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RESUMO

Avaliacao da Performance da Transformada da Incerteza em Filtros Adapta-
tivos de Minima Variancia e Radioaltimetros

Autor: Ronaldo Sebastiao Ferreira Jtnior
Orientador: Joao Paulo Carvalho Lustosa da Costa
Coorientador: Ricardo Zelenovsky

Programa de Pés-graduagao em Engenharia Elétrica
Brasilia, Maio de 2015

Nas dltimas décadas técnicas em arranjos de antenas, filtragem adaptativa e processamento de
sinais tém recebido grande atencdo, por sua versatilidade, possibilidade de aplicagdo em sistemas
embarcados, RADARes, SONARes e afins. Véarias técnicas de filtragem adaptativa e beamforming
tém sido desenvolvidas desde a década de 1960. Desde entao, a complexidade de diversos sistemas
e modelos estocésticos vem crescendo de uma forma exponencial, para isto é necessario a adocéo
de novas técnicas de simulagao como a Transformada da Incerteza, de modo que as tradicionais
técnicas de simulagdo como a de Monte Carlo sejam auxiliadas ou substituidas, a fim de obter

celeridade no lancamentos de novos produtos e tecnologias no mercado.

A filtragem de posto reduzido possibilita a maximizacao e a otimizac¢ao da performance da
adaptacao de filtros adaptativos, além de reduzir a redundéncia dos sinais recebidos, por meio da
reducao da dimensao do sinal recebido do arranjo de antenas, com isto, facilita-se o armazenamento

de sinais recebidos para pés-processamento e afins.
Este trabalho tem como foco a verificacdo e estudo da performance da Transformada da Incer-

teza para a simulagdo de filtros de posto reduzido e radioaltimetros.

Palavras Chave: Arranjos de Antenas, Posto Reduzido, Filtros de Minima Variancia, Trans-

formada da Incerteza, UT, Radioaltimetro.



ABSTRACT

Unscented Transform Performance Assessment of Adaptive LCMYV Filters
and Radioaltimeters

Author: Ronaldo Sebastiao Ferreira Janior
Supervisor: Joao Paulo Carvalho Lustosa da Costa
Co-supervisor: Ricardo Zelenovsky

Programa de Pés-graduagao em Engenharia Elétrica
Brasilia, May of 2015

In the last decades, antenna arrays techniques, adaptive filtering and signal processing have
been in great focus due to its versatility, embedded systems applications, RADARs, SONARs;,
etc. Various adaptive filtering and beamforming techniques have been developed since the 1960’s,
and along with those, the performance assessment complexity of stochastic systems simulations
has been increasing in a exponential rate. It is mandatory to adopt and develop new simulational
techniques, like the Unscented Transform, in order to aid or replace the traditional Monte Carlo
simulation, in order to give celerity to the development time of new products and technologies for

the market.

The reduced rank filtering allows a faster adaptation time for adaptive filters and the elimination
of redundant information of an antenna array, optimizing the raw storage for post processing and

treatment.
The focus of this work is to evaluate the Unscented Transform performance assessment over

reduced rank filters and radioaltimeters.

Keywords: Antenna Arrays, Reduced Rank, Linearly Constrained Minimum Variance Filters,

Unscented Transform, Radioaltimeter.
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Capitulo 1

Sumario

Nas tltimas décadas, técnicas em arranjos de antenas, filtragem adaptativa e processamento de
sinais tém recebido grande atencdo, por sua versatilidade, possibilidade de aplicagdo em sistemas
embarcados, RADARes, SONARes e afins. Vérias técnicas de filtragem adaptativa e beamforming
tém sido desenvolvidas desde a década de 1960. Desde entao, a complexidade de diversos sistemas
e modelos estocésticos vem crescendo de uma forma exponencial, para isto é necessario a adoc¢do
de novas técnicas de simulagao como a Transformada da Incerteza, de modo que as tradicionais
técnicas de simulacdo como a de Monte Carlo sejam auxiliadas ou substituidas, a fim de obter

celeridade no lancamentos de novos produtos e tecnologias no mercado.

A filtragem de posto reduzido possibilita a maximiza¢do e a otimizacdo da performance da
adaptacao de filtros adaptativos, além de reduzir a redundéncia dos sinais recebidos, por meio da
reducdo da dimensao do sinal recebido do arranjo de antenas, com isto, facilita-se o armazenamento

de sinais recebidos para pds-processamento e afins.

Este trabalho é dividido em seis capitulos: este capitulo sumarizando o trabalho, o Capitulo
2 que trata da introducao do trabalho na lingua inglesa, o Capitulo 3 que traz os conceitos ma-
tematicos, modelos de dados para o filtro linear de minima variancia com restrigbes (LCMV) de
complexidade méxima e reduzida (reduced rank), o Capitulo 4 que traz a abordagem matematica
mais completa da Transformada da Incerteza e suas simulacées com filtros LCMV, o Capitulo 5
que traz uma explicacao matematica completa de um radioaltimetro convencional, ilustra e simula

o radioaltimetro proposto neste trabalho e, finalmente as conclusoes estdo no Capitulo 6.

Transformada da Incerteza

A Transformada da Incerteza (UT), apresentada no Capitulo 4, permite uma maior celeridade
de simula¢des computacionais de sistemas estocasticos, pela discretizacdo e quantizagdo de funcgoes
de distribui¢do de probabilidade por uma expansdo de Taylor [15], criando-se um conjunto de
pontos finitos e mensuraveis, com os mesmos momentos estatisticos da funcdo de probabilidade
original [2, 1, 16, 17]. Com isso, reduz-se a quantidade efetiva de iteracoes necessaria para a

simulacao, diferente de uma simulacao Monte Carlo, a qual necessita do maior niimero possivel de



iteracOes para se atingir a convergéncia dentro de um intervalo de confianca desejével [18, 13, 12].
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Figure 1.1: Funcdo de Probabilidade Gaussiana continua, em azul, e a discretizada, em verde |1, 2].

A Figura 1.1 ilustra a funcao de probabilidade Normal continua, em azul, e a sua versio

discretizada pela Transformada da Incerteza, com quatro pontos, representados pelas varidveis ¢.

Filtro Linear de Minima Variancia com Restricoes

O Filtro Linear de Minima Variancia com Restri¢oes (LCMV - Linearly Constrained Minimum
Variance Filter), descrito no Capitulo 3, é um beamformer que possibilita a conformagao do l6bulo
de recepcao do arranjo de antenas. Supoe-se que a direcao de chegada do sinal desejado é conhecida,
portanto, uma restricdo de fase é imposta ao filtro a fim de se dar maior ganho ao sinal oriundo
desta diregdo; com isso é possivel realizar a filtragem espacial dos sinais que chegam ao arranjo de
antenas [3, 6, 19]. Como qualquer outro filtro digital, é possivel a realiza¢ao de um filtro LCMV
adaptativo, através de diversos algoritmos de adaptacdo. No escopo deste trabalho é utilizado o
algoritmo de Minimo Erro Quadratico (LMS - Least Mean Squares), que minimiza o erro através

do calculo do gradiente estocastico [3, 6].

A Figura 1.2 traz um diagrama simplificado do filtro LCMV adaptativo, o arranjo de antenas
é acometido por vérios sinais, dos quais um ¢é o sinal de interesse de direcdo 6y, os sinais recebidos
formam um vetor X que é restringido pela matriz de restrigdo C, formando o sinal restringido X,
que é filtrado posteriormente por uma matriz de pesos W. A matriz de pesos sofre constantes
alteragoes pelo algoritmo adaptativo, a fim de adequar o ganho do filtro de acordo com as condigbes

de recebimento do sinal, como a razao sinal-ruido, a razao sinal-interferidores, entre outras.
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Figura 1.2: Esquema de arranjo de antenas em um filtro LCMV [3, 4].

Filtro de Posto Reduzido

O filtro de Posto Reduzido, descrito no Capitulo 3, é um estigio a mais em um filtro digital
adaptativo, que visa reduzir a redundancia dos sinais oriundos do arranjo de antenas |6, 7]. Como
é realizada uma dupla filtragem, a convergéncia é atingida mais rapidamente e, com a reduc¢ao
da redundéancia, facilita-se o armazenamento bruto do sinal para fins de pds-processamento e

tratamentos finais.

O filtro de LCMV de Posto Reduzido é ilustrado pela Figura 1.3, onde o sinal restringido
sofre uma reducdo de posto por uma matriz de transformacaoT. Apoés a reducdo de posto, o
sinal ¢é filtrado por um filtro adaptativo de posto reduzido, com os pesos representados por W. O
algoritmo adaptativo controla os passos de adaptacgdo tanto a matriz de transformacao como a do
proprio filtro adaptativo, com isso é realizado uma dupla filtragem adaptativa onde a convergéncia

ocorre de maneira mais rapida.
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Figura 1.4: Esquema do funcionamento do algoritmo LMS [3].
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Figure 1.3: Esquema de um filtro LCMV de posto reduzido com adaptacao LMS [5, 3, 6, 7, 8, 9].

Algoritmo adaptativo LMS

O algoritmo de Minimos Erros Quadraticos (Least Mean Squares - LMS), apresentado no
Capitulo 3, idealizado por Widrow e Hoff na década de 1960, é um importante e muito utilizado
algoritmo para filtragens adaptativas devido a sua simplicidade e baixo custo computacional |3, 19,
6]. O mesmo se diferencia do algoritmo conhecido por Steepest Descent por utilizar uma funcao
de custo baseada no gradiente estocéstico do erro, ao invés de uma solugdo baseada em valores

deterministicos nas saidas de um filtro de Wiener [6, 19, 3.

A Figura 1.4 mostra a diagramacao simplificada do funcionamento do algoritmo LMS, onde

seu funcionamento se divide em duas etapas:

1. Calcular o erro estocastico da saida das tomadas de um filtro digital e o sinal desejado;



2. Utilizar o erro para realizar o cdlculo do gradiente estocistico para se ajustar os pesos das

tomadas do filtro digital.

Técnica de simulacao proposta com a Transformada da Incerteza

Neste trabalho é proposta uma abordagem que se verifica a performance e confiabilidade da
Transformada da Incerteza para filtros adaptativos LCMV, comparando-se com os resultados ob-
tidos de simula¢des Monte Carlo. A abordagem proposta pode ser resumida em nove passos como

mostra a Figura 1.5.
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Figura 1.5: Diagrama da abordagem proposta.

