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Last night the Shaikh went all about the city, lamp in hand, crying,  

“I am weary of beast and devil, a man is my desire.” 

They said, “He is not to be found, we too have searched.” 

 He answered, “He who is not to be found is my desire.” 

 
(Mawlānā- Rūmī) 
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RESUMO  

 

Um Estudo em Análise de Componentes Independentes em Corpos de Galois.  

 

Nas últimas décadas, o problema de separação cega de fontes (BSS, do inglês Blind Source 

Separation) – que trata de estimar um conjunto desconhecido de fontes de sinais a partir de 

versões misturadas destes – tornou-se relevante em vários campos da engenharia, incluindo 

o processamento matricial, comunicações sem fio, processamento de sinais médicos, 

processamento de voz e engenharia biomédica. 

A fim de resolver o problema de BSS no contexto de modelos lineares, considerando-se 

várias técnicas possíveis, a Análise de Componentes Independentes (ICA, do inglês 

Independent Component Analysis) – que utiliza a independência estatística das fontes como 

uma premissa – demonstrou ser uma das mais importantes estratégias de solução. Além 

disso, embora o modelo de BSS/ICA para sinais reais ou complexos esteja bem 

estabelecido, a recente perspectiva de uma formulação do problema com sinais e modelos 

definidos em corpos de Galois oferece várias possibilidades de análise e contribuições. 

Esta dissertação de mestrado realiza um estudo da Análise de Componentes Independentes 

em corpos de Galois, considerando os conceitos teóricos e abordagens para o problema, 

assim como dos algoritmos estado-da-arte até agora propostos, em termos de suas 

capacidades de separação e custo computacional. Especificamente, as técnicas dos 

algoritmos AMERICA e MEXICO são estudadas juntamente com o algoritmo cobICA. 

Como as simulações experimentais indicam, devido à sua complexidade computacional 

menor e uma qualidade de desempenho satisfatório, o algoritmo cobICA apresenta-se 

como uma solução de compromisso entre os algoritmos AMERICA e MEXICO para 

executar BSS/ICA em corpos de Galois. 
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ABSTRACT 

 

A Study on Independent Component Analysis Over Galois Fields. 

 

Over the past decades, the Blind Source Separation (BSS) problem – which deals with 

estimating an unknown set of source signals from their measured mixtures –has become 

prevalent in several engineering fields, including array processing, wireless 

communications, medical signal processing, speech processing and biomedical 

engineering.  

In order to solve the BSS problem in the context of linear models, considering several 

possible techniques, Independent Component Analysis (ICA) – which uses statistical 

independence of the source signals as a premise – has been shown to be one of the most 

important approaches. Furthermore, although the BSS/ICA framework for real- or 

complex-valued signals is firmly established, the recent perspective of a BSS/ICA 

formulation where the signals and models are defined over Galois fields gives several 

possibilities of analyzes and contributions.  

This Master’s thesis performs a study on Independent Component Analysis over Galois 

fields, considering the theoretical concepts and aspects of the problem and the 

investigation, in terms of capability and efficiency, of the state-of-the-art algorithms so far 

introduced. 

In this context, AMERICA and MEXICO techniques are studied, along with cobICA 

algorithm – a bioinspired framework based on cob-aiNet[C] immune-inspired algorithm –, 

mainly focusing on comparing the quality of separation and on discussing the 

computational burden of each technique.  

As the experimental simulations indicate, due to its lower computational complexity and a 

satisfactory performance quality, cobICA takes place as a compromise solution between 

AMERICA and MEXICO algorithms, to perform BSS/ICA over Galois fields. 
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CHAPTER 1  

 

1 – Introduction 

 

During the last decades several techniques based on Machine Learning, Computational 

Intelligence and Adaptive Signal Processing have been developed to deal with the 

increasing availability and complexity of data (HAYKIN, 1994; ADALI; HAYKIN, 2010; 

ROMANO et al., 2011), for which conventional concepts such as linearity, continuity, 

gaussianity and second-order statistical information may not be sufficient. 

In this context, Information Theoretic Learning (ITL) (PRINCIPE, 2010) has shown to be 

an important approach to solve engineering problems which deal with information content 

measuring of events and sources. In order to train the parameters of a learning machine, 

ITL seems an intuitive way because the main aspect of learning is to transfer the 

information contained in the available data onto the adaptive system that is intended to 

model this data and the underlying problem. The learning capability of adaptive responsive 

systems is essential in the implementation of intelligent algorithms (PRINCIPE et al., 

2000). 

