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Apresentação 

A abundância e a diversidade do estrato herbáceo em formações savânicas chamam a atenção 

de qualquer observador mais atento. Estas formas de vida chegam a representar mais de 60% 

da diversidade do bioma Cerrado. A questão levantada neste trabalho é o porquê desta 

dominância. Estudos realizados com pares congenéricos verificaram as características 

ecofisiológicas que favoreceriam as espécies de savana em detrimento às espécies de floresta 

em ambientes com fogo, entretanto no que se refere à comparação entre formas de vida no 

ambiente savânico, pouco foi investigado. Utilizando a abordagem de pares congenéricos, no 

capítulo 1 deste trabalho, foram selecionados pares de subarbustos e árvores, que ocorrem nas 

formações savânicas do bioma Cerrado. Foram examinadas as diferenças na biomassa de 

sementes, germinação, sobrevivência, capacidade de rebrota, investimento em biomassa e na 

capacidade fotossintética entre os pares congenéricos, e se essas características eram 

filogeneticamente conservadas. 

No capítulo 2, por meio de uma extensa revisão da literatura e checagem de dados de todos os 

herbários disponíveis no speciesLink, juntamente com os dados do herbário do IBGE, foi criada 

uma lista de todas as espécies capazes de se reproduzir após a passagem do fogo, tanto em 

formações savânicas quanto florestais. O interessante desta lista é que ela começa como um 

teste no speciesLink, e acaba por se tornar um grande trabalho. Utilizando a ajuda de 

especialistas, juntamente com o esforço de parceiros, todas as espécies foram catalogadas e 

seus nomes foram checados no site Flora do Brasil. Além disso, as espécies foram classificadas 

quanto ao habitat - de formações florestais ou savânicas, família botânica, síndromes de 

polinização, dispersão e forma de vida. Para testar as hipóteses de que as subarbustivas 

possuem maior capacidade reprodutiva após a passagem do fogo, se comparadas às árvores, 

foi necessário utilizar dados relativos à todas as espécies do bioma. 

No capítulo 3, foi testado o efeito competitivo de gramíneas sobre pares congenéricos de 

subarbustos e árvores, e dos pares congenéricos entre si. Os resultados deste capítulo trazem 

à tona a importância da biodiversidade em atenuar as relações competitivas e ao mesmo tempo 

indica a importância do “root-gap” para o estabelecimento de árvores no bioma Cerrado. 

Por fim, os principais resultados dos três capítulos foram consolidados em um resultado geral, 

no qual tentou-se explicar a dominância dos subarbustos nas savanas; a relação fogo-

biodiversidade-evolução, e a importância das políticas de manejo de fogo para a conservação 

da biodiversidade do bioma Cerrado. 
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Pequenas plantas, grandes estratégias: adaptações e sobrevivência no 1 

Cerrado 2 

Resumo Geral 3 

A diversificação da flora da savana brasileira ocorreu há 10 Ma, e envolveu a seleção de 4 

características como casca espessa, desenvolvimento de órgãos subterrâneos, além de 5 

adaptações ecofisiológicas (ex. acúmulo de reservas, capacidade de rebrota) e redução das 6 

formas de vida. As formas de vida menores, como os subarbustos, representariam o extremo de 7 

adaptação a ambientes pirofíticos. Embora a biomassa aérea das formas de vida menores seja 8 

mais consumida durante a passagem de fogo do que das formas de vida maiores, como as 9 

árvores, elas hipoteticamente possuiriam mais reservas, maior capacidade fotossintética, além 10 

de se reproduzirem mais cedo e manterem a capacidade de rebrota por toda a vida. Embora 11 

esses argumentos tenham sido levantados como centrais para o sucesso das espécies 12 

subarbustivas em relação às arbóreas, nenhum estudo verificou a presença destas diferenças, 13 

com exceção das relações de fotossíntese. Em experimentos em casa de vegetação com pares 14 

congenéricos de subarbustos e árvores da savana brasileira, foram investigadas as diferenças 15 

no peso de sementes, germinação, sobrevivência, alocação de carbono estrutural e de reservas, 16 

capacidade de rebrota, capacidade competitiva e capacidade fotossintética. Por meio de revisão 17 

de literatura e checagem de dados em herbários foram verificadas as espécies capazes de se 18 

reproduzir após a passagem de fogo, verificando se alguma forma de vida é reprodutivamente 19 

favorecida após a passagem de fogo, além de verificar se alguma síndrome de dispersão e 20 

polinização se destaca em espécies que se reproduzem após o fogo.  21 

Contrariando a hipótese levantada de que subarbustos representam o extremo evolutivo de 22 

adaptação ao bioma savânico, muitas das características verificadas se mostraram semelhantes 23 

entre árvores e subarbustos. Entretanto, as pequenas diferenças observadas poderiam se 24 

acumular ao longo da vida, culminando em histórias de vida bastante distintas quando no estágio 25 

adulto. Os subarbustos, de fato, investem menos em desenvolvimento aéreo e mais em 26 

armazenamento de energia na forma de reservas, além de possuírem um peso de sementes 27 

menor que as espécies arbóreas. Um total de 2058 espécies são capazes de se reproduzir após 28 

a passagem de fogo e, refutando a hipótese de supremacia reprodutiva dos subarbustos, foi 29 

encontrada que a razão de chance de uma árvore florescer após a passagem do fogo é maior 30 

que a de um subarbusto. Isso não significa que após o fogo um observador verá mais árvores 31 

florescendo, o que só aconteceria se a abundância das formas de vida fosse semelhante. O fogo 32 

não favorece nenhuma síndrome de polinização específica, mas favorece a dispersão zoocória 33 

em detrimento da autocórica. Quanto à capacidade competitiva, tanto subarbustos quanto 34 

árvores são prejudicados pela presença de gramíneas. Entretanto, a presença de árvores atenua 35 

as relações competitivas das gramíneas para os subarbustos, favorecendo-os. O oposto, 36 

entretanto, não é verdadeiro, e as árvores são, de forma sinérgica, negativamente afetadas pela 37 

presença de subarbustos e gramíneas. Em relação à competição par-a-par, as árvores exercem 38 
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efeito negativo no crescimento e sobrevivências das plantas subarbustivas, mas o contrário não 39 

é verdadeiro, e subarbustos não afetam o crescimento e sobrevivências das árvores. 40 

A longa história evolutiva das plantas do Cerrado na presença do fogo selecionou diferentes 41 

formas de vida, igualmente aptas a sobreviverem e reproduzirem neste ambiente. O grande 42 

número de espécies capazes de se reproduzir após o fogo, distribuídas em diferentes famílias, 43 

corrobora a ideia de que a aquisição de caracteres adaptativos para o fogo envolve simples 44 

rearranjo de material genético e raramente mutações, o que norteia parte da hipótese de que o 45 

fogo pode moldar as características funcionais de um ecossistema. A dominância dos 46 

subarbustos (abundância e diversidade) pode ser explicada principalmente pela grande 47 

quantidade de energia armazenada, o que favoreceria a sua sobrevivência em períodos 48 

desfavoráveis e em locais em que o fogo é um evento frequente. Além disso, como possuem 49 

estatura menor, atingiriam a fase adulta mais rapidamente (Mimosa foliolosa floriu 1 ano e meio 50 

após o plantio em casa de vegetação) e produziriam sementes menores, que são facilmente 51 

enterradas, reduzindo a predação e exposição à altas temperaturas causadas pelo fogo, o que 52 

asseguraria o sucesso no ambiente savânico. As árvores, por outro lado, possuem como maior 53 

limitante ao recrutamento para o estágio adulto, a necessidade de escapar do fire-trap, evitando 54 

a mortalidade da parte aérea e alcançando o estágio reprodutivo. Desta forma, a redução da 55 

frequência de fogo nas savanas aumenta o recrutamento de árvores para o estágio adulto, 56 

favorecendo a formação de fisionomias florestais. As formações florestais reduzem a camada de 57 

gramíneas, e juntamente com ela a de subarbustos, que são competidores inferiores se 58 

comparadas às formas arbóreas. Portanto, para assegurar a manutenção da biodiversidade nos 59 

ecossistemas savânicos é necessário que políticas de manejo controlado de fogo sejam 60 

empregadas em todo o bioma, principalmente em unidades de conservação. 61 

  62 
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Introdução Geral 63 

A savana tropical brasileira, Cerrado, é caracterizada por um estrato rasteiro dominante, com 64 

presença de gramíneas, subarbustos e ervas, e um estrato arbóreo descontínuo, relativamente 65 

baixo (Gottsberger & Silberbauer-Gottsberger 2006; Ratnam et al. 2011). O bioma Cerrado é a 66 

savana mais biodiversa do mundo, com mais de 12.000 espécies de angiospermas, 4.252 delas 67 

endêmicas (BFG 2015), e, diferentemente das outras savanas, não possui uma família 68 

dominante, sendo que poucas espécies (38 espécies) estão distribuídas em toda a extensão do 69 

bioma (Ratter et al. 2003). O bioma possui síndromes globais de regime de fogo (piromas), 70 

caracterizadas por eventos frequentes (1 – 4 anos de intervalo de retorno de fogo), com o fogo 71 

podendo ter intensidade e altura de chama variável (ver Archibald et al. 2013). O regime de fogo 72 

pode ser definido como as características de intensidade1, frequência2, severidade3, 73 

sazonalidade, tamanho e extensão do fogo (Bond & Keeley 2005), e englobar os processos mais 74 

antigos como as mudanças no clima e integrar também as influências humanas (Whitlock et al. 75 

2010). 76 

 Os eventos de fogo provavelmente se tornaram mais frequentes no final do Mioceno, 77 

coincidindo com a expansão global das gramíneas C4 (Pennington et al. 2006) e com a 78 

diversificação da flora do Cerrado (Simon et al. 2009). Desta forma, a flora do bioma evoluiu em 79 

um ambiente muito inflamável, levando à seleção de caracteres adaptativos ao regime de fogo. 80 

A maioria das espécies selecionadas a este ambiente possui casca espessa, órgãos de reserva 81 

e capacidade de rebrota (Hoffmann 2002; Gottsberger & Silberbauer-Gottsberger 2006; Miranda 82 

et al. 2009). De forma geral, a dinâmica da vegetação do Cerrado é governada pelo regime de 83 

fogo, e não pela mortalidade (Hoffmann et al. 2009; Hoffmann et al. 2012a), sendo influenciada 84 

pelo clima regional e pelas características alométricas específicas das espécies lenhosas, de 85 

forma que a recuperação após a passagem de fogo depende das características de crescimento 86 

das mesmas (Lehmann et al. 2014).  87 

Intervalos curtos entre queimadas (alta frequência) e alta intensidade de fogo geram 88 

vegetações mais abertas, com mais herbáceas, e um ambiente mais inflamável; e, inversamente, 89 

ambientes com baixa frequência de fogo permitem que os indivíduos da comunidade adquiram 90 

tamanho suficiente para resistir às chamas, de forma que o ambiente se torna mais fechado e 91 

com menos biomassa combustível (Hoffmann et al. 2012a; Just et al. 2015). A menor quantidade 92 

de biomassa combustível, referente à baixa abundância de herbáceas, juntamente com a alta 93 

umidade e menor incidência de ventos garantem que as fisionomias florestais sejam menos 94 

susceptíveis às queimadas (Hoffmann et al. 2012b).  95 

Nas matas de galeria, por exemplo, a maioria das espécies não teve uma história 96 

evolutiva influenciada pelo regime de fogo e, portanto, não desenvolveram caracteres de 97 

                                                     
1 A intensidade de fogo se refere a energia liberada pelo fogo na sua passagem, e na prática, pode ser definida como a 

altura das chamas e a taxa de propagação. 2 A frequência de fogo é a ocorrência de fogo em um determinado período 

de tempo em uma área. 3 A severidade do fogo seria uma medida de impacto no ecossistema, como por exemplo a 

mortalidade de árvores em florestas ou o consumo de biomassa (Bond & Keeley 2005; Keeley 2009). 
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resistência e tolerância ao mesmo. Desta forma, é bem elucidado na literatura que, 98 

comparativamente às espécies de cerrado, as espécies de mata possuem uma menor razão 99 

raiz:parte aérea (82% menor), maior investimento em copa e menor investimento em casca e em 100 

reservas de raízes, o que se reverte em uma menor capacidade de rebrota e sobrevivência a 101 

eventos de fogo (Hoffmann 2000; Hoffmann et al. 2003; Hoffmann & Solbrig 2003; Hoffmann et 102 

al. 2004; Hoffmann et al. 2005).  103 

Dentro do próprio cerrado, as espécies podem responder de forma distinta ao regime de 104 

fogo. A literatura sugere que as formas de vida menores (subarbustos e ervas) seriam 105 

favorecidas em detrimento das formas de vida maiores (árvores) em áreas com alta frequência 106 

e intensidade de fogo (Gottsberger & Silberbauer-Gottsberger 2006; Simon & Pennington 2012). 107 

