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Abstract

Pichia pastoris is methylotrophic yeast used as an efficient expression system for heterologous pro-

tein production. In order to evaluate the effects of temperature (10 and 30 °C) and methanol (1 and

3% (v/v)) on genetically-modified Pichia pastoris, different biomarkers were evaluated: Heat stress

(HSF-1 and Hsp70), oxidative stress (OGG1 and TBARS) and antioxidant (GLR). Three yeast cul-

tures were performed: 3X = 3% methanol-10 °C, 4X = 3% methanol-30 °C, and 5X = 1% metha-

nol-10°C. The expression level of HIF-1�, HSF-1, HSP-70 and HSP-90 biomarkers were measured

by Western blot and in situ detection was performed by immunocytochemistry. Ours results show

that at 3% methanol -30 °C there is an increase of mitochondrial OGG1 (mtOGG1), Glutathione

Reductase (GLR) and TBARS. In addition, there was a cytosolic expression of HSF-1 and HSP-70,

which indicates a deprotection against nucleolar fragmentation (apoptosis). On the other hand, at 3%

methanol -10 °C and 1% and at methanol -10 °C conditions there was nuclear expression of OGG1,

lower levels of TBARS and lower expression of GLR, cytosolic expression of HSF-1 and nuclear ex-

pression HSP-70. In conclusion, our results suggest that 3% methanol-30 °C is a condition that in-

duces a strong oxidative stress and risk factors of apoptosis in modified-genetically P. pastoris.

Key words: oxidative stress, recombinant yeast, heat stress protein, DNA damage.

Introduction

The pharmaceutical industry uses different types of

cell cultures to produce biological drugs in high quantities

(Panagiotou et al., 2011), such as monoclonal antibodies

which appear as a prominent therapeutic intervention but

requires appropriate post-translational modifications to be

effective and safe for the human (Sohn et al., 2010).

Currently, there are various expression systems for

recombinant antibodies such as Escherichia coli, insect

cells, yeast and mammalian cells (Hayden et al., 1997).

Within the broad strain of yeasts used as expression sys-

tems, the methylotrophic yeast Pichia pastoris has emerged

as an important host for heterologous protein expression in

both biomedical research and industrial biotechnology

(Solà et al., 2004; Ahn et al., 2009) and recently in meta-

bolic engineering applications (Sohn et al., 2010), because

it is considered as a economic system of well-defined fer-

mentation process, growth to high cell density has been

shown to substantially improve the production of hetero-

logous proteins (Whyteside et al., 2011) and ease the ge-

netic manipulation (van der Klei et al., 2006). This system
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also has a process of post-translational modifications simi-

lar to humans which allows a simple purification system of

heterologous proteins due to secrete low levels of endoge-

nous proteins (Macauley-Patrick et al., 2005; Damasceno

et al., 2012), beside the production of heterologous proteins

is associated with strong inducible promoter by methanol,

alcohol oxidase gene 1 (AOX1) (Arakawa et al., 2006;

Xuan et al., 2009; Ahn et al., 2009).

The expression level of proteins in P. pastoris de-

pends critically on growth conditions (Solà et al., 2007),

such as temperature, carbon source (Ni et al., 2008) and ox-

ygen (Verbelen et al., 2009), which have been proven to be

cell type-specific and varied depending on the product that

is generated, so it has not yet been achieved a specific

method, like biomarkers, to determine the effects of these

conditions to find the optimal parameters for each model.

Among the adverse consequences caused by disregard the

effects of these parameters on the cultivation of yeast, tem-

perature conditions would affect the expression of the tran-

scription factor known as factor of response to heat stress

(HSF-1) (Gasser et al., 2007), so it would regulate HSP-70

expression. Heat shock proteins (HSPs) are a family of mo-

lecular chaperones, which are indispensable in physiologi-

cal states and exhibit a protective role in pathological

processes; there are conditions of environmental stress

such as heat shock and some pathological states that induce

the expression of HSPs (Khalil et al., 2011).

