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Resumo

Motivação

Tradicionalmente sistemas satélites de navegação global, em inglês Global Navigation
Satellite System (GNSS), como o sistema de posicionamento global, do inglês Global Positi-
oning System (GPS), Galileo, o GNSS da União Européia, GLONASS, o GNSS da Federação
Russa, ou o BeiDou, o GNSS da República Popular da China, foram concebidos para aplica-
ções militares como sistemas de misseis guiados e para aplicações civis como decolagem e
pouso de aviões civis. Na aviação civil, sistemas de apoio assistidos por bases terrestres que
providenciam informações complementares ao do GNSS aumentam a precisão para sistemas
de segurança crítica. Nos últimos anos a quantidade de aplicações de GNSS têm aumentado
drasticamente. Por exemplo, autoridades de pesca utilizam GNSS para fazer a localização e
rastreio automático em tempo real de barcos pesqueiros para garantir assim o gerenciamento
sustentável de fontes de pesca [1]. Outra aplicação de GNSS é o rastreio de caminhões para
poder saber o estado da carga em tempo real. Em aplicações de trânsito, o GNSS pode ser
utilizado para efetuar um pedágio automatico [2] e para veículos autônomos que exigem al-
tos padrões de precisão e segurança. No contexto de veículos autônomos, o veículo deve ser
capaz de sensorear o ambiente e os dados processados para atingir o padrão de segurança
necessário. Apesar de veículos autônomos contarem com uma quantidade grande de senso-
res para controle automático de velocidade de cruzeiro, do inglês Automatic Cruise Control
(ACC), receptores GNSS exercem uma função essencial [3] devido à cobertura quase ubíqua
de todas as regiões do planeta. Finalmente, em agricultura de precisão, também conhecido
por agricultura por satélite, GNSS é usado para melhorar, por exemplo, a precisão com que
é feita a adubagem e permite o uso de veículos agrícolas automatizados em qualquer hora do
dia [4]. Assim, na agricultura de precisão, tanto máquinas quanto recursos químicos podem
ser usados de forma mais segura e eficiente.

GNSS depende da estimação do atraso para estimar a posição do usuário. Isto é feito
fazendo a correlação do sinal recebido com réplicas para separá-lo o sinal de cada satélite e
estimar o atraso. Como componentes de multipercurso são cópias atrasadas do sinal original,
estes alteram a função de correlação cruzada, assim gerando erros na estimação de atraso.

Neste dissertação estudamos um algoritmo estado-da-arte em mitigação de multipercur-
sos para estimação de atraso baseado no autofiltro da decomposição em valores singular de
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alta ordem, do inglês Higher-Order Singular Value Decomposition (HOSVD), de posto uni-
tário [5], e propomos dois esquemas tensoriais para mitigação de multipercurso e estimação
de atraso, para qual o esquema baseado em HOSVD é usado para comparação.

Modelo de Dados

O modelo de dados do receptor tensorial supõe um arranjo receptor de M elementos,
observando D satélites visíveis, com Ld sinais vindo de cada d-ésimo satélite. Com Ld = 1

para o componente de linha de visada, do inglês Line-of-Sight (LOS), e Ld > 1 para os
componentes de multipercurso. Coletando N amostras a cada k-ésimo período de código,

X[k] =
D∑
d=1

Ad[k]Γd[k]Cd[k] + N[k] = A[k]Γ[k]C[k] + N[k] ∈ CM×N , (1)

em que Ad[k] = [a(φd,1), . . . , a(φd,Ld
)] ∈ CM×Ld é a matriz que concatena em suas co-

lunas os vetores de direção dos Ld sinais. Γd[k] = diag{γd} = diag{[γd,1, . . . , γd,Ld
]} ∈

CLd×Ld é uma matriz diagonal que contém as amplitudes complexas dos sinais. Cd[k] =

[cd[τd,1], . . . , cd[τLd
]T ∈ RLd×N concatena em suas linhas o código pseudo-aleatório amos-

trado com atraso τd,ld , ld = 1, . . . , Ld. N[k] é ruído gaussiano branco aditivo. A ordem do
modelo é L =

∑D
d=1 Ld.

Aplicando o operador vec{·} a (1) para transformá-lo num vetor e aplicando a proprie-
dade descrita na subseção 2.2.4,

vec{X[k]} = vec {A[k]Γ[k]C[k] + N[k]} = vec {A[k] diag{γ[k]}C[k] + N[k]} ,
= (C[k]T �A[k])γ[k] + vec{N[k]}. (2)

Concatenando todos os K períodos de código amostrados na direção das colunas é pos-
sível omitir o índice k:

X̃ = (CT �A)Γ̃ + Ñ = X̃0 + Ñ ∈ CMN×K , (3)

em que X̃0 é o sinal recebido sem ruído e Γ̃ = [γ[1] . . . ,γ[K]] ∈ CL×K concatena as
amplitudes complexas.

A transposta de X̃0 possui a mesma estrutura que o desdobramento do primeiro modo de
um tensor de recepção sem ruído X 0:

[X 0](1) = X̃T
0 = Γ̃T(CT �A) ∈ CK×MN . (4)



Dobrando (4) num tensor e considerando o caso com ruído:

X = X 0 + N = I3,L ×1 Γ̃T ×2 CT ×3 A + N ∈ CK×N×M . (5)

Para separar o sinal do d-ésimo satélite dos outros, um banco correlator é aplicado ao
código pseudo-aleatório usando o produto de modo-2. Um banco correlator é uma matriz
Qd que concatena Q réplicas deslocadas da sequência pseudo-aleatória cd ∈ RN com atraso
τq, q = 1, . . . , Q:

Qd =
[
cd[τ1] · · · cd[τQ]

]
∈ RN×Q. (6)

Como a aplicação direta do banco correlator torna o ruído colorido, um banco compri-
mido é calculado utilizando a decomposição em valores singulares econômica à Qd [22]:

Qd = Qω,dΣVH, (7)

em que o banco comprimido é Qω,d ∈ CN×Q.

Aplicando o banco correlator comprimido à (5) para extrair o sinal do d-ésimo satélite:

Yd = X ×2 QT
ω,d = I3,L ×1 Γ̃T

d ×2 (CdQω,d)
T ×3 Ad + N ω ∈ CK×Q×M . (8)

O desdobramento do terceiro modo de (8) é

[Yd](3) = Ad(Γ̃
T
d � (CdQω,d)

T)T + [N ω](3) ∈ CM×KQ. (9)

Estado-da-Arte para Estimação de Atraso

A técnica estado-da-arte estudado neste dissertação é um autofiltro de alta ordem com
pré-processamento usando média frente-costas [16], do inglês Forward-Backward Avera-
ging (FBA), e suavização espacial expandida [18, 19], do inglês Expanded Spatial Smo-
othing (ESPS), como pode ser visto na Figura 3.1. A primeira etapa desta técnica é de
pré-processamento em que FBA é aplicado a (9):

Z =
[
[Yd](3) ΠM [Yd]

∗
(3)ΠKQ

]
∈ CM×2KQ, (10)

em que ΠM ∈ RM×M é uma matriz identidade invertida sobre o eixo vertical e ΠKQ ∈
RKQ×KQ idem.

Seguido de suavização espacial, em inglês Spatial Smoothing (SPS),em que o arranjo é
dividido em LS sub-arranjos com MS = M − LS + 1 elementos. Isto é feito usando uma



matriz de seleção

JlS =
[
0MS×lS−1 IMS

0MS×LS−1

]
∈ RMS×M , (11)

para lS = 1, . . . , LS .

Usando as matrizes de seleção, suavização espacial é aplicado a (10):

W =
[
J1Z · · · JLS

Z
]
∈ CMS×2LSKQ, (12)

e (12) é dobrado de volta para um tensor de quarta ordem ZESPS ∈ C2K×Q×MS×LS . Esta é a
suavização espacial expandida.

Em seguida é aplicada uma decomposição em valores singulares de alta ordem, em inglês
Higher-Order Singular Value Decomposition (HOSVD) à ZESPS:

ZESPS = R×1 U(1) ×2 U(2) ×3 U(3) ×4 U(4), (13)

em que R ∈ C2K×Q×MS×LS é o tensor núcleo e U(1) ∈ C2K×2K , U(2) ∈ CQ×Q, U(3) ∈
CMS×MS , e U(4) ∈ CLS×LS são as matrizes singulares contendo os vetores singulares dos
desdobramento de (8) em cada modo, respectivamente.

Supondo que os componentes de sinais LOS são dominantes, os vetores singulares domi-
nantes do primeiro, terceiro, e quarto modo de ZESPS são mais correlatados ao componente
LOS. Portanto [5] propôs o seguinte autofiltro:

qESPS =
(
ZESPS ×1 (u

(1)
1 )H ×3 (u

(3)
1 )H ×4 (u

(4)
1 )H

)
ΣVH, (14)

em que ΣVH foi calculado em (7).

Para estimação do atraso, uma interpolação de spline cúbico é aplicado ao valor absolute
de (14) para criar uma função de custo F (τ). A variável τ que maximiza F (τ) é

τ̂LOS = arg max
τ
{F (τ)}. (15)

Técnicas Tensoriais Propostas

Esquema tensorial por estimação da matriz de direção e fatorização
Khatri-Rao (DoA/KRF)

O primeiro esquema tensorial é um método em três etapas que aplica estimação da di-
reção de chegada, do inglês Direction of Arrival (DoA), e fatorização Khatri-Rao, do inglês
Khatri-Rao factorization (KRF), para separar o código de cada componente incidente de
forma fechada.