Sao as seguintes as caracteristicas fundamentais definidas na técnica de simulagdo proposta

aqui tratada:

e Em (D), cria-se o modelo do cenério simulacional, prevendo-se o tipo de ruido e sua variancia,

modulagao, varidncia e diregao de chegada dos sinais desejados e interferentes .

e Em ), a definicao das variaveis aleatorias do sistema é critica para o correto computo
da Transformada da Incerteza. Neste trabalho define-se por varidveis aleatérias criticas os
parametros aleatérios que tém grande impacto sobre o sinal desejado, ou seja, o ruido e

interferidores de varidncia muito superiores aos do sinal desejado.

e Em (@ e @ aplica-se a Transformada da Incerteza em todas as funcoes de distribuigao de

probabilidade continuas, a fim de se obter um conjunto finito e quantizavel de pontos.

e Em @ e ©), realiza-se o calculo combinatorio de todas as probabilidades envolvidas no

sistema, através dos pontos de peso fornecidos pela Transformada da Incerteza.

e Em (@), obtém-se o resultado da simulacao pela Transformada da Incerteza.



e Por ultimo, em e 9, verifica-se a validade da simulacdo pela Transformada da Incer-
teza através de uma simulacdo Monte Carlo, comparando-se os resultados e considerando os

possiveis erros auferidos ao se discretizar varidveis aleatorias continuas.

Radioaltimetro proposto

Neste trabalho um novo modelo de radioaltimetro é apresentado. O mesmo faz o uso de
filtragem LCMYV e de um esquema de modulagado BPSK para modelar o 16bulo de recepcao, a fim
de separar os varios sinais que chegam ao sistema aeromotor para a correta estimacgao da altura

do mesmo.

A Figura 1.6 mostra o diagrama simplificado do radioaltimetro. O radioaltimetro é composto
por um radiotransmissor e um radiorreceptor de arranjo de antenas. O sinal transmitido é uma
onda triangular, que é digitalizada por um conversor anélogo digital e modulado por um modulador
digital de fase. O sinal recebido pelo arranjo de antenas é demodulado e sofre uma filtragem LCMV,
a fim de realizar o modelamento do 16bulo de recepgao do arranjo de antenas. O sinal filtrado passa
por um processador digital de sinais que detecta o atraso de fase entre o sinal transmitido e o sinal

recebido, para calcular a altitude do sistema aeromotor.

TX Triangle wave
Antenna generator

PSK
Modulator

[

ADC

ULA

Y Y

PSK LCMV DSP
Demodulator AdaptiveFilter Processor

NE

Figura 1.6: Diagrama simplificado do radioaltimetro proposto.

Aplicacoes

A utilizacdo da Transformada da Incerteza agiliza simulagoes de sistemas estocasticos, por
discretizar as varidveis aleatérias continuas, implicando-se em ganho académico e econdémico, ao se

possibilitar o lancamento mais rdpido de novas tecnologias e produtos no mercado.



Ja os filtros de posto reduzido, por serem filtros verséteis e, pela adigdo da etapa de redugao
de posto, possibilitam a convergéncia mais rapida dos filtros adaptativos. Além de oferecerem a
diminuicao da redundéancia dos sinais filtrados, com uma perda minima, diminuindo-se o custo de

armazenamento de sinais brutos para pés-processamento.

No escopo deste trabalho foi desenvolvido um radioaltimetro digital, que utiliza filtros LCMV

para a correta estimacao da altura de voo de um sistema embarcado aeromotor.

Validacao

Para validar a técnica proposta, um conjunto de simulacoes numéricas é apresentado na Se¢ao
4.6. O desempenho dos filtros LCMV de posto reduzido é comparado aos filtros LCMV de posto
cheio através de técnicas e resultados propostos em [4, 7, 20]. J4 a eficicia da Transformada da

Incerteza utiliza-se de técnicas propostas e resultados ja conhecidos e obtidos em [2, 21, 22, 23, 16].

Ja o radioaltimetro proposto e suas simulacGes sao apresentados no Capitulo 5.

Contribuicoes

Este trabalho apresenta como principal contribui¢bes a validacdo da Transforma da Incerteza
para simulacdo de sistemas estocésticos, possibilitando simulactes mais rapidas ou, no minimo,
uma. boa estimativa de parametros para simulacoes Monte Carlo, também apresenta um novo
sistema de radioaltimetro digital, que permite a separagao dos sinais que chegam ao mesmo, além
de tratar acerca da performance dos filtros de posto reduzido em comparagdo com os de posto

cheio.

A validacao da Transformada da Incerteza tem grande importincia de cunho académico e
comercial e os filtros de posto reduzido tém uma grande aplicacdo pratica, desde sistemas de
comunicagdo em massa até aquisicio de dados brutos nas mais variadas areas de engenharia,

geologia e economia.
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Chapter 2

Introduction

Over the last few decades, antenna arrays techniques, adaptive filtering and signal processing
have been in great focus due to its versatility, use embedded systems, RADARs, SONARs, etc.
Several adaptive filtering and beamforming techniques have been developed since the 1960’s, re-
sulting in a exponential increase of the complexity of those systems, necessitating that improved
techniques are required not only for academic purposes but also for commercial and industrial fields
where time to market is a critical factor in the success of a product. To overcome these issues,
new simulation techniques, such as the Unscented Transform, are essential, in order to give a good
setup point to the well known Monte Carlo simulations, raising the celerity of the development

and launching of new products and technologies to the market.

The reduced rank filtering allows the maximization and optimization of the adapting filters
performance, by reducing the received signal rank, the redundancy and the raw storage needs for

post processing of a received antenna array signal are significantly reduced.

This work is divided into six chapters: Chapter 1, which summarizes this work in Brazilian
Portuguese, this Chapter 2, the introduction itself, Chapter 3 describing the mathematical con-
cepts, data models for full-rank and reduced rank LCMYV adaptive filters and a brief introduction
to the Unscented Transform, Chapter 4 brings a detailed mathematical approach for the Unscented
Transform and its simulations with LCMV adaptive filters, Chapter 5 illustrating and explaining a
conventional analog radioaltimeter and the proposed radioaltimeter, with its simulations. Finally

the conclusions are drawn in Chapter 6.

The Unscented Transform

The Unscented Transform (UT), presented in Chapter 4, allows a greater simulation celerity of
stochastic systems, by discretizing the continuous random variables with a Taylor expansion [15],
creating a finite and quantizable set of points, with the same, or very close, statistical moments
of the original random variable [2, 1, 16, 17] and improving the simulation time with a great
decrease in the number of iteration steps needed to achieve the convergence within the same, or

close, confidence interval a Monte Carlo simulation would achieve with a huge number of iterations



[18, 13, 12].
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Figure 2.1: The continuous Gaussian Probability Density Function, in blue, and its four-point
discretized Unscented Transform counterpart, in green [1, 2.

Figure 2.1 illustrates the Normal Gaussian distribution in blue and its four-point Ul discretized

counterpart in green.

Linearly Constrained Minimum Variance Filter

The Linearly Constrained Minimum Variance Filter (LCMV), described in Chapter 3, is a
beamforming filter which allows the receiving lobe of an antenna array to be modeled electronically.
The signal direction of arrival (DOA) is presumed to be known, so a constraint is set to the filter
in order to raise the gain of filter at the DOA. Therefore, it is possible to spatially filter the signals
impinging on the antenna array [3, 6, 19]. As with any other digital filter, the adaptive LCMV
filter is feasible with several adaptive algorithms. In this work the Least Mean Squares (LMS)
algorithm is used |3, 6].

Figure 2.2 illustrates a simplified block diagram of the adaptive LCMYV filter, where the antenna
array is impinged by several signals, in which the one with 8y DOA is the signal of interest. The
received signals forms the vector X, which is constrained afterwards by the constraint matrix, C,
comprising the constrained signal, X.. The constrained signal is filtered by a weight matrix, W,
that is continuously adapted by the adaptive algorithm according to the receiving conditions such

as the signal-to-noise ratio and the signal-to-interference ratio.
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Figure 2.2: Adaptive LCMV filter with its antenna array (3, 4].

Reduced Rank Filters

_Interest

Reduced Rank filtering, illustrated in Chapter 3, is achieved by an additional filtering stage

to the adaptive filter. The rank reduction aims at reducing the redundancy of the antenna array

received signal by reducing its dimensions [6, 7|. Since a double stage filtering is performed, the

adapting convergence is achieved faster, and with the redundancy reduction, the raw storage needs,

for any kind of post processing are reduced as well.

A simplified diagram of the LCMV reduced rank filter is presented in Figure 2.3. The con-

strained signal have its rank recuded by a transformation matrix, T, and it is filtered by the

reduced rank filter afterwards, represented by W. The adaptive algorithm adapts both T and W,

in order to achieve a faster convergence.

C

y(n)

W | 2

Xc(n)

Adaptive

(grr(n)

Figure 2.3: Adaptive reduced rank LCMYV filter block [5, 3, 6, 7, 8, 9].
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Figure 2.4: Simplified LMS adapting algorithm block [3].
Least Mean Squares Algorithm

The Least Mean Squares (LMS) algorithm, described in Chapter 3, invented by Widrow and
Hoff in the 1960’s, is an important and widely used technique for adaptive filtering, due its sim-
plicity and low computational cost [3, 19, 6]. The LMS algorithm differs from the Steepest Descent
algorithm by using a cost function based on the error’s stochastic gradient, instead of a solution

based on deterministic values at the Wiener filter output tap [6, 19, 3].

Its function, illustrated in Figure 2.4 with the simplified diagram block is based into two steps:

1. Stochastic error computation between the digital filter taps outputs and the desired signal;

2. Using the computed error in order to compute the stochastic gradient, to adjust the filters

weights.

Proposed simulation technique with the Unscented Transform

In this work the low complexity Unscented Transform simulation performance assessment tech-
nique with adaptive LCMV and adaptive reduced rank LCMYV filters approach is examined. Pa-
rameters such as the performance and accuracy are considered in comparison with obtained results
from Monte Carlo simulations. The proposed approach is summarized in nine steps, as illustrated

in Figure 2.5.

e In (D, the simulation scenario is created, the noise and signals characteristics, such as the noise
and signal variances, signal modulation, interferers’ variances and the direction of arrivals

are considered.

e In @), the definition of which random variables are critical for the scenario is crucial for

the correct functioning and computation of the UT. In this work random variables that have

11
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Figure 2.5: Proposed approach chart.

greater impact over the desired signal are considered critical, such as the noise and interferers

with variances higher that of the signal of interest (SOI).

e In @ and @ the UT is computed over all critical random variables, in order to obtain a finite

set of points.

e In ® and ®, a probabilistic set of points is computed by the combination of all points
obtained from the UT.

e In (D, the results from the UT simulation is obtained.

e At last, in and @), the UT simulation is evaluated, comparing its results with a Monte
Carlo simulation, considering possible and plausible errors caused by the discretization of

continuous random variables.

Proposed digital radioaltimeter

In this work a digital radioaltimeter, that uses a binary-phase-shift keying (BPSK) modulation
scheme and LCMV beamformers is presented. The proposed radioaltimeter is capable of modeling
its receiving lobe using an LCMYV beamformer, in order to separate the non-line-of-sight signals
from the line-of-signal and other interferers, in order to estimate the correct airborne system
altitude.

Figure 2.6 brings the simplified diagram of the radioaltimeter. The radioaltimeter is comprised
of a radio-transmitter and an antenna array radio-receiver. The transmitting signal is a triangle
wave which is digitalized by an analog-to-digital converter and modulated by a phase-shift-keying
scheme. The backscattered signal impinges the antenna array and is demodulated and LCMV
filtered afterwards, in order to beamform the antenna array’s receiving lobe. The digital signal
processing processor senses the phase shift, caused by the backscattering time delay in order to

compute the airborne system altitude.

