
Universidade de Brasília
Instituto de Ciências Exatas

Departamento de Ciência da Computação

Estratégias Comutativas para Análise de Con�abilidade
em Linha de Produtos de Software

Thiago Mael de Castro

Brasília

2016

Universidade de Brasília
Instituto de Ciências Exatas

Departamento de Ciência da Computação

Estratégias Comutativas para Análise de Con�abilidade
em Linha de Produtos de Software

Thiago Mael de Castro

Dissertação apresentada como requisito parcial

para conclusão do Mestrado em Informática

Orientador

Prof. Dr. Vander Ramos Alves

Coorientador

Prof. Dr. Leopoldo Motta Teixeira

Brasília

2016

Ficha catalográfica elaborada automaticamente,
com os dados fornecidos pelo(a) autor(a)

CC355e
Castro, Thiago Mael de
 Estratégias comutativas para análise de
confiabilidade em linha de produtos de software /
Thiago Mael de Castro; orientador Vander Ramos
Alves; co-orientador Leopoldo Motta Teixeira. --
Brasília, 2016.
 105 p.

 Dissertação (Mestrado - Mestrado em Informática) -
 Universidade de Brasília, 2016.

 1. Linhas de produtos de software. 2. Análise de
linha de produtos. 3. Análise de confiabilidade. 4.
Model checking. 5. Verificação. I. Alves, Vander
Ramos, orient. II. Teixeira, Leopoldo Motta, co
orient. III. Título.

Universidade de Brasília
Instituto de Ciências Exatas

Departamento de Ciência da Computação

Estratégias Comutativas para Análise de Con�abilidade
em Linha de Produtos de Software

Thiago Mael de Castro

Dissertação apresentada como requisito parcial

para conclusão do Mestrado em Informática

Prof. Dr. Vander Ramos Alves (Orientador)

CIC/UnB

Prof. Dr. Alexandre Cabral Mota Prof. Dr. Mauricio Ayala-Rincón

CIn/UFPE CIC/UnB

Prof.a Dr.a Célia Ghedini Ralha

Coordenadora do Mestrado em Informática

Brasília, 18 de novembro de 2016

Dedicatória

Aos bonobos.

iv

Agradecimentos

À Isabela, minha amada esposa e amiga, sem a qual este trabalho não teria sido possível.

Obrigado por compreender os momentos em que eu estive ausente e por me fazer parar

de trabalhar, vez ou outra, para refrescar a cabeça.

Aos meus pais, Valéria e Gilvan, e ao meu irmão, Miguel, pela con�ança que sempre

depositaram em mim. Obrigado, especialmente, por me ensinarem a buscar respostas por

mim mesmo e me motivarem, constantemente, a superar minhas próprias limitações.

Ao meu orientador, Prof. Vander Alves, pela inestimável orientação ao longo do de-

senvolvimento deste trabalho e por me apresentar ao fantástico mundo das linhas de pro-

dutos. Obrigado por me estimular a explorar idéias interessantes, mesmo quando eu não

via luz no �m do túnel. Estendo os agradecimentos ao meu coorientador, Prof. Leopoldo

Teixeira, pelas discussões sempre produtivas. Mais do que orientar, vocês participaram

ativamente da pesquisa e me proporcionaram um aprendizado sem tamanho.

Ao colega de orientação, André Lanna, por ter idealizado a ReAna e ter semeado a

idéia de nossa linha de produtos de ferramentas de análise. Obrigado por compartilhar

sua experiência acadêmica e suas dicas musicais.

Aos professores Pierre-Yves Schobbens e Sven Apel, pelas revisões rigorosas e pelo fe-

edback preciso. Suas contribuições para a consistência deste trabalho foram inestimáveis.

Estendo os agradecimentos aos membros da banca examinadora, professores Alexandre

Mota e Maurício Ayala-Rincón, pelas sugestões e críticas que contribuíram para o apri-

moramento do trabalho.

Ao Exército Brasileiro, pelas oportunidades ímpares de crescimento pro�ssional. Agra-

deço, em particular: ao TC Alisson, amigo e mentor na engenharia de software; ao Cel

Kohl, pela con�ança, pela paciência e por sempre advogar em prol da realização deste

trabalho; ao Exmo. Sr. Gen Bráulio, por visualizar a importância do aperfeiçoamento

acadêmico de seus subordinados e con�ar que eu me tornaria um �bom mestre�; ao Ri-

cardo, que tentou durante muitos anos me convencer a prosseguir nos estudos acadêmicos

(até que conseguiu); e a todos os demais amigos da Divisão de Comando e Controle, pela

compreensão nos meus momentos de ausência e pela excelência pro�ssional�vocês me

inspiram a ser um engenheiro melhor a cada quantum de tempo arbitrariamente de�nido.

v

�It is hard to claim that you know what you are doing,

unless you can present your act as a deliberate choice

out of a possible set of things you could have done as well.�

(Edsger W. Dijkstra, On Program Families)

Resumo

Engenharia de linha de produtos de software é uma forma de gerenciar sistematicamente

a variabilidade e a comunalidade em sistemas de software, possibilitando a síntese auto-

mática de programas relacionados (produtos) a partir de um conjunto de artefatos reuti-

lizáveis. No entanto, o número de produtos em uma linha de produtos de software pode

crescer exponencialmente em função de seu número de características, tornando inviável

veri�car a qualidade de cada um desses produtos isoladamente.

Existem diversas abordagens cientes de variabilidade para análise de linha de produtos,

as quais adaptam técnicas de análise de produtos isolados para lidar com a variabilidade

de forma e�ciente. Tais abordagens podem ser classi�cadas em três dimensões de análise

(product-based, family-based e feature-based), mas, particularmente no contexto de análise

de con�abilidade, não existe uma teoria que compreenda (a) uma especi�cação formal das

três dimensões e das estratégias de análise resultantes e (b) prova de que tais análises são

equivalentes uma à outra. A falta de uma teoria com essas propriedades impede que se

raciocine formalmente sobre o relacionamento entre as dimensões de análise e técnicas de

análise derivadas, limitando a con�ança nos resultados correspondentes a elas.

Para preencher essa lacuna, apresentamos uma linha de produtos que implementa cinco

abordagens para análise de con�abilidade de linhas de produtos. Encontrou-se evidência

empírica de que as cinco abordagens são equivalentes, no sentido em que resultam em

con�abilidades iguais ao analisar uma mesma linha de produtos. Além disso, formalizamos

três das estratégias implementadas e provamos que elas são corretas, contanto que a

abordagem probabilística para análise de con�abilidade de produtos individuais também o

seja. Por �m, apresentamos um diagrama comutativo de passos intermediários de análise,

o qual relaciona estratégias diferentes e permite reusar demonstrações de corretude entre

elas.

Palavras-chave: Linhas de produtos de software, Análise de linha de produtos, Análise

de con�abilidade, Model checking, Veri�cação

vii

Abstract

Software product line engineering is a means to systematically manage variability and

commonality in software systems, enabling the automated synthesis of related programs

(products) from a set of reusable assets. However, the number of products in a software

product line may grow exponentially with the number of features, so it is practically

infeasible to quality-check each of these products in isolation.

There is a number of variability-aware approaches to product-line analysis that adapt

single-product analysis techniques to cope with variability in an e�cient way. Such ap-

proaches can be classi�ed along three analysis dimensions (product-based, family-based,

and feature-based), but, particularly in the context of reliability analysis, there is no

theory comprising both (a) a formal speci�cation of the three dimensions and resulting

analysis strategies and (b) proof that such analyses are equivalent to one another. The

lack of such a theory prevents formal reasoning on the relationship between the anal-

ysis dimensions and derived analysis techniques, thereby limiting the con�dence in the

corresponding results.

To �ll this gap, we present a product line that implements �ve approaches to reliability

analysis of product lines. We have found empirical evidence that all �ve approaches

are equivalent, in the sense that they yield equal reliabilities from analyzing a given

product line. We also formalize three of the implemented strategies and prove that they

are sound with respect to the probabilistic approach to reliability analysis of a single

product. Furthermore, we present a commuting diagram of intermediate analysis steps,

which relates di�erent strategies and enables the reuse of soundness proofs between them.

Keywords: Software product lines, Product-line analysis, Reliability analysis, Model

checking, Veri�cation

viii

List of Figures

2.1 Feature model of the BSN product line [Rodrigues et al., 2015]. 9

2.2 Example graph view of a DTMC and the corresponding reachability prob-

ability. 15

2.3 Example graph view of a PMC and the intuition for the corresponding

reachability probability expression. 18

2.4 Elimination of state s in the parametric reachability probability algorithm

(adapted from Hahn et al. [2011]). 19

2.5 ADD Af representing the Boolean function f in Equation (2.2). 20

2.6 Example of an arithmetic operation over ADDs. 21

2.7 Example of an ITE operation over ADDs. 22

2.8 Alternative ordering for encoding the Boolean function f in Equation (2.2)

as an ADD. 22

3.1 Outline of the research phases. Magnifying glasses denote analysis tools,

and turnstiles (`) denote theories. 24

3.2 Example of reliability-annotated sequence diagram used in a product line.

The prob tags annotate each message with its reliability, and opt fragments

mark variation points with corresponding presence conditions as guards. . 27

3.3 Example of PMCs obtained from the sequence diagram in Figure 3.2.

Dashed green arrows denote the dependency relation. 28

3.4 Outline of the implemented feature-family-based analysis approach. At

the right side, we denote the resulting ADDs: sets of green circles (each

denoting a con�guration) mapped to sets of yellow squares (each denoting

the corresponding reliability values��products�). 30

3.5 Outline of the implemented feature-product-based analysis approach. At

the right side, we denote the resulting reliabilities by yellow squares. The

green box denotes iteration over all valid con�gurations c ∈ JFM K. 32

3.6 Outline of the implemented product-based analysis approach. Nested

squares represent DTMCs that result from composition. 33

ix

3.7 Outline of the implemented family-based analysis approach. Nested squares

represent variability-encoded PMCs, with the outermost square denoting

the result from embedding the variability of the whole product line into

the root PMC. At the extreme right, we see a single ADD that maps all

valid con�gurations to their respective reliabilities (cf. Figure 3.4). 34

3.8 Outline of the implemented family-product-based analysis approach. In

contrast with Figure 3.7, the result is represented by a reliability value

(yellow box), independently computed for each valid con�guration. 35

3.9 Outline of the relation between the implemented product-line reliability

analysis strategies. 36

3.10 Feature model of the reliability analysis software product line (ReAna-

SPL). 37

3.11 Comparison of derivation and variability encoding. Green solid arrows

denote new transitions, and dashed red arrows represent transitions that

are removed by the transformation process. 43

3.12 Feature model of the reliability analysis software product line (ReAna-SPL)

after feedback from the formalization phase (Chapter 4). 44

4.1 Vending machine product line example. 47

4.2 Annotative PMC for the vending machine. 48

4.3 Compositional PMCs for the vending machine. 53

4.4 Example of a partial composition of PMCs. 55

4.5 Trivial compositional PMC P̃ . 55

4.6 Example compositions for the vending machine. 56

4.7 Commutative diagram of product-line reliability analysis strategies. 57

4.8 Example of family-product-based analysis (αv followed by σ) in contrast to

a product-based analysis (λ followed by α) of an annotative PMC. 61

4.9 Statement of Theorem 1. 62

4.10 Example of lifted expression evaluation using p̂. 67

4.11 Statement of Theorem 3. 68

4.12 Statement of Theorem 4. 69

A.1 Complete annotative PMC for the vending machine. 86

A.2 Compositional PMCs for the vending machine. 87

B.1 Overall theory structure. 89

B.2 Dependencies for Theorem 1 (Soundness of family-product-based analysis). 90

B.3 Dependencies for Theorem 4 (Soundness of family-based analysis). 91

x

List of Tables

3.1 Correspondence between valid con�gurations, analysis strategies, and anal-

ysis steps. 38

3.2 Product lines used for empirical validation. 40

3.3 Maximum relative errors for each analysis strategy, using the product-based

analysis as a baseline. 40

3.4 Occurrences of the if-then-else pattern. 42

3.5 Correspondence between valid con�gurations, analysis strategies, and anal-

ysis steps after formalization of strategies. 44

xi

List of De�nitions

1 Property (Reachability probability for DTMCs) 16

1 De�nition (Parametric Markov Chain) . 16

2 De�nition (Expression evaluation) . 16

3 De�nition (Well-de�ned evaluation) . 17

4 De�nition (Annotative PMC) . 49

5 De�nition (Presence function) . 49

6 De�nition (Evaluation factory) . 50

7 De�nition (Annotative probabilistic model) 50

8 De�nition (DTMC derivation) . 51

9 De�nition (Non-parametric model checking) 58

10 De�nition (Product-based analysis of annotative models) 58

11 De�nition (Parametric model checking) . 59

12 De�nition (Expression evaluation) . 60

13 De�nition (Family-product-based analysis) 60

14 De�nition (Expression lifting) . 63

15 De�nition (Lifted evaluation factory) . 65

16 De�nition (Variability-aware expression evaluation) 65

17 De�nition (Family-based analysis) . 68

xii

List of Theorems and Lemmas

1 Lemma (Parametric probabilistic reachability soundness) 19

2 Lemma (Evaluation well-de�nedness for annotative models) 51

3 Lemma (Commutativity of PMC and expression evaluations) 61

1 Theorem (Soundness of family-product-based analysis) 61

4 Lemma (Soundness of expression lifting) 63

2 Theorem (Soundness of variability-aware expression evaluation) 66

5 Lemma (Soundness of lifted annotative evaluation factory) 66

3 Theorem (Soundness of expression evaluation using p̂) 67

4 Theorem (Soundness of family-based analysis) 68

xiii

Acronyms

ADD Algebraic Decision Diagram.

CTL Computation Tree Logic.

DTMC Discrete-Time Markov Chain.

PCTL Probabilistic Computation Tree Logic.

PMC Parametric Markov Chain.

SPL Software Product Line.

xiv

Contents

List of Figures ix

List of Tables xi

List of De�nitions xii

List of Theorems and Lemmas xiii

Acronyms xiv

1 Introdução 1

1.1 De�nição do Problema . 2

1.2 Solução Proposta . 3

1.3 Resumo das Contribuições . 3

1.4 Estrutura . 4

2 Background 6

2.1 Software Product Lines . 6

2.1.1 Main Concepts . 7

2.1.2 Adoption Strategies . 10

2.1.3 Variability Implementation . 10

2.1.4 Product-Line Analysis . 12

2.2 Reliability Analysis . 14

2.2.1 Parametric Markov Chains . 16

2.2.2 Parametric Probabilistic Reachability 18

2.3 Algebraic Decision Diagrams . 20

3 A Product Line of Product-line Analysis Tools 23

3.1 Research Method . 23

3.1.1 Threats to Validity . 25

3.2 Domain Engineering . 26

xv

3.2.1 Overview . 26

3.2.2 Product-line Extraction . 31

3.2.3 Reactive Evolution . 32

3.3 Product Line of Product-line Reliability Analysis Tools 35

3.3.1 Quality Assessment . 38

3.3.2 Empirical Validation . 39

3.4 Theory Development . 41

4 Commuting Strategies for Product-line Reliability Analysis 46

4.1 Markov-chain Models of Product Lines . 46

4.1.1 Annotative Models . 48

4.1.2 Compositional Models . 52

4.2 Reliability Analysis Strategies . 55

4.2.1 Product-based Strategy . 58

4.2.2 Family-based Strategies . 59

5 Conclusion 70

5.1 Related Work . 71

5.2 Future Work . 75

Bibliography 77

A Probabilistic Models 85

B Theory Dependencies 88

xvi

Capítulo 1

Introdução

Engenharia de linha de produtos de software é uma forma de gerenciar sistematicamente

a variabilidade e a comunalidade em sistemas de software, possibilitando a síntese auto-

matizada de programas relacionados (conhecidos como variantes ou produtos) a partir de

um conjunto de artefatos reutilizáveis (artefatos de domínio) [Apel et al., 2013a; Clements

and Northrop, 2001; Pohl et al., 2005]. Em uma linha de produtos, a variabilidade é mo-

delada em termos de features, que são características perceptíveis e relevantes para algum

interessado no sistema (stakeholder) [Czarnecki and Eisenecker, 2000]. Essa metodologia

melhora a produtividade e o tempo de colocação no mercado (time-to-market), além de

facilitar a personalização em massa de software [Pohl et al., 2005].

Linhas de produtos vêm sendo amplamente utilizadas, tanto industrial [van der Lin-

den et al., 2007; Weiss, 2008] quanto academicamente [Apel et al., 2013a; Clements and

Northrop, 2001; Heradio et al., 2016; Pohl et al., 2005], particularmente em sistemas crí-

ticos [Domis et al., 2015; Dordowsky et al., 2011; Lanman et al., 2013; Rodrigues et al.,

2015; Weiss, 2008]. Model checking é uma técnica particularmente interessante para ga-

rantia de qualidade desse tipo de sistemas. Essa técnica de veri�cação explora todos

os estados possíveis de um modelo do sistema de forma sistemática, veri�cando que tal

modelo satisfaz determinada propriedade [Baier and Katoen, 2008].

O número de produtos em uma linha de produtos pode crescer exponencialmente em

função do número de features, dando origem a uma explosão combinatória do espaço de

con�gurações [Apel et al., 2013a; Bodden et al., 2013; Classen et al., 2010, 2011]. Dessa

forma, é frequentemente inviável veri�car a qualidade de cada um dos produtos isolada-

mente. Não obstante, técnicas de veri�cação de software para o caso de produtos isolados

são largamente utilizadas industrialmente, o que torna interessante explorar sua maturi-

dade para aumentar a qualidade ao mesmo tempo em que se reduz custos e riscos [Baier

and Katoen, 2008].

1

Existem diversas abordagens para análise de linha de produtos que adaptam técni-

cas de análise consagradas de forma a lidar com variabilidade [Thüm et al., 2014]. Em

particular, diversas técnicas de model checking foram alçadas à operação em linhas de

produtos [Chrszon et al., 2016; Classen et al., 2013, 2011, 2014; Dubsla� et al., 2015;

Ghezzi and Molzam Shari�oo, 2013; Kowal et al., 2015; Nunes et al., 2012; Rodrigues

et al., 2015; Thüm et al., 2014]. Dentre essas técnicas, o presente trabalho se concentra

em análise de con�abilidade, que é a veri�cação de uma propriedade de existência proba-

bilística [Grunske, 2008] e pode ser intuitivamente vista como a probabilidade de que um

sistema não falhe.

1.1 De�nição do Problema

Análises de linhas de produtos podem ser classi�cadas em três dimensões: product-based

(a análise é realizada sobre produtos ou sobre modelos destes), family-based (apenas

artefatos de domínio e suas combinações válidas são veri�cados) e feature-based (artefatos

de domínio que implementam uma dada feature são analisados isoladamente, independente

de suas combinações válidas com outros artefatos) [Thüm et al., 2014]. Mais de uma

dimensão pode ser explorada em uma dada técnica, dando origem a estratégias híbridas �

como feature-family-based e family-product-based, por exemplo. No entanto, abordagens

existentes para o problema de alçar análises de software consagradas a linhas de produtos

normalmente se concentram na dimensão family-based [Chrszon et al., 2016; Dubsla�

et al., 2015; Midtgaard et al., 2015; von Rhein et al., 2016], relacionando-a somente com

a dimensão product-based para argumentar sobre corretude. No contexto de análise de

con�abilidade, em especial, não existe teoria que compreenda (a) uma especi�cação formal

das três dimensões e estratégias de análise resultantes e (b) demonstrações de que tais

análises são equivalentes umas às outras.

A falta de uma teoria com essas características impede que se raciocine formalmente

sobre a relação entre as dimensões e análises derivadas, limitando a con�ança nos resul-

tados de análise correspondentes. De fato, demonstrar que um método de análise produz

um resultado correto é uma preocupação fundamental, especialmente para a veri�cação

de sistemas críticos. Ademais, um pro�ssional da indústria deve ser capaz de selecionar

uma estratégia de análise de acordo com o problema em questão, baseado nos compromis-

sos assumidos em termos de espaço e tempo [Thüm et al., 2014]. Enquanto não houver

evidência de que estratégias diferentes são mutuamente equivalentes, estudos empíricos

que as comparem terão resultados com validade limitada.

2

1.2 Solução Proposta

Com base na taxonomia de análise de linhas de produtos proposta por Thüm et al.

[2014], foram investigadas cinco abordagens para análise de con�abilidade de linhas de

produtos: uma product-based, uma family-based, uma family-product-based, uma feature-

family-based e uma feature-product-based. A solução proposta apresenta dois aspectos: (a)

as cinco abordagens foram implementadas como uma linha de produtos de ferramentas

para análise de linhas de produtos, e o processo de engenharia de domínio que levou a essa

linha de produtos foi documentado; e (b) três das estratégias de análise implementadas

foram formalizadas, tendo sido demonstrado que são equivalentes uma à outra � o que

estabelece sua corretude e a relação entre elas.

O processo começou com a implementação de uma ferramenta para análise de con-

�abilidade segundo uma estratégia feature-family-based, originada a partir de trabalhos

relacionados internamente ao grupo de pesquisa. A partir daí, foram aplicadas estratégias

extrativas e reativas para adoção de linha de produtos, de forma a iniciar e evoluir uma

linha de produtos de ferramentas de análise. Foi realizada uma comparação empírica das

estratégias de análise implementadas, a partir da qual encontrou-se evidência de que elas

encontram con�abilidades iguais para uma mesma linha de produtos.

Usando a implementação resultante e o conhecimento de domínio adquirido através de

sua construção, formalizamos explicitamente as abordagens product-based, family-based e

family-product-based. Além disso, foram identi�cadas quatro abordagens alternativas ao

longo desse processo de formalização: uma product-based, uma family-based, e duas family-

product-based. A formalização das estratégias feature-family-based e feature-product-based

(ambas implementadas), assim como das estratégias alternativas identi�cadas, é objeto

de pesquisa em andamento.

Provamos que as estratégias de análise formalizadas são corretas, contanto que a abor-

dagem probabilística para análise de con�abilidade de produtos individuais também o

seja. Ademais, apresentamos um diagrama comutativo dos passos de análise intermediá-

rios, o qual relaciona estratégias diferentes e permite o reúso de provas de corretude entre

elas. Nesse sentido, reforçamos a evidência de que a aplicação de qualquer das estratégias

formalizadas produz o mesmo resultado.

1.3 Resumo das Contribuições

As principais contribuições deste trabalho são as seguintes:

3

• Formalização de três estratégias para análise de con�abilidade de linhas de produtos

de software, em acordo com a classi�cação proposta por Thüm et al. [2014]: uma

product-based, uma family-based e uma family-product-based (Capítulo 4).

• Uma linha de produtos de ferramentas para análise de linhas de produtos (Capí-

tulo 3), a qual implementa as três estratégias formalizadas e duas outras ainda não

formalizadas � uma feature-family-based e uma feature-product-based. Essa linha

de produtos, denominada ReAna-SPL, encontra-se publicamente disponível como

software livre e de código aberto em https://github.com/SPLMC/reana-spl. Até

onde sabemos, essa é a primeira ferramenta de model checking para linhas de pro-

dutos a implementar as três dimensões de análise (product-based, family-based e

feature-based).

• Provas de comutatividade entre as estratégias product-based, family-based e family-

product-based (Seção 4.2). Isso estabelece sua corretude e aprimora o entendimento

vigente sobre o relacionamento entre estratégias para análise de linhas de produtos.

• Um princípio geral para alçar análises de software à operação sobre linhas de pro-

dutos usando diagramas de decisão algébricos (Seção 4.2.2.2, Teorema 2).

