
Universidade de Brasília
Instituto de Ciências Exatas

Departamento de Ciência da Computação

Exploring the Use of Co-Change Clusters in Software
Comprehension Tasks

Marcos César de Oliveira

Dissertação apresentada como requisito parcial para conclusão do
Mestrado Profissional em Computação Aplicada

Orientador
Prof. Dr. Rodrigo Bonifácio de Almeida

Coorientador
Prof. Dr. Guilherme Novaes Ramos

Brasília
2015

Ficha catalográfica elaborada automaticamente,
com os dados fornecidos pelo(a) autor(a)

O48e
Oliveira, Marcos César de
 Exploring the Use of Co-Change Clusters in
Software Comprehension Tasks / Marcos César de
Oliveira; orientador Rodrigo Bonifácio de Almeida;
co-orientador Guilherme Novaes Ramos. -- Brasília,
2015.
 89 p.

 Dissertação (Mestrado - Mestrado Profissional em
Computação Aplicada) -- Universidade de Brasília, 2015.

 1. Desenvolvimento de Software Orientado a
Features. 2. Engenharia reversa. 3. Mineração de
repositórios de software. I. Almeida, Rodrigo
Bonifácio de, orient. II. Ramos, Guilherme Novaes,
co-orient. III. Título.

Universidade de Brasília
Instituto de Ciências Exatas

Departamento de Ciência da Computação

Exploring the Use of Co-Change Clusters in Software
Comprehension Tasks

Marcos César de Oliveira

Dissertação apresentada como requisito parcial para conclusão do
Mestrado Profissional em Computação Aplicada

Prof. Dr. Rodrigo Bonifácio de Almeida (Orientador)
Departamento de Ciência da Computação/UnB

Prof.a Dr.a Genaína Nunes Rodrigues Prof. Dr. Uirá Kulesza
Departamento de Ciência da Computação/UnB Centro de Ciências Exatas/UFRN

Prof. Dr. Marcelo Ladeira
Coordenador do Programa de Pós-graduação em Computação Aplicada

Brasília, 03 de setembro de 2015

To Paula

I guarantee you, every astronaut,
when he comes back from space goes
up to a girl and goes, “So did you see

me up there?”

Seinfeld, SE04 EP23 – The Pilot

iv

Agradecimentos

A minha esposa, Paula, e filhos, Beatriz, Bruno, Gabriela e Vítor, não só pela paciência
e compreensão nas intermináveis horas de dedicação e ausência que foram necessárias
durante a execução desse trabalho. Mas principalmente pelo incentivo e apoio da minha
esposa, sempre me motivando a tentar ir além. E também especialmente aos meus filhos
pelo incentivo de poder ser uma inspiração para eles.

Ao meu orientador, professor Rodrigo Bonifácio, que demonstrou grande espírito co-
laborativo, sempre disposto a ajudar mesmo quando os prazos eram exíguos. Além disso,
por sua grande inteligência e intuição que foram fonte de inspiração para mim. Ao meu
co-orientador, professor Guilherme Ramos, por suas contribuições decisivas, que enrique-
ceram o resultado final. Ao Márcio Ribeiro, que se dispôs a dedicar seu valioso tempo,
capacidade e experiência, às importantes contribuições ao nosso trabalho.

Aos demais professores do curso de Mestrado Profissional em Computação Aplicada,
que tive a honra de conhecer e deles receber os mais valiosos ensinamentos que foram
cruciais não só para o avanço desse trabalho, mas também que serão úteis em outros
momentos da minha vida acadêmica e profissional. E aos colegas de mestrado, que, como
ninguém, sabem como é difícil conciliar família, trabalho e estudo, e além disso buscar a
excelência em tudo o que fazem.

À Secretaria de Orçamento Federal (SOF), do Ministério do Planejamento, Orçamento
e Gestão, especialmente ao Coordenador-Geral de Tecnologia da Informação, Robson
Rung, por me apoiar desde o início, pela confiança em minha capacidade de realizar
essa tarefa, e por me dar condições de dedicar tempo a esse trabalho. E também a
todos da equipe da SOF que sempre foram solidários e que são motivo de orgulho para
mim por poder fazer parte desse grupo de extraordinários profissionais de tão renomada
instituição. Espero poder retribuir aplicando o que aprendi e, principalmente, procurando
ser um profissional melhor para a instituição e para o Brasil.

v

Resumo

O desenvolvimento de software orientado a características (FOSD) é um paradigma que
pode ser usado, entre outros, para estruturar um sistema de software em torno de caracte-
rísticas que podem representar pequenas funcionalidades do software bem como requisitos
não funcionais. Além do seu papel na estruturação do software, o uso de FOSD habilita
a ativação e desativação de features individuais em uma dada configuração de software.
Essa vantagem pode ser útil em cenários onde a variabilidade do software é necessária.
Por outro lado, a adoção da abordagem FOSD pode ser feita em um sistema de software
existente, torna-se necessária a aplicação de alguma técnica de engenharia reversa para
extração de features de uma base de código legada, bem como o mapeamento dessas fe-
atures para suas implementações. Essa dissertação apresenta uma nova abordagem para
auxiliar nessa atividade de engenharia reversa, a qual relaciona dados históricos extraídos
de sistemas de controle de tarefas de desenvolvimento e de mudanças em código-fonte.
A abordagem se baseia em técnicas de Mineração de Repositórios de Sofware (MSR),
especificamente o agrupamento baseado em dependências evolucionárias entre elementos
do código-fonte, que leva ao descobrimento de grupos de co-mudança. Assim, o objetivo
deste trabalho é descobrir as propriedades dos grupos de co-mudança que podem ser úteis
no processo de extração de features. Especificamente, um conjunto de termos, associados
com os grupos, que revelam conceitos que podem ajudar a identificar features. De acordo
com os resultados obtidos, os grupos de co-mudança não possuem vantagem quando usa-
dos como unidades de modularização, mas podem revelar novas dependências que são
ocultas ao desenvolvedor. Também mostram que os grupos de co-mudança possuem co-
esão conceitual, e que podem ser usados para extrair conceitos e termos associados com
eles. Por fim, os conceitos extraídos dos grupos de co-mudança podem ser usados para
construir um mapeamento entre eles e o código-fonte, e que podem ser usados como uma
lista de sementes de entrada para métodos de expansão de features.

Palavras-chave: Desenvolvimento de Software Orientado a features, engenharia reversa,
mineração de repositórios de software

vi

Abstract

Feature-oriented software development (FOSD) is a paradigm that can be used, among
others, to structure a software system around the feature concept that can represents small
functionalities and non-functional requirements. Besides their role in software structure,
FOSD enables the activation and deactivation of individual features in a given configu-
ration of the software. This advantage can be useful in scenarios where the variability
of the software is required. On the other hand, the adoption of FOSD can be done for
an existing software system, thus, becomes necessary to apply some reverse engineering
technique to extract features from a legacy code base, and also the mapping between
these features and their implementations. This dissertation presents a new approach to
aid in the reverse engineering activity, that relates historical data from issue tracking sys-
tems and source-code changes. The approach relies upon Mining Software Repositories
(MSR) techniques, specifically the clustering based on co-evolutionary dependencies be-
tween source-code elements, which leads to the discover of co-change clusters. Thus, the
goal of this work is to discover the properties of the co-change clusters that can be useful
in a feature extraction process. Specifically, a set of terms, associated with the clusters,
which reveal concepts that can help to identify features. According to the study results,
co-change clusters have no advantage when used as a modular unit, but can reveal new
dependencies that is hidden to the developer. They also show that the co-change clusters
have conceptual cohesion, and can be used to extract concepts and the terms associated
with them. In the end, the concepts extracted from co-change clusters can be used to
build a mapping from them and the source-code, and that can be used as a input seed
list to feature expansion methods.

Keywords: feature oriented software development, reverse engineering, mining software
repositories

vii

Contents

1 Introduction 1
1.1 Purpose of this dissertation . 3
1.2 Rationale . 3
1.3 Outline . 3

2 Literature Review 5
2.1 Modularity . 5

2.1.1 Design Structure Matrix . 7
2.2 Feature Oriented Software Development 9
2.3 Mining Software Repositories . 12
2.4 Software Clustering . 13
2.5 Mining Source-Code Change History . 14

3 Unveiling and Reasoning about Hidden Dependencies Induced by Co-
Evolution 16
3.1 Chapter Abstract . 16
3.2 Introduction . 16
3.3 Background . 18

3.3.1 Design Structure Matrix (DSM) . 19
3.3.2 Architectural Metrics . 19
3.3.3 Clustered Cost . 21

3.4 Methodology . 22
3.4.1 Extracting Fine-Grained Version History 22
3.4.2 Extracting Co-Change Clusters . 23
3.4.3 Extracting Static Dependencies . 26
3.4.4 Building DSMs . 26
3.4.5 Computing Metrics . 27

3.5 Study Settings . 27
3.5.1 Target Systems . 27

viii

3.5.2 Selection of the Threshold Combination 27
3.6 Results . 29

3.6.1 Exploratory analysis of the impact of commits and issues into fine
grained entities . 29

3.6.2 To what extent do the hidden dependencies induced by the co-
evolution of components impact the architecture? 30

3.6.3 Is it worth to restructure the architecture of a system based on the
co-evolution clusters? . 35

3.7 Discussion . 36
3.8 Threats to Validity . 37
3.9 Related Work . 38

3.9.1 Version History and Modularity . 38
3.9.2 DSM and Modularity . 38
3.9.3 Clustering and Remodularization 38
3.9.4 Co-change clusters and Remodularization 39
3.9.5 Di�erences from previous works . 39

3.10 Conclusion . 39

4 On the Conceptual Cohesion of Co-Change Clusters 41
4.1 Chapter Abstract . 41
4.2 Introduction . 41
4.3 Methodology . 43

4.3.1 Extracting Fine-Grained Version History 44
4.3.2 Extracting Co-Change Clusters . 44
4.3.3 Building the Similarity Index . 47
4.3.4 Computing Conceptual Cohesion Metrics 48

4.4 Settings . 50
4.4.1 Target Systems . 50
4.4.2 Selection of the Threshold Combination 50

4.5 Results . 52
4.6 Terms Extraction . 58

4.6.1 First Strategy: Terms Frequency 58
4.6.2 Second Strategy: LSI . 59
4.6.3 Results . 60
4.6.4 Discussion . 61

4.7 Implications of our results . 62
4.8 Threats to Validity . 62
4.9 Related Work . 63

ix

4.10 Conclusion . 65

5 Conclusion 66
5.1 Summary of the Contributions . 66
5.2 Impact on the Organization . 67
5.3 Future Work . 68

5.3.1 Providing Seeds for Feature Expansion 68
5.3.2 Feature Location . 68
5.3.3 Remodularization . 69

Bibliography 70

x

List of Figures

2.1 Precedence Matrix (adapted from [72].) . 8
2.2 Precedence Matrix with Partitions (adapted from [72].) 8
2.3 Feature model for a subsystem belonging to an important Brazilian Finan-

cial System . 10

3.1 Example of DSM . 19
3.2 Example of a transitive closure . 20
3.3 Metrics Extraction Process (numbered circles represent the steps.) 23
3.4 Example of co-change cluster extraction (the edges’ labels specify support

count and confidence respectively.) . 24
(a) Current source-code . 24
(b) Fine-grained commits from HR . 24
(c) Co-change graph (MDG) . 24
(d) Pruned co-change graph using minimum support equals 2 and mini-

mum confidence equals 0.5 . 24
(e) Co-change clusters . 24

3.5 Characterization of the systems with respect to the impact of the commits
and issues into the fine grained entities. 30

3.6 SIOP DSMs . 31
(a) Static . 31
(b) Static and Evolutionary . 31

3.7 Derby DSMs . 31
(a) Static . 31
(b) Static and Evolutionary . 31

3.8 Hadoop DSMs . 31
(a) Static . 31
(b) Static and Evolutionary . 31

3.9 Eclipse UI DSMs . 32
(a) Static . 32
(b) Static and Evolutive . 32

xi

3.10 JDT DSMs . 32
(a) Static . 32
(b) Static and Evolutive . 32

3.11 Geronimo DSMs . 32
(a) Static . 32
(b) Static and Evolutionary . 32

3.12 Lucene DSMs . 33
(a) Static . 33
(b) Static and Evolutionary . 33

4.1 Metrics Extraction Process. The numbered circles are the activities, which
are executed in order. 43

4.2 Example of co-change cluster extraction (the edges’ labels specify support
count and confidence respectively.) . 46
(a) Current source-code . 46
(b) Fine-grained commits . 46
(c) Co-change graph . 46
(d) Pruned co-change graph, using minimum support equals 2 and min-

imum confidence equals 0.5 . 46
(e) Co-change clusters . 46

4.3 Sample similarity indexes computed using LSI. 50
(a) Coarse-grained index . 50
(b) Fine-grained index . 50

4.4 Target System’s Conceptual Cohesion. 53
(a) Coarse-grained modules cohesion . 53
(b) Fine-grained modules cohesion . 53

4.5 Proportion of entities in relation to modules. 55
(a) Coarse-grained modules . 55
(b) Fine-grained modules . 55

4.6 Average of commits per entity. X axes represent the last two years of change
history for each system, from past (left) to present (right). 57

xii

List of Tables

2.1 Definitions for the term feature found in literature 9

3.1 Basic metrics about target systems. #C means number of classes and
interfaces; #F, methods, attributes, and constructors; #I, issues; and #SD,
static dependencies between entities. 28

3.2 Target System’s Architectural Metrics Growth (%) after revealing hidden
dependencies. ‘D’ means dependency . 34

3.3 Correlation between dependency count (D(S) and D(S,E)) and the growth
of the architectural metrics . 34

3.4 Clustered Costs (CC) growth (%) after restructuring using coarse grained
entities. #P means Number of Packages, and #C, Number of Clusters . . 35

3.5 Clustered Costs (CC) growth (%) after restructuring using fine grained
entities. #CS means Number of Classes, and #CT, Number of Clusters. . 36

4.1 Basic data about target systems. 51
4.2 Target System’s Conceptual Cohesion of Co-Change Clusters. ‘S’ means

minimum support; ‘C’, minimum confidence; ‘N’: maximum entities per
issue, ‘CGC’: coarse-grained clusters conceptual cohesion, and ‘FGC’: fine-
grained clusters conceptual cohesion. (bold numbers show the selected
thresholds, ‘–’ means that the combination did not run in Bunch, ‘◊’ means
that the ratio of entities in clusters is bellow 1%) 52

4.3 Proportion of entities preserved by the clustering process. #C=Number
of Classes, #M=Number of Members, #OC=Original Number of Classes,
#OM=Original Number of Members . 56

4.4 Top 30 Terms Extracted Using First Strategy (With Frequency Numbers) . 60
4.5 Top 30 Terms Extracted Using Second Strategy (With Similarity Numbers) 60
4.6 Sample Entities Associated With the Cluster 61

xiii

Chapter 1

Introduction

Software maintenance is well known as one of the most relevant and challenging tasks
of software engineering, in particular for legacy systems. In this situation, developers
must spend a significant e�ort towards software comprehension, which also consists of
relating the concepts and features to the modular decomposition of a system. This ac-
tivity becomes hard for several reasons, such as: (a) the features of a legacy systems are
not always available— due to a poor documentation, for instance; and (b) the notion of
modular decomposition in software engineering presents di�erent meanings. According to
a David Parnas’ seminal paper [65, 28], developers and practitioners should think about
modularity as task assignments, though many works relate modularity to language con-
structs, such as C++ namespaces, Java packages, classes in object-oriented languages, or
aspects in aspect-oriented extensions. This misunderstanding often leads to concerns that
are either crosscutting through di�erent “modular” unities or concerns that are tangling
among other concerns, when considering the same “modular” unities.

Several attempts to reproduce the essence of modular unities as tasks assignments have
been presented for software engineering. For instance, Kersten and Murphy introduced
the degree-of-interest model [48], which captures the task context of program elements by
monitoring the programmer’s activity using Mylar— a set of Eclipse plugins. Although
this is an interesting approach for relating modules to task assignments, it does not
solve the reverse engineering problem of mining the modules of a system from
an existing code base, whose development started without the use of Mylar (or another
equivalent tool set). Two properties of a software make this reverse engineering problem
a particular challenging task: the size of the code base (hundred thousands lines of code)
and the lack of adherence to a stable architecture.

This is the case of SIOP1, the Brazilian Government Budget System developed using
the Java Enterprise Edition platform. Recently, the development team started an e�ort

1Sistema Integrado de Planejamento e Orçamento

1

to guide the evolution of SIOP through a feature driven approach, such as the Feature
Oriented Software Development (FOSD) [6]. FOSD is a feature-oriented method for the
construction, customization, and synthesis of large-scale software systems. Based on the
FOSD definition, a feature is a piece of software functionality that satisfies a requirement,
represents a design decision, and provides a potential configuration option [6]. The SIOP’s
development team chose the FOSD paradigm as part of a software development process
revision. The main stated goal of this revision was to improve traceability between code,
implementation tasks and requirements. In this way, the development team expects some
benefits with this e�ort for process improvement: provide a communication pattern be-
tween stakeholders; facilitate code comprehension; and establish a well-defined model for
software decomposition. The notion of features emerged as an adequate instrument to
fulfill these goals. Additionally, a number of Brazilian federated states also uses SIOP,
but in various di�erent versions, resulting in a family of systems to maintain. Moreover,
the current development process, started at 2009, is iterative and incremental and a great
part of the development e�ort is dedicated to add or modify functionality. In this sense, a
stepwise and incremental software development (SISD) process is already in place. SISD
shares many goals with FOSD [6, 11], which strengthens the decision for FOSD adoption.

However, the SIOP development team does not agree about the set of features of
SIOP— since the development team lacks an explicit list of the current available SIOP
features. Consequently, this is an obstacle for FOSD adoption. As the size of the applica-
tion is somewhat large (400 KLOC of Java source code), the manual construction of such
a list is not desirable and thus we decided to investigate the following research question:

Is it possible to automatically derive a suitable notion of features
from the modular unities of a system?

Accordingly, in this dissertation, we present a novel approach that aims to assist on
the semi-automatic identification of features from the modular unities of legacy systems,
using techniques based on software clustering. Because of time frame constraints, this
work concentrates on investigating the suitability of using software clusters as modular
unities that can represent features. The actual feature identification task will be covered
in future works.

In fact, the approach taken by this work will be useful for any system, not only for
SIOP. Nevertheless, SIOP is one of the target systems in the results presented in following
chapters, in conjunction with other systems.

2

1.1 Purpose of this dissertation
The main goal of our work is to explore the use of software clustering as a technique to
assist on software comprehension tasks, specifically to recover concepts which can refer
to features. The data sources we used in this exploration is mainly the evolutionary data
from version history and issue tracking systems. The specific goals are:

• develop a method that builds on existing algorithms and tools such that a develop-
ment team can follow in order to produce useful information about concepts from
a problem domain, extracted from source-code artifacts;

• conduct an empirical study to asses the relationship of extracted clusters with the
existing modularity structure of a software to verify if they are similar; and

• conduct an empirical study to asses the conceptual cohesion of extracted clusters in
order to reveal if they are suitable to gather related high level concepts, such as the
features of a legacy system.

1.2 Rationale
Software maintenance represents an important aspect of the total cost of software during
its entire life. It can be viewed from a software evolution perspective, such that it can
be defined as a continued development. In that sense, an existing software never stops
to evolve, and its complexity tend to grow [21]. For an agile development process, where
continuous and iterative development is the norm, this issue has even more significance.

Besides, feature modeling has a major role in FOSD, and for existing software systems,
their adoption implies the construction of a feature model. In conjunction with Software
Product Line Engineering, and for software systems where the feature variability is a key
aspect, they provide methodologies that produces a family of software products at lower
costs, in shorter time, and with higher quality [66].

Thus, the development of e�ective methods and tools that support the recovering of
problem domain concepts from existing artifacts has great value. Moreover, tools that
allow tracing from implementation pieces to features can provide an important aid in
software comprehension as well as the development of software product lines using an
extractive approach.