12
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Figure 2.6: Simplified diagram of the proposed radioaltimeter.
Applications

The use of Unscented Transform improves the simulation execution time of stochastic systems
by discretizing the continuous random variables, that gives rise to the academic and economic
advantage of allowing for technologies and products to enter the market quicker due to a reduced

development time.

Reduced rank filters are versatile and, by adding one more filtering stage, improve the con-
vergence time of adaptive filters. With the received signal redundancy reduction, they essentially
act like a low loss compression, reducing the raw storage costs and needs, which is important for

storing raw signals for post processing and other types of treatments.

The novel digital radioaltimeter presented in this work allows a radioaltimeter estimate the real

airborne system altitude by the use of LCMYV filtering and binary-phase-shift-keying techniques.

Simulation Results

In order to evaluate the proposed technique, a set of computational simulations is presented
in Section 4.6. The full rank LCMV and reduced rank LCMYV adaptive filters performance is
evaluated in comparison of well known results presented in [4, 7, 20]. The Unscented Transform

performance assessment evaluation uses results and techniques derived from (2, 21, 22, 23, 16].

The proposed radioaltimeter simulations are located in Chapter 5.

13



Contributions

The main contributions of this work is the low complexity Unscented Transform performance
assessment for stochastic models and systems simulation, which improves the celerity or, at least a
good parameter estimation and basis for Monte Carlo simulations. A novel digital radioaltimeter
that uses LCMYV beamforming is presented, and this work also evaluates the performance of reduced
rank LCMYV filters in comparison with full rank LCMYV filters.

The assessment of the Unscented Transform is of great value and importance for academic,
industrial and commercial scopes and reduced rank filtering has a great practical application in
several research branches from mass communication systems to data acquisition in electrical and

electronics engineering, geology, mechanics and economic sciences.
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Chapter 3

Data Model

This chapter is divided into eight sections, in which Section 3.1 brings the notation used in
this work while Section 3.2 explains the mathematical concepts of the Kronecker Product and the
Kronecker Sum. Section 3.3 introduces the Unscented Transform briefly, with basic probabilistics
concepts while Section 3.4 brings the phase-shift keying mathematical explanation, the binary-
phase-shift-keying is used in this work, and Section 3.5 presents the data model for LCMV filters
and other antenna arrays systems. Section 3.6 details the optimal non-adaptive LCMYV filter, in
order to give a basis to adaptive LCMV filtering, and Section 3.7 shows the LCMV adaptive filter
solution. Finally, Section 3.8 presents the adaptive solution for the reduced rank LCMYV filter.

3.1 Notation

This work uses the following notation to represent scalars and matrices: Scalars are denoted
by italic lowercase letters (a,b, ...), column vectors as boldface lowercase letters and matrices as
boldface uppercase letters (a, b, ..., A,B,...). The (i,j)-element of the matrix A, is denoted as
a;j. The probability function, modulus operator, intersection operator, union operator, Hermitian
transpose, matrix transpose and complex conjugate are represented by p(.), |.|2, N, U, ()T ()T
and (.)*, respectively. Mathematical complex, real and imaginary domains are denoted by C, R

and Q, respectively.

The operator diag(-) is the diagonalization operator, where a non-diagonal matrix is turned
into a diagonal matrix, and the dediag(-) operator constructs a vector from the main diagonal of

a matrix.

3.2 Kronecker operators

The Kronecker sum [24], denoted by @ ,is characterized by the sum of two square matrices in
which the resulting matrix diagonal forms a combinatorial sum of all elements of the both matrices
[24].
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3.2.1 Kronecker Product

To explain the concept of the Kronecker Product [25], let A be a m x n matrix and Y, an ¢ X j
matrix. The Kronecker product, denoted by ®, which is also called the matrix direct product [25]
results into a (m.i) X (n.7) T matrix, I' = A ® Y, as follows:

091X 022X -+ 69, Y
Tr=AQY=| . . (3.1)
3.2.2 Kronecker Sum
Let ' = A & Y be the Kronecker sum of a two square matrices, A and Y:
Fr=AdYT=AQI+r+Iao T, (3.2)

where ® is the Kronecker product [25], Iy and Ia are the identity matrices with the same sizes
of T and A, respectively. Solving (3.2), yields a T' block matrix comprised by a set of m x n

matrices:

Fr=AQQIxr+IA®Y =

o1ily  Orly - OrpIy IAY11 IAY2 - IAaYyy,
o1y ooy -+ oIy N AT TaYe - IaYon |
5mlIT 5m21'r 5mmI’r IATnl IATnZ IATnn

S11tvyr o w

w d11+vnn

; (3.3)
Smm+vnn w
I I
w Smm+vnn

where II is comprised by generic w elements, is an unwanted matrix and elements, in the scope of
this paper, as illustrated in Subsection 3.2.3.

3.2.3 Kronecker sum of vectors

Let ' = § ® v be the Kronecker Sum of two vectors, a § € C1*™ vector and a v € C'*™ vector.
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In order to apply the Kronecker sum according to Eq. (3.2), the diag(:) operator should be
first applied to the vectors § and v, since the Kronecker Sum can only be executed with square

matrices [24]:

I' = dediag[diag(d) & diag(d)], (3.4)
diag(d) = <%1 (;l) , (3.5)

diag(v) = (161 0 > , (3.6)

Um

where diag(+) is the diagonalization and dediag(-) is de-diagonalization operator. By executing the
Kronecker Sum, as stated in (3.2), we obtain:

o+vi O 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 601+, 0 0 0 0 0
0 0 0 0o +vy 0 0 0 0
r— , (3.7)
0 0 0 0 0 0 0
0 0 0 0 0 d+wv, O 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0 0y, +u,
dediag(T") =
[(51 +v1...01+vU, 00 +vU] ... 00+ Uy ... Oy UL ... O + Un], (38)

which results in a combinatorial sum of all arrays elements.

3.3 Unscented Transform

The UT maps and discretizes a continuous probability distribution (PDF), mainly, by calculat-
ing its statistical moments |2, 1|. The discretized PDF must have the same or very close statistical
moments [16, 1, 2, 8, 9]. The advantage of a discrete PDF over a continuous PDF is the reduced

set of points, which improves the speed of simulation execution.

In the UT discrete PDF, we define the Sigma points as the random variables (RV) and the

weight points as their probabilities.

The n-th moment of a continuous X-RV PDF, with probability p(X), is defined as [13, 12]:
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E[X"] = /_ ) X"p(X)dX. (3.9)

The UT discrete non-linear mapping creates a discrete PDF with a set of z Sigma points,
P = [p1, P2, -+, @], and ¥ = p(P) weight points, using a Taylor expansion, that must satisfy the

conditions as follows |2, 1]:

Econtinuous [Xn] = Ediscrete [(I)n} )

/ X"p(X)dX =) ¢irhy =
> k=1

> X Mpd(X = ¢r), (3.10)

k=1

where the continuous PDF is X, the discretized PDF is ® and J(-) is the unitary impulse function,

resembling the sampling theorem [26].

3.4 Phase Shift Keying modulation

Phase Shift Keying (PSK) is a type of digital modulation in which each signal bit has a

corresponding phase, which can be generalized to the following mathematical expression [26, 27]:

2
PPSK = —, (3.11)
m

where ppgk is the phase interval of each bit from the m-ary bit coded signal, therefore a digital
constellation of m points , leading to a set of m phases for the modulation with a @gset phase

offset: or dr 6
T 4 67
PpsK = Poffset + [—, —> —, -+, 27]. (3.12)
m’ m

Leading to a generalized m-PSK expression, assuming a uniformly distributed set of bits and

signal variance of o2, PSK:

Im—PSK [ejQPSK(1)7 ej<15PSK(2), 6j@PSK(3)7 e ej@PSK(m)]'

3.4.1 Binary PSK modulation

The binary PSK (BPSK) modulation is a PSK modulation in which the signal is coded into
two bits, yielding a digital constellation, shown in Figure 3.1, of two phases, for a zero-offset phase
BPSK signal we have:

Pppsk = [, 27]. (3.13)
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Sppsk = @%[e*jﬂ'? 671271-]7 (3.14)
Sppsk = Ulj’;K [—1,+1]. (3.15)
1 ; ; ;
> -
= Bit, Bity
L S T F S -
S : ;
E
1 : : :
-1 0 1
Real

Figure 3.1: BPSK constellation.

3.5 Data Model for LCMYV filters
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Figure 3.2: Simplified block of an ULA and LCMYV filter[6, 3].

The LCMYV can be applied to beamform a antenna array comprised of m sensors, spaced by %
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wavelength, and d impinging signals, as depicted in Figure 3.2. The goal of the LCMYV is to find
the filter weights W = [wq, w1, ..., Wy,—1] in order to maximize the power of the signal of interest

(SOI) and reduce the interference from the other directions.

According to Figure 3.2, the filter output for each sample is y(n), so that the filter output can

be rewritten as:

y(n) = wix, (3.16)

where the filter input, x € C™*/ | is:

x =As+n. (3.17)

We define A as the steering matrix, comprised of d steering vectors of size 1 x m:

A= [a<90)7 a(el)a s 7a(9d)]7 (318)
where:
a(gd) _ [17 ejﬂ./\.cos(ﬁd)7 . ’ejTr.)\.cos(Od)(m—l)]T' (319)
Implying in:
1 €j27r.)\.cos(90) L. ej27r.)\.cos(90).(m—1) T

1 ej27r.)\.cos(91) . 6j27r.>\.cos(91).(m—l)
A=| ) . ) (3.20)

1 ej27r.)\.cos(0k) . ej27r.)\.cos(9k).(m71)

s is a set of d impinging signals on a uniform linear array (ULA) of antennas.

s = [so(n) s1(n) sa(n) ... sq_1(n)]T. (3.21)

. . . . . . . 2 d _ 2 .
Each signal has a variance, in which the interfering signals have a [057 plhey = OsINT Variance

and a direction of arrival (DOA), 6; and the SOI have a 0370 = O'SQ’SOI variance, and 6, for the sake
of simplicity, is the SOI DOA; n is the complex additive white Gaussian noise (AWGN) vector,

with o2, variance, where n = ﬁ(n + jn), in that we rewrite (3.17) and (3.16) as in [5]:
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x(n) = a(0o)so(n) + AintSint + 1, (3.22)
y(n) = wa(0y)so(n) + AintSint + 1], (3.23)

where Ajne and Sing are the interferers’ steering matrix, containing the interfering signals’ DOAs

and the interferers’ transmitted symbol matrix, respectively.

3.6 Non-adaptive LCMYV filters

As stated in Section 3.5 the LCMYV filter minimizes the array’s output signal energy, which

yields the filter’s cost function and constraint:

JLCcMV-LMS = EH?J(”)’Q] = E[WHX(”)X(”)HWL (3.24)
m—1

s.t. Z cjw; = f. (3.25)
§=0

Where c is the LCMV constraint array and f is the gain, which is usually unity. The constraint
for the constraint array is the signal of interest (SOI) steering vector, which can be obtained from
the corresponding line of the steering matrix A. Since the noise is assumed to be uncorrelated to

the signal itself, E[x(n)n'!] = 0, therefore the noise related members are omitted.