Independent Component Analysis (ICA) can be considered an example of ITL application, 

with a general framework applicable to several modern challenges in signal processing, 

such as in speech recognition systems, telecommunications and medical signal processing 

(CRISTESCU et al., 2000; JUNG et al., 2001; VALKAMA et al., 2001; ZHANG; 

KASSAM, 2001). 

When linear models fit well, ICA has been shown to be one of the most important 

approaches in separating independent source signals that were linearly mixed, with no prior 

information on the sources contents or on the mixtures parameters. This is the familiarly-

known Blind Source Separation (BSS) problem (COMON; JUTTEN, 2010). Hence, the 

goal of an ICA solution for BSS is to recover independent sources, given only sensor 

observations that are linear mixtures of the unobserved independent source signals.  

While the BSS/ICA problem is a well-known approach for real- or complex-valued signals, 

recently Arie Yeredor (YEREDOR, 2007) gave the first steps to extend the BSS/ICA 

problem for Galois fields (GF), as well. Hence, the problem can be formulated as a 
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combinatorial optimization problem with a cost function that estimates the independence 

degree between the extracted components y(n), which defined in Equation 2.3. 

This Master’s thesis proposes to study the problem of blind source separation and its 

associated solution via independent component analysis, when the signals and models are 

defined over Galois fields. Moreover, a study and comparative analysis is performed for 

two heuristic methods denoted as AMERICA and MEXICO (YEREDOR, 2011a; GUTCH 

et al., 2012), along with cobICA (SILVA et al., 2014), a Bioinspired framework based on 

cob-aiNet[C] immune-inspired algorithm (COELHO; VON ZUBEN, 2010).  

The two pioneer algorithms AMERICA and MEXICO adopt a criterion based on the 

lowest entropy linear combination of the mixtures, while cobICA algorithm (SILVA et al., 

2014) employs a different search strategy, based on cob-aiNet[C] mechanism, a different 

criterion, the minimal mutual information (MMI), and specific full-rank-preserving 

operators.  

According to the simulation results, the cobICA technique can achieve good performances 

for small number of sources. Additionally, the comparison between the computational 

complexities of the methods, when the number of sources increases, indicates that the 

cobICA technique presents a lower computational complexity than AMERICA, which 

highlights the advantage of the cobICA technique over other methods in high-dimension 

scenarios. 

This dissertation is divided into 5 chapters, including this introduction. Chapter 2 presents 

the BSS/ICA framework in its linear-instantaneous model, first in the canonical 

formulation, for real- or complex-valued signals, and then in the context of signals defined 

over Galois fields. In the sequence, some fundamental concepts of information theory are 

presented, such as Shannon’s entropy and mutual information for discrete random 

variables. Those definitions are essential to formulate ICA over GF algorithms, including 

AMERICA and MEXICO, which are the final subject of this chapter.  

In Chapter 3, basic concepts of immune-inspired algorithms and, specifically the key 

aspects of cob-aiNet[C] algorithm are discussed, then, a descriptive analysis of cobICA 

algorithm is presented: an immune-inspired implementation of ICA over GF, supported by 

a mutual information-based criterion.  



3 

 

In order to compare the behavior of the three techniques altogether and to analyze the 

potential benefits of each one in different scenarios, an extensive set of numerical 

simulations are shown and discussed in Chapter 4 and, finally, conclusions are drawn in 

Chapter 5. 

  



4 

 

CHAPTER 2  

 

2 - Independent Component Analysis over Galois fields 

 

In order to perform blind source separation, different techniques have been discovered 

based on statistical features of the source signals and on structural aspects of the mixing 

process. Independent component analysis is one of the most important solutions, in the 

case of separating sources that are mutually independent.  

The idea of performing ICA specifically over Galois or finite fields was first proposed by  

Arie Yeredor in 2007, in the context of boolean “Exclusive Or” (XOR) mixtures 

(YEREDOR, 2007), then, the idea was generalized by GUTCH et al., (2010) in order to 

encompass arbitrary discrete and finite sets of numbers, yielding the ICA framework over 

𝐺𝐹(q). 

