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ABSTRACT

Title: Unscented Kalman Filtering on Euclidean and Riemannian Manifolds
Author: Henrique Marra Taira Menegaz
Supervisor: Prof. João Yoshiyuki Ishihara
Program: Graduate Program in Engineering of Electronic and Automation
Systems–PGEA

Keywords: Dual Quaternion, Quaternion, Riemannian Manifold, Riemannian Un-
scented Kalman Filter (RiUKF), Unscented Kalman Filter (UKF), Unscented Trans-
formation (UT).

In this thesis, we take an in-depth study of an increasingly popular estimation
technique known as Unscented Kalman Filter (UKF). We consider theoretical and
practical aspects of the unscented filtering.

In the first part of this work, we propose a systematization of the Unscented
Kalman filtering theory on Euclidean spaces. In this systematization, we i) gather
all available UKF’s in the literature, ii) present corrections to theoretical inconsisten-
cies, and iii) provide a tool for the construction of new UKF’s in a consistent way.
Mainly, this systematization is done by revisiting the concepts of sigma set (SS), Un-
scented Transformation (UT), Scaled Unscented Transformation (SUT), Square-Root
Unscented Transformation (SRUT), UKF, and Square-Root Unscented Kalman Filter
(SRUKF). We introduce continuous-time and continuous-discrete-time UKF’s. We il-
lustrate the results in i) some analytical and numerical examples, and ii) a practical
experiment consisting of estimating the position of an automotive electronic throttle
valve using UKF’s developed in this work; this valve’s position estimation is also, from
a technological perspective, a contribution on its own.

In the second part, first, we i) unfold some consistence issues in the theory behind
the UKF’s and SRUKF’s for unit quaternion systems of the literature—such as defi-
nitions of random quaternions and additive-noise quaternion systems—, ii) propose an
UKF embodying all these UKF’s, and iii) propose an SRUKF with better computa-
tional properties than all these SRUKF’s. Second, we propose an extension of some
results of the literature concerning statistics on Riemannian manifolds. Third, we use
these statistical results to present an extension to Riemannian systems of the Euclidean
systematization developed in the first part. In this Riemannian systematization, we
propose i) additive-noise Riemannian systems; and ii) Riemannian versions of the con-
cepts of SS, UT, SUT, SRUT, UKF, and SRUKF. Several new consistent UKF’s are
introduced. Afterwards, we present closed forms of almost all the operations contained
in the Unscented-type Riemannian filters for unit quaternion systems. We also intro-
duce consistent i) UKF’s for systems of unit dual quaternions, and ii) continuous-time
and continuous-discrete-time UKF’s for Riemannian manifolds.



RESUMO

Título: Filtragem de Kalman Unscented nas Variedades Euclideana e Riemanniana
Autor: Henrique Marra Taira Menegaz
Orientador: Prof. João Yoshiyuki Ishihara
Programa: Programa de Pós-graduação em Engenharia de Sistemas Eletrônicos e de
Automação – PGEA

Keywords: Quatérnio Dual, Quatérnio, Variedade Riemanniana, Filtro de Kalman
Unscented Riemanniano, Filtro de Kalman Unscented, Transformação Unscented.

Nesta tese, nós estudamos com profundidade uma técnica cada vez mais popular
conhecida como Filtro de Kalman Unscented (FKU). Consideremos tanto aspectos
teóricos como práticos da filtragem Unscented.

Na primeira parte deste trabalho, propomos uma sistematização da teoria de fil-
tragem de Kalman Unscented. Nessa sistematização nós i) agrupamos todos os FKUs
da literatura, ii) apresentamos correções para inconsistências teóricas detectadas, e
iii) propomos uma ferramenta para a construção de novos FKU’s de forma consis-
tente. Essencialmente, essa sistematização é feita mediante a revisão dos conceitos de
conjunto sigma (SS), Transformação Unscented (TU), Transformação Unscented Es-
calada (TUE), Transformação Unscented Raiz-Quadrada (TURQ), FKU, e Filtro de
Kalman Unscented Raiz-Quadrada (FKURQ). Introduzimos FKUs tempo-contínuo e
tempo-contínuo-discreto. Ilustramos os resultados em i) alguns exemplos analíticos e
numéricos, e ii) um experimento prático que consiste em estimar a posição de uma
válvula de aceleração eletrônica utilizando FKUs desenvolvidos neste trabalho; essa
estimação da posição de válvula é também uma contribuição por si só desde um ponto
de vista tecnológico.

Na segunda parte, primeiro, nós i) revelamos inconsistência na teoria por trás dos
FKUs e FKURQs para sistemas de quatérnios unitários da literatura — tais como
definições de quatérnios aleatórios e de sistemas quaterniônicos com ruídos aditivos —,
ii) propomos um FKU englobando todos esses FKU’s, e iii) propomos um FKURQ com
propriedades numéricas superiores a esses FKURQs. Segundo, propomos uma extensão
de alguns resultados da literatura relativos a estatísticas em variedades Riemannianas.
Terceiro, usamos esses resultados estatísticos para apresentar uma extensão para sis-
temas riemannianos da sistematização euclidiana desenvolvida na primeira parte. Nessa
sistematização riemanniana, introduzimos i) sistemas riemannianos com ruídos adi-
tivos; e versões riemannianas dos conceitos de SS, TU, TUE, TURQ, FKU, e FKURQ.
Diversos novos FKUs são introduzidos. Depois, apresentamos formas fechadas para
quase todas as operações contidas nos filtros riemannianos para sistemas de quatérnios
unitários. Também introduzimos consistentes i) FKUs para sistemas de quatérnios
unitários duais, e ii) FKUs tempo-contínuo e tempo-contínuo-discreto.
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1. INTRODUCTION

Unscented Kalman filtering has become extremely popular in the control community.
According to the IEEE Xplore Digital Library (an website of Institute of Electrical and
Electronics Engineers [IEEE]) 1, the work [1] reached the impressive numbers of 8222
reads; and 1279 citations on the IEEE, 2735 on the Scopus (http://www.scopus.com),
and 1564 on the Web of Science (http://apps.webofknowledge.com) catalogs.

Since the seminal work [2], Unscented Kalman Filters (UKF’s) have been used
in numerous applications. For instance, we can find them being used to estimate
variables related to batteries [3–7], wind generators [8], frequency control of power
systems [9], integrated circuits [10], sigma-delta modulators [11], inertial navigation
systems [12], satellites [13], medical imagings [14], computer-assisted surgeries [15],
plasma insulins [16], endoscopy capsules [17], microphones [18], acoustic tomographies
of the atmosphere [19], mobile robots [20–22], among others.

Some UKF’s properties can be well understood when these filters are put in relation
with the widely known Extended Kalman Filter (EKF). In many applications—e.g.
[7, 16, 21], and [22], among others—, the UKF’s performed better than the EKF. This
superior performance can be explained, at least, by the following two reasons:

• the computational complexities of the UKF’s and the EKF are of the same order,
but UKF’s tend to attain better estimation performance [23];

• the UKF is derivative-free (no need to compute Jacobian matrices), while the
EKF requires the dynamics to be differentiable. Thus, unlike the EKF, UKF’s
can be used with systems where Jacobian matrices may not exist, such as systems
with discontinuities (cf. [1]).

A great part of the Unscented-theory researchers’ efforts has been devoted to find
extensions of the first UKF. The direction of these extensions are similar to the direc-
tions taken by the already proposed EKF variants in the literature. There are EKF
extensions toward diverse classes of state spaces and dynamic systems (cf. [24–26]),
such as toward the following ones:

1. different classes of states spaces regarding their algebraic structure, such as state
1In http://ieeexplore.ieee.org/xpl/abstractMetrics.jsp?arnumber=1271397&action=search&sortTy

pe=&rowsPerPage=&searchField=Search_All&matchBoolean=true&queryText=(julier%20unscente
d%20kalman%20filtering%20for%20nonlinear%20estimation), accessed at 21:00, on February the
15th, 2016.

1

http://www.scopus.com
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spaces composed of unit quaternions [27], unit dual quaternions [28], Lie Groups
[29], etc;

2. different classes of dynamic systems regarding the forms of their sets-of-time—
the sets composed of the time parameters—, such as discrete-time systems,
continuous-time systems, continuous-discrete-time systems [24].

In this work, we make an extensive study of the Unscented Kalman filtering liter-
ature considering different aspects such as algebraic structures of the state-space and
forms of the sets-of-time. We show strong and weak points, make comparisons, propose
corrections, and present one attempt of a systematic theory.

1.1 UNSCENTED FILTERING PROBLEM

Broadly, filters can be viewed as algorithms that extract information from sets of
acquired data. When we want to know the value of some variables of a given system–
e.g. the position and velocity of a car, the position and attitude of a satellite, the
temperature of a boil, etc—we use instruments to acquire measurements from this
system. However, only with these measurements (the data), we most often can not
determine exactly the value of the desired variables. This can be explained at least by
the following two reasons:

1. Measurements are corrupted by noise. The sources of noise may vary in each case;
beside others, we can point out i) the limited resolution, precision and accuracy
of real instruments, which make the measurements certain only to a limited
precision—e.g. if the minimum divisor of the scale of a given rulers is 1 cm, the
measurements of this instrument are certain only to the precision of centimeters,
but not to millimeters—; and ii) the limited knowledge of the real process being
investigated, since there are always events influencing the measurements that are
difficult to account for.
Therefore, given an acquired signal (a data set looked as a sequence ordered
by time), we can develop techniques that are able to, at least up to a certain
precision, “separate” from the noise the information within this data set that is
important to determine the desired variable. We call these techniques estimators,
and the value of the desired variable given by the estimators, estimate.
Estimators for noisy signals can rely, for example, on analyzing i) the frequency
of the acquired signal—usually, at least some part of the noise have particular
frequency components—such as the so called low-pass filters, band-pass filters,
Butterworth filters, among others [30]; ii) the entropy of the acquired signal, such
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as the algorithms based on theory of Chaos [31].

2. We might not be able to measure the desired variables directly, but only other
ones; for instance, we might want the temperature of a given boil, but it may
happen that we can measure only its pressure. In this case, we must developed
mathematical models relating the desired variables with the measured variables.
Let us call a list of the desired variables (internal) state and denoted it by x;
a list of the measured variables simply measurement and denote it by y. Con-
sider also that noises are corrupting the measurement; call a list of these noises
measurement noise and denote it by ϑ. Since real problems are dynamic (they
change in time), often it is necessary to consider x, y and ϑ as time varying. In
this case, we can write the following equation relating these lists:

y(t) = ht(x(t), ϑ(t)), (1.1)

where {x(t)}, {y(t)}, {ϑ(t)}, and {ht}—each ht is an well-defined function called
measurement function—are sequences parameterized by the time {t; t ≥ t0, t ∈
R}—Rn stands for the Euclidean space of dimension n, and R := R1. We will
denote by x̂(t) an estimate of x(t).

Suppose that an estimate x̂(t∗) is provided by an estimator using the history of mea-
surements (a sequence of measurements over time) yt0:t1 := {y(t); t0 ≤ t ≤ t1}. We
can distinguish three classes of estimators depending on t∗. If t∗ < t1, we call the
estimator a smoother (and the associated problem of finding an estimate of x(t∗) with
yt0:t1 := {y(t); t0 ≤ t ≤ t1} a smoothing); if t∗ > t1, we call the estimator a predictor
(and the associated problem a prediction); and if t∗ = t1, we call the estimator a filter
(and the associated problem a filtering). In this work, we consider only filters.

For models like (1.1), it is desirable to develop recursive filters. Suppose that i)
we have an estimate x̂(t1) that was generated by a given filter ϕ using the sequence
of measurements yt0:t1 := {y(t); t0 ≤ t ≤ t1}; ii) we have a sequence of measurements
yt1:t2 := {y(t); t1 ≤ t ≤ t2}; and iii) we want to estimate x(t2). We can apply the
same filter ϕ to estimate x(t2) based on the history yt1:t2 , but we would not use the
information of yt0:t1 . On the other hand, we could use the filter ϕ to estimate x(t2)
based on all the history yt0:t2 := {y(t); t0 ≤ t ≤ t2}, but the computational cost
would be higher than the previous option. Another solution would be to estimate
x(t2) by “updating” x̂(t1) with the information of yt1:t2 . This last filter is recursive;
recursive filters provide online estimates as functions of previous estimates. They are
computationally more efficient.

Equation (1.1) describes how the state relates with the measurement, but does not
model how the state evolves in time. We can, for some problems, develop equations
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describing this evolution over time. Since mathematical models describe real processes
imperfectly, we should also include a variable accounting for the errors in this model; we
will call this error variable the process noise, and denote it by $(t)—and its sequence
over time by {$(t); t ≥ t0}. One form of modeling the evolution of x(t) overtime
including the noise $(t), is by the following differential equation:

d

dt
x(t) = ft(x(t), $(t)), (1.2)

where ft is called the process function, and {ft; t ≥ t0} its sequence over time. The
pair of equations (1.1)-(1.2) is called a dynamic system. Equation (1.2) models how
the internal state evolves over time, and (1.1) how the internal state relates with the
acquired measurements at a time instant.

Since the system (1.1)-(1.2) is corrupted by noises, we have to choose a way of
dealing with non-deterministic variables. The theories of probability and statistics are
often used for this purpose. In this approach, we consider x(t), y(t), $(t), and ϑ(t) to
be random vectors, and their sequences over time ({x(t)}, {y(t)}, {$(t)}, and {ϑ(t)}),
stochastic processes. In this case, the system (1.1)-(1.2) is called a stochastic dynamic
system.

The classical Kalman-Bucy Filter (KF) provides the optimal solution with respect
to diverse criteria to the problem of filtering system (1.1)-(1.2) when the following
two conditions are satisfied: i) each ft and ht is linear; and ii) the initial state x(t0),
and each noise $t and ϑt are Gaussian distributed and mutually independent [24, 32].
However, when these conditions are not satisfied, optimal solutions for the filtering
problem tend to be computationally intractable. Therefore, sub-optimal approaches
must be sought, and the UKF is one of these sub-optimal filtering solutions.

There are variants of the UKF, and usually they are associated with variants of the
considered stochastic dynamic system. Different forms of (1.1)-(1.2) can be considered
by varying 1) the form of the set-of-time T := {t; t ≥ t0, t ∈ R}, and/or 2) the
topological space in which x(t), y(t), $(t), and ϑ(t) take values.

1. Variants of (1.1)-(1.2) respective to T are the discrete-time and continuous-
discrete-time stochastic dynamic systems.
In (1.1)-(1.2), the time parameter belongs to a continuous set {t; t ≥ t0, t ∈ R};
for this reason, we say that (1.1)-(1.2) is time continuous (thus the system can be
named continuous-time stochastic dynamic system). Nonetheless, measurements
are usually not acquired continuously, but in instants of time shifted by a fixed
interval; this interval is called the sampling time, and we say that the signal is
sampled. Thus, it might be advantageous to write (1.1) parameterized by a dis-
crete set-of-time {tk; k ∈ N}—N stands for the set of natural numbers—where
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each tk is an instant in which the signal is sampled. In this case, we can write
the (discrete-time) measurement equation as follows:

yk = hk(xk, ϑk), (1.3)

where xk := x(tk), yk := y(tk), ϑk := ϑ(tk), hk := htk . The pair of equations
(1.1)-(1.3) is called a continuous-discrete-time stochastic dynamic system.
Because filters are usually implemented in computers, and computers can not
perform calculations of continuous variables, we can also consider discrete-time
variants of the process equation (1.2). A discrete-time variant of (1.2) is the
following difference equation:

xk = fk(xk−1, $k), (1.4)

where $k := $(tk), fk := ftk . In this case, the pair of equations (1.3)-(1.4) is
called a discrete-time stochastic dynamic system.

2. We can distinguish variants of all these three systems by considering different
topological spaces in which x(t), y(t), $(t), and ϑ(t) take values. In the three
stochastic dynamic systems above, x(t), y(t), $(t), and ϑ(t) are considered to
be random vectors; this means that they take values in Euclidean spaces, but we
can also consider these random elements taking values in other spaces. In this
thesis, we work with the following three topological spaces:

(a) the set unit quaternions. Unit quaternions are quaternions whose norms
are equal to 1; quaternions are a 4-dimensional extension of complex num-
bers [33]—we present the unit quaternions with more details in Section 7.1.
Unit quaternions can represent rotations of 3-dimensional rigid bodies, and
present advantages comparative with other representations of rotations [34].

(b) the set of unit dual quaternions. Unit dual quaternions are dual quaternions
whose pseudo-norms are equal to 1; dual quaternions are dual numbers
whose primary and secondary parts are quaternions [35] (unit dual quater-
nions are explained in Section 9.6 ). Inasmuch as unit quaternions are a
good choice to represent rotations of 3-dimensional rigid bodies, unit dual
quaternions are a good choice to represent (full) displacements (rotations
and translations, simultaneously) of such bodies.

(c) Riemannian manifolds. In a wide sense, Riemannian manifolds are spaces lo-
cally resembling Euclidean spaces—we review Riemannian manifolds briefly
in Chapter 8. Examples of Riemannian manifolds include i) Euclidean
spaces, ii) n-dimensional spheres—Sn; it is the set of all points distanced
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(in the usual sense of distances in Euclidean spaces) by 1 from the origin of
the Rn+1; the set of unit quaternions is the S3—, iii) the set of orthogonal
matrices, among others. Among other applications, the theory of Rieman-
nian manifolds was used by Albert Einstein to develop the general theory
of relativity [36].

In this work, we study Unscented Kalman filtering theory for each of the aforementioned
systems: systems composed of i) different sets-of-time (continuous-time, continuous-
discrete-time, discrete-time systems), and ii) different spaces for the variables (Eu-
clidean, unit quaternions, unit dual quaternions, and Riemannian manifolds). UKF’s
on Euclidean spaces are considered in Part I, and UKF’s on Riemannian manifolds,
the set of unit quaternions, and the set of unit dual quaternions are considered in Part
II.

1.2 HISTORICAL NOTES

In 1995, in the American Control Conference work [2], Simon J. Julier, Jeffrey
K. Uhlmann, and Hugh F. Durrant-Whyte proposed the first variant of a stochastic
filter that later would be called the Unscented Kalman Filter 2. To the best of our
knowledge, the first use of the word "Unscented" was in the 1997 papers [37, 39] by
Julier and Uhlmann. This word choice is attributed to Uhlmann; he himself narrates
the story of this choice in an interview given to the Engineering and Technology History
Wiki3. In the following years, the UKF theory would grow up rapidly with numerous
scientific contributions.

In 1997, a key concept of the UKF theory was introduced by [37]: the Unscented
Transformation (UT). In that work, the UT is presented as an efficient mechanism
for computing means and covariances of transformed random vectors. It is also in [37]
that an augmented variant of the UKF—the state vector is augmented with the process
noise vector; the most important concepts to the UKF theory enunciated in this chapter
will be explained in the next one (e.g. augmented UKF, Scaled UT, etc)—is proposed
for the first time.

The first journal paper on UKF was [40] in 2000. In that work, the UKF theory
takes the first steps toward a formal systematized theory. To the best of our knowledge,
so far the research on this topic was carried out mainly by the authors of [2], but from

2Apparently, from [2] and [37], some UKF’s key ideas are already from [38], but we could not get
access to this work.

3Available in http://www.ieeeghn.org/wiki/index.php/First-Hand:The_Unscented_
Transform.
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2000 onwards, other authors would contribute to the topic of Unscented filtering.

In the following years, Rudolph van der Merwe and Eric A. Wan presented three
conference works regarding the theory of UK filtering:

1. in [41], in 2000, they proposed a variant of the UKF which would become as
popular as the original UKF of [2];

2. in [42], in 2001, they proposed the first square-root variant of the UKF; and

3. in [43], also in 2001, along with Arnaud Doucet and Nando de Freitas, they
proposed the first use of the UT in more general filtering settings, namely the
Unscented Particle Filter.

The scaled variant of the UKF was proposed in [44], in 2002; arguably, this variant
would increase the estimation quality of an Unscented filter without increasing its
computational cost.

The UKF is composed of a set of weighted points; this set became known as sigma
set, and its weighted points, sigma points. Until 2002, all UKF’s were composed of—for
n being the length of the state vector—,at least, 2n sigma points, but in that year, [45]
proposed a set composed of n+2 sigma points, and in the following year, [46] introduced
a set composed of n + 1 sigma points. On the other hand, [47] introduced an 2n2 + 1
UKF with increased estimation properties.

In 2003, [48] proposed an UKF designed for attitude estimation of systems being
modeled with unit quaternions—unit quaternions are efficient to represent rotations,
but present some challenges to work with UKF’s (see Chapter 7). This UKF, named
Unscented Quaternion Estimator (USQUE), became very popular, specially in the
aerospace community.

A milestone of this theory has been reached in 2004 with [1], a work by Julier and
Uhlmann in the Proceedings of the IEEE that became very popular. Essentially, that
work gathered and presented many the results on the UKF theory developed to that
date in an didactic fashion.

In the following years, other important results were introduced, such as

1. a comparison between the augmented and the additive UKF variants in 2005
by [49];

2. stability and error analyses for linear measurements in 2006 by [50], and for
nonlinear measurements in 2007 by [51];

3. UKF variants for continuous-time and for continuous-discrete-time systems in
2007 by [52];
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4. Unscented Rauch-Tung-Striebel Smoother in 2008 by [53];

5. UKF variants for gain-constrained systems in 2008 by [54], for equality-constrained
systems in 2009 by [55], and interval-constrained systems in 2010 by [56];

6. a minimum UKF variant in 2011 by our work [57];

7. the Truncated UKF in 2012 by [58]; vii) a study of the scaling parameter of an
UKF in 2012 by [59]; and

8. revelation of an important inconsistency in the UKF theory developed so far in
2012 by [60] (see Section 2.4.1).

1.3 OUTLINE OF THIS WORK

This thesis is, in part, a systematization and, as a result, we could not write our
own contributions in chapters different from those containing analyses of the litera-
ture. Usually, separating these contributions in a chapter level facilitates assessment of
a thesis. However, this work provides a large number new results; additionally, many
of these results are related to different topics of the theory considered here (e.g. results
relative to sigma sets, to UT’s, to UKF’s, to SRUKF’s, to statistics on Riemannian
manifolds, and so on). In consequence, if we have chosen to separate our contributions
from the literature ones in different chapters, the text would lack in cohesion. Never-
theless, we separate these contributions in sections; generally, each section is composed
either uniquely of novelties or literature’s results; there are a few exceptions to this
rule, but their are stated expressly.

In Chapter 2, through a detailed analysis of the present Unscented’s theory state-
of-the-art, we unfold some inconsistencies within the Unscented theory. The results
in Sections 2.1 and 2.2 are not novelties of this work. In these sections, we present
the literature’s theory regarding UF’s for Euclidean manifolds; therefore, regarding the
content of these sections, we can only claim contributions in the sense of gathering these
results. On the contrary, the results in Sections 2.3 to 2.8 are all novelties. In these
sections, we analyze the literature’s theory regarding UF’s for Euclidean manifolds,
and show gaps and inconsistencies within this theory.

Willing to rectify these inconsistencies, we propose a systematization of the Un-
scented Kalman Filtering theory; this is done constructively in the three subsequent
chapters: i) in Chapter 3, we introduce the concept of a σ-representation of a random
vector, and establish some results related to this new concept; in Chapter 4, using the
new results of Chapter 3, we propose results concerning the Unscented Transformation,
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the Scaled Unscented Transformation, and the Square-Root Unscented Transforma-
tion; and iii) in Chapter 5, using results of the two preceding chapters, we propose new
definitions for the Unscented Kalman Filter and the Square-Root Unscented Kalman
Filter. All the results of Chapter 3, 4, and 5 are novelties of this work.

The results of all these three chapters are illustrated in numerical simulations,
and afterwards, in Chapter 6, we introduce an experimental/technological innovation
using some of the new UKF’s: these filters are used to estimate the position of an
automotive electronic throttle valve. Part I ends with this application. Also, all the
results in Chapter 6 are novelties.

In Part II, we are interested in extending the systematization of Part I to different
kind of dynamic systems. In fact, the UKF was firstly defined for systems whose vari-
ables belong to Euclidean spaces, and developing similar filters for systems composed
of other elements, such as unit quaternions, might be challenging.

Systems composed of unit quaternions are important when considering applications
in which rotations are considered. Indeed, every element of S3—the sphere of radius
1 centered at the origin of the Euclidean space R4; it is isomorphic to the set of all
unit quaternions—can be associated with an element of SO (3)—the special group of
orthogonal matrices; actions (with the usual matrix product) of these matrices on
three-dimensional vectors are rotations) [33]. Unit quaternions can be found modeling
rotations and attitudes of elements in aerospace applications involving satellites [61],
inertial navigation systems [62], unmanned aircraft vehicles [63]; and also in other
areas, such as vision [64], robotics [65], and others.

In Chapter 7, in Sections 7.1 and 7.2, we provide an extensive review of the Un-
scented Kalman filtering theory for systems composed of unit quaternions—the results
in these sections are not novelties of this work—. With this review, we get to two main
conclusions related to the UKF’s for quaternion systems: i) in a considerable amount
of UKF’s, the norm constraint of the unit quaternions is not respected; and ii) some
fundamental concepts and results necessary for developing a consistent Unscented the-
ory for these systems—mainly concepts from probability and statistic theories, such as
quaternion random variable, quaternion mean, etc—has not been established yet for
these UKF’s.

Also in Chapter 7, in Section 7.3, we present i) a single filter gathering all the UKF’s
for quaternion systems of the literature completely preserving the norm constraint, and
ii) a square-root variant of this filter that outperforms all the square-root UKF’s of the
literature. Numerical examples of these filters are presented in Section 7.4. All the
results in Sections 7.3 and 7.4 are novelties of this work.

The set of the unit quaternions is a Riemannian manifold—essentially, a Rieman-
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nian manifold is a differentiable manifold with a metric induced by its tangent space;
we provide a brief review of Riemannian manifolds in Appendix A—. By using and
extending these results of [66], we move toward extending the systematization of Part
I to Riemannian manifolds. The results of i) Sections 8.1 and 8.2 are not novelties, ii)
Sections 8.3, 8.4, 8.5, 8.6 are novelties; nevertheless, the results of Sections 8.3 and 8.6
are novelties only in the sense of being extensions of some literature’s results.

In Chapter 9, we provide the whole systematization of UKF for Riemannian man-
ifolds. We are able to provide analogous of the σ-representation, UT, and UKF’s and
SRUKF’s of Part I to the Riemannian case. These Unscented Filters are either the
first in the literature, or, when a similar UKF already exists (which happens only
in one case), our UKF is endowed with better properties than the literature’s one.
Continuous-time and Continuous-discrete-time variants are also introduced. Almost
closed forms of these filters for unit quaternions are obtained. Except for Section 9.4,
all the sections of Chapter 9 are composed uniquely of new results.

As already mentioned, unit quaternions plays an important role in diverse areas
for modeling rotations; an extension of these numbers, the unit dual quaternions,
plays an analog role for modeling full rigid body motions (rotations and translations,
simultaneously). In Chapter 9, we propose Unscented filters for this set extending the
Riemannian Unscented filters for the set of unit spheres developed in this work. These
Unscented filters for unit dual quaternions are the first consistent ones in the literature.
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Part I

Unscented Kalman Filtering on
Euclidean manifolds
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2. ANALYSIS OF THE LITERATURE
OF UNSCENTED FILTERING ON
EUCLIDEAN MANIFOLDS

In this part (Part I), we present a systematization of the theory of Unscented Kalman
filtering on Euclidean spaces. Even though some works in the literature, such as [38]
and [67], already provided, in some degree, systematic views of this theory, these views
differ from our systematization. Comparative with these literature’s views, we can say
that the following contributions are part only of our systematization:

• New inconsistencies and gaps in the theory are identified (Chapter 2) and cor-
rected (Chapters 3, 4, and 5);

• All the variants of Unscented Kalman filters are treated, including variants re-
garding i) the composition of the state variables (discrete-time, continuous-time,
continuous-discrete-time forms); ii) the used UT (scaled and non-scaled forms);
iii) the structure of the filter (square-root and covariance forms, augmented and
additive forms); iv) the composition of the sigma sets (all the sigma sets of the
literature are considered).

• New concepts and results are introduced such as the concept of σ-representation
(Chapter 3), a new definition for the UT generalizing all the other variants of
UT’s (Chapter 4), new UKF’s (Chapter 5), among others.

*********

UKF’s have become extremely popular in the past few years. However, all known
UKF formulations have had their algorithms originated by ad hoc reasoning, and this
lack of rigor might have lead to misleading interpretations and inconsistencies.

These inconsistencies are related to multiple UKF definitions (Section 2.3); the
matching order of the transformed covariance and cross-covariances of both the Un-
scented Transformation and the Scaled Unscented Transformation (Section 2.4); issues
with some reduced sets of sigma points described in the literature (Section 2.5); the
conservativeness of the Scaled Unscented Transformation, and the scaling effect of
the Scaled Unscented Transformation on both its transformed covariance and cross-
covariances (Section 2.6); possibly ill-conditioned results in Square-Root Unscented
Kalman Filters (Section 2.7); and definitions of some Additive UKF’s (Section 2.8).
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In the following section, we review the basics of the theory of nonlinear Kalman
filtering. Then, in Section 2.2, we review the main concepts of the theory of Un-
scented Kalman filtering theory in the literature. Afterwards, from Section 2.3 to 2.8,
we describe the inconsistencies in the literature’s theory Unscented Kalman filtering
mentioned above.

Remark 2.1. For now on, we will use the term Unscented filter (UF) referring to a
general Unscented-based filter with a KF structure. There are numerous Unscented-
based filters with KF structures such as Unscented Kalman Filter (UKF’s), Square-Root
Unscented Kalman Filters (SRUKF’s), continuous-time UKF’s, among others; and UF
will stand for a general filter of the class composed of all these filters. Unscented-based
smoothers and predictors are not UF’s; neither non-KF-structured Unscented-based
filters, such as Unscented Particle Filters. Note that if we use, for example, UKF’s in
the place of UF’s, we would not be able to make the distinction of i) UKF’s in the
strict sense of non SRUKF’s from ii) UKF’s in the broader sense of all Unscented-based
filters with a KF structure.

Notation 1. The set of all random vectors taking values in Rn is denoted by Φn. For a
random vector X ∈ Φn, pdfX(x) stands for its probability density function (pdf), and

EX{x} :=
ˆ
Rn
xpdfX (x) dx

or X̄ := EX{x}, for its expected value. For the random vectors X and Y , X|Y stands
for the random variable X conditioned to Y .

2.1 NONLINEAR KALMAN FILTERING

Discrete-time Unscented Filters are suboptimal solutions for the stochastic filtering
problem of a discrete-time, dynamical system described either in the additive form

xk = fk (xk−1) +$k, (2.1)

yk = hk (xk) + ϑk;

or, more generally, in the form

xk = fk (xk−1, $k) , (2.2)

yk = hk (xk, ϑk) ,

where k is the time step; xk ∈ Φnx is the internal state; yk ∈ Φny is the measured output;
and $k ∈ Φn$ and ϑk ∈ Φnϑ are the process and measurement noises, respectively.
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The noise terms $k and ϑk are assumed to be uncorrelated with, respectively, means
$̄k = [0]n$×1 and ϑ̄k = [0]nϑ×1, and covariances Qk and Rk.

The stochastic filtering problem consists of finding estimates of the state xk as
new measurements yk are acquired (see Section 1.1). Based on the output history
y1:k := {yi|1 ≤ i ≤ k}, the conditional mean

E {xk|y1:k} =
ˆ
Rn
xkpdf (xk|y1:k) dxk

is, in general, chosen to be the estimate of xk because E{xk|y1:k}is i) unbiased—meaning
that E{xk − E{xk|y1:k}|y1:k} = 0—, and ii) an optimal solution with respect to diverse
criteria such as the Minimum Variance criterion [24,68]. For linear dynamical systems,
the Kalman Filter (KF) provides an optimal value for E{xk|y1:k} with respect to the
Minimum Variance criterion, as well as other criteria, when independent Gaussian noise
and initial state are considered [24, 32]. However, in the case of non-linear systems,
computing optimal values for E{xk|y1:k} tends to be computationally intractable [24,
26,69]. Therefore, suboptimal approaches must be sought.

Suboptimal, non-linear filters can be classified under four different criteria, at least.

A first classification distinguishes the filters approximating the system’s functions
fk and hk (called local filters, cf. [59]) from those not approximating these functions
(called global filters, idem). Examples of i) local filters are the EKF, and Second
Order extended Kalman Filter (SOEKF) [26, 70]; and of ii) global filters are the
Gaussian Mixture filters [71], point-mass filters [72], Sequential Monte Carlo Filters
(SMCF’s) [73–76]—e.g. Particle Filters, Bootstrap Filters—, and Markov Chain Monte
Carlo based filters (MCMCF’s) [77]—e.g. filters using Metropolis-Hastings or Gibbs
sampling.

A second classification is based on whether there is the necessity of calculating
derivatives of the system functions fk and hk, or not (cf. [59, 60]); i.e., whether the
filter is derivative-free or not. Examples of i) derivative-free filters are the UF’s [1, 2],
GHF [78], Central Difference Filter (CDF) [78], Divided Difference filter (DDF) [79],
and CKF [80,81]; and of ii) non derivative-free filters are the EKF and SOEKF.

A third classification considers filters for which statistics of the posterior random
vectors of fk and hk are obtained by sampling the pdf’s of the previous random vec-
tors of fk and hk. The samplings can be random or deterministic. Examples of i)
random-sampling filters are the so called Monte Carlo (MC) filters such as SMCF’s
and MCMCF’s; and of ii) deterministic-sampling filters are the sigma point filters such
as the UKF’s and the DDF. Essentially, MC filters consist of taking a very large quan-
tity of samples randomly [73–77], while sigma point filters consist of choosing some
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weighted samples analytically [67].

A fourth classification takes into account whether the state’s estimates of a filter are
based on Gaussian assumptions or not. Examples of i) Gaussian filters are the UF’s,
EKF, SOEKF, GHF, CDF, DDF, CKF; and of ii) non-Gaussian filters are SMCF’s,
MCMCF’s, and the point-mass filter.

Among all non-linear filters, the EKF is the most widely-known and implemented
in practical applications [1, 24, 26]. It is obtained as the first order truncation of
the Taylor series of the system’s non-linear functions fk and hk while retaining the
same prediction-correction structure as the (linear) KF. Although several filters in the
literature have been proposed in order to improve upon computational aspects related
to the EKF, it was just recently that UF’s have become noticeable as a competitive
and preferable alternative [1, 67].

The good properties related to the first UF’s have become well-known since its
introduction (see more details in Section 2.3). However, later, some UF’s have been
reported to be inconsistent (see Sections 2.4 to 2.7) and, until our work [23], it was
difficult to assess whether these inconsistencies are present in all UF’s. Seeking to
provide clarifications, we first review all main UF’s in the next section.

2.2 UNSCENTED FILTERING

In this section, we provide a broad view over the main concepts of the Unscented
Kalman Filtering theory as it is in the literature. Later, as we develop our theory, we
provide more details of these concepts.

All UF’s, as in the EKF, keep the (linear) KF’s structure composed of one prediction
step (or a priori estimation) and one correction step (or a posteriori estimation, or
update step). This can be seen, for instance, in the Unscented Kalman Filter (UKF)
of [82]: consider (2.1) and suppose that, at time step k, x̂k−1|k−1 and P̂ k−1|k−1

xx are
given; then this UKF is given by the following algorithm. For a matrix A, (A)(�)T and
[A][�]T stand for [A][A]T ; and (A)∗j and (A)i∗ stand, respectively, for the jth column
and ith row of A.

Algorithm 1 (UKF of [82]). Perform the following steps:

1. Prediction.

(a) Choose a real κ > −nx and define, for 1 ≤ i ≤ nx, the weights and points

w0 := κ

nx + κ
,
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wi = wi+nx := 1
2(nx + κ)

χ
k−1|k−1
0 := x̂k−1|k−1,

χ
k−1|k−1
i := x̂k−1|k−1 +

(√
(nx + κ)P̂ k−1|k−1

xx

)
∗i
,

χ
k−1|k−1
i+nx := x̂k−1|k−1 −

(√
(nx + κ)P̂ k−1|k−1

xx

)
∗i
. (2.3)

(b) For 0 ≤ i ≤ 2nx, define the transformed sigma points

χ
k|k−1
i : = fk

(
χ
k−1|k−1
i

)
,

γ
k|k−1
i : = hk

(
χ
k|k−1
i

)
; (2.4)

and their associated statistics

x̂k|k−1 :=
2nx∑
i=0

wiχ
k|k−1
i ,

ŷk|k−1 :=
2nx∑
i=0

wiγ
k|k−1
i ,

P̂ k|k−1
xx :=

2nx∑
i=0

wi
(
χ
k|k−1
i − x̂k|k−1

)
(�)T +Qk,

P̂ k|k−1
xy :=

2nx∑
i=0

wi
(
χ
k|k−1
i − x̂k|k−1

) (
γ
k|k−1
i − ŷk|k−1

)T
; (2.5)

along with the innovation’s covariance

P̂ k|k−1
yy :=

2nx∑
i=0

wi
(
γ
k|k−1
i − ŷk|k−1

)
(�)T +Rk. (2.6)

2. Correction.

(a) Instantiate the KF’s correction equations

Gk :=P̂ k|k−1
xy

(
P̂ k|k−1
yy

)−1
, (2.7)

x̂k|k :=x̂k|k−1 +Gk

(
y˜k − ŷk|k−1

)
, (2.8)

P̂ k|k
xx :=P̂ k|k−1

xx −GkP̂
k|k−1
yy GT

k . (2.9)

All UF’s are based on prediction-correction structures like the one in Algorithm 1,
but they can vary in their form.

Other two important concepts upon which UF’s are built upon are the ones of sigma
sets and Unscented Transformations (UT’s).
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Roughly, an UT approximates the joint pdf of 2 random vectors by 2 sets of weighted
points; these points are called sigma points; and these sets, sigma sets. For two random
vectors X ∼ (X̄, PXX)n and Y ∼ (Ȳ , PY Y )ny with cross-covariance given by—X ∼
(m,M2, ...,Mk)n stands for a random variable X ∈ Φn with mean m and ith central
moment M i

X = Mi, i = 2, ..., k; PXX := M2 is the covariance of X—

PXY := E(X,Y )

{(
X − X̄

) (
Y − Ȳ

)T}
;

suppose that X and Y are related by a given function F by

Y = F (X); (2.10)

and consider i) the previous sigma set [the notation {ξi}ci=b stands for the set {ξb, ξb+1,

..., ξc}]
χ = {χi, wmi , wci : χi ∈ Rn;wmi , wci ∈ R}Ni=1 (2.11)

where χi’s are sigma points, and wmi ’s as well as wci ’s are weights; and ii) the posterior
(or transformed) sigma set

γ = {γi, wmi , wci : γi = F (χi)}Ni=1 . (2.12)

Define the sample means of these sets by

µχ :=
N∑
i=1

wmi χi, (2.13)

µγ :=
N∑
i=1

wmi γi; (2.14)

their sample covariances by

Σχχ :=
N∑
i=1

wci
(
χi − µχ

)
(�)T , (2.15)

Σγγ :=
N∑
i=1

wci
(
γi − µγ

)
(�)T ; (2.16)

and their sample cross-covariance by

Σχγ :=
N∑
i=1

wci
(
χi − µχ

) (
γi − µγ

)T
. (2.17)

Then, an UT approximates the joint pdf of (X, Y ) in the following way:

1. the sample mean µγ is an approximation of the mean Ȳ ,
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2. the sample covariance Σγγ is an approximation of the covariance PY Y , and

3. the sample cross-covariance Σχγ is an approximation of the cross-covariance PXY .

If the points and weights in the sigma set χ are such that µχ = X̄ and Σχχ = PXX ,
then µγ and Σγγ are expected to be, respectively, equal to Ȳ and PY Y up to their
second order Taylor approximations [40]—in the literature, these requirements are
said to be properties of UT’s, but, in Section 2.4, we present some counter-examples to
these claims; the approximation’s quality of PXY by Σχγ is discussed in Section 2.4.2;
further, in the development of our theory of Unscented Filtering, we provide precise
results regarding these approximations (see Section 4, for example)—. In consequence,
these approximations should be better than the one provide by a linearization [40].

In Algorithm 1, for instance, two UT’s are performed, namely: one UT for

F (X) = fk(X) +$k

with i) X being the previous state

xk−1|y1:k−1 ∼
(
x̂k−1|k−1, P̂

k−1|k−1
xx

)
,

ii) χ being the set {
χ
k−1|k−1
i , wi, wi

}
,

and iii) γ being the set {
χ
k|k−1
i , wi, wi

}
;

and another UT for
H(X) := hk(X) + ϑk

with i) X being the predicted state

xk|y1:k−1 ∼
(
x̂k|k−1, P̂

k|k−1
xx

)
,

ii) χ being the set {
χ
k|k−1
i , wi, wi

}
,

and iii) γ being the set {
γ
k|k−1
i , wi, wi

}
.

Summing up, we have 3 fundamental concepts in an UF, namely: the prediction-
correction structure, UT, and sigma set. By varying the forms of each of these elements,
we have different UF’s. Let us first consider different sigma sets.
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2.2.1 Unscented Filter variants considering different sigma sets

All sigma sets in the literature are presented in Table 2.1, and examples are given
afterwards; these sigma sets are considered associated with a random vector X ∼
(X̄, PXX)n .

Note that the sigma sets of [2] (Tab 2.1 [1,1]) and [1] (Tab 2.1 [1,2]) are equivalent—
Tab X [p:q,n:m] refers to the rows p to q and the columns n to m of Table X; Tab X
[∗,n:m] refers to the columns n:m of Table X, and Tab X [n:m,∗] to the rows n:m—.
Indeed by choosing κ = w0n/(1 − w0) in the sigma set of [2], we have the sigma set
of [1]; conversely, by choosing w0 = κ/(κ+n) in the sigma set of [1] (cf. Tab 2.1 [1,2]),
we have the the sigma set of [2] (cf. Tab 2.1 [1,1]). Hence, we can say that UKF’s of [2]
and [1] are equivalent; the difference is only in their choice of the tuning parameter w0

or κ.

In the Fifth order set of [47] (Tab 2.1 [4,2]) we use the function gen defined as
follows: for a vector [u1, ..., ur] with u1, ..., ur ∈ R, we define the function

gen
(
[u1, ..., uλ, [0]1×(n−λ)]

)
:= {χi}

where {χi;χi ∈ Rn, n ≥ r} is the set composed of all permutations of the scalar
elements [

u1, ..., uλ, [0]1×(n−λ)
]T
.

Example 2.1 (Sigma Sets). Consider a random vector X ∼ ([0]2×1, I2)2. We have
that, from Tab 2.1 [1,1], for the Symmetric set of [2] with κ = 1, the weights are given
by

w0 := κ

n+ κ
= 1

2 + 1 = 1
3 ,

w1 = w2 = w3 = w4 = 1
2(n+ κ) = 1

2(2 + 1) = 1
6;

and the sigma points by
χ0 = [0]2×1,

χ1 = X̄ +
(√

(n+ κ)PXX
)
∗1

=
 √3 0

0
√

3


∗1

=
 √3

0

 ,
χ2 = X̄ +

(√
(n+ κ)PXX

)
∗2

=
 √3 0

0
√

3


∗2

=
 0
√

3

 ,
χ3 = X̄ −

(√
(n+ κ)PXX

)
∗1

= −
 √3 0

0
√

3


∗1

=
 −√3

0

 ;
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Table 2.1: Literature’s sigma sets.

1

Symmetric set of [2] (N = 2n+ 1) Symmetric set of [1] (N = 2n+ 1)
Choose κ > −n. Choose w0 < 1.
Set w0 = κ

n+κ and, for i = 1, ..., n: Set, for i = 1, ..., n:
wi = wi+n = 1

2(n+κ) , χ0 = X̄, wi = wi+n = 1−w0
2n , χ0 = X̄,

χi = X̄ +
(√

(n+ κ)PXX
)
∗i
, χi = X̄ +

(√
n

1−w0
PXX

)
∗i
,

χi+n = X̄ −
(√

(n+ κ)PXX
)
∗i
. χi+n = X̄ −

(√
n

1−w0
PXX

)
∗i
.

2

Reduced set of [45] (N = n+ 1) Spherical simplex set of [46] (N = n+ 2)
Choose 0 ≤ w0 ≤ 1. Choose 0 ≤ w0 ≤ 1.
Set w2 = w1 = 1−w0

2n , and: Set:
wi = 2i−1w1, for i = 3, ..., n+ 1; wi = 1−w0

n , ∀i = 1, ..., n+ 1;
χ1

0 = 0, χ1
1 = −1/

√
2w1, χ1

0 = 0, χ1
1 = −1/

√
2w1,

χ1
2 = −χ1

1; for j = 1, ..., n− 1; : χ1
2 = −χ1

1; for j = 2, ..., n;
and i = 1, ..., j;χj+1

0 = [χj0 , 0]T , and i = 1, ..., j: χj0 = [χj−1
0 , 0]T ,

χj+1
i =

[
χji ,

−1√
2wj

]T
, χji =

[
χji ,

−1√
j(j+1)w1

]T
,

χj+1
j+1 =

[
[0]1×j , 1√

2wj

]T
, χjj+1 =

[
[0]1×(j−1),

χi :=
√
PXXχ

n
i + X̄. , 1√

j(j+1)w1

]T
, χi :=

√
PXXχ

n
i + X̄.

3

Simplex set of [83] (N = n+ 1) Minimum set of [57] (N = n+ 1)
wi = 1/(n+ 1), i = 1, ..., n+ 1, Choose 0 < wp < 1. Set w(n+1) = wp and
ξ = [ξ1∗, ..., ξn∗]T where ρ :=

√
1−wp
n , C :=

√
In − ρ2 [1]n×n,

ξj∗ =
√
n+ 1 ×

[[√
j(j + 1)

]
1×j , wi =

(
C−1wpρ

2[1]n×n
(
CT
)−1)

i,i
,

,−
√

(j + 1)/j, [0]1×(n−j)
]
,T W = diag (w1, ..., wn) ,χi :=

[χ1, ..., χn+1] :=
√
PXXγ

(√
PXXC

(√
W
)−1

,− ρ√
wp

√
PXX [1]n×1

)
∗i

+
[
X̄
]

1×(n+1)
. +X̄, i = 1, ..., n.

4

Symmetric set of [41] (N = 2n+ 1) Fifth order set of [47] (N = 2n2 + 1)
Choose α ∈ (0, 1] and κ ∈ R, such that Set wi = 1

36 , for 2n+ 1 ≤ i ≤ 2n2;
λ = α2 (n+ κ)− n > −n. wi = 4−n

18 , for 1 ≤ i ≤ 2n;
Set χ0 = X̄, wm0 = λ

n+λ , w2n2+1 = n2−7n
18 + 1

wc0 = λ
n+λ +

(
1− α2 + β

)
; Set {ξi}2ni=1 = gen

([
±
√

3
])
,

for 1 ≤ i ≤ n : {ξi}2n
2

i=2n+1 =gen
([
±
√

3,±
√

3
])
,

wi = wmi+n = wi = wci+n = λ
n+λ , and ξ2n2+1 = [0]n×1.

χi = X̄ + (
√

(n+ λ)PXX)∗i, For i = 1, ..., 2n2 + 1,
χi+n = X̄ − (

√
(n+ λ)PXX)∗i. set χi = X̄ +

√
PXXξi.

5

Set of [84] (N = κn)
Choose κ ∈ N and, for ji = 1, ..., κ and i = 1, ..., n, set: Ξ (x) = 1√

2π

´ x
−∞ e

−u
2
2 du;

bi = Ξ−1( i+1
2κ
)
; cji = (

∑κ
l=1 b

2
l )1/2κ−1/2bi;wj1,...,jn = 1

κn ; χj1,...,jn = X̄ +
∑n
i=1 cji

√
λivi,

for where λi is an eigenvalue and vi an eigenvector of PXX .

χ4 = X̄ −
(√

(n+ κ)PXX
)
∗2

= −
 √3 0

0
√

3


∗2

=
 0
−
√

3

 .
From Tab 2.1 [1,2], for the Symmetric set of [1] with w0 = 1/3, the weights are
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given by
w1 = w2 = w3 = w4 = 1− w0

2n = 1− (1/3)
2× 2 = 1

6;

and the sigma points by
χ0 = [0]2×1,

χ1 = X̄ +
(√

n

1− w0
PXX

)
∗1

=
 √3 0

0
√

3


∗1

=
 √3

0

 ,
χ2 = X̄ +

(√
n

1− w0
PXX

)
∗2

=
 0
√

3

 ,
χ3 = X̄ −

(√
n

1− w0
PXX

)
∗2

=
 −√3

0


χ4 = X̄ −

(√
n

1− w0
PXX

)
∗2

=
 0
−
√

3

 .
From Tab 2.1 [2,1], for the Reduced set of [45] with w0 = 1/3, the weights are given

by

w1 = w2 = 1− w0

2n = 1− (1/3)
22 = 2

3× 4 = 1
6 .

Define

χ1
0 := 0,

χ1
1 := −1√

2w1
= −1√

21
6

= −
√

3,

χ1
2 := −χ1

1 =
√

3;

for j = 1, define

χj+1
0 = χ2

0 :=
 χj0

0

 =
 0

0

 ,
χj+1

1 = χ2
1 :=

 χj1
−1√
2wj

 =
 −√3

−1√
2w1

 −√3
−
√

3

 ,
χj+1

2 = χ2
2 :=

 χj2
−1√
2wj

 =
 √3

−1√
2w1

 =
 √3
−
√

3

 .
The sigma points are given by
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χ0 =
√
PXXχ

2
0 + X̄ = I2

 0
0

+
 0

0

 =
 0

0

 ,
χ1 =

√
PXXχ

2
1 + X̄ = I2

 −√3
−
√

3

+
 0

0

 =
 −√3
−
√

3

 ,
χ2 =

√
PXXχ

2
2 + X̄ = I2

 √3
−
√

3

+
 0

0

 =
 √3
−
√

3

 .
From Tab 2.1 [2,2], for the Spherical simplex set of [46] with w0 = 1/3, the weights

are given by

w1 = w2 = w3 = 1− w0

n
= 1− (1/3)

2 = 1
3 .

Define

χ1
0 = 0,

χ1
1 = −1√

2w1
= −1√

21
3

= −
√

3
2 ,

χ1
2 = −χ1

1 =
√

3
2;

for j = 2, define

χj0 = χ2
0 :=

 χj−1
0
−1
0

 =
 χ1

0
−1
0

 =
 0

0

 ,
χj1 = χ2

1 :=

 χj−1
1
−1√

j(j+1)w1

 =
 −√3

2

−
√

3
2

 ,
χj2 = χ2

2 :=

 χj−1
2
−1√

j(j+1)w1

 =
 √

3
2

−
√

3
2

 ,
χj3 = χ2

3 :=

 [0](j−1)×1
1√

j(j+1)w1

 =
 0√

3
2

 .
The sigma points are given by

χ0 =
√
PXXχ

2
0 + X̄ = I2

 0
0

+
 0

0

 =
 0

0

 ,
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χ1 =
√
PXXχ

2
1 + X̄ = I2

 −√3
2

−
√

3
2

+
 0

0

 =
 −√3

2

−
√

3
2

 ,
χ2 =

√
PXXχ

2
2 + X̄ = I2

 √
3
2

−
√

3
2

+
 0

0

 =
 √

3
2

−
√

3
2

 ;

χ3 =
√
PXXχ

2
3 + X̄ = I2

 0√
3
2

+
 0

0

 =
 0√

3
2

 .
From Tab 2.1 [3,1], for the Simplex set of [83], the weights are given by

w1 = w2 = w3 = 1
n+ 1 = 1

3 .

Define

ξ1 =
√
n+ 1


[√

1(1 + 1)
]

1×1
−
√

1+1
1

0

 :=
√

3


√

2
−
√

2
0

 =


√

6
−
√

6
0

 ,

ξ2 =
√
n+ 1

 [
√

2(2 + 1)
]

1×2
−
√

2+1
2

 :=
√

3


√

6
√

6
−
√

3
2

 =


√

18
√

18
−
√

9
2

 ,

ξ = [ξ1, ξ2]T =
 √6 −

√
6 0

√
18
√

18 −
√

9
2

 .
The sigma points are given by

χ0 =
√
PXXχ

2
0 + X̄ = I2

 √6
√

18

+
 0

0

 =
 √6
√

18

 ,
χ1 =

√
PXXχ

2
1 + X̄ = I2

 −√5
√

18

+
 0

0

 =
 −√6
√

18

 ,
χ2 =

√
PXXχ

2
2 + X̄ = I2

 0
−
√

9
2

+
 0

0

 =
 0
−
√

9
2

 .
From Tab 2.1 [3,2], for the Minimum set of [57] with wp = 1/3, define

ρ :=
√

1− wp
n

=
√

1− 1
3

2 =
√

1
3 ,

C :=
√
In − ρ2 [1]n×n =

√√√√√
 1− 1

3 −1
3

−1
3 1− 1

3

 =

√√√√√
 2

3 −1
3

−1
3

2
3

,
A := C−1wpρ

2[1]n×n
(
CT

)−1
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=
 2

3 −1
3

−1
3

2
3

−1
1
3

√
1
3

2  1 1
1 1



 2

3 −1
3

−1
3

2
3

−1

T

=
 1

3
1
3

1
3

1
3

 ;

hence the weights are

w1 = (A)11 =
 1

3
1
3

1
3

1
3

 11 = 1
3;

w2 = (A)22 =
 1

3
1
3

1
3

1
3

 22 = 1
3;

w3 = wp = 1
3 .

Define

W := diag (w1, ..., wn) =
 1

3 0
0 1

3

 ,
e := − ρ

√
wp

√
PXX [1]n×1 = −

√
1
3√
1
3

√
I2

 1
1

 =
 −1
−1

 ,

E :=
√
PXXC

(√
W
)−1

=
√
I2

√√√√√
 2

3 −1
3

−1
3

2
3



√√√√√
 1

3 0
0 1

3



−1

=
 1

2 +
√

3
2

1
2 −

√
3

2
1
2 −

√
3

2
1
2 +

√
3

2

 .
The the sigma points are given by

χ1 = (E)∗1 + X̄ =
 1

2 +
√

3
2

1
2 −

√
3

2
1
2 −

√
3

2
1
2 +

√
3

2


∗1

+
 0

0

 =
 1

2 +
√

3
2

1
2 −

√
3

2

 ,
χ1 = (E)∗2 + X̄ =

 1
2 +

√
3

2
1
2 −

√
3

2
1
2 −

√
3

2
1
2 +

√
3

2


∗2

+
 0

0

 =
 1

2 −
√

3
2

1
2 +

√
3

2

 ,
χ3 = e+ X̄ =

 −1
−1

+
 0

0

 =
 −1
−1

 .
From Tab 2.1 [4,1], for the Symmetric set of [41] with α = 1, κ = 1, and β = 1,

define
λ = α2 (n+ κ)− n = 12(2 + 1)− 1 = 2.

The weights are given by

wm0 = λ

n+ λ
= 2

2 + 2 = 1
2 ,
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wc0 = λ

n+ λ
+
(
1− α2 + β

)
= 2

2 + 2 +
(
1− 12 + 1

)
= 3

2

wmi = wci = λ

n+ λ
= 2

2 + 2 = 1
2 , for i = 1, 2, 3, 4;

and the sigma points by

χ1 = X̄ +
(√

(n+ λ)PXX
)
∗1

=
 √4 0

0
√

4


∗1

=
 2

0

 ,
χ2 = X̄ +

(√
(n+ λ)PXX

)
∗2

=
 √4 0

0
√

4


∗2

=
 0

2

 ,
χ3 = X̄ −

(√
(n+ λ)PXX

)
∗1

= −
 √4 0

0
√

4


∗1

=
 −2

0

 ;

χ4 = X̄ −
(√

(n+ λ)PXX
)
∗2

= −
 √4 0

0
√

4


∗2

=
 0
−2

 .
From Tab 2.1 [4,2], for the fifth order set of [47], the weights are given by

wi = 4− n
18 = 4− 2

18 = 1
9 , for i = 1, . . . , 4;

wi = 1
36 for i = 5, . . . , 8;

w9 = n2 − 7n
18 + 1 = 22 − 7× 2

18 + 1 = 4
9 .

Define

ξ1 :=
 √3

0

 , ξ2 :=
 −√3

0

 , ξ3 :=
 0
√

3

 , ξ4 :=
 0
−
√

3

 ;

ξ5 :=
 √3
√

3

 , ξ6 :=
 −√3
√

3

 , ξ7 :=
 √3
−
√

3

 , ξ8 :=
 −√3
−
√

3

 ;

ξ9 : =
 0

0

 ;

hence the sigma points are given by

χ1 = X̄ +
√
PXXξ1 = [0]2×1 + I2

 √3
0

 =
 √3

0

 ,
χ2 = X̄ +

√
PXXξ2 = [0]2×1 + I2

 −√3
0

 =
 −√3

0

 ,
χ3 = X̄ +

√
PXXξ3 = [0]2×1 + I2

 0
√

3

 =
 0
√

3

 ,
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χ4 = X̄ +
√
PXXξ4 = [0]2×1 + I2

 0
−
√

3

 =
 0
−
√

3

 ,
χ5 = X̄ +

√
PXXξ5 = [0]2×1 + I2

 √3
√

3

 =
 √3
√

3

 ,
χ6 = X̄ +

√
PXXξ6 = [0]2×1 + I2

 −√3
√

3

 =
 −√3
√

3

 ,
χ7 = X̄ +

√
PXXξ7 = [0]2×1 + I2

 √3
−
√

3

 =
 √3
−
√

3

 ,
χ8 = X̄ +

√
PXXξ8 = [0]2×1 + I2

 −√3
−
√

3

 =
 −√3
−
√

3

 ,
χ9 = X̄ +

√
PXXξ19 = [0]2×1 + I2

 0
0

 =
 0

0

 .
From Tab 2.1 [5,*], for the set of [84] with κ = 2, define

w1,1 = w1,2 = w2,1 = w2,2 = 1
ϕn

= 1
22 = 1

4;

thence the weights are given by

w1 = w1,1 = 1
4 ,

w2 = w1,2 = 1
4 ,

w3 = w2,1 = 1
4 ,

w4 = w2,2 = 1
4 .

Define
F (x) := 1√

2π

ˆ x

−∞
e−

u2
2 du;

b1 := F−1
(
i+ 1
2κ

)
= F−1

(1 + 1
2× 2

)
= F−1

(1
2

)
= 0,

b2 := F−1
(
i+ 1
2κ

)
= F−1

(2 + 1
2× 2

)
= F−1

(3
4

)
= 0.6745,

κ∑
l=1

b2
l = b2

1 + b2
2 = 0.4549

c1 :=
√

κ∑κ
l=1 b

2
l

bi =
√

2
0.45490 = 0
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c2 :=
√

κ∑κ
l=1 b

2
l

bi =
√

2
0.4549b2 = 1.4142

The eigenvalues λ1, λ2 and eigenvalues v1, v2 of PXX are

λ1 = 1 , λ2 = 1;

v1 =
 1

0

 ,
 0

1

 .
Then, the sigma points are given by

j1 = 1, j2 = 1 : χ1,1 = X̄ + c1

√
λ1v1 + c1

√
λ2v2 = 0

√
1
 1

0

+ 0
√

1
 0

1

 =
 0

0


j1 = 1, j2 = 2 : χ1,2 = X̄ + c1

√
λ1v1 + c2

√
λ2v2 =

 0
1.4142


j1 = 2, j2 = 1 : χ2,1 = X̄ + c2

√
λ1v1 + c1

√
λ2v2 =

 1.4142
0


j1 = 2, j2 = 2 : χ2,2 = X̄ + c2

√
λ1v1 + c2

√
λ2v2 =

 1.4142
1.4142


Remark 2.2. Sigma sets can be composed of i) only positive weights, or ii) both positive
and negative weights (never only negative weights). However, using UF’s composed
of both positive and negative weights [option i)] should be avoided; this practice may
result in some numerical problems such as non-positive sample covariances [1] or a
large amount of round-off errors [85].

Regarding sigma sets, UF’s can be classified according to 3 different criteria.

A first criterion considers the geometrical distribution of the sigma points within
each sigma set in an UF. In the UF’s of [1, 2, 41, 47], the sigma points of every sigma
set are distributed symmetrically; and in the reduced set of [45], spherical simplex set
of [46], simplex set of [83], and minimum set of [57], the sigma points of every sigma
set are distributed asymmetrically.

A second criterion considers the number of sigma points in each sigma set. Every
sigma set χ = {χi, wmi , wci}Ni=1 is associated with a random vector X ∈ Φn, and the
number of sigma points N depends on n, the dimension of the space in which X takes
value. As can be seen in Table 2.1, the number of sigma points is i) N = n+ 1 in the
UKF’s of [45, 57, 83], ii) N = n + 2 in the UKF of [46], iii) N = 2n + 1 in the UKF’s
of [1,2,41], iv) N = 2n2 + 1 in the UKF of [47], and v) N = κn (κ ∈ N is a parameter)
in the UKF of [84].
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A third criterion considers which sample moments of each sigma set χ are equal to
the moments of their associated random vector. Generally, this matching occur with
the moments of order 1 (the mean) and 2 (the covariance) in the UKF’s of [1,2,41,45,
47, 57,83]. If the random vector is symmetric—a random vector X ∈ Φn is symmetric
if pdfX

(
X̄ + x

)
= pdfX

(
X̄ − x

)
for every x ∈ Rn—, then this matching occur with

the moments of order 1, 2, and also all odd-order moments in the UKF’s of [1,2,41,47].
If the random vector is Gaussian, then this matching occur with the moments of order
1, 2, with all odd-order moments, and also with the moment of order 4 in the UKF’s
of [47]. Not all UKF’s have their sigma sets matching the first and second moments of
their associated random vector (see Section 2.5).

Let us now consider different UF’s regarding UT’s.

2.2.2 Unscented Filter variants considering different Unscented Trans-
formations

Table 2.2 presents all different UT’s in the literature, namely i) the (ordinary) UT
(first column of Table 2.2), ii) the scaled UT of [44] (second column of Table 2.2), and
iii) the Auxiliary form of the UT (AuxUT) of [44] (third column of Table 2.2).

Comparative with the ordinary UT, the scaled UT of [44] (second column of Table
2.2), essentially, have two different steps: i) the previous sigma set χ is transformed
by a scaling transformation with scaling parameter α (Tab 2.2 [2,2])—note that the
transformation of the sigma points χ′i = χ1 +α(χi− χ1) is a convex transformation—;
and ii) the transformed sample covariance is Σ∗γγ in (Tab 2.2 [7,2]).

Comparative with the ordinary UT, the AuxUT of [44] (third column of Table 2.2),
essentially, has only one different step: the transformed sigma set γ (Tab 2.2 [3,3]) is
transformed by the scaling function g (Tab 2.2 [2,3]); this function also has a scaling
parameter α.

Since both the scaled UT of [44] and the AuxUT of [44] are composed of scaling
transformations, we call the set of these two UT’s by the name of scaling UT’s. In
Section 2.6, we show an inconsistency regarding the Scaled UT of [44]. We point out
that [86] presented an embryonic form of these scaling UT’s.

Let us now consider different UF’s regarding different prediction-correction struc-
tures.
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−
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−
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−
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2.2.3 Unscented Filter variants considering different prediction-correction
structures

UF’s can be classified relative to their prediction-correction structures according to
2 criteria.

A first criterion is related to the form of the underlying dynamical system, i.e.,
whether the system is described in the additive form (2.1), or in the more general form
(2.2). UF’s designed for systems in the additive form (2.1) are called Additive UF’s,
and UF’s designed for systems in the more general form (2.2) are called Augmented
UF’s.

The a priori random vector at each time step k is different in each of these filters.
In Additive UF’s, the a priori random vector is the previous state xk−1|y1:k−1 with
mean x̂k−1|k−1 and covariance P̂ k−1|k−1

xx (as in the Algorithm 1). On the other hand,
in the Augmented UF’s, the a priori random vector is the previous augmented vector
xak−1|k−1 (cf. [67]) defined by (recall that $k and ϑk are the noises of the systems (2.1)
and (2.1))

xak−1|k−1 := (xk−1, $k, ϑk) |y1:k−1;

the dimension of xak−1|k−1 is na = nx + n$ + nϑ; its mean is

x̂ak−1|k−1 :=
[
x̂Tk−1|k−1, [0]1×n$ , [0]1×nϑ

]T
; (2.18)

and its covariance and square-root covariance are, respectively,

P̂ a,k−1|k−1
xx := diag

(
P̂ k−1|k−1
xx , Qk, Rk

)
, (2.19)√

P̂
a,k−1|k−1
xx := diag

(√
P̂
k−1|k−1
xx ,

√
Qk,

√
Rk

)
. (2.20)

Although it is always possible to use Augmented UF’s for either (2.1) or (2.2),
Additive UF’s are preferable for (2.1), because n Additive UF’s are computationally
cheaper than their corresponding Augmented UF’s (Augmented UF’s with the same
sigma sets and UT’s).

Remark 2.3. Filters for some system descriptions besides (2.1) and (2.2) can be easily
obtained. For partially-additive systems, where (2.2) is considered either with fk with
additive $k or hk with additive ϑk, the augmented state vector x̂ak−1|k−1 is composed of
only by the noise of whatever function is in general form [68]. For partially-nonlinear
systems, where fk or hk is linear, the linear KF equations usually can be used in the
parts of the UF referring to the linear equation [87].

A second criterion for classifying UF’s regarding their prediction-correction struc-
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tures is the propagation form of covariances; covariances within the UF’s can be propa-
gated in their covariance forms, themselves, (e.g. P̂ k|k−1

xx , P̂ k|k−1
xy , and P̂ k|k

xx in Algorithm

1), or in their square-root forms (e.g.
√
P̂
k|k−1
xx ,

√
P̂
k|k−1
xy , and

√
P̂
k|k
xx in the filter of [42]).

UF’s whose covariances are propagated in their i) covariance forms are called UKF’s,
and in their ii) square-root forms are called Square-Root Unscented Kalman Filter’s
(SRUKF’s).

SRUKF’s are usually preferred over UKF’s in computationally ill-conditioned sit-
uations; for example, applications where the machine precision of the used computer
is such that rounding errors can cause UKF’s to diverge. In such ill-conditioned sit-
uations, usually SRUKF’s are less likely to diverge than UKF’s—indeed, generally,
for any KF-based filter, a square-root form is less likely to diverge than a covariance
form [88].

In SRUKF’s, algorithms of QR decomposition and Cholesky factor update are
used in order to propagate square-root covariances (cf. [42]). To date, we are aware
of five variants for the Square-Root Unscented Kalman Filters (SRUKF’s): SRUKF
of [42] (system in additive form (2.1) with the sigma set of [41], Tab 2.1 [4,1], and
statistics calculation (2.12)-(2.17)); SRUKF of [67] (general form (2.2) with the set
of [41]); SRUKF of [89] (additive form (2.1) with the spherical simplex set of [46], Tab
2.1 [2,2]); SRUKF of [21] (general form (2.2) with the set of [2], Tab 2.1 [1,1]); the
Improved SRUKF of [90] (additive form (2.1) with the reduced set of [45], Tab 2.1
[2,1]).

*********

All additive UKF’s (AdUKF’s) in the literature are represented in Table 2.3—this
table refers to Tables 2.1 and 2.2 for the expressions of each element in the presented
AdUKF’s. The (Additive) UKF of [82] (Algorithm 1), for example, can be obtained by
taking the first row of Table 2.3; the previous set of this filter is the symmetric set of [2]
calculated for X̄ = x̂k−1|k−1 and PXX = P̂ k−1|k−1

xx . Augmented UKF’s and SRUKF’s
can be obtained with Tables 2.1 and 2.2 with corresponding, slightly modified versions
of Table 2.3.

Remark 2.4. Due to the difficulty of describing UKF’s as presented in the original for-
mulations in a simple and systematized way, the forms of the UKF’s shown in Table 2.3
are not necessarily the ones introduced by their corresponding authors. Nevertheless,
the forms contained in this table, if different from the original ones, are trivial exten-
sions (e.g., the additive form for the symmetric UKF of [1] in Table 2.1 is slightly more
general). Moreover, some of these extensions have already been explicitly proposed
(e.g., the additive form of the symmetric UKF of [2] was modified in [82]).
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Remark 2.5. There are 3 other UKF’s that are not presented in Table 2.3: [37] describes
a symmetric UKF matching up to the 4th central moment of the previous random
vector; [86], an asymmetric UKF matching up to the 3rd central moment of the previous
random vector; and [91], a symmetric UKF matching up to the 8th central moment
of a scalar Gaussian random vector. Table 2.3 does not show these UKF’s because,
instead of presenting their expressions, these works only show procedures from which
these UKF’s can be obtained.

Next, we present general comments about UKF variants and analyze some of their
properties.

2.3 DEFINITIONS FOR UKF’S

In this section, we point out some problems concerning definitions of some UKF’s
of the literature.

2.3.1 Variations on UKF definitions

From Section 2.2, it is clear that there are many UKF variants. Given that, in
general, these variants are not equivalent, we cannot properly point out which one
is the definition for the UKF. Nonetheless, most works in the literature use the term
UKF when referring to either the UKF of [2]—as can be seen in [59,80]—or to the UKF
of [41]—as can be seen in [52,60]. By comparing their sets of sigma points (cf. Tab 2.1
[1,1] with Tab 2.1 [4,1]), we can see that there are two main differences between these
filters. First, the UKF of [2] uses the factor κ to calculate the weights and the sigma
points, while the one of [41] uses a term λ = α2(n + κ) − n to do so. Second, in the
UKF of [41], wm0 and wc0 are distinct objects, while in the UKF of [2], w0 = wm0 = wc0.

2.3.2 Variation on scaled UKF definitions

Although the UKF of [41] (Tab 2.3 [5,*]) is described and widely referred to as a
non-scaled UKF (cf. [52,60]), Merwe himself, one of the authors in [41], describes this
filter as a scaled UKF form (cf. [67])—it has a scaling parameter α (cf. Tab 2.1 [4,1]).
Apart from that, one should notice that this scaled UKF form differs from the ones
proposed by [44] (the ones using the UT’s of Table 2.2).
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2.4 ACCURACY OF THE UT’S

In this section, we point out some problems concerning the accuracy of the UT.

2.4.1 Transformed covariance

Consider equations (2.10) to (2.10). As [60] states, a large number of papers repeat
the statement of [1] that if µχ = X̄ and Σχχ = PXX , then µγ and Σγγ are equal to Ȳ
and PY Y up to their second order Taylor approximations. However, that is not true for
all UT’s. Indeed, [60] has already pointed out this issue for the UT in the symmetric
UKF of [41] by providing a counter-example: for

X ∼ N(0n×1, In) and Y := F (X) = XTX,

the analytical result for the covariance of Y is

PY Y = 2n.

but the UT of [41] provides different results (see Table II in [60])—note that, since
F (X) = XTX is a second order polynomial the UT should provide the same result as
the analytical one if the second order approximation claim above was true.

2.4.2 Transformed cross covariance

The transformed cross-covariance is necessary for the UKF, but before our work
[23]—a result of this thesis—an estimation quality for it was not provided.

2.5 SMALL SIGMA SETS

In this section, we point out some problems related to the sigma sets of the literature
composed of less then 2n sigma points—for n being the dimension of the associated
random vector (cf. Table 2.1).

The reduced set of [45] has two drawbacks. First, it can be numerically unstable for
great values of n due to the fact that the weights are composed by fractions of 2n [46].
Second, neither the sample mean, µχ, nor the sample covariance, Σχχ, are equal to the
mean and covariance of the prior distribution when n is greater than one [57]. In fact,
from Tab 2.1 [2,1], for n = 2, X ∼ ([0]2×1, I2)2, w0 = 0.5, and using (2.13) and (2.15)
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with wi = wi = wi, we have that

µχ :=
n∑
i=0

wiχi = 1
4

 −1
3

 6= [0]2×1 = X̄,

and

Σχχ :=
n∑
i=0

wi
(
χi − µχ

)
(�)T = 1

2

 1 1
1 5

 6= I2 = PXX .

The spherical simplex set of [46] does not present the instability problem of the set
of [45], but still has the same problem that neither µχ nor Σχχ is equal to the mean
and the covariance of X, respectively, when n is greater than one [57]. In fact, from
Tab 2.1 [2,2], for

n = 2, X ∼ ([0]2×1, I2)2 , w0 = 0.5,

and using (2.13) and (2.15) with wi = wi = wi, we have that

µχ :=
n+1∑
i=0

wiχi = 1
2
√

6

 0
1

 6= [0]2×1 = X̄,

and

Σχχ :=
n+1∑
i=0

wi
(
χi − µχ

)
(�)T =

 1 0
0 53

96

 6= I2 = PXX .

For the minimum set of [83], the sample covariance does not match with the covari-
ance of the considered random vector. Using Tab 2.1 [3,1] and (2.13), it can be shown
that

Σχχ :=
n+1∑
i=1

wi
(
χi − µχ

)
(�)T = PXX + 1

n+ 1X̄X̄
T

for X ∼ (X̄, PXX)n, which is not equal to PXX if X̄ 6= [0](n+1)×1. In fact, for X ∈ Φ1

with mean X̄ = 3 and covariance PXX = 4, the sample covariance of the set of [83] is

Σχχ :=
n+1∑
i=1

wi
(
χi − µχ

)
(�)T = 13 6= 4 = PXX .

Finally, our minimum set in [57] is the only sigma set composed by less than 2n
points matching the mean and covariance of X.

35



2.6 SCALING TRANSFORMATIONS

In this section, we point out some problems related to the scaling transformations
of the literature.

2.6.1 Scalable sigma sets

The scaled UT was proposed by [44]. In this work, it is stated that the “scaled un-
scented transformation [...] allows any set of sigma points to be scaled by an arbitrary
scaling factor” (the italic is of [44], and the bold was added by us). However, suppose
that a random vector X ∈ Φ2 has mean X̄ = [0]2×1 and covariance PXX = I2, and that
the previous set χ = {χi, wi}4

i=1 is composed by the sigma points

χ1 =
 √2

0

 , χ2 =
 0
√

2

 , χ3 =
 −√2

0

 , χ4 =
 0
−
√

2

 ,
and the weights

w1 = w2 = w3 = w4 = 1
4 .

For α = 0.5 and choosing

χ′1 = χ1 =
 0

2

 ,
one can see that, from Tab 2.2 [*,2], the sample mean (µχ′ := ∑4

i=1w
′
iχ
′
i) and the sample

covariance (Σχ′χ′ := ∑4
i=1w

′
i(χ′i−µχ′)(�)T .) of the scaled sigma set χ′ = {χ′i, w′i}4

i=1 are

µχ′ =
 −√2

0

 6=
 0

0


and

Σχ′χ′ =
 −3 0

0 1

 6= I2.

This example shows that the sample mean and the sample covariance of χ′ are not
equal to the mean and covariance of X, respectively. In fact, as one can see from the
following theorem, this property is not guaranteed to hold for any sigma set, except
for those having one sigma point equal to the mean of X.

Theorem 2.1. Consider X ∼ (X̄, PXX)n and a function F : Rn → Rny defining a new
random vector Y := F (X) and consider a set of sigma points χ = {χi, wi}Ni=1 for X.
Consider also the set of scaled sigma points χ′ = {χ′i, w′i}Ni=1 obtained from the scaled
UT of [44] (second column of Table 2.2). We have that:
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1. if ∑N
i=1wi = 1, then ∑N

i=1 w
′
i = 1;

2. µχ′ = α−1µχ + χ1(1− α−1);

3. if χ1 = X̄, then µχ′ = µχ;

4. if α 6= 1, then χ1 = X̄ ⇔ µχ′ = µχ;

5. if χ1 = X̄, then Σχ′χ′ = Σχχ.

Proof. Suppose ∑N
i=1wi = 1, then

N∑
i=1

w′i = 1
α2

(
− 1 + α2 +

N∑
i=1

wi
)

= 1.

For the second and third assertion, note that, from the definition,

µχ′ :=
N∑
i=1

w′iχ
′
i = 1

α
µχ + χ1

(
1− 1

α

)
,

which, supposing χ1 = µχ, gives µχ′ = µχ and, supposing µχ′ = µχ, α 6= 1, gives
χ1 = µχ. The last assertions can be proven by the fact that, from the definition,

Σχ′χ′ :=
N∑
i=1

w′i
(
χ′i − µχ′

) (
χ′i − µχ′

)T
.

= w′1
(
χ′1 − µχ

)
(�)T +

N∑
i=2

w′i(χ1 + α(χi − χ1)− µχ) (�)T ,

which, for χ1 = µχ, gives Σχ′χ′ = Σχχ.

Therefore, the scaled UT of [44] is restrictive in the sense that this UT does not
provide the mentioned results for any previous set of sigma points. For instance, the
SUT of cannot be used with the sigma set of [57] (Tab 2.1 [3,2]) because

wn+1 6= 1⇒ ρ 6= 0

and
C 6= 0

imply that χi 6= X̄, ∀i = 1, . . . , n+ 1.
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2.6.2 Covariance

Consider X ∼ N([0]3×1, I3) and

Y := F (X) = XTX.

Then, Ȳ = 3 and PY Y = 6. Using the scaled UT of [44] with the symmetric sigma set
of [1], we get, from (2.14) and (2.16),

µγ = 3 = Ȳ ,

and
Σ∗γγ = 3α2 − 8 6= PY Y .

This result shows two problems involving the matching of the covariance. First, the
transformed covariance for this scaled UT is not matched up to the order 2, but only
to the order 1. Second, the scaling factor modifies the covariance even for second order
polynomial approximation.

2.6.3 Cross-covariance

Similar to the case for the non-scaled UT’s, the estimation quality of cross-covarian-
ces for the scaled UT of [44] and for the AuxUT of [44] has not been presented in the
literature yet. Moreover, there is no mention of the influence of the scaling factor on
the transformed cross-covariance for the UKF of [41] (recall from Section 2.3.2 that this
UKF has to be investigated whether it is a scaled UKF or not). Since it is desirable to
match the first and the second moments, the free parameter α should modify only the
third and higher terms. However, consider X ∼ N([0]3×1, I3) and

Y := F (X) = XTX.