Using the Lagrange’s multipliers, the constrained cost function minimization can be rewritten

[3, 6]:

JLCMV_LMS = E[\y(n)\z] + A(CHW — f), (3.26)
JLCMV_LMS = E[WHX(TL)X(TL)HW] + A(CHW — f), (3.27)
JLCMV—LMS = E[WHRX)(W] =+ A(CHW — f), (3.28)

yielding a gradient with respect to w [6, 3]:
gw = 2Rxxw + Ac, (3.29)

where Ry is the signal definite and positive auto-correlation matrix defined as E[x(n)x"(n)].

A unique W = Wqptimal Will satisfy the condition gw = 0, which minimizes & [6, 3|, solving

the gradient:

2]-:{xxVvoptinrlal +Ac =0, (330)
2VVoptirnal + ACHR)}%(C =0, (331)
2f + MR le =0, (3.32)

2f
A== 3.33
cHR e ( )
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yielding the optimal LCMYV filter:

Roccf
Woptimal = . —1 > 3.34
optimal CHR;,}C ( )
which can be set to the unitary gain, as follows:
R lc
Woptimal,unitary = — (335)

cHRlc’
Equation (3.35) is the closed solution, which is non-adaptive and is deterministic, it does not

cater for significant variations in the incoming signal auto correlation nor in the noise, neither in

the interferers.

3.7 LCMV-LMS adaptive filters

In real scenarios, the SOI, interferers and noise are always changing, so for a practical applica-
tion the filter must adapt to these changes. In the scope of this work the LMS algorithm is used

for the reasons exposed on Section 3.7.
X(n Signal
(n) 1
Interest

Adaptive
gorithm
=

o |Al

INEEEEEQEEEEREEEN

Figura 3.3: LCMV adaptive filter [3, 4].

The Wiener solution for a minimum mean-square error (MMSE) in estimating the constrained

signal Z¢(n) is given by [6]:

Woptimal = R;,}p (336)

where p= E[Z¢(n)X(n)], an estimate of the current samples of the incoming signal and the expected
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signal. It is assumed that Z.(n) and x(n) are jointly wide-sense stationary (JWSS) [3, 12].

An algorithm based on the steepest-descent solution is used, based on the fact that good
estimates of the auto correlation matrix, Rxx, and the constant p , denoted by Rxx(n) and p(n),
respectively are available [3, 6]:
w(n+1)=w(n) — ugw(n) (3.37)
w(n) + 2{up(n) — Rox(m)w(n)} (3.39)

2
S
+

I

Since we are dealing with adaptive filtering, the n — th samples can be use to obtain estimates

for Rxx and p[6]:
Ryx(n) = E[&(n)x%(n)] = x(n)x"(n) (3.39)
p(n) = E[Zc(n)x(n)] = Ze(n)X(n) (3.40)

yielding the stochastic error gradient for the current signal sample [3, 6]:

gw(n) = —2%(n)(Zc(n)x(n) + XM (n)w(n)) 3.41)

gw(n) = —2e(n)x(n) (3.42)

This gives us the LMS algorithm update rate equation|3, 6]:
(3.43)

w(k+ 1) =w(n)+ 2ue*(n)x(n)
where e(n) = Z¢(n) — wh(n)x(n).
The LMS algorithm depends upon the convergence factor, u, which can be chosen between

O<u< Wlxx] [6], using the trace operator.

3.8 Reduced rank LCMV-LMS adaptive filters

The adaptive LCMYV filter in this work, illustrated in Figure 3.4, uses the Reduced Rank LMS
algorithm to perform the filter adaptation. The LMS algorithm is widely used in adaptive filtering

processes, specially due its low computational demands [6, 3.

An LCMYV filter minimizes the array’s output signal energy for non-constrained signals [6, 3|:

E[ly(n)|?] = E[wx(n)x(n)w], s.t. al(d).w = ¢ (3.44)

where ¢ = a(fy) is the LCMV array constraint and g is the desired gain, which, for the sake of the

simplicity, is unity [6, 3].
As illustrated in Figure 3.4 the received signal, X(n) € C™*!  is subject to a constraint vector
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Figure 3.4: Diagram block of a reduced rank LCMV adaptive filter [5, 3, 6, 7, 9, 8].

c, containing the SOT DOA yielding the constrained signal Z.(n) = ctx(n).

The rank reduction is performed by an m x « projection matrix, T, where a < m , yielding

the reduced rank versions of the signal [7, 5, 9, §8]:

(3.45)
(3.46)

where %(n) € C**! and W(n) € C**! are the reduced rank versions of the system variables.

The Reduced Rank LMS works by adapting the weight vector, W, and the projection matrix,
T, both subject to the LCMV beamforming condition in (3.44). Solving the cost function of

stochastic gradient [5, 9, 8], found in Wiener solution [6, 3|, we obtain:

JRR—LMS(W7 T) = EH)EC(TO — WH}_((TL)IQ]

yielding the adaptive part updating rule with u steps [5, 20, 4, 7, 9, 8]:

(
w(n+1) = W(n) + 2u(Fc(n) — WH%(n))*%(n),
(n + 1) =T n) — ,LLVTJRR_LMS(T)

(n+1 n) + 2ufe(n)(Ee(n) — whx(n))*w(n),

(3.47)

(3.48)
(3.49)
(3.50)
(3.51)

where e.(n) = (y(n) — Zc(n)), w(n) = ¢ — T (n)W(n) and instantaneous estimate for Ryyx =

%(n)x(n) [5, 9, 8].
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Chapter 4
Unscented Transform

This Chapter presents a complete mathematical and stochastic explanation for the Unscented
Transform along with simulation results. It is divided into six Sections: Section 4.1 brings the
generalization of stochastic models for computer simulations and explains how the Monte Carlo
simulation convergence is achieved; Section 4.2 introduces how the Unscented Transform works
and explains how its convergence is achieved; Section 4.3 brings a theoretical explanation of the
Unscented Transform; Section 4.4 compares, using computational simulations, the Monte Carlo
versus the UT convergence; Section 4.5 explains parametrically how the UT can be prepared for
computer simulations, finally Section 4.6 shows the simulation results obtained when comparing
Monte Carlo and UT simulations, with full-rank and reduced-rank LCMYV filters.

4.1 Generalization of stochastic models and Monte Carlo simula-

tions

Let Q = [Q1,9Qs,---,Q,] be a set of p random variables (RV). Since the Monte Carlo (MC)
convergence is based on arithmetic mean of all iterations [12], for a i-iteration MC simulation we

define the k-th MC iteration as f;(€2) as the simulation result before the convergence, as follows:

(£ (i1 = [Arli=r, (4.1)

where Ay is the set of stochastic results found for the k-th MC iteration. In order to calculate the

final MC result the following computation is usually applied [12, 13]:

F(Q) = %ka(n) _ %ZA,C. (4.2)
k=1 k=1

Since all MC iterations have the same weight, the final MC result is calculated by arithmetic
mean of all iterations. The final result of a MC simulation after the convergence, within a given

confidence interval, as F(€2), can be generalized by the probability of the k-th fj(€2) iteration to
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be run times the k-th Ay result set to be calculated, resulting in an expectancy computation:

F(Q) = E[Ag]i, (4.3)

F(Q) =) p(Ay)As (4.4)

where:
1

P(A1) = p(A2) = .. = p(AL) = 5. (45)

To calculate the 7-th statistical moment for the n-th RV, based on (3.9) and by (4.4), the MC

simulation final result is the approximation of E[Q2]] within a desired confidence interval:

F(Q,) =Y p(Ani)A7,. (4.6)
k=1

With one iteration, F(2,) = A7, yielding a random value, not the desired result. When
i — 00, then (4.6) is equal to E[Q2]], as it is the Riemann sum [15, 9, 8] with infinite terms. To
obtain satisfactory results and a convergence within a good confidence interval, a huge number
of iterations are required [13, 12]. Therefore, there is a trade-off between accuracy of the MC

performance assessment and the time until convergence.

4.2 Unscented Transform prelude

When using the UT, all critical continuous PDFs in the simulation must be discretized creating
a finite set of points. The final simulation result is the global expectancy, while in a Monte Carlo

simulation, as in (4.4), the final simulation result is the global average [2, 1, 9, §].

By applying the UT, each n-th discrete RV, within the €2 set described in Subsection 4.1,

contains (, Sigma points and (,, weight points, where the Sigma points set is:

P, = [(bn(l)ﬂ e 7¢n(<n)]7 (47)

and the weight points set is:

p("I)n) =¥, = W}n(l)v e awn(gn)} (48)

The total number of iterations required to run the UT simulation, (tota1, is given by the size
of the vector ¢yr = ®1 © P2 @ --- © P,, and the weight of each iteration is given by Yyt =
¥ @ ¥, ®- - ® ¥, yielding a new stochastic set, Qur = [¢1, -+, P¢p,.), Which outputs a

simulation result in each k-th iterarion, fi(Qur) = Ak The set of all UT iteration results is

26



AUT — [Al, U ’ACTotal]'

Hence, the UT simulation can run using an individual Sigma point for each RV such as:

(Total

F(Qur) = E[Aur] = ) ¢ur(k)Ay (4.9)
k=1

4.3 Computation of the UT

The computation of UT is fairly simple, if the statistical moments of a PDF are known the
computation of the Sigma and weight points can be done instantly, if not a mathematical expansion,

such the Taylor-Maclaurin expansion, is needed [1, 2, 9, 8, 17, 16].

4.3.1 Finding the statistical moments of an unknown PDF with the Taylor-
Maclaurin expansion

In order to proceed to a demonstration of the technique, lets assume two unknown RVs with the
same characteristics, being 2 a continuous RV and 2 a discrete RV. The n-th statistical moments

are computed in a similar fashion, as stated in (3.9):

E[Q"] = E[Q)"]
/ Qp(Q)d2 =) Q"p(Q) (4.10)

Since the PDF is unknown, a polynomial expansion is needed, the Taylor-Mclaurin expansion

[28, 29, 30, 15] states that a function can be expressed in terms of polynomials, thus:

f(ﬂ) :ag—l—alﬂ+agﬂ2+---—|—akﬂk. (4.11)
Using Equation (4.10), we have:
E[f(Q)] = E[ao] + E[a19] + E[a2Q%] + - - - + E[a;QF], (4.12)
given that the coefficients are constants, the expectancy calculus yields:
E[f(Q)] = a0 + a1 E[Q] + a2 E[Q?] + - - - + 0, E[Q"]. (4.13)
With Equation (4.13), it is possible to view that the Taylor expansion provides the pure PDF

moments weighted by linear coefficients, so it is possible to use the stochastics concepts to extract

the proper stochastic moments from the Taylor polynomial using a finite set © = [Q1, Qga,- - , Q]
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of variables:

EQ)] =) Qf(Q) = f() + f(R) + -+ £(Q.),
E[Q] =) Qf(Q) = Q(f() + f(Q) + -+ f(Q2)),
E[Q%] =) Q°f(Q) = Q*(f(Q) + f(R) + - + F(Q)),

E[Q" =) 0QFf(Q) = QF(f(Q1) + f(R) + - + (). (4.14)

4.3.2 Choosing the Sigma points and computing the weight points

In order to choose the Sigma points from the RV, € | some rules must be strictly adhered to:

L[ Q)R = S p() = 113, 12)

2. The Sigma points first must be symmetrical, then properly adjusted, if non-symmetric spac-

ing is necessary [17, 16, 1, 2].