1.3 Outline
The remainder of this work is organized as follows:

3

• Chapter 2 reviews the essential literature which this work is based on, that is Soft-
ware Modularity, Feature Oriented Software Development, Mining Software Repos-
itories, Software Clustering, and Mining Source-Code Change History.

• Chapter 3 contains a paper (to be submitted) that explores the modular properties of
the software clusters based on evolutionary data. Its goal is to investigate the impact
of revealing the evolutionary coupling in selected architectural metrics, and to verify
if the clusters can be used as the main decomposition strategy for modularity.

• Chapter 4 contains a paper that has been accepted for publication at the 29th
Brazilian Symposium on Software Engineering (SBES 2015). It explores the con-
ceptual cohesion of clusters based on evolutionary data [64]. Also, here we extended
the original paper with a new section (Section 4.6), which includes a preliminary
discussion about terms extraction from the vocabulary contained in clusters.

• Chapter 5 presents the final remarks and future work.

As Chapters 3 and 4 contain papers, the structure of them reflects the assumption
that they are self-contained. For this reason, some concepts and related work presented
in Chapter 2 also appear in Chapters 3 and 4. But, these concepts are presented in
summarized form in the papers, in the background section of each chapter, while in
Chapter 2 they are presented as an extended version. In addition, note that Chapter
2 presents the basic concepts and the papers present more specific information. Thus,
we expect an small overlapping between the chapters of this dissertation. Besides that,
Sections 3.4.1 and 3.4.2, from Chapter 3, and Sections 4.3.1 and 4.3.2 from Chapter 4, are
similar (but not identical), because they contain information about common procedures
we follow in both papers. Also, the abstract of the papers were converted in sections
named “Chapter Abstract”.

4

Chapter 2

Literature Review

This chapter presents the topics which this work builds on, namely: Modularity, Fea-
ture Oriented Software Development, Mining Software Repositories, Software Clustering,
Mining Source-Code Change History, Reverse Engineering Features using Clustering, and
Source-Code Semantics. In the beginning, the modularity concept is introduced, since one
of the goals of this work is to verify the relationship between modularity and clusters based
on evolutionary data. Following, it is presented the feature oriented software development
paradigm, since one of the motivations for this work is to easy the adoption of a FOSD
approach in legacy systems. Next, we present the topics related to mining software repos-
itories, and software clustering which we used in the remaining of this work. In the end,
we show the techniques which are proposed by some authors to measure the semantics of
source-code, which allow us to measure the conceptual cohesion of the clusters.

2.1 Modularity
The concept of modularity is present in a vast number of fields which deals with complex
systems [9], including but not restricted to software. Besides that, the concept of mod-
ularity is closely related to the concepts of design and artifact. The definitions for these
concepts, adopted by this work, are:

• Artifact: object produced by the intelligence and human e�ort.

• Design: process of inventing artifacts which have specific functions.

• Parameter : units of analysis that form a design structure.

• Modularity: a particular pattern of relationships between elements of a set of pa-
rameters, tasks and people.

From the concept of modularity, we get the concept of module:

5

Module is a unit whose structural elements are strongly interconnected, and, for the
other side, weakly connected to elements from other units [9].

Therefore, modularity can be understood as a strategy of design for complex systems,
that is, those which can not be created—or fully understood— by a unique individual,
e�ciently.

This way, from the concept of modularity we can derive another idea, embodied by
the terms: abstraction, information hiding, and interface:

A complex system can be managed by splitting it in smaller chunks, and seeing
each one separately. When the complexity of one of their elements cross a certain
threshold, this complexity can be isolated by defining a separated abstraction which
have a simple interface. The abstraction hides the complexity of the element; the
interface specifies how the element interacts with the bigger system [9].

From the time that a modular design is intended, the tasks of build of the modules also
becomes “modular”, once the e�orts to build the modules can be distributed to several
individuals.

A design consists on taking decisions about parameters which govern the product.
The modularity of a design is reached by the maximization of the confinement of these
decisions inside the modules. Some parameters are, by their nature, shared by two or
more modules. To reduce the potential conflict provoked by the existence of this kind
of parameter, we can reason about the decisions that a�ect them in first place, thus, we
create “design rules”, which govern the whole process of the remaining design.

During the process to design design rules, it is necessary to decide about the informa-
tion which will be visible to more than one module, and the information which will be
hidden. The information hiding principle was first proposed in software engineering by
Parnas [65]. Design parameters which are not visible form the hidden information of the
design [9]. Parnas concluded that, if the details of a certain code block are hidden from
another blocks, changes in one block can be made in an isolated way.

Beyond the seminal work of Parnas [65], other pioneer authors explored the decom-
position in software building. Wirth [76] and Dijkstra [30] consider the activity of pro-
gramming as a sequence of decisions of design, which leads to the successive refinement of
software by the addition of details. This approach leads to a modular design in the sense
that the decisions stay hidden inside each refinement.

In software architecture literature, module is an implementation unit, comprising well-
defined responsibilities and that can be the basis for task assignments, which should be
defined according to the information hiding and to the separation of concerns princi-
ples [10, 24]. This definition is aligned with the Parnas proposal.

6

After the work of Parnas, several language constructions were proposed, to support
modularity [28], such as C++ namespaces, Java packages, and classes in object-oriented
programming languages. However, we do not have consensus about modularity in the
software engineering field yet. Parnas, in a panel from 2003, stated:

My previous work clearly states modularity as a design problem, not a programming
language problem. A module is a task assignment, not a subroutine or another
language element. Although some tools can make the job easier, no special tools
are necessary to fulfill the main goal, just discipline and ability [28].

Despite these new proposals centered in programming languages, some concerns still
resisted to the confinement promoted by these proposals. Thus, other researchers desined
new proposals which involve either new language elements or new tools, such as: aspects,
monads, mixin layers, and multidimensional separation of concerns [28].

These innovative approaches share at di�erent levels the notion that no particular
unique decomposition is capable to express in a full modular way all concerns of a software.
In this sense, the implementation elements of a programming language can be associated
to di�erent modules, each one with a distinct nature.

In a more recent work, Kersten and Murphy [48] proposed a model to capture the
task context assigned to a developer, associating to that context the program elements
scattered in a codebase. This model, known as degree-of-interest (DOI), has the goal of
assisting the developer in the task of to locate the code associated to a task assigned to
him/her. Mylar is a tool that implements the DOI model and was built as an Eclipse
plugin. Mylar monitors the developer activities and shows the DOI model to developers
in an Eclipse view. This proposal embodies both the Parnas perspective on modularity
as task assignment and the vision that more then a modular decomposition exists for the
same code base, since one program element can be part of more than one DOI at same
time.

2.1.1 Design Structure Matrix

Related to other disciplines, as Engineering and Project Management, there is a set of
tools used for reasoning about a particular design, and to formalize operations which
transform a design structure in another. Steward [72] proposed one of the most well
known of these tools, Design Structure Matrix (DSM)1, which is widely used to capture
the level of dependency between di�erent parts of a system [8].

According to Steward [72], design involves the specification of many variables, and
a precedence order of the variables. We can think of a variable as an element, decision

1DSMs are also known as Task Structure Matrix (TSM)

7

Passenger Capacity Spec. 1

Motor Spec. and Weight 2

Total Weight 3

Battery Size and Weight 4

Cost 5

1 2 3 4 5

◊ ◊

◊ ◊ ◊

◊ ◊ ◊

Figure 2.1: Precedence Matrix (adapted from [72].)

Passenger Capacity Spec. 1

Motor Spec. and Weight 2

Total Weight 3

Battery Size and Weight 4

Cost 5

1 2 34 5

◊◊

◊ ◊◊

◊ ◊◊

Figure 2.2: Precedence Matrix with Partitions (adapted from [72].)

or task. When a variable A cannot be determined unless B is first known or assumed,
and B cannot be determined unless A is first known or assumed, we have a circuit. The
usual engineering tools, such as Critical Path Planning, does not handle circuits, although
DSMs are able to deal with these situations. Thus, Steward proposed a Design Structure
System, which is used to produce a DSM from the dependency table of the variables.

The first step to construct a Design Structure System is to determine a precedence
matrix. Figure 2.1 shows an example which represents the design of an electric car. The
‘◊’ in a cell i, j, represents a dependency from row i in relation to col j. The circles
represent circuits. The next step is to reorder the variables to make the matrix more
“triangular”, i.e., move both row and column of a variable such that most of the ‘◊’
marks are bellow diagonal. Then, the circuits and the dependencies above diagonal must
be traced by partitions, as shown in Figure 2.2. The last step is to estimate values for
the variables in circuits, and after to reorganize the matrix to leave above diagonal only
variables with values estimated. This process leads to a modular DSM.

Eppinger et al [34] then proposed some extensions to DSM representation, including

8

measures of dependency and task duration, and extensions to the ordering procedure, by
breaking the variables into parameters and recombining them into new variables, in order
to produce smaller partitions.

DSMs can be also used while designing software [55]. In this case, the elements could
represent software artifacts, or some other syntactical element. The dependencies can be
any kind of coupling between software elements, both statical or dynamic, such as usage
dependencies or inheritance, and the partitions can be packages, namespaces or similar.

2.2 Feature Oriented Software Development
According to the goals of this work, one of our main interests is the software decomposition
based on features. In software engineering, the definition of the term feature is not a
consensus. Table 2.1 shows the definitions compiled by Classen [23].

Table 2.1: Definitions for the term feature found in literature

Author Definition
Kang et al. A prominent or distinct aspect, quality or characteristic,

visible to the user of a software system or systems [44].
Kang et al. Functional, distinctively identifiable abstractions which can

be implemented, tested, delivered and maintained [45].
Eisenecker and Czarnecki Anything that users or client-programs can want to control

with respect to a concept [26].
Bosch et al. A logic unit of behavior specified by a set of functional and

non-functional requirements [20].
Chen et al. A product characteristic from the viewpoint of the user or

the client which, in the essence, is formed by a cohesive set
of individual requirements [22].

Batory An enhancement or increase of an entity which introduces
a new service, capacity or relationship [12].

Batory et al. An increase in the product functionality [13].
Apel et al. A structure which extends and modifies the structure of a

given program with the goal of satisfying the requirement
of a stakeholder, to implement and encapsulate a design
decision, an to o�er a configuration option [7].

From top-down, definitions become less abstract and more technical. While the first
five definitions say that features are abstract concepts from the application domain, used
to specify e distinguish software systems, the last three definitions capture the fact that
features must be implemented to satisfy a requirement [6].

9

Figure 2.3: Feature model for a subsystem belonging to an important Brazilian Financial
System

In this work, we will adopt the definitions of feature given by Batory and Apel, since
they are closer to the notion of association between features and implementation tasks,
and how they approximate to the features role in the software decomposition and its
design.

The seminal work of Kang et al. [44] was the first to introduce the feature concept to
describe the variabilities and commonalities of a set of software systems. They introduce
the feature model concept, which describes the relationships and dependencies of a feature
set belonging to a particular domain [6]. Figure 2.3 shows an example of a common
notation for feature models.

A common scenario for use of features and feature models is the building of software
product lines (SPL). A SPL is a set of software intensive systems that (a) share a set
of features and satisfies the specific needs of a business segment or mission and (b) are
developed from a common set of assets [25]. However, in the SPL development, the role
of features is not necessarily central. Many SPLs are designed thinking on features, but
implements without making the features explicit [6].

The feature concept is central for the feature-oriented software development (FOSD)
paradigm, which is used to build, customize, e synthesize large scale software systems.
The basic idea of FOSD is to decompose the software system in terms of features. The
goal of this decomposition is to built well-structured software that can be adapted to the
user needs and to the application scenario [6].

FOSD is a paradigm that provides the systematic use of features in all phases of the
software life cycle. Features are used as first-class entities to analyze, design, implement,

10

customize, debug, and evolve a software system. That is, features not only emerges from
a software system structure and behavior, but also are explicit and systematically used to
define variabilities and commonalities, to promote the reuse, and to structure the software
according to these variabilities and commonalities [6].

FOSD has a substantial overlap in relation to other software development paradigms [6].
The main di�erences in relation to some popular alternatives are:

• Stepwise and incremental software development. The idea of this paradigm is to
encapsulate individual development steps which implement distinct design decisions.
The goal of this approach is to structure the software such that it would support
changes. FOSD shares this goal. In fact, FOSD expanded the development of these
initial ideas in the context of large scale software synthesis and of software product
line [6].

• Aspect oriented software development goal is to modularize crosscutting concerns.
It was observed that feature frequently are crosscutting concerns, this way, features
implementation can benefit from aspect oriented techniques. FOSD goals are di�er-
ent, but it is believed that in some point both paradigms will be hard to distinguish
at implementation level [6].

• Component based software engineering goal is to build software systems on demand
using already built components. Software oriented architecture is a modern instance
of this vision. The main di�erence from FOSD is that components/services are black
boxes. It was observed that features frequently are program slices, i.e., crosscutting
concerns. In other words, features does not align well with the decomposition im-
posed by component models. If components are used anyway, there will be a non
trivial mapping between features and components [6].

• Software product line and domain engineering are paradigms whose subjects are
software systems families instead of unique systems. FOSD is a software develop-
ment paradigm which can be used to develop software product lines and domain
engineering. However, product lines and domain engineering are not limited to
FOSD [6].

Feature implementation is hard when represented in codebase, usually because of the
lack of explicit elements at programming language level. Some techniques can be employed
to cope with this problem, like mixin and collaboration based design, to separate the
feature related code from the base program. Other ideas about modularity, which were
proposed before the feature implementation research, can be used. They have as a goal
in common the software modularity at a larger scale than function or classes [6].

11

2.3 Mining Software Repositories
Information present in version control systems, bug tracking, communication files, install
logs, and code, characterize software repositories which are commonly available to the
majority of software development projects. The Mining Software Repositories (MSR) is a
research theme that analyzes e crosses the available data from these repositories to reveal
information both interesting and useful about software systems [40].

Software engineering researchers conceived and experimented a broad spectrum of
approaches to extract pertinent information and to discover relationships and trends from
repositories in the context of software evolution. This activity is similar (but not limited)
to the field of data mining and knowledge discovery, therefore the use of the term MSR [43].

MSR corresponds, is this work, to the use of techniques of data mining (or similar
to data mining) to examine the software changes and evolution, i.e., we suppose the
investigation of multiple versions of the same artifact. This contrasts with the approaches
that primarily investigate an unique version of a software system, and which use mining
techniques only for analysis.

MSR approaches can be categorized in four dimensions [43]:

• Used repositories: version control systems, defect tracking systems, and communica-
tion files. Three categories of information can be mined from these repositories: the
artifacts and their versions, the di�erences between the artifacts and their versions,
and the metadata about the change in software.

• Purpose: to analyze system growth, to associate source-code entities in relation to
their common changes, or components reuse, for example. Generically, there are
two classes of questions in MSR: the first is of market basket kind, the other relates
to getting metrics.

• Methodology: given one or more repositories and the purpose, a method must be
adopted or conceived to answer to questions. Basically, two strategies exist. One
is the properties changes, which compares the properties of the artifacts versions
looking for changes identification in global properties of a software system. Another
strategy is to study the processes or facts which influenced the software system
evolution from one version to another.

• Evaluation: two verification metrics, precision and recall, from the information
recovery community, are widely used to evaluate MSR tools. Another approach is
to use information theory to evaluate probabilistic models.

There are several MSR methodologies with their respective purposes. For example,
we can use methods for Clone Detection using evolutionary data, which allow to identify

12

the changes which frequently occurs and also the clone source analysis [50]. Another
methodology is the Frequent Pattern Mining, whose purpose can be the detection of
evolutionary coupling, which is a subject of interest in this work. [81].

2.4 Software Clustering
One particularly interesting MSR techniques for this work is Software Clustering. This
technique is an important discipline in reverse engineering and software maintenance. It
deals with unsupervised clustering of software artifacts, like functions, classes, or files, in
high level structures like packages, components, or subsystems based on the similarity of
these artifacts [16].

The common clustering approaches recover this information directly from the static
source-code, using structural dependencies based on, for example, references to vari-
ables shared between methods, inheritance, aggregation, and method invocation between
classes. Some approaches, enhance the clustering through the use of dynamic dependen-
cies recorded during the program execution [16].

One particular application of clustering in software engineering is on remodularization,
which is the reorganization of a codebase into new modules, aiming to fix architectural
problems and to isolate coupling. Wiggerts [75] was the first to investigate the problem of
remodularization in conjunction with software clustering. His work focused on showing an
overview of clustering techniques and to answer the following question regarding software
clusters: what are the entities to be clustered? when are two entities to be found similar?
what algorithm do we apply? The answers were based on the theory available at the time,
such as the use of Jaccard coeficient as a similarity measure or k-means as algorithm.

Anquetil and Lethbridge [5] produced a comprehensive set of experiments with clus-
tering algorithms used for remodularization, using three open source systems and one
industrial system. Their research questions are similar to Wiggerts [75] questions. For
them, software entities can be files, routines, classes, processes, etc., though their ex-
periments considered only files. Several similarity metrics were tested, based on static
dependencies, extracted from the source-code, and based on common vocabulary terms,
extracted from identifiers and comments. The metrics were grouped in: association,
distance, correlation, and probabilistic coe�cients. Then, they tested several clustering
algorithms using the Bunch tool [60]. Their main conclusions are:

• Similarity based on common vocabulary terms can produce as good results as static
dependencies.

• There is no fundamental di�erence in choosing hierarchical or non hierarchical al-
gorithms.

13

• The quantity of information is important, even data of dubious utility can prove
useful when used as a complement of other data.

One of the purposes for using this technique is the recovery of the software architec-
ture [37]. One architectural view which is subject of this recovery task is the module
view [67], which is considered a group of cohesive software units. However, it must be
noted that some current approaches of module recovery use other techniques beyond
clustering.

Maqbool and Babri [58] carried out an experiment with several hierarchical clustering
algorithms to be used in architecture recovering. They used four open source target
systems written in C, and used functions as entities. They found an important conclusion:
“the quality of results depends not only on the algorithm and similarity measure but also
on the peculiarities of the software system to which the algorithm is applied.” (specially
with regard to the existence of utility functions).

2.5 Mining Source-Code Change History
In recent years, software engineers become aware of the software evolution as a relevant
and underutilized data source to enhance the process of software development and main-
tenance. Some research groups combined static dependencies extracted from source-code
with software evolution data to enhance the clustering result. Other approaches are more
focused on software evolution and only work with co-change data (considering artifacts
that frequently changed together) [16].

The work of Gall et al. [35] was the first to explore the information from version
history repositories to detect co-change dependencies between entities and to suggest
remodularization based on such a data. They also call co-change dependencies as logical
dependencies and hidden dependencies. These dependencies are called hidden because
they are not evident in the source-code and can reveal dependencies between entities that
are not statically dependent. Nevertheless, their technique, named CAESAR, just reveals
the hidden dependencies, and is focused in coarse-grained modules instead of fine-grained
entities. They also suggest to refactor modules with a strong logical coupling.

Beyer and Noack [19] introduced the use of co-change dependencies in clustering.
First, they defined a co-change graph, which is an undirected graph where the set of
vertices contains all software artifacts and the set of edges represent dependencies that
arise when two artifacts had frequently changed together. An edge is enriched with a
weight, representing the count of common changes of the two artifacts. They used a
clustering layout algorithm that places co-change artifacts closely together, while the
others are placed at larger distances. The algorithm is based on the Edge-repulsion

14

LinLog Energy Model. The evaluation of the method used three open-source softwares,
and they concluded that the clusters corresponded to the authoritative decompositions.
However, the layout clustering, when compared with conventional clustering, does not
provide unambiguous partitions for the entities.

Zimmermann et al. [78] coined the expression evolutionary coupling which occurs when
parts of the system are coupled by common changes. They asserted that when exists an
evolutionary coupling between entities that is not expected to be coupled according to the
system architecture, this is an anomaly that may suggest a refactor. Their approach is
based on syntactical entities, instead of files or modules. After collecting the evolutionary
couplings, dependency matrices similar to DSMs were built and analyzed. Their main
conclusions are:

• Fine-grained analysis can be used to detect coupling between functions, methods,
and attributes.