In this chapter the BSS problem, the ICA model, Galois fields and information-theoretic 

concepts are discussed. Then, the pioneering algorithms AMERICA and MEXICO are 

presented. 

 

2.1 - Blind Source Separation and Independent Component Analysis 

 

Blind Source Separation, which deals with recovering an unknown set of sources from an 

observable set of mixed signals (COMON; JUTTEN, 2010), has been applied over a wide 

range of engineering fields such as: array signal processing and wireless communication 

(AMAR; CICHOCKI, 1998; MANSOUR et al., 2000), geophysical exploration (MAKEIG 

et al., 1996), biomedical signal processing (VIGARIO et al., 2000; IRIARTE et al., 2003), 

speech processing (LEE, 1998) and image processing (LEE; LEWICKI, 2000). 

As an example, Figure 2.1 shows the BSS model applied in Secondary Surveillance Radar 

(SSR) (PETROCHILOS, 2002; ICAO, 2004), which is a radar system employed in air 

traffic control centers. The SSR system uses an interrogation signal to detect and measure 

the position of aircrafts while it also requests additional information from the aircraft, such 

as its identity and altitude, and the aircrafts reply to each request by transmitting a response 

containing encoded data.  

https://en.wikipedia.org/wiki/Air_traffic_control
https://en.wikipedia.org/wiki/Air_traffic_control
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Figure 2.1 - The BSS problem in Secondary Surveillance Radar (SSR), adapted from 

(ICAO, 2004). 

 

Another example for the BSS approach is in the cocktail-party problem (HYVARINEN et 

al., 2001), where the combination of voices from different people, in the same room, are 

captured by a set of microphones, and we need to estimate the original speech signals from 

this set of mixtures.  

As an example, consider the case where two individuals are having a conversation in a 

room with two microphones, which results in two recorded signals. To illustrate, consider 

the waveforms in Figure 2.2, where these recorded signals are mixed in two mixture 

signals and, hence, the goal is to recover the two original speech signals (HYVARINEN et 

al., 2001; COMON; JUTTEN, 2010). 

 

  



6 

 

Estimate 2 

 

Estimate 1 

 

Source 1 

 

Source 2 

 

Mixture 1 

 

Mixture 2 

 

 

    

    

    

 

 

    

 

Figure 2.2 - The BSS approach for the cocktail-party problem. 

 

In mathematical terms, the linear-instantaneous model of BSS for real- and complex-

valued signals is defined as follows: 

 ( )     ( )                                                        (   ) 

where   ( )     ( )   ( )      ( )   is a vector of N observed random signals at the 

instant n, obtained from the mixing of  ( )      ( )   ( )      ( )  , a vector of the 

source components at the same instant and   is an invertible (   ) matrix, since we are 

considering the determined model, i.e. the number of sources is equal to the number of 

mixtures.  

The basic BSS block diagram is shown in Figure 2.3, observe that the source data s(n) and 

the mixing matrix A are both unknown. 

 

  

Source Separation 

+ 
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As shown in (COMON, 1994), if the following assumptions are valid, the BSS problem for 

real and complex signals can be solved via ICA: 

1. The sources are statistically mutually independent, where the independence 

condition is defined as follow (KAGAN et al., 1973):                              

   ( ( ))   ∏    ( ) 

 

   

                                                        (   ) 

  This means that the joint probability density of the source vector –  ( ( )) – 

is equal to the product of the marginal probability densities –     ( )  – of 

the individual signals. 

2. At most one of the sources has Gaussian distribution. 

3. The mixing matrix A is invertible. 

In this context, the ICA strategy consists of seeking for a separating matrix that produces 

an output vector whose components are maximally independent. It is possible to 

demonstrate (HYVARINEN et al., 2001; COMON; JUTTEN, 2010) that such technique 

will result in the recovery of the original sources, more specifically, the mathematical form 

involves to recover the original sources by estimating the unmixing (or separating) matrix 

W, such that 

 ( )     ( )         ( )      ( )                                (   ) 

  ( )    ( )  

Unknown 

 

  ( )  

Figure 2.3 - The basic block diagram of BSS problem. 
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where y(n) recovers the independence condition among its components up to scale and 

permutation ambiguities, which are respectively represented by a diagonal matrix D and a 

permutation matrix P. 