Isso ocorreria em decorrência de sincronismo de floração em relação ao fogo e uma melhor 108 

exploração dos nutrientes deixados pelo consumo da biomassa nas camadas superficiais do solo 109 

(cinzas), gerando transferência indireta de energia das espécies arbóreas e arbustivas para os 110 

subarbustos e gramíneas. Ademais, as formas de vida menores teriam maior capacidade de 111 

rebrota e menor perda de produtividade (flor e frutos) (Coutinho 1982; Gottsberger & Silberbauer-112 

Gottsberger 2006; Miranda et al. 2009). Além disso, para atingirem o estágio reprodutivo, as 113 

espécies arbóreas precisam de maiores intervalos sem fogo do que as subarbustivas e 114 

herbáceas (Hoffmann & Solbrig 2003) e analogamente, as formas menores precisam de menos 115 

nutrientes para alcançarem o estágio adulto (Bond 2010). 116 

Embora o debate sobre favorecimento de uma forma de vida em detrimento doutra em 117 

eventos de fogo exista, trabalhos com enfoque nas diferenças de caracteres adaptativos ao fogo 118 

são escasssos. Entender quais características da história de vida de uma espécie garantem 119 

sucesso em um ambiente é importante para inferir como os ecossistemas naturais serão afetados 120 

frente às perturbações antrópicas e mudanças climáticas. Desta forma, este trabalho tem como 121 

objetivo principal verificar as diferenças e semelhanças de caracteres adaptativos ao fogo em 122 

espécies arbóreas e subarbustivas do Cerrado. Para tanto, o trabalho será organizado em três 123 

capítulos: O primeiro com enfoque nas características fotossintéticas, alocação e uso de 124 

reservas, sobrevivência e capacidade de rebrota; o segundo com foco na capacidade reprodutiva 125 

entre as formas de vida, seleção de síndromes de polinização e dispersão; e o terceiro nas 126 

relações de competição interespecífica entre árvores e subarbustos e destes com a gramínea 127 

nativa do Cerrado Paspalum atratum.  128 

 129 
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Abstract: 203 

Over the past 10 million years, tropical savanna environments have selected for small growth forms within 204 

woody plant lineages. The result has been the evolution of subshrubs (geoxyles) within many lineages of 205 

predominantly tree species, presumably as an adaptation to frequent fire. The main objective of this study 206 

was to evaluate the traits that favor subshrubs over trees in fire-prone ecosystems. We compared seed 207 

biomass, germination, survival, resprout capacity, biomass allocation, and photosynthesis between 208 

congeneric trees and subshrubs, and quantified the strength of phylogenetic conservatism. Despite the 209 

large differences in adult morphology between trees and subshrub species, as seedlings the differences 210 

are modest, and most of the variation in seedling traits was explained by phylogeny. Regardless, seedlings 211 

of tree species invested more heavily in aboveground growth, compared to subshrubs, which is consistent 212 

with the adult strategy of trees which depends on a large resistant-fire stem. Subshrub seedlings also invest 213 

in greater non-structural carbohydrate reserves, likely as an adaptation to the high fire frequencies typical 214 

of Neotropical savannas. These modest differences as seedlings suggest that selective pressures during 215 

early development may not have contributed substantially to the evolution of the subshrub growth form. 216 

Instead the distinct allocation and life history appear to arise later, and as adults, subshrubs differ from 217 

trees by reaching maturity at a small stem size, allowing them to reproduce despite repeated fire-induced 218 

topkill, but they produce smaller seeds than trees. The convergent evolution of subshrubs within multiple 219 

tree lineages reaffirms the importance of fire in the origin and diversification of the flora of mesic savannas. 220 

Furthermore, this assembled guild of subshrubs retains a strong phylogenetic signal of these diverse 221 

lineages, resulting in a Cerrado subshrub flora that is functionally quite diverse.  222 

Key words: subshrub vs tree; Brazilian Savanna; savanna evolution; fire adaptations; traits phylogenetically 223 

conserved 224 

 225 
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Introduction: 226 

Evidence suggests that diversification of the tropical savanna woody flora began in the late Miocene, 227 

following the expansion of C4 grasses and accompanying an increase in fire frequency (Simon et al. 2009, 228 

Maurin et al. 2014). This flora was assembled from multiple lineages, many of which originated as trees 229 

from evergreen or deciduous forests. Many of these lineages retained a tree growth form, but underwent 230 

natural selection for multiple traits, including thick bark, increased investment in belowground biomass and 231 

reserves, thick leaves, and reduced adult height. A more extreme example of this reduction in adult height 232 

is observed in subshrubs (geoxyles), which have diminutive aerial stems and large investment in 233 

belowground organs (see Gottsberger and Silberbauer-Gottsberger 2006, Simon and Pennington 2012). 234 

As adults, the belowground allocation of subshrubs is often so great these subshrubs are called 235 

underground trees (Warming 1908, White 1976, Simon and Pennington 2012, Bond 2016). 236 

Trees and subshrubs represent starkly different outcomes of natural selection within the savanna 237 

environment. Although morphological differences between these growth forms are substantial as adults, it 238 

is not clear how these differences extend to physiological traits and seedling ecology, and consequently we 239 

lack a complete picture of the shift in life-history strategies that has accompanied the evolution of the 240 

subshrub habit. One possibility is that subshrubs represent an extreme endpoint in a continuum of woody 241 

plant adaptation to the savanna environment, with savanna trees being intermediate between forest trees 242 

and savanna subshrubs. Under this hypothesis, savanna subshrubs should exhibit more extreme values of 243 

a suite of traits shown to be typical of savanna trees, with seedlings exhibiting, for example, substantially 244 

lower values of specific leaf area (SLA), higher root-shoot ratio, and higher allocation to carbohydrate 245 

reserves, compared to trees of the same environment. 246 

 An alternative scenario is that savanna trees and subshrubs represent distinct life-history strategies 247 

that differ primarily during later development, as distinct strategies for ensuring reproduction under frequent 248 

burning. That is, adult savanna trees are able to maintain reproductive size in spite of fire because their 249 

large, fire-resistant stems are largely immune to fire (Hoffmann et al. 2009, Dantas and Pausas 2013). In 250 

contrast, the aerial biomass of subshrubs is totally consumed by fire, but they can resprout vigorously and 251 

reach reproductive size quickly after fire (Zizka et al. 2014). These differing strategies could be manifested 252 

largely as differences in size at maturity and investment in aboveground biomass of established plants, and 253 

might not involve differences in seedling traits or in leaf physiology. In fact, seedlings of trees and subshrubs 254 

are exposed to similar stresses and disturbances, and their stems should be equally vulnerable to fire, 255 

imposing similar needs for resprout capacity. 256 

 To better understand the suite of plant adaptations associated with the subshrub growth form, we 257 

compared congeneric trees and subshrubs of the Brazilian Cerrado to test for convergence in seedling and 258 

leaf traits in subshrubs across multiple lineages. Furthermore, we examined the strength of phylogenetic 259 

conservatism across lineages because of its potential to shape the functional diversity of subshrub 260 

communities. That is, if phylogeny has a strong influence on species traits, as is commonly documented 261 



8 
 

(Verdú and Pausas 2007, Pausas and Verdú 2008, Souza-Neto et al. 2016), then the functional diversity 262 

of subshrubs should closely mirror the underlying diversity present in their ancestral tree species. 263 

Considering that subshrubs arose independently from multiple and diverse lineages of tropical trees, trait 264 

conservatism should ensure high functional diversity across subshrubs species. Furthermore, this large 265 

diversity may obscure differences between trees and subshrubs, making it important to account for 266 

phylogenetic effects (see Hoffmann and Franco 2008).  267 

 268 

Materials and Methods: 269 

- Species selection and growth form classification 270 

We selected 16 pairs of species, each containing one subshrub and one tree species from the same genus 271 

and present in Brazilian Savanna. The use of these congeneric pairs allows us to confirm that similarities 272 

found within the growth forms can be interpreted as convergent evolution, which is strong evidence of 273 

natural selection, and not because of shared ancestral traits (Hoffmann and Franco 2008, de Bello et al. 274 

2015). These genera represent 12 different families, which are well distributed across the angiosperm 275 

phylogeny (Figure 1). We classified species as trees if they commonly possess a single, well-developed 276 

and persistent stem of over 2 m tall. Subshrubs had an herbaceous-like morphology, with poorly developed 277 

stems, commonly without apical dominance and usually smaller than 1 m.  278 

 279 

- Seed collection and sowing 280 

We were able to collect seeds of 11 of the species pairs. Most were collected in the vicinity of Brasília, DF, 281 

Brazil, but seeds of Copaifera oblongifolia were collected in Chapada Gaúcha, MG, Anacardium humile 282 

was collected in Grão Mogol, MG and Mimosa foliolosa was collected in Serra da Canastra, São Roque de 283 

Minas, MG. We collected seeds between November, 2013 and July, 2014. We weighed 50 fresh seeds of 284 

each species using a precision scale (0.0001 g) to obtain mean seed mass. We sowed the species in 285 

polyethylene sacks containing approximately 12.5 l of soil (20 cm diameter x 40 cm deep), with three seeds 286 

per sack, and 60 sacks per species. Most were sown in February 2014, but Mimosa heringeri and M. 287 

speciosissima were sown in April, 2014 and the Stryphnodendron spp. were sown in July, 2014. Mimosa 288 

and Stryphnodendron seeds were immersed in sulfuric acid for 5 minutes to break physical dormancy. We 289 

used a substrate 70% oxisol subsoil (40 cm deep or more) mixed with 30% of washed sand, without added 290 

nutrients. The experiment was conducted in a greenhouse, with an automatic irrigation system supplying ~ 291 

7 mm/day.  292 
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 293 

Figure 1. Phylogenetic tree for congeneric pairs of subshrubs and trees that occur in Brazilian Savanna. Phylogenetic 294 

relation was based on the current Phylomatic tree (tree R20120829 – Stevens (2001 onwards)). We improved the 295 

Mimosa clade using a more recent phylogeny (Simon et al. 2011). Alternating colors indicate congeneric pairs. 296 

Superscripts indicate data the data that were collected: 1 photosynthesis, respiration, and SLA of adult plants were 297 

measured; 2 germination and seedling traits were measured; 3 seed mass was measured.  298 
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- Germination, survival, resprouting, biomass and reserves analysis 299 

We monitored germination and survival at monthly intervals. At 10 months after sowing, we randomly placed 300 

the plants into three groups. One group was kept as control, the second group was clipped at soil level to 301 

assess resprout capacity, and the third group was harvested to quantify biomass and reserves. For clipped 302 

plants, the number of individuals that resprouted in each sack was assessed monthly and resprout height 303 

was measured after six months. Harvested plants were washed in a sieve (2 mm) to remove all soil and 304 

were then divided into shoot and roots. Roots were submerged in liquid nitrogen to stop metabolic activity 305 

and were then lyophilized and stored with silica gel until analyzed for root carbohydrate reserves. Shoots 306 

were dried in a forced air chamber at 70oC for 72 h, separated into leaves and stems (including petiole for 307 

species with compound leaves), and weighed on a precision scale (0.0001 g). 308 

To analyze the root reserves we randomly selected six of the harvested individuals of each species, 309 

except Kielmeyera pumilum, for which only five individuals were selected. When there was more than one 310 

surviving individual per sack, we analyzed the largest. Samples were ground, and soluble sugar and starch 311 

were extracted and measured using the protocol of Amaral et al. (2007). 312 

 313 

- Photosynthesis, respiration and specific leaf area 314 

We located six adult individuals of each species in natural areas of Brasília, and using a portable 315 

photosynthesis system LCpro-SD (BioScientific Ltd.) we measured maximum photosynthesis rate and 316 

respiration on a leaf area basis. Measurements were performed on a fully expanded, healthy leaf, which 317 

was exposed to direct sunlight during part of the day. We performed measurements on one leaf per 318 

individual and recorded five measurements of photosynthesis per leaf at 1 min intervals after the exchange 319 

rate stabilized. Measurements were taken between 8:30 am and 12:30 pm with a photosynthetic photon 320 

flux density (PPFD) of 1,600 µmol m-2s-1, chamber temperature at 30oC and open-flow mode (CO2 321 

concentration mean ± sd was 373 ± 5 µmol mol-1). We then measured the dark respiration of the same leaf 322 

by turning off the LED (PPFD = 0) and covering the leaf chamber with aluminium foil. Specific leaf area 323 

