

UNIVERSIDADE DE BRASÍLIA INSTITUTO DE BIOLOGIA DEPARTAMENTO DE GENÉTICA E MORFOLOGIA PROGRAMA DE PÓS-GRADUAÇÃO EM BIOLOGIA ANIMAL

DIEGO SOUSA MOURA

AVALIAÇÃO ECOTOXICOLÓGICA DE FÁRMACOS PSICOTRÓPICOS E SUAS POSSÍVEIS INTERAÇÕES COM NANOMATERIAIS USANDO EMBRIÕES DE PEIXE-ZEBRA.

UNIVERSIDADE DE BRASÍLIA INSTITUTO DE BIOLOGIA DEPARTAMENTO DE GENÉTICA E MORFOLOGIA PROGRAMA DE PÓS-GRADUAÇÃO EM BIOLOGIA ANIMAL

DIEGO SOUSA MOURA

AVALIAÇÃO ECOTOXICOLÓGICA DE FÁRMACOS PSICOTRÓPICOS E SUAS POSSÍVEIS INTERAÇÕES COM NANOMATERIAIS USANDO EMBRIÕES DE PEIXE-ZEBRA.

Dissertação apresentada ao curso de Pósgraduação em Biologia Animal da Universidade de Brasília – UnB como requisito para obtenção do título de mestre. Orientador: Prof. Dr. Cesar Koppe Grisolia Co-orientador: Prof. Dr. Rhaul de Oliveira

BANCA EXAMINADORA

ientador	: Prof. Dr	Cesar Ko	oppe Gris	solia (Un	iversidad	e de Brasí	lia – U
Prof. Di	. Mauríci	o Homen	de Mell	lo (Unive	rsidade d	e Brasília	– UnB
Prof. I	Dra. Marc	ia Renata	Mortari	(Univers	sidade de	Brasília –	UnB)

Agradecimentos

Agradeço a Universidade de Brasília - UnB, pela oportunidade de fazer a pós graduação em biologia animal. Dedico essa vitória ao corpo docente do I.B, direção e administração que oportunizaram a janela que hoje vislumbro "horizonte superior". A UnB sempre foi efetiva nas maiores conquistas da minha vida.

Agradeço a oportunidade e o apoio do Prof. Dr. Cesar Koppe Grisólia e o Prof. Dr. Rhaul de Oliveira na elaboração deste trabalho, os conhecimentos ofertados por eles fizeram toda a diferença no sucesso do trabalho.

Meus agradecimentos aos amigos, Alane Andrade (IC), Carolina Lisboa (IC), Nathalia Oliveira (IC), Jessica Tolentino (IC), Reginaldo Carlyle (IC), Bryan Ferraz (IC), Sandra Maria (PG), Pedro Galvino (IC), Nilma Nunes (TEC), Wânia Maria (TEC), finado José Souza (PG), companheiros de trabalhos e irmãos na amizade que fizeram parte da minha formação e que vão continuar presentes na minha vida com certeza.

Agradeço a Mary-Ann, Raissa Moraes e o Frederico Gomes por serem os melhores amigos do mundo, sempre me resgatam do mundo da ciência para outras coisas cotidianas.

Aos meus pais, pelo amor, incentivo e apoio incondicional. Sem eles nada disso iria acontecer, a estrutura familiar sólida em que vivi foi determinante no êxito profissional.

Agradeço a minha esposa Thaís Rocha e ao meu filho Mateus por serem a base da minha vida, tudo o que faço eles estão em primeiro lugar, sem o apoio deles nada disso iria acontecer!

Agradeço ao meu bom Deus por selecionar bem as pessoas que circudam a minha vida. Eu, Diego Sousa Moura, portador da matrícula 14/0100792, venho por meio desta agradecer por todas as pessoas que acreditaram no bom andamento do trabalho e os momentos que vivi dentro e fora da área acadêmica fizeram de mim uma pessoa muito mais madura e comprometida.

RESUMO

De acordo com a Agência Nacional de Vigilância Sanitária (ANVISA), aproximadamente 226 ingredientes ativos de fármacos psicotrópicos têm autorização para comercialização no Brasil (RDC 6/2014). Produzidos em larga escala, os fármacos psicotrópicos chegam aos ecossistemas (ex. por meio do descarte de efluentes domésticos). Assim, organismos não alvo, aquáticos e terrestres, são expostos a um coquetel de fármacos, durante o seu ciclo de vida. O objetivo do presente estudo foi: fazer uma revisão bibliográfica dos fármacos psicotrópicos comercializados no Brasil, com foco especial às suas diferentes classes, modo de ação e ecotoxicidade; Avaliar a mortalidade e efeitos subletais (comportamento, atividade de colinesterases e alterações no desenvolvimento) de algumas dessas drogas utilizando testes de embriotoxicidade com embriões de peixe-zebra (baseados na norma OCDE - nº 236) e por fim, investigar a interação entre fármacos e nanomateriais (nanoestruturados de carbono e nanopartícula de titânio), visto que existe a possibilidade de aplicação em processos de remediação ambiental. Os 226 fármacos psicotrópicos comercializados no Brasil podem ser divididos em seis diferentes classes: ansiolíticos (n = 69), antidepressivos (n = 57), antipsicóticos (n = 54), antiepilépticos (n = 20), fármacos para alívio sintomático de doenças neurodegenerativas (n = 26), reguladores do humor (n = 1). Os dados da revisão bibliográfica revelam que: apenas 24 % possuem algum estudo ecotoxicológico, além disso, esses estudos são limitados, sendo, em sua maioria relativos a testes agudos, pouca informação é encontrada sobre a toxicidade crônica. Considerando nossos resultados dos testes de embriotoxicidade com 16 formulações comerciais e 5 compostos puros (mg/L), bioquímicos (5 compostos puros - µg/L) e comportamentais (5 compostos puros ηg/L), sugere-se que o uso somente do parâmetro de mortalidade parece ser insuficiente para avaliação de riscos, uma vez que efeitos severos no organismo nomeadamente: paralisia, são encontrados em doses em média 5-10x mais baixas que o valores de CL50 para os fármacos testados. Uma análise refinada dos parâmetros comportamentais utilizando o zebrabox revela que há alterações significativas no tempo total de nado ou distância total percorrida dos embriões em concentrações muito próximas ou, até mesmo abaixo das concentrações já detectadas no meio ambiente de fármacos psicotrópicos. Ademais, os resultados obtidos sugerem que os efeitos no comportamento podem não seguir uma dose resposta, uma vez que em baixas doses podem induzir a atividade locomotora e em doses mais altas tendem a diminuir a atividade locomotora.

.

ABSTRACT

According to the National Health Surveillance Agency (ANVISA), approximately 226 active ingredients of psychiatric pharmaceuticals are allowed to be sold in Brazil (DRC 6/2014). Produced on a large scale, psychiatric pharmaceuticals arriving ecosystems (eg. By means of disposal of domestic waste). Thus, non-target organisms, aquatic and terrestrial, are exposed to a cocktail of drugs, throughout their life cycle. The aim of this study was: do a literature review of psychiatric drugs marketed in Brazil, with a special focus to their different classes, mode of action and ecotoxicity; Assess mortality and sublethal effects (behavior, cholinesterase activity and changes in development) of some of these pharmaceuticals using embryotoxicity tests with zebrafish embryos (based on the OECD standard - n $^{\circ}$ 236) and finally investigate the interaction between pharmaceuticals and nanomaterials (carbon nanotubes and titanium nanoparticles), since there is the possibility of application in environmental remediation processes. Approximalety, 226 psychiatric pharmaceuticals marketed in Brazil can be divided into six different classes: anxiolytics (n = 69), antidepressants (n = 57), antipsychotics (n = 54), antiepileptics (n = 20), fármacos para alívio sintomático de doenças neurodegenerativas (n = 26) mood regulators (n = 1). Data from the literature review shows that: only 24% have some ecotoxicological study, moreover, these studies are limited, and mostly related to acute tests, little information is found on the chronic toxicity. Whereas our results of embryotoxicity tests with 16 comercial formulations and 5 pure compounds (mg/L), biochemical (5 pure compounds - µg/L) and behavioral (5 pure compounds - $\eta g/L$), it is suggested that the use of only mortality parameter seems to be insufficient to evaluate risks, since severe effects on the body including paralysis, are found in lower average (doses 5-10x) the CL50 values for the pharmaceuticals tested. A refined analysis of behavioral parameters using zebrabox shows that there are significant changes in the total swimming time, or total distance of embryos on much concentrations near or even below the concentrations already been detected in the environment of psychiatric pharmaceuticals. Furthermore, the results suggest that the effects on behavior can not follow a dose response since in low doses can induce locomotor activity and high doses tend to decrease locomotor activity.

LISTA DE FIGURAS

Figura 1. Rotas de entrada de fármacos de uso humano em compartimentos ambientais (solo e água).
Esquema adaptado de Boxal (2003)
Figura 2 <i>Danio rerio</i> (popularmente: peixe-zebra ou paulistinha) (Fonte: google imagens)9
Figura 3 Desenvolvimento embrionário do peixe-zebra adaptado de Kimmel, B et al (1995)
Figura 4 Alterações no desenvolvimento embrionário: (a) desenvolvimento de somitos (24 h) (b) ausência
de somitos (24 h) (c) edema pronunciado no saco vitelino e alteração dos somitos (48 h) (d) curvatura
anormal da cauda e edema pericárdico (72 h) (e) alterações no batimento cardíaco e na circulação
sanguínea (72 h) (OECD 2013)
Figura 5. Total de princípios ativos de fármacos psicotrópicos comercializados no Brasil e suas principais
classes terapêuticas
Figura 6 Total de estudos ecotoxicológicos de fármacos psicotrópicos, comparação entre classes
(ansiolíticos, antidepressivos, antiepilépticos, antipsicóticos e fármacos para alívio sintomático de doenças
neurodegenerativas) para princípios ativos com estudos disponíveis na base de dados da Agência de
Proteção Ambiental dos Estados Unidos da América
Figura 7 Estudos ecotoxicológicos de fármacos psicotrópicos, comparação entre classes (ansiolíticos,
antidepressivos, antiepilépticos, antipsicóticos e fármacos para alívio sintomático de doenças
neurodegenerativas) para princípios ativos comercializados no Brasil com estudos disponíveis na literatura
científica mundial 57

Figura 8 Estudos ecotoxicológicos de fármacos psicotrópicos, comparação entre número de fármacos	
psicotrópicos com estudos ecotoxicológicos aquáticos e terrestres para princípios ativos	58
Figura 9 Estudos ecotoxicológicos de fármacos psicotrópicos comercializados no Brasil, levantamento de	
estudos aquáticos e terrestres para princípios ativos. Dados da literatura científica mundial agrupados em	
princípio ativo sem estudos ecotoxicológicos (roxo), princípios ativos com estudos somente para	
organismos aquáticos (azul), princípios ativos com estudos somente para organismos terrestres (vermelho)),
princípios ativos com estudos para organismos aquáticos e terrestres (verde)	59
Figura 10 Estudos ecotoxicológicos de fármacos psicotrópicos comercializados no Brasil, comparação	
entre testes agudos e crônicos para princípios ativos com estudos disponíveis na literatura científica	
mundial6	51
Figura 11 Estudos ecotoxicológicos de fármacos psicotrópicos comercializados no Brasil, comparação	
entre testes que utilizam produtores primários, invertebrados e vertebrados para princípios ativos com	
estudos disponíveis na literatura científica mundial	52
Figura 12 Avaliação do número de espécies utilizadas em estudos ecotoxicológicos de fármacos	
psicotrópicos comercializados no Brasil, porcentagem de testes que utilizam sete ou mais espécies para	
princípios ativos com estudos disponíveis na literatura científica mundial	53
Figura 13 Esquema de degradação de diferentes ansiolíticos benzodiazepínicos e formação do oxazepam	
(adaptado do Besse et al. (2008).	55
Figura 14 Distribuição de sensibilidade das espécies(SSD) com base em valores de CL50 para produtores	
primários, consumidores primários e secundários para a amitriptilina (μg/L)	59

Figura 15 Distribuição de sensibilidade das espécies (SSD) com base em valores de CL50 para produtores
primários, consumidores primários e secundários para a carbamazepina (µg/L)70
Figura 16 Distribuição de sensibilidade das espécies (SSD) com base em valores de CL50 para produtores
primários, consumidores primários e secundários para o diazepam (µg/L)71
Figura 17 Distribuição de sensibilidade das espécies (SSD) com base em valores de CL50 para produtores
primários, consumidores primários e secundários para a flouxetina (μg/L)72
Figura 18 Distribuição de sensibilidade das espécies (SSD) com base em valores de CL50 para produtores
primários, consumidores primários e secundários para a sertralina (μg/L)73
Figura 19 Distribuição de sensibilidade das espécies (SSD) com base em valores de CL50 para produtores
primários, consumidores primários e secundários para a tioridazina (µg/L)74
Figura 20 Esquema dos testes de toxicidade com embriões de peixe-zebra. Da esquerda para a direita: (1)
os ovos são recolhidos dos aquários de cruzamento; (2) Os ovos são selecionados ao estereomicroscópio e
os ovos não fertilizados ou defeituosos são descartados; (3) os ovos são distribuídos em placas de 24 poços.
Adaptado de (Lammer et al., 2009)
Figura 21 Visão geral do teste de toxicidade com embriões de peixe-zebra durante as 168 h de exposição ao
cloridrato de amitriptilina. 92
Figura 22 Mortalidade dos indivíduos expostos ao cloridrato de amitriptilina (valores médios ± erro
padrão) ao longo de 168 h de exposição93
Figura 23 Efeitos do cloridrato de amitriptilina no equilíbrio de embriões eclodidos de peixe-zebra
durante168 h de exposição (Valores médios ± erro padrão). Teste de Dunn's (p < 0,05)

Figura 24 Malformações no desenvolvimento após exposição por 168 h ao cloridrato de amitriptilina	
(valores médios ± erro padrão).	95
Figura 25 Fotodocumentação das alterações no desenvolvimento após exposição por 168 h ao cloridrato d	le
amitriptilina.	96
Figura 26 Quantificação da atividade da acetilcolinesterase com diferentes substratos, acetilcolina e	
propionilcolina, após exposição por 168 h ao cloridrato de amitriptilina (valores médios ± erro padrão).	
Teste de Dunn's (p < 0,05).	97
Figura 27 Tempo total de nado e distância total percorrida após 168 h de exposição ao cloridrato de	
amitriptilina (valores médios \pm erro padrão). Teste de Dunn's (p < 0,05)	98
Figura 28 Visão geral do teste de toxicidade com embriões de peixe-zebra durante as 168 h de exposição a	ao
cloridrato de bupropiona) 9
Figura 29 Mortalidade dos indivíduos expostos ao cloridrato de bupropiona (valores médios ± erro padrão))
ao longo de 168 h de exposição	ЭО
Figura 30 Efeitos do cloridrato de bupropiona no equilíbrio de embriões eclodidos de peixe-zebra	
durante168 h de exposição (Valores médios ± erro padrão). Teste de Dunn's (p < 0,05))1
Figura 31 Malformações no desenvolvimento após exposição por 168 h ao cloridrato de bupropiona	
(valores médios ± erro padrão))2
Figura 32 Fotodocumentação das alterações no desenvolvimento após exposição por 168 h ao cloridrato d	le
bupropiona 10)3

Figura 33 Quantificação da atividade da acetilcolinesterase utilizando diferentes substratos, acetilcolina e
propionilcolina, após exposição por 168 h à bupropiona (valores médios ± erro padrão) 104
Figura 34 Tempo total de nado e distância total percorrida após exposição por 168 h à bupropiona (*
ANOVA on Ranks) (valores médios ± erro padrão). Teste de Dunn's (p < 0,05)
Figura 35 Visão geral do teste de toxicidade com embriões de peixe-zebra durante as 168 h de exposição ao
bromazepam106
Figura 36 Efeitos do bromazepam no equilíbrio de embriões eclodidos de peixe-zebra durante 168 h de
exposição (Valores médios ± erro padrão)
Figura 37 Malformações no desenvolvimento após exposição por 168 h ao bromazepam (valores médios ±
erro padrão)
Figura 38 Fotodocumentação das alterações no desenvolvimento após exposição por 168 h ao bromazepam
Figura 39 Quantificação da atividade da acetilcolinesterase utilizando diferentes substratos, acetilcolina e
propionilcolina, após exposição por 168 h ao bromazepam (valores médios ± erro padrão). Teste de Dunn's
(p < 0.05)
Figura 40 Tempo total de nado e distância total percorrida por 168 h de exposição ao bromazepam (valores
médios \pm erro padrão). Teste de Dunn's (p < 0,05)
Figura 41 Visão geral do teste de toxicidade com embriões de peixe-zebra durante as 168 h de exposição ao
cloridrato de fluoxetina

Figura 42 Mortalidade dos indivíduos expostos ao cloridrato de fluoxetina (valores médios ± erro padrão)	
ao longo de 168 h de exposição	
Figura 43 Efeitos do cloridrato de fluoxetina no equilíbrio de embriões eclodidos de peixe-zebra	
durante 168 h de exposição (Valores médios \pm erro padrão). Teste de Dunn's (p < 0,05)	
Figura 44 Malformações no desenvolvimento após exposição por 168 h ao cloridrato de fluoxetina (valores	
médios ± erro padrão)	
Figura 45 Fotodocumentação das alterações no desenvolvimento embrionário após exposição por 168 h ao	
cloridrato de fluoxetina	
Figura 46 Quantificação da atividade da acetilcolinesterase utilizando diferentes substratos, acetilcolina e	
propionilcolina, após exposição por 168 h à fluoxetina (valores médios ± erro padrão). Teste de Dunn's (p	
< 0,05)	
Figura 47 Tempo total de nado e distância total percorrida após exposição por 168 h à fluoxetina (valores	
médios \pm erro padrão). Teste de Dunn's (p < 0,05)	
Figura 48 Visão geral do teste de toxicidade com embriões de peixe-zebra durante as 168 h de exposição ao	
cloridrato de nortriptilina	
Figura 49 Mortalidade dos indivíduos expostos ao cloridrato de nortriptilina (valores médios ± erro padrão)	
ao longo de 168 h de exposição	
Figura 50 Efeitos do cloridrato de nortriptilina no equilíbrio de embriões eclodidos de peixe-zebra durante	
168 h de exposição (Valores médios ± erro padrão). Teste de Dunn's (p < 0,05)	

Figura 51 Malformações no desenvolvimento após exposição por 168 h ao cloridrato de nortriptilina
(valores médios ± erro padrão)
Figura 52 Fotodocumentação das alterações no desenvolvimento embrionário dos organismos expostos por
168 h ao cloridrato de nortriptilina
Figura 53 Quantificação da atividade da acetilcolinesterase utilizando diferentes substratos, acetilcolina e
propionilcolina, após exposição por 168 h à nortriptilina (valores médios ± erro padrão). Teste de Dunn's
(p < 0,05)
Figura 54 Tempo total de nado e distância total percorrida após 168 h de exposição à nortriptilina (valores
médios \pm erro padrão). Teste de Dunn's (p < 0,05)
Figura 55 Visão geral do teste de toxicidade com embriões de peixe-zebra durante as 168 h de exposição
aos nanoestruturados de carbono 824
Figura 56 Efeitos dos nanoestruturados de carbono 824 no equilíbrio dos embriões de peixe-zebra
eclodidos ao longo de 168 h de exposição (valores médios ± erro padrão)
Figura 57 Visão geral do teste de toxicidade com embriões de peixe-zebra durante as 168 h de exposição à
nanopartícula de titânio
Figura 58 Efeitos das nanopartículas de titânio no equilíbrio dos embriões de peixe-zebra eclodidos ao
longo de 168 h de exposição (valores médios ± erro padrão)
Figura 59 Visão geral do teste de toxicidade com embriões de peixe-zebra durante as 168 h de exposição a
interação entre os nanoestruturados de carbono 824 + fluoxetina

Figura 60 Mortalidade dos indivíduos expostos a interação entre nanoestruturados de carbono 824 +
fluoxetina (valores médios ± erro padrão) ao longo de 168 h de exposição
Figura 61 Efeitos da interação entre os nanoestruturados de carbono 824 + fluoxetina no equilíbrio de
embriões eclodidos de peixe-zebra durante 168 h de exposição (Valores médios ± erro padrão)131
Figura 62 Visão geral do teste de toxicidade com embriões de peixe-zebra durante as 168 h de exposição a
interação entre nanopartículas de titânio + bromazepam
Figura 63 Efeitos da interação entre nanopartículas de titânio + bromazepam no equilíbrio de embriões
eclodidos de peixe-zebra durante168 h de exposição (Valores médios ± erro padrão)
Figura 64 Malformações no desenvolvimento após exposição por 168 h a interação entre nanopartículas de
titânio + bromazepam (valores médios ± erro padrão)
Figura 65 Características fisico-químicas dos fármacos psicotrópicos: cloridrato de amitriptilina,
fluoxetina, nortriptilina, bupropiona, e bromazepam (Nentwig 2007; Blum 2013; Fuguet et al. 2008;
Gondaliya & Pundarikakshudu 2003; Zenobio et al. 2015; Bacalum et al. 2012; Kosjek et al. 2012; Hyland
et al. 2012)
Figura 66 Ordem de concentrações de fármacos psicotrópicos que alteraram a mortalidade, bioquímica e
comportamento do peixe-zebra
Figura 67 Estudos de detecção ambiental comparados aos resultados obtidos na presente dissertação (testes
comportamentais)

LISTA DE TABELAS

Tabela 1 Subclasses de fármacos de uso psiquiátrico antipsicóticos: típicos e atípicos (Adaptada de Calisto
(2009))
Tabela 2 Revisão das concentrações ambientais de fármacos psicotrópicos em diferentes tipos de amostras
ambientais e método analítico utilizado
Tabela 3 Descrição dos fármacos usados nos testes de toxicidade com embriões de peixe-zebra,
concentrações e duração dos ensaios
Tabela 4 Concentrações dos fármacos usados nos testes de embriotoxicidade (168h) com principio ativo 82
Tabela 5 Descrição dos fármacos utilizados nos testes de neuromarcadores (colinesterases) com embriões
de peixe-zebra, concentrações testadas e duração dos ensaios
Tabela 6 Concentrações letais em mg/L (± erro padrão) de diferentes fármacos psicotrópicos utilizando o
teste de toxicidade com embriões de peixe-zebra
Tabela 7 Concentrações letais em mg/L (± erro padrão) de diferentes fármacos psicotrópicos (princípio
ativo puro) utilizando o teste de toxicidade com embriões de peixe-zebra91
Tabela 8 Porcentagem de eclosão dos embriões de peixe-zebra expostos ao cloridrato de amitriptilina ao
longo de 168 h
Tabela 9 Porcentagens de eclosão para organismos expostos durante 168 h ao cloridrato de bupropiona. 100
Tabela 10 Porcentagens de eclosão dos embriões de peixe-zebra expostos ao bromazepam ao longo de 168
h

Tabela 11 Porcentagens de eclosão dos embriões de peixe-zebra expostos ao cloridrato de fluoxetina ao
longo de 168 h
Tabela 12 Porcentagens de eclosão dos embriões de peixe-zebra expostos ao cloridrato de nortriptilina ao
longo de 168 h
Tabela 13 Porcentagens de eclosão para organismos expostos durante 168 h aos nanoestruturados de
carbono 824
Tabela 14 Porcentagens de eclosão para organismos expostos durante 168 h às nanopartículas de titânio.
Tabela 15 Porcentagens de eclosão para organismos expostos durante 168 h aos nanoestruturados de
carbono 824 + fluoxetina
Carbono 824 + muoxemia
Tabela 16 Porcentagens de eclosão para organismos expostos durante 168 h às nanopartículas de titânio +
bromazepam133
•
Tabela 17 Revisão de literatura para os efeitos ecotoxicológicos de nanopartículas de titânios em
organismos aquáticos
Tabela 18 Revisão de literatura para os efeitos ecotoxicológicos de nanoestruturados de carbono em
organismos aquáticos
TILL 10 C.L
Tabela 19 Cobertura de atendimento de água e esgoto em %, adaptado de Tucci et al (2008)

LISTA DE SIGLAS

5HT – Serotonina

5HT1A – Serotonina tipo 1A

AAE – Agência ambiental europeia, em inglês: European Environment Agency (EEA)

ACh - Acetilcolina

AChE: Acetilcolinesterase

AGO – Agomelatina

AMT – Cloridrato de amitriptilina

AEAPM – Agência Européia para a Avaliação de Produtos Medicinais, em inglês *European Medicines Evaluation Agency (EMEA)*

ANOVA - Análise de Variância

AMPA – Ácido Isoxazolepropiônico, em inglês - α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid

ANVISA – Agência Nacional de Vigilância Sanitária

APAEUA – Agência de Proteção Ambiental dos Estados Unidos da Ámerica, em inglês: *United States Environmental Protection Agency (USEPA)*

ARA – Avaliação de Risco Ambiental, em inglês *Environmental Risk Assesment (ERA)*

BZD – Benzodiazepínicos

BPP – Cloridrato de bupropiona

BPD – Cloridrato de biperideno

BRO – Bromazepam

CAM – Concentração Ambiental Medida, em inglês Mesuared Environmental Concentration (MEC)

CAP – Concentração Ambiental Predita/estimada, em inglês *Predicted Environmental Concentration (PEC)*

CAS – Chemical Abstracts Service (database website)

CE – Concentração de Efeito, em inglês Effective Concentration (EC)

CENO – Concentração de Efeito Não Observado, em inglês *No Efective Concentration (NOEC)*

CEO - Concentração de efeito observado, em inglês Low Efective Concentration (LOEC)

ChE - Colinesterase

CL – Concentração Letal, em inglês *Letal Concentration (LC)*

CP – Concentração de Perigo, em inglês *Hazardous Concentration (HC)*

CPA – Concentração Predita no Ambiente, em inglês: predicted environmental concentration (PEC)

CPCE – Comissão Européia – Centro de Pesquisa Integrado, em inglês: *European Commission Joint Research Centre (ECJRC)*

CPSE – Concentração Predita Sem Efeito, do inglês Predicted No Efective Concentration (PNEC)

CRF - Conselho Regional de Farmácia

CBZ - Carbamazepina

DA – Dopamina

DDT – Diclorodifeniltricloroetano

DE – Desregulador endócrino

DSE – Distribuição de Sensibilidade das Espécies, em inglês Species Sensitivity Distributions (SSD)

DTNB – Ácido 5,5-Ditiobis-2-Nitrobenzóico

ETE – Estação de Tratamento de Esgoto

EUA – Estados Unidos da América

EVA – Espuma Vinílica Acetinada, em inglês *Ethylene vinyl acetate*

FP – Fármaco Psiquiátrico

FQ – Fumarato de quetiapina

FLX – Cloridrato de fluoxetina

GABA – Ácido Aminobutírico

IMAO – Antidepressivos Inibidores da Mono-Amino-Oxidase

IN-SRM – Antidepressivos Inibidores Não Seletivos da Recaptação de Monoaminas

IRSA – Antidepressivos Inibidores da Recaptação de 5-HT E Antagonistas ALFA-2

ISA-SP – Inquérito Multicêntrico de Saúde no Estado de São Paulo

ISRD – Antidepressivos Inibidores Seletivos da Recaptação da Dopamina

ISRN – Antidepressivos Inibidores Seletivos da Recaptação de Noradrenalina

ISRS – Antidepressivos Inibidores Seletivos da Recaptação de Serotonina

ISRSN – Antidepressivos Inibidores Seletivos da Recaptação de Serotonina e Noradrenalina

LED – Diodo emissor de luz, do inglês *Light Emitting Diode (LED)*

LOD – Limite de detecção

LOQ - Limite de quantificação

LEVO – Maleato de levomepromazina

LIT – Carbonato de lítio

LMT – Lamotrigina

Ka - solubilidade em água, constante de ionização ou de dissociação do ácido

Koc - coeficiente de partição carbono orgânico-água

Kow - Coeficiente de Partição Octanol-Água

MAO - Monoamina Oxidase

CME – Concentração medida no ambiente, inglês *Measured Environmental Concentration (MEC)*

MIRT – Mirtazapina

Nano-Fe°- Nanopartículas Óxido-Metálicas de Ferro

Nano-TiO₂ – Nanopartículas Óxido-Metálicas de Titânio

N-BZDs – Não-Benzodiazepínicos

NMDA – Memantina

NTP – Cloridrato de nortriptilina

OCDE – Organização para Cooperação Econômica e Desenvolvimento, em inglês *Organization for Economic Co-operation and Development (OECD)*

ONU - Organização das Nações Unidas

OCBZ - Oxcarbamazepina

PBS – Tampão fosfato

PBT – Persistência, Bioacumulação e Toxicidade

PE – Poluente Emergente

PCh: propionilcolina

PVC – Policloreto de Vinila, em inglês *Polyvinyl chloride*

pKa - constante de ionização ou de dissociação do ácido

RDC - Resolução da Diretoria Colegiada

PRO – Cloridrato de prometazina

SERT – Cloridrato de sertralina

SNC - Sistema Nervoso Central

SPM - sobrenadante pós-mitocondrial

TEP – Teste Toxicidade com Embriões de Peixes, em inglês Fish Embryo Toxicity Test (FET)

TRI – Antidepressivos Tricíclicos

UnB - Universidade de Brasília

UV - Radiação Ultravioleta

ZOLP – Hemitartarato de zolpidem

Sumário

Capítulo 01 – Introdução: contextualização, justificativa e objetivos da dissertação	1
1.1 Introdução	1
1.1.1. Contextualização	1
1.1.2. Fármacos no meio ambiente	2
1.1.3. Uso da nanotecnologia no controle ambiental	5
1.1.4. Uso do peixe-zebra como organismo modelo	8
1.2. Justificativa	13
1.3. Objetivos	14
1.3.1. Objetivo geral	14
1.3.2. Objetivos específicos	14
Capítulo 02 – Ecotoxicologia de fármacos psicotrópicos utilizados no Brasil – Uma revisão crítica	15
2.2. Os fármacos psicotrópicos	17
2.2. Classes de fármacos psicotrópicos	17
2.2.1. Ansiolíticos	17
2.2.2. Antidepressivos	19
2.2.3. Antipsicóticos	21

2.2.4. Estabilizadores de humor	22
2.2.5 Antiepilépticos	23
2.2.6. Fármacos para o alívio sintomático de doenças neurodegenerativas	23
2.3. Consumo de fármacos psicotrópicos	24
2.4. Ocorrência ambiental e efeitos de fármacos psicotrópicos	26
2.5. Distribuições de Sensibilidade das Espécies para fármacos psicotrópicos	67
2.5.1. Resultados	68
2.5.1.1 SSD amitriptilina	68
2.5.1.2 SSD carbamazepina	69
2.5.1.3 SSD diazepam	70
2.5.1.4 SSD fluoxetina	71
2.5.1.5 SSD sertralina	72
2.5.1.6 SSD tioridazina	73
2.6. Considerações finais	75
Capítulo 03 – Materiais e métodos	77
3.1. Material e métodos	77
3.1.1. Manutenção e coleta de ovos de peixe-zebra	77

3.1.2. Testes de toxicidade com embriões de peixe zebra (FET)	79
3.1.3. Testes comportamentais com embriões de peixe-zebra	83
3.1.7. Atividade enzimática das colinesterases	85
3.1.8. Análises estatísticas	86
Capítulo 04 – Resultados e discussão	88
4.1. Resultados dos testes com formulações	88
4.2. Resultados dos testes com compostos puros	91
4.2.1. Amitriptilina	92
4.2.2. Bupropiona	99
4.2.3. Bromazepam	106
4.2.4. Fluoxetina	112
4.2.5. Nortriptilina	118
4.3. Resultados dos testes com nanomateriais	124
4.3.1. Nanoestruturado de carbono 824	124
4.3.2. Nanopartículas de titânio	126
4.4. Resultados dos testes de interação	129
4.4.1. Nanoestruturados de carbono 824 e Fluoxetina	129

4.4.2. Nanopartículas de titânio e bromazepam	132
4.5. Discussão	135
4.5.1 Testes embriotoxicológicos com formulações	135
4.5.2 Testes embriotoxicológicos com compostos puros	137
4.5.3 Testes embriotoxicológicos com nanomateriais	146
4.5.4 Testes embriotoxicológicos com a interação	151
4.5.5 O modelo experimental e testes preliminares	152
Capítulo 05 – Considerações finais	153
Referências bibliógráficas	158

Estrutura da qualificação

Esta dissertação de mestrado está dividida em 05 capítulos, incluindo a breve contextualização, um capítulo de revisão sobre os fármacos psicotrópicos no ambiente, materiais e métodos, resultados e discussão, e por fim, conclusões, além dos itens em anexo e apêndices.

Mais detalhadamente o texto pode ser dividido da seguinte forma:

<u>Capitulo 01</u> — <u>Contextualização</u>, justificativa e objetivos da dissertação: nessa seção é apresentada a problemática dos poluentes emergentes (fármacos psicotrópicos) além do uso de nanopartículas no controle ambiental. São também apresentados os objetivos e a justificativa da dissertação.

<u>Capitulo 02</u> – <u>Os efeitos ecotoxicológicos de fármacos psicotrópicos utilizados no Brasil – Uma revisão crítica</u>: nessa seção é abordada, em um panorama global e nacional, a problemática dos poluentes emergentes, incluindo os fármacos psicotrópicos além de uma ampla revisão bibliográfica considerando aspectos de uso e efeito das cinco principais classes de fármacos psicotrópicos.

<u>Capitulo 03</u> – <u>Materiais e métodos</u>: nesse Capítulo são apresentados os materiais e métodos dos testes de detecção de efeitos letais (mortalidade) e subletais (bioquímicos, comportamentais e alterações no desenvolvimento) no peixe-zebra.

<u>Capitulo 04</u> – <u>Resultados e discussão</u>: nesse Capítulo são apresentados os resultados dos testes de embriotoxicidade, como: alterações no desenvolvimento, equilíbrio, eclosão e mortalidade, além de testes comportamentais (alterações no tempo total de nado e distância total percorrida), e testes enzimáticos (neuromarcadores: colinesterases).

<u>Capítulo 05</u> – <u>Considerações finais</u>

Capítulo 01 – Introdução: contextualização, justificativa e objetivos da dissertação

Dissertação de Mestrado

2016

1.1 Introdução

1.1.1. Contextualização

O livro Primavera Silenciosa, publicado em 1962, por Rachel Carson, foi um dos primeiros alertas sobre possíveis efeitos ambientais de praguicidas como o DDT. A autora, atenta para o fato de que o uso de produtos químicos havia se difundido pelo mundo, desenvolveu estudos, que demostravam que o DDT causava a diminuição na expesura dos ovos de aves, alterando o seu ciclo reprodutivo e causando a morte da prole. Assim, os dados de Carson sugeriam que a exposição ambiental ao DDT poderia culminar no declínio da população de algumas espécies de aves de rapina (Carson 1962). Em 1987, a Comissão Mundial sobre o Meio Ambiente e Desenvolvimento da Organização das Nações Unidas (ONU) publicou o relatório "Nosso Futuro Comum", no qual são reunidas evidências de que tais poluentes poderiam atuar como desreguladores endócrinos (DE), ou seja, agentes químicos que afetam a reprodução de diversos organismos (Santamarta 2001; Brundtland 1987). Desde então, diversas questões foram levantadas, como: a identificação e a quantificação desses poluentes em ecossistemas naturais, os efeitos fisiológicos em organismos não-alvo, os

seus produtos de degradação e o desenvolvimento de tecnologias para remoção desses compostos em matrizes ambientais (Fatta-Kassinos, Meric, et al. 2011).

Com os avanços tecnológicos, o homem tem tido capacidade de intervir ainda mais nos ecossistemas para satisfazer suas necessidades. A expansão da indústria química no último século resultou no surgimento de um elevado número de substâncias, atualmente são mais de 102 milhões de registros no *Chemical Abstracts Service* (CAS 2015). Dentre esses estão praguicidas, agroquímicos, medicamentos, todos eles essenciais para a manutenção do bem estar e saúde humana e consequente crescimento populacional. Entretanto, essa intervenção tem gerado muitos conflitos em relação ao uso indevido dos recursos naturais e a disposição de resíduos no ambiente.

Em pleno século XXI muitas substâncias químicas utilizadas no nosso dia-a-dia ainda não têm o potencial ecotoxicológico elucidado. Esses são chamados de poluentes emergentes (PE), e podem ser definidos como substâncias cuja ocorrência ou efeitos adversos no ambiente foi constatada recentemente (Silva 2015). Este grupo de poluentes pode ser dividido em diversas classes a fim de direcionar estudos, agregar químicos com características semelhantes e facilitar tomadas de decisão dos órgãos reguladores. São eles: os fármacos (ex. antibióticos, anti-inflamatórios, psiquiátricos, analgésicos, reguladores lipídicos); produtos de beleza e higiene pessoal (ex. bronzeadores, antissépticos, repelentes de insetos, fragrâncias); produtos químicos industriais (ex. plastificantes, preservantes de madeira, anticorrosivos, aditivos de gasolina); hormônios, esteróides; e pesticidas (Silva 2015).

1.1.2. Fármacos no meio ambiente

As atividades da indústria farmacêutica se destacam como as maiores e mais lucrativas no mundo, arrecadando bilhões de reais anualmente. Os Estados Unidos da América (EUA) e a Europa concentram as

maiores companhias do setor farmacêutico, nomeadamente Novartis (Suiça), Pfizer (EUA), Roche (Suiça), Sanofi (França), Merck & Co (EUA), Johnson & Johnson (EUA), GlaxoSmithKline (Inglaterra), AstraZeneca (Inglaterra) (Souza 2015).

Produzidos geralmente em larga escala, os fármacos podem chegar ao meio ambiente por meio, principalmente, do descarte de efluentes domésticos e industriais (Monteiro & Boxall 2010). Devido à frequente detecção em matrizes ambientais, como solos, efluentes, águas superficiais e subterrâneas, sedimentos e biota, esses fármacos têm sido foco de muitas pesquisas sobre o seu destino e efeitos nos ecossistemas (Monteiro & Boxall 2010; Junior et al. 2014). Monteiro e Boxal (2010), sugerem que a detecção de moléculas inalteradas e/ou seus metabólitos em ecossistemas aquáticos está associada a sua remoção incompleta em estações de tratamento de esgoto (ETE) (Monteiro & Boxall 2010). Não obstante, a escassez de água para o consumo humano se agrava devido a transformação de mananciais em receptores de esgotos sanitários (Silva 2015).

Vale ressaltar o transporte e destino final de substâncias químicas são processos interdependentes. O transporte no meio ambiente é extremamente complexo e envolve movimento de gases, líquidos e sólidos em partículas dentro de um determinado meio e através de interfaces entre água, solo, sedimentos, ar e organismos vivos (William Cibulas & Henry Falk 2005). O destino final se refere a uma fração que pode simplesmente se deslocar de um local para outro, serem transformadas fisicamente, biologicamente ou quimicamente; ou acumular-se em uma ou mais matrizes de comunicação.

Normalmente, a excreção pela urina e/ou fezes é a principal fonte de entrada dos fármacos de uso humano em efluentes domésticos, embora outras fontes possam ser consideradas, por exemplo: o descarte de medicamentos, materiais de uso clinico contamidados (como: seringas), efluentes de industrias farmacêuticas (figura 1).

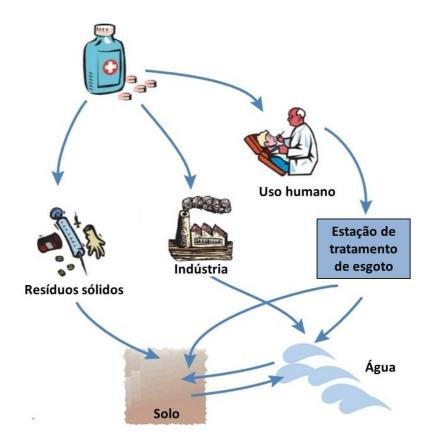


Figura 1. Rotas de entrada de fármacos de uso humano em compartimentos ambientais (solo e água). Esquema adaptado de Boxal (2003).

A quantidade do fármaco na excreta para o esgoto varia de acordo com o tipo de composto, via de administração, dosagem, idade, entre outros (Regitano & Leal 2010). Outro fator de variação é a taxa de transformação/biotransformação do fármaco no organismo alvo ou no meio ambiente: uma vez administrado no organismo alvo, o fármaco pode ser excretado de forma inalterada ou na forma de metabólitos (Celiz et al. 2009). No meio ambiente, além de haver a possibilidade de ocorrer essas transformações pode também ocorrer outras, como: um metabólito ser hidrolisado para sua forma original (forma inalterada) entre outras. Assim, a análise do metabolismo desses em seres humanos e transformações no meio ambiente deve ser feita caso a caso, sendo um importante passo no processo de avaliação ecotoxicológica; uma vez que alguns metabólitos mantêm uma atividade farmacológica semelhante a do princípio ativo do qual derivaram,

podendo manter o mesmo efeito, ser equipotentes, ou, por vezes, apresentarem ação mais tóxica. Ressalta-se, assim, a importância de obter dados ecotoxicológicos tanto do princípio ativo quanto dos seus metabólitos de modo a estimar de forma mais precisa o impacto ambiental desses nos ecossistemas (Kümmerer 2009).

Diante do contexto de contaminação por compostos inalterados e/ou seus metabólitos, e a amplitude de características moleculares que devem ser exploradas, a fim de estimar um potencial impacto ambiental desses, surge a necessidade de técnicas mais sustentáveis no controle ambiental dessas substâncias.

1.1.3. Uso da nanotecnologia no controle ambiental

A nanotecnologia é uma ciência atual e multidisciplinar que promove o conhecimento tecnológico associado a partículas que possuem ao menos uma das dimensões na escala nanométrica (< 100 ηm), envolvendo diferentes etapas como o desenvolvimento, a caracterização e a aplicação dessas estruturas nas mais diversas áreas. De acordo com (Liu 2006), as estruturas nanométricas são geralmente denominadas de *nanomateriais* e podem ser classificadas, segundo a origem de seu material, em: nanopartículas metálicas (como: prata, ferro, titânio, cobre, etc), quantum dots, semicondutoras (alótropos de carbono), poliméricas (como: Espuma vinílica acetinada - *Ethylene vinyl acetate* (EVA), policloreto de vinila - *Polyvinyl chloride* (PVC), lipossomos, etc).

Atualmente os produtos e serviços ofertados pela nanotecnologia têm gerado avanços nas áreas de:

(a) composição de polímeros e cosméticos (dióxido de titânio, óxido de ferro e outros óxidos de metais); (b) aplicações estruturais de revestimento (dióxido de titânio); (c) processos de catálise; (d) composição de cerâmicas (nitrito de silício, carboneto de silício); (e) eletrônica (nanotubos de parede simples e óxidos de metais); (f) nanobiotecnologia, (ligação e carreamento de várias moléculas como anticorpos, proteínas e biofármacos de um modo geral, favorecendo o seu transporte de forma sustentada, controlando a sua ação e

liberação, "drug delivery"); (g) composição de alimentos, (h) composição de vestuários (Soppimath et al. 2001; Sun et al. 2008; Muller & Keck 2004; Liu 2006; Kruis et al. 1998; Aitken et al. 2006; Campbell & Compton 2010; Jain et al. 2007).

A função de uma nanopartícula é determinada de acordo com o material de origem, forma e tamanho. Países líderes na área de nanotecnologia estimam um aumento na produção, utilização e deposição de resíduos de nanopartículas num futuro próximo (Liu 2006). É esperado também que essas inovações tecnológicas forneçam alternativas para alcançar um desenvolvimento sustentável, com menores consumos de materiais, água e energia. Em geral, estudos científicos têm mostrado avanços no desenvolvimento de novos métodos para promoção de uma maior eficiência energética, maior eficácia no tratamento de efluentes. Ademais, nanopartículas podem ser utilizadas para remediação ambiental por meio de um conjunto de processos e técnicas os quais anulam os efeitos deletérios de elementos tóxicos num determinado local tanto para biota/flora de ecossistemas naturais quanto para o ser humano (Liu et al. 2011; Zhang et al. 2010; Sánchez et al. 2011). Assim, a nanotecnologia pode contribuir para o aperfeiçoamento das atuais técnicas de remediação e controle de poluição ambiental. Nanopartículas de óxidos metálicas, nanotubos de carbono e zeólitos nanoestruturados já se destacam como alternativa economicamente viável para tratamento de águas residuais (Hotze & Lowry 2010). Avanços são também observados no uso de nanomateriais como nanoabsorventes, nanocatalisadores, nanopartículas bioativas, membranas e filtros nanoestruturados.

A maioria dos estudos publicados até agora têm se centrado em nanotubos de carbono, nanografeno, fulerenos e partículas fotocatalíticas para descontaminação de ecossistemas aquáticos. As nanopartículas de carbono têm sido reconhecidas por sua capacidade de adsorver dioxina (subprodutos não intencionais de muitos processos industriais de Kow elevado) muito mais fortemente do que o carbono

ativado tradicional (Long & Yang 2001), desenvolvimento de drogas (devido a suas versáteis características físico-químicas) (Prato et al. 2008), entre outras aplicações. Ji et al, (2010) ao estudar a interação entre nanotubos de carbono a compostos monoaromáticos (fenol e o nitrobenzeno) e antibióticos (sulfametoxazol, tetraciclina e tilosina) em soluções aquosas obteve resultados que indicam que há afinidade de adsorção e reversibilidade de adsorção dos contaminantes orgânicos em nanotubos de carbono (Ji et al. 2010). Os nanotubos de carbono possuem uma morfologia helicoidal e sua função é determinada principalmente pelo diâmetro do tubo e helicidade, podendo ser classificados em: (1) nanotubos de carbono multi-paredes (ambas as variedades podem ser consideradas como agregados de nanotubos) ou (2) de parede única (Ajayan 1999). As proporções de ambos nanotubos podem chegar a ordem micrométrica.

Apesar do potencial de aplicação em remediação aquática, os nanotubos de carbono representam um motivo de preocupação, devido às suas semelhanças com o amianto. Uma série de estudos já demonstraram os impactos negativos sobre o sistema respiratório de ratos. Para organismos aquáticos, os nanotubos e nanoesferas de carbono, tais como os fulerenos, têm sido estudados. A exemplo, resultados de testes de ecotoxicidade com fulerenos utilizando o microcrustáceo *Daphnia magna* e o peixe *Micropterus salmoides* mostram que concentrações a partir de 0,5 mg/L causam depleção de glutationa nas brânquias dos *Micropterus salmoides*, bem como a peroxidação lipídica no cérebro durante períodos de exposição de 48 h (Oberdörster et al. 2005).

As nanopartículas óxido-metálicas de titânio (nano-TiO₂) têm sido propostas para tratamento de amostras ambientais contaminadas por compostos orgânicos e inorgânicos. Ademais, as nano-TiO₂ têm recebido atenção especial de pesquisadores em todo mundo devido as suas propriedades catalíticas (oxidação e redução). Recentes estudos demonstraram a eficiência de nano-TiO₂ na remoção de compostos orgânicos em efluentes e águas contaminadas por benzenos, dioxinas, bifenilas policlorados e furanos (Cameotra & Dhanjal 2010; Oyama et al. 2010; Rahimi et al. 2012). As nano-TiO₂ podem também ser utilizadas na

redução de íons metálicos tóxicos como Cr (IV) e Ag⁺. Adicionalmente, as propriedades fotorreativas dos nano-TiO₂ favorecem o uso combinado das partículas com a radiação ultravioleta (UV), processo que se tem mostrado eficaz e promissor na remediação/controle/ e ou tratamento de efluentes contaminados (Han et al. 2009).

Testes ecotoxicológicos com nanomateriais (nanoecotoxicologia) são realizados com o intuito de verificar seus possíveis efeitos indesejáveis (algumas são consideradas poluentes emergentes), bem como os seus benefícios e possíveis aplicações ambientais. Os efeitos de nanopartículas em organismos aquáticos, mais especificamente nano-TiO₂, têm sido estudados, e, apresentando baixa toxicidade para organismos aquáticos e efeitos letais são observados somente em altas doses de exposição, como exemplo, concentração de Efeito/Letal 50 % (CE/CL50) para os organismos *Vibrio fisheri, Daphnia Magna, Tamnocephalus platyurus* e *D. rerio* >2000 mg/L (Heinlaan et al. 2008; Zhu et al. 2008; García et al. 2011). A baixa toxicidade das nanopartículas titânio e grafeno para organismos aquáticos é um importante indicador do potencial de aplicação desses nanomateriais para remediação/controle/ e ou tratamentos de águas contaminadas de modo a contribuir para melhoria da saúde do meio ambiente e, consequentemente, da saúde do homem.

1.1.4. Uso do peixe-zebra como organismo modelo

O peixe-zebra (Figura 2) é um pequeno teleósteo (3-4 cm) de água doce da família Cyprinidae, natural da Ásia (Tailândia, Índia, Paquistão, Bangladesh, Nepal e Myanmar). Esta espécie é onívora (alimenta-se principalmente de fitoplâncton e microinvertebrados). São ovíparos e possui um tempo médio de vida entre 2-5 anos (USEPA 2015; Rico 2007; OECD 2013).

Figura 2 Danio rerio (popularmente: peixe-zebra ou paulistinha) (Fonte: google imagens).

Atualmente o peixe-zebra é um organismo consolidado como modelo experimental em diversas áreas da ciência, tais como: genética, biologia do desenvolvimento, comportamento, toxicologia e neurociências (Vascotto et al. 1997; Rico 2007; Nishimura et al. 2015). Dentre as vantagens em utiliza-lo, destacam-se: (i) a facilidade no cultivo de todos os estágios de vida em laboratório; (ii) baixo custo de cultivo (iii) alta performance reprodutiva com desova abundante; (iv) os embriões são translúcidos, permitindo avaliação do desenvolvimento embrionário e teratologias; (v) tamanho pequeno, que permite o cultivo em espaços reduzidos, (vi) seu genoma já foi sequenciado permitindo o desenvolvimento de estudos filogenéticos (Broughton et al. 2001; Rico 2007) e estudos genéticos comparados com seres humanos (Dooley 2000; Rico 2007) (vii) estudos sobre o desenvolvimento de diversos sistemas, órgãos e patologias relacionadas são realizados utilizando adultos e embriões de peixe-zebra como modelo experimental (Dodd et al. 2000; Ackermann & Paw 2003; Rico 2007), (viii) no âmbito das ciências ambientais, há também muitos trabalhos comportamentais de exposição desta espécie a diversos pesticidas, fármacos entre outros xenobióticos (Levin & Chen 2004; Swain et al. 2004; Serra et al. 1999; Rico 2007).

Kimmel, B. et al (1995), descreveram uma série de etapas relacionadas ao desenvolvimento embrionário do peixe-zebra, definindo sete grandes períodos de embriogênese: (1) o zigoto, (2) clivagem, (3) blástula, (4) gástrula, (5) segmentação, (6) faríngula, (7) e os períodos de incubação (eclosão). Estas divisões destacam os principais processos de desenvolvimento que ocorrem durante os três primeiros dias após a fertilização (Figura 3) (Kimmel C et al. 1995).

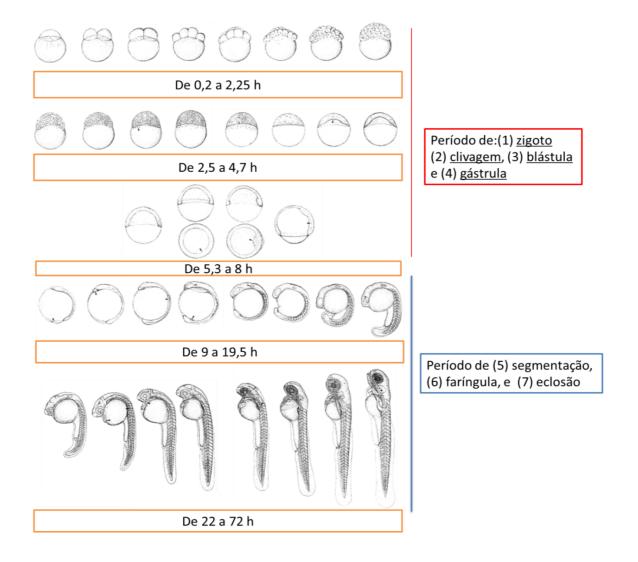


Figura 3 Desenvolvimento embrionário do peixe-zebra adaptado de Kimmel, B et al (1995).

Atualmente, essas definições de períodos embriogênicos servem de base para testes de embriotoxicidade (Ali et al. 2014; Andrade 2015; Rico 2007). Em 2013, foi lançado um protocolo de testes embriotoxicológicos agudos com o peixe-zebra (OECD 2013). O principio do teste é baseado na utilização de ovos fertilizados expostos a uma substância química (metodologia, seção 3.1.2.). Após a exposição, os principais parâmetros analisados são: mortalidade e alterações no desenvolvimento. A figura 4 ilustra algumas alterações no desenvolvimento embrionário.

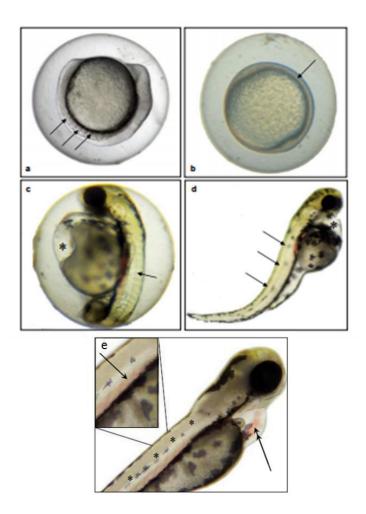


Figura 4 Alterações no desenvolvimento embrionário: (a) desenvolvimento de somitos (24 h) (b) ausência de somitos (24 h) (c) edema pronunciado no saco vitelino e alteração dos somitos (48 h) (d) curvatura anormal da cauda e edema pericárdico (72 h) (e) alterações no batimento cardíaco e na circulação sanguínea (72 h) (OECD 2013).

1.2. Justificativa

O uso de fármacos psicotrópicos tende a aumentar em escala mundial. Somente no Brasil aproximadamente 226 ingredientes ativos têm autorização da Agência Nacional de Vigilância Sanitária (ANVISA) para serem comercializados sob diferentes formulações e apresentações. Comumente, o destino final dessas moléculas são os ecossistemas aquáticos, onde são relatados efeitos na reprodução, crescimento, sobrevivência, expressão gênica, comportamento entre outros para diversos organismos (Tabela apêndice 1).

A água é essencial à vida, portanto, garantir a qualidade dos recursos hídricos é um dos maiores desafios do milênio para a humanidade (Bogardi et al. 2012). O suprimento de água doce de boa qualidade é de suma importância para a qualidade de vida das mais variadas populações e sustentabilidade dos ciclos do planeta. A mudanças nos regimes de seca/chuva têm dificultado a tarefa de garantir água de qualidade para todos os segmentos da sociedade e para os organismos que dela dependem (Ridoutt et al. 2009). É importante ressaltar que a água possui múltiplos usos, além do consumo humano, como: uso recreativo, uso na agropecuária, uso na indústria, manutenção da vida aquática. Ao entender a água como um recurso cada vez mais escasso e essencial para o bem-estar humano e do meio ambiente, fazem-se necessários métodos mais eficientes no controle da poluição de águas residuais, superficiais e subterrâneas.

A nanotecnologia tem sido responsável por grandes avanços para humanidade, e a literatura tem mostrado o potencial das nanopartículas no tratamento de efluentes aquáticos contaminados por fármacos psicotrópicos. As nano-TiO₂ possuem potencial de controle ambiental devido as suas propriedades catalíticas e os dados disponíveis de toxicidade aguda para organismos aquáticos mostram que há efeitos adversos somente em altas doses. Por outro lado as nanoestruturas de carbono tem alto potencial para desenvolvimento de filtros adsorventes para retenção de micropoluentes. Dessa forma, o presente estudo visa em primeiro lugar contribuir para o preenchimento da lacuna de conhecimento na ecotoxicologia de

fármacos psicotrópicos especialmente por meio de estudos ecotoxicológicos com peixe-zebra e, em segundo lugar, é também avaliada a interação de fármacos com nanomateriais visando a sua futura aplição em processos de controle ambiental.

1.3. Objetivos

1.3.1. Objetivo geral

Analisar a ecotoxicidade de fármacos psicotrópicos em uso no Brasil, incluindo seus efeitos letais e subletais para peixes (embriões de *Danio rerio*), e num segundo momento, avaliar as possíveis interações entre fármacos psicotrópicos e nanomateriais.

1.3.2. Objetivos específicos

- a) Avaliar o panorama atual de uso de fármacos no Brasil com foco na sua ocorrência e efeitos nos ecossistemas.
- b) Determinar a CL50 de formulações e princípios ativos de fármacos psicotrópicos e de nanomateriais por meio de testes de embriotoxicidade com *D. rerio*.
- c) Avaliar os efeitos teratológicos, bioquímicos e comportamentais em peixe-zebra de princípios ativos puros de fármacos psicotrópicos, nomeadamente: amitriptilina, bupropiona, bromazepam, fluoxetina e nortriptilina.
- d) Avaliar a interação entre fármacos psicotrópicos e nanoestruturados de carbono e nanopartículas de titânio.

Capítulo 02 – Ecotoxicologia de fármacos psicotrópicos utilizados no Brasil – Uma revisão crítica

Dissertação de Mestrado

2016

O objetivo da presente revisão é mostrar o atual estado da arte de estudos ecotoxicológicos de fármacos psicotrópicos no Brasil e no mundo. A metodologia utilizada foi baseada em duas etapas: a primeira etapa visou estimar a quantidade de ingredientes ativos de fármacos psicotrópicos autorizados para comercialização no Brasil (levantamento baseado nas resoluções da ANVISA e a RENAME (RDC/6 2014). Assim, obteve-se a lista de fármacos psicotrópicos que serviu de base para a segunda etapa onde foi feito o levantamente bibliográfico de dados ecotoxicológicos para tais substâncias, A principal ferramenta utilizada para o levantamento de dados ecotoxicológicos foi a base de dados ecotoxicológicos da Agência de Proteção Ambiental norte americana (ECOTOX DATABASE). Os seguintes parâmetros de efeitos foram considerados: (1) comportamental, (2) bioacumulação, (3) bioquímico, (4) estatístico, (5) celular, (6) ecossistêmico, (7) crescimento, (8) mortalidade, (9) fisiológico, (10) populacional, (11) reprodução e (12) endpoints, ademais a busca foi feita a partir do ano de 1915 até 2015, com organismos terrestres e aquáticos inseridos em qualquer reino.

Além do uso da base de dados da EPA também foi feita uma procura de dados ecotoxicológicos no google acadêmico com as seguintes palavras chave: <u>nome do composto</u> + (1) ecotoxicology, (2) zebrafish, (3) *Daphinia magna*, (4) *Danio rerio*, (5) aquatic toxicology, (6) LC50, (7) EC50, (8) NOEC, (9) LOEC.

Vale ressaltar que no decorrer do presente estudo, em 11 de novembro de 2015, foi publicado no diário oficial da união a RDC nº 49 que dispõe sobre a atualização do anexo I, listas de substâncias entorpecentes, psicotrópicas, precursoras e outras sob controle especial, da portaria SVS/MS nº344, de 12 de maio 1998 (RDC/49 2015). Ao comparar a RDC nº6 a RDC nº 49, observou-se a inclusão de seis novas substâncias na resolução mais atual "lista de controle especial" (compostos inclusos: benzidamina, canabidiol (cbd), lacosamida, levetiracetam, rotigotina e vortioxetina) as quais não são abordadas no trabalho.

Outro objetivo do presente capítulo é mostrar curvas de distribuição de sensibilidade de espécies (sigla do inglês *SSD*) de compostos psicotrópicos testados com 7 ou mais espécies. A SSD é definida como uma "função de distribuição cumulativa de toxicidade de um composto único ou de uma mistura de um conjunto de espécies que constituem uma comunidade" (Van den Brink et al. 2006). As curvas SSD podem ser úteis tanto nas avaliações prospetivas como nas retrospetivas. A avaliação prospetiva permite o cálculo da concentração que protege 95% das espécies (CP5 – concentração de perigo 5%), e retrospetivamente, pode ser utilizada para estimar a fração das espécies potencialmente afetadas numa certa concentração do composto químico (ex: fármaco psicotrópico). Além destas aplicações, as curvas SSD também têm sido utilizadas nas comparações da sensibilidade de diferentes comunidades, por exemplo, de água doce versus água salgada e temperado versus tropical (Maltby et al. 2005).

2.2. Os fármacos psicotrópicos

A indústria farmacêutica procura sempre acompanhar a evolução e o desenvolvimento tecnológico em diversas áreas em busca de novos princípios ativos e formulações que possam ser comercializados para curar, prevenir ou tratar os sintomas de doenças. Atualmente, há um aumento gradativo na produção e consumo de medicamentos voltados aos transtornos mentais (Rodrigues et al. 2006). Fármacos psicotrópicos são empregados no tratamento de anormalidades que comprometem a estabilidade psicológica, mental ou cognitiva, desencadeadas por diversos fatores como alterações genéticas, anomalias bioquímicas, estresse e uso abusivo de substâncias psicotrópicas (Rang et al. 2012).

Os fármacos psicotrópicos são substâncias químicas que agem principalmente no sistema nervoso central (SNC), alterando temporariamente a função cerebral, mudando a percepção, o humor, o comportamento e a consciência (Goodman e Gilman 2012). Essas moléculas são relativamente persistentes e possuem a capacidade de transitar entre as membranas celulares, características importantes para a efetividade da sua ação farmacológica. De acordo com Rang & Dale (2012), dentre as variadas classes de fármacos psicotrópicos, podem se destacar seis principais: (1) ansiolíticos, (2) antidepressivos, (3) antipsicóticos, (4) antiepilépticos, (5) estabilizadores de humor e (6) fármacos para alívio sintomático de doenças neurodegenerativas.

2.2. Classes de fármacos psicotrópicos

2.2.1. Ansiolíticos

De acordo com Rang & Dale (2012), os fármacos ansiolíticos ou hipnóticos podem ser divididos em cinco principais grupos (Argyropoulos et al. 2000):

- <u>Benzodiazepínicos (BZDs)</u>: atualmente este é o grupo mais importante, usado como agentes ansiolíticos e hipnóticos.
- <u>Buspirona</u>: Antagonista do receptor 5-HT1A é um ansiolítico, entretanto não notavelmente sedativo.
- <u>Barbitúricos</u>: atualmente obsoletos e foram suplantados pelos benzodiazepínicos, uso confinado à anestesia (ex: tiopental) ou tratamento de epilepsia (ex: fenobarbital).
- Antagosnistas β -adrenérgicos: são usados para tratar alguns sintomas físicos como sudorese, tremores, taquicardia.
- <u>Fármacos variados (potencial ansiolítico)</u>: Alguns inibidores seletivos da receptação de serotonina, como: fluoxetina, sertralina e paroxetina são utilizados para tratar certos transtornos de ansiedade (ex: transtorno obsessivo-compulsivo, pânico, entre outras patologias).

Os BZD atuam seletivamente nos receptores GABA A que medeiam a transmissão sináptica inibitória em todo o SNC, ou seja, eles intensificam a resposta ao GABA facilitando a abertura de canais de cloreto ativados pelo GABA. Eles se ligam especificamente a um sítio regulatório do receptor, distinto do sítio de ligação ao GABA, e atuam alostericamente, aumentando a afinidade do GABA pelo receptor (Shader & Greenblatt 1993; Rang et al. 2012).

A buspirona é um antagonista parcial nos receptores 5-HT1A e é usada para tratar vários transtornos de ansiedade. Também se liga aos receptores de dopamina, mas é provável que suas ações relacionadas a 5-HT sejam importantes em relação à supressão da ansiedade porque compostos correlatos mostram atividade ansiolítica semelhante em animais de experimentação. Os receptores 5-HT 1A são autoreceptores inibitórios que reduzem a liberação da 5-HT e de outros mediadores. Também atuam no sistema noradrenérgico, consequentemente interferem nas reações do despertar (Argyropoulos et al. 2000).

Os barbitúricos compartilham com os benzodiazepínicos a capacidade de aumentar a ação do GABA, mas ligam-se a um sítio diferente no receptor GABA A/ canal de cloreto, e sua ação é menos especifica (Rang et al. 2012).

Vale ressaltar que muitos receptores e transmissores têm sido implicados na ansiedade e nos transtornos do pânico, particularmente a noradrenalina, neuropeptídios como a colecistocinina (CCK) e a substância P, por isso tem sido empregado o uso de fármacos antidepressivos e, algumas vezes, os antipsicóticos costumam ser usados para tratar transtorno de ansiedade (Argyropoulos et al. 2000).

2.2.2. Antidepressivos

Os antidepressivos são substâncias consideradas eficientes na remissão de sintomas característicos da síndrome depressiva. De acordo com o Rang & Dale (2012), os fármacos antidepressivos podem ser divididos em seis subclasses principais: tricíclicos (TRI), inibidores seletivos da recaptação de serotonina (ISRS), inibidores da mono-amino-oxidase (IMAO), inibidores não seletivos da recaptação de monoaminas (IN-SRM), inibidores seletivos da recaptação de NE (ISRN) e compostos variados (atípicos) de bloqueio de receptores. Mais detalhadamente:

TRI: têm como função bloquear os transportadores membranares dos neurónios présinápticos que recolhem monoaminas neurotransmissoras do exterior, como consequência disso maximizam a duração da sua ação nos neurónios pós-sinápticos, ao permitir que atuem na fenda sináptica durante mais tempo. A maioria dos tricíclicos podem atuar bloqueando transportadores de noradrenalina, dopamina e/ ou serotonina (exemplos: amitriptilina, desipramina, nortriptilina) (Wong & Licinio 2001; Argyropoulos et al. 2000).

- ➤ <u>ISRS</u>: aumentam a concentração extracelular do neurotransmissor serotonina, e ao inibir seletivamente a sua recaptação pelo neurónio pré-sináptico, há um aumento do nível de serotonina disponível para se ligar ao receptor pós-sináptico (exemplos: sertralina, fluoxetina, paroxetina) (Song et al. 1993; Argyropoulos et al. 2000).
- ➤ IMAO: inibem a enzima monoamina oxidase (MAO) que é responsável por metabolizar monoaminas como noradrenalina, dopamina e serotonina. Como consequência ocorre um aumento da concentração desses neuroreceptores na fenda sináptica, promovendo a maior excitação dos neurónios que possuem receptores para esses mediadores (Wong & Licinio 2001; Argyropoulos et al. 2000).
 - São inibidores irreversíveis não competitivos (exemplo: fenelzina, tranilcipromina)
 que não são seletivos com respeito aos subtipos MAO-A e B
 - o São inibidores reversíveis seletivos para MAO-A (exemplo: moclobemida)
- ➤ <u>IN-SRMs</u>: bloqueiam a receptação de monoaminas, principalmente noradrenalina e serotonina. A atividade pós-sináptica varia de acordo com o sistema neurotransmissor envolvido e geralmente é responsável pelos efeitos colaterais, entretanto o mecanismo de ação não está totalmente elucidado (Argyropoulos et al. 2000; Rang et al. 2012).
- ➤ <u>ISRN</u>: apresentam atividades seletivas sobre a recaptação de noradrenalina, com atividade antagonista alfa-2, não possuem efeitos significativos sobre receptores colinérgicos, histamínicos, alfa-1-adrenérgicos, ou na inibição da monoaminoxidase (exemplos: maprotilina, reboxetina) (Argyropoulos et al. 2000).
- Compostos variados (atípicos) de bloqueio de receptores: o modo de ação dos antidepressivos atípicos ainda nãofoi bem elucidado. Um exemplo é a erva de São João,

cujo principal ingrediente ativo é a hiperforina, que tem eficácia clínica similar a outros antidepressivos (Rang et al. 2012).

2.2.3. Antipsicóticos

Os antipsicóticos são classificados como típicos (convencionais) possuindo diferenças de potências, e atípicos (menos efeitos extrapiramidais) (Ögren 1996; Rang et al. 2012) (Tabela 1).

- <u>Típicos</u>: apresentam um efeito ímpar nos chamados sintomas positivos (surto psicótico) da esquizofrenia. Bloqueiam os receptores de dopamina (Ögren 1996; Rang et al. 2012)
- Atípicos: bloqueiam os receptores dopaminérgicos e serotonérgicos (5HT) (Ögren 1996; Rang et al.
 2012). Apresentam melhor atuação nos sintomas negativos (fase crônica) da esquizofrenia.

Vale ressaltar que a distinção entre esses dois grupos não está totalmente elucidada, depende de: perfil do receptor, incidência de efeitos colaterais extrapiramidais (menor na classe dos atípicos), eficácia (especificamente a clozapina) no grupo de pacientes "resistentes ao tratamento" e eficácia contra sintomas negativos (Geddes et al. 2000; Rang et al. 2012).

Tabela 1 Subclasses de fármacos de uso psiquiátrico antipsicóticos: típicos e atípicos (Adaptada de Calisto (2009)).

Típicos	Atípicos
Tradicionais de alta potência	- Tioridazina (Melleril®)
- Haloperidol (HAldol®)	- Sulpirida (Equilid®)
- Flufenazina (Anatensol®)	- Clozapina (Leponex®)
- Pimozida (Orap®)	- Risperidona (Risperdal®)
Tradicionais de média potência	- Olanzapina (Zyprexa®)
- Trifluoperazina (Stelazine®)	- Quetiapina (Seroquel®)
Tradicionais de baixa potência	- Aripiprazol (Abilify®)
- Clorpromazina (Amplictil®)	
- Levomepromazina (Neozine®)	

2.2.4. Estabilizadores de humor

Estabilizadores de humor são usados no tratamento de transtornos de bipolaridade, síndrome maníaco-depressiva, epilepsia, entre outras doenças (Goodman e Gilman 2012). Apesar de diversos fármacos psicotrópicos de diferentes classes serem utilizados no tratamento de alguns sintomas da bipolaridade (Ex. quetiapina, clozapina, etc), o carbonato de líto possui um perfil único na estabilização do humor em pacientes com bipolaridade e é considerado por muitos autores como o único fármaco psiquiátrico estabilizador de humor (Goodman e Gilman 2012).

O lítio é um cátion monovalente que mimetiza o papel do Na⁺ em tecidos excitatórios, e é capaz de permear os canais de sódio voltagem-dependentes que são responsáveis pela regeneração do potencial de ação (Phiel & Klein 2001; Rang et al. 2012). O efeito psicotrópico do lítio foi descoberto por Cade e colaboradores (1949), em um estudo que demonstrou que pacientes com síndrome maníaco-depressiva apresentavam melhora rápida após tratamento com carbonato de lítio. A janela terapêutica do lítio é estreita (concentração no plasma de 0,5 - 1 mmol/L), e, acima de 1,5 mmol/L, produz efeitos tóxicos. Em indivíduos saudáveis, 1 mmol/L de lítio no plasma não tem efeitos psicotrópicos apreciáveis, no entanto pode produzir muitas alterações bioquímicas, e ainda não está elucidado como estas podem estar relacionadas com o seu efeito terapêutico.

Antipsicóticos atípicos e antiepilépticos são igualmente eficazes no tratamento da mania aguda; eles agem de forma mais rápida e são consideravelmente mais seguros, como exemplo: olanzapina, quetiapina, risperidona e aripiprazol, já o uso clínico do lítio (estabilizador de humor) é essencialmente confinado ao controle profilático da doença maníaco-depressiva (Goodman e Gilmam 2012).

A classe dos estabilizadores de humor é omitida em análises referentes ao panorama de uso e efeitos ecotoxicológicos (seção 2.3), pois esta conta com somente um princípio ativo de fármaco, o carbonato de lítio.

2.2.5 Antiepilépticos

Em geral, fármacos antiepilépticos podem atuar bloqueando os canais de sódio ou intensificando a função do GABA (Jarrott 1999). Entretanto, vários antiepilépticos possuem mecanismos de ação múltiplos ou desconhecidos (Deckers et al. 2000; Goodman e Gilman 2012; Jarrott 1999). Os fármacos mais estudados e bem conhecidos pertencentes a essa classe são a carbamazepina e o valproato, amplamente empregados no tratamento de epilepsias. Outros antiepilépticos como topiramato, lamotrigina, gabapentina, têm sido testados a fim de elucidar as várias facetas de seus mecanismos de ação (Calisto & Esteves 2009; Deckers et al. 2000; Eadie & Vajda 1999).

2.2.6. Fármacos para o alívio sintomático de doenças neurodegenerativas

Fármacos para o alívio sintomático de doenças neurodegenerativas são utilizados no tratamento de doenças, como: doença de alzheimer, parkinson, esclerose múltipla, entre outras (Rang et al. 2012). Dentre os diferentes mecanismos de ação dos fármacos para o alívio sintomático de doenças neurodegenerativas destaca-se a inibição da enzima acetilcolinesterase. Sua inibição faz com que ocorra uma redução da velocidade de degradação da acetilcolina (ACh), como consequência, há um aumento da biodisponibilidade da ACh no cérebro. Atualmente há diversos medicamentos voltados para o tratamento dos problemas cognitivos de Alzheimer: como os inibidores da acetilcolinesterase (tacrina, rivastigmina, galantamina e donepezila), sendo o outro um antagonista dos receptores de NMDA (memantina) (Pohanka 2011; Rang et al. 2012).

Historicamente, a doença de Alzheimer (DA) tem sido caracterizada com "dupla patologia clínica", normalmente determinada a partir de um fenótipo clínico tipicamente centrado na presença de uma demência progressiva que inclui a perturbação da memória episódica como uma característica de definição e envolvimento de outros domínios ou habilidades cognitivas, e alterações neuropatológicas específicas que geralmente incluem: intraneurais (emaranhados neurofibrilares) e lesões extracelulares do parênquima (placas senis), que são muitas vezes acompanhadas pela perda sináptica e depósitos amilóides vasculares. Devido ao impedimento de investigações neuropatológicas durante a vida (exceto em casos muito limitados por biópsia cerebral), a DA evoluiu para um grau predominantemente clínico com um diagnóstico probabilístico. O termo "DA" é usado por neurologistas e neuropatologistas com referência a esse padrão específico de alterações neuropatológicas (Dubois et al. 2010).

A doença de parkinson é um distúrbio crônico progressivo, que em geral inicia-se na meia-idade ou idade avançada, e que gera grande incapacidade com a progressão da doença. É uma doença comum, acometendo 2 em cada 100 pessoas acima dos 65 anos (Moreira et al. 2007). A levodopa é o mais potente fármaco para o tratamento da doença de Parkinson, embora outras substâncias provaram um beneficio moderado (como: o biperideno, benzitropina, entre outros) (Moreira et al. 2007).

2.3. Consumo de fármacos psicotrópicos

Juntamente com os medicamentos para doenças cardiovasculares, os fármacos para doenças associadas ao SNC se destacam dentre os mais consumidos no mundo (González Alonso et al. 2010). No Brasil, um estudo transversal de base populacional, realizado por Costa et al. (2011) com 941 indivíduos, no qual foram utilizados dados do *Inquérito Multicêntrico de Saúde no Estado de São Paulo* (ISA-SP), aponta que fármacos que tem como alvo o SNC estão dentre os mais consumidos (16,3 %) perdendo somente para fármacos que atuam no sistema cardiovascular os quais são os mais utilizados pela população (16,8 %).

Com base nas resoluções da ANVISA e a RENAME estima-se que aproximadamente 226 ingredientes ativos de fármacos psicotrópicos sejam autorizados para a comercialização no Brasil (RDC/6 2014). A classe dos ansiolíticos é a que possui mais fármacos (n=69), 30 %, seguida dos antidepressivos (n=57), 25 %, antipsicóticos (n=54), 24 %, fármacos para alívio sintomático de doenças neurodegenerativas (n=26), 12 %, e anticonvulssivantes (n=20), 9 %. A classe dos estabilizadores de humor não é apresentada na figura 5, pois conta com somente um fármaco, o carbonato de lítio.

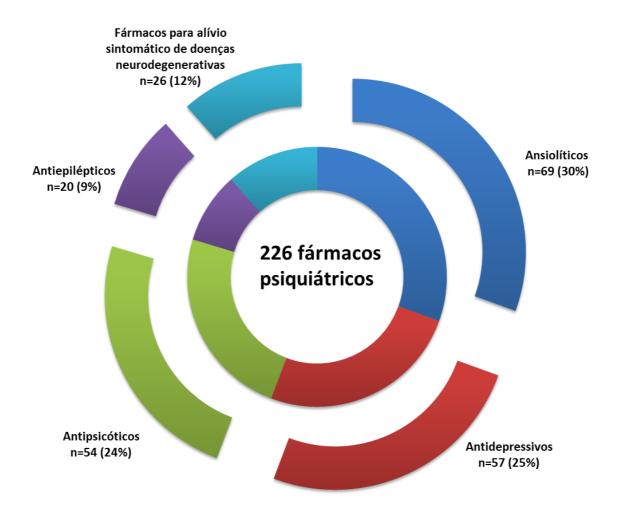


Figura 5. Total de princípios ativos de fármacos psicotrópicos comercializados no Brasil e suas principais classes terapêuticas.

É importante ressaltar que os fármacos psicotrópicos formam um grupo diversificado, o que torna difícil determinar padrões gerais de consumo que englobem todas as subclasses desse grupo de fármacos. Entretanto é sabido que após o consumo o destino final dessas substâncias químicas (inalteradas e/ ou metabólitos) são os ecossistemas aquáticos e/ ou terrestres nos quais há uma frequente detecção das mesmas (Aus der Beek et al. 2015). Ao sistematizar os compostos em classes com base no seu modo de ação, uso clínico ou estrutura química, padrões preliminares de consumo podem ser utilizados em modelos de previsão de concentrações ambientais de fármacos.

2.4. Ocorrência ambiental e efeitos de fármacos psicotrópicos

Na União Europeia e nos Estados Unidos há diversos debates para tratar dos fármacos psicotrópicos, porém, muitos destes ainda não são contemplados em legislações ambientais, a grande maioria encontra-se sem definições legais quanto a sua presença em diferentes matrizes. A Tabela 2 aborda uma revisão das concentrações de fármacos psicotrópicos em ecossistemas aquáticos de diversos países. Orientações específicas para a avaliação dos impactos de fármacos têm sido publicadas. A Agência Européia para a Avaliação de Produtos Medicinais (AEAPM, em inglês EMEA) publicou em dezembro de 2006, os protocolos para avaliação de risco ambiental (ARA) para produtos de uso medicinal. Esses protocolos de avaliação de risco são divididos em três fases. A fase I têm como objetivo estimar a exposição ambiental a fármacos com base em dados de consumo e características físico-químicas desses, especialmente o Kow. A fase II - parte A, por sua vez, visa uma previsão de risco inicial baseada em resultados de testes ecotoxicológicos com organismos de diferentes níveis tróficos e na distribuição/comportamento dos fármacos psicotrópicos, especialmente meia vida e Koc. Por fim, a fase II – parte B, tem como objetivo o refinamento da avaliação de risco para diferentes compartimentos ambientais, considerando características intrínsecas de cada substância química sendo incorporados nessa fase, um conjunto de dados mais abrangentes sobre a emissão, destino ambiental e efeitos dos fármacos.

Tabela 2 Revisão das concentrações ambientais de fármacos psicotrópicos em diferentes tipos de amostras ambientais e método analítico utilizado.

Fármaco	Concentração encontrada no meio ambiente	Amostras/Localidade	Método de análise	Referências
Alprazolam	32 ng/L (máximo)	Esgoto hospitalar (tratado)	LC-MS/MS	(Yuan et al. 2013)
	168 ng/L (máximo)	Esgoto hospitalar (não tratado)	LC-MSMS	(Santos et al. 2013)
	17 ng/L (máximo)	Águas superficiais - não especificado	Não disponível	(Fick et al. 2011)
	244 ng/L (máximo)	ETE - efluente (tratado)	LC-MSMS	(Sousa et al. 2012)
	4,7 ug/L (máximo)	ETE - influente (não tratado)	HPLC-MS	(Salgado et al. 2011)
	16 ng/L (máximo)	ETE – lodo	Não disponível	(Fick et al. 2011)
mitriptilina	$0.5-21 \text{ ng L}^{-1}$; $0.5-3 \text{ ng L}^{-1}$;	Água final para consumo; EUA.	Não disponível	(Snyder 2008)
	0.5–17 ng L ⁻¹ ; 0.5– 13 ng L ⁻¹	Rios em South Wales, Reino Unido	HPLC-MS/MS	(Kasprzyk-Hordern et al. 2008)
	6.0 ng L ⁻¹	Efluentes de tratamento de esgoto; França	GC-MS	(Togola & Budzinski 2008)
	1.4 ng L $^{-1}$	Água para consumo; França	GC-MS	(Togola & Budzinski 2008)
	29 ng/L (máximo)	Esgoto hospitalar (não tratado)	LC-MS/MS	(Nagarnaik et al. 2011)
	71 ng/L (máximo)	Águas superficiais - rios/córregos	LC-MS/MS	(Baker & Kasprzyk-Hordern 2013)

	26 ng/L (máximo)	Águas superficiais – oceano	GC-MS	(Togola & Budzinski 2008)
	186 ng/L (máximo)	Matéria particulada suspendida – esgoto	LC-MS/MS	(Baker & Kasprzyk-Hordern 2011)
	197 ng/L (máximo)	ETE - efluente (tratado)	LC-MS/MS	(Kasprzyk-Hordern et al. 2009)
	2,09 ug/L (máximo)	ETE - influente (não tratado)	LC-MS/MS	(Kasprzyk-Hordern et al. 2009)
	275 ng/L (máximo)	ETE – lodo	Não disponível	(Chari & Halden 2012)
Biperideno	6,1 ug/L (máximo)	ETE - efluente (tratado)	Não disponível	(Rutgersson et al. 2013)
	70 ng/L (máximo)	ETE - influente (não tratado)	Não disponível	(Fick et al. 2011)
Bromazepam	14 ng/L (máximo)	Água de nascentes; EUA	ESI-MS/MS	(Huerta-Fontela et al. 2011)
	14 ng/L (máximo)	Água tratada com cloro; EUA	ESI-MS/MS	(Huerta-Fontela et al. 2011)
	40 ng/L	Efluente hospitalar, ponto 1; Alemanha	HPLC-MS	(Kosjek et al. 2012)
	158 ng/L	Efluente hospitalar, ponto 2; Alemanha	HPLC-MS	(Kosjek et al. 2012)
	32 ng/L	Efluente de tratamento de esgoto; Alemanha	HPLC-MS	(Kosjek et al. 2012)
	9 ng/L (máximo)	Córrego após efluente de esgoto; Alemanha	HPLC-MS	(Kosjek et al. 2012)

	19 ng/L (máximo)	Córrego antes do efluente de esgoto; Alemanha	HPLC-MS	(Kosjek et al. 2012)
	161 ng/L (máximo)	Lençol freático	Não disponível	(Sadezky et al. 2008)
	356 ng/L (máximo)	Águas superficiais – estuário	Não disponível	(Sadezky et al. 2008)
	134 ng/L (máximo)	Águas superficiais - rios/córregos	GC-MS	(Togola & Budzinski 2008)
	15,542 ug/L (máximo)	Águas superficiais - não especificado	Não disponível	(Sadezky et al. 2008)
	3,662 ug/L (máximo)	ETE - efluente (tratado)	ESI-MS/MS	(Huerta-Fontela et al. 2010)
	134 ng/L (máximo)	ETE - influente (não tratado)	ESI-MS/MS	(Huerta-Fontela et al. 2010)
Bromocriptina	5 ng/L (máximo)	ETE - efluente (tratado)	Não disponível	(Fick et al. 2011)
	31 ng/L (máximo)	ETE - influente (não tratado)	Não disponível	(Fick et al. 2011)
	6 ng/L (máximo)	ETE – lodo	Não disponível	(Fick et al. 2011)
Bupropiona	50 ± 20 ; 60 ± 40 e 50 ± 10 ng/L	5–1762 m da estação de tratamento de esgoto de Pecan Creek ; EUA	LC-(ESI)-MS/MS	(Schultz & Furlong 2008)
	140 ng/L (máximo)	Efluente de estação de tratamento de esgoto; EUA	LC/Q-TOF-MS	(Ferrer & Thurman 2012)
	227 ng/L	Águas superficiais; EUA	LC-(ESI)-MS/MS	(Schultz et al. 2010)

	480 ng/L (máximo)	Esgoto hospitalar (não tratado)	HPLC-MS	(Verlicchi et al. 2012)
	5 ng/L (máximo)	Águas superficiais - rios/córregos	LC-MS/MS	(Ekberg & Pletsch 2011)
	5,3 ug/L (máximo)	Águas superficiais - não especificado	Não disponível	(Sadezky et al. 2008)
	5 ng/L (máximo)	Poço artesiano (não tratado)	LC-MS/MS	(Ekberg & Pletsch 2011)
	130 ng/L (máximo)	ETE - efluente (tratado)	HPLC-MS	(Verlicchi et al. 2012)
	250 ng/L (máximo)	ETE - influente (não tratado)	HPLC-MS	(Verlicchi et al. 2012)
	16 ng/L (máximo)	ETE – lodo	HPLC-MS	(Prieto-Rodriguez et al. 2012)
Butalbital	5,3 μg/L	Rio Mulde; Alemanha	GC-MS	(Peschka et al. 2006)
	480 ng/L (máximo)	Esgoto hospitalar (não tratado)	HPLC-MS	(Verlicchi et al. 2012)
	5 ng/L (máximo)	Águas superficiais - rios/córregos	LC-MS/MS	(Ekberg & Pletsch 2011)
	5,3 ug/L (máximo)	Águas superficiais - não especificado	Não disponível	(Sadezky et al. 2008)
	5 ng/L (máximo)	Poço artesiano (não tratado)	LC-MS/MS	(Ekberg & Pletsch 2011)
	130 ng/L (máximo)	ETE - efluente (tratado)	HPLC-MS	(Verlicchi et al. 2012)

	250 ng/L (máximo)	ETE - influente (não tratado)	HPLC-MS	(Verlicchi et al. 2012)
	16 ng/L (máximo)	ETE – lodo	HPLC-MS	(Prieto-Rodriguez et al. 2012)
Cafeína	220 ng/L (máximo)	Efluente de estação de tratamento de esgoto; EUA	LC/Q-TOF-MS	(Ferrer & Thurman 2012)
	856 ng/L (máximo)	Água de consumo; França	LC-MSMS	(Bouissou-Schurtz et al. 2014)
Carbamazepina	1,238 ug/L	Águas superficiais; EUA	LC-(ESI)-MS/MS	(Wu et al. 2009)
	1,160 ug/L (máximo)	Rio Jarama; Espanha	EFS	(González Alonso et al. 2010)
	82 ng/L (máximo)	Rio Manzaneres; Espanha	EFS	(González Alonso et al. 2010)
	35 ng/L (máximo)	Rio Guadrarrama; Espanha	EFS	(González Alonso et al. 2010))
	20 ng/L (máximo)	Rio Henares; Espanha	EFS	(González Alonso et al. 2010)
	45 ng/L (máximo)	Rio Tajo; Espanha	EFS	(González Alonso et al. 2010)
	350 ng/L (máximo)	Efluente de estação de tratamento de esgoto; EUA	LC/Q-TOF-MS	(Ferrer & Thurman 2012)
	48 ng/L (máximo)	Água de consumo; França	LC-MSMS	(Bouissou-Schurtz et al. 2014)
	27,7 μg/L (máximo)	Água residual de estação de tratamento de esgoto, Chipre	LC-MS-MS	(Fatta-Kassinos, Hapeshi, et al. 2011)

1,5 μg/ l (máximo)	Influente de estação de tratamento de esgoto; Áutria	LC-MS-MS	(Clara et al. 2004)
3,09 ng/L (máximo)	Rio Llobregat; Espanha	LC-MS/MS	(Ginebreda et al. 2010)
601 ng/L (máximo)	Água de consumo humano	LC-MS/MS	(Kleywegt et al. 2011)
3,67 ug/L (máximo)	Lençol freático	Não disponível	(Seidel et al. 2013)
15 ng/L (máximo)	Esterco - estrume	LC-MS/MS	(Motoyama et al. 2011)
2,682 ug/L (máximo)	Esterco - líquido	LC-ESI-MS/MS	(Lapen et al. 2008)
1,9 ug/L (máximo)	Esgoto hospitalar (tratado)	GC-MS	(Kosma et al. 2010)
4,775 ug/L (máximo)	Esgoto hospitalar (não tratado)	Não disponível	(Pinnekamp et al. 2009)
7,81 ug/L (máximo)	Esgoto industrial (não tratado)	LC-ESI-MS	(Lin et al. 2008)
3,6 ug/L (máximo)	Esgoto urbano (não tratado)	HPLC-ESI-MS-	(Tiehm et al. 2011)
3,0 ug/L (maximo)	Esgoto urbano (nao tratado)	MS	(Tienni et al. 2011)
25 ng/L (máximo)	Solo	LC/ESI/MS	(Kinney et al. 2006)
0,7 ug/L (máximo)	Água de solo	Não disponível	(Tredoux et al. 2012)
0,997 ug/L (máximo)	Águas superficiais – estuário	Não disponível	(Sadezky et al. 2008)

8,053 ug/L (máximo)	Águas superficiais – lago	LC-MS/MS	(Narbaitz et al. 2013)
11,561 ug/L (máximo)	Águas superficiais - rios/córregos	Não disponível	(Loos et al. 2008)
119 ng/L (máximo)	Águas superficiais – mar	LC-MS/MS	(Wille et al. 2010)
6,1 ug/L (máximo)	Águas superficiais - não especificado	Não disponível	(Ivashechkin 2005)
19 ng/L (máximo)	Matéria particulada suspendida - rios/córregos	LC-ESI-MS	(Lahti & Oikari 2011)
258 ng/L (máximo)	Água de torneira	HPLC-ESI-MS	(Stackelberg et al. 2004)
10,993 ug/L (máximo)	Desconhecido	LC-ESI-MS	(Lin et al. 2008)
750 ng/L (máximo)	Poço artesiano (não tratado)	Não disponível	(Tredoux et al. 2012)
67,715 ug/L (máximo)	ETE - efluente (tratado)	Não disponível	(Valcárcel et al. 2011)
2,6 ng/L (máximo)	ETE - influente (não tratado)	GC-MS	(Al-Rifai et al. 2011)
760 ng/L (máximo)	ETE – lodo	UHPLC-MS/MS	(Yu et al. 2011)

Clorpromazina	217 ng/L (máximo)	Esgoto hospitalar (tratado)	LC-MS/MS	(Yuan et al. 2013)
	364 ng/L (máximo)	Esgoto hospitalar (não tratado)	LC-MS/MS	(Yuan et al. 2013)
	20 ng/L (máximo)	ETE - efluente (tratado)	Não disponível	(Fick et al. 2011)
	68 ng/L (máximo)	ETE - influente (não tratado)	Não disponível	(Fick et al. 2011)
	8 ng/L (máximo)	ETE – lodo	Não disponível	(Fick et al. 2011)
Clorprotixeno	2,3 ug/L (máximo)	Esgoto hospitalar (não tratado)	Não disponível	(Bähr 2009)
	2,78 ug/L (máximo)	ETE - efluente (tratado)	Não disponível	(Bähr 2009)
	78 ng/L (máximo)	ETE - influente (não tratado)	Não disponível	(Fick et al. 2011)
Citalopram	90 ± 20; 40 ± 30 e 80 ± 30 ng/L	5–1762 m da estação de tratamento de esgoto de Pecan Creek ; EUA	LC-(ESI)-MS/MS	(Schultz & Furlong 2008)
	43 ng/L (máximo)	Rios Jarama; Espanha	EFS	(González Alonso et al. 2010)
	58 ng/L (máximo)	Rio Manzaneres; Espanha	EFS	(González Alonso et al. 2010)
	12 ng/L (máximo	Rio Guadrarrama; Espanha	EFS	(González Alonso et al. 2010)
	219 ng/L	Águas superficiais; EUA	LC-(ESI)-MS/MS	(Schultz et al. 2010)

85 ng/L (máximo)	Efluente de estação de tratamento de esgoto; EUA	LC/Q-TOF-MS	(Ferrer & Thurman 2012)
1,3-3,4 ng/L	Rios Vistula e Ultrata; Polônia	LC-MS-MS	(Giebułtowicz & Nałecz-Jawecki 2014)
0,2 μg/L (máximo)	Efluente de estação de tratamento de esgoto; Suécia	Não fornecido	(Ahlford 2012)
6 ng/L (máximo)	Água de consumo humano	Não disponível	(Fick et al. 2011)
290 ng/L (máximo)	sedimento – lago	LC-ESI-MS	(Lahti 2012)
322 ng/L (máximo)	Esgoto hospitalar (tratado)	LC-MS/MS	Yuan et al. (2013)
888 ng/L (máximo)	Esgoto hospitalar (não tratado)	LC-MSMS	(Santos et al. 2013)
24 ng/L (máximo)	Água de solo	Não disponível	(Gottschall et al. 2012)
8 ug/L (máximo)	Águas superficiais – lago	HPLC-MS/MS	(Fick et al. 2009)
76 ng/L (máximo)	Águas superficiais - rios/córregos	HPLC-MS/MS	(Fick et al. 2009)
4 ng/L (máximo)	Águas superficiais – oceano	LC-MS/MS	(Gros et al. 2012)
210 ng/L (máximo)	Águas superficiais - não especificado	Não disponível	(Fick et al. 2011)
1,35 ug/L (máximo)	Matéria particulada suspendida - rios/córregos	LC-ESI-MS	(Lahti & Oikari 2011)

	1,4 ug/L (máximo)	Poço artesiano (não tratado)	HPLC-MS/MS	(Fick et al. 2009)
	840 ug/L (máximo)	ETE - efluente (tratado)	HPLC-MS/MS	(Larsson et al. 2007)
	780 ng/L (máximo)	ETE - influente (não tratado)	HPLC-MS/MS	(Galus et al. 2013)
	760 ng/L (máximo)	ETE – lodo	Não disponível	(Fick et al. 2011)
Clomipramina	0,5-1,1 ng/L	Rios Vistula e Ultrata; Polônia	LC-MS-MS	(Giebułtowicz & Nałecz-Jawecki 2014)
	1 ng/L (máximo)	Águas superficiais - não especificado	Não disponível	(Fick et al. 2011)
	2,7 ug/L (máximo)	ETE - efluente (tratado)	Não disponível	(Rutgersson et al. 2013)
	72 ng/L (máximo)	ETE - influente (não tratado)	Não disponível	(Fick et al. 2011)
	46 ng/L (máximo)	ETE – lodo	Não disponível	(Fick et al. 2011)
Clonazepam	43 ng/L (máximo)	ETE - efluente (tratado)	Não disponível	(Aus der Beek et al. 2015)
	30 ng/L (máximo)	ETE – lodo	Não disponível	(Fick et al. 2011)
Clorazepato	3,332 ug/L (máximo)	ETE - influente (não tratado)	HPLC-MS	(Salgado et al. 2011)
Clozapina	18 ng/L (máximo)	Água de consumo humano	Não disponível	(Bähr 2009)

	17,22 ug/L (máximo)	Esgoto hospitalar (não tratado)	Não disponível	(Bähr 2009)
	660 ng/L (máximo)	Águas superficiais - não especificado	Não disponível	(Bähr 2009)
	1,39 ug/L (máximo)	ETE - efluente (tratado)	Não disponível	(Bähr 2009)
Dapsona	10 ng/L (máximo)	Águas superficiais - não especificado	Não disponível	(Rohweder 2003)
Desmetilcitalopram	110 ng/L (máximo)	Águas superficiais - rios/córregos	LC-MS/MS	(Metcalfe et al. 2010)
	300 ng/L (máximo)	ETE - efluente (tratado)	Não disponível	(Vasskog et al. 2008)
	425 ng/L (máximo)	ETE - influente (não tratado)	Não disponível	(Vasskog et al. 2008)
Desmetilsertralina	86 ng/L (máximo)	Esgoto hospitalar (não tratado)	LC-MSMS	(Nagarnaik et al. 2011)
	5 ng/L (máximo)	Águas superficiais - rios/córregos	LC-MS/MS	(Metcalfe et al. 2010)
	30 ng/L (máximo)	ETE - influente (não tratado)	Não disponível	(Vasskog et al. 2008)
	10 ng/L (máximo)	ETE - efluente (tratado)	Não disponível	(Vasskog et al. 2008)
Diazepam	0,04 μg/L	Estação de tratamento de esgoto municipal; Alemanha	GC-MS	(Ternes et al. 2001; Ternes 1998)
	< LOD (0.030 μg/L)	Rios e córregos; Alemanha	GC-MS	(Ternes et al. 2001; Ternes 1998)

$<$ LOQ (0.20 μ g/L)	Afluente de tratamento de esgoto do município de Hessian; Alemanha	LC-ES-MS/MS	(Ternes et al. 2001)
< LOQ (0.050 μg/L)	Efluente de tratamento de esgoto do município de Hessian; Alemanha	LC-ES-MS/MS	(Ternes et al. 2001)
$0,053~\mu g/L$	Efluente de tratamento de esgoto municipal; Alemanha	LC-ES-MS/MS	(Ternes et al. 2001)
0,033 µg/L	Rios e córregos; Alemanha	LC-ES-MS/MS	(Ternes et al. 2001)
2,6 ng/L	Águas superficiais	LC-ES-MS/MS	(Vanderford & Snyder 2006)
0,88 μg/L 0,0002- 0,0048 μg/L	Águas superficiais; Alemanha Represa; Brasil	HPLC-MS/MS Não fornecido	(Ternes et al. 2001) (Godoy 2014)
3 – 62 ng/L	Lago Mead; EUA	GC-MS	(Snyder et al. 2001)
$< 1 \ \mu g/L$	Efluente de esgoto; Reino Unido	Não fornecido	(Halling-Sorensen et al. 1998)
$\approx 10 \text{ ng/L}$	Água de rios; Reino Unido	Não fornecido	(Halling-Sorensen et al. 1998); (Jones et al. 2005)
$\approx 10 \text{ ng/L}$	Água potável; Reino Unido	Não fornecido	(Halling-Sorensen et al. 1998); (Jones et al. 2005)
> 0,01 μg/L; 0.59 μg/L;1.18 μg/L	Influente de tratamento de esgoto; Bélgica	LC-ES-MS/MS	(Halling-Sorensen et al. 1998); (Jones et al. 2005)
>0.01 µg/L; 66 µg/L	Influente de tratamento de esgoto; Bélgica	LC-ES-MS/MS	(van der Ven et al. 2004)

23.5 ng/L	Água para consumo; Itália	HPLC-MS/MS	(Zuccato et al. 2000)
0,13 – 2.13 ng/L	Rios Po e Lambro; Itália	HPLC-MS	(Calamari et al. 2003)
120 ng/L	Influente de tratamento de esgoto; Alemanha	LC-MS/MS	(Wolf et al. 2004)
310 ng/L	Influente de tratamento de esgoto; in Alemanha	LC-MS/MS	(Wolf et al. 2004)
33,6 ± 7,1; 30,8 ± 9,3 e 27,9 ± 5,1 ng/L	Água de rios; Romênia	GC-MS	(Moldovan 2006)
0,005 μg/L (máximo)	Efluente de estação de tratamento de esgoto; Suécia	Não fornecido	(Ahlford 2012))
50 ng/L (máximo)	Lençol freático	Não disponível	(Rohweder 2003)
69 ng/L (máximo)	Esgoto hospitalar (não tratado)	Não disponível	(Kovalova et al. 2012)
1 ng/L (máximo)	Esgoto industrial (não tratado)	LC- ESI-MS	(Shao et al. 2009)
14 ng/L (máximo)	Águas superficiais - rios/córregos	Não disponível	(Sacher et al. 2002)
3 ng/L (máximo)	Águas superficiais – mar	GC-MS	(Togola & Budzinski 2008)
120 ng/L (máximo)	Águas superficiais - não especificado	Não disponível	(Rohweder 2003)
76 ng/L (máximo)	ETE - influente (não tratado)	HPLC-MS	(Verlicchi et al. 2012)

Domperidona	297 ng/L (máximo)	Águas superficiais - não especificado	Não disponível	(Van De Steene et al. 2010)
	64,2 ug/L (máximo)	ETE - efluente (tratado)	LC-ESI-MS/MS	(Van De Steene & Lambert 2008)
	1,730 mg/L (máximo)	ETE - influente (não tratado)	LC-ESI-MS/MS	(Van De Steene & Lambert 2008)
Donezepila	320 ng/L (máximo)	ETE - efluente (tratado)	Não disponível	(Fick et al. 2011)
	70 ng/L (máximo)	ETE - influente (não tratado)	Não disponível	(Fick et al. 2011)
Doxepina	1,3-2,0 ng/L	Rios Vistula e Ultrata; Polônia	LC-MS-MS	(Giebułtowicz & Nałecz-Jawecki 2014)
Duloxetina	$1.5\pm0.2; 2\pm2 \text{ and}$ $1.2\pm0.9 \text{ ng L}^{-1}$	5-1762 m da estação de tratamento de esgoto de Pecan Creek ; EUA	LC-(ESI)-MS/MS	(Schultz & Furlong 2008)
	2,0 ng/L	Águas superficiais; EUA	LC-(ESI)-MS/MS	(Schultz & Furlong 2008)
	14 ng/L (máximo)	ETE - efluente (tratado)	Não disponível	(Fick et al. 2011)
	11 ng/L (máximo)	ETE - influente (não tratado)	Não disponível	(Fick et al. 2011)
	28 ug/L (máximo)	ETE – lodo	Não disponível	(Fick et al. 2011)
Escitalopram	32,228 ug/L	ETE - influente (não tratado)	HPLC-MS	(Salgado et al. 2011)
	2,0 ng/L 14 ng/L (máximo) 11 ng/L (máximo) 28 ug/L (máximo)	Creek; EUA Águas superficiais; EUA ETE - efluente (tratado) ETE - influente (não tratado) ETE - lodo	LC-(ESI)-MS/MS Não disponível Não disponível Não disponível	(Schultz & Furlong 2008) (Fick et al. 2011) (Fick et al. 2011) (Fick et al. 2011)

Fenobarbital	$0.2 - 1.3 \ \mu g/L$	Campo de irrigação; Alemanha	GC-MS	(Peschka et al. 2006)
	0,03 µg/L	Efluente de estação de tratamento; Alemanha	GC-MS	(Heberer 2002)
Fluoxetina	0,012 μg/L	Águas superficiais; EUA	LC-(ESI(+))-MS	(Kolpin et al. 2002)
	18 ng/L (máximo)	Rio Jarama; Espanha	EFS	(González Alonso et al. 2010))
	22 ng/L (máximo)	Rio Manzaneres; Espanha	EFS	(González Alonso et al. 2010)
	44 ng/L (máximo)	Rio Guadrarrama; Espanha	EFS	(González Alonso et al. 2010)
	11 ng/L (máximo)	Rio Henares; Espanha	EFS	(González Alonso et al. 2010)
	12 ng/L (máximo	Rio Tajo; Espanha	EFS	(González Alonso et al. 2010)
	0,099 μg/L	Efluente de tratamento de esgoto; Canadá	GC-MS	(Metcalfe et al. 2003)
	65 ng/L	Águas superficiais; EUA	(LC/Q-TOF-MS)	(Ferrer & Thurman 2012)
	entre 0.1 ng/g e 10 ng/g	Tecidos (músculos, cérebro e fígado) de peixes que residem no córrego dominado pelos efluentes municipal; EUA	GC-MS	(Brooks et al. 2005)
	12 ± 3; 20 ± 10 e 12 ± 5 ng/L	5–1762 m da estação de tratamento de esgoto de Pecan Creek ; EUA	LC(ESI)–MS/MS	(Schultz et al. 2005)
	$<0.0005~\mu\text{g/L}$	Água final para consumo; EUA	Não fornecido	(Snyder 2008)

entre 0,14 e 1,02 µg/kg	9 biosólidos produzidos por 8 estações de tratamento de esgoto; EUA	HPLC-(ESI)-MS	(Kinney et al. 2006)
65 ng/L (máximo)	Efluente de estação de tratamento de esgoto; EUA	LC/Q-TOF-MS	(Ferrer & Thurman 2012)
1,58 ng/g (máximo)	cérebro de peixe, EUA; 2005	GC-MS/MS	(Brooks et al. 2005)
1,34 ng/g (máximo)	Tecido de peixe, EUA	GC-MS/MS	(Brooks et al. 2005)
2,4-3,1 ng/L	Rios Vistula e Ultrata; Polônia	LC-MS-MS	(Giebułtowicz & Nałecz-Jawecki 2014)
0,061 μg/L (máximo)	Efluente de estação de tratamento de esgoto; Suécia	Não fornecido	(Ahlford 2012)
180 ng/L (máximo)	Lençol freático	HPLC/MS	(Jewell & Wilson 2011)
318 ng/L (máximo)	Esterco - líquido	LC-ESI-MS/MS	(Lapen et al. 2008)
21 ng/L (máximo)	Esgoto hospitalar (tratado)	LC-MS/MS	(Yuan et al. 2013)
180 ng/L (máximo)	Esgoto hospitalar (não tratado)	LC-MSMS	(Nagarnaik et al. 2011)
154 ng/L (máximo)	Esgoto industrial (não tratado)	LC-ESI-MS	(Lin et al. 2008)
34 ng/L (máximo)	Esgoto urbano (não tratado)	LC-MS/MS	(Zorita et al. 2009)
8 ng/L (máximo)	Solo	LC/ESI/MS	(Kinney et al. 2006)

	43 ug/L (máximo)	Águas superficiais - rios/córregos	LC-MS	(Abner J. Colón Ortiz 2010)
	34 ng/L (máximo)	Águas superficiais - não especificado	Não disponível	(Sadezky et al. 2008)
	573 ng/L (máximo)	ETE - efluente (tratado)	HPLC-ESI-MS	(Radjenović et al. 2008)
	946 ng/L (máximo)	ETE - influente (não tratado)	HPLC-MS	(Salgado et al. 2011)
	1,5 ug/L (máximo)	ETE – lodo	LC/ESI/MS	(Kinney et al. 2006)
Fluvoxamina	435 ng/L (máximo)	Esgoto hospitalar (não tratado)	LC-MS/MS	(Yuan et al. 2013))
Haloperidol	1,332 ug/L (máximo)	Esgoto hospitalar (não tratado)	Não disponível	(Bähr 2009)
	2,691 ug/L (máximo)	ETE - efluente (tratado)	Não disponível	(Aus der Beek et al. 2015)
	69 ng/L (máximo)	ETE - influente (não tratado)	Não disponível	(Fick et al. 2011)
	6 ng/L (máximo)	ETE – lodo	Não disponível	(Fick et al. 2011)
Imipramina	55 ng/L (máximo)	ETE - efluente (tratado)	GC-MS/LC-MS	(Unceta et al. 2010)
	48 ng/L (máximo)	ETE - influente (não tratado)	GC-MS/LC-MS	(Unceta et al. 2010)
Lofepramina	<4 ng L ⁻¹	Estuários; Reino Unido	LC-(ESI)-MS/MS	(Thomas & Hilton 2004)

Lamotrigina	455 nh/L (máximo)	Efluente de estação de tratamento de esgoto; EUA	LC/Q-TOF-MS	(Ferrer & Thurman 2012)
	4 ng/L (máximo)	Solo	Não disponível	(Chefetz, B. et al. 2013)
	455 ng/L (máximo)	Águas superficiais - rios/córregos	LC/Q-TOF-MS	(Ferrer & Thurman 2012)
	75 ug/L (máximo)	ETE efluente (tratado)	Não disponível	(Chefetz, B. et al. 2013)
	420 ng/L (máximo)	ETE - influente (não tratado)	Não disponível	(Margot et al. 2011)
Lorazepam	10 ng/L (máximo)	Sedimento - rios/corregos	LC-QqLIT-MS	(Jelić et al. 2009)
	353 ng/L (máximo)	Esgoto hospitalar (tratado)	LC-MS/MS	(Yuan et al. 2013)
	1,325 ug/L (máximo)	Esgoto hospitalar (não tratado)	LC-MSMS	(Santos et al. 2013)
	84 ng/L (máximo)	Águas superficiais - rios/córregos	LC-MS/MS	(Gros et al. 2012)
	682 ng/L (máximo)	ETE - efluente (tratado)	LC-MSMS	(Sousa et al. 2012)
	502 ng/L (máximo)	ETE - influente (não tratado)	ESI-MS/MS	(Huerta-Fontela et al. 2010)
Meprobamate	43 ng/L	Água final para consumo; EUA	Não fornecido	(Snyder 2008)
	594 ng/L	Águas superficiais; EUA	LC(ESI)-MS/MS	(Vanderford & Snyder 2006)

	Qualitative analysis	Águas subeterrâneas próximas á aterro; EUA	GC-MS/MS	(Eckel et al. 1993; Jones et al. 2001) (Eckel, 1993; Jones <i>et al.</i> , 2001)
Mirtazapina	0,8-1,7 ng/L	Rios Vistula e Ultrata; Polônia	LC-MS-MS	(Giebułtowicz & Nałecz-Jawecki 2014)
	210 ng/L (máximo)	Águas superficiais - não especificado	Não disponível	(Fick et al. 2011)
	410 ng/L (máximo)	ETE - efluente (tratado)	Não disponível	(Fick et al. 2011)
	870 ng/L (máximo)	ETE - influente (não tratado)	Não disponível	(Fick et al. 2011)
	120 ng/L (máximo)	ETE – lodo	Não disponível	(Fick et al. 2011)
Moclobemida	0,2-2,5 ng/L	Rios Vistula e Ultrata; Polônia	LC-MS-MS	(Giebułtowicz & Nałecz-Jawecki 2014)
Norcitalopram	74 ng/L (máximo)	Efluente de estação de tratamento de esgoto; EUA	LC/Q-TOF-MS	(Ferrer & Thurman 2012)
Nordiazepam	8,3 ng/L	Influente de tratamento de esgoto; França	GC-MS	(Togola & Budzinski 2008)
	34 ng/L (máximo)	Rio Jarama; Espanha	EFS	(González Alonso et al. 2010)
	52 ng/L (máximo)	Rio Manzaneres; Espanha	EFS	(González Alonso et al. 2010)
	76 ng/L (máximo)	Rio Guadrarrama; Espanha	EFS	(González Alonso et al. 2010)
	19 ng/L (máximo)	Rio Henares; Espanha	EFS	(González Alonso et al. 2010)

	26 ng/L (máximo)	Rio Tajo; Espanha	EFS	(González Alonso et al. 2010)
	2,4 ng/L	Águas superficiais; França	GC-MS	(Togola & Budzinski 2008)
	76 ng/L (máximo)	Águas superficiais - rios/córregos	HPLC-MS	(González Alonso et al. 2010)
	36 ng/L (máximo)	ETE - efluente (tratado)	LC-MS/MS	(Baker & Kasprzyk-Hordern 2011)
	115 ng/L (máximo)	ETE - influente (não tratado)	LC-MS/MS	(Baker & Kasprzyk-Hordern 2011)
Norfluoxetina	0.83 ± 0.01 ; 1.0 ± 0.5 e 0.9 ± 0.2 ng/L	Tecidos de peixes; Canadá	LC-(APCI)- MS/MS	(Chu & Metcalfe 2007)
	13,6 ng/L	Águas superficiais; EUA	LC-(ESI)-MS/MS	(Schultz et al. 2010)
	entre 0,1 ng/g e 10 ng/g	5–1762 m da estação de tratamento de esgoto de Pecan Creek ; EUA	LC-(ESI)-MS/MS	(Schultz & Furlong 2008)
	8,86 ng/g (máximo)	cérebro de peixe, EUA; 2005	GC-MS/MS	(Brooks et al. 2005)
	entre 0,15 and 1,08 µg/kg	Tecidos (músculos, cérebro e fígado) de peixes que residem no córrego dominado pelos efluentes municipal; EUA	GC-MS	(Brooks et al. 2005)
	10,26 ng/g (máximo)	Tecido de peixe, EUA	GC-MS/MS	(Brooks et al. 2005)
Norsertralina	entre 0.1 ng/g e 10 ng/g	5–1762 m da estação de tratamento de esgoto de Pecan Creek ; EUA	LC-(ESI)-MS/MS	(Schultz & Furlong 2008)
	5 ± 3; 7 ± 3 e 3±1 ng/L	Tecidos (músculos, cérebro e fígado) de peixes que residem no córrego dominado pelos efluentes municipal; EUA	GC-MS	(Brooks et al. 2005)

Nortriptilina	19 ng/L (máximo)	Águas superficiais - rios/córregos	LC-MS/MS	(Baker & Kasprzyk-Hordern 2013)
	22 ng/L (máximo)	Matéria particulada suspendida – esgoto	LC-MS/MS	(Baker & Kasprzyk-Hordern 2013)
	53 ng/L (máximo)	ETE - efluente (tratado)	LC-MS/MS	(Baker & Kasprzyk-Hordern 2013)
	185 ng/L (máximo)	ETE - influente (não tratado)	LC-MS/MS	(Baker & Kasprzyk-Hordern 2013)
Olanzapina	83 ng/L (máximo)	Esgoto hospitalar (tratado)	LC-MS/MS	(Yuan et al. 2013)
	3,78 ug/L (máximo)	Esgoto hospitalar (não tratado)	Não disponível	(Bähr 2009)
	73 ng/L (máximo)	ETE - efluente (tratado)	Não disponível	(Bähr 2009)
Oxazepam	0,25 μg/L	Efluente de tratamento de esgoto; Alemanha	GC-MS	(Heberer 2002)
	45 ng/L (máximo)	Rio Jarama; Espanha	EFS	(González Alonso et al. 2010)
	108 ng/L (máximo)	Rio Manzaneres; Espanha	EFS	(González Alonso et al. 2010)
	129 ng/L (máximo)	Rio Guadrarrama; Espanha	EFS	(González Alonso et al. 2010)
	6 ng/L (máximo)	Rio Henares; Espanha	EFS	(González Alonso et al. 2010))
	161 ng/L (máximo)	Água de consumo; França	LC-MSMS	(Bouissou-Schurtz et al. 2014)

	0,530 μg/L (máximo)	Efluente de estação de tratamento de esgoto; Suécia	Não fornecido	(Ahlford 2012)
	89 ng/L (máximo)	Água de consumo humano	LC-MS/MS	(Vulliet & Cren-Oliv 2011)
	14 ng/L (máximo)	Lençol freático	LC-MS/MS	(Vulliet & Cren-Oliv 2011)
	1,06 ug/L (máximo)	Esgoto hospitalar (tratado)	SPE-HPLC-	(Kovalova et al. 2013)
	1,00 ug/L (maximo)	Lisgoto nospituitai (tratado)	MS/MS	(Novalova et al. 2013)
	6,3 ug/L (máximo)	Esgoto hospitalar (não tratado)	Não disponível	(Eriksson, D. & Flygare 2006)
	2,183 ug/L (máximo)	Águas superficiais – estuário	Não disponível	(Sadezky et al. 2008)
	813 ng/L (máximo)	Águas superficiais - rios/córregos	GC-MS	(Togola & Budzinski 2008)
	12 ng/L (máximo)	Águas superficiais – oceano	HPLC-MS	(Magnér et al. 2010)
	970 ng/L (máximo)	Águas superficiais - não especificado	Não disponível	(Seidel et al. 2013)
	1,765 ug/L (máximo)	ETE - efluente (tratado)	Não disponível	(Aus der Beek et al. 2015)
	1,8 ug/L (máximo)	ETE - influente (não tratado)	Não disponível	(Fick et al. 2011)
	43 ng/L (máximo)	ETE – lodo	Não disponível	(Fick et al. 2011)
Oxcarbazepina	852 ng/L (máximo)	Águas superficiais - rios/córregos	Não disponível	(Engelmann & Rohde 2009)

	11 ug/L (máximo)	ETE - efluente (tratado)	Não disponível	(Engelmann & Rohde 2009)
Paroxetina	2,1 ± 0,4; 3 ± 1 e 2,2 ± 0,2 ng/L	Tecidos de peixes; Canadá	LC-(APCI)- MS/MS	(Chu & Metcalfe 2007)
	90 ng/L	Águas superficiais; EUA	LC-(ESI)-MS/MS	(Wu et al. 2009)
	Between 0,48 and 0,58 μg/kg	5–1762 m da estação de tratamento de esgoto de Pecan Creek ; EUA	LC-(ESI)-MS/MS	(Schultz & Furlong 2008)
	0,062 μg/L (máximo)	Efluente de estação de tratamento de esgoto; Suécia	Não fornecido	(Ahlford 2012)
	76 ng/L (máximo)	Esgoto hospitalar (não tratado)	HPLC-MS	(Verlicchi et al. 2012)
	225 ng/L (máximo)	Águas superficiais - rios/córregos	UHPLC-MS/MS	(López-Serna et al. 2011)
	386 ng/L (máximo)	ETE - efluente (tratado)	LC-MS/MS	(Gros et al. 2012)
	39,732 ug/L (máximo)	ETE - influente (não tratado)	HPLC-MS	(Salgado et al. 2011)
	61 ng/L (máximo)	ETE – lodo	Não disponível	(Chari & Halden 2012)
Pentobarbitol	Qualitative analysis	Águas subrerrâneas próximas à aterro; EUA	GC-MS/MS	(Eckel 1993; Jones et al. 2001) (Eckel <i>et al.</i> , 1993; Jones <i>et al.</i> , 2001)
	$5,4~\mu g/L$	Rio Mulde; Alemanha	GC-MS	(Peschka et al. 2006)
Prometazina	86 ng/L (máximo)	ETE - efluente (tratado)	Não disponível	(Fick et al. 2011)

	190 ng/L (máximo)	ETE - influente (não tratado)	Não disponível	(Fick et al. 2011)
	88 ng/L (máximo)	ETE – lodo	Não disponível	(Fick et al. 2011)
Ranitidina	0,47 μg/L (máximo)	Água residual de estação de tratamento de esgoto, Chipre	LC-MS-MS	(Fatta-Kassinos, Hapeshi, et al. 2011)
Risperidona	$0.00034~\mu g~L^{-1}$	5–1762 m da estação de tratamento de esgoto de Pecan Creek ; EUA	LC-(ESI)-MS/MS	(Schultz & Furlong 2008)
	1,014 ug/L (máximo)	Esgoto hospitalar (não tratado)	Não disponível	(Bähr 2009)
	160 ng/L (máximo)	ETE - efluente (tratado)	Não disponível	(Fick et al. 2011)
	270 ng/L (máximo)	ETE - influente (não tratado)	Não disponível	(Fick et al. 2011)
	2 ng/L (máximo)	ETE – lodo	Não disponível	(Fick et al. 2011)
Sertralina	Between 0.1 ng g ⁻¹ and 10 ng g ⁻¹	Tecidos de peixes; Canadá	LC-(APCI)- MS/MS	(Chu & Metcalfe 2007)
	49,0 ng/L	Águas superficiais; EUA	LC-(APCI)- MS/MS	(Schultz & Furlong 2008)
	36 ± 5; 49 ± 9 e 33 ± 8 ng/L	Tecidos (músculos, cérebro e fígado) de peixes que residem no córrego dominado pelos efluentes municipal; EUA	GC-MS	(Brooks et al. 2005)
	4,27 ng/g (máximo)	cérebro de peixe, EUA; 2005	GC-MS/MS	(Brooks et al. 2005)
	3,59 ng/g (máximo)	Tecido de peixe, EUA	GC-MS/MS	(Brooks et al. 2005)

	3,1-6,1 ng/L	Rios Vistula e Ultrata; Polônia	LC-MS-MS	(Giebułtowicz & Nałecz-Jawecki 2014)
	0,070 μg/L (máximo)	Efluente de estação de tratamento de esgoto; Suécia	Não fornecido	(Ahlford 2012)
	14 ng/L (máximo)	sedimento – lago	LC-ESI-MS	(Lahti 2012)
	99 ng/L (máximo)	Esgoto hospitalar (tratado)	LC-MS/MS	(Yuan et al. 2013)
Sulpirida	120 ng/L (máximo)	Esgoto hospitalar (não tratado)	LC-MSMS	(Nagarnaik et al. 2011)
	120 ng/L (máximo)	ETE - efluente (tratado)	Não disponível	(Eriksson, D. & Flygare 2006)
	160 ng/L (máximo)	ETE - influente (não tratado)	Não disponível	(Fick et al. 2011)
	770 ng/L (máximo)	ETE – lodo	Não disponível	(Fick et al. 2011)
	10,833 ug/L (máximo)	Esgoto hospitalar (tratado)	LC-MS/MS	(Yuan et al. 2013)
	9,832 ug/L (máximo)	Esgoto hospitalar (não tratado)	LC-MS/MS	(Yuan et al. 2013)
	2,1 ug/L (máximo)	Águas superficiais - rios/córregos	GC-MS	(Nakada et al. 2007)
	957 ng/L (máximo)	ETE - efluente (tratado)	Não disponível	(I. Kim et al. 2009)
	157 ng/L (máximo)	ETE - influente (não tratado)	UPLC-MS/MS	(Sui et al. 2010)

	2,12 ug/L (máximo)	ETE - lodo	Não disponível	(Narumiya et al. 2013)
Temazepam	77 ng/L (máximo)	Águas superficiais - rios/córregos	LC-MS/MS	(Baker & Kasprzyk-Hordern 2013)
	93 ng/L (máximo)	Águas superficiais - não especificado	Não disponível	(Seidel et al. 2013)
	508 ng/L (máximo)	ETE - efluente (tratado)	LC-MS/MS	(Bijlsma et al. 2012)
	600 ng/L (máximo)	ETE - influente (não tratado)	LC-MS/MS	(Reungoat et al. 2011)
Trazodona	51 ng/L (máximo)	Esgoto hospitalar (não tratado)	LC-MSMS	(Santos et al. 2013)
	4 ng/L (máximo)	Águas superficiais - rios/córregos	LC-MS/MS	(Gros et al. 2012)
	29 ng/L (máximo)	ETE - efluente (tratado)	LC-MS/MS	(Gros et al. 2012)
	48 ng/L (máximo)	ETE - influente (não tratado)	LC-MS/MS	(Gros et al. 2012)
Ácido valpróico	19 ng/L (máximo)	Águas superficiais - não especificado	Não disponível	(Ivashechkin 2005)
	117 ng/L (máximo)	ETE - efluente (tratado)	Não disponível	(Ivashechkin 2005)
	140 ng/L (máximo)	ETE - influente (não tratado)	Não disponível	Yu et al. (2006)
Venlafaxina	600 ± 200; 1000 ± 400 e 900 ± 300 ng/L	5–1762 m da estação de tratamento de esgoto de Pecan Creek ; EUA	LC-(ESI)-MS/MS	(Schultz & Furlong 2008)

225 ng/L (máximo)	Rio Jarama; Espanha	EFS	(González Alonso et al. 2010)
387 ng/L (máximo)	Rio Manzaneres; Espanha	EFS	(González Alonso et al. 2010)
347 ng/L (máximo)	Rio Guadrarrama; Espanha	EFS	(González Alonso et al. 2010)
43 ng/L (máximo)	Rio Henares; Espanha	EFS	(González Alonso et al. 2010)
22 ng/L (máximo)	Rio Tajo; Espanha	EFS	(González Alonso et al. 2010)
1,310 ng/L	Águas superficiais; EUA	LC-(ESI)-MS/MS	(Schultz & Furlong 2008)
310 ng/L (máximo)	Efluente de estação de tratamento de esgoto; EUA	LC/Q-TOF-MS	(Ferrer & Thurman 2012)
0,2 - 2,1 ng/L	Rios Vistula e Ultrata; Polônia	LC-MS-MS	(Giebułtowicz & Nałecz-Jawecki 2014)
134 ng/L (máximo)	Lençol freático	LC-MS/GC-MS	(Teijon et al. 2010)
681 ng/L (máximo)	Esgoto hospitalar (tratado)	SPE-HPLC- MS/MS	(Kovalova et al. 2013)
1,914 ug/L (máximo)	Esgoto hospitalar (não tratado)	LC-MSMS	(Santos et al. 2013)
33 ng/L (máximo)	Água de solo	Não disponível	(Gottschall et al. 2012)
901 ng/L (máximo)	Águas superficiais - rios/córregos	LC-MS/MS	(Metcalfe et al. 2010)

Capítulo 02

	52 ng/L (máximo)	Águas superficiais – oceano	LC-MS/MS	(Gros et al. 2012)
	440 ng/L (máximo)	Surface Water - (unspecific)	Não disponível	(Fick et al. 2011)
	1,003 ug/L (máximo)	ETE - efluente (tratado)	HPLC-MS/MS	(Valcárcel et al. 2011)
	2,2 ug/L (máximo)	ETE - influente (não tratado)	Não disponível	(Fick et al. 2011)
	310 ng/L (máximo)	ETE - lodo	Não disponível	(Fick et al. 2011)
Zolpidem	5 ng/L (máximo)	Águas superficiais – estuário	Não disponível	(Sadezky et al. 2008)
	42 ng/L (máximo)	ETE - efluente (tratado)	Não disponível	(Aus der Beek et al. 2015)
	44 ng/L (máximo)	ETE - influente (não tratado)	Não disponível	(Fick et al. 2011)
Zopiclona	87 ng/L (máximo)	ETE - efluente (tratado)	Não disponível	(Skoglund, I. et al. 2008)
	31 ng/L (máximo)	ETE - influente (não tratado)	Não disponível	(Skoglund, I. et al. 2008)

LOD: limite de detecção

LOQ: limite de quantificação

Por se tratar de um grupo diverso, avaliar o risco ambiental dos fármacos é um desafio. Uma vez que esses estão em níveis muito baixos, a sua detetecção em matrizes ambientais (CAM, concentração ambiental medida em inglês *MEC mesuared environmental concentration*) requer o desenvolvimento de técnicas analíticas de alto desempenho. Uma opção é estimar a quantidade de fármacos psquiátricos no ambiente (CAP, concentração ambiental predita/estimada em inglês *PEC predicted environmental concentration*), entretanto essa abordagem também enfrenta problemas, pois são necessárias informações farmacológicas sobre comportamento ambiental e consumo, muitas vezes inexistentes. Ademais, para avaliação dos efeitos em organismos não alvo, não existe precisão sobre quais parâmetros ecotoxicológicos devem ser utilizados, uma vez que cada grupo de fármacos tem efeitos distintos sobre a biota em concentrações, em geral, muito abaixo das que causam mortalidade. Assim, para os fármacos psicotrópicos são necessários novos testes que englobem parâmetros neuroendócrinos, comportamentais, cognitivos, bem como, estabelecer uma relação de causa e efeito desses com parâmetros ecossistêmicos.

Estudos demonstram que muitos organismos não alvos possuem vias metabólicas, receptores, biomoléculas semelhantes as dos humanos (visto no capítulo 1). Dados ecotoxicológicos são importantes para auxiliar políticas de monitoramento de substâncias químicas que possuem potencial risco ambiental. Um ordenamento das classes de fármacos psicotrópicos baseado no número de estudos ecotoxicológicos para as principais dessas, é apresentado na figura 6. A classe dos fármacos antidepressivos possui maior número de princípios ativos com algum estudo ecotoxicológico, com um total de 17. Em seguida está a classe dos ansiolíticos que apesar de ser a com o maior número de fármacos disponíveis para consumo no Brasil, apresenta somente 14 princípios ativos com algum estudo ecotoxicológico. Por fim, a classe dos antipsicóticos tem 12 princípios ativos com algum estudo ecotoxicológico, seguida dos fármacos para alívio sintomático de doenças neurodegenerativas e antiepilépticos ambos com 6 estudos cada.