Hence, when the mentioned assumptions are valid for the BSS problem, its solution is 

possible via ICA, which basically attempts to find an inverse mapping that maximizes 

independence between the output components y(n), as described by Equation 2.3. 

There are several criteria to measure independence between the extracted components and, 

consequently, to estimate W, such as Higher Order Statistics (HOS) like kurtosis, 

cumulants and others that attempt to explore the connection between non-Gaussianity and 

independence, e.g. negentropy (CARDOSO, 1992; NIKIAS; MENDEL, 1993;  

HYVARINEN et al., 2001).  

Notwithstanding, if there are Gaussian-distributed sources, but with certain temporal 

structure (temporally dependent), then criteria that are based on Second Order Statistics 

(SOS) (CARDOSO, 1989) between time samples are capable of obtaining the BSS 

solution, instead of ICA. 

In the context of real- or complex-valued signals, ICA has been successfully applied as a 

tool to solve BSS problems in many different fields. As an example, in wireless 

communication, ICA is employed to extract the original signal which was transmitted 

through an unknown channel (CASTEDO et al., 1997; FENG; KAMMAYAR, 1999; 

CRISTESCU et al., 2000; VALKAMA et al., 2001; ZHANG; KASSAM, 2001). 

Furthermore, one can find ICA applications in biomedical signal processing and analysis of 

seizures (artifacts removing) (VIGARIO et al., 2000; JUNG et al., 2001); in image 

processing and feature extraction (BELL; SEJNOWSKI, 1997; HYVARINEN; HOYER 

2000); and in audio processing, where applications are found in multiple speakers 

separation (IKEDA; MURATA, 1999; TORKKOLA, 1999). 

Based on the concepts of BSS/ICA for real- or complex-valued signals that this work 

discussed so far, it is possible to move towards the extension to the case of finite/Galois 

fields. But, before specifically discussing the BSS/ICA problem, we need to analyze some 

fundamental theoretical aspects of Galois fields, which are presented in the following 

section. 
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2.2 - BSS/ICA over Galois fields 

  

In simple words, a field is the mathematical formalization of sum and product operations 

for arbitrary sets. The real numbers and the complex numbers are two familiar examples of 

fields.  

A field F is a set with two operations ∙ and   , such that the following axioms hold (LIDL; 

NIEDERREITER, 1997): 

 

1. Closure: For every a, b   F   a ∙ b, a + b   F. 

2. Commutativity: For every a, b    F  a + b = b+ a and a ∙ b = b ∙ a. 

3. Associativity: For every a, b, c    F  a + (b + c) = (a + b) + c and a ∙ (b ∙ c ) 

= (a ∙ b) ∙ c. 

4. Distributivity: For every a, b, c    F  a ∙ (b + c) = (a ∙ b) + (a ∙ c) 

5. Identity elements: There are elements 0   F and 1   F, 0   1, such that a + 

0 = a and a ∙1 = a,   a   F. 

6. Inverse elements: For every a   F,   b   F such that a + b = 0, and if a   0; 

  c   F such that a ∙ c = 1. 

 

If the number of elements of a field is finite, it is called a Finite or Galois field of size q, 

denoted 𝐺𝐹(q), where q has to be some prime power, i.e. q =   , where P is a prime and n 

a positive integer. In the case that n = 1, the field is called a prime field, where the 

elements can be defined as the set {0, 1, …, P-1} and the operations are defined as the sum 

and product in modular arithmetic (LIDL; NIEDERREITER, 1997), i.e. sum modulo P and 

product modulo P.  In the case of non-prime fields, i.e. n   1, we need to define the 

symbolic operations on polynomials, which is naturally more tricky to be implemented 

than the prime field case (GUTCH et al., 2012). 

It is also possible to construct vector spaces over finite fields, with some important 

considerations (GUTCH et al., 2012; SILVA, 2013): 

 

1. Considering a vector space V with dimension   in a finite field 𝐹  

 𝐺𝐹( ), it can be written as   𝐹 , such that a member of   is a  -

dimension column vector with components that belong to F. 
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2. A linear mapping A: 𝐹  → 𝐹  can be represented by a matrix (𝑀 ×  ) 

with values in 𝐹, and the composition of matrices is denoted as "matrix 

product", by noticing that element-wise operations are performed in 𝐹. 