• Evolutionary coupling complements static coupling.

• Fine-grained relationships allow a higher precision when understanding commonal-
ities and anomalies.

15

Chapter 3

Unveiling and Reasoning about
Hidden Dependencies Induced by
Co-Evolution

3.1 Chapter Abstract
Flexibility is one of the expected benefits of a modular design, and thus “it should be
possible to make drastic changes to a module without changing others”. Accordingly,
based on the evolutionary data available on version control systems, it should be possible
to analyze the quality of a modular software architecture— and decide whether it is
worth to restructure its design. In this chapter we investigate this issue using a novel
approach based on a general theory of modularity that uses design structure matrices
for reasoning about quality attributes. We carried out a comprehensive study using our
approach and found that unveiling and reasoning about the hidden dependencies of a
software design lead to a significant impact on three architectural metrics (average impact
of components, system stability, and intercomponent cyclicality). We also investigate the
issue of restructuring a software based on co-evolution clusters, and we found that a
clustered-based decomposition leads to small improvements on system modularity (7.68%
on average). This finding contrasts with previous works [70, 79, 16] that suggest that the
analysis of co-change clusters might serve as guidance to developers in the challenging
task of redesigning a software.

3.2 Introduction
In a seminal paper about the criteria to decompose systems into modules [65], David
Parnas relates module as a work assignment unit and states the well known expected

16

benefits of a modular design, which encourage the parallel design of each module, the
support for reasoning about each module independently, and the flexibility to change
each model without the need to change others. Though this notion of modularity relates
to work assignment, instead of the decomposition of a software in terms of language
constructs (such as Java packages, classes, and interfaces), it is expected that the design
structure of a system (i.e. its architecture) should resemble the modularization in terms
of work assignments.

The issue about how far the design structure resembles the work assignments has
been investigated before, particularly through the mining of evolutionary data available
in version control systems (VCS). For instance, Murphy et al. report that more than 90%
of the changes committed to the Eclipse and Mozilla source-code repositories involved
changes to more than one file, which suggests a typical crosscutting pattern that might
compromise software modularity [62]. Likewise, Zimmerman et al. recommend the use
of fine-grained evolutionary dependencies (in terms of syntactical entities, instead of files
or modules) to reason about software modularity [79]. As a more recent work in this
field, Silva et al. use software clustering techniques based on the co-evolution of coarse-
grained software elements (packages and classes) to analyze software architectures [70].
As a result, they suggest that it might be worth to restructure the package decomposition
according to the results of co-evolution analysis.

The aforementioned works use the source-code history to unveil dependencies that
could not be inferred from a static dependency, that is a typical usage relation between
software elements. Here we introduce the concept of hidden dependency as a special
kind of dependency motivated by a set of co-changes between two software elements—
given that it does not exist a static dependency between them. Therefore, we say that
two entities are evolutionarily dependents when they frequently change together, and,
according to a criteria that we introduce later in this chapter, this might lead to a hidden
dependency between them.

In this chapter we investigate the impact of hidden dependencies on the architecture
using a novel approach that builds upon a general theory of modularity (Section 3.3),
which allows us to answer two research questions: (a) To what extent do the hidden de-
pendencies induced by the co-evolution of components impact the architecture?, and (b)
Is it worth to restructure the architecture of a system based on the co-evolution clusters?
Answering the first research question serves as a predictor about the capacity of the ar-
chitecture to accommodate software evolution. Di�erently, answering the second research
question might support future e�orts to investigate software reconstruction based on co-
evolution clusters (as suggested in [70]). Therefore, this chapter presents the following
contributions

17

• A novel approach for reasoning about the hidden dependencies induced by the co-
evolution of software assets (Section 3.4). Di�erently from previous works, our
approach is supported by a general theory of modularity, so that we use a well
defined set of tools and metrics for reasoning about modularity.

• A comprehensive study about the impact of co-evolution with respect to the design
structure of one proprietary and six Java open-source softwares that we use as target
systems. We detail this study throughout Sections 3.5–3.8.

Based on the results of our investigation, we could conclude that the architecture of the
target systems do not resemble the work assignment devised by the software evolution.
In addition, our experience in this research reveal that the co-evolution clusters might
not provide a meaningful unit of modularity on his own. We also relate our research
to existing works in Section 3.9 and present the final considerations and future works in
Section 3.10.

3.3 Background
In this chapter we use the Baldwin and Clark general theory of modularity [9] to in-
vestigate the impact of hidden dependencies. Hidden dependency is an evolutionary de-
pendency between two entities given that it does not exists a static dependency between
them. Two entities are evolutionarily dependents when they are frequently changed to-
gether. Static dependency is a typical usage relation among source-code entities, such as
method call and field access.

The Baldwin and Clark theory considers modularity as an important factor that has
been uplifting innovation in di�erent domains, and thus, the evolution of the computer
industry, for instance, might be explained through the modular design of computers in
the nineteen sixties, when IBM launched the System/360 computer family. The origi-
nal theory makes use of two main components: design structure matrices for reasoning
about the architecture of a system and six modular operators that describe how a system
might evolve towards a modular design. More recently, several research works investigate
properties of software architectures using elements of this theory (in particular DSMs)
[73, 53, 54]. In addition, MacCormack et al. [55] extended the Baldwin and Clark the-
ory to introduce specific metrics for reasoning about software modularity. To answer our
research questions introduced in Section 3.2, we use both the visual representation of
DSMs as well as several architectural metrics that can be computed from DSMs. In the
remaining of this section we introduce these elements.

18

1 2 3 4

E1 1 ·

E
2

≠
E

3 E2 2 ◊ · ◊

E3 3 ◊ ◊ ·

E4 4 ◊ ··

Figure 3.1: Example of DSM

3.3.1 Design Structure Matrix (DSM)

DSM is a technique for representing the modules and their dependencies in a system.
This representation, which helps architects on the design, development, and management
of complex systems [33], has been considered one of the most promising techniques for
reasoning and measuring modularity [55]. A DSM is often represented as an N ◊ N

matrix, where each row and each column represents an element of a system [33].
Figure 3.1 shows an example of a DSM. The labels E1 to E4 identify the elements.

Graphically, we use an ‘◊’ mark in a cell at row i and column j when the element i

depends on the element j. To define the modules of a system, it is usual to have a set of
partitions of elements accompanying the DSM. An example of partition is also shown in
Figure 3.1, as indicated by the thick borders. In Section 3.4 we discuss two hierarchical
partition strategies used in this chapter: (a) the structure of the source-code packages
and (b) the clusters based on evolutionary dependencies.

We use DSMs to analyze the design of existing software, even though instead of con-
sidering the source file as an element [55], we consider fine-grained entities (including
classes, methods, and attributes). In addition, we represent two kinds of dependencies:
static dependencies, and hidden dependencies induced by the co-evolution of the software
entities. To evaluate the software architecture, we use DSMs together with the metrics
we present in Sections 3.3.2 and 3.3.3.

3.3.2 Architectural Metrics

To investigate the impact of hidden dependencies, we use three architectural metrics based
on the design structure of a system: Average Impact, System Stability, and Intercomponent
Cyclicality. This decision was motivated because these metrics use the dependency struc-
ture to estimate how robust a software architecture is to accommodate confined changes.

19

1 2 3 4

E1 1 ·

E
2

≠
E

3 E2 2 ◊ · ◊

E3 3 ◊ ◊ ·

E4 4 ◊ ◊ ◊ ··

Figure 3.2: Example of a transitive closure

In addition, they have been previously used and we could use an existing tool (Lattix1) to
automatically collect these metrics from the DSMs of the subject systems. The technical
reports of Lattix define these metrics as follows:

• Average Impact (AI) of all elements. For each element, the impact is calculated as
the total number of elements that could be a�ected if a change is made to it. For
this metric, the lower, the better.

To know how many elements are a�ected, a transitive closure of the original matrix
which represents the DSM is built. Specifically, a transitive closure of a DSM
D = [dij] is another DSM D

Õ = [dÕ
ij] where,

d

Õ
ij = ◊, if exists a path between i and j in D, (3.1)

and, exists a path between i and j if exists a sequence,

dk0k1 , dk1k2 , · · · , dkn≠1kn , (3.2)

where, each dkl≠1kl
= ◊, and k0 = i, kn = j.

Figure 3.2 shows the transitive closure computed from the DSM of Figure 3.1. Note
that each cells 4, 1 and 4, 2 were filled with ‘◊’.

Given the transitive closure, the AI metric is defined as:

AI = 1
|E|

|E|ÿ

i,j=1
1, If di,j = ◊ in the transitive closure. (3.3)

Where |E| is the total number of elements. Thus, the AI of the DSM in Figure 3.2,
is 1

4(0 + 2 + 2 + 3) = 1.75.
1http://www.lattix.com

20

• System Stability (SS)i: measures the percentage of elements (on the average) that
would not be a�ected by a change to an element. It is calculated according to the
equation,

SS = 100 ≠
A

AI

|E|

B

100, (3.4)

For this metric, the closer to 100%, the better.

For Figure 3.2, the SS is 100 ≠ (1.75
4)100 = 56.25%

• Intercomponent Cyclicality (IC) reports the percentage of elements that are in a
cyclical dependency with other elements in other partitions. Attempt should be
made to bring this number to zero or close to zero.

We also compute this metric based on the transitive closure. In Figure 3.2, we have
two elements involved in a cyclical dependency (2 and 3). But, as they are in the
same partition, the IC for this DSM is zero. Otherwise, it would be 2

4 = 50%.

3.3.3 Clustered Cost

Besides the architectural metrics, we reason about the partitions strategies (static and
evolutionary) using the Clustered Cost metric [55], which also derives from the Baldwin
and Clark theory. The Clustered Cost metric assigns a weight to each dependency, con-
sidering this weight should be lower if two dependent elements are in the same partition.

The metric requires the identification of elements with a large number of dependents.
These elements are called vertical buses in [55]. Given the number of elements N , a
element j is a vertical bus if:

Q

cccaDepRatio(j) =

Nq
i=1

1, if i depends on j

N

R

dddb > bus threshold (3.5)

Then, given the set of elements E and the set of dependencies D ™ E ◊ E, the
Clustered Cost of a DSM is the sum of the Dependency Cost of each (Ei, Ej) œ D, as
defined bellow:

DependencyCost(i, j) =

Y
___]

___[

1, if j is a vertical bus
n

⁄
, if i, j in same partition

N

⁄
, otherwise

(3.6)

where n is the size of the partition, N is the size of the DSM, and ⁄ is a user-defined
parameter. We discuss the value of this parameter and the bus threshold in Section 3.6.

21

In Figure 3.1, for example, we have:

DepRatio(1) = 2
4 = 0.5, DepRatio(2) = 1

4 = 0.25,

DepRatio(3) = 2
4 = 0.5, DepRatio(4) = 0

4 = 0.

(3.7)

Thus, if we assume bus threshold = 0.3 and ⁄ = 2, we have the following dependency
costs:

Q

cccccca

1 2 3 4
1 0 0 0 0
2 1 0 1 0
3 1 22 = 4 0 0
4 0 0 1 0

R

ddddddb
(3.8)

Then, the Clustered Cost of this DSM is 1 + 1 + 4 + 1 + 1 = 8.

3.4 Methodology
This section describes the methodology (see Figure 3.3) we use to investigate our research
questions. To measure the impact of hidden dependencies, and to discover the quality of
the decomposition based on co-change clusters, we need to calculate the metrics presented
in Section 3.3 (step 5). Before, we need to build DSMs which the metrics will be based
on (step 4). As we are interested in both static and evolutionary dependencies, it is nec-
essary to extract the static dependencies from Jar files and to compute the evolutionary
dependencies using data from VCSs for a given system (step 1, 2 and 3).

The release version for the Jar files coincides with the final period of the change history
extracted from VCS. In other words, we compute the dependencies between elements
contained in the code base at one point in time, using two perspectives: static and
evolutionary. While the extraction of static dependencies only uses the code as it was in
the release time, to compute the evolutionary dependencies is necessary to accumulate
data from all the change history.

To enable the reproduction of this study, we populate a relational database with the
results of the first three steps. Besides the use of existing tools discussed in the remaining
of this section, we implemented several auxiliary scripts. Both scripts and dataset are
available on-line [3, 1].

3.4.1 Extracting Fine-Grained Version History

A VCS repository contains the sequence of changesets applied to the software artifacts.
We consider that a commit is a changeset that contains more than one artifact at once.

22

VCS

Binaries

HR

Package 1

Method1
Method2

Field1
Field2

Class1

Method3
Method4
Method5

Field3
Field4

Class2

Package 2

Method6
Field5

Class3

Method7
Method8

Field6
Class4

Method9
Method10

Field7
Class5

Co-change clusters

Package 1

Method1
Method2

Field1
Field2

Class1

Method3
Method4
Method5

Field3
Field4

Class2

Package 2

Method6
Field5

Class3

Method7
Method8

Field6
Class4

Method9
Method10

Field7
Class5

Static dependencies

1 2 3 4

E1 1 ·

E
2

≠
E

3 E2 2 ◊ · ◊

E3 3 ◊ ◊ ·

E4 4 ◊ ··

DSM

Metrics
Report

1

2

3

4

4

5

Input

Output

Figure 3.3: Metrics Extraction Process (numbered circles represent the steps.)

Contrasting, a fine-grained VCS repository controls the history of changes applied to some
code entities (eg. classes, methods, fields).

Here we are interested in the history of code constructs at the level of classes, at-
tributes, and methods. The goal of this first step is to convert the original VCS repos-
itory to a fine-grained repository (see step 1 on Figure 3.3). To this end, we use the
git2historage (GTH) tool [41] to convert a regular GIT repository into another GIT reposi-
tory containing the history of the source-code at a fine-grained level, leading to a Historage
Repository (HR). The input for GTH tool is the original GIT repository and the output is
a HR containing the same original commits, and for each commit, its associated artifacts
are splitted in the syntactic entities which they contain, i.e., the code of each entity is
moved from the original source file to a new file containing only that code (see HR item
on Figure 3.3).

3.4.2 Extracting Co-Change Clusters

Software clustering technique is a typical approach for discovering groups of code elements
based on their mutual dependencies. In general, before applying a clustering technique, it
is first necessary to build a Module Dependency Graph (MDG), which is a directed graph
that contains source-code elements as vertexes and dependencies between them as edges.
In our approach, the fine-grained code entities are the vertexes of the MDGs; whereas the

23

public class C1 {
public void m1() { /* ... */ }
public void m2() { /* ... */ }

}
public class C2 {

public void m3() { /* ... */ }
public void m4() { /* ... */ }
public void m5() { /* ... */ }

}
(a) Current source-code

Commit Description Entities
028a98d Issue #1 m1, m3
d8fd425 Issue #2 m1, m3
c90c352 Issue #3 m1, m4
ad3f78a Issue #4 m1, m4
cd5e305 Issue #5 m1, m4
7de2d7b Issue #6 m3, m2
83850f6 Issue #7 m4, m3
59561f2 Issue #8 m4, m3
b8e3afd Issue #9 m4, m3
3bed650 Issue #10 m4, m3
5afa3bb Issue #11 m5, m2
121192e Issue #12 m5, m2
44b80e9 Issue #13 m5, m2

(b) Fine-grained commits from HR

m1 m2

m3

m4 m5

(2, 0.40)

(3, 0.60)

(1, 0.25)

(3, 0.75)

(2, 0.29)

(1, 0.14)

(4, 0.57)

(3, 0.43)

(4, 0.57)

(3, 1.00)

(c) Co-change graph (MDG)

m1 m2

m3

m4 m5

(3, 0.60) (3, 0.75)

(4, 0.57)

(4, 0.57)

(3, 1.00)

(d) Pruned co-change graph using minimum support

equals 2 and minimum confidence equals 0.5

Cluster 0 Cluster 1

m1 m2

m3

m4 m5

(3, 0.60) (3, 0.75)

(4, 0.57)

(4, 0.57)

(3, 1.00)

(e) Co-change clusters

Figure 3.4: Example of co-change cluster extraction (the edges’ labels specify support
count and confidence respectively.)

evolutionary dependencies derive the edges of the graph. Figure 3.4 shows an example of
co-change clusters extraction, which is also represented by the step 3 on Figure 3.3. The
details about it are bellow.

To extract an MDG from the source-code history, we iterate over the commits history
and their respective entities stored on HR (Figures 3.4a and 3.4b). In this case, an
MDG is a co-change graph G = (V, E), where V is a set of code entities and E is a
set of pairs (Vi, Vj) œ V ◊ V , such that exists a commit which contains both Vi and
Vj (Figure 3.4c). It is important to note that we followed some guidance about how to

24

build MDGs from source-code history with the goal to enhance the quality of the clusters.
Thus, we do not consider all changesets when building the graph. First, we only consider
commits explicitly related at least one issue present in the Issues Tracking System (ITS)
of the subject software, as we want to resemble the software structure following the work
assignments. We assume that the issues stored in the ITS are related to some kind of
work assignment: the implementation of a new feature, modification of a existing one,
bug fixing, and so on — in fact, the issues’ kind does not matter, we use them only to
build the MDG. This way, if a set of entities are associated with some issues in common,
we conclude that the entities are related with work assignments in common too.

In addition, we follow the suggestion of some authors that a commit should not be
considered in the analysis when the number of entities exceeds a threshold [81]. Also
regarding our criteria to prune the dependency graph, Zimmerman et al. [79] propose
the use of the support and confidence metrics to measure the quality of the evolutionary
dependencies (support is called support count in [81]). We define support as the number
of issues in common between two entities.

An MDG must only contain edges with a minimum support. To aid the clustering
algorithm to produce clusters with better quality, we assign the support metric as the
weight of each edge, similarly to [70]. The confidence metric measures the strength of a
dependency between two entities, and is defined as:

confidence(Vi, Vj) = support(Vi, Vj)
support(Vi, Vi)

(3.9)

The term support(Vi, Vi) means the total of issues associated with Vi. Thus, confidence

is the proportion of issues where Vi and Vj participates in relation to the total of issues
that Vi participates. Again, only edges with a minimum confidence will be used (see
Figure 3.4d).

Given that criteria above, one must experiment with some thresholds to choose a
suitable combination. Some authors gives advice about this, such as Beck and Diehl [16],
which state that the values for minimum support equals 1 and minimum confidence equals
0.4 produced the best results in their experiment. Additionally, they establish 50 as the
maximum acceptable number of entities in a commit. On the other hand, Silva et al. [70]
use a di�erent set of thresholds, considering the minimum support equals 2.

Regarding automation, there is a number of algorithms, methods, and tools to cope
with the task of clustering software elements. We choose Bunch because of its superior per-
formance on clustering software [60]. Bunch applies a heuristic search algorithm based on
random elements and increases the reliability of the results by carrying out the clustering
process several times.

25

More specifically, Bunch receives an MDG as input and generates a dendrogram (also
called Clustered Graph; see Figure 3.4e), in which a cluster in a level with less details
contains one or more clusters of the next level. In our analysis, we configured Bunch with
the Agglomerative Clustering action and the Hill Climbing clustering method as in [16].

3.4.3 Extracting Static Dependencies

In the third step (see Figure 3.3), we extract the static dependencies among source code
entities using the Dependency Finder (DF) tool [2], as Beck and Diehl [16]. This tool reads
a set of binary class files and outputs a report with the static dependencies representing
usage relations among entities. We then import those static dependencies into our dataset,
using a specific script that associates the entities in the DF report to the fine-grained
entities in HR. If one entity from DF report is not found in HR, the dependency is
discarded. In general, these entities are code generated by the compiler, such as default
constructors and enum methods. Thus, there is no prejudice in discard them.

