

CONFIABILIDADE E QUANTIFICAÇÃO DA INCERTEZA DA RESISTÊNCIA À FRATURA CONSIDERANDO EFEITO DE ESCALA EM VIGAS DE CONCRETO

JÉSSICA FERREIRA BORGES

DISSERTAÇÃO DE MESTRADO EM ESTRUTURAS E CONSTRUÇÃO CIVIL

FACULDADE DE TECNOLOGIA

UNIVERSIDADE DE BRASÍLIA

UNIVERSIDADE DE BRASÍLIA FACULDADE DE TECNOLOGIA DEPARTAMENTO DE ENGENHARIA CIVIL E AMBIENTAL

CONFIABILIDADE E QUANTIFICAÇÃO DA INCERTEZA DA RESISTÊNCIA À FRATURA CONSIDERANDO EFEITO DE ESCALA EM VIGAS DE CONCRETO

JÉSSICA FERREIRA BORGES

ORIENTADOR: FRANCISCO EVANGELISTA JUNIOR, Ph.D. DISSERTAÇÃO DE MESTRADO EM ESTRUTURAS E CONSTRUÇÃO CIVIL

PUBLICAÇÃO: E.DM - 13A/16

BRASÍLIA/DF: AGOSTO - 2016

UNIVERSIDADE DE BRASÍLIA FACULDADE DE TECNOLOGIA DEPARTAMENTO DE ENGENHARIA CIVIL

CONFIABILIDADE E QUANTIFICAÇÃO DA INCERTEZA DA RESISTÊNCIA À FRATURA CONSIDERANDO EFEITO DE ESCALA EM VIGAS DE CONCRETO

JÉSSICA FERREIRA BORGES

DISSERTAÇÃO SUBMETIDA AO DEPARTAMENTO DE ENGENHARIA CIVIL E AMBIENTAL DA FACULDADE DE TECNOLOGIA DA UNIVERSIDADE DE BRASÍLIA COMO PARTE DOS REQUISÍTOS NECESSÁRIOS PARA A OBTENÇÃO DO GRAU DE MESTRE EM ESTRUTURAS E CONSTRUÇÃO CIVIL.

APROVADA POR:

Prof^o Francisco Evangelista Junior, PhD (ENC-UnB) (Orientador)

Prof^o William Taylor Matias Silva, Dr. Ing. (ENC-UnB) (Examinador Interno)

Prof^o João da Costa Pantoja, DsC. (FAU-UnB) (Examinador Externo)

BRASÍLIA/DF, 1º DE AGOSTO DE 2016

FICHA CATALOGRÁFICA

BORGES, JÉSSICA FERREIRA		
Confiabilidade e Quantificação da Incerteza da Resistência à Fratura Considerando Efeito		
de Escala em Vigas de Concreto [Distrito Federal] 2016.		
xvi, 105p., 210 x 297 mm (ENC/FT/UnB, Mestre, Estruturas e Construção Civil, 2016).		
Dissertação de Mestrado – Universidade de Brasília. Faculdade de		
Tecnologia.		
Departamento de Engenharia Civil e Ambiental.		
1.Quantificação da Incerteza	2. Mecânica da Fratura	
3.Confiabilidade	4.Efeito de Escala	
I. ENC/FT/UnB	II. Título (série)	

REFERÊNCIA BIBLIOGRÁFICA

BORGES, J. F. (2016). Confiabilidade e Quantificação da Incerteza da Resistência à Fratura Considerando Efeito de Escala em Vigas de Concreto. Dissertação de Mestrado em Estruturas e Construção Civil, Publicação 13A/16, Departamento de Engenharia Civil e Ambiental, Universidade de Brasília, Brasília, DF, 122p.

CESSÃO DE DIREITOS

AUTOR: Jéssica Ferreira Borges.

TÍTULO: Confiabilidade e Quantificação da Incerteza da Resistência à Fratura Considerando Efeito de Escala em Vigas de Concreto.

GRAU: Mestre ANO: 2016

É concedida à Universidade de Brasília permissão para reproduzir cópias desta dissertação de mestrado e para emprestar ou vender tais cópias somente para propósitos acadêmicos e científicos. O autor reserva outros direitos de publicação e nenhuma parte dessa dissertação de mestrado pode ser reproduzida sem autorização por escrito do autor.

Jéssica Ferreira Borges

Rua 538 nº 111, Bairro Santa Cruz.

^{75.706-640} Catalão - GO - Brasil.

"Aqueles que se sentem satisfeitos sentam-se e nada fazem. Os insatisfeitos são os únicos benfeitores do mundo." (Walter S. Landor)

Dedico este trabalho a minha mãe Jany e a Wanessa, os meus motivos de superação.

AGRADECIMENTOS

Aqui não caberia a quantidade de pessoas que tenho a agradecer, desde a infância tenho formado meu caráter e me tornado cada dia mais forte devido às pessoas que passaram em minha vida. Mas vamos aqueles que estiveram presente nessa jornada.

Primeiramente a Deus que me permitiu a saúde, força de vontade e que sempre me guardou do mau. Depois a minha família, que sempre me apoiou, minha mãe pelo amor e carinho, a Wanessa pelos conselhos psicológicos, e puxão de orelha de irmã mais velha, ao meu pai pelo auxílio financeiro.

Ao orientador pelo ensinamento repassado, instruções de ética e de motivação para que me torna-se uma pesquisadora melhor a cada dia. Aos professores das demais matérias que sempre dispuseram para tirar dúvidas e repassaram os seus conhecimentos.

Pelos grandes amigos que aqui formei, sempre ao meu lado nas noites de estudo, jantares, danças ... Citando alguns mais próximos como Kezya, Nicolas, Dyaloisio, Eduardo, Álvaro, Gelson, Iago, Fernando, Alejandro e muitos outros que partilhamos bons momentos, ao Sr. Nelson (meu pai adotivo) pelas ajudas nas análises de metodologias e pelo conhecimento de vida repassado. A Nathaly pelo exemplo de mulher independente e competente na carreira profissional.

Também não poderia faltar os meus amigos que vieram da graduação para a vida: Paola, Lisandra, Luiz Augusto, Agatha, Phillipe, Monnike, Geovanne e Gustavo.

Ao CNPq pelo apoio financeiro.

CONFIABILIDADE E QUANTIFICAÇÃO DA INCERTEZA DA RESISTÊNCIA À FRATURA CONSIDERANDO EFEITO DE ESCALA EM VIGAS DE CONCRETO

Autora: Jéssica Ferreira Borges Orientador: Francisco Evangelista Junior, PhD. Programa de Pós-Graduação em Estruturas e Construção Civil Brasília, Agosto de 2016

Essa dissertação tem como objetivo quantificar as incertezas dos parâmetros da mecânica da fratura para materiais *quasi*-frágeis, que são a energia de fratura, G_f , e o comprimento equivalente de zona de fratura, c_f , quando calculadas com o modelo de Efeito de Escala de Bažant (*EEB*) e com o Modelo de Dois Parâmetros (*MDP*) a partir de ensaios em materiais cimentícios. A tensão nominal (tensão de fratura), σ_N , é prevista para vigas entalhadas sob flexão em três pontos considerando as incertezas baseadas no programa experimental e correlações, ρ_{Gfcf} , entre G_f e c_f . Foi proposto um algoritmo do Método de Monte Carlo (*MMC*) capaz de considerar variáveis não normais e correlacionadas para obtenção das quantificações das incertezas através de funções densidade de probabilidade, f(x), de σ_N , também a probabilidade de falha de vigas de concreto através do cálculo do índice de confiabilidade, (β), para vigas de diferentes alturas e diferentes taxas de entalhe. Os resultados mostraram que a predição de β comprova o efeito de escala e que vigas mais espessas tem menores índices de confiabilidade, especialmente quando se considera a correlação entre as propriedades da mecânica da fratura.

ABSTRACT

RELIABILITY AND UNCERTAINTY QUANTIFICATION THE FRACTURE RESISTANCE CONSIDERING SIZE EFFECT IN CONCRETE BEAMS

Authoress: Jéssica Ferreira Borges Advisor: Francisco Evangelista Junior, PhD. Programa de Pós-Graduação em Estruturas e Construção Civil Brasília, August of 2016

This dissertation aims to quantify the uncertainties of the parameters of fracture mechanics for quasi-brittle materials, which are the energy release rate, G_{f_5} and the equivalent fracture process zone, c_{f_5} when calculated on the Bažant's size effect model (*EEB*) and two parameter fracture model (*MDP*) from experimental results of cementicious materials. The nominal stress (fracture strength), σ_N , is predicted for three point bending notched beams considering the uncertainties based on the experimental program and correlations ρ_{Gfef} between G_f and c_{f} . It is proposed a Monte Carlo method (*MMC*) algorithm able to simulate non-normal and correlated random variables in order to obtain the uncertainty quantification through the probability density functions of σ_N , and also the probability of failure of concrete beams through the calculation of the reliability index (β) for beams of different sizes and relative notch depths. The results showed that the predicted β demonstrate a size effect in which thicker beams has lower reliability indexes, specially under consideration of the correlation between the fracture properties.

SUMÁRIO

1	INTRODUÇÃO
	1.2 METODOLOGIA
2	REVISÃO TEÓRICA E BIBLIOGRÁFICA
	2.2 FUNÇÕES DENSIDADE DE PROBABILIDADE UNIVARIADA PARA
	VARIÁVEIS CONTÍNUAS
	2.2.1 Distribuição Uniforme72.2.2 Distribuição Normal e Normal Padrão82.2.3 Distribuição lognormal92.2.4 Distribuição Valor Extremo Generalizado102.2.5 Distribuição <i>t-Student</i> 112.3 MÉTODO DE MONTE CARLO (<i>MMC</i>)12
	2.3.1 Geração de números aleatórios14
	2.3.2 Transformação de Rosenblatt: parâmetros equivalentes
	2.3.3 Correlação entre variáveis aleatórias162.4 CONFIABILIDADE ESTRUTURAL18
	2.5 MECÂNICA DA FRATURA
	 2.5.1 Mecânica da Fratura Linear Elástica
	2.7 ALGORITMO PROPOSTO PARA O MÉTODO DE MONTE CARLO 28
3 C	ESTIMAÇÃO DOS PARÂMETROS DE FRATURA PARA CONCRETO ONSIDERANDO INCERTEZA DOS RESULTADOS EXPERIMENTAIS
	3.2 DETERMINAÇÃO DOS PARÂMETROS DE FRATURA PELO EFEITO DE
	ESCALA DE BAŽANT (EEB)
	 3.2.1 Parâmetros de fratura pelo <i>EEB</i> sem as variações dos parâmetros de regressão A e C (Caso I)
	3.3 DETERMINAÇÃO DOS PARÂMETROS DE FRATURA PELO MÉTODO DE
	DOIS PARÂMETROS DE JENO E SHAH (CASO III)
	3.4 RESUMO DOS MOMENTOS ESTATÍSTICOS DOS PARÂMETROS G_f E c_f 46
4 F	QUANTIFICAÇÃO DA INCERTEZA DA PREDIÇÃO DA RESISTÊNCIA À RATURA E CONFIABILIDADE ESTRUTURAL

4.1 FUNÇÃO DE DESEMPENHO E VARIÁVEIS CONSIDERADAS	47
4.2 PREDIÇÃO PELO EFEITO DE ESCALA DE BAŽANT (<i>EEB</i>): CASOS I E II	48
 4.2.1 Caso I: sem as variações dos parâmetros de regressão A e C 4.2.2 Caso II: considerando as variações dos parâmetros de regressão A e C 4.3 PREDIÇÃO PELO MODELO DE DOIS PARÂMETROS JENQ AND S 	48 56 HAH
(MDP): CASO III	61
4.4 COMPARAÇÃO ENTRE OS CASOS	69
4.5 ESTUDO DE CASO	71
5 CONCLUSÃO	74
5.1 SUGESTÕES PARA TRABALHOS FUTUROS	75
6 REFERÊNCIAS	76
ANEXO A	82
ANEXO B	88
ANEXO C	97
	 4.1 FUNÇÃO DE DESEMPENHO E VARIÁVEIS CONSIDERADAS 4.2 PREDIÇÃO PELO EFEITO DE ESCALA DE BAŽANT (<i>EEB</i>): CASOS I E II 4.2.1 Caso I: sem as variações dos parâmetros de regressão <i>A</i> e <i>C</i> 4.2.2 Caso II: considerando as variações dos parâmetros de regressão <i>A</i> e <i>C</i> 4.3 PREDIÇÃO PELO MODELO DE DOIS PARÂMETROS JENQ AND S (<i>MDP</i>): CASO III 4.4 COMPARAÇÃO ENTRE OS CASOS 4.5 ESTUDO DE CASO 5.1 SUGESTÕES PARA TRABALHOS FUTUROS

LISTA DE FIGURAS

Figura 1-1 – Fluxograma das análises de incerteza dos parâmetros da mecânica da fratura e
a confiabilidade5
Figura 2-1 – Tipos de incertezas e quantificação de saída
Figura 2-2 – Função densidade de probabilidade uniforme
Figura 2-3 – Funções densidade de probabilidade normal
Figura 2-4 – Funções densidade de probabilidade lognormal10
Figura 2-5 – Funções densidade de probabilidade Generalized Extreme Value
Figura 2-6 – Funções densidade de probabilidade <i>t-Student</i>
Figura 2-7 – Análise de convergência de variáveis aleatórias
Figura 2-8 – Transformação de espaço por equivalência de áreas entre distribuições 15
Figura 2-9 – Distribuição da região de falha considerando a $f_R(r)$ e $f_S(s)$
Figura 2-10 – Índice de confiabilidade relacionado a um estado limite último para uma
referência de período de um ano21
Figura 2-11 – Modos de fratura <i>a</i>) Modo I; <i>b</i>) Modo II; e <i>c</i>) Modo III
Figura 2-12 – Comprimento equivalente de fratura
Figura 2-13 – Algoritmo proposto do Método de Monte Carlo considerando distribuições
não normais e correlação
Figura 3-1 – Sistema de ensaio para SEN(B) definido por RILEM (1990a)
Figura 3-2 – Regressão dos mínimos quadrados para dados ensaiados <i>EEB</i>
Figura 3-3 – Tensão nominal, $\sigma_N(\mu_{Gf}, \mu_{cf}, \mu_E)$, avaliada nas médias dos parâmetros para
EEB – caso I, para diferentes alturas e taxas de entalhe (α)
Figura 3-4 – Curva de <i>EEB</i> normalizada para caso I com α de 0.10, 0.25 e 0.40
Figura 3-5 – Hipótese de normalidade dos valores individuais em torno da reta de
regressão
Figura 3-6 – Função de densidade de probabilidade, $f(x)$, de G_f considerando incerteza de
regressão
Figura 3-7 – Função de densidade de probabilidade, $f(x)$, de c_f considerando incerteza de
regressão
Figura 3-8 – Tensão nominal, $\sigma_N(\mu_{Gf}, \mu_{cf}, \mu_E)$, avaliada nas médias dos parâmetros para

Figura 3-9 - Deslocamentos na geometria da trinca (à esquerda) e modelo de ensaio (à
direita)
Figura 3-10 – Comportamento carga <i>versus</i> abertura de fratura
Figura 3-11 – Função de densidade de probabilidade, $f(x)$, de K_{Ic} considerado o efeito de
escala para MDP, Caso III
Figura 3-12 – Função de densidade de probabilidade, $f(x)$, de G_f considerado o efeito de
escala dos ensaios de SEN(B) para MDP, Caso III
Figura 3-13 – Função de densidade de probabilidade, $f(x)$, de $CTOD_c$ considerado o efeito
de escala dos ensaios para MDP, Caso III
Figura 3-14 – Função de densidade de probabilidade, $f(x)$, de c_f considerado o efeito de
escala dos ensaios para MDP, Caso III
Figura 3-15 – Função de densidade de probabilidade, $f(x)$, de a) G_f , b) $CTOD_c$ e c) c_f para
as alturas de vigas de 250 mm e 150 mm
Figura 4-1 – Variáveis aleatórias geradas para o <i>EEB</i> Caso I: <i>a</i> , <i>c</i> _f e <i>G</i> _f
Figura 4-2 – Funções densidade de probabilidade de σ_N com a variação de α e ρ para o caso
I, onde <i>a</i>) 0.15 m e <i>b</i>) 1.00 m
Figura 4-3 – Funções densidade de probabilidade da função desempenho, $G(\mathbf{x})$, para $\gamma 1.10$
(Caso I) em que a) $D = 0.15$ m e b) $D = 1.00$ m
Figura 4-4 – Índice de confiabilidade (β) com a variação de α e D e as correlações ($a \ge e$)
para $\gamma = 1.10$ (Caso I)
Figura 4-5 – Índice de confiabilidade (β) com a variação de α e D e as correlações ($a \ge d$)
para o $\gamma = 1.50$ (Caso I)
Figura 4-6 – Índice de confiabilidade (β) com a variação de α e D e as correlações ($a \ge d$)
para o $\gamma = 2.00$ (Caso I)
Figura 4-7 – Índice de confiabilidade (β) com $\rho_{Gfcf} = 0$ (azul), $\rho_{Gfcf} = -0.50$ (vermelho) e
$ \rho_{Gfcf} = -0.95 \text{ (verde) com } D = 0.50 \text{ m para } EEB \text{ (Caso I)}. $ 55
Figura 4-8 - Variáveis aleatórias para <i>EEB</i> Caso II: a , $c_f \in G_{f}$
Figura 4-9 – Funções densidade de probabilidade de σ_N com a variação de α e ρ para o
EEB caso II, e alturas <i>a</i>) $D = 0.15$ m e <i>b</i>) $D = 1.00$ m
Figura 4-10 – Funções densidade de probabilidade da função desempenho, $G(\mathbf{x})$, para $\gamma =$
2.00 (Caso II) em que a) $D = 0.15$ m e b) $D = 1.00$ m
Figura 4-11 – Índice de confiabilidade (β) com a variação de α e D e as correlações ($a \ge d$)
para $\gamma = 1.10$ (Caso II)

Figura 4-12 – Índice de confiabilidade (β) com a variação de α e D e as correlações ($a \ge d$)
para $\gamma = 1.50$ (Caso II)
Figura 4-13 – Índice de confiabilidade (β) com $D = 0.15$ m à esquerda e $D = 0.50$ m à
direita em a) e b) $\rho_{Gfcf} = 0$ (azul), $\rho_{Gfcf} = -0.50$ (vermelho) e $\rho_{Gfcf} = -0.95$ (verde) e em c) e
d) $\rho_{Gfcf} = 0$ (azul), $\rho_{Gfcf} = 0.50$ (vermelho) e $\rho_{Gfcf} = 0.90$ (verde) com $\gamma = 1.10$ para <i>EEB</i>
(Caso II)
Figura 4-14 – Variáveis aleatórias geradas para o <i>MDP</i> Caso III: $a, c_f \in G_f$
Figura 4-15 – Funções densidades de probabilidade de σ_N variando α e ρ para o caso III e
alturas <i>a</i>) 0.15 m e <i>b</i>) 1.00 m
Figura 4-16 – Função densidade de probabilidade da função desempenho $G(\mathbf{x})$ para $\gamma =$
1.10 (Caso III) em que <i>a</i>) $D = 0.15$ m e <i>b</i>)1 m
Figura 4-17 – Índice de confiabilidade (β) com a variação de α e D e as correlações ($a \ge a$),
para $\gamma = 1.10$ (Caso III)
Figura 4-18 – Índice de confiabilidade (β) com a variação de α e D e as correlações (a à e)
para $\gamma = 1.50$ (Caso III)
Figura 4-19 – Índice de confiabilidade (β) com a variação de α e D e as correlações (a à e)
para $\gamma = 2.00$ (Caso III)
Figura 4-20 – Variação do índice β com relação à taxa de entalhe com $D = 0.50$ m onde
$\rho_{Gfcf} = 0$ (em azul), $\rho_{Gfcf} = -0.50$ (vermelho) e $\rho_{Gfcf} = -0.94$ (verde), MDP – caso III
Figura 4-21 – Variação índice β com relação à taxa de entalhe com $D = 0.50$ m, onde ρ_{Gfcf}
= θ (em azul), $\rho_{Gfcf} = 0.5\theta$ (vermelho) e $\rho_{Gfcf} = 0.9\theta$ (verde), MDP – caso III
Figura 4-22 – Índice de confiabilidade (β) modificando as condições geométricas para as
correlações de -0.95 (à esquerda) e de 0.50 (à direita) para o $\gamma = 1.10$ e os três casos de
incertezas
Figura 4-23 – Índice de confiabilidade (β) com variação de ρ , à esquerda $\rho = 0$ (azul), $\rho =$
0.50 (vermelho) e $\rho = 0.90$ (verde); à direita $\rho = 0$ (azul), $\rho = -0.50$ (vermelho) e $\rho = -$
$0.95 \text{ (verde) com } \gamma = 1.50 \text{ e } D = 0.15 \text{ m.}$
Figura 4-24 – Exemplo de viga com geometria e carregamento aproximado a SEN(B) para
determinar a confiabilidade72
Figura 4-25 – Superfície do índice de confiabilidade para estimar β para uma dada
geometria, caso I e $\rho_{Gfcf} = 0$

LISTA DE TABELAS

Tabela 3-1- Dados experimentais para concreto utilizando amostras SEN(B) por RILEM
(1990a, b)
Tabela 3-2 Momentos estatísticos dos parâmetros geométricos e de regressão do $\ensuremath{\textit{EEB}}\xspace$
Caso I
Tabela 3-3– Momentos estatísticos dos parâmetros de fratura para <i>EEB</i> – Caso I
Tabela 3-4- Momentos estatísticos dos parâmetros geométricos e de regressão do EEB 36
Tabela 3-5 – Momentos estatísticos dos parâmetros de fratura para <i>EEB</i> – Caso II
Tabela 3-6 – Parâmetros estatísticos dos ensaios SEN(B).42
Tabela 3-7 – Parâmetros estatísticos de $CTOD$, c_f e G_f para os três grupos de vigas
Tabela 3-8 – Momentos estatísticos dos parâmetros de fratura para MDP – Caso III 46
Tabela 3-9 - Momentos estatísticos dos parâmetros de fratura considerado os casos I, II e
III
Tabela 4-1 – Variáveis para cálculo da predição de fratura D , α , E e σ_s
Tabela 4-2 – Resumo dos parâmetros estatísticos de σ_N (<i>MPa</i>) para $D = 0.063$ m, para o
<i>EEB</i> , caso I
Tabela 4-3 – Resumo dos parâmetros estatísticos de σ_N (MPa) para $D = 0.50$ m, para o
<i>EEB</i> , caso I
Tabela 4-4 – Resumo dos parâmetros estatísticos de σ_N (<i>MPa</i>) para $D = 1.00$ m, para o
<i>EEB</i> caso I
Tabela 4-5 – Resumo dos parâmetros estatísticos de σ_N (<i>MPa</i>) com $D = 0.063$ m, para o
<i>EEB</i> , caso II
Tabela 4-6 – Resumo dos parâmetros estatísticos de σ_N (MPa) com $D = 0.50$ m, para o
<i>EEB</i> , caso II
Tabela 4-7 – Resumo dos parâmetros estatísticos de σ_N (MPa) com $D = 1.00$ m, para o
EEB, caso II
Tabela 4-8 – Resumo dos parâmetros estatísticos de σ_N (<i>MPa</i>) com $D = 0.063$ m, para o
MDP, caso III
Tabela 4-9 – Resumo dos parâmetros estatísticos de σ_N (MPa) com $D = 0.50$ m, para o
MDP, caso III
Tabela 4-10 – Resumo dos parâmetros estatísticos de σ_N (MPa) com $D = 1.00$ m, para o
MDP, caso III
Tabela 4-11 - Índices de confiabilidade para a geometria de estudo, considerando
parâmetros dos casos
Tabela A -1 – Valores das probabilidades de falha e índices de confiabilidade para o Caso I
de <i>EEB</i>
Tabela A -2 – Valores das probabilidades de falha e índices de confiabilidade para o caso
II de <i>EEB</i>
Tabela A -3 – Valores das probabilidades de falha e índices de confiabilidade para o caso
III - <i>MDP</i>
Tabela B -1 – Valores dos momentos estatísticos das tensões nominais caso I – EEB,
distribuição <i>t-Student</i>
Tabela \vec{B} -2 – Valores dos momentos estatísticos das tensões nominais para o caso II <i>EEB</i> ,
distribuição <i>t-Student</i>
Tabela B -3 – Valores dos momentos estatísticos das tensões nominais caso III – MDP.
distribuição <i>t-Student</i>
Tabela C -1 – Valores dos momentos estatísticos das equações de desempenho caso I –
<i>EEB</i> , distribuição <i>t-Student</i>
•

Tabela C -2 - Valores dos momentos estatísticos das equações de desempenho	caso II -
EEB, distribuição t-Student.	
Tabela C -3 – Valores dos momentos estatísticos das equações de desempenho	caso III –
MDP, distribuição t-Student.	103

LISTA DE SÍMBOLOS

DECIMAL Divisão de unidade decimal **LATINOS** Média amostral x -s Desvio padrão amostral Matriz de fatoração ou autovetores Α A Inclinação de reta de regressão Entalhe inicial a_0 Entalhe final a_c CInterseção de reta de regressão Σ Matriz de covariâncias С Matriz de correlação C' Matriz de correlação corrigida Comprimento equivalente da zona de processo fratura C_f C_i Compliance de carregamento

- c_n Constante de modificação da equação de *EEB*.
- *C_u Compliance* de descarregamento
- *D* Altura da viga
- *E* Módulo de elasticidade
- E_u Módulo de elasticidade descarregamento
- E_i Módulo de elasticidade inicial
- f(x) Função densidade de probabilidade de x
 - *K* Fator de intensidade de tensão à fratura
 - K_I Fator de intensidade de tensão à fratura modo I
 - *K_{Ic}* Fator de intensidade de tensão à fratura crítico modo I
- $G(\mathbf{x})$ Função de desempenho
- $g(\alpha)$ Função de forma
- $g_2(\alpha)$ Função de forma
 - G_f Energia de fratura
 - *L* Comprimento da viga
 - p_f Probabilidade de falha
 - P_j Carregamento último corrigido

- P_{ult} Carregamento último aplicado no equipamento
- R^2 Coeficiente de determinação de regressão
- *r_{i,j}* Fator de correção de correlação entre variáveis não normais
- S Vão
- t Espessura
- T Matriz de fatoração de Cholesky
- V_x Coeficiente de variação
- *x* Variável no espaço da distribuição de probabilidade de origem
- W Peso próprio
- Z Variável no espaço normal padrão
- z Variável normal não correlacionada
- z' Variável normal correlacionada

GREGOS

- μ Média populacional
- μ_{xi}^{N} Média equivalente no espaço normal padronizado
 - λ Grau de liberdade
 - α Taxa de entalhe
 - β Índice de confiabilidade
 - δ Distância até a ponta da fratura
- $\rho_{x1, x2}$ Correlação entre $x_1 e x_2$
 - σ Desvio padrão populacional
 - σ_N Tensão nominal de resistência à fratura
 - $\sigma_{\mu x}$ Tensão solicitante característica

 σ_{xi}^{N} Desvio equivalente no espaço normal padronizado

- σ_F Tensão induzida
- Φ Função densidade acumulada normal padrão
- φ Função densidade de probabilidade normal padrão
- γ Fator de segurança
- v Coeficiente de Poisson

LISTA DE ABREVIAÇÕES

- *CMOD* Deslocamento de abertura na boca da trinca ou fratura
- *CMOD^e* Deslocamento de abertura na boca da trinca elástico
- *CMOD^p* Deslocamento de abertura na boca da trinca plástico
- $COV(x_1, x_2)$ Covariância das variáveis $x_1 e x_2$
 - *CTOD* Deslocamento de abertura na ponta da trinca ou fratura
 - *CTOD_c* Deslocamento de abertura na ponta da trinca ou fratura crítico
 - *EEB* Efeito de Escala de Bažant
 - *FPZ* Zona de processo de fratura
 - *LEFM* Mecânica da fratura linear elástica
 - *NLEFM* Mecânica da fratura não linear elástica
 - *MDP* Método de Dois Parâmetros
 - *MMC* Método de Monte Carlo
 - SEN(B) Viga com entalhe simples sob flexão em três pontos
 - UIUC University of Illinois at Urbana Champaign

1 INTRODUÇÃO

O estudo da mecânica da fratura foi inicialmente formulado considerando conceitos da Mecânica da Fratura Linear Elástica, em inglês *Linear Elastic Fracture Mechanics* (*LEFM*) com o trabalho de Griffith (1921). Os parâmetros da *LEFM* a considerar será a tenacidade à fratura, em inglês *Stress Intensity Factor* (K_{Ic}), ou a taxa crítica de liberação de energia, em inglês *Energy Release Rate* (G_f). Algumas décadas depois, comprovou-se que as considerações realizadas para propagação de fratura para o regime linear elástico não predizia o comportamento do concreto satisfatoriamente. Estruturas de concreto são consideradas *quasi*-frágeis, e quando fraturadas, exibem uma zona de não linearidade na frente da trinca a qual possui tamanho relevante comparado ao tamanho da estrutura, na maioria dos membros estruturais. Um dos principais avanços da mecânica da fratura para materiais *quasi*-frágeis foram os modelos de comprimento de trinca equivalente da Mecânica da Fratura Não Linear Elástica, em inglês *Non Linear Elastic Fracture Mechanics* (*NLEFM*) que também usa os conceitos da *LEFM* (BAŽANT e KAZEMI, 1990). Mas também consideram, de modo aproximado, a região de não linearidade adaptando o tamanho da fratura para um comprimento equivalente.

Os principais métodos utilizando o conceito de tamanho de trinca equivalente da *NLEFM* para o concreto são o Efeito de Escala de Bažant (*EEB*) (BAŽANT, 1984; BAŽANT e KAZEMI, 1990) e o Modelo de Dois Parâmetros (*MDP*) (JENQ e SHAH, 1985). Ambos os modelos consideram como parâmetro para o cálculo da tensão nominal (σ_N), necessária a propagação instável à fratura o K_{Ic} ou G_f . Entretanto, o *EEB* caracteriza a região não linear a frente da trinca com uma quantidade chamada c_f , que é o tamanho da zona de processo equivalente. Por sua vez, o *MDP* determina o tamanho crítico da abertura de trinca, em inglês *Critical Crack Tip Opening Displacement* (*CTOD_C*). Assim, o *EEB* e *MDP*, apesar de serem similares, utilizam formas de ensaios e determinação de parâmetros distintos de acordo com os modelos matemáticos inerentes em cada modelo. Desta forma, os principais parâmetros G_f e c_f são determinados com diferentes incertezas devido à propagação de incertezas das formulações, ocasionando parâmetros estatísticos (média e desvio padrão) que podem ser diferentes.

Alguns trabalhos desenvolvidos por Bažant e colaboradores nos anos de 2002 e 2006 (BAŽANT e BECQ-GIRAUDON, 2002; BAŽANT e PANG, 2006) estudam as incertezas

dos parâmetros da mecânica da fratura no seu banco de dados, buscando uma aproximação estatística da aleatoriedade. Entretanto, o desenvolvimento das equações de predições resulta em aproximações, nas quais eles já propagam erros aos resultados, podendo por métodos probabilísticos definir as variações das propriedades dos materiais. As variações encontradas nos dados de G_f e c_f foram significativas, sendo uma calculada por um banco de dados e outra por aproximações de equações.