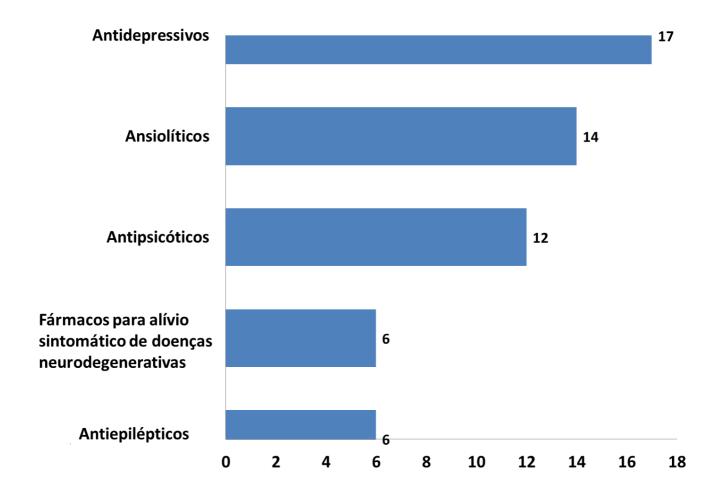


Figura 6 Total de estudos ecotoxicológicos de fármacos psicotrópicos, comparação entre classes (ansiolíticos, antidepressivos, antiepilépticos, antipsicóticos e fármacos para alívio sintomático de doenças neurodegenerativas) para princípios ativos com estudos disponíveis na base de dados da Agência de Proteção Ambiental dos Estados Unidos da América.

Considerando todos os fármacos psicotrópicos listados, somente para 24 % deles, ou seja, para 55 princípios ativos de fármacos psicotrópicos são encontrados estudos ecotoxicológicos, sejam eles com organismos aquáticos ou terrestres. Em geral, independentemente da classe de fármacos psicotrópicos analisados, 70 % ou mais dos fármacos não possuem estudos ecotoxicológicos (Figura 7).

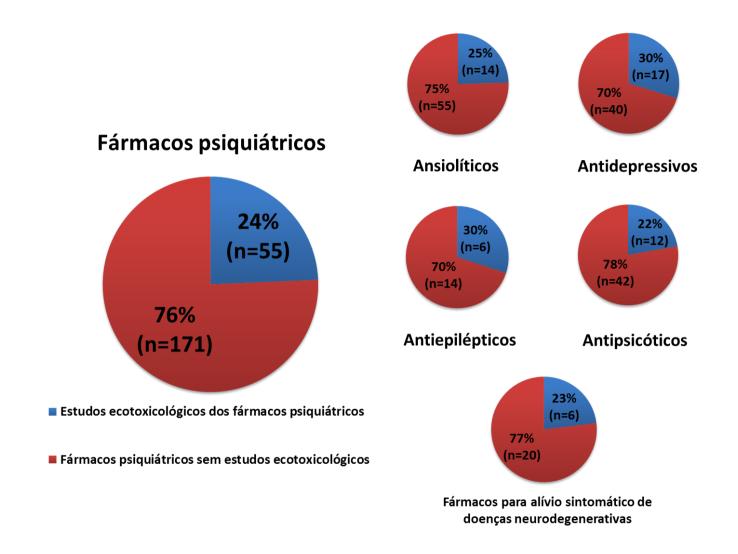


Figura 7 Estudos ecotoxicológicos de fármacos psicotrópicos, comparação entre classes (ansiolíticos, antidepressivos, antiepilépticos, antipsicóticos e fármacos para alívio sintomático de doenças neurodegenerativas) para princípios ativos comercializados no Brasil com estudos disponíveis na literatura científica mundial.

Em geral, para a grande maioria dos ingredientes ativos de fármacos psicotrópicos não são encontrados estudos ecotoxicológicos. A lacuna de conhecimento é observada tanto para estudos em ecotoxicologia aquática quanto na área da ecotoxicologia terrestre. Sendo que, para ecotoxicologia terrestre, estudos são encontrados para somente 8 princípios ativos dos 226 estudados (Figura 8).

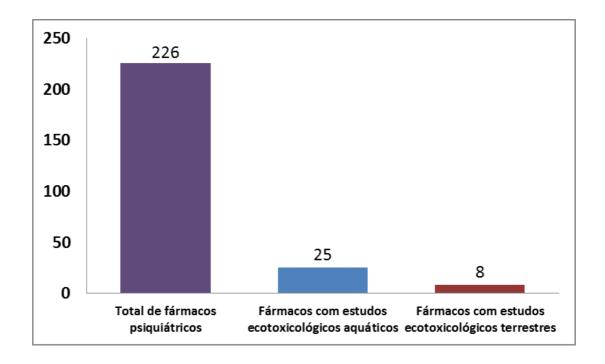


Figura 8 Estudos ecotoxicológicos de fármacos psicotrópicos, comparação entre número de fármacos psicotrópicos com estudos ecotoxicológicos aquáticos e terrestres para princípios ativos.

Ao se analisar a divisão entre estudos ecotoxicológicos com organismos aquáticos e terrestres em cada classe de fármacos psicotrópicos, observa-se que, predominam os estudos com organismos aquáticos, com a exceção da classe dos fármacos para alívio sintomático de doenças neurodegenerativas, para a qual são encontrados mais estudos com organismos terrestres (Figura 9).

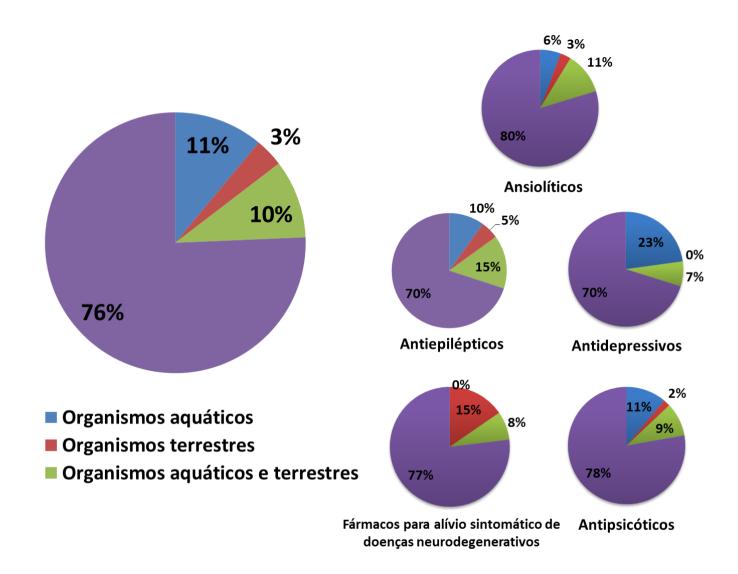


Figura 9 Estudos ecotoxicológicos de fármacos psicotrópicos comercializados no Brasil, levantamento de estudos aquáticos e terrestres para princípios ativos. Dados da literatura científica mundial agrupados em princípio ativo sem estudos ecotoxicológicos (roxo), princípios ativos com estudos somente para organismos aquáticos (azul), princípios ativos com estudos para organismos aquáticos e terrestres (verde).

Considerando somente os princípios ativos de fármacos psicotrópicos que têm dados de ecotoxicologia aquática (n = 33), os estudos baseados em testes agudos aquáticos são predominantes, com 22 princípios ativos, seguidos de 11 princípios ativos com dados de toxicidade crônica (Figura 10).

Esse cenário, na ecotoxicologia aquática, piora quando esses parâmetros (agudo e/ ou crônico) são comparados com os princípios ativos de fármacos psicotrópicos totais comercializados no Brasil. Cerca de 89 % dos princípios ativos destes fármacos liberados para consumo no Brasil não possuem nenhum tipo de estudo ecotoxicológico agudo ou crônico. A predominância dos testes atuais são: agudos 6 %, seguidos de 4 % dos que possuem testes agudos e crônicos, e somente 1 % de princípios ativos de fármacos psicotrópicos possuem testes crônicos, o que mostra a carência de pesquisas nessa área e a negligência das autoridades competentes.

Estudos ecotoxicológicos aquáticos com princípios ativos de fármacos psicotrópicos usam predominantemente apenas um nível trófico. Dados de princípios ativos de fármacos psicotrópicos testados agrupadamente para três níveis tróficos são apresentados na figura 11. A maior parte dos estudos foram realizados com invertebrados (53 %), seguidos dos produtores primários (27 %) e vertebrados (20 %).

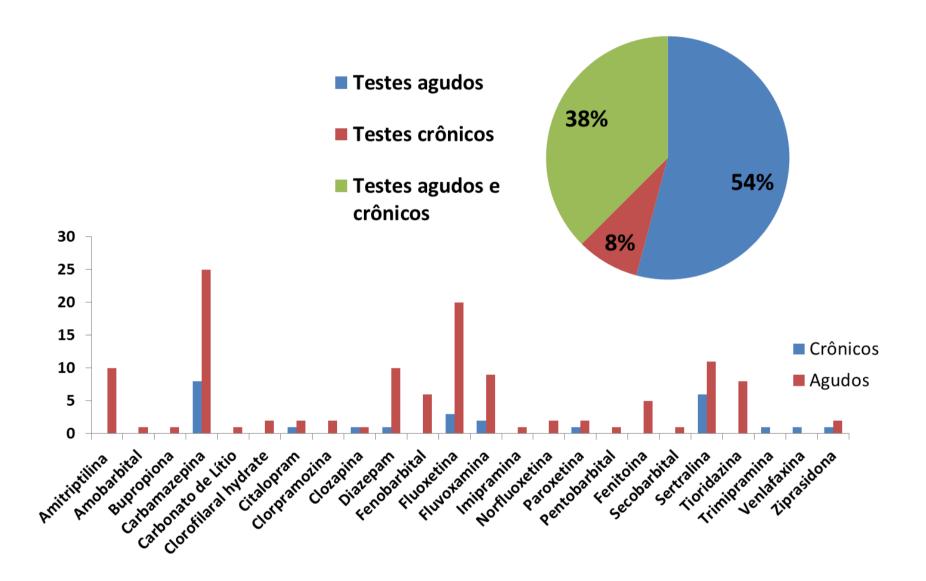


Figura 10 Estudos ecotoxicológicos de fármacos psicotrópicos comercializados no Brasil, comparação entre testes agudos e crônicos para princípios ativos com estudos disponíveis na literatura científica mundial.

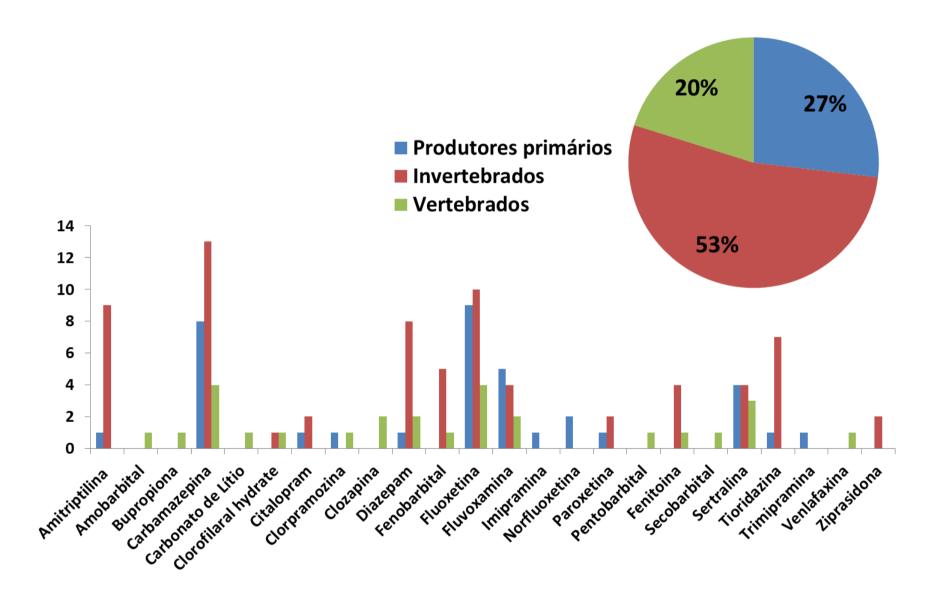


Figura 11 Estudos ecotoxicológicos de fármacos psicotrópicos comercializados no Brasil, comparação entre testes que utilizam produtores primários, invertebrados e vertebrados para princípios ativos com estudos disponíveis na literatura científica mundial.

Considerando um critério de corte (exposição de 7 ou mais organismos a um princípio ativo de fármaco psiquiátrico específico) visando futura aplicação em políticas de monitoramento de substâncias com potencial risco ecológico, os efeitos são elucidados para poucas espécies. Para apenas 4 % do total de princípios ativos de fármacos psicotrópicos comercializados no Brasil existem estudos com sete ou mais espécies (Figura 12). A carbamazepina (anticonvulsivante) é o fármaco que possui mais estudos, seguido dos antidepressivos, fluoxetina e sertralina.

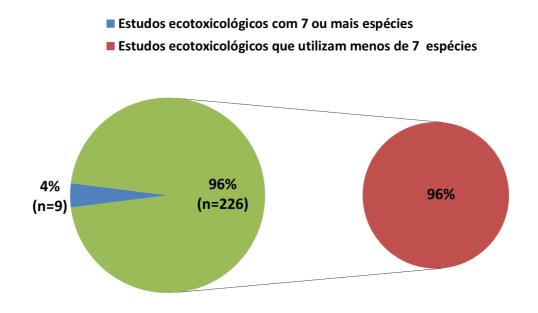


Figura 12 Avaliação do número de espécies utilizadas em estudos ecotoxicológicos de fármacos psicotrópicos comercializados no Brasil, porcentagem de testes que utilizam sete ou mais espécies para princípios ativos com estudos disponíveis na literatura científica mundial.

Visando um contexto sobre poluentes emergentes – "fármacos", alguns trabalhos têm abordado o problema com foco tanto na presença destes, quanto seus efeitos agudos e crônicos sobre organismos não alvos, porém a quantidade de estudos é reduzido. Hormônios sintéticos causam feminilização em populações de peixes (exemplo: etinilestradiol), antibióticos desencadeiam o aumento de genes de resistência em bactérias, antinflamatórios, como o diclofenaco causam hepatotoxicidade em aves e peixes, antihelmintos,

como as ivermectinas, são extremamente tóxicas para artrópodes edáficos. Apesar da escassez de informação, há evidências de que fármacos psicotrópicos podem modular o comportamento de peixes, interferindo em seu nado, alimentação, fuga de predador, e reprodução (Brodin et al. 2013; Brandão et al. 2013; Blaser et al. 2010).

Atualmente, dentre as diferentes classes de fármacos psicotrópicos, a dos antidepressivos é a que mais possui artigos publicados. Na última década houve um aumento de 60 % no uso de antidepressivos, o que, juntamente com o descarte inadequado e a biodegradação limitada, aumenta o efeito potencial nos ecossistemas e consequente saúde humana. Os antidepressivos representam 4 % das drogas encontradas no meio ambiente (Bossus et al. 2014). O citalopram e a sertralina (ISRS) estão entre os antidepressivos mais prescritos na Dinamarca, Noruega e Finlândia, e quatro ISRS estão classificados no ranking dos 31 fármacos mais prescritos nos EUA (http://www.rxlist.com) (Christensen et al. 2007). Os três ISRS mais prescritos em 2011 nos EUA foram sertralina, citalopram e fluoxetina (Bossus et al. 2014). Apesar de muito prescritos, pouco se sabe sobre os efeitos ecotoxicológicos dos ISRS. Estudos de detecção ambiental têm demonstrado que são encontradas no meio ambiente concentrações que variam em até 40 µg/L. Estes resultados incluem paroxetina, 20 ng/L, e sertralina, 100 ng/L, em efluentes de hospitais psiquiátricos, citalopram, 0,34 ng/L, em águas residuais, fluoxetina, de 13 a 99 ng/L, em águas residuais tratadas, e 12 ng/L, em águas superficiais (Christensen et al. 2007). (Kaza et al. 2007) ao expor a planta aquática Lemna minor à baixas concentrações de amitriptilina, obteve uma CE50 (inibição de crescimento foliar) de 1,69 mg/L. Ao analisarmos os dados da Tabela apêndice 1, a sertralina é o composto mais tóxico, possuindo um efeito mais acentuado em invertebrados, como: Daphnia magna, alterando principalmente a reprodução e gerando imobilidade em concentrações na faixa de 1 μg/L.

Besse et al. (2008), ao estudar alguns compostos que estavam entre os 100 mais consumidos na França, ressalta que o oxazepam conjugado com ácido glicurônico é o produto final de excreção de alguns grupos de BZDs, incluindo: prazepam, diazepam, clorazepato, nordazepam (Figura 13). Entretanto, a conjugação com ácido glicurônico pode ser desfeita no meio ambiente, aumentando a biodisponibilidade nos ecossistemas, e a ligação com sulfato pode aumentar a persistência dos fármacos.

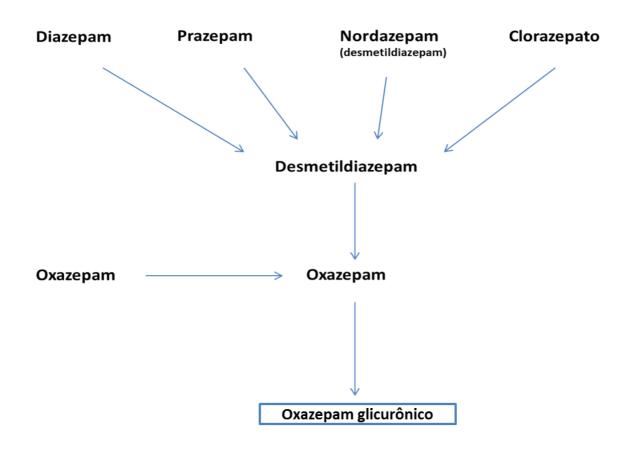


Figura 13 Esquema de degradação de diferentes ansiolíticos benzodiazepínicos e formação do oxazepam (adaptado do Besse *et al.* (2008).

De acordo com esses dados, a melhor forma de monitorar os ecossistemas aquáticos é ter como foco o oxazepam e não seus compostos parentais. Estudos indicam concentrações de diazepam entre 5 e 40 ng/L, enquanto as concentrações de oxazepam podem chegar até 1500 ng/L. O oxazepam pode ser considerado uma molécula marcadora para contaminação por BZDs (Besse et al. 2008). Brodin et al. (2013), ao expor o

peixe *Perca fluviatilis* a diferentes concentrações de oxazepam observou que os organismos expostos a concentração a partir de 1.8 μg/L (concentração ambientalmente relevante), exibiram aumento significativo da atividade, reduziram a sociabilidade, apresentaram bioacumulação e dificuldade na captura dos alimentos.

De acordo com a tabela suplementar do presente estudo, a exposição entre o microcrustáceo *Daphnia magna* a clorpromazina (antipsicótico, típico de baixa potência) alteram o comportamento (imobilidade) do mesmo (concentrações a partir de 1,8 mg/L), a macrófita *Lemna minor* exposta a 0,92 mg/L do referido fármaco apresentou alterações na taxa média de crescimento (área folear), o protozoário *Spirostomum ambiguum* apresentou uma CL50 de 0,5 mg/L, o peixe *Carassius auratus* apresentou uma CE50 de 0,32 mg/L, o molusco *Helix lucorum* apresentou alterações do fechamento do pneumostoma, comportamento motor e diminuição locomotora, o peixe *Danio rerio*, apresentou dificuldade na atividade natatória (Oliveira 2014). Ao analisar a mesma tabela, a tioridazina é o antipsicótico com mais estudos ecotoxicológicos com diferentes organismos, entretanto, só há estudos com apenas um nível trófico (consumidores primários - invertebrados).

A carbamazepina possui um tempo de meia-vida no meio ambiente relativamente longo, média de 50% do tempo de dissipação de 82 ± 11 dias, sob condições de semi-campo tornando esse composto um dos fármacos mais persistentes detectados em ecossistemas aquáticos (Calisto, 2009). Cleuvers (2003) mostraram alguns efeitos adversos trazidos pelo contato da carbamazepina com uma espécie de alga, macrófita e invertebrado, os resultados mostraram uma inibição da taxa média de crescimento em *Desmodesmus subspicatus*, concentração de 74 mg/L, inibição da taxa média de crescimento foliar em *Lemna minor*, concentração de 25,5 mg/L, imobilização da *Daphnia magna*, concentrações acima de 100 mg/L, respectivamente. Claessens et al (2013), trabalhando com um tipo de diatomácea, *Phaeodactylum tricornutum*, documentou a inibição do crescimento na concentração de 62,5 mg/L.

O valproato ou ácido valpróico é utilizado no tratamento da epilepsia. Ele age modulando a atividade GABA-érgica cerebral (inibitória): inibe o catabolismo do GABA, aumentando sua liberação, diminuindo seu *turnover* e aumentando a densidade de receptores GABA B (Calisto & Esteves 2009). Esse fármaco é um potente indutor de defeitos no tubo neural em humanos e camundongos, a sua teratogenicidade está associada com o seu potencial para a geração de radicais livres e, consequentemente, com o aumento do stress oxidativo (Escalona-Cardoso et al. 2012).

O carbonato de lítio possui estudos ecotoxicológicos com organismos aquáticos e terrestres, entretanto, ao analisarmos os dados aquáticos disponíveis na base de dados da EPA, apenas um nível trófico foi estudado (consumidores secundários, vertebrados), os dados disponíveis são de exposição aguda do organismo *Fundulus heteroclitus*, CL50 de 8100 ug/L. As alterações no desenvolvimento ocasionadas pelo contato entre peixe e o lítio, são: edema pericardial, edema no saco vitelíneo, alteração da pigmentação, hipoplasia na cartilagem de Meckel, hipoplasia dos arcos branquiais, e não inflação da bexiga natatória, entre outras. (Ali et al. 2014).

2.5. Distribuições de Sensibilidade das Espécies para fármacos psicotrópicos.

As curvas de SSD são normalmente utilizadas para "reduzir a incerteza relativa das diferenças de sensibilidade de espécies em teste-padrão e noutras espécies potencialmente expostas na natureza e utiliza uma variação interespecífica na sensibilidade a tóxicos para prever efeitos a nível de comunidade" (Posthuma et al. 2002). A análise de SSD foi realizada com valores de CL50 da literatura. Todos os valores de concentração referem-se a concentração de princípios ativos de fármacos psicotrópicos. Só foram utilizados dados de toxicidade aguda de testes com duração de exposição entre 24 a 240 h. Quando encontrado mais de um valor para a mesma espécie, foi escolhida CL50 do estudo mais longo; os estudos com a mesma duração foram resumidos com média geométrica. Uma curva logística (log) foi ajustada aos

dados usando regressão não linear. As toxicidades previstas para os 5 e 50 % dos organismos mais sensíveis foram estimadas (CP5 e CP50, ou seja, concentrações perigosas para 5 % ou 50 % da população, respectivamente). O SSD foi gerado utilizando a planilha da agência de proteção ambiental dos Estados Unidos construída no excel (USEPA 2015).

Os fármacos de uso psiquiátricos estudados que possuem estudos ecotoxicológicos com resultados de CL50 e CE50 para sete ou mais espécies de organismos aquáticos são a amitriptilina, carbamazepina, diazepam, fenobartbital, fluoxetina, fluvoxamina, norfluoxetina, sertralina e tioridazina.

2.5.1. Resultados

2.5.1.1 SSD amitriptilina

As espécies mais sensíveis quando expostas a esse fármaco são: *Brachionus calyciflorus* e *Streptocephalus proboscideus* e as espécies mais resistentes durante a exposição a amitriptilina são *Tetrahymena thermophila* e *Artemia salina*. Os valores de $CP_5 = 159,73 \,\mu\text{g/L}$ (Limite inferior (LI): 24,62 – Limite superior (LS): 1036,24) e os valores de $CP_{50} = 2969,83 \,\mu\text{g/L}$ (LI: 604,85 – LS: 14581,92) foram obtidos da base de dados da EPA (Figura 14)

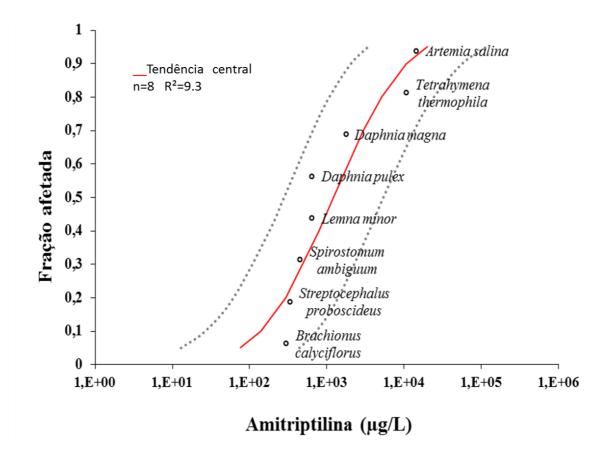


Figura 14 Distribuição de sensibilidade das espécies(SSD) com base em valores de CL50 para produtores primários, consumidores primários e secundários para a amitriptilina (µg/L).

2.5.1.2 SSD carbamazepina

As espécies mais sensíveis a esse FP são: Lumbriculus variegatus e Chinoromus riparus, e as espécies mais resistentes quando expostas a esse fármaco são: Brachionus koreanus e D. rerio. Os valores de $CP_5=6462,1~\mu g/L$ (LS: 10977,6~e~LI: 3804,6) e $CP_{50}=43144,6~\mu g/L$ (LS: 70953,6~e~LI: 26234,8) foram obtidos (Figura 15).



Figura 15 Distribuição de sensibilidade das espécies (SSD) com base em valores de CL50 para produtores primários, consumidores primários e secundários para a carbamazepina (µg/L).

2.5.1.3 SSD diazepam

Os organismos mais sensíveis a esse FP são: *Brachionus calyciflorus* e *Streptocephalus proboscideus*, e as espécies mais resistentes quando expostas a esse fármaco são: *Tetrahymena thermophila* e *Artemia salina*. Os valores de $CP_5 = 766,4 \mu g/L$ (LI: 28,56 - LS: 20565,3) e o $CP_{50} = 73780,4 \mu g/L$ (LI: 4769,2 - LS: 1141395,66) foram obtidos (Figura 16).

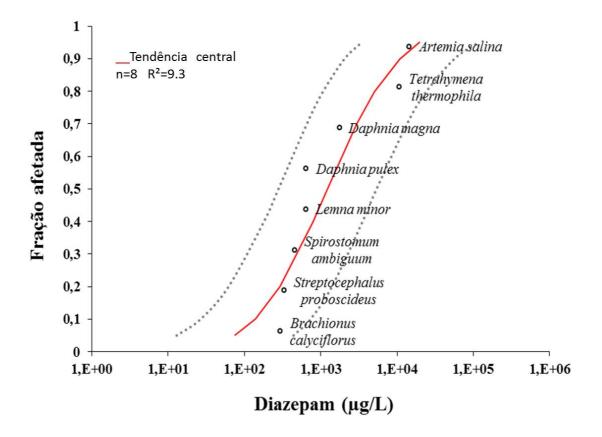


Figura 16 Distribuição de sensibilidade das espécies (SSD) com base em valores de CL50 para produtores primários, consumidores primários e secundários para o diazepam (μg/L).

2.5.1.4 SSD fluoxetina

Os organismos mais sensíveis a esse FP são: *Clorofilarella fusca var. vacuolata* e *Dunaliella tertiolecta*, e as espécies mais resistentes quando expostas a esse fármaco são: *Spirostomum ambiguum* e *Gambusia affinis*. Os valores de $CP_5 = 20,83 \mu g/L$ (LI:2,75 – LS: 158) e o $CP_{50} = 2565 \mu g/L$ (LI: 392,32 – LS: 16773,3) foram obtidos (Figura 17).

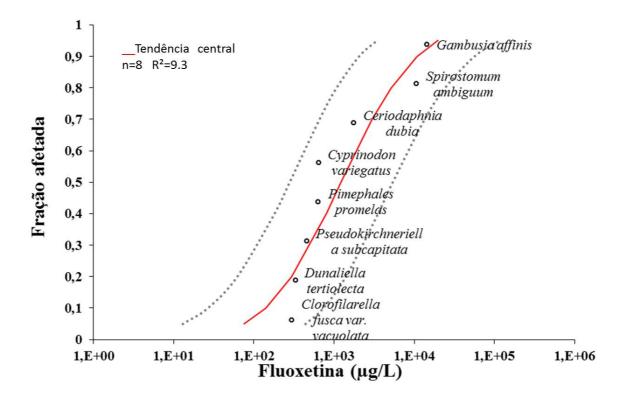


Figura 17 Distribuição de sensibilidade das espécies (SSD) com base em valores de CL50 para produtores primários, consumidores primários e secundários para a flouxetina (μg/L).

2.5.1.5 SSD sertralina

Os organismos mais sensíveis a esse FP são: *Clorofilarella fusca var. vacuolata* e *Dunaliella tertiolecta*, e as espécies mais resistentes quando expostas a esse fármaco são: *Spirostomum ambiguum* e *Gambusia affinis*. Os CP₅ = 41,24 µg/L (LI: 19,5 – LS: 87,26) e o CP₅₀ = 387,32 µg/L (LI: 202,16 – LS: 742) foram obtidos (Figura 18)

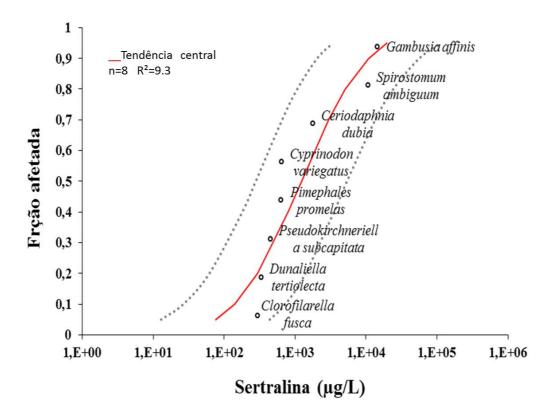


Figura 18 Distribuição de sensibilidade das espécies (SSD) com base em valores de CL50 para produtores primários, consumidores primários e secundários para a sertralina (µg/L).

2.5.1.6 SSD tioridazina

A tioridazina é um antipsicótico que pertence à subclasse dos atípicos. Os organismos mais sensíveis a esse FP são: *Brachionus calyciflorus* e *Streptocephalus proboscideus*, e as espécies mais resistentes quando expostas a esse fármaco são: *Tetrahymena thermophila* e *Artemia salina*. O $CP_5 = 75,59$ $\mu g/L$ (LI:12,46 – LS: 440,8) e o $CP_{50} = 1226,31$ $\mu g/L$ (LI: 279 – LS: 5386,6) (Figura 19).

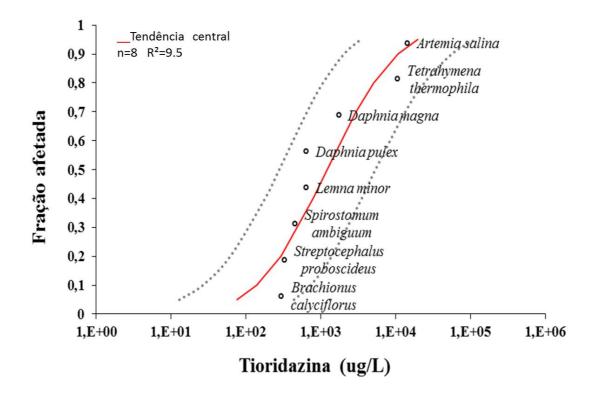


Figura 19 Distribuição de sensibilidade das espécies (SSD) com base em valores de CL50 para produtores primários, consumidores primários e secundários para a tioridazina (μg/L).

A distribuição de sensibilidade efetuada para os seis diferentes fármacos indica uma maior toxicidade da fluoxetina e sertralina, dois ISRS frequentemente detectados no meio ambiente, e a tioridazina um antipsicótico atípico com poucos estudos de ocorrência ambiental. Todos esses compostos apresentam efeitos letais em organismos aquáticos em concentrações próximas de 100 μg/L. Vale ainda salientar que efeitos subletais como alterações bioquímicas, comportamentais, entre outras, devem ocorrer em concentrações inferiores, provavelmente em nanogramas por litro. Estudos ecotoxicológicos crônicos com organismos aquáticos ainda são escassos inviabilizando o uso do método de SSD para derivação de concentrações de perigo (CP_x).

2.6. Considerações finais

Os fármacos de uso psiquiátrico estão dentre os mais consumidos no Brasil, reunindo uma grande variedade de moléculas. A avaliação dos impactos dos fármacos no meio ambiente e regulamentação desses é um desafio para os governos em todo mundo. Atualmente os métodos analíticos de detecção de fármacos em ecossistemas aquáticos possuem uma sensibilidade satisfatória, encontrando concentrações baixas em diferentes matrizes (Kummerer & Cunningham 2007; Kümmerer 2009), como: águas superficiais, ETEs, água potável, águas subterrâneas, sedimentos e organismos aquáticos vivos. Além disso, há uma grande variabilidade de técnicas para medir os efeitos adversos trazidos por compostos químicos a organismos não alvos, como: testes de embriotoxicidade, carcinogenese, teratogenese, bioquímicos, comportamentais entre outros. Porém, mesmo com a quantidade de ferramentas disponíveis para quantificar na biota e elucidar o potencial tóxico de fármacos observa-se, na atualidade, uma grande lacuna de conhecimento ecotoxicológico de tais compostos, no Brasil e em diversas partes do mundo. Poucos fármacos possuem estudos ecotoxicológicos e quando presentes esses são majoritariamente testes agudos não contemplando efeitos de longo prazo, baixas concentrações e/ou que considerem os modo de ação dos fármacos no SNC (ex. comportamento).

No Brasil a ANVISA tem o papel de regular e fiscalizar o uso, comércio e distribuição de fármacos, fazendo assim a avaliação de risco à saude humana de todos os fármacos antes que esses sejam inseridos no mercado. Contudo não há uma lei espcifica para avaliação dos riscos destes para o meio ambiente, seja aquático ou terreste. No caso da avaliação de produtos agrotóxicos existe a Lei dos Agrotóxicos. A tríade ANVISA-MAPA-IBAMA que são responsaveis pelo parecer final sobre o risco agrotóxicos a saúde humana e ambiental. Contudo, o Brasil ainda não possui uma metodologia estabelecida para padrões de qualidade da

água para a proteção da vida aquática para fármacos, incluído os de uso psiquiátrico (Umbuzeiro et al. 2010).

A resolução CONAMA nº 430 de 2011 (CONAMA 2011) estabelece condições e padrões de lançamento de efluentes e complementa a Resolução CONAMA nº 357 de 2005 (CONAMA 2005), estabelecendo que os efluentes de qualquer fonte poluidora somente poderão ser lançados diretamente no corpo receptor desde que obedeçam as condições e padrões previstos. Dentre eles, vale ressaltar que um efluente não deverá causar ou possuir potencial de toxicidade para organismos não alvos no corpo receptor. Desse modo, especial atenção deve ser dada à presença de fármacos nos efluentes de ETEs, haja vista que esses são a principal fonte de entrada desses em ecossistemas aquáticos.

Capítulo 03 – Materiais e métodos

Dissertação de Mestrado

2016

3.1. Material e métodos

O presente projeto de pesquisa foi aprovado pela comissão de ética no uso de animais da Universidade de Brasília –UnB, protocolo nº100226/2014 (Anexo 1).

3.1.1. Manutenção e coleta de ovos de peixe-zebra

Os embriões do peixe-zebra utilizados nos testes de embriotoxicidade foram fornecidos pelo sistema de cultivo do laboratório de Genética Toxicológica (G-Tox/UnB, Brasília), onde os peixes adultos são mantidos em um sistema recirculante de água, abastecido com água filtrada por carvão ativado e aerada para eliminação de cloro. As características físicas e químicas do sistema são mantidas em: pH 7,2 - 7,6; dureza 6.7° dH; temperatura de 26 ± 1 °C; condutividade 468 μS. A sala de aquários dispõe de um fotoperíodo de 12 h de luz e 12 h de escuro. Os peixes são alimentados de duas a três vezes ao dia com a ração comercial (SERAVipan[©]; Tetramin[©]) e alimentação viva (nauplii de *Artemia salina*).

Para a obtenção de embriões, grupos de peixes machos e fêmeas, na proporção de 1 : 2, respectivamente, foram colocados em aquários de 10 L, no dia anterior ao teste,

separados por uma barreira de acrílico. O fundo dos aquários de desova foram equipados com redes ou cobertos de bolas de gude para evitar a predação dos embriões pelos adultos. No dia posterior à preparação do acasalamento as barreiras foram retiradas pela manhã cinco minutos antes das luzes da sala de cultivo acenderem, permitindo, assim, o contato entre machos e fêmeas e, consequentemente, a desova. Repeitando o intervalo de desova entre 30 - 120 min, os peixes adultos foram recolhidos e devolvidos para o sistema de cultivo. A água dos aquários foi filtrada por uma peneira para a separação dos ovos, os quais foram lavados para remoção de restos de fezes e alimento. Posteriormente foi feita uma primeira triagem dos ovos viáveis a olho nú, seguida de uma seleção criteriosa dos ovos fertilizados ao estereomicroscópio (Sterioscopic STEMI 2000 - Zeiss) . Por fim, esses foram distribuídos, um ovo por poço, em microplacas de 24 poços, contendo as diferentes soluções teste. Para um melhor entendimento, um desenho esquemático é apresentado na figura 20.

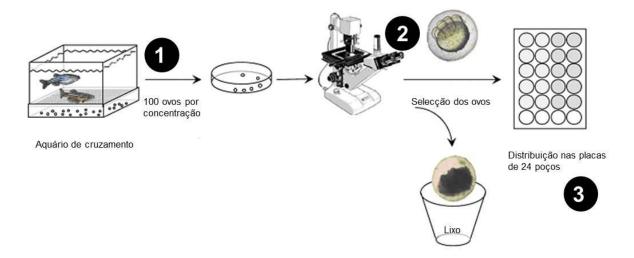


Figura 20 Esquema dos testes de toxicidade com embriões de peixe-zebra. Da esquerda para a direita: (1) os ovos são recolhidos dos aquários de cruzamento; (2) Os ovos são selecionados ao estereomicroscópio e os ovos não fertilizados ou defeituosos são descartados; (3) os ovos são distribuídos em placas de 24 poços. Adaptado de (Lammer et al., 2009).

3.1.2. Testes de toxicidade com embriões de peixe zebra (FET)

Os ensaios com embriões foram baseados no protocolo para avaliação de toxicidade da OCDE: Fish Embryo Toxicity – FET – Test (OECD 2013). Após o recolhimento dos ovos dos aquários de cruzamento, eles foram lavados e distribuídos imediatamente em microplacas com soluções de diferentes fármacos psicotrópicos/nanomateriais/ interações, para garantir o início da exposição nos estágios iniciais. Nas horas seguintes, os ovos foram inspecionados individualmente no estereomicroscópio, sendo descartados os não fertilizados (ovos inviáveis), os que apresentavam danos, irregularidades na clivagem, ou injúrias no córion.

A exposição foi realizada em microplacas de 24 poços com dois ml de cada concentração. Os testes foram condicionados em uma câmara climática com condições idênticas a sala de cultivo (ver seção anterior). As soluções teste foram preparadas com a água de cultivo de peixe-zebra (características físicas e químicas previamente descritas). Todos os testes foram feitos em triplicata com um total de 60 organismos por concentração. A duração dos testes variaram entre 96 h e 168 h.

Na fase de embrião, foi avaliada a mortalidade antes e após a eclosão (coagulação dos ovos e morte de embriões). Ademais, foram avaliadas alterações em parâmetros de desenvolvimento embrionário como: formação do otólito, pigmentação do corpo e olhos, formação dos somitos, presença de batimento cardíaco, separação da cauda do saco vitelíneo, edema, acúmulo de hemácias, líquido amniótico, absorção do saco vitelíneo, formação do telencéfalo e eclosão. Após a eclosão foram avaliados: pigmentação do corpo e olhos, batimento cardíaco, edema, acúmulo de hemácias,

absorção do saco vitelíneo, inflação da bexiga natatória, malformações da cauda, resposta ao estímulo mecânico (equilíbrio, definido como o embrião deitado lateralmente no fundo do poço da microplaca).

3.1.4.1. Testes com formulações comerciais

Testes preliminares de embriotoxicidade foram realizados com formulações comerciais de fármacos psicotrópicos com o objetivo de: (i) avaliar preliminarmente a toxicidade desses podendo assim investir de forma mais acertada em experimentos com compostos puros, os quais tem maior custo, (ii) Implementar e refinar o uso do protocolo de avaliação de toxicidade com embriões de peixe (Fish embryo toxicity test, OECD nº 236) e fármacos no Laboratório de Genética Toxicológica (G-Tox-UnB).

Os testes de embriotoxicidade foram realizados com um total de dezesseis fármacos psicotrópicos (Tabela 3). Em cada teste, de 7 - 9 concentrações de exposição foram utilizadas, incluindo um grupo controle.

Capítulo 03

Tabela 3 Descrição dos fármacos usados nos testes de toxicidade com embriões de peixe-zebra, concentrações e duração dos ensaios.

Princípio ativo	Nome comercial	Formulações	Solução estoque	Laboratório	Concentrações (mg/L)	Duração (h)
Agomelatina	Valdoxan	25 mg	500 mg/L	Servier	0; 01; 02; 04; 08; 16; 32; 64	168
Carbamazepina	Tegrezin	20 mg	400 mg/L	Cazi	0; 01; 3,23; 10,41; 33,61; 108,46; 350	120
Carbonato de lítio	Carbolitium	300 mg	600 mg/L	Eurofarma	0; 04; 7,9; 15,59; 30,78; 60,78; 120	168
Cloridrato de biperideno	Akineton	2 mg	400 mg/L	Abbott	01; 02; 4,2; 8,6; 17,5; 35,8; 73,3; 150	144
Cloridrato de bupropiona	Genérico	150 mg	500 mg/L	Eurofarma	0; 4,68; 9,37; 18,75; 37,5; 75; 150; 300	168
Cloridrato de fluoxetina	Genérico	20 mg	100 mg/L	EMS	0; 0,1; 0,27; 0,74; 2,02; 5,51; 15	120
Bromazepam	Lexotanil	6 mg	400 mg/L	Medley	0;0,35; 1,1; 35; 110,6; 350	168
Cloridrato de nortriptilina	Genérico	50 mg	500 mg/L	Ranbaxy	0; 1; 2,8; 7,9; 22,4; 63; 177,5; 500	168
Cloridrato de prometazina	Genérico	25 mg	500 mg/L	Prati donaduzzi	0; 05; 10; 20; 40; 80; 160	96
Cloridrato de sertralina	Genérico	50 mg	$10000~\mu g/L$	Legrand	0; 0,075; 0,015; 0,030; 0,060; 0,12; 0,24	96
Fumarato de quetiapina	Seroquel	200 mg	400 mg/L	Astrazeneca	0; 1; 2.2; 21.5; 46.4; 100	168
Hemitartarato de zolpidem	Noctiden	10 mg	350 mg/L	Biolab	0; 01; 1,4; 3,7; 7,2; 13,9; 26,8; 51,8; 100	168
Lamotrigina	Lamitor	100 mg	500 mg/L	Torrent	0; 1; 2,15; 4,64; 10; 21,54; 46,41; 100	168
Maleato de levomepromazina	Levozine	100 mg	200 mg/L	Cristália	0,005; 0,026; 0,13; 0,70; 3,68; 19,19; 100	168
Mirtazapina	Razapina	30 mg	500 mg/L	Sandoz	0; 01; 02; 04; 08; 16; 32; 64	168
Oxcarbazepina	Trileptal	600 mg	600 mg/L	Norvatis	0; 1; 3,16; 10; 31,62; 100; 316,22; 1000	168

3.1.4.2. Testes com compostos puros

Para a realização dos testes de embriotoxicidade, bioquímicos e comportamentais o princípio ativo de diferentes compostos, com pureza \geq 90%, foram obtidos por meio de doação de industrias farmacêuticas (Tabela 4).

Tabela 4 Concentrações dos fármacos usados nos testes de embriotoxicidade (168h) com principio ativo

Princípio ativo	Concentrações (mg/L)
Cloridrato de amitriptilina	0; 0.28; 0.79; 2.23; 6.3; 17.75 e 50
Cloridrato de bupropiona	0; 0.5; 1.29; 3.34; 8.66; 22.4; 58; 79.6; 109.3 e 150
Bromazepam	0; 3; 7; 17; 45; e 117
Cloridrato de fluoxetina	0; 0.1; 0.27; 0.74; 2.02; 5.51 e 15
Cloridrato de nortriptilina	0; 1; 2.81; 7.93; 22.36; 63; 177.48

Os testes de embriotoxicidade com compostos puros foram realizados com um total de cinco fármacos psicotrópicos (Tabela 4). Foi utilizada a mesma metodologia dos testes com formulações comerciais. A determinação das concentrações utilizadas foram baseadas nos testes preliminares.

3.1.4.3. Testes com nanomateriais

Os nanoestruturados de carbono 824 testados foram sintetizados no Departamento de Química da Universidade de São Paulo, campus de Ribeirão Preto, e fornecidos por meio de colaboração com o Prof. Dr. José M. Rosolen. As nanopartículas de titânio foram adquiridas pela Santra Cruz, Estados Unidos da América.

Os testes de embriotoxicidade de nanomateriais foram realizados com : nanoestruturas de carbono 824 e nanopartículas de titânio. Os embriões foram expostos a seis concentrações de nanoestruturados de

carbono 824 (0; 6,25; 12,5; 25; 50; 100 mg/L). Para o teste com nanopartículas de titânio, os embriões foram expostos a oito concentrações (0; 0,02; 0,1; 0,7; 3,7; 19,2; 42 e 100 mg/L). O tempo de exposição para ambos foi de 168 h.

3.1.4.4. Testes de interação entre nanomaterial e fármaco psiquiátrico.

Os testes de interações entre nanomateriais e fármacos psicotrópicos, nomeadamente: nanoestruturas de carbono 824 + fluoxetina e nanopartículas de titânio + bromazepam foram realizados seguindo a mesma metodologia, com uma ressalva, foi adicionado 1 ml das diferentes concentrações do fármacos psicotrópicos: 0; 0.2; 0.54; 1.48; 4.04; 11.02; 30 mg/L para fluoxetina e 0; 5.22; 13.5; 34.98; 90.42; 234 mg/L para o bromazepam, e 1 ml dos nanoestruturados de carbono 824 e nanopartículas de titânio (concentração de 20 mg/L), totalizando 2 ml de solução por poço. Com a mistura entre os dois compostos ocorre a diluição dos mesmos, sendo que as concentrações finais para cada teste são: 0; 0.1; 0.27; 0.74; 2.02; 5.51 e 15 mg/L para fluoxetina/ 10 mg/L de nanoestruturados de carbono 824, e 0; 2.61; 6.75; 17.49; 45.21; 117 mg/L para o bromazepam/ 10 mg/L de nanopartículas de titânio. O tempo de duração para os testes foi de 168 h.

3.1.3. Testes comportamentais com embriões de peixe-zebra.

Os testes de atividade locomotora de embriões eclodidos foram realizados com o equipamento Zebrabox, sistema de gravação comportamental, em colaboração com o Departamento de Biologia da Universidade de Aveiro, Portugal. Este sistema monitora movimentos usando a gravação de vídeo automatizada, o Zebrabox possui um suporte para microplacas equipado com luzes LED internas, para gravações na presença da luz, e iluminação infravermelha, para gravações no escuro, para além de uma câmera acessória para documentar os movimentos dos embriões eclodidos. Os fármacos testados foram:

amitriptilina, bupropiona, bromazepam, fluoxetina e nortriptilina. Duas gamas de concentrações foram utilizadas nos testes comportamentais com embriões de peixe-zebra, sendo elas:

- > 0, 0.6, 8.8, 158, 2812 e 50000 μg/L para a bupropiona e bromazepam.
- > 0, 0.06, 0.88, 1.58, 28, 500 μg/L para a amitriptilina, nortriptilina e fluoxetina.

Um volume de 300 µL de cada concentração foi distribuído em microplacas de 96 poços, obedecendo a um desenho experimental aleatório. Os embriões utilizados nos testes foram pré condicionados em placas de petri contendo as soluções dos diferentes fármacos psicotrópicos e, posteriormente, transferidos para as microplacas de 96 poços, um por poço. No fim da montagem do teste, as microplacas foram condicionadas em câmara climática. Os testes tiveram a duração de 168 h e o meio de exposição foi renovado às 72 h do teste. Após o período de eclosão dos organismos, uma leitura das microplacas foi realizada, às 168 h de exposição. No dia de leitura as microplacas foram cuidadosamente transferidas para o Zebrabox, onde os embriões eclodidos foram aclimatados durante 5 min, à luz. Os estudos foram conduzidos para avaliar o efeito dos fármacos psicotrópicos na atividade locomotora dos embriões eclodidos tanto na presença de luz quanto no escuro. Após a fase de aclimatação à luz, a atividade locomotora foi gravada em dois ciclos de claro e escuro alternados, com duração de 10 min para o escuro e 5 min no claro, num total de 15 min. Os dados de atividade locomotora foram obtidos por meio do cálculo de movimento dos embriões eclodidos, tendo em conta também a subtração dos objetos mais escuros (embriões) do background do fundo da microplaca. Para remover o ruído do sistema, um limiar de 0,135 mm (distância mínima deslocada para ser considerada nos cálculos dos parâmetros) foi utilizado para a filtragem de todos os dados. Parâmetros locomotores foram projetados para expressar as mudanças na atividade geral da natação resultantes do estresse físico ou químico de exposição aos fármacos psicotrópicos. As análises dos dados para cada embrião eclodido foi baseada nos parâmetros comportamentais

quantificados por meio da análise de movimento como descrito por del Carmen Alvarez & Fuiman (2005) e Murphy et al. (2008). Para cada embrião eclodido, foram compilados e utilizados como variáveis de resposta nas análises estatísticas os dados das medições de posição final, em cada intervalo de 1 min. Primeiramente, os dados de atividade total foram calculados com base em todos os embriões eclodidos ativos e não-ativos, após essa etapa, apenas os dados de embriões eclodidos ativos sem malformação foram avaliados e comparados.

3.5.1. Repetibilidade do teste

A repetibilidade dos testes de locomoção dos embriões de peixe-zebra foi avaliada por meio do cálculo do coeficiente de variação = desvio padrão de qualquer parâmetro comportamental dos embriões eclodidos no grupo controle / valor médio do referido parâmetro no mesmo grupo específico na fase de resposta visual x 100, dos embriões eclodidos no grupo controle (n = 16 para cada composto por réplica) durante a primeira fase escura do teste. Estes coeficientes são apresentados como valores percentuais.

3.1.7. Atividade enzimática das colinesterases

Para o teste de atividade das colinesterases (ChEs), embriões foram coletados e expostos às soluções com concentrações sub-letais de fármacos psicotrópicos, determinadas a partir da CL50 obtidas nos testes de embriotoxicidade. A exposição foi feita em cubas de vidro contendo 500 ou 1000 mL de solução, variando de teste para teste (**Tabela 5**). Os embriões foram expostos com o máximo de um embrião por mL de solução. Para todos os testes o meio de exposição foi renovado às 72 h. Após 168 h, de 5 a 10 grupos de 4 a 15 embriões, por tratamento, foram coletados em tubos de criopreservação e congelados para análise posterior da atividade das ChEs com dois diferentes substratos: acetilcolina e propionilcolina.

Tabela 5 Descrição dos fármacos utilizados nos testes de neuromarcadores (colinesterases) com embriões de peixe-zebra, concentrações testadas e duração dos ensaios.

Princípio ativo	Concentrações (mg/L)	Numero de amostras por concentração	Número de larvas	Volume de tampão	Total de amostras
Cloridrato de bupropiona	0; 0;0098; 0;158; 2;81; 50	7	4	0,5 ml	52
Bromazepam	0; 0,0098; 0,158; 2,81; 50	7	4	0,25 ml	35
Cloridrato de nortriptilina	0; 0,006; 0,088; 1,58; 28; 500; 1000 μg/L	10	10	0,35 ml	70
Cloridrato de amitriptilina	0; 0,006; 0,088; 1,58; 28; 500 μ g/L	10	5	0,25 ml	50
Cloridrato de fluoxetina	0; 0,001; 0,006; 0,032; 0,185; 1,05	7	15	0,5 ml	66

No dia da análise enzimática, as amostras de embriões foram descongeladas a 4 °C e homogeneizadas com sonicador (Bronson Ultrassonic Sonifier 450, Danbury, US). Em seguida, as amostras foram centrifugadas durante 20 min a 11.500 rpm para isolar o sobrenadante pós-mitocondrial (SPM) (Jesus et al. 2013). As determinações enzimáticas seguiram métodos espectrofotométricos (Spectra Max M2 – Molecular Devices) em quadruplicatas, em microplacas de 96 poços.

A atividade das ChEs foi determinada usando, separadamente, acetilcolina e propionilcolina como substrato. O aumento da absorbância, resultante do produto da conjugação entre tiocolina (um produto da degradação da acetilcolina ou propionilcolina) e ácido 5,5-ditiobis-2-nitrobenzóico (DTNB) em PBS foi medido no comprimento de onda de 414 nm em intervalos de 40 s durante 5 min (Ellman et al. 1961). As determinações da atividade enzimática foram feitas utilizando 40 μl da amostra, 250 μl da solução de reação (acetilcolina ou propionilcolina (7,5 mM para ambos subtratos) e DTNB (10 mM) em PBS (0,1 M, pH 7,2)).

3.1.8. Análises estatísticas

O pacote estatístico Sigma Stat 3.5 foi utilizado para analisar os dados obtidos no presente estudo (SPSS 2004). Com o intuito de avaliar se os fármacos psicotrópicos causaram diferenças significativas nos parâmetros analisados, os grupos de exposição foram comparados com o controle por meio

de uma análise de variância (ANOVA). Nos casos em que os dados passaram pelo teste de normalidade (*Kolmogorov–Smirnov*) e pelo teste de homogeneidade de variância (*Levene's*), uma ANOVA de uma via foi realizada, seguida do teste *post-hoc* de Dunnett. Já para nos casos em que os dados não passaram pelo teste de normalidade e homogeneidade de variância, o teste não paramétrico de *Kruskal–Wallis* foi utilizada, seguida do teste *post-hoc* de *Dunn's*. As concentrações de efeito (CE50) e concentrações letais (CL50) foram calculadas utilizando função logística, weibull, ou sigmóide. Todas as análises estatísticas tiveram como base o nível de significância de 0,05.

Capítulo 04 – Resultados e discussão

Dissertação de Mestrado

2016

4.1. Resultados dos testes com formulações

As concentrações letais em peixe-zebra para os 16 fármacos psicotrópicos testados estão localizados no apêndice 1(gráficos) e na tabela 6 (exceto para o carbonato de lítio e lamotrigina para os quais, às 168 h de exposição, o valor da CL50 foi superior a maior concentração testada). Em resumo, baseando-se nos valores de CL50 obtidos para os fármacos psicotrópicos, pôde-se estabelecer o seguinte ranking decrescente de toxicidade: (1) cloridrato de sertralina (96 h CL50 = 0.019 mg/L) > (2) maleato de levomepromazina (168 h CL50 = 1,39 mg/L) > (3) cloridrato de nortriptilina (168 h CL50 = 2,9 mg/L) > (4) cloridrato de fluoxetina (120 h CL50 = 3,31 mg/L) > (5) cloridrato de prometazina (96 h CL50 = 7,97 mg/L) > (6) cloridrato de biperideno (144 h CL50 = 11,29 mg/L) > (7) hemitartarato de zolpidem (168 h CL50 = 17,51 mg/L) > (8) fumarato de quetiapina (168 h CL50 = 24,13 mg/L) (9) agomelatina (168 h CL50 = 31,11 mg/L) > (10) mirtazapina (168 h CL50 = 31,39 mg/L) > (11) carbamazepina (144 h CL50 = 86,33 mg/L) > (12) bromazepam (168 h CL50 = 96,72 mg/L) > (13) cloridrato de bupropiona (168 h CL50 = 103 mg/L) > (14) oxcarbazepina (168 h CL50 = 217,6 mg/L).

Tabela 6 Concentrações letais em mg/L (± erro padrão) de diferentes fármacos psicotrópicos utilizando o teste de toxicidade com embriões de peixe-zebra.

Fármacos/Tempo de exposição	CL50	Model (R ²)
Agomelatina		
24h	38.01 ± 1.91	Logística 4- parâmetros (0.99)
48h	37.57 ± 1.66	Logística 4- parâmetros (0.99)

Tabela 6 Concentrações letais em mg/L (± erro padrão) de diferentes fármacos psicotrópicos utilizando o teste de toxicidade com embriões de peixe-zebra.

Tármacos/Tempo de exposição	CL50	Model (R ²)
72h	37.57 ± 1.66	Logística 4- parâmetros (0.99)
96h	33.56 ± 3.36	Logística 4- parâmetros (0.99)
120h	32.52 ± 2.13	Logística 4- parâmetros (1)
144h	32.26 ± 2.51	Logística 4- parâmetros (0.99)
168h	31.11 ± 16.37	Sigmóide 4-parâmetros (0.99)
Bromazepam		
120h	94.14 ± 25.08	Logística 4- parâmetros (0.95)
144h	82.25 ± 14.56	Logística 4- parâmetros (0.96
168h	77.21 ± 24.84	Logística 4- parâmetros (0.94)
Carbamazepina		
96h	160.8 ± 123.7	Sigmóide 4- parâmetros (0.98
120h	$147.2 \pm \text{n.d}$	Sigmóide 4- parâmetros (0.98
Cloridrato de biperideno		
72h	$21.46 \pm \text{n.d}$	Sigmóide 5-parâmetros (0.97)
96h	15.54 ± 0.40	Logística – 4 parâmetros (0.99
120h	15.28 ± 1.47	Weibull 5- parâmetros (0.99)
144h	$11.29 \pm n.d$	Sigmóide 5-parâmetros (0.98)
Cloridrato de bupropiona		
120h	$108.6 \pm \text{n.d}$	Weibull – 4 parâmetros (0.85)
144h	$108.2 \pm \text{n.d}$	Weibull – 4 parâmetros (0.80
168 h	103.2 ± 34.17	Weibull 4- parâmetros (0.76)
Cloridrato de fluoxetine		•
96h	6.09 ± 0.0	Sigmóide 4-parâmetros (0.98)
120h	3.31 ± 0.0	Sigmóide 5-parâmetros (0.98)
Cloridrato de nortriptilina		
24h	75.84 ± 17.58	Logística – 4-parâmetros (0.99
48h	28.65 ± 2.46	Logística – 4-parâmetros (0.99
72h	22.43 ± 154.2	Sigmóide 4-parâmetros (0.98)
96h	14.79 ± 0.0	Weibull 5- parâmetros (0.98)
120h	7.30 ± 0.0	Weibull 5- parâmetros (0.99)
144h	4.88 ± 0.0	Logística – 4-parâmetros (0.99
168h	2.90 ± 0.43	Sigmóide 5-parâmetros (0.99)
Cloridrato de prometazina	2.50 — 0.10	~-6 Paramer as (0.77)
24h	45.82 ± 33.42	Logística – 4 parâmetros (0.99
48h	41.09 ± 0.5	Logística – 4 parâmetros (0.99
72h	21.18 ± 1.27	Logística – 4 parâmetros (0.99
96h	$7.97 \pm \text{n.d}$	Sigmóide 5-parâmetros (0.98)
Cloridrato de sertralina	1.21 = 11.u	Diginorae 5 parametros (0.76)

Tabela 6 Concentrações letais em mg/L (± erro padrão) de diferentes fármacos psicotrópicos utilizando o

teste de toxicidade com embriões de peixe-zebra.

Fármacos/Tempo de exposição	CL50	Model (R ²)
72h	0.052 ± 0.0	Logística – 4 parâmetros (0.99)
96h	0.019 ± 0.0	Logística – 4 parâmetros (0.99)
Fumarato de quetiapina		
24h	$58.78 \pm \text{n.d}$	Weibull 4- parâmetros (0.76)
48h	$56.57 \pm \text{n.d}$	Weibull 4- parâmetros (0.66)
72h	$53.34 \pm \text{n.d}$	Weibull 4- parâmetros (0.67)
96h	$35.14 \pm \text{n.d}$	Weibull 4- parâmetros (0.74)
120h	$33.46 \pm \text{n.d}$	Weibull 4- parâmetros (0.74)
144h	$31.60 \pm \text{n.d}$	Weibull 4- parâmetros (0.57)
168h	$24.13 \pm \text{n.d}$	Weibull 4- parâmetros (0.50)
Hemitartarato de zolpidem		
72h	31.48 ± 10.51	Logística – 4 parâmetros (0.85)
96h	20.77 ± 2.02	Logística – 4 parâmetros (0.92)
120h	17.75 ± 1.69	Logística – 4 parâmetros (0.93)
144h	17.23 ± 1.49	Logística – 4 parâmetros (0.94)
168h	17.51 ± 1.57	Logística – 4 parâmetros (0.93)
Maleato de levomepromazina		
24h	83.70 ± 0.0	Logística – 4 parâmetros (0.96)
48h	15.21 ± 1.75	Logística – 4 parâmetros (0.96)
72h	$5.63 \pm \text{n.d}$	Logística – 4 parâmetros (0.98)
96h	$5.57 \pm \text{n.d}$	Logística – 4 parâmetros (0.98)
120h	4.96 ± 1.14	Logística – 4 parâmetros (0.98)
144h	1.80 ± 0.17	Logística – 4 parâmetros (0.99)
168h	1.39 ± 0.26	Logística – 4 parâmetros (0.99)
Mirtazapina		
24h	65.49 ± 0.0	Weibull 5- parâmetros (0.95)
48h	38.95 ± 3.1	Sigmóide 3-parameters (0.96)
72h	35.76 ± 4.19	Sigmóide 3-parameters (0.97)
96h	35.76 ± 4.18	Sigmóide 3-parameters (0.97)
120h	35.02 ± 4.83	Sigmóide 3-parameters (0.97)
144h	33.95 ± 6.43	Sigmóide 3-parameters (0.97)
168h	31.39 ± 27.79	Sigmóide 3-parameters (0.97)
Oxcarbazepina		
168h	217.6 ± 24.81	Sigmóide 3-parameters (0.92)

 $[*]n.d = n\tilde{a}o determinado.$

4.2. Resultados dos testes com compostos puros

As concentrações letais para os cinco princípios ativos de fármacos psicotrópicos testados, nomeadamente: amitriptilina, bupropiona, bromazepam, fluoxetina e nortriptilina são apresentadas na tabela 7. Exceto para o bromazepam, às 168 h de exposição, o valor da CL50 foi superior a maior concentração testada.

Tabela 7 Concentrações letais em mg/L (± erro padrão) de diferentes fármacos psicotrópicos (princípio ativo puro) utilizando o teste de toxicidade com embriões de peixe-zebra..

Fármacos/Tempo de exposição	CL50	Model (R ²)
Cloridrato de amitriptilina		
24h	19.29 ± 1.87	Sigmóide 3- parâmetros (0.98)
48h	11.62 ± 0.0	Sigmóide 5- parâmetros (0.99)
72h	10.84 ± 3.83	Sigmóide 3- parâmetros (0.99)
96h	10.06 ± 1.85	Sigmóide 3- parâmetros (0.99)
120h	8.04 ± 0.0	Sigmóide 3- parâmetros (0.99)
144h	5.65 ± 0.0	Sigmóide 3- parâmetros (0.99)
168h	3.65 ± 0.0	Sigmóide 3-parâmetros (0.99)
Cloridrato de bupropiona		
144h	122.2 ± 0.0	Weibull 4- parâmetros (0.85)
168h	111.8 ± 5.82	Weibull 4- parâmetros (0.97)
Cloridrato de fluoxetina		
96h	10.25 ± 3.17	Sigmóide 3-parâmetros (0.97)
120h	3.08 ± 0.0	Sigmóide 5-parâmetros (0.99)
144h	2.11 ± 0.0	Sigmóide 5-parâmetros (0.98)
168h	1.37 ± 0.0	Sigmóide 3-parâmetros (0.99)
Cloridrato de nortriptilina		
24h	29.51 ± 0.0	Sigmóide 5- parâmetros (0.99)
48h	$29,51 \pm 0.0$	Sigmóide 5- parâmetros (0.99)
72h	28.92 ± 5.91	Sigmóide 3- parâmetros (0.99)
96h	10.00 ± 0.0	Sigmóide 5- parâmetros (0.99)
120h	8.02 ± 8.53	Sigmóide 5- parâmetros (0.99)
144h	7.43 ± 8.40	Sigmóide 5- parâmetros (0.99)
168h	2.16 ± 0.0	Logística 4-parâmetros (0.99)

4.2.1. Amitriptilina

4.2.1.1 Testes de embriotoxicidade

- Gráfico resumo

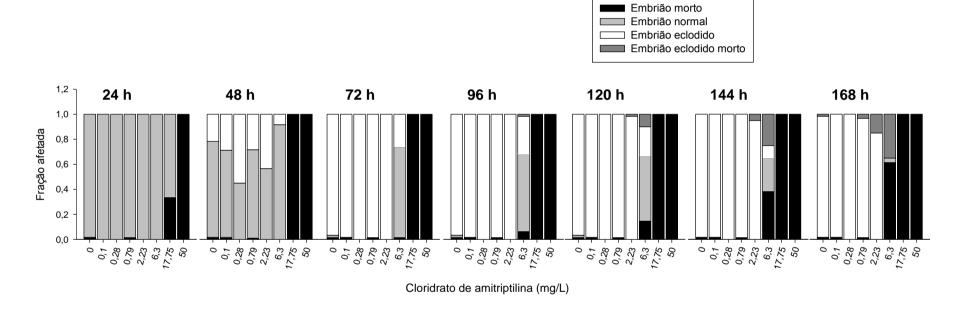


Figura 21 Visão geral do teste de toxicidade com embriões de peixe-zebra durante as 168 h de exposição ao cloridrato de amitriptilina.

A mortalidade aumenta progressivamente com o tempo de exposição nas concentrações mais altas de amitriptilina. A CL50 às 168 h de exposição é de 3.65 mg/L (Figuras 21 e 22).

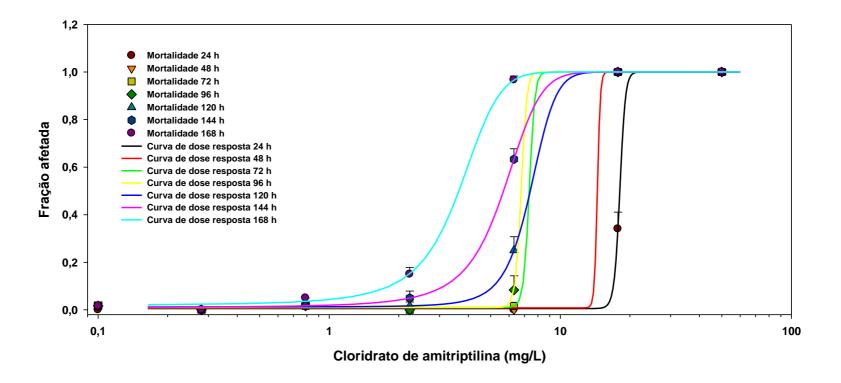


Figura 22 Mortalidade dos indivíduos expostos ao cloridrato de amitriptilina (valores médios ± erro padrão) ao longo de 168 h de exposição.

Foi observado, às 72 h de exposição, que aproximadamente 30 % dos embriões expostos à concentração de 6.3 mg/L de amitriptilina apresentaram atraso na eclosão (Tabela 8). Esse efeito precede a morte dos organismos ao longo do teste. Não foi observado efeito nas maiores concentrações devido a mortalidade dos embriões

Tabela 8 Porcentagem de eclosão dos embriões de peixe-zebra expostos ao cloridrato de amitriptilina ao longo de 168 h.

AMT (mg/L)	48 h	72 h	96 h	120 h	144 h	168 h
0	21,7 (4,4)	98,3 (1,7)	98,3 (1,7)	98,3 (1,7)	100(0)	-
0,1	28,8 (5,9)	100(0)	-	-	-	-
0,28	55 (5)	100(0)	-	-	-	-
0,79	28,3 (3,3)	100(0)	-	-	-	-
2,23	43,3 (6,7)	100(0)	-	-	-	-
6,3	8,3 (1,7)	26,7 (6)	34,6 (9,8)	34,6 (9,8)	35 (8,7)	35 (8,7)

[&]quot;-" Não avaliado

Às 72 h de exposição, os embriões expostos às concentrações de 0.79 e 2.23 mg/L não apresentaram respostas aos estímulos mecânicos. Vale ressaltar que o efeito é medido em embriões eclodidos vivos, os organismos expostos a concentração de 6.3 mg/L tiveram a eclosão inibida devido a ação do químico. O efeito não é observado nas maiores concentrações devido a mortalidade dos organismos. Às 120 h de exposição, 100 % dos embriões expostos à concentração de 2.23 mg/L e mais de 70 % dos organismos expostos à concentração de 0.79 mg/L não respondiam aos estímulos mecânicos. (Figura 23).

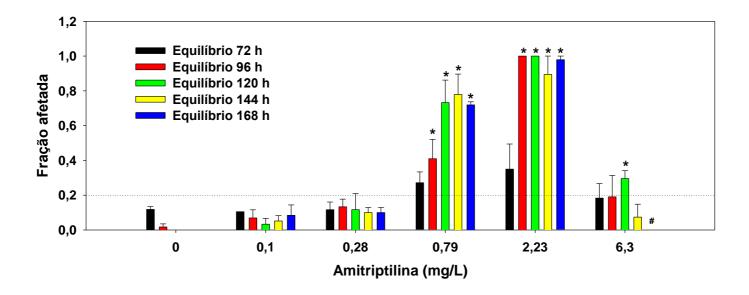


Figura 23 Efeitos do cloridrato de amitriptilina no equilíbrio de embriões eclodidos de peixe-zebra durante 168 h de exposição (Valores médios \pm erro padrão). Teste de Dunn's (p < 0,05).

As alterações no desenvolvimento observadas ao longo do teste foram: edema e malformações da cauda (Figura 24 e 25)..

- Às 144 h de exposição:aproximadamente 20 % dos organismos expostos a concentração de 6.3 mg/L de amitriptilina, observou-se edemas nos embriões eclodidos vivos. Esse efeito precede a morte dos mesmos no dia posterior.
- Às 168 h de exposição: aproximadamente 20 % dos organismos expostos a concentração de 2.23 mg/L apresentaram malformação da cauda.

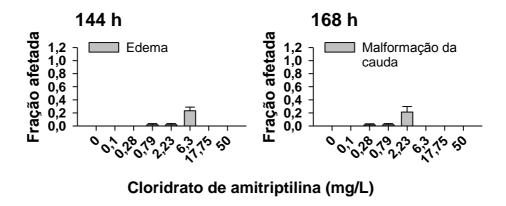


Figura 24 Malformações no desenvolvimento após exposição por 168 h ao cloridrato de amitriptilina (valores médios ± erro padrão).

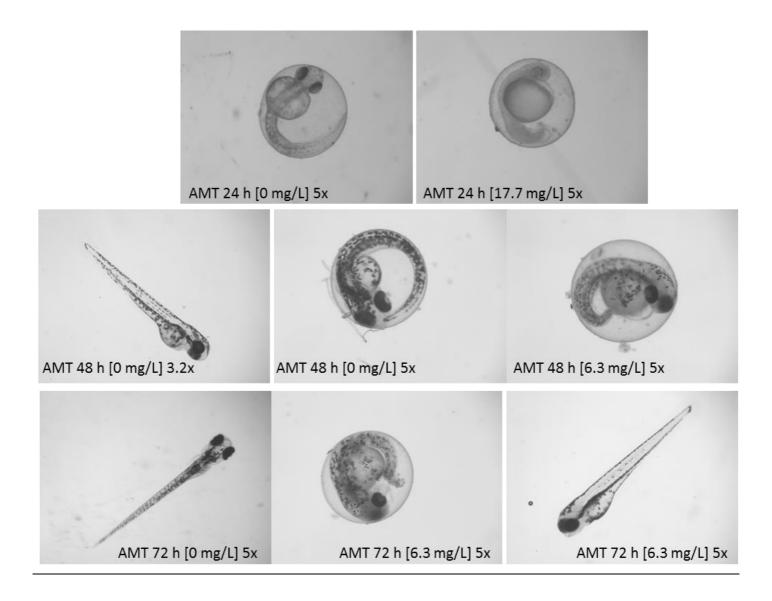


Figura 25 Fotodocumentação das alterações no desenvolvimento após exposição por 168 h ao cloridrato de amitriptilina.

4.2.1.2 Testes de bioquímicos

Foi observado um aumento significativo da atividade da AChE (substrato: PCh) nos organismos expostos a concentração de 1,58 µg/L de amitriptilina (Figura 26).

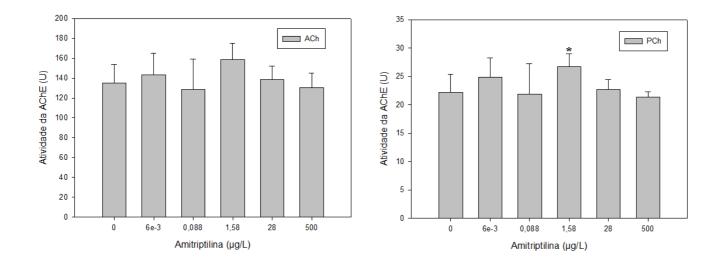


Figura 26 Quantificação da atividade da acetilcolinesterase com diferentes substratos, acetilcolina e propionilcolina, após exposição por 168 h ao cloridrato de amitriptilina (valores médios \pm erro padrão). Teste de Dunn's (p < 0,05).

4.2.1.3 Testes comportamentais

Foi observado que os embriões expostos à concentração de 28 µg/L tiveram uma diminuição significativa no tempo total de nado comparado ao controle (Figura 27). Não foram observados efeitos significativos nos organismos expostos as demais concentrações de amitriptilina para esse parâmetro e distância total percorrida.

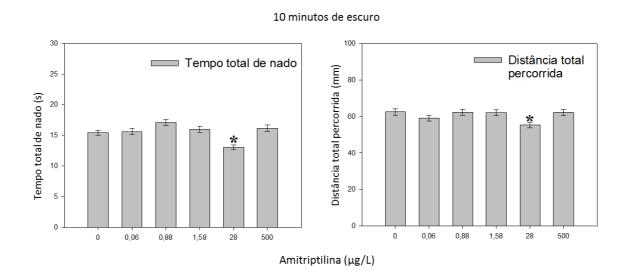


Figura 27 Tempo total de nado e distância total percorrida após 168 h de exposição ao cloridrato de amitriptilina (valores médios \pm erro padrão). Teste de Dunn's (p < 0,05).

4.2.2. Bupropiona

4.2.2.1 Testes de embriotoxicidade

- Gráfico resumo

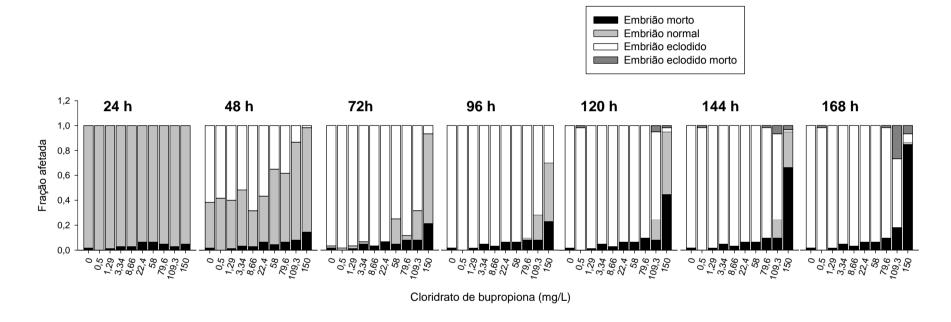


Figura 28 Visão geral do teste de toxicidade com embriões de peixe-zebra durante as 168 h de exposição ao cloridrato de bupropiona.

A mortalidade aumenta progressivamente com o tempo de exposição nas concentrações mais altas de bupropiona, 109,3 e 150 mg/L. A CL50 às 168 h de exposição é de 111.8 mg/L (Figuras 28 e 29).

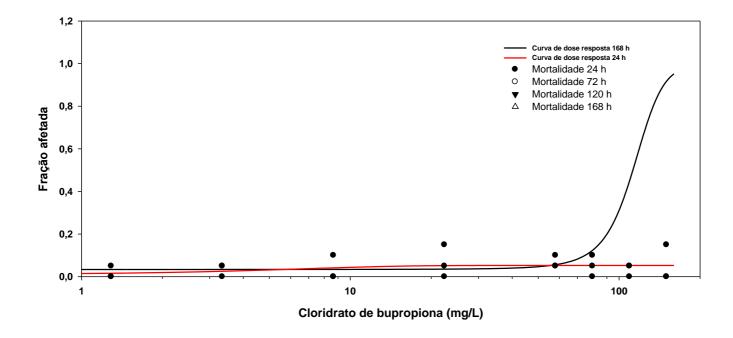


Figura 29 Mortalidade dos indivíduos expostos ao cloridrato de bupropiona (valores médios ± erro padrão) ao longo de 168 h de exposição.

Foi observado, às 48 h de exposição, que os embriões expostos às concentrações a partir de 58 mg/L de bupropiona apresentaram atraso na eclosão (Tabela 9). Porém, no decorrer do teste esse efeito é mantido apenas para as duas maiores concentrações 109,3 e 150 mg/L, inibindoa eclosão de aproximadamente 20 % e 80 %, respectivamente, às 168 h de exposição.

Tabela 9 Porcentagens de eclosão para organismos expostos durante 168 h ao cloridrato de bupropiona.

BPP (mg/L)	48 h	72 h	96 h	120 h	144 h	168 h
0,0	61,7 (3,3)	98,3 (1,7)	100 (0)	-	-	-
0,5	58,3 (6)	98,3 (1,7)	100 (0)	-	-	-
1,3	60 (2,9)	98,2 (1,8)	100 (0)	-	-	-
3,4	51,7 (6,7)	98,1 (1,9)	100 (0)	-	-	-
8,7	68,3 (1,7)	100 (0)	-	-	-	-
22,4	56,7 (1,7)	100 (0)	-	-	-	-
58	35 (76,2)	78,5 (5,9)	100 (0)	-	-	-
79,6	38,3 (58,9)	96,7 (174,8)	98,3 (178,3)	98,3 (178,3)	98,3 (178,3)	98,3 (178,3)

	BPP (mg/L)	48 h	72 h	96 h	120 h	144 h	168 h
_	109,3	13,3 (19,4)	74,8 (89,1)	78,3 (116,6)	78,3 (116,6)	78,3 (116,6)	82,8 (128,8)
	150	1,7 (3,3)	8,3 (13,8)	35,6 (67,8)	38,9 (69,5)	38,9 (69,5)	41,7 (70,9)

[&]quot;-" Não avaliado

Às 120 h, aproximadamente 70 % dos embriões expostos as concentrações a partir de 58 mg/L não respondiam aos estímulos mecânicos. No final do teste, às 168 h, aproximadamente 50 % dos organismos expostos a concentração de 22.4 mg/L também não apresentaram respostas aos estímulos mecânicos (Figura 30). Ao final do teste a CE 50 (equilíbrio) estava entre 22.4 e 58 mg/L.

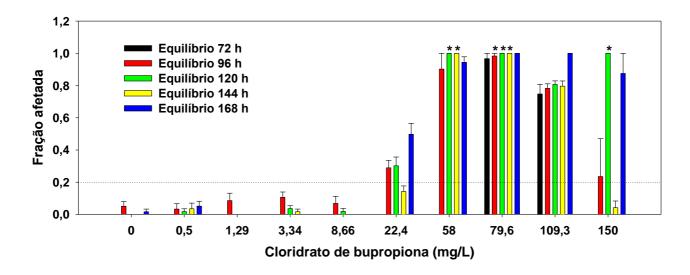


Figura 30 Efeitos do cloridrato de bupropiona no equilíbrio de embriões eclodidos de peixe-zebra durante 168 h de exposição (Valores médios \pm erro padrão). Teste de Dunn's (p < 0,05).

As alterações acima de 20 % no desenvolvimento observadas ao longo do teste foram: eclosão parcial, edema e malformações da cauda (Figuras 31 e 32).

- Às 72 h de exposição: aproximadamente 40 % dos organismos expostos a concentração de 109.3 mg/L de bupropiona, apresentaram eclosão parcial (organismos não conseguiram sair totalmente do ovo).
- Às 144 h de exposição: os organismos expostos a concentrações de 22.4 mg/L até 109,3 mg/L apresentaram malformação da cauda e edemas, fato que precede a morte de alguns organismos. Esses efeitos também são encontrados nos poucos organismos vivos às 168 h.

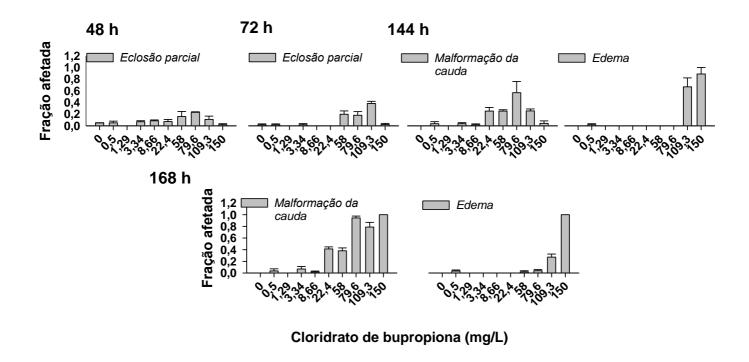


Figura 31 Malformações no desenvolvimento após exposição por 168 h ao cloridrato de bupropiona (valores médios ± erro padrão).

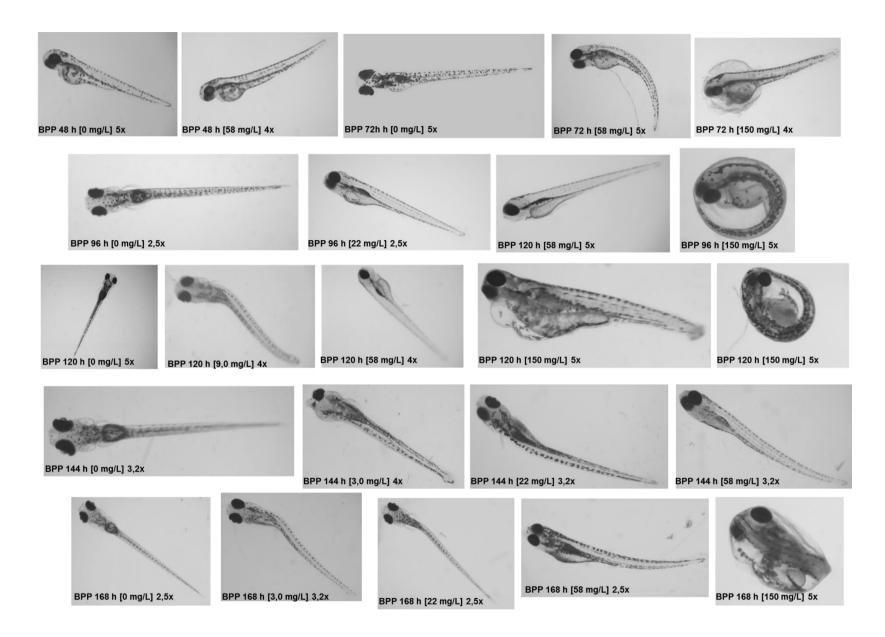


Figura 32 Fotodocumentação das alterações no desenvolvimento após exposição por 168 h ao cloridrato de bupropiona.

4.2.2.2 Testes de bioquímicos

Não foi observado efeitos significativos na atividade da AChE (substratos: ACh e PCh) nos organismos expostos à diferentes concentrações do cloridrato de bupropiona (Figura 33).

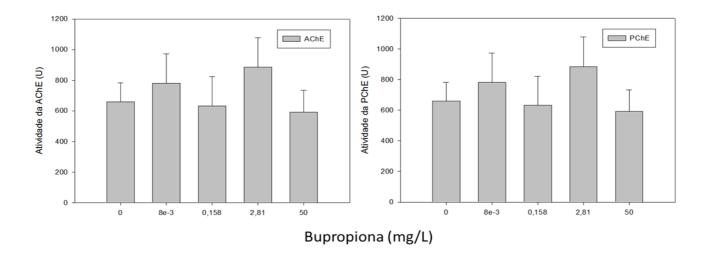
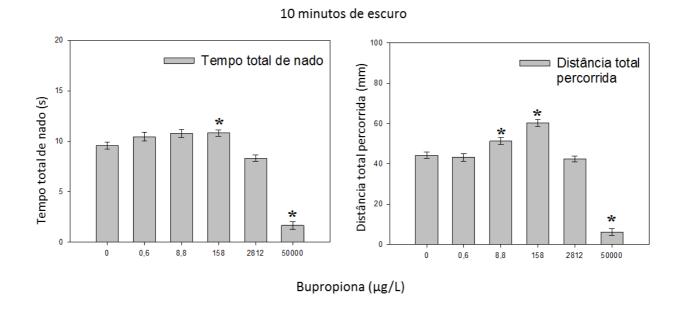



Figura 33 Quantificação da atividade da acetilcolinesterase utilizando diferentes substratos, acetilcolina e propionilcolina, após exposição por 168 h à bupropiona (valores médios ± erro padrão).

4.2.2.3 Testes comportamentais

Foi observada uma alta atividade no tempo total de nado nos embriões expostos a concentração de 158 μg/L e uma baixa atividade nos organismos expostos à concentração de 50000 μg/L. Observou-se também um aumento significativo da distância total percorrida nos organismos expostos às concentrações de 8.8 e 158 μg/L, além de uma diminuição significativa nos organismos expostos à concentração de 50000 μg/L de bupropiona (Figura 34).

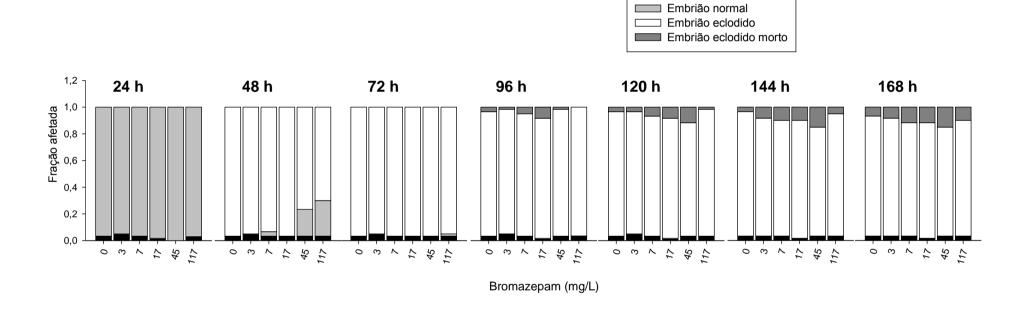


Figura 34 Tempo total de nado e distância total percorrida após exposição por 168 h à bupropiona (* ANOVA *on Ranks*) (valores médios ± erro padrão). Teste de Dunn's (p < 0,05).

4.2.3. Bromazepam

4.2.3.1 Testes de embriotoxicidade

- Gráfico resumo

■ Embrião morto

Figura 35 Visão geral do teste de toxicidade com embriões de peixe-zebra durante as 168 h de exposição ao bromazepam.

Não foi possível determinar uma CL50 às 168 h para o bromazepam devido as concentrações testadas, a CL50 está acima da última concentração testada, 117 mg/L (Figura 35).

Foi observado, às 48 h de exposição que os embriões expostos as duas últimas concentrações, 45 e 117 mg/L, apresentaram inibição da eclosão, entretanto no dia posterior os organismos eclodem normalmente, ficando no mesmo mesmo nível do grupo controle (Tabela 10).

Tabela 10 Porcentagens de eclosão dos embriões de peixe-zebra expostos ao bromazepam ao longo de 168 h.

BRO (mg/L)	48 h	72 h	96 h	120 h	144 h	168 h
0	96,7 (1,7)	100(0)	-	-	-	-
3	95 (2,9)	100(0)	-	-	-	-
7	93,3 (1,7)	100(0)	-	-	-	-
17	96,7 (1,7)	100(0)	-	-	-	-
45	76,7 (6,7)	100(0)	-	-	-	-
117	70 (7,6)	98,2 (1,8)	100(0)	-	-	-

[&]quot;-" Não avaliado

Efeitos no equilíbrio foram observados somente na última concentração testada, 117 mg/L, às 120 h de exposição, precedendo a morte de aproximadamente 15 % dos organismos (Figura 36).

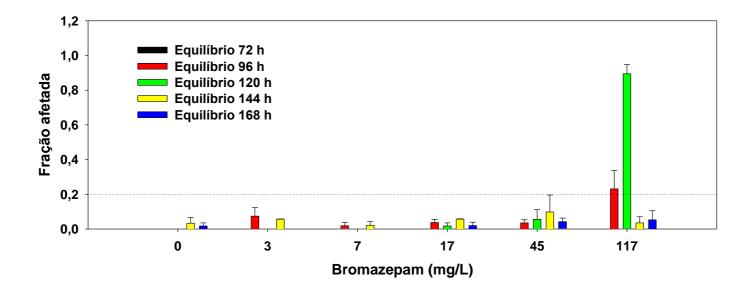


Figura 36 Efeitos do bromazepam no equilíbrio de embriões eclodidos de peixe-zebra durante 168 h de exposição (Valores médios ± erro padrão).

A única alteração no desenvolvimento observada ao longo do teste foi: malformação da cauda.

- Às 144 h e 168 h de exposição: todas as concentrações testadas apresentaram essa alteração do desenvolvimento, sendo que os organismos mais afetados foram os da concentração de 117 mg/L (aproximadamente 60 % dos organismos) (Figuras 37 e 38).

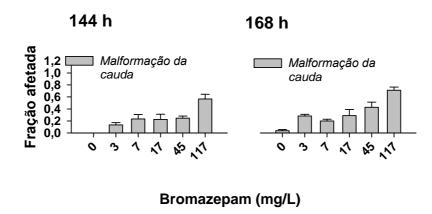


Figura 37 Malformações no desenvolvimento após exposição por 168 h ao bromazepam (valores médios \pm erro padrão)

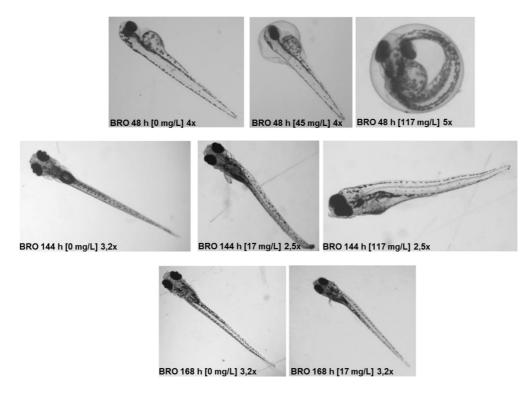


Figura 38 Fotodocumentação das alterações no desenvolvimento após exposição por 168 h ao bromazepam

4.2.3.2 Testes de bioquímicos

Não foram observados efeitos significativos na atividade da AChE utilizando diferentes substratos (ACh e PCh) nos organismos expostos ao bromazepam (Figura 39).

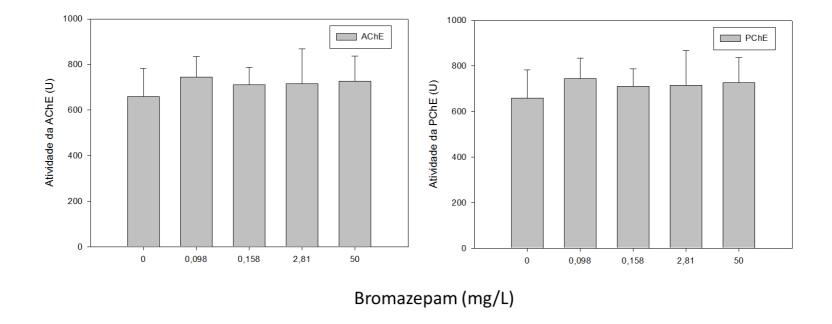


Figura 39 Quantificação da atividade da acetilcolinesterase utilizando diferentes substratos, acetilcolina e propionilcolina, após exposição por 168 h ao bromazepam (valores médios ± erro padrão). Teste de Dunn's (p < 0,05).

4.2.3.3 Testes comportamentais

Foi observada uma diminuição significativa do tempo total de nado nos organismos expostos às concentrações a partir de 158 μg/L. Além disso, observou-se também um aumento significativo da distância total percorrida nos organismos expostos às concentrações de 0,6 e 8,8 μg/L e uma diminuição significativa nos organismos expostos a maior concentração, 50000 μg/L (Figura 40).

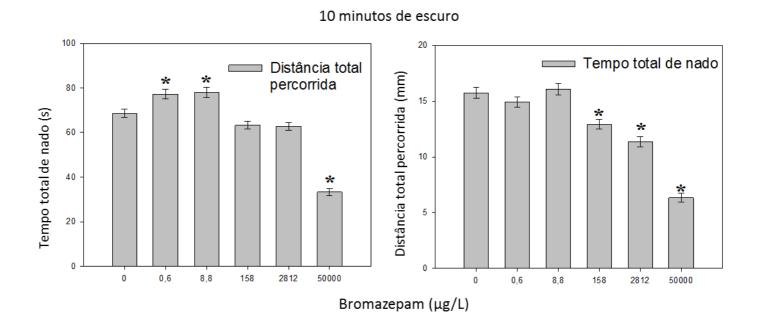


Figura 40 Tempo total de nado e distância total percorrida por 168 h de exposição ao bromazepam (valores médios \pm erro padrão). Teste de Dunn's (p < 0,05).

4.2.4. Fluoxetina

4.2.4.1 Testes de embriotoxicidade

- Gráfico resumo

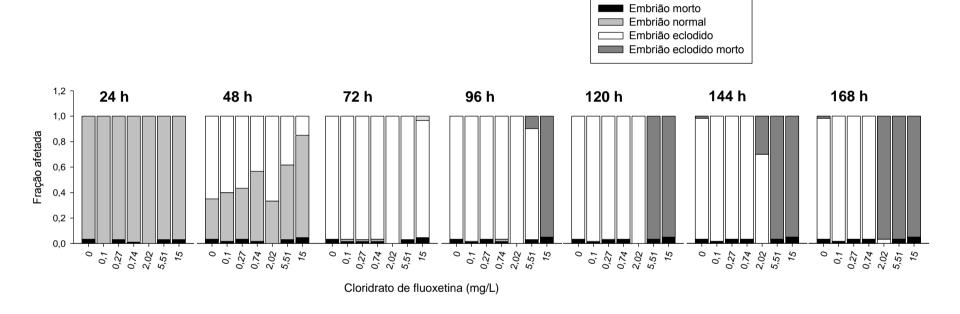


Figura 41 Visão geral do teste de toxicidade com embriões de peixe-zebra durante as 168 h de exposição ao cloridrato de fluoxetina.

A mortalidade aumenta progressivamente com o tempo de exposição nas concentrações mais altas de fluoxetina. A CL50 às 168 h de exposição é de 1.37 mg/L (Figuras 41 e 42).

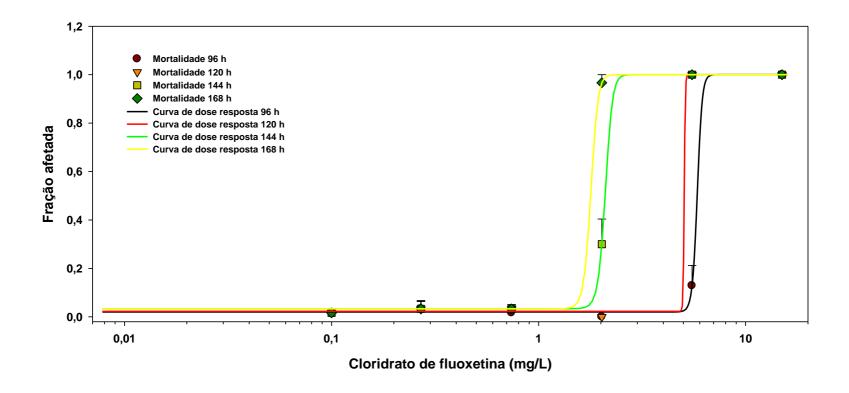


Figura 42 Mortalidade dos indivíduos expostos ao cloridrato de fluoxetina (valores médios ± erro padrão) ao longo de 168 h de exposição.

Foi observado, às 48 h de exposição, que os embriões expostos às concentrações de 5,51 e 15 mg/L de fluoxetina apresentaram atraso na eclosão (Tabela 11). Entretanto no dia posterior os organismos eclodem ficando no mesmo nível do grupo controle.

Tabela 11 Porcentagens de eclosão dos embriões de peixe-zebra expostos ao cloridrato de fluoxetina ao longo de 168 h.

FLX (mg/L)	48 h	72 h	96 h	120 h	144 h	168 h
0,0	65 (10,4)	100(0)	-	-	-	-
0,1	60 (7,6)	98,3 (1,7)	100(0)	-	-	-
0,3	56,7 (1,7)	98,4 (1,6)	100(0)	-	-	-
0,7	43,3 (10,9)	98,3 (1,7)	98,3 (1,7)	98,3 (1,7)	98,3 (1,7)	98,3 (1,7)
2,0	66,7 (10,9)	100(0)	-	-	-	-
5,51	38,3 (1,7)	100(0)	-	-	-	-
15	15 (8,7)	100 (0)	-	-	-	-

[&]quot;-" Não avaliado

Às 120 h, aproximadamente 60 % dos organismos expostos à concentração de 2,02 mg/L não respondiam aos estímulos. No dia posterior 100 % dos organismos expostos a referida concentração não respondiam aos estímulos, precedendo a morte dos mesmos no dia seguinte, e aproximadamente 30 % dos organismos expostos a concentração de 0,74 mg/L apresentavam o mesmo efeito (Figura 43).

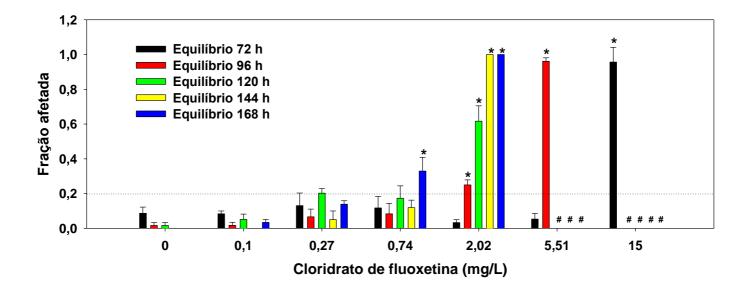
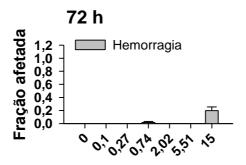



Figura 43 Efeitos do cloridrato de fluoxetina no equilíbrio de embriões eclodidos de peixe-zebra durante 168 h de exposição (Valores médios \pm erro padrão). Teste de Dunn's (p < 0,05).

As alterações observadas no desenvolvimento ao longo do teste foram: malformação da cauda e hemorragia.

- Às 72 h de exposição:aproximadamente 20 % dos organismos expostos a concentração de 15 mg/L do cloridrato de fluoxetina, apresentaram hemorragia ou acúmulo de hemácias, precedendo a morte dos mesmos no dia posterior (Figuras 44 e 45).

Cloridrato de fluoxetina (mg/L)

Figura 44 Malformações no desenvolvimento após exposição por 168 h ao cloridrato de fluoxetina (valores médios ± erro padrão).

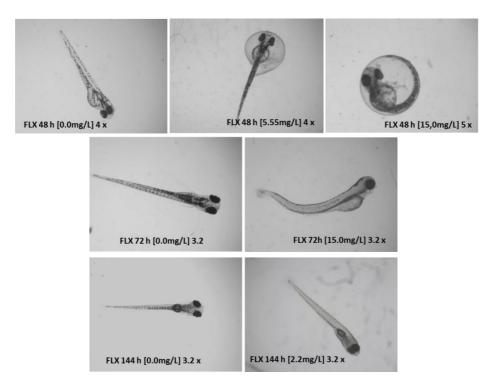


Figura 45 Fotodocumentação das alterações no desenvolvimento embrionário após exposição por 168 h ao cloridrato de fluoxetina

4.2.4.2 Testes de bioquímicos

Os embriões expostos às concentrações a partir de 0,006 mg/L de fluoxetina, tiveram uma diminuição significativa da atividade da AChE (substratos: ACh e PCh) (Figura 46).

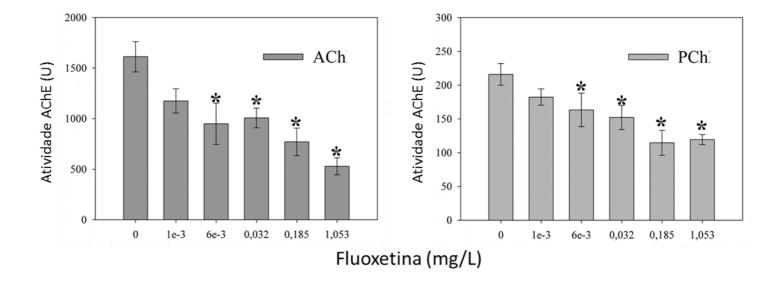


Figura 46 Quantificação da atividade da acetilcolinesterase utilizando diferentes substratos, acetilcolina e propionilcolina, após exposição por 168 h à fluoxetina (valores médios ± erro padrão). Teste de Dunn's (p < 0,05).

4.2.4.3 Testes comportamentais

Para o tempo total de nado foram observados efeitos significativos nas três últimas concentrações, já para a distância total percorrida foram observados efeitos significativos nas concentrões de 0,06; 1,58 e 500 μ g/L (Figura 47).

10 minutos de escuro 100 Distância total percorrida (mm) Distância total percorrida □ Tempo total de nado 80 Tempo total de nado (s) 60 40 20 0 0,06 0,88 28 500 500 1,58 0 0,06 0,88 1,58 28 Fluoxetina (μ g/L)

Figura 47 Tempo total de nado e distância total percorrida após exposição por 168 h à fluoxetina (valores médios \pm erro padrão). Teste de Dunn's (p < 0,05).

4.2.5. Nortriptilina

4.2.5.1 Testes de embriotoxicidade

- Gráfico resumo

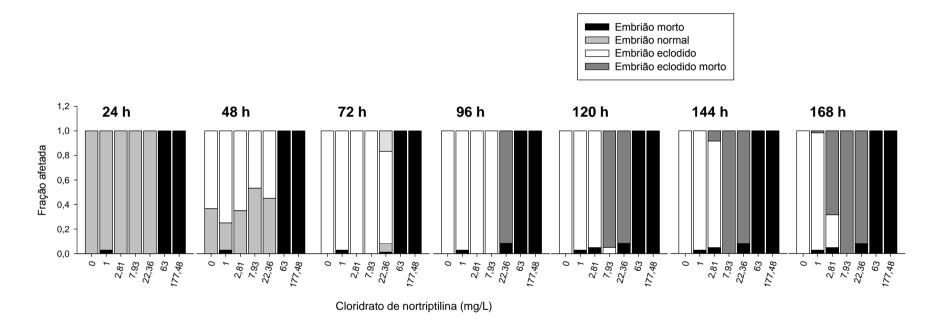


Figura 48 Visão geral do teste de toxicidade com embriões de peixe-zebra durante as 168 h de exposição ao cloridrato de nortriptilina.

A mortalidade aumenta progressivamente com o tempo de exposição nas concentrações mais altas de nortriptilina. A CL50 às 168 h de exposição é de 2.16 mg/L (Figuras 48 e 49).

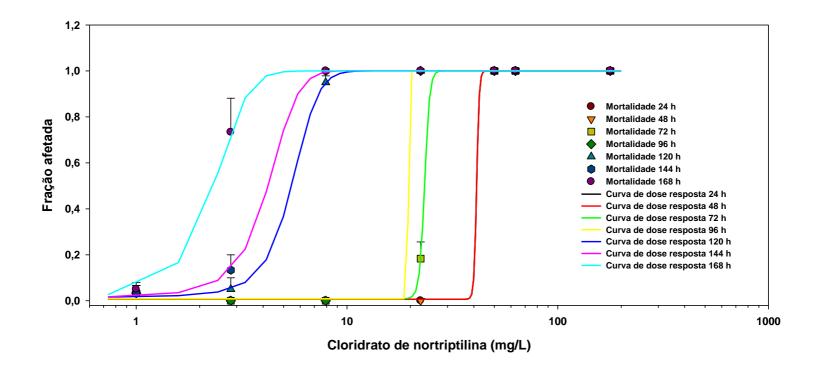


Figura 49 Mortalidade dos indivíduos expostos ao cloridrato de nortriptilina (valores médios ± erro padrão) ao longo de 168 h de exposição.

Foi observado, às 48 h de exposição, uma leve inibição da eclosão dos embriões expostos às concentrações de 7.93 e 22,36 mg/L de nortriptilina (Tabela 12). Esse efeito no dia posterior não é observado. Vale ressaltar que não foram observados efeitos na eclosão nas duas últimas concentrações devido a mortalidade dos organismos.

Tabela 12 Porcentagens de eclosão dos embriões de peixe-zebra expostos ao cloridrato de nortriptilina ao longo de 168 h.

NTP (mg/L)	48 h	72 h	96 h	120 h	144 h	168 h
0	63,3 (4,4)	100 (0)	-	-	-	-
1	75 (7,6)	100(0)	-	-	-	-
2,81	65 (5)	100 (0)	-	-	-	-

NTP (mg/L)	48 h	72 h	96 h	120 h	144 h	168 h
7,93	46,7 (6,7)	100(0)	-	-	-	-
22,36	55 (5,8)	93,1 (4,7)	100(0)	-	-	-

[&]quot;-" Não avaliado

Durante o teste foi observado que a maioria dos organismos submetidos aos tratamentos do presente estudo não apresentaram respostas aos estímulos mecânicos. Não foram observados efeitos nas concentrações de 63 e 117, 48 mg/L devido a mortalidade dos embriões. No decorrer do teste, de maneira geral aproximadamente 80 % ou mais dos organismos expostos às concentrações de 1 até 7,93 mg/L não respondiam aos estímulos mecânicos e para a maioria dos casos o efeito precedia a morte (Figura 50).

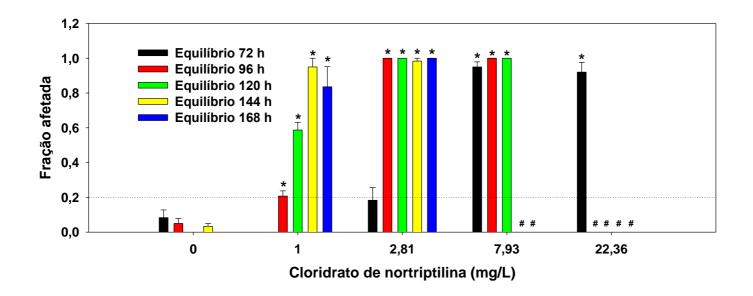


Figura 50 Efeitos do cloridrato de nortriptilina no equilíbrio de embriões eclodidos de peixe-zebra durante 168 h de exposição (Valores médios \pm erro padrão). Teste de Dunn's (p < 0,05).

As alterações no desenvolvimento observadas ao longo do teste foram: edema e malformações da cauda (Figuras 51 e 52).

- Às 72 h de exposição: aproximadamente 30 % dos organismos expostos a concentração de 22,36 mg/L apresentaram malformação da cauda precedendo amorte no dia posterior.
- Às 120 h de exposição: aproximadamente 20 % dos organismos expostos a concentração de 7,93 mg/L apresentaram edema, precedendo amorte no dia posterior.

- Às 168 h de exposição: aproximadamente 40 % dos organismos expostos a concentração de 2,81 mg/L apresentaram malformação da cauda, edema e alteração da pigmentação.

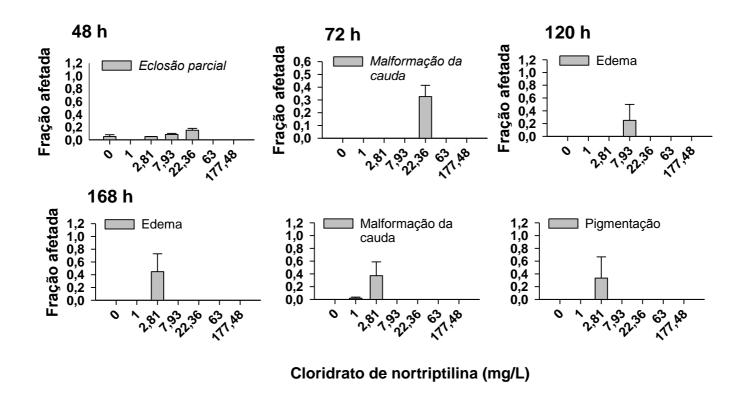


Figura 51 Malformações no desenvolvimento após exposição por 168 h ao cloridrato de nortriptilina (valores médios ± erro padrão).

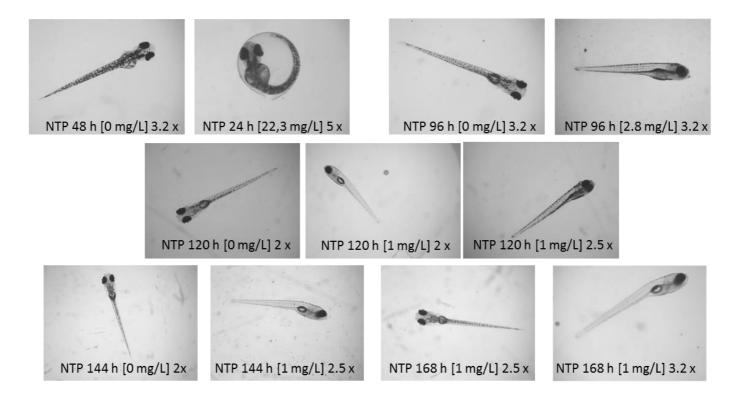
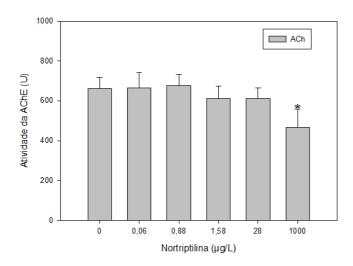



Figura 52 Fotodocumentação das alterações no desenvolvimento embrionário dos organismos expostos por 168 h ao cloridrato de nortriptilina.

4.2.5.2 Testes de bioquímicos

Foi observado uma diminuição significativa da atividade da enzima AChE (substrato: ACh e PCh) nos organismos expostos à concentração de 1000 µg/L de nortriptilina (Figura 53).

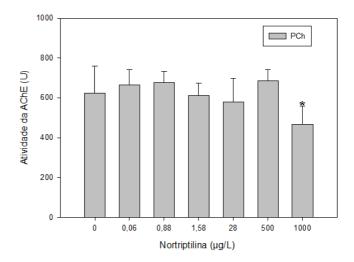
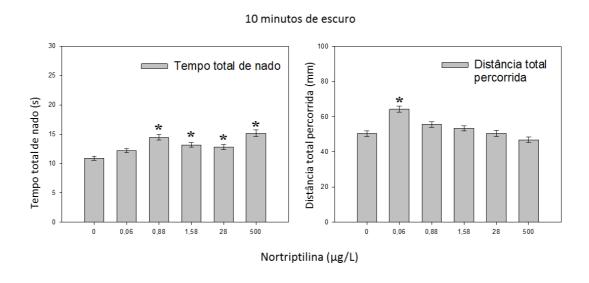



Figura 53 Quantificação da atividade da acetilcolinesterase utilizando diferentes substratos, acetilcolina e propionilcolina, após exposição por 168 h à nortriptilina (valores médios ± erro padrão). Teste de Dunn's (p < 0,05).

4.2.5.3 Testes comportamentais

Para o tempo total de nado foram observados efeitos significativos nos organismos expostos às concentrações a partir de 0,88 μ g/L, já para a distância total percorrida foi observado somente um efeito significativo nos organismos expostos à concentração de 0,06 μ g/L (Figura 54).

Figura 54 Tempo total de nado e distância total percorrida após 168 h de exposição à nortriptilina (valores médios \pm erro padrão). Teste de Dunn's (p < 0,05).

4.3. Resultados dos testes com nanomateriais

4.3.1. Nanoestruturado de carbono 824

- Gráfico resumo

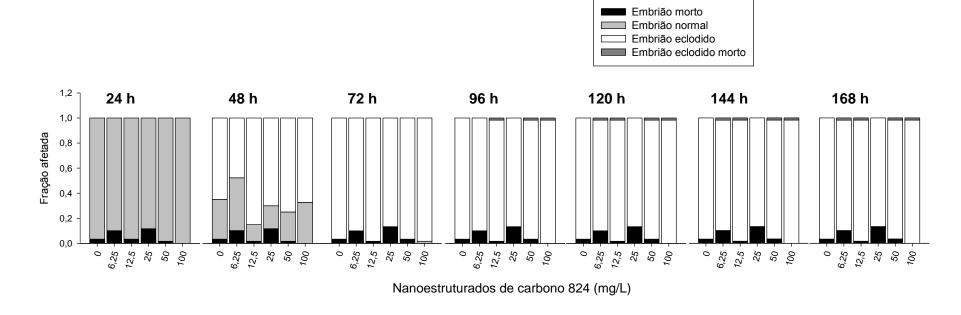


Figura 55 Visão geral do teste de toxicidade com embriões de peixe-zebra durante as 168 h de exposição aos nanoestruturados de carbono 824.

Os nanoestruturados de carbono não causaram mortalidade significativa dos organismos expostos as diferentes concentrações (Figura 55). Assim sendo, não foi possível determinar a CL50, que está acima da última concentração testada, 100 mg/L.

Às 48 h de exposição, foi observado uma leve indução da eclosão nos organismos expostos às concentrações a partir de 12,5 mg/L de nanoestruturados de carbono 824. No dia posterior foi observado efeito somente nos organismos expostos as concentrações de 6,25 e 25 mg/L, entretanto no dia seguinte todos os embriões eclodem normalmente (Tabela 13).

Tabela 13 Porcentagens de eclosão para organismos expostos durante 168 h aos nanoestruturados de carbono 824.

NTC (mg/L)	48 h	72 h	96 h	120 h	144 h	168 h
0	65 (7,6)	100 (0)	-	-	-	-
6,2	47,7 (16,4)	100 (0)	-	-	-	-
12,5	85 (2 <i>,</i> 9)	100 (0)	-	-	-	-
25	70 (8,7)	100 (0)	-	-	-	-
50	75 (0)	100 (0)	-	-	-	-
100	67,3 (6,4)	98,3 (1,7)	100 (0)	-	-	-

[&]quot;-" Não avaliado

Não foram observados efeitos significativos no comportamento dos embriões expostos as diferentes concentrações de nanoestruturados de carbono 824 (Figura 56).

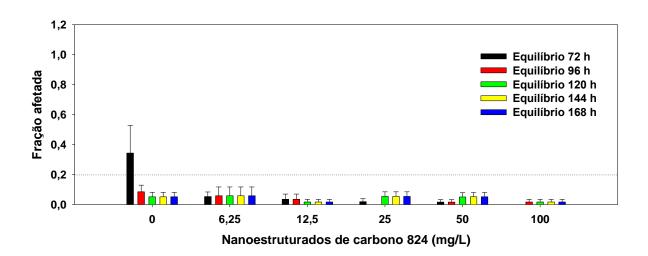


Figura 56 Efeitos dos nanoestruturados de carbono 824 no equilíbrio dos embriões de peixe-zebra eclodidos ao longo de 168 h de exposição (valores médios ± erro padrão).

Não foram observados efeitos no desenvolvimento embrionário dos organismos expostos às nanoestruturas de carbono 824.

4.3.2. Nanopartículas de titânio

- Gráfico resumo

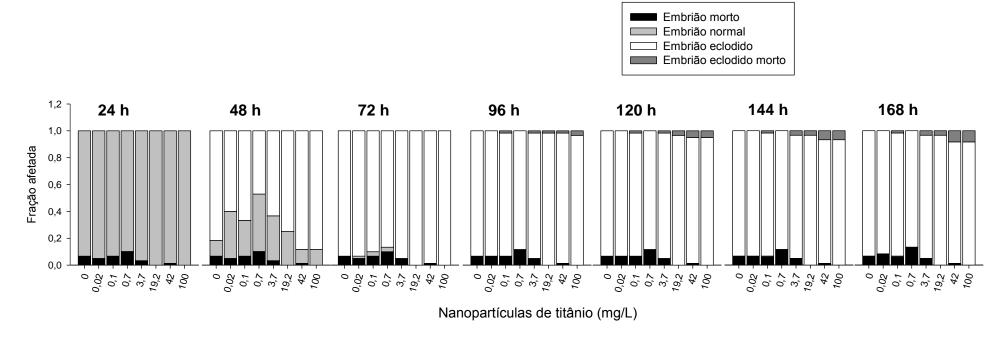


Figura 57 Visão geral do teste de toxicidade com embriões de peixe-zebra durante as 168 h de exposição à nanopartícula de titânio.

As nanopartículas de titânio não induziram mortalidade significativa dos organismos expostos. Desse modo não foi possível determinar a CL50, pois a mesma está acima da última concentração testada, 100 mg/L (Figura 57).

Foi observado uma inibição da eclosão dos organismos expostos às concentrações de 0,1; 0,7 e 3,7 mg/L de nano-TiO₂, entretanto no dia posterior os organismos eclodiram normalmente (Tabela 14).

Tabela 14 Porcentagens de eclosão para organismos expostos durante 168 h às nanopartículas de titânio.

	1 0					
NanoTio2 (mg/L)	48 h	72 h	96 h	120 h	144 h	168 h
0	81,7 (6)	100 (0)	-	-	-	-
0,02	60 (8,7)	98,2 (1,8)	100 (0)	-	-	-
0,1	66,7 (12)	96,4 (1,8)	100 (0)	-	-	-
0,7	47,1 (11,3)	96,3 (3,7)	100 (0)	-	-	-
3,7	63,3 (4,4)	100 (0)	-	-	-	-
19,2	75 (7,6)	100 (0)	-	-	-	-
42	88,3 (7,3)	100 (0)	-	-	-	-
100	88,3 (4,4)	100 (0)	-	-	-	-

[&]quot;-" Não avaliado

Às 48 h de exposição uma dose resposta para o parâmentro de equilíbrio foi observada (aproximadamente 30 % dos organismos expostos a maior concentração, 100 mg/L). Entretanto no dia seguinte os embriões recuperaram-se, respondendo normalmente a estímulo mecânico comparado ao grupo controle (Figura 58).

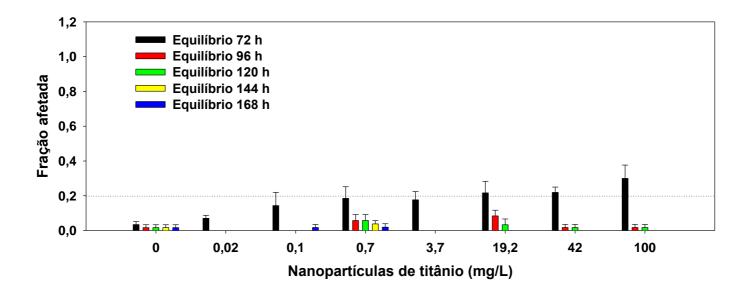


Figura 58 Efeitos das nanopartículas de titânio no equilíbrio dos embriões de peixe-zebra eclodidos ao longo de 168 h de exposição (valores médios ± erro padrão).

Não foram observados efeitos no desenvolvimento embrionário em níveis maiores que 5 % após a exposição nano- TiO_2 .

4.4. Resultados dos testes de interação

4.4.1. Nanoestruturados de carbono 824 e Fluoxetina

- Gráfico resumo

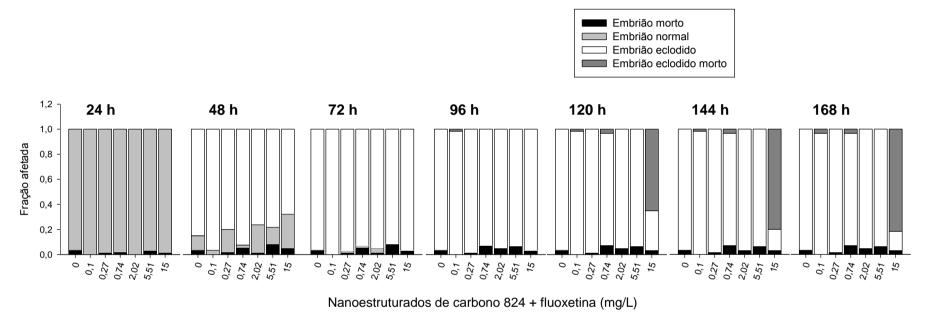


Figura 59 Visão geral do teste de toxicidade com embriões de peixe-zebra durante as 168 h de exposição a interação entre os nanoestruturados de carbono 824 + fluoxetina.

A mortalidade aumenta progressivamente somente na última concentração testada (15 mg/L) da interação entre nanoestruturados de carbono 824 + fluoxetina. A CL50 às 168 h de exposição é de 10.08 mg/L (Figuras 59 e 60).

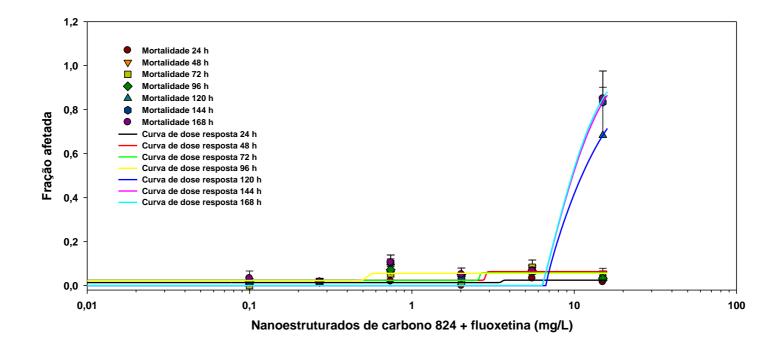


Figura 60 Mortalidade dos indivíduos expostos a interação entre nanoestruturados de carbono 824 + fluoxetina (valores médios ± erro padrão) ao longo de 168 h de exposição.

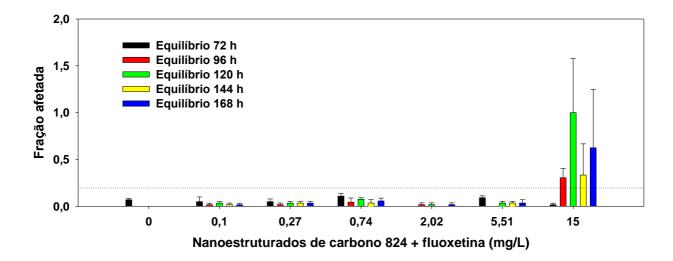

Às 48 h de exposição foi observado um a leve inibição da eclosão dos organismos expostos à última concentração, 15 mg/L da interação entre às nanoestruturas de carbono 824 + fluoxetina (Tabela 15). Entretanto, no dia posterior os organismos eclodem normalmente.

Tabela 15 Porcentagens de eclosão para organismos expostos durante 168 h aos nanoestruturados de carbono 824 + fluoxetina.

NTC + FLX (mg/L)	48 h	72 h	96 h	120 h	144 h	168 h
0	85 (2,9)	100 (0)	-	-	-	-
0,1	96,7 (1,7)	100 (0)	-	-	-	-
0,2	80 (5,8)	98,3 (1,7)	100 (0)	-	-	-
0,7	92,5 (5,3)	97,9 (2,1)	100 (0)	-	-	-
2	76,3 (3,2)	96,5 (1,8)	100 (0)	-	-	-
5,5	78,3 (1,7)	100 (0)	-	-	-	-
15	67,9 (4,1)	100 (0)	-	-	-	-

[&]quot;-" Não avaliado

Foram observados efeitos no equíbrio somente nos organismos expostos a última concentração testada, 15 mg/L, precedendo a morte de aproximadamente 80 % dos organismos (Figura 61). Ao final do teste, os poucos organismos vivos expostos a última concentração não apresentavam respostas aos estímulos mecânicos.

Figura 61 Efeitos da interação entre os nanoestruturados de carbono 824 + fluoxetina no equilíbrio de embriões eclodidos de peixe-zebra durante 168 h de exposição (Valores médios ± erro padrão).

4.4.2. Nanopartículas de titânio e bromazepam

- Gráfico resumo

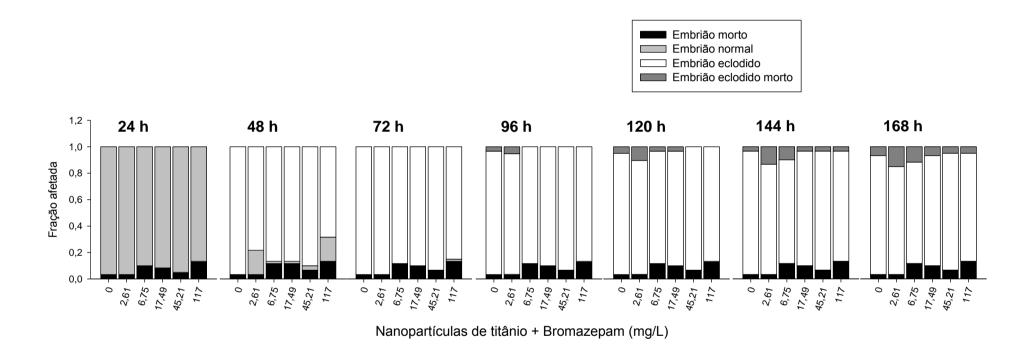


Figura 62 Visão geral do teste de toxicidade com embriões de peixe-zebra durante as 168 h de exposição a interação entre nanopartículas de titânio + bromazepam.

Não foi possível determinar uma CL50 às 168 h da exposição a interação entre as nanopartículas de titânio + bromazepam, a CL 50 está acima da última concentração testada, 117 mg/L (Figura 62).

Às 48 h de exposição foi observado um a inibição da eclosão de aproximadamente 20 % dos organismos expostos às diferentes concentrações da interação entre nanopartículas de titânio + bromazepam (Tabela 16). Entretanto, no dia posterior, foi observado a recuperação desses organismos mostrando apenas umasutíl inibição da eclosão nos organismos expostos às concentrações a partir de 6,75 mg/L. No dia seguinte todos os embriões eclodem normalmente.

Tabela 16 Porcentagens de eclosão para organismos expostos durante 168 h às nanopartículas de titânio + bromazepam.