Another effect of environmental conditions is the

generation of reactive oxygen species (ROS), which can be

generated endogenously in the presence of aerobic metabo-

lism from mitochondria or generated during the metabo-

lism of methanol when this is oxidized to formaldehyde

(HCHO), producing high levels of hydrogen peroxide

(H2O2) which has the ability to easily become a more dam-

aging species (Bener et al., 2008), resulting in membrane

lipid peroxidation (Priault et al., 2002), carbonylation and

oxidation of residues of proteins and causing oxidation of

nitrogen bases and strand breaks in DNA (Cash et al.,

2007). One of the most common oxidative damage that af-

fects the nitrogen bases is known as 7,8-dihydro-8-oxo-

guanine (8-oxoguanine) and it is the result of guanine

oxidation (Sandigursky et al., 1997). However, there is an

enzyme responsible for 8-oxoguanine repair known as

OGG1 (8-oxoguanine DNA glycosylase) and this has OG-

glycosylase/AP ligase activity (Leipold et al., 2003; Solà et

al., 2004). There is an antioxidant enzyme that protects the

cells from oxidative stress, Glutathione Reductase (GLR)

converts the oxidized form (GSSG) to reduced form of

Glutathione (GSH) (Yano et al., 2009b). GSH scavenges

cytotoxic H2O2 and maintains a redox balance in the cellu-

lar compartments (Blokhina et al., 2003). Despite this in-

formation, temperature and methanol effects on the heat

and oxidative stress biomarkers in P. pastoris cultures dur-

ing monoclonal antibodies production has not yet been de-

termined. For this reason, the aim of this study is to

determine the optimal conditions using biomarkers related

with heat stress and oxidative stress on genetically-

modified P. pastoris.

Materials and Methods

Reagents

The solvents used were of analytical grade. The cul-

ture medium and glycerol were autoclaved at 121 °C for 20

min at 1 atm and glucose at 0.5 atm. Solutions and buffers

were prepared with deionized water, besides methanol, bio-

tin, ampicillin, casamino acids, YNB medium (“Yeast Ni-

trogen Base”) and other reagents were sterilized by filtra-

tion on membrane of 0.22 microns.

Strain

We used lineage SMD1168 (Invitrogen ®):

�pep4::URA3 �kex1::SUC2his4ura3 with His-Mut+ phe-

notype which was used for the expression of scFv. The ge-

netically modified strain was provided by the research

group of Professor Dr. Dulcineia Saes Parra Abdalla of the

Department of Clinical and Toxicological Analysis of the

Ciências Farmacêuticas-USP and was built by the group of

Prof. Dr. Andrea Maranhão of the Department of Molecu-

lar Biology of Universidade de Brasília.

Maintenance and reactivation of P. pastoris

For the preservation of cells of P. pastoris, the colo-

nies were replicated every three months on YPD solid me-

dium (Yeast Extract Peptone Dextrose) (yeast extract 1%

(w/v), casein peptone 2% (w/v), glucose 2% (w/v), bacteri-

ological agar 1.2% (w/v) and incubated at 30 °C for 24 h.

After that period, the colonies were removed from plates

and inoculated into Erlenmeyer flasks of 500 mL capacity,

containing 100 mL of YPD liquid medium at 30 °C and

250 rpm for 24 h. Then, the colonies were stored at 4 °C and

-70 °C in YPD medium containing 20% sterile glycerol.

For the reactivation step, 1 mL of frozen material was inoc-

ulated in Erlenmeyer flasks of 500 mL capacity containing

100 mL growth medium BMGY (Buffered Glycerol Com-

plex Medium) (YNB medium 0,34% (w/v) + ammonium

sulfate 1% (w/v), yeast extract 1% (w/v), casein peptone

2% (w/v), buffer potassium phosphate (100 mM) pH 6.0,

biotin 4x10-5% (w/v), glycerol 1% (v/v), casamino acids

2% (w/v) and incubated at 30 °C and 250 rpm for 16 h.

Preparation of P. pastoris inoculum in shaker
(growth phase)

For inoculum stage in a stirrer, it was prepared

BMGY medium through five solutions (1: 2 g Yeast Ex-

tract, 4 g peptone, dilute to 50 mL with deionized water, 2:

20 mL buffer phosphate, 2 g glycerol, 3: 2.68 g Yeast Nitro-

gen Base and dilute to 50 mL with deionized water, 2 g of

ammonium sulfate and dilute to 40 mL with deionized wa-

ter, 4: 4 g casamino acids and dilute to 40 mL with
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deionized water, 5: 400 mL of biotin) to 200 mL in a

500 mL Erlenmeyer flask and withdrew 10% of the initial

volume (20 mL) which was used to cultivate 200 mL of P.

pastoris strain genetically modified and incubated at 30 °C

at 250 rpm for 16 h. Subsequently, the inoculum is trans-

ferred to 180 mL of BMGY medium and incubated at 30 °C

at 250 rpm for 24 h.