Em relação à variabilidade dos parâmetros da mecânica da fratura Bažant e Becq-Giraudon (2002) utilizaram um banco de dados de ensaios estimando os parâmetros estatísticos de G_f e c_f das amostras. Puatatsananon e Saouma (2006) utilizam a incerteza em K_I e calculam a confiabilidade à propagação da fratura considerando um regime linear elástico.

Os métodos probabilísticos são amplamente utilizados para capturar as incertezas dos materiais ou geométricos através das funções densidade de probabilidade. Para avaliar essas funções é necessário um vasto conjunto de dados, que podem ser obtidos por ensaios experimentais ou por técnicas de simulações. Devido aos gastos para realização de ensaios, a análise de incertezas pode ser feita através das técnicas de simulação, tal como Monte Carlo, onde por meio das probabilidades dos dados de entrada se amplifica o conjunto de realizações dos fenômenos (MELCHERS, 1999; HALDAR e MAHADEVAN, 2000; ZIMMERMANN *et al.*, 2014).

Evangelista Jr. e Muñoz (2014) realizaram um estudo para confiabilidade de vigas de concreto entalhadas considerando as incertezas da mecânica da fratura, mas desconsideraram qualquer correlação que possa existir entre as variáveis. A confiabilidade para as incertezas nesse trabalho foi realizada pelo método de confiabilidade de primeira ordem, em inglês *First Order Reliability Method (FORM)*, considerando as incertezas geométricas para os modelos de *EEB* e *MDP* e sem considerar correlação entre as variáveis. A maior influência nos valores de β foram as menores médias de solicitação atribuídas.

1.1 OBJETIVOS

Com as divergências das metodologias de cálculos dos parâmetros de fratura, este trabalho visa quantificar as incertezas dos modelos matemáticos e analisar a influência das incertezas nas definições das tensões nominais que as estruturas podem estar submetidas. Considera-se uma possível correlação entre G_f e c_f , ρ_{Gfcf} , denotando a modificação aplicada na dispersão da densidade de probabilidade da tensão nominal. Calcula-se ainda o índice de confiabilidade que vigas sob flexão em três pontos entalhadas com diferentes geometrias para diferentes fatores de seguranças aplicados nas estruturas.

Essa dissertação visa quantificar estimativas de σ_N em vigas biapoiadas com carregamento concentrado e entalhe central para diferentes tamanhos devido às incertezas da geometria e dos parâmetros de fratura determinados pelos modelos de *EEB* e o *MDP*. As correlações entre os principais parâmetros da mecânica da fratura foram considerados. Além disso, essa dissertação visa determinar a confiabilidade estrutural destas vigas com relação à propagação instável de trincas pré-existentes utilizando a *NLEFM*.

Os objetivos específicos desse trabalho são:

- Implementar um algoritmo de simulação probabilística de Monte Carlo considerando variáveis não-normais e correlacionadas por meio de métodos de transformação;
- Calcular os parâmetros da mecânica da fratura não linear elástica pelo Método de Efeito de Escala de Bažant (*EEB*) e pelo Método de Dois Parâmetros (*MDP*) considerando a propagação dos erros;
- Analisar as incertezas das formulações de *EEB* e *MDP* considerando a propagação física e matemática dos modelos usando o método de Monte Carlo;
- Calcular as tensões nominais de resistências à fratura medidas na ponta da trinca seguindo a formulação da *NLEFM*, considerando a aleatoriedade dos parâmetros para diferentes geometrias de viga entalhada;
- Analisar a influência da modificação da correlação entre G_f e c_f no valor da tensão nominal à propagação da fratura;
- Definir os momentos estatísticos da tensão nominal e da função desempenho para as diversas combinações de geometrias e coeficientes de minoração de solicitação;

• Calcular o índice de confiabilidade de vigas entalhadas usando o Método de Monte Carlo, considerando as incertezas do *MDP* e do *EEB*.

1.2 METODOLOGIA

Neste trabalho foram utilizados os resultados experimentais de nove vigas biapoiadas com carga concentrada e entalhe central descritas em Brand *et al.* (2013) e Muñoz (2015), avaliando as propriedades estatísticas dos parâmetros do problema. Para isto, três metodologias de quantificação de incerteza dos parâmetros de fratura de ensaios foram abordadas como mostra a Figura 1-1, as duas primeiras seguindo a metodologia de *EEB* (Caso I e II) e a terceira via *MDP* (Caso III).

No Caso I, analisa-se apenas a variação de G_f e c_f com relação à altura da viga, considerando os coeficientes $A \in C$ da regressão linear do modelo determinísticos, como é tradicionalmente realizado na determinação dos parâmetros do ensaio seguindo o *International Union of Laboratories and Experts in Construction Materials, Systems and Structures (RILEM)* (1990a). Para o Caso II, avalia-se $G_f \in c_f$ considerando os desvios de suas variáveis, como $g(\alpha)$, $g'(\alpha)$ e considera a incerteza probabilística dos coeficientes de regressão $A \in C$. Já no Caso III, utiliza-se do *MDP* para determinação da aleatoriedade de $G_f \in c_f$ (*RILEM*, 1990b).

A partir da caracterização da incerteza de G_f e c_f , a quantificação da incerteza da σ_N é realizada considerando diferentes tamanhos de viga e diferentes tamanhos relativos de α por meio de técnicas de simulação de Monte Carlo considerando variáveis não-normais e correlacionadas. Por fim, é realizada uma análise de confiabilidade que avalia a função de desempenho proposta determinando o índice de confiabilidade (β) de vigas entalhadas com variações de geometria, fatores de segurança e correlação entre as variáveis aleatórias G_f e c_f .

O algoritmo de simulação probabilística de Monte Carlo considerando variáveis nãonormais e correlacionadas foi implementado em rotinas e funções do *MatLab*[®]. A consideração da aleatoriedade das variáveis foi realizada nos locais onde é representada a forma da função de densidade de probabilidade na Figura 1-1.

Figura 1-1 – Fluxograma das análises de incerteza dos parâmetros da mecânica da fratura e a confiabilidade.

2 REVISÃO TEÓRICA E BIBLIOGRÁFICA

Este capítulo trata o embasamento teórico necessário para aplicar a metodologia desse trabalho, iniciando com a quantificação de incerteza, as aproximações probabilísticas, a técnica de simulação de Monte Carlo e confiabilidade.

2.1 QUANTIFICAÇÃO DE INCERTEZA

Geralmente se define as propriedades dos materiais através de ensaios com um número de testes que consiga tornar essas propriedades representativas. Cada teste realizado está submetido a inerentes variações causando uma aleatoriedade nos resultados experimentais, chamado de flutuação física (DITLEVSEN e MADSEN, 2005). Esta flutuação física pode resultar da aleatoriedade da propriedade do material ou de fatores como o modo de execução dos ensaios. Quando a mesma vem de problemas da modelagem dos ensaios, com tempo e aprimoramento se consegue excluir esses erros. Já quando vem da aleatoriedade das propriedades dos materiais, deve-se buscar metodologias para abranger e quantificar esses erros.

Outro tipo de incerteza referente à extração das propriedades do material acontece nos modelos matemáticos que utilizam de processos de simplificação em operações, modelagem e regressões dos dados (CHRISTOU *et al.*, 2016). Este tipo de incerteza é denominado de epistêmica onde está imbuída do próprio desconhecimento de aspectos que podem ser importantes no fenômeno, mas que não são abrangidos no modelo.

Na Figura 2-1 é apresentado um esquema das possíveis incertezas dos modelos, suas considerações permitirá aproximar de uma função densidade de probabilidade (f(x)). Geralmente, nenhumas das incertezas mencionadas anteriormente são consideradas diretamente na solução dos problemas de engenharia. Comumente adota-se um valor característico dos parâmetros/propriedades ensaiados como a propriedade do material, desprezando-se a aleatoriedade existente, num processo denominado determinístico (OBERKAMPF *et al.*, 2004). O processo determinístico atribui uma zona de incerteza às propriedades dos materiais fornecendo aos cientistas e engenheiros uma zona de risco causada pelas análises. As incertezas atribuídas nos parâmetros de entrada de sistemas físicos complexos atribuem ao analista propensão ao erro. Portanto, técnicas de simulações onde se considera essas incertezas foram desenvolvidas (OBERKAMPF *et al.*, 2004).

Figura 2-1 – Tipos de incertezas e quantificação de saída.

Cabe ressaltar que risco e incertezas são conceitos diferentes, onde as incertezas, seja das propriedades ou da imperfeição da modelagem, causam certa variação nos valores do risco, podendo estes ser dependentes ou independentes (SAMSON *et al.*, 2009). Helton *et al.* (2004) introduz o cálculo destes erros através da teoria da probabilidade. Desde que sua variável possa ser considerada contínua em um domínio, busca-se aproximar o seu comportamento de variação a um comportamento de densidade probabilística já desenvolvida.

2.2 FUNÇÕES DENSIDADE DE PROBABILIDADE UNIVARIADA PARA VARIÁVEIS CONTÍNUAS

Nesta seção apresentam-se algumas das distribuições probabilísticas de variáveis contínuas. Algumas funções que preveem a probabilidade de ocorrência de valores de eventos são descritas neste sub tópico, sendo a distribuição uniforme, normal, lognormal, valor extremo generalizado (*GEV*) e *t-Student*.

2.2.1 Distribuição Uniforme

Caracterizada por apresentar uma distribuição plana em um intervalo fechado [A, B] é uma das distribuições mais simples na estatística, a distribuição uniforme (Figura 2-2). Sua função densidade de probabilidade é dada na Equação (2.1).

$$f(x; A, B) = \begin{cases} \frac{1}{B-A}, & A \le x \le B\\ 0, & nos \quad outros \quad casos \end{cases}$$
(2.1)

Figura 2-2 – Função densidade de probabilidade uniforme.

2.2.2 Distribuição Normal e Normal Padrão

Tendo uma boa aderência a diversos comportamentos físicos e com fácil estimativa de seus parâmetros é uma das distribuições probabilísticas mais utilizadas. Além de seu comportamento simétrico que facilita a análise. A sua equação de distribuição contínua necessita apenas da média e do desvio padrão da amostra para ser estimada como apresentada na Equação (2.2) e o seu comportamento é apresentado na Figura 2-3 para diferentes médias e desvios padrões.

$$f(x;\mu,\sigma) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{1}{2\sigma^2}(x-\mu)^2}, -\infty < x < \infty$$
(2.2)

Em que μ é o valor esperado, ou média populacional que é um parâmetro de localização do centro da distribuição, e σ é o desvio padrão populacional que é à distância a partir de μ para o ponto de inflexão da curva da função, considerado um parâmetro de forma da distribuição. O valor da integral da Equação (2.2) é a probabilidade do evento *x* ocorrer.

Figura 2-3 – Funções densidade de probabilidade normal.

Devido à demanda matemática repetitiva nos cálculos das integrais de f(x) e a propriedade de simetria da distribuição normal, desenvolveu-se uma metodologia de modificação da locação dos eixos. Onde se padronizou a curva normal com média nula e desvio unitário e com a Equação (2.3) se calcula uma coordenada equivalente (z), com parâmetros da curva padrão, de um ponto x que segue uma N(μ , σ).

$$z = \frac{x - \mu}{\sigma} \tag{2.3}$$

Assim a probabilidade de x (N(μ , σ)) é igual à probabilidade de z (N(0,1)) que pode ser encontrada tabelada.

2.2.3 Distribuição lognormal

A distribuição lognormal está diretamente relacionada com uma distribuição normal, sendo que Y = ln(x) em que Y segue uma distribuição lognormal se x segue uma distribuição normal, calculado com média e desvio amostral. Essa distribuição possui vasta aplicação devido à inexistência de valores negativos de predição. Sua função densidade é apresentada na Equação (2.4).

$$f(x;\mu,\sigma) = \begin{cases} \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{1}{2\sigma^2}(\ln(x)-\mu)^2}, & x \ge 0\\ 0 & x \le 0 \end{cases}$$
(2.4)

O seu comportamento é apresentado na Figura 2-4 para diferentes médias e desvios. Em que a média e o desvio padrão podem ser relacionados com a distribuição normal, tornando a média e desvio do conjunto $(\bar{x} e \bar{s})$ referido com os parâmetros da distribuição lognormais pelas Equações (2.5) e (2.6).

$$\mu = \sqrt{\ln(1 + (\bar{s} / \bar{x})^2)}$$
(2.5)

e

$$\sigma = \ln\left(\frac{\frac{1}{x}}{\sqrt{\frac{1}{s}^{2} + \frac{1}{x}^{2}}}\right)$$
(2.6)

Figura 2-4 - Funções densidade de probabilidade lognormal.

2.2.4 Distribuição Valor Extremo Generalizado

A distribuição de Valor Extremo Generalizado, em inglês *Generalized Extreme Value* (*GEV*), é uma família de distribuições de valor extremo conhecidas como distribuições Gumbel, Fréchet e Weibull. Como características possuem as caudas com decrescimento exponencial no lado positivo ou negativo especificado pelo parâmetro de forma (k) como apresentado na Figura 2-5.

Figura 2-5 - Funções densidade de probabilidade Generalized Extreme Value.

Quando o parâmetro k se define o tipo de distribuição, sendo que para k nulo é nomeado como *GEV* Tipo I ou distribuição Gumbel. Quando o parâmetro de forma for maior que 0, denomina-se *GEV* - Tipo II ou distribuição Fréchet em que o domínio será limitado em um

valor negativo. Pode-se denominar distribuição Weibull (*GEV* - Tipo III) quando k < 0 e o domínio for limitado por um valor positivo (Figura 2-5). A função f(x) é dada na Equação (2.7a).

$$f(x) = \frac{1}{\sigma} \left[t(x)^{k+1} e^{-t(x)} \right]$$
(2.7a)

Em que t(x) é definida na Equação (2.7b) quando k for diferente de 0 e na Equação (2.7c) quando for nulo.

$$t(x) = \left(1 + \frac{x - \mu}{\sigma}k\right)^{-\frac{1}{k}}$$
(2.7b)

$$t(x) = e^{-\left(\frac{x-\mu}{\sigma}\right)}$$
(2.7c)

Sendo definida no domínio das Equações (2.8a) e (2.8b).

$$x \ge \frac{\mu - \sigma}{k}, \qquad se \quad k \ge 0 \tag{2.8a}$$

$$x \le \frac{\mu - \sigma}{-k}, \qquad se \quad k \le 0 \tag{2.8b}$$

2.2.5 Distribuição t-Student

A distribuição *t-Student* foi desenvolvida para melhor representar conjuntos de pequenas amostras onde não se tem precisão no valor do desvio padrão. Sua forma e locação se assemelham com a normal padronizada, de modo que com o aumento do grau de liberdade passará a ter maior densidade em suas caudas. A função densidade de probabilidade, f(x), é apresentada na Equação (2.9) conforme pode ser visto a mesma necessita apenas do grau de liberdade como parâmetro. Na Figura 2-6 se apresenta a forma da distribuição para diferentes graus de liberdade.

$$f(x) = \frac{\Gamma\left(\frac{\lambda+1}{2}\right)}{\sqrt{\lambda\pi}\Gamma\left(\frac{\lambda}{2}\right)} \left(1 + \frac{x^2}{\lambda}\right)^{-\frac{\lambda+1}{2}}$$
(2.9)

Em que Γ e λ são, respectivamente, a função gama e o grau de liberdade com valores retirados da quantidade de amostras conhecida menos uma unidade.

Figura 2-6 – Funções densidade de probabilidade *t-Student*.

2.3 MÉTODO DE MONTE CARLO (MMC)

A consideração de aleatoriedade das variáveis de um problema qualquer carregará as incertezas que cada variável contribui, tornando a análise da função final como um processo estocástico. Para isso, faz-se necessário um elevado conjunto de dados do problema analisado para que se estabilize o seu valor médio e o coeficiente de variação (DITLEVSEN, 2005). No entanto, a realização de ensaios para obter essa convergência é dispendiosa.

A simulação de Monte Carlo considera a teoria da probabilidade para as variáveis, onde uma variável que possui um comportamento contínuo pode ser aproximada como uma função densidade probabilística, com parâmetros aproximados. Possibilitando a geração de um conjunto de valores aleatórios que representará determinada conduta.

Christou *et al.* (2015) considera, em seu trabalho, uma possível correlação existente entre as variáveis, notando que o comportamento da aleatoriedade modifica conforme se considera a correlação, comportamento esperado pela teoria da probabilidade. As médias dos parâmetros gerados aleatoriamente tendem a convergir quanto maior o número de simulações. A Figura 2-7 apresenta um exemplo de convergência para variáveis independentes, com correlação de 0.30 e de 0.75.

Figura 2-7 – Análise de convergência de variáveis aleatórias.

Uma das formas de estimar o número de simulações necessárias é pela definição da possível incerteza da análise, sendo que a densidade de números tem relação inversa com o erro. Como regra geral o valor dessa confiança k se relaciona com o número de simulações pela Equação (2.10) (Broding, 1964).

$$n_{si} = -\frac{\ln(1-k)}{p_f} \tag{2.10}$$

Em que n_{si} é o número de simulações necessárias e p_f é a probabilidade de falha. O valor de n_{si} , normalmente, se apresenta em unidade de milhões tornando imprópria a execução manual deste método. Com auxílio computacional não há problemas, pois o processo é efetuado com facilidade através de um código matemático executado em *MatLab*[®].

A estimativa de acurácia do cálculo de probabilidade de falha pelo *MMC* requer cuidado devido as baixas p_f esperadas nos elementos estruturais. Uma das metodologias que podem ser utilizadas para controle se o número de simulações esta sendo satisfatório é partir do pressuposto de que se conhece o valor médio da probabilidade (Equação (2.11)), o seu desvio padrão (Equação (2.12)) e o coeficiente de variação (Equação (2.13)).

$$E[\overline{P}] = p_R \tag{2.11}$$

$$\sigma_p^2 = \frac{1}{N_{mmc}} [p_R (1 - p_R)]$$
(2.12)

$$V_{p} = \sqrt{\frac{(1 - p_{R})}{N_{mmc}(p_{R})}}$$
(2.13)

Em que p_R é a probabilidade esperada, N_{mmc} é o número de simulações. Com o valor de simulações que consiga representar a amostra se pode realizar cálculo da frequência relativa do problema que se analisa, realizando testes de aderência com os comportamentos das funções densidade de probabilidade conhecidas. De posse do conhecimento do comportamento do parâmetro, pode-se definir a aleatoriedade de qualquer probabilidade.

2.3.1 Geração de números aleatórios

O conceito de aleatório segue que qualquer variável terá frequência acumulada (F(x)) de 0a 1 em todo o seu domínio, assim, gera-se números aleatórios que compreenderão a probabilidade de ocorrência daquele ponto. Através do cálculo da inversa de F(x) da distribuição a que a variável está atribuída se calcula o ponto que corresponde a essa probabilidade, utilizando seus momentos estatísticos, considerando assim a aleatoriedade.

Na Figura 2-8 se esboça o esquema do conceito de aleatoriedade, onde as funções densidade de probabilidade estão apresentadas na parte inferior e as densidades acumuladas na parte superior. À esquerda se encontra a função densidade de probabilidade para uma distribuição uniforme e à direita a distribuição vinculada à variável onde encontra o ponto aleatório, os quais possuem a mesma probabilidade (Equação (2.14)).

$$P_{ui} = P_{xi} \tag{2.14}$$

Este é o conceito básico do cálculo de aleatoriedade, no entanto, existem variáveis que são correlacionadas, onde há dependência entre as variáveis. Através de processos matemáticos se utiliza de matrizes de fatoração para aplicar a propriedade de correlação, entretanto, essa operação só pode ser realizada na distribuição normal padrão. A seguir se apresenta uma metodologia desenvolvida para transformar uma variável em qualquer espaço para uma distribuição normal.

Figura 2-8 - Transformação de espaço por equivalência de áreas entre distribuições.

2.3.2 Transformação de Rosenblatt: parâmetros equivalentes

Grande parte dos problemas de engenharia possuem suas variáveis não normais, sendo que para o estudo de variáveis dependentes é necessário que as operações de correlação sejam realizadas no espaço normal. Por isso, Rosenblatt (1952) desenvolveu a metodologia para relacionar um ponto no espaço de uma distribuição qualquer (x_i) com a mesma probabilidade de um ponto z_i no espaço normal padronizado que terá uma média e um desvio equivalente, como se pode ver na Equação (2.15).

$$\Phi\left(\frac{x_i^* - \mu_{x_i}^N}{\sigma_{x_i}^N}\right) = F_{\chi_i}\left(x_i^*\right)$$
(2.15)

Em que x_i^* é o ponto aleatório de estudo na distribuição e μ_{xi}^N e σ_{xi}^N são os parâmetros equivalentes procurados para que se tenha a mesma probabilidade em um espaço normal padrão e o espaço de distribuição da variável. Desenvolvendo a Equação (2.15) encontra-se a média equivalente expressa na Equação (2.16).

$$\mu_{xi}^{N} = x_{i}^{*} - \Phi \left(F_{Xi} \left(x_{i}^{*} \right) \right) \sigma_{xi}^{N}$$
(2.16)

Onde σ_{xi}^{N} é dado na Equação (2.17).

$$\sigma_{xi}^{N} = \frac{\phi\left(\Phi^{-1}\left[F_{Xi}\left(x_{i}^{*}\right)\right]\right)}{f_{x}\left(x_{i}^{*}\right)}$$
(2.17)

Encontrado os valores dos momentos estatísticos equivalentes se pode aplicar as operações no ponto de projeto x_i^* considerando que segue uma normal com $\mu_{xi}^N e \sigma_{xi}^N$. Nos casos em que as F_{xi} não normais se apresentem com uma inclinação elevada, ou seja, uma mudança brusca de densidade com um pequeno deslocamento no eixo x, esse método não será satisfatório. Podendo aproximar a média equivalente da média da variável não normal. Aplicando os parâmetros equivalentes na Equação (2.3), obtém-se a coordenada z no espaço normal padronizado que possui mesma probabilidade que x_i^* .

2.3.3 Correlação entre variáveis aleatórias

Dos acontecimentos físicos se sabe que certos parâmetros se relacionam diretamente uns com os outros, ou seja, existe uma dispersão na variável com a intensidade e frequência que a outra aparece, diretamente relacionada pela covariância ($COV(x_i, x_j)$). A proporção é medida na matriz de covariância, onde a triangular superior e inferior da matriz representam a $COV(x_i, x_j)$ entre as variáveis (Equação (2.18)).

$$\Sigma = \begin{bmatrix} \sigma_{x_1}^2 & COV(x_1, x_2) & \cdots & COV(x_1, x_n) \\ COV(x_2, x_1) & \sigma_{x_2}^2 & \cdots & COV(x_2, x_n) \\ \vdots & \vdots & \ddots & \vdots \\ COV(x_n, x_1) & COV(x_n, x_2) & \cdots & \sigma_{x_n}^2 \end{bmatrix}$$
(2.18)

Para melhorar a sensibilidade da análise da influência que cada variável causa uma na outra se desenvolveu a medida de correlação entre as variáveis, veja a Equação (2.19), onde tornará a matriz de covariância (Equação (2.18)) com as diagonais unitárias e os demais componentes com valores entre -1.00 e 1.00.

$$\rho_{x_i, x_j} = \frac{COV(x_i, x_j)}{\sigma_{x_i} \sigma_{x_j}} = \iint \frac{(x_i - \mu_{x_i})(x_j - \mu_{x_j})}{\sigma_{x_j} \sigma_{x_i}} f_{x_i, x_j}(x_i, x_j) dx_i dx_j$$
(2.19)

A Equação (2.19) é uma medida para os casos em que a correlação entre as variáveis x_i e x_j são lineares, chamado de coeficiente de Pearson. Compondo assim a matriz de correlação, Equação (2.20).

$$\mathbf{C} = \begin{bmatrix} 1 & \rho_{x1,x2} & \cdots & \rho_{x1,xn} \\ \rho_{x2,x1} & 1 & \cdots & \rho_{x2,xn} \\ \vdots & \vdots & \ddots & \vdots \\ \rho_{xn,x1} & \rho_{xn,x2} & \cdots & 1 \end{bmatrix}$$
(2.20)

Vale ressaltar que a Equação (2.19) apresenta o cálculo de correlação entre duas variáveis normais. Nos casos em que as variáveis possuem tipos de distribuições diferentes se faz necessário a correção de $\rho_{xi,xj}$. Nataf desenvolveu uma técnica para correção do valor da correlação para levar em conta a influência do formato da função densidade conjunta das variáveis (NATAF, 1936 *apud* LIU e DER KIUREGHIAN, 1986; VOŘECHOVSKÝ, 2012; CHOI, 2007; BECK, 2012).

Com a utilização da probabilidade conjunta das variáveis, da qual se sabe que as probabilidades das variáveis serão iguais em qualquer espaço se define as Equações (2.21) e (2.22). Onde se relaciona as densidades do espaço normal z com a probabilidade dos espaços não normais x.

$$f_z(z) = \phi(z, R_z) \tag{2.21}$$

$$f_{x_i x_j}(x_i, x_j) = \phi(z_i, z_j, \rho_{z_{ij}}) \frac{f_{x_i}(x_i) f_{x_i}(x_j)}{\phi(z_i) \phi(z_j)}$$
(2.22)

Comparando as Equações (2.21) e (2.22), nota-se que é necessário encontrar um coeficiente de correlação que imponha a mesma tendência probabilística para as duas variáveis no espaço normal para depois realizar a transferência dos espaços. Comparam-se os valores da Equação (2.22) com a Equação (2.19), encontrando o fator de correção de correlação como a relação entre as duas correlações no espaço atribuído a variável (x) e a variável no espaço normal (z), dada por:

$$r_{ij} = \frac{\rho_{z_{ij}}}{\rho_{x_{ij}}}$$
(2.23)

O fator da Equação (2.23) possui valores variando até *1.10*, mostrando que há uma pequena diferença no comportamento de variáveis correlacionadas submetidas a diferentes distribuições. Notando a variação das Equações (2.21) e (2.22) na Equação (2.23), Liu e Kiureghian (1986) desenvolveram equações para calcular este fator (r_{ij}) com combinação de diversos tipos de distribuições através do coeficiente de variação entre as variáveis.

Tornando assim a matriz de correlação de variável normal multivariada, C', dada pela Equação (2.24).

$$\mathbf{C}' = \begin{bmatrix} 1 & \rho_{z_{1,z_{2}}} & \cdots & \rho_{z_{1,z_{n}}} \\ \rho_{z_{2,z_{1}}} & 1 & \cdots & \rho_{z_{2,z_{n}}} \\ \vdots & \vdots & \ddots & \vdots \\ \rho_{z_{n,z_{1}}} & \rho_{z_{n,z_{2}}} & \cdots & 1 \end{bmatrix}$$
(2.24)

O processo de aleatoriedade descrito até aqui não considera a possível dependência entre as variáveis, a correlação entre as variáveis é inserido com um processo matemático de fatoração. Para tanto se decompõe a matriz de correlação para encontrar os seus autovetores ou sua matriz de fatoração, representada por *A* na Equação (2.25).

$$\mathbf{z'} = \mathbf{A}\mathbf{z} \tag{2.25}$$

Em que z' são as variáveis normais correlacionadas e z é um vetor de n variáveis normais não correlacionadas. Uma ferramenta matemática adequada para a solução desse problema de correlação são os autovalores da **C'** dado na Equação (2.24).

Quando o problema estudado possui muitas variáveis, a operação com autovalores se torna repetitiva computacionalmente, devido à simetria existente em C'. Por isso, outro método que pode ser utilizado é a decomposição de Cholesky, a qual é uma matriz triangular inferior T, diminuindo assim as operações matriciais. Portanto, por meio da Equação (2.26) se pode obter as variáveis normais correlacionadas.

$$\mathbf{z'} = \mathbf{T}\mathbf{z} \tag{2.26}$$

2.4 CONFIABILIDADE ESTRUTURAL

A confiabilidade das estruturas é a estimação da probabilidade do não cumprimento de um estado limite de uma função de desempenho ($G(\mathbf{x})$) em um sistema estrutural de engenharia em algum estágio da vida útil (MELCHERS, 1999).

Espera-se que a aleatoriedade das combinações de solicitação (S) e resistência (R) determine regiões de segurança ($G(\mathbf{x}) > 0$) e de falha ($G(\mathbf{x}) < 0$) relacionado com as incertezas das variáveis aleatórias consideradas (MELCHERS, 1999). A região de segurança pode ser obtida inserindo um coeficiente de majoração de solicitação, minoração de resistência ou fator parcial, em ambos os parâmetros. A magnitude destes coeficientes
depende da incerteza que o material transmite diante da solicitação e da resistência na análise, considerando isto um estado limite da vida útil. Uma das maneiras mais simples de definir a equação de desempenho é dada na Equação (2.27).

$$G(\mathbf{x}) = R(\mathbf{x}_{r}) - S(\mathbf{x}_{s})$$
(2.27)

Em que $\mathbf{x}_{\mathbf{r}}$ é o vetor das variáveis de resistência do sistema, $\mathbf{x}_{\mathbf{s}}$ é o vetor das variáveis de solicitação e \mathbf{x} é o vetor de todas as variáveis do sistema, onde $\mathbf{x} = \mathbf{x}_{\mathbf{r}} \cup \mathbf{x}_{\mathbf{s}}$. A complexidade de $G(\mathbf{x})$ está diretamente vinculada com a não linearidade de $R(\mathbf{x}_{\mathbf{r}})$ e $S(\mathbf{x}_{\mathbf{s}})$ ou quando as mesmas são aproximadas de distribuições de probabilidade assimétricas, influenciando também na superfície que delimita a região de segurança da região de falha.

Nas funções de solicitação e resistência deve se realizar um estudo das incertezas de suas variáveis e da sensibilidade que causam na função desempenho, tomando melhor atenção as variáveis com maior sensibilidade (YANG, 2011). Assim, uma adequada técnica de predição das incertezas emitirá a uma melhor representação da curva de estado limite.

Conhecida a dispersão dos valores das variáveis, diversas técnicas foram desenvolvidas para encontrar a probabilidade de falha das estruturas, tais como os métodos de primeira ordem: *FOSM*, *FORM*; e os métodos de segunda ordem, tal como *SORM* e através de técnicas de simulações, como exemplo Método de Monte Carlo clássico, Hiper-cubo Latino (*HLS*) (MELCHERS, 1999; CHOI *et al.*, 2007; DITLEVSEN e MADSEN, 2005; TODINOV, 2005). Quando se deseja conhecer as características probabilísticas das funções $R(\mathbf{x}_r)$ e $S(\mathbf{x}_s)$, ou identificar regiões com incoerências físicas devido às aproximações probabilísticas o método mais indicado é a simulação de Monte Carlo (ROBERT e CASELLA, 2004; RUBINSTEIN e KROESE, 2007; MOTRA *et al.*, 2016; CHRISTOU *et al.*, 2016).