3.4.4 Building DSMs

This is the step 4 in Figure 3.3. To answer the first research question (To what extent do
the hidden dependencies induced by the co-evolution of components impact the architec-
ture?), we create two DSMs, one with static dependencies and one with both static and
hidden dependencies. The elements of both are the fine-grained entities of a system. The
partition strategy is based on the original modules (packages) in both DSMs. These two
DSMs are then compared, using both visual representation (detailed on Section 3.6) and
architectural metrics. This enable us to reason about the impact of revealing the hidden
dependencies.

To answer the second question (Is it worth to restructure the architecture of a system
based on the co-evolution clusters?), we create two DSMs: one DSM that uses the typical
packages partition strategy; and one DSM that uses co-change clusters as a partition
strategy. Each DSM contains both static and hidden dependencies. In this way, we can
compare the Clustered Cost of the DSM organized by the co-change clusters with the
DSM organized by the original modules (Java packages). The di�erence between these
two DSMs is the partition strategy. This setup allows us to investigate which is the
superior partitioning strategy (clustered based or based on packages) according to the
Clustered Cost metric.

26

3.4.5 Computing Metrics

We collect the architectural metrics using the tool Lattix. It receives as input the DSMs,
comprising entities, dependencies and partitions, and outputs a set of metrics values (see
step 5 on Figure 3.3).

Note that, the original definition of the Clustered Cost metric uses as partitions a set
of clusters that are built using an iterative search-based algorithm [55]. Their creators
have the intention that the metric is a�ected only by the amount and the patterns of
dependencies in a DSM—and not the quality of a particular partitioning. Di�erently, in
this chapter we measure the quality of a given partitioning based on co-change clusters,
and thus we calculate the metric using the partitions based on packages and the co-change
clusters instead.

3.5 Study Settings
This section brings details about the study settings we use for investigating our research
questions discussed in Section 3.2 using the methodology of Section 3.4.

3.5.1 Target Systems

We selected seven Java projects of di�erent domains as the target systems of our study.
All of these project uses either GIT or SVN as version control systems, and an expressive
number of commits are related to issues (ranging from 38% for SIOP to 98% for Hadoop).
Six of the target systems are open source projects; while SIOP is one fundamental financial
system of the Brazilian Government, which the first author of this chapter has contributed
to. All of them have large code bases, at least two years of development history, and has
been useful for many users.

Table 3.1 summarizes some basic metrics about the target systems. Due to some
constraints of Bunch regarding the size of the dependency graph [16], we limited the
evolution history period of three projects (Hadoop, Eclipse UI and Lucene).

3.5.2 Selection of the Threshold Combination

Several clustered graphs based on di�erent thresholds combinations were computed. For
each project, the graphs with best results were used for building the DSMs.

The set of thresholds we experiment are: maximum number of entities per issue, min-
imum support, and minimum confidence. For the first threshold, we experiment with the
value 50, as suggested by Beck and Diehl [16] and the value 100, since we grouped entities

27

Table 3.1: Basic metrics about target systems. #C means number of classes and inter-
faces; #F, methods, attributes, and constructors; #I, issues; and #SD, static dependen-
cies between entities.

Name Description Version Period #C #F #SD #I
SIOP Brazilian Planning and Budget System 1.26.0 2009/05/14-2014/05/15 4,542 64,700 126,192 2,949
Derby Relational database 10.11.1.1 2004/08/11-2014/09/10 1,597 22,793 55,447 3,245
Hadoop Large data sets processor 2.5.2 2013/01/01-2014/09/10 10,351 99,485 70,877 5,331
Eclipse UI Eclipse main UI 4.5M2 2011/01/01-2014/09/08 7,443 56,649 75,354 9,510
JDT Core Eclipse Java core tools 4.5M2 2001/06/05-2014/10/21 1,954 30,250 87,356 5,002
Geronimo Java EE application server 3.0.1 2006/08/24-2013/03/21 3,101 16,476 26,118 1,511
Lucene Text search engine 4.9.1 2011/01/01-2014/10/27 4,097 28,915 20,236 3,272

per issue instead of commit, and this scenario leads to a greater number of associations.
For the second threshold, we experiment with the values 1 and 2, also following the rec-
ommendations of [16, 70]. Finally, for the third threshold, we experiment with the value
0 (according to Silva et al [70]) and with the value 0.5 (using a more conservative scenario
than the value 0.4 proposed by Beck and Diehl [16]).

The criteria we use to build the MDGs discards some dependencies. As the co-change
clusters contains only entities with dependencies between them, the set of entities con-
tained in all clusters is only a subset of the all entities in a system. As consequence,
the static dependencies between the entities in this subset are also a subset of all static
dependencies of a system. Thus, we can derive the dependency density metric, given a
evolutionary dependency graph G = (V, E) and a set of static dependencies SD:

Density(G) = |{(Vi, Vj) : Vi, Vj œ V · (Vi, Vj) œ SD}|
|SD| (3.10)

In fact, the set of code entities is subdivided according to the level of granularity —
classes and interfaces (thereafter called coarse grained entities), and methods, fields, and
constructors (called fine grained entities). There are eight possible threshold combinations
that we use to build MDGs. When considering each level, we have sixteen di�erent
clustered graphs.

To answer the first research question we only need to use coarse grained entities,
because if a fine grained entity F1 depends on F2, and they are contained in coarse
grained entities C1 and C2 respectively, then C1 depends on C2. Thus, the e�ect of
revealing hidden dependencies can be captured using only coarse grained entities. For the
second question we use the two subsets because we want to understand: (a) the e�ect of
rearranging the classes between di�erent packages, and (b) the e�ect of rearranging the
methods to form new classes.

We selected only two graphs per project to generate the DSMs, one for each level of
granularity. The first selection criteria is the higher dependency density (with a value of

28

0.1 at least). In the cases where no significant di�erence was found (less than 0.05), we
use as a criteria (in this order): greater confidence, greater support, and smaller number of
entities per issue. We chose dependency density as first criteria because, if there were only
a few dependencies, the metric values would seem better than they really are. For even
cases, the use of higher confidence and support, and smaller entities per issue produces
clusters of better quality, as discussed in [16].

After an empirical study, we chose as the best combination the following thresholds:
support: 1, confidence: 0.5, maximum number of entities per issue: 50. The only exception
was Lucene, that produced better results when the maximum number of entities per
issue was 100. Several thresholds combinations applied to fine grained entities could not
successfully run in Bunch, due to the huge number of vertexes of the dependency graph.
For this reason, only Geronimo and Lucene produced usable fine grained clustered graphs.

3.6 Results
In this section we present the results of our investigation. We first present an exploratory
data analysis that characterizes the target systems according to the scattering of issues
and commits throughout the fine grained entities of the subject systems. Then we answer
the fundamental research questions of this study.

3.6.1 Exploratory analysis of the impact of commits and issues
into fine grained entities

We have characterized the subject systems according to the e�ect of issues and commits
into fine grained software entities (attributes, constructors, and methods). Accordingly,
we derive a notion of scattering that we use in Section 3.6.2 and Section 3.6.3.

Figure 3.5 summarizes this auxiliary result. Considering all systems, each commit
a�ects on average 14.51 attributes, 5.12 constructors, and 17.29 methods. Besides that,
Geronimo, Hadoop, and Lucene present an expressive scattering of commits throughout
the fine grained entities. In particular, each commit of these three target systems a�ect on
the average more than 20 methods. Regarding the impact of issues into the fine grained
entities, on the average each issue of the subject systems a�ects 18.38 attributes, 6.48
constructors, and 27.90 methods. Once more, Geronimo, Hadoop, and Lucene present a
high degree of scattering between issues and the fine grained entities.

There is also a relation between issues and commits, which allowed us to compute
the notion of impact discussed above. In one extreme, 30% of the commits are related
to issues on SIOP. On the other, more than 90% of the commits are related to issues on

29

Figure 3.5: Characterization of the systems with respect to the impact of the commits
and issues into the fine grained entities.

av
er

ag
e

nu
m

be
r o

f a
ffe

ct
ed

 e
nt

iti
es

10

20

30

40

50

attributes constructors methods

Commit

attributes constructors methods

Issue

Derby
Eclipse JDT
Eclipse UI

Geronimo
Hadoop
Lucene

SIOP

Hadoop. Considering all target systems, each issue requires on the average 1.59 commits.
This quantitatively supports a previous assumption that, in open-source projects, there
is almost an one-to-one mapping between commits and work assignments [62]. We also
consolidated this analysis considering the impact of commits and issues into coarse grained
entities, and we found that, on the average, each commit a�ects 5.10 Java classes or
interfaces; and each issue a�ects 8.81 Java classes or interfaces.

These numbers show that the evolution of the source-code of the target systems, in
terms of work assignments, is spread over several code entities. This suggest that it
might be worth to reasoning about the architecture of those systems also considering the
evolutionary history available on version control systems. Next we further investigate this
issue, by empirically assessing the impact of the hidden dependencies motivated by the
co-evolution of coarse grained entities into the architecture of the systems.

3.6.2 To what extent do the hidden dependencies induced by
the co-evolution of components impact the architecture?

As discussed in Section 3.4, to answer this research question we build two DSMs for each
target system. For both DSMs, we use classes as elements and packages as partitioning
strategy (as discussed in Section 3.5). Figures 3.6 to 3.12 shows some examples of DSMs
for the target systems. The first sub-figure contains only static dependencies; the second
contains both static (black) and hidden (red) dependencies.

30

(a) Static (b) Static and Evolutionary

Figure 3.6: SIOP DSMs

(a) Static (b) Static and Evolutionary

Figure 3.7: Derby DSMs

(a) Static (b) Static and Evolutionary

Figure 3.8: Hadoop DSMs

Considering that in each DSM the rows and columns were sorted by qualified class
name (formed by package name first plus class name after), a modular design should

31

(a) Static (b) Static and Evolutive

Figure 3.9: Eclipse UI DSMs

(a) Static (b) Static and Evolutive

Figure 3.10: JDT DSMs

(a) Static (b) Static and Evolutionary

Figure 3.11: Geronimo DSMs

concentrate most of the dependencies along the main diagonal, as well as along the vertical
buses. In this way, comparing the DSMs, di�erent patterns emerge. For instance, Derby,

32

(a) Static (b) Static and Evolutionary

Figure 3.12: Lucene DSMs

JDT and SIOP present a high degree of scattering of both static and hidden dependencies,
which might suggest bad design decisions during the decomposition of these systems into
modules. In the case of SIOP, the scattering might also reflects the existing coupling
within the organizational structure where SIOP has been developed [55]. Note that,
according to our observation that a modular design concentrates most of the dependencies
along the main diagonal, we conclude that the other target systems (Hadoop, Geronimo,
Eclipse UI, and Lucene) present a better decomposition — which leads to a smaller number
of hidden dependencies in these systems.

Indeed, most hidden dependencies in Hadoop, Geronimo, Eclipse UI, and Lucene
correspond to the static dependencies, while in the others (SIOP, JDT, and Lucene) there
is a prevalence of hidden dependencies. These support the results found by Silva et al. [70],
though using a di�erent set of metrics and visualization tool, for the systems investigated
in both studies (Geronimo, JDT, and Lucene).

We collected the architectural metrics from the DSMs above mentioned. Table 3.2
presents the growth ratio of the metrics after introducing the hidden dependencies. We
consider that the lower the variation, the higher the resilience of a system. In this way,
we can reason about the impact of the static dependencies of a system into the hidden
dependencies.

For instance, note that (a) most of the Geronimo static dependencies (Fig. 3.11a)
are within the main diagonal, and (b) Geronimo is more resilient to the introduction
of the hidden dependencies — there is no change on the system stability of Geronimo
after considering the hidden dependencies (see Table 3.2). Di�erently, Derby and SIOP
present a high degree of scattering of the static dependencies, as well as they are the
subject systems with less resilience with respect to the computed metrics. For instance,
the introduction of the hidden dependencies increases the Average Impact by a factor of

33

Table 3.2: Target System’s Architectural Metrics Growth (%) after revealing hidden
dependencies. ‘D’ means dependency

System AI Growth SS Growth IC Growth D Growth
SIOP 810 -60 580 150
Derby 540 -70 390 150
Hadoop 540 -20 240 40
Eclipse UI 180 -40 170 40
Eclipse JDT 110 -60 50 70
Geronimo 160 0 80 30
Lucene 760 -50 1300 120

Table 3.3: Correlation between dependency count (D(S) and D(S,E)) and the growth of
the architectural metrics

Metric AI Growth SS Growth IC Growth
D(S) 6 63.6 -2.27
D(S, E) 52.7 20.1 1.57

540% and 810% in Derby and SIOP, respectively.
In general, the impact on the architectural metrics after introducing the hidden depen-

dencies is higher on three subject systems: SIOP, Derby, and Lucene. Although Hadoop
also presents a considerable growth on the Average Impact metric, it is more stable than
SIOP, Derby, and Lucene when we consider the other metrics. In addition, there is a small
correlation between the number of dependencies (before and after considering the hidden
dependencies) and the Average Impact, System Stability, and Intercomponent Cyclicality
metrics (see Table 3.3). As a consequence, the impact on these metrics might not be justi-
fied by the number of dependencies between software assets, but instead we can conclude
that the corresponding lack of resilience is due to the architectural organization of those
systems. In these cases, revealing the hidden dependencies caused by the co-evolution of
system components brings new perspectives about the software design. For this reason,
we consider that the hidden dependencies are relevant from an architectural point of view,
and must be considered when deciding about restructuring a software.

Therefore, regarding our first research question, we conclude that the impact of
hidden dependencies on the architecture is significant and thus they should be
also considered when restructuring a system.

34

Table 3.4: Clustered Costs (CC) growth (%) after restructuring using coarse grained
entities. #P means Number of Packages, and #C, Number of Clusters

System #P #C CC Growth
SIOP 142 88 ≠7
Derby 120 83 8
Hadoop 273 215 ≠27
EclipseUI 217 218 ≠27
JDT 521 407 22
Geronimo 263 109 ≠29
Lucene 168 75 ≠16

3.6.3 Is it worth to restructure the architecture of a system
based on the co-evolution clusters?

After analyzing the impact of hidden dependencies in the architectural metrics of the
target systems, we investigate the e�ect of a hypothetical re-modularization driven by
co-change clusters, using both levels of granularity (as discussed in Section 3.5). First, we
built two additional DSMs for each project, both using coarse grained entities as elements.
The first DSM uses a cluster-based partitioning strategy, while the second uses a typical
package-based partitioning.

In both cases, the DSMs comprise static and evolutionary dependencies. The Bunch
tool generates hierarchical clusters with di�erent levels of details. We thus decided to
select the level of details with greater number of clusters, providing that this number is
less or equal the number of leaf packages. Further, we compute the Clustered Cost metric.
The rationale for using this metric is that it is more sensitive in relation to the actual
partitioning, contrasting with the other metrics we used previously in Section 3.6.2 (AI,
SS, and IC), that do not take into account the partitions used in a given DSM.

In this chapter, for calculating the Clustered Cost metric, we use a busthreshold = 0.1
and ⁄ = 2, as suggested by MacCormack et al. [55]. Accordingly, Table 3.4 presents the
resulting Clustered Cost measurements. It is possible to note that it is worth to restructure
SIOP, Hadoop, Eclipse UI, Geronimo and Lucene according to the clustering partition.
For those systems, the average decreasing of the Clustered Cost metric equals 17.2% (with
a standard deviation of 9.33). For the other systems (Derby and JDT), there is an average
increasing of 16.1% on the clustered cost metric.

Finally, we built two additional DSMs based on the fine grained entities of two target
systems (in a total of four DSMs): Geronimo and Lucene. In the first additional DSM,
we use as input the co-change graph involving attributes, constructors, and methods as

35

Table 3.5: Clustered Costs (CC) growth (%) after restructuring using fine grained entities.
#CS means Number of Classes, and #CT, Number of Clusters.

System #CS #CT CC Growth
Geronimo 760 290 ≠92
Lucene 1,004 1,047 ≠8

edges. In the second additional DSM, we use the static dependencies graph as input,
also considering the fine grained entities of the systems. As an intermediary result, a
DSM is built comprising these entities as elements and clusters as partition, and another
DSM is built with the same elements as the former, but using classes as partitions. As
final output, DSMs’ elements were replaced with the most detailed level of partitioning.
Thus, for the first DSM, the clusters with the higher level of details become elements,
and the immediate superior level was used as partitions. For the second DSM, the classes
become elements, and the packages the partitions. Therefore, the finest level of clusters
corresponds to an hypothetical set of classes. Table 3.5 shows the metrics we compute
from these DSMs.

The data for Geronimo suggests a significant enhancement on the metric, after re-
arranging fine-grained methods in clusters. However, these values were influenced by
the lower number of clusters compared to the classes number. For Lucene, the numbers
are more coherent, as the number of clusters is near identical to classes number. The
Lucene fine-grained results are better than coarse-grained, but, the gain is concentrated
in rearranging hidden dependencies only.

Therefore, regarding our second research question, we can not conclude that re-
structuring a system according to the co-change clusters is worthwhile, since there
is no improvement guarantee on the Clustered Cost metric.

3.7 Discussion
This study shows how to measure quantitatively the magnitude of the impact of the hidden
dependencies on the architecture. Also, it shows that DSMs can be used to visualize the
overall quality of a design and to see the impact of introducing hidden dependencies.

However, the overall result of using co-change clusters alone for reorganization can
be negative or have little positive e�ect. A skilled and motivated team may achieve
enhancements of orders of magnitude on Clustered Cost metric [55]. However, it seems
that these gains can not be achieved by automatically reorganizing the source-code to
match the co-change clusters. Fine-grained decompositions seems to have a potential

36

positive value on design, but the semantic of the clusters must be further investigated in
order to see if they are cohesive before any recommendation on that respect.

3.8 Threats to Validity
In this section we present a discussion about some questions that might threat the validity
of our work. We organize them according to the internal, construct, and external threats.

Internal Validity. We applied the same method to all target systems, including thresh-
olds. However, we cannot ensure that some combination of thresholds favor or disfavor
a particular project. To minimize this e�ect, we chose the thresholds according to the
guidance of previous studies. We also observed a common pattern of influence on the
thresholds on all projects, this reveals the independence of the method in regard to them.

As the result of clustering contains only a fraction of the whole set of code entities
and dependencies between them, it is possible that certain portions of one project would
produce metrics more favorable than of another project. The number of details of the
clustered graphs generated by Bunch are totally dependent of its algorithm, and thus it
can interfere on the metrics values. But this e�ect is random. The quality of the resulting
clusters are also dependent on the performance of Bunch’s algorithm.

Also, the quality of our process can be reinforced because the findings were compatible
with the work of Silva et al. [70], for the common target systems, even using a di�erent
set of metrics and tools.

Construct Validity. While we require an association between issues and commits to
resemble the work assignment modules with the clusters, the quality of this association
cannot be ensured. In addition, this association limits the number of commits considered
in our analysis. Another source of potential confusion is the entangling of commits [42].
These problems can influence the results found.

Also, we have to constrain the history period we analyzed for some projects, due to
a Bunch limitation. Nevertheless, we mitigate this threat because if the entire period it
was used the e�ect of remodularization would be greater, which would strengthen our
finding. The representation of the dependency graph was in conformance with existing
works, albeit there are alternatives [18]. Some slight departure from most studies were
proposed: the use of entities such methods, fields and constructors as elements; and the
issues in common as dependency criteria instead of commits.

External Validity. We selected a small set of seven Java projects for this study. This
can potentially limit the generalization of our results. We choose a wide range of appli-
cations, not limited to open-source ones. All projects had large codebases with a long
history of changes. As our purpose is only to give some advice about whether a refactoring

37

based on co-change clusters is worth, we can expect that the findings be reproducible in
some other projects too.

The use of Bunch as the only tool for clustering limit the reach of the study. While we
can, in the future, add more clustering tools to solve this, the choice for Bunch was made
after a broad research on the literature, and it was found among the tools that produce
the better results for software clustering [57].

3.9 Related Work
This section relates our study to previous research works in four subsections. One addi-
tional subsection shows how our work is di�erent from previous works.