3. The moment calculations according to the Equations (3.9) and (3.10) must always be true
12, 13, 17, 16, 1, 2] .

4. The computation of the first statistical moment is mandatory.

It is a good practice to choose a number of Sigma points at least one order higher than the critical
statistical moment in the simulation scenario. For example, if in the simulation environment the
average is critical, then at least two sigma points are needed (first statistical moment plus one
equals two); if the variance is critical, at least three sigma points are needed (second statistical

moment plus one equals three).

The Sigma points are symmetrically distributed around the mean value; therefore, to compute
a set @ that contains an even ( Sigma points, with the statistical moments found according to

Subsection 4.3.1, we do as following:
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9
Z sz(Qz) = E[E],
z=1

¢
Z Qgp(ﬂz) = E[E2]7
z=1

q
> akp(Q.) = E[QF]. (4.15)
z=1

A linear system comprised of k variables and k equations is setup, so that {( < k, is to be
solved with the following conditions. If the set ® = [¢(1),---,#(()] contains an even number of

Sigma points, then the set median does not match a Sigma point, taking that the points around

the median have the index close to % :

E[Q] — (1) = E[Q2] + ¢(¢) = (1) = ¥((),

E[Q] - ¢(2) = E[Q] + ¢(C — 1) = ¢(2) = (¢ - 1),
E[Q] - ¢(3) = E[Q] + ¢(C - 2) = ¢(3) = ¥(¢ - 2),
E[Q] - ¢(2) =E[Q] + ¢(C =z - 1) = ¢(2) =(( — 2z - 1). (4.16)

Given that the weight points are the probability of the Sigma points, as stated in Section 4.2,
p(®) =¥ = [¢(1), -+ ,9¥(C)]. Applying the first rule presented in this subsection, we obtain:

<
2) ¢(z) = 1. (4.17)

If the set contains an odd number of points, then the median index of the set is % and it

matches a Sigma point, that matches the PDF expected value itself:
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ERES I 1 N Gk R ) (118)
BI) — 6(2) = BO + (¢ — 2 — 1) = (=) = ¥(C — 2~ 1) (4.19)
Then:
%
¢é%¥»+2§2¢@):1 (4.20)
z=1

Note that Equations (4.16) and (4.19) are the same, except that one must consider Equation
(4.18) if the set has an odd number of points.

4.3.3 Computation of the UT for the unitary variance, zero-mean, Gaussian
Distribution

In the scope of this work, the Gaussian PDF is of great importance, thus it is interesting to

illustrate how the UT is computed for it.

The Gaussian PDF is well known and is commonly applied throughout engineering and other

fields. Its moments are already calculated [12, 13, 14], as shown in Table 4.1:

Table 4.1: Zero-mean, Gaussian PDF statistical moments [12, 13, 14].
’ Moment Order \ Value ‘

1 0

J2

0
30?
0
1505
0
1050°

CO| | O U] b= | WO DD

Using the technique exposed in Subsection 4.3.2, the computation of a three and four-point
UT are explained in Subsections (4.3.3.1) and (4.3.3.2), respectively.
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4.3.3.1 Three-point UT

e Using Equations 4.20 and 4.15:

1/;(2) + 21/)(1) =1.
B(1)1h(1) + ¢(2)¥(2) + H(3)1(3)
P(1)*0(1) + ¢(2)°¥(2) + ¢(3)*9(3) = 0,

0,

d(1)°9(1) + ¢(2)°¥(2) + ¢(3)*p(3) = 0,
(1) (1) + ¢(2)*(2) + ¢(3)*¢(3) = 30™.

e Simplify using Equations 4.18 and 4.19:

20(1)*(1) = o2,
2¢(1)%)(1) = 30

Solving the linear system:

S
_

N ®

~

N

(o) —lOoN|Mm—H|©
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Figure 4.1: 3-point UT vs Gaussian PDF.

4.3.3.2 Four-point UT

e Using Equations 4.17 and 4.15:

e Simplify using Equation 4.16:

—6(1) = 6(4),
~(2) = 6(3),
26(1)%(1) + 26(2)%(2) = o?,
26(1)"(1) + 26(2)'(2) = 307,
26(1)°0(1) + 26(2)%4(2) = 150°.

Solving the linear system:
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Figure 4.2: 4-point UT vs Gaussian PDF.

4.4 UT convergence vs Monte Carlo convergence

Figures 4.3 and 4.4 show the convergence of a unity mean and variance Gaussian RV, using
the techniques of Monte Carlo and UT. A 4-point UT is used and the convergence for the UT is
achieved at the fourth iteration for both cases, whilst the Monte Carlo takes at least 1000 iterations

before the convergence starts to occur.

For the Monte Carlo simulation, a pseudo-random Gaussian number generator was set to
output 100 thousands values. The expected value at the k-th iteration, illustrated in Figure 4.3,
is computed by E[Q]r = %, ©.p(£2.). The variance at the k-th iteration, illustrated in Figure
4.4, is computed by E[Q?], = 32F_ Q2p(Q.).

For the UT simulation, the expected value up to the 4*" iteration, illustrated in Figure 4.3,
is computed by E[Qur]r = S21_, ¢(2)¥(z). And the variance up to the 4% iteration, illustrated
in Figure 4.4, is computed by E[Q%]x = Zizl »*(2)¥(z). The UT only needs four iterations to

converge, the values from the iteration number 5 to 10%are kept only for comparison purposes.
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Figure 4.3: Convergence of Monte Carlo and the UT expectancies.
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Figure 4.4: Convergence of Monte Carlo and the UT variances.

4.5 Applying the UT for simulations

As shown in Section 3.5, our system output is defined by (3.23). The probabilistic set, €2, is
comprised of S, which is a BPSK signal, zero-mean discrete Uniform PDF RV, with variance, o2,
and the complex AWGN, N, a Gaussian PDF RV with zero-mean and o% variance. Note that the
adaptive vector w depends on the RVs present in the system. We assume that E[(AS)N] = 0 and
E[SN] = 0 (6, 3| and our goal is to find expressions of performance assessment for the signal-to-

interference ratio (SIR) and signal-to-interference plus noise (SINR), which are defined as follows:

2

73.s0

STRg1obal = 10l0g10 (ZUQI> [dB], (4.21)
S, INT
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and

2
0g,s01
SINR =101 ’ dB]. 4.22
global 0g10 (ZJ%,INT T JIQ\I> [ ] ( )

After filtering, the SINR for each sample is calculated using the formula below [19, 9, §]:

B ) = 1010 W (n)Ryx (n)w(n)H
£,(Q2) = SINR(n) = 10logyg (w(n)RINT+N(n)W(n)H> [dB], (4.23)

where RinT4+N is the interference signals plus noise auto-correlation matrix.

Using (4.4), each sample’s SINR is given by:

1 [
F,(Q) = SINRyc(n) = - Z SINRmc x(7). (4.24)
k=1

By applying the UT according to the Subsection 4.1, we obtain a the probabilistic £ set with
two discrete PDFs, a (g-point discrete Uniform PDF, ®g, and a (n-point PDF, &y, obtained
from a continuous Gaussian PDF. Since S is a BPSK signal, it can be either bitg or bit;, thereby,
the two weight points are ¢¥so = g1 = %, and the two Sigma points are the signal variance

¢s0 = —os and ¢s 1 = os. With respect to the noise RV, the ®n and ¥ are given by:

Prn, = [ON1, ON2: 5 ON(n)s (4.25)
Pn, = [ON1,ON2, DN eneds (4.26)
YN, = [UN1LUN2: S UNCN (4.27)
UnN, = [UN1,YUN2, 5 VN (4.28)

In order to cover all possible noise combinations, we perform the Kronecker sum of two vectors
defined in (3.8):
'i)N,(C = dediag(@N’R D j‘l’N@). (4.29)

and the weight points set is, resulting in a total of Cl% combinations:

Une = Une NN, = PN @ P (4.30)

As the noise is uncorrelated to the signal, then:

p(ﬂ) = [‘I’s N ‘I’NC] = [\1’570 N \PNC] U [‘PSJ N ‘I’NC],
Yyt = [Yur,1,Yurz2, - YUT20n] (4.31)
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which is the same as computing ¥n. ® ¥g, yielding a 2(n = (s(n-iteration UT simulation.

Using (3.22) presented in Section 3.5, the whole adaptive system is simulated in the 2(n-
iteration UT simulation, using the BPSK bitg at the first (v iterations, then BPSK bit; at the

last (i iterations:

Xy = a(fp)¢so + Aint¢s,o+‘i’NC,k]illl (4.32)
(X}, = a(0p)¢s 0+ Aincds1+®ne i), (4.33)

Since the interferers suffer spatial multiplexing and, for the sake of simplicity, their variances
are known and are assumed to be uncorrelated to the SOL. According to our simulations, the
influence of including the combinations between SOI and interferers is negligible due to the LCMV

filtering. However, in a more complex system, these combinations must be taken into account.

Using (4.9):

2N
Fn(ﬂ> = SINRUT (n) = Z wUT,kSINRUT,k(n> (434)
k=1

For the UT simulations, using the concepts of Subsection 3.3, a Taylor expansion satisfying
(3.10) was performed on the AWGN PDF in order to obtain four Sigma and weight points, and
two Sigma points were obtained for the BPSK signal discrete Uniform PDF, which are presented
in Table 4.2.

Table 4.2: Calculated UT Sigma and weight points for the Gaussian noise (®n, ¥n) and the
BPSK signal (®s, ¥s) .

L3N] Value Py | Value
ON,1 | —ON V643 YN 3_15/6
ON2 | —ON V6 -3 PYN,2 B%f
ON3 | ON V6 —+/3 YN,3 3%/6
ON4 | ON V6 +/3 (NP %

Pg Value Wg | Value
?s,0 -1 S0 z
$s.1 1 Usa | 5

Computing (4.31), according to the Subsections 4.5 and 4.1, we obtain a 32-point UT simu-
lation, resulting in every possible combination between the signals and noises weight points, as
shown in Table 4.3.

36



Table 4.3: Combination of the UT weight points, for each ( -th iteration.