Após o pré-processamento de (9) usando FBA e SPS, estimação de DoA é aplicado a (12)
para estimar a matriz-fator de direção de chegada Âd. Como [Yd](3) ≈ Ad(Γ̃

T�(CdQω,d)
T)T,

o produto da pseudo-inversa de Âd por [Yd](3) é

Â+
d [Yd](3) ≈ Â+

d Ad(Γ̃
T
d � (CdQω,d)

T)T ≈ (Γ̃T
d � (CdQω,d)

T)T. (16)

Em seguida, uma KRF é aplicado a (16) para encontrar as matrizes-fator ˆ̃Γd e ĈdQω,d.
Com o código separado é possível determinar a correlação usando ΣVH:

ĈdQd = ĈdQω,dΣVH. (17)

Por causa da possibilidade de ambiguidade de permutação na estimação do DoA ou na
KRF, um esquema de seleção é aplicado para descobrir qual linha de (17) contém a correla-
ção com o componente de linha de visada. Dois esquemas de seleção foram propostos.

O primeiro esquema de seleção é baseado em potência e supõe que o componente LOS
do sinal é o de maior potência, isto é

lLOS = max
ld
‖(ˆ̃Γd)ld,·‖2, (18)

e interpolação de spline cúbica é aplicada para estimar o atraso τ̂ apenas da linha selecionada
de (17).

No segundo esquema de seleção, a interpolação de spline cúbica é aplicada a todas as
linhas de (17) para estimar os atrasos dos componentes LOS e NLOS num vetor τ̂ e supõe
que o componente LOS do sinal é o de menor atraso destes, portanto

τ̂LOS = min
τ
{τ̂}. (19)

Esquema tensorial por filtragem ProKRaft

O segundo esquema tensorial utiliza um desdobramento Hermitiano, calculado a partir
do tensor de recepção, cuja propriedade de simetria dual [6] é explorada por um algoritmo
que alterna entre a solução do problema ortogonal de Procrustes, do inglês Orthogonal Pro-
crustes Problem (OPP), e fatorização Khatri-Rao de mínimos quadrados, do inglês Least
Squares Khatri-Rao Factorization (LSKRF), para estimar iterativamente as matrizes-fator
do canal. Estas são então usadas para separar o código de cada componente incidente.

O desdobramento Hermitiano calculado a partir da matriz de covariância multimodo a
partir do desdobramento modo dois de (8):

Rmm = [Yd]
T
(2)[Yd]

∗
(2)/N = (Ad � Γ̃T

d)(CdQω,d)(CdQω,d)
H/N(Ad � Γ̃T

d)
H

= (Ad � Γ̃T
d)RC(Ad � Γ̃T

d)
H ∈ CMK×MK , (20)



em que RC ∈ RLd×Ld é a matriz de covariância dos componentes LOS e NLOS de sinal do
satélite d.

Como RC ≈ ILd
(20) pode ser aproximado como

Rmm ≈ (Ad � Γ̃T
d)(Ad � Γ̃T

d)
H = YH, (21)

e YH é o desdobramento Hermitiano de Yd. Como YH possui a propriedade de simetria dual
é possível definir uma matriz-raiz Y

1
2
H ∈ CMK×Ld tal que:

YH = Y
1
2
H(Y

1
2
H)H. (22)

Usando a decomposição em valores singulares, do inglês Singular Value Decomposition
(SVD), de (21), YH = UYΣYVH

Y, é possível calcular uma estimativa para Y
1
2
H . Usando os

vetores singulares esquerdos associados ao subespaço de sinal, U
[Ld]
Y ∈ CMK×Ld , os valo-

res singulares associados ao subespaço do sinal, Σ
[Ld]
Y ∈ CLd×Ld , e uma matriz de rotação

unitária WH ∈ CLd×Ld:

Ŷ
1
2
H = U

[L]
Y Σ

[L]
Y WH = (A � Γ̃T) (23)

= FWH = G.

Mapear F para G usando WH é conhecido como o problema ortogonal de Procrustes.
Uma solução conhecida para este problema é aplicar a SVD a FGH e usar os vetores singu-
lares desta decomposição para estimar WH [30]:

FGH = UPΣPV
H
P

WH = UPV
H
P . (24)

Um algoritmo que alterna entre (23) e (24) pode iterativamente estimar Âd e ˆ̃Γd.

Como pode ser visto na Figura 3.3, o algoritmo inicia calculando os valores e vetores
singulares de (20) e inicializando W(0) = ILd

.

WH é usado para calcular T1 = U
[Ld]
Y Σ

[Ld]
Y WH. Aplicando LSKRF à T1 se calcula

estimativas para Âd e ˆ̃Γd, que são utilizadas para calcular T2 = (Âd � ˆ̃Γd)U
[Ld]
Y Σ

[Ld]
Y . A

SVD de T2 fornece as matrizes de vetores singulares UP e VP usadas para atualizar WH. O
processo se repete até a convergência.

Com a estimativa das matrizes-fator do canal, a filtragem é feita calculando o produto
modo-n com a pseudoinversa das matrizes-fator estimadas:

ĈdQω,d = Yd ×1 (ˆ̃Γd)
+ ×3 (Âd)

+, (25)

onde ĈdQω,d é o tensor que acumula os Ld códigos pseudoaleatórios correlacionados dos



componentes LOS e NLOS do sinal. Cada l-ésimo código se acumula em cada vetor
(ĈdQω,d)l,·,l.

Assim como no esquema anterior proposto, pode haver ambiguidades de permutação, e
um esquema de seleção igual ao descrito anteriormente é utilizado para selecionar o compo-
nente de sinal LOS.

Simulação

É considerado o seguinte cenário sob simulação: é utilizado um arranjo retangular uni-
forme, do inglês Uniform Linear Array (ULA), centro-hermitiano com M = 8 elementos e
espaçamento de meio comprimento de onda. O sinal GNSS é um código pseudo aleatório
C/A de GPS de D satélites, com portadora de frequência fc = 1575, 42 MHz, largura de
banda B = 1, 023 MHz, e duração de chip TC = 1/B = 977, 52 ns, com N = 2046 amos-
tras coletadas a cada k-ésimo período de código durante K = 30 períodos, cada um com
duração de ∆t = 1 ms.

Além do sinal LOS com atraso τLOS, há um componente NLOS (L = 2) com atraso τLOS

e diferença de azimute de ∆φ. O atraso entre τLOS e τNLOS é tal que τNLOS = τLOS + ∆t. Para
SPS/ESPS o arranjo é dividido em LS = 5 subarranjos com MS = 4 elementos cada.

As fases do sinal arg{γ} ∼ U[0, 2π] independentes e identicamente distribuídos. Para as
simulações do esquema DoA/KRF, as fases se mantém constante durante todo a amostragem.
Para as simulações do esquema ProKRaft, as fases mudam a cada período de código. O
número de correlatores no banco é Q = 11 igualmente espaçados entre −TC e TC . O sinal
LOS é selecionado utilizando (18). A razão portadora ruído é de 48 dB-Hz, resultando numa
razão sinal-ruído pós-correlação de SNRpós ≈ 15 dB.

A simulação é de Monte Carlo com 1000 iterações. As curvas são o erro quadrático
médio multiplicado por c = 299792458 m/s, expressas em metros, para diferentes ∆τ . Os
resultados são comparados com a filtragem com conhecimento a priori do canal (A e Γ̃

conhecidos) e a correlação direta sem ruído do sinal LOS com o banco correlator.

As simulações na Figura 1 incluem: o esquema DoA/KRF comparado com o autofiltro
para D = 1 satélites e diferença de azimute ∆φ de π/3, π/4, e π/6 nas subfiguras (a)
a (c); o esquema DoA/KRF comparado com o autofiltro para D = 2 e D = 3 satélites
para ∆φ = π/3 nas subfiguras (d) e (e); e o esquema DoA/KRF comparado com filtragem
ProKRaft para D = 1 satélites e diferença de azimute ∆φ de π/3, π/4, e π/6 nas subfiguras
(f) a (h).
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Abstract

Traditionally Global Navigation Satellite Systems (GNSS) such as Global Positioning
System (GPS), Galileo, also known as the European GNSS, GLONASS, also known as the
Russian GNSS, or BeiDou, also known as the Chinese GNSS, are intended for military ap-
plications such as missile guiding-system and for takeoff and landing of civilian airplanes.
In case of civilian aviation, Ground-Based Augmentation System (GBAS) supports local
augmentation for safety-critical systems. However, in the last years, the amount of GNSS
applications has dramatically increased. For instance, fishing authorities can use GNSS to
automatically locate in real-time by satellites the fishing ships in order to guarantee the sus-
tainable management of the fishing commonwealth [1]. Another application of GNSS is to
track trucks in order to know the status of the load in real-time. In traffic related applications,
GNSS can be used for an automatic toll system [2] and for autonomous vehicles that require
high standards of security and precision. In the context of autonomous driving, the environ-
ment should be sensed by the vehicle and the measured data processed in order to achieve
such standards. Although autonomous vehicles count on an extensive amount of sensors to
perform Adaptive Cruise Control (ACC), GNSS receivers play an essential role [3] due to
its ubiquity covering almost all areas of the planet. Finally, in precision farming, also known
as satellite farming, GNSS is employed to improve, for instance, precision of fertilization
and also to allow the usage of expensive agriculture vehicles 24 hours a day [4]. Therefore,
with precision agriculture, both machinery and chemicals can be used in a safer and more
efficient fashion.

GNSSs rely on time-delay estimation to estimate a user’s position. This is done by cor-
relating the incoming signal with replica sequences to separate each satellite and perform
time-delay estimation. Since multipath components are delayed copies of the original sig-
nal, this affects the cross-correlation function, thus impacting time-delay estimation.

In this thesis, we study a state-of-the-art approach for multipath mitigation time-delay
estimation algorithm based on the rank-one Higher-Order Singular Value Decomposition
(HOSVD) eigenfilter [7], and propose two tensor-based schemes for multipath mitigation
and time-delay estimation, for which the HOSVD-based scheme is a basis of comparison.