Por ser uma função contínua sabe se que tanto os componentes de *S*, como de *R*, possuem uma função densidade de probabilidade $f_S(s)$ e $f_R(r)$, respectivamente, que seguirá um comportamento conforme os seus momentos estatísticos. A sobreposição destas curvas definirá a função de densidade de probabilidade conjunta destas duas variáveis $f_{SR}(sr)$, e o estado limite, em que $G(\mathbf{x}) = 0$, delimitará a região de comportamento da falha da estrutura, ou seja, quando a resistência for inferior à solicitação se terá uma área de falha dessa função desempenho como mostrado na Figura 2-9.

Figura 2-9 – Distribuição da região de falha considerando a $f_R(r) e f_S(s)$. Fonte: MELCHERS, 1999 (adaptado).

Com a determinação da região de falha obtém a função densidade de probabilidade conjunta de falha, cuja área determinará a probabilidade de falha (p_f) do sistema. Quando é realizado um processo de simulação, a p_f pode ser encontrada pela razão da quantidade de pontos que se encontram na região de falha ($G(\mathbf{x}) < 0$) pelo tamanho populacional, N_{MMC} (Equação (2.28)).

$$p_f = \frac{n^{\circ}(G(\mathbf{x}) < 0)}{N_{MMC}}$$
(2.28)

Levando em conta a superfície da equação de desempenho ($G(\mathbf{x})$), é possível relacionar a p_f com o vetor composto pelos cossenos diretores de cada variável, denominando-o como índice de confiabilidade (β). O valor de β é relacionado com a p_f do sistema através da Equação (2.29).

$$\beta = -\Phi^{-1}(p_f) \tag{2.29}$$

Em que Φ é a função acumulativa de probabilidade da normal padrão. Geometricamente, o índice de confiabilidade pode ser expresso pelo número de desvio padrões que a média encontra-se distante do plano de falha na distribuição normal. Na Figura 2-10 é apresentado os limites de β relacionados ao seu custo relativo e ao nível de consequência de falha estabelecido pelo *Joint Committee on Structural Safety* (JCSS, 2000).

Figura 2-10 – Índice de confiabilidade relacionado a um estado limite último para uma referência de período de um ano.

2.5 MECÂNICA DA FRATURA

A mecânica da fratura é a teoria da falha da estrutura considerando um critério de energia com um critério de escoamento, quando se tem a propagação de uma superfície de falha (BAŽANT e PLANAS, 1997). A direção que a força é aplicada à face fraturada modifica o modo de propagação do bulbo de tensões, sendo possível decompô-la em três eixos principais, estando dois eixos definidos perpendicularmente ao plano de fratura e outro paralelo.

Nota-se os modos naturais de fratura disponíveis, como pode ser visto na Figura 2-11. O Modo I de fratura ocorre quando a direção do carregamento é aplicada perpendicularmente ao plano de fratura, como pode ser visto na Figura 2-11*a*. Já quando os esforços são aplicados paralelamente ao plano fraturado se define o Modo II, também chamado de cisalhamento na direção do plano de corte (Figura 2-11*b*). Por fim, se define o Modo III (Figura 2-11*c*) onde ocorre o cisalhamento fora do plano de fratura.

É raro encontrar separadamente estes modos de fratura, ocorrendo normalmente alguma junção entre eles (OLLER, 2011; SHAH *et al.*, 1995; BAŽANT, 2005; ZEHNDER, 2012; ANDERSON, 2005). Entretanto, em algumas geometrias se consegue definir a conduta de forma isolada. Considerando o comportamento do material como elástico foi desenvolvida a metodologia de análise da mecânica da fratura linear elástica (*LEFM*).

Figura 2-11 – Modos de fratura *a*) Modo I; *b*) Modo II; e *c*) Modo III. Fonte: OLLER, 2011 (adaptado).

2.5.1 Mecânica da Fratura Linear Elástica

Os materiais que seguem comportamento frágil, como exemplo o vidro, conseguem ser bem apresentados nas considerações da *LEFM*. A teoria representa os casos em que ocorre falha instantânea do material quando este atinja a tensão de ruptura, perdendo sua capacidade portante.

Realizando experimentos conseguiu analisar uma dependência inversa entre a tensão e o comprimento do entalhe no corpo de prova. Nota-se uma amplificação da intensidade da tensão dependendo da direção de aplicação de carga para cada material próximo a ponta da fratura, sendo essa característica definida como fator de intensidade de tensão (K_{Ic}). Conseguiu estabelecer uma relação do valor de K_{Ic} diretamente proporcional à tensão e ao comprimento do entalhe, sendo dependente de sua forma, com valor previsto pela Equação (2.30).

$$K = \lim_{\delta \to 0} \sigma_F \Big|_{\theta=0} \left(\sqrt{2\pi\delta} \right) h \left(\frac{a}{D} \right)$$
(2.30)

Em que σ_F é a tensão induzida para a mesma geometria sem trinca, que cause esforços nas direções do Modo I, II ou III, Θ é a rotação em relação à linha de propagação de fratura, δ é a distância medida até a ponta da fratura e h(a/D) é a função de fator geométrico.

O fator geométrico (h(a/D)) é encontrado com análises experimentais avaliando a variação de K_{Ic} em relação às taxas de entalhe ($\alpha = a/D$) para uma dada geometria. O *handbook* de Tada *et al.* (2000) traz a definição de funções geométricas para combinações de tipo de carregamento e forma geométrica. Para a viga sob flexão em três pontos com entalhe simples (*SEN(B)*) se define o fator geométrico pela Equação (2.31), quando a relação do vão pela altura (*S/D*) é 4.

$$h(\alpha) = \frac{1}{\sqrt{\pi}} \frac{1.99 - \alpha(1 - \alpha)(2.15 - 3.93\alpha + 2.7\alpha^2)}{(1 + 2\alpha)(1 - \alpha)^{\frac{3}{2}}}$$
(2.31)

Com intenção de simplificar o cálculo de K_I para que este seja relacionado apenas com a variação da altura do corpo de prova e uma função geométrica, realiza-se o rearranjo dos parâmetros da Equação (2.30) definindo uma nova função geométrica apresentada em (2.32).

$$g(\alpha) = \pi \alpha [c_n h(\alpha)]^2$$
(2.32)

Em que c_n é o fator a relação de aplicação de carga pela área transformando-a em tensão, para o caso de viga em flexão, o mesmo possui valor de *1.5S/D*. O valor de K_{Ic} é diferente para cada modo de abertura de fratura (Figura 2-11), pois se modifica o valor da tensão induzida.

Outra metodologia foi desenvolvida por Griffith (1921) que representa a propagação da fratura utilizando o conceito energético. Com o princípio da primeira lei da termodinâmica, sabe-se que quando o sistema não está em equilíbrio ocorre um decréscimo de energia. Sendo que, para o caso linear elástico o valor da taxa energia de propagação de fratura (G_f) pode ser relacionado com K_{Ic} pela Equação (2.33).

$$G_f = \frac{K_{I_c}^2}{E'}$$
(2.33)

Em que E' = E é o módulo de elasticidade no estado plano de tensões e $E' = E/(1-\nu^2)$ no estado plano de deformação. Os valores de G_f e K_{Ic} são propriedades da mecânica da fratura atribuídas ao material, sendo considerados críticos quando extraídos com aplicação de carga última. Mesmo com a atribuição ao material, nota-se uma aleatoriedade dos valores de G_f e K_{Ic} com relação a forma e ao tamanho do elemento estrutural, a pesquisa de Kumar e Barai (2009) realizou análise computacional das propriedades da fratura, concluindo que há variação quando se modifica o tamanho e a forma da estrutura. Conhecido os valores dos parâmetros críticos do material a serem utilizados consegue-se definir a tensão nominal de resistência à propagação de fratura (σ_N) com as Equações (2.34a) e (2.34b).

$$\sigma_N = c_n \frac{K}{\sqrt{Dg(\alpha)}}$$
(2.34a)

$$\sigma_N = c_n \sqrt{\frac{G_f E}{Dg(\alpha)}}$$
(2.34b)

A teoria aqui descrita representa bem a conduta dos materiais frágeis, sendo que para materiais *quasi*-frágeis é necessário definir outros parâmetros devido o comprimento significativo de não linearidade na ponta da trinca. Bažant e Planas (1997), Jenq e Shah (1985) realizam análises laboratoriais e desenvolve formulações matemáticas buscando retratar o comportamento desses materiais.

2.5.2 Mecânica da Fratura Não Linear Elástica para materiais quasi-frágeis

Bažant e Kazemi (1990) estudaram a influência da mudança da taxa de energia conforme é modificado o tamanho das estruturas. A variação da tensão que o material se submete com o aumento de sua altura influi diretamente nos parâmetros de fratura dos materiais *quasi*-frágeis, devido a não homogeneidade do material.

A mecânica da fratura dos materiais *quasi*-frágeis apresenta singularidade devido ao comprimento significativo da zona de processo de fratura, em inglês *fracture process zone* (*FPZ*). Bažant e Pang (2007) relata que a *FPZ* é proporcional à variação do tamanho da não homogeneidade do material, chegando a cerca de três vezes esse valor.

A *FPZ* representa a região onde as tensões se encontram amplificadas, devido ao entalhe, trecho de não linearidade física situado no contorno da trinca (BAŽANT, 2002). Nos casos em que as estruturas não possuem grandes dimensões, o comprimento da zona de processo é significante comparado ao comprimento do entalhe e ao ligamento disponível no elemento estrutural (BAŽANT e KAZEMI, 1990). Uma das metodologias utilizadas para aproximar da mecânica da fratura linear elástica é fazer uma aproximação do comprimento do entalhe para um comprimento equivalente (Equação (2.35)) apresentado na Figura 2-12.

$$a = a_0 + \Delta a \tag{2.35}$$

Figura 2-12 – Comprimento equivalente de fratura.

A tensão de propagação de fratura é inversamente proporcional à equação que carrega as características geométricas, a qual leva em conta a taxa de entalhe (BAŽANT e KAZEMI, 1990b). Considerando a aproximação do comprimento equivalente, a equação de tensão pode ser rescrita pela Equação (2.36).

$$\sigma_N = c_n \sqrt{\frac{G_f E}{Dg\left(\alpha_0 + \frac{\Delta a}{D}\right)}}$$
(2.36)

No caso de grandes estruturas, aproxima-se o valor de Δa à metade da *FPZ*, chamado de comprimento equivalente da zona de fratura (c_f), podendo reescrever a Equação (2.34) e obtendo um novo comprimento de trinca equivalente. Quando $g(\alpha)$ não apresenta sinuosidades, pode se utilizar da aproximação por expansão da série de Taylor para expandir o fator geométrico com a consideração da trinca equivalente, conforme Equação (2.37).

$$g(\alpha_0 + \frac{c_f}{D}) = g(\alpha_0) + g'(\alpha_0)\frac{c_f}{D} + \frac{1}{2!}g''(\alpha_0)\left(\frac{c_f}{D}\right)^2 + \dots$$
(2.37)

A potência de truncamento da expansão por série de Taylor é definida em relação à taxa de entalhe do material. Para pequenos entalhes se faz necessário até a quarta ordem de truncamento. Substituindo a Equação (2.37) com truncamento na segunda ordem na Equação (2.36) se define σ_N pela Equação (2.38).

$$\sigma_N = c_n \sqrt{\frac{G_f E}{Dg(\alpha_0) + c_f g'(\alpha_0)}}$$
(2.38)

A Equação (2.38) consegue representar os casos em que α_0 possui valor entre 0.10 e 0.50. Fato que ocorre devido o c_f apresentar dimensão muito maior que a_0 ou casos em que a_0 se aproxima de *D*. Alguns trabalhos estão sendo desenvolvidos para correção da equação de σ_N em regiões de não linearidades afetadas pela borda do elemento, como Kwon *et al*. (2008) e Duan *et al*. (2007). Os quais buscam correções para quando a distribuição de tensões na zona de processo atinge a borda da estrutura e quando se tem entalhes muito pequenos, onde a *FPZ* é maior que o entalhe.

Utilizando a teoria do comprimento equivalente da *NLEFM*, Bažant buscou vincular a teoria da mecânica da fratura com o modelo de efeito de escala, onde se estima que a resistência nominal, σ_N , de uma estrutura fraturada (ou trinca pré-existente) tenha uma dependência com *D* para estruturas com geometrias similares (mesma razão a_0/D) (BAŽANT, 2001). É importante observar que σ_N é a máxima tensão induzida em uma estrutura para a propagação instável da trinca pré-existente. A dependência de σ_N com *D* para estruturas de concreto é conhecida como Efeito de Escala de Bažant (*EEB*).

2.6 ESTUDOS ESTATÍSTICOS NA MECÂNICA DA FRATURA

Notando uma variação nos parâmetros da mecânica da fratura no banco de dados laboratoriais, Bažant e Becq-Giraudon (2002) verificam qual o comportamento da dispersão de G_f e c_f com a variação dos tamanhos e das formas dos elementos ensaiados. Obteve um coeficiente de variação de G_f de 17.80% e c_f foi encontrado como uma distribuição lognormal com desvio padrão de 14.35 mm. Os valores considerados no trabalho não levaram em consideração os diferentes modelos de predição dos parâmetros e nem a variação do traço do concreto.

No mesmo ano, Bažant *et al.*(2002) desenvolveu um estudo para analisar a modificação dos parâmetros de fratura com processos de propagações de erros estatísticos, considerando as aproximações de equações matemáticas. Realizou estudo de diferentes modelos de predição de fratura como Guinea *et al.* (1994a, b), o modelo coesivo e pelo modelo de Efeito de Escala de Bažant. O método de *EEB* apresentou dispersões similares ao de Guinea *et al.* (1994a, b) quando se desconsiderou a dispersão da regressão do *EEB*.

Bažant e Pang (2006) analisaram o comportamento das partículas ao processo da mecânica da fratura. Buscando otimizar os fatores de segurança de estruturas considerando o

mecanismo de falha dos materiais *quasi*-fragéis com o efeito de escala. Conclui-se que os fatores de segurança das estruturas não podem ser considerados independentes de seu tamanho devido às mudanças de comportamento das propriedades dos materiais.

Hariri-Ardebili e Saouma (2016) quantificaram a sensibilidade de barragens pelo modo I e modo II de fratura considerando o modelo coesivo de fratura, quantificando as incertezas pelo modelo computacional. Ainda analisam qual a influência da correlação entre os parâmetros na propagação da fratura para cada um dos modos analisados e para o modo misto. Hamdia *et al.* (2015) quantifica as incertezas e a sensibilidade dos parâmetros da mecânica da fratura de materiais poliméricos nano compósitos, concluindo que o módulo de elasticidade é a propriedade que mais afeta a tenacidade à fratura.

Beck e Gomes (2013) estudaram a aleatoriedade da propagação de fratura para otimizar o planejamento de inspeção das estruturas. Analisando a aleatoriedade do fraturamento e o período de manutenção dos componentes metálicos de edifícios. Poucos são os estudos da dependência estocástica dos parâmetros de fratura no concreto, por isso Zimmermann *et al.* (2014) realizou ensaios e modelagens para fazer a analise inversa na mecânica da fratura para concreto com diferentes *slumps* definindo a aleatoriedade dos parâmetros.

Puatatsananon e Saouma (2006) realizaram análise de confiabilidade na mecânica da fratura, considerando apenas o modelo linear elástico, ou seja, apenas K_I . No referido trabalho, analisa-se diferentes formas e a influência da mudança do coeficiente de variação de K_I na probabilidade de falha.

Com a percepção da variação estatística das propriedades de fratura, Muñoz (2015) realizou um estudo da confiabilidade em *SEN(B)* quando se modifica a altura das mesmas, considerando *NLEFM*. Entretanto, no trabalho não se considera a propagação de erros das formulações das metodologias de *EEB* e *MDP*, e nem considera a possível correlação entre as variáveis.

Estes são os principais estudos de quantificação de incerteza dos parâmetros da mecânica da fratura. Nota-se, em todos, que as principais características que influenciam na dispersão de G_f e c_f é a tensão de compressão do concreto, a forma do agregado e a razão água e cimento. No próximo capítulo se apresenta o cálculo das incertezas das

propriedades da mecânica da fratura pelos métodos de Bažant e pelo Método de Dois Parâmetros.

2.7 ALGORITMO PROPOSTO PARA O MÉTODO DE MONTE CARLO

A seguir é apresentado o algoritmo necessário para realizar as simulações de Monte Carlo não normais correlacionadas (Figura 2-13). Considerando os conceitos explicados nos tópicos anteriores.

Figura 2-13 – Algoritmo proposto do Método de Monte Carlo considerando distribuições não normais e correlação.

3 ESTIMAÇÃO DOS PARÂMETROS DE FRATURA PARA CONCRETO CONSIDERANDO INCERTEZA DOS RESULTADOS EXPERIMENTAIS

Neste capítulo será aplicada a metodologia para estimativa dos parâmetros da mecânica da fratura utilizando os três casos de análises de incertezas laboratoriais e dos procedimentos matemáticos.

3.1 PROGRAMA EXPERIMENTAL

Os ensaios foram realizados por Brand *et al.*, (2013) na *University of Illinois at Urbana Champaign (UIUC)* em vigas submetidas à flexão em três pontos com entalhe, em inglês *Single Edge Notched Beam Specimem (SEN(B))* como mostrado na Figura 3-1. Na figura, W é o peso próprio da estrutura, L é o comprimento da viga, S é o vão, D é a altura, t é a espessura, a_0 é o entalhe inicial do elemento e P é carga última aplicada. Os autores seguiram as normas recomendadas no *RILEM* (1990a, b) para os ensaios.

Figura 3-1 - Sistema de ensaio para SEN(B) definido por RILEM (1990a).

Os ensaios constituíram de 3 grupos de tamanhos diferentes: grupos D1, D2 e D3; com 3 amostras: a, b e c para cada grupo. Os valores da geometria das amostras para todos os grupos podem ser vistos na Tabela 3-1.

Os resultados dos ensaios são usados para estimativa dos parâmetros de G_f e c_f , com a metodologia do Efeito de Escala de Bažant (*EEB*), *RILEM* (1990a), descrito na seção 3.2, e pelo Modelo de Dois Parâmetros (*MDP*) desenvolvido por Jenq e Shah (1985), RILEM (1990b), descrito na seção 3.3.

Viga	W	L	S	D	t (mm)	a_{θ}
-	(N)	(mm)	(mm)	(mm)	. ,	(mm)
D1a	530.7	1105	1000	255	80.0	88.0
D1b	527.3	1105	1006	260	79.0	95.0
D1c	529.2	1104	1004	258	79.0	88.5
D2a	192.3	700.0	601	152	79.0	58.0
D2b	193.7	700.0	602	153	79.0	53.0
D2c	189.8	700.0	601	154	79.0	55.0
D3a	40.6	349.0	252	63.0	80.0	22.5
D3b	41.0	347.5	249	63.5	80.0	22.0
D3c	41.9	347.5	248	65.5	79.5	24.5

Tabela 3-1– Dados experimentais para concreto utilizando amostras SEN(B)nor RIJEM (1990a b)

Fonte: BRAND et al., 2013.

3.2 DETERMINAÇÃO DOS PARÂMETROS DE FRATURA PELO EFEITO DE ESCALA DE BAŽANT (*EEB*)

Bažant e Planas (1997) relatam a dependência da tensão de resistência pela altura do elemento estrutural plotando o gráfico em escala bi logarítmica para estruturas com entalhes. A coordenada *x* desse gráfico remete ao número de fragilidade do material, para a referida geometria. A abscissa *y* define o valor normalizado da tensão resistente.

Sobre prerrogativa da dependência do valor da tensão com a altura, um dos modos é reorganizar a Equação 2.36 para aproxima-la de uma equação linear para a regressão na forma:

$$Y = AD + C \tag{3.1}$$

em que seus parâmetros são listados nas Equações (3.2)a-c.

$$Y = \left(\frac{c_n}{\sigma_N}\right)^2 \tag{3.2a}$$

Note que a variável principal será a altura do elemento estrutural (X=D). Os parâmetros de inclinação, A, e intercessão C, da reta de regressão podem ser definidos como:

$$A = \frac{g(\alpha_0)}{G_f E}$$
(3.2b)

$$C = \frac{c_f}{G_f E} \frac{g'(\alpha_0)}{g(\alpha_0)}$$
(3.2c)

Aqui se apresenta a formulação considerando a σ_N na estrutura, podendo realizar a análise através da *P*, cuja relação da mecânica do contínuo é dada na Equação (3.3).

$$\sigma_N = c_n \frac{P}{tD} \tag{3.3}$$

Nos ensaios experimentais em que se realiza o controle de P_j é possível definir os parâmetros da mecânica da fratura, desde que se conheça a função geométrica ($h(\alpha)$) do corpo ensaiado e o módulo de elasticidade do material.

Um dos modelos mais utilizados para predição das propriedades da mecânica da fratura é estabelecido pela *RILEM* 1990a. A qual institui o ensaio de viga sob flexão em três pontos com único entalhe, em inglês *Single Edge Notched Beam Specimem (SEN(B))*, com esquema apresentado na Figura 3-1.

O carregamento a considerar nas predições das variáveis deve levar em conta o peso próprio da estrutura e o carregamento último registrado, corrigindo-o com a expressão (3.4).

$$P_j = P_{ult} + 0.5W\frac{L}{S}$$
(3.4)

Analisando os dados experimentais nota-se que há dispersão nos valores da Equação (3.2a) mesmo quando se mantém constante o valor da altura. Aconselha-se um mínimo de três corpos de provas para três diferentes alturas para conseguir estimar corretamente o valor da inclinação (A) e da interseção da reta (C).

A determinação dos coeficientes da reta de regressão pode ser realizada pelo Método dos Mínimos Quadrados (*MMQ*), onde os parâmetros são estimados pelas Equações (3.5a) e (3.5b).

$$A = \frac{\sum_{i=1}^{n} (D_{i} - \overline{D})(Y_{i} - \overline{Y})}{\sum_{i=1}^{n} (D_{i} - \overline{D})^{2}}$$

$$C = \frac{\sum_{i=1}^{n} Y_{i} - A \sum_{i=1}^{n} D_{i}}{n}$$
(3.5b)

Normalmente o coeficiente de regressão (R^2) obtido demonstra acurácia dos resultados e da reta de regressão, com valores maiores que 0.90.

Encontrados os valores da Equação (3.5a) e (3.5b), se consegue estimar os valores de G_f e c_f pelas Equações (3.2b) e (3.2c). Os valores de G_f e c_f são independentes da altura, sendo uma característica do material. No entanto, quando se realiza experimentos para pequenas dimensões os valores apresentam divergência entre os demais devido ao efeito de borda.

Na Figura 3-2 é apresentada a reta de regressão para os dados experimentais. A regressão realizada teve um coeficiente de determinação (R^2) de 0.92, que significa que a reta consegue representar bem a tendência dos dados.

Figura 3-2 - Regressão dos mínimos quadrados para dados ensaiados EEB.

A *RILEM* 1990a determina o cálculo dos valores de G_f e c_f considerando os valores de A e C definidos pela operação de *MMQ*, modo de cálculo do Caso I. Em livros de estatísticas é relatado que os valores de A e C possuem um intervalo de confiança relacionado com os erros de regressão, para isso o Caso II considerará o desvio desses parâmetros.

3.2.1 Parâmetros de fratura pelo *EEB* sem as variações dos parâmetros de regressão *A* e *C* (Caso I)

Os parâmetros da mecânica da fratura necessários para o método *EEB* foram obtidos nos ensaios descritos anteriormente e apresentados na Tabela 3-2.

Variável	- X	Ŝ
$A (\mathrm{m}^3/\mathrm{N}^2)$	2.00E-11	0
$C (\mathrm{m}^4/\mathrm{N}^2)$	3.17E-12	0
$g(\alpha)$	48.18	0
$g'(\alpha)$	256.31	0
E (GPa)	34.82	2.50

Tabela 3-2- Momentos estatísticos dos parâmetros geométricos e de regressão do *EEB* - Caso I.

Os momentos estatísticos de G_f e c_f foram calculados utilizando a Tabela 3-2 e a formulação de Bažant, com resultados apresentados na Tabela 3-3. Note que a variabilidade (desvio padrão s), de G_f e c_f , foi determinada somente baseada na variação da geometria e variação de E, como mostrado na Tabela 3-3. Possuindo poucos dados amostrais a definição da distribuição pode ser adotada do conhecimento físico das propriedades dos materiais. Como G_f e c_f não podem apresentar valores negativos será atribuído o comportamento de uma distribuição lognormal.

Tabela 3-3– Momentos estatísticos dos parâmetros de fratura para EEB – Caso I.

	L	LD Cuso	1.	
Variável	x	- S	V_x	Distribuição
$G_f(N/m)$	70.29	11.95	0.17	lognormal
$c_f(\text{mm})$	37.10	0.371	0.01	lognormal

A variação estatística das propriedades da mecânica da fratura é avaliada por Zimmermann et al. (2014) que relata V_{Gf} desde 8% até 23% dependendo do tipo de concreto. Nesses estudos também são apresentadas às variações de c_f , entretanto esse parâmetro depende muito do tipo de agregado utilizado no concreto, apresentando V_{cf} próximo a 50%.

Os valores das σ_N à propagação da fratura seguem comportamento decrescente com o aumento da altura e da taxa de entalhe (α), como mostra a Figura 3-3. O valor de σ_N é avaliado na média das variáveis, $\sigma_N(\mu_{Gf}, \mu_{cf}, \mu_E)$.

Nota-se que o valor de σ_N se modifica de 4.50 MPa a 2.20 MPa de acordo com a variação de α , para vigas com D = 0.063 metros. Sendo que o valor da σ_N sofre menor depreciação com o aumento de D para peças com maiores α . A curva clássica de *EEB* é obtida pela normalização de σ_N por Bf_t , sendo este apresentado na Equação (3.6).

Figura 3-3 – Tensão nominal, $\sigma_N(\mu_{Gf}, \mu_{cf}, \mu_E)$, avaliada nas médias dos parâmetros para *EEB* – caso I, para diferentes alturas e taxas de entalhe (α).

$$Bf_t = \sqrt{\frac{G_f E}{c_f g'(\alpha)}}$$
(3.6)

E D_0 apresentado na Equação (3.7) compondo a abscissa depois de normalizado por D como é apresentado na Figura 3-4.

Figura 3-4 – Curva de *EEB* normalizada para caso I com α de 0.10, 0.25 e 0.40.

3.2.2 Parâmetros de fratura pelo *EEB* com as variações dos parâmetros de regressão *A* e *C* (Caso II)

Como explicado na seção anterior, o método de *EEB* utiliza de regressão de *MMQ* para aproximar o inverso da equação da σ_N a uma equação linear. Assim se pode obter o valor

dos parâmetros de energia de fratura (G_f) e do tamanho equivalente da zona de processo (c_f).

A metodologia de regressão de mínimos quadrados ajusta os dados para um comportamento linear, causando um acúmulo de erros dos parâmetros *A* e *C*. Este erro, chamado de resíduo, impõe uma aleatoriedade dos valores regredidos, a qual possuirá uma variância constante como apresentado na Figura 3-5 (WALPOLE *et al.*, 2011).

A variação dos erros implica em uma variação nos parâmetros da reta de regressão, a inclinação (A) e a interseção (C). A variação dos resíduos é estimada pela seguinte equação:

$$\sigma_e^2 = \frac{\sum_{i=1}^n (Y_j - (Ax + C))}{n - 2}$$
(3.8)

E os parâmetros de regressão terão variação pela Equação (3.9)a,b (NAGHETTINI e PINTO, 2007).

$$\sigma_{C}^{2} = \sigma_{e}^{2} \left(\frac{1}{n} + \frac{\bar{x}^{2}}{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}} \right)$$
(3.9a)
$$\sigma_{A}^{2} = \frac{\sigma_{e}^{2}}{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}}$$
(3.9b)

Em que σ_e^2 é a variância do resíduo, σ_A^2 é a variância da inclinação e σ_C^2 é a variância da interseção da reta de regressão. Com a consideração do possível intervalo dos parâmetros

da regressão linear, as características analisadas estão submetidas a uma maior variação, cuja sensibilidade se relaciona indiretamente com o R^2 obtido. Quanto mais difusos os pontos estiverem da reta de regressão mais dispersão os valores de G_f e c_f poderão ter.

Com os valores extraídos dos ensaios experimentais se calcula os momentos estatísticos das variáveis, listados na Tabela 3-4. A distribuição foi adotada como normal devido o pequeno conjunto de dados amostrais.

regressao do <i>EEB</i> .								
Variável	- x	- S	V_x	Distribuição				
$A (m^{3}/N^{2})$	2.00E-11	2.99E-12	0.15	normal				
$C ({ m m}^4/{ m N}^2)$	3.17E-12	5.06E-13	0.16	normal				
$g(\alpha)$	48.18	3.60	0.08	normal				
g'(α)	256.31	22.23	0.09	normal				
E (GPa)	34.82	2.44	0.07	lognormal				

Tabela 3-4– Momentos estatísticos dos parâmetros geométricos e de regressão do *EEB*.

Com as equações dos parâmetros de fratura pelo *EEB* (item 3.2.1), e os parâmetros probabilísticos da Tabela 3-4, realizou-se a *MMC*, como descrito no fluxograma da Figura 1-1 com um milhão de amostras. As funções de densidade de probabilidade de G_f e c_f são apresentadas nas Figura 3-6 e Figura 3-7, respectivamente.

Figura 3-6 – Função de densidade de probabilidade, f(x), de G_f considerando incerteza de regressão.

A partir do histograma gerado pela simulação se realiza aproximação dos dados com algumas distribuições, analisando qual o melhor ajuste por verossimilhança ocorre nas

densidades de probabilidade das variáveis G_f e c_f , em ambos os casos as distribuições *t*-Student e lognormal se ajustaram aos dados, entretanto a distribuição lognormal apresentou melhor acurácia em ambos os casos como mostra a Figura 3-6 e Figura 3-7. O processo de verossimilhança está implementado na ferramenta *dfittool* do *MatLab*[®] considerando uma significância de 95%.

Figura 3-7 – Função de densidade de probabilidade, f(x), de c_f considerando incerteza de regressão.

Com as novas predições para G_f e c_f listados na Tabela 3-5, as médias, μ , dos valores estimados pela aproximação de *MMC* apresentaram variação em relação ao Caso I, principalmente c_f cujo valor foi reduzido de 37 mm para 31 mm. O valor médio da energia de fratura (G_f) sofreu uma variação de 70.29 N/m para 70.96 N/m. Com as novas médias os valores de σ_N estão apresentados na Figura 3-8.

Tabela 3-5 – Momentos estatísticos dos parâmetros de fratura para <i>EEB</i> – Caso II.						
Variável	μ	σ	V_x	Distribuição		
$G_f(N/m)$	70.96	12.77	0.18	lognormal		
$c_f(\text{mm})$	31.00	6.80	0.26	lognormal		

Com a menor média de c_f e o ligeiro aumento de G_f , a σ_N teve um pequeno aumento, como se pode ver comparando as Figura 3-8 e Figura 3-3. Como esperado, para maiores valores de *D* menor será a tensão.