(SLA) was measured in six individuals per species. 324 

 325 

- Statistical analysis 326 

We used mixed-effect models with interactions to verify differences between growth forms on 327 

ecophysiological traits: seed biomass, plant germination, survival, root reserves, photosynthesis rate, 328 

respiration rate, SLA, and resprout capacity. The models were built using growth form as a fixed factor, and 329 

genus as a random factor. The Gaussian distribution was used in most of the variables, exception was the 330 

resprout capacity that we used a Binomial distribution. When necessary, the response variable was log 331 

transformed to ensure the normality of residuals. To verify if traits were phylogenetically conserved we 332 
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calculated the fraction of the total variance that was explained by growth form (fixed effect) and by genus 333 

(random effect) using the conditional 𝑅𝐺𝐿𝑀𝑀
2 , which describes the variance explained by fixed and random 334 

factors as a proportion of the sum of all the variance components (see Nakagawa and Schielzeth 2013, 335 

Johnson 2014).  336 

While the previous analysis provides a test of phylogenetic signal across genera, we also tested 337 

for trait conservatism over the entire phylogeny using the Blomberg’s K and Pagel’s λ (Pagel 1999, 338 

Freckleton et al. 2002, Blomberg et al. 2003). Blomberg’s K is defined as the ratio between mean squared 339 

error (MSE) of the tip data divided by the MSE of data calculated using the variance-covariance matrix 340 

derived from the phylogenetic tree (see Blomberg et al. 2003 for details) and quantifies the degree of 341 

variation in a trait that can be explained by the phylogeny. If Blomberg’s K < 1, this indicates overdispersion, 342 

and traits have less phylogenetic signal than expected from Brownian motion (BM) model. If K > 1, there is 343 

more phylogenetic signal than expected from BM model (Crisp and Cook 2012). The Pagel’s λ compares 344 

the distribution of a trait to that expected by BM. Low λ values indicates little phylogenetic signal in a trait 345 

given, and high λ values indicates a strong phylogenetic signal (Münkemüller et al. 2012, Swenson 2014). 346 

To realize the Blomberg’s K and Pagel’s λ tests, we first constructed a phylogenetic tree with all 32 347 

species. The current Phylomatic tree (R20120829) was used to estimate phylogenetic distances among 348 

taxa. The tree resolution was improved using data from Hedges and Kumar (2009). We dated the nodes 349 

using the “branch length adjustment” algorithm in Phylocom (Webb et al. 2008), and we obtained the age 350 

for major nodes in the tree from Hedges and Kumar (2009). 351 

To verify the relationship between seed biomass and plant reserves or plant biomass in different 352 

growth forms we used Analysis of Covariance (ANCOVA), in this case the seed biomass was used as 353 

covariate, growth form as variable independent and plant reserves or plant biomass as dependent variable. 354 

The same approach was used to verify the relationship between SLA and photosynthesis or respiration 355 

rate, and in this case, SLA was included as a covariate. All analyses were conducted in R program (R 356 

Development Core Team 2015), with the packages lme4 (Bates et al. 2015), car (Fox and Weisberg 2011), 357 

brranching (Chamberlain 2016), phytools (Revell 2012), rncl (Michonneau et al. 2015), and ape (Paradis et 358 

al. 2004). 359 

 360 

Results: 361 

- Seed and Plant Biomass 362 

On average, seeds of trees were 36% heavier than seeds of subshrubs (F1,10 = 6.015, p =  0.034, Figure 363 

2A). At an age of 10 months, total seedling biomass was 72% higher in trees than in subshrubs (F1,9 = 364 

5.242, p =  0.048, Figure 2D). Similarly, trees had greater biomass of stems (F1,9 = 8.968, p =   0.015), 365 

leaves (F1,9 = 8.921, p =   0.038), and shoots (F1,9 = 7.031, p =  0.026), but not of roots (F1,9 = 4.071, p =  366 
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0.074). When compared in context of biomass allocation, the only significant difference between tree and 367 

subshrub was stem mass ratio (F1,9 = 32.788, P < 0.001, Figure 2G), which was 31% higher in trees than 368 

in subshrubs. Root mass ratio (F1,9 = 0.426, p =  0.531), leaf mass ratio (F1,9 = 0.093, p =  0.767) and 369 

root:shoot ratio (F1,9 = 0.476, p =  0.508) were not significantly different between growth forms. Seed 370 

biomass did not affect total plant biomass (F1,16 = 2.001, p =  0.176), and marginally affected the root 371 

biomass (F1,16 = 4.040, p =  0.062). 372 

 373 

- Germination and Survival 374 

Germination success did not differ significantly between subshrubs and trees (F1,9 = 3.171, p =  0.109); with 375 

means of 73 ± 17 % (mean ± sd) and 62 ± 27%, respectively (Figure 2B). Survival after 10 months was 376 

similar between forms (F1,9 = 0.656, p =  0.439), with survival of 81 ± 18% for trees and 76 ± 22% for 377 

subshrubs (Figure 2C). Resprout capacity did not consistently differ between life forms (X2 = 0.023, p =  378 

0.878, Figure 2J), with mean resprouting of 57.5% for subshrubs and 53.0% for trees.  379 

 380 

- Carbohydrate reserves 381 

Root carbohydrate mass did not differ between the growth forms (F1,9 = 1.944, p =  0.197, Figure 2E), but 382 

nonstructural carbohydrate:structural biomass ratio of roots was 37% higher in subshrubs than trees (F1,9 383 

= 5.830, p =  0.039, Figure 2I). Root carbohydrate mass:total plant mass ratio was marginally significantly 384 

(F1,9 = 3.479, p =  0.095, Figure 2H). There was a relationship between root carbohydrate mass and seed 385 

biomass (F1,16 = 13.457, p =  0.002), and root carbohydrate concentration was marginally correlated with 386 

seed biomass (F1,16 = 3.209, p =  0.092). 387 

 388 

- Photosynthesis, Respiration and Specific Leaf Area (SLA) 389 

There was no difference between growth forms in light-saturated photosynthesis (F1,10 = 0.053, p =  0.823) 390 

dark respiration rate (F1,10 = 0.001, p =  0.968) or SLA (F1,10 = 0.077, p =  0.787), and no correlation was 391 

detected between rates of photosynthesis (F1,18 = 0.519, p =  0.481) or respiration (F1,18 = 0.040, p =  0.843) 392 

with SLA. 393 

 394 

- Phylogenetic conservatism 395 

Overall, phylogeny explained much more of trait variation than did growth form. That is, genus explained 396 

more than 67% of the total variance in most traits. In contrast, the maximum variance explained by growth 397 

form was 6% for the traits total biomass and germination rate (Table 1). Even so, not all traits had a 398 
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significant phylogenetic signal when the full phylogeny was considered. While seed mass, stem mass ratio, 399 

root:shoot ratio and root carbohydrate biomass were phylogenetically conserved, the others 12 analyzed 400 

traits were not (Table 1). 401 

Table 1. Analyses of phylogenetic conservationism for ecophysiological traits in two differents growth forms 402 

of Brazilian Savanna. The 𝑅𝐺𝐿𝑀𝑀
2  was calculated using the Johnson (2014) and Nakagawa and Schielzeth 403 

(2013) approach and represent total variance explained by genus and growth form in linear mixed models. 404 

Variables with asterisks were log transformed. The K represent the values in Blomberg’s K, λ the value of 405 

Pagel’s λ test, P1 and P2 the p value in Blomberg’s K test and Pagel’s λ, respectively. 406 

Trait 𝑹𝑮𝑳𝑴𝑴 𝑮𝒆𝒏𝒖𝒔

𝟐  𝑹𝑮𝑳𝑴𝑴 𝑮𝒓𝒐𝒘𝒕𝒉 𝒇𝒐𝒓𝒎

𝟐  K p1 λ p2 

Seed mass* 0.94 0.02 0.97 0.004 1.01 <0.001 

Germination rate 0.76 0.06 0.25 0.338 <0.01 >0.999 

Survival rate 0.76 0.01 0.51 0.047 <0.01 >0.999 

Total plant mass* 0.64 0.06 0.59 0.036 0.91 0.089 

Root mass ratio 0.69 <0.01 0.64 0.012 0.84 0.101 

Stem mass ratio 0.68 0.05 0.79 0.003 0.97 0.012 

Leaf mass ratio 0.78 <0.01 0.80 0.005 0.85 0.070 

Root : Shoot ratio* 0.70 <0.01 0.74 0.010 0.96 0.020 

Resprout rate* 0.57 <0.01 0.61 0.009 0.820 0.167 

Photosynthesis rate 0.42 0.02 0.16 0.543 <0.01 >0.999 

Dark respiration rate 0.42 <0.01 0.34 0.263 0.37 0.370 

Specific leaf area 0.68 <0.01 0.12 0.856 <0.01 >0.999 

Nonstructural carbohydrate : structural biomass* 0.68 0.04 0.68 0.080 0.72 0.202 

Root carbohydrate mass* 0.66 0.03 0.67 0.136 0.83 0.022 

Root carbohydrate concentration* 0.68 0.04 0.42 0.146 0.71 0.269 

Root carbohydrate mass : Total plant mass* 0.75 0.02 0.34 0.246 0.79 0.251 

 407 

Discussion: 408 

Although the differences between trees and subshrubs are large and evident as adults (Poorter et al. 2012, 409 

Díaz et al. 2016), we found surprisingly few consistent differences in seedling characteristics (Figure 2). 410 

Instead, interspecific variation in seedling traits was consistently found to be most strongly determined by 411 

genus (Table 1) than by growth form. Similar patterns were observed for leaf traits of adult plants.  412 

Of all the seedling traits studied, investment in above-ground biomass and carbohydrate reserves 413 

were the only ones to hint at the remarkable divergence between trees and subshrubs that develops later 414 

in life. As seedlings, trees consistently invested a modestly larger fraction of their biomass in stems (13% 415 

versus 9%, Figure 2G) while subshrubs have greater investment in carbohydrate reserves (39% versus 416 
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29% of root structural mass, Figure 2I). These differences, particularly in stem biomass, obviously must 417 

accrue further as plants approach maturity, when subshrubs and trees exhibit starkly different strategies.  418 

 419 

Figure 2. Seed and seedling traits (mean±SE) of congeneric pairs of subshrubs and trees in Brazilian Savanna. An 420 

asterisk indicates a significant difference (p < 0.05). The differences between congeneric pairs was calculated using t 421 

test. An = Anacardium, Ch = Chamaecrista, Co = Copaifera, Eu = Eugenia, Ja = Jacaranda, Ki = Kielmeyera, Ou = 422 