Then, from Tab 2.1 [4,1], (2.14) and (2.17), we have

µγ :=
N∑
i=1

wiγi = 3 = Ȳ ,

and

Σχγ :=
N∑
i=1

wi
(
χi − µχ

) (
γi − µγ

)T
= 6α [I3]∗i −

9
2α [I3]∗i .

Therefore, the second order term of Σχγ is also modified .
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2.7 SQUARE-ROOT FORMS OF THE UKF’S

In this section, we point out some problems related to SRUKF’s of the literature.

2.7.1 Downdating the Cholesky factor

For an equation in the form

AAT = RRT − SST ,

where A,R, S are Cholesky factors, we say that A is a downdated Cholesky factor of
R by S. There are three parts within the SRUKF algorithms in the literature where
Cholesky factors are downdated: in the calculations of the square-root matrices of the
predicted state’s covariance, of the innovation’s covariance, and of the corrected state’s
covariance. In the first two steps, the downdating steps are performed only for the
sigma points with negative weights, while, in the last, they are always performed.

Since the direct downdating of a Cholesky factor is “inherently more ill-conditioned
than if Q (the Q matrix of a QR decomposition) is also available” [92] (the comment
within parentheses and the emphasis is ours), filters resulting from the substitution
of downdating steps by QR decompositions—or, more generally, by any triangulation
technique [80]—should be computationally more stable. In fact, [93] has developed such
a technique for calculating the square-root matrix of the corrected state’s covariance
for quadrature Kalman filters and [80] for the CKF.

2.7.2 Square-Root Scaled UKF

The literature does not present any filter conjugating the SRUKF with the scaled
UT of [44] (second column of Table 2.2) nor with the AuxUT (third column of Table
2.2).

2.7.3 Square-Root UT

Although there are definitions for filters in square-root forms using the UT, we
have not been able to find any definition for a Square-Root Unscented Transformation
(SRUT). Explicitly defining an SRUT can be justified by three reasons, at least: 1)
it gives SRUKF’s better mathematical formal principle; 2) it is possible to study a
SRUKF’s by focusing on its respective SRUT, since it is the core difference between
SRUKF’s relative to other nonlinear SR KF-based filters; and 3) an SRUT can be
applied not only within the KF framework, but in any framework or application that
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requires uncertainty propagation (e.g. [94]) or within other stochastic filter (e.g. [95]).
In Section 4.3, we provide a definition for the SRUT.

2.8 ADDITIVE UNSCENTED KALMAN FILTERS

When UKF’s are solutions to the filtering problem of systems in the form (2.1),
we call them AdUKF’s. There is a great number of AdUKF’s in the literature, such
as [1, 2, 39,40,42,44–47,83,84,86,96,97].

From Section 2.2, we saw that AdUKF’s can vary from each other by different
criteria; in this section, we analyze every AdUKF of the literature distinct from each
other according to the following three criteria (Section 2.8.1):

1. in which equation the process noise’s covariance Qk is considered,

2. whether the predicted state sigma set {χk|k−1
i,{j} , wi,{j}} is regenerated or not, and

3. how this regeneration is done if it is the case.

Four different classes are found.

From this analysis, we show that only one of these classes of AdUKF’s, namely the
AdUKF 1, provides the same estimates as the (linear) KF when the system (2.1) is lin-
ear (Section 2.8.3). By the facts that i) the UKF’s are extensions of the (linear) Kalman
Filter (KF) to nonlinear system and ii) that the KF provides the minimum variance
estimate of the state of a linear system with Gaussian noise and initial state [24, 26],
it is expected [from i)] and desirable [from ii)] that the estimates of the AdUKF’s are
equal to the ones of the KF when linear systems are considered.

Numerical simulations indicates that this linear property of the AdUKF 1—of pro-
viding the same estimates as the KF when the system is linear—is related with a supe-
rior performance of this AdUKF 1—comparative with the other classes of AdUKF’s—
when nonlinear systems are considered. In Section 2.8.2, we compare the performance
of all classes of AdUKF’s in a numerical example, and the AdUKF 1 outperformed
all the other classes of AdUKF’s. Later, in Chapter 5.1, endowed with the results
developed in Chapters 3 and 4, we will be able to develop stronger conclusions.

2.8.1 Additive Unscented Kalman Filters of the literature

Each class is represented by a particular AdUKF; in this way, we can analyze their
algorithms. We chose the AdUKF’s of [2, 42,59,67].
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However, in order to not lose generality, the algorithms described below are in a
more generalized form than the ones presented in [2,42,59,67]; each AdUKF is defined
with particular sigma sets in their original work, but here we consider general sigma
sets. For this, we define the function

SS
(
X̄, PXX

)
:= {χi, wi}Ni=1

mapping the mean X̄ and the covariance PXX of a random vector X to a sigma set.

For easy reference, we named i) AdUKF 1 the class gathering the AdUKF of [59],
ii) AdUKF 2 the class gathering the AdUKF of [42], iii) AdUKF 3 the class gathering
the AdUKF of [67], and iv) AdUKF 4 the class gathering the AdUKF of [2]. We point
out that, broadly, as long as our knowledge go, AdUKF’s 1, 2, and 4 are used in an
approximately-equal number of works.

Below, some variables are written with a subscript {j} as in A{j}, for j = 1, 2, 3
and 4; this notation associates the element A to the AdUKF j. For example, χk−1|k−1

i,{1}

is sigma point of the AdUKF 1, χk−1|k−1
i,{2} of the AdUKF 2, χk−1|k−1

i,{3} of the AdUKF 3,
and χk−1|k−1

i,{4} of the AdUKF 4.

Algorithm 2 (AdUKF 1 (in [59])). Perform the following steps:

1. x̂k−1|k−1,{1}, P̂ k−1|k−1
xx,{1} , Qk, Rk and a measurement y˜k are given.

2. State’s prediction.

(a) Predicted statistics.

{
χ
k−1|k−1
i,{1} , wi,{1}

}N{1}
i=1

= SS
(
x̂k−1|k−1,{1}, P̂

k−1|k−1
xx,{1}

)
;

χ
k|k−1
i,∗,{1} = fk

(
χ
k−1|k−1
i,{1}

)
, 1 ≤ i ≤ N{1};

x̂k|k−1,{1} =
N{1}∑
i=1

wi,{1}χ
k|k−1
i,∗,{1};

P̂
k|k−1
xx,{1} =

N{1}∑
i=1

wi,{1}
(
χ
k|k−1
i,∗,{1} − x̂k|k−1,{1}

)
(�)T +Qk. (2.21)

(b) Regeneration of predicted state sigma points.

{
χ
k|k−1
i,{1} , wi,{1}

}N{1}
i=1

= SS
(
x̂k|k−1,{1}, P̂

k|k−1
xx,{1}

)
. (2.22)

3. Measurements prediction.

γ
k|k−1
i,{1} = hk

(
χ
k−1|k
i,{1}

)
, 1 ≤ i ≤ N{1};
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ŷk|k−1,{1} =
N{1}∑
i=1

wi,{1}χ
k|k−1
i,{1} ;

P̂
k|k−1
yy,{1} =

N{1}∑
i=1

wi,{1}
(
χ
k|k−1
i,{1} − ŷk|k−1,{1}

)
(�)T +Rk;

P̂
k|k−1
xy,{1} =

N{1}∑
i=1

wi,{1}
(
χ
k|k−1
i,{1} − x̂k|k−1,{1}

) (
χ
k|k−1
i,{1} − ŷk|k−1,{1}

)T
.

4. State’s correction.

Gk,{1} = P̂
k|k−1
xy,{1}

(
P̂
k|k−1
yy,{1}

)−1
;

x̂k|k,{1} = x̂k|k−1,{1} +Gk,{1}

(
y˜k − ŷk|k−1,{1}

)
;

P̂
k|k
xx,{1} = P̂

k|k−1
xx,{1} −Gk,{1}P̂

k|k−1
yy,{1}G

T
k,{1}.

Algorithm 3 (AdUKF 2 (in [42]).). Perform the following steps:

1. x̂k−1|k−1,{2}, P̂ k−1|k−1
xx,{2} , Qk, Rk and a measurement y˜k are given.

2. Prediction of the state.

(a) Predicted statistics.

{
χ
k−1|k−1
i,{2} , wi,{2}

}N{2}
i=1

= SS
(
x̂k−1|k−1, P̂

k−1|k−1
xx

)
;

χ
k|k−1
i,{2} = fk

(
χ
k−1|k−1
i,{2}

)
, 1 ≤ i ≤ N{2};

x̂k|k−1,{2} =
N{2}∑
i=1

wi,{2}χ
k|k−1
i,{2} ;

P̂
k|k−1
xx,{2} =

N{2}∑
i=1

wi,{2}
(
χ
k|k−1
i,{2} − x̂k|k−1,{2}

)
(�)T +Qk. (2.23)

3. Measurements prediction.

γ
k|k−1
i,{2} = hk

(
χ
k−1|k
i,{2}

)
, 1 ≤ i ≤ N{2};

ŷk|k−1,{2} =
N{2}∑
i=1

wi,{2}χ
k|k−1
i,{2} ;

P̂
k|k−1
yy,{2} =

N{2}∑
i=1

wi,{2}
(
χ
k|k−1
i,{2} − ŷk|k−1,{2}

)
(�)T +Rk;

P̂
k|k−1
xy,{2} =

N{2}∑
i=1

wi,{2}
(
χ
k|k−1
i,{2} − x̂k|k−1,{2}

) (
χ
k|k−1
i,{2} − ŷk|k−1,{2}

)T
.
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4. State’s correction.

Gk,{2} = P̂
k|k−1
xy,{2}

(
P̂
k|k−1
yy,{2}

)−1
;

x̂k|k,{2} = x̂k|k−1,{2} +Gk,{2}

(
y˜k − ŷk|k−1,{2}

)
;

P̂
k|k
xx,{2} = P̂

k|k−1
xx,{2} −Gk,{2}P̂

k|k−1
yy,{2}G

T
k,{2}.

Algorithm 4 (AdUKF 3 (in [67])). Perform the following steps:

1. x̂k−1|k−1,{3}, P̂ k−1|k−1
xx,{3} , Qk, Rk and a measurement y˜k are given.

2. Prediction of the state.

(a) Predicted statistics.

{
χ
k−1|k−1
i,{3} , w∗i,{3}

}N∗{3}
i=1

= SS
(
x̂k−1|k−1, P̂

k−1|k−1
xx

)
;

χ
k|k−1
i,∗,{3} = fk

(
χ
k−1|k−1
i,{3}

)
, 1 ≤ i ≤ N∗{3};

x̂k|k−1,{3} =
N∗{3}∑
i=1

w∗i,{3}χ
k|k−1
i,∗,{3};

P̂
k|k−1
xx,{3} =

N∗{3}∑
i=1

w∗i,{3}
(
χ
k|k−1
i,∗,{3} − x̂k|k−1,{3}

)
(�)T +Qk. (2.24)

(b) Regeneration of predicted state sigma points.

χ
k|k−1
i,{3} = χ

k|k−1
i,∗,{3}, 1 ≤ i ≤ N∗{3}; (2.25){

χ
k|k−1
i,{3} , wi,{3}

}N3

l=N∗{3}+1
= SS

(
x̂k|k−1, Qk

)
; (2.26)

wj,{3} =
w∗j,{3}

2 , 1 ≤ j ≤ N3. (2.27)

3. Measurements prediction.

γ
k|k−1
i,{3} = hk

(
χ
k−1|k
i,{3}

)
, 1 ≤ i ≤ N{3};

ŷk|k−1,{3} =
N{3}∑
i=1

wi,{3}χ
k|k−1
i,{3} ;

P̂
k|k−1
yy,{3} =

N{3}∑
i=1

wi,{3}
(
χ
k|k−1
i,{3} − ŷk|k−1,{3}

)
(�)T +Rk;

P̂
k|k−1
xy,{3} =

N{3}∑
i=1

wi,{3}
(
χ
k|k−1
i,{3} − x̂k|k−1,{3}

) (
χ
k|k−1
i,{3} − ŷk|k−1,{3}

)T
.

43



4. State’s correction.

Gk,{3} = P̂
k|k−1
xy,{3}

(
P̂
k|k−1
yy,{3}

)−1
;

x̂k|k,{3} = x̂k|k−1,{3} +Gk,{3}

(
y˜k − ŷk|k−1,{3}

)
;

P̂
k|k
xx,{3} = P̂

k|k−1
xx,{3} −Gk,{3}P̂

k|k−1
yy,{3}G

T
k,{3}.

Algorithm 5 (AdUKF 4 (in [2])). Perform the following steps:

1. x̂k−1|k−1,{4}, P̂ k−1|k−1
xx,{4} , Qk, Rk and a measurement y˜k are given.

2. Prediction of the state.

(a) Predicted statistics.

{
χ
k−1|k−1
i,{4} , wi,{4}

}N{4}
i=1

= SS
(
x̂k−1|k−1, P̂

k−1|k−1
xx +Qk

)
; (2.28)

χ
k|k−1
i,{4} = fk

(
χ
k−1|k−1
i,{4}

)
, 1 ≤ i ≤ N{4};

x̂k|k−1,{4} =
N{4}∑
i=1

wi,{4}χ
k|k−1
i,{4} ;

P̂
k|k−1
xx,{4} =

N{4}∑
i=1

wi,{4}
(
χ
k|k−1
i − x̂k|k−1,{4}

)
(�)T .

3. Measurements prediction.

γ
k|k−1
i,{3} = hk

(
χ
k−1|k
i,{3}

)
, 1 ≤ i ≤ N{3};

ŷk|k−1,{3} =
N{3}∑
i=1

wi,{3}χ
k|k−1
i,{3} ;

P̂
k|k−1
yy,{3} =

N{3}∑
i=1

wi,{3}
(
χ
k|k−1
i,{3} − ŷk|k−1,{3}

)
(�)T +Rk;

P̂
k|k−1
xy,{3} =

N{3}∑
i=1

wi,{3}
(
χ
k|k−1
i,{3} − x̂k|k−1,{3}

) (
χ
k|k−1
i,{3} − ŷk|k−1,{3}

)T
.

4. State’s correction.

Gk,{3} = P̂
k|k−1
xy,{3}

(
P̂
k|k−1
yy,{3}

)−1
;

x̂k|k,{3} = x̂k|k−1,{3} +Gk,{3}

(
y˜k − ŷk|k−1,{3}

)
;

P̂
k|k
xx,{3} = P̂

k|k−1
xx,{3} −Gk,{3}P̂

k|k−1
yy,{3}G

T
k,{3}.

Note that there is no essential difference among i) the measurement’s prediction
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steps of each AdUKF (steps 3.), and ii) the state’s correction steps of each AdUKF
(steps 3.). Thus, the differences rely in the state’s prediction steps (steps 2.).

The four classes of AdUKF’s are divided according to the criteria 1, 2 and 3 de-
scribed in the beginning of Section 2.8. Considering these criteria in each AdUKF we
have that:

• in the AdUKF 1 (Algorithm 2), the covariance Qk is considered in (2.21), and
the predicted sigma set {χk|k−1

i,{1} , wi,{1}} is regenerated in (2.22);

• in the AdUKF 2 (Algorithm 3), the covariance Qk is considered in (2.23), and
the predicted sigma set {χk|k−1

i,{2} , wi,{2}} is not regenerated;

• in the AdUKF 3 (Algorithm 4), the covariance Qk is considered in (2.24), and
the predicted sigma set {χk|k−1

i,{3} , wi,{3}} is regenerated in equations (2.25), (2.26),
and (2.27);

• in the AdUKF 4 (Algorithm 5), the covariance Qk is considered in (2.28), and
the predicted sigma set {χk|k−1

i,{4} , wi,{4}} is not regenerated.

The AdUKF 4 is the only filter to not consider Qk in the equation of the predicted
covariance P̂ k|k−1

xx,{j}. Moreover, the AdUKF 1 and AdUKF 3 regenerate the predicted
sigma set {χk|k−1

i,{j} , wi,{j}}—AdUKF 2 and AdUKF 4 do not—, but in different ways.

Let us now investigate whether these differences result in differences in the final
estimates x̂k|k,{j} and P̂ k|k

xx,{j}; and, if it is the case, which class of AdUKF provide the
best estimates x̂k|k,{j}.

2.8.2 Numerical Example

In this section, we compare the AdUKF’s of Section 2.8.1 in a numerical example.
Suppose that, on time k, we have yk = 1000, Qk = diag

(
[100, 50]T

)
, Rk = 100, and

f (x) =
 x2

1

x2
2

 , h (x) = xTx,

x̂k−1|k−1 =
 1

2

 , P̂
k−1|k−1
xx,{1} =

 3 0
0 12

 .
For the sigma set of [2] with κ = 2, the posterior estimates provided by i) the AdUKF
1 are

x̂k|k,{1} =
 120.0967

49.3841

 ,
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P̂
k|k
xx,{1} = 104

 2.99 −2.24
−2.24 17.41

 ;

by ii) the AdUKF 2 are

x̂k|k,{2} =
 125.17
−25.12

 ,
P̂
k|k
xx,{2} = 104

 2.91 −1.04
−1.04 0.80

 ;

by iii) the AdUKF 3 are

x̂k|k,{3} =
 88.9681
−17.7611

 ,
P̂
k|k
xx,{3} = 104

 3.00 −4.34
−4.34 −8.40

 ; (2.29)

by iv) the AdUKF 4 are

x̂k|k,{4} =
 202.56
−94.53

 ,
P̂
k|k
xx,{4} = 104

 12.08 −6.89
−6.89 4.44

 ;

and v) by a Monte Carlo simulation using 106 samples considering xk−1|k−1 to be
Gaussian are

x̂k|k,{MC} =
 92.2690

54.5245

 ,
P̂
k|k
xx,{MC} = 104

 2.10 −0.39
−0.39 9.39

 .
The relative deviation ek|k,{j} of each x̂k|k,{j} of the AdUKF’s from x̂k|k,MC defined

by

ek|k,{j} :=

∥∥∥x̂k|k,{1} − x̂k|k,{MC}

∥∥∥∥∥∥x̂k|k,{MC}

∥∥∥ , j = 1, 2, 3, 4; (2.30)

is ek|k,{1} = 0.26, ek|k,{2} = 0.80, ek|k,{3} = 0.68 and ek|k,{4} = 1.73.

All four classes of AdUKF’s present distinct estimates x̂k|k,{j} and P̂
k|k
xx,{j} for this

numerical example. Therefore, the three criteria distinguishing these classes (criteria
1, 2, and 3 in the beginning of Section 2.8) indeed influence the final estimates of the
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AdUKF’s.

The AdUKF 1 provides the smallest relative error (ek|k,{1} = 0.26) in the sense of
(2.30). The examples show that the error differences can be significant since the second
best AdUKF, AdUKF 3, provides an error (ek|k,{3} = 0.68) greater than 2.6 times the
error of the AdUKF 1 (ek|k,{1} = 0.26); and it also provides a non-positive definite
covariance [cf. (2.29)].

An analytical example can give us further information about which of these filters is
endowed with the bestmathematical properties. Considering (2.1) with linear functions
and Gaussian state random vectors is particularly interesting because we already know
the best solution for the filter problem of such case, namely the (linear) KF.

2.8.3 Linear System

By the facts that i) the UKF’s are extensions of the (linear) Kalman Filter (KF)
to nonlinear system and ii) that the KF provides the minimum variance estimate of
the state of a linear system with Gaussian noise and initial state [24,26], it is expected
[from i)] and desirable [from ii)] that the estimates of the AdUKF’s are equal to the
ones of the KF when linear systems are considered.

Suppose i) that, for Fk ∈ Rnx×nx and Hk ∈ Rny×nx , the system (2.1) can be written
in the following form

xk = Fkxk−1 +$k, (2.31)

yk = Hkxk + ϑk; (2.32)

and that ii), at time step k, x̂k−1|k−1, P̂ k−1|k−1
xx , Qk, Rk and a measurement y˜k are given.Then the KF’s algorithm is given by [98]:

x̂k|k−1,{KF} = Fkx̂k−1|k−1, (2.33)

P
k|k−1
xx,{KF} = FkP̂

k−1|k−1
xx F T

k +Qk, (2.34)

ŷk|k−1,{KF} = Hkx̂k|k−1,{KF}, (2.35)

P
k|k−1
yy,{KF} = HkP

k|k−1
xx,{KF}H

T
k +Rk, (2.36)

P
k|k−1
xy,{KF} = P

k|k−1
xx,{KF}H

T
k , (2.37)

Gk,{KF} = P
k|k−1
xy,{KF}

(
P
k|k−1
yy,{KF}

)−1
, (2.38)

x̂k|k,{KF} = x̂k|k−1,{KF} +Gk,{KF}

(
y˜k − ŷk|k−1,{KF}

)
, (2.39)

P̂
k|k
xx,{KF} = P

k|k−1
xx,{KF} −Gk,{KF}P

k|k−1
yy,{KF}G

T
k,{KF}. (2.40)
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From a simple example, it can bee seen that AdUKF’s 2, 3, and 4 do not provide
the same estimates as the KF for the posterior mean and covariance. Suppose that
Qk = P̂ k−1|k−1

xx = x̂k−1|k−1 = 1 and yk = Fk = Rk = Hk = 2, then the KF’s posterior
estimates are

x̂k|k,{KF} = 12
11 and P̂ k|k

xx,{KF} = 5
11;

and, for the sigma of [2] with κ = 0, the posterior estimates for the AdUKF 1 are

x̂k|k,{1} = 12
11 = x̂k|k,{KF} and

P̂
k|k
xx,{1} = 5

11 = P̂
k|k
xx,{KF};

for the AdUKF 2 are

x̂k|k,{2} = 1
9 6= x̂k|k,{KF} and

P̂
k|k
xx,{2} = 13

9 6= P̂
k|k
xx,{KF};

for the AdUKF 3 are

x̂k|k,{3} = 7
6 6= x̂k|k,{KF} and

P̂
k|k
xx,{3} = 15

4 6= P̂
k|k
xx,{KF};

for the AdUKF 4 are

x̂k|k,{4} = 1
17 6= x̂k|k,{KF} and

P̂
k|k
xx,{4} = 8

17 6= P̂
k|k
xx,{KF}.

Therefore, the AdUKF’s 2, 3 and 4 do not provide the same estimates as the KF for a
linear system.

For a general linear system, the estimates of the AdUKF 1 are given by:

{
χ
k−1|k−1
i,{1} , wi,{1}

}N
i=1

= SS
(
x̂k−1|k−1, P̂

k−1|k−1
xx

)
; (2.41)

χ
k|k−1
i,∗,{1} = Fkχ

k−1|k−1
i,{1} , 1 ≤ i ≤ N ; (2.42)

x̂k|k−1,{1} =
N∑
i=1

wi,{1}Fkχ
k−1|k−1
i,{1}

= Fkx̂k−1|k−1 (2.43)

= x̂k|k−1,{KF}; (2.44)
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P̂
k|k−1
xx,{1} = Fk

N∑
i=1

wi,{1}
(
χ
k−1|k−1
i,{1} − x̂k−1|k−1

)
(�)T +Qk

= FkP̂
k−1|k−1
xx F T

k +Qk (2.45)

= P̂
k|k−1
xx,{KF};{

χ
k|k−1
i,{1} , wi,{1}

}N
i=1

= SS
(
x̂k|k−1,{1}, P̂

k|k−1
xx,{1}

)
; (2.46)

γ
k|k−1
i,{1} = Hkχ

k|k−1
i,{1} , 1 ≤ i ≤ N ; (2.47)

ŷk|k−1,{1} =
N∑
i=1

wiHkχ
k|k−1
i,{1}

= Hkx̂k|k−1,{1} (2.48)

= ŷk|k−1,{KF};

P̂
k|k−1
yy,{1} = Hk

N∑
i=1

wi,{1}
(
χ
k|k−1
i,{1} − x̂k|k−1,{1}

)
(�)T +Rk

= HkP̂
k|k−1
xx,{1}H

T
k +Rk (2.49)

= P̂
k|k−1
yy,{KF};

P̂
k|k−1
xy,{1} =

N∑
i=1

wi,{1}
(
χ
k|k−1
i,{1} − x̂k|k−1,{1}

) (
Hkχ

k|k−1
i,{1} −Hkx̂k|k−1,{1}

)T
= P̂

k|k−1
xx,{1}H

T
k (2.50)

= P̂
k|k−1
xy,{KF};

Gk,{1} = P̂
k|k−1
xy,{KF}

(
P̂
k|k−1
yy,{KF}

)−1
(2.51)

= Gk,{KF};

x̂k|k,{1} = x̂k|k−1,{KF} +Gk,{KF}

(
y˜k − ŷk|k−1,{KF}

)
= x̂k|k,{KF};

P̂
k|k
xx,{1} = P̂

k|k−1
xx,{KF} −Gk,{KF}P̂

k|k−1
yy,{KF}G

T
k,{KF}

= P̂
k|k
xx,{KF}.

Hence, for a linear system, the AdUKF 1 provides the same estimates for the mean and
covariance of xk|y1:k as the KF. Note that this is also true for x̂k|k−1, P̂ k|k−1

xx , ŷk|k−1,
P̂ k|k−1
yy and P̂ k|k−1

xy .

Summing up, there are, at least, two superior results of the AdUKF 1 comparative
with the other AdUKF classes, namely: the AdUKF 1 a) is the only one to have
this linear property—of providing the same estimates as the KF when the system is
linear—, and b) was the best in the nonlinear numerical example of Section 2.8.2.

Together, these two superior results indicate that there might be a formal reason
endowing the AdUKF 1 with better mathematical properties comparative with the other
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AdUKF’s for any nonlinear system (2.1). Later, in Chapter 5.1, by using results de-
veloped in Chapters 3 and 4, we will be able to develop stronger conclusions respective
to this topic.

2.9 CONCLUSIONS REGARDING THE LITERATURE RE-
VIEW ON EUCLIDEAN MANIFOLDS

In this chapter, we provided an extensive review of the Unscented Kalman filter
theory in the literature. We were able to observe several problems concerning the
following aspects of this theory:

1. multiple UKF definitions (Section 2.3.1);

2. the matching order of the transformed covariance (Sections 2.4.1 and 2.6.2) and
the transformed cross-covariance (Sections 2.4.2 and 2.6.3) of both the Unscented
Transformation (UT) and of the Scaled Unscented Transformation (SUT);

3. definitions of the reduced sigma sets of [45], [46] and [83] (Section 2.5);

4. the conservativeness of the SUT (Section 2.6.1);

5. the scaling effect of the SUT on both the transformed covariance and cross-
covariance (Sections 2.6.2 and 2.6.3);

6. possibly ill-conditioned results in the square-root Unscented Kalman Filters (Sec-
tion 2.7.1);

7. definitions for the Additive Unscented Kalman Filters (Section 2.8).

These problems, along with the difficulty in gathering all results related to the
Unscented theory, reveal the existence of i) gaps in the fundamental mathematical
concepts of this theory, and of ii) mathematical solutions generalizing the sigma sets,
UT’s and UKF’s of the literature.

In order to fill these gaps and provide these mathematical solutions, we propose a
systematization of this theory that treats the construction of UKF’s by parts. We first
consider the problem of estimating the mean of a non-linear transformation, which will
lead us to the definition of a σ-representation.
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3. SIGMA-REPRESENTATIONS

In this chapter, we propose the first results of our systematization of the Unscented
Kalman filtering theory. We begin by considering diverse forms of estimating the
expected value of a transformed random vector (Section 3.1). One interesting way of
doing it is by creating an weighted set approximating the previous random vector; this
provides us with the necessary intuition to define the σ-representations (Section 3.2).
Broadly, σ-representations are weighted sets whose sample moments, up to a certain
order, are equal to the ones of a given random vector.

We develop some results related to this new concept that facilitates finding closed
forms for σ-representations. We present closed forms for the minimum symmetric σ-
representation in Section 3.3, and one closed form for the minimum (non-symmetric)
σ-representation in Section 3.4. We are able to show that i) one of these closed forms
for the minimum symmetric σ-representations is equivalent to the classic sigma set
of [2] (cf. Corollary 3.4), and ii) the closed form for the minimum σ-representation (cf.
Theorem 3.2) is actually the only consistent of this class in the literature.

3.1 ESTIMATING A POSTERIOR EXPECTED VALUE

Given a random vector X ∈ Φn with probability density function pdfX(x), many
problems, such as calculating the moments of a random variable, can be reduced to
the problem of finding the posterior expectation

E{f(X)} =
ˆ
Rn
f(z)pdfX(z)dz, (3.1)

for an appropriate function f : Rn → Rny . As a first attempt to solve this problem, we
could consider using numerical integration techniques. In the scalar case (n = ny = 1)
and if the function f is well approximated by a polynomial of order 2N − 1 for a
N ∈ N, Gaussian quadrature methods give approximate solutions for (3.1) of the form
(see [78,99–102])

E{f(X)} =
ˆ ∞
−∞

f(z)pdfX(z)dz ≈
N∑
i=1

wif (xi) , (3.2)

where x1, . . . , xN ∈ Rn are samples of X, and w1, . . . , wN their associated (scalar)
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weights. For X being a standard scalar normal random variable, the solution is ob-
tained by the Gauss-Hermite Quadrature (GHQ) [67,78,99–101,103]. The multivariate
case can be obtained by first using a stochastic decoupling technique

X ′ =
√
PXX

−1 (
X − X̄

)
,

where X ′ is a multivariate standard Gaussian random variable. Then, for

f̃(X ′) = f
(√

PXX
T

X + X̄
)
,

the GHQ is applied on the form [78]

EX′
{
f̃(X ′)

}
=
ˆ
Rn
f̃(ξ)pdfX′(ξ)dξ

≈
(
w1 × w1 × · · · × w1f̃ (x1, . . . , x1)

)
+
(
w2 × w1 · · · × w1f̃ (x2, x1, . . . , x1)

)
+ · · ·+

(
w2 × w2 × · · · × w2f̃ (x2, . . . , x2)

)
+
(
w3 × w2 · · · × w2f̃ (x3, x2 . . . , x2)

)
+ · · ·+

(
wN−1 × wN−1 × · · · × wN−1f̃ (xN−1, . . . , xN−1)

)
+
(
wN × wN−1 × · · · × wN−1f̃ (xN , . . . , xN , xN−1)

)
+ · · ·+

(
wN × · · · × wN f̃ (xN , . . . , xN)

)
=

N∑
i1,...,in=1

wi1 × · · · × win f̃ (xi1 , xi2 . . . , xin)

and EX{f(X)} is obtained from EX′{f̃(X ′)}. An alternative to solving the multivariate
Gaussian case is to use the spherical curvature rule along with the Gaussian Quadrature
after performing a Cartesian-to-spherical coordinate transformation. In fact, consider
the Gaussian case pdfZ(z) = exp(−zzT ) and let z = by, with yTy = 1, b ∈ [0,∞). In
this case, (3.1) becomes

E{f(X)} =
ˆ ∞

0
S(b)bn−1 exp

(
−r2

)
db, (3.3)

S(ρ) :=
ˆ
Un

f(by)dφ(y), (3.4)

where Un := {u ∈ Rn|uTu = 1} and φ(•) is the spherical surface measure of Un [80];
equation (3.3) is called radial integral, and is solved by a Gaussian Quadrature rule [80];
and (3.4) is called spherical integral, and is solved by the spherical cubature rule.

Instead of using a quadrature solution, one can obtain a suboptimal solution by
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approximating the function f . For instance, one can use linearization or higher-order
polynomial approximations of the kind [104]

f(x) ≈
∑
i

aix
i.

In this case, (3.1) would be approximated by

E{f(X)} =
∑
i

ai

ˆ
Rn
zipdfX(z)dz.

Well-known methods are the trapezoidal rule, Simpson’s Rule, the Newton-Cotes For-
mulas, the Clenshaw-Curtis Integration, among others [104].

Another alternative for obtaining (3.1) is by approximating pdfX(x). We can clas-
sify this type of suboptimal approximation into two categories, namely Monte Carlo
methods [73–77, 105] and sigma-point methods [67, 103]. Monte Carlo (MC) methods
consist of taking a very large quantity of samples xi of X (the method gets more ac-
curate as the number of samples N → +∞) randomly [73, 74, 76, 77]. Sigma point
methods, on the other hand, consist of analytically choosing finite N samples xi and
weights wi [67]. These approaches can be viewed as generalized—negative weights are
admitted—discrete approximations of pdfX(x). Figure 3.1 illustrates these different
methods of obtaining the posterior expected value.

There is some overlap in this type of classification, as well as other interpretations.
Some sigma-point formulas can be obtained from integration approaches [68, 87, 106].
For instance, [80] derives a particular case of the symmetric sigma-point set of [1] (Tab
2.1 [1,2]) using the spherical cubature quadrature; and [47] and [85] derive the fifth-
order sigma-point set (Tab 2.1 [4,2]) also by this quadrature rule [68]. It is worthwhile
to mention that the symmetric sigma-point set of [1] (Tab 2.1 [1,2]) can also be viewed
as a statistical linear regression technique [82].

In order to estimate the state of dynamical systems such as (2.1) and (2.2), these
techniques for expected value calculation can be used in recursive filters. For instance,
GHQ yields the GHF [78] when applied in a KF framework; the cubature spherical rule
yields the CKF [80,81]; the Central Difference technique, the CDF [78]; the linearization
and the second order approximation of the functions yield the EKF and the SOEKF,
respectively; different UT’s yield different forms of the UKF; Stirling’s interpolation
formula yields the Divided Difference Filter (DDF) [79]; and the Monte Carlo methods
yield SMCF’s (e.g. PF’s [73–76]) or MCMCF’s [77].

The DDF and the CDF are considered to be “essentially identical” [67]. The CKF
is a particular case of the derivations in [47] and [85], where the CKF is also showed
to be equivalent to the UKF of [2] (Tab 2.3 [1,*]) by making the central weight equal
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to zero [59,60].

The UKF of [2] is showed to be a particular case of the GHF in the scalar case (n =
ny = 1) [78]. In fact, consider a scalar standard normal random variable X ∼ N (0, 1).
Both a GHQ approach of order N = 3 and a sigma set of [2] with k = 2 and n = 1
would yield the set with sigma points (cf. [78])

[χ1, χ2, χ3] =
[
−
√

3, 0,
√

3
]
,

and weights
w1 = w3 = 1

6 , w2 = 2
3 .

However, for larger lengths of the state vector, this equivalence does not hold. The
GHF is O(Nn), while the UKF of [2] is O(n3) [78,85,103]. In fact, for X ∼ ([0]2×1, I2),
the Gauss-Hermite set would be composed by the sigma points

[χ1, ..., χ4] = − [χ9, ..., χ6] =
 √3 0

√
3
√

3
√

3
√

3
√

3 0

 ,
χ5 = [0]2×1;

and weights

wi =


1
36 , i = 1, 3, 7, 9;
1
9 , i = 2, 4, 6, 8;
4
9 , i = 5;

while the sigma set of [2] (Tab 2.1 [1,1]) for k = 2 and n = 2 would be composed by
the points and weights

[χ0, ..., χ4] =
 0 2 0 −2 0

0 0 2 0 −2

 ;

and weights

w0 = 1
2 , w1 = ... = w4 = 1

8 .

In order to properly construct the systematization of the UKF filtering theory, we
propose definitions of three fundamental mathematical elements: (i) the sigma (σ)-
representation; (ii) the Unscented Transformation; and (iii) the recursive filters. The
first is an approximation of a pdf by a set of weighted points. The second is an
approximation of the joint pdf of two random variables by two sets of weighted points,
where one is a function of the other. The third consists of solutions to the stochastic
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filtering problems applying the UT in a recursive manner.

3.2 SIGMA-REPRESENTATION

The σ-representations (σR’s) are approximations of a random variable’s pdf by a
set of weighted points via moment matching. We say that a set is an lth order σR
if the central moments of its samples are equal to the central moments of the chosen
random variable up to, and including, order l.

The notation M j
X stands for the jth central moment of X ∈ Φn, and is defined as

M j
X :=


E
{[(

X − X̄
) (
X − X̄

)T ]⊗ j2}
for even j,

E
{ [(

X − X̄
) (
X − X̄

)T ]⊗ j−1
2
⊗
(
X − X̄

)}
for odd j.

Definition 3.1 (σ-Representation). Let

Mj
χ :=


∑N
i=1w

(j)
i

[(
χi − µχ

) (
χi − µχ

)T ]⊗ j2
for even j, and

∑N
i=1w

(j)
i

[(
χi − µχ

) (
χi − µχ

)T ]⊗ j−1
2
⊗
(
χi − µχ

)
for odd j,

(3.5)

be the jth sample central moment of

χ := {χi, w(1)
i , . . . , w

(l)
i |χi ∈ Rn;w(1)

i , . . . , w
(l)
i ∈ R}Ni=1;

let the sample mean of χ be

µχ :=
N∑
i=1

w
(1)
i χi,

and consider the random variable X ∼ (X̄,M2
X , . . . ,M

l
X)n. Then χ is an lth order N

points σ-representation (lthNσR) of X if

w
(j)
i 6= 0, i = 1, . . . , N and j = 1, . . . , l; (3.6)

µχ = X̄; (3.7)

Mj
χ = M j

X , j = 2, 3, . . . , l. (3.8)

We define also the function

σR
(
X̄,M2

X , . . . ,M
l
X

)
:= χ (3.9)

mapping the statistics (X̄,M2
X , . . . ,M

l
X) of X into an lthNσR χ of X.
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Moreover, assume χ is an lthNσR of X, then:

• χ is normalized if
N∑
i=1

w
(j)
i = 1, j = 1, 2, . . . , l. (3.10)

• χ is homogeneous if:

w
(j)
1 = w

(j)
i , 1 ≤ i ≤ N − 1, for odd N ; or (3.11)

w
(j)
1 = w

(j)
i , 1 ≤ i ≤ N, for even N. (3.12)

• χ is symmetric (respective to χN)—if χ is symmetric respective to other χi, we
can rearrange the indices of the sigma points and weights—if:

χi − χN = −
(
χi+N−1

2
− χN

)
and w(j)

i = w
(j)
i+N−1

2
, 1 ≤ i ≤ N − 1

2 , for odd N ; or
(3.13)

χi − χN = −
(
χi+N

2
− χN

)
and w(j)

i = w
(j)
i+N

2
, 1 ≤ i ≤ N

2 , for even N. (3.14)

The case l = 2 is of particular interest, since the majority of works in Unscented
literature focus on second order moment matching [1,2,7,16,21,39,40,42,44–46,67,107].
This is mainly motivated by three facts. First, these are usually the estimated statistics
within a stochastic filter. Second, they fully describe a Gaussian distribution [103].
Third, the mean is the point estimate with the least mean squared error. Thus, when
calling an lthNσR of X, the reference to the lth order can be omitted if l = 2. Also,
the reference to N point and/or to X can be omitted in case they are obvious from
the context or irrelevant for a given statement. Note that the Reduced set of [45], the
Spherical simplex set of [46] and the Minimum set of [83] are not σ-R’s (cf. Section
2.5).

The next theorem provides conditions for a given weighted set to be an lthNσR in
a matrix form; this matrix result states the ground to develop some new results in the
Unscented research field.

Theorem 3.1. A random vector X ∼ (X̄,M2
X , . . . ,M

l
X)n admits a normalized lthNσR

if and only if there exists a matrix E ∈ Rn×N and the matrices W (j) := diag
(
w(j)

)
, for

j = 2, 3, . . . , l, where w(j) := [w(j)
1 , . . . , w

(j)
N ]T , satisfying:

• for even l, the following equations:

[
E
⊗ j2
∗1 , ..., E

⊗ j2
∗N

]
W (j)

[
E
⊗ j2
∗1 , ..., E

⊗ j2
∗N

]T
= M j

X , j = 2, 4, . . . , l; (3.15)
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[
E
⊗ j+1

2
∗1 , ..., E

⊗ j+1
2

∗N

]
W (j)

[
E
⊗ j−1

2
∗1 , ..., E

⊗ j−1
2

∗N

]T
= M j

X , j = 1, 3, . . . , l − 1; (3.16)

Ew(1) = 0; (3.17)

[1]1×Nw(j) = 1, j = 1, 2, . . . , l. (3.18)

• for odd l, the following equations:

[
E
⊗ j+1

2
∗1 , ..., E

⊗ j+1
2

∗N

]
W (j)

[
E
⊗ j−1

2
∗1 , ..., E

⊗ j−1
2

∗N

]T
= M j

X , j = 1, 3, . . . , l; (3.19)

[
E
⊗ j2
∗1 , ..., E

⊗ j2
∗N

]
W (j)

[
E
⊗ j2
∗1 , ..., E

⊗ j2
∗N

]T
= M j

X , j = 2, 4, . . . , l − 1; (3.20)

Ew(1) = 0; (3.21)

[1]1×Nw(j) = 1, j = 1, 2, . . . , l. (3.22)

If (3.15)-(3.18) or (3.19)-(3.22) admits a solution (E,w(1),W (2), . . . ,W (l)), then a nor-
malized lthNσR of X is {χi, w(1)

i , ..., w
(l)
i }Ni=1 such that

[χ1, ..., χN ] := E +
[
X̄
]

1×N
.

Proof. Define
E :=

[
χ1 − µχ, ..., χN − µχ

]
.

So, from (3.5), for even j and l, we have that

Mj
χ =

N∑
i=1

[
E
⊗ j2
∗i

]
w

(j)
i

[
E
⊗ j2
∗i

]T
=
[
E
⊗ j2
∗1 , ..., E

⊗ j2
∗N

]
W (j)

[
E
⊗ j2
∗1 , ..., E

⊗ j2
∗N

]T
,

which proves (3.15). Equations (3.16), (3.19) and (3.20) can be proven similarly; and
the proofs of (3.17), (3.18), (3.21) and (3.22) are trivial.

The next corollary uses Theorem 3.1 to obtain two novel results: the minimum
amount of σ-points for both the symmetric and the non-symmetric case when PXX ≥ 0.
Note that the literature’s result stating that the minimum number is n+1 for PXX > 0
[1, 45,46] is a particular case of Corollary 3.1 [rank(A) stands for the rank of a matrix
A].

Corollary 3.1 (Minimum number of sigma points). Let χ := {χi, w(1)
i , . . . , w

(l)
i }Ni=1 be

an lthNσR of X ∈ Φn, and X have covariance PXX with rank{PXX} = r ≤ n. Then

1. N ≥ r + 1. If N = r + 1, then χ is called a minimum lthNσR of X.
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2. If χ is symmetric, then N ≥ 2r. In this case, if N = 2r, then χ is called a
minimum symmetric lthNσR of X.

Proof. To prove assertion 1, consider, first, E ∈ Rn×N and the singular value decom-
position of PXX ,

PXX = USV T ,

where
S := diag

(
[a1, ..., ar, [0](n−r)×1]T

)
,

and a1, ..., ar are the singular values of PXX . Assume, for contradiction,

rank{E} < r.

Then there exists
v :=

[
vT1 , [0]T1×(n−r)

]
T

v1 ∈ Rr, v1 6= 0, such that vTE = 0. Then, from (3.15),

EW (2)ET =
 U1 U2

U3 U4

SV T ⇔ vT1 U1S1 = 0⇔ vT1 = 0,

which is a contradiction. Therefore, rank{E} ≥ r.

Second, suppose N = rank{E}. Then, E is full column rank and, from (3.17),
w(1) = 0, which is a contradiction for, from Definition 3.1, w(1) 6= 0. So

N ≥ rank {E}+ 1 ≥ r + 1.

To prove assertion 2, let χ be symmetric. Then

E =
[
E2, −E2

]
where E2 ∈ Rn×N2 . So (min{a, b} stands for the minimum between a and b)

r ≤ rank{E} = rank {[E2, −E2]} = min
{
n,
N

2

}
⇔ N ≥ 2r.

Corollary 3.2. Let χ =
{
χi, w

(1)
i , . . . , w

(l)
i

}N
i=1

be a normalized lthNσR of X ∼
(X̄,M2

X , . . . ,M
l
X)n and consider the random variable

Z = AX + b,
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A ∈ Rn×n, b ∈ Rn. Then, the set

ζ :=
{
ζi, w

(1)
i , . . . , w

(l)
i |ζi = Aχi + b

}N
i=1

is a normalized lthNσR of Z. In particular, we have

µζ = AX̄ + b = Z̄,

and
Σζζ = APXXA

T = PZZ .

Proof. The sample mean of ζ is

µζ :=
N∑
i=1

w
(1)
i ζi =

N∑
i=1

w
(1)
i (Aχi + b) = Z̄.

The jth sample central moment of ζ, for j = 2, 4, . . . , l (l even) is, from (3.5),

Mj
ζ :=

N∑
i=1

w
(j)
i

[(
ζi − µζ

) (
ζi − µζ

)T ]⊗ j2
=

N∑
i=1

w
(j)
i

[(
Aχi + b− AX̄ − b

)
(�)T

]⊗ j2
= A⊗

j
2

[
N∑
i=1

w
(j)
i

[(
χi − µχ

)
⊗
(
χi − µχ

)T ]⊗ j2] (
AT
)⊗ j2

= A⊗
j
2M j

X

(
AT
)⊗ j2

= M j
Z .

The odd j case can be similarly proven.

The result used by [1, 37, 40] and others that a sigma set χ = {χi, wi}Ni=1 approxi-
mating a random variable X ∼ (X̄, PXX)n can be obtained by the transformation

ζi =
√
PXXχi + X̄,

where ζ = {ζi, wi}Ni=1 is a sigma set of a random variable with mean [0]n×1 and covari-
ance In, is a particular case of Corollary 3.2.

With Theorem 3.1, and Corollaries 3.1 and 3.2, new results regarding characteristics
of general σR’s were developed. In the next two sections, particular σR’s are focused
on; following Corollary 3.1, closed forms of both a minimum symmetric lthNσR and a
minimum lthNσR are introduced—minimum symmetric one is presented first because
it will result in the classical sigma set of [2] (cf. Corollary 3.4).
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3.3 MINIMUM SYMMETRIC SIGMA-REPRESENTATION

Let χ = {χi, wmi , wci}2n
i=1 be an σR of X ∼ (X̄, PXX)n, PXX > 0. Considering the

equations of Theorem 3.1, suppose χ is minimum symmetric. Then, we have

E =
[
Ē,−Ē

]
,

where Ē ∈ Rn×n. Define
W := diag (wc1, ..., wcn) > 0.

Then, from (3.15), it follows that

[
Ē
√
W,−Ē

√
W
] [
�
]T

=
√1

2PXX ,−
√

1
2PXX

 [ � ]T .
Clearly, a sufficient condition is

Ē =
(√

2W
)−1√

PXX .

Since (3.21) is satisfied for all symmetric σR’s, a closed form for this case is obtained.
The next corollary formalizes it.

Corollary 3.3 (Minimum Symmetric σR). Consider a symmetric random vector X ∼
(X̄, PXX)n with PXX > 0. For

W := diag (wc1, ..., wcn) > 0, wmi 6= 0,

a minimum symmetric σR of X is the set χ = {χi, wmi , wci}2n
i=1 with the sigma points

given by
[χ1 · · ·χ2n+1] =

[(√
2W

)−1√
PXX , −

(√
2W

)−1√
PXX

]
.

In addition, if
2n∑
i=1

wmi =
2n∑
i=1

wci = 1,

then χ is a normalized. Moreover, if

W = 1
2nIn,

and
wi := wmi = wci , i = 1, . . . , 2n;

then χ = {χi, wi}2n
i=1 is a (normalized) homogeneous minimum symmetric σ -representation

of X.
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If an extra point located on X̄ is added to this σR, then neither the sample mean,
nor the sample covariance will be modified; and this extra point’s weight can act as
a tuning parameter ; an user can choose the value of this weight to achieve a desired
property for the σR, e.g. a specific value for the sample moment of degree 3.

Corollary 3.4 ((Odd) Minimum Symmetric σ-representation). Consider a symmetric
random vector X ∼ (X̄, PXX)n with PXX > 0. For

W := diag (wc1, ..., wcn) > 0, wmi 6= 0,

a minimum symmetric σR of X is the set χ = {χi, wmi , wci}2n+1
i=1 with the sigma points

given by

[χ1 · · ·χ2n+1] =
[(√

2W
)−1√

PXX , −
(√

2W
)−1√

PXX , [0]n×1

]
+ [X̄]1×(2n+1).

In addition, if
2n+1∑
i=1

wmi =
2n+1∑
i=1

wci = 1,

then χ is a normalized (MiSyσR). Moreover, if

W = 1− w2n+1

2n In

and
wi := wmi = wci , i = 1, . . . , 2n+ 1

then χ = {χi, wi}2n+1
i=1 is a (normalized) homogeneous (odd) minimum symmetric σ-

representation (HoMiSyσR) of X; the HoMiSyσR is equivalent to the symmetric sigma
set of [1] (Tab 2.1 [1,2]).

Corollaries 3.3 and 3.4 present the even and odd σR’s with the least amount of
symmetric sigma points. The classical symmetric sigma sets of [1,2] (Table 2.1), which
have been presented in the literature without formal justification, are rewritten forms
of the homogeneous cases of these corollaries. In fact, heretofore, it was not known
that these sigma sets are composed by the smallest amount of symmetric sigma points.

Regarding the choice of the tuning parameter, a couple of results have already been
proposed in the literature. The authors in [108] provide an off-line way of computing
it by maximizing the likelihood function with a training set of data. In [59], an on-
line method of computing the tuning parameter by means of maximizing a Gaussian
approximation of the likelihood function is proposed.

62



3.4 MINIMUM SIGMA-REPRESENTATION

As shown in [57], the n+ 1 sigma sets found in the literature, [45] and [46], present
some problems; the set of [45] has a numerical instability problem (see [46]), and both
the sets of [45] and [46] do not have the properties of matching the mean and the
covariance of the prior random variable (see Section 2.5). In response, we proposed
in [57] a new sigma set composed by the minor quantity of points that proved to hold
these two properties—therefore it is a 2nd order σR (cf. Definition 3.1). For easy
reference, this set is presented in the following.

Consider the random variable X ∈ Rn with mean X̄ and covariance PXX > 0 and
the non-linear mapping f : Rn 7→ Rny differentiable up, at least, to the second order
defining the random variable Y by Y := f(X). Then the σR of [57] χ = {χi, wi}n+1

i=1 is
given by the following equations, for 0 < wn+1 < 1 (Tab 2.1 [3,2]):

ρ :=
√

1− wn+1

n
; (3.23)

C :=
√
In − ρ2[1]n×n; (3.24)

W := diag (w1, . . . , wn) ; (3.25)

wi =
(
wn+1ρ

2C−1 [1]n×n
(
CT

)−1
)
ii
, ∀i = 1, . . . , n; (3.26)

[χ0, · · · , χn] =
[ √

PXXC
(√

W
)−1

, −
√
PXX

[ρ]n×1√
wn+1

]
+
[
X̄
]

1:n+1
. (3.27)

This set will be called the Rho Minimum σR (RhoMiσR). If X is non symmetrical,
then the RhoMiσR requires less computational effort than the symmetric sets of [2], [1]
and [41] while keeping the same estimate quality.

The Rho Minimum σR has, nevertheless, the limitation that its tuning parameter,
wn+1, has only one degree of freedom which can be limiting if one wants to achieve
some additional properties. For instance, consider a random variable

X =
 x1

x2

 ∼
 N (0, 1)

χ2 (1)


where χ2(a) is the chi-square distribution with distribution parameter a. The mean
and the covariance of X are

X̄ =
 x̄1

x̄2

 := E {X} =
 0

1

 (3.28)
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and

PXX := E
{(
X − X̄

) (
X − X̄

)T}
=
 1 0

0 2

 ; (3.29)

and the main third central moments are

M3
x1 := E

{
(x1 − x̄1)3

}
= 0, (3.30)

and
M3

x2 := E
{

(x2 − x̄2)3
}

= 8. (3.31)

If χ is the σR of [57], then, from (3.23)-(3.27), the sample mean and covariance of χ
are

µχ =
 µχ,1

µχ,2

 :=
n+1∑
i=1

wiχi =
 ∑n+1

i=1 wiχi,1∑n+1
i=1 wiχi,2

 =
 0

1

 (3.28)= X̄,

and

Σχχ :=
n+1∑
i=1

wiχi =
 1 0

0 2

 (3.29)= PXX ;

and its main third central moments are given by

M3
χ,j :=

2∑
i=0

wi
(
χi,j − µχ,j

)3
, j = 1, 2. (3.32)

Now it is easy to see that wn+1 can not be chosen such that

M3
χ,1 = M3

x1 and M3
χ,2 = M3

x2

are both satisfied since we have two equations and only one free parameter (wn+1).
However, Theorem 3.2 can lead us to a more general minimum σR that is able to fulfill
this kind of property that the Rho Minimum σR fails to. We first present a heuristic
for finding this σR, followed by a formal and more general minimum σR in Theorem
3.2. At the end of this section, Corollary 3.5 shows that this minimum σR has the
minimum set of [57] as a particular case.

For PXX > 0, least amount of (non-symmetric) sigma points is n + 1 (cf Theorem
3.1). Let χ = {χi, wi}n+1

i=1 be a minimum σR of X ∼ (X̄, PXX)n, PXX > 0. Considering
the equations of Theorem 3.1, suppose χ is minimum. Then,

E = [Ē, e],

where Ē ∈ Rn×n and e ∈ Rn. Define

w̄ = [w1, . . . , wn]T
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and
W̄ := diag (w1, . . . , wn) > 0.

Then, from (3.15),
e = −w−1

n+1Ēw̄.

Substituting it on (3.17), it follows that

PXX = ĒW̄ ĒT + w−1
n+1Ēw̄w̄

T ĒT

= Ē
√
W̄
(
In + vvT

) (
Ē
√
W̄
)T
, (3.33)

where
v := w

− 1
2

n+1

√
W̄ w̄.

Then it is easy to see that

Ē =
√
PXX

(
In + vvT

)− 1
2 W̄− 1

2

is a sufficient condition for (3.33). Moreover, from (3.17), it follows that

wn+1 = 1
1 +∑n

i=1 v
2
i

.

The σR of this heuristic approach is more general than then the RhoMiσR (cf.
Corollary 3.5 further ahead). The following theorem formalizes this heuristic approach
with an even more general closed form of the minimum σR (without the wi > 0
restriction).

Theorem 3.2 (Minimum σR). Consider a random vector X ∼ (X̄, PXX)n with PXX >

0. Then, for

v := [v1, ..., vn]T ∈ Rn, vi 6= 0;

w̄ := [w1, . . . , wn]T ,

W̄ := diag (w1, . . . , wn) > 0,

the set χ = {χi, wi}n+1
i=1 with

wn+1 = 1∑n
i=1 (|wi|+ v2

i )
, (3.34)

∣∣∣W̄ ∣∣∣− 1
2 w̄ = √wn+1v, (3.35)

Ē :=
√
PXX

(
sign

(
W̄
)

+ vvT
)− 1

2
∣∣∣W̄ ∣∣∣− 1

2 , (3.36)
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e := − 1
wn+1

Ew̄, (3.37)

[χ1, . . . , χn+1] =
[
Ē, e

]
+
[
X̄
]

1×(n+1)
; (3.38)

is an MiσR of X. Besides, χ is normalized if

n+1∑
i=1

wi = 1.

Proof. Define
w := [w1, . . . , wn+1]T ;

then, from Theorem 3.1, the set χ = {χi, wi}Ni=1 is a 2ndNσR of X if, and only if,

EWET = PXX ,

Ew = 0,

which, for

E :=
[
Ē e

]
,

w̄ := [w1, . . . , wn]T ,

W̄ := diag(w1, . . . , wn);

can be written as

ĒW̄ ĒT + wn+1ee
T = PXX , (3.39)

Ēw̄ + wn+1e = 0, (3.40)

Note that
wi 6= 0 (3.41)

since, otherwise, wi = 0 would imply a σR of N = n sigma points. From (3.40), e can
be written as

e = − 1
wn+1

Ēw̄, (3.42)

proving (3.37). Substituting (3.42) into (3.39), we have that

PXX = ĒW̄ ĒT + 1
wn+1

Ēw̄w̄T ĒT

= Ē

(
W̄ + 1

wn+1
w̄w̄T

)
ĒT . (3.43)
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From (3.41), W̄ is invertible. As W̄ is symmetric, we can write it in the following way

W̄ =
∣∣∣W̄ ∣∣∣ 12 S ∣∣∣W̄ ∣∣∣ 12 (3.44)

where
∣∣∣W̄ ∣∣∣ 12 := diag

(√
|w1|, . . . ,

√
|wn|

)
∈ Rn×n, and

S := diag (sign (w1) , . . . , sign (wn)) ∈ Rnon.

In this case, (3.43) can be written as

PXX = Ē

(
W̄ + 1

wn+1
w̄w̄T

)
ĒT

(3.44)= Ē
∣∣∣W̄ ∣∣∣ 12 (S + 1

wn+1

∣∣∣W̄ ∣∣∣− 1
2 w̄w̄T

∣∣∣W̄ ∣∣∣− 1
2

) ∣∣∣W̄ ∣∣∣ 12 ĒT

= F
(
S + vvT

)
F T , (3.45)

where

F := Ē
∣∣∣W̄ ∣∣∣ 12 , (3.46)

v :=

∣∣∣W̄ ∣∣∣− 1
2 w̄

√
wn+1

. (3.47)

proving (3.35). Note that F is invertible because Ē and
∣∣∣W̄ ∣∣∣ 12 are. From (3.45) and by

the fact that, by assumption, PXX is invertible (PXX > 0), we can write

P
− 1

2
XXF

(
S + vvT

)(
P
− 1

2
XXF

)T
= I

and a sufficient condition is

F = P
1
2
XX

(
S + vvT

)− 1
2 . (3.48)

From (3.46),
Ē
∣∣∣W̄ ∣∣∣ 12 = F

(3.48)= P
1
2
XX

(
S + vvT

)− 1
2

⇔ Ē = P
1
2
XX

(
S + vvT

)− 1
2
∣∣∣W̄ ∣∣∣− 1

2 ,

proving (3.36). From (3.47)

v :=

∣∣∣W̄ ∣∣∣− 1
2 w̄

√
wn+1
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= 1
√
wn+1


sign (w1)

√
|w1|

...
sign (wn)

√
|wn|

 . (3.49)

From (3.41), we must have
vi 6= 0.

Therefore, by choosing v = [v1, . . . , vn]T ∈ Rn with vi 6= 0 for i = 1, . . . , n, then wi is
such that, from (3.49),

1√
wn+1

sign (wi)
√
|wi| = vi

⇒ 1
wn+1
|wi| = v2

i

⇔ |wi| = wn+1v
2
i .

Summing from i = 1 to i = n:

wn+1 = 1∑n
i=1 (|wi|+ v2

i )
,

proving (3.34). From Theorem 3.1, we have that

[χ1, ..., χN ] = E + [X̄]1×N
=
[
Ē, e

]
+
[
X̄
]

1×(n+1)

proving (3.38) and completing the prove.

Corollary 3.5 (Minimum σR with positive weights). If wi > 0, then the normalized
MiσR of Theorem 3.2 becomes

wn+1 = 1
1 +∑n

i=1 v
2
i

, (3.50)

w̄ = wn+1
[
v2

1, ..., v
2
n

]T
, (3.51)

Ē :=
√
PXX
wn+1

(
I + vvT

)− 1
2 diag(v)−1, (3.52)

e := − 1
wn+1

Ēw̄, (3.53)

[χ1, ..., χn+1] =
[
Ē, e

]
+
[
X̄
]

1×(n+1)
.

Moreover, if
wi > 0 and v = αC−1[1]n×1,

then χ is the minimum σR of [57] (Tab 2.1 [3,2]).
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The parameter vector v is a tuning parameter with n degrees of freedom (vi,
i = 1, . . . , n) and has the only restriction of not containing a zero element and can,
therefore, also have negative values. v can be chosen according to a specific design.
For instance, consider the problem of choosing it in order to match the mean, the
covariance and the main third central moments of a real random variable X with mean

X̄ = E {X} = [0]n×1 ,

covariance
PXX = E

{
XXT

}
= In.

and jth main third central moments

M3
xj

:= E
{
x3
j

}
= b.

In other words, we want to find a value for v ∈ Rn for the minimum σ R of Theorem
3.2 such that

µχ : =
n∑
i=0

wiχi = X̄,

Σχχ := Σn
i=0wiχiχ

T
i = PXX ,

M3
χ,j :=

n∑
i=0

wi (χj,i)3 = M3
xj
, j = 1, . . . n.

For simplicity, suppose v = β [1]n×1
1, then, from (3.50)-(3.53), the weights are

w0 = 1
1 + nβ2 ,

w = β2

1 + nβ2 [1]n×1 , (3.54)

and, for
η :=

√
1 + nβ2, (3.55)

the sigma points are

[
χ1, · · · , χn+1

]
:=
[
−ηβ

(
I + β2 [1]n×n

)− 1
2 [1]n×1 ,

η
β

(
I + β2 [1]n×n

)− 1
2

]
.

(3.56)
The properties of matching the mean and the covariance are already proved by Theorem
3.2. In order to achieve the property of matching the main third central moments,

1The most general case of v having n degrees of freedom is given after this example.
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Table 3.1: Values of β for which µχ = [0]n×1, Σχχ = In and M3
χ,j = 0.

n 1 2 3 4 5
β ±1 ±

√
2 ±

√
5 ±3+

√
5√

2 ±
(
3 +
√

5
)

assume that
(
I + β2 [1]n×1

)− 1
2 is of the form In + a [1], for some φ ∈ R. Then it can

be shown that
a = ±1− η

nη

and, from (3.56), we have

[
χ1, · · · , χn+1

]
=
[
−β (1 + η ∓ η) [1]n×1 ,

1
nβ

(
nηIn ± (1− η) [1]n×n

) ]
. (3.57)

The jth third central moment of the set of sigma points is, from (3.54), (3.56), and
(3.57):

M3
χ,j :=

n+1∑
i=1

wi (χj,i)3 = −n
3β4 (1 + η ∓ η)3 + (nη ± (1− η))3 ± (n− 1) (1− η)3

η2βn3 .

In order to satisfy M3
χ,j = M3

xj
= b, β should be a solution of

− n3β4 (1 + η ∓ η)3 + (nη ± (1− η))3 ± (n− 1) (1− η)3 − bβn3η2 = 0. (3.58)

Therefore any real value of β 6= 0, including negative values, satisfying (3.58) will
make the set of sigma points have the same principal third moments of X. Particularly,
for b = 0 and using (3.55) it follows that we can choose

β = ±
√
η2 − 1
n

,

where η is any real solution of

nη2 −
[
(n− 1)3 − (n− 1)

]
η − 3 (n− 1)2 − 3 (n− 1)− 2n = 0. (3.59)

Table 3.1 shows some possible values of β calculated from (3.59) such that µχ =
[0]n×1, Σχχ = In and M3

χ,j = 0.

By using v with more than one degree of freedom, one can set the new minimum
sigma set to achieve some properties in cases where each element of a random vector
X has a different distribution. For instance, consider the case of matching the third
central moments of a random variable

X ∼
[
N (0, 1) , χ2 (1)

]T
.
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The sigma set of [57] is unable to attain this property [see (3.32) and the comments
following it] whilst the sigma set of Theorem 3.2 is able. Indeed, if v = [v1, v2]T where
v1 = 1, v2 is a real root of the polynomial

f (v1, v2) = v4
2 + 4v3

2 + 8v2 − 4

(e.g. v2 = 0.4494), and (In + vvT )1/2 is the lower triangular Cholesky factor, then

M3
χ,1 = 0 = M3

x1 ,

and
M3

χ,2 = 8 = M3
X2 .

This example shows one of the benefits comparative to the sigma set of [57], which
is of having the tuning parameter v with n degrees of freedom while the one of the
sigma set of [57], the scalar wn+1, has only one. This fact gives the new sigma set the
possibility of achieving some properties in cases where the sigma set of [57] fails to
do so. Besides the sigma set of Theorem 3.2 is a generalization of this other set (cf.
Corollary 3.5).

In comparison to the symmetric sigma sets, such as the ones of [2], [1] and [41], the
new sigma set will be the preferred choice when the prior distribution is not symmetric
because all of these sets offer the same estimate quality (moments are matched up
to the second order), but the symmetric sets require more computational effort. For
the symmetric prior distribution case, the designer has a trade-off choice involving
computational effort and precision. The new sigma set requires less computational
effort, but offers less precision.

Comparing with the sigma sets of [45], [46], and [83], the one of Theorem 3.2 bares
the advantage of matching both the mean and the covariance of the prior random
variable even for values of n greater then one (see Section 2.5). Besides, the sigma set
of [45] has a numerical instability problem for high values of n [46], which is another
disadvantage of this sigma set in comparison to the new sigma set. It should be noted
that the new minimum sigma set is neither a particular case nor a generalization of
the sigma sets of [45], [46], and [83].

Note that the σR from Theorem 3.2 is currently the only consistent σR constituted
of less than 2n points, given that the set of [57] is a particular case (cf. Corollary
3.5) and, to the best of our knowledge, the other reduced sets dot not fit Definition
3.1—they do not match the mean and/or the covariance of the prior distribution (see
Section 2.5). Numerical simulations comparing all the sigma sets constituted of less
than 2n points are given in Section 4.4 because these results are more illustrative when
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analyzed along with the results of their UT’s.

Finally, due to the restriction vi 6= 0, χ cannot have a sigma point equal to X̄ and,
therefore, from Theorem 2.1, the SUT of [44] cannot be applied to the MiσR. For a
similar reason, one cannot also obtain a scaled version of the Rho Minimum σR with
the SUT of [44] (See Section 2.6.1). We will show that our definition for the Scaled
Unscented Transformation can be used for these σR’s (Section 4.2).

3.5 CONCLUSIONS REGARDING σ-REPRESENTATIONS

Motivated by the problem of estimating the expected value of a transformed random
vector (Section 3.1), we proposed the lth order N points σ-representation (lthNσR,
Definition 3.1); essentially, a set χ is an lthNσR of a random vector X if the sample
moments of χ (of order 1 to l) are equal to the moments of X—a lthNσR can also be
seen as the mapping X (or its moments) to a set χ with these properties.

By proposing a matrix form of the lthNσR’s (Theorem 3.1), we discovered some
key properties of these representations, to know:

1. the minimum number of sigma points of an lthNσR (Corollary 3.1);

2. the minimum number of sigma points of an symmetric lthNσR (Corollary 3.1);

3. the form of the lthNσR of a the random vector Z = aX + b when the lthNσR
of X is known (Corollary 3.2); with this, the lthNσR of a random vector Z with
mean Z̄ e moments M1, ..., Ml can be found by first calculating the lthNσR
of a (simpler) random vector X; e.g. X with mean equal to zero , and (even)
moments equal to identity matrices.

Lead by the results 1. and 2., we found closed forms of some lthNσR, namely i)
closed forms for the minimum symmetric 2thNσR’s (Section 3.3), and ii) a closed form
for the minimum 2thNσR (Section 3.4).

One of the closed forms of the minimum symmetric 2thNσR’s (the Homogeneous
Minimum Symmetric σR, Corollary 3.4) is equivalent to the classical symmetric sigma
sets of [1, 2] (Table 2.1); therefore, with this we show the reasons behind these sigma
sets which, until now, was based only on intuitive ideas. In fact, heretofore, it was not
even known that these sigma sets are composed by the smallest amount of symmetric
sigma points.

As for the closed form for the minimum 2thNσR (Theorem 3.2), it turned out to
be the only existing consistent minimum 2thNσR; we showed that this 2thNσR is a
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general case of the only consistent minimum 2thNσR of the literature (Corollary 3.5).

The initial motivational problem of estimating the expected value of a transformed
random vector still persists. A solution to this problem is actually given by the Un-
scented Transformations.
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4. UNSCENTED
TRANSFORMATIONS

The concept of an UT follows naturally from the one of σ-representations. The σ-
representation’s goal is to approximate a random vector, while the UT’s goal is to
approximate a transformed random vector.

There are many ways to approximate a transformed random vector. An UT, par-
ticularly, does it by using a σ-representation of the previous random vector. Therefore,
we can say that the approximation of an UT is based on matching the moments of
an random vector—recall that a σ-representation is defined as being a weighted set
matching the moments, up to a certain order, of a given random vector.

Even though definitions for the UT already exist in the literature, in Chapter 2 we
showed that they present some drawbacks. Therefore, in Chapter 4, we present a new
definition of the UT (Definition 4.1). Among other advantages comparative with the
UT’s for the literature, our UT is more general; it is defined for any order l (the order
of the used lthNσR), while as far as our knowledge goes, the higher UT’s order of the
literature is 5 (the UT of [47]).

Based on Taylor Series expansions, we provide the estimation quality of an lth order
UT (Theorem 4.1)—recall, from Chapter 2, that there were some errors in the UT’s
estimation quality, and that some UT’s elements’ estimation accuracy, such as the
cross-covariances’, were not yet determined.

Further, we propose new definitions for i) the scaled UT variants in Section 4.2,
and ii) for the square-root UT variants in Section 4.3—recall, from Chapter 2, that
also all these UT variants need to be corrected in some way. We are able to show
that our definitions of scaled UT’s and square-root UT are particular cases of our UT
definition in Section 4.1. With this result, the properties already developed for the UT
are naturally extended to the scaled and square-root variants. Moreover, we present
an analysis of the influence of the scaling parameter on the estimation quality of the
scaled UT variants, and introduce a scaled square-root UT variant.

In Section 4.4, some properties of the UT’s developed in this chapter are verified in
numerical simulations.
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4.1 UNSCENTED TRANSFORMATION

In this section, a new definition for the Unscented Transformation is proposed. In
general terms, an UT consists of two sets of weighted points (the sigma points) ap-
proximating the joint pdf of two random vectors in the case where there is a functional
dependence between them.

For the remaining of this chapter, consider, for a natural number l ≥ 2, the random
vectors

X ∼
(
X̄,M2

X , ...,M
l
X

)n
and

Y := f(X) ∈ Φny .

For i) the vectors λη such that

λη ∈ {χ1, ..., χN , γ1, ..., γN} , for each η = 1, 2, ..., l;

and ii) the sets

χ :=

χi, w(mχ)
i , w

(m2
λ1λ2)

i , . . . , w

(
ml
λ1...λl

)
i

∣∣∣∣∣∣χi ∈ Rn;

w
(mχ)
i , w

(m2
λ1λ2)

i , . . . , w

(
ml
λ1...λl

)
i ∈ R


N

i=1

,

and

γ :=

γi, w(mγ)
i , w

(m2
λ1λ2)

i , . . . , w

(
ml
λ1...λl

)
i

∣∣∣∣∣∣ γi = f(χi)


N

i=1

;

define a) the sample means by

µχ : =
N∑
i=1

w
(mχ)
i χi,

µγ : =
N∑
i=1

w
(mγ)
i γi; (4.1)

b) the sample central moments for even j by

Mj
χ :=

N∑
i=1

w
(mj

χ1,...,χj)
i

[(
χi − µχ

)
(�)T

]⊗ j2 , (4.2)

Mj
γ :=

N∑
i=1

w
(mj

γ1,...,γj)
i

[(
γi − µγ

)
(�)T

]⊗ j2 , (4.3)

75



Mj
λ1...λj :=

N∑
i=1

w
(mj

λ1...λj)
i

j/2⊗
q=1

[
(λqi − µλq)

(
λq+1
i − µλ(q+1)

)T ]
; (4.4)

and c) the sample central moments for odd j by

Mj
χ :=

N∑
i=1

w
(mj

χ1,...,χj)
i

[(
χi − µχ

)
(�)T

]⊗ j−1
2 ⊗

(
χi − µχ

)
, (4.5)

Mj
γ :=

N∑
i=1

w
(mj

γ1,...,γj)
i

[(
γi − µγ

)
(�)T

]⊗ j−1
2 ⊗

(
γi − µγ

)
, (4.6)

Mj
λ1...λj :=

N∑
i=1

w
(mj

λ1...λj)
i

(j−1)/2⊗
q=1

[
(λqi − µλq)

(
λq+1
i − µλ(q+1)

)T ]
⊗
(
λji − µλj

)
. (4.7)

Definition 4.1 (Unscented Transformation). Consider equations (4.1)-(4.7). If

µχ = X̄,

and
Mj

χ = M j
X , j = 2, ..., l;

then the lth order Unscented Transformation (lUT) is defined by

lUT
(
f, X̄,M2

X , ...,M
l
X

)
:=
[
µγ,M2

γ, ...,Ml
γ,M2

λ1...λ2 , ...,Ml
λ1...λl

]
.

Remark 4.1. Every lthNσR is a set χ of an lUT.

This form of defining the lUT as a function mapping (f, X̄, PXX) to the transformed
sample mean and covariances can also be used in Monte Carlo and quadrature methods.
Moreover, one should notice that negative weights can lead to negative values of the
sample moments.

Broadly, an lUT can be viewed as a mapping from 2 random vectors X and Y with
a functional dependence [Y = f(X)] to 2 sets (composed of weighted points) χ and γ
acting as a discrete approximation of the joint pdf of (X, Y ). For instance, a 2UT can
be viewed as the following approximation (this interpretation is inspired on [52])

 X

Y

 ≈
 X̃

Ỹ

 ∼
 µχ

µγ

 ,
 Σχχ Σχγ

ΣT
χγ Σγγ

 .

The next theorem states the approximation quality for the Y ’s. The notation Y [c,l]

stands for the Taylor Series of Y = f(X) around X = c truncated at the lth order.

Theorem 4.1 (Unscented Transformation’s estimation quality). Consider Definition
4.1 and let χ be a normalized lthNσR of X. If
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i. µχ = X̄;

ii. Mj
χ = M j

X for j = 2, ..., l;

iii. and f is lth differentiable;

then:

1. µ[µχ,l]
γ = Ȳ [X̄,l];

2. Σ[µχ,l/2]
γγ = P

[X̄,l/2]
Y Y if l is even,

Σ[µχ,(l−1)/2]
γγ = P

[X̄,(l−1)/2]
Y Y if l is odd;

3. Σ[µχ,l−1]
χγ = P

[X̄,l−1]
XY .

Proof. Suppose µχ = X̄ and Mp
χ = Mp

X , ∀p = 2, ..., l and that f is lth differentiable.
The first assertion is proven by1

µ
[µχ,l]
γ = f

(
µχ
)

+ 1
2!

n∑
i1,i2=1

(
M2

χ

)
i1,i2

∂2f (x)
∂x(i1)∂x(i2)

∣∣∣∣∣
x=µχ

+ ...+

1
l!

n∑
i1,...,il=1

(
Ml

χ

)
i1,(i2∗i3∗...∗il)

∂lf (x)
∂x(i1)...∂x(il)

∣∣∣∣∣
x=µχ

=: Ȳ [X̄,l].

In order to prove the second assertion, note that

Σ[l/2,µχ]
γγ = Θ2

Σγγ + ...+ Θl/2
Σγγ ,

where

Θq
Σγγ =
q−1∑
j=1

 1
j!q!

n∑
i1,...i(q+j)=1

((
Mq+j

χ

)
i1,(i2∗...∗i(q+j)) −

(
Mq

χ

)
i1,(i2∗...∗iq)

(
Mj

χ

)
i(l/2+1),(i(q+2)∗...∗i(q+j))

)

×

 ∂qf (x)
∂x(i1)...∂x(iq)

∣∣∣∣∣
x=µχ

∂jfT (x)
∂x(i(q+1))...∂x(i(q+j))

∣∣∣∣∣
x=µχ

+ ∂jf (x)
∂x(i(q+1))...∂x(i(q+j))

∣∣∣∣∣
x=µχ

∂qfT (x)
∂x(i1)...∂x(iq)

∣∣∣∣∣
x=µχ


+ 1
q!q!

n∑
i1,...,
i2q=1

((
M2q

χ

)
i1,(i2∗...∗i2q)

−
(
Mq

χ

)
i1,(i2∗...∗iq)

(
Mq

χ

)
i(q+1),(i(q+2)∗...∗i2q)

)

1Recall from Chapter 1.2 that
(
M2
χ

)
i1,i2

stand for the i1th row and i2th column element of the
matrix M2

χ.
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× ∂qf (x)
∂x(i1)...∂x(iq)

∣∣∣∣∣
x=µχ

∂qfT (x)
∂x(i(q+1))...∂x(i2q)

∣∣∣∣∣
x=µχ

. (4.8)

For the third assertion, note that

Σ[µχ,l−1]
χγ = Θ1

Σχγ + ...+ Θl−1
Σχγ ,

where

Θq
Σχγ = 1

q!

n∑
i1,...,iq=1

[(
Mq+1

χ

)
1,(i1∗...∗iq)

, ...,
(
Mq+1

χ

)
n,(i1∗...∗iq)

]T ∂qfT (x)
∂x(i1)...∂x(iq)

∣∣∣∣∣
x=µχ

.

The remaining steps can be proven similarly.

Note that the approximations of the posterior random variable of Theorem 4.1 are
not guaranteed for any function f (unlike the literature state; cf. [1]), but only for the
lth differentiable ones. This theorem is the first to provide the estimation quality of the
cross-covariance, which is of the order l− 1 (item 3.). Thus for l = 2, the transformed
covariance is approximated up to order 1; this solves the problem in the Unscented’s
literature pointed out in Section 2.4.2.

Furthermore, according to Theorem 4.1, a sufficient condition for a second order
approximation of the transformed covariance is

l = 4,

since, from item 2 for even l,
Σ[µχ,l/2]
γγ = P

[X̄,l/2]
Y Y ;

this solves the problem in the Unscented’s literature pointed out in Section 2.4.1. In
order to verify this result, suppose µχ = X̄ and Ml

χ = M l
X , ∀i = 2, ..., 4; then, from

(4.8),
Σ[µχ,2]
γγ = Θ1

Σγγ + ...+ Θ2
Σγγ = 2n = PY Y .

Moreover, consider X ∼ N(0n×1, In),

Y := f(X) =
[
x3

1, ..., x
3
n

]T
,

and suppose that µχ = X̄ and Ml
χ = M l

X , ∀i = 2, ..., 6. Then,

Σ[µχ,3]
γγ = Θ1

Σγγ + ...+ Θ3
Σγγ = 15n = PY Y .

