7th European Conference
on Computer Vision Copenhagen, Denmark, May 28–31, 2002 Proceedings, Part III. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2002. p. 255–271. ISBN 978-3-540-47977-2. Disponível em:
<http://dx.doi.org/10.1007/3-540-47977-5_17>.

VEDALDI, A.; FULKERSON, B. VLFeat: An Open and Portable Library of Computer Vision Algorithms.
2008. <http://www.vlfeat.org/>.

WU, S. G.; BAO, F. S.; XU, E. Y.; WANG, Y. X.; CHANG, Y. F.; XIANG, Q. L. A leaf recognition
algorithm for plant classification using probabilistic neural network. In: Signal Processing and Information
Technology, 2007 IEEE International Symposium on. [S.l.: s.n.], 2007. p. 11–16.

ZEILER, M. D.; FERGUS, R. Visualizing and understanding convolutional networks. CoRR, abs/1311.2901,
2013. Disponível em: <http://arxiv.org/abs/1311.2901>.

64

http://arxiv.org/abs/1409.1556
http://jmlr.org/papers/v15/srivastava14a.html
http://arxiv.org/abs/1409.4842
http://arxiv.org/abs/1306.0239
http://dx.doi.org/10.1007/3-540-47977-5_17
http://www.vlfeat.org/
http://arxiv.org/abs/1311.2901

	Sumário
	Lista de figuras
	Lista de tabelas
	Introduction
	Related Works
	Plant Classification Systems
	Databases
	Segmentation
	Feature Descriptors and Classification

	Convolutional Neural Networks
	Architectures
	Activation Functions
	Error Optimization
	Classifiers
	Depth
	Data Augmentation
	Regularization
	Model Averaging
	Feature Generalization and Fine-tuning

	The Plantas Database
	Encoding Methods and Classification
	Dense Scale-Invariant Feature Transform (DSIFT)
	SIFT Descriptor
	Dense Descriptors

	Sampling of Image Descriptors
	Learning of Principal Component Analysis (PCA) projection
	Geometric Augmentation
	Learning of Visual Vocabulary
	Vector Quantization Method for BoVW or VLAD
	Gaussian Mixture Model for Fisher Vector

	Encoding Images and Training the Classifier
	Bag of Visual Words
	Fisher Vector
	Vector of Linearly Aggregated Descriptors
	Training

	Neural Networks
	Feed-forward Neural Network (FNN)
	Convolutional Neural Networks (CNN)
	Pooling
	Activation Functions
	Optimization
	Maximum Likelihood
	Stochastic Gradient Descent
	Softmax

	Regularization
	L2 Parameter Regularization (Weight Decay)
	Dropout
	Local Response Normalization
	Batch Normalization

	Caffe Framework

	Experiments
	Database Preparation
	Encoding Methods and Classification
	Deep Learning Models
	Architectures
	Models
	Data Setup
	Parameters

	Evaluation Metrics
	Computer Specifications and Training Time

	Results and Discussion
	Conclusions
	REFERENCES