3.3 DETERMINAÇÃO DOS PARÂMETROS DE FRATURA PELO MÉTODO DE DOIS PARÂMETROS DE JENQ E SHAH (CASO III)

Jenq e Shah (1985) desenvolveram uma metodologia para descobrir o tamanho da zona de processo de fratura (c_f) com mais parâmetros. O método incluiu em sua análise no laboratório o controle de deslocamento de abertura na boca da trinca, em inglês *crack mouth opening displacement (CMOD)*, e análise do comportamento no processo de ciclos de carga. O ensaio é normalizado pela *RILEM* 1990b, com esquema laboratorial similar ao *EEB* (Figura 3-9).

Figura 3-8 – Tensão nominal, $\sigma_N(\mu_{Gf}, \mu_{cf}, \mu_E)$, avaliada nas médias dos parâmetros para *EEB* – caso II, para diferentes alturas e taxas de entalhe (α).

O método de Shah precisa de um sistema de ensaio de ciclo fechado para determinar as *compliance* de carregamento (C_i) e descarregamento (C_u). Para diferenciar da metodologia de *EEB* normalmente é chamado de método da *compliance* ou método de carga de pico (TANG, 1995). O valor do *CMOD* possui contribuição de duas parcelas (Equação (3.10)), sendo uma a parcela elástica e outra a parcela plástica. No processo de descarregamento o deslocamento permanece com uma parcela residual de deformação plástica (Figura 3-10).

Figura 3-9 - Deslocamentos na geometria da trinca (à esquerda) e modelo de ensaio (à direita).

$$CMOD = CMOD^{e} + CMOD^{p}$$
(3.10)

Nos experimentos realizados se sabe que quando se aplica apenas 50% do valor resistente do material, o gráfico de *P vs CMOD* tende a voltar ao seu estado inicial. Quando ultrapassa essa porcentagem de carga, o concreto já inicia um comportamento não linear e no processo de descarregamento o material mantem uma parcela de abertura de fissura residual.

Figura 3-10 - Comportamento carga versus abertura de fratura.

A inclinação da reta de carregamento e de descarregamento é diferente (Figura 3-10), mas o módulo de elasticidade (*E*) do material deve ser o mesmo nas duas fases. O que difere da situação de carregamento da de pós-carregamento é o comprimento equivalente de fratura (a_c) que deve ser utilizado. Consegue-se encontrar o valor de a_c pela solução da igualdade da Equação (3.11) e (3.12).

$$E_{i} = \frac{6Sa_{0}g_{2}(\alpha_{0})}{C_{i}D^{2}t}$$
(3.11)

$$E_u = \frac{6Sa_c g_2(\alpha_c)}{C_u D^2 t}$$
(3.12)

Em que *a* é o entalhe (sub índice *0* para início e *c* para pós-carregamento último), *S* é o vão, $g_2(\alpha)$ é a função de forma do elemento, *D* é a altura, *t* espessura, C_u e C_i são as *compliances* de carregamento e descarregamento, respectivamente. A função de forma da *SEN(B)* considerada no cálculo das Equações (3.11) e (3.12) é dada na Equação (3.13).

$$g_2(\alpha) = 0.76 - 2.28\alpha + 3.87\alpha^2 - 2.04\alpha^3 + \frac{0.66}{(1 - \alpha)^2}$$
(3.13)

A Equação (3.13) é calculada com a taxa de entalhe considerando o incremento de altura do *straig gauge* (H_0), ou seja, $\alpha = (a + H_0)/(D + H_0)$. Com o valor de a_c já se considera a *FPZ* do material. Calculando assim o K com o valor do comprimento equivalente de fratura através da equação da mecânica da fratura não linear elástica (Equação (3.14)) e os valores medidos em laboratório.

$$K_{I} = \frac{3S}{2D} \frac{(P_{c} + 0.5W \frac{S}{L})}{Dt} \sqrt{\pi a_{c}} g(\frac{a_{c}}{D})$$
(3.14)

Em que P_c é a carga aplicada na estrutura, W é o peso da estrutura, S é o vão, L é o comprimento, t é a espessura e $g_1(a_c/D)$ é o fator geométrico (Equação 2.31). Pela Equação (3.15) pode se relacionar o K_{Ic} com a energia de fratura, G_f .

$$G_f = \frac{K_{lc}^2}{E} \tag{3.15}$$

Encontrando assim o valor crítico de K_{Ic} para cada corpo de prova ensaiado, considerado uma propriedade do material independente do tamanho. No entanto, esse valor apresenta aleatoriedade na pesquisa de Zhu e Joyce (2002) e Bažant (2002).

Medindo o valor do *CMOD* é possível o controle do módulo de elasticidade e, com isso, encontra-se o valor do deslocamento na ponta da trinca, em inglês *crack tip opening displacement* (*CTOD*). Pela metodologia de carregamento último se considera que a instabilidade de crescimento de fratura ocorre quando $K_I = K_{Ic}$ e que *CTOD* = *CTOD*_c. Onde o *CTOD*_c é obtido pela Equação (3.16).

$$CTOD_{c} = \frac{6S}{D} \frac{(P_{c} + 0.5W \frac{S}{L})}{Dt} a_{c}g_{2} (\frac{a_{c}}{D})...$$

$$...\sqrt{(1 - \beta_{0})^{2} + (1.081 - 1.149 \frac{a_{c}}{D})(\beta_{0} - \beta_{0}^{2})}$$
(3.16)

Onde β_0 é a relação de altura de entalhe inicial e fictício ($\beta_0 = a_0/a_c$). O valor de *CTOD* se relaciona diretamente com c_f , dependendo de um fator de forma ($g_2(a_c/D)$) e do tipo de carregamento (P_c). A geometria do corpo de prova influi na relação entre o *CTOD_c* e o c_f , não dependendo apenas do material. Jenq e Shah (1985) demonstram as equações de relação dos dois parâmetros, relacionando os casos em que $a_0 >> c_f$ para um corpo infinito e outras geometrias.

Nos ensaios de SEN(B) e nos de placas infinitas foram encontrados valores bem próximos de c_{f} como constatado por Jenq e Shah (1985). Com mais experimentos de vigas foi obtida a Equação 3.17 para avaliar c_{f} nessa geometria.

$$c_{f} = 0.061CTOD_{c}^{2} \frac{E}{G_{f}} - 0.54a_{0} + \dots$$

$$\dots + \sqrt{0.292a_{0}^{2} + 0.057CTOD_{c}^{2} \frac{E}{G_{f}}a_{0} + 0.0038 \left(CTOD_{c}^{2} \frac{E}{G_{f}}\right)^{2}}$$
(3.17)

Considerando para os cálculos a Equação 3.17 se terá um maior valor de c_f , pois a mesma considera uma modelagem 2D. Kwon *et al.* (2008) relata que a *FPZ* não é simétrica ao longo do eixo da fratura e a proximidade com a borda causa uma variação em G_f . Definido os dois principais parâmetros de fratura já se pode estimar o valor da σ_N que o material suportará para instabilidade de fratura.

O ensaio por este método foi comparado a outras formas de predição dos parâmetros de fratura tendo uma boa aderência, como retratado nos trabalhos de Hanson e Ingraffea (2003), Tang *et al.* (1995) e Ince (2011). Uma vantagem do método de *compliance* é que se consegue calcular com eficácia os parâmetros de fratura utilizando, apenas, um tamanho de amostra, pois não necessita de regressão.

Normalmente, para realização desse experimento são utilizados três corpos de prova. No entanto, ao se usar mais quantidades se obtêm melhor acurácia. Os dados fornecidos pela *UIUC* possuem valores de nove corpos de prova, com forma *SEN(B)* (Tabela 3-1).

Dispondo de três amostras para cada dimensão se calculou a dispersão dos valores com as aleatoriedades do laboratório, como mostra a Tabela 3-6. Considerando os momentos estatísticos de cada variável, realizou-se a simulação de *MMC* para encontrar a dispersão dos valores dos parâmetros de fratura considerando cada dimensão.

Os grupos de vigas foram divididos conforme sua altura, sendo *D1* com altura de 250 mm, *D2* com altura de 150 mm e *D3* com altura de 63 mm. Gerando um milhão de valores aleatórios para cada variável, em cada um desses grupos, é possível predizer os parâmetros de fratura ($G_f e c_f$) pela metodologia de *MDP*. Os momentos estáticos dessas aproximações são dados na Tabela 3-7. O K_{Ic} estimado para cada uma dessas alturas é mostrado na Figura 3-11.

Variável	Viga	Viga x		V_x
	D1	529.09	1.72	3.30E-3
W (N)	D2	191.95	1.98	1.03E-2
	D3	41.20	0.71	1.70E-2
	D1	6634.53	0.36	5.40E-2
$\mathbf{P}_{\mathbf{c}}(\mathbf{N})$	D2	4677.40	0.37	7.90E-2
	D3	2498.76	0.11	4.60E-2
	D1	111.83	2.35	2.10E-2
$a_c (\mathrm{mm})$	D2	72.33	3.77	5.20E-2
	D3	28.52	1.08	3.80E-2
	D1	37.18	355.19	9.60E-3
E (GPa)	D2	33.39	33.39	4.50E-2
	D3	33.59	33.59	10.6E-2
β_{θ}	D1, D2 e D3	0.79	2.8E-2	3.76E-2
	D1	1.00	3.06	3.05E-3
S (m)	D2	0.60	0.58	9.60E-4
	D3	0.25	2.08	8.30E-3
	D1	0.26	2.52	9.70E-3
D (m)	D2	15.3E-2	1E-3	6.50E-3
	D3	6.40E-2	1.3E-3	8.30E-3
	D1	7.90E-2	0.58	7.28E-3
t (m)	D2	7.90E-2	0.00	0.00
	D3	7.98E-2	0.29	3.60E-3

Tabela 3-6 – Parâmetros estatísticos dos ensaios *SEN(B)*.

Tabela 3-7 – Parâmetros estatísticos de *CTOD*, $c_f \in G_f$ para os três grupos de vigas.

Variável	Viga	μ	σ	V_x	Distribuição
	D1	1.45	0.09	0.07	
K_{Ic}	D2	1.49	0.16	0.11	lognormal
$(MPa(m)^{n^2})$	D3	1.10	0.098	0.09	1081011111
	D1	33.8	5 96	0.18	
c_f (mm)	D2	23	4.52	0.20	lognormal
	D3	8.76	1.62	0.19	-
	D1	56.93	7.42	0.13	
$G_f(N/m)$	D2	67.26	15.28	0.23	lognormal
	D3	3.72	7.68	0.21	
	D1	21.0	2.37	0.11	
CTOD _c (mm)	D2	19.0	3.44	0.17	lognormal
	D3	9.07	1.60	0.18	

O valor de K_{Ic} é atribuído como parâmetro do material, no entanto, nota-se que o mesmo traço de concreto teve uma dispersão do valor com a variação de *D*. O valor de K_{Ic} para a menor altura teve uma defasagem de quase 0.50 Pa(m^{1/2}), isto pode ser explicado pela influência do efeito de borda do corpo de prova (Figura 3-11).

Figura 3-11 – Função de densidade de probabilidade, f(x), de K_{lc} considerado o efeito de escala para *MDP*, Caso III.

Dado o valor de K_{Ic} se pode calcular a G_f , considerando a aleatoriedade de E. O comportamento da G_f seguiu os mesmos preceitos do K_{Ic} , como esperado (Equação (2.31)). O G_f é considerado um parâmetro do material e essa variação do valor só confirma a limitação da *LEFM* para pequenas dimensões (Figura 3-12).

Figura 3-12 – Função de densidade de probabilidade, f(x), de G_f considerado o efeito de escala dos ensaios de SEN(B) para MDP, Caso III.

O outro parâmetro necessário para definir o comportamento da mecânica da fratura é o c_{f} , que está diretamente relacionado com o $CTOD_c$. Tang *et al.* (1995) relata nos experimentos realizados que os valores de K_{Ic} possuem uma menor dispersão, já os valores de $CTOD_c$ apresentaram uma dispersão considerável.

O valor de $CTOD_c$ é calculado com relação ao CMOD, com produto de uma função geométrica (Equação (3.16)). Considerando a propagação de erro dos parâmetros, os

valores médios de f(x) de $CTOD_c$ apresentaram uma maior dispersão, como pode ser visto na Figura 3-13.

Figura 3-13 – Função de densidade de probabilidade, f(x), de $CTOD_c$ considerado o efeito de escala dos ensaios para MDP, Caso III.

Com esses valores de predição se determina o c_f , o cálculo desse valor foi realizado para a Equação (3.18) que prevê o comportamento da SEN(B). Na Figura 3-14 se analisa a variação que a média de c_f sofre para diferentes alturas. Como pode ser analisado, o parâmetro c_f para a viga de altura de 250 mm possui média próxima de 37 mm alterando para 10 mm quando a altura é de 63 mm.

Figura 3-14 – Função de densidade de probabilidade, f(x), de c_f considerado o efeito de escala dos ensaios para *MDP*, Caso III.

A variação de c_f considerando as diferenças de D das vigas é causada pela propagação de erros das suas dependentes. A pesquisa de Ayatollahi e Akbardoost (2012) mostra que c_f cresce exponencialmente com o aumento de D da SEN(B). Desenvolveu-se assim um novo modelo matemático para encontrar o valor de c_f levando em conta a variação de seu comprimento com a mudança da altura. Assim se confirma a variação de uma propriedade atribuída ao material com o acréscimo da altura.

Na análise dos resultados dos parâmetros de incertezas calculados até aqui se nota que o caso da viga *D3* apresenta uma alta dispersão em relação aos demais. Isso pode ser compreendido devido ao fato da interferência da região de não linearidade. Por este motivo, optou-se nesta pesquisa por desprezar a densidade que essa dimensão causa nos parâmetros.

Calculando a frequência relativa dos valores encontrados para as dimensões de 250 mm e 150 mm juntos, consegue-se a dispersão das variáveis para essas alturas, essas densidades se expressam na Figura 3-15 com a quantificação dos parâmetros estatísticos na Tabela 3-8.

Figura 3-15 – Função de densidade de probabilidade, f(x), de a) G_j ; b) $CTOD_c$ e c) c_f para as alturas de vigas de 250 mm e 150 mm.

Figura 3-15 (Continuação)

Tabela 3-8 - Momentos estatísticos dos parâmetros de fratura para MDP - Caso III.

Variável	μ	σ	V_x	λ	Distribuição
$G_f(N/m)$	63.96	12.93	0.20	5.35	t-Student
$c_f(\text{mm})$	28.00	7.80	0.27	-	lognormal

Testou-se a verosimilhança das variáveis com algumas distribuições, como *GEV*, *t-Student* e lognormal obtendo melhor aderência as distribuições da Tabela 3-8. Com a predição dos cálculos de incertezas das variáveis, nota-se que o coeficiente de variação de cada um deles é alterado consideravelmente com o modo de predição da incerteza, assim como suas médias. Para tanto, analisa-se no próximo capítulo a confiabilidade e as densidades da σ_N .

3.4 RESUMO DOS MOMENTOS ESTATÍSTICOS DOS PARÂMETROS $G_f \to c_f$

As metodologias relatadas nos casos I, II e III permitiram determinar os momentos estatísticos das variáveis G_f e c_f . A Tabela 3-9 resume os resultados para os casos analisados.

	Caso I (EEB)		Caso I	Caso II (EEB)		I (MDP)
	G_f c_f		G_{f}	c_{f}	G_{f}	c_{f}
	(N/m)	(mm)	(N/m)	(mm)	(N/m)	(mm)
μ	70.29	37.10	70.96	31.00	63.96	28.00
σ	11.95	0.371	12.77	6.80	12.93	7.80
V_x	0.17	0.01	0.18	0.26	0.20	0.27
λ	-	-	-	-	5.35	-
Dist	lognormal	lognormal	lognormal	lognormal	t-Student	lognormal

Tabela 3-9 – Momentos estatísticos dos parâmetros de fratura considerado os casos I, II e III.

4 QUANTIFICAÇÃO DA INCERTEZA DA PREDIÇÃO DA RESISTÊNCIA À FRATURA E CONFIABILIDADE ESTRUTURAL

Neste capítulo são apresentadas as predições dos valores de σ_N considerando as incertezas das propriedades dos materiais calculadas no Capítulo 3. Estabelece-se uma função desempenho para encontrar superfícies de confiabilidade para vigas *SEN(B)*.

4.1 FUNÇÃO DE DESEMPENHO E VARIÁVEIS CONSIDERADAS

Conhecidos os momentos estatísticos das principais variáveis da mecânica da fratura, G_f e c_f , utiliza-se do Método de Monte Carlo para analisar a variabilidade da tensão nominal, σ_N , e da função desempenho, $G(\mathbf{x})$, descrita pela Equação (4.1).

$$G(\mathbf{x}) = \sigma_N(\mathbf{x}) - \sigma_{\mu \alpha} \tag{4.1}$$

Em que $\sigma_{\mu x}$ é a tensão solicitante característica e a matriz de variáveis, **x**, é dada por:

$$\mathbf{x} = [G_f, c_f, E, D, \alpha] \tag{4.2}$$

A tensão nominal, $\sigma_N(\mathbf{x})$, é calculada com os parâmetros dos casos I, II e III descritos no capítulo anterior e os resultados resumidos na Tabela 3-9. Simulações foram realizadas para combinação de dezesseis geometrias tipo SEN(B), com a variação dos valores de D e α apresentados na Tabela 4-1.

O valor médio de $\sigma_{\mu x}$ é considerado como a tensão nominal, σ_N , calculada na média das variáveis da Tabela 3-9, onde as propriedades se relacionam com a carga última de ruptura (P_i) , de acordo com:

$$\mu_{\sigma\mu\kappa} = \frac{\mu_{\sigma N}}{\gamma} = \frac{\sigma_N(\overline{G_f}, \overline{C_f}, \overline{E}, \overline{\alpha}, D)}{\gamma}$$
(4.3)

Em que γ é um fator para minorar a média da tensão solicitante, na Tabela 4-1 é apresentado os seus valores, também são apresentados os momentos estatísticos da tensão solicitante característica, $\sigma_{\mu x}$, a se considerar em $G(\mathbf{x})$.

Variável	μ	σ	V_x	Distribuição
D (m)	[0.063;0.10;0.50;1.00]	-	-	determinístico
α	[0.05; 0.10; 0.25; 0.40]	0.10μα	0.10	lognormal
E (GPa)	34.90	2.50	0.07	lognormal
$\sigma_{\mu x}$	$\mu_{\sigma\mu x}$ (Equação 4.3)	$0.10\mu_{\sigma\mu x}$	0.10	lognormal
γ	[1.10; 1.50; 2.00]	-	-	determinístico

Com as combinações das geometrias da Tabela 4-1, considera-se diversos valores para a correlação entre G_f e c_f , ρ_{cfGf} , no intervalo entre $-1 \le \rho_{cfGf} \le 1$ para a quantificação da incerteza e confiabilidade. Assim, o *MMC* foi utilizado para a amostragem e cálculo das funções densidade de probabilidade, f(x), de σ_N de acordo com sua definição na Equação 2.37, aqui reescrita:

$$\sigma_N = c_n \sqrt{\frac{G_f E}{Dg(\alpha_0) + c_f g'(\alpha_0)}}$$
(4.4)

4.2 PREDIÇÃO PELO EFEITO DE ESCALA DE BAŽANT (EEB): CASOS I E II

Nesta seção são abordadas as variações dos valores de σ_N e dos índices de confiabilidade com os parâmetros estimados em 3.2.1 e 3.2.2. Com estudo da incerteza nas propriedades dos materiais se estima qual será a variação nas σ_N e quão confiável é o elemento estrutural à propagação instável da trinca existente.

Para as simulações do *MMC*, como descrito no algoritmo da seção 2.4 foram gerados N_{MMC} = 1.0E+6 amostras de acordo com a seção 4.1 e as incertezas apresentadas na Tabela 3-9.

4.2.1 Caso I: sem as variações dos parâmetros de regressão A e C

Espaço amostral para MMC

A Figura 4-1*a*, *b* apresenta os valores do espaço amostral de *a*, $G_f \in c_f$ gerado pelo algoritmo do *MMC* para $\rho_{Gfcf} = 0.50 \in \rho_{Gfcf} = 0.90$, respectivamente. A consideração de correlação (ρ) entre as variáveis aleatórias causa uma mudança no comportamento das variáveis, como se nota na Figura 4-1 *a*) e *b*). Como esperado quando $\rho_{Gfcf} \rightarrow 1.00$, as variáveis geradas tendem a se alinhar indicando uma forte correlação.

Predição da função densidade de probabilidade da tensão resistência nominal, σ_N

A Figura 4-2*a*, *b* apresenta as funções densidade de probabilidade de σ_N para as alturas D = 0.15 m e D = 1.00 m, respectivamente. A figura mostra as diferentes f(x) com a variação de $\alpha e \rho$. As funções f(x) foram determinadas com o histograma advindo da simulação, e posterior, foi realizada a aderência da melhor distribuição possível.

Os parâmetros estatísticos de σ_N estão apresentados nas Tabela 4-2 à Tabela 4-4 para combinações de ρ_{Gfcf} , α e *D* analisadas.

1 4001	$1 \text{ ubblu } 1 \text{ 2}$ $1 tobull of parameters estatisticos de V_N (in u) para D$, puiu 0 11	D, euso 1.
	ρ_{Gfcf} = - 0.95			$\rho_{Gfcf} = 0.00$			$\rho_{Gfcf} = 0.50$		
	α_2	α_3	α_4	α_2	α_3	α_4	α_2	α_3	α_4
μ	4.40	3.45	2.28	4.42	3.47	2.29	4.41	3.46	2.28
σ	0.54	0.47	0.40	0.41	0.41	0.36	0.44	0.40	0.36
V_x	0.12	0.14	0.18	0.09	0.11	0.16	0.10	0.12	0.16
λ	50.37	46.64	46.86	51.58	58.57	64.64	50.52	48.44	57.17
Dist	t-Student	t-Student	t-Student	t-Student	t-Student	t-Student	t-Student	t-Student	t-Student

Tabela 4-2 – Resumo dos parâmetros estatísticos de σ_N (*MPa*) para D = 0.063 m, para o *EEB*, caso I.

Tabela 4-3 – Resumo dos parâmetros estatísticos de $\sigma_N(MPa)$ para D = 0.50 m, para o *EEB*, caso I.

	ρ_{Gfcf} = - 0.95			$\rho_{Gfcf} = 0.00$			$\rho_{Gfcf} = 0.50$		
	α_2	α_3	α_4	α_2	α_3	α_4	α_2	α_3	α_4
μ	3.03	2.10	1.40	3.04	2.10	1.41	3.03	2.10	1.41
σ	0.38	0.29	0.23	0.29	0.23	0.21	0.31	0.25	0.21
V_x	0.13	0.14	0.16	0.09	0.11	0.14	0.10	0.12	0.15
λ	53.14	42.15	42.75	52.48	49.33	57.20	45.67	45.87	50.92
Dist	t-Student	t-Student	t-Student	t-Student	t-Student	t-Student	t-Student	t-Student	t-Student

Tabela 4-4 – Resumo dos parâmetros estatísticos de σ_N (*MPa*) para D = 1.00 m, para o *EEB* caso I.

	$ ho_{Gfcf}$ = - 0.95				$p_{Gfcf} = 0.0$	0	$ ho_{Gfcf} = 0.50$		
	α2	α_3	α_4	α_2	α3	α_4	α_2	α_3	α_4
μ	2.39	1.59	1.07	2.39	1.60	1.08	2.39	1.59	1.07
σ	0.30	0.22	0.18	0.23	0.18	0.16	0.25	0.19	0.16
V_x	0.13	0.14	0.17	0.10	0.11	0.15	0.12	0.14	0.17
λ	42.15	45.52	37.49	49.76	48.18	58.94	47.78	40.95	49.60
Dist	t-Student	t-Student	t-Student	t-Student	t-Student	t-Student	t-Student	t-Student	t-Student

Percebe-se que as variações das $\mu_{\sigma N}$ ocorrem inversamente ao valor de α como esperado pela lei do efeito de escala. O aumento da ρ_{Gfcf} não altera significantemente os momentos estatísticos para nenhum dos α . Em contrapartida, para valores crescentes de α , têm-se o aumento do coeficiente de variação, V_x . Este fato é também observado na Figura 4-2*a*,*b*, onde nota-se o aumento da dispersão da curva com o aumento da cauda, a medida que se aumenta α . É importante observar que σ_N teve, para todos os casos analisados, a distribuição de probabilidade *t-Student* como a mais adequada na aderência dos dados.

Predição da função de densidade de probabilidade para a equação de desempenho, G(x)

As funções densidade de probabilidade de $G(\mathbf{x})$ considerando diferentes α e ρ_{Gfcf} são apresentadas na Figura 4-3*a*, *b* para tamanhos de viga de D = 0.15 m e D = 1.00 m, respectivamente. Nesta figura foi considerado um coeficiente $\gamma = 1.10$ para a Equação 4.1 de desempenho.

A área sob a curva à esquerda do eixo marcado na posição $G(\mathbf{x}) = 0$ (estado limite) apresenta a região de falha e seu valor é numericamente igual à probabilidade de falha (p_f). Como esperado, a $G(\mathbf{x})$ apresenta valores de μ mais próximas do estado limite nas maiores α (linhas verdes), distanciando-se nos menores α (linhas vermelhas). A correlação causou maior dispersão dos valores de $G(\mathbf{x})$ como se nota na diminuição dos valores máximos de f(x), e o consequente aumento das caudas da distribuição. Isto pode ser comprovado observando-se as diferenças das curvas de $\rho_{Gfef} = 0.00$ (linhas contínuas) e $\rho_{Gfef} = 0.90$ (linhas pontilhadas).

Como pode ser observado, na Figura 4-3, a p_f tende a aumentar para maiores α e com a consideração da ρ_{Gfcf} . No caso apresentado a viga terá maior p_f , devido ao menor γ aplicado, pois há uma relação inversa de tendência entre o γ e a p_f . Para os demais valores de γ , a densidade de probabilidade de $G(\mathbf{x})$ se desloca da esquerda para a direita, diminuindo assim a p_f analisada. Este fato é confirmado nas superfícies de confiabilidade apresentadas a seguir.

Predição dos Índices de Confiabilidade, β

A Figura 4-4*a-e* representam as superfície de β para diferentes valores de ρ_{Gfcf} com a variação de *D* e α para um $\gamma = 1.10$. Os resultados mostram que menores valores de confiabilidade ocorrem para crescentes valores de α . A variação de β com a modificação do valor de *D* é quase inexistente para esse problema.

A consideração de ρ_{Gfcf} implica menores valores de β , fato analisado quando se considera o aumento do valor absoluto de ρ_{Gfcf} , $|\rho_{Gfcf}|$. Então, maiores p_f são esperadas para maiores

correlações entre G_f e c_f . A variação do sinal de correlação causa uma mínima diferença nos valores de β . É importante observar que a maior diferença entre os β entre as diferentes correlações ocorrem com a diminuição de α . Ou seja, o sinal de ρ_{Gfef} tem um maior efeito em pequenos α .

Figura 4-3 – Funções densidade de probabilidade da função desempenho, $G(\mathbf{x})$, para $\gamma 1.10$ (Caso I) em que a) D = 0.15 m e b) D = 1.00 m.

Figura 4-4 – Índice de confiabilidade (β) com a variação de α e *D* e as correlações (a à e) para $\gamma = 1.10$ (Caso I).

A Figura 4-5a-d apresenta as superfícies de confiabilidade para o caso de $\gamma = 1.50$. As mesmas tendências para o comportamento de β , com a variação de α , D e ρ_{Gfcf} , observadas para o γ anterior de 1.1 (Figura 4-4) podem ser observadas para $\gamma = 1.50$. Entretanto, os valores de β são mais altos devido ao decréscimo da média de solicitação (σ_S) na Equação 4.3 devido ao γ maior. Uma outra, diferença importante, é que para o γ de 1.50 a superfície de β tem maior curvatura, principalmente com a variação de α como pode ser visto nas Figura 4-5*a*-*d*. Note que, com esta maior curvatura, os valores de β decrescem mais rapidamente com o aumento de α .

As Figura 4-6*a* a *d* apresentam os valores de β para $\gamma = 2.00$, em que os valores de β continuam com o decrescendo em relação a α , e há pouca variação de β com relação a *D*. Entretanto, para esse caso a consideração de ρ_{Gfef} teve maior influência no comportamento de β com relação a *D*. Outro fato é que para os máximos valores absolutos de ρ_{Gfef} a superfície de β apresentou menor curvatura, Figura 4-6*c* e *d*.

Com intenção de comparar a modificação que a ρ_{Gfcf} causa nos valores de β apresenta-se a Figura 4-7 em que se analisa o decréscimo de β com a variação de α . O índice de confiabilidade apresenta valor crescente para menores valores absolutos de ρ_{Gfcf} para diferentes valores de γ .

O γ de *1.10* representa uma situação de risco, pois β apresenta um valor próximo à zero, ou seja, está próximo da média da normal padronizada. Nessa situação a estrutura se encontra com aproximadamente 27% de p_f .

Figura 4-7 – Índice de confiabilidade (β) com $\rho_{Gfcf} = 0$ (azul), $\rho_{Gfcf} = -0.50$ (vermelho) e $\rho_{Gfcf} = -0.95$ (verde) com D = 0.50 m para *EEB* (Caso I).

Figura 4-7 (Continuação)

4.2.2 Caso II: considerando as variações dos parâmetros de regressão A e C

Espaço amostral para MMC

A Figura 4-8a, b exibe os valores amostrais de *a*, G_f e c_f gerado pelo algoritmo do *MMC* para $\rho_{Gfcf} = -0.50$ e $\rho_{Gfcf} = -0.90$, respectivamente.

Como esperado, quando se considera ρ_{Gfcf} próximos a I se nota a linearização das variáveis, assim como em módulo. Como o Caso I e II as variáveis apresentam a mesma distribuição, o comportamento da Figura 4-8 pode ser comparado com a Figura 4-1, notase que o sinal de ρ_{Gfcf} influi na direção da inclinação da reta de tendência que os valores aleatórios correlacionados se aproximam.

Predição da função densidade de probabilidade da tensão resistência nominal, σ_N

A Figura 4-9*a*,*b* apresenta o comportamento das funções densidade de probabilidade, f(x), para σ_N para D = 0.15 m e D = 1.00 m, respectivamente. O crescimento dos valores de α causam menores $\mu_{\sigma N}$ e a consideração de ρ_{Gfcf} modificou as caudas de f(x). Com o maior coeficiente de variação de c_f , V_{cf} , a correlação é mais influente nas menores alturas.

b) D = 1.00 m

Figura 4-9 – Funções densidade de probabilidade de σ_N com a variação de α e ρ para o EEB caso II, e alturas *a*) D = 0.15 m e *b*) D = 1.00 m.

Os parâmetros estatísticos de σ_N estão apresentados nas Tabela 4-5 à Tabela 4-7 para todas as combinações de ρ_{Gfcf} , $\alpha \in D$ analisadas.

Note que os valores de V_x aumentam para maiores valores de α , para D = 0.063 m o mesmo parâmetro decresce quando se considera ρ_{Gfcf} . Para as demais alturas analisadas, nota-se menores V_x para $\rho_{Gfcf} = 0$ mantendo praticamente a mesma magnitude para $\rho_{Gfcf} = -$ 0.50 e $\rho_{Gfcf} = 0.90$. As $\mu_{\sigma N}$ permanecem inalteradas quando se considera as correlações, sofrendo influência apenas das variações geométricas. Em todos os casos as f(x) consideradas tiveram melhor aderência com a distribuição *t-Student*.