Ouratea, Mi1 and Mi2 = Mimosa, St = Stryphnodendron, Vo = Vochysia, Sub = Subshrub. 423 
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Savanna trees exhibit an escape strategy (Zizka et al. 2014) that consist of early investment in height 424 

growth or early bark growth (Dantas and Pausas 2013), allowing them to become fire resistant. If stem 425 

growth is not sufficiently rapid, juvenile trees can be maintained indefinitely in a suppressed juvenile state 426 

due to repeated topkill by fire, thereby precluding sexual reproduction. Subshrubs, in contrast, are able to 427 

reproduce sexually despite repeated loss of aboveground biomass. 428 

The modest differences in seedling allocation between savanna trees and subshrubs suggests that 429 

natural selection during establishment and early development has not been the primary factor driving the 430 

divergence of these growth forms. At this stage, seedlings of both growth forms are subject to an 431 

environment characterized by long dry seasons, low nutrient availability, and high risk of fire. In particular, 432 

fire is a particularly important factor in savannas, and may occur about once every 2-5 years (Gottsberger 433 

and Silberbauer-Gottsberger 2006, Archibald et al. 2013). The herbaceous aboveground layer is reduced 434 

by more than 90% after fire (Miranda et al. 2002), along with seedlings of trees and subshrubs, and must 435 

regrow from soil level. We found seedlings of both subshrubs and trees to recover similarly well following 436 

biomass loss, and exhibit similar functional traits. As plants develop, however, eventually a stem size is 437 

reached at which subshrubs are reproductively mature, while trees are neither mature nor large enough to 438 

resist fire (Figure 3). Is not clear whether both growth forms would maintain similar growth rates until this 439 

time, nor if they would exhibit similar allocation patterns. More importantly, however, is that this point marks 440 

the divergence between growth forms in their demographic responses to frequent fire. At this point, trees 441 

are susceptible to being maintained in a fire-trap of repeated topkill and resprouting, and may be maintained 442 

indefinitely in this suppressed state without an opportunity to reach reproductive maturity. Meanwhile 443 

subshrubs are generally able to recover reproductive size quickly between fires, thereby being able to 444 

produce seeds in the intervals between fire (Figure 3). So although allocation patterns may have diverged 445 

substantially prior to reaching this size, perhaps the most essential difference between these growth forms 446 

is the stem size at sexual maturity. However, this may have indirect effects on evolution of maximum size 447 

because evidence suggests a tradeoff between maximum size and ability to reproduce at small size 448 

(Aarssen 2015). Thus, the ability to reproduce while suppressed by frequent fires may preclude the ability 449 

to become a large, fire-resistant tree.  450 

The ability to reproduce sexually at a small stem size allows successful reproduction despite 451 

frequent topkill, but imposes a cost upon the potential reproductive output. An adult tree may produce a 452 

vast number of seeds, while an adult subshrub has a much smaller amount of resources to invest in 453 

reproduction. Available resources can be invested in many small offspring or few large offspring (Henery 454 

and Westoby 2001, Muller-Landau et al. 2008, Díaz et al. 2016), and small growth forms tend to smaller 455 

seeds (Díaz et al. 2016). Selective pressure towards smaller offspring was detected as significantly smaller 456 

seeds and seedlings in subshrubs than in trees (Figure 2A). Yet, the number of offspring produced per unit 457 

plant size, per unit time describe the evolutionary fitness of a plant, and the most parsimonious way for a 458 
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plant to make more seeds is to make smaller ones (Aarssen et al. 2006), and in ecosystems with limited 459 

time availability for plant growth, small reproductive plant size is favored (Aarssen 2015). 460 

Other factors likely contributed to evolution of seed size in the Cerrado, but it is not clear whether 461 

they would consistently contribute to smaller seeds of subshrubs. Their smaller reserves results in smaller 462 

seedlings (Westoby et al. 2002) that would be more vulnerable to fire and drought, but such habitats with 463 

low seedling survival may favor production of many small seeds with high dispersal to enhance arrival at 464 

suitable sites (Smith and Fretwell 1974, Leishman et al. 2000, Moles and Westoby 2004). Furthermore, 465 

small seeds have been associated with lower capacity to withstand heat shock, such as that produced by 466 

fire (Ribeiro et al. 2015). However, tree recruitment in the Brazilian Savanna has been shown to be seed 467 

limited (Salazar et al. 2012) so predation in this environment has a substantial effect on seedling abundance 468 

by reducing the seed supply (Campbell and Clarke 2006, Salazar et al. 2012). Small seeds are easily 469 

buried, reducing predation and exposure to high temperatures in fire events, which would favor small seeds. 470 

One remarkable feature of subshrub evolution is the fact that they arose independently within a 471 

large number of tropical tree lineages. These multiple origins suggest that the conquest of fire-prone 472 

ecosystems may require simple, easily acquired, genetic changes, perhaps involving gene regulation and 473 

rather than structural mutation (Simon and Pennington 2012). This could involve, for example, 474 

downregulation of gibberellin pathways, which is known to induce both dwarfism and flowering at smaller 475 

stem sizes (Davies 2010, Gupta and Chakrabarty 2013), two characteristics of subshrubs (Figure 3). 476 

Regardless of the genetic mechanism, the evolutionary shift from tree to subshrub has relatively 477 

little impact on many species traits. In fact, for most traits, genus explained >65% of the total interspecific 478 

variation across the study species, revealing strong phylogenetic conservatism of these traits. Each of these 479 

independent origins occurred within a lineage that possesses a unique suite of plant functional traits. This, 480 

combined with substantial conservatism of these traits at the genus level, has given rise to a functionally 481 

diverse community of subshrubs in the Cerrado, which largely mirrors the diversity of lineages from which 482 

the subshrubs evolved. 483 

 484 

Conclusions: 485 

These findings have multiple implications for the ecology and evolution of the subshrub (geoxyle) growth 486 

form, which is a diverse component of mesic savannas of South America and Africa. As seedlings, 487 

functional traits among our study species were more strongly determined by phylogeny than by growth 488 

form, but presumably this pattern is inverted later in development as plants differentiate into the highly 489 

distinctive tree and subshrub growth forms. Even so, leaf traits of adult plants continued to show little 490 

difference between growth forms, emphasizing the importance of the allocation and reproductive traits that 491 

characterize these growth forms. 492 
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 493 

Figure 3. Schematic of the life histories of A) a tree and B) a subshrub, showing the differences in development and 494 

reproduction and response to the frequent fire. 495 

Nevertheless, there were several significant differences in several traits between subshrubs and 496 

trees across multiple independent lineages, revealing an influence of natural selection on these traits. 497 

Overall subshrubs had significantly smaller seeds, greater investment in carbohydrate reserves and less 498 

investment in aboveground growth during early development, all of which are consistent with a life history 499 

strategy involving adults that invest little in permanent aboveground structures and reproduce quickly after 500 

fire. On the other hand, trees are comparatively less adapted to habitats with high fire frequency. Although, 501 

they can remain “gullivers”, this life-history strategy depends on longer free-fire intervals or alternatively 502 

many years of accumulating reserves for fueling sustained rapid growth to become fire resistant. These two 503 

different life-history strategies reaffirm the importance of fire events in the origin of savanna biodiversity 504 

during the recent evolution and diversification of Brazilian savanna flora. Subshrubs comprise an important 505 

component of this flora, which by means of extreme reduction in growth form have converged on an 506 

effective strategy for the savanna environment. 507 
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 633 

Abstract: 634 

How many species are able to reproduce after a fire event? Are some reproductive traits selected in fire-635 

prone ecosystems? These questions have intrigued researchers for a long time. We knew that savanna 636 

diversification occurred in the last 10 Mya and involved development of underground organs, thick terminal 637 

branches and bark, and resprout capacity. Small life forms represent, theoretically, the extreme of 638 

adaptation in fire-prone ecosystems, and most of them are able to reproduce after fire events. Using 639 

herbarium and literature data, we found that 2,058 species (16.6%) in Cerrado biome are able to reproduce 640 

until one year after fire. The species represented 61% of the Cerrado families, and subshrubs represent 641 

60% of the reproductive species after a fire, and trees 12%. Although subshrubs are the dominant 642 

reproductive growth form in the Cerrado biome, surprisingly, the trees have higher chances of reproduction 643 

after a fire event. “The biased point of view” could explain why the naturalist thought, that the subshrubs 644 

reproduction, despite trees, are positively influenced by fire. We explained why trees reproduction are not 645 

negatively influenced by fire, using “fire as a pruning”, and all traits correlated with tree survival in fire-prone 646 

ecosystems. We explored the importance of pollination and dispersion syndromes in plants that reproduce 647 

after fire. Reproduction of anemophilous species is not favored after fire events, however the number of 648 

pollinators is not negatively affected by fire, so there is not any reason to natural selection favor the wind-649 

pollinated species after fire. Yet, we found an odds ratio in favor of zoochory species, and against autochory. 650 

The wind-dispersed species is not significantly favored in species able to reproduce after a fire, probably 651 

because there is a fast recovery of burnt areas, not favoring the long dispersion by wind.  652 

Keywords: post-fire reproduction, pyrophytic species, Savanna evolution, Brazilian Savanna, Cerrado, 653 

pollination and dispersion syndromes. 654 

 655 

Introduction: 656 

“In October 8, 1864, a Cerrado grassland was burned… in October 25 the Cerrado’s soil was covered with 657 

countless buds, and fresh and new flowers, I have never seen more beautiful grassland” (Warming 1908 - 658 

page 90). The event related by Warming (1908) is a life history strategy of species in fire-prone ecosystems 659 

(Figure 1). Savanna diversification occurred in the Miocene, together with the spread of C4 grasses and 660 
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enhancement of fire frequency (Simon et al. 2009). During the savanna diversification, species with thick 661 

bark, thick terminal branches, underground organs and resprout capacity were selected (Gottsberger & 662 

Silberbauer-Gottsberger 2006a; Simon & Pennington 2012; Maurin et al. 2014), and some of them seem 663 

to depend on fire for reproduction (Lamont & Downes 2011; Rissi 2016). 664 

Post-fire reproduction events are most reported for small growth forms, because, theoretically, herbs and 665 

subshrubs are more adapted to fire-prone ecosystems than large growth forms (Simon & Pennington 2012; 666 

Maurin et al. 2014). The small growth forms invest proportionally large amount of energy in belowground 667 

reserves (xylopodia) (Gottsberger & Silberbauer-Gottsberger 2006a), have a lower investment in 668 

aboveground growth and have an early investment in reproduction (Zizka et al. 2014). Apparently, the 669 

induction of reproduction is not the result of thermal action or fertilization by ashes or gases emanating from 670 

combustion, but from the effect of plant pruning at soil level (although, efficiently different, see Fidelis & 671 

Blanco (2014)) (Coutinho 1990). While herbaceous forms increase flower production after fire (Munhoz & 672 

Felfili 2005), woody forms usually decrease sexual reproduction (Coutinho 1982; Hoffmann 1998; García-673 

Nunez et al. 2001). 674 

A high percentage of woody species are zoochorous, when compared with herbaceous species that are 675 

mostly anemochorous and autochorous (Batalha & Martins 2004; Ishara & Maimoni-Rodella 2011). 676 

Anemochorous species could be favored after a fire event because the biomass reduction in the ground-677 

layer allow seeds to disperse longer distances than when fire does not occur (Coutinho 1982, 1990). 678 

Besides that, independently of the dispersal syndrome, the reduction of seed predators after fires can have 679 

a positive effect on species fitness (Salazar et al. 2012) that are able to reproduce after fire. Understanding 680 

species traits and growth forms that have high fitness in fire-prone ecosystems can highlight evidences of 681 

the role of fire as an evolutionary force shaping plant adaptations (Bond & Scott 2010; Keeley et al. 2011; 682 

Pausas & Schwilk 2012), and contribute to improve management in fire-prone ecosystems. In this context, 683 

we quantified and identified all species able to reproduce in the Brazilian Savanna biome after fire events. 684 

We asked: a) Which are the most able species to reproduce after the fire: savanna or forest species? b) 685 

Are the small or large growth forms the most reproductive after a fire event? c) Is there any type of 686 

pollination syndrome selected in species able to reproduce after a fire event? d) and dispersion syndrome? 687 

We hypothesized that: a) most species that are able to reproduce after a fire event would be savanna 688 

species, b) small growth forms, c) wind pollinated species and d) wind dispersed species. Yet, we tested if 689 

there are some families with significant number of species reproducing after fire. The results are discussed 690 

regarding savanna evolution and conservation. 691 
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 692 

Figure 1. (a) A natural grassland in the Brazilian Savanna a few months after a fire event in Distrito Federal, Brazil; (b) 693 

Vellozia sp. (Velloziaceae), (c) Habranthus irwinianus (Amaryllidaceae), (d) Eriosema prorepens (Fabaceae), (e) 694 

Lessingianthus sp. (Asteraceae), (f) Stryphnodendron pumilum (Fabaceae), (g) Lippia pumila (Verbenaceae), (h) 695 

Bulbostylis paradoxa (Cyperaceae), (i) Monnina sp. (Polygalaceae), (j) Vochysia pumila (Vochysiaceae), (k) Palicourea 696 

rigida (Rubiaceae), (l) Kielmeyera pumila (Clusiaceae), (m) Mimosa speciosissima (Fabaceae), (n) Anacardium humile 697 