1.4 Estrutura

Este trabalho está organizado da seguinte forma:

• O Capítulo 2 apresenta conceitos fundamentais à discussão que se segue. Ele intro-

duz linhas de produtos de software e a taxonomia de análise correspondente, assim

como os modelos comportamentais paramétricos e diagramas de decisão empregados

por nossas técnicas de análise.

• O Capítulo 3 apresenta nossa metodologia de pesquisa, assim como um registro das

fases intermediárias do trabalho. Esse capítulo apresenta, ainda, a linha de produtos

de ferramentas para análise de linhas de produtos resultante.

• OCapítulo 4 apresenta nossa formalização dos modelos comportamentais para linhas

de produtos de software (Seção 4.1) e das nossas estratégias de análise (Seção 4.2).

Esse capítulo também enuncia a corretude dessas estratégias como teoremas, assim

como apresenta as demonstrações correspondentes.

• No Capítulo 5 são discutidos trabalhos relacionados e futuros, assim como nossas

conclusões e ameaças à sua validade.

4

https://github.com/SPLMC/reana-spl

• O Apêndice A contém a versão completa dos modelos probabilísticos utilizados em

exemplos ao longo do texto.

• Por �m, o Apêndice B é uma compilação de grafos de dependências para os principais

teoremas apresentados neste trabalho. Tais diagramas foram utilizados ao longo da

pesquisa para avaliar o impacto de mudanças, mas também são úteis para visualizar

o relacionamento entre os elementos da nossa teoria.

5

Chapter 2

Background

To better understand the problem and the proposed solution, it is useful to bear in mind

concepts regarding software product lines (Section 2.1), particularly software analysis

applied to product-line engineering (Section 2.1.4). Within this domain, this work focuses

on reliability analysis based on probabilistic behavioral models (Section 2.2).

This chapter lays these conceptual foundations for our research. Furthermore, we

provide background on Algebraic Decision Diagrams (Section 2.3), since this type of data

structure plays an important role in our analysis techniques.

2.1 Software Product Lines

In the software industry, there are cases in which programs have to be adapted to di�erent

platform requirements, such as hardware or operating system. For instance, di�erent

versions of an operating system can be created to cope with di�erent processor instruction

sets. These program variants can be functionally equal, but that is not always the case.

No version of our operating system can provide an interface to a graphics card if the host

computer does not have one.

At times, the creation of di�erent versions of a software is motivated by variant require-

ments. As an example, enterprise software can be subject to company-speci�c business

processes or even platforms (e.g., di�erent enterprise databases). In general, this tailoring

of software to customer needs, known as customization, gives rise to as many coexisting

versions of a program as there are customers.

A possible approach to build such program variants is to develop each of them sepa-

rately. Although this clone-and-own approach is sometimes used in practice [Apel et al.,

2013a], it is time-consuming and error-prone. For instance, variants realized as separate

copies of the source code can have inconsistent evolution of common functionalities, or a

bug�x in one variant may not be propagated to the others.

6

An alternative approach is to view alternative programs that perform the same task, or

similar programs that perform similar tasks, as constituents of a program family [Dijkstra,

1971]. Regarding similar programs as family members, instead of textual modi�cations

of one another, allows a view that they are modi�cations of a common ancestor. Such a

view has the goal to share code (and corresponding correctness proofs) between programs

as far as possible, and to ease their maintenance by isolating the parts that are inherently

di�erent.

A realization of the program family view, addressing the issues of the clone-and-own

approach, is the software product line approach: having a collection of reusable assets from

which variants are systematically (or even automatically) generated. The Linux kernel,

for instance, is managed according to this approach [Sincero et al., 2007]. Its assets are

C headers and source �les, whose variability is handled by conditional compilation of

certain code regions�using CPP (C Preprocessor) directives. An utility tool is used to

select the desired functionality, from which corresponding CPP directives are evaluated

and the resulting processed source code is compiled, thereby yielding a custom Linux

version. Valid combinations of functionality are described in the Kcon�g language, to

ensure implementation consistency.

2.1.1 Main Concepts

A Software Product Line is de�ned as a set of software-intensive systems that share

a common, managed set of features satisfying the speci�c needs of a particular market

segment or mission and that are developed from a common set of core assets in a prescribed

way [Clements and Northrop, 2001]. Thus, software product line engineering can be seen

as the set of processes and techniques used for systematically managing these common

features, which provides for improved quality, mass customization capability and reduced

costs and time to market [Apel et al., 2013a; Pohl et al., 2005; van der Linden et al.,

2007].

The main concern in product-line engineering is managing variability, which is de�ned

by van Gurp et al. [2001] as the ability to change or customize a system. To accomplish

this, it is useful to abstract variability in terms of features. The concept of a feature

encompasses both intentions of stakeholders and implementation-level concerns, and has

been subject to a number of de�nitions [Apel et al., 2013a]. Synthetically, it can be seen

as a characteristic or end-user-visible behavior of a software system.

Features are used in product-line engineering to specify and communicate commonal-

ities and di�erences of the products between stakeholders, as well as to guide structure,

reuse, and variation across all phases of the software life cycle [Apel et al., 2013a]. The

features of a product line and their relationships are documented in a feature model [Czar-

7

necki and Eisenecker, 2000; Kang et al., 1990], which can be graphically represented as

a feature diagram. Throughout this work, we focus on propositional feature models, that

is, feature models whose semantics is based on propositional logic. For a feature model

FM , we denote its set of features by F . Each feature in this set has a name; feature

names are used as atomic propositions to express feature relationships as propositional

logic formulae. As an example, one can state f ⇒ g, meaning that, whenever a product

exhibits feature f, it must also provide feature g.

Figure 2.1 shows an example of propositional feature model, taken from the Body

Sensor Network (BSN) product line [Rodrigues et al., 2015]. Each product of this product

line is a network of connected sensors that capture vital signs from an individual and send

these signs to a central system, which analyzes the data collected and identi�es critical

health situations. The Root feature is, by de�nition, present in all con�gurations. Its

children are marked as mandatory, meaning they must be present whenever its parent is

selected. A child feature could also be marked as optional, meaning it could be either

present or absent in any valid co�guration.

The domain-related features are grouped under Monitoring, which is further broken

down into mandatory features Sensor and SensorInformation. Sensor groups features

related to the available body sensors. These sensor-related features are OR-features,

meaning that at least one of them must be selected whenever their parent is selected,

but multiple selection is also allowed. The same happens for SensorInformation and its

children, but, since these features correspond to vital signs that result from processing

raw sensors data, we must be able to constrain their presence to the presence of the cor-

responding sensors. These crosscutting concerns are represented by cross-tree constraints

(below the feature model tree), which are propositional formulae relating features that

are not siblings in the diagram.

BSN's feature model also handles persistence of sensor data (Storage feature). The

supported media are SQLite or in-memory databases, represented by the features SQLite

and Memory, respectively. These features are marked as alternative, which means a BSN

system must support exactly one of them.

A given software system in a product line is referred to as a product and is speci�ed by

a con�guration, which is taken as input in the product generation process. A con�guration

is a selection of features respecting the constraints established by the feature model, and,

as such, is represented by a set of atoms: a positive atom denotes feature presence,

whereas a negative (or absent) atom denotes feature absence. We denote the set of

con�gurations over a feature set F as C. This set contains all 2|F | combinations of feature

atoms, each of which must appear in either positive or negative form, but never both.

Valid con�gurations, that is, con�gurations that satisfy the constraints expressed by the

8

Figure 2.1: Feature model of the BSN product line [Rodrigues et al., 2015].

feature model FM , are denoted by JFM K ⊆ C. Each c ∈ JFM K speci�es the features of a
product of the product line.

In the BSN example, let c1 and c2 be such that:

c1 = {Root, Monitoring, Sensor, ACC, SensorInformation, Position, Storage, SQLite}

c2 = {Root, Monitoring, Sensor, EKG, SensorInformation, Position, Storage, SQLite}

Since both c1 and c2 are sets whose elements are in the feature set F , both are con�g-

urations (c1, c2 ∈ C). However, only c1 is a valid con�guration (c1 ∈ JFM K), since c2

does not satisfy the penultimate cross-tree constraint of the feature model in Figure 2.1

(c2 6|=
(
Position ⇒ ACC

)
). In other words, there is no use in generating a body sensor

network that is able to process accelerometer data to determine the patient's position,

and yet is not able to actually read the accelerometer.

In a product line, a product comprises a set of assets (e.g., source code �les, test cases,

documentation), which are derived from a common set known as the asset base. The

mapping between a given con�guration and the assets which compose the correspond-

ing product is called con�guration knowledge [Czarnecki and Eisenecker, 2000]. Such a

con�guration knowledge may consist of selecting source �les, for instance, but may also

handle processing tasks over the selected assets, such as running the C Preprocessor. The

locations within the assets where variation occurs are called variation points.

Given a con�guration, an asset base and a con�guration knowledge, the process by

which a product is built is called product derivation [Apel et al., 2013a]. Actual behavior

is included or excluded from a generated product by means of presence conditions, which

are propositional formulae over features [Czarnecki and Pietroszek, 2006]. For example,

when variability is implemented by means of CPP directives, as in the Linux kernel,

such presence conditions may be realized using Boolean logic operators over macros that

9

correspond to features. The derivation process then consists of mapping a con�guration

to CPP macros, running CPP itself to test #if and #ifdef directives against the given

evaluation of macros, and then compiling the preprocessed source code.

The use of arbitrary (not only atomic) propositions for presence conditions is a means

to switch behavior that is conditioned on more than one feature. To operationalize sat-

isfaction of presence conditions, we need to de�ne Boolean functions over feature selec-

tions. This way, we also denote a con�guration c ∈ JFM K as a Boolean tuple in B|F |,
where B = {0, 1} is the set of Boolean values (where 0 and 1 denote the Boolean values

FALSE and TRUE, respectively). Such Boolean tuples have a �xed position for each feature,

denoting feature presence or absence by the values 1 and 0 in the respective position. In

the upcoming discussion, whenever we refer to k-ary Boolean functions, we assume that

Boolean k-tuples can be used as arguments.

2.1.2 Adoption Strategies

To adopt software product line engineering practices, Krueger [2002] identi�ed three pos-

sible strategies:

Proactive. Develop a product line from scratch based on careful analysis and design

methods. This strategy roughly resembles the waterfall methodology for single-

software development [Royce, 1987].

Extractive. Incrementally refactor a collection of existing products to form a product

line, extracting the common and varying parts of assets.

Reactive. Extend the product line incrementally on demand.

Those strategies, each of which presents its own trade-o�s, can be combined as needed.

For instance, a software product line developed by means of a proactive approach even-

tually meets new requirements, which can be addressed using a reactive approach. Alves

et al. [2007] propose a method for product-line adoption which relies on extracting a

product line and then incrementally evolving it with a reactive approach.

2.1.3 Variability Implementation

We have seen examples of variability handling by means of CPP directives. Other tech-

niques are also used to implement variability, and those techniques are classi�ed under

three dimensions [Apel et al., 2013a]:

Binding time. This dimension refers to the phase during product derivation in which

the existing variability is resolved. This can happen before or during compilation

10

(compile-time or static variability), at program startup (load-time variability) or

during execution (run-time variability). The ability to perform each of those is

closely related to the other dimensions.

Technology. Variability can be realized by means of tools specially built for this pur-

pose (e.g., a preprocessor), but can also rely on programming language constructs

(e.g., run-time parameters and if-then-else blocks). These approaches are called

respectively tool-based and language-based.

Representation. The means by which variability is expressed in the assets.

Annotation-based (or annotative) approaches consist of annotating common assets

with tags corresponding to features, such that product derivation can be done by

removing the parts annotated with the features which are not selected.

Composition-based (or compositional) approaches tackle the variability in a modular

way by segregating asset-parts that correspond to each feature in composable units.

The ones corresponding to selected features in a given con�guration are combined

to derive a product.

Other authors also identify a form of variability representation known as transforma-

tion-based [Haber et al., 2013; Turnes et al., 2011], which relies on transformations

over base assets. These transformations are usually performed at the syntactic level,

but this is not a formal restriction of this category of techniques.

An usual annotative technique is the use of preprocessor directives, which is the vari-

ability representation mechanism in the Linux Kernel [Passos et al., 2013]. This choice of

representation naturally limits the possible technology and binding time to a compile-time

tool-based approach. Nonetheless, �ow-control directives allow a run-time annotation-

based and language-based variability implementation.

As for compositional methods, we can see a plug-in framework as an instance of

language-based load-time approach. In the realm of tool-based compile-time approaches,

there are two main composition mechanisms of interest to product line engineering:

Aspect-Oriented Programming. [Kiczales et al., 1997] This technique aims at the

modularization of cross-cutting concerns, i.e., concepts which are necessarily scat-

tered across the implementation of other concerns. These cross-cutting concerns are

implemented in modules named aspects, which are woven into the main program

based on the speci�cation of the points which they a�ect.

Feature-Oriented Programming. [Batory et al., 2004; Prehofer, 1997] This is a tech-

nique by which the concepts in a program are implemented in modules, each of

11

which is associated to a feature. Product derivation is thus carried out by incre-

mentally composing these so called feature modules into the result of the previous

composition, yielding at each step a program which increments the previous one

with the re�nements in the given feature. A feature module can add new classes

and members, as well as override existing methods.

Delta-Oriented Programming [Schaefer et al., 2010] is a well-know example of trans-

formation-based (or transformational) approach [Haber et al., 2011]. It is similar to

Feature-Oriented Programming, but the modules (deltas) are also capable of removing

classes and members. Additionally, the deltas are not mapped one-to-one into features.

Instead, there is an explicit language construct for specifying dependencies between them

and predicates over the selected features which must hold true for a given delta to be

applicable.

So far, we presented examples of source-code variability handling. However, these

implementation techniques can also be used to handle di�erent kinds of assets. For in-

stance, a compositional approach, similar to aspect-oriented programming, was used to

handle variability in use cases [Almeida and Borba, 2009] and business processes [Turnes

et al., 2011]. Teixeira et al. [2015] also exploited compositional variability handling, in

the context of a product line of theories described using the speci�cation language of the

Prototype Veri�cation System (PVS) [Owre et al., 2001].

2.1.4 Product-Line Analysis

Analysis of software product lines is a broad subject, in the sense that it can refer to

veri�cation of any of the product line artifacts, including the feature model and the

con�guration knowledge [Apel et al., 2013a]. Hence, we focus on veri�cation of the possibly

derivable products. This does not necessarily mean generating all products in a product

line and analyzing each of them, as long as analyzed properties can be somehow generalized

to the product line as a whole. We refer to the latter case as variability-aware analysis.

2.1.4.1 Techniques

As with single-system analysis, product line analyses can be performed statically (at

compilation time or before) or at execution time. Although run-time analyses such as

unit and integration testing have been applied in the context of software product lines

[Silveira Neto et al., 2011], we examine only analyses which apply statically. This is a

design decision for our research, based on the availability of static analysis tools and on

ongoing activity within our research group regarding this kind of technique.

12

Thüm et al. [2014] performed a survey on static analyses of software product lines in

which four main classes where identi�ed:

Type checking. Analysis of well-typedness of a program with respect to a given type

system [Pierce, 2002]. It captures errors such as mismatched method signatures and

undeclared types, which are prone to happen if features can add or remove methods

and classes.

Model checking. Consists of systematically exploring the possible states in a formal

model of the system, to �nd out whether it satis�es a given property [Baier and

Katoen, 2008]. Some model checkers operate directly on source code, while others

allow other abstractions of the system's behavior (e.g., Markov chains).

Static analysis. Based on compile-time approximation of the run-time behavior of a

program, such as in data-�ow and control-�ow analyses. This type of analysis

usually involves the veri�cation of source code and can signal problems such as

access to uninitialized memory regions.

Theorem proving. Relies on encoding system properties as theories and speci�cations

of its desired behavior as theorems. These theorems then need to be proved in order

to assert the modeled system is correct, i.e., it satis�es the speci�ed properties.

The theories and theorems may be speci�ed using the language of a proof assistant

such as PVS [Owre et al., 2001], or can be generated from invariant speci�cations

declared in the source code using JML [Leavens and Cheon, 2006], for instance.

2.1.4.2 Strategies

Thüm et al. [2014] de�ne three analysis strategies for product lines, i.e., approaches for

applying the aforementioned analysis techniques to a software product line as a whole.

Those strategies are the following:

Product-based. Consists of analyzing derived products or models thereof. This can

be accomplished by generating all such products (the brute-force approach) or by

sampling them based on some coverage criteria (e.g., covering pair-wise or triple-wise

feature interaction). The main advantage of this strategy is that the analysis can

be performed exactly as in the single-system case by o�-the-shelf tools. However,

the time and processing cost can be prohibitively large (exponential blowup) if the

considered product line has a great number of products.

Feature-based. Analyzes all domain artifacts implementing a given feature in isolation,

not considering how they relate to other features. However, issues related to fea-

ture interactions are frequent, which renders false the premise that features can be

13

modularly analyzed. In spite of this, this approach is able to verify compositional

properties (e.g., syntactic correctness) and has the advantage of supporting open-

world scenarios � since a feature is analyzed in isolation, not all features must be

known in advance.

Family-based. Operates only in domain artifacts, usually merging all variability into

a single product simulator (also known as virtual product or metaproduct). This

simulator is then analyzed by considering only valid combinations of the features

as speci�ed in the feature model. It is possible, for instance, to compose feature

modules by encoding their variability as if-then-else blocks and dispatcher methods

and then apply o�-the-shelf software model checking [Apel et al., 2013b].

There is also the possibility to employ more than one strategy simultaneously. In

this way, weaknesses resulting from one approach can be overcome by the application of

another. This is particularly useful for feature-based approaches, which are generally not

su�cient due to feature interactions.

For instance, Thüm et al. [2011] proposes formal veri�cation of design-by-contract

properties [Meyer, 1992] restricted to feature modules. This would be characterized as a

feature-based strategy, but after product derivation the proof obligations that are veri�ed

feature-wise can be changed due to source code transformation. Hence, each product

is derived to generate the complete proof obligations. Nonetheless, most of the proofs

obtained in the feature-based phase can be reused, so this composite strategy can be seen

as feature-product-based.

Similarly, it is possible to derive feature-family-based, family-product-based and even

feature-family-product-based strategies, although the aforementioned survey did not �nd

any case of the latter in the literature.

2.2 Reliability Analysis

We de�ne the reliability of a system as the probability that, starting from an initial

state, the system eventually reaches a set of target (also success) states. This reliability

value is called reachability probability. The property that a system presents a reachability

probability within given bounds is de�ned as a probabilistic existence property [Grunske,

2008]. This class of properties is speci�ed using Probabilistic Computation Tree Logic

(PCTL) [Hansson and Jonsson, 1994] as P./ p[♦Φ], where p is a probability, ./ ∈ {=, <
,≤, >,≥}, Φ is a propositional formula that can be evaluated for a system state, and ♦

is the temporal logic �eventually� operator.

14

Our particular goal is to compute the reliability of a system, instead of checking that

it lies within certain limits. To perform this computation, we �rst model the system's

behavior as a Discrete-time Markov Chain (DTMC)�a tuple (S, s0,P, T), where S is a set

of states, s0 ∈ S is the initial state, P is the transition probability matrixP : S×S → [0, 1],

and T ⊆ S is the set of target states1. Each row of the transition probability matrix sums

to 1, meaning that, for every state s ∈ S, the probabilities of transitioning from s to all

states t ∈ S (including s itself) must sum to 1. Reliability analysis is then the process

through which we determine the probability p for which it holds that P=p[♦success], where

success is a proposition that only holds true for s ∈ T .
A DTMC can be seen as a graph in which nodes represent states and edges represent

transitions. Every non-zero entry (s, s′) in the transition probability matrix P is repre-

sented by a labeled transition s
p−→ s′ in this graph, where p = P(s, s′). Figure 2.2 presents

an example of DTMC viewed as a graph. In this view, the reachability probability is the

sum of the probabilities along every possible path from the initial state (blue node) to

the success state (green node). The equation on the left-hand side of this �gure depicts

this summation, with each term corresponding to one of the three possible paths (note

the correspondence between the red highlighted term and the red highlighted path, for

instance).

Figure 2.2: Example graph view of a DTMC and the corresponding reachability proba-
bility.

The reachability probability for a DTMC can be computed using probabilistic model

checking algorithms, implemented by o�-the-shelf tools such as PRISM [Kwiatkowska

et al., 2011] and PARAM [Hahn et al., 2010]. An intuitive and correct view of reachability

probability, although not well-suited for e�cient implementation, is that a target state is

reached either directly or by �rst transitioning to a state that is able to recursively reach

it. We present a formalization of this property, adapted from Baier and Katoen [2008],

that suits the purpose of this work.
1 This de�nition departs from the one by Baier and Katoen [2008] in that it abstracts away the

possibility of multiple initial states and the computation of other temporal properties, while incorporating
the target states in the model. This view suits our goal to focus on reliability analysis.

15

Property 1 (Reachability probability for DTMCs). Given a DTMC D = (S, s0,P, T), a

state s ∈ S, and a set T of target states that are reachable from s (s /∈ T), the probability
of reaching a state t ∈ T from s, denoted by PrD(s, T), satis�es the following property:

PrD(s, T) =
∑
s′∈S\T

P(s, s′) · PrD(s′, T) +
∑
t∈T

P(s, t)

If s ∈ T , then PrD(s, T) = 1. If T is not reachable from s, then PrD(s, T) = 0. For

brevity, whenever T is a singleton {t}, we write PrD(s, t) to denote PrD(s, T).

In a product line, di�erent products give rise to distinct behavior models. To handle

the behavior variability that is inherent to product lines, we resort to Parametric Markov

Chains [Daws, 2005].

2.2.1 Parametric Markov Chains

Parametric Markov Chains (PMC) extend DTMCs with the ability to represent variable

transition probabilities. Whereas probabilistic choices are �xed at modeling time and

represent possible behavior that is unknown until run time, variable transitions represent

behavior that is unknown already at modeling time. These variable transition probabilities

can be leveraged to represent product-line variability [Chrszon et al., 2016; Ghezzi and

Molzam Shari�oo, 2013; Rodrigues et al., 2015].

De�nition 1 (Parametric Markov Chain). A Parametric Markov Chain is de�ned by

Hahn et al. [2011] as a tuple P = (S, s0, X,P, T), where S is a set of states, s0 is the

initial state, X = {x1, . . . , xn} is a �nite set of parameters, P is the transition probability

matrix P : S × S → FX , and T ⊆ S is the set of target (or success) states. The set

FX comprises the rational expressions over R with variables in X, that is, fractions of

polynomials with Real coe�cients. This way, the semantics of a rational expression ε is

a rational function fε(x1, . . . , xn) = p1(x1,...,xn)
p2(x1,...,xn)

from Rn to R, where p1 and p2 are Real

polynomials. For brevity, we hereafter refer to rational expressions simply as expressions.

By attributing values to the variables, it is possible to obtain an ordinary (non-

parametric) DTMC. Parameters are given values by means of an evaluation, which is

a total function2 u : X → R for a set X of variables. For an expression ε ∈ FX and

an evaluation u : X ′ → R (where X ′ is a set of variables), we de�ne ε[X/u] to denote

the expression obtained by replacing every occurrence of x ∈ X ∩ X ′ in ε by u(x), also

denoted by ε[x1/u(x1), . . . , xn/u(xn)]. Note that, if u's domain, X ′, is di�erent from the

set X of variables in ε, then ε[X/u] = ε[(X ∩X ′)/u].