Induction phase in a shaker

After the growth phase (40 h) it was added 1% and

3% methanol. To inhibit the production of protease was

also added 1 mM PMSF (phenylmethanesulfonylfluoride).

Before the addition of methanol, the temperature was ad-

justed to 10 °C and 30 °C. This induction phase was carried

out after 24, 48 h and 72 h. The total culture time was 96 h.

Experimental Design After 96 h each culture was cen-

trifuged at 1957 x g for 30 min where aliquots of 2 mL were

obtained for its use in subsequent trials. The samples for

analysis corresponded to: 3X: 3% methanol -10 °C; 4X: 3%

methanol -30 °C and 5X: 1% methanol -10 °C.

Quantification of proteins

The cell lysate was performed by ultrasonication for

30 min in ultrasonicator bath Elmasonic E 60 H (Elma,

Singen, Germany). Quantification of proteins was per-

formed through the Coomassie blue method (Bradford,

1976). The calibration curve was performed with BSA

(stock 2 mg/mL) to a standard concentration of 100 �g/mL

and the dilution was made with distilled water, the absor-

bance measurement at 595 nm was performed in Spectro-

photometer Optizen 3220 UV (Mecasys Co., Daejeon, Rep.

of Korea) and its concentration was calculated according to

the initial ratio volume and initial concentration vs. the vol-

ume and final concentration. According to the method of

cell lysate, it was used 5 to 20 �L of these cells within UV

Macro 3.5 mL (Arquimed) then it was added distilled water

to 100 �L plus 1 mL of 1X Bradford, mixed and allowed to

incubate for 5 min at room temperature and then was mea-

sured. The results were expressed as mg protein / mL of

cells.

Determination of lipid peroxidation

Lipid peroxidation was quantified by measuring thio-

barbituric acid reactive substances (TBARS) produced

from the reaction of TBA with malondialdehyde (MDA)

(Farías et al., 2012). Cell disruption was performed by us-

ing lysis buffer. Subsequently the samples were washed

twice with distilled water and suspended at a concentration

of 5 x108 cells/mL. To each sample it was added cold

trichloroacetic acid (TCA) 10% (v/v), then incubated for

15 min on ice and centrifuged for 15 min at 2367 x g at 4 °C

(Eppendorf 5804R, Germany). Subsequently the super-

natant was incubated with twice the volume of TBA 0.67%

(v/v) for 20 min at 95 °C in thermostated bath (YCW-0125,

Gemmy Industrial Corporation, Taiwan), then the mixture

was cooled on ice, centrifuged 4 s to 1380 x g and the

absorbance was measured at 532 nm in the Spectrophoto-

meter 3220-UV Optizen (Mecasys Co., Daejeon, Republic

of Korea). We performed a calibration curve using

1,1,3,3-tetramethoxypropane 500 �M as standard. The re-

sults were expressed as micromoles of TBARS by 5x 108

cells (Kwolek-Mirek et al., 2009). The concentrations were

determined in triplicate for each sample.

SDS / PAGE and Western blot analysis

To evaluate and correlate the expression levels of

8-oxoguanine DNA glycosylase (OGG1), Glutathione

Reductase (GLR), factor of response to heat stress (HSF-1)

and heat shock protein 70 (HSP-70), the levels of all pro-

teins were measured to different growing conditions in a

shaker. The protein samples were separated by 10%

SDS/PAGE (HSF-1), 12% SDS-PAGE (HSP-70 and

OGG1) and 5% SDS-PAGE (GLR), then these were trans-

ferred to membrane Hybond-C (Amersham Pharmacia,

Piscataway, NJ, USA) using a transfer cell Transfer-blot

SD Semi-dry (Bio-Rad, Tokyo, Japan). The membranes

were then blocked by incubation with skim milk 5% (w/v)

in PBS, pH 7.2 for 1 h at room temperature (RT) under mild

agitation. Subsequently, the membranes were incubated

with rabbit anti-(rat-OGG1) IgG (1:50 dilution) (Santa

Cruz Biotechnology, Santa Cruz, CA, USA), rabbit

anti-(-rat-GLR) IgG (1:50 dilution), rabbit anti-(rat-HSF-1)