This result does not imply that the mean and covariance estimates of a 2UT are
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equal to the ones obtained through linearization. We can point out two reasons. First,
for a 2UT,

µ
[µχ,2]
γ = µ

[X̄,2]
Y ;

whereas for linearization,
µ

[µχ,1]
χ = µ

[X̄,1]
Y

Second, even though both linearization and 2UT have

Θ1
Σγγ = Θ1

PY Y
,

it happens that, from (4.8), Θ2
Σγγ and Θ2

PY Y
are partially equal for a 2UT, but not for

linearization (Θ2
Σγγ = 0).

Finally, note that the estimation quality of the transformed statistics of the sigma
sets of [45] and [46] are not given by Theorem 4.1 (this is illustrated numerically in
Section 4.4). Since these sigma sets are not σR’s—they do not match the mean and/or
the covariance of the prior distribution (see Section 2.5)—, they do not compose a
2UT in the sense of Definition 4.1. This elucidates the problems in the UT’s literature
pointed out in Section 2.5.

4.2 SCALED UNSCENTED TRANSFORMATION

In this section, the Scaled Unscented Transformation (ScUT) is refined—we use the
acronym ScUT referring to our definition of the Scaled Unscented Transformation, and
SUT to the Scaled Unscented Transformation of [44] (second column of Table 2.2)—.
This new definition is based on the AuxUT of [44] (third column of Table 2.2), and is
less conservative than the SUT of [44]; this SUT can not be applied to any previous
sigma set (see Section 2.6), but the ScUT can.

Definitions similar to the SUT of [44] and the UT of [41] (Tab 2.1 [4,1]) are presented
at the end of this section as particular cases of the ScUT.

Unless otherwise specified, the term Scaled Unscented Transformation will hence-
forth refer to the following definition.

Definition 4.2 (Scaled Unscented Transformation). Consider, for α ∈ (0, 1] and κ ∈
(0, 1], the scaling function

g (f,X, b, α, κ) := f (b+ α (X − b))− f (b)
κ

+ f (b) , (4.9)
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and the sets
χ := {χi, wmi , wci , wcci }Ni=1

and
γ :=

{
γi, w

m
i , w

c
i , w

cc
i |γi = g

(
f, χi, µχ, α, α

2
)}N

i=1

with

Σα
γγ := α2

N∑
i=0

wci
(
γi − µγ

) (
γi − µγ

)T
,

Σα
χγ := α

N∑
i=0

wcci
(
χi − µχ

) (
γi − µγ

)T
,

(4.10)

where Σα
γγ is the scaled sample covariance of γ and Σα

χγ is the scaled sample cross
covariance of χ and γ. If

µχ = X̄

and
Σχχ = PXX ,

then the Scaled Unscented Transformation (ScUT) is defined by

ScUT
(
f, X̄, PXX , α

)
:=
[
µγ,Σα

γγ,Σα
χγ

]
.

Remark 4.2. Every 2thNσR is a set χ of a ScUT.

Such a definition for the (scaled) cross-covariance of the ScUT cannot be found for
the scaled UT’s of the literature; this solves part of the problem in the UT literature
pointed out in Section 2.6.3. Crossing covariances are not treated in the SUT of [44]
nor in the AuxUT of [44]. In the UT of [41], the cross-covariance is defined differently
and restricted only to the symmetric set defined there (see Section 2.6.3).

In Sections 2.6.1 and 3.4, we showed that the SUT could not be used for the MiσR
and for the RhoMiσR, but here we provide an example showing that the ScUT can.
In fact, for

X ∼ N([1]2×1 , I2),

f(X) := XTX,

v = [1, 1]T ,

α = 10−3,
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and χ defined as in Corollary 3.5, it follows that

[ χ1 χ2 χ3 ] =
 2.37 0.63 0.00

0.63 2.37 0.00

 ,
and

w1 = w2 = w3 = 1
3 .

The sample statistics for the set

γ = {γi, wi|γi = f(χi)}

for a (non-scaled ) UT are

µγ = 4.00,

Σγγ = 8.00,

Σχγ = 2.00;

and for the set
ξ = {ξi, wi|ξi = g(χi, µχ, α, α2, f)}

for the new SUT are

µξ = 4.00,

Σα
ξξ = 8.00,

Σα
χξ = 2.00.

This shows that the ScUT is suited for more sets of sigma points than the SUT, and
this solves the problem in the Unscented’s literature pointed out in Section 2.6.1. As
expected from Remark 4.2 and Theorem 4.1, the results of mean, covariance and cross-
covariance are the same for both the UT and the ScUT for this case.

In Sections 2.6.2 and 2.6.3, we showed that α modifies the second order terms of
both Σα

γγ and Σα
χγ. In order to check the influence of α in the covariances of the ScUT,

define Θl
Σαγγ and Θl

Σαχγ as the lth term of the Taylor Series of Σα
γγ and Σα

χγ, respectively.
Then, we have

µγ = f
(
µχ
)

+
n∑

i1,i2=1

(
M2

χ

)
i1,i2

∂2f (x)
∂x(i1)∂x(i2)

∣∣∣∣∣
x=µχ

+ ...+ αl−2
n∑

i1,...,il=1

(
Ml

χ

)
i1,i2∗...∗il

∂lf (x)
∂x(i1)...∂x(il)

∣∣∣∣∣
x=µχ

+ ..., (4.11)
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Θl
Σαγγ =
l−1∑
j=1

αj+l−2

j!l!

n∑
i1,...il+j=1

((
Ml+j

χ

)
i1,(i2∗...∗i(l+j)) −

(
Ml

χ

)
i1,(i2∗...∗il)

(
Mj

χ

)
i(l+1),(i(l+2)∗...∗i(l+j))

)

×

 ∂lf (x)
∂x(i1)...∂x(il)

∣∣∣∣∣
x=µχ

∂jfT (x)
∂x(il+1)...∂x(il+j)

∣∣∣∣∣
x=µχ

+ ∂jf (x)
∂x(il+1)...∂x(il+j)

∣∣∣∣∣
x=µχ

∂lf (x)
∂x(i1)...∂x(il)

T
∣∣∣∣∣∣
x=µχ




+ α2l−2

l!l!

n∑
i1,...,i2l=1

((
M2l

χ

)
i1,(i2∗...∗i2l)

−
(
Ml

χ

)
i1,(i2∗...∗il)

(
Ml

χ

)
i(l+1),(i(l+2)∗...∗i2l)

)

× ∂lf (x)
∂x(i1)...∂x(il)

∣∣∣∣∣
x=µχ

∂lfT (x)
∂x(i(l+1))...∂x(i2l)

∣∣∣∣∣
x=µχ

, (4.12)

Θl
Σαχγ = αl−1 1

l!

n∑
i1,...,il=1

[(
Ml+1

χ

)
1,(i1∗...∗il)

, ...,
(
Ml+1

χ

)
n,(i1∗...∗il)

]T ∂lfT (x)
∂x(i1)...∂x(il)

∣∣∣∣∣
x=µχ

.

(4.13)

The ScUT scales the terms of order 3 and higher for µγ and of order 2 and higher
for Σα

γγ and Σα
χγ. However, if χ is symmetric, then

M3
χ = [0]n×2n ⇒ Θ3

Σ∗χγ = [0]n×1

and α does not modify the second order of Σ∗χγ (cf. Section 2.6.3). The next theorem
gives the estimation quality of the ScUT.

Theorem 4.2 (ScUT’s estimation quality). Consider Definition 4.2 and let χ be a
normalized σR of X. If:

i. µχ = X̄;

ii. Σχχ = PXX ;

iii. and f is 2nd order differentiable;

then:

1. µ[µχ,2]
γ = Ȳ [X̄,2],

2. Σα,[µχ,1]
γγ = P

[X̄,1]
Y Y ,

3. Σα,[µχ,1]
χγ = P

[X̄,1]
XY .
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Furthermore, if X and χ are symmetric, then

Σα,[µχ,2]
χγ = P

[X̄,2]
XY .

Proof. Suppose µχ = X̄, Σχχ = PXX and that f is a 2nd order differentiable function.
For the first assertion, we have that

µ
[µχ,2]
γ = f

(
µχ
)

+ 1
2!

n∑
i1,i2=1

(
M2

χ

)
i1,i2

∂2f (x)
∂x(i1)∂x(i2)

∣∣∣∣∣
x=µχ

= Ȳ [X̄,2],

which proves the first assertion. For the second assertion, we have that

Σα,[µχ,1]
γγ =

n∑
i,j=1

(Σχχ)i,j
∂f (x)
∂x(i)

∣∣∣∣∣
x=µχ

∂fT (x)
∂x(j)

∣∣∣∣∣
x=µχ

= P
[µχ,1]
Y Y .

For the third assertion, we have that

Σα[µχ,1]
χγ =

n∑
i=1

[
(Σχχ)1,i , ..., (Σχχ)n,i

]T ∂fT (x)
∂x(i)

∣∣∣∣∣
x=µχ

= P
[X̄,1]
XY .

For the last assertion, note that X symmetric implies

M3
χ = [0]n×2n ⇒ Θ3

PXY
= [0]n×1,

and χ symmetric implies

M3
χ = [0]n×2n ⇒ Θ3

Σαχγ = [0]n×1.

Similar to the 2UT, the covariance of the transformed random variable is estimated
only up to first order. Theorem 4.2 gives, for the first time, the estimation quality of
the sample cross-covariance. These results showing 1) the degree of influence of the
scale parameter α [equations (4.11), (4.12) and (4.13)], and 2) the ScUT’s estimation
quality (Theorem 4.2) solve the problems in the UT’s literature pointed out in Sections
2.6.2 and 2.6.3. The next corollary states a new result.

Corollary 4.1. A ScUT with sets

{χi, wmi , wci , wcci }
N
i=1

and {
γi, w

m
i , w

c
i , w

cc
i |γi = g

(
f, χi, µχ, α, α

2
)}N

i=1
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is a 2UT with sets
{χi, wmi , wci , wcci }

N
i=1

and {
γi, w

m
i , w

α,c
i , wα,cci |γi = g

(
f, χi, µχ, α, α

2
)}

where
wα,ci = α2wci

and
wα,cci = αwcci

are the weights to calculate the sample covariance and cross-covariance, respectively.

Because of the way these transformations were defined, every ScUT is a 2UT and,
therefore, every result obtained for the 2UT can also be applied to the ScUT. We
proceed by redefining the SUT of [44] and the UT of [41].

Definition 4.3 (Simplex Scaled Unscented Transformation). Let χ := {χi, wi}Ni=1 be
a normalized σR of X with χN = X̄. Consider the sets, for α ∈ (0, 1],

χ′ :=
{
χ′i, w

′
i|χ′i = X̄ + α

(
χi − X̄

)}N
i=1

and
γ′ := {γ′i, w′i|γ′i = f (χ′i)}

N
i=1 ,

where

w′N : = α−2wN + 1− α−2;

w′i = α−2wi, i = 1, ..., N − 1.

Define the modified sample covariance and the modified sample cross-covariance of γ′,
respectively, as

Σαα
γ′γ′ :=

N∑
i=1

w′i
(
γ′i − µγ′

)
(�)T + (1− α2)

(
γ′N − µγ′

)
(�)T

and
Σχ′γ′ :=

N∑
i=1

w′i
(
χ′i − µχ′

) (
γ′i − µγ′

)T
.

Then the Simplex Scaled Unscented Transformation (SiScUT) is defined by

SiScUT
(
f, X̄, PXX , α

)
:=
[
µγ′ ,Σαα

γ′γ′ ,Σχ′γ′

]
.
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Definition 4.4 (Symmetric Intrinsically-Scaled Unscented Transformation). Choose
α ∈ (0, 1] and κ ∈ R such that

λ := α2 (n+ κ)− n > −n.

Let χ := {χi, wi}2n+1
i=1 with w2n+1 = λ/(n + λ) be a normalized HoMiSyσR of X.

Consider the sets

χ̃ := {χ̃i, w̃mi , w̃ci , w̃cci |χ̃i = χi}2n+1
i=1

γ̃ := {γ̃i, w̃mi , w̃ci , w̃cci |γ̃i = f(χi)}2n+1
i=1

where

w̃m2n+1 = w2n+1;

w̃c2n+1 = w2n+1 + (1− α2);

w̃cc2n+1 = w2n+1 + (1− α);

w̃mi = w̃ci = w̃cci = wi, i = 1, ..., 2n;

Then the Symmetric Intrinsically-Scaled Unscented Transformation (SyInScUT) is de-
fined by

SyInScUT
(
f, X̄, PXX , α

)
:=
[
µγ̃,Σγ̃γ̃,Σχγ̃

]
.

Corollary 4.2. If χ := {χi, wi}Ni=1 is a normalized σR of X with χN = X̄, then

SiScUT
(
f, X̄, PXX , α

)
= ScUT

(
f, X̄, PXX , α

)
;

and if χ := {χi, wi}2n+1
i=1 is a normalized HoMiSyσR of XσR of X with χN = X̄, then

SyInScUT
(
f, X̄, PXX , α

)
= SiScUT

(
f, X̄, PXX , α

)
= ScUT

(
f, X̄, PXX , α

)
.

Proof. Let χ and γ be the sets of a ScUT (Definition 4.2) with wcci = wci = wmi = wi.
To prove first part, consider Definition 4.3. First, from (4.1),

µγ = (1− wN)
(
1− α−2

)
γ′N +

N−1∑
i=1

(
α−2wiγ

′
i

)
+ wNγ

′
N

=
[
(1− wN)

(
1− α−2

)
+ wN

]
γ′N +

N−1∑
i=1

w′iγ
′
i

=
[
1− α−2 − wN + wNα

−2 + wN
]
γ′N +

N−1∑
i=1

w′iγ
′
i
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=
[
1− α−2 + wNα

−2
]
γ′N +

N−1∑
i=1

w′iγ
′
i

= w′Nγ
′
N +

N−1∑
i=1

w′iγ
′
i

=
N∑
i=1

w′iγ
′
i

=: µγ′

Second, from (4.10),

Σα
γγ =

N−1∑
i=1

w′i
(
γ′i − µγ′

) (
�
)T

+ α−2
(
1− α2

) (
γ′N − µγ′

) (
�
)T

− α−2
(
α2 − 1

)2 (
µγ′ − γ′N

) (
�
)T

= Σαα
γ′γ′ .

Third, from (4.10),

Σα
χγ =

N∑
i=1

w′i
(
χ′i − µχ′

) (
γ′i − µγ′

)T
= Σχ′γ′ .

The remaining steps of the first part are trivial.

To prove the second part, consider Definition 4.4 and define the set

ς̃ := {ς̃i, w̃i|ς̃i = γi}2n+1
i=1 ,

where

w̃2n+1 : = α−2w2n+1 + 1− α−2,

w̃i : = α−2wi, i = 1, ..., 2n,

and note that, from Definition 4.3, the function

γ
(
f, X̄, PXX , α

)
:=
[
µς̃ ,Σα

ς̃ς̃ ,Σχς̃

]
is a SiScUT. Then it can easily be proven that µγ = µς̃ , Σγγ = Σα

ς̃ς̃ and Σχγ = Σχς̃ .

The SUT of [44] is incorporated in the SiScUT (Definition 4.3) whith the difference
that now it states the restriction of having a point located in the mean (cf. Section
2.6.1) and defines the sample cross-covariance (cf. Section 2.6.2). Besides, with Corol-
lary 4.2, the SiScUT follows naturally as a particular case of the ScUT and, therefore,
we also have the estimation quality of PY Y and PXY and the influence of α on the
estimate of PXY (see Section 2.6). Definition 4.4 provides similar results for the UT
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of [41] which we now define as SyInScUT. Summing up, we provide unified and con-
sistent new definitions for all the scaled transformations. Besides, the results of this
section solve the problems in the Unscented literature pointed out in Section 2.6.

4.3 SQUARE-ROOT UNSCENTED TRANSFORMATION

In this section, we state the results for the Square-Root Unscented Transformation
(SRUT). As Section 2.7.3 pointed out, Definition 4.5 should be the first definition for
an SRUT.

The key idea of an SRUT is to map the square-root matrix of the previous covariance
directly (without squaring) to the square-root matrix of the posterior covariance. One
way of doing it for

Σγ
γγ := Σγγ +√γ√γT

is by the function
cu :

(
S+
γ , S

−
γ ,
√
γ
)
7→
√

Σγ
γγ, (4.14)

where, for a set γ = {γi, wmi , wci , wcci }
N
i=1 with at least one positive weight wci and one

negative, the subsets γ+ and γ− are defined by

γ+ : =
{
γ(+,j+), w

m
(+,j+), w

c
(+,j+), w

cc
(+,j+)

}N+

j+=1
= {γi, wmi , wci , wcci |wci ≥ 0}Ni=1 ,

γ− :=
{
γ(−,j−), w

m
(−,j−), w

c
(−,j−), w

cc
(−,j−)

}N−
j−=1

= {γi, wmi , wci , wcci |wci < 0}Ni=1 ,

the matrices S+
γ and S−γ by

S+
γ :=

[√
wc(+,1)

(
γ(+,1) − µγ

)
, · · · ,

√
wc(+,N+)

(
γ(+,N+) − µγ

)]
, (4.15)

S−γ :=
[√
‖wc(−,1)‖

(
γ(−,1) − µγ

)
, · · · ,

√
‖wc(−,N−)‖

(
γ(−,N−) − µγ

)]
; (4.16)

and
√

Σγ
γγ is calculated by the following algorithm:

1. D = tria
([
S+
γ ,
√
γ
])

;
2. If N− > 0,

√
Σγ
γγ = cdown

{
A, S−γ

}
; else,

√
Σγ
γγ = D.

In this way,
√

Σγ
γγ can be obtained by first updating the Cholesky factor, and

then downdating it. The former operation can be done by means of triangulariza-
tion (e.g. the QR decomposition) S = tria{A}, A ∈ Rn×n, where S is lower tri-
angular (see [80, 93]). The latter can be achieved through S = cdown{A,B}, for
B ∈ Rn×ny , representing the Cholesky downdating of A by B (it is the same as doing
cholupdate{A,B∗,i,−1} as in [42]).
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If the set γ = {γi, wmi , wci , wcci }
N
i=1 has no negative weights, then

√
Σγ
γγ = tria

([
S+
γ ,
√
γ
])

(4.17)

and no Cholesky downdatings are performed. Since downdatings might lead to ill-
conditioned matrices [92] (see Section 2.7.1), it should be avoided whenever possible—
it is only necessary when the σR contains negative weights. With an abuse of notation,
when we write cu

(
S+
γ , S

−
γ ,
√
γ
)
we also refer to the case when S−γ does not exist (N− =

0); in this case we have cu
(
S+
γ , S

−
γ ,
√
γ
)

= tria
([
S+
γ ,
√
γ
])
.

For now on, in this section, consider the random variable X characterized by the
mean X̄ and square-root of the covariance

√
PXX .

Definition 4.5 (Square-Root Unscented Transformation). Consider the sets

χ = {χi, wmi , wci , wcci }
N
i=1

and
γ = {γi, wmi , wci , wcci |γi = f (χi)}Ni=1

with
µχ = X̄ and Σχχ =

√
PXX

√
PXX

T

.

Given a matrix √γ and S+
χ , S

−
χ , S

+
γ , S

−
γ defined as in (4.15) and (4.16), the Square-Root

Unscented Transformation (SRUT) is defined by

SRUT
(
f, X̄,

√
PXX ,

√
γ
)

:=
[
µγ,

√
Σγ
γγ, S+

χ , S
−
χ , S

+
γ , S

−
γ ,Σχγ

]
.

Next, we introduce the Scaled Square-Root Unscented Transformation and some re-
sults concerning this transformation. This definition is necessary for the Scaled Square-
Root Unscented Kalman Filters (see Table 5.3), the first one in the literature.

Definition 4.6 (Scaled Square-Root Unscented Transformation). Consider the sets χ
and γ as in Definition 4.2 with

µχ = X̄ and Σχχ =
√
PXX

√
PXX

T

.

Given a matrix √γ, define the matrix

Σαγ
γγ := Σα

γγ +√γ√γT ;
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then the Scaled Square-Root Unscented Transformation (ScSRUT) is defined by

ScSRUT
(
f, X̄,

√
PXX ,

√
γ, α

)
:=
[
µγ,

√
Σαγ
γγ , S+

χ , S
−
χ , S

+
γ , S

−
γ ,Σα

χγ

]
.

Corollary 4.3. A ScSRUT with sets

χ = {χi, wmi , wci , wcci }Ni=1

and
{γi, wmi , wci , wcci |γi = g(f, χi, µχ, α, α2)}Ni=1

is a SRUT with the sets
χ = {χi, wmi , wci , wcci }

N
i=1

and {
γi, w

m
i , α

2wci , αw
cc
i

}N
i=1

.

Remark 4.3. Every 2thNσR is a set χ of an SRUT.

Finally, we state new ScSRUT results similar to the ones in Section 4.2 for the
particular scaled transformations.

Definition 4.7 (Simplex Scaled Square-Root Unscented Transformation). Consider
the sets χ′ and γ′ as in Definition 4.3 with

µχ′ = X̄ and Σχ′χ′ =
√
PXX

√
PXX

T

.

Given a matrix √γ, define the matrix

Σααγ
γ′γ′ := Σαα

γ′γ′ +
√
γ
√
γT ;

then the Simplex Scaled Square-Root Unscented Transformation (SiScSRUT) is defined
by

SiScSRUT
(
f, X̄,

√
PXX ,

√
γ, α

)
:=
[
µγ′ ,

√
Σααγ
γ′γ′ , S

+
χ′ , S

−
χ′ , S

+
γ′ , S

−
γ′ ,Σχ′γ′

]
.

Definition 4.8 (Symmetric Intrinsically-Scaled Square-Root Unscented Transforma-
tion). Consider the sets χ̃ and γ̃ as in Definition 4.4 with

µχ̃ = X̄ and Σχ̃χ̃ =
√
PXX

√
PXX

T

.

Given a matrix √γ, define the matrix

Σγ
γ̃γ̃ := Σγ̃γ̃ +√γ√γT ;
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then the Symmetric Intrinsically-Scaled Square-Root Unscented Transformation (SyIn-
ScSRUT) is defined by

SyInScSRUT
(
f, X̄,

√
PXX ,

√
γ, α

)
:=
[
µγ̃,

√
Σγ
γ̃γ̃, S

+
χ̃ , S

−
χ̃ , S

+
γ̃ , S

−
γ̃ ,Σχ̃γ̃

]
.

Corollary 4.4. Every SiScSRUT is an ScSRUT and every SyInScSRUT is an Sc-
SRUT.

4.4 COMPARISON OF SIGMA SETS WITH LESS THAN 2N
SIGMA POINTS

In this section we compare the estimation quality of the main sigma sets2 (SS’s)
composed by less than 2n sigma points, which are the (Normalized) Minimum σ-
representation (MiσR) of Theorem 3.5, the Rho Minimum σ-representation o [57]
(RhoMiσR, Tab 2.1 [3,2]), the Reduced sigma set of [45] (ReSS, Tab 2.1 [2,1]) and
the Spherical Simplex sigma set of [46] (SSSS, Tab 2.1 [2,2]). The Unscented Trans-
formations of these sigma sets area also compared, they are: the Minimum Unscented
Transformation (MiUT, a 2UT with the MiσR), the Rho Minimum Unscented Transfor-
mation (RhoMiUT, a 2UT with the RoMiσR), the Reduced Unscented Transformation
(ReUT, a 2UT with the ReSS) and the Spherical Simplex Unscented Transformation
(SSUT, a 2UT with the SSSS)3.

For the examples of this section we consider sigma sets of the random variable

X ∼ N

 1
5

 ,
 10 2

2 5

 ,
v = [0.5, 0.5]T is chosen as the tuning parameter of the new minimum sigma set, and
w0 = 1/3 for the other three sigma sets. Figure 4.1 shows the sigma points of each of
these sigma sets; the compositions of these sigma sets are given below:

• the new minimum SS is
 8.04

5.93

 , 0.17
 ,

 0.29
9.63

 , 0.17
 ,

 −0.58
3.61

 , 0.17
 ,

2Here we use the name of sigma sets and not σ-representation because two of these sets, the
Reduced sigma set of [45] and the Spherical sigma set of [46], are not σ-representations (cf. Definition
3.1 and comments following it).

3In order to simplify the presentation of this section, we consider the UT’s in the cases of the ReUT
and the SSUT as relaxed variants of Definition 4.1 .
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• the Rho Min. SS of [57] is

 −2.16

2.22

 , 0.33
 ,

 7.32
4.12

 , 0.17
 ,

 1.00
7.14

 , 0.50
 ,

• the Reduced SS of [45] is

 1.00

5.00

 , 0.33
 ,

 0.09
4.20

 , 0.17
 ,

 1.00
5.62

 , 0.17
 ,

• and the Spherical SS of [46] is

 1.00

5.00

 , 0.33
 ,

 −0.05
2.31

 , 0.22
 ,

 2.05
2.73

 , 0.22
 ,

 1.00
5.00

 , 0.22
 .
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Figure 4.1: Geometry location in the R2 of the sigma points of the sigma sets composed
by less than 2n sigma points.

Note that none of the sigma points of the MiσR and the RhoMiσR are located
on the mean ([1, 5]T ) while the other two sigma sets have sigma points located there.
This verifies the fact that the SUT cannot be used with the MiσR and the RhoMiσR
because the SUT requires that the sigma set has a sigma point equal to X̄ (cf. Section
2.6.1 and the last paragraph of Section 3.4).

Table 4.1 shows the relative errors of the mean and the covariance generated by
each of the aforementioned sigma sets in comparison to the mean and covariance of X.
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Table 4.1: Relative errors of the sample mean and sample covariance for the main sigma
sets composed by less than 2n sigma points in relation to the mean and covariance of
X.

Miσ R RhoMiσR ReSS SSSS
mean Cov. error mean Cov. mean Cov. mean Cov.

1.3× 10−8 2.3× 10−8 2.3× 10−8 1.9× 10−8 0.59 0.98 0.46 0.97

The main result relative to these data is that the relative errors of the previous
means and covariances for the MiσR and the RhoMiσR are almost zero (Tab 4.1 [1,
1-4]) while the ones for the ReSS and the SSSS are not (Tab 4.1 [1, 5-8]). The matching
of the previous mean and covariance is important to assure that the sample mean and
covariance of the posterior sigma points approximates well the mean and the covariance
of the posterior random variable (cf. Theorem 4.1). In fact, in order to verify this,
we compare the Unscented Transformations of the same four sigma sets by considering
the transformation of a X = [x1, x2]T by the following functions:

f1 (x1, x2) = x2
1 + x2

2,

f2 (x1, x2) = x4
1 + x4

2,

f3 (x1, x2) = ex1 + ex2 ,

f4 (x1, x2) = x−1
1 + x−1

2 ,

f5 (x1, x2) =
 √

x2
1 + x2

2

arctan
(
x2
x1

)  .

Table 4.2 shows the errors concerning the transformed means and covariances of the
sigma sets in comparison to the transformed mean and covariance of a 107 Monte Carlo
simulation. The better performance of the MiUT and the RhoMiUT in comparison to
the other two UT’s is due to the property mentioned and verified above that their
sigma sets match the first two moments of the previous random variable, whilst the
sigma sets of the reduced UT of [45] and the spherical UT of [46] do not. Note that,
as shown in Theorem 4.1, the matching of the mean and the covariance of X implies a
second order approximation of the Taylor Series of the posterior mean which, for the
case of f1 (a second order polynomial), implied in a negligible error associated with the
posterior mean of the MiUT (Tab 4.2 [2,2]) and of the RhoMiUT (Tab 4.2 [2,4]). Note
also that, even though the tuning parameters were not set precisely for each function,
the results for the the MiUT and the RhoMinUT are comparable. Nevertheless, for
any case, there exists a suitable choice for v such that the MiUT provides the least
errors since the RhoMiσR is a particular case of the MiσR.
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Table 4.2: Relative errors of the posterior sample mean and sample covariance for the
main Unscented Transformations composed by less than 2n sigma points in relation to
the mean and covariance of fi(X).

1 function MiUT RhoMiUT ReUT SSUT
mean Cov. mean Cov. mean Cov. mean Cov.

2 f1 9.5× 10−8 0.85 9.5× 10−8 0.63 0.76 0.96 0.75 0.95
3 f2 0.59 0.76 0.14 0.87 0.87 1.00 0.89 0.99
4 f3 0.66 0.97 0.77 1.00 1.00 1.00 1.00 1.00
5 f4 1.3 1.00 0.65 1.00 2.20 1.00 2.90 1.00
6 f5 0.22 0.80 0.18 0.54 0.66 0.80 0.55 0.86

4.5 CONCLUSIONS REGARDING UNSCENTED TRANS-
FORMATIONS

By looking at the new definition of the UT proposed in this chapter, we can say
that it follows naturally from the definition of a σ-representation introduced; and by
looking at the results derived from it, we can say that it provides an efficient tool to
estimate a transformed random vector.

Among other advantages comparative with the UT’s for the literature, our UT is
more general. Based on Taylor Series expansions, we provide the estimation quality
of the an lth order UT (Theorem 4.1). Moreover, we propose new definitions for i)
the scaling UT’s, and ii) for the square-root UT’s. Overall, in this chapter, we cor-
rected all the problems and filled all gaps presented in Chapter 2 regarding Unscented
Transformations.

In the simulations of Section 4.4, the UT based on the minimum σ-representation
introduced in Section 3.4 shows good results, comparative with the UT based on re-
duced sigma sets.

In the next chapter, our systematization of the Unscented Kalman filtering theory
is further developed with the last of its three main concepts: the UKF.
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5. UNSCENTED FILTERS FOR
EUCLIDEAN MANIFOLDS

Previously, we i) introduced the concept of an σ-representation (Chapter 3), and ii)
extended its idea to redefine the UT’s in a more formal and consistent way (Chapter
4). With these results, we were able to correct all the problems and filled all gaps
presented in Chapter 2 regarding these transformations. Now, we proceed by providing
new consistent UKF definitions.

There are many UKF definitions in the literature. In order to investigate based on
which of these UKF’s we will construct our definitions, we first investigate the problems
detected in Section 2.8 regarding the discrete-time Additive UKF’s of the literature;
this investigation is done in Section 5.1. We use the results of Chapter 4 regarding
the UT’s to study the possible causes of the misbehaviors of the Additive UKF’s. We
conclude that only one definition of the AdUKF’s is consistent (in a way that will
be established). Based in this consistent Additive UKF, we define our discrete-time
Additive Unscented Kalman Filter (AdUKF, Section 5.2).

By extending our discrete-time AdUKF, we present new definitions for the general
(non-additive) case (Section 5.2), and also for the square-root variants (Section 5.3).

Further, in Section 5.4, we provide a list of particular cases of these filters showing
that all consistent UKF’s of the literature are embodied by our systematization. Then,
in Section 5.5, we provide comments relative to computational aspects of the proposed
UKF filters; and, in Section 5.7, we present a discussion about higher order UKF’s.

In Section 5.8, the UKF’s for discrete-time systems developed in Sections 5.2 and
5.3 are extended to treat the cases of continuous-time and continuous-discrete-time
dynamic systems. Even though these systems were not treated yet up to this points,
the results of the discrete-time UKF’s makes this transition suitable.

Since many UF’s are proposed, in Section 5.9, we provide guidelines for practical
users indicating some criteria for choosing the most suitable filter for a given practical
problem.

Finally, in Section 5.6, we illustrate some properties of the UF’s developed in this
chapter with numerical examples.
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5.1 CONSISTENCY OF THE ADDITIVE UNSCENTED FIL-
TERS OF THE LITERATURE

In Section 2.8, we classified the AdUKF’s of the literature according to the following
three criteria:

1. in which equation the process noise’s covariance Qk is considered,

2. whether the predicted state sigma set {χk|k−1
i,{j} , wi,{j}} is re-generated or not, and

3. how this regeneration is done if it is the case.

We found four distinctive classes, to know the AdUKF’s 1, 2, 3 and 4 (cf. Section
2.8.1).

We showed two superior results of the AdUKF 1 comparative with the other AdUKF
classes, namely: the AdUKF 1 a) is the only one to have the property of providing
the same estimates as the KF when the system is linear, and b) was the best in the
nonlinear numerical example of Section 2.8.2.

Together, these two superior results indicate that there might be a formal reason
endowing the AdUKF 1 with better mathematical properties comparative with the other
AdUKF’s for any nonlinear system (2.1). In this section, we use results developed in
Chapters 3 and 4, to develop stronger conclusions respective to this topic.

Particularly, by using the results regarding the UT definition (Definition 4.1), we
get to the conclusion that classifying the AdUKF’s of the literature respective to the
criteria 1, 2, and 3 above is equivalent to classifying respective to the input and output
vectors of the UT’s in these AdUKF’s. We show that each of these AdUKF’s classes
can be written by using two UT’s; and each AdUKF class differentiate from each other
from the considered input and output vectors of these UT’s.

Depending on how an AdUKF uses the UT’s to estimate the state of a given system,
we can say whether or not this AdUKF is consistent with this system. Recall that, given
two random vectors

X and Y = F (X),

an UT provides an approximation of the statistics of Y . Suppose a stochastic filter
defined for the following system

xk = F1(xk−1) (5.1)

yk = F2(xk).

In order to estimate this system, we can use, in a same AdUKF, i) one UT estimating
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the statistics of xk by making X = xk−1 and F = F1(X), and ii) another UT estimating
the statistics of yk by making X = xk and F = F2(X). From Theorem 4.1, we know
these UT’s provide good estimates for the statistics of xk and yk; and these estimates
are required to the final estimates of every AdUKF (cf. the step 3 of the Algorithms
2, 3, 4, and 5). Therefore, if an AdUKF uses the UT in this form, we can say that the
AdUKF is consistent with system (5.1).

Let us analyze whether the four AdUKF classes described above are consistent with
system (2.1) or not.

5.1.1 Consistency analysis

Consider system (2.1), and define the following random variables

xk−1|k−1 := xk−1|y1:k−1,

xk|k−1 := xk|y1:k−1,

x∗k|k−1 := fk
(
xk−1|k−1

)
,

xk|k := xk|y1:k,

yk|k−1 := yk|y1:k−1,

y∗k|k−1 := hk
(
xk|k−1

)
,

where xk−1|k−1 is the previous state, xk|k−1 the predicted state, xk|k the posterior state,
x∗k|k−1 is the propagated state without the process noise and y∗k|k−1 is the predicted
measurement without the measurement noise.

In AdUKF’s, the estimation quality of any estimate of xk|k and P k|k
xx depends on

estimation quality of the predicted estimates x̂k|k−1, ŷk|k−1, P̂ k|k−1
xx , P̂ k|k−1

yy and P̂ k|k−1
xy

(cf. step 3. of Algorithms 2, 3, 4, and 5). Let us analyze each of these estimates of
each AdUKF class based on the UT definition.

Since, from (2.1), xk|k−1 = x∗k|k−1 +$k and $k ∼ ([0]nx×1 , Qk), then

x̄k|k−1 = x̄∗k|k−1 and P k|k−1
xx = P k|k−1

xx,∗ +Qk; (5.2)

and, analogously, [recall that ϑk ∼ ([0]ny×1 , Rk)]

ȳk|k−1 = ȳ∗k|k−1 and P k|k−1
yy = P k|k−1

yy,∗ +Rk. (5.3)

Therefore, an AdUKF is said to be consistent with system (2.1) according to the
following definition.
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Definition 5.1. An AdUKF is consistent with system (2.1) if this filter’s equations
can be written in the form

[
x̂k|k−1, P̂

k|k−1
xx,∗

]
= UT

(
fk, x̂k−1|k−1, P̂

k−1|k−1
xx

)
, (5.4)

P̂ k|k−1
xx = P̂ k|k−1

xx,∗ +Qk, (5.5)

[
ŷk|k−1, P̂

k|k−1
yy , P̂ k|k−1

xy

]
= UT

(
hk, x̂k|k−1, P̂

k|k−1
xx

)
, (5.6)

P̂ k|k−1
yy = P̂ k|k−1

yy,∗ +Rk, (5.7)

Gk :=P̂ k|k−1
xy

(
P̂ k|k−1
yy

)−1
, (5.8)

x̂k|k :=x̂k|k−1 +Gk

(
y˜k − ŷk|k−1

)
, (5.9)

P̂ k|k
xx :=P̂ k|k−1

xx −GkP̂
k|k−1
yy GT

k . (5.10)

This consistency property is associated with the quality of the estimates in an
AdUKF.

Suppose, ideally, that

x̂k−1|k−1 = x̄k−1|k−1 (5.11)

P̂ k−1|k−1
xx = P k−1|k−1

xx .

Then, from (5.2), (5.4), (5.5), and Theorem 4.1, it follows that

x̂
[x̂k−1|k−1,2]
k|k−1 = x̄

∗,[x̄k−1|k−1,2]
k|k−1 = x̄

[x̄k−1|k−1,2]
k|k−1 ; (5.12)

and

P̂
k|k−1,[x̂k−1|k−1,1]
xx = P̂

k|k−1,[x̂k−1|k−1,1]
xx,∗ +Qk

= P
k|k−1,[x̄k−1|k−1,1]
xx,∗ +Qk

= P
k|k−1,[x̄k−1|k−1,1]
xx . (5.13)

Similarly, suppose, ideally, that

x̂k|k−1 = x̄k|k−1 (5.14)

P̂ k|k−1
xx = P k|k−1

xx .
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then, from (5.3), (5.6), (5.7), and Theorem 4.1, it follows that

ŷ
[x̂k|k−1,2]
k|k−1 = ȳ

∗,[x̄k−1|k−1,2]
k|k−1 = ȳ

[x̄k−1|k−1,2]
k|k−1 ; (5.15)

P̂
k|k−1,[x̂k|k−1,1]
yy = P̂

k|k−1,[x̂k|k−1,1]
yy,∗,{1} +Rk

= P
k|k−1,[x̄k|k−1,1]
yy,∗ +Rk

= P
k|k−1,[x̄k|k−1,1]
yy ; (5.16)

P̂
k|k−1,[x̂k|k−1,1]
xy = P

k|k−1,[x̄k|k−1,1]
xy . (5.17)

Analogously, suppose that,

x̂k|k−1 = x̄k|k−1, (5.18)

P̂ k|k−1
xx = P k|k−1

xx ,

ŷk|k−1 = ȳk|k−1,

P̂ k|k−1
yy = P k|k−1

yy ,

P̂ k|k−1
xy = P k|k−1

xy ;

then, from (5.8), (5.9), and (5.10), we have that

x̂k|k = x̄k|k and (5.19)

P̂ k|k
xx = P k|k

xx . (5.20)

Therefore, if an AdUKF is consistent with system (2.1), we are able to state the
qualities of the estimates—naturally, based on the assumptions (5.11), (5.14), and
(5.18). Moreover, these estimates are generally good since they are estimates provided
by UT’s.

Since the correction equations (step 3. of Algorithms 2, 3, 4, and 5) are equal
for all AdUKF classes, the equations (5.19) and (5.20) will be true for every AdUKF.
However, naturally, the equations (5.12), (5.13), (5.15), (5.16), and (5.17) will not;
they will all be true only for the AdUKF’s consistent with system (2.1).

The following propositions relates the consistency of an AdUKF and its performance
when a linear system is considered

Theorem 5.1. Consider an AdUKF estimating system (2.1). If the system functions
fk and hk are linear, then each estimate x̂k|k−1, ŷk|k−1, P̂ k|k−1

xx , P̂ k|k−1
yy , P̂ k|k−1

xy , x̂k|k,
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and P̂ k|k−1
xx of the AdUKF is equal to the corresponding one given by the linear Kalman

Filter.

Proof. Suppose that, at a time k ≥ 1, the estimates x̂k−1|k−1 and P̂ k−1|k−1
xx of the

AdUKF are equal to the ones given by a linear KF. Since fk is linear, from (5.12) and
(5.13), we have that

x̂
[x̂k−1|k−1,2]
k|k−1 = x̄

[x̄k−1|k−1,2]
k|k−1 = x̄k|k−1,

P̂
k|k−1,[x̂k−1|k−1,1]
xx = P

k|k−1,[x̄k−1|k−1,1]
xx = P k|k−1

xx ;

and the assumptions (5.11) hold. Thus, since hk is also linear, from (5.15), (5.16),
(5.17), we have that

ŷ
[x̂k|k−1,2]
k|k−1 = ȳ

[x̄k−1|k−1,2]
k|k−1 = ȳk|k−1,

P̂
k|k−1,[x̂k|k−1,1]
yy = P

k|k−1,[x̄k|k−1,1]
yy = P k|k−1

yy ,

P̂
k|k−1,[x̂k|k−1,1]
xy = P

k|k−1,[x̄k|k−1,1]
xy = P k|k−1

xy ;

and assumptions (5.18) hold. Thus, from (5.19) and (5.20), we have that

x̂k|k = x̄k|k

P̂ k|k
xx = P k|k

xx .

By choosing the initial estimates x̂0|0 and P̂ 0|0
xx of the AdUKF equal to the ones of

the KF, these equations will be true for all k ≥ 1; hence, the theorem is proved.

Let us now analyze the consistency of each AdUKF. Again, below, some variables
are written with a subscript {j} as in A{j}, for j = 1, 2, 3 and 4; this notation associates
the element A to the AdUKF j. For example, x̂k|k−1,{1} is an estimate of the AdUKF
1, x̂k|k−1,{2} of the AdUKF 2, x̂k|k−1,{3} of the AdUKF 3, and x̂k|k−1,{4} of the AdUKF
4.

• The equations in the AdUKF 1 (Algorithm 2) can be rewritten in the following
way:

[
x̂k|k−1,{1}, P̂

k|k−1
xx,∗,{1}

]
= UT

(
fk, x̂k−1|k−1, P̂

k−1|k−1
xx

)
, (5.21)

P̂
k|k−1
xx,{1} = P̂

k|k−1
xx,∗,{1} +Qk, (5.22)

[
ŷk|k−1,{1}, P̂

k|k−1
yy,∗,{1}, P̂

k|k−1
xy,{1}

]
= UT

(
hk, x̂k|k−1,{1}, P̂

k|k−1
xx,{1}

)
, (5.23)
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P̂
k|k−1
yy,{1} = P̂

k|k−1
yy,∗,{1} +Rk. (5.24)

Gk :=P̂ k|k−1
xy

(
P̂ k|k−1
yy

)−1
,

x̂k|k :=x̂k|k−1 +Gk

(
y˜k − ŷk|k−1

)
,

P̂ k|k
xx :=P̂ k|k−1

xx −GkP̂
k|k−1
yy GT

k .

Therefore, from Definition 5.1, the AdUKF 1 is consistent with system (2.1).

• The equations in the AdUKF 2 (Algorithm 3) can be rewritten in the following
way:

[
x̂k|k−1,{2}, P̂

k|k−1
xx,∗,{2}

]
= UT

(
fk, x̂k−1|k−1, P̂

k−1|k−1
xx

)
, (5.25)

P̂
k|k−1
xx,{2} = P̂

k|k−1
xx,∗,{2} +Qk, (5.26)

[
ŷk|k−1,{2}, P̂

k|k−1
yy,∗,{2}, P̂

k|k−1
xy,{2}

]
= UT

(
hk, x̂k|k−1,{2}, P̂

k|k−1
xx,∗,{2}

)
, (5.27)

P̂
k|k−1
yy,{2} = P̂

k|k−1
yy,∗,{2} +Rk. (5.28)

Gk :=P̂ k|k−1
xy

(
P̂ k|k−1
yy

)−1
,

x̂k|k :=x̂k|k−1 +Gk

(
y˜k − ŷk|k−1

)
,

P̂ k|k
xx :=P̂ k|k−1

xx −GkP̂
k|k−1
yy GT

k .

Equation (5.27) is different from (5.6); thus, we can say that the AdUKF 2 is not
consistent with system (2.1).

• The equations in the AdUKF 3 (Algorithm 4) for the the estimates x̂k|k−1,{3} and
P̂
k|k−1
xx,{3} can be rewritten in the following way:

[
x̂k|k−1,{3}, P̂

k|k−1
xx,∗,{3}

]
= UT

(
fk, x̂k−1|k−1, P̂

k−1|k−1
xx

)
, (5.29)

P̂
k|k−1
xx,{3} = P̂

k|k−1
xx,∗,{3} +Qk, (5.30)

but the estimates ŷk|k−1,{3}, P̂ k|k−1
yy,{3} and P̂

k|k−1
xy,{3} can not be rewritten in a similar

way. Note that they are not equivalent to[
ŷk|k−1,{3}, P̂

k|k−1
yy,∗,{3}, P̂

k|k−1
xy,{3}

]
= UT

(
hk, x̂k|k−1,{3}, P̂

k|k−1
xx,∗,{3} +Qk

)
,

P̂
k|k−1
yy,{3} = P̂

k|k−1
yy,∗,{3} +Rk.
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Therefore, we can say that the AdUKF 3 is not consistent with system (2.1).

• The equations in the AdUKF 4 (Algorithm 5) can be rewritten in the following
way:

[
x̂k|k−1,{4}, P̂

k|k−1
xx,∗,{4}

]
= UT

(
fk, x̂k−1|k−1, P̂

k−1|k−1
xx +Qk

)
, (5.31)

P̂
k|k−1
xx,{4} = P̂

k|k−1
xx,∗,{4} (5.32)

[
ŷk|k−1,{4}, P̂

k|k−1
yy,∗,{4}, P̂

k|k−1
xy,{4}

]
= UT

(
hk, x̂k|k−1,{4}, P̂

k|k−1
xx,{4}

)
,

P̂
k|k−1
yy,{4} = P̂

k|k−1
yy,∗,{4} +Rk.

Gk :=P̂ k|k−1
xy

(
P̂ k|k−1
yy

)−1
,

x̂k|k :=x̂k|k−1 +Gk

(
y˜k − ŷk|k−1

)
,

P̂ k|k
xx :=P̂ k|k−1

xx −GkP̂
k|k−1
yy GT

k .

Equation 5.32 is different from (5.5); thus, we can say that the AdUKF 4 is not
consistent with system (2.1).

Summarizing, among the studied AdUKF classes, only the AdUKF 1 is consistent
with system (2.1). Consequently, the following two statements can be made:

1. The reason behind the AdUKF 1 being the only AdUKF class providing the same
estimates as the (linear) KF when (2.1) is linear (cf. Section 2.8.3) is given by
Theorem 5.1.

2. The reason behind the AdUKF 1 outperforming the other AdUKF classes in the
numerical example of Section 2.8.2 is, probably, given by equations (5.12), (5.13),
(5.15), (5.16), (5.17), (5.19) and (5.20).

Therefore, we shall define the Additive Unscented Kalman Filter in Section 5.2
based on the form of the AdUKF 1.

5.2 UNSCENTED KALMAN FILTERS

The analysis of Section 5.1 showed that, among the additive UKF, only the AdUKF
1 is consistent with system (2.1). Hence, we use the form of this filter to propose the
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AdUKF of our systematization. Recall, from Algorithm 2, that this means considering
Qk in the equation of the predicted covariance P̂ k|k−1

xx,{j}, and regenerating the predicted
sigma set {χk|k−1

i,{j} , wi,{j}} as in (2.22).

Definition 5.2. Consider the system

xk = fk (xk−1) +$k,

yk = hk (xk) + ϑk.

Suppose that i) the noises $k and ϑk are independent; ii) $k, ϑk and the initial state
x0 are characterized by

x0 ∼
(
x̄0, P

0
xx

)
,

$k ∼ ([0]nx×1, Qk) ,

ϑk ∼
(
[0]ny×1, Rk

)
;

and iii) the measurements y˜1, y˜2, ..., y˜kf are given. Then the Additive Unscented
Kalman Filter (AdUKF)—from now on, unless mentioned otherwise, AdUKF will refer
to the following algorithm—is given by the following algorithm:

Algorithm 6 (Additive UKF (AdUKF)). Perform the following steps:

1. Initialization. Set the initial estimates x̂0|0 := x̄0 and P̂ 0|0
xx := P 0

xx.

2. Filtering. For k = 1, 2, ..., kf ; set the following elements:

(a) The state’s predicted statistics by

[
x̂k|k−1, P̂

k|k−1
xx,∗

]
:= UT1

(
fk, x̂k−1|k−1, P̂

k−1|k−1
xx

)
, (5.33)

P̂ k|k−1
xx := P̂ k|k−1

xx,∗ +Qk.

(b) The measurement’s predicted statistics by

[
ŷk|k−1, P̂

k|k−1
yy,∗ , P̂ k|k−1

xy

]
:= UT2

(
hk, x̂k|k−1, P̂

k|k−1
xx

)
, (5.34)

P̂ k|k−1
yy := P̂ k|k−1

yy,∗ +Rk.

(c) The state’s corrected statistics by

Gk :=P̂ k|k−1
xy

(
P̂ k|k−1
yy

)−1
,

x̂k|k :=x̂k|k−1 +Gk

(
y˜k − ŷk|k−1

)
, (5.35)

P̂ k|k
xx :=P̂ k|k−1

xx −GkP̂
k|k−1
yy GT

k .
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Given that we only consider the second order UT in this subsection, we use the
notation UT to refer to the 2UT (higher order UKF’s are considered in Section 5.7).
The notations UT1 and UT2 indicate that the transformations in the prediction and
correction steps do not need to be the same. In fact, the number of sigma points
can be different, and we could even use the ScUT. The output of UT1 has only two
terms meaning that only the first two elements of the output of Definition 4.1 are
needed in the algorithm. If fk is linear, then UT1 can be substituted by the (linear)
KF’s prediction equations; likewise, If hk is linear, then UT2 can be substituted by the
(linear) KF’s correction equations. Comments analogous to these ones for the AdUKF
can be made for the other filters of this chapter.

By definition, in the AdUKF, the posterior set of UT1 in (5.33), χk|k−1 = {χk|k−1
i , wi},

is regenerated in (5.34), since it is the previous σ-representation of UT2. One can con-
sider to not regenerate χk|k−1 , but, in this case, i) the filter would not be consistent
with system (2.1) (cf. Section 5.1), and ii) χk|k−1 would not carry information about
the process noise (cf. (2.3) and (2.4), and [49]).

By combining i) the proposed AdUKF with ii) the idea of extending the state
vectors with the noise (cf. Section 2.2), we can propose an augmented UKF for the
more general system (2.2). For this, define the augmented functions fak : Rnx+n$ → Rnx

and hak : Rnx+nϑ → Rny such that, for ,

fak

 xk−1

$k

 := fk (xk−1, $k) , (5.36)

hak

 xk

ϑk

 := hk (xk, ϑk) .

From now on, unless mentioned otherwise, AuUKF will refer to the following algorithm:

Definition 5.3. Consider the system

xk = fk (xk−1, $k) ,

yk = hk (xk, ϑk) ;

and the pair of equations (5.36). Suppose that i) $k and ϑk are independent; ii) $k,
ϑk and the initial state x0 are characterized by

x0 ∼
(
x̄0, P

0
xx

)
,

$k ∼ ([0]n$×1, Qk) ,

ϑk ∼ ([0]nϑ×1, Rk) ;
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and iii) the measurements y˜1, y˜2, ..., y˜kf are given. Then the Augmented Unscented
Kalman Filter is given by the following algorithm:

Algorithm 7 (Augmented Unscented Kalman Filter (AuUKF)). Perform the following
steps:

1. Initialization. Set the initial estimates x̂0|0 := x̄0 and P̂ 0|0
xx := P 0

xx.

2. Filtering. For k = 1, 2, ..., kf ; set the following elements:

(a) The augmented previous estimates by

x̂ak−1|k−1 :=
[
x̂Tk−1|k−1, [0]Tn$×1

]T
,

P̂ k−1|k−1
xx,a := diag

(
P̂ k−1|k−1
xx , Qk

)
.

(b) The predicted statistics of the state by

[
x̂k|k−1, P̂

k|k−1
xx

]
:= UT1

(
fak , x̂

a
k−1|k−1, P̂

k−1|k−1
xx,a

)
. (5.37)

(c) The augmented predicted estimates by

x̂ak|k−1 :=
[
x̂Tk|k−1, [0]Tnϑ×1

]T
,

P̂ k|k−1
xx,a := diag

(
P̂ k|k−1
xx , Rk

)
.

(d) The predicted statistics of the measurement by

[
ŷk|k−1, P̂

k|k−1
yy , P̂ k|k−1

xy,a

]
:= UT2

(
hak, x̂

a
k|k−1, P̂

k|k−1
xx,a

)
, (5.38)

P̂ k|k−1
xy :=

[
P̂ k|k−1
xy,a

]
(1:nx),(1:ny)

.

(e) The corrected statistics of the state by

Gk :=
(
P̂ k|k−1
xy

) (
P̂ k|k−1
yy

)−1
,

x̂k|k := x̂k|k−1 +Gk

(
y˜k − ŷk|k−1

)
,

P̂ k|k
xx := P̂ k|k−1

xx −GkP̂
k|k−1
yy GT

k .

Unlike the AdUKF, we do not know if not regenerating χk|k−1 in (5.38) makes the
AuUKF inconsistent with system (2.2). Similar to the AdUKF, in the AuUKF, by
definition, the posterior set of UT1 in (5.37), χk|k−1 = {χk|k−1

i , wi}, is regenerated in
(5.38), since it is the previous σ-representation of UT2. One can consider to not regen-
erate χk|k−1. For the AdUKF, it would make the filters inconsistent with its associated
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system, (2.2), but for the AuUKF we do not know. This analysis of consistency is yet
to be done.

5.3 SQUARE-ROOT UNSCENTED KALMAN FILTERS

We now present the Square-Root Unscented Kalman Filter (SRUKF). The main
difference between this filter and other types of UKF is the fact that the SRUKF
propagate the square-root matrix of the covariance matrices directly, which is compu-
tationally more stable than squaring the propagated covariance matrix [93].

As pointed out in Section 2.7.1, the SRUKF’s in the literature present three steps
in which Cholesky factors are downdated: in the calculations of the square-root ma-
trices of the covariance matrix for the predicted state; in the covariance matrix for
the innovation; and in the covariance matrix for the corrected state. While, in the
first two cases, downdating is only performed when negative weights exist, the last one
is always performed. Due to the fact that downdating steps can be computationally
unstable (see Section 2.7.1), we derive an alternative form—which is an extension of
the results of [93] and [80]—that uses the downdating procedure only for the negative
weight components.

According to (4.15), define S+
χ := S+

χk|k−1 for χk|k−1, and S+
γ := S+

γk|k−1 for γk|k−1;
and according to (4.16), define S−χ := S−

χk|k−1 for χk|k−1, and S−γ := S−
γk|k−1 for γk|k−1.

Note that

P̂ k|k−1
xx = S+

χ S
+T
χ − S−χ S−Tχ ,

P̂ k|k−1
yy = S+

γ S
+T
γ − S−γ S−Tγ ,

and
P̂ k|k−1
xy = S+

χ S
+T
γ − S−χ S−Tγ +Rk.

Therefore,

P̂ k|k
xx =

[
S+
χ −GkS

+
γ , GkRk

] [
�
]T
−
[
S−χ −GkS

−
γ , GkRk

] [
�
]T
,

which shows that P̂ k|k
xx can be obtained through updating and downdating. The latter

is only performed for the negative weight cases.

The SRUKF is presented below. It is more general than the algorithms currently
in the literature, since these are restricted to the case where only the central weight,
w0, can be negative, whereas our SRUKF does not restrict the quantity of negative
weights. From now on, unless mentioned otherwise, AdSRUKF and AuSRUKF will
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refer, respectively, to the following algorithms:

Definition 5.4. Consider the system

xk = fk (xk−1) +$k,

yk = hk (xk) + ϑk.

Suppose that i) the noises $k and ϑk are independent; ii) $k, ϑk and the initial state
x0 are characterized by

x0 ∼
(
x̄0,

√
P 0
xx

√
P 0
xx

T
)
,

$k ∼
(

[0]nx×1,
√
Qk

√
Qk

T
)
,

ϑk ∼
(

[0]ny×1,
√
Rk

√
Rk

T
)

;

and iii) the measurements y˜1, y˜2, ..., y˜kf are given. Then the Additive Square-Root
Unscented Kalman Filter is given by the following algorithm:

Algorithm 8 (Additive Square-Root Unscented Kalman Filter (AdSRUKF)). Perform
the following steps:

1. Initialization. Set the initial estimates x̂0|0 := x̄0 and
√
P̂

0|0
xx :=

√
P 0
xx.

2. Filtering. For k = 1, 2, ..., kf ; set the following elements:

(a) The state’s predicted statistics by
[
x̂k|k−1,

√
P̂
k|k−1
xx

]
:= SRUT1

(
fk, x̂k−1|k−1,

√
P̂
k−1|k−1
xx ,

√
Qk

)
. (5.39)

(b) The measurement’s predicted statistics by

[
ŷk|k−1,

√
P̂
k|k−1
yy , S+

χ , S
−
χ , S

+
γ , S

−
γ , P̂

k|k−1
xy

]
:=

SRUT2

(
hk, x̂k|k−1,

√
P̂
k|k−1
xx ,

√
Rk

)
. (5.40)

(c) The state’s corrected statistics by

Gk := P̂ k|k−1
xy

(√
P̂
k|k−1
yy

)−T (√
P̂
k|k−1
yy

−1)
,

x̂k|k := x̂k|k−1 +Gk

(
y˜k − ŷk|k−1

)
,√

P̂
k|k
xx := cu

([
S+
χ −GkS

+
γ

]
,
[
S−χ −GkS

−
γ

]
, Gk

√
Rk

)
.

(5.41)
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Definition 5.5. Consider the system

xk = fk (xk−1, $k) ,

yk = hk (xk, ϑk) ;

and the pair of equations

fak

 xk−1

$k

 := fk (xk−1, $k) ,

hak

 xk

ϑk

 := hk (xk, ϑk) .

Suppose that i) $k and ϑk are independent; ii) $k, ϑk and the initial state x0 are
characterized by

x0 ∼
(
x̄0,

√
P 0
xx

√
P 0
xx

T
)
,

$k ∼
(

[0]nx×1,
√
Qk

√
Qk

T
)
,

ϑk ∼
(

[0]nx×1,
√
Rk

√
Rk

T
)

;

and iii) the measurements y˜1, y˜2, ..., y˜kf are given. Then the Augmented Square-Root
Unscented Kalman Filter is given by the following algorithm:

Algorithm 9 (Augmented Square-Root Unscented Kalman Filter (AuSRUKF)). Per-
form the following steps:

1. Initialization. Set the initial estimates x̂0|0 := x̄0 and
√
P̂

0|0
xx :=

√
P 0
xx.

2. Filtering. For k = 1, 2, ..., kf ; set the following elements:

(a) The augmented previous estimates by

x̂ak−1|k−1 :=
[
x̂Tk−1|k−1, [0]Tn$×1

]T
,√

P̂
k−1|k−1
xx,a := diag

(√
P̂
k−1|k−1
xx ,

√
Qk

)
.

(b) The predicted statistics of the state by
[
x̂k|k−1,

√
P̂
k|k−1
xx

]
:= SRUT1

(
fk, x̂

a
k−1|k−1,

√
P̂
k−1|k−1
xx,a

)
,

(c) The augmented predicted estimates by

x̂ak|k−1 :=
[
x̂Tk|k−1, [0]Tnϑ×1

]T
,
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√
P̂
k|k−1
xx,a := diag

(√
P̂
k|k−1
xx ,

√
Rk

)
.

(d) The predicted statistics of the measurement by
[
ŷk|k−1,

√
P̂
k|k−1
yy , P̂ k|k−1

xy,a

]
:= SRUT2

(
hk, x̂

a
k|k−1,

√
P̂
k|k−1
xx,a

)
,

P̂ k|k−1
xy :=

[
P̂ k|k−1
xy,a

]
(1:nx),(1:ny)

.

(e) The corrected statistics of the state by

Gk := P̂ k|k−1
xy

(√
P̂
k|k−1
yy

)−T (√
P̂
k|k−1
yy

−1)
,

x̂k|k := x̂k|k−1 +Gk

(
y˜k − ŷk|k−1

)
,√

P̂
k|k
xx := cu

([
S+
χ −GkS

+
γ

]
,
[
S−χ −GkS

−
γ

]
, Gk

√
Rk

)
.

5.4 CONSISTENT UNSCENTED FILTERS VARIANTS

Recall from Chapter 2, that some UKF’s and SRUKF’s are not consistent. In order
to clarify which UKF’s and SRUKF’s in the literature are consistent, we put variants of
the AdUKF and the AuUKF with UT1 = UT2, and of the AdSRUKF and AuSRUKF
with SRUT1 = SRUT2 in Tables 5.1, 5.2, 5.3, and 5.4.

There are some abbreviations of words in these tables: Def. stands for for Definition;
Cor. for Corollary; Th. for Theorem; Ho. for Homogeneous; Intr. for Intrinsically;
Mi. for Minimum; Sc. for Scaled; Si. for Simplex; and Sy. for Symmetric. Each final
variant of the filters without a footnote comment is a new consistent version.

Table 5.1 contains the AdUKF and SRUKF variants using minimum σR’s developed
in Section 3.4, and Table 5.2 the analogous variants for the AuUKF and SRUKF; Table
5.3 contains the AdUKF and SRUKF variants using the minimum symmetric σR’s
developed in Section 3.3, and Table 5.4 the analogous variants for the AuUKF and
SRUKF.

In each table, the particular filters are presented in all the columns, except the first;
and in all the rows, except the heading one. In Table 5.1, each filter is the resulting
variant of using the AdUKF or AdSRUKF (analogously for the other tables) with the
corresponding i) UT or SRUT in the first column of its own row, and ii) with the
corresponding σR in the heading row of its own column. For instance, the Minimum
Scaled Additive Unscented Kalman Filter (Min. Sc. AdUKF in Tab 5.1 [2,2]) is the
result of using the AdUKF with the ScUT (Tab 5.1 [2,1]) and the MinσR (heading of
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the second column of Table 5.1).

Table 5.1: Some Consistent Minimum AdUKF and Riemannian Minimum AdSRUKF
Variants.

UT’s MiσR 1(Th. 3.2) RhoMiσR (Cor. 3.5)
1 UT (Def. 4.1) Mi. AdUKF Rho Mi. AdUKF 2

2 ScUT (Def. 4.2) Min. Sc. AdUKF Rho Mi. Sc. AdUKF
3 SRUT (Def. 4.5) Mi. AdSRUKF Rho Mi. AdSRUKF
4 ScSRUT (Def. 4.6) Mi. Sc. AdSRUKF Rho Mi. Sc. AdSRUKF

1RhoMiσR (Rho Minimum σ-representation) stands for the σ-representation of [57];
2Equivalent to the filter in Tab 2.3 [8,*].

Table 5.2: Some Consistent Minimum AuUKF and Riemannian Minimum AuSRUKF
Variants.

UT’s MiσR1 (Th. 3.2) RhoMiσR (Cor. 3.5)
1 UT (Def. 4.1) Mi. AuUKF Rho Mi. AuUKF 2

2 ScUT (Def. 4.2) Mi. Sc. AuUKF Rho Mi. Sc. AuUKF
3 SRUT (Def. 4.5) Mi. AuSRUKF Rho Mi. AuSRUKF
4 ScSRUT (Def. 4.6) Mi. Sc. AuSRUKF Rho Mi. Sc. AuSRUKF

1RhoMiσR (Rho Minimum σ-representation) stands for the σ-representation of [57];
2Equivalent to the filter in Tab 2.3 [8,*].

One should notice that consistent variants of the UKF (SRUKF) in the literature
are particular cases of the proposed UKF (SRUKF) definitions in this work. Also,
these definitions are able to provide new filter variants (e.g. the Scaled Square-Root
Unscented Kalman Filters).

5.5 COMPUTATIONAL COMPLEXITY AND NUMERICAL
IMPLEMENTATIONS

From the computational complexity point-of-view, the UKF’s most expensive op-
erations are the square-root matrix operation of P̂ k−1|k−1

xx + Qk [O(n3
x)] and the ma-

trix inversion of P̂ k|k−1
yy [O(n3

y)], where ny is the dimension of the measurement vector].
Hence, for the case in which ny ≤ nx, the computational complexity of the UKF is
O(n3

x); and for the case in which ny ≥ nx, the computational complexity of the UKF
is O(n3

y), which is the same complexity as the EKF’s [42]. From a numerical imple-
mentation standpoint, even though the Cholesky decomposition seems to be the most
adopted method to compute the square-root matrix of the covariance matrix for the
state, some studies indicate that other methods, such as SVD decomposition, provide
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better estimation quality (see [109] for more details). Some code implementations are
available on-line (e.g. [110] and [111]).

For the SRUKF, the computational complexity is also O(n3
x) due to the triangular-

ization (tria{}), which is its most expensive operation. One example of triangulariza-
tion is the QR decomposition, which has different implementations; for an n×n matrix,
the Householder QR requires n3/3 floating points operations (flops), the Givens QR
2n3 flops, and the modified Gram-Schmidt QR requires 2n3 flops [112]. Comparative
with UKF’s, from a computational perspective, SRUKF’s are usually more expensive—
demand more flops—, but tend to behave better when implemented in poor-precision
machines [88].

5.6 SIMULATIONS

5.6.1 Comparison between sigma sets composed of less than 2n sigma
points

In this section, we have the purpose of simulating the Minimum Additive Unscented
Kalman Filters in order to verify its theoretical results and also to compare it with the
Homogeneous Minimum Symmetric Additive Unscented Kalman Filter (Tab 5.3 [1,3])
(which is equivalent to the UKF of [1], Tab 2.3 [2, 1-5]). The scenario is a target
tracking of civil aircraft with synthesized data; it is based on [98]. The state vector is
x = [px vx py vy]T where px and py are, respectively, the Cartesian coordinates along
the axes of the abscissae and the ordinates, and vx = ṗx and vy = ṗy are the associated
velocities.

The discrete process and measurement equations are the ones of the Coordinated
Turn model with measurements of range and azimuth:

xk =


1 sin(ωkT )

ωk
0 −1−cos(ωkT )

ωk

0 cos(ωkT ) 0 − sin(ωkT )
0 1−cos(ωkt)

ωk
1 sin(ωkT )

ωk

0 sin(ωkT ) 0 cos(ωkT )

xk−1 +


1
2T

2 0
T 0
0 1

2T
2

0 T

$k,

yk =
 √(px − prx)2 + (py − pry)2

arctan
(
py−pry
px−prx

) + ϑk,

where T = 5s is the sampling time, yk the measurement vector on step time k,
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$k ∼ N([0]2×1, Qk), ϑk ∼ N([0]2×1, Rk) the process and measurement noise vectors,
respectively, prx = 6000m and pry = −6000m the position coordinates of the radar,
and ωk the angular velocity; ωk is supposed to be a known input. Standard deviations
are supposed to be 1m/s2 for the process error in both directions, 50m for the range
measurement error and 1◦ for the azimuth measurement error. Therefore, Qk = I2 and

Rk =
 2500 0

0 (1π)2

180

 .
The initial values of the estimates of the state are chosen according to [98] (apparently,
these choices are realistic):

x̂0,0 = [2500,−120, 10000, 0]T and P̂ 0,0
xx = 100I4.

The aircraft’s trajectory is followed be the following sequence of movements: 120s with
ωk = 0rad/s, 30s with ωk = 5rad/s, 120s with ωk = 0rad/s, 60s with ωk = 1rad/s, and
120s with ωk = 0rad/s.

The relative error at time k of the jth simulation is

εk,j := (p̂x − pcx)
2

(pcx)
2 +

(
p̂y − pcy

)2

(
pcy
)2 ,

where pcx and pcy are the correct position coordinates of the aircraft. We calculate the
Root-Mean-Square Deviation (RMSD)

RMSD :=

√√√√√
 1
NitNs

Ns∑
j=1

Nit∑
k=1

εk,j

 (5.42)

where Nit is the number of iterations and Ns the number of simulations. In these
simulations, we perform Nit = 2000 iterations and Ns = 105 simulations.

We first investigate the different values of the tuning parameters for the Minimum
Additive Unscented Kalman Filter (MiAdUKF, Tab 5.1 [1,2]), the Homogeneous Min-
imum Symmetric Additive Unscented Kalman Filter (HoMiSyAdUKF, Tab 5.3 [1,3]),
and the Rho Minimum Additive Unscented Kalman Filter (RhoMiAdUKF, Tab 5.1
[1,3]). For the former, the tuning parameter is the vector v ∈ Rn, and for the other two
it is the weight w0, which is restricted to 0 < w0 < 1 for the RhoMiAdUKF. To simplify
the analysis, we consider v = β[1]n×1, β ∈ R−{0}. Table 5.5 provides the mean errors
µε provided by these three filters for some different values of their tuning parameters.
The best values were β = 1 for the MiAdUKF, w0 = 0.8 for the HoMiSyAdUKF and
for the RhoMiAdUKF.
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Table 5.5: RMSD for different values of the tuning parameters.

MiAdUKF β 0.1 0.5 1
√

2
√

5 5 10
RMSD 0.563 0.541 0.478 0.501 0.649 73.572 1189.100

HoMiSyAdUKF w0 0.1 0.2 0.3 0.5 0.7 0.8 0.9
RMSD 0.561 0.567 0.569 0.561 0.565 0.558 0.565

RhoMiAdUKF w0 0.1 0.2 0.3 0.5 0.7 0.8 0.9
RMSD 0.563 0.568 0.570 0.562 0.566 0.559 0.566

Table 5.6: RMSD for different filters.

(a) In better conditions of flight and
measurements.

Filter RMSD
MiAdUKF 0.478

MiAdSRUKF 0.386
HoMiSyAdUKF 0.558

HoMiSyAdSRUKF 0.041
RhoMiAdUKF 0.559

RhoMiAdSRUKF 0.041

(b) In worse conditions of flight and
measurements.

Filter RMSD
MiAdUKF 2.181

MiAdSRUKF 0.352
HoMiSyAdUKF 2.472

HoMiSyAdSRUKF 0.126
RhoMiAdUKF 2.491

RhoMiAdSRUKF 0.126

Now we use these values of tuning parameters to evaluate some filter’s perfor-
mances. Table 5.6a provides the mean errors µε for the filters studied in Table 5.5
and also for their square-root forms,which are, the Minimum Additive Square-Root
Unscented Kalman Filter (MiAdSRUKF, Tab 5.1 [3,2]), the Homogeneous Minimum
Symmetric Additive Square-Root Unscented Kalman Filter (HoMiSyAdSRUKF, Tab
5.3 [5,3]), and the Rho Minimum Additive Square-Root Unscented Kalman Filter (Rho-
MiAdSRUKF, Tab 5.1 [3,3])

The minimum UKF’s provided good estimates even in comparison to the HoMiSyAd-
SRUKF, which requires 2n+1 sigma points, whilst the minimum ones require only n+1.
The best performance was provided by both the RhoMiAdSRUKF and the HoMiSyAd-
SRUKF. However, one should note that as the Rho Minimum filters (RhoMiAdUKF
and RhoMiAdSRUKF) are particular cases of the minimum filters (MiAdUKF and
MiAdSRUKF, respectively; cf. Corollary 3.5) and, hence these ones can be tuned
to provide the same results as the Rho Minimum filters according to Corollary 3.5.
Overall, we can conclude that the minimum filters are able to provide good estimation
quality to the problem in question.

In order to verify the performance of the filters in worse conditions, we simulate
the same path with Qk = 10I2 and

Rk =
 25000 0

0 (5π)2

180

 .
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Table 5.7: Mean of the CPU times.

Unscented Filter McpuT(ms)
MiAdUKF 0.557

MiAdSRUKF 0.598
HoMiSyAdUKF 0.558

HoMiSyAdSRUKF 0.724
RhoMiAdUKF 0.481

RhoMiAdSRUKF 0.613

Table 5.6b shows the results. The performance of the filters is indeed worse, but the
filters that presented the best results are the same as the ones of Table 5.5.

For each time step k and each simulation j, we measure the time spent (∆tk,n)
by the used CPU to run all the steps of each filter relative the time step k; then we
calculate the mean time consumed CPU in each filter as follows:

McpuT =
 1
NitNs

Ns∑
j=1

Nit∑
k=1

∆tk,n

 .
Table 5.7 provides the McpuT’s for each of the considered filters running in a machine
with an Intel(R) Core (TM) i7 CPU. We can state the following conclusions:

1. the minimum non-symmetric UKF’s (MiAdUKF and RhoMiAdUKF) were faster
than the HoMiSyAdUKF; and the minimum non-symmetric SRUKF’s (MiAd-
SRUKF and RhoMiAdSRUKF) were faster than the HoMiSyAdSRUKF. These
behavior are consequences of the minimum non-symmetric UF’s being composed
of less sigma points than the minimum symmetric UF’s.

2. each UKF was faster than its respective SRUKF; i.e., the MiAdUKF was faster
than the MiAdSRUKF, the HoMiSyAdUKF was faster than the HoMiSyAd-
SRUKF, and the RhoMiAdUKF was faster than the RhoMiAdSRUKF. This was
expected because there are some costly operations—such as QR decompositions—
that are present in SRUKF’s but not in UKF’s (cf. Section 5.5).

5.6.2 Ill-conditioned measurement function

In comparison to the non-square-root filters, the square-root filters have better nu-
merical properties and guarantee positive semi-definiteness of the state’s covariance ma-
trix. They are more convenient over the non-square-root filters specially when consid-
ering poor machine precision, since the square-root guarantee positive semi-definiteness
of the state’s covariance matrix even when round-off errors are considerable. Therefore,
in this section, we provide an example with the objective of verifying this behavior.
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We compare the new Homogeneous Minimum Symmetric Additive Square-Root
Unscented Kalman Filter (HoMiSyAdSRUKF, Tab 5.3 [5,3]) with i) the Homogeneous
Minimum Symmetric Additive Unscented Kalman Filter (HoMiSyAdUKF, Tab 5.3
[1,3]) (which is equivalent to the UKF of [1], Tab 2.3 [2, 1-5]), and ii) the SRUKF
of [42] using the same method of Example 6.2 of [88]. The idea of this method is to
test the influence of round-off errors in these filters by computing only their correction
step with a ill-conditioned measurement function; it is considered the measurement
function

hk(xk) := Hxk

where

H =


1 1 1
1 1 1
1 1 1 + δ

 ,
δ = eps2/310d,

d is an integer, and eps is the distance from 1.0 to the next largest double-precision
number, which, in our case, is eps = 2−52.

The SRUKF of [42] could not perform the simulations for d ≤ 10 for presenting
non-positive definite covariance-matrix. Figure 5.1 presents the relative errors of the
(HoMiSyAdSRUKF) and the HoMiSyAdUKF for d ∈ [−5, 8]. The new HoMiSyAd-
SRUKF presented fewer errors than the HoMiSyAdUKF; thus, we can say that the
new HoMiSyAdSRUKF is more robust to round-off errors than the SRUKF of [42] and
the HoMiSyAdSRUKF.

5.7 HIGHER-ORDER UNSCENTED KALMAN FILTERS

In this work, the AdUKF and AdSRUKF were defined only with 2nd order UT’s.
Extensions to higher orders can be done in at least two ways. A first one is given by
the following algorithm:

Definition 5.6. Consider the system

xk = fk (xk−1) +$k,

yk = hk (xk) + ϑk.

Suppose that i) the noises $k and ϑk are independent; ii) $k, ϑk and the initial state
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Figure 5.1: Comparison between filters.

x0 are characterized by

x0 ∼
(
x̄0, P

0
xx

)
,

$k ∼ ([0]nx×1, Qk) ,

ϑk ∼
(
[0]ny×1, Rk

)
;

and iii) the measurements y˜1, y˜2, ..., y˜kf are given. Then the lth order Gaussian
Additive Unscented Kalman Filter is given by the following algorithm:

Algorithm 10 (lth order Gaussian Additive Unscented Kalman Filter). Perform the
following steps:

1. Initialization. Set the initial estimates x̂0|0 := x̄0 and P̂ 0|0
xx := P 0

xx, and choose the
order of the filter l ∈ N, l > 2.

2. Filtering. For k = 1, 2, ..., kf ; set the following elements:

(a) The central moments
M2

xk−1|k−1
, ...,M l

xk−1|k−1
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for
xk−1|k−1 ∼ N

(
x̂k−1|k−1, P̂

k−1|k−1
xx +Qk

)
.

(b) The predicted statistics of the state by

[
x̂k|k−1, P̂

k|k−1
xx

]
= lUT1

(
fk, x̂k−1|k−1,M

2
xk−1|k−1

, ...,M l
xk−1|k−1

)
.

(c) The central moments
M2

xk|k−1
, ...,M l

xk|k−1

for
xk|k−1 ∼ N

(
x̂k|k−1, P̂

k|k−1
xx +Rk

)
.

(d) The predicted statistics of the measurement by
[
ŷk|k−1, P̂

k|k−1
yy , P̂ k|k−1

xy

]
= lUT2

(
hk, x̂k|k−1,M

2
xk|k−1

, ...,M l
xk|k−1

)
.

(e) The corrected statistics of the state by

Gk :=P̂ k|k−1
xy

(
P̂ k|k−1
yy

)−1
,

x̂k|k :=x̂k|k−1 +Gk

(
y˜k − ŷk|k−1

)
,

P̂ k|k
xx :=P̂ k|k−1

xx −GkP̂
k|k−1
yy GT

k .

This approach uses the Gaussian assumption of the Kalman Filter to obtain the
previous first l moments of the state for each lUT. Generally, higher values of l result
in a larger number of sigma-points and better state estimation (cf. Theorem 4.1). Note
that the higher-order UKF of [91] is a particular case of this proposed filter for the
scalar case.

A second way is to propagate, at every time step, not only the mean and the covari-
ance matrix of the state, but also its higher-order moments up to a chosen lth order (a
similar approach that does not use UT’s is proposed by [113]). This method does not
assume that the state follows a Gaussian distribution at every time step, and provides
a better approximation when compared to the first one; but at the cost of increased
effort in developing the recursive equations, and also of having a computationally more
expensive algorithm.
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5.8 CONTINUOUS-DISCRETE-TIME AND CONTINUOUS-
TIME UNSCENTED KALMAN FILTERS

Instead of considering additive discrete-time systems as (2.1), we can consider the
so called continuous-discrete-time, stochastic, dynamic system (for a vector x, dx stand
for its differential) given by, for t ≥ t0,

dx(t) = ft (x(t)) + d$(t), (5.43)

yk = hk (xk, k) + ϑk,

where {$(t), t ≥ t0} is the process noise, and is supposed to be a vector of independent
Brownian motions (see [24]); and the other elements are defined as in (2.1) and (2.2).
The meaning of the first equation of (5.43) is given by its integral (when exists)

x(t)− x(t0) =
ˆ t

t0

fτ (xτ )dτ +
ˆ t

t0

$t;

the first integral can be defined as an Riemann integral and the second as an Itô integral
(see [24]).