NanoTio2 + BRO (mg/L)	48 h	72 h	96 h	120 h	144 h	168 h
0	96,7 (1,7)	100 (0)	-	-	-	-
2,6	78,3 (11,7)	100 (0)	-	-	-	-
6,7	86,7 (6,7)	100 (0)	-	-	-	-
17,5	86,7 (1,7)	100 (0)	-	-	-	-
45,2	90 (2,9)	100 (0)	-	-	-	-
117	68,3 (1,7)	98 (2)	100 (0)	-	-	-

[&]quot;-" Não avaliado

Não foram observados efeitos significativos no equilíbrio dos embriões expostos a interação entre nanopartículas de titânio + bromazepam (Figura 63).

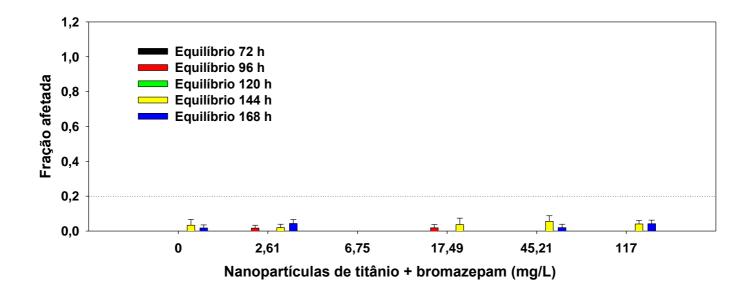
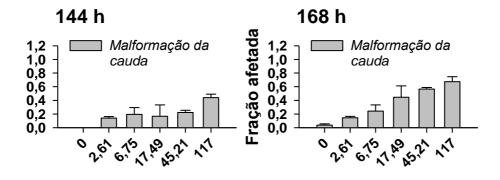



Figura 63 Efeitos da interação entre nanopartículas de titânio + bromazepam no equilíbrio de embriões eclodidos de peixe-zebra durante 168 h de exposição (Valores médios ± erro padrão).

A única alteração no desenvolvimento observada ao longo do teste foi: malformação da cauda (Figura 64).

- Às 144 h e 168 h de exposição: todas as concentrações testadas apresentaram essa alteração no desenvolvimento, sendo que os organismos mais afetados foram os da concentração de 117 mg/L (aproximadamente 60 % dos organismos).

Nanopartículas de titânio + Bromazepam (mg/L)

Figura 64 Malformações no desenvolvimento após exposição por 168 h a interação entre nanopartículas de titânio + bromazepam (valores médios ± erro padrão).

4.5. Discussão

4.5.1 Testes embriotoxicológicos com formulações

O uso de testes preliminares utilizando formulações comerciais mostrou-se vantajoso devido ao baixo custo e a obtenção de resultados próximos aos dados de compostos puros. Para os bioensaios embriotoxicológicos utilizando essas formulações os parâmetros analisados foram: mortalidade, eclosão, equilíbrio e alterações no desenvolvimento. A tabela 6 mostra as CL 50 dos fármacos psicotrópicos testados. Ao comparar nossos resultados aos dados de ecotoxicidade aguda com dados encontrados na literatura pôdese observar uma similaridade entre eles ou uma sensibilidade maior do organismo utilizado no presente estudo. Por exemplo, nossos resultados de exposição do peixe-zebra, família Cyprinidae, à sertralina apresentou uma CL50 – 168 h = 190 μg/L. A Tabela apêndice 1, mostra que o nosso dado está na mesma gama de concentração de outros estudos com o peixes, como exemplo: *Pimephales promelas* (Cyprinidae) (CL50 – 120 h mínima de 143 a máxima de 579 μg/L), o peixe *Oryzias latipes* (Adrianichthyidae) (CL50 – 96 h = 191 μg/L) e o *Oncorhynchus mykiss* (Salmonidae) apresentou uma CL50 – 96h = 320 μg/L. Já estudos de exposição subcrônica do peixe-zebra à sertralina mostraram uma CL50 – 23d = 1 μg/L.

Foi obtida uma CL50 – 120 h = 3,31 mg/L dos nossos resultados de exposição do peixe-zebra a formulação de fluoxetina, esse valor é muito similar ao resultado obtido para a fluoxetina pura, CL50 – 120 h = 3,08 mg/L. Quando comparamos esses dados a literatura, alguns estudos com a rã *Xenopus laevis* (Pipidae) apresentaram CE50 (imobilidade) – 96 h = 6,4 a 6,6 mg/L, já para o microcrustáceo *Daphnia magna* (Daphniidae) a CL50 – 48 h = 8,1 mg/L (Tabela apêndice 1), desse modo, os dados obtidos indicam uma alta sensibilidade do peixe-zebra à fluoxetina.

Além disso, os fármacos psicotrópicos: maleato de levomepromazina, cloridrato de nortriptilina, cloridrato de biperideno, agomelatina, mirtazapina, fumarato de quetiapina, bromazepam e lamotrigina, de acordo com a base de dados da EPA, não possuem estudos ecotoxicológicos, evidenciando a relevância do presente estudo. Para a nortriptilina também observa-se uma boa correlação entre as CL50 obtidas para formulação e composto puro às 168 h de exposição, 2,16 e 2,90 mg/L, respectivamente.

O ranking descrescente de toxicidade (seção 4.1) pode sugerir que os fármacos: cloridrato de sertralina, maleato de levomepromazina, cloridrato de nortriptilina, cloridrato de fluoxetina e cloridrato de prometazina podem representar risco ambiental por apresentarem toxicidade aguda elevada (CL50 abaixo de 10 mg/L). Entretanto, para averiguar a hipótese de risco ambiental associada aos fármacos psicotrópicos são necessários mais testes agudos e crônicos com diferentes organismos, utilizando o princípio ativo puro, para uma melhor elucidação desses. Vale ressaltar que a fluoxetina possuí somente 3 estudos crônicos com invertebrados e a sertralina possuí apenas 4 estudos crônicos (produtores e consumidores primários) e somente dois estudos subcrônicos (consumidores secundários) (Tabela apêndice 1). Ademais, os fármacos: cloridrato de biperideno, hemitartarato de zolpidem, agomelatina, mirtazapina, fumarato de quetiapina, carbamazepina e bromazepam apesar de terem apresentado moderada toxicidade (CL 50 entre 10 e 100 mg/L) causaram efeitos na eclosão ou no equilíbrio em concentrações abaixo da mortalidade, esses também devem ser estudados pois podem alterar a biota aquática.

Por fim, os testes com formulações permitiram a identificação de fármacos psiquiatricos de alta toxicidade, sendo que parte desses tiveram os estudos refinados com o composto puro (ex. cloridrato de fluoxetina e nortriptilina, seção: 4.2.4 e 4.2.5, respectivamente). Para alguns fármacos de interesse (ex. sertralina e levomepromazina) não foi possível realizar testes com os compostos puros devido a dificuldade de obtenção dos mesmos, contudo estudos futuros crônicos e agudos devem ser efetuados.

4.5.2 Testes embriotoxicológicos com compostos puros

Para os bioensaios embriotoxicológicos utilizando compostos puros, as CL50 (Tabela 7) dos fármacos psicotrópicos testados, nomeadamente: amitriptilina (CL50 às 168h = 3.65 mg/L), bupropiona (CL50 às 168h de 111.8 mg/L), bromazepam (CL50 às 168h > 117 mg/L - sem estudos ecotoxicológicos prévios), fluoxetina (CL50 às 168h de 1.37 mg/L) e nortriptilina (CL50 às 168h = 2.16 mg/L - sem estudos ecotoxicológicos prévios) mostraram que a fluoxetina, amitriptilina e seu metabólito, nortriptilina, apresentam elevada toxicidade aguda (CL50 abaixo de 10 mg/L). Vale salientar que a nortriptilina apresenta toxicidade maior que sua molécula parental, evidenciando a necessidade de mais estudos com metabólitos. Apesar da bupropiona e o bromazepam apresentarem CL50 acima de 100 mg/L, os testes comportamentais que serão discutidos ao longo do capítulo mostraram que esses também podem respresentar risco ambiental.

No geral as alterações no desenvolvimento mais encontradas durante a exposição de embriões de peixe-zebra aos fármacos psicotrópicos foram: edemas e malformações da cauda. A Tabela suplementar 1, mostra algumas alterações bioquímicas em diferentes organismos não alvos ocasionadas por fármacos psicotrópicos, como: aumento da atividade da catalase, glutationa-s-transferase e peroxidação lipídica, que são indicativos de iniciação de processos degenerativos. Uma possibilidade para que ocorra a malformação da cauda pode estar relacionada a modulação de canais de cálcio. Chen et al (2008), ao estudar os efeitos da cafeína sob embriões de peixe-zebra e sabendo que a mesma atua no SNC, podendo modular a ativação de receptores de rianodina (que causam liberação de íons de cálcio do retículo sarcoplasmático) observou uma redução no comprimento dos somitos e uma inibição da atividade locomotora dos embriões em exposição (Chen et al. 2008). Dependendo da dose administrada os embriões desenvolviam defeitos dependentes do tempo de alinhamento das fibras musculares (malformações na cauda).

Propriedades físico-químicas de fármacos são importantes para entendermos como pode ocorrer a dispersão dessas substâncias nos ecossistemas. Parâmetros como: coeficiente de partição água-octanol (Kow), coeficiente de partição carbono orgânico-água (Koc), solubilidade em água, constante de ionização ou de dissociação do ácido (Ka), meia-vida; densidade do líquido, volatilidade, fator de bioconcentração, taxas de degradação e transformação, entre outros, têm sido utilizados para uma melhor elucidação do transporte e destino final. (Figura 65).

O Kow é uma medida da lipofilicidade de um composto e é definido como a razão da concentração do mesmo, em equilíbrio, após dissolução em um sistema de duas fases, formadas por dois solventes imiscíveis, água e octanol (Leo et al. 1971; William Cibulas & Henry Falk 2005), ou seja, quanto maior o valor de log Kow, menor a tendência de um composto permanecer na fase líquida. O Koc é um parâmetro que representa a distribuição de um composto entre o carbono orgânico e a água (William Cibulas & Henry Falk 2005), ou seja, quanto maior o valor de log Koc, maior a probabilidade de um composto adsorver-se a compostos contendo carbono orgânico, tais como: sólidos suspensos, gorduras apolares, lipídios, óleos minerais, graxas e surfactantes geralmente presentes no esgoto doméstico.

A solubilidade em água é a medida da máxima concentração de um composto químico que se dissolve numa quantidade estabelecida de água pura. Em geral, agentes químicos muito solúveis em água, tendem a ser transportados para águas subterrâneas, ao contrário do que ocorre com compostos insolúveis (William Cibulas & Henry Falk 2005). O Ka é chamado de constante de ionização ou de dissociação do ácido. O pKa é o pH no qual a metade do fármaco (ácido ou base fraca) está em sua forma ionizada. Em geral, as moléculas não ionizadas são mais lipossolúveis e podem difundir-se facilmente pela membrana celular, enquanto que as moléculas ionizadas normalmente são menos capazes de penetrar na membrana lipídica porque são pouco lipossolúveis e sua tranferência depende da permeabilidade da membrana

(William Cibulas & Henry Falk 2005). Quanto maior for o valor de pKa, mais fraco é o ácido (William Cibulas & Henry Falk 2005). A meia-vida é uma medida relativa de quão persistente a substância pode estar em um meio ambiente particular (William Cibulas & Henry Falk 2005).

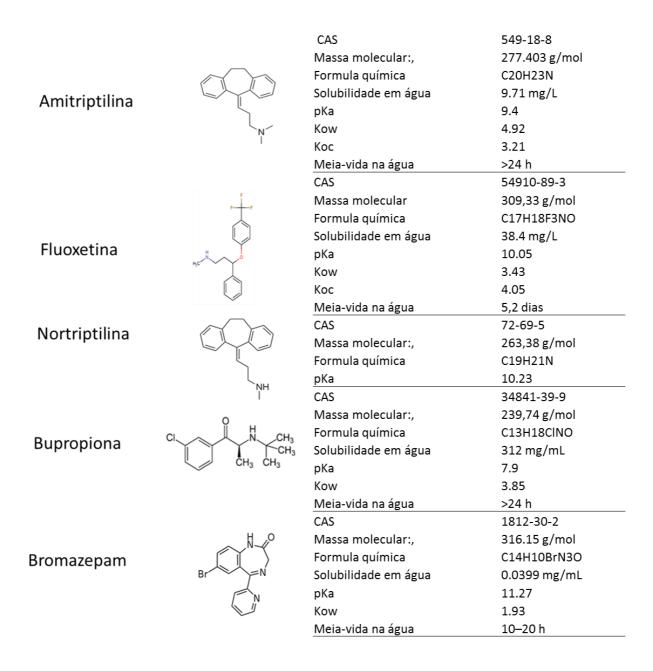


Figura 65 Características fisico-químicas dos fármacos psicotrópicos: cloridrato de amitriptilina, fluoxetina, nortriptilina, bupropiona, e bromazepam (Nentwig 2007; Blum 2013; Fuguet et al. 2008; Gondaliya & Pundarikakshudu 2003; Zenobio et al. 2015; Bacalum et al. 2012; Kosjek et al. 2012; Hyland et al. 2012).

De acordo com as informações na figura 65 visando um contexto ambiental, observa-se valores relativamente baixos de Kow, meia-vida e Koc. Entretanto, vale salientar que todos os dias os ecossistemas aquáticos recebem variadas concentrações dessas substâncias.

A eclosão é uma etapa extremamente importante para o sucesso dos embriões. A ultraestrutura do córion parece determinar estratégias de reprodução, habitat e posição taxonômica de espécies. A maioria dos córions teleósteos consistem em mais de uma camada. A superfície exterior geralmente mostra padrões distintos, muitas vezes cobertos com estruturas acessórias em forma de fios, filamentos, fibrilas, pontos, decorrente de diferentes origens, como os próprios oócitos (envelope primário), as células folículares (envelope secundário), ou o oviduto ou outras estruturas (envelope terciário). As camadas são perfuradas por poros. O diâmetro das aberturas exteriores dos poros é de 0,5 - 0,7 μm, com uma distância centro-a-centro de 1,5 – 2,0 μm. (Henn 2011). Esses poros são responsáveis pela transferência aquosa para dentro e fora do embrião em todo o córion. As glicoproteínas, as quais constituem a camada externa do córion, são claramente visíveis e flexíveis para que partículas e/ou microorganismos possam aderir. No entanto, estas glicoproteínas podem também exercer o papel de impedir essas transferências, agindo como uma barreira de proteção (Henn 2011), inclusive químicos de alto peso molecular.

Na maioria dos bioensaios da presente dissertação foram observados efeitos na eclosão. Entretanto, as concentrações de efeitos estão próximas às concentrações letais. Ademais, os efeitos são reversíveis nas concentrações baixas e intermediárias testadas para os diferentes fármacos. O movimento dos embriões dentro do córion e a ação de corianases que degradam a zona interna do córion são fundamentais para a eclosão (Henn 2011). Assim sendo, a inibição da eclosão observada para diferentes fármacos psicotrópicos pode estar relacionada aos efeitos desses na atividade locomotora dos organismos (Apêndice 1 e seção 4.2). A inibição da eclosão em ambiente natural, caso persista, poderia acarretar a morte dos organismos como é

observado para a formulação carbonato de lítio (Apêndice 1). Efeitos tóxicos dos fármacos na mortalidade e eclosão já nas primeiras 48 h de teste sugerem que, de modo geral, os fármacos psicotrópicos (compostos puros e formulações comerciais) podem atravessar os poros do córion e interagir com os organismos em fase embrionária pré-eclosão.

O SNC, que é alvo dos fármacos psicotrópicos, exerce um papel fundamental no controle do corpo. É nele que chegam as informações relacionadas aos sentidos e é dele que partem ordens destinadas aos músculos e glândulas. Diferentes sistemas de neurotransmissão já foram identificados no peixe-zebra, tais como: glutamatérgico, colinérgico, dopaminérgico, serotoninérgico, histaminérgico, gabaérgico, purinérgico (Edwards & Michel 2002; Behra et al. 2002; Clemente et al. 2004; Ryu et al. 2006; Vanderford & Snyder 2006; Lillesaar et al. 2007; Kaslin & Panula 2001; Kim et al. 2004; Kucenas et al. 2003; Rico et al. 2003; Seibt 2008).

No presente estudo parâmetros comportamentais dos embriões foram avaliados primeiramente durante o teste de embriotoxicidade, onde embriões que não respondiam ao estimulo mecânico foram quantificados (equilíbrio). Posteriormente a atividade locomotora de embriões expostos a concentrações de relevância ambiental de fármacos psicotrópicos foi medida com o Zebrabox.

Para todos os compostos testados foram observados efeitos no equilíbrio dos embriões eclodidos expostos a diferentes fármacos psicotrópicos (formulações comerciais e compostos puros), muitas vezes causando paralisia total e, em muitos casos, precedendo a morte dos mesmos (ex. cloridrato de fluoxetina e nortriptilina). Normalmente a paralisia é um efeito característico de super dosagens administradas em humanos (Bauer et al. 2002). Para embriões de peixe em ecossistemas naturais, a paralisia pode ter consequências graves como: incapacidade de captura do alimento, reprodução, maior suceptibilidade a predação, entre outros. Assim sendo um declínio populacional poderia ser esperado em áreas contaminadas

com concentrações que induzem paralisia de organismos. Testes de maior complexidade (micro/mesocosmos) podem ser efetuados com o intuito de melhor elucidar as consequências ecológicas desencadeadas por esse tipo de efeito. Ademais, o parâmetro de equilíbrio é mais sensível que a mortalidade podendo então ser sugerido como um refinamento do protocolo FET no caso de avaliação de compostos psiquiátricos.

A atividade das colinesterases estão diretamente relacionadas a mudanças comportamentais como apontado por (Scott & Sloman 2004). Os testes bioquímicos medindo a atividade da AChE com diferentes substratos (acetilcolina e propionilcolina) com a amitriptilina, bupropiona, bromazepam, fluoxetina e nortriptilina (seções 4.2.1 até 4.2.5.) atrelados aos dados comportamentais (distância total percorrida e tempo total de nado dos organismos) mostraram resultados importantes afim de elucidar o modo de ação pelo qual os referidos fármacos podem afetar vertebrados aquáticos, mais especificamente peixes. Diversos autores sugerem que normalmente quando ocorre uma inibição ou aumento da atividade das AChE essa resposta está correlacionada a alterações no comportamento locomotor dos embriões de peixe-zebra (Andrade 2015). a variação de concentração pode influenciar em Além disso, sabe-se que diferentes neuroreceptores/neutransmissores específicos, em outras palavras, há concentrações que alteram ou mantêm a homeostase do organismo, efeitos terapêuticos e efeitos colaterais.

O sistema colinérgico tem um papel fundamental em várias funções vitais do SNC e SNP (Mesulam et al. 2002; Seibt 2008), sendo a acetilcolina (ACh) e butirilcolina (BCh) importantes neurotransmissores. Além da ação neurotransmissora, a ACh possui função neuromoduladora. A síntese da ACh ocorre a partir de Acetil CoA, formada durante o metabolismo celular mitocondrial, e da colina, um importante produto do metabolismo dos lipídios. A etapa final da síntese da ACh ocorre no citoplasma, sendo o neurotransmissor transportado para o interior de vesículas sinápticas (Kapczinski et al. 2004; Seibt 2008). A colina usada na

síntese de ACh pode vir diretamente da reciclagem da ACh, que é hidrolisada pela AChE na fenda sináptica ou a partir da fosfatidilcolina. Essas duas fontes de colina são particularmente importantes para o SNC, porque a colina presente no plasma não ultrapassa a barreira hemato-encefálica (Seibt 2008). A liberação de ACh depende das variações no potencial elétrico das membranas dos terminais nervosos e este processo é dependente da concentração de cálcio intracelular. Ao ser liberada, a ACh interage com receptores específicos causando despolarização e propagação do potencial de ação na célula pós-sináptica(Oda 1999; Seibt 2008). Seus efeitos são mediados pela ativação de receptores nicotínicos e muscarínicos (Soreq & Seidman 2001; Descarries et al. 1997; Seibt 2008). A estimulação dos receptores muscarínicos conduzirá à despolarização ou hiperpolarização da membrana e também é capaz de inibir a enzima adenilato ciclase e ativar a enzima fosfolipase C (Seibt 2008; Cooper et al. 2003). Considerando a complexidade das vias de neurotransmissão e o possíveis efeitos diretos/indiretos foi feita a escolha das colinesterases como possível marcador para fármacos psicotrópicos. Ademais, essa escolha é fundamentada também no amplo uso das colinesterases como marcador de alteração neuro-endócrina em peixes expostos a metais, carbamatos e organofosforados.

A literatura tem mostrado alguns estudos do sistema colinérgico em cérebro e retina de peixe-zebra, sendo também mostrado através de análise histoquímica e imunohistoquímica (Arenzana et al. 2005; Clemente et al. 2004; Seibt 2008). O gene da AChE já foi clonado e sequenciado, e sua atividade enzimática já foi detectada no cérebro, ademais, subunidades de receptores muscarínicos e nicotínicos também são expressos nesta espécie (Zirger et al. 2003; Seibt 2008; Bertrand et al. 2001; Rico 2007). Entretanto, este peixe não apresenta no seu genoma a BuChE, responsável pela hidrólise de butirilcolina (Seibt 2008; Rico 2007).

A fluoxetina é um antidepressivo, ISRS que atua bloqueando a bomba de recaptação de serotonina da membrana neuronal, reforçando as ações de serotonina nos autoreceptores de 5HT1A inibitórios. Seu principal metabólito é a norfluoxetina. Nos bioensaios bioquímicos com a fluoxetina foi observado um efeito significativo na atividade da AChE (substratos ACh e PCh) nos embriões expostos às concentrações de ; 0.006; 0.032; 0,185; 1.053 mg/L (Figura 46). Nos testes comportamentais (Figura 47) foi observada uma inibição significativa da atividade relacionada ao tempo total de nado dos organismos expostos às concetrações de 1.58; 28 e 500 μg/L e outra alteração significativa relacionada a distância total percorrida nos organismos expostos às concentrações de 0,06; 1.58; 28 e 500 μg/L. Esses resultados mostram que pode haver uma correlação entre a diminuição da atividade da AChE (substratos: ACh e PCh) aos efeitos comportamentais (diminuição do tempo total de nado e distância total percorrida). Miller et al (2002), mostrou que a fluoxetina interfere na atividade das colinesterases em humanos (Miller et al. 2002).

A bupropiona é um antidepressivo muito utilizado no mundo, devido aos seus baixos efeitos adversos, atuando na inibição da recaptação de noradrenalina e dopamina. Atualmente, é sabido que existem três metabólitos ativos da bupropiona: a hidroxibupropiona e os isômeros aminoálcool, treohidrobupropiona e eritrohidrobupropiona. Segundo a base de dados da EPA esses não possuem estudos ecotoxicológicos. Nos testes bioquímicos com a bupropiona (Figura 33), não foram observados efeitos significativos na atividade da AChE (substratos ACh e PCh). Ao analisarmos os dados comportamentais (Figura 34) foi observada uma alta atividade no tempo total de nado nos embriões expostos a concentração de 158 μg/L e uma baixa atividade nos organismos expostos à concentração de 50000 μg/L (ANOVA *on Ranks*). Observou-se também um aumento significativo da distância total percorrida nos organismos expostos às concentrações de 8.8 e 158 μg/L, além de uma diminuição significativa nos organismos expostos à concentração de 50000 μg/L. Esses resultados comportamentais podem estar ligados a alterações em outros sistemas de

neurotransmissão (exemplo: dopaminérgicos ou noradrenérgicos, locais de atuação da bupropiona), sugerindo que testes futuros utilizando neuromarcadores de atividade dopaminérgica ou noradrenérgica devem ser feitos.

O bromazepam é um ansiolítico, benzodiazepínico, lipofílico, de longa ação sedativa e propriedades hipnóticas, relaxante muscular, esquelética. Ele atua inibindo os neuroreceptores GABA. Nos testes bioquímicos com o bromazepam não foram observados efeitos significativos na atividade da AChE (substratos: ACh e PCh) (Figura 39). Ao analisarmos os bioensaios comportamentais (Figura 40) foi observada uma diminuição significativa do tempo total de nado nos organismos expostos às concentrações a partir de 158 μg/L. Além disso, observou-se também um aumento significativo da distância total percorrida nos organismos expostos às concentrações de 0,6 e 8,8 μg/L e uma diminuição significativa nos organismos expostos a maior concentração, 50000 μg/L. Esses resultados comportamentais podem estar ligados a alterações em outros sistemas de neurotransmissão (exemplo:gabaérgico, local de atuação do bromazepam), sugerindo futuros testes utilizando neuromarcadores de atividade gabaérgica (ex. *microarrays*) afim de correlaciona-los com os efeitos comportamentais observados.

A amitriptilina é um antidepressivo, tricíclico, anti-muscarino clássico, que atua como inibidor da recaptação da serotonina-noradrenalina, com elevada atuação sobre o neurotransportador de serotonina e efeitos moderados no neurotransportador de noradrenalina. Nos testes bioquímicos com a amitriptilina foi observado um aumento significativo na atividade da AChE (substrato: PCh) nos organismos expostos à concentração de 1.58 μg/L (Figura 26). Nos testes comportamentais (Figura 27) foi observado uma diminuição significativa do tempo total de nado e distância total percorrida nos organismos expostos à concentração de 28 μg/L. Sugerimos a repetição dos testes para uma melhor elucidação.

A nortriptilina é um antidepressivo, tricíclico, que atua inibindo a recaptação de serotonina ou inibindo receptores beta-adrenérgicos. Ela é o principal metabólito da amitriptilina. Nos testes bioquímicos com a nortriptilina foi observado um efeito significativo na atividade da AChE (substratos: ACh e PCh) nos embriões expostos à concentração de 1000 μg/L (Figura 53). Nos testes comportamentais (Figura 54) foi observado um aumento significativo no tempo total de nado (ANOVA on Ranks) nos organismos expostos às concentrações a partir de 0,88 μg/L, já para a distância total percorrida foi observado somente um efeito significativo (ANOVA on Ranks) nos organismos expostos à concentração de 0,06 μg/L. Esses resultados comportamentais podem estar ligados a alterações em outros sistemas de neurotransmissão (exemplo:serotonérgico, local de atuação da nortriptilina), sugerindo que testes futuros com neuromarcadores serotonérgicos devem ser feitos com intuito de correlaciona-los com os efeitos comportamentais observados. Ademais, também seria interessante a realização de testes comportamentais expondo o peixe-zebra à concentração de 1000 μg/L de nortriptilina, pois nos testes bioquímicos houve uma diminuicão significativa da atividade da AChE (substratos: ACh e PCh).

Em geral, as larvas de peixe-zebra possuem características de locomoção elevada em ambientes escuros (Padilla et al. 2011). Desse modo, o período de exposição no escuro foi escolhido para análise na presente dissertação. Testes que englobem períodos de luz (situação de *stress*) podem vir a corroborar os dados aqui obtidos.

4.5.3 Testes embriotoxicológicos com nanomateriais

Nossos resultados de embriotoxicidade com os nanoestruturados de carbono 824 e as nanopartículas de titânio mostraram baixa toxicidade no organismo modelo utilizado, CL 50 acima de 100 mg/L, além

Capítulo 04

disso, não foram observados efeitos na eclosão, equilíbrio e alterações no desenvolvimento (seções 4.3.1. e
4.3.2.). A Tabela 17 mostra a toxicidade das nanopartículas de titânio em diferentes organismos aquáticos.

Tabela 17 Revisão de literatura para os efeitos ecotoxicológicos de nanopartículas de titânios em organismos aquáticos.

Espécie	Tempo (Dias)	Parâmetro	Efeito medido	Valor (µg/L)	Referência
Daphnia magna	2	CL50	Mortalidade	5500	(Lovern & Klaper 2006)
Daphnia magna	2	CL50	Mortalidade	2000	(Lovern et al. 2007)
Pseudokirchneriella subcapitata	3	IC50	Crescimento	26.30	(Blaise & Vasseur 2005)
Pseudokirchneriella subcapitata	3	EC50	Crescimento	87000	(Warheit et al. 2007)
Pseudokirchneriella subcapitata	3	EC50	Crescimento	241000	(Hartmann et al. 2010)
Pseudokirchneriella subcapitata	3	EC50	Crescimento	35900	(Aruoja et al. 2009)
Daphnia magna	2	EC50	Imobilidade	> 100000	(Warheit et al. 2007)
Daphnia magna	2	EC50	Imobilidade	143387	(Zhu et al. 2009)
Daphnia magna	2	EC50	Imobilidade	> 100000	(Hund-Rinke & Simon 2006)
Daphnia magna	2	EC50	Imobilidade	> 100000	(Kim et al. 2010)
Daphnia magna	2	CL50	Mortalidade	~2000000	(Heinlaan et al. 2008)
Danio rerio	4	CL50	Mortalidade	500000	(Zhu et al. 2008)
Danio rerio	2	CL50	Mortalidade	>10000	(Griffitt et al. 2008)
Pimephales promelas	2	CL50	Mortalidade	>500000	(Hall et al. 2009)
Oncorhynchus mykiss	4	CL50	Mortalidade	>100000	(Warheit et al. 2007)
Oncorhynchus mykiss	14	CL50	Mortalidade	>1000	(Federici et al. 2007)
Cyprinus carpio	8	CL50	Mortalidade	>200000	(Hao et al. 2009)

Capítulo 04

Espécie	Tempo (Dias)	Parâmetro	Efeito medido	Valor (µg/L)	Referência
Desmodesmus subspicatus	3	CE50	Crescimento	44000	(Sharma 2009)
Xenopus laevis	4	CE50	Desenvolvimento	1000000	(Nations et al. 2011)
Fundulus heteroclitus	4	CL50	Mortalidade	1000000	(Dorfman 1977)
Danio rerio	23	CL50	Mortalidade	10000	(Bar-Ilan 2011).
Pimephales promelas	4	CL50	Mortalidade	1000000	(Hall et al. 2009)
Danio rerio	5	CL50	Mortalidade	1000000	(Bar-Ilan 2011)
Daphinia magna	2	CE50	Imobilidade	35306	(Zhu et al. 2009)
Daphinia magna	2	CL50	Mortalidade	143387	(Zhu et al. 2009)
Danio rerio	4	CL50	Mortalidade	134600	(Ma & Diamond 2013)
Oryzias latipes	4	CL50	Mortalidade	155000	(Ma et al. 2012)

A referida tabela mostra que as nanopartículas de titânio apresentam toxicidade aguda superior a 100000 ug/L para o *D. rerio*, *Xenopus laevis*, *Oryzias latipes* e *Pimephales promelas* resultado similar ao obtido no presente estudo. Entretanto, apesar de haver baixa toxicidade das nanopartículas de titânio para o peixe-zebra (testes agudos), Madison (2011), ao estudar os efeitos subcrônicos utilizando esse organismo modelo, encontrou uma CL50 de 10 mg/L. Evidenciando que há necessidade de estudos crônicos para uma melhor elucidação dos efeitos tóxicos desses nanomateriais.

Ao comparar nossos resultados de embriotoxicidade com os nanoestruturados de carbono aos dados encontrados na literatura (Tabela 18), observou-se uma similaridade nos resultados com estudos determinando CE ou CL50 com outros vertebrados aquáticos, ademais foi observado que o peixe-zebra é

mais resistente que: *Dunaliella tertiolecta*, *Chlorella vulgaris*, *Pseudokirchneriella subcapitata* e *Daphnia magna*. Apesar de os nanoestruturados de carbono não apresentarem toxicidade elevada para o peixe-zebra são necessários mais estudos subletais e letais, agudos e crônicos, para melhor elucidação do potencial tóxico desses. Smith et al (2007). ao estudar os efeitos desses nanomateriais no peixe *Oncorhynchus mykiss*, encontrou alterações bioquímicas, fisiológicas e celulares em concentrações que variaram entre 100 e 500 μg/L (Smith et al. 2007).

Tabela 18 Revisão de literatura para os efeitos ecotoxicológicos de nanoestruturados de carbono em organismos aquáticos.

Espécie	Meio	Tempo (Dias)	Parâmetro	Tendência	Efeito medido	Valor (µg/L)	Referências
Daphnia magna	Água doce	2	CL100	Aumento	Mortalidade	20000	(Roberts et al. 2007)
Amphiascus tenuiremis	Água salgada	35	CL50	Aumento	Mortalidade	>10000	(Templeton et al. 2006)
Daphnia magna	Água doce	2	CE50	Diminuição	Mobilidade	>35000	(Oberdörster et al. 2006)
Daphnia magna	Água doce	2	CL50	Aumento	Mortalidade	2480	(I. Kim et al. 2009)
Daphnia magna	Água doce	21	LOEC	Diminuição	Reprodução	240	(Alloy & Roberts 2011)
Ceriodaphnia dubia	Água doce	7	LOEC	Diminuição	Reprodução	4770	(Alloy & Roberts 2011)
Oncorhynchus mykiss	Água doce	10	LOEC	Alteração	Bioquímica	500	(Smith et al. 2007)
Daphnia magna	Água doce	2	CE50	Aumento	Mobilidade	460	(Lovern & Klaper 2006)
Daphnia magna	Água doce	2	CE50	Aumento	Mobilidade	7900	(Baun et al. 2008)
Danio rerio	Água doce	5	CL50	Aumento	Mortalidade	130	(Isaacson et al. 2007)
Dunaliella tertiolecta	Água salgada	4	CE50	Diminuição	Populacional	820	(Wei et al. 2010)

Espécie	Meio	Tempo (Dias)	Parâmetro	Tendência	Efeito medido	Valor (µg/L)	Referências
Chlorella vulgaris	Água doce	4	CE50	Diminuição	Populacional	40000	(Schwab et al. 2011)
Pseudokirchneriella subcapitata	Água doce	4	CE50	Diminuição	Populacional	36000	(Schwab et al. 2011)
Daphnia magna	Água doce	2	CE50	Diminuição	Mobilidade	1306	(Zhu et al. 2009)
Daphnia magna	Água doce	2	CE50	Diminuição	Mobilidade	8723	(Zhu et al. 2009)
Daphnia magna	Água doce	2	CL50	Aumento	Mortalidade	2425	(Zhu et al. 2009)
Daphnia magna	Água doce	2	CL50	Aumento	Mortalidade	22751	(Zhu et al. 2009)
Danio rerio	Água doce	3	CE50	Inibição	Eclosão	>120000	(Cheng et al. 2007)
Danio rerio	Água doce	3	CL50	Aumento	Mortalidade	>360000	(Cheng et al. 2007)
Oryzias latipes	Água doce	4	CL50	Aumento	Mortalidade	>100000	(Sohn et al. 2015)
Daphnia magna	Água doce	2	CE50	Diminuição	Mobilidade	>100000	(Sohn et al. 2015)
Daphnia magna	Água doce	4	CL50	Aumento	Mortalidade	2480	(K. T. Kim et al. 2009)

4.5.4 Testes embriotoxicológicos com a interação

De acordo com os nossos dados de interação entre os nanoestruturados de carbono 824 + fluoxetina foi observada uma diminuição da toxicidade da fluoxetina em 7.3 vezes (Figuras 59 e 60). Mostrando que a ação adsorvente desses nanomateriais podem ter deixado as moléculas de fluoxetina menos biodisponíveis para os organimos em exposição (Long & Yang 2001; Ji et al. 2010). Esses resultados sugerem o que os nanoestruturados de carbono 824 possuem potencial para futuras aplicações em remediações de ecossistemas aquáticos contaminados por fármacos. Entretanto, há necessidade de testes crônicos para melhor elucidação.

Para os testes de interação entre as nanopartículas de titânio + bromazepam não foram observados efeitos na mortalidade para os embriões expostos à mistura (Figura 62). Entretanto, foi observada uma diminuição do efeito no equilíbrio dos organismos expostos à mistura (figura 63). Esses dados indicam que as nanopartículas de titânio podem também ter adsorvido moléculas do bromazepam, deixando-as menos biodisponíveis para os organismos em exposição e consequentemente baixando a toxicidade do mesmo. Sugerimos que testes ativando as nanopartículas de titânio com UV podem ser efetuados devido as suas propriedades catalíticas (oxido-redução) (Han et al. 2009; Hu et al. 2011).

4.5.5 O modelo experimental e testes preliminares

Na presente dissertação estudamos os efeitos de exposição aguda do peixe-zebra aos fármacos psicotrópicos (formulações comerciais e compostos puros), além de exposição à nanomaterias e interações. Baseado nos nossos resultados embriotoxicológicos (mg/L), o tempo de exposição para a maioria dos fármacos testados aumentou progressivamente o número de organismos sem resposta ao estímulo mecânico/alterações do desenvolvimento e mortalidade, observou-se também alterações bioquímicas (μg/L) e alterações do tempo total de nado e distância total percorrida dos organismos (ng/L). Esses pârametros mostram que o peixe-zebra possuí uma boa sensibilidade, apresentando respostas interessantes nos bioensaios letais e subletais. Vale ressaltar que esse aumento progressivo dos efeitos adversos nos testes agudos é um forte indicativo para a necessidade da realização de testes crônicos, pois é possível predizer que as concentrações de efeito adverso nos testes crônicos serão menores que as agudas devido ao maior tempo de exposição.

Capítulo 05 – Considerações finais

Dissertação de Mestrado

2016

Atualmente, aproximadamente 226 fármacos psicotrópicos possuem autorização para comercialização no Brasil. Em geral, evidencia-se uma grande lacuna de estudos ecotoxicológicos com esse grupo de fármacos, especialmente com organismos modelos. De acordo com os nossos dados obtidos da literatura são reportados estudos ecotoxicológicos somente para 24 %. Nossos dados também apontam que apenas 4 % desse montante possuem estudos ecotoxicológicos com determinação de CE50 e/ou CL50 com sete ou mais espécies. A comparação da quantidade de estudos com organismos aquáticos nos diferentes níveis tróficos mostram que os vertebrados são o grupo menos estudado com a parcela de 20 % de estudos em ecotoxicologia seguidos pelos produtores primários (27 %) e invertebrados (53 %).

Tucci *et al.* (2008) mostra que os serviços de água e esgoto no Brasil ainda é muito deficiente (Tabela 19). Pode-se observar que a rede de abastecimento de água tratada é ampla no Brasil, entretanto é baixa a cobertura de coleta e tratamento de esgoto (Tucci 2008).

Tabela 19 Cobertura de atendimento de água e esgoto em %, adaptado de Tucci et al (2008).

Tipo	Urbano Cobertura	Deficit	Rural Cobertura	Deficit	Total Cobertura	Deficit
População (milhões)	152 (83%)	%	31,6 (17%)	%	183,6	%

Capítulo 05

Tipo	Urbano Cobertura	Deficit	Rural Cobertura	Deficit	Total Cobertura	Deficit
Abastecimento de água (%)	91,95	8,15	88,443	11,56	91,35	8,65
Coleta de esgosto (%)	77,22	22,78	18,43	81,57	67,1	32,9
Rede (%)	54,27		4,08		45,63	
Fossas (%)	22,95		14,35		21,47	
Tratamento de esgoto (%)					28,2	81,8

O principal destino final dos fármacos são os ecossistemas aquáticos. Ao analisarmos esse fato trazendo-o para o nosso contexto nacional, onde há muitos locais sem rede coletora de esgoto, e além da poluição orgânica, vários produtos químicos amplamente utilizados em larga escala para as mais variadas aplicações, são lançados diariamente nos corpos hídricos tornando o esgoto doméstico uma das principais fontes de poluentes emergentes traz um sinal de alerta para a saúde publica e do meio ambiente (Deblonde et al. 2011; Bolong et al. 2009).

As ETEs têm como função principal reduzir a carga orgânica lançada no corpo d'água receptor. Com o alto deficit de tratamento de esgoto no Brasil são esperadas concentrações maiores de substâncias químicas (exemplo: fármacos psicotrópicos) em ecossistemas aquáticos e, consequentemente, maiores implicações ambientais. No Distrito Federal, fármacos psicotrópicos já foram detectados no Lago Paranoá, nomeadamente a carbamazepina, citalopram, diazepam, fluoxetina, sertralina, primidona e tetrazepam (Bornick et al. 2014).

Em geral, as concentrações de fármacos psicotrópicos são detectadas na gama de ng/L a µg/L em amostras ambientais. A figura 66 ilustra alguns dos nossos resultados (testes embriotoxicidade, bioquímicos e comportamentais), mostrando que efeitos comportamentais e por vezes bioquímicos podem ocorrer em baixas concentrações.

		<u>Amitriptilina</u>	Bupropiona	<u>Bromazepam</u>	<u>Fluoxetina</u>	<u>Nortriptilina</u>		
_	mortalidade CL50	3,65	111,8	>117	1,37	2,16		
Teste de embriotoxicidade	teratologias	2,23	109,3	45	15	2,81		3,4 vezes
(mg/L)	eclosão	6,3	58	45	5,51	22,36		
	equilíbrio	0,79	22,4	117	0,74	1		123,3
Teste bioquímico	AChE	> 1 mg/L	> 50 mg/L	> 50 mg/L	6 μg/L	1 mg/L	\langle	vezes
Teste comportamental	Tempo total de nado/ Distância total percorrida	28 μg/L ↓ atividade	8,6 µg/L ↑ atividade	0,6 μg/L 个 atividade	60 ηg/L ↓ atividade	60 ng/L 个 atividade		100 vezes

Figura 66 Ordem de concentrações de fármacos psicotrópicos que alteraram a mortalidade, bioquímica e comportamento do peixe-zebra.

Visando uma melhor avaliação de risco ambiental de fármacos psicotrópicos, para o teste de embriotoxicidade o parâmetro mais sensível foi a alteração do equilíbrio (concentrações de efeito 3.4 vezes menores que as concentrações letais). As concentrações que alteram parâmetros bioquímicos quando comparadas ao *endpoint* mais sensível dos testes de embriotoxicidade são 123.3 vezes menores, e por fim, as concentrações que alteram parâmetros comportamentais são 100 vezes menores quando comparadas ao parâmetro bioquímico.

A figura 67 exemplifica alterações significativas em embriões de peixe-zebra expostos a concentrações ambientalmente relevantes, esses dados mostram que alguns fármacos psicotrópicos podem representar risco ambiental. Estudos futuros devem focar em concentrações ambientalmente relevantes de fármacos psicotrópicos que são capazes de alterar hábitos alimentares (capacidade para capturar presas), reprodução, ou implicações para a sobrevivência (aumento da vulnerabilidade à predação).

Detecção ambiental

Composto	Local	Concentração detectada	Referência	
Fluoxetina	Águas tratadas	318 ng/L	Lapen et al. (2008)	Fluoxetina: 60 ηg/L ↓ atividade
	Efluente hospitalar	180 ng/L	Nagarnaik et al. (2011)	
	Águas superficiais	43 ug/L	Ortiz (2010)	
	ETE	1,5 ug/L	Kinney et al. (2006)	
Amitriptilina	Efluente hospitalar	290 ng/L	Nagarnaik et al. (2011)	
	ETE (tratado)	197 ng/L	Kasprzyk-Hordern et al. (2009)	
	ETE - influente não tratado	2,09 ug/L	Kasprzyk-Hordern et al. (2009)	
Bupropiona	ETE - efluente tratado	195 ng/L	Metcalfe et al. (2010)	
	ETE - influente não tratado	191 ng/L	Metcalfe et al. (2010)	
	Águas superficiais	140 ng/L	Ferrer & Thurman (2012)	
Bromazepam	Águas superficiais	356 ng/L	Sadezky et al. (2008)	Bromazepam: 0,6 μg/L ↑ atividade
	ETE - efluente tratado	15,54 ug/L	Huerta-Fontela (2010)	
	ETE - influente não tratado	3,66 ug/L	Huerta-Fontela (2010)	
				,

Figura 67 Estudos de detecção ambiental comparados aos resultados obtidos na presente dissertação (testes comportamentais).

No que se refere ao uso dos embriões de peixe-zebra como organismo modelo para avaliação de fármacos psicotrópicos, pode-se inferir que apesar do teste de embriotoxicidade ser eficiente na avaliação de toxicidade aguda, o uso somente do parâmetro de mortalidade parece ser insuficiente, uma vez que efeitos severos no organismo nomeadamente: paralisia, são encontrados em doses em média 5-10 x mais baixas que

os valores de CL50. Efeitos na eclosão são observados somente em doses altas, muitas das vezes são reversíveis ou próximas às doses letais. Efeitos teratológicos apesar de não serem reversíveis, geralmente são encontrados somente em dosagens altas e a partir das 120 h de exposição. Uma análise refinada dos parâmetros comportamentais utilizando o zebrabox corroboram a hipótese de que a avaliação da mortalidade não é suficiente para elucidar os efeitos tóxicos de fármacos psicotrópicos, revelando efeitos tóxicos desses em concentrações muito próximas ou, até mesmo abaixo das concentrações já detectadas no meio ambiente. Ademais, os resultados obtidos sugerem que os efeitos no comportamento podem não seguir uma dose resposta, uma vez que em baixas doses podem induzir a atividade locomotora e em doses mais altas tendem a diminuir a atividade locomotora.

Por fim, para a proteção efetiva dos ecossistemas aquáticos são necessárias, mais estudos na área, políticas públicas para biomonitoramento das concentrações e efeitos de fármacos, além desenvolvimento e uso de tratamentos terciários em ETEs (exemplo: filtros nanoestruturados, ozonização, radiação ultravioleta, membranas de filtração e carvão ativado).

- .Abner J. Colón Ortiz, 2010. atorvastatina, enalapril y acetaminofeno en el lago Guayo y el lago Lucchetti en el sur de Puerto Rico. *Revista 360*, No 5, pp.1–10.
- Ackermann, G.E. & Paw, B.H., 2003. Zebrafish: a genetic model for vertebrate organogenesis and human disorders. *Frontiers in bioscience: a journal and virtual library*, 8, pp.d1227–53.
- Ahlford, K., 2012. Environmental Risk Assessment of Selective Serotonin Reuptake Inhibitors (SSRIs) Fluoxetine, Citalopram, Sertraline, Paroxetine and the Benzodiazepine Oxazepam. Uppsala universitet.
- Aitken, R.J. et al., 2006. Manufacture and use of nanomaterials: Current status in the UK and global trends. *Occupational Medicine*, 56(5), pp.300–306.
- Ajayan, P.M., 1999. Nanotubes from Carbon. *Chemical Review*, 99(7), p.14. Available at: http://pubs.acs.org/doi/full/10.1021/cr970102g.
- Ali, S., Aalders, J. & Richardson, M.K., 2014. Teratological effects of a panel of sixty water-soluble toxicants on zebrafish development. *Zebrafish*, 11(2), pp.129–41. Available at: http://www.ncbi.nlm.nih.gov/pubmed/24650241.
- Alloy, M.M. & Roberts, A.P., 2011. Effects of suspended multi-walled carbon nanotubes on daphnid growth and reproduction. *Ecotoxicology and Environmental Safety*, 74(7), pp.1839–1843. Available at: http://dx.doi.org/10.1016/j.ecoenv.2011.06.020.
- Al-Rifai, J.H., Khabbazb, H. & Schäfer, A., 2011. Removal of pharmaceuticals and endocrine disrupting compounds in water recycling process using reverse osmosis systems., pp.60–67. Available at: http://hdl.handle.net/1842/4666.
- Andrade, T. de S., 2015. EFFECTS OF ENVIRONMENTAL FACTORS ON THE TOXICITY OF PESTICIDES TO ZEBRAFISH EMBRYOS. Universidade de Aveiro. Available at: http://hdl.handle.net/10773/4335.
- Arenzana, F.J. et al., 2005. Development of the cholinergic system in the brain and retina of the zebrafish. *Brain research bulletin*, 66(4), pp.421–425.
- Argyropoulos, S. V., Sandford, J.J. & Nutt, D.J., 2000. The psychobiology of anxiolytic drugs Part 2: Pharmacological treatments of anxiety. *Pharmacology and Therapeutics*, 88(3), pp.213–227.

- Aruoja, V. et al., 2009. Toxicity of nanoparticles of CuO, ZnO and TiO2 to microalgae Pseudokirchneriella subcapitata. *Science of the Total Environment*, 407(4), pp.1461–1468. Available at: http://dx.doi.org/10.1016/j.scitotenv.2008.10.053.
- Aus der Beek, T. et al., 2015. Pharmaceuticals in the environment global occurrences and perspectives. *Environmental Toxicology and Chemistry*, p.n/a–n/a. Available at: http://doi.wiley.com/10.1002/etc.3339.
- Bacalum, E., Iorgulescu, E.E. & David, V., 2012. Enrichment of several benzodiazepines by solid-phase extraction with octyl and phenyl silica based adsorbents. *Revue Roumaine de Chimie*, 57(7-8), pp.715–720.
- Bähr, S., 2009. Persistenz abwasserbürtiger Antipsychotika-und Sulfamethoxazolrückstände im Oberflächen-, Grund-und Trinkwasser des südlichen Rhein-Neckar-Kreises.
- Baker, D.R. & Kasprzyk-Hordern, B., 2011. Multi-residue determination of the sorption of illicit drugs and pharmaceuticals to wastewater suspended particulate matter using pressurised liquid extraction, solid phase extraction and liquid chromatography coupled with tandem mass spectrometry. *J Chromatogr A*, 1218(44), pp.7901–7913. Available at: http://www.ncbi.nlm.nih.gov/pubmed/21968348.
- Baker, D.R. & Kasprzyk-Hordern, B., 2013. Spatial and temporal occurrence of pharmaceuticals and illicit drugs in the aqueous environment and during wastewater treatment: New developments. *Science of the Total Environment*, 454-455, pp.442–456. Available at: http://dx.doi.org/10.1016/j.scitotenv.2013.03.043.
- Bar-Ilan, O., 2011. *Toxicity of Metal and Metal Oxide Nanoparticles in Developing Zebrafish*. University of Wisconsin-Madison.
- Bauer, M. et al., 2002. Diretrizes da World Federation of Societies of Biological Psychiatry (WFSBP) para tratamento biológico de transtornos depressivos unipolares, 1ª parte: tratamento agudo e de continuação do transtorno depressivo maior. *World J Biol Psychiatry. ReviewPresidente Conjunto; Brasil)Emirados Árabes Unidos*), 3(1), pp.5–43.
- Baun, a. et al., 2008. Ecotoxicity of engineered nanoparticles to aquatic invertebrates: A brief review and recommendations for future toxicity testing. *Ecotoxicology*, 17(5), pp.387–395.
- Behra, M. et al., 2002. Acetylcholinesterase is required for neuronal and muscular development in the zebrafish embryo. *Nature neuroscience*, 5(2), pp.111–118.
- Bertrand, C. et al., 2001. Zebrafish acetylcholinesterase is encoded by a single gene localized on linkage group 7 gene structure and polymorphism; molecular forms and expression pattern during development. *Journal of Biological Chemistry*, 276(1), pp.464–474.

- Besse, J.-P., Kausch-Barreto, C. & Garric, J., 2008. Exposure assessment of pharmaceuticals and their metabolites in the aquatic environment: application to the french situation and preliminary prioritization. *Human and Ecological Risk Assessment: An International Journal*, 14(4), pp.665–695.
- Bijlsma, L. et al., 2012. Investigation of drugs of abuse and relevant metabolites in Dutch sewage water by liquid chromatography coupled to high resolution mass spectrometry. *Chemosphere*, 89(11), pp.1399–1406. Available at: http://dx.doi.org/10.1016/j.chemosphere.2012.05.110.
- Blaise, C. & Vasseur, P., 2005. Algal microplate toxicity test. *Small-Scale Freshwater Toxicity Investigations: Volume 1 Toxicity Test Methods*, 1, pp.137–179.
- Blaser, R.E., Chadwick, L. & McGinnis, G.C., 2010. Behavioral measures of anxiety in zebrafish (Danio rerio). *Behavioural Brain Research*, 208(1), pp.56–62. Available at: http://dx.doi.org/10.1016/j.bbr.2009.11.009.
- Blum, K., 2013. Phototransformation of pharmaceuticals in the environment Multivariate modeling and experimental determination of., (June).
- Bogardi, J.J. et al., 2012. Water security for a planet under pressure: Interconnected challenges of a changing world call for sustainable solutions. *Current Opinion in Environmental Sustainability*, 4(1), pp.35–43.
- Bolong, N. et al., 2009. A review of the effects of emerging contaminants in wastewater and options for their removal. *Desalination*, 238(1-3), pp.229–246.
- Bornick, H. et al., 2014. Integrated Water Resource Management in Brazil. In Brasília: IWA Publishing, pp. 73–92. Available at: https://goo.gl/Lh8UwH.
- Bossus, M.C. et al., 2014. Behavioural and transcriptional changes in the amphipod Echinogammarus marinus exposed to two antidepressants, fluoxetine and sertraline. *Aquatic Toxicology*, 151, pp.46–56. Available at: http://dx.doi.org/10.1016/j.aquatox.2013.11.025.
- Bouissou-Schurtz, C. et al., 2014. Ecological risk assessment of the presence of pharmaceutical residues in a French national water survey. *Regulatory Toxicology and Pharmacology*, 69(3), pp.296–303. Available at: http://dx.doi.org/10.1016/j.yrtph.2014.04.006.
- Brandão, F.P. et al., 2013. Short-term effects of neuroactive pharmaceutical drugs on a fish species: Biochemical and behavioural effects. *Aquatic Toxicology*, 144-145, pp.218–229.
- Van den Brink, P.J. et al., 2006. Predictive Value of Species Sensitivity Distributions for Effects of Herbicides in Freshwater Ecosystems. *Human and Ecological Risk Assessment: An International Journal*, 12(778384761), pp.645–674.
- Brodin, T. et al., 2013. Dilute concentrations of a psychiatric drug alter behavior of fish from natural populations. *Science (New York, N.Y.)*, 339(6121), pp.814–5. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23413353.

- Brooks, B.W. et al., 2005. Determination of select antidepressants in fish from an effluent-dominated stream. *Environmental toxicology and chemistry / SETAC*, 24(2), pp.464–469.
- Broughton, R.E. et al., 2001. The Complete Sequence of the Zebrafish (Danio rerio) Mitochondrial Genome and Evolutionary Patterns in Vertebrate Mitochondrial DNA. *Genome Research*, 11, pp.1958–1967.
- Brundtland, G.H., 1987. Our Common Future: Report of the World Commission on Environment and Development. *Medicine, Conflict and Survival*, 4(1), p.300.
- Calamari, D. et al., 2003. Strategic survey of therapeutic drugs in the rivers Po and lambro in Northern Italy. *Environmental Science and Technology*, 37(7), pp.1241–1248.
- Calisto, V. & Esteves, V.I., 2009. Psychiatric pharmaceuticals in the environment. *Chemosphere*, 77(10), pp.1257–1274.
- Cameotra, S.S. & Dhanjal, S., 2010. Environmental nanotechnology: nanoparticles for bioremediation of toxic pollutants. In *Bioremediation Technology*. Springer, pp. 348–374.
- Campbell, F.W. & Compton, R.G., 2010. The use of nanoparticles in electroanalysis: An updated review. *Analytical and Bioanalytical Chemistry*, 396(1), pp.241–259.
- Del Carmen Alvarez, M. & Fuiman, L.A., 2005. Environmental levels of atrazine and its degradation products impair survival skills and growth of red drum larvae. *Aquatic toxicology*, 74(3), pp.229–241.
- Carson, R., 1962. Silent spring M. Books, ed., Houghton Mifflin Harcourt.
- CAS, 2015. Chemicals Abstract Service. Available at: https://www.cas.org/ [Accessed September 18, 2015].
- Celiz, M.D., Tso, J. & Aga, D.S., 2009. Pharmaceutical metabolites in the environment: analytical challenges and ecological risks. *Environmental toxicology and chemistry / SETAC*, 28(12), pp.2473–2484.
- Chari, B.P. & Halden, R.U., 2012. Validation of mega composite sampling and nationwide mass inventories for 26 previously unmonitored contaminants in archived biosolids from the US National Biosolids Repository. *Water research*, 46(15), pp.4814–4824.
- Chefetz, B., M. et al., 2013. Crop irrigation with treated wastewater: Uptake of pharmaceuticals by crops, fate and processes in arable soils. *Pharmaceuticals in Soil, Sludge and Slurry*.
- Chen, Y.H. et al., 2008. Movement disorder and neuromuscular change in zebrafish embryos after exposure to caffeine. *Neurotoxicology and Teratology*, 30, pp.440–447.
- Cheng, J., Flahaut, E. & Cheng, S.H., 2007. Effect of carbon nanotubes on developing zebrafish (Danio rerio) embryos. *Environmental toxicology and chemistry / SETAC*, 26(4), pp.708–716.

- Christensen, A.M. et al., 2007. Mixture and single-substance toxicity of selective serotonin reuptake inhibitors toward algae and crustaceans. *Environmental toxicology and chemistry / SETAC*, 26(1), pp.85–91.
- Chu, S. & Metcalfe, C.D., 2007. Analysis of paroxetine, fluoxetine and norfluoxetine in fish tissues using pressurized liquid extraction, mixed mode solid phase extraction cleanup and liquid chromatographytandem mass spectrometry. *Journal of Chromatography A*, 1163(1-2), pp.112–118.
- Clara, M., Strenn, B. & Kreuzinger, N., 2004. Carbamazepine as a possible anthropogenic marker in the aquatic environment: Investigations on the behaviour of Carbamazepine in wastewater treatment and during groundwater infiltration. *Water Research*, 38(4), pp.947–954.
- Clemente, D. et al., 2004. Cholinergic elements in the zebrafish central nervous system: histochemical and immunohistochemical analysis. *Journal of Comparative Neurology*, 474(1), pp.75–107.
- Cleuvers, M., 2003. Aquatic ecotoxicity of pharmaceuticals including the assessment of combination effects. *Toxicology Letters*, 142(3), pp.185–194.
- CONAMA, 2005. RESOLUÇÃO CONAMA nº 358, de 29 de abril de 2005 Publicada no DOU n,
- CONAMA, 2011. *Resolução N° 430, De 13 De Maio De 2011*, Brasil. Available at: http://www.mma.gov.br/port/conama/legiabre.cfm?codlegi=646.
- Cooper, J.R., Bloom, F.E. & Roth, R.H., 2003. *The biochemical basis of neuropharmacology*, Oxford University Press.
- Costa, K.S. et al., 2011. Utilização de medicamentos e fatores associados: um estudo de base populacional no Município de Campinas, São Paulo, Brasil. *Cad Saude Publica*, 27(4), pp.649–658. Available at: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0102-311X2011000400004.
- Deblonde, T., Cossu-Leguille, C. & Hartemann, P., 2011. Emerging pollutants in wastewater: A review of the literature. *International Journal of Hygiene and Environmental Health*, 214(6), pp.442–448.
- Deckers, C.L. et al., 2000. Selection of antiepileptic drug polytherapy based on mechanisms of action: the evidence reviewed. *Epilepsia*, 41(11), pp.1364–1374.
- Descarries, L., Gisiger, V. & Steriade, M., 1997. Diffuse transmission by acetylcholine in the CNS. *Progress in neurobiology*, 53(5), pp.603–625.
- Dodd, a et al., 2000. Zebrafish: bridging the gap between development and disease. *Human molecular genetics*, 9(16), pp.2443–2449.
- Dooley, K., 2000. Zebrafish: a model system for the study of human disease. *Current Opinion in Genetics & Development*, 10(3), pp.252–256. Available at: http://www.sciencedirect.com/science/article/pii/S0959437X00000745.

- Dorfman, D., 1977. Tolerance of Fundulus heteroclitus to different metals in salt waters. *Bull. New Jersey Acad. Sci*, 22, p.21.
- Dubois, B. et al., 2010. Revising the definition of Alzheimer's disease: A new lexicon. *The Lancet Neurology*, 9(11), pp.1118–1127.
- Eadie, M.J. & Vajda, F., 1999. Antiepileptic drugs: pharmacology and therapeutics, Springer Science & Business Media.
- Eckel, W.P., 1993. Pentobarbital found in ground water.
- Eckel, W.P., Ross, B. & Isensee, R.K., 1993. Pentobarbital found in ground water. *Groundwater*, 31(5), pp.801–804.
- Edwards, J.G. & Michel, W.C., 2002. Odor-stimulated glutamatergic neurotransmission in the zebrafish olfactory bulb. *Journal of Comparative Neurology*, 454(3), pp.294–309.
- Ekberg, B.M.P. & Pletsch, B. a, 2011. Pharmaceuticals and Personal Care Products (PPCPs) in the Streams and Aquifers of the Great Miami River Basin.
- Ellman, G.L. et al., 1961. A new and rapid colorimetric determination of acetylcholinesterase activity. *Biochemical pharmacology*, 7(2), pp.88–95.
- Engelmann, U. & Rohde, S., 2009. Arzneimittelwirkstoffe, Antibiotika und Röntgenkontrastmittel in Abwassereinleitungen und Oberflächengewässern in Sachsen. *Korrespondenz Abwasser*, 56(3), pp.258–268.
- Eriksson, D., K. & Flygare, D.G. and S., 2006. Läkemedelsrester Universitetssjukhuset MAS i Malmö. Malmö, Sweden., p.33 pp.
- Escalona-Cardoso, G.N. et al., 2012. Spirulina (Arthrospira) Protects Against Valproic Acid–Induced Neural Tube Defects in Mice. *Journal of Medicinal Food*, 15(12), pp.1103–1108. Available at: http://online.liebertpub.com/doi/abs/10.1089/jmf.2012.0057.
- Fatta-Kassinos, D., Hapeshi, E., et al., 2011. Existence of Pharmaceutical Compounds in Tertiary Treated Urban Wastewater that is Utilized for Reuse Applications. *Water Resources Management*, 25(4), pp.1183–1193.
- Fatta-Kassinos, D., Meric, S. & Nikolaou, A., 2011. Pharmaceutical residues in environmental waters and wastewater: Current state of knowledge and future research. *Analytical and Bioanalytical Chemistry*, 399(1), pp.251–275.
- Federici, G., Shaw, B.J. & Handy, R.D., 2007. Toxicity of titanium dioxide nanoparticles to rainbow trout (Oncorhynchus mykiss): Gill injury, oxidative stress, and other physiological effects. *Aquatic Toxicology*, 84(4), pp.415–430.

- Ferrer, I. & Thurman, E.M., 2012. Analysis of 100 pharmaceuticals and their degradates in water samples by liquid chromatography/quadrupole time-of-flight mass spectrometry. *Journal of Chromatography A*, 1259, pp.148–157. Available at: http://dx.doi.org/10.1016/j.chroma.2012.03.059.
- Fick, J. et al., 2009. Contamination of Surface, Ground, and Drinking Water From Pharmaceutical Production. *Environmental Toxicology and Chemistry*, 28(12), pp.2522–2527.
- Fick, J. et al., 2011. Results from the Swedish National Screening Programme 2010. Subreport 3. Pharmaceuticals. *IVL Report B*, 2014.
- Fuguet, E. et al., 2008. Critical evaluation of buffering solutions for pKa determination by capillary electrophoresis. *Electrophoresis*, 29(13), pp.2841–2851.
- Galus, M. et al., 2013. Chronic effects of exposure to a pharmaceutical mixture and municipal wastewater in zebrafish. *Aquatic Toxicology*, 132-133, pp.212–222. Available at: http://dx.doi.org/10.1016/j.aquatox.2012.12.016.
- García, A. et al., 2011. Acute toxicity of cerium oxide, titanium oxide and iron oxide nanoparticles using standardized tests. *Desalination*, 269(1-3), pp.136–141.
- Geddes, J. et al., 2000. Atypical antipsychotics in the treatment of schizophrenia. *BMJ: British Medical Journal*, 321(2), pp.1371–1376. Available at: http://www.embase.com/search/results?subaction=viewrecord&from=export&id=L354794895\nhttp://d x.doi.org/10.1002/pnp.116.
- Giebułtowicz, J. & Nałecz-Jawecki, G., 2014. Occurrence of antidepressant residues in the sewage-impacted Vistula and Utrata rivers and in tap water in Warsaw (Poland). *Ecotoxicology and Environmental Safety*, 104(1), pp.103–109.
- Ginebreda, A. et al., 2010. Environmental risk assessment of pharmaceuticals in rivers: Relationships between hazard indexes and aquatic macroinvertebrate diversity indexes in the Llobregat River (NE Spain). *Environment International*, 36(2), pp.153–162. Available at: http://dx.doi.org/10.1016/j.envint.2009.10.003.
- Godoy, A.A., 2014. Cloridrato de propranolol e losartana potássica, em ação individual e combinada, na macrófita Lemna minor (1753). Universidade Federal de Alfenas.
- Gondaliya, D. & Pundarikakshudu, K., 2003. Studies in formulation and pharmacotechnical evaluation of controlled release transdermal delivery system of bupropion. *AAPS PharmSciTech*, 4(1), p.E3.
- González Alonso, S. et al., 2010. Pollution by psychoactive pharmaceuticals in the Rivers of Madrid metropolitan area (Spain). *Environment International*, 36(2), pp.195–201. Available at: http://dx.doi.org/10.1016/j.envint.2009.11.004.
- Goodman e Gilman, 2012. As Bases farmacológicas da terapêutica 10 Edição Goodman & Gilman.pdf,

- Gottschall, N. et al., 2012. Pharmaceutical and personal care products in groundwater, subsurface drainage, soil, and wheat grain, following a high single application of municipal biosolids to a field. *Chemosphere*, 87(2), pp.194–203. Available at: http://dx.doi.org/10.1016/j.chemosphere.2011.12.018.
- Griffitt, R.J. et al., 2008. Nanomaterials in the Environment EFFECTS OF PARTICLE COMPOSITION AND SPECIES ON TOXICITY OF METALLIC NANOMATERIALS IN AQUATIC ORGANISMS. *Environmental Toxicology and Chemistry*, 27(9), pp.1972–1978.
- Gros, M., Rodríguez-Mozaz, S. & Barceló, D., 2012. Fast and comprehensive multi-residue analysis of a broad range of human and veterinary pharmaceuticals and some of their metabolites in surface and treated waters by ultra-high-performance liquid chromatography coupled to quadrupole-linear ion trap tandem. *Journal of Chromatography A*, 1248, pp.104–121.
- Hall, S. et al., 2009. Acute and chronic toxicity of nano-scale TiO2 particles to freshwater fish, cladocerans, and green algae, and effects of organic and inorganic substrate on TiO2 toxicity. *Nanotoxicology*, 3(2), pp.91–97. Available at: http://informahealthcare.com/doi/abs/10.1080/17435390902788078.
- Halling-Sorensen, B. et al., 1998. Occurence, fate and effects of pharmaceuticals substance in the environment A review. *Chemosphere*, 36(2), pp.357–393.
- Han, F. et al., 2009. Tailored titanium dioxide photocatalysts for the degradation of organic dyes in wastewater treatment: A review. *Applied Catalysis a-General*, 359(1-2), pp.25–40. Available at: <Go to ISI>://000266181800002.
- Hao, L., Wang, Z. & Xing, B., 2009. Effect of sub-acute exposure to TiO2 nanoparticles on oxidative stress and histopathological changes in Juvenile Carp (Cyprinus carpio). *Journal of Environmental Sciences*, 21(10), pp.1459–1466. Available at: http://dx.doi.org/10.1016/S1001-0742(08)62440-7.
- Hartmann, N.B. et al., 2010. Algal testing of titanium dioxide nanoparticles-Testing considerations, inhibitory effects and modification of cadmium bioavailability. *Toxicology*, 269(2-3), pp.190–197. Available at: http://dx.doi.org/10.1016/j.tox.2009.08.008.
- Heberer, T., 2002. Tracking persistent pharmaceutical residues from municipal sewage to drinking water. *Journal of Hydrology*, 266(3-4), pp.175–189.
- Heinlaan, M. et al., 2008. Toxicity of nanosized and bulk ZnO, CuO and TiO2 to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus. *Chemosphere*, 71(7), pp.1308–1316.
- Henn, K., 2011. *Limits of the fish embryo toxicity test with Danio rerio as an alternative to the acute fish toxicity test*. University of Heidelberg,.
- Hotze, M. & Lowry, G., 2010. Nanotechnology for Sustainable Water Treatment. , pp.138–164. Available at: http://pubs.rsc.org/en/content/chapter/9781849732253-00138/978-1-84973-019-8/unauth.

- Hu, A. et al., 2011. Hydrothermal growth of free standing TiO 2 nanowire membranes for photocatalytic degradation of pharmaceuticals. *Journal of Hazardous Materials*, 189(1), pp.278–285.
- Huerta-Fontela, M., Galceran, M.T. & Ventura, F., 2010. Fast liquid chromatography-quadrupole-linear ion trap mass spectrometry for the analysis of pharmaceuticals and hormones in water resources. *Journal of Chromatography A*, 1217(25), pp.4212–4222. Available at: http://dx.doi.org/10.1016/j.chroma.2009.11.007.
- Huerta-Fontela, M., Galceran, M.T. & Ventura, F., 2011. Occurrence and removal of pharmaceuticals and hormones through drinking water treatment. *Water Research*, 45(3), pp.1432–1442. Available at: http://dx.doi.org/10.1016/j.watres.2010.10.036.
- Hund-Rinke, K. & Simon, M., 2006. Ecotoxic effect of photocatalytic active nanoparticles (TiO2) on algae and daphnids. *Environmental science and pollution research international*, 13(4), pp.225–232.
- Hyland, K.C. et al., 2012. Sorption of ionized and neutral emerging trace organic compounds onto activated sludge from different wastewater treatment configurations. *water research*, 46.
- Isaacson, C.W. et al., 2007. Quantification of fullerenes by LC/ESI-MS and its application to in vivo toxicity assays. *Analytical Chemistry*, 79(23), pp.9091–9097.
- Ivashechkin, P., 2005. Literaturauswertung zum Vorkommen gefährlicher Stoffe im Abwasser und in Gewässern. Bericht zum Vorhaben im Auftrag des Ministeriums für Umwelt und Naturschutz, Landwirtschaft und Verbraucherschutz NRW. Aachen, Institut für Siedlungswasserwirtschaft.
- Jain, P.K. et al., 2007. Review of some interesting surface plasmon resonance-enhanced properties of noble metal nanoparticles and their applications to biosystems. *Plasmonics*, 2(3), pp.107–118.
- Jarrott, B., 1999. Antiepileptic Drugs: Pharmacology and Therapeutics. In M. J. Eadie & F. J. E. Vajda, eds. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 87–121. Available at: http://dx.doi.org/10.1007/978-3-642-60072-2_4.
- Jelić, A., Petrović, M. & Barceló, D., 2009. Multi-residue method for trace level determination of pharmaceuticals in solid samples using pressurized liquid extraction followed by liquid chromatography/quadrupole-linear ion trap mass spectrometry. *Talanta*, 80(1), pp.363–371.
- Jewell, K.P. & Wilson, J.T., 2011. Water level monitoring pressure transducers: a need for industry-wide standards. *Ground Water Monitoring & Remediation*, 31(3), pp.82–94. Available at: http://onlinelibrary.wiley.com/doi/10.1111/j.1745-6592.2011.01346.x/abstract.
- Ji, L. et al., 2010. Adsorption of monoaromatic compounds and pharmaceutical antibiotics on carbon nanotubes activated by KOH etching. *Environmental Science and Technology*, 44(16), pp.6429–6436.
- Jones, O. a, Voulvoulis, N. & Lester, J.N., 2001. Human pharmaceuticals in the aquatic environment a review. *Environmental technology*, 22(12), pp.1383–1394.

- Jones, O.A., Lester, J.N. & Voulvoulis, N., 2005. Pharmaceuticals: a threat to drinking water? *TRENDS in Biotechnology*, 23(4), pp.163–167.
- Junior, C. et al., 2014. Artigo ocorrência de fármacos antidepressivos no meio ambiente revisão ocorrência de fármacos antidepressivos no meio ambiente., 6(5).
- Kapczinski, F., Quevedo, J. & Izquierdo, I., 2004. Bases biológicas dos transtornos psiquiátricos, Artmed.
- Kaslin, J. & Panula, P., 2001. Comparative anatomy of the histaminergic and other aminergic systems in zebrafish (Danio rerio). *Journal of Comparative Neurology*, 440(4), pp.342–377.
- Kasprzyk-Hordern, B., Dinsdale, R.M. & Guwy, A.J., 2008. The occurrence of pharmaceuticals, personal care products, endocrine disruptors and illicit drugs in surface water in South Wales, UK. *Water Research*, 42(13), pp.3498–3518.
- Kasprzyk-Hordern, B., Dinsdale, R.M. & Guwy, A.J., 2009. The removal of pharmaceuticals, personal care products, endocrine disruptors and illicit drugs during wastewater treatment and its impact on the quality of receiving waters. *Water Research*, 43(2), pp.363–380. Available at: http://dx.doi.org/10.1016/j.watres.2008.10.047.
- Kaza, M., Nałęcz-Jawecki, G. & Sawicki, J., 2007. The toxicity of selected pharmaceuticals to the aquatic plant Lemna minor. *Fresenius Environmental Bulletin*, 16(5), pp.524–531.
- Kim, I., Yamashita, N. & Tanaka, H., 2009. Performance of UV and UV/H 2 O 2 processes for the removal of pharmaceuticals detected in secondary effluent of a sewage treatment plant in Japan. *Journal of Hazardous Materials*, 166(2), pp.1134–1140.
- Kim, K.T. et al., 2009. Influence of multiwalled carbon nanotubes dispersed in natural organic matter on speciation and bioavailability of copper. *Environmental Science and Technology*, 43(23), pp.8979–8984.
- Kim, K.T. et al., 2010. Oxidative stress responses of Daphnia magna exposed to TiO2 nanoparticles according to size fraction. *Science of the Total Environment*, 408(10), pp.2268–2272. Available at: http://dx.doi.org/10.1016/j.scitotenv.2010.01.041.
- Kim, Y.-J. et al., 2004. Identification and functional evidence of GABAergic neurons in parts of the brain of adult zebrafish (Danio rerio). *Neuroscience letters*, 355(1), pp.29–32.
- Kimmel C, B. et al., 1995. Stages of embryonic development of the zebrafish. *Developmental Dynamics*, 203(3), pp.253–310. Available at: http://doi.wiley.com/10.1002/aja.1002030302.
- Kinney, C. a et al., 2006. Presence and distribution of wastewater-derived pharmaceuticals in soil irrigated with reclaimed water. *Environmental toxicology and chemistry / SETAC*, 25(2), pp.317–326.

- Kleywegt, S. et al., 2011. Pharmaceuticals, hormones and bisphenol A in untreated source and finished drinking water in Ontario, Canada Occurrence and treatment efficiency. *Science of the Total Environment*, 409(8), pp.1481–1488. Available at: http://dx.doi.org/10.1016/j.scitotenv.2011.01.010.
- Kolpin, D.W. et al., 2002. Environ. Sci. Technol. 2002, 36, 1202-1211. *Environmental Science & Technology*, 36(6), pp.1202–1211.
- Kosjek, T. et al., 2012. Environmental occurrence, fate and transformation of benzodiazepines in water treatment. *Water Research*, 46(2), pp.355–368.
- Kosma, C.I., Lambropoulou, D. a. & Albanis, T. a., 2010. Occurrence and removal of PPCPs in municipal and hospital wastewaters in Greece. *Journal of Hazardous Materials*, 179(1-3), pp.804–817. Available at: http://dx.doi.org/10.1016/j.jhazmat.2010.03.075.
- Kovalova, L. et al., 2013. Elimination of micropollutants during post-treatment of hospital wastewater with powdered activated carbon, ozone, and UV. *Environmental Science and Technology*, 47(14), pp.7899–7908.
- Kovalova, L. et al., 2012. Hospital wastewater treatment by membrane bioreactor: performance and efficiency for organic micropollutant elimination. *Environmental science & technology*, 46(3), pp.1536–1545.
- Kruis, F.E., Fissan, H. & Peled, A., 1998. Synthesis of nanoparticles in the gas phase for electronic, optical and magnetic applications a review., 29(5), pp.511–535.
- Kucenas, S. et al., 2003. Molecular characterization of the zebrafish P2X receptor subunit gene family. *Neuroscience*, 121(4), pp.935–945.
- Kümmerer, K., 2009. The presence of pharmaceuticals in the environment due to human use--present knowledge and future challenges. *Journal of environmental management*, 90(8), pp.2354–2366.
- Kummerer, K. & Cunningham, V.L., 2007. Summary of workshop on fate of pharmaceuticals in the environment. *Drug Information Journal*, 41, pp.193–194.
- Lahti, M., 2012. The fate aspects of pharmaceuticals in the environment: biotransformation, sedimentation and exposure of fish, Available at: https://jyx.jyu.fi/dspace/handle/123456789/37883.
- Lahti, M. & Oikari, A., 2011. Pharmaceuticals in settleable particulate material in urban and non-urban waters. *Chemosphere*, 85(5), pp.826–831. Available at: http://dx.doi.org/10.1016/j.chemosphere.2011.06.084.
- Lapen, D.R. et al., 2008. Pharmaceutical and personal care products in tile drainage following land application of municipal biosolids. *Science of the Total Environment*, 399(1-3), pp.50–65.

- Larsson, D.G.J., de Pedro, C. & Paxeus, N., 2007. Effluent from drug manufactures contains extremely high levels of pharmaceuticals. *Journal of Hazardous Materials*, 148(3), pp.751–755.
- Leo, a., Hansch, C. & Elkins, D., 1971. Partition coefficients and their Uses. *Chemical Reviews*, 71(6), p.525. Available at: http://pubs.acs.org/doi/abs/10.1021/cr60274a001.
- Levin, E.D. & Chen, E., 2004. Nicotinic involvement in memory function in zebrafish. *Neurotoxicology and Teratology*, 26(6 SPEC. ISS.), pp.731–735.
- Lillesaar, C. et al., 2007. The serotonergic phenotype is acquired by converging genetic mechanisms within the zebrafish central nervous system. *Developmental Dynamics*, 236(4), pp.1072–1084.
- Lin, a. Y.C., Yu, T.H. & Lin, C.F., 2008. Pharmaceutical contamination in residential, industrial, and agricultural waste streams: Risk to aqueous environments in Taiwan. *Chemosphere*, 74(1), pp.131–141. Available at: http://dx.doi.org/10.1016/j.chemosphere.2008.08.027.
- Liu, W.T., 2006. Nanoparticles and their biological and environmental applications. *J Biosci Bioeng*, 102, pp.1–7. Available at: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids= 16952829.
- Liu, Y. et al., 2011. Nanoparticle-based strategies for detection and remediation of environmental pollutants. *The Analyst*, 136(5), pp.872–877.
- Long, R.Q. & Yang, R.T., 2001. Carbon nanotubes as a superior sorbent for nitrogen oxides. *Industrial & Engineering Chemistry Research*, 40(20), pp.4288–4291. Available at: <Go to ISI>://WOS:000171261000015\nhttp://pubs.acs.org/doi/pdfplus/10.1021/ie000976k.
- Loos, R., Gawlik, B.M. & Locoro, G., 2008. EU wide monitoring survey of polar persistent pollutants in European river waters.
- López-Serna, R., Petrović, M. & Barceló, D., 2011. Development of a fast instrumental method for the analysis of pharmaceuticals in environmental and wastewaters based on ultra high performance liquid chromatography (UHPLC)-tandem mass spectrometry (MS/MS). *Chemosphere*, 85(8), pp.1390–1399.
- Lovern, S.B. & Klaper, R., 2006. Daphnia magna mortality when exposed to titanium dioxide and fullerene (C60) nanoparticles. *Environmental toxicology and chemistry / SETAC*, 25(4), pp.1132–1137.
- Lovern, S.B., Strickler, J.R. & Klaper, R., 2007. Behavioral and physiological changes in Daphnia magna when exposed to nanoparticle suspensions (titanium dioxide, nano-C60, and C 60HxC70Hx). *Environmental Science and Technology*, 41(12), pp.4465–4470.
- Ma, H. & Diamond, S. a., 2013. Phototoxicity of TiO2 nanoparticles to zebrafish (Danio rerio) is dependent on life stage. *Environmental Toxicology and Chemistry*, 32(9), pp.2139–2143.

- Ma, H.B., Brennan, a & Diamond, S. a, 2012. Phototoxicity of TiO2 nanoparticles under solar radiation to two aquatic species: Daphnia magna and Japanese medaka. *Environmental Toxicology and Chemistry*, 31(7), pp.1621–1629. Available at: <Go to ISI>://000305280100026.
- Magnér, J., Filipovic, M. & Alsberg, T., 2010. Application of a novel solid-phase-extraction sampler and ultra-performance liquid chromatography quadrupole-time-of-flight mass spectrometry for determination of pharmaceutical residues in surface sea water. *Chemosphere*, 80(11), pp.1255–1260.
- Maltby, L. et al., 2005. Insecticide species sensitivity distributions: importance of test species selection and relevance to aquatic ecosystems. *Environmental toxicology and chemistry / SETAC*, 24(2), pp.379–388.
- Margot, J. et al., 2011. Traitement des micropolluants dans les eaux usées. Rapport final sur les essais pilotes à la STEP de Vidy (Lausanne), OFEV.
- Mesulam, M.-M. et al., 2002. Acetylcholinesterase knockouts establish central cholinergic pathways and can use butyrylcholinesterase to hydrolyze acetylcholine. *neuroscience*, 110(4), pp.627–639.
- Metcalfe, C.D. et al., 2010. Antidepressants and their metabolites in municipal wastewater, and downstream exposure in an urban watershed. *Environmental Toxicology and Chemistry*, 29(1), pp.79–89.
- Metcalfe, C.D. et al., 2003. Distribution of acidic and neutral drugs in surface waters near sewage treatment plants in the lower Great Lakes, Canada. *Environmental Toxicology and Chemistry*, 22(12), pp.2881–2889.
- Miller, T.C. et al., 2002. Antidepressants inhibit human acetylcholinesterase and butyrylcholinesterase activity. *Biochimica et Biophysica Acta Molecular Basis of Disease*, 1587(1), pp.92–98.
- Moldovan, Z., 2006. Occurrences of pharmaceutical and personal care products as micropollutants in rivers from Romania. *Chemosphere*, 64(11), pp.1808–1817.
- Monteiro, S.C. & Boxall, A.B.A., 2010. Occurrence and fate of human pharmaceuticals in the environment. *Reviews of Environmental Contamination and Toxicology*, 202, pp.53–154.
- Moreira, C. et al., 2007. Doença De Parkinson: Como Diagnosticar E Tratar. *Fmc.Br*, 2(022), pp.19–29. Available at: http://www.fmc.br/revista/V2N2P19-29.pdf.
- Motoyama, M. et al., 2011. Residues of pharmaceutical products in recycled organic manure produced from sewage sludge and solid waste from livestock and relationship to their fermentation level. *Chemosphere*, 84(4), pp.432–438. Available at: http://dx.doi.org/10.1016/j.chemosphere.2011.03.048.
- Muller, R.H. & Keck, C.M., 2004. Challenges and solutions for the delivery of biotech drugs A review of drug nanocrystal technology and lipid nanoparticles. In *Journal of Biotechnology*. pp. 151–170.
- Murphy, C.A. et al., 2008. Modeling larval fish behavior: Scaling the sublethal effects of methylmercury to population-relevant endpoints. *Aquatic toxicology*, 86(4), pp.470–484.

- Nagarnaik, P., Batt, A. & Boulanger, B., 2011. Source characterization of nervous system active pharmaceutical ingredients in healthcare facility wastewaters. *Journal of Environmental Management*, 92(3), pp.872–877. Available at: http://dx.doi.org/10.1016/j.jenvman.2010.10.058.
- Nakada, N. et al., 2007. Removal of selected pharmaceuticals and personal care products (PPCPs) and endocrine-disrupting chemicals (EDCs) during sand filtration and ozonation at a municipal sewage treatment plant. *Water Research*, 41(19), pp.4373–4382.
- Narbaitz, R.M. et al., 2013. Pharmaceutical and personal care products removal from drinking water by modified cellulose acetate membrane: Field testing. *Chemical Engineering Journal*, 225(JUNE), pp.848–856.
- Narumiya, M. et al., 2013. Phase distribution and removal of pharmaceuticals and personal care products during anaerobic sludge digestion. *Journal of Hazardous Materials*, 260(2013), pp.305–312. Available at: http://dx.doi.org/10.1016/j.jhazmat.2013.05.032.
- Nations, S. et al., 2011. Effects of ZnO nanomaterials on Xenopus laevis growth and development. *Ecotoxicology and Environmental Safety*, 74(2), pp.203–210. Available at: http://dx.doi.org/10.1016/j.chemosphere.2011.01.061.
- Nentwig, G., 2007. Effects of pharmaceuticals on aquatic invertebrates. Part II: The antidepressant drug fluoxetine. *Archives of Environmental Contamination and Toxicology*, 52(2), pp.163–170.
- Nishimura, Y. et al., 2015. Pharmacological profiling of zebrafish behavior using chemical and genetic classification of sleep-wake modifiers. *Frontiers in Pharmacology*, 6(NOV), pp.1–21.
- Oberdörster, E. et al., 2006. Ecotoxicology of carbon-based engineered nanoparticles: effects of fullerene (C 60) on aquatic organisms. *Carbon*, 44(6), pp.1112–1120.
- Oberdörster, G., Oberdörster, E. & Oberdörster, J., 2005. Nanotoxicology: An emerging discipline evolving from studies of ultrafine particles. *Environmental Health Perspectives*, 113(7), pp.823–839.
- Oda, Y., 1999. Choline acetyltransferase: the structure, distribution and pathologic changes in the central nervous system. *Pathology international*, 49(11), pp.921–937.
- OECD, 2013. Test No. 236: Fish Embryo Acute Toxicity (FET) Test. *OECD Guidelines for the Testing of Chemicals, Section 2, OECD Publishing*, (July), pp.1–22.
- Ögren, S.O., 1996. The Behavioural Pharmacology of Typical and Atypical Antipsychotic Drugs. In J. G. Csernansky, ed. *Volume 120 of the series Handbook of Experimental Pharmacology*. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 225–266. Available at: http://dx.doi.org/10.1007/978-3-642-61007-3_8.
- Oliveira, L.L.D. de, 2014. Biomarcadores enzimáticos e testes ecotoxicológicos na avaliação da toxicidade de fármacos em invertebrados aquáticos.

- Oyama, T. et al., 2010. Sunlight photo-assisted TiO₂-based pilot plant scale remediation of (simulated) contaminated aquatic sites. *Journal of oleo science*, 59(12), pp.673–680.
- Padilla, S. et al., 2011. Assessing locomotor activity in larval zebrafish: Influence of extrinsic and intrinsic variables. *Neurotoxicology and Teratology*, 33(6), pp.624–630. Available at: http://linkinghub.elsevier.com/retrieve/pii/S0892036211001656.
- Peschka, M., Eubeler, J.P. & Knepper, T.P., 2006. Occurrence and fate of barbiturates in the aquatic environment. *Environmental Science and Technology*, 40(23), pp.7200–7206.
- Phiel, C.J. & Klein, P.S., 2001. Mtla., pp.789-813.
- Pinnekamp, J. et al., 2009. Eliminierung von Spurenstoffen aus Krankenhausabwässern mit Membrantechnik und weitergehenden Behandlungsverfahren–Pilotprojekt Kreiskrankenhaus Waldbröl. *Schlussbericht*. *Aachen*.
- Pohanka, M., 2011. Cholinesterases, a target of pharmacology and toxicology. *Biomedical Papers*, 155(3), pp.219–223. Available at: http://biomed.papers.upol.cz/doi/10.5507/bp.2011.036.html.
- Posthuma, L., Suter, W.G. & Trass, P.T., 2002. *Species sensitivity distributions in ecotoxicology*, Available at: http://www.amazon.com/Species-Sensitivity-Distributions-Ecotoxicology-Posthuma/dp/1566705789.
- Prato, M., Kostarelos, K. & Bianco, A., 2008. Functionalized Carbon Nanotubes in Drug., 41(September 2007), pp.60–68.
- Prieto-Rodriguez, L. et al., 2012. Treatment of emerging contaminants in wastewater treatment plants (WWTP) effluents by solar photocatalysis using low TiO 2 concentrations. *Journal of Hazardous Materials*, 211-212(March), pp.131–137.
- Radjenović, J. et al., 2008. Identification and structural characterization of biodegradation products of atenolol and glibenclamide by liquid chromatography coupled to hybrid quadrupole time-of-flight and quadrupole ion trap mass spectrometry. *Journal of Chromatography A*, 1210(2), pp.142–153.
- Rahimi, R., Moghaddam, S.S. & Rabbani, M., 2012. Comparison of photocatalysis degradation of 4-nitrophenol using N, S co-doped TiO2 nanoparticles synthesized by two different routes. *Journal of solgel science and technology*, 64(1), pp.17–26.
- Rang, H.P. et al., 2012. Rang & Dale's Pharmacology,
- RDC/49, 2015. AGÊNCIA NACIONAL DE VIGILÂNCIA SANITÁRIA. In *Resolução RDC nº 49, de 11 de novembro de 2015.* pp. 53–57.
- RDC/6, 2014. AGÊNCIA NACIONAL DE VIGILÂNCIA SANITÁRIA. In *RESOLUÇÃO RDC Nº 6, DE 18 DE FEVEREIRO DE 2014*. Brasília, pp. 1–8.

- Regitano, J.B. & Leal, R.M.P., 2010. Comportamento e impacto ambiental de antibióticos usados na produção animal brasileira. *Revista Brasileira de Ciencia do Solo*, 34(3), pp.601–616.
- Reungoat, J. et al., 2011. Biofiltration of wastewater treatment plant effluent: Effective removal of pharmaceuticals and personal care products and reduction of toxicity. *Water Research*, 45(9), pp.2751–2762. Available at: http://dx.doi.org/10.1016/j.watres.2011.02.013.
- Rico, E.P. et al., 2003. ATP and ADP hydrolysis in brain membranes of zebrafish (Danio rerio). *Life sciences*, 73(16), pp.2071–2082.
- Rico, E.P., 2007. *Influência Do Metanol E Do Etanol Sobre a Atividade E a Expressão Gênica Das Ectonucleotidases E Acetilcolinestrase Em*. Universidade Federal Rio Grande do Sul.
- Ridoutt, B.G. et al., 2009. Water footprinting at the product brand level: case study and future challenges. *Journal of Cleaner Production*, 17(13), pp.1228–1235.
- Roberts, A.P. et al., 2007. In vivo biomodification of lipid-coated carbon nanotubes by Daphnia magna. *Environmental Science and Technology*, 41(8), pp.3028–3029.
- Rodrigues, M.A.P., Facchini, L.A. & Lima, M.S. De, 2006. Modifications in psychotropic drug use patterns in a Southern Brazilian city. *Revista de Saúde Pública*, 40(1), pp.107–114.
- Rohweder, U., 2003. Arzneimittel in der Umwelt Auswertung der Untersuchungsergebnisse. Bund/Länderausschuss für Chemikaliensicherheit (BLAC), Bericht an die, 61.
- Rutgersson, C. et al., 2013. Oral exposure to industrial effluent with exceptionally high levels of drugs does not indicate acute toxic effects in rats. *Environmental Toxicology and Chemistry*, 32(3), pp.577–584.
- Ryu, S. et al., 2006. Genetic analysis of dopaminergic system development in zebrafish. In *Parkinson's Disease and Related Disorders*. Springer, pp. 61–66.
- Sacher, F. et al., 2002. Arzneimittelwirkstoffe im Grundwasser: Ergebnisse eines Monitoring-Programms in Baden-Württemberg. *Vom Wasser*, 99, pp.183–195.
- Sadezky, A., Löffler, D. & Ternes, T., 2008. Proposal of an environmental indicator and classification system of pharmaceutical product residues for environmental management. *Projet Européen KNAPPE*, *Deliverable D12*.
- Salgado, R. et al., 2011. Assessing the diurnal variability of pharmaceutical and personal care products in a full-scale activated sludge plant. *Environmental Pollution*, 159(10), pp.2359–2367. Available at: http://dx.doi.org/10.1016/j.envpol.2011.07.004.
- Sánchez, A. et al., 2011. Ecotoxicity of, and remediation with, engineered inorganic nanoparticles in the environment. *TrAC Trends in Analytical Chemistry*, 30(3), pp.507–516.

- Santamarta, J., 2001. A ameaça dos disruptores endócrinos. *Agroecologia e Desenvolvimento Rural Sustentável*, 2, pp.18–29.
- Santos, L.H.M.L.M. et al., 2013. Contribution of hospital effluents to the load of pharmaceuticals in urban wastewaters: Identification of ecologically relevant pharmaceuticals. *Science of the Total Environment*, 461-462, pp.302–316. Available at: http://dx.doi.org/10.1016/j.scitotenv.2013.04.077.
- Schultz, M. et al., 2010. Antidepressant pharmaceuticals in two U.S. ef uent-impacted streams: Occurrence and fate in water and sediment, and selective uptake in sh neural tissue. *Environ Sci Technol*, 44(September 2015), pp.1918–1925.
- Schultz, M.M. & Furlong, E.T., 2008. Trace analysis of antidepressant pharmaceuticals and their select degradates in aquatic matrixes by LC/ESI/MS/MS. *Analytical chemistry*, 80(5), pp.1756–1762.
- Schultz, M.M., Furlong, E.T. & Kolpin, D.W., 2005. Trace Analysis of Antidepressant Pharmaceuticals and Their Select Degradates in Environmental Matrices by LC / ESI / MS / MS a) b., 80(5), pp.1–2.
- Schwab, F. et al., 2011. Are carbon nanotube effects on green algae caused by shading and agglomeration? *Environmental Science and Technology*, 45(14), pp.6136–6144.
- Scott, G.R. & Sloman, K. a., 2004. The effects of environmental pollutants on complex fish behaviour: Integrating behavioural and physiological indicators of toxicity. *Aquatic Toxicology*, 68(4), pp.369–392.
- Seibt, K.J., 2008. INFLUÊNCIA DE FÁRMACOS ANTIPSICÓTICOS SOBRE A HIDRÓLISE DE NUCLEOTÍDEOS EXTRACELULARES E ACETILCOLINA EM CÉREBRO DE ZEBRAFISH (Danio rerio).
- Seidel, U. et al., 2013. Analyse der Eliminationsmöglichkeiten von Arzneimitteln in den Krankenhäusern in NRW Abschlussbericht zum Forschungsvorhaben "Elimination von Arzneimitteln und organischen Spurenstoffen: Entwicklung von Konzeptionen und innovativen, kostengünstigen Re., p.207.
- Serra, E.L., Medalha, C.C. & Mattioli, R., 1999. Natural preference of zebrafish (Danio rerio) for a dark environment. *Brazilian Journal of Medical and Biological Research*, 32(12), pp.1551–1553.
- Shader, R.I. & Greenblatt, D.J., 1993. Use of benzodiazepines in anxiety disorders. *The New England Journal of Medicine*.
- Shao, B. et al., 2009. Determination of 76 pharmaceutical drugs by liquid chromatography-tandem mass spectrometry in slaughterhouse wastewater. *Journal of Chromatography A*, 1216(47), pp.8312–8318.
- Sharma, V.K., 2009. Aggregation and toxicity of titanium dioxide nanoparticles in aquatic environment-a review. *Journal of environmental science and health. Part A, Toxic/hazardous substances & environmental engineering*, 44(14), pp.1485–1495.

- Silva, S.R., 2015. Quantificação de substâncias com atividade estrogênica e caracterização da toxicidade embriolarval em zebrafish (Danio rerio) nos efluentes das Estações de tratamento de esgotos Sul e Norte e no Lago Paranoá, Brasília-DF. Universidade de Brasília.
- Skoglund, I., J. et al., 2008. Läkemedels miljöpåverkan. Göteborg, Sweden.
- Smith, C.J., Shaw, B.J. & Handy, R.D., 2007. Toxicity of single walled carbon nanotubes to rainbow trout, (Oncorhynchus mykiss): Respiratory toxicity, organ pathologies, and other physiological effects. *Aquatic Toxicology*, 82(2), pp.94–109.
- Snyder, S. a., 2008. Occurrence, Treatment, and Toxicological Relevance of EDCs and Pharmaceuticals in Water. *Ozone: Science & Engineering*, 30(1), pp.65–69.
- Snyder, S.A. et al., 2001. Pharmaceuticals and personal care products in the waters of Lake Mead, Nevada.
- Sohn, E.K. et al., 2015. Acute toxicity comparison of single-walled carbon nanotubes in various freshwater organisms. *BioMed Research International*, 2015.
- Song, F. et al., 1993. Selective serotonin reuptake inhibitors: meta-analysis of efficacy and acceptability. BMJ (Clinical research ed.), 306(6879), pp.683–7. Available at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1677099&tool=pmcentrez&rendertype=abs tract.
- Soppimath, K.S. et al., 2001. Biodegradable polymeric nanoparticles as drug delivery devices. *Journal of controlled release: official journal of the Controlled Release Society*, 70(1-2), pp.1–20.
- Soreq, H. & Seidman, S., 2001. Acetylcholinesterase—new roles for an old actor. *Nature Reviews Neuroscience*, 2(4), pp.294–302.
- Sousa, M. a. et al., 2012. Suspended TiO2-assisted photocatalytic degradation of emerging contaminants in a municipal WWTP effluent using a solar pilot plant with CPCs. *Chemical Engineering Journal*, 198-199, pp.301–309. Available at: http://dx.doi.org/10.1016/j.cej.2012.05.060.
- Souza, J.T., 2015. Ecofarmacovigilância e remediação ambiental: uso de nanopartículas para redução da ecotoxicidade de fármacos psicoativos presentes em ecossistemas aquáticos. Universidade de Brasília.
- SPSS, 2004. SPSS: Sigma stat for windows (version 3.10).
- Stackelberg, P.E. et al., 2004. Persistence of pharmaceutical compounds and other organic wastewater contaminants in a conventional drinking-water-treatment plant. *Science of the Total Environment*, 329(1-3), pp.99–113.
- Van De Steene, J.C. & Lambert, W.E., 2008. Validation of a solid-phase extraction and liquid chromatography-electrospray tandem mass spectrometric method for the determination of nine basic

- pharmaceuticals in wastewater and surface water samples. *Journal of Chromatography A*, 1182(2), pp.153–160.
- Van De Steene, J.C., Stove, C.P. & Lambert, W.E., 2010. A field study on 8 pharmaceuticals and 1 pesticide in Belgium: Removal rates in waste water treatment plants and occurrence in surface water. *Science of the Total Environment*, 408(16), pp.3448–3453.
- Sui, Q. et al., 2010. Occurrence and removal of pharmaceuticals, caffeine and DEET in wastewater treatment plants of Beijing, China. *Water Research*, 44(2), pp.417–426.
- Sun, C., Lee, J.S.H. & Zhang, M., 2008. Magnetic nanoparticles in MR imaging and drug delivery. *Advanced Drug Delivery Reviews*, 60(11), pp.1252–1265.
- Swain, H. a., Sigstad, C. & Scalzo, F.M., 2004. Effects of dizocilpine (MK-801) on circling behavior, swimming activity, and place preference in zebrafish (Danio rerio). *Neurotoxicology and Teratology*, 26(6 SPEC. ISS.), pp.725–729.
- Teijon, G. et al., 2010. Occurrence of emerging contaminants, priority substances (2008/105/CE) and heavy metals in treated wastewater and groundwater at Depurbaix facility (Barcelona, Spain). *Science of the Total Environment*, 408(17), pp.3584–3595. Available at: http://dx.doi.org/10.1016/j.scitotenv.2010.04.041.
- Templeton, R.C. et al., 2006. Life-cycle effects of single-walled carbon nanotubes (SWNTs) on an estuarine meiobenthic copepod. *Environmental Science and Technology*, 40(23), pp.7387–7393.
- Ternes, T. a, 1998. Occurrence of drugs in German sewage treatment plants and rivers1Dedicated to Professor Dr. Klaus Haberer on the occasion of his 70th birthday.1. *Water Research*, 32(11), pp.3245–3260.
- Ternes, T., Bonerz, M. & Schmidt, T., 2001. Determination of neutral pharmaceuticals in wastewater and rivers by liquid chromatography-electrospray tandem mass spectrometry. *Journal of Chromatography A*, 938(1-2), pp.175–185.
- Thomas, K. V. & Hilton, M.J., 2004. The occurrence of selected human pharmaceutical compounds in UK estuaries. *Marine Pollution Bulletin*, 49(5-6), pp.436–444.
- Tiehm, A. et al., 2011. Biodegradation of Phmaceutical Compounds and their Occurrence in the Jordan Valley. *Water Resources Management*, 25(4), pp.1195–1203.
- Togola, A. & Budzinski, H., 2008. Multi-residue analysis of pharmaceutical compounds in aqueous samples. *Journal of Chromatography A*, 1177(1), pp.150–158.
- Tredoux, G. et al., 2012. Managed aquifer recharge for potable reuse in Atlantis, South Africa. *Water Reclamation Technologies for Safe Managed Aquifer Recharge*, p.121.

- Tucci, C.E.M., 2008. Águas Urbanas. Estudos Avançados, 22(63), pp.97–112.
- Umbuzeiro, G.D.A., Kummrow, F. & Rei, F.F.C., 2010. Toxicologia, Padrões De Qualidade De Água E a Legislação. *Revista de Gestão Integrada em Saúde do Trabalho e Meio Ambiente*, 5(1), pp.1–14. Available at:
 - www.interfacehs.sp.senac.br\nhttp://www.interfacehs.sp.senac.br/br/sumario_secao_interfacehs.asp?ed =13.
- Unceta, N. et al., 2010. Multi-residue analysis of pharmaceutical compounds in wastewaters by dual solid-phase microextraction coupled to liquid chromatography electrospray ionization ion trap mass spectrometry. *J. Chromatogr. A*, 1217(Copyright (C) 2013 American Chemical Society (ACS). All Rights Reserved.), pp.3392–3399.
- USEPA, 2015. US Environmental Protection Agency: ECOTOXicology knowledgebase (ECOTOX), Washington, D.C. Available at: http://cfpub.epa.gov/ecotox/ [Accessed September 1, 2015].
- Valcárcel, Y. et al., 2011. Analysis of the presence of cardiovascular and analgesic/anti-inflammatory/antipyretic pharmaceuticals in river- and drinking-water of the Madrid Region in Spain., (OCTOBER), pp.1062–1071.
- Vanderford, B.J. & Snyder, S., 2006. Analysis of Pharmaceuticals in Water by Isotope Dilution Analysis of Pharmaceuticals in Water by Isotope Dilution Liquid Chromatography / Tandem Mass., 40(23), pp.7312–7320.
- Vascotto, S.G., Beckham, Y. & Kelly, G.M., 1997. The zebrafish's swim to fame as an experimental model in biology. *Biochemistry and cell biology = Biochimie et biologie cellulaire*, 75(5), pp.479–485.
- Vasskog, T. et al., 2008. Occurrence of selective serotonin reuptake inhibitors in sewage and receiving waters at Spitsbergen and in Norway. *Journal of Chromatography A*, 1185(2), pp.194–205.
- Van der Ven, K. et al., 2004. Determination of diazepam in aquatic samples by capillary liquid chromatography–electrospray tandem mass spectrometry. *Chemosphere*, 57(8), pp.967–973.
- Verlicchi, P. et al., 2012. Hospital effluent: Investigation of the concentrations and distribution of pharmaceuticals and environmental risk assessment. *Science of the Total Environment*, 430, pp.109–118. Available at: http://dx.doi.org/10.1016/j.scitotenv.2012.04.055.
- Vulliet, E. & Cren-Oliv, C., 2011. Screening of pharmaceuticals and hormones at the regional scale, in surface and groundwaters intended to human consumption. *Environmental Pollution*, 159(10), pp.2929–2934. Available at: http://dx.doi.org/10.1016/j.envpol.2011.04.033.
- Warheit, D.B. et al., 2007. Development of a base set of toxicity tests using ultrafine TiO2 particles as a component of nanoparticle risk management. *Toxicology Letters*, 171(3), pp.99–110.

- Wei, L. et al., 2010. Cytotoxicity effects of water dispersible oxidized multiwalled carbon nanotubes on marine alga, Dunaliella tertiolecta. *Aquatic Toxicology*, 100(2), pp.194–201. Available at: http://dx.doi.org/10.1016/j.aquatox.2010.07.001.
- Wille, K. et al., 2010. Validation and application of an LC-MS/MS method for the simultaneous quantification of 13 pharmaceuticals in seawater. *Analytical and Bioanalytical Chemistry*, 397(5), pp.1797–1808.
- William Cibulas, J. & Henry Falk, M.D., 2005. *Public Health Assessment Guidance Manual*, Atlanta, Georgia.
- Wolf, L. et al., 2004. Impact of leaky sewers on groundwater quality. *Acta Hydrochimica et Hydrobiologica*, 32(4-5), pp.361–373.
- Wong, M.-L. & Licinio, J., 2001. Research and treatment approaches to depression. *Nature Reviews Neuroscience*, 2(5), pp.343–351. Available at: http://www.nature.com.myaccess.library.utoronto.ca/nrn/journal/v2/n5/abs/nrn0501_343a.html\nfiles/1 12/Wong and Licinio 2001 Research and treatment approaches to depression.pdf.
- Wu, C. et al., 2009. Occurrence of selected pharmaceuticals in an agricultural landscape, western Lake Erie basin. *Water research*, 43(14), pp.3407–3416.
- Yu, Y. et al., 2011. Occurrence and behavior of pharmaceuticals, steroid hormones, and endocrine-disrupting personal care products in wastewater and the recipient river water of the Pearl River Delta, South China. *Journal of environmental monitoring : JEM*, 13(2), pp.871–878.
- Yuan, S. et al., 2013. Detection, occurrence and fate of 22 psychiatric pharmaceuticals in psychiatric hospital and municipal wastewater treatment plants in Beijing, China. *Chemosphere*, 90(10), pp.2520–2525.
- Zenobio, J.E. et al., 2015. Presence and effects of pharmaceutical and personal care products on the Baca National Wildlife Refuge, Colorado. *Chemosphere*, 120, pp.750–755. Available at: http://dx.doi.org/10.1016/j.chemosphere.2014.10.050.
- Zhang, D. et al., 2010. Carbon-stabilized iron nanoparticles for environmental remediation. *Nanoscale*, 2(6), pp.917–919.
- Zhu, X. et al., 2009. Acute toxicities of six manufactured nanomaterial suspensions to Daphnia magna. *Journal of Nanoparticle Research*, 11(1), pp.67–75.
- Zhu, X. et al., 2008. Comparative toxicity of several metal oxide nanoparticle aqueous suspensions to Zebrafish (Danio rerio) early developmental stage. *Journal of environmental science and health. Part A, Toxic/hazardous substances & environmental engineering*, 43(3), pp.278–284.
- Zirger, J.M. et al., 2003. Cloning and expression of zebrafish neuronal nicotinic acetylcholine receptors. *Gene expression patterns*, 3(6), pp.747–754.

Zorita, S., Mårtensson, L. & Mathiasson, L., 2009. Occurrence and removal of pharmaceuticals in a
municipal sewage treatment system in the south of Sweden. Science of the Total Environment, 407(8),
pp.2760–2770. Available at: http://dx.doi.org/10.1016/j.scitotenv.2008.12.030.

Zuccato, E. et al., 2000. Presence of therapeutic drugs in the environment. *Lancet*, 355(9217), pp.1789–1790.

Sousa-Moura, D. (2016). Avaliação ecotoxicológica de fármacos psicotrópicos e suas possíveis interações com nanomateriais usando embriões de peixe-zebra. Universidade de Brasília – UnB, DF.

Dissertação de Mestrado

2016

Sumário

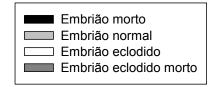
Apêndices & anexos	1
Apêndice 1. Resultados dos testes de embriotoxicidade – formulações comerciais	1
1.1. Agomelatina	1
1.2. Bromazepam	6
1.3. Carbamazepina	11
1.4. Carbonato de lítio	14
1.5. Cloridrato de biperideno	18
1.6. Cloridrato de bupropiona	22
1.7. Cloridrato de fluoxetina	26
1.8. Cloridrato de nortriptilina	30
1.9. Cloridrato de prometazina	35
1.10. Cloridrato de sertralina	39
1.11. Fumarato de quetiapina	42
1.12. Hemitartarato de zolpidem	46
1.13. Lamotrigina	50
1.14. Maleato de levomepromazina	54
1.15. Mirtazapina	58
1.16. Oxcarbazepina	62
2. Apêndice. Tabela suplementar	66
Anexo 1 Declaração da comissão de ética no uso animal do instituto de ciência biológicas da universidade de Brasília –UnB, protocolo nº100226/2014	

Lista de figuras

exposição à agomelatina
Figura 2 Mortalidade dos embriões de peixe-zebra expostos à agomelatina (Valores médios ± erro padrão) ao longo de 168 h de exposição
Figura 3 Efeitos da agomelatina no equilíbrio de embriões eclodidos de peixe-zebra durante168 h de exposição (Valores médios ± erro padrão)
Figura 4 Malformações no desenvolvimento após exposição por 144 h à agomelatina (valores médios ± erro padrão)
Figura 5 Visão geral do teste de toxicidade com embriões de peixe-zebra durante as 168 h de exposição ao bromazepam
Figura 6 Mortalidade dos indivíduos expostos ao bromazepam (Valores médios ± erro padrão) ao longo de 168 h de exposição
Figura 7 Efeitos do bromazepam no equilíbrio dos embriões de peixe-zebra eclodidos ao longo de 168 h de exposição (Valores médios \pm erro padrão). Teste de Dunn's (p < 0,05) 8
Figura 8 Alterações no desenvolvimento de embriões de peixe-zebra expostos por 168 h ao bromazepam (valores médios ± erro padrão)
Figura 9 Visão geral do teste de toxicidade com embriões de peixe-zebra durante as 120 h de exposição à carbamazepina
Figura 10 Mortalidade dos indivíduos expostos à carbamazepina (Valores médios ± erro padrão) ao longo de 168 h de exposição
Figura 11 Efeitos da carbamazepina no equilíbrio dos organismos após de 120 h de exposição (Valores médios \pm erro padrão). Teste de Dunn's (p < 0,05)
Figura 12 Alterações na separação da cauda do saco vitelíneo em embriões de peixe-zebra expostos por 168 h à carbamazepina (valores médios ± erro padrão)13
Figura 13 Visão geral do teste de toxicidade com embriões de peixe-zebra durante as 168 h de exposição ao carbonato de lítio
Figura 14 Mortalidade dos indivíduos expostos ao carbonato de lítio (Valores médios ± erro padrão) ao longo de 168 h de exposição
Figura 15 Efeitos do carbonato de lítio no equilíbrio dos embriões de peixe-zebra eclodidos ao longo de 168 h de exposição (Valores médios \pm erro padrão). Teste de Dunns (p < 0,05) 16
Figura 16 Alterações no desenvolvimento de embriões de peixe-zebra expostos por 168 h ao carbonato de lítio (valores médios ± erro padrão)
Figura 17 Visão geral do teste de toxicidade com embriões de peixe-zebra durante as 144 h de exposição ao cloridrato de biperideno
Figura 18 Mortalidade dos indivíduos expostos ao cloridrato de biperideno (Valores médios ± erro padrão) ao longo de 144 h de exposição

exposição (Valores médios ± erro padrão). Teste de Dunn's (p < 0,05)20
Figura 20 Malformações no desenvolvimento após exposição por 144 h ao cloridrato de biperideno (valores médios ± erro padrão)
Figura 21 Visão geral do teste de toxicidade com embriões de peixe-zebra durante as 168 h de exposição ao cloridrato de bupropiona
Figura 22 Mortalidade dos indivíduos expostos ao cloridrato de bupropiona (Valores médios ± erro padrão) ao longo de 168 h de exposição
Figura 23 Efeitos do cloridrato de bupropiona no equilíbrio dos embriões de peixe-zebra eclodidos ao longo de 168 h de exposição (Valores médios ± erro padrão). Teste de Dunn's (p < 0,05).
Figura 24 Alterações no desenvolvimento de embriões de peixe-zebra expostos por 168 h ao cloridrato de bupropiona (valores médios ± erro padrão)
Figura 25 Visão geral do teste de toxicidade com embriões de peixe-zebra durante as 120 h de exposição ao cloridrato de fluoxetina
Figura 26 Mortalidade dos indivíduos expostos ao cloridrato de fluoxetina (Valores médios ± erro padrão) ao longo de 120 h de exposição
Figura 27 Efeitos do cloridrato de fluoxetina no equilíbrio dos organismos após de 120 h de exposição (Valores médios \pm erro padrão). Teste de Dunn's (p < 0,05)
Figura 28 Malformações no desenvolvimento após exposição por 120 h ao cloridrato de fluoxetina (valores médios ± erro padrão)
Figura 29 Visão geral do teste de toxicidade com embriões de peixe-zebra durante as 168 h de exposição ao cloridrato de nortriptilina
Figura 30 Mortalidade dos indivíduos expostos ao cloridrato de nortriptilina (Valores médios ± erro padrão) ao longo de 168 h de exposição
Figura 31 Efeitos do cloridrato de nortriptilina no equilíbrio dos embriões de peixe-zebra eclodidos ao longo de 168 h de exposição (Valores médios ± erro padrão). Teste de Dunn's (p < 0,05)
Figura 32 Alterações no desenvolvimento de embriões de peixe-zebra expostos por 168 h ao cloridrato de nortriptilina (valores médios ± erro padrão)
Figura 33 Visão geral do teste de toxicidade com embriões de peixe-zebra durante as 96 h de exposição ao cloridrato de prometazina
Figura 34 Mortalidade dos indivíduos expostos ao cloridrato de prometazina (Valores médios ± erro padrão) ao longo de 96 h de exposição
Figura 35 Efeitos do cloridrato de prometazina no equilíbrio dos organismos após de 96 h de exposição (Valores médios ± erro padrão). Teste de Dunn's (p < 0,05)
Figura 36 Malformações no desenvolvimento após exposição por 96 h ao cloridrato de prometazina (valores médios ± erro padrão)
Figura 37 Visão geral do teste de toxicidade com embriões de peixe-zebra durante as 96 h de exposição ao cloridrato de sertralina

Figura 38 Mortalidade dos indivíduos expostos ao cloridrato de sertralina (Valores médios ± erro padrão) ao longo de 96 h de exposição
Figura 39 Efeitos do cloridrato de sertralina no equilíbrio dos organismos após de 96 h de exposição (Valores médios ± erro padrão)
Figura 40 Malformações no desenvolvimento após exposição por 96 h ao cloridrato de sertralina (valores médios \pm erro padrão)
Figura 41 Visão geral do teste de toxicidade com embriões de peixe-zebra durante as 168 h de exposição ao fumarato de quetiapina
Figura 42 Mortalidade dos indivíduos expostos ao fumarato de quetiapina (valores médios \pm erro padrão) ao longo de 168 h de exposição
Figura 43 Efeitos do fumarato de quetiapina no equilíbrio dos embriões de peixe-zebra eclodidos ao longo de 168 h de exposição (Valores médios ± erro padrão). Teste de Dunn's (p < 0,05).
Figura 44 Alterações no desenvolvimento de embriões de peixe-zebra expostos por 168 h ao fumarato de quetiapina (valores médios ± erro padrão)
Figura 45 Visão geral do teste de toxicidade com embriões de peixe-zebra durante as 168 h de exposição ao hemitartarato de zolpidem
Figura 46 Mortalidade dos indivíduos expostos ao hemitartarato de zolpidem (valores médios ± erro padrão) ao longo de 168 h de exposição
Figura 47 Efeitos do hemitartarato de zolpidem no equilíbrio dos embriões de peixe-zebra eclodidos ao longo de 168 h de exposição (valores médios \pm erro padrão). Teste de Dunn's (p < 0,05)
Figura 48 Alterações no desenvolvimento de embriões de peixe-zebra expostos por 168 h ao hemitartarato de zolpidem (valores médios ± erro padrão)
Figura 49 Visão geral do teste de toxicidade com embriões de peixe-zebra durante as 168 h de exposição à lamotrigina
Figura 50 Efeitos da lamotrigina no equilíbrio dos embriões de peixe-zebra eclodidos ao longo de 168 h de exposição (Valores médios \pm erro padrão). Teste de Dunn's (p < 0,05) 51
Figura 51 Alterações no desenvolvimento de embriões de peixe-zebra expostos por 168 h à lamotrigina (valores médios ± erro padrão)
Figura 52 Visão geral do teste de toxicidade com embriões de peixe-zebra durante as 168 h de exposição ao maleato de levomepromazina
Figura 53 Mortalidade dos indivíduos expostos ao maleato de levomepromazina (valores médios ± erro padrão) ao longo de 168 h de exposição
Figura 54 Efeitos do maleato de levomepromazina no equilíbrio dos embriões de peixe-zebra eclodidos ao longo de 168 h de exposição (valores médios \pm erro padrão). Teste de Dunn's (p < 0,05)
Figura 55 Alterações no desenvolvimento de embriões de peixe-zebra expostos por 168 h ao maleato de levomepromazina (valores médios ± erro padrão)


Figura 56 Visão geral do teste de toxicidade com embriões de peixe-zebra durante as 168 h de exposição à mirtazapina.
Figura 57 Mortalidade dos indivíduos expostos à mirtazapina (valores médios ± erro padrão) ao longo de 168 h de exposição
Figura 58 Efeitos da mirtazapina no equilíbrio dos embriões de peixe-zebra eclodidos ao longo de 168 h de exposição (valores médios \pm erro padrão). Teste de Dunn's (p < 0,05) 60
Figura 59 Alterações no desenvolvimento de embriões de peixe-zebra expostos por 168 h à mirtazapina (valores médios ± erro padrão)
Figura 60 Visão geral do teste de toxicidade com embriões de peixe-zebra durante as 168 h de exposição à oxcarbazepina
Figura 61 Mortalidade dos indivíduos expostos ao oxcarbazepina (valores médios ± erro padrão) ao longo de 168 h de exposição
Figura 62 Efeitos da oxcarbazepina no equilíbrio dos embriões de peixe-zebra eclodidos ao longo de 168 h de exposição (valores médios \pm erro padrão). Teste de Dunn's (p < 0,05) 64
Figura 63 Alterações no desenvolvimento de embriões de peixe-zebra expostos por 168 h à oxcarbazepina (valores médios ± erro padrão)

Lista de tabelas

agomelatina
Tabela 2. Porcentagens de eclosão para embriões de peixe-zebra expostos durante 168 h ao bromazepam
Tabela 3. Porcentagens de eclosão para embriões de peixe-zebra expostos durante 120 h à carbamazepina
Tabela 4. Porcentagens de eclosão para embriões de peixe-zebra expostos durante 168 h ao carbonato de lítio
Tabela 5. Porcentagens de eclosão para embriões de peixe-zebra expostos durante 144 h ao cloridrato de biperideno
Tabela 6. Porcentagens de eclosão para embriões de peixe-zebra expostos durante 168 h ao cloridrato de bupropiona
Tabela 7. Porcentagens de eclosão para embriões de peixe-zebra expostos durante 120 h ao cloridrato de fluoxetina.
Tabela 8. Porcentagens de eclosão para embriões de peixe-zebra expostos durante 168 h ao cloridrato de nortriptilina
Tabela 9. Porcentagens de eclosão para embriões de peixe-zebra expostos durante 96 h ao cloridrato de prometazina
Tabela 10. Porcentagens de eclosão para embriões de peixe-zebra expostos durante 96 h ao cloridrato de sertralina
Tabela 11. Porcentagens de eclosão para embriões de peixe-zebra expostos durante 168 h ao fumarato de quetiapina
Tabela 12. Porcentagens de eclosão para embriões de peixe-zebra expostos durante 168 h ao hemitartarato de zolpidem
Tabela 13. Porcentagens de eclosão para embriões de peixe-zebra expostos durante 168 h à lamotrigina
Tabela 14. Porcentagens de eclosão para embriões de peixe-zebra expostos durante 168 h ao maleato de levomepromazina
Tabela 15. Porcentagens de eclosão para embriões de peixe-zebra expostos durante 168 h à mirtazapina.
Tabela 16. Porcentagens de eclosão para embriões de peixe-zebra expostos durante 168 h à oxcarbamazepina
Tabela 17. Revisão de literatura para os efeitos ecotoxicológicos de fármacos psiquiátricos em organismos aquáticos

Apêndice 1. Resultados dos testes de embriotoxicidade – formulações comerciais

1.1. Agomelatina

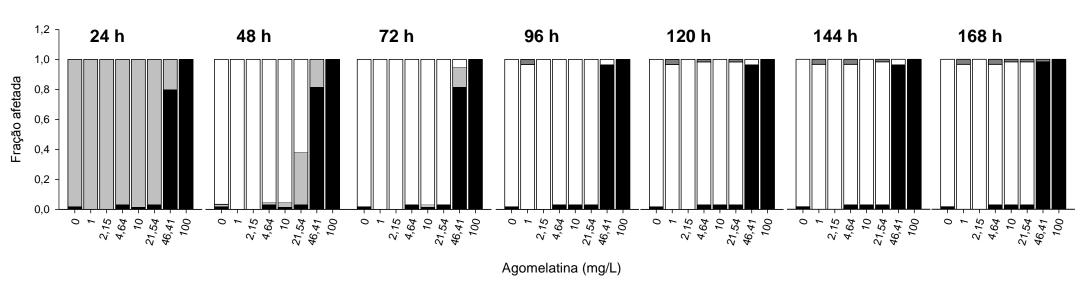


Figura 1 Visão geral do teste de toxicidade com embriões de peixe-zebra durante 168 h de exposição à agomelatina.

A mortalidade aumenta progressivamente com o tempo de exposição somente nas concentrações mais altas de agomelatina. A CL50 é de 31,11 mg/L, às 168 h de exposição (Figuras 1 e 2)..

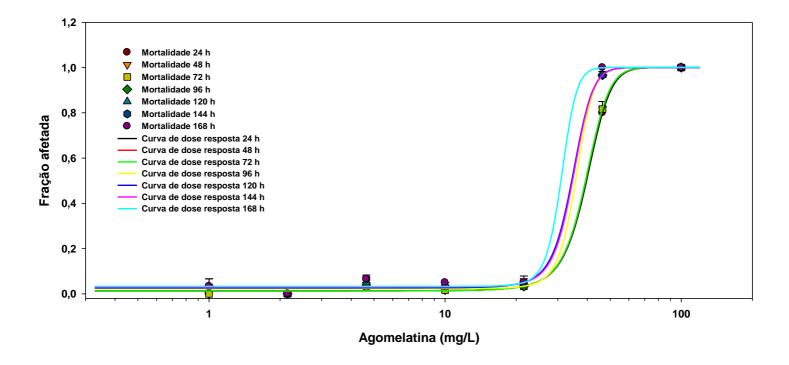


Figura 2 Mortalidade dos embriões de peixe-zebra expostos à agomelatina (Valores médios \pm erro padrão) ao longo de 168 h de exposição.

Foi observado às 48 h de exposição uma inibição das taxas de eclosão dos embriões vivos expostos às concentrações a partir de 21,54 mg/L, na qual 39 % não eclodem, sendo que, nenhum dos embriões vivos eclodiram na concentração de 46,41 mg/L (Tabela 1). Às 72 h, todos os organismos vivos, expostos a concentração de 21,54 mg/L eclodiram, e apenas 30 % do total de embriões vivos, expostos à concentração de 46,41 mg/L, eclodem.

Tabela 1 Porcentagens de eclosão para embriões de peixe-zebra expostos durante 168 h à agomelatina.

AGO (mg/L)	48 h	72 h	96 h	120 h	144 h	168 h
0	96,7 (1,7)	100(0)	-	-	-	-
1	100(0)	-	-	-	-	-
2,15	100(0)	-	-	-	-	-
4,64	95 (2,9)	100(0)	-	-	-	-
10	95 (2,9)	98,3 (1,7)	100(0)	-	-	-
21,54	61,7 (6)	100(0)	-	-	-	-
46,41	0 (0)	28,9 (19,8)	28,9 (19,8)	3,3 (1,7)	-	-

[&]quot;-" Não avaliado

Às 72 h de exposição, período que sucessede a eclosão, observou-se que aproximadamente 45 % dos embriões expostos à concentração de 21,54 mg/L não respondiam ao estímulo mecânico (Figura 3) sendo que esse efeito descresce ao longo do teste. Às 96 h de exposição, 50 % dos organimos recém eclodidos na concentração de 46,41 mg/L, não respondiam ao estímulo. Em geral, os efeitos no equilíbrio citados precedem a morte dos embriões.

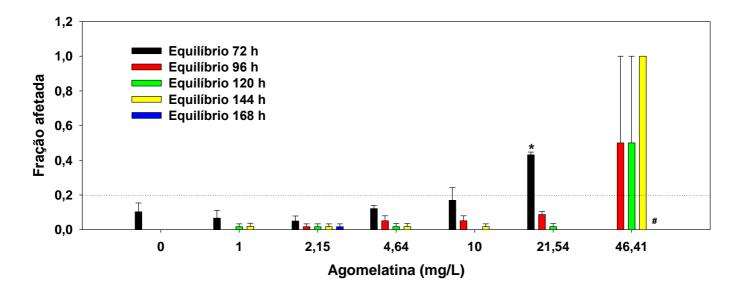


Figura 3 Efeitos da agomelatina no equilíbrio de embriões eclodidos de peixe-zebra durante 168 h de exposição (Valores médios \pm erro padrão).

Alterações no desenvolvimento embrionário foram observadas após a exposição à agomelatina (figura 4), destacam-se:

- Às 24 h de exposição: 100 % dos organismos expostos à 46,41 mg/L de agomelatina apresentaram edema e alteração do líquido amniótico.

- Às 48 h de exposição: 100 % dos organismos expostos à 46,41 mg/L de agomelatina apresentaram alteração no padrão de separação da cauda e edema cardíaco.
- Às 72 h de exposição: organismos expostos à 46,41 mg/L de agomelatina apresentaram alteração no padrão de separação da cauda (36 % dos organismos vivos), edema (100 % dos organismos vivos) e má absorção do saco vitelíneo (76 % dos organismos vivos).
- Às 96 h de exposição: na concentração de 46,41 mg/L de agomelatina observou-se edemas (100 % dos organismos vivos) e alterações no saco vitelíneo (100 % dos organismos vivos) até o penúltimo dia de exposição, 144 h, seguidas da morte dos organismos no último dia de teste.

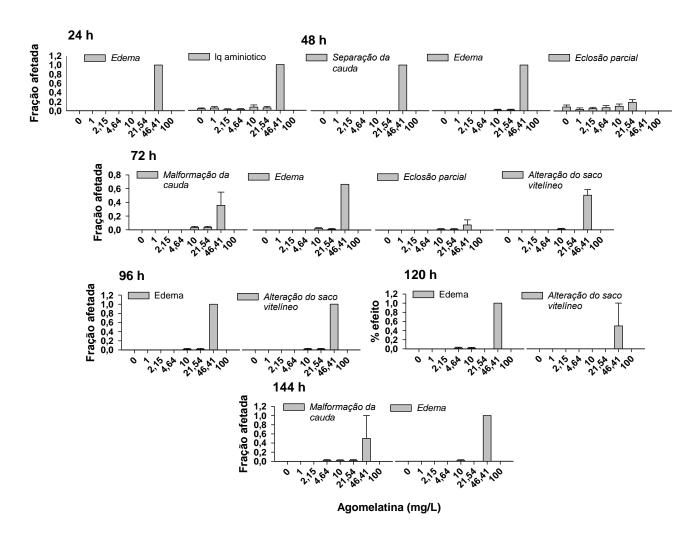
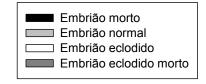



Figura 4 Malformações no desenvolvimento após exposição por 144 h à agomelatina (valores médios ± erro padrão)..