IgG (1:50 dilution) (Santa Cruz Biotechnology, Santa

Cruz, CA, USA) and mouse anti-(rat-HSP-70) IgG (1:50

dilution) (Santa Cruz Biotechnology, Santa Cruz, CA,

USA) for 16 h at 4 °C. After the membranes were washed

5 times for 10 min with PBS, pH 7.2, containing Tween-20

0.1% (v/v), a fourth wash was carried out only with PBS pH

7.2 to remove all traces of detergent, then were incubated

with peroxidase-conjugated goat anti-(rabbit IgG) IgG (di-

lution 1:500) (Jackson Laboratories ImmuneResearch, PA,

USA) and peroxidase-conjugated goat anti-(mouse IgG) Ig

(dilution 1:500) (Santa Cruz Biotechnology, Santa Cruz,

CA, USA) for 2 h. After being washed 5 times for 10 min

with PBS, pH 7.2, containing Tween-20 0.1% (v/v) and

once for 5 min with PBS pH 7.2 only, the peroxidase activ-

ity was detected by a chemiluminescent method using an

ECL Plus kit (Amersham Pharmacia, Buckinghamshire,

UK). The �-actin antibody (Sigma) was used as loading

control in Western blot in dilution 1:50.

Immunocytochemistry

Cells were fixed in formalin 3.7% (v/v) and permea-

bilized with cold methanol (-20 °C). Endogenous pero-

xidase was blocked with H2O2 0.3% (v/v) in dark for 30 min

at RT. The cells were blocked with bovine serum albumin

(BSA, Sigma-Aldrich) 5% at RT for 15 min and washed for

5 min with PBS. Then they were incubated with rabbit

anti-(rat-HSF-1) IgG (1:100 dilution) (Santa Cruz Biotech-

nology, Santa Cruz, CA, USA) and mouse anti-(rat-
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HSP-70) IgG (1:100 dilution) (Santa Cruz Biotechnology,

Santa Cruz, CA, USA) for 1 h at 37 °C in a humid chamber.

Later were incubated with peroxidase-conjugated goat

anti-(rabbit IgG) IgG (dilution 1:1000) (Jackson Labora-

tories ImmuneResearch, PA, USA) and peroxidase-conju-

gated goat anti-(mouse IgG) IgG (dilution 1:1000) (Santa

Cruz Biotechnology, Santa Cruz, CA, USA) for 30 min at

RT. The peroxidase activity was visualized using 1,3-dia-

minobenzidine (DAB) and were counterstained with

hematoxylin. The slides were immersed in a series of alco-

hols, in increasing order (70°, 95° and 100°) for 5 min each

one, then allowed to soak for 10 min in xylol and finally

made the final assemble end where the slides were ob-

served under the BX43 Optical microscope (Olympus, To-

kyo, Japan).

Data analysis

The results show that normal distribution was ana-

lyzed using One Way test - ANOVA followed by Tukey

analysis. ANOVA analysis was performed to determine

significant interaction between the expression of pro-

teins-OGG-1, GLR, HSF-1 and HSP-70 - and different cul-

ture conditions, because this could indicate a difference in

the expression of these molecules. We also analyzed using

ANOVA, the level of lipid peroxidation in different cul-

tures. The statistical significance level used was p < 0.05

for all tests. Results are presented as mean � standard devia-

tion.

Results

Oxidative stress

In order to evaluate the effects of temperature and

methanol, TBARS was analyzed. For the recombinant

yeast, in the three conditions, TBARS shows in the 4X (3%

(v/v) Methanol -30 °C) condition an increase of oxidative

stress in comparison to 3X (3% (v/v) Methanol -10 °C) and

5X (1% (v/v) Methanol -10 °C) conditions (p < 0.05; Figu-

re 1).

Expression level of nuclear repair proteins,
antioxidant and heat stress protein

To determine oxidative DNA damage, OGG1-1a and

OGG1-2a were evaluated. OGG1 is an enzyme responsible

for repairing the DNA damaged by oxidative stress. Our re-

sults showed that in 3X and 5X cultures OGG1-1a was ex-

pressed (nuclear); while in 4X culture both subunits

OGG1-1a (nuclear) and OGG1-2a (mitochondrial) (Figu-

re 2) were expressed.