16

De�nition 2 (Expression evaluation). Given expressions ε1 and ε2 over variables sets X1

and X2, respectively, let X ⊇ X1 ∪X2 be a set of variables, x ∈ X be a variable, c ∈ R
and n ∈ N be constant values, and u : X → R be an evaluation. Expression evaluation is

de�ned inductively as follows:

ε1

ε2

[X/u] =
ε1[X/u]

ε2[X/u]
(ε1 × ε2)[X/u] = ε1[X/u]× ε2[X/u]

(ε1 + ε2)[X/u] = ε1[X/u] + ε2[X/u] (ε1 − ε2)[X/u] = ε1[X/u]− ε2[X/u]

x[X/u] = u(x) εn1 [X/u] = ε1[X/u]n

c[X/u] = c

This de�nition can be extended to substitutions by other expressions. Given two variable

sets X and X ′, their respective induced sets of expressions FX and FX′ , and an expression

ε ∈ FX , a generalized evaluation function u : X → FX′ substitutes each variable in X

for an expression in FX′ . The generalized evaluation ε[X/u] then yields an expression

ε′ ∈ FX′ . Moreover, successive expression evaluations can be thought of as rational

function compositions: for u : X → FX′ and u′ : X ′ → R,

ε[X/u][X ′/u′] = ε[x1/u(x1)[X ′/u′], . . . , xk/u(xk)[X
′/u′]] (2.1)

for x1, . . . , xk ∈ X (since u is a total function, we do not need to consider non-evaluated

variables).

The PMC induced by an evaluation u is denoted by Pu = (S, s0, ∅,Pu, T) (alterna-

tively, P [X/u]), where Pu(s, s
′) = P(s, s′)[X/u] for all s, s′ ∈ S. To ensure the resulting

chain after evaluation is indeed a valid DTMC, one must use a well-de�ned evaluation.

De�nition 3 (Well-de�ned evaluation). An evaluation u : X → R is well-de�ned for a

PMC P = (S, s0, X,P, T) i�, for all s, s′ ∈ S, it holds that

• Pu(s, s
′) ∈ [0, 1] (all transitions evaluate to valid probabilities)

• Pu(s, Succ(s)) = 1 (stochastic property�the probability of disjoint events must add

up to 1)

In this de�nition, Succ(s) = {s′ ∈ S |Pu(s, s
′) 6= 0} is the set of successor states of s, and

P(s, S) =
∑

s′∈S P(s, s′).

Hereafter, we drop explicit mentions to well-de�nedness whenever we consider an

evaluation or a DTMC induced by one, because we are only interested in this class of

2Hahn et al. [2011] actually de�ne it in a more general way as a partial function. However, for our
purpose, it su�ces to consider total functions.

17

evaluations. Nonetheless, we still need to prove that speci�c evaluations are indeed well-

de�ned.

2.2.2 Parametric Probabilistic Reachability

To compute the reachability probability in a model with variable transitions, we use a

parametric probabilistic reachability algorithm. A parametric model checking algorithm

for probabilistic reachability takes a PMC P as input and outputs a corresponding ex-

pression ε representing the probability of reaching its set T of target states. Figure 2.3

presents the intuition of computing such an expression, following the same mapping from

terms to paths that we used for DTMCs (Figure 2.2).

Figure 2.3: Example graph view of a PMC and the intuition for the corresponding reach-
ability probability expression.

Hahn et al. [2011] present a parametric probabilistic reachability algorithm (Algo-

rithm 1) and prove that evaluating the resulting expression ε with an evaluation u yields

the reachability probability for the DTMC induced in P by the same evaluation u.

The main idea is that, for a given state s, the probability of one of its predecessors

(spre ∈ Pre(s)) reaching one of its successors (ssucc ∈ Succ(s)) is given by the sum of the

probability of transitioning through s and the probability of bypassing it.

Algorithm 1 Parametric Reachability Probability for PMCs [Hahn et al., 2011]

Require: PMC P = (S, s0, X,P, T). States s ∈ T are absorbing. For all s ∈ S, it holds
that s is reachable from s0 and T is reachable from s.

1: for all s ∈ S \ ({s0} ∪ T) do
2: for all (spre , ssucc) ∈ Pre(s)× Succ(s) do
3: P(spre , ssucc) = P(spre , ssucc) + P(spre , s) · 1

1−P(s,s)
·P(s, ssucc)

4: end for

5: eliminate(s)
6: end for

7: return 1
1−P(s0,s0)

P(s0, T)

18

For such a pair of predecessor and successor states, we update the transition probability

matrix with the newly computed value (Line 3):

P(spre , ssucc)︸ ︷︷ ︸
update

=

bypass︷ ︸︸ ︷
P(spre , ssucc) +

go through s︷ ︸︸ ︷
P(spre , s)︸ ︷︷ ︸

reach s

· 1

1−P(s, s)︸ ︷︷ ︸
stay at s

·P(s, ssucc)︸ ︷︷ ︸
leave s

Once this computation has been performed for all predecessor (Pre(s)) and successor

states (Succ(s)), s itself is eliminated from the set S of states, and the process starts again

by arbitrarily picking another state. Figure 2.4 [Hahn et al., 2011] illustrates the update

of the transition probability matrix for a given state s and a single pair of predecessor

and successor states. In this example, other states and respective transitions are omitted.

Note that, since there is a self-loop with probability pc, there are in�nite possible paths

going through s, each corresponding to a number of times the loop transition is taken

before transitioning to ssucc. Hence, the sum of probabilities for these paths correspond

to the in�nite sum
∑

i∈N pa(pc)
ipb = pa(

∑
i∈N p

i
c)pb = pa

1
1−pcpb.

spre s ssucc

spre ssucc

pa pb
pc

pd

pa
1

1−pcpb + pd

Figure 2.4: Elimination of state s in the parametric reachability probability algorithm
(adapted from Hahn et al. [2011]).

Lemma 1 (Parametric probabilistic reachability soundness). Let P = (S, s0, X,P, T)

be a PMC, u be a well-de�ned evaluation for P, and ε be the output of the parametric

probabilistic reachability algorithm by Hahn et al. [2011] (Algorithm 1) for P and T . Then,

PrPu(s0, T) = ε[X/u].

Proof. The algorithm by Hahn et al. [2011] is based on eliminating states until only the

initial and the target ones remain. Its proof consists of showing that each elimination

step preserves the reachability probability. We refer the reader to the work by Hahn et al.

[2011] for more details on the algorithm itself and the proof mechanics.

19

2.3 Algebraic Decision Diagrams

An Algebraic Decision Diagram (ADD) [Bahar et al., 1997] is a data structure that encodes

k-ary Boolean functions Bk → R. As an example, Figure 2.5 depicts an ADD representing

the following binary function f :

f(x, y) =

0.9 if x ∧ y

0.8 if x ∧ ¬y

0 otherwise

(2.2)

x

y

0.80.9 0

Figure 2.5: ADD Af representing the Boolean function f in Equation (2.2).

Each internal node in the ADD (one of the circular nodes) marks a decision over a

single parameter. Function application is achieved by walking the ADD along a path that

denotes this decision over the values of actual parameters: if the parameter represented

by the node at hand is 1 (true), we take the solid edge; otherwise, if the actual parameter

is 0 (false), we take the dashed edge. The evaluation ends when we reach a terminal node

(one of the square nodes at the bottom).

In the example, to evaluate f(1, 0), we start in the x node, take the solid edge to node

y (since the actual parameter x is 1), then take the dashed edge to the terminal 0.8. Thus,

f(1, 0) = 0.8. Henceforth, we will use a function application notation for ADDs, meaning

that, if A is an ADD that encodes function f , then A(b1, . . . , bk) denotes f(b1, . . . , bk).

For brevity, we also denote indexed parameters b1, . . . , bk as b̄, and the application A(b̄)

by JAKb̄.
In our setting, we use ADDs to denote mappings from con�gurations to Real values.

That is, Boolean parameters denote presence or absence of features, and the image of a

given con�guration is the corresponding reliability value. ADDs have several applications,

among which two are of direct interest to this work: arithmetics over Boolean functions

and encoding of if-then-else operations over presence conditions.

The �rst ADD operation of interest relates to e�cient application of arithmetics over

Boolean functions. The intuition of is that an arithmetic operation over ADDs is equiva-

lent to performing the same operation on corresponding terminals of the operands. Thus,

we denote ADD arithmetics by corresponding real arithmetics operators.

20

In Figure 2.6, we see two examples of ADD arithmetics. The �rst and simpler one

(Figure 2.6c) shows the multiplication of the ADD Af (Figure 2.6a) by the constant factor

2. This operation takes place by multiplying terminals by the given factor. The second

example (Figure 2.6d) shows the sum of ADDs Af and Ag (Figure 2.6b), yielding an

ADD Ah = Af +Ag such that Ah(x, y) = Af (x, y) +Ag(x, y). Such an operation is more

involved, and its details fall outside the scope of our work.

An important aspect that motivated the use of ADDs for variability-aware arithmetics

is that ADD arithmetic operations are linear in the input size. For instance, let us examine

an arbitrary arithmetic operation � of ADDs Af and Ag, both on k parameters. Enu-

merating all valid inputs to the operand functions would take exponential time (O(2k)),

whereas ADD arithmetics can be performed in O(|Af | · |Ag|) (where |A| denotes the size
of ADD A, that is, its number of internal nodes).

x

y

0.80.9 0

(a) Operand Af (the ADD encoding the
function f in Equation (2.2)).

x

y y

0.5 0

(b) Operand Ag, encoding the function g
that yields 0.5 if xXORy and 0 otherwise.

x

y

1.61.8 0

(c) ADD corresponding to 2×Af (encoding
the function f ′(x, y) = 2× f(x, y)).

x

y y

0.9 1.3 0.5 0

(d) ADD corresponding to Af +Ag (encod-
ing the function h(x, y) = f(x, y)+g(x, y)).

Figure 2.6: Example of an arithmetic operation over ADDs.

Formally, given a valuation for Boolean parameters b̄ = b1, . . . , bk ∈ Bk, it holds that:

1. ∀�∈{+,−,×,÷} · (A1 � A2)(b̄) = A1(b̄)� A2(b̄)

2. ∀i∈N · Ai1(b̄) = A1(b̄)i

The second operation of interest is the algorithmic encoding of the result of an if-then-

else operation over ADDs again as another ADD. For the ADDs Acond , Atrue , and Afalse ,

we de�ne the ternary operator ITE (if-then-else) as

ITE(Acond, Atrue, Afalse)(c) =

Atrue(c) if Acond(c) 6= 0

Afalse(c) if Acond(c) = 0

21

This operation, whose time complexity is O(|Acond| · |Atrue| · |Afalse), is illustrated by

Figure 2.7. This figure depicts an ADD resulting from ITE(Ac, Af , Ag) (Figure 2.7b),

where Ac (Figure 2.7a) encodes the function c(x, y) = ¬x, and the ADDs Af and Ag are

taken from Figures 2.6a and 2.6b. As with ADD arithmetics, the details of the ADD ITE

operation are omitted for being out of scope.

x

0 1

(a) ADD Ac encoding the condition ¬x.

x

y y

0.9 0 0.5

(b) ITE(Ac, Af , Ag).

Figure 2.7: Example of an ITE operation over ADDs.

Note that we presented the time complexities for the ADD operations in terms of

the size of each operand. However, this number is itself dependent upon the ordering

of variables, that is, the level of the corresponding decision nodes in the binary tree.

Di�erent orderings may need a di�erent number of internal nodes, as depicted by the

ADD in Figure 2.8. This ADD encodes the same function f (Equation (2.2)) as the ADD

Af in Figure 2.5, but in this case we have chosen a di�erent ordering of variables�y as

the root and x in the second level. With the chosen ordering, the resulting ADD ended

up with 3 internal nodes, as opposed to 2 nodes in the original case.

y

x x

0.9 0

Figure 2.8: Alternative ordering for encoding the Boolean function f in Equation (2.2)
as an ADD.

The absolute di�erence between these alternative orderings was negligible, because the

function at hand is only binary. In general, however, given the number k of parameters

of the encoded function, the size of an ADD may be O(k) with the best-case ordering,

but may also be O(2k) with the worst-case ordering. Note, however, that not all Boolean

functions are subject to exponential orderings, and the same applies to linear orderings.

For instance, any ordering of variables of the ADD Ag in Figure 2.6b yields an ADD with

3 internal nodes. More details on this matter and information on ADDs in general can

be found in the work of Bahar et al. [1997].

22

Chapter 3

A Product Line of Product-line

Analysis Tools

In this chapter, we present our research method (Section 3.1) and a corresponding record

of the intermediate phases of our work. The latter encompasses the implementation of a

product line of product-line analysis tools (Sections 3.2 and 3.3) and the analysis of each

variant in search for common building blocks (Section 3.4). These implementation and

analysis steps led to the discovery of a commuting diagram in the domain of product-line

reliability analysis, which we present with further detail in Sections 4.1 and 4.2.

3.1 Research Method

Existing approaches to lifting related analysis techniques to product lines often focus on

the family-based dimension [Chrszon et al., 2016; Dubsla� et al., 2015; Midtgaard et al.,

2015; von Rhein et al., 2016], relating it only to the product-based dimension to ensure

soundness. In the context of reliability analysis, particularly, there is no theory comprising

both (a) a formal speci�cation of the three dimensions and resulting analysis strategies,

and (b) proof that such analyses commute. To address this issue, we formulated the

following research question:

Research Question

Is it possible to obtain equivalent results using di�erent analysis strategies?

To relate the di�erent analysis strategies in the currently accepted taxonomy [Thüm

et al., 2014], we decided to take an existing product-line analysis tool as a starting point

and then evolve it to a product line of product-line analysis tools. The process of building

such a product line would involve the mapping and implementation of variability in the

23

product-line analysis domain. The resulting product line would then be extended by

theoretical assets, in the sense that formal de�nitions and soundness proofs related to the

implemented techniques would be made available for systematic reuse.

The tool of choice was a feature-family-based reliability analyzer, named ReAna, that

was under development by our research group. The assumption was that hands-on experi-

ence with developing an analysis tool would provide insight into possible variation points

for the later development of the product line. Moreover, as the tools' developers all

belonged to the research group, communication would be facilitated in this arrangement.

Our research was analytical [Basili, 1993], grounded on secondary studies [Thüm et al.,

2014; von Rhein et al., 2013] and on the practical experience gained from the development

of the product line of analysis tools. Following guidelines by Sjøberg et al. [2008], an

abductive process was used to generate pertinent constructs and relationships based on the

practical aspects. Then, deductive processes were applied to achieve formal consistency,

that is, the resulting theory comprises unambiguous de�nitions and sound relationships

between them (lemmas and theorems).

Figure 3.1: Outline of the research phases. Magnifying glasses denote analysis tools, and
turnstiles (`) denote theories.

Figure 3.1 depicts the research phases, which are summarized by the following steps:

1. Perform a literature review on the domain of software product line analyses, mainly

focused on the works considered in the survey performed by Thüm et al. [2014].

24

2. Contribute to the ongoing implementation of a reliability analysis tool for product

lines (ReAna), to gain insight on the mechanisms involved.

3. De�ne scope limits for considered analyses, regarding their types (e.g., model check-

ing), properties analyzed (e.g., reliability) and program life-cycle phase (e.g., run-

time, compile-time).

4. Perform a domain analysis of SPL analysis techniques, identifying variation points

in the aforementioned tool. This step should produce a degenerate software product

line composed of a single analysis tool.

5. Use a reactive approach to extend the single-product product line of analysis tools by

adding support to veri�cation of di�erent quality properties and analysis strategies.

6. Empirically investigate the commutativity of the implemented strategies.

7. Prove that the implemented techniques are sound.

8. Analyze the soundness demonstration of the implemented techniques in order to

identify common steps, patterns, and underlying principles.

3.1.1 Threats to Validity

The main contribution of this work is analytical, obtained in a deductive way. As such, the

validity of the conclusions is conditioned on the validity of the premises and on the correct

application of deduction principles. The former concerns whether the formal constructs

correspond to the practical ones (�do the implementation and the theory correspond to

one another?�). The latter concerns the consistency of speci�cations and correctness of

proofs.

To address the validity of the mapping between software constructs and formal def-

initions, we planned to implement the product line of analysis tools using functional

programming principles (although not necessarily using a purely functional programming

language). The assumption is that, by organizing the source code into small, manageable

modules, with limited presence of side-e�ects, it is easier to reason about the correctness

of de�nitions and speci�cations [Backus and John, 1978]. This programming discipline

does not guarantee a correct mapping between software and mathematical assets, but

mitigates the risk of mismatching.

To further reduce the possibility of human mistake, we planned to submit the code,

speci�cations, and proofs for review by fellow researchers. We also planned a submission

to a scienti�c journal whose editorial board members are experienced in the use of formal

methods, preferably in the context of software product lines.

25

Moreover, analytic research should, whenever possible, compare its results with empir-

ical observation [Basili, 1993]. Since our research aims at relating di�erent analysis strate-

gies, we planned to provide empirical evidence that these strategies are indeed equivalent.

This assessment consisted of analyzing six product lines using each of the implemented

strategies and comparing the numerical results.

Last, we must discuss to what extent our results can be generalized. By construction,

we limited our scope to reliability analysis using model checking. Thus, we do not claim

our results can be immediately generalized to other types of analysis. On the contrary, we

suggest that speci�c research be conducted towards generalizing the results of this work.

In particular, we believe our research method can be used to evolve our product line of

analysis tools to support other analysis types, which could provide useful information to

the generalization task.

3.2 Domain Engineering

Research steps 2 and 3 were performed simultaneously. While implementing the ReAna

tool, we identi�ed a variation point for choosing between the original feature-family-

based approach and an alternative feature-product-based approach. With this insight, we

delimited the scope to reliability analysis of probabilistic behavioral models (probabilistic

model checking). Within this analysis domain, we did not limit analysis strategies�the

goal was to explore all strategies in the taxonomy.

Hence, the propositional phase of this work consisted of developing a product line of

product-line reliability analysis tools. The products of this product line are instances

of the analysis strategies present in the taxonomy by Thüm et al. [2014]. We now re-

port on the construction of this product line using a sequence of extractive and reactive

approaches [Krueger, 2002].

3.2.1 Overview

The ReAna tool was designed to perform reliability analysis of product lines, based

on probabilistic models of their behavior. These models are parametric Markov chains

(PMC), denoting probabilistic changes of state for the execution of a number of products

(i.e., the parameters are used to encode variability, as shown in Section 2.2). ReAna takes

UML activity and sequence diagrams as input, so that engineers do not have to model

the behavior of a product line directly as a PMC.

To enable reliability analysis, the UML behavioral models for a product line have

to be annotated with the reliabilities of components. These reliability values are de-

noted by probabilities in the diagram's messages, using prob tags from the UML MARTE

26

pro�le [Object Management Group, 2011]. Figure 3.2 is an example of such reliability-

annotated diagrams. Each message is annotated (via prob tags) with the probability that

it will be correctly sent and received. UML's built-in mechanism of opt fragments, which

usually represents run-time variability, is reframed to express product-line variability (i.e.,

con�gurability). Each guard in an opt fragment denotes its corresponding presence con-

dition. The enclosing sequence diagram, for instance, is conditioned on the selection of

the oxygenation feature, whereas the two innermost fragments are conditioned on features

memory and sqlite, respectively.

Figure 3.2: Example of reliability-annotated sequence diagram used in a product line. The
prob tags annotate each message with its reliability, and opt fragments mark variation
points with corresponding presence conditions as guards.

ReAna transforms the input UML behavioral models into PMCs according to rules

de�ned elsewhere [Ghezzi and Molzam Shari�oo, 2013; Rodrigues et al., 2015]. During

this transformation, the behavior described by each fragment is represented by a PMC,

in which the behavior of each nested fragment is abstracted using a unique variable. We

say each abstraction by a variable is a dependency on the corresponding PMC. Hence, the

transformation ends with a set of PMCs bound together by a dependency relation. The

presence condition associated with each fragment (on the guard condition) is separately

27

associated to the corresponding PMC (i.e., variables do not encode presence conditions,

but rather serve as identi�ers).

Figure 3.3: Example of PMCs obtained from the sequence diagram in Figure 3.2. Dashed
green arrows denote the dependency relation.

Figure 3.3 depicts the PMCs obtained from the UML models in Figure 3.2 using

ReAna's transformation process. In each PMC, the blue state labeled with �I� is the

initial state, the success state is green with label �S�, and the error state is red with label

�E�. A dashed box below a transition indicates the number of the corresponding message

(or reply) in the UML diagram. The PMC with id o models the behavior of the outermost

sequence diagram in Figure 3.2, abstracting the behavior of the fragments associated with

the features memory and sqlite. The behavior of these abstracted fragments is denoted

by the PMCs with ids m and s, respectively.

The transitions of the PMC o that are parameterized using functions of the variable

m (resp. s) abstract the reliability of the PMC m (resp. s), whenever the corresponding

presence condition is satis�ed. Otherwise, we assume the variable is set to 1, since an

absent behavior cannot introduce an error. The parameterized transitions induce the

dependency relation depicted by the green dashed arrows pointing from the dependent to

the dependency. We name variables according to the id of the abstracted PMCs to ensure

28

correspondence. Figure 3.3 also depicts a simpli�ed view of the PMC corresponding to

the top-level UML behavioral model (i.e., the one that is not nested into any other). This

PMC is labeled root and is present in all products.

3.2.1.1 Feature-family-based Reliability Analysis

ReAna is a Java-based tool, whose source code is free and publicly available1. The relia-

bility analysis performed by ReAna follows the feature-family-based strategy: it consists

of a feature-based analysis followed by a family-based analysis, and the analysis results

of the feature-based analysis are used in the product-based analysis [Thüm et al., 2014].

Figure 3.4 is an outline of our particular approach, which can be summarized by the

following steps:

1. Feature-based phase:

(a) Each of the PMCs that result from model transformation (denoted by squares

Pi) is model-checked using the parametric model checker PARAM [Hahn et al.,

2010], resulting in a corresponding expression εi (represented by white cir-

cles). This parametric model checking step is denoted by αv, because it is a

variability-aware analysis.

2. Family-based phase:

(a) Each expression εi, which expects that its variables be evaluated with Real

values, is lifted to a corresponding ADD-based expression ε̂i.

(b) The lifted expressions are evaluated in a bottom-up fashion (determined by a

topological sort of the dependency graph) using the reliability ADD for each of

its dependencies. The base case for this computation are constant expressions

(corresponding to the innermost nested fragments in the behavioral diagrams).

The evaluation function is denoted by σv, because we consider that the evalu-

ation of lifted expressions is a variability-aware evaluation.

Each reliability ADD is depicted by a set of green circles (each representing a con�g-

uration) mapped (using a large arrow) to a set of yellow squares (each representing the

computed reliability for a given con�guration). The result is the topmost ADD, that is,

the one corresponding to an expression on which no other depends. Such an expression

corresponds to the top-level behavioral diagram�either an activity diagram or a sequence

diagram that is not nested into another one�, which we call a root.

1https://github.com/SPLMC/reana

29

https://github.com/SPLMC/reana

Figure 3.4: Outline of the implemented feature-family-based analysis approach. At the
right side, we denote the resulting ADDs: sets of green circles (each denoting a con�g-
uration) mapped to sets of yellow squares (each denoting the corresponding reliability
values��products�).

The process of lifting consists of interpreting Real constants in expressions as constant

ADDs, arithmetic operators as ADD operators, and variables as ADD-typed variables.

Formally, this means the acceptable evaluations for lifted expressions are of type X →
(Bk → R), where X is the set of variables in the expression and Bk → R is the type

of k-ary ADDs (k-ary Boolean functions to the Reals). In terms of implementation, the

interpretation as Reals or as ADDs is performed at parsing time, meaning expressions are

represented as strings until they need to be evaluated.

The �rst phase of the analysis consists of computing a reliability expression for each

PMC in the behavioral model of the product line. Since this step is performed inde-

pendently for each PMC, and since these PMCs correspond to the variation units in the

original UML models (sequence diagram fragments�see Section 3.2.1), the parametric

model checking of all PMCs makes up a feature-based phase. This computation only

needs to be performed once, but the expressions remain to be evaluated.