3.9.1 Version History and Modularity

The work of Gall et al. [36] was the first to explore the information from version history
repositories to detect hidden dependencies between modules and to suggest remodular-
ization based on such a data. Zimmermann et al. [79] proposed an approach to determine
evolutionary coupling between fine-grained entities, evolving this approach to predict fur-
ther changes [81].

3.9.2 DSM and Modularity

Beck and Diehl [17] propose a matrix view to compare disparate software decompositions
that is very similar to DSMs. Zimmerman et al. [79] also uses a matrix representation
similar to the DSM in their work. LaMantia et al. [52] uses DSMs and the modular
operators defined by Baldwin and Clark [9] to analyze the evolution of software systems.
Xiao et al. [77] introduce design rules spaces, an architecture representation that uses
DSMs with both static and evolutionary dependencies for defect prediction.

3.9.3 Clustering and Remodularization

Wiggerts [75] introduced the theory behind the use of cluster to guide remodularization.
Anquetil and Lethbridge [5] tested various clustering algorithms and reported their perfor-
mances. Beyer and Noack [18] introduced the use of co-change dependencies in clustering.
Maqbool and Babri [58] assessed various algorithms and parameters for hierarchical clus-
tering to be used for architecture recovering. Some approaches uses semantic clustering
to assessing modularity [68, 69].

38

3.9.4 Co-change clusters and Remodularization

Vanya et al. [74] proposed a semi-automatic approach to suggest remodularization. In
their approach, given an initial partition, inter-partitions evolutionary dependencies are
identified. Silva et al. [70] propose an approach to assess modularity using co-change
clusters. Their method use the Chameleon [46] tool to cluster coarse-grained entities that
are compared with the actual package decompositions. According to their work, some
deviation can suggest restructuring.

3.9.5 Di�erences from previous works

This chapter is di�erent from the aforementioned works because our approach 1) is ap-
plicable for fine-grained elements, such as: classes, interfaces, methods, fields, and con-
structors, 2) uses DSMs and metrics from the general modularity theory of Baldwin and
Clark [9] for reasoning about the impact of hidden dependencies on architecture, and 3)
measures the e�ect of a remodularization that leads the package structure to match with
co-change clusters.

Also, our findings reveal that previous suggestions of remodularization [70], are not
applicable in general. Our results show that using DSMs to assess the modularity is
viable, and competitive in relation to other techniques [79, 70]. Some of our case studies
are also used in [70], that considered issues tracking as well.

3.10 Conclusion
In this chapter we presented a new methodology for reasoning about the hidden dependen-
cies induced by the co-evolution of systems’ assets obtained from source-code repositories.

Di�erently from existing works, our methodology relies on a general theory of mod-
ularity. This enabled us to analyze the impact of hidden dependencies on the systems
architecture using established metrics and tools. We also investigated the benefits of
restructuring the architecture of a system using co-change clusters as a guide. To con-
duct both investigations, we used seven target systems, six open-source projects and one
system from the financial domain of the Brazilian Government.

The results revealed that we can have meaningful insights about the architecture of
the systems considering the hidden dependencies used in our approach. The results also
showed that restructuring a system using co-change clusters produces little or negative
improvements. This contrasts with previous works [70, 79, 16] that argues in the opposite
direction.

39

In future works, we aim at investigating whether the combination of static and evo-
lutionary data as input for software clustering, as suggested by Beck and Diehl [16],
produces di�erent results, as pointed out in [38]. We also aim at investigating if local
reorganizations, using a subset of co-change clusters, produce better results than when
we consider all clusters.

40

Chapter 4

On the Conceptual Cohesion of
Co-Change Clusters

4.1 Chapter Abstract
The analysis of co-change clusters as an alternative software decomposition can provide
insights on di�erent perspectives of modularity. But the usual approach using coarse-
grained entities does not provide relevant information, like the conceptual cohesion of
the modular abstractions that emerge from co-change clusters. This work presents a
novel approach to analyze the conceptual cohesion of the source-code associated with co-
change clusters of fine-grained entities. We obtain from the change history information
found in version control systems. We describe the use of our approach to analyze six well
established and currently active open-source projects from di�erent domains and one of the
most relevant systems of the Brazilian Government for the financial domain. The results
show that co-change clusters o�er a new perspective on the code based on groups with
high conceptual cohesion between its entities (up to 69% more than the original package
decomposition), and, thus, are suited to detect concepts pervaded on codebases, opening
new possibilities of comprehension of source-code by means of the concepts embodied in
the co-change clusters.

4.2 Introduction
Several approaches for software comprehension have been proposed to help developers to
understand the decomposition of a system under di�erent perspectives—instead of limit-
ing the analysis to the typical representation based on the structure and usage relations
of the software components. Actually, this static representation introduces several limita-
tions. First, the design structure of a system tends to deteriorate as the software evolves

41

along the years. Second, it is usual to have a lack of correspondence between the structure
and the domain concepts of a system, which are often more related to the tasks neces-
sary to design, develop, and maintain a system. This lack of correspondence leads to the
scattering of concepts throughout the components of a system, which hinders developers
to answer questions related to traceability, such as where this conceptual feature is located
at the source-code? or what features are realized by this piece of code?

To address the need of di�erent perspectives on software decomposition, Kersten and
Murphy propose the Task Context, which is created by monitoring the tasks developers
carry out during their development activities [49]. Therefore, this perspective captures a
notion of decomposition that relates source-code entities to a conceptual task structure,
which leads to an improvement on productivity [62, 49]. Unfortunately, this approach is
not suitable to reverse engineering of system abstractions from an existing code base, since
it collects information from the current interactions of the developer with the integrated
development environment.

Another approach is to build a representation of the software from the code history.
This is the approach followed by Zimmerman et al. [81], which deduces dependencies
between software components from the common changes of source-code entities. These
are co-change dependencies, which were further investigated in other research works [35,
80, 39]. In this way, Beyer and Noack [19], propose the use of co-change dependencies
of coarse-grained software entities (i.e. object-oriented classes or interfaces) as input for
building software clusters, and thus they coined the term co-change clusters to label
the outcomes of their resulting perspective on software decomposition. Later, Silva et
al. [71] empirically evaluate the use of coarse-grained co-change clusters as a software
representation and found a mismatch between the cluster based decomposition and the
modular structure of the target systems (in terms of Java packages) of four open-source
systems.

Other works reason about the quality of a system decomposition using a notion of
conceptual cohesion, which considers the vocabulary of terms present in software entities
to estimate their semantic similarity [56, 59, 51]. Entities with high degree of conceptual
cohesion might also be used to construct a di�erent perspective of the software decompo-
sition, named semantic clusters [51]. Accordingly, Santos et al. [69], investigated the use
of conceptual cohesion and semantic clustering to assess remodularization.

It is important to note that the works mentioned above propose di�erent perspectives
of the software at the coarse-grained level, although the concepts of a software are often
disperse at the fine-grained level. In this chapter we investigate this issue using a new
perspective of the software that is based on fine-grained co-change clusters. Therefore,
the contributions of this chapter are:

42

Input

1

Extract Fine-
Grained History

Input

OutputOutput

Metrics Report

Package 1

Method1
Method2

Field1
Field2

Class1

Method3
Method4
Method5

Field3
Field4

Class2

Package 2

Method6
Field5

Class3

Method7
Method8

Field6
Class4

Method9
Method10

Field7
Class5

2

Extract Co-
Change Clusters

 1 0.5 0.2 0.7 0.2

 0.9 1 0.3 0.1 0.8

 0.1 0.5 0.2 0.7 1

 0.1 0.5 1 0.7 0.2

 0.9 0.2 0.3 1 0.8

3

Build Similarity
Index

4

Compute
Conceptual

Metrics

Do
cu

m
en

ts
(e

nt
iti

es
’ s

ou
rc

e-
co

de
)

Documents

Historage Repository

VCS
Co-Change Clusters

Semantic Index

Figure 4.1: Metrics Extraction Process. The numbered circles are the activities, which
are executed in order.

• We describe a framework for building a di�erent perspective of a software (based
on fine-grained co-change clusters) and a methodology to evaluate the conceptual
cohesion of this software perspective (Section 4.3).

• We report the results of an empirical assessment of our software perspective. In this
analysis, we compute fine-grained co-change clusters for seven real-world systems
and the observations reveal a higher cohesion of the resulting abstractions with
respect to the typical decomposition of the systems (Sections 4.4, 4.5, 4.7).

Our findings have several implications. In particular, the terms related to the fine-
grained entities that comprise a co-change cluster might serve as input to existing ap-
proaches that identify concerns from an initial setting [63]. We discuss some threats to
our study in Section 4.8 and relate our research to existing works in Section 4.9. Sec-
tion 4.10 presents final remarks and future work.

4.3 Methodology
In this chapter we aim at investigating the conceptual cohesion of co-change clusters. First
we compute, for each target system, the co-change dependencies and respective co-change
clusters using information that is available in Version Control Systems (VCSs) (first and
second activities of Figure 4.1). We then compute similarity indexes, beginning from a list
of frequent terms used in the source-code entities and computing the similarity between
these entities using Latent Semantic Indexing (LSI) [27] (third activity on Figure 4.1).
Finally, in the fourth activity of Figure 4.1 we compute a well defined metric for concep-

43

tual cohesion—as described in [59]. The conceptual cohesion metric is computed for the
resulting co-change clusters and the original modular unities (packages and classes).

In the remainder of this section we present more details about each activity mentioned
before. To enable the reproduction of our study, the scripts and data set we use are
available on-line. 1

4.3.1 Extracting Fine-Grained Version History

Typically, a VCS repository (such as GIT or SVN) contains the sequence of change sets
applied to the software artifacts. In this chapter we consider that a commit is a changeset
that contains several artifacts, and that a fine-grained repository is a special kind of VCS
that controls the history of changes applied to smaller software entities (e.g. classes,
interfaces, attributes, methods, and constructors)2.

Here we are particularly interested in the history of code constructs at the level of
these smaller entities, and thus the goal of this first activity is to convert the original VCS
repository of a system into a fine-grained repository. To this end, we use the git2historage
tool [41] to convert a regular GIT repository into another GIT repository containing the
history of the source-code at a fine-grained level—a Historage Repository (HR). Actually,
git2historage transforms a conventional GIT repository into an HR containing the same
number of the original commits. However, for each GIT commit, git2historage splits the
related artifacts into a number of fine-grained entities. That is, the code related to each
fine-grained entity is moved from the original source file to a new independent file.

The result of this first activity is illustrated as a tree layout of the file system on
Figure 4.1, where the source-code of a class Class1.c is split on a number of files; one file
for each source-code entity. From the HR repository, we build a detailed set of co-change
clusters, as follows.

4.3.2 Extracting Co-Change Clusters

In general, the goal of software clustering is to discover groups of code entities considering
some kind of mutual dependency and measure of similarity [75]. To apply a software
clustering technique, it is first necessary to build a Module Dependency Graph (MDG)—a
directed graph where: (a) the vertexes are source-code entities, and (b) the edges represent
some kind of dependency. In this work we use Java classes and members as source-code
entities; and the mutual dependency is based on the entities that had frequently changed
together (in fact, the definition of frequently is subject to criteria that we will explore in

1
http://github.com/mcesarhm/mpca and http://goo.gl/3E761S.

2In the remaining of this chapter, for the sake of simplicity, when we refer to classes, we mean classes
and interfaces. The same way, when we refer to members, we mean methods, attributes and constructors.

44

http://github.com/mcesarhm/mpca
http://goo.gl/3E761S

Section 4.4). There are two levels of granularity for co-change clusters: coarse-grained and
fine-grained. Coarse-grained co-change clusters have classes as vertexes, and Fine-grained
co-change clusters have members. Here we use a specific kind of MDG: a co-change graph,
that is formally defined as G = (V, E), where V is a set of code entities and E is a set
of pairs (Vi, Vj) œ V ◊ V , such that there is a least one commit that contains both Vi

and Vj. In other words, Vi and Vj frequently change together. To improve the quality
of the clusters, we followed several recommendations about how to build graphs from
source-code history.

First, we do not use all changesets when building the graph; and thus we only consider
commits explicitly related to at least one issue present in the Issues Tracking System
(ISS) of the target systems—since this decision tends to produce clusters that are more
semantically related [71]. With regard to the number of issues associated with commits,
we found that only 4% of the commits are associated with more than one issue and only
0.7% are associated with more than 2 issues. For this reason, we might assume a small
influence of tangled commits on the results [42, 29].

Second, we assume that a commit should not be considered in the analysis when the
number of entities exceeds a given threshold [81]. Commits with too many entities are
likely to contain unrelated code, thus we consider them as noise [16]. A code layout
change is an example of evolution that might change many source-code files at once. In
fact, as the commits must be associated to issues, we adapted this threshold to consider
the number of entities per issue. Its specific value is further discussed in Sections 4.4
and 4.5. Finally, we also prune the graph using two metrics that measure the strength of
co-change dependencies [79]: support count, which is the number of issues associated with
both entities; and confidence, which measures the probability of a change in one entity
when another changes. The graph will only contain edges with a minimum support count
and a minimum confidence. The confidence metric is defined as

Confidence(Vi, Vj) = SupportCount(Vi, Vj)
SupportCount(Vi, Vi)

(4.1)

where the term SupportCount(Vi, Vi) means the total of issues associated with Vi. Thus,
Confidence(Vi, Vj) is the proportion of issues where both Vi and Vj participates in
relation to the total of issues that only Vi participates. Note that Support Count is
symmetric—SupportCount(Vi, Vj) = SupportCount(Vj, Vi), but Confidence is asymmet-
ric — Confidence(Vi, Vj) ”= Confidence(Vj, Vi).

So, when considering the criteria above, we simulated several threshold combinations
to choose a suitable one, though we also considered some guidance from the literature as
discussed further in Section 4.4.2.

45

public class C1 {
 public void m1() { /* … */ }
 public void m2() { /* … */ }
}

public class C2 {
 public void m3() { /* … */ }
 public void m4() { /* … */ }
 public void m5() { /* … */ }
}

(a) Current source-code

Commit Description Entities
028a98d Issue #1 m1, m3
d8fd425 Issue #2 m1, m3
c90c352 Issue #3 m1, m4
ad3f78a Issue #4 m1, m4
cd5e305 Issue #5 m1, m4
7de2d7b Issue #6 m3, m2
83850f6 Issue #7 m4, m3
59561f2 Issue #8 m4, m3
b8e3afd Issue #9 m4, m3
3bed650 Issue #10 m4, m3
5afa3bb Issue #11 m5, m2
121192e Issue #12 m5, m2
44b80e9 Issue #13 m5, m2

(b) Fine-grained commits

m1 m2

m3

m4 m5

(2, 0.40)

(2, 0.29)

(3, 0.60) (3, 0.43)

(1, 0.14)

(1, 0.25)

(4, 0.57)

(4, 0.57)

(3, 1.00)

(3, 0.75)

(c) Co-change graph

m1 m2

m3

m4 m5

(3, 0.60)

(4, 0.57)

(4, 0.57)

(3, 1.00)

(3, 0.75)

(d) Pruned co-change graph, using minimum

support equals 2 and minimum confidence equals
0.5

m1 m2

m3

m4 m5

(3, 0.60)

(4, 0.57)

(4, 0.57)

(3, 1.00)

(3, 0.75)

Cluster 0 Cluster 1

(e) Co-change clusters

Figure 4.2: Example of co-change cluster extraction (the edges’ labels specify support
count and confidence respectively.)

Therefore, to obtain a graph from the source-code, we iterate over the change history
and their respective entities. Figure 4.2 illustrates this process, considering the source-
code of two sample classes. Figure 4.2b also shows the commit log, from the corresponding

46

HR, for the fine-grained entities contained in these classes. Note that the description of
all commits contains a reference for some issue identifier. The column Entities are a
simplified view of the files present in a specific commit. As we are illustrating a fine-
grained cluster extraction, in this case the files a�ected by a commit represent methods.
Figure 4.2c presents a first graph we build from our process, where the vertexes represent
the methods and the edges represent the co-change dependencies between them. Each
edge has a label in the form (S, C) where S is the support count and C is the confidence.
The edges m1 æ m4 and m4 æ m1, for example, have labels (3, 0.60) and (3, 0.43)
respectively. Note in Figure 4.2b that the method m1 participates in five commits, and
the method m4 in seven. In addition, methods m1 and m4 participates together in three
commits. Thus, the confidence values above are 3/5 and 3/7 respectively.

Further, according to the Figure 4.2, we prune that initial graph taking into account
the quality criteria that leads to a definition of certain thresholds. In this example, we
assumed minimum support equals 2 and minimum confidence equals 0.5. Figure 4.2d
shows the graph with some dependencies removed. The remaining dependencies are those
that comply with the support count and confidence thresholds.

Based on a co-change graph, there are several algorithms, methods, and tools for
clustering software entities. In this work we use Bunch, an unsupervised cluster tool that
applies a heuristic search algorithm based on random elements [60]. Bunch increases the
reliability of the results by carrying out the clustering process several times. It receives
an MDG as input and generates a hierarchical partition set (also called Clustered Graph,
see Figure 4.2e). In our analysis, we configured Bunch with the Agglomerative Clustering
action and the Hill Climbing clustering method. We choose this setup because it produces
high quality results in predictable runtime [16]. Figure 4.2e shows the outcome produced
by Bunch using the graph of Figure 4.2d as input.

4.3.3 Building the Similarity Index

Two steps are related to the activity of building the similarity index. The first step
(preprocessing) uses the source-code as input, and outputs a term-document matrix, where
terms are words collected from identifiers and comments, and documents are entities’
source-code. This matrix is used as input for the second step and then discarded.

In more details, for each entity, we first obtain the last version of the artifacts from
VCS and then extract terms from identifiers and comments. During preprocessing, we split
identifiers that use camel case naming convention (e.g. for PrintingDevice we get Printing
Device), or that is separated by underscores. This is the usual naming convention for
identifiers in most popular languages, including Java, C/C++, and C#. We then proceed
by removing stop words, words with only one character (to remove temporary or index

47

variables), and words which occurs only once. Next, we reduce the words to their radical
(this task is known as stemming). Finally, we use the tf-idf algorithm to give di�erent
weights to the frequent and infrequent terms, in order to compensate their influence [32].
Therefore, very frequent or infrequent words become less important in the computation
of similarity index. Then, the original source-code of each entity is transformed into a
corresponding bag of words from which we get a matrix with the terms as rows and the
documents as columns, and cells representing the presence of terms in documents.

In the second step of this activity (that builds the Similarity Index), we use as input
the term-document matrix from the first step and produce a document-document matrix,
where each cell has the index of similarity between two documents (see Figure 4.1). Here,
documents are the entities’ bag of words from the preprocessing. In fact, we build two
matrices: one for coarse-grained entities, and one for fine-grained entities.

The similarity index is computed using LSI [27], that is an information retrieval tech-
nique for measuring the similarity between two documents, a document and a term, or
two terms. According to this technique, the documents are modeled in a vector space
considering the frequency of its terms. The similarity between two documents is deter-
mined by the cosine of the two corresponding vectors. As part of LSI, the dimensions of
term-document matrix is reduced into a few orthogonal combinations, using a technique
known as Singular Value Decomposition (SVD) [27]. The number of resulting dimen-
sions is informed. When this technique is used for information retrieval, the resulting
dimension is between 50–200. Di�erently, for source-code analysis, existing studies use a
number between 20-50 [51].

4.3.4 Computing Conceptual Cohesion Metrics

Similar to other studies that compute the conceptual cohesion between software com-
ponents [59], we also build the conceptual metrics using the vocabulary present in the
source-code entities. The conceptual metrics are a collection of pairs (M, S), where the
first element (M) represents a module and the second (S) corresponds to the average
similarity of the source-code entities contained in the module. We consider two kinds of
modules here: static and evolutionary. The static modules are further specialized into
classes and packages; and the evolutionary modules into coarse-grained clusters and fine-
grained clusters. As modular units, the coarse-grained clusters are equivalent to packages,
and the fine-grained clusters are equivalent to classes. Thus, we can generically refer to
both packages and coarse-grained clusters as coarse-grained modules; and, for both classes
and fine-grained clusters as fine-grained modules.