Tabela 4-3 – Resulto dos parametros estatísticos de $\delta_N(MFu)$ com $D = 0.005$ m, para $0 EED$, caso m.												
	ρ	$_{Gfcf} = -0.9$	5		$o_{Gfcf} = 0.0$	0	$ ho_{Gfcf} = 0.50$					
	α_2	α_3	α_4	α_2	α_3	α_4	α_3	α_4				
μ	4.89	3.79	2.50	4.87	3.77	2.49	4.85	3.76	2.48			
σ	0.66	0.56	0.46	0.68	0.54	0.45	0.33	0.26	0.41			
V_x	0.14	0.15	0.18	0.14	0.15	0.18	0.10	0.13	0.11			
λ	20.51	22.79	24.04	32.18	34.79	31.74	45.37	43.05	55.17			
Dist	t-Student	t-Student	t-Student	t-Student	t-Student	t-Student	t-Student	t-Student	t-Student			

Tabela 4-5 – Resumo dos parâmetros estatísticos de σ_N (*MPa*) com D = 0.063 m, para o *EEB*, caso II.

$T abela 4-0 - Resumb dos barametros estatísticos de O_N(MPa) com D = 0.50 m, bara o EED, caso$	Tabela 4-6 – Resumo dos	parâmetros estatísticos	de $\sigma_N(MPa)$ com D	= 0.50 m. para	o EEB, caso 1
---	-------------------------	-------------------------	--------------------------	----------------	---------------

	ρ	$_{Gfcf} = -0.9$	5		$p_{Gfcf} = 0.0$	0	$\rho_{Gfcf} = 0.50$			
	$\alpha_2 \qquad \alpha_3 \qquad \alpha_4$			α_2	α3	α_4	α_2	α3	α_4	
μ	3.17	2.17	1.45	3.17	2.17	1.45	3.16	2.16	1.45	
σ	0.44	44 0.32 0.26		0.35	0.26	0.22	0.33	0.26	0.22	
V_x	0.13	0.14	0.17	0.11	0.12	0.15	0.10	0.12	0.15	
λ	33.59	35.84	29.07	42.58	41.83	46.77	44.06	41.94	43.12	
Dist	t-Student	t-Student	t-Student	t-Student	t-Student	t-Student	t-Student	t-Student	t-Student	

Tabela 4-7 – Resumo dos	parâmetros estatísticos	de $\sigma_N(MPa)$ com D	= 1.00 m,	para o <i>EEB</i> , caso II.
-------------------------	-------------------------	--------------------------	-----------	------------------------------

	ρ	$G_{fcf} = -0.9$	5		$o_{Gfcf} = 0.0$	0	$\rho_{Gfcf} = 0.50$			
	α_2	α_3	α_4	α_2	α_3	α_4	α_2	α_3	α_4	
μ	2.46	1.63	1.10	2.46	1.63	1.09	2.46	1.63	1.10	
σ	0.34 0.24 0.19		0.26	0.19	0.16	0.26	0.20	0.17		
V_x	0.14	0.15	0.17	0.11	0.12	0.15	0.11	0.12	0.16	
λ	38.49	33.46	33.41	38.77	41.33	42.24	45.653	40.59	38.62	
Dist	t-Student t-Student t-Student			t-Student	t-Student	t-Student	t-Student	t-Student	t-Student	

Predição da função de densidade de probabilidade para a equação de desempenho, G(x)

A função densidade de probabilidade $G(\mathbf{x})$ considerando diferentes α e ρ_{Gfcf} são apresentadas na Figura 4-10*a*,*b* para tamanhos de viga de D = 0.15 m e D = 1.00 m, respectivamente. Nesta figura foi considerado um $\gamma = 2.00$ para a Equação 4.1 de desempenho.

Note que na Figura 4-10*a*,*b* a área abaixo da curva à esquerda de $G(\mathbf{x}) = 0$ (estado limite) é quase nula, devido ao γ considerado. Os parâmetros estatísticos de $G(\mathbf{x})$ tiveram comportamento aproximado com as $f(\mathbf{x})$ de σ_N . Mesmo com as p_f quase nulas devido ao γ , percebe-se que para maiores α o valor de $\mu_{G(\mathbf{x})}$ se aproxima mais da linha de estado limite.

 $G(\mathbf{x})$, para $\gamma = 2.00$ (Caso II) em que a) D = 0.15 m e b) D = 1.00 m.

O comportamento de $G(\mathbf{x})$ é mais afetado pelas características geométricas com os novos parâmetros estatísticos das variáveis, sendo que os valores médios de $G(\mathbf{x})$ terão maiores variações em relação à α , como pode ser notado no Anexo C.

Predição dos Índices de Confiabilidade, β

As Figura 4-11*a-e* representam as superfícies de β para diferentes valores de ρ_{Gfef} com a variação de *D* e α para um $\gamma = 1.10$. Os resultados mostram que menores valores de índice de confiabilidade ocorrem para crescentes valores de α . Quando aumenta *D* se nota menores valores de β , mesmo sendo uma pequena variação. A modificação da tonalidade

da superfície, com variação de cor de azul para amarelo, ocorre para valores decrescentes de β .

Do mesmo modo que o caso I, a consideração de ρ_{Gfcf} causa menores valores de β , análise realizada considerando o valor absoluto de correlações. Assim, espera-se maiores p_f para maiores ρ_{Gfcf} e maiores α .

Figura 4-11 – Índice de confiabilidade (β) com a variação de α e D e as correlações (a à d) para $\gamma = 1.10$ (Caso II).

As Figura 4-12*a*-*d* apresenta as superfícies de confiabilidade para $\gamma = 1.50$ com variação das correlações. Os valores de β continuam decrescentes com o aumento de α e sua tendência à *D* modifica conforme consideração de ρ_{Gfcf} . Quando $\rho_{Gfcf} \rightarrow 1$, em valor absoluto, os índices de confiabilidade possuem menores variações comparado a *D* e α , fato que se nota comparando a Figura 4-12*a* com Figura 4-12*b*.

Na Figura 4-13 é apresentado o comportamento de β com a variação de D e das correlações. Para D = 0.15 m, β apresenta mudança brusca em seu comportamento para maiores valores absolutos de ρ_{Gfcf} (Figura 4-13*a*) e *c*)). As correlações se apresentam com o

maior valor absoluto em traçado verde, quando o módulo de 0.50 no traçado vermelho e nulo para os traçados azuis.

= 1.50 (Caso II).

A consideração da ρ_{Gfcf} modifica o comportamento de β , como demonstrado na Figura 4-13. Quando se considera a $\rho_{Gfcf} = 0.90$ a inclinação para os pequenos α muda completamente, ocorrendo devido a maior contribuição da zona de processo, c_f , no valor da energia de fratura, G_f , pela maior correlação.

4.3 PREDIÇÃO PELO MODELO DE DOIS PARÂMETROS JENQ AND SHAH (*MDP*): CASO III

Espaço amostral para MMC

Os valores dos parâmetros da mecânica da fratura apresentados na seção 3.3 levam em consideração a teoria do *MDP*. Os valores aleatórios gerados para compreender os parâmetros estatísticos da Tabela 3-8 considerando $\rho_{Gfcf} = 0.50$ e $\rho_{Gfcf} = 0.90$ são apresentados na Figura 4-14*a*, *b*, respectivamente.

Figura 4-13 – Índice de confiabilidade (β) com D = 0.15 m à esquerda e D = 0.50 m à direita em a) e b) $\rho_{Gfef} = 0$ (azul), $\rho_{Gfef} = -0.50$ (vermelho) e $\rho_{Gfef} = -0.95$ (verde) e em c) e d) $\rho_{Gfef} = 0$ (azul), $\rho_{Gfef} = 0.50$ (vermelho) e $\rho_{Gfef} = 0.90$ (verde) com $\gamma = 1.10$ para *EEB* (Caso II).

Os valores aleatórios de G_f apresentaram valores negativos considerando os novos momentos estatísticos, como pode se notar comparando a Figura 4-14 com a Figura 4-8. Essa modificação está relacionada com a f(x) atribuída a G_f .

Predição da função densidade de probabilidade da tensão resistência nominal, σ_N

A Figura 4-15*a*, *b* apresenta o comportamento das f(x), para σ_N para D = 0.15 m e D = 1.00 m, respectivamente. O crescimento dos valores de α causam menores $\mu_{\sigma N}$ e a consideração

de ρ_{Gfcf} modifica as caudas de f(x) para menores D tornando as suas curvas de f(x) mais dispersas para maiores ρ_{Gfcf} . Já quando o tamanho de c_f é menor que a área de ligamento, ou seja, para D maiores a ρ_{Gfcf} . não influi no comportamento de f(x).

para o caso III e alturas a) 0.15 m e b) 1.00 m.

Os valores médios de σ_N que se apresentam na Figura 4-15 demonstram o comportamento do efeito de escala, onde um menor D tende a resistir a uma maior σ_N . As Tabela 4-8, Tabela 4-9 e Tabela 4-10 apresentam os momentos estatísticos dessas variáveis.

	ρ	$_{Gfcf}$ = - 0.9	4	ŀ	$p_{Gfcf} = 0.00$)	$\rho_{Gfcf} = 0.50$				
	α_2	α_3	α_4	α_2	α_3	α_4	α_2	α3	α_4		
μ	4.84	3.73	2.45	4.79	3.69	2.43	4.79	3.69	2.43		
σ	0.54	0.47	0.41	0.72	0.57	0.47	0.66	0.54	0.45		
V_x	0.11	0.13	0.13 0.17		0.15 0.15 0.19		0.14	0.15	0.19		
λ	485	5.81 8.99		7.37	7.72	10.72	6.84	7.12	10.27		
Dist	t-Student	t-Student t-Student		t-Student t-Student t-Student		t-Student	t-Student	t-Student			
Tabela	4-9 – Resi	umo dos pa	râmetros e	statísticos	de $\sigma_N(MP)$	$a) \operatorname{com} D =$	= <i>0.50</i> m, p	ara o MDF	P, caso III.		
	ļ	$o_{Gfcf} = -0.9$	94		$\rho_{Gfcf} = 0.0$	0		$\rho_{Gfcf} = 0.50$			
	$\alpha_2 \qquad \alpha_3 \qquad \alpha_4$		α_2	α_3	α_4	α_2	α_3	α_4			
μ	3.08	2.09	1.40	3.06	2.08	1.39	3.06	2.08	1.39		
σ	0.34	0.26	0.22	0.37	0.27	0.23	0.36	0.26	0.22		
V_x	0.11	0.12	0.16	0.12	0.13	0.16	0.12	0.13	0.16		
λ	4.91	5.81	8.41	5.44	6.00	8.67	5.29	5.97	8.32		
Dist	t-Student	t-Student	t-Student	t-Student	t-Student	t-Student	t-Student	t-Student	t-Student		
Tabela	4-10 – Res	sumo dos pa	arâmetros e	estatísticos	de $\sigma_N(M)$	Pa) com D	= <i>1.00</i> m, j	para o MD.	P, caso III.		
	ρ	$G_{fcf} = -0.9$	4		$\rho_{Gfcf} = 0.0$	0	<i>[</i>	$o_{Gfcf} = 0.50$)		
	α_2	α_3	α_4	α_2	α_3	α_4	α_2	α_3	α_4		
μ	2.37	1.56	1.05	2.36	1.56	1.05	2.36	1.56	1.05		
σ	0.27	0.20	0.17	0.27	0.20	0.17	0.27	0.20	0.17		
V_x	0.11	0.13	0.16	0.12	0.13	0.16	0.11	0.13	0.16		
λ	5.00	5.87	8.31	5.28	5.87	8.35	5.19	5.91	8.25		
Dist	t-Student	t-Student	t-Student	t-Student	t-Student	t-Student	t-Student	t-Student	t-Student		

Tabela 4-8 – Resumo dos parâmetros estatísticos de $\sigma_N(MPa)$ com D = 0.063 m, para o MDP, caso III.

As σ_N possuem aderência com a distribuição *t-Student* para todas as correlações, com o V_x permanecendo quase constante mesmo considerando ρ_{Gfcf} . Nota-se também que V_x aumenta com o crescimento de α em todos os casos.

Predição da função de densidade de probabilidade para a equação de desempenho, G(x)

Na Figura 4-16*a*, *b* são apresentadas as funções f(x) de $G(\mathbf{x})$ para o $\gamma = 1.10$, com as combinações de ρ_{Gfcf} (tracejado) e α (cores). A variação de *D* influi no valor de máximo f(x), sendo que quanto maior *D*, maior será f(x), consequente uma maior concentração de área de f(x) próximo à média.

O comportamento das f(x) de $G(\mathbf{x})$ comprova que quanto maior for α maior será p_{f} . Com a consideração de ρ_{Gfcf} haverá pouca diferença de densidade de probabilidade para os maiores D, para os menores D haverá aumento de dispersão.

(Caso III) em que a) D = 0.15 m e b)l m.

Predição dos Índices de Confiabilidade, β

A Figura 4-17*a-e* representam as superfície de β para diferentes valores de ρ_{Gfcf} com a variação de *D* e α para um $\gamma = 1.10$. Os resultados mostram que menores valores de confiabilidade ocorrem para crescentes valores de α . Os valores de β são majorados com a consideração de ρ_{Gfcf} , ou seja, quando se aumenta a p_f , esse fato pode ser analisado com o valor absoluto de ρ_{Gfcf} .

As superfícies de β apresentam aspecto mais linear com a variação de D e α , notando assim o grau de importância da distribuição atribuída a G_f . Na Figura 4-18a a e é apresentado os β para $\gamma = 1.50$, em que seus valores variaram pouco com a consideração de ρ_{Gfcf} , permanecendo no intervalo de β entre 1.90 e 2.10 para todos os ρ_{Gfcf} , α e D.

e) $\rho_{Gfcf} = 0.90$ Figura 4-17 – Índice de confiabilidade (β) com a variação de α e D e as correlações ($a \ge e$), para $\gamma = 1.10$ (Caso III).

Figura 4-18 – Índice de confiabilidade (β) com a variação de α e D e as correlações (a à e) para γ = 1.50 (Caso III).

Na Figura 4-19*a* à *e* se apresenta as superfícies de β para o $\gamma = 2.00$, como esperado resultaram em maiores valores de confiabilidade quando comparados com a Figura 4-18 *a* à *e*. A consideração de ρ_{Gfcf} causou menores valores de β e a modificação da variação geométrica implicou pouco no comportamento de β .

Figura 4-19 – Índice de confiabilidade (β) com a variação de α e D e as correlações (a à e) para $\gamma = 2.00$ (Caso III).

Na Figura 4-20 se consegue avaliar de modo mais objetivo a variação de β com os valores das correlações positivos e dos γ . Quanto maior o γ mais próximo estará os valores de β com o aumento do valor absoluto de ρ_{Gfef} . Na Figura 4-21 se apresenta para os casos com correlações positivas.

Figura 4-20 – Variação do índice β com relação à taxa de entalhe com D = 0.50 m onde $\rho_{Gfcf} = 0$ (em azul), $\rho_{Gfcf} = -0.50$ (vermelho) e $\rho_{Gfcf} = -0.94$ (verde), MDP – caso III.

4.4 COMPARAÇÃO ENTRE OS CASOS

A Figura 4-22a – f apresenta a comparação das superfícies de β em alguns casos selecionados das seções anteriores. Os valores de β tendem a aumentar com menores α e menores *D*. No caso I, Figura 4-22a – b, existe pouca variação de β com o aumento de *D*, devido o baixo coeficiente de variação (V_x) de c_f .

Percebe-se na Figura 4-22 que ρ_{Gfef} causa maior variação nos valores de β em relação à altura (*D*) das vigas. Os valores dos β foram próximos mesmo com a mudança de ρ_{Gfef} e entre os casos de tratamento estatísticos se conseguiu uma melhor representação do comportamento referente à altura da viga (*D*). Nos casos II e III, que se teve um tratamento mais elaborado da propagação de incertezas β não possui variação linear com *D*, como encontrado no caso I.

incertezas.

Outra análise necessária é a influência de ρ_{Gfcf} com a modificação de α , veja Figura 4-23. Note que o sinal da correlação modifica pouco o valor de β , sendo maior o interesse na sua magnitude e no V_x das variáveis, os quais modificam o comportamento das curvas de β .

4.5 ESTUDO DE CASO

Nos tópicos anteriores quantificou as incertezas dos parâmetros da mecânica da fratura por três metodologias e posteriormente se obteve as superfícies de β . Com essas superfícies os profissionais poderão estimar qual a confiabilidade de uma viga tipo *SEN(B)*. Na Figura 4-24 é apresentada uma geometria de uma viga, a qual se estimará o β e sua p_{f} .

Figura 4-24 – Exemplo de viga com geometria e carregamento aproximado a *SEN(B)* para determinar a confiabilidade.

Com a combinação da geometria nas figuras das superfícies de confiabilidade se consegue obter os β aproximados. O valor de α dessa geometria é de 0.20 e D = 0.30 m, recorrendo a Figura 4-5 do caso I, adaptada pela Figura 4-25, obtém-se β como 2.65. Considerando o caso II, na Figura 4-12, se aproxima β de 2.02 e no caso III (Figura 4-18) esse valor se aproxima de 1.90. Utilizou-se $\rho_{Gfcf} = 0$ para todos os casos.

Figura 4-25 – Superfície do índice de confiabilidade para estimar β para uma dada geometria, caso I e $\rho_{Gfef} = 0$.

A influência da correlação nos valores de β é apresentado na Tabela 4-11, para $\rho_{Gfcf} = 0$ e $\rho_{Gfcf} = -0.95$, e os coeficientes de segurança aplicados na média da tensão solicitante característica para os três casos de incertezas. Note que os maiores β ocorrem no caso II, quando $\gamma > 1.10$, e a influência de ρ_{Gfcf} depende do caso ensaiado sendo um valor significativo. Os valores de β apresentaram se mais conservador no caso III, especificando mais probabilidade de falha ao sistema considerado. Esse fato pode ser confirmado devido ao maior desvio padrão de σ_N .

Tabela 4-11 – Índices de confiabilidade para a geometria de estudo, considerando parâmetros dos casos.

	Caso	I <i>(EEB)</i>	Caso I	I <i>(EEB)</i>	Caso III (MDP)			
γ	$\rho_{Gfcf} = 0.00$	ρ_{Gfcf} = -0.95	$\rho_{Gfcf} = 0.00$	ρ_{Gfcf} = -0.95	$\rho_{Gfcf} = 0.00$	ρ_{Gfcf} = -0.94		
1.10	0.2536	0.3086	0.3800	0.5874	0.5205	0.5803		
1.50	2.6586	2.2343	2.0160	2.4014	1.9004	1.9551		
2.00	4.4171	3.6943	3.8215	4.1234	2.5596	2.5753		

Vale ressaltar que as propriedades do concreto devem ser consideradas similares ao concreto ensaiado, principalmente o tamanho do seu agregado. Os valores de confiabilidade para esse caso encontram-se fora das faixas estipuladas pela *JCSS* (Figura 2-10) mesmo considerando caso de baixa consequência de falha, necessitando de atenção à segurança da estrutura.

Portanto, as superfícies obtidas no trabalho são de grande utilidade para determinar a segurança das vigas entalhadas, como apresentado nesse exemplo.

5 CONCLUSÃO

Essa dissertação quantificou as incertezas, por meio de funções densidade de probabilidade, f(x), dos principais parâmetros de mecânica de fratura, $G_f e c_f$, utilizados na modelagem de materiais *quasi*-frágeis, tal como o concreto. Considerou-se três metodologias para a determinação destas propriedades: o Método de Efeito de Escala de Bažant (*EEB*) com duas variações, e uma pelo Método de Dois Parâmetros (*MDP*).

Um algoritmo baseado no Método de Monte Carlo foi implementado de tal forma a considerar diferentes distribuições para as variáveis aleatórias e também correlação entre elas. A implementação se demonstrou eficiente em simular e quantificar as f(x), bem como seus parâmetros estatísticos, da resistência nominal à fratura, σ_N , em vigas entalhadas sob flexão em três pontos com variadas combinações de altura, D, e taxas de entalhe, α .

Os resultados mostraram que no *EEB*, a consideração da incerteza dos parâmetros da reta de regressão (Caso II) aumenta significantemente a dispersão de c_f , como observado o aumento de V_{cf} . Os valores de σ_N apresentaram menor dispersão quando se considera combinações de α e correlações, ρ_{Gfcf} , observada com menor dispersão da função densidade de probabilidade, especialmente para maiores α , quando comparados com o Caso I. É importante observar que o Caso I considera apenas as incertezas geradas pela geometria dos corpos de prova e pela variação estatística da carga máxima durante o ensaio. Entretanto, este não considera a incerteza dos parâmetros da curva de regressão dos dados experimentais. Nos resultados do *MDP* (Caso III) ocorre menores dispersões de σ_N com o aumento de α , já quando se obtêm os valores de σ_N considerando ρ_{Gfcf} próximos a *1*, para pequenas alturas ocorre um aumento no coeficiente de variação desse parâmetro. Para os casos que $D >> c_f$ as f(x) de σ_N não modificam o comportamento com ρ_{Gfcf} . Para todos os casos a f(x) relacionada foi a *t-Student*.

Os resultados também demonstraram que, o aumento da correlação absoluta entre as variáveis $G_f e c_{f,} | \rho_{Gfef} |$, geralmente aumentou a dispersão dos valores de σ_N , nos casos I e III, o que torna a predição de σ_N mais incerta. No caso II essa tendência se inverte para menores D, devido ao maior V_x de c_f . Sendo pouco significativo a mudança da f(x) de σ_N para correlações moderadas. A diferença do comportamento de f(x) é explicada devido à propagação de incertezas da formulação de *EEB* para G_f ter um comportamento próximo a

distribuição lognormal. Já com o tratamento pela metodologia de MDP, G_f segue uma distribuição *t-Student*.

Os valores do coeficiente de confiabilidade, β , resultaram menos lineares com a consideração das propagações de incerteza dos métodos. Apresentando mudanças de comportamento para situações de pequenos α devido à limitação da equação de σ_N para essa condição geométrica. Em todos os casos, β diminui com o aumento de *D* e α .

As superfícies de confiabilidades auxiliarão os engenheiros na tomada de decisão de urgência na recuperação de vigas sob flexão em três pontos entalhadas, com a determinação da confiabilidade por combinação das geometrias.

5.1 SUGESTÕES PARA TRABALHOS FUTUROS

- Estudar possíveis correlações entre outras variáveis, como por exemplo, G_f e E e entre c_f e E;
- Realizar estudo de confiabilidade considerando outras geometrias e a combinação de trincas;
- Outros elementos estruturais fraturados como placas, pilares;
- Aplicar a metodologia a combinações geométricas de vigas em estruturas existentes;
- Realizar a propagação de incertezas utilizando a Lei Universal de Efeito de Escala de Bažant, que consegue abranger pequenos entalhes (α → 0);
- Calcular as incertezas das propriedades da mecânica da fratura para outros tipos de materiais.

6 REFERÊNCIAS

ANG, A.H.S.; TANG, W.H.. *Probability concept in engineering planning and design*, Vol. I, JOHN WILEYAND SONS, NY, 1975.

ANDERSON, T. L.. Fracture mechanics: Fundamentals and Applications. 3^a Ed., Boca Raton, 2005.

ARORA, J.S.. Introduction to optimum design. Elsevier Academic Press, London, UK, 2004.

AYATOLLAHI, M., R.; AKBARDOOST, J.. Size effects on fracture toughness of quase-brittle materials – A new approach. Engineering fracture mechanics. pp.: 89 – 100, Vol. 92, 2012.

BAŽANT, Z. P.. Concrete fracture models: Testing and practice. Engineering fracture mechanics. pp.: 165 - 205, Vol. 69, 2001.

BAŽANT, Z. P.. Scaling of Structural Strength. 2ª Edição. Elsevier, London, 2005.

BAŽANT, Z. P.. Size effect in blunt fracture: Concrete, Rock, Metal. Journal of Engineering Mechanics. pp.: 518 - 535, Vol. 110, 1984.

BAŽANT, Z. P.; BECQ-GIRAUDON, E.. *Statistical prediction of fracture parameters of concrete and implications for choice of testing standard*. Cement and concrete research. pp.: 529 – 556, Vol. 32, 2002.

BAŽANT, Z. P.; KAZEMI, M. T.. Determination of fracture energy, process zone length and brittleness number from size effect, with application to rock and concrete. International Journal of Fracture. pp.: 111 - 131, Vol. 44, 1990b.

BAŽANT, Z. P.; KAZEMI, M. T.. Size Effect in Fracture of Ceramics and Its Use to Determine Fracture Energy and Effective Process Zone Length. Journal of the American Ceramic Society. pp.: 1841 - 1853, Vol. 73, 1990.

BAŽANT, Z. P.; PANG, S.. Activation energy based extreme value statistics and size effect in brittle and quasibrittle fracture. Journal of the Mechanics and Physics of solids. pp.: 91 - 131, Vol. 55, 2007.

BAŽANT, Z. P.; PANG, S.. *Mechanics-based statistics of failure risk of quasibrittle structures and size effect on safety factors*. Proceedings of the National Academy of Sciences of the United States of America. pp.: 9434 - 9439, Vol. 103, 2006.

BAŽANT, Z. P.; PLANAS, J., Fracture and size effect in concrete and other quasi-brittle materials. POR CRC PRESS, 1997.

BAŽANT, Z. P.; YU, Q. Size-Effect Testing of Cohesive Fracture Parameters and Nonuniqueness of Work-of Fracture Method. Journal of Engineering Mechanics. pp.: 580 - 588, Vol. 137, 2011.

BAŽANT, Z. P.; YU, Q.; ZI, G. *Choice of standard fracture test for concrete and its statistical evaluation*. International Journal of Fracture. pp.: 303 - 337, Vol. 118, 2002.

BECK, A. T. Confiabilidade estrutural. 2011. 200 f, Universidade de São Paulo - São Carlos, 2011.

BRAND, A., S.; AMIRKHANIAN, A. N.; ROESLER, J. R. *Flexural capacity of rigid pavement concrete slabs with recycled aggregates*. Illinois Certer for Transportation, Urbana, IL, 2013.

BECK, A.; GOMES, W.. Stochastic fracture mechanics using polynomial chaos. Probabilistic Engineering Mechanics, pp.: 26 – 39, Vol. 34, 2013.

CHOI, S.; CANFIELD, R.A; GRANDHI, R.V.. *Estimation of structural reliability for Gaussian random fields*. Structure & Infrastructure Engineering, pp.: 161 – 173, Vol. 2, 2006.

CHOI, S.; GRANDHI, V. R; CANFIELD, R.A.. Reliability-based structural design. Springer, 2007.

CHRISTOU, V.; BOCCHINI, P.; MIRANDA, M. J.. Optimal representation of multi-dimensional random fields with a moderate number of samples: Application to stochastic mechanics. . Probabilistic Engineering Mechanics, pp.: 53 – 65, Vol. 44, 2016.

CORNELL, C.A.. Bounds on the reliability of structural systems. Journal of Structural división, ASCE, VOL. 93 (1), 1967.

DITLEVSEN, O.; MADSEN, H. O.. *Structural Reliability Methods*. 2^a edição, Ed John Wiley & Sons Ltda – Chichester, 2005.

DUAN, K.; HU, X.; WITTMANN, F.. Size effect on specific fracture energy of concrete. Engineering fracture mechanics. pp.: 87 – 96, Vol. 74, 2007.

EVANGELISTA JR. F.; MUÑOS P., I. D.. Avaliação numérica do risco de falha estrutural por propagação de trincas em estruturas e materiais quase-frágeis incorporando incerteza e mecânica da fratura. XXXV CILAMCE, 21 p., Fortaleza, 2014.

FABER, M. H.; SORENSEN, J. D.. Reliability Based Code Calibration. Joint Comittee on Structural Safety, Draft, 2002.

GUINEA, G.; PLANAS, J.; ELICES, M. *A general bilinear fit for the softening curve of concrete*. Materials and Structures, pp.: 99 – 105, Vol. 27, 1994.

GRIFFITH, A.. *Philosophical transactions of the royal society of London*. SERIES A., Contains papers of a Mathematical or Physical character, 1921.

GROUS, A.. Fracture Mechanics 2: Applied Reliability. 1ª edição, Ed John Wiley & Sons, London, UK, 2013.

HALDAR, A.; MAHADEVAN, S.. *Reliability assessment using stochastic finit element analysis.* 1^a edição, Ed John Wiley & Sons – New York, 2000.

HAMDIA, K. M.; MSEKH, M. A.; SILANI, M.; VU-BAC, N.; ZHUANG, X.; NGUYEN-THOI, T.; RABCZUK, T.. Uncertainty quantification of the fracture properties of polymeric nanocomposites based on phase field modeling. Composite Structures, pp. 1177-1190, Vol. 113, 2015.

HANSON, J., H.; INGRAFFEA, A., R.. Using numerical simulations to compare the fracture toughness values for concrete from the size-effect, two-parameter and fictitious crack models. Engineering fracture mechanics. pp.: 1015 – 11027, Vol. 70, 2003.

HARIRI-ARDEBILI, M. A.; SAOUMA, V. E.. Sensitivity and uncertainty quantification on the cohesive crack model. Engineering fracture mechanics. pp.: 18 – 35, Vol. 155, 2016.

HASOFER, A.M.; LIND, N.C.. *Exact and invariant second-moment code format*. Journal of Structural división, ASCE, Vol. 100(EM), pp.: 111-121, 1974.

HELTON, J.; JOHNSON, J.; OBERKAMPF, W.. An exploration of alternative approaches to the representation of uncertainty in model predictions. Realibility Engineering and System Safety, pp. 39 – 71, Vol. 85, 2004.

HERNANDEZ, H.; MORA, E.. *Mecânica de fratura e análises de falha*. 1^a Ed., UNIVERSIDAD NACIONAL DE COLOMBIA, 2002.

INCE, R.; Determination of concrete fracture parameters based on peak-load method with diagonal split-tension cubes. Engineering fracture mechanics. pp.: 100 – 114, Vol. 82, 2012.

IRWIN, G.R.; PARIS, C.P.; TADA, H.. The stress analysis of cracks handbook. THIRD EDITION, 2000.

JCSS. Probabilistic Model Code: Part 1 – Basis of design. JCSS – OSTL/DIA/VROU, 2000.

JENQ, Y.; SHAH, S. P.. Two parameter fracture model for concrete. Journal of Engineering Mechanics, pp. 1227 – 1241, Vol. 111, 1985.

KUMAR, S.; BARAI, S. V.. Equivalence between stress intensity factor and energy approach based fracture parameters of concrete. Engineering Fracture Mechanics. pp.: 1357 – 1372, Vol. 76, 2009.

KWON, S. H.; ZHAO, Z.; SHAH, S.P.. *Effect of specimen size on fracture energy and softening curve of concrete: Part II.* Inverse analysis and softening curve. Cement and concrete research, pp.: 1061 – 1069. Vol. 38, 2008.

LIU, P.; DER KIUREGHIAN, A.. Multivariate distribution models with prescribed marginal and coveriances. Probabilistic Engineering Mechanics, pp.: 105 – 112, Vol. 1, 1986.