To evaluate the expressions and thus check the reliability of the product line, we lever-

age ADDs as variational data structures [Walkingshaw et al., 2014]. The goal is to save

processing time by storing reliability values for valid con�gurations in data structures that

provide for e�cient arithmetics. An ADD is handled as a function that maps a con�gu-

ration of the product line into a corresponding reliability value. These mappings rely on

the feature model's rules and on presence conditions for the behaviors corresponding to

each PMC, e�ectively encoding the variability of the product line. Thus, this last phase

of the analysis is family-based.

30

3.2.2 Product-line Extraction

But what would have happened if we chose not to use ADDs in the last phase of ReAna's

original work�ow? In this case, the expressions would not have to be recomputed, since the

PMCs would have remained the same. However, the bottom-up computation of reliability

values would have to be performed once for every con�guration, evaluating the expressions

with Real values according to the satisfaction of the respective presence conditions. This

alternative second phase is product-based.

3.2.2.1 Feature-product-based Reliability Analysis

To accomodate the product-based alternative for evaluating the expressions, we cloned

the class that was responsible for coordinating all analysis steps, and then refactored the

last part of its analysis algorithm. The resulting analysis is feature-product-based, and it

reuses the feature-based phase of the feature-family-based original analysis.

Figure 3.5 is an outline of our feature-product-based approach, which can be summa-

rized by the following steps:

1. Feature-based phase:

(a) Each of the PMCs that result from model transformation (denoted by Pi)

is model-checked using the parametric model checker PARAM [Hahn et al.,

2010], resulting in a corresponding expression εi. Again, this parametric model

checking step is denoted by αv, because it is a variability-aware analysis.

2. Product-based phase:

(a) For every valid con�guration of the product line, the expressions εi are eval-

uated in a bottom-up fashion (determined by a topological sort of the depen-

dency graph) using the reliabilities computed by evaluating each of its depen-

dencies and yielding reliabilities ri (yellow squares). The base case for this

computation are constant expressions (corresponding to the innermost nested

fragments in the behavioral diagrams). The evaluation function is denoted by

σ.

The iteration over valid con�gurations c ∈ JFM K is denoted by the green box, whose

content quanti�es over con�gurations, and the associated green frame, whose content is

the actual iteration step. Each reliability value (the result from evaluating an expression)

is denoted by ri, corresponding to the expression εi from which it was computed. The

resulting reliability of a product is the topmost value, that is, the one corresponding to an

31

Figure 3.5: Outline of the implemented feature-product-based analysis approach. At the
right side, we denote the resulting reliabilities by yellow squares. The green box denotes
iteration over all valid con�gurations c ∈ JFM K.

expression on which no other depends. As in the feature-family-based case, this expression

corresponds to the root (top-level) behavioral diagram.

At this point, both feature-family-based and feature-product-based strategies were

supported. This represented the �rst introduced variability, and thus we extracted the

�rst version of the product line of analysis tools, ReAna-SPL.

It is worth noting that this feature-product-based approach resembles the one proposed

by Ghezzi and Molzam Shari�oo [2013]. This is by no means a coincidence, since their

work is closely related to the ongoing work by our research group on feature-family-based

reliability analysis of product lines. This way, ReAna's original approach can be seen as

a variation of the one by Ghezzi and Molzam Shari�oo.

3.2.3 Reactive Evolution

After implementing the feature-family-based and feature-product-based analysis strate-

gies, we applied the extractive approach to product-line adoption to obtain the �rst version

of ReAna-SPL. We then relied on an existing literature survey [Thüm et al., 2014] and

on related work to extended our product line to support other strategies in the product-

line analysis taxonomy [Thüm et al., 2014]. The input models and outputs remained

the same throughout the process, so variability continued to be introduced as analyzers

implementing di�erent strategies.

3.2.3.1 Product-based Reliability Analysis

Ghezzi and Molzam Shari�oo [2013] presented a feature-product-based approach to reli-

ability analysis of product lines, based on PMCs derived from annotated UML diagrams.

They presented their technique as an alternative to the generation of a Markov model for

each con�guration�a product-based approach. Because of the similarity between their

32

input models and ours, we introduced a product-based strategy for ReAna-SPL that is

based on their idea of a product-based analysis. However, whereas Ghezzi and Molzam

Shari�oo [2013] resolve the variability of UML diagrams (yielding UML diagrams of prod-

ucts), we perform this variability binding on the derived PMCs.

Our product-based analysis strategy is outlined in Figure 3.6. For every valid con-

�guration, we generate the corresponding probabilistic behavioral model (a DTMC) by

composing the PMCs whose presence conditions are satis�ed. This composition process

consists of �inlining� a PMC in the places where the transfomation process created a vari-

able to abstract it. Take, for instance, our example sequence diagram in Figure 3.2. Let

x be the variable created in the PMC for the enclosing diagram at the point where the

behavior conditioned by memory would be. Composition puts the PMC for memory as

a replacement for the transition x, that is, at the point where it would be present if our

transformation process did not split the behavior of di�erent features.

Similar to expression evaluation, PMC composition is performed in a bottom-up fash-

ion, using constant PMCs (i.e., DTMCs) as base cases. After this process of composition

(which we name λ) is �nished, the result is a DTMC modeling the behavior of the prod-

uct corresponding to the con�guration at hand. Then, we apply non-parametric model

checking (denoted by α) to compute the reliability of this resulting model�also using the

PARAM model checker.

Figure 3.6: Outline of the implemented product-based analysis approach. Nested squares
represent DTMCs that result from composition.

3.2.3.2 Family-based Reliability Analysis

According to the analysis taxonomy [Thüm et al., 2014], a family-based strategy operates

only in domain artifacts and incorporates the knowledge about valid feature combinations.

In annotation-based product lines, this can be done using variability-aware analyzers that

rely on variability-aware parsers [Kästner et al., 2011], for instance. Another technique

is to merge all variability into a single product simulator, or metaproduct, which can

be analyzed using o�-the-shelf tools [Apel et al., 2011, 2013b; von Rhein et al., 2016].

We based our implementation on the latter technique, because our input models are

33

compositional�behavior modules that are meant to be composed with each other to

yield the behavior of a given product. We also borrow the idea of conditioning transitions

on feature presence from featured transition systems [Classen et al., 2013], although our

concrete models and techniques di�er.

Our family-based approach consists of encoding the variability of the whole product

line in a single PMC. This process, which is an instance of variability encoding [Post and

Sinz, 2008; von Rhein et al., 2016], is similar to PMC composition. However, we skip

checking for satisfaction of presence conditions; instead, we perform the inlining of PMCs

while still retaining the variables. The variable transitions of the resulting variability-

encoded PMC have the semantics of choice: the system makes the transition to a state

belonging to a given feature's behavior whenever the corresponding variable evaluates

to 1 (true); otherwise, it skips all these states, to model the absence of the feature.

This variability-encoded model can be seen as an asset with annotation-based variability

representation.

Figure 3.7: Outline of the implemented family-based analysis approach. Nested squares
represent variability-encoded PMCs, with the outermost square denoting the result from
embedding the variability of the whole product line into the root PMC. At the extreme
right, we see a single ADD that maps all valid con�gurations to their respective reliabilities
(cf. Figure 3.4).

Figure 3.7 is an outline of our family-based analysis. We �rst generate a variability-

encoded PMC that is able to reproduce the behavior model of any product. This vari-

ability encoding process is abstracted by the function λv, named this way to suggest a

�variability-aware derivation�. Then, we apply parametric model checking to obtain a

corresponding reliability expression. Unlike the expressions obtained from the individual

compositional PMCs, the expression obtained from the variability-encoded model must

be evaluated with Boolean values 0 and 1. This re�ects the change in the semantics of

variables that was introduced by variability encoding: instead of representing reliability

values, they now represent feature presence or absence.

34

The resulting expression is lifted and then evaluated using variability-aware evaluation

(σv), as in the family-based phase of the feature-family-based strategy. Each variable is

evaluated using the product between the ADD for its corresponding presence condition

and the ADD for the feature model's rules. This ensures the variable is only evaluated to

1 for valid con�gurations in which its presence condition is satis�ed.

3.2.3.3 Family-product-based Reliability Analysis

Since the last part of the family-based strategy is similar to the family-based phase of the

feature-family-based strategy, it enables a similar choice. Instead of lifting the expression

and performing variability-aware evaluation, we can evaluate the expression once for each

valid con�guration. The resulting analysis is family-product-based, and is depicted by

Figure 3.8. In the implementation, the common part (variability encoding followed by

parametric model checking) is reused in both the family-based and the family-product-

based strategies.

Figure 3.8: Outline of the implemented family-product-based analysis approach. In con-
trast with Figure 3.7, the result is represented by a reliability value (yellow box), inde-
pendently computed for each valid con�guration.

3.3 Product Line of Product-line Reliability Analysis

Tools

By investigating patterns and similarities between the implemented strategies, we devised

the diagram in Figure 3.92. This diagram presents the implemented strategies as alterna-

tives, each of which being a composition of intermediate analysis steps that act as building

blocks. Starting at the top-left node (which represents the compositional model obtained

from the initial transformation of UML models into PMCs), the reader can follow the

2 This �gure represents a preliminary version of Figure 4.7.

35

arrows to obtain the outline of an analysis technique. The strategy at hand is determined

by the colors of the arrows, according to the legend at the bottom of the �gure.

DTMC
Compositional

PMCs
Variability-encoded
Annotative PMC

Reliability
Compositional
expressions

Annotative
expression

Reliability
ADD

Compositional
lifted expressions

Annotative
lifted expression

λ

λv

αv αvα

σ σ

lift lift
J_Kc

σv σv

λ derivation σ evaluation
α model checking J_Kc ADD application

feature-based
family-based
product-based

Figure 3.9: Outline of the relation between the implemented product-line reliability anal-
ysis strategies.

For instance, ReAna's original strategy consists of the following steps: start with a

compositional model, use parametric model checking to obtain compositional expressions

(solid green arrow labeled αv), lift the resulting expressions to work with ADD semantics

(dashed red arrow labeled lift), and then evaluate the resulting expressions (dashed red

arrow labeled σv). Since the arrows in the path just described are (in order of appearance)

solid green (feature-based step), dashed red (family-based step), and dashed red, the

strategy is feature-family-based.

Note that, although Reliability is the only sink node in the diagram, we considered

the above path to be complete when we reached Reliability ADD. The reason is that, for

practical purposes, the reliability ADD contains the same information as would be given

by a mapping from con�guration values to reliabilities. Indeed, under the convention that

a con�guration is denoted by a Boolean tuple (Section 2.1), JFM K ⊆ Bk for a product

line with k features. Thus, both data structures have type Bk → R.
The implemented product line, ReAna-SPL, is publicly available as free and open-

source software3. It is a Java program with load-time variability bound by command-line

arguments. The design decision to use load-time variability aimed at providing a tool that

3https://github.com/SPLMC/reana-spl

36

https://github.com/SPLMC/reana-spl

Figure 3.10: Feature model of the reliability analysis software product line (ReAna-SPL).

could be useful not only to perform a single type of analysis, but also to evaluate di�erent

analysis strategies in a timely fashion�e.g., performing a series of analysis experiments

to empirically compare strategies.

Implementation Summary

Mechanism: strategy design pattern;

Binding time: load time;

Technology: language-based;

Representation: composition-based.

ReAna-SPL's feature model is shown in Figure 3.10. Each of its �ve valid con�gura-

tions correspond to one of the possible paths in the diagram of Figure 3.9, and, therefore,

to one of the implemented strategies. Table 3.1 presents the correspondence between

valid con�gurations, analysis strategies, and the combined analysis steps. Each sequence

of analysis steps denotes a path in the diagram in Figure 3.9. The --strategy command-

line option switches between analysis strategies at load time. The strategies map to the

accepted values by capitalizing all letters and replacing the hyphen with an underscore,

that is, FEATURE_FAMILY corresponds to the feature-family-based strategy, FAMILY corre-

sponds to the family-based strategy, and so on.

In ReAna-SPL, variability is realized by means of the strategy object-oriented design

pattern [Gamma et al., 1995], in which di�erent analysis strategies are implemented by

classes in the concrete strategy stereotype (coarse-grained variability). The shared analysis

phases were implemented using an additional level of the strategy pattern, and interme-

diate analysis steps were realized by functions. Design patterns provide good-practice

37

Con�guration
Strategy Analysis steps

Behavioral Models Model Checking Expression Evaluation Variability Encoding
Compositional Non-parametric - False Product-based λ→ α
Compositional Parametric Variability-aware False Feature-family-based αv → lift → σv
Compositional Parametric Con�guration-wise False Feature-product-based αv → σ
Compositional Parametric Variability-aware True Family-based λv → αv → lift → σv
Compositional Parametric Con�guration-wise True Family-product-based λv → αv → σ

Table 3.1: Correspondence between valid con�gurations, analysis strategies, and analysis
steps.

guidelines for disciplined implementations of variability, as well as a means to decouple

and encapsulate features [Apel et al., 2013a].

3.3.1 Quality Assessment

Despite the aforementioned advantage, using design patterns as a variability implementa-

tion mechanism also has weaknesses [Apel et al., 2013a]. However, they were manageable

in our case. We now present the trade-o�s of our product line, following the quality cri-

teria suggested by Apel et al. [2013a] and a discussion of strong and weak points of using

design patterns in general, also by Apel et al. [2013a].

Since we built ReAna-SPL using extractive and reactive adoption strategies, pre-

planning e�ort was low. Our progressive analysis of the domain of reliability analysis

strategies suggested that the most common variation was the choice between strategies.

This motivated the choice to use the strategy design pattern, leading to coarse granu-

larity. A disadvantage is that it restricts the ways in which features can be combined

to support new con�gurations, since features combinations are hard-coded as concrete

strategies. Nonetheless, since the analyses are implemented in terms of lower-level build-

ing blocks (representing intermediate analysis steps), we expect the e�ort to implement a

new analysis strategy to be reduced.

Feature traceability is not immediate, since ReAna-SPL's source code is structured

in terms of analysis strategies, whereas its feature model (Figure 3.10) describes �ner-

grained domain concepts. However, we address this issue using clear mappings from

feature selections to analysis strategies (Table 3.1) and from the latter to analyzer classes

(concrete strategies) in the source code. Furthermore, intermediate analysis steps, which

are functions used to implement the strategies, are traceable to features (see Table 3.1).

Separation of concerns is addressed by having strategy classes that are only respon-

sible for coordinating an analysis, delegating intermediate steps to cohesive functions. The

same design provides for information hiding, whereby analysis logic is properly encap-

sulated behind strategy interfaces. Since we only deal with variability in Java code using

the strategy pattern, our variability mechanism is trivially uniform.

38

The fact that code for all variants is deployed did not present a space problem, since

code for UML parsing, models transformation, model checking, and run-time statistics

gathering, which belongs to the base code, accounts for approximately 58% of ReAna-

SPL's source code4. Moreover, we did not �nd run-time defects related to coexisting vari-

ant logic. Boilerplate code and architectural overhead were also not an issue. The model

checking and variability-aware expression evaluation steps represent the performance bot-

tlenecks during analysis, so that the performance penalty of strategy dispatching and calls

to reused functions is negligible.

Quality Assessment

Preplanning e�ort: low (extractive and reactive adoption strategy);

Feature traceability: not immediate, but addressed by Table 3.1;

Separation of concerns: high cohesion;

Information hiding: strategy interfaces and encapsulated analysis logic;

Granularity: coarse-grained changes (concrete strategies);

Uniformity: the only assets are Java classes, and only design patterns are exploited

to implement variability.

3.3.2 Empirical Validation

Before we set out to formalize the implemented strategies and demonstrate their sound-

ness, we performed an empirical investigation to gather evidence that they, indeed, com-

mute. This experiment consisted of analyzing behavioral models of six product lines using

all of our strategies. For each product line, the results from the product-based analysis

were taken as a baseline, to which the results obtained using the other strategies were

compared con�guration-wise.

Our purpose was not to measure performance (neither in time nor in space), but to

assess whether all strategies yield reliabilities that can be deemed equal. Moreover, the

choice to use product-based analyses as baselines does not imply that this analysis strat-

egy is more precise. This decision stems from the fact that the product-based strategy
4 This estimate was obtained by counting lines of code in the packages that are responsible for the

aforementioned common tasks and comparing to the total count of lines of code in ReAna-SPL (excluding
unit tests). The counts ignored comments and blank lines, and were performed using the CLOC tool
(http://cloc.sourceforge.net/).

39

http://cloc.sourceforge.net/

performs a single-product analysis for each product of the product line, thus correspond-

ing to a regular (i.e., not tailored to software product lines) software analysis method.

Therefore, this strategy is sound i� the underlying single-product analysis is sound.

Table 3.2 shows the subject product lines, along with the corresponding number of

features and size of the con�guration space. These product lines were chosen due to

the availability of their variability model, but also because they were being subject to

other empirical studies within our research group. Additionally, EMail, MinePump, BSN,

and Lift were used in previous work addressing model checking of product lines. The

behavioral models and feature models of all subject systems are available in ReAna-SPL's

source code repository (https://github.com/SPLMC/reana-spl).

Features Con�gurations

EMail [University of Magdeburg] 10 40
MinePump [Kramer et al., 1983] 11 128
BSN [Rodrigues et al., 2015] 16 298
Lift [Plath and Ryan, 2001] 10 512
InterCloud [Ferreira Leite et al., 2015] 54 110592
TankWar [University of Magdeburg] 144 4.21×1018

Table 3.2: Product lines used for empirical validation.

Since expression evaluation relies on �oating-point operations, we compared results

using relative errors [Goldberg, 1991]. If r0c is the reliability computed for con�guration

c using the product-based strategy (i.e., the baseline for comparison), and if rc is the

reliability obtained for the same con�guration c using another given strategy, the relative

error is given by

err =
|r0c − rc|

r0c

Maximum Relative Error

Feature-family-based Feature-product-based Family-based Family-product-based

EMail 4.37× 10−16 4.37× 10−16 2.19× 10−16 2.19× 10−16

MinePump 1.34× 10−15 1.34× 10−15 3.71× 10−16 3.71× 10−16

BSN 2.15× 10−16 2.15× 10−16 2.07× 10−16 2.07× 10−16

Lift 5.33× 10−16 5.33× 10−16 3.26× 10−16 3.26× 10−16

InterCloud 2.14× 10−16 2.14× 10−16 out of memory out of memory
TankWar no baseline available

Table 3.3: Maximum relative errors for each analysis strategy, using the product-based
analysis as a baseline.

Table 3.3 shows the maximum relative error of applying each strategy to a subject

product line. The product-based strategy does not appear in this table, since it was

used as a baseline for computing the errors. All errors where contained within a margin

of approximately 10−15, with most of them within approximately 10−16. Since we have

implemented expression evaluation using 64-bit double-precision �oating-point numbers

40

https://github.com/SPLMC/reana-spl

(the double data type), and since the relative errors in Table 3.3 are close to the unit

roundo� for this data type (≈ 1.11× 10−16 [Higham, 2002]), we believe the errors are due

to rounding in �oating-point arithmetics.

To raise the level of con�dence in this conclusion, we compared the corresponding rel-

ative errors (i.e., con�guration-wise) for each pair of strategies. With this comparison, we

found out that the relative errors of the results obtained by the feature-family-based and

by the feature-product-based strategies are equal. This is consistent with the fact that

both feature-based strategies perform arithmetics over the same set of expressions (each

corresponding to a PMC in the behavioral model), and thus perform the same operations

over the same double values. The same happens with the family-based and family-

product-based strategies: both consist of evaluating the same expression (obtained from

parametric model checking of the variability-encoded PMC), and have correspondingly

equal relative errors. These results provide empirical evidence that the implemented anal-

ysis strategies commute, in the sense that they are equivalent to one another. Nonetheless,

further empirical studies can strengthen this evidence by repeating the comparison for a

greater number of product lines.

Due to the large con�guration space, a product-based analysis of the TankWar product

line was not practical, so it was not evaluated. Indeed, the only implemented strategy

that managed to analyze this product line in our computing environment was the feature-

family-based strategy. Enumerative strategies (product-based and feature-product-based)

timed out, while the ones based on variability encoding (family-based and family-product-

based) ran out of memory. While analyzing the InterCloud product line, family-based and

family-product-based strategies also ran out of memory. Future work should investigate

the reasons for this behavior, as well as the absolute and relative performance of each

analysis strategy.

3.4 Theory Development

After implementing the �ve preceding analysis strategies in ReAna-SPL, we started seek-

ing for recurring patterns. To this end, we compared the source code of the analyzers

with one another, searching for redundancies and similar programming techniques.

Coarse-grained patterns related to feature-based and family-based �rst phases were

the �rst to be noticed, since they occurred by design. In Figures 3.4 and 3.5, for instance,

we see that the outline of the feature-based �rst phase is the same in both strategies. The

same happens in the family-based �rst phases of the family-based (Figure 3.7) and the

family-product-based (Figure 3.8) strategies.

41

Comparing the second phases, however, unintended patterns start to emerge. Take

Figures 3.4 and 3.7, for instance. The outlines of the family-based second phases of the

feature-family-based and the purely family-based strategies have similar shapes. Both rely

on lifting and variability-aware evaluation, but they do so in di�erent ways: whereas the

family-based strategy handles a single expression whose variables are evaluated as presence

values (0 or 1), the feature-family-based strategy evaluates a number of interdependent

expressions in a bottom-up way, using the resulting reliability values (Real numbers in

the [0, 1] interval) to evaluate variables. Hence, the variability-aware evaluation function

σv can be broken down into a mapping from con�gurations to evaluations (an �evaluation

factory�) and a combinator that turns this mapping into a concrete expression evaluator.

Evaluating in the feature-family-based scenario can thus be seen as a fold (or reduce)

combinator applied to a list of lifted expressions and a generic variability-aware evaluation

combinator σv. A similar pattern occurs with the evaluation function σ in the product-

based second phase of the feature-product-based strategy (Figure 3.5) and the derivation

function λ in the purely product-based strategy (Figure 3.6).

Another pattern arises when comparing derivation and variability encoding. Both

transformations rely on a PMC composition mechanism, but, whereas derivation rules

out variables by evaluating presence conditions, variability encoding wraps the composed

PMCs with parametric transitions that model con�guration choice as a behavior. Fig-

ure 3.11 illustrates these di�erences and similarities. In this �gure, probabilities of tran-

sitions that do not participate in the transformation at hand were ommited for brevity.

The encoding of con�guration-time choices as conditional constructs (if-then-else op-

erators) is also recurring. This pattern, which was already present in works on variability

encoding of source-code assets [Apel et al., 2011; Post and Sinz, 2008; von Rhein et al.,

2016], was identi�ed not only within variability encoding of PMCs. It also arises when

performing variability-aware evaluation (by means of the ITE ADD operator). Table 3.4

summarizes the occurrences of the if-then-else pattern, specifying what construct is used

to switch on which conditional, as well as the corresponding consequent processing (which

takes place if the conditional is true) and the alternative value (used whenever the con-

ditional is false). More details on the pattern instances are provided in Section 4.2.

If-then-else Conditional Consequent Alternative

Expression evaluation (σ) if statement Presence condition satisfaction Evaluate with R semantics 1
Variability-aware expression evaluation (σv) ADD ITE operator Presence condition ADD Evaluate with ADD semantics 1 (constant ADD)
DTMC derivation (λ) if statement Presence condition satisfaction Compose Trivial PMC†

Variability encoding of PMCs (λv) PMC ITE operator PMC identi�er Compose Trivial PMC†

† Composing the trivial PMC does not a�ect reachability probabilities (see Section 4.1.2).

Table 3.4: Occurrences of the if-then-else pattern.