The work [52] derived a Unscented Filters for (5.43), namely the Continuous-discrete
UKF (CdUKF) and the Square Continuous-discrete UKF (SRCdUKF). However the
estimation’s quality of these filters were not investigated yet. Because we know, from
Theorem 4.1, the estimation quality of the UT, we can obtain the estimation quality
of the CdUKF and the SRCdUKF (and also generalize the σR, since these filters were
defined particularly for the InSyσR) by writing them in the form of our systematization
developed so far. We also i) rename these filters following the reasoning used for the
Unscented filters of this chapter, and ii) propose these filter’s variants for the more
general system

dx(t) = ft (x(t), $(t)) , (5.44)

yk = hk (xk, ϑk) .

For the augmented versions of these Unscented filters, define the augmented functions
fat : Rnx+n$ → Rnx and hak : Rnx+nϑ → Rny such that, for ,

fat

 x(t)
$(t)

 := ft (x(t), $(t)) , (5.45)
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hak

 xk

ϑk

 := hk (xk, ϑk) .

Definition 5.7. Consider the system (5.43). Suppose that i) the noises $(t) and ϑk
are independent for all t ≥ t0 and k ≥ t0; ii) $(t), ϑk and the initial state x0 are
characterized by

x0 ∼
(
x̄0, P

0
xx

)
,

d$(t)
dt

∼ ([0]nx×1, Q(t)) ,

ϑk ∼
(
[0]ny×1, Rk

)
;

and iii) the measurements y˜1, y˜2, ..., y˜kf are given. Then the Continuous-Discrete
Additive Unscented Kalman Filter is given by the following algorithm:

Algorithm 11 (Continuous-discrete Additive UKF (CdUKF)). Perform the following
steps:

1. Initialization. Set the initial estimates x̂0|0 := x̄0 and P̂ 0|0
xx := P 0

xx.

2. Filtering. For k = 1, 2, ..., kf ; set the following elements:

(a) The state’s predicted statistics. For the initial conditions

x−(tk−1) := x̂k−1|k−1 and

P̂−xx(tk−1) := P̂ k−1|k−1
xx ,

solve i), for x̂−(tk), the differential equation

dx̂−(t) := m̂−(t);

and ii), for P̂−xx(tk), the differential equation

dP̂−xx(t) := P̂−xf(x)(t) +
(
P̂−xf(x)(t)

)T
+Q(t);

where [
m̂−(t), •, P̂−xf(x)(t)

]
:= UT1

(
ft, x̂

−(t), P̂−xx(t)
)
.

(b) The measurement’s predicted statistics by

[
ŷk|k−1, P̂

k|k−1
yy,∗ , P̂ k|k−1

xy

]
:= UT2

(
hk, x̂

−(tk), P̂−xx(tk)
)
,

P̂ k|k−1
yy := P̂ k|k−1

yy,∗ +Rk.
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(c) The state’s corrected statistics by

Gk :=P̂ k|k−1
xy

(
P̂ k|k−1
yy

)−1
,

x̂k|k :=x̂k|k−1 +Gk

(
y˜k − ŷk|k−1

)
,

P̂ k|k
xx :=P̂ k|k−1

xx −GkP̂
k|k−1
yy GT

k .

Definition 5.8. Consider the system (5.44) and the pair of equations (5.45). Suppose
that i) the noises $(t) and ϑk are independent for all t ≥ t0 and k ≥ t0; ii) $(t), ϑk
and the initial state x(t0) are characterized by

x(t0) ∼
(
x̄0, P

0
xx

)
,

d$(t)
dt

∼ ([0]n$×1, Q(t)) ,

ϑk ∼ ([0]nϑ×1, Rk) ;

and iii) the measurements y˜1, y˜2, ...,y˜kf are given. Then the Continuous-Discrete
Augmented Unscented Kalman Filter is given by the following algorithm.

Algorithm 12 (Continuous-discrete Augmented UKF (CdAuUKF)). Perform the fol-
lowing steps:

1. Initialization. Set the initial estimates x̂0|0 := x̄0 and P̂ 0|0
xx := P 0

xx.

2. Filtering. For k = 1, 2, ..., kf ; set the following elements:

(a) The state’s predicted statistics.For the initial conditions

x−(tk−1) := x̂k−1|k−1 and

P̂−xx(tk−1) := P̂ k−1|k−1
xx ,

solve i), for x̂−(tk), the differential equation

dx̂−(t) := m̂−(t);

and ii), for P̂−xx(tk), the differential equation

dP̂−xx(t) := P̂−xf(x)(t) +
(
P̂−xf(x)(t)

)T
;

where

x̂−a (t) :=
[
x̂−(t)T , [0]1×n$

]
,T

P̂−,axx (t) := diag
(
P̂xx(t), Q(t)

)
,
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[
m̂−(t), •, P̂−,axf(x)(t)

]
:= UT1

(
fat , x̂

−
a (t), P̂−,axx (t)

)
,

P̂−xf(x)(t) :=
[
P̂−,axf(x)(t)

]
(1:nx),(1:nx)

.

(b) The measurement’s predicted statistics by

x̂ak|k−1 :=
[(
x̂−(tk)

)T
, [0]Tnϑ×1

]
,T

P̂ k|k−1
xx,a := diag

((
P̂−xx(tk)

)T
, Rk

)
,[

ŷk|k−1, P̂
k|k−1
yy , P̂ k|k−1

xy,a

]
:= UT2

(
hak, x̂

a
k|k−1, P̂

k|k−1
xx,a

)
,

P̂ k|k−1
xy :=

[
P̂ k|k−1
xy,a

]
(1:nx),(1:ny)

.

(c) The state’s corrected statistics by

Gk :=P̂ k|k−1
xy

(
P̂ k|k−1
yy

)−1
,

x̂k|k :=x̂k|k−1 +Gk

(
y˜k − ŷk|k−1

)
,

P̂ k|k
xx :=P̂ k|k−1

xx −GkP̂
k|k−1
yy GT

k .

Note that, by writing the continuous-discrete Unscented filters in these forms we
have, for each of these four filters, analog versions of all particular cases for the AdUKF
in Table 5.3 (e.g., scaled variant, symmetric intrinsically-scaled variant, and so far).

There might be cases in which it would be more realistic to model a given system
not only with the process equation being time continuous, but also the measurement
equation. By doing so, we have the system, for t ≥ t0,

dx(t) = ft (x(t)) + d$(t), (5.46)

dy(t) = ht (x(t)) + dϑ(t),

where {$(t), t ≥ t0} is the process noise, and {ϑ(t), t ≥ t0} the measurement noise,
and are supposed to be vectors of independent Brownian motions (see [24]); and the
other elements are defined as in (2.1) and (2.2).

Following the derivations of the Kalman-Bucy filter (this filter gives the minimum
variance estimates for the linear case of the system (5.46), see [24]), [52] derived Un-
scented filters also for (5.46), namely the Unscented Kalman Bucy Filter (UKBF).

Similarly to the continuous-discrete-time we can obtain the estimation quality of
the UKBF (and also generalize the σR) by writing this filter in the form of our sys-
tematization developed so far. We also i) rename these filters following the reasoning
used for the Unscented filters of this chapter, and ii) propose these filter’s variants for
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the general system

dx(t) = ft (x(t), $(t)) , (5.47)

dy(t) = ht (x(t), ϑ(t)) ,

For the augmented versions of these Unscented filters, define the augmented func-
tions fat : Rnx+n$ → Rnx and hat : Rnx+nϑ → Rny such that, for ,

fat

 x(t)
$(t)

 := ft (x(t), $(t)) , (5.48)

hat

 x(t)
ϑ(t)

 := ht (x(t), ϑ(t)) .

Definition 5.9. Consider the system (5.46). Suppose that i) the noises $(t) and ϑ(t)
are independent for all t ≥ t0 and k ≥ t0; ii) $(t), ϑ(t) and the initial state x(t0) are
characterized by

x(t0) ∼ (x̄(t0), Pxx(t0)) ,
d$(t)
dt

∼ ([0]nx×1, Q(t)) ,

dϑ(t)
dt
∼
(
[0]ny×1, R(t)

)
;

and iii) the measurements {y˜(t), t ≥ t0} are given. Then the Continuous Additive
Unscented Kalman Filter is given by the following algorithm:

Algorithm 13 (Continuous Additive UKF (CoAdUKF)). For the initial conditions

x(t0) := x̄(t0) and

P̂xx(t0) := Pxx(t0),

solve i), for x̂(tk), the differential equation

dx̂(t) := m̂(t) +G(t)
(
y˜(t)− ŷ(t)

)
;

and ii), for P̂xx(tk), the differential equation

dP̂xx(t) := P̂xf(x)(t) + P̂ T
xf(x)(t) +Q(t)−G(t)R(t)GT (t);
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where

[
m̂(t), •, P̂xf(x)(t)

]
:= UT1

(
ft, x̂

−(t), P̂−xx(t)
)
,[

ŷ(t), •, P̂xh(x)(t)
]

:= UT2

(
ht, x̂

−(t), P̂−xx(t)
)
,

G(t) := P̂xh(x)(t)R−1(t).

Definition 5.10. Consider the system (5.47) and the pair of equations (5.48). Suppose
that i) the noises $(t) and ϑ(t) are independent for all t ≥ t0 and k ≥ t0; ii) $(t), ϑ(t)
and the initial state x(t0) are characterized by

x(t0) ∼ (x̄(t0), Pxx(t0)) ,
d$(t)
dt

∼ ([0]nx×1, Q(t)) ,

dϑ(t)
dt
∼ ([0]nx×1, R(t)) ;

and iii) the measurements {y˜(t), t ≥ t0} are given. Then the Continuous Augmented
Unscented Kalman Filter is given by the following algorithm:

Algorithm 14 (Continuous Augmented UKF (CoAuUKF)). For the initial conditions

x(t0) := x̄(t0) and

P̂xx(t0) := Pxx(t0),

solve i), for x̂(tk), the differential equation

dx̂(t) := m̂(t) +G(t)
(
y˜(t)− ŷ(t)

)
;

and ii), for P̂xx(tk), the differential equation

dP̂xx(t) := P̂xf(x)(t) + P̂ T
xf(x)(t);

where

x̂−a (t) :=
[
x̂−(t)T , [0]1×n$

]
,T

P̂−,axx (t) := diag
(
P̂xx(t), Q(t)

)
,

x̂−a∗(t) :=
[
x̂−(t)T , [0]1×nϑ

]
,T

P̂−,a∗xx (t) := diag
(
P̂xx(t), R(t)

)
,[

m̂(t), •, P̂ a
xf(x)(t)

]
:= UT1

(
fat , x̂

−
a (t), P̂−,axx (t)

)
,
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[
ŷ(t), •, P̂ a

xh(x)(t)
]

:= UT2

(
hat , x̂

−
a∗(t), P̂−,a∗xx (t)

)
,

P̂−xf(x)(t) :=
[
P̂−,axf(x)(t)

]
(1:nx),(1:nx)

.

P̂−xh(x)(t) :=
[
P̂−,axh(x)(t)

]
(1:ny),(1:ny)

.

G(t) := P̂xh(x)(t)R−1(t).

UKF’s for the case in which the dynamics are time discrete (the process function)
and the measurements are time continuous can easily be obtained by combined the
filters of this section. However, this type of system is rare in practice; usually the
measurements are modeled with discrete time because they are usually interpreted by
digital machines. Yet, the measurements can be considered time continuous, but in
this case, usually the dynamics are also considered time continuous.

Continuous UKF’s are generally computationally more expensive than Continuous-
discrete UKF’s, and Continuous-discrete UKF’s are generally more expensive than
discrete-time UKF’s. Computing integrals is costly and i) Continuous UKF’s computes
integrals in both the prediction and corrections steps, ii) Continuous-discrete UKF’s
computes integrals in the prediction step, and iii) discrete-time UKF’s do not compute
any integral.

5.9 GUIDELINES FOR USERS

In this chapter, we have proposed a collection of Unscented Filter’s (UF’s) and, in
this section, we present some guidelines to a possible user for selecting one among all
these filters.

In order to choose among all the presented UF’s, let us recall some of their proper-
ties:

• Additive Unscented filters are computationally cheaper than augmented Un-
scented filters, but additive Unscented filters are not suitable to systems whose i)
process noise is not additive relative to the process function and ii) measurement
noise is not additive relative to the measurement function.

• Non Square-root Unscented filters are computationally cheaper than square-root
Unscented filters, but square-root Unscented filters are computationally more
stable than non Square-root Unscented filters.

• For an UF composed of the sigma-representations l1thN1σR1 and l2thN2σR2, the
following statements are generally true:
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– the estimation given by the UF is more accurate for bigger values of l1 and
l2; recall, however, that in order to have the σR’s with either l1 > 2 or
l2 > 2, central moments of order 3 of greater are needed, and we rarely have
these moments at every instant of time.

– if a random vector is symmetric, than a symmetric σR of this random vector
will generally be a better approximation than a non-symmetric σR.

– the computational cost of the UF increases with the increase of N1 and/or
N2.

With these properties, we can choose an Unscented filter suitable to a given practical
problem. An user should conjugate the properties above with the following character-
istics of the problem:

1. Form of the (mathematical) dynamic system. The (mathematical) dynamic sys-
tem modeling the practical problem can have one of the following forms:

(a) Continuous-time or continuous-discrete-time. When one or both the equa-
tions of a given dynamic system are time continuous, we can perform dis-
cretizations of these equations and estimate the resulting discrete-time sys-
tem with a discrete UF. This technique may be advantageous in cases where
the computational efforts of the non discrete filters are high because discrete
UF’s are computationally cheaper than their analogous continuous-discrete
UF’s and continuous UF’s.

(b) Discrete-time system with additive noise. If the system is in the form of
(2.1), then a discrete-time additive UF should be chosen, such as a partic-
ular AdUKF (Algorithm 6) or AdSRUKF (Algorithm 8)—e.g. the filters
in Tables 5.3 and 5.1—; or even a particular lth order Gaussian Additive
Unscented Kalman Filter.

(c) Discrete-time system with non-additive noise. If the system is in the form
of (2.2)—and, naturally, not in the form of (2.1)—, then a discrete-time
augmented UF should be chosen, such as a particular AuUKF (Algorithm
7) or the AuSRUKF (Algorithm 9)—e.g. the filters in Tables 5.2 and 5.4—;
or even an augmented variant of the lth order Gaussian Additive Unscented
Kalman Filter.

(d) Continuous-discrete-time system with additive-noise. If the system is in
the form of (5.43), then a continuous-discrete-time additive UF should be
chosen, such as a particular (CdAdUKF) (Algorithm 11), or a continuous-
discrete-time variant of the lth order Gaussian Additive Unscented Kalman
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Filter.

(e) Continuous-discrete-time system with non-additive noise. If the system is
in the form of (5.44)—and, naturally, not in the form of (5.43)—, then a
continuous-discrete-time augmented UF should be chosen, such as a partic-
ular (CdAuUKF) (Algorithm 12), or a continuous-discrete-time augmented
variant of the lth order Gaussian Additive Unscented Kalman Filter.

(f) Continuous-time system with additive-noise. If the system is in the form
of (5.46), then a continuous-time additive UF should be chosen, such as a
particular (CoAdUKF) (Algorithm 13), or a continuous-time variant of the
lth order Gaussian Additive Unscented Kalman Filter.

(g) Continuous-time system with non-additive noise. If the system is in the form
of (5.47)—and, naturally, not in the form of (5.46)—, then a continuous-
time augmented UF should be chosen, such as a particular (CoAuUKF)
(Algorithm 14), or a continuous-time augmented variant of the lth order
Gaussian Additive Unscented Kalman Filter.

(h) Continuous-time or continuous-discrete-time system with either additive-
noise or non-additive noise. This comment is a complement of the comments
1d, 1e, 1f, and 1g. Even when we have a continuous-time or a continuous-
discrete-time system, we can perform discretizations of this system’s equa-
tions and estimate the resulting discrete-time system with a discrete UF.
This technique may be advantageous in cases where the implementing ma-
chine’s computational power is insufficient to run properly the non discrete
filters—recall that discrete UF’s are computationally cheaper than their
analogous continuous-discrete UF’s and continuous UF’s.

2. Computationally-ill conditions. The choice between a square-root Unscented
filter and an (non square-root) Unscented filter depends on the existence of
computa-tionally-ill conditions. If the filter will have to deal with computationally-
ill conditions—e.g. almost non-positive covariances or poor machine precision—
then we should choose an square-root Unscented filter (e.g. rows 5 to 8 of Tables
5.3 and 5.4, and rows 3 to 4 of Tables 5.1 and Tab 5.2); if not, then choose a non
square-root Unscented filter (e.g. rows 1 to 4 of Tables 5.3 and 5.4, and rows 1
to 2 of Tables 5.1 and Tab 5.2).

3. Form of the state’s pdf. The choice of the σR’s depends on the approximate
form of the state’s pdf at every instant of time. We should consider the following
properties of this pdf:
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(a) Normality. If, at most of the instants of time t, the state’s pdf is almost
Normal, then an user should choose σR’s proper to Normal random vectors,
such as the Fifth order set of [47] (Tab 2.1 [4,2]). In this case, a variant of
the lth order Gaussian Additive Unscented Kalman Filter (Algorithm 10)
would be a good choice; the value of l would depend on the capacity of the
computer in which the filter would be implemented.

(b) Symmetry. If, at most of the instants of time t, the state’s pdf is symmetric
but not close to a Normal pdf, then an user should choose minimum symmet-
ric 2σR’s, such as the MiSyσR (Corollary 3.4) or the HoMiSyσR (Corollary
3.4). On the other hand, if, at most of the instants of time t, the state’s pdf
is not symmetric, then an user should choose a minimum (non-symmetric)
σR such as the MiσR (Theorem 3.2) or the RhoMiσR (Corollary 3.5).

5.10 CONCLUSIONS REGARDING UNSCENTED FILTERS

In this chapter, we showed that, among the AdUKF’s of the literature, there is only
one consistent with the UT and the system (2.1) (cf. Section 5.1). This is the reason
behind the fact that, when (2.1) is linear, the estimates of most of the AdUKF’s are
not equivalent to the linear KF’s one (cf. Section 2.8).

That consistent AdUKF of the literature was used as a basis to propose our AdUKF
(Section 5.2). Our AdUKF is, nevertheless, more general and better principled because
it is defined using the definitions of UT and σ-representation developed in the previous
chapters. Besides, we extended our AdUKF and proposed i) a square-root variant
(Section 5.3), ii) an UKF variant for the more general system (2.2) (Section 5.2), and
iii) a square-root variant of this UKF for system (2.2) (Section 5.2). All the consistent
UKF’s and SRUKF’s of the literature showed to be particular cases of our Unscented
Filters. Numerical comments are provided in Section 5.5.

We extended even further our systematization of the Unscented Filter. In Section
5.7 we commented how higher order Unscented filters could be defined, and in Section
5.8 we proposed continuous-time and continuous-discrete-time variants of the proposed
Unscented filters.

We also provided i) guidelines for choosing the most suitable Unscented Filter for
a given practical problem (Section 5.9), and ii) numerical examples illustrating the
results of this chapter are given (Section 5.6).

With this chapter we end the theoretical part of our systematization of the Un-
scented Kalman filtering theory for systems in the form of (2.1) and (2.2)—other forms

127



are considered in Part II. In the next chapter, we show the good properties of some
UKF’s proposed in this systematization in practical problem of estimating the position
of an automotive electronic throttle valve.
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6. APPLICATION: ESTIMATION OF
AUTOMOTIVE ELECTRONIC
THROTTLE VALVE’S POSITION

In the preceding chapters, the theory of Unscented Kalman Filters was systematized;
in this systematization, new results were introduced, some problems were solved, and
some scientific properties—such as formalism, and cohesion—were consolidated. Al-
though some analytical and some numerical examples were presented to illustrate these
new results, these contributions are theoretical and numerical. Completing the triad
of scientific results—theory, simulation, and experiment—this chapter presents an ex-
perimental/technological innovation using some of the new UKF’s developed in the
preceding chapters; these filters are used to estimate the position of an automotive
electronic throttle valve. Besides being a practical application of the UKF theory de-
veloped so far, this throttle valve’s estimation is also an innovation on its own, from
the technological point of view.

The electronic throttle valve of vehicles has been intensively improved by the auto-
motive’s industry in the last few years. Made up by a circular plate moving around a
central axis, the throttle valve is a fundamental mechanism used in almost all modern
spark-ignition combustion engines. The throttle’s task is to regulate the power pro-
duced by the engine, and to do so, the throttle controls the amount of air entering
into the combustion chambers. The rich literature has confirmed the importance of
improving the throttle’s functionality, see for instance [114–122] for a brief account.

The throttle is a single-input single-output process. When a voltage is applied in
its input, the apparatus generates an angular movement of the throttle valve; and a
sensor measures the angular position of the valve.

Even though reliable and vastly used by the automotive industry, the sensor of
position is not free of failures at all. In case of failure, the throttle’s functionality
becomes deteriorated, a fact that increases the risks of damage—some specialists ar-
gue that the sudden acceleration in Toyota’s vehicles are related to failures in the
throttle [123, p. 478-479]. Also, failures in the throttle’s functionality may appear
due to tin whiskers [124, 125]. In summary, failures in the throttle’s functionality are
unacceptable.

Our main idea to overcome the effects of a failure in the sensor of position is to add
in the circuitry a new sensor. This new sensor is detached from the throttle’s body, but
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it is positioned in series with the throttle’s input so as to measure the electrical current
consumed by the throttle. The measure from the new sensor then feeds Unscented
Kalman Filters, and so the filters estimate the position of the throttle—notice that the
filters rely only on the measurements from this new sensor (Figure 6.1; a wattmeter was
added in series with the throttle circuit to measure the electrical current consumed by it
[variable ik]; the real-time position of the throttle [see model in (6.1)] and its estimation
from a Unscented Kalman Filter are denoted by θk and θ̂k, respectively; the voltage
input is denoted by uk). Although simple, our idea is motivated by the fact that both
the position and electrical current represent system states in the throttle’s model, an
intricate nonlinear model [120,126,127]. Estimating the position of the throttle through
Unscented Kalman Filters sets the main finding of this chapter.

Unscented Kalman Filter

Wattmeter
Throttle

θk

ik

uk

V

θ̂k

Figure 6.1: Diagram of the input-output relationship for an automotive electronic
throttle device implemented in a laboratory testbed.

Unscented Kalman Filters are useful to processes with failures in sensors. For
instance, in this chapter Unscented Kalman Filters are used to estimate the position of
an automotive throttle valve with no sensor of position at all. The practical implications
of the proposed approach is confirmed by accuracy the experimental results (see Section
6.4).

6.1 AUTOMOTIVE ELECTRONIC THROTTLE VALVE

The problem considered in this chapter can be modeled by the following additive
stochastic discrete-time system

xk+1 = f(xk) + F$k,

yk = h(xk) +Hϑk;
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where xk ∈ Φnx denotes the system’s internal state, yk ∈ Φny the measured output,
$k ∈ Φn$ the process noise, ϑk ∈ Φnϑ measurement noise. We suppose that the
matrices F ∈ Rnx×n$ and H ∈ Rny×nϑ , and the functions f : Rnx → Rnx and h :
Rnx → Rny are given.

Even though successful for many instances, modeling the throttle remains a chal-
lenge since i) its assemblage is not unique, and ii) the throttle presents nonlinear
dynamics due to the stick-slip, hysteresis, restoring springs, and limp-home constraints
[115,120,126,128,129]. Our approach contributes towards the modeling and estimation
of such nonlinear device, as detailed next.

The experiments presented in this section were conducted in a laboratory1 testbed
with the following equipments: a unity of Quanser Q4 Real-Time Control Board that
allowed us to communicate real-time data with Matlab-Simulink software; a unity of
Quanser UPM180-25-B-PWM Power Amplifier to supply the voltage and electrical
current consumed by the equipments; and a unity of the automotive electronic throttle
body made up by Continental Siemens VDO, Model A2C59511705, P.N. 06F133062J.
The acquisition card of the Quanser Q4 Board was configured to work with data
sampling fixed at 1 ms.

The throttle is assembled with an internal sensor of position, which maps the range
of operation from zero to ninety degrees into zero to five Volts, in a linear relationship.
The velocity of the valve can be computed by a numerical approximation of the deriva-
tive of the position. The electrical current (electric power) consumed by the throttle
was measured by an ampmeter (a wattmeter).

6.2 MODELING

According to [119] and [130], the throttle can be modeled as a piecewise linear
system. An advantage of this piecewise setup is that it conveys the simplicity of linear
systems to represent the throttle, a nonlinear device. A collateral effect is that of
neglecting some significant nonlinear characteristics. Thus it seems reasonable to join
these two setups into a single one, i.e., both piecewise linear dynamics [119, 130] and
nonlinear dynamics [115,120,126,128,129] into a single model.

The automotive electronic throttle body is usually represented by a three-dimensional
system [120, 126, 127, 131]; the three states of the system are (i) the angular position

1In the Control, Dynamics and Applications Laboratory (CoDAlab) at the Universitat Politècnica
de Catalunya, in Barcelona, Spain. We would like to acknowledge the professors Leonardo Acho
(with the CoDAlab) and Alessandro Vargas (with the Universidade Tecnológica Federal do Paraná,
in Paraná, Brazil) for collaborating on developing the results of this chapter.
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of the throttle valve θ, (ii) the angular velocity of the throttle valve %, and (iii) the
electrical current consumed by the throttle i. The voltage applied in the terminals
of the throttle represents the input of the model (i.e., u), recall the scheme shown in
Figure 6.1.

The model used here is based on the physically driven, traditional continuous-time
model (e.g. [126, Eq. (6)], [120, Eq. (6)], [127, Eq. (8)])

d

dt


θk

%k

ik

 =


0 a12 0
a21 a22 a23

0 a32 a33



θk

%k

ik

+


0
0
b

ut +


0

ϕ(θk, %k)
0

 , (6.1)

where ϕ : R2 → R denotes a piecewise linear function. Each paper [120, 126, 127]
proposes a distinct format for the function ϕ(·), so that there is no general consensus
on ϕ(·).

Interestingly, experimental data indicated that the non-linearities of the throttle are
more noticeable when the position of the throttle valve is near to the closed position; the
effects of non-linearities decrease as long as the valve opens. This motivated us to split
the region of operation of the throttle in three main regions, aiming for improving the
throttle’s nonlinear representation: Θ1 = [0◦, 8◦], Θ2 = (8◦, 16◦], and Θ3 = (16◦, 90◦].

Under these three regions, we considered a discrete-time version of (6.1)—a discrete-
time system was chosen to reduce the computational effort of the Unscented filters;
in fact, discrete UF’s are usually computationally cheaper than continuous UF’s (cf.
guideline 1h of Section 5.9)—; namely, with

xk := [0.1× θk %k ik]T ∈ R3,

the usual Euler discretization is applied in (6.1) to obtain

xk+1 =


1 a

(s)
12 0

a
(s)
21 a

(s)
22 a

(s)
23

0 a
(s)
32 a

(s)
33

xk +


0
0
b(s)

uk + F$k +


0

c
(s)
1 sgn(%k) + c

(s)
2 sgn(θk − 1) + c

(s)
3

0

 ;

θk ∈ Θs, s = 1, 2, 3, ∀k ≥ 0; (6.2)

where the values of a(s)
12 , . . . , a

(s)
33 , b

(s), c
(s)
1 , . . . , c

(s)
3 , s = 1, 2, 3, are available in Table 6.1;

these values were identified according to a procedure described later. For the moment,
notice in (6.2) that the sth mode is active at the kth stage when θk belongs to the set
Θs.
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Table 6.1: Parameters of the nonlinear stochastic model representing an automotive
throttle body.

Parameter s = 1 s = 2 s = 3

a
(s)
12 −0.003 0.0021 0.0442
a

(s)
21 0.148 −0.143 −0.0192
a

(s)
22 0.9625 0.9941 0.7981
a

(s)
23 −0.8673 1.8944 0.3538
a

(s)
32 0.0005 −0.0004 0.0349
a

(s)
33 0.944 0.9514 0.9043
b(s) 0.0741 0.0346 0.0442
c

(s)
1 −0.0654 −0.1068 −0.0055
c

(s)
2 −0.007 0.0529 0.0615
c

(s)
3 0.2255 −0.3419 −0.0862

6.3 IDENTIFICATION

Persistent excitation signals were applied in uk, and the corresponding real-time
system state xk was measured and stored. An amount of 3.8 million of points were
used in uk, and they were carefully chosen so as to excite all the possible input-output
relations for the throttle. Indeed, the values of uk were obtained by passing a train of
pseudo-random rectangular pulses, with time-varying random amplitudes (from 0 to
10 Volts), through a fourth-order Butterworth low-pass filter with a cutoff frequency
chosen randomly between 0.01 and 60 Hz.

The parameters of (6.2) were chosen so as to minimize the mean square error
between part of the collected data and the simulated data from (6.2) (with $k ≡ 0).
In this procedure, we used three blocks of data, and each block contained input-output
data with ten thousand points generated via persistent excitation signals plus a DC
offset.

After obtaining the parameters of (6.2) (cf. Table 6.1), we checked the statistical
properties of the term $k, as follows. We calculated the error ek = xk − x̃k, where
xk satisfies (6.2) with $k ≡ 0 and x̃k represents the corresponding real-time measured
point; in this evaluation, we used all the previously stored 3.8 million of points. Based
on the calculated error, we made a statistical analysis (see Figure 6.2 for a pictorial
illustration), which suggested that {$k} is a Gaussian stationary process and F in
(6.2) is

F = diag
(√

0.35, 0,
√

0.18
)
.

A minor bias was detected in ek with mean error of 1.5◦ for angular position and
−0.12 A for electrical current (see Figure 6.2). Although the error bias was not repre-
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sented in the model (6.2), it was accounted appropriately in the estimation procedure,
the main experimental part of this chapter, to be detailed next.
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Figure 6.2: Automotive electronic throttle device: normalized histogram showing the
error between the model and real-time data. The picture in the left (right) shows the
error for the position (electrical current) of the throttle. The histograms tend to follow
Gaussian functions with null mean and variance as indicated.

6.4 CASE STUDY: AUTOMOTIVE ELECTRONIC THROT-
TLE VALVE WITHOUT SENSOR OF POSITION

As previously discussed, a failure in the sensor of position is undesirable because it
increases the risks of damage (e.g., [124]). To mitigate the effects of an eventual failure
in the sensor of position, we suggest the use of Unscented Kalman Filters accompanied
by measurements from an additional sensor, detached from the throttle’s structure but
connected to it electronically, as shown in Figure 6.1. Showing the usefulness of this
simple strategy represents the main contribution of this chapter.

To clarify our main contribution, we assume hereafter that the sensor of position
is damaged. In this situation, we use a wattmeter in the circuitry of the throttle, as
depicted in Figure 6.1.
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Remark 6.1. Any instrument generating measurements that depend on the current ik
could be used in place of a wattmeter. For instance, the wattmeter reads the power
consumption i2k plus some imprecision ϑk , i.e.,

yk = i2k + ϑk, ∀k ≥ 0, (6.3)

where {ϑk} represents a standard Gaussian stationary noise. With h(·) being any
continuous function, instruments giving measurements in the form yk = h(ik) + ϑk

could be considered in place of (6.3). In our experiments, the wattmeter was the
chosen sensor due to its low-cost.

The value of measurements yk fed the Unscented Kalman Filters, which produce θ̂k,
an estimation of the position θk. Generating θ̂k in practice for the automotive throttle
device reinforces the contribution of this chapter.

We use the following Additive Unscented Kalman Filters (AdUKF’s):

1. Homogeneous Minimum Symmetric Additive Unscented Kalman Filter (HoMi-
SyAdUKF, Tab 5.3 [1,3]), which is equivalent to the UKF of [1] (second row of
Table 2.3);

2. Rho Minimum Additive Unscented Kalman Filter (RhoMiAdUKF, Tab 5.1 [1,3]);

3. Minimum Additive Unscented Kalman Filter (MiAdUKF, Tab 5.1 [1,2]).

These three filters were evaluated in simulation and experiments with n = 3, x̂0|0

= [0 0 0]T , and P̂ 0|0
xx = I, as follows.

1. (Simulation). Two million points were considered in the input uk. Then these
points were used in (6.2) to compute both the statistical mean of (6.2), say x̄k,
and the estimation value from the AdUKF’s, say x̂k|k. The position error is
obtained by extracting the first element from the computed vectors to obtain
ek = θ̂k|k − θ̄k.

2. (Experiment). The same input uk used in the previous item [1. (Simulation)]
was also used in the laboratory testbed to generate ỹk, which denotes the value
collected from the wattmeter in practice. Both uk and ỹk were applied in the
AdUKF’s to generate a estimations of the system state, say x̃est

k|k. The first element
of the vector x̃est

k|k is θ̃est
k|k, the estimated position. The sensor of position was used

to generate θ̃k, the real value of the position of the throttle. Finally, the error
produced by the estimation procedure was computed in ek = θ̃est

k|k − θ̃k.
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Table 6.2 presents the values of the mean and standard deviation of the error for the
three filters for both cases, simulation and practice. As expected, the error in the
simulation is smaller than the one observed in practice.

Table 6.2: Measure of the mean and standard deviation of the error produced by Un-
scented Kalman Filters when they were used to estimate the position of an automotive
throttle body.

Simulation Experiment

UKF Filters Mean (◦) Std (◦) Mean (◦) Std (◦)
HoMiSyAdUKF −0.090 4.002 2.206 6.749
RhoMiAdUKF −0.071 4.061 2.225 6.696
MiAdUKF −0.078 3.983 2.219 6.560

From Table 6.2, it can be said that all filters produced a practical error of around
2.2◦ ± 13.4◦ with a confidence interval of 95% (c.f . [132, Sec. D3, p. 553]). This
signifies that the filters recovered the information of the position in practice with a
precision close to 2.2◦± 13.4◦. Subtracting the result by the bias error of 1.5◦ observed
in the model (see Section 6.2), the estimation can be adjusted to the improved value
0.7◦ ± 13.4◦. These findings reinforce the contribution of this chapter.

Concerning the individual performance of each filter, the UKF introduced in this
work (the MiAdUKF) provided the smallest standard deviation in both the simula-
tion (3.983, Tab 6.2 [4,3]) and experimental cases (6.560, Tab 6.2 [4,5]). The supe-
rior performance of the MiAdUKF over the HoMiSyAdUKF is further highlighted by
the difference in their computational effort; the MiAdUKF (and the RhoMiUKF) is
lighter—it uses nx + 1 sigma points—than the HoMiSyAdUKF—it uses 2nx + 1 sigma
points. Summarizing, the MiAdUKF was the best filter relative to the computational
cost and the estimation quality.

For sake of illustration, part of the data is depicted in Figure 6.3. As can be seen,
the estimated position recovered the real position within the prescribed accuracy (i.e.
0.7◦ ± 13.4◦).

6.5 CONCLUSIONS REGARDING THE ESTIMATION OF
THE THROTTLE VALVE

The findings of this chapter have practical implications, with special interest to
automotive electronic throttle devices. Throttle device often have a unique sensor that
measures the angular position of the throttle’s valve; thus, failures in this solitary
sensor increase risks of damage in the whole system. Wishing to mitigate the impact
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Figure 6.3: Real-time position (measured) and estimated position for an automotive
throttle device. The estimated position was calculated by an Unscented Kalman Filter,
which was fed only with measurements of the electrical power consumed by the throttle.

of a failure from the sensor of position, we suggest an approach that joins Unscented
Kalman Filters with measurements produced by a wattmeter.

The novelty here relies on the use of a wattmeter to measure the electric power
consumed by the throttle. As detailed in Remark 6.1, the wattmeter was preferred due
to its low cost. However, any other kind of instruments could be used in place of a
wattmeter without necessity to modify the proposed technique.

Measurements from the wattmeter feed UKF’s, and these filters, in their turn,
generate estimates for the position of the throttle. To the best of our knowledge,
this work is the first to combine a filter with an external sensor aiming to improve a
throttle’s functionality.

Experiments that were carried out in laboratory showed promising results—the
experimental data suggested an error of 0.7◦ ± 13.4◦ (confidence level of 95%) for the
estimated position. This finding was quite accurate, since the estimation was taken
over a range from 0◦ to 90◦. This evidence corroborates the novelty of this chapter’s
approach.

This chapter closes Part I. In this part, by reviewing the Unscented Kalman fil-
tering theory’s state-of-the-art, we showed some inconsistencies and gaps within this
theory (Chapter 2). In consequence, in Chapters 3, 4 and 5 we proposed a system-
atization that is able to clear these inconsistencies and fill these gaps. Besides, new
results were introduced with this systematization. Most of the results provided by
this systematization were illustrated in numerical examples. Finally, in this chapter, a
new experimental/technological technique was proposed using some of the new UKF’s
proposed with in the preceding chapter. Summing all the achievements of this part,
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we can say that the developed theory so far is elegant, precise, strong; and have been
verified in numerical simulations, and practical experiments.

*********

Recall that all this theory developed so far is based on the concepts of stochas-
tic dynamic systems—either in their discrete-time forms (2.1) and (2.2), or in their
continuous-time form (5.43) and continuous-discrete-time forms (5.44). Note that, for
all these systems, the variables—the state vector, measurement vector, and noises—
take values in Euclidean spaces. Such Euclidean systems can be used to model numer-
ous practical problems; yet, for certain practical problems, it might be better to use
other classes of systems.

When we want to determine a dynamical model involving rotations and/or orienta-
tions, it may be advantageous to use unit quaternions rather then rotation matrices—
these matrices are the natural way to model rotations in an three-dimensional Euclidean
space. Hence, we can consider stochastic dynamic systems where at least some of their
variables are unit quaternions; in this case, we could inquire whether the systematiza-
tion developed so far can be extended to such unit quaternion systems or not.

Some fundamental concepts used to develop the theory of the preceding chapters—
mainly the ones regarding the theories of probability and statistic—are not yet devel-
oped for unit quaternions, particularly. Nonetheless, there are some of these concepts
developed for Riemannian manifolds, which is a general case of the set of unit quater-
nions.
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Part II

Unscented Kalman Filtering on
Riemannian manifolds
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7. UNSCENTED KALMAN
FILTERING FOR QUATERNION
MODELS WITH ADDITIVE-NOISE

Euclidean state space models are adequate for problems whose dynamics can be consid-
ered as motion of dimensionless material points, that is, linear displacements and veloc-
ities. However, for extensive bodies, besides these linear extension characteristics, the
body pointing direction and angular (rotational) movements are important [133–135].
In this chapter we consider filtering for rotating systems.

Within Euclidean spaces, rotations of 3-dimensional bodies are mathematically rep-
resented by an action (the usual matrix product) of the group of orthogonal 3 × 3
matrices with determinant equal to 1; these matrices are called rotation matrices, and
this group is called the Special Orthogonal Group and denoted SO (3).

Nevertheless, modeling rotations with unit quaternions may be advantageous com-
parative with rotation matrices. Performing calculations with the SO (3) is often
computationally expensive, but we can consider computationally-efficient parameter-
izations of this group such as Euler-angles, rotation vectors, and unit quaternions1.
Among other good properties, unit quaternions do not have singularities when repre-
senting rotations [33]. Unit quaternions form the set of points distanced by 1 (by the
usual notion of distance in Euclidean spaces) from the origin of the R4; this set is called
the 3-sphere and denote by S3.

We consider the following quaternionic pair of equations modeling a rotating system:

x
′

k = fk
(
x
′

k−1,$
′

k

)
,

y
′

k = hk
(
x
′

k,ϑ
′

k

)
;

where

1. k is the time step, x′k := (xk, xk) the internal state, y′k := (yk, yk) the measured
output, $′

k := ($k, $k) the process noise, and ϑ′k := (ϑk, ϑk) the measurement
noise;

2. xk ∈ Φnx , yk ∈ Φny , $k ∈ Φn$ , and ϑk ∈ Φnϑ ; and
1We say parameterizations of the group SO (3) with an abuse of language, because we should rather

refer to parameterizations of the set of rotation matrices.
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3. xk, yk, $k, and ϑk take values on S3; they are “random unit quaternions”—
by “random unit quaternions”, we mean functions mapping from a set of events
to S3; in this chapter, we work only with this intuitive notion because the Un-
scented literature still has not presented a formal definition for these “random
unit quaternions”; later, with the theory developed in the following chapters, we
will introduce a consistent way of defining the “random unit quaternions”.

We suppose the distributions of $k, ϑk and the initial state x0 are characterized
by Gaussian, multidimensional-real-valued parameterizations2. We can find (7.1) be-
ing used to model rotations or attitudes concerning spacecrafts [48, 138, 139], inertial
navigation systems [48, 140], assisted surgeries [15, 141], pedestrian localization sys-
tems [142], and others.

In this chapter, we treat only additive-noise Unscented filters (UF’s)—UKF’s and
SRUKF’s—for the system (7.1) because the majority of the UF’s for rotating systems
with unit quaternions are additive-noise filters (cf. [48, 138, 139, 142–159] and [160])—
meaning that, in these Unscented filters, i) the mean and covariance of $′

k are added,
respectively, to the ones of fk (xk−1); and ii) the mean and covariance of ϑ′k are added,
respectively, to the ones of hk (xk).

However, for now, we will not consider a closed-formed for a additive-noise quater-
nion model [additive-noise cases of (7.1)], because all the additive-noise quaternion
models associated with the additive-noise filters of the literature present problems (see
Remark 7.1). Instead, we will work with the following additive-noise quaternion model:

x
′

k = fk
(
x
′

k−1

)
⊕$′

k,

y
′

k = hk
(
x
′

k,
)
⊕ ϑ′k; (7.1)

where, for the “random unit quaternions” q with mean q̄ and covariance Pq, and p
with mean p̄ and covariance Pp; q ⊕ p is an well-defined operation (closed under the
S3) with mean

q ⊕ p := q̄ ⊕ p̄

and covariance
Pq⊕p := Pq̄ ⊕ Pp̄.

We will work with system (7.1) temporarily; with the theory developed in the following
2We do not consider the Unscented filters of [136] and [137]; even though this is an Unscented

filter for rotating systems with unit quaternions, the system in [136] is modeled with the Bingham
Distribution, and in [137] with the von Mises-Fisher Distributions. These approaches deviate from
the analysis of this chapter, which deals with Gaussian Distributions. See also the comments at the
beginning of Chapter 8.
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chapters, we will introduce a consistent way of representing additive-noise quaternion
systems.

Extending the Unscented Kalman filtering theory developed in Part I to quaternion
models is not trivial. All the UF’s pertaining to our Euclidean systematization are
composed of i) sums and ii) multiplications by scalars, but unit quaternions are not
closed under these operations.

The Unscented literature already has some Unscented filters for quaternions sys-
tems. In this chapter, we analyze all the diverse additive UKF’s and SRUKF’s for
quaternion systems proposed in the literature—considering essentially distinct algo-
rithms, we can enumerate the following works [48, 55, 138–140, 142–161]. From this
analysis, we show that i) a considerable amount of these filters do not guarantee the
quaternion norm to be the unity; and ii) all UKF’s preserving the quaternion norm
are particular cases of a new algorithm, namely the Quaternionic Additive Unscented
Kalman Filter (QuAdUKF) for additive-noise quaternion models (Section 7.3.1). In-
deed, the QuAdUKF can result in any of additive quaternionic UKF’s of the literature
by particular choices of a σ-representation, weighted mean method, and vector param-
eterization of the S3 (possible choices are provided).

We also introduce a square-root extension of the QuAdUKF, the Quaternionic Ad-
ditive Square-Root Unscented Kalman Filter (QuAdSRUKF), having better properties
than all the SRUKF’s for quaternion systems of the literature (Section 7.3.2). By
simply choosing a particular σ-representation, a method for the weighted mean, and
a vector-parameterization of the S3; we obtain a list of new SRUKF’s for quaternion
systems having better properties than any SRUKF for quaternion models of the liter-
ature.

This superior performance of the QuAdSRUKF is illustrated in the numerical sim-
ulations of Section 7.4.2. In these simulations, we show that, in some computationally-
unstable conditions, the QuAdSRUKF is able to provide good estimates in scenarios
where even the most successful and/or new additive UKF’s and SRUKF’s for quater-
nion models fail to do so (Section 7.4.2.3). Furthermore, even in normal (computationally-
stable) conditions the QuAdSRUKF outperforms the Unscented filters of the litera-
ture by presenting better estimates (Section 7.4.2.2; the second smallest mean error is
10, 56% higher than the error of the new SRUKF).

Remark 7.1. All additive-noise versions of (7.1) associated with the additive-noise fil-
ters of the literature— [48,138,139,142–159]—present problems. These additive-noise
Unscented filters are associated with three classes of models:

1. in [48,138,140,150,153–155] and [139], the quaternion models are written in the

142



following form:

x
′

k = fk
(
x
′

k−1

)
+$′

k,

y
′

k = hk
(
x
′

k

)
+ ϑ′k; (7.2)

which may result in the state variables xk and yk taking values outside of S3.

2. in [143] and [160], the quaternion part of the process equation is written in the
following form:

xk = f
′

k (xk−1)⊗$k (7.3)

(⊗ represents the quaternion multiplication; see Section 7.1.1). However, in this
case, their additive UF’s—recall that, in additive UF’s, the mean and covariance
of the process noise are added, respectively, to the estimate’s of the predicted
state’s mean and covariance—are not consistent with the associated quaternion
model because generally, from (7.3), neither the mean of xk (x̄k), is given by
f
′
k(xk−1) + $̄k; nor the covariance of xk (Pxkxk) is given by Pf ′

k
(xk−1)f ′

k
(xk−1) +

P$k$k
.

3. [144, 145, 147–149, 151] and [152], the quaternion noises are not written in the
considered system. Even though the UF’s are with the means and covariances of
the process and measurement noises, the equations of the quaternion models are
presented without these noises. Naturally, in these cases, we can not determine
what is the considered noisy model.

From the analysis of this Remark, we can say that writing a consistent additive-noise
version of (7.1) is not trivial. With the theory developed in the following chapters,
we will present a consistent way of representing additive-noise quaternion systems (see
Section 9.3.1).

*********

Before presenting the additive UF’s for quaternion models of the literature, we
present in the next section i) the main concepts of the quaternion algebra, ii) how unit
quaternions relates with rotations, and iii) how to parameterize the set of unit quater-
nions with vector spaces; we will need these concepts when developing the Quaternionic
UF’s.

The Unscented filters for quaternion models of the literature are analyzed in Section
7.2. By investigating how each of these filters, we i) divide these filters under some
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categories, one of them being the filters preserving the norm of the unit quaternions
at every step; and ii) identify and classify, particularly, the solution given by each of
these filters to each one of the steps in UF’s for Euclidean systems that are difficult to
extend to the case of UF’s for quaternion models.

Afterwards, in Section 7.3, we i) unify all the UKF’s preserving the norm of the
unit quaternions at every step in one single algorithm, the QuAdUKF; and ii) intro-
duce a square-root variant of this unifying algorithm, the QuAdSRUKF, having better
computational properties comparative with all the SRUKF’s of the literature.

Finally, in Section 7.4, we illustrate some of the results of the chapter in numerical
simulations.

7.1 QUATERNIONS AND THEIR PARAMETERIZATIONS

Quaternions form a four-dimensional algebra over the real numbers and can be
used to parameterize the SO (3) [162]. By the fact that “globally nonsingular three-
dimensional parametrization of the rotation group is topologically impossible”, they are
a good choice to represent rotations in comparison to other three dimension parameter-
izations, such as the Euler angles; unit quaternions are singularity-free representations
of rotations [34].

7.1.1 Quaternion Algebra

The algebra of quaternions, denoted by H, is generated by its basis elements 1, ı̂, ̂
and k̂, whose multiplication is defined pairwise as [162]:

−̂̂ı = ı̂̂ = k̂, −k̂̂ = ̂k̂ = ı̂, −ı̂k̂ = k̂ı̂ = ̂,

ı̂2 = ̂2 = k̂2 = −1;

an element of H is of the form

q := q1 + ı̂q2 + ̂q3 + k̂q4 = q1 + ımq

where q1, q2, q3, q4 ∈ R are called the Euler symmetric parameters or the Euler-Rodrigues
parameters [34]; ım := [̂i, ĵ, k̂] the imaginary vector unit; and q := [q2, q3, q4]T ∈ R3

the quaternion vector. We call Re (q) := q1 ∈ R the real part or the scalar part of
the quaternion, Im (q) := q the imaginary part of the quaternion (in analogy with
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standard complex numbers). We should take care to the fact that some works define
a quaternion by interchanging the order of the real and imaginary parts such that
q := ı̂q1 + ̂q2 + k̂q3 + q4 (cf. [48, 161]). The sum (subtraction) of two quaternions
a = a1 + ı̂a2 + ̂a3 + k̂a4 and b = b1 + ı̂b2 + ̂b3 + k̂b4 is defined by

a± b := a1 ± b1 + ı̂ (a2 ± b2) + ̂ (a3 ± b3) + k̂ (a4 ± b4) ,

and the multiplication by

a⊗ b : =
(
a1 + ı̂a2 + ̂a3 + k̂a4

) (
b1 + ı̂b2 + ̂b3 + k̂b4

)
= (a1b1 − a2b2 − a3b3 − a4b4) + ı̂ (a1b2 + b1a2 + a3b4 − a4b3)

+ ̂ (a1b3 − a2b4 + a3b1 + a4b2) + k̂ (a1b4 + a2b3 − a3b2 + a4b1) . (7.4)

For a quaternion q, q−1 ∈ H is its inverse if

q ⊗ q−1 = q−1 ⊗ q = 1.

In analogy with complex numbers, the norm and the conjugate of q are defined in order
to calculate the inverse of an arbitrary quaternion. The conjugate of a quaternion q,
q∗ ∈ H, is given by

q∗ := Re (q)− ımIm (q) ;

and the norm by
‖q‖ :=

√
Re2 (q) + ImT (q) Im (q).

If ‖q‖ 6= 0, then
q−1 = q∗

‖q‖2 .

If ‖q‖ = 1, we call q a unit quaternion or quaternion of rotation. The set of unit
quaternions forms a group under the quaternion multiplication defined in (7.4), but
not under the sum nor the scalar multiplication [33], hampering the creation of UKF’s
for quaternion systems (see Section 7.2). For a rotation of an angle θ around an unit
vector n∗, there are two associated unit quaternions q and q′ such that [162]

q = cos
(
θ

2

)
+ ımn∗ sin

(
θ

2

)
, q′ = −q.

Therefore the SO (3) can be parameterized by unit quaternions, but the set of all unit
quaternions covers the SO (3) twice.
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7.1.2 Vector Parameterizations of Unit Quaternions

Unit quaternions might be a good choice to model rotations. Sometimes, neverthe-
less, computations of unit quaternions may become problematic, and it may be conve-
nient to use vector parameterizations of the S3 such as rotation vectors (RoV’s), gen-
eralized Rodrigues vectors (GeRV’s) or quaternion vectors (QuV’s)—if v = [v1, ..., vn]T

is one of these vector parameterizations, then the scalars v1, ..., vn are the parameters
of these parameterizations, e.g., if v = [v1, v2, v3]T is a GeRV, then v1, v2, and v3 are
the parameters; indeed they are known as the GeRV parameters (cf. [48, 163]).

For a unit quaternion q := q1 + ımT q with ‖q‖ 6= 0, the RoV qvRoV associated with
q is given by

QtoRoV (q) := qvRoV (7.5)

where [148]:
qvRoV := 2 arccos (q1) q

‖q‖
; (7.6)

and the inverse transformation, for ‖qvRoV ‖ 6= 0, is given by

RoVtoQ (qvRoV ) := q (7.7)

where
q := cos

(
‖qvRoV ‖

2

)
+ ım

qvRoV
‖qvRoV ‖

sin
(
‖qvRoV ‖

2

)
. (7.8)

A GeRV can be viewed as a stereographic projection of a unit quaternion. As the
name generalized Rodrigues vector suggest, (standard) Rodrigues vectors are particular
cases of GeRV’s [163]. While Rodrigues vectors have singularities at q1 = 0, GeRV’s
can modify the location of its singularities by changing a tuning parameter (a below).

For a unit quaternion q := q1 + ımq, the GeRV qvGeRV ∈ R3 associated with q is
given by

QtoGeRV(q) := qvGeRV

where

l := 2(a+ 1), qvGeRV := l
q

a+ q1
, (7.9)

a 6= −1 is a chosen parameter and l is a scaling factor (see [48] for more details). The
inverse transformation is, for a 6= −1, given by

GeRVtoQ (qvGeRV ) := q
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where

l := 2(a+ 1),

q1 :=
−a ‖qvGeRV ‖

2 + l
√
l2 + (1− a2) ‖qvGeRV ‖

2

l2 + ‖qvGeRV ‖
2 ,

q := l−1 [a+ q1] qvGeRV ,

q := q1 + ımq.

For small rotations, the mapping of an unit quaternion to its own QuV can also be
viewed as a parameterization of the S3. For q := q1 + ımq , its associated QuV qvQuV

is given by
QtoQuV(q) := qvQuV

where [138]
qvQuV := q (7.10)

and the inverse transformation, for
∥∥∥qvQuV ∥∥∥ ≤ 1, by

QuVtoQ
(
qvQuV

)
:= q

where
q :=

√
1−

∥∥∥qvQuV ∥∥∥+ ımqvQuV . (7.11)

However, all these vector parameterizations have limitations. The RoV parameter-
ization has a singularity at the origin, the GeRV presents two singularities [163] and
the QuV is only valid for small rotations. In fact, QtoRoV (•) is not defined for q 6= 0
[cf. (7.6)]—for ‖q‖ → 0, the limit of QtoRoV (q) is 2q—and the exponential of a unit
quaternion is not defined at the origin [‖qvRoV ‖ = 0; cf. (7.6)]—for ‖qvRoV ‖ → 0, the
limit of RoVtoQ (qvRoV ) is 1 + 0.5ımqvRoV . GeRV’s, on their turn, have singularities
whose locations depend on the value of the chosen parameter a in the left equation
of (7.9) (see [163] and [48] for more details). For instance, consider a = 0 (the case
of the standard Rodrigues Vector), then, from the right equation of (7.9), the singu-
larities would be the unit quaternions q with q1 = 0. As for QuV’s, from (7.11), the
transformation from a QuV qvQuV to a unit quaternion q := q1 + ımq is not defined
for

∥∥∥qvQuV ∥∥∥ > 1, since it would result in a complex q1 (remember that, by definition,
q1 ∈ R). Besides, (7.10) is, in reality, an approximating parameterization of q which
is good only for small values of q1. Hence, this transformation cannot be viewed as
a parameterization of the entire S3 (and consequently of the entire rotation group),
but only of the part of the S3 associated with small rotations [in this work, QuV’s are
called parameterizations of the S3 in this sense].
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It might be convenient to use vector representations of the S3 when developing
UKF’s for quaternion models. Representing rotations by unit quaternions is convenient
in general. In some cases, nonetheless, we need to perform operations that are not
well-defined in S3 such as multiplications by scalars and additions. In such cases,
representing unit quaternions by vectors parameterization might be convenient; and
developing UKF’s for quaternion models is one of these cases where multiplications by
scalars and additions are required.

For easy reference, we define the function QtoV standing for any consistent vector
parameterization of the type S3 → V (e.g. QtoV ∈ {RoVtoQ,GeRVtoQ,QuVtoQ})
where V is a vector space; and VtoQ to the inverse of QtoV (e.g. VtoQ ∈ {QtoRoV,
QtoGeRV,QtoQuV}).

7.2 UNSCENTED FILTERS FOR QUATERNION SYSTEMS

UKF’s and SRUKF’s were firstly defined for Euclidean dynamic systems and using
them for quaternion models is not trivial. The UF’s pertaining to our Euclidean sys-
tematization are composed of i) sums and ii) multiplications by scalars (cf. Algorithms
6, 7, 8, and 9), but unit quaternions are not closed under these operations.

For instance, the classical UKF of [2] is given by the following algorithm:

Algorithm 15 (UKF of [2]). Perform the following steps:

1. Previous estimates at time step k.

(a) x̂k−1|k−1, P̂ k−1|k−1
xx and a measurement yk are given.

2. Sigma points

(a) Previous sigma points: choose κ > −nx and set, for 1 ≤ i ≤ nx, the sigma
points

χ
k−1|k−1
0 = x̂k−1|k−1 (7.12)

χ
k−1|k−1
i = x̂k−1|k−1 +

[√
(nx + κ)

(
P̂
k−1|k−1
xx +Qk

)]
∗i

(7.13)

χ
k−1|k−1
i+nx = x̂k−1|k−1 −

[√
(nx + κ)

(
P̂
k−1|k−1
xx +Qk

)]
∗i

(7.14)

and set the weights

w0 = κ

nx + κ
, wi = wi+nx = 1

2(nx + κ) . (7.15)
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(b) Predicted sigma points: for 0 ≤ i ≤ 2nx, set

χ
k|k−1
i = fk

(
χ
k−1|k−1
i

)
, γ

k|k−1
i = hk

(
χ
k−1|k
i

)
. (7.16)

3. Statistics. Set

x̂k|k−1 =
2nx∑
i=0

wiχ
k|k−1
i (7.17)

P̂ k|k−1
xx =

2nx∑
i=0

wi
(
χ
k|k−1
i − x̂k|k−1

)
(�)T (7.18)

ŷk|k−1 =
2nx∑
i=0

wiγ
k|k−1
i (7.19)

P̂ k|k−1
yy =

2nx∑
i=0

wi
(
γ
k|k−1
i − ŷk|k−1

)
(�)T +Rk (7.20)

P̂ k|k−1
xy =

2nx∑
i=0

wi
(
χ
k|k−1
i − x̂k|k−1

) (
γ
k|k−1
i − ŷk|k−1

)T
. (7.21)

4. Posterior estimates. Set

Gk = P̂ k|k−1
xy

(
P̂ k|k−1
yy

)−1
(7.22)

νk = yk − ŷk|k−1 (7.23)

x̂k|k = x̂k|k−1 +Gkνk (7.24)

P̂ k|k
xx = P̂ k|k−1

xx −GkP̂
k|k−1
yy GT

k . (7.25)

Some equations within this algorithm are composed of sums of unit quaternions,
and/or multiplications of unit quaternions by scalars. Naturally, these operations most
often result in non unit quaternions. They happen on the computation of the [we will
refer to the following items as problematic operations (po’s)]:

1. previous state’s σR: (7.13) and (7.14);

2. predicted state’s estimate: (7.17);

3. predicted state’s covariance: (7.18);

4. predicted measurement’s estimate: (7.19);

5. predicted measurement’s covariance: (7.20);

6. predicted cross-covariance: (7.21);

7. innovation term: (7.23);
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8. posterior state’s estimate: (7.24).

Similar analyses can be developed for each of the particular version of the UF’s for
chapter 5. In order to develop consistent UKF’s for quaternion models, we must give
proper solutions to the problems concerning each of these equations when quaternion
algebra is considered.

Within the literature, more than one solution has been given to the problem of cre-
ating additive UKF’s and SRUKF’s for quaternion systems—e.g. [48,55,138–140,142–
161]. Some works use the same algorithms of the UF’s for real systems in quaternions
systems (these works are not considered in the comparative study that follows), that
is, they do not take into consideration the norm restriction (e.g. [15] and [141]); others
do take it into consideration, and can be divided in three groups according to how they
treat this constraint:

1. a first group treats the norm constraint of the unit quaternions, but do not
preserve them in any po (first row of Table 7.1);

2. a second group preserves the norm of the unit quaternions norms only in some
(but not all) po’s (second row of Table 7.1);

3. and a third group preserves the norm of the unit quaternions norms in all the
po’s (third row of Table 7.1).

Table 7.1: Classification of additive UF’s for quaternion models of the literature ac-
cording to how these filters treat the norm constraint of the unit quaternions.

Unscented Filters Algebraic characteristics

[55, 142,147,149,156–158] treat the norm constraint,
but do not preserve them in any po

[143–146,151,153,159,160] preserve the norm constraint
only in some po’s

[48,138–140,148,150,152,154,155,161] preserve the norm constraint in all po’s

Among the group 1), essentially two approaches can be found. First, in [55],
three UKF’s for systems subjected to a constraint equation are presented, to name
the Equality-Constrained Unscented Kalman Filter (ECUKF), Projected Unscented
Kalman Filter (PrUKF) and Measurement-Augmentation Unscented Kalman Filter
(MAUKF), also used by [142, 147, 149, 157] and [158]). “These approaches do not
guarantee that the non-linear equality constraint... is exactly satisfied, but they pro-
vide approximate solutions” [55]; a combination of the PrUKF with the MAUKF is
shown to increase their performances [156]. Second, in [145, 151, 153], a normalization
is performed after the posterior estimate of the state is calculated (see Section 7.2.2.1
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for some restrictions concerning this technique) in the following way: suppose that a
quaternion corrected estimate of the state x̂′k|k ∈ H (x̂′k|k /∈ S3) is given, then the unit
quaternion corrected estimate is

x̂k|k =
x̂
′

k|k∥∥∥x̂′k|k∥∥∥ .

In the UKF’s of the group 2), the quaternion norm is guaranteed to be the unity
in some steps, but in others not: in the po 8) in [143]; 2) in [160]; in po’s 1), 3), and
6) in [144]; 1), 3), 6) and 8) in [145,146] and [159]; 1), 2), 3) and 6) in [151] and [153].

All the filters in the group 3) use vector parameterizations of the S3 (see Section
7.1.2) in order to treat the po’s; they are studied in the following subsections.

7.2.1 Previous State’s Sigma Representation

Table 7.2 presents the σR′s used in each UF of the literature. All the σR’s require
operations of additions and/or scalings. As a result, in order to obtain σR’s for quater-
nion state variables, all the UF’s preserving the norm of the unit quaternion use some
vector parameterizations of S3 (see Section 7.1.2).

Table 7.2: Sigma-representations used by each of the UKF’s and SRUKF’s for quater-
nion systems.

Unscented Filters σR or sigma set (SS)
[48, 143,147,152,155,161,164] HoMiSyσR (Corollary 3.4)
[55,138,139,145,148,154]

σR of [41] (Table 2.1 [4,1])[142,144,151,153,157,158,160]
[140,146,150] SS of [46] (Table 2.1 [2,2]) a

aThe set of [46] is, generally, not a σR because it matches the mean and the covariance
of the previous random vector only for the scalar case (cf. [23]). We keep it in this
classification in order to simplify the exposition.

In the following, for a quaternion q ∈ S3, qv stands for any vector parameterization
of q. Since the vector parameterizations of the S3 present limitations (cf. Section 7.1.2),
some UKF’s for quaternion systems of the literature use deviation quaternions (or error
quaternions as in [48]), which are intended to represent small rotations (we have not
seen any proof in this sense), and hence can possibly overcome these limitations. A
deviation quaternion is represented and defined with q̃; and its vector parameterization,
called deviation vector, by q̃v.

Consider the system (7.2), and suppose that at time step k, x̂k−1|k−1 (the previous
state’s estimated) and P̂ v,k|k−1

xx (the covariance of a vector parameterization of the
previous state) are given. Consider also the function σR(·) defined in (3.9). Then the

151



previous deviation vector σ-representation is obtained by

χ̃v,k−1|k−1 :=
{
χ̃
v,k−1|k−1
i , wmi , w

c
i , w

cc
i

}N
i=1

= σR
(
[0]1×nx , P̂ v,k−1|k−1

xx

)
(7.26)

in [142,144,145,148,150,152,160]; or by

χ̃v,k−1|k−1 :=
{
χ̃
v,k−1|k−1
i , wmi , w

c
i , w

cc
i

}N
i=1

= σR
(
[0]1×nx , P̂ v,k−1|k−1

xx +Qv
k

)
(7.27)

in [48,138,143,149,155,159] where Qv
k ∈ R3×3 is the covariance of a vector parameteri-

zation of$k (the quaternion part of the process noise). In the UKF’s where χ̃v,k−1|k−1

is defined as in (7.26), P̂ v,k|k−1
xx (Section 7.2.3) should be calculated by (7.36); likewise

where χ̃v,k−1|k−1 is defined as in (7.27), P̂ v,k|k−1
xx should be calculated by (7.37). The

influence upon the UKF’s of choosing between the pairs (7.26),(7.36) and (7.27),(7.37)
was not considered in the literature yet.

The sigma points χ̃v,k−1|k−1
i are supposed to be deviation vector parameterizations

sigma points; the deviation quaternion sigma points χ̃k−1|k−1
i are calculated by

χ̃
k−1|k−1
i = VtoQ

(
χ̃
v,k−1|k−1
i

)
, i = 1, . . . , N ;

where VtoQ = RoVtoQ in [138, 143, 148, 152, 160]; VtoQ = GeRVtoQ in [48, 139, 154,
155]; and VtoQ = QuVtoQ in [138, 140, 144, 150, 161] (in [138] the two possibilities
VtoQ = RoVtoQ and VtoQ = QuVtoQ are considered, but only in this po, whilst
in the others, only QuV’s are considered); Table 7.3 summarizes these relations. The
quaternion sigma points χk−1|k−1

i are then calculated by

χ
k−1|k−1
i = χ̃

k−1|k−1
i ⊗ x̂k−1|k−1, i = 1, . . . , N.

Table 7.3: Vector parameterization of the S3 used by the additive UF’s of the literature.

Unscented Filters Vector parameterization of the S3

[138,143,148,152,160] Rotation Vector
[48,139,154,155] Generalized Rodrigues Vector

[138,140,144,150,161] Quaternion Vectora
aThe set of quaternion vectors parameterize the S3 only for small rotations (cf. Section
7.1.2).

7.2.2 Predicted State Estimate

The calculation of the predicted state estimate (either in the form of a unit quater-
nion x̂k|k−1 or a deviation vector parameterization ˜̂xvk|k−1) is also difficult for UKF’s
for quaternion systems; in this section, the solutions given by the literature to this
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problem (Table 7.4) are described. For this, consider that a set of weighted predicted
quaternion sigma points

χk|k−1 :=
{
χ
k|k−1
i , wmi , w

c
i , w

cc
i |χ

k|k−1
i = fk(χk−1|k−1

i )
}N
i=1

is given.

Table 7.4: Methods to calculate the sample weighted means in the additive UF’s of the
literature.

Unscented Filters Method for the weighted mean
[138,140,144,146,152] FN (Section 7.2.2.1)

[48,139,150,154] DPPSE(Section 7.2.2.2)
[143,146,148] GDA (Section 7.2.2.3)

[161] MQVCF (Section 7.2.2.4)
[155] MAMCF (Section 7.2.2.5)

7.2.2.1 Forced Normalization (FN)

The works of [138, 140, 144, 146, 152] performs a forced normalization (FN), which
consists of computing the weighted mean as in the real case (7.17) and dividing this
results by its own norm:

x̂k|k−1 =
∑N
i=1w

m
i χ

k|k−1
i∥∥∥∑N

i=1w
m
i χ

k|k−1
i

∥∥∥ . (7.28)

Then ˜̂xvk|k−1 is given by

χ̃
k|k−1
i = χ

k|k−1
i ⊗

(
x̂k|k−1

)−1
, 1 ≤ i ≤ N (7.29)

χ̃
v,k|k−1
i = QtoV(χ̃k|k−1

i ), 1 ≤ i ≤ N (7.30)

˜̂xvk|k−1 =
N∑
i=1

wmi χ̃
v,k|k−1
i, , (7.31)

where QtoV = QtoRoV in [138,152]; and QtoV = QtoQuV in [138,140,144].

For the distance function

dist (q1, q) := 2 arccos (q1, q)

(the S3 geodesic from q1 to q2), we can consider its Taylor expansion round q1:

dist (q1, q) = dist (q1, q)[q1,1] + HOT,

153



where dist (q1, q2)[q1,1] is the first order term, and HOT stand for the remaining of this
expansion. Then, the work [138] showed that x̂k|k−1 in (7.28) is also

x̂k|k−1 = arg min
q∈S3

N∑
i=1

wmi
(
dist (q1, q)[q1,1]

)2
.

The FN, however, is often a rough approximation since each one of the sums in (7.28)
probably leads to a non-unit quaternion, and therefore to a value that has not the
physical meaning of a rotation. For R (θ, n∗) standing for a rotation of an angle θ
around the axis n∗ with ‖n∗‖ = 1, consider the rotations R (θi, n∗) , 1 ≤ i ≤ Nr. The
mean rotation is

Rmean := R

(∑Nr
i=1θi
Nr

, n∗
)

;

suppose Nr = 3, θ1 = 10◦, θ2 = 30◦, θ3 = −7◦, and n∗ = [3−1/2]3×1; then we have that

Rmean = R

(
11◦,

[
1√
3

]
3×1

)
≈ R (11◦, [0.58]3×1) ,

and the unit quaternions associated with Rmean are

qmean = ±
(
0.9816 + ım [0.1102]3×1

)
.

Define the quaternion representation of each rotation R
(
θi, [3−1/2]3×1

)
, θ1 = 10◦, θ2 =

30◦, θ3 = −7◦, by
qi = cos (θi) + ım sin (θi) [3−1/2]3×1;

then, from (7.28), the forced normalization quaternion is given by

qFN : =
∑ 3

i=1qi
‖∑ 3

i=1qi‖
= 0.3389 + ım [0.0380]3×1 .

The unit quaternion qFN is quite different from qmean. Moreover, the rotation associated
with qFN , RFN , is

RFN = R
(
140◦, [0.04]3×1

)
,

which is quite different from Rmean. Note that we are considering rotations around the
same axis; probably, rotations around different axes would result in even more different
rotations; nevertheless, when considering smaller rotations, the FN should give better
results.

In the simulations of this work (Section 7.4) the filters based in this method were
numerically unstable in some scenarios (cf. Table 7.6).
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7.2.2.2 Direct Propagation of the Previous State’s Estimate (DPPSE)

In [48,139,150,154], the predicted deviation vector state’s estimate ˜̂xvk|k−1 is obtained
by propagating x̂k−1|k−1 through f . First χ̃k|k−1

i is obtained by

x̂k|k−1 = fk
(
x̂k−1|k−1

)
(7.32)

χ̃
k|k−1
i = χ

k|k−1
i ⊗

(
x̂k|k−1

)−1
, 1 ≤ i ≤ N,

and afterwards ˜̂xvk|k−1 is obtained by (7.30) and (7.31) with QtoV = QtoGeRV in
[48, 139, 150, 154] and QtoV = QtoGeRV in [150]. These works do not calculate the
predicted quaternion state’s estimate x̂k|k−1 ∈ S3 because the image of the measure-
ment function h in the system considered by them is Euclidean, and therefore the
innovation term can be calculated just with ˜̂xvk|k−1. (cf. Section 7.2.3). It is worthy to
note that there is no guarantee that this method will provide a good estimate since the
choice of (7.32) is ad hoc (we could not find a formal justification for it). Nonetheless,
in the simulations of this work (Section 7.4), the filters based in this method provided
satisfactory results (cf. Table 7.6).

7.2.2.3 Gradient Descent Algorithm (GDA)

In order to obtain x̂k|k−1 ∈ S3, the works of [143,146,148] use the intrinsic gradient
descent algorithm described in [165]; this algorithm, the GDA, consists in the following:

Algorithm 16 (Gradient Descent Algorithm). 1. Choose a threshold ε ∈ R, ε > 0;
and set an initial candidate

q := fk
(
x̂k−1|k−1

)
.

2. Define, for 1 ≤ i ≤ N :

evi :=
N∑
i=1

wmi QtoRoV(χk|k−1
i ⊗ q−1).

3. While (‖êv‖ > ε):

(a) Define a new candidate

q := RoVtoQ (ev)⊗ q,

and repeat step 2.
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4. Assign the state’s predicted mean estimate

x̂k|k−1 := q.

In [148] and in the simulations of this work (Section 7.4), this algorithm converges
to a satisfactory estimate within 2 to 4 iterations, and the UKF’s based on the GDA
provided satisfactory results (cf. Table 7.6). Afterwards, ˜̂xvk|k−1 is obtained by (7.29)-
(7.31) with QtoV = QtoRoV.

7.2.2.4 Minimization of a Quaternion Vector Cost Function (MQVCF)

In [161], x̂k|k−1 ∈ S3 is such that its quaternion vector is the argument that “min-
imizes the weighted sum of squared length of the error quaternion vector part” [161],
that is,

Im
(
x̂k|k−1

)
= arg min

φ1∈S3

N∑
i=1

Im
(
χ
k|k−1
i ⊗ φ−1

1

)T
×WiIm

(
χ
k|k−1
i ⊗ φ−1

1

)
(7.33)

where each Wi ∈ R3×3 is a positive definite weighting matrix. The work [161] shows
that, in this case, x̂k|k−1 = vλmin(Θχ) where vλmin(Θ) is the eigenvector associated with
the smallest eigenvalue of

Θχ := w0
(
Ψ
(
χ
k|k−1
0

))
(�)T +

N∑
i=1

wi
(
Ψ
(
χ
k|k−1
i

))
(�)T (7.34)

where

Ψ(q) :=


−q2 −q3 −q4

q1 q4 −q3

−q4 q1 q2

q3 −q2 q1

 (7.35)

is the attitude-matrix of a quaternion q := q1 + ı̂q2 + ̂q3 + k̂q4.

Afterwards ˜̂xvk|k−1, is obtained by (7.29)-(7.31) with VtoQ = QuVtoQ. This ap-
proach does not require the explicit manipulation of (7.33), but only the calculations
of the eigenvectors and eigenvalues of Θχ in (7.34), a 4 × 4 matrix. Nevertheless,
since quaternion vectors represents rotations only for small angles (cf. Section 7.1.2),
this approach should provide an accurate estimate of xk|k−1 only for the case when
χ
k|k−1
i ⊗ x̂−1

k|k−1 [from (7.33)] results in quaternions associated with small rotations for
each i = 1, . . . , N . In the simulations of this work (Section 7.4) the UKF’s based in
this method were numerically unstable in some scenarios and provided worse results in
comparison to the filters based on the other weighted mean methods (cf. Table 7.6).
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7.2.2.5 Minimization of an Attitude-Matrix Cost Function (MAMCF)

In [155], x̂k|k−1 ∈ S3 is the quaternion minimizing the weighted sum of the squared
Frobenius norms of the attitude-matrices of each quaternion sigma point, i.e.,

x̂k|k−1 = arg min
q∈S3

N∑
i=1

wmi
∥∥∥Ψ(q)−Ψ(χk|k−1

i )
∥∥∥2

F

where Ψ(•) is defined as in (7.35); and, for a matrix A ∈ Rp×q and Tr(A) being its
trace,

‖A‖2
F := Tr

(
ATA

)
is its Frobenius matrix norm. It is shown that, in this case, x̂k|k−1 is the eigenvector
associated with the maximum eigenvalue of Ψ(χk|k−1

i ) [155,166]. Afterwards, ˜̂xvk|k−1 is
obtained by (7.29)-(7.31) with QtoV = QtoGeRV.

7.2.3 Remaining Problematic Operations

Vector parameterizations of the S3 are also used to calculate P̂ v,k|k−1
xx ∈ R3×3.

Suppose that
χ̃
v,k|k−1
i :=

{
χ̃
v,k|k−1
i , wmi , w

c
i , w

cc
i |χ̃

v,k|k−1
i ∈

}N
i=1

(a set of weighted predicted deviation vector parameterization sigma points), x̂vk|k−1

(the predicted deviation vector parameterization state’s estimate) and Qv
k ∈ R3×3 (the

covariance of a vector parameterization of the process noise $k) are given; then the
predicted state’s covariance P̂ v,k|k−1

xx ∈ R3×3 is obtained by

P̂ v,k|k−1
xx =

N∑
i=1

wci
(
χ̃
v,k|k−1
i − x̂vk|k−1

)
(�)T +Qv

k (7.36)

in [142,144,145,148,150,152,160]; or by

P̂ v,k|k−1
xx =

N∑
i=1

wci
(
χ̃
v,k|k−1
i − x̂vk|k−1

)
(�)T (7.37)

in [48,138,143,155,159,164]. Recall that in the UKF’s where P̂ v,k|k−1
xx is calculated by

(7.36), χ̃v,k−1|k−1 (Section 7.2.1) should be defined as in (7.26); likewise where P̂ v,k|k−1
xx

is calculated by (7.37), χ̃v,k−1|k−1 should be as in (7.27). This ends the prediction steps
and starts the correction ones.

Predicted measurement sigma points are calculated by transforming the predicted
quaternion sigma points χ̃k|k−1

i through the measurement function hk. At this time,
χ̃k|k−1 can be regenerated (as in [148,152,161]) or not (as in [48,55,138–140,142–146,
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149,150,155,158–160]); this regeneration is done by, for i = 1, . . . , N ,

{wmi , wci , wcci }
N
i=1 = σR

(
[0]1×nx , P̂ v,k|k−1

xx

)
χ
k|k−1
i = VtoQ

(
χ̃
v,k|k−1
i

)
⊗ x̂k|k−1.

For (7.2), some works— [48, 55, 138, 140, 143–146, 148, 150–152, 154, 155, 160, 164]—
consider the measurements belonging only to the Euclidean space (y′k = Rny), and
[161] to both the unit quaternion set and the Euclidean space [y′k = (yk, yk), yk ∈
S3, yk ∈ Rny ] . For the measurements belonging to the Euclidean space—yk in both
cases—the standard UKF equations (7.20), (7.21) and (7.23) are used to calculate the
measurement’s predicted estimate ŷk|k−1 ∈ Rny , the covariance P̂ v,k|k−1

yy ∈ Rny×ny and
the innovation term νvk ∈ Rny respectively. P̂ v,k|k−1

xy ∈ R3×ny is calculated by

P̂ v,k|k−1
xy =

N∑
i=1

wci
(
χ̃
v,k|k−1
i − x̂vk|k−1

) (
γ
k|k−1
i − ŷk|k−1

)T
.