1.2. Bromazepam

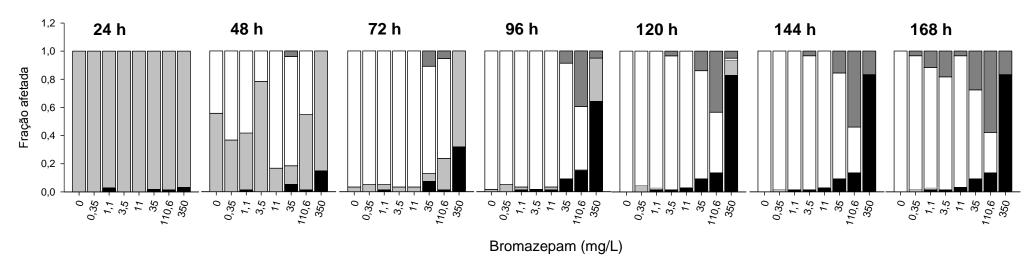
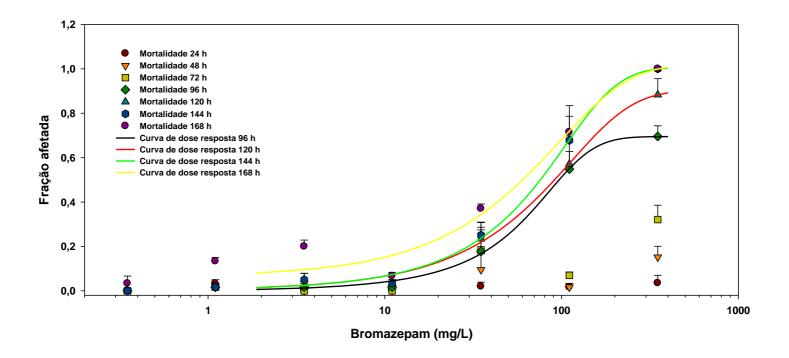



Figura 5 Visão geral do teste de toxicidade com embriões de peixe-zebra durante as 168 h de exposição ao bromazepam.

A mortalidade aumenta progressivamente com o tempo de exposição nas concentrações mais altas, sendo que a CL50 é de 77,21 mg/L, às 168 h de exposição (Figura 5 e 6).

 $Figura~6~Mortalidade~dos~indivíduos~expostos~ao~bromaze pam~(Valores~m\'edios~\pm~erro~padr\~ao)~ao~longo~de~168~h~de~exposiç\~ao.$

Às 48 h de exposição, observou-se a inibição da eclosão nos organismos expostos às concentrações de 11; 110,6 e 350 mg/L de bromazepam. Às 72 h de exposição, 33 % dos embriõesvivos expostos à concentração de 110,6 mg/L e 100 % dos embriões vivos expostos à concentração de350 mg/L, não haviam eclodido (Tabela 2). Efeitos na eclosão dos organismos expostos à concentração de 350 mg/L perpetuam até as 120 h de exposição.

TO 1 1 A D	•	1 , 1,01 1
Labela / Porcentagene de eclocac	nara organismos avnostos	duranta IAX h ao hromazanam
Tabela 2 Porcentagens de eclosão	Data Organishios Exposios	uuranie 100 ii au biuniazeuani.

		1 0	1			
BRO (mg/L)	48 h	72 h	96 h	120 h	144 h	168 h
0	44,3 (9,9)	96,7 (3,3)	98,3 (1,7)	100(0)	-	-
0,35	63,3 (9,3)	95 (2,9)	96 (2,9)	97 (2,9)	98,3 (1,7)	98,3 (1,7)
1,1	59,5 (7,3)	96,6 (1,7)	98,2 (1,8)	98,2 (1,8)	100(0)	-
3,5	21,7 (6)	96,7 (3,3)	100(0)	-	-	-
11	83,3 (9,3)	96,7 (1,7)	98,3 (1,7)	100(0)	-	-
35	85,9 (6,5)	94,2 (0,7)	100(0)	-	-	-
110,6	45,5 (14,5)	77,5 (8,3)	100(0)	-	-	-
350	0	0	12,2 (6,2)	-	-	-

[&]quot;-" Não avaliado

Às 120 h de exposição, os organismos expostos as duas últimas concentrações (110,6 e 350 mg/L), apresentaram perda de equilíbrio (> 50% dos organismos) (Figura 7).

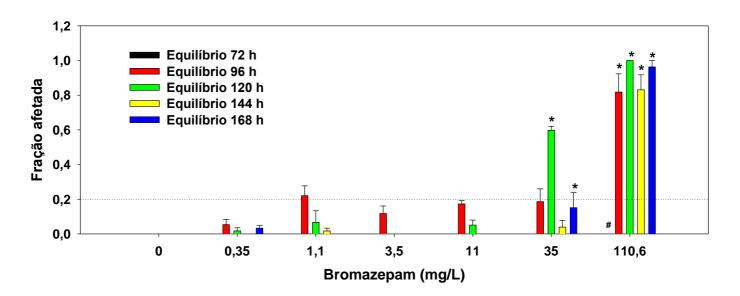


Figura 7 Efeitos do bromazepam no equilíbrio dos embriões de peixe-zebra eclodidos ao longo de 168 h de exposição (Valores médios \pm erro padrão). Teste de Dunn's (p < 0,05).

Ao longo do teste observou-se alterações no desenvolvimento, dentre as quais destacam-se:

- Às 24 h de exposição: atraso no desenvolvimento embrionário na concentração de 350 mg/L (Figura 8).
- Às 48 h de exposição: alterações na pigmentação e atraso no desenvolvimento embrionário nas concentrações a partir de 3,5 mg/L.

Apêndices & anexos

- Às 72 h de exposição: na concentração de 110,6 mg/L observou-se edemas em cerca de 40 % dos organismos vivos, alterações do saco vitelíneo em aproximadamente 20 % dos organismos vivos e alterações da pigmentação em aproximadamente 20 % dos organismos vivos; além de alteração em 100 % dos embriões expostos à concentração de 350 mg/L (alteração da pigmentação e atraso no desenvolvimento embrionário).
- Às 96 h de exposição: edema em aproximadamente 30 % dos embriões expostos à concentração de 110,6 mg/L
- Às 120 h de exposição: Edema em mais de 20 % dos embriões e alterações na pigmentação (17 %) na concentração de 110,6 mg/L, sendo que esses mesmos efeitos foram observados em quase todos os embriões expostos a concentração de 350 mg/L
- Às 144 h de exposição: Alterações na pigmentaçãoem quase 20 % dos embriões expostos a concentração de 110,6 mg/L

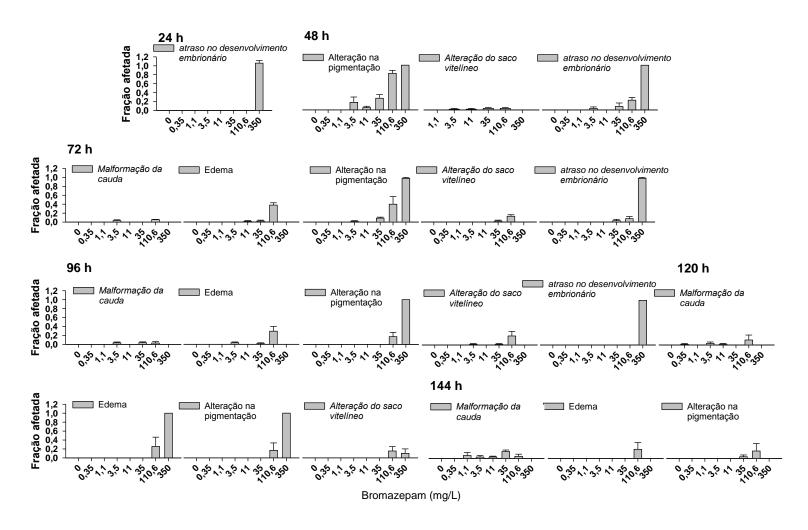
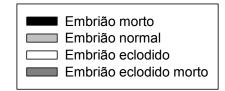



Figura 8 Alterações no desenvolvimento de embriões de peixe-zebra expostos por 168 h ao bromazepam (valores médios ± erro padrão).

1.3. Carbamazepina

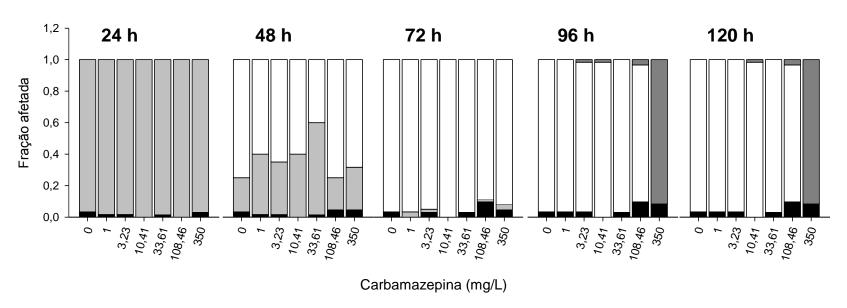


Figura 9 Visão geral do teste de toxicidade com embriões de peixe-zebra durante as 120 h de exposição à carbamazepina.

Foi observado um aumento da mortalidade somente nos organismos expostos a última concentração, 350 mg/L, às 120 h de exposição. A CL50 da carbamazepina é de 147,2 mg/L, às 120 h (Figura 9 e 10).

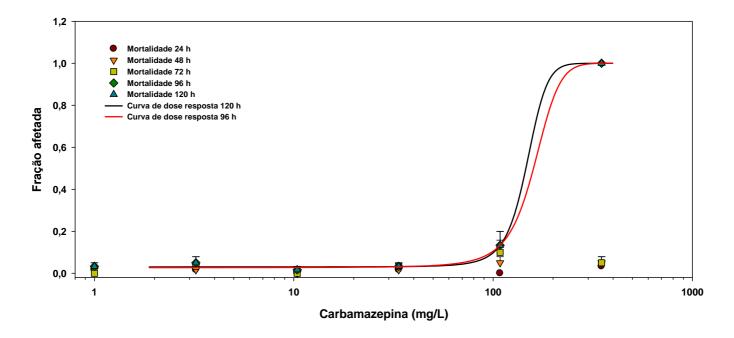


Figura 10 Mortalidade dos indivíduos expostos à carbamazepina (Valores médios ± erro padrão) ao longo de 168 h de exposição.

Os embriões expostos as diferentes concentrações de carbamazepina não apresentaram atraso na eclosão (Tabela 3).

Tabela 3 Porcentagens de eclosão para organismos expostos durante 120 h à carbamazepina.

CBZ (mg/L)	48 h	72 h	96 h	120 h	144 h	168 h
0	50 (2,9)	96,7 (1,7)	100 (0)	-	-	-
1	60 (5)	96,7 (1,7)	100(0)	-	-	-
3,23	65 (10,4)	98,3 (1,7)	100(0)	-	-	-
10,41	60 (5)	100(0)	-	-	-	-
33,61	40 (12,6)	100(0)	-	-	-	-
108,46	75 (5,8)	98,1 (1,9)	100(0)	-	-	-
350	68,3 (1,7)	96,5 (1,8)	100(0)	-	-	-

[&]quot;-" Não avaliado

Às 72 h de exposição, os embriões expostos às concentrações a partir de 33,61 mg/L apresentaram perda de equilíbrio, não respondendo aos estímulos mecânicos. Problemas em relação ao equilíbrio não são observados para as demais concentrações (Figura 11).

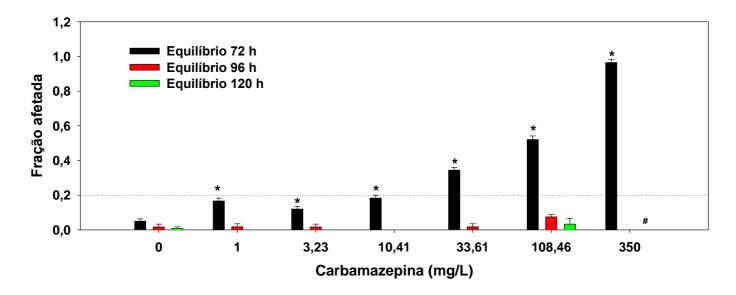


Figura 11 Efeitos da carbamazepina no equilíbrio dos organismos após de 120 h de exposição (Valores médios \pm erro padrão). Teste de Dunn's (p < 0,05).

Durante o teste, a única alteração no desenvolvimento observada foi a ausência de separação da cauda do saco vitelíneo; às 72 h de exposição em embriões expostos à concentração de 350 mg/L,efeito esse que precede a morte, às 96 h do teste, de todos os embriões submetidos a esse tratamento (Figura 12).

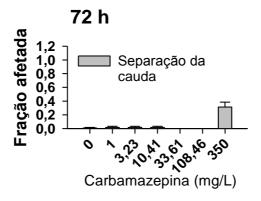
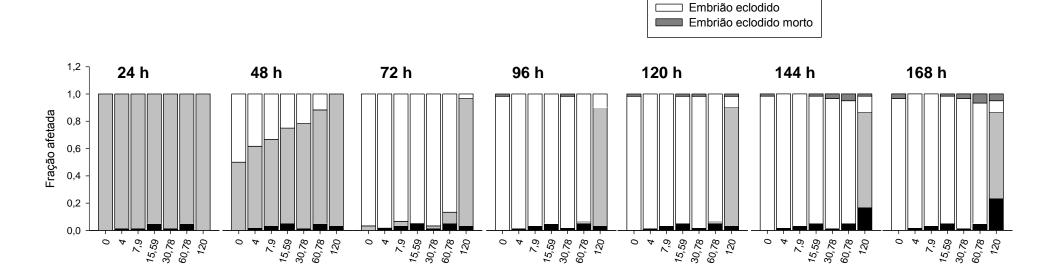



Figura 12 Alterações na separação da cauda do saco vitelíneo em embriões de peixe-zebra expostos por 168 h à carbamazepina (valores médios \pm erro padrão).

Embrião morto
Embrião normal

1.4. Carbonato de lítio

Carbonato de lítio (mg/L)

Figura 13 Visão geral do teste de toxicidade com embriões de peixe-zebra durante as 168 h de exposição ao carbonato de lítio.

A mortalidade máxima observada no final do teste, para a maior concentração testada (120 mg/L) foi menor que 30 %. Desse modo não foi possível obter um valor de CL50 para o carbonato de lítio (Figura 13 e 14).

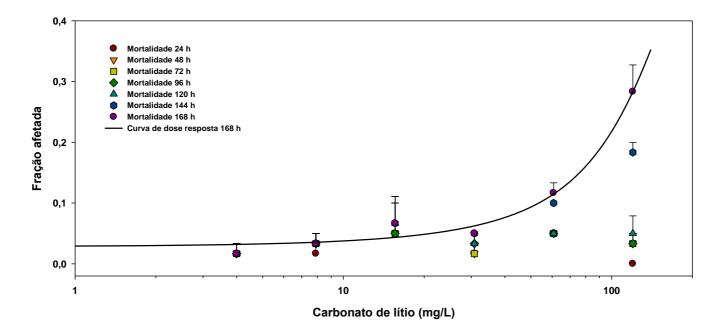


Figura 14 Mortalidade dos indivíduos expostos ao carbonato de lítio (Valores médios ± erro padrão) ao longo de 168 h de exposição.

Às 48 h de exposição observou-se atraso na eclosão para organismos expostos às concentrações a partir de 4 mg/L. No final do teste, 168 h, aproximadamente 90 % dos embriões expostos à concentração de 120 mg/L não eclodem (Tabela 4).

Tabela 4 Porcentagens de eclosão para organismos expostos durante 168 h ao carbonato de lítio.

LIT (mg/L)	48 h	72 h	96 h	120 h	144 h	168 h
0	75 (11,5)	96,7 (1,7)	96,7 (1,7)	96,7 (1,7)	96,7 (1,7)	96,7 (1,7)
4	38,3 (4,4)	98,3 (1,7)	98,3 (1,7)	98,3 (1,7)	98,3 (1,7)	98,3 (1,7)
7,9	33,3 (1,7)	93,3 (4,4)	96,7 (1,7)	96,7 (1,7)	96,7 (1,7)	96,7 (1,7)
15,59	25 (7,6)	95 (5)	96 (5)	-	-	-
30,78	21,7 (4,4)	96,7 (1,7)	96,7 (1,7)	96,7 (1,7)	-	-
60,78	11,7 (4,4)	86,7 (3,3)	93,3 (1,7)	93,3 (1,7)	-	-
120	0	3,3 (1,7)	10 (5)	10 (5)	11,7 (1,7)	-

[&]quot;-" Não avaliado

Às 72 h de exposição, o carbonato de lítio induziu efeitos no equilíbrio em embriões eclodidos em concentrações a partir de 4 mg/L, (Figura 15). O efeito no equilíbrio às 72 h pode estar relacionado com o

atraso na eclosão, pois nos demais dias de teste os organismos passaram gradativamente a responder aos estímulos mecânicos, exceto os organismos expostos à concentração de 60,78 mg/L.

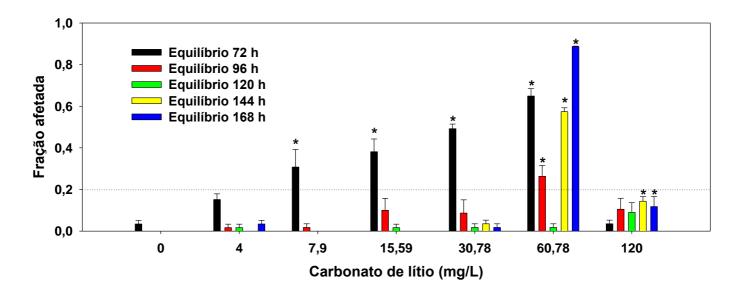


Figura 15 Efeitos do carbonato de lítio no equilíbrio dos embriões de peixe-zebra eclodidos ao longo de 168 h de exposição (Valores médios \pm erro padrão). Teste de Dunns (p < 0,05).

As alterações no desenvolvimento observadas ao longo do teste foram (figura 16):

- Às 72 h de exposição: observou-se curvatura anormal da cauda em embriões expostos às concentrações a partir de 15,59 mg/L. Esssa anomalia no desenvolvimento foi observada em 100 % dos organismos vivos expostos à concentração de 60,78 mg/L. Presença de edemas foi observada somente em embriões expostos à concentração de 120 mg/L de carbonato de lítio (> 70 %).
- Às 120 h de exposição: são observados edemas em todos os organismos expostos à concentração de 120 mg/L de carbonato de lítio, esse efeito se estende até o final do teste, 168 h de exposição.

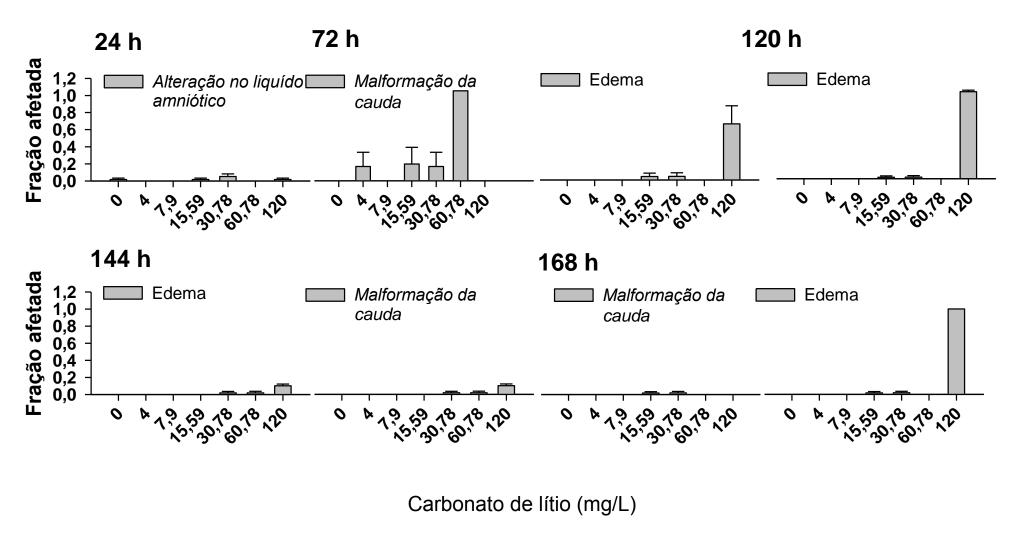
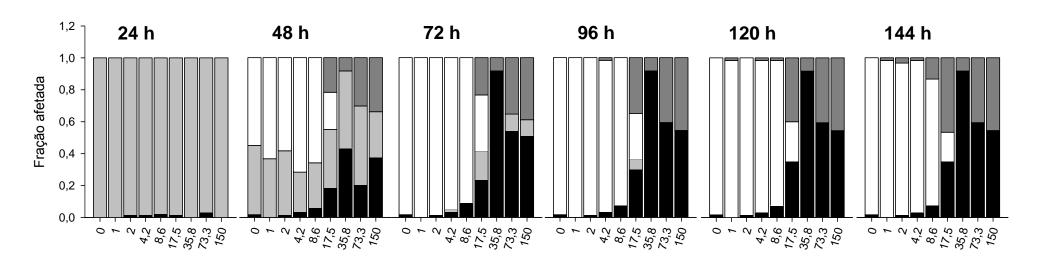
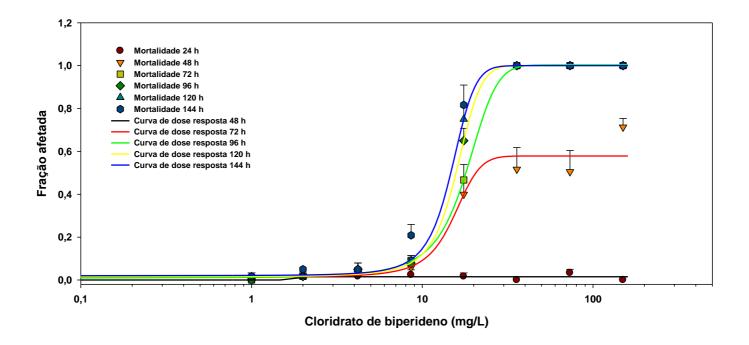



Figura 16 Alterações no desenvolvimento de embriões de peixe-zebra expostos por 168 h ao carbonato de lítio (valores médios ± erro padrão).


1.5. Cloridrato de biperideno

Cloridrato de bipepireno (mg/L)

Figura 17 Visão geral do teste de toxicidade com embriões de peixe-zebra durante as 144 h de exposição ao cloridrato de biperideno.

A mortalidade aumenta progressivamente com o tempo de exposição nas concentrações mais altas do cloridrato de biperideno. Às 144 h de exposição, a CL50 do cloridrato de biperideno é de 11,29 mg/L. (Figura 17 e 18).

 $Figura~18~Mortalidade~dos~indivíduos~expostos~ao~cloridrato~de~biperideno~(Valores~m\'edios~\pm~erro~padr\~ao)~ao~longo~de~144~h~de~exposi\~c\~ao.$

Foi observado uma inibição da eclosão nos organismos expostos à concentração de 17,5 mg/L (Tabela 5).

Tabela 5 Porcentagens de eclosão para organismos expostos durante 144 h ao cloridrato de biperideno.

BPD (mg/L)	48 h	72 h	96 h	120 h	144 h	168 h
0	55 (5)	100 (0)	-	-	-	-
1	63,3 (3,3)	100(0)	-	-	-	-
2	58,3 (14,5)	100(0)	-	-	-	-
4,2	71,7 (10,1)	98,2 (1,8)	100(0)	-	-	-
8,6	65,8 (14,5)	100(0)	-	-	-	-
17,5	45 (2,9)	76,1 (5,8)	90,2 (2,8)	-	-	-
35,8	8,3 (3,3)	100(0)	-	-	-	-
73,3	30,3 (7,4)	80 (20)	100(0)	-	-	-
150	33,9 (3,1)	80,1 (2,8)	100 (0)	-	-	

[&]quot;-" Não avaliado

Às 96 h de exposição, cerca de 30% dos embriões expostos à concentração de 4,2 mg/L, 50% dos embriões expostos à concentração de 8,6 mg/L e aproximadamente 80% dos embriões expostos à concentração de 17,5 mg/L não respondiam aos estímulos mecânicos. Às 120 h de exposição, houve a recuperação parcial do equilíbrio dos embriões eclodidos expostos às concentrações de 4,2 e 8,6 mg/L, e grande parte dos embriões expostos à concentração de 17,5 mg/L permaneceram sem responder aos estímulos mecânicos (>80%) (Figura 19).

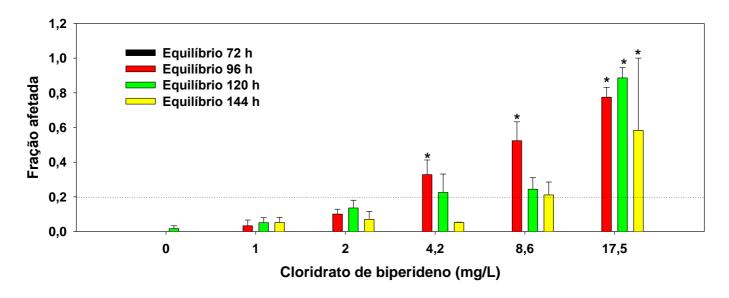


Figura 19 Efeitos do cloridrato de biperideno no equilíbrio dos organismos após de 144 h de exposição (Valores médios \pm erro padrão). Teste de Dunn's (p < 0,05).

As alterações no desenvolvimento observadas ao longo do teste foram (figura 20):

- Às 24 h de exposição: na maior concentração testada, 150 mg/L de cloridrato de biperideno, observou-se curvatura anormal da cauda, alterações na pigmentação e atraso no desenvolvimento dos embriões.
- Às 48 h de exposição: observou-se atraso no desenvolvimento embrionário dos organismos expostos às concentrações a partir de 17,5 mg/L.
- Às 72 h de exposição: observou-se alterações na pigmentação e atraso no desenvolvimento embrionário em 100 % dos embriões expostos as duas últimas concentrações, 73.3 e 150 mg/L.

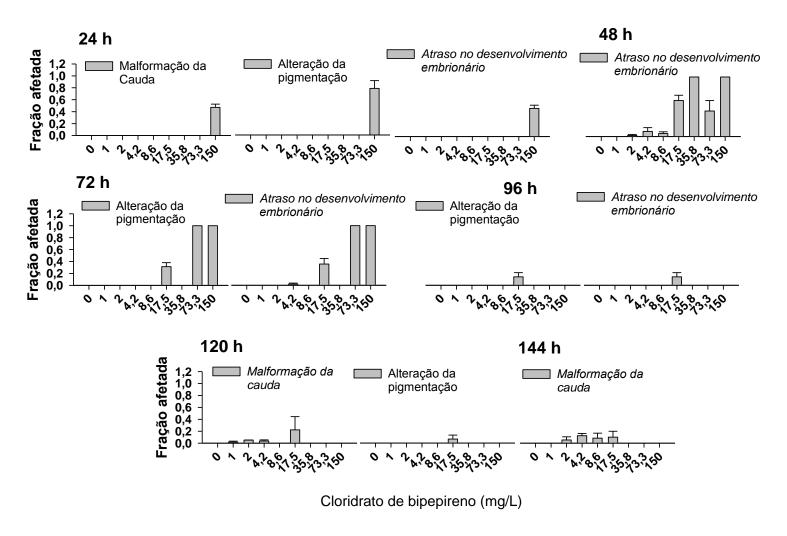


Figura 20 Malformações no desenvolvimento após exposição por 144 h ao cloridrato de biperideno (valores médios ± erro padrão).

1.6. Cloridrato de bupropiona

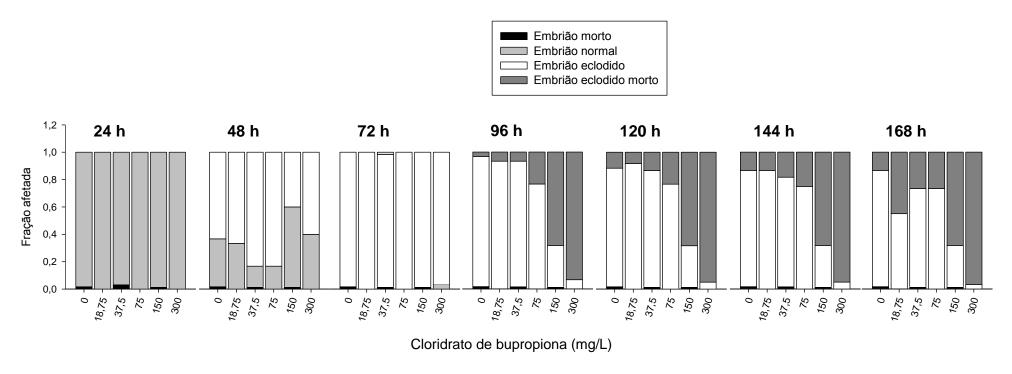


Figura 21 Visão geral do teste de toxicidade com embriões de peixe-zebra durante as 168 h de exposição ao cloridrato de bupropiona.

A mortalidade aumenta progressivamente com o tempo de exposição nas concentrações mais altas do cloridrato de bupropiona (Figuras 21 e 22), foi observado também um aumento da mortalidade dos organismos expostos a concentração de 18,75 mg/L. No final do teste, às 168 h, a CL50 do cloridrato de bupropiona é de 103,2 mg/L.

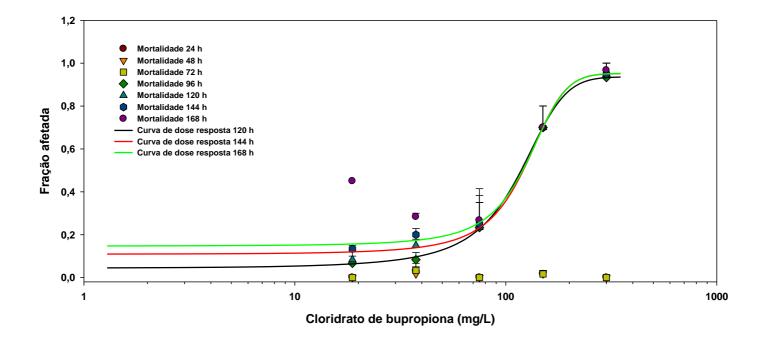


Figura 22 Mortalidade dos indivíduos expostos ao cloridrato de bupropiona (Valores médios \pm erro padrão) ao longo de 168 h de exposição.

Foi observado uma inibição da eclosão somente nos embriões expostos à concentração de 300 mg/L do cloridrato de bupropiona (Tabela 6).

Tabela 6 Porcentagens de eclosão para organismos expostos durante 168 h ao cloridrato de bupropiona.

BPP (mg/L)	48 h	72 h	96 h	120 h	144 h	168 h
 0	63,3 (6,7)	100 (0)	-	-	-	-
18,75	66,7 (6,7)	100 (0)	-	-	-	-
37,5	83,3 (1,7)	100 (0)	-	-	-	-
75	83,3 (6)	100(0)	-	-	-	-
150	40 (7,6)	100(0)	-	-	-	-
300	60 (7,6)	96,7 (1,7)	100(0)	-	-	-

[&]quot;-" Não avaliado

Às 96 h de exposição, observou-se a perda de equilíbrio dos embriões eclodidos em todas as concentrações testadas (Figura 23). Devido ao efeito acentuado ao longo do teste, às 168 h de exposição, em

todas as concentrações, aproximadamente 90 % dos embriões expostos apresentaram alterações no equilíbrio.

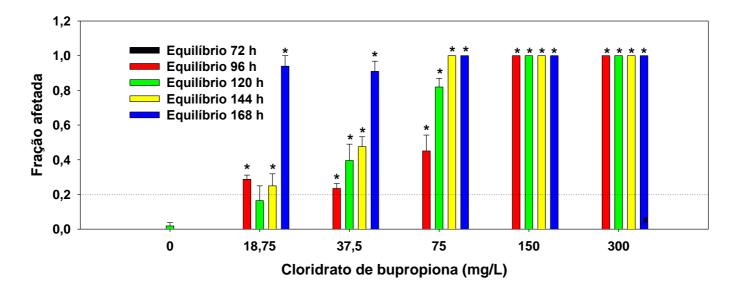


Figura 23 Efeitos do cloridrato de bupropiona no equilíbrio dos embriões de peixe-zebra eclodidos ao longo de 168 h de exposição (Valores médios \pm erro padrão). Teste de Dunn's (p < 0,05).

Várias alterações no desenvolvimento dos embriões expostos ao cloridrato de bupriona foram observadas durante o teste (figura 24), nomeadamente:

- Às 48 h de exposição: observou-se que os organismos expostos às concentrações de 75, 150 e 300 mg/L apresentaram eclosão parcial, ou seja, apresentavam parte do corpo (cabeça ou cauda) ainda dentro do córion.
- Às 168 h de exposição: observou-se curvatura anormal da cauda, já observada em menor frequência nos dias anteriores do teste, e edema nas maiores concentrações testadas (150 e 300 mg/L), efeito esse que se estende até o final do teste (168 h de exposição).

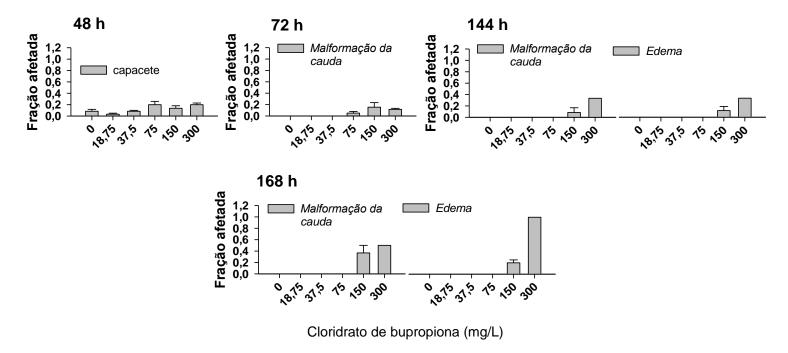
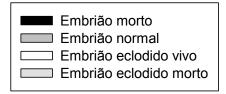



Figura 24 Alterações no desenvolvimento de embriões de peixe-zebra expostos por 168 h ao cloridrato de bupropiona (valores médios ± erro padrão).

1.7. Cloridrato de fluoxetina

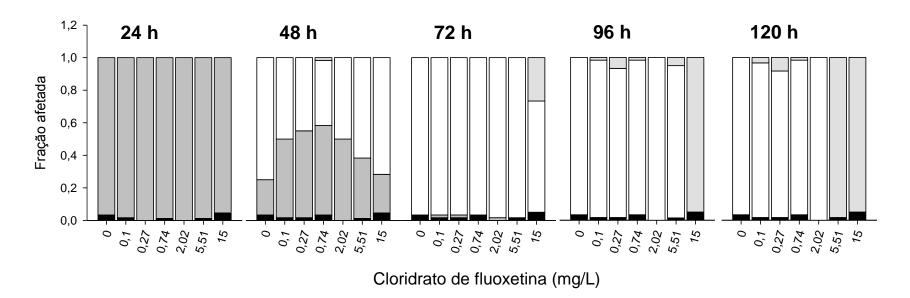


Figura 25 Visão geral do teste de toxicidade com embriões de peixe-zebra durante as 120 h de exposição ao cloridrato de fluoxetina.

A mortalidade aumenta progressivamente com o tempo de exposição nas concentrações mais altas do cloridrato de fluoxetina (Figuras 25 e 26). No final do teste, às 120 h de exposição, a CL50 do cloridrato de fluoxetina é de 3,31 mg/L.

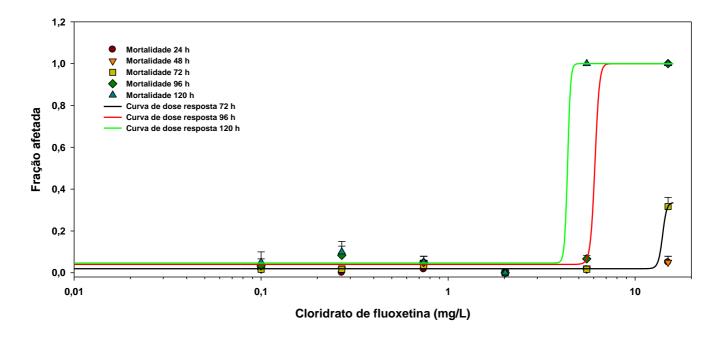


Figura 26 Mortalidade dos indivíduos expostos ao cloridrato de fluoxetina (Valores médios \pm erro padrão) ao longo de 120 h de exposição.

Não foram observados efeitos na eclosão dos embriões expostos ao cloridrato de fluoxetina (Tabela 7).

Tabela 7 Porcentagens de eclosão para organismos expostos durante 120 h ao cloridrato de fluoxetina.

FLX (mg/L)	48 h	72 h	96 h	120 h	144 h	168 h
0	75 (11,5)	100 (0)	-	-	-	-
0,1	50 (2,9)	98,3 (1,7)	100(0)	-	-	-
0,27	45 (16,1)	98,2 (1,8)	100(0)	-	-	-
0,74	41,7 (4,4)	100 (0)	-	-	-	-
2,02	50 (2,9)	98,3 (1,7)	100(0)	-	-	-
5,51	61,7 (4,4)	100 (0)	-	-	-	-
15	71,7 (1,7)	100 (0)	-	-	-	-

[&]quot;-" Não avaliado

Às 72 h de exposição, 23% e 100% dos embriões eclodidos expostos às concentrações de 5,51 e 15 mg/L, não respondiam aos estímulos mecânicos. Às 96 h de exposição, os efeitos no equilíbrio foram observados em todos os embriões expostos à concentração de 5,51 mg/L. Em geral, os efeitos no equilíbrio

Apêndices & anexos

precederam a morte dos organismos expostos à concentração de 15 mg/L, mortos às 96 h, e os expostos à 5,51 mg/L de cloridrato de fluoxetina às 120 h de exposição (Figura 27).

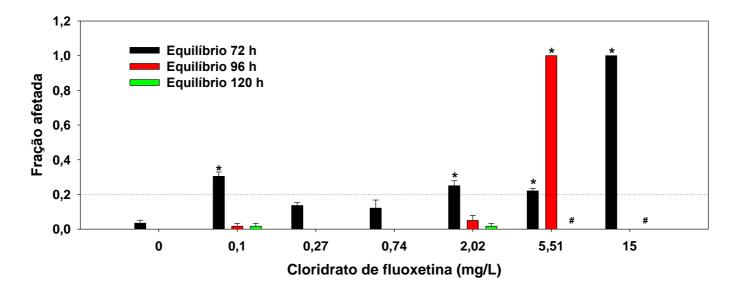
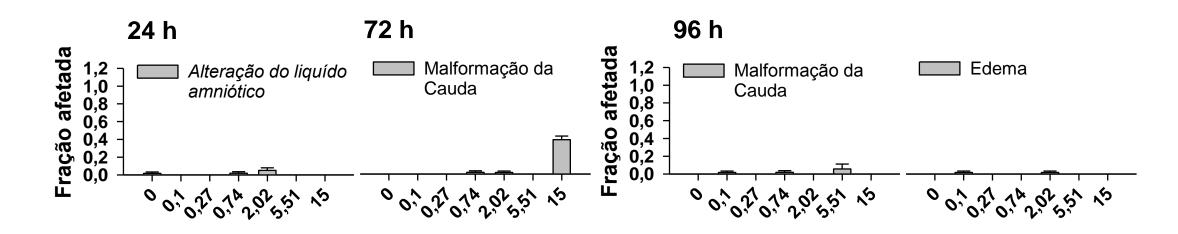
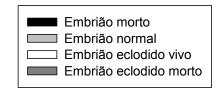
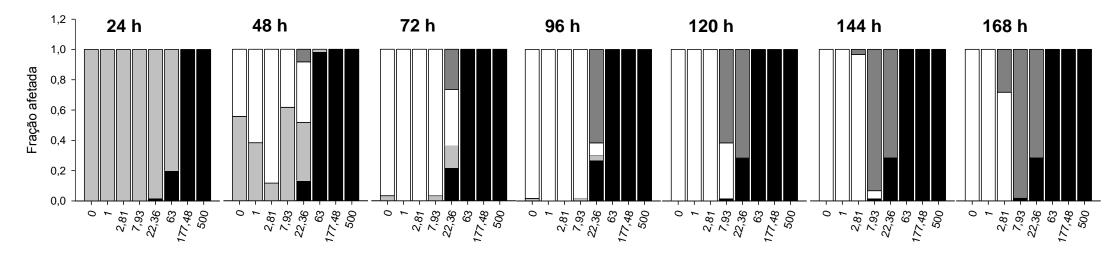



Figura 27 Efeitos do cloridrato de fluoxetina no equilíbrio dos organismos após de 120 h de exposição (Valores médios \pm erro padrão). Teste de Dunn's (p < 0,05).


Poucas alterações no desenvolvimento foram observadas ao longo do teste com o cloridrato de fluoxetina. Somente às 72 h de exposição, observou-se malformação da cauda em 38 % dos embriões expostos a concentração de 15 mg/L (Figura 28).



Cloridrato de fluoxetina (mg/L)

Figura 28 Malformações no desenvolvimento após exposição por 120 h ao cloridrato de fluoxetina (valores médios ± erro padrão).

1.8. Cloridrato de nortriptilina

Cloridrato de nortriptilina (mg/L)

Figura 29 Visão geral do teste de toxicidade com embriões de peixe-zebra durante as 168 h de exposição ao cloridrato de nortriptilina.

A CL50 é dependente do tempo e da concentração, diminuindo gradativamente ao longo do teste. A CL50 do cloridrato de nortriptilina, às 168 h de exposição é de 2,9 mg/L (Figuras 29 e 30).

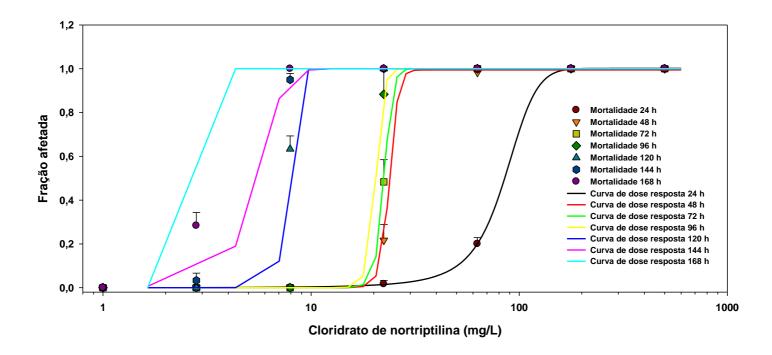


Figura 30 Mortalidade dos indivíduos expostos ao cloridrato de nortriptilina (Valores médios ± erro padrão) ao longo de 168 h de exposição.

No grupo controle, 50 % dos embriões eclodem às 48 h de exposição, as maiores taxas de eclosão são observadas para o tratamento de 2,81 mg/L de cloridrato de nortripitilina com aproximadante 90 % dos embriões eclodidos. Às 72 h de exposição, todos embriões vivos do grupo controle e das concentrações de até 7,93 mg/L eclodem. Somente os embriões expostos à concentração de 22,36 mg/L apresentaram efeitos na eclosão, aproximadamente 15 %, de inibição (Tabela 8).

Tabela 8 Porcentagens de eclosão para organismos expostos durante 168 h ao cloridrato de nortriptilina.

	U	<u> </u>	1			
NTP (mg/L)	48 h	72 h	96 h	120 h	144 h	168 h
0	44,3 (9,9)	96,7 (3,3)	98,3 (1,7)	100 (0)	-	-
1	61,7 (9,3)	100(0)	-	-	-	-
2,81	88,3 (1,7)	100(0)	-	-	-	-
7,93	38,3 (4,4)	96,7 (3,3)	98,3 (1,7)	98,3 (1,7)	98,3 (1,7)	98,3 (1,7)
22,36	48,3 (19,2)	78,6 (21,4)	93,9 (6,1)	-	-	-

[&]quot;-" Não avaliado

Às 96 h de exposição, mais de 80 % dos organismos expostos às concentrações de 2,81 e 7,93 mg/L não apresentavam resposta ao estímulo mecânico, e mais de 40 % dos organismos expostos à concentração de 22,36 mg/L também não apresentavam resposta aos estímulos (Figura 31). Os organismos expostos à concentração de 22,36 mg/L morrem no dia seguinte. Às 120 h de exposição, observou-se efeito no equilíbrio em 60 % dos embriões eclodidos expostos à concentração de 7,93 mg/L. A CE50 do cloridrato de nortriptilina às 168 h é menor que 1 mg/L. Ademais, mais de 50 % dos embriões expostos à concentração de 1 mg/L não apresentaram resposta aos estímulos mecânicos.

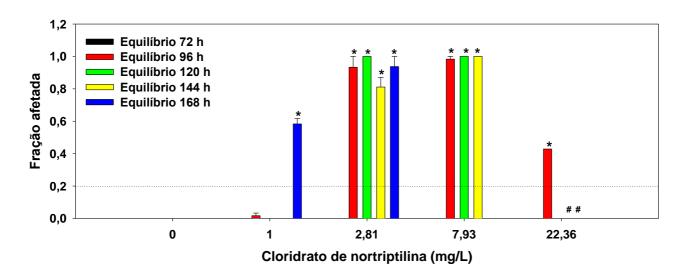


Figura 31 Efeitos do cloridrato de nortriptilina no equilíbrio dos embriões de peixe-zebra eclodidos ao longo de 168 h de exposição (Valores médios \pm erro padrão). Teste de Dunn's (p < 0,05).

As principais alterações no desenvolvimento observadas ao longo do teste foram:

- Às 48 h de exposição: observou-se alteração da pigmentação dos embriões expostos às concentrações de 7,93 e 22,36 mg/L (Figura 32).
- Às 72 h de exposição: observou-se edemas e curvaturas anormais nos organismos expostos à concentração de 22,36 mg/L.
- Às 96 h de exposição: observou-se edemas, curvatura anormal da cauda e alteração do saco vitelíneo dos embriões expostos à concentração de 22,36 mg/L precedendo a morte dos organismos.
- Às 144 h de exposição: observou-se curvatura anormal da cauda e edemas nos embriões expostosà concentração de 7,93 mg/L.

Apêndices & anexos

- Às 168 h de exposição: observou-se curvatura anormal da cauda e edemas nos embriões expostos à concentração de 2,81 mg/L.

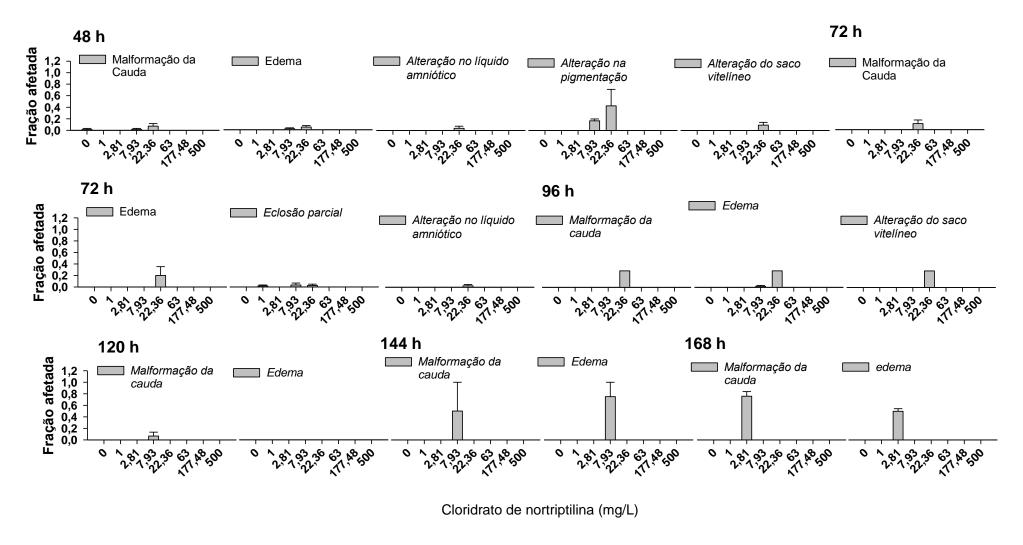
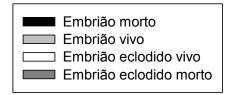



Figura 32 Alterações no desenvolvimento de embriões de peixe-zebra expostos por 168 h ao cloridrato de nortriptilina (valores médios ± erro padrão).

1.9. Cloridrato de prometazina

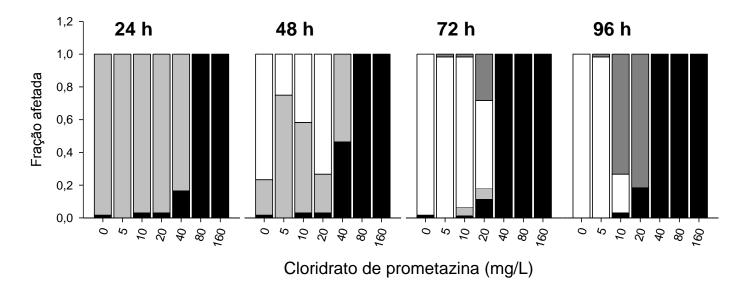


Figura 33 Visão geral do teste de toxicidade com embriões de peixe-zebra durante as 96 h de exposição ao cloridrato de prometazina.

A CL50 é dependente do tempo e da dose, diminuindo gradativamente ao longo do teste. A CL50 do cloridrato de prometazina às 96 h de exposição é de 7,97 mg/L. (Figura 33 e 34).

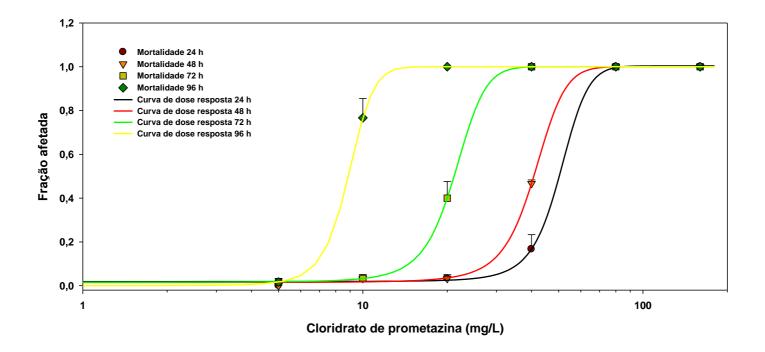


Figura 34 Mortalidade dos indivíduos expostos ao cloridrato de prometazina (Valores médios \pm erro padrão) ao longo de 96 h de exposição.

Observou-se uma inibição da eclosão dos organismos expostos às concentrações de 10 e 20 mg/L (Tabela 9).

Tabela 9 Porcentagens de eclosão para organismos expostos durante 96 h ao cloridrato de prometazina

PRO (mg/L)	48 h	72 h	96 h	120 h	144 h	168 h
0	76,7 (3,3)	100(0)	-	-	-	-
5	25 (5)	100(0)	-	-	-	-
10	41,7 (10,9)	94,9 (0,1)	100(0)	-	-	-
20	73,3 (10,1)	92,5 (1,6)	100(0)	-	-	-

[&]quot;-" Não avaliado

Observou-se que 90 % dos embriões expostos à concentração de 5 mg/L, às 96 h de exposição, não respondiam aos estímulos mecânicos (Figura 35). A CE50, para equilíbrio, é dependente do tempo e da dose, diminuindo gradativamente ao longo do teste, sendo que, no final a concentração é ≤ 5mg/L.

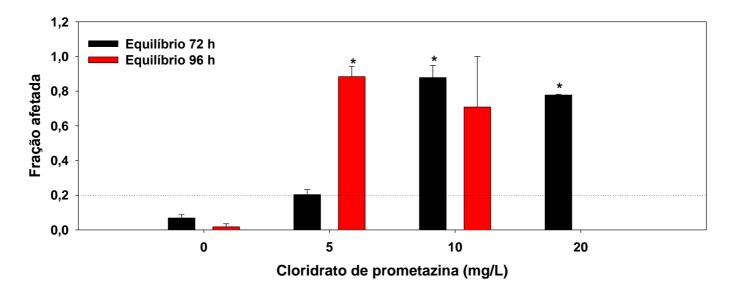


Figura 35 Efeitos do cloridrato de prometazina no equilíbrio dos organismos após de 96 h de exposição (Valores médios \pm erro padrão). Teste de Dunn's (p < 0,05).

As principais alterações no desenvolvimento observadas ao longo do teste foram:

- Às 24 h de exposição: a concentração de 20 mg/L os embriões expostos apresentavam pigmentação alterada. Cerca de 20 % dos embriões expostos à concentração de 40 mg/L apresentaram alteração da pigmentação e edemas (Figura 36).
- Às 48 h de exposição: observou-se malformações da cauda nos embriões expostos à concentração de 40~mg/L.
- Às 72 h de exposição: observou-se malformações da cauda nos embriões expostos à concentração de 20 mg/L.
- Às 96 h de exposição: observou-se malformações da cauda e edemas nos embriões expostos à concentração de 10 mg/L (precedendo a morte dos organismos).

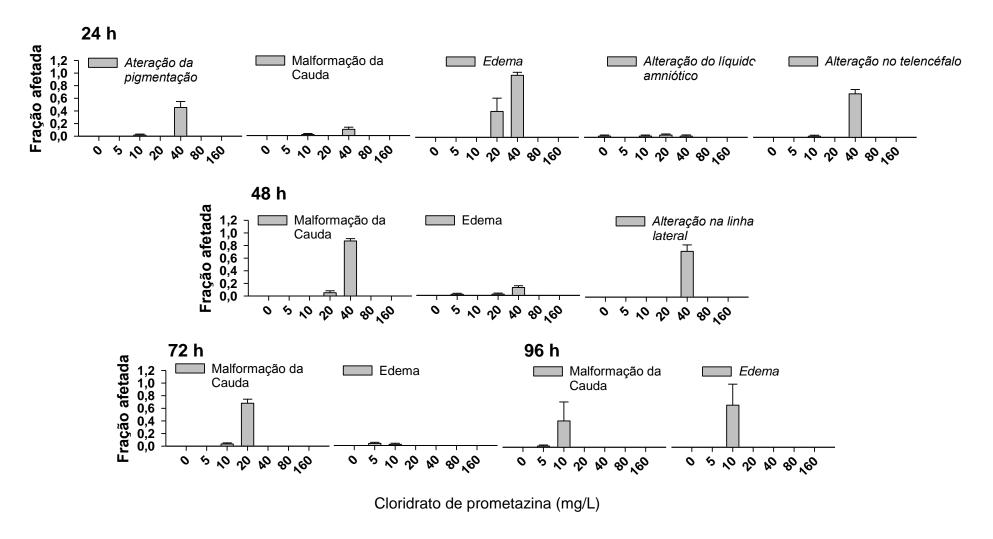


Figura 36 Malformações no desenvolvimento após exposição por 96 h ao cloridrato de prometazina (valores médios ± erro padrão).

1.10. Cloridrato de sertralina

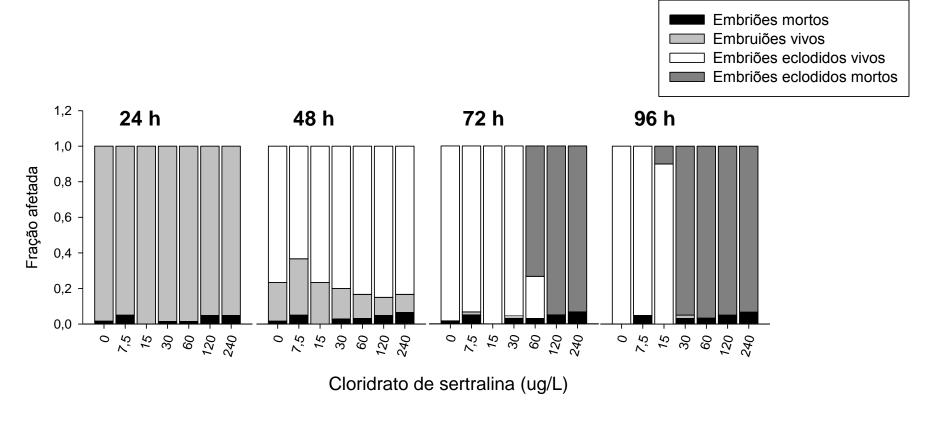


Figura 37 Visão geral do teste de toxicidade com embriões de peixe-zebra durante as 96 h de exposição ao cloridrato de sertralina.

Apêndices & anexos

Não foi observado mortalidade nos dois primeiros dias de teste para nenhuma das concentrações testadas, entretanto, após a eclosão, às 72 h de exposição, ocorre um aumento da mortalidade, a partir da concentração de 0,03 mg/L. A CL50 do cloridrato de sertralina é de 19 ug/L, às 96 h de exposição (Figura 37 e 38).

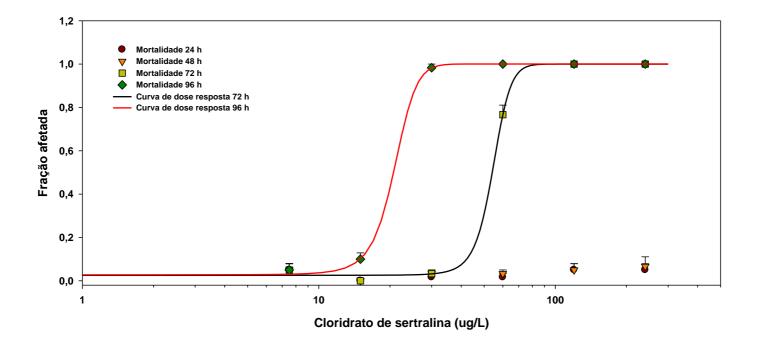


Figura 38 Mortalidade dos indivíduos expostos ao cloridrato de sertralina (Valores médios ± erro padrão) ao longo de 96 h de exposição.

Observou-se um efeito na eclosão nos embriões expostos à concentração de 30 ug/L de cloridrato de sertralina (Tabela 10).

Tabela 10 Porcentagens de eclosão para organismos expostos durante 96 h ao cloridrato de sertralina.

	1 .	<u> </u>				
SERT (ug/L)	48 h	72 h	96 h	120 h	144 h	168 h
0	75 (4,1)	100 (0)	-	-	-	-
7,5	63,3 (7,3)	98,2 (1,8)	100 (0)	-	-	-
15	76,7 (3,3)	100(0)	-	-	-	-
30	80 (5,8)	98,3 (1,7)	98,3 (1,7)	-	-	-
60	83,3 (6,7)	100(0)	-	-	-	-
120	85 (2,9)	100(0)	-	-	-	-
240	83,3 (14,2)	100(0)	-	-	-	-

[&]quot;-" Não avaliado

Às 48 h de exposição, aproximadamente 70 % dos embriões expostos à concentração de 30 ug/L não apresentaram respostas aos estímulos mecânicos. Às 72 h de exposição, observou-se uma dose resposta clara, com efeitos nas concentrações de 15; 30 e 60 ug/L, às 96 h de exposição, com a morte dos organismos expostos às concentrações ≤ 30 ug/L, efeitos no equilíbrio foram observados apenas para a concentração de 15 ug/L (Figura 39).

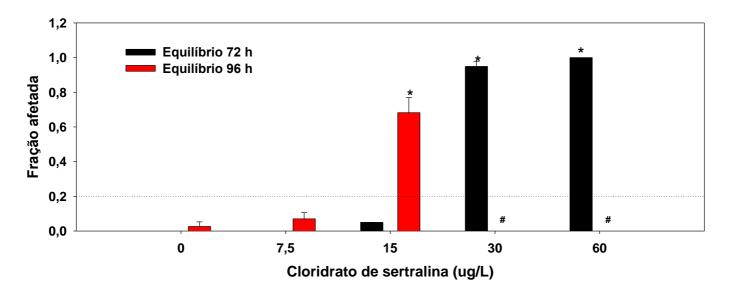


Figura 39 Efeitos do cloridrato de sertralina no equilíbrio dos organismos após de 96 h de exposição (Valores médios ± erro padrão).

A únicaalteração no desenvolvimento observada ao longo do teste para o cloridrato de sertralina foi a malformação da cauda nos organismos expostos à concentração de 60 ug/L às 72 h de exposição (precedendo a morte de todos os organismos no dia seguinte) (Figura 40).

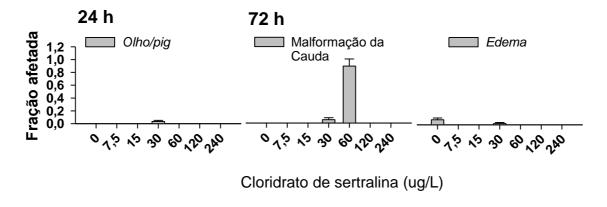
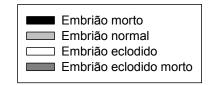
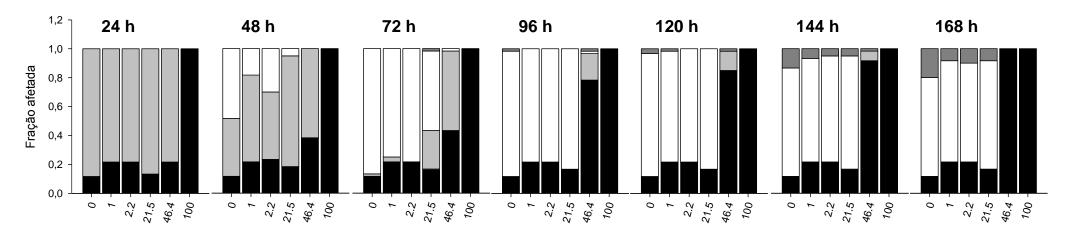




Figura 40 Malformações no desenvolvimento após exposição por 96 h ao cloridrato de sertralina (valores médios ± erro padrão).

1.11. Fumarato de quetiapina

Fumarato de quetiapina (mg/L)

Figura 41 Visão geral do teste de toxicidade com embriões de peixe-zebra durante as 168 h de exposição ao fumarato de quetiapina.

Apêndices & anexos

A mortalidade aumenta progressivamente com o tempo de exposição nas concentrações mais altas de fumarato de quetiapina. A CL50 do fumarato de quetiapina é de 24.13 mg/L, às 168 h de exposição (Figura 41 e 42).

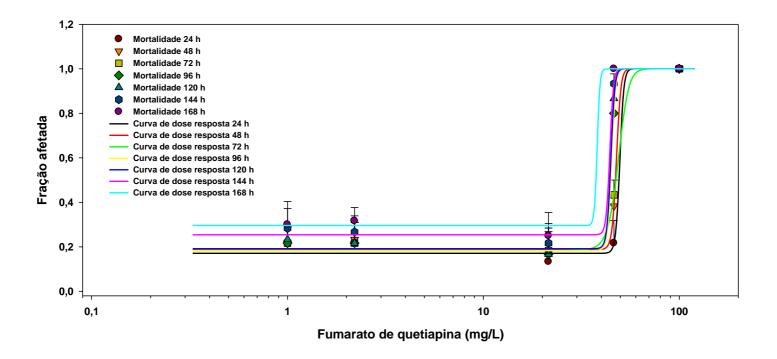


Figura 42 Mortalidade dos indivíduos expostos ao fumarato de quetiapina (valores médios \pm erro padrão) ao longo de 168 h de exposição.

Às 48 h de exposição, a eclosão foi inibida em todas as concentrações testadas (de 1 até 46,4 mg/L; os organismos expostos à concentração de 100 mg/L haviam morrido). Às 72 h, a inibição da eclosão persiste para os organismos expostos às concentrações de 21,5 e 46,4 mg/L (Tabela 11).

Tabela 11 Porcentagens de eclosão para organismos expostos durante 168 h ao fumarato de quetiapina.

	<u> </u>					
FQ (mg/L)	48 h	72 h	96 h	120 h	144 h	168 h
0	48,3 (7,3)	98,2 (1,8)	100 (0)	-	-	-
1	18,3 (4,4)	95,8 (4,2)	100(0)	-	-	-
2,2	30 (7,6)	100(0)	-	-	-	-
21,5	5 (5)	65,9 (9,7)	100(0)	-	-	-
46,4	0	3,3 (3,3)	19,4 (10)	-	-	-

[&]quot;-" Não avaliado

Efeitos no equilíbrio foram observados, às 96 h de exposição, em 60 % dos organismos expostos à concentração de 21,5 mg/L de fumarato dequetiapina. Às 120 h e ao final do teste todos embriões eclodidos vivos expostos à concentração de 21,5 mg/L não respondiam aos estímulos mecânicos (Figura 43).

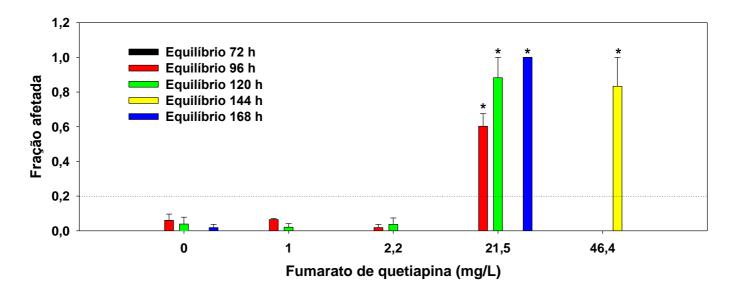


Figura 43 Efeitos do fumarato de quetiapina no equilíbrio dos embriões de peixe-zebra eclodidos ao longo de 168 h de exposição (Valores médios \pm erro padrão). Teste de Dunn's (p < 0,05).

As principais alterações no desenvolvimento observadas ao longo do teste foram: alteração da pigmentação, malformação da cauda, alteração do líquido amniótico e edema (Figura 44).

- Às 24 h de exposição: observou-se alterações na pigmentação nos embriões expostos à concentração de 46,4 mg/L.
- Às 48 h de exposição: observou-se curvatura anormal da cauda e alteração do líquido amniótico nos embriões expostos à concentração de 46,4 mg/L,
- Às 72 h de exposição: observou-se, curvatura anormal da cauda, edemas e alteração do líquido amniótico nos embriões expostos à concentração de 46,4 mg/L,
 - Às 96 h de exposição: observou-se edemas nos embriões expostos à concentração de 46,4 mg/L.
- Às 120 h de exposição: observou-se alterações da pigmentação nos embriões expostos à concentração de 46,4 mg/L.

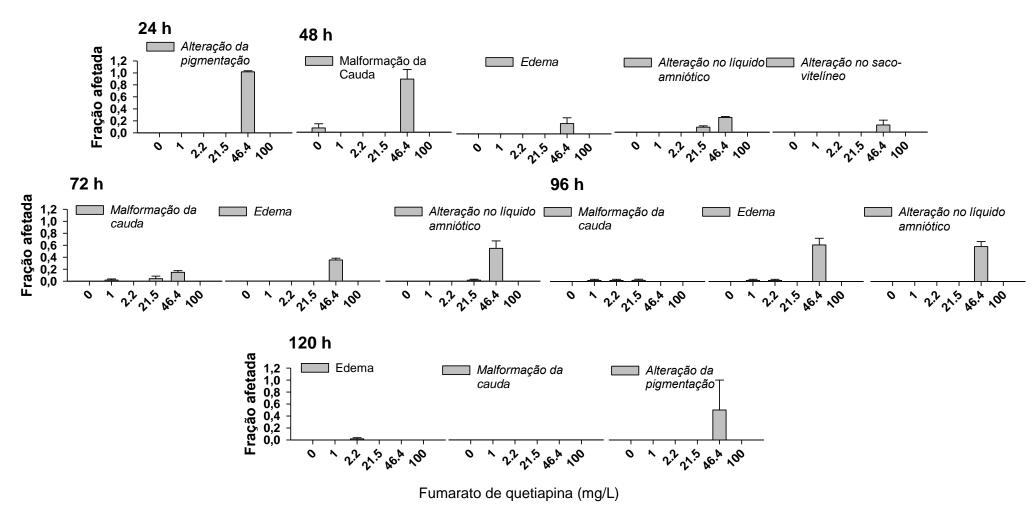
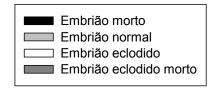
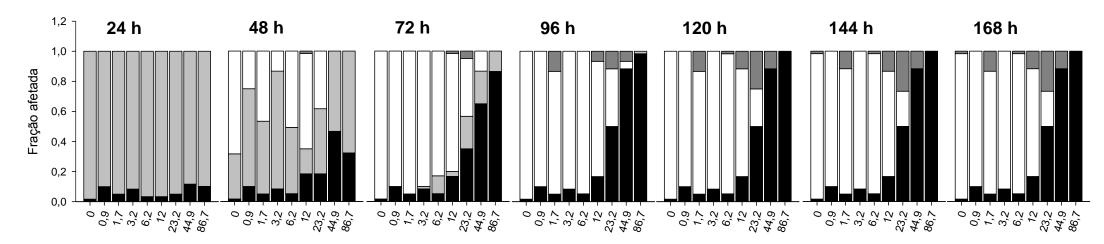




Figura 44 Alterações no desenvolvimento de embriões de peixe-zebra expostos por 168 h ao fumarato de quetiapina (valores médios ± erro padrão).

1.12. Hemitartarato de zolpidem

Hemitartarato de zolpidem (mg/L)

Figura 45 Visão geral do teste de toxicidade com embriões de peixe-zebra durante as 168 h de exposição ao hemitartarato de zolpidem.

A CL50 é dependente do tempo e da dose, diminuindo gradativamente ao longo do teste. A CL50 do hemitartarato de zolpidem às 168 h é de 17,51 mg/L (Figura 45 e 46).

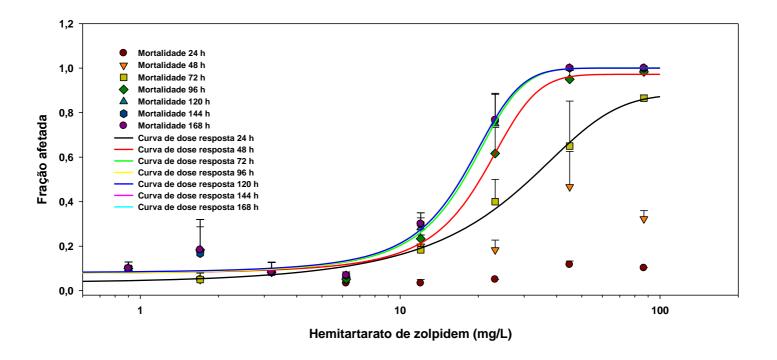


Figura 46 Mortalidade dos indivíduos expostos ao hemitartarato de zolpidem (valores médios \pm erro padrão) ao longo de 168 h de exposição.

Foi observado, às 72 h de exposição, que aproximadamente 35 % dos embriões expostos à concentração de 23.2 mg/L de hemitartarato de zolpidem apresentaram atraso na eclosão. Houve inibição da eclosão em aproximadamente 70 %, dos organismos expostos à concentração de 44.9 mg/L, às 72 h de exposição, e os poucos embriões ainda vivos expostos à concentração de 86.7 mg/L não haviam eclodido (Tabela 12).

Tabela 12 Porcentagens de eclosão para organismos expostos durante 168 h ao hemitartarato de zolpidem.

_	<u> </u>	<u> </u>					
	ZOLP (mg/L)	48 h	72 h	96 h	120 h	144 h	168 h
	0	68,3 (4,4)	100 (0)	-	-	-	-
	0,9	25 (8,7)	100(0)	-	-	-	-
	1,7	46,7 (6,7)	100(0)	-	-	-	-
	3,2	13,3 (1,7)	98,3 (1,7)	100(0)	-	-	-
	6,2	50,7 (22,9)	87,5 (6,9)	100(0)	-	-	-
	12	65 (14,4)	95,6 (4,4)	100(0)	-	-	-
	23,2	38,3 (17,6)	59,3 (24,8)	100(0)	-	-	-
	44,9	0 (0)	32,2 (16,1)	-	-	-	-

"-" Não avaliado

Às 96 h de exposição observou-se efeitos no equilíbrio em embriões expostos à concentrações a partir de 3,2 mg/L os quais não apresentavam respostas aos estímulos mecânicos. Entretanto, ao final da exposição os embriões expostos a concentração de 3,2 mg/L se recuperaram e somente organismos expostos as concentrações de 12 e 23,2 mg/L permaneceram não respondendo aos estímulos (>60 %) (Figura 47).

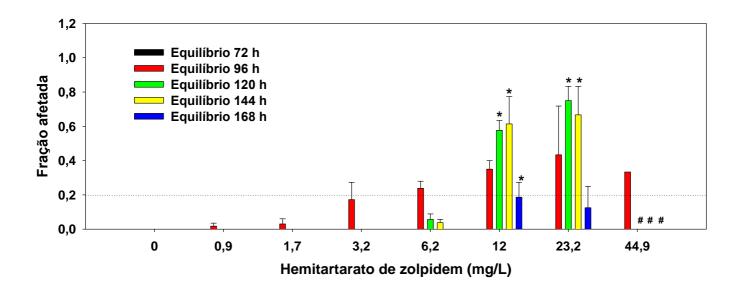


Figura 47 Efeitos do hemitartarato de zolpidem no equilíbrio dos embriões de peixe-zebra eclodidos ao longo de 168 h de exposição (valores médios \pm erro padrão). Teste de Dunn's (p < 0,05).

As alterações no desenvolvimento observadas durante o teste com o hemitartarato de zolpidem, foram as seguintes: atraso no desenvolvimento embrionário, edema, alteração da pigmentação e malformação da cauda. O atraso no desenvolvimento embrionário ocorreu na concentração de 86,7 mg/L até a morte dos organismos às 120 h (Figura 48).

- Às 72 h e 96 h: observou-se edemas e alterações da pigmentação dos embriões expostos às concentrações a partir de 23.2 mg/L para além da baixa frequência de malformações da cauda.
- Às 144 h e 168 h os embriões apresentaram malformações na cauda, principalmente nas concentrações de 12 mg/L e 23,2 mg/L.

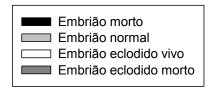



Figura 48 Alterações no desenvolvimento de embriões de peixe-zebra expostos por 168 h ao hemitartarato de zolpidem (valores médios ± erro padrão).

1.13. Lamotrigina

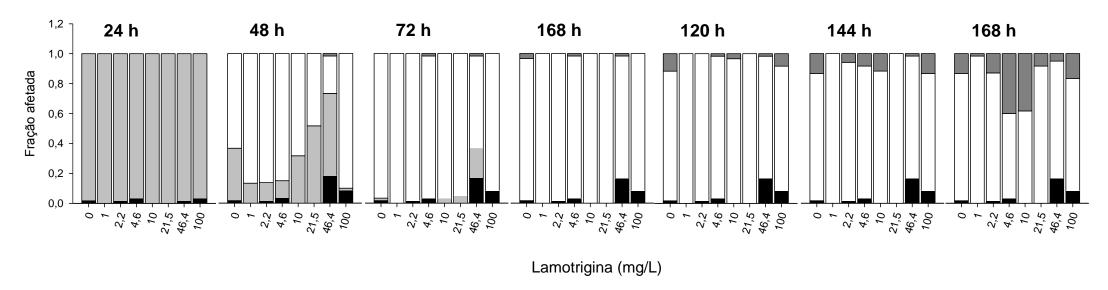


Figura 49 Visão geral do teste de toxicidade com embriões de peixe-zebra durante as 168 h de exposição à lamotrigina.

Com a mortalidade média menor que 25 % na maior concentração testada (100 mg/L) não foi possível determinar a CL50 a qual está acima de 100 mg/L, às 168 h de exposição (Figura 49).

O efeito de inibição da eclosão foi observado principalmente nos organismos expostos à concentração de 46,4 mg/L, às 48 h de exposição, na qual aproximandamente 25 % dos embriões haviam eclodido (Tabela 13)

Tabela 13 Porcentagens de eclosão para organismos expostos durante 168 h à lamotrigina.

LMT (mg/L)	48 h	72 h	96 h	120 h	144 h	168 h
0	63,3 (6,7)	98,3 (1,7)	100 (0)	-	-	-
1	86,7 (4,4)	100 (0)	-	-	-	-
2,2	86,3 (4)	100 (0)	-	-	-	-
4,6	85 (2,9)	100 (0)	-	-	-	-
10	68,3 (1,7)	96,7 (1,7)	100 (0)	-	-	-
21,5	48,3 (13,3)	95 (2,9)	100(0)	-	-	-
46,4	26,7 (19,6)	75,9 (8,9)	100 (0)	-	-	-
100	90 (2,9)	100 (0)	-	-	-	-

[&]quot;-" Não avaliado

Às 96 h de exposição, aproximadamente 20 % dos embriões expostos às concentrações a partir de 21,5 mg/L não respondiam aos estímulos mecânicos, efeito esse atenuado a partir das 144 h de exposição (Figura 50).

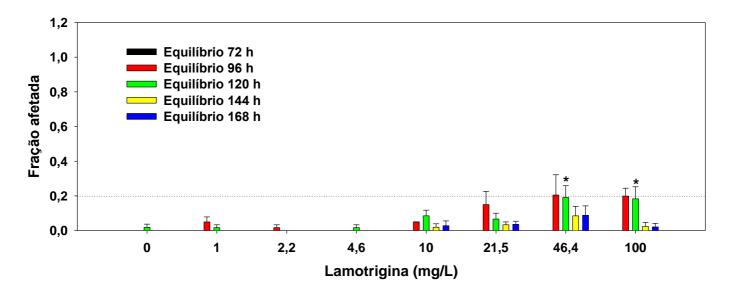


Figura 50 Efeitos da lamotrigina no equilíbrio dos embriões de peixe-zebra eclodidos ao longo de 168 h de exposição (Valores médios \pm erro padrão). Teste de Dunn's (p < 0,05).

Apêndices & anexos

No caso da lamotrigna poucas alterações no desenvolvimento foram observadas destacando-se a alteração da pigmentação nos embriões expostos à concentração de 46,4 mg/L, às 48 h de exposição (Figura 51).

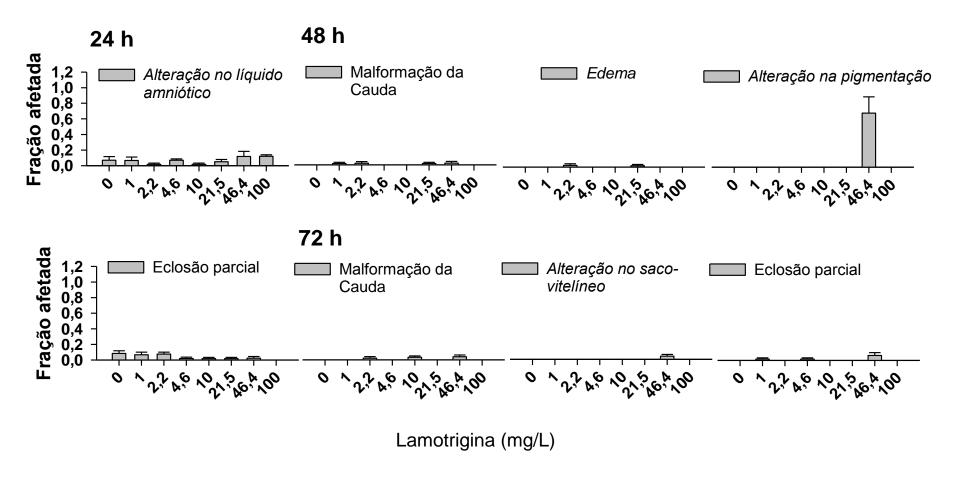
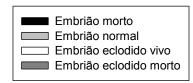
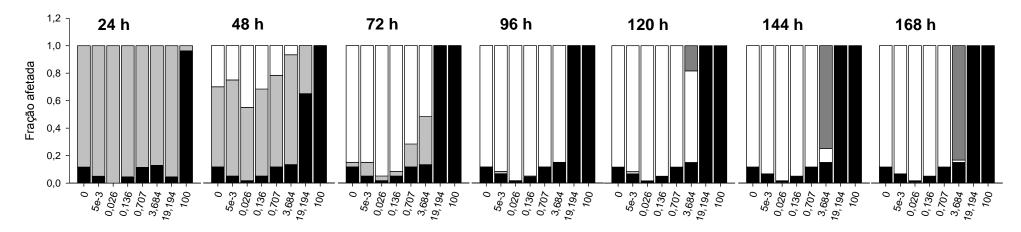




Figura 51 Alterações no desenvolvimento de embriões de peixe-zebra expostos por 168 h à lamotrigina (valores médios ± erro padrão).

1.14. Maleato de levomepromazina

Maleato de levomepromazina (mg/L)

Figura 52 Visão geral do teste de toxicidade com embriões de peixe-zebra durante as 168 h de exposição ao maleato de levomepromazina.

A CL50 é dependente da dose e do tempo de exposição diminuindo gradativamente ao longo do teste. A CL50 do maleato de levomepromazina é de 1,39 mg/L às 168 h de exposição (Figura 52 e 53).

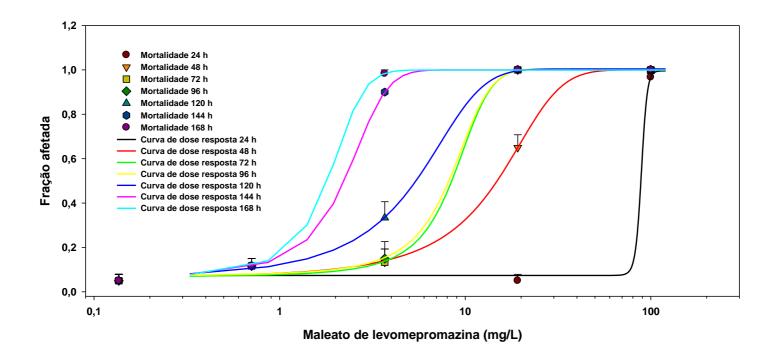


Figura 53 Mortalidade dos indivíduos expostos ao maleato de levomepromazina (valores médios \pm erro padrão) ao longo de 168 h de exposição.

A eclosão é inibida nos organismos expostos às concentrações de 3,684 e 19,194 mg/L às 48 h de exposição. Às 72 h, os organismos expostos à concentração de 19,194 mg/L morreram, enquanto os organismos expostos às concentrações de 3,684 e 0,707 mg/L continuam com o atraso na eclosão quando comparados ao controle. Às 96 h de exposição, os efeitos na eclosão já não são mais observados (Tabela 14).

Tabela 14 Porcentagens de eclosão para organismos expostos durante 168 h ao maleato de levomepromazina.

LEVO (mg/L)	48 h	72 h	96 h	120 h	144 h	168 h
0	30 (5,8)	96,3 (1,9)	100(0)	-	-	-
0,005	25 (2,9)	89,4 (3,3)	98,2 (1,8)	-	-	-
0,026	45 (5)	96,7 (3,3)	100(0)	-	-	-
0,136	31,7 (7,3)	96,5 (1,8)	100(0)	-	-	-
0,707	21,7 (3,3)	81,6 (6,6)	100(0)	-	-	-
3,68	6,7 (1,7)	59,5 (5,3)	100 (0)	-	-	-

[&]quot;-" Não avaliado

Os efeitos no equilíbrio são observados para as doses maiores que 0,707 mg/L, às 96 h de exposição, se estendendo até o final do teste (168 h) (Figura 54).

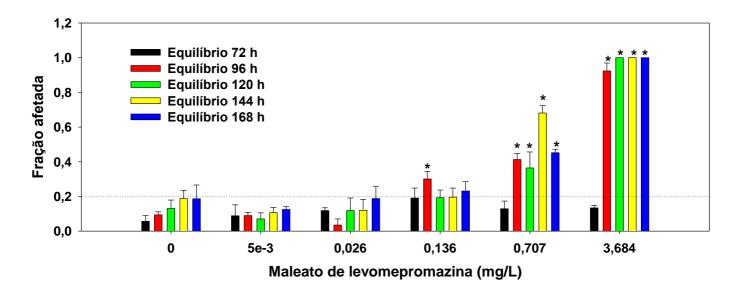
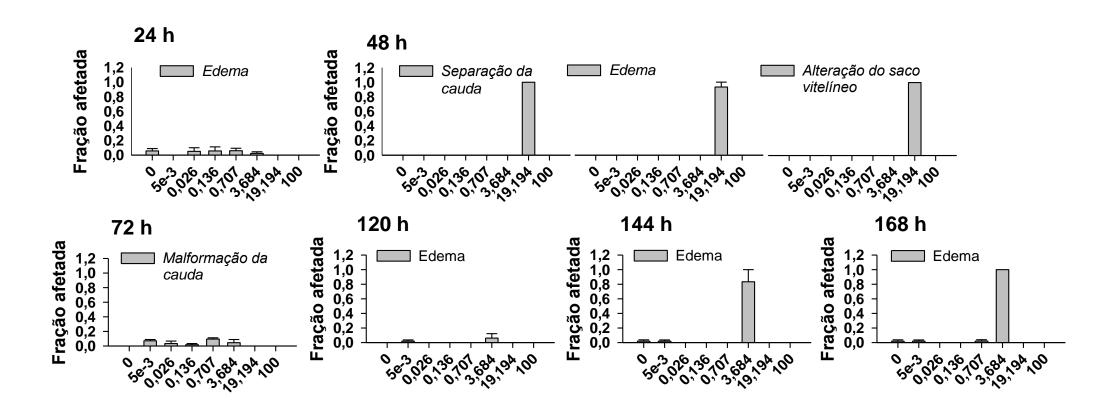
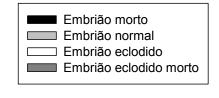



Figura 54 Efeitos do maleato de levomepromazina no equilíbrio dos embriões de peixe-zebra eclodidos ao longo de 168 h de exposição (valores médios \pm erro padrão). Teste de Dunn's (p < 0,05).

Os efeitos teratogênicos observados ao longo do teste com embriões de peixe-zebra e o maleato de levomepromazina foram os seguintes:


- Às 48 h de exposição: observou-se malformação da cauda, edemas e alteração do saco vitelíneo nos embriões expostos à concentração de 19,194 mg/L a (Figura 55).
- Às 144 h de exposição: embriões expostos à concentração de 3,684 mg/L apresentaram edemas, sendo que, no dia posterior (168 h de exposição), 100 % dos embriões expostos a essa concentração apresentaram essa anormalidade no desenvolvimento.

Maleato de levomepromazina (mg/L)

Figura 55 Alterações no desenvolvimento de embriões de peixe-zebra expostos por 168 h ao maleato de levomepromazina (valores médios \pm erro padrão).

1.15. Mirtazapina

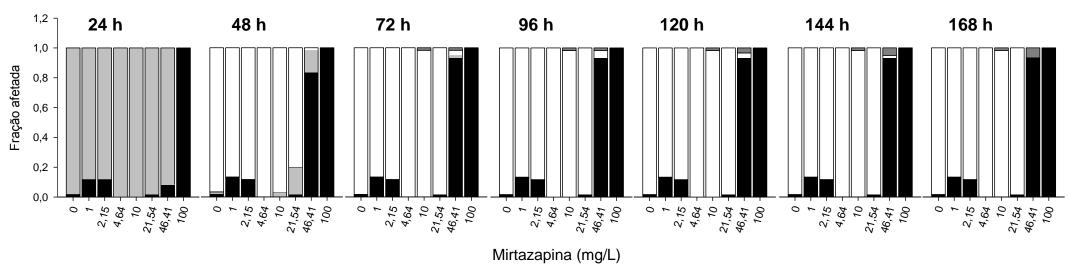


Figura 56 Visão geral do teste de toxicidade com embriões de peixe-zebra durante as 168 h de exposição à mirtazapina.

A mortalidade aumenta progressivamente com o tempo de exposição nas concentrações mais altas. A CL50 da mirtazapina é de 31,39 mg/L às 168 h de exposição (Figura 56 e 57).

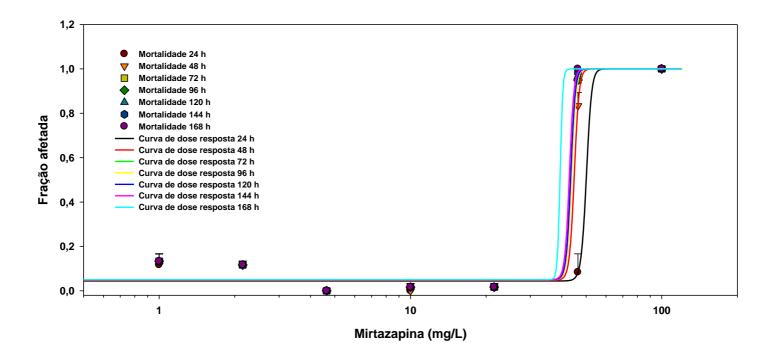


Figura 57 Mortalidade dos indivíduos expostos à mirtazapina (valores médios ± erro padrão) ao longo de 168 h de exposição.

Durante a exposição dos embriões à mirtazapina, observou-se a inibição da eclosão em aproximadamente 95 % dos organismos expostos à concentração de 46,41 mg/L, às 48 h de exposição, precedendo a morte da maioria dos embriões (> 90 %) (Tabela 15).

Tabela 15 Porcentagens de eclosão para organismos expostos durante 168 h à mirtazapina.

	<u> </u>	L		1		
MIRT (mg/L)	48 h	72 h	96 h	120 h	144 h	168 h
0	96,7 (1,7)	100(0)	-	-	-	-
1	86,7 (3,3)	100(0)	-	-	-	-
2,15	88,3 (1,7)	100(0)	-	-	-	-
4,64	100 (0)	-	-	-	-	-
10	96,7 (1,7)	100(0)	-	-	-	-
21,54	80 (10,4)	100(0)	-	-	-	-
46,41	1,7 (1,7)	66,7 (33,3)	100(0)	-	-	-

[&]quot;-" Não avaliado

A CE50 da mirtazapina está entre 21,54 e 46,41 mg/L, às 144 h de exposição, mantendo-se entre essas concentrações até o último dia de teste (168 h de exposição) (Figura 58).

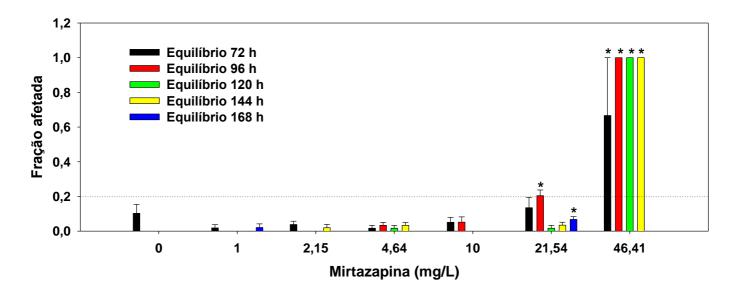


Figura 58 Efeitos da mirtazapina no equilíbrio dos embriões de peixe-zebra eclodidos ao longo de 168 h de exposição (valores médios \pm erro padrão). Teste de Dunn's (p < 0,05).

As principais alterações no desenvolvimento observadas ao longo do teste com mirtazapina foram:

- Às 48 h de exposição: observou-se edemas nos embriões expostos à concentração de 46,41 mg/L
- Às 72 h de exposição: observou-se malformações na cauda nos embriões expostos à concentração de 46,41 mg/L. Essa alteração no desenvolvimento também foi observada às 96 h e 120 h de exposição na mesma concentração, culminando assim, na morte dos organismos às 168 hde exposição (Figura 59).

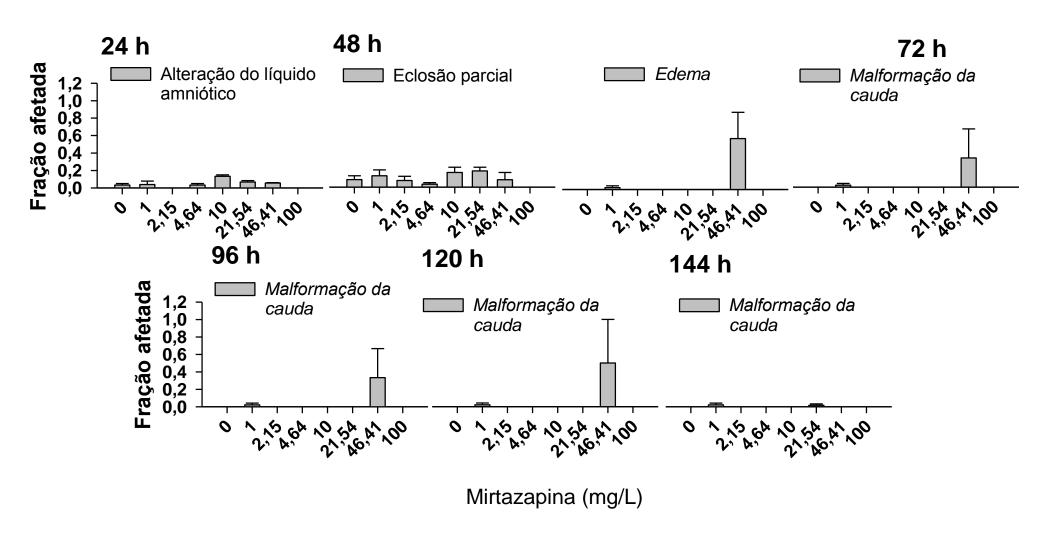
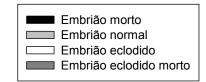



Figura 59 Alterações no desenvolvimento de embriões de peixe-zebra expostos por 168 h à mirtazapina (valores médios ± erro padrão).

1.16. Oxcarbazepina

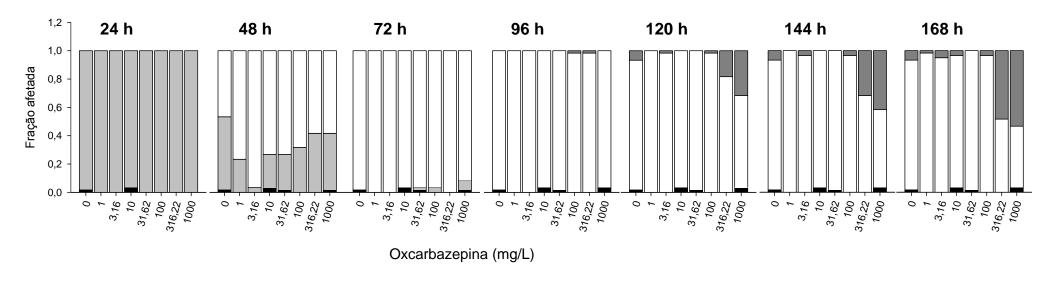
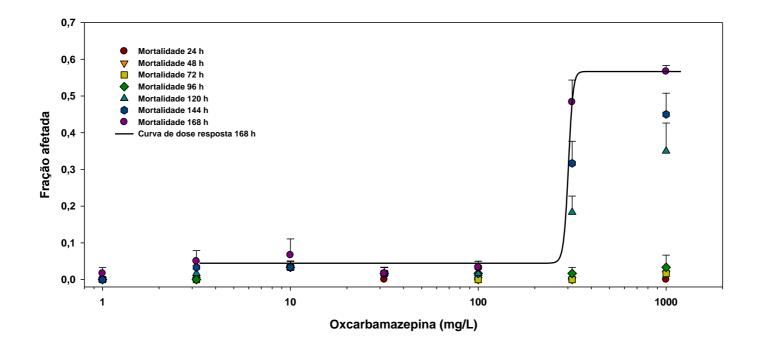



Figura 60 Visão geral do teste de toxicidade com embriões de peixe-zebra durante as 168 h de exposição à oxcarbazepina.

A CL50 é dependente do tempo e da dose, diminuindo gradativamente ao longo do teste. A CL50 da oxcarbamazepina é de 217,6 mg/L às 168 h (Figura 60 e 61).

 $Figura~61~Mortalidade~dos~indivíduos~expostos~ao~oxcarbazepina~(valores~m\'edios~\pm~erro~padr\~ao)~ao~longo~de~168~h~de~exposiç\~ao.$

Observou-se uma inibição da eclosão nos organismos expostos às concentrações a partir de 31,6 mg/L de oxcarbazepina. No dia posterior, 72 h de exposição, apenas os organismos expostos à concentração de 316,2 mg/L apresentavam níveis de eclosão similares ao grupo controle (Tabela 16).

Tabela 16 Porcentagens de eclosão para organismos expostos durante 168 h à oxcarbamazepina.

	1 0	<u> </u>				
OCBZ (mg/L)	48 h	72 h	96 h	120 h	144 h	168 h
0	46,7 (7,3)	100 (0)	-	-	-	-
1	76,7 (1,7)	100(0)	-	-	-	-
3,16	96,7 (3,3)	100 (0)	-	-	-	-
10	73,3 (6)	100 (0)	-	-	-	-
31,62	73,3 (10,9)	98,3 (1,7)	100(0)	-	-	-
100	68,3 (9,3)	96,7 (3,3)	100(0)	-	-	-
316,22	58,3 (9,3)	100 (0)	-	-	-	-
1000	58,3 (10,1)	93,1 (4,7)	100(0)	-	-	-

[&]quot;-" Não avaliado

Apêndices & anexos

A partir das 96 h de exposição observou-se efeito no equilíbrio dos embriões exposotos à oxcarbazepina. A CE50 é dependente do tempo e da dose, diminuindo gradativamente ao longo da exposição. Verificou-se às 144 h de exposição, que a CE50 da oxcarbazepina para o equilíbrio está entre 31,62 e 100 mg/L (Figura 62)

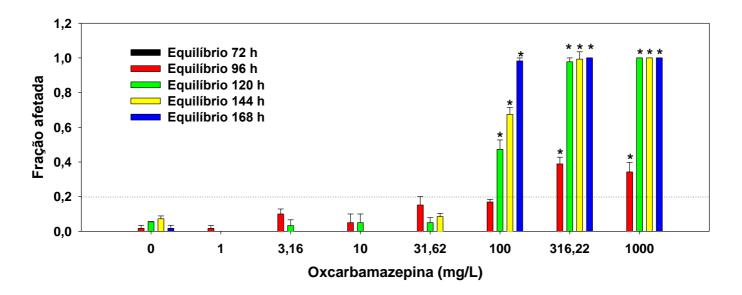


Figura 62 Efeitos da oxcarbazepina no equilíbrio dos embriões de peixe-zebra eclodidos ao longo de 168 h de exposição (valores médios \pm erro padrão). Teste de Dunn's (p < 0,05).

As alterações no desenvolvimento passam a ser observadas após a eclosão, nomeadamente malformações da cauda a partir da concentração de 100 mg/L – 144 h, e 168 h de exposição (Figura 63).

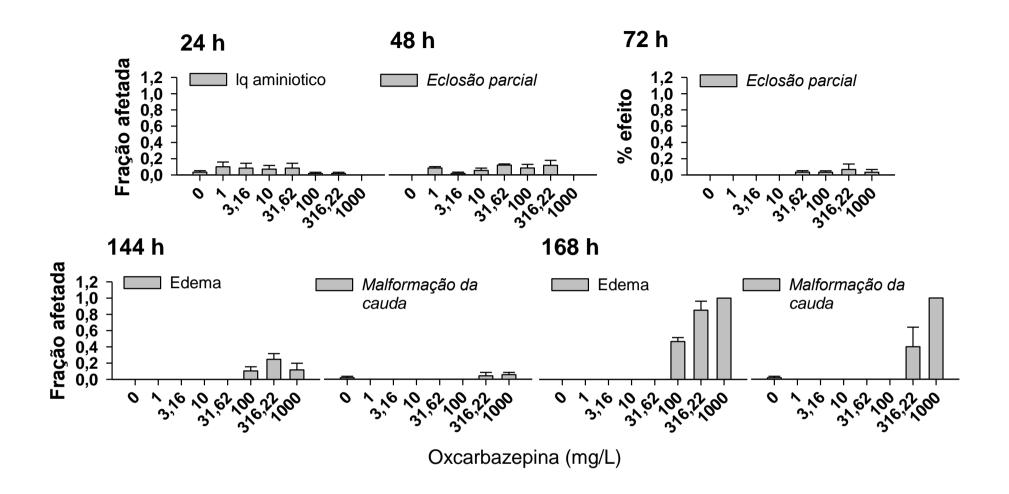


Figura 63 Alterações no desenvolvimento de embriões de peixe-zebra expostos por 168 h à oxcarbazepina (valores médios ± erro padrão).

2. Apêndice. Tabela suplementar

Fármacos	Nível Trófico	Espécies	Meio	Tempo	Efeito medido	Parâmetro	Tendêcia	Valor	Unidade	Fonte	Ano
Amitriptilina CAS: 50486;	Produtor	Lemna minor	Água doce	7	Taxa de crescimento populacional	EC50	Diminuição	1690	ug/L	Fresenius Environ.	2007
549188	Consumidor primario	Artemia salina	Água Salgada	1	Mortalidade	LC50	Aumento	133	umol/L	Arch. Environ. Contam. Toxicol.26(1): 69- 78	1994
		Streptocephalus proboscideus	Água doce	1	Mortalidade	LC50	Aumento	2,8	umol/L	Arch. Environ. Contam. Toxicol.26(1): 69- 78	1994
		Daphnia magna	Água doce	1	Imobilidade	EC50	Aumento	20	umol/L	Arch. Environ. Contam. Toxicol.26(1): 69-78	1994
		Daphnia magna	Água doce	1	Imobilidade	EC50	Aumento	0,00415	mM	Aquat. Toxicol.30:47-60	1994
		Daphnia pulex	Água doce	1	Imobilidade	EC50	Aumento	0,00373	mM	Environ. Toxicol. Chem.14(12): 2085- 2088	1995

Fármacos	Nível Trófico	Egnésies	Meio	Towns	Efeito medido	Parâmetro	Tendêcia	Valor	Unidade	Fonte	Ano
Farmacos	Niver 1 rollco	Espécies	Meio	Tempo	Eleito medido	Parametro	1 endecia	vaior	Unidade	ronte	Ano
		Brachionus calyciflorus	Água doce	1	Mortalidade	LC50	Aumento	2,9	umol/L	Arch. Environ. Contam. Toxicol.26(1): 69- 78	1994
		Artemia salina	Água Salgada	1	Mortalidade	LC50	Aumento	133	umol/L	ATLA Altern. Lab. Anim.20:396-405	1992
		Streptocephalus proboscideus	Água doce	1	Mortalidade	LC50	Aumento	2,8	umol/L	ATLA Altern. Lab. Anim.20:396-405	1992
		Spirostomum ambiguum	Água doce	1	Deformação	EC50	Aumento	810	ug/L	Fresenius Environ. Bull.14(10): 873- 877	2005
		Spirostomum ambiguum	Água doce	1	Deformação	EC50	Aumento	870	ug/L	Fresenius Environ. Bull.14(10): 873- 877	2005
		Spirostomum ambiguum	Água doce	2	Deformação	EC50	Aumento	410	ug/L	Fresenius Environ. Bull.14(10): 873- 877	2005
		Spirostomum ambiguum	Água doce	2	Deformação	EC50	Aumento	430	ug/L	Fresenius Environ. Bull.14(10): 873- 877	2005
		Tetrahymena thermophila	Água doce	1	Taxa de crescimento populacional	EC50	Diminuição	40000	ug/L	Fresenius Environ. Bull.14(10): 873- 877	2005
		Tetrahymena	Água	1	Taxa de	EC50	Diminuição	43700	ug/L	Fresenius Environ.	2005

Fármacos	Nível Trófico	Espécies	Meio	Tempo	Efeito medido	Parâmetro	Tendêcia	Valor	Unidade	Fonte	Ano
		thermophila	doce	*	crescimento populacional					Bull.14(10): 873- 877	
		Spirostomum ambiguum	Água doce	1	Mortalidade	LC50	Aumento	1580	ug/L	Fresenius Environ. Bull.14(10): 873- 877	2005
		Spirostomum ambiguum	Água doce	1	Mortalidade	LC50	Aumento	1620	ug/L	Fresenius Environ. Bull.14(10): 873- 877	2005
		Spirostomum ambiguum	Água doce	2	Mortalidade	LC50	Aumento	850	ug/L	Fresenius Environ. Bull.14(10): 873- 877	2005
		Spirostomum ambiguum	Água doce	2	Mortalidade	LC50	Aumento	880	ug/L	Fresenius Environ. Bull.14(10): 873- 877	2005
		Brachionus calyciflorus	Água doce	1	Mortalidade	LC50	Aumento	2,9	umol/L	ATLA Altern. Lab. Anim.20:396-405	1992
		Brachionus plicatilis	Água Salgada	1	Mortalidade	LC50	Aumento	18,2	umol/L	ATLA Altern. Lab. Anim.20:396-405	1992
	Consumidor secundario	-	-	-	-	-	-	-	-	-	-
	Decompositores	Geotrichum candidum	Água	4h	Captação de	IC50	Diminuição	0,36	mM	Toxicol. In	1995

Tabela 17 Revisão de literatura para os efeitos ecotoxicológicos de fármacos psiquiátricos em organismos aquáticos.

Fármacos	Nível Trófico	Espécies	Meio	Тетро	Efeito medido	Parâmetro	Tendêcia	Valor	Unidade	Fonte	Ano
			doce		glicose					Vitro9(2): 169-173	
Amobarbital CAS: 57432	Produtor primário	Scenedesmus subspicatus	Água doce	1h18min	Fotossíntese	NOEC	Sem efeito	250000	ug/L	Environ. Sci. Pollut. Res.13(3): 192-203	2006
	Consumidor primario	-	-	-	-	-	-	-	-	-	-
	Consumidor secundario	Pimephales promelas	Água doce	4	Mortalidade	LC50	-	85400	ug/L	Center for Lake Superior Environmental Studies, University of Wisconsin, Superior, WI4:355 p.	1988
	Decomposers	-	-	-	-	-	-	-	-	-	-
Bromocriptina CAS: 25614033	Produtor primário	-	-	-	-	-	-	-	-	-	-

Fármacos	Nível Trófico	Espécies	Meio	Tempo	Efeito medido	Parâmetro	Tendêcia	Valor	Unidade	Fonte	Ano
	Consumidor primario	-	-	-	-	-	-	-	-	-	-
	Consumidor secundario	Carassius auratus	Água doce	6h	Gonadotropina	NOEC	Diminuição	20	mg/kg bdwt	Gen. Comp. Endocrinol.55(3): 351-360	1984
		Carassius auratus	Água doce	12h	Gonadotropina	NOEC	Aumento	20	mg/kg bdwt	Gen. Comp. Endocrinol.55(3): 351-360	1984
		Carassius auratus	Água doce	1	Gonadotropina	NOEC	Diminuição	20	mg/kg bdwt	Gen. Comp. Endocrinol.55(3): 351-360	1984
	Decomposers	-	-	-	-	-	-	-	-	-	-
Bupropiona CAS: 31677937		-	-	-	-	-	-	-	-	-	-
	Consumidor primario	-	-	-	-	-	-	-	-	-	-

Fármacos	Nível Trófico	Espécies	Meio	Tempo	Efeito medido	Parâmetro	Tendêcia	Valor	Unidade	Fonte	Ano
Farmacos	Nivel Holico	Especies	Meio	тешро	Eleito illedido	rarameno	Tenuecia	v alui	Ullidade	ronte	Allo
	Consumidor secundario	Pimephales promelas	Água doce	21	Razão do peso do órgão vs corpo	NOEC	Diminuição	0,057	ug/L	Aquat. Toxicol.104(1/2): 38-47	2011
		Pimephales promelas	Água doce	21	Razão do peso do órgão vs corpo	NOEC	Diminuição	0,057	ug/L	Aquat. Toxicol.104(1/2): 38-47	2011
		Pimephales promelas	Água doce	21	Número de células	NOEC	-	0,057	ug/L	Aquat. Toxicol.104(1/2): 38-47	2011
		Pimephales promelas	Água doce	21	Vacuolização	NOEC	-	0,057	ug/L	Aquat. Toxicol.104(1/2): 38-47	2011
		Pimephales promelas	Água doce	21	Sobrevivência	NOEC	Diminuição	0,057	ug/L	Aquat. Toxicol.104(1/2): 38-47	2011
		Pimephales promelas	Água doce	21	Desenvolvimen to sexual	NOEC	Diminuição	0,057	ug/L	Aquat. Toxicol.104(1/2): 38-47	2011
		Pimephales promelas	Água doce	21	Indice de condição	NOEC	Diminuição	0,057	ug/L	Aquat. Toxicol.104(1/2): 38-47	2011
		Pimephales promelas	Água doce	21	Vitelogenina	NOEC	Diminuição	0,057	ug/L	Aquat. Toxicol.104(1/2): 38-47	2011

Fármacos	Nível Trófico	Espécies	Meio	Tempo	Efeito medido	Parâmetro	Tendêcia	Valor	Unidade	Fonte	Ano
		Pimephales promelas	Água doce	21	Número de células	NOEC	Aumento	0,057	ug/L	Aquat. Toxicol.104(1/2): 38-47	2011
		Pimephales promelas	Água doce	21	Número de espermatozóide s	NOEC	-	0,057	ug/L	Aquat. Toxicol.104(1/2): 38-47	2011
		Pimephales promelas	Água doce	21	Espermatogôni a	NOEC	-	0,057	ug/L	Aquat. Toxicol.104(1/2): 38-47	2011
		Pimephales promelas	Água doce	12	Movimento	NOEC	Diminuição	2	ug/L	Environ. Toxicol. Chem.28(12): 2677- 2684	2009
		Pimephales promelas	Água doce	12	Movimento	NOEC	Diminuição	2	ug/L	Environ. Toxicol. Chem.28(12): 2677- 2684	2009
		Pimephales promelas	Água doce	12	Movimento	NOEC	Aumento	2	ug/L	Environ. Toxicol. Chem.28(12): 2677- 2684	2009
		Pimephales promelas	Água doce	12	Comprimento	NOEC	Aumento	2	ug/L	Environ. Toxicol. Chem.28(12): 2677- 2684	2009
	Decomposers	-	-	-	-	-	-	-	-	-	_

Tabela 17 Revisão de literatura para os efeitos ecotoxicológicos de fármacos psiquiátricos em organismos aquáticos.

Fármacos	Nível Trófico	Espécies	Meio	Tempo	Efeito medido	Parâmetro	Tendêcia	Valor	Unidade	Fonte	Ano
Carbamazepin a	Produtor primário	Clorofilarella pyrenoidosa	Água doce	1	Taxa de crescimento populacional	EC50	Diminuição	1339430	ug/L	Environ. Toxicol. Pharmacol.33(2): 344-352	2012
CAS: 298464		Clorofilarella pyrenoidosa	Água doce	10	Taxa de crescimento populacional	EC50	Diminuição	66000	ug/L	Environ. Toxicol. Pharmacol.33(2): 344-352	2012
		Clorofilarella pyrenoidosa	Água doce	15	Taxa de crescimento populacional	EC50	Diminuição	10140	ug/L	Environ. Toxicol. Pharmacol.33(2): 344-352	2012
		Clorofilarella pyrenoidosa	Água doce	2	Taxa de crescimento populacional	EC50	Diminuição	239840	ug/L	Environ. Toxicol. Pharmacol.33(2): 344-352	2012
		Clorofilarella pyrenoidosa	Água doce	20	Taxa de crescimento populacional	EC50	Diminuição	9050	ug/L	Environ. Toxicol. Pharmacol.33(2): 344-352	2012
		Clorofilarella pyrenoidosa	Água doce	3	Taxa de crescimento populacional	EC50	Diminuição	167330	ug/L	Environ. Toxicol. Pharmacol.33(2): 344-352	2012
		Clorofilarella pyrenoidosa	Água doce	30	Taxa de crescimento populacional	EC50	Diminuição	7000	ug/L	Environ. Toxicol. Pharmacol.33(2): 344-352	2012
		Clorofilarella pyrenoidosa	Água doce	4	Taxa de crescimento	EC50	Diminuição	49400	ug/L	Environ. Toxicol. Pharmacol.33(2):	2012

Fármacos	Nível Trófico	Espécies	Meio	Tempo	Efeito medido	Parâmetro	Tendêcia	Valor	Unidade	Fonte	Ano
1 di macos	Triver Troneo	Lispecies	IVICIO	Tempo	populacional	Turumetro	Tenacea	V aloi	Cindade	344-352	7110
		Clausfilausila	Áana		Taxa de					Environ. Toxicol.	
		Clorofilarella pyrenoidosa	Água doce	5	crescimento populacional	EC50	Diminuição	565570	ug/L	Pharmacol.33(2): 344-352	2012
		Class Class II a	á		Taxa de					Environ. Toxicol.	
		Clorofilarella pyrenoidosa	Água doce	6	crescimento populacional	EC50	Diminuição	33110	ug/L	Pharmacol.33(2): 344-352	2012
		Desmodesmus subspicatus	Água doce	3	Taxa de crescimento populacional	EC50	Diminuição	74000	ug/L	Toxicol. Lett.142:185-194	2003
		•			1 1		3		C	Arch. Environ.	
			í							Contam.	
		Dunaliella tertiolecta	Água doce	4	Abundância	EC50	Diminuição	80000	ug/L	Toxicol.54(2): 203- 210	2008
		Scenedesmus acutus var. acutus	Água doce	1	Taxa de crescimento populacional	EC50	Diminuição	200820	ug/L	Environ. Toxicol. Pharmacol.33(2): 344-352	2012
		Scenedesmus acutus var. acutus	Água doce	10	Taxa de crescimento populacional	EC50	Diminuição	49250	ug/L	Environ. Toxicol. Pharmacol.33(2): 344-352	2012
					Taxa de					Environ. Toxicol.	
		Scenedesmus acutus var. acutus	Água doce	15	crescimento populacional	EC50	Diminuição	8850	ug/L	Pharmacol.33(2): 344-352	2012
		Scenedesmus acutus var.	Água	2	Taxa de	EC50	Diminuição	72970	ug/L	Environ. Toxicol.	2012

Tabela 17 Revisão de literatura para os efeitos ecotoxicológicos de fármacos psiquiátricos em organismos aquáticos.

							-				
Fármacos	Nível Trófico	Espécies	Meio	Tempo	Efeito medido	Parâmetro	Tendêcia	Valor	Unidade	Fonte	Ano
		acutus	doce		crescimento					Pharmacol.33(2):	
					populacional					344-352	
					Taxa de					Environ. Toxicol.	
		Scenedesmus acutus var.	Água		crescimento					Pharmacol.33(2):	
		acutus	doce	20	populacional	EC50	Diminuição	6890	ug/L	344-352	2012
		G 1	.		Taxa de					Environ. Toxicol.	
		Scenedesmus acutus var.	Água	3	crescimento	EC50	Diminuição	90120	,,,,,/I	Pharmacol.33(2):	2012
		acutus	doce	3	populacional	EC50	Diminuição	89120	ug/L	344-352	2012
					Taxa de					Environ. Toxicol.	
		Scenedesmus acutus var.	Água		crescimento					Pharmacol.33(2):	
		acutus	doce	30	populacional	EC50	Diminuição	800	ug/L	344-352	2012
					r - r		. 3				
					Taxa de					Environ. Toxicol.	
		Scenedesmus acutus var.	Água		crescimento					Pharmacol.33(2):	
		acutus	doce	4	populacional	EC50	Diminuição	70100	ug/L	344-352	2012
		g .	í		Taxa de					Environ. Toxicol.	
		Scenedesmus acutus var.	Água	_	crescimento	ECEO	D:::-~-	90220	/T	Pharmacol.33(2): 344-352	2012
		acutus	doce	5	populacional	EC50	Diminuição	89220	ug/L	344-332	2012
					Taxa de					Environ. Toxicol.	
		Scenedesmus acutus var.	Água		crescimento					Pharmacol.33(2):	
		acutus	doce	6	populacional	EC50	Diminuição	54600	ug/L	344-352	2012
					1 1		3		υ		
					Taxa de					Environ. Toxicol.	
		Clorofilarella	Água		crescimento					Pharmacol.33(2):	
		pyrenoidosa	doce	1	populacional	LOEC	Diminuição	2000	ug/L	344-352	2012
			,								
		Clorofilarella	Água		Taxa de	LODG	5	5 000	~	Environ. Toxicol.	2012
		pyrenoidosa	doce	10	crescimento	LOEC	Diminuição	5000	ug/L	Pharmacol.33(2):	2012

		•				•		•			
Fármacos	Nível Trófico	Espécies	Meio	Tempo	Efeito medido	Parâmetro	Tendêcia	Valor	Unidade	Fonte	Ano
					populacional					344-352	
		Clorofilarella pyrenoidosa	Água doce	15	Taxa de crescimento populacional	LOEC	Diminuição	5000	ug/L	Environ. Toxicol. Pharmacol.33(2): 344-352	2012
		Clorofilarella pyrenoidosa	Água doce	2	Taxa de crescimento populacional	LOEC	Diminuição	2000	ug/L	Environ. Toxicol. Pharmacol.33(2): 344-352	2012
		Clorofilarella pyrenoidosa	Água doce	20	Taxa de crescimento populacional	LOEC	Diminuição	5000	ug/L	Environ. Toxicol. Pharmacol.33(2): 344-352	2012
		Clorofilarella pyrenoidosa	Água doce	3	Taxa de crescimento populacional	LOEC	Diminuição	2000	ug/L	Environ. Toxicol. Pharmacol.33(2): 344-352	2012
		Clorofilarella pyrenoidosa	Água doce	30	Taxa de crescimento populacional	LOEC	Diminuição	5000	ug/L	Environ. Toxicol. Pharmacol.33(2): 344-352	2012
		Clorofilarella pyrenoidosa	Água doce	4	Taxa de crescimento populacional	LOEC	Diminuição	1000	ug/L	Environ. Toxicol. Pharmacol.33(2): 344-352	2012
		Clorofilarella pyrenoidosa	Água doce	5	Taxa de crescimento populacional	LOEC	Diminuição	5000	ug/L	Environ. Toxicol. Pharmacol.33(2): 344-352	2012
		Clorofilarella pyrenoidosa	Água doce	6	Taxa de crescimento	LOEC	Diminuição	1000	ug/L	Environ. Toxicol. Pharmacol.33(2):	2012

		•			•	•		•			
Fármacos	Nível Trófico	Espécies	Meio	Tempo	Efeito medido	Parâmetro	Tendêcia	Valor	Unidade	Fonte	Ano
					populacional					344-352	
		Clorofilarella pyrenoidosa	Água doce	1	Concentração de clorofila A	LOEC	Diminuição	10000	ug/L	Environ. Toxicol. Pharmacol.33(2): 344-352	2012
		Clorofilarella pyrenoidosa	Água doce	10	Concentração de clorofila A	LOEC	Diminuição	1000	ug/L	Environ. Toxicol. Pharmacol.33(2): 344-352	2012
		Clorofilarella pyrenoidosa	Água doce	15	Concentração de clorofila A	LOEC	Diminuição	1000	ug/L	Environ. Toxicol. Pharmacol.33(2): 344-352	2012
		Clorofilarella pyrenoidosa	Água doce	15	Catalase	LOEC	Aumento	10000	ug/L	Environ. Toxicol. Pharmacol.33(2): 344-352	2012
		Clorofilarella pyrenoidosa	Água doce	2	Concentração de clorofila A	LOEC	Diminuição	5000	ug/L	Environ. Toxicol. Pharmacol.33(2): 344-352	2012
		Clorofilarella pyrenoidosa	Água doce	20	Concentração de clorofila A	LOEC	Diminuição	1000	ug/L	Environ. Toxicol. Pharmacol.33(2): 344-352	2012
		Clorofilarella pyrenoidosa	Água doce	3	Concentração de clorofila A	LOEC	Diminuição	2000	ug/L	Environ. Toxicol. Pharmacol.33(2): 344-352	2012
		Clorofilarella pyrenoidosa	Água doce	30	Concentração de clorofila A	LOEC	Diminuição	1000	ug/L	Environ. Toxicol. Pharmacol.33(2):	2012

Tabela 17 Revisão de literatura para os efeitos ecotoxicológicos de fármacos psiquiátricos em organismos aquáticos.

		•			•	•					
Fármacos	Nível Trófico	Espécies	Meio	Tempo	Efeito medido	Parâmetro	Tendêcia	Valor	Unidade	Fonte	Ano
				F						344-352	
		Clorofilarella pyrenoidosa	Água doce	30	Superoxido dismutase	LOEC	Aumento	1000	ug/L	Environ. Toxicol. Pharmacol.33(2): 344-352	2012
		Clorofilarella pyrenoidosa	Água doce	4	Concentração de clorofila A		Diminuição	2000	ug/L	Environ. Toxicol. Pharmacol.33(2): 344-352	2012
		Clorofilarella pyrenoidosa	Água doce	4	Superoxido dismutase	LOEC	Aumento	500	ug/L	Environ. Toxicol. Pharmacol.33(2): 344-352	2012
		Clorofilarella pyrenoidosa	Água doce	5	Concentração de clorofila A	LOEC	Diminuição	1000	ug/L	Environ. Toxicol. Pharmacol.33(2): 344-352	2012
		Clorofilarella pyrenoidosa	Água doce	5	Catalase	LOEC	Aumento	5000	ug/L	Environ. Toxicol. Pharmacol.33(2): 344-352	2012
		Clorofilarella pyrenoidosa	Água doce	5	Superoxido dismutase	LOEC	Aumento	1000	ug/L	Environ. Toxicol. Pharmacol.33(2): 344-352	2012
		Clorofilarella pyrenoidosa	Água doce	6	Concentração de clorofila A	LOEC	Diminuição	2000	ug/L	Environ. Toxicol. Pharmacol.33(2): 344-352	2012
		Dunaliella tertiolecta	Água doce	4	Abundância	LOEC	Diminuição	400000	ug/L	Arch. Environ. Contam. Toxicol.54(2): 203-	2008

Fármacos	Nível Trófico	Egnásica	Meio	Tompo	Efeito medido	Parâmetro	Tendêcia	Valor	Unidade	Fonte	Ano
rarmacos	Niver Fronco	Espécies	Meio	Tempo	Eleito medido	Parametro	Tendecia	v aior	Umuaue	210	Allo
		Monera	Água doce	56	Biomassa	LOEC	Diminuição	10	ug/L	Can. J. Microbiol.51(8): 655-669	2005
		Scenedesmus acutus var. acutus	Água doce	1	Taxa de crescimento populacional	LOEC	Diminuição	2000	ug/L	Environ. Toxicol. Pharmacol.33(2): 344-352	2012
		Scenedesmus acutus var. acutus	Água doce	10	Taxa de crescimento populacional	LOEC	Diminuição	5000	ug/L	Environ. Toxicol. Pharmacol.33(2): 344-352	2012
		Scenedesmus acutus var. acutus	Água doce	15	Taxa de crescimento populacional	LOEC	Diminuição	5000	ug/L	Environ. Toxicol. Pharmacol.33(2): 344-352	2012
		Scenedesmus acutus var. acutus	Água doce	2	Taxa de crescimento populacional	LOEC	Diminuição	2000	ug/L	Environ. Toxicol. Pharmacol.33(2): 344-352	2012
		Scenedesmus acutus var. acutus	Água doce	20	Taxa de crescimento populacional	LOEC	Diminuição	1000	ug/L	Environ. Toxicol. Pharmacol.33(2): 344-352	2012
		Scenedesmus acutus var. acutus	Água doce	3	Taxa de crescimento populacional	LOEC	Diminuição	1000	ug/L	Environ. Toxicol. Pharmacol.33(2): 344-352	2012
		Scenedesmus acutus var. acutus	Água doce	30	Taxa de crescimento populacional	LOEC	Diminuição	1000	ug/L	Environ. Toxicol. Pharmacol.33(2): 344-352	2012

Fármacos	Nível Trófico	Espécies	Meio	Тетро	Efeito medido	Parâmetro	Tendêcia	Valor	Unidade	Fonte	Ano
		Scenedesmus acutus var. acutus	Água doce	4	Taxa de crescimento populacional	LOEC	Diminuição	1000	ug/L	Environ. Toxicol. Pharmacol.33(2): 344-352	2012
		Scenedesmus acutus var. acutus	Água doce	5	Taxa de crescimento populacional	LOEC	Diminuição	5000	ug/L	Environ. Toxicol. Pharmacol.33(2): 344-352	2012
		Scenedesmus acutus var. acutus	Água doce	6	Taxa de crescimento populacional	LOEC	Diminuição	1000	ug/L	Environ. Toxicol. Pharmacol.33(2): 344-352	2012
		Scenedesmus acutus var. acutus	Água doce	1	Concentração de clorofila A	LOEC	Diminuição	2000	ug/L	Environ. Toxicol. Pharmacol.33(2): 344-352	2012
		Scenedesmus acutus var. acutus	Água doce	10	Concentração de clorofila A	LOEC	Diminuição	1000	ug/L	Environ. Toxicol. Pharmacol.33(2): 344-352	2012
		Scenedesmus acutus var. acutus	Água doce	15	Concentração de clorofila A	LOEC	Diminuição	1000	ug/L	Environ. Toxicol. Pharmacol.33(2): 344-352	2012
		Scenedesmus acutus var. acutus	Água doce	15	Catalase	LOEC	Aumento	1000	ug/L	Environ. Toxicol. Pharmacol.33(2): 344-352	2012
		Scenedesmus acutus var. acutus	Água doce	15	Superoxido dismutase	LOEC	Aumento	1000	ug/L	Environ. Toxicol. Pharmacol.33(2): 344-352	2012

		•			*	•					
Fármacos	Nível Trófico	Espécies	Meio	Tempo	Efeito medido	Parâmetro	Tendêcia	Valor	Unidade	Fonte	Ano
		Scenedesmus acutus var. acutus	Água doce	2	Concentração de clorofila A	LOEC	Diminuição	2000	ug/L	Environ. Toxicol. Pharmacol.33(2): 344-352	2012
		Scenedesmus acutus var. acutus	Água doce	20	Concentração de clorofila A	LOEC	Diminuição	1000	ug/L	Environ. Toxicol. Pharmacol.33(2): 344-352	2012
		Scenedesmus acutus var. acutus	Água doce	3	Concentração de clorofila A	LOEC	Diminuição	2000	ug/L	Environ. Toxicol. Pharmacol.33(2): 344-352	2012
		Scenedesmus acutus var. acutus	Água doce	30	Concentração de clorofila A	LOEC	Diminuição	1000	ug/L	Environ. Toxicol. Pharmacol.33(2): 344-352	2012
		Scenedesmus acutus var. acutus	Água doce	30	Superoxido dismutase	LOEC	Aumento	5000	ug/L	Environ. Toxicol. Pharmacol.33(2): 344-352	2012
		Scenedesmus acutus var. acutus	Água doce	4	Concentração de clorofila A	LOEC	Diminuição	2000	ug/L	Environ. Toxicol. Pharmacol.33(2): 344-352	2012
		Scenedesmus acutus var. acutus	Água doce	4	Catalase	LOEC	Aumento	500	ug/L	Environ. Toxicol. Pharmacol.33(2): 344-352	2012
		Scenedesmus acutus var. acutus	Água doce	5	Concentração de clorofila A	LOEC	Diminuição	1000	ug/L	Environ. Toxicol. Pharmacol.33(2): 344-352	2012

Fármacos	Nível Trófico	Espécies	Meio	Tempo	Efeito medido	Parâmetro	Tendêcia	Valor	Unidade	Fonte	Ano
		Scenedesmus acutus var. acutus	Água doce	5	Catalase	LOEC	Aumento	1000	ug/L	Environ. Toxicol. Pharmacol.33(2): 344-352	2012
		Scenedesmus acutus var. acutus	Água doce	5	Superoxido dismutase	LOEC	Aumento	5000	ug/L	Environ. Toxicol. Pharmacol.33(2): 344-352	2012
		Scenedesmus acutus var. acutus	Água doce	6	Concentração de clorofila A	LOEC	Diminuição	1000	ug/L	Environ. Toxicol. Pharmacol.33(2): 344-352	2012
		Algae	Água doce	56	Biomassa	NOEC	Aumento	10	ug/L	Can. J. Microbiol.51(8): 655-669	2005
		Clorofilarella pyrenoidosa	Água doce	1	Taxa de crescimento populacional	NOEC	Diminuição	1000	ug/L	Environ. Toxicol. Pharmacol.33(2): 344-352	2012
		Clorofilarella pyrenoidosa	Água doce	10	Taxa de crescimento populacional	NOEC	Diminuição	1000	ug/L	Environ. Toxicol. Pharmacol.33(2): 344-352	2012
		Clorofilarella pyrenoidosa	Água doce	15	Taxa de crescimento populacional	NOEC	Aumento	1000	ug/L	Environ. Toxicol. Pharmacol.33(2): 344-352	2012
					Taxa de					Environ. Toxicol.	
		Clorofilarella pyrenoidosa	Água doce	2	crescimento	NOEC	Diminuição	1000	ug/L	Pharmacol.33(2): 344-352	2012

Tabela 17 Revisão de literatura para os efeitos ecotoxicológicos de fármacos psiquiátricos em organismos aquáticos.