¢ Bit 0 ¢ Bit 1

- Ps,0 N ¥N,c - Ps1 N¥N,c

1 | 0.5(¥Ng,1)(¥Ng,1) | 17 | 0.5(ng,1)(¥Ng,1)
2 | 0.5(¢nNg,1)(¥Ng,2) | 18 | 0.5(¢ng,1)(¥ng,2)
3 | 0.5(¥Nga,1)(¥Ng,3) | 19 | 0.5(¥Ng,1)(¥Ng,3)
4 | 0.5(¢Ng,1)(¥Ng,a) | 20 | 0.5(¢Ng,1)(PNg,4)
5 | 0.5(¢Ng,2)(¥ng,1) | 21 | 0.5(¢Ng,2) (¥ng,1)
6 | 0.5(¢Ng,2)(¥Ng,2) | 22 | 0.5(¢Ng,2)(¥Ng,2)
7 | 0.5(¢nNg,2)(¥ng,3) | 23 | 0.5(YnNg,2) (¥ng,3)
8 | 0.5(¢Ng,2)(¥ng,a) | 24 | 0.5(¥Ng,2) (¥Ng,a)
9 | 0.5(¢ng.3)(¥Ng.1) | 25 | 0.5(ng.3)(¥Ng,1)
10 | 0.5(¥Ng,3)(¥Ng,2) | 26 | 0.5(¥Ng,3)(¥Ng,2)
11 | 0.5(¥ng,3) (¥Ng,3) | 27 | 0.5(¥ng,3)(¥nNg,3)
12 | 0.5(¢Ng,3)(¥nNg.a) | 28 | 0.5(¢Ng,3)(¥ng,a)
13 | 0.5(¢Ng,4)(¥nNg,1) | 29 | 0.5(¢Ng,4)(¥ng,1)
14 | 0.5(¢ng,4)(¥Ng,2) | 30 | 0.5(¥Ng.4)(¥Ng,2)
15 | 0.5(¥Ng,4)(¥Ng,3) | 31 | 0.5(¥nNg,4)(¥Ng,3)
16 | 0.5(¢ng,4)(¥Ng,a) | 32 | 0.5(¢Ng,4)(¥ng,a)

4.6 Numerical Simulations

In order to validate the proposed performance assessment approach, a scenario with a 16
antenna ULA is considered for the full-rank LCMYV filter and a 64 antenna ULA with rank reduction
to 16 is considered for the reduced-rank LCMYV filter, 7 BPSK signals and 2000 snapshots. The
DOA of the SOI is 40° while the DOAs of the interfering signals are 20°, 30°, 50°, 60°, 70° and 80°.
The SIR is set to -8.45 dB, while the signal-to-noise ratio (SNR) is set to -3 dB. Before filtering,
the initial scenario SINR is -9.54 dB.

Fach MC iteration results in a SINR based on the noise variance, generated from acontinuous
Gaussian PDF, and a BPSK bit variance based on a discrete Uniform PDF. The SINR is calculated
according to (4.23) and the final results are obtained according to (4.24).

The UT simulation is setup to run the first 16 iterations with the filter being input with values
according to (4.32) and the later 16 iterations according to (4.33).

For each iteration, the obtained Rxx and RINT+N are used to calculate the SINR for each
sample, according to (4.23) 32 distinct SINR values are obtained, with final SINR, for each sample
being calculated as of (4.34).

4.6.1 First Approach

In order to illustrate the different natures of the MC and UT simulations, Figure 4.5 shows the
SINR of the SOI. Each solid line is the SINR found for an single UT iteration, without computing
the expectancy according to (4.34), while the dots are the SINR given by one MC iteration. Note
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that the dots are considerably outspread due to the continuous nature of the Gaussian PDF.
Therefore, performing only few MC iterations may result into performance assessment curves that

are vastly different from the ones obtained after several MC iterations.

SINR [dB]

0 500 1000 1500 2000
Samples

Figure 4.5: SINR (dB) vs sample numbers, before using4.34 to calculate the final expectancy for
UT curves.

4.6.2 Full-rank LCMYV simulations

The SINR final results are illustrated in Figures 4.6 and 4.7, with a solid line for MC, after
(4.24), and a dashed line for the UT, after (4.34). There is a very slight difference between the
results of 0.2 dB. This difference can be reduced by increasing the amount of UT iterations. It is
possible to observe the differences of convergence between these Figures, while Figure 4.6 runs 32
MC iterations and presents a low convergence SINR curve for the MC simulation, Figure 4.7 runs
1000 MC iterations and presents a much well behaved SINR MC curve. For both simulation cases,

the UT reaches the convergence in 32 iterations.

15 !

L L T TR T T LT I LT T R

; - |---Lms-Lcmv-uT
1440 S |—=LMs-Lcmv-mc| -

SINR [dB]

0 500 1000 1500 2000
Samples

Figure 4.6: SINR (dB) vs sample numbers, 32 Monte Carlo runs, and 32 UT runs.
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Figure 4.7: SINR (dB) vs sample numbers, 1000 Monte Carlo runs, and 32 UT runs.

Figure 4.8 presents the filter response over the DOAs (beamformer), the highest gain is located
at 40°, which is the SOI DOA. The beamformer gain at the SOI DOA is about 85 dB. The MC

and UT simulations beamformers are overlapped.
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Figure 4.8: Gain (dB) vs DOAs, 1000 Monte Carlo runs and 32 UT ruuns.

4.6.3 Reduced-rank LCMYV simulations

The SINR final results are illustrated in Figures 4.10 and 4.9, with a solid line for MC, after
(4.24), and a dashed line for the UT, after (4.34). There is a higher difference between the results
of 0.8 dB . There is a higher difference is due to the fact that the reduced rank filter has a
computational complexity higher than the full-rank filter, the difference also can be reduced by
increasing the amount of UT iterations. As in the previous Subsection, it is possible to observe
the differences of convergence between these Figures, while Figure 4.6 runs 32 MC iterations and
presents a low convergence SINR curve for the MC simulation, Figure 4.7 runs 1000 MC iterations
and presents a much well behaved SINR MC curve. For both simulation cases, the UT reaches the

convergence in 32 iterations.
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Figure 4.9: SINR (dB) vs sample numbers, 32 Monte Carlo runs, and 32 UT runs.
14.25
L35
o 1275
S 12 ;
E 12.25F o A RN : :
< ; - == LMS-RR-LCMV-UT
O 105 oot T -
: — LMS-RR-LCMV-MC
Q.75 o frr T "
9 2 2 2
0 500 1000 1500 2000
Samples

Figure 4.10: SINR (dB) vs sample numbers, 1000 Monte Carlo runs, and 32 UT runs.

Figure 4.11 presents the filter response over the DOAs (beamformer), the highest gain is located
at 40°, which is the SOI DOA. The beamformer gain at the SOI DOA is higher than 50 dB. The

MC and UT simulations beamformers are overlapped, the UT beamformer lobe is wider due the
less complexity in the noise.
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Figure 4.11: Gain (dB) vs DOAs, 1000 Monte Carlo runs and 32 UT runs.

4.6.4 Reduced-rank vs Full-rank LCMYV filters

Both UT and MC simulation results are presented in Figures 4.12 and 4.13, respectively, al-
though the UT results hardly differ from that of that MC simulation , as seen in the previous
Subsections, making a suitable technique to rapidly evaluate the differences between filtering tech-
niques. The UT clearly shows one of the most important reduced-rank filtering aspects of fast
adaption [7, 5, 9, 8|, which is difficult to overview in the MC simulation.

The reduced-rank technique has a low SINR loss, about 1 dB, shown by both differences, as
a trade-off of the redundancy reduction and faster adaption, the reduced rank filter performed a
64-to-16 dimension reduction, trading off only 1 dB of SINR.
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Figure 4.12: SINR (dB) vs sample numbers, for the reduced-rank and full-rank filters, using the
UT.
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Figure 4.14 presents all filters responses over the DOAs (beamformer), using all simulation

techniques,

Gain [dB]

the cyan dashed line is the optimum beamformer.
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Chapter 5

Radioaltimeters

Unlike conventional radars, to overcome very low round-trip times at low altitudes, radioal-
timeters usually uses the frequency modulation continuous wave radars (FM-CW), in which the
ranging is done by measuring the beating frequency at the demodulator, which result in a propor-
tionally increasing frequency versus the altitude, caused by the backscattered wave phase-delay
[10, 31, 32, 33, 34, 11, 35, 36].

The traditional radioaltimeter, which detects the most powerful backscattered wave, has the
advantage to detect the nearest object, in order to alert the airborne systems and pilot to avoid
a collision, but has the disadvantage not to detect the actual plane altitude, thus an antenna
array solution to model the receiver beamform or to detect the DOA of the backscattered waves

is required [10].

This Chapter is divided into three Sections, in which Section 5.1 brings a mathematical explana-
tion of the working principle of the traditional FM-CW radioaltimeter, Section 5.2 introduces and
explains the proposed digital antenna array radioaltimeter and Section 5.3 validates the proposed

radioaltimeter solution with computer simulations.

5.1 Operational principle of the radioaltimeter

Based on [10, 11], the simplified FM-CW radioaltimeter operational block is illustrated in Figure
5.1. A classic FM-CW radar uses a triangular wave as the modulating signal|[10, 32, 36, 35, 31], in
order to cancel the Doppler shift caused by the vertical speed or other phenomena [10, 11, 31].

The typical frequencies for the modulating signal falls between 50 Hz and 300 Hz, and the
carrier frequency is in the 4.3 GHz frequency band[10, 33, 11|, with a +/-100 MHz frequency
deviation[10, 36, 35]. Transmitting power ranges from 10 dBm to 27 dBm [10, 11|, and the

antennas have a directivity around 10 dBi, allowing a wider ground area coverage|11].

To simplify the hardware design, the transmitted signal is generated by a voltage-controlled
oscillator (VCO) and it is coupled to the receiver mixer (RF-mixer), acting as the local oscillator

(LO) signal. The received backscattered signal is mixed with the LO signal, creating an interme-
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diate frequency (IF) signal, which has the high frequency rejected by the IF low-pass filter (LPF).
The IF signal is then amplified through a limiting amplifier and fed to a zero-crossing detector,
which is going to generate pulses for a frequency counter, or a digital signal processing device so

that the altitude information or some sort of obstacle alarm is triggered [10, 11].

RX
Antenna
; ; RF-Mixer LPF
> Ve Vs > Frequency
NS Detector
TX
Antenna
Buffer Triangle wave
Amp VCO generator

RF-Coupler

Figure 5.1: Working diagram of a traditional radioaltimeter [10, 11].

5.1.1 Mathematical working principle of the radioaltimeter
The mathematical model of a traditional radioaltimeter is explained by using communication
theory concepts [10, 32, 35, 26, 31].

The transmitted signal is generated by a VCO, an electronic oscillator which generates an FM
signal according to the input voltage, viy(t), weighted by a gain Ky in [Hz/V] and fo(t) as the
center frequency|[10, 37]:

fvco(t) = fo+ Ko - vin(t). (5.1)

The instantaneous frequency of an FM signal is given by [26]
fi(t) = fe + ke -m(2), (5.2)

where f is the carrier frequency, k¢ is the gain and m(t) is the modulating signal, therefore a VCO

generated signal is considered an FM signal [37].