The first scheme is a three step tensor-based approach applying direction of arrival (DoA)
estimation and Khatri-Rao factorization (KRF) to separate the code for each impinging com-
ponent in a closed fashion. The second approach uses the dual-symmetry property of the

xi



signal tensor [6] to calculate a Hermitian unfolding with which, by alternating between a
solution to the orthogonal Procrustes problem (OPP) and least squares Khatri-Rao factoriza-
tion, iteratively estimates the channel factor matrices which are then used to separate the code
of each impinging component. Both our schemes outperforms the HOSVD-based eigenfilter
state-of-the-art solution.
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Chapter 1

Introduction

Originally Global Navigation Satellite Systems (GNSS) such as Global Positioning Sys-
tem (GPS) were intended for military applications, such as missile guiding-systems, and for
takeoff and landing of civilian airplanes. In case of civilian aviation, Ground-Based Aug-
mentation System (GBAS) supports local augmentation for safety-critical systems. In the
last years, the amount of GNSS applications has increased dramatically. For instance, GNSS
can be used for automatic toll systems [2] and for autonomous vehicles that require high
standards of security and precision [3]. In precision farming, GNSS is employed to improve,
for instance, precision application of fertilization and also to allow the usage of expensive
agriculture machinery 24 hours a day [4].

In order to compute the position on the earth, a GNSS receiver uses the time-delays of
line-of-sight (LOS) components from at least four satellites. However, due to the geometry
of the propagation environment, caused, for instance, by trees, poles, lamps and buildings,
reflections from the LOS signal can occur creating multipath components, which are non-
line-of-sight (NLOS) components. As a consequence, the multipath components interfere
with the received LOS signal component. In practice, the quality of the ranging data provided
by a GNSS receiver largely depends on the synchronization error, that is, on the accuracy of
the propagation time-delay estimation of the LOS signal. In case the LOS signal is corrupted
by several superimposed delayed replicas (reflective, diffractive, or refractive multipath),
the estimation of the propagation time-delay and thus the position can be severely degraded
using state-of-the-art GNSS receivers [8, 9, 10].

Several techniques have been proposed in the literature for solving the multipath problem
in GNSS using one single-polarization antenna, e.g. [11, 12], but their capabilities are not
sufficient for safety-critical applications (SCA) or liability critical applications (LCA). Thus,
multi-antenna systems became the focus of research and technological development of mul-
tipath mitigation for SCA and LCA [13, 14]. The current state-of-the-art tensor-based multi-
path mitigation techniques applied to time-delay estimation [5] is based on HOSVD [15] ei-
genfiltering with Forward-Backward Averaging (FBA) [16, 17], and Expanded Spatial Smo-
othing (ESPS) [18, 19].
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In this thesis we propose two new tensor-based time-delay estimation approach robust
against multipath components. Our first approach starts by utilizing a direction of arrival
(DoA) estimation technique on the post-correlated received tensor signals in order to recons-
truct the DoA-related factor matrix. Next, the remaining factor matrices can be estimated
by using Khatri-Rao factorization (KRF). Given the estimated factor matrix corresponding
to the post-correlated pseudo-random (PR) sequences, the time-delay estimation can be per-
formed for each LOS and NLOS signal component. Therefore, we also incorporate two
proposed selection schemes in our framework in order to estimate the time-delay of the LOS
signal component: one based on the signal power and another one selecting the smallest esti-
mated time-delay. The second approach utilizes a Procrustes estimation and Khatri-Rao fac-
torization (ProKRaft) technique to estimate the DoA- and complex amplitude-related factor
matrices which are then used to filter and recover the post-correlated PR sequences. Again,
a selection scheme is employed to estimate the time-delay of the LOS signal component.

This thesis is structured as follows: this chapter includes the introduction along with the
notation used. Chapter 2 presents the notation, matrix and tensor operations, and the pre-
and post-correlation data model. In Chapter 3, three approaches to time-delay estimation
are presented: in Section 3.1 the state-of-the-art HOSVD eigenfilter-based approach with
FBA and ESPS; in Section 3.2, we propose our time-delay estimation approach based on the
direction of arrival estimation and Khatri-Rao factorization; and in Section 3.3 the ProKRaft
approach. Chapter 4 presents the results of Monte Carlo (MC) simulations under different
scenarios. Chapter 5 draws the conclusions.
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Chapter 2

Concepts on Tensor Calculus and Data
Model

While matrix operations such as eigenvalue and singular value decompositions are well
known, certain specific matrix operations which are used in this thesis are more rarely seen
and their usage is necessary for the tensor operations used for tensor-based filtering tech-
niques and how the tensor-based GNSS receiver is modeled in this thesis. In this chapter,
the notation used in this thesis is introduced in Section 2.1, followed by matrix operations in
Section 2.2, the tensor operations and how they relate to the matrix operations in Section 2.3,
and finally the data model for the tensor-based GNSS receiver before and after correlation
with the correlator bank.

2.1 Notation

Scalars are represented by italic letters (a, b, A,B), vectors by lowercase bold letters
(a,b), matrices by uppercase bold letters (A,B), and tensors by uppercase bold calligraphic
letters (A,B).

The superscripts T, ∗, H, −1, and + denote the transpose, conjugate, conjugate transpose
(Hermitian), inverse, and pseudo-inverse of a matrix, respectively.

For a matrix A ∈ CM×N , the element in the m-th row and n-th column is denoted by
am,n, its m-th row is denoted by (A)m,·, and its n-th column is denoted by (A)·,n. The
2-norm of a matrix A is denoted by ‖A‖2.

For a matrix A ∈ CM×N with M < N , the diag{·} operator extracts the diagonal is
defined as

3



diag{A} ,


a1,1

a2,2
...

aM,M

 . (2.1)

The n-th mode unfolding of the tensor A is denoted by [A](n). The n-mode product
between a tensor A and a matrix B is denoted by A ×n B. The N -th order identity tensor
of size L× . . .× L is denoted by IN,L.

For two N -th order tensor A and B, both of size I1 × I2 × . . . × IN , composed of
individual scalar elements ai1,i2,...,iN and bi1,i2,...,iN , respectively, its inner product is denoted
by 〈A,B〉, and is defined as

〈A,B〉 ,
I1∑
i1=1

I2∑
i2=1

. . .

IN∑
iN=1

ai1,i2,...,iN bi1,i2,...,iN . (2.2)

The norm of a tensor A, denoted by ‖A‖F, is the Frobenius norm defined as

‖A‖F ,
√
〈A,A〉. (2.3)

2.2 Matrix Calculus

In this section four matrix operations are presented. The first two, the Kronecker and
Khatri-Rao products are straightforward, the latter two have important properties that are
used in the data model used in this work.

2.2.1 Kronecker product

Given two matrices A ∈ CI×J and B ∈ CK×L their Kronecker product, denoted by ⊗,
is defined as:

A⊗B ,


a1,1B · · · a1,JB
...

. . .
...

aI,1B · · · aI,JB

 ∈ CIK×JL. (2.4)
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2.2.2 Khatri-Rao product

Given two matrices A ∈ CI×R and B ∈ CK×R their Khatri-Rao product, denoted by �,
is defined as:

A �B ,
[
(A)·,1 ⊗ (B)·,1 · · · (A)·,R ⊗ (B)·,R

]
∈ CIJ×R. (2.5)

2.2.3 Outer product

The outer product is a special case of the Kronecker product in which the outer product
of two vectors a ∈ CI and b ∈ CJ results in a matrix C ∈ CI×J :

a ◦ b = abT =


a1
...

aI

[b1 · · · bJ

]
(2.6)

=


a1b1 · · · a1bJ
...

. . .
...

aIb1 · · · aIbJ

 = C ∈ CI×J , (2.7)

such that the elements of C satisfy cij = aibj, i ∈ {1, . . . , I}, j ∈ {1, . . . , J}.

The outer product can also be extended into other dimensions. An outer product of three
vectors results in a third-order tensor. For example, the outer product of three vectors a ∈ CI ,
b ∈ CJ , and c ∈ CK results in a third-order tensor X ∈ CI×J×K

a ◦ b ◦ c = X ∈ CI×J×K , (2.8)

and xijk = aibjck, i ∈ {1, . . . , I}, j ∈ {1, . . . , J}, k ∈ {1, . . . , K} holds.

2.2.4 The vec{·} operator

The vec{·} operator rearranges a matrix into a vector in such a way that its vectors are
stacked. For a matrix A ∈ CM×N ,

vec{A} = vec
{[

A·1 · · · A·N

]}
(2.9)

=


A·1
...

A·N

 ∈ CMN . (2.10)

An important property of the vec{·} operator is that for X = ABC with A ∈ CI×J , a
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diagonal matrix B ∈ CJ×J , and C ∈ CJ×K

vec{X} = vec{ABC}
= (CT �A)diag{B} ∈ CIK . (2.11)

2.2.5 The unvec{·} operator

The unvec{·} operator rearranges a vector into a matrix of specified size. For a vector
a = [aT

1 , . . . , a
T
N ]T ∈ CMN ,

unvec
M×N

{a} = unvec
M×N




a1

...

aN




=
[
a1 · · · aN

]
∈ CM×N . (2.12)

2.3 Tensor Calculus

2.3.1 Tensors

As vectors are generalizations of scalars, and matrices generalizations of vectors, ten-
sors are generalizations of matrices but, while matrices are limited to only two dimensions,
tensors can have any number of dimensions. Throughout this text the terms scalar, vector
and matrix are applied to 0-, 1-, and 2-dimensional structures while the term tensor is only
applied to structures with 3 or more dimensions.