3. The determinant of a square matrix A is calculated as in the “traditional” 

manner, for example, by Cramer's rule or by the Laplace formula, with the 

operations between the elements naturally defined in 𝐹; moreover, A is 

invertible if its determinant is different than the field’s null element. 

4. The set of (N   N) invertible matrices with elements defined in 𝐹  

 𝐺𝐹( ) is denoted by 𝐺 (   ). 

5. Unlike the reals, the elements of a finite field cannot be ordered. Therefore, 

the product of two vectors in  , defined by   

        ∑    

 

   

                                             (   ) 

is not positive definite and therefore cannot be a scalar product.  

6. There is a nonzero vector       such that           – for example, let 

𝐹   𝐺𝐹( ) and   (   )   – which means that there is no concept of 

orthogonality for vector spaces in finite fields. 

 

With the basic concepts of Galois fields, we are ready to analyze the BSS/ICA problem in 

this context, which is mathematically formulated in the same manner as Equations 2.1 and 

2.3 states, but with the crucial difference that the values of all elements (x(n), s(n), y(n), A, 

W, P, D) and the  ,   operations are defined over 𝐺𝐹(q).  

The ICA solution provided by Equation 2.3, specifically, remains valid for finite fields, 

but, instead of the pre-requisite that restricts the presence of Gaussian distributions, the 

following theorem shows that non-uniformity of the sources is fundamental to perform 

ICA over GF(q) (YEREDOR, 2011a): 
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Theorem 2.1 Assume that s be an N-dimensional independent random vector over a finite 

field F = GF(q) with joint probability distribution   ( ), such that the marginal 

distributions are not uniform and also don’t have null probability values.  

If any G   𝐺 (   ) could be found such that y = Gs be composed of independent 

components again, then G = PD, for some permutation matrix P and some diagonal matrix 

D (GUTCH et al., 2010; SILVA et al., 2014a). 

 

As Theorem 2.1 shows – its proof can be seen in (GUTCH et al., 2010) – there is a 

restriction to sources whose distribution is uniform. This behavior refers to the statement 

that a combination of two independent signals, with one uniformly-distributed, results in a 

new signal that maintains the independence condition (YEREDOR, 2011a), which makes 

ICA useless, in this case. 

Note that the definition of a non-singular, hence invertible, separating matrix in terms of a 

non-null determinant also remains valid in this new scenario. Furthermore, as shown in 

(WATERHOUSE, 1987), the subset of invertible matrices 𝐺 (   ) is, naturally, finite and 

has a number of elements given by 

|𝐺 (   )|   ∏(      ) 

   

   

                                    (   ) 

while the cardinality of the set of (N   N) square matrices is    
. Therefore, the process of 

searching for the separating matrix W involves a finite space of solutions, whose size 

increases exponentially with the number of sources.  

Hence, we conclude that ICA over GF(q) can be formulated as a combinatorial 

optimization problem with a cost function that measures the dependence between the 

extracted components y(n), such that the solution is obtained by the signals that minimize 

this criterion (or maximize an independence measure, equivalently). It is fundamental, 

then, to define an appropriate form of measuring the degree of dependence between 

random signals, which is possible by considering some key concepts derived from 

information theory, to be presented in the following section. 
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2.3 - Information-theoretic measures for discrete sources  

 

In order to find a solution in signal processing problems based on measuring the degree of 

dependence between random signals, Information Theory (SHANNON, 1948) lies as an 

important framework to deal with information sources of both nature, discrete and 

continuous. 

Given that ICA over GF(q) involves discrete entities, we consider for this specific case the 

domain of discrete random variables (RV), e.g. X, for which the entropy H(·) – the average 

degree of uncertainty of a RV – is defined as (SHANNON, 1948): 

 ( )    ∑  ( )      ( )

 

                                     (   ) 

where    ( ) is the probability mass function (PMF) associated with X. Recall that the 

definition considers that 0 log 0 = 0. 

Furthermore, its possible to define the joint entropy of two random variables X and Y, as 

follows: 

 (    )    ∑∑   (   )       (   ) 

  

                  (   ) 

where    (    ) is the joint PMF concerning  X and Y.  