At the VCO input, a triangle waveform wviy(¢) is used

Vin (t) =A- mtriangle(zﬁfmt)v (5'3)

where Ay and f are the amplitude and signal frequency, respectively. Considering that f, = %,
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Miriangle (27 fmt) is a triangle waveform, which is a function of ¢, as illustrated in Figure 5.2.

AfetAf

Amplitude

fe=Af

. . .
0 0.5 1 15 2
Period [T]

Figure 5.2: Modulating triangle waveform and its phase delayed version. At the positive or negative
voltage peaks, the VCO outputs the center frequency, f., summed to the positive or negative A f
peak deviations [10].

The triangle wave is periodic. For one period, it is expressed as:

A1 for 0<t<Im

Mtriangle () = T
wiangle (1) {}f—H’, for Im <t

(5.4)

By combining (5.2) and (5.3), and considering k- Ay = Af (peak frequency deviation) [10, 26,
32],
fi(t) = fC + Af : mtriangle(Qmet)a (5.5)

the phase term of an FM waveform is[26]
t t
£(t) =2n / fit)dt = 2w (fet + Af / Meriangte (t') d2), (5.6)
0 0

The VCO outputs a signal to be transmitted, t,(t):

tz(t) = cos(£(t))- (5.7)

When the signal is backscattered to the receiver, it is attenuated by an « factor and has a time

delay, the so-called the round-trip time (rtt):
2
rtt(r) = % (5.8)

where c is the speed of light and r is the altitude (or the distance).

The received signal is represented by:
rz(t) = a - cos([{(t — rtt)]) = a - t(t — rtt), (5.9)

The received signal is mixed, after amplification by a factor of 8, for a frequency down-conversion.
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The mixing with the local oscillator signal creates an IF signal, which is the so-called beating
frequency signal:
IF(t) = Ba - ry(t) -t (). (5.10)

According to the trigonometric identities, the mixer output IF(¢) contains the sum and difference
of frequencies given by
Ba

IF(t) = =~ (cos([£(t) + £(t —rtt)]) + cos([€(t) — £(t —1tt)]), (5.11)

where the a high frequency component is suppressed by a low-pass filter located at the mixer

output, yielding:

IF/(t) = %O‘ cos([€(t) — E(t — rtt)]). (5.12)

The beating frequency from the filtered IF signal is:

(5.13)

—M-[fﬁii—l—fc—WH] (5.14)
=Af- (%E:) (5.15)

fieo(vtt) =4 Af - fin - rtt. (5.16)

Since rtt(r) = 2{, and (5.16) are linear, the output frequency is a linear function of either the
time delay or the altitude. Moreover, the maximum altitude detectable should be less or equal to

1 of vin(t)’s wavelength.

In (5.16), by substituting rtt for (5.8), the detected frequency becomes a function of altitude|32]:

faltitude(r) = chmr (517)

To make the design more compact, leaving space for more antennas, a single-antenna radio
altimeter proposed by [34], would be very suitable for an unmanned aerial vehicle (UAV), due to
its smaller dimensions and weight. The single antenna proposed in [34] is an FM radio altimeter
system that is able to operate in continuous-wave (CW) and interrupted continuous-wave (ICW)
modes, and uses a circulator as a duplexer, to separate the transmitted signal from the received

signal.

5.2 Proposed digital radioaltimeter

In order to apply digital filters and digital signal processing to the radioaltimeter, a redesign is
necessary. Figure 5.3 illustrates the proposed digital radioaltimeter. A triangle wave is digitalized
through an analog-to-digital converter (ADC), which will be PSK-modulated and amplified before

being transmitted through a single antenna (TX antenna), then the scattered signal is received
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by an antenna array (RX ULA), amplified and PSK-demodulated and filtered through a full-rank
or reduced-rank LCMYV filter, the demodulator and the filter uses the PSK Modulator and ADC
output signal as the local oscillator and desired signal references, respectively, the signal is then

processed by a digital signal processing processor (DSP processor).

The altitude resolution is related to the signal bandwidth, the higher the bandwidth, the higher
the resolution. Since the PSK signal is different, but closely related [27, 26|, from an FM or FSK
signal it is important to maintain a good triangle wave resolution, therefore, the ADC should run a
sampling rate high enough, in order that the low round-trip times causes a significant phase drift,

and the bit resolution should be high enough to diminish errors in the metering readings:

1
Tsample = f [S],
sample
T Tsample [S
bit — .
ADCresolution

Where Tgample; Thit and faample are the sampling period, bit period and sampling frequency.
To achieve a desired distance resolution, the round-trip time should be observed so that it causes

a significant shift in the received stream, using (5.8):
2r

Thiy < —.
c

For resolutions near one meter:

Bitrate >

> 150 Mbps
bit

The differences between the transmitted and the received demodulated signals results in a mean

voltage proportional to the altitude, if the aspects presented before are observed, using 5.4:
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Vout (I‘tt) = Mtriangle (t) — Myriangle (t - rtt) (5-18)

At 1 4A(t—rtt) T
=9 1 45"1“)“ NO; = (5.19)
T34 S =3 Vo <t

4rtt Tm
T LvVo<t< e

=9 - (5.20)
T sVt <t
4rtt
Vout (1tt) = —— [V]. (5.21)
T
Applying (5.8):
4rtt
vt (1)) = 20 (5.22)
8r
Uout(r) = T.¢ (523)
8r
Vout (1) = o [V]. (5.24)

Where Ay, is the wavelength of the demodulated signal. Analyzing (5.24) closely, a voltage
output of 8 'V /meter is achieved, therefore one of the most important quality of the FM-CW
radar is lost: the trade-off between the high bandwidth and the high frequency/m output. To
overcome this issue, a high sampling rate of the modulating signal is used, since the sampling
frequency must be, at least, twice the sampled signal, according to the Nyquist sampling theorem

[26, 27], vout(r) begins to behave according to the sampling rate:

_ Jsample 8l

Uout(r fsample) = f N (525)
sampleST
Uout(ra fsample) = fgl [V] (526)

Thus, if the signal is over-sampled by a sampling frequency a thousand times higher than the
modulating frequency, a voltage output of 8 mV /meter is achieved, which is a practical voltage to

read.

5.3 Simulation scenario setup

In the simulation scenario illustrated in Figure 5.4, three airplanes are flying above different
altitudes to the ground, at the same speed and parallel to each other. The main airplane is the

one located at the middle. All planes are equipped with the proposed radioaltimeter and the main
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Figure 5.3: Simplified diagram of the proposed radioaltimeter.

plane transmitted signal sequence is known and the line-of-sight (LOS) signal is the SOI, while the
known unwanted signals are the non-line-of-sight (NLOS) and the reflections caused by the other

planes radars are random and unwanted, considered as interferers (INT).

The main plane altitude, rr,og is set to 100 m above the ground, while the left and right plane

altitude is 80 m and 30 m, respectively.

Each plane is spaced by 20 meters and all planes radar cross-sections are set to one square

meter, therefore rny,0s1 &~ 28.3 m, rNLOs2 =~ 72.8 m.

The ground is considered to be a perfect reflective surface, thus rinto = rinT1 =~ 102.0 m and
the total trip distances for INTgand INT; are 182 m and 132 m respectively.

The SOI, NLOS{, NLOSs, INTy and INT; DOAS’ are respectively 0°, 45.30°, —15.95°, 11.36°
and —11.36°.

The transmitted power is set to unitary, initial ULA gain is set to 0 dBi as a isotropic irradiator
and the whole system is subject to an additive white Gaussian noise, with the SNR varying from
0 dB to -35 dB.

The triangle wave is set to 300 Hz, and the ADC is set to work in a range from 2-bit to 10-bit
mode, with the sampling rate at varying from 250 kHz to 25 MHz, in order to output a 2 to 200
Mbps stream. A 200 Mbps requires a bandwidth close to an conventional FM-CW radioaltimeter,
and the modem is set to work with a BPSK signal:
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Figure 5.4: Proposed simulation scenario.

5.3.1 Simulation results

Figure (5.5) illustrates how the radioaltimeter behaves in the traditional form, NLOS; is the
highest power component, and it would be the detected distance, for a collision avoidance system

it is very useful, but for measuring the actual altitude it is not.
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Figure 5.5: Radioaltimeter receiving lobes, before the beamforming.

Figure (5.6) shows the normalized output voltage vs the altitude, for various ADC resolutions
at 25 MHz sampling frequency, all lines are overlapped, with little differences. The system shows

a linear response over the altitude.
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Figure 5.6: Voltage output vs altitude for various ADC resolutions.

Figure (5.7) shows the normalized output voltage vs the altitude, for various ADC sampling
rates, at 10-bit resolution, the sampling rate, as stated in Section 5.2, plays a important role in the
altitude detection. Only at 25 MHz, when a 200 Mbps bandwidth is reached, the system shows a

desirable response.
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Figure 5.7: Voltage output vs altitude for various ADC sampling rates.

Since radars operates at very low SINR and SNRs, SINR vs samples results, such as the ones
shown in Section 4.6, are meaningless. Figure (5.8) shows bit-error-rate (BER) for various SNRs,
at -35 dB the systems shows a 10% error, which seems to be high, and indeed is high for data
communication, but for altitude detection it is acceptable. In order to improve the BER, the
output power or the radar frequency should be raised, in order to raise the radar cross section and

the antennas effective aperture.Both UT and MC simulations BER curves overlap.

The reduced-rank adaptive LCMV-BPSK-Radar operates at a 1:2 rank reduction and shows

no significant BER raise.
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Figure 5.8: Bit-error-rate (BER) for various SNRs, and for the full-rank and reduced rank LCMV-
BPSK-Radars

Figure 5.9 shows the antenna beamlobes, after the adaptive LCMV beamforming. The LOS
signal is located at 0° and the full-rank LCMV and reduced-rank LCMV beamformers have a 70
dB and 55 dB gain at the SOI DOA. The wider lobe for the reduced-rank case is caused due the

rank reduction. Both UT and MC simulations beamlobes overlap.
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Figure 5.9: Voltage output vs altitude.
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Chapter 6

Conclusion

In this work, a UT based low complexity performance assessment technique for adaptive full-
rank and reduced-rank LCMYV filters has been presented. The proposed UT based performance
assessment scheme presents curves with only thirty two UT iterations that closely match curves

obtained with one thousand MC iterations.

Even if the UT results not exactly match the Monte Carlo results, it provides a good and

reliable preview of such results whilst saving a great amount of time.

The UT improves processing costs and time by discretizing continuous RVs, in our simulations
31.25 times less iterations were needed when using the UT, representing only 5.85% of iterations of
MC, which is a huge gain where more complex and dispendious simulations are required. Moreover,
the improvements provided by this technique are not solely in the reduction of the number of
iterations needed, but, also in the removal of random numbers generators, which further reduces
the simulation time and computational requirements, which represented a simulation 41 times

faster, computed by the simulating software.

Therefore, the benefits of UT based performance assessment is far reaching, as is not only
useful in signal processing applications, but in commercial and industrial applications where the

development time should be as short as possible to reduce costs and allow for faster market entry.