In (2.13) we examplify a scalar I ∈ C, a vector i ∈ C3, and an identity matrix I ∈ C3×3:

I = 1, i =

1

0

0

 , I =

1 0 0

0 1 0

0 0 1

 , (2.13)
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while in (2.14) a third-order identity tensor I3,3 ∈ C3×3×3 is shown:

I3,3 =

0 0 0

0 1 0

0 0 0



0 0 0

0 0 0

0 0 1



1 0 0

0 0 0

0 0 0


. (2.14)

While higher-order tensors can be achieved visualization becomes difficult. A N -
dimensional tensor A ∈ CI1×I2×...×IN can be perceived in “slices” by keeping its first two
indexes fixed while varying the remaining N − 2 indexes in succession.

For example, by changing the third index of the previously used third-order identity
tensor I3,3 while fixing the first and second indexes:

(I3,3)·,·,1 =

1 0 0

0 0 0

0 0 0

 (I3,3)·,·,2 =

0 0 0

0 1 0

0 0 0

 (I3,3)·,·,3 =

1 0 0

0 0 0

0 0 1

 . (2.15)

For a fourth-order identity tensor I4,3 ∈ C3×3×3×3 we get

(I4,3)·,·,1,1 =

1 0 0

0 0 0

0 0 0

 (I4,3)·,·,2,1 =

0 0 0

0 0 0

0 0 0

 (I4,3)·,·,3,1 =

0 0 0

0 0 0

0 0 0

 (2.16)

(I4,3)·,·,1,2 =

0 0 0

0 0 0

0 0 0

 (I4,3)·,·,2,2 =

0 0 0

0 1 0

0 0 0

 (I4,3)·,·,3,2 =

0 0 0

0 0 0

0 0 0

 (2.17)

(I4,3)·,·,1,3 =

0 0 0

0 0 0

0 0 0

 (I4,3)·,·,2,3 =

0 0 0

0 0 0

0 0 0

 (I4,3)·,·,3,3 =

0 0 0

0 0 0

0 0 1

 . (2.18)

2.3.2 n-mode unfolding

The n-mode unfolding provides a way to represent a tensor as a matrix. This is done
by fixing the n-th index while varying the remaining indexes in reverse order, concatenating
these vectors along the n + 1-th dimension, then permutating the order of the dimensions
(circularly) from the n-th to the n− 1-th dimension.
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For example, for a third-order tensor A ∈ C2×2×2 we can write

A =

[
5 6

7 8

]
[

1 2

3 4

]
. (2.19)

and has the following unfoldings:

[A](1) =

[
1 5 2 6

3 7 4 8

]
, (2.20)

[A](2) =

[
1 3 5 7

2 4 6 8

]
, (2.21)

[A](3) =

[
1 2 3 4

5 6 7 8

]
. (2.22)

For a N -dimensional tensor, A ∈ CI1×...×IN , its n-mode unfolding, [A](n), will be of
size In × Πr 6=nIr.

2.3.3 n-mode product

The n-mode product allows for the calculation of the product between a matrix and a
tensor by using the n-mode unfolding. For an N -dimensional tensor A ∈ CI1×...×In×...×IN

and a matrix B ∈ CM×In , the n-mode product of these two matrices is denoted by A×n B.
The resulting tensor is the matrix product of B · [A](n) folded back into a tensor of size
I1 × . . .×M × . . .× IN .

Alternatively, this can be interpreted as the n-mode unfolding of the resulting tensor as
the product between the matrix B and the unfolded tensor A:

[A×n B](n) = B · [A](n). (2.23)

2.3.4 PARAFAC model

The PARAFAC model presupposes that a given N -dimensional tensor X ∈ CI1×...×IN

can be decomposed into a summation of a minimum number of rank-one tensors X (i), i =

1, . . . , L:

X =
L∑
l=1

X (l) =
L∑
l=1

a
(1)
l ◦ . . . ◦ a

(N)
l , (2.24)

and L is the model order of the noiseless tensor.

8



By defining factor matrices A(i) = [a
(i)
1 , . . . , a

(i)
1 ] the equation above can be written in

terms of the n-mode products of an N -dimensional identity matrix IN,L ∈ RL×...×L and
loading matrices A(i):

X = IN,L ×1 A(1) ×2 A(2) . . .×N A(N). (2.25)

A related useful property is, for a third-order tensor A = I3,d×1 A(1)×2 A(2)×3 A(3) ∈
CI1×I2×I3 with A(1) ∈ CI1×d, A(2) ∈ CI2×d, and A(3) ∈ CI3×d, its unfoldings are:

[A](1) = A(1)
(
A(2) �A(3)

)T ∈ CI1×I2·I3 , (2.26)

[A](2) = A(2)
(
A(3) �A(1)

)T ∈ CI2×I3·I1 , (2.27)

[A](3) = A(3)
(
A(1) �A(2)

)T ∈ CI3×I1·I2 . (2.28)

Figure 2.1: Third-order tensor PARAFAC decomposition

2.3.5 Higher-Order SVD

A matrix X ∈ CI1×I2 can be decomposed by the Singular Value Decomposition into the
following products:

X = UΣVH, (2.29)

with U ∈ CI1×I1 , Σ ∈ CI1×I2 , and V ∈ CI2×I2 .
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U is a unitary matrix containing the left-hand singular vectors and its columns are asso-
ciated with the column space of X. V is a unitary matrix containing the right-hand singular
vectors and its rows are associated with the row space of X. Σ is a matrix containing the
singular values σ1, σ2, . . . , σmin(I1,I2) in its diagonal, its columns are multiplied by U and its
rows are multiplied by V∗.

Figure 2.2: Singular Value Decomposition

To generalize the SVD to an N -th order tensor the relations described above have to be
retained while extending to tensors. For more than two dimensions the transpose operation
does not make sense. To achieve the SVD without relying on the transpose operation while
preserving the relations between U, V, and Σ, the n-mode product described previously can
be employed:

X = UΣVH

= Σ×1 U×2 V∗

= Σ×1 U(1) ×2 U(2), (2.30)

with U(1) = U and U(2) = V∗. Σ possesses the properties of pseudodiagonality, that is
only its diagonal is non-zero, and ordering, in which σ1 ≥ σ2 ≥ . . . ≥ σmin(I1,I2) ≥ 0.

Figure 2.3: SVD generalized using the n-mode product

Generalizing the SVD to an N -th order tensor X ∈ CI1×I2×...×IN in terms of an n-mode
product:

X = R×1 U(1) ×2 U(2) . . .×N U(N), (2.31)
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in which each U(n) ∈ CIn×In is a unitary matrix that makes linear combinations of the
subtensor formed by keeping the n-th index of R ∈ CI1×I2×...×IN fixed. This is known as
the Higher-Order SVD [15].

The tensor R ∈ CI1×I2×...×IN is known as “core tensor” and has the properties of all-
orthogonality, that is, for two subtensors Rin=α and Rin=β formed by keeping the index
in fixed, their inner product 〈Rin=α,Rin=β〉 = 0 for α 6= β, and ordering, though in this
case conforming to the Frobenius norm of the subtensor formed by the fixation of each in-th
index, that is, ‖Rin=1‖F ≥ ‖Rin=2‖F ≥ . . . ≥ ‖Rin=In‖F ≥ 0.

Figure 2.4: Higher-Order SVD of a third-order tensor X

Calculation of the HOSVD can be achieved by finding each unitary left singular vector
matrix U(n) from its respective n-mode unfolding by applying the SVD to [X ](n). Then the
core tensor R can then be calculated by applying (2.31) using the n-mode products of U(n)

from the left-hand side since these are unitary:

R = X ×1 U(1) ×2 U(2) . . .×N U(N). (2.32)

2.3.6 Dual-symmetric tensors

A 2N -th order tensor X ∈ CI1×...×IN×IN+1×...I2N is dual-symmetric if and only if there
can be a permutation of indexes P , resulting in a tensor X P which follows the particular
PARAFAC decomposition [20]:

X P = I2N,L ×1 A(1) . . .×N A(N) ×N+1 (A(1))∗ . . .×2N (A(N))∗. (2.33)
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This decomposition is useful in signal processing because every correlation tensor fol-
lows this decomposition [21]. To exploit the relation in (2.33), a particular unfolding called
Hermitian-symmetric unfolding [17] applied to the dual-symmetric tensor. The Hermitian-
symmetric unfolding of X ∈ CI1×...×I2N , XH is defined as:

XH = unvec
K×K

{vec{X}} ∈ CK×K , (2.34)

with K = I1 · . . . · IN .

This unfolding in terms of its factor matrices is:

XH =
(
A(N) � . . . �A(1)

) (
A(N) � . . . �A(1)

)H
. (2.35)

2.4 Data Model

GNSS use satellite constellations that orbit the earth in a known pattern, along with a
terrestrial segment that monitors each satellite’s individual position, issues corrections, and
uploads the ephemeris data of each satellite which is used by the end-user to calculate his
position on earth.

GNSSs such as GPS, Beidou, and Galileo use Code Division Multiple Access (CDMA)
which not only gives each satellite a unique identification to separate it from other satellites,
it also spreads the signal over a wider bandwidth, this is called spreading. Spreading is done
by multiplying the transmitted data sequence by a higher bandwidth periodic chip (instead of
bit) code called a pseudorandom (PR) sequence which increases the bandwidth of the signal
while decreasing its spectral power density. Spreading allows satellites to operate over the
same frequency by separating each satellite, as is done with 3G mobile users, where each
satellite has its own unique PR sequence. Because the signal is now spread over a wider
bandwidth it becomes more robust to interference, unfortunately it also decreases the signal
to noise ratio (SNR) at which it is received, for example, in the case of GPS the signal is
received below the noise floor. The pre-correlation data model in Subsection 2.4.1 models
this signal being received by an antenna array.

Recovery of each satellite’s individual signal is done by de-spreading. This is done by
correlating the received signal by each known PR sequence. This process provides a proces-
sing gain, in the case of GPS of around 30 dB, and each satellite’s signal can be recovered.
The post-correlation data model in Subsection 2.4.2 models this signal.