Fármacos	Nível Trófico	Espécies	Meio	Tempo	Efeito medido	Parâmetro	Tendêcia	Valor	Unidade	Fonte	Ano
	1111011101	Lispecies	1/1010		populacional	<u> </u>	101100010	, 4202		1 01100	1110
		Clorofilarella pyrenoidosa	Água doce	20	Taxa de crescimento populacional	NOEC	Aumento	1000	ug/L	Environ. Toxicol. Pharmacol.33(2): 344-352	2012
		Clorofilarella pyrenoidosa	Água doce	3	Taxa de crescimento populacional	NOEC	Diminuição	1000	ug/L	Environ. Toxicol. Pharmacol.33(2): 344-352	2012
		Clorofilarella pyrenoidosa	Água doce	30	Taxa de crescimento populacional	NOEC	Aumento	1000	ug/L	Environ. Toxicol. Pharmacol.33(2): 344-352	2012
		Clorofilarella pyrenoidosa	Água doce	4	Taxa de crescimento populacional	NOEC	Diminuição	500	ug/L	Environ. Toxicol. Pharmacol.33(2): 344-352	2012
		Clorofilarella pyrenoidosa	Água doce	5	Taxa de crescimento populacional	NOEC	Diminuição	1000	ug/L	Environ. Toxicol. Pharmacol.33(2): 344-352	2012
		Clorofilarella pyrenoidosa	Água doce	6	Taxa de crescimento populacional	NOEC	Diminuição	500	ug/L	Environ. Toxicol. Pharmacol.33(2): 344-352	2012
		Clorofilarella pyrenoidosa	Água doce	1	Concentração de clorofila A	NOEC	Diminuição	5000	ug/L	Environ. Toxicol. Pharmacol.33(2): 344-352	2012
		Clorofilarella	Água	15	Catalase	NOEC	Aumento	5000	ug/L	Environ. Toxicol.	2012

TI.	NT/ 1/D /@	TD / 1	35.	TD.	T6 '4 1'1	D ^ 4	7F 1^ •	*** 1	*****	P. 4	
Fármacos	Nível Trófico	Espécies pyrenoidosa	Meio doce	Tempo	Efeito medido	Parâmetro	Tendêcia	Valor	Unidade	Pharmacol.33(2): 344-352	Ano
		Clorofilarella pyrenoidosa	Água doce	2	Concentração de clorofila A	NOEC	Diminuição	2000	ug/L	Environ. Toxicol. Pharmacol.33(2): 344-352	2012
		Clorofilarella pyrenoidosa	Água doce	3	Concentração de clorofila A	NOEC	Diminuição	1000	ug/L	Environ. Toxicol. Pharmacol.33(2): 344-352	2012
		Clorofilarella pyrenoidosa	Água doce	4	Concentração de clorofila A	NOEC	Diminuição	1000	ug/L	Environ. Toxicol. Pharmacol.33(2): 344-352	2012
		Clorofilarella pyrenoidosa	Água doce	5	Catalase	NOEC	Aumento	1000	ug/L	Environ. Toxicol. Pharmacol.33(2): 344-352	2012
		Clorofilarella pyrenoidosa	Água doce	6	Concentração de clorofila A	NOEC	Diminuição	1000	ug/L	Environ. Toxicol. Pharmacol.33(2): 344-352	2012
		Dunaliella tertiolecta	Água doce	4	Abundância	NOEC	Diminuição	200000	ug/L	Arch. Environ. Contam. Toxicol.54(2): 203- 210	2008
		Scenedesmus acutus var.	Água doce		Taxa de crescimento populacional	NOEC	Diminuição	1000	ug/L	Environ. Toxicol. Pharmacol.33(2): 344-352	2012
		Scenedesmus acutus var.	Água	10	Taxa de	NOEC	Diminuição	1000	ug/L		2012

					<u>-</u> -						
Fármacos	Nível Trófico	Espécies	Meio	Tempo	Efeito medido	Parâmetro	Tendêcia	Valor	Unidade	Fonte	Ano
		acutus	doce		crescimento					Pharmacol.33(2):	
					populacional					344-352	
			,		Taxa de					Environ. Toxicol.	
		Scenedesmus acutus var.	Água		crescimento					Pharmacol.33(2):	
		acutus	doce	15	populacional	NOEC	Diminuição	1000	ug/L	344-352	2012
					Т 1-					Davina Tarial	
		Scenedesmus acutus var.	Água		Taxa de crescimento					Environ. Toxicol. Pharmacol.33(2):	
		acutus	doce	2	populacional	NOEC	Diminuição	1000	ug/L	344-352	2012
		acins	docc	2	populacional	NOLC	Dillillaição	1000	ug/L	344-332	2012
					Taxa de					Environ. Toxicol.	
		Scenedesmus acutus var.	Água		crescimento					Pharmacol.33(2):	
		acutus	doce	3	populacional	NOEC	Diminuição	500	ug/L	344-352	2012
					Taxa de					Environ. Toxicol.	
		Scenedesmus acutus var.	Água		crescimento					Pharmacol.33(2):	
		acutus	doce	4	populacional	NOEC	Diminuição	500	ug/L	344-352	2012
		G 1	Á		Taxa de					Environ. Toxicol.	
		Scenedesmus acutus var. acutus	Água doce	5	crescimento populacional	NOEC	Sem efeito	1000	ug/L	Pharmacol.33(2): 344-352	2012
		acutus	doce	3	populacional	NOEC	Sem eleno	1000	ug/L	344-332	2012
					Taxa de					Environ. Toxicol.	
		Scenedesmus acutus var.	Água		crescimento					Pharmacol.33(2):	
		acutus	doce	6	populacional	NOEC	Sem efeito	500	ug/L	344-352	2012
					1 -1						
										Environ. Toxicol.	
		Scenedesmus acutus var.	Água		Concentração					Pharmacol.33(2):	
		acutus	doce	1	de clorofila A	NOEC	Diminuição	1000	ug/L	344-352	2012
			,								
		Scenedesmus acutus var.	Água	-	Concentração	NOEG	D	1000	~	Environ. Toxicol.	2012
		acutus	doce	2	de clorofila A	NOEC	Diminuição	1000	ug/L	Pharmacol.33(2):	2012

Fármacos	Nível Trófico	Espécies	Meio	Тетро	Efeito medido	Parâmetro	Tendêcia	Valor	Unidade	Fonte	Ano
r ai macos	NIVEL TIOLICO	Especies	MEIO	1 cmpo	Eleito illeuluo	1 at afficit 0	Tenuecia	v alui	Omuade	344-352	Allo
		Scenedesmus acutus var. acutus	Água doce	3	Concentração de clorofila A	NOEC	Diminuição	1000	ug/L	Environ. Toxicol. Pharmacol.33(2): 344-352	2012
		Scenedesmus acutus var. acutus	Água doce	30	Superoxido dismutase	NOEC	Diminuição	1000	ug/L	Environ. Toxicol. Pharmacol.33(2): 344-352	2012
		Scenedesmus acutus var. acutus	Água doce	30	Catalase	NOEC	Aumento	10000	ug/L	Environ. Toxicol. Pharmacol.33(2): 344-352	2012
		Scenedesmus acutus var. acutus	Água doce	4	Concentração de clorofila A	NOEC	Diminuição	1000	ug/L	Environ. Toxicol. Pharmacol.33(2): 344-352	2012
		Scenedesmus acutus var. acutus	Água doce	5	Superoxido dismutase	NOEC	Aumento	1000	ug/L	Environ. Toxicol. Pharmacol.33(2): 344-352	2012
		Scenedesmus acutus var. acutus	Água doce	6	Concentração de clorofila A	NOEC	Aumento	500	ug/L	Environ. Toxicol. Pharmacol.33(2): 344-352	2012
		Clorofilarella vulgaris	Água doce	1	Abundância	EC50	Diminuição	469,5	uM	Toxicol. In Vitro17(5-6): 525- 532	2003
		Clorofilarella vulgaris	Água doce	2	Abundância	EC50	Diminuição	155	uM	Toxicol. In Vitro17(5-6): 525- 532	2003

Fármacos	Nível Trófico	Espécies	Meio	Tempo	Efeito medido	Parâmetro	Tendêcia	Valor	Unidade	Fonte	Ano
		Clorofilarella vulgaris	Água doce	2	Abundância	LOEC	Diminuição	100	uM	Toxicol. In Vitro17(5-6): 525- 532	2003
		Pseudokirchneriella subcapitata	Água doce	4	Abundância	LOEC	-	100000	ug/L	Ecotoxicol. Environ. Saf.55(3): 359-370	2003
		Pseudokirchneriella subcapitata	Água doce	1	Citocromo Citocromo P450A	LOEC	Diminuição	150000	ug/L	Chemosphere80(9): 1062-1068	2010
		Pseudokirchneriella subcapitata	Água doce	1	Glutationa reditase	LOEC	Aumento	150000	ug/L	Chemosphere80(9): 1062-1068	2010
		Clorofilarella vulgaris	Água doce	1	Abundância	NOEC	Diminuição	100	uM	Toxicol. In Vitro17(5-6): 525- 532	2003
		Pseudokirchneriella subcapitata	Água doce	4	Abundância	NOEC	-	100000	ug/L	Ecotoxicol. Environ. Saf.55(3): 359-370	2003
		Lemna minor	Água doce	7	Taxa de crescimento populacional	EC50	Diminuição	25500	ug/L	Toxicol. Lett.142:185-194	2003
		Typha sp.	Água doce	14	Guaiacol peroxidase	LOEC	Diminuição	1000	ug/L	Bioresour. Technol.102(17): 7827-7834	2011
		Typha sp.	Água	14	Superoxido	LOEC	Aumento	1000	ug/L	Bioresour.	2011

		•			*	*					
Fármacos	Nível Trófico	Espécies	Meio	Tempo	Efeito medido	Parâmetro	Tendêcia	Valor	Unidade	Fonte	Ano
			doce		dismutase					Technol.102(17): 7827-7834	
	T	ypha sp.	Água doce	14	Catalase	LOEC	Aumento	500	ug/L	Bioresour. Technol.102(17): 7827-7834	2011
	T	ypha sp.	Água doce	21	Guaiacol peroxidase	LOEC	Diminuição	1000	ug/L	Bioresour. Technol.102(17): 7827-7834	2011
	T	ypha sp.	Água doce	21	Superoxido dismutase	LOEC	Aumento	2000	ug/L	Bioresour. Technol.102(17): 7827-7834	2011
	T	ypha sp.	Água doce	21	Catalase	LOEC	Aumento	500	ug/L	Bioresour. Technol.102(17): 7827-7834	2011
	T	ypha sp.	Água doce	7	Guaiacol peroxidase	LOEC	Diminuição	500	ug/L	Bioresour. Technol.102(17): 7827-7834	2011
	T	ypha sp.	Água doce	7	Catalase	LOEC	Aumento	500	ug/L	Bioresour. Technol.102(17): 7827-7834	2011
	T	ypha sp.	Água doce	14	Taxa de crescimento	LOEC	Diminuição	1000	ug/L	Bioresour. Technol.102(17): 7827-7834	2011
	T	ypha sp.	Água doce	7	Taxa de crescimento	LOEC	Diminuição	500	ug/L	Bioresour. Technol.102(17):	2011

TO /	NT/ 1/10 / 00	T. / .	34.	T.	T10.14 11.1	TD ^ 4	7D 10 1	¥7.1		ъ.	_
Fármacos	Nível Trófico	Espécies	Meio	Tempo	Efeito medido	Parâmetro	Tendêcia	Valor	Unidade	Fonte	Ano
										7827-7834	
			Água		Guaiacol					Bioresour. Technol.102(17):	
		Typha sp.	doce	14	peroxidase	NOEC	Diminuição	500	ug/L		2011
		Турни зр.		14	-	Nobe	Diminuição	300	ug/L	Bioresour.	2011
			Água		Superoxido					Technol.102(17):	
		Typha sp.	doce	14	dismutase	NOEC	Aumento	500	ug/L	7827-7834	2011
			Água		Superoxido					Bioresour. Technol.102(17):	
		Typha sp.	doce	21	dismutase	NOEC	Aumento	1000	ug/L	7827-7834	2011
		z yprice spr	4000		uisiiiuus v	1,020	11411161116	1000	45/2	7027 700 .	-011
			Água		Taxa de					Bioresour. Technol.102(17):	
		Typha sp.	doce	14	crescimento	NOEC	Diminuição	500	ug/L	7827-7834	2011
		Typha sp.	Água doce	21	Taxa de crescimento	NOEC	Alteração	2000	ug/L	Bioresour. Technol.102(17): 7827-7834	2011
		Lemna gibba	Água doce	7	Injuria	NOEC	-	1000	ug/L	Aquat. Toxicol.70(1): 23- 40	2004
	Consumidor	Thamnocephalus	Água							J. Toxicol.	
	primario	platyurus	doce	1	Imobilidade	LC50	Aumento	100000	ug/L	Sci.34(2): 227-232	2009
		Echinogammarus marinus	Água Salgada	21	Movimento	LOEC	Aumento	10	ug/L	Aquat. Toxicol.99(3): 397-	2010

				_						_	
Fármacos	Nível Trófico	Espécies	Meio	Tempo	Efeito medido	Parâmetro	Tendêcia	Valor	Unidade	Fonte	Ano
			,							404 Aquat.	
		Echinogammarus marinus	Água Salgada	14	Fototaxia	NOEC	Diminuição	10	ug/L		2010
		Echinogammarus marinus	Água Salgada	14	Movimento	NOEC	Aumento	10	ug/L	Aquat. Toxicol.99(3): 397- 404	2010
		Echinogammarus marinus	Água Salgada	14	Movimento	NOEC	Aumento	10	ug/L	Aquat. Toxicol.99(3): 397- 404	2010
		Echinogammarus marinus	Água Salgada	14	Fototaxia	NOEC	Aumento	10	ug/L	Aquat. Toxicol.99(3): 397- 404	2010
		Echinogammarus marinus	Água Salgada	21	Movimento	NOEC	Aumento	1	ug/L	Aquat. Toxicol.99(3): 397- 404	2010
		Echinogammarus marinus	Água Salgada	21	Movimento	NOEC	Aumento	10	ug/L	Aquat. Toxicol.99(3): 397- 404	2010
		Echinogammarus marinus	Água Salgada	21	Fototaxia	NOEC	Aumento	10	ug/L	Aquat. Toxicol.99(3): 397- 404	2010
		Echinogammarus marinus	Água Salgada	21	Fototaxia	NOEC	Aumento	10	ug/L	Aquat. Toxicol.99(3): 397- 404	2010

Fármacos	Nível Trófico	Espécies	Meio	Tempo	Efeito medido	Parâmetro	Tendêcia	Valor	Unidade	Fonte	Ano
		Echinogammarus marinus	Água Salgada	7	Movimento	NOEC	Diminuição	10	ug/L	Aquat. Toxicol.99(3): 397- 404	2010
		Echinogammarus marinus	Água Salgada	7	Movimento	NOEC	Diminuição	10	ug/L	Aquat. Toxicol.99(3): 397- 404	2010
		Echinogammarus marinus	Água Salgada	7	Fototaxia	NOEC	Aumento	10	ug/L	Aquat. Toxicol.99(3): 397- 404	2010
		Echinogammarus marinus	Água Salgada	7	Fototaxia	NOEC	Aumento	10	ug/L	Aquat. Toxicol.99(3): 397- 404	2010
		Gammarus pulex	Água doce	2h	Repouso	NOEC	Aumento	0,01	ug/L		2006
		Gammarus fossarum	Água doce	21	Vitelogenina	NOEL	Diminuição	1000	ug/L		2012
		Ceriodaphnia dubia	Água doce	2	Imobilidade	EC50	Aumento	77700	ug/L	Ecotoxicol. Environ. Saf.55(3): 359-370	2003
		Daphnia magna	Água doce	2	Imobilidade	EC50	Aumento	100000	ug/L	Toxicol. Lett.142:185-194	2003
		Daphnia magna	Água	2	Imobilidade	EC50	Aumento	100000	ug/L	Environ. Int.33(3):	2007

		*				•		•			
Fármacos	Nível Trófico	Espécies	Meio	Tempo	Efeito medido	Parâmetro	Tendêcia	Valor	Unidade	Fonte	Ano
			doce							370-375	
			Água							Environ. Int.33(3):	
		Daphnia magna	doce	4	Imobilidade	EC50	Aumento	76300	ug/L	370-375	2007
			Água							Toxicol. In Vitro17(5-6): 525-	
		Daphnia magna	doce	1	Imobilidade	EC50	Aumento	475	uM	532	2003
		Daphnia magna	Água doce	2	Imobilidade	EC50	Aumento	414	uM	Toxicol. In Vitro17(5-6): 525- 532	2003
		Daphnia magna	Água doce	2	Imobilidade	EC50	Aumento	13800	ug/L	Ecotoxicol. Environ. Saf.55(3): 359-370	2003
		Hyalella azteca	Água doce	10	Peso	EC50	Diminuição	15000	ug/L	Environ. Toxicol. Chem.27(2): 425- 432	2008
		Daphnia magna	Água doce	2	Mortalidade	LC50	Aumento	111000	ug/L	Environ. Toxicol. Chem.25(1): 265- 271	2006
		Hyalella azteca	Água doce	10	Mortalidade	LC50	Aumento	9900	ug/L	Environ. Toxicol. Chem.27(2): 425- 432	2008
		Ceriodaphnia dubia	Água doce	7	Reprodução	LOEC	Diminuição	100	ug/L	Ecotoxicol. Environ. Saf.55(3): 359-370	2003

Fármacos	Nível Trófico	Espécies	Meio	Tempo	Efeito medido	Parâmetro	Tendêcia	Valor	Unidade	Fonte	Ano
		Daphnia magna	Água doce	6	Tempo da primeira reprodução	LOEC	Aumento	0,5	ug/L	Chemosphere79(1): 60-66	2010
		Daphnia pulex	Água doce	14	Tempo da primeira reprodução	LOEC	Aumento	200	ug/L	Environ. Toxicol.21(2): 172- 180	2006
		Ceriodaphnia dubia	Água doce	7	Reprodução	NOEC	Diminuição	25	ug/L	Ecotoxicol. Environ. Saf.55(3): 359-370	2003
		Daphnia magna	Água doce	6	Progênia	NOEC	Aumento	0,5	ug/L	Chemosphere79(1): 60-66	2010
		Daphnia magna	Água doce	1	Progênia	NOEC	Aumento	0,5	ug/L	Chemosphere79(1): 60-66	2010
		Daphnia magna	Água doce	1	Tempo da primeira reprodução	NOEC	Aumento	0,5	ug/L	Chemosphere79(1): 60-66	2010
		Daphnia magna	Água doce	2	Progênia	NOEC	Diminuição	0,5	ug/L	Chemosphere79(1): 60-66	2010
		Daphnia magna	Água doce	2	Tempo da primeira reprodução	NOEC	Aumento	0,5	ug/L	Chemosphere79(1): 60-66	2010
		Daphnia magna	Água doce	3	Progênia	NOEC	Aumento	0,5	ug/L	Chemosphere79(1): 60-66	2010

Fármacos	Nível Trófico	Espécies	Meio	Tempo	Efeito medido	Parâmetro	Tendêcia	Valor	Unidade	Fonte	Ano
Farmacos	Triver Troneo	Especies	WICIO	Tempo	Eleito inculto	1 ai aincti o	Tenuccia	v a101	Unidade	ronte	Allo
	L	Daphnia magna	Água doce	3	Tempo da primeira reprodução	NOEC	Aumento	0,5	ug/L	Chemosphere79(1): 60-66	2010
	L	Daphnia magna	Água doce	4	Progênia	NOEC	Aumento	0,5	ug/L	Chemosphere79(1): 60-66	2010
	L	Daphnia magna	Água doce	4	Tempo da primeira reprodução	NOEC	Aumento	0,5	ug/L	Chemosphere79(1): 60-66	2010
	L	Daphnia magna	Água doce	5	Progênia	NOEC	Diminuição	0,5	ug/L	Chemosphere79(1): 60-66	2010
	L	Daphnia magna	Água doce	5	Tempo da primeira reprodução	NOEC	Aumento	0,5	ug/L	Chemosphere79(1): 60-66	2010
	L	Daphnia magna	Água doce	6	Comprimento	NOEC	Aumento	0,5	ug/L	Chemosphere79(1): 60-66	2010
	L	Daphnia magna	Água doce	6	Comprimento	NOEC	Aumento	0,5	ug/L	Chemosphere79(1): 60-66	2010
	L	Daphnia magna	Água doce	1	Comprimento	NOEC	Aumento	0,5	ug/L	Chemosphere79(1): 60-66	2010
	L	Daphnia magna	Água doce	1	Comprimento	NOEC	Aumento	0,5	ug/L	Chemosphere79(1): 60-66	2010
	L	Daphnia magna	Água doce	2	Comprimento	NOEC	Diminuição	0,5	ug/L	Chemosphere79(1): 60-66	2010

Fármacos	Nível Trófico	Espécies	Meio	Tempo	Efeito medido	Parâmetro	Tendêcia	Valor	Unidade	Fonte	Ano
		Daphnia magna	Água doce	2	Comprimento	NOEC	Diminuição	0,5	ug/L	Chemosphere79(1): 60-66	2010
		Daphnia magna	Água doce	3	Comprimento	NOEC	Aumento	0,5	ug/L	Chemosphere79(1): 60-66	2010
		Daphnia magna	Água doce	3	Comprimento	NOEC	Aumento	0,5	ug/L	Chemosphere79(1): 60-66	2010
		Daphnia magna	Água doce	4	Comprimento	NOEC	Aumento	0,5	ug/L	Chemosphere79(1): 60-66	2010
		Daphnia magna	Água doce	4	Comprimento	NOEC	Aumento	0,5	ug/L	Chemosphere79(1): 60-66	2010
		Daphnia magna	Água doce	5	Comprimento	NOEC	Diminuição	0,5	ug/L	Chemosphere79(1): 60-66	2010
		Daphnia magna	Água doce	5	Comprimento	NOEC	Aumento	0,5	ug/L	Chemosphere79(1): 60-66	2010
		Daphnia pulex	Água doce	1	Progênia	NOEC	Diminuição	200	ug/L	Environ. Toxicol.21(2): 172- 180	2006
		Daphnia pulex	Água doce	14	Tempo da primeira reprodução	NOEC	Diminuição	100	ug/L	Environ. Toxicol.21(2): 172- 180	2006
		Daphnia pulex	Água doce	2	Progênia	NOEC	Diminuição	200	ug/L	Environ. Toxicol.21(2): 172- 180	2006

				_						_	
Fármacos	Nível Trófico	Espécies	Meio	Tempo	Efeito medido	Parâmetro	Tendêcia	Valor	Unidade	Fonte	Ano
		Daphnia pulex	Água doce	3	Progênia	NOEC	Diminuição	200	ug/L	Environ. Toxicol.21(2): 172- 180	2006
		Daphnia pulex	Água doce	1	Comprimento	NOEC	Diminuição	200	ug/L	Environ. Toxicol.21(2): 172- 180	2006
		Daphnia pulex	Água doce	1	Comprimento	NOEC	Diminuição	200	ug/L	Environ. Toxicol.21(2): 172- 180	2006
		Daphnia pulex	Água doce	1	Comprimento	NOEC	Diminuição	200	ug/L	Environ. Toxicol.21(2): 172- 180	2006
		Daphnia pulex	Água doce	2	Comprimento	NOEC	Diminuição	200	ug/L	Environ. Toxicol.21(2): 172- 180	2006
		Daphnia pulex	Água doce	3	Comprimento	NOEC	Alteração	200	ug/L	Environ. Toxicol.21(2): 172- 180	2006
		Chironomus tentans	Água doce	10	Peso	EC50	Diminuição	9500	ug/L	Environ. Toxicol. Chem.27(2): 425- 432	2008
		Chironomus riparius	Água doce	1	Mortalidade	LC50	Aumento	4000	ug/L	In: K.Kummerer (Ed.), Pharmaceuticals in the Environment.	2004

Fármacos	Nível Trófico	Espécies	Meio	Tempo	Efeito medido	Parâmetro	Tendêcia	Valor	Unidade	Fonte	Ano
		•		•						Sources, Fate, Effects and Risks (2nd Ed), Springer, Heidelberg, Germany:195-208	
		Chironomus tentans	Água doce	10	Mortalidade	LC50	Aumento	47300	ug/L	Environ. Toxicol. Chem.27(2): 425- 432	2008
		China a anna air ani a	Água	29	Emanaên aia	LOEC	Diminuição	222	ua/I	Arch. Environ. Contam. Toxicol.49(3): 353-	2005
		Chironomus riparius	doce	28	Emergência	LOEC	Diminuição	332	ug/L	361	2005
		Chironomus riparius	Água doce	28	Emergência	NOEC	Diminuição	164	ug/L	Arch. Environ. Contam. Toxicol.49(3): 353- 361	2005
		Hydra attenuata	Água doce	4	Comportament o alimentar	EC50	Diminuição	3760	ug/L	Sci. Total Environ.389(2-3): 306-314	2008
		Hydra attenuata	Água doce	4	Anomalia	EC50	Aumento	15520	ug/L	Sci. Total Environ.389(2-3): 306-314	2008
		Brachionus koreanus	Água Salgada	1	Mortalidade	LC50	Aumento	138600	ug/L	Aquat. Toxicol.114/115:10 4-118	2012
		Hydra attenuata	Água doce	4	Mortalidade	LC50	Aumento	29400	ug/L	Sci. Total Environ.389(2-3):	2008

Fármacos	Nível Trófico	Espécies	Meio	Tempo	Efeito medido	Parâmetro	Tendêcia	Valor	Unidade	Fonte	Ano
Farmacos	Niver Fronco	Especies	Meio	1 empo	Eleito medido	rarametro	Tenuecia	v alui	Ullidade	306-314	Allo
		Brachionus koreanus	Água Salgada	6h	p- Glicoproteina mRNA	LOEC	Aumento	10	ug/L	Aquat. Toxicol.114/115:10 4-118	2012
		Brachionus koreanus	Água Salgada	12h	p- Glicoproteina mRNA	LOEC	Aumento	10	ug/L	Aquat. Toxicol.114/115:10 4-118	2012
		Brachionus koreanus	Água Salgada	1	p- Glicoproteina mRNA	LOEC	Aumento	10	ug/L	Aquat. Toxicol.114/115:10 4-118	2012
		Brachionus koreanus	Água Salgada	1	p- Glicoproteina mRNA	LOEC	Aumento	10	ug/L	Aquat. Toxicol.114/115:10 4-118	2012
		Brachionus koreanus	Água Salgada	6h	Acetilcolineste rase mRNA	LOEC	Diminuição	1000	ug/L	Comp. Biochem. Physiol. C Toxicol. Pharmacol.158(4): 216-224	2013
		Brachionus koreanus	Água Salgada	12h	Acetilcolineste rase mRNA	LOEC	Diminuição	1000	ug/L	Comp. Biochem. Physiol. C Toxicol. Pharmacol.158(4): 216-224	2013
		Brachionus koreanus	Água Salgada	1	Acetilcolineste rase	LOEC	Diminuição	100	ug/L	Comp. Biochem. Physiol. C Toxicol. Pharmacol.158(4): 216-224	2013

Fármacos	Nível Trófico	Espécies	Meio	Tempo	Efeito medido	Parâmetro	Tendêcia	Valor	Unidade	Fonte	Ano
		Brachionus koreanus	Água Salgada	1	Acetilcolineste rase mRNA	LOEC	Diminuição	1000	ug/L	Comp. Biochem. Physiol. C Toxicol. Pharmacol.158(4): 216-224	2013
		Hydra attenuata	Água doce	2	TBAR	LOEC	Aumento	600	uM	Fresenius Environ. Bull.13(8): 783-788	2004
					Benziloxiresor						
		п. т	Água	2	ufina-O-	LOEG	A			Fresenius Environ.	2004
		Hydra attenuata	doce	2	desetilase	LOEC	Aumento	6	uM	Bull.13(8): 783-788	2004
		** 1	Água	2	Glutationa S-	LODG			3.6	Fresenius Environ.	2004
		Hydra attenuata	doce	2	transferase	LOEC	Aumento	6	uM	Bull.13(8): 783-788	2004
			Água		Heme					Fresenius Environ.	•004
		Hydra attenuata	doce	2	oxigenase	LOEC	Aumento	6	uM	Bull.13(8): 783-788	2004
			Água		Sulfotransferas					Fresenius Environ.	
		Hydra attenuata	doce	2	e	LOEC	Aumento	6000	uM	Bull.13(8): 783-788	2004
			,		Citocromo						
		Hydra attenuata	Água doce	6h	Citocromo P450A	LOEC	Diminuição	128,6	mg/g fd	Chemosphere80(9): 1062-1068	2010
		7						-,-	88		
		Hydra attenuata	Água doce	6h	Glutationa S- transferase	LOEC	Diminuição	128,6	mg/g fd	Chemosphere80(9): 1062-1068	2010
		11) di la diversiona				2020	2	120,0	1115/5/10		2010
		Hydra attenuata	Água doce	6h	Peroxidação lipídica	LOEC	Diminuição	128,6	mg/g fd	Chemosphere80(9): 1062-1068	2010
		11) a. a ameniana			прилоч		2 miniarção	120,0			
		Hydra attenuata	Água	6h	Heme	LOEC	Aumento	128,6	mg/g fd	Chemosphere80(9):	2010

Fármacos	Nível Trófico	Espécies	Meio	Tempo	Efeito medido	Parâmetro	Tendêcia	Valor	Unidade	Fonte	Ano
	1,1,01 1101100	Доресте	doce	1011110	oxigenase	2 41 4110010	101140014	, 41 01	01114444	1062-1068	1110
		Hydra attenuata	Água doce	4	Capacidade de separar o substrato	LOEC	Diminuição	50000	ug/L	Sci. Total Environ.389(2-3): 306-314	2008
		Hydra attenuata	Água doce	4	Anomalia	LOEC	Aumento	5000	ug/L	Sci. Total Environ.389(2-3): 306-314	2008
		Brachionus koreanus	Água Salgada	1h	p- Glicoproteina mRNA	NOEC	Aumento	10	ug/L	Aquat. Toxicol.114/115:10 4-118	2012
		Brachionus koreanus	Água Salgada	3h	p- Glicoproteina mRNA	NOEC	Aumento	10	ug/L	Aquat. Toxicol.114/115:10 4-118	2012
		Brachionus koreanus	Água Salgada	1	Taxa de crescimento populacional	NOEC	Diminuição	81500	ug/L	Aquat. Toxicol.114/115:10 4-118	2012
		Brachionus koreanus	Água Salgada	1	p- Glicoproteina mRNA	NOEC	Aumento	1	ug/L	Aquat. Toxicol.114/115:10 4-118	2012
		Brachionus koreanus	Água Salgada	1h	Acetilcolineste rase mRNA	NOEC	Diminuição	1000	ug/L	Comp. Biochem. Physiol. C Toxicol. Pharmacol.158(4): 216-224	2013
		Brachionus koreanus	Água Salgada	3h	Acetilcolineste rase mRNA	NOEC	Diminuição	1000	ug/L	Comp. Biochem. Physiol. C Toxicol.	2013

TO C	N/ 1/0 /0	P (1	34.	T.	Te 14 11 1	D ^ 4	7D 10 1	*7.1	** * 1	T	
Fármacos	Nível Trófico	Espécies	Meio	Tempo	Efeito medido	Parâmetro	Tendêcia	Valor	Unidade	Fonte Pharmacol.158(4): 216-224	Ano
		Brachionus koreanus	Água Salgada	6h	Acetilcolineste rase mRNA	NOEC	Aumento	100	ug/L	Comp. Biochem. Physiol. C Toxicol. Pharmacol.158(4): 216-224	2013
		Brachionus koreanus	Água Salgada	12h	Acetilcolineste rase	NOEC	Diminuição	1000	ug/L	Comp. Biochem. Physiol. C Toxicol. Pharmacol.158(4): 216-224	2013
		Brachionus koreanus	Água Salgada	12h	Acetilcolineste rase mRNA	NOEC	Aumento	100	ug/L	Comp. Biochem. Physiol. C Toxicol. Pharmacol.158(4): 216-224	2013
		Brachionus koreanus	Água Salgada	1	Acetilcolineste rase mRNA	NOEC	Diminuição	100	ug/L	Comp. Biochem. Physiol. C Toxicol. Pharmacol.158(4): 216-224	2013
		Brachionus koreanus	Água Salgada	1	Acetilcolineste rase mRNA	NOEC	Diminuição	1000	ug/L	Comp. Biochem. Physiol. C Toxicol. Pharmacol.158(4): 216-224	2013
		Brachionus koreanus	Água Salgada	1	Acetilcolineste rase	NOEC	Aumento	10	ug/L	Comp. Biochem. Physiol. C Toxicol. Pharmacol.158(4): 216-224	2013
		Hydra attenuata	Água	2	TBAR	NOEC	Alteração	60	uM	Fresenius Environ.	2004

Eámmo cos	Nível Trófico	Egnésies	Maia	Tomno	Efoito modido	Donômotus	Tandâsia	Volon	Unidade	Fonto	Ama
Fármacos	Niver Fronco	Espécies	Meio doce	Tempo	Efeito medido	Parâmetro	Tendêcia	Valor	Unidade	Fonte Bull.13(8): 783-788	Ano
		Hydra attenuata	Água doce	2	Citocromo P- 450 1A1	NOEC	Alteração	6000	uM	Fresenius Environ. Bull.13(8): 783-788	2004
		Hydra attenuata	Água doce	2	Sulfotransferas e	NOEC	Alteração	600	uM	Fresenius Environ. Bull.13(8): 783-788	2004
		Hydra attenuata	Água doce	4	Capacidade de separar o substrato	NOEC	Diminuição	25000	ug/L	Sci. Total Environ.389(2-3): 306-314	2008
		Hydra attenuata	Água doce	4	Comportament o alimentar	NOEC	Diminuição	50000	ug/L	Sci. Total Environ.389(2-3): 306-314	2008
		Hydra attenuata	Água doce	4	Reprodução vegetativa	NOEC	Diminuição	50000	ug/L	Sci. Total Environ.389(2-3): 306-314	2008
		Hydra attenuata	Água doce	4	Anomalia	NOEC	Sem efeito	1000	ug/L	Sci. Total Environ.389(2-3): 306-314	2008
		Hydra attenuata	Água Salgada	4	Regeneração	NOEC	Diminuição	50000	ug/L	Sci. Total Environ.402(1): 62- 69	2008
		Brachionus calyciflorus	Água doce	2	Sobrevivência	LOEC	-	754	ug/L	Ecotoxicol. Environ. Saf.55(3): 359-370	2003
		Brachionus calyciflorus	Água	2	Sobrevivência	NOEC	-	377	ug/L	Ecotoxicol.	2003

Fármacos	Nível Trófico	Espécies	Meio	Tempo	Efeito medido	Parâmetro	Tendêcia	Valor	Unidade	Fonte	Ano
		*	doce	•						Environ. Saf.55(3): 359-370	
		Elliptio complanata	Água doce	2	Ácido tiobarbitúrico	LOEC	Aumento	0,4	mM	Environ. Toxicol. Pharmacol.28(2): 237-242	2009
			Água		Adenosina 3',5'- Monócitosfosfa					Aquat. Toxicol.94(3): 177-	
		Mytilus galloprovincialis	Salgada	7	to cíclico	LOEC	Diminuição	10	ug/L		2009
		Mytilus galloprovincialis	Água Salgada	7	Proteína quinase dependente cAMP	LOEC	Diminuição	10	ug/L	Aquat. Toxicol.94(3): 177- 185	2009
		Mytilus galloprovincialis	Água Salgada	7	Expressão gênica	LOEC	Diminuição	0,1	ug/L	Aquat. Toxicol.94(3): 177- 185	2009
		Mytilus galloprovincialis	Água Salgada	7	Expressão gênica	LOEC	Diminuição	10	ug/L	Aquat. Toxicol.94(3): 177- 185	2009
		Mytilus galloprovincialis	Água Salgada	7	Expressão gênica	LOEC	Diminuição	10	ug/L	Aquat. Toxicol.94(3): 177- 185	2009
		Mytilus galloprovincialis	Água Salgada	7	Lipídio	LOEC	Aumento	0,1	ug/L	Aquat. Toxicol.94(3): 177- 185	2009

Fármacos	Nível Trófico	Espécies	Meio	Tempo	Efeito medido	Parâmetro	Tendêcia	Valor	Unidade	Fonte	Ano
		Mytilus galloprovincialis	Água Salgada	7	Lipofuscina	LOEC	Aumento	0,1	ug/L	Aquat. Toxicol.94(3): 177-	2009
		Mytilus galloprovincialis	Água Salgada	7	Catalase	LOEC	Aumento	0,1	ug/L	Aquat. Toxicol.94(3): 177- 185	2009
		Mytilus galloprovincialis	Água Salgada	7	Adenosina 3',5'- Monócitosfosfa to ciclico	LOEC	Diminuição	10	ug/L	Aquat. Toxicol.94(3): 177- 185	2009
		Mytilus galloprovincialis	Água Salgada	7	Proteína quinase dependente cAMP	LOEC	Diminuição	10	ug/L		2009
		Mytilus galloprovincialis	Água Salgada	7	Expressão gênica	LOEC	Diminuição	10	ug/L	Aquat. Toxicol.94(3): 177- 185	2009
		Mytilus galloprovincialis	Água Salgada	7	Expressão gênica	LOEC	Diminuição	10	ug/L	Aquat. Toxicol.94(3): 177- 185	2009
		Mytilus galloprovincialis	Água Salgada	7	Expressão gênica	LOEC	Diminuição	10	ug/L	Aquat. Toxicol.94(3): 177- 185	2009
		Mytilus galloprovincialis	Água Salgada	7	Malondialdeid o	LOEC	Aumento	0,1	ug/L	Aquat. Toxicol.94(3): 177-	2009

TO C	NT 170 /0	T. ()	3.5 .		E6.4 1.1	D ^ 4	TD 10:	*7.1	*****	T	_
Fármacos	Nível Trófico	Espécies	Meio	Tempo	Efeito medido	Parâmetro	Tendêcia	Valor	Unidade	Fonte 185	Ano
		Mytilus galloprovincialis	Água Salgada	7	Alteração celular	LOEC	Diminuição	0,1	ug/L	Aquat. Toxicol.94(3): 177-	2009
		Mytilus galloprovincialis	Água Salgada	7	Adenosina 3',5'- Monócitosfosfa to ciclico	LOEC	Diminuição	0,1	ug/L	Aquat. Toxicol.94(3): 177- 185	2009
		Mytilus galloprovincialis	Água Salgada	7	Proteína quinase dependente cAMP	LOEC	Diminuição	0,1	ug/L		2009
		Mytilus galloprovincialis	Água Salgada	7	Expressão gênica	LOEC	Diminuição	0,1	ug/L	Aquat. Toxicol.94(3): 177- 185	2009
		Mytilus galloprovincialis	Água Salgada	7	Expressão gênica	LOEC	Diminuição	0,1	ug/L		2009
		Mytilus galloprovincialis	Água Salgada	7	Expressão gênica	LOEC	Diminuição	0,1	ug/L		2009
		Mytilus galloprovincialis	Água Salgada	7	Malondialdeid o	LOEC	Aumento	10	ug/L	Aquat. Toxicol.94(3): 177- 185	2009
		Mytilus galloprovincialis	Água	7	Catalase	LOEC	Aumento	10	ug/L	Aquat.	2009

Fármacos	Nível Trófico	Espécies	Meio	Tempo	Efeito medido	Parâmetro	Tendêcia	Valor	Unidade	Fonte	Ano
		•	Salgada	•						Toxicol.94(3): 177- 185	
		Mytilus galloprovincialis	Água Salgada	7	Glutationa S- transferase	LOEC	Aumento	0,1	ug/I	Aquat. Toxicol.94(3): 177- 185	2009
		Mytitus gatioprovinciaits	Saigada	/	transferase	LUEC	Aumento	0,1	ug/L	163	2009
		Elliptio complanata	Água doce	2	Etoxiresorufina -O-desetilase	NOEC	Diminuição	10	mM	Environ. Toxicol. Pharmacol.28(2): 237-242	2009
		Elliptio complanata	Água doce	2	Ácido tiobarbitúrico	NOEC	Aumento	0,08	mM	Environ. Toxicol. Pharmacol.28(2): 237-242	2009
		Elliptio complanata	Água doce	2	Glutationa S- transferase	NOEC	Aumento	10	mM	Environ. Toxicol. Pharmacol.28(2): 237-242	2009
			Água							Environ. Toxicol. Pharmacol.28(2):	
		Elliptio complanata	doce	2	Dano	NOEC	Aumento	10	mM	237-242	2009
		Elli di Li	Água	2	M. (Pl. 1	NOEC		10	M	Environ. Toxicol. Pharmacol.28(2):	2000
		Elliptio complanata	doce	2	Mortalidade	NOEC	-	10	mM	237-242	2009
			Água		Adenosina 3',5'- Monócitosfosfa					Aquat. Toxicol.94(3): 177-	
		Mytilus galloprovincialis	Salgada	7	to ciclico	NOEC	Diminuição	0,1	ug/L	185	2009
		Mytilus galloprovincialis	Água	7	Proteína	NOEC	Diminuição	0,1	ug/L	Aquat.	2009

Eánma as a	Nível Trófico	Egnásica	Maia	Towns	Efoito modida	Danêmat	Tandâsia	Volor	Unidada	Eanta	Ano
Fármacos	Nivel Trofico	Espécies	Meio Salgada	Tempo	efeito medido quinase dependente cAMP	Parâmetro	Tendêcia	Valor	Unidade	Fonte Toxicol.94(3): 177- 185	Ano
		Mytilus galloprovincialis	Água Salgada	7	Expressão gênica	NOEC	Diminuição	0,1	ug/L	Aquat. Toxicol.94(3): 177- 185	2009
		Mytilus galloprovincialis	Água Salgada	7	Malondialdeid o	NOEC	Aumento	10	ug/L	Aquat. Toxicol.94(3): 177- 185	2009
		Mytilus galloprovincialis	Água Salgada	7	Expressão gênica	NOEC	Aumento	0,1	ug/L	Aquat. Toxicol.94(3): 177- 185	2009
		Mytilus galloprovincialis	Água Salgada	7	Proteína quinase dependente cAMP	NOEC	Diminuição	0,1	ug/L	Aquat. Toxicol.94(3): 177- 185	2009
		Mytilus galloprovincialis	Água Salgada	7	Expressão gênica	NOEC	Diminuição	0,1	ug/L	Aquat. Toxicol.94(3): 177- 185	2009
		Mytilus galloprovincialis	Água Salgada	7	Expressão gênica	NOEC	Diminuição	0,1	ug/L	Aquat. Toxicol.94(3): 177- 185	2009
		Mytilus galloprovincialis	Água Salgada	7	Expressão gênica	NOEC	Diminuição	0,1	ug/L	Aquat. Toxicol.94(3): 177- 185	2009

Fármacos	Nível Trófico	Espécies	Meio	Tempo	Efeito medido	Parâmetro	Tendêcia	Valor	Unidade	Fonte	Ano
		Mytilus galloprovincialis	Água Salgada	7	Adenosina 3',5'- Monócitosfosfa to ciclico	NOEC	Aumento	0,1	ug/L	Aquat. Toxicol.94(3): 177- 185	2009
		Mytilus galloprovincialis	Água Salgada	7	Catalase	NOEC	Aumento	10	ug/L	Aquat. Toxicol.94(3): 177- 185	2009
		Mytilus galloprovincialis	Água Salgada	7	Glutationa S- transferase	NOEC	Aumento	10	ug/L		2009
		Mytilus galloprovincialis	Água Salgada	7	Dano	NOEC	Aumento	10	ug/L		2009
		Mytilus galloprovincialis	Água Salgada	7	Malondialdeid o	NOEC	Diminuição	0,1	ug/L	Aquat. Toxicol.94(3): 177- 185	2009
		Mytilus galloprovincialis	Água Salgada	7		NOEC	Aumento	0,1	ug/L		2009
		Dreissena polymorpha	Água doce	4		LOEC	Diminuição	237,9	nM	Aquat. Toxicol.105(3/4): 428-437	2011
		Dreissena polymorpha	Água doce	7	p- Glicoproteina mRNA	LOEC	Diminuição	0,235	nM	Aquat. Toxicol.105(3/4): 428-437	2011

E4	Nível Trófico	Emádica	Maia	Т	Efeite medide	Davê	Tendêcia	Valor	Unidade	Earta	A
Fármacos	Niver 1 rollico	Espécies	Meio	Tempo	Efeito medido	Parâmetro	1 endecia	Valor	Unidade	Fonte	Ano
		Dreissena polymorpha	Água doce	1	Catalase mRNA	LOEC	Diminuição	237,9	nM	Aquat. Toxicol.105(3/4): 428-437	2011
		Dreissena polymorpha	Água doce	7	Superoxido dismutase mRNA	LOEC	Diminuição	0,235	nM	Aquat. Toxicol.105(3/4): 428-437	2011
		Dreissena polymorpha	Água doce	1	Metalotioneina mRNA	NOEC	Diminuição	237,9	nM	Aquat. Toxicol.105(3/4): 428-437	2011
		Dreissena polymorpha	Água doce	1	Proteina fosfatase mRNA	NOEC	Diminuição	237,9	nM	Aquat. Toxicol.105(3/4): 428-437	2011
		Dreissena polymorpha	Água doce	1	p- Glicoproteina mRNA	NOEC	Aumento	237,9	nM	Aquat. Toxicol.105(3/4): 428-437	2011
		Dreissena polymorpha	Água doce	4	Metalotioneina mRNA	NOEC	Diminuição	237,9	nM	Aquat. Toxicol.105(3/4): 428-437	2011
		Dreissena polymorpha	Água doce	4	p- Glicoproteina mRNA	NOEC	Aumento	23,7	nM	Aquat. Toxicol.105(3/4): 428-437	2011
		Dreissena polymorpha	Água doce	4	Proteina fosfatase mRNA	NOEC	Aumento	237,9	nM	Aquat. Toxicol.105(3/4): 428-437	2011

Fármacos	Nível Trófico	Espécies	Meio	Tempo	Efeito medido	Parâmetro	Tendêcia	Valor	Unidade	Fonte	Ano
		Dreissena polymorpha	Água doce	4	Superoxido dismutase mRNA	NOEC	Aumento	237,9	nM	Aquat. Toxicol.105(3/4): 428-437	2011
		Dreissena polymorpha	Água doce	7	Superoxido dismutase mRNA	NOEC	Diminuição	237,9	nM	Aquat. Toxicol.105(3/4): 428-437	2011
		Dreissena polymorpha	Água doce	1	Glutationa S- transferase mRNA	NOEC	Diminuição	237,9	nM	Aquat. Toxicol.105(3/4): 428-437	2011
		Dreissena polymorpha	Água doce	1	Catalase mRNA	NOEC	Aumento	23,7	nM	Aquat. Toxicol.105(3/4): 428-437	2011
		Dreissena polymorpha	Água doce	1	Superoxido dismutase mRNA	NOEC	Aumento	237,9	nM	Aquat. Toxicol.105(3/4): 428-437	2011
		Dreissena polymorpha	Água doce	4	Proteina do receptor AhR	NOEC	Diminuição	237,9	nM	Aquat. Toxicol.105(3/4): 428-437	2011
		Dreissena polymorpha	Água doce	4	Catalase mRNA	NOEC	Diminuição	237,9	nM	Aquat. Toxicol.105(3/4): 428-437	2011
		Dreissena polymorpha	Água doce	4	Superoxido dismutase mRNA	NOEC	Diminuição	237,9	nM	Aquat. Toxicol.105(3/4): 428-437	2011

Fármacos	Nível Trófico	Espécies	Meio	Tempo	Efeito medido	Parâmetro	Tendêcia	Valor	Unidade	Fonte	Ano
		Dreissena polymorpha	Água doce	4	HSP70 mRNA	NOEC	Aumento	237,9	nM	Aquat. Toxicol.105(3/4): 428-437	2011
		Dreissena polymorpha	Água doce	4	Glutationa S- transferase mRNA	NOEC	Aumento	237,9	nM	Aquat. Toxicol.105(3/4): 428-437	2011
		Dreissena polymorpha	Água doce	7	Proteina do receptor AhR	NOEC	Diminuição	237,9	nM	Aquat. Toxicol.105(3/4): 428-437	2011
		Dreissena polymorpha	Água doce	7	Catalase mRNA	NOEC	Aumento	237,9	nM	Aquat. Toxicol.105(3/4): 428-437	2011
		Potamopyrgus antipodarum	Água doce	14	Progênia	NOEC	Diminuição	250	ug/L	In: K.Kummerer (Ed.), Pharmaceuticals in the Environment. Sources, Fate, Effects and Risks (2nd Ed), Springer, Heidelberg, Germany:195-208	2004
		Potamopyrgus	Água							In: K.Kummerer (Ed.), Pharmaceuticals in the Environment. Sources, Fate, Effects and Risks	

Fármacos	Nível Trófico	Espécies	Meio	Tempo	Efeito medido	Parâmetro	Tendêcia	Valor	Unidade	Fonte	Ano
		•		•						Heidelberg, Germany:195-208	
		Potamopyrgus antipodarum	Água doce	28	Progênia	NOEC	Diminuição	250	ug/L	In: K.Kummerer (Ed.), Pharmaceuticals in the Environment. Sources, Fate, Effects and Risks (2nd Ed), Springer, Heidelberg, Germany:195-208	2004
		•					3		C	In: K.Kummerer (Ed.), Pharmaceuticals in the Environment. Sources, Fate, Effects and Risks	
		Potamopyrgus antipodarum	Água doce	7	Progênia	NOEC	Diminuição	250	ug/L	(2nd Ed), Springer, Heidelberg, Germany:195-208	2004
			Água							In: K.Kummerer (Ed.), Pharmaceuticals in the Environment. Sources, Fate, Effects and Risks (2nd Ed), Springer, Heidelberg,	
		Lumbriculus variegatus	doce	4	Mortalidade	LC50	Aumento	4000	ug/L	Germany:195-208	2004

Fármacos	Nível Trófico	Espécies	Meio	Tempo	Efeito medido	Parâmetro	Tendêcia	Valor	Unidade	Fonte	Ano
	Consumidor secundario	Xenopus laevis	Água doce	4	Deformação	EC50	Aumento	100000	ug/L	Ecotoxicology15(8) : 647-656	2006
		Xenopus laevis	Água doce	4	Comprimento	LOEC	Diminuição	100000	ug/L	Ecotoxicology15(8) : 647-656	2006
		Xenopus laevis	Água doce	4	Comprimento	NOEC	Diminuição	100000	ug/L	Ecotoxicology15(8) : 647-656	2006
		Danio rerio	Água doce	29	Teratologia	EC50	Aumento	222	uM	Toxicology281(1-3): 25-36	2011
		Danio rerio	Água doce	3	Mortalidade	LC50	Aumento	245000	ug/L	Ecotoxicol. Environ. Saf.73(8): 1862-1866	2010
		Danio rerio	Água doce	29	Mortalidade	LC50	Aumento	500	uM	Toxicology281(1-3): 25-36	2011
		Oryzias latipes	Água doce	2	Mortalidade	LC50	Aumento	35400	ug/L	Environ. Int.33(3): 370-375	2007
		Oryzias latipes	Água doce	4	Mortalidade	LC50	Aumento	35400	ug/L	Environ. Int.33(3): 370-375	2007
		Oryzias latipes	Água doce	4	Mortalidade	LC50	Aumento	45870	ug/L	J. Toxicol. Sci.34(2): 227-232	2009
		Pimephales promelas	Água doce	28	Sobrevivência	LC50	Diminuição	862	ug/L	Arch. Environ. Contam. Toxicol.62(3): 455- 464	2012

Fármacos	Nível Trófico	Espécies	Meio	Tempo	Efeito medido	Parâmetro	Tendêcia	Valor	Unidade	Fonte	Ano
		Danio rerio	Água doce	10	Mortalidade / sobrevivência	LOEC	-	50000	ug/L	Ecotoxicol. Environ. Saf.55(3): 359-370	2003
		Danio rerio	Água doce	21	Número de espermatozóide s	LOEC	Diminuição	1780	ug/L	Aquat. Toxicol.105(3/4): 292-299	2011
		Oryzias latipes	Água doce	5	Tempo de alimentação	LOEC	Aumento	6150	ug/L	Chemosphere80(9): 1095-1100	2010
		Oryzias latipes	Água doce	6	Tempo de alimentação	LOEC	Aumento	6150	ug/L	Chemosphere80(9): 1095-1100	2010
		Oryzias latipes	Água doce	7	Tempo de alimentação	LOEC	Aumento	6150	ug/L	Chemosphere80(9): 1095-1100	2010
		Oryzias latipes	Água doce	8	Nado	LOEC	Diminuição	6150	ug/L	Chemosphere80(9): 1095-1100	2010
		Oryzias latipes	Água doce	8	Tempo de alimentação	LOEC	Aumento	6150	ug/L	Chemosphere80(9): 1095-1100	2010
		Oryzias latipes	Água doce	9	Nado	LOEC	Diminuição	6150	ug/L	Chemosphere80(9): 1095-1100	2010
		Oryzias latipes	Água doce	9	Tempo de alimentação	LOEC	Aumento	6150	ug/L	Chemosphere80(9): 1095-1100	2010
		Oryzias latipes	Água Salgada	1	Sobrevivência	LOEC	Diminuição	12	ng/egg	Chemosphere79:96 6-973	2010

		•				•					
Fármacos	Nível Trófico	Espécies	Meio	Tempo	Efeito medido	Parâmetro	Tendêcia	Valor	Unidade	Fonte	Ano
		Pimephales promelas	Água doce	28	Sobrevivência	LOEC	Diminuição	862	ug/L	Arch. Environ. Contam. Toxicol.62(3): 455- 464	2012
		Pimephales promelas	Água doce	28	Peso	LOEC	Diminuição	862	ug/L	Arch. Environ. Contam. Toxicol.62(3): 455- 464	2012
		Pimephales promelas	Água doce	18	Expressão gênica	LOEC	Alteração	100	ug/L	Comp. Biochem. Physiol. C Toxicol. Pharmacol.155(1): 109-120	2012
		Pimephales promelas	Água doce	14	Movimento	LOEC	Aumento	100	ug/L	Comp. Biochem. Physiol. C Toxicol. Pharmacol.155(1): 109-120	2012
		Pimephales promelas	Água doce	14	Movimento	LOEC	Aumento	100	ug/L	Comp. Biochem. Physiol. C Toxicol. Pharmacol.155(1): 109-120	2012
		Danio rerio	Água doce	10	Mortalidade / sobrevivência	NOEC	-	25000	ug/L	Ecotoxicol. Environ. Saf.55(3): 359-370	2003
		Danio rerio	Água doce	21	Razão do peso do órgão vs corpo	NOEC	Aumento	1780	ug/L	Environ. Toxicol. Pharmacol.34(1): 34-45	2012

E4	Nível Trófico	Emérica	Maia	Т	Efeite medide	Do 2	Tandâsia	Valor	Tiuidada	Earta	A
Fármacos	Nivel Tronco	Espécies	Meio	Tempo	Efeito medido	Parâmetro	Tendêcia	Valor	Unidade	Fonte	Ano
	1	Danio rerio	Água doce	21	Razão do peso do órgão vs corpo	NOEC	Aumento	1780	ug/L	Environ. Toxicol. Pharmacol.34(1): 34-45	2012
	1	Danio rerio	Água doce	21	Volume sanguíneo	NOEC	Aumento	1780	ug/L	Environ. Toxicol. Pharmacol.34(1): 34-45	2012
	1	Danio rerio	Água doce	21	Volume sanguíneo	NOEC	Aumento	1780	ug/L	Environ. Toxicol. Pharmacol.34(1): 34-45	2012
	1	Danio rerio	Água doce	21	Mortalidade	NOEC	-	1780	ug/L	Environ. Toxicol. Pharmacol.34(1): 34-45	2012
	1	Danio rerio	Água doce	21	Volume sanguíneo	NOEC	Diminuição	1780	ug/L	Environ. Toxicol. Pharmacol.34(1): 34-45	2012
	1	Danio rerio	Água doce	21	Volume sanguíneo	NOEC	Aumento	1780	ug/L	Environ. Toxicol. Pharmacol.34(1): 34-45	2012
	1	Danio rerio	Água doce	21	Contagem de célula germinativa	NOEC	Diminuição	1780	ug/L	Aquat. Toxicol.105(3/4): 292-299	2011
	1	Danio rerio	Água doce	21	Taxa	NOEC	Diminuição	1780	ug/L	Aquat. Toxicol.105(3/4): 292-299	2011

		*			•						
Fármacos	Nível Trófico	Espécies	Meio	Tempo	Efeito medido	Parâmetro	Tendêcia	Valor	Unidade	Fonte	Ano
	I	Danio rerio	Água doce	21	Oocitos totalmente desenvolvidos	NOEC	Diminuição	1780	ug/L	Aquat. Toxicol.105(3/4): 292-299	2011
	L	Danio rerio	Água doce	21	Oocitos totalmente desenvolvidos	NOEC	Diminuição	1780	ug/L	Aquat. Toxicol.105(3/4): 292-299	2011
	L	Danio rerio	Água doce	21	Oocitos totalmente desenvolvidos	NOEC	Diminuição	1780	ug/L	Aquat. Toxicol.105(3/4): 292-299	2011
	L	Danio rerio	Água doce	21	Oocitos totalmente desenvolvidos	NOEC	Diminuição	1780	ug/L	Aquat. Toxicol.105(3/4): 292-299	2011
	L	Danio rerio	Água doce	21	Oocitos totalmente desenvolvidos	NOEC	Aumento	1780	ug/L	Aquat. Toxicol.105(3/4): 292-299	2011
	L	Danio rerio	Água doce	21	Oocitos totalmente desenvolvidos	NOEC	Aumento	1780	ug/L	Aquat. Toxicol.105(3/4): 292-299	2011
	I	Danio rerio	Água doce	21	Razão do peso do órgão vs corpo	NOEC	Aumento	1780	ug/L	Aquat. Toxicol.105(3/4): 292-299	2011
	I	Danio rerio	Água doce	21	Contagem de célula germinativa	NOEC	Diminuição	1780	ug/L	Aquat. Toxicol.105(3/4): 292-299	2011

Tabela 17 Revisão de literatura para os efeitos ecotoxicológicos de fármacos psiquiátricos em organismos aquáticos.

		•			•	•		•			
Fármacos	Nível Trófico	Espécies	Meio	Tempo	Efeito medido	Parâmetro	Tendêcia	Valor	Unidade	Fonte	Ano
	1	Danio rerio	Água doce	21	Taxa	NOEC	Diminuição	1780	ug/L	Aquat. Toxicol.105(3/4): 292-299	2011
	1	Danio rerio	Água doce	21	Espermatogôni a	NOEC	Diminuição	1780	ug/L	Aquat. Toxicol.105(3/4): 292-299	2011
	1	Danio rerio	Água doce	21	Taxa	NOEC	Aumento	1780	ug/L	Aquat. Toxicol.105(3/4): 292-299	2011
	1	Danio rerio	Água doce	21	Espermatócitos	NOEC	Aumento	1780	ug/L	Aquat. Toxicol.105(3/4): 292-299	2011
	1	Danio rerio	Água doce	21	Razão do peso do órgão vs corpo	NOEC	Aumento	1780	ug/L	Aquat. Toxicol.105(3/4): 292-299	2011
	1	Danio rerio	Água doce	21	Indice de condição	NOEC	Aumento	1780	ug/L	Environ. Toxicol. Pharmacol.34(1): 34-45	2012
	1	Danio rerio	Água doce	21	Indice de condição	NOEC	Aumento	1780	ug/L	Environ. Toxicol. Pharmacol.34(1): 34-45	2012
	1	Danio rerio	Água doce	21	Comprimento	NOEC	Aumento	1780	ug/L	Environ. Toxicol. Pharmacol.34(1): 34-45	2012

Fármacos	Nível Trófico	Espécies	Meio	Tempo	Efeito medido	Parâmetro	Tendêcia	Valor	Unidade	Fonte	Ano
		Danio rerio	Água doce	21	Comprimento	NOEC	Aumento	1780	ug/L	Environ. Toxicol. Pharmacol.34(1): 34-45	2012
		Danio rerio	Água doce	21	Peso	NOEC	Aumento	1780	ug/L	Environ. Toxicol. Pharmacol.34(1): 34-45	2012
		Danio rerio	Água doce	21	Peso	NOEC	Aumento	1780	ug/L	Environ. Toxicol. Pharmacol.34(1): 34-45	2012
		Oryzias latipes	Água doce	5	Nado	NOEC	Diminuição	6150	ug/L	Chemosphere80(9): 1095-1100	2010
		Oryzias latipes	Água doce	6	Nado	NOEC	Diminuição	6150	ug/L	Chemosphere80(9): 1095-1100	2010
		Oryzias latipes	Água doce	7	Nado	NOEC	Diminuição	6150	ug/L	Chemosphere80(9): 1095-1100	2010
		Oryzias latipes	Água Salgada	1	Proteina de ligação à tributiltina 1 mRNA	NOEC	Diminuição	61500	ug/L	Zool. Sci.28(4): 281-285	2011
		Oryzias latipes	Água Salgada	1	Sobrevivência	NOEC	Diminuição	5	ng/egg	Chemosphere79:96 6-973	2010
		Oryzias latipes	Água Salgada	4	Frequência cardíaca	NOEC	Aumento	12	ng/egg	Chemosphere79:96 6-973	2010

Fármacos	Nível Trófico	Espécies	Meio	Tempo	Efeito medido	Parâmetro	Tendêcia	Valor	Unidade	Fonte	Ano
		Oryzias latipes	Água Salgada	6	Frequência cardíaca	NOEC	Diminuição	12	ng/egg	Chemosphere79:96 6-973	2010
		Pimephales promelas	Água doce	28	Sobrevivência	NOEC	Diminuição	862	ug/L	Arch. Environ. Contam. Toxicol.62(3): 455- 464	2012
		Pimephales promelas	Água doce	28	Peso	NOEC	Diminuição	862	ug/L	Arch. Environ. Contam. Toxicol.62(3): 455- 464	2012
		Pimephales promelas	Água doce	14	Orientação	NOEC	Aumento	100	ug/L	Comp. Biochem. Physiol. C Toxicol. Pharmacol.155(1): 109-120	2012
		Cyprinus carpio	Água doce	28	Edema	LOEC	Aumento	1	ug/L	Anal. Bioanal. Chem.387(4): 1405- 1416	2007
		Cyprinus carpio	Água doce	28	Alteração histológica	LOEC	Aumento	20	ug/L	Anal. Bioanal. Chem.387(4): 1405- 1416	2007
		Cyprinus carpio	Água doce	28	Proliferação	LOEC	Aumento	20	ug/L	Anal. Bioanal. Chem.387(4): 1405- 1416	2007
		Cyprinus carpio	Água doce	28	Alteração histológica	LOEC	Aumento	1	ug/L	Anal. Bioanal. Chem.387(4): 1405-	2007

Fármacos	Nível Trófico	Espécies	Meio	Tempo	Efeito medido	Parâmetro	Tendêcia	Valor	Unidade	Fonte	Ano
										1416	
										Anal. Bioanal.	
			Água		Alteração					Chem.387(4): 1405-	
		Cyprinus carpio	doce	28	histológica	LOEC	Aumento	100	ug/L	1416	2007
			Água							Chemosphere80(5):	
		Cyprinus carpio	doce	2h	Motilidade	LOEC	Diminuição	2000	ug/L	530-534	2010
			Água		Glutationa					Chemosphere80(5):	
		Cyprinus carpio	doce	2h	peroxidase	LOEC	Diminuição	2000	ug/L	530-534	2010
			Água		Glutationa					Chemosphere80(5):	
		Cyprinus carpio	doce	2h	reditase	LOEC	Diminuição	20000	ug/L	530-534	2010
			Água		Superoxido					Chemosphere80(5):	
		Cyprinus carpio	doce	2h	dismutase	LOEC	Diminuição	2000	ug/L	530-534	2010
			Água							Chemosphere80(5):	
		Cyprinus carpio	doce	2h	Velocidade	LOEC	Diminuição	200	ug/L	530-534	2010
					Teor de						
			Água		proteína					Chemosphere80(5):	
		Cyprinus carpio	doce	2h	carbonil	LOEC	Aumento	20000	ug/L		2010
			Água							Chemosphere80(5):	
		Cyprinus carpio	doce	2h	TBAR	LOEC	Aumento	200	ug/L	530-534	2010
										Anal. Bioanal.	
			Água							Chem.387(4): 1405-	
		Cyprinus carpio	doce	28	Proliferação	NOEC	Aumento	5	ug/L	1416	2007

		•			•	•		•			
Fármacos	Nível Trófico	Espécies	Meio	Tempo	Efeito medido	Parâmetro	Tendêcia	Valor	Unidade	Fonte	Ano
			doce		histológica					Chem.387(4): 1405- 1416	
		Cyprinus carpio	Água doce	2h	Motilidade	NOEC	Diminuição	200	ug/L	Chemosphere80(5): 530-534	2010
		Cyprinus carpio	Água doce	2h	Glutationa peroxidase	NOEC	Diminuição	200	ug/L	Chemosphere80(5): 530-534	2010
		Cyprinus carpio	Água doce	2h	Velocidade	NOEC	Diminuição	200	ug/L	Chemosphere80(5): 530-534	2010
		Cyprinus carpio	Água doce	2h	Viabilidade	NOEC	Diminuição	20000	ug/L	Chemosphere80(5): 530-534	2010
		Cyprinus carpio	Água doce	2h	Teor de proteína carbonil	NOEC	Aumento	2000	ug/L	Chemosphere80(5): 530-534	2010
		Cyprinus carpio	Água doce	2h	Glutationa reditase	NOEC	Aumento	2000	ug/L	Chemosphere80(5): 530-534	2010
		Cyprinus carpio	Água doce	2h	Superoxido dismutase	NOEC	Aumento	200	ug/L	Chemosphere80(5): 530-534	2010
		Oncorhynchus mykiss	Água doce	4	Mortalidade	LC50	Aumento	19900	ug/L	Ecotoxicol. Environ. Saf.74(3): 319-327	2011
		Oncorhynchus mykiss	Água doce	42	Sódio potássio ATPase	LOEC	Diminuição	180	ug/L	Ecotoxicology19(5) : 872-878	2010
		Oncorhynchus mykiss	Água	42	Taxa de RNA e	LOEC	Diminuição	1780	ug/L	Ecotoxicology19(5)	2010

Fánnagag	Nível Trófico	Egnásica	Meio	Towns	Efeito medido	Donômotno	Tendêcia	Volem	Unidade	Eonto	Ano
Fármacos	Niver Fronco	Espécies	doce	Tempo	DNA	Parâmetro	Tendecia	Valor	Ullidade	Fonte : 872-878	Ano
		Oncorhynchus mykiss	Água doce	42	Catalase	LOEC	Aumento	180	ug/L	Ecotoxicology19(5) : 872-878	2010
		Oncorhynchus mykiss	Água doce	42	Glutationa peroxidase	LOEC	Aumento	180	ug/L	Ecotoxicology19(5) : 872-878	2010
		Oncorhynchus mykiss	Água doce	42	Sódio potássio ATPase	LOEC	Diminuição	180	ug/L	J. Appl. Toxicol.30(3): 197- 203	2010
		Oncorhynchus mykiss	Água doce	42	Taxa de RNA e DNA	LOEC	Diminuição	1780	ug/L	J. Appl. Toxicol.30(3): 197- 203	2010
		Oncorhynchus mykiss	Água doce	42	Teor de proteína carbonil	LOEC	Aumento	180	ug/L	J. Appl. Toxicol.30(3): 197- 203	2010
		Oncorhynchus mykiss	Água doce	42	TBAR	LOEC	Aumento	1780	ug/L	J. Appl. Toxicol.30(3): 197- 203	2010
		Oncorhynchus mykiss	Água doce	42	Catalase	LOEC	Aumento	180	ug/L	J. Appl. Toxicol.30(3): 197- 203	2010
		Oncorhynchus mykiss	Água doce	42	Glutationa peroxidase	LOEC	Aumento	180	ug/L	J. Appl. Toxicol.30(3): 197- 203	2010
		Oncorhynchus mykiss	Água	42	Superoxido	LOEC	Aumento	180	ug/L	J. Appl.	2010

Fárma aga	Nível Trófico	Egyágiag	Moio	Towns	Efaita madida	Donômotno	Tandâsia	Volen	Unidada	Fonto	Ana
Fármacos	Nivel 1 ronco	Espécies	Meio doce	Tempo	dismutase	Parâmetro	Tendêcia	Valor	Unidade	Fonte Toxicol.30(3): 197- 203	Ano
		Oncorhynchus mykiss	Água doce	42	Indice de condição	LOEC	Diminuição	1780	ug/L	J. Appl. Toxicol.30(3): 197- 203	2010
		Oncorhynchus mykiss	Água doce	4	Linfócitos	LOEC	Diminuição	19900	ug/L	Ecotoxicol. Environ. Saf.74(3): 319-327	2011
		Oncorhynchus mykiss	Água doce	4	Volume significativo corpuscular	LOEC	Diminuição	19900	ug/L	Ecotoxicol. Environ. Saf.74(3): 319-327	2011
		Oncorhynchus mykiss	Água doce	4	Linfócitos	LOEC	Diminuição	19900	ug/L	Ecotoxicol. Environ. Saf.74(3): 319-327	2011
		Oncorhynchus mykiss	Água doce	4	Neutrófilos	LOEC	Aumento	19900	ug/L	Ecotoxicol. Environ. Saf.74(3): 319-327	2011
		Oncorhynchus mykiss	Água doce	4	Neutrófilos	LOEC	Aumento	19900	ug/L	Ecotoxicol. Environ. Saf.74(3): 319-327	2011
		Oncorhynchus mykiss	Água doce	4	Monócitos	LOEC	Aumento	19900	ug/L	Ecotoxicol. Environ. Saf.74(3): 319-327	2011
		Oncorhynchus mykiss	Água doce	4	Hemoglobina	LOEC	Aumento	19900	ug/L	Ecotoxicol. Environ. Saf.74(3):	2011

Fármacos	Nível Trófico	Espécies	Meio	Tempo	Efeito medido	Parâmetro	Tendêcia	Valor	Unidade	Fonte	Ano
Farmacos	Trivel Holico	Especies	WICIO	Tempo	Eleito medido	1 at afficti 0	Tenuccia	v alui	Omuauc	319-327	Allo
			Água		Concentração					Ecotoxicol. Environ. Saf.74(3):	
		Oncorhynchus mykiss	doce	4	hemoglobina	LOEC	Aumento	19900	ug/L	319-327	2011
		Oncorhynchus mykiss	Água doce	4	Monócitos	LOEC	Aumento	19900	ug/L	Ecotoxicol. Environ. Saf.74(3): 319-327	2011
			Água							Ecotoxicol. Environ. Saf.74(3):	
		Oncorhynchus mykiss	doce	4	Neutrófilos	LOEC	Aumento	19900	ug/L	319-327 Ecotoxicol.	2011
		Oncorhynchus mykiss	Água doce	4	Neutrófilos	LOEC	Aumento	19900	ug/L		2011
		Oncorhynchus mykiss	Água doce	4	Hemácias	LOEC	Aumento	19900	ug/L	Ecotoxicol. Environ. Saf.74(3): 319-327	2011
		Oncorhynchus mykiss	Água doce	7	Hemoglobina	LOEC	Aumento	2000	ug/L	ChemBiol. Interact.183(1): 98- 104	2010
		Oncorhynchus myliss	Água doce	21	Catalase	LOEC	Diminuição	2000	ug/I	Comp. Biochem. Physiol. C Toxicol. Pharmacol.151(1): 137-141	2010
		Oncorhynchus mykiss Oncorhynchus mykiss	Água		Glutationa		Diminuição Diminuição		ug/L	Comp. Biochem.	
		Oncorhynchus mykiss	doce	21	reditase	LOEC	Diminuição	2000	ug/L	Physiol. C Toxicol.	2010

Fármacos	Nível Trófico	Espécies	Meio	Tempo	Efeito medido	Parâmetro	Tendêcia	Valor	Unidade	Fonte	Ano
Farmacos	Niver Fronco	Especies	Wielo	тетро	Efeito medido	rarametro	1 enuecia	v alui	Umdade	Pharmacol.151(1): 137-141	Allo
		Oncorhynchus mykiss	Água doce	21	Superoxido dismutase	LOEC	Diminuição	2000	ug/L	Comp. Biochem. Physiol. C Toxicol. Pharmacol.151(1): 137-141	2010
		Oncorhynchus mykiss	Água doce	21	Teor de proteína carbonil	LOEC	Aumento	200	ug/L	Comp. Biochem. Physiol. C Toxicol. Pharmacol.151(1): 137-141	2010
		Oncorhynchus mykiss	Água doce	21	TBAR	LOEC	Aumento	2000	ug/L	Comp. Biochem. Physiol. C Toxicol. Pharmacol.151(1): 137-141	2010
		Oncorhynchus mykiss	Água doce	4	Catalase	LOEC	Diminuição	19900	ug/L		2011
		Oncorhynchus mykiss	Água doce	4	Glutationa peroxidase	LOEC	Diminuição	19900	ug/L	Ecotoxicol. Environ. Saf.74(3): 319-327	2011
		Oncorhynchus mykiss	Água doce	4	Glutationa reditase	LOEC	Diminuição	19900	ug/L	Ecotoxicol. Environ. Saf.74(3): 319-327	2011
		Oncorhynchus mykiss	Água doce	4	Superoxido dismutase	LOEC	Diminuição	19900	ug/L	Ecotoxicol. Environ. Saf.74(3): 319-327	2011

Fármacos	Nível Trófico	Espécies	Meio	Tempo	Efeito medido	Parâmetro	Tendêcia	Valor	Unidade	Fonte	Ano
		Oncorhynchus mykiss	Água doce	4	Teor de proteína carbonil	LOEC	Aumento	19900	ug/L	Ecotoxicol. Environ. Saf.74(3): 319-327	2011
		Oncorhynchus mykiss	Água doce	4	TBAR	LOEC	Aumento	19900	ug/L	Ecotoxicol. Environ. Saf.74(3): 319-327	2011
		Oncorhynchus mykiss	Água doce	42	Glutationa	LOEC	Diminuição	200	ug/L	Comp. Biochem. Physiol. C Toxicol. Pharmacol.151(1): 137-141	2010
		Oncorhynchus mykiss	Água doce	42	Catalase	LOEC	Diminuição	200	ug/L	Comp. Biochem. Physiol. C Toxicol. Pharmacol.151(1): 137-141	2010
		Oncorhynchus mykiss	Água doce	42	Glutationa peroxidase	LOEC	Diminuição	200	ug/L	Comp. Biochem. Physiol. C Toxicol. Pharmacol.151(1): 137-141	2010
		Oncorhynchus mykiss	Água doce	42	Glutationa reditase	LOEC	Diminuição	200	ug/L	Comp. Biochem. Physiol. C Toxicol. Pharmacol.151(1): 137-141	2010
		Oncorhynchus mykiss	Água doce	42	Superoxido dismutase	LOEC	Diminuição	200	ug/L	Comp. Biochem. Physiol. C Toxicol. Pharmacol.151(1): 137-141	2010

Fármacos	Nível Trófico	Espécies	Meio	Tempo	Efeito medido	Parâmetro	Tendêcia	Valor	Unidade	Fonte	Ano
		Oncorhynchus mykiss	Água doce	42	Teor de proteína carbonil	LOEC	Aumento	200	ug/L	Comp. Biochem. Physiol. C Toxicol. Pharmacol.151(1): 137-141	2010
		Oncorhynchus mykiss	Água doce	42	TBAR	LOEC	Aumento	200	ug/L	Comp. Biochem. Physiol. C Toxicol. Pharmacol.151(1): 137-141	2010
		Oncorhynchus mykiss	Água doce	7	Catalase	LOEC	Aumento	2000	ug/L	Comp. Biochem. Physiol. C Toxicol. Pharmacol.151(1): 137-141	2010
		Oncorhynchus mykiss	Água doce	21	Catalase	LOEC	Diminuição	200	ug/L	Chemosphere 77(11): 1476-1481	2009
		Oncorhynchus mykiss	Água doce	21	Glutationa peroxidase	LOEC	Diminuição	2000	ug/L	Chemosphere77(11) : 1476-1481	2009
		Oncorhynchus mykiss	Água doce	21	Glutationa reditase	LOEC	Diminuição	200	ug/L	Chemosphere77(11): 1476-1481	2009
		Oncorhynchus mykiss	Água doce	21	Superoxido dismutase	LOEC	Diminuição	2000	ug/L	Chemosphere77(11) : 1476-1481	2009
		Oncorhynchus mykiss	Água doce	21	Teor de proteína carbonil	LOEC	Aumento	200	ug/L	Chemosphere77(11) : 1476-1481	2009
		Oncorhynchus mykiss	Água	21	TBAR	LOEC	Aumento	200	ug/L	Chemosphere77(11)	2009

Fármacos	Nível Trófico	Espécies	Meio	Tempo	Efeito medido	Parâmetro	Tendêcia	Valor	Unidade	Fonte	Ano
1 ai macos	TAIVEL TTORICO	Especies	doce	1 cmpo	Eletto medido	1 at affect 0	Tenuccia	v alui	Cilidade	: 1476-1481	Allo
		Oncorhynchus mykiss	Água doce	4	Catalase	LOEC	Diminuição	19900	ug/L	Ecotoxicol. Environ. Saf.74(3): 319-327	2011
		Oncorhynchus mykiss	Água doce	4	Glutationa peroxidase	LOEC	Diminuição	19900	ug/L	Ecotoxicol. Environ. Saf.74(3): 319-327	2011
		Oncorhynchus mykiss	Água doce	4	Glutationa reditase	LOEC	Diminuição	19900	ug/L	Ecotoxicol. Environ. Saf.74(3): 319-327	2011
		Oncorhynchus mykiss	Água doce	4	Superoxido dismutase	LOEC	Diminuição	19900	ug/L	Ecotoxicol. Environ. Saf.74(3): 319-327	2011
		Oncorhynchus mykiss	Água doce	4	Teor de proteína carbonil	LOEC	Aumento	19900	ug/L	Ecotoxicol. Environ. Saf.74(3): 319-327	2011
		Oncorhynchus mykiss	Água doce	4	TBAR	LOEC	Aumento	19900	ug/L	Ecotoxicol. Environ. Saf.74(3): 319-327	2011
		Oncorhynchus mykiss	Água doce	42	Glutationa	LOEC	Diminuição	200	ug/L	Chemosphere77(11) : 1476-1481	2009
		Oncorhynchus mykiss	Água doce	42	Catalase	LOEC	Diminuição	200	ug/L	Chemosphere77(11) : 1476-1481	2009
		Oncorhynchus mykiss	Água	42	Glutationa	LOEC	Diminuição	200	ug/L	Chemosphere77(11)	2009

						-					
Fármacos	Nível Trófico	Espécies	Meio	Tempo	Efeito medido	Parâmetro	Tendêcia	Valor	Unidade	Fonte	Ano
			doce		peroxidase					: 1476-1481	
		Oncorhynchus mykiss	Água doce	42	Glutationa reditase	LOEC	Diminuição	200	ug/L	Chemosphere77(11) : 1476-1481	2009
		Oncorhynchus mykiss	Água doce	42	Sódio potássio ATPase	LOEC	Diminuição	200	ug/L	Chemosphere77(11) : 1476-1481	2009
		Oncorhynchus mykiss	Água doce	42	Superoxido dismutase	LOEC	Diminuição	200	ug/L	Chemosphere77(11) : 1476-1481	2009
		Oncorhynchus mykiss	Água doce	42	Teor de proteína carbonil	LOEC	Aumento	200	ug/L	Chemosphere77(11) : 1476-1481	2009
		Oncorhynchus mykiss	Água doce	42	TBAR	LOEC	Aumento	200	ug/L	Chemosphere77(11) : 1476-1481	2009
		Oncorhynchus mykiss	Água doce	4	Catalase	LOEC	Aumento	19900	ug/L	Ecotoxicol. Environ. Saf.74(3): 319-327	2011
		Oncorhynchus mykiss	Água doce	4	Glutationa reditase	LOEC	Aumento	19900	ug/L	Ecotoxicol. Environ. Saf.74(3): 319-327	2011
		Oncorhynchus mykiss	Água doce	21	TBAR	LOEC	Aumento	200	ug/L	ChemBiol. Interact.183(1): 98- 104	2010
		Oncorhynchus mykiss	Água doce	21	Catalase	LOEC	Aumento	200	ug/L	ChemBiol. Interact.183(1): 98- 104	2010

Fármacos	Nível Trófico	Espécies	Meio	Tempo	Efeito medido	Parâmetro	Tendêcia	Valor	Unidade	Fonte	Ano
		Oncorhynchus mykiss	Água doce	21	Glutationa peroxidase	LOEC	Aumento	200	ug/L	ChemBiol. Interact.183(1): 98- 104	2010
		Oncorhynchus mykiss	Água doce	21	Glutationa reditase	LOEC	Aumento	200	ug/L	ChemBiol. Interact.183(1): 98- 104	2010
		Oncorhynchus mykiss	Água doce	21	Superoxido dismutase	LOEC	Aumento	2000	ug/L	ChemBiol. Interact.183(1): 98- 104	2010
		Oncorhynchus mykiss	Água doce	4	Catalase	LOEC	Aumento	19900	ug/L	Ecotoxicol. Environ. Saf.74(3): 319-327	2011
		Oncorhynchus mykiss	Água doce	4	Glutationa peroxidase	LOEC	Aumento	19900	ug/L	Ecotoxicol. Environ. Saf.74(3): 319-327	2011
		Oncorhynchus mykiss	Água doce	4	Glutationa reditase	LOEC	Aumento	19900	ug/L	Ecotoxicol. Environ. Saf.74(3): 319-327	2011
		Oncorhynchus mykiss	Água doce	4	Superoxido dismutase	LOEC	Aumento	19900	ug/L	Ecotoxicol. Environ. Saf.74(3): 319-327	2011
		Oncorhynchus mykiss	Água doce	42	Teor de proteína carbonil	LOEC	Aumento	2000	ug/L	ChemBiol. Interact.183(1): 98- 104	2010

T-(N/1/T/@	Time Callery	N	T	T20.24 32 3 .	D^	// // // // // // // // // // // // //	37-1	TI	E	A
Fármacos	Nível Trófico	Espécies	Meio	Tempo	Efeito medido	Parâmetro	Tendêcia	Valor	Unidade	Fonte	Ano
		Oncorhynchus mykiss	Água doce	42	TBAR	LOEC	Aumento	200	ug/L	ChemBiol. Interact.183(1): 98- 104	2010
		Oncorhynchus mykiss	Água doce	42	Catalase	LOEC	Aumento	200	ug/L	ChemBiol. Interact.183(1): 98- 104	2010
		Oncorhynchus mykiss	Água doce	4	Catalase	LOEC	Aumento	19900	ug/L	Ecotoxicol. Environ. Saf.74(3): 319-327	2011
		Oncorhynchus mykiss	Água doce	4	Glutationa peroxidase	LOEC	Aumento	19900	ug/L	Ecotoxicol. Environ. Saf.74(3): 319-327	2011
		Oncorhynchus mykiss	Água doce	4	Superoxido dismutase	LOEC	Aumento	19900	ug/L	Ecotoxicol. Environ. Saf.74(3): 319-327	2011
		Oncorhynchus mykiss	Água doce	21	Amonia	LOEC	Aumento	200	ug/L	ChemBiol. Interact.183(1): 98- 104	2010
		Oncorhynchus mykiss	Água doce	21	Glicose	LOEC	Aumento	1	ug/L	ChemBiol. Interact.183(1): 98- 104	2010
		Oncorhynchus mykiss	Água doce	21	Alanina transaminase (ALT)	LOEC	Aumento	200	ug/L	ChemBiol. Interact.183(1): 98- 104	2010

Fármacos	Nível Trófico	Espécies	Meio	Tempo	Efeito medido	Parâmetro	Tendêcia	Valor	Unidade	Fonte	Ano
		Oncorhynchus mykiss	Água doce	21	Creatina quinase	LOEC	Aumento	1	ug/L	ChemBiol. Interact.183(1): 98- 104	2010
		Oncorhynchus mykiss	Água doce	21	Lactato desidrogenase	LOEC	Aumento	1	ug/L	ChemBiol. Interact.183(1): 98- 104	2010
		Oncorhynchus mykiss	Água doce	4	Amonia	LOEC	Aumento	19900	ug/L	Ecotoxicol. Environ. Saf.74(3): 319-327	2011
		Oncorhynchus mykiss	Água doce	4	Glicose	LOEC	Aumento	19900	ug/L	Ecotoxicol. Environ. Saf.74(3): 319-327	2011
		Oncorhynchus mykiss	Água doce	4	Alanina transaminase (ALT)	LOEC	Aumento	19900	ug/L	Ecotoxicol. Environ. Saf.74(3): 319-327	2011
		Oncorhynchus mykiss	Água doce	4	Aspartato aminotransfera se	LOEC	Aumento	19900	ug/L	Ecotoxicol. Environ. Saf.74(3): 319-327	2011
		Oncorhynchus mykiss	Água doce	4	Creatina quinase	LOEC	Aumento	19900	ug/L	Ecotoxicol. Environ. Saf.74(3): 319-327	2011
		Oncorhynchus mykiss	Água doce	4	Lactato desidrogenase	LOEC	Aumento	19900	ug/L	Ecotoxicol. Environ. Saf.74(3):	2011

Fármacos	Nível Trófico	Espécies	Meio	Tempo	Efeito medido	Parâmetro	Tendêcia	Valor	Unidade	Fonte	Ano
										319-327	
		Oncorhynchus mykiss	Água doce	42	Amonia	LOEC	Aumento	200	ug/L	ChemBiol. Interact.183(1): 98- 104	2010
		Oncomynenus myniss	docc	72	7 Infomu	Lone	rumento	200	ug/L		2010
		Oncorhynchus mykiss	Água doce	42	Glicose	LOEC	Aumento	1	ug/L	ChemBiol. Interact.183(1): 98- 104	2010
		Oncorhynchus mykiss	Água doce	42	Alanina transaminase (ALT)	LOEC	Aumento	200	ug/L	ChemBiol. Interact.183(1): 98- 104	2010
		Oncornymentals myntass	4000	.2	(1121)	Loke	ramento	200	45/1		2010
		Oncorhynchus mykiss	Água doce	42	Creatina quinase	LOEC	Aumento	1	ug/L	ChemBiol. Interact.183(1): 98- 104	2010
		Oncorhynchus mykiss	Água doce	42	Lactato desidrogenase	LOEC	Aumento	1	ug/L	ChemBiol. Interact.183(1): 98- 104	2010
		Oncorhynchus mykiss	Água doce	7	Amonia	LOEC	Aumento	200	ug/L	ChemBiol. Interact.183(1): 98- 104	2010
		Oncorhynchus mykiss	Água doce	7	Glicose	LOEC	Aumento	200	ug/L	ChemBiol. Interact.183(1): 98- 104	2010
		22,		,		_320		230	<i></i> 9/12		2310
		Oncorhynchus mykiss	Água doce	7	Alanina transaminase (ALT)	LOEC	Aumento	200	ug/L	ChemBiol. Interact.183(1): 98- 104	2010

Fármacos	Nível Trófico	Espécies	Meio	Tempo	Efeito medido	Parâmetro	Tendêcia	Valor	Unidade	Fonte	Ano
		Oncorhynchus mykiss	Água doce	7	Creatina quinase	LOEC	Aumento	1	ug/L	ChemBiol. Interact.183(1): 98- 104	2010
		Oncorhynchus mykiss	Água doce	7	Lactato desidrogenase	LOEC	Aumento	1	ug/L	ChemBiol. Interact.183(1): 98- 104	2010
		Salmo salar	Água doce	5	Genética	LOEC	Aumento	7,85	ug/L	Environ. Sci. Pollut. Res.17(4): 917-933	2010
		Oncorhynchus mykiss	Água doce	42	Amilase	NOEC	Diminuição	1780	ug/L	Ecotoxicology19(5) : 872-878	2010
		Oncorhynchus mykiss	Água doce	42	Catalase	NOEC	Diminuição	0,89	ug/L	Ecotoxicology19(5) : 872-878	2010
		Oncorhynchus mykiss	Água doce	42	Atividade proteolítica	NOEC	Diminuição	1780	ug/L	Ecotoxicology19(5) : 872-878	2010
		Oncorhynchus mykiss	Água doce	42	Superoxido dismutase	NOEC	Diminuição	1780	ug/L	Ecotoxicology19(5) : 872-878	2010
		Oncorhynchus mykiss	Água doce	42	Taxa de RNA e DNA	NOEC	Diminuição	180	ug/L	Ecotoxicology19(5) : 872-878	2010
		Oncorhynchus mykiss	Água doce	42	Glutationa peroxidase	NOEC	Aumento	0,89	ug/L	Ecotoxicology19(5) : 872-878	2010
		Oncorhynchus mykiss	Água doce	42	Glutationa reditase	NOEC	Aumento	1780	ug/L	Ecotoxicology19(5) : 872-878	2010

Fármacos	Nível Trófico	Espécies	Meio	Тетро	Efeito medido	Parâmetro	Tendêcia	Valor	Unidade	Fonte	Ano
		Oncorhynchus mykiss	Água doce	42	Sódio potássio ATPase	NOEC	Aumento	0,89	ug/L	Ecotoxicology19(5) : 872-878	2010
		Oncorhynchus mykiss	Água doce	42	Razão do peso do órgão vs corpo	NOEC	Diminuição	1780	ug/L	J. Appl. Toxicol.30(3): 197- 203	2010
		Oncorhynchus mykiss	Água doce	42	Teor de proteína carbonil	NOEC	Diminuição	0,89	ug/L	J. Appl. Toxicol.30(3): 197- 203	2010
		Oncorhynchus mykiss	Água doce	42	Catalase	NOEC	Diminuição	0,89	ug/L	J. Appl. Toxicol.30(3): 197- 203	2010
		Oncorhynchus mykiss	Água doce	42	Taxa de RNA e DNA	NOEC	Diminuição	180	ug/L	J. Appl. Toxicol.30(3): 197- 203	2010
		Oncorhynchus mykiss	Água doce	42	TBAR	NOEC	Aumento	180	ug/L	J. Appl. Toxicol.30(3): 197- 203	2010
		Oncorhynchus mykiss	Água doce	42	Glutationa peroxidase	NOEC	Aumento	0,89	ug/L	J. Appl. Toxicol.30(3): 197- 203	2010
		Oncorhynchus mykiss	Água doce	42	Sódio potássio ATPase	NOEC	Aumento	0,89	ug/L	J. Appl. Toxicol.30(3): 197- 203	2010
		Oncorhynchus mykiss	Água	42	Superoxido	NOEC	Aumento	0,89	ug/L	J. Appl.	2010

Fármacos	Nível Trófico	Espécies	Meio	Tempo	Efeito medido	Parâmetro	Tendêcia	Valor	Unidade	Fonte	Ano
		.	doce		dismutase					Toxicol.30(3): 197- 203	
		Oncorhynchus mykiss	Água doce	42	Indice de condição	NOEC	Diminuição	180	ug/L	J. Appl. Toxicol.30(3): 197- 203	2010
		Oncorhynchus mykiss	Água doce	21	Hemoglobina	NOEC	Diminuição	2000	ug/L	ChemBiol. Interact.183(1): 98- 104	2010
		Oncorhynchus mykiss	Água doce	21	Volume significativo corpuscular	NOEC	Diminuição	2000	ug/L	ChemBiol. Interact.183(1): 98- 104	2010
		Oncorhynchus mykiss	Água doce	21	Hemoglobina	NOEC	Aumento	2000	ug/L	ChemBiol. Interact.183(1): 98- 104	2010
		Oncorhynchus mykiss	Água doce	21	Concentração hemoglobina	NOEC	Aumento	2000	ug/L	ChemBiol. Interact.183(1): 98- 104	2010
		Oncorhynchus mykiss	Água doce	21	Hemácias	NOEC	Aumento	2000	ug/L	ChemBiol. Interact.183(1): 98- 104	2010
		Oncorhynchus mykiss	Água doce	21	Hematócrito	NOEC	Sem efeito	2000	ug/L	ChemBiol. Interact.183(1): 98- 104	2010
		Oncorhynchus mykiss	Água doce	4	Hemoglobina	NOEC	Diminuição	19900	ug/L	Ecotoxicol. Environ. Saf.74(3):	2011

E(N/170-76	E (3.5.1.	T	T(C.14 11 1 .	D	m 10 . t .	¥7.1	TI	Ti	A
Fármacos	Nível Trófico	Espécies	Meio	Tempo	Efeito medido	Parâmetro	Tendêcia	Valor	Unidade	Fonte	Ano
										319-327	
										Ecotoxicol.	
			Água							Environ. Saf.74(3):	
		Oncorhynchus mykiss	doce	4	Leucócitos	NOEC	Diminuição	19900	ug/L	319-327	2011
										Ecotoxicol.	
			Água							Environ. Saf.74(3):	
		Oncorhynchus mykiss	doce	4	Hematócrito	NOEC	Aumento	19900	ug/L	319-327	2011
			,							ChemBiol.	
			Água							Interact. 183(1): 98-	
		Oncorhynchus mykiss	doce	42	Hematócrito	NOEC	Diminuição	2000	ug/L	104	2010
			'		Volume					ChemBiol.	
		0 1 1 1:	Água	40	significativo	NOEG	D: : : ~	2000		Interact.183(1): 98-	2010
		Oncorhynchus mykiss	doce	42	corpuscular	NOEC	Diminuição	2000	ug/L	104	2010
										ChemBiol.	
			Água							Interact. 183(1): 98-	
		Oncorhynchus mykiss	doce	42	Hemoglobina	NOEC	Aumento	2000	ug/L		2010
		Oncomynenus mykiss	doce	72	Hemogrooma	NOLE	rumento	2000	ug/L	104	2010
										ChemBiol.	
			Água		Concentração					Interact. 183(1): 98-	
		Oncorhynchus mykiss	doce	42	hemoglobina	NOEC	Aumento	2000	ug/L	104	2010
					C						
										ChemBiol.	
			Água							Interact.183(1): 98-	
		Oncorhynchus mykiss	doce	42	Hemoglobina	NOEC	Aumento	2000	ug/L	104	2010
			,							ChemBiol.	
			Água							Interact.183(1): 98-	
		Oncorhynchus mykiss	doce	42	Hemácias	NOEC	Aumento	2000	ug/L	104	2010

		•									
Fármacos	Nível Trófico	Espécies	Meio	Tempo	Efeito medido	Parâmetro	Tendêcia	Valor	Unidade	Fonte	Ano
		Oncorhynchus mykiss	Água doce	7	Hemoglobina	NOEC	Diminuição	2000	ug/L	ChemBiol. Interact.183(1): 98- 104	2010
		Oncorhynchus mykiss	Água doce	7	Hematócrito	NOEC	Aumento	2000	ug/L	ChemBiol. Interact.183(1): 98- 104	2010
		Oncorhynchus mykiss	Água doce	7	Hemoglobina	NOEC	Aumento	200	ug/L	ChemBiol. Interact.183(1): 98- 104	2010
		Oncorhynchus mykiss	Água doce	7	Concentração hemoglobina	NOEC	Aumento	2000	ug/L	ChemBiol. Interact.183(1): 98- 104	2010
		Oncorhynchus mykiss	Água doce	7	Volume significativo corpuscular	NOEC	Aumento	2000	ug/L	ChemBiol. Interact.183(1): 98- 104	2010
		Oncorhynchus mykiss	Água doce	7	Hemácias	NOEC	Aumento	2000	ug/L	ChemBiol. Interact.183(1): 98- 104	2010
		Oncorhynchus mykiss	Água doce	21	Catalase	NOEC	Diminuição	200	ug/L	Comp. Biochem. Physiol. C Toxicol. Pharmacol.151(1): 137-141	2010
		Oncorhynchus mykiss	Água doce	21	Teor de proteína carbonil	NOEC	Aumento	1	ug/L	Comp. Biochem. Physiol. C Toxicol. Pharmacol.151(1):	2010

Fármacos	Nível Trófico	Espécies	Meio	Tempo	Efeito medido	Parâmetro	Tendêcia	Valor	Unidade	Fonte	Ano
Faimacos	TAIVEL LIGHT	Especies	MICIO	Tempo	Elello illeuluo	1 at afficit 0	Tenuecia	v alui	Omade	137-141	Allo
										Comp. Biochem. Physiol. C Toxicol.	
			Água							Pharmacol.151(1):	
		Oncorhynchus mykiss	doce	21	TBAR	NOEC	Aumento	200	ug/L		2010
		Oncomynenus mykiss	doce	21	1D/IIC	NOLC	Aumento	200	ug/L	137-141	2010
		Oncorhynchus mykiss	Água doce	21	Glutationa reditase	NOEC	Aumento	200	ug/L	Comp. Biochem. Physiol. C Toxicol. Pharmacol.151(1): 137-141	2010
		- · · · · · · · · · · · · · · · · · · ·									
		Oncorhynchus mykiss	Água doce	21	Superoxido dismutase	NOEC	Aumento	200	ug/L	Comp. Biochem. Physiol. C Toxicol. Pharmacol.151(1): 137-141	2010
		Oncorhynchus mykiss	Água doce	42	Glutationa	NOEC	Diminuição	1	ug/L	Comp. Biochem. Physiol. C Toxicol. Pharmacol.151(1): 137-141	2010
		Oncorhynchus mykiss	Água doce	42	Catalase	NOEC	Diminuição	1	ug/L	Comp. Biochem. Physiol. C Toxicol. Pharmacol.151(1): 137-141	2010
		Oncorhynchus mykiss	Água doce	42	Glutationa peroxidase	NOEC	Diminuição	1	ug/L	Comp. Biochem. Physiol. C Toxicol. Pharmacol.151(1): 137-141	2010
			,								
		Oncorhynchus mykiss	Água	42	Glutationa	NOEC	Diminuição	1	ug/L	Comp. Biochem.	2010

Fármacos	Nível Trófico	Espécies	Meio	Tempo	Efeito medido	Parâmetro	Tendêcia	Valor	Unidade	Fonte	Ano
		•	doce	•	reditase					Physiol. C Toxicol. Pharmacol.151(1): 137-141	
		Oncorhynchus mykiss	Água doce	42	Superoxido dismutase	NOEC	Diminuição	1	ug/L	Comp. Biochem. Physiol. C Toxicol. Pharmacol.151(1): 137-141	2010
		Oncorhynchus mykiss	Água doce	42	Teor de proteína carbonil	NOEC	Aumento	1	ug/L	Comp. Biochem. Physiol. C Toxicol. Pharmacol.151(1): 137-141	2010
		Oncorhynchus mykiss	Água doce	42	TBAR	NOEC	Aumento	1	ug/L	Comp. Biochem. Physiol. C Toxicol. Pharmacol.151(1): 137-141	2010
		Oncorhynchus mykiss	Água doce	7	Glutationa reditase	NOEC	Diminuição	2000	ug/L	Comp. Biochem. Physiol. C Toxicol. Pharmacol.151(1): 137-141	2010
		Oncorhynchus mykiss	Água doce	7	Teor de proteína carbonil	NOEC	Aumento	2000	ug/L	Comp. Biochem. Physiol. C Toxicol. Pharmacol.151(1): 137-141	2010
		Oncorhynchus mykiss	Água doce	7	TBAR	NOEC	Aumento	2000	ug/L	Comp. Biochem. Physiol. C Toxicol. Pharmacol.151(1): 137-141	2010

Fármacos	Nível Trófico	Espécies	Meio	Tempo	Efeito medido	Parâmetro	Tendêcia	Valor	Unidade	Fonte	Ano
		Oncorhynchus mykiss	Água doce	7	Catalase	NOEC	Aumento	200	ug/L	Comp. Biochem. Physiol. C Toxicol. Pharmacol.151(1): 137-141	2010
		Oncorhynchus mykiss	Água doce	7	Superoxido dismutase	NOEC	Aumento	2000	ug/L	Comp. Biochem. Physiol. C Toxicol. Pharmacol.151(1): 137-141	2010
		Oncorhynchus mykiss	Água doce	21	Catalase	NOEC	Diminuição	1	ug/L	Chemosphere77(11) : 1476-1481	2009
		Oncorhynchus mykiss	Água doce	21	Glutationa peroxidase	NOEC	Diminuição	200	ug/L	Chemosphere77(11) : 1476-1481	2009
		Oncorhynchus mykiss	Água doce	21	Superoxido dismutase	NOEC	Diminuição	200	ug/L	Chemosphere77(11) : 1476-1481	2009
		Oncorhynchus mykiss	Água doce	21	Teor de proteína carbonil	NOEC	Aumento	1	ug/L	Chemosphere 77(11): 1476-1481	2009
		Oncorhynchus mykiss	Água doce	21	TBAR	NOEC	Aumento	1	ug/L	Chemosphere77(11) : 1476-1481	2009
		Oncorhynchus mykiss	Água doce	21	Glutationa reditase	NOEC	Aumento	1	ug/L	Chemosphere77(11) : 1476-1481	2009
		Oncorhynchus mykiss	Água doce	42	Catalase	NOEC	Diminuição	1	ug/L	Chemosphere77(11) : 1476-1481	2009

Tabela 17 Revisão de literatura para os efeitos ecotoxicológicos de fármacos psiquiátricos em organismos aquáticos.

Fármacos	Nível Trófico	Espécies	Meio	Tempo	Efeito medido	Parâmetro	Tendêcia	Valor	Unidade	Fonte	Ano
		Oncorhynchus mykiss	Água doce	42	Glutationa reditase	NOEC	Diminuição	1	ug/L	Chemosphere77(11) : 1476-1481	2009
		Oncorhynchus mykiss	Água doce	42	Sódio potássio ATPase	NOEC	Diminuição	1	ug/L	Chemosphere77(11) : 1476-1481	2009
		Oncorhynchus mykiss	Água doce	42	Glutationa	NOEC	Aumento	1	ug/L	Chemosphere77(11) : 1476-1481	2009
		Oncorhynchus mykiss	Água doce	42	Teor de proteína carbonil	NOEC	Aumento	1	ug/L	Chemosphere77(11) : 1476-1481	2009
		Oncorhynchus mykiss	Água doce	42	TBAR	NOEC	Aumento	1	ug/L	Chemosphere77(11) : 1476-1481	2009
		Oncorhynchus mykiss	Água doce	42	Glutationa peroxidase	NOEC	Aumento	1	ug/L	Chemosphere77(11) : 1476-1481	2009
		Oncorhynchus mykiss	Água doce	42	Superoxido dismutase	NOEC	Aumento	1	ug/L	Chemosphere77(11) : 1476-1481	2009
		Oncorhynchus mykiss	Água doce	7	Catalase	NOEC	Diminuição	2000	ug/L	Chemosphere77(11) : 1476-1481	2009
		Oncorhynchus mykiss	Água doce	7	Glutationa reditase	NOEC	Diminuição	2000	ug/L	Chemosphere77(11) : 1476-1481	2009
		Oncorhynchus mykiss	Água doce	7	Teor de proteína carbonil	NOEC	Aumento	2000	ug/L	Chemosphere77(11) : 1476-1481	2009

Fármacos	Nível Trófico	Espécies	Meio	Tempo	Efeito medido	Parâmetro	Tendêcia	Valor	Unidade	Fonte	Ano
Farmacos	Nivel Trollco	Especies	Meio	1 empo	Eleito illeuldo	Parametro	1 endecia	v alor	Ullidade	ronte	Ano
		Oncorhynchus mykiss	Água doce	7	TBAR	NOEC	Aumento	2000	ug/L	Chemosphere77(11) : 1476-1481	2009
		Oncorhynchus mykiss	Água doce	7	Glutationa peroxidase	NOEC	Aumento	2000	ug/L	Chemosphere77(11) : 1476-1481	2009
		Oncorhynchus mykiss	Água doce	7	Superoxido dismutase	NOEC	Aumento	2000	ug/L	Chemosphere77(11) : 1476-1481	2009
		Oncorhynchus mykiss	Água doce	4	Teor de proteína carbonil	NOEC	Aumento	19900	ug/L	Ecotoxicol. Environ. Saf.74(3): 319-327	2011
		Oncorhynchus mykiss	Água doce	4	TBAR	NOEC	Aumento	19900	ug/L	Ecotoxicol. Environ. Saf.74(3): 319-327	2011
		Oncorhynchus mykiss	Água doce	4	Glutationa peroxidase	NOEC	Aumento	19900	ug/L	Ecotoxicol. Environ. Saf.74(3): 319-327	2011
		Oncorhynchus mykiss	Água doce	4	Superoxido dismutase	NOEC	Aumento	19900	ug/L	Ecotoxicol. Environ. Saf.74(3): 319-327	2011
		Oncorhynchus mykiss	Água doce	21	TBAR	NOEC	Diminuição	1	ug/L	ChemBiol. Interact.183(1): 98- 104	2010
		Oncorhynchus mykiss	Água doce	21	Teor de proteína carbonil	NOEC	Aumento	2000	ug/L	ChemBiol. Interact.183(1): 98- 104	2010

Fármacos	Nível Trófico	Espécies	Meio	Tempo	Efeito medido	Parâmetro	Tendêcia	Valor	Unidade	Fonte	Ano
Farmacos	Niver 1 rolled	Especies	Meio	тешро	Eleito illeuluo	Parametro	Tendecia	vaior	Umdade	ronte	Allo
		Oncorhynchus mykiss	Água doce	21	Catalase	NOEC	Aumento	1	ug/L	ChemBiol. Interact.183(1): 98- 104	2010
		Oncorhynchus mykiss	Água doce	21	Glutationa peroxidase	NOEC	Aumento	1	ug/L	ChemBiol. Interact.183(1): 98- 104	2010
		Oncorhynchus mykiss	Água doce	21	Glutationa reditase	NOEC	Aumento	1	ug/L	ChemBiol. Interact.183(1): 98- 104	2010
		Oncorhynchus mykiss	Água doce	21	Superoxido dismutase	NOEC	Aumento	200	ug/L	ChemBiol. Interact.183(1): 98- 104	2010
		Oncorhynchus mykiss	Água doce	4	Peso	NOEC	Diminuição	19900	ug/L	Ecotoxicol. Environ. Saf.74(3): 319-327	2011
		Oncorhynchus mykiss	Água doce	4	Teor de proteína carbonil	NOEC	Aumento	19900	ug/L	Ecotoxicol. Environ. Saf.74(3): 319-327	2011
		Oncorhynchus mykiss	Água doce	4	TBAR	NOEC	Aumento	19900	ug/L	Ecotoxicol. Environ. Saf.74(3): 319-327	2011
		Oncorhynchus mykiss	Água doce	4	Etoxiresorufina -O-desetilase	NOEC	Aumento	19900	ug/L	Ecotoxicol. Environ. Saf.74(3): 319-327	2011

Fármacos	Nível Trófico	Espécies	Meio	Tempo	Efeito medido	Parâmetro	Tendêcia	Valor	Unidade	Fonte	Ano
		Oncorhynchus mykiss	Água doce	4	Razão do peso do órgão vs corpo	NOEC	Aumento	19900	ug/L	Ecotoxicol. Environ. Saf.74(3): 319-327	2011
		Oncorhynchus mykiss	Água doce	42	Teor de proteína carbonil	NOEC	Aumento	200	ug/L	ChemBiol. Interact.183(1): 98- 104	2010
		Oncorhynchus mykiss	Água doce	42	TBAR	NOEC	Aumento	1	ug/L	ChemBiol. Interact.183(1): 98- 104	2010
		Oncorhynchus mykiss	Água doce	42	Catalase	NOEC	Aumento	1	ug/L	ChemBiol. Interact.183(1): 98- 104	2010
		Oncorhynchus mykiss	Água doce	7	Glutationa peroxidase	NOEC	Diminuição	2000	ug/L	ChemBiol. Interact.183(1): 98- 104	2010
		Oncorhynchus mykiss	Água doce	7	Teor de proteína carbonil	NOEC	Aumento	2000	ug/L	ChemBiol. Interact.183(1): 98- 104	2010
		Oncorhynchus mykiss	Água doce	7	TBAR	NOEC	Aumento	2000	ug/L	ChemBiol. Interact.183(1): 98- 104	2010
		Oncorhynchus mykiss	Água doce	7	Catalase	NOEC	Aumento	2000	ug/L	ChemBiol. Interact.183(1): 98- 104	2010

Fármacos	Nível Trófico	Espécies	Meio	Tempo	Efeito medido	Parâmetro	Tendêcia	Valor	Unidade	Fonte	Ano
		Oncorhynchus mykiss	Água doce	7	Glutationa reditase	NOEC	Aumento	2000	ug/L	ChemBiol. Interact.183(1): 98- 104	2010
		Oncorhynchus mykiss	Água doce	7	Superoxido dismutase	NOEC	Aumento	2000	ug/L	ChemBiol. Interact.183(1): 98- 104	2010
		Oncorhynchus mykiss	Água doce	4	Teor de proteína carbonil	NOEC	Aumento	19900	ug/L	Ecotoxicol. Environ. Saf.74(3): 319-327	2011
		Oncorhynchus mykiss	Água doce	4	TBAR	NOEC	Aumento	19900	ug/L	Ecotoxicol. Environ. Saf.74(3): 319-327	2011
		Oncorhynchus mykiss	Água doce	4	Glutationa reditase	NOEC	Aumento	19900	ug/L	Ecotoxicol. Environ. Saf.74(3): 319-327	2011
		Oncorhynchus mykiss	Água doce	21	Proteína	NOEC	Diminuição	2000	ug/L	ChemBiol. Interact.183(1): 98- 104	2010
		Oncorhynchus mykiss	Água doce	21	Alanina transaminase (ALT)	NOEC	Diminuição	1	ug/L	ChemBiol. Interact.183(1): 98- 104	2010
		Oncorhynchus mykiss	Água doce	21	Amonia	NOEC	Aumento	1	ug/L	ChemBiol. Interact.183(1): 98- 104	2010

Fármacos	Nível Trófico	Espécies	Meio	Тетро	Efeito medido	Parâmetro	Tendêcia	Valor	Unidade	Fonte	Ano
		Oncorhynchus mykiss	Água doce	4	Proteína	NOEC	Aumento	19900	ug/L	Ecotoxicol. Environ. Saf.74(3): 319-327	2011
		Oncorhynchus mykiss	Água doce	42	Proteína	NOEC	Diminuição	2000	ug/L	ChemBiol. Interact.183(1): 98- 104	2010
		Oncorhynchus mykiss	Água doce	42	Alanina transaminase (ALT)	NOEC	Diminuição	1	ug/L	ChemBiol. Interact.183(1): 98- 104	2010
		Oncorhynchus mykiss	Água doce	42	Amonia	NOEC	Aumento	1	ug/L	ChemBiol. Interact.183(1): 98- 104	2010
		Oncorhynchus mykiss	Água doce	7	Alanina transaminase (ALT)	NOEC	Diminuição	1	ug/L	ChemBiol. Interact.183(1): 98- 104	2010
		Oncorhynchus mykiss	Água doce	7	Amonia	NOEC	Aumento	1	ug/L	ChemBiol. Interact.183(1): 98- 104	2010
		Oncorhynchus mykiss	Água doce	7	Glicose	NOEC	Aumento	1	ug/L	ChemBiol. Interact.183(1): 98- 104	2010
		Oncorhynchus mykiss	Água doce	7	Proteína	NOEC	Aumento	2000	ug/L	ChemBiol. Interact.183(1): 98- 104	2010

Fármacos	Nível Trófico	Espécies	Meio	Tempo	Efeito medido	Parâmetro	Tendêcia	Valor	Unidade	Fonte	Ano
		Oncorhynchus mykiss	Água doce	4	Indice de condição	NOEC	Diminuição	19900	ug/L	Ecotoxicol. Environ. Saf.74(3): 319-327	201
		Oncorhynchus mykiss	Água doce	4	Comprimento	NOEC	Diminuição	19900	ug/L	Ecotoxicol. Environ. Saf.74(3): 319-327	201
		Oncorhynchus mykiss	Água doce	4	Peso	NOEC	Diminuição	19900	ug/L	Ecotoxicol. Environ. Saf.74(3): 319-327	201
	Decomposers	-	-	-	-	-	-	-	-	-	
Carbonato de Lítio	Produtor primário	-	-	-	-	-	-	-	-	-	
CAS: 554132	Consumidor primario	-	-	-	-	-	-	-	-	-	
	Consumidor secundario										
		Fundulus heteroclitus	Água	1	Mortalidade	LC50	-	1000000	ug/L	Bull. N. J. Acad.	197

Fármacos	Nível Trófico	Espécies	Meio	Tempo	Efeito medido	Parâmetro	Tendêcia	Valor	Unidade	Fonte	Ano
			Salgada	-						Sci.22(2): 21-23	
		Fundulus heteroclitus	Água Salgada	1	Mortalidade	LC50	-	8100	ug/L	Bull. N. J. Acad. Sci.22(2): 21-23	1977
		Fundulus heteroclitus	Água Salgada	2	Mortalidade	LC50	-	175000	ug/L	Bull. N. J. Acad. Sci.22(2): 21-23	1977
		Fundulus heteroclitus	Água Salgada	2	Mortalidade	LC50	-	8100	ug/L	Bull. N. J. Acad. Sci.22(2): 21-23	1977
		Fundulus heteroclitus	Água Salgada	3	Mortalidade	LC50	-	39000	ug/L	Bull. N. J. Acad. Sci.22(2): 21-23	1977
		Fundulus heteroclitus	Água Salgada	3	Mortalidade	LC50	-	8100	ug/L	Bull. N. J. Acad. Sci.22(2): 21-23	1977
		Fundulus heteroclitus	Água Salgada	4	Mortalidade	LC50	-	39000	ug/L	Bull. N. J. Acad. Sci.22(2): 21-23	1977
		Fundulus heteroclitus	Água Salgada	4	Mortalidade	LC50	-	8100	ug/L	Bull. N. J. Acad. Sci.22(2): 21-23	1977
	Decomposers	-	-	-	-	-	-	-	-	-	-
Clorofilaral	Produtor primário										

Fármacos	Nível Trófico	Espécies	Meio	Tempo	Efeito medido	Parâmetro	Tendêcia	Valor	Unidade	Fonte	Ano
CAS: 302170											
	Consumidor primario	Daphnia magna	Água doce	1	Equilíbrio	EC50	-	630000	ug/L	Z. Wasser- Abwasser- Forsch.15(1): 1-6	1982
		Daphnia magna	Água doce	2	Imobilidade	EC50	Aumento	500000	ug/L	Gesund Ing.85:229-260	1964
		Daphnia magna	Água doce	1	Imobilidade	LC50	Aumento	510000	ug/L	Z. Wasser- Abwasser- Forsch.10(5): 161- 166	1977
	Consumidor secundario	Leuciscus idus ssp. melanotus	Água doce	2	Mortalidade	LC50	Aumento	1720000	ug/L	Z. Wasser- Abwasser- Forsch.11(5): 161- 164	1978
		Carassius gibelio	Água doce	4	Micronúcleo	LOEC	Aumento	400000	ug/L	Ecotoxicol. Environ. Saf.62(1): 42-52	2005
		Carassius gibelio	Água doce	4	Abnormalidade nuclear	LOEC	Aumento	400000	ug/L	Ecotoxicol. Environ. Saf.62(1): 42-52	2005
		Carassius gibelio	Água doce	2	Micronúcleo	LOEC	Aumento	400000	ug/L	Ecotoxicol. Environ. Saf.62(1): 42-52	2005

Fármacos	Nível Trófico	Espécies	Meio	Tempo	Efeito medido	Parâmetro	Tendêcia	Valor	Unidade	Fonte	Ano
		Carassius gibelio	Água doce	2	Abnormalidade nuclear	LOEC	Aumento	400000	ug/L	Ecotoxicol. Environ. Saf.62(1): 42-52	2005
		Carassius gibelio	Água doce	3	Micronúcleo	LOEC	Aumento	400000	ug/L	Ecotoxicol. Environ. Saf.62(1): 42-52	2005
		Carassius gibelio	Água doce	3	Abnormalidade nuclear	LOEC	Aumento	400000	ug/L	Ecotoxicol. Environ. Saf.62(1): 42-52	2005
		Carassius gibelio	Água doce	4	Micronúcleo	LOEC	Aumento	400000	ug/L	Ecotoxicol. Environ. Saf.62(1): 42-52	2005
		Carassius gibelio	Água doce	4	Abnormalidade nuclear	LOEC	Aumento	400000	ug/L	Ecotoxicol. Environ. Saf.62(1): 42-52	2005
		Carassius gibelio	Água doce	5	Micronúcleo	LOEC	Aumento	400000	ug/L	Ecotoxicol. Environ. Saf.62(1): 42-52	2005
		Carassius gibelio	Água doce	5	Abnormalidade nuclear	LOEC	Aumento	400000	ug/L	Ecotoxicol. Environ. Saf.62(1): 42-52	2005
		Carassius gibelio	Água doce	2	Abnormalidade nuclear	LOEC	Aumento	400000	ug/L	Ecotoxicol. Environ. Saf.62(1): 42-52	2005

Fármacos	Nível Trófico	Espécies	Meio	Tempo	Efeito medido	Parâmetro	Tendêcia	Valor	Unidade	Fonte	Ano
		Carassius gibelio	Água doce	3	Micronúcleo	LOEC	Aumento	400000	ug/L	Ecotoxicol. Environ. Saf.62(1): 42-52	2005
		Carassius gibelio	Água doce	3	Abnormalidade nuclear	LOEC	Aumento	400000	ug/L	Ecotoxicol. Environ. Saf.62(1): 42-52	2005
		Carassius gibelio	Água doce	4	Micronúcleo	LOEC	Aumento	400000	ug/L	Ecotoxicol. Environ. Saf.62(1): 42-52	2005
		Carassius gibelio	Água doce	4	Abnormalidade nuclear	LOEC	Aumento	400000	ug/L	Ecotoxicol. Environ. Saf.62(1): 42-52	2005
		Carassius gibelio	Água doce	5	Micronúcleo	LOEC	Aumento	400000	ug/L	Ecotoxicol. Environ. Saf.62(1): 42-52	2005
		Carassius gibelio	Água doce	5	Abnormalidade nuclear	LOEC	Aumento	400000	ug/L	Ecotoxicol. Environ. Saf.62(1): 42-52	2005
		Carassius gibelio	Água doce	2	Abnormalidade nuclear	NOEC	Aumento	400000	ug/L	Ecotoxicol. Environ. Saf.62(1): 42-52	2005
		Carassius gibelio	Água doce	2	Micronúcleo	NOEC	Sem efeito	400000	ug/L	Ecotoxicol. Environ. Saf.62(1): 42-52	2005

Fármacos	Nível Trófico	Espécies	Meio	Tempo	Efeito medido	Parâmetro	Tendêcia	Valor	Unidade	Fonte	Ano
		Carassius gibelio	Água doce	3	Abnormalidade nuclear	NOEC	Aumento	400000	ug/L	Ecotoxicol. Environ. Saf.62(1): 42-52	2005
		Carassius gibelio	Água doce	3	Micronúcleo	NOEC	Sem efeito	400000	ug/L	Ecotoxicol. Environ. Saf.62(1): 42-52	2005
		Carassius gibelio	Água doce	5	Abnormalidade nuclear	NOEC	Aumento	400000	ug/L	Ecotoxicol. Environ. Saf.62(1): 42-52	2005
		Carassius gibelio	Água doce	5	Micronúcleo	NOEC	Sem efeito	400000	ug/L		2005
		Carassius gibelio	Água doce	2	Micronúcleo	NOEC	Aumento	400000	ug/L	Ecotoxicol. Environ. Saf.62(1): 42-52	2005
	Decomposers	-	-	-	-	-	-	-	-	-	-
Citalopram	Produtor primário	Pseudokirchneriella subcapitata	Água doce	2	Taxa de crescimento	EC50	Diminuição	1600	ug/L	Environ. Toxicol. Chem.26(1): 85-91	2007

		-				-		-			
Fármacos	Nível Trófico	Espécies	Meio	Tempo	Efeito medido	Parâmetro	Tendêcia	Valor	Unidade	Fonte	Ano
		<u> </u>			populacional						
CAS: 59729327											
/ 59729338											
	G 11		í							D : M : 1	
	Consumidor primario	Daphnia magna	Água doce	2	Imobilidade	EC50	Aumento	20000	ug/L	Environ. Toxicol. Chem.26(1): 85-91	2007
	primario	Барина тадна	docc	2	imodifidade	EC30	Aumento	20000	ug/L	Chem.20(1). 65-71	2007
										Environ. Toxicol.	
			Água							Chem.23(9): 2229-	
		Ceriodaphnia dubia	doce	2	Mortalidade	LC50	Aumento	3900	ug/L	2233	2004
										F . F . 1	
			Água							Environ. Toxicol. Chem.23(9): 2229-	
		Ceriodaphnia dubia	doce	8	Progênia	LOEC	Diminuição	4000	ug/L	2233	2004
		certedapinna anota	4000	Ü	110801114	2020	2 mmuquo	.000	48/2		200.
					Tempo da					Environ. Toxicol.	
			Água		primeira					Chem.23(9): 2229-	
		Ceriodaphnia dubia	doce	4	reprodução	NOEC	Aumento	4000	ug/L	2233	2004
										Environ. Toxicol.	
			Água							Chem.23(9): 2229-	
		Ceriodaphnia dubia	doce	8	Progênia	NOEC	Diminuição	4000	ug/L	2233	2004
					C		,		C		
			,							Environ. Toxicol.	
		0 1 1 1 1 11	Água	0	D 4:	NOEG	D ~	000	7	Chem.23(9): 2229-	2004
		Ceriodaphnia dubia	doce	8	Progênia	NOEC	Diminuição	800	ug/L	2233	2004
	Consumidor	-	-	-	-	-	-	-	-	-	-

Tabela 17 Revisão de literatura para os efeitos ecotoxicológicos de fármacos psiquiátricos em organismos aquáticos.

Fármacos	Nível Trófico	Espécies	Meio	Tempo	Efeito medido	Parâmetro	Tendêcia	Valor	Unidade	Fonte	Ano
	secundario Decomposers	-	-	-	_	-	-	-	-	-	_
Clomipramine	Produtor primário	-	-	-	-	-	-	-	-	-	-
CAS: 303491											
	Consumidor primario	Lumbriculus variegatus	Água doce	15min	Frequência cardíaca	LOEC	Aumento	100	uM	Comp. Biochem. Physiol. C Toxicol. Pharmacol.151(4): 467-472	2010
	Consumidor secundario	-	-	-	-	-	-	-	-	-	-
	Decomposers	-	-	-	-	-	-	-	-	-	-
Clorpramozina	Produtor primário										

Fármacos	Nível Trófico	Espécies	Meio	Тетро	Efeito medido	Parâmetro	Tendêcia	Valor	Unidade	Fonte	Ano
CAS: 50533 / 69090		Lemna minor	Água doce	7	Taxa de crescimento populacional	EC50	Diminuição	920	ug/L	Fresenius Environ. Bull.16(5): 524-531	2007
	Consumidor primario	Lymnaea stagnalis	Água doce	7min	Comportament o alimentar	LOEC	Diminuição	0,1	mM	Comp. Biochem. Physiol. C Comp. Pharmacol. Toxicol.149(1): 73- 82 Comp. Biochem.	2009
		Lymnaea stagnalis	Água doce	7min	Movimento	LOEC	Diminuição	1	mM	Physiol. C Comp. Pharmacol. Toxicol.149(1): 73- 82	2009
		Caenorhabditis elegans	Água doce	30min	Mobilidade	LOEC	Diminuição	175	u/ml	Parasitol. Res.90(5): 390-392	2003
	Consumidor secundario	Danio rerio	Água doce	18	Anomalia	EC50	Aumento	0,03	mM	Reprod. Toxicol.33(2): 142- 154	2012
		Danio rerio	Água doce	28	Anomalia	EC50	Aumento	0,02	mM	Reprod. Toxicol.33(2): 142- 154	2012
		Danio rerio	Água	58	Anomalia	EC50	Aumento	0,01	mM	Reprod.	2012

Fármacos	Nível Trófico	Egnésies	Meio	Tomno	Efeito medido	Parâmetro	Tendêcia	Valor	Unidade	Fonte	Ano
Farmacos	Niver Fronco	Espécies	doce	Tempo	Efeito medido	rarametro	1 endecia	v alor	Umdade	Toxicol.33(2): 142- 154	Ano
		Danio rerio	Água doce	1	Mortalidade	LC50	Aumento	0,03	mM	Reprod. Toxicol.33(2): 142- 154	2012
		Danio rerio	Água doce	18	Mortalidade	LC50	Aumento	0,03	mM	Reprod. Toxicol.33(2): 142- 154	2012
		Danio rerio	Água doce	28	Mortalidade	LC50	Aumento	0,03	mM	Reprod. Toxicol.33(2): 142- 154	2012
		Danio rerio	Água doce	58	Mortalidade	LC50	Aumento	0,02	mM	Reprod. Toxicol.33(2): 142- 154	2012
	Decomposers	-	-	-	-	-	-	-	-	-	-
Clozapina	Produtor primário	-	-	-	-	-	-	-	-	-	-
CAS: 5786210	Consumidor primario	-	-	-	-	-	-	-	-	-	-

Tabela 17 Revisão de literatura para os efeitos ecotoxicológicos de fármacos psiquiátricos em organismos aquáticos.