Based on the definition in Equation 2.7, we can write 

 (    )     ( )    ( )                                        (   ) 

where equality is only possible if X and Y are statistically independent, i.e. when    

    (   )     ( )   ( )                                           (   ) 

The Mutual Information (MI) measures how much (on average) the realization of random 

variable Y tells us about the realization of X, (COVER; THOMAS, 2006). Furthermore, 

mutual information is symmetric, which means that X tells us exactly as much about Y as Y 

tells us about X (CHAOLI; SHEN, 2011). 

The Mutual Information (MI) between X and Y is defined as 

 (    )     ( )     ( |  )                             (    ) 
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and 

      (    )    ( )    ( )    (    )                             (    ) 

where the conditional entropy  ( |  ) tells how much information about X is still 

unknown after observing Y. It is defined as 

 ( |  )     ∑ ( )  ( |    )

 

 

      ∑   ( )∑  |   ( )      |    ( ) 

  

  (    ) 

where  ( |    ) is the entropy of the variable X conditional on the variable Y taking a 

certain value y.  

Another important property for entropy is the chain rule (COVER; THOMAS, 2006), 

which states that the entropy of a collection of random variables is the sum of the 

conditional entropies, as follows: 

 (          )   ∑(  

 

   

|          )                                        (    ) 

where (          ) are drawn according to    
( )    

( )      
( ), respectively. 

Note that the MI of a collection of random variables can also be defined (COVER; 

THOMAS, 2006): 

 (           )   ∑ (  

 

   

)    (          )                        (    ) 

Also based on Equation 2.10 we can write MI in terms of probabilities 

 (   )   ∑∑   (   )    
   (   )

  ( )   ( )
  

                 (    ) 

and, thus, relate it to the relative entropy or Kullback-Leibler divergence (COVER; 

THOMAS, 2006), as follows:  
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   (   )   ∑ ( )    
 ( )

 ( )
 

                                           (    ) 

where   and   are two PMFs with equivalent support and consider that      
 

 
    .  

From Equation 2.15 and 2.16 we can show that mutual information can be formulated as 

the relative entropy between the joint distribution and the distribution given by the product 

of marginal distributions (COVER; THOMAS, 2006): 

 (    )      (   (   )     ( )   ( ))                    (    ) 

 

2.4 – Canonical algorithms for ICA over GF 

 

After presenting the problem definition, the fundamental concepts regarding finite fields 

and information-theoretic measures, we can discuss two pioneering propositions of 

algorithms to perform ICA over GF(q). As the reader will see, in the following 

subsections, both employ specific search heuristics that optimize the entropy value of the 

outputs of the separating system, in order to obtain estimates of the original, independent 

components. 

 

2.4.1 - The AMERICA algorithm 

 

AMERICA was introduced by Arie Yeredor in 2007, in the context of boolean “Exclusive 

Or” (XOR) mixtures (YEREDOR, 2007), and subsequently was generalized by H.W. 

Gutch et al., in 2010 in order to encompass fields with arbitrary order, yielding the ICA 

framework over GF(q). Yeredor’s work contains the proof of a separation theorem for 

signals in GF(2) and also presents an important property: 

 

Lemma 2.1 Let 𝑈 and   be two independent RVs defined over GF(2), where 𝑊 = 𝑈 +  , 

then  (𝑊) ≥  ( ) and  (𝑊) ≥  (𝑈). 

 

Recall that  ( ) is the entropy of a random variable, represented in Equation 2.7. Lemma 

2.1 can be generalized to any linear combination of discrete, independent RVs (COVER; 

THOMAS, 2006; YEREDOR, 2011a) and in simple terms, ensures that a linear mixing 

process of independent random signals never causes a reduction of entropy. 
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By exploring the aforementioned property, in order to solve the problem of BSS/ICA over 

Galois fields, the AMERICA technique (Ascending Minimization of EntRopies) tries to 

recover the lower entropy configuration previous to the mixing in order to extract the 

signals sources (COMON; JUTTEN, 2010), in which this extraction should be performed 

  times, once for each signal source (GUTCH et al., 2012). 

Based on this, the  lowest entropy linear combination of the mixtures is determined by 

AMERICA algorithm search process, where each set of coefficients that extracts a source 

is linearly independent from the previously chosen (otherwise the same source would be 

repeatedly extracted), such that: 

             
      

 (      )                                       (    ) 

where   is an estimate of one of the independent sources and       is the vector that 

indicates the optimal linear combination of the mixtures. 