Aside from separability and robustness, since spreading relies on a known repeating se-
quence, it is possible to estimate the delay between the time the signal was transmitted and
the time it arrived at the user. Time-delay estimation provides the user information about his
distance to each satellite which, when combined with received ephemeris data, allows for
calculation of the user’s position.
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Since estimation of the time-delay relies on the cross-correlation function of the recei-
ved PR sequence and its corresponding replica, multipath propagation can be particularly
pernicious for GNSS relying on CDMA since multipath propagation consists of delayed co-
pies of the original signal, which will distort the cross-correlation function, thus degrading
time-delay estimation. Because of this, multipath mitigation is very important to GNSS.
Mitigating multipath to perform time-delay estimation is seen in Chapter 3.

This section introduces the pre-correlation data model in Subsection 2.4.1, 2.4.2, which
is the result of the pre-correlation signal tensor being multiplied by a compressed correlator
bank [22] which separates the signal and returns the cross-correlation function. The data
model used is based on [5].

2.4.1 Pre-correlation data model

Assuming an antenna array based GNSS receiver with M elements and assuming D

GNSS satellites, where the d-th satellite has 1 LOS signal component and Ld − 1 NLOS
signal components, the received signal can be modeled as follows

sd,ld(t) = a(φd,ld)γldcd(t− τd,ld), (2.36)

with L =
∑D

d=1 Ld, and sd,ld ∈ CM contains the desired LOS signal for ld = 1 along with
the NLOS multipath signal components for ld = 2, . . . , Ld, and

sd,ld(t) = a(φd,ld)γldcd(t− τd,ld), (2.37)

is a signal replica with its own steering vector a(φd,ld), complex amplitude γd,ld , and PR
sequence cd(t− τd,ld) with delay τd,ld . The time index t = 1, . . . , N .

Each PR sequence with N samples is spatially observed in the M receive antennas and
are temporally grouped into K epochs. Therefore, the spatially observed matrix of the k-th
epoch, for k = 1, . . . , K, is given by

X[k] =
[
x[(k − 1)N + 1] · · · x[(k − 1)N +N ]

]
, (2.38)

with X[k] ∈ CM×N .

Concatenating all the steering vectors of the k-th period into a matrix Ad[k] =

[a(φd,1), . . . , a(φd,Ld
)] ∈ CM×Ld , the complex amplitudes γd = [γd,1, . . . , γd,Ld

]T into a
diagonal matrix Γd[k] = diag{γd} ∈ CLd×Ld and the sampled and shifted PR sequences
into a matrix Cd[k] =

[
cd[τd,1], . . . , cd[τd,Ld

]
]T ∈ RLd×N where each cd[τ ] is a sampled PR
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sequence (of the d-th satellite) with delay τ , the signal can be written in a matrix notation:

X[k] =
D∑
d=1

Ad[k]Γd[k]Cd[k] + N[k]

= A[k]Γ[k]C[k] + N[k], (2.39)

with A[k] ∈ CM×L, Γ[k] ∈ CL×L, C[k] ∈ RL×N , and N[k] ∈ CM×N .

Applying the vec{·} operator on X[k] to reshape it into a vector x̃[k], we obtain the
following expression in terms of Khatri-Rao product:

x̃[k] = vec{X[k]} = vec{A[k]Γ[k]C[k] + N[k]}
= (C[k]T �A[k])γ[k] + ñ[k]. (2.40)

Concatenating all K epochs along several columns, the index k can be dropped and the
following matrix representation can be obtained:

X̃ = (CT �A)Γ̃ + Ñ

= X̃0 + Ñ, (2.41)

in which X̃0 ∈ CMN×K is the noiseless received signal matrix and Γ̃ =
[
γ[1], . . . ,γ[K]

]
∈

CL×K stacks the complex amplitudes of each epoch. Note that the transpose of X̃0 follows
the same structure as the first-mode unfolding of a noiseless received signal tensor X 0:

X̃T
0 = Γ̃T(CT �A)T = [X 0](1). (2.42)

By folding the matrix X̃0 into the tensor form, we obtain

X 0 = I3,L ×1 Γ̃T ×2 CT ×3 A, (2.43)

in which I3,L ∈ RL×L×L is the third-order identity tensor and X 0 ∈ CK×N×M is the noise-
less received signal tensor.

Therefore, the matrix representation in (2.41) is equivalent to the following tensor ex-
pression:

X = I3,L ×1 Γ̃T ×2 CT ×3 A + N
= X 0 + N . (2.44)

Note that the tensor in (2.44) has three dimensions, being two temporal dimensions (epo-
chs and signal samples) and one spatial dimension. The first dimension of size K is associa-
ted with each epoch, the second dimension of size N corresponds to the collected samples in
each epoch, and the third dimension of sizeM is related to the spatial diversity of the receive
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antenna array.

2.4.2 Post-correlation data model

As shown in [5], the received signal X is multiplied by a correlator bank Qd of the d-th
satellite to calculate the cross-correlation vector used to estimate the time-delay of the LOS
signal component, since each satellite has its own PR sequence. In practice, the correlator
bank Qd is a collection of Q shifted signal replicas, or taps, of the PR sequence cd ∈ RN

with delay τq, q = 1, . . . , Q:

Qd =
[
cd[τ1] · · · cd[τQ]

]
∈ RN×Q. (2.45)

Hence, the received signal of each k-th epoch according to (2.39) multiplied by the cor-
relator bank Qd is given by

Yd[k] = X[k]Qd

= AdΓd[k]CdQd +
∑
i 6=d

AiΓi[k]CiQd + N[k]Qd

≈ AdΓd[k]CdQd + N[k]Qd ∈ CM×Q, (2.46)

since the signal components from other satellites are nearly removed [23]. However, the
noise in (2.46) becomes colored. In order to overcome this, a Fisher information-preserving
compression [22] is applied to the d-th correlator bank by using the economy-size Singular
Value Decomposition (SVD):

Qd = UΣVH, (2.47)

with U ∈ CN×Q, Σ ∈ CQ×Q, and V ∈ CQ×Q. By defining the compressed correlator bank
as Qω,d = U, since U is an orthogonal and unitary matrix, preserves the statistical properties
of the noise (see Appendix).

Therefore, the improved post-correlation model is given by

Ȳd[k] = AdΓd[k]CdQω,d + N[k]Qω,d

= AdΓd[k]CdQω,d + Nω[k], (2.48)

in which Nω[k] is white Gaussian noise.

Similarly as performed from (2.41) to (2.44), we can also rewrite (2.48) into the following
tensor fashion by using the n-mode product operator:

Yd = X ×2 QT
ω,d ∈ CK×Q×M , (2.49)
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or, equivalently,

Yd = I3,L ×1 Γ̃d ×2 (CdQω,d)
T ×3 Ad + N ω

= Y0,d + N ω, (2.50)

and the noise tensor N ω is white Gaussian.

The tensor formulation in (2.50) is composed of the first dimension of size K associated
each epoch, the second dimension of size Q corresponds to each tap of correlator bank, and
the third dimension of size M is related to the number of elements of the receive antenna
array.

2.4.3 Uniform Linear Array

The algorithms presented in Chapter 3 utilize two preprocessing techniques to increase
precision, FBA and SPS/ESPS. In order to use FBA and ESPS the array steering matrix must
necessarily be left centro-hermitian and Vandermonde. An M -element array with steering
matrix A ∈ CM×L is left centro-hermitian if it satisfies the following condition:

ΠMA∗ = A, (2.51)

with

Π =


0 1

. .
.

1 0

 , (2.52)

which means that the conjugate of A flipped over the horizontal axis is the same as A.

The uniform linear array (ULA) is an example of an array whose steering matrix is left
centro-hermitian. As can be seen in Figure 2.5, the ULA has M equally-spaced elements
arranged in a linear fashion with spacing ∆.

· · ·

element 1 element 2 element 3 element M

∆

Figure 2.5: Uniform Linear Array with ∆ spacing

For a sufficiently distant narrowband source, such as in GNSS, impinging wavefronts are
assumed planar.
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As can be seen in Figure 2.6, for adjacent elements m and m + 1 spaced ∆ apart, the
wavefront coming at an angle θ will pass the first element and then the next after traveling a
distance of d:

m m+ 1∆

d
θ

θ

Figure 2.6: Wavefront incidence on adjacent array elements

Since the spacing is known, the distance traveled by the wavefront is d = ∆ sin θ and the
travel time between each element can be calculated as

τ =
d

c
=

∆ sin θ

c
. (2.53)

A narrowband signal sm(t) = ej2πft at the m-th element will arrive at the m + 1-th
element with a delay τ and will be

sm+1(t) = ej2πf(t+τ)

= ej2πftej2πfτ

= ej2πftejµ. (2.54)

with µ denominated the spatial frequency and is

µ = 2πfτ

= 2πf
∆ sin θ

c
. (2.55)

Since the structure of the array is uniform, the signal at each subsequent element in the
array is shifted by exactly ejµ. Arranging the signal received at all M elements into a vector
s(t) ∈ CM

s(t) =



ej2πft

ej2πftejµ
...

ej2πftej(M−2)µ

ej2πftej(M−1)µ


= ej2πft



1

ejµ
...

ej(M−2µ

ej(M−1)µ


= ej2πfta(µ). (2.56)

in which a(µ) ∈ CM is known as the steering vector and eachm-th element is ej(m−1)µ. This
is known as the Vandermonde structure.
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To make the Vandermonde structure steering vector a(µ) conform to the condition set in
(2.51), it has to be multiplied by e−j

M−1
2

µ for even M or e−jb
M
2
cµ for odd M , and it becomes

a(µ)
evenM

=



e−j
M−1

2
µ

e−j
M−2

2
µ

...

e−j
1
2
µ

ej
1
2
µ

...

ej
M−2

2
µ

ej
M−1

2
µ


a(µ)
oddM

=



e−jb
M
2
cµ

e−jb
M−2

2
cµ

...