As a visual representation of the implemented product-line and its building blocks,

the diagram in Figure 3.9 also enabled the discovery of new possibilities. For instance, we

42

(a) Base PMC and a component PMC con-
ditioned on feature F. Variable f is used to
abstract this component's behavior.

(b) Result of derivation (λ) if feature F is
present.

(c) Result of derivation (λ) if feature F is
not present.

(d) Result of variability encoding (λv). The
added transitions (green arrows) seem to
wrap the component PMC with an if-then-

else conditional.

Figure 3.11: Comparison of derivation and variability encoding. Green solid arrows denote
new transitions, and dashed red arrows represent transitions that are removed by the
transformation process.

saw an opportunity to provide a product-based step to derive annotation-based models,

yielding an alternative product-based approach. Using the unveiled patterns and the

diagram in Figure 3.9 as a guidance, we formalized the probabilistic models targeted by

our analysis strategies (Section 4.1), as well as the implemented and discovered strategies

themselves (Section 4.2).

With the domain knowledge acquired in this formalization phase, our feature model

evolved to the one presented in Figure 3.12. This new feature model represents the

variability in the supported representations of variability in models (either composi-

tional or annotative). Moreover, the cross-tree constraint stating that Non-parametric

⇒ ¬Variability Encoding was dropped. It re�ected the previous lack of product-

based analysis of annotative models, a limitation of the implemented tool that was

43

overcome by the theoretical results. Furthermore, we added the constraint Annotative

⇒ ¬Variability Encoding, representing the fact that variability encoding has no e�ect

over our annotative models.

Table 3.5 presents the correspondence between valid con�gurations, strategies, and

analysis steps after evolution. For compositional models, the di�erence is that variability

encoding of such models is now allowed to coexist with non-parametric model checking.

For annotative models, all con�gurations are new, since the Annotative feature did not

exist in the previous version. However, the sequence of analysis steps of each of these

con�gurations corresponds to a su�x of the sequence of analysis steps of one of the

three con�gurations based on variability encoding of compositional models. This happens

because such variability encoding is e�ectively a model translation. Thus, all analyses

that encode variability of compositional models are also valid when applied directly to

annotative models.

Figure 3.12: Feature model of the reliability analysis software product line (ReAna-SPL)
after feedback from the formalization phase (Chapter 4).

Con�guration
Strategy Analysis steps

Behavioral Models Model Checking Expression Evaluation Variability Encoding
Compositional Non-parametric - False Product-based λ→ α
Compositional Non-parametric - True Family-product-based λv → λ→ α
Compositional Parametric Variability-aware False Feature-family-based αv → lift → σv
Compositional Parametric Con�guration-wise False Feature-product-based αv → σ
Compositional Parametric Variability-aware True Family-based λv → αv → lift → σv
Compositional Parametric Con�guration-wise True Family-product-based λv → αv → σ
Annotative Non-parametric - False Product-based λ→ α
Annotative Parametric Variability-aware False Family-based αv → lift → σv
Annotative Parametric Con�guration-wise False Family-product-based αv → σ

Table 3.5: Correspondence between valid con�gurations, analysis strategies, and analysis
steps after formalization of strategies.

We also demonstrated that the family-based intermediate analysis steps at the right

side of Figure 3.9 commute, thereby proving the soundness of our family-based and family-

product-based analysis techniques (after the variability encoding step). This way, we es-

tablished a valid relation between product-line reliability analysis strategies. The resulting

de�nitions, lemmas, and theorems, along with the corresponding proofs, were subject to

44

scrutiny both within our group and by fellow researchers. This work is currently being

prepared for submission to a peer-reviewed journal.

During the theory development process, we employed graphs to map dependencies

between elements in our theory (i.e., de�nitions, lemmas, and theorems). These graphs,

shown in Appendix B, informed on what elements would be impacted by a change to a

given element. Thus, they helped in maintaining consistency and correctness throughout

the rounds of external and internal review.

In the following chapters, we report the theoretical results of our work.

45

Chapter 4

Commuting Strategies for Product-line

Reliability Analysis

This chapter presents the formalization of our behavioral models for software product lines

(Section 4.1) and of our analysis strategies (Section 4.2). It also presents a formulation

of the soundness of our strategies as theorems, along with corresponding proofs.

The discussion is focused on annotative models and analyses thereof, that is, the

family-based and family-product-based strategies. Nonetheless, we also provide infor-

mal insights on the compositional models exploited by our feature-family-based (Sec-

tion 3.2.1.1) and feature-product-based (Section 3.2.2.1) strategies. To better illustrate

the formal concepts, we provide a running example.

4.1 Markov-chain Models of Product Lines

Reliability analysis, in our setting, is the application of probabilistic model checking to

a probabilistic model of a software system. However, for a product line, it may not be

feasible to manually model each product (i.e., its probabilistic model) and then analyze

it, due to exponential blowup. Hence, we model the product line as a whole in terms

of its common and variable behavior, to enable the automatic derivation of probabilistic

models corresponding to the behavior of each product of the product line. Such variable

behavioral models have properties that allow them to be used with di�erent analysis

strategies, as we will show in Section 4.2. Although we show and use precise de�nitions of

the resulting models, it is outside the scope of this work to present modeling techniques to

create them. Models can be produced, for example, by using behavioral UML diagrams

annotated with component reliabilities [Ghezzi and Molzam Shari�oo, 2013; Nunes et al.,

2013] or feature-oriented formalisms [Chrszon et al., 2016].

46

Since single-product analysis relies on DTMCs to model software behavior, we use

PMCs to represent DTMC variability in product-line analysis. To illustrate our ap-

proaches to variability representation and product-line analysis, yet without loss of gen-

erality, we rely on an example product line of beverage vending machines (Figure 4.1),

slightly modi�ed from the examples in the work by Ghezzi and Molzam Shari�oo [2013]

and Classen et al. [2010]. This product line consists of models of vending machines that are

able to deliver tea or soda (but never both) and, for each case, there is a beverage-speci�c

optional behavior of adding taste.

The feature model for this product line is depicted in Figure 4.1a, where Soda and Tea

are alternative features (i.e., they cannot be simultaneously present in a feature selection)

representing the behaviors of serving soda and tea, respectively. Since adding taste to a

beverage is an optional behavior, it is modeled by the optional feature Taste. If a product

is generated with the feature selection {Soda} (i.e., Taste is not selected), a possible model

of its probabilistic behavior is depicted in Figure 4.1b. If the feature selection is {Tea,

Taste}, the derived product has a probabilistic behavioral model as in Figure 4.1c.

(a) Feature model.

c0 s0 s1 s2

serr

csuc

cerr

1 0.9 0.9 0.9

0.1
0.1

1

0.1

1

1

(b) Behavior for {Soda}.

c0 t0 t1 t2 ttaste0 ttaste1

ttasteerr

t3

terr

csuc

cerr

1 0.9 0.9 0.9 0.9 0.9 0.9

0.1
0.1

0.1

0.1 0.1

1 1

0.1

1

1

(c) Behavior for {Tea, Taste}.

Figure 4.1: Vending machine product line example.

In both example DTMCs, transitions indicate a change in the machine's execution

state, with probabilities representing the reliabilities of the corresponding execution steps.

These reliabilities are usually taken to be the probabilities that the software components

responsible for each step will successfully produce the expected outcome. In this sense,

one can notice most states have two outgoing transitions: one representing success and

another representing failure. The states with only one outgoing transition may be seen as

execution control hando�s. Also, to help us identify variation points, states are labeled

47

according to the behavior they model and are correspondingly colored. Label c denotes

common behavior (present in all products), while s and t denote behaviors introduced

by features Soda, and Tea, respectively. States labeled ttaste correspond to the behavior

of adding taste to tea, that is, they only exist in products derived by a feature selection

with both features Tea and Taste.

As with source code, the way variability is represented as PMCs and the way products

(i.e., DTMCs) are generated from the resulting variable assets can be classi�ed in two

main categories: annotation-based (or annotative) and composition-based (or composi-

tional) [Apel et al., 2013a; Kästner et al., 2008]. We present the intuition for both kinds

of variability representation and a formal de�nition of annotation-based models. The

formalization of composition-based models is the subject of ongoing research.

4.1.1 Annotative Models

To represent the variable behavior of a product line in an annotative way, we use a PMC

in which variables are interpreted as con�guration-speci�c behavior selectors. Such a

PMC for the vending machine product line is shown in Figure 4.2, where we introduce

blue dashed states to represent con�guration-speci�c behavior selection. For instance, to

represent the variability for Tea-related behavior, we introduce a state labeled selt , which

transitions to t0 (not shown) with probability 1, if it is present, or transitions to the point

right after the same behavior (a state correspondingly labeled aftt) with probability 1,

if it is absent. This mutually exclusive selection is represented by labeling transitions

with the expressions t and 1− t, such that evaluating t as 1 yields the expected �present�

behavior, while evaluating it with 0 yields the �absent� behavior. The same approach is

also applied to the behavior corresponding to adding taste to tea. Some states of the

model for serving tea, as well as the behaviors corresponding to Soda and its taste-adding

variant, are omitted for brevity. The whole model can be seen in Figure A.1.

c0 sel t . . . t2 sel ttaste ttaste0 ttaste1

ttasteerr

aft ttaste t3

terr

aft t . . . csuc

cerr

t

1− t

ttaste

1− ttaste

1 1 110.9 0.9 0.9 0.9 0.9

0.1

0.1

0.1
0.1

1

1

0.1

1

1

Figure 4.2: Annotative PMC for the vending machine.

48

We generalize and formally de�ne this annotative approach of variability representa-

tion as follows.

De�nition 4 (Annotative PMC). An annotative PMC is a PMC (S, s0, X,P, T) such

that for all states s ∈ S, either:

1. ∀s′∈Succ(s) ·P(s, s′) ∈ [0, 1] ∧P(s, Succ(s)) = 1 (the probabilities of all outgoing tran-

sitions are constants that add up to 1); or

2. ∃s1,s2∈S ∃x∈X ·Succ(s) = {s1, s2} ∧P(s, s1) = x ∧P(s, s2) = 1− x (there are exactly
two outgoing transitions, whose probabilities are expressed as a single variable and

its complement).

The states in Figure 4.2 that fall in the second case are sel t and sel ttaste (as well as sel s
and sel staste , which are not shown), while all others fall in the �rst case. Each variable of

an annotative PMC denotes the presence of a given behavior in a product. The intended

semantics is that the sets of states and transitions giving rise to the denoted behavior will

be reachable within the model if, and only if, its corresponding variable evaluates to 1.

For such an annotative PMC to represent the variable behavior of a product line with

feature model FM , we must be able to use it to derive the behavioral model of any

product generated by a con�guration c ∈ FM . However, the use of a PMC by itself

does not help with restricting the possible evaluations to achieve that. Evaluating the

introduced variables with values other than 0 and 1 may yield ill-formed DTMCs (e.g.,

violating the stochastic property). Also, a variable should evaluate to 1 if, and only if,

the presence condition of the subsystem whose behavior is controlled by this variable is

satis�ed. Hence, we need to constrain evaluations of this annotative PMC to re�ect the

corresponding feature model and presence conditions.

The �rst step towards this goal is to formalize what presence conditions mean in

the context of variable behavior models. Thus, let px be the presence condition for the

behavior identi�ed by x. In our vending machine example, we would have pt = Tea,

pttaste = Tea ∧ Taste, ps = Soda, and pstaste = Soda ∧ Taste. To precisely associate a

variable to a presence condition, we de�ne a higher-order function that maps a variable

to a Boolean function over the features (see Section 2.1), which we call presence function.

De�nition 5 (Presence function). Given a set X of variables and a feature model FM ,

a presence function is a function p : X → (JFM K → B) such that, for all x ∈ X and all

c ∈ JFM K,

p(x)(c) =

1 if c |= px

0 otherwise

49

where px is the presence condition associated with the variable x and c |= px means that

the con�guration c satis�es px.

Next, we must be able to use the feature model to de�ne evaluations. For instance,

the annotative PMC for the vending machine product line would allow serving both tea

and soda, if both t and s were evaluated to 1. However, this behavior is forbidden by the

feature model, which states that Tea and Soda are alternative features. By incorporating

knowledge of the feature model to evaluations, we can model all variant behavior as if it

were optional and enforce the constraints of alternative and OR features when evaluat-

ing the PMC. The solution to this problem are higher-order functions complying to the

following de�nition of an evaluation factory.

De�nition 6 (Evaluation factory). Given a feature model FM and a set X of variables,

an evaluation factory w : JFM K→ (X → R) is a function that, for a given con�guration

c ∈ JFM K, yields an evaluation w(c) ∈ X → R.

At this point we have de�ned what we mean by an annotative PMC as well as an

abstract means to constrain possible evaluations to the ones that make sense in the context

of a given product line. For the particular case of annotative PMCs, an evaluation factory

must generate evaluations that interpret variables as presence values and according to the

presence conditions. Thus, we need to interpret the set {0, 1} of numbers as the set B
of Boolean values and restrict the generated evaluations to have this set as image. With

this in mind, we de�ne an annotative probabilistic model as follows:

De�nition 7 (Annotative probabilistic model). An annotative probabilistic model is a

tuple (P , p, w,FM) such that:

• P = (S, s0, X,P, T) is an annotative PMC (De�nition 4);

• FM is a feature model;

• p : X → (JFM K→ B) is a presence function (De�nition 5); and

• w is an evaluation factory such that, for all c ∈ JFM K and x ∈ X,

w(c)(x) =

1 if p(x)(c) = 1

0 otherwise

Remark 1 (Pointwise de�nition of w). For practical purposes, it is worth noting that

the right-hand sides of the de�nitions of w (De�nition 7) and of the presence function p

(De�nition 5) are the same. That is, one can operationalize w as w(c)(x) = p(x)(c), so

the annotative evaluation factory could be uniquely determined from an annotative PMC

50

P , a presence function p, and a feature model FM . Nonetheless, we keep w as part of the

annotative model tuple to explicitly represent this con�guration knowledge.

Starting with such an annotative model, the derivation of a speci�c behavioral model

of a product with con�guration c ∈ JFM K is then carried out by applying the evaluation

w(c) to the underlying PMC P . Since PMC evaluation is not restricted to annotative

PMCs, we de�ne this process of DTMC derivation without resorting to the just de�ned

concept of annotative models.

De�nition 8 (DTMC derivation). Given a PMC (S, s0, X,P, T), a feature model FM ,

and an evaluation factory w : JFM K → (X → R), the DTMC derivation function λ :

PMCX ×
(
JFM K→ (X → R)

)
× JFM K→ DTMC is such that

λ(P , w, c) = Pw(c)

where PMCX is the set of PMCs with variables set X. For brevity, we can also note

JPKwc to mean λ(P , w, c).

Note that the analysis methods we exploit in this work rely on evaluations being well-

de�ned (De�nition 3). This is where the restrictions we imposed on annotative models

come into play: the evaluation factory of an annotative model always yields well-de�ned

evaluations for the underlying annotative PMC.

Lemma 2 (Evaluation well-de�nedness for annotative models). For every annotative

model (P , p, w,FM), w(c) is a well-de�ned evaluation for P, for all c ∈ JFM K.

Proof. By de�nition of well-de�ned evaluation for a PMC P = (S, s0, X,P, T) (De�-

nition 3), an evaluation u is well-de�ned i� Pu obeys the stochastic property and Pu

assigns a valid probability value to each transition. That is, ∀s∈S ·Pu(s, Succ(s)) = 1 and

∀s,s′∈S ·Pu(s, s
′) ∈ [0, 1].

From De�nition 7, P is an annotative PMC (De�nition 4), so states with no variability

(case 1) satisfy the needed properties by de�nition. For states s with variability (case 2),

it holds that

∃s1,s2∈S ∃x∈X · Succ(s) = {s1, s2} ∧P(s, s1) = x ∧P(s, s2) = 1− x

Let us consider each property whenever u = w(c):

51

Stochastic property. By de�nition,∑
s′∈Succ(s)

Pw(c)(s, s
′) = Pw(c)(s, s1) + Pw(c)(s, s2)

= P(s, s1)[X/w(c)] + P(s, s2)[X/w(c)]

= x[X/w(c)] + (1− x)[X/w(c)]

= w(c)(x) + (1− w(c)(x))

= 1

Valid probabilities. From De�nition 7, we have that for every c ∈ JFM K, the im-

age of w(c) is {0, 1} ⊆ [0, 1]. Hence, either Pw(c)(s, s1) = 1 ∧ Pw(c)(s, s2) = 0 or

Pw(c)(s, s1) = 0∧Pw(c)(s, s2) = 1. That is, all possible transition probabilities lie in

the [0, 1] interval.

As there is no other case to consider, Pw(c) satis�es the required properties. Thus, w(c)

is well-de�ned for P .

In summary, an annotative probabilistic model represents all products of the product

line, relying on presence conditions to de�ne which parts have to be removed to derive

a concrete product model. Because of that, this type of model is also known as 150%

model [Haber et al., 2013], metaproduct [Thüm et al., 2013], variant simulator [von Rhein

et al., 2016], or product simulator [Apel et al., 2011].

4.1.2 Compositional Models

A compositional representation of variable con�guration-speci�c behavior consists of a

number of PMCs whose variables represent variation points, such that they can be com-

posed with one another at prede�ned locations. To model a product line in this way,

we start with a PMC comprising all common behavior, while abstracting all variable

con�guration-speci�c behavior. We then model each abstracted behavior as a DTMC, if

it presents no further variability, or as another PMC, otherwise. In the latter case, we

follow the same procedure to abstract inner variation points, until all behavior is modeled.

Figure 4.3 illustrates this concept. For the vending machine example, the top-level

PMC P> would be as in Figure 4.3a. In this PMC, we introduce triples of dashed states

that act as placeholders for the abstracted behavior. We call these states and corre-

sponding transitions slots. For instance, the top-level PMC in Figure 4.3a has two slots,

abstracting the behaviors of serving tea and soda. The tea slot consists of two elements:

(a) the set of states ct0 , ctsuc , and cterr , representing the initial, success, and error states

52

in the abstracted behavior, respectively; and (b) two transitions, annotated with the ex-

pressions t and 1 − t, denoting the probabilities of success and failure of this behavior,

respectively. This way, we not only use the variable t as a slot identi�er, but give it the

possibility to be interpreted as the reliability of the tea behavior.

Note that, despite being alternatives, the behaviors of serving tea and soda are both

represented in this PMC. This parametric model, by itself, does not prohibit the behavior

of serving tea and soda subsequently. Like in the annotative representation of the vending

machine (Figure 4.2), we do not enforce the rules of the feature model in the PMC itself.

Instead, we ensure valid combinations of features during the composition process, as we

shall see later.

Figure 4.3b shows the PMC Pt for the tea behavior, in which we use a slot to abstract

the optional taste-adding behavior, whose behavior is modeled by the PMC Pttaste in

Figure 4.3c. Since this tea-taste PMC has no variability, it is in fact a regular DTMC. We

omit the PMCs for serving soda (Ps) and for adding taste to soda (Pstaste), for brevity,
but the complete example can be seen in Figure A.2 (Appendix A).

c0 ct0 ctsuc

cterr

cs0 cssuc

cserr

csuc

cerr

1 t

1− t

s

1− s

1 1

1 1

1

1

(a) Top-level compositional PMC P> for the vending machine (common behavior and main
variation points).

t0 t1 t2 tttaste0 tttastesuc

tttasteerr

t3 tsuc

terr

ttaste

1− ttaste

0.9

0.1

0.9

0.1

0.9

0.1

1

1

0.9

0.1

1

1

(b) Compositional PMC Pt for the behavior of serving tea.

ttaste0 ttaste1 ttastesuc

ttasteerr

0.9 0.9

0.1
0.1

1

1

(c) Compositional PMC Pttaste for the behavior of adding taste to tea.

Figure 4.3: Compositional PMCs for the vending machine.

The semantics of variables in a compositional parametric chain is di�erent from the

53

corresponding semantics in an annotative PMC. In a compositional PMC, parameterized

transitions relate to the concept of slots, whereas annotative PMCs treat variable tran-

sitions as behavioral switches. Informally, a slot for the variable x marks the part of a

product's behavior where a variant behavior (somehow identi�ed by x) takes place. Note

that there can be more than one slot for a given behavior, since a feature may in�uence

behavior at di�erent points of the execution (behavior scattering).

With compositional PMCs at hand, we need to be able to derive a DTMC, modeling

the behavior of a given product of the product line, as in Section 4.1.1. The intuition is

that composition is achieved by connecting the interface of a compositional PMC P ′ to
the slots in a compositional PMC P that are meant to abstract the behavior in P ′ (see
Figure 4.4). In summary, transitions among slot states of P are removed as well as the

looping transitions from success and error absorbing states of P ′. Then, slot states are

connected to respective interface states, yielding a partially composed PMC. This process

is illustrated in Figure 4.4c, which depicts the partial composition of the compositional

PMC P ′ (Figure 4.4b) into P (Figure 4.4a) from the perspective of a single slot. New

transitions are green bold, while red dashed transitions are the ones suppressed during

composition.

A full composition is then obtained by composing PMCs over all slots in a given base

compositional PMC at once. After composition, the variability in a compositional PMC

is replaced by the variabilities of the PMCs composed into it. In the vending machine

(Figure A.2), for instance, if we compose the tea PMC Pt (Figure 4.3b) into the top-

level PMC P> (Figure 4.3a) using the slot (ct0 , ctsuc , cterr), the resulting compositional

PMC will no longer have variable t, but will have a new variable ttaste , stemming from

Pt. Consequently, to derive a product, one has to recursively perform the composition

operation until a plain DTMC is returned.

However, this composition depends upon satisfaction of a presence condition. If the

presence condition of a component model is satis�ed, this model is composed; otherwise,

we compose the trivial compositional PMC, instead (Figure 4.5). This compositional

PMC models an always successful behavior, so composing it would not a�ect the overall

reliability of the base model.

Figure 4.6 depicts the possible compositions of the tea PMC Pt (Figure 4.3b) of the
vending machine example. If the feature selection contains both features Tea and Taste,

the presence condition pttaste is satis�ed, so we compose Pttaste (Figure 4.3c) in the ttaste
slot (Figure 4.6a). If Taste is not selected, pttaste is not satis�ed, and we compose the

trivial PMC P̃ instead (Figure 4.6b).

54

serr

ssuc

s0

sxerr . . .

. . .

. . .

sx0

sxsuc

1

11− x

x

(a) P

. . .s′0

s′err

s′suc

1

1

(b) P ′

. . .

serr

ssuc

s0

sxerr . . .

. . .

s′suc

s′err

. . .

sx0 s′0

sxsuc

1

1

1

1

1

1

1− x

x

1

(c) P ′ composed into P.

Figure 4.4: Example of a partial composition of PMCs.

s0

ssuc

serr

1

0

1

1

Figure 4.5: Trivial compositional PMC P̃ .

4.2 Reliability Analysis Strategies

The scenario on which we focus is analyzing the reliability of all products of a product line

using model checking of a probabilistic reachability property of Markov-chain models. For

this task, one can choose a number of product-line analysis strategies [Thüm et al., 2014].

Following the taxonomy of Thüm et al. [2014], we discussed possible strategies for each of

the variability representations (annotative and compositional) presented in Section 4.1.

55

t0 t1 t2 tttaste0 ttaste0 ttaste1 ttastesuc

ttasteerr

tttastesuc

tttasteerr

t3 tsuc

terr

0.9

0.1

0.9

0.1

0.9

0.1

1

1

0.9

0.1

1

1

0.9 0.9

0.1
0.1

1

1

1 1

1

(a) Pttaste composed into P (Taste is selected).

t0 t1 t2 tttaste0 triv0 trivsuc

triverr

tttastesuc

tttasteerr

t3 tsuc

terr

0.9

0.1

0.9

0.1

0.9

0.1

1

1

0.9

0.1

1

1

1

0

1

1

1 1

1

(b) P̃ composed into P (Taste is not selected).