To compute the similarity of the static modules (both coarse-grained and fine-grained),
we retrieve from the HR the last version of the entities’ source-code associated with each

48

module. For each pair of entities of a static module, we retrieve their similarity index from
the similarity matrix (that is built in the third activity of Figure 4.1). Next, we compute
the module’s similarity as the average similarity index of all possible pair of entities
belonging to the module, as in [59]. Analogously, we consider the average similarity of
the entire system as the average modules’ similarity. Likewise, to compute the similarity of
the co-change clusters, we iterate over the clusters and their respective entities (obtained
in the second activity of Figure 4.1). We compute the cluster’s similarity as the average
similarity index of all possible pair of entities belonging to the cluster. Thus the average
similarity of the entire system is the average of the similarity of its clusters.

Actually, we derive four metrics as the result of this activity. Assuming the similarity
indexes of the entities in Figure 4.2 are given by the matrices of Figure 4.3, we can
compute the following metrics:

• Conceptual Cohesion of Packages (CCP) given the package’s classes, and the
coarse-grained index, CCP is the average similarity of all pairs of classes. For the
entire system, it is the packages’ average similarity. Given our sample data (Fig-
ure 4.3a), and assuming that C1 and C2 are declared within the same package, then
CCP = C[C1, C2] = 0.5

• Conceptual Cohesion of Classes (CCC) given the class members, and the fine-
grained index, CCC is the average similarity of all pairs of members. For the entire
system, it is the classes’ average similarity. Given our sample data (Figure 4.3b),
CCC = 1

2 ◊ ((F [m1, m2])+ 1
3 ◊ (F [m3, m4]+F [m3, m5]+F [m4, m5])) = 1

2 ◊ (0.7+
1
3 ◊ (0.8 + 0.5 + 0.7)) = 0.68

• Conceptual Cohesion of Coarse-Grained Clusters (CGC) given the cluster’s
classes, and the coarse-grained index, CGC is the average similarity of all pairs of
classes. For the entire system, it is the clusters’ average similarity. Given our sample
data (Figure 4.3a), and assuming that C1 and C2 are within the same cluster, then
CGC = C[C1, C2] = 0.5

• Conceptual Cohesion of Fine-Grained Clusters (FGC:) given the cluster’s
members, and the fine-grained index, FGC is the average similarity of all pairs
of members. For the entire system, it is the clusters’ average similarity. Given our
sample data (Figure 4.3b), FGC = 1

2 ◊(1
3 ◊(F [m1, m3]+F [m1, m4]+F [m3, m4])+

(F [m2, m5])) = 1
2 ◊ (1

3 ◊ (0.2 + 0.5 + 0.8) + 0.3) = 0.4

49

C =
A C1 C2

C1 1 0.5
C2 0.5 1

B

(a) Coarse-grained index

F =

Q

cccccca

m1 m2 m3 m4 m5
m1 1 0.7 0.2 0.5 0.6
m2 0.7 1 0.9 0.1 0.3
m3 0.2 0.9 1 0.8 0.5
m4 0.5 0.1 0.8 1 0.7
m5 0.6 0.3 0.5 0.7 1

R

ddddddb

(b) Fine-grained index

Figure 4.3: Sample similarity indexes computed using LSI.

4.4 Settings
This section brings details about the study settings we use in our investigation, discussing
the target systems and the threshold selection we use to improve the quality of the co-
change clusters.

This chapter aims to investigate whether fine-grained co-change clusters present con-
ceptual cohesion. It is important to understand if the clusters have been motivated by
chance or if they are related to a set of related concepts. To this end, we use some metrics
that have been already discussed in the literature [56, 59, 51, 69].

4.4.1 Target Systems

We selected seven Java projects of di�erent domains as the target systems of our study
(Derby, Hadoop, Eclipse UI, Eclipse JDT, Geronimo, Lucene, and SIOP). These projects
use either GIT or SVN as version control systems, and a significant number of their source-
code commits are related to issues (ranging from 38% for SIOP to 98% for Hadoop). Six
of the target systems are open source projects; while SIOP is one of the most important
financial systems of the Brazilian Government, which the first author of this chapter has
contributed to [4]. All of them have large code bases and we could investigate at least
two years of the development history of each system (see Table 4.1 for more details).
Note that, due to some runtime constraints of Bunch regarding the size of the graph used
as input [16], we had to limit the evolution history period of three projects (Hadoop,
Eclipse UI, and Lucene). Nevertheless, we decided to use Bunch because [16] argues that
it presents several advantages over other tools.

4.4.2 Selection of the Threshold Combination

We compute several clustered graphs based on di�erent thresholds combinations. The set
of thresholds we experiment are: maximum number of entities per issue, minimum support
count, and minimum confidence. For the first threshold, we experiment with the value

50

Table 4.1: Basic data about target systems.

Name Description Version Period of Analysis KLOC Packages Classes Commits Commits Used
SIOP Brazilian Planning and Budget System 1.26.0 2009/05/14-2014/05/15 521 241 5,611 12,061 100%
Derby Relational database 10.11.1.1 2004/08/11-2014/09/10 679 215 3,252 6,656 100%
Hadoop Large data sets processor 2.5.2 2013/01/01-2014/09/10 835 699 11,399 6,864 52%
Eclipse UI Eclipse main UI 4.5M2 2011/01/01-2014/09/08 617 716 8,370 21,263 13%
JDT Core Eclipse Java core tools 4.5M2 2001/06/05-2014/10/21 357 78 1,826 16,846 100%
Geronimo Java EE application server 3.0.1 2006/08/24-2013/03/21 258 744 3,952 4,142 100%
Lucene Text search engine 4.9.1 2011/01/01-2014/10/27 704 482 4,706 8,854 86%

50, as suggested by Beck and Diehl [16] and the value 100—because we grouped entities
per issue instead of commit, and this scenario leads to a greater number of associations.
For the second threshold, we experiment with the values 1 and 2, also following the
recommendations of [16, 71]. Finally, for the third threshold, we experiment with the
value 0 (according to Silva et al. [71]) and with the value 0.5 (a slightly more conservative
scenario than the value 0.4 recommended in [16]).

The criteria we use to build the graphs discards some dependencies. As the co-change
clusters contain only entities with dependencies between them, the set of entities con-
tained in all clusters is a subset of all entities in a system. Therefore, there is a trade-o�
involving the use of more conservative thresholds in this case: although it might increase
the quality of the clusters, it might also reduce the number of entities considered in the
final analysis [16]. As a consequence, we discard a threshold combination when the ratio
between the number of entities contained in clusters and the total number of entities of
a system is below 1%. As we will discuss in Section 4.5, this ratio tend to be lower for
certain target systems, and thus the threshold can not be too restrictive. Nevertheless, it
is also necessary to discard graphs with a very low value for this ratio, to prevent from
distorting the results.

The set of code entities were subdivided according to the level of granularity—coarse-
grained entities, and fine-grained entities. There are eight possible threshold combinations
that we use to build graphs. When considering each level, we have sixteen di�erent
clustered graphs. Some thresholds combinations applied to fine grained entities could not
successfully run in Bunch, due to the huge number of vertexes of the graph. This is a
known limitation of the tool [16]. Table 4.2 shows the clusters’ cohesion per threshold
combination. We also compute the similarity indexes in two situations: considering the
source-code comments and not considering the source-code comments.

Given the cohesion of each combination the best is the one with greater value. For
the results considering comments, support count with value 2 produced the best results
regarding conceptual cohesion—85% of the combinations with this value were the best.
Also, a confidence of 0.5 provided 79% of the best combinations. Finally, the maximum
entities per cluster equals 100, is in 71% of the best combinations. Thus, we assume these

51

Table 4.2: Target System’s Conceptual Cohesion of Co-Change Clusters. ‘S’ means mini-
mum support; ‘C’, minimum confidence; ‘N’: maximum entities per issue, ‘CGC’: coarse-
grained clusters conceptual cohesion, and ‘FGC’: fine-grained clusters conceptual cohesion.
(bold numbers show the selected thresholds, ‘–’ means that the combination did not run
in Bunch, ‘◊’ means that the ratio of entities in clusters is bellow 1%)

SIOP Derby Hadoop Eclipse UI JDT Geronimo Lucene

S C N CGC FGC CGC FGC CGC FGC CGC FGC CGC FGC CGC FGC CGC FGC

with comments

1 0 50 0.41 0.39 0.37 – 0.39 – 0.54 – 0.24 – 0.44 0.36 0.47 0.31
1 0 100 0.38 – 0.45 – 0.45 – 0.52 – 0.33 – 0.24 0.31 0.37 0.35
1 0.5 50 0.40 0.14 0.54 – 0.47 – 0.55 0.43 0.45 – 0.44 0.16 0.48 0.42
1 0.5 100 0.34 – 0.53 – 0.58 – 0.60 0.23 0.19 – 0.49 0.23 0.43 0.39
2 0 50 0.19 0.31 0.44 0.58 0.47 0.24 0.42 ◊ 0.56 0.69 0.55 ◊ 0.52 0.43
2 0 100 0.37 0.42 0.45 0.38 0.51 0.53 0.51 ◊ 0.61 0.46 0.58 0.26 0.58 0.60
2 0.5 50 0.27 0.35 0.31 0.48 0.52 0.61 0.61 ◊ 0.62 0.51 0.58 ◊ 0.56 0.63
2 0.5 100 0.52 0.27 0.62 0.22 0.32 0.62 0.60 ◊ 0.65 0.71 0.59 0.49 0.41 0.57

without comments

1 0 50 0.41 0.39 0.32 – 0.39 – 0.52 – 0.23 – 0.46 0.36 0.46 0.31
1 0 100 0.38 – 0.42 – 0.44 – 0.49 – 0.31 – 0.22 0.31 0.36 0.35
1 0.5 50 0.40 0.14 0.51 – 0.47 – 0.53 0.43 0.44 – 0.38 0.16 0.48 0.42
1 0.5 100 0.34 – 0.51 – 0.58 – 0.57 0.24 0.17 – 0.52 0.23 0.42 0.39
2 0 50 0.19 0.30 0.39 0.58 0.46 0.24 0.40 ◊ 0.54 0.69 0.57 ◊ 0.52 0.43
2 0 100 0.37 0.42 0.41 0.37 0.50 0.53 0.49 ◊ 0.59 0.46 0.55 0.26 0.59 0.60
2 0.5 50 0.27 0.35 0.24 0.48 0.52 0.61 0.56 ◊ 0.61 0.51 0.59 ◊ 0.56 0.63
2 0.5 100 0.52 0.27 0.57 0.22 0.30 0.62 0.57 ◊ 0.64 0.71 0.57 0.48 0.40 0.57

values as the thresholds for minimum support count, minimum confidence, and maximum
entities per cluster, respectively. It is important to emphasize that we use maximum
entities per cluster equals 100, because this is less restrictive than the other considered
option (50) that was first suggested in [15]. This can indicate that 50 is too restrictive,
causing a loss of conceptual cohesion. The results without comments are near identical of
the results with comments. Only 14% of the best combinations have di�erent thresholds
when ignoring comments. For this reason, in the remaining of this chapter we will be only
reporting results including comments.

4.5 Results
In this section we present the results of our research. For each target system we computed
the average conceptual cohesion separately for packages, classes, and clusters. Figure 4.4
shows the average conceptual cohesion for each system (the metrics were introduced in
Section 4.3). Figure 4.4a shows data for the coarse-grained modules and Figure 4.4b
shows the data for fine-grained modules. The labels near the top of the bars shows the
growth (or decreasing) of the conceptual cohesion from the packages or classes to the
clusters. Observing this numbers, we can see that, in general, the cohesion of clusters is
greater than the cohesion of packages or classes. For coarse-grained clusters, only Hadoop,

52

SIO
P

Derb
y

Had
oo

p

Ecli
pse

UI
JD

T

Gero
nim

o

Luc
en

e

0.5

0.6

0.7

4.0%

6.9% ≠4.9% 7.0%

≠5.8%

≠6.3%

0%
C

on
ce

pt
ua

lC
oh

es
io

n

Packages Coarse-Grained Clusters
(a) Coarse-grained modules cohesion

SIO
P

Derb
y

Had
oo

p

Ecli
pse

UI
JD

T

Gero
nim

o

Luc
en

e

0.4

0.5

0.6

0.7

10.5%

45.0%
40.9%

≠2.3%

69.0%

4.3%

46.5%

C
on

ce
pt

ua
lC

oh
es

io
n

Classes Fine-Grained Clusters
(b) Fine-grained modules cohesion

Figure 4.4: Target System’s Conceptual Cohesion.

Eclipse JDT and Geronimo were significantly outperformed by packages, all of the rest of
the clusters have a better conceptual cohesion than packages or classes. For fine-grained
clusters, four systems have significant growth of conceptual cohesion, and only one had
decreased (Eclipse UI). The other two systems (SIOP and Geronimo) had a low growth.
As a future work, we will investigate if this divergence in growth is due to the original
decomposition of each system.

Using the data from Figure 4.4, we can compute the average growth. For coarse-
grained clusters, the average is 0.1 (standard deviation 5.9), and for fine-grained clusters,
the average is 30.6 (standard deviation 26.5). Therefore, the co-change clusters, in the
average, either maintains the same level of semantic when compared with the original
organization of the systems (this is the case of coarse-grained clusters), or enhances the

53

level of semantic (the case of fine-grained clusters). This also suggests that co-change
clusters present conceptual meaning, and thus they are not a group of random entities that
had changed together. This conclusion is particularly relevant for fine-grained clusters.
Although the coarse-grained clusters represent a simple rearrangement of classes into new
“packages”, the fine-grained clusters represent a real di�erent perspective of the software
decomposition, as they break apart classes and form new abstractions with fine-grained
entities—that are conceptually related. We believe that this new perspective might help
in software maintenance and evolution, as we discuss in Section 4.7.

Figure 4.5 shows the average number of entities (classes, members) in each corre-
sponding module (packages, classes and clusters), for each system. Figure 4.5a shows the
data for coarse-grained modules, and Figure 4.5b shows the data for fine-grained modules.
Here, we consider that the module of a class is either a package or a coarse-grained clus-
ter, and the module of a member is either a class or fine-grained cluster. From that data,
we can compute the average growth of entities per module. For coarse-grained modules,
the average is 53.7 (std.dev. is 22.7), and for fine-grained modules, the average is -34.3
(std.dev. is 32.7). Comparing these numbers, we can see two di�erent trends: while the
number of classes per package tend to be smaller than the number of classes per coarse-
grained clusters, the number of members in classes tend to be greater than the number
of members in clusters. With regard to the average clusters’ size, we have 7.3 (std.dev. is
3.82) for fine-grained and 8.09 (std.dev. is 3.7) for coarse-grained.

We also calculate the correlation (Pearson coe�cient) of the growth of conceptual
cohesion with the growth of entities per module. In the coarse-grained case, we realize
a small correlation between the conceptual cohesion growth and the number of entities
per module growth (that is, a correlation value of 0.135). Di�erently, in the fine-grained
case, we realize a strong and inverse correlation between the conceptual cohesion growth
and the number of entities per module growth (a correlation value of -0.945). Thus, we
conjecture that the original classes deal with non-cohesive responsibilities, and that the
fine-grained clusters captured their di�erent concepts and form new “classes” that are
more conceptually related than the original ones. In that sense, a reverse engineering
approach using fine-grained clusters might also lead to a new perspective which locate
more easily concepts throughout di�erent classes of a system (and therefore reduces the
scattering of concepts), and, thus, can be used to better understanding a software.

It is important to note that we are not suggesting a general restructuring of the
software decomposition in terms of co-change clusters. Instead, these clusters provide an
orthogonal perspective of the software organization that presents significant improvement
of conceptual cohesion (in the fine-grained case). In addition, it is important to note that
the computation of co-change clusters discards many dependencies due to the pruning

54

SIO
P

Derb
y

Had
oo

p

Ecli
pse

UI
JD

T

Gero
nim

o

Luc
en

e

5

10

15

33.0%

75.5%

16.1%

54.1%

79.4% 53.2%
64.3%

En
tit

ie
s

pe
r

M
od

ul
e

|Classes|
|P ackages|

|Classes|
|Clusters|

(a) Coarse-grained modules

SIO
P

Derb
y

Had
oo

p

Ecli
pse

UI
JD

T

Gero
nim

o

Luc
en

e

5

10

15

20

≠12.0%

≠69.4%

≠49.8%

15.3%
≠79.8%

≠10.4%
≠43.4%

En
tit

ie
s

pe
r

M
od

ul
e

|Members|
|Classes|

|Members|
|Clusters|

(b) Fine-grained modules

Figure 4.5: Proportion of entities in relation to modules.

55

Table 4.3: Proportion of entities preserved by the clustering process. #C=Number of
Classes, #M=Number of Members, #OC=Original Number of Classes, #OM=Original
Number of Members

System #C/#OC (%) #M/#OM (%)

SIOP 31.10 5.25

Derby 45.79 4.04

Hadoop 29.71 2.71

Eclipse UI 5.83 6.16

Eclipse JDT 20.42 5.34

Geronimo 15.16 1.95

Lucene 32.58 4.03

Average 25.80 4.21

Std.Dev. 13.10 1.51

criteria we use. Accordingly, many code entities are also discarded—since the resulting
clusters only include entities with at least one co-change dependency to another entity.

We also investigate the e�ect of pruning in the proportion of entities preserved in the
clusters in relation to the original number of entities in a system (Table 4.3 shows the
results of this investigation). The column #C/#OC relates to the coarse-grained clusters,
and the column #M/#OM relates to the fine-grained clusters. We can see in Table 4.3
that, on average, the preservation is lower in the case of fine-grained clusters. However,
if we consider only the number of entities changed in the period used for computing
graphs, these numbers for Eclipse UI raise to 11.02% and 23.79%, (for coarse-grained and
fine-grained, respectively); and for Hadoop they raise to 53.1% and 6.06%. The smaller
improvement on Hadoop might be due to the fact that the period length used for building
the graph is closer to the period length of the whole history, compared with the respective
periods of Eclipse UI. Thus, for these target systems, the entity preservation is greater for
entities that had recently changed. From a software evolution perspective, these entities
are the focus of our interest, because they are more susceptible to change in a near future.

The numbers we discussed above are significant, since in the existing literature about
software co-change clusters, a few works brings references about the smaller number of
entities preserved after building co-change graphs (for further discussion in that subject,
see [16]). Figure 4.6 shows that, on average, entities contained in clusters are more

56

1

1.5

2

2.5

SIOP

1

1.5

2

2.5

Derby

1

1.5

2

2.5

Hadoop

1

1.5

2

2.5

Eclipse UI

1

1.5

2

2.5

JDT

1

1.5

2

2.5

Geronimo

1

1.5

2

2.5

Lucene

All entities
Entities inside clusters

Figure 4.6: Average of commits per entity. X axes represent the last two years of change
history for each system, from past (left) to present (right).

frequently changed than the whole set of entities in a system. More specifically, the
entities that pertain to at least one co-change cluster, were changed 25% more times than
the average of changes for all entities. This data reveals quantitatively that the entities
within co-change clusters are more relevant from the evolutionary perspective.

Nevertheless, in the case of this research, this small proportion of fine-grained entities
in clusters can be viewed under another perspective: the total number of lines of code
they represent. Hence, we computed this measure of size for the entire set of fine-grained
clusters for the target systems. We found that, on the average, those clusters represent
31.4 KLOC with a standard deviation of 20 KLOC. Therefore, the size of the fine-grained
clusters that present high cohesion could be compared to medium size systems.

57

4.6 Terms Extraction
Our research revealed that fine-grained co-change clusters have superior conceptual cohe-
sion when compared to both coarse-grained co-change clusters and modular units. Thus,
the next question that concern us is: the terms associated with fine-grained co-change
clusters help to identify concepts from the problem domain?

The idea is to collect the terms contained in the entities bodies and to rank them
according to some criterion. As we have seen before, each entity body is converted into a
document containing words extracted from identifiers and comments. Thus, we can use
the set of documents in the terms extraction task.