AMERICA first proposal (YEREDOR, 2007) employed, after each source extraction, a 

deflationary procedure (DELFOSSE; LOUBATON, 1995) to remove it from the mixtures, 

running the search process again to extract the remaining sources. The definitive version 

(YEREDOR, 2011a; GUTCH et al., 2012), however, adopts the aforementioned strategy of 

obtaining each extraction vector as being linearly independent from the previous ones, 

which results in the lines of the separating matrix being the corresponding extraction 

vectors of each source. 

Note that there are, in the worst case,      non-trivial linear combinations which should 

have the corresponding entropy evaluated, for each source signal. Therefore, the 

computational cost, in terms of cost function evaluations, of the search increases 

exponentially with the number of components, in other words the computational 

complexity of AMERICA is approximately  (   ) (YEREDOR, 2011a). 

The Pseudo-code 2.1 presents the steps of the AMERICA algorithm, where the technique 

corresponds to an exhaustive search to determine the linear combination of the mixtures, 

which retrieves each of the sources through the condition minimum entropy, until it could 

find all N sources. Consider that a set of T samples of each mixture is available, resulting in 

a     mixed sample matrix  .  
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2.4.2 - The MEXICO algorithm 

 

In order to achieve the lowest entropy linear combination of the mixtures in ICA model, 

another useful technique is the MEXICO algorithm (Minimizing Entropies by eXchanging 

In Couples), which was first proposed by Gutch et al., (2010), with the name “Entropy 

Based Demixing”, then, in Gutch et al., (2012), the authors renamed it as MEXICO.  

Although MEXICO follows the same basic idea of iteratively estimating the independent 

components by reducing their entropy values, as well as AMERICA algorithm, the 

construction scheme of the separating matrix and the search process are both different. 

The main difference is that MEXICO makes an equivalent entropy evaluation only 

between combined pairs of mixtures, while AMERICA evaluates the entropy of an 

extracted signal which is generated by combining   mixtures. 

In other words, if we have two mixtures observations at a given instant, i.e.   ( )       

and   ( )      and a constant   𝐹  𝐺𝐹( ) , such that             

 (         )     (  )                               (    ) 

then      can be removed from    as a step-by-step “demixing” process, where    is 

replaced by       . This substitution can be formulated in a matrix representation, as 

follows:  

Pseudo-code 2.1 Algorithm AMERICA 

                      (    )  

                          

Input : (N   T) mixed sample matrix   

Output: separating matrix W 

W    ; 

do   

W   W   {    }; 

while      (W) = N ; 

W   matrix built from the row vectors in W; 
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    ( )  

[
 
 
 
 
     

     
 
 
 

 
 
 

 
 
 

 
 
 

 
 
 ]
 
 
 
 

                                        (    ) 

where     ( )  𝐺 (   ) is an identity matrix with a value   (instead of 0) in (i, j) 

position. 

More specifically, the Pseudo-code 2.2 presents the steps of the MEXICO algorithm. 

Consider again that    and     are two components of the mixtures vector  ; the process 

starts by determining     𝐺𝐹( ) in   ̅         such that  (  ̅) has the minimum value, 

if  (  ) is greater than the entropy of the combination, i.e.  (  )   (  ̅), then    is 

replaced by   ̅ . 

This process is repeated for all (  - 1) possibilities of pairwise combinations, with     , 

and is called a "sweep". Then, while a sweep has an improvement (i.e., a substitution which 

reduces the entropy), the process is repeated, otherwise the algorithm is finished. 

 

 

 

 

 

 

 

 

 

 

The computational complexity of MEXICO algorithm, which is an iterative algorithm, 

involves counting the number of sweeps and the number of cost function evaluations in 

each sweep (YEREDOR, 2011a). Since the stopping condition is not deterministic, there is 

no fixed number of entropy evaluations as AMERICA. 

Pseudo-code 2.2 Algorithm MEXICO 

Input : (N   T) mixed sample matrix   

Output: separation matrix W 

W        Gl(   ); 

while  (i, j, c) | H(   + c  )    H(  ) do    

          Gl(   ); 

(  )       

       +     

W    W 

end while 
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Whatsoever, MEXICO have shown to be a faster method than AMERICA, in terms of time 

processing, as the simulations in GUTCH et al., (2012) indicates. On the other hand, 

AMERICA presented a level of quality superior than MEXICO, which couldn’t achieve 

similar marks. 