Figure 4.6: Example compositions for the vending machine.

Figure 4.7 depicts these choices. Starting with a compositional (upper left corner)

or an annotative model (upper right corner), one can follow any of the outgoing arrows

while performing the respective analysis steps (abstracted as functions), until reliabilities

are computed (either real-valued reliabilities or an ADD representing all possible values).

These analysis steps can be feature-based (green solid arrows), product-based (blue dotted

arrows), or family-based (red dashed arrows). Thus, the arrows form an �analysis path�

(a function composition), which de�nes the employed analysis strategy. Furthermore,

this diagram is a commuting diagram, as suggested by empirical evidence (Section 3.3.2)

and demonstrated later in this section (right-hand side only). This means that di�erent

analysis paths are equivalent if they share the start and end points.

After choosing a variability representation, the analysis of any of the resulting models

presents another choice: either variability-free models (i.e., DTMC) are derived for each

con�guration (function λ) and then analyzed (function α), or variability-aware analysis

is applied, using some form of parametric model checking (function αv). The �rst choice

yields a product-based strategy (Section 4.2.1), whereby each variant is independently

analyzed. The second one leverages parametric model checking to produce expressions

denoting the reliability of PMCs in terms of their variables (Section 2.2.2). These variables

carry the semantics they had in the model-checked PMC, so we correspondingly classify

the resulting expressions as annotative or compositional.

Evaluating these expressions provides another choice: to evaluate the expressions for

each valid con�guration (function σ), yielding feature-product-based and family-product-

56

based (Section 4.2.2.1) strategies; or to interpret the expressions in terms of ADDs (func-

tion lift), e�ectively evaluating them for the whole family of models at once (function

σv)�a step we call expression lifting. The latter represents feature-family-based and

family-based (Section 4.2.2.2) strategies.

As an example of walking through the choices of Figure 4.7, suppose we start with

a compositional model (upper-left corner), perform parametric model checking (move

down), and then lift the resulting expressions (move down one more step) and evaluate

them (move right), reaching a reliability ADD for the family as a whole. The arrows in

this path are, respectively, green solid, red dashed, and red dashed, meaning the analysis

strategy is feature-family-based.

DTMC
Compositional

model
Annotative

model

Theorem 1

Reliability
Compositional
expressions

Annotative
expression

Theorem 4

Reliability
ADD

Compositional
lifted expressions

Annotative
lifted expression

λ′ λ

λv

αv αvα

σ σ

lift lift
J_Kc

σv σv

λ derivation λv variability encoding
σ evaluation σv evaluation with ADDs
α model checking αv parametric model

checkingJ_Kc ADD application

feature-based
family-based
product-based

Figure 4.7: Commutative diagram of product-line reliability analysis strategies.

In the remaining sections, we detail some of these strategies and analysis steps with the

goal of making statements about commuting relations. Section 4.2.1 presents the product-

based analysis strategy for annotative models, with the goal of establishing a baseline for

soundness proofs. Section 4.2.2 discusses family-product-based and family-based analyses

of annotative models. The formalization of feature-family-based and feature-product-

based strategies, as well as variability encoding, is the subject of ongoing research.

57

4.2.1 Product-based Strategy

Product-based analysis strategies are based on the analysis of generated products or

models thereof [Thüm et al., 2014]. In Section 4.1, we have discussed how to represent

probabilistic behavioral models of product lines as PMCs, using the annotative approach.

There, we also described how to derive models of individual products for the annotative

approach. The generated models are plain DTMCs, that is, their variability has been

resolved at derivation time. Thus, to analyze the generated models, one only needs to

model-check the non-parametric probabilistic reachability for every such model. We here-

after denote this non-parametric model checking analysis step by the following function

α.

De�nition 9 (Non-parametric model checking). The non-parametric model checking step

α : DTMC → [0, 1] consists of applying the algorithm by Hahn et al. [2011]. For a DTMC

D = (S, s0,P, T),

α(D) = PrD(s0, T)

Since a DTMC has no parameters, α yields constant functions, which we interpret as

plain Real numbers.

Although there are more e�cient algorithms for reliability model checking of regular

(non-parametric) DTMCs, we use the algorithm by Hahn et al. [2011] in the above de�ni-

tion for uniformity, which eases understanding. Since this algorithm is sound (Lemma 1),

a working implementation of the presented theory is free to exploit another sound prob-

abilistic reachability algorithm for performance reasons.

Now we are able to de�ne product-based analysis for annotative models.

De�nition 10 (Product-based analysis of annotative models). Given an annotative model

(P , p, w,FM), a product-based analysis yields, for all c ∈ JFM K,

α(λ(P , w, c))

or, alternatively,

α(JPKwc)

So, a product-based analysis results in a mapping from con�gurations to respective

reliability values, such as {c 7→ α(λ(P , w, c)) | c ∈ JFM K} for annotative models, for

instance.

58

The analysis strategy presented in this section derives models for individual prod-

ucts of a given product line and then apply a single-product analysis technique as is.

Since single-product analyses represent the base case upon which product-line analyses

are built, the product-based strategy establishes a baseline for proving the soundness

of other strategies.

4.2.2 Family-based Strategies

According to Thüm et al. [2014], a family-based analysis strategy is one that (a) operates

only on domain artifacts and that (b) incorporates the knowledge about valid feature

combinations. In this section, we explore this kind of strategy in the context of annotative

probabilistic models, because they encode the behavior of all products of a product line in a

single PMC. It is also possible to perform family-based analyses on a compositional model

by �rst transforming it into an annotative one, but the formalization of this variability

encoding approach is the subject of ongoing research.

First, we show how to perform an analysis that yields a reliability expression, which

can in turn be evaluated for each valid con�guration of the product line. This characterizes

a family-product-based strategy (Section 4.2.2.1). Then, the aforementioned analysis is

leveraged to build a pure family-based (i.e., non-enumerative) strategy (Section 4.2.2.2).

At �rst, it may seem counterintuitive to present the family-product-based approach before

the family-based one. However, we shall see that our pure family-based approach builds

upon concepts of the hybrid family-product-based approach, and that performing one or

the other is a matter of choosing product-based or family-based analysis steps after a

preliminary family-based step.

4.2.2.1 Family-product-based Strategy

A family-product-based strategy is a family-based strategy followed by a product-based

strategy over intermediate results [Thüm et al., 2014]. The preliminary family-based

step of our family-product-based analysis consists of applying parametric model check-

ing of probabilistic reachability (Section 2.2.2) of the underlying PMC of the annotative

model. This step is abstracted as a function αv, where the subscript v denotes that it is a

variability-aware version of the non-parametric model checking function α (De�nition 9).

De�nition 11 (Parametric model checking). The parametric model checking analysis

step αv : PMCX → FX consists of applying the algorithm by Hahn et al. [2011] for

probabilistic reachability, which yields a rational expression ε ∈ FX for a PMC with

59

variables set X. For a PMC P = (S, s0, X,P, T), the input target states of the algorithm

are the ones in T .

After performing parametric model checking, the result of reachability analysis is an

expression over the same variables as the annotative input PMC, denoting the PMC's

reliability as a function of these variables. Hence, we expect this annotative reliability

expression to be evaluated using the same evaluation functions that restricted the possible

behaviors in the original model. This expression evaluation, which can be seen as model

derivation applied to expressions, is captured in function σ.

De�nition 12 (Expression evaluation). Given an expression ε over a set X of variables,

an evaluation factory w, and a con�guration c ∈ JFM K, we de�ne the expression evaluation
function in a similar fashion as DTMC derivation:

σ(ε, w, c) = ε[X/w(c)]

Likewise, we can use JεKwc to denote σ(ε, w, c).

The function σ is applied to the reliability expression for all valid con�gurations of the

product line, yielding the �nal product-based step. The resulting family-product-based

approach for the analysis of annotative models is then de�ned as follows.

De�nition 13 (Family-product-based analysis). Given an annotative model (P , p, w,
FM), the family-product-based analysis yields, for all c ∈ JFM K,

σ(αv(P), w, c)

or, alternatively,

Jαv(P)Kwc

Figure 4.8 illustrates the family-product-based strategy in contrast with the product-

based one (Section 4.2.1), providing an intuition for why they commute. DTMC derivation

λ and expression evaluation σ are both performed for a con�guration c such that c |= px.

This way, w(c)(x) = 1 and the reliability is 0.9801. If c were such that x was absent (i.e.,

c 6|= px), then the reliability would be 0.99.

To be considered sound, a family-product-based analysis must be equivalent to per-

forming a product-based analysis of all products. This means that performing a para-

metric model checking step and then evaluating the resulting expression for each valid

product must yield the same result as �rst deriving the original annotative model for each

product and then performing non-parametric model checking on each resulting DTMC.

To prove that this equivalence holds, we can leverage a more general result about PMCs

and well-de�ned evaluations.

60

s0 s1 s2 ssuc

serr

0.99

0.01

x

1− x

0.99

0.01

1

1

s0 s1 s2 ssuc

serr

0.99

0.01

1

0

0.99

0.01

1

1

0.9801 · x+ 0.99 · (1− x)

0.9801

λ

αv

α

σ

Figure 4.8: Example of family-product-based analysis (αv followed by σ) in contrast to a
product-based analysis (λ followed by α) of an annotative PMC.

Lemma 3 (Commutativity of PMC and expression evaluations). Given any PMC P =

(S, s0, X,P, T) and a well-de�ned evaluation u, it holds that

α(P [X/u]) = αv(P)[X/u]

Proof.

α(P [X/u]) = α(Pu) (syntax change)

= PrPu(s0, T) (De�nition 9)

and, since u is well-de�ned,

= αv(P)[X/u] (Lemma 1 and De�nition 11)

Using this result, we are able to express the soundness of the family-product-based

approach in the following theorem.

Theorem 1 (Soundness of family-product-based analysis). Given an annotative model

(P , p, w,FM), for all c ∈ JFM K

α(JPKwc) = Jαv(P)Kwc

Alternatively, α(λ(P , w, c)) = σ(αv(P), w, c).

61

Proof. Since w(c) is a well-de�ned evaluation (Lemma 2), we can use it to instantiate u

in Lemma 3. Thus, let P = (S, s0, X,P, T).

α(JPKwc) = α(P [X/w(c)]) (De�nition 8)

= αv(P)[X/w(c)] (Lemmas 2 and 3)

= Jαv(P)Kwc (De�nition 12)

As a major result, Theorem 1 states that the diagram in Figure 4.9 commutes.

This diagram corresponds to the upper right quadrant in Figure 4.7.

DTMC

Annotative
model

Reliability

Annotative
expression

λ

αv

α

σ

Figure 4.9: Statement of Theorem 1.

4.2.2.2 Family-based Strategy

The pure family-based strategy starts by applying parametric model checking to the

given annotative model, as in the family-based step of the family-product-based strategy.

However, instead of evaluating the resulting expression for each variant, we lift it to

an ADD-based expression, which can be evaluated for all variants at once. While an

expression is evaluated with real values, a lifted expression is evaluated using ADDs that

represent Boolean functions from features to real values. Each of these ADDs encode the

values that a variable can assume according to each possible con�guration, also known

as variational data [Walkingshaw et al., 2014]. Since this approach incorporates the

knowledge of valid feature combinations, it is a family-based strategy.

Let us take the vending machine product line (Figure A.1) as an example. Its reliability

expression after parametric model checking has 8 terms, one of which is 0.124659 · t · ttaste .
Starting from the evaluation factory w, we can derive functions ψx that, for each variable

x, take a con�guration c ∈ JFM K as input and output the corresponding value w(c)(x).

62

For t and ttaste , for instance, these functions would be as follows:

ψt(Tea,¬Soda,¬Taste) = 1 ψttaste (Tea,¬Soda,¬Taste) = 0

ψt(Tea,¬Soda, Taste) = 1 ψttaste (Tea,¬Soda, Taste) = 1

ψt(¬Tea, Soda,¬Taste) = 0 ψttaste (¬Tea, Soda,¬Taste) = 0

ψt(¬Tea, Soda, Taste) = 0 ψttaste (¬Tea, Soda, Taste) = 0

Having each of these functions represented by an ADD enables the e�cient computation

of the reliability expression as another ADD r̂, representing a Boolean function that could

be de�ned pointwise as r̂(c) = 0.124659 ·ψt(c) ·ψttaste (c) (we omit the remaining terms for

simplicity).

We now formally de�ne expression lifting, as well as the mechanics of generating

ADD-based evaluations and evaluating lifted expressions.

De�nition 14 (Expression lifting). For a given rational expression ε ∈ FX , whose se-

mantics is a rational function R|X| → R, and a product line with k features, we de�ne the

lifted expression lift(ε) = ε̂ as an expression which is syntactically equal to ε, but whose

semantics is lifted to a rational function (Bk → R)|X| → (Bk → R), such that:

• The function's inputs are k-ary ADDs.

• Polynomial coe�cients are interpreted as constant ADDs (e.g., the number 5 be-

comes c ∈ Bk 7→ 5). We denote a constant a lifted to a constant ADD as â, so that

â(b̄) = a (where b̄ is a Boolean tuple).

• Arithmetic operators are lifted to their ADD-based counterparts.

Hence, the admitted evaluations for ε̂ are of type u : X → (Bk → R), so that variables

are properly replaced by k-ary ADDs.

By the above de�nition, lifted expressions are syntactically equal to their original

(non-lifted) counterparts. However, instead of using Real arithmetics, we interpret oper-

ators, constants, and variables using ADDs and ADD arithmetics (Section 2.3). These

semantically lifted expressions are sound in the sense that they denote functions that,

when evaluated with a given con�guration, yield the same results as if the variables of the

original expressions would have been individually evaluated for the same con�guration.

Lemma 4 (Soundness of expression lifting). If ε is a rational expression over Real con-

stants and variables xi ∈ X, |X| = n, A1, . . . , An are ADDs, and ε̂ = lift(ε), then

ε̂[x1/A1, . . . , xn/An](b̄) = ε[x1/A1(b̄), . . . , xn/An(b̄)]

63

where b̄ is a vector of k Booleans, corresponding to a selection of the k features in a given

product line.

Proof. The proof is by structural induction on expression ε. The base cases are constant

expressions and single variables:

• ε = c, where c ∈ R:

In this case, ε̂ = ĉ. Since ε has no variables (and neither has ε̂), we apply the empty

evaluation []. Thus, ε̂[](b̄) = ĉ(b̄) = c = ε = ε[].

• ε = x:

In this case, ε̂ = x. If A is an arbitrary ADD, then: ε̂[x/A](b̄) = A(b̄) = ε[x/A(b̄)].

As induction hypothesis, for the expressions ε = ε1 and ε = ε2, assume that the

following holds:

ε̂[x1/A1, . . . , xn/An](b̄) = ε[x1/A1(b̄), . . . , xn/An(b̄)] (I.H.)

Let u : X → (Bk → R) be a lifted evaluation such that u(xi) = Ai is an ADD. Since

ε is a rational expression (i.e., a quotient of polynomials, as yielded by a parametric

model checking algorithm�see Sections 2.2.1 and 2.2.2), it involves only the four basic

arithmetic operators and exponentiation to Natural powers. Thus, we examine the cases

where we perform ADD arithmetics (Section 2.3), corresponding to the allowed operations

in ε:

• ε = ε1 � ε2, where � ∈ {+,−,×,÷}:

In this case, ε̂ = ε̂1 � ε̂2. Hence,

ε̂[X/u](b̄) =
(
ε̂1 � ε̂2

)
[X/u](b̄)

=
(
ε̂1[X/u]� ε̂2[X/u]

)
(b̄) (evaluation)

= ε̂1[X/u](b̄)� ε̂2[X/u](b̄) (ADD arithmetics)

= ε̂1[x1/A1, . . . , xn/An](b̄)

� ε̂2[x1/A1, . . . , xn/An](b̄) (expanding u)

= ε1[x1/A1(b̄), . . . , xn/An(b̄)]

� ε2[x1/A1(b̄), . . . , xn/An(b̄)] (induction hypothesis)

=
(
ε1 � ε2

)
[x1/A1(b̄), . . . , xn/An(b̄)] (evaluation)

= ε[x1/A1(b̄), . . . , xn/An(b̄)]

• ε = εi1, where i ∈ N:

64

In this case, ε̂ = ε̂1
i. Hence,

ε̂[X/u](b̄) = ε̂1
i[X/u](b̄)

= ε̂1[X/u]i(b̄) (evaluation)

= ε̂1[X/u](b̄)i (ADD arithmetics)

= ε̂1[x1/A1, . . . , xn/An](b̄)i (expanding u)

= ε1[x1/A1(b̄), . . . , xn/An(b̄)]i (induction hypothesis)

= εi1[x1/A1(b̄), . . . , xn/An(b̄)] (evaluation)

= ε[x1/A1(b̄), . . . , xn/An(b̄)]

Note how a lifted expression demands a di�erent type of evaluation, namely one that

replaces variables with ADDs. To handle this interdependency, we correspondingly lift

the evaluation factory.

De�nition 15 (Lifted evaluation factory). Given an evaluation factory w de�ned over a

feature model FM and a set X of variables, the factory's lifted counterpart is a function

ŵ : X → (B|FM | → R) that yields an ADD for a given variable. This function is such

that, for every variable x ∈ X and all c ∈ JFM K,

ŵ(x)(c) = w(c)(x)

With a lifted evaluation factory, one can evaluate a lifted expression over the same set

X in a variability-aware fashion. The intuition is that we valuate each variable with an

ADD that encodes all the real values it may assume for any con�guration of the product

line.

De�nition 16 (Variability-aware expression evaluation). Let ŵ be a lifted evaluation

factory and ε̂ be a lifted expression. The variability-aware expression evaluation function,

σv, is de�ned as

σv(ε̂, ŵ) = ε̂[X/ŵ]

Remark 2. This de�nition of variability-aware evaluation is not restricted to reliability

analysis or to the speci�c de�nitions of probabilistic models presented in this text. Indeed,

one can notice that it relies on the de�nitions of an expression with rational function

semantics and of an evaluation factory with respect to a given feature model.

Thus, we are able to prove the following theorem, which applies to product line analysis

strategies that are based on expression evaluation.

65

Theorem 2 (Soundness of variability-aware expression evaluation). If ε is an expression

and w is an evaluation factory with respect to a feature model FM , let ε̂ and ŵ be their

respective lifted counterparts. Then, for all c ∈ JFM K,

σv(ε̂, ŵ)(c) = σ(ε, w, c)

In other words, ε̂[X/ŵ](c) = ε[X/w(c)].

Proof. Using ŵ as a substitution,

ε̂[X/ŵ] = ε̂[x1/ŵ(x1), . . . , xn/ŵ(xn)]

Thus, for all c ∈ JFM K,

σv(ε̂, ŵ)(c) = ε̂[X/ŵ](c) (De�nition 16)

= ε̂[x1/ŵ(x1), . . . , xn/ŵ(xn)](c)

= ε[x1/ŵ(x1)(c), . . . , xn/ŵ(xn)(c)] (Lemma 4)

= ε[x1/w(c)(x1), . . . , xn/w(c)(xn)] (De�nition 15)

= ε[X/w(c)]

= σ(ε, w, c) (De�nition 12)

We have seen that, in a product line with feature model FM , the presence function

p denotes a presence condition px as a Boolean function p(x) : JFM K → B. Since this

can be alternatively expressed as p(x) : B|FM | → B, the presence function can also be

encoded by ADDs, denoted by p̂(x). We now resort to the pointwise de�nition of w as

w(c)(x) = p(x)(c) (Remark 1), to de�ne a lifted evaluation factory ŵ, for evaluating the

lifted version of expressions resulting from parametric model checking of an annotative

model.

Lemma 5 (Soundness of lifted annotative evaluation factory). Given an annotative model

(P , p, w,FM) and a function p̂ : X → (B|FM | → B) that encodes presence conditions for

variables as ADDs, then ŵ = p̂ is a lifted evaluation factory for w.

Proof. From De�nition 7, we have that

w(c)(x) =

1 if p(x)(c) = 1

0 otherwise

66

Thus, from Remark 1, w(c)(x) = p(x)(c). Also, p(x)(c) = p̂(x)(c) by de�nition, so

w(c)(x) = p̂(x)(c).

Recalling the vending machine example, the presence conditions for the variables t and

ttaste are, respectively, Tea and Tea ∧ Taste. Then, the ADDs p̂(t) and p̂(ttaste) are given
by the Figures 4.10a and 4.10b, where we use the notation presented in Section 2.3. If we

evaluate a lifted version of the example expression ε = 0.124659 · t · ttaste + 0.3439 · t (2
terms from the actual reliability expression for the vending machine annotative model in

Figure A.1) with p̂, the resulting ADD will be r̂ = 0.124659 · p̂(t) · p̂(ttaste)+0.3439 · p̂(t), as
depicted in Figure 4.10c. Hence, for a given con�guration c ∈ JFM K, if both Tea and Taste
are present (i.e., p̂(t)(c) = 1 and p̂(ttaste)(c) = 1), then r̂(c) = 0.124659 · 1 · 1 + 0.3439 · 1 =

0.468559; if only Tea is present, then r̂(c) = 0.124659 · 1 · 0 + 0.3439 · 1 = 0.3439; and if

both Tea and Taste are absent, then r̂(c) = 0.

Tea

01

(a) p̂(t).

Tea

Taste

01

(b) p̂(ttaste).

Tea

Taste

0.34390.468559 0

(c) lift(0.124659 · t · ttaste + 0.3439 · t)[t/p̂(t), ttaste/p̂(ttaste)].

Figure 4.10: Example of lifted expression evaluation using p̂.

Using the result from Lemma 5, we can now express the soundness of this family-based

analysis step of evaluating lifted expressions.

Theorem 3 (Soundness of expression evaluation using p̂). Given an annotative model

(P , p, w,FM), ε = αv(P), and ε̂ = lift(ε), let p̂ be the encoding of the presence condition

function p to yield ADDs. If we use p̂ as a lifted evaluation factory, then for all c ∈ JFM K

Jσv(ε̂, p̂)Kc = JεKwc

Alternatively, σv(lift(ε), p̂)(c) = σ(ε, w, c).

Proof. For a given annotative model, Lemma 5 states that p̂ is a sound lifted counterpart of

w. Hence, by Theorem 2, ε[X/w(c)] = ε̂[X/p̂](c). In other words, Jσv(ε̂, p̂)Kc = JεKwc .

67

Figure 4.11 illustrates the main result from Theorem 3. The depicted diagram,

which corresponds to the lower right quadrant in Figure 4.7, is commutative because

of this theorem.

Annotative
expression

Reliability

Reliability
ADD

Annotative
lifted expression

σ

lift J_Kc

σv

Figure 4.11: Statement of Theorem 3.

Now that we have all analysis steps needed, we can formally de�ne the family-based

strategy.

De�nition 17 (Family-based analysis). Given an annotative model (P , p, w,FM), a

family-based analysis yields, for all c ∈ JFM K,

σv
(
lift(αv(P)), p̂

)
(c)

or, alternatively,

Jσv
(
lift(αv(P)), p̂

)
Kc

This de�nition may seem also enumerative at �rst, but the result is, in fact, a Boolean

function (encoded as an ADD). The function application to a given con�guration is meant

only as a comparison to the other strategies. Indeed, family-based analysis is sound if,

and only if, it yields an ADD for which every valid con�guration c ∈ JFM K results in the

same probability as if the original annotative model had been subject to product-based

analysis for the same con�guration c.