Algorithm 1 Extracting terms from clusters
1: allterms Ω ÿ
2: for each cluster do
3: t Ω ÿ
4: for each entity associated with cluster do
5: document Ω entity’s document
6: t Ω t fi terms(document)
7: end for
8: allterms Ω allterms fi {(cluster, sorted(t))}
9: end for

10: return allterms

Algorithm 1 shows the basic procedure we took to extract the terms from clusters.
Also, we explored two strategies for terms collection and two strategies for sorting metrics.
Specifically, we defined two di�erent implementations for function terms (line 6) and two
di�erent implementations for function sorted (line 8).

4.6.1 First Strategy: Terms Frequency

Our first attempt is to collect the terms on documents and also their respective frequencies.
This demanded a change in the pre-processing task in order to count the number of
occurrences of each word. Until now, we discarded all duplicated words. Thus, the terms

function in this strategy is defined as:

terms(document) = {(term1, frequency1), · · · , (termn, frequencyn)}, (4.2)

where termi is a word in document, and frequencyi is the count of that word into the
document. And the sorted function is defined as:

sorted(t) = (termk1 , termk2 , · · · , termkn),

58

where,

’ki, kj(ki Æ kj ∆ frequencyki Ø frequencykj),
t = {(term1, frequency1), (term2, frequency2), · · · , (termn, frequencyn)},

1 Æ ki, kj Æ n.

In fact, before doing the actual sorting, we modify the frequencies to decrease the
relevance of common terms, i.e. terms which are often highly frequent in all clusters. To
do that we subtract the average frequency of the term from the frequency of the term
inside the cluster. This was suggested by Kuhn et al [51].

4.6.2 Second Strategy: LSI

Our second attempt was based on the method which Kuhn et al [51] used to label the
clusters on their experiment. Their method is to use the LSI-index as a search engine. To
do that, we first build a LSI-index containing term-term similarities, and then, we use the
terms inside the documents as a query string and we submit that query to the LSI-index,
which returns a set of terms with their respective indexes of similarity with regard to the
query. Specifically,

terms(document) = {(term1, similarity1), · · · , (termn, similarityn)} (4.3)

where term is a word from LSI-index, and similarity is the similarity index of this word
in the context of the document. And the sorted function is defined as:

sorted(t) = (termk1 , termk2 , · · · , termkn),

where,

’ki, kj(ki Æ kj ∆ similarityki Ø similaritykj),
t = {(term1, similarity1), (term2, similarity2), · · · , (termn, similarityn)},

1 Æ ki, kj Æ n.

Again, before doing the actual sorting, we modify the similarities to decrease the rele-
vance of common terms subtracting the average similarity of the term from the similarity
of the term inside the cluster.

59

4.6.3 Results

In Table 4.4 and 4.4, we provide samples of terms extraced from a random fine-grained
co-change cluster. Table 4.6 shows the entities associated with that cluster. As we can
see, the cluster is associated with some kind of service which provides a API to verify
change requests (pedido de alteração in portuguese). Here, we assume that change request
is a expression well known among people familiar with the problem domain.

momento 70 recurso 67 web 59
servic 47 perfil 44 id 40
usuario 35 permissao 35 integ 24
credenci 21 log 21 name 21
exercicio 18 siop 18 dto 17
verificacao 17 retorno 16 servico 15
alteracao 13 pedido 13 permisso 12
tem 12 soap 11 param 11
list 11 erro 10 passou 8
detalh 8 obter 8 request 7

Table 4.4: Top 30 Terms Extracted Using First Strategy (With Frequency Numbers)

mous 0.44 node 0.40 sintes 0.40
first 0.40 interceptor 0.39 falha 0.39
estimada 0.38 anexo 0.38 identificadorid 0.38
precatorio 0.37 percent 0.37 qname 0.36
credenci 0.36 logoperacao 0.36 adciona 0.36
informado 0.36 classificaco 0.35 timestamp 0.35
push 0.35 atrasado 0.34 retorna 0.34
enabl 0.34 ali 0.37 csv 0.34
transposicao 0.33 selector 0.33 ordena 0.33
loc 0.32 decl 0.32 nometabela 0.32

Table 4.5: Top 30 Terms Extracted Using Second Strategy (With Similarity Numbers)

In Table 4.4, the most frequent terms are generic words (translated to english: moment,
service, user, credentials, year, verification, etc.). Some terms associated with the problem
domain (request, or pedido in portuguese) or with the technology (soap), appears on the
list, but with lower frequency.

60

Class Method
PermissaoServicoLocal getMomentoUsuario(Perfil,Recurso)

isTemPermissao(Perfil,Recurso,Momento)
obterRecurso(Integer)

RetornoVerificacaoPedidoAlteracaoDTO verificacoes
getVerificacoes()
setVerificacoes(List)

VerificacaoPedidoAlteracaoDTO getDetalhes()
getRegra()
isPassou()

VerificacaoPedidoAlteracaoDTO enviarPedidoAlteracao(CredencialDTO)

Table 4.6: Sample Entities Associated With the Cluster

In Table 4.5, there are some words related to problem domain (like precatorio,classificaco),
but the majority of the words are generic or unrelated.

4.6.4 Discussion

i
As we saw in previous subsection, the terms extracted from clusters using the technique

proposed provides support for concept discovery, but is not su�cient. To draw strong
conclusions, a complete experiment must be made, but based on this small sample we
can make some conjectures. The first strategy has a better performance, at least for
our sample cluster. The problem with the two strategies is the outcome of generic words,
despite the use of the suggestion of Kuhn et al [51], that reduces the importance of general
frequent words.

We can imagine the use of stopwords to avoid generic words, but this can be a lot of
e�ort, since we can have thousands of them, and, to do this, domain knowledge is required
too. Nevertheless, we can also infer the problem domain concept which is associated with
the cluster by examining the classes and method names contained in it. Thus, we believe
that a fully automated approach to extract concepts from co-change clusters is not feasible.
But we do believe that these lists combined can be useful to aid a developer in a software
comprehension task in general, and, in particular, to discover where the concepts are
implemented.

61

4.7 Implications of our results
In this section we discuss the implications of the main finding of this chapter: that
is, fine-grained co-change clusters present a high degree of conceptual cohesion—where
the notion of conceptual cohesion relates to the vocabulary present in source-code ele-
ments [59]. Therefore, the fine-grained co-change clusters provide a complementary view
of a high cohesive modular decomposition. In particular, those clusters might help the
identification of concepts that scatter throughout di�erent classes. In that sense, the
vocabulary which represents the semantic of a fine-grained cluster can be viewed as a
kind of code annotation, that might allow virtual separation of concerns[47]. Also, the
coverage of fine-grained clusters in relation to code entities can be expanded by applying
specific techniques, such as the approach proposed by Nunes et al. [63]. This way, the
mapping between the concepts embedded in the fine-grained clusters might serve as an
initial seed to relate features and source-code. Additionally, each co-change cluster have
a list of terms semantically related that can be used to infer the concepts associated to a
particular cluster, or to search certain clusters associated with a query expressed as a list
of correlated terms. Again, this can aid feature identification or location, and we envision
its use in conjunction with search based tools for software maintenance.

4.8 Threats to Validity
In this section we present a discussion about some questions that might threat the validity
of our work. We organize them according to the internal, construct, and external threats.

Internal Validity. We applied the same method to all target systems, including
thresholds. However, we cannot ensure that some combination of thresholds favor or
disfavor a particular project. Specifically, the e�ect of the threshold used to limit the
maximum entities per commit depends on the development process of the subject project.
To minimize these e�ects, we chose the thresholds according to the guidance of previous
studies. When searching for the best combination of thresholds, in regard to semantic
similarity, on the majority of projects the same combination was selected as the best.
As the co-change clusters contain only a fraction of the original set of code entities, it
is possible that certain portions of one project would produce metrics more favorable
than of another project. But, as the results show a clear trend among most systems, for
the computed metrics, probably the e�ect of this threat is not significant. The number
of clusters generated by Bunch depend on its algorithm, and thus it can interfere on
the metrics values as well. Our results showed that there is a strong inverse correlation
between the clusters growth (influenced by the number of clusters), and their conceptual

62

cohesion (see Section 4.5). Thus, the e�ect of this threat is not significant, because this
correlation is consistent in all systems.

Construct Validity. While we require an association between issues and commits
to raise the semantic relation of the clusters, the precision of this association cannot
be ensured. That is, we can not verify whether a given commit is related to the real
issues that motivated the software revision. In addition, this association reduces the
number of commits considered in our analysis. This reduction depends on the proportion
of commits associated to issues in each system, as show in Section 4.4. Also, we have
to constrain the history period when building the graphs for some projects, due to a
Bunch limitation. But the potential impact of this threat does not invalidate our results,
according to the analysis in Section 4.5. This analysis show that, if we analyze only
the constrained period, the results will be even more favorable to the fine-grained co-
change clusters. The representation of the graph was in conformance with existing works,
albeit there are alternatives [18]. Our approach has some di�erences from the majority of
studies. In particular, we use fine-grained entities as elements; and the issues in common
as dependency criteria instead of commits.

External Validity. We selected a small set of Java projects for this study. This can
potentially limit the generalization of our results. Nevertheless, these projects have been
used in previous research works, and we choose a wide range of applications, not limited
to open-source ones. All projects had large codebases with a long history of changes.
As our purpose is to disclosure the conceptual cohesion of co-change clusters, we expect
that the the methodology we present in this chapter can be reproduced in other projects.
The small number of preserved entities in fine-grained clusters can threat the validity of
the results for this level of granularity. Nevertheless, even this small set of entities can
represent latent concepts inside codebases, and, as such, can be expanded to discover
more code fragments related to the same concept [63], and, thus, raise its usefulness. We
used Bunch as the only tool for software clustering. The choice for Bunch was made after
a broad research on the literature, and it was found among the tools that produce the
better results for software clustering [57]. Also, the Bunch’s limitations were mitigated
according to the previous explanations.

4.9 Related Work
The work of Gall et al. [36] was the first to explore the information from version history
repositories to detect evolutionary coupling between modules. Zimmermann et al. [79]
proposed an approach to determine evolutionary coupling between fine-grained entities,
used for predicting further changes [81]. Beyer and Noack [18] introduced the use of

63

co-change dependencies in clustering, while Vanya et al. [74] proposed a semi-automatic
approach to suggest remodularization. In their approach, given an initial partition, inter-
partitions evolutionary dependencies are identified. Silva et al. [71] propose an approach to
assess modularity using co-change clusters. Their method use the Chameleon [46] tool to
cluster coarse-grained entities that are compared with the actual package decompositions.
According to their work, mismatches between the co-change clusters and the package
decomposition can suggest new directions for restructuring the package hierarchy.

Regarding the semantic assessment of source-code, Maletic and Marcus [56] introduced
the use of LSI to extract semantic information code entities. Marcus and Poshyvanyk [59]
proposed new measures for class cohesion based on LSI. These measures, though concep-
tual, are correlated with traditional software cohesion measures. Their metric (Concep-
tual Cohesion of Classes (C3)) computes the average similarity index between each pair
of methods of a class. For each method, a document is built, containing the terms ex-
tracted from identifiers and comments. Kuhn et al. [51], introduced Semantic Clustering,
a technique based on LSI to group source-code artifacts that use the same vocabulary.
To enable clustering, they use a similarity metric based on C3, generalizing it in order to
compute the similarity of a cluster. In this case, the metric is defined as the average C3
of the classes contained in the cluster.

Bavota et al. [14] proposed the use of semantic information of the source-code, com-
bined with its structural information to recommend remodularization. Santos et al. [69]
experimented with semantic clustering also to evaluate software remodularizations. Their
approach compares conceptual metrics values between a number of versions of a system,
to analyze the relationship between the remodularizations promoted by the new versions
and the semantic clusters. They also propose new metrics for conceptual cohesion of clus-
ters and packages, that are the average cosine similarity between each pair of classes in
clusters ans packages, respectively. Dit et al. [31] proposes an approach to measuring the
textual coherence of the user comments in bug reports using Latent Semantic Analysis
(LSA). They define the semantic similarity of a bug report as the average cosine similarity
of the comments, and the coherence of a bug report as the semantic similarity. Silva et
al. [71] use a similar approach, but they compute the similarity of the issues associated
with the clusters using only the issues’ short description, instead of the whole issue report.

This chapter is di�erent from the aforementioned works in several aspects. First,
our approach uses fine-grained entities and thus it increases the software cohesion of the
resulting clusters, when compared to coarse-grained alternatives. In particular, we di�er
from the work of Kuhn et al. [51] because they compute the clusters based on the semantic
similarity between classes. Thus, there are two main di�erences in this case: we compute
the clusters based on the co-change dependencies; and we use finer-grained source-code

64

entities instead of only classes as entities. Our intention is to verify the conceptual cohesion
of co-change clusters, so we are not interested in proposing a new clustering method. Also,
the use of fine-grained entities allows us to discover interesting conceptual properties of
the co-change clusters based on them, with results much more significant than for the
coarse-grained clusters. In relation to the work of Marcus and Poshyvanyk [59], our work
uses an extended version of their metrics. Although their work concentrates on analyzing
the merit of the proposed metric (C3), our work extends the original definition and we
do not compare its performance with another equivalent cohesion metric.

4.10 Conclusion
Software clustering use coupling information involving code entities to group entities with
strong dependencies. Recent works have experiment with di�erent kinds of software clus-
tering techniques, including structural, dynamic, semantic, and based on change history;
also with di�erent levels of code entities granularity, but particularly with coarse-grained
ones (like source-code files, C++ namespaces, Java packages, and object-oriented classes).
In this chapter we presented a novel perspective of the software decomposition, based on
fine-grained co-change clusters. We also investigated the conceptual cohesion of the re-
sulting decomposition perspective, using a well-known measure of semantic similarity.
Our evaluation considered seven real target systems, six open-source projects and one
system from the financial domain of the Brazilian Government. The main conclusion is
that fine-grained co-change clusters present a higher degree of conceptual cohesion when
compared to the typical decomposition of the systems (based on the package hierarchy)
and to another perspective based on coarse-grained co-change clusters. Therefore, our
new perspective of the software decomposition, though limited in the number of entities,
present a cohesive vocabulary associated to each cluster, allowing the discovery of concepts
scattered on a number of code entities. As a future works, we aim at investigating the
hypothesis that combining our perspective with existing techniques for feature expansion
would help on the identification of features during reverse engineering activities.

65

Chapter 5

Conclusion

In this work we explored the properties of the software entities clustering which are
evolutionarily coupled, with regard to its suitability to represent high level concepts from
the domain of a software system. The research results revealed that co-change clusters
by itself does not have good modularity properties, and are not a good model to follow
when the intention is to restructure an architecture of a software system. For the other
side, the research revealed that fine-grained co-change clusters have superior conceptual
cohesion when compared to both coarse-grained co-change clusters and modular units.
Thus, we made some exploratory analysis trying to answer the following question: the
terms associated with fine-grained co-change clusters help to identify concepts from the
problem domain?

The ultimate answer to this question can be very di�cult to be found, but we can
extract the terms associated with the co-change clusters, according to some method,
get some domain experts to evaluate the outcome, and analyze if they make sense and
are useful. While this task was not possible to be executed given our time frame, we
performed some exploration of the available methods for terms extraction and analyzed
preliminarily their performances. The results shown that a fully automated procedure
to recover problem domain concepts from source-code artifact is not feasible, but the
extracted term can be useful when used to find the implementation elements of some
concept. We also believe that the terms extracted from several methods, when combined,
can aid the domain experts to infer the problem domain concept related to them.

5.1 Summary of the Contributions
The main contributions of this work are:

• An approach for reasoning about the hidden dependencies induced by the co-evolution
of software assets that is supported by a general theory of modularity. Thus, we

66

propose the use of a well defined set of tools and metrics for reasoning about mod-
ularity.

• A comprehensive study about the impact of co-evolution with respect to the design
structure of one proprietary and six Java open-source softwares that we use as target
systems.

• We describe a framework for building a di�erent perspective of a software (based
on fine-grained co-change clusters) and a methodology to evaluate the conceptual
cohesion of this software perspective.

• We report the results of an empirical assessment of our software perspective. In this
analysis, we compute fine-grained co-change clusters for seven real-world systems
and the observations reveal a higher cohesion of the resulting abstractions with
respect to the typical decomposition of the systems.

Besides these contributions, we also made early evaluations of terms extraction from
the co-change clusters, but a more comprehensive study must be made. It would also
be useful to design and run a experiment aiming to asses if these terms can be used to
identify features. However, because the time limitation of this work, these experiments
will be done later.

5.2 Impact on the Organization
Currently, some results of this dissertation are being useful in a software modernization
e�ort at the Ministry of Planning, Budget and Management (MP). For instance, within
the scope of this project, we use the clustering approach discussed in Chapter 3 for helping
us to:

• Identify focus of modularity issues, such as cyclical dependencies and frequently
mutual changes in di�erent modules leading to undesirable evolutionarily depen-
dencies.

• Suggest a new set of modules and modules’ contents, that is, to use coarse-grained
clusters as a reference for remodularization, which can be useful for finding ideas for
new modules. As shown in Chapter 3, it is not recommended to follow this strategy
indiscriminately, but it can be used for finding specific recommendations.

• Compare SIOP’s architecture with other systems that are more resilient to changes
and to learn from them. As discussed in Chapter 3, systems such as Hadoop have
more modular architectures and can be used as an inspiration for the new modular
structure for SIOP.

67

With regard to SIOP features identification, though not fully completed yet, we have
found a promising approach that will be further investigated and refined in that direction,
namely the fine-grained co-change clusters. As we discussed in Chapter 4, the conceptual
cohesion of these clusters are superior to the coarse-grained clusters and the actual classes
and interfaces. Accordingly, the next step is to use these fine-grained clusters computed
for SIOP as seeds for a feature expansion tool and to analyze its output considering two
aspects: (a) the expanded clusters maintain a higher conceptual cohesion? and (b) the
expanded clusters are identifiable with SIOP features?

Clearly, if successful, these further investigations will benefit the MP and SIOP, as we
will have a list of features identified and associated with the corresponding source-code.
Nevertheless, these results can benefit several other systems too, as the goal, methodology,
and approach are general and use available tools.

5.3 Future Work
The clustering technique applied to fine-grained software entities, as our findings revealed,
have a strong potential for future research. In the following subsection, we will discuss
further developments which we envision.

5.3.1 Providing Seeds for Feature Expansion

While the conceptual cohesion of fine-grained co-change clusters are promising, their
low coverage of source-code entities (4.21% on average), as we have seen in Chapter 4,
is a barrier when we aim to identify features. Thus, we can research ways to raise their
coverage. One of the alternatives is to provide the fine-grained clusters as input to feature
expansion tools [63]. These tools start from a feature list and some mappings from features
to source-code entities, and, based on heuristics, expand the mappings using static and
evolutionary data.

5.3.2 Feature Location

The comprehension of software source-code is among the main concerns of software engi-
neering research. The fine-grained co-change clusters can be used to aid the location of
concepts scattered in source-code, and, in particular, the concepts which refer to features.
We can explore the implementation of search tools that are based on the semantic indexes
built for computation of conceptual cohesion. These tools can provide an user interface
that allow to submit queries built from search terms, and can show the results linked with
the source-code of the associated entities. The quality of the indexes must be researched

68

too, especially in regard to the relevance of the results when combining several sources of
terms which are associated with entities.

5.3.3 Remodularization

While the co-change clusters are not full suitable to become modules, as we have seen
in Chapter 3, the combination of the evolutionary coupling measure with other kinds of
coupling can have potential. Some recent works has begun exploring the combination
of coupling metrics, including evolutionary, both in conjunction with software clustering
algorithms, such as [16], and using search based approaches [61]. While the remodular-
ization research has solid contributions, several research questions are open yet.