(Anacardiaceae) with fruits, (o) Hippeastrum goianum (Amaryllidaceae), (p) Mimosa radula (Fabaceae). Photographs: 698 

A.B. Giroldo (a,j-l,p), M.F. Simon (b-i,o), H. Moreira (m) and I.L.P. Lima (n).  699 
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Able to reproduce after fire, stimulated by fire or fire-dependent flowering species: 700 

To define if a species is fire stimulated it is necessary to conduct experiments with and without fire. These 701 

type of studies were conducted in the Brazilian Savanna (see Araújo et al. 2013; Fidelis & Blanco 2014), 702 

and produced valuable information about the effect of fire in flower production of some species. Using this 703 

approach it is possible to affirm if the species produce more flowers in areas with fire than without fire (fire-704 

stimulated flowering species), if it does not produce flowers (fire-inhibited flowering species) or even if the 705 

production of flowers occurs just in areas with fire (a fire-dependent flowering species) (see Lamont & 706 

Downes 2011). Although with our data was not possible to verify if a species is stimulated or dependent of 707 

fire to reproduce, we can affirm that the species is not inhibited and is able to reproduce after a fire event. 708 

We therefore considered here only species able to reproduce after fire.  709 

Data acquisition and classification: 710 

To create a list of species able to reproduce after a fire event (SAR) we checked two sources. We 711 

accessed herbariums data using the speciesLink network (speciesLink 2015), and searched the English 712 

words “fired”, “fire”, “burn” and “burned”, the Portuguese words “queimada”, “fogo”, “incêndio”, “queima”, 713 

“queimou”, “queimado”. We also searched for these words in the dataset from the large fire project 714 

developed in the IBGE reserve, in Brasilia, Brazil (Miranda et al. 2011) for IBGE herbarium data is not 715 

included at speciesLink network. We also verified if the species occurred in the Brazilian Savanna biome 716 

(Cerrado) checking each name in the Brazilian Flora Website (List of Species of the Brazilian Flora 2015) 717 

and replaced synonyms by accepted names. We considered as species able to reproduce after fire, 718 

species that were found with reproductive structure (fruits or flowers) until one year after the fire event. 719 

The second source was the literature; we did an exhaustive search checking all available papers, 720 

seminars, short communications, and annals of events with data of species that reproduce after a fire 721 

event. We stopped searching when the effort to find plants was exacerbated compared with the results. 722 

As we collected the data from labels of herbarium specimens, we could not control the identification 723 

errors, common in herbariums, however the voucher number was kept in the list, and the identification 724 

can be checked in herbarium.  725 

We verified the growth form of each species using the Brazil Flora website. As a species can be included 726 

in more than one growth form type (Warming 1908), we conducted analyses using growth forms as 727 

dummies, and classified them as subshrubs (herbs and subshrubs), shrubs, trees and vines. With 728 

information from labels of herbarium specimens and specialists knowledge (in special the specialist B.M.T. 729 

Walter) we classified species to either savanna/grassland or forest habitat. Savanna species were those 730 

with predominant occurrence in fire-prone formations of Brazilian Savanna biome, including savannic and 731 

grassland physiognomies. The forest species were those occurring mainly in forest physiognomies of the 732 

Brazilian Savanna biome (see Ribeiro & Walter 2008). We classified the pollination and dispersal 733 

syndromes of each genus with information from scientific literature. We considered genus as an appropriate 734 

proxy of the species when data was not available for a given species. Plant pollination syndromes were 735 
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simplified into anemophily, entomophily and zoophily, and the dispersal syndromes into autochory, 736 

anemochory and zoochory. 737 

Data Analysis: 738 

We used basic statistics to describe the SAR patterns. To test if the families with higher number of species 739 

also had more species reproducing after a fire event we used a zero-inflated regression model with negative 740 

binomial distribution. Ignoring zero-inflation may generate an estimated parameter and standard error 741 

biased, and the excessive number of zeros can cause overdispersion (Zuur et al. 2009). Subsequently, we 742 

tested if the percentage of SAR by family was correlated with the number of species within the family using 743 

a generalized linear model (GLM), with binomial distribution (link logit), and calculated the D² that is the 744 

equivalent of R² (coefficient of determination) for generalized linear models (GLMs) (Guisan & Zimmermann 745 

2000). To test the hypotheses: a) that plants in savanna are more likely to reproduce after fire than forest 746 

species; b) that the small growth forms are most able to reproduce after fire than large forms; c) that the 747 

wind pollination and d) wind dispersion syndromes are selected in species able to reproduce after a fire, 748 

we built a generalized linear model (GLM), using the binomial distribution with link logit. The independent 749 

variable in the model was transformed in dummies. This analysis allow us to include in the model species 750 

occurring in more than one habitat, growth form, pollination and dispersal syndrome, and test the main 751 

characteristics of species that reproduce after a fire in only one model. All epiphytic species were removed 752 

from this model. The analyses were done with R program (R Development Core Team 2015), using the 753 

packages pscl (Jackman 2015), car (Fox & Weisberg 2011) and modEva (Barbosa et al. 2016). 754 

Brazilian Savanna biome or Savanna physiognomies: 755 

The expression savanna is used to refer to physiognomies with trees and shrubs sparsed in a continuous 756 

grassy layer, without closed canopy (Ribeiro & Walter 2008), and fire-prone. Yet, we included in this concept 757 

grassland formations (Ribeiro & Walter 2008), so the expression savanna refers to fire-prone ecosystems 758 

(Figure 2). This expression differs from the expression Brazilian Savanna biome (named “Cerrado”), that 759 

includes forested physiognomies, like Cerradão, gallery forest, deciduous and semi-deciduous forests 760 

(Eiten 1972; Eiten 1978; Ribeiro & Walter 2008). The forest physiognomies (hereafter Forest) have closer 761 

canopy if compared to savanna physiognomies, that suppresses the development of a grassy cover, mainly 762 

C4 grasses, the major determinant of fire spread/suppress along the savanna-forest gradient (Hoffmann et 763 

al. 2012b; Just et al. 2015). Fire in Central Brazil forests is a casual event, and fire adaptations are poorly 764 

developed in species there (Hoffmann et al. 2003), culminating in an environment tree/shrub species 765 

dominated (Figure 2). Savanna species have an odds to reproduce after a fire 1400% higher than forest 766 

species (Figure 3A), corroborating in part our first hypotheses, because forest species were not adversely 767 

affected by fire, and did not reduce the reproductive chances (z = 0.097, p = 0.922) as we expected.  768 
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 769 

Figure 2. Differences in species number and abundance of growth forms in different vegetation formations within the 770 

Brazilian savanna biome (Cerrado). The fire-prone ecosystems represent the savanna, where fire is one of the main 771 

factors determining species abundance and richness. 772 

How many species can reproduce after a fire event? 773 

We found that 2,058 species are able to reproduce until one year after a fire event in Cerrado biome 774 

(Appendix 1), 1,942 species present in savanna, 455 in the Forest, and 342 common to both Forest and 775 

savana. The number of reproductive species after a fire is 5 times higher than the number of species 776 

reported in South Africa and Australia Savannas together (see Lamont & Downes 2011), and represent 777 

more than 16% of the Cerrado Biome species. There are 181 families of Angiosperms in the Cerrado biome, 778 

and at least 61% of them are able to reproduce after a fire event. The families Fabaceae, Asteraceae, 779 

Poaceae and Orchidaceae had more than 100 species flowering after fire, and the ten families with the 780 

highest number of SAR comprise 56.6% of total reproductive species (Table 1). The total number of species 781 

reproducing after fire within a family is correlated with species richness within the family (z = -2.321, p = 782 

0.020) (Figure 4A), and although the results for the percentage of SAR by family was significant (X² = 783 

22.997, p < 0.001), the model had a poor adjust (D² = 0.034), and do not represent correctly our data (Figure 784 

4B). Yet, when considering the relative number of reproductive species and families with more than 10 785 

species, it is possible to observe the families that are very well adapted to fire-prone ecosystems. 786 

Polygalaceae is an example (Table 1), with 46% of the species flowering after fire, and some of them just 787 

flowering after fire events (see Pastore & Cavalcanti 2008); the diversification of the family happened near 788 

the tips and rather it is related to the roots of the tree (Forest et al. 2007), which could means recent 789 

diversification. Other prominent family is Vochysiaceae, with species very well distributed into Cerrado 790 

biome (see Ratter et al. 2003), and 34% of them can reproduce after fire; this family is originated from 791 

South American and did not diversify until ca. 60 m.yr. (Sytsma et al. 2004, Forest and Chase 2009). 792 

Oxalidaceae and Malpighiaceae had about 32% of SARs. The high number of families able to reproduce 793 

after fire could push up the evolution process in favor of these families, once the sexual reproduction is 794 

linked directly with the process of adaptation and fitness enhancement (Barton & Charlesworth 1998; Otto 795 

2009), mainly in ecosystems like the Brazilian Savanna where the fire normally occurs once every five years 796 

(Gottsberger & Silberbauer-Gottsberger 2006a). 797 
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Is reproduction between growth forms differentially influenced by fire? 798 

The small-sized growth forms are dominant in the group of species able to reproduce after fire, and almost 799 

60% of the SARs could be classified as subshrubs, and only 12% as trees in Cerrado biome (Figure 5A). 800 

However, the dominance of small growth forms is similar to that showed in the Cerrado biome (Figure 5B), 801 

and when we investigated savanna physiognomies, surprisingly, we found that 1/3 of trees were able to 802 

reproduce after a fire event, while just 1/4 of subshrubs had reproduced. In Forest, the differences were 803 

higher, but not distinct, and less than 1/6 of trees and only 1/16 of subshrubs were able to reproduce until 804 

one year after fire. The results of logistic regression with dummies point out same trend (Table 2), showing 805 

that trees had an odd ratio higher than subshrubs, although both growth forms had high chances of 806 

reproducing after a fire event (Figure 3B). These results mean that if an area has species equally distributed 807 

in all life forms, the chances to find a tree reproducing after a fire is higher than to find a subshrub. This 808 

statement did not corroborate the second hypothesis (b), that small life forms are most able to reproduce 809 

than large growth forms after a fire event. We postulated some explanations about this result.  810 

The first explanation could be called “the biased point of view”, and could happen because when a naturalist 811 

walks in a recently burnt field, the subshrubs are the most abundant growth form; they usually dominate 812 

almost the whole landscape, covering all soil surface with vegetative parts and colorful flowers (Figure 1). 813 

This pronounced cover could bias the naturalist view, who believes that subshrubs reproduction is positively 814 

influenced by fire event, while the trees, that are sparse elements in the landscape, could be seen as 815 

negatively influenced. The second explanation shows why trees reproduction was influenced by fire. If we 816 

consider fire as an herbivorous (see Bond & Keeley 2005), analogously we could consider it as a pruning 817 

agent, despite the fact that fire could kill more plants than pruning (see Kelly et al. 1997). Pruning plants is 818 

a common practice in agriculture and gardening, which enhances the productivity, by the production of new 819 

leaves with high photosynthesis capacity, reduction of dead parts, and production of new branches. Yet, 820 

although fire can destroy the buds and promote top-kill, the savanna trees which had escaped from the fire-821 

trap had thick terminal branches (Simon & Pennington 2012) and thick bark that protect the buds and 822 

cambium, allowing a vigorous epicornic resprout after the fire event (Hoffmann et al. 2009; Lawes et al. 823 

2011; Pausas 2015); these characteristic could allow trees to recovery their vegetative part and reproduce 824 

after a fire event. However, this does not mean that trees are stimulated to reproduce after a fire (as we 825 

have mentioned in the second section); the fire regime intensification reduces the relative importance of 826 

sexual reproduction, and increases the importance of suckers in the vegetation and the most woody 827 

individuals are kept in a non-reproductive state (the “gullivers”) (Hoffmann 1998; Bond & Midgley 2001). 828 
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 829 