KUMAR, S. and BARAI, S. V. Equivalence between stress intensity factor and energy approach based fracture parameters of concrete. Engineering Fracture Mechanics, pp.: 1357–1372, Vol. 76, 2009.

MARTINEZ, J., 2004. *Mecânica de fratura probabilística aplicada a problema de inspeção de serviço*. Tese (Doutorado), Instituto Politécnico Nacional, 2004.

MATHWORKS INC. MatLab R2013a. 2013.

MELCHERS, R. E. Structural reliability: analysis and prediction. 2^a edição, Ed Wiley – New York, 1999.

MOTRA, H. B.; HILDEBRAND, J; WUTTKE, F.. The Monte Carlo Method for evaluating measurement uncertainty: Application for determining the properties of materials. Probabilistic Engineering Mechanics, pp.: 1 – 9, Vol. 44, 2016.

MUÑOS P., I. D.. Avaliação do risco de falha baseada na mecânica da fratura e eleito de escala considerando a incerteza da caracterização dos materiais cimentícios. Civil, Publicação E.DM-011A/15, Departamento de Engenharia Civil e Ambiental, Universidade de Brasília, Brasília, DF, 114 p., 2015.

OBERKAMPF, W. L.; HELTON, J. C.; JOSLYN, C. A.; WOJTKIEWICZ, S. F.; FERSON, S.. *Challenge problems: uncertainty in system response given uncertain parameters.* Reliability engineering & system safety, pp.: 11 – 19, Vol. 85, 2004.

OLLER, S.. Fractura mecánica: Un enfoque global. 1ª Ed. Artes Gráficas Torres S.A., Barcelona, 2000.

OUYANG, S.; TANG, T.; SHAH, S. P.. Relationship between fracture parameters from two parameter fracture model and from size effect model. Materials and Structures, pp.: 79 – 86, Vol. 29, 1996.

PUATATSANANON, W.; SAOUMA, V. E.. Reliability analysis in fracture mechanics using the first-order reliability method and Monte Carlo Simulation. Fatigue & fracture of engineering materials & structures, pp.: 959 – 975, Vol. 29, 2006.

RED-HORSE, J.; BENJAMIN, A.. A probabilistic approach to uncertainty quantification with limited information. Reliability Engineering and System Safety. pp. 183 – 190, Vol. 85, 2004.

RED-HORSE, J.; BENJAMIN, A.. A probabilistic approach to uncertainty quantification with limited information. Reliability engineering & sistem safety, pp. 183 – 190, Vol. 85, 2004.

RILEM., 1990a. *Size effect method for determining fracture energy and process zone size of* concrete. Mater. Struct.. 23, pp.: 461–465, (RILEM DRAFT RECOMMENDATION, TC 89-FMT FRACTURE MECHANICS OF CONCRETE—TEST METHODS).

RILEM., 1990b. Determination of fracture parameters (K_{lc} and CTOD) of plain concrete using three-point bend tests on beams. Mater. Struct., 23, pp.: 457–460, (RILEM DRAFT RECOMMENDATION, TC 89-FMT FRACTURE MECHANICS OF CONCRETE—TEST METHODS).

ROBERT, C. P.; CASELLA, G.. Monte Carlo Statistical Methods. 2^a edição, Ed. Springer, New York, 2004.

ROSENBLATT, M. *Remarks on a Multivariate Transformation*, The Annals of Mathematical Statistics, v. 23, n. 3, pp. 470–472, 1952.

RUBINSTEIN, R. Y.; KROESE, D. P.. Simulation and the Monte Carlo Method. 2^a edição, Ed John Wiley & Sons, England, 2007.

SAMSON, S.; RENEKE, J. A.; WIECEK, M. M.. *A review of different perspectives on uncertainty and risk and an alternative modeling paradigm*. Reliability engineering & sistem safety, pp. 558 – 567, Vol. 94, 2009.

SANDBERG, K. Introduction to MATLAB. University of Colorado. Disponível: http://www.math.utah.edu/~wright/misc/matlab/matlabintro.html, acesso em: 27/09/2015.

SHAH, S. P.; SWARTZ, S. E.; OUYANG, C.. Fracture mechanics of concrete: applications of fracture mechanics to concrete, rock and other quasi-brittle materials. 1^a Edição, John Wiley & Sons, New York, 1995.

SHANNON, C. P. Fractionation of recycled asphalt pavement materials: Improvement of volumetric mix design criteria for High-RAP content surface mixtures. 2012. 98 f. Tese (Master of Science degree in Civil and Environmental Engineering) – Graduate College of the University of Iowa – Iowa, 2012.

TADA, H.; PARIS, P. C.; IRWIN, G. R.. *The Stress Analysis of cracks handbook*. 3^a ed. ASME Press, New York, 2000.

TANG, T.; YANG, S.; OUYANG, C.; LIBARDI, W.; SHAH, S. P.. Determination of K^{s}_{lc} and $CTOD_{c}$ from peak loads and relationship between two-parameter fracture model and size effect model. Fracture mechanics of concrete structures. pp.: 135 - 144, 1995.

THOFT – CHRISTENSEN, P.; MUROTSU, Y. *Application of structural systems reliability theory*. 1^a edição, Ed Springer – Verlag Berlin, Heidelberg, 1986.

TODINOV. *Reliability and risk models: setting reliability requirements* 1^a edição, Ed John Wiley & Sons, England, 2005.

VOTECHOVSKY, M.. Correlation control in small-sample Monte Carlo type simulations II: Analysis of estimation formulas, random correlation and perfect uncorrelatedness. Probabilistic Engineering Mechanics. pp.: 105 – 120, Vol. 29, 2012.

VOTECHOVSKÝ, M.; NOVÁK, D.. Correlation control in small-sample Monte Carlo type simulations I: A simulated annealing approach. Probabilistic Engineering Mechanics. pp.: 452 – 462, Vol. 24, 2009.

WALPOLE, R. E.; MYERS, R. H.; MYERS, S. L.; YE, K.. *Probability & Statistics for Engineers & Scientists*. 9^a edição, Ed Prentice Hall, Boston, 2011.

YANG, J.. Convergence and uncertainty analyses in Monte-Carlo based sensitivity analysis. Environmental Modelling and Software, pp. 444-457, Vol. 26, 2011.

ZAPPERI, S.. *Current challenges for statistical physics in fracture and plasticity.* The European Physical Journal B. pp.: 1 – 12, Vol. 85, N° 329, 2012.

ZEHNDER, A. T.. Fracture Mechanics: Lecture notes in applied and computational mechanics. Vol. 62, Ithaca, 2012.

ZHAO, Y.; ONO, T.. A general procedure for first/second-order reliability method (FORM/SORM). Structural safey, pp. 95 – 112, Vol. 21, 1999.

ZHOU YU, Z. Z.; ZHONG, Q. Improved Reliability analysis method based on the failure assessment diagram. Chinese Journal of Mechanical Engineering, Vol. 25, Nº 4, 2012.

ZIMMERMANN, T.; STRAUSS, A.; LEHKY, D.; NOVÁK, D.; KERŠNER. Stochastic fracturemechanical characteristics of concrete based on experiments end inverse analysis. Construction and Building Materials, pp. 535-543, Vol. 73, 2014.

ANEXO A

Tabela A -1 – Valores das	probabilidades de falha	e índices de confiabilidade	para o Caso I de <i>EEB</i> .
---------------------------	-------------------------	-----------------------------	-------------------------------

γ	D	α	ρ	P_f	β	γ	p_f	β	γ	p_f	β
1.1	0.063	0.05	-0.95	0.296	0.537	1.5	0.009	2.386	2	4.59E-05	3.91
1.1	0.15	0.05	-0.95	0.295	0.537	1.5	0.008	2.389	2	4.36E-05	3.92
1.1	0.5	0.05	-0.95	0.295	0.539	1.5	0.009	2.384	2	4.71E-05	3.90
1.1	1	0.05	-0.95	0.295	0.538	1.5	0.009	2.374	2	4.96E-05	3.89
1.1	0.063	0.1	-0.95	0.297	0.533	1.5	0.009	2.382	2	5.33E-05	3.88
1.1	0.15	0.1	-0.95	0.297	0.534	1.5	0.009	2.383	2	4.86E-05	3.90
1.1	0.5	0.1	-0.95	0.296	0.535	1.5	0.009	2.368	2	5.07E-05	3.89
1.1	1	0.1	-0.95	0.296	0.535	1.5	0.009	2.359	2	5.43E-05	3.87
1.1	0.063	0.25	-0.95	0.310	0.495	1.5	0.013	2.229	2	1.18E-04	3.68
1.1	0.15	0.25	-0.95	0.309	0.498	1.5	0.013	2.233	2	1.14E-04	3.69
1.1	0.5	0.25	-0.95	0.308	0.501	1.5	0.013	2.236	2	1.08E-04	3.70
1.1	1	0.25	-0.95	0.307	0.503	1.5	0.013	2.238	2	1.03E-04	3.71
1.1	0.063	0.4	-0.95	0.339	0.416	1.5	0.034	1.829	2	1.28E-03	3.02
1.1	0.15	0.4	-0.95	0.337	0.421	1.5	0.032	1.858	2	1.11E-03	3.06
1.1	0.5	0.4	-0.95	0.333	0.431	1.5	0.028	1.904	2	8.44E-04	3.14
1.1	1	0.4	-0.95	0.332	0.434	1.5	0.027	1.921	2	7.42E-04	3.18
1.1	0.063	0.05	-0.5	0.267	0.622	1.5	0.003	2.762	2	1.29E-06	4.70
1.1	0.15	0.05	-0.5	0.267	0.623	1.5	0.003	2.766	2	7.14E-07	4.82
1.1	0.5	0.05	-0.5	0.266	0.625	1.5	0.003	2.761	2	5.71E-07	4.87
1.1	1	0.05	-0.5	0.266	0.624	1.5	0.003	2.748	2	1.57E-06	4.66
1.1	0.063	0.1	-0.5	0.269	0.617	1.5	0.003	2.756	2	1.14E-06	4.73
1.1	0.15	0.1	-0.5	0.268	0.619	1.5	0.003	2.754	2	4.29E-07	4.92
1.1	0.5	0.1	-0.5	0.268	0.619	1.5	0.003	2.740	2	1.14E-06	4.73
1.1	1	0.1	-0.5	0.268	0.619	1.5	0.003	2.722	2	2.71E-06	4.55
1.1	0.063	0.25	-0.5	0.286	0.567	1.5	0.006	2.515	2	1.01E-05	4.26
1.1	0.15	0.25	-0.5	0.284	0.570	1.5	0.006	2.517	2	1.23E-05	4.22
1.1	0.5	0.25	-0.5	0.283	0.574	1.5	0.006	2.524	2	8.57E-06	4.30
1.1	1	0.25	-0.5	0.282	0.576	1.5	0.006	2.527	2	8.86E-06	4.29
1.1	0.063	0.4	-0.5	0.321	0.466	1.5	0.025	1.968	2	6.88E-04	3.20
1.1	0.15	0.4	-0.5	0.318	0.473	1.5	0.023	2.004	2	5.37E-04	3.27
1.1	0.5	0.4	-0.5	0.314	0.484	1.5	0.020	2.058	2	3.80E-04	3.37
1.1	1	0.4	-0.5	0.313	0.489	1.5	0.019	2.083	2	3.23E-04	3.41
1.1	0.063	0.05	1.00E-10	0.000	Inf	1.5	0.001	2.970	2	1.43E-07	5.13
1.1	0.15	0.05	1.00E-10	0.100	1.282	1.5	0.001	2.978	2	2.86E-07	5.00
1.1	0.5	0.05	1.00E-10	0.200	0.842	1.5	0.001	2.972	2	4.29E-07	4.92
1.1	1	0.05	1.00E-10	0.200	0.842	1.5	0.002	2.935	2	5.71E-07	4.87
1.1	0.063	0.1	1.00E-10	0.200	0.842	1.5	0.002	2.966	2	2.86E-07	5.00
1.1	0.15	0.1	1.00E-10	0.300	0.524	1.5	0.002	2.963	2	4.29E-07	4.92
1.1	0.5	0.1	1.00E-10	0.300	0.524	1.5	0.002	2.921	2	4.29E-07	4.92
1.1	1	0.1	1.00E-10	0.100	1.282	1.5	0.002	2.895	2	8.57E-07	4.78

		-			EEB.	-	-	-			
γ	D	α	ρ	P_f	β	γ	p_f	β	γ	p_f	β
1.1	0.063	0.25	1.00E-10	0.400	0.253	1.5	0.004	2.659	2	3.00E-06	4.53
1.1	0.15	0.25	1.00E-10	0.300	0.254	1.5	0.004	2.659	2	5.43E-06	4.40
1.1	0.5	0.25	1.00E-10	0.400	0.253	1.5	0.004	2.658	2	4.57E-06	4.44
1.1	1	0.25	1.00E-10	0.200	0.842	1.5	0.004	2.666	2	2.57E-06	4.56
1.1	0.063	0.4	1.00E-10	0.200	0.842	1.5	0.021	2.032	2	5.38E-04	3.27
1.1	0.15	0.4	1.00E-10	0.300	0.524	1.5	0.019	2.072	2	4.20E-04	3.34
1.1	0.5	0.4	1.00E-10	0.200	0.842	1.5	0.016	2.133	2	2.74E-04	3.46
1.1	1	0.4	1.00E-10	0.300	0.524	1.5	0.016	2.156	2	2.28E-04	3.51
1.1	0.063	0.05	0.5	0.300	0.524	1.5	0.002	2.834	2	1.00E-06	4.75
1.1	0.15	0.05	0.5	0.400	0.253	1.5	0.002	2.833	2	0.00E+00	Inf
1.1	0.5	0.05	0.5	0.300	0.524	1.5	0.002	2.812	2	1.00E-06	4.75
1.1	1	0.05	0.5	0.100	1.282	1.5	0.003	2.793	2	1.00E-06	4.75
1.1	0.063	0.1	0.5	0.200	0.842	1.5	0.002	2.824	2	0.00E+00	Inf
1.1	0.15	0.1	0.5	0.200	0.842	1.5	0.002	2.816	2	0.00E+00	Inf
1.1	0.5	0.1	0.5	0.200	0.842	1.5	0.003	2.781	2	1.00E-06	4.75
1.1	1	0.1	0.5	0.000	Inf	1.5	0.003	2.754	2	0.00E+00	Inf
1.1	0.063	0.25	0.5	0.400	0.253	1.5	0.005	2.559	2	6.00E-06	4.38
1.1	0.15	0.25	0.5	0.000	Inf	1.5	0.005	2.563	2	6.00E-06	4.38
1.1	0.5	0.25	0.5	0.300	0.524	1.5	0.005	2.558	2	6.00E-06	4.38
1.1	1	0.25	0.5	0.200	0.842	1.5	0.005	2.548	2	6.00E-06	4.38
1.1	0.063	0.4	0.5	0.200	0.842	1.5	0.024	1.984	2	6.35E-04	3.22
1.1	0.15	0.4	0.5	0.300	0.524	1.5	0.022	2.018	2	5.45E-04	3.27
1.1	0.5	0.4	0.5	0.100	1.282	1.5	0.019	2.075	2	3.52E-04	3.39
1.1	1	0.4	0.5	0.000	Inf	1.5	0.018	2.099	2	2.83E-04	3.45
1.1	0.063	0.05	0.9	0.100	1.282	1.5	0.007	2.482	2	2.80E-05	4.03
1.1	0.15	0.05	0.9	0.500	0.000	1.5	0.007	2.478	2	2.40E-05	4.07
1.1	0.5	0.05	0.9	0.200	0.842	1.5	0.007	2.474	2	2.90E-05	4.02
1.1	1	0.05	0.9	0.000	Inf	1.5	0.007	2.459	2	2.60E-05	4.05
1.1	0.063	0.1	0.9	0.400	0.253	1.5	0.007	2.475	2	2.30E-05	4.08
1.1	0.15	0.1	0.9	0.200	0.842	1.5	0.007	2.469	2	3.40E-05	3.98
1.1	0.5	0.1	0.9	0.200	0.842	1.5	0.007	2.446	2	2.20E-05	4.09
1.1	1	0.1	0.9	0.200	0.842	1.5	0.008	2.430	2	2.30E-05	4.08
1.1	0.063	0.25	0.9	0.300	0.524	1.5	0.011	2.298	2	7.60E-05	3.79
1.1	0.15	0.25	0.9	0.300	0.524	1.5	0.011	2.297	2	5.90E-05	3.85
1.1	0.5	0.25	0.9	0.300	0.524	1.5	0.011	2.293	2	7.20E-05	3.80
1.1	1	0.25	0.9	0.300	0.524	1.5	0.011	2.291	2	6.60E-05	3.82
1.1	0.063	0.4	0.9	0.400	0.253	1.5	0.031	1.860	2	1.05E-03	3.07
1.1	0.15	0.4	0.9	0.000	Inf	1.5	0.029	1.894	2	9.01E-04	3.12
1.1	0.5	0.4	0.9	0.200	0.842	1.5	0.026	1.941	2	6.95E-04	3.20
1.1	1	0.4	0.9	0.400	0.253	1.5	0.025	1.952	2	6.34E-04	3.22

Continuação Tabela A -1 – Valores das probabilidades de falha e índices de confiabilidade para o caso I de *EEB*.

D	α	ρ	γ	p_f	β	γ	p_f	β	γ	p_f	β
0.063	0.05	-0.95	1.1	0.267	0.623	1.5	0.007	2.479	2	0.000	4.344
0.15	0.05	-0.95	1.1	0.272	0.605	1.5	0.007	2.443	2	0.000	4.201
0.5	0.05	-0.95	1.1	0.286	0.564	1.5	0.010	2.346	2	0.000	4.020
1	0.05	-0.95	1.1	0.295	0.540	1.5	0.011	2.282	2	0.000	3.786
0.063	0.1	-0.95	1.1	0.273	0.604	1.5	0.007	2.443	2	0.000	4.229
0.15	0.1	-0.95	1.1	0.281	0.579	1.5	0.009	2.385	2	0.000	4.075
0.5	0.1	-0.95	1.1	0.296	0.536	1.5	0.012	2.273	2	0.000	3.794
1	0.1	-0.95	1.1	0.303	0.515	1.5	0.013	2.227	2	0.000	3.641
0.063	0.25	-0.95	1.1	0.290	0.554	1.5	0.012	2.254	2	0.000	3.841
0.15	0.25	-0.95	1.1	0.299	0.527	1.5	0.014	2.201	2	0.000	3.728
0.5	0.25	-0.95	1.1	0.312	0.490	1.5	0.017	2.130	2	0.000	3.529
1	0.25	-0.95	1.1	0.317	0.477	1.5	0.017	2.109	2	0.000	3.479
0.063	0.4	-0.95	1.1	0.317	0.477	1.5	0.031	1.867	2	0.001	3.062
0.15	0.4	-0.95	1.1	0.324	0.457	1.5	0.031	1.863	2	0.001	3.071
0.5	0.4	-0.95	1.1	0.334	0.429	1.5	0.032	1.852	2	0.001	3.065
1	0.4	-0.95	1.1	0.338	0.419	1.5	0.032	1.846	2	0.001	3.061
0.063	0.05	-0.5	1.1	0.307	0.503	1.5	0.023	2.000	2	0.000	3.346
0.15	0.05	-0.5	1.1	0.304	0.514	1.5	0.019	2.068	2	0.000	3.461
0.5	0.05	-0.5	1.1	0.296	0.536	1.5	0.012	2.243	2	0.000	3.773
1	0.05	-0.5	1.1	0.291	0.550	1.5	0.009	2.357	2	0.000	3.973
0.063	0.1	-0.5	1.1	0.306	0.507	1.5	0.020	2.047	2	0.000	3.422
0.15	0.1	-0.5	1.1	0.301	0.522	1.5	0.016	2.155	2	0.000	3.614
0.5	0.1	-0.5	1.1	0.292	0.547	1.5	0.009	2.352	2	0.000	3.971
1	0.1	-0.5	1.1	0.288	0.559	1.5	0.007	2.442	2	0.000	4.119
0.063	0.25	-0.5	1.1	0.313	0.488	1.5	0.023	2.005	2	0.000	3.362
0.15	0.25	-0.5	1.1	0.307	0.504	1.5	0.017	2.119	2	0.000	3.550
0.5	0.25	-0.5	1.1	0.300	0.524	1.5	0.011	2.287	2	0.000	3.848
1	0.25	-0.5	1.1	0.297	0.533	1.5	0.009	2.350	2	0.000	3.985
0.063	0.4	-0.5	1.1	0.335	0.426	1.5	0.043	1.714	2	0.002	2.832
0.15	0.4	-0.5	1.1	0.331	0.436	1.5	0.036	1.801	2	0.002	2.963
0.5	0.4	-0.5	1.1	0.325	0.453	1.5	0.027	1.932	2	0.001	3.187
1	0.4	-0.5	1.1	0.323	0.459	1.5	0.024	1.984	2	0.001	3.279
0.063	0.05	1E-17	1.1	0.478	0.055	1.5	0.114	1.205	2	0.002	2.870
0.15	0.05	1E-17	1.1	0.458	0.107	1.5	0.098	1.295	2	0.001	3.083
0.5	0.05	1E-17	1.1	0.376	0.316	1.5	0.030	1.879	2	0.001	3.089
1	0.05	1E-17	1.1	0.347	0.393	1.5	0.014	2.197	2	0.000	65535.000
0.063	0.1	1E-17	1.1	0.423	0.193	1.5	0.089	1.349	2	0.007	2.451
0.15	0.1	1E-17	1.1	0.400	0.254	1.5	0.054	1.603	2	0.001	3.086
0.5	0.1	1E-17	1.1	0.323	0.458	1.5	0.011	2.290	2	0.001	3.090
1	0.1	1E-17	1.1	0.299	0.527	1.5	0.005	2.576	2	0.000	65535.000
0.063	0.25	1E-17	1.1	0.452	0.122	1.5	0.070	1.476	2	0.004	2.649

Tabela A -2 – Valores das probabilidades de falha e índices de confiabilidade para o caso II de EEB.

1				ı	E.	EB.	1			1	I
D	α	ρ	γ	p_f	β	γ	p_f	β	γ	p_f	β
0.15	0.25	1E-17	1.1	0.387	0.287	1.5	0.035	1.811	2	0.001	3.089
0.5	0.25	1E-17	1.1	0.307	0.504	1.5	0.011	2.290	2	0.000	65535.000
1	0.25	1E-17	1.1	0.288	0.559	1.5	0.006	2.512	2	0.000	65535.000
0.063	0.4	1E-17	1.1	0.437	0.158	1.5	0.105	1.251	2	0.017	2.117
0.15	0.4	1E-17	1.1	0.413	0.219	1.5	0.071	1.468	2	0.005	2.575
0.5	0.4	1E-17	1.1	0.348	0.391	1.5	0.029	1.896	2	0.000	65535.000
1	0.4	1E-17	1.1	0.292	0.548	1.5	0.019	2.075	2	0.001	3.090
0.063	0.05	0.5	1.1	0.670	-0.439	1.5	0.407	0.236	2	0.153	1.022
0.15	0.05	0.5	1.1	0.670	-0.440	1.5	0.394	0.269	2	0.116	1.195
0.5	0.05	0.5	1.1	0.575	-0.189	1.5	0.258	0.649	2	0.021	2.029
1	0.05	0.5	1.1	0.444	0.142	1.5	0.108	1.240	2	0.008	2.413
0.063	0.1	0.5	1.1	0.660	-0.412	1.5	0.396	0.265	2	0.115	1.203
0.15	0.1	0.5	1.1	0.606	-0.268	1.5	0.312	0.490	2	0.037	1.791
0.5	0.1	0.5	1.1	0.443	0.142	1.5	0.115	1.201	2	0.005	2.560
1	0.1	0.5	1.1	0.348	0.391	1.5	0.023	1.996	2	0.000	65535.000
0.063	0.25	0.5	1.1	0.633	-0.341	1.5	0.376	0.315	2	0.082	1.394
0.15	0.25	0.5	1.1	0.569	-0.173	1.5	0.227	0.749	2	0.031	1.860
0.5	0.25	0.5	1.1	0.367	0.339	1.5	0.061	1.547	2	0.004	2.696
1	0.25	0.5	1.1	0.273	0.603	1.5	0.011	2.279	2	0.000	65535.000
0.063	0.4	0.5	1.1	0.658	-0.408	1.5	0.334	0.428	2	0.093	1.321
0.15	0.4	0.5	1.1	0.534	-0.086	1.5	0.273	0.605	2	0.036	1.795
0.5	0.4	0.5	1.1	0.377	0.314	1.5	0.077	1.422	2	0.011	2.305
1	0.4	0.5	1.1	0.319	0.471	1.5	0.044	1.706	2	0.000	65535.000
0.063	0.05	0.9	1.1	0.927	-1.450	1.5	0.847	-1.025	2	0.749	-0.673
0.15	0.05	0.9	1.1	0.902	-1.291	1.5	0.831	-0.957	2	0.720	-0.581
0.5	0.05	0.9	1.1	0.849	-1.034	1.5	0.794	-0.820	2	0.610	-0.279
1	0.05	0.9	1.1	0.831	-0.958	1.5	0.647	-0.378	2	0.452	0.121
0.063	0.1	0.9	1.1	0.907	-1.325	1.5	0.848	-1.026	2	0.721	-0.585
0.15	0.1	0.9	1.1	0.897	-1.262	1.5	0.819	-0.911	2	0.649	-0.382
0.5	0.1	0.9	1.1	0.803	-0.853	1.5	0.623	-0.314	2	0.433	0.169
1	0.1	0.9	1.1	0.729	-0.610	1.5	0.519	-0.047	2	0.189	0.880
0.063	0.25	0.9	1.1	0.896	-1.258	1.5	0.803	-0.853	2	0.668	-0.435
0.15	0.25	0.9	1.1	0.871	-1.131	1.5	0.734	-0.624	2	0.575	-0.189
0.5	0.25	0.9	1.1	0.761	-0.709	1.5	0.535	-0.087	2	0.280	0.582
1	0.25	0.9	1.1	0.653	-0.395	1.5	0.312	0.491	2	0.092	1.332
0.063	0.4	0.9	1.1	0.897	-1.266	1.5	0.813	-0.887	2	0.728	-0.606
0.15	0.4	0.9	1.1	0.897	-1.264	1.5	0.744	-0.656	2	0.626	-0.322
0.5	0.4	0.9	1.1	0.745	-0.658	1.5	0.565	-0.164	2	0.282	0.577
1	0.4	0.9	1.1	0.666	-0.428	1.5	0.378	0.310	2	0.106	1.248

Continuação Tabela A -2– Valores das probabilidades de falha e índices de confiabilidade para o caso II de

γ	D	α	ρ	p_f	β	γ	p_f	β	γ	p_f	β
1.1	0.063	0.05	-0.94	0.244	0.695	1.5	0.021	2.039	2	0.005	2.608
1.1	0.15	0.05	-0.94	0.248	0.681	1.5	0.021	2.035	2	0.005	2.601
1.1	0.5	0.05	-0.94	0.259	0.645	1.5	0.022	2.020	2	0.005	2.597
1.1	1	0.05	-0.94	0.268	0.620	1.5	0.023	2.004	2	0.005	2.594
1.1	0.063	0.1	-0.94	0.248	0.680	1.5	0.021	2.033	2	0.005	2.604
1.1	0.15	0.1	-0.94	0.255	0.658	1.5	0.021	2.024	2	0.005	2.598
1.1	0.5	0.1	-0.94	0.269	0.617	1.5	0.023	2.003	2	0.005	2.590
1.1	1	0.1	-0.94	0.275	0.597	1.5	0.023	1.994	2	0.005	2.589
1.1	0.063	0.25	-0.94	0.268	0.618	1.5	0.024	1.970	2	0.005	2.585
1.1	0.15	0.25	-0.94	0.276	0.594	1.5	0.025	1.962	2	0.005	2.580
1.1	0.5	0.25	-0.94	0.287	0.562	1.5	0.026	1.946	2	0.005	2.569
1.1	1	0.25	-0.94	0.292	0.549	1.5	0.026	1.941	2	0.005	2.570
1.1	0.063	0.4	-0.94	0.303	0.515	1.5	0.039	1.758	2	0.006	2.491
1.1	0.15	0.4	-0.94	0.309	0.500	1.5	0.039	1.762	2	0.006	2.498
1.1	0.5	0.4	-0.94	0.316	0.478	1.5	0.038	1.771	2	0.006	2.503
1.1	1	0.4	-0.94	0.319	0.471	1.5	0.038	1.774	2	0.006	2.504
1.1	0.063	0.05	-0.5	0.293	0.544	1.5	0.030	1.875	2	0.005	2.550
1.1	0.15	0.05	-0.5	0.290	0.553	1.5	0.029	1.900	2	0.005	2.556
1.1	0.5	0.05	-0.5	0.286	0.566	1.5	0.026	1.951	2	0.005	2.574
1.1	1	0.05	-0.5	0.284	0.572	1.5	0.025	1.968	2	0.005	2.577
1.1	0.063	0.1	-0.5	0.292	0.548	1.5	0.029	1.892	2	0.005	2.551
1.1	0.15	0.1	-0.5	0.289	0.557	1.5	0.027	1.928	2	0.005	2.561
1.1	0.5	0.1	-0.5	0.285	0.569	1.5	0.025	1.966	2	0.005	2.576
1.1	1	0.1	-0.5	0.285	0.569	1.5	0.024	1.973	2	0.005	2.579
1.1	0.063	0.25	-0.5	0.302	0.518	1.5	0.032	1.857	2	0.006	2.537
1.1	0.15	0.25	-0.5	0.299	0.527	1.5	0.029	1.892	2	0.005	2.556
1.1	0.5	0.25	-0.5	0.297	0.534	1.5	0.027	1.924	2	0.005	2.565
1.1	1	0.25	-0.5	0.297	0.533	1.5	0.027	1.931	2	0.005	2.568
1.1	0.063	0.4	-0.5	0.329	0.442	1.5	0.050	1.647	2	0.008	2.428
1.1	0.15	0.4	-0.5	0.327	0.447	1.5	0.045	1.693	2	0.007	2.459
1.1	0.5	0.4	-0.5	0.325	0.453	1.5	0.040	1.747	2	0.006	2.489
1.1	1	0.4	-0.5	0.324	0.456	1.5	0.039	1.763	2	0.006	2.501
1.1	0.063	0.05	1E-17	0.302	0.519	1.5	0.033	1.834	2	0.006	2.540
1.1	0.15	0.05	1E-17	0.298	0.529	1.5	0.031	1.871	2	0.005	2.552
1.1	0.5	0.05	1E-17	0.291	0.552	1.5	0.026	1.940	2	0.005	2.573
1.1	1	0.05	1E-17	0.287	0.562	1.5	0.025	1.967	2	0.005	2.580
1.1	0.063	0.1	1E-17	0.300	0.523	1.5	0.031	1.861	2	0.005	2.552
1.1	0.15	0.1	1E-17	0.295	0.539	1.5	0.028	1.909	2	0.005	2.563
1.1	0.5	0.1	1E-17	0.288	0.560	1.5	0.025	1.964	2	0.005	2.580
1.1	1	0.1	1E-17	0.286	0.565	1.5	0.024	1.973	2	0.005	2.581
1.1	0.063	0.25	1E-17	0.309	0.500	1.5	0.034	1.830	2	0.006	2.537

Tabela A -3 – Valores das probabilidades de falha e índices de confiabilidade para o caso III - MDP.