1
...

ejb
M−2

2
cµ

ejb
M
2
cµ


. (2.57)

For L sources impinging on the array the contribution of each a(µl), l = 1, . . . , L is
concatenated into a steering matrix A = [a(µ1), . . . , a(µL)] ∈ CM×L:

A
evenM

=



e−j
M−1

2
µ1 · · · e−j

M−1
2

µL

e−j
M−2

2
µ1 · · · e−j

M−2
2

µL

...
...

...

e−j
1
2
µ1

... e−j
1
2
µL

ej
1
2
µ1

... ej
1
2
µL

...
...

...

ej
M−2

2
µ1 · · · ej

M−2
2

µL

ej
M−1

2
µ1 · · · ej

M−1
2

µL


A

oddM
=



e−jb
M−1

2
cµ1 · · · e−jb

M
2
cµL

e−jb
M−2

2
cµ1 · · · e−jb

M−2
2
cµL

...
...

...

1
... 1

...
...

...

ejb
M−2

2
cµ1 · · · ejb

M−2
2
cµL

ejb
M−1

2
cµ1 · · · ejb

M
2
cµL


, (2.58)

and (2.51) holds.

For a ULA with half-wavelength spacing ∆ = λ/2 the spatial frequency is

µ = 2πf
(λ/2) sin θ

c

= π sin θ. (2.59)

If the array steering matrix is not left centro-hermitian and Vandermonde, we refer the
reader to the interpolation scheme in [24], which can also account for real word imperfections
resultant from faulty array construction or calibration.
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Chapter 3

Tensor-based Approaches to Time-Delay
Estimation

In this chapter, three algorithms are presented. The state-of-the-art tensor-based time-
delay estimation from [5], and two novel approaches for filtering and time-delay estima-
tion. The first approach is based on closed DoA estimation of the steering factor matrix
followed by a simultaneous estimation of the complex amplitude and code factor matrices
using Khatri-Rao factorization. The second approach uses an iterative least-squares ortho-
gonal Procrustes problem (OPP) and Khatri-Rao factorization to estimate the steering and
complex amplitude factor matrices.

3.1 State-of-the-Art Tensor-Based Time-Delay Estimation

In this section, we summarize the state-of-the-art tensor-based time-delay estimation ap-
proach, which is an HOSVD based eigenfilter with Forward Backward Averaging (FBA) and
Expanded Spatial Smoothing (ESPS).

This chapter is divided into three sections which are also the steps of the state-of-the-art
approach according to Figure 3.1. First a pre-processing step is applied to incorporate FBA
and ESPS as illustrated in Figure 3.1 and detailed in Section 3.1.1. Next the HOSVD based
rank-one filters are computed for three dimensions of the tensor and an improved output of
the correlator bank is obtained as shown in Figure 3.1 and also according to Section 2.3.5.
Finally, the amount of points is increased via a cubic spline interpolation and one dimension
peak search is performed in order to locate the time-delay of the multidimensionally filtered
output as presented in Section 3.1.3.
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3.1.1 Forward-Backward Averaging and Expanded Spatial Smoothing

Similarly to matrix-based FBA [16], flipped identity matrices are used to duplicate the
number of samples. The left-hand multiplication matrix ΠM ∈ RM×M is an identity matrix
of size M flipped along its vertical axis and the right-hand multiplication matrix ΠKQ ∈
RKQ×KQ likewise. These matrices are applied to the spatial (third-mode) unfolding of the
signal tensor in the following manner:

Z =
[
[Yd](3) ΠM [Yd]

∗
(3)ΠKQ

]
∈ CM×2KQ. (3.1)

In a similar fashion to matrix-based SPS [18], selection matrices that divide the array into
LS subarrays with MS = M −LS + 1 elements are used. The selection matrices are defined
as

JlS =
[
0MS×lS−1 IMS

0MS×LS−lS

]
∈ RMS×M , (3.2)

for lS = 1, . . . , LS .

Using the selection matrices, spatial smoothing is applied to the forward-backward ave-
raged spatial unfolding of the signal tensor

W =
[
J1Z · · · JLS

Z
]
∈ CMS×2LSKQ, (3.3)

and W is third-mode folded back into a forward-backward averaged spatially-smoothed
fourth-order tensor ZESPS ∈ C2K×Q×MS×LS .

3.1.2 Higher-Order SVD eigenfiltering

For time-delay estimation the HOSVD is applied to ZESPS

ZESPS = R×1 U(1) ×2 U(2) ×3 U(3) ×4 U(4), (3.4)

in which R ∈ C2K×Q×MS×LS is the core tensor, and U(1) ∈ C2K×2K , U(2) ∈ CQ×Q,
U(3) ∈ CMS×MS , and U(4) ∈ CLS×LS are unitary matrices collecting singular vectors of
each mode’s respective unfolding [15].

By assuming the LOS signal component has the greatest power compared with NLOS
signal components, the dominant singular vectors of the first, third and fourth dimensions
of ZESPS in (3.4) are mostly correlated to the LOS signal component. Therefore, [5] has
proposed the following HOSVD based eigenfilter:

qESPS =
(
ZESPS ×1 (u

(1)
1 )H ×3 (u

(3)
1 )H ×4 (u

(4)
1 )H

)
ΣVH. (3.5)
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Note that ΣVH is computed in (2.47).

3.1.3 Time-Delay Estimation

In order to obtain the time-delay estimation from qESPS, a cubic spline interpolation based
on |qESPS| is used to generate a cost function F (τ). The τ variable that maximizes the cost
function is computed as follows

τ̂LOS = arg max
τ
{F (τ)}. (3.6)

Yd
FBA and ESPS
pre-processing

HOSVD-based rank-
one eigenfilter

×n×ΣVH

Time-delay
estimation τ̂LOS

[Yd](3) ZESPS

u
(1)
1

u
(3)
1

u
(4)
1

|qESPS|

Figure 3.1: Block diagram of the state-of-the-art HOSVD eigenfilter-based time-delay esti-
mation approach

3.2 Proposed DoA Estimation and KRF Approach

In this chapter, we propose a three step approach based on the direction of arrival (DoA)
estimation, the Khatri-Rao factorization (KRF) and the selection of the estimated LOS time-
delay. Note that to estimate the DoA of the LOS and NLOS signal components, the model
order Ld should be known. Therefore, we refer to the tensor based model order selection
schemes in [25, 26, 27].

This section is divided into three subsections. After a pre-processing step via FBA and
ESPS is applied as illustrated in Figure 3.2, DoA estimation is utilized to rebuild the fac-
tor matrix A as described in Subsection 3.2.1. Then Khatri-Rao factorization is applied to
the product of Â+

d and [Yd](3) to estimate the factor matrices ˆ̃Γd and ĈdQω,d according to
Subsection 3.2.2. Finally, the LOS signal component of the estimated signal is found the
time-delay is estimated as described in Subsection 3.2.3.
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3.2.1 Estimation of DoA factor matrix

Since Qω,d has been applied to the received signals as shown in (2.48), there are only
Ld signal components and we desire to estimate the DoA of all Ld components. Note that
L̂d can be estimated by using the tensor based model order selection schemes discussed
in [25, 26, 27].

As shown in Figure 3.2, DoA estimation is applied to the forward-backward averaged
spatially smoothed signal matrix W calculated in (3.3).

Although there are several DoA schemes in the literature, due to the simplicity, good ac-
curacy and low computational complexity, we use in our work the Estimation of Signal Para-
meter via Rotational Invariance Technique (ESPRIT) [28]. We assume the GNSS receiver is
equipped with an antenna array, whose geometry is Vandermonde and left centro-hermitian.

3.2.2 PR code and complex amplitude estimation via Khatri-Rao Fac-
torization

By rewriting the spatial unfolding of the noiseless signal from (2.50), the following ex-
pression is obtained:

[Y0,d](3) = Ad

(
Γ̃T
d � (CdQω,d)

T
)T
∈ CM×KQ. (3.7)

Once Âd has been estimated, its pseudo-inverse can be applied to (3.7) such that

Â+
d [Y0,d](3) = Â+

d Ad

(
Γ̃T
d � (CdQω,d)

T
)T

≈
(
Γ̃T
d � (CdQω,d)

T
)T
∈ CLd×KQ, (3.8)

and the factor matrices Γ̃d and CdQω,d can be estimated by Least Squares Khatri-Rao facto-
rization (LSKRF) [29].

Given (Γ̃T
d�(CdQω,d)

T), and considering it’s ld-th column can be calculated as the Khatri-
Rao product of the ld-th column of Γ̃T

d and (CdQω,d)
T:(

Γ̃T
d � (CdQω,d)

T
)
·,ld

= (Γ̃T
d)·,ld � (CdQω,d)

T
·,ld , (3.9)

with each column (Γ̃T
d � (CdQω,d)

T)·,ld ∈ CKQ.

To solve for estimates of Γ̃d and CdQω,d, we reshape (3.9) into a matrix of size Q×K:

unvec
Q×K

{(
Γ̃T
d � (CdQω,d)

T
)
·,ld

}
= (CdQω,d)

T
·,ld(Γ̃T

d)
T
·,ld . (3.10)
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Since (3.10) is a rank-one matrix, we can use a SVD-based rank-one approximation:

unvec
Q×K

{(
Γ̃T
d � (CdQω,d)

T
)
·ld

}
= UldΣldVld . (3.11)

The estimates for (Γ̃T
d)·,ld and ((CdQω,d)

T)·,ld are √σld,1v∗ld,1 and √σld,1uld,1, respecti-
vely, where σld,1 is the dominant singular value of Σld , uld,1 is the dominant left singular
vector of Uld , and v∗ld,1 is the conjugate of the dominant right singular vector of Vld . This is
repeated for ld = 1, . . . , Ld.