In the case of the measurement being a unit quaternion (yk), ŷk|k−1 is obtained
similarly to x̂k|k−1 ∈ S3 (Section 7.2.2);

P̂ v,k|k−1
xy =

N∑
i=1

wci χ̃
v,k|k−1
i (γ̃v,k|k−1

i )T ;

P̂ v,k|k−1
yy = wci γ̃

v,k|k−1
i (γ̃v,k|k−1

i )T +Rv
k

where Rv
k is the covariance of the a vector parameterization of the measurement noise

ϑ
′

k; and νvk ∈ Rny is given by

νvk = QtoQuV
(
yk ⊗

(
ŷk|k−1

)−1
)
.

The Kalman Gain Gk is given by (7.22), P̂ v,k|k
xx by (7.25) and x̂k|k ∈ S3 by

x̂k|k = VtoQ
(˜̂xvk|k−1 +Gkν

v
k

)
⊗ x̂k|k−1

where VtoQ = RoVtoQ in [140, 143, 148, 152, 160]; VtoQ = GeRVtoQ in [48, 139, 154,
155] and VtoQ = QuVtoQ in [138,144,150,161].

In [138, 148, 161] , P̂ v,k|k−1
xx , P̂ v,k|k−1

xy and x̂k|k are calculated considering x̂vk|k−1 = 0.
However, in general, x̂vk|k−1 is not zero and, therefore, this does not represent the
dispersion of the points around the mean, but only around the origin, at least in the
sense of covariances for real valued random variables. In the simulations of this work
(Section 7.4), the filters considering x̂vk|k−1 = 0 to calculate P̂ v,k|k−1

xx , P̂ v,k|k−1
xy and x̂k|k
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provided slightly worse results comparative with the ones not considering so.

7.3 QUATERNIONIC ADDITIVE UNSCENTED FILTERS

This section introduces an algorithm able to gather all the additive UKF’s for
quaternion models of the literature and also provide new ones (Section 7.3.1). It is
based on a new Unscented Transformation defined for this kind of systems; square-
root extensions of these UKF’s and this UT are also proposed.

7.3.1 Quaternionic Additive Unscented Kalman Filter

After analyzing the literature, we conclude that the additive UKF’s of the literature
preserving the norm of the unit quaternions in all steps (third row of Table 7.1) can
be distinguished from each other by only three elements: i) the σR, ii) the vector
parameterization of the S3, and iii) the method for obtaining the weighted mean of the
unit quaternion sigma points. This, along with the following definition, enables the
construction of a general algorithm gathering all these filters.

For a given weighted set of unit quaternion points χ, the function

µχ := QuatWeightedMean (χ)

maps χ to the weighted mean µχ by one weighted mean method, for example the
methods in Table 7.4.

Definition 7.1. Consider the additive-noise quaternion model

x
′

k = fk
(
x
′

k−1

)
⊕$′

k,

y
′

k = hk
(
x
′

k,
)
⊕ ϑ′k;

where

1. x′k := (xk, xk), y
′
k := (yk, yk), $

′
k := ($k, $k), and ϑ

′

k := (ϑk, ϑk);

2. xk ∈ Φnx , yk ∈ Φny , $k ∈ Φn$ , and ϑk ∈ Φnϑ ; and

3. xk, yk, $k, and ϑk take values in the S3;

Suppose that i) the distributions of $k, ϑk and the initial state x0 are characterized
by Gaussian, multidimensional-real-valued parameterizations $v

k ∈ Φn$v , ϑvk ∈ Φn$v
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and xv0, respectively, and ii) the distributions of $′k := ($v
k, $k) and ϑ

′
k := (ϑvk, ϑk) are

given by

$
′

k ∼
(
[0]nx×1, Q

′

k

)
,

ϑ
′

k ∼
(
[0]ny×1, R

′

k

)
;

iii) the mean of x′k is x̄′0, and the covariance of x′0 := (xv0, x0) is P 0
x′x′ ; iv) the mea-

surements y˜ ′1, y˜ ′2, ..., y˜ ′kf are given, where y˜ ′k = (y˜k, y˜k) with y˜k ∈ S3 and y˜k ∈ Rny .
Then the Quaternionic Additive Unscented Kalman Filter (for quaternion models) is
composed by the following algorithm:

Algorithm 17 (Quaternionic Additive Unscented Kalman Filter (QuAdUKF)). Per-
form the following steps:

1. Initialization. Set the initial estimates x̂′0|0 := x̄
′

0 and P̂ 0|0
x′x′ := P 0

x′x′; and choose

(a) two σ-representations, and set the functions 2σR1 and 2σR2 accordingly;

(b) a vector parameterization and set the functions QtoV and VtoQ accordingly;

(c) a method for means of weighted sets composed of unit quaternions and set
the function QuatWeightedMean accordingly.

2. Filtering. For k = 1, 2, ..., kf ; set the following elements:

(a) Obtain the state sigma points by


 χ̃

v,k−1|k−1
i

χ
k−1|k−1
i

 , w1,m
i , w1,c

i , •


N1

i=1

: = 2σR1
(
[0](nxv+nx)×1 , P̂

k−1|k−1
x′x′

)
;

and

χ
k−1|k−1
i := VtoQ

(
χ̃
v,k−1|k−1
i

)
⊗ x̂

′

k−1|k−1, i = 1, . . . , N1; (7.38)

χ
′,k−1|k−1
i :=

(
χ
k−1|k−1
i , χ

k−1|k−1
i

)
, 1 ≤ i ≤ N1;

where χ̃v,k−1|k−1
i ∈ Rnxv and χk−1|k−1

i ∈ Rnx.

(b) Obtain the predicted state’s estimates by

(
χ
k|k−1
∗,i , χ

k|k−1
∗,i

)
:= fk

(
χ
′,k−1|k−1
i

)
, 1 ≤ i ≤ N1;

x̂k|k−1 := QuatWeightedMean
({
χ
k|k−1
∗,i , w1,m

i , w1,c
i , w1,cc

i

}N1

i=1

)
;

χ̃
v,k|k−1
∗,i := QtoV

(
χ
k|k−1
∗,i ⊗ x̂−1

k|k−1

)
, 1 ≤ i ≤ N1;
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˜̂xvk|k−1 :=
N1∑
i=1

w1,m
i χ̃

v,k|k−1
∗,i ;

x̂k|k−1 :=
N1∑
i=1

w1,m
i χ

k|k−1
∗,i ;

χ
′,k|k−1
∗,i :=

[
χ̃
v,k|k−1
∗,i , χ

k|k−1
∗,i

]T
;

x̂
′

k|k−1 :=
[

˜̂xvk|k−1, x̂k|k−1

]T
;

P̂
k|k−1
x′x′

:=
N1∑
i=1

w1,c
i

(
χ̃
′,k|k−1
∗,i − ˜̂x′k|k−1

)
(�)T +Q

′

k;

where χk|k−1
∗,i ∈ S3 and χk|k−1

∗,i ∈ Rnx.

(c) Obtain the predicted measurement’s estimates by


 χ̃

v,k|k−1
i

χ
k|k−1
i

 , w2,m
i , w2,c

i , w2,cc
i


N2

i=1

:= 2σR2

(
[0]n

x
′×1 , P̂

k|k−1
x′x′

)
;

and

χ
k|k−1
i := VtoQ

(
χ̃
v,k|k−1
i

)
⊗ x̂k|k−1, i = 1, . . . , N2;

χ
′,k|k−1
i :=

(
χ
k|k−1
i , χ

k|k−1
i

)
, 1 ≤ i ≤ N2;(

γ
k|k−1
i , γ

k|k−1
i

)
:= hk

(
χ
′,k|k−1
i

)
, 1 ≤ i ≤ N2;

ŷk|k−1 := QuatWeightedMean
({
γ
k|k−1
i , w2,m

i , w2,c
i , w2,cc

i

}N2

i=1

)
;

γ̃
v,k|k−1
i := QtoV

(
γ
k|k−1
i ⊗ ŷ−1

k|k−1

)
, 1 ≤ i ≤ N2;

˜̂yvk|k−1 :=
N2∑
i=1

w2,m
i γ̃

v,k|k−1
i ;

ŷk|k−1 :=
N2∑
i=1

w2,m
i γ

k|k−1
i ;

γ
′,k|k−1
i :=

[
γ̃
v,k|k−1
i , γ

k|k−1
i

]T
;

ŷ
′

k|k−1 :=
[˜̂yvk|k−1, ŷk|k−1

]T
;

P̂
k|k−1
y′y′

:=
N2∑
i=1

w2,c
i

(
γ
′,k|k−1
i − ŷ′k|k−1

)
(�)T +R

′

k;

where χ̃v,k|k−1
i ∈ Rnxv , χk|k−1

i ∈ Rnx, γk|k−1
i ∈ S3, and γk|k−1

i ∈ Rnx.

(d) Obtain the corrected state’s estimates by

χ
′,k|k−1
i :=

[
χ̃
v,k|k−1
i , χ

k|k−1
i

]T
,

P̂
k|k−1
x′y′

:=
N2∑
i=1

w2,cc
i

(
χ̃
′,k|k−1
i − ˜̂x′k|k−1

) (
γ
′,k|k−1
i − ŷ′k|k−1

)
,
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Gk := P̂
k|k−1
x′y′

(
P̂
k|k−1
y′y′

)−1
,

νvk := QtoV
(
y˜k ⊗

(
ŷk|k−1

)−1
)
,

νk := y˜k − ŷk|k−1,

ν
′

k := [νvk , νk]T , ˜̂xvk|k
x̂k|k

 := ˜̂x′k|k−1 +Gkν
′

k,

x̂k|k := VtoQ
(˜̂xvk|k

)
⊗ x̂k|k−1, (7.39)

x̂
′

k|k :=
(
x̂k|k, x̂k|k

)
,

P̂
k|k
x′x′

:= P̂
k|k−1
x′x′

−GkP̂
k|k−1
y′y′

(Gk)T ;

where ˜̂xvk|k ∈ Rnxv and x̂k|k ∈ Rnx.

In order to get the form of a particular QuAdUKF, only three choices have to be
made: i) the σR’s, ii) the vector parameterization of the S3, and iii) the quaternion
weighted mean method. All the filters guaranteeing to be the unity the quaternion
norms in all steps (third row of Table 7.1) follow as particular cases of the QuAdUKF
(see Table 7.5 and Figure 7.1). For instance, the UKF of [48] is the QuAdUKF with the
Homogeneous Minimum Symmetric σR (HoMiSyσR, Corollary 3.4, which is equivalent
to the σR of [2]), the GeRV (vector parameterization) and DPPSE (weighted mean
method).

New filters are also obtained with the QuAdUKF. For instance, a UKF with the
HoMiSyσR, RoV (Section 7.1.2) and DPPSE (Section 7.2.2.2); or any QuAdUKF using
other σR’s, such as the MiσR (Theorem 3.2) and RhoMiσR (Corollary 3.5), or the fifth-
order one of [47] (Tab 2.1 [4,2]); or the QuAdUKF using the GeRV with the weighted
mean method being any other than the DPPSE or the MAMCF; among others. Note
also that it is straightforward to develop other variants of the QuAdUKF’s, such as
scaled and augmented ones, using the results of Chapters 3, 4, and 5.

7.3.2 Quaternionic Additive Square-Root Unscented Kalman Filter

The two SRUKF’s for quaternion systems of the literature, SRUKF of [139] and
[148], are based on the square-root techniques of the SRUKF of [42] for Euclidean
systems. We could also propose a square-root version of the QuAdUKF adapting this
filter with steps of the SRUKF of [42]. This would require simple changes, and we
could show that the two SRUKF’s for quaternion systems of the literature would be
particular cases of this square-root version of the QuAdUKF. For instance, the SRUKF
of [139] would be this square-root version of the QuAdUKF using the sigma set of [46]
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Table 7.5: QuAdUKF’s of the literature.

Particular σR or vector weighted mean
QuAdUKFa sigma set (SS) par. method
UKF of [138] σR of [41] QuVc FNd

UKF of [48] HoMiSyσR GeRV DPPSEe

UKF of [140] SS of [46]b QuVc FNd

UKF of [161] HoMiSyσR QuVc MQVCFf

UKF of [148] σR of [41] RoV GDAg

UKF of [150] SS of [46]b QuVc DPPSEe

UKF of [152] HoMiSyσR RoV FNd

UKF of [154] σR of [41] GeRV DPPSEe

UKF of [155] HoMiSyσR GeRV MAMCFh

aIn each line, an UKF in the first column is the QuAdUKF with the choices in the
other three columns. bThe set of [46] is not a σR because it matches the mean and the
covariance of the previous random variable only for the scalar case (cf. Section 2.5);
it is presented in this column in order to simplify the exposition. cThe set of QuV’s
parameterize the S3 only for small rotations (cf. Section 7.1.2). dSection 7.2.2.1.
eSection 7.2.2.2. fSection 7.2.2.4. gSection 7.2.2.3. hSection 7.2.2.5.

(Tab 2.1 [2,2]) with the GeRV and DPPSE; and the SRUKF of [148], this square-root
version of the QuAdUKF using the σR of [41] (Tab 2.1 [4,1]) with the RoV and GDA.

However, instead of defining a square-root version of the QuAdUKF using the
square-root techniques of the SRUKF of [42], we introduce a square-root version of the
QuAdUKF using the square-root techniques of our AdSRUKF for Euclidean systems
(Algorithm 8). Although this version does not generalize the SRUKF’s of [148] and
[139], it takes advantage of the better properties that our AdSRUKF has over the
SRUKF of [42]. Recall that, essentially, the SRUKF of Section 5.3 is computationally
more stable than the SRUKF of [42] when round-off errors are relevant (e.g. poor
machine precision) or computationally ill-conditioned computations are present (e.g.
inversions of quasi-singular matrices); this superior performance of our AdSRUKF is
explained by the fewer number (or even the absence) of Cholesky factor downdatings
in this algorithm (cf. Section 5.3).

For a set χ =
{
χi, w

m
i , w

c
i , w

cc
i

}N
i=1

, define the subsets

{
χ+
j , w

m,+
j , wc,+j , wcc,+j

}N+

j=1
= {χi, wmi , wci , wcci |wci ≥ 0}Ni=1{

χ−j , w
m,−
j , wc,−j , wcc,−j

}N−
j=1

= {χi, wmi , wci , wcci |wci < 0}Ni=1

and the matrices

S+
χ : =

[√
wc,+1

(
χ+

1 − µχ
)
, . . . ,

√
wc,+N+

(
χ+
N+ − µχ

)]
,
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[55, 142,147,149,156–158] [143–146,151,153,159,160]

UKF of
[148]

UKF’S FOR

UKF’s of group c) = QuUKF’s

UKF of UKF of UKF ofUKF of

UKF’s of group b)
QUATERNION
SYSTEMS

[140] [138] [152] [161]
SS σR HoMiSy HoMiSy

σRof [41]of [46] of [41]σRep.

QuV RoV RoV

FN GDA MQVCF

UKF of
[155]

HoMiSy
σR

MAMCF

HoMiSy

UKF ofUKF ofUKF of
[48] [154] [150]

SS
σR. of [46]of [41]

GeRV QuV

DPPSE

QuV GeRV

UKF’s of group a)

σR. σR.

Figure 7.1: Taxonomy of the UKF’s for quaternion models of the literature.

S−χ : =
[√
‖wc,−1 ‖

(
χ−1 − µχ

)
, . . . ,

√
‖wc,−N−‖

(
χ−N− − µχ

)]
.

Definition 7.2. Consider the additive-noise quaternion model

x
′

k = fk
(
x
′

k−1

)
⊕$′

k,

y
′

k = hk
(
x
′

k,
)
⊕ ϑ′k;

where

1. x′k := (xk, xk), y
′
k := (yk, yk), $

′
k := ($k, $k), and ϑ

′

k := (ϑk, ϑk);

2. xk ∈ Φnx , yk ∈ Φny , $k ∈ Φn$ , and ϑk ∈ Φnϑ ; and

3. xk, yk, $k, and ϑk take values in the S3;

Suppose that i) the distributions of $k, ϑk and the initial state x0 are characterized
by Gaussian, multidimensional-real-valued parameterizations $v

k ∈ Φn$v , ϑvk ∈ Φn$v

and xv0, respectively, and ii) the distributions of $′k := ($v
k, $k) and ϑ

′
k := (ϑvk, ϑk) are

given by

$
′

k ∼
(

[0]nx×1,
√
Q
′
k

√
Q
′
k

T)
,

ϑ
′

k ∼
(

[0]ny×1,
√
R
′
k

√
R
′
k

T)
;
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iii) the mean of x′k is x̄′0, and the covariance of x′0 := (xv0, x0) is
√
P 0
x′x′

√
P 0
x′x′

T
; iv)

the measurements y˜ ′1, y˜ ′2, ..., y˜ ′kf are given, where y˜ ′k = (y˜k, y˜k) with y˜k ∈ S3 and
y˜k ∈ Rny . Then the Quaternionic Additive Square-Root Unscented Kalman Filter (for
quaternion models) is composed by the following algorithm:

Algorithm 18 (Quaternionic Additive Square-Root Unscented Kalman Filter (QuAd-
SRUKF)). Perform the following steps:

1. Initialization. Set the initial estimates x̂′0|0 := x̄
′

0 and
√
P̂

0|0
x′x′ :=

√
P 0
x′x′; and

choose

(a) two σ-representations, and set the functions 2σR1 and 2σR2 accordingly;

(b) a vector parameterization, and set the functions QtoV and VtoQ accordingly;

(c) a method for means of weighted sets composed of unit quaternions, and set
the function QuatWeightedMean accordingly.

2. Filtering. For k = 1, 2, ..., kf ; set the following elements:

(a) Obtain the state sigma points by


 χ̃

v,k−1|k−1
i

χ
k−1|k−1
i

 , w1,m
i , w1,c

i , •


N1

i=1

:=

2σR1

(
[0](nxv+nx)×1 ,

√
P̂
k−1|k−1
x
′
x
′

√
P̂
k−1|k−1
x
′
x
′

T)
;

and

χ
k−1|k−1
i := QtoV

(
χ̃
v,k−1|k−1
i

)
⊗ x̂

′

k−1|k−1, i = 1, . . . , N1; (7.40)

χ
′,k−1|k−1
i :=

(
χ
k−1|k−1
i , χ

k−1|k−1
i

)
, 1 ≤ i ≤ N1;

where χ̃v,k−1|k−1
i ∈ Rnxv and χk−1|k−1

i ∈ Rnx.

i. Obtain the predicted state’s estimates by

(
χ
k|k−1
∗,i , χ

k|k−1
∗,i

)
:= fk

(
χ
′,k−1|k−1
i

)
, 1 ≤ i ≤ N1;

χk|k−1
∗ :=

{
χ
k|k−1
∗,i , w1,m

i , w1,c
i , w1,cc

i

}N1

i=1
;

x̂k|k−1 := QuatWeightedMean
(
χk|k−1
∗

)
;

χ̃
v,k|k−1
∗,i := QtoV

(
χ
k|k−1
∗,i ⊗ x̂−1

k|k−1

)
, 1 ≤ i ≤ N1;

˜̂xvk|k−1 :=
N1∑
i=1

w1,m
i χ̃

v,k|k−1
∗,i ;
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x̂k|k−1 :=
N1∑
i=1

w1,m
i χ

k|k−1
∗,i ;

χ
′,k|k−1
∗,i :=

[
χ̃
v,k|k−1
∗,i , χ

k|k−1
∗,i

]T
;

x̂
′

k|k−1 :=
[

˜̂xvk|k−1, x̂k|k−1

]T
;{

χ̃
′,k|k−1,+
∗,j , w1,c,+

j

}N1+

j=1
:=
{
χ
′,k|k−1
∗,i − x̂′k|k−1, w

1,c
i |w

1,c
i > 0

}N1

i=1
;{

χ̃
′,k|k−1,−
∗,j , w1,c,−

j

}N1−

j=1
:=
{
χ
′,k|k−1
∗,i − x̂′k|k−1, w

1,c
i |w

1,c
i < 0

}N1

i=1
;

S+
χ
′,k|k−1
∗

:=
[√
w1,c,+

1 χ̃
′,k|k−1,+
∗,1 , . . . ,

√
w1,c,+
N+ χ̃

′,k|k−1,+
∗,N+

]
;

S−
χ
′,k|k−1
∗

:=
[√∣∣∣w1,c,−

1

∣∣∣χ̃′,k|k−1,−
∗,1 , . . . ,

√∣∣∣w1,c,−
N−

∣∣∣χ̃′,k|k−1,−
∗,N−

]
;√

P̂
k|k−1
x′x′

:= cu
(
S+
χ
′,k|k−1
∗

, S−
χ
′,k|k−1
∗

,
√
Q
′
k

)
;

where χk|k−1
∗,i ∈ S3 and χk|k−1

∗,i ∈ Rnx.

(b) Obtain the predicted measurement’s estimates by


 χ̃

v,k|k−1
i

χ
k|k−1
i

 , w2,m
i , w2,c

i , w2,cc
i


N2

i=1

:=

2σR2

(
[0]n

x
′×1 ,

√
P̂
k|k−1
x′x′

√
P̂
k|k−1
x′x′

T)
;

and

χ
k|k−1
i := VtoQ

(
χ̃
v,k|k−1
i

)
⊗ x̂k|k−1, i = 1, . . . , N2;

χ
′,k|k−1
i :=

(
χ
k|k−1
i , χ

k|k−1
i

)
, 1 ≤ i ≤ N2;(

γ
k|k−1
i , γ

k|k−1
i

)
:= hk

(
χ
′,k|k−1
i

)
, 1 ≤ i ≤ N2;

γk|k−1 :=
{
γ
k|k−1
i , w2,m

i , w2,c
i , w2,cc

i

}N2

i=1
;

ŷk|k−1 := QuatWeightedMean
(
γk|k−1

)
;

γ̃
v,k|k−1
i := QtoV

(
γ
k|k−1
i ⊗ ŷ−1

k|k−1

)
, 1 ≤ i ≤ N2;

˜̂yvk|k−1 :=
N2∑
i=1

w2,m
i γ̃

v,k|k−1
i ;

ŷk|k−1 :=
N2∑
i=1

w2,m
i γ

k|k−1
i ;

γ
′,k|k−1
i :=

[
γ̃
v,k|k−1
i , γ

k|k−1
i

]T
;

ŷ
′

k|k−1 :=
[˜̂yvk|k−1, ŷk|k−1

]T
;{

γ̃
′,k|k−1,+
j , w2,c,+

j

}N1+

j=1
:=
{
γ
′,k|k−1
i − ŷ′k|k−1, w

2,c
i |w

2,c
i > 0

}N1

i=1
;
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{
γ̃
′,k|k−1,−
j , w2,c,−

j

}N1−

j=1
:=
{
γ
′,k|k−1
i − ŷ′k|k−1, w

2,c
i |w

2,c
i < 0

}N1

i=1
;

S+
γ
′,k|k−1 :=

[√
w2,c,+

1 γ̃
′,k|k−1,+
1 , . . . ,

√
w2,c,+
N+ γ̃

′,k|k−1,+
N+

]
;

S−
γ
′,k|k−1 :=

[√∣∣∣w2,c,−
1

∣∣∣γ̃′,k|k−1,−
1 , . . . ,

√∣∣∣w2,c,−
N−

∣∣∣γ̃′,k|k−1,−
N−

]
;√

P̂
k|k−1
y′y′

:= cu
(
S+
γ
′,k|k−1 , S

−
γ
′,k|k−1 ,

√
R
′
k

)
;

where χ̃v,k|k−1
i ∈ Rnxv , χk|k−1

i ∈ Rnx, γk|k−1
i ∈ S3, and γk|k−1

i ∈ Rnx.

(c) Obtain the corrected state’s estimates by

χ
′,k|k−1
i :=

[
χ̃
v,k|k−1
i , χ

k|k−1
i

]T
,

P̂
k|k−1
x′y′

:=
N2∑
i=1

w2,cc
i

(
χ̃
′,k|k−1
i − ˜̂x′k|k−1

) (
γ
′,k|k−1
i − ŷ′k|k−1

)
,

Gk := P̂
k|k−1
x′y′

(√
P̂
k|k−1
y′y′

T
)−1 (√

P̂
k|k−1
y′y′

)−1

,

νvk := QtoV
(
y˜k ⊗

(
ŷk|k−1

)−1
)
,

νk := y˜k − ŷk|k−1,

ν
′

k := [νvk , νk]T , ˜̂xvk|k
x̂k|k

 := ˜̂x′k|k−1 +Gkν
′

k,

x̂k|k := VtoQ
(˜̂xvk|k

)
⊗ x̂k|k−1,

x̂
′

k|k :=
(
x̂k|k, x̂k|k

)
,{

χ̃
′,k|k−1,+
j , w2,c,+

j

}N1+

j=1
:=
{
χ
′,k|k−1
i − x̂′k|k−1, w

2,c
i |w

2,c
i > 0

}N1

i=1
;{

χ̃
′,k|k−1,−
j , w2,c,−

j

}N1−

j=1
:=
{
χ
′,k|k−1
i − x̂′k|k−1, w

2,c
i |w

2,c
i < 0

}N1

i=1
;

S+
χ
′,k|k−1 :=

[√
w2,c,+

1 χ̃
′,k|k−1,+
1 , . . . ,

√
w2,c,+
N+ χ̃

′,k|k−1,+
N+

]
;

S−
χ
′,k|k−1 :=

[√∣∣∣w2,c,−
1

∣∣∣χ̃′,k|k−1,−
1 , . . . ,

√∣∣∣w2,c,−
N−

∣∣∣χ̃′,k|k−1,−
N−

]
;

and√
P̂
k|k
x′x′

=
(
cu
[
S+
χ
′,k|k−1 −GkS

+
γ
′,k|k−1

]
,
[
S−
χ
′,k|k−1 −GkS

−
γ
′,k|k−1

]
, Gk

√
Rv
k

)
;

where ˜̂xvk|k ∈ Rnxv and x̂k|k ∈ Rnx.

Since the QuAdSRUKF inherits properties from our AdSRUKF (Algorithm 8), it
outperforms all the SRUKF quaternion systems of the literature, which are based on the
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SRUKF of the [42]. Note that, similarly to the case of the QuAdUKF, a great number
of particular cases of the QuAdSRUKF can be obtained by simply choosing different
σR’s (e.g. the ones presented in Sections 3.3 and 3.4), vector parameterizations of S3

(e.g. the ones presented in Section 7.1.2) and methods for weighted means of unit
quaternion sets (e.g. the ones presented in Section 7.2.2).

7.4 SIMULATIONS OF QUATERNION UNSCENTED FIL-
TERS

In this section, numerical simulations are performed comparing UKF’s and SRUKF’s
for quaternion systems. The scenario is of a satellite attitude estimation based on [48];
it is supposed that measurements from a three-axis magnetometer (TAM) and from
gyroscopic rate sensors are acquired. Data is generated by a fourth order Runge-Kutta
integration of the function [48,55]

ė (t) = 1
2ımω(t)⊗ e (t) (7.41)

where

ω (t) :=


p (t)
q (t)
r (t)

 :=


0.03 sin

([
π

600t
]◦)

0.03 sin
([

π
600t

]◦
− 300◦

)
0.03 sin

([
π

600t
]◦
− 600◦

)
 ;

is the angular velocity acting as an input and e ∈ S3 is the attitude of the satellite.
The initial condition was chosen according to [55]:

e (0) = 0.9603 + ım


0.1387
0.1981√

1− 0.96032 − 0.13872 − 0.19812

 .

For the filtering process, it is assumed that corrupted measurements ω̃ (k) of the
angular velocity ω (k) are provided by biased gyros

ω̃ (k) = ω (k) + βk +$ω
k

where $ω
k ∼ N

(
[0, 0, 0]T , σ2

ωI3
)
is a zero mean Gaussian noise, σω is the standard devi-

ation of the gyro measurements, and βk is drift error with β̇k = $β
k ∼

(
[0, 0, 0]T , σ2

βI3
)
.

The sample time is T = 0.1s and the filter’s state at time step k is

xk := (e (k) , βk) .
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The process function is vec (e(k))
βk

 =
 Akvec (e(k − 1))

βk−1

+$k,

where vec (e) := [e1, e2, e3, e4]T ∈ R4,

sk := ω̃ (k)− βk, ψk := sin
(
T

2 ‖sk‖
)

sTk
‖sk‖

,

Ak :=
 cos

(
T
2 ‖sk‖

)
−ψTk

ψk cos
(
T
2 ‖sk‖

)
I3 − (sk)x

 ,
and ωk ∼ N

(
[0]6×1 , Qk

)
is the process noise with

Qk =
 (σ2

ωT + 1
3σ

2
βT

3
)
I3

1
2σ

2
βT

2I3
1
2σ

2
βT

2I3 σ2
βT

2I3

 ;

Th equation
vec (e(k)) = Akvec (e(k − 1))

is obtained by performing a trapezoidal discretization (relative to time) of (7.41) (cf.
[48]).

The measurement function is, for i = 1, 2, 3,

y
[i]
k = hk(xk)d[i] + ϑ

[i]
k ,

where, for xk = [x1,k, . . . , x7,k]T ,

hk(xk) =
x2

1,k + x2
2,k − x2

3,k − x2
4,k 2 (x2,kx3,k + x1,kx4,k) 2 (x2,kx4,k − x1,kx3,k)

2 (x2,kx3,k − x1,kx4,k) x2
1,k − x2

2,k + x2
3,k − x2

4,k 2 (x3,kx4,k + x1,kx2,k)
2 (x2,kx4,k + x1,kx3,k) 2 (x3,kx4,k − x1,kx2,k) x2

1,k − x2
2,k − x2

3,k + x2
4,k

 ,
(7.42)

d[i] is a reference direction vector to a known point and ϑ
[i]
k the measurement noise

[48,167]. In this case, d[i] is given by the TAM:

d[1] = [1, 0, 0]T , d[2] = [0, 1, 0]T and d[3] = [0, 0, 1]T ;

and ϑ
[1]
k = ϑ

[2]
k = ϑ

[3]
k ∼ N([0]3×1, σ

2
vI3), where σv is the standard deviation of the
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TAM’s. The initial conditions for the filter are ê (0) = 1, β̂0 = [0]3×1 and

P̂ v,0|0
xx =

 3.0462× 10−6I3 [0]3×3

[0]3×3 9.4018× 10−13I3

 .
The deviations are σβ = 3.1623 × 10−4 µrad × s−3/2, σω = 3.1623µrad × s−1/2, σv =
50 nT, and the bias β (t) = [0.001]3×1 rad× s−1 [48].

A quantitative comparison is also provided. We calculate i) for each time step k at
each simulation j, an relative error

εk,j :=
4∑
i=1

(êi (k, j)− ei (k, j))2

ei (k, j)
(7.43)

for each filter; and ii) for Nit = 2000 iterations and Ns = 1000 simulations, the RMSD
[defined in (5.42)] of (7.43) and the Root-Mean-Square Trace (RMST)

RMST :=

√√√√√Ns∑
j=1

Ni∑
k=1

tr
(
P̂
v,k|k
xx

)
(7.44)

—the RMST quantifies the uncertainty of the estimate x̂k|k.

7.4.1 Simulations of Quaternion Unscented Kalman Filters

In this subsection, UKF’s for additive-noise quaternion models are considered.
First, the three different vector representations of Section 7.1.2 are compared, and
second the different methods for obtaining the weighted mean.

Recall that P̂ v,k|k−1
xx , P̂ v,k|k−1

xy and x̂k|k are calculated considering x̂vk|k−1 = 0 in
[138, 148, 161] (cf. Section 7.2.3). In the simulations here, making x̂vk|k−1 = 0 slightly
decreased the performance of the filters, e.g., some UKF’s turned numerically unstable.

Numerical problems occurred. Some methods (all QuAdUKF’s with FN and MQVCF,
some QuAdUKF’s with RoV’s, some with MAMCF, and some UKF’s for equality-
constrained systems) provided complex numbers within the elements of the unit quater-
nions or within the covariance of the state. This was treated here by considering only
the real part of these complex numbers. Furthermore, simulations of some filters with
the Rho Minimum σR of [57] and the Minimum σR of [23] were interrupted when
performing the Cholesky factorization of the state’s covariance because this matrix
became non-positive definite. A well known trick of forcing to be zero the negative
eigenvalues was used, as suggested in [88]. The square-root matrix is, then, computed
using the singular value decomposition.
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Figure 7.2 contains plots with the correct values of e1, e2, e3 and e4 and also their
estimates given by a multiplicative EKF (the one presented in Table 7.1 of [167]) and
QuAdUKF’s with the σR of [2], the DPPSE and different vector parameterizations.
As expected, the UKF’s behaved better than the EKF (the EKF’s estimates are given
by the line that is a bit far from all the others). The QuAdUKF’s did not present
problems with singularities and provided very close estimates in comparison with the
correct value. Nonetheless, we can not distinguish the performances of the QuAdUKF’s
with this visual evaluation.
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Figure 7.2: Values of e1, e2, e3 and e4 for the new QuAdUKF’s with different parame-
terizations.

Table 7.6 shows RMSD’s [equation (5.42)] and RMST’s [equation (7.44)] for the
each of the QuAdUKF’s for unit quaternions considering each of the weighted mean
methods. Among these, the DPPSE (second row of Table 7.6) and the GDA (third
row of Table 7.6) provided the smallest sum of RMSD with RMST. The MAMCF
provided the best µε with the RoV, but the highest RMST; also it was numerically
unstable with the GeRV and the QuV. Changing the vector representation results in
changes in the estimation quality when using the FN (row 1), the MQVCF (row 4) or
the MAMCF (row 5), but not when using the DPPSE (row 2) or the GDA (row 3);
some filters were numerically unstable (NU) (row 2, columns 4-5; row 4, column 5; and
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row 5, columns 4-5).

Table 7.6: RMSD and RMST (10−5) for different weighted mean methods (T = 0.1 s).

Weighted Mean Method RoV GeRV QuV

1 FN RMSD 2.52 NU NU(Section 7.2.2.1) RMST 3.05

2 DPPSE RMSD 1.48 1.48 1.48(Section 7.2.2.2) RMST 6.76

3 GDA RMSD 1.48 1.48 1.48
(Section 7.2.2.3) RMST 6.76 6.76 6.76

4 MQVCF RMSD 1.56 2.58 NU(Section 7.2.2.4) RMST 1.23 2.89

5 MAMCF RMSD 1.29 NU NU(Section 7.2.2.5) RMST 1.27× 105

Tables 7.7 (for a sampling time of T = 0.1s) and 7.8 (for a sampling time of
T = 10s) show the errors of the UKF’s implemented with the following σR’s (see [23]
for their expressions): Homogeneous Minimum Symmetric σR of [2] (HoMiσR), Rho
Minimum σR of [57] (RhoMiσR), Minimum σR of [23] (MiσR), and 5th order σR [47]
(5thσR). These last three σR’s are used here for first time in the literature in UKF’s
for quaternion systems; the DPPSE (Section 7.2.2.2) was used as the weighted mean
method.

Table 7.7: RMSD and RMST (10−5) for different σR’s (T = 0.1 s).

UKF’s HoMiσR RhoMiσR MiσR 5thσR

1 with RMSD 1.48 1.48 1.48 1.48
RoV RMST 6.76 6.76 6.76 6.76

2 with RMSD 1.48 1.48 1.48 1.48
GeRV RMST 6.76 6.76 6.76 6.76

3 with RMSD 1.48 1.48 1.48 1.48
QuV RMST 6.76 6.76 6.76 6.76

4 ECUKF RMSD NU 1.49 NU NURMST 5.55

5 PrUKF RMSD 1.48 1.48 1.48 1.48
RMST 6.76 6.76 6.76 6.76

6 MAUKF RMSD 1.48 1.48 1.48 1.48
RMST 6.76 6.76 6.76 6.76

In general, the values of RMSD and RMST for T = 0.1s (Table 7.7) were smaller
than the ones for T = 10s (Table 7.8); this was expected since the discrete-time ap-
proximation is better for smaller values of T .

For T = 0.1s, changing the σR did not result in any substantial change in the quality
of the estimations (cf. Table 7.7), but for T = 10s the HoMiσR (column 3 Table
7.8) and the 5thσR (column 6 of Table 7.8) provided the best estimation qualities.
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Table 7.8: RMSD and RMST(10−5 ) for UKF’s with different σR’s (T = 10 s).

UKF HoMiσR RhoMiσR MiσR 5thσR

1 with RMSD 2.00 2.12 2.04 2.00
RoV RMST 6.98 6.98 6.98 6.98

2 with RMSD 2.05 2.49 2.42 2.05
GeRV RMST 6.98 6.98 6.98 6.98

3 with RMSD 2.02 2.29 2.28 2.02
QuV RMST 6.98 6.98 6.98 6.98

4 ECUKF RMSD NU NU NU NURMST

5 PrUKF RMSD 2.13 2.13 2.13 2.13
RMST 6.98 6.98 6.98 6.98

6 MAUKF RMSD 2.12 2.12 2.12 2.12
RMST 6.98 6.98 6.98 6.98

The 5thσR (73 sigma points) and the HoMiσR (13 sigma points), nevertheless, are
composed by more sigma points than the RhoMiσR [column 4 of Tables 7.7 and 7.8]
and the MiσR [column 5 of Tables 7.7 and 7.8] (both with 7 sigma points).

Concerning the diverse vector parameterizations (rows 1, 2 and 3), there was no
difference in the errors for the case of T = 0.1s. However, for T = 10s, the QuAdUKF
with RoV was the best. The QuAdUKF with GeRV was a bit slower than the other
two UKF’s, but it was more robust to changes in the parameters of the filter (this
fact is not shown in the tables nor in the graphics), such as in the noise covariances
and tuning parameters of the σR’s (κ in the HoMiσR, ρ in the RhoMiσR and v in the
MiσR as defined in [23]).

The QuAdUKF’s provided better results comparative with the Projected UKF and
the Measurement Augmented UKF for T = 0.1s and for T = 10s, although the dif-
ferences for T = 0.1s were very small. The Equality-Constrained UKF (row 4) was
numerically unstable, except in the case using the RhoMiσR for T = 0.1s (Table 7.7,
row 4, column 4).

7.4.2 Simulations of Quaternion Square-Root Unscented Kalman Fil-
ters

Recall from Section 7.3.2 that, when computationally ill-conditioned computations
are present (e.g. inversions of quasi-singular matrices), the QuAdSRUKF should per-
form better than the SRUKF for quaternion systems of the literature; it should also
perform better, in this cases, than UKF’s in general because of its square-root proper-
ties. In order to assess this outperformance of the QuAdSRUKF , this filter is compared
with the following filters: the SRUKF’s of [139] and [148], the UKF of [138], the USQUE
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of [48], the MUKF of [150], the QBUKF of [143], the UUF of [161], the UKF of [154],
and the three UKF for non-linear equality-constrained systems of [55]—the ECUKF,
the PUKF, and the MAUKF. The simulations were ran using a Matlab 2011b, and the
tuning parameters were chosen as suggested in each respective work:

• the SRUKF of [139] with a = 1, α = 10−3, β = 2, and κ = 0

• the SRUKF of [148] with α = 10−3, β = 2, κ = 1, and 10−3 for the threshold of
the gradient descent algorithm (smaller values of this threshold were making the
simulation time extremely high);

• the UKF of [138] with α = 10−3, β = 2, and κ = 0;

• the USQUE of [48] with a = 1 and λ = 1 ;

• the MUKF of [150] with α = 10−3 and w0 = 1/3;

• the QBUKF of [143] with 10−3 for the threshold of the gradient descent algorithm
(smaller values of this threshold were making the simulation time extremely high);

• the UUF of [161] with κ = 0;

• the UKF of [154] with κ = 0;

• the UKF’s of [55] with α = 1, β = 2, and κ = 0.

The proposed QuAdSRUKF (using the HoMiσR, the GeRV and the DPPSE) was ran
with a = 1 using the Homogeneous Minimum Symmetric σR—the standard symmetric
σR of [1] (cf. [23])—with the central weight (its tuning parameter) equal to 1/7; this
value provided good estimates in the examples considered here.

7.4.2.1 Ill-conditioned measurement function

The objective of this first example is to analyze the filters in a situation of poor
machine precision. The new SRUKF is compared with the other aforementioned filters
in a simple problem considering only the correction step of these filters. It is considered
the measurement function

hk(xk) := Hxk

where

H =


1 1 1
1 1 1
1 1 1 + δ

 ,
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δ = eps2/310d,

d is an integer, and eps is the distance from 1.0 to the next largest double-precision
number, which, in our case, is eps = 2−52. Even though this measurement function
hk(xk) := Hxk is different from the original h in (7.42), the simulations of this subsec-
tion are still able to study the behavior the filters in a situation where round-off errors
are able to deteriorate their performance.

In the simulations of the SRUKF’s of [139] and [148], some covariances lost the
semi-positiveness for d ≤ 10 and the simulations could not be completed. Figure 7.3
presents the relative errors of the new SRUKF, the UKF of [138], the USQUE of [48],
the MUKF of [150], the QBUKF of [143], the UUF of [161], and the UKF of [154],
considering d ∈ [−5, 8]—note that, since only correction steps are considered, some
filters provided the same estimates. The new SRUKF presented fewer errors than the
other filters; these simulations corroborates the exception that the new SRUKF should
outperform the other Unscented filters in a situation with poor machine precision.

| |

QuAdSRUKF
UKF’s of [48,143,161]
UKF’s of [55,138,154]
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Figure 7.3: Relative RMSD Unscented filters for attitude estimation in a problem with
an ill-conditioned measurement function.
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Table 7.9: µε’s and MT’s of Unscented filters for a problem of satellite attitude esti-
mation in normal conditions.

Unscented Filter RMSD (×10−3) RMST (×10−5)
New SRUKF 3.41 1.07
USQUE of [48] 3.77 1.07
QBUKF of [143] 3.92 1.07
UKF of [154] 3.77 1.07

7.4.2.2 Satellite attitude estimation: normal conditions

In this example, the scenario is configured according to [48]: T = 10s (measurements
of both the TAM and the gyros are available at every 10 s), σω = 0.31623µrad× s−1/2,
σβ = 3.1623× 10−4 µrad× s−3/2, β0 = [0.1]3×1 deg/hr, σv = 50 nT,

ê0 = 0.85 + ı̂0.1387 + ̂0.1981 + k̂
√

1− 0.852 − 0.13872 − 0.19812,

β̂0 = β0 + [0, 20, 0]T deg/hr, and

P̂ ρ,0|0
xx =


(
σ0|0,e
xx

)2
I3×3 [0]3×3

[0]3×3

(
σ0|0,β
xx

)2
I3×3


with σ0|0,e

xx = 5 deg and σ0|0,β
xx = 20 deg/hr.

The SRUKF’s of [139] and [148], the UKF of [138], the MUKF of [150], the UUF
of [161], and the UKF’s of [55] failed to complete all the 1000 simulations for losing the
positiveness of the state’s covariance. The mean errors RMSD and the RMST of the
other filters are shown in Table 7.9. The values of RMST were all equal (1.07× 10−5),
indicating that the uncertainties in their estimates are the same; but the SRUKF
presented the smallest RMSD (3.41 × 10−3). Comparative to this value, the second
smallest RMSD (3.77 × 10−3, presented by both the USQUE of [48] and the UKF
of [154]) was 10, 56% higher.

7.4.2.3 Satellite attitude estimation: computationally unstable conditions

In this example, some parameters of the simulations are changed from the values of
Section 7.4.2.2 in order to create an computationally unstable situation: σω is changed
to 0.31623×10−8 µrad×s−1/2, σβ to 3.1623×10−12 µrad×s−3/2, and σv to 50×10−8 nT.

While all the Unscented filters of the literature failed complete all the 1000 simu-
lations for presenting non-positive definite covariances, the new SRUKF finished with
good estimate (RMSD = 3.45× 10−3 and RMST = 1.07× 10−5). These errors and the
plots for one simulation of e1, e2, e3, and e4 of the new SRUKF comparative with the
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Figure 7.4: Values of e1, e2, e3 and e4 for the new SRUKF for a problem of satellite
attitude estimation in heavy conditions.

correct ones (Figure 7.4), indicates that the estimates of the QuAdSRUKF are reliable.
This shows that the QuAdSRUKF outperforms the additive UF’s for quaternion mod-
els of the literature in a computationally unstable situation. This outperformance can
be explained, at least in part, by the following characteristics:

1. the square-root properties of the QuAdSRUKF comparative with the UKF’s of
the literature. Square-root filters tend to perform better than non square-root
filters in computationally ill-conditioned situations [88].

2. the lower (or even none) number of Cholesky factor downdatings of the QuAd-
SRUKF comparative with the SRUKF’s of the literature. Recall that downdat-
ing a Cholesky factor A by a matrix B means finding a matrix C such that
CCT = AAT − BBT ; the direct downdating of a Cholesky factor is "inherently
more ill-conditioned than if Q (the usual triangular matrix Q of a QR decompo-
sition) is also available" [92] (the comment in the parenthesis is ours).
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7.5 CONCLUSIONS REGARDING UNSCENTED FILTERS
FOR QUATERNION SYSTEMS

In this chapter, we show that constructing Unscented filters for quaternion systems
is not trivial because there are steps in these algorithms composed of sums and scalings
of unit quaternions. These operations, in general, result in non-unit quaternions.

A detailed analysis on the topic is provided. By comparing the properties of each
UKF for quaternion systems, this analysis shows that, in a considerable amount of
cases, the unit norm constraint of the unit quaternions is not completely respected
(Section 7.2). We were able to gather all the algorithms that completely preserve
this constraint in a single filter algorithm, the Quaternionic Unscented Kalman Filter
(QuAdUKF, Section 7.3.1). By choosing only three elements of these filters—the sigma-
representation, the vector parameterization of the S3 and the method for calculating
the weighted mean of a set of quaternion points—the QuAdUKF can result in every
one of these filters and also to new ones. Numerical simulations of spacecraft attitude
filtering illustrates these results (Section 7.4.1).

A square-root variant of the QuAdUKF is also proposed, the Quaternionic Additive
Square-Root Unscented Kalman Filter (QuAdSRUKF); this filter has better computa-
tional properties than the other SRUKF’s and Unscented Kalman Filter’s (UKF’s) for
attitude systems of the literature (Section 7.3.2). Comparative with the UKF’s of the
literature, the QuAdSRUKF is computationally more stable in ill-conditioned situa-
tions because of its square-root properties; and comparative with the SRUKF’s of the
literature, the QuAdSRUKF is always computationally more stable because it has less
(or even none) Cholesky factor downdatings (Section 7.3.2). These superior properties
of the QuAdSRUKF were verified in numerical simulations considering the Unscented
filters (UKF’s and SRUKF’s) for attitude systems in two problems (Section 7.4.2): 1) a
theoretical problem with the performance of the filters being deteriorated by round-off
errors; and 2) a satellite attitude estimation problem in two different situations consid-
ering i) normal conditions, ii) and computationally ill-conditioned conditions. In two
of all these three situations [the only situation of the problem 1), and the situations
ii) of the problem 2)], the QuAdSRUKF provided reliable estimates, but all the Un-
scented filters for attitude systems of the literature did not. Besides, even in normal
conditions [situation i) of problem 2)], the QuAdSRUKF outperformed the Unscented
filters of the literature by presenting better estimates (the second smallest mean error
was 10, 56% higher than the error of the QuAdSRUKF).

*********

Our initial goal in this chapter was to extend the systematization of Part I to treat
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quaternion systems. However, from the analysis developed in this chapter, we can
conclude that the additive UKF’s for quaternions systems of the literature were built
upon some intuitive, but not mathematically-sound concepts; indeed, we can cite the
following conclusions regarding this analysis.

1. The additive quaternion models are not consistent (cf. Remark 7.1).

2. Some of the probability and statistic concepts for the quaternion space need
further study. For instance, it is not clear what are the definitions and properties
of i) quaternionic random variables, their distributions, and their statistics; ii) the
statistics of quaternionic weighted sets (such as quaternionic σ-representations);
iii) the statistics of a transformed quaternionic random variable.

3. The form of the filters are extended from the Euclidean filters without enough
explanation. For instance, what is the reason behind the correction equations
of these UKF’s [e.g. step (2d) of the QuAdUKF]? What kind of approximation
does it provide?

In the next chapters, we will present a theory able to cover these—and possibly
other—gaps in the current Unscented Kalman filtering theory for quaternion models.
We will work with manifolds because i) the set of unit quaternions is a Riemannian
manifold, and ii) there are some probability and statistic results for Riemannian man-
ifolds in the literature (specially in [66]).
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8. INTRINSIC STATISTICS ON
RIEMANNIAN MANIFOLDS

In the first chapter of this part, Part II, we focused our attention upon extending the
theory of Part I to rotating systems whose state spaces are in the space of unit quater-
nions. However, in Chapter 7, after analyzing the Additive UF’s for these systems,
we came to the conclusion that more attention have to be given to the mathematical
concepts supporting these filters. For instance, we pointed out that probability and
statistic concepts for the quaternion space need further study.

In this chapter, we will present statistical results on Riemannian manifolds. The
main reasons for this choice are:

1. The set of unit quaternions is a Riemannian manifold. Therefore, the additive
UF’s for quaternion systems are particular cases of UF’s for systems whose state
variables belong to Riemannian manifolds.

2. There are some probability and statistic results for Riemannian manifolds in the
literature, specially in [66].

3. Riemannian manifolds can model wider range of real systems than unit quater-
nions. Recall, from Section 1.1, that while unit quaternions can model rotations of
3-dimensional rigid bodies, Riemannian manifolds can model more complex real
problems, such as the ones treated by the general theory of relativity. Besides,
in Section 9.6, we present an extension of our UF’s for Riemannian manifolds to
the case of unit dual quaternions; these dual quaternions are adequate to model
3-dimensional rigid bodies displacements (rotations along with translations).

We highlight that other approaches could be taken for extending the theory of Part
I to rotating systems, such as using the theory known as Directional Statistics (for
more information on this topic, see [168]). Recently, some works have proposed con-
sistent Unscented-based filters for quaternion models using directional distributions
(distributions from Directional Statistics), such as the Bingham Distribution and von
Mises-Fisher Distribution [136,137]. However, working on Riemannian manifolds may
be more appropriate for us; the following two arguments can be considered to defend
this choice:

1. Riemannian manifolds are more general than the manifolds considered by Direc-
tional Statistics. The manifolds considered by Directional Statistics are spheres
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and projective spaces, which are particular Riemannian manifolds.

2. the statistics developed in [66] for Riemannian manifolds might present less diffi-
culties comparative with Directional Statistics. The results based on Directional
Statistics are mostly extrinsic, i.e., they rely on the embedding space Rn of the
sphere Sn−1 [66]. This means working with operations that are not well-defined
in the Sn−1, such as usual Euclidean sums. Consequently, developing consistent
results might turn troublesome at some point. On the other hand, the statistics
developed in [66] are intrinsic to the manifolds; consequently, we work only with
operations that are well-defined on the manifolds.

*********

In this chapter, we present the results of probability and statistic for Riemannian
manifolds which are required for the development of the UF’s for these manifolds. Some
of these probability and statistic results were introduced by [66]; and other results, by
us. In Appendix A we provide the background on Riemannian manifolds needed upon
which the results of this chapter and of Chapter 9 are built.

In Section 8.1, we present Riemannian random points; they are extensions of ran-
dom vectors for Riemannian manifolds. In Section 8.2, we present the definition of
the Riemannian mean; naturally, this concept is more complex than its analogous of
the Euclidean case, the expected value. In Section 8.3, we present definitions of Rie-
mannian moments; recall that UF’s are based on means and covariances, which are
moments. In Section 8.4, we present the concepts regarding jointly distributed Rie-
mannian random points. In Section 8.6, we define statistics for weighted sets. Finally,
in Section 8.7, we present the conclusions of this chapter.

8.1 RANDOM POINTS ON A RIEMANNIAN MANIFOLD

The work [66] introduces concepts of probability and statics defined, intrinsically, in
Riemannian manifolds—that is, the concepts do not use results of embedding ambient
spaces—that are necessary for our development. We now present i) some of these
concepts of [66], ii) make some extensions in some of them (e.g. our definitions of
moments are extended), and iii) propose other related results (e.g. all the results
concerning joint Riemannian random points, all moments of order higher than 2).
These novelties will be necessary in the development of the Riemannian Unscented
filters of Chapter 9.

We are interested in measurements of elements of a Riemannian manifold that

181



depend on the outcome of a random experiment. Particular cases are given by random
transformation and random feature for the particular case of transformation groups
and homogeneous manifolds [66].

Definition 8.1 (Random point on a Riemannian Manifold). Let (Ω,B(Ω),Pr) be a
probability space, B(Ω) being the Borel σ-algebra of Ω (i.e. the smallest σ-algebra
containing all the open subsets of Ω) and Pr a measure on B(Ω) such that Pr(Ω) = 1.
A (Riemannian) random point (or random variable) in the Riemannian manifold M
is a Borel measurable function X from Ω to M. The set of all Riemannian random
points taking value on a Riemannian manifoldM will be denoted by ΦM.

As in the real or vector case, we can now make abstraction of the original space Ω
and directly work with the induced probability measure onM. In a vector space with
basis A = (a1, ..., an), the local representation of the metric is given by G = ATA where
A := [a1, ..., an] is the matrix of coordinates change from A to an orthonormal basis.
Similarly, the measure (or the infinitesimal volume element) is given by the volume of
the parallelepipedon spanned by the basis vectors:

dV = ‖det(A)‖ dx =
√
‖det(G)‖dx.

Assuming now a Riemannian manifoldM, we can see that the Riemannian metric G(x)
induces an infinitesimal volume element on each tangent space, and thus a measure on
the manifold [66, p.131]:

dM(p) =
√
‖det (G(x))‖dx. (8.1)

One can show that the cut locus has a null measure. This means that we can
integrate real functions indifferently in M or in any exponential chart. If f is an
integrable function of the manifold and

fq
(−→qp) := f

(
expq

(−→qp))
is its image in the exponential chart at q, we have:

ˆ
M
f(q)dM(q) =

ˆ
D(q)

fq (z)
√
G (z)dz, (8.2)

where D(q) is the maximal definition domain for the exponential chart at a point
p ∈M.

Definition 8.2. Let B(M) be the Borel σ-algebra ofM. The random point X has a
(Riemannian) probability density function pdfX (real, positive and integrable function)
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if [66, p.132]:

∀Y ∈ B(M), Pr (X ∈ Y) =
ˆ
Y
pdfX(y)dM(y);

and Pr(M) =
ˆ
M

pdfX(y)dM(y) = 1.

A simple example of a pdf is the uniform pdf in a bounded set Y :

pdfX(y) = 1
fYdM

1Y(y) = 1Y(y)

Vol(Y) ,

where Vol(Y) stands for the volume of Y . One must be careful that this pdf is uniform
with respect to the measure dM and is not uniform for another measure on the man-
ifold. This problem is the basis of the Bertrand paradox for geometrical probabilities
and raise the problem of the measure to choose on the manifold. In our case, the
measure is induced by the Riemannian metric, but the problem is only lifted: which
Riemannian metric do we have to choose? For transformation groups and homogeneous
manifolds, an invariant metric is a good geometric choice, even if such a metric does not
always exist for homogeneous manifolds or if it leads in general to a partial consistency
only between the geometric and statistical operations in non compact transformation
groups [66, p.132].

Working with pdf’s and integrals in a Riemannian manifolds may become hard.
We can work in an Euclidean space instead. Let X be a Riemannian random point
with pdfX taking values on a Riemannian manifold M, and let ϕ : U ⊂ Rn → M
be a chart of M such that X(ω) ∈ M for some events ω. Then X = ϕ−1(X(ω))
is an (Euclidean) random vector defined in U whose pdfX is defined with respect to
the Lebesgue measure dx in Rn instead of dM in M. Using the expression of the
Riemannian measure, the two pdf’s are related by [66, p.132]

pdfX(u) = pdfX(q)
√
‖det (G(x))‖, q ∈ Y ∈ B(M) and u ∈ Z ∈ B(Rn). (8.3)

Note that the density pdfX depends on the chart used whereas the pdfX does not—it
is intrinsic to the manifold [66, p.132].

Let f(X) be a Borelian real valued function defined on M and X a Riemannian
random point with pdfX . Then f(X) is a real random variable and we can compute
its expectation [66, p.132]:

EX {ϕ(q)} :=
ˆ
M
f(p)pdfX(p)dM(p) (8.4)
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=
ˆ
Rn
ypdff(X)(x)dx

= Ef(X) {f(q)} .

This notion of expectation corresponds to the one we defined on real random vari-
ables and vectors. However, we cannot directly extend it to the case where f(X) take
values in manifold because we do not have defined the integral in (8.4) for such cases.
We need other notions for mean values.

8.2 EXPECTATION OR MEAN OF A RANDOM POINT

In this section we focus in the notion of central value of a distribution. We will
preferably use the denominationmean value ormean point than expected point to stress
the difference between this notion and the expectation of a real function [66, p.132].

8.2.1 Fréchet Expectation or Mean Value

Let X be a random vector on Rn. Fréchet observed that the variance

σ2
X(c) := EX

{
dist2 (X, c)

}
is minimized for the mean vector X̄ = EX {X}. The major point for the generalization
is that the expectation of a real valued function is well defined for our connected and
geodesically complete Riemannian manifoldM.

Definition 8.3 (Variance of a random point [66]). Let X ∈ ΦM be a Riemannian
random point. The (Riemannian) variance σ2

X(c) is the expectation of the squared
distance between the random point and the fixed point c ∈M:

σ2
X(c) := EX

{
dist2 (c, q)

}
=
ˆ
M

dist2 (c,u) pdfX(u)dM(u). (8.5)

Definition 8.4 (Fréchet expectation of a random point [66]). Consider a Riemannian
random point X ∈ ΦM. If the variance σ2

X(c) is finite for all point c ∈M (which is in
particular true for a density with a compact support), then every point X̄ minimizing
this σ2

X(c) is called an expected or (Riemannian) mean (point). Thus, the Riemannian
mean of χ is defined by:

X̄ := arg min
c∈M

(
EX

{
dist2 (c,X)

})
, (8.6)
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and the set of all means ofX is represented by E(X)—it is possible to exist more than
one point satisfying (8.6). If there exists a least one mean point X̄, we call variance the
minimal value σ2

X := σ2
X(X̄) and standard deviation (σX ≡ σX(X̄)) its square-root.

8.2.2 Existence and Uniqueness: Riemannian Center of Mass

As a mean point is the result of a minimization, its existence is not ensured (the
global minimum could be unreachable) and anyway the result is a set and no longer a
single element. This has to be compared with some central values in vector spaces, for
instance the modes. However, the Fréchet expectation does not define all the modes
even in vector spaces: one only keeps the modes of maximal intensity [66, p.133].

To get rid of this constraint, [169] proposed to consider the local minima of the
variance σ2

X(c) defined in (8.5) instead of the global ones. We call this new set of
means Riemannian centers of mass. As global minima are local minima, the Fréchet
expected points are a subset of the Riemannian centers of mass. However, the use of
local minima allows to characterize the Riemannian centers of mass using only local
derivatives of order two.

Using this extended definition, [169] and [170] established conditions on the man-
ifold and on the distribution to ensure the existence and uniqueness of the mean.We
just recall here the results without the proofs.

Definition 8.5 (Regular geodesic balls [66]). The ball Bc(r) is said geodesic if it does
not meet the cut locus of its center. This means that there exists a unique minimizing
geodesic from the center to any point of a geodesic ball. The ball is said regular if its
radius verifies 2r

√
κ < π, where κ is the maximum of the Riemannian curvature in this

ball.

8.3 RIEMANNIAN CENTRAL MOMENTS

Euclidean KF’s are build up with covariances; these matrices provide a measure
of the error of the estimate that a KF is providing. We then define the covariance
of a Riemannian random point in order to, ultimately, define UKF’s for Riemannian
manifolds.

Definition 8.6 (Riemannian covariance (extended from [66])). Let X ∈ ΦM be a
Riemannian random point with a mean X̄ ∈ E(X). Consider a point q ∈M with cut
locus C(q) and let D(q) be the maximal definition domain for the exponential chart at
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q. If X̄ ∈M− C(q), then the covariance of X respective to X̄ at q is defined by

P q

XX,X̄
: = EX

{(
logqX − logq X̄

)
(�)T

}
=
ˆ
M−C(q)

(
logq (x)− logq X̄

)
(�)T pdfX(x)dM (x) ; (8.7)

we can omit the reference to the point q when q = X̄ for simplicity in some cases.
If E(X) = {X̄}—that is, X̄ is the unique mean according to (8.6)—, we can write
P q
XX := P q

XX,X̄
or even PXX := P X̄

XX,X̄ .

Definition (8.6) is more general than Definition 6 of [66] in two characteristics: i)
it is defined when more than one Riemannian mean exists, whereas [66] it is assumed
that X̄ ∈ E(X) is unique; and ii) it is defined for any point q ∈ M, whereas in [66]
it is defined only for q = X̄. Particularly, this second extension will be necessary
when developing UKF’s for Riemannian because we will need to calculate covariance
in points q 6= X̄.

The covariance depends on the basis used for the exponential chart if we see it as a
matrix— that is, expressing it with coordinates—, but it does not depend on it if we
consider it as a bilinear form over the tangent plane [66].

The covariance PXX is related to the variance just as in the vector case [66]:

Tr (PXX) := TrM
(
EX

{(
logqX − logq X̄

)
(�)T

})
= EX

{
Tr
((

logqX − logq X̄
)

(�)T
)}

= EX
{
dist2

(
X̄,X

)}
=: σ2

X . (8.8)

Recall from Chapters 3 and 4 that higher order central moments are necessary in
order to develop higher order sigma representations and Unscented Transformations.
Hence, we define higher order central moments for Riemannian random variables.

Definition 8.7 (Riemannian central moments). Let X ∈ ΦM be a Riemannian ran-
dom point with a mean X̄ ∈ E(X). Consider a point q ∈ M with cut locus C(q)
and let D(q) be the maximal definition domain for the exponential chart at q. If
X̄ ∈ M− C(q), then the jth (central) moment of X respective to X̄ at q is defined
by

M q,j

X,X̄
:=


E
{[(

logqX − logq X̄
)

(�)T
]⊗ j2} for even j,

E
{ [(

logqX − logq X̄
)

(�)T
]⊗ j−1

2 ⊗
(
logqX − logq X̄

)}
for odd j;

(8.9)
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we can omit the reference to the point q when q = X̄ f or simplicity in some cases. If
E(X) = {X̄},we can write M q,j

X := M q,j

X,X̄
or even M j

X := M X̄,j

X,X̄
.

Note that P q

XX,X̄
= M q,2

X,X̄
. The notations X ∼ (X̄,M q,1

X,X̄
, ...,M q,l

X,X̄
)M and

X ∼ (X̄,M q,1
X,X̄

, ...,M q,l

X,X̄
) will stand for a Riemannian random point X ∈ ΦM with

x ∈ E(X) being one Riemannian mean and M q,1
X,X̄

, ...,M q,l

X,X̄
its moments respective

to X̄.

8.4 JOINT PROBABILITY AND STATISTICS

Definition 8.8 (Joint probability density function). Let B(M) be the Borel σ-algebra
ofM. The Riemannian random points X ∈ ΦM and Y ∈ ΦN have a (Riemannian)
joint probability density function pdfX,Y (real, positive and integrable function) if:

∀A ∈ B(M×N), Pr ((X,Y ) ∈ A) =
ˆ
A

pdfXY (x,y)dM(x)dM(y);

and Pr(M) =
ˆ
M×N

pdfXY (x,y)dM(x)dM(y) = 1.

Definition 8.9 (Joint Expected moment). LetX ∈ ΦM and Y ∈ ΦM be Riemannian
random points with joint pdf pdfX,Y , and f be a function from a subset U ⊂M×M
to Rn. Then the (Riemannian) joint expected moment of f respective toX and Y—or
to (X,Y )—is defined by

EXY {f(x)} :=
ˆ
U
f (x,y) pdfXY (x,y)dM(x)dM(y).

Definition 8.10 (Cross-covariance). Let X ∈ ΦM and Y ∈ ΦN be Riemannian
random points with a mean X̄ ∈ E(X) and Ȳ ∈ E(Y ), respectively. Consider two
points of q ∈ M and b ∈ N with cut loci C(q) and C(b), respectively, and let D(q)
and D(b) be the maximal definition domains for the exponential charts at q and b,
respectively. If X̄ ∈ M − C(q) and Ȳ ∈ N − C(b), then the (Riemannian) cross-
covariance ofX and Y respective to X̄ and Ȳ—or the (Riemannian) cross-covariance
of (X,Y ) respective to (X̄, Ȳ )—at (q, b) is defined by

P qb

XY ,(X̄,Ȳ ) := EXY
{(

logqX − logq X̄
) (

logb Y − logb Ȳ
)T}

=
ˆ
U

(
logqX − logq X̄

) (
logb Y − logb Ȳ

)T
pdfXY (x,y)dM(x)dM(y),

(8.10)

where U := (M−C(q))×(N − C(b)); we can omit the reference to (q, b) when (q, b) =
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(X̄, Ȳ ) for simplicity in some cases. If E(X) = {X̄} and E{Y } = {Ȳ }, we can write
P qb
XY := P qb

XY ,(X̄,Ȳ ) or even PXY := P X̄Ȳ
XY ,(X̄,Ȳ ).

8.5 SOME TRANSFORMATIONS OF RIEMANNIAN RAN-
DOM VARIABLES

In this section, we provide two propositions concerning transformations of Rieman-
nian random points that will be important further in this work.

Proposition 8.1. Consider the Riemannian random point X ∈ ΦMn , for q ∈Mn,

logqX ∼
(
X̄, PXX

)
;

and, for the point p ∈ M and linear mappings A : TqMn → TqMn,B ∈ TqMn →
TqMn , the Riemannian random point

Z := expq
(
A logqX +B logq p

)
.

Then the Riemannian mean Z̄ of Z, and its covariance P q
ZZ := P q

ZZ,Z̄
(respective to

Z̄ at q) are, respectively,

Z̄ = exp q

(
AX̄ +B logq p

)
(8.11)

P q
ZZ = APXXA

T +B logq p logTq pBT . (8.12)

In particular, for q = X̄, we have that

Z ∼
(
expX̄ (B logX̄ p) , APXXAT +B logX̄ p logTX̄ pBT

)
. (8.13)

Proof. From (8.6), a Riemannian mean Z̄ of Z is such that it solves the following
optimization problem

minimize g(c) := EZ
{
dist2 (c,Z)

}
subject to c ∈M; (8.14)

now consider the function

g̃(c̃) := g
(
logq Z

)
= Elogq Z

{
dist2 (c̃, x)

}
,
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and the following optimization problem

minimize g̃ (c̃) := Elogq Z
{
dist2 (c̃, x)

}
subject to c̃ ∈ TqM; (8.15)

Because i) the function logq is one-to-one, and ii) c̃ = E{logqX + logq p} minimizes
(8.15), then log−1

q X̄ = expq X̄ minimizes (8.14), and consequently Z̄ = expq E{A logqX+
B logq p}. Now we have that, since logq p is constant to the integral of the expected
value, and using

E{A logqX +B logq p} : = E{A logqX}+B logq p

= AX̄ +B logq p;

this proves (8.11).

For the part relative to the covariance, we have that, from (8.7), P q
ZZ is given by

P q
ZZ :=

ˆ
M−C(Z̄)

(
logq z − logq Z̄

)
(�)T pdfZ(z)dM (z) .

By making the change of variables Az = logq z (cf. (8.3) and (8.2)) and using (8.11),
it follows that

P q
ZZ =

ˆ
D(Z̄)

(
Az − logq Z̄

)
(�)T pdf(logq Z)(z)

√
‖detG(z)‖dz

=
ˆ
D(Z̄)

(
Az − logq

(
exp p

(
AX̄ +B logq p

)))
(�)T pdf(logq Z)(z)

√
‖detG(z)‖dz

=
ˆ
D(Z̄)

(
Az − AX̄ −B logq p

)
(�)T pdf(logq Z)(z)

√
‖detG(z)‖dz

= E
{(
Az − AX̄ −B logq p

)
(�)T

}
= E

{(
Az − AX̄

) (
z −BX̄

)T}
+ E

{(
−B logq p

) (
−B logq p

)T}
+ E

{(
Az − AX̄

) (
−B logq p

)T}
+ E

{(
−B logq p

) (
Az − AX̄

)T}
= APXXA

T +B logq p logTq pBT

+ A
(
X̄ − X̄

) (
−B logq p

)T
+
(
−B logq p

) (
X̄ − X̄

)T
AT

= APXXA
T +B logq p logTq pBT ;

this proves (8.12). The equation (8.13) follows directly from (8.11) and (8.12) (notice
that, in this case, X̄ = logX̄X = [0]n×1).

Proposition 8.2. For a Riemannian point q ∼ (q̄,P qq)Mn and a random vector
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p ∼ (p̄, Ppp)n, it follows that

expq̄
[
logq̄ (q) + p

]
∼
(
expq̄ p̄,P q + Pp

)
Mx

. (8.16)

Proof. From (8.6), a Riemannian mean X̄ of

X := expq̄
[
logq̄ (q) + p

]
is such that it solves the following optimization problem

minimize g(c) := EX
{
dist2 (c,x)

}
subject to c ∈M; (8.17)

now consider the function

g̃(c̃) := g
(
logq̄ c

)
= Elogq̄X

{
dist2 (c̃, x)

}
, (8.18)

and the following optimization problem

minimize g̃ (c̃) := Elogq̄X
{
dist2 (c̃, x)

}
subject to c ∈M; (8.19)

Since the function logq̄ is one-to-one, it follows that if c̃minimizes (8.19), than log−1
q̄ c̃ =

expq̄ c̃ minimizes (8.17), and consequently X̄ = expq̄ c̃.

We now show that p̄ minimizes (8.19). From (8.18), we have that

g̃ (c) := Elogq̄X
{
dist2 (c̃, x)

}
= Elogq̄(q)+p

{
dist2 (c̃, x)

}
= σ2

logq̄(q)+p(c̃),

since σ2
logq̄(q)+p(c̃) is the variance of logq̄ (q) +p it follows that the g̃ (c) is minimized by

Elogq̄(q)+p
{

logq̄ (q) + p
}

= [0]n×1 + p̄ = p̄.

Thus X̄ := expq̄ p̄, proving the part relative to the mean of expq̄ p. For the part relative
to the covariance, we have that, from (8.7), PXX (respective to X̄ at X̄) of X is

PXX :=
ˆ
M−C(X̄)

(
logX̄ (x)− logX̄

(
X̄
))

(�)T pdfexpq̄ p(x)dM (x)

=
ˆ
M−C(X̄)

logX̄ (x) logX̄ (x)T pdfX(x)dM (x) .
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Using (8.3) and (8.2),

PXX =
ˆ
D(X̄)

logX̄ (x) logX̄ (x)T pdf(logq̄(q)+p)(x)
√
G(x)dM (x)

=
ˆ
D(X̄)

logX̄ (x) logX̄ (x)T
(
pdf(logq̄(q))(x) + pdf(p)(x)

)√
G(x)dM (x)

= P qq + Ppp.

8.6 STATISTICS OF WEIGHTED SETS

For our intentions in this work, we also need definitions of statistics of a set of
weighted points in a Riemannian manifold. Consider a (geodesically complete) Rie-
mannian manifoldM and the weighted set

χ :=
{
χi, w

(1)
i , . . . , w

(l)
i |χi ∈M;w(1)

i , . . . , w
(l)
i ∈ R

}N
i=1

—note that we do not restrict these definition to the case wi > 0, nor to ∑N
i wi = 1.

The (Riemannian) sample (empirical) variance of χ respective to a point c ∈ M is
defined by

s2
χ(c) :=

N∑
i=1

w
(1)
i dist2 (c,χi) .

If the variance s2
χ(c) is finite for all point c ∈ M, then every point µχ minimizing

this s2
χ(c) is called an sample expected or sample mean point. Thus, a sample mean

point of χ is defined by

µχ := arg min
c∈M

(
N∑
i=1

w
(1)
i dist2 (c,χi)

)
, (8.20)

and the set of all sample means of χ is represented by E (χ)—it is possible to exist
more than one point satisfying (8.20).

If there exists a least one sample mean point µχ, we call sample variance the
minimal value s2

χ := s2
χ(µχ) and standard deviation (sχ ≡ sχ(µX)) its square-root.

Besides, consider a point q ∈M with cut locus C(q); if µχ,χ1,χ2, ...,χN ∈M−C(q),
then the (Riemannian) jth (central) sample (or empirical) moment of χ respective to
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X̄ at q is defined by

Mq,j
χ,µχ

:=


∑N
i=1w

(j)
i

[(
logq χi − logq µχ

)
(�)T

]⊗ j2 for even j,∑N
i=1w

(j)
i

[(
logq χi − logq µχ

)
(�)T

]⊗ j−1
2 ⊗

(
logq χi − logq µχ

)
for odd j;

(8.21)
A second sample moment is called a (Riemannian) sample covariance and represented
by Σq

χχ,µχ
:= Mq,2

χ,µχ
. We can omit the references to the point q when q = µχfor

simplicity in some cases. If E (χ) ≡ {µχ}, we can write Mq,j
χ := Mq,j

χ,µχ
, or Mj

χ :=
Mq,j
χ,µχ

; and Σq
χχ := Σq

χχ,µχ
or Σχχ := Σq

χχ,µχ
.

Moreover, for the Riemannian manifoldsM and N , consider the weighted sets χ :=
{χi, wi|γi ∈M, wi ∈ R}Ni=1 with a mean µχ ∈ E (χ) and γ = {γi, wi|γi ∈ N,wi ∈ R}Ni=1

with sample mean µγ ∈ E (γ); and two points of q ∈ M and b ∈ N with cut loci
C(q) and C(b), respectively. If µχ,χ1,χ2, ...,χN ∈ M− C(q) and µγ ,γ1,γ2, ...,γN ∈
N−C(b) then the (Riemannian) sample cross-covariance of (χ,γ) respective to (X̄, Ȳ )
at (q, b) is defined by

Σq

χγ,(X̄,Ȳ ) :=
N∑
i=1

wi
(
logq χi − logq µχ

) (
logb γi − logbµγ

)T
;

we can omit the references to the point (q, b) when (q, b) = (X̄, Ȳ ) for simplicity in
some cases. If E (χ) ≡ {µχ} and E (γ) ≡ {µγ}, then can write Σqb

χγ := Σqb

χγ,(X̄,Ȳ ) or
even Σχγ := ΣX̄Ȳ

χγ,(X̄,Ȳ ).

We will also need to treat a more general situation; for a Riemannian manifoldM,
consider the weighted set

χ :=

χi, w(m)
i , w

(m2
λ1λ2)

i , . . . , w

(
ml
λ1...λl

)
i

∣∣∣∣∣∣χi ∈M;

w
(m2

λ1λ2)
i , . . . , w

(
ml
λ1...λl

)
i > 0


N

i=1

,

and the vectors
λη ∈ {χ1, ..., χN , γ1, ..., γN} , η = 2, 3, ...;

and a point q ∈ M with cut locus C(q). The sample mean point µχ is also given
by (8.20). For µχ,χ1,χ2, ...,χN ∈ M− C(q), the (Riemannian) jth (central) sample
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moment of χ respective to X̄ at q is defined by

Mq,j
χ,µχ

:=



∑N
i=1w

(mj
χ1,...,χj)

i

[(
logq χi − logq µχ

)
(�)T

]⊗ j2 for even j,∑N
i=1 w

(mj
χ1,...,χj)

i

[(
logq χi − logq µχ

)
(�)T

]⊗ j−1
2

⊗
(
logq χi − logq µχ

)
for odd j.

Additionally, for another Riemannian manifold N , another weighted set

γ :=

γi, w(m)
i , w

(m2
λ1λ2)

i , . . . , w

(
ml
λ1...λl

)
i |γi ∈ N


N

i=1

,

with a mean µγ , and the points ql, l = 1, 2, ..., j define the cross-central moments
Mj

λ1...λj according to the following—supposing that all the log functions are well defined
in the points considered: for even j,

Mj
λ1...λj :=

N∑
i=1

w
(mj

λ1...λj)
i

j/2⊗
q=1

[(
logqq λ

q
i − logqq µλq

)
×
(
logq(q+1)

λq+1
i − logq(q+1)

µλ(q+1)

)T ]
;

and for odd j,

Mj
λ1...λj :=

N∑
i=1

w
(mj

λ1...λj)
i

(j−1)/2⊗
q=1

[(
logqq λ

q
i − logqq µλq

)
×
(
logq(q+1)

λ
(q+1)
i − logq(q+1)

µλ(q+1)

)T ]
⊗
(
logqj λ

j
i − logqj µλj

)
;

8.7 CONCLUSIONS REGARDING STATISTICS IN RIEMAN-
NIAN MANIFOLDS

In this chapter, we i) presented some results of [66] regarding statistics intrinsically
developed in Riemannian manifolds, ii) made some extensions these results of [66]—
e.g., among others, definitions of moments are extensions—, and iii) propose other
results regarding statistics in Riemannian manifolds—e.g., among others, moments and
sample moments of order higher than 2 (Section 8.3 and 8.6), propositions concerning
transformations of Riemannian random points (Section 8.5), and results concerning
joint Riemannian random points (Section 8.4).

Using the theory presented in this chapter, we will extend the Unscented Kalman
filtering systematization developed in Part I to the case of Riemannian manifolds.
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9. UNSCENTED FILTERS FOR
RIEMANNIAN MANIFOLDS

In chapter 7, the problem of developing UKF’s for quaternion models in the form of
(7.2) was addressed using R3 parameterizations of S3 (e.g. Rotation vectors, Rodrigues
vectors, and Quaternion vectors). In this chapter, this problem is addressed from
another perspective; the theory of Riemannian manifolds is used to develop UKF’s
for dynamic systems belonging to these manifolds. These UKF’s are general cases of
UKF’s for dynamic systems belonging to S3.

The systematization of Part 1 was developed upon the concepts of σ-representation,
Unscented Transformation and Unscented Kalman Filter. We want to extend this
systematization to the Riemannian case, and hence the first concept that needs to be
extended is the σ-representation.