To determine antioxidant defense, GLR was evalu-

ated. GLR is an enzyme that maintains the reduced levels of

Glutathione, acting as antioxidant protection. Our results

showed that in 4X culture was observed higher expression

of GLR in comparison with 3X and 5X cultures (p < 0.05;

Figure 3).

The expression of HSF-1 did not shown significantly

difference between all culture conditions (p > 0.05; Figu-

re 4). HSF-1 protein expression was mainly found in the cy-

toplasm of yeast under all three culture condition. Also, in

the 5X culture HSF-1 was found in the nucleus, indicating

that it might be acting in the transcription of various pro-

teins in response to heat stress. These proteins would act as

chaperones in the regulation of protein stability to achieve

the conformation necessary to fulfill their role (Figure 5).

On the other hand, HSP-70 was mainly expressed in the nu-

cleus in 3X and 5X culture conditions; while that in 4X cul-

ture was found in the cytoplasm (Figure 5).

Discussion

Methylotrophic yeast P. pastoris has several charac-

teristics that allow it to be a more optimal host for hetero-

logous protein production and/or monoclonal antibodies.

Perhaps the most important for the industry is that allows a

faster and more efficient purification process because of the

low concentration of endogenous proteins that it normally

produces. In the search for biomarkers, this property is of

great concern because these characteristics are objectively

measured and evaluated as an indicator of normal biologi-

cal processes or pharmacologic responses to therapeutic

intervention (van Lammeren et al., 2011). Nowadays, pro-

duction of high amounts of proteins of therapeutic interest

has generated the need to scale P. pastoris cultures to in-

crease the cell density and the product of interest (Arakawa

et al., 2006). However, P. pastoris has presented problems

when scaled, in terms of cell instability in the density of the

culture. This has directly affected the production of
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Figure 1 - Protein expression level of OGG1. Western blotting and band

intensity obtained from samples with different conditions of temperature

and concentration of methanol were analyzed. The bars indicate mean �

standard deviation of n = 3. Statistical analysis: ANOVA one-way fol-

lowed by Tukey analysis. p < 0.05, * indicates there was significant differ-

ence in respect to OGG1-1a subunit of 4X, ** indicates there was signifi-

cant difference in respect to OGG1-1a subunit of 5X. 3X = 3% (v/v)

Methanol -10 °C, 4X = 3% (v/v) Methanol -30 °C, 5X = 1% (v/v) Metha-

nol -10 °C.



heterologous proteins that requires maintaining a constant

specific growth rate. Our results shown a higher concentra-

tion when the yeast was grown at 10 °C, differing from

those observed at 15 °C in such yeasts as P. pastoris and

Saccharomyces cerevisiae, where the biomass was reduced

(Steels et al., 1994; Pizarro et al., 2008) and where metha-

nol could have negative effects on cell growth compared to

other inductors such as glycerol and glucose (Dragosits et

al., 2011).

Regarding to the extent of lipid peroxidation in re-

combinant yeasts, our results showed higher levels of

TBARS under conditions of methanol 3% (v/v) and at 30

°C. These could be related to those reported by several au-

thors, where P. pastoris cultures at 20 °C induce the tran-

scription of genes that encode enzymes which regulates

oxide/reduction homeostasis, such as glutathione reductase

(GLR1) and thioredoxin reductase (TRR1) related to the

antioxidant protection (Dragosits et al., 2009). However,

the exposure of the yeast to methanol also generates meta-
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Figure 2 - Protein expression level of OGG1. Western blotting and band

intensity obtained from samples with different conditions of temperature

and concentration of methanol were analyzed. The bars indicate mean �

standard deviation of n = 3. Statistical analysis: ANOVA one-way fol-

lowed by Tukey analysis. p < 0.05, * indicates there was significant differ-

ence in respect to OGG1-1a subunit of 4X, ** indicates there was signifi-

cant difference in respect to OGG1-1a subunit of 5X. 3X = 3% (v/v)

Methanol -10 °C, 4X = 3% (v/v) Methanol -30 °C, 5X = 1% (v/v) Metha-

nol -10 °C.

Figure 3 - Protein expression level of GLR. Western blotting and band in-

tensity obtained from samples with different conditions of temperature

and concentration of methanol were analyzed. The bars indicate mean �

standard deviation of n = 3. Statistical analysis: ANOVA one-way fol-

lowed by Tukey analysis. * p < 0.05, indicates there was significant differ-

ence in respect to 4X. 3X = 3% (v/v) Methanol -10 °C, 4X = 3% (v/v)

Methanol -30 °C, 5X = 1% (v/v) Methanol -10 °C.