Theorem 4 (Soundness of family-based analysis). Given an annotative model (P , p, w,
FM), for all c ∈ JFM K it holds that

Jσv
(
lift(αv(P)), p̂

)
Kc = α(JPKwc)

Proof. Follows from the successive application of Theorems 3 and 1:

Jσv
(
lift(αv(P)), p̂

)
Kc = Jαv(P)Kwc (Theorem 3)

= α(JPKwc) (Theorem 1)

68

As a key result, Theorem 4 states that the diagram in Figure 4.12 commutes. This

diagram corresponds to the right half of the one in Figure 4.7.

DTMC

Annotative
model

Reliability

Annotative
expression

λ

αv

α

σTheorem 1 Theorem 3

Reliability
ADD

Annotative
lifted expression

lift

J_Kc

σv

Figure 4.12: Statement of Theorem 4.

Together, the theorems demonstrated in this section constitute the main contribution

of this work. Intermediate steps of the presented analysis techniques commute, making the

annotation-based part (right-hand side) of the diagram in Figure 4.7 fully commutative1.

Thus, any path constructed by following the arrows in that part of the diagram yields

an analysis that is equivalent to the one yielded by any other path that shares the same

starting and ending points. This way, we guarantee that the product-based, family-based,

and family-product-based reliability analysis techniques presented in this work yield the

same results if given the same input models. Furthermore, we formally described the

di�erent analysis strategies in terms of reusable functions, making them comparable to

one another. Equivalent speci�cation and proofs for the feature-based part (left-hand

side) of the diagram in Figure 4.7 are an ongoing e�ort.

1 Indeed, the right side of the diagram in Figure 4.7 corresponds to a transposed version of Figure 4.12.

69

Chapter 5

Conclusion

We formally presented three approaches to reliability analysis of product lines, covering

the product-based, family-based, and family-product-based strategies in the taxonomy by

Thüm et al. [2014]. The soundness of our analysis techniques is established by results on

the commutativity of their intermediate steps, summarized by the commuting diagram

in Figure 4.7. This constitutes formal evidence that, given a product line, each of the

formalized approaches yields the same results as the others, enabling practitioners to

choose among analysis strategies based on their space and time trade-o�s1.

The input models for our analysis approaches are based on the formalism of parametric

Markov chains, meaning they can be represented using the input language of parametric

model checkers such as PRISM [Kwiatkowska et al., 2011] and PARAM [Hahn et al.,

2010]. Indeed, the parametric probabilistic reachability algorithm by Hahn et al. [2011],

used throughout this work as an instance of variability-aware analysis function (αv), is

implemented by these tools. We have implemented most of the presented strategies as

a product line of product-line analysis tools, using PARAM as the parametric model

checker. Our product line, which is publicly available as free and open-source software at

https://github.com/SPLMC/reana-spl, served as the basis for the development of our

theory. Moreover, to the best of our knowledge, this is the �rst model checking tool to

implement all three dimensions of analysis.

We empirically compared the results obtained by the di�erent analysis strategies im-

plemented in our tool, improving our con�dence in our theoretical �ndings that they

are, indeed, commutative. This empirical comparison also provided evidence of the com-

mutativity of the strategies that we have not yet formalized. Moreover, we had our

proofs reviewed by fellow researchers outside our group, and the resulting theory is being

prepared for submission to a peer-reviewed journal. To reduce the risk of a mismatch

1 These trade-o�s are not presented in this work, as they still need to be identi�ed.

70

https://github.com/SPLMC/reana-spl

between the implementation and the derived theory, we implemented our product line,

ReAna-SPL, using functional programming principles and techniques.

We also employed graphs to map dependencies between elements in our theory. Such

graphs assisted in the task of maintaining consistency and correctness through theory

refactorings. For instance, at some point a reviewer identi�ed inconsistencies between

De�nitions 8, 12 and 16. By locating these de�nitions in Figure B.1 and following the

arrows in reverse order, we were able to track directly and transitively dependent elements

that potentially needed to adjust to a change in notation.

Although our theory is focused on reliability analysis, we were able to prove a general

result on lifting rational functions over the Real numbers to work with ADDs (Lemma 4).

This result can be leveraged to evaluate algebraic expressions in the context of product

lines.

5.1 Related Work

E�cient analysis of software product lines is a relevant problem that has been tackled

from many di�erent perspectives, as pointed out by a recent survey [Thüm et al., 2014].

In particular, several model checking techniques have been successfully lifted to work with

product lines [Apel et al., 2013b; Chrszon et al., 2016; Classen et al., 2013, 2011, 2014;

Dubsla� et al., 2015; Ghezzi and Molzam Shari�oo, 2013; Kowal et al., 2015; Nunes et al.,

2012]. In contrast to existing research in this area, our work presents di�erent analysis

techniques, covering all but one of the strategies identi�ed in the taxonomy by Thüm et al.

[2014] (the exception being the feature-family-product-based strategy). A similarity, on

the other hand, is that our formalization e�ort is also focused on the family-based and

product-based dimensions of product-line analysis. In what follows, we discuss the closest

related work according to di�erent criteria.

PMC-based analysis of product lines: Ghezzi and Molzam Shari�oo [2013] pro-

pose a model-based approach to analyze non-functional properties of product lines, il-

lustrated by reliability and energy-consumption analysis. Their technique models proba-

bilistic behavior by organizing parametric Markov chains in a hierarchical data structure,

derived from nested UML sequence diagrams, annotated with the reliability of individ-

ual operations. Then, they employ parametric model checking in a bottom-up fashion,

yielding a hierarchy of reliability expressions that are evaluated for each product con�gu-

ration of interest. Although Ghezzi and Molzam Shari�oo also deal with modeling issues,

their analysis technique can be seen as an instance of the feature-product-based reliability

analysis in our framework, where the PMCs obtained from the nested sequence diagrams

71

form the set of compositional PMCs, and the decomposition tree induces the dependency

relation between them.

Rodrigues et al. [2015] introduced Featured Discrete-Time Markov Chains (FDTMC),

an extension of DTMCs to cope with variability and to represent the probabilistic behavior

of product lines. This formalism, which is not restricted to reliability, enables veri�ca-

tion of any probabilistic property that can be expressed using Probabilistic Computation

Tree Logic (PCTL) [Hansson and Jonsson, 1994]. The authors present three family-based

approaches to conduct such analyses, one of which relies on an encoding of an FDTMC

as a PMC to leverage o�-the-shelf model checkers. Our work, in contrast, relies on mod-

els speci�cally tailored to reliability analysis (a probabilistic reachability property), but

incorporates di�erent strategies to perform this analysis, covering the currently accepted

product-line analysis taxonomy [Thüm et al., 2014]. Furthermore, Rodrigues et al. do

not formally argue about the soundness of their approaches.

The framework we present can be leveraged to represent FDTMCs, provided that the

reliability-speci�c constraints to PMCs are relaxed. We can say that any PMC (S, s0, X,

P, T), along with an evaluation factory w and a feature model FM , represents an FDTMC

(S, ν,FM ,Π) such that, for all s, s′ ∈ S and c ∈ JFM K:

• Π(s, s′)(c) = P(s, s′)[X/w(c)]; and

• ν(s) =

1 if s = s0

0 otherwise

Feature-based model checking: Li et al. [2005] and Liu et al. [2010] have pro-

posed feature-based approaches to the analysis of non-probabilistic temporal properties

of product lines. Using models of feature behavior based on transition systems and re-

quired properties expressed with Computation Tree Logic (CTL) [Clarke and Emerson,

1982], they analyze each feature in isolation and generate partial results that can be later

reused. The composition of features in their proposed models relies on interface states,

a concept that we leveraged to de�ne PMC interfaces and slots. However, the interfaces

de�ned by Li et al. [2005] can have an arbitrary number of outgoing states, and Liu et al.

[2010] extended them to support inter-feature cycles. Our use of interfaces, in contrast,

is focused on reliability analysis (a probabilistic existence property expressed in PCTL),

allowing us to de�ne two outgoing states to abstract success and error conditions, while

also ruling out the existence of cycles. Moreover, both Li et al. [2005] and Liu et al. [2010]

treat feature modules as open systems, so they aggregate partial analysis results and CTL

obligations to the interfaces themselves. Since we focus on a compositional model of a

single product line, we use a separate model for intermediate feature reliability expres-

sions. Because of these di�erences in modeling and in the nature of analyzed properties,

72

we see their work and our own as complementary. Nonetheless, their work presents formal

speci�cation and soundness proofs in the feature-based dimension of analysis, whereas we

present such formal elements for the family-based dimension.

Family-based model checking: Dubsla� et al. [2015] created a framework for mod-

eling probabilistic and non-deterministic properties of dynamic product lines. This frame-

work consists of modeling the behaviors of features in isolation, yielding models that are

later composed into a family-based model. The models and their compositions are estab-

lished in terms of Markov Decision Processes (MDP), enabling their representation in a

way that allows the composed model to be model-checked using o�-the-shelf tools [Chrszon

et al., 2016]. The focus of their work is on modeling probabilistic behavior of product

lines in a way that existing model checking techniques can be exploited. In contrast, our

goal is to prove soundness of alternative analysis strategies, leaving modeling issues out

of scope. Although their modeling and analysis technique is su�ciently general to enable

reliability analysis of static product lines, which are our focus, it enables only family-based

and product-based strategies (which the authors call, respectively, all-in-one and one-by-

one [Dubsla� et al., 2015]), whereas our work also includes the feature-based dimension.

Nonetheless, their family-based technique is an alternative to ours, since it encodes the

feature model's constraints in the behavioral model itself.

Kowal et al. [2014] presented a formalism to describe performance models of product

lines in a compositional fashion, based on performance-annotated activity diagrams de-

scribed in a delta-oriented language. Similar to our work, they provide formal de�nitions

and provide theorems stating the soundness of their approach (although proofs are not

provided in the paper). On the other hand, the semantics of their diagrams is expressed

by continuous-time Markov chains (CTMC), which are more appropriate to performance

analysis than DTMCs. Because of that, the two pieces of work complement each other.

Future work could investigate the feasibility of de�ning alternative analysis strategies

using their models and an approach similar to ours.

Variability encoding: Previous research has exploited variability encoding (also

called con�guration lifting) as a technique to produce family-based model checking of

product lines [Apel et al., 2011, 2013b; Kowal et al., 2015; Post and Sinz, 2008]. von

Rhein et al. [2016] formalize variability encoding in the context of programming languages,

that is, the transformation of compile-time variability into load-time variability. This

transformation is realized using if-then-else operations and an encoding of features as

control variables in the resulting program, which the authors call a variant simulator.

They prove their transformation preserves the behavior of variants in the variability-

encoded program for corresponding con�gurations. The concept of encoding variability

in a simulator, as mentioned before, inspired our notion of variability encoding for PMCs.

73

However, whereas von Rhein et al. [2016] prove the soundness of their variability encoding

approach (using trace semantics and a weak bisimulation relation to correlate behaviors),

we do not provide a formalization of our corresponding approach.

Formal approaches to variability-aware analysis: The de�nition of product-line

analysis techniques that are sound by construction has been investigated recently [Bod-

den et al., 2013; Chen and Erwig, 2014; Midtgaard et al., 2015], although not speci�cally

in the context of model checking. Midtgaard et al. [2015] presented a methodology to

derive family-based static analyses from single-product analyses based on abstract inter-

pretation. This approach enables the lifting of existing analyses to work with product

lines, yielding variability-aware analyses that are correct by construction. Although the

authors only walked through a data-�ow analysis scenario, they claim the methodology

could be applied to other analyses, including model checking. Similar to their work,

we provide soundness proofs of product-line analyses, conditioned on the soundness of

a given single-product analysis. However, we do not provide a framework for derivation

of analysis strategies in general; instead, we focus on providing formal evidence that a

set of alternative strategies for reliability analysis are sound, while also highlighting the

relations between their intermediate steps. In this sense, our work can also be seen as a

preliminary investigation on deriving alternative strategies to perform a given analysis.

Comparison of analysis dimensions: Kolesnikov et al. [2014] empirically compared

family-based, feature-based, and product-based type checking of Java-based product lines.

Their work was the �rst empirical study covering all three dimensions of analysis, pro-

viding guidance to practitioners over which type checking strategy to apply for a given

product line. In a sense, their research and our own are complementary, since each one

deals with a di�erent analysis type (type checking and model checking). However, in

contrast with their work, our focus is on the formal aspects of analysis�although we ar-

gue our tool can be leveraged to perform empirical studies in future work. Furthermore,

Kolesnikov et al. neither investigate combined strategies nor prove the soundness of the

implemented type checkers.

von Rhein et al. [2013] proposed a model for classi�cation and comparison of product-

line analyses (the PLA model), whereby existing analyses are broken down into interme-

diate steps. This model abstracts possible steps as four operators for composing features,

encoding variability, resolving variability, and generic processing of artifacts. As stated by

the authors themselves, the PLA model is helpful when describing complex analyses and

designing new ones. Indeed, the PLA model was a source of inspiration for designing our

analysis techniques as reusable analysis steps. However, we found the proposed operators

to be too generic to be useful in our formal setup. In this sense, our work complements

the work by von Rhein et al. [2013] with a formally de�ned relation among analyses and

74

intermediate steps, albeit focused on the reliability analysis domain.

Conceptual models and taxonomy: Thüm et al. [2014] established the taxonomy

for product-line analyses upon which we based our work, that is, the classi�cation of anal-

ysis techniques in three basic strategies (product-based, feature-based, and family-based)

and combinations thereof. von Rhein et al. [2013] laid these strategies as dimensions in

a cube, meaning analysis strategies can be expressed as a combination of the number of

analyzed products (sampling dimension), the granularity of feature combinations (feature

grouping dimension), and the extent to which variability is preserved or resolved during

analysis (variability encoding dimension). Given that sampling is a matter of restricting

possible con�gurations, and that we prove that our techniques are sound con�guration-

wise, our work also covers the sampling dimension. Coverage of the two other dimensions

must be investigated after formalizing our feature-based strategies.

Meinicke et al. [2014] recently surveyed existing product-line analysis tools and cat-

egorized them along four criteria: product-line implementation technique (annotation-

based versus composition-based approach), analysis technique (e.g., testing, type check-

ing, model checking), strategies for product-line analysis (i.e., the analysis strategies tax-

onomy by Thüm et al. [2014]), and strategy of the tool (product-based, variability-aware,

and variability-encoding). Using this taxonomy, our implemented techniques cover all

possibilities on the dimensions of strategies for product-line analysis and strategy of the

tool. The dimension of analysis technique would be �xed to model checking for relia-

bility analysis, and the dimension of implementation technique would be constrained to

annotation-based UML models.

5.2 Future Work

We are currently in the process of formalizing compositional behavioral models of product

lines, as well as the strategies related to the feature-based dimension of the taxonomy and

their corresponding soundness proofs. Hence, future work shall present these additional

results, thereby formally establishing the commutativity of the diagram in Figure 4.7 as

a whole.

This work lays a formal foundation to relate reliability analysis strategies, but we

make no claims about the extent to which our results can be generalized to other types

of analysis. Thus, future work may extend our analysis theory with product-line analyses

other than reliability, seeking commonalities in de�nitions and soundness proofs. As

suggested by Figure 4.7, we believe that category theory can be leveraged to analyze and

describe such extended theories, as a means towards the broader goal of �nding a set of

general principles relating di�erent dimensions of product-line analysis.

75

During our research, we identi�ed and addressed potential threats to validity. For

instance, to mitigate the risk of human error in our proofs, we have submitted them to

review by external collaborators. This risk can be further reduced by mechanizing our

speci�cations and proofs using a proof assistant such as PVS [Owre et al., 2001].

Moreover, we have addressed the risk that our theory does not correspond to our imple-

mentation by using functional programming principles to develop ReAna-SPL. However,

our tool was implemented using Java, which, being an imperative language, provides lim-

ited support for the functional paradigm. Thus, we plan to rewrite ReAna-SPL using a

functional programming language, such as Haskell, to achieve better correspondence to

the theoretical assets. During this refactoring process, we expect to also implement the

analysis strategies that we have discovered after the formal speci�cation phase.

Using our product line of reliability analysis tools, future empirical work can compare

analysis strategies in search for selection criteria. A complexity analysis of the implemen-

tation can also be performed to complement the empirical data with analytical information

to justify the results. This knowledge could be helpful as a guide for practitioners, pro-

viding an objective view of the trade-o�s of using each strategy to analyze a product line

according to its attributes.

76

Bibliography

Rodrigo B Almeida and Paulo Borba. Modeling scenario variability as crosscutting
mechanisms. In Proceedings of the 8th ACM international conference on Aspect-
oriented software development (AOSD), pages 125�136, 2009. ISBN 1605584428. doi:
10.1145/1509239.1509258. 12

Vander Alves, Jr. Matos, Pedro, Leonardo Cole, Alexandre Vasconcelos, Paulo Borba, and
Geber Ramalho. Extracting and evolving code in product lines with aspect-oriented
programming. In Transactions on Aspect-Oriented Software Development IV, volume
4640 of Lecture Notes in Computer Science, pages 117�142. Springer, 2007. ISBN 978-
3-540-77041-1. doi: 10.1007/978-3-540-77042-8_5. 10

Sven Apel, Hendrik Speidel, Philipp Wendler, Alexander von Rhein, and Dirk Beyer.
Detection of feature interactions using feature-aware veri�cation. In Proceedings of the
26th IEEE/ACM International Conference on Automated Software Engineering (ASE),
Lawrence, KS, USA, November 6-10, 2011, pages 372�375. IEEE Computer Society,
2011. ISBN 978-1-4577-1638-6. doi: 10.1109/ASE.2011.6100075. 33, 42, 52, 73

Sven Apel, Don S. Batory, Christian Kästner, and Gunter Saake. Feature-Oriented Soft-
ware Product Lines � Concepts and Implementation. Springer, 2013a. ISBN 978-3-642-
37520-0. doi: 10.1007/978-3-642-37521-7. 1, 6, 7, 9, 10, 12, 38, 48

Sven Apel, Alexander Von Rhein, Philipp Wendler, Armin Groslinger, and Dirk Beyer.
Strategies for product-line veri�cation: Case studies and experiments. In Proceedings
of the International Conference on Software Engineering (ICSE), pages 482�491, Pis-
cataway, NJ, USA, 2013b. IEEE Press. ISBN 9781467330763. doi: 10.1109/ICSE.2013.
6606594. 14, 33, 71, 73

John Backus and John. Can programming be liberated from the von neumann style?:
a functional style and its algebra of programs. Communications of the ACM, 21(8):
613�641, aug 1978. ISSN 00010782. doi: 10.1145/359576.359579. 25

R. Iris Bahar, Erica A. Frohm, Charles M. Gaona, Gary D. Hachtel, Enrico Macii,
Abelardo Pardo, and Fabio Somenzi. Algebraic decision diagrams and their appli-
cations. Formal Methods in System Design, 10(2/3):171�206, 1997. doi: 10.1023/A:
1008699807402. 20, 22

Christel Baier and Joost-Pieter Katoen. Principles of Model Checking (Representation
and Mind Series). The MIT Press, 2008. ISBN 026202649X, 9780262026499. 1, 13, 15

77

Victor R. Basili. The experimental paradigm in software engineering. In Proceedings
of the International Workshop on Experimental Software Engineering Issues: Critical
Assessment and Future Directions, pages 3�12, London, UK, UK, 1993. Springer-Verlag.
ISBN 3-540-57092-6. 24, 26

D. Batory, J.N. Sarvela, and A. Rauschmayer. Scaling step-wise re�nement. IEEE Trans-
actions on Software Engineering, 30(6):355�371, Jun. 2004. ISSN 0098-5589. doi:
10.1109/TSE.2004.23. 11

Eric Bodden, Társis Tolêdo, Márcio Ribeiro, Claus Brabrand, Paulo Borba, and Mira
Mezini. SPLLIFT : statically analyzing software product lines in minutes instead of
years. In Proceedings of the 34th ACM SIGPLAN conference on Programming lan-
guage design and implementation (PLDI), pages 355�364, 2013. doi: 10.1145/2491956.
2491976. 1, 74

Sheng Chen and Martin Erwig. Type-based parametric analysis of program families.
ACM SIGPLAN Notices, 49(9):39�51, aug 2014. ISSN 03621340. doi: 10.1145/2692915.
2628155. 74

Philipp Chrszon, Clemens Dubsla�, Sascha Klüppelholz, and Christel Baier. Family-based
modeling and analysis for probabilistic systems - featuring ProFeat. In Proceedings of
the 19th International Conference on Fundamental Approaches to Software Engineering
(FASE), volume 9633 of Lecture Notes in Computer Science, pages 287�304. Springer,
2016. doi: 10.1007/978-3-662-49665-7_17. 2, 16, 23, 46, 71, 73

Edmund M. Clarke and E. Allen Emerson. Design and synthesis of synchronization skele-
tons using branching-time temporal logic. In Logic of Programs, Workshop, pages 52�71,
London, UK, UK, 1982. Springer. ISBN 3-540-11212-X. doi: 10.1007/BFb0025774. 72

A. Classen, M. Cordy, P.-Y. Schobbens, P. Heymans, A. Legay, and J.-F. Raskin. Featured
transition systems: Foundations for verifying variability-intensive systems and their
application to LTL model checking. IEEE Transactions on Software Engineering, 39
(8):1069�1089, 2013. ISSN 0098-5589. doi: 10.1109/TSE.2012.86. 2, 34, 71

Andreas Classen, Patrick Heymans, Pierre-Yves Schobbens, Axel Legay, and Jean-
François Raskin. Model checking lots of systems. In Proceedings of the 32nd
ACM/IEEE International Conference on Software Engineering (ICSE), volume 1, page
335, New York, New York, USA, 2010. ACM Press. ISBN 9781605587196. doi:
10.1145/1806799.1806850. 1, 47

Andreas Classen, Patrick Heymans, Pierre-Yves Schobbens, and Axel Legay. Symbolic
model checking of software product lines. In Proceedings of the 33rd International
Conference on Software Engineering (ICSE), pages 321�330. ACM, 2011. doi: 10.
1145/1985793.1985838. 1, 2, 71

Andreas Classen, Maxime Cordy, Patrick Heymans, Axel Legay, and Pierre-Yves
Schobbens. Formal semantics, modular speci�cation, and symbolic veri�cation of
product-line behaviour. Science of Computer Programming, 80, Part B:416�439, Fev.
2014. ISSN 0167-6423. doi: 10.1016/j.scico.2013.09.019. 2, 71

78

Paul Clements and Linda Northrop. Software Product Lines: Practices and Patterns.
Addison-Wesley Professional, 2001. 1, 7

Krzysztof Czarnecki and Ulrich W. Eisenecker. Generative Programming: Methods, Tools,
and Applications. ACM Press/Addison-Wesley Publishing Co., New York, NY, USA,
2000. ISBN 0-201-30977-7. 1, 7, 9

Krzysztof Czarnecki and Krzysztof Pietroszek. Verifying feature-based model templates
against well-formedness OCL constraints. In Proceedings of the 5th International Con-
ference on Generative Programming and Component Engineering (GPCE), pages 211�
220. ACM, 2006. doi: 10.1145/1173706.1173738. 9

Conrado Daws. Symbolic and parametric model checking of discrete-time Markov chains.
In Zhiming Liu and Keijiro Araki, editores, Proceedings of the First International Con-
ference on Theoretical Aspects of Computing (ICTAC), volume 3407 of Lecture Notes
in Computer Science, pages 280�294, Berlin, Heidelberg, sep 2005. Springer. ISBN
978-3-540-25304-4. doi: 10.1007/b107116. 16

E W Dijkstra. On program families. In Notes on Structured Programming. Academic
Press, 1971. 7

Dominik Domis, Rasmus Adler, and Martin Becker. Integrating variability and safety
analysis models using commercial UML-based tools. In Proceedings of the 19th Inter-
national Software Product Line Conference (SPLC), pages 225�234. ACM, 2015. ISBN
978-1-4503-3613-0. doi: 10.1145/2791060.2791088. 1