We make the following assumptions in this chapter:

1. all Riemannian manifolds are geodesically complete (cf. Section A.4);

2. all Riemannian exponential mappings are defined with their domain allowing
them to realize diffeomorphisms (cf. Section A.5, this means their inverse map-
pings, the Riemannian logarithms mappings, always exist and are differentiable);

3. every time a Riemannian exponential of the form expq v is considered, we assume
v belonging to the domain the maximal definition domain D(p) of expq (cf.
Section A.5);

4. every time a Riemannian logarithm of the form logq p is considered, we assume
p belonging to the domain of logq;

5. every Riemannian random point admits one, and only one, Riemannian mean
(cf. Definition 8.4);

6. every set of weighted points belonging to a Riemannian manifold admits one,
and only one, Riemannian sample mean [cf. equation (8.20)].
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9.1 RIEMANNIAN σ-REPRESENTATIONS

Riemannian random points are analogous, for Riemannian manifolds, to random
vectors for Euclidean spaces. Recall from chapter 3 that random vectors can be approxi-
mated by weighted sets called σ-representations (σR’s). Similarly, Riemannian random
points can be approximated by weighted sets called Riemannian σ-representations.

Definition 9.1. Consider, for a point q ∈M, i) a Riemannian random pointX ∈ ΦM
with mean X̄ ∈ E(X) (Definition 8.4) and Riemannian central momentsM q,j

X,X̄
, j = 1,

2, ..., l (cf. Definition 8.6); and ii) a weighted set

χ :=
{
χi, w

(1)
i , . . . , w

(l)
i |χi ∈M

}N
i=1

with Riemannian sample mean µχ ∈ E (χ) [cf. equation (8.20)] and Riemannian
sample moments Mj

χ, j = 1, 2, ..., l [cf. equation 8.21]. If

w
(j)
i > 0, ∀i = 1, . . . , N and j = 1, . . . , l; (9.1)

µχ = X̄; (9.2)

Mj
χ = M j

X , j = 2, 3, . . . , l; (9.3)

then χ is a Riemannian lth order N points σ-representation (RilthNσR) of X.

Moreover, assume χ is an RilthNσR of X, then:

• χ is normalized if
N∑
i=1

w
(j)
i = 1, j = 1, 2, . . . , l.

• χ is homogeneous if:

w
(j)
1 = w

(j)
i , 1 ≤ i ≤ N − 1, for odd N ; or (9.4)

w
(j)
1 = w

(j)
i , 1 ≤ i ≤ N, for even N. (9.5)

• χ is symmetric (respective to χN) if—in the case where χ is symmetric respective
to other χi, we can rearrange the indices of the sigma points and weights—:

logµχ (χi)− logµχ (χN) = −
(
logµχ

(
χi+N−1

2

)
− logµχ (χN)

)
,

and w(j)
i = w

(j)
i+N−1

2
, 1 ≤ i ≤ N − 1

2 , for odd N ; or (9.6)

logµχ (χi)− logµχ (χN) = −
(
logµχ

(
χi+N

2

)
− logµχ (χN)

)
,
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and w(j)
i = w

(j)
i+N

2
, 1 ≤ i ≤ N

2 , for even N. (9.7)

When calling an RilthNσR of X, the reference to the lth order can be omitted if
l = 2. Also, the reference to N point and/or to X can be omitted in case they are
obvious from the context or irrelevant for a given statement.

Note that the RilthNσR’s are restricted to positive weights w(j)
i [cf. (9.1)]; this will

facilitate some results ahead (specially Theorem 9.1).

Definition 9.1 provides concepts analogous to the σR for an Euclidean random
variable. However, finding closed forms for RiσR’s may be troublesome; the next
theorem provides a way to extend the expression of a particular σR to a RiσR.

Theorem 9.1. Consider a Riemannian manifoldMn, a point q ∈M− C(X̄), and a
Riemannian random point

X ∼
(
X̄,M q,j

X,X̄
, . . . ,M q,l

X,X̄

)
Mn

.

Then the set
χ :=

{
χi, w

(1)
i , . . . , w

(l)
i |χi ∈M

}N
i=1

is a normalized RilthNσR of X if, and only if, the set

χ :=
{

logq χi, w
(1)
i , . . . , w

(l)
i

}N
i=1

is a normalized lthNσR of the random vector

X ∼
(
logq X̄,M q,j

X,X̄
, . . . ,M q,l

X,X̄

)n
∈ ΦTqM.

Moreover, the following statements are true:

1. χ is homogeneous if, and only if, χ is homogeneous;

2. χ is symmetric if, and only if, χ is symmetric.

Proof. Suppose the set

χ :=
{
χi, w

(1)
i , . . . , w

(l)
i |χi ∈M

}N
i=1

is a RilthNσR of X ∼ (X̄,M q,j

X,X̄
, . . . ,M q,l

X,X̄
)Mn . Define the set

χ :=
{

logq χi, w
(1)
i , . . . , w

(l)
i

}N
i=1

,
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and consider X := logqX ∼ (logq X̄,M q,j

X,X̄
, . . . ,M q,l

X,X̄
)n ∈ ΦTqM. Then from (9.1),

(3.6) is satisfied. We want to show that logq X̄ is a sample mean µχ of χ. Because χ is
a RilthNσR of X, from of (9.2), X̄ is a Riemannian sample mean of χ and, therefore,
from (8.20), X̄ minimizes the function

g(x) :=
N∑
i=1

w
(1)
i dist2

(
x, expq χi

)
. (9.8)

The function g ◦ expq : D(q) ⊂ TqM → [0,∞) is a real valued function defined in
a subset of the vector space TqM. We can, therefore, use results of optimization for
such cases. Since g ◦ expq is a quadratic function, it is clear that it has a minimum
x∗ ∈ D(q) and that the derivative of g ◦ expq on x∗ is zero, that is,

[0]n×1 =
d
(
g ◦ expq

)
(x)

dx

∣∣∣∣∣∣
x=x∗

= 2
N∑
i=1

w
(1)
i (x∗ − χi)

⇔ [0]n×1 = x∗
N∑
i=1

w
(1)
i −

N∑
i=1

w
(1)
i χi

⇔ x∗ =
N∑
i=1

w
(1)
i χi. (9.9)

Since X̄ minimizes g, then logq X̄ minimizes g ◦ expq—we are assuming that expq is
one-to-one—; hence

logq X̄ = x∗ =
N∑
i=1

w
(1)
i χi =: µχ, (9.10)

and (3.7) is satisfied.

Now let us prove the reverse for the mean. Consider the Riemannian random point
X ∼ (X̄,M q,j

X,X̄
, . . . ,M q,l

X,X̄
)Mn and the set

χ :=
{
χi, w

(1)
i , . . . , w

(l)
i |χi ∈ TX̄M, w

(1)
i , . . . , w

(l)
i > 0

}N
i=1

;

suppose that all the points χi’s belong to the domain of expq, and that χ is an lthNσR
of X := logqX ∼ (logq X̄,M q,j

X,X̄
, . . . ,M q,l

X,X̄
)n ∈ ΦTqM. Define the set

χ :=
{

expq (χi) , w(1)
i , . . . , w

(l)
i |χi ∈M

}N
i=1

[recall that, if χi = expq (χi), then χi = logq (χi)]. Then, from (3.6) and w(1)
i , . . . , w

(l)
i >

0, (9.1) is satisfied. We want to show that X̄ is a Riemannian sample mean of χ; from
(9.9), we have that µχ := ∑N

i=1w
(1)
i χi minimizes the function g ◦ expq, therefore, from
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(9.10),
expq

(
µχ
)

= expq
(
logq X̄

)
= X̄

minimizes g. Then X̄ is a Riemannian sample mean of χ and (9.2) is satisfied.

Now we want to show that (3.8) and (9.3) are equivalent. For even j, we have that,
from (3.7) and (8.21),

Mq,j

χ,X̄
:=

N∑
i=1

w
(j)
i

[(
logq χi − logq X̄

)
(�)T

]⊗ j2
=

N∑
i=1

w
(j)
i

[(
χi − µχ

)
(�)T

]⊗ j2
=: Mj

χ;

and from (3.8), it follows that

Mq,j

χ,X̄
= Mj

χ = M j
X .

Likewise, for odd j, we have

Mq,j

χ,X̄
:=

N∑
i=1

w
(j)
i

[(
logq χi − logq X̄

)
(�)T

]⊗ j2 ⊗ (logq χi − logq X̄
)

=
N∑
i=1

w
(j)
i

[(
χi − µχ

)
(�)T

]⊗ j2 ⊗ (χi − µχ)
=: Mj

χ;

and from (3.8), it follows that

Mq,j

χ,X̄
= Mj

χ = M j
X ;

then (3.8) and (9.3) are equivalent.

It remains to prove statements 1. and 2. Note that statement 2. follows directly
from the equivalence between (3.11) and (9.4), and between (3.12) and (9.5).

Now we prove that (3.13) is equivalent to (9.6), and (3.14) to 9.7. From (3.13), for
odd N , we have that

w
(j)
i = w

(j)
i+N−1

2
, 1 ≤ i ≤ N − 1

2 ;

and that

logq (χi)− logq (χN) = χi − χN
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= −
(
χi+N−1

2
− χN

)
= −

(
logq

(
χi+N−1

2

)
− logq (χN)

)
;

therefore, (3.13) is equivalent to (9.6). From (3.14), for even N , we have that

w
(j)
i = w

(j)
i+N

2
, 1 ≤ i ≤ N

2 ;

and that

logq (χi)− logq (χN) = χi − χN
= −

(
χi+N

2
− χN

)
= −

(
logµχ

(
χi+N

2

)
− logµχ (χN)

)
;

therefore(3.14) is equivalent to (9.7), and statement 2. is proved.

Of particular importance is the case where q = X̄: the set χ is a normalized
RilthNσR of

X ∼
(
X̄,M 2

X , . . . ,M
l
X

)
M

if, and only if, the set

χ :=
{

logX̄ (χi) , w
(1)
i , . . . , w

(l)
i

}N
i=1

is a normalized lthNσR of

X ∼
(
[0]n×1,M

2
X , . . . ,M

l
X

)n
∈ ΦTX̄M.

With Theorem 9.1 we can extend some results from lthNσR’s to RilthNσR’s, such
as the minimum number of sigma points of a RilthNσR, among others.

Corollary 9.1. Let χ := {χi, w
(1)
i , . . . , w

(l)
i |χi ∈M}Ni=1 be a normalized RilthNσR of

a Riemannian random point X ∼ (X̄,PXX)Mn. Let the rank of the covariance PXX
be r ≤ n. Then the following statements are true:

1. N ≥ r + 1. If N = r + 1, then χ is called a minimum RilthNσR of X.

2. If χ is symmetric, then N ≥ 2r. If χ is symmetric and N = 2r, then χ is called
a minimum symmetric RilthNσR of X.
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Moreover, consider the set

χ :=
{

logq χi, w
(1)
i , . . . , w

(l)
i

}N
i=1

and the random vector

X ∼
(
logq X̄,M q,j

X,X̄
, . . . ,M q,l

X,X̄

)n
∈ ΦTqM.

Then the following statements are true:

• If N is even and χ is a (normalized) homogeneous minimum symmetric σ -
representation of X (Corollary 3.3), then χ is also minimum and symmetric and
is called a Riemannian (even) (normalized) homogeneous minimum symmetric σ
-representation of X.

• If χ is a HoMiSyσR of X (Corollary 3.4), then χ is also minimum and sym-
metric, and is called a Riemannian (odd) (normalized) homogeneous minimum
symmetric σ -representation (RiHoMiSyRσR) of X .

• If χ is a RhoMiσR of X (Tab 2.1 [3,2]), then χ is also minimum, and is called
a Riemannian Rho Minimum σ -representation (RiRhoMiσR) of X .

• If χ is a MiσR of X (Theorem 3.2), then χ is also minimum, and is called a
Riemannian Minimum σ-representation (RiMiσR) of X .

Proof. From Theorem 9.1, the set

χ :=
{

logq (χi) , w
(1)
i , . . . , w

(l)
i

}N
i=1

is a normalized lthNσR of (logq(χi),P
q
XX)n. From the item 1. of Corollary 3.1, it

follows that N ≥ r + 1. Suppose that χ is symmetric, then, from statement 2. of
Theorem 9.1, χ is symmetric; and from statement of 2. of Corollary 3.1 it follows that
N ≥ r + 1.

9.2 RIEMANNIAN UNSCENTED TRANSFORMATIONS

The concept of a σ-representation is a requisite for the definition of the UT in
Chapter 4. Essentially, an UT is an approximation of the joint pdf of two functionally-
related random vectors X and Y = f(X) by two weighted sets χ with points χi and γ
with points γi = f(χi), where χ is a σ-representation of X. For a Riemannian extension
of the UT, we develop likewise.
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Definition 9.2 (Riemannian Unscented Transformation). Consider two Riemannian
manifolds M and N , the function f : U ⊂ M → N , the Riemannian random point
X ∼ (X̄,M 2

X , . . . ,M
l
X)M taking values onM, and the sets

χ :=

χi, w(m)
i , w

(m2
λ1λ2)

i , . . . , w

(
ml
λ1...λl

)
i

∣∣∣∣∣∣χi ∈M;

w
(m2

λ1λ2)
i , . . . , w

(
ml
λ1...λl

)
i > 0


N

i=1

,

and

γ :=

γi, w(m)
i , , w

(m2
λ1λ2)

i , . . . , w

(
ml
λ1...λl

)
i

∣∣∣∣∣∣ γi = f(χi)


N

i=1

.

If χ is an RilthNσR of X, then the lth order Riemannian Unscented Transformation
(RilUT) is defined by

RilUT
(
f, X̄,M 2

X , ...,M
l
X

)
:=
[
µγ ,M2

γ , ...,M
l
γ ,M

2
λ1λ2 , ...,Ml

λ1...λl

]
.

If l = 2 or l is irrelevant for a given discussion, we can omit the reference to l and write
RiUT := RI2UT.

Following the order of the results in Chapter 4, we proceed towards defining Rie-
mannian scaled and square-root Unscented Transformations.

9.2.1 Scaled Riemannian Unscented Transformations

For defining Riemannian scaled transformations, we need a Riemannian “scaling”
function g similar to the one in (4.9) for the Scaled Unscented Transformation. From
(4.9), we need i) g to perform operations of sums and multiplications by scalars, and
ii) the domain U of f : U ⊂M→ N to be convex—–this means that the domain U of
f must contain every line segment between any two points in U .

Since i) convexity is a conservative assumption (few manifolds are convex), and ii)
operations of sums and multiplications by scalars are not always defined in Riemannian
manifolds, we define g using tangent spaces of the domain of f—tangent spaces have
the required operations because they are vector spaces. For this, consider a mapping
f : U ⊂M→ N between two Riemannian manifoldsM and N ; and, for α, κ ∈ (0, 1],
q ∈ U ,X ∈ U , and b ∈ N , define the function

g (f,X, q, b, α, κ) := expf(q)

(
κ−1 logf(q)

[
f
(
expq

[
(1− α) logqX

])])
. (9.11)
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Definition 9.3 (Riemannian Scaled Unscented Transformation). Consider two Rie-
mannian manifolds M and N , the mapping f : U ⊂ M → N , the Riemannian
random point X ∼ (X̄,PXX)M taking values onM and the sets

χ := {χi, wmi , wci , wcci |χi ∈M}
N
i=1 . (9.12)

Define g as in (9.11), the set

γ :=
{
γi, w

m
i , w

c
i , w

cc
i |γi = g

(
f,χi,µχ, f

(
α−2 log

[
f
(
µχ
)])

, α, α2
)}N

i=1
, (9.13)

and the Riemannian scaled sample moments

Σα
γγ := α2

N∑
i=0

wci
(
logµγ (γi)

)
(�)T ,

Σα
χγ := α

N∑
i=0

wcci
(
logµχ (χi)

) (
logµγ (γi)

)T
.

If χ is a RiσR ofX, then the Riemannian Scaled Unscented Transformation (RiScUT)
is defined by

RiScUT
(
f, X̄,PXX , α

)
:=
[
µγ ,Σα

γγ ,Σα
χγ

]
.

Note that, similarly to the Euclidean case, every RiScUT with sets χ in (9.12) and
γ in (9.12) is a 2RiUT with sets χ and

{γi, wmi , w
α,c
i , wα,cci |γi}

where wα,ci = α2wci and w
α,cc
i = αwcci .

Next, we extend the particular scaled UT’s of Section 4.2 to the case of Riemannian
manifolds.

Definition 9.4 (Riemannian Simplex Scaled Unscented Transformation). Let the
weighted set χ := {χi, wi}Ni=1 with be a RiσR of X ∼ (X̄,PXX) with χN = X̄.
Choose α ∈ (0, 1] and define i) the set

χ′ := {χ′i, w′i|χ′i = expX̄ ((1− α) logX̄ χi)}
N
i=1 (9.14)

where

w′N : = α−2wN + 1− α−2,

w′i = α−2wi, i = 1, ..., N − 1;
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ii) for a function f : U ⊂M→ N on a open set U ofM, the set

γ ′ :=
{
γ ′i, w

′
i|γ ′i = nTMyf (χ′i)

}N
i=1

; (9.15)

and iii) the modified sample covariance of γ ′ as

Σαα
γ′γ′ :=

N∑
i=1

w′i
(
logµγ (γ ′i)

)
(�)T + (1− α2)

(
logµγ (γ ′N)

)
(�)T .

Then the Riemannian Simplex Scaled Unscented Transformation (RISiScUT) is defined
by

RiSiScUT
(
f, X̄,PXX , α

)
:=
[
µγ′ ,Σαα

γ′γ′ ,Σχ′γ′

]
.

Definition 9.5 (Riemannian Symmetric Intrinsically-Scaled Unscented Transforma-
tion). Choose α ∈ (0, 1] and κ ∈ R such that

λ := α2 (n+ κ)− n > −n;

and let f : U ⊂M→ N ,M with dimension n, be be a function mapping an open set
U of M to N , and the weighted set χ := {χi, wi}2n+1

i=1 with w2n+1 = λ/(n + λ) be a
RiHoMiSyσR of X ∼ (X̄,PXX). Define the sets

χ̃ := {χ̃i, w̃mi , w̃ci , w̃cci |χ̃i = χi}
2n+1
i=1 (9.16)

and
γ̃ := {γ̃i, w̃mi , w̃ci , w̃cci |γ̃i = f (χi)}

2n+1
i=1 (9.17)

where

w̃m2n+1 = w2n+1;

w̃c2n+1 = w2n+1 + (1− α2);

w̃cc2n+1 = w2n+1 + (1− α);

w̃mi = w̃ci = w̃cci = wi, i = 1, ..., 2n;

Then the Riemannian Symmetric Intrinsically-Scaled Unscented Transformation (RiSyIn-
ScUT) is defined by

RiSyInScUT
(
f, X̄,PXX , α

)
:=
[
µγ̃ ,Σγ̃γ̃ ,Σχγ̃

]
.
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9.2.2 Riemannian Square-Root Unscented Transformation

In this section, we extend results related to the SRUT (Section 4.3) to the case of
Riemannian manifolds.

Consider the Riemannian random point X with mean X̄ and square-root of the
covariance

√
PXX . For a set

χ := {χi, wmi , wci , wcci |χi ∈M}
N
i=1 ,

and a point q ∈M, define the matrix Sqχ by

Sqχ :=
[√
wc1
(
logq χ1 − logq µχ

)
, · · · ,

√
wcN

(
logq χN − logq µχ

)]
;

and, for q = µχ, the matrix

Sχ := S
µχ
χ :=

[√
wc1 logµχ χ1, · · · ,

√
wcN logµχ χN

]
. (9.18)

To clear notations, in the definitions below, we will restrict to the case of q = µχ

(Sχ = S
µχ
χ ), but they are easily extended to the case of q 6= µχ (Sχ 6= S

µχ
χ ).

Definition 9.6 (Riemannian Square-Root Unscented Transformation). Consider two
Riemannian manifolds M and N ; the function f : U ⊂ M → N ; the Riemannian
random pointX ∈ ΦM with mean X̄ and its covariance’s square-root

√
PXX ; and the

sets
χ := {χi, wmi , wci , wcci |χi ∈M}

N
i=1 ,

and
γ := {γi, wmi , wci , wcci |γ := f (χi)}

N
i=1 .

Given a matrix
√

Γ, define Sχ, Sγ as in (9.18), and the matrix

√
ΣΓ
γγ : =

√
Σγγ +

√
Γ
√

Γ
T
.

If χ is a RiσR of X ∼ (X̄,
√
PXX

√
PXX

T ), then the Riemannian Square-Root Un-
scented Transformation (RiSRUT) is defined by

RiSRUT
(
f, X̄,

√
PXX ,

√
Γ
)

:=
[
µγ ,

√
ΣΓ
γγ , Sχ, Sγ ,Σχγ

]
.

We could think of calculating
√

ΣΓ
γγ by

√
ΣΓ
γγ = cu

(
S+
γ , S

−
γ ,
√

Γ
)
as for the SRUT’s

[cf. equation (4.14)]. However, since the RiσR’s are defined only for positive weights,
the matrices S−χ , S−γ defined in (4.15) are not defined for RiσR’s. Therefore,

√
ΣΓ
γγ can
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be calculated as in (4.17):
√

ΣΓ
γγ = tria

([
Sγ ,
√

Γ
])
.

Definition 9.7 (Riemannian Scaled Square-Root Unscented Transformation). Con-
sider two Riemannian manifolds M and N ; the function f : U ⊂ M → N ; the
Riemannian random point X ∈ ΦM with mean X̄ and its covariance’s square-root
√
PXX ; and the sets χ′ in (9.14) and γ ′ in (9.14). Given a matrix

√
Γ, define Sχ, Sγ

as in (9.18), and the matrix

√
ΣαΓ
γγ :=

√
Σγγ

α +
√

Γ
√

Γ
T
.

If χ is a RiσR of X ∼ (X̄,
√
PXX

√
PXX

T ), then the Riemannian Scaled Square-Root
Unscented Transformation (RiScSRUT) is defined by

RiScSRUT
(
f, X̄,

√
PXX ,

√
Γ, α

)
:=
[
µγ ,

√
ΣαΓ
γγ , Sχ, Sγ ,Σα

χγ

]
.

Note that, similarly to the Euclidean case, RiScSRUT with sets χ in (9.12) and γ
in (9.12) is a RiSRUT with sets χ and

{γi, wmi , w
α,c
i , wα,cci |γi}

where wα,ci = α2wci and w
α,cc
i = αwcci .

Definition 9.8 (Riemannian Simplex Scaled Square-Root Unscented Transformation).
Consider two Riemannian manifolds M and N ; the function f : U ⊂ M → N ; the
Riemannian random point X ∈ ΦM with mean X̄ and its covariance’s square-root
√
PXX ; and the sets χ′ in (9.12) and γ ′ in (9.13). Given a matrix

√
Γ, define Sχ′ , Sγ′

as in (9.18), and the matrix

√
ΣααΓ
γ′γ′ :=

√
Σαα
γ′γ′ +

√
Γ
√

Γ
T
.

If χ is a RiσR of X ∼ (X̄,
√
PXX

√
PXX

T ), then the Riemannian Simplex Scaled
Square-Root Unscented Transformation (RiSiScSRUT) is defined by

RiSiScSRUT
(
f, X̄,

√
PXX ,

√
Γ, α

)
:=
[
µγ′ ,

√
ΣααΓ
γ′γ′ , Sχ′ , Sγ′ ,Σχ′γ′

]
.

Definition 9.9 (Riemannian Symmetric Intrinsically-Scaled Square-Root Unscented
Transformation). Consider two (geodesically complete) Riemannian manifoldsM and
N ; the function f : U ⊂M→ N ; the Riemannian random point X ∈ ΦM with mean
X̄ and its covariance’s square-root

√
PXX ; and the sets χ̃ in (9.16) and γ̃ in (9.17).
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Given a matrix
√

Γ, define Sχ̃, Sγ̃ as in (9.18), and the matrix

√
ΣΓ
γ̃γ̃ :=

√
Σγ̃γ̃ +

√
Γ
√

Γ
T
.

If χ is a RiσR ofX ∼ (X̄,
√
PXX

√
PXX

T ), then the Riemannian Symmetric Intrinsically-
Scaled Square-Root Unscented Transformation (RiSyInSRUT) is defined by

RiSyInScSRUT
(
f, X̄,

√
PXX ,

√
Γ, α

)
:=
[
µγ̃ ,

√
ΣΓ
γ̃γ̃ , Sχ̃, Sγ̃ ,Σχ̃γ̃

]
.

We have Riemannian extensions of all the UT’s for the Euclidean defined in chapter
4. Now we can define the Riemannian Unscented Filters.

9.3 RIEMANNIAN UNSCENTED FILTERS

UKF’s are solutions to the problem of estimating the state of stochastic dynamic
systems. In order to define Riemannian UKF’s–the extension of the UKF’s for the
Riemannian case—we need to extend the systems (2.1) and (2.2) to the Riemannian
case.

9.3.1 Riemannian Dynamics Systems

Consider the following system:

xk = fk (xk−1,$k) ,

yk = hk (xk,ϑk) (9.19)

where k is the time step; xk ∈ ΦMnx
x

the internal state; yk ∈ ΦMny
y

is the measured
output; $k ∈ ΦMn$

$
the process noise; and ϑk ∈ ΦMnϑ

ϑ
the measurement noise.

The noise $k is assumed to have mean $̄k and covariance Qk; and ϑk, mean ϑ̄k
and covariance Rk. We call the pair of equations (9.19) the Riemannian (stochastic,
discrete-time, dynamic) system.

We also want to consider an additive variant of (9.19). Filters for these systems are
computationally cheaper. Moreover, we want additive UKF’s for Riemannian manifolds
to be solutions to the problems encountered with the additive UKF’s for quaternions
models (cf. Chapter 7).

Nonetheless, defining these additive variants of (9.19) is not straightforward; sums
are not defined for all Riemannian manifolds. For instance, recall, from Remark 7.1,
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that all the additive-noise quaternions models in the literature present problems. The
problem of defining an additive-noise quaternion system still persists since, in Chapter
7, we did not provide a definition for these systems. Now, we solve this problem by
introducing an additive variant of (9.19).

Essentially, we want of an additive variant of (9.19) for i)$k to act on fk (xk−1) by
“adding” a) its mean to the mean of fk (xk−1), and b) its covariance to the covariance
of fk (xk−1); and ii) for ϑk to act on hk (xk) by “adding” a) its mean to the mean of
hk (xk) and b) its covariance to the covariance of hk (xk). Since the tangent spaces are
vector spaces, we can work with sums in these spaces using Proposition 8.2.

Consider Proposition 8.2 two times: one for the process function with q = fk (xk−1)
and p = $k , and another for the measurement function with q = hk (xk) and p = ϑk.
Then we define the additive Riemannian (stochastic, discrete-time, dynamic) system
as follows:

xk = expfk(xk−1)

[
logfk(xk−1) fk (xk−1) +$k

]
,

yk = exphk(xk)

[
loghk(xk) hk (xk) + ϑk

]
; (9.20)

where xk ∈ ΦMnx
x

, yk ∈ ΦMny
y

, $k ∈ Tfk(xk−1)Mnx
x , and ϑk ∈ Tfk(xk−1)Mny

y .
The noise $k is assumed to have mean $̄k ∈ Tfk(xk−1)Mnx

x and covariance Qk ∈
Tfk(xk−1)Mnx

x × Tfk(xk−1)Mnx
x , and ϑk mean ϑ̄k ∈ Tfk(xk−1)Mny

y and covariance Rk ∈∈
Tfk(xk−1)Mny

y × Tfk(xk−1)Mny
y . We highlight that the noise $k is defined in the tangent

space Tfk(xk−1)Mnx
x and ϑk, in Tfk(xk−1)Mny

y . An alternative definition in which these
noises belong to Riemannian manifolds is discussed in Remark 9.1.

As far as our knowledge goes, system (9.20) is the first consistent additive-noise Rie-
mannian stochastic discrete-time dynamic system; and also, for the particular case of
unit quaternions, the first consistent additive-noise unit-quaternion stochastic discrete-
time dynamic system.

Remark 9.1. System (9.20) is defined with the process and measurement noises be-
longing to tangent spaces. An alternative definition in which these noises belong to
Riemannian manifolds is the following:

xk = expfk(xk−1)

[
logfk(xk−1) fk (xk−1) + logfk(xk−1)$k

]
,

yk = exphk(xk)

[
loghk(xk) hk (xk) + loghk(xk) ϑk

]
;

where xk ∈ ΦMnx
x

, yk ∈ ΦMny
y

, $k ∈ ΦMnx
x
, and ϑk ∈ ΦMny

y
. In this case, it would

be interesting to assume one of the following two cases:

1. That were known i) the means of $k and ϑk—e.g. $̄k ∈ Mnx
x − C(fk (xk−1))
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and ϑ̄k ∈ Mny
y − C(hk (xk))—, b) the covariance of $k respective to $̄k at

fk (xk−1)—see the definition of Riemannian covariance in (8.7)—, and iii) the
covariance of ϑk respective to ϑ̄k at hk (xk).

2. That the means and covariances of logfk(xk−1)$k and loghk(xk) ϑk were known—
e.g. the means $̄k ∈ Tfk(xk−1)ΦMnx

x
and r̄k ∈ Thk(xk)ΦMny

y
; and the covariances

Qk ∈ Tfk(xk−1)ΦMnx
x
× Tfk(xk−1)ΦMnx

x
and Rk ∈ Thk(xk)ΦMnx

x
× Thk(xk)ΦMny

y
.

9.3.2 Correction equations

Essentially, Unscented filters are composed of two UT’s along with the KF correc-
tion equations. We already have the analogous of the UT’s for the Riemannian case,
but not the analogous of the correction equations. Let us consider these equations for
the additive systems.

From the Algorithm 6, the corrections equations of the AdUKF are

Gk :=P̂ k|k−1
xy

(
P̂ k|k−1
yy

)−1
,

x̂k|k :=x̂k|k−1 +Gk

(
y˜k − ŷk|k−1

)
, (9.21)

P̂ k|k
xx :=P̂ k|k−1

xx −GkP̂
k|k−1
yy GT

k .

Again, we have operations of sums, which are not defined for all Riemannian man-
ifolds. We can try to work on the tangent space of a given point, but here we have an-
other problem. Equation (9.21) have sums involving the estimates of the state (x̂k|k−1)
and of the measurement (ŷk|k−1), but in the Riemannian case, the state and the mea-
surement do not belong, necessarily, to the same Riemannian manifold—xk ∈ ΦMnx

x

and yk ∈ ΦMny
y
. Choosing a tangent space as a set to perform operations similar to

(9.21) when ΦMnx
x
6= ΦMny

y
; so let us treat, first, the simpler case of ΦMnx

x
= ΦMny

y
.

Remark 9.2. Recall that the intrinsic statistics for Riemannian manifolds presented in
Chapter 8 are an extension of the results presented in [66]. In the present section, we
will need specially two of these extensions: i) the definition of a covariance of a given
Riemannian random point X at a point q different from X̄, and ii) the definition of
the cross-covariance of two Riemannian random points.

9.3.2.1 State and measurement in the same manifold

Suppose that
Mnx

x =Mny
y ,
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and that a measurement y˜k is acquired. Define the Riemannian random points

xk|k−1 := xk|y1:k−1,

xk|k := xk|y1:k,

yk|k−1 := yk|y1:k−1;

and the projections on the tangent space of xk|k−1

xTMk|k−1 := logx̄k|k−1
xk|k−1, (9.22)

xTMk|k := logx̄k|k−1
xk|k,

yTMk|k−1 := logx̄k|k−1
yk|k−1, (9.23)

y˜TMk := logx̄k|k−1
y˜k. (9.24)

Let i) xk|k−1 and yk|k−1 be characterized by their projection on the tangent space of
xk|k−1 according to the following equation:

 xTMk|k−1

yTMk|k−1

 ∼ N

 [0]nx,1
yTMk|k−1

 ,
 P k|k−1

xx P k|k−1
xy(

P k|k−1
xy

)T
P k|k−1
yy

nx ; (9.25)

and ii) the projection xTMk|k be given by the following linear correction of xTMk|k−1

xTMk|k = xTMk|k−1 +Gk

(
y˜TMk − yTMk|k−1

)
, (9.26)

where Gk ∈ Rnx×nx is a gain matrix. From known results of the Kalman filtering
theory (cf. [25]), we have that

Gk := P k|k−1
xy

(
P k|k−1
yy

)−1
, (9.27)

and
xTMk|k ∼ N

(
x̄TMk|k ,P

k|k−1,x̄k|k−1
xx

)
where

x̄TMk|k := Gk

(
y˜TMk − ȳTMk|k−1

)
, (9.28)

P
k|k−1,x̄k|k−1
xx := P k|k−1

xx − (Gk)P k|k−1
yy (Gk)T . (9.29)

From (9.22),
x̄k|k = expx̄k|k−1

xTMk|k , (9.30)
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and P k|k−1,x̄k|k−1
xx is the covariance of xk|k relative to x̄k|k at x̄k|k−1. We want the

covariance P k|k−1
xx := P

k|k−1,x̄k|k
xx of xk|k at x̄k|k, and the following theorem from [171]

provides the mechanism to obtain P k|k−1,x̄k|k
xx from P

k|k−1,x̄k|k−1
xx .

Theorem 9.2 (Parallel Transport of a Bilinear Mapping [171]). Let P be a symmetric
bilinear mapping on the tangent space TqM of the Riemannian manifoldM at q ∈M,
and γ : [0, 1]→M a differentiable curve onM with γ(0) = q. Since P is symmetric,
it can be written as

P =
n∑
i=1

λiviv
T
i

where (v1, ..., vn) is an orthonormal basis of TqM, and each λi is the eigenvalue of P
associated with the eigenvector vi. Let vi(t) be the parallel transport of vi along γ(t)(see
Section A.3). With this,

Pt :=
n∑
i=1

λivi(t)vi(t)T (9.31)

is the parallel transport of P along γ(t).

Note, from (9.31), that parallel transport of tangent vectors [vi(t)] are needed in
the definition of a parallel transport of a symmetric bilinear mapping [Pt]. When
closed forms of parallel transport of tangent vectors are not known for manifolds in
question, algorithms such as the Schild’s Ladder can be used (cf. [171]; see [172] for
other implementations and algorithms of parallel transports).

For a Riemannian manifoldM, and the points q ∈ M and p ∈ M; we define the
function

PT : TqM× TqM×M×M → TpM× TpM

(P q, q,p) 7→ P p

mapping the symmetric matrix P q ∈ TpM × TpM to the symmetric matrix P b ∈
TbM× TbM according to (9.31).

Because we want the covariance P k|k−1
xx := P

k|k−1,x̄k|k
xx of xk|k at x̄k|k, we ob-

tain P k|k−1
xx by performing the parallel transport of P k|k−1,x̄k|k

xx —which we already
calculated—from x̄k|k−1 to x̄k|k. Thus, the covariance of P k|k−1

xx at x̄k|k is given by

P k|k−1
xx = PT

(
P
k|k−1,x̄k|k
xx , x̄k|k−1, x̄k|k

)
. (9.32)

With this, we can compute all the estimates required by an UKF for Rieman-
nian systems. Nevertheless, these estimates are calculated only for the particular case
treated in this section (Mnx

x = Mny
y ); next, we extend the approach of this section

towards finding correction equations for the case where Mnx
x can be different from
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Mny
y .

9.3.2.2 State and measurement in different manifolds

Equations (9.27), (9.28), (9.29), (9.30), and (9.32) are the correction equations for
the Riemannian Additive UKF considering the state and the measurement in the same
manifold. In this section, we consider the state and the measurement belonging to
different manifolds.

If xk belongs to a manifold ΦMnx
x

and yk to another manifold ΦMny
y
, then yTMk|k−1

and y˜TMk can not be defined, respectively, as in (9.23) and (9.24); consequently, xTMk|k
can not be defined as in (9.26).

Since we know the equations for the case of xk and the yk belonging to the same
manifold, we can look for a manifold of which both Mx and My are subsets. The
simplest of such a class of sets is, of course, the Riemannian manifoldMx×My—the
Cartesian product of two Riemannian manifolds is a Riemannian manifold (cf. Section
A.2).

Suppose that xTMk|k−1 and yTMk|k−1 are jointly Gaussian random vectors according to
(9.25). Define i) the Riemannian Manifold Mx,y := Mx ×My; ii) the points c :=
(cx, cy) ∈ Mx,y, bx ∈ Mx, and by ∈ My (these points are chosen); and the following
random vector belonging to TcMx,y:

x
TcMx,y

k|k,∗∗ := logc

 xk|k−1

by

+Gk,∗∗

logc

 bx
y˜k

− logc

 bx

yk|k−1


where Gk,∗∗ ∈ R(nx+ny)×(nx+ny) is a gain matrix. The tangent vector xTcMx,y

k|k,∗∗ is clearly
related with xTMk|k by

xTMk|k :=
[
x̂
TcMx,y

k|k,∗∗

]
1:nx,1

. (9.33)

Therefore, by finding the mean and the covariance of xTcMx,y

k|k,∗∗ , we find the mean and
covariance of xTMk|k .

Since xTMk|k−1 and yTMk|k−1 are jointly Gaussian random vectors, it follows that—we
use the same reasoning used to obtain (9.27), (9.28), (9.29), (9.30), and (9.32), for the
following covariances—

P k|k−1
xx,∗∗ := Exk|k−1


logc

 x

by

− logc

 x̄k|k−1

by

 (�)T
 ,

P k|k−1
yy,∗∗ := Eyk|k−1


logc

 bx
y

− logc

 bx

ȳk|k−1

 (�)T
 ,
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P k|k−1
xy,∗∗ := Exk|k−1,yk|k−1


logc

 x

by

− logc

 x̄k|k−1

by


×

logc

 bx
y

− logc

 bx

ȳk|k−1

T
 ;

and the mean and covariance of xTcMx,y

k|k,∗∗ are, therefore, given by

Gk,∗∗ := P k|k−1
xy,∗∗

(
P k|k−1
yy,∗∗

)−1
, (9.34)

x̄
TcMx,y

k|k,∗∗ := logc

 x̄k|k−1

by

+Gk,∗∗ logc

 bx

ȳk|k−1

 , (9.35)

P k|k,TcM
xx,∗∗ := P k|k−1

xx,∗∗ − (Gk,∗∗)P k|k−1
yy,∗∗ (Gk,∗∗)T ; (9.36)

From (9.33), we can find the mean and covariance of xTMk|k .

The points c, bx and by can be chosen arbitrary within the limits required by the
operations above, specially by the Riemannian logarithm maps. However, there is an
special case.

Theorem 9.3. Given (9.33), (9.34), (9.35), and (9.36); if cx = bx = x̂k|k−1 and
cy = by = ŷk|k−1, then

xTMk|k = Gk logŷk|k−1
(yk) (9.37)

and
P
k|k,x̄k|k−1
xx = P̂

k|k−1
xx −Gk

(
P̂
k|k−1
yy

)−1
(Gk)T . (9.38)

Proof. Substituting cx = bx = x̄k|k−1 and cy = by = ȳk|k−1 on the definitions of
P k|k−1
xx,∗∗ , P k|k−1

yy,∗∗ , and P k|k−1
xy,∗∗ , we have that

P k|k−1
xx,∗∗ := Exk|k−1


logc

 x

ȳk|k−1

− logc

 x̄k|k−1

ȳk|k−1

 (�)T


=
 P k|k−1

xx [0]nx×ny
[0]ny×nx [0]ny×ny

 , (9.39)

P k|k−1
yy,∗∗ := Eyk|k−1


logc

 x̄k|k−1

y

− logc

 x̄k|k−1

ȳk|k−1

 (�)T


=
 [0]nx×nx [0]nx×ny

[0]ny×nx P k|k−1
yy

 , (9.40)

and
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P k|k−1
xy,∗∗ := Exk|k−1,yk|k−1


logc

 x

by

− logc

 x̄k|k−1

by

 ;

×

logc

 bx
y

− logc

 bx

ȳk|k−1

T
 =

 [0]nx×nx P k|k−1
xy

[0]ny×nx [0]ny×ny

 . (9.41)

Substituting (9.40) and (9.41) into (9.34) gives

Gk,∗∗ := P k|k−1
xy,∗∗

(
P k|k−1
yy,∗∗

)−1

=
 [0]nx×nx P k|k−1

xy

[0]ny×nx [0]ny×ny

  [0]nx×nx [0]nx×ny
[0]ny×nx P k|k−1

yy

−1

=
 [0]nx×nx P k|k−1

xy

(
P k|k−1
yy

)−1

[0]ny×nx [0]ny×ny


=
 [0]nx×nx Gk

[0]ny×nx [0]ny×ny

 (9.42)

substituting cx = bx = x̂k|k−1, cy = by = ŷk|k−1, and (9.42) into (9.35) gives

x̄
TcMx,y

k|k,∗∗ := logc

 x̄k|k−1

by

+Gk,∗∗ logc

 x̄k|k−1

y˜k
− logc

 x̄k|k−1

yk|k−1


= logc

 x̄k|k−1

ȳk|k−1

+Gk,∗∗

 [0]nx×1

logȳk|k−1

(
y˜k
) 

=
 logx̄k|k−1

(
x̄k|k−1

)
logȳk|k−1

(
ȳk|k−1

) +
 [0]nx×nx Gk

[0]ny×nx [0]ny×ny

  [0]nx×1

logȳk|k−1

(
y˜k
) 

=
 Gk logȳk|k−1

(
y˜k
)

[0]ny×1

 ;

consequently, from (9.33)

xTMk|k :=
[
x
TcMx,y

k|k,∗∗

]
1:nx,1

=
 Gk logyk|k−1

(yk)
[0]ny×1


= Gk logyk|k−1

(yk) ;

which proves the first equality of the theorem. The proof of the second equation comes
from substituting cx = bx = x̂k|k−1, cy = by = ŷk|k−1, (9.39), (9.40), and (9.42) into
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(9.36)

P k|k,TcM
xx,∗∗ := P k|k−1

xx,∗∗ − (Gk,∗∗)P k|k−1
yy,∗∗ (Gk,∗∗)T ;

= P k|k−1
xx,∗∗ −

 [0]nx×nx Gk

[0]ny×nx [0]ny×ny

 [0]nx×nx [0]nx×ny
[0]ny×nx P k|k−1

yy

−1

(Gk,∗∗)T

= P k|k−1
xx,∗∗ −

 [0]nx×nx Gk

(
P k|k−1
yy

)−1

[0]ny×nx [0]ny×ny

 [0]nx×nx [0]nx×ny
(Gk)T [0]ny×ny

T

=
 P k|k−1

xx [0]nx×ny
[0]ny×nx [0]ny×ny

−
 Gk

(
P k|k−1
yy

)−1
(Gk)T [0]nx×ny

[0]ny×nx [0]ny×ny


=
 P k|k−1

xx −Gk

(
P k|k−1
yy

)−1
(Gk)T [0]nx×ny

[0]ny×nx [0]ny×ny

 ;

finally, from 9.33, it follows that

P
k|k,x̂k|k−1
xx,∗∗ :=

[
P k|k,TcM
xx,∗∗

]
1:nx,1:nx

=
 P k|k−1

xx −Gk

(
P k|k−1
yy

)−1
(Gk)T [0]nx×ny

[0]ny×nx [0]ny×ny


1:nx,1:nx

= P k|k−1
xx −Gk

(
P k|k−1
yy

)−1
(Gk)T ;

which proves the second equality.

According to Theorem 9.3, the correction equations—(9.27), (9.28), (9.29), (9.30),
and (9.32)—are correct even when the state and the measurement belong to different
manifolds. Initially in this section, we considered a manifold with dimension bigger
than the ones of the state and of the measurement; yet, Theorem 9.3 shows that, at
the end, we do not have to perform calculations on this bigger manifold. Instead, we
can work with the manifolds of the state and the measurement separately with (9.37)
and (9.38).

9.3.3 New Riemannian Unscented Filters

We already have all the elements needed to extended the UKF’s to the Riemannian
case. By analogy with the Unscented Filters of Chapter 5, we introduce the following
four filters. For the augmented ones, define the augmented functions fak : Mnx

x ×
Mn$

$ → Rnx and hak :Mnx
x ×M

nϑ
ϑ → Rny
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fak

 xk−1

$k

 := fk (xk−1, qk) , (9.43)

hak

 xk
rk

 := hk (xk,ϑk) .

Definition 9.10. Consider the system

xk = fk (xk−1,$k) ,

yk = hk (xk,ϑk) ;

the pair of equations (9.43); and the functions RiUT in Definition 9.2, and PT in the
equation (9.32). Suppose that i)$k and ϑk are independent; ii)$k, ϑk and the initial
state x0 are characterized by

x0 ∼
(
x̄0,P

0
xx

)
Mx

,

$k ∼ ($̄k,Qk)M$
,

ϑk ∼
(
ϑ̄k,Rk

)
Mϑ

;

and iii) the measurements y˜1, y˜2, ..., y˜kf are given. Then the Riemannian Augmented
Unscented Kalman Filter is given by the following algorithm:

Algorithm 19 (Riemannian Augmented Unscented Kalman Filter (RiAuUKF)). Per-
form the following steps:

1. Initialization. Set the initial estimates x̂0|0 := x̄0 and P̂
0|0
xx := P 0

xx.

2. Filtering. For k = 1, 2, ..., kf ; set the following elements:

(a) The augmented previous estimates by

x̂ak−1|k−1 :=
[
x̂Tk−1|k−1, $̄

T
k

]T
,

P̂
k−1|k−1
xx,a := diag

(
P̂
k−1|k−1
xx ,Qk

)
.

(b) The predicted statistics of the state by
[
x̂k|k−1, P̂

k|k−1
xx

]
:= RiUT1

(
fak , x̂

a
k−1|k−1, P̂

k−1|k−1
xx,a

)
. (9.44)

(c) The augmented predicted estimates by

x̂ak|k−1 :=
[
x̂Tk|k−1, ϑ̄

T

k

]T
,
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P̂
k|k−1
xx,a := diag

(
P̂
k|k−1
xx ,Rk

)
.

(d) The predicted statistics of the measurement by
[
ŷk|k−1, P̂

k|k−1
yy , P̂

k|k−1
xy,a

]
:= RiUT2

(
hak, x̂

a
k|k−1, P̂

k|k−1
xx,a

)
, (9.45)

P̂
k|k−1
xy :=

[
P̂
k|k−1
xy,a

]
(1:nx),(1:ny)

.

(e) The corrected statistics of the state by

Gk :=
(
P̂
k|k−1
xy

)(
P̂
k|k−1
yy

)−1
, (9.46)

x̂TMk|k := x̂TMk|k−1 +Gk logŷk|k−1

(
y˜k
)
,

x̂k|k := expx̂k|k−1

(
x̂TMk|k

)
,

P̂
k|k,x̂k|k−1
xx := P̂

k|k−1
xx − (Gk) P̂

k|k−1
yy (Gk)T ,

P̂
k|k
xx := PT

(
P̂
k|k,x̂k|k−1
xx , x̂k|k−1, x̂k|k

)
.

Definition 9.11. Consider the system

xk = fk (xk−1,$k) ,

yk = hk (xk,ϑk) ;

the pair of equations (9.43); and the functions RiSRUT in Definition 9.6, and PT in
the equation (9.32). Suppose that i) $k and ϑk are independent; ii) $k, ϑk and the
initial state x0 are characterized by

x0 ∼
(
x̄0,

√
P 0
xx

√
P 0
xx

T
)
Mx

,

$k ∼
(
$̄k,

√
Qk

√
Qk

T
)
M$

,

ϑk ∼
(
ϑ̄k,

√
Rk

√
Rk

T
)
Mϑ

;

and iii) the measurements y˜1, y˜2, ..., y˜kf are given. Then the Riemannian Augmented
Square-Root Unscented Kalman Filter is given by the following algorithm:

Algorithm 20 (Riemannian Augmented Square-Root Unscented Kalman Filter (Ri-
AuSRUKF)). Perform the following steps:

1. Initialization. Set the initial estimates x̂0|0 := x̄0 and
√
P̂

0|0
xx :=

√
P 0
xx.

2. Filtering. For k = 1, 2, ..., kf ; set the following elements:
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(a) The augmented previous estimates by

x̂ak−1|k−1 :=
[
x̂Tk−1|k−1, $̄

T
k

]T
,√

P̂
k−1|k−1
xx,a := diag

(√
P̂
k−1|k−1
xx ,

√
Qk

)
.

(b) The predicted statistics of the state:
[
x̂k|k−1,

√
P̂
k|k−1
xx

]
= RiSRUT1

(
fak , x̂k−1|k−1,

√
P̂
k−1|k−1
xx,a , [0]n$×n$

)
.

(9.47)

(c) The augmented predicted estimates by

x̂ak|k−1 :=
[
x̂Tk|k−1, ϑ̄

T

k

]T
,√

P̂
k|k−1
xx,a := diag

(√
P̂
k|k−1
xx ,

√
Rk

)
.

(d) The predicted statistics of the measurement:
[
ŷk|k−1,

√
P̂
k|k−1
yy , Sχ, Sγ , P̂

k|k−1
xy,a

]
= RiSRUT2

(
hak, x̂k|k−1,

√
P̂
k|k−1
xx,a , [0]nϑ×nϑ

)
,

(9.48)

P̂
k|k−1
xy :=

[
P̂
k|k−1
xy,a

]
(1:nx),(1:ny)

.

(e) The corrected statistics of the state:

Gk :=
(
P̂
k|k−1
xy

)(√
P̂
k|k−1
yy

)−T (√
P̂
k|k−1
yy

)−1

, (9.49)

x̂TMk|k := x̂TMk|k−1 +Gk logŷk|k−1

(
y˜k
)
,

x̂k|k := expx̂k|k−1

(
x̂TMk|k

)
,√

P̂
k|k,x̂k|k−1
xx := triag ([Sχ −GkSγ ]) , (9.50)√

P̂
k|k,x̂k|k−1
xx := PT

(√
P̂
k|k,x̂k|k−1
xx , x̂k|k−1, x̂k|k

)
. (9.51)

Definition 9.12. Consider the system

xk = expfk(xk−1)

[
logfk(xk−1) fk (xk−1) +$k

]
,

yk = exphk(xk)

[
loghk(xk) hk (xk) + ϑk

]
;
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and the functions RiUT in Definition 9.2, and PT in the equation (9.32). Suppose that
i) $k and ϑk are independent; ii) $k, ϑk and the initial state x0 are characterized by

x0 ∼
(
x̄0,P

0
xx

)
Mx

,

$k ∼ ($̄k, Qk)Tf(xk−1,k)Mx
,

ϑk ∼
(
ϑ̄k, Rk

)
Th(xk,k)My

;

and iii) the measurements y˜1, y˜2, ..., y˜kf are given. Then the Riemannian Additive
Unscented Kalman Filter is given by the following algorithm:

Algorithm 21 (Riemannian Additive Unscented Kalman Filter (RiAdUKF)). Per-
form the following steps:

1. Initialization. Set the initial estimates x̂0|0 := x̄0 and P̂
0|0
xx := P 0

xx.

2. Filtering. For k = 1, 2, ..., kf ; set the following elements:

(a) The predicted statistics of the state by
[
x̂∗k|k−1, P̂

k|k−1
xx,∗

]
:= RiUT1

(
fk, x̂k−1|k−1, P̂

k−1|k−1
xx

)
, (9.52)

x̂k|k−1 := expx̂∗k|k−1
$̄k, (9.53)

P̂
k|k−1
xx := P̂

k|k−1
xx,∗ +Qk. (9.54)

(b) The predicted statistics of the measurement by
[
ŷ∗k|k−1, P̂

k|k−1
yy,∗ , P̂

k|k−1
xy

]
:= RiUT2

(
hk, x̂k|k−1, P̂

k|k−1
xx

)
, (9.55)

ŷk|k−1 := expŷ∗k|k−1
ϑ̄k, (9.56)

P̂
k|k−1
yy := P̂

k|k−1
yy,∗ +Rk. (9.57)

(c) The corrected statistics of the state by

Gk :=
(
P̂
k|k−1
xy

)(
P̂
k|k−1
yy

)−1
, (9.58)

x̂TMk|k := x̂TMk|k−1 +Gk logŷk|k−1

(
y˜k
)
, (9.59)

x̂k|k := expx̂k|k−1

(
x̂TMk|k

)
, (9.60)

P̂
k|k,x̂k|k−1
xx := P̂

k|k−1
xx −GkP̂

k|k−1
yy GT

k ,

P̂
k|k
xx := PT

(
P̂
k|k,x̂k|k−1
xx , x̂k|k−1, x̂k|k

)
. (9.61)
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Definition 9.13. Consider the system

xk = expfk(xk−1)

[
logfk(xk−1) fk (xk−1) +$k

]
,

yk = exphk(xk)

[
loghk(xk) hk (xk) + ϑk

]
;

and the functions RiSRUT in Definition 9.6, and PT in the equation (9.32). Suppose
that i) $k and ϑk are independent; ii) $k, ϑk and the initial state x0 are characterized
by

x0 ∼
(
x̄0,

√
P 0
xx

√
P 0
xx

T
)
Mx

,

$k ∼
(
$̄k,

√
Qk

√
Qk

T
)
Tf(xk−1,k)Mx

,

ϑk ∼
(
ϑ̄k,

√
Rk

√
Rk

T
)
Th(xk,k)My

;

and iii) the measurements y˜1, y˜2, ..., y˜kf are given. Then the Riemannian Additive
Square-Root Unscented Kalman Filter is given by the following algorithm:

Algorithm 22 (Riemannian Additive Square-Root Unscented Kalman Filter (RiAd-
SRUKF)). Perform the following steps:

1. Initialization. Set the initial estimates x̂0|0 := x̄0 and
√
P̂

0|0
xx :=

√
P 0
xx.

2. Filtering. For k = 1, 2, ..., kf ; set the following elements:

(a) The predicted statistics of the state by
[
x̂∗k|k−1,

√
P̂
k|k−1
xx

]
:= RiSRUT1

(
fk, x̂k−1|k−1,

√
P̂
k−1|k−1
xx ,

√
Qk

)
, (9.62)

x̂k|k−1 := expx̂∗k|k−1
$̄k. (9.63)

(b) The predicted statistics of the measurement by
[
ŷ∗k|k−1,

√
P̂
k|k−1
yy , Sχ, Sγ , P̂

k|k−1
xy

]
:= RiSRUT2

(
hk, x̂k|k−1,

√
P̂
k|k−1
xx ,

√
Rk

)
,

(9.64)

ŷk|k−1 := expŷ∗k|k−1
ϑ̄k. (9.65)

(c) The corrected statistics of the state by

Gk :=
(
P̂
k|k−1
xy

)(√
P̂
k|k−1
yy

)−T (√
P̂
k|k−1
yy

)−1

, (9.66)
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x̂TMk|k := x̂TMk|k−1 +Gk logŷk|k−1

(
y˜k
)
, (9.67)

x̂k|k := expx̂k|k−1

(
x̂TMk|k

)
, (9.68)√

P̂
k|k,x̂k|k−1
xx := triag

([
Sχ −GkSγ , Gk

√
Rk

])
, (9.69)√

P̂
k|k,x̂k|k−1
xx := PT

(√
P̂
k|k,x̂k|k−1
xx , x̂k|k−1, x̂k|k

)
. (9.70)

The notations RiUT1 and RiUT2 [in (9.44), (9.45), (9.52), and (9.55)] indicate that
the transformations in the prediction and correction steps do not need to be the samea.
In fact, the number of sigma points can be different, and we could use the RiScUT
(recall that the RiScUT is a particular case of the RiUT). The output of RiUT1 has
only two terms meaning that only the first two elements of the output of Definition 9.2
are needed.

By definition, in the RiAdUKF, the set posterior set χk|k−1
∗ = {χk|k−1

∗,i , wi} of RiUT1

[in (9.52)] is regenerated in (9.55) because it is the previous σ-representation of RiUT2.
One can consider not regenerating χk|k−1

∗ by making χk|k−1 = {χk|k−1
i , wi} = χk|k−1,

but the filter could have the same consistency problems that the Euclidean AdUKF’s
without re-sampling have (cf. Section 5.1).

The functions RiUT1 and RiUT2 require the calculation of RiσR’s. It can be
difficult to find these RiσR’s by making the calculations in the manifolds; fortunately,
there is an easier way.

From Theorem 9.1, we can find a RiσR by first finding a normalized σR in the
tangent space of the considered manifold; each one of the normalized σR’s of Chapter
3 have their associated RiσR’s (cf. Corollary 9.1). For instance, suppose we want to
calculate (9.52) with the normalized RiMiσR (Theorem 3.2); that is, we want

χ = {χi, wi|χi ∈M}
nx+1
i=1 := RiMiσR

(
x̂k−1|k−1, P̂

k−1|k−1
xx

)
.

We can compute the (Euclidean) MiσR (Corollary 3.4)

χ =
{
χi, wi|χi ∈ Tx̂k−1|k−1M

}nx+1

i=1
:= MiσR

(
[0]nx , P̂

k−1|k−1
xx

)
,

and then, from Theorem 9.1, we would have

χ =
{

expx̂k−1|k−1
χi, wi|χi ∈M

}nx+1

i=1
.

aFor simplicity, we will make comments only to the non square-root filters. Nonetheless, the
comments in the remaining of this section can be applied analogously to the Riemannian square-root
Unscented filters.
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The Kalman gainGk in (9.46) and (9.58) could be defined in a more general way, as
done in (9.34). However, it would imply in more computational effort—the dimension
of the sigma points and matrices would be higher—at the exchange of no advantages,
at least at the present time; perhaps benefits can be drawn from (9.34) in future works.

Each Riemannian Unscented filter is a general case of the respective Euclidean Un-
scented filter of Chapter 5. In fact, it is easy to see that, ifMx andMy are Euclidean
spaces, then the i) RiAuUKF is the AuUKF (Algorithm 7), ii) RiAuSRUKF the AuS-
RUKF (Algorithm 9), iii) RiAdUKF the AdUKF (Algorithm 6), iv) RiAdSRUKF the
AdSRUKF (Algorithm 8).

Since Cartesian products of Riemannian manifolds are also Riemannian manifolds
(cf. Section A.2), systems composed of Cartesian-product manifolds—e.g. the manifold
S3 × Rn in the satellite attitude estimation of Section 7.4.1—can be estimated by the
Riemannian Unscented filters of this section.

For each RiUT in the filters above, we need to calculate the Riemannian sample
mean of the posterior Riemannian weighted sets. Since these means are defined by
optimization problems (Section 8.6), obtaining closed forms for them is generally chal-
lenging; usually, optimization algorithms are used, such as the Gauss-Newton Gradient
Descent Algorithm of [173], or the Newton algorithms and the trust region algorithms
of [174].

In the square-root Unscented filters of this section (Algorithms 20 and 22), the triag

operations in (9.50) and (9.69)must return symmetric square-root matrices
√
P̂
k|k,x̂k|k−1
xx ,

because the PT function in (9.51) and (9.70) is defined only for this class of matrices.

In each of the Riemannian Unscented filters above, Riemannian exponentials and
logarithms are used. These functions, as well as other elements in these filters such as
covariances, have different expressions depending on the parameterization chosen for the
manifolds (cf. Section A.5). Therefore, after choosing a parameterization for each of the
manifolds in a considered filter, all the expressions for the Riemannian exponentials,
logarithms, covariances, etc, should be coherent with these parameterizations.

We can define particular cases of all the Unscented filters above by choosing par-
ticular forms of the RiσR’s and RiUT’s; some are shown in Tables 9.1, 9.2, 9.3, and
9.4. In all these tables Def. stands for Definition; Cor. for Corollary; Ho. for Homo-
geneous; Intr. for Intrinsically; Mi. for Minimum; Sc. for Scaled; Si. for Simplex; Sy.
for Symmetric; and Ri. for Riemannian.

The variants of the RiAuUKF with RiUT1 = RiUT2, and of the RiAuSRUKF with
RiSRUT1 = RiSRUT2 are shown in Tables 9.1 and 9.3; particularly, Table 9.1 contains
these variants with the minimum (non-symmetric) Riemannian σ-representations of
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Corollary 3.4, and Table 9.3 with theminimum symmetric Riemannian σ-representations
of Corollary 3.4. Table 9.2 contains the additive analogous of the filters in Table 9.1,
and Table 9.4 the additive analogous of the filters in Table 9.3.

In each table, the particular filters are presented in all the columns, except the
first; and in all the rows, except the heading one. In Table 9.1, each filter is the
resulting variant of using the RiAuUKF or the RiAuSRUKF (analogously for the other
tables) with the corresponding i) RiUT or RiSRUT written in the first column of its
own row, and ii) RiσR written in the heading row of its own column. For instance,
the Riemannian Minimum Scaled Augmented Unscented Kalman Filter (Ri. Mi. Sc.
AuUKF in Tab 9.1 [2,2]), is the result of the RiAuUKF with the RiScUT (Tab 9.1
[2,1]) and the RiMiσR (heading of the second column of Table 9.1). It is worthy to
mention that all the filters in Tables 9.1, 9.2, 9.3, and 9.4 are new.

Table 9.1: Some Consistent Riemannian Minimum AuUKF and Riemannian Minimum
AuSRUKF Variants.

RiUT’s RiMiσR (Cor. 9.1) RiRhoMiσR (Cor. 9.1)
1 RiUT (Def. 9.2) Ri. Mi. AuUKF Ri. Rho Mi. AuUKF
2 RiScUT (Def. 9.3) Ri. Mi. Sc. AuUKF Ri. Rho Mi. Sc. AuUKF
3 RiSRUT (Def. 9.6) Ri. Mi. AuUKF Ri. Rho Mi. AuUKF
4 RiScSRUT (Def. 9.7) Ri. Mi. Sc. AuUKF Ri. Rho Mi. Sc. AuUKF

Table 9.2: Some Consistent Riemannian Minimum AdUKF and Riemannian Minimum
AdSRUKF Variants.

RiUT’s RiMiσR (Cor. 9.1) RiRhoMiσR (Cor. 9.1)
1 RiUT (Def. 9.2) Ri. Mi. AdUKF Ri. Rho Mi. AdUKF
2 RiScUT (Def. 9.3) Ri. Mi. Sc. AdUKF Ri. Rho Mi. Sc. AdUKF
3 RiSRUT (Def. 9.6) Ri. Mi. AdSRUKF Ri. Rho Mi. AdSRUKF
4 RiScSRUT (Def. 9.7) Ri. Mi. Sc. AdSRUKF Ri. Rho Mi. Sc. AdSRUKF

9.4 RELATION WITH THE LITERATURE

The unique Unscented filter for Riemannian systems in the literature was proposed
by [171].

Definition 9.14. Consider the system

xk = fk (xk−1) := f
′

k (xk−1,$k−1) , (9.71)
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yk = hk (xk) := h
′

k (xk,ϑk) ;

and let nx be the dimension of Mx, and ny of My. Suppose that i) the initial state
x0 is characterized by

x0 ∼
(
x̄0,P

0
xx

)
Mx

,

and ii) the measurements y˜1, y˜2, ..., y˜kf are given. Then the Unscented Kalman Filter
for Riemannian manifolds of [171] is given by the following algorithm.

Algorithm 23 (Unscented Kalman Filter for Riemannian manifolds (UKFRM) of
[171]). Perform the following steps:

1. Initialization. Set the initial estimates x̂0|0 := x̄0 and P̂
0|0
xx := P 0

xx.

2. Filtering. For k = 1, 2, ..., kf ; set the following elements:

(a) The state’s tangent previous sigma points by

{
χTMi,k−1|k−1, wi

}2nx+1

i=1
:= HoMiSyσR

(
[0]nx , P̂

k−1|k−1
xx

)
; (9.72)

(b) The state’s previous sigma points by

χ
k−1|k−1
i := expx̂k−1|k−1

(
χTMi,k−1|k−1

)
, i = 1, . . . , 2nx + 1; (9.73)

(c) The state’s predicted sigma points by

χ
k|k−1
i,∗ := fk

(
χ
k−1|k−1
i

)
, i = 1, . . . , 2nx + 1;

(d) The state’s predicted estimate by

x̂k|k−1 := arg min
a∈Mx

2nx+1∑
i=1

widist2
(
χ
k|k−1
i,∗ ,a

)
; (9.74)

(e) The state’s predicted covariance by

P̂
k|k−1
xx :=

2nx+1∑
i=1

wi
(
logx̂k|k−1

(
χ
k|k−1
i,∗

)) (
�
)T

; (9.75)

(f) The state’s tangent predicted sigma points by

{
χTMi,k|k−1, wi

}2nx+1

i=1
:= HoMiSyσR

(
[0]nx , P̂

k−1|k−1
xx

)
; (9.76)
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(g) The state’s new predicted sigma points by

χ
k|k−1
i := expx̂k|k−1

(
χTMi,k|k−1

)
, i = 1, . . . , 2nx + 1; (9.77)

(h) The measurement’s predicted sigma points by

γ
k|k−1
i := hk

(
χ
k|k−1
i

)
, i = 1, . . . , 2nx + 1;

(i) The measurement’s predicted estimate by

ŷk|k−1 := arg min
b∈My

2nx+1∑
i=1

widist2
(
γ
k|k−1
i , b

)
; (9.78)

(j) The measurement’s predicted covariance by

P̂
k|k−1
yy :=

2nx+1∑
i=1

wi
(
logŷk|k−1

(
γ
k|k−1
i

)) (
�
)T

;

(k) The predicted cross-covariance by

P̂
k|k−1
xy :=

2nx+1∑
i=1

wi
(
logx̂k|k−1

(
χ
k|k−1
i

)) (
logŷk|k−1

(
γ
k|k−1
i

))T
; (9.79)

(l) The Kalman Gain by

Gk :=
(
P̂
k|k−1
xy

)(
P̂
k|k−1
yy

)−1
; (9.80)

(m) The state’s tangent corrected estimate by

x̂TMk|k := x̂TMk|k−1 +Gk logŷk|k−1

(
y˜k
)

(9.81)

(n) The state’s corrected covariance estimate at x̂k|k−1 by

P̂
k|k,x̂k|k−1
xx = P̂

k|k−1
xx − (Gk) P̂

k|k−1
yy (Gk)T ; (9.82)

(o) The state’s corrected estimate by

x̂k|k := expx̂k|k−1

(
x̂TMk|k

)
; (9.83)

(p) The state’s corrected covariance estimate at x̂k|k by

P̂
k|k
xx := PT

(
P̂
k|k,x̂k|k−1
xx , x̂k|k−1, x̂k|k

)
; (9.84)
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Among the Riemannian Unscented filters presented in Section 9.3, we compare the
UKFRM of [171] with the Riemannian Homogeneous Minimum Symmetric AdUKF
(RiHoMiSyAdUKF, Table 9.4 [1,1]) because i) it does not augment the state vectors
with the noise vectors (as the augmented filters do); and ii) it is composed of the
RiHoMiSyσR (Cor. 9.1). Therefore, we can say that all the other filters of Table
9.4, and all e filters of Tables 9.1, 9.2, and 9.3 are novelties of our present work. By
comparing the UKFRM of [171] with the RiHoMiSyAdUKF, we want to show that also
the RiHoMiSyAdUKF is a novelty.

There are some inconsistencies in the UKFRM of [171]; we can cite the following
ones:

1. Although the UKFRM of [171] (Algorithm 23) considers the system (9.71)—cf.
equations (1) and (2) of [171]—, the noises $k and ϑk do not influence any
estimate within the UKFRM; these noises’ statistics do not appear at any step
of Algorithm 23; not even the covariances Qk and Rk, which usually appear in
Unscented filters. We believe this inconsistency may lead Algorithm 23 to poor
estimates, and sometimes, to diverge. For our Riemmanian augmented filters such
as the RiHoMiSyAuUKF, the influence of the noises in the estimate is given by
realizing the augmented sigma points in the process and measurement functions
[cf. (9.44) , (9.45), (9.47), and (9.45)]; and for our Riemmanian additive filters,
the influence of the noises in the estimate is given by “adding” (in the tangent
space) their means and covariances [cf. (9.53), (9.54), (9.56), (9.57), (9.62),
(9.63), (9.64), and (9.65)].

2. The term x̂TMk|k−1 appears in (9.81), but it should not, since it is always equal to
zero; it is the origin of Tx̂k|k−1Mx

b. In the RiHoMiSyAdUKF, this problem does
not appear.

Moreover, we could not find formal justifications in [171] for some equations of the
UKFRM; namely the following ones:

1. Equations (9.72), (9.73), (9.76), and (9.77). These equations perform the gen-
eration of new RiσR’s, and in these equations, these RiσR’s are generated by
first generating σR’s in tangent spaces, and then the associated RiσR’s are ob-
tained using (Riemannian) exponential mappings. In (9.72), the state’s previous
σR, χTMk−1|k−1 := {χTMi,k−1|k−1, wi}, is generated in the tangent space Tx̂k−1|k−1Mx,
and the associated RiσR, χk−1|k−1 := {χk−1|k−1

i , wi}, is obtained from χTMk−1|k−1 in
(9.73); similarly in (9.76), the (second) predicted state’s σR, χTMk|k−1 := {χTMi,k|k−1, wi},

bIn a personal email, Soren Hauberg himself, the main author of [171], acknowledged us that this
argument is true.
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is generated in the tangent space Tx̂k|k−1Mx, and the associated RiσR, χk|k−1 :=
{χk|k−1

i , wi}, is obtained from χTMk|k−1 in (9.77). However we could not find results
in [171] proving that this equations result in proper forms for χk−1|k−1 and χk|k−1.

2. Equation (9.80). This equation defines the Kalman Gain Gk; this gain is stated
by [171] as being a “linear transformation between the two tangent spaces [My

and Mx]” (the comment among brackets is ours). For example, in the case of
Mx and My being very different Riemannian manifolds, Gk would be a linear
transformation from My to Mx; such a transformation is counterintuitive, at
least. Thus, we can say that it is not intuitive nor straightforward to assume
that a filter with transformation provide a consistent final estimate of the state;
it is natural to ask for a justification of (9.80).

3. Equations (9.81), (9.82), (9.83), and (9.84). These equations correct the pre-
dicted state estimate. However, in [171], we could not find results showing
whether these equations do or do not provide consistent estimates x̂k|k and P̂

k|k
xx .

On the other hand, for the RiHoMiSyAdUKF, we presented i) these equations as
natural results within the Riemannian Unscented Kalman filtering theory presented in
this chapter, and ii) formal justifications for all these equations. These justifications
are the following ones:

1. Equations (9.72), (9.73), (9.76), and (9.77) are justified by Theorem 9.1. Indeed,
it is straightforward to see that the relations i) between χTMk−1|k−1 and χk−1|k−1,
and ii) between χTMk|k−1 and χk|k−1 are given by this theorem.

2. Equation (9.80) is justified in Section 9.3.2.2. This form of the Kalman gain Gk

in (9.80) followed as a particular case of the Kalman gain Gk,∗∗ of a more general
system where the state and the measurement belong to the product ofMx×My.

3. Equations (9.81), (9.82), (9.83), and (9.84) are justified in Section 9.3.2. We
showed that they follow from considering i) xTMk|k−1 and yTMk|k−1 normally-joint dis-
tributed [equation (9.25)], and ii) xTMk|k given by a linear correction of xTMk|k−1 by
(y˜TMk − yTMk|k−1) [equation (9.26)].

Finally, we can say that the RiHoMiSyAdUKF is more general than the UKFRM.
In the UKFRM, χk−1|k−1 and χk|k−1 are necessarily calculated by (9.72), (9.73), (9.76),
and (9.77), but in the RiHoMiSyAdUKF they can be calculated by other equations. In
the UKFRM, these RiσR’s are defined by (9.73), and (9.77); then they are calculated by
(9.72), (9.73), (9.76), and (9.77). On the other hand, in the RiHoMiSyAdUKF, χk−1|k−1

and χk|k−1 are defined according to Definition 9.1. Therefore, in RiHoMiSyAdUKF,
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the tangent σR’s χTMk−1|k−1 and χTMk|k−1 are not required; there may exist other forms
of calculating χk−1|k−1 and χk|k−1. Nevertheless, calculating χk−1|k−1 and χk|k−1 by
(9.72), (9.73), (9.76), and (9.77) should be, in general, easier.

Altogether, we can say that our RiUF’s have novelties comparative with the UKF
for Riemannian manifolds of the literature.

9.5 RIEMANNIAN UNSCENTED FILTERING FOR STATE
VARIABLES IN UNIT SPHERES

In most of the times, if not always, Unscented filters are implemented in computers,
but for Riemannian Unscented filters this task might not be trivial. Concepts of the
Riemannian manifold theory can be very abstract, but usually computer languages are
not designed to work with such level of abstraction. Instead, often we have to work
either with particular closed forms or with numerical approximations. For instance,
computing geodesics is not easy; in the cases we can compute them, either we restrict
the manifold to a few particular cases whose closed forms are known, or we compute
these geodesics numerically [174].

In this section, we show that our RiUF’s are elegant solutions to the problem
of finding consistent computationally-implementable UKF’s for systems whose state
variables belong to the S3, the set of unit quaternions. Recall that, initially, this
problem has been the motivation to move towards Riemannian manifolds (cf. Chapter
7).

In order to develop these filters, we need computationally-implementable bases to
express the elements of Sn−1. Because the Sn−1 is a Riemannian manifold embedded
in the Rn (cf. Section A.2), we can write its elements and mappings (e.g. exponential
and logarithm mappings) in the same coordinate system as the Rn—for the remaining
of this work, we will represent the canonical basis of the Rn by e := {e1, ..., en}, ei =
[0, ...0, 1, 0, ...0]T . Besides, we already provided closed forms of some results relative to
Sn−1 in e (cf. Examples A.6, A.7, A.8, A.10, and A.12).

However, representing the tangent sigma points of an Unscented filter in a (n− 1)-
basis (a basis composed of n − 1 elements) results in a computationally-cheaper filter
comparative with representing them in e (e is an n-basis). Because the dimension of
the tangent spaces of Sn−1 is n − 1, we can represent the tangent vectors of Sn−1 in
a basis with n− 1 elements. From Theorem 9.1, a RiσR χ = {χi, wi}Ni=1 with sample
mean µχ on a Riemannian manifold Sn−1 can be calculated from a σR χ = {χi, wi}Ni=1

on TµχSn−1. In this case, the computational effort of an Unscented filter increases with
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the following numbers:

1. the number of sigma points N ,

2. the number of rows (or columns) of the sample covariance Σχχ of χ (recall that
the most expensive operations of the Unscented filters are the square-rooting and
inversion of covariances);

and these two numbers increase with the length of the tangent sigma points χi’s. Then,
the smaller is the number of the elements in the basis representing χi, the smaller will
be the computational effort of the filter. For instance, in the UKFRM of [171] for
M = Sn−1, the tangent sigma points χi’s are expressed in the basis e (cf. Section 4.1
of [171]); thus i) its RiσR’s (HoMiSyσR’s) are composed of N = 2n + 1 sigma points,
and ii) Σχχ is composed of n columns. On the other hand, if χi’s were expressed in
a (n − 1)-basis, then i) N would be 2n − 1, and ii) Σχχ would be composed of n − 1
columns.

For any differentiable manifold of dimension n− 1, an orthogonal (n− 1)-basis for
a tangent space is naturally induced by a chosen parameterization of the manifold.
Consider a point q of a differentiable manifold M, and let ϕ : U ⊂ Rn−1 → M be a
parameterization from the open set U toM such that q = ϕ(u1, . . . , un−1). Then the
set—for a function f(x, y, ...), the notation ∂fx stands for ∂fx := ∂f/∂x—

{
∂ϕu1 , . . . , ∂ϕun−1

}
is an basis of TqSn−1 (cf. Section A.1).

For a parameterization ϕ ∈ {φi}2n
i=1, we define i) the function

TBtoCB : TqS
n−1 → TqS

n−1

vTB 7→ ve (9.85)

mapping the coordinates of the vector vTB ∈ TqSn−1 in the basis {∂φiu1 , . . . , ∂φ
i
un−1}

to the canonical basis e according to (A.7) and (A.9); and ii) the function

CBtoTB : TqS
n−1 → TqS

n−1

ve 7→ vTB (9.86)

as the inverse mapping of TBtoCB according to (A.8) and (A.10).

Summing up, we use the following closed forms:

1. (A.22) for the exponential mapping expressed on e, expexq ;
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2. (A.23) for the logarithm mapping expressed on e, logexq ;

3. (9.85) for the transformation from the basis {∂ϕu1 , . . . , ∂ϕun−1} to e, TBtoCB;

4. (9.86) for the transformation from the basis e to {∂ϕu1 , . . . , ∂ϕun−1}, CBtoTB;
and

5. (A.13) for the parallel transport of tangent vectors expressed on the basis e [these
operations are used in the parallel transport of the covariances in (9.89), (9.92),
(9.104), and (9.92)].

The Riemmanian sample means of the RiσR’s still have to be calculated by approx-
imations or numerical solutions—e.g. the weighted mean methods in Section 7.2.2, or
the algorithms of [174]. Unfortunately, to the best of our knowledge, there is no closed
form for the Riemannian sample means of weighted sets composed of Riemannian
points, such as RiσR’s, belonging to Sn−1.

Definition 9.15. Consider the system

xk = fk (xk−1,$k) ,

yk = hk (xk,ϑk) ;

and the pair of equations

fak

 xk−1

$k

 := fk (xk−1, qk) ,

hak

 xk
rk

 := hk (xk,ϑk) ;

with Mnx
x = Snx , Mn$

$ = Sn$ , Mnϑ
ϑ = Snϑ , and Mny

y = Sny ; and let ex be the
canonical basis of Rnx+1 and ey of Rny+1. Suppose that i)$k and ϑk are independent;
ii) $k and ϑk and the initial state x0 are characterized by

x0 ∼
(
x̄0,P

0
xx

)
Snx

,

$k ∼ ($̄k,Qk)Sn$ ,

ϑk ∼
(
ϑ̄k,Rk

)
Snϑ

;

with P 0
xx, Qk, and Rk expressed in the differentiable structure in (A.1), and iii) the

measurements y˜1, y˜2, ..., y˜kf are given. Then the Riemannian-Spheric Augmented
Unscented Kalman Filter (RiSAuUKF) is given by the following algorithm:

Algorithm 24 (Riemannian-Spheric Augmented Unscented Kalman Filter). Perform
the following steps:
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1. Initialization. Set the initial estimates x̂0|0 := x̄0 and P̂
0|0
xx := P 0

xx.