Fármacos	Nível Trófico	Espécies	Meio	Tempo	Efeito medido	Parâmetro	Tendêcia	Valor	Unidade	Fonte	Ano
Farmacos	Niver Fronco	Especies	MEIO	rempo	Eleito medido	rarametro	Tenuecia	v alui	Ullidade	ronte	Allo
	C										
	Consumidor secundario										
										Arch. Environ. Contam.	
			Água							Toxicol.62(3): 455-	
		Pimephales promelas	doce	28	Sobrevivência	LC50	Diminuição	30,8	ug/L	464	2012
										Arch. Environ.	
			í							Contam.	
		Pimephales promelas	Água doce	28	Sobrevivência	LOEC	Diminuição	30,8	ug/L	Toxicol.62(3): 455- 464	2012
		1 unepraises prometas	4000		Boote (1) elleta	2020	2	20,0	4,5		2012
										Arch. Environ. Contam.	
			Água							Toxicol.62(3): 455-	
		Pimephales promelas	doce	28	Peso	LOEC	Diminuição	30,8	ug/L	464	2012
										Reprod.	
			Água							Toxicol.33(2): 155-	
		Danio rerio	doce	5	Deformação	LOEL	Aumento	1	uM	164	2012
										Reprod.	
		D : :	Água	_	D.C. ~	LODI	A	1		Toxicol.33(2): 155-	2012
		Danio rerio	doce	5	Deformação	LOEL	Aumento	1	uM	164	2012
			,							Reprod.	
		Danio rerio	Água doce	5	Deformação	LOEL	Aumento	1	uM	Toxicol.33(2): 155- 164	2012
		Danio Terio	uoce	3	Detormação	LOEL	Aumento	1	ulvi	104	2012

Fármacos	Nível Trófico	Espécies	Meio	Tempo	Efeito medido	Parâmetro	Tendêcia	Valor	Unidade	Fonte	Ano
		Danio rerio	Água doce	5	Deformação	LOEL	Aumento	10	uM	Reprod. Toxicol.33(2): 155- 164	2012
		Danio rerio	Água doce	5	Deformação	LOEL	Aumento	10	uM	Reprod. Toxicol.33(2): 155- 164	2012
		Danio rerio	Água doce	5	Deformação	LOEL	Aumento	10	uM	Reprod. Toxicol.33(2): 155- 164	2012
		Danio rerio	Água doce	5	Deformação	LOEL	Aumento	10	uM	Reprod. Toxicol.33(2): 155- 164	2012
		Danio rerio	Água doce	5	Deformação	LOEL	Aumento	10	uM	Reprod. Toxicol.33(2): 155- 164	2012
		Danio rerio	Água doce	5	Deformação	LOEL	Aumento	100	uM	Reprod. Toxicol.33(2): 155- 164	2012
		Danio rerio	Água doce	5	Deformação	LOEL	Aumento	100	uM	Reprod. Toxicol.33(2): 155- 164	2012
		Danio rerio	Água doce	5	Deformação	LOEL	Aumento	4	uM	Reprod. Toxicol.33(2): 155- 164	2012

Fármacos	Nível Trófico	Espécies	Meio	Tempo	Efeito medido	Parâmetro	Tendêcia	Valor	Unidade	Fonte	Ano
		Danio rerio	Água doce	5	Deformação	LOEL	Aumento	8	uM	Reprod. Toxicol.33(2): 155- 164	2012
		Pimephales promelas	Água doce	28	Sobrevivência	NOEC	Diminuição	17,9	ug/L	Arch. Environ. Contam. Toxicol.62(3): 455- 464	2012
		Pimephales promelas	Água doce	28	Peso	NOEC	Diminuição	17,9	ug/L	Arch. Environ. Contam. Toxicol.62(3): 455- 464	2012
		Danio rerio	Água doce	5	Deformação	NOEL	-	0,01	uM	Reprod. Toxicol.33(2): 155- 164	2012
		Danio rerio	Água doce	5	Deformação	NOEL	-	0,1	uM	Reprod. Toxicol.33(2): 155- 164	2012
		Danio rerio	Água doce	5	Deformação	NOEL	-	0,1	uM	Reprod. Toxicol.33(2): 155- 164	2012
		Danio rerio	Água doce	5	Deformação	NOEL	-	1	uM	Reprod. Toxicol.33(2): 155- 164	2012
		Danio rerio	Água doce	5	Deformação	NOEL	-	1	uM	Reprod. Toxicol.33(2): 155-	2012

				_						_	
Fármacos	Nível Trófico	Espécies	Meio	Tempo	Efeito medido	Parâmetro	Tendêcia	Valor	Unidade	Fonte	Ano
										164	
			Água							Reprod. Toxicol.33(2): 155-	
	I	Danio rerio	doce	5	Deformação	NOEL	-	1	uM	164	2012
			Água	_	D	NOF		4	3.6	Reprod. Toxicol.33(2): 155-	2012
		Danio rerio	doce	5	Deformação	NOEL	-	1	uM	164	2012
	1	Danio rerio	Água doce	5	Deformação	NOEL	_	1	uM	Reprod. Toxicol.33(2): 155- 164	2012
					•						
	I	Danio rerio	Água doce	5	Deformação	NOEL	-	1	uM	Reprod. Toxicol.33(2): 155- 164	2012
	I	Danio rerio	Água doce	5	Deformação	NOEL	-	1	uM	Reprod. Toxicol.33(2): 155- 164	2012
	I	Danio rerio	Água doce	5	Deformação	NOEL	-	10	uM	Reprod. Toxicol.33(2): 155- 164	2012
	I	Danio rerio	Água doce	5	Deformação	NOEL	-	10	uM	Reprod. Toxicol.33(2): 155- 164	2012
	I	Danio rerio	Água doce	5	Deformação	NOEL	-	2	uM	Reprod. Toxicol.33(2): 155- 164	2012

Fármacos	Nível Trófico	Espécies	Meio	Tempo	Efeito medido	Parâmetro	Tendêcia	Valor	Unidade	Fonte	Ano
		Danio rerio	Água doce	5	Deformação	NOEL	-	2,5	uM	Reprod. Toxicol.33(2): 155- 164	2012
		Danio rerio	Água doce	5	Deformação	NOEL	-	4	uM	Reprod. Toxicol.33(2): 155- 164	2012
	Decomposers	-	-	-	-	-	-	-	-	-	-
Desipramina CAS: 58286		-	-	-	-	-	-	-	-	-	-
CAS: 58280	Consumidor primario	Lumbriculus variegatus	Água doce	15min	Frequência cardíaca	LOEC	Aumento	100	uM	Comp. Biochem. Physiol. C Toxicol. Pharmacol.151(4): 467-472	2010
	Consumidor secundario		-	-	-	-	-	-	-	-	-
	Decomposers	-	-	-	-	-	-	-	-	-	-

Tabela 17 Revisão de literatura para os efeitos ecotoxicológicos de fármacos psiquiátricos em organismos aquáticos.

Fármacos	Nível Trófico	Espécies	Meio	Tempo	Efeito medido	Parâmetro	Tendêcia	Valor	Unidade	Fonte	Ano
1 at macos	Triver Trones	Especies	NICIO	Tempo	Lieno medido	Turumetro	Tenacea	v aloi	Cindude	Tonte	1110
Diazepam CAS: 439145	Produtor primário	Tetraselmis chuii	Água Salgada	4	Taxa de crescimento populacional	IC50	Diminuição	16500	ug/L	Ecotoxicol. Environ. Saf.61(3): 413-419	2005
CAS. 437143	Consumidor primario	Artemia parthenogenetica	Água Salgada	2	Mortalidade	LC50	Aumento	12200	ug/L	Ecotoxicol. Environ. Saf.61(3): 413-419	2005
		Artemia salina	Água Salgada	1	Mortalidade	LC50	Aumento	230	umol/L	Arch. Environ. Contam. Toxicol.26(1): 69- 78	1994
		Artemia salina	Água doce	1	Mortalidade	LC50	-	351	uM	Chemosphere26(11): 2007-2022	1993
		Artemia salina	Água doce	1	Mortalidade	LC50	-	241	uM	Chemosphere26(11): 2007-2022	1993
		Artemia salina	Água doce	1	Mortalidade	LC50	-	287	uM	Chemosphere26(11): 2007-2022	1993
		Artemia salina	Água Salgada	1	Mortalidade	LC50	Aumento	230	umol/L	ATLA Altern. Lab. Anim.20:396-405	1992
		Streptocephalus proboscideus	Água doce	1	Mortalidade	LC50	Aumento	362	umol/L	Arch. Environ. Contam. Toxicol.26(1): 69-	1994

Fármacos	Nível Trófico	Espécies	Meio	Tempo	Efeito medido	Parâmetro	Tendêcia	Valor	Unidade	Fonte	Ano
										78	
		Streptocephalus proboscideus	Água doce	1	Mortalidade	LC50	Aumento	131	uM	Chemosphere26(11): 2007-2022	1993
		Streptocephalus proboscideus	Água doce	1	Mortalidade	LC50	Aumento	144	uM	Chemosphere26(11): 2007-2022	1993
		Streptocephalus proboscideus	Água doce	1	Mortalidade	LC50	Aumento	351	uM	Chemosphere26(11): 2007-2022	1993
		Streptocephalus proboscideus	Água doce	1	Mortalidade	LC50	Aumento	362	umol/L	ATLA Altern. Lab. Anim.20:396-405	1992
		Daphnia magna	Água doce	1	Imobilidade	EC50	Aumento	49,5	umol/L	Arch. Environ. Contam. Toxicol.26(1): 69- 78	1994
		Daphnia magna	Água doce	1	Imobilidade	EC50	Aumento	0,015	mM	Aquat. Toxicol.30:47-60	1994
		Daphnia pulex	Água doce	1	Imobilidade	EC50	Aumento	0,042	mM	Environ. Toxicol. Chem.14(12): 2085- 2088	1995
		Daphnia magna	Água doce	1	Mortalidade	LC50	-	32,3	uM	Chemosphere26(11): 2007-2022	1993
		Daphnia magna	Água doce	1	Mortalidade	LC50	-	33,6	uM	Chemosphere26(11): 2007-2022	1993
		Daphnia magna	Água	1	Mortalidade	LC50	-	49,4	uM	Chemosphere26(11)	1993

Fármacos	Nível Trófico	Espécies	Meio	Tempo	Efeito medido	Parâmetro	Tendêcia	Valor	Unidade	Fonte	Ano
		•	doce	•						: 2007-2022	
		Hydra vulgaris	Água doce	17	Consumo de alimento	NOEC	Alteração	1000	ug/L	Chemosphere51(6): 521-528	2003
			Água					27100		Arch. Environ. Contam. Toxicol.26(1): 69-	1001
		Brachionus calyciflorus	doce	1	Mortalidade	LC50	Aumento	35100	umol/L	78	1994
		Brachionus calyciflorus	Água doce	1	Mortalidade	LC50	Aumento	35100	umol/L	ATLA Altern. Lab. Anim.20:396-405	1992
		Brachionus calyciflorus	Água doce	1	Mortalidade	LC50	-	35100	uM	Chemosphere26(11): 2007-2022	1993
		Brachionus calyciflorus	Água doce	1	Mortalidade	LC50	-	166	uM	Chemosphere26(11): 2007-2022	1993
		Brachionus plicatilis	Água doce	1	Mortalidade	LC50	-	35100	uM	Chemosphere26(11): 2007-2022	1993
		Brachionus plicatilis	Água doce	1	Mortalidade	LC50	-	1740	uM	Chemosphere26(11): 2007-2022	1993
		Brachionus plicatilis	Água Salgada	1	Mortalidade	LC50	Aumento	35100	umol/L	ATLA Altern. Lab. Anim.20:396-405	1992
		Elliptio complanata	Água Salgada	2	Serotonina	LOEC	Diminuição	100	nmol/org	Comp. Biochem. Physiol. C Comp. Pharmacol. Toxicol.152(2): 207-214	2010

Fármacos	Nível Trófico	Espécies	Meio	Tempo	Efeito medido	Parâmetro	Tendêcia	Valor	Unidade	Fonte	Ano
		Elliptio complanata	Água Salgada	2	Adenilato ciclase	LOEC	Aumento	20	nmol/org	Comp. Biochem. Physiol. C Comp. Pharmacol. Toxicol.152(2): 207-214	2010
		Elliptio complanata	Água Salgada	2	Peroxidação lipídica	LOEC	Aumento	20	nmol/org	Comp. Biochem. Physiol. C Comp. Pharmacol. Toxicol.152(2): 207-214	2010
		Elliptio complanata	Água Salgada	2	Peroxidação lipídica	LOEC	Aumento	20	nmol/org	Comp. Biochem. Physiol. C Comp. Pharmacol. Toxicol.152(2): 207-214	2010
		Elliptio complanata	Água Salgada	2	Peroxidação lipídica	LOEC	Aumento	20	nmol/org	Comp. Biochem. Physiol. C Comp. Pharmacol. Toxicol.152(2): 207-214	2010
		Elliptio complanata	Água Salgada	2	Acetilcolineste rase	NOEC	Diminuição	100	nmol/org	Comp. Biochem. Physiol. C Comp. Pharmacol. Toxicol.152(2): 207-214	2010
		Elliptio complanata	Água Salgada	2	Adenilato ciclase	NOEC	Diminuição	20	nmol/org	Comp. Biochem. Physiol. C Comp. Pharmacol.	2010

Fármacos	Nível Trófico	Espécies	Meio	Tempo	Efeito medido	Parâmetro	Tendêcia	Valor	Unidade	Fonte	Ano
		*		•						Toxicol.152(2): 207-214	
		Elliptio complanata	Água Salgada	2	Dopamina	NOEC	Diminuição	100	nmol/org	Comp. Biochem. Physiol. C Comp. Pharmacol. Toxicol.152(2): 207-214	2010
		Elliptio complanata	Água Salgada	2	Serotonina	NOEC	Diminuição	20	nmol/org	Comp. Biochem. Physiol. C Comp. Pharmacol. Toxicol.152(2): 207-214	2010
			Água		Peroxidação				-	Comp. Biochem. Physiol. C Comp. Pharmacol. Toxicol.152(2):	
		Elliptio complanata	Salgada Água	2	lipídica Peroxidação	NOEC	Diminuição	4	nmol/org	207-214 Comp. Biochem. Physiol. C Comp. Pharmacol. Toxicol.152(2):	2010
		Elliptio complanata	Salgada	2		NOEC	Aumento	4	nmol/org	207-214 Comp. Biochem. Physiol. C Comp. Pharmacol.	2010
		Elliptio complanata	Água Salgada	2	Peroxidação lipídica	NOEC	Aumento	4	nmol/org	Toxicol.152(2): 207-214	201

Fármacos	Nível Trófico	Espécies	Meio	Tempo	Efeito medido	Parâmetro	Tendêcia	Valor	Unidade	Fonte	Ano
	Consumidor secundario	Gambusia holbrooki	Água Salgada	4	Mortalidade	LC50	Aumento	12700	ug/L	Ecotoxicol. Environ. Saf.61(3): 413-419	2005
		Danio rerio	Água doce	14	Movimento	LOEC	Aumento	72000	ug/L	Behav. Brain Res.208(2): 371- 376	2010
		Danio rerio	Água doce	14	Movimento	LOEC	Aumento	72000	ug/L	Behav. Brain Res.208(2): 371- 376	2010
		Danio rerio	Água doce	14	Paralísia	NOEC	Diminuição	72000	ug/L	Behav. Brain Res.208(2): 371- 376	2010
		Danio rerio	Água doce	14	Paralísia	NOEC	Diminuição	72000	ug/L	Behav. Brain Res.208(2): 371- 376	2010
		Danio rerio	Água doce	14	Movimento	NOEC	Diminuição	72000	ug/L	Behav. Brain Res.208(2): 371- 376	2010
		Danio rerio	Água doce	14	Movimento	NOEC	Diminuição	72000	ug/L	Behav. Brain Res.208(2): 371- 376	2010
		Danio rerio	Água doce	14	Cortisol	NOEC	Diminuição	72000	ug/L	Behav. Brain Res.208(2): 371- 376	2010

Fármacos	Nível Trófico	Espécies	Meio	Tempo	Efeito medido	Parâmetro	Tendêcia	Valor	Unidade	Fonte	Ano
		Danio rerio	Água doce	14	Movimento	NOEC	Aumento	72000	ug/L	Behav. Brain Res.208(2): 371- 376	2010
		Danio rerio	Água doce	14	Movimento	NOEC	Sem efeito	72000	ug/L	Behav. Brain Res.208(2): 371- 376	2010
	Decomposers	-	-	-	-	-	-	-	-	-	-
Duloxetina CAS:	-	-	-	-	-	-	-	-	-	-	-
136434349		-	-	-	-	-	-	-	-	-	-
	Consumidor secundario	Xenopus laevis	Água doce	14	Proteína	LOEL	Aumento	1	ug/L	Ph.D.Thesis, University of Louisiana at Monroe, Monroe, LA:172 p.	2006

Fármacos	Nível Trófico	Espécies	Meio	Tempo	Efeito medido	Parâmetro	Tendêcia	Valor	Unidade	Fonte	Ano
	Decomposers	-	-	-	-	-	-	-	-	-	-
Fenobarbital CAS: 50066	Produtor primário	-	-	-	-	-	-	-	-	-	-
	Consumidor primario	Artemia salina	Água Salgada	1	Mortalidade	LC50	Aumento	43100	umol/L	Arch. Environ. Contam. Toxicol.26(1): 69- 78	1994
		Streptocephalus proboscideus	Água doce	1	Mortalidade	LC50	Aumento	5220	umol/L	Arch. Environ. Contam. Toxicol.26(1): 69- 78	1994
		Daphnia magna	Água doce	1	Imobilidade	EC50	Aumento	6300	umol/L	Arch. Environ. Contam. Toxicol.26(1): 69- 78	1994
		Daphnia magna	Água doce	36	Testosterona 15-alfa hidroxilase	LOEC	Diminuição	50000	ug/L	Environ. Toxicol. Chem.13(7): 1013- 1021	1994
		Daphnia magna	Água doce	36	Testosterona 16-beta hidroxilase	LOEC	Diminuição	50000	ug/L	Environ. Toxicol. Chem.13(7): 1013- 1021	1994

Fármacos	Nível Trófico	Espécies	Meio	Tempo	Efeito medido	Parâmetro	Tendêcia	Valor	Unidade	Fonte	Ano
		Daphnia magna	Água doce	36	Testosterona 2- alfa hidroxilase	LOEC	Diminuição	5000	ug/L	Environ. Toxicol. Chem.13(7): 1013- 1021	1994
		Daphnia magna	Água doce	36	Testosterona 6- alfa hidroxilase	LOEC	Diminuição	50000	ug/L	Environ. Toxicol. Chem.13(7): 1013- 1021	1994
		Daphnia magna	Água doce	36	Testosterona 6- beta hidroxilase	LOEC	Diminuição	5000	ug/L	Environ. Toxicol. Chem.13(7): 1013- 1021	1994
		Daphnia magna	Água doce	36	Testosterona 7- alfa hidroxilase	LOEC	Diminuição	50000	ug/L	Environ. Toxicol. Chem.13(7): 1013- 1021	1994
		Daphnia magna	Água doce	36	Testosterona hidroxilase	LOEC	Diminuição	5000	ug/L	Environ. Toxicol. Chem.13(7): 1013- 1021	1994
		Daphnia magna	Água doce	36	Testosterona hidroxilase	LOEC	Diminuição	50000	ug/L	Environ. Toxicol. Chem.13(7): 1013- 1021	1994
		Daphnia magna	Água doce	36	Testosterona hidroxilase	LOEC	Diminuição	50000	ug/L	Environ. Toxicol. Chem.13(7): 1013- 1021	1994
		Daphnia magna	Água doce	36	Testosterona hidroxilase	LOEC	Diminuição	50000	ug/L	Environ. Toxicol. Chem.13(7): 1013- 1021	1994

Fármacos	Nível Trófico	Espécies	Meio	Tempo	Efeito medido	Parâmetro	Tendêcia	Valor	Unidade	Fonte	Ano
		Daphnia magna	Água doce	36	Testosterona 15-alfa hidroxilase	NOEC	Diminuição	5000	ug/L	Environ. Toxicol. Chem.13(7): 1013- 1021	1994
		Daphnia magna	Água doce	36	Testosterona 16-beta hidroxilase	NOEC	Diminuição	5000	ug/L	Environ. Toxicol. Chem.13(7): 1013- 1021	1994
		Daphnia magna	Água doce	36	Testosterona 6- alfa hidroxilase	NOEC	Diminuição	5000	ug/L	Environ. Toxicol. Chem.13(7): 1013- 1021	1994
		Daphnia magna	Água doce	36	Testosterona 7- alfa hidroxilase	NOEC	Diminuição	5000	ug/L	Environ. Toxicol. Chem.13(7): 1013- 1021	1994
		Daphnia magna	Água doce	36	Testosterona hidroxilase	NOEC	Diminuição	5000	ug/L	Environ. Toxicol. Chem.13(7): 1013- 1021	1994
		Daphnia magna	Água doce	36	Testosterona hidroxilase	NOEC	Diminuição	5000	ug/L	Environ. Toxicol. Chem.13(7): 1013- 1021	1994
		Daphnia magna	Água doce	36	Testosterona hidroxilase	NOEC	Diminuição	5000	ug/L	Environ. Toxicol. Chem.13(7): 1013- 1021	1994
			Água						•	Arch. Environ. Contam. Toxicol.26(1): 69-	1994
		Daphnia magna	Água doce Água doce	36	Testosterona hidroxilase Testosterona	NOEC	Diminuição	5000	ug/L	Environ. Toxicol. Chem.13(7): 1013- 1021 Environ. Toxicol. Chem.13(7): 1013- 1021 Arch. Environ. Contam.	

Fármacos	Nível Trófico	Espécies	Meio	Tempo	Efeito medido	Parâmetro	Tendêcia	Valor	Unidade	Fonte	Ano
Farmacos	Niver Fronco	Indonaia caerulea	Água doce	35	Mortalidade	LT50	Aumento	1000	ug/L	Malacologia18:347- 360	1979
	Consumidor secundario	Gadus morhua	Água Salgada	14	Etoxicumarina O-desetilase	NOEC	Diminuição	50	mg/kg bdwt	Toxicol. Appl. Pharmacol.89(3): 347-360	1987
		Gadus morhua	Água Salgada	14	Etoxiresorufina -O-desetilase	NOEC	Diminuição	50	mg/kg bdwt	Toxicol. Appl. Pharmacol.89(3): 347-360	1987
		Gadus morhua	Água Salgada	14	4-OH bifenil hidroxilase	NOEC	Aumento	50	mg/kg bdwt	Toxicol. Appl. Pharmacol.89(3): 347-360	1987
		Gadus morhua	Água Salgada	14	Etilmorfina-n-desmetilase	NOEC	Aumento	50	mg/kg bdwt	Toxicol. Appl. Pharmacol.89(3): 347-360	1987
		Gadus morhua	Água Salgada	14	Glutationa S- transferase	NOEC	Diminuição	50	mg/kg bdwt	Toxicol. Appl. Pharmacol.89(3): 347-360	1987
		Gadus morhua	Água Salgada	14	UDP Acetilglicosam ina	NOEC	Diminuição	50	mg/kg bdwt	Toxicol. Appl. Pharmacol.89(3): 347-360	1987
		Gadus morhua	Água Salgada	4	Citocromo P450	NOEC	Aumento	75	mg/kg bdwt	ChemBiol. Interact.60:247-263	1986

Fármacos	Nível Trófico	Espécies	Meio	Tempo	Efeito medido	Parâmetro	Tendêcia	Valor	Unidade	Fonte	Ano
		Gadus morhua	Água Salgada	7	Citocromo P450	NOEC	Diminuição	50	mg/kg bdwt	Toxicol. Appl. Pharmacol.89(3): 347-360	1987
		Gadus morhua	Água Salgada	7	Citocromo- NADPH p-450 redutase	NOEC	Aumento	50	mg/kg bdwt	Toxicol. Appl. Pharmacol.89(3): 347-360	1987
		Gadus morhua	Água Salgada	7	Citocromo B-5	NOEC	Aumento	50	mg/kg bdwt	Toxicol. Appl. Pharmacol.89(3): 347-360	1987
		Pimephales promelas	Água doce	4	Mortalidade	LC50	-	484000	ug/L	Center for Lake Superior Environmental Studies, University of Wisconsin, Superior, WI4:355 p.	1988
		Oncorhynchus mykiss	Água doce	14	4-OH bifenil hidroxilase	NOEC	Diminuição	50	mg/kg bdwt	Toxicol. Appl. Pharmacol.89(3): 347-360	1987
		Oncorhynchus mykiss	Água doce	14	Etoxicumarina O-desetilase	NOEC	Diminuição	50	mg/kg bdwt	Toxicol. Appl. Pharmacol.89(3): 347-360	1987
		Oncorhynchus mykiss	Água doce	14	Etilmorfina-n- desmetilase	NOEC	Diminuição	50	mg/kg bdwt	Toxicol. Appl. Pharmacol.89(3): 347-360	1987

		· ·				1					
Fármacos	Nível Trófico	Espécies	Meio	Tempo	Efeito medido	Parâmetro	Tendêcia	Valor	Unidade	Fonte	Ano
		Oncorhynchus mykiss	Água doce	14	Etoxiresorufina -O-desetilase	NOEC	Diminuição	50	mg/kg bdwt	Toxicol. Appl. Pharmacol.89(3): 347-360	1987
		Oncorhynchus mykiss	Água doce	14	Glutationa S- transferase	NOEC	Aumento	50	mg/kg bdwt	Toxicol. Appl. Pharmacol.89(3): 347-360	1987
		Oncorhynchus mykiss	Água doce	14	UDP Acetilglicosam ina	NOEC	Aumento	50	mg/kg bdwt	Toxicol. Appl. Pharmacol.89(3): 347-360	1987
		Oncorhynchus mykiss	Água doce	7	Citocromo P450	NOEC	Diminuição	50	mg/kg bdwt	Toxicol. Appl. Pharmacol.89(3): 347-360	1987
		Oncorhynchus mykiss	Água doce	7	Citocromo- NADPH p-450 redutase	NOEC	Aumento	50	mg/kg bdwt	Toxicol. Appl. Pharmacol.89(3): 347-360	1987
		Oncorhynchus mykiss	Água doce	7	Citocromo B-5	NOEC	Aumento	50	mg/kg bdwt	Toxicol. Appl. Pharmacol.89(3): 347-360	1987
	Decomposers	-	-	-	-	-	-	-	-	-	-
Fluoxetina	Produtor primário	Dunaliella tertiolecta	Água doce	4	Abundância	EC50	Diminuição	169,81	ug/L	Arch. Environ. Contam.	2008

					*	•		1			
Fármacos	Nível Trófico	Espécies	Meio	Tempo	Efeito medido	Parâmetro	Tendêcia	Valor	Unidade	Fonte	Ano
										Toxicol.54(2): 203- 210	
CAS: 54910893 / 56296787 / 57226683 / 83891036 / 114247062 /			Água							Int. J. Med. Med.	
114247095		Ankistrodesmus falcatus	doce	1	Mortalidade	LC50	Aumento	36000	ug/L	Sci.3(6): 170-180	2011
			Água							Arch. Environ. Contam. Toxicol.54(2): 203-	
		Dunaliella tertiolecta	doce	4	Abundância	LOEC	Diminuição	216	ug/L	210	2008
		Clorofilarella vulgaris	Água doce	1	Mortalidade	LC50	Aumento	40000	ug/L	Int. J. Med. Med. Sci.3(6): 170-180	2011
		Lemna gibba	Água doce	7	Biomassa	EC50	Diminuição	1000	ug/L	Environ. Toxicol. Chem.23(2): 371- 382	2004
		Lemna gibba	Água doce	7	Carotenóides	EC50	Diminuição	1000	ug/L	Environ. Toxicol. Chem.23(2): 371- 382	2004
		Lemna gibba	Água doce	7	Concentração de clorofila A	EC50	Diminuição	1000	ug/L	Environ. Toxicol. Chem.23(2): 371- 382	2004
		Lemna gibba	Água doce	7	Concentração de clorofila B	EC50	Diminuição	1000	ug/L	Environ. Toxicol. Chem.23(2): 371- 382	2004

Fármacos	Nível Trófico	Espécies	Meio	Tempo	Efeito medido	Parâmetro	Tendêcia	Valor	Unidade	Fonte	Ano
		Lemna gibba	Água doce	7	Progênia	EC50	Diminuição	1000	ug/L	Environ. Toxicol. Chem.23(2): 371- 382	2004
		Algae	Água Salgada	4	Beta-Caroteno	EC50	Alteração	155,7	nmol/L	Environ. Toxicol. Chem.30(9): 2030- 2040	2011
		Algae	Água Salgada	4	Concentração de clorofila A	EC50	Alteração	123	nmol/L	Environ. Toxicol. Chem.30(9): 2030- 2040	2011
		Algae	Água Salgada	4	Diadinoxantina	EC50	Alteração	217,7	nmol/L	Environ. Toxicol. Chem.30(9): 2030- 2040	2011
		Algae	Água Salgada	4	Diadinoxantina	EC50	Alteração	57,82	nmol/L	Environ. Toxicol. Chem.30(9): 2030- 2040	2011
		Algae	Água Salgada	4	Fucoxantina	EC50	Alteração	116,7	nmol/L	Environ. Toxicol. Chem.30(9): 2030- 2040	2011
		Algae	Água Salgada	4	Efeito bioquímico	EC50	Alteração	138,6	nmol/L	Environ. Toxicol. Chem.30(9): 2030- 2040	2011
		Algae	Água Salgada	4	Zeaxantina	EC50	Alteração	43,43	nmol/L	Environ. Toxicol. Chem.30(9): 2030- 2040	2011

		1			<u> </u>						
Fármacos	Nível Trófico	Espécies	Meio	Tempo	Efeito medido	Parâmetro	Tendêcia	Valor	Unidade	Fonte	Ano
		Algae	Água Salgada	4	Pigmentação	EC50	Alteração	111,6	nmol/L	Environ. Toxicol. Chem.30(9): 2030- 2040	2011
		Clorofilarella fusca var. vacuolata	Água doce	1	Volume sanguíneo	EC50	Diminuição	93	ug/L	Environ. Sci. Technol.43(17): 6830-6837	2009
		Clorofilarella fusca var. vacuolata	Água doce	1	PSII	EC50	Diminuição	865	ug/L	Environ. Sci. Technol.43(17): 6830-6837	2009
		Clorofilarella fusca var. vacuolata	Água doce	1	Taxa de crescimento populacional	EC50	Diminuição	0,07	uM	Aquat. Toxicol.101(1): 266-275	2011
		Clorofilarella fusca var. vacuolata	Água doce	1	Taxa de crescimento populacional	EC50	Diminuição	0,1	uM	Aquat. Toxicol.101(1): 266-275	2011
		Clorofilarella fusca var. vacuolata	Água doce	1	Taxa de crescimento populacional	EC50	Diminuição	0,2	uM	Aquat. Toxicol.101(1): 266-275	2011
		Clorofilarella fusca var. vacuolata	Água doce	1	Taxa de crescimento populacional	EC50	Diminuição	0,3	uM	Aquat. Toxicol.101(1): 266-275	2011
		Clorofilarella fusca var. vacuolata	Água doce	1	Taxa de crescimento populacional	EC50	Diminuição	0,6	uM	Aquat. Toxicol.101(1): 266-275	2011

Fármacos	Nível Trófico	Espécies	Meio	Tempo	Efeito medido	Parâmetro	Tendêcia	Valor	Unidade	Fonte	Ano
		Clorofilarella fusca var. vacuolata	Água doce	1	Taxa de crescimento populacional	EC50	Diminuição	104	ug/L	Environ. Sci. Technol.43(17): 6830-6837	2009
		Clorofilarella fusca var. vacuolata	Água doce	1	Taxa de crescimento populacional	ER50	Diminuição	0,1	uM	Aquat. Toxicol.101(1): 266-275	2011
		Clorofilarella fusca var. vacuolata	Água doce	1	Taxa de crescimento populacional	ER50	Diminuição	0,4	uM	Aquat. Toxicol.101(1): 266-275	2011
		Clorofilarella fusca var. vacuolata	Água doce	1	Taxa de crescimento populacional	ER50	Diminuição	1,1	uM	Aquat. Toxicol.101(1): 266-275	2011
		Clorofilarella fusca var. vacuolata	Água doce	1	Taxa de crescimento populacional	ER50	Diminuição	1,6	uM	Aquat. Toxicol.101(1): 266-275	2011
		Clorofilarella fusca var. vacuolata	Água doce	1	Taxa de crescimento populacional	ER50	Diminuição	4,5	uM	Aquat. Toxicol.101(1): 266-275	2011
		Clorofilarella fusca var. vacuolata	Água doce	1	Taxa de crescimento populacional	ER50	Diminuição	11	mmol/kg	Aquat. Toxicol.101(1): 266-275	2011
		Clorofilarella fusca var. vacuolata	Água doce	1	Taxa de crescimento populacional	ER50	Diminuição	35	mmol/kg	Aquat. Toxicol.101(1): 266-275	2011

Fármacos	Nível Trófico	Espécies	Meio	Tempo	Efeito medido	Parâmetro	Tendêcia	Valor	Unidade	Fonte	Ano
		Clorofilarella fusca var. vacuolata	Água doce	1	Taxa de crescimento populacional	ER50	Diminuição	8	mmol/kg	Aquat. Toxicol.101(1): 266-275	2011
		Scenedesmus quadricauda	Água doce	4	Abundância	IC50	Diminuição	212,98	ug/L	Ecotoxicol. Environ. Saf.67(1): 128-139	2007
		Pseudokirchneriella subcapitata	Água doce	5	Abundância	EC50	Diminuição	77	nM	Chemosphere52(1): 135-142	2003
		Pseudokirchneriella subcapitata	Água doce	5	Clorofila	EC50	Diminuição	126	nM	Chemosphere52(1): 135-142	2003
		Pseudokirchneriella subcapitata	Água doce	1	PSII	EC50	Diminuição	0,000000 57	M	Environ. Sci. Technol.43(17): 6830-6837	2009
		Pseudokirchneriella subcapitata	Água doce	1	Taxa de crescimento populacional	EC50	Diminuição	90	ug/L	Environ. Sci. Technol.43(17): 6830-6837	2009
		Pseudokirchneriella subcapitata	Água doce	2	Taxa de crescimento populacional	EC50	Diminuição	27	ug/L	Environ. Toxicol. Chem.26(1): 85-91	2007
		Clorofilarella vulgaris	Água doce	4	Abundância	IC50	Diminuição	4339,25	ug/L	Ecotoxicol. Environ. Saf.67(1): 128-139	2007
		Pseudokirchneriella subcapitata	Água doce	4	Abundância	IC50	Diminuição	44,99	ug/L	Ecotoxicol. Environ. Saf.67(1):	2007

Fármacos	Nível Trófico	Espécies	Meio	Tempo	Efeito medido	Parâmetro	Tendêcia	Valor	Unidade	Fonte	Ano
				•						128-139	
			Água							Ecotoxicol. Environ. Saf.67(1):	
		Scenedesmus acutus	doce	4	Abundância	IC50	Diminuição	91,23	ug/L	128-139	2007
		Pseudokirchneriella	Água							Chemosphere52(1):	
		subcapitata	doce	5	Abundância	LOEC	Diminuição	174,4	nM	135-142	2003
		Pseudokirchneriella subcapitata	Água doce	5	Clorofila	LOEC	Diminuição	43,6	nM	Chemosphere52(1): 135-142	2003
		Clorofilarella fusca var. vacuolata	Água doce	1	Volume sanguíneo	EC50	Diminuição	0,000000 55	M	Environ. Sci. Technol.43(17): 6830-6837	2009
		Clorofilarella fusca var. vacuolata	Água doce	1	PSII	EC50	Diminuição	0,000004 2	M	Environ. Sci. Technol.43(17): 6830-6837	2009
		Clorofilarella fusca var. vacuolata	Água doce	1	Taxa de crescimento populacional	EC50	Diminuição	0,2	uM	Aquat. Toxicol.101(1): 266-275	2011
		Clorofilarella fusca var. vacuolata	Água doce	1	Taxa de crescimento populacional	EC50	Diminuição	0,3	uM	Aquat. Toxicol.101(1): 266-275	2011
		Clorofilarella fusca var. vacuolata	Água doce	1	Taxa de crescimento populacional	EC50	Diminuição	0,4	uM	Aquat. Toxicol.101(1): 266-275	2011
		Clorofilarella fusca var.	Água	1	Taxa de	EC50	Diminuição	0,5	uM	Aquat.	2011

		•			*	•		•			
Fármacos	Nível Trófico	Espécies	Meio	Tempo	Efeito medido	Parâmetro	Tendêcia	Valor	Unidade	Fonte	Ano
		vacuolata	doce		crescimento					Toxicol.101(1):	
					populacional					266-275	
			,		Taxa de					Aquat.	
		Clorofilarella fusca var.	Água		crescimento	EGGO	D: ~	1.6	3.6	Toxicol.101(1):	2011
		vacuolata	doce	1	populacional	EC50	Diminuição	1,6	uM	266-275	2011
					Taxa de					Environ. Sci.	
		Clorofilarella fusca var.	Água		crescimento			0,000000		Technol.43(17):	
		vacuolata	doce	1	populacional	EC50	Diminuição	41	M	6830-6837	2009
							-				
			,		Taxa de					Aquat.	
		Clorofilarella fusca var.	Água		crescimento		5.			Toxicol.101(1):	•
		vacuolata	doce	1	populacional	ER50	Diminuição	0,3	uM	266-275	2011
					Taxa de					Aquat.	
		Clorofilarella fusca var.	Água		crescimento					Toxicol.101(1):	
		vacuolata	doce	1	populacional	ER50	Diminuição	0,6	uM	266-275	2011
			,		Taxa de					Aquat.	
		Clorofilarella fusca var.	Água	1	crescimento	ED 50	D: : : ~	2.1	3.4	Toxicol.101(1):	2011
		vacuolata	doce	1	populacional	ER50	Diminuição	2,1	uM	266-275	2011
					Taxa de					Aquat.	
		Clorofilarella fusca var.	Água		crescimento					Toxicol.101(1):	
		vacuolata	doce	1	populacional	ER50	Diminuição	2,9	uM	266-275	2011
			,		Taxa de					Aquat.	
		Clorofilarella fusca var.	Água	1	crescimento	ED50	D:ii.~-	2.5		Toxicol.101(1):	2011
		vacuolata	doce	1	populacional	ER50	Diminuição	3,5	uM	266-275	2011
		Clorofilarella fusca var.	Água		Taxa de					Aquat.	
		vacuolata	doce	1	crescimento	ER50	Diminuição	27	mmol/kg	Toxicol.101(1):	2011
							3		C	. ,	

Tabela 17 Revisão de literatura para os efeitos ecotoxicológicos de fármacos psiquiátricos em organismos aquáticos.

Fármacos	Nível Trófico	Espécies	Meio	Tempo	Efeito medido	Parâmetro	Tendêcia	Valor	Unidade	Fonte	Ano
rarmacos	Triver Tronco	Especies	Wicio	Tempo	populacional	Tarametro	Tenuccia	V 4101	Omdauc	266-275	Allo
		Clorofilarella fusca var. vacuolata	Água doce	1	Taxa de crescimento populacional	ER50	Diminuição	37	mmol/kg	Aquat. Toxicol.101(1): 266-275	2011
		Clorofilarella fusca var. vacuolata	Água doce	1	Taxa de crescimento populacional	ER50	Diminuição	45	mmol/kg	Aquat. Toxicol.101(1): 266-275	2011
		Clorofilarella fusca var. vacuolata	Água doce	1	Taxa de crescimento populacional	ER50	Diminuição	8	mmol/kg	Aquat. Toxicol.101(1): 266-275	2011
		Pseudokirchneriella subcapitata	Água doce	1	PSII	EC50	Diminuição	0,000001 6	М	Environ. Sci. Technol.43(17): 6830-6837	2009
		Pseudokirchneriella subcapitata	Água doce	1	Taxa de crescimento populacional	EC50	Diminuição	242	ug/L	Environ. Sci. Technol.43(17): 6830-6837	2009
		Pseudokirchneriella subcapitata	Água doce	3	Taxa de crescimento populacional	EC50	Diminuição	34000	ug/L	Chirality21(8): 751-759	2009
	Consumidor primario	Daphnia longispina	Água doce	2	Mortalidade	LC50	Aumento	830000	ug/L	Int. J. Med. Med. Sci.3(6): 170-180	2011
		Carotenóidesinus	Água	7	Glutationa	LOEC	Aumento	120	ug/L	Chemosphere85(6):	2011

Fármacos	Nível Trófico	Espécies	Meio	Tempo	Efeito medido	Parâmetro	Tendêcia	Valor	Unidade	Fonte	Ano
		maenas	Salgada	•						967-976	
		Carotenóidesinus maenas	Água Salgada	7	Glutationa reditase	LOEC	Aumento	120	ug/L	Chemosphere85(6): 967-976	2011
		Carotenóidesinus maenas	Água Salgada	7	Glutationa S- transferase	LOEC	Aumento	120	ug/L	Chemosphere85(6): 967-976	2011
		Carotenóidesinus maenas	Água Salgada	7	Colinesterase	LOEC	Aumento	120	ug/L	Chemosphere85(6): 967-976	2011
		Carotenóidesinus maenas	Água Salgada	7	Movimento	LOEC	Aumento	120	ug/L	Chemosphere85(6): 967-976	2011
		Carotenóidesinus maenas	Água Salgada	7	Movimento	LOEC	Aumento	120	ug/L	Chemosphere85(6): 967-976	2011
		Carotenóidesinus maenas	Água Salgada	7	Movimento	LOEC	Aumento	120	ug/L	Chemosphere85(6): 967-976	2011
		Chasmagnathus granulata	Água Salgada	2h	Glicose	LOEC	Aumento	1,5	nmol/org	Braz. J. Med. Biol. Res.34(1): 75-80	2001
		Chasmagnathus granulata	Água Salgada	2h	Glicose	LOEC	Aumento	1,5	nmol/org	Braz. J. Med. Biol. Res.34(1): 75-80	2001
		Orconectes limosus	Água doce	2h	Glicose	LOEC	Aumento	1,5	nmol/org	Braz. J. Med. Biol. Res.34(1): 75-80	2001
		Orconectes limosus	Água doce	2h	Glicose	LOEC	Aumento	1,5	nmol/org	Braz. J. Med. Biol. Res.34(1): 75-80	2001

Fármacos	Nível Trófico	Espécies	Meio	Tempo	Efeito medido	Parâmetro	Tendêcia	Valor	Unidade	Fonte	Ano
			Água		Hormônio					Braz. J. Med. Biol.	
		Orconectes limosus	doce	2h	hiperglicêmico	LOEC	Aumento	1,5	nmol/org	Res.34(1): 75-80	2001
			Água		Hormônio					Braz. J. Med. Biol.	
		Orconectes limosus	doce	2h	hiperglicêmico	LOEC	Aumento	1,5	nmol/org	Res.34(1): 75-80	2001
		Ceriodaphnia dubia	Água doce	2	Mortalidade	LC50	Aumento	510	ug/L	Environ. Toxicol. Chem.23(9): 2229- 2233	2004
										Aquat.	
			Água						_	Toxicol.86(1): 99-	
		Daphnia magna	doce	6	Mortalidade	LC50	Aumento	145	ug/L	103	2008
			.							Aquat.	
		Daphnia magna	Água doce	6	Mortalidade	LC50	Aumento	184	ug/L	Toxicol.86(1): 99- 103	2008
										Aquat.	
			Água						_	Toxicol.86(1): 99-	
		Daphnia magna	doce	6	Mortalidade	LC50	Aumento	326	ug/L	103	2008
			í							Environ. Toxicol.	
		Ceriodaphnia dubia	Água doce	8	Progênia	LOEC	Diminuição	447	ug/L	Chem.23(9): 2229- 2233	2004
										Environ. Toxicol.	
			Água							Chem.23(9): 2229-	
		Ceriodaphnia dubia	doce	8	Progênia	LOEC	Diminuição	447	ug/L	2233	2004
			Água						_	Chemosphere61(2):	2005
		Daphnia magna	Água doce	10	Fecundação	LOEC	Aumento	36	ug/L	Chemospher 200-20	

Fármacos	Nível Trófico	Espécies	Meio	Тетро	Efeito medido	Parâmetro	Tendêcia	Valor	Unidade	Fonte	Ano
		Daphnia magna	Água doce	25	Fecundação	LOEC	Aumento	36	ug/L	Chemosphere61(2): 200-207	2005
		Daphnia magna	Água doce	5	Fecundação	LOEC	Aumento	36	ug/L	Chemosphere61(2): 200-207	2005
		Daphnia magna	Água doce	3	Chitobiase	LOEC	Alteração	0,1	ug/L	Arch. Environ. Contam. Toxicol.54(4): 637- 644	2008
		Daphnia magna	Água doce	30	Fecundação	LOEC	Aumento	36	ug/L	Chemosphere61(2): 200-207	2005
		Daphnia magna	Água doce	30	Fecundação	LOEL	-	36	ug/L	Chemosphere61(2): 200-207	2005
		Daphnia magna	Água doce	30	Tamanho	NOEL	-	36	ug/L	Chemosphere61(2): 200-207	2005
		Daphnia magna	Água doce	30	Sobrevivência	NOEL	-	36	ug/L	Chemosphere61(2): 200-207	2005
		Daphnia magna	Água doce	30	Proporção sexual	NOEL	-	36	ug/L	Chemosphere61(2): 200-207	2005
		Paramecium caudatum	Água doce	2	Mortalidade	LC50	Aumento	150000	ug/L	Int. J. Med. Med. Sci.3(6): 170-180	2011
		Brachionus calyciflorus	Água doce	2	Mortalidade	LC50	Aumento	230000	ug/L	Int. J. Med. Med. Sci.3(6): 170-180	2011

Fármacos	Nível Trófico	Espécies	Meio	Tempo	Efeito medido	Parâmetro	Tendêcia	Valor	Unidade	Fonte	Ano
		Lumbriculus variegatus	Água doce	15min	Frequência cardíaca	LOEC	Aumento	200	uM	Comp. Biochem. Physiol. C Toxicol. Pharmacol.151(4): 467-472	2010
		Thamnocephalus platyurus	Água doce	1	Mortalidade	LC50	Aumento	760	ug/L	Chemosphere70(1): 29-35	2007
		Gammarus pulex	Água doce	2h	Repouso	LOEC	Aumento	0,1	ug/L	Aquat. Toxicol.78(3): 209- 216	2006
		Daphnia magna	Água doce	2	Imobilidade	EC50	Aumento	6400	ug/L	Environ. Toxicol. Chem.26(1): 85-91	2007
		Ceriodaphnia dubia	Água doce	2	Mortalidade	LC50	Aumento	234	ug/L	Chemosphere52(1): 135-142	2003
		Daphnia magna	Água doce	2	Mortalidade	LC50	Aumento	820	ug/L	Chemosphere52(1): 135-142	2003
		Ceriodaphnia dubia	Água doce	7	Fecundação	LOEC	Aumento	720	nM	Chemosphere52(1): 135-142	2003
		Daphnia magna	Água doce	14	Consumo de oxigênio	LOEC	Aumento	76,1	ug/L	Environ. Sci. Technol.46(5): 2943-2950	2012
		Daphnia magna	Água doce	14	Consumo de oxigênio	LOEC	Aumento	76,1	ug/L	Environ. Sci. Technol.46(5): 2943-2950	2012

Fármacos	Nível Trófico	Espécies	Meio	Tempo	Efeito medido	Parâmetro	Tendêcia	Valor	Unidade	Fonte	Ano
		Daphnia magna	Água doce	14	Hidrocarboneto	LOEC	Diminuição	76,1	ug/L	Environ. Sci. Technol.46(5): 2943-2950	2012
		Daphnia magna	Água doce	42	Progênia	LOEC	Diminuição	31	ug/L	Chemosphere73(3): 300-304	2008
		Daphnia magna	Água doce	21	Progênia	LOEC	Diminuição	31	ug/L	Chemosphere73(3): 300-304	2008
		Daphnia magna	Água doce	21	Progênia	LOEC	Diminuição	430	ug/L	Chemosphere69(1): 9-16	2007
		Daphnia magna	Água doce	21	Imobilidade	LOEC	Aumento	430	ug/L	Chemosphere69(1): 9-16	2007
		Daphnia magna	Água doce	21	Progênia	LOEC	Aumento	45,3	ug/L	Environ. Sci. Technol.46(5): 2943-2950	2012
		Daphnia magna	Água doce	4	Sobrevivência	LOEC	Diminuição	76,1	ug/L	Environ. Sci. Technol.46(5): 2943-2950	2012
		Daphnia magna	Água doce	42	Comprimento	LOEC	Diminuição	31	ug/L	Chemosphere73(3): 300-304	2008
		Daphnia magna	Água doce	14	Comprimento	LOEC	Diminuição	241	ug/L	Chemosphere73(3): 300-304	2008
		Daphnia magna	Água doce	21	Comprimento	LOEC	Diminuição	241	ug/L	Chemosphere73(3): 300-304	2008

Fármacos	Nível Trófico	Espécies	Meio	Tempo	Efeito medido	Parâmetro	Tendêcia	Valor	Unidade	Fonte	Ano
		Daphnia magna	Água doce	4	Tamanho	LOEC	Diminuição	45,3	ug/L	Environ. Sci. Technol.46(5): 2943-2950	2012
		Daphnia magna	Água doce	4	Tamanho	LOEC	Diminuição	45,3	ug/L	Environ. Sci. Technol.46(5): 2943-2950	2012
		Daphnia magna	Água doce	7	Comprimento	LOEC	Diminuição	102	ug/L	Chemosphere73(3): 300-304	2008
		Daphnia magna	Água doce	14	Progênia	LOEC	Aumento	76,1	ug/L	Environ. Sci. Technol.46(5): 2943-2950	2012
		Hyalella azteca	Água doce	14	Comprimento	LOEC	Diminuição	100	ug/L	Chemosphere73(3): 300-304	2008
		Hyalella azteca	Água doce	21	Comprimento	LOEC	Diminuição	100	ug/L	Chemosphere73(3): 300-304	2008
		Hyalella azteca	Água doce	28	Comprimento	LOEC	Diminuição	100	ug/L	Chemosphere73(3): 300-304	2008
		Spirostomum ambiguum	Água doce	1	Deformação	EC50	Aumento	410	ug/L	Chemosphere70(1): 29-35	2007
		Spirostomum ambiguum	Água doce	1	Mortalidade	LC50	Aumento	550	ug/L	Chemosphere70(1): 29-35	2007
		Lytechinus pictus	Água Salgada	1h	Florescência	LOEC	Diminuição	100	ug/L	Ph.D. Thesis, University of	2010

Fármacos	Nível Trófico	Espécies	Meio	Tempo	Efeito medido	Parâmetro	Tendêcia	Valor	Unidade	Fonte	Ano
T III MILEOS	THE TORCE	Especies	11200	rempo	Diete medico	Turumeno	Tenacea	, aloi	Omdude	California, Davis,CA:159 p.	1110
		Thamnocephalus platyurus	Água doce	1	Mortalidade	LC50	Aumento	470	ug/L	Chemosphere70(1): 29-35	2007
		Spirostomum ambiguum	Água doce	1	Deformação	EC50	Aumento	300	ug/L	Chemosphere70(1): 29-35	2007
		Spirostomum ambiguum	Água doce	1	Mortalidade	LC50	Aumento	390	ug/L	Chemosphere70(1): 29-35	2007
		Daphnia magna	Água doce	2	Mortalidade	LC50	Aumento	6900	ug/L	Chirality21(8): 751- 759	2009
		Daphnia magna	Água doce	21	Progênia	LOEC	Diminuição	444	ug/L	Chemosphere69(1): 9-16	2007
		Daphnia magna	Água doce	21	Comportament o alimentar	LOEC	Aumento	195	ug/L	Chemosphere69(1): 9-16	2007
		Daphnia magna	Água doce	21	Imobilidade	LOEC	Aumento	444	ug/L	Chemosphere69(1): 9-16	2007
		Tetrahymena thermophila	Água doce	1	Taxa de crescimento populacional	EC50	Diminuição	3200	ug/L	Chirality21(8): 751-759	2009
		Daphnia magna	Água doce	2	Mortalidade	LC50	Aumento	8100	ug/L	Chirality21(8): 751- 759	2009
		Daphnia magna	Água doce	21	Progênia	LOEC	Diminuição	429	ug/L	Chemosphere69(1): 9-16	2007

Fármacos	Nível Trófico	Espécies	Meio	Tempo	Efeito medido	Parâmetro	Tendêcia	Valor	Unidade	Fonte	Ano
		Daphnia magna	Água doce	21	Imobilidade	LOEC	Aumento	429	ug/L	Chemosphere69(1): 9-16	2007
		Tetrahymena thermophila	Água doce	1	Taxa de crescimento populacional	EC50	Diminuição	30500	ug/L	Chirality21(8): 751-759	2009
	Detritivoros	Physella acuta	Água doce	21	Eclosão	LOEC	Diminuição	250	ug/L	Ecotoxicol. Environ. Saf.80:152-160	2012
		Potamopyrgus antipodarum	Água doce	56	Progênia	EC50	Diminuição	0,81	ug/L	In: K.Kummerer (Ed.), Pharmaceuticals in the Environment. Sources, Fate, Effects and Risks (2nd Ed), Springer, Heidelberg, Germany:206-222	2008
		Dreissena polymorpha	Água doce	6	Contagem de célula germinativa	LOEC	Diminuição	0,02	ug/L	Aquat. Toxicol.106- 107:123-130	2012
		Dreissena polymorpha	Água doce	6	Contagem de célula germinativa	LOEC	Diminuição	0,02	ug/L	Aquat. Toxicol.106- 107:123-130	2012
		Potamopyrgus antipodarum	Água doce	42	Espessura	LOEC	Diminuição	69	ug/L	Environ. Pollut.157(2): 423- 429	2009

Fármacos	Nível Trófico	Espécies	Meio	Tempo	Efeito medido	Parâmetro	Tendêcia	Valor	Unidade	Fonte	Ano
		Potamopyrgus antipodarum	Água doce	42	Progênia	LOEC	Diminuição	69	ug/L	Environ. Pollut.157(2): 423- 429	2009
		Potamopyrgus antipodarum	Água doce	42	Atraso no desenvolvimen to	LOEC	Diminuição	13	ug/L	Environ. Pollut.157(2): 423- 429	2009
		Potamopyrgus antipodarum	Água doce	42	Progesterona	LOEC	Aumento	13	ug/L	Environ. Pollut.157(2): 423- 429	2009
		Potamopyrgus antipodarum	Água doce	42	Testosterona	LOEC	Aumento	13	ug/L	Environ. Pollut.157(2): 423- 429	2009
		Elliptio complanata	Água doce	4	Inviabilidade	LOEC	Aumento	300	ug/L	Environ. Toxicol. Chem.29(6): 1311- 1318	2010
		Elliptio complanata	Água doce	2	Número de espermatozóide s	LOEC	Aumento	3000	ug/L	Environ. Toxicol. Chem.29(6): 1311- 1318	2010
		Lampsilis cardium	Água doce	4	Viabilidade	LOEC	Aumento	3000	ug/L	Environ. Toxicol. Chem.29(6): 1311- 1318	2010
		Lampsilis cardium	Água doce	4	Alteração do comportamento reprodutivo	LOEC	Aumento	3000	ug/L	Environ. Toxicol. Chem.29(6): 1311- 1318	2010

Fármacos	Nível Trófico	Espécies	Meio	Tempo	Efeito medido	Parâmetro	Tendêcia	Valor	Unidade	Fonte	Ano
		Lampsilis fasciola	Água doce	4	Viabilidade	LOEC	Aumento	3000	ug/L	Environ. Toxicol. Chem.29(6): 1311- 1318	2010
		Lampsilis fasciola	Água doce	4	Alteração do comportamento reprodutivo	LOEC	Diminuição	3000	ug/L	Environ. Toxicol. Chem.29(6): 1311- 1318	2010
		Lampsilis fasciola	Água doce	4	Alteração do comportamento reprodutivo	LOEC	Diminuição	3000	ug/L	Environ. Toxicol. Chem.29(6): 1311- 1318	2010
		Lampsilis fasciola	Água doce	4	Alteração do comportamento reprodutivo	LOEC	Aumento	300	ug/L	Environ. Toxicol. Chem.29(6): 1311- 1318	2010
		Physella acuta	Água doce	38	Progênia	LOEC	Diminuição	250	ug/L	Sci. Total Environ.407(6): 1937-1946	2009
		Physella acuta	Água doce	40	Progênia	LOEC	Diminuição	250	ug/L	Sci. Total Environ.407(6): 1937-1946	2009
		Potamopyrgus antipodarum	Água doce	42	Progênia	LOEC	Diminuição	69	ug/L		2008
		Potamopyrgus antipodarum	Água doce	56	Progênia	LOEC	Diminuição	11,5	ug/L	Arch. Environ. Contam. Toxicol.52(2): 163- 170	2007

Fármacos	Nível Trófico	Espécies	Meio	Tempo	Efeito medido	Parâmetro	Tendêcia	Valor	Unidade	Fonte	Ano
		Potamopyrgus antipodarum	Água doce	28	Deformação	LOEC	Diminuição	11,5	ug/L	Arch. Environ. Contam. Toxicol.52(2): 163- 170	2007
		Potamopyrgus antipodarum	Água doce	56	Deformação	LOEC	Diminuição	2,25	ug/L	Arch. Environ. Contam. Toxicol.52(2): 163- 170	2007
		Sphaerium striatinum	Água doce	4h	Frequência de desova	LOEC	Aumento	1	uM	Bull. Environ. Contam. Toxicol.81(6): 535- 538	2008
		Dreissena polymorpha	Água doce	4h	Frequência de desova	LOEC	Aumento	10	uM	Bull. Environ. Contam. Toxicol.81(6): 535- 538	2008
		Dreissena polymorpha	Água doce	4h	Frequência de desova	LOEC	Aumento	5	uM	Bull. Environ. Contam. Toxicol.81(6): 535- 538	2008
	Consumidor secundario	Xenopus laevis	Água doce	4	Deformação	EC50	Aumento	6600	ug/L	Ecotoxicology15(8) : 647-656	2006
		Xenopus laevis	Água doce	4	Deformação	EC50	Aumento	6400	ug/L	Ecotoxicology15(8) : 647-656	2006

					•	•		•			
Fármacos	Nível Trófico	Espécies	Meio	Tempo	Efeito medido	Parâmetro	Tendêcia	Valor	Unidade	Fonte	Ano
		Xenopus laevis	Água doce	4	Comprimento	LOEC	Diminuição	4000	ug/L	Ecotoxicology15(8) : 647-656	2006
		Betta splendens	Água doce	14	Ácido 5- hidroxindolacét ico	LOEC	Diminuição	4,3	mmol	Pharmacol. Biochem. Behav.87(2): 222- 231	2007
		Betta splendens	Água doce	14	Serotonina	LOEC	Diminuição	4,3	mmol	Pharmacol. Biochem. Behav.87(2): 222- 231	2007
		Betta splendens	Água doce	14	Ácido 5- hidroxindolacét ico	LOEC	Diminuição	4,3	mmol	Pharmacol. Biochem. Behav.87(2): 222- 231	2007
		Betta splendens	Água doce	14	Razão entre 5HT e ácido 5- hidroxindolacét ico	LOEC	Diminuição	4,3	mmol	Pharmacol. Biochem. Behav.87(2): 222- 231	2007
		Thalassoma bifasciatum	Água Salgada	14	Agressividade	LOEC	Diminuição	10	mg/kg bdwt	Physiol. Behav.79:719-724	2003
		Thalassoma bifasciatum	Água Salgada	14	Agressividade	LOEC	Diminuição	10	mg/kg bdwt	Physiol. Behav.79:719-724	2003
		Thalassoma bifasciatum	Água Salgada	15	Arginina vasotocina mRNA	LOEC	Diminuição	6	mg/kg bdwt	Brain Res.1029:141-147	2004

Fármacos	Nível Trófico	Espécies	Meio	Tempo	Efeito medido	Parâmetro	Tendêcia	Valor	Unidade	Fonte	Ano
		Thalassoma bifasciatum	Água Salgada	15	Arginina vasotocina mRNA	LOEC	Diminuição	6	mg/kg bdwt	Brain Res.1029:141-147	2004
		Thalassoma bifasciatum	Água Salgada	15	Arginina vasotocina mRNA	LOEC	Diminuição	6	mg/kg bdwt	Brain Res.1029:141-147	2004
		Thalassoma bifasciatum	Água Salgada	15	Arginina vasotocina mRNA	LOEC	Diminuição	6	mg/kg bdwt	Brain Res.1029:141-147	2004
		Thalassoma bifasciatum	Água Salgada	14	Atividade	LOEC	Diminuição	6	mg/kg bdwt	Physiol. Behav.79:719-724	2003
		Thalassoma bifasciatum	Água Salgada	14	Agressividade	LOEC	Diminuição	6	mg/kg bdwt	Physiol. Behav.79:719-724	2003
		Thalassoma bifasciatum	Água Salgada	14	Agressividade	LOEC	Diminuição	6	mg/kg bdwt	Physiol. Behav.79:719-724	2003
		Danio rerio	Água doce	7	Progênia	LOEC	Diminuição	32	ug/L	Aquat. Toxicol.95(4): 320- 329	2009
		Danio rerio	Água doce	7	Expressão gênica	LOEC	Diminuição	3,2	ug/L	Aquat. Toxicol.95(4): 320- 329	2009
		Danio rerio	Água doce	7	Expressão gênica	LOEC	Diminuição	32	ug/L	Aquat. Toxicol.95(4): 320- 329	2009

Fármacos	Nível Trófico	Espécies	Meio	Tempo	Efeito medido	Parâmetro	Tendêcia	Valor	Unidade	Fonte	Ano
		Danio rerio	Água doce	7	17-beta Estradiol	LOEC	Diminuição	32	ug/L	Aquat. Toxicol.95(4): 320- 329	2009
		Pimephales promelas	Água doce	18	Expressão gênica	LOEC	Aumento	10	ug/L	Comp. Biochem. Physiol. C Toxicol. Pharmacol.155(1): 109-120	2012
		Pimephales promelas	Água doce	14	Movimento	LOEC	Aumento	10	ug/L	Comp. Biochem. Physiol. C Toxicol. Pharmacol.155(1): 109-120	2012
		Oncorhynchus tshawytscha	Água doce	2	Movimento	LOEC	Aumento	100	ng	Horm. Behav.43(1): 214-221	2003
		Oncorhynchus tshawytscha	Água doce	20	Atividade	LOEC	Aumento	2,5	mg/kg bdwt	Comp. Biochem. Physiol. A Mol. Integr. Physiol.147(1): 43- 49	2007
		Carassius auratus	Água doce	13	Hormônio liberador da corticotropina	LOEC	Aumento	5	mg/kg bdwt	Regulatory Pept.155(1-3): 99- 104	2009
		Carassius auratus	Água doce	13	Neuropeptídeo Y mRNA	LOEC	Aumento	5	mg/kg bdwt	Regulatory Pept.155(1-3): 99- 104	2009
		Carassius auratus	Água	17	Proteína beta 1	LOEC	Diminuição	5	mg/kg	Phy	2008

Tabela 17 Revisão de literatura para os efeitos ecotoxicológicos de fármacos psiquiátricos em organismos aquáticos.

							<u>U</u>				
Fármacos	Nível Trófico	Espécies	Meio	Tempo	Efeito medido	Parâmetro	Tendêcia	Valor	Unidade	Fonte	Ano
		•	doce	-	do receptor de				bdwt		
					estrógeno					siol.	
					mRNA					Genomics35:273-	
										282	
										Physiol.	
			Água						mg/kg	Genomics35:273-	
		Carassius auratus	doce	17	Genética	LOEC	Diminuição	5	bdwt	282	2008
		Carassus auraus	docc	17	Genetica	LoLe	Diiiiiiaição	3	oawi	202	2000
										Physiol.	
			Água		Ácido				mg/kg	Genomics35:273-	
		Carassius auratus	doce	17	homovanílico	LOEC	Aumento	5	bdwt	282	2008
										Dagulatam	
			Água		Consumo de				mg/kg	Regulatory Pept.155(1-3): 99-	
		Carassius auratus	doce	11	alimento	LOEC	Diminuição	5	bdwt	104	2009
		Carassus auraius	docc	11	annento	LOLC	Dillillação	3	bawt	104	2007
										Regulatory	
			Água		Consumo de				mg/kg	Pept.155(1-3): 99-	
		Carassius auratus	doce	12	alimento	LOEC	Diminuição	5	bdwt	104	2009
										D 1.	
			Água		Consumo de				ma/Ira	Regulatory Pept.155(1-3): 99-	
		Carassius auratus	doce	5	alimento	LOEC	Diminuição	5	mg/kg bdwt	104	2009
		Carassus aurans	docc	3	annento	LOLC	Dillillação	3	bawt	104	2007
										Regulatory	
			Água		Consumo de				mg/kg	Pept.155(1-3): 99-	
		Carassius auratus	doce	6	alimento	LOEC	Diminuição	5	bdwt	104	2009
										D 1.	
			Água		Consumo de				ma/l-~	Regulatory Pept.155(1-3): 99-	
		Carassius auratus	Agua doce	9	alimento	LOEC	Diminuição	5	mg/kg bdwt	104	2009
		Carassias auraias	docc	9	annento	LOLC	Dillillingao	3	buwi	104	2009

Fármacos	Nível Trófico	Espécies	Meio	Tempo	Efeito medido	Parâmetro	Tendêcia	Valor	Unidade	Fonte	Ano
		Carassius auratus	Água doce	17	17-beta Estradiol	LOEC	Diminuição	5	mg/kg bdwt	Physiol. Genomics35:273- 282	2008
		Carassius auratus	Água doce	13	Neuropeptídeo Y mRNA	LOEC	Diminuição	5	mg/kg bdwt	Regulatory Pept.155(1-3): 99- 104	2009
		Carassius auratus	Água doce	13	Expressão gênica	LOEC	Aumento	5	mg/kg bdwt	Regulatory Pept.155(1-3): 99- 104	2009
		Carassius auratus	Água doce	17	Proteína beta 1 do receptor de estrógeno mRNA	LOEC	Diminuição	5	mg/kg bdwt	Physiol. Genomics35:273- 282	2008
		Carassius auratus	Água doce	17	Receptor de estrogénio alfa mRNA	LOEC	Diminuição	5	mg/kg bdwt	Physiol. Genomics35:273- 282	2008
		Carassius auratus	Água doce	17	Genética	LOEC	Diminuição	5	mg/kg bdwt	Physiol. Genomics35:273- 282	2008
		Carassius auratus	Água doce	17	Razão entre dopamina e 3- Metoxitiramina	LOEC	Aumento	5	mg/kg bdwt	Physiol. Genomics35:273- 282	2008
		Carassius auratus	Água doce	13	Ganho de peso	LOEC	Diminuição	5	mg/kg bdwt	Regulatory Pept.155(1-3): 99- 104	2009

Fármacos	Nível Trófico	Espécies	Meio	Tempo	Efeito medido	Parâmetro	Tendêcia	Valor	Unidade	Fonte	Ano
		Carassius auratus	Água doce	28	Hormônio liberador da corticotropina	LOEC	Diminuição	0,54	ug/L	Aquat. Toxicol.100(1): 128-137	2010
		Carassius auratus	Água doce	28	Neuropeptídeo Y mRNA	LOEC	Diminuição	54	ug/L	Aquat. Toxicol.100(1): 128-137	2010
		Carassius auratus	Água doce	14	Receptor de estrogénio alfa mRNA	LOEC	Aumento	54	ug/L	Aquat. Toxicol.100(4): 354-364	2010
		Carassius auratus	Água doce	28	Razão do peso do órgão vs corpo	LOEC	Aumento	0,54	ug/L	Aquat. Toxicol.100(1): 128-137	2010
		Carassius auratus	Água doce	28	Razão do peso do órgão vs corpo	LOEC	Aumento	0,54	ug/L	Aquat. Toxicol.100(1): 128-137	2010
		Carassius auratus	Água doce	28	Hexoquinase	LOEC	Aumento	0,54	ug/L	Aquat. Toxicol.100(1): 128-137	2010
		Carassius auratus	Água doce	14	Número de espermatozóide s	LOEC	Diminuição	54	ug/L	Aquat. Toxicol.100(4): 354-364	2010
		Carassius auratus	Água doce	7	Número de espermatozóide s	LOEC	Diminuição	0,54	ug/L	Aquat. Toxicol.100(4): 354-364	2010

Fármacos	Nível Trófico	Espécies	Meio	Tempo	Efeito medido	Parâmetro	Tendêcia	Valor	Unidade	Fonte	Ano
		Carassius auratus	Água doce	27	Consumo de alimento	LOEC	Diminuição	54	ug/L	Aquat. Toxicol.100(1): 128-137	2010
		Carassius auratus	Água doce	28	Glicose	LOEC	Diminuição	0,54	ug/L	Aquat. Toxicol.100(1): 128-137	2010
		Carassius auratus	Água doce	14	Testosterona	LOEC	Diminuição	54	ug/L	Aquat. Toxicol.100(4): 354-364	2010
		Carassius auratus	Água doce	14	Receptor do hormônio folículo- estimulante mRNA	LOEC	Aumento	54	ug/L	Aquat. Toxicol.100(4): 354-364	2010
		Carassius auratus	Água doce	14	Receptor do hormônio luteinizante mRNA	LOEC	Aumento	54	ug/L	Aquat. Toxicol.100(4): 354-364	2010
		Carassius auratus	Água doce	14	17-beta Estradiol	LOEC	Aumento	0,54	ug/L	Aquat. Toxicol.100(4): 354-364	2010
		Carassius auratus	Água doce	14	Citocromo P450 aromatase A mRNA	LOEC	Aumento	54	ug/L	Aquat. Toxicol.100(4): 354-364	2010

Fármacos	Nível Trófico	Espécies	Meio	Tempo	Efeito medido	Parâmetro	Tendêcia	Valor	Unidade	Fonte	Ano
				F -							
			Água							Aquat. Toxicol.100(1):	
		Carassius auratus	doce	28	Ganho de peso	LOEC	Diminuição	54	ug/L	128-137	2010
										At	
			Água							Aquat. Toxicol.100(1):	
		Carassius auratus	doce	28	Ganho de peso	LOEC	Diminuição	54	ug/L	128-137	2010
										Environ. Toxicol.	
			Água	22	5	LODG	D: : : ~	0.020		Chem.29(12): 2845-	2010
		Lithobates pipiens	doce	33	Estágio	LOEC	Diminuição	0,029	ug/L	2850	2010
			,							Environ. Toxicol.	
		Lithobates pipiens	Água doce	40	Estágio	LOEC	Diminuição	0,029	ug/L	Chem.29(12): 2845- 2850	2010
		Elinobules pipiens	doce	40	Litugio	LoLe	Diminuição	0,02)	ug/L		2010
			Água							Environ. Toxicol. Chem.29(12): 2845-	
		Lithobates pipiens	doce	50	Estágio	LOEC	Diminuição	0,029	ug/L	2850	2010
					Ácido 5-					Aquat.	
			Água		hidroxindolacét					Toxicol.88(4): 207-	
		Morone saxatilis	doce	3	ico	LOEC	Diminuição	23,2	ug/L	213	2008
					Razão entre						
			.		5HT e ácido 5-					Aquat.	
		Morone saxatilis	Água doce	3	hidroxindolacét ico	LOEC	Diminuição	23,2	ug/L	Toxicol.88(4): 207- 213	2008
							3	,	G		
			Água							Aquat. Toxicol.88(4): 207-	
		Morone saxatilis	doce	3	Serotonina	LOEC	Diminuição	23,2	ug/L		2008

Fármacos	Nível Trófico	Espécies	Meio	Tempo	Efeito medido	Parâmetro	Tendêcia	Valor	Unidade	Fonte	Ano
		Morone saxatilis	Água doce	6	Ácido 5- hidroxindolacét ico	LOEC	Diminuição	23,2	ug/L	Aquat. Toxicol.88(4): 207- 213	2008
		Morone saxatilis	Água doce	6	Serotonina	LOEC	Diminuição	51,4	ug/L	Aquat. Toxicol.88(4): 207- 213	2008
		Morone saxatilis	Água doce	3	Comportament o predatório	LOEC	Aumento	23,2	ug/L	Aquat. Toxicol.88(4): 207- 213	2008
		Morone saxatilis	Água doce	3	Comportament o predatório	LOEC	Aumento	23,2	ug/L	Aquat. Toxicol.88(4): 207- 213	2008
		Morone saxatilis	Água doce	3	Comportament o predatório	LOEC	Aumento	23,2	ug/L		2008
		Morone saxatilis	Água doce	6	Comportament o predatório	LOEC	Aumento	23,2	ug/L	Aquat. Toxicol.88(4): 207- 213	2008
		Morone saxatilis	Água doce	6	Comportament o predatório	LOEC	Aumento	23,2	ug/L		2008
		Morone saxatilis	Água doce	6	Comportament o predatório	LOEC	Aumento	23,2	ug/L	Aquat. Toxicol.88(4): 207- 213	2008

Fármacos	Nível Trófico	Espécies	Meio	Tempo	Efeito medido	Parâmetro	Tendêcia	Valor	Unidade	Fonte	Ano
		Morone saxatilis ssp. x chrysops	Água doce	12	Ácido 5- hidroxindolacét ico	LOEC	Diminuição	9,44	ug/L	Ph.D. Thesis, Clemson University, Clemson, SC:127 p.	2008
		Morone saxatilis ssp. x chrysops	Água doce	12	Razão entre 5- HIAA e 5-HT	LOEC	Diminuição	0,87	ug/L	Ph.D. Thesis, Clemson University, Clemson, SC:127 p.	2008
		Morone saxatilis ssp. x chrysops	Água doce	21	Ácido 5- hidroxindolacét ico	LOEC	Diminuição	9,44	ug/L	Ph.D. Thesis, Clemson University, Clemson, SC:127 p.	2008
		Morone saxatilis ssp. x chrysops	Água doce	21	Razão entre 5- HIAA e 5-HT	LOEC	Diminuição	9,44	ug/L	Ph.D. Thesis, Clemson University, Clemson, SC:127 p.	2008
		Morone saxatilis ssp. x chrysops	Água doce	27	Norepinefrina	LOEC	Aumento	9,44	ug/L	Ph.D. Thesis, Clemson University, Clemson, SC:127 p.	2008
		Morone saxatilis ssp. x chrysops	Água doce	27	Serotonina	LOEC	Aumento	9,44	ug/L	Ph.D. Thesis, Clemson University, Clemson, SC:127 p.	2008
		Morone saxatilis ssp. x chrysops	Água doce	6	Ácido 5- hidroxindolacét ico	LOEC	Diminuição	9,44	ug/L	Ph.D. Thesis, Clemson University,	2008

		•			•	•		•			
Fármacos	Nível Trófico	Espécies	Meio	Tempo	Efeito medido	Parâmetro	Tendêcia	Valor	Unidade	Fonte	Ano
		<u>-</u>		_						Clemson, SC:127 p.	
		Morone saxatilis ssp. x chrysops	Água doce	6	Razão entre 5- HIAA e 5-HT	LOEC	Diminuição	9,44	ug/L	Ph.D. Thesis, Clemson University, Clemson, SC:127 p.	2008
		Opsanus beta	Água Salgada	1	Hematócrito	LOEC	Diminuição	50	mg/kg bdwt	Aquat. Toxicol.93(4): 253- 260	2009
		Opsanus beta	Água Salgada	1	Volume de líquido	LOEC	Aumento	50	mg/kg bdwt	Aquat. Toxicol.95(2): 164- 171	2009
		Opsanus beta	Água Salgada	2	Digestão	LOEC	Aumento	25	mg/kg bdwt	Aquat. Toxicol.93(4): 253- 260	2009
		Opsanus beta	Água Salgada	1	Sobrevivência	LOEC	Diminuição	75	mg/kg bdwt	Aquat. Toxicol.93(4): 253- 260	2009
		Opsanus beta	Água Salgada	1	Sobrevivência	LOEC	Diminuição	75	mg/kg bdwt	Aquat. Toxicol.95(2): 164- 171	2009
		Opsanus beta	Água Salgada	1	Agressividade	LOEC	Aumento	10	mg/kg bdwt	Comp. Biochem. Physiol. C Toxicol. Pharmacol.153(1): 107-112	2011
		Opsanus beta	Água	1	Hematócrito	LOEC	Diminuição	50	mg/kg	Aquat.	2009

Fármacos	Nível Trófico	Espécies	Meio	Tempo	Efeito medido	Parâmetro	Tendêcia	Valor	Unidade	Fonte	Ano
		•	Salgada	•					bdwt		
		Opsanus beta	Água Salgada	1	Osmolaridade	LOEC	Diminuição	25	mg/kg bdwt	Aquat. Toxicol.93(4): 253- 260	2009
		Opsanus beta	Água Salgada	1	Osmolaridade	LOEC	Diminuição	25	mg/kg bdwt	Aquat. Toxicol.95(2): 164- 171	2009
		Opsanus beta	Água Salgada	1	Cortisol	LOEC	Aumento	50	mg/kg bdwt	Aquat. Toxicol.93(4): 253- 260	2009
		Opsanus beta	Água Salgada	1	Cortisol	LOEC	Aumento	50	mg/kg bdwt	Aquat. Toxicol.95(2): 164- 171	2009
		Opsanus beta	Água Salgada	1	Serotonina	LOEC	Aumento	25	mg/kg bdwt	Aquat. Toxicol.93(4): 253- 260	2009
		Opsanus beta	Água Salgada	1	Serotonina	LOEC	Aumento	10	mg/kg bdwt	Comp. Biochem. Physiol. C Toxicol. Pharmacol.153(1): 107-112	2011
		Opsanus beta	Água Salgada	1	Serotonina	LOEC	Aumento	10	mg/kg bdwt	Comp. Biochem. Physiol. C Toxicol. Pharmacol.153(1): 107-112	2011

Fármacos	Nível Trófico	Espécies	Meio	Tempo	Efeito medido	Parâmetro	Tendêcia	Valor	Unidade	Fonte	Ano
1 11 11 11 11 11 11 11 11 11 11 11 11 1		Opsanus beta	Água Salgada	1	Serotonina	LOEC	Aumento	25	mg/kg bdwt	Aquat. Toxicol.95(2): 164- 171	2009
		Cyprinodon variegatus	Água Salgada	1	Movimento	EC50	Diminuição	195	ug/L	J. Environ. Sci. Health Part B: Pestic. Food Contam. Agric. Wastes47(1): 51-58	2012
		Cyprinodon variegatus	Água Salgada	1	Movimento	EC50	Diminuição	155	ug/L	J. Environ. Sci. Health Part B: Pestic. Food Contam. Agric. Wastes47(1): 51-58	2012
		Cyprinodon variegatus	Água Salgada	2	Movimento	EC50	Diminuição	256	ug/L	J. Environ. Sci. Health Part B: Pestic. Food Contam. Agric. Wastes47(1): 51-58	2012
		Cyprinodon variegatus	Água Salgada	2	Movimento	EC50	Diminuição	262	ug/L	J. Environ. Sci. Health Part B: Pestic. Food Contam. Agric. Wastes47(1): 51-58	2012
		Cyprinodon variegatus	Água Salgada	4	Mortalidade	LC50	Aumento	1976	ug/L	Comp. Biochem. Physiol. C Comp. Pharmacol. Toxicol.149(4): 559-565	2009

Fármacos	Nível Trófico	Espécies	Meio	Tempo	Efeito medido	Parâmetro	Tendêcia	Valor	Unidade	Fonte	Ano
		Oryzias latipes	Água doce	4	Mortalidade	LC50	Aumento	1300	ug/L	Chemosphere70(5):	2008
		Oryzias latipes	Água doce	4	Mortalidade	LC50	Aumento	200	ug/L	Chemosphere70(5): 865-873	2008
		Oryzias latipes	Água doce	4	Mortalidade	LC50	Aumento	5500	ug/L	Chemosphere70(5): 865-873	2008
		Oryzias latipes	Água doce	4	Mortalidade	LC50	Aumento	655	ug/L	Ph.D. Thesis, University of Guelph, Ontario, Canada:124 p.	2004
		Pimephales promelas	Água doce	2	Mortalidade	LC50	Aumento	198	ug/L	Chemosphere69(1): 9-16	2007
		Pimephales promelas	Água doce	2	Mortalidade	LC50	Aumento	2,22	uM	Chemosphere52(1): 135-142	2003
		Pimephales promelas	Água doce	2	Mortalidade	LC50	Aumento	2,88	uM	Chemosphere52(1): 135-142	2003
		Pimephales promelas	Água doce	4	Mortalidade	LC50	Aumento	164	ug/L	Ph.D. Thesis, University of Guelph, Ontario, Canada:124 p.	2004
		Cyprinodon variegatus	Água Salgada	1h	Movimento	LOEC	Diminuição	300	ug/L	J. Environ. Sci. Health Part B: Pestic. Food Contam. Agric.	2012

Fármacos	Nível Trófico	Espécies	Meio	Tempo	Efeito medido	Parâmetro	Tendêcia	Valor	Unidade	Fonte	Ano
Faimacos	Niver Tronco	Especies	MEIO	Tempo	Elello illeuluo	rarameno	Tenuecia	v a101	Unidade	Wastes47(1): 51-58	Allo
		Cyprinodon variegatus	Água Salgada	1	Movimento	LOEC	Diminuição	300	ug/L	J. Environ. Sci. Health Part B: Pestic. Food Contam. Agric. Wastes47(1): 51-58	2012
			Água							J. Environ. Sci. Health Part B: Pestic. Food Contam. Agric.	
		Cyprinodon variegatus	Salgada	1	Movimento	LOEC	Diminuição	300	ug/L	Wastes47(1): 51-58	2012
			Água			I OF G	D	200		J. Environ. Sci. Health Part B: Pestic. Food Contam. Agric.	2012
		Cyprinodon variegatus	Salgada	2	Movimento	LOEC	Diminuição	300	ug/L	Wastes47(1): 51-58	2012
			Água			I OF G	D	200		J. Environ. Sci. Health Part B: Pestic. Food Contam. Agric.	2012
		Cyprinodon variegatus	Salgada	2	Movimento	LOEC	Diminuição	300	ug/L	Wastes47(1): 51-58	2012
		Danio rerio	Água doce	4	Expressão gênica	LOEC	Alteração	25	ug/L	Environ. Pollut.167:163-170	2012
		Danio rerio	Água doce	10	Movimento	LOEC	Diminuição	4,6	uM	Neurotoxicol. Teratol.29(6): 652- 664	2007

		.			•	•		•			
Fármacos	Nível Trófico	Espécies	Meio	Tempo	Efeito medido	Parâmetro	Tendêcia	Valor	Unidade	Fonte	Ano
		Danio rerio	Água doce	1	Receptor de 5- hidroxitriptami na 1A mRNA	LOEC	Diminuição	4,6	uM	Neurotoxicol. Teratol.29(6): 652- 664	2007
		Danio rerio	Água doce	1	Proteína transportadora de serotonina mRNA	LOEC	Diminuição	4,6	uM	Neurotoxicol. Teratol.29(6): 652- 664	2007
		Danio rerio	Água doce	1	Movimento	LOEC	Diminuição	4,6	uM	Neurotoxicol. Teratol.29(6): 652- 664	2007
		Oryzias latipes	Água doce	10	Consumo de alimento	LOEC	Diminuição	32	ug/L	M.S.Thesis, Trent University, Canada:117 p.	2009
		Oryzias latipes	Água doce	10	Consumo de alimento	LOEC	Diminuição	32	ug/L	M.S.Thesis, Trent University, Canada:117 p.	2009
		Pimephales promelas	Água doce	21	Número de células	LOEC	Aumento	0,028	ug/L	Aquat. Toxicol.104(1/2): 38-47	2011
		Pimephales promelas	Água doce	21	Vitelogenina	LOEC	Aumento	0,028	ug/L	Aquat. Toxicol.104(1/2): 38-47	2011
		Pimephales promelas	Água doce	7	Comportament o alimentar	LOEC	Diminuição	106	ug/L	Chemosphere69(1): 9-16	2007

Fármacos	Nível Trófico	Espécies	Meio	Tempo	Efeito medido	Parâmetro	Tendêcia	Valor	Unidade	Fonte	Ano
Turineos	Triver Trones	Lispecies		Tempo	Lieno medido	T di difficti o	Tenuccia	v aioi	Cindade		71110
		Pimephales promelas	Água doce	7	Sobrevivência	LOEC	Diminuição	174	ug/L	Chemosphere69(1): 9-16	2007
		1 1	í				3		C	Cl 1 (0(1)	
		Pimephales promelas	Água doce	7	Peso	LOEC	Diminuição	53	ug/L	Chemosphere69(1): 9-16	2007
		Gambusia affinis	Água doce	7	Mortalidade	LC50	Aumento	546	ug/L	Arch. Environ. Contam. Toxicol.54(2): 325- 330	2008
		Gambusia affinis	Água doce	45	Desenvolvimen to sexual	LOEC	Diminuição	71	ug/L	Arch. Environ. Contam. Toxicol.54(2): 325- 330	2008
		Gambusia affinis	Água doce	45	Desenvolvimen to sexual	LOEC	Diminuição	71	ug/L	Arch. Environ. Contam. Toxicol.54(2): 325- 330	2008
		Gambusia affinis	Água doce	59	Desenvolvimen to sexual	LOEC	Diminuição	71	ug/L	Arch. Environ. Contam. Toxicol.54(2): 325- 330	2008
		Pimephales promelas	Água doce	2	Mortalidade	LC50	Aumento	216	ug/L	Chemosphere69(1): 9-16	2007
		Pimephales promelas	Água doce	7	Comportament o alimentar	LOEC	Diminuição	51	ug/L	Chemosphere69(1): 9-16	2007

Fármacos	Nível Trófico	Espécies	Meio	Tempo	Efeito medido	Parâmetro	Tendêcia	Valor	Unidade	Fonte	Ano
		Pimephales promelas	Água doce	7	Sobrevivência	LOEC	Diminuição	101	ug/L	Chemosphere69(1): 9-16	2007
		Pimephales promelas	Água doce	7	Peso	LOEC	Diminuição	51	ug/L	Chemosphere69(1): 9-16	2007
		Pimephales promelas	Água doce	2	Mortalidade	LC50	Aumento	212	ug/L	Chemosphere69(1): 9-16	2007
		Pimephales promelas	Água doce	7	Comportament o alimentar	LOEC	Diminuição	170	ug/L	Chemosphere69(1): 9-16	2007
		Pimephales promelas	Água doce	7	Sobrevivência	LOEC	Diminuição	170	ug/L	Chemosphere69(1): 9-16	2007
		Pimephales promelas	Água doce	7	Peso	LOEC	Diminuição	170	ug/L	Chemosphere69(1): 9-16	2007
		Mytilopsis leucophaeata	Água Salgada	4h	Frequência de desova	LOEC	Aumento	0,1	uM	Bull. Environ. Contam. Toxicol.81(6): 535- 538	2008
		Mytilopsis leucophaeata	Água Salgada	4h	Frequência de desova	LOEC	Aumento	1	uM	Bull. Environ. Contam. Toxicol.81(6): 535- 538	2008
		Mytilopsis leucophaeata	Água Salgada	4h	Frequência de desova	LOEC	Aumento	5	uM	Bull. Environ. Contam. Toxicol.81(6): 535- 538	2008

Fármacos	Nível Trófico	Espécies	Meio	Tempo	Efeito medido	Parâmetro	Tendêcia	Valor	Unidade	Fonte	Ano
	Decomposers	-	-	-	-	-	-	-	-	-	-
Fluvoxamina	Produtor primário	Scenedesmus quadricauda	Água doce	4	Abundância	IC50	Diminuição	3563,34	ug/L	Ecotoxicol. Environ. Saf.67(1): 128-139	2007
CAS: 54739183 / 61718829		Clorofilarella vulgaris	Água doce	4	Abundância	IC50	Diminuição	10208,47	ug/L	Ecotoxicol. Environ. Saf.67(1): 128-139	2007
		Pseudokirchneriella subcapitata	Água doce	4	Abundância	IC50	Diminuição	4002,88	ug/L	Ecotoxicol. Environ. Saf.67(1): 128-139	2007
		Scenedesmus acutus	Água doce	4	Abundância	IC50	Diminuição	3620,24	ug/L	Ecotoxicol. Environ. Saf.67(1): 128-139	2007
		Pseudokirchneriella subcapitata	Água doce	2	Taxa de crescimento populacional	EC50	Diminuição	62	ug/L	Environ. Toxicol. Chem.26(1): 85-91	2007
	Consumidor primario	Ceriodaphnia dubia	Água doce	2	Mortalidade	LC50	Aumento	840	ug/L	Environ. Toxicol. Chem.23(9): 2229- 2233	2004

Fármacos	Nível Trófico	Espécies	Meio	Tempo	Efeito medido	Parâmetro	Tendêcia	Valor	Unidade	Fonte	Ano
		Ceriodaphnia dubia	Água doce	8	Progênia	LOEC	Diminuição	1466	ug/L	Environ. Toxicol. Chem.23(9): 2229- 2233	2004
		Ceriodaphnia dubia	Água doce	8	Progênia	LOEC	Diminuição	1466	ug/L	Environ. Toxicol. Chem.23(9): 2229- 2233	2004
		Ceriodaphnia dubia	Água doce	6	Tempo da primeira reprodução	NOEC	Aumento	1466	ug/L	Environ. Toxicol. Chem.23(9): 2229- 2233	2004
		Ceriodaphnia dubia	Água doce	8	Progênia	NOEC	Diminuição	366	ug/L	Environ. Toxicol. Chem.23(9): 2229- 2233	2004
		Ceriodaphnia dubia	Água doce	8	Progênia	NOEC	Diminuição	366	ug/L	Environ. Toxicol. Chem.23(9): 2229- 2233	2004
		Daphnia magna	Água doce	2	Imobilidade	EC50	Aumento	13000	ug/L	Environ. Toxicol. Chem.26(1): 85-91	2007
		Daphnia magna	Água doce	14	Consumo de oxigênio	LOEC	Aumento	26,5	ug/L	Environ. Sci. Technol.46(5): 2943-2950	2012
		Daphnia magna	Água doce	14	Consumo de oxigênio	LOEC	Aumento	26,5	ug/L	Environ. Sci. Technol.46(5): 2943-2950	2012
		Daphnia magna	Água	14	Hidrocarboneto	LOEC	Diminuição	26,5	ug/L	Environ. Sci.	2012

Fármacos	Nível Trófico	Egnásica	Meio	Tomas	Efeito medido	Parâmetro	Tendêcia	Valor	Unidade	Fonte	Ama
Farmacos	Niver 1 rolled	Espécies	doce	Tempo	Efeito medido	Parametro	1 endecia	v alor	Unidade	Technol.46(5): 2943-2950	Ano
		Daphnia magna	Água doce	21	Progênia	LOEC	Aumento	7,5	ug/L	Environ. Sci. Technol.46(5): 2943-2950	2012
		Daphnia magna	Água doce	41	Sobrevivência	LOEC	Diminuição	26,5	ug/L	Environ. Sci. Technol.46(5): 2943-2950	2012
		Daphnia magna	Água doce	4	Tamanho	LOEC	Diminuição	7,5	ug/L	Environ. Sci. Technol.46(5): 2943-2950	2012
		Daphnia magna	Água doce	4	Tempo da primeira reprodução	LOEC	Diminuição	7,5	ug/L	Environ. Sci. Technol.46(5): 2943-2950	2012
		Daphnia magna	Água doce	4	Tempo da primeira reprodução	LOEC	Diminuição	7,5	ug/L	Environ. Sci. Technol.46(5): 2943-2950	2012
		Daphnia magna	Água doce	14	Consumo de alimento	NOEC	Diminuição	26,5	ug/L	Environ. Sci. Technol.46(5): 2943-2950	2012
		Daphnia magna	Água doce	14	Lipídio	NOEC	Diminuição	26,5	ug/L	Environ. Sci. Technol.46(5): 2943-2950	2012
		Daphnia magna	Água doce	14	Proteína	NOEC	Diminuição	26,5	ug/L	Environ. Sci. Technol.46(5):	2012

Fármacos	Nível Trófico	Espécies	Meio	Tempo	Efeito medido	Parâmetro	Tendêcia	Valor	Unidade	Fonte	Ano
										2943-2950	
		Daphnia magna	Água doce	21	Progênia	NOEC	Aumento	2,1	ug/L	Environ. Sci. Technol.46(5): 2943-2950	2012
		<i>Дарина тадна</i>	doce	21	Tiogenia	NOLC	Aumento	2,1	ug/L	2943-2930	2012
		Daphnia magna	Água doce	23	Taxa de crescimento populacional	NOEC	Alteração	6,3	ug/L	Aquat. Toxicol.109:100- 110	2012
		Daphnia magna	Água doce	23	Taxa de crescimento populacional	NOEC	Alteração	6,3	ug/L	Aquat. Toxicol.109:100- 110	2012
		Daphnia magna	Água doce	23	Taxa de crescimento populacional	NOEC	Alteração	6,3	ug/L	Aquat. Toxicol.109:100- 110	2012
		Daphnia magna	Água doce	23	Idade da primeira reprodução	NOEC	Diminuição	6,3	ug/L	Aquat. Toxicol.109:100- 110	2012
		Daphnia magna	Água doce	23	Idade da primeira reprodução	NOEC	Diminuição	6,3	ug/L	Aquat. Toxicol.109:100- 110	2012
		Daphnia magna	Água doce	23	Idade da primeira reprodução	NOEC	Diminuição	6,3	ug/L	Aquat. Toxicol.109:100- 110	2012
		Daphnia magna	Água doce	23	Progênia	NOEC	Diminuição	6,3	ug/L	Aquat. Toxicol.109:100- 110	2012

E4	Nível Trófico	Emádia	Maia	Т	Efeite medide	Dowê of	Toudôsia	Valor	TIidada	Eamta	A
Fármacos	Nivel Tronco	Espécies	Meio	Tempo	Efeito medido	Parâmetro	Tendêcia	Valor	Unidade	Fonte	Ano
	i	Daphnia magna	Água doce	23	Progênia	NOEC	Diminuição	6,3	ug/L	Aquat. Toxicol.109:100- 110	2012
	,	Daphnia magna	Água doce	23	Progênia	NOEC	Aumento	6,3	ug/L	Aquat. Toxicol.109:100- 110	2012
		Daphnia magna	Água doce	21	Tamanho	NOEC	-	26,5	ug/L	Environ. Sci. Technol.46(5): 2943-2950	2012
	i	Daphnia magna	Água doce	4	Tamanho	NOEC	Diminuição	7,5	ug/L	Environ. Sci. Technol.46(5): 2943-2950	2012
	i	Daphnia magna	Água doce	4	Tempo da primeira reprodução	NOEC	Diminuição	7,5	ug/L	Environ. Sci. Technol.46(5): 2943-2950	2012
	i	Daphnia magna	Água doce	4	Tamanho	NOEC	Aumento	7,5	ug/L	Environ. Sci. Technol.46(5): 2943-2950	2012
	i	Daphnia magna	Água doce	23	Comprimento	NOEC	Alteração	6,3	ug/L	Aquat. Toxicol.109:100- 110	2012
		Daphnia magna	Água doce	23	Comprimento	NOEC	Alteração	6,3	ug/L	Aquat. Toxicol.109:100- 110	2012

Fármacos	Nível Trófico	Espécies	Meio	Tempo	Efeito medido	Parâmetro	Tendêcia	Valor	Unidade	Fonte	Ano
		Daphnia magna	Água doce	23	Comprimento	NOEC	Alteração	6,3	ug/L	Aquat. Toxicol.109:100- 110	2012
		Daphnia magna	Água doce	14	Taxa de crescimento populacional	NOEC	Aumento	30	ug/L	Aquat. Toxicol.109:100- 110	2012
		Daphnia magna	Água doce	14	Taxa de crescimento populacional	NOEC	Aumento	30	ug/L	Aquat. Toxicol.109:100- 110	2012
		Daphnia magna	Água doce	14	Progênia	NOEC	Aumento	30	ug/L	Aquat. Toxicol.109:100- 110	2012
		Daphnia magna	Água doce	14	Progênia	NOEC	Aumento	30	ug/L	Aquat. Toxicol.109:100- 110	2012
		Daphnia magna	Água doce	23	Idade da primeira reprodução	NOEC	Alteração	30	ug/L	Aquat. Toxicol.109:100- 110	2012
		Daphnia magna	Água doce	23	Progênia	NOEC	Alteração	30	ug/L	Aquat. Toxicol.109:100- 110	2012
		Daphnia magna	Água doce	23	Progênia	NOEC	Alteração	30	ug/L	Aquat. Toxicol.109:100- 110	2012

TC (Nível Trófico	Em. Colon	34.1.	T	T(C.14 11.1.	D	T 10 .*.	¥7.1	TI	E	A
Fármacos	Nivel 1 rolico	Espécies	Meio	Tempo	Efeito medido	Parâmetro	Tendêcia	Valor	Unidade	Fonte	Ano
		Daphnia magna	Água doce	23	Progênia	NOEC	Alteração	30	ug/L	Aquat. Toxicol.109:100- 110	2012
		Daphnia magna	Água doce	23	Progênia	NOEC	Alteração	30	ug/L	Aquat. Toxicol.109:100- 110	2012
		Daphnia magna	Água doce	23	Taxa de crescimento populacional	NOEC	Diminuição	30	ug/L	Aquat. Toxicol.109:100- 110	2012
		Daphnia magna	Água doce	23	Taxa de crescimento populacional	NOEC	Diminuição	30	ug/L	Aquat. Toxicol.109:100- 110	2012
		Daphnia magna	Água doce	14	Comprimento	NOEC	Alteração	30	ug/L	Aquat. Toxicol.109:100- 110	2012
		Daphnia magna	Água doce	14	Comprimento	NOEC	Alteração	30	ug/L	Aquat. Toxicol.109:100- 110	2012
		Daphnia magna	Água doce	14	Comprimento	NOEC	Alteração	30	ug/L	Aquat. Toxicol.109:100- 110	2012
		Daphnia magna	Água doce	14	Comprimento	NOEC	Alteração	30	ug/L	Aquat. Toxicol.109:100- 110	2012

Fármacos	Nível Trófico	Espécies	Meio	Tempo	Efeito medido	Parâmetro	Tendêcia	Valor	Unidade	Fonte	Ano
		Daphnia magna	Água doce	14	Comprimento	NOEC	Aumento	30	ug/L	Aquat. Toxicol.109:100- 110	2012
		Daphnia magna	Água doce	23	Comprimento	NOEC	Alteração	30	ug/L	Aquat. Toxicol.109:100- 110	2012
		Daphnia magna	Água doce	23	Comprimento	NOEC	Alteração	30	ug/L	Aquat. Toxicol.109:100- 110	2012
		Daphnia magna	Água doce	23	Comprimento	NOEC	Alteração	30	ug/L	Aquat. Toxicol.109:100- 110	2012
		Daphnia magna	Água doce	23	Comprimento	NOEC	Alteração	30	ug/L	Aquat. Toxicol.109:100- 110	2012
		Daphnia magna	Água doce	23	Comprimento	NOEC	Alteração	30	ug/L	Aquat. Toxicol.109:100- 110	2012
		Daphnia magna	Água doce	23	Comprimento	NOEC	Alteração	30	ug/L	Aquat. Toxicol.109:100- 110	2012
		Daphnia magna	Água doce	23	Comprimento	NOEC	Alteração	30	ug/L	Aquat. Toxicol.109:100- 110	2012

Fármacos	Nível Trófico	Espécies	Meio	Tempo	Efeito medido	Parâmetro	Tendêcia	Valor	Unidade	Fonte	Ano
		Daphnia magna	Água doce	23	Comprimento	NOEC	Aumento	30	ug/L	Aquat. Toxicol.109:100- 110	2012
	Consumidor secundario	Oryzias latipes	Água doce	4	Mortalidade	LC50	Aumento	2153	ug/L	Ph.D. Thesis, University of Guelph, Ontario, Canada:124 p.	2004
		Pimephales promelas	Água doce	4	Mortalidade	LC50	Aumento	603	ug/L	Ph.D. Thesis, University of Guelph, Ontario, Canada:124 p.	2004
	Decomposers	-	-	-	-	-	-	-	-	-	-
Imipramina	Produtor primário	Clorofilarella fusca var. vacuolata	Água doce	1	Taxa de crescimento populacional	EC50	Diminuição	1,8	uM	Aquat. Toxicol.101(1): 266-275	2011
CAS: 521788		Clorofilarella fusca var. vacuolata	Água doce	1	Taxa de crescimento populacional	EC50	Diminuição	14	uM	Aquat. Toxicol.101(1): 266-275	2011
		Clorofilarella fusca var. vacuolata	Água doce	1	Taxa de crescimento	EC50	Diminuição	2,4	uM	Aquat. Toxicol.101(1):	2011

		_ ,.		_							
Fármacos	Nível Trófico	Espécies	Meio	Tempo	Efeito medido	Parâmetro	Tendêcia	Valor	Unidade	Fonte	Ano
					populacional					266-275	
		~! ^! !! ^			Taxa de					Aquat.	
		Clorofilarella fusca var. vacuolata	Água doce	1	crescimento populacional	EC50	Diminuição	3,9	uM	Toxicol.101(1): 266-275	2011
		vacuotata	docc	1	populacional	EC30	Dillillidição	3,7	ulvi	200-273	2011
		Clorofilarella fusca var. vacuolata	Água doce	1	Taxa de crescimento populacional	EC50	Diminuição	53	uM	Aquat. Toxicol.101(1): 266-275	2011
		racioiaia	doce	1	populacional	Leso	Dilililação	33	uivi	200 273	2011
		Clorofilarella fusca var. vacuolata	Água doce	1	Taxa de crescimento populacional	ER50	Diminuição	16	uM	Aquat. Toxicol.101(1): 266-275	2011
					Taxa de					Aquat.	
		Clorofilarella fusca var.	Água		crescimento					Toxicol.101(1):	
		vacuolata	doce	1	populacional	ER50	Diminuição	26	uM	266-275	2011
		Clorofilarella fusca var. vacuolata	Água doce	1	Taxa de crescimento populacional	ER50	Diminuição	35	uM	Aquat. Toxicol.101(1): 266-275	2011
		Clorofilarella fusca var. vacuolata	Água doce	1	Taxa de crescimento populacional	ER50	Diminuição	54	uM	Aquat. Toxicol.101(1): 266-275	2011
		Clorofilarella fusca var. vacuolata	Água doce	1	Taxa de crescimento populacional	ER50	Diminuição	9,3	uM	Aquat. Toxicol.101(1): 266-275	2011
		Clorofilarella fusca var. vacuolata	Água doce	1	Taxa de crescimento	ER50	Diminuição	114	mmol/kg	Aquat. Toxicol.101(1):	2011

_,											
Fármacos	Nível Trófico	Espécies	Meio	Tempo	Efeito medido	Parâmetro	Tendêcia	Valor	Unidade	Fonte	Ano
					populacional					266-275	
		Clorofilarella fusca var. vacuolata	Água doce	1	Taxa de crescimento populacional	ER50	Diminuição	204	mmol/kg	Aquat. Toxicol.101(1): 266-275	2011
		Clorofilarella fusca var. vacuolata	Água doce	1	Taxa de crescimento populacional	ER50	Diminuição	57	mmol/kg	Aquat. Toxicol.101(1): 266-275	2011
		Clorofilarella fusca var. vacuolata	Água doce	1	Taxa de crescimento populacional	ER50	Diminuição	82	mmol/kg	Aquat. Toxicol.101(1): 266-275	2011
	Consumidor primario	Lumbriculus variegatus	Água doce	15min	Frequência cardíaca	LOEC	Aumento	100	uM	Comp. Biochem. Physiol. C Toxicol. Pharmacol.151(4): 467-472	2010
		Lumbriculus variegatus	Água doce	15min	Frequência cardíaca	LOEC	Aumento	100	uM	Comp. Biochem. Physiol. C Toxicol. Pharmacol.151(4): 467-472	2010
	Consumidor secundario	-	-	-	-	-	-	-	-	-	-

Fármacos	Nível Trófico	Espécies	Meio	Tempo	Efeito medido	Parâmetro	Tendêcia	Valor	Unidade	Fonte	Ano
Norfluoxetina	Produtor primário	Clorofilarella fusca var. vacuolata	Água doce	1	Volume sanguíneo	EC50	Diminuição	0,000000	М	Environ. Sci. Technol.43(17): 6830-6837	2009
CAS: 57226683 / 83891036 /		Clorofilarella fusca var. vacuolata	Água doce	1	PSII	EC50	Diminuição	0,000004	M	Environ. Sci. Technol.43(17): 6830-6837	2009
		Clorofilarella fusca var. vacuolata	Água doce	1	Taxa de crescimento populacional	EC50	Diminuição	0,2	uM	Aquat. Toxicol.101(1): 266-275	2011
		Clorofilarella fusca var. vacuolata	Água doce	1	Taxa de crescimento populacional	EC50	Diminuição	0,3	uM	Aquat. Toxicol.101(1): 266-275	2011
		Clorofilarella fusca var. vacuolata	Água doce	1	Taxa de crescimento populacional	EC50	Diminuição	0,4	uM	Aquat. Toxicol.101(1): 266-275	2011
		Clorofilarella fusca var. vacuolata	Água doce	1	Taxa de crescimento populacional	EC50	Diminuição	0,5	uM	Aquat. Toxicol.101(1): 266-275	2011
		Clorofilarella fusca var. vacuolata	Água doce	1	Taxa de crescimento populacional	EC50	Diminuição	1,6	uM	Aquat. Toxicol.101(1): 266-275	2011
		Clorofilarella fusca var. vacuolata	Água doce	1	Taxa de crescimento populacional	EC50	Diminuição	0,000000 41	M	Environ. Sci. Technol.43(17): 6830-6837	2009

Fármacos	Nível Trófico	Espécies	Meio	Tempo	Efeito medido	Parâmetro	Tendêcia	Valor	Unidade	Fonte	Ano
		Clorofilarella fusca var. vacuolata	Água doce	1	Taxa de crescimento populacional	ER50	Diminuição	0,3	uM	Aquat. Toxicol.101(1): 266-275	2011
		Clorofilarella fusca var. vacuolata	Água doce	1	Taxa de crescimento populacional	ER50	Diminuição	0,6	uM	Aquat. Toxicol.101(1): 266-275	2011
		Clorofilarella fusca var. vacuolata	Água doce	1	Taxa de crescimento populacional	ER50	Diminuição	2,1	uM	Aquat. Toxicol.101(1): 266-275	2011
		Clorofilarella fusca var. vacuolata	Água doce	1	Taxa de crescimento populacional	ER50	Diminuição	2,9	uM	Aquat. Toxicol.101(1): 266-275	2011
		Clorofilarella fusca var. vacuolata	Água doce	1	Taxa de crescimento populacional	ER50	Diminuição	3,5	uM	Aquat. Toxicol.101(1): 266-275	2011
		Clorofilarella fusca var. vacuolata	Água doce	1	Taxa de crescimento populacional	ER50	Diminuição	27	mmol/kg	Aquat. Toxicol.101(1): 266-275	2011
		Clorofilarella fusca var. vacuolata	Água doce	1	Taxa de crescimento populacional	ER50	Diminuição	37	mmol/kg	Aquat. Toxicol.101(1): 266-275	2011
		Clorofilarella fusca var. vacuolata	Água doce	1	Taxa de crescimento populacional	ER50	Diminuição	45	mmol/kg	Aquat. Toxicol.101(1): 266-275	2011

Fármacos	Nível Trófico	Espécies	Meio	Tempo	Efeito medido	Parâmetro	Tendêcia	Valor	Unidade	Fonte	Ano
		Clorofilarella fusca var. vacuolata	Água doce	1	Taxa de crescimento populacional	ER50	Diminuição	8	mmol/kg	Aquat. Toxicol.101(1): 266-275	2011
		Pseudokirchneriella subcapitata	Água doce	1	PSII	EC50	Diminuição	0,000001 6	М	Environ. Sci. Technol.43(17): 6830-6837	2009
		Pseudokirchneriella subcapitata	Água doce	1	Taxa de crescimento populacional	EC50	Diminuição	242	ug/L	Environ. Sci. Technol.43(17): 6830-6837	2009
	Consumidor primario	Thamnocephalus platyurus	Água doce	1	Mortalidade	LC50	Aumento	470	ug/L	Chemosphere70(1): 29-35	2007
		Spirostomum ambiguum	Água doce	1	Deformação	EC50	Aumento	300	ug/L	Chemosphere70(1): 29-35	2007
		Spirostomum ambiguum	Água doce	1	Mortalidade	LC50	Aumento	390	ug/L	Chemosphere70(1): 29-35	2007
		Mytilopsis leucophaeata	Água Salgada	4h	Frequência de desova	LOEC	Aumento	5	uM	Bull. Environ. Contam. Toxicol.81(6): 535- 538	2008
		Sphaerium striatinum	Água doce	4h	Frequência de desova	LOEC	Aumento	1	uM	Bull. Environ. Contam. Toxicol.81(6): 535- 538	2008

Fármacos	Nível Trófico	Espécies	Meio	Tempo	Efeito medido	Parâmetro	Tendêcia	Valor	Unidade	Fonte	Ano
		Mytilopsis leucophaeata	Água Salgada	4h	Frequência de desova	NOEC	Aumento	1	uM	Bull. Environ. Contam. Toxicol.81(6): 535- 538	2008
		Mytilopsis leucophaeata	Água Salgada	4h	Frequência de desova	NOEC	Aumento	50	uM	Bull. Environ. Contam. Toxicol.81(6): 535- 538	2008
		Sphaerium striatinum	Água doce	4h	Frequência de desova	NOEC	Aumento	1	uM	Bull. Environ. Contam. Toxicol.81(6): 535- 538	2008
		Dreissena polymorpha	Água doce	4h	Frequência de desova	LOEC	Aumento	10	uM	Bull. Environ. Contam. Toxicol.81(6): 535- 538	2008
		Dreissena polymorpha	Água doce	4h	Frequência de desova	LOEC	Aumento	5	uM	Bull. Environ. Contam. Toxicol.81(6): 535- 538	2008
		Dreissena polymorpha	Água doce	4h	Frequência de desova	NOEC	Aumento	1	uM	Bull. Environ. Contam. Toxicol.81(6): 535- 538	2008
		Dreissena polymorpha	Água doce	4h	Frequência de desova	NOEC	Aumento	5	uM	Bull. Environ. Contam. Toxicol.81(6): 535-	2008

Tabela 17 Revisão de literatura para os efeitos ecotoxicológicos de fármacos psiquiátricos em organismos aquáticos.

Fármacos	Nível Trófico	Espécies	Meio	Tempo	Efeito medido	Parâmetro	Tendêcia	Valor	Unidade	Fonte	Ano
		F*****								538	
	Consumidor secundario	-	-	-	-	-	-	-	-	-	-
	Decomposers	-	-	-	-	-	-	-	-	-	-
	Detritivoros	-	-	-	-	-	-	-	-	-	-
Paroxetina	Produtor primário	Pseudokirchneriella subcapitata	Água doce	2	Taxa de crescimento populacional	EC50	Diminuição	140	ug/L	Environ. Toxicol. Chem.26(1): 85-91	2007
CAS: 61869087 / 78246498											
	Consumidor primario	Ceriodaphnia dubia	Água doce	2	Mortalidade	LC50	Aumento	580	ug/L	Environ. Toxicol. Chem.23(9): 2229- 2233	2004
		Ceriodaphnia dubia	Água doce	8	Progênia	LOEC	Diminuição	440	ug/L	Environ. Toxicol. Chem.23(9): 2229- 2233	2004

		1									
Fármacos	Nível Trófico	Espécies	Meio	Tempo	Efeito medido	Parâmetro	Tendêcia	Valor	Unidade	Fonte	Ano
		Ceriodaphnia dubia	Água doce	8	Progênia	LOEC	Diminuição	440	ug/L	Environ. Toxicol. Chem.23(9): 2229- 2233	2004
		Ceriodaphnia dubia	Água doce	7	Tempo da primeira reprodução	NOEC	Aumento	880	ug/L	Environ. Toxicol. Chem.23(9): 2229- 2233	2004
		Ceriodaphnia dubia	Água doce	8	Progênia	NOEC	Diminuição	220	ug/L	Environ. Toxicol. Chem.23(9): 2229- 2233	2004
		Ceriodaphnia dubia	Água doce	8	Progênia	NOEC	Aumento	220	ug/L	Environ. Toxicol. Chem.23(9): 2229- 2233	2004
		Daphnia magna	Água doce	2	Imobilidade	EC50	Aumento	6300	ug/L	Environ. Toxicol. Chem.26(1): 85-91	2007
	Consumidor secundario	Xenopus laevis	Água doce	4	Deformação	EC50	Aumento	4600	ug/L	Ecotoxicology15(8) : 647-656	2006
		Xenopus laevis	Água doce	4	Comprimento	LOEC	Diminuição	3000	ug/L	Ecotoxicology15(8) : 647-656	2006
		Xenopus laevis	Água doce	4	Comprimento	NOEC	Diminuição	2000	ug/L	Ecotoxicology15(8) : 647-656	2006

Tabela 17 Revisão de literatura para os efeitos ecotoxicológicos de fármacos psiquiátricos em organismos aquáticos.

Fármacos	Nível Trófico	Espécies	Meio	Tempo	Efeito medido	Parâmetro	Tendêcia	Valor	Unidade	Fonte	Ano
	Decomposers	-	-	-	-	-	-	-	-	-	-
Pentobarbital	Produtor primário	-	-	-	-	-	-	-	-	-	-
CAS: 57330 / 76744	Consumidor primario	-	-	-	-	-	-	-	-	-	-
	Consumidor secundario	Pimephales promelas	Água doce	4	Mortalidade	LC50	-	49500	ug/L	Center for Lake Superior Environmental Studies, University of Wisconsin, Superior, WI4:355 p.	1988
	Decomposers	-	-	-	-	-	-	-	-	-	-
Fenitoina CAS: 57410	Produtor primário	-	-	-	-	-	-	-	-	-	-

		*			*	•		•			
Fármacos	Nível Trófico	Espécies	Meio	Tempo	Efeito medido	Parâmetro	Tendêcia	Valor	Unidade	Fonte	Ano
	Consumidor primario	Artemia salina	Água Salgada	1	Mortalidade	LC50	Aumento	39600	umol/L	Arch. Environ. Contam. Toxicol.26(1): 69- 78	1994
		Artemia salina	Água Salgada	1	Mortalidade	LC50	Aumento	147	umol/L	Arch. Environ. Contam. Toxicol.26(1): 69- 78	1994
		Streptocephalus proboscideus	Água doce	1	Mortalidade	LC50	Aumento	248	umol/L	Arch. Environ. Contam. Toxicol.26(1): 69- 78	1994
		Daphnia magna	Água doce	1	Imobilidade	EC50	Aumento	39600	umol/L	Arch. Environ. Contam. Toxicol.26(1): 69- 78	1994
		Daphnia magna	Água doce	1	Imobilidade	EC50	Aumento	34,6	umol/L	Arch. Environ. Contam. Toxicol.26(1): 69- 78	1994
		Brachionus calyciflorus	Água doce	1	Mortalidade	LC50	Aumento	39600	umol/L	Arch. Environ. Contam. Toxicol.26(1): 69- 78	1994
		Brachionus calyciflorus	Água doce	1	Mortalidade	LC50	Aumento	17,7	umol/L	Arch. Environ. Contam. Toxicol.26(1): 69-	1994

Fármacos	Nível Trófico	Espécies	Meio	Тетро	Efeito medido	Parâmetro	Tendêcia	Valor	Unidade	Fonte	Ano
Turmacos	THE TIME	Especies	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Tempo	Bioto mouluo	T WI WINCOT	Tenucciu	Valor	Circuit	78	
	Consumidor secundário	Danio rerio	Água doce	29	Teratologia	EC50	Aumento	386	uM	Toxicology281(1-3): 25-36	2011
		Danio rerio	Água doce	28	Mortalidade	LC50	Aumento	250	uM	Toxicology281(1-3): 25-36	2011
	Decomposers	-	-	-	-	-	-	-	-	-	-
Pimozida	Produtor primário	-	-	-	-	-	-	-	-	-	-
CAS: 2062784	Consumidor primario	-	-	-	-	-	-	-	-	-	-
	Consumidor secundario	Paramisgurnus dabryanus	Água doce	1	Anomalia	NOEC	Sem efeito	5	mg/kg bdwt	Aquaculture95(1- 2): 139-147	1991
		Paramisgurnus dabryanus	Água doce	8	Reabsorção embrionária precoce	NOEC	Aumento	5	mg/kg bdwt	Aquaculture95(1-2): 139-147	1991

Fármacos	Nível Trófico	Espécies	Meio	Tempo	Efeito medido	Parâmetro	Tendêcia	Valor	Unidade	Fonte	Ano
		Paramisgurnus dabryanus	Água doce	1	Sobrevivência	NOEC	Aumento	5	mg/kg bdwt	Aquaculture95(1- 2): 139-147	1991
		Carassius auratus	Água doce	6h	Peso	LOEC	Aumento	10	mg/kg bdwt	Gen. Comp. Endocrinol.58(2): 231-242	1985
		Carassius auratus	Água doce	6h	Aborto	LOEC	Aumento	10	mg/kg bdwt	Gen. Comp. Endocrinol.55(3): 351-360	1984
		Carassius auratus	Água doce	1	Deformação	LOEC	Aumento	10	mg/kg bdwt	Gen. Comp. Endocrinol.55(3): 351-360	1984
		Carassius auratus	Água doce	1	Deformação	LOEC	Aumento	10	mg/kg bdwt	Gen. Comp. Endocrinol.55(3): 351-360	1984
		Carassius auratus	Água doce	11	Deformação	LOEC	Aumento	10	mg/kg bdwt	Gen. Comp. Endocrinol.58(2): 231-242	1985
		Carassius auratus	Água doce	11	Reabsorção embrionária tardia	LOEC	Aumento	10	mg/kg bdwt	Gen. Comp. Endocrinol.58(2): 231-242	1985
		Carassius auratus	Água doce	11	Mortalidade	LOEC	Aumento	10	mg/kg bdwt	Gen. Comp. Endocrinol.58(2): 231-242	1985
		Carassius auratus	Água	11	Mortalidade	LOEC	Aumento	10	mg/kg	Gen. Comp.	1985

Tabela 17 Revisão de literatura para os efeitos ecotoxicológicos de fármacos psiquiátricos em organismos aquáticos.

		•			*	•		•			
Fármacos	Nível Trófico	Espécies	Meio	Tempo	Efeito medido	Parâmetro	Tendêcia	Valor	Unidade	Fonte	Ano
			doce						bdwt	Endocrinol.58(2): 231-242	
		Carassius auratus	Água doce	11	Número de implantações	LOEC	Aumento	10	mg/kg bdwt	Gen. Comp. Endocrinol.58(2): 231-242	1985
		Carassius auratus	Água doce	11	Gravidez	LOEC	Aumento	10	mg/kg bdwt	Gen. Comp. Endocrinol.65(3): 385-393	1987
		Carassius auratus	Água doce	11	Fêmeas grávidas em uma população	LOEC	Aumento	10	mg/kg bdwt	Gen. Comp. Endocrinol.65(3): 385-393	1987
		Carassius auratus	Água doce	21	Progênia	LOEC	Aumento	10	mg/kg bdwt	Gen. Comp. Endocrinol.58(2): 231-242	1985
		Carassius auratus	Água doce	21	Reabsorção embrionária	LOEC	Aumento	10	mg/kg bdwt	Gen. Comp. Endocrinol.58(2): 231-242	1985
		Carassius auratus	Água doce	21	Proporção sexual	LOEC	Aumento	10	mg/kg bdwt	Gen. Comp. Endocrinol.65(3): 385-393	1987
		Carassius auratus	Água doce	2	Peso	NOEC	Sem efeito	10	mg/kg bdwt	Gen. Comp. Endocrinol.55(3): 351-360	1984
		Carassius auratus	Água doce	4h	Peso	NOEC	Aumento	10	mg/kg bdwt	Gen. Comp. Endocrinol.58(2):	1985

		.				•		•			
Fármacos	Nível Trófico	Espécies	Meio	Tempo	Efeito medido	Parâmetro	Tendêcia	Valor	Unidade	Fonte	Ano
										231-242	
		Carassius auratus	Água doce	4h	Peso	NOEC	Sem efeito	10	mg/kg bdwt	Gen. Comp. Endocrinol.58(2): 231-242	1985
		Carassius auratus	Água doce	6h	Peso	NOEC	Diminuição	10	mg/kg bdwt	Gen. Comp. Endocrinol.58(2): 231-242	1985
		Carassius auratus	Água doce	6h	Mortalidade	NOEC	Diminuição	10	mg/kg bdwt	Gen. Comp. Endocrinol.65(3): 385-393	1987
		Carassius auratus	Água doce	6h	Mortalidade	NOEC	Diminuição	10	mg/kg bdwt	Gen. Comp. Endocrinol.65(3): 385-393	1987
		Carassius auratus	Água doce	бh	Progênia	NOEC	Diminuição	10	mg/kg bdwt	Gen. Comp. Endocrinol.65(3): 385-393	1987
		Carassius auratus	Água doce	6h	Progênia	NOEC	Aumento	10	mg/kg bdwt	Gen. Comp. Endocrinol.58(2): 231-242	1985
		Carassius auratus	Água doce	6h	Progênia	NOEC	Aumento	10	mg/kg bdwt	Gen. Comp. Endocrinol.58(2): 231-242	1985
		Carassius auratus	Água doce	6h	Progênia	NOEC	Sem efeito	10	mg/kg bdwt	Gen. Comp. Endocrinol.58(2): 231-242	1985

Fármacos	Nível Trófico	Espécies	Meio	Tempo	Efeito medido	Parâmetro	Tendêcia	Valor	Unidade	Fonte	Ano
		Carassius auratus	Água doce	6h	Progênia	NOEC	Aumento	10	mg/kg bdwt	Gen. Comp. Endocrinol.55(3): 351-360	1984
		Carassius auratus	Água doce	7	Progênia	NOEC	Diminuição	1	mg/kg bdwt	Gen. Comp. Endocrinol.58(2): 231-242	1985
		Carassius auratus	Água doce	7	Progênia	NOEC	Aumento	10	mg/kg bdwt	Gen. Comp. Endocrinol.58(2): 231-242	1985
		Carassius auratus	Água doce	9	Progênia	NOEC	Sem efeito	10	mg/kg bdwt	Gen. Comp. Endocrinol.58(2): 231-242	1985
		Carassius auratus	Água doce	9	Reabsorção embrionária	NOEC	Sem efeito	10	mg/kg bdwt	Gen. Comp. Endocrinol.58(2): 231-242	1985
		Carassius auratus	Água doce	9	Sobrevivência	NOEC	Sem efeito	10	mg/kg bdwt	Gen. Comp. Endocrinol.58(2): 231-242	1985
		Carassius auratus	Água doce	1	Sobrevivência	NOEC	Aumento	10	mg/kg bdwt	Gen. Comp. Endocrinol.55(3): 351-360	1984
		Carassius auratus	Água doce	11	Peso	NOEC	Aumento	1	mg/kg bdwt	Gen. Comp. Endocrinol.58(2): 231-242	1985

Tabela 17 Revisão de literatura para os efeitos ecotoxicológicos de fármacos psiquiátricos em organismos aquáticos.

Fármacos	Nível Trófico	Espécies	Meio	Tempo	Efeito medido	Parâmetro	Tendêcia	Valor	Unidade	Fonte	Ano
		Carassius auratus	Água doce	11	Peso	NOEC	Aumento	10	mg/kg bdwt	Gen. Comp. Endocrinol.58(2): 231-242	1985
		Carassius auratus	Água doce	11	Peso	NOEC	Aumento	10	mg/kg bdwt	Gen. Comp. Endocrinol.65(3): 385-393	1987
		Carassius auratus	Água doce	2	Peso	NOEC	Aumento	10	mg/kg bdwt	Gen. Comp. Endocrinol.55(3): 351-360	1984
		Carassius auratus	Água doce	21	Peso	NOEC	Aumento	10	mg/kg bdwt	Gen. Comp. Endocrinol.58(2): 231-242	1985
		Carassius auratus	Água doce	21	Peso	NOEC	Aumento	10	mg/kg bdwt	Gen. Comp. Endocrinol.58(2): 231-242	1985
		Carassius auratus	Água doce	21	Peso	NOEC	Aumento	10	mg/kg bdwt	Gen. Comp. Endocrinol.65(3): 385-393	1987
		Carassius auratus	Água doce	21	Peso	NOEC	Aumento	10	mg/kg bdwt	Gen. Comp. Endocrinol.65(3): 385-393	1987
		Carassius auratus	Água doce	21	Alterações morfológicas	NOEC	Sem efeito	1	mg/kg bdwt	Gen. Comp. Endocrinol.58(2): 231-242	1985

Fármacos	Nível Trófico	Espécies	Meio	Tempo	Efeito medido	Parâmetro	Tendêcia	Valor	Unidade	Fonte	Ano
	Decomposers	-	-	-	-	-	-	-	-	-	-
Secobarbital CAS: 309433	Produtor primário	-	-	-	-	-	-	-	-	-	-
C.151 507455	Consumidor primario	-	-	-	-	-	-	-	-	-	-
	Consumidor secundario	Pimephales promelas	Água doce	4	Mortalidade	LC50	-	23600	ug/L	Center for Lake Superior Environmental Studies, University of Wisconsin, Superior, WI4:355 p.	1988
	Decomposers	-	-	-	-	-	-	-	-	-	-
Sertralina	Produtor primário	Pseudokirchneriella subcapitata	Água doce	2	Taxa de crescimento	EC50	Diminuição	43	ug/L	Environ. Toxicol. Chem.26(1): 85-91	2007

Tabela 17 Revisão de literatura para os efeitos ecotoxicológicos de fármacos psiquiátricos em organismos aquáticos.