Figure 4 - Protein expression level of heat stress factor. Western blot-

ting and band intensity of HSF-1 obtained from samples with different

conditions of temperature and concentration of methanol were ana-

lyzed. The bars indicate mean � standard deviation of n = 3. Statistical

analysis: ANOVA one-way followed by Tukey analysis. There was no

significant difference between either group (p > 0.05). 3X = 3% (v/v)

Methanol -10 °C, 4X = 3% (v/v) Methanol -30 °C, 5X = 1% (v/v) Meth-

anol -10 °C.



bolic products which act as reactive oxygen species, such as

hydrogen peroxide. It can become a harmful molecule ca-

pable for generating membrane lipid peroxidation (Jin et

al., 2011).

Among the considerations to be taken into account

when analyzing both the effects of the inductor and temper-

ature, is the composition of lipid membranes that are essen-

tial for the cell stability and are seriously affected by

oxidative damage. In accordance to that, the culture at

30 °C and 3% (v/v) of methanol presented the higher in-

crease of lipid peroxidation (Figure 1) produced by a high

production of ROS derived from the metabolism of metha-

nol and high temperature. Besides it must be considered

that aerobic metabolism generates increased production of

ROS in the mitochondria. This would happen because the

electron transport in mitochondria consumes most cellular

oxygen and generates superoxide anion, which is converted

to H2O2 from mitochondria by superoxide dismutase

(SOD2) (Davidson and Schiestl, 2001). However, ROS

production can act as an intracellular signal that promotes

the nuclear translocation of transcription factor PpYap1,

which induces the expression of genes involved in antioxi-

dant defense (Yano et al., 2009). The culture of P. pastoris

in methanol medium induces nuclear localization of Yap1

and activates the expression of GLR (Yano et al., 2009a). It

would indicate that the culture at 3% (v/v) of methanol

would not efficiently induces cell antioxidant system, prob-

ably in this condition with higher level of methanol could

induce an increased production of ROS in comparison to

1% (v/v) methanol medium. Nevertheless, in the culture

exposed to 30 °C and 3% (v/v) methanol was observed

higher level of GLR expression, probably it could not pro-

tect completely to the cells when they were exposed to high

levels of methanol and temperature. Furthermore, it has

been reported that products of lipid peroxidation induce

cytotoxicity, in contrast to that; sublethal concentrations of

methanol induce cellular responses related in enhancing the

adaptation and tolerance against oxidative stress by

up-regulation of antioxidant enzymes (Niki, 2009).

It has been observed in S. cerevisiae that the oxidative

stress tolerance and the stress induced by temperature de-

pend on the lipid composition of the membrane, there being

a positive correlation between the cellular damage and in-

creased unsaturation of fatty acids (Leipold et al., 2003). In

fact, P. pastoris is characterized by high levels of Poly Un-

saturated Fatty Acids (PUFA), therefore in a stress condi-

tion (30 °C and 3% (v/v) methanol) it would be more

susceptible to oxidative stress, raising the levels of lipid

peroxidation and DNA damage that can be observed indi-

rectly in the detection of relative expression of enzymes

that are part of this repair machinery, as OGG1. The results

determine that in the recombinant yeast, in all growth con-

ditions, actives the nuclear DNA repair machinery

(OGG1-1a), which may be indicative of a normal situation

that occurs in the DNA of all organisms or that none of the

conditions studied is suitable for yeast, so this will be con-

stantly generating oxidative damage on the genetic material

and the repair machinery is protecting the DNA from oxi-

dative damage. However, the condition of 30 °C and 3%

(v/v) methanol concentration, produce fairly high levels of

oxidative stress that affects both the nuclear and mitochon-

drial DNA, because in these conditions is when we ob-
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Figure 5 - Presence in situ of heat shock proteins. Immunolocalization of HSF-1 and HSP-70 in P. pastoris yeast cells under different conditions of tem-

perature and concentrations of methanol. 3X = 3% (v/v) Methanol -10 °C, 4X = 3% (v/v) Methanol -30 °C, 5X = 1% (v/v) Methanol -10 °C. Closed arrows

indicate cytoplasm and open arrows indicate nucleus.