2. Filtering. For k = 1, 2, ..., kf ; set the following elements:

(a) The augmented previous estimates by

x̂ak−1|k−1 :=
[
x̂Tk−1|k−1, $̄

T
k

]T
,

P̂
k−1|k−1
xx,a := diag

(
P̂
k−1|k−1
xx ,Qk

)
.

(b) The state’s tangent previous sigma representation by

{
χTM,a
i,k−1|k−1, w

1,m
i , w1,c

i , •
}N1

i=1
:= σR1

(
[0](nx+n$)×1, P̂

k−1|k−1
xx,a

)
.

(c) The state’s previous sigma points, for i = 1, . . . , N1, by

χ
k−1|k−1
i := expexx̂k−1|k−1

(
TBtoCB

([
χTM,a
i,k−1|k−1

]
1:nx,1

))
,

χ
k−1|k−1
i,$ := expexx̂k−1|k−1

(
TBtoCB

([
χTM,a
i,k−1|k−1

]
(nx+1):(nx+n$),1

))
.

(d) The state’s predicted sigma points by

χ
k|k−1
i,∗ := fk

(
χ
k−1|k−1
i ,χ

k−1|k−1
i,$

)
, i = 1, . . . , N1.

(e) The state’s predicted estimate by

x̂k|k−1 := arg min
a∈Mx

N1∑
i=1

w1,m
i dist2

(
χ
k|k−1
i,∗ ,a

)
. (9.87)

(f) The state’s predicted covariance estimate by

P̂
k|k−1
xx :=

N1∑
i=1

w1,c
i

(
logexx̂k|k−1

(
CBtoTB

(
χ
k|k−1
i,∗

))) (
�
)T
.

(g) The augmented predicted estimates by

x̂ak|k−1 :=
[
x̂Tk|k−1, ϑ̄

T

k

]T
,

P̂
k|k−1
xx,a := diag

(
P̂
k|k−1
xx,a ,Rk

)
.

(h) The regenerated state’s predicted sigma points by

{
χTMi,k|k−1, w

2,m
i , w2,c

i , w2,cc
i

}N2

i=1
:= σR2

(
[0](nx+nϑ)×1, P̂

k|k−1
xx,a

)
;
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and, for i = 1, . . . , N2, by

χ
k|k−1
i := expexx̂k|k−1

(
TBtoCB

([
χTM,a
i,k|k−1

]
1:nx,1

))
,

χ
k|k−1
i,ϑ := expexx̂k|k−1

(
TBtoCB

([
χTM,a
i,k|k−1

]
(nx+1):(nx+nϑ),1

))
.

(i) The measurement’s predicted sigma points by

γ
k|k−1
i := hk

(
χ
k|k−1
i ,χ

k|k−1
i,ϑ

)
, i = 1, . . . , N2.

(j) The measurement’s predicted estimate by

ŷk|k−1 := arg min
b∈My

N2∑
i=1

w2,m
i dist2

(
γ
k|k−1
i , b

)
. (9.88)

(k) The measurement’s predicted covariance estimate by

P̂
k|k−1
yy :=

N2∑
i=1

w2,c
i

(
logeyŷk|k−1

(
CBtoTB

(
γ
k|k−1
i

))) (
�
)T
.

(l) The predicted cross-covariance estimate by

P̂
k|k−1
xy :=

N2∑
i=1

w2,cc
i

(
logexx̂k|k−1

(
CBtoTB

(
χ
k|k−1
i

)))
×
(
logeyŷk|k−1

(
CBtoTB

(
γ
k|k−1
i

)))T
.

(m) The Kalman Gain by

Gk :=
(
P̂
k|k−1
xy

)(
P̂
k|k−1
yy

)−1
.

(n) The state’s tangent corrected estimate by

x̂TMk|k := x̂TMk|k−1 +Gk logeyŷk|k−1

(
CBtoTB

(
y˜k
))
.

(o) The state’s corrected covariance estimate at x̂k|k−1 by

P̂
k|k,x̂k|k−1
xx = P̂

k|k−1
xx − (Gk) P̂

k|k−1
yy (Gk)T .

(p) The state’s corrected estimate by

x̂k|k := expexx̂k|k−1

(
TBtoCB

(
x̂TMk|k

))
.
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(q) The state’s corrected covariance estimate at x̂k|k by

P̂
k|k
xx := PT

(
P̂
k|k,x̂k|k−1
xx , x̂k|k−1, x̂k|k

)
. (9.89)

Definition 9.16. Consider the system

xk = fk (xk−1,$k) ,

yk = hk (xk,ϑk) ;

and the pair of equations

fak

 xk−1

$k

 := fk (xk−1, qk) ,

hak

 xk
rk

 := hk (xk,ϑk) ;

with Mnx
x = Snx , Mn$

$ = Sn$ , Mnϑ
ϑ = Snϑ , and Mny

y = Sny ; and let ex be the
canonical basis of Rnx+1 and ey of Rny+1. Suppose that i)$k and ϑk are independent;
ii) $k and ϑk and the initial state x0 are characterized by

x0 ∼
(
x̄0,

√
P 0
xx

√
P 0
xx

T
)
Snx

,

$k ∼
(
$̄k,

√
Qk

√
Qk

T
)
Sn$

,

ϑk ∼
(
ϑ̄k,

√
Rk

√
Rk

T
)
Snϑ

;

with
√
P 0
xx,
√
Qk, and

√
Rk expressed in the differentiable structure in (A.1), and

iii) the measurements y˜1, y˜2, ..., y˜kf are given. Then the Riemannian-Spheric Aug-
mented Square-Root Unscented Kalman Filter (RiSAuSRUKF) is given by the following
algorithm:

Algorithm 25 (Riemannian-Spheric Augmented Square-Root Unscented Kalman Fil-
ter). Perform the following steps:

1. Initialization. Set the initial estimates x̂0|0 := x̄0 and
√
P̂

0|0
xx :=

√
P 0
xx.

2. Filtering. For k = 1, 2, ..., kf ; set the following elements:

(a) The augmented previous estimates by

x̂ak−1|k−1 :=
[
x̂Tk−1|k−1, $̄

T
k

]T
,
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√
P̂
k−1|k−1
xx,a := diag

(√
P̂
k−1|k−1
xx ,

√
Qk

)
.

(b) The state’s tangent previous sigma representation by

{
χTM,a
i,k−1|k−1, w

1,m
i , w1,c

i , •
}N1

i=1
:= σR1

[0](nx+n$)×1,

√
P̂
k−1|k−1
xx,a

√
P̂
k−1|k−1
xx,a

T
 .

(c) The state’s previous sigma points, for i = 1, . . . , N , by

χ
k−1|k−1
i := expexx̂k−1|k−1

(
TBtoCB

([
χTM,a
i,k−1|k−1

]
1:nx,1

))
,

χ
k−1|k−1
i,$ := expexx̂k−1|k−1

(
TBtoCB

([
χTM,a
i,k−1|k−1

]
(nx+1):(nx+n$),1

))
.

(d) The state’s predicted sigma points by

χ
k|k−1
i,∗ := fk

(
χ
k−1|k−1
i ,χ

k−1|k−1
i,$

)
, i = 1, . . . , N1.

(e) The state’s predicted estimate by

x̂k|k−1 := arg min
a∈Mx

N∑
i=1

w1,m
i dist2

(
χ
k|k−1
i,∗ ,a

)
. (9.90)

(f) The state’s predicted square-root covariance estimate, for i = 1, . . . , N1, by

χ̃
k|k−1
i,∗ := logexx̂k|k−1

(
CBtoTB

(
χ
k|k−1
i,∗

))
,

S∗χk|k−1 :=
[√
w1,c

1 χ̃
k|k−1
1,∗ , · · · ,

√
w1,c
N χ̃

k|k−1
N,∗

]
,√

P̂
k|k−1
xx := tria

([
S∗χk|k−1 ,

√
Qk

])
.

(g) The augmented predicted estimates by

x̂ak|k−1 :=
[
x̂Tk|k−1, ϑ̄

T

k

]T
,

P̂
k|k−1
xx,a := diag

(
P̂
k|k−1
xx,a ,Rk

)
.

(h) The regenerated state’s predicted sigma points by

{
χTMi,k|k−1, w

2,m
i , w2,c

i , w2,cc
i

}N2

i=1
:= σR2

(
[0](nx+nϑ)×1, P̂

k|k−1
xx,a

)
;
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and, for i = 1, . . . , N2, by

χ
k|k−1
i := expexx̂k|k−1

(
TBtoCB

([
χTM,a
i,k|k−1

]
1:nx,1

))
,

χ
k|k−1
i,ϑ := expexx̂k|k−1

(
TBtoCB

([
χTM,a
i,k|k−1

]
(nx+1):(nx+nϑ),1

))
.

(i) The measurement’s predicted sigma points by

γ
k|k−1
i := hk

(
χ
k|k−1
i ,χ

k|k−1
i,ϑ

)
, i = 1, . . . , N2.

(j) The measurement’s predicted estimate by

ŷk|k−1 := arg min
b∈My

N2∑
i=1

w2,m
i dist2

(
γ
k|k−1
i , b

)
. (9.91)

(k) The measurement’s predicted square-root covariance estimate , for i = 1, . . . , N2,
by

γ̃
k|k−1
i := logeyŷk|k−1

(
CBtoTB

(
γ
k|k−1
i

))
,

Sγk|k−1 :=
[√
w2,c

1 γ̃
k|k−1
1 , · · · ,

√
w2,c
N γ̃

k|k−1
N

]
,√

P̂
k|k−1
yy := tria

([
Sγk|k−1 ,

√
Rk

])
.

(l) The predicted cross-covariance estimate by

P̂
k|k−1
xy :=

N2∑
i=1

w2,cc
i

(
logexx̂k|k−1

(
CBtoTB

(
χ
k|k−1
i

)))
×
(
logeyŷk|k−1

(
CBtoTB

(
γ
k|k−1
i

)))T
.

(m) The Kalman Gain by

Gk :=
(
P̂
k|k−1
xy

)(
P̂
k|k−1
yy

)−1
.

(n) The state’s tangent corrected estimate by

x̂TMk|k := x̂TMk|k−1 +Gk logeyŷk|k−1

(
CBtoTB

(
y˜k
))
.

(o) The state’s corrected square-root covariance estimate at x̂k|k−1 by

Sχk|k−1 :=
[√
w2,c

1 χ̃
k|k−1
1 , · · · ,

√
w2,c
N χ̃

k|k−1
N

]
;
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√
P̂
k|k−1
xx := tria

([
Sχk|k−1 −GkSγk|k−1 , Gk

√
Rk

])
.

(p) The state’s corrected estimate by

x̂k|k := expexx̂k|k−1

(
TBtoCB

(
x̂TMk|k

))
.

(q) The state’s corrected square-root covariance estimate at x̂k|k by

P̂
k|k
xx := PT

(
P̂
k|k,x̂k|k−1
xx , x̂k|k−1, x̂k|k

)
. (9.92)

Definition 9.17. Consider the system

xk = expfk(xk−1)

[
logfk(xk−1) fk (xk−1) +$k

]
,

yk = exphk(xk)

[
loghk(xk) hk (xk) + ϑk

]
;

withMnx
x = Snx andMy = Sny ; and let ex be the canonical basis of Rnx+1 and ey of

Rny+1. Suppose that i) $k and ϑk are independent; ii) $k, ϑk and the initial state x0

are characterized by

x0 ∼
(
x̄0,P

0
xx

)
Snx

,

$k ∼ ($̄k, Qk)Snx ,

ϑk ∼
(
ϑ̄k, Rk

)
Sny

,

with P 0
xx, Qk, and Rk expressed in the differentiable structure in (A.1), and iii) the

measurements y˜1, y˜2, ..., y˜kf are given. Then the Riemannian-Spheric Additive Un-
scented Kalman Filter (RiSAdUKF) is given by the following algorithm:

Algorithm 26 (Riemannian-Spheric Additive Unscented Kalman Filter). Perform the
following steps:

1. Initialization. Set the initial estimates x̂0|0 := x̄0 and P̂
0|0
xx := P 0

xx.

2. Filtering. For k = 1, 2, ..., kf ; set the following elements:

(a) The state’s tangent previous sigma representation by

{
χTMi,k−1|k−1, w

1,m
i , w1,c

i , •
}N1

i=1
:= σR1

(
[0]nx×1, P̂

k−1|k−1
xx

)
.

(b) The state’s previous sigma points by

χ
k−1|k−1
i := expexx̂k−1|k−1

(
TBtoCB

(
χTMi,k−1|k−1

))
, i = 1, . . . , N1. (9.93)
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(c) The state’s predicted sigma points by

χ
k|k−1
i,∗ := fk

(
χ
k−1|k−1
i

)
, i = 1, . . . , N1.

(d) The state’s predicted estimate by

x̂∗k|k−1 := arg min
a∈Mx

N1∑
i=1

w1,m
i dist2

(
χ
k|k−1
i,∗ ,a

)
, (9.94)

x̂k|k−1 := expx̂∗k|k−1
$̄k. (9.95)

(e) The state’s predicted covariance estimate by

P̂
k|k−1
xx :=

N1∑
i=1

w1,c
i

(
logexx̂k|k−1

(
CBtoTB

(
χ
k|k−1
i,∗

))) (
�
)T

+Qk. (9.96)

(f) The regenerated state’s predicted sigma points by

{
χTMi,k|k−1, w

2,m
i , w2,c

i , w2,cc
i

}N2

i=1
:= σR2

(
[0]nx×1, P̂

k|k−1
xx

)
;

and, for i = 1, . . . , N2, by

χ
k|k−1
i := expexx̂k|k−1

(
TBtoCB

(
χTMi,k|k−1

))
. (9.97)

(g) The measurement’s predicted sigma points by

γ
k|k−1
i := hk

(
χ
k|k−1
i

)
, i = 1, . . . , N2.

(h) The measurement’s predicted estimate by

ŷ∗k|k−1 := arg min
b∈My

N2∑
i=1

w2,m
i dist2

(
γ
k|k−1
i , b

)
, (9.98)

ŷk|k−1 := expŷ∗k|k−1
ϑ̄k. (9.99)

(i) The measurement’s predicted covariance estimate by

P̂
k|k−1
yy :=

N2∑
i=1

w2,c
i

(
logeyŷk|k−1

(
CBtoTB

(
γ
k|k−1
i

))) (
�
)T

+Rk. (9.100)

(j) The predicted cross-covariance estimate by

P̂
k|k−1
xy :=

N2∑
i=1

w2,cc
i

(
logexx̂k|k−1

(
CBtoTB

(
χ
k|k−1
i

)))
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×
(
logeyŷk|k−1

(
CBtoTB

(
γ
k|k−1
i

)))T
. (9.101)

(k) The Kalman Gain by

Gk :=
(
P̂
k|k−1
xy

)(
P̂
k|k−1
yy

)−1
.

(l) The state’s tangent corrected estimate by

x̂TMk|k := x̂TMk|k−1 +Gk logeyŷk|k−1

(
CBtoTB

(
y˜k
))
. (9.102)

(m) The state’s corrected covariance estimate at x̂k|k−1 by

P̂
k|k,x̂k|k−1
xx = P̂

k|k−1
xx − (Gk) P̂

k|k−1
yy (Gk)T .

(n) The state’s corrected estimate by

x̂k|k := expexx̂k|k−1

(
TBtoCB

(
x̂TMk|k

))
. (9.103)

(o) The state’s corrected covariance estimate at x̂k|k by

P̂
k|k
xx := PT

(
P̂
k|k,x̂k|k−1
xx , x̂k|k−1, x̂k|k

)
. (9.104)

Definition 9.18. Consider the system

xk = expfk(xk−1)

[
logfk(xk−1) fk (xk−1) +$k

]
,

yk = exphk(xk)

[
loghk(xk) hk (xk) + ϑk

]
;

withMnx
x = Snx andMny

y = Sny ; and let ex be the canonical basis of Rnx+1 and ey of
Rny+1. Suppose that i) $k and ϑk are independent; ii) $k, ϑk and the initial state x0

are characterized by

x0 ∼
(
x̄0,

√
P 0
xx

√
P 0
xx

T
)
Snx

,

$k ∼
(
$̄k,

√
Qk

√
Qk

T
)
Snx

,

ϑk ∼
(
ϑ̄k,

√
Rk

√
Rk

T
)
Sny

,

with
√
P 0
xx,
√
Qk, and

√
Rk expressed in the differentiable structure in (A.1), and

iii) the measurements y˜1, y˜2, ..., y˜kf are given. Then the Riemannian-Spheric Addi-
tive Square-Root Unscented Kalman Filter (RiSAdSRUKF) is given by the following
algorithm:
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Algorithm 27 (Riemannian-Spheric Additive Square-Root Unscented Kalman Filter).
Perform the following steps:

1. Initialization. Set the initial estimates x̂0|0 := x̄0 and
√
P̂

0|0
xx :=

√
P 0
xx.

2. Filtering. For k = 1, 2, ..., kf ; set the following elements:

(a) The state’s tangent previous sigma representation by

{
χTMi,k−1|k−1, w

1,m
i , w1,c

i , •
}N1

i=1
:= σR1

[0]nx×1,

√
P̂
k−1|k−1
xx

√
P̂
k−1|k−1
xx

T
 .

(b) The state’s previous sigma points by

χ
k−1|k−1
i := expexx̂k−1|k−1

(
TBtoCB

(
χTMi,k−1|k−1

))
, i = 1, . . . , N1. (9.105)

(c) The state’s predicted sigma points by

χ
k|k−1
i,∗ := fk

(
χ
k−1|k−1
i

)
, i = 1, . . . , N1.

(d) The state’s predicted estimate by

x̂∗k|k−1 := arg min
a∈Mx

N1∑
i=1

w1,m
i dist2

(
χ
k|k−1
i,∗ ,a

)
, (9.106)

x̂k|k−1 := expx̂∗k|k−1
$̄k.

(e) The state’s predicted square-root covariance estimate, for i = 1, . . . , N1, by

χ̃
k|k−1
i,∗ := logexx̂k|k−1

(
CBtoTB

(
χ
k|k−1
i,∗

))
,

S∗χk|k−1 :=
[√
w1,c

1 χ̃
k|k−1
1,∗ , · · · ,

√
w1,c
N χ̃

k|k−1
N,∗

]
,√

P̂
k|k−1
xx := tria

([
S∗χk|k−1 ,

√
Qk

])
.

(f) The regenerated state’s previous sigma points by

{
χTMi,k|k−1, w

2,m
i , w2,c

i , w2,cc
i

}N2

i=1
:= σR2

[0]nx×1,

√
P̂
k|k−1
xx

√
P̂
k|k−1
xx

T
 ;

and, for i = 1, . . . , N2, by

χ
k−1|k
i := expexx̂k|k−1

(
TBtoCB

(
χTMi,k|k−1

))
,

χ̃
k|k−1
i := logexx̂k|k−1

(
CBtoTB

(
χ
k|k−1
i

))
,
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Sχk|k−1 :=
[√

w2,c
1 χ̃

k|k−1
1 , · · · ,

√
w2,c
N χ̃

k|k−1
N

]
.

(g) The measurement’s predicted sigma points by

γ
k|k−1
i := hk

(
χ
k|k−1
i

)
, i = 1, . . . , N2.

(h) The measurement’s predicted estimate by

ŷ∗k|k−1 := arg min
b∈My

N2∑
i=1

w2,m
i dist2

(
γ
k|k−1
i , b

)
, (9.107)

ŷk|k−1 := expŷ∗k|k−1
ϑ̄k.

(i) The measurement’s predicted square-root covariance estimate, for i = 1, . . . , N2,
by

γ̃
k|k−1
i := logeyŷk|k−1

(
CBtoTB

(
γ
k|k−1
i

))
,

Sγk|k−1 :=
[√

w2,c
1 γ̃

k|k−1
1 , · · · ,

√
w,2,cN γ̃

k|k−1
N

]
,√

P̂
k|k−1
yy := tria

([
Sγk|k−1 ,

√
Rk

])
.

(j) The predicted cross-covariance by

P̂
k|k−1
xy :=

N∑
i=1

wcci
(
χ̃
k|k−1
i

) (
γ̃
k|k−1
i

)T
.

(k) The Kalman Gain by

Gk :=
(
P̂
k|k−1
xy

)(
P̂
k|k−1
yy

)−1
.

(l) The state’s tangent corrected estimate by

x̂TMk|k := x̂TMk|k−1 +Gk logeyŷk|k−1

(
CBtoTB

(
y˜k
))
.

(m) The state’s corrected square-root covariance estimate at x̂k|k−1 by
√
P̂
k|k−1
xx := tria

([
Sχk|k−1 −GkSγk|k−1 , Gk

√
Rk

])
.

(n) The state’s corrected estimate by

x̂k|k := expexx̂k|k−1

(
TBtoCB

(
x̂TMk|k

))
.
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(o) The state’s corrected square-root covariance estimate at x̂k|k by
√
P̂
k|k−1
xx := PT

(√
P̂
k|k−1
xx , x̂k|k−1, x̂k|k

)
. (9.108)

The Riemannian sample means are the only elements in these algorithms that still
have to be calculated by approximations or algorithms. The following Riemannian
sample means are required:

• x̂k|k−1 in (9.87) and ŷk|k−1 in (9.88) for the RiAuUKF;

• x̂k|k−1 in (9.90) and ŷk|k−1 in (9.91) for the RiAuSRUKF;

• x̂k|k−1 in (9.94) and ŷk|k−1 in (9.98) for the RiAdUKF;

• x̂k|k−1 in (9.106) and ŷk|k−1 in (9.107) for the RiAdSRUKF;

Examples of numeric techniques for computing these means are the five methods for
weighted means of unit quaternions presented in Section 7.2.2 (the FN, DPPSE, GDA,
MQVCF, and MAMCF; cf. Table 7.4), or the optimization algorithms presented in
[174] (e.g. their Newton’s method, or trust-region methods).

Other cases such as Riemannian Unscented filters for products of Euclidean spaces
and spheres can be obtained from these Riemannian-Spheric UF’s by making simple
extensions.

9.5.1 Riemannian-Spheric Unscented filters and Quaternionic Unscen-
ted filters

In Section 7.3, we introduced the Quaternionic Unscented filters (QuAdUF’s),
namely the Quaternionic Additive Unscented Kalman Filter (QuAdUKF, Algorithm
17) and the Quaternionic Additive Square-Root Unscented Kalman Filter (QuAd-
SRUKF, Algorithm 18)—recall that QuAdUF’s are defined for systems where the state
variables belong to S3 × Rn, but for simplicity we will restrict the discussion of this
section to state variables belonging only to the S3; this does not imply any loss of gen-
erality for this discussion. It is natural to ask for the relation between these filters and
the Riemannian-Spheric Additive Unscented filters (RiSAdUF’s)—the RiSAdUKF and
RiSAdSRUKF. We can point out at least six advantages of RiSAdUF’s comparative
with QuAdUKF’s:

1. RiSAdUF’s preserve distances and angles, but the QuAdUKF’s with i) generalized
Rodrigues vectors, and ii) quaternion vectors do not. While all operations in the
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RiSAdUF’s are isometries (functions preserving distances and angles; cf. Section
A.2), in the QuAdUF’s the Quaternionic functions QtoGeRV and QtoQuV (and
their inverses) are are not isometries; indeed the distance from the quaternion
1 = (1, 0, 0, 0) to the quaternion −1 = (−1, 0, 0, 0) is

dist (1,−1) = π,

but the distance from the transforms of these quaternions by the QtoQuV is

dist (QtoQuV(1),QtoQuV(−1)) = ‖[0]3×1 − [0]3×1‖ = 0,

and by the QtoGeRV is

dist (QtoGeRV (1) ,QtoGeRV[−1]) = ‖[0]3×1 − [0]3×1‖ = 0.

2. RiSAdUF’s are more robust to miss-defined operations than the QuAdUF’s with
rotation vectors. For the tangent vector v = [v1, v2, v3, v4]T ∈ T1S

n−1 we have
that—using the canonical basis of the embedding space R4—

0 = 〈1, v〉 = v1;

hence

exp1(v) : = cos (‖v‖) 1 + sin (‖v‖) v

‖v‖

=


cos (‖v‖)

sin (‖v‖) v2
‖v‖

sin (‖v‖) v3
‖v‖

sin (‖v‖) v4
‖v‖

 .

For the function e defined by

e : B[0](n−1)×1(π)→ Sn−1 − {−1} : x 7→ exp1

 0
1
2x

 :=
 cos

(
‖x‖
2

)
sin

(
‖x‖
2

)
x
‖x‖

 ,
(9.109)

we have that
e(x) := RoVtoQ (x) .

Therefore, the RoVtoQ can be viewed as the Riemannian exponential mapping
on Sn−1 at 1 (thus is a isometry); likewise, the function QtoRoV defined in (7.5)
is equal e−1(x) and can be viewed as Riemannian logarithm mapping on Sn−1 at
1.
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Both the RiSAdUF’s and the QuAdUF’s may present bad-definition problems
when mappings expq and logq are realized at points where the distance from q is
equal or greater than π (we can consider more than one turn on the sphere). In-
deed, the logarithm map logq(p) is not defined at the antipodal point p = −q [cf.
(A.23)], and the exponential map expq(v) is not defined for vectors v ∈ TqSn−1

with ‖v‖ ≥ π [cf. (A.22)].
Nonetheless, the RiSAdUF’s are more robust to these problems than the QuAdUF’s
with rotation vectors.
In the QuAdUF’s with rotation vectors, the exponential and logarithm map-
pings are always calculated at the point q = 1 [cf. (9.109)]. Therefore, for the
QuAdUF’s, at any time in the history of the system, whenever i) the state or the
measurement are calculated at −1 the logarithm mapping log1 will be undefined,
and ii) the system perform a complete turn on the sphere, the exponential map-
ping exp1 will be undefined (the distance from 1 will be equal or greater than π).
On the other hand, in the RiSAdUF’s, the exponential and logarithm mappings
are calculated at different points (not always at q = 1). For instance, in the
RiSAdUKF, these mappings are calculated at x̂k−1|k−1 in (9.93); at x̂k|k−1 in
(9.95), (9.96), (9.97), (9.101) and (9.103); at ŷk−1|k in (9.99), (9.100), (9.101)
and (9.102); and at x̂k|k in (9.104).
Because these mappings are realized at different points in RiSAdUF’s, the bad-
definition problems of these mappings are less likely to happen in the RiSAdUF’s
than in the QuAdUF’s with rotation vectors. Let us compare, for instance, the
equation (9.103) of the RiSAdUKF with (7.39) of the QuAdUKF. In (9.103), if

∥∥∥x̂TMk|k ∥∥∥ ≥ π, (9.110)

then
expexx̂k|k−1

(
TBtoCB

(
x̂TMk|k

))
will be undefined (TBtoCB is just a change of basis and do not change the value
of norm); and in (7.39), if ∥∥∥˜̂xvk|k

∥∥∥ ≥ π, (9.111)

than
VtoQ

(˜̂xvk|k
)

will be undefined (for the QuAdUKF, VtoQ = RoVtoQ). For (9.110) to be true,
the corrected estimate x̂k|k would have to be at least a complete turn away from
x̂k|k−1; for (9.111) to be true, x̂k|k would have to be at least a complete turn away
from 1. Naturally, it is more likely for (9.111) to be true, than for (9.110) to be,
when all the history of the system is considered.
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3. The (corrected) state’s covariance estimates P̂
k|k
xx in the RiSAdUF’s are more sig-

nificant than the (corrected) state’s covariance estimates P̂ v,k|k
xx in the QuAdUF’s.

The matrix P̂ k|k
xx is an estimate of the covariance P k|k

xx of xk at x̄k|k, and from
(8.8), we can see that Tr(P̂ k|k

xx ) provides an estimate of the error of the estimate
x̂k|k.
However, for P̂ v,k|k

xx , we can not find a similar relation between P̂ v,k|k
xx and the

error of the estimate x̂k|k because P̂ v,k|k
xx are calculated on a parameterization at

x̂k|k−1; a covariance calculated at x̂k|k is required for this relation to be made.
We highlight that, in the RiSAdUF, P̂ k|k

xx is calculated by performing the par-
allel transport of the state’s covariance estimate P̂ k|k,x̂k|k−1

xx from Tx̂k|k−1Mx ×
Tx̂k|k−1Mx to Tx̂k|kMx × Tx̂k|kMx [cf. equation (9.104)]; and, in the RiSAd-

SRUKF,
√
P̂
k|k
xx is calculated by performing the parallel transport of

√
P̂
k|k,x̂k|k−1
xx

from Tx̂k|k−1Mx × Tx̂k|k−1Mx to Tx̂k|kMx × Tx̂k|kMx [cf. equation (9.108)].

4. The previous state’s σR’s χk−1|k−1 := {χk−1|k−1
i , w1,m

i , w1,c
i , w1,cc

i } are better de-
fined in the RiSAdUF’s than the previous state’s quaternion sets χk−1|k−1 :=
{χk−1|k−1

i , w1,m
i , w1,c

i , w1,cc
i } in the QuAdUF’s.

In the RiSAdUF’s, χk−1|k−1 is obtained from χTMk−1|k−1 := {χTMi,k−1|k−1, w
1,m
i , w1,c

i ,

w1,cc
i } [cf. equations (9.93) and (9.105)], and χTMk−1|k−1 is a σR of xk ∼ ([0]nx×1,

P̂
k−1|k−1
xx ). From Theorem 9.1, we know that χk−1|k−1 is a RiσR of xk−1 ∼

(x̂k−1,k−1, P̂
k−1|k−1
xx ).

Even though a similar relation between χk−1|k−1 and xk−1 can be established for
the QuAdUF’s with rotations vectors, this relation is not consistent with the filter.
In the QuAdUF’s, χk−1|k−1 is obtained from χ̃v,k−1|k−1 := {χ̃v,k−1|k−1

i , w1,m
i , w1,c

i ,

w1,cc
i } [cf. equations 7.38 and 7.40], and χ̃v,k−1|k−1 is a σR of xk ∼ ([0]nx×1 , P̂

v,k|k
xx ).

Since the mapping RoVtoQ can be viewed as the Riemannian exponential map-
ping on Sn−1 at 1 [cf. equation 9.109], each χ̃

v,k−1|k−1
i belongs to the tangent

space T1S
n−1. Again, from Theorem 9.1, we know that χk−1|k−1 is a RiσR of

xk−1 ∼ (x̂k−1,k−1, P̂
v,k|k
xx ) with P̂ v,k|k

xx = P̂
k−1|k−1,x̂k|k−1
xx , i.e., with P̂ v,k|k

xx being the
covariance of xk−1 at x̂k|k−1 (cf. item 3). We believe that this may lead the
QuAdUF’s with rotation vectors to provide poor estimates.
In this case of QuAdUF’s with generalized Rodrigues vectors or Quaternion vec-
tors, it is difficult to state a similar relation between χk−1|k−1 and the state xk−1

because i) QtoGeRV and QtoQuV are not Riemannian exponentials, and ii) P̂ v,k|k
xx

is calculated on a parameterization at x̂k|k−1 (cf. item 3).

5. In the RiSAdUF’s the concepts of probability and statistic theories are well de-
fined, whereas in the QuAdUF’s, some of them are not. The RiSAdUF’s are built
upon the well defined Riemannian random points and statistics of Chapter 8, but
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the QuAdUF’s were not build upon any kind of definition of the random variables
and their statistics in the Sn−1. Theorem 9.1 provides the relation between a σR
on the tangent space of Sn−1 and its associated RiσR on the Sn−1, but we do not
have a similar result for any of the QuAdUF’s.

6. The additive Riemannian system is well defined for RiSAdUF’s, while the ad-
ditive quaternion model for the QuAdUF’s is not. The additive system for the
RiSAdUF’s is defined in (9.20) and is built upon the intrinsic statistics for Rie-
mannian manifolds presented in Chapter 8. On the other hand, all additive-noise
quaternion models associated QuAdUF’s present problems (cf. Remark 7.1).

Altogether, we can say that RiSAdUF’s are better principled than QuAdUF’s. We
illustrate this statement in numerical simulations.

We now perform simulations comparing a RiSAdUKF with the USQUE of [48]
(which is a QuAdUKF) in the same satellite scenario of Section 7.4.

In this example, the scenario is configured according to [48]: T = 10s, σω =
0.31623µrad×s−1/2, σβ = 3.1623×10−4 µrad×s−3/2, β0 = [0.1]3×1 deg/hr, σv = 50 nT,
ê0 = 1, β̂0 = β0 + [0, 20, 0]T deg/hr, and

P̂ ρ,0|0
xx =


(
σ0|0,e
xx

)2
I3×3 [0]3×3

[0]3×3

(
σ0|0,β
xx

)2
I3×3


with σ0|0,e

xx = 5 deg and σ0|0,β
xx = 20 deg/hr.

The setting parameters of the filters were:

1. the USQUE of [48] with a = 1 and λ = 1 ;

2. the RiSAdUKF with the RhoRiσR and tuning parameter ρ = 0.5; and using the
Direct Propagation of the Previous State’s Estimate (Section 7.2.2.2);

The RiSAdUKF outperformed the USQUE of [48]. This outperformance can be verified
both qualitatively and quantitatively.

Qualitatively, this outperformance can be seen in Figure 9.1. This figure presents,
for one simulation of each e1, e2, e3 and e4, the plots of the i) correct path (in black,
solid line), ii) estimates of the RiSAdUKF (in red, dot line), and iii) estimates of the
USQUE of [48] (in blue, dash-dot line). The plot of the RiSAdUKF’s estimates is
almost indistinguishable from the correct path’s plot (they are overlapped), but the
plot of the USQUE’s estimates is clearly displaced from the correct path’s plot.

Quantitatively, this outperformance can be seen from the RMSD [defined in (5.42)]
of (7.43) and the RMST [defined in (7.44)] of the estimates of these two filters: forNit =
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Figure 9.1: Values of e1, e2, e3 and e4 for the new RiSAdUKF and the USQUE for a
problem of satellite attitude estimation.

201 iterations and Ns = 1000 simulations, i) the RiSAdUKF’s RMSD is, approximately,
1.541×10−3, and the USQUE’s RMSD is 1.522×10−1; and ii) the RiSAdUKF’s RMST
is 3.37× 10−6, and the USQUE’s RMST is, approximately, 4.23× 10−6. The USQUE’s
RMSD is, approximately, 100 times the RiSAdUKF’s RMSD!

9.6 RIEMANNIAN UNSCENTED FILTERING FOR STATE
VARIABLES BEING UNIT DUAL QUATERNIONS

Throughout Chapter 8 and in Section 9.5, we studied Unscented filters for quater-
nions system. Representing rotations of 3-dimensional bodies with unit quaternions
may have some advantages comparative with other representations of rotations (cf.
Chapter 8). The good properties of the unit quaternions for representing rotations
can be extended to full movement of rigid bodies—a translation and a rotation of a
3-dimensional rigid body—by the so called unit dual quaternions.
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A dual quaternion q can be written in the form

q = P
(
q
)

+ εD
(
q
)
,

where P(q) ∈ H is called the primary part of q, the D(q) ∈ H the dual part of q, and
ε the dual unit; ε is a generalized complex number such that ε2 = 0 [35]. The dual
quaternion algebra will be denoted as H .

The addition and multiplication between two dual quaternions are defined as fol-
lows:

q ± p := P
(
q
)
±P

(
p
)

+ ε
[
D
(
q
)
±D

(
p
)]

;

qp :=
[
P
(
q
)

+ εD
(
q
)] [

P
(
p
)

+ εD
(
p
)]
.

The conjugate q∗ of a dual quaternion q is defined using the conjugate of quater-
nions in the following way:

q∗ := P
(
q
)∗

+ εD
(
q
)∗

;

with the conjugate, we can define the following function
∥∥∥q∥∥∥ := qq∗

= q∗q.

∥∥∥q∥∥∥ is also a dual scalar number of the form

∥∥∥q∥∥∥ = a+ εb, a, b ∈ [0,∞);

even thought this function ‖‖ is not a norm (positive function with the triangle in-
equality), it is generally named as the pseudo-norm of q or, for simplicity, just as the
norm of q.

If the norm of a dual quaternion q is equal to 1 + ε0 = 1, then we call q an unit
dual quaternion. The set of all unit dual quaternions forms a quadric—essentially, a
quadric is a set comprising the zeros of a polynomial of degree 2—, and is called the
Study Quadric [175]; we will denote the Study Quadric by H ‖1‖.

While unit quaternions can represent rotations of 3-dimensional rigid bodies, unit
dual quaternions can represent full movements; full movements of rigid bodies are
compositions of rotations and translations. In fact, any unit dual quaternion can be
written in the form

q = q + ε
1
2qq, q ∈ S3, q ∈ R3;
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where q represents the rigid body displacement composed of the rotation q and trans-
lation q [35].

Naturally, rigid body displacements can be represented by other elements, such as
homogeneous transformation matrices. These matrices are the natural way of describ-
ing rigid body displacements in homogeneous coordinates. The group formed by these
matrices along with the usual matrix product is called the Special Euclidean Group
and usually denoted by SE (3).

Nevertheless, unit dual quaternions present benefits comparative with other rep-
resentations of rigid body displacements. For instance, comparative with homoge-
neous transformation matrices, unit dual quaternions present computational advan-
tages; among other advantages, the cost of some important operations, such as calcu-
lating Jacobians and forward kinematics, is smaller for unit dual quaternions than for
homogeneous transformation matrices [35].

Because of the good properties of the unit dual quaternions when representing rigid
body motions, we develop Unscented filters for systems composed by them.

9.6.1 Riemannian UKF for dual quaternions

In order to define a UKF for dual quaternions, we must describe a stochastic dy-
namic system with the random variables belonging to the H ‖1‖. We are unaware of
any probability and statistic theory for unit dual quaternions, but we can use the one
developed for Riemannian manifolds.

For a unit dual quaternion q = q + ε1
2qq, q ∈ S

3, q ∈ R3, the function

ψ : H ‖1‖ → S3 × R3

q 7→ [q, q]T (9.112)

is one-to-one, and its inverse is

ψ−1 : S3 × R3 →H ‖1‖

[q, q]T 7→ q := q + ε
1
2qq.

Because ψ maps unit dual quaternion uniquely to a the Riemannian manifold S3×
R3, we can construct UKF’s for the H ‖1‖ using the Riemannian-Spheric Unscented
Filters of Section 9.5. Define the following system:
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xk = fk (xk−1,$k) ,

y
k

= hk (xk,ϑk) , (9.113)

where k is the time step; xk the internal state characterized by the Riemannian random
point ψ(xk) ∈ ΦS3×R3 ; y

k
is the measured output characterized by ψ(y

k
) ∈ ΦS3×R3 ;

$k ∈ ΦM$ the process noise; and $k ∈ ΦMϑ
the measurement noise. The system

(9.113) will be called dual-quaternion (stochastic, discrete-time, dynamic) system.

We can define an additive variant of system (9.113) in a way similar to the case
of Riemannian manifolds. Define the following operation between a dual quaternion q
characterized by ψ(q) ∼ (q̄,P q)S3×R3 and an Euclidean random vector p ∼ (p̄, Pp)R6

ψ
(
q � p

)
∼
(
expq̄ p̄,P q + Pp

)
.

Then the additive variant of (9.19) is a system in the form

xk = fk (xk−1) �$k,

y
k

= hk (xk) � ϑk, (9.114)

with $k = $k,M$k = R6, ϑk = ϑk, andMϑk = R6.

Since S3 × R3 is a product of two Riemannian manifolds, it is also a Riemannian
manifold. Let expS3

q be the Riemannian exponential application in the S3 at q ∈ S3—
one expression is given in (A.22)—, and expR3

q the Riemannian exponential of R3 at
q ∈ R3—see (A.20)—; then the Riemannian exponential expS3×R3

[q,q]T of S3×R3 at [q, q]T

is

expS3×R3

[q,q]T : TqS
3 × TqR3 → S3 × R3

[v, x]T 7→
[
expS3

q (v) , expR3

q (x)
]T

;

similarly, for logS3

q being the Riemannian logarithm application in the S3 at q ∈ S3—
one expression is given in (A.23)—, and logR3

q the Riemannian logarithm of R3 at
q ∈ R3—see (A.21)—; then the Riemannian logarithm logS3×R3

[q,q]T of S3 ×R3 at [q, q]T is

logS3×R3

[q,q]T : S3 × R3 → TqS
3 × TpR3

[p, p]T 7→
[
logS3

q (p) , logR3

q (p)
]T
.
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Then we can define the Unscented filters for the dual quaternions. For the aug-
mented filters, define the augmented functions fak : H ‖1‖ ×M$ → H ‖1‖ and hak :
H ‖1‖ ×Mϑ →H ‖1‖ such that, for ,

fak

 xk−1

$k

 := fk (xk−1,$k) , (9.115)

hak

 xk
ϑk

 := hk (xk,ϑk) .

Definition 9.19. Consider the system (9.113)

xk = fk (xk−1,$k) ,

y
k

= hk (xk,ϑk) ;

the pair of equations (9.115), and the function ψ defined in (9.112). Suppose that i)
$k and ϑk are independent; ii) $k, ϑk and the initial state x0 are characterized by

ψ (x0) ∼
(
x̄0,P

0
xx

)
S3×R3

,

ψ ($k) ∼ ($̄k,Qk)S3×R3 ,

ψ (ϑk) ∼
(
ϑ̄k,Rk

)
S3×R3

,

and iii) the measurements y1˜ , y2˜ , ..., y
kf˜ are given. Then the Dual-Quaternionic Rie-

mannian Augmented Unscented Kalman Filter (DQRiAUUKF) is given by the following
algorithm:

Algorithm 28 (Dual-Quaternionic Riemannian Augmented Unscented Kalman Fil-
ter). Perform the following steps:

1. Initialization. Set the initial estimates x̂0|0 := ψ−1 (x̄0) ∈ and P̂
0|0
xx := P 0

xx.

2. Filtering. For k = 1, 2, ..., kf ; set the following elements:

(a) The augmented previous estimates by

x̂k−1|k−1 := ψ
(
x̂k−1|k−1

)
,

x̂ak−1|k−1 :=
[
x̂Tk−1|k−1, $̄

T
k

]T
,

P̂
k−1|k−1
xx,a := diag

(
P̂
k−1|k−1
xx ,Qk

)
.
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(b) The predicted statistics of the state by
[
x̂k|k−1, P̂

k|k−1
xx

]
:= RiUT1

(
ψ−1 ◦ fk ◦ ψ, x̂ak−1|k−1, P̂

k−1|k−1
xx,a

)
.

(c) The augmented predicted estimates by

x̂ak|k−1 :=
[
x̂Tk|k−1, ϑ̄

T

k

]T
,

P̂
k|k−1
xx,a := diag

(
P̂
k|k−1
xx ,Rk

)
.

(d) The predicted statistics of the measurement by
[
ŷk|k−1, P̂

k|k−1
yy , P̂

k|k−1
xy,a

]
:= RiUT2

(
ψ−1 ◦ hk ◦ ψ, x̂ak|k−1, P̂

k|k−1
xx,a

)
,

P̂
k|k−1
xy :=

[
P̂
k|k−1
xy,a

]
(1:6),(1:6)

.

(e) The corrected statistics of the state by

Gk :=
(
P̂
k|k−1
xy

)(
P̂
k|k−1
yy

)−1
,

y˜k := ψ

(
y˜k
)
,

x̂TMk|k := x̂TMk|k−1 +Gk logŷk|k−1

(
y˜k
)
,

x̂k|k := expx̂k|k−1

(
x̂TMk|k

)
,

x̂k|k := ψ−1
(
x̂k|k

)
,

P̂
k|k,x̂k|k−1
xx := P̂

k|k−1
xx − (Gk) P̂

k|k−1
yy (Gk)T ,

P̂
k|k
xx := PT

(
P̂
k|k,x̂k|k−1
xx , x̂k|k−1, x̂k|k

)
.

Definition 9.20. Consider the system (9.113)

xk = fk (xk−1,$k) ,

y
k

= hk (xk,ϑk) ;

the pair of equations (9.115), and the function ψ defined in (9.112). Suppose that i)
$k and ϑk are independent; ii) $k, ϑk and the initial state x0 are characterized by

ψ (x0) ∼
(
x̄0,

√
P 0
xx

√
P 0
xx

T
)
S3×R3

,

ψ ($k) ∼
(
$̄k,

√
Qk

√
Qk

T
)
S3×R3

,
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ψ (ϑk) ∼
(
ϑ̄k,

√
Rk

√
Rk

T
)
S3×R3

,

where
√
Qk is n$̄k

× n$̄k
and n$̄k

and iii) the measurements y1˜ , y2˜ , ..., y
kf˜ are

given. Let n$k be the number of columns of
√
Qk and nϑk of

√
Rk. Then the Dual-

Quaternionic Riemannian Augmented Square-Root Unscented Kalman Filter (DqRi-
AuSRUKF) is given by the following algorithm:

Algorithm 29 (Dual-Quaternionic Riemannian Augmented Square-Root Unscented
Kalman Filter). Perform the following steps:

1. Initialization. Set the initial estimates x̂0|0 := ψ−1 (x̄0) and
√
P̂

0|0
xx :=

√
P 0
xx.

2. Filtering. For k = 1, 2, ..., kf ; set the following elements:

(a) The augmented previous estimates by

x̂k−1|k−1 := ψ
(
x̂k−1|k−1

)
,

x̂ak−1|k−1 :=
[
x̂k−1|k−1, $̄k

]T
,√

P̂
k−1|k−1
xx,a := diag

(√
P̂
k−1|k−1
xx ,

√
Qk

)
.

(b) The predicted statistics of the state by

[
x̂k|k−1,

√
P̂
k|k−1
xx

]

= RiSRUT1

(
ψ−1 ◦ fk ◦ ψ, x̂k−1|k−1,

√
P̂
k−1|k−1
xx,a , [0]n$k×n$k

)
.

(c) The augmented predicted estimates by

x̂ak|k−1 :=
[
x̂k|k−1, ϑ̄k

]T
,√

P̂
k|k−1
xx,a := diag

(√
P̂
k|k−1
xx ,

√
Rk

)
.

(d) The predicted statistics of the measurement by

[
ŷk|k−1,

√
P̂
k|k−1
yy , Sχ, Sγ , P̂

k|k−1
xy,a

]

= RiSRUT2

(
ψ−1 ◦ hk ◦ ψ, x̂k|k−1,

√
P̂
k|k−1
xx,a , [0]nϑk×nϑk

)
,
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and
P̂
k|k−1
xy :=

[
P̂
k|k−1
xy,a

]
(1:nx),(1:ny)

.

(e) The corrected statistics of the state by

Gk :=
(
P̂
k|k−1
xy

)(√
P̂
k|k−1
yy

)−T (√
P̂
k|k−1
yy

)−1

,

y˜k := ψ

(
y˜k
)
,

x̂TMk|k := x̂TMk|k−1 +Gk logŷk|k−1

(
y˜k
)
,

x̂k|k := expx̂k|k−1

(
x̂TMk|k

)
,

x̂k|k := ψ−1
(
x̂k|k

)
,√

P̂
k|k,x̂k|k−1
xx := triag ([Sχ −GkSγ ]) ,√

P̂
k|k,x̂k|k−1
xx := PT

(√
P̂
k|k,x̂k|k−1
xx , x̂k|k−1, x̂k|k

)
.

Definition 9.21. Consider the system (9.113)

xk = fk (xk−1) �$k,

y
k

= hk (xk) � ϑk,

and the function ψ defined in (9.112). Suppose that i) $k and ϑk are independent; ii)
$k, ϑk and the initial state x0 are characterized by

ψ (x0) ∼
(
x̄0,P

0
xx

)
S3×R3

,

$k ∼ ($̄k, Qk)S3×R3 ,

ϑk ∼
(
ϑ̄k, Rk

)
S3×R3

,

and iii) the measurements y1˜ , y2˜ , ..., y
kf˜ are given. Then the Dual-Quaternionic

Riemannian Additive Unscented Kalman Filter (DqRiAdUKF) is given by the following
algorithm:

Algorithm 30 (Dual-Quaternionic Riemannian Additive Unscented Kalman Filter).
Perform the following steps:

1. Initialization. Set the initial estimates x̂0|0 := ψ−1 (x̄0) and P̂
0|0
xx := P 0

xx.

2. Filtering. For k = 1, 2, ..., kf ; set the following elements:
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(a) The predicted statistics of the state by

x̂k−1|k−1 := ψ
(
x̂k−1|k−1

)
,[

x̂∗k|k−1, P̂
k|k−1
xx,∗

]
:= RiUT1

(
ψ−1 ◦ fk ◦ ψ, x̂k−1|k−1, P̂

k−1|k−1
xx

)
,

x̂k|k−1 := expx̂∗k|k−1
$̄k,

P̂
k|k−1
xx := P̂

k|k−1
xx,∗ +Qk.

(b) The predicted statistics of the measurement by
[
ŷ∗k|k−1, P̂

k|k−1
yy,∗ , P̂

k|k−1
xy

]
:= RiUT2

(
ψ−1 ◦ hk ◦ ψ, x̂k|k−1, P̂

k|k−1
xx

)
,

ŷk|k−1 := expŷ∗k|k−1
ϑ̄k,

P̂
k|k−1
yy := P̂

k|k−1
yy,∗ +Rk.

(c) The corrected statistics of the state by

Gk :=
(
P̂
k|k−1
xy

)(
P̂
k|k−1
yy

)−1
,

y˜k := ψ

(
y˜k
)
,

x̂TMk|k := x̂TMk|k−1 +Gk logŷk|k−1

(
y˜k
)
,

x̂k|k := expx̂k|k−1

(
x̂TMk|k

)
,

x̂k|k := ψ−1
(
x̂k|k

)
,

P̂
k|k,x̂k|k−1
xx := P̂

k|k−1
xx − (Gk) P̂

k|k−1
yy (Gk)T ,

P̂
k|k
xx := PT

(
P̂
k|k,x̂k|k−1
xx , x̂k|k−1, x̂k|k

)
.

Definition 9.22. Consider the system (9.113) and the function ψ defined in (9.112).
Suppose that i) $k and ϑk are independent; ii) $k, ϑk and the initial state x0 are
characterized by

ψ (x0) ∼
(
x̄0,

√
P 0
xx

√
P 0
xx

T
)
S3×R3

,

ψ ($k) ∼
(
$̄k,

√
Qk

√
Qk

T
)
S3×R3

,

ψ (ϑk) ∼
(
ϑ̄k,

√
Rk

√
Rk

T
)
S3×R3

;

and iii) the measurements y1˜ , y2˜ , ..., y
kf˜ are given. Then the Dual-Quaternionic

Riemannian Additive Square-Root Unscented Kalman Filter (DqRiAdSRUKF) is given
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by the following algorithm:

Algorithm 31 (Dual-Quaternionic Riemannian Additive Square-Root Unscented Kalman
Filter). Perform the following steps:

1. Initialization. Set the initial estimates x̂0|0 := ψ−1 (x̄0) and
√
P̂

0|0
xx :=

√
P 0
xx.

2. Filtering. For k = 1, 2, ..., kf ; set the following elements:

(a) The predicted statistics of the state by

x̂k−1|k−1 := ψ
(
x̂k−1|k−1

)
,[

x̂∗k|k−1,

√
P̂
k|k−1
xx

]
:= RiSRUT1

(
fk, x̂k−1|k−1,

√
P̂
k−1|k−1
xx ,

√
Qk

)
,

x̂k|k−1 := expx̂∗k|k−1
$̄k.

(b) The predicted statistics of the measurement by
[
ŷ∗k|k−1,

√
P̂
k|k−1
yy , Sχ, Sγ , P̂

k|k−1
xy

]
:= RiSRUT2

(
hk, x̂k|k−1,

√
P̂
k|k−1
xx ,

√
Rk

)
,

ŷk|k−1 := expŷ∗k|k−1
ϑ̄k.

(c) The corrected statistics of the state by

Gk :=
(
P̂
k|k−1
xy

)(√
P̂
k|k−1
yy

)−T (√
P̂
k|k−1
yy

)−1

,

y˜k := ψ

(
y˜k
)
,

x̂TMk|k := x̂TMk|k−1 +Gk logŷk|k−1

(
y˜k
)
,

x̂k|k := expx̂k|k−1

(
x̂TMk|k

)
,

x̂k|k := ψ−1
(
x̂k|k

)
,√

P̂
k|k,x̂k|k−1
xx := triag

([
Sχ −GkSγ , Gk

√
Rk

])
,√

P̂
k|k,x̂k|k−1
xx := PT

(√
P̂
k|k,x̂k|k−1
xx , x̂k|k−1, x̂k|k

)
.

As far as our knowledge goes, these dual quaternions UF’s (the DqRiUKF, DqRiS-
RUKF, DqRiAd-UKF and DqRiAdSRUKF) are the first UF’s for unit dual quaternions
of the literature. We highlight the following properties of these filters:

1. they preserve norm of the unit dual quaternions at every time step;
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2. their probability and statistic elements are well defined;

3. all operations within them are well defined (e.g. there are no sums of two ele-
ments for whom the sums would not be well defined, such as sums of unit dual
quaternions);

4. the rotation part and the translation part of the dual quaternions—for a unit dual
quaternion q = q+ε1

2qq, q is the rotation part and q the translation one—are not
being treated separately since these two parts are not supposed to be independent
Riemannian random points. In fact, the cross-covariances between the rotation
and translation parts can be different from zero.

9.7 CONTINUOUS-DISCRETE-TIME AND CONTINUOUS-
TIME RIUKF’S

Similar to the Euclidean case, instead of considering the dynamics and the mea-
surements time discrete, we can consider i) the dynamics being time continuous and
the measurements being time discrete, ii) the dynamics being time continuous and
the measurements being also time continuous, or iii) the dynamics being time discrete
and the measurements being time continuous. In the first case [i)], we call the system
continuous-discrete-time; and in the second case [ii)], we call the system continuous-
time. We do not treat the third case [iii)] because it is usually not considered in practice
(cf. the comments at the end of Section 5.8).

A Riemannian continuous-discrete-time (stochastic, dynamic) system can be writ-
ten in the form given by, for t ≥ t0,

dx(t) = ft (x(t),$(t)) , (9.116)

yk = hk (xk,ϑk) ;

or in the additive form

dx(t) = expft(x(t))

[
logft(x(t)) ft (x(t)) + d$(t)

]
, (9.117)

dyk = exphk(xk)

[
loghk(xk) hk (xk) + ϑk

]
.

In the systems above d$(t) and dϑ(t) are well defined; they are differentials of Eu-
clidean stochastic processes. However differentials of Riemannian stochastic processes
such as dx(t) and dy(t) were not defined yet in this work. We are unaware of any work
with results related to these differentials, and we do not know the conditions for their
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existence; we shall only suppose they exist.

We can extend the continuous-discrete-time and continuous-time UKF’s of Section
5.8 to the relative Riemannian cases by using the forms of the Riemannian filters.

For the augmented versions of these Unscented filters, define, for the Riemannian
continuous-discrete-time system, the augmented functions fat :Mx×M$ →Mx and
hak :Mx ×Mϑ →My such that, for ,

fat

 x(t)
$(t)

 := ft (x(t), q(t)) , (9.118)

hak

 xk
rk

 := hk (xk,ϑk) .

Definition 9.23. Consider the system (9.116)

dx(t) = ft (x(t),$(t)) ,

yk = hk (xk,ϑk) ;

and the pair of equations (9.118). Suppose that i) the noises$(t) and ϑk are indepen-
dent for all t ≥ t0 and k ≥ t0; ii) $(t), ϑk and the initial state x(t0) are characterized
by

x(t0) ∼
(
x̄0,P

0
xx

)
Mx

,

d$(t)
dt

∼ ($̄k,Q(t))M$
,

ϑk ∼
(
ϑ̄k,Rk

)
Mϑ

;

and iii) the measurements y˜1, y˜2, ..., y˜kf are given. Then the Riemannian Continuous-
Discrete Augmented Unscented Kalman Filter is given by the following algorithm:

Algorithm 32 (Riemannian Continuous-discrete Augmented Unscented Kalman Fil-
ter). Perform the following steps:

1. Initialization. Set the initial estimates x̂0|0 := x̄0 and P̂
0|0
xx := P 0

xx.

2. Filtering. For k = 1, 2, ..., kf ; set the following elements:

(a) The state’s predicted statistics. For the initial conditions

x−(tk−1) := x̂k−1|k−1 and

P̂
−
xx(tk−1) := P̂

k−1|k−1
xx ,
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solve i), for x̂−(tk), the differential equation

dx̂−(t) := m̂−(t);

and ii), for P̂−xx(tk), the differential equation

dP̂
−
xx(t) := P̂

−
xf(x)(t) +

(
P̂
−
xf(x)(t)

)T
;

where

x̂−a (t) :=
[
x̂−(t)T , $̄T

k

]
,T

P̂
−,a
xx (t) := diag

(
P̂ xx(t),Q(t)

)
,[

m̂−(t), •, P̂−,axf(x)(t)
]

:= RiUT1

(
fat , x̂

−
a (t), P̂−,axx (t)

)
,

P̂
−
xf(x)(t) :=

[
P̂
−,a
xf(x)(t)

]
(1:nx),(1:nx)

.

(b) The measurement’s predicted statistics by

x̂ak|k−1 :=
[(
x̂−(tk)

)T
, ϑ̄

T

k

]
,T

P̂
k|k−1
xx,a := diag

((
P̂
−
xx(tk)

)T
,Rk

)
,[

ŷk|k−1, P̂
k|k−1
yy , P̂

k|k−1
xy,a

]
:= RiUT2

(
hk, x̂

a
k|k−1, P̂

k|k−1
xx,a

)
,

P̂
k|k−1
xy :=

[
P̂
k|k−1
xy,a

]
(1:nx),(1:ny)

.

(c) The corrected statistics of the state by

Gk :=
(
P̂
k|k−1
xy

)(
P̂
k|k−1
yy

)−1
,

x̂TMk|k := x̂TMk|k−1 +Gk logŷk|k−1

(
y˜k
)
,

x̂k|k := expx̂k|k−1

(
x̂TMk|k

)
,

P̂
k|k,x̂k|k−1
xx := P̂

k|k−1
xx − (Gk) P̂

k|k−1
yy (Gk)T ,

P̂
k|k
xx := PT

(
P̂
k|k,x̂k|k−1
xx , x̂k|k−1, x̂k|k

)
.

Definition 9.24. Consider the system (9.117)

dx(t) = expft(x(t))

[
logft(x(t)) ft (x(t)) + d$(t)

]
,

dyk = exphk(xk)

[
loghk(xk) hk (xk) + ϑk

]
.
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Suppose that i) the noises $(t) and ϑk are independent for all t ≥ t0 and k ≥ t0; ii)
$(t), ϑk and the initial state x(t0) are characterized by

x(t0) ∼
(
x̄0,P

0
xx

)
Mx

,

d$(t)
dt

∼ ($̄k, Q(t))nx ,

ϑk ∼
(
ϑ̄k, Rk

)ny ;

and iii) the measurements y˜1, y˜2, ..., y˜kf are given. Then the Riemannian Continuous-
Discrete Additive Unscented Kalman Filter is given by the following algorithm:

Algorithm 33 (Riemannian Continuous-discrete Additive Unscented Kalman Filter).
Perform the following steps:

1. Initialization. Set the initial estimates x̂0|0 := x̄0 and P̂
0|0
xx := P 0

xx.

2. Filtering. For k = 1, 2, ..., kf ; set the following elements:

(a) The state’s predicted statistics. For the initial conditions

x−(tk−1) := x̂k−1|k−1 and

P̂
−
xx(tk−1) := P̂

k−1|k−1
xx ,

solve i), for x̂−(tk), the differential equation

dx̂−(t) := m̂−(t);

and ii), for P̂−xx(tk), the differential equation

dP̂
−
xx(t) := P̂

−
xf(x)(t) +

(
P̂
−
xf(x)(t)

)T
+Q(t);

where [
m̂−∗ (t), •, P̂−xf(x)(t)

]
:= RiUT1

(
fat , x̂

−(t), P̂−xx(t)
)

m̂−(t) := expm̂−∗ (t) $̄k.

(b) The measurement’s predicted statistics by
[
ŷ∗k|k−1, P̂

k|k−1
yy,∗ , P̂

k|k−1
xy

]
:= RiUT2

(
hk, x̂

−(tk), P̂
−
xx(tk)

)
,

ŷk|k−1 := expŷ∗k|k−1
ϑ̄k,

P̂
k|k−1
yy := P̂

k|k−1
yy,∗ +Rk.
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(c) The corrected statistics of the state by

Gk :=
(
P̂
k|k−1
xy

)(
P̂
k|k−1
yy

)−1
,

x̂TMk|k := x̂TMk|k−1 +Gk logŷk|k−1

(
y˜k
)
,

x̂k|k := expx̂k|k−1

(
x̂TMk|k

)
,

P̂
k|k,x̂k|k−1
xx := P̂

k|k−1
xx − (Gk) P̂

k|k−1
yy (Gk)T ,

P̂
k|k
xx := PT

(
P̂
k|k,x̂k|k−1
xx , x̂k|k−1, x̂k|k

)
.

Similarly, a Riemannian continuous-time (stochastic, dynamic) system can be writ-
ten in the form (for a vector x, dx stand for its differential) given by, for t ≥ t0,

dx(t) = ft (x(t),$(t)) , (9.119)

dy(t) = ht (x(t),ϑ(t)) .

or in the additive form

dx(t) = expft(x(t))

[
logft(x(t)) ft (x(t)) + d$(t)

]
, (9.120)

dy(t) = expht(x(t))

[
loght(xt) ht (x(t)) + dϑ(t)

]
.

For the augmented versions of these Unscented filters, define, for the Riemannian
continuous-discrete-time system, the augmented functions fat :Mx×M$ →Mx and
hak :Mx ×Mϑ →My such that, for ,

fat

 x(t)
$(t)

 := ft (x(t), q(t)) , (9.121)

hat

 x(t)
r(t)

 := ht (x(t),ϑ(t)) .

Definition 9.25. Consider the system (9.119)

dx(t) = ft (x(t),$(t)) ,

dy(t) = ht (x(t),ϑ(t)) ;

and the pair of equations (9.121). Suppose that i) the noises $(t) and ϑ(t) are in-
dependent for all t ≥ t0 and k ≥ t0; ii) $(t), ϑ(t) and the initial state x(t0) are
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characterized by

x(t0) ∼
(
x̄0,P

0
xx

)
Mx

,

d$(t)
dt

∼ ($̄k,Q(t))M$
,

dϑk
dt
∼
(
ϑ̄k,Rk

)
Mϑ

;

and iii) the measurements y˜1, y˜2, ..., y˜kf are given. Then the Riemannian Continuous
Augmented Unscented Kalman Filter is given by the following algorithm:

Algorithm 34 (Riemannian Continuous Augmented Unscented Kalman Filter). For
the initial conditions

x̂(t)0 := x̄(t0) and

P̂ xx(t0) := Pxx(t0),

solve i), for x̂(tk), the differential equation

dx̂(t) := m̂(t) +G(t)
(
y˜(t)− ŷ(t)

)
;

and ii), for P̂xx(tk), the differential equation

dP̂xx(t) := P̂ xf(x)(t) + P̂ T

xf(x)(t);

where

x̂a(t) :=
[
x̂−(t)T , $̄T

k

]
,T

P̂
a

xx(t) := diag
(
P̂ xx(t),Q(t)

)
,

x̂∗a(t) :=
[
x̂−(t)T , ϑ̄Tk

]
,T

P̂
a,∗
xx(t) := diag

(
P̂ xx(t),R(t)

)
,[

m̂(t), •, P̂ ,a

xf(x)(t)
]

:= RiUT1

(
fat , x̂a(t), P̂

a

xx(t)
)
,[

ŷk|k−1, •, P̂
,a

xh(x)(t)
]

:= RiUT2
(
hak, x̂

∗
a(t), P̂

a,∗
xx(t)

)
,

P̂ xf(x)(t) :=
[
P̂
a

xf(x)(t)
]

(1:nx),(1:nx)
,

P̂ xh(x)(t) :=
[
P̂
a

xh(x)(t)
]

(1:ny),(1:ny)
,

G(t) := P̂ xh(x)(t)R−1(t).
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Definition 9.26. Consider the system (9.120)

dx(t) = expft(x(t))

[
logft(x(t)) ft (x(t)) + d$(t)

]
,

dy(t) = expht(x(t))

[
loght(xt) ht (x(t)) + dϑ(t)

]
.

Suppose that i) the noises $(t) and ϑ(t) are independent for all t ≥ t0 and k ≥ t0; ii)
$(t), ϑ(t) and the initial state x(t0) are characterized by

x(t0) ∼
(
x̄0,P

0
xx

)
Mx

,

d$(t)
dt

∼ ($̄k, Q(t))nx ,
dϑk
dt
∼
(
ϑ̄k, Rk

)ny ;

and iii) the measurements y˜1, y˜2, ..., y˜kf are given. Then the Riemannian Continuous
Additive Unscented Kalman Filter is given by the following algorithm:

Algorithm 35 (Riemannian Continuous-discrete Additive Unscented Kalman Filter).
For the initial conditions

x̂(t)0 := x̄(t0) and

P̂ xx(t0) := Pxx(t0),

solve i), for x̂(tk), the differential equation

dx̂(t) := m̂(t) +G(t)
(
y˜(t)− ŷ(t)

)
;

and ii), for P̂xx(tk), the differential equation

dP̂xx(t) := P̂ xf(x)(t) + P̂ T

xf(x)(t) +Q(t)−G(t)R(t)GT (t);

where

[
m̂(t), •, P̂ xf(x)(t)

]
:= RiUT1

(
ft, x̂(t), P̂ xx(t)

)
,[

ŷk|k−1, •, P̂ xh(x)(t)
]

:= RiUT2
(
hk, x̂(t), P̂ xx(t)

)
,

G(t) := P̂ xh(x)(t)R−1(t).
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9.8 CONCLUSIONS REGARDING UNSCENTED FILTER-
ING ON RIEMANNIAN MANIFOLDS

We initiated the systematization of the theory of Unscented Kalman filters for Rie-
mannian manifolds by introducing the Riemannian σ-representation (RiσR, in Section
9.1). In Theorem 9.1 we showed that closed forms of the σ-representations can be used
to find closed forms for RiσR’s; with this, in Corollary 9.1, we determined i) the mini-
mum number sigma points of a RiσR, ii) the minimum number of a symmetric RiσR,
iii) closed forms for a minimum RiσR, and iv) closed forms for a minimum symmetric
RiσR.

Similarly to the systematization of Part I, we define the Riemannian Unscented
Transformation (RiUT, Section 9.2) based on the the concept of a RiσR. Besides, we
extended all the UT variants of Chapter 4 to the Riemannian case; among other, we
propose the Scaled RiUT, and the Square-Root RiUT.

In Section 9.3, we treated the desired discrete-time Riemannian Unscented filters.

We introduced a definition of a Riemannian additive system (Section 9.3.1). These
systems are necessary in order to define additive-noise Riemannian Unscented filters,
but, generally, Riemannian manifolds are not endowed with sums.

Furthermore, we found consistent Kalman correction equations for the Rieman-
nian Unscented filters (Section 9.3.2). To find these equations, we considered, first, a
particular case where the state and the measurement belonged to the same manifold
(Section 9.3.2.1); only then, by extending this result, we could get to the final form of
the Kalman correction equations (Section 9.3.2.2).

In Section 9.3.3, we propose four new discrete-time Riemannian Unscented Filters.
At the end of this section, we provide a list of numerous variants of these four Rieman-
nian filters (Tables 9.3, 9.1, 9.4, and 9.2); all variants are new consistent Riemannian
Unscented filters.

Further, in Section 9.4, we compared our Riemannian Unscented filters with the
only Unscented Kalman filter of the literature, namely the Unscented Kalman Filter
for Riemannian manifolds (UKFRM) of [171]. The UKFRM of [171] is essentially
different from all the filters of Tables 9.1, 9.2, 9.3, ,and 9.4, except for one: the Rie-
mannian Homogeneous Minimum Symmetric AdUKF (RiHoMiSyAdUKF, Table 9.4
[1,1]). Yet, even though there are similarities between the UKFRM of [171] and the
RiHoMiSyAdUKF, the RiHoMiSyAdUKF is based on more solid concepts (cf. Section
9.4).

The initial intention of Part II of developing Unscented filters for quaternion systems
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is materialized by the Riemannian-Spheric Additive Unscented Filters (RiSAdUF’s) in
Section 9.5. More than being just a particular form the Riemannian Unscented filters
of Section 9.3, these Riemannian-Spheric filters are computationally-implementable.

Concepts of the Riemannian manifolds theory can be very abstract, but usually
computer languages are not designed to work with such level of abstraction. Instead,
often we have to work either with closed forms of particular cases or even with nu-
merical approximations. We presented closed forms of almost all the operations per-
formed in these filters—such as exponential mappings, logarithm mappings, and par-
allel transports—; only sample means of Riemannian σ-representations still have to be
found numerically.

We showed that the RiSAdUF’s are better than the Quaternionic Additive UF’s of
Section 7.3 (QuAdUF’s). The RiSAdUF’s have better mathematical properties than
the QuAdUF’s and, in a numerical example, one form of the RiSAdUF outperformed
the USQUE of [48] (it is a well-established QuAdUF of the literature) by a great
margin.

Unscented filters for dual quaternion systems are introduced in Section 9.6. Unit
quaternions are computationally-efficient representations of rotations, and unit dual
quaternions can be viewed as the extension of unit quaternions to representations of
rigid body displacements—rotations along with translations. The filters of Section 9.6
are the first consistent Unscented filters for dual quaternion systems, and are based on
the Riemannian Unscented filters of Section 9.3.

In Section 9.7, the continuous-time and continuous-discrete-time variants of the
Riemannian filters of Section 9.3.3 were introduced for the first time in the literature.
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10. CONCLUSIONS OF THIS THESIS

In Chapter 2, we provided an analysis of the literature of discrete-time Unscented
Kalman filtering on Euclidean manifolds. We were able to observe several problems
concerning

1. the matching order of the transformed covariance (Sections 2.4.1 and 2.6.2) and
the transformed cross-covariance (Sections 2.4.2 and 2.6.3) of both the Unscented
Transformation (UT) and of the Scaled Unscented Transformation (SUT);

2. multiple UKF definitions (Section 2.3.1);

3. issues with the reduced sets of [45], [46] and [83] (Section 2.5);

4. the conservativeness of the SUT (Section 2.6.1);

5. the scaling effect of the SUT on both the transformed covariance and cross-
covariance (Sections 2.6.2 and 2.6.3);

6. possibly ill-conditioned results in the square-root Unscented Kalman Filters (Sec-
tion 2.7.1);

7. definitions for the Additive Unscented Kalman Filters (Section 2.8).

These problems along with the difficulty in gathering all results related to the Unscented
theory reveal a lack of foundation in terms of mathematical principles, and also the
absence of mathematical solutions generalizing the sigma sets, UT’s and UKF’s of
the literature. In order to address these needs, we propose a systematization of the
Unscented Kalman filter theory that treats the construction of UKF’s in parts.

We start the construction of this theory by considering diverse forms of estimating
the expected value of a transformed random vector (Section 3.1). Motivated by this
problem, we propose a key concept of our systematization: the lth order N points
σ-representation (lthNσR, Definition 3.1); essentially, σ-representations are weighted
sets whose sample moments up to a certain order are equal to the ones of a given
random vector.

By proposing a matrix form of the lthNσR’s (Theorem 3.1), we discovered some
key properties of these representations, to know i) the minimum number of sigma
points of an lthNσR (Corollary 3.1), ii) the minimum number of sigma points of an
symmetric lthNσR (Corollary 3.1), and iii) the form of the lthNσR of a the random
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vector Z = aX + b when the lthNσR of X is known (Corollary 3.2). With this third
result, the lthNσR of a random vector Z can be found by first calculating the lthNσR
of an associated random vector X with mean equal to zero vector, and covariance equal
to the identity matrix.

Lead by these other two results, results i) and ii), we found a) closed forms for the
minimum symmetric σR’s (Section 3.3)—when the order of the lthNσR is 2, we can
omit the reference to it (to l); we can also omit the reference to the number of sigma
points (N)—, and b) a closed form for the minimum σR’s (Section 3.4).

One of the closed forms of the minimum symmetric σR’s (the Homogeneous Mini-
mum Symmetric σR) is equivalent to the classical symmetric sigma sets of [1,2] (Table
2.1); therefore, with this we show the reasons behind these sigma sets which, until now,
were based only on intuitive ideas. In fact, heretofore, it was not known that these
sigma sets are composed by the smallest amount of symmetric sigma points.

As for the closed form for the minimum σR’s, it turned out to be the only existing
consistent minimum σR; we showed that this σR is a general case of the only other
consistent minimum σR of the literature (Corollary 3.5).

The initial motivational problem of estimating the expected value of a transformed
random vector is not completely solved by the σR′s. A solution to this problem is
actually given by the Unscented Transformations (UT’s).

The concept of an UT follows naturally from the one of σ-representations. A
σ-representation’s goal is to approximate a random vector, and an UT’s goal is to
approximate a transformed random vector.

There are many ways to approximate a transformed random vector. An UT, par-
ticularly, does it by using a σ-representation of the previous random vector. Therefore,
we can say that the approximation of an UT is based on matching the moments of
an random vector—recall that a σ-representation is defined as being a weighted set
matching the moments, up to a certain order, of a given random vector.

Even though definitions for the UT already exist in the literature, in Chapter 2
we showed that they present some drawbacks. Therefore, in Chapter 4, we present a
definition of the UT (Definition 4.1). This new definition is more general than the ones
of the literature; our UT is defined for any order l (the order of the used lthNσR),
while as far as our knowledge goes, the higher UT’s order of the literature is 5 (the
UT of [47]). Besides, based on Taylor Series expansions, we provide the estimation
quality of the an lth order UT (Theorem 4.1)—recall, from Chapter 2, that there were
some errors in the UT’s estimation quality, and that some UT’s elements’ estimation
accuracy, such as the cross-covariances’, were not yet determined.
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Further in Chapter 4, we propose new definitions for i) the scaled UT variants in
Section 4.2, and ii) for the square-root UT variants in Section 4.3—recall, from Chapter
2, that also all these UT variants need to be corrected in some way. We are able to
show that our definitions of scaled UT’s and square-root UT are particular cases of
our UT definition of Section 4.1. With this result, the properties already developed for
the UT are naturally extended to the scaled and square-root variants. Moreover, we
present an analysis of the influence of the scaling parameter on the estimation quality
of the scaled UT variants, and introduce, for the first time in the literature, a scaled
square-root UT variant. In Section 4.4, some properties of the UT’s developed in this
chapter are verified in numerical simulations.

With the defined σR’s and UT’s, we are endowed with the necessary tools to study
the Unscented Kalman Filters (UKF’s) in more detail and to provide new consistent
definitions.

There are many UKF definitions. In order to investigate from which of these we
would construct the new definitions, we first tackle the problems presented in Section
2.8 regarding the Additive UKF’s of the literature (Section 5.1)—for instance, when
(2.1) is linear, the estimates of most of the AdUKF’s are not equivalent to the linear
KF’s one (cf. Section 2.8). We use the results of Chapter 4 regarding the UT’s to study
the possible causes for the inconsistencies of these filters. This study reveals that only
one definition of the AdUKF’s is consistent with the additive dynamic system. Based in
this consistent Additive UKF, we present the definition for the discrete-time Unscented
Kalman Filters (Section 5.2).

By extending this new filter, we present new definitions for i) a square-root variant
(Section 5.3), ii) an UKF variant for the more general system (2.2) (Section 5.2), and
iii) a square-root variant of this UKF for system (2.2) (Section 5.2).

Further, in Section 5.4, we provide a list of particular cases of these filters showing
that all consistent UKF’s of the literature are embodied by our systematization. Then,
in Section 5.5, we provide comments relative to computational aspects of the proposed
UKF filters.

Afterwards, we extend even further our systematization of the Unscented Filter.
In Section 5.7 we comment how higher order Unscented filters could be defined, and
in Section 5.8 we propose continuous-time and continuous-discrete-time variants of the
proposed Unscented filters. Numerical examples illustrating the results of this chapter
are given (Section 5.6).

With Chapter 5, we end the theoretical part of our systematization of the Un-
scented Kalman filtering theory for systems in the form of (2.1) and (2.2). In this
systematization, new results were introduced, some problems were solved, and some
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scientific qualities—such as elegance, formalism, and cohesion—were achieved.

Up to this points, only analytical and numerical examples were presented to illus-
trate the new results. Completing the triad of scientific results—theory, simulation,
and experiment—in Chapter 6, we present an experimental/technological innovation
using some of the new UKF’s developed in the preceding chapters; these filters are
used to estimate the position of an automotive electronic throttle valve. Besides be-
ing a practical application of the UKF theory developed so far, this throttle valve’s
estimation is also an innovation on its own, from the technological point of view.

The findings of Chapter 6 have practical implications, with special interest to au-
tomotive electronic throttle devices. Throttle devices often have a unique sensor that
measures the angular position of a throttle’s valve; thus, failures in this solitary sen-
sor increase risks of damage in the whole system. Wishing to mitigate the impact of
a failure from the sensor of position, we suggest an approach that joins UKF’s with
measurements produced by a wattmeter.

The novelty here relies on the use of a wattmeter to measure the electric power
consumed by the throttle. As detailed in Remark 6.1, the wattmeter was preferred due
to its low cost. However, any other kind of instruments could be used in place of a
wattmeter without necessity to modify the proposed technique.

Measurements from the wattmeter feed UKF’s, and these filters, in their turn,
generate estimates for the position of the throttle. To the best of our knowledge,
this work is the first to combine a filter with an external sensor aiming to improve
a throttle’s functionality. Experiments that were carried out in laboratory showed
promising results.

Chapter 6 closes Part I. In this part, by reviewing the Unscented Kalman filtering
theory’s state-of-the-art, we show some inconsistencies and gaps within this theory
(Chapter 2). In consequence, in Chapters 3, 4 and 5 we propose a systematization
that is able to clear these inconsistencies and fill these gaps. Besides, new results were
introduced with this systematization. Most of the results provided by this systemati-
zation are illustrated in numerical examples. Finally, in Chapter 6, a new experimen-
tal/technological technique was proposed using some of the new UKF’s proposed with
in the preceding chapter.