Fármacos	Nível Trófico	Espécies	Meio	Tempo	Efeito medido	Parâmetro	Tendêcia	Valor	Unidade	Fonte	Ano
					populacional			, ,,,,,,,		2 03300	
CAS: 79559970 / 79617962		Scenedesmus quadricauda	Água doce	4	Abundância	IC50	Diminuição	317,02	ug/L	Ecotoxicol. Environ. Saf.67(1): 128-139	2007
		Pseudokirchneriella subcapitata	Água doce	3	Taxa de crescimento populacional	EC50	Diminuição	140	ug/L	Ecotoxicol. Environ. Saf.72(2): 434-440	2009
		Clorofilarella vulgaris	Água doce	4	Abundância	IC50	Diminuição	763,66	ug/L	Ecotoxicol. Environ. Saf.67(1): 128-139	2007
		Pseudokirchneriella subcapitata	Água doce	4	Abundância	IC50	Diminuição	12,1	ug/L	Ecotoxicol. Environ. Saf.67(1): 128-139	2007
		Scenedesmus acutus	Água doce	4	Abundância	IC50	Diminuição	98,92	ug/L	Ecotoxicol. Environ. Saf.67(1): 128-139	2007
		Pseudokirchneriella subcapitata	Água doce	3	Taxa de crescimento populacional	LOEC	Diminuição	75	ug/L	Ecotoxicol. Environ. Saf.72(2): 434-440	2009
		Pseudokirchneriella subcapitata	Água doce	3	Taxa de crescimento populacional	NOEC	Diminuição	50	ug/L	Ecotoxicol. Environ. Saf.72(2): 434-440	2009
		Lemna gibba	Água doce	7	Injuria	NOEC	-	1000	ug/L	Aquat. Toxicol.70(1): 23-	2004

Fármacos	Nível Trófico	Espécies	Meio	Tempo	Efeito medido	Parâmetro	Tendêcia	Valor	Unidade	Fonte	Ano
1 til litteos	Tiver Trones	Dispectes	1,1010	Tempo	Zieno incurao	1 urumetro	Tonaccia	V LIOI	Cinadac	40	1110
		Lemna gibba	Água doce	7	Biomassa	NOEC	Aumento	1000	ug/L	Aquat. Toxicol.70(1): 23- 40	2004
	Consumidor primario	Daphnia magna	Água doce	2	Imobilidade	EC50	Aumento	920	ug/L	Environ. Toxicol. Chem.26(1): 85-91	2007
		Thamnocephalus platyurus	Água doce	1	Mortalidade	LC50	Aumento	600	ug/L	Ecotoxicol. Environ. Saf.72(2): 434-440	2009
		Thamnocephalus platyurus	Água doce	1	Mortalidade	LOEC	Aumento	600	ug/L	Ecotoxicol. Environ. Saf.72(2): 434-440	2009
		Thamnocephalus platyurus	Água doce	1	Mortalidade	NOEC	Aumento	400	ug/L	Ecotoxicol. Environ. Saf.72(2): 434-440	2009
		Daphnia magna	Água doce	21	Progênia	EC50	Diminuição	66	ug/L	Ecotoxicol. Environ. Saf.72(2): 434-440	2009
		Ceriodaphnia dubia	Água doce	2	Mortalidade	LC50	Aumento	120	ug/L	Environ. Toxicol. Chem.23(9): 2229- 2233	2004
		Daphnia magna	Água doce	21	Mortalidade	LC50	Aumento	120	ug/L	Ecotoxicol. Environ. Saf.72(2):	2009

Fármacos	Nível Trófico	Espécies	Meio	Tempo	Efeito medido	Parâmetro	Tendêcia	Valor	Unidade	Fonte	Ano
r ai macos	Triver Tronco	Especies	MICIO	Tempo	Eletto medido	1 ai aineiro	Tenuccia	v alui	Omaac	434-440	Allu
		Daphnia magna	Água doce	1	Imobilidade	LC50	Aumento	3100	ug/L	Ecotoxicol. Environ. Saf.72(2): 434-440	2009
			Água							Ecotoxicol. Environ. Saf.72(2):	
		Daphnia magna	doce	2	Imobilidade	LC50	Aumento	1300	ug/L	434-440	2009
		Ceriodaphnia dubia	Água doce	8	Progênia	LOEC	Diminuição	45	ug/L	Environ. Toxicol. Chem.23(9): 2229- 2233	2004
		Daphnia magna	Água doce	21	Progênia	LOEC	Diminuição	100	ug/L	Ecotoxicol. Environ. Saf.72(2): 434-440	2009
		Daphnia magna	Água doce	21	Tempo da primeira reprodução	LOEC	Diminuição	100	ug/L	Ecotoxicol. Environ. Saf.72(2): 434-440	2009
		Daphnia magna	Água doce	21	Mortalidade	LOEC	Aumento	100	ug/L	Ecotoxicol. Environ. Saf.72(2): 434-440	2009
		Daphnia magna	Água doce	2	Imobilidade	LOEC	Aumento	180	ug/L	Ecotoxicol. Environ. Saf.72(2): 434-440	2009
		Ceriodaphnia dubia	Água doce	4	Tempo da primeira reprodução	NOEC	Aumento	89	ug/L	Environ. Toxicol. Chem.23(9): 2229- 2233	2004

Fármacos	Nível Trófico	Espécies	Meio	Tempo	Efeito medido	Parâmetro	Tendêcia	Valor	Unidade	Fonte	Ano
		Ceriodaphnia dubia	Água doce	8	Progênia	NOEC	Diminuição	89	ug/L	Environ. Toxicol. Chem.23(9): 2229-	2004
		Ceriodaphnia dubia	Água doce	8	Progênia	NOEC	Diminuição	9	ug/L	Environ. Toxicol. Chem.23(9): 2229- 2233	2004
		Daphnia magna	Água doce	1	Chitobiase	NOEC	Aumento	1	ug/L	Arch. Environ. Contam. Toxicol.54(4): 637- 644	2008
		Daphnia magna	Água doce	2	Chitobiase	NOEC	Aumento	1	ug/L	Arch. Environ. Contam. Toxicol.54(4): 637- 644	2008
		Daphnia magna	Água doce	21	Progênia	NOEC	Diminuição	32	ug/L	Ecotoxicol. Environ. Saf.72(2): 434-440	2009
		Daphnia magna	Água doce	21	Tempo da primeira reprodução	NOEC	Diminuição	32	ug/L	Ecotoxicol. Environ. Saf.72(2): 434-440	2009
		Daphnia magna	Água doce	21	Mortalidade	NOEC	Aumento	32	ug/L		2009
		Daphnia magna	Água doce	3	Chitobiase	NOEC	Diminuição	1	ug/L	Arch. Environ. Contam.	2008

		•				•					
Fármacos	Nível Trófico	Espécies	Meio	Tempo	Efeito medido	Parâmetro	Tendêcia	Valor	Unidade	Fonte	Ano
										Toxicol.54(4): 637- 644	
		Daphnia magna	Água doce	2	Imobilidade	NOEC	Aumento	100	ug/L	Ecotoxicol. Environ. Saf.72(2): 434-440	2009
		Simulium vittatum	Água doce	2	Mortalidade	LC50	Aumento	475,02	ug/L	Environ. Toxicol.25(1): 28- 37	2010
	Consumidor secundario	Pimephales promelas	Água doce	7	Consumo de alimento	EC50	Diminuição	149,5	ug/L	Environ. Toxicol. Chem.28(12): 2685- 2694	2009
		Pimephales promelas	Água doce	7	Consumo de alimento	EC50	Diminuição	199,7	ug/L	Environ. Toxicol. Chem.28(12): 2685- 2694	2009
		Pimephales promelas	Água doce	7	Consumo de alimento	EC50	Diminuição	80,3	ug/L	Environ. Toxicol. Chem.28(12): 2685- 2694	2009
		Pimephales promelas	Água doce	7	Peso	EC50	Diminuição	131,4	ug/L	Environ. Toxicol. Chem.28(12): 2685- 2694	2009
		Pimephales promelas	Água doce	7	Peso	EC50	Diminuição	50	ug/L	Environ. Toxicol. Chem.28(12): 2685- 2694	2009

Fármacos	Nível Trófico	Espécies	Meio	Тетро	Efeito medido	Parâmetro	Tendêcia	Valor	Unidade	Fonte	Ano
		Pimephales promelas	Água doce	7	Peso	EC50	Diminuição	544,4	ug/L	Environ. Toxicol. Chem.28(12): 2685- 2694	2009
		Danio rerio	Água doce	4	Expressão gênica	LOEC	Alteração	25	ug/L	Environ. Pollut.167:163-170	2012
		Pimephales promelas	Água doce	21	Sobrevivência	LOEC	Diminuição	0,0052	ug/L	Aquat. Toxicol.104(1/2): 38-47	2011
		Pimephales promelas	Água doce	7	Sobrevivência	LOEC	Diminuição	256	ug/L	Environ. Toxicol. Chem.28(12): 2685- 2694	2009
		Pimephales promelas	Água doce	7	Sobrevivência	LOEC	Diminuição	579	ug/L	Environ. Toxicol. Chem.28(12): 2685- 2694	2009
		Pimephales promelas	Água doce	7	Sobrevivência	LOEC	Diminuição	30	ug/L	Environ. Toxicol. Chem.28(12): 2685- 2694	2009
		Pimephales promelas	Água doce	7	Consumo de alimento	LOEC	Diminuição	14	ug/L	Environ. Toxicol. Chem.28(12): 2685- 2694	2009
		Pimephales promelas	Água doce	7	Consumo de alimento	LOEC	Diminuição	141	ug/L	Environ. Toxicol. Chem.28(12): 2685- 2694	2009
		Pimephales promelas	Água	7	Consumo de	LOEC	Diminuição	256	ug/L	Environ. Toxicol.	2009

E(N/1 /D / @	For Colon	N	T	T(C.14 11.1.	D	m 10	¥7.1	TI. * 3 . 3 .	E4.	A
Fármacos	Nível Trófico	Espécies	Meio doce	Tempo	Efeito medido alimento	Parâmetro	Tendêcia	Valor	Unidade	Fonte Chem.28(12): 2685- 2694	Ano
		Pimephales promelas	Água doce	7	Peso	LOEC	Diminuição	141	ug/L	Environ. Toxicol. Chem.28(12): 2685- 2694	2009
		Pimephales promelas	Água doce	7	Peso	LOEC	Diminuição	256	ug/L	Environ. Toxicol. Chem.28(12): 2685- 2694	2009
		Pimephales promelas	Água doce	7	Peso	LOEC	Diminuição	30	ug/L	Environ. Toxicol. Chem.28(12): 2685- 2694	2009
		Pimephales promelas	Água doce	28	Atividade	LOEC	Diminuição	3	ug/L	Environ. Sci. Technol.46(4): 2427-2435	2012
		Pimephales promelas	Água doce	28	Nado	LOEC	Aumento	3	ug/L	Environ. Sci. Technol.46(4): 2427-2435	2012
		Pimephales promelas	Água doce	28	Nado	LOEC	Aumento	3	ug/L	Environ. Sci. Technol.46(4): 2427-2435	2012
		Pimephales promelas	Água doce	2	Mortalidade	LT50	Aumento	579	ug/L	Environ. Toxicol. Chem.28(12): 2685- 2694	2009
		Pimephales promelas	Água doce	5h	Mortalidade	LT50	Aumento	579	ug/L	Environ. Toxicol. Chem.28(12): 2685-	2009

Fármacos	Nível Trófico	Espécies	Meio	Tempo	Efeito medido	Parâmetro	Tendêcia	Valor	Unidade	Fonte	Ano
1 ur macos	Tarver Troneo	Especies	141010	Tempo	Licito incuiao	Turumeno	Tenaccia	7 4101	Cindude	2694	71110
			Água							Environ. Toxicol. Chem.28(12): 2685-	
		Pimephales promelas	doce	13	Mortalidade	LT50	Aumento	579	ug/L		2009
		Timephates prometas	Água	13	Razão do peso do órgão vs	L130	rumento	317	ug/L	Aquat. Toxicol.104(1/2):	200)
		Pimephales promelas	doce	21	corpo	NOEC	Diminuição	0,0052	ug/L	38-47	2011
			Água		Razão do peso do órgão vs		,	ŕ		Aquat. Toxicol.104(1/2):	
		Pimephales promelas	doce	21	corpo	NOEC	Diminuição	0,0052	ug/L	38-47	2011
		Pimephales promelas	Água doce	21	Número de células	NOEC	-	0,0052	ug/L	Aquat. Toxicol.104(1/2): 38-47	2011
		Pimephales promelas	Água doce	21	Vacuolização	NOEC	-	0,0052	ug/L		2011
		Pimephales promelas	Água doce	21	Sobrevivência	NOEC	Diminuição	0,0016	ug/L	Aquat. Toxicol.104(1/2): 38-47	2011
		Pimephales promelas	Água doce	21	Desenvolvimen to sexual	NOEC	Diminuição	0,0052	ug/L	Aquat. Toxicol.104(1/2): 38-47	2011
		Pimephales promelas	Água doce	21	Indice de condição	NOEC	Diminuição	0,0052	ug/L	Aquat. Toxicol.104(1/2): 38-47	2011

Fármacos	Nível Trófico	Espécies	Meio	Tempo	Efeito medido	Parâmetro	Tendêcia	Valor	Unidade	Fonte	Ano
		Pimephales promelas	Água doce	21	Vitelogenina	NOEC	Diminuição	0,0052	ug/L	Aquat. Toxicol.104(1/2): 38-47	2011
		Pimephales promelas	Água doce	21	Número de espermatozóide s	NOEC	-	0,0052	ug/L	Aquat. Toxicol.104(1/2): 38-47	2011
		Pimephales promelas	Água doce	21	Espermatogôni a	NOEC	-	0,0052	ug/L	Aquat. Toxicol.104(1/2): 38-47	2011
		Pimephales promelas	Água doce	7	Sobrevivência	NOEC	Diminuição	256	ug/L		2009
		Pimephales promelas	Água doce	7	Sobrevivência	NOEC	Diminuição	141	ug/L	Environ. Toxicol. Chem.28(12): 2685- 2694	2009
		Pimephales promelas	Água doce	7	Sobrevivência	NOEC	Diminuição	14	ug/L		2009
		Pimephales promelas	Água doce	7	Consumo de alimento	NOEC	Diminuição	141	ug/L		2009
		Pimephales promelas	Água doce	7	Consumo de alimento	NOEC	Diminuição	61	ug/L	Environ. Toxicol. Chem.28(12): 2685- 2694	2009

Fármacos	Nível Trófico	Espécies	Meio	Тетро	Efeito medido	Parâmetro	Tendêcia	Valor	Unidade	Fonte	Ano
		Pimephales promelas	Água doce	7	Peso	NOEC	Diminuição	14	ug/L	Environ. Toxicol. Chem.28(12): 2685- 2694	2009
		Pimephales promelas	Água doce	7	Peso	NOEC	Diminuição	141	ug/L	Environ. Toxicol. Chem.28(12): 2685- 2694	2009
		Pimephales promelas	Água doce	7	Peso	NOEC	Diminuição	61	ug/L	Environ. Toxicol. Chem.28(12): 2685- 2694	2009
		Pimephales promelas	Água doce	12	Movimento	NOEC	Diminuição	0,25	ug/L	Environ. Toxicol. Chem.28(12): 2677- 2684	2009
		Pimephales promelas	Água doce	12	Movimento	NOEC	Diminuição	0,25	ug/L	Environ. Toxicol. Chem.28(12): 2677- 2684	2009
		Pimephales promelas	Água doce	12	Movimento	NOEC	Aumento	0,25	ug/L	Environ. Toxicol. Chem.28(12): 2677- 2684	2009
		Pimephales promelas	Água doce	28	Atividade	NOEC	Diminuição	30	ug/L		2012
		Pimephales promelas	Água doce	12	Comprimento	NOEC	Aumento	0,25	ug/L	Environ. Toxicol. Chem.28(12): 2677- 2684	2009

Fármacos	Nível Trófico	Espécies	Meio	Tempo	Efeito medido	Parâmetro	Tendêcia	Valor	Unidade	Fonte	Ano
		Xenopus laevis	Água doce	4	Deformação	EC50	Aumento	4600	ug/L	Ecotoxicology15(8) : 647-656	2006
		Xenopus laevis	Água doce	4	Comprimento	LOEC	Diminuição	2000	ug/L	Ecotoxicology15(8) : 647-656	2006
		Xenopus laevis	Água doce	4	Comprimento	NOEC	Diminuição	1000	ug/L	Ecotoxicology15(8) : 647-656	2006
		Oryzias latipes	Água doce	4	Mortalidade	LC50	Aumento	191	ug/L	Ph.D. Thesis, University of Guelph, Ontario, Canada:124 p.	2004
		Pimephales promelas	Água doce	4	Mortalidade	LC50	Aumento	143	ug/L	Ph.D. Thesis, University of Guelph, Ontario, Canada:124 p.	2004
		Danio rerio	Água doce	23	Serotonina	LOEC	Diminuição	1	ug/d	Basic Clin. Pharmacol. Toxicol.101(3): 203-210	2007
		Oncorhynchus mykiss	Água doce	4	Mortalidade	LC50	Aumento	380	ug/L	Ecotoxicol. Environ. Saf.72(2): 434-440	2009
		Oncorhynchus mykiss	Água doce	4	Mortalidade	LOEC	Aumento	320	ug/L	Ecotoxicol. Environ. Saf.72(2): 434-440	2009

Fármacos	Nível Trófico	Espécies	Meio	Tempo	Efeito medido	Parâmetro	Tendêcia	Valor	Unidade	Fonte	Ano
		Oncorhynchus mykiss	Água doce	4	Mortalidade	NOEC	Aumento	100	ug/L	Ecotoxicol. Environ. Saf.72(2): 434-440	2009
	Decomposers	-	-	-	-	-	-	-	-	-	-
Tioridazina CAS: 130610	Produtor primário	Lemna minor	Água doce	7	Taxa de crescimento populacional	EC50	Diminuição	640	ug/L	Fresenius Environ. Bull.16(5): 524-531	2007
	Consumidor primario	Artemia salina	Água Salgada	1	Mortalidade	LC50	Aumento	39,1	umol/L	Arch. Environ. Contam. Toxicol.26(1): 69- 78	1994
		Streptocephalus proboscideus	Água doce	1	Mortalidade	LC50	Aumento	0,9	umol/L	Arch. Environ. Contam. Toxicol.26(1): 69-78 Arch. Environ.	1994
		Daphnia magna	Água doce	1	Imobilidade	EC50	Aumento	12,3	umol/L	Contam. Toxicol.26(1): 69- 78	1994
		Daphnia magna	Água	1	Imobilidade	EC50	Aumento	0,00187	mM	Aquat.	1994

Fármacos	Nível Trófico	Espécies	Meio	Tempo	Efeito medido	Parâmetro	Tendêcia	Valor	Unidade	Fonte	Ano
Faimacos	Niver Tronco	Especies	doce	1 empo	Eleito illeuluo	1 at afficit 0	Tenuecia	v aiui	Ullidade	Toxicol.30:47-60	Allo
										Environ. Toxicol.	
			Água							Chem.14(12): 2085-	
		Daphnia pulex	doce	1	Imobilidade	EC50	Aumento	0,00174	mM	2088	1995
		Spirostomum ambiguum	Água doce	1	Deformação	EC50	Aumento	390	ug/L	Fresenius Environ. Bull.14(10): 873- 877	2005
		Spirostomum ambiguum	Água doce	1	Deformação	EC50	Aumento	400	ug/L	Fresenius Environ. Bull.14(10): 873- 877	2005
		Spirostomum ambiguum	Água doce	2	Deformação	EC50	Aumento	360	ug/L	Fresenius Environ. Bull.14(10): 873- 877	2005
		Spirostomum ambiguum	Água doce	2	Deformação	EC50	Aumento	420	ug/L	Fresenius Environ. Bull.14(10): 873- 877	2005
		Tetrahymena thermophila	Água doce	1	Taxa de crescimento populacional	EC50	Diminuição	10000	ug/L	Fresenius Environ. Bull.14(10): 873- 877	2005
		Tetrahymena thermophila	Água doce	1	Taxa de crescimento populacional	EC50	Diminuição	11400	ug/L	Fresenius Environ. Bull.14(10): 873- 877	2005
		Spirostomum ambiguum	Água doce	1	Mortalidade	LC50	Aumento	610	ug/L	Fresenius Environ. Bull.14(10): 873- 877	2005

Fármacos	Nível Trófico	Espécies	Meio	Tempo	Efeito medido	Parâmetro	Tendêcia	Valor	Unidade	Fonte	Ano
		Spirostomum ambiguum	Água doce	1	Mortalidade	LC50	Aumento	670	ug/L	Fresenius Environ. Bull.14(10): 873- 877	2005
		Spirostomum ambiguum	Água doce	2	Mortalidade	LC50	Aumento	440	ug/L	Fresenius Environ. Bull.14(10): 873- 877	2005
		Spirostomum ambiguum	Água doce	2	Mortalidade	LC50	Aumento	440	ug/L		2005
		Brachionus calyciflorus	Água doce	1	Mortalidade	LC50	Aumento	0,8	umol/L	Arch. Environ. Contam. Toxicol.26(1): 69- 78	1994
	Consumidor secundario	-	-	-	-	-	-	-	-	-	-
	Decomposers	-	-	-	-	-	-	-	-	-	-
Topiramato CAS: 97240794		-	-	-	-	-	-	-	-	-	-

Fármacos	Nível Trófico	Espécies	Meio	Tempo	Efeito medido	Parâmetro	Tendêcia	Valor	Unidade	Fonte	Ano
	Consumidor primario	-	-	-	-	-	-	-	-	-	-
	Consumidor secundario	Danio rerio	Água doce	5	Deformação	LOEL	Aumento	100	uM	Reprod. Toxicol.33(2): 155- 164	2012
		Danio rerio	Água doce	5	Deformação	LOEL	Aumento	100	uM	Reprod. Toxicol.33(2): 155- 164	2012
		Danio rerio	Água doce	5	Deformação	LOEL	Aumento	100	uM	Reprod. Toxicol.33(2): 155- 164	2012
		Danio rerio	Água doce	5	Deformação	LOEL	Aumento	100	uM	Reprod. Toxicol.33(2): 155- 164	2012
		Danio rerio	Água doce	5	Deformação	LOEL	Aumento	1000	uM	Reprod. Toxicol.33(2): 155- 164	2012
		Danio rerio	Água doce	5	Deformação	NOEL	-	10	uM	Reprod. Toxicol.33(2): 155- 164	2012
		Danio rerio	Água doce	5	Deformação	NOEL	-	10	uM	Reprod. Toxicol.33(2): 155- 164	2012

Fármacos	Nível Trófico	Espécies	Meio	Tempo	Efeito medido	Parâmetro	Tendêcia	Valor	Unidade	Fonte	Ano
		Danio rerio	Água doce	5	Deformação	NOEL	-	10	uM	Reprod. Toxicol.33(2): 155- 164	2012
		Danio rerio	Água doce	5	Deformação	NOEL	-	10	uM	Reprod. Toxicol.33(2): 155- 164	2012
		Danio rerio	Água doce	5	Deformação	NOEL	-	10	uM	Reprod. Toxicol.33(2): 155- 164	2012
		Danio rerio	Água doce	5	Deformação	NOEL	-	10	uM	Reprod. Toxicol.33(2): 155- 164 Reprod.	2012
		Danio rerio	Água doce	5	Deformação	NOEL	-	100	uM	Toxicol.33(2): 155- 164	2012
	Decomposers	-	-	-	-	-	-	-	-	-	-
Trimipramina	Produtor primário	Clorofilarella fusca var. vacuolata	Água doce	1	Taxa de crescimento populacional	EC50	Diminuição	1,8	uM	Aquat. Toxicol.101(1): 266-275	2011
CAS: 521788		Clorofilarella fusca var. vacuolata	Água doce	1	Taxa de crescimento	EC50	Diminuição	14	uM	Aquat. Toxicol.101(1):	2011

Tabela 17 Revisão de literatura para os efeitos ecotoxicológicos de fármacos psiquiátricos em organismos aquáticos.

				_						_	
Fármacos	Nível Trófico	Espécies	Meio	Tempo	Efeito medido	Parâmetro	Tendêcia	Valor	Unidade	Fonte	Ano
					populacional Taxa de					266-275	
		Clorofilarella fusca var.	Água		crescimento					Aquat. Toxicol.101(1):	
		vacuolata	doce	1	populacional	EC50	Diminuição	2,4	uM	266-275	2011
		Clorofilarella fusca var.	Água		Taxa de crescimento					Aquat. Toxicol.101(1):	
		vacuolata	doce	1	populacional	EC50	Diminuição	3,9	uM	266-275	2011
		Clorofilarella fusca var. vacuolata	Água doce	1	Taxa de crescimento populacional	EC50	Diminuição	53	uM	Aquat. Toxicol.101(1): 266-275	2011
		Clorofilarella fusca var. vacuolata	Água doce	1	Taxa de crescimento populacional	ER50	Diminuição	16	uM	Aquat. Toxicol.101(1): 266-275	2011
		Clorofilarella fusca var. vacuolata	Água doce	1	Taxa de crescimento populacional	ER50	Diminuição	26	uM	Aquat. Toxicol.101(1): 266-275	2011
		Clorofilarella fusca var. vacuolata	Água doce	1	Taxa de crescimento populacional	ER50	Diminuição	35	uM	Aquat. Toxicol.101(1): 266-275	2011
		Clorofilarella fusca var. vacuolata	Água doce	1	Taxa de crescimento populacional	ER50	Diminuição	54	uM	Aquat. Toxicol.101(1): 266-275	2011
		Clorofilarella fusca var. vacuolata	Água doce	1	Taxa de crescimento	ER50	Diminuição	9,3	uM	Aquat. Toxicol.101(1):	2011

Fármacos	Nível Trófico	Espécies	Meio	Tempo	Efeito medido	Parâmetro	Tendêcia	Valor	Unidade	Fonte	Ano
I WI III WOOD	111111111111111111111111111111111111111	23. peeres	1/1010	z empo	populacional			, 11 02	- Cinauac	266-275	11110
		Clorofilarella fusca var. vacuolata	Água doce	1	Taxa de crescimento populacional	ER50	Diminuição	114	mmol/kg	Aquat. Toxicol.101(1): 266-275	2011
		Clorofilarella fusca var. vacuolata	Água doce	1	Taxa de crescimento populacional	ER50	Diminuição	204	mmol/kg	Aquat. Toxicol.101(1): 266-275	2011
		Clorofilarella fusca var. vacuolata	Água doce	1	Taxa de crescimento populacional	ER50	Diminuição	57	mmol/kg	Aquat. Toxicol.101(1): 266-275	2011
		Clorofilarella fusca var. vacuolata	Água doce	1	Taxa de crescimento populacional	ER50	Diminuição	82	mmol/kg	Aquat. Toxicol.101(1): 266-275	2011
	Consumidor primario	-	-	-	-	-	-	-	-	-	-
	Consumidor secundario	-	-	-	-	-	-	-	-	-	-
	Decomposers	-	-	-	-	-	-	-	-	-	-

Tabela 17 Revisão de literatura para os efeitos ecotoxicológicos de fármacos psiquiátricos em organismos aquáticos.

Fármacos	Nível Trófico	Espécies	Meio	Tempo	Efeito medido	Parâmetro	Tendêcia	Valor	Unidade	Fonte	Ano
		-		-							
Venlafaxina	Produtor primário	-	-	-	-	-	-	-	-	-	_
CAS: 93413695 / 99300784											
	Consumidor primario	-	-	-	-	-	-	-	-	-	-
	Consumidor secundario	Pimephales promelas	Água doce	18	Expressão gênica	LOEC	Alteração	50	ug/L	Comp. Biochem. Physiol. C Toxicol. Pharmacol.155(1): 109-120	2012
		Pimephales promelas	Água doce	14	Orientação	LOEC	Aumento	50	ug/L	Comp. Biochem. Physiol. C Toxicol. Pharmacol.155(1): 109-120	2012
		Pimephales promelas	Água doce	14	Movimento	LOEC	Aumento	50	ug/L	Comp. Biochem. Physiol. C Toxicol. Pharmacol.155(1): 109-120	2012
		Pimephales promelas	Água doce	14	Movimento	LOEC	Aumento	50	ug/L	Comp. Biochem. Physiol. C Toxicol. Pharmacol.155(1):	2012

		•			*	•		•			
Fármacos	Nível Trófico	Espécies	Meio	Tempo	Efeito medido	Parâmetro	Tendêcia	Valor	Unidade	Fonte	Ano
										109-120	
		Pimephales promelas	Água doce	21	Sobrevivência	LOEC	Diminuição	0,305	ug/L	Aquat. Toxicol.104(1/2): 38-47	2011
		Pimephales promelas	Água doce	12	Movimento	LOEC	Diminuição	5	ug/L	Environ. Toxicol. Chem.28(12): 2677- 2684	2009
		Pimephales promelas	Água doce	12	Movimento	LOEC	Aumento	5	ug/L	Environ. Toxicol. Chem.28(12): 2677- 2684	2009
		Pimephales promelas	Água doce	21	Razão do peso do órgão vs corpo	NOEC	Diminuição	1104	ug/L	Aquat. Toxicol.104(1/2): 38-47	2011
		Pimephales promelas	Água doce	21	Razão do peso do órgão vs corpo	NOEC	Diminuição	1104	ug/L	Aquat. Toxicol.104(1/2): 38-47	2011
		Pimephales promelas	Água doce	21	Número de células	NOEC	-	1104	ug/L	Aquat. Toxicol.104(1/2): 38-47	2011
		Pimephales promelas	Água doce	21	Vacuolização	NOEC	-	1104	ug/L	Aquat. Toxicol.104(1/2): 38-47	2011
		Pimephales promelas	Água doce	21	Desenvolvimen to sexual	NOEC	Diminuição	1104	ug/L	Aquat. Toxicol.104(1/2): 38-47	2011

Fármacos	Nível Trófico	Espécies	Meio	Tempo	Efeito medido	Parâmetro	Tendêcia	Valor	Unidade	Fonte	Ano
Farmacos	Nivel Fronco	Especies	Meio	тешро	Eleito illedido	Farametro	Tenuecia	v alor	Ullidade	ronte	Allo
		Pimephales promelas	Água doce	21	Indice de condição	NOEC	Diminuição	1104	ug/L	Aquat. Toxicol.104(1/2): 38-47	2011
		Pimephales promelas	Água doce	21	Vitelogenina	NOEC	Diminuição	1104	ug/L	Aquat. Toxicol.104(1/2): 38-47	2011
		Pimephales promelas	Água doce	21	Número de células	NOEC	Aumento	1104	ug/L	Aquat. Toxicol.104(1/2): 38-47	2011
		Pimephales promelas	Água doce	21	Número de espermatozóide s	NOEC	-	1104	ug/L	Aquat. Toxicol.104(1/2): 38-47	2011
		Pimephales promelas	Água doce	21	Espermatogôni a	NOEC	-	1104	ug/L	Aquat. Toxicol.104(1/2): 38-47	2011
		Pimephales promelas	Água doce	12	Movimento	NOEC	Diminuição	2,5	ug/L	Environ. Toxicol. Chem.28(12): 2677- 2684	2009
		Pimephales promelas	Água doce	12	Movimento	NOEC	Diminuição	5	ug/L	Environ. Toxicol. Chem.28(12): 2677- 2684	2009
		Pimephales promelas	Água doce	12	Movimento	NOEC	Aumento	2,5	ug/L	Environ. Toxicol. Chem.28(12): 2677- 2684	2009

Fármacos	Nível Trófico	Espécies	Meio	Tempo	Efeito medido	Parâmetro	Tendêcia	Valor	Unidade	Fonte	Ano
		Pimephales promelas	Água doce	12	Comprimento	NOEC	Diminuição	5	ug/L	Environ. Toxicol. Chem.28(12): 2677- 2684	2009
	Decomposers	-	-	-	-	-	-	-	-	-	-
Ziprasidona CAS: 138982679	Produtor primário	-	-	-	-	-	-	-	-	-	-
	Consumidor primario	Ceriodaphnia dubia	Água doce	7	Imobilidade	EC50	Aumento	21	ug/L	Chemosphere80(9): 1069-1074	2010
		Daphnia magna	Água doce	7	Imobilidade	EC50	Aumento	19	ug/L	Chemosphere80(9): 1069-1074	2010
		Ceriodaphnia dubia	Água doce	7	Progênia	LOEC	-	21	ug/L	Chemosphere80(9): 1069-1074	2010
		Ceriodaphnia dubia	Água doce	7	Imobilidade	NOEC	-	21	ug/L	Chemosphere80(9): 1069-1074	2010
		Ceriodaphnia dubia	Água doce	7	Progênia	NOEC	-	21	ug/L	Chemosphere80(9): 1069-1074	2010
		Daphnia magna	Água	7	Imobilidade	NOEC	-	19	ug/L	Chemosphere80(9):	2010

Fármacos	Nível Trófico	Espécies	Meio	Tempo	Efeito medido	Parâmetro	Tendêcia	Valor	Unidade	Fonte	Ano
			doce							1069-1074	
		Daphnia magna	Água doce	7	Imobilidade	NOEC	-	19	ug/L	Chemosphere80(9): 1069-1074	2010
	Consumidor secundario	-	-	-	-	-	-	-	-	-	-
	Decomposers	-	-	-	-	-	-	-	-	-	-

		Orgã	Т.	M	D.	Domô			V ₆ 1.	11,.23	D.f	
Composto	Espécies	o Alvo	Tem po	Me io	Do ses	Parâmet ro	Efeito	Efeito Medido	Valo r	Unid ade	Referênc a	
Bromocriptina		_	_	_	_	_	-	-	_	_	-	
CAS: 25614033												
CAS. 23014033												
	-	-	-	-	-	-	-	-	-	-	-	
				Se							Gen.	
				m							Comp.	
	Rana	Não		sub			Dommo	Toyo do		110/0	Endocrii	
	kana temporaria	report ado	2	stra to	2	LOEL	Repro dução	Taxa de ovulação	20	ug/g bdwt	1.70(1): 83-90	
	1			Se			3	Proteína				
		Folíc ulo		m sub				reguladora aguda da			Toxicol.	
	Rattus	ovari		stra			Celula	esteroidogênes		mg/k	Sci.121(
	norvegicus	ano	4	to	2	LOEL	r	e mRNA	2	g	: 267-27	
				Se m								
				sub							Toxicol.	
	Rattus .			stra	_	MOEL	Bioquí	ъ.		mg/k	Sci.121(
	norvegicus	Soro	4	to Se	2	NOEL	mico	Progesterona Proteína	2	g	: 267-27	
		Folíc		m				reguladora				
	D	ulo .		sub			G 1 1	aguda da		ď	Toxicol.	
	Rattus norvegicus	ovari ano	4	stra to	2	NOEL	Celula r	esteroidogênes e mRNA	2	mg/k g	Sci.121(: 267-27	
										8		
											Ph.D.Tl	
											is, Univers	
											of Guel	
	~,	Não							1000		Ontario,	
Carbamazepina	Glomus intraradices	report ado	42	Art éria	6	EC50	Popula ção	Abundância	1000 0	ug/kg d soil	Canada: 4 p.	
our surrazeprira	intraradices	intraraaices a			0114	Ü	2000	340	1 10 unuunuu	Ü	u 5011	Ph.D.Th
											is,	
											Universion of Guelt	
		Não									Ontario,	
CAS: 298464	Glomus intraradices	report ado	42	Art éria	6	EC50	Popula ção	Abundância	1000 0	ug/kg d soil	Canada: 4 p.	
CAS. 230404	iniraraaices	Hiali	42	Cul	U	EC30	çao	Abundancia	U	u son	Chemos	
	Glomus	nócit	• •	tur	_	70 7 0	Cresci		1000	-	ere73(3)	
	intraradices	os Hiali	28	a Cul	6	EC50	mento	Comprimento	1000	ug/L	344-352 Chemos	
	Glomus	nócit		tur			Cresci				ere73(3)	
	intraradices	os	28	a	6	EC50	mento	Comprimento	1000	ug/L	344-352	
	Glomus	Hiali nócit		Cul tur			Cresci				Chemos ere73(3)	
	intraradices	os	28	a	6	EC50	mento	Comprimento	388,2	ug/L	344-352	
											Ph.D.Th	
											is, Universi	
											of Guel	
	Glomus	Hiali nócit		Cul tur			Cresci				Ontario: Canada:	
	intraradices	os	56	a	6	EC50	mento	Comprimento	136	ug/L	4 p.	
								*		U	Ph.D.Th	
											is, Universi	
											of Guel	
		Hiali		Cul							Ontario,	
	Glomus intraradices	nócit	56	tur	6	EC50	Cresci	Comprimento	78	11 cr /I	Canada:	
	intraraatces Glomus	os Hiali	50	a Cul	U	ECJU	mento Cresci	Comprimento	1000	ug/L	4 p. Ph.D.Th	
	intraradices	nócit	56	tur	6	EC50	mento	Comprimento	0	ug/L	is,	

		Orgã	T	3.7	Г.	D- ^			X 7 •	T7 • 3	D.6 ^ :
Composto	Espécies	o Alvo	Tem po	Me io	Do ses	Parâmet ro	Efeito	Efeito Medido	Valo r	Unid ade	Referênci a
	1	os		a							University
											of Guelph, Ontario,
											Canada:25
											4 p. Ph.D.Thes
											is,
											University
		Hiali		Cul							of Guelph, Ontario,
	Glomus	nócit		tur			Cresci		1000		Canada:25
	intraradices	os	56	a	6	EC50	mento	Comprimento	0	ug/L	4 p.
											Ph.D.Thes is,
											University
		Hiali		Cul							of Guelph, Ontario,
	Glomus	nócit		tur			Cresci		1000		Canada:25
	intraradices	os	56	a	6	EC50	mento	Comprimento	0	ug/L	4 p.
	Glomus	Não report		Cul tur			Repro	Semente ou produção de			Chemosph ere73(3):
	intraradices	ado	28	a	6	EC50	dução	esporos	113,4	ug/L	344-352
	Clamus	Não		Cul			Dames	Semente ou			Chemosph
	Glomus intraradices	report ado	28	tur a	6	EC50	Repro dução	produção de esporos	43,6	ug/L	ere73(3): 344-352
	a.	Não		Cul			-	Semente ou		Ü	Chemosph
	Glomus intraradices	report ado	28	tur a	6	EC50	Repro dução	produção de esporos	1000	ug/L	ere73(3): 344-352
	iniraraaices	auo	20	а	U	LC30	uuçao	esporos	1000	ug/L	Ph.D.Thes
											is,
											University of Guelph,
		Não		Cul			_	Semente ou			Ontario,
	Glomus intraradices	report ado	56	tur a	6	EC50	Repro dução	produção de esporos	1000 0	ug/L	Canada:25 4 p.
	iniraraaices	uuo	30	u	O	Leso	dução	esporos	O	ug/L	Ph.D.Thes
											is,
											University of Guelph,
	a.	Não		Cul			_	Semente ou	1000		Ontario,
	Glomus intraradices	report ado	56	tur a	6	EC50	Repro dução	produção de esporos	1000 0	ug/L	Canada:25 4 p.
	www.comerces				Ü	2000	auguo	esperes	Ü	482	Ph.D.Thes
											is, University
											of Guelph,
	a.	Não		Cul			_	Semente ou	1000		Ontario,
	Glomus intraradices	report ado	56	tur a	6	EC50	Repro dução	produção de esporos	1000 0	ug/L	Canada:25 4 p.
				-				F		8-	Ph.D.Thes
											is, University
											of Guelph,
	G!	Não		Cul			ъ	Semente ou			Ontario,
	Glomus intraradices	report ado	56	tur a	6	EC50	Repro dução	produção de esporos	81	ug/L	Canada:25 4 p.
	www.comerces				Ü	2000	auguo	esperes	01	482	Ph.D.Thes
											is, University
											of Guelph,
	C1	Não		Cul			D	Semente ou			Ontario,
	Glomus intraradices	report ado	56	tur a	6	EC50	Repro dução	produção de esporos	128	ug/L	Canada:25 4 p.
	s. davees				~			r		5	Ph.D.Thes
		Hiali		Cul							is, University
	Glomus	nócit		tur			Cresci				of Guelph,
	intraradices	os	56	a	6	LOEC	mento	Comprimento	100	ug/L	Ontario,

organismos te		Orgã									
Composto	Espécies	o Alvo	Tem po	Me io	Do ses	Parâmet ro	Efeito	Efeito Medido	Valo r	Unid ade	Referênci a
	•				-						Canada:25 4 p. Ph.D.Thes is,
	Glomus intraradices	Hiali nócit os	56	Cul tur a	6	LOEC	Cresci mento	Comprimento	1000	ug/L	University of Guelph, Ontario, Canada:25 4 p. Ph.D.Thes is, University
	Glomus intraradices	Hiali nócit os	84	Cul tur a	2	LOEC	Cresci mento	Comprimento	1000 0	ug/L	of Guelph, Ontario, Canada:25 4 p. Ph.D.Thes is,
	Glomus intraradices	Hiali nócit os	84	Cul tur a	2	LOEC	Cresci mento	Comprimento	1000 0	ug/L	University of Guelph, Ontario, Canada:25 4 p. Ph.D.Thes is,
	Glomus intraradices	Hiali nócit os	84	Cul tur a	2	LOEC	Cresci	Comprimento	1000 0	ug/L	University of Guelph, Ontario, Canada:25 4 p. Ph.D.Thes is, University
	Glomus intraradices	Hiali nócit os	84	Cul tur a	2	LOEC	Cresci mento	Comprimento	1000 0	ug/L	of Guelph, Ontario, Canada:25 4 p. Ph.D.Thes is,
	Glomus intraradices	Hiali nócit os	84	Cul tur a	2	LOEC	Cresci mento	Comprimento	1000 0	ug/L	University of Guelph, Ontario, Canada:25 4 p. Ph.D.Thes is, University
	Glomus intraradices	Hiali nócit os	84	Cul tur a	2	LOEC	Cresci mento	Comprimento	1000	ug/L	of Guelph, Ontario, Canada:25 4 p. Ph.D.Thes is,
	Glomus intraradices	Hiali nócit os	84	Cul tur a	2	LOEC	Cresci mento	Comprimento	1000	ug/L	University of Guelph, Ontario, Canada:25 4 p. Ph.D.Thes is, University
	Glomus intraradices	Hiali nócit os Hiali	84	Cul tur a Cul	2	LOEC	Cresci mento	Comprimento	1000 0	ug/L	of Guelph, Ontario, Canada:25 4 p. Ph.D.Thes
	Glomus intraradices	nócit os	84	tur a	2	LOEC	Cresci mento	Comprimento	1000 0	ug/L	is, University

organismos ter	1051105	Orgã									
Composto	Espécies	o Alvo	Tem po	Me io	Do ses	Parâmet ro	Efeito	Efeito Medido	Valo r	Unid ade	Referênci a
	Glomus intraradices	Não report ado	28	Cul tur a	6	LOEC	Repro dução	Semente ou produção de esporos	1000	ug/L	of Guelph, Ontario, Canada:25 4 p. Chemosph ere73(3): 344-352 Ph.D.Thes is, University
	Glomus intraradices	Não report ado	56	Cul tur a	6	LOEC	Repro dução	Semente ou produção de esporos	1000 0	ug/L	of Guelph, Ontario, Canada:25 4 p. Ph.D.Thes is,
	Glomus intraradices	Não report ado	84	Cul tur a	2	LOEC	Repro dução	Semente ou produção de esporos	1000	ug/L	University of Guelph, Ontario, Canada:25 4 p. Ph.D.Thes is, University
	Glomus intraradices	Não report ado	84	Cul tur a	2	LOEC	Repro dução	Semente ou produção de esporos	1000 0	ug/L	of Guelph, Ontario, Canada:25 4 p. Ph.D.Thes is,
	Glomus intraradices	Não report ado	84	Cul tur a	2	LOEC	Repro dução	Semente ou produção de esporos	1000 0	ug/L	University of Guelph, Ontario, Canada:25 4 p. Ph.D.Thes is,
	Glomus intraradices	Não report ado	84	Cul tur a	2	LOEC	Repro dução	Semente ou produção de esporos	1000	ug/L	University of Guelph, Ontario, Canada:25 4 p. Ph.D.Thes is,
	Glomus intraradices	Não report ado	84	Cul tur a	2	LOEC	Repro dução	Semente ou produção de esporos	1000	ug/L	University of Guelph, Ontario, Canada:25 4 p. Ph.D.Thes is,
	Glomus intraradices	Não report ado	42	Art éria	6	NOEC	Popula ção	Abundância	1000	ug/kg d soil	University of Guelph, Ontario, Canada:25 4 p. Ph.D.Thes is, University
	Glomus intraradices	Não report ado	42	Art éria	6	NOEC	Popula ção	Abundância	1000 0	ug/kg d soil	of Guelph, Ontario, Canada:25 4 p. Ph.D.Thes is,
	Glomus intraradices	Não report ado	42	Art éria	6	NOEC	Popula ção	Abundância	1000 0	ug/kg d soil	University of Guelph, Ontario,

		Orgã	Tr.	T. 4	D	Do - A			X 7 - P	TT. • 1	D =6:^
Composto	Espécies	o Alvo	Tem po	Me io	Do ses	Parâmet ro	Efeito	Efeito Medido	Valo r	Unid ade	Referênci a
Composto	Lapecies	11110	ро	10	БСБ	10	Lieno	Zieles Medido		uuc	Canada:25
											4 p.
											Ph.D.Thes is,
											University
							_				of Guelph,
	Glomus	Hiali nócit		Cul tur			Comp ortame	Evitamento	1000		Ontario, Canada:25
	intraradices	OS	84	a	2	NOEC	nto	químico	0	ug/L	4 p.
								•		Ü	Ph.D.Thes
											is, University
											of Guelph,
		Hiali		Cul			Comp				Ontario,
	Glomus intraradices	nócit os	84	tur a	2	NOEC	ortame nto	Evitamento químico	1000 0	ug/L	Canada:25 4 p.
	iniraraaices	os Hiali	04	Cul	2	NOEC	шо	quillico	U	ug/L	Chemosph
	Glomus	nócit		tur			Cresci				ere73(3):
	intraradices	OS	28	a C1	6	NOEC	mento	Comprimento	1000	ug/L	344-352
	Glomus	Hiali nócit		Cul tur			Cresci				Chemosph ere73(3):
	intraradices	os	28	a	6	NOEC	mento	Comprimento	1000	ug/L	344-352
	C1	Hiali		Cul			.				Chemosph
	Glomus intraradices	nócit os	28	tur a	6	NOEC	Cresci mento	Comprimento	1000	ug/L	ere73(3): 344-352
	minaraaices	03	20	u	O	NOLE	mento	Сотриненто	1000	ug/L	Ph.D.Thes
											is,
											University of Guelph,
		Hiali		Cul							Ontario,
	Glomus	nócit		tur			Cresci		1000		Canada:25
	intraradices	OS	56	a	6	NOEC	mento	Comprimento	0	ug/L	4 p. Ph.D.Thes
											is,
											University
		Hiali		Cul							of Guelph,
	Glomus	nócit		tur			Cresci		1000		Ontario, Canada:25
	intraradices	os	56	a	6	NOEC	mento	Comprimento	0	ug/L	4 p.
											Ph.D.Thes
											is, University
											of Guelph,
	CI.	Hiali		Cul			.		1000		Ontario,
	Glomus intraradices	nócit os	56	tur a	6	NOEC	Cresci mento	Comprimento	1000 0	ug/L	Canada:25 4 p.
	inir air aanees	OB	50	u	Ü	NOLE	memo	Сотриненто	O	ug L	Ph.D.Thes
											is,
											University of Guelph,
		Hiali		Cul							Ontario,
	Glomus	nócit		tur		NOEG	Cresci	G : .	10	/7	Canada:25
	intraradices	os	56	a	6	NOEC	mento	Comprimento	10	ug/L	4 p. Ph.D.Thes
											is,
											University
		Hiali		Cul							of Guelph, Ontario,
	Glomus	nócit		tur			Cresci				Canada:25
	intraradices	os	56	a	6	NOEC	mento	Comprimento	1000	ug/L	4 p.
											Ph.D.Thes is,
											University
				٠ ــــــ							of Guelph,
	Glomus	Hiali nócit		Cul tur			Cresci		1000		Ontario, Canada:25
	intraradices	os	84	tur a	2	NOEC	mento	Comprimento	0	ug/L	Canada:25
	Glomus	Hiali	84	Cul		NOEC	Cresci	Comprimento	1000	ug/L	Ph.D.Thes
								r		6 –	

		Orgã	Т	N/I	D.	Domôres			Vala	11-4:1	Dofowê
Composto	Espécies	o Alvo	Tem po	Me io	Do ses	Parâmet ro	Efeito	Efeito Medido	Valo r	Unid ade	Referênci a
Composito	intraradices	nócit	Ро	tur	БСБ	10	mento	Zicito Medido	0	uuc	is,
		os		a							University
											of Guelph, Ontario,
											Canada:25
											4 p.
											Ph.D.Thes
											is, University
											of Guelph,
	CI.	Hiali		Cul			.		1000		Ontario,
	Glomus intraradices	nócit os	84	tur a	2	NOEC	Cresci mento	Comprimento	1000 0	ug/L	Canada:25 4 p.
	inii ai aaices	OB	01	u	_	NOLE	memo	Сотриненто	O	ug L	Ph.D.Thes
											is,
											University of Guelph,
		Hiali		Cul							Ontario,
	Glomus	nócit		tur			Cresci		1000	_	Canada:25
	intraradices	os	84	a	2	NOEC	mento	Comprimento	0	ug/L	4 p. Ph.D.Thes
											is,
											University
		Hist		Cul							of Guelph,
	Glomus	Hiali nócit		Cul tur			Cresci		1000		Ontario, Canada:25
	intraradices	os	84	a	2	NOEC	mento	Comprimento	0	ug/L	4 p.
											Ph.D.Thes
											is, University
											of Guelph,
		Hiali		Cul							Ontario,
	Glomus intraradices	nócit os	84	tur a	2	NOEC	Cresci mento	Comprimento	1000 0	ug/L	Canada:25 4 p.
	mnanaances	US	04	а	2	NOLC	mento	Comprimento	U	ug/L	Ph.D.Thes
											is,
											University of Guelph,
		Hiali		Cul							Ontario,
	Glomus	nócit		tur			Cresci		1000		Canada:25
	intraradices	os Não	84	a Cul	2	NOEC	mento	Comprimento	0	ug/L	4 p. Chemosph
	Glomus	report		tur			Repro	Semente ou produção de			ere73(3):
	intraradices	ado	28	a	6	NOEC	dução	esporos	1000	ug/L	344-352
	CI.	Não		Cul			D	Semente ou			Chemosph
	Glomus intraradices	report ado	28	tur a	6	NOEC	Repro dução	produção de esporos	300	ug/L	ere73(3): 344-352
					Ü	11020	auşuo	esperes	200	492	Ph.D.Thes
											is,
											University of Guelph,
		Não		Cul				Semente ou			Ontario,
	Glomus	report		tur	_		Repro	produção de		_	Canada:25
	intraradices	ado	56	a	6	NOEC	dução	esporos	1000	ug/L	4 p. Ph.D.Thes
											is,
											University
		Na-		C ₂₋₁				Coments			of Guelph,
	Glomus	Não report		Cul tur			Repro	Semente ou produção de	1000		Ontario, Canada:25
	intraradices	ado	56	a	6	NOEC	dução	esporos	0	ug/L	4 p.
											Ph.D.Thes
											is, University
											of Guelph,
	C!	Não		Cul			D	Semente ou	1000		Ontario,
	Glomus intraradices	report ado	56	tur a	6	NOEC	Repro dução	produção de esporos	1000 0	ug/L	Canada:25 4 p.
	ar aarees		- 0		9		aaquo	35P 51 65	~	~& L	. ъ.

organismos te		Orgã									
Composto	Espécies	o Alvo	Tem po	Me io	Do ses	Parâmet ro	Efeito	Efeito Medido	Valo r	Unid ade	Referênci a
	Glomus intraradices	Não report ado	56	Cul tur a	6	NOEC	Repro dução	Semente ou produção de esporos	1000 0	ug/L	Ph.D.Thes is, University of Guelph, Ontario, Canada:25 4 p. Ph.D.Thes is, University
	Glomus intraradices	Não report ado	56	Cul tur a	6	NOEC	Repro dução	Semente ou produção de esporos	1000 0	ug/L	of Guelph, Ontario, Canada:25 4 p. Ph.D.Thes is,
	Glomus intraradices	Não report ado	84	Cul tur a	2	NOEC	Repro dução	Semente ou produção de esporos	1000	ug/L	University of Guelph, Ontario, Canada:25 4 p. Ph.D.Thes is, University
	Glomus intraradices	Não report ado	84	Cul tur a	2	NOEC	Repro dução	Semente ou produção de esporos	1000	ug/L	of Guelph, Ontario, Canada:25 4 p. Ph.D.Thes is,
	Glomus intraradices	Não report ado	84	Cul tur a	2	NOEC	Repro dução	Semente ou produção de esporos	1000 0	ug/L	University of Guelph, Ontario, Canada:25 4 p. Ph.D.Thes is,
	Glomus intraradices	Não report ado	84	Cul tur a	2	NOEC	Repro dução	Semente ou produção de esporos	1000	ug/L	University of Guelph, Ontario, Canada:25 4 p. Ph.D.Thes is,
	Glomus intraradices	Não report ado	84	Cul tur a	2	NOEC	Repro dução	Semente ou produção de esporos	1000 0	ug/L	University of Guelph, Ontario, Canada:25 4 p. Ph.D.Thes is,
	Glomus intraradices	Não report ado	84	Cul tur a	2	NOEC	Repro dução	Semente ou produção de esporos	1000 0	ug/L	University of Guelph, Ontario, Canada:25 4 p. Ph.D.Thes is, University
	Glomus intraradices	Não report ado	84	Cul tur a	2	NOEC	Repro dução	Semente ou produção de esporos	1000	ug/L	of Guelph, Ontario, Canada:25 4 p. Ph.D.Thes is,
	Medicago sativa	Não report ado	5	FL T	6	EC50	Repro dução	Germinação	1000 0	ug/L	University of Guelph, Ontario,

organismos tel		Orgã									
Composto	Espécies	o Alvo	Tem po	Me io	Do ses	Parâmet ro	Efeito	Efeito Medido	Valo r	Unid ade	Referênci a
											Canada:25 4 p. Ph.D.Thes is, University
	Medicago sativa	Raiz	5	FL T	6	EC50	Cresci mento	Comprimento	1000	ug/L	of Guelph, Ontario, Canada:25 4 p. Ph.D.Thes is, University
	Medicago sativa	Germ inaçã o	5	FL T	6	EC50	Cresci mento	Comprimento	1000 0	ug/L	of Guelph, Ontario, Canada:25 4 p. Ph.D.Thes is,
	Medicago sativa	Orga nism o inteir o	5	FL T	6	EC50	Cresci mento	Comprimento	1000 0	ug/L	University of Guelph, Ontario, Canada:25 4 p. Ph.D.Thes is,
	Medicago sativa	Não report ado	5	FL T	6	NOEC	Repro dução	Germinação	1000	ug/L	University of Guelph, Ontario, Canada:25 4 p. Ph.D.Thes is, University
	Medicago sativa	Raiz	5	FL T	6	NOEC	Cresci mento	Comprimento	1000	ug/L	of Guelph, Ontario, Canada:25 4 p. Ph.D.Thes is,
	Medicago sativa	Germ inaçã o	5	FL T	6	NOEC	Cresci mento	Comprimento	1000	ug/L	University of Guelph, Ontario, Canada:25 4 p. Ph.D.Thes is, University
	Medicago sativa	nism o inteir o	5	FL T	6	NOEC	Cresci	Comprimento	1000	ug/L	of Guelph, Ontario, Canada:25 4 p. Ph.D.Thes is, University
	Lactuca sativa	Deso va	42	Art éria	6	EC50	Cresci mento	Área	1000	ug/kg d soil	of Guelph, Ontario, Canada:25 4 p. Ph.D.Thes is,
	Lactuca sativa	Deso va	42	Art éria	6	EC50	Cresci mento	Área	1000 0	ug/kg d soil	University of Guelph, Ontario, Canada:25 4 p. Ph.D.Thes
	Lactuca sativa	Deso va	42	Art éria	6	EC50	Fisioló gico	Dano	1000 0	ug/kg d soil	is,

organismos ter	11051105	Orgã									
Composto	Espécies	o Alvo	Tem po	Me io	Do ses	Parâmet ro	Efeito	Efeito Medido	Valo r	Unid ade	Referênci a
	Lactuca	Não report		FL			Repro		1000		of Guelph, Ontario, Canada:25 4 p. Ph.D.Thes is, University of Guelph, Ontario, Canada:25
	sativa	ado	5	T	6	EC50	dução	Germinação	0	ug/L	4 p. Ph.D.Thes is, University of Guelph,
	Lactuca sativa	Deso va	42	Art éria	6	EC50	Celula r	Lesões	1000	ug/kg d soil	Ontario, Canada:25 4 p. Toxicol. In
	Allium cepa	Raiz	3	AQ U	7	EC50	Cresci mento	Comprimento	447	uM	Vitro17(5- 6): 525- 532 Ph.D.Thes is,
	Lactuca sativa	Raiz	5	FL T	6	EC50	Cresci mento	Comprimento	1000 0	ug/L	University of Guelph, Ontario, Canada:25 4 p. Ph.D.Thes is, University
	Lactuca sativa	Germ inaçã o	5	FL T	6	EC50	Cresci mento	Comprimento	1000 0	ug/L	of Guelph, Ontario, Canada:25 4 p. Ph.D.Thes is,
	Lactuca sativa	Orga nism o inteir o	5	FL T	6	EC50	Cresci mento	Comprimento	1000	ug/L	University of Guelph, Ontario, Canada:25 4 p. Toxicol.
	Allium cepa	Raiz	3	AQ U	7	EC50	Celula r	Índice mitótico	498	uM	In Vitro17(5- 6): 525- 532 Ph.D.Thes is,
	Lactuca sativa	Não report ado	42	Art éria	6	EC50	Mortal idade	Sobrevivência	1000 0	ug/kg d soil	University of Guelph, Ontario, Canada:25 4 p. Ph.D.Thes is, University of Guelph,
	Lactuca sativa	Raiz	42	Art éria	6	EC50	Cresci mento	Peso	1000 0	ug/kg d soil	Ontario, Canada:25 4 p. Ph.D.Thes is,
	Lactuca sativa	Raiz	42	Art éria	6	EC50	Cresci mento	Peso	1000 0	ug/kg d soil	University of Guelph,

organismos ter		Orgã									
Composto	Espécies	o Alvo	Tem po	Me io	Do ses	Parâmet ro	Efeito	Efeito Medido	Valo r	Unid ade	Referênci a
											Canada:25 4 p. Ph.D.Thes is, University
	Lactuca sativa	Germ inaçã o	42	Art éria	6	EC50	Cresci mento	Peso	1000	ug/kg d soil	of Guelph, Ontario, Canada:25 4 p. Ph.D.Thes is, University
	Lactuca sativa	Germ inaçã o	42	Art éria	6	EC50	Cresci mento	Peso	1000 0	ug/kg d soil	of Guelph, Ontario, Canada:25 4 p. Ph.D.Thes is,
	Lactuca sativa	Orga nism o inteir o	42	Art éria	6	EC50	Cresci mento	Peso	1000	ug/kg d soil	University of Guelph, Ontario, Canada:25 4 p. Ph.D.Thes
	Lactuca sativa	Orga nism o inteir o	42	Art éria	6	EC50	Cresci	Peso	1000 0	ug/kg d soil	is, University of Guelph, Ontario, Canada:25 4 p. Ph.D.Thes is, University
	Lactuca sativa	Deso va	42	Art éria	6	LOEC	Fisioló gico	Dano	1000 0	ug/kg d soil	of Guelph, Ontario, Canada:25 4 p. Chemosph
	Cucumis sativus	Deso va	22	HY P	7	LOEL	Cresci mento	Biomassa	1000 0	ug/L	ere82(6): 905-910
	Cucumis sativus	Deso va	22	HY P	7	LOEL	Cresci mento	Biomassa	1000 0	ug/L	Chemosph ere82(6): 905-910 Chemosph
	Cucumis sativus	Raiz	22	HY P	7	LOEL	Cresci mento	Biomassa	1000 0	ug/L	ere82(6): 905-910
	Cucumis sativus	Haste Orga nism	22	HY P	7	LOEL	Cresci mento	Biomassa	1000 0	ug/L	Chemosph ere82(6): 905-910
	Cucumis sativus	o inteir o	22	HY P	7	LOEL	Cresci mento	Biomassa	1000 0	ug/L	Chemosph ere82(6): 905-910 Toxicol. In
	Allium cepa	Raiz	3	AQ U	7	LOEL	Cresci mento	Comprimento	500	uM	Vitro17(5- 6): 525- 532 Toxicol. In
	Allium cepa	Raiz	3	AQ U	7	LOEL	Celula r	Índice mitótico	500	uM	Vitro17(5- 6): 525- 532 Ph.D.Thes is,
	Lactuca sativa	Deso va	42	Art éria	6	NOEC	Cresci mento	Área	1000 0	ug/kg d soil	University of Guelph,

organismos te	11000100	Orgã									
Composto	Espécies	o Alvo	Tem po	Me io	Do ses	Parâmet ro	Efeito	Efeito Medido	Valo r	Unid ade	Referênci a
	Lactuca sativa	Deso va	42	Art éria	6	NOEC	Cresci	Área	1000	ug/kg d soil	Ontario, Canada:25 4 p. Ph.D.Thes is, University of Guelph, Ontario, Canada:25 4 p. Ph.D.Thes
	Lactuca sativa	Raiz	84	Cul tur a	2	NOEC	Comp ortame nto	Evitamento químico	1000	ug/L	is, University of Guelph, Ontario, Canada:25 4 p. Ph.D.Thes is,
	Lactuca sativa	Raiz	84	Cul tur a	2	NOEC	Comp ortame nto	Evitamento químico	1000	ug/L	University of Guelph, Ontario, Canada:25 4 p. Ph.D.Thes is,
	Lactuca sativa	Raiz	84	Cul tur a	2	NOEC	Comp ortame nto	Evitamento químico	1000	ug/L	University of Guelph, Ontario, Canada:25 4 p. Ph.D.Thes is,
	Lactuca sativa	Raiz	84	Cul tur a	2	NOEC	Comp ortame nto	Evitamento químico	1000 0	ug/L	University of Guelph, Ontario, Canada:25 4 p. Ph.D.Thes is,
	Lactuca sativa	Deso va	42	Art éria	6	NOEC	Fisioló gico	Dano	1000	ug/kg d soil	University of Guelph, Ontario, Canada:25 4 p. Ph.D.Thes is, University
	Lactuca sativa	Não report ado	5	FL T	6	NOEC	Repro dução	Germinação	1000	ug/L	of Guelph, Ontario, Canada:25 4 p. Ph.D.Thes is,
	Lactuca sativa	Deso va	42	Art éria	6	NOEC	Celula r	Lesões	1000	ug/kg d soil	University of Guelph, Ontario, Canada:25 4 p. Ph.D.Thes is, University
	Lactuca sativa Lactuca sativa	Raiz Raiz	5 84	FL T Cul tur	6	NOEC NOEC	Cresci mento Cresci mento	Comprimento Comprimento	1000 0 1000 0	ug/L	of Guelph, Ontario, Canada:25 4 p. Ph.D.Thes is,

organismos te	11001100	Orgã									
Composto	Espécies	o Alvo	Tem po	Me io	Do ses	Parâmet ro	Efeito	Efeito Medido	Valo r	Unid ade	Referênci a
			F	a							University of Guelph, Ontario, Canada:25 4 p. Ph.D.Thes
	Lactuca sativa	Raiz	84	Cul tur a	2	NOEC	Cresci mento	Comprimento	1000	ug/L	is, University of Guelph, Ontario, Canada:25 4 p. Ph.D.Thes is, University
	Lactuca sativa	Raiz	84	Cul tur a	2	NOEC	Cresci	Comprimento	1000 0	ug/L	of Guelph, Ontario, Canada:25 4 p. Ph.D.Thes is,
	Lactuca sativa	Raiz	84	Cul tur a	2	NOEC	Cresci mento	Comprimento	1000	ug/L	University of Guelph, Ontario, Canada:25 4 p. Ph.D.Thes is,
	Lactuca sativa	Raiz	84	Cul tur a	2	NOEC	Cresci	Comprimento	1000 0	ug/L	University of Guelph, Ontario, Canada:25 4 p. Ph.D.Thes is, University
	Lactuca sativa	Raiz	84	Cul tur a	2	NOEC	Cresci mento	Comprimento	1000 0	ug/L	of Guelph, Ontario, Canada:25 4 p. Ph.D.Thes is, University
	Lactuca sativa	Raiz	84	Cul tur a	2	NOEC	Cresci mento	Comprimento	1000	ug/L	of Guelph, Ontario, Canada:25 4 p. Ph.D.Thes is,
	Lactuca sativa	Raiz	84	Cul tur a	2	NOEC	Cresci mento	Comprimento	1000	ug/L	University of Guelph, Ontario, Canada:25 4 p. Ph.D.Thes is,
	Lactuca sativa	Germ inaçã o	5	FL T	6	NOEC	Cresci mento	Comprimento	1000 0	ug/L	University of Guelph, Ontario, Canada:25 4 p. Ph.D.Thes is,
	Lactuca sativa	Orga nism o inteir o	5	FL T	6	NOEC	Cresci mento	Comprimento	1000 0	ug/L	University of Guelph, Ontario, Canada:25 4 p.

Composto		Orgã o	Tem		Do	Parâmet	Efaita	Efoito Madid	Valo	Unid	Referênci
Composto	Especies	Alvo	po	io	ses	ro	Efeito	Efeito Medido	r	ade	Ph.D.Thes
	Lactuca sativa	Raiz	84	Cul tur a	2	NOEC	Cresci	Comprimento	1000	ug/L	is, University of Guelph, Ontario, Canada:25 4 p. Ph.D.Thes is, University
	Lactuca sativa	Raiz	84	Cul tur a	2	NOEC	Cresci mento	Comprimento	1000	ug/L	of Guelph, Ontario, Canada:25 4 p. Ph.D.Thes is,
	Lactuca sativa	Raiz	84	Cul tur a	2	NOEC	Cresci mento	Comprimento	1000	ug/L	University of Guelph, Ontario, Canada:25 4 p. Ph.D.Thes is, University
	Lactuca sativa	Raiz	84	Cul tur a	2	NOEC	Cresci mento	Comprimento	1000 0	ug/L	of Guelph, Ontario, Canada:25 4 p. Ph.D.Thes is,
	Lactuca sativa	Não report ado	42	Art éria	6	NOEC	Mortal idade	Sobrevivência	1000 0	ug/kg d soil	University of Guelph, Ontario, Canada:25 4 p. Ph.D.Thes is,
	Lactuca sativa	Raiz	42	Art éria	6	NOEC	Cresci mento	Peso	1000	ug/kg d soil	University of Guelph, Ontario, Canada:25 4 p. Ph.D.Thes is, University
	Lactuca sativa	Raiz	42	Art éria	6	NOEC	Cresci mento	Peso	1000 0	ug/kg d soil	of Guelph, Ontario, Canada:25 4 p. Ph.D.Thes is,
	Lactuca sativa	Germ inaçã o	42	Art éria	6	NOEC	Cresci	Peso	1000 0	ug/kg d soil	University of Guelph, Ontario, Canada:25 4 p. Ph.D.Thes is, University
	Lactuca sativa	Germ inaçã o Orga nism	42	Art éria	6	NOEC	Cresci mento	Peso	1000 0	ug/kg d soil	of Guelph, Ontario, Canada:25 4 p. Ph.D.Thes is,
	Lactuca sativa	o inteir o	42	Art éria	6	NOEC	Cresci mento	Peso	1000 0	ug/kg d soil	University of Guelph,

organismos te	11001100	Orgã									
Composto	Espécies	o Alvo	Tem po	Me io	Do ses	Parâmet ro	Efeito	Efeito Medido	Valo r	Unid ade	Referênci a
											Canada:25 4 p.
											Ph.D.Thes
		Orga									is, University
		nism									of Guelph,
	Lactuca	o inteir		Art			Cresci		1000	ug/kg	Ontario, Canada:25
	sativa	0	42	éria	6	NOEC	mento	Peso	0	d soil	4 p.
	Cucumis	Deso		HY			Cresci				Chemosph ere82(6):
	sativus	va	22	P	7	NOEL	mento	Biomassa	1000	ug/L	905-910 Chemosph
	Cucumis	Deso		HY			Cresci				ere82(6):
	sativus	va	22	P	7	NOEL	mento	Biomassa	1000	ug/L	905-910 Chemosph
	Cucumis	ъ.	22	HY	_	NOEL	Cresci	ъ.	1000	·	ere82(6):
	sativus	Raiz	22	P	7	NOEL	mento	Biomassa	1000	ug/L	905-910 Chemosph
	Cucumis sativus	Haste	22	HY P	7	NOEL	Cresci	Biomassa	1000	na/I	ere82(6): 905-910
	sanvus	Orga	22	r	/	NOEL	mento	Diomassa	1000	ug/L	905-910
		nism o									Chemosph
	Cucumis	inteir		HY	_		Cresci			_	ere82(6):
	sativus	0	22	P	7	NOEL	mento	Biomassa	1000	ug/L	905-910 Toxicol.
											In
				AQ			Cresci				Vitro17(5- 6): 525-
	Allium cepa	Raiz	3	U	7	NOEL	mento	Comprimento	100	uM	532 Toxicol.
											In
				AQ			Celula				Vitro17(5- 6): 525-
	Allium cepa	Raiz	3	U	7	NOEL	r	Índice mitótico	100	uM	532
											Ph.D.Thes is,
											University of Guelph,
		Não									Ontario,
	Daucus carota	report ado	7	FL T	6	EC50	Repro dução	Germinação	1000 0	ug/L	Canada:25 4 p.
				Cul			-	~ · · · · · · · · · · · · · · · · · · ·		8	Chemosph
	Daucus carota	Raiz	28	tur a	6	EC50	Cresci mento	Comprimento	1000	ug/L	ere73(3): 344-352
	Daucus			Cul			Cresci	•			Chemosph ere73(3):
	carota	Raiz	28	tur a	6	EC50	mento	Comprimento	1000	ug/L	344-352
	Daucus			Cul tur			Cresci				Chemosph ere73(3):
	carota	Raiz	28	a	6	EC50	mento	Comprimento	1000	ug/L	344-352
											Ph.D.Thes is,
											University
											of Guelph, Ontario,
	Daucus carota	Raiz	7	FL T	6	EC50	Cresci mento	Comprimento	1000 0	ug/L	Canada:25 4 p.
	cai ora	TAUL	,	*	5	2030	monto	Comprimento	Ü	~5/L	Ph.D.Thes
											is, University
				C- 1							of Guelph,
	Daucus			Cul tur			Cresci		1000		Ontario, Canada:25
	carota Daucus	Raiz	56	a Cul	6	EC50	mento Cresci	Comprimento	0 1000	ug/L	4 p. Ph.D.Thes
	carota	Raiz	56	tur	6	EC50	mento	Comprimento	0	ug/L	is,

organismos te	11001100	Orgã									
Composto	Espécies	o Alvo	Tem po	Me io	Do ses	Parâmet ro	Efeito	Efeito Medido	Valo r	Unid ade	Referênci a
Composio	Especies	Alvo	ро	a	SCS	10	ERRO	Eleno Medido		auc	University of Guelph, Ontario, Canada:25 4 p. Ph.D.Thes
	Daucus carota	Raiz	56	Cul tur a	6	EC50	Cresci mento	Comprimento	1000	ug/L	is, University of Guelph, Ontario, Canada:25 4 p. Ph.D.Thes is,
	Daucus carota	Raiz	56	Cul tur a	6	EC50	Cresci mento	Comprimento	1000 0	ug/L	University of Guelph, Ontario, Canada:25 4 p. Ph.D.Thes is,
	Daucus carota	Raiz	56	Cul tur a	6	EC50	Cresci mento	Comprimento	1000 0	ug/L	University of Guelph, Ontario, Canada:25 4 p. Ph.D.Thes is,
	Daucus carota	Germ inaçã o	7	FL T	6	EC50	Cresci mento	Comprimento	1000 0	ug/L	University of Guelph, Ontario, Canada:25 4 p. Ph.D.Thes is,
	Daucus carota	Orga nism o inteir o	7	FL T	6	EC50	Cresci mento	Comprimento	1000	ug/L	University of Guelph, Ontario, Canada:25 4 p. Ph.D.Thes is,
	Daucus carota	Raiz	56	Cul tur a	6	LOEC	Cresci mento	Comprimento	1	ug/L	University of Guelph, Ontario, Canada:25 4 p. Ph.D.Thes is,
	Daucus carota	Raiz	56	Cul tur a	6	LOEC	Cresci mento	Comprimento	1	ug/L	University of Guelph, Ontario, Canada:25 4 p. Ph.D.Thes is,
	Daucus carota	Raiz	56	Cul tur a	6	LOEC	Cresci mento	Comprimento	1000 0	ug/L	University of Guelph, Ontario, Canada:25 4 p. Ph.D.Thes is,
	Daucus carota	Não report ado	7	FL T	6	NOEC	Repro dução	Germinação	1000	ug/L	University of Guelph, Ontario, Canada:25 4 p.

organ	nismos te	11081108	Orgã									
	Composto	Espécies	o Alvo	Tem po	Me io	Do ses	Parâmet ro	Efeito	Efeito Medido	Valo r	Unid ade	Referênci a
					Cul							Chemosph
		Daucus carota	Raiz	28	tur a	6	NOEC	Cresci mento	Comprimento	1000	ug/L	ere73(3): 344-352
					Cul						U	Chemosph
		Daucus carota	Raiz	28	tur a	6	NOEC	Cresci mento	Comprimento	1000	ug/L	ere73(3): 344-352
					Cul				r			Chemosph
		Daucus carota	Raiz	28	tur a	6	NOEC	Cresci mento	Comprimento	1000	ug/L	ere73(3): 344-352
									r			Ph.D.Thes
												is, University
												of Guelph,
		Daucus			FL			Cresci		1000		Ontario, Canada:25
		carota	Raiz	7	T	6	NOEC	mento	Comprimento	0	ug/L	4 p.
												Ph.D.Thes is,
												University
					Cul							of Guelph, Ontario,
		Daucus	D.	5.0	tur	_	NOEG	Cresci	G : .	1000	/T	Canada:25
		carota	Raiz	56	a	6	NOEC	mento	Comprimento	0	ug/L	4 p. Ph.D.Thes
												is, University
												of Guelph,
		Daucus			Cul tur			Cresci				Ontario, Canada:25
		carota	Raiz	56	a	6	NOEC	mento	Comprimento	1000	ug/L	4 p.
												Ph.D.Thes is,
												University
					Cul							of Guelph, Ontario,
		Daucus			tur			Cresci		1000		Canada:25
		carota	Raiz	56	a	6	NOEC	mento	Comprimento	0	ug/L	4 p. Ph.D.Thes
												is,
												University of Guelph,
		_	Germ					<i>a</i> .		1000		Ontario,
		Daucus carota	inaçã o	7	FL T	6	NOEC	Cresci mento	Comprimento	1000 0	ug/L	Canada:25 4 p.
									•		C	Ph.D.Thes
			Orga									is, University
			nism									of Guelph,
		Daucus	o inteir		FL			Cresci		1000		Ontario, Canada:25
		carota	О	7	T	6	NOEC	mento	Comprimento	0	ug/L	4 p.
												Nat.
		Drosophila	Não		,			Comp				Neurosci.
		melanogaste r	report ado	1.25	Ág ar	5	LOEC	ortame nto	Dormindo	0,8	mg/m l	11(3): 354-359
										-,-		Nat.
		Drosophila melanogaste	Não report		Ág			Comp ortame			mg/m	Neurosci. 11(3):
		r	ado	1.25	ar	5	LOEC	nto	Dormindo	0,4	l	354-359
		Drosophila	Não					Comp				Nat. Neurosci.
		melanogaste	report	1.25	Ág	5	LOEC	ortame	Dorminds	1.2	mg/m	11(3):
		r	ado	1.25	ar	5	LOEC	nto	Dormindo	1,2	1	354-359 Nat.
		Drosophila	Não report		Ág			Comp			ma/m	Neurosci. 11(3):
		melanogaste r	report ado	1.25	ar	5	LOEC	ortame nto	Dormindo	0,2	mg/m l	354-359

organismos tel	11001100	Orgã									
Composto	Espécies	o Alvo	Tem po	Me io	Do ses	Parâmet ro	Efeito	Efeito Medido	Valo r	Unid ade	Referênci a
				Se							Food
	Drosophila		Não	m sub							Chem. Toxicol.4
	melanogaste		repo rtad	sub			Celula	Aberrações			6(9):
	r	Asa	0	to	5	LOEL	r	cromossôicas	20	ug/ml	3159-3162
			N T~	Se							Food
	Drosophila		Não repo	m sub							Chem. Toxicol.4
	melanogaste		rtad	stra			Celula	Aberrações			6(9):
	r	Asa	О	to	5	LOEL	r	cromossôicas	20	ug/ml	3159-3162
			Não	Se m							Food Chem.
	Drosophila	Não	repo	sub							Toxicol.4
	melanogaste 	report	rtad	stra	5	LOEI	Mortal	Cahnavivânaia	5	a/m1	6(9): 3159-3162
	r	ado	О	to	3	LOEL	idade	Sobrevivência	5	ug/ml	3139-3162 Nat.
	Drosophila	Não		,							Neurosci.
	melanogaste 	report	5	Ág	5	NOEC	Celula	Danos celulares	5	mM	11(3):
	r	ado	5	ar	3	NOEC	r	ceruiares	5	mM	354-359 Nat.
	Drosophila	Não		,			Comp				Neurosci.
	melanogaste 	report	1.25	Ág	_	NOEC	ortame	Maximanta	1.2	mg/m	11(3):
	r	ado	1.25	ar	5	NOEC	nto	Movimento	1,2	1	354-359 Nat.
	Drosophila	Não		,			Comp				Neurosci.
	melanogaste 	report	1.25	Ág	_	NOEC	ortame	Dommin do	0.4		11(3):
	r	ado	1.25	ar	5	NOEC	nto	Dormindo	0,4	1	354-359 Nat.
	Drosophila	Não		,			Comp				Neurosci.
	melanogaste	report	1.25	Ág	_	NOEC	ortame	Dommin do	0.2	mg/m l	11(3):
	r	ado	1.25	ar	5	NOEC	nto	Dormindo	0,2	1	354-359 Nat.
	Drosophila	Não		,			Comp				Neurosci.
	melanogaste	report	1.25	Ág ar	5	NOEC	ortame	Dormindo	0,8	mg/m l	11(3): 354-359
	r	ado	1.23	Se	3	NOEC	nto	Dominido	0,8	1	Food
			Não	m							Chem.
	Drosophila melanogaste		repo rtad	sub stra			Celula	Aberrações			Toxicol.4 6(9):
	r	Asa	0	to	5	NOEL	r	cromossôicas	10	ug/ml	3159-3162
			3.7	Se						_	Food
	Drosophila		Não repo	m sub							Chem. Toxicol.4
	melanogaste		rtad	stra			Celula	Aberrações			6(9):
	r	Asa	0	to	5	NOEL	r	cromossôicas	40	ug/ml	3159-3162
			Não	Se m							Food Chem.
	Drosophila		repo	sub							Toxicol.4
	melanogaste	۸	rtad	stra	_	NOEL	Celula	Aberrações	10	/1	6(9):
	r	Asa	О	to	5 Nã	NOEL	r	cromossôicas	10	ug/ml	3159-3162
					О						Environ.
	Eisenia	Não report		FL	rep ort		Mortal			ug/c	Pollut.159 (12):
	fetida	ado	2	T		LC50	idade	Mortalidade	1000	m2	3620-3626
											Environ.
	Eisenia	Tecid		FL			Bioquí			ug/c	Pollut.159 (12):
	fetida	0	2	T	2	LOEL	mico	Valina	1000	m2	3620-3626
											Environ.
	Eisenia	Tecid		FL			Bioquí			ug/c	Pollut.159 (12):
	fetida	0	2	T	2	LOEL	mico	Valina	1000	m2	3620-3626
		3. 1~		Nã							F.''
	Rattus	Não report	.062	o rep			Fisioló			mg/k	Epilepsia5 0(1): 83-
	norvegicus	ado	5	ort	2	LOEL	gico	Convulsão	20	g g	87

Tabela 18 Revisão de literatura para os efeitos ecotoxicológicos de fármacos psiquiátricos em organismos terrestres

Orgã

Composto	Espécies	o Alvo	Tem po	Me io	Do ses	Parâmet ro	Efeito	Efeito Medido	Valo r	Unid ade	Referênci a
0 0 1	F		<u> </u>	ado							
											Ph.D.Thes
											is,
											University of Guelph,
	G!	Não					ъ .		1000		Ontario,
	Glomus intraradices	report ado	42	Art éria	6	EC50	Popula ção	Abundância	1000 0	ug/kg d soil	Canada:25 4 p.
							3***				Ph.D.Thes
											is, University
											of Guelph,
	Glomus	Não report		Art			Popula		1000	ug/kg	Ontario, Canada:25
	intraradices	ado	42	éria	6	EC50	ção	Abundância	0	d soil	4 p.
											Ph.D.Thes is,
											University
		Não									of Guelph, Ontario,
	Glomus	report		Art			Popula		1000	ug/kg	Canada:25
	intraradices	ado Hiali	42	éria Cul	6	EC50	ção	Abundância	0	d soil	4 p. Chemosph
	Glomus	nócit	• •	tur	_	D. G. F. O.	Cresci		1000		ere73(3):
	intraradices	os Hiali	28	a Cul	6	EC50	mento	Comprimento	1000	ug/L	344-352 Chemosph
	Glomus	nócit	20	tur	_	EG#0	Cresci		1000		ere73(3):
	intraradices	os Hiali	28	a Cul	6	EC50	mento	Comprimento	1000	ug/L	344-352 Chemosph
	Glomus	nócit	20	tur	_	EG#0	Cresci		200.2		ere73(3):
	intraradices	os	28	a	6	EC50	mento	Comprimento	388,2	ug/L	344-352 Ph.D.Thes
											is,
											University of Guelph,
	C1	Hiali		Cul			C:				Ontario,
	Glomus intraradices	nócit os	56	tur a	6	EC50	Cresci mento	Comprimento	136	ug/L	Canada:25 4 p.
											Ph.D.Thes
											is, University
		Hiali		Cul							of Guelph, Ontario,
	Glomus	nócit		tur			Cresci				Canada:25
	intraradices	os	56	a	6	EC50	mento	Comprimento	78	ug/L	4 p. Ph.D.Thes
											is,
											University of Guelph,
		Hiali		Cul							Ontario,
	Glomus intraradices	nócit os	56	tur a	6	EC50	Cresci mento	Comprimento	1000 0	ug/L	Canada:25 4 p.
	inii an aanees	OB	50	u	Ü	2030	memo	Comprimento	Ü	ug/L	Ph.D.Thes
											is, University
											of Guelph,
	Glomus	Hiali nócit		Cul tur			Cresci		1000		Ontario, Canada:25
	intraradices	os	56	a	6	EC50	mento	Comprimento	0	ug/L	4 p.
											Ph.D.Thes is,
		11. 1.		C 1							University
	Glomus	Hiali nócit		Cul tur			Cresci		1000		of Guelph, Ontario,
	intraradices	os	56	a	6	EC50	mento	Comprimento	0	ug/L	Canada:25

organismos u		Orgã									
Composto	Espécies	o Alvo	Tem po	Me io	Do ses	Parâmet ro	Efeito	Efeito Medido	Valo r	Unid ade	Referênci a
-	-										4 p.
	Glomus intraradices Glomus intraradices Glomus	Não report ado Não report ado Não report	28 28	Cul tur a Cul tur a Cul tur	6	EC50	Repro dução Repro dução Repro	Semente ou produção de esporos Semente ou produção de esporos Semente ou produção de	113,4 43,6	ug/L	Chemosph ere73(3): 344-352 Chemosph ere73(3): 344-352 Chemosph ere73(3):
	intraradices	ado	28	a	6	EC50	dução	esporos	1000	ug/L	344-352
	Glomus intraradices	Não report ado	56	Cul tur a	6	EC50	Repro dução	Semente ou produção de esporos	1000	ug/L	Ph.D.Thes is, University of Guelph, Ontario, Canada:25 4 p. Ph.D.Thes is,
	Glomus intraradices	Não report ado	56	Cul tur a	6	EC50	Repro dução	Semente ou produção de esporos	1000 0	ug/L	University of Guelph, Ontario, Canada:25 4 p. Ph.D.Thes is, University
	Glomus intraradices	Não report ado	56	Cul tur a	6	EC50	Repro dução	Semente ou produção de esporos	1000 0	ug/L	of Guelph, Ontario, Canada:25 4 p. Ph.D.Thes is,
	Glomus intraradices	Não report ado	56	Cul tur a	6	EC50	Repro dução	Semente ou produção de esporos	81	ug/L	University of Guelph, Ontario, Canada:25 4 p. Ph.D.Thes is,
	Glomus intraradices	Não report ado	56	Cul tur a	6	EC50	Repro dução	Semente ou produção de esporos	128	ug/L	University of Guelph, Ontario, Canada:25 4 p. Ph.D.Thes is, University of Guelph,
	Glomus intraradices	Hiali nócit os	56	Cul tur a	6	LOEC	Cresci mento	Comprimento	100	ug/L	Ontario, Canada:25 4 p. Ph.D.Thes is,
	Glomus intraradices	Hiali nócit os	56	Cul tur a	6	LOEC	Cresci mento	Comprimento	1000 0	ug/L	University of Guelph, Ontario, Canada:25 4 p. Ph.D.Thes is, University of Guelph,
	Glomus intraradices Glomus intraradices	Hiali nócit os Hiali nócit	84 84	Cul tur a Cul tur	2	LOEC LOEC	Cresci mento Cresci mento	Comprimento Comprimento	1000 0 1000 0	ug/L	Ontario, Canada:25 4 p. Ph.D.Thes is,

organismos te	rrestres	Orgã									
Composto	Espécies	o Alvo	Tem po	Me io	Do ses	Parâmet ro	Efeito	Efeito Medido	Valo r	Unid ade	Referênci a
Composto	Especies	OS OS	ρυ	a	363	10	121010	Enciro Miculuo	1	auc	University
											of Guelph, Ontario,
											Canada:25 4 p.
											Ph.D.Thes
											is, University
		Hiali		Cul							of Guelph, Ontario,
	Glomus	nócit	0.4	tur	2	LOEG	Cresci	G	1000	/τ	Canada:25
	intraradices	os	84	a	2	LOEC	mento	Comprimento	0	ug/L	4 p. Ph.D.Thes
											is, University
		TT' 1'		C 1							of Guelph,
	Glomus	Hiali nócit		Cul tur			Cresci		1000		Ontario, Canada:25
	intraradices	os	84	a	2	LOEC	mento	Comprimento	0	ug/L	4 p. Ph.D.Thes
											is,
											University of Guelph,
	Glomus	Hiali nócit		Cul tur			Cresci		1000		Ontario, Canada:25
	intraradices	os	84	a	2	LOEC	mento	Comprimento	0	ug/L	4 p.
											Ph.D.Thes is,
											University of Guelph,
	Glomus	Hiali nócit		Cul tur			Cresci		1000		Ontario, Canada:25
	intraradices	os	84	a	2	LOEC	mento	Comprimento	0	ug/L	4 p.
											Ph.D.Thes is,
											University of Guelph,
	CI.	Hiali		Cul			.		1000		Ontario,
	Glomus intraradices	nócit os	84	tur a	2	LOEC	Cresci mento	Comprimento	1000 0	ug/L	Canada:25 4 p.
											Ph.D.Thes is,
											University
		Hiali		Cul							of Guelph, Ontario,
	Glomus intraradices	nócit os	84	tur a	2	LOEC	Cresci mento	Comprimento	1000 0	ug/L	Canada:25 4 p.
								1		C	Ph.D.Thes is,
											University
		Hiali		Cul							of Guelph, Ontario,
	Glomus intraradices	nócit os	84	tur a	2	LOEC	Cresci mento	Comprimento	1000 0	ug/L	Canada:25 4 p.
		Não	0.	Cul	_	LoLe		Semente ou	Ü	ug/L	Chemosph
	Glomus intraradices	report ado	28	tur a	6	LOEC	Repro dução	produção de esporos	1000	ug/L	ere73(3): 344-352
											Ph.D.Thes is,
											University
		Não		Cul				Semente ou			of Guelph, Ontario,
	Glomus intraradices	report ado	56	tur a	6	LOEC	Repro dução	produção de esporos	1000 0	ug/L	Canada:25 4 p.
					-				-	G' —	Ph.D.Thes
	Glomus	Não report		Cul tur			Repro	Semente ou produção de	1000		is, University
	intraradices	ado	84	a	2	LOEC	dução	esporos	0	ug/L	of Guelph,

31 gain	311103 10		Orgã									
C	omposto	Espécies	o Alvo	Tem po	Me io	Do ses	Parâmet ro	Efeito	Efeito Medido	Valo r	Unid ade	Referênci a
		•										Ontario, Canada:25 4 p. Ph.D.Thes is, University
		Glomus intraradices	Não report ado	84	Cul tur a	2	LOEC	Repro dução	Semente ou produção de esporos	1000 0	ug/L	of Guelph, Ontario, Canada:25 4 p. Ph.D.Thes is,
		Glomus intraradices	Não report ado	84	Cul tur a	2	LOEC	Repro dução	Semente ou produção de esporos	1000 0	ug/L	University of Guelph, Ontario, Canada:25 4 p. Ph.D.Thes is,
		Glomus intraradices	Não report ado	84	Cul tur a	2	LOEC	Repro dução	Semente ou produção de esporos	1000	ug/L	University of Guelph, Ontario, Canada:25 4 p. Ph.D.Thes is,
		Glomus intraradices	Não report ado	84	Cul tur a	2	LOEC	Repro dução	Semente ou produção de esporos	1000	ug/L	University of Guelph, Ontario, Canada:25 4 p. Ph.D.Thes is, University
		Glomus intraradices	Não report ado	42	Art éria	6	NOEC	Popula ção	Abundância	1000 0	ug/kg d soil	of Guelph, Ontario, Canada:25 4 p. Ph.D.Thes is, University
		Glomus intraradices	Não report ado	42	Art éria	6	NOEC	Popula ção	Abundância	1000 0	ug/kg d soil	of Guelph, Ontario, Canada:25 4 p. Ph.D.Thes is, University
		Glomus intraradices	Não report ado	42	Art éria	6	NOEC	Popula ção	Abundância	1000 0	ug/kg d soil	of Guelph, Ontario, Canada:25 4 p. Ph.D.Thes is,
		Glomus intraradices	Hiali nócit os	84	Cul tur a	2	NOEC	Comp ortame nto	Evitamento químico	1000	ug/L	University of Guelph, Ontario, Canada:25 4 p. Ph.D.Thes is, University
		Glomus intraradices Glomus intraradices	Hiali nócit os Hiali nócit	84 28	Cul tur a Cul tur	2	NOEC NOEC	Comp ortame nto Cresci mento	Evitamento químico Comprimento	1000 0 1000	ug/L	of Guelph, Ontario, Canada:25 4 p. Chemosph ere73(3):
		acrees				-	320			-000	6	

		Orgã o	Tem	Ma	Do	Parâmet			Valo	Unid	Referênci
Composto	Espécies	Alvo	po	io	ses	ro ro	Efeito	Efeito Medido		ade	a
		os		a							344-352
	Glomus intraradices	Hiali nócit os Hiali	28	Cul tur a Cul	6	NOEC	Cresci mento	Comprimento	1000	ug/L	Chemosph ere73(3): 344-352 Chemosph
	Glomus intraradices	nócit os	28	tur a	6	NOEC	Cresci mento	Comprimento	1000	ug/L	ere73(3): 344-352 Ph.D.Thes is,
	Glomus intraradices	Hiali nócit os	56	Cul tur a	6	NOEC	Cresci mento	Comprimento	1000 0	ug/L	University of Guelph, Ontario, Canada:25 4 p. Ph.D.Thes is, University
	Glomus intraradices	Hiali nócit os	56	Cul tur a	6	NOEC	Cresci mento	Comprimento	1000 0	ug/L	of Guelph, Ontario, Canada:25 4 p. Ph.D.Thes is,
	Glomus intraradices	Hiali nócit os	56	Cul tur a	6	NOEC	Cresci mento	Comprimento	1000	ug/L	University of Guelph, Ontario, Canada:25 4 p. Ph.D.Thes is,
	Glomus intraradices	Hiali nócit os	56	Cul tur a	6	NOEC	Cresci mento	Comprimento	10	ug/L	University of Guelph, Ontario, Canada:25 4 p. Ph.D.Thes is,
	Glomus intraradices	Hiali nócit os	56	Cul tur a	6	NOEC	Cresci	Comprimento	1000	ug/L	University of Guelph, Ontario, Canada:25 4 p. Ph.D.Thes is,
	Glomus intraradices	Hiali nócit os	84	Cul tur a	2	NOEC	Cresci mento	Comprimento	1000	ug/L	University of Guelph, Ontario, Canada:25 4 p. Ph.D.Thes
	Glomus intraradices	Hiali nócit os	84	Cul tur a	2	NOEC	Cresci mento	Comprimento	1000	ug/L	is, University of Guelph, Ontario, Canada:25 4 p. Ph.D.Thes is,
	Glomus intraradices	Hiali nócit os	84	Cul tur a	2	NOEC	Cresci mento	Comprimento	1000	ug/L	University of Guelph, Ontario, Canada:25 4 p. Ph.D.Thes is,
	Glomus intraradices	Hiali nócit os	84	Cul tur a	2	NOEC	Cresci mento	Comprimento	1000	ug/L	University of Guelph, Ontario,

organismos terre	50105	Orgã									
Composto Es	spécies	o Alvo	Tem po	Me io	Do ses	Parâmet ro	Efeito	Efeito Medido	Valo r	Unid ade	Referênci a
											Canada:25
											4 p. Ph.D.Thes
											is, University
											of Guelph,
Gl	lomus	Hiali nócit		Cul tur			Cresci		1000		Ontario, Canada:25
	traradices	os	84	a	2	NOEC	mento	Comprimento	0	ug/L	4 p.
											Ph.D.Thes is,
											University
		Hiali		Cul							of Guelph, Ontario,
	lomus	nócit	0.4	tur	_		Cresci		1000		Canada:25
ini	traradices	os	84	a	2	NOEC	mento	Comprimento	0	ug/L	4 p. Ph.D.Thes
											is,
											University of Guelph,
C	1	Hiali		Cul			C:		1000		Ontario,
	lomus traradices	nócit os	84	tur a	2	NOEC	Cresci mento	Comprimento	1000 0	ug/L	Canada:25 4 p.
GI	lomus	Não report		Cul tur			Repro	Semente ou produção de			Chemosph ere73(3):
	traradices	ado	28	a	6	NOEC	dução	esporos	1000	ug/L	344-352
Gl	lomus	Não report		Cul tur			Repro	Semente ou produção de			Chemosph ere73(3):
	traradices	ado	28	a	6	NOEC	dução	esporos	300	ug/L	344-352
											Ph.D.Thes is,
											University
		Não		Cul				Semente ou			of Guelph, Ontario,
	lomus traradices	report ado	56	tur a	6	NOEC	Repro dução	produção de esporos	1000	ug/L	Canada:25 4 p.
ini	iraraaices	ado	30	а	U	NOLC	uuçao	esporos	1000	ug/L	Ph.D.Thes
											is, University
		3.7~		G 1				G			of Guelph,
Gl	lomus	Não report		Cul tur			Repro	Semente ou produção de	1000		Ontario, Canada:25
int	traradices	ado	56	a	6	NOEC	dução	esporos	0	ug/L	4 p. Ph.D.Thes
											is,
											University of Guelph,
	_	Não		Cul				Semente ou			Ontario,
	lomus traradices	report ado	56	tur a	6	NOEC	Repro dução	produção de esporos	1000 0	ug/L	Canada:25 4 p.
							3	1		Ü	Ph.D.Thes
											is, University
		Não		Cul				Semente ou			of Guelph, Ontario,
	lomus	report		tur			Repro	produção de	1000		Canada:25
ini	traradices	ado	56	a	6	NOEC	dução	esporos	0	ug/L	4 p. Ph.D.Thes
											is,
											University of Guelph,
C	1	Não		Cul			D	Semente ou	1000		Ontario,
	lomus traradices	report ado	56	tur a	6	NOEC	Repro dução	produção de esporos	1000 0	ug/L	Canada:25 4 p.
		Não		Cul				Semente ou			Ph.D.Thes is,
	lomus	report		tur			Repro	produção de	1000		University
ini	traradices	ado	84	a	2	NOEC	dução	esporos	0	ug/L	of Guelph,

organismos ter		Orgã									
Composto	Espécies	o Alvo	Tem po	Me io	Do ses	Parâmet ro	Efeito	Efeito Medido	Valo r	Unid ade	Referênci a
	Glomus intraradices	Não report ado	84	Cul tur a	2	NOEC	Repro dução	Semente ou produção de esporos	1000	ug/L	Ontario, Canada:25 4 p. Ph.D.Thes is, University of Guelph, Ontario, Canada:25 4 p. Ph.D.Thes
	Glomus intraradices	Não report ado	84	Cul tur a	2	NOEC	Repro dução	Semente ou produção de esporos	1000 0	ug/L	is, University of Guelph, Ontario, Canada:25 4 p. Ph.D.Thes
	Glomus intraradices	Não report ado	84	Cul tur a	2	NOEC	Repro dução	Semente ou produção de esporos	1000	ug/L	is, University of Guelph, Ontario, Canada:25 4 p. Ph.D.Thes is,
	Glomus intraradices	Não report ado	84	Cul tur a	2	NOEC	Repro dução	Semente ou produção de esporos	1000	ug/L	University of Guelph, Ontario, Canada:25 4 p. Ph.D.Thes is,
	Glomus intraradices	Não report ado	84	Cul tur a	2	NOEC	Repro dução	Semente ou produção de esporos	1000	ug/L	University of Guelph, Ontario, Canada:25 4 p. Ph.D.Thes is,
	Glomus intraradices	Não report ado	84	Cul tur a	2	NOEC	Repro dução	Semente ou produção de esporos	1000 0	ug/L	University of Guelph, Ontario, Canada:25 4 p.
Carbonato de lÍtio	-	-	-	-	-	-	-	-	-	-	-
CAS: 554132	Eisenia fetida	Sang ue	121. 76	Nã o rep ort ado Nã o rep	2	LOEL	Bioquí mico	Teor de cobre	1,1	mg/k g	Biol. Trace Elem. Res.46(1- 2): 15-28 Biol. Trace Elem.
	Eisenia fetida	Sang ue	121. 76	ort ado Nã o	2	LOEL	Bioquí mico	Teor de ferro	1,1	mg/k g	Res.46(1- 2): 15-28 Biol. Trace
	Eisenia fetida Eisenia	Sang ue Sang	121. 76	rep ort ado Nã o	2	LOEL	Bioquí mico Bioquí	Teor de potássio Teor de	1,1	mg/k g mg/k	Elem. Res.46(1-2): 15-28 Biol. Trace
	fetida	ue	76	rep	2	LOEL	mico	potássio	1,1	g	Elem.

organismos ter	11001100	Orgã									
Composto	Espécies	o Alvo	Tem po	Me io	Do ses	Parâmet ro	Efeito	Efeito Medido	Valo r	Unid ade	Referênci a
	-			ort ado							Res.46(1- 2): 15-28
				Nã							2). 13-28 Biol.
				o							Trace
	Eisenia	Sang	121.	rep ort			Bioquí	Concentração		mg/k	Elem. Res.46(1-
	fetida	ue	76	ado	2	LOEL	mico	de rubidium	1,1	g	2): 15-28
				Nã o							Biol. Trace
	Eini.	C	121	rep			D:/	C		/1-	Elem.
	Eisenia fetida	Sang ue	121. 76	ort ado	2	LOEL	Bioquí mico	Concentração de rubidium	1,1	mg/k g	Res.46(1- 2): 15-28
				Nã o							Biol. Trace
				rep							Elem.
	Eisenia fetida	Sang ue	121. 76	ort ado	2	LOEL	Bioquí mico	Teor de zinco	1,1	mg/k g	Res.46(1- 2): 15-28
	J			Nã					,	8	Biol.
				o rep							Trace Elem.
	Eisenia fetida	Sang ue	121. 76	ort ado	2	LOEL	Bioquí mico	Teor de zinco	1,1	mg/k	Res.46(1- 2): 15-28
	jenaa	uc	70	Nã	2	LOLL	inco	Teor de Zinco	1,1	g	Biol.
				o rep							Trace Elem.
	Eisenia	Sang	121.	ort	2	NOEL	Bioquí	Teor de	1.1	mg/k	Res.46(1-
	fetida	ue	76	ado Nã	2	NOEL	mico	arsênio	1,1	g	2): 15-28 Biol.
				o rep							Trace Elem.
	Eisenia	Sang	121.	ort			Bioquí	Teor de		mg/k	Res.46(1-
	fetida	ue	76	ado Nã	2	NOEL	mico	arsênio	1,1	g	2): 15-28 Biol.
				0							Trace
	Eisenia	Sang	121.	rep ort			Bioquí	Concentração		mg/k	Elem. Res.46(1-
	fetida	ue	76	ado Nã	2	NOEL	mico	de bromo	1,1	g	2): 15-28 Biol.
				0							Trace
	Eisenia	Sang	121.	rep ort			Bioquí	Concentração		mg/k	Elem. Res.46(1-
	fetida	ue	76	ado Nã	2	NOEL	mico	de bromo	1,1	g	2): 15-28 Biol.
				0							Trace
	Eisenia	Sang	121.	rep ort			Bioquí			mg/k	Elem. Res.46(1-
	fetida	ue	76	ado	2	NOEL	mico	Teor de cobre	1,1	g	2): 15-28
				Nã o							Biol. Trace
	Eisenia	Sang	121.	rep ort			Bioquí			mg/k	Elem. Res.46(1-
	fetida	ue	76	ado	2	NOEL	mico	Teor de ferro	1,1	g	2): 15-28
				C -							
				Se m							J. Toxicol.
	Mus	Não report		sub stra			Mortal			mg/k	Environ. Health10:
	musculus	ado	15	to	2	LOEL	idade	Sobrevivência	400	g	541-550
				Se m							J. Toxicol.
	Mus	Não report		sub			Mortal			ma/l-	Environ. Health10:
	musculus	report ado	13	stra to	2	LOEL	idade	Sobrevivência	400	mg/k g	541-550
		Orga nism		Se m							J. Toxicol. Environ.
	Mus	0	10	sub	2	NOT	Cresci		400	mg/k	Health10:
	musculus	inteir	12	stra	2	NOEL	mento	Ganho de peso	400	g	541-550

Composto	Espécies	Orgã o Alvo	Tem po	Me io	Do ses	Parâmet ro	Efeito	Efeito Medido	Valo r	Unid ade	Referênci a
Composto	Dopceics	0	Р	to	363	10	Litito	Dicito Miculuo	1	auc	u
		Orga		Se							T.T. ' 1
		nism o		m sub							J. Toxicol. Environ.
	Mus	inteir		stra			Cresci			mg/k	Health10:
	musculus	О	12	to	2	NOEL	mento	Ganho de peso	400	g	541-550
				Se m							Neurotoxi cology
		Não		sub			Comp				(Little
	Mus	report	2.4	stra	2	NOEL	ortame	3.6	400	mg/k	Rock)7(2)
	musculus	ado	34	to Se	2	NOEL	nto	Movimento	400	g/d	: 449-462 Neurotoxi
				m							cology
	1.6	Não		sub			Comp			4	(Little
	Mus musculus	report ado	71	stra to	2	NOEL	ortame nto	Movimento	400	mg/k g/d	Rock)7(2) : 449-462
	тизсинз	uuo	, 1	Se	_	NOLL	nto	Wioviniento	400	<i>5</i> / u	Neurotoxi
		> 7~		m			C				cology
	Mus	Não report		sub stra			Comp ortame			mg/k	(Little Rock)7(2)
	musculus	ado	223	to	2	NOEL	nto	Movimento	400	g/d	: 449-462
				Se						-	T / C
		Não		m sub							J. Toxicol. Environ.
	Mus	report		stra			Repro			mg/k	Health 10:
	musculus	ado	12	to	2	NOEL	dução	Gestação	400	g	541-550
				Se							J. Toxicol.
		Não		m sub							Environ.
	Mus	report		stra			Repro			mg/k	Health10:
	musculus	ado	12	to	2	NOEL	dução	Gestação	400	g	541-550
				Se m							J. Toxicol.
		Não		sub							Environ.
	Mus	report	15	stra	2	MODI	Mortal	Coha:^ :	400	mg/k	Health10:
	musculus	ado	15	to Se	2	NOEL	idade	Sobrevivência	400	g	541-550
				m							J. Toxicol.
	Mus	Não		sub			M1			m= = /I	Environ.
	Mus musculus	report ado	13	stra to	2	NOEL	Mortal idade	Sobrevivência	400	mg/k g	Health10: 541-550
		Orga	13	Se	-	11022	Taude	20010.11veneta	.00	ь	
		nism		m							J. Toxicol.
	Mus	o inteir		sub stra			Cresci			mg/k	Environ. Health10:
	musculus	0	15	to	2	NOEL	mento	Peso	400	g g	541-550
		Orga		Se						-	
		nism		m sub							J. Toxicol. Environ.
	Mus	o inteir		sub			Cresci			mg/k	Health 10:
	musculus	О	15	to	2	NOEL	mento	Peso	400	g	541-550
		Orga		Se							I Towissi
		nism o		m sub							J. Toxicol. Environ.
	Mus	inteir		stra			Cresci			mg/k	Health10:
	musculus	0	13	to	2	NOEL	mento	Peso	400	g	541-550
		Orga nism		Se m							J. Toxicol.
		0		sub							Environ.
	Mus	inteir	10	stra	^	NOU	Cresci	D	400	mg/k	Health10:
	musculus	0	13	to	2	NOEL	mento	Peso	400	g	541-550
Chloral hydrate	-	-	-	-	-	-	-	-	-	-	-
CAS: 302170	-	-	-	-	-	-	-	-	-	-	-

organismos terr	100100	Orgã	_		_	_					
Composto	Espécies	o Alvo	Tem po	io	Do ses	Parâmet ro	Efeito	Efeito Medido	Valo r	Unid ade	Referênci a
				Se							Gen.
				m sub							Pharmacol
	Mus musculus	Fígad o	3	stra	2	LOEL	Bioquí mico	Citocromo P450	50	mg/k	.11(5): 429-435
,	muscutus	O	3	to Se	2	LOEL	HIICO	F430	30	g	429-433
				m sub							Gen. Pharmacol
	Mus	Fígad		stra			Bioquí	Glutationa S-		mg/k	.11(5):
1	musculus	0	4	to Se	2	NOEL	mico	transferase	50	g	437-441
				m							Gen.
	Mus	Figad		sub			Rioguí	Glutationa S-		ma/k	Pharmacol
	musculus	Fígad o	4	stra to	2	NOEL	Bioquí mico	transferase	50	mg/k g	.11(5): 437-441
				Se							Com
				m sub							Gen. Pharmacol
	Mus	Fígad	4	stra	2	NOEL		Glutationa S-	50	mg/k	.11(5):
,	musculus	0	4	to Se	2	NOEL	mico	transferase	30	g	437-441
				m							Gen.
	Mus	Fígad		sub stra			Bioquí			mg/k	Pharmacol .11(5):
1	musculus	0	3	to Se	2	NOEL	mico	N-Desmetilase	50	g	429-435
				m							Gen.
	Mus	Efood		sub			Diaguí			m a/lr	Pharmacol
	wus musculus	Fígad o	3	stra to	2	NOEL	Bioquí mico	N-Desmetilase	50	mg/k g	.11(5): 429-435
				Se							C
				m sub							Gen. Pharmacol
	Mus	Fígad	2	stra	2	NOEL	_	Citocromo	50	mg/k	.11(5):
,	musculus	0	3	to Se	2	NOEL	mico	P450	50	g	429-435
				m							Gen.
	Mus	Fígad		sub stra			Bioquí	Citocromo		mg/k	Pharmacol .11(5):
1	musculus	0	3	to	2	NOEL	mico	P450	50	g	429-435
				Se m							Gen.
	Mara	Efood		sub			Diaguí	Citocromo		m a/lr	Pharmacol
	Mus musculus	Fígad o	3	stra to	2	NOEL	mico	P450	50	mg/k g	.11(5): 429-435
				Se							Gen.
				m sub							Pharmacol
	Mus	Fígad	2	stra	2	NOEL		Citocromo	50	mg/k	.11(5):
,	musculus	0	3	to Se	2	NOEL	mico	P450	50	g	429-435
				m							Gen.
	Mus	Fígad		sub stra			Bioquí	Citocromo		mg/k	Pharmacol .11(5):
1	musculus	0	3	to	2	NOEL	mico	P450	50	g	429-435
				Se m							Gen.
	Mus	E/ J		sub			D:/	C:t		/I	Pharmacol
	musculus	Fígad o	3	stra to	2	NOEL	Bioquí mico	Citocromo P450	50	mg/k g	.11(5): 429-435
				Se							Con
				m sub							Gen. Pharmacol
	Mus musculus	Fígad	3	stra	2	NOEL	Bioquí		50	mg/k	.11(5): 429-435
,	muscutus	О	3	to Se	۷	NUEL	mico	P450	50	g	429-435 Gen.
	Mus	Fígad	3	m	2	NOEL		P-nitroanisol O-desmetilase	50	mg/k	Pharmacol
ì	musculus	О	3	sub	2	NUEL	mico	O-desmethase	30	g	.11(5):

		Orgã o	Tem	Ма	Do	Parâmet			Valo	Unid	Referênci
Composto	Espécies	o Alvo	po	io	ses	ro ro	Efeito	Efeito Medido		ade	a
	-			stra							429-435
				to Se							
				m							Gen.
	14	E/ 1		sub			D: /	D :: 1		Л	Pharmaco
	Mus musculus	Fígad o	3	stra to	2	NOEL	mico	P-nitroanisol O-desmetilase	50	mg/k g	.11(5): 429-435
				Se						U	
				m sub				Razão do peso			Gen. Pharmaco
	Mus	Fígad	2	stra		MOEL	Cresci	do órgão vs	7 0	mg/k	.11(5):
	musculus	0	3	to	2	NOEL	mento	corpo	50	g	429-435
Clomipramina					_						
CAS: 303491	-	-	-	-	-	-	-	-	-	-	-
CAS: 303491											J.
	Caenorhabd	Músc	.031	Cul			Fisioló	Taxa de		ma/m	Neurosci.
	itis elegans	ulo	3	tur a	2	LOEL	gico	concentração	1	mg/m l	15(10): 6975-698
	-	Na-		C ₁₋₁			-	•			J.
	Caenorhabd	Não report	.062	Cul tur			Repro			mg/m	Neurosci. 15(10):
	itis elegans	ado	5	a	3	LOEL	dução	Prole	0.75	1	6975-698
		Não		Cul							J. Neurosci.
	Caenorhabd	-	.062	tur	2	LOFI	Repro	D 1		-	15(10):
	itis elegans	ado	5	a	2	LOEL	dução	Prole	1	1	6975-698 J.
		Não	0.62	Cul						,	Neurosci.
	Caenorhabd itis elegans	report ado	.062 5	tur a	2	LOEL	Repro dução	Prole	1	mg/m l	15(10): 6975-698
							3				J.
	Caenorhabd	Não report	.062	Cul tur			Repro			mg/m	Neurosci. 15(10):
	itis elegans	ado	5	a	2	LOEL	dução	Prole	1	1	6975-698
		Não		Cul							J. Neurosci.
	Caenorhabd	report		tur			Repro				15(10):
	itis elegans	ado	5	a	2	LOEL	dução	Prole	1	1	6975-698 J.
		Não		Cul							Neurosci.
	Caenorhabd itis elegans	report ado	.062 5	tur a	2	LOEL	Repro dução	Prole	1	mg/m l	15(10): 6975-698
	iiis eieguns	ado	3	а	2	LOLL	dução	Tiole	1	1	0713-070
	-	_	_	_	_	_	_	_	_	_	_
Cloridrato de tacrina	_	_	_	_	_	_	_	_	_	_	_
CAS: 1684408											
CAS: 1004400	_	_	_	_	_	_	_	_	_	_	_
				Se							J.
		Não		m sub							Psychoph rmacol.14
	Rattus	report	25	stra	4	ED50	Fisioló	Commisão	27	umol/	(3): 275-
	norvegicus	ado	.25	to Se	4	ED50	gico	Convulsão	37	kg	279
				m					NT~		Neuropha
	Rattus	Céreb	.020	sub stra			Bioquí	Acetilcolineste	Não report	mg/k	macology 28(3):
	norvegicus	ro	8	to	2	LOEL	mico	rase	ado	g	199-206
	Rattus		.020	Se m			Fisioló	Temperatura		umol/	J. Psychoph
	norvegicus	Reto	8	sub	2	LOEL	gico	corporal	150	kg	rmacol.14

organismos terrestre	Orgã									
Composto Espéc	o ies Alvo	Tem po	Me io	Do ses	Parâmet ro	Efeito	Efeito Medido	Valo r	Unid ade	Referênci a
			stra to							(3): 275- 279
			Se							J.
			m							Psychopha
Rattus		.208	sub stra			Fisioló	Temperatura		umol/	rmacol.14 (3): 275-
norves	gicus Reto	3	to Se	2	LOEL	gico	corporal	150	kg	279 J.
			m							Psychopha
Rattus			sub stra			Fisioló	Temperatura		umol/	rmacol.14 (3): 275-
norves	gicus Reto	.25	to Se	2	LOEL	gico	corporal	150	kg	279 J.
			m							Psychopha
Rattus		.083	sub stra			Fisioló	Temperatura		umol/	rmacol.14 (3): 275-
norveg	gicus Reto	3	to	2	LOEL	gico	corporal	150	kg	279
			Se m							J. Psychopha
Rattus			sub stra			Fisioló	Temperatura		umol/	rmacol.14 (3): 275-
norves		.125	to	2	LOEL	gico	corporal	150	kg	279
			Se m							J. Psychopha
Rattus		.166	sub stra			Fisioló	Temperatura		umol/	rmacol.14 (3): 275-
norves		7	to	2	LOEL	gico	corporal	150	kg	279
			Se m							J. Psychopha
Rattus		.041	sub stra			Fisioló	Temperatura		umol/	rmacol.14 (3): 275-
norves		7	to	2	LOEL	gico	corporal	150	kg	279
			Se m							J. Psychopha
Rattus	Não report		sub stra			Fisioló			umol/	rmacol.14 (3): 275-
norves	•	.25	to	2	LOEL	gico	Convulsão	150	kg	279
			Se m							J. Psychopha
Rattus	Não report	208	sub stra			Fisioló			umol/	rmacol.14 (3): 275-
norves		3	to	2	LOEL	gico	Convulsão	150	kg	279
			Se m							J. Psychopha
Rattus	Não report	.166	sub stra			Fisioló			umol/	rmacol.14 (3): 275-
norves	•	7	to	2	LOEL	gico	Convulsão	150	kg	279
			Se m							J. Psychopha
Rattus	Não report	.083	sub stra			Fisioló			umol/	rmacol.14 (3): 275-
norves		3	to	2	LOEL	gico	Convulsão	150	kg	279
			Se m							J. Psychopha
Rattus	Não report	020	sub stra			Fisioló			umol/	rmacol.14 (3): 275-
norves		8	to	2	LOEL	gico	Convulsão	150	kg	279
			Se m							J. Psychopha
Rattus	Não report	.041	sub stra			Fisioló			umol/	rmacol.14 (3): 275-
norves		7	to	2	LOEL	gico	Convulsão	150	kg	279
			Se m							J. Psychopha
Rattus	Não report		sub stra			Fisioló			umol/	rmacol.14 (3): 275-
norves		.125	to	2	LOEL	gico	Convulsão	150	kg	279

		Orgã o	Tem	Mo	Do	Parâmet			Valo	Unid	Referênci
Composto	Espécies	Alvo	po	io	ses	ro	Efeito	Efeito Medido		ade	a
				Se							J.
		Não		m sub							Psychopha rmacol.14
	Rattus	report	.041	stra			Fisioló			umol/	(3): 275-
	norvegicus	ado	7	to	2	LOEL	gico	Salivação	150	kg	279
				Se							J.
		NT≃ -		m							Psychopha
	Rattus	Não report	.083	sub stra			Fisioló			umol/	rmacol.14 (3): 275-
	norvegicus	ado	3	to	2	LOEL	gico	Salivação	150	kg	279
	710770810115			Se	-	2022	8100	Sunvuşuo	100	8	J.
				m							Psychopha
	D	Não	020	sub			E 17			1/	rmacol.14
	Rattus	report	.020 8	stra	2	LOEL	Fisioló	Calivação	150	umol/	(3): 275- 279
	norvegicus	ado	0	to Se	2	LUEL	gico	Salivação	130	kg	J.
				m							Psychopha Psychopha
		Não		sub							rmacol.14
	Rattus	report		stra			Fisioló			umol/	(3): 275-
	norvegicus	ado	.125	to	2	LOEL	gico	Salivação	150	kg	279
				Se m							J. Psychopha
		Não		sub							rmacol.14
	Rattus	report	.020	stra			Fisioló			umol/	(3): 275-
	norvegicus	ado	8	to	2	LOEL	gico	Lacrimação	150	kg	279
				Se							J.
		Não		m							Psychopha
	Rattus	Não report	.083	sub stra			Fisioló			umol/	rmacol.14 (3): 275-
	norvegicus	ado	3	to	2	LOEL	gico	Lacrimação	150	kg	279
	0			Se			C	•		Ü	J.
				m							Psychopha
	Dattera	Não	200	sub			Eisiolé			umal/	rmacol.14
	Rattus norvegicus	report ado	.208 3	stra to	2	LOEL	Fisioló gico	Lacrimação	150	umol/ kg	(3): 275- 279
	norvegicus	ado	3	Se	2	LOLL	gico	Lacrimação	150	Kg	J.
				m							Psychopha
		Não		sub							rmacol.14
	Rattus .	report	25	stra	2	LOFI	Fisioló ·	T . ~	150	umol/	(3): 275-
	norvegicus	ado	.25	to Se	2	LOEL	gico	Lacrimação	150	kg	279 J.
				m							Psychopha
		Não		sub							rmacol.14
	Rattus	report		stra			Fisioló			umol/	(3): 275-
	norvegicus	ado	7	to	2	LOEL	gico	Lacrimação	150	kg	279
				Se m							J. Psychopha
		Não		sub							rmacol.14
	Rattus	report		stra			Fisioló			umol/	(3): 275-
	norvegicus	ado	.125	to	2	LOEL	gico	Lacrimação	150	kg	279
				Se							J.
		Não		m sub							Psychopha rmacol.14
	Rattus	report	.041	stra			Fisioló			umol/	(3): 275-
	norvegicus	ado	7	to	2	LOEL	gico	Lacrimação	150	kg	279
	· ·			Se						Ü	J.
		3.7~		m							Psychopha
	Rattus	Não	.166	sub			Fisioló			umol/	rmacol.14
	norvegicus	report ado	7	stra to	2	NOEL	gico	Salivação	150	kg	(3): 275- 279
	noi regiens	ado	,	Se	_	1,000	5100	Sum ruçuo	150	 5	J.
				m							Psychopha
		Não		sub							rmacol.14
	Rattus	report		stra	2	NODE	Fisioló	Caliv	150	umol/	(3): 275-
	norvegicus	ado Não	3	to Se	2	NOEL	gico	Salivação	150	kg	279 J.
	Rattus	report		m			Fisioló			umol/	Psychopha
	norvegicus	ado	.25	sub	2	NOEL	gico	Salivação	150	kg	rmacol.14
								-		-	

Tabela 18 Revisão de literatura para os efeitos ecotoxicológicos de fármacos psiquiátricos em organismos terrestres

		Orgã	Т	N .	D.	Domânini			1 7~1	TI2-1	Dof
Composto	Espécies	o Alvo	Tem po	Me io	Do ses	Parâmet ro	Efeito	Efeito Medido	Valo r	Unid ade	Referênci a
•	•			stra to							(3): 275- 279
Clorpramozina CAS: 50533/ 69090	-	-	-	-	-	-	-	-	-	-	-
	Caenorhabd itis elegans	Músc ulo	.031	Cul tur a	2	LOEL	Fisioló gico	Taxa de concentração	1	mg/m l	J. Neurosci. 15(10): 6975-698. J.
	Caenorhabd itis elegans	Não report ado	.062 5	Cul tur a	2	LOEL	Repro dução	Prole	1	mg/m l	Neurosci. 15(10): 6975-698: J.
	Caenorhabd itis elegans	Não report ado	.062 5	Cul tur a	2	LOEL	Repro dução	Prole	1	mg/m l	Neurosci. 15(10): 6975-6983
	Caenorhabd itis elegans	Não report ado	.062 5	Cul tur a	3	LOEL	Repro dução	Prole	0.50	mg/m l	Neurosci. 15(10): 6975-6985 J.
	Caenorhabd itis elegans	Não report ado	.062 5	Cul tur a	2	LOEL	Repro dução	Prole	1	mg/m l	Neurosci. 15(10): 6975-6985 J.
	Caenorhabd itis elegans	Não report ado	.062 5	Cul tur a	6	LOEL	Repro dução	Prole	1.0	mg/m l	Neurosci. 15(10): 6975-6985 J.
	Caenorhabd itis elegans	Não report ado	.062 5	Cul tur a	6	NOEL	Repro dução	Prole	1.0	mg/m l	Neurosci. 15(10): 6975-698:
	Mus musculus	Fígad o	15	Se m sub stra to Se m	2	LOEL	Bioquí mico	Aminopirina n-desmetilase	50	mg/k g	Biochem. Pharmaco .21(7): 1025-1029 Biochem.
	Mus musculus	Fígad o	15	sub stra to	2	LOEL	Bioquí mico	Lactato desidrogenase	50	mg/k	Pharmaco .21(7): 1025-1029
	Mus musculus	Fígad o	15	Se m sub stra to Se	2	LOEL	Bioquí mico	NADPH citocromo C redutase	50	mg/k g	Biochem. Pharmaco. .21(7): 1025-1029
	Mus musculus	Fígad o	15	m sub stra to Se	2	LOEL	Cresci mento	Razão do peso do órgão vs corpo	50	mg/k g	Biochem. Pharmaco .21(7): 1025-1029
	Mus musculus	Fígad o	15	m sub stra to	2	NOEL	Bioquí mico	6- fosfogluconato desidrogenase	50	mg/k	Biochem. Pharmaco .21(7): 1025-1029
	Mus musculus	Fígad o	15	Se m sub stra to	2	NOEL	Bioquí mico	Glicose 6 fosfato desidrogenase	50	mg/k g	Biochem. Pharmaco. .21(7): 1025-1029

		Orgã	Т	ъл.	ъ.	Domânini			1 7~1.	TI2-1	D.e
Composto	Espécies	o Alvo	Tem po	Me io	Do ses	Parâmet ro	Efeito	Efeito Medido	Valo r	Unid ade	Referênci a
				Se m							Biochem.
				sub							Pharmaco
	Mus	Fígad	1.5	stra	2	NOEL	_	Glicose 6	50	mg/k	.21(7):
	musculus	0	15	to Se	2	NOEL	mico	fosfato	30	g	1025-102
				m				MADII			Biochem.
	Mus	Fígad		sub stra			Bioquí	NADH citocromo C		mg/k	Pharmaco .21(7):
	musculus	0	15	to	2	NOEL	mico	redutase	50	g	1025-102
				Se m							Biochem
				sub				6-			Pharmaco
	Rattus norvegicus	Fígad	15	stra	2	LOEL	Bioquí mico	fosfogluconato desidrogenase	0.10	% w/w	.21(7): 1025-102
	norvegicus	0	13	to Se	2	LOEL	illico	desidiogenase	0.10	W/W	1023-102
				m							Biochem.
	Rattus	Fígad		sub stra			Bioquí	Aminopirina		%	Pharmaco .21(7):
	norvegicus	0	15	to	2	LOEL	mico	n-desmetilase	0.10	w/w	1025-102
				Se m							Biochem.
				sub				Glicose 6			Pharmaco
	Rattus norvegicus	Fígad o	15	stra to	2	LOEL	Bioquí mico	fosfato desidrogenase	0.10	% w/w	.21(7): 1025-102
	norvegicus	O	13	Se	_	LOLL	mico	desidrogenase	0.10	**/ **	
				m sub				NADPH			Biochem. Pharmaco
	Rattus	Fígad		stra			Bioquí			%	.21(7):
	norvegicus	0	15	to Se	2	LOEL	mico	redutase	0.10	w/w	1025-102
				m							Biochem
	D	E/ 1		sub			D: /	NADH		0/	Pharmaco
	Rattus norvegicus	Fígad o	15	stra to	2	LOEL	Bioquí mico	citocromo C redutase	0.10	% w/w	.21(7): 1025-102
	O			Se							
				m sub							Biochem. Pharmaco
	Rattus	Fígad		stra				Glicose 6		%	.21(7):
	norvegicus	0	15	to Se	2	NOEL	mico	fosfato	0.10	w/w	1025-102
				m							Biochem.
	Rattus	Fígad		sub stra			Rioguí	Lactato		%	Pharmaco .21(7):
	norvegicus	0	15	to	2	NOEL	mico	desidrogenase	0.10	w/w	1025-102
				Se							Biochem.
				m sub				Razão do peso			Pharmaco
	Rattus .	Fígad	1.5	stra	2	NOEL	Cresci	do órgão vs	0.10	%	.21(7):
	norvegicus	0	15	to	2	NOEL	mento	corpo	0.10	w/w	1025-102
			Não								
		Não	repo	NT A			Dom-1-			ai a/ka	Crop
Diazepam	Glycine max	report ado	rtad o	NA T	2	NOEL	Popula ção	Biomassa	0.03	g/kg sd	Prot.25(2 : 134-139
AS: 439145/	,						3				
14439613											
	-	-	-	-	-	-	-	-	-	-	-
											Arch.
				Nã	Nã						Environ.
		Não		o rep	o rep						Contam. Toxicol.
	Peromyscus	report		ort	ort		Mortal			mg/k	4(1): 111
	maniculatus Rattus	ado Não	3	ado Cul	ado	LD50	idade Cresci	Mortalidade Alteração	1070	g	129 Experien
	norvegicus	report	2	tur	6	LOEL	mento	morfológica	100	ug/ml	_
		-						-		-	

Composto		Orgã o Alvo	Tem		Do ses	Parâmet	Efeito	Ffoito Modida	Valo	Unid ade	Referênci
Composto	Especies	ado	po	io a	ses	ro	Lieno	Efeito Medido	Г	aue	833-840
	Rattus norvegicus	Tronc o	2	Cul tur a Se	6	LOEL	Cresci mento	Comprimento	100	ug/ml	Experienti a44(10): 833-840 Pharmacol
	Rattus norvegicus	Não report ado	.041 7	m sub stra to Se	8	LOEL	Comp ortame nto	Movimento	2.5	mg/k g	Toxicol.9 3(5): 211-218 Pharmacol
	Rattus norvegicus	Não report ado	.012 5	m sub stra to Se	8	LOEL	Comp ortame nto	Movimento	0.47	mg/k g	Toxicol.9 3(5): 211- 218 Pharmacol
	Rattus norvegicus	Não report ado	.041 7	m sub stra to Se	8	LOEL	Comp ortame nto	Movimento	5.0	mg/k g	Toxicol.9 3(5): 211- 218 Pharmacol
	Rattus norvegicus	Não report ado	.062 5	m sub stra to Se	8	LOEL	Comp ortame nto	Movimento	5.0	mg/k g	Toxicol.9 3(5): 211- 218 Pharmacol
	Rattus norvegicus	Não report ado	1	m sub stra to Se	6	NOEL	Comp ortame nto	Evitamento	7.5	mg/k g	Toxicol.9 3(5): 211- 218 Pharmacol
	Rattus norvegicus	Não report ado	2	m sub stra to Se	6	NOEL	Comp ortame nto	Evitamento	7.5	mg/k g	Toxicol.9 3(5): 211- 218 Pharmacol
	Rattus norvegicus	Não report ado	2	m sub stra to Se	6	NOEL	Comp ortame nto	Evitamento	7.5	mg/k g	Toxicol.9 3(5): 211- 218 Pharmacol
	Rattus norvegicus	Não report ado	1	m sub stra to Se	6	NOEL	Comp ortame nto	Evitamento	7.5	mg/k g	Toxicol.9 3(5): 211- 218 Pharmacol
	Rattus norvegicus	Não report ado	.041 7	m sub stra to Se	8	NOEL	Comp ortame nto	Movimento	1.25	mg/k g	Toxicol.9 3(5): 211- 218 Pharmacol
	Rattus norvegicus	Não report ado	.012 5	m sub stra to Se	8	NOEL	Comp ortame nto	Movimento	0.31	mg/k g	Toxicol.9 3(5): 211-218 Pharmacol
	Rattus norvegicus	Não report ado	.041 7	m sub stra to Se	8	NOEL	Comp ortame nto	Movimento	2.5	mg/k g	Toxicol.9 3(5): 211- 218 Pharmacol
	Rattus norvegicus	Não report ado	.062 5	m sub stra to Se	8	NOEL	Comp ortame nto	Movimento	2.5	mg/k g	Toxicol.9 3(5): 211- 218 Naunyn-
	Rattus norvegicus	Céreb ro	7	m sub stra	2	LOEL	Bioquí mico	Glutationa	0.5	mg/k g/d	Schmiede berg's Arch.