	-	MDP.									
γ	D	α	ρ	<u>Pf</u>	β	γ	<u>Pf</u>	β	γ	P_f	β
1.1	0.15	0.25	1E-17	0.303	0.515	1.5	0.030	1.882	2	0.005	2.554
1.1	0.5	0.25	1E-17	0.299	0.528	1.5	0.027	1.925	2	0.005	2.567
1.1	1	0.25	1E-17	0.298	0.531	1.5	0.027	1.930	2	0.005	2.571
1.1	0.063	0.4	1E-17	0.334	0.428	1.5	0.052	1.626	2	0.008	2.419
1.1	0.15	0.4	1E-17	0.331	0.436	1.5	0.046	1.684	2	0.007	2.452
1.1	0.5	0.4	1E-17	0.327	0.449	1.5	0.041	1.745	2	0.006	2.491
1.1	1	0.4	1E-17	0.325	0.454	1.5	0.039	1.760	2	0.006	2.501
1.1	0.063	0.05	0.5	0.289	0.556	1.5	0.028	1.910	2	0.005	2.574
1.1	0.15	0.05	0.5	0.287	0.563	1.5	0.026	1.935	2	0.005	2.581
1.1	0.5	0.05	0.5	0.283	0.574	1.5	0.024	1.973	2	0.005	2.586
1.1	1	0.05	0.5	0.282	0.577	1.5	0.024	1.983	2	0.005	2.591
1.1	0.063	0.1	0.5	0.289	0.557	1.5	0.027	1.927	2	0.005	2.576
1.1	0.15	0.1	0.5	0.286	0.565	1.5	0.025	1.957	2	0.005	2.584
1.1	0.5	0.1	0.5	0.283	0.574	1.5	0.024	1.982	2	0.005	2.587
1.1	1	0.1	0.5	0.283	0.573	1.5	0.024	1.984	2	0.005	2.583
1.1	0.063	0.25	0.5	0.299	0.527	1.5	0.030	1.884	2	0.005	2.559
1.1	0.15	0.25	0.5	0.297	0.532	1.5	0.028	1.914	2	0.005	2.568
1.1	0.5	0.25	0.5	0.296	0.536	1.5	0.026	1.936	2	0.005	2.569
1.1	1	0.25	0.5	0.296	0.536	1.5	0.026	1.937	2	0.005	2.567
1.1	0.063	0.4	0.5	0.327	0.447	1.5	0.047	1.670	2	0.007	2.453
1.1	0.15	0.4	0.5	0.326	0.452	1.5	0.044	1.711	2	0.007	2.476
1.1	0.5	0.4	0.5	0.324	0.455	1.5	0.040	1.755	2	0.006	2.498
1.1	1	0.4	0.5	0.324	0.457	1.5	0.039	1.768	2	0.006	2.503
1.1	0.063	0.05	0.9	0.248	0.679	1.5	0.020	2.046	2	0.004	2.614
1.1	0.15	0.05	0.9	0.252	0.668	1.5	0.021	2.042	2	0.004	2.612
1.1	0.5	0.05	0.9	0.262	0.637	1.5	0.021	2.024	2	0.005	2.599
1.1	1	0.05	0.9	0.269	0.616	1.5	0.022	2.010	2	0.005	2.595
1.1	0.063	0.1	0.9	0.252	0.667	1.5	0.021	2.041	2	0.005	2.611
1.1	0.15	0.1	0.9	0.259	0.648	1.5	0.021	2.031	2	0.005	2.605
1.1	0.5	0.1	0.9	0.270	0.612	1.5	0.022	2.008	2	0.005	2.596
1.1	1	0.1	0.9	0.276	0.594	1.5	0.023	1.994	2	0.005	2.588
1.1	0.063	0.25	0.9	0.272	0.608	1.5	0.024	1.975	2	0.005	2.592
1.1	0.15	0.25	0.9	0.279	0.587	1.5	0.025	1.967	2	0.005	2.585
1.1	0.5	0.25	0.9	0.288	0.558	1.5	0.026	1.950	2	0.005	2.577
1.1	1	0.25	0.9	0.292	0.547	1.5	0.026	1.942	2	0.005	2.570
1.1	0.063	0.4	0.9	0.307	0.505	1.5	0.040	1.756	2	0.006	2.501
1.1	0.15	0.4	0.9	0.311	0.493	1.5	0.039	1.764	2	0.006	2.501
1.1	0.5	0.4	0.9	0.317	0.476	1.5	0.038	1.774	2	0.006	2.507
1.1	1	0.4	0.9	0.320	0.467	1.5	0.038	1.774	2	0.006	2.505

Continuação Tabela A -3 – Valores das probabilidades de falha e índices de confiabilidade para o caso III -

ANEXO B

|--|

ρ	D (m)	α	γ	μ	σ	λ	γ	μ	σ	λ	γ	μ	σ	λ
-0.95	0.063	0.1	1.1	4404120	540763.2	50.371	1.5	4405486	539443.8	46.704	2	4405140	541794.1	53.665
-0.95	0.063	0.25	1.1	3454035	470227.7	46.642	1.5	3454890	468321.8	47.475	2	3453735	468296.6	45.635
-0.95	0.063	0.4	1.1	2275632	396792.8	46.855	1.5	2276704	396131.1	44.671	2	2275829	396225.3	45.486
-0.95	0.15	0.1	1.1	3983154	489915.3	50.247	1.5	3982958	490435.3	50.822	2	3983255	488919.1	45.513
-0.95	0.15	0.25	1.1	2982282	407364.3	51.734	1.5	2982196	407066.3	53.347	2	2982938	405723.4	48.559
-0.95	0.15	0.4	1.1	1976547	337537	39.038	1.5	1976525	338207.1	40.239	2	1976322	338772.6	44.694
-0.95	0.5	0.1	1.1	3026667	377348.6	53.137	1.5	3027590	378361.4	52.243	2	3024691	375666.6	44.250
-0.95	0.5	0.25	1.1	2094928	285971.6	42.150	1.5	2094837	285748.9	43.738	2	2094259	284666.9	42.736
-0.95	0.5	0.4	1.1	1402760	234141.9	42.752	1.5	1403052	234208.5	41.910	2	1403294	234242	41.019
-0.95	1	0.1	1.1	2389507	300458.4	42.146	1.5	2390207	301248.4	45.705	2	2390301	301188.4	47.415
-0.95	1	0.25	1.1	1595172	218307.6	45.524	1.5	1595869	217689.9	41.938	2	1596040	217774.7	42.504
-0.95	1	0.4	1.1	1072924	176639.2	37.490	1.5	1073381	177119.7	40.701	2	1072709	177019.5	41.295
-0.5	0.063	0.1	1.1	4414150	450557.5	51.713	1.5	4416312	450164	47.674	2	4415011	450508	48.186
-0.5	0.063	0.25	1.1	3463599	407133.8	51.202	1.5	3462759	406659.5	49.989	2	3462465	405352.5	44.069
-0.5	0.063	0.4	1.1	2281960	366300.7	49.521	1.5	2282092	366068.1	46.505	2	2282241	367492.4	49.165
-0.5	0.15	0.1	1.1	3991556	408358.7	46.080	1.5	3993590	408031.8	44.667	2	3993036	409260.4	54.516
-0.5	0.15	0.25	1.1	2988370	349455.9	42.666	1.5	2989404	351498.5	49.138	2	2989385	351655.2	46.818
-0.5	0.15	0.4	1.1	1982066	311845.8	48.115	1.5	1982849	312701	56.837	2	1981527	312096	48.823
-0.5	0.5	0.1	1.1	3032986	314983	45.437	1.5	3033411	315165.9	45.112	2	3033491	314050.1	42.413
-0.5	0.5	0.25	1.1	2099726	247723.1	43.553	1.5	2100459	248261.9	51.750	2	2100469	247281.9	44.272
-0.5	0.5	0.4	1.1	1406694	214491.9	48.985	1.5	1406624	213498.3	42.860	2	1406678	214558.4	45.442
-0.5	1	0.1	1.1	2395134	252702.9	46.039	1.5	2395435	252599.3	44.120	2	2395572	252771.1	43.865

ρ	D (m)	α	γ	μ	σ	λ	γ	μ	σ	λ	γ	μ	σ	λ
-0.5	1	0.25	1.1	1599662	188211	41.657	1.5	1599867	188116.4	40.494	2	1599400	188136.3	41.904
-0.5	1	0.4	1.1	1076022	161214.9	44.930	1.5	1076548	161635.3	46.299	2	1076311	162054.5	48.060
1E-10	0.063	0.25	1.1	3466295	377028.8	58.930	1.5	4419899	404935.2	53.385	2	4419519	404891.6	54.443
1E-10	0.063	0.4	1.1	2283619	354639.7	76.863	1.5	3467658	377049.8	57.027	2	3465305	374945.3	47.472
1E-10	0.15	0.1	1.1	3995678	368131.8	51.359	1.5	2283870	353778.6	67.502	2	2283836	353811.7	69.904
1E-10	0.15	0.25	1.1	2991825	326626.1	54.422	1.5	3994702	367697	47.525	2	3995263	367130.4	47.953
1E-10	0.15	0.4	1.1	1984302	300199.6	55.598	1.5	2992107	326431.2	52.180	2	2991430	326018.8	50.969
1E-10	0.5	0.1	1.1	3036651	287157.3	47.464	1.5	1984613	300831	59.884	2	1984258	300141.6	56.382
1E-10	0.5	0.25	1.1	2102527	231804.4	55.154	1.5	3036008	286466.5	45.919	2	3035785	285858.1	41.301
1E-10	0.5	0.4	1.1	1407917	206796.4	61.502	1.5	2103027	231102.5	49.791	2	2102865	230549.7	46.623
1E-10	1	0.1	1.1	2397833	230996.7	45.377	1.5	1408353	206123.3	54.945	2	1408055	206186.6	54.733
1E-10	1	0.25	1.1	1601193	176099	44.594	1.5	2397826	231054.1	45.744	2	2397959	231780.9	51.338
1E-10	1	0.4	1.1	1076629	155476.3	53.210	1.5	1601353	176532.7	51.437	2	1601509	177090.8	48.815
0.5	0.063	0.1	1.1	4414070	437486.1	50.523	1.5	1076866	155642.2	53.637	2	1076998	155757.6	55.409
0.5	0.063	0.25	1.1	3462683	398596.8	48.437	1.5	4413846	438593.5	50.528	2	4414753	436684.6	45.428
0.5	0.063	0.4	1.1	2281104	363824.3	57.171	1.5	3461537	398622.1	47.889	2	3461371	398137.6	45.715
0.5	0.15	0.1	1.1	3990334	398604.6	51.289	1.5	2280779	363542.2	56.345	2	2281070	362811.2	54.230
0.5	0.15	0.25	1.1	2987810	347024.8	49.896	1.5	3992773	400164.5	52.445	2	3991005	398099.8	45.070
0.5	0.15	0.4	1.1	1982482	309953.4	52.985	1.5	2988473	346080.5	47.241	2	2988365	346046.5	46.035
0.5	0.5	0.1	1.1	3033357	311634.5	45.670	1.5	1981233	308977.9	48.778	2	1981329	309521.6	54.043
0.5	0.5	0.25	1.1	2100060	245884.4	45.865	1.5	3033140	311420.2	48.852	2	3031827	311196.2	46.712
0.5	0.5	0.4	1.1	1406504	213318.5	50.920	1.5	2100276	246112.9	45.628	2	2099951	245628.7	47.869
0.5	1	0.1	1.1	2395061	250923.8	47.780	1.5	1406887	213583.7	48.860	2	1406514	213203.2	43.937

Continuação Tabela B -1 – Valores dos momentos estatísticos das tensões nominais caso I – *EE*,. distribuição *t-Student*.

ρ	D (m)	α	γ	μ	σ	λ	γ	μ	σ	λ	γ	μ	σ	λ
0.5	1	0.25	1.1	1599767	187515.2	40.947	1.5	2395984	250184.8	42.252	2	2395779	250774.5	46.998
0.5	1	0.4	1.1	1076279	161948.6	49.596	1.5	1599897	187703.4	40.155	2	1599459	187474.4	41.772
0.9	0.063	0.1	1.1	4404806	518466.9	47.785	1.5	1075746	161167.1	44.041	2	1076276	160946.2	48.113
0.9	0.063	0.25	1.1	3455256	453924.8	45.000	1.5	4406749	519562.1	50.678	2	4406346	518409.2	48.417
0.9	0.063	0.4	1.1	2275012	389115.3	44.329	1.5	3455382	456389.6	51.873	2	3454571	455338.4	48.609
0.9	0.15	0.1	1.1	3983623	473150.5	49.521	1.5	2275704	390140.8	48.102	2	2276007	389788.5	44.976
0.9	0.15	0.25	1.1	2982623	394369	47.373	1.5	3983024	472576.5	51.409	2	3982248	471372.9	44.727
0.9	0.15	0.4	1.1	1977149	333069.1	49.395	1.5	2982404	394403.5	45.437	2	2983041	393774.8	42.308
0.9	0.5	0.1	1.1	3027007	366558.8	49.056	1.5	1976937	332973.2	43.326	2	1978096	332984.1	42.541
0.9	0.5	0.25	1.1	2095684	278892.3	46.280	1.5	3026644	366514.6	50.433	2	3026832	365684.9	46.131
0.9	0.5	0.4	1.1	1403069	230221.6	42.463	1.5	2096696	279399.5	47.205	2	2096044	279115.2	44.021
0.9	1	0.1	1.1	2390594	293330.4	48.771	1.5	1402786	230411.3	42.028	2	1403079	230394	42.199
0.9	1	0.25	1.1	1596315	213116.8	41.556	1.5	2390516	293239	45.238	2	2391132	292676.3	46.774
0.9	1	0.4	1.1	1072885	174490.8	39.877	1.5	1596088	213101.2	44.451	2	1596152	213800.3	50.112
							1.5	1072864	174712.2	42.628	2	1072907	174858.8	41.861

Continuação Tabela B -1 – Valores dos momentos estatísticos das tensões nominais caso I – *EEB*, distribuição *t-Student*.
ρ	D (m)	α	γ	μ	σ	λ	γ	μ	σ	λ	γ	μ	σ	λ
-0.95	0.063	0.1	1.1	4887562	660499.1	20.506	1.5	4888185	662251.3	20.891	2	4888809	663522.1	21.649
-0.95	0.063	0.25	1.1	3790006	557121.1	22.788	1.5	3791430	558324.6	23.084	2	3791349	557898.8	23.126
-0.95	0.063	0.4	1.1	2499262	455289	24.035	1.5	2500609	454216.1	22.740	2	2500731	453318.4	22.363
-0.95	0.15	0.1	1.1	4332889	591477.7	26.470	1.5	4334189	590060.4	25.408	2	4333823	592195.1	27.049
-0.95	0.15	0.25	1.1	3192122	473011.4	27.254	1.5	3193089	471361.9	27.647	2	3191897	471283.9	26.893
-0.95	0.15	0.4	1.1	2121264	380198.3	27.168	1.5	2122275	379484.3	26.343	2	2121466	379573.1	26.491
-0.95	0.5	0.1	1.1	3176371	439253.6	33.585	1.5	3176051	439540.5	33.198	2	3176152	438109	30.213
-0.95	0.5	0.25	1.1	2167954	323172.3	35.842	1.5	2167922	322837.1	36.276	2	2168526	321918	34.199
-0.95	0.5	0.4	1.1	1453321	254591.9	29.072	1.5	1453339	255076.2	29.715	2	1453224	255478.8	31.909
-0.95	1	0.1	1.1	2464960	343976.1	38.490	1.5	2465871	344828.6	37.681	2	2463137	342324.7	33.342
-0.95	1	0.25	1.1	1629017	242309	33.458	1.5	1629042	242152.1	34.698	2	1628507	241252.9	34.048
-0.95	1	0.4	1.1	1096424	191212.1	33.407	1.5	1096693	191343.4	33.237	2	1096892	191295.4	32.173
-0.5	0.063	0.1	1.1	4878817	795810.1	25.776	1.5	4877119	795812.9	27.213	2	4876023	796027	27.495
-0.5	0.063	0.25	1.1	3779848	626142.3	28.196	1.5	3779568	624918.6	27.118	2	3780460	626121.9	27.730
-0.5	0.063	0.4	1.1	2493255	492659.3	25.743	1.5	2493446	491141.1	24.249	2	2492050	491291.7	24.665
-0.5	0.15	0.1	1.1	4320026	650128.9	33.447	1.5	4323647	651345.9	33.393	2	4321030	651169.3	33.213
-0.5	0.15	0.25	1.1	3185241	485287.2	34.718	1.5	3184528	484478.9	32.584	2	3184043	483535.4	31.270
-0.5	0.15	0.4	1.1	2116248	389060.9	31.371	1.5	2116033	388591.4	29.324	2	2116126	389732.5	29.765
-0.5	0.5	0.1	1.1	3170163	418237.9	35.682	1.5	3171778	417588.7	34.826	2	3171612	419717.1	43.735
-0.5	0.5	0.25	1.1	2165666	293704.3	33.363	1.5	2166694	295555.9	37.894	2	2166847	295763.3	36.449
-0.5	0.5	0.4	1.1	1452869	242141.1	36.298	1.5	1453730	242604.3	40.077	2	1452483	242188	36.050
-0.5	1	0.1	1.1	2463510	307066.3	36.735	1.5	2464052	307726.3	37.271	2	2464038	306589.3	35.701
-0.5	1	0.25	1.1	1630232	214300.5	35.710	1.5	1630916	214834.5	41.229	2	1630922	214042.5	36.826

Tabela B -2 – Valores dos momentos estatísticos das tensões nominais para o caso II *EEB*, distribuição *t-Student*.

ρ	D (m)	α	γ	μ	σ	λ	γ	μ	σ	λ	γ	μ	σ	λ
-0.5	1	0.4	1.1	1097714	176374.1	38.452	1.5	1097612	175545.3	34.291	2	1097653	176326	35.392
1E-10	0.063	0.1	1.1	4869980	678703.4	32.179	1.5	4867818	677516.2	31.710	2	4870659	677810.9	31.042
1E-10	0.063	0.25	1.1	3772786	542452	34.792	1.5	3773910	541609	32.540	2	3774060	540934.1	33.719
1E-10	0.063	0.4	1.1	2490071	447961.6	31.738	1.5	2489485	448295.9	32.562	2	2489217	446873.8	30.570
1E-10	0.15	0.1	1.1	4313569	545228.9	37.236	1.5	4312706	547128.6	40.210	2	4312796	546146.1	37.139
1E-10	0.15	0.25	1.1	3180338	416251	40.048	1.5	3179430	417499.1	40.393	2	3179578	414735.9	34.658
1E-10	0.15	0.4	1.1	2113031	354416.6	42.177	1.5	2113517	353791	44.366	2	2112463	352845.3	38.719
1E-10	0.5	0.1	1.1	3167967	351326	42.578	1.5	3166597	350890.6	39.447	2	3167266	351748.1	41.407
1E-10	0.5	0.25	1.1	2165635	259549.2	41.832	1.5	2165133	259287.1	41.555	2	2165848	258950.1	38.752
1E-10	0.5	0.4	1.1	1452675	222860.7	46.774	1.5	1452680	223191.2	46.337	2	1453248	223431.3	47.973
1E-10	1	0.1	1.1	2462988	263663.5	38.768	1.5	2462842	262878.1	35.878	2	2463201	263852.7	39.563
1E-10	1	0.25	1.1	1630370	191544.8	41.331	1.5	1631212	191766.3	40.575	2	1631597	191966.3	42.487
1E-10	1	0.4	1.1	1097841	163866.8	42.235	1.5	1098074	164279.7	42.969	2	1098068	164227.3	44.989
0.5	0.063	0.1	1.1	4845217	516122.3	45.373	1.5	4846348	516557.7	45.534	2	4845650	515102.8	41.632
0.5	0.063	0.25	1.1	3758536	445020.3	43.054	1.5	3758328	446465.6	47.483	2	3759128	445413.7	45.441
0.5	0.063	0.4	1.1	2479045	400305.5	55.168	1.5	2480464	399315.2	49.890	2	2479639	398038.2	44.302
0.5	0.15	0.1	1.1	4296770	439521.5	50.217	1.5	4297519	439147.6	45.226	2	4297136	439601	46.118
0.5	0.15	0.25	1.1	3171383	367265.7	43.651	1.5	3170016	366723.2	43.096	2	3171029	366634	41.325
0.5	0.15	0.4	1.1	2106714	326303.6	48.217	1.5	2107841	327907.9	52.687	2	2107279	327071.4	45.674
0.5	0.5	0.1	1.1	3160172	325350.5	44.056	1.5	3160267	325690	47.060	2	3160749	325715	42.130
0.5	0.5	0.25	1.1	2162258	255234.2	41.940	1.5	2162266	254884.6	40.084	2	2161893	255484.7	42.663
0.5	0.5	0.4	1.1	1449615	219361.7	43.118	1.5	1449865	219718.8	46.540	2	1450082	219701.5	43.161
0.5	1	0.1	1.1	2458834	263016.4	45.653	1.5	2458671	262078.3	38.838	2	2459805	262762.8	44.279

Continuação Tabela B -2 – Valores dos momentos estatísticos das tensões nominais para o caso II *EEB*, distribuição *t-Student*.

ρ	D (m)	α	γ	μ	σ	λ	γ	μ	σ	λ	γ	μ	σ	λ
0.5	1	0.25	1.1	1628747	196709.8	40.589	1.5	1629297	196690	43.372	2	1628809	196341.2	40.317
0.5	1	0.4	1.1	1096353	165902.6	38.617	1.5	1096655	166272	40.354	2	1096221	166000.6	40.176
0.9	0.063	0.1	1.1	4848772	521131	37.350	1.5	4847406	520916.5	38.623	2	4847858	521029.5	38.540
0.9	0.063	0.25	1.1	3762331	467652.8	40.408	1.5	3762336	467380.3	39.549	2	3762836	467982.1	43.441
0.9	0.063	0.4	1.1	2481901	407299.1	40.272	1.5	2482905	409520.5	44.635	2	2482888	408240.9	39.350
0.9	0.15	0.1	1.1	4305294	483180.3	41.381	1.5	4302105	481472.2	40.642	2	4304228	482132.5	37.625
0.9	0.15	0.25	1.1	3175370	410174.9	39.427	1.5	3173697	408844.4	36.756	2	3174899	410236.5	39.693
0.9	0.15	0.4	1.1	2109431	347218.8	40.193	1.5	2108726	346547.3	39.067	2	2108843	347207.4	38.473
0.9	0.5	0.1	1.1	3163622	385135.9	38.136	1.5	3164724	385177.8	38.049	2	3163710	385288.3	38.331
0.9	0.5	0.25	1.1	2162013	294749.3	37.188	1.5	2162366	295943.2	41.910	2	2162195	294609	35.676
0.9	0.5	0.4	1.1	1449950	240288.9	36.681	1.5	1450080	240302.7	36.464	2	1450802	240429.5	34.051
0.9	1	0.1	1.1	2458508	311874.2	38.020	1.5	2458948	311822.6	35.345	2	2459379	313117.2	38.822
0.9	1	0.25	1.1	1627633	226105.9	34.000	1.5	1627144	226345.7	35.783	2	1627335	226435.5	35.722
0.9	1	0.4	1.1	1095414	182764.1	36.916	1.5	1095050	182308.1	37.587	2	1094903	182678.4	37.184

Continuação Tabela B -2 – Valores dos momentos estatísticos das tensões nominais para o caso II *EEB*, distribuição *t-Student*.

ρ	D (m)	α	γ	μ	σ	λ	γ	μ	σ	λ	γ	μ	σ	λ
-0.94	0.063	0.1	1.1	4835746	543489.5	4.852	1.5	4836927	543979.9	4.898	2	4835529	546959.1	4.946
-0.94	0.063	0.25	1.1	3726726	474408	5.811	1.5	3724886	475380.9	5.843	2	3726306	476651.1	5.963
-0.94	0.063	0.4	1.1	2454333	417723.8	8.987	1.5	2453993	418479.8	9.054	2	2453973	418497.4	9.002
-0.94	0.15	0.1	1.1	4253950	474567.7	4.918	1.5	4251467	474280.6	4.843	2	4252679	473905.3	4.880
-0.94	0.15	0.25	1.1	3110221	392307.3	5.785	1.5	3109695	393302.9	5.890	2	3109946	392609.9	5.734
-0.94	0.15	0.4	1.1	2062332	341583.2	8.644	1.5	2061455	342627.8	9.034	2	2062313	342444	8.861
-0.94	0.5	0.1	1.1	3076247	344285.5	4.906	1.5	3075846	345085.2	4.995	2	3076314	345826.3	5.013
-0.94	0.5	0.25	1.1	2086455	262097.3	5.812	1.5	2086107	262141.8	5.811	2	2087943	261577.7	5.817
-0.94	0.5	0.4	1.1	1396847	223892.4	8.414	1.5	1396903	223665.1	8.385	2	1396973	224344	8.581
-0.94	1	0.1	1.1	2372837	268012.4	5.004	1.5	2373193	268260.7	5.030	2	2373441	268841.2	5.068
-0.94	1	0.25	1.1	1561788	196468.2	5.874	1.5	1561330	196251.6	5.806	2	1561400	196420.4	5.823
-0.94	1	0.4	1.1	1048572	166355.9	8.314	1.5	1049258	166401.8	8.401	2	1049584	165824.1	8.160
-0.5	0.063	0.1	1.1	4789667	690635.3	6.877	1.5	4793343	690117.1	6.897	2	4792077	689666.7	6.853
-0.5	0.063	0.25	1.1	3694067	551981.6	7.280	1.5	3696511	550684.5	7.217	2	3695902	553014.5	7.332
-0.5	0.063	0.4	1.1	2434120	457300.6	10.440	1.5	2435649	456717.7	10.224	2	2434012	456260.9	10.198
-0.5	0.15	0.1	1.1	4216171	556692.3	6.224	1.5	4217115	556403.9	6.175	2	4216039	557242.4	6.177
-0.5	0.15	0.25	1.1	3087701	425881.9	6.598	1.5	3087383	425958.7	6.604	2	3085973	425766.5	6.608
-0.5	0.15	0.4	1.1	2047906	359402.6	9.506	1.5	2047855	358353.6	9.400	2	2047266	358545.2	9.347
-0.5	0.5	0.1	1.1	3058489	362095.2	5.351	1.5	3059280	363067.1	5.354	2	3059107	362707.2	5.367
-0.5	0.5	0.25	1.1	2078256	266562.9	6.008	1.5	2078679	266184.4	5.953	2	2077904	266285.2	5.948
-0.5	0.5	0.4	1.1	1391373	226206	8.474	1.5	1391473	226612	8.643	2	1391540	226507.9	8.698
-0.5	1	0.1	1.1	2364474	273510.7	5.216	1.5	2363713	272820.3	5.117	2	2365729	273548.4	5.200
-0.5	1	0.25	1.1	1557843	197763.9	5.973	1.5	1558107	196701.3	5.815	2	1558514	196842.9	5.867

Tabela B -3 – Valores dos momentos estatísticos das tensões nominais caso III – MDP, distribuição t-Student.

ρ	D (m)	α	γ	μ	σ	λ	γ	μ	σ	λ	γ	μ	σ	λ
-0.5	1	0.4	1.1	1046500	166808.2	8.453	1.5	1046634	166779.5	8.295	2	1047036	166235.9	8.216
1E-10	0.063	0.1	1.1	4786972	722613.2	7.370	1.5	4786244	726022.9	7.595	2	4786703	727353.2	7.528
1E-10	0.063	0.25	1.1	3690676	571225	7.724	1.5	3691448	570685	7.684	2	3692536	572520.3	7.806
1E-10	0.063	0.4	1.1	2434085	465910.4	10.724	1.5	2433119	466095.3	10.636	2	2432950	467362	10.796
1E-10	0.15	0.1	1.1	4211462	575091.2	6.471	1.5	4211894	575816.1	6.560	2	4208880	575573.2	6.582
1E-10	0.15	0.25	1.1	3081895	434357.3	6.942	1.5	3082388	434441.9	6.962	2	3084243	433673.2	6.935
1E-10	0.15	0.4	1.1	2046029	362756.2	9.808	1.5	2046581	363012.4	9.738	2	2045722	362985.9	9.766
1E-10	0.5	0.1	1.1	3055119	365694.2	5.438	1.5	3055821	365289.8	5.454	2	3054887	365467	5.450
1E-10	0.5	0.25	1.1	2076646	266764.2	6.003	1.5	2075490	266816.5	6.100	2	2076507	266876.2	6.058
1E-10	0.5	0.4	1.1	1390085	226203.9	8.674	1.5	1390021	226033.9	8.568	2	1390227	226153.6	8.623
1E-10	1	0.1	1.1	2362157	273991.8	5.281	1.5	2361592	272608.1	5.198	2	2362156	273907.1	5.213
1E-10	1	0.25	1.1	1557294	196365.3	5.871	1.5	1557637	196757.6	5.948	2	1556787	197011.6	5.925
1E-10	1	0.4	1.1	1045675	166346.5	8.350	1.5	1045929	166353.7	8.253	2	1045949	166511.9	8.398
0.5	0.063	0.1	1.1	4787504	667275.1	6.843	1.5	4789047	668177	6.738	2	4788319	666714.8	6.775
0.5	0.063	0.25	1.1	3692653	535888.7	7.115	1.5	3693600	537483.5	7.192	2	3693275	536501	7.198
0.5	0.063	0.4	1.1	2432993	447580.4	10.265	1.5	2433764	448504.4	10.235	2	2433740	448196.1	10.285
0.5	0.15	0.1	1.1	4213144	538087.5	6.028	1.5	4214252	539049.1	6.032	2	4214480	538643.7	6.099
0.5	0.15	0.25	1.1	3086564	416534	6.555	1.5	3087028	416191.1	6.504	2	3085964	416354.4	6.613
0.5	0.15	0.4	1.1	2047805	353185.3	9.269	1.5	2047024	353388.8	9.396	2	2046571	354057.4	9.372
0.5	0.5	0.1	1.1	3058141	355486.2	5.288	1.5	3057755	354649.5	5.274	2	3058270	354508.9	5.187
0.5	0.5	0.25	1.1	2077639	263347.3	5.967	1.5	2078918	264046.3	5.916	2	2077897	263099.4	5.971

Continuação B - 3 – Valores dos momentos estatísticos das tensões nominais caso III – *MDP*, distribuição *t-Student*.