Overall, in Part I, we developed a consistent Unscented Kalman filter theory which
has been verified in numerical simulations and a practical experiment.

*********

All the theory developed in Part I is based in the concepts of stochastic dynamic
systems; either in their discrete-time forms (2.1) and (2.2), or in the their continuous-
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time form (5.43) and continuous-discrete-time forms (5.44). Note that, for all these
systems, the variables—the state vector, measurement vector, and noises—take values
in Euclidean spaces. Such Euclidean systems can be used to model numerous practical
problems; yet, for certain practical problems, it might be better to use other classes of
systems.

When we want to determine a dynamical model involving rotations and/or orienta-
tions, it may be advantageous to use unit quaternions, rather then rotation matrices—
these matrices are the natural way to model rotations in an 3-dimensional Euclidean
space. Hence, we can consider stochastic dynamic systems where at least some of their
variables are unit quaternions; in this case, we could question whether the systemati-
zation developed in Part I can be extended to such unit quaternion systems.

The Unscented literature already has some Unscented filters for quaternions sys-
tems. Hence, in Chapter 7, we analyze all the diverse UKF’s and SRUKF’s for quater-
nion systems proposed in the literature. From this analysis, we show that i) a consid-
erable amount of these filters do not preserve the norm of the unit quaternions; and
ii) all UKF’s preserving the norm of the unit quaternions are particular cases of a new
algorithm, namely of the Quaternionic Additive Unscented Kalman Filter (QuAdUKF,
Section 7.3.1). Indeed, the QuAdUKF can result in each of these filters of the liter-
ature by particular choices of i) the σ-representation, ii) weighted mean method of a
unit quaternion set, and iii) vector parameterization of the set of unit quaternions (S3,
possible choices are provided).

We also introduce a square-root extension of the QuAdUKF, the Quaternionic Ad-
ditive Square-Root Unscented Kalman Filter (QuAdSRUKF), having better properties
than all the SRUKF’s for quaternion systems of the literature (Section 7.3.2). Compar-
ative with the UKF’s of the literature, the QuAdSRUKF is computationally more sta-
ble in ill-conditioned situations because of its square-root properties; and comparative
with the SRUKF’s of the literature, the QuAdSRUKF is always computationally more
stable because it has less (or even none) Cholesky factor downdatings (Section 7.3.2).
These superior properties of the QuAdSRUKF were verified in numerical simulations
considering the Unscented filters (UKF’s and SRUKF’s) for attitude systems in two
problems (Section 7.4.2): 1) a theoretical problem with the performance of the filters
being deteriorated by round-off errors; and 2) a satellite attitude estimation problem
in two different situations considering i) normal conditions, ii) and computationally
ill-conditioned conditions. In two of all these three situations [the only situation of
the problem 1), and the situations ii) of the problem 2)], the QuAdSRUKF provided
reliable estimates, but all the Unscented filters for attitude systems of the literature did
not. Besides, even in normal conditions [situation i) of problem 2)], the QuAdSRUKF
outperformed the Unscented filters of the literature by presenting better estimates (the
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second smallest mean error was 10, 56% higher than the error of the QuAdSRUKF).

The initial goal of Chapter 7 was to extend the systematization of Part I to quater-
nion systems. However, from the analysis developed in that chapter, we can conclude
that the UKF’s for quaternions systems of the literature were built upon some intuitive,
but not mathematically-sound concepts; indeed, we can cite the following properties
upon which these UKF’s are built:

1. The additive quaternion models are not consistent (cf. Remark 7.1).

2. Some of the probability and statistic concepts for the quaternion space need
further study. For instance, it is not clear what are the definitions and properties
of i) quaternionic random variables, their distributions, and their statistics; ii) the
statistics of quaternionic weighted sets (such as quaternionic σ-representations);
iii) the statistics of a transformed quaternionic random variable.

3. The form of the filters are extended from the Euclidean filters without enough
explanation. For instance, what is the reason behind the correction equations
of these UKF’s [e.g. step (2d) of the QuAdUKF]? What kind of approximation
does it provide?

Our solution to extend the systematization of Part I to quaternion systems is based
on Riemannian manifolds. We work with manifolds because i) the set of unit quater-
nions is a Riemannian manifold, and ii) there are some probability and statistic results
for Riemannian manifolds in the literature.

In Chapter 8, we i) present some results of the literature regarding statistics in-
trinsically developed in Riemannian manifolds, ii) made some extensions these results
of [66]—e.g.,among others, definitions of moments are extended—, and iii) propose
other results regarding statistics in Riemannian manifolds—e.g., among others, mo-
ments and sample moments of order higher than 2 (Section 8.3 and 8.6), propositions
concerning transformations of Riemannian random points (Section 8.5), and results
concerning joint Riemannian random points (Section 8.4).

Using the theory presented in Chapter 8, we extend the Unscented Kalman filtering
systematization developed in Part I to the case of Riemannian manifolds; we do this
constructively.

We initiate the systematization of the theory of Unscented Kalman filters for Rie-
mannian manifolds by introducing the Riemannian σ-representation (RiσR, Section
9.1). In Theorem 9.1 we show that closed forms of the σ-representations can be used to
find closed forms for RiσR’s; with this, in Corollary 9.1, we determine i) the minimum
number sigma points of a RiσR, ii) the minimum number of a symmetric RiσR, iii)
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closed forms for a minimum RiσR, and iv) closed forms for a minimum symmetric
RiσR.

Similarly to the systematization of Part I, we define the Riemannian Unscented
Transformation (RiUT, Section 9.2) based on the the concept of a RiσR. Besides, we
extend all the UT variants of Chapter 4 to the Riemannian case; among other, we
propose the Scaled RiUT, and the Square-Root RiUT.

In Section 9.3, we treat the desired discrete-time Riemannian Unscented filters.

We introduce a definition of a Riemannian additive system (Section 9.3.1). These
systems are necessary in order to define additive-noise Riemannian Unscented filters,
but, generally, Riemannian manifolds are not endowed with sums.

Furthermore, we found consistent Kalman correction equations for the Riemannian
Unscented filters (Section 9.3.2). To find these equations, we consider, first, a particular
case where the state and the measurement belonged to the same manifold (Section
9.3.2.1); only then, by extending this result, we can get to the final form of the Kalman
correction equations (Section 9.3.2.2).

In Section 9.3.3, we propose four new discrete-time Riemannian Unscented Filters.
At the end of this section, we provide a list of numerous variants of these four Rie-
mannian filters (Tables 9.3, 9.1, 9.4, and 9.2); all these variants are new consistent
Riemannian Unscented filters.

Further, in Section 9.4, we compared our Riemannian Unscented filters with the
only Unscented Kalman filter of the literature, namely the Unscented Kalman Filter
for Riemannian manifolds (UKFRM) of [171]. The UKFRM of [171] is essentially
different from all the filters of Tables 9.3, 9.1, 9.4, and 9.2, except for one: the Rie-
mannian Homogeneous Minimum Symmetric AdUKF (RiHoMiSyAdUKF, Table 9.4
[1,1]). Yet, even though there are similarities between the UKFRM of [171] and the
RiHoMiSyAdUKF, the RiHoMiSyAdUKF is based on more solid concepts (cf. Section
9.4).

The initial intention of Part II of developing Unscented filters for quaternion systems
is materialized by the Riemannian-Spheric Additive Unscented Filters (RiSAdUF’s) in
Section 9.5. More than being just a particular form the Riemannian Unscented filters
of Section 9.3, these Riemannian-Spheric filters are computationally-implementable.

Concepts of the Riemannian manifolds theory can be very abstract, but usually
computer languages are not designed to work with such level of abstraction. Instead,
often we have to work either with closed forms of particular cases or even with nu-
merical approximations. We present closed forms of almost all the operations per-
formed in these filters—such as exponential mappings, logarithm mappings, and par-
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allel transports—; only sample means of Riemannian σ-representations still have to be
found numerically.

We show that the RiSAdUF’s are better than the Quaternionic Additive UF’s
(QuAdUF’s) of Section 7.3. The RiSAdUF’s have better mathematical properties than
the QuAdUF’s and, in a numerical example, one form of the RiSAdUF outperforms the
USQUE of [48] (it is an well-established QuAdUF of the literature) by a great margin.

Unscented filters for dual quaternion systems are introduced in Section 9.6. Unit
quaternions are computationally-efficient representations of rotations, and unit dual
quaternions can be viewed as the extension of unit quaternions to representations of
rigid body displacements—rotations along with translations. The filters of Section 9.6
are the first consistent Unscented filters for dual quaternion systems, and are based on
the Riemannian Unscented filters of Section 9.3.

In Section 9.7, the continuous-time and continuous-discrete-time variants of the
Riemannian filters of Section 9.3.3 were introduced for the first time in the literature.

Overall, we can say that, in this work, we developed a new, consistent Unscented
Kalman filtering theory for Euclidean and Riemannian manifolds.

10.1 FUTURE WORK

For future work, we suggest extending the present work by providing the following
results:

1. an analysis of stability and convergence of all the Unscented Filters presented
in this thesis. There are works in the literature treating this topic for some
Unscented Filters (e.g. [50,176]).

2. square-root continuous-time filters. The literature already have some continuous-
time and continuous-discrete-time SRUKF’s (e.g. [52]).

3. computationally-implementable Riemannian Unscented Filters to other Rieman-
nian manifolds besides the S3, such as the projective spaces, special orthogonal
groups, special Euclidean groups, among others.

4. applications of some of the proposed Unscented Filters.
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10.2 SCIENTIFIC PUBLICATIONS

In the course of our research, some results of this thesis resulted in scientific publi-
cations.

• The works published in scientific journals are the following ones:

1. A. N. Vargas, H. M. T. Menegaz, J. Y. Ishihara, and L. Acho, “Unscented
Kalman Filters for Estimating the Position of an Automotive Electronic
Throttle Valve,” IEEE Transactions on Vehicular Technology., vol. 65, no.
6, pp. 4627–4632, Jun. 2016.

2. H. M. T. Menegaz, J. Y. Ishihara, G. A. Borges, and A. N. Vargas, “A Sys-
tematization of the Unscented Kalman Filter Theory,” IEEE Transactions
on Automatic Control, vol. 60, no. 10, pp. 2583–2598, Oct. 2015.

3. H. M. Menegaz, J. Y. Ishihara, and G. A. Borges, “New minimum sigma
set for unscented filtering,” International Journal of Robust and Nonlinear
Control, online preview;

• The works published in scientific conferences are the following on:

1. H. M. T. Menegaz, J. Y. Ishihara, and P. P. M. Magro, “A Unscented
Kalman Filter for Attitude Estimation of Satellites,” in Proceedings of the
Simpósio Brasileiro de Automação Inteligente (SBAI), 2015.

2. C. Ochoa-Diaz, H. M. Menegaz, A. P. L. Bó, and G. A. Borges, “An EKF-
based approach for estimating leg stiffness during walking,” in in Proceed-
ings of the Annual International Conference. IEEE Eng. Medicine and
Biology Society, 2013, pp. 7226–7228.

3. H. M. Menegaz, P. H. R. Q. A. Santana, J. Y. Ishihara, and G. A. Borges,
“Scaled Minimum Unscented Multiple Hypotheses Mixing Filter,” in Pro-
ceedings of the IEEE American Control Conference, 2013, pp. 2466–2471.

We highlight that our work “A Systematization of the Unscented Kalman Filter The-
ory,” (item 2. of the published journals above) has been one of the five most popular
articles of the IEEE Transactions on Automatic Control (Figure 10.1).

Moreover, in the following months, we intend proposing at least three works as
scientific publications; one work for each of the following results of this thesis:

• the analysis of consistency of AdUKF’s presented in Sections 2.8 and 5.1;
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Figure 10.1: Screenshot of the IEEE Transactions on Automatic Control’s webpage.
This screenshot was taken at 10:18 a.m. (time of Brasília) on Friday, November the
20th, 2015.

• the analysis of the Unscented Filters for additive-noise quaternion models devel-
oped in Chapter 7.

• the Unscented filtering theory for Riemannian manifolds of Chapter 9.
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A. RIEMANNIAN MANIFOLDS

In this appendix, we provide the results respective to the theory of Riemannian man-
ifolds that are required to develop our theory of Unscented Kalman filtering on these
manifolds (Chapter 9). We present the concepts of Riemannian manifold, geodesic,
exponential and logarithm mappings, parallel transport, among others.

This presentation is based, mainly, on [177] (our notation is also similar), and,
in less degree, on [66, 174] and [178]. For more information on the topic, we suggest
consulting, apart from [174, 177–179], [36, 180–182]; for the readers not familiar with
the theory of differential geometry, it might be interesting to study, beforehand, works
introductory to this field, such as [183,184] and [185].

In this work, a differentiable function (or mapping, or transformations) will mean
that it is of class C∞ (differentiable for all degrees of differentiation)—this nomencla-
ture is used in [177], our main source on Riemannian manifolds, and in other classical
works on the topic such as [178].

A.1 DIFFERENTIABLEMANIFOLDS AND TANGENT SPA-
CES

The notion of surface is intuitive from the real world where human beings live. In a
mathematical sense, a (regular) surface can be defined as a set S ⊂ R3 whose subsets
are identified with subsets of the R2 by charts (injective mappings) [183]. This notion
can be extended to more abstract and general concepts giving birth, for instance, to
the so called differentiable (smooth) manifolds.

Charts are fundamental concepts for defining smooth manifolds. Consider a set
M; a chart is a pair (U,ϕ) where U is an open subset of Rn, and ϕ : U 7→ U is a
bijection (a one-to-one correspondence) from U to a subset U ofM. When there is no
risk of confusion, we can simply write ϕ for (U,ϕ), and call ϕ a chart. We point out
that ϕ is defined as being ϕ : U 7→ U by part of the differential geometry literature
(cf. [174, 178]). Note that, generally, there exists more than one chart for each point
q ∈M.

Definition A.1 (Differentiable manifold [177, 178]). A differentiable manifold (or a
C∞ manifold or a smooth manifold) of dimension n is a pair (M,A) whereM is a set
and A = {(Ua, ϕta)} a family of injective mappings (charts) ϕa : Ua ⊂ Rn → M of
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open sets Ua of Rn intoM such that:

1. ⋃a ϕa (Ua) =M.

2. for any pair a, b, with
ϕa (Ua) ∩ ϕb (Ub) =: W 6= ∅,

the sets ϕ−1
a (W ) and ϕ−1

b (W ) are open sets in Rn and the mappings ϕ−1
b ◦ ϕa

areϕ−1
b ◦ ϕa differentiable (smooth).

3. The family A = {(Ua, ϕa)} is maximal relative to the conditions 1. and 2.—that
is, if a pair (Ua, ϕa) satisfies conditions 1. and 2., then it is contained in A.

The pair (Ua, ϕa) (or the mapping ϕa) with q ∈ ϕa(Ua) is called a parametrization (or
system of coordinates) ofM at q; ϕa(Ua) is then called a coordinate neighborhood at
qa. A family {(Ua, ϕa)} satisfying 1. and 2. is called an atlas ofM or a differentiable
structure forM. If an atlas (or a differentiable structure) satisfies 1, then it is called
maximal. When indication of the dimension n of a differential manifoldM is required,
we use the notationMn. For simplicity, we will use the name “differentiable manifold”
to refer either for the pair (M,A), or to the set M; since A is unique (because it is
maximal), this practice does not introduce confusion.

Figure A.1 illustrates a differentiable manifold. The condition 3 is included for
purely technical reasons. Indeed, given a differentiable structure onM, we can easily
complete it to a maximal one by taking the union of all the parameterizations that,
together with any of the parameterizations of the given structure, satisfy condition 3.
Therefore, with a certain abuse of language, we can say that a differentiable manifold
is a set provided with a differentiable structure. In general, the extension to maximal
structure will be done without further comment.

In this work, we will treat only the particular class of differentiable manifolds whose
induced topologies satisfy the following two axioms:

1. Hausdorff Axiom: Given two distinct points ofM, there exist neighborhoods
of these two points that do not intersect.

2. Countable Basis Axiom: M can be covered by a countable number of coor-
dinate neighborhoods. We, then, say thatM has a countable basis.

aUntil now, a bold notation has been indicating that a given variable belongs to the S3 (cf. Chapter
7), but it will be extended for now on; henceforth, a bold notation indicates the belonging of a given
variable to a Riemannian manifold (e.g. q ∈ M); note that this extension does not cause confusion
because the S3 is a Riemannian manifold.
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M

ϕ−1
b ◦ ϕa

Ua ⊂ Rn
Ub ⊂ Rn

ϕ−1
b ◦ ϕa

W

ϕa ϕb

Figure A.1: A differentiable manifold.

Every atlas induces a topology—then we can say that every differentiable manifolds
induces a topology being the one induced by its maximal atlas; a topology is an ab-
straction of the notion of open sets in Rn; see [174, 186] for more information), but,
generally, these topologies allow the existence of pathological behaviors such as con-
vergent sequences having more than one limit point. By restricting the differentiable
manifolds to the case of Hausdorff (satisfying axiom 1. above) and second-countable
(satisfying the axiom 2. above) topologies, we exclude numerous strange behaviors.
Thus, henceforth, we suppose that all differentiable manifolds are endowed with these
classes of topologies.

Examples of differentiable manifolds are the Euclidean space Rn, unit sphere Sn−1,
set of n × m real matrices, set of n × m (m ≤ n) real matrices whose columns are
linearly independents (this manifold is called the noncompact Stiefel manifold).

Example A.1 (Vector Spaces [174]). The simplest example of a differentiable manifold
is the Rn endowed with the differentiable structure {(ϕ,Rn)} where ϕ : Rn → Rn :
u 7→ q. Indeed, any vector space is a differentiable manifold. Let V be a d-dimensional
vector space. Then, given the basis {e1, . . . , ed} of V , the function

ϕ : Rd → V : [u1, . . . , ud]T 7→ q
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such that
q =

d∑
i=1

uiei

along with Rd is a differentiable structure for V .

Example A.2 (Unit sphere). The Sn−1 can be viewed as a manifold embedded in the
Rn, meaning that it can be defined with a differentiable structure induced by the one
of the Rn.

A (non-maximal) atlas for the Sn−1 is given by the family of pairs {(U,ϕi)}2n
i=1

where U = {u ∈ Rn−1|uTu < 1} and, for u = [u1, ..., un−1]T ,

ϕi : U → Sn−1

u 7→


[
u1, . . . , ui−1,

√
1− uTu, ui, . . . , un−1

]T
for i = 1, 3, . . . , 2n− 1;[

u1, . . . , ui−1,−
√

1− uTu, ui, . . . , un−1
]T

for i = 2, 4, . . . , 2n.
(A.1)

It can be shown that the conditions 1. and 2. of Definition A.1 are satisfied for
{(U,ϕi)}2n

i=1.

The Cartesian product of two differentiable manifolds is also a differentiable mani-
fold. Given two differentiable manifolds (Mn1

1 , {(U1
a , ϕ

1
a)}) and (Mn2

2 , {(U2
a , ϕ

2
a)}), the

pair (Mn1
1 ×Mn2

2 , {(U1
a × U2

a , ϕ
1
a × ϕ2

a)}) where ϕ1
a × ϕ2

a : U1
a × U2

a 7→ Rn1 × Rn2 is
a differentiable manifold. The Sn−1 × Rm will be of particular importance for our
purposes.

We will need the idea of differentiable mappings between manifolds. LetMn
1 and

Mm
2 be differentiable manifolds. A mapping f :M1 →M2 is differentiable at q ∈M1

if, given a parametrization ϕ2 : V ⊂ Rm →M2 at f(q), there exists a parametrization
ϕ1 : U ⊂ Rn →M1 at q such that f(ϕ1(U)) ⊂ ϕ2(V ) and the mapping

f̃ := ϕ−1
2 ◦ f ◦ ϕ1 : U ⊂ Rn → Rm (A.2)

is differentiable at ϕ−1
1 (q); f̃ is called the coordinate representation of f (see Figure

A.2). We say that f is differentiable on an open set of M1 if it is differentiable at
all of the points of this open set. This definition is independent of the choice of the
parameterizations. In all this work, we suppose that all functions are differentiable
unless otherwise stated.

If f : M1 →M2 is a differentiable bijection and its inverse mapping f−1is differ-
entiable, than f is called a diffeomorphism. In this case, M1 and M2 are said to be
diffeormorphic. The notion of diffeomorphism is a natural idea of equivalence between
differentiable manifolds.
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M1 M2

ϕ1 ϕ2

V ⊂ RmU ⊂ Rn

q

ϕ1(U)

f(q)

f(ϕ1(U))

f

f̃ := ϕ−1
2 ◦ f ◦ ϕ1

ϕ2(V )

Figure A.2: Representation of a differentiable function.

We can apply differentiable mappings to the parameterizations; this will lead us to
the definition of a tangent vector.

Definition A.2. Let M be a differentiable manifold. A differentiable function γ :
(−ε, ε)→M is called a (differentiable) curve inM. Suppose that γ(0) = q ∈M, and
let D(M) be the set of all functions of the type f :M→ R that are differentiable at
q. The tangent vector to the curve γ at t = 0 is a function γ′(0) : D(M)→ R given by

γ′(0)f = d(f ◦ γ)
dt

∣∣∣∣∣
t=0

, f ∈ D(M). (A.3)

A tangent vector at q is the tangent vector at t = 0 of some curve γ : (−ε, ε)→M
with γ(0) = q. Note that γ′(0) is an operator taking f ∈ D(M) to a scalar d(f◦γ)

dt

∣∣∣
t=0

.
The set of all tangent vectors toM at q will be indicated by TqM.

If we choose a parametrization ϕ : U → Mn at q = ϕ(p) = γ(0), we can express
the function f and the curve γ in this parametrization by

f ◦ ϕ (u) = f (u1, . . . , un) , u = (u1, . . . , un) ∈ U,
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and
ϕ−1 ◦ γ (t) = u(t) = (u1(t), . . . , un(t)) ,

respectively. Therefore, restricting f to γ, we obtain

γ′(0)f = d

dt
(f ◦ γ)|t=0

= d

dt

(
f ◦ ϕ ◦ ϕ−1 ◦ γ

)∣∣∣
t=0

= d

dt
f (u(t))|t=0

=
n∑
i=1

∂f (u)
∂ui

∣∣∣∣∣
u=p

d

dt
ui(t)

∣∣∣∣∣
t=0

=
n∑
i=1

u̇i(t)|t=0
∂f (u)
∂ui

∣∣∣∣∣
u=p

=
n∑
i=1

u̇i(0) ∂ (f ◦ ϕ (u))
∂ui

∣∣∣∣∣
u=p

(A.4)

For each ui, the term
∂ (f ◦ ϕ (u(t)))

∂ui(t)

∣∣∣∣∣
u=p

can be interpreted as the tangent vector to the curve ϕ (u) at ϕ (u) |u=p; applying this
notion on (A.4), we have that

γ′(0)f =
n∑
i=1

u̇i(0) ∂ϕ (u)
∂ui

∣∣∣∣∣
u=p

 f
=
 n∑
i=1

u̇i(0) ∂ϕ (u)
∂ui

∣∣∣∣∣
u=p

 f
=
(

n∑
i=1

u̇i(0) ∂

∂ui

∣∣∣∣∣
0

)
f

where (
∂

∂ui

)
0

:= ∂ϕ (u(t))
∂ui(t)

∣∣∣∣∣
t=0

is the tangent vector at q of the “coordinate curve” (Figure A.3):

ui 7→ ϕ(0, . . . , 0, ui, 0, . . . , 0).

In other words, the vector γ′(0) can be expressed in the parametrization ϕ by

γ′(0) =
n∑
i=1

u̇i(0)
(
∂

∂ui

)
0
. (A.5)
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q = ϕ(p)

M

uj

U ⊂ Rn

p

U ⊂ Rn

ϕ

p

ui

∂
∂uj

∂
∂ui

ϕ

Figure A.3: Tangent vector of “coordinate curves”.

The expression (A.5) shows that the tangent vector to the curve γ at q depends
only on the derivative of γ in a coordinate system. It follows also from (A.5) that the
set TqM, with the usual operations of function, forms a vector space of dimension n,
and that the choice of parametrization ϕ : U →M determines an associated basis{(

∂

∂u1

)
0
, . . . ,

(
∂

∂un

)
0

}

where (
∂

∂ui

)
0

:= ∂ϕ (u(t))
∂ui(t)

∣∣∣∣∣
t=0

.

in TqM. It can be shown that this linear structure in TqM does not depend on the
parametrization ϕ. The vector space TqM is called tangent space ofM at q.

The tangent vector γ′(0) should be distinguished from the time derivative (vector)
(see Figure A.4)

γ̇(t) := lim
τ→0

γ (t+ τ)− γ(t)
τ

.

This definition of γ̇(t) requiresM to be endowed with a vector space structure, but the
one of γ′(0) does not; it is a mapping from D(M) to R. If a differentiable manifold is
not equipped with a vector space structure, then γ̇(t) is mealiness (it does not exists),
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but ifM is (a submanifold of) a normed vector space V , γ′(0) and γ̇(t) are related: for
all function f ∗ defined in a neighborhood U of γ(0) is V , we have

γ′(0)f := Df ∗ (γ(0)) [γ̇(0)] , (A.6)

where f denotes the restriction of f ∗ to U ∩ M [174], and Dfxy is the directional
derivative (function) defined by

Dfxy := lim
t→0

f(x+ ty)− f(x)
t

.

γ

q

M
TqM

γ̇(0)

Figure A.4: Time derivative vector of a differentiable manifold.

Example A.3 (Tangent vectors of a tangent space). For a vector space V , clearly the
basis of TqV associated with the differentiable structure of Example A.1 is the own
canonical basis {e1, . . . , en} of V . Thus, in an neighborhood of q (tangent vectors are
local objects), V and TqV are equivalent [174].

Example A.4 (Basis for TqSn−1 ). For the differentiable structure of the Sn−1 given
in Example A.2, for every point q ∈ Sn−1, there is a chart ϕi such that ϕi(u) = q =
[q1, . . . , qn]T for a u = [u1, ..., un−1]T ∈ U . Then we have that, for i = 1, 3, . . . , 2n− 1

∂ϕiuj =
[
0, . . . , 0, 1, 0, . . . , 0,− uj√

1− uTu
, 0, ..., 0

]T
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=
[
0, . . . , 0, 1, 0, . . . , 0,−qj

qi
, 0, ..., 0

]T

and, for i = 2, 4, . . . , 2n,

∂ϕiuj =
[
0, . . . , 0, 1, 0, . . . , 0, uj√

1− uTu
, 0, ..., 0

]T

=
[
0, . . . , 0, 1, 0, . . . , 0, qj

qi
, 0, ..., 0

]T

Since {∂ϕiu1 , . . . , ∂ϕ
i
un−1} is a basis of TqSn−1, and thus a vector v ∈ TqSn−1 can be

written by, for [v1, . . . , vn−1] ∈ Rn−1, v = ∑n−1
j=1 vj∂ϕ

i
uj . Thus, for i = 1, 3, . . . , 2n− 1,

v = v1∂ϕ
i
u1 + · · ·+ vn−1∂ϕ

i
un−1

= v1



1
0
...
0
− q1
qi

0
...
0
0



+ · · ·+ vn−1



0
0
...
0

− qn−1
qi

0
...
0
1



= v1



1
0
...
0
− qj
qi

0
...
0
0



+ · · ·+ vn−1



0
0
...
0
− qj
qi

0
...
0
1
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=



v1
...

vj−1

0
vj
...

vn−1


−



0
...
0

q−1
i

∑n−1
j=1 vjqj

0
...
0



=



v1
...

vj−1

−q−1
i

∑n−1
j=1 vjqj

vj
...

vn−1


= v1e1 + · · ·+ vj−1ei−1 +

−q−1
i

n−1∑
j=1

vjqj

 ei + vjei+1 + · · ·+ vn−1en. (A.7)

Equation (A.7) provides the change of the coordinates of a vector v ∈ TqSn−1 from the
basis {∂ϕiu1 , . . . , ∂ϕ

i
un−1} to {e1, ..., en} (the canonical basis of the Rn). Conversely,

the coordinates of v ∈ TqS
n−1 in the basis e := {e1, ..., en} are v′1, . . . v′n; then, from

(A.7), the coordinates of v in {∂ϕiu1 , . . . , ∂ϕ
i
un−1} are

[
v′1, . . . v

′
i−1, v

′
i+1, v

′
n

]
, and hence

v = v′1∂ϕ
i
u1 + · · ·+ v′i−1∂ϕ

i
ui−1 + v′i+1∂ϕ

i
ui + · · ·+ v′n∂ϕ

i
un−1 . (A.8)

Analogously, for i = 2, 4, . . . , 2n, we have that

v = v1e1 + · · ·+ vj−1ei−1 +
q−1

i

n−1∑
j=1

vjqj

 ei + vjei+1 + · · ·+ vn−1en (A.9)

= v′1∂ϕ
i
u1 + · · ·+ v′i−1∂ϕ

i
ui−1 + v′i+1∂ϕ

i
ui + · · ·+ v′n∂ϕ

i
un−1 . (A.10)

Example A.5 (Tangent Bundle (based on [174])). Given a differentiable manifoldM,
we define the set

TM :=
⋃
q

TqM.

For natural projection
π : TM→M : TqM3 v 7→ q,

π(v) is called the foot of v. The set TM admits a natural differentiable structure as
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follows. Given a chart (U,ϕ) ofM, the mapping

TqM3 v 7→ (q, v)

is a chart of the set TM with domain π−1(ϕ(U)). It can be shown that the collection
of charts constructed in this way forms an atlas of the TM. Then TM with this atlas
is a differentiable manifold called the tangent bundle ofM. This is the natural space
to work with when treating questions that involve positions and velocities, as in the
case of mechanics. Besides, TM is also important for the concept of vector fields.

Definition A.3. A vector field X on a differentiable manifoldM is a correspondence
that associates to each point q ∈ M a vector X (q) ∈ TqM. In terms of mappings,
X is a mapping of M into the tangent bundle TM. The field is differentiable if the
mapping

X :M→ TM

is differentiable. On a submanifold of a vector space, a vector field can be pictured
as a collection of arrows, one at each point of M. Given a vector field X on M and
a differentiable real-valued function f : M → R (f ∈ D(M)), we let X f denote the
real-valued function on M defined by [recall that v ∈ TqM operates on real-valued
function; cf. (A.3)]

(X f) : M → R

q 7→ v(f), v ∈ TqM.

Let M1 and M2 be differentiable manifolds and f : M1 → M2 a differentiable
mapping. For every q ∈ M1and for each v ∈ TqM1, choose a differentiable curve
γ : (−ε, ε) → M1 with γ(0) = q, γ′(0) = v. Take β = f ◦ γ. Then it can be shown
that the operator dfq(v) defined by

dfq(v) := β′(0)

is a tangent vector of Tf(q)M2 (see Figure A.5). Moreover the mapping

dfq : TqM1 → Tf(q)M2 : v 7→ β′(0)

is linear and does not depend on the choice of γ [177]. This linear mapping dfq is called
the differential of f at q.

The rank of a differentiable mapping f :Mn1
1 →Mn2

2 is the dimension of the range
of dfq . The mapping f is i) an immersion if its rank is equal to n1 at every point of
its domain (hence n1 ≤ n2), and a submersion if its rank is equal n2 at every point of
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M1
M2

f(q)

f

γ

q

v = γ̇(0) dfq(v)
β

Figure A.5: Differential of a function.

its domain (hence n1 ≥ n2) [174].

Consider two differentiable manifolds (M1,A1) and (M2,A2) such thatM2 ⊂M1.
Then (M2,A2) is called an immersed submanifold of (M1,A1) if the inclusion map

i :M1 →M2 : q 7→ q

is an immersion. In this case, (M1,A1) induces a topology on (M2,A2), and (M2,A2)
is endowed with this topology induced from (M1,A1) and with its original manifold
topology (which is induced by A2). If these two topologies of (M2,A2) are the same,
(M2,A2) is called an embedded (sub)manifold (or a regular manifold, or simply a
submanifold). In this case, (M1,A1) is called the embedding manifold, or the ambient
manifold.

Embedded manifolds have interesting properties regarding their tangent vectors.
LetM be an embedded manifold of a normed vector space V , and consider the curve
in M γ with γ(0) = q. Let i be inclusion map of M into V and define directional
derivative

γ̇(0) := lim
t→0

i(γ(t))− i(γ(0))
t

.

Since γ is a curve, it also induces a tangent vector γ′(0) according to (A.3).For f ∗ being
defined in a neighborhood U of γ(0) in V , and f being the restriction of f to U ∩M
we have that, from (A.6),

γ′(0)f := Df ∗γ(0) [γ̇(0)] . (A.11)

Then, we can identify TqM with the set of all γ̇(0). Since γ̇(0) is can be graphically
represented by an “arrow”, then γ′(0) can also be picture as this arrow [174]. Note how-
ever, that this is meaningful only to the case of manifolds embedded in vector spaces.
Furthermore, since i) the set of all vectors γ̇(0) is identified with TqV , and ii) TqV is
locally identified with V itself, then the vectors of TqM can be naturally represented
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by vectors of the embedding vector space V . The following examples illustrates this
point.

Example A.6 (Embedded Sn−1 ). The unit sphere Sn−1 is an embedded manifold
of the Rn (the immersion is i : Sn−1 → Rn : q 7→ q). Since Rn, we can use (A.11)
to have a representation of γ′(0) in Rn. Let γ : R → Sn−1 : t 7→ γ(t) be a curve in
the unit sphere Sn−1 with γ(0) = q. Since γ(t) belong to Sn−1 for all t, we have that
(considering the representation of γ(t) in the ambient space Rn)

γ(t)Tγ(t) = 1, for all t.

Differentiating this equation (using the directional derivative in Rn) with respect to t,
we have that

γ̇(t)Tγ(t) + γ(t)T γ̇(t) = 0

⇔ 2γ(t)T γ̇(t) = 0

⇔ γ(t)T γ̇(t) = 0

for t = 0, this equation yields
qT γ̇(0) = 0.

Therefore, the vectors γ̇(0) are the vectors orthogonal to q [174]. These vectors γ′(0)
are associated with γ′(0) in the basis Rn. This representation is particularly useful
when we want to implement γ′(0) in computer programs because we know how to
represent the elements of Rn .

A.2 RIEMANNIAN METRICS

Riemannian geometry can be viewed as a further extension of the differential ge-
ometry of surfaces in the R3. The length of a given curve in a surface S ⊂ R3 is
defined by integrating the size (norm) of its velocity vector; on its turn, the length of a
velocity vector is naturally defined by the inner product 〈v, v〉. Riemannian manifolds
are differentiable manifolds with inner products induced in the tangent spaces.

With inner products, we can calculate the lengths of curves; then it is natural to
ask for the shortest curves among two points of the manifold. These curves are called
geodesics. This was the historical development of geodesics, but nowadays it is more
usual among the scientific literature to define geodesics as the curves whose covariant
derivative is zero at every point (cf. [177]).

Definition A.4 (Riemannian manifold). A Riemannian metric (or Riemannian struc-
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ture) 〈, 〉 or g on a differentiable manifoldM is a correspondence which associates to
each point q ofM an inner product gq := 〈, 〉q (that is, a symmetric, bilinear, positive-
definite form) on a tangent space TqM, with 〈, 〉q varying differentially in the following
sense: if ϕ : U ⊂ Rn →M is a system of coordinates (or chart) around q, with

ϕ (u1, u2, ..., un) = q ∈ ϕ(u)

and
∂

∂ui
(q) = dϕq(0, ..., 0, 1, 0, ...0),

then 〈
∂

∂ui
(q), ∂

∂uj
(q)

〉
q

= gq,ij (u1, u2, ..., un)

is a differentiable function on U [177]. The matrix

Gq(ϕ) = [gq,ij(ϕ)]

is called local representation of the Riemannian metric in the chart ϕ [66, p.129]. It
is usual to delete the index q in the function 〈, 〉q whenever there is no possibility of
confusion. The function gij(= gji) is called the local representation of the Riemannian
metric (or “the gij of the metric”) in the coordinate system ϕ : U ⊂ Rn →M.

The pair (M, g) is called a Riemannian manifold [174]. For simplicity, we will use
the name “Riemannian manifold” to refer either for the pair (M, g), or to the setM.

A diffeomorphism f :M1 →M2 is called an isometry if

〈va, vb〉q = 〈dfq (va) , dfq (vb)〉f(q) , for all q ∈M1; and va, vb ∈ TqM1.

Similarly to vector spaces, we can associate norms with a Riemannian metrics. For
q ∈M, the (Riemannian) norm associated to q is [66]

‖p‖q :=
√
〈p,p〉q, p ∈M.

The most trivial example of a Riemannian manifold is the Euclidean space. In-
deed the Rn with the metric given by 〈ei, ej〉 = δij, where ei = (0, ...0, 1, 0...0) is a
Riemannian manifold.

An embedded manifoldM2 of a Riemannian manifoldM1 can inherit the Rieman-
nian metric ofM1; in this case,M2 is called a Riemannian submanifold (see [174] for
more information).

Example A.7 (Riemannian metric on the sphere). On the sphere Sn−1 considered as
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a Riemannian submanifold of Rn, the inner product inherited from the standard inner
product on Rn is given by

〈va, vb〉q := vTa vb, va, vb ∈ TqSn−1. (A.12)

This inner product is called the canonical Riemannian metric of the Sn−1 [177].

We saw that the Cartesian product of two differentiable manifolds is also a differ-
entiable manifolds (Section A.1); likewise, the Cartesian product of two Riemannian
manifolds is also a Riemannian manifold. For two Riemannian manifoldsM1 andM2,
consider the natural projections

π1 : M1 ×M2 →M1

(q1, q2) 7→ q1;

and

π2 : M1 ×M2 →M2

(q1, q2) 7→ q2;

Define, for every q1 ∈ M1, q2 ∈ M2, va ∈ TqM1, vb ∈ TqM2, the following inner
product on T(q1,q2) (M1 ×M2),

g(q1,q2) := 〈va, vb〉(q1,q2) = 〈dπ1 · va, dπ1 · vb〉q1
+ 〈dπ2 · va, dπ2 · vb〉q2

;

then, for
g : (q1, q2) 7→ g(q1,q2),

the pair (M1 ×M2, g) is a Riemannian manifold [177]. Further in Chapter 9, the
Riemannian manifold Sn−1 × Rm will be particularly important.

It is worthy to consider a vector field along a curve. A differentiable mapping
γ : I → M of an open interval I ⊂ R into a differentiable manifold M is called a
(parameterized) curve.

Definition A.5 (Vector field). A vector field V along a curve γ : I→M is a differen-
tiable mapping that associates to every t ∈ I a tangent vector V (t) ∈ Tγ(t)M. To say
that V is differentiable mean that for any differentiable function f onM, the function
t→ V (t)f is a differentiable function on I.

The vector field dγ
(
d
dt

)
, denoted by dγ

dt
, is called the velocity field (or tangent vector

field) of γ. Observe that a vector field along γ cannot necessarily be extended to a
vector field on an open set of M. The restriction of a curve γ to a closed interval
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[a, b] ⊂ I is called segment.

A.3 AFFINE AND RIEMANNIAN CONNECTIONS

Let S ⊂ R3 be a manifold and let c : I → S be a parameterized curve in S, with
V : I→ R3 a vector field along c tangent to S. The vector dV (t)/dt, t ∈ I, does not, in
general, belong to the tangent plane of S,Tc(t)S. The concept of differentiating a vector
field is not, therefore, an “intrinsic” geometric notion on S. To remedy this state of
affairs, we consider, instead of the usual derivative dV (t)/dt, the orthogonal projection
of dV (t)/dt on Tc(t)S. This orthogonally projected vector we call the covariant deriva-
tive, and denote it by DV (t)/dt. It is the derivative of V seen from the “viewpoint of
S”.

A basic point is that the covariant derivative depends only on the first fundamental
form of S and is, therefore, a concept which can be considered within Riemannian
geometry. In particular, the notion of covariant derivative permits us to take the
derivative of the velocity vector of c, which gives the acceleration of the curves c in S.
It is possible to show that curves with zero acceleration are precisely the geodesics of
S and that the Gaussian curvature of S can be expressed in terms of the notion of the
covariant derivative.

We say that a vector field V along c is parallel if DV (t)/dt = 0. Conversely, starting
from the notion of parallelism it is possible to recover the notion of covariant derivative.
These notions are then equivalent to each other.

We now present affine connections by the reason that a choice of a Riemannian
metric on a manifold M uniquely determines a certain affine connection on M. We
are then able, in this fashion, to differentiate vector fields onM.

Let us indicate by X (M) the set of all vector fields of class C∞ on M and by
D(M) the ring of real-valued functions of class C∞ defined onM.

Definition A.6 (Affine connection). An affine connection ∇ on a differentiable man-
ifoldM is a mapping

∇ : X (M)×X (M)→X (M)

which is denoted by (ϕ, Y ) ∇→ ∇ϕY and which satisfies the following properties, for ϕ,
Y , Z ∈ X (M) and f , g ∈ D(M):

1. ∇fϕ+gYZ = f∇ϕZ + g∇YZ,

(a) ∇ϕ(Y, Z) = ∇ϕY +∇ϕZ,
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(b) ∇ϕ(fY ) = f∇ϕY + ϕ(f)Y .

This definition is not as transparent as that of a Riemannian structure. The fol-
lowing theorem, nevertheless, should clarify the situation a little.

Theorem A.1 (Covariant derivative [177]). Let M be a differentiable manifold with
an affine connection ∇. There exists a unique correspondence which associates to a
vector field V along the differentiable curve γ : I →M another vector field DV

dt
along

γ, called the covariant derivative ofM along γ, such that:

1. D
dt

(V +W ) = DV
dt

+ DW
dt

;

(a) D
dt

(fV ) = df
dt
V + f DV

dt
, where W is a vector field along γ and f is a differen-

tiable function on I;

(b) if V is induced by a vector field Y ∈ X (M), i.e., V (t) = Y (γ(t)), then
DV
dt

= ∇dγ/dtY .

Theorem A.1 shows that the choice of an affine connection on M leads to a bona
fide (i.e. satisfying 1 and 1a) derivative of vector fields along curves. The notion
of connection furnishes, therefore, a manner of differentiating vector along curves; in
particular, it will then be possible to speak of the acceleration of a curve inM. The
concept of parallelism now follows in a natural manner.

Let M be a differentiable manifold with an affine connection ∇. A vector field V
along a curve γ : I → M is called parallel when DV

dt
= 0, for all t ∈ I. Moreover, let

γ be differentiable and v0 a vector tangent toM at γ(t0), t0 ∈ I (i.e. v0 ∈ Tγ(t0)M).
Then there exists a unique parallel vector field V along γ, such that V (t0) = v0, (V (t)
is called the parallel transport of V (t0) along γ) [177].

Example A.8 (Parallel Transport for Sn−1). The parallel transport of a vector ζ ∈
TqS

n−1 in a tangent vector to TrSn−1 is used in the RiUKF in equation (9.104) (cf.
Theorem 9.2). There is a closed form for this operation on Sn−1; let t 7→ γq,v(t) be a
geodesic, and then the parallel transport ζ(t) (expressed in the canonical basis e) of a
vector ζ(0) = ζ ∈ TqSn−1 along the geodesic γq,v(t) is given by

η := γ̇q,v(0)
‖γ̇q,v(0)‖

ζ(t) : = −γq,v(0) sin (‖γ̇q,v(0)‖ t) ηT ζ(0) + η cos (‖γ̇q,v(0)‖ t) γq,v(0)T ζ(0) +
(
I − ηηT

)
ζ(0).

We have that:

γq,v(0) := cos (0 ‖v‖) q + v

‖v‖
sin (0 ‖v‖) = q;
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γ̇q,v(0) = v

Then

ζ(t) = −q sin (‖v‖ t) vT

‖v‖
ζ(0) + v

‖v‖
cos (‖v‖ t) qT ζ(0) +

(
I − v

‖v‖
vT

‖v‖

)
ζ(0).

A vector v = expq r is such that r = γq,v(1); therefore, the parallel transport of
ζ ∈ TqSn−1 to TrSn−1 is given by

ζTrS
n−1 = ζ(1) = −q sin (‖v‖) vT

‖v‖
ζ + v

‖v‖
cos (‖v‖) qT ζ +

(
I − v

‖v‖
vT

‖v‖

)
ζ. (A.13)

Definition A.7. LetM be a differentiable manifold with an affine connection ∇ and a
Riemannian metric 〈, 〉. A connection is said to be compatible with the metric 〈, 〉 ,when
for any smooth curve γ and any pair of parallel vector fields P and P ′ along γ, we have
〈P, P ′〉 = constant.

Definition A.7 is justified by the following fact. LetM be a Riemannian manifold.
A connection ∇ onM is compatible with a metric if and only if, for any vector fields
V and W along the differentiable curve γ : I→M, we have (cf. [177])

d

dt
〈V,W 〉 =

〈
DV

dt
,W

〉
+
〈
V,
DW

dt

〉
, t ∈ I. (A.14)

An affine connection ∇ on a smooth manifoldM is said to be symmetric when

∇ϕY −∇Y ϕ = [ϕ, Y ] for all ϕ, Y ∈X (M), (A.15)

where, for two vectors fields X and Y , the bracket [X, Y ] is called the Lie Bracket of
X and Y , and defined by

[X, Y ] := XY − Y X.

Theorem A.2 (Levi-Civita [177]). Given a Riemannian manifold M, there exists a
unique affine connection ∇ onM satisfying the conditions:

1. ∇ is symmetric,

2. ∇ is compatible with the Riemannian metric.

The connection given by Theorem A.2 will be referred to, from now on, as the
Levi-Civita (or Riemannian) connection onM.
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A.4 GEODESICS

In what follows,M will be a Riemannian manifold, together with its Riemannian
connection.

Given a curve γ : [a, b] → M on a Riemannian manifold M with γ(a) = q and
γ(b) = p, the arc length L of γ is given by

L(γ) :=
ˆ b

a

∥∥∥∥∥dγdt
∥∥∥∥∥
γ(t)

dt =
ˆ b

a

√√√√〈dγ
dt
,
dγ

dt

〉
γ(t)
dt.

Generally, there is more than one curve connecting two points, and it is natural to ask
for the which of these curves have the smallest arc length, and what is the value of this
smallest arc length.

The smallest arc length gives the concept of the distance between two points; indeed,
for two points q and p inM connected by smooth curves γ : [a, b]→M, the distance
between γ(a) = q and γ(b) = p is defined by

dist (q,p) := min
γ

L (γ) . (A.16)

The curves between two points whose lengths are the smallest are the so called
geodesics. A geodesic can be seen as the analogous to an straight line in a Euclidean
space in the sense that they are the shortest path between two points. Geodesics are
defined as being the curves with zero covariant derivative at every point. It can be
shown that this definition leads to the property of minimizing distances.

Definition A.8 (Geodesic). A parametrized curve γ : I →M is a geodesic at t0 ∈ I
if D

dt

(
dγ
dt

)
= 0 at the point t0; if γ is a geodesic at t, for all t ∈ I, we say that γ is a

geodesic. If [a, b] ⊂ I and γ : I→M is a geodesic, the restriction of γ to [a, b] is called
a geodesic segment joining γ(a) to γ(b) [177]. If the definition domain of all geodesics
ofM can be extended to R, thenM is said to be geodesically complete [66, p.129].

From the Hopf-Rinow-De Rhom Theorem, it follows that there exists at least one
geodesic connecting every two points of a geodesically complete manifold. In the Un-
scented theory developed in this work, we suppose that all Riemannian manifolds are
geodesically complete, unless stated otherwise.

Example A.9 (Euclidean Space). For the Euclidean manifold Rn, geodesics are given
by

γ (t, x, v) = x+ vt.

Example A.10 (Unit Sphere (from [177] and [174])). Let M = Sn−1 ⊂ Rn be the
unit sphere of dimension n. The great circles of Sn−1 parameterized by arc length
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are geodesics (see Figure A.6). For Sn−1 as a Riemannian submanifold of Rn, the
Riemannian metric is given by the inner product (A.12). Geodesics on the Sn−1 are
the curves γ : R→ Sn−1 : t 7→ γ(t) with γ(0) = q and γ′(0) = v given by the following
equation (the elements of the Sn−1 are represented as vectors of the Rn)

γ(t) = q cos(‖v‖ t) + v

‖v‖
sin(‖v‖ t). (A.17)

q p

γ

S2

Figure A.6: A geodesic in S2.

A.5 EXPONENTIAL AND LOGARITHM MAPS

If it is known that a curve in a Riemannian manifold M passes through a point
q ∈ M at time t = 0 with tangent vector v ∈ TxM, then we can fully determine this
curve. Particularly, if a curve determined by such a triad (t, q, v) is a geodesic, then it
is unique; i.e., this is the only geodesic passing through q at time t = 0 with tangent
vector v ∈ TqM [177]. Indeed, the coordinates of a geodesic follow a second order
ordinary differential equation, and, from the theory of differential equations, given
initial conditions of q and its derivative, the solution is unique. Therefore, a geodesic
γ can be expressed as a function of (t, q, v) by γ(t, q, v).

For a geodesic γ(t, q, v), if we consider, for each v ∈ TqM, the point γ(1, q, v) ∈
M, we have an interesting mapping from TqM to M, the so called (Riemannian)
exponential mapping [177].

Definition A.9 (Exponential map). Consider a point q ∈ M and let V ⊂ TqM be
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an open set of TqM. Then the map exp : U →M given by

expq(v) := γ(1, q, v) = γ

(
‖v‖ , q, v

‖v‖

)
, v ∈ V ; (A.18)

is called the (Riemannian) exponential map on U .

Geometrically, expq(v) is a point ofM obtained by going out the length equal to
‖v‖, starting from q, along a geodesic which passes through q with velocity equal to
v/ ‖v‖. The map expM is differentiable, and realizes a local diffeomorphism from a
sufficiently small neighborhood around the origin of TqM, the so called (Riemannian)
logarithm map. For U being this neighborhood and q,p ∈ U , p = expq(v), then the
inverse map log : U → TqM defined by

v := logq(p),

or simply
−→qp := logq(p),

is called the (Riemannian) logarithm map [66, p.130].

The logarithm map of the geodesics going through q ∈ M are represented by the
lines going through the origin of TqM [66]:

logq γ
(
t, q,−→qp

)
= t−→qp.

Besides, the distance for paths passing through q is preserved, that is,

dist(q,p) =
∥∥∥−→qp∥∥∥

q
=
√〈−→qp,−→qp〉

q
. (A.19)

From Example A.10, we see that, for some Riemannian manifolds, the exponential
map for a given point q ∈M does not realize a diffeomorphism for all TqM, therefore,
the logarithm is not defined for the whole TqM. We can reduce the domain of expq to
a certain subset such that expq is a diffeomorphism; this subset is called the tangential
cut locus C(q) ⊂ TqM of expq, and the set C(p) := expq(C(q)) ∈ M the cut locus of
expq.

Note that C(p) = expp(C(p)) and the maximal definition domain for the expo-
nential map is the domain D(p) containing the origin of TqM, and delimited by the
tangential cut locus [66, p.130]. Therefore, the exponential map can be defined as
covering all the manifold except the cut locus:

D(p) ∈ Rn ←→M− C(p)
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−→pq = logp(q)←→ q = expp(−→pq).

For now on, we will consider that exponential maps are defined in this way, unless
stated otherwise.

Example A.11 (Euclidean Space). Since the geodesics of the Euclidean manifold Rn

are given by (see Example A.9)

γ (t, x, v) = x+ vt;

and consequently, the exponential map and the logarithm map (with usual inner prod-
uct as the Riemannian metric) are given by

expRn
x : Rn → Rn

v 7→ γ (1, x, v) = x+ v; (A.20)

and

logRn
x : Rn → Rn

y 7→ y − x. (A.21)

Example A.12 (Exponential and logarithm mappings of the Sn−1). Applying the
definition (A.18) on (A.17), we have that the exponential mapping on the sphere (in
the canonical basis {e1, ..., en} of Rn), expeq(v), is given by

expeq : B[0]n×1(π) Sn−1 − {−q}

v 7→ γ(1, q, v) = q cos(‖v‖) + v

‖v‖
sin(‖v‖). (A.22)

An illustration of this exponential mapping for the S2 is shown in Figure A.7.

Let p = expeq(v), then, for

θ := arccos (〈q,p〉) ,

the logarithm mapping is

logeq : Sn−1 − {−q} → B[0]n×1(π)

p 7→ lnq(p) := exp−1
q (v) = θ

sin(θ)p−
θ cos θ
sin(θ) q. (A.23)
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Figure A.7: Exponential map of the unit sphere of dimension 2.
Adapted from [177] with copyright.
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B. RESUMO ESTENDIDO EM
LÍNGUA PORTUGUESA

A filtragem de Kalman Unscented tornou-se extremamente popular na comunidade de
controle. De acordo com o IEEE Xplore Digital Library (um sítio eletrônico do Institute
of Electrical and Electronics Engineers [IEEE])a, o trabalho [1] atingiu a impressionante
marca de 8222 leituras; e 1279 citações no IEEE, 2735 no Scopus (http://www.scopus.
com), e 1564 no Web of Science (http://apps.webofknowledge.com).

Desde o seu trabalho precursor [2], os Filtros de Kalman Unscented (FKUs) vêm
sendo usado em diversas aplicações. Por exemplo, podemos encontrá-los sendo utiliza-
dos para estimar variáveis relativas a baterias [3–7], geradores eólicos [8], controle de
frequência de sistemas de potências [9], circuitos integrados [10], moduladores sigma-
delta [11], sistemas de navegação inerciais [12], satélites [13], imagens médicas [14],
cirurgias assistidas por computador [15], insulinas plasmáticas [16], cápsulas endoscópi-
cas [17], microfones [18], tomografias acústicas da atmosfera [19], robôs móveis [20–22],
entre outros.

Algumas propriedades dos FKUs podem ser bem entendidas quando esses filtros são
em relação com o conhecido Filtro de Kalman Estendido (FKE). Em muitas aplicações
— por exemplo, em [7,16,21], e [22], entre outros — os FKUs comportaram-se melhor
que o FKE. Esse comportamento superior pode ser explicado, pelo menos, pelas duas
razões a seguir:

• as complexidades computacionais dos FKUs e do FKE são da mesma ordem —
O(ny) —, mas as estimativas dos FKU’s tendem a ser melhores [23].

• o FKU é livre de derivadas (não precisa calcular matrizes jacobianas), enquanto
o FKE requer que a dinâmica seja diferenciável. Portanto, diferente do FKE, os
FKU’s podem ser usados em sistemas em que matrizes jacobianas não existem,
tais como sistemas com descontinuidades (cf. [1]).

Grande parte dos esforços dos pesquisadores da teoria Unscented tem sido direcio-
nada a encontrar extensões do primeiro FKU. A direção dessas extensões são similares

aEm http://ieeexplore.ieee.org/xpl/abstractMetrics.jsp?arnumber=1271397&action=search&sort
Typ e=&rowsPerPage=&searchField=Search_All&matchBoolean=true&queryText=(julier%20unsce
nted%20kalman%20filtering%20for%20nonlinear%20estimation), acessado às 21h00min, no dia 15 de
fevereiro de 2016.
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às tomadas para propor as extensões do FKE já propostas na literatura. Existem ex-
tensões do FKE em direção a diversas classes de filtros, espaços de estados, e sistemas
dinâmicos; p. ex. nas seguintes direções:

1. de diferentes classes de espaços de estados com respeito às suas estruturas algébri-
cas, tais como espaços de estado compostos por quatérnios unitários, quatérnios
duais unitários, variedades riemannianas, álgebras de Lie, etc;

2. de diferentes classes de sistemas dinâmicos com respeito às formas dos seus
conjuntos de tempo — os conjuntos compostos pelos parâmetros de tempo —
, tais como sistemas tempo-discreto, sistemas tempo-contínuo, sistemas tempo-
contínuo-discreto.

Neste trabalho, nós fazemos um estudo extenso da literatura de filtragem de Kalman
Unscented considerando diferentes aspectos, tais como estruturas algébricas do espaços
de estados e formas do conjuntos de tempo. Nós mostramos pontos fortes e fracos,
fazemos comparações, propomos correções, e apresentamos uma tentativa de teoria
sistemática.

B.1 FILTRAGEM DE KALMAN UNSCENTED EM VARIE-
DADES EUCLIDIANAS

Por meio de uma análise detalhada do estado-da-arte corrente da teoria de filtros
de Kalman Unscented tempo-discreto para sistemas dinâmicos em variedades euclidi-
anas, nós revelamos algumas inconsistências nessa teoria. Essas inconsistências estão
relacionados aos seguintes aspectos dessa teoria:

1. a ordem de estimativa da covariância transformada (Seções 2.4.1 e 2.6.2) e da
covariância-cruzada transformada (Seções 2.4.2 e 2.6.3) tanto da Transformação
Unscented (TU) como da Transformação Unscented Escalada (TUE) .

2. múltiplas definições do FKU (Seção 2.5);

3. definição dos conjuntos sigma reduzidos de [45], [46] e [83] (Seção 2.5);

4. a conservadorismo da TUE (Seção 2.6.1);

5. o efeito de escalamento da TUE na covariância transformada e na covariância-
cruzada transformada (Seções 2.6.2 e 2.6.3);

6. resultados possivelmente mal condicionados nos Filtros de Kalman Unscented
Raiz Quadrada (FKURQ, Seção 2.7.1);
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7. definições dos Filtros de Kalman Unscented Aditivos (FKUAds) (Seção 2.8).

Esses problemas em conjunto com a dificuldade de agrupar todos os resultados rela-
cionados à teoria Unscented, revelam a existência de lacunas i) nos conceitos matemá-
ticos basilares dessa teoria, e ii) de soluções matemáticas que generalizem os conjuntos
sigma, as TUs, e os FKU’s da literatura.

Para preencher essas lacunas, nós propomos uma sistematização da teoria de filtros
de Kalman Unscented tempo-discreto para sistemas dinâmicos em variedades euclidia-
nas. Essa sistematização é feita de forma construtiva, começando pelos conceitos mais
simples da teoria.

Começamos a sistematização considerando diversas formas de estima o valor espe-
rado de um vetor aleatório transformado por uma dada função (Seção 3.1). Uma forma
interessante de fazer isso é criar um conjunto de pontos ponderados que aproxime o
vetor aleatório independente (não transformada, Seção 3.1). Isso nos fornece a intuição
necessário para introduzir as σ-representações de N pontos de ordem l (σRlN , Defi-
nição 3.1) de um vetor aleatório X. Essencialmente, dado um vetor aleatório X, um
conjunto de pontos ponderado χ é uma σRlN de X se seus momentos amostrais (de
ordem 1 até l) são iguais aos de momentos de X — também podemos considerar uma
σRlN como sendo uma transformação que mapeia X (ou os seus momentos) para um
conjunto χ com essas características.

Mediante a proposição de uma forma matricial das σRlNs (Teorema 3.1), desco-
brimos algumas propriedades chaves dessas representações, a saber:

1. o menor número possível de pontos sigma de uma σRlN (Corolário 3.1);

2. o menor número possível de pontos sigma de uma σRlN simétrica (Corolário
3.1);

3. a forma de uma σRlN de um vetor aleatório Z = aX+b no caso de uma σRlN de
X ser conhecida (Corolário 3.2); com isso, a σRlN de um vetor Z com média Z̄ e
momentos M2, ..., Ml pode ser encontrado como resultado, mediante a aplicação
do Corolário 3.2, da obtenção prévia de uma σRlN de um caso mais simples;
p. ex. da σRlN de X com média zero e momentos (pares) iguais a matrizes
identidade.

Baseando-nos nos resultados 1. e 2., encontramos formas fechadas de algumas
σRlNs. Encontramos i) duas formas fechadas da σRl2 simétrica mínima (Seção 3.3),
e ii) uma forma fechada da σRl2 mínima (Seção 3.4).

Uma das formas fechadas da σRl2 simétrica mínima (a σR Homogênea Simétrica
Mínima, Corolário 3.4) é equivalente aos clássicos conjuntos sigma de [1, 2] (Tabela
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2.1); dessa forma, nós mostramos os fundamentos por trás desses conjuntos sigma que,
até agora, eram baseados apenas em ideias intuitivas. De fato, até aqui, não se sabia
nem mesmo que esses conjuntos sigma são compostos pelo menor número possível de
pontos sigma.

Quanto à forma fechada da σRl2 mínima (Teorema 3.2), nós mostramos que ela é
a única σRl2 mínima consistente existente; mostramos que essa σRl2 é um caso geral
da única σRl2 mínima consistente da literatura (Corolário 3.5).

No entanto, as σRlN ainda não resolvem o problema inicial de estimar o valor
esperado de um vetor aleatório transformado; uma solução para esse problema é dada
pela Transformação Unscented (TU).

O conceito de TU segue naturalmente o de uma σR — quando l ou N não forem
importantes para uma discussão ou conhecidas pelo contexto, omitiremos a referencia a
ela e chamaremos uma σRlN simplesmente de σR. Uma σR pode ser vista como sendo
uma transformação que mapeia uma variável aleatório X em um conjunto ponderado χ
tal que χ é uma aproximação de X; e já uma TU é uma transformação que mapeia dois
vetores aleatórios X e Y = f(X) em dois conjuntos χ := {χi, wi} e γ := {γi, wi|γi =
f(χi)} tal que {χ, γ} aproxima o vetor aleatório conjunto [X, Y ]T .

Há diversas maneiras de aproximar uma vetor aleatório dessa forma; particular-
mente, uma TU aproxima [X, Y ]T com a condição de que χ seja uma σR de X. Por-
tanto, podemos dizer que a aproximação de uma TU é baseada no casamento dos
momentos de um vetor aleatório com a de uma conjunto ponderado.

Muito embora já existam definições de TU na literatura, no Capítulo 2 nós mos-
tramos alguns problemas com essas definições. Dessa forma, no Capítulo 4, nós apre-
sentamos uma nova definição da TU (Definição 4.1). Essa nova definição é mais geral
que as da literatura; a nossa TU é definida para qualquer ordem l ( a ordem da σRlN
utilizada), ao passo que, até o limite do nosso conhecimento vai, a ordem mais alta da
TUs da literatura é 5 (a TU de [47]).

Baseando-nos em Séries de Taylor, nós obtemos a qualidade da estimativa de uma
TU de ordem l (Teorema 4.1) — no Capítulo 2, nós havíamos mostrados que i) havia
alguns erros relacionados à qualidade de estimativa da TUs, e ii) a qualidade da esti-
mativa de alguns momentos de uma UT não tinha sido ainda determinados, como a
das covariâncias cruzadas.

Depois, propomos novas definições para i) a TU escalada (TUE) na Seção 4.2, e
ii) a TU (TURQ) raiz-quadrada na seção Section 4.3 — antes, no Capítulo 2, nós ha-
víamos mostrados também que as versões da literatura dessas TUs tinham problemas.
Nós pudemos mostrar que nossas definições da TU escala e da TU raiz-quadrada são
casos particulares da nossa definição de TU. Assim, todas as propriedades previamente
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obtidas para TU são naturalmente herdadas pela TUE e pela TURQ.

Na Seção 4.4, algumas propriedades das TUs desenvolvidas no Capítulo 4 são veri-
ficadas em exemplos numéricos.

Com as definições de σR e de TU, nós já dispomos dos conceitos necessários para
propor filtros Unscented (FUs) consistentes; isso é feito no Capítulo 5.

Há muitas definições de FKUs na literatura. Para saber em qual dessas definições
nos apoiaremos para construir os nosso FKUs tempo-discreto, primeiro investigamos
os problemas detectados na Seção 2.8 relativos aos FKUs Aditivos (FKUAds) tempo-
discreto da literatura; essa investigação é feita na Seção 5.1. Nos utilizamos dos re-
sultados desenvolvidos no Capítulo 4 concernentes as TUs para estudar as possíveis
causas dos maus comportamentos dos FKUAds. Chegamos à conclusão de que apenas
um dos FKUAds da literatura é consistente com i) o sistema aditivo e ii) a TU.

Baseado nesse FKUAd consistente da literatura, nós definimos o nosso FKUAd
tempo-discreto (Seção 5.2). Esse nosso FKUAd é mais geral e baseado em princípios
mais consistentes que esse FKUAd da literatura, porquanto é definido mediante a TU
e a σR desenvolvidas neste trabalho.

Estendo esse nosso FKUAd tempo-discreto, apresentamos definições para o sistema
mais geral (não aditivo) na Seção 5.2, e também para versões raiz-quadrada (Seção
5.3).

Na Seção 5.4, propomos uma lista de casos particulares de todos esses filtros; essa
lista mostra que todos os filtros Unscented da literatura são englobados pela sistema-
tização. Mais a frente, na Seção 5.5, apresentamos comentários relativos a aspectos
computacionais dos filtros Unscented propostos; e , na Seção 5.7, apresentamos uma
discussão sobre filtros Unscented de ordem maior que 2.

Na Seção 5.9, apresentamos critérios para escolher o filtro Unscented mais adequado
a um dado problema prático, e na Seção 5.6, ilustramos alguns resultados relativos aos
filtros Unscented em exemplos numéricos.

Nesse ponto, apenas exemplos analíticos e numéricos foram utilizados para ilustrar
os novos resultados. Completando a tríade de resultados científicos — teoria, simulação,
e experimento —, no Capítulo 6, apresentamos um inovação experimental/tecnológica
utilizando alguns dos novos FKUs; esse filtros foram usados para estimar a posição de
uma válvula eletrônica automática de aceleração. Além de ser uma aplicação prática
da teoria de filtragem de Kalman Unscented desenvolvida até então neste trabalho,
essa estimação da posição da válvula de aceleração é uma inovação por si só desde um
ponto de vista prático/tecnológico.

Os resultados do Capítulo 6 têm implicações práticas, com interesse especial em dis-
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positivos eletrônicos de aceleração. Esses dispositivos frequentemente possuem apenas
um único sensor para medir a posição angular de uma válvula de aceleração; em razão
disso, falhas nesse único sensor aumentam os riscos de dano em todo o sistema. Para
mitigar o impacto dessas falhas, introduzimos uma técnica que conjuga estimativas de
FKUs com medidas produzidas por um wattímetro.

A novidade reside no uso do wattímetro para medir a potência elétrica consumida
pelo acelerador. O wattímetro foi preferido por causa do seu baixo custo, mas qualquer
outro instrumento poderia ser usado no seu lugar.

Medidas do wattímetro alimentaram os FKUs, e esses filtros, por sua vez, geraram
estimativas da posição do acelerador. Até limite do nosso conhecimento, este trabalho
é o primeiro a combinar um filtros com um sensor externo para aprimorar a funcionali-
dade de um acelerador. Experimentos realizados em laboratório mostraram resultados
promissores.

O Capítulo 6 encerra a Parte I. Nessa parte, por meio de uma revisão da teoria
de filtragem Unscented, revelamos inconsistências e lacunas nessa teoria (Capítulo 2).
Em consequência, nos Capítulos 3, 4 e 5, propusemos uma sistematização capaz de
resolver essas inconsistências e preencher essas lacunas. Além disso, novos resulta-
dos foram introduzidos mediante dessa sistematização. A maior parte dos resultados
dessa sistematização foram ilustrados em exemplo numéricos. Finalmente, no Capítulo
6, propusemos uma nova técnica experimental/tecnológica usando alguns dos novos
FKUs.

Somando tudo, na Parte I, nós desenvolvemos uma sistematização da teoria de
filtragem de Kalman Unscented que foi verificada em exemplos numéricos e em um
experimento prático.

B.2 FILTRAGEM DE KALMAN UNSCENTED EM VARIE-
DADES RIEMANNIANAS

Toda a teoria desenvolvida na Parte I é baseada nos conceitos de sistemas dinâmicos
estocásticos; tanto nas suas formas tempo-discreto em (2.1) e (2.2), quanto nas tempo-
contínuo em (5.43), e tempo-contínuo-discreto em (5.44). Note que, para todos esses
sistemas, as variáveis — os vetores de estado, medidas e ruídos — tomam valores
em espaço euclideanos. Tais sistemas Euclidianas podem ser utilizados para modelar
diversos problemas práticos; mesmo assim, para alguns problemas práticos, pode ser
melhor utilizarmos outras classes de sistemas.

Quando queremos determinar um modelo dinâmico envolvendo rotações e/ou ori-
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entações, pode ser vantajoso usarmos quatérnios unitários, ao invés de matrizes de
rotação — essas matrizes são o modo natural de modelar rotações em um espaço eucli-
diano de tridimensional. Portanto, podemos considerar sistemas dinâmicos estocásticos
em que ao menos algumas variáveis são quatérnios unitários; nesse caso, poderíamos
nos perguntar se a sistematização desenvolvida na Parte I pode estendida para esses
sistemas quaterniônicos.

A literatura Unscented já tem alguns filtros Unscented para sistemas quaterniônicos.
Então, no Capítulo 7, nós analisamos todos os diferentes FKUs e FKUSRs para esses
sistemas propostos na literatura. Dessa análise, mostramos que i) uma quantidade
considerável desses filtros não preservam a norma dos quatérnios unitários; e ii) todos
os FKUs aditivos que preservam a norma dos quatérnios unitários são casos particulares
de um novo algoritmo, a saber do Filtro Unscented de Kalman Aditivo Quaterniônico
(FKUAdQu, Section 7.3.1). De fato, os FKUAdQu pode resultar em qualquer um
desses filtros da literatura por escolhas i) da σR, ii) do método para médias ponderadas
de conjuntos de quatérnios unitários, e iii) da parametrização vetorial do conjuntos dos
quatérnios unitários (S3, possíveis escolhas são apresentadas).

Também introduzimos uma extensão raiz-quadrada do FKUAdQu, o Filtro Unscen-
ted de Kalman Raiz-Quadrada Aditivo Quaterniônico (FKUSRAdQu), que tem pro-
priedades melhores que os FKUSRs para sistemas quaterniônicos da literatura (Seção
7.3.2). Em comparação com os FKUs da literatura, o FKUSRAdQu é computacional-
mente mais estável em situações (computacionalmente) mal condicionadas por causa
das suas propriedades de filtro raiz-quadrada; e em comparação com os FKUSRs da lite-
ratura, o FKUSRAdQu é sempre computacionalmente mais estável porque tem menos
(ou até nenhuma) downdating de fatores de Cholesky (Seção 7.3.2). Essas proprieda-
des superiores do FKUSRAdQu foram verificadas computacionalmente considerando
of filtros Unscented para sistemas de atitudes para dois problemas (Seção 7.4.2): 1)
um sistema teórico com a performance dos filtros deterioradas por erros de arredon-
damento computacional; e 2) um problema de estimação de atitude de um satélite
em duas situações diferentes: i) um considerando condições normais, e ii) outro con-
siderando condições computacionalmente mal condicionadas. Em dois de todos esses
três casos, [a única situação do problema 1), e as situações i) e ii) do problema 2)], o
FKUSRAdQu proporcionou estimativas confiáveis, mas todos os filtros Unscented para
sistemas quaterniônicos da literatura falharam. Além disso, até mesmo em condições
normais [situações i) do problema 2)], o FKUSRAdQu superou os filtros Unscented da
literatura, apresentando estimativas melhores (o segundo menor erro foi 10, 56% maior
que o erro do FKUSRAdQu).

O objetivo inicial do Capítulo 7 era estender a sistematização da Parte I para siste-
mas quaterniônicos. No entanto, pela análise desenvolvida nesse capítulo, concluímos
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que os filtros Unscented para sistemas quaterniônicos da literatura foram construídos
sobre alguns conceitos intuitivos, mas não tanto matemáticos; com efeito, podemos
citar as seguintes propriedades que sobre as quais esses filtros Unscented foram cons-
truídos:

1. Os modelos quaterniônicos aditivos não são consistentes (cf. Nota 7.1).

2. Alguns dos conceitos de probabilidade e estatística o espaços quaterniônicos re-
querem de mais estudo. Por exemplo, não está claro quais são as definições e
as propriedades das i) variáveis aleatórias quaterniônicas, suas distribuições, e
suas estatísticas; ii) das estatísticas de conjuntos de quatérnios unitários (tais
σR’s quaterniônicas); iii) as estatísticas de uma variável aleatória quaterniônica
transformada.

3. A forma dos filtros quaterniônicos são estendidos dos euclidianos sem explicações
suficientes. Por exemplo, qual é a explicação por trás das equações de correção
dos filtros quaterniônicos [p. ex. o passo (2d) do FKUSRAdQu]? Qual tipo de
aproximação ela dá?

A nossa solução para estender a sistematização da Parte I para sistemas quater-
niônicos é baseada em variedades riemannianas. Trabalhamos com essas variedades
porque i) o conjuntos dos quatérnios unitários é uma variedades riemanniana; e ii) já
existem alguns resultados de probabilidade e estatística para variedades riemannianas
na literatura.

No Capítulo 8, nós i) apresentamos resultados da literatura relativos a estatísticas
desenvolvidas intrinsecamente para variedades riemannianas, ii) fazemos algumas ex-
tensões desses resultados da literatura — p. ex., entre outros resultados, definições de
momentos são estendidas —, e iii) propomos outros resultados relativos a estatística
em variedades riemannianas — p. ex., entre outros resultados, momentos e momentos
amostrais de ordem maior do que 2 (Seção 8.3 e 8.6), resultados relativos a algumas
transformações de pontos aleatórios riemannianos (Seção 8.5), e resultados relativos a
conjuntos de pontos riemannianos (Seção 8.4).

Nós começamos essa sistematização da filtragem de Kalman Unscented para vari-
edades riemannianas introduzindo a σ-representação riemanniana (σRRi, Seção 9.1).
No Teorema 9.1, mostramos que fórmulas fechadas de σRs podem ser usados para
encontrar σRRis; com isso, no Corolário 9.1, determinamos i) o número mínimo de
pontos sigma de uma σRRi, ii) o número mínimo de uma σRRi simétrica, e iii) formas
fechadas para a mínima σRRi, e iv) formas fechadas para a σRRi simétrica mínima.

De modo parecido ao à sistematização da Parte I, definimos Transformação Uns-
cented Riemanniana (TURi, Seção 9.2), baseando-nos na no conceito de σRRi. Além
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disso, estendemos todas as versões da TU do Capítulo 4 para o caso riemanniano; entre
outros, propusemos a TURi Escalada e a TURi Raiz-Quadrada.

Na Seção 9.3, nós tratamos dos filtros Unscented riemannianos desejados.

Nós introduzimos uma definição de sistemas riemannianos aditivos (Seção 9.3.1).
Esses sistemas são necessários para definirmos filtros Unscented riemannianos com
ruído aditivo, mas, em geral, variedades riemannianas não são equipadas com somas.

Ademais, encontramos equações de correção de Kalman consistentes para os filtros
Unscented riemannianos (Seção 9.3.2). Para encontrar essas equações, consideremos,
primeiro, um caso particular em que o estado e a medida pertencem à mesma variedade
(Seção 9.3.2.1); só então, mediante a extensão desse resultado, conseguimos encontrar
a forma final das equações de correção de Kalman (Seção 9.3.2.2).

Na Seção 9.3.3, introduzimos quatro novos filtros Unscented riemannianos tempo-
discreto. No final dessa seção, providenciamos uma numerosa lista de versões desses
quatro filtros riemannianos (Tabelas 9.1, 9.2, 9.3, e 9.4); todas essas versões são novos
filtros Unscented riemannianos.

Depois, na Seção 9.4, comparamos, teoricamente, os nossos filtros Unscented rie-
mannianos com o único filtro Unscented de Kalman riemanniano da literatura, a saber
o Filtro de Kalman Unscented para Variedades riemannianas (FKURM) de [171]. O
FKURM de [171] é essencialmente diferente de todos os filtros das Tabelas 9.3, 9.1,
9.4, e 9.2, exceto de um: o Filtro Unscented de Kalman Aditivo Simétrico Mínimo
Homogêneo riemanniano (FKUAdSiMiRi, Tab 9.4 [1,1]). Mesmo assim, muito embora
existam similaridades entre of FKURM de [171] e o FKUAdSiMiRi, o FKUAdSiMiRi
apresenta vantagens (cf. Section 9.4).

A intenção inicial da Parte II de desenvolver filtros Unscented para sistemas qua-
terniônicos é materializada pelos Filtros Unscented Esférico-riemannianos (FUERis,
Seção 9.5). Mais do que ser apenas uma forma particular dos filtros Unscented ri-
emannianos da Seção 9.3, esses filtros esférico-riemannianos são computacionalmente
implementáveis.

Conceitos da teoria de variedades riemannianos podem ser bem abstratos, mas ge-
ralmente linguagens computacionais não são desenvolvidas para trabalhar com esse
nível de abstração. Em lugar disso, frequentemente temos que trabalho ou formas fe-
chadas de casos particulares ou ainda com aproximações numéricas. Nós apresentamos
formas fechadas para quase todas as operações nesses filtros—tais como mapeia men-
tos exponenciais, mapeamentos logaritmos, e transportes paralelo—; apenas médias
amostrais de σRRis ainda precisam de ser encontradas numericamente.

Mostramos que os FUERis são melhores que os Filtros Unscented Aditivos Qua-
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terniônicos (QuAdUF’s) da Seção 7.3. Os FUERis possuem melhores propriedades
matemáticas que os QuAdUF’s e, em um exemplo numérico, uma forma do FUERi
superou o USQUE de [48] (este é um consagrado QuAdUF da literatura) por uma
grande margem.

Filtros Unscented para sistemas quaterniônicos duais são introduzidos na Seção 9.6.
Quatérnios unitários são computacionalmente eficientes para representar rotações, e os
quatérnios unitários duais podem ser vistos como extensões dos quatérnios unitário para
representar deslocamentos de corpos rígidos—rotações em conjunto com translações.
Os filtros da Seção 9.6 são os primeiros filtros Unscented consistentes Unscented para
sistemas quaterniônicos duais, e são baseados nos filtros Unscented Riemannianos

Na Seção 9.7, versões tempo-contínuo e tempo-contínuo-discreto dos filtros rieman-
nianos da Seção 9.3.3 são introduzidos também pela primeira vez na literatura.

Somando tudo, podemos afirmar que, neste trabalho, nós desenvolvemos uma nova
e consistente teoria de filtragem de Kalman Unscented para variedades euclidianas e
riemannianas.
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