		Orgã o	Tem	Me	Do	Parâmet			Valo	Unid	Referênci
Composto	Espécies	Alvo	po	io	ses	ro	Efeito	Efeito Medido		ade	a
-	•			to							Pharmaco
				_							.381:1-10
				Se m							Eur. J.
		Não		sub							Pharmaco
	Rattus .	report		stra	2	LOFI	Fisioló	G 1.~	2	mg/k	.120(2):
	norvegicus	ado	7	to	2	LOEL	gico	Convulsão	3	g	269-273 Naunyn-
				Se							Schmiede
				m sub							berg's Arch.
	Rattus	Céreb		stra			Bioquí			mg/k	Pharmaco
	norvegicus	ro	7	to	2	NOEL	mico	Catalase	0.5	g/d	.381:1-10
				Se							Naunyn- Schmiede
		3.7~		m			G	m 1			berg's
	Rattus	Não report		sub stra			Comp ortame	Tempo de resposta ao		mg/k	Arch. Pharmaco
	norvegicus	ado	7	to	2	NOEL	nto	estímulo	0.5	g/d	.381:1-10
Etosuximida	-	-	-	-	-	-	-	-	-	-	-
CAS: 77678		>									DI C
	Caenorhabd	Não report		Ág			Celula	Frequência		mg/m	PLoS One4(8):
	itis elegans	ado	7	ar	2	NOEL	r	fenotípica	2	1	11 p.
	Caenorhabd	Não report		Ág			Repro			mg/m	PLoS One4(8):
	itis elegans	ado	7	ar	2	NOEL	dução	Prole	2	l l	11 p.
	-	-	-	-	-	-	-	-	-	-	-
enobarbital CAS: 50066/ 57307	-	-	-	-	-	-	-	-	-	-	-
5/30/		Orga		Se							
		nism		m							Pestic.
	Spodoptera	o inteir		sub stra			Cresci				Biochem. Physiol.79
	exigua	O	1	to	3	NOEL	mento	Peso	1	%	(2): 33-41
		Orga nism		Se m							Pestic.
		o		sub							Biochem.
	Spodoptera exigua	inteir o	1	stra to	3	NOEL	Cresci mento	Peso	1	%	Physiol.79 (2): 33-41
	слідии	U	•	10	5	TIOLL	mento	1 050	1	/0	(2). 33-41
		Micr									
		osso mos		Nã o						mg/k	Toxicol. Appl.
		mos do		rep						mg/k g	Appi. Pharmaco
	Phasianus	fígad	4	ort	2	LODI		Anilina	50	bdwt/	.167(3):
	colchicus	0	4	ado Nã	2	LOEL	mico	hidroxilase	50	d	237-245 Toxicol.
				O						mg/k	Appl.
	Phasianus			rep ort			Bioauí	Etoxicumarina		g bdwt/	Pharmaco .167(3):
	colchicus	Rim	4		2	LOEL	mico	desetilase	50	d	237-245
		Micr osso		Nã							Toxicol.
		mos		0						mg/k	Appl.
	Phasianus	do fígad		rep			Rioguí	Eritromicina		g bdwt/	Pharmaco
	colchicus	fígad o	4	ort ado	2	LOEL	mico	n-desmetilase	50	d	.167(3): 237-245
	Phasianus			Nã			Bioquí			mg/k	Toxicol.
	colchicus	Rim	4	0	2	LOEL	mico	EROD	50	g	Appl.

5	Orgã	-		-	D ^			***	**	D 0 1
Composto Espécies	o s Alvo	Tem po	Me io	Do ses	Parâmet ro	Efeito	Efeito Medido	Valo r	Unid ade	Referênci a
		F	rep	200					bdwt/	Pharmacol
			ort ado						d	.167(3): 237-245
	Micr		auo							237-243
	osso		Nã							Toxicol.
	mos do		0 ren						mg/k	Appl. Pharmacol
Phasian			rep ort			Bioquí	Citocromo		g bdwt/	.167(3):
colchicu	us o	4	ado	2	LOEL	mico	P450	50	d	237-245
			Nã o							J. Toxicol.
	Não		rep							Environ.
Coturniz		-	ort	2	LOFI	Bioquí	D C .	150	mg/k	Health15:
japonica	ı ado	5	ado Nã	3	LOEL	mico	Porfirina	150	g	93-108 Toxicol.
			0						mg/k	Appl.
Phasian			rep			Diaguí	5-resorufina-		g h.d.v.t/	Pharmacol
eolchicu		4	ort ado	2	LOEL	mico	O-deetilase	50	bdwt/ d	.167(3): 237-245
			Nã							Toxicol.
	Micr		0				Testosterona		mg/k	Appl. Pharmacol
Phasian			rep ort			Bioquí	16-alfa		g bdwt/	.167(3):
colchicu	us mos	4	ado	2	LOEL	mico	hidroxilase	50	d	237-245
			Nã o						mg/k	Toxicol. Appl.
	Micr		rep				Testosterona		g g	Pharmacol
Phasian		4	ort	2	LOFI	Bioquí	2-beta	50	bdwt/	.167(3):
colchicu	us mos	4	ado Nã	2	LOEL	mico	hidroxilase	50	d	237-245 Toxicol.
			0						mg/k	Appl.
Phasian	Micr		rep			Bioquí	Testosterona		g h.d.v.t/	Pharmacol .167(3):
colchicu		4	ort ado	2	LOEL	mico	6-beta hidroxilase	50	bdwt/ d	237-245
			Nã							Toxicol.
	Micr		o rep						mg/k g	Appl. Pharmacol
Phasian			ort			Bioquí	Androstenedio		bdwt/	.167(3):
colchicu	us mos	4	ado	2	NOEL	mico	na	50	d	237-245
			Nã o						mg/k	Toxicol. Appl.
			rep						g	Pharmacol
Phasian colchicu		4	ort ado	2	NOEL	Bioquí mico	Aminopirina n-desmetilase	50	bdwt/ d	.167(3): 237-245
Cotenicu	Micr	7	auo	2	NOLL	inico	n-desinethase	30	u	237-243
	osso		Nã						a	Toxicol.
	mos do		o rep						mg/k g	Appl. Pharmacol
Phasian			ort			Bioquí			bdwt/	.167(3):
colchicu	is o	4	ado Nã	2	NOEL	mico	n-desmetilase	50	d	237-245
			o O						mg/k	Toxicol. Appl.
			rep						g	Pharmacol
Phasian colchicu		4	ort ado	2	NOEL	Bioquí mico	Citocromo B-5	50	bdwt/ d	.167(3): 237-245
Cotenicu	Micr	7	auo	2	NOLL	inico	Chocromo B-3	30	u	237-243
	osso		Nã						a	Toxicol.
	mos do		o rep						mg/k g	Appl. Pharmacol
Phasian			ort			Bioquí			bdwt/	.167(3):
colchicu	s o Micr	4	ado	2	NOEL	mico	Citocromo B-5	50	d	237-245
	OSSO		Nã							Toxicol.
	mos		O						mg/k	Appl.
Phasian	do us fígad		rep ort			Rioguí	Etoxicumarina		g bdwt/	Pharmacol .167(3):
colchicu	U	4	ado	2	NOEL	mico	desetilase	50	d	237-245

organismos te	11001100	Once									
Composto	Espécies	Orgã o Alvo	Tem po	Me io	Do ses	Parâmet ro	Efeito	Efeito Medido	Valo r	Unid ade	Referênci a
	Phasianus colchicus	Micr osso mos do fígad o Micr	4	Nã o rep ort ado	2	NOEL	Bioquí mico	EROD	50	mg/k g bdwt/ d	Toxicol. Appl. Pharmacol .167(3): 237-245
	Phasianus colchicus	osso mos do fígad o	4	Nã o rep ort ado Nã	2	NOEL	Bioquí mico	Atividade enzimática	50	mg/k g bdwt/ d	Toxicol. Appl. Pharmacol .167(3): 237-245 Toxicol.
	Phasianus colchicus	Rim Micr	4	o rep ort ado	2	NOEL	Bioquí mico	Metoxiresorufi na-O- desmetilase	50	mg/k g bdwt/ d	Appl. Pharmacol .167(3): 237-245
	Phasianus colchicus	osso mos do fígad o Micr	4	Nã o rep ort ado	2	NOEL	Bioquí mico	Metoxiresorufi na-O- desmetilase	50	mg/k g bdwt/ d	Toxicol. Appl. Pharmacol .167(3): 237-245
	Phasianus colchicus	osso mos do fígad o	4	Nã o rep ort ado Nã	2	NOEL	Bioquí mico	P-Nitrofenol hidroxilase	50	mg/k g bdwt/ d	Toxicol. Appl. Pharmacol .167(3): 237-245 Toxicol.
	Phasianus colchicus	Rim Micr	4	o rep ort ado	2	NOEL	Bioquí mico	Citocromo P450	50	mg/k g bdwt/ d	Appl. Pharmacol .167(3): 237-245
	Phasianus colchicus	osso mos do fígad o	4	Nã o rep ort ado Nã	2	NOEL	_	5-resorufina- O-deetilase	50	mg/k g bdwt/ d	Toxicol. Appl. Pharmacol .167(3): 237-245 Toxicol.
	Phasianus colchicus	Micr osso mos	4	o rep ort ado Nã	2	NOEL	Bioquí mico	Testosterona 16 beta- hidroxilase	50	mg/k g bdwt/ d	Appl. Pharmacol .167(3): 237-245 Toxicol.
	Phasianus colchicus	Micr osso mos	4	o rep ort ado Se	2	NOEL	Bioquí mico	Testosterona 2-alfa hidroxilase	50	mg/k g bdwt/ d	Appl. Pharmacol .167(3): 237-245
	Mus musculus	Fígad o	15	m sub stra to Se	2	LOEL	Bioquí mico	Aminopirina n-desmetilase	100	mg/k g	Biochem. Pharmacol .21(7): 1025-1029
	Mus musculus	Fígad o	15	m sub stra to Nã	2	LOEL	Bioquí mico	Lactato desidrogenase	100	mg/k g	Biochem. Pharmacol .21(7): 1025-1029
	Mus musculus	Não report ado Não	3	o rep ort ado Nã	2	LOEL	Bioquí mico	Proteína microssomal	50	mg/k g	Pestic. Biochem. Physiol.19 :23-30 Pestic.
	Microtus montanus	report	3	o rep	3	LOEL	Bioquí mico	Proteína microssomal	20	mg/k g	Biochem. Physiol.19

		Orgã	Tem	М	Do	Parâmet			Valo	Unid	Referênci
Composto	Espécies	o Alvo	po	io	ses	ro	Efeito	Efeito Medido		ade	a
•	•		_	ort							:23-30
				ado							
				Nã o							Pestic.
		Não		rep							Biochem.
	Microtus	report	2	ort	2	LOEL	_	Proteína	20	mg/k	Physiol.19 :23-30
	montanus	ado	3	ado Se	3	LOEL	mico	microssomal	20	g	Toxicol.
				m							Appl.
	Mus	Sang	808	sub stra			Bioquí	Malation carboxilesteras		mg/k	Pharmacol .87(3):
	musculus	ue	33	to	2	LOEL	mico	e e	100	g	389-392
		Micr		Se							Toxicol.
		osso mos		m							Appl.
		do		sub			.	Malation			Pharmacol
	Mus musculus	fígad o	808 33	stra to	2	LOEL	Bioquí mico	carboxilesteras e	100	mg/k g	.87(3): 389-392
	museums	O	33	Se	-	LOLL	nneo	C	100	5	307 372
				m sub							Gen. Pharmacol
	Mus	Fígad		sub			Bioquí			mg/k	.11(5):
	musculus	o	3	to	2	LOEL	mico	N-Desmetilase	100	g	429-435
				Se m							Gen.
				sub							Pharmacol
	Mus musculus	Fígad o	3	stra to	2	LOEL	Bioquí mico	N-Desmetilase	100	mg/k	.11(5): 429-435
	muscuius	O	3	Se	2	LOEL	illico	N-Desilietilase	100	g	429-433
				m							Gen.
	Mus	Fígad		sub stra			Bioquí	Citocromo		mg/k	Pharmacol .11(5):
	musculus	o	3	to	2	LOEL	mico	P450	100	g	429-435
				Se m							Gen.
				sub							Pharmacol
	Mus musculus	Fígad o	3	stra	2	LOEL	Bioquí mico	Citocromo P450	100	mg/k	.11(5): 429-435
	тизсинз	Micr	3	to	2	LOEL	inico	1430	100	g	427-433
		osso		Se							Toxicol.
		mos do		m sub							Appl. Pharmacol
	Mus	fígad	808	stra	_			Citocromo	100	mg/k	.87(3):
	musculus	0	33	to Nã	2	LOEL	mico	P450	100	g	389-392
				0							Pestic.
	Mus	Não report		rep ort			Cresci	Razão do peso do órgão vs		mg/k	Biochem. Physiol.19
	musculus	ado	3	ado	2	LOEL	mento	corpo	50	g g	:23-30
				Nã							Carainaga
				o rep				Razão do peso			Carcinoge nesis20(6)
	Mus	Fígad	155	ort	2	LOFI	Cresci	do órgão vs	5 00		: 1115-
	musculus	0	175	ado Nã	2	LOEL	mento	corpo	500	ppm	1120
				0							Carcinoge
	Mus	Fígad		rep ort			Cresci	Razão do peso do órgão vs			nesis20(6) : 1115-
	musculus	0	203	ado	2	LOEL	mento	corpo	500	ppm	1120
				Nã							Coroinos
				o rep				Razão do peso			Carcinoge nesis20(6)
	Mus	Fígad	155	ort	2	LOFI	Cresci	do órgão vs	500		: 1115-
	musculus	0	175	ado Se	2	LOEL	mento	corpo	500	ppm	1120 Gen.
				m				Razão do peso			Pharmacol
	Mus musculus	Fígad o	3	sub stra	2	LOEL	Cresci mento	do órgão vs corpo	100	mg/k g	.11(5): 429-435
	тизсина	J	J	sua	_	LULL	mento	corpo	100	5	74J- 7 3J

organismos te	11051105	Orgã									
Composto	Fenécies	o Alvo	Tem po	Me io	Do ses	Parâmet ro	Efeito	Efeito Medido	Valo r	Unid ade	Referênci a
Composto	Especies	Aivo	po	to	ses	10	Lieito	Eleito Medido	1	aue	а
	Mus musculus	Fígad o	15	Se m sub stra to Nã	2	LOEL	Cresci	Razão do peso do órgão vs corpo	100	mg/k g	Biochem. Pharmacol .21(7): 1025-1029
	Mus musculus	Órgã o	3	o rep ort ado Nã	2	LOEL	Cresci mento	Peso	50	mg/k	Pestic. Biochem. Physiol.19:23-30
	Mus musculus	Fígad o	203	o rep ort ado Nã	2	LOEL	Cresci mento	Peso	500	ppm	Carcinoge nesis20(6): 1115-1120
	Mus musculus	Fígad o	175	o rep ort ado Nã	2	LOEL	Cresci mento	Peso	500	ppm	Carcinoge nesis20(6) : 1115- 1120
	Mus musculus	Fígad o Orga	175	o rep ort ado Nã	2	LOEL	Cresci mento	Peso	500	ppm	Carcinoge nesis20(6): 1115-1120
	Mus musculus	nism o inteir o	175	o rep ort ado Se	2	LOEL	Cresci mento	Peso	500	ppm	Carcinoge nesis20(6) : 1115- 1120
	Mus musculus	Fígad o	15	m sub stra to Se m	2	NOEL	Bioquí mico	6- fosfogluconato desidrogenase	100	mg/k g	Biochem. Pharmacol .21(7): 1025-1029 Toxicol. Appl.
	Mus musculus	Sang ue	808 33	sub stra to Se m	2	NOEL	Bioquí mico	Acetilcolineste rase	100	mg/k g	Pharmacol .87(3): 389-392 Toxicol. Appl.
	Mus musculus	Céreb ro	808 33	sub stra to Se m	2	NOEL	Bioquí mico	Acetilcolineste rase	100	mg/k g	Pharmacol .87(3): 389-392 Toxicol. Appl.
	Mus musculus	Fígad o	808 33	sub stra to Se	2	NOEL	Bioquí mico	Acetilcolineste rase	100	mg/k g	Pharmacol .87(3): 389-392
	Mus musculus	Fígad o	15	m sub stra to Se	2	NOEL	Bioquí mico	Glicose 6 fosfato desidrogenase	100	mg/k g	Biochem. Pharmacol .21(7): 1025-1029
	Mus musculus	Fígad o	15	m sub stra to Se m	2	NOEL	Bioquí mico	Glicose 6 fosfato	100	mg/k g	Biochem. Pharmacol .21(7): 1025-1029 Toxicol. Appl.
	Mus musculus	Fígad o	808 33	sub stra to	2	NOEL	Bioquí mico	Glutationa S- transferase	100	mg/k g	Pharmacol .87(3): 389-392

organismos tel		Orgã									
Composto	Espécies	o Alvo	Tem po	io	Do ses	Parâmet ro	Efeito	Efeito Medido	Valo r	Unid ade	Referênci a
	Mus musculus	Céreb ro	808 33	Se m sub stra to	2	NOEL	Bioquí mico	Malation carboxilesteras e	100	mg/k g	Toxicol. Appl. Pharmacol .87(3): 389-392
	Mus musculus	Fígad o	15	Se m sub stra to Se	2	NOEL	Bioquí mico	NADPH citocromo C redutase	100	mg/k g	Biochem. Pharmacol .21(7): 1025-1029
	Mus musculus	Fígad o	15	m sub stra to Se	2	NOEL	Bioquí mico	NADH citocromo C redutase	100	mg/k g	Biochem. Pharmacol .21(7): 1025-1029
	Mus musculus	Fígad o	3	m sub stra to Se	2	NOEL	Bioquí mico	Citocromo P450	100	mg/k g	Gen. Pharmacol .11(5): 429-435
	Mus musculus	Fígad o	3	m sub stra to Se	2	NOEL	Bioquí mico	Citocromo P450	100	mg/k g	Gen. Pharmacol .11(5): 429-435
	Mus musculus	Fígad o	3	m sub stra to Se	2	NOEL	Bioquí mico	Citocromo P450	100	mg/k g	Gen. Pharmacol .11(5): 429-435
	Mus musculus	Fígad o	3	m sub stra to Se	2	NOEL	Bioquí mico	Citocromo P450	100	mg/k g	Gen. Pharmacol .11(5): 429-435
	Mus musculus	Fígad o	3	m sub stra to Se	2	NOEL	Bioquí mico	Citocromo P450	100	mg/k g	Gen. Pharmacol .11(5): 429-435
	Mus musculus	Fígad o	3	m sub stra to Se	2	NOEL	Bioquí mico	Citocromo P450	100	mg/k g	Gen. Pharmacol .11(5): 429-435
	Mus musculus	Fígad o	3	m sub stra to Se	2	NOEL	Bioquí mico	P-nitroanisol O-desmetilase	100	mg/k g	Gen. Pharmacol .11(5): 429-435
	Mus musculus	Fígad o	3	m sub stra to Nã	2	NOEL	Bioquí mico	P-nitroanisol O-desmetilase	100	mg/k g	Gen. Pharmacol .11(5): 429-435
	Mus musculus	Fígad o	175	o rep ort ado Nã	2	NOEL	Cresci mento	Razão do peso do órgão vs corpo	500	ppm	Carcinoge nesis20(6) : 1115- 1120
	Mus musculus	Não report ado Não	175	o rep ort ado Nã	2	NOEL	Mortal idade	Sobrevivência	500	ppm	Carcinoge nesis20(6) : 1115- 1120 Carcinoge
	Mus musculus	report	175	o rep	2	NOEL	Mortal idade	Sobrevivência	500	ppm	nesis20(6) : 1115-

		Orgã	Tem	Ma	Do	Parâmet			Valo	Unid	Referênci
Composto	Espécies	o Alvo	po	io	ses	ro Paramet	Efeito	Efeito Medido		ade	a
				ort ado							1120
				ado Nã							
				0							Carcinoge
	Mus	Não report		rep ort			Mortal				nesis20(6) : 1115-
	musculus	ado	175	ado	2	NOEL	idade	Sobrevivência	500	ppm	1120
				Nã o							Carcinoge
		Não		rep							nesis20(6)
	Mus musculus	report ado	203	ort ado	2	NOEL	Mortal idade	Sobrevivência	500	ppm	: 1115- 1120
				Nã						rr	
				o rep							Carcinoge nesis20(6)
	Mus	Fígad	155	ort	2	NOEL	Cresci	T.	5 00		: 1115-
	musculus	o Orga	175	ado Nã	2	NOEL	mento	Peso	500	ppm	1120
		nism		0							Carcinoge
	Mus	o inteir		rep ort			Cresci				nesis20(6) : 1115-
	musculus	0	203	ado	2	NOEL	mento	Peso	500	ppm	1120
		Orga nism		Nã o							Carcinoge
	Mus	o inteir		rep ort			Cresci				nesis20(6) : 1115-
	musculus	o O	175	ado	2	NOEL	mento	Peso	500	ppm	1120
		Orga nism		Nã o							Carcinoge
		0		rep							nesis20(6)
	Mus musculus	inteir o	175	ort ado	2	NOEL	Cresci mento	Peso	500	nnm	: 1115- 1120
	muscutus	U	175	Se	2	NOLL	mento	1 050	300	ppm	1120
				m sub							Toxicol.
	Rattus			stra			Bioquí			mg/k	Lett.180(1
	norvegicus	Soro	14	to Se	2	LOEC	mico	Tiroxina	75	g/d): 38-45
				m							
	Rattus			sub stra			Bioquí			mg/k	Toxicol. Lett.180(1
	norvegicus	Soro	14	to	2	LOEC	mico	Tirotropina	75	g/d): 38-45
				Se m							Biochem.
	D	E/ 1		sub			D' /	6-		0/	Pharmacol
	Rattus norvegicus	Fígad o	15	stra to	2	LOEL	Bioquí mico	fosfogluconato desidrogenase	0.20	% w/w	.21(7): 1025-1029
				Se				C			Diagham
				m sub							Biochem. Pharmacol
	Rattus norvegicus	Fígad o	15	stra to	2	LOEL	Bioquí mico	Aminopirina n-desmetilase	0.20	% w/w	.21(7): 1025-1029
	norvegicus	U	13	Se	2	LOEL	ппсо	n-desinethase	0.20	W/W	Drug
				m sub							Metab. Dispos.35
	Rattus	Fígad		stra			Celula	CYP2B1/2		mg/k	(6): 995-
	norvegicus	0	4	to Se	2	LOEL	r	mRNA	80	g	1000
				m							Biochem.
	Rattus	Fígad		sub stra			Bioquí	Glicose 6		%	Pharmacol .21(7):
	norvegicus	0	15	to	2	LOEL	mico	fosfato	0.20	w/w	1025-1029
	Rattus	Não report		Cul tur			Cresci	Alteração			Experienti a44(10):
	norvegicus	ado	2	a	6	LOEL	mento	morfológica	300	ug/ml	833-840
	Rattus	Fígad		Se m			Bioquí	Lactato		%	Biochem. Pharmacol
	norvegicus	o	15	sub	2	LOEL	mico	desidrogenase	0.20	w/w	.21(7):

0150	msmos te	11001100	Orgã									
	Composto	Espécies	o Alvo	Tem po	Me io	Do ses	Parâmet ro	Efeito	Efeito Medido	Valo r	Unid ade	Referênci a
					stra to							1025-1029
		Rattus norvegicus	Tronc o	2	Cul tur a Se	6	LOEL	Cresci mento	Comprimento	1000	ug/ml	Experienti a44(10): 833-840
		Rattus norvegicus	Fígad o	15	m sub stra to Se	2	LOEL	Bioquí mico	NADPH citocromo C redutase	0.20	% w/w	Biochem. Pharmacol .21(7): 1025-1029
		Rattus norvegicus	Fígad o	14	m sub stra to Se	2	LOEL	Cresci mento	Razão do peso do órgão vs corpo	75	mg/k g/d	Toxicol. Lett.180(1): 38-45
		Rattus norvegicus	Fígad o	15	m sub stra to Se	2	LOEL	Cresci mento	Razão do peso do órgão vs corpo	0.20	% w/w	Biochem. Pharmacol .21(7): 1025-1029
		Rattus norvegicus	Tireó ide	14	m sub stra to Se	2	LOEL	Cresci mento	Razão do peso do órgão vs corpo	75	mg/k g/d	Toxicol. Lett.180(1): 38-45
		Rattus norvegicus	Bile	14	m sub stra to Se	2	LOEL	Bioquí mico	Tiroxina	75	mg/k g/d	Toxicol. Lett.180(1): 38-45
		Rattus norvegicus	Fígad o	14	m sub stra to Se	2	LOEL	Bioquí mico	UDP glucuronil transferase	75	mg/k g/d	Toxicol. Lett.180(1): 38-45
		Rattus norvegicus	Fígad o	14	m sub stra to Se m	2	NOEL	Bioquí mico	Ácido biliar	75	mg/k g/d	Toxicol. Lett.180(1): 38-45 Drug Metab.
		Rattus norvegicus	Fígad o	4	sub stra to Se	2	NOEL	Celula r	CYP2B1/2 mRNA	80	mg/k g	Dispos.35 (6): 995- 1000
		Rattus norvegicus	Bile	14	m sub stra to Se	2	NOEL	Fisioló gico	Taxa de excressão	75	mg/k g/d	Toxicol. Lett.180(1): 38-45
		Rattus norvegicus	Bile	14	m sub stra to Se	2	NOEL	Fisioló gico	Taxa de excressão	75	mg/k g/d	Toxicol. Lett.180(1): 38-45
		Rattus norvegicus	Fígad o	15	m sub stra to Se	2	NOEL	Bioquí mico	Glicose 6 fosfato desidrogenase	0.20	% w/w	Biochem. Pharmacol .21(7): 1025-1029
		Rattus norvegicus	Fígad o	15	m sub stra to Se	2	NOEL	Bioquí mico	NADH citocromo C redutase	0.20	% w/w	Biochem. Pharmacol .21(7): 1025-1029 Toxicol.
		Rattus norvegicus	Bile	14	m sub	2	NOEL	Bioquí mico	Tiroxina	75	mg/k g/d	Lett.180(1): 38-45

organismos ter		Orgã									
Composto	Espécies	o Alvo	Tem po	Me io	Do ses	Parâmet ro	Efeito	Efeito Medido	Valo r	Unid ade	Referênci a
				stra to							
				Se							
				m							Tovicol
	Rattus			sub stra			Bioquí			mg/k	Toxicol. Lett.180(1
	norvegicus	Bile	14	to Se	2	NOEL	mico	Tiroxina	75	g/d): 38-45
				m							Carcinoge
	Rattus	Fígad	182.	sub stra			Bioquí				nesis11(11): 1899-
	norvegicus	0	64	to Se	2	NOEL	mico	Triglicerídeos	0.05	%	1902
				m							
	Rattus			sub stra			Bioquí			mg/k	Toxicol. Lett.180(1
	norvegicus	Bile	14	to Se	2	NOEL	mico	Triiodotironina	75	g/d): 38-45
				m							
	Rattus			sub stra			Bioquí			mg/k	Toxicol. Lett.180(1
	norvegicus	Soro	14	to	2	NOEL	mico	Triiodotironina	75	g/d): 38-45
		Orga nism		Se m							
	Rattus	o inteir		sub stra			Cresci			mg/k	Toxicol. Lett.180(1
	norvegicus	0	14	to	2	NOEL	mento	Peso	75	g/d): 38-45
				Se							Bull. Environ.
		Não		m sub			Comp				Contam. Toxicol.5(
	Gallus	report		stra	_		ortame	Tempo de		mg/k	6): 569-
	domesticus	ado	3	to	2	LOEL	nto	sono	50	g	576 Bull.
				Se m							Environ. Contam.
		Não		sub			Comp	_			Toxicol.5(
	Gallus domesticus	report ado	3	stra to	2	LOEL	ortame nto	Tempo de sono	50	mg/k g	6): 569- 576
				Se							Bull. Environ.
				m			_				Contam.
	Gallus	Não report		sub stra			Comp ortame	Tempo de		mg/k	Toxicol.5(6): 569-
	domesticus	ado	3	to	2	LOEL	nto	sono	50	g	576 Bull.
				Se							Environ.
		Não		m sub			Comp				Contam. Toxicol.5(
	Gallus domesticus	report ado	3	stra to	2	NOEL	ortame nto	Tempo de sono	50	mg/k	6): 569- 576
	aomesiicus	auo	3	Se	2	NOEL	по	SOHO	30	g	
				m sub							Int. J. Toxicol.2
	Rattus	Fígad	1.4	stra	2	LOEI	Bioquí		0.1	%	2(4): 287-
	norvegicus	О	14	to Se	2	LOEL	mico	P450 2B1/2	0.1	w/v	295
				m sub							Int. J. Toxicol.2
	Rattus	Fígad	1.4	stra	2	LOFI	Bioquí	2 4 2 1	0.1	%	2(4): 287-
	norvegicus	О	14	to Se	2	LOEL	mico	3A21	0.1	w/v	295 Agric.
				m sub							Biol. Chem.46(
	Rattus .	Fígad	2	stra	_	1.051	Bioquí	Anilina	7.5	mg/k	1): 215-
	norvegicus	0	3	to	2	LOEL	mico	hidroxilase	75	g	220

organismos tel	11001100	Orgã									
Composto	Espécies	o Alvo	Tem po	io	Do ses	Parâmet ro	Efeito	Efeito Medido	Valo r	Unid ade	Referênci a
	Rattus norvegicus	Fígad o	4	Se m sub stra to Se	2	LOEL	Bioquí mico	Anilina hidroxilase	75	mg/k g/d	Biochem. Pharmacol .22:1463- 1476
	Rattus norvegicus	Fígad o	4	m sub stra to Se m	2	LOEL	Bioquí mico	Anilina hidroxilase	75	mg/k g/d	Biochem. Pharmacol .22:1463- 1476 Agric. Biol.
	Rattus norvegicus	Fígad o	3	sub stra to Se	2	LOEL	Bioquí mico	Aminopirina n-desmetilase	75	mg/k g	Chem.46(1): 215- 220
	Rattus norvegicus	Fígad o	4	m sub stra to Se	2	LOEL	Bioquí mico	Hexobarbital hidroxilase	75	mg/k g/d	Biochem. Pharmacol .22:1463- 1476
	Rattus norvegicus	Fígad o	4	m sub stra to Se m	2	LOEL	Bioquí mico	Hexobarbital hidroxilase	75	mg/k g/d	Biochem. Pharmacol .22:1463- 1476 Agric. Biol.
	Rattus norvegicus	Fígad o	3	sub stra to Se	2	LOEL	Bioquí mico	Citocromo P450	75	mg/k g	Chem.46(1): 215- 220
	Rattus norvegicus	Tireó ide	14	m sub stra to Se	2	LOEL	Celula r	Antígeno nuclear de proliferação celular	0.1	% w/v	Int. J. Toxicol.2 2(4): 287- 295
	Rattus norvegicus	Fígad o	14	m sub stra to Se	2	LOEL	Cresci mento	Razão do peso do órgão vs corpo	0.1	% w/v	Int. J. Toxicol.2 2(4): 287- 295
	Rattus norvegicus	Soro	14	m sub stra to Se	2	LOEL	Bioquí mico	Tiroxina	0.1	% w/v	Int. J. Toxicol.2 2(4): 287- 295
	Rattus norvegicus	Soro	14	m sub stra to Se	2	LOEL	Bioquí mico	Triiodotironina	0.1	% w/v	Int. J. Toxicol.2 2(4): 287- 295
	Rattus norvegicus	Fígad o	14	m sub stra to Se	2	LOEL	Bioquí mico	UDP- glucoroniltrans ferase	0.1	% w/v	Int. J. Toxicol.2 2(4): 287- 295
	Rattus norvegicus	Não report ado	14	m sub stra to Se	2	NOEL	Comp ortame nto	Alimentação	0.1	% w/v	Int. J. Toxicol.2 2(4): 287- 295
	Rattus norvegicus	Tireó ide	14	m sub stra to Se	2	NOEL	Celula r	Altura	0.1	% w/v	Int. J. Toxicol.2 2(4): 287- 295 Int. J.
	Rattus norvegicus	Fígad o	14	m sub	2	NOEL	Bioquí mico	Proteína microssomal	0.1	% w/v	Toxicol.2 2(4): 287-

		Orgã	Tem	Ma	Do	Danômat			Vala	IIn:a	Dofonômo
Composto	Espécies	o Alvo	po	io	ses	Parâmet ro	Efeito	Efeito Medido	Valo r	Unid ade	Referênci a
	•		•	stra							295
				to Se							
				m							Int. J.
	Rattus			sub stra			Bioquí			%	Toxicol.2 2(4): 287-
	norvegicus	Soro	14	to	2	NOEL	mico	Tirotropina	0.1	w/v	295
				Se m							Int. J.
	Datter	D/ 1		sub			D:/	UDP-		0/	Toxicol.2
	Rattus norvegicus	Fígad o	14	stra to	2	NOEL	Bioquí mico	glucoroniltrans ferase	0.1	% w/v	2(4): 287- 295
				Se m							
	D	F/ 1		sub			0.1.1			а	Mutat.
	Rattus norvegicus	Fígad o	2	stra to	3	NOEL	Celula r	Viabilidade	75	mg/k g	Res.320(3): 189-205
				Se m							
				sub							Mutat.
	Rattus norvegicus	Fígad o	1	stra to	3	NOEL	Celula r	Viabilidade	75	mg/k g	Res.320(3): 189-205
				Se						6	,,,
				m sub							Mutat.
	Rattus norvegicus	Fígad o	162 5	stra to	3	NOEL	Celula r	Viabilidade	75	mg/k g	Res.320(3): 189-205
	norvegicus	Orga	5	Se	5	TOLL	•	V Indifficulty	,,,	ь	
		nism o		m sub							Int. J. Toxicol.2
	Rattus norvegicus	inteir o	14	stra to	2	NOEL	Cresci mento	Peso	0.1	% w/v	2(4): 287- 295
	norvegicus	O	14	ιο	2	NOEL	mento	1 030	0.1	W/ V	2)3
Fluoxetina											
											In Vitro Cell. Dev.
~. ~ -				Cul							Biol.,
CAS: 54910893/ 56296787	Hypericum perforatum	Haste	35	tur a	4	LOEL	Bioquí mico	Melatonina	40	umol/ L	Plant37(6): 786-793
											In Vitro Cell. Dev.
		Germ		Cul							Biol.,
	Hypericum perforatum	inaçã o	35	tur a	4	LOEL	Cresci mento	Quantidade	40	umol/ L	Plant37(6): 786-793
	1 3										In Vitro
				Cul							Cell. Dev. Biol.,
	Hypericum perforatum	Haste	35	tur a	4	NOEL	Bioquí mico	Ácido indolacético	40	umol/ L	Plant37(6): 786-793
	perjoranin	Traste	55	u		TOLL	inico	madacetico	10	L	In Vitro
				Cul							Cell. Dev. Biol.,
	Hypericum perforatum	Raiz	35	tur	4	NOEL	Cresci mento	Número de raízes	40	umol/ L	Plant37(6): 786-793
	репогашт	Kaiz	33	a	4	NOEL	memo	Taizes	40	L	In Vitro
		Germ		Cul							Cell. Dev. Biol.,
	Hypericum	inaçã	25	tur	4	NOEL	Cresci	04: 1- 1-	20	umol/	Plant37(6)
	perforatum	О	35	a	4	NOEL	mento	Quantidade	20	L	: 786-793 In Vitro
				Cul							Cell. Dev. Biol.,
	Hypericum	17	25	tur		NOEL	Bioquí	G	40	umol/	Plant37(6)
	perforatum	Haste	35	a Cul	4	NOEL	mico	Serotonina	40	L	: 786-793 In Vitro
	Hypericum perforatum	Hasta	35	tur	4	NOEL	Bioquí mico	Triptamina	40	umol/ L	Cell. Dev. Biol.,
	perjoratum	Haste	<i>55</i>	a	4	NOEL	mico	mptamma	4∪	L	DIOL.,

organisn	105 00	11050105	Orgã									
Cor	nnosto	Espécies	o Alvo	Tem po	Me io	Do ses	Parâmet ro	Efeito	Efeito Medido	Valo r	Unid ade	Referênci a
Col	nposto	Hypericum perforatum	Haste		Cul tur a	4	NOEL	Bioquí mico	Triptofano	40	umol/	Plant37(6) : 786-793 In Vitro Cell. Dev. Biol., Plant37(6) : 786-793
		Caenorhabd itis elegans	Não report ado	.006	Ág ar	2	LOEC	Comp ortame nto	Movimento	0.5	mg/m l	Dev. Neurobiol. 67(2): 189-204 Comp. Biochem. Physiol. C Toxicol.
		Schistosoma mansoni	Músc ulo	.083	Cul tur a Se m	3	LOEL	Fisioló gico	Taxa de concentração	0.000 03	M	Pharmacol .64(1): 123-127
		Caenorhabd itis elegans	Não report ado	.020 8	sub stra to Se m	2	LOEL	Comp ortame nto	Movimento	75	ug/ml	Neuron 26:619- 631
		Caenorhabd itis elegans	ado	.020 8	sub stra to	2	LOEL	Comp ortame nto	Movimento	75	ug/ml	Neuron 26:619- 631 J.
		Caenorhabd itis elegans	Não report ado	.062 5	Cul tur a	6	LOEL	Repro dução	Prole	1	mg/m l	Neurosci. 15(10): 6975-6985 Dev.
		Caenorhabd itis elegans	Não report ado	.006 9	Ág ar	2	NOEC	Comp ortame nto	Movimento	0.5	mg/m l	Neurobiol. 67(2): 189-204 J.
		Caenorhabd itis elegans	Músc ulo	.031	Cul tur a	2	NOEL	Fisioló gico	Taxa de concentração	1	mg/m l	Neurosci. 15(10): 6975-6985 Comp. Biochem. Physiol. C Toxicol.
		Schistosoma mansoni	Músc ulo	.083	Cul tur a Se m	3	NOEL	Fisioló gico	Taxa de concentração	0.000 01	M	Pharmacol .64(1): 123-127
		Caenorhabd itis elegans	Não report ado	.020 8	sub stra to Se m	2	NOEL	Comp ortame nto	Movimento	75	ug/ml	Neuron 26:619- 631
		Caenorhabd itis elegans	Não report ado	.020 8	sub stra to Se m	2	NOEL	Comp ortame nto	Movimento	75	ug/ml	Neuron 26:619- 631
		Caenorhabd itis elegans	Não report ado	.020 8	sub stra to Se m	2	NOEL	Comp ortame nto	Movimento	75	ug/ml	Neuron 26:619- 631
		Caenorhabd itis elegans	Não report ado	.020 8	sub stra to	2	NOEL	Comp ortame nto	Movimento	75	ug/ml	Neuron 26:619- 631

organismos te		Orgã	_		_						
Composto	Espécies	o Alvo	Tem po	Me io	Do ses	Parâmet ro	Efeito	Efeito Medido	Valo r	Unid ade	Referênci a
				Se							
	Caenorhabd itis elegans	Não report ado	.020 8	m sub stra to Se m	2	NOEL	Comp ortame nto	Movimento	75	ug/ml	Neuron 26:619- 631
	Caenorhabd itis elegans	Não report ado	.020 8	sub stra to	2	NOEL	Comp ortame nto	Movimento	75	ug/ml	Neuron 26:619- 631 J.
	Caenorhabd itis elegans	Não report ado	.062 5	Cul tur a	2	NOEL	Repro dução	Prole	1	mg/m l	Neurosci. 15(10): 6975-6985 J.
	Caenorhabd itis elegans	Não report ado	.062 5	Cul tur a	2	NOEL	Repro dução	Prole	1	mg/m l	Neurosci. 15(10): 6975-6985 J.
	Caenorhabd itis elegans	Não report ado	.062 5	Cul tur a	6	NOEL	Repro dução	Prole	1	mg/m l	Neurosci. 15(10): 6975-6985 J.
	Caenorhabd itis elegans	Não report ado	.062 5	Cul tur a	2	NOEL	Repro dução	Prole	1	mg/m l	Neurosci. 15(10): 6975-6985 J.
	Caenorhabd itis elegans	Não report ado	.006 9	Ág ar	2	LOEL	Fisioló gico	Imobilidade	0.22	mM	Neurosci. 21(16): 5871-5884 J.
	Caenorhabd itis elegans	Não report ado	.006 9	Ág ar	2	LOEL	Fisioló gico	Imobilidade	0.22	mM	Neurosci. 21(16): 5871-5884 J.
	Caenorhabd itis elegans	Não report ado	.006 9	Ág ar	2	NOEL	Fisioló gico	Imobilidade	0.22	mM	Neurosci. 21(16): 5871-5884 J.
	Caenorhabd itis elegans	Não report ado	.006 9	Ág ar	2	NOEL	Fisioló gico	Imobilidade	0.22	mM	Neurosci. 21(16): 5871-5884 J.
	Caenorhabd itis elegans	Não report ado	.006 9	Ág ar	2	NOEL	Fisioló gico	Imobilidade	0.22	mM	Neurosci. 21(16): 5871-5884 J.
	Caenorhabd itis elegans	Não report ado	.006 9	Ág ar	2	NOEL	Fisioló gico	Imobilidade	0.22	mM	Neurosci. 21(16): 5871-5884 J.
	Caenorhabd itis elegans	Não report ado	.006 9	Ág ar	2	NOEL	Fisioló gico	Imobilidade	0.22	mM	Neurosci. 21(16): 5871-5884 J.
	Caenorhabd itis elegans	Não report ado	.006 9	Ág ar	2	NOEL	Fisioló gico	Imobilidade	0.22	mM	Neurosci. 21(16): 5871-5884
	Microtus ochrogaster	Córte x fronta l	9	Se m sub stra to	2	LOEL	Bioquí mico	Ácido 5- hidroxindolacé tico	10	mg/k	Ph.D. Thesis, University of Massachu setts Amherst, MA:120 p.

organismos ter		Orgã o	Tem			Parâmet	-	70. 1	Valo	Unid	Referênci
Composto	Espécies	Alvo	po	io Se	ses	ro	Efeito	Efeito Medido	r	ade	Ph.D. Thesis, University of Massachu
	Microtus ochrogaster	Hipot álam o	9	m sub stra to	2	LOEL	Bioquí mico	Ácido 5- hidroxindolacé tico	10	mg/k g	setts Amherst, MA:120 p. Ph.D. Thesis, University
	Microtus ochrogaster	Córte x fronta l	9	Se m sub stra to	2	LOEL	Bioquí mico	Ácido 5- hidroxindolacé tico	10	mg/k g	of Massachu setts Amherst, MA:120 p. Ph.D. Thesis, University of
	Microtus ochrogaster	Hipot álam o	9	Se m sub stra to	2	LOEL	Bioquí mico	Ácido 5- hidroxindolacé tico	10	mg/k g	Massachu setts Amherst, MA:120 p. Ph.D. Thesis, University of
	Microtus ochrogaster	Córte x fronta l	9	Se m sub stra to	2	LOEL	Bioquí mico	Razão entre 5HT e ácido 5- hidroxindolacé tico	10	mg/k g	Massachu setts Amherst, MA:120 p. Ph.D. Thesis, University
	Microtus ochrogaster	Hipot álam o	9	Se m sub stra to	2	LOEL	Bioquí mico	Razão entre 5HT e ácido 5- hidroxindolacé tico	10	mg/k g	of Massachu setts Amherst, MA:120 p. Ph.D. Thesis, University
	Microtus ochrogaster	Córte x fronta l	9	Se m sub stra to	2	LOEL	Bioquí mico	Razão entre 5HT e ácido 5- hidroxindolacé tico	10	mg/k g	of Massachu setts Amherst, MA:120 p. Ph.D. Thesis, University
	Microtus ochrogaster	Hipot álam o	9	Se m sub stra to Se m	2	LOEL	Bioquí mico	Razão entre 5HT e ácido 5- hidroxindolacé tico Razão entre	10	mg/k g	of Massachu setts Amherst, MA:120 p.
	Microtus ochrogaster	Hipot álam o	56	sub stra to	2	LOEL	Bioquí mico	5HT e ácido 5- hidroxindolacé tico	6	mg/k g	Horm. Behav.32: 184-191

organismos te	11001100	Orgã									
Composto	Espécies	o Alvo	Tem po	Me io	Do ses	Parâmet ro	Efeito	Efeito Medido	Valo r	Unid ade	Referênci a
	1			Se							
	Microtus ochrogaster	Não report ado	56	m sub stra to	2	LOEL	Comp ortame nto	Agressividade	6	mg/k g	Horm. Behav.32: 184-191
		Não		Se m sub			Comp				Horm.
	Microtus ochrogaster	report ado	56	stra to	2	LOEL	ortame nto	Agressividade	6	mg/k g	Behav.32: 184-191 Ph.D. Thesis, University
	Microtus ochrogaster	Não report ado	9	Se m sub stra to Se m	2	LOEL	Comp ortame nto	Abordagem	10	mg/k g	of Massachu setts Amherst, MA:120 p.
	Microtus ochrogaster	Não report ado	56	sub stra to Se m	2	LOEL	Comp ortame nto	Ataque	6	mg/k g	Horm. Behav.32: 184-191
	Microtus ochrogaster	Não report ado	56	sub stra to Se	2	LOEL	Repro dução	Cuidado parental	6	mg/k g	Horm. Behav.32: 184-191
	Microtus ochrogaster	Não report ado	56	m sub stra to	2	LOEL	Repro dução	Cuidado parental	6	mg/k g	Horm. Behav.32: 184-191 Ph.D. Thesis, University
	Microtus ochrogaster	Não report ado	9	Se m sub stra to Se	2	LOEL	Repro dução	Cuidado parental	10	mg/k	of Massachu setts Amherst, MA:120 p.
	Arvicanthis ansorgei	Não report ado	10	m sub stra to Se	2	LOEL	Comp ortame nto	Movimento	10	mg/k g	Exp. Neurol.21 0(2): 501- 513
	Arvicanthis ansorgei	Não report ado	10	m sub stra to Se	2	LOEL	Comp ortame nto	Movimento	10	mg/k g	Exp. Neurol.21 0(2): 501- 513
	Arvicanthis ansorgei	Não report ado	10	m sub stra to Se	2	LOEL	Comp ortame nto	Movimento	10	mg/k g	Exp. Neurol.21 0(2): 501- 513
	Arvicanthis ansorgei	Não report ado	10	m sub stra to Se	2	LOEL	Comp ortame nto	Movimento	10	mg/k g	Exp. Neurol.21 0(2): 501- 513
	Arvicanthis ansorgei	Não report ado	10	m sub stra to	2	LOEL	Celula r	ND1M	10	mg/k g	Exp. Neurol.21 0(2): 501- 513

J	rrestres	Orgã									
Composto	Espécies	o Alvo	Tem po	Me io	Do ses	Parâmet ro	Efeito	Efeito Medido	Valo r	Unid ade	Referênci a
				Se m							Exp.
	Arvicanthis	Não report		sub stra			Celula			mg/k	Neurol.21 0(2): 501-
	ansorgei	ado	10	to	2	LOEL	r	ND2M	10	g g	513
				Se m				Proteína homologa ao			Exp.
	Arvicanthis	Não report		sub stra			Celula	ritmo cicardiano 1		mg/k	Neurol.21 0(2): 501-
	ansorgei	ado	10	to	2	LOEL	r	mRNA	10	g g	513
				Se m				Proteína homologa ao			Exp.
	Arvicanthis	Não report		sub stra			Celula	ritmo cicardiano 2		mg/k	Neurol.21 0(2): 501-
	ansorgei	ado	10	to Se	2	LOEL	r	mRNA	10	g	513
				m							Exp.
	Arvicanthis	Não report		sub stra			Celula	Receptor nuclear ROR-		mg/k	Neurol.21 0(2): 501-
	ansorgei	ado	10	to	2	LOEL	r	beta mRNA	10	g	513 Ph.D.
											Thesis,
											University of
				Se m							Massachu setts
	Microtus	Não report		sub stra			Comp ortame			mg/k	Amherst, MA:120
	ochrogaster	ado	9	to	2	LOEL	nto	SMEL	10	g g	p.
		Córte		Se m				Razão entre			
	Microtus	x fronta		sub stra			Bioquí	5HT e ácido 5- hidroxindolacé		mg/k	Horm. Behav.32:
	ochrogaster	1	56	to Se	2	NOEL	mico	tico	6	g	184-191
		Nião		m			Comm				Пошт
	Microtus	Não report		sub stra			Comp ortame			mg/k	Horm. Behav.32:
	ochrogaster	ado	56	to Se	2	NOEL	nto	Agressividade	6	g	184-191
		Não		m sub			Comp				Horm.
	Microtus ochrogaster	report ado	56	stra to	2	NOEL	ortame nto	Agressividade	6	mg/k	Behav.32: 184-191
	ochrogusier	ado	30	Se	2	NOLL	по	Agressividade	U	g	104-171
		Não		m sub			Comp				Horm.
	Microtus ochrogaster	report ado	56	stra to	2	NOEL	ortame nto	Agressividade	6	mg/k g	Behav.32: 184-191
	Ü			Se m							
	Microtus	Não		sub			Comp			m o/lr	Horm.
	ochrogaster	report ado	56	stra to	2	NOEL	ortame nto	Agressividade	6	mg/k g	Behav.32: 184-191
				Se m							
	Microtus	Não report		sub stra			Comp ortame			mg/k	Horm. Behav.32:
	ochrogaster	ado	56	to Se	2	NOEL	nto	Agressividade	6	g	184-191
		NI~		m			C.				11
	Microtus	Não report		sub stra			Comp ortame			mg/k	Horm. Behav.32:
	ochrogaster	ado	56	to Se	2	NOEL	nto	Agressividade	6	g	184-191
	Microtus	Não report		m sub			Comp ortame			mg/k	Horm. Behav.32:
	ochrogaster	ado	56	stra	2	NOEL	nto	Agressividade	6	g	184-191

organ	1511105 101	11001100	Orgã									
	Comment	Em ést :	0	Tem		Do	Parâmet	T-C- *4 -	Treates No. 11.1	Valo	Unid	Referênci
	Composto	Especies	Alvo	po	to	ses	ro	Efeito	Efeito Medido	r	ade	a
					••							
					Se							
			Não		m			Comp				Horm.
		Microtus	report		sub stra			Comp ortame			mg/k	Behav.32:
		ochrogaster	ado	56	to	2	NOEL	nto	Agressividade	6	g	184-191
					Se m							
			Não		sub			Comp				Horm.
		Microtus	report	5.0	stra	2	NOEL	ortame	A A	_	mg/k	Behav.32:
		ochrogaster	ado	56	to Se	2	NOEL	nto	Agressividade	6	g	184-191
			3.74		m			~				
		Microtus	Não report		sub stra			Comp ortame			mg/k	Horm. Behav.32:
		ochrogaster	ado	56	to	2	NOEL	nto	Agressividade	6	g g	184-191
												Ph.D.
												Thesis, University
												of
					Se m							Massachu setts
			Não		sub			Comp				Amherst,
		Microtus	report	0	stra	2	NOEL	ortame	A A	10	mg/k	MA:120
		ochrogaster	ado	9	to Se	2	NOEL	nto	Agressividade	10	g	p.
					m							
		Microtus	Não report		sub stra			Comp ortame			mg/k	Horm. Behav.32:
		ochrogaster	ado	56	to	2	NOEL	nto	Agressividade	6	g g	184-191
					Se							
			Não		m sub			Comp				Horm.
		Microtus	report	. .	stra		MOEL	ortame		_	mg/k	Behav.32:
		ochrogaster	ado	56	to Se	2	NOEL	nto	Agressividade	6	g	184-191
					m							
		Microtus	Não		sub			Comp			mg/k	Horm. Behav.32:
		ochrogaster	report ado	56	stra to	2	NOEL	ortame nto	Agressividade	6	g g	184-191
					Se							
			Não		m sub			Comp				Horm.
		Microtus	report		stra			ortame			mg/k	Behav.32:
		ochrogaster	ado	56	to Se	2	NOEL	nto	Agressividade	6	g	184-191
					m							
		M	Não		sub			Comp			Л	Horm.
		Microtus ochrogaster	report ado	56	stra to	2	NOEL	ortame nto	Agressividade	6	mg/k g	Behav.32: 184-191
					Se				8		8	
			Não		m sub			Comp				Horm.
		Microtus	report		stra			ortame			mg/k	Behav.32:
		och rogaster	ado	56	to	2	NOEL	nto	Agressividade	6	g	184-191
					Se m							
			Não		sub			Comp				Horm.
		Microtus ochrogaster	report ado	56	stra to	2	NOEL	ortame nto	Agressividade	6	mg/k σ	Behav.32: 184-191
		ochroguster	auo	50	Se	<u> </u>	NOEL	шо	11g1CSSIVIUAUE	U	g	104-171
			NI~		m			C.				ш
		Microtus	Não report		sub stra			Comp ortame			mg/k	Horm. Behav.32:
		ochrogaster	ado	56	to	2	NOEL	nto	Agressividade	6	g	184-191

organismos tel	ITOSITOS	Orgã									
Composto	Fanécies	o Alvo	Tem po	Me io	Do ses	Parâmet ro	Efeito	Efeito Medido	Valo r	Unid ade	Referênci a
Composio	Especies	AIVO	_po	10	SCS	10	Lietto	Elello Medido	1	auc	Ph.D. Thesis, University
				Se m							of Massachu setts
	Microtus	Não report	0	sub stra	2	NOEL	Comp ortame	A amagairii da da	10	mg/k	Amherst, MA:120
	ochrogaster	ado	9	to Se m	2	NOEL	nto	Agressividade	10	g	p.
	Microtus ochrogaster	Não report ado	56	sub stra to	2	NOEL	Comp ortame nto	Ataque	6	mg/k g	Horm. Behav.32: 184-191
		Não		Se m sub			Comp				Horm.
	Microtus ochrogaster	report ado	56	stra to Se	2	NOEL	ortame nto	Ataque	6	mg/k g	Behav.32: 184-191
	Microtus	Não report		m sub stra			Comp			mg/k	Horm. Behav.32:
	ochrogaster	ado	56	to Se m	2	NOEL	nto	Ataque	6	g	184-191
	Microtus ochrogaster	Não report ado	56	sub stra to	2	NOEL	Comp ortame nto	Mordida	6	mg/k g	Horm. Behav.32: 184-191
		Não		Se m sub			Comp				Horm.
	Microtus ochrogaster	report ado	56	stra to Se	2	NOEL	ortame nto	Mordida	6	mg/k g	Behav.32: 184-191
	Microtus ochrogaster	Não report ado	56	m sub stra to	2	NOEL	Comp ortame nto	Mordida	6	mg/k g	Horm. Behav.32: 184-191
		Não		Se m sub			Comp				Horm.
	Microtus ochrogaster	report ado	56	stra to Se	2	NOEL	ortame nto	Mordida	6	mg/k g	Behav.32: 184-191
	Microtus	Não report ado	56	m sub stra	2	NOEL	Repro dução	Cuidado	6	mg/k	Horm. Behav.32: 184-191
	ochrogaster		30	to Se m	2	NOEL	dução	parental	U	g	
	Microtus ochrogaster	Não report ado	56	sub stra to	2	NOEL	Repro dução	Cuidado parental	6	mg/k g	Horm. Behav.32: 184-191 Ph.D. Thesis,
				Se m							University of Massachu setts
	Microtus ochrogaster	Não report ado	9	sub stra to	2	NOEL	Repro dução	Cuidado parental	10	mg/k g	Amherst, MA:120 p.
	Migratus	Não		Se m sub			Donc-	Cuidede		m∝/I-	Ph.D. Thesis, University
	Microtus ochrogaster	report ado	9	stra to	2	NOEL	Repro dução	Cuidado parental	10	mg/k g	of Massachu

organismos te		Orgã	-			D (***	***	D 0 1
Composto	Espécies	o Alvo	Tem po	Me io	Do ses	Parâmet ro	Efeito	Efeito Medido	Valo r	Unid ade	Referênci a
		. •			~~						setts Amherst, MA:120 p.
											Ph.D. Thesis, University of
		Não		Se m sub							Massachu setts Amherst,
	Microtus ochrogaster	report ado	9	stra to	2	NOEL	Repro dução	Cuidado parental	10	mg/k g	MA:120 p. Ph.D.
				Se							Thesis, University of Massachu
	Microtus	Não report		m sub stra			Repro	Cuidado		mg/k	setts Amherst, MA:120
	ochrogaster	ado	9	to	2	NOEL	dução	parental	10	g	p. Ph.D. Thesis, University of
	Microtus	Não report		Se m sub stra			Comp			mg/k	Massachu setts Amherst, MA:120
	ochrogaster	ado	9	to	2	NOEL	nto	Higiene	10	g	p. Ph.D. Thesis, University of
	Microtus	Não		Se m sub			Comp			/I-	Massachu setts Amherst,
	ochrogaster	report ado	9	stra to	2	NOEL	ortame nto	Higiene	10	mg/k g	p. Ph.D. Thesis, University
		Não		Se m sub			Comp				of Massachu setts Amherst,
	Microtus ochrogaster	report ado	9	stra to	2	NOEL	ortame nto	Higiene	10	mg/k g	MA:120 p. Ph.D. Thesis, University
		Não		Se m sub			Comp				of Massachu setts Amherst,
	Microtus ochrogaster	report ado	9	stra to	2	NOEL	ortame nto	Higiene	10	mg/k g	MA:120 p. Ph.D. Thesis, University
	Maria	Não		Se m sub			Comp				of Massachu setts Amherst,
	Microtus ochrogaster	report ado	9	stra to	2	NOEL	ortame nto	Higiene	10	mg/k g	MA:120 p.

organismos ter		Orgã	_		_						
Composto	Espécies	o Alvo	Tem po	Me io	Do ses	Parâmet ro	Efeito	Efeito Medido	Valo r	Unid ade	Referênci a
ео тр оже	Microtus ochrogaster	Não report ado	9	Se m sub stra to	2	NOEL	Comp ortame nto	Higiene	10	mg/k g	Ph.D. Thesis, University of Massachu setts Amherst, MA:120 p. Ph.D. Thesis, University of
	Microtus ochrogaster	Não report ado	9	Se m sub stra to	2	NOEL	Comp ortame nto	Higiene	10	mg/k g	Massachu setts Amherst, MA:120 p. Ph.D. Thesis, University of
	Microtus ochrogaster	Não report ado	9	Se m sub stra to	2	NOEL	Comp ortame nto	Higiene	10	mg/k g	Massachu setts Amherst, MA:120 p. Ph.D. Thesis, University
	Microtus ochrogaster	Não report ado	9	Se m sub stra to	2	NOEL	Comp ortame nto	Higiene	10	mg/k g	of Massachu setts Amherst, MA:120 p. Ph.D. Thesis, University
	Microtus ochrogaster	Não report ado	9	Se m sub stra to	2	NOEL	Comp ortame nto	Higiene	10	mg/k g	of Massachu setts Amherst, MA:120 p. Ph.D. Thesis, University of
	Microtus ochrogaster	Não report ado	9	Se m sub stra to	2	NOEL	Comp ortame nto	Higiene	10	mg/k g	Massachu setts Amherst, MA:120 p. Ph.D. Thesis, University of
	Microtus ochrogaster	Não report ado	9	Se m sub stra to Se m	2	NOEL	Comp ortame nto	Higiene	10	mg/k g	Massachu setts Amherst, MA:120 p. Exp.
	Arvicanthis ansorgei	Não report ado	10	sub stra to	2	NOEL	Comp ortame nto	Movimento	10	mg/k g	Neurol.21 0(2): 501- 513

Jigui	11511105 10.		Orgã									
	Composto	Espécies	o Alvo	Tem po	Me io	Do ses	Parâmet ro	Efeito	Efeito Medido	Valo r	Unid ade	Referênci a
				1 "	Se							
			3.7~		m			C				Exp.
		Arvicanthis	Não report		sub			Comp ortame			mg/k	Neurol.21 0(2): 501-
		ansorgei	report ado	10	stra to	2	NOEL	nto	Movimento	10	nig/k g	513
					Se	_					ō	
			3.7		m			G				Exp.
		1i	Não		sub			Comp			m a/lr	Neurol.21
		Arvicanthis ansorgei	report ado	10	stra to	2	NOEL	ortame nto	Movimento	10	mg/k g	0(2): 501- 513
		unsonger	uuo	10	Se	_	TOLL	nto	1/10 villiento	10	ь	313
					m							Exp.
		A	Não		sub			Comp			/1-	Neurol.21
		Arvicanthis ansorgei	report ado	10	stra to	2	NOEL	ortame nto	Movimento	10	mg/k g	0(2): 501- 513
		unsongei	uuo	10	Se	_	NOLL	nto	Wiovinicito	10	5	313
					m							Exp.
		4	Não	1.00	sub			Comp			а	Neurol.21
		Arvicanthis ansorgei	report ado	.166 7	stra to	2	NOEL	ortame nto	Movimento	10	mg/k	0(2): 501- 513
		unsorgei	auo	,	Se	2	NOEL	по	Movimento	10	g	313
					m							Exp.
			Não		sub			Comp			_	Neurol.21
		Arvicanthis	report		stra	2	NOEL	ortame	Marrimanta	10	mg/k	0(2): 501-
		ansorgei	ado	7	to Se	2	NOEL	nto	Movimento	10	g	513
					m							Exp.
			Não		sub			Comp				Neurol.21
		Arvicanthis	report	.166	stra	2	NOEL	ortame	M	10	mg/k	0(2): 501-
		ansorgei	ado	7	to Se	2	NOEL	nto	Movimento	10	g	513
					m							Exp.
			Não		sub			Comp				Neurol.21
		Arvicanthis	report	.166	stra	2	NOEL	ortame	M	10	mg/k	0(2): 501-
		ansorgei	ado	7	to Se	2	NOEL	nto	Movimento	10	g	513
					m							Exp.
					sub						_	Neurol.21
		Arvicanthis	Céreb	10	stra	2	NOEL	Celula	NID1M	10	mg/k	0(2): 501-
		ansorgei	ro	10	to Se	2	NOEL	r	ND1M	10	g	513
					m							Exp.
			Não		sub							Neurol.21
		Arvicanthis	report	10	stra	2	NOEL	Celula	ND1M	10	mg/k	0(2): 501-
		ansorgei	ado	10	to Se	2	NOEL	r	NDIM	10	g	513
					m							Exp.
			Não		sub						_	Neurol.21
		Arvicanthis	report ado	10	stra	2	NOEL	Celula r	ND1M	10	mg/k	0(2): 501- 513
		ansorgei	ado	10	to Se	2	NOEL	ľ	NDIM	10	g	313
					m							Exp.
					sub							Neurol.21
		Arvicanthis	Céreb	10	stra	2	NOEL	Celula	NDOM	10	mg/k	0(2): 501-
		ansorgei	ro	10	to Se	2	NOEL	r	ND2M	10	g	513
					m							Exp.
			Não		sub							Neurol.21
		Arvicanthis	report	10	stra	2	NOEL	Celula	ND2M	10	mg/k	0(2): 501-
		ansorgei	ado	10	to Se	2	NOEL	r	Proteína	10	g	513
					m				homologa ao			Exp.
					sub				ritmo			Neurol.21
		Arvicanthis	Céreb	10	stra	2	NODI	Celula	cicardiano 1	10	mg/k	0(2): 501-
		ansorgei	ro Não	10	to Se	2	NOEL	r	mRNA Proteína	10	g	513 Exp.
		Arvicanthis	report		m			Celula	homologa ao		mg/k	Neurol.21
		ansorgei	ado	10	sub	2	NOEL	r	ritmo	10	g	0(2): 501-

Composto Espécies Alvo po o esp ro esp ro Efeito Medido r o o esp ro			Orgã			_						500
Strate	Composto	Espécies	o Alvo				Parâmet ro	Efeito	Efeito Medido	Valo r	Unid ade	Referênci a
Na		•							cicardiano 1			
Arvicanthis report stra change					m				homologa ao			
Microtus		Arvicanthis						Celula			mg/k	
Microtus			•	10		2	NOEL			10	•	
Arricanthis Cereb stra												Exp.
Arvicanthis Fight See		Arvicanthis	Céreb					Celula			mg/k	
Arvicanthis Arvicanthis Arvicanthis Report Stra Se m				10	to	2	NOEL		mRNA	10		
Arvicanthis												Exp.
Arvicanthis		A rvicanthis						Celula			mg/k	
National			•	10	to	2	NOEL		mRNA	10	•	
Não State												Exp.
Ansorgei ado 10 to 2 NOEL r mRNA 10 g Fl.D. Thesis, University of Se m stra ortame mg/k MA:120 ochrogaster ado 9 to 2 NOEL nto Descanso 10 g p. Ph.D. Thesis, University of Massachu setts Amherst, mg/k MA:120 ochrogaster ado 9 to 2 NOEL nto Descanso 10 g p. Ph.D. Thesis, University of Massachu setts Amherst, mg/k MA:120 ochrogaster ado 9 to 2 NOEL nto Descanso 10 g p. Ph.D. Thesis, University of Massachu setts Amherst, mg/k MA:120 ochrogaster ado 9 to 2 NOEL nto Descanso 10 g p. Ph.D. Thesis, University of Massachu setts Amherst, mg/k MA:120 ochrogaster ado 9 to 2 NOEL nto Descanso 10 g p. Ph.D. Thesis, University of Massachu setts Amherst, mg/k MA:120 ochrogaster ado 9 to 2 NOEL nto Descanso 10 g p. Ph.D. Thesis, University of Massachu setts Amherst, mg/k MA:120 ochrogaster ado 9 to 2 NOEL nto Descanso 10 g p. Ph.D. Thesis, University of Massachu setts Amherst, mg/k MA:120 ochrogaster ado 9 to 2 NOEL nto Descanso 10 g p. Ph.D. Thesis, University of Massachu setts Amherst, mg/k MA:120 ochrogaster ado 9 to 2 NOEL nto Descanso 10 g p. Ph.D. Thesis, University of Massachu setts Amherst, mg/k MA:120 ochrogaster ado 9 to 2 NOEL nto Descanso 10 g p. Ph.D. Thesis, University of Massachu setts Amherst, mg/k MA:120 ochrogaster ado 9 to 2 NOEL nto Descanso 10 g p. Ph.D. Thesis, University of Massachu setts The material T		A rvicanthis						Celula			mg/k	Neurol.21
Thesis, University of Comp			_	10		2	NOEL			10		513
Não												
Microtus												
Microtus												Massachu
ochrogaster ado 9 to 2 NOEL nto Descanso 10 g p. Ph.D. Thesis, University of Massachu setts Microtus Não sub Comp ortame ortame ortame ortame ortame Descanso 10 g p. Ph.D. Thesis, University of Massachu setts Microtus Não sub Comp ortame Descanso 10 g p. Ph.D. Thesis, University of Massachu setts Microtus report stra ortame ortame mg/k MA:120 ochrogaster ado 9 to 2 NOEL nto Descanso 10 g p. Ph.D. Thesis, University of Massachu setts Microtus report stra ortame ortame mg/k MA:120 Microtus report stra comport mg/k MA:120 ochrogaster ado 9 to 2 NOEL nto Descanso 10 g p. Microtus report stra comportame comport			Não					Comp				
Ph.D. Thesis, University of Massachu setts			-	9		2.	NOEL		Descanso	10		
Não Se Se Se Se Se Se Se S											8	Ph.D.
Microtus report stra order order sets with the sets of massachu sets order ord												University
Microtus ochrogaster Não report stra stra stra ado 9 to 2 NOEL nto Poscanso 10 g p. Ph.D. Thesis, University of Massachu setts stra ortame ochrogaster Microtus ochrogaster Não ado sub report stra ansorgei To sub report stra stra sub setts stra ansorgei Não sub report stra sub sub report stra sub setts stra sub sub report stra sub report stra sub sub report stra report report stra report report stra report report report stra report					Se							
Microtus ochrogaster report ado stra ortame nto ph. NoEL ortame nto ph. NoEL mg/k no. 120 pp. Ph.D. Thesis, University of Massachu setts Amherst, University of Massachu setts Amherst, Driversity of Massachu setts Amherst, Microtus report ado Não sub ochrogaster ado Se m nortame nortame nto ph. Doctonso nt			Não					Comn				
Ph.D. Thesis, University of Massachu setts Microtus report stra ortame mg/k MA:120 ochrogaster ado 9 to 2 NOEL nto Descanso 10 g p. Ph.D. Thesis, University of Massachu setts Amherst, Mak:120 ochrogaster ado 9 to 2 NOEL nto Descanso 10 g p. Ph.D. Thesis, University of Massachu setts Massachu setts Amherst, University of Massachu setts Amherst, University of Massachu setts Amherst, Massachu setts Amherst, Massachu setts Amherst, Macrotus report stra ortame mg/k MA:120 ochrogaster ado 9 to 2 NOEL nto Descanso 10 g p. Se m Exp. Arvicanthis Céreb stra Celula nuclear ROR- ansorgei ro 10 to 2 NOEL r alfa mRNA 10 g 513 Receptor mg/k 0(2): 501- Arvicanthis report stra Celula nuclear ROR- m Receptor mg/k 0(2): 501-			report	0	stra	2	NOEL	ortame	D	10	_	MA:120
Viniversity of Massachu setts Microtus Não sub Comp of Amherst, Microtus ochrogaster ado 9 to 2 NOEL nto Descanso 10 g p. Ph.D. Thesis, University of Massachu setts Massachu Não sub Comp Ph.D. Thesis, University of Massachu setts Microtus report stra ortame ortame mg/k MA:120 ochrogaster ado 9 to 2 NOEL nto Descanso 10 g p. Ph.D. Thesis, University of Massachu setts Setts Amherst, Microtus report stra ortame mg/k MA:120 ochrogaster ado 9 to 2 NOEL nto Descanso 10 g p. Exp. Neurol.21 Arvicanthis Céreb stra Celula nuclear ROR mg/k 0(2): 501- ansorgei ro 10 to 2 NOEL r alfa mRNA 10 g 513 Exp. Nao sub Receptor Neurol.21 Arvicanthis report stra Celula nuclear ROR mg/k 0(2): 501- Neurol.21 Neurol.22 Neurol.21 Neurol.22 Neurol.22 Neurol.23 Neurol.23 Neurol.24 Neu		ocnrogaster	ado	9	to	2	NOEL	nto	Descanso	10	g	Ph.D.
Se m Sub Comp ortane mg/k MA:120 ochrogaster ado 9 to 2 NOEL nto Descanso 10 g p. Ph.D. Thesis, University of Massachu setts Não sub Comp ortane mg/k MA:120 ochrogaster ado 9 to 2 NOEL nto Descanso 10 g p. Ph.D. Thesis, University of Massachu setts Não sub Comp ortane mg/k MA:120 ochrogaster ado 9 to 2 NOEL nto Descanso 10 g p. Massachu setts Microtus report stra ortane mg/k MA:120 ochrogaster ado 9 to 2 NOEL nto Descanso 10 g p. Exp. Se m sub Receptor Neurol.21 Arvicanthis Céreb stra Celula nuclear ROR- mg/k 0(2): 501- ansorgei ro 10 to 2 NOEL r alfa mRNA 10 g 513 Se m Exp. Não sub Receptor Neurol.21 Arvicanthis report stra Celula nuclear ROR- mg/k 0(2): 501-												
Microtus					S o							of
Microtus ochrogaster report ado stra ortame ortame mg/k MA:120 ochrogaster ado 9 to 2 NOEL nto Descanso 10 g p. Ph.D. Thesis, University of Massachu of Massachu setts Microtus report stra ortame mg/k MA:120 ochrogaster ado 9 to 2 NOEL nto Descanso 10 g p. Se m Receptor Exp. Neurol.21 Arvicanthis Céreb stra Celula nuclear ROR- mg/k 0(2): 501- Se m Receptor Neurol.21 Neurol.21 Arvicanthis report sub Receptor Neurol.21 Arvicanthis report stra Celula nuclear ROR- mg/k 0(2): 501-					m							setts
ochrogasterado9to2NOELntoDescanso10gp. Ph.D. Thesis, University of Massachu settsNãoSubCompMassachu settsMicrotusreportstraortamemg/kMA:120ochrogasterado9to2NOELntoDescanso10gp.Se msubReceptorNeurol.21ArvicanthisCérebstraCelulanuclear ROR- nuclear ROR-mg/k0(2): 501- nuclear ROR-ArvicanthisreportstraReceptorNeurol.21ArvicanthisreportstraReceptorNeurol.21ReceptorReceptorNeurol.21ReceptorNeurol.21Neurol.21ReceptorNeurol.21Neurol.21ReceptorNeurol.21ReceptorNeurol.21ReceptorNeurol.21ReceptorNeurol.21ReceptorNeurol.21ReceptorNeurol.21ReceptorNeurol.21		Microtus						•			mg/k	
Thesis, University of Massachu setts Não sub Comp Amherst, Microtus report stra ortame mg/k MA:120 ochrogaster ado 9 to 2 NOEL nto Descanso 10 g p. Se m sub Receptor Neurol.21 Arvicanthis Céreb stra Celula nuclear ROR- mg/k 0(2): 501- ansorgei ro 10 to 2 NOEL r alfa mRNA 10 g 513 Se m Exp. Não sub Receptor Neurol.21 Arvicanthis report stra Celula nuclear ROR- mg/k 0(2): 501-		ochrogaster	ado	9	to	2	NOEL	nto	Descanso	10	g	
Não Se Se Se Se Se Se Se S												Thesis,
Microtus												-
Não Sub Comp Amherst, mg/k MA:120 ochrogaster ado 9 to 2 NOEL nto Descanso 10 g p. Exp. Neurol.21												
ochrogaster ado 9 to 2 NOEL nto Descanso 10 g p. Se m sub Receptor Neurol.21 Arvicanthis Céreb stra Celula nuclear ROR- mg/k 0(2): 501- ansorgei ro 10 to 2 NOEL r alfa mRNA 10 g 513 Se m Exp. Exp. Neurol.21 Arvicanthis report stra Celula nuclear ROR- mg/k 0(2): 501-		Minneton			sub			_			/1-	Amherst,
Mag			•	9	to	2	NOEL		Descanso	10		
Sub Receptor Neurol.21												Exp.
ansorgei ro 10 to 2 NOEL r alfa mRNA 10 g 513 Se m Exp. Não sub Arvicanthis report stra Celula nuclear ROR- mg/k 0(2): 501-		Amiaanthia	Cárab		sub			Calula			ma/ls	Neurol.21
m Exp. Não sub Receptor Neurol.21 Arvicanthis report stra Celula nuclear ROR- mg/k 0(2): 501-				10	to	2	NOEL			10		
Não sub Receptor Neurol.21 Arvicanthis report stra Celula nuclear ROR- mg/k 0(2): 501-												Exp.
		Arvicanthic						Celula			mø/k	Neurol.21
				10		2	NOEL			10		

organismos to		Orgã	T	» «	ъ	Da 2-			X 7 - 1	TT	Doft
Composto	Espécies	o Alvo	Tem po	io	Do ses	Parâmet ro	Efeito	Efeito Medido	Valo r	Unid ade	Referênci a
	Arvicanthis ansorgei	Céreb ro	10	Se m sub stra to	2	NOEL	Celula r	Receptor nuclear ROR- beta mRNA	10	mg/k g	Exp. Neurol.21 0(2): 501- 513
	Arvicanthis ansorgei	Não report ado	10	Se m sub stra to	2	NOEL	Celula r	Receptor nuclear ROR- beta mRNA	10	mg/k g	Exp. Neurol.21 0(2): 501- 513
	Arvicanthis ansorgei	Não report ado	10	Se m sub stra to Se	2	NOEL	Celula r	Receptor nuclear ROR- beta mRNA	10	mg/k g	Exp. Neurol.21 0(2): 501- 513
	Arvicanthis ansorgei	Não report ado	10	m sub stra to Se	2	NOEL	Celula r	Receptor nuclear ROR- beta mRNA	10	mg/k g	Exp. Neurol.21 0(2): 501- 513
	Microtus ochrogaster	Não report ado	56	m sub stra to Se	2	NOEL	Comp ortame nto	Corrida	6	mg/k g	Horm. Behav.32: 184-191
	Microtus ochrogaster	Não report ado	56	m sub stra to Se	2	NOEL	Comp ortame nto	Corrida	6	mg/k g	Horm. Behav.32: 184-191
	Microtus ochrogaster	Não report ado	56	m sub stra to Se	2	NOEL	Comp ortame nto	Corrida	6	mg/k g	Horm. Behav.32: 184-191
	Microtus ochrogaster	Não report ado	56	m sub stra to	2	NOEL	Comp ortame nto	Corrida	6	mg/k g	Horm. Behav.32: 184-191 Ph.D. Thesis, University
	Microtus ochrogaster	Não report ado	9	Se m sub stra to	2	NOEL	Comp ortame nto	Procura de alimento	10	mg/k g	of Massachu setts Amherst, MA:120 p. Ph.D. Thesis, University
	Microtus ochrogaster	Não report ado	9	Se m sub stra to	2	NOEL	Comp ortame nto	Procura de alimento	10	mg/k g	of Massachu setts Amherst, MA:120 p. Ph.D. Thesis, University
	Microtus ochrogaster	Não report ado	9	Se m sub stra to	2	NOEL	Comp ortame nto	Procura de alimento	10	mg/k	of Massachu setts Amherst, MA:120 p.

organismos te		Orgã o	Tem			Parâmet			Valo	Unid	Referênci
Composto	Espécies	Alvo	ро	io	ses	ro	Efeito	Efeito Medido	r	ade	Ph.D. Thesis, University
	Microtus ochrogaster	Não report ado	9	Se m sub stra to	2	NOEL	Comp ortame nto	Procura de alimento	10	mg/k g	of Massachu setts Amherst, MA:120 p. Ph.D. Thesis, University of
	Microtus ochrogaster	Não report ado	9	Se m sub stra to	2	NOEL	Comp ortame nto	Procura de alimento	10	mg/k g	Massachu setts Amherst, MA:120 p. Ph.D. Thesis, University of
	Microtus ochrogaster	Não report ado	9	Se m sub stra to	2	NOEL	Comp ortame nto	Procura de alimento	10	mg/k g	Massachu setts Amherst, MA:120 p. Ph.D. Thesis, University of
	Microtus ochrogaster	Não report ado	9	Se m sub stra to	2	NOEL	Comp ortame nto	Procura de alimento	10	mg/k g	Massachu setts Amherst, MA:120 p. Ph.D. Thesis, University of
	Microtus ochrogaster	Não report ado	9	Se m sub stra to	2	NOEL	Comp ortame nto	Procura de alimento	10	mg/k g	Massachu setts Amherst, MA:120 p. Ph.D. Thesis, University of
	Microtus ochrogaster	Córte x fronta l	9	Se m sub stra to	2	NOEL	Bioquí mico	Serotonina	10	mg/k g	Massachu setts Amherst, MA:120 p. Ph.D. Thesis, University of
	Microtus ochrogaster	Hipot álam o Córte x	9	Se m sub stra to Se m sub	2	NOEL	Bioquí mico	Serotonina	10	mg/k g	Massachu setts Amherst, MA:120 p. Ph.D. Thesis, University
	Microtus ochrogaster	fronta l	9	stra to	2	NOEL	Bioquí mico	Serotonina	10	mg/k g	of Massachu

Jiga	insinos te		Orgã									
	Comment	Emplois	0	Tem		Do	Parâmet	T-C- '4-	Tree:4 a N. J. J. J	Valo	Unid	Referênci
	Composto	Espécies	Alvo	po	io	ses	ro	Efeito	Efeito Medido	r	ade	setts
												Amherst,
												MA:120
												p. Ph.D.
												Thesis,
												University of
					Se							Massachu
			Hipot		m sub							setts Amherst,
		Microtus	álam		stra			Bioquí			mg/k	MA:120
		ochrogaster	0	9	to	2	NOEL	mico	Serotonina	10	g	p.
					Se m							Behav.
			Não		sub			Comp			,	Brain
		Anolis carolinensis	report ado	9	stra to	2	LOEL	ortame nto	Agressividade	0.3	mg/or g	Res.78(2): 175-182
					Se	_	2022	110	11810001/10000	0.0	Б	
			Não		m sub			Comp				Behav. Brain
		Anolis	report		stra			ortame			mg/or	Res.78(2):
		carolinensis	ado	9	to	2	LOEL	nto	Agressividade	0.3	g	175-182
					Se m							Behav.
			Não		sub			Comp			,	Brain
		Anolis carolinensis	report ado	9	stra to	2	LOEL	ortame nto	Agressividade	0.3	mg/or g	Res.78(2): 175-182
		caronnensis	uuo		Se	-	LOLL	into	11g1ess1v1ddde	0.5	5	
			Não		m sub			Comp				Behav. Brain
		Anolis	report		stra			ortame			mg/or	Res.78(2):
		carolinensis	ado	9	to	2	LOEL	nto	Agressividade	0.3	g	175-182
					Se m							Behav.
			Não		sub			Comp			,	Brain
		Anolis carolinensis	report ado	9	stra to	2	LOEL	ortame nto	Agressividade	0.3	mg/or g	Res.78(2): 175-182
					Se				C		U	
			Não		m sub			Comp				Behav. Brain
		Anolis	report		stra			ortame			mg/or	Res.78(2):
		carolinensis	ado	9	to Se	2	LOEL	nto	Agressividade	0.3	g	175-182
					m							Behav.
		Anolis	Não		sub			Fisioló			m ~/~	Brain
		carolinensis	report ado	9	stra to	2	LOEL	gico	Pigmentação	0.3	g g	Res.78(2): 175-182
					Se							D.I.
			Não		m sub			Comp				Behav. Brain
		Anolis	report	_	stra	_		ortame			mg/or	Res.78(2):
		carolinensis	ado	9	to Se	2	NOEL	nto	Agressividade	0.3	g	175-182
					m							Behav.
		Anolis	Não report		sub stra			Comp ortame			mg/or	Brain Res.78(2):
		carolinensis	report ado	9	to	2	NOEL	nto	Agressividade	0.3	g g	175-182
					Se				-		-	
			Não		m sub			Comp				Behav. Brain
		Anolis	report		stra	_	NOTE	ortame		0.2	mg/or	Res.78(2):
		carolinensis	ado	9	to Se	2	NOEL	nto	Agressividade	0.3	g	175-182
					m							Behav.
		Anolis	Não report		sub stra			Comp ortame			mg/or	Brain Res.78(2):
		carolinensis	ado	9	to	2	NOEL	nto	Agressividade	0.3	g g	175-182

organismos te		Orgã									
Composto	Espécies	o Alvo	Tem po	Me io	Do ses	Parâmet ro	Efeito	Efeito Medido	Valo r	Unid ade	Referênci a
	•			Se							
		Não		m sub			Comp				Behav. Brain
	Anolis	report		stra			ortame			mg/or	
	carolinensis	ado	9	to	2	NOEL	nto	Agressividade	0.3	g	175-182
				Se m							Behav.
		Não		sub			Comp				Brain
	Anolis	report	0	stra	2	NOEL	ortame	A A	0.2	-	Res.78(2):
	carolinensis	ado	9	to Se	2	NOEL	nto	Agressividade	0.3	g	175-182
				m							Behav.
	Anolis	Não report		sub stra			Comp ortame			mg/or	Brain Res.78(2):
	carolinensis	report ado	9	to	2	NOEL	nto	Agressividade	0.3	g g	175-182
				Se				C		U	
		Não		m sub			Comp				Behav. Brain
	Anolis	report		stra			ortame			mg/or	
	carolinensis	ado	9	to	2	NOEL	nto	Agressividade	0.3	g	175-182
				Se m							Behav.
		Não		sub			Comp				Brain
	Anolis carolinensis	report	0	stra	2	NOEI	ortame	Mordida	0.2	_	Res.78(2):
	caronnensis	ado	9	to Se	2	NOEL	nto	Mordida	0.3	g	175-182
				m			_				Behav.
	Anolis	Não report		sub stra			Comp ortame			mg/or	Brain Res.78(2):
	carolinensis	ado	9	to	2	NOEL	nto	Mordida	0.3	g g	175-182
				Se							D 1
		Não		m sub			Comp				Behav. Brain
	Anolis	report		stra			ortame			_	Res.78(2):
	carolinensis	ado	9	to Se	2	NOEL	nto	Mordida	0.3	g	175-182
				m							Behav.
	Anolis	Não		sub			Comp			ma/or	Brain
	carolinensis	report ado	9	stra to	2	NOEL	ortame nto	Mordida	0.3	g g	Res.78(2): 175-182
				Se							D 1
		Não		m sub			Comp				Behav. Brain
	Anolis	report		stra			ortame			mg/or	
	carolinensis	ado	9	to	2	NOEL	nto	Mordida	0.3	g	175-182
				Se m							Behav.
		Não		sub			Comp				Brain
	Anolis carolinensis	report ado	9	stra to	2	NOEL	ortame nto	Mordida	0.3	mg/or g	Res.78(2): 175-182
	caronnensis	ado		Se	2	NOLL	nto	Mordida	0.5	5	175-102
		N T~		m			C				Behav.
	Anolis	Não report		sub stra			Comp ortame			mg/or	Brain Res.78(2):
	carolinensis	ado	9	to	2	NOEL	nto	BOBB	0.3	g	175-182
				Se m							Behav.
		Não		sub			Comp				Brain
	Anolis	report		stra	_	MOEL	ortame	DODD	0.2	mg/or	
	carolinensis	ado	9	to Se	2	NOEL	nto	BOBB	0.3	g	175-182
				m							Behav.
	Anolis	Não report		sub			Comp ortame			ma/or	Brain Res.78(2):
	carolinensis	report ado	9	stra to	2	NOEL	nto	BOBB	0.3	mg/or g	175-182
		Não		Se							Behav.
	Anolis carolinensis	report ado	9	m sub	2	NOEL	Fisioló gico	Pigmentação	0.3	mg/or g	Brain Res.78(2):
	Jan Juneitara		_	540	_	1,022	5.00	- 15	0.0	Б	1100.70(2).

Compacto		Orgã o	Tem		Do	Parâmet	Tre-24	Efoite M. 3° 2	Valo	Unid	Referênci
Composto	Especies	Alvo	po	io stra	ses	ro	Efeito	Efeito Medido	r	ade	a 175-182
	Anolis carolinensis	Não report ado	9	Se m sub stra to	2	NOEL	Fisioló gico	Pigmentação	0.3	mg/or	Behav. Brain Res.78(2): 175-182
Haloperidol	-	-	-	-	-	-	-	-	-	-	-
CAS: 52868											J.
	Caenorhabd itis elegans	Músc ulo	.031	Cul tur a	2	LOEL	Fisioló gico	Taxa de concentração	1	mg/m l	Neurosci. 15(10): 6975-6985 J.
	Caenorhabd itis elegans	Não report ado	.062 5	Cul tur a	2	LOEL	Repro dução	Prole	1	mg/m l	Neurosci.
Imipramina CAS: 50497 / 113520 / 303491	-	-	-	-	-	-	-	-	-	-	-
	Schistosoma mansoni	Músc ulo	.020	Cul tur a	3	LOEL	Fisioló gico	Taxa de concentração	0.000	M	Comp. Biochem. Physiol. C Toxicol. Pharmacol .64(1): 123-127 J.
	Caenorhabd itis elegans	Músc ulo	.031	Cul tur a	2	LOEL	Fisioló gico	Taxa de concentração	0.75	mg/m l	Neurosci.
	Caenorhabd itis elegans	-		Cul tur a	2	LOEL	Repro dução	Prole	0.75		Neurosci. 15(10): 6975-6985 J.
	Caenorhabd itis elegans	Não report ado	.062 5	Cul tur a	2	LOEL	Repro dução	Prole	0.75	mg/m l	Neurosci.
	Caenorhabd itis elegans	Não report ado	.062 5	Cul tur a	2	LOEL	Repro dução	Prole	0.75	mg/m l	Neurosci. 15(10): 6975-6985 J.
	Caenorhabd itis elegans	Não report ado	.062 5	Cul tur a	2	LOEL	Repro dução	Prole	0.75	mg/m l	Neurosci. 15(10): 6975-6985 J.
	Caenorhabd itis elegans	Não report ado	.062 5	Cul tur a	2	LOEL	Repro dução	Prole	0.75	mg/m l	Neurosci. 15(10): 6975-6985 J.
	Caenorhabd itis elegans	Não report ado	.062 5	Cul tur a	2	LOEL	Repro dução	Prole	0.75	mg/m l	Neurosci. 15(10): 6975-6985
	Caenorhabd itis elegans	Não report ado	.062 5	Cul tur a	4	LOEL	Repro dução	Prole	0.75	mg/m l	J. Neurosci. 15(10): 6975-6985 J.
	Caenorhabd itis elegans	Não report ado	.062 5	Cul tur a	4	LOEL	Repro dução	Prole	0.75	mg/m l	Neurosci. 15(10): 6975-6985

organismos te	rrestres	Orgã									
Composto	Fenácias	o Alvo	Tem po	Me io	Do ses	Parâmet ro	Efeito	Efeito Medido	Valo r	Unid ade	Referênci a
Composto	Especies	AIVU	po	10	SCS	10	Licito	Effito Medido		auc	Comp.
	Schistosoma mansoni	Músc ulo	.020 8	Cul tur a	3	NOEL	Fisioló gico	Taxa de concentração	0.000 03	M	Biochem. Physiol. C Toxicol. Pharmacol .64(1): 123-127 J.
	Caenorhabd itis elegans	Músc ulo	.031	Cul tur a	2	NOEL	Fisioló gico	Taxa de concentração	0.75	mg/m l	Neurosci. 15(10): 6975-6985 J.
	Caenorhabd itis elegans	Músc ulo	.031	Cul tur a	2	LOEL	Fisioló gico	Taxa de concentração	1	mg/m l	Neurosci. 15(10): 6975-6985 J.
	Caenorhabd itis elegans	Não report ado	.062 5	Cul tur a	3	LOEL	Repro dução	Prole	0.75	mg/m l	Neurosci. 15(10): 6975-6985 J.
	Caenorhabd itis elegans	Não report ado	.062 5	Cul tur a	2	LOEL	Repro dução	Prole	1	mg/m l	Neurosci. 15(10): 6975-6985 J.
	Caenorhabd itis elegans	Não report ado	.062 5	Cul tur a	2	LOEL	Repro dução	Prole	1	mg/m l	Neurosci. 15(10): 6975-6985 J.
	Caenorhabd itis elegans	Não report ado	.062 5	Cul tur a	2	LOEL	Repro dução	Prole	1	mg/m l	Neurosci. 15(10): 6975-6985 J.
	Caenorhabd itis elegans	Não report ado	.062 5	Cul tur a	2	LOEL	Repro dução	Prole	1	mg/m l	Neurosci. 15(10): 6975-6985 J.
	Caenorhabd itis elegans	Não report ado	.062 5	Cul tur a	2	LOEL	Repro dução	Prole	1	mg/m l	Neurosci. 15(10): 6975-6985
Meprobamate	-	-	-	-	-	-	-	-	-	-	-
CAS: 57534											Teratog.
	Drosophila melanogaste r	Tórax	19	Ág ar	6	LOEL	Cresci mento	Anormalidades	19.8	mg/c ntr	Carcinog. Mutagen.1 1(3): 147- 173 Teratog. Carcinog.
	Drosophila melanogaste r	Asa Orga nism	19	Ág ar	6	LOEL	Cresci mento	Anormalidades	11.2	mg/c ntr	Mutagen.1 1(3): 147- 173 Teratog. Carcinog.
	Drosophila melanogaste r	o inteir o	19	Ág ar	6	LOEL	Cresci mento	Anormalidades	35.8	mg/c ntr	Mutagen.1 1(3): 147- 173 Teratog.
	Drosophila melanogaste r	Tórax	19	Ág ar	6	NOEL	Cresci mento	Anormalidades	11.2	mg/c ntr	Carcinog. Mutagen.1 1(3): 147- 173 Teratog.
	Drosophila melanogaste r	Asa	19	Ág ar	6	NOEL	Cresci mento	Anormalidades	6.27	mg/c ntr	Carcinog. Mutagen.1 1(3): 147- 173

		Orgã o	Tem	Ме	Do	Parâmet			Valo	Unid	Referênc
Composto	Espécies	Alvo	po	io	ses	ro	Efeito	Efeito Medido	r	ade	a
		Orga	_F ~								Teratog.
		nism									Carcinog
	Drosophila	0		,							Mutagen
	melanogaste	inteir		Ág			Cresci			mg/c	1(3): 147
	r	О	19	ar	6	NOEL	mento	Anormalidades	19.8	ntr	173
	-	Não		Cul			a .				Experien
	Rattus	report	2	tur	_	LODI	Cresci	Alteração	200	1	a44(10):
	norvegicus	ado	2	a Cul	6	LOEL	mento	morfológica	300	ug/ml	833-840 Experien
	Rattus	Tronc		tur			Cresci				a44(10):
	norvegicus	0	2	a	6	LOEL	mento	Comprimento	1000	ug/ml	
Ovogonom											
Oxazepam	-	-	-	-	-	-	-	-	-	-	-
CAS: 604751											
	-	-	-	-	-	-	-	-	-	-	-
				_							
				Se							Environ. Mol.
				m sub							Mutager
	Mus	Sang		stra			Celula		1000		6(3): 16
	musculus	ue	90	to	6	NOEL	r	Micronúcleo	0	ppm	194
				Se						• •	Environ
				m							Mol.
		~		sub			~		1000		Mutager
	Mus	Sang	00	stra	_	MOEL	Celula	M:	1000		6(3): 163
	musculus	ue	90	to	6	NOEL	r	Micronúcleo	0	ppm	194
Oxcarbazepina	-	-	-	-	-	-	-	-	-	-	-
CAS: 28721075											
			NT~	Se							Food
	Drosophila		Não	m							Chem. Toxicol.
	Drosophila melanogaste		repo rtad	sub stra			Celula	Aberrações			6(9):
	r	Asa	0	to	5	LOEL	r	cromossôicas	3.75	ug/ml	
		1 104	Ü	Se		LULL	•	eromossore u s	5.,,	ug III	Food
			Não	m							Chem.
	Drosophila	Não	repo	sub							Toxicol.
	melanogaste	report	rtad	stra			Mortal				6(9):
	r	ado	О	to	5	LOEL	idade	Sobrevivência	1.88	ug/ml	
			Não	Se							Food Chem.
	Drosophila		Não repo	m sub							Cnem. Toxicol.
	melanogaste		rtad	stra			Celula	Aberrações			6(9):
	r	Asa	0	to	5	NOEL	r	cromossôicas	15	ug/ml	3159-31
				Se							Food
			Não	m							Chem.
	Drosophila		repo	sub							Toxicol.
	melanogaste		rtad	stra	_	NOU	Celula	Aberrações	1.00	, , ,	6(9):
	r	Asa	0	to	5	NOEL	r	cromossôicas	1.88	ug/ml	3159-31
				Nã							
		>		O							ъ.
	Date:-	Não	0.00	rep			Di-1-14			mc = /I	Epilepsi
	Rattus	report ado	.062 5	ort ado	3	LOEL	Fisioló gico	Convulsão	15	mg/k g	0(1): 83 87
					.)		2100	COLLANISAO	1.0	200	
	norvegicus	ado	3	uuo			8			8	

		Orgã	Т	3.5	Г	D . ^ .			X 7 .	TT • 1	D.C.
Composto	Espécies	o Alvo	Tem po	Me io	Do ses	Parâmet ro	Efeito	Efeito Medido	Valo r	Unid ade	Referênci a
CAS: 57330/	Especies	AIVU	μυ	10	SCS	10	Elello	Eleito Medido	1	auc	а
76744											
	-	-	-	-	-	-	-	-	-	-	-
											Res.
				Se							Commun. Chem.
				m							Pathol.
		Não		sub			Comp				Pharmacol
	Rattus .	report	0.4	stra	2	LOFI	ortame	Tempo de	0.05	0/	.59(2):
	norvegicus	ado	84	to	2	LOEL	nto	sono	0.05	%	191-200 Res.
											Commun.
				Se							Chem.
		Não		m sub			Comp				Pathol. Pharmacol
	Rattus	report		stra			ortame	Tempo de			.59(2):
	norvegicus	ado	84	to	2	LOEL	nto	sono	0.05	%	191-200
											Res. Commun.
				Se							Chem.
				m							Pathol.
	D	E/ 1		sub			D: /				Pharmacol
	Rattus norvegicus	Fígad o	84	stra to	2	LOEL	Bioquí mico	Triglicerídeos	0.05	%	.59(2): 191-200
	norvegicus	O	0-1	10	_	LOLL	nneo	mgneendeos	0.05	70	Res.
				~							Commun.
				Se m							Chem. Pathol.
				sub							Pharmacol
	Rattus	Fígad		stra			Bioquí				.59(2):
	norvegicus	О	84	to	2	LOEL	mico	Triglicerídeos	0.05	%	191-200 Res.
											Commun.
		Orga		Se							Chem.
		nism		m							Pathol.
	Rattus	o inteir		sub stra			Cresci				Pharmacol .59(2):
	norvegicus	О	84	to	2	NOEL	mento	Peso	0.05	%	191-200
											Res.
		Orga		Se							Commun. Chem.
		nism		m							Pathol.
	_	0		sub							Pharmacol
	Rattus norvegicus	inteir	84	stra	2	NOEL	Cresci mento	Peso	0.05	%	.59(2): 191-200
	norvegicus	0	04	to Se	2	NOEL	шешо	reso	0.03	70	191-200
				m							
	Rattus	Dlag	.187	sub			Diaguí	Hammânia		mg/k	Dies76(2).
	norvegicus	Plas ma	.187	stra to	2	LOEL	Bioquí mico	Hormônio luteinizante	40	g bdwt	Bios76(2): 68-76
				Se	_						
				m							
	Rattus	Plas	.187	sub stra			Bioaní	Hormônio		mg/k g	Bios76(2):
	norvegicus	ma	5	to	2	LOEL	mico	luteinizante	40	bdwt	68-76
Fenitoina	_	-	_	_	_	_	_	_	_	_	_
CAS: 57410											
CAG. 37410											
	-	-	-	-	-	-	-	-	-	-	-
	Ochotona			Se							Exp.
	rufescens	Não		m				Reabsorção			Anim.35(
	ssp.	report		sub			Repro	embrionária	•	mg/k	4): 387-
	rufescens	ado	11	stra	4	LOEL	dução	precoce	30	g	408

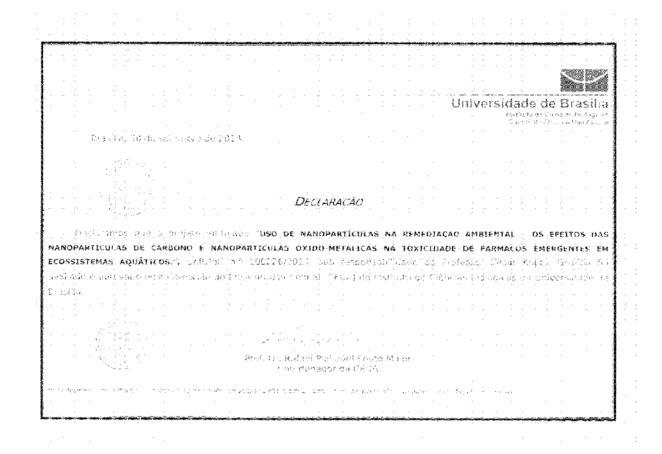
organismos te		Orgã									
Composto	Espécies	o Alvo	Tem	Me io	Do ses	Parâmet ro	Efeito	Efeito Medido	Valo	Unid ade	Referênci a
Composio	Especies	AIVU	ро	to	303	10	Lieno	Elello Medido	1	auc	а
				Se							_
		Não		m sub							Teratog. Carcinog.
	Mus	report		stra			Mortal			mg/k	Mutagen.7
	musculus	ado	12	to	2	LOEL	idade	Sobrevivência	80	g/d	(1): 7-16
				Se m							Teratog.
		Não		sub							Carcinog.
	Mus	report		stra			Mortal			mg/k	Mutagen.7
	musculus	ado Orga	14	to Se	2	LOEL	idade	Sobrevivência	80	g/d	(1): 7-16
		nism		m							Teratog.
		0		sub							Carcinog.
	Mus musculus	inteir	12	stra	2	LOEL	Cresci mento	Peso	80	mg/k	Mutagen.7
	muscutus	0	12	to Se	2	LUEL	шешо	Peso	80	g/d	(1): 7-16
	Ochotona			m							Exp.
	rufescens	Não		sub			D			Л	Anim.35(
	ssp. rufescens	report ado	11	stra to	4	NOEL	Repro dução	Aborto	300	mg/k g	4): 387- 408
	rujescens	Parte	•••	•	•	TOLL	auçuo	1100110	300	ь	100
	0.1	S		Se							
	Ochotona rufescens	exter nas		m sub							Exp. Anim.35(
	ssp.	do		stra			Cresci			mg/k	4): 387-
	rufescens	corpo	11	to	4	NOEL	mento	Deformações	300	g	408
	Ochotona			Se m							Exp.
	rufescens			sub							Anim.35(
	ssp.	Esqu		stra			Cresci			mg/k	4): 387-
	rufescens	eleto	11	to Se	4	NOEL	mento	Deformações	300	g	408
	Ochotona			m							Exp.
	rufescens			sub							Anim.35(
	ssp.	Visce	11	stra	4	NOEL	Cresci mento	Dafarmaaãas	300	mg/k	4): 387- 408
	rufescens	ra	11	to Se	4	NOEL	memo	Deformações	300	g	400
	Ochotona			m							Exp.
	rufescens	Não		sub			Repro	Reabsorção embrionária		ma/k	Anim.35(4): 387-
	ssp. rufescens	report ado	11	stra to	4	NOEL	dução	tardia	300	mg/k g	408
	-			Se			3			U	
	Ochotona	NI≃ -		m							Exp.
	rufescens ssp.	Não report		sub stra			Mortal			mg/k	Anim.35(4): 387-
	rufescens	ado	11	to	4	NOEL	idade	Mortalidade	300	g	408
				Se							Т
		Não		m sub							Teratog. Carcinog.
	Mus	report		stra			Mortal			mg/k	Mutagen.7
	musculus	ado	12	to	2	NOEL	idade	Mortalidade	80	g/d	(1): 7-16
	Ochotona			Se m							Exp.
	rufescens	Não		sub							Anim.35(
	ssp.	report	1.1	stra	4	NOEL	Repro	Número de	200	mg/k	4): 387-
	rufescens	ado	11	to Se	4	NOEL	dução	implantações	300	g	408
	Ochotona			m							Exp.
	rufescens	Não		sub			ъ			a	Anim.35(
	ssp. rufescens	report ado	11	stra to	4	NOEL	Repro dução	Gestação	300	mg/k	4): 387- 408
	rnjescens	uuo	11	Se	7	TOLL	auçao	Sesiação	200	g	100
		3.7		m							Teratog.
	Mus	Não report		sub stra			Repro	Fêmeas		mg/k	Carcinog. Mutagen.7
	musculus	ado	12	to	2	NOEL	dução	grávidas	80	g/d	(1): 7-16
							-			-	

		Orgã o	Tem	Me	Do	Parâmet			Valo	Unid	Referênc
Composto	Espécies	Alvo	ро	io	ses	ro	Efeito	Efeito Medido		ade	a
	0.1			Se							Б
	Ochotona	Não		m sub							Exp. Anim.35
	rufescens ssp.	report		stra			Repro			mg/k	4): 387-
	rufescens	ado	11	to	4	NOEL	dução	Prole	300	g	408
	. .			Se			3			8	
				m							Teratog.
		Não		sub				Reabsorção			Carcinog
	Mus	report		stra			Repro	embrionária		mg/k	Mutagen
	musculus	ado	12	to	2	NOEL	dução	precoce	80	g/d	(1): 7-16
	Ochotona			Se							Eve
	rufescens	Não		m sub							Exp. Anim.35
	ssp.	report		stra			Popula	Proporção		mg/k	4): 387-
	rufescens	ado	11	to	4	NOEL	ção	sexual	300	g	408
	. .	Orga		Se			3			8	
	Ochotona	nism		m							Exp.
	rufescens	О		sub							Anim.35
	ssp.	inteir		stra			Cresci			mg/k	4): 387-
	rufescens	0	11	to	4	NOEL	mento	Peso	300	g	408
	Oaksta	Orga		Se							Ev-
	Ochotona	nism		m sub							Exp.
	rufescens ssp.	o inteir		sub			Cresci			mg/k	Anim.35 4): 387-
	rufescens	0	11	to	4	NOEL	mento	Peso	300	g g	408
	rujeseens	Orga		Se	•	1,022	11101110	1 000	200	8	
		nism		m							Teratog.
		О		sub							Carcinog
	Mus	inteir		stra			Cresci			mg/k	Mutagen
	musculus	0	14	to	2	NOEL	mento	Peso	80	g/d	(1): 7-16
		Orga		Se							Tr
		nism		m sub							Teratog. Carcinog
	Mus	o inteir		stra			Cresci			mg/k	Mutagen
	musculus	0	12	to	2	NOEL	mento	Peso	80	g/d	(1): 7-16
		Não		Cul	_	1,022	11101110	1 000		8.4	Experien
	Rattus	report		tur			Cresci	Alteração			a44(10):
	norvegicus	ado	2	a	6	LOEL	mento	morfológica	50	ug/ml	833-840
				Cul							Experien
	Rattus	Tronc	_	tur	_		Cresci	a .	100	, ,	a44(10):
	norvegicus	0	2	a c-	6	LOEL	mento	Comprimento	100	ug/ml	833-840
				Se							Eur. J.
		Não		m sub							Pharmac
	Rattus	report	.041	stra			Fisioló			mg/k	.120(2):
		ado	7	to	2	NOEL	gico	Convulsão	30	g	269-273
	norvegicus	auo					_			-	
	norvegicus	auo								_	
Rivactiomina	_	-									_
Rivastigmina	_	-	-	-	-	-	-	-	-		-
_	_	-	-	-	-	-	-	-	-		-
_	_	-	-	-	-	-	-	-	-	-	-
Rivastigmina CAS: 123441032	-	-	-	-	-	-	-	-	-	-	-
_	-	-	-	- - Se	-	-	-	-	-	-	- - J.
_	-	-	-	-	-	-	-	-	-	-	
_	-	- - Não	-	- Se m sub	-	-	-	-	-	-	Psychop rmacol.1
_	- - Rattus	- Não report	-	- Se m sub stra	-	-	- - Fisioló	-	-	umol/	Psychop rmacol.1 (3): 275-
_	-	- - Não	.25	- Se m sub stra to	4	- - ED50	- - Fisioló gico	- - Convulsão	3.7	umol/	Psychop rmacol.1 (3): 275- 279
_	- - Rattus	- Não report	.25	- Se m sub stra to Se	-	- - ED50		- - Convulsão	3.7		Psychop rmacol.1 (3): 275- 279 J.
_	- - Rattus	- Não report	.25	- Se m sub stra to Se m	-	- - ED50		- Convulsão	3.7		Psychop rmacol.1 (3): 275- 279 J. Psychop
_	- Rattus norvegicus	- Não report		- Se m sub stra to Se m sub	-	- - ED50	gico		3.7	kg	Psychop rmacol.1 (3): 275- 279 J. Psychop rmacol.1
_	- Rattus norvegicus	- Não report ado	.083	Se m sub stra to Se m sub stra	- 4		gico Fisioló	Temperatura		kg umol/	Psychop rmacol.1 (3): 275- 279 J. Psychop rmacol.1 (3): 275-
_	- Rattus norvegicus	- Não report		- Se m sub stra to Se m sub	-	- - ED50	gico		3.7	kg	Psychoph rmacol.1 (3): 275- 279
_	- Rattus norvegicus	- Não report ado	.083	- Se m sub stra to Se m sub stra to	- 4		gico Fisioló	Temperatura		kg umol/	Psychopi rmacol.1 (3): 275- 279 J. Psychopi rmacol.1 (3): 275- 279 J.
_	- Rattus norvegicus	- Não report ado	.083	Se m sub stra to Se m sub stra to Se stra to Se	- 4		gico Fisioló	Temperatura		kg umol/	Psychopi rmacol.1 (3): 275- 279 J. Psychopi rmacol.1 (3): 275- 279 J. Psychopi rmacol.1
_	- Rattus norvegicus	- Não report ado	.083	Se m sub stra to Se m sub stra to Se m	- 4		gico Fisioló	Temperatura		kg umol/	Psychop rmacol.1 (3): 275- 279 J. Psychop rmacol.1 (3): 275- 279 J. Psychop

		Orgã	Tem	Ma	Do	Parâmet			Valo	Unid	Referênci
Composto	Espécies	o Alvo	po	io	ses	ro	Efeito	Efeito Medido		ade	a
				Se m							J. Psychopha
				sub							rmacol.14
	Rattus	_	.020	stra	_		Fisioló	Temperatura		umol/	(3): 275-
	norvegicus	Reto	8	to Se	2	LOEL	gico	corporal	12.5	kg	279 J.
				m							Psychopha
	ъ	Não	002	sub			E 17			1/	rmacol.14
	Rattus norvegicus	report ado	.083	stra to	2	LOEL	Fisioló gico	Convulsão	12.5	umol/ kg	(3): 275- 279
	norvegicus	uuo	5	Se	-	LOLL	gico	Convaisao	12.5	 6	J.
		Não		m							Psychopha
	Rattus	Não report	.041	sub stra			Fisioló			umol/	rmacol.14 (3): 275-
	norvegicus	ado	7	to	2	LOEL	gico	Convulsão	12.5	kg	279
				Se							J. Davishanka
		Não		m sub							Psychopha rmacol.14
	Rattus	report		stra			Fisioló			umol/	(3): 275-
	norvegicus	ado	8	to Se	2	LOEL	gico	Convulsão	12.5	kg	279 J.
				m							Psychopha
		Não		sub							rmacol.14
	Rattus	report	.020 8	stra	2	LOEL	Fisioló	Salivação	12.5	umol/	(3): 275- 279
	norvegicus	ado	0	to Se	2	LOEL	gico	Salivação	12.3	kg	J.
				m							Psychopha
	Rattus	Não report	.020	sub stra			Fisioló			umol/	rmacol.14 (3): 275-
	norvegicus	ado	8	to	2	LOEL	gico	Lacrimação	12.5	kg	279
				Se			C	,			J.
				m sub							Psychopha rmacol.14
	Rattus			stra			Fisioló	Temperatura		umol/	(3): 275-
	norvegicus	Reto	.125	to	2	NOEL	gico	corporal	12.5	kg	279
				Se m							J. Psychopha
		Não		sub							rmacol.14
	Rattus	report ado	.125	stra to	2	NOEL	Fisioló	Convulsão	12.5	umol/	(3): 275- 279
	norvegicus	auo	.123	Se	2	NOEL	gico	Convuisão	12.3	kg	J.
				m							Psychopha
	Rattus	Não report	083	sub stra			Fisioló			umol/	rmacol.14 (3): 275-
	norvegicus	ado	3	to	2	NOEL	gico	Salivação	12.5	kg	279
				Se							J.
		Não		m sub							Psychopha rmacol.14
	Rattus	report	.041	stra			Fisioló			umol/	(3): 275-
	norvegicus	ado	7	to	2	NOEL	gico	Salivação	12.5	kg	279
				Se m							J. Psychopha
		Não		sub							rmacol.14
	Rattus norvegicus	report ado	.125	stra to	2	NOEL	Fisioló gico	Salivação	12.5	umol/ kg	(3): 275- 279
	norvegicus	auo	.123	Se	2	NOEL	gico	Sanvação	12.3	ĸg	J.
				m							Psychopha
	Rattus	Não report		sub stra			Fisioló			umol/	rmacol.14 (3): 275-
	norvegicus	ado	.125	to	2	NOEL	gico	Lacrimação	12.5	kg	279
				Se						-	J.
		Não		m sub							Psychopha rmacol.14
	Rattus	report		stra			Fisioló			umol/	(3): 275-
	norvegicus	ado	3	to	2	NOEL	gico	Lacrimação	12.5	kg	279
	Rattus	Não report	.041	Se m			Fisioló			umol/	J. Psychopha
	norvegicus	ado	7	sub	2	NOEL	gico	Lacrimação	12.5	kg	rmacol.14

organismos ter	rrestres	0 ~									
		Orgã o	Tem	Me	Do	Parâmet			Valo	Unid	Referênci
Composto	Espécies	Alvo	po	io	ses	ro	Efeito	Efeito Medido		ade	a
				stra to							(3): 275- 279
Secobarbital	-	_	_	_	_	_	_	_	_	_	
CAS: 309433											
	-	_	_	-	-	-	_	-	_	_	-
											M.S. Thesis,
				3.7							Michigan
				Nã o							State University
	a	Não		rep					4 4 4 4 4 4		, East
	Colinus virginianus	report ado	5	ort ado	7	LC50	Mortal idade	Mortalidade	1630 0	ppm	Lansing, MI:82 p.
	g									11	M.S.
											Thesis, Michigan
				Nã							State
		Não		o rep							University , East
	Colinus	report ado	5	ort ado	7	LC50	Mortal idade	Mortalidade	2330 0	nnm	Lansing, MI:82 p.
	virginianus	auo	3	auo	,	LC30	idade	Wiortandade	U	ppm	M.S.
											Thesis, Michigan
				Nã							State
		Não		o rep							University , East
	Colinus	report		ort			Mortal		1230		Lansing,
	virginianus	ado	5	ado	7	LC50	idade	Mortalidade	0	ppm	MI:82 p. M.S.
											Thesis,
				Nã							Michigan State
	4	N 1~		O							University
	Anas platyrhynch	Não report		rep ort			Mortal				, East Lansing,
	os	ado	5	ado	7	LC50	idade	Mortalidade	7583	ppm	MI:82 p.
											M.S. Thesis,
				Nã							Michigan State
				0							University
	Anas platyrhynch	Não report		rep ort			Mortal		1060		, East Lansing,
	os	ado	5	ado	7	LC50	idade	Mortalidade	0	ppm	MI:82 p.
											M.S. Thesis,
											Michigan
				Nã o							State University
	Anas	Não		rep			Comp				, East
	platyrhynch os	report ado	5	ort ado	7	LOEL	ortame nto	Alimentação	3920	ppm	Lansing, MI:82 p.
											M.S.
											Thesis, Michigan
				Nã o							State University
	Anas	Não		rep			Comp				, East
	platyrhynch os	report ado	5	ort ado	7	LOEL	ortame nto	Alimentação	3920	ppm	Lansing, MI:82 p.
	Colinus	Orga	٠	Nã		LULL	Cresci	- IIIIIOIItuquo	1075	PP	M.S.
	virginianus	nism	5	0	7	LOEL	mento	Peso	6	ppm	Thesis,

organismos terrestres	Orgã									
Composto Espécies	0	Tem po	Me io	Do ses	Parâmet ro	Efeito	Efeito Medido	Valo r	Unid ade	Referênci a
	o inteir		rep ort							Michigan State
	0		ado							University
										, East Lansing,
										MI:82 p.
										M.S. Thesis,
										Michigan
	Orga nism		Nã o							State University
	О		rep							, East
Colinus virginiai	inteir us o	5	ort ado	7	LOEL	Cresci mento	Peso	1075 6	ppm	Lansing, MI:82 p.
71.8				•	2022		1000	Ü	PP	M.S.
										Thesis, Michigan
	Orga		Nã							State
	nism o		o rep							University , East
Colinus	inteir	_	ort	_	, OE1	Cresci	ъ	1075		Lansing,
virginiai	nus o	5	ado	7	LOEL	mento	Peso	6	ppm	MI:82 p. M.S.
										Thesis,
	Orga		Nã							Michigan State
	nism		0							University
Colinus	o inteir		rep ort			Cresci		1075		, East Lansing,
virginiai	ius o	5	ado	7	LOEL	mento	Peso	6	ppm	MI:82 p.
										M.S. Thesis,
	Orga		Nã							Michigan State
	nism		0							University
Colinus	o inteir		rep ort			Cresci		1075		, East Lansing,
virginiai		5	ado	7	LOEL	mento	Peso	6	ppm	MI:82 p.
										M.S. Thesis,
	_									Michigan
	Orga nism		Nã o							State University
	0		rep			<i>a</i> :		1075		, East
Colinus virginiai	inteir nus o	5	ort ado	7	LOEL	Cresci mento	Peso	1075 6	ppm	Lansing, MI:82 p.
O .										M.S.
										Thesis, Michigan
	Orga		Nã							State
Anas	nism o		o rep							University , East
platyrhy	nch inteir o	5	ort ado	7	LOEL	Cresci mento	Peso	5488		Lansing, MI:82 p.
os	Ü	3	auo	,	LOEL	memo	reso	3400	ppm	M.S.
										Thesis, Michigan
	Orga		Nã							State
Anas	nism o		o rep							University , East
platyrhy			ort			Cresci				Lansing,
OS	0	5	ado	7	LOEL	mento	Peso	5488	ppm	MI:82 p. M.S.
			Nã							Thesis,
Anas	Não		o rep			Comp				Michigan State
platyrhy	nch report	_	ort	_		ortame				University
OS	ado	5	ado	7	NOEL	nto	Alimentação	2300	ppm	, East


organismos terrestres	Orgã			_						_ , .
Composto Espécies	o Alvo	Tem po	Me io	Do ses	Parâmet ro	Efeito	Efeito Medido	Valo r	Unid ade	Referênci a
Composio Especies	AIVU	ρυ	10	563	10	ETCHU	Licito Micula	1	auc	Lansing,
										MI:82 p.
										M.S. Thesis,
										Michigan
			Nã							State
Anas	Não		o rep			Comp				University , East
platyrhynch	report	_	ort	7	NOEL	ortame	A.1. ~	2200		Lansing,
os	ado	5	ado	7	NOEL	nto	Alimentação	2300	ppm	MI:82 p. M.S.
										Thesis,
	Orga		Nã							Michigan State
	nism		0							University
Colinus	o inteir		rep ort			Cresci				, East Lansing,
virginianus	0	5	ado	7	NOEL	mento	Peso	7683	ppm	MI:82 p.
										M.S. Thesis,
										Michigan
	Orga		Nã							State
	nism o		o rep							University , East
Colinus	inteir	_	ort	7	NOEL	Cresci	ъ	7502		Lansing,
virginianus	0	5	ado	7	NOEL	mento	Peso	7583	ppm	MI:82 p. M.S.
										Thesis,
	Orga		Nã							Michigan State
	nism		0							University
Colinus	o inteir		rep ort			Cresci				, East Lansing,
virginianus	0	5	ado	7	NOEL	mento	Peso	7683	ppm	MI:82 p.
										M.S. Thesis,
										Michigan
	Orga nism		Nã							State
	0		o rep							University , East
Colinus	inteir	5	ort ado	7	NOEL	Cresci	Dago	7583		Lansing,
virginianus	0	5	ado	/	NOEL	mento	Peso	1363	ppm	MI:82 p. M.S.
										Thesis,
	Orga		Nã							Michigan State
	nism		O							University
Colinus	o inteir		rep ort			Cresci				, East Lansing,
virginianus	0	5	ado	7	NOEL	mento	Peso	7583	ppm	MI:82 p.
										M.S. Thesis,
										Michigan
	Orga nism		Nã o							State University
	O		rep							, East
Colinus	inteir	5	ort	7	NOEI	Cresci	Dago	7602	nee	Lansing,
virginianus	0	5	ado	7	NOEL	mento	Peso	7683	ppm	MI:82 p. M.S.
										Thesis,
	Orga		Nã							Michigan State
	nism		O							University
Anas platyrhynch	o inteir		rep ort			Cresci				, East Lansing,
os	0	5	ado	7	NOEL	mento	Peso	3920	ppm	MI:82 p.

Composto	Espécies	Orgã o Alvo	Tem po	Me io	Do ses	Parâmet ro	Efeito	Efeito Medido	Valo r	Unid ade	Referênci a
	1					-					M.S.
											Thesis, Michigan
		Orga		Nã							State
	4	nism		О							University
	Anas platyrhynch	o inteir		rep ort			Cresci				, East Lansing,
	os	0	5	ado	7	NOEL	mento	Peso	3920	ppm	MI:82 p.
Sulpiride	-	-	-	-	-	-	_	-	_	-	-
CAS: 15676161											
	-	-	-	-	-	-	-	-	-	-	-
				Se							
				m							
				sub							Toxicol.
	Rattus	Soro	4	stra	2	LOEL	Bioquí	Drogastarona	100	mg/k	Sci.121(2): 267-278
	norvegicus	3010	4	to Se	2	LOEL	mico	Progesterona Proteína reguladora	100	g	. 207-278
		Folíc		m							
	Rattus	ulo ovari		sub stra			Celula	aguda da esteroidogênes		mg/k	Toxicol. Sci.121(2)
	norvegicus	ano	4	to	2	LOEL	r	e mRNA	100	g g	: 267-278
	Ü			Se				Proteína		C	
		Folíc ulo		m sub				reguladora aguda da			Toxicol.
	Rattus	ovari		stra			Celula	esteroidogênes		mg/k	Sci.121(2)
	norvegicus	ano	4	to	2	NOEL	r	e mRNA	100	g	: 267-278
Trihexyphenidyl	_	_	_	_	_	-	-		_	_	
CAS: 144116											
	-	-	-	-	-	-	-	-	-	-	-
				Se m							Psychopha
		Não		sub							rmacology
	Rattus	report		stra	2	LOEI	Fisioló	Temperatura	10	mg/k	89(3):
	norvegicus	ado	7	to Se	2	LOEL	gico	corporal	10	g	278-283
				m							Psychopha
	Dattera	Não	5.41	sub			Eisio16			m a/Ir	rmacology
	Rattus norvegicus	report ado	.541 7	stra to	2	LOEL	Fisioló gico	Convulsão	10	mg/k g	89(3): 278-283
	. 0			Se			<i>J</i>		-	J	
		Não		m							Psychopha
	Rattus	Não report	.541	sub stra			Fisioló			mg/k	rmacology 89(3):
	norvegicus	ado	7	to	2	NOEL	gico	Convulsão	10	g	278-283
				Se							Devohonho
		Não		m sub							Psychopha rmacology
	Rattus	report		stra	_		Fisioló	a	4.5	mg/k	89(3):
	norvegicus	ado	7	to Se	2	NOEL	gico	Convulsão	10	g	278-283
				m							Psychopha
	D	Não	~	sub			E			~	rmacology
	Rattus norvegicus	report ado	.541 7	stra to	2	NOEL	Fisioló gico	Convulsão	10	mg/k g	89(3): 278-283
	norvegicus	auo	,	Se	_	TOLL	5100	Convuisao	10	5	210-203
		> 7~		m							Psychopha
	Rattus	Não report	.541	sub stra			Fisioló			mg/k	rmacology 89(3):
	norvegicus	ado	7	to	2	NOEL	gico	Convulsão	10	g g	278-283

Tabela 18 Revisão de literatura para os efeitos ecotoxicológicos de fármacos psiquiátricos em organismos terrestres

organismos tel	iicstics	_ ~									
		Orgã	_		_						
		0	Tem	Me	Do	Parâmet			Valo	Unid	Referênci
Composto	Espécies	Alvo	po	io	ses	ro	Efeito	Efeito Medido	r	ade	a
				Se							
				m							Psychopha
		Não		sub							rmacology
	Rattus	report	.541	stra			Fisioló			mg/k	89(3):
	norvegicus	ado	7	to	2	NOEL	gico	Convulsão	10	g	278-283
	O			Se			U			υ	
				m							Psychopha
		Não		sub							rmacology
	Rattus	report	.541	stra			Fisioló			mg/k	89(3):
	norvegicus	ado	7	to	2	NOEL	gico	Convulsão	10	g	278-283
	norvegicus	uuo	,	Se	_	TTOLL	5100	Convaisao	10	5	270 203
				m							Psychopha
		Não		sub							rmacology
	Rattus	report	.541	stra			Fisioló			mg/k	89(3):
		ado	7	to	2	NOEL	gico	Convulsão	10	-	278-283
	norvegicus	auo	/	Se	2	NOEL	gico	Convuisão	10	g	210-203
											Davahanha
		NI~-		m							Psychopha
	D	Não	<i>5</i> 4 1	sub			P' ' 1/			л	rmacology
	Rattus	report		stra	_		Fisioló	~	4.0	mg/k	89(3):
	norvegicus	ado	7	to	2	NOEL	gico	Convulsão	10	g	278-283

Anexo 1 Declaração da comissão de ética no uso animal do instituto de ciências biológicas da universidade de Brasília –UnB, protocolo nº100226/2014.