Figure 3. Odds ratio of species that reproduce after 830 

fire in Forest and savanna (Savanna/Grassland) 831 

(A), growth forms (B), pollination (C), and dispersal 832 

syndromes (D) in the Cerrado biome. The dots 833 

represent the mean and the arrows the confidence 834 

interval (95%). 835 

 836 

 837 

 838 

 839 

Table 1. 30th families with most species able to 840 

reproduce after a fire event in the Cerrado biome; 841 

the relative number of species in relation to the 842 

diversity of the family within the Cerrado (Relative 843 

to Family); and in relation of all plants able to 844 

reproduce after fire (Relative to SAR). 845 

Families # Species 
Relative to 

Family 

Relative to 

SAR 

Fabaceae 245 0.198 0.119 

Asteraceae 223 0.180 0.108 

Poaceae 153 0.206 0.074 

Orchidaceae 129 0.177 0.063 

Euphorbiaceae 87 0.224 0.042 

Malpighiaceae 74 0.318 0.036 

Myrtaceae 68 0.260 0.033 

Lamiaceae 63 0.211 0.031 

Melastomataceae 62 0.127 0.030 

Cyperaceae 61 0.184 0.030 

Rubiaceae 57 0.137 0.028 

Apocynaceae 56 0.189 0.027 

Polygalaceae 52 0.473 0.025 

Eriocaulaceae 40 0.087 0.019 

Malvaceae 37 0.110 0.018 

Convolvulaceae 35 0.136 0.017 

Bignoniaceae 31 0.183 0.015 

Lythraceae 28 0.170 0.014 

Bromeliaceae 26 0.098 0.013 

Amaranthaceae 25 0.219 0.012 

Acanthaceae 24 0.159 0.012 

Turneraceae 23 0.247 0.011 

Velloziaceae 23 0.122 0.011 

Verbenaceae 23 0.154 0.011 

Solanaceae 22 0.204 0.011 

Arecaceae 16 0.170 0.008 

Vochysiaceae 16 0.340 0.008 

Iridaceae 15 0.221 0.007 

Oxalidaceae 15 0.326 0.007 

Ochnaceae 13 0.176 0.006 

846 



30 
 

847 

Figure 4. Number of species able to reproduce after fire in Cerrado biome (A), and percentage of species 848 

within the family able to reproduce per number of species per family (B). The dots represent observed data 849 

and the lines the predict zero-inflated model (A), and logistic model (B). 850 

Table 2. Result from the logistic regression model, with species able to reproduce after fire as a dependent 851 

variable, and independent variable the physiognomies in Cerrado biome, Forest and savanna/ grassland 852 

(savanna); growth forms, subshrub, shrub, tree and vine; pollination syndromes, anemophily, entomophily 853 

and zoophily; and dispersal syndromes, anemochory, autochory and zoochory of plants in Cerrado biome. 854 

Independent Variable Estimate ± SE z value p 

Forest 0.008 ± 0.078 0.097 0.922 

Savanna/grassland 2.719 ± 0.127 21.366 < 0.001 

Subshrub 0.844 ± 0.097 8.693 < 0.001 

Shrub 0.142 ± 0.073 1.942 0.052 

Tree 1.158 ± 0.112 10.377 < 0.001 

Vine 0.262 ± 0.129 2.038 0.041 

Anemophily 0.183 ± 0.116 1.579 0.114 

Entomophily 0.110 ± 0.114 0.965 0.334 

Zoophily -0.148 ± 0.927 -1.602 0.109 

Anemochory -0.089 ± 0.068 -1.312 0.189 

Autochory -0.184 ± 0.064 -2.891 0.004 

Zoochory 0.169 ± 0.070 2.401 0.016 
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 855 

Figure 5. Number of species able to reproduce after a fire in each growth form (A); and in Cerrado biome 856 

(B), divided by fire-prone habitats (savanna) and Forest. 857 

Pollination syndromes related with fire 858 

The dominance of animal pollinated species (zoophily and entomophily species) and the 859 

reduction of the anemophily syndrome found here (Figure 6A) may reflect the rainforest origin of 860 

the Brazilian Savanna (Oliveira & Gibbs 2002). Although some families have different pollination 861 

syndromes in the Forest and savanna physiognomies, generally the pollination traits are 862 

conservative (see Gottsberger 1986) (Figure 6A); and many plants in the “Cerrado” have 863 

polyphilic flowers, which are pollinated by taxa of totally unrelated groups (egg. by different bees 864 

and flies or beetles), so the pollinators may be substituted depending upon the fauna composition 865 

at a particular place (Gottsberger & Silberbauer-Gottsberger 2006b). Yet, there were not 866 

differences in the odds ratio of pollination syndrome in species able to reproduce after a fire (Table 867 

2 – Figure 3C and 6B), meaning that no syndrome is benefited in the availability of plants flowering 868 

after fire events. Even when we built the model using just savanna (Savanna/Grassland) species 869 

no syndrome appears with high or low odds ratio (Figure 3C), although the anemophily syndrome 870 

was marginally significant (z = 1.706, p = 0.088). Moreover, using just Forest species, the zoophily 871 

syndrome had an odds 37% smaller to reproduce than by chance (z = -2.099, p = 0.036). These 872 

results did not corroborate the hypothesis (c), that the wind-pollinated species were selected in 873 

species able to reproduce after fire. However, investigating the data by growth forms we found 874 

that anemophilous species had an odd ratio significantly higher than the chance in vines 875 

(z = 2.246, p = 0.025) and shrubs (z = 3.811, p < 0.001), and the odd ratio of entomophilous (z = -876 

0.079, p = 0.038) and zoophilous trees (z = -2.422, p = 0.015) was smaller than by chance (Figure 877 

7A). The evolution process could really favor the wind-pollinated plants if the fire negatively 878 

affected the pollination guilds. However, the main effect of fire in pollination is the enhancement 879 
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of it, because usually the number of plants that produce new flowers, mainly in herbaceous 880 

stratum, increases (see Campbell et al. 2007; Van Nuland et al. 2013), and the rewards for 881 

pollinators (pollen and nectar) are smaller in mature areas than in freshly burnt areas (Potts et al. 882 

2003). However, probably this pattern is kept mainly because Cerrado species have polyphilic 883 

flowers, and can be pollinated by multiple pollinators. Species that depends on solitary bees could 884 

be negatively affected, since these type of pollinator is more specialist, and usually decrease in 885 

abundance in recently burnt areas (see Ne'eman et al. 2000). The effects on species dependence 886 

of specialist pollinators need to be investigated, as well as the effect of fire in all guilds of pollinator, 887 

mainly in neotropical savanna, where fire frequency and species diversity are high. 888 

 889 

 890 

Figure 6. Number of species in each pollination syndrome in Cerrado biome (A); able to reproduce into 891 

pollination syndromes (B), all of them separated by savanna (fire-prone) and Forest physiognomies. 892 
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893 

Figure 7. Odds ratio of species able to reproduce after fire in pollination syndromes (A) and 894 

dispersal syndromes (B) of different growth forms in Cerrado biome. 895 

Dispersal syndromes related with fire: 896 

The environmental gradient affect the dispersal syndromes. At landscape level the wind 897 

dispersion is related with nutrient and light availability, wherein the increased nutrient results in 898 

the reduction of species wind dispersed, and increased light increases anemochorous species. 899 

The zoochorous species have complex relations; while mammals dispersed species increase with 900 

light availability, bird dispersed species decrease with light availability (Ozinga et al. 2004). As a 901 

result of these relationships, and given the vegetation structure differences between Forest and 902 

Brazilian savana physiognomies (see Ribeiro & Walter 2008), the dispersal syndromes are not 903 

conserved between them. Instead, Forest physiognomies are dominated by zoochorous species, 904 

while savanna physiognomies are dominated by anemochorous species (Figure 8A) (further 905 

examples Gottsberger & Silberbauer-Gottsberger 2006b; Jacobi & Carmo 2011). However, when 906 

referring to species able to reproduce after fire in Cerrado biome, zoochorous species had an 907 

odds ratio higher than by chance, and autochorous species had a reduction in the odds ratio 908 

(Table 2 – Figure 3D and 8B). These results are kept even in savanna (Autochory: z = -2.712, p 909 

= 0.007; Zoochory: z = 2.257, p = 0.024), but not in Forest, where the anemochorous species had 910 

an odd ratio higher than by chance (z = 2.262, p = 0.024), autochorous lower than by chance (z 911 

= -4.820, p < 0.001) and zoochorous were not significantly affected (z = -0.628, p = 0.530). We 912 

did not find any pattern of dispersal syndromes with growth form; each growth form had a 913 

predominant type of dispersion in SARs. Subshrubs showed high odds chance for zoochorous 914 

species (z = 2.865, p = 0.004); shrubs had low odds ratio for anemochorous (z = - 3.396, p = 915 

0.001) and autochorous (z = -3.108, p = 0.002); trees had high odds ratio in anemochorous (z = 916 

2.030, p = 0.042) and zoochorous species (z = 2.252, p = 0.024); and vine had lower odds ratio 917 

than by chance for anemochorous species (z = -2.745, p = 0.006 – Figure 7B). 918 
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 919 

Figure 8. Number of species in each dispersal syndrome in Cerrado biome (A); able to reproduce after fire 920 

into dispersal syndromes (B), all of them separated by savanna (fire-prone) and Forest physiognomies. 921 

The dispersal strategy has a direct impact on species abundance, distribution and evolution. 922 

When the quality of the environment varies in space and time, like in savannas, there is a selective 923 

pressure for increased dispersion (Levin et al. 2003). The dispersion distance is widely different 924 

between the dispersal modes; autochory dispersion do not favor long dispersion distance, while 925 

the dispersion distance in zoochory is greatest, and wind dispersal syndrome is intermediate 926 

(Thomson et al. 2011). Yet, the off-spring dispersal is also influenced by the community structure 927 

(density), and it is more obvious in wind dispersed seeds, wherein if there is little physical 928 

obstruction imposed by community architecture the seeds could be carried away from the parental 929 

plant. In the Cerrado biome, usually after a fire event, there is a simplification of the landscape 930 

structure; however the recovery of the structure is farther fast in savanna physiognomies than in 931 

Forest, due to the adaptive differences between the physiognomies (see Hoffmann et al. 2003). 932 

As the time between plant bloom and plant seed ripening is long for some species (for instance, 933 

more than 9 months in Stryphnodendron pumilum, Andira vermifuga and Mimosa foliolosa, A. B. 934 

Giroldo personal observation), usually the structure of the community in savanna have been 935 

almost recovered (see Rissi 2016), so could not have selective pressure to favor anemochorous 936 

species in this physiognomy. Instead of wind-dispersion syndrome, the zoochorous syndrome, 937 

that ensure high dispersal distance, was favored there. On the other hand, the forest habitat is 938 

not resilient to fire effects (see Hoffmann et al. 2012a; Pellegrini et al. 2015), requiring more time 939 

for recovery the community structure, allowing long dispersal distance in species wind-dispersed, 940 

that is favored in this physiognomy (Figure 6D). 941 
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Conservation efforts in fire-prone ecosystems and general conclusions: 942 

The density of trees in the Cerrado biome varies greatly between dense and open physiognomies, 943 

and fire, together with moisture and soil fertility is the major driver of vegetation type in savannas 944 

(Haridasan 2008; Rossatto et al. 2012; Archibald et al. 2013; Lehmann et al. 2014). Many species 945 

are dependent on fire to reproduce (Rissi 2016), or, at least, are not inhibited by it (Figure 5A). 946 

On the other hand, fire suppression promotes savanna encroachment, with a reduction in 947 

biodiversity, mainly in the herbaceous stratum, that is the most species rich (Figure 5B) (BFG 948 

2015) and usually photophobic; changes the structure, with the arrival of fire-sensitive species; 949 

and modifies the functioning of the Cerrado ecosystem (Durigan & Ratter 2016). Although, there 950 

is not a single recommendation for fire management, the Cerrado biome, as well as others 951 

neotropical savannas, needs to implement a fire management policy (Durigan & Ratter 2016). 952 

This ecosystems have a history with fire, which promoted the diversification of many Cerrado 953 

lineages (Simon et al. 2009) selecting many traits (Pausas & Schwilk 2012). Although we were 954 

expecting a supremacy of subshrubs against trees in species that were able to reproduce after a 955 

fire, we surprisingly discovered that trees are equally qualified and selected to reproduce after a 956 

fire event. Trees, like subshrubs, are shaped and selected in fire-prone ecosystems. The 957 

persistence of this growth form is ensured by many different traits that could assure their 958 

reproduction. Our hypotheses that anemophily and anemochorous species were the syndromes 959 

selected in species able to reproduce after a fire was not corroborated. Pollinators enhancement 960 

after fire, and the fast recovery of the community structure could be the main causes of the 961 

absence of selection pressure in favor of the wind pollination and dispersion syndrome. Many 962 

plant families were able to reproduce after a fire, and some of them are good candidates to better 963 

study the relations between fire-traits selection and evolution. 964 
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Appendix 1. Species able to reproduce after a fire in Brazilian Cerrado with growth form, 1130 

physiognomies, pollination and dispersion syndromes, type of fruit and references where the 1131 

dispersions syndromes where found.  1132 

 1133 

As data is too large, we attached it in a server. To access it contact the main author. 1134 