69

Bibliography

[1] Dataset presented on Oliveira et al. Paper. http://goo.gl/3E761S. 22

[2] DependencyFinder tool. http://depfind.sourceforge.net/. 26

[3] GitHub source code repository supporting Oliveira et al. Paper. http://github.
com/mcesarhm/mpca. 22

[4] Siop: Citizen service letter. http://www.orcamentofederal.gov.br/biblioteca/
cartas-de-servico/carta_de_servicos_SIOP.pdf. 50

[5] Nicolas Anquetil and Timothy C. Lethbridge. Experiments with clustering as a
software remodularization method. In Reverse Engineering, 1999. Proceedings. Sixth
Working Conference on, pages 235–255. IEEE. 13, 38

[6] Sven Apel and Christian Kästner. An overview of feature-oriented software develop-
ment. Journal of Object Technology, 8(5):49–84, 2009. 2, 9, 10, 11

[7] Sven Apel, Christian Lengauer, Don Batory, Bernhard Möller, and Christian Kästner.
An algebra for feature-oriented software development. University of Passau, MIP-
0706, 2007. 9

[8] Carliss Baldwin, Alan MacCormack, and John Rusnak. Hidden structure: Using
network methods to map system architecture. Research Policy, 43(8):1381–1397,
2014. 7

[9] Carliss Young Baldwin and Kim B Clark. Design rules: The power of modularity,
volume 1. MIT press, 2000. 5, 6, 18, 38, 39

[10] Len Bass, Paul Clements, and Rick Kazman. Software Architecture in Practice.
Addison-Wesley Professional, 2013. 6

[11] D. Batory, J.N. Sarvela, and A. Rauschmayer. Scaling step-wise refinement. Software
Engineering, IEEE Transactions on, 30(6):355–371, June 2004. 2

[12] Don Batory. Feature modularity for product-lines. Tutorial at: OOPSLA, 6, 2006. 9

[13] Don Batory, David Benavides, and Antonio Ruiz-Cortes. Automated analysis of
feature models: challenges ahead. Communications of the ACM, 49(12):45–47, 2006.
9

70

http://goo.gl/3E761S
http://depfind.sourceforge.net/
http://github.com/mcesarhm/mpca
http://github.com/mcesarhm/mpca
http://www.orcamentofederal.gov.br/biblioteca/cartas-de-servico/carta_de_servicos_SIOP.pdf
http://www.orcamentofederal.gov.br/biblioteca/cartas-de-servico/carta_de_servicos_SIOP.pdf

[14] Gabriele Bavota, Malcom Gethers, Rocco Oliveto, Denys Poshyvanyk, and Andrea de
Lucia. Improving software modularization via automated analysis of latent topics
and dependencies. ACM Transactions on Software Engineering and Methodology
(TOSEM), 23(1):4, 2014. 64

[15] Fabian Beck and Stephan Diehl. Evaluating the impact of software evolution on
software clustering. In Reverse Engineering (WCRE), 2010 17th Working Conference
on, pages 99–108. IEEE, 2010. 52

[16] Fabian Beck and Stephan Diehl. On the impact of software evolution on software
clustering. Empirical Software Engineering, 18(5):970–1004, 2013. 13, 14, 16, 25, 26,
27, 28, 29, 39, 40, 45, 47, 50, 51, 56, 69

[17] Fabian Beck and Stephan Diehl. Visual comparison of software architectures. Infor-
mation Visualization, 12(2):178–199, 2013. 38

[18] Dirk Beyer and Andreas Noack. Clustering software artifacts based on frequent
common changes. In Program Comprehension, 2005. IWPC 2005. Proceedings. 13th
International Workshop on, pages 259–268. IEEE, 2005. 37, 38, 63

[19] Dirk Beyer and Andreas Noack. Mining co-change clusters from version repositories.
Technical report, 2005. 14, 42

[20] Jan Bosch. Design and use of software architectures: adopting and evolving a product-
line approach. Pearson Education, 2000. 9

[21] Pierre Bourque, Richard E Fairley, et al. Guide to the Software Engineering Body of
Knowledge (SWEBOK (R)): Version 3.0. IEEE Computer Society Press, 2014. 3

[22] Kun Chen, Wei Zhang, Haiyan Zhao, and Hong Mei. An approach to constructing
feature models based on requirements clustering. In Requirements Engineering, 2005.
Proceedings. 13th IEEE International Conference on, pages 31–40. IEEE, 2005. 9

[23] Andreas Classen, Patrick Heymans, and Pierre-Yves Schobbens. What’s in a feature:
A requirements engineering perspective. In Fundamental Approaches to Software
Engineering, pages 16–30. Springer, 2008. 9

[24] Paul Clements, Felix Bachmann, Len Bass, David Garlan, James Ivers, Reed Little,
Paulo Merson, Robert Nord, and Judith Sta�ord. Documenting Software Architec-
tures: Views and Beyond. Pearson Education, 2010. 6

[25] Paul Clements and Linda Northrop. Software product lines: practices and patterns,
volume 59. Addison-Wesley Reading, 2002. 10

[26] Krzysztof Czarnecki and Ulrich W. Eisenecker. Generative Programming: Methods,
Tools, and Applications. ACM Press/Addison-Wesley Publishing Co., New York,
NY, USA, 2000. 9

[27] Scott C. Deerwester, Susan T Dumais, Thomas K. Landauer, George W. Furnas, and
Richard A. Harshman. Indexing by latent semantic analysis. JAsIs, 41(6):391–407,
1990. 43, 48

71

[28] Premkumar Devanbu, Bob Balzer, Don Batory, Gregor Kiczales, John Launchbury,
David Parnas, and Peri Tarr. Modularity in the new millenium: A panel summary.
In Proceedings of the 25th International Conference on Software Engineering, ICSE
’03, pages 723–724, Washington, DC, USA, 2003. IEEE Computer Society. 1, 7

[29] Martín Dias, Alberto Bacchelli, Georgios Gousios, Damien Cassou, and Stéphane
Ducasse. Untangling fine-grained code changes. In Software Analysis, Evolution
and Reengineering (SANER), 2015 IEEE 22nd International Conference on, pages
341–350. IEEE, 2015. 45

[30] Edsger Wybe Dijkstra, Edsger Wybe Dijkstra, Edsger Wybe Dijkstra, and Eds-
ger Wybe Dijkstra. A discipline of programming, volume 4. prentice-hall Englewood
Cli�s, 1976. 6

[31] Bogdan Dit, Denys Poshyvanyk, and Andrian Marcus. Measuring the semantic sim-
ilarity of comments in bug reports. Proc. of 1st STSM, 8, 2008. 64

[32] Susan T Dumais. Improving the retrieval of information from external sources. Be-
havior Research Methods, Instruments, & Computers, 23(2):229–236, 1991. 48

[33] Steven D. Eppinger and Tyson R. Browning. Design Structure Matrix Methods and
Applications. MIT Press, 2012. 19

[34] Steven D Eppinger, Daniel E Whitney, Robert P Smith, and David A Gebala. A
model-based method for organizing tasks in product development. Research in En-
gineering Design, 6(1):1–13, 1994. 8

[35] H. Gall, M. Jazayeri, and J. Krajewski. Cvs release history data for detecting logical
couplings. In Software Evolution, 2003. Proceedings. Sixth International Workshop
on Principles of, pages 13–23, Sept 2003. 14, 42

[36] Harald Gall, Karin Hajek, and Mehdi Jazayeri. Detection of logical coupling based on
product release history. In Software Maintenance, 1998. Proceedings., International
Conference on, pages 190–198. IEEE, 1998. 38, 63

[37] Joshua Garcia, Igor Ivkovic, and Nenad Medvidovic. A comparative analysis of soft-
ware architecture recovery techniques. In Automated Software Engineering (ASE),
2013 IEEE/ACM 28th International Conference on, pages 486–496. IEEE, 2013. 14

[38] Markus M Geipel and Frank Schweitzer. The link between dependency and cochange:
Empirical evidence. Software Engineering, IEEE Transactions on, 38(6):1432–1444,
2012. 40

[39] A.E. Hassan and R.C. Holt. Predicting change propagation in software systems. In
Software Maintenance, 2004. Proceedings. 20th IEEE International Conference on,
pages 284–293, Sept 2004. 42

[40] Ahmed E Hassan. The road ahead for mining software repositories. In Frontiers of
Software Maintenance, 2008. FoSM 2008., pages 48–57. IEEE, 2008. 12

72

[41] Hideaki Hata, Osamu Mizuno, and Tohru Kikuno. Historage: fine-grained version
control system for java. In Proceedings of the 12th International Workshop on Prin-
ciples of Software Evolution and the 7th annual ERCIM Workshop on Software Evo-
lution, pages 96–100. ACM, 2011. 23, 44

[42] Kim Herzig and Andreas Zeller. The impact of tangled code changes. In Mining
Software Repositories (MSR), 2013 10th IEEE Working Conference on, pages 121–
130. IEEE, 2013. 37, 45

[43] Huzefa Kagdi, Michael L Collard, and Jonathan I Maletic. A survey and taxonomy
of approaches for mining software repositories in the context of software evolution.
Journal of Software Maintenance and Evolution: Research and Practice, 19(2):77–
131, 2007. 12

[44] Kyo C Kang, Sholom G Cohen, James A Hess, William E Novak, and A Spencer
Peterson. Feature-oriented domain analysis (foda) feasibility study. Technical report,
DTIC Document, 1990. 9, 10

[45] Kyo C Kang, Sajoong Kim, Jaejoon Lee, Kijoo Kim, Euiseob Shin, and Moonhang
Huh. Form: A feature-; oriented reuse method with domain-; specific reference
architectures. Annals of Software Engineering, 5(1):143–168, 1998. 9

[46] George Karypis, Eui-Hong Han, and Vipin Kumar. Chameleon: Hierarchical clus-
tering using dynamic modeling. Computer, 32(8):68–75, 1999. 39, 64

[47] Christian Kästner, Sven Apel, and Martin Kuhlemann. Granularity in software prod-
uct lines. In Proceedings of the 30th international conference on Software engineering,
pages 311–320. ACM, 2008. 62

[48] Mik Kersten and Gail C. Murphy. Mylar: A degree-of-interest model for ides. In
Proceedings of the 4th International Conference on Aspect-oriented Software Devel-
opment, AOSD ’05, pages 159–168, New York, NY, USA, 2005. ACM. 1, 7

[49] Mik Kersten and Gail C. Murphy. Using task context to improve programmer pro-
ductivity. In Proceedings of the 14th ACM SIGSOFT International Symposium on
Foundations of Software Engineering, SIGSOFT ’06/FSE-14, pages 1–11, New York,
NY, USA, 2006. ACM. 42

[50] Miryung Kim and David Notkin. Using a clone genealogy extractor for understanding
and supporting evolution of code clones. In ACM SIGSOFT Software Engineering
Notes, volume 30, pages 1–5. ACM, 2005. 13

[51] Adrian Kuhn, Stéphane Ducasse, and Tudor Gírba. Semantic clustering: Identifying
topics in source code. Information and Software Technology, 49(3):230–243, 2007.
42, 48, 50, 59, 61, 64

[52] Matthew J LaMantia, Yuanfang Cai, Alan D MacCormack, and John Rusnak. An-
alyzing the evolution of large-scale software systems using design structure matri-
ces and design rule theory: Two exploratory cases. In Software Architecture, 2008.
WICSA 2008. Seventh Working IEEE/IFIP Conference on, pages 83–92. IEEE, 2008.
38

73

[53] Cristina Videira Lopes and Sushil Krishna Bajracharya. An analysis of modularity in
aspect oriented design. In Proceedings of the 4th international conference on Aspect-
oriented software development, pages 15–26. ACM, 2005. 18

[54] Cristina Videira Lopes and Sushil Krishna Bajracharya. Assessing aspect modu-
larizations using design structure matrix and net option value. In Transactions on
Aspect-Oriented Software Development I, pages 1–35. Springer, 2006. 18

[55] Alan MacCormack, John Rusnak, and Carliss Y. Baldwin. Exploring the structure of
complex software designs: An empirical study of open source and proprietary code.
Manage. Sci., 52(7):1015–1030, July 2006. 9, 18, 19, 21, 27, 33, 35, 36

[56] Jonathan I Maletic and Andrian Marcus. Supporting program comprehension using
semantic and structural information. In Proceedings of the 23rd International Con-
ference on Software Engineering, pages 103–112. IEEE Computer Society, 2001. 42,
50, 64

[57] Onaiza Maqbool and Haroon Babri. Hierarchical clustering for software architecture
recovery. Software Engineering, IEEE Transactions on, 33(11):759–780, 2007. 38, 63

[58] Onaiza Maqbool and Haroon A Babri. Hierarchical clustering for software architec-
ture recovery. Software Engineering, IEEE Transactions on, 33(11):759–780, 2007.
14, 38

[59] Andrian Marcus and Denys Poshyvanyk. The conceptual cohesion of classes. In
Software Maintenance, 2005. ICSM’05. Proceedings of the 21st IEEE International
Conference on, pages 133–142. IEEE, 2005. 42, 44, 48, 49, 50, 62, 64, 65

[60] Brian S Mitchell and Spiros Mancoridis. On the automatic modularization of soft-
ware systems using the bunch tool. Software Engineering, IEEE Transactions on,
32(3):193–208, 2006. 13, 25, 47

[61] Wiem Mkaouer, Marouane Kessentini, Adnan Shaout, Patrice Koligheu, Slim
Bechikh, Kalyanmoy Deb, and Ali Ouni. Many-objective software remodulariza-
tion using nsga-iii. ACM Transactions on Software Engineering and Methodology
(TOSEM), 24(3):17, 2015. 69

[62] Gail C Murphy, Mik Kersten, Martin P Robillard, and Davor �ubraniÊ. The emer-
gent structure of development tasks. In ECOOP 2005-Object-Oriented Programming,
pages 33–48. Springer, 2005. 17, 30, 42

[63] Camila Nunes, Alessandro Garcia, Carlos Lucena, and Jaejoon Lee. Heuristic ex-
pansion of feature mappings in evolving program families. Software: Practice and
Experience, 2013. 43, 62, 63, 68

[64] Marcos Oliveira, Rodrigo Bonifacio, Guilherme Ramos, and Marcio Ribeiro. On the
conceptual cohesion of co-change clusters. In CBSoft 2015 - SBES 2015 - Technical
Research (), Belo Horizonte, sep 2015. 4

[65] D. L. Parnas. On the criteria to be used in decomposing systems into modules.
Commun. ACM, 15(12):1053–1058, 1972. 1, 6, 16

74

[66] Klaus Pohl, Günter Böckle, and Frank J van der Linden. Software product line
engineering: foundations, principles and techniques. Springer Science & Business
Media, 2005. 3

[67] Kata Praditwong, Mark Harman, and Xin Yao. Software module clustering as
a multi-objective search problem. Software Engineering, IEEE Transactions on,
37(2):264–282, 2011. 14

[68] G. Santos, K. Santos, Marco Tulio Valente, D. Serey, and Nicolas Anquetil. Top-
icviewer: Evaluating remodularizations using semantic clustering. In IV Congresso
Brasileiro de Software: Teoria e Prática (Sessao de Ferramentas), pages 1–6, 2013.
38

[69] Gustavo Santos, Marco Tulio Valente, and Nicolas Anquetil. Remodularization anal-
ysis using semantic clustering. In Software Maintenance, Reengineering and Reverse
Engineering (CSMR-WCRE), 2014 Software Evolution Week-IEEE Conference on,
pages 224–233. IEEE, 2014. 38, 42, 50, 64

[70] Luciana Silva, Marco Tulio Valente, and Marcelo Maia. Co-change clusters: Extrac-
tion and application on assessing software modularity. In Transactions on Aspect-
Oriented Software Development, pages 1–37, 2015. 16, 17, 25, 28, 33, 37, 39

[71] Luciana Lourdes Silva, Marco Tulio Valente, and Marcelo de A. Maia. Assessing
modularity using co-change clusters. In Proceedings of the of the 13th international
conference on Modularity, pages 49–60. ACM, 2014. 42, 45, 51, 64

[72] Donald V Steward. The design structure system: a method for managing the design
of complex systems. IEEE transactions on Engineering Management, (EM-28), 1981.
xi, 7, 8

[73] Kevin J Sullivan, William G Griswold, Yuanfang Cai, and Ben Hallen. The structure
and value of modularity in software design. ACM SIGSOFT Software Engineering
Notes, 26(5):99–108, 2001. 18

[74] Adam Vanya, Lennart Hofland, Steven Klusener, Piërre Van De Laar, and Hans
Van Vliet. Assessing software archives with evolutionary clusters. In Program Com-
prehension, 2008. ICPC 2008. The 16th IEEE International Conference on, pages
192–201. IEEE, 2008. 39, 64

[75] Theo A. Wiggerts. Using clustering algorithms in legacy systems remodularization.
In Reverse Engineering, 1997. Proceedings of the Fourth Working Conference on,
pages 33–43. IEEE, 1997. 13, 38, 44

[76] Niklaus Wirth. Program development by stepwise refinement. Communications of
the ACM, 14(4):221–227, 1971. 6

[77] Lu Xiao, Yuanfang Cai, and Rick Kazman. Design rule spaces: a new form of
architecture insight. pages 967–977. ACM Press. 38

75

[78] Thomas Zimmermann, Stephan Diehl, and Andreas Zeller. How history justifies
system architecture (or not). In Software Evolution, 2003. Proceedings. Sixth Inter-
national Workshop on Principles of, pages 73–83. IEEE. 15

[79] Thomas Zimmermann, Stephan Diehl, and Andreas Zeller. How history justifies
system architecture (or not). In Software Evolution, 2003. Proceedings. Sixth Inter-
national Workshop on Principles of, pages 73–83. IEEE, 2003. 16, 17, 25, 38, 39, 45,
63

[80] Thomas Zimmermann and Peter Weißgerber. Preprocessing cvs data for fine-grained
analysis. In Proceedings of the First International Workshop on Mining Software
Repositories, pages 2–6. sn, 2004. 42

[81] Thomas Zimmermann, Andreas Zeller, Peter Weissgerber, and Stephan Diehl. Mining
version histories to guide software changes. Software Engineering, IEEE Transactions
on, 31(6):429–445, 2005. 13, 25, 38, 42, 45, 63

76

	Dedication
	Agradecimentos
	Resumo
	Abstract
	Introduction
	Purpose of this dissertation
	Rationale
	Outline

	Literature Review
	Modularity
	Design Structure Matrix

	Feature Oriented Software Development
	Mining Software Repositories
	Software Clustering
	Mining Source-Code Change History

	Unveiling and Reasoning about Hidden Dependencies Induced by Co-Evolution
	Chapter Abstract
	Introduction
	Background
	Design Structure Matrix (DSM)
	Architectural Metrics
	Clustered Cost

	Methodology
	Extracting Fine-Grained Version History
	Extracting Co-Change Clusters
	Extracting Static Dependencies
	Building DSMs
	Computing Metrics

	Study Settings
	Target Systems
	Selection of the Threshold Combination

	Results
	Exploratory analysis of the impact of commits and issues into fine grained entities
	To what extent do the hidden dependencies induced by the co-evolution of components impact the architecture?
	Is it worth to restructure the architecture of a system based on the co-evolution clusters?

	Discussion
	Threats to Validity
	Related Work
	Version History and Modularity
	DSM and Modularity
	Clustering and Remodularization
	Co-change clusters and Remodularization
	Differences from previous works

	Conclusion

	On the Conceptual Cohesion of Co-Change Clusters
	Chapter Abstract
	Introduction
	Methodology
	Extracting Fine-Grained Version History
	Extracting Co-Change Clusters
	Building the Similarity Index
	Computing Conceptual Cohesion Metrics

	Settings
	Target Systems
	Selection of the Threshold Combination

	Results
	Terms Extraction
	First Strategy: Terms Frequency
	Second Strategy: LSI
	Results
	Discussion

	Implications of our results
	Threats to Validity
	Related Work
	Conclusion

	Conclusion
	Summary of the Contributions
	Impact on the Organization
	Future Work
	Providing Seeds for Feature Expansion
	Feature Location
	Remodularization

	Bibliography