served the presence of OGG1-2a (Figure 2A). This occurs

probably because there is an increased oxidative damage

caused by temperature and higher level of methanol, as

demonstrated indirectly by TBARS (Figure 1). This situa-

tion could also be explained by a mechanism related to the

control of the location of OGG1, in which the oxidative

damage in the nuclear DNA indicates the recruitment of

OGG1 in the nucleus; while oxidative damage in mitochon-

drial DNA induces the recruitment of OGG1 in the mito-

chondria (Alseth et al., 1999). It is also important to

mention that the culture that produced the highest concen-

tration of heterologous proteins showed a higher amount of

oxidative damage, which may be affecting the genomic and

mitochondrial DNA of recombinant P. pastoris. On the

other hand, the oxidative damage could affect the expres-

sion of endogenous proteins involved in the antioxidant

protection systems of this yeast, showing an inefficient pro-

tection against oxidative stress induced in these conditions.

Consequently it would negatively affect the count of the

yeast and may affect the production of recombinant pro-

teins.

In almost all living systems, upshifts in temperature

cause a heat stress response that leads to a strong induction

of a conserved group of proteins called heat shock proteins

(HSPs) (Guerra et al., 2005). These have shown a decrease

in protein folding at low temperatures and thus, a possible

correlation with the beneficial effect on protein secretion

(Dragosits et al., 2010). In accordance to that, the culture at

30 °C - 3% (v/v) of methanol, in comparison with the cul-

tures at 10 °C - 3% (v/v) of methanol and 10 °C - 1% (v/v)

of methanol, is the one with a lower concentration of total

protein. This would indicate that the heat stress generated

by 30 °C would act beneficially on the production of pro-

teins to activate the chaperone, which may be protecting

peptides to acquire the proper conformation of a mature

protein. In relation to heat stress, HSF-1 does not show to

have high transcriptional activity in the cultures because

that should be found into the nucleus; only the culture at

10 °C - 1% (v/v) of methanol would be slightly presenting

this activity because their presence was found near the nu-

cleus. This localization could be related to the decrease in

the concentration of methanol or interaction with other pro-

tein that would act mainly on the protection of endogenous

protein production over the heterogeneous proteins, or just

these are more sensitive to changes in the medium. The cul-

ture at 30 °C - 3% (v/v) of methanol should have displayed

a greater presence and nuclear localization considering that

it was the highest temperature, and its presence or more

specifically its role as a transcription factor is related to this

type of stress. Despite this, it didn’t showed significant dif-

ference in comparison at 10 °C, which could indicate that at

30 °C the yeast P. pastoris isn’t found in a stress condition

but within the range of normal growth of it. Regarding to

proteins response to heat stress, HSF-1 in all the cultures

would induce the transcription of HSP-70 but the differ-

ence is due to the functionality of the last one. Wang et al.

(2012) founded that cells can increase their apoptosis when

the nucleolar fragmentation increases in presence of high

oxidative stress and HSP-70 will prevent nucleolar frag-

mentation induced for this stress. In accordance to that, our

results showed HSP-70 in the nucleus of the cultures at

10 °C. This means that these cells would activate their

anti-apoptotic system due to the protection of the nucleolus

and avoiding its fragmentation and subsequent apoptosis.

At 30 °C, HSP-70 was founded in the cytoplasm, indicating

that the anti-apoptotic system was not efficiently activated

since this culture showed high levels of oxidative stress and

more oxidative damage in comparison at 10 °C. In this

manner, HSP-70 and maybe others HSPs could be acting

only to low oxidative stress induced by 10 °C and favored

by 1% (v/v) of methanol but in presence to high oxidative

stress these proteins would not be functional or would be

used in other pathways, like to control the respiratory me-

tabolism.

Conclusions

The measure of OGG-1, GLR, HSF-1 and HSP-70

can be useful to identify the optimal conditions for a culture

of genetically -modified P. pastoris, where we determined

that at 30 °C - 3% (v/v) of methanol it would increase the

apoptosis induced for a strong oxidative stress. Because

there is little information about the effect of the recombina-

tion on P. pastoris, more research is needed to evaluate the

influence of this process in front of different culture condi-

tions on the physiology, metabolism and cell communica-

tion mechanisms of this expression system, which would

give us knowledge about the functioning of the yeast and

then design and devise strategies to improve the production

of heterologous proteins from P. pastoris recombinant.
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