Once ĈdQω,d is estimated using LSKRF, the next step is to find which row corresponds
to the LOS signal component due to possible permutation ambiguities in Âd estimated in
3.2.1.

3.2.3 LOS Time-Delay Estimation

In order to find the time-delay of the LOS signal component, two schemes are proposed,
namely, greatest power based scheme and smallest delay based scheme.

For the greatest power based scheme, we assume that the LOS signal component is not
blocked. Therefore, the LOS signal component has the greatest power in comparison with
the multipath components. In this case, the following expression can be used to locate the
estimated LOS signal component, ĉLOS:

lLOS = max
ld
‖ ˆ̃Γd,ld·‖2, (3.12)

in which ˆ̃Γd,ld· is the ld-th row of the matrix ˆ̃Γd. Note that in the greatest power based scheme,
we just compute the delay of the selected component using the following expression

qDoA/KRF = ĉT
LOSQω,dΣVH, (3.13)

followed by a cubic spline interpolation to obtain a cost function and estimate the time-delay
as in (3.6).

For the smallest time-delay based scheme, we compute the Ld time-delays of ĉld for
ld = 1, . . . , Ld. Using the resulting time-delay estimation vector τ̂ = [τ̂1, . . . , τ̂Ld

]T ∈ RLd ,
the LOS time-delay is found by solving

τ̂LOS = min
τ
{τ̂}. (3.14)
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×

Khatri-Rao
factorization × ΣVH

ˆ̃Γd
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[Yd](3) W

Â+
d

Â+
d [Yd](3)

ĈdQω,d

ĈdQd

Figure 3.2: Block Diagram of the proposed DoA/KRF time-delay estimation approach

3.3 Procrustes estimation and Khatri-Rao factorization
(ProKRaft) filtering

In this section we present an iterative approach based on the Orthogonal Procrustes Pro-
blem (OPP) and KRF to calculate the DoA and complex amplitude factor matrices simulta-
neously. Since this technique relies on separating the subspace of the SVD, the model order
Ld should be known.

3.3.1 Simultaneous DoA and amplitude factor matrix estimation

To simultaneously estimate the factor matrices Ad and Γd, the ProKRaft approach relies
on the fact that a Hermitian unfolding can be achieved by calculating the multimode covari-
ance matrix, Rmm, which is the product of the transpose and conjugate of the second-mode
unfolding of Yd divided by the number of samples, N ,

Rmm = [Yd]
T
(2)[Yd]

∗
(2)/N (3.15)

= (Ad � Γ̃T
d) (CdQω,d)(CdQω,d)

H/N︸ ︷︷ ︸
RC

(Ad � Γ̃T
d)

H (3.16)

= (Ad � Γ̃T
d)RC(Ad � Γ̃T

d)
H ∈ CMK×MK , (3.17)

in which RC ∈ RLd×Ld is the covariance matrix of the LOS and NLOS signal components
from satellite d.

Considering RC ≈ ILd
, the multimode covariance matrix can be approximated as

Rmm ≈ (Ad � Γ̃T
d)(Ad � Γ̃T

d)
H, (3.18)

which is the Hermitian-symmetric unfolding of Yd, YH, whose structure is the same as that
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in (2.35).

Given this Hermitian-symmetric unfolding we can define a square-root factor matrix
Y

1
2
H ∈ CMK×Ld such that

YH = Y
1
2
H(Y

1
2
H)H. (3.19)

An estimate for Y
1
2
H can be achieved by using the SVD of YH = UYΣYVH

Y by using
the left-handed singular vectors and singular values which span the signal subspace, U

[Ld]
Y ∈

CMK×Ld and Σ
[Ld]
Y ∈ CLd×Ld , and a unitary rotation matrix WH ∈ CLd×Ld:

Y
1
2
H = U

[Ld]
Y Σ

[Ld]
Y WH = (Ad � Γ̃T

d) (3.20)

= FWH = G.

Mapping F to G using a unitary matrix WH is known as the “orthogonal Procrustes
problem,” which has a solution by applying the SVD to GHF and using its singular vectors
to estimate WH [30]:

GHF = UPΣPV
H
P ,

WH = UPV
H
P . (3.21)

An iterative algorithm can solve for estimates of Âd and ˆ̃Γd by alternating between (3.20)
and (3.21).

As can be seen in Figure 3.3, ProKRaft begins by calculating the left singular vectors and
singular values of Rmm, and initializing W(0) = IL.

WH is used to calculate T1 = U[Ld]Σ[Ld]WH. By applying KRF to T1, estimates for
Â and ˆ̃Γ are acquired, which are used to calculate T2 = (Â � ˆ̃Γ)U[Ld]Σ[Ld]. The SVD of
T2 provides the singular vector matrices UP and VH

P used to update WH. The alternating
process repeats until convergence.

Once the factor matrices have been estimated, filtering is done by calculating the n-mode
products of the pseudoinverse of the estimated factor matrices:

ĈdQω,d = Yd ×1 (ˆ̃ΓT
d)

+ ×3 (Â)+, (3.22)

in which ĈdQω,d is the tensor that accumulates the Ld correlated PR codes of the LOS and
NLOS signal components. Each l-th code accumulates in each (ĈdQω,d)l,·,l vector.
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Figure 3.3: Block Diagram of the proposed ProKRaft factor matrices estimation approach

3.3.2 LOS Time-Delay Estimation

Because permutation ambiguities are possible when estimating the factor matrices, se-
lection schemes like the ones described in Subsection 3.2.3 can be applied followed by the
cubic spline interpolation described in Subsection 3.1.3 to refine the time-delay estimation.
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Chapter 4

Simulations

Similarly to [5], we consider the following scenario with a left centro-hermitian uniform
linear array with M = 8 elements and half-wavelength (∆ = λ/2) spacing. The GNSS
signal is a GPS course acquisition PR code from D = 1 satellite at a carrier frequency
fc = 1575.42 MHz, bandwidth B = 1.023 MHz and chip duration TC = 1/B = 977.52 ns
with N = 2046 samples collected every k-th observation period during K = 30 epochs.
Each epoch has duration ∆t = 1 ms.

Aside from the LOS signal with time-delay τLOS, there is one NLOS multipath compo-
nent (L = 2) with time-delay τNLOS, and an azimuth angle difference ∆φ. The delay between
τLOS and τNLOS is ∆τ such that τNLOS = τLOS + ∆τ . For SPS/ESPS the array is divided into
LS = 5 subarrays with MS = 4 elements each. Signal phases arg{γ} are independent and
identically distributed ∼ U[0, 2π[. The number of correlators in the bank is Q = 11 equally
spaced between −TC and TC . The LOS signal is selected using (3.12).

The carrier-to-noise ratio is C/N0 = 48 dB-Hz, resulting in a pre-correlation SNRpre =

C/N0 − 10 log10(2B) ≈ −15.11 dB. Given the processing gain G = 10 log10(B∆t) ≈
30.1 dB, post-correlation SNRpost = SNRpre + G ≈ 15 dB and signal to multipath ratio
(SMR) of 5 dB. To compare results, the root mean squared error (RMSE) of the time-delay
multiplied by the speed of light, c = 299792458 m/s, is used, expressed in meters. For each
∆τ/TC a Monte Carlo (MC) simulation with P iterations the RMSE is calculated by

RMSE (m) = c ·

√√√√ 1

P

P∑
p=1

(τp − τ̂p)2. (4.1)

1000 MC simulations were performed to plot the RMSE (m) curves of time-delay estima-
tion utilizing HOSVD with FBA+ESPS explained in Section 3.1, filtering supposing known
A and Γ̃, direct noiseless correlation (cLOSQ) and the proposed DoA/KRF approach using
the spatially-smoothed forward-backward averaged signal data in (3.3) to estimate the DoAs
and rebuild Â.
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In Figure 4.1 the MC simulation is executed with the parameters described above and
azimuth angle difference of ∆φ = π/3 radians. The HOSVD+FBA+ESPS eigenfiltering
approach achieves its best results when the NLOS signal is either very strongly correlated,
∆τ/TC ≈ [0 − 0.1], or weakly correlated, ∆τ/TC ≈ [0.8 − 1], to the LOS signal, with its
error peaking at approximately 2.1 m at ∆τ/TC ≈ 0.5. The proposed DoA/KRF approach
is consistent with the results provided by filtering a priori knowledge of A and Γ̃.

0 0.2 0.4 0.6 0.8 1

"==TC

0.5

1

1.5

2

2.5

R
M
S
E
(m
)

HOSVD+FBA+ESPS

Proposed DoA/KRF

Known A and ~!

Noiseless case (cLOSQ)

Figure 4.1: Simulation results for DoA/KRF, D = 1, ∆φ = π/3

In Figure 4.2 the MC simulation is executed with the parameters described above and
azimuth angle difference of ∆φ = π/4 radians. The HOSVD+FBA+ESPS eigenfiltering
approach achieves its best results when the NLOS signal is strongly correlated, ∆τ/TC ≈
[0 − 0.1], with similar results for ∆τ/TC ≈ [0.1 − 2] or ∆τ/TC ≈ [0.75 − 1], and its
error peaking at approximately 4.3 m at ∆τ/TC ≈ 0.45. The proposed DoA/KRF approach
obtains an optimal performance, since its curve practically superposes the curve with filtering
with a priori knowledge of A and Γ̃.

In Figure 4.3 the MC simulation is executed with the parameters described above and
azimuth angle difference of ∆φ = π/6 radians. The HOSVD+FBA+ESPS eigenfiltering
approach achieves its best results when the NLOS signal is strongly correlated, ∆τ/TC ≈
[0− 0.1], or weakly correlated, ∆τ/TC ≈ [0.65− 1], with its error peaking at approximately
1.35 m at ∆τ/TC ≈ 0.4. Similarly to Figures 4.1 and 4.2, the curve of DoA/KRF almost
superposes the curve of the a priori A and Γ̃ filtering.
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Figure 4.2: Simulation results for DoA/KRF, D = 1, ∆φ = π/4

4.1 ProKRaft filtering time-delay estimation

Simulations using ProKRaft filtering are done using the scenario nearly identical to the
described above, except that the complex amplitude factor matrix Γ̃ in (2.50) suffers phase
shifts during the collection interval.