 1135 

 1136 
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 1144 

Abstract: 1145 

Competition, facilitation and niche partition drive ecosystem biodiversity and allow the 1146 

coexistence of multiple growth forms. The models that investigated this coexistence in Neotropical 1147 

savanna focus primarily in tree-grass coexistence, and although subshrubs and dicot herbs 1148 

represent more than 50% of all species, they normally are ignored in coexistence models or 1149 

incorporated as part of grass stratum. We investigated the effect of grasses in tree and subshrub 1150 

survival and growth, including the interaction of congeneric pairs of trees and subshrubs, in an 1151 

experiment split-plot designed. Congeneric pairs are phylogenetic correlated, usually sharing 1152 

traits that enhance the competitive forces. We found that congeneric pairs competition and grass 1153 

competition changed growth and survival of the species. Although the effect of grass and 1154 

congeneric pair competitive forces had been synergetic for tree survival, they were attenuated for 1155 

trees and subshrubs growth when they were together and no effect was detected. We suggest 1156 

that trees and subshrubs could establish in savanna by the presence of root gaps. Once the trees 1157 

are established in these gaps and out of the fire-trap they change the conditions under canopy 1158 

and facilitate the establishment of new trees. The subshrubs could have an advantage against 1159 

trees because they can reproduce earlier, and they are more fertile, with more chances to arise 1160 

in patches with root gap. Yet, the fire frequency plays an important effect in biodiversity, 1161 

particularly subshrubs, because it avoids savanna encroachment. 1162 

Keywords: grass-subshrub-tree, Brazilian Savanna, coexistence, niche partition. 1163 

 1164 

Introduction: 1165 

Competition both intraspecific and interspecific is one of the major forces determining the 1166 

abundance and distribution of plant species and the plant communities biodiversity (Tilman 2009). 1167 

The competitive exclusion principle says that even small advantages may result in species 1168 

exclusion when two species occupy the same niche (Gauze 1934; Hardin 1960). Savannas, that 1169 

cover 20% of the world land, are formed by different coexistent growth forms (see Gottsberger & 1170 

Silberbauer-Gottsberger 2006; Maurin et al. 2014), some of them are closely related species, 1171 

usually sharing morphological and physiological traits because of phylogenetic relatedness 1172 

(Blomberg et al. 2003), which enhances the resource competition. 1173 
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Scientific literature has widely demonstrated the process that could reduce the competition in 1174 

savannas and that mediate tree-grass coexistence (see Scholes & Archer 1997; Rodríguez-Iturbe 1175 

et al. 1999; Higgins et al. 2000; Accatino et al. 2010; Dantas et al. 2013; Accatino et al. 2016). In 1176 

summary, these models highlight that tree-grass coexistence is mediated by fire regime and could 1177 

be influenced by climate, soil and grazing. Usually, the reduction of fire frequency promotes the 1178 

savanna encroachment, and the established trees could change the microclimate (Rossatto & 1179 

Rigobelo 2016), contributing to avoid fire spread. On the other hand, increased fire frequency 1180 

could promote grass spread, reducing tree cover in savanna ecosystems (Hoffmann et al. 2012). 1181 

Although, these models explain very well the tree-grass coexistence, savannas cannot be 1182 

summarized only by trees and grasses, instead the herbaceous strata (hereafter subshrubs) is 1183 

the most important element in open habitats, covering the entire ground, with a high richness and 1184 

density of species (Filgueiras 2002). Current data for the Cerrado indicates that at least 7,654 1185 

species are subshrubs and dicots herbs (51%), excluding 3,380 shrubs, 1,276 vines and 742 1186 

grasses species, and trees represent just 1,790 of all species (BFG 2015). Therefore, tree-grass 1187 

models have incorporated just 19% of the total biodiversity in savannas, although some models 1188 

consider subshrubs as part of the grass strata. The incorporation of subshrubs in the same 1189 

category of grasses could make sense, since 97% of the herbaceous strata (subshrubs + 1190 

grasses) is consumed in fire events (Miranda et al. 2002). However, grass, subshrubs and trees 1191 

differ in some leaf anatomical traits (Rossatto et al. 2015; Díaz et al. 2016) and in some 1192 

ecophysiological traits related to water access (Nippert & Knapp 2007; Rossatto et al. 2013), 1193 

biomass allocation and seed biomass (Díaz et al. 2016).These differences indicate that 1194 

subshrubs and grasses have different life-history strategies and therefore should be considered 1195 

as separate units. 1196 

Trees and subshrubs when adults could mediate their establishment by facilitation or difficult it by 1197 

competition. Usually, both growth forms can modify the microclimate and nutritional conditions 1198 

under canopy (Scholes & Archer 1997; Rossatto & Rigobelo 2016), and it has been reported that 1199 

adult trees can facilitate the establishment of subshrubs (Barnes & Archer 1999). However once 1200 

established, they would compete with each other, and when the adult tree dies a new one could 1201 

not be established under the canopy of subshrubs (Barnes & Archer 1999). This inhibition of 1202 

establishment happens because most of the trees are shade intolerant, differently from subshrubs 1203 

that can tolerate some levels of shade. Although, the literature describes at least the effects of 1204 

adults in seedling establishment, we do not know the effect of seedling competition of both growth 1205 

forms. We expected that the growth forms compete with each other because they share common 1206 

traits since they are phylogenetically correlated, but we do not know who the superior competitor 1207 

is. 1208 

We conducted an experiment to test the effect of grass competition on tree and subshrub 1209 

establishment and growth. Furthermore, we tested the effect of tree and subshrubs competition, 1210 

and the combination of their competition with grass competition in a split-plot design experiment. 1211 

We know that seedling recruitment is a critical life-history stage, mainly for plants with long life 1212 
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(Scholes & Archer 1997; Sankaran et al. 2004), and we had different assumptions for the effect 1213 

of grass in trees and subshrubs. First, we hypothesize that the trees and subshrubs seedlings will 1214 

not differ against grass competition because the growth forms are very similar in this ontogenetic 1215 

stage, and both will be negatively affected. The negative effect would happen because grasses 1216 

can reduce the available water, nutrient and photosynthetic active radiation (PAR), as it has been 1217 

reported in other studies (Jurena & Archer 2003; Wardle & Peltzer 2003; Riginos 2009). The 1218 

second hypotheses is that trees are able to grow and develop a deep root system (Kambatuku et 1219 

al. 2013), even in the beginning of development (Silveira et al. 2013), so they will be less affected 1220 

by grass competition than subshrubs, that compete with grass in the upper soil layers. 1221 

 1222 

Methods: 1223 

- Species selection and experimental design  1224 

We selected three congeneric pairs that represent subshrub and tree growth forms in the Cerrado 1225 

biome (Table 1). We used the native grass Paspalum atratum in the experiment, which can be 1226 

found in almost all Cerrado biome (Maciel et al. 2009). Grass seeds were obtained from the 1227 

Brazilian Agricultural Research Corporation (Embrapa), and seeds of most congeneric pairs were 1228 

collected in Brasília, Distrito Federal, Brazil. Exceptions were the seeds of C. oblongifolia 1229 

collected in Chapada Gaúcha, Minas Gerais and A. humile collected in Grão Mogol, Minas Gerais. 1230 

We collected seeds between November 2013 and July 2014. We sown them in polyethylene bags 1231 

with 20 cm diameter and 40 cm deep. The grass was sown five months before the other species, 1232 

on February 2014. Separation between plots with and without grass ensured that shadow effect, 1233 

promoted by grass, occurred just in plots with grass (Figure 1). Stryphnodendron spp. seeds were 1234 

immersed in sulfuric acid for 5 minutes to break the physical dormancy. We used as substrate 1235 

70% oxisol subsoil (40 cm deep or more) mixed with 30% of washed sand, without any other 1236 

nutrient. The experiment was conducted in a green house, with automatic irrigation system (~ 7 1237 

mm/day).   1238 
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Table 1. Species sown in a competition experiment between grass vs subshrub vs tree in Cerrado biome. 1239 

Family Species Growth Form Habitat 

Anacardiaceae Anacardium humile  Subshrub savanna 

Anacardiaceae A. occidentale  Tree forest/savanna 

Fabaceae Stryphnodendron pumilum  Subshrub savanna 

Fabaceae S. adstringens Tree forest/savanna 

Fabaceae Copaifera oblongifolia Subshrub forest/savanna 

Fabaceae C. langsdorffii  Tree forest/savanna 

Poaceae Paspalum atratum Grass savanna 

 1240 

The experiment design was split-plot, with and without grass competition (G+; G-); with and 1241 

without congeneric pair competitor (C+; C-) (Figure 1); and with two growth forms, tree and 1242 

subshrubs (T; S). Each species was sown 16 times alone in each plot and together with its 1243 

congeneric pair 16 times, in both cases with and without grass. 1244 

 1245 

Figure 1. Scheme of competition experiment including six species of trees and subshrubs. Each rectangle 1246 

represents a bag, colors represent species, and rectangles with mixed colors represent a combination of 1247 

congeneric pairs. The grass (Paspalum atratum) was sown in three plots. 1248 

 1249 

- Data collection and statistical analysis: 1250 

After one year, we collected the biomass in two bags per plot. The subshrub and tree seedlings 1251 

were divided in shoot and root part, dried in a dry chamber at 70ºC per 72 h (Pérez-Harguindeguy 1252 

et al. 2013), and weighed in a precision scale (0.0001 g). After a year and a half, we counted all 1253 

plants alive in each bag to verify if competition had affected trees and subshrubs survival. We 1254 

used a linear mixed model to verify if the root:shoot ratio, shoot and root and total plant biomass 1255 

were different between growth forms (S; T), and were affected by grass (G+; G-) or by congeneric 1256 

pair (C+; C-) competition. The genus was used as a random factor in the models. To verify if the 1257 

survival rate was affected by grass and congeneric pair competition, and the difference between 1258 
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the growth forms we used a generalized linear mixed model, with a binomial distribution. The 1259 

genus was used as a random factor. All analyses were done in R program (R Development Core 1260 

Team 2015) using the packages lme4 (Bates et al. 2015) and car (Fox & Weisberg 2011). 1261 

 1262 

Results: 1263 

- Survival rate: 1264 

We found that the survival rate was affected by congeneric pair competition (χ2 = 11.416, p < 1265 

0.001), but was not affected by grass (χ2 = 0.224, p = 0.621), or between growth forms (χ2 = 434, 1266 

p = 0.510). There was interaction between some factors (Table 1), and after exploring them we 1267 

found that grass competition affected trees survival (χ2 = 4.375, p = 0.036), but not subshrubs (χ2 1268 

= 1.886, p = 0.170). Yet, the effect of grass just exist together with congeneric pair competition, 1269 

and only for tree growth form (χ2 = 19.700, p < 0.001 – Figure 2A). 1270 

 1271 

Table 2. Effect of congeneric competition (CC), grass competition (GC), growth form (GF) on the survival 1272 

rate and biomass of three congeneric pairs of species from the Brazilian Savanna. Statistic χ² is from 1273 

generalized linear model (GLM) with binomial distribution, and F is from ANOVA.  1274 

Factors Survival rate  Plant Total Biomass Root Biomass Shoot Biomass Shoot:Root Ratio 