The reduced rank filtering technique is very practical and useful in all fields, especially in
engineering and geophysics, where sensors arrays are used for all purposes such as radio-frequency
signal receiving, structural stress studies, mineral prospection. In such situations, a huge amount
of raw data is received, and must be stored for further processing and a fast adaption is needed

for communication, surveillance and imaging.

Moreover, this work also proposes a novel digital radioaltimeter or ranging device, which uses a
BPSK modulation to range and detect obstacles. Its main contribution is the ability to beamform
an ULA with reduced rank and full rank LCMV algorithm in order to fix the ULA gain to a
certain direction. The BPSK-LCMV-Radar proposed in this work has a performance of an analog
FM-CW radar, with the advantage of beamforming and detecting the real UAV altitude.

93



OWN PUBLICATIONS

[1*] R.S. Ferreira Junior, J. P. C. L. da Costa, R. Nock; R. Zelenovsky and L. R. A. X. de Menezes.
Unscented Transform based Low Complexity Performance Assessment for Adaptive LCMV
Filters European Signal Processing Conference (EUSIPCO 2015), submitted on February 27,
2015.

[2*] R. S. Ferreira Junior, J. P. C. L. da Costa, R. Zelenovsky and L. R. A. X. de Menezes.
Unscented Transform based Low Complex Performance Assessment for Reduced Rank Adaptive
LCMYV Filters SpringerCircuits, Systems & Signal Processing (CSSP), Submitted on April 17th,
2015, CSSP-D-15-00344.

[3*] R. S. Ferreira Junior, M. A. M. Marinho, K. Liu, J. P. C. L. da Costa, A. V. Amaral, and
H. C. So, "Improved landing radio altimeter for unmanned aerial vehicles based on an antenna
array," in IEEFE 1V International Conference on Ultra Modern Telecommunications and Control
Systems (ICUMT), 2012, best paper award.

[4*] J. Milanezi Junior, J. P. C. L. da Costa, R. S. Ferreira Junior, M. A. M. Marinho, R. A.
Shayani, and R. T. de Sousa Junior, "Energy Harvesting Photovoltaic System to Charge a Cell
Phone in Indoor Environments," International Conference on Composite Materials & Renew-

able Energy Applications 2014, Sousse, Tunisia, Jan 2014.

[5*] J. Milanezi Junior, J. P. C. L. da Costa, R. S. Ferreira Junior, M. A. M. Marinho, R. A.
Shayani, and R. T. de Sousa Junior, SISTEMA FOTOVOLTAICO DE CAPTACAO DE EN-
ERGIA PARA CARGA DE APARELHOS CELULARES EM AMBIENTES FECHADOS, V
CONGRESSO BRASILEIRO DE ENERGIA SOLAR, Mar 2014.

[6*%] M. A. M. Marinho, R. S. Ferreira Junior, J. P. C. L. da Costa, E. P. de Freitas, K. Liu, A. A.
H. Cheung, R. T. de Sousa Jr., and R. Zelenovsky, "Antenna array based positioning scheme
for unmanned aerial vehicles," in 17th International ITG Workshop on Smart Antennas (WSA
2013), 2013.

[7*] R. S. Ferreira Junior, M. A. M. Marinho, J. P. C. L. da Costa, A. V. Amaral, and R. T.
de Sousa Jr., "Radio Altimetro baseado em Arranjo de Antenas," Processo N°.: BR 10 2013
002620 4, INPI.

[8*] J. Milanezi Junior, J. P. C. L. da Costa, R. S. Ferreira Junior, M. A. M. Marinho, and E. P. de
Freitas, "ARRANJO E METODO PARA GERACAO DE ENERGIA ELETRICA POR MEIO
DE ENGUIAS DISPOSTAS EM AQUARIO," Processo N°.: BR 10 2013 011210 0, INPI.

o4



REFERENCES

(1]

2]

3]
4]

5]

[6]

7]

8]

9]

[10]

L. R. A. X. de Menezes, J. B. J. Pereira, and G. A. Borges, “Statistical model of induced
ground voltage using the TLM method,” IEEE International Symposium on Electromagnetic
Compatibility, 2008.

L. R. A. X. de Menezes, A. Ajayi, C. Christopoulos, P. Sewell, and G. A. Borges, “Efficient
computation of stochastic electromagnetic problems using unscented transforms,” IET Sci.
Meas. Technol., Vol. 2, No. 2, March 2008.

S. Haykin, Adaptive Filter Theory, 3rd ed. Prentice Hall, 1995, iSBN: 978-0133227604.

S. Chen, S. Tan, and L. Hanzo, “Adaptive beamforming for binary phase shift keying commu-
nication systems,” Signal Processing 87, Flsevier., pp. 68 — 78, 2007.

R. K. Miranda, J. P. C. L. da Costa, and F. Antreich, “High accuracy and low complexty

adaptive generalized sidelobe cancelers for colored noise scenarios.” Digital Signal Processing,
Elsevier., 2014.

P. S. Diniz, Adaptive Filtering - Algorithms and Practical Implementation, 3rd ed. Springer,
May 2008, iSBN: 978-0-387-31274-3.

R. C. Lamare, L. Wang, and R. Fa, “Adaptive reduced-rank LCMV beamforming algorithms
based on joint iterative optimization of filters: Design and analysis,” Elsevier Signal Process-
ing, vol. 90 - Issue 2, pp. 640-652, February 2010.

R. S. Ferreira Junior, J. P. C. L. da Costa, R. Zelenovsky, and L. R. A. X. de Menezes,
“Unscented transform based low complex performance assessment for reduced rank adaptive
lemv filters,” SpringerCircuits, Systems € Signal Processing (CSSP), Submitted on April 17th,
2015, CSSP-D-15-00344, 2015.

R. S. Ferreira Junior, J. P. C. L. da Costa, R. Nock, R. Zelenovsky, and L. R. A. X. de Menezes,
“Unscented transform based low complexity performance assessment for adaptive lemv filters,”
in European Signal Processing Conference (EUSIPCO 2015), submitted on February 27, 2015,
2015.

R. S. Ferreira Junior, M. A. M. Marinho, K. Liu, J. P. C. L. da Costa, A. V. Amaral, and
H. C. So, “Improved landing radio altimeter for unmanned aerial vehicles based on an antenna
array,” TEEE TV International Conference on Ultra Modern Telecommunications and Control
Systems (ICUMT) 2012, Saint Petersburg, Russia, best paper award.

5%)



[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

M. Vidmar, “A landing radio altimeter for small aircraft,” in 12th International Power Elec-

tronics and Motion Control Conference, 2006.

J. A. Gubner, Probability and Random Processes for Electrical end Computer Engineers,
1st ed. Cambridge University Press, 2006, iSBN: 978-0-521-86470-1.

A. Papoulis, Probability, Random Variables, and Stochastic Processes, 3rd ed., McGraw-Hill,
Ed. New York: McGraw-Hill, 1991.

M. Paul L, Introductory Probability and Statistical Applications, ISBN 978-0201047141,
2nd ed., ser. World Student, A. Wesley, Ed. Addison Wesley, 1970.

H. Anton, Calculus: A New Horizon, 6th ed., Wiley, Ed., New York, 1999.

S. Julier and J. Uhlmann, “A general method for approximating nonlinear transformations of
probability distributions,” Eng. Dept., Univ. Ozford, Tech. Rep., Ozford.

S. J. Julier and J. K. Uhlmann, “A new extension of the kalman filter to nonlinear systems,”
in Int. symp. aerospace/defense sensing, simul. and controls, vol. 3, no. 26.  Orlando, FL,
1997, pp. 3-2.

A. Papoulis, The Fourier Integral and its Applications. McGraw-Hill Book Company Inc.,
1962.

B. D. V. Veen and K. M. Buckley, “Beamforming: A versatile approach to spatial filtering,”
IEEE Acoustics, Speech and Signal Processing Magazine (ASSP), pp. 4-24, April 1988.

M. A. M. Marinho, F. Antreich, J. P. C. L. da Costa, and J. A. Nossek, “Reduced Rank TLS
Array Interpolation for DOA Estimation,” in 18th International ITG Workshop on Smart
Antennas (WSA 2014), 2014.

L. R. de Menezes, A. J. Soares, F. C. Silva, M. A. Terada, and D. Correia, “A new proce-
dure for assessing the sensitivity of antennas using the unscented transform,” Antennas and
Propagation, IEEE Transactions on, vol. 58, no. 3, pp. 988-993, 2010.

L. De Menezes, D. Thomas, C. Christopoulos, A. Ajayi, and P. Sewell, “The use of unscented
transforms for statistical analysis in emc,” in FElectromagnetic Compatibility-EMC Furope,
2008 International Symposium on. TEEE, 2008, pp. 1-5.

L. R. de Menezes, A. Ajayi, C. Christopoulos, P. Sewell, and G. A. Borges, “Efficient com-
putation of stochastic electromagnetic problems using unscented transforms,” IET Science,
Measurement € Technology, vol. 2, no. 2, pp. 88-95, 2008.

R. A. Horn and C. R. Johnson, Topics in Matriz Analysis. Cambridge, England: Cambridge
University Press, 1994.

R. D. Schafer, An Introduction to Nonassociative Algebras. New York: Dover., 1996.

S. Haykin, Communication Systems, ISBN 0-471-17869-1, 4th ed., J. W. . Sons, Ed. John
Wiley & Sons, 2000.

o6



[27] B. P. Lathi, Modern Digital and Analog Communication Systems, 3rd ed., T. O. S. in Electrical
and L. .-. Computer Engineering, Eds. Oxford University Press, March 26 1998.

[28] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs,
and Mathematical Tables, ninth printing ed., D. Publications, Ed. New York: Dover Publi-
cations, 1970.

[29] G.B. T. Jr. and R. L. Finney, Calculus and Analytic Geometry, ISBN 0-201-53174-7, 9th ed.,
A. Wesley, Ed. Addison Wesley, 1996.

[30] M. Greenberg, Advanced Engineering Mathematics, ISBN 0-13-321431-1, 2nd ed., P. Hall,
Ed. Prentice Hall, 1998.

[31] G. Stimson, Introduction to Airborne Radar, Library of Congress: 8383041, 1st ed., H. A.
Company, Ed. El Segundo, California: Hughes Aircraft Company, 1983.

[32] F. N. E., Radar Design Principles - Signal Processing and the Environment, Library of
Congress: 7980973. McGraw-Hill Book Company, New York,, 1969.

[33] W. Mansfeld, Funkortungs- und Funknavigationsanlagen, ISBN 3-7785-2202-7. Hithig Buch
Verlag GmbH, Heidelberg, 1994.

[34] L. G. Maloratsky, “An aircraft single-antenna fm radio altimeter,” May 2003.
[35] M. Skolnik, Radar Handbook: Third Edition, ISBN: 0071485473. McGraw-Hill, 2001.
[36] ——, Radar Handbook: Second Edition, ISBN: 0071128026. McGraw-Hill, 1991.

[37] R. E. Best, Phase-Lock Loops, ISBN: 0070050503. McGraw-Hill, New York., 1984.

o7