In Figure 4.4 the MC simulation is executed with the azimuth angle difference of ∆φ =

π/3 radians. The HOSVD+FBA+ESPS results are different because of the changing phases
of Γ. The ProKRaft approach is consistent with the DoA/KRF approach and both have
similar results to filtering with a priori knowledge of A and Γ̃.

In Figure 4.5 the MC simulation is executed with the azimuth angle difference of
∆φ = π/4 radians. Again the results for HOSVD+FBA+ESPS are different because of
the changing phases but are still consistent with those in Figure 4.2. The ProKRaft approach
is consistent with the DoA/KRF approach and both have similar results to filtering with a
priori knowledge of A and Γ̃.

In Figure 4.5 the MC simulation is executed with the azimuth angle difference of ∆φ =

π/6 radians. The ProKRaft approach is consistent with the DoA/KRF approach and both
have similar results to filtering with a priori knowledge of A and Γ̃.
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Figure 4.3: Simulation results for DoA/KRF, D = 1, ∆φ = π/6

4.2 Simulation with multiple satellites

To compare the results above where only one satellite and a single multipath component
are simulated, simulations with D = 2 and D = 3 satellites were performed. The scenario
is similar to the proposed previously but only ∆φ = π/3 is considered and aside from the
desired satellite the other satellites do not have multipath components.

In Figure 4.7 the MC simulation was performed with D = 2, L1 = 2, L2 = 1 and
∆φ = π/3. While the results were worse than for D = 1 the proposed DoA/KRF scheme
performs similarly to filtering with prior channel information and outperforms the state-of-
the-art HOSVD+FBA+ESPS.

In Figure 4.8 the MC simulation was performed with D = 3, L1 = 2, L2, L3 = 1 and
∆φ = π/3. The results were similar to those in Figure 4.7.

In Figure 4.9 the MC simulation was performed with D = 4, L1 = 2, L2, L3, L4 =

1 and ∆φ = π/3. The results were similar to those in Figures 4.7 and 4.8 but with the
HOSVD+FBA+ESPS curve becoming flatter.

4.3 Effects of improper model order estimation

Both DoA/KRF and ProKRaft rely on proper estimation of the model order d to function
properly. The following simulations were done to illustrate the effect of over- and underesti-

30



0 0.2 0.4 0.6 0.8 1

"==TC

0.6

0.65

0.7

0.75

0.8

R
M
S
E

(m
)

HOSVD+FBA+ESPS

DoA/KRF (SE/LSKRF)

Known A and ~!

ProKRaft (2 iterations)

Figure 4.4: Simulation results for ProKRaft, D = 1, ∆φ = π/3

mating the model order on time-delay estimation.

For reference, simulations were executed for both DoA/KRF and ProKRaft with L1 = 3

obtaining the following results shown in Figures 4.10 and 4.11, respectively. DoA/KRF
performs well for L1 = 3, while ProKRaft is outperformed by the HOSVD eigenfilter. Si-
mulation parameters are those of DoA/KRF and ProKRaft used previously.

4.3.1 Underestimation

The expected effect of underestimation of the model order is that remaining components
whose singular values are weaker are modeled as noise or interference, in effect increasing
SNR/SINR and decreasing performance.

In Figure 4.12, D = 1, L1 = 2 but the estimated model order is L̂1 = 1. Performance is
slightly affected.

In Figure 4.13, D = 1, L1 = 3 but the estimated model order is L̂1 = 2. Performance
degradation is significant.

In Figure 4.14, D = 1, L1 = 2 but the estimated model order is L̂1 = 1. Performance
degradation is significant.

In Figure 4.15, D = 1, L1 = 3 but the estimated model order is L̂1 = 2. Performance
degradation is significant.
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Figure 4.5: Simulation results for ProKRaft, D = 1, ∆φ = π/4

4.3.2 Overestimation

The expected effect of overestimation is more drastic since it implies calculating para-
meters of inexistent components as if they were present.

In Figure 4.16, D = 1, L1 = 2 but the estimated model order is L̂1 = 3. DoA/KRF fails.

In Figure 4.17, D = 1, L1 = 3 but the estimated model order is L̂1 = 4. DoA/KRF fails.

In Figure 4.18, D = 1, L1 = 2 but the estimated model order is L̂1 = 3. DoA/KRF
suffered a performance loss. ProKRaft suffers from very poor performance.

In Figure 4.19, D = 1, L1 = 3 but the estimated model order is L̂1 = 4. Both DoA/KRF
and ProKRaft fail.
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Figure 4.6: Simulation results for ProKRaft, D = 1, ∆φ = π/6
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Figure 4.7: Simulation results for DoA/KRF, D = 2, ∆φ = π/3
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Figure 4.8: Simulation results for DoA/KRF, D = 3, ∆φ = π/3
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Figure 4.9: Simulation results for DoA/KRF, D = 4, ∆φ = π/3
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Figure 4.10: Simulation results for DoA/KRF, D = 1, ∆φ = π/3, L1 = 3, L̂1 = 3
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Figure 4.11: Simulation results for ProKRaft, D = 1, ∆φ = π/3, L1 = 3, L̂1 = 3
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Figure 4.12: Simulation results for DoA/KRF, D = 1, ∆φ = π/3, L1 = 2, L̂1 = 1
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Figure 4.13: Simulation results for DoA/KRF, D = 1, ∆φ = π/3, L1 = 3, L̂1 = 2
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Figure 4.14: Simulation results for ProKRaft, D = 1, ∆φ = π/3, L1 = 2, L̂1 = 1
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Figure 4.15: Simulation results for ProKRaft, D = 1, ∆φ = π/3, L1 = 3, L̂1 = 2
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Figure 4.16: Simulation results for DoA/KRF, D = 1, ∆φ = π/3, L1 = 2, L̂1 = 3
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Figure 4.17: Simulation results for DoA/KRF, D = 1, ∆φ = π/3, L1 = 3, L̂1 = 4
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Figure 4.18: Simulation results for ProKRaft, D = 1, ∆φ = π/3, L1 = 2, L̂1 = 3
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Figure 4.19: Simulation results for ProKRaft, D = 1, ∆φ = π/3, L1 = 3, L̂1 = 4
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Chapter 5

Conclusion

In this thesis we studied a state-of-the-art HOSVD eigenfiltering approach for multipath
mitigation and time-delay estimation [5] and proposed two approaches that significantly out-
performs it. The first proposed approach offers a closed-form solution to multipath mitiga-
tion which was able to perform well when the phase of the complex amplitude remained
constant and when it changed every epoch. The second proposed approach offers an iterative
solution which is more complex and only works when the phase of the complex amplitude
changed every epoch.

Both proposed approaches are more complex than HOSVD eigenfiltering but both achi-
eved an accuracy close to the optimal case, which is defined as filtering with a priori channel
information when model order is correctly estimated. Our scheme completely mitigates the
effect of the multipath components being, therefore, very attractive for SCA and LCA.

The advantage of the HOSVD eigenfiltering approach is that no information about the
model order is necessary, since it is filtering using the dominant singular vectors to recover
the correlated code. While our two proposed approaches depend on knowledge of the model
order and will perform worse when the model order is underestimated and will fail when the
model order is overestimated. Both spend resources calculating what are called “nuisance
parameters” since it also processes information about any existent multipath components.

Future developments could include a simplified correlated path model like the one in [31]
to avoid utilizing computational resources on nuisance parameters. This could also be inte-
grated and extended into a low-rank approximation approach to increase precision in time-
delay estimation.
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Appendix

Correlation and Noise

Given the compression matrix Qω,d is orthogonal and unitary, the post-correlation noise
at the k-th period Nω[k] = N[k]Qω,d ∈ CM×Q preserves the statistical properties of the
input noise at the output of the bank of correlators.

E{NH
ω [k]Nω[k]} = E{(N[k]Qω,d)

HN[k]Qω,d}
= E{QH

ω,d NH[k]N[k]︸ ︷︷ ︸
=σ2

NIN

Qω,d}

= QH
ω,dσ

2
NINQω,d

= σ2
NQH

ω,dQω,d

= σ2
NIQ.

44


	Agradecimentos
	Dedicatória

	Sumário
	Lista de Figuras
	Introduction
	Concepts on Tensor Calculus and Data Model
	Notation
	Matrix Calculus
	Kronecker product
	Khatri-Rao product
	Outer product
	The vec{} operator
	The unvec{} operator

	Tensor Calculus
	Tensors
	n-mode unfolding
	n-mode product
	PARAFAC model
	Higher-Order SVD
	Dual-symmetric tensors

	Data Model
	Pre-correlation data model
	Post-correlation data model
	Uniform Linear Array


	Tensor-based Approaches to Time-Delay Estimation
	State-of-the-Art Tensor-Based Time-Delay Estimation
	Forward-Backward Averaging and Expanded Spatial Smoothing
	Higher-Order SVD eigenfiltering
	Time-Delay Estimation

	Proposed DoA Estimation and KRF Approach
	Estimation of DoA factor matrix
	PR code and complex amplitude estimation via Khatri-Rao Factorization
	LOS Time-Delay Estimation

	Procrustes estimation and Khatri-Rao factorization (ProKRaft) filtering
	Simultaneous DoA and amplitude factor matrix estimation
	LOS Time-Delay Estimation


	Simulations
	ProKRaft filtering time-delay estimation
	Simulation with multiple satellites
	Effects of improper model order estimation
	Underestimation
	Overestimation


	Conclusion
	Bibliography