Frank Dordowsky, Richard Bridges, and Holger Tschöpe. Implementing a software product
line for a complex avionics system. In Proceedings of the 15th International Conference
on Software Product Lines (SPLC), pages 241�250. IEEE, 2011. ISBN 978-1-4577-1029-
2. doi: 10.1109/SPLC.2011.11. 1

Clemens Dubsla�, Christel Baier, and Sascha Kluppelholz. Probabilistic model checking
for feature-oriented systems. In Transactions on Aspect-Oriented Software Development
XII, number 8989 in Lecture Notes in Computer Science, pages 180�220. Springer, 2015.
ISBN 978-3-662-46733-6 978-3-662-46734-3. doi: 10.1007/978-3-662-46734-3_5. 2, 23,
71, 73

A. Ferreira Leite, V. Alves, G. Nunes Rodrigues, C. Tadonki, C. Eisenbeis, and A.C.
Magalhaes Alves de Melo. Automating resource selection and con�guration in inter-
clouds through a software product line method. In Proceedings of the IEEE 8th Inter-
national Conference on Cloud Computing (CLOUD), pages 726�733, Jun. 2015. doi:
10.1109/CLOUD.2015.101. 40

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns:
Elements of Reusable Object-oriented Software. Addison-Wesley, Boston, MA, USA,
1995. ISBN 0-201-63361-2. 37

Carlo Ghezzi and Amir Molzam Shari�oo. Model-based veri�cation of quantitative non-
functional properties for software product lines. Information and Software Technology,

79

55(3):508�524, Mar. 2013. ISSN 09505849. doi: 10.1016/j.infsof.2012.07.017. 2, 16, 27,
32, 33, 46, 47, 71

David Goldberg. What every computer scientist should know about �oating-point
arithmetic. ACM Comput. Surv., 23(1):5�48, Mar. 1991. ISSN 0360-0300. doi:
10.1145/103162.103163. 40

Lars Grunske. Speci�cation patterns for probabilistic quality properties. In Proceedings of
the International Conference on Software Engineering (ICSE), pages 31�40, New York,
NY, USA, 2008. ACM. doi: 10.1145/1368088.1368094. 2, 14

Arne Haber, Holger Rendel, Bernhard Rumpe, and Ina Schaefer. Delta modeling for
software architectures. In MBEES, pages 1�10, 2011. 12

Arne Haber, Katrin Hölldobler, Carsten Kolassa, Markus Look, Bernhard Rumpe, Klaus
Müller, and Ina Schaefer. Engineering delta modeling languages. In Proceedings of
the 17th International Software Product Line Conference on (SPLC), page 22, New
York, New York, USA, 2013. ACM Press. ISBN 9781450319683. doi: 10.1145/2491627.
2491632. 11, 52

Ernst Moritz Hahn, Holger Hermanns, Björn Wachter, and Lijun Zhang. Param: A
model checker for parametric Markov models. In Proceedings of the 22nd International
Conference on Computer Aided Veri�cation (CAV), pages 660�664, 2010. doi: 10.1007/
978-3-642-14295-6_56. 15, 29, 31, 70

Ernst Moritz Hahn, Holger Hermanns, and Lijun Zhang. Probabilistic reachability for
parametric Markov models. International Journal on Software Tools for Technology
Transfer (STTT), 13(1):3�19, 2011. doi: 10.1007/s10009-010-0146-x. ix, 16, 17, 18, 19,
58, 59, 70

Hans Hansson and Bengt Jonsson. A logic for reasoning about time and reliability. Formal
Aspects of Computing, 6(5):512�535, 1994. ISSN 1433-299X. doi: 10.1007/BF01211866.
14, 72

Ruben Heradio, Hector Perez-Morago, David Fernandez-Amoros, Francisco Cabrerizo
Javier, and Enrique Herrera-Viedma. A bibliometric analysis of 20 years of research on
software product lines. Information and Software Technology, 72:1�15, Abr. 2016. doi:
10.1016/j.infsof.2015.11.004. 1

Nicholas J. Higham. Accuracy and Stability of Numerical Algorithms. Society for In-
dustrial and Applied Mathematics, Philadelphia, PA, USA, 2nd edition, 2002. ISBN
0898715210. 41

K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S. Peterson. Feature-oriented
domain analysis (FODA) feasibility study. Relatório técnico, Carnegie-Mellon Univer-
sity Software Engineering Institute, November 1990. 8

Christian Kästner, Sven Apel, and Martin Kuhlemann. Granularity in software product
lines. In Proceedings of the 13th international Conference on Software Engineering
(ICSE), page 311, New York, New York, USA, 2008. ACM Press. ISBN 9781605580791.
doi: 10.1145/1368088.1368131. 48

80

Christian Kästner, Paolo G. Giarrusso, Tillmann Rendel, Sebastian Erdweg, Klaus Oster-
mann, and Thorsten Berger. Variability-aware parsing in the presence of lexical macros
and conditional compilation. ACM SIGPLAN Notices, 46(10):805, oct 2011. ISSN
03621340. doi: 10.1145/2076021.2048128. 33

Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina Videira
Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-oriented programming. In
ECOOP, pages 220�242, 1997. doi: 10.1007/BFb0053381. 11

Sergiy Kolesnikov, Alexander von Rhein, Claus Hunsen, and Sven Apel. A compari-
son of product-based, feature-based, and family-based type checking. ACM SIGPLAN
Notices, 49(3):115�124, mar 2014. ISSN 03621340. doi: 10.1145/2637365.2517213. 74

Matthias Kowal, Ina Schaefer, and Mirco Tribastone. Family-based performance anal-
ysis of variant-rich software systems. In Proceedings of the 17th International Con-
ference on Fundamental Approaches to Software Engineering - Volume 8411, pages
94�108, New York, NY, USA, 2014. Springer. ISBN 978-3-642-54803-1. doi: 10.1007/
978-3-642-54804-8_7. 73

Matthias Kowal, Max Tschaikowski, Mirco Tribastone, and Ina Schaefer. Scaling size
and parameter spaces in variability-aware software performance models. In Proceedings
of the 30th IEEE/ACM International Conference on Automated Software Engineering
(ASE), pages 407�417, Nov. 2015. doi: 10.1109/ASE.2015.16. 2, 71, 73

J. Kramer, J. Magee, M. Sloman, and A. Lister. CONIC: an integrated approach to
distributed computer control systems. IEE Proceedings E - Computers and Digital
Techniques, 130(1), Jan. 1983. doi: 10.1049/ip-e.1983.0001. 40

Charles W. Krueger. Easing the transition to software mass customization. In Revised
Papers from the 4th International Workshop on Software Product-Family Engineering
(PFE), pages 282�293, London, UK, UK, 2002. Springer. ISBN 3-540-43659-6. 10, 26

M. Kwiatkowska, G. Norman, and D. Parker. PRISM 4.0: Veri�cation of probabilistic
real-time systems. In G. Gopalakrishnan and S. Qadeer, editores, Proceedings of the
23rd International Conference on Computer Aided Veri�cation (CAV), volume 6806
of Lecture Notes in Computer Science, pages 585�591. Springer, 2011. doi: 10.1007/
978-3-642-22110-1_47. 15, 70

Jeremy T. Lanman, Rowland Darbin, Jorge Rivera, Paul C. Clements, and Charles W.
Krueger. The challenges of applying service orientation to the U.S. army's live training
software product line. In Proceedings of the 17th International Software Product Line
Conference (SPLC), pages 244�253. ACM, 2013. ISBN 978-1-4503-1968-3. doi: 10.
1145/2491627.2491649. 1

Gary T. Leavens and Yoonsik Cheon. Design by contract with jml. Available at http:
//www.jmlspecs.org, 2006. 13

Harry C. Li, Shriram Krishnamurthi, and Kathi Fisler. Modular veri�cation of open
features using three-valued model checking. Automated Software Engineering, 12(3):
349�382, Jul. 2005. ISSN 0928-8910. doi: 10.1007/s10515-005-2643-9. 72

81

http://www.jmlspecs.org
http://www.jmlspecs.org

Jing Liu, Samik Basu, and Robyn R. Lutz. Compositional model checking of software
product lines using variation point obligations. Automated Software Engineering, 18
(1):39�76, Dez. 2010. ISSN 0928-8910. doi: 10.1007/s10515-010-0075-7. 72

Jens Meinicke, Thomas Thüm, Reimar Schröter, Fabian Benduhn, and Gunter Saake.
An overview on analysis tools for software product lines. In Proceedings of the 18th
International Software Product Line Conference (SPLC), pages 94�101, New York, New
York, USA, sep 2014. ACM Press. ISBN 9781450327398. doi: 10.1145/2647908.2655972.
75

Bertrand Meyer. Applying "design by contract". Computer, 25(10):40�51, Out. 1992.
ISSN 0018-9162. doi: 10.1109/2.161279. 14

Jan Midtgaard, Aleksandar S. Dimovski, Claus Brabrand, and Andrzej W¡sowski. Sys-
tematic derivation of correct variability-aware program analyses. Science of Computer
Programming, 105:145�170, Jul. 2015. ISSN 01676423. doi: 10.1016/j.scico.2015.04.005.
2, 23, 74

V. Nunes, P. Fernandes, V. Alves, and G. Rodrigues. Variability management of relia-
bility models in software product lines: An expressiveness and scalability analysis. In
Proceedings of the Sixth Brazilian Symposium on Software Components Architectures
and Reuse (SBCARS), pages 51�60, Set. 2012. doi: 10.1109/SBCARS.2012.23. 2, 71

V. Nunes, D. Mendonça, G. Rodrigues, and V. Alves. Towards compositional approach for
parametric model checking in software product lines. In Proceedings of the International
Workshop on Architecting Dependable Systems (WDAS). SBC, 2013. 46

Object Management Group. The UML pro�le for MARTE: Modeling and analysis of real-
time and embedded systems. Available at http://www.omg.org/spec/MARTE/1.1/,
2011. Version 1.1. 27

S. Owre, N. Shankar, J. M. Rushby, and D. W. J. Stringer-Calvert. PVS Language
Reference. Computer Science Laboratory, SRI International, Menlo Park, CA, Nov.
2001. 12, 13, 76

Leonardo Passos, Jianmei Guo, Leopoldo Teixeira, Krzysztof Czarnecki, Andrzej W¡-
sowski, and Paulo Borba. Coevolution of variability models and related artifacts: A
case study from the linux kernel. In Proceedings of the 17th International Software
Product Line Conference (SPLC), pages 91�100, New York, NY, USA, 2013. ACM.
ISBN 978-1-4503-1968-3. doi: 10.1145/2491627.2491628. 11

Benjamin C. Pierce. Types and Programming Languages. MIT Press, Cambridge, MA,
USA, 2002. ISBN 0-262-16209-1. 13

Malte Plath and Mark Ryan. Feature integration using a feature construct. Science of
Computer Programming, 41(1):53�84, Set. 2001. doi: 10.1016/S0167-6423(00)00018-6.
40

Klaus Pohl, Günter Böckle, and Frank J. van der Linden. Software Product Line Engi-
neering: Foundations, Principles and Techniques. Springer, Secaucus, NJ, USA, 2005.
ISBN 3540243720. 1, 7

82

http://www.omg.org/spec/MARTE/1.1/

Hendrik Post and Carsten Sinz. Con�guration lifting: Veri�cation meets software con-
�guration. In Proceedings of the 23rd IEEE/ACM International Conference on Auto-
mated Software Engineering (ASE), pages 347�350. IEEE Computer Society, 2008. doi:
10.1109/ASE.2008.45. 34, 42, 73

Christian Prehofer. Feature-oriented programming: A fresh look at objects. In ECOOP,
pages 419�443, 1997. doi: 10.1007/BFb0053389. 11

Genaína Nunes Rodrigues, Vander Alves, Vinicius Nunes, André Lanna, Maxime Cordy,
Pierre-Yves Schobbens, Amir Molzam Shari�oo, and Axel Legay. Modeling and ver-
i�cation for probabilistic properties in software product lines. In Proceedings of the
16th IEEE International Symposium on High Assurance Systems Engineering (HASE),
pages 173�180. IEEE Computer Society, 2015. doi: 10.1109/HASE.2015.34. ix, 1, 2, 8,
9, 16, 27, 40, 72

W. W. Royce. Managing the development of large software systems: Concepts and tech-
niques. In Proceedings of the 9th International Conference on Software Engineering
(ICSE), pages 328�338, Los Alamitos, CA, USA, 1987. IEEE Computer Society Press.
ISBN 0-89791-216-0. 10

Ina Schaefer, Lorenzo Bettini, Ferruccio Damiani, and Nico Tanzarella. Delta-oriented
programming of software product lines. In Proceedings of the 14th International Con-
ference on Software Product Lines (SPLC), pages 77�91, Berlin, Heidelberg, 2010.
Springer. ISBN 3-642-15578-2, 978-3-642-15578-9. 12

Paulo Anselmo da Mota Silveira Neto, Ivan do Carmo Machado, John D. McGregor, Ed-
uardo Santana de Almeida, and Silvio Romero de Lemos Meira. A systematic mapping
study of software product lines testing. Information and Software Technology, 53(5):
407�423, Mai. 2011. ISSN 09505849. doi: 10.1016/j.infsof.2010.12.003. 12

Julio Sincero, Horst Schirmeier, Wolfgang Schröder-Preikschat, and Olaf Spinczyk. Is the
linux kernel a software product line? In Proceedings of the International Workshop on
Open Source Software and Product Lines (SPLC-OSSPL), 2007. 7

Dag I. K. Sjøberg, Tore Dybå, Bente C. D. Anda, and Jo E. Hannay. Building
Theories in Software Engineering, In Guide to Advanced Empirical Software Engi-
neering, pages 312�336. Springer, London, 2008. ISBN 978-1-84800-044-5. doi:
10.1007/978-1-84800-044-5_12. 24

Leopoldo Teixeira, Vander Alves, Paulo Borba, and Rohit Gheyi. A product line of
theories for reasoning about safe evolution of product lines. In Proceedings of the 19th
International Conference on Software Product Line (SPLC), pages 161�170, New York,
New York, USA, Jul. 2015. ACM Press. ISBN 9781450336130. doi: 10.1145/2791060.
2791105. 12

Thomas Thüm, Ina Schaefer, Martin Kuhlemann, and Sven Apel. Proof composition
for deductive veri�cation of software product lines. In 2011 IEEE Fourth International
Conference on Software Testing, Veri�cation and Validation Workshops, pages 270�277.
IEEE, Mar. 2011. ISBN 978-1-4577-0019-4. doi: 10.1109/ICSTW.2011.48. 14

83

Thomas Thüm, Ina Schaefer, Sven Apel, and Martin Hentschel. Family-based deductive
veri�cation of software product lines. ACM SIGPLAN Notices, 48(3):11�11�20�20, Abr.
2013. ISSN 0362-1340. doi: 10.1145/2480361.2371404. 52

Thomas Thüm, Sven Apel, Christian Kästner, Ina Schaefer, and Gunter Saake. A classi-
�cation and survey of analysis strategies for software product lines. ACM Computing
Surveys, 47(1):1�45, Jun. 2014. ISSN 03600300. doi: 10.1145/2580950. 2, 3, 4, 12, 13,
23, 24, 26, 29, 32, 33, 55, 58, 59, 70, 71, 72, 75

Lucineia Turnes, Rodrigo Bonifácio, Vander Alves, and Ralf Lammel. Techniques for
developing a product line of product line tools: A comparative study. In 2011 Fifth
Brazilian Symposium on Software Components, Architectures and Reuse, pages 11�20.
IEEE, Set. 2011. ISBN 978-0-7695-4626-1. doi: 10.1109/SBCARS.2011.13. 11, 12

Otto von Guericke University of Magdeburg. SPL2go. Available at http://spl2go.cs.
ovgu.de/. Accessed: 2016-01-27. 40

Frank J. van der Linden, Klaus Schmid, and Eelco Rommes. Software Product Lines in
Action: The Best Industrial Practice in Product Line Engineering. Springer, Secaucus,
NJ, USA, 2007. ISBN 3540714367. 1, 7

J. van Gurp, J. Bosch, and M. Svahnberg. On the notion of variability in software product
lines. In Proceedings Working IEEE/IFIP Conference on Software Architecture, pages
45�54. IEEE Comput. Soc, Ago. 2001. ISBN 0-7695-1360-3. doi: 10.1109/WICSA.
2001.948406. 7

Alexander von Rhein, Sven Apel, Christian Kästner, Thomas Thüm, and Ina Schaefer.
The PLA model. In Proceedings of the Seventh International Workshop on Variability
Modelling of Software-intensive Systems (VaMoS), page 1, New York, New York, USA,
Jan. 2013. ACM Press. ISBN 9781450315418. doi: 10.1145/2430502.2430522. 24, 74,
75

Alexander von Rhein, Thomas Thüm, Ina Schaefer, Jörg Liebig, and Sven Apel. Vari-
ability encoding: From compile-time to load-time variability. Journal of Logical and
Algebraic Methods in Programming, 85(1):125�145, jan 2016. ISSN 23522208. doi:
10.1016/j.jlamp.2015.06.007. 2, 23, 33, 34, 42, 52, 73, 74

Eric Walkingshaw, Christian Kästner, Martin Erwig, Sven Apel, and Eric Bodden. Vari-
ational data structures. In Proceedings of the ACM International Symposium on New
Ideas, New Paradigms, and Re�ections on Programming & Software (Onward!), pages
213�226, New York, New York, USA, oct 2014. ACM Press. ISBN 9781450332101. doi:
10.1145/2661136.2661143. 30, 62

David M. Weiss. The product line hall of fame. In Proceedings of the 12th International
Software Product Line Conference (SPLC), page 395, Washington, DC, USA, 2008.
IEEE Computer Society. ISBN 978-0-7695-3303-2. doi: 10.1109/SPLC.2008.56. 1

84

http://spl2go.cs.ovgu.de/
http://spl2go.cs.ovgu.de/

Appendix A

Probabilistic Models

This appendix presents the probabilistic models of the beverage machine product line

example (Section 4.1) in their entirety.

85

c0 selt t0 t1 t2 selttaste ttaste0 ttaste1

ttasteerr

aftttaste t3

terr

aftt sels s0 s1 selstaste staste0 staste1

stasteerr

aftstaste s2

serr

afts csuc

cerr

s

1− s

staste

1− staste

t

1− t

ttaste

1− ttaste

1 1 11 10.9 0.9 0.90.9 0.9 0.9 0.9 0.9 0.9 0.90.9

0.1

0.1

1

0.1

0.1
0.1

0.1

0.1
0.1

1

0.1
0.1

1

1

0.1

1

1

Figure A.1: Complete annotative PMC for the vending machine.

86

c0 ct0 ctsuc

cterr

cs0 cssuc

cserr

csuc

cerr

1 t

1− t

s

1− s

1 1

1 1

1

1

(a) Top-level compositional PMC for the vending machine (common behavior and main variation
points).

t0 t1 t2 tttaste0 tttastesuc

tttasteerr

t3 tsuc

terr

ttaste

1− ttaste

0.9

0.1

0.9

0.1

0.9

0.1

1

1

0.9

0.1

1

1

(b) Compositional PMC for the behavior of serving tea.

ttaste0 ttaste1 ttastesuc

ttasteerr

0.9 0.9

0.1
0.1

1

1

(c) Compositional PMC for the behavior of adding taste to tea.

s0 s1 sstaste0 sstastesuc

sstasteerr

s2 ssuc

serr

staste

1− staste

0.9

0.1

0.9

0.1

1

1

0.9

0.1

1

1

(d) Compositional PMC for the behavior of serving soda.

staste0 staste1 stastesuc

stasteerr

0.9 0.9

0.1
0.1

1

1

(e) Compositional PMC for the behavior of adding taste to soda.

Figure A.2: Compositional PMCs for the vending machine.

87

Appendix B

Theory Dependencies

This appendix is a compilation of dependency graphs for the main theorems presented

in this work. These directed graphs are depicted in diagrams where nodes represent

theory elements, while edges denote the source element depends on the target element.

Dependencies indicate that the statement of the element at hand makes use of other

de�nitions, or that its proof (if it is a theorem or lemma) relies on the element on which it

depends. Element names are colored according to their types: theorems are cyan, lemmas

are green, and de�nitions and properties are red.

88

Product-based

analysis of an-

notative models

Parametric

model checking

Soundness of

lifted annotative

evaluation factory

Family-based

analysis

Lifted evalu-

ation factory

Variability-

aware expres-

sion evaluation

Evaluation well-

de�nedness for

annotative models

Soundness

of family-

based analysis

Soundness of

family-product-

based analysis

Soundness of

expression lifting

Annotative

probabilistic model
DTMC derivation

Presence function

Soundness of

expression eval-

uation using p̂

Reachability

probability

for DTMCs

Well-de�ned

evaluation

Parametric

probabilistic reach-

ability soundness

Annotative PMC

Expression lifting
Expression

evaluation

Commutativity of

PMC and expres-

sion evaluations

Non-parametric

model checking

Family-product-

based analysis

Soundness of

variability-

aware expres-

sion evaluation

Figure B.1: Overall theory structure.

89

DTMC derivation
Annotative

probabilistic model

Annotative PMC

Product-based

analysis of an-

notative models

Parametric

model checking

Family-product-

based analysis

Presence function

Parametric

probabilistic reach-

ability soundness

Soundness of

family-product-

based analysis

Evaluation well-

de�nedness for

annotative models

Reachability

probability

for DTMCs

Well-de�ned

evaluation

Commutativity of

PMC and expres-

sion evaluations

Non-parametric

model checking
Expression

evaluation

Figure B.2: Dependencies for Theorem 1 (Soundness of family-product-based analysis).

90

Soundness of

family-product-

based analysis

Reachability

probability

for DTMCs

Lifted evalu-

ation factory

Variability-

aware expres-

sion evaluation

Soundness of

lifted annotative

evaluation factory

Soundness of

expression eval-

uation using p̂

Soundness of

expression lifting
Well-de�ned

evaluation

Family-based

analysis

Presence function

Parametric

model checking

Annotative

probabilistic model
DTMC derivation

Evaluation well-

de�nedness for

annotative models

Soundness of

variability-

aware expres-

sion evaluation

Family-product-

based analysis

Parametric

probabilistic reach-

ability soundness

Annotative PMC

Product-based

analysis of an-

notative models

Expression lifting
Expression

evaluation

Commutativity of

PMC and expres-

sion evaluations

Non-parametric

model checking

Soundness

of family-

based analysis

Figure B.3: Dependencies for Theorem 4 (Soundness of family-based analysis).

91

	Dedicatória
	Agradecimentos
	Epigraph
	Resumo
	Abstract
	List of Figures
	List of Tables
	List of Definitions
	List of Theorems and Lemmas
	Acronyms
	Introdução
	Definição do Problema
	Solução Proposta
	Resumo das Contribuições
	Estrutura

	Background
	Software Product Lines
	Main Concepts
	Adoption Strategies
	Variability Implementation
	Product-Line Analysis

	Reliability Analysis
	Parametric Markov Chains
	Parametric Probabilistic Reachability

	Algebraic Decision Diagrams

	A Product Line of Product-line Analysis Tools
	Research Method
	Threats to Validity

	Domain Engineering
	Overview
	Product-line Extraction
	Reactive Evolution

	Product Line of Product-line Reliability Analysis Tools
	Quality Assessment
	Empirical Validation

	Theory Development

	Commuting Strategies for Product-line Reliability Analysis
	Markov-chain Models of Product Lines
	Annotative Models
	Compositional Models

	Reliability Analysis Strategies
	Product-based Strategy
	Family-based Strategies

	Conclusion
	Related Work
	Future Work

	Bibliography
	Probabilistic Models
	Theory Dependencies