ρ	D (m)	α	γ	μ	σ	λ	γ	μ	σ	λ	γ	μ	σ	λ
0.5	0.5	0.4	1.1	1391093	223974.3	8.317	1.5	1390752	223884.7	8.374	2	1391130	224686	8.519
0.5	1	0.1	1.1	2363675	269795	5.192	1.5	2363775	269566.8	5.143	2	2364008	269199.1	5.117
0.5	1	0.25	1.1	1558567	195588.5	5.908	1.5	1557730	195324	5.829	2	1557810	195429.3	5.873
0.5	1	0.4	1.1	1046529	165569.4	8.245	1.5	1046904	165860.4	8.292	2	1046554	165770.2	8.235
0.9	0.063	0.1	1.1	4821522	542800.8	5.043	1.5	4821551	542525.5	5.089	2	4821736	541786.1	5.061
0.9	0.063	0.25	1.1	3716442	471996.3	5.977	1.5	3717054	471543.9	5.994	2	3717655	471541	5.930
0.9	0.063	0.4	1.1	2448012	415481.7	9.122	1.5	2448047	415944.8	9.090	2	2446618	415899.6	9.193
0.9	0.15	0.1	1.1	4241508	468089.6	4.882	1.5	4242042	469331.1	4.909	2	4243377	468328.1	4.932
0.9	0.15	0.25	1.1	3104075	388890.3	5.874	1.5	3104136	388855.4	5.886	2	3104269	387724.8	5.782
0.9	0.15	0.4	1.1	2057702	339272.5	8.827	1.5	2057742	338922.7	8.811	2	2058705	339087.3	8.755
0.9	0.5	0.1	1.1	3072218	341557.8	4.907	1.5	3072009	341587.6	4.976	2	3072788	340992.8	4.924
0.9	0.5	0.25	1.1	2084402	260380.4	5.813	1.5	2084633	260346.5	5.842	2	2085340	260301.9	5.882
0.9	0.5	0.4	1.1	1395219	222968.1	8.424	1.5	1396236	222548.3	8.352	2	1394969	222842.2	8.440
0.9	1	0.1	1.1	2370729	266683	4.960	1.5	2371361	265972.6	4.974	2	2371482	266068	5.017
0.9	1	0.25	1.1	1560789	194882.5	5.771	1.5	1561125	195102.7	5.825	2	1560604	195613.6	5.903
0.9	1	0.4	1.1	1048721	165589.2	8.204	1.5	1048422	165396.8	8.146	2	1048386	165965.6	8.243

Continuação B -3 – Valores dos momentos estatísticos das tensões nominais caso III – *MDP*, distribuição *t-Student*.

ANEXO C

ρ	D (m)	α	γ	μ	σ	λ	γ	μ	σ	λ	γ	μ	σ	λ
-0.95	0.063	0.1	1.1	365058.4	675199	79.39	1.5	1443760	617318.9	71.623	2	2183117	586104.1	66.847
-0.95	0.063	0.25	1.1	288747.8	567594.6	67.08	1.5	1133273	523661.4	64.970	2	1712538	500400.5	52.969
-0.95	0.063	0.4	1.1	198535.9	448352.4	64.54	1.5	753486.6	425260.3	55.454	2	1133476	412793.2	52.356
-0.95	0.15	0.1	1.1	331689.5	611174.6	74.47	1.5	1305819	559238.3	70.249	2	1975261	529257.6	56.824
-0.95	0.15	0.25	1.1	251168.9	491048.5	80.90	1.5	979942.1	454681.5	81.071	2	1481283	433010.2	58.479
-0.95	0.15	0.4	1.1	172053.2	383630.5	55.85	1.5	652981.4	363392.8	46.778	2	983413.3	353113.7	48.903
-0.95	0.5	0.1	1.1	255924.5	467677.7	80.94	1.5	995164.5	429651.6	69.859	2	1500491	406240.3	54.692
-0.95	0.5	0.25	1.1	178456.6	344428.4	60.87	1.5	689353.4	318730.6	58.847	2	1039961	304351.7	52.995
-0.95	0.5	0.4	1.1	122216.7	266871.8	59.04	1.5	463780.4	253088.2	55.766	2	698591.4	244713.2	45.562
-0.95	1	0.1	1.1	202964.1	372499.5	70.66	1.5	786501.9	341558.6	59.287	2	1187500	324628.7	60.503
-0.95	1	0.25	1.1	135216.2	262725.6	64.61	1.5	525332.9	243210.8	57.536	2	793142.3	232541.5	52.767
-0.95	1	0.4	1.1	93203.61	202330.1	53.46	1.5	354901.4	191664	53.659	2	533664.2	185265	46.766
-0.5	0.063	0.1	1.1	376137.4	604997.5	78.53	1.5	1454808	540288	78.376	2	2193718	502980.8	64.570
-0.5	0.063	0.25	1.1	297757.1	516790	91.51	1.5	1140822	468130.5	66.400	2	1721242	442202.2	57.019
-0.5	0.063	0.4	1.1	204671.7	422856.6	91.79	1.5	758864.2	396444.3	54.750	2	1139525	385248	56.565
-0.5	0.15	0.1	1.1	341311.7	547606.3	77.05	1.5	1316908	487945.2	66.347	2	1985189	456243	73.001
-0.5	0.15	0.25	1.1	257321.2	443731	74.75	1.5	986078.4	405273.1	70.760	2	1487346	383531.9	63.881
-0.5	0.15	0.4	1.1	177103.4	360820.5	65.66	1.5	659001.4	339417.8	69.106	2	988550.2	328150.8	57.785
-0.5	0.5	0.1	1.1	262228.5	419151.9	78.94	1.5	1001634	375720.3	70.280	2	1509879	349204.4	51.817
-0.5	0.5	0.25	1.1	182699	314017	80.53	1.5	694581.4	285917	70.333	2	1046295	269693.8	61.326
-0.5	0.5	0.4	1.1	125690.2	249986.8	69.05	1.5	466876.8	233626.2	54.081	2	702020.8	226064.9	51.587
-0.5	1	0.1	1.1	208618.6	334045.3	75.56	1.5	792519.8	300235.1	76.266	2	1193088	279823	53.969

Tabela C -1 – Valores dos momentos estatísticos das equações de desempenho caso I – *EEB*, distribuição *t-Student*.

ρ	D (m)	α	γ	μ	σ	λ	γ	μ	σ	λ	γ	μ	σ	λ
-0.5	1	0.25	1.1	140182.5	238319.1	63.53	1.5	529537.3	217129.2	61.528	2	796651.3	204769.9	53.171
-0.5	1	0.4	1.1	96080.23	189122.5	66.69	1.5	357929.7	177159.3	61.725	2	537217.4	170749.7	53.892
1E-10	0.063	0.1	1.1	380077	571229.6	89.68	1.5	1457645	501804.7	87.240	2	2197666	462120.2	72.733
1E-10	0.063	0.25	1.1	299957.5	491178.2	83.31	1.5	1146314	443339.3	87.910	2	1724050	414101.7	60.782
1E-10	0.063	0.4	1.1	206284.7	410274.2	97.88	1.5	760540.8	385215.5	78.121	2	1140984	371603.2	77.396
1E-10	0.15	0.1	1.1	345321.7	517039.2	77.77	1.5	1317303	455163.1	75.499	2	1987168	417784.4	62.286
1E-10	0.15	0.25	1.1	260643.3	425647.4	83.96	1.5	989202.7	383120.7	75.542	2	1488966	359235.3	63.450
1E-10	0.15	0.4	1.1	179425.3	350885.6	82.83	1.5	660839.2	329270	79.214	2	991307.7	317077.1	70.852
1E-10	0.5	0.1	1.1	266003.6	397973	79.96	1.5	1004641	351711.6	79.991	2	1512184	324336.6	56.376
1E-10	0.5	0.25	1.1	185797.5	300962.3	96.47	1.5	697122.8	270907	67.831	2	1048810	254104.9	64.657
1E-10	0.5	0.4	1.1	126780.6	243724.6	87.84	1.5	468839.8	226695.3	71.955	2	703261.5	217884.6	62.427
1E-10	1	0.1	1.1	211657.9	317866.7	81.32	1.5	794102.4	281060	65.481	2	1195293	261656.1	76.816
1E-10	1	0.25	1.1	141615.6	228508.2	69.27	1.5	531043.5	206401.1	74.924	2	798828.3	194874.5	65.130
1E-10	1	0.4	1.1	96528	183916.4	77.45	1.5	358146.7	171586.5	67.025	2	537895.1	164981.9	69.219
0.5	0.063	0.1	1.1	374580.1	594603.6	76.72	1.5	1451765	529969.6	72.388	2	2193726	490913.4	63.443
0.5	0.063	0.25	1.1	297186.3	510739.8	93.50	1.5	1140202	461835.8	70.063	2	1720509	435252.5	61.224
0.5	0.063	0.4	1.1	204577.7	418160.7	69.42	1.5	757154.1	394453.6	69.385	2	1138180	380773	63.724
0.5	0.15	0.1	1.1	339444.1	540763.7	85.71	1.5	1314966	482422.5	86.433	2	1983234	447487.8	67.536
0.5	0.15	0.25	1.1	256680.1	441646.8	79.77	1.5	985673.9	400845.3	69.641	2	1486486	377745.6	61.866
0.5	0.15	0.4	1.1	177431.8	359354.5	81.50	1.5	657666.2	336921.4	65.801	2	988258.3	325326.2	63.111
0.5	0.5	0.1	1.1	262840.9	415625.4	67.27	1.5	1001260	372170	76.079	2	1508029	347240.1	64.706

Continuação Tabela C -1 – Valores dos momentos estatísticos das equações de desempenho caso I – EEB, distribuição t-Student.

ρ	D (m)	α	γ	μ	σ	λ	γ	μ	σ	λ	γ	μ	σ	λ
0.5	0.5	0.25	1.1	183276	312314	78.78	1.5	694824.3	284041.4	67.930	2	1045489	268040.6	66.994
0.5	0.5	0.4	1.1	125187.2	249338.8	72.58	1.5	467365.4	233943.1	66.978	2	701762	224730.3	51.280
0.5	1	0.1	1.1	208642.7	332602.6	73.38	1.5	792507.9	298166.6	68.484	2	1193568	278629.4	64.392
0.5	1	0.25	1.1	140484.2	237579.3	60.60	1.5	529618.6	216396.2	56.688	2	796701.2	204342	52.291
0.5	1	0.4	1.1	96269.44	189484.1	75.61	1.5	357003.4	176839.5	59.313	2	537269.8	169859.8	55.459
0.9	0.063	0.1	1.1	365638.3	657620.2	76.27	1.5	1445179	598538	69.783	2	2184629	565045.4	62.431
0.9	0.063	0.25	1.1	290407.8	553429.8	69.29	1.5	1133818	512678.6	66.989	2	1712799	487528.6	55.965
0.9	0.063	0.4	1.1	197792.4	441493.4	62.80	1.5	752483.5	419896.6	62.712	2	1133434	406174.8	51.007
0.9	0.15	0.1	1.1	333100.8	598525.6	89.71	1.5	1305661	543127.4	72.023	2	1974241	513913.3	61.294
0.9	0.15	0.25	1.1	251730.6	479980.1	72.97	1.5	979389.8	442364.6	56.240	2	1480833	422030.2	50.799
0.9	0.15	0.4	1.1	171666	379218.8	69.38	1.5	653369.9	358826.5	53.379	2	985377	347582.9	47.188
0.9	0.5	0.1	1.1	256469	458761.4	68.31	1.5	994640.5	419631.5	73.527	2	1502914	397003.6	59.014
0.9	0.5	0.25	1.1	178397.9	338898.6	74.07	1.5	691201.6	312821.8	60.106	2	1041752	299083.3	54.335
0.9	0.5	0.4	1.1	122233.7	264355.6	61.34	1.5	463255	248912.5	50.617	2	698540.4	241184.9	48.424
0.9	1	0.1	1.1	203539.7	366065.4	84.34	1.5	787274.7	334479	61.561	2	1188282	316830.5	56.318
0.9	1	0.25	1.1	136975.9	259017.9	73.81	1.5	525846.5	239282.5	65.835	2	793183.3	228647.6	59.658
0.9	1	0.4	1.1	92939.76	200394.1	55.10	1.5	354230.3	189217.7	52.829	2	533791.2	183192.6	47.818

Continuação Tabela C -1 – Valores dos momentos estatísticos das equações de desempenho caso I – *EEB*, distribuição *t-Student*.

ρ	D (m)	α	γ	μ	σ	λ	γ	μ	σ	λ	γ	μ	σ	λ
-0.95	0.063	0.1	1.1	505666.9	795512.3	31.470	1.5	1671917	736074	25.716	2	2477478	707976	25.355
-0.95	0.063	0.25	1.1	383663.8	655493.2	34.482	1.5	1292510	613018.6	28.336	2	1916910	589323.9	26.538
-0.95	0.063	0.4	1.1	259805.1	508101	30.655	1.5	858346.6	484441.7	27.016	2	1268892	470676.4	24.945
-0.95	0.15	0.1	1.1	429483.5	710617.1	40.474	1.5	1471813	658514.9	34.568	2	2185909	630925.6	31.734
-0.95	0.15	0.25	1.1	307536	555662.5	38.665	1.5	1077218	518102.8	35.608	2	1604826	498316.5	30.692
-0.95	0.15	0.4	1.1	210819.6	426486.5	36.291	1.5	721134.5	405540.7	31.547	2	1070592	394465.7	29.758
-0.95	0.5	0.1	1.1	293066.4	526525.3	49.946	1.5	1062053	488614.4	43.486	2	1590444	466707.6	35.697
-0.95	0.5	0.25	1.1	194811.5	379605.9	54.499	1.5	721294.9	354724.6	49.722	2	1083500	340078.6	39.719
-0.95	0.5	0.4	1.1	133315.8	287672.5	40.664	1.5	485071.5	273058.4	34.348	2	726799.2	265712.6	34.769
-0.95	1	0.1	1.1	220450.1	410936	58.244	1.5	819380.4	382469.8	48.289	2	1228322	364667.1	39.360
-0.95	1	0.25	1.1	142403.9	284651.4	47.276	1.5	538760.1	265887	44.670	2	810619.7	255384.1	40.418
-0.95	1	0.4	1.1	97629.04	215832.3	45.000	1.5	364050.1	205525.9	42.264	2	547194.5	199152.2	35.416
-0.5	0.063	0.1	1.1	494497.3	911178.8	37.058	1.5	1660358	860998.2	34.014	2	2462729	832326.7	31.027
-0.5	0.063	0.25	1.1	371892	714834.8	39.186	1.5	1280821	674772.1	33.519	2	1905550	653248	29.937
-0.5	0.063	0.4	1.1	254002.5	542258.9	31.562	1.5	851126.1	519032.7	28.165	2	1260036	506610	26.437
-0.5	0.15	0.1	1.1	415912	761768.3	51.281	1.5	1459911	713543.1	43.443	2	2172889	686769.2	38.723
-0.5	0.15	0.25	1.1	299362.1	566336.4	52.267	1.5	1067700	528756.7	38.909	2	1596476	509747	35.851
-0.5	0.15	0.4	1.1	205575.8	435714.5	48.206	1.5	714700.3	413106.2	33.275	2	1064838	404203.1	32.963
-0.5	0.5	0.1	1.1	287314.8	509109	56.308	1.5	1057676	468621.5	46.900	2	1585591	449147	52.577
-0.5	0.5	0.25	1.1	192414.5	354425.2	53.369	1.5	719132.4	329750.6	50.208	2	1081456	315852.5	45.135
-0.5	0.5	0.4	1.1	132403.2	276329	48.615	1.5	485229.3	261281.1	48.854	2	725988.2	253333.6	41.229
-0.5	1	0.1	1.1	218823	380821.4	61.466	1.5	817932.8	349825	52.491	2	1229560	330815.8	41.818
-0.5	1	0.25	1.1	143194	261787.4	62.567	1.5	540298	241534.7	53.740	2	813118.9	229866.8	47.477

Tabela C -2 – Valores dos momentos estatísticos das equações de desempenho caso II – EEB, distribuição t-Student.

ρ	D (m)	α	γ	μ	σ	λ	γ	μ	σ	λ	γ	μ	σ	λ
-0.5	1	0.4	1.1	98534.59	202877.7	52.550	1.5	364592.4	190552.8	42.145	2	547993.3	184913.7	39.767
1E-10	0.063	0.1	1.1	482762.3	810728.1	48.809	1.5	1650622	753236.2	44.269	2	2457288	720796.1	36.476
1E-10	0.063	0.25	1.1	364934.6	641582.5	52.472	1.5	1274114	598666.2	44.229	2	1898988	573243.2	37.730
1E-10	0.063	0.4	1.1	250762.4	501715.2	42.812	1.5	846692.9	478640.5	38.862	2	1256876	463635.9	32.884
1E-10	0.15	0.1	1.1	408769.5	672841	61.249	1.5	1449273	619854	59.650	2	2164305	587909	45.756
1E-10	0.15	0.25	1.1	294468.5	507887	65.902	1.5	1062611	469391.1	56.801	2	1591996	445294.8	42.656
1E-10	0.15	0.4	1.1	201880.8	404179	64.544	1.5	711784.3	381291.5	56.376	2	1061057	368070	42.769
1E-10	0.5	0.1	1.1	284750.5	454894.2	73.699	1.5	1051945	410855.5	62.457	2	1581107	386700.7	55.732
1E-10	0.5	0.25	1.1	192057.5	326807.5	72.242	1.5	718341.3	298211.9	66.359	2	1080851	281314.6	49.614
1E-10	0.5	0.4	1.1	131774.5	259919.4	71.367	1.5	483867	243786.8	62.808	2	726555.7	235315.7	54.080
1E-10	1	0.1	1.1	218358.6	346504.3	66.647	1.5	817505.3	310519.3	53.316	2	1228884	291946.5	50.357
1E-10	1	0.25	1.1	143364.4	243507.6	73.632	1.5	540662.9	220642.8	50.909	2	813654	208773.7	51.637
1E-10	1	0.4	1.1	98487.17	192299.8	64.449	1.5	365229.9	180366.1	57.263	2	548372.9	173251.5	50.122
0.5	0.063	0.1	1.1	457203.2	676534.3	72.405	1.5	1628579	609123.9	63.627	2	2431908	569994.9	55.441
0.5	0.063	0.25	1.1	349608.2	561827.6	74.795	1.5	1258575	513769.8	76.739	2	1883928	483913.9	54.951
0.5	0.063	0.4	1.1	238444.1	459671	86.056	1.5	837052.1	431801.8	58.951	2	1247274	417069.6	50.431
0.5	0.15	0.1	1.1	389972.3	587514.9	80.994	1.5	1433327	524842.1	64.003	2	2149056	490184	61.920
0.5	0.15	0.25	1.1	285190.2	466916.8	66.618	1.5	1053518	423883.9	62.337	2	1583327	400603.8	54.094
0.5	0.15	0.4	1.1	194809	377937.9	64.595	1.5	705947.7	357287.9	65.680	2	1055842	343667.9	51.730
0.5	0.5	0.1	1.1	276198.5	434488.3	71.628	1.5	1046152	388965.3	71.270	2	1574694	362705.1	53.619
0.5	0.5	0.25	1.1	188718	323359	67.196	1.5	715228.4	293657.3	56.225	2	1076598	277868.3	52.815

Continuação Tabela C -2 – Valores dos momentos estatísticos das equações de desempenho caso II – EEB, distribuição t-Student.

ρ	D (m)	α	γ	μ	σ	λ	γ	μ	σ	λ	γ	μ	σ	λ
0.5	0.5	0.4	1.1	128897.5	256793.2	66.274	1.5	481309.2	240367.5	58.266	2	723581.3	231640.9	50.878
0.5	1	0.1	1.1	214205.8	345736.2	71.962	1.5	812462.6	310010.9	59.300	2	1224768	291168.9	57.336
0.5	1	0.25	1.1	141632	246713.5	64.971	1.5	539026	225310.2	61.525	2	810904.3	213077.8	50.439
0.5	1	0.4	1.1	97228.97	193882.7	55.406	1.5	363880.7	181914.5	51.595	2	546541	175104.8	46.969
0.9	0.063	0.1	1.1	460980.6	683890.6	72.656	1.5	1629225	613121.8	56.892	2	2434516	576235.1	51.405
0.9	0.063	0.25	1.1	352836.7	579217.9	61.733	1.5	1262330	530380.3	52.485	2	1887555	505259.1	54.693
0.9	0.063	0.4	1.1	241511.4	465239.9	56.521	1.5	839733.7	441647.5	51.978	2	1250515	427493.6	47.398
0.9	0.15	0.1	1.1	399739.9	621382.7	71.675	1.5	1437935	560574.6	57.801	2	2156258	528876.4	49.790
0.9	0.15	0.25	1.1	289254.2	502105.2	61.931	1.5	1057466	460690	47.956	2	1587499	440048.9	46.809
0.9	0.15	0.4	1.1	197905.7	396923.6	56.464	1.5	707310.1	374010.5	46.046	2	1057494	362993.6	43.373
0.9	0.5	0.1	1.1	280185.4	481871.1	64.781	1.5	1049827	440583.1	55.302	2	1577571	417831.1	48.348
0.9	0.5	0.25	1.1	188957	355563	60.048	1.5	715040.1	329912.2	56.046	2	1076692	314455.5	42.085
0.9	0.5	0.4	1.1	129389.3	274846.9	49.823	1.5	481713.4	259482.6	44.368	2	724205	251640.5	39.003
0.9	1	0.1	1.1	214378.4	385632.6	64.458	1.5	812995.3	353655.8	49.300	2	1224716	337270.7	47.668
0.9	1	0.25	1.1	140857.8	271276.8	51.434	1.5	536606.6	251906.7	46.857	2	809389.8	241351.1	44.174
0.9	1	0.4	1.1	96145.62	208518	48.379	1.5	362333.5	196847.7	46.265	2	545075.6	190732	40.315

Continuação Tabela C -2 – Valores dos momentos estatísticos das equações de desempenho caso II – *EEB*, distribuição *t-Student*.

	D													
ρ	(m)	α	γ	μ	σ	λ	γ	μ	σ	λ	γ	μ	σ	λ
-0.94	0.063	0.1	1.1	507050.4	713485.1	8.988	1.5	1661722	649427.1	7.582	2	2454236	609980.6	6.488
-0.94	0.063	0.25	1.1	380880.2	595017.8	10.661	1.5	1270537	549477	9.099	2	1885245	523359.3	8.119
-0.94	0.063	0.4	1.1	258182.8	481821.7	16.630	1.5	842421.8	460377.7	15.823	2	1244848	447555.4	14.530
-0.94	0.15	0.1	1.1	430028.5	624436.3	9.083	1.5	1446361	568644.7	7.643	2	2149006	530446.9	6.419
-0.94	0.15	0.25	1.1	303926	494946.8	10.740	1.5	1051242	456643.8	9.350	2	1565677	432010	7.700
-0.94	0.15	0.4	1.1	205254.1	397466.3	16.408	1.5	698554.9	377964	15.499	2	1040005	367082.5	13.892
-0.94	0.5	0.1	1.1	291309.6	455284.7	9.256	1.5	1032017	412856.4	7.728	2	1544040	386669.2	6.585
-0.94	0.5	0.25	1.1	191493.9	331507.1	10.752	1.5	695780	305110.5	9.110	2	1045302	287812.3	7.863
-0.94	0.5	0.4	1.1	129581.4	263496.4	16.488	1.5	466657.8	249060.7	14.587	2	699251.3	240816	13.040
-0.94	1	0.1	1.1	218081	353359.3	9.566	1.5	792134.3	321066.4	7.895	2	1187683	300739.8	6.750
-0.94	1	0.25	1.1	140469.1	248751	11.167	1.5	518061.4	229095	9.317	2	779098.8	216712.1	7.939
-0.94	1	0.4	1.1	94139.55	196198.6	15.702	1.5	348832.4	185651.9	14.555	2	523984.7	178823.4	12.635
-0.5	0.063	0.1	1.1	469404.7	833603.3	12.408	1.5	1623172	780198.2	10.966	2	2414362	748605.1	9.610
-0.5	0.063	0.25	1.1	352815.8	660188.9	13.515	1.5	1245400	619463.8	11.858	2	1856880	596470.2	10.282
-0.5	0.063	0.4	1.1	239067.2	517728.4	19.933	1.5	825805.8	496479.7	18.243	2	1226200	483071.2	16.098
-0.5	0.15	0.1	1.1	397277	691080.1	11.397	1.5	1415104	641760	9.881	2	2114505	610368	8.429
-0.5	0.15	0.25	1.1	283305.1	522349.7	12.241	1.5	1029844	487186.9	10.918	2	1542649	463845.3	9.236
-0.5	0.15	0.4	1.1	191143.1	413817.6	18.731	1.5	685881.2	393638.2	16.752	2	1025644	382800.2	15.065
-0.5	0.5	0.1	1.1	275028	467993.2	9.975	1.5	1016385	428291.1	8.353	2	1526895	403012.4	7.165
-0.5	0.5	0.25	1.1	183595.2	335328.2	11.249	1.5	688566.1	308402.3	9.384	2	1034935	292955.2	8.161
-0.5	0.5	0.4	1.1	123889.2	266030.9	16.923	1.5	461528.6	251405.9	14.930	2	693842	242913.3	13.177
-0.5	1	0.1	1.1	210417.5	356470.9	9.555	1.5	783101.5	325147.2	8.162	2	1179906	304779.7	6.882

Tabela C -3 – Valores dos momentos estatísticos das equações de desempenho caso III – MDP, distribuição t-Student.

ρ	(m)	α	γ	μ	σ	λ	γ	μ	σ	λ	γ	μ	σ	λ
-0.5	1	0.25	1.1	136758	248831.5	10.804	1.5	515244.3	229248.9	9.176	2	776224.9	216800	7.957
-0.5	1	0.4	1.1	92189.84	196252.5	16.198	1.5	346372.9	185950.2	14.514	2	521604.3	179098.2	12.521
1E-10	0.063	0.1	1.1	468171.8	860944.3	13.614	1.5	1616676	813910.9	12.541	2	2409089	783188.9	10.686
1E-10	0.063	0.25	1.1	349804.3	677714.5	14.623	1.5	1240109	639161.2	13.000	2	1853549	617336.4	11.594
1E-10	0.063	0.4	1.1	240045.1	525168.3	20.113	1.5	823895.5	504694.7	18.880	2	1225514	494187.2	17.534
1E-10	0.15	0.1	1.1	394663.4	707271.2	12.204	1.5	1410483	658212.1	10.503	2	2107096	627671.8	9.178
1E-10	0.15	0.25	1.1	277529.7	530072.3	13.166	1.5	1025113	493878.8	11.260	2	1540868	471675.5	9.774
1E-10	0.15	0.4	1.1	189689.7	416627.7	19.161	1.5	684347	397539	17.436	2	1023781	386376.4	15.502
1E-10	0.5	0.1	1.1	272100.4	471928.2	10.440	1.5	1013371	430279.9	8.477	2	1522758	405298.3	7.250
1E-10	0.5	0.25	1.1	181924.4	335508	11.281	1.5	685316.7	309214.7	9.818	2	1033794	293414.9	8.261
1E-10	0.5	0.4	1.1	122786	265406.6	17.291	1.5	459926.3	251533.2	15.597	2	692633.1	242905	13.310
1E-10	1	0.1	1.1	208093.3	357319.6	9.860	1.5	780753.5	324300.4	8.157	2	1176339	305614	6.951
1E-10	1	0.25	1.1	135697.5	248949.5	11.189	1.5	514775.1	229285.4	9.548	2	774446.6	216772.3	8.000
1E-10	1	0.4	1.1	91102.5	196261.9	16.167	1.5	345527.4	185307.9	14.470	2	520444.9	179061.5	12.594
0.5	0.063	0.1	1.1	466377	811709.1	12.470	1.5	1618106	760383.1	10.893	2	2409296	725712.3	9.527
0.5	0.063	0.25	1.1	350439.3	645716.6	13.262	1.5	1241621	606591.7	11.633	2	1853917	579933.7	10.072
0.5	0.063	0.4	1.1	237914.8	508734.5	19.933	1.5	823527.9	488487.3	18.407	2	1225922	476450.8	17.053
0.5	0.15	0.1	1.1	393011.4	676685.6	11.296	1.5	1411510	625059.9	9.692	2	2112598	592304	8.363
0.5	0.15	0.25	1.1	282026.9	514357.7	12.395	1.5	1029483	477558.6	10.490	2	1541777	455144.8	9.245
0.5	0.15	0.4	1.1	191376	407531.6	17.784	1.5	685009.3	389063.8	17.157	2	1024502	377968.2	14.821
0.5	0.5	0.1	1.1	273581.9	462975	9.946	1.5	1015749	421605.2	8.382	2	1526442	395065.6	6.932

Continuação Tabela C -3 – Valores dos momentos estatísticos das equações de desempenho caso III – *MDP*, distribuição *t-Student*.

Continuação rabeia C -5 – valores dos momentos estatísticos das equações de desempenho caso III – MDF, distribuição i-Student.														
	D													
ρ	(m)	α	γ	μ	σ	λ	γ	μ	σ	λ	γ	μ	σ	λ
0.5	0.5	0.25	1.1	182329.9	332128.7	11.235	1.5	688065.6	307342	9.543	2	1035411	289592.4	8.129
0.5	0.5	0.4	1.1	123335.8	263549.4	16.274	1.5	460515.6	248912.9	14.584	2	693374.1	241442.8	12.981
0.5	1	0.1	1.1	208752.3	354998.8	10.004	1.5	782941.2	321423.4	8.077	2	1178282	301328.2	6.844
0.5	1	0.25	1.1	137247.3	248191.8	11.246	1.5	514734.6	227773.3	9.290	2	775347.6	215265.9	7.935
0.5	1	0.4	1.1	92134.23	195708	16.215	1.5	346509.2	184912.8	14.241	2	521019.4	178379	12.517
0.9	0.063	0.1	1.1	492435.6	713855.2	9.566	1.5	1645760	646743.6	7.872	2	2440462	604537.7	6.642
0.9	0.063	0.25	1.1	371694	592737.5	11.129	1.5	1262163	546970.4	9.603	2	1876357	518233.8	8.041
0.9	0.063	0.4	1.1	250897.9	480460.3	17.613	1.5	836503.3	458238.1	16.190	2	1237224	444323.1	14.576
0.9	0.15	0.1	1.1	417677.5	618842.9	8.945	1.5	1437304	563172.8	7.659	2	2139676	525030.6	6.513
0.9	0.15	0.25	1.1	297585.3	491903.4	11.001	1.5	1045133	453114.7	9.425	2	1560069	426933.4	7.759
0.9	0.15	0.4	1.1	200799.4	395981.1	17.650	1.5	694731.8	375152.9	15.507	2	1036199	363264.4	13.468
0.9	0.5	0.1	1.1	286756.8	453309.3	9.372	1.5	1028152	410050.1	7.836	2	1539887	382514	6.510
0.9	0.5	0.25	1.1	189449.5	329776.5	10.874	1.5	694324.5	304284.1	9.426	2	1042403	286761.9	7.943
0.9	0.5	0.4	1.1	127499.8	262457.7	16.516	1.5	466113.4	247930.2	14.570	2	697164.6	239578.1	12.807
0.9	1	0.1	1.1	215779.3	351119.3	9.320	1.5	790710.9	318435.1	7.802	2	1185848	297899.7	6.675
0.9	1	0.25	1.1	139424.2	247128	10.833	1.5	518303.3	227201.6	9.082	2	778449.9	215461.1	7.961
0.9	1	0.4	1.1	94065.48	195551.7	15.616	1.5	347923.4	184495.5	14.131	2	522794.4	178571.8	12.488

Continuação Tabela C -3 – Valores dos momentos estatísticos das equações de desempenho caso III – *MDP*, distribuição *t-Student*.