GC χ² = 0.224 F1,118 = 21.557*** F1,119 = 20.232*** F1,116 = 13.755*** F1,116 = 4.223* 

CC χ² = 11.416*** F1,118 = 4.323* F1,119 = 5.725* F1,116 = 1.036 F1,116 = 1.351 

GF χ² = 0.434 F1,2 = 0.489 F1,2 = 2.362 F1,2 = 0.535 F1,2 = 0.891 

GC:CC χ² = 4.033* F1,118 = 9.748** F1,119 = 8.162** F1,116 = 8.423** F1,116 = 0.836 

GC:GF χ² = 6.214* F1,120 = 0.136 F1,120 = 0.001 F1,116 = 0.770 F1,116 = 3.711 

CC:GF χ² = 0.578 F1,120 = 6.551* F1,120 = 4.921* F1,116 = 2.960 F1,116 = 1.857 

GC:CC:GF χ² = 6.406* F1,116 = 0.031 F1,116 = 0.017 F1,117 = 0.358 F1,117 = 0.745 

Significance statistical values: * p ≤ 0.05; ** p ≤ 0.01; *** p ≤ 0.001. 1275 

- Plant Biomass: 1276 

Grass and congeneric pairs competition affected negatively the plant biomass in almost all the 1277 

factors analyzed (Table 2 – Figure 2B-E), and there were interactions between the congeneric 1278 

pairs and grass competition, and between congeneric pairs competition and growth forms. 1279 

Congeneric pair competition affected subshrubs plant total biomass (F1,60 = 10.455, p = 0.002) 1280 

and root biomass (F1,60 = 10.996, p = 0.001), but not the tree plant biomass (F1,60 = 0.135, p = 1281 

0.714) or tree root biomass (F1,60 = 0.001, p = 0.999). Moreover, the negative effect of grass and 1282 

congeneric pair competition just occurred when applied alone. When grass competition was 1283 

analised as a treatment the congeneric pair competition did not affect plant total biomass (F1,52 = 1284 

0.120, p = 0.731), root biomass (F1,53 = 0.399, p = 0.530) or shoot biomass (F1,52 = 0.115, p = 1285 

0.735). The inverse was equally true, when the congeneric pair competition was present the grass 1286 

did not exert any effect on plant total biomass (F1,54 = 0.266, p = 0.608), root plant biomass (F1,47 1287 

= 0.015, p = 0.903) or shoot biomass (F1,52 = 0.036, p = 0.850) (Figure 2B-D).  1288 

 1289 
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 1290 

Figure 2. A) Survival rate, B) Plant Biomass, C) Root Biomass, D) Shoot Biomass and E) Shoot:Root ratio 1291 

of subshrubs and trees separated by grass competition (presence - G+, absent - G-), and congeneric pair 1292 

competition (presence - C+, absent - C-). The box plots indicate median, quartiles, and data range. Dots 1293 

denote outliers and triangles means. 1294 



46 
 

Discussion: 1295 

Coexistence of multiple growth forms in savannas is possible by a combination of niche 1296 

segregation, intra and inter growth forms competition, asymmetry of competition and frequent 1297 

disturbance, particularly fire (Scholes & Archer 1997; Rossatto et al. 2015; Accatino et al. 2016). 1298 

Yet, the multiple competitive forces carried out by a mix of species can attenuate the intensity that 1299 

exist in pairwise competition, and ensure the coexistence (Aschehoug & Callaway 2015). The 1300 

attenuated effect seems to happen in our study when the competitive negative effect of grass 1301 

inhibits the effect of congeneric pair competition, and vice-versa, in plant biomass (Figure 2B-D). 1302 

Oppositely, the effect of both competitive factors seems to be synergetic when related with tree 1303 

survival (Figure 2A). 1304 

The grass competition reduced trees and subshrubs growth (Figure 2), probably because grass 1305 

cover can reduce light, water and nutrient resources availability (Scholes & Archer 1997). The 1306 

reduction in biomass allocation pattern can result in a lower resources exploration by both growth 1307 

forms (Wardle & Peltzer 2003), and consequently reduce root reserves content, that is necessary 1308 

to survive after perturbation, and root depth, mainly in trees, that is a requirement to extract water 1309 

in depth soil during the dry season. Although grass competition can decrease the chance of 1310 

establishment and growth of both growth forms, this effect is probably not strong enough to 1311 

generate total competitive exclusion (Scholes & Archer 1997). We believe that the coexistence of 1312 

multiple growth forms in savannas could be ensured by environmental heterogeneity and 1313 

ecophysiological differences that exist between growth forms. 1314 

As tree survival is negatively affected by a synergic effect of congeneric pairs and grass 1315 

competition, and growth better in the presence of both together, but not in the presence of one or 1316 

another, the tree life-history is complex and the tree establishment is dependent on root gaps at 1317 

least in the beginning of development. The root gap hypothesis postulates that the absence of 1318 

grass roots in patches within the landscape is ensured by environmental heterogeneity. In these 1319 

patches trees could be able to establishment and grow normally (Cramer et al. 2012; Wakeling 1320 

et al. 2015). The formation of root gaps is related with a reduction in fire frequency and intensity, 1321 

that is related with rainfall, grazing and animal trampling (Van Langevelde et al. 2003; Bond & 1322 

Keeley 2005; Accatino et al. 2010; Koerner & Collins 2014). Once the tree is established and can 1323 

escape from the fire-trap (see Wakeling et al. 2011; Dantas & Pausas 2013), it can alter the 1324 

conditions under canopy, allowing the establishment of more trees and the savanna 1325 

encroachment (Scholes & Archer 1997; Accatino et al. 2016; Rossatto & Rigobelo 2016). 1326 

Subshrub survival and growth are mitigated when both grass and tree competition are together 1327 

(Figure 2), however when alone with the tree congeneric pair the subshrubs lose the competition 1328 

and grow less. The negatively competitive effect of trees against subshrubs could explain why 1329 

the subshrubs are less abundant in forest than in savanna ecosystems (BFG 2015), since in 1330 

forests the grasses are not present, and against trees they are inferior competitors. Yet, the root 1331 

gap hypotheses could explain the establishment of subshrubs in savannas, with the advantage 1332 

that this growth form has high fertility (Westoby et al. 2002), since their seeds are smaller (Díaz 1333 

et al. 2016), that allow them to reach more patches than trees. Subshrubs are also able to 1334 
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reproduce early (Zizka et al. 2014), and can colonize patches were trees and grasses were 1335 

present together, enhancing their fitness in neotropical savanna. 1336 

The Neotropical savanna burn, on average, once every five years (Gottsberger & Silberbauer-1337 

Gottsberger 2006), and the main effect of this fire frequency is the absence of savanna 1338 

encroachment, with an abundant grass layer, and scattered trees in the landscape (Bond & 1339 

Keeley 2005; Bond 2008). This type of landscape is able to keep biodiversity, indicating how fire 1340 

regime is important to maintain the biodiversity, mainly subshrubs, in savannas. If fire frequency 1341 

is reduced, probably the trees abundance will increase, and consequently, as trees are able to 1342 

suppress the grass development, the subshrubs will be reduced, as they are inferior competitors 1343 

in a pairwise relation with trees. In conclusion, the mitigated effect of multiple competitive forces, 1344 

together with fire regime are able to keep biodiversity in Neotropical savanna, and if natural areas 1345 

are not correctly fire managed, the biodiversity could be reduced. 1346 

 1347 
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Conclusão Geral 1460 

O principal motivo da realização deste estudo foi verificar os motivos das pequenas plantas, ervas 1461 

e subarbustos serem tão abundantes no ambiente savânico. No primeiro capítulo foram 1462 

investigadas as diferenças nas características de peso de semente, taxa de germinação, taxa de 1463 

sobrevivência, taxa de fotossíntese e respiração, área foliar especifica, capacidade de rebrota e 1464 

alocação de biomassa. Essas características foram investigadas com o intuído de se testar a 1465 

hipótese de que as espécies de subarbusto representariam o ponto final da história evolutiva no 1466 

bioma Cerrado, possuindo menor área foliar específica, maior investimento em raízes e reservas, 1467 

e maior capacidade de rebrota. Embora árvores e subarbustos sejam muito diferentes quando 1468 

adultos, surpreendentemente a maioria destas características são semelhantes entre plântulas 1469 

de subarbustos e árvores. Entretanto acredita-se que as pequenas diferenças encontradas na 1470 

alocação de biomassa e peso de sementes possam resultar, com o tempo, em grandes 1471 

diferenças nas histórias de vida de subarbustos e árvores. 1472 

No segundo capítulo, foram investigadas as plantas capazes de se reproduzir após o fogo, 1473 

incluindo as diferenças entre as formas de vida e as síndromes de polinização ou dispersão. Os 1474 

resultados não corroboraram as hipóteses levantadas de que subarbustos seriam as espécies 1475 

mais favorecidas em reprodução após o fogo, ou mesmo que as síndromes de polinização e 1476 

dispersão por vento ocorreriam mais frequentemente após o fogo. Foram encontradas 2.058 1477 

espécies, distribuídas em mais de 111 famílias, capazes de se reproduzir após o fogo, sendo 1478 

60% delas subarbustos. As árvores tiveram uma razão de chance de se reproduzir maior do que 1479 

o esperado ao acaso, razão essa superior à dos subarbustos, embora não significativamente 1480 

diferente. No que se refere à polinização, novamente os resultados não corroboraram as 1481 

hipóteses estabelecidas, e nenhuma síndrome foi favorecida em plantas que se reproduzem 1482 

após o fogo. Provavelmente, o não favorecimento de nenhuma síndrome de polinização ocorre 1483 

devido a um aumento dos dispersores, o que não gera pressão de seleção a favor de uma ou 1484 

outra síndrome. A rápida recuperação da estrutura das formações savânicas após a passagem 1485 

de fogo indica que há baixa pressão de seleção em favor da dispersão anemocórica. 1486 

No último capítulo foram testadas hipóteses nas quais subarbustos e árvores diferiam quanto a 1487 

capacidade competitiva contra o estrato graminoso. Além disso, uma hipótese alternativa era de 1488 

que as duas formas de vida eram igualmente afetadas pela grama. Também se testou o efeito 1489 

da competição de subarbustos contra gramas, e a interação gramas e presença de outra forma 1490 

de vida. Os resultados indicam que não há simetria entre a competição exercida entre 1491 

subarbustos e árvores. Árvores exercem efeito negativo em subarbustos, mas o inverso não 1492 

ocorre. Gramíneas influenciam negativamente as duas formas de vida, mas a competição 1493 

exercida sobre os subarbustos é atenuada pela presença concomitante de gramíneas e árvores. 1494 

Em árvores, o efeito competitivo não é atenuado, ao contrário, subarbustos e gramíneas atuam 1495 

de forma sinérgica e reduzem o estabelecimento das árvores. Desta forma, o estabelecimento 1496 

de árvores é dependente de “root gaps” e o de subarbustos poderia ocorrer tanto nos “root gaps” 1497 

quanto na presença de árvores com gramíneas. 1498 
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A síntese destes três capítulos fomenta a hipótese de que a diferença encontrada na abundância 1499 

de subarbustos em relação às árvores poderia se dar pelas diferenças nas características de 1500 

alocação de reservas, o que poderia conferir uma maior chance de sobrevivência em eventos 1501 

sucessivos de fogo, ou na escassez de nutrientes. Além disso, o próprio peso das sementes 1502 

poderia resultar em aumento de “fitness” por parte das plantas menores, uma vez que uma 1503 

semente menor seria facilmente enterrada, e, portanto, menos predada e susceptível ao fogo. 1504 

Embora possa parecer que existem diferenças nas chances reprodutivas de subarbustos e 1505 

árvores, ambas as formas de vida são igualmente capazes de se reproduzir após o fogo. 1506 

Acredita-se que a aquisição precoce da capacidade reprodutiva de espécies subarbustivas possa 1507 

garantir um maior “fitness” em ambientes pirofíticos, e a demora em atingir o tamanho reprodutivo 1508 

por parte das árvores acaba por ser um limitante à proliferação sexuada dessa forma de vida. 1509 

Além disso, as formas arbóreas teriam maior chance de se estabelecer em locais onde há a 1510 

presença de “root gaps”, reduzindo assim as oportunidade de estabelecimento das mesmas, 1511 

enquanto as formas subarbustivas se estabeleceriam na presença de gramíneas e árvores. 1512 

As adaptações apresentadas pelas diferentes formas de vida ao ambiente pirofítico demonstram 1513 

a importância do fogo como modelador das comunidades. A grande quantidade de espécies 1514 

capazes de se reproduzir, distribuídas em diferentes famílias e formas de vida, mostra que além 1515 

das características que favorecem a sobrevivência, as características reprodutivas poderiam ser 1516 

vistas como uma características que favorece a persistência em ambientes pirofíticos. 1517 
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