 

2.5 – Concluding Remarks 

 

In this chapter we discussed about the BSS/ICA problem for real- or complex-valued 

signals and its extension to the domain of finite or Galois fields. In this scenario, BSS/ICA 

is formulated as a combinatorial optimization problem whose cost function to be 

minimized measures the dependence degree between the extracted components y(n), which 

are obtained as defined in Equation 2.3. 

In the sequence, a review on AMERICA and MEXICO algorithms, which can be 

considered state-of-the-art heuristics for ICA over GF, was developed. In the next chapter, 

we discuss the possibility of joining Bioinspired algorithms with Information-theoretic 

criteria in order to obtain a different approach for this same problem. 
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CHAPTER 3 

 

3 - Bioinspired Search and Information Theoretic Learning to perform 

ICA over Galois fields: the cobICA algorithm 

 

Recently, D. G. Silva, et al., (2014) proposed a novel Bioinspired algorithm for ICA over 

finite fields, which is based on the combinatorial version of the Concentration-based 

Artificial Immune Network - cob-aiNet[C] (COELHO et al., 2011). This mechanism is 

used as the optimization algorithm for the framework, which is called cobICA.  

In this chapter, we present a brief overview on objectives of Bioinspired algorithms, 

specifically Artificial Immune Systems, then, the mechanism of cob-aiNet[C] is introduced 

and, finally, the cobICA algorithm (SILVA et al., 2014) is detailed. 

 

3.1 – Artificial Immune Systems 

 

Bioinspired algorithms are engineering / computational tools that rely on biological models 

to solve diverse tasks, such as optimization (DE CASTRO, 2006). In this case, the goal is 

to find the best parameter settings for maximizing (or minimizing) a given function (DE 

CASTRO; TIMMIS, 2002a). Bioinspired methods are general purpose tools that have 

shown efficient solutions to optimization problems that are hard to be tackled by classical 

methods, e.g high-dimension combinatorial optimization problems or optimization of real-

valued functions that are non-continuous or non-differentiable. 

An important class of Bioinspired algorithms are Artificial Immune Systems (AIS) – 

computational systems inspired by functions, principles and models of the vertebrates’ 

immune system (DE CASTRO; TIMMIS, 2002a). In comparison with other strategies such 

as genetic algorithms, immune-inspired algorithms are preferable because they present 

higher diversity maintenance capabilities (DE FRANCA et al., 2010), which means that 

they posses an increased possibility of obtaining multiple optima points, at the end of the 

search process. 

The natural immune system provides defense mechanisms against infectious agents and, in 

order to do so, it has many useful properties from a computational point of view, such as 

self-organization, recognition, adaptability and robustness. Those properties begin to 
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emerge when the system extracts features of the invader and adapts its internal structure to 

the environment, without any external supervision (JERNE, 1974).  

Imagine that an attack occurs by an unknown antigen (molecular signatures of the foreign 

agent), then, in order to block the damaging action of the invader, two sub-systems of the 

immune system act: the innate sub-system tries to act quickly by blocking the invader via 

“conventional” defense mechanisms, while the adaptive system recognizes the specific 

agent and produces B-cells with “customized” molecules (antibodies) that neutralize the 

agent. The recognition capacity of a given antigen by a B-cell is called affinity. Thus, the 

adaptive immune response is continuously improved to recognize antigens (DE CASTRO, 

2001). 

When those ideas are used as inspiration for Artificial Immune Systems, in the 

optimization context, a population of candidate solutions represent the B-cells and their 

respective affinities with the antigen are represented by the objective function to be 

optimized. Furthermore, in cob-aiNet[C] algorithm, the Clonal Selection theory and the 

Immune Network theory are the two fundamental models that inspire the technique. 

The Clonal Selection Principle is one of the key theories that support a series of immune-

inspired algorithms, there are several clonal selection-based algorithms discussed in the 

literature (DE CASTRO; VON ZUBEN, 2002). They seek to improve candidate solutions 

for a given problem by means of the tasks of cloning, mutation and selection.  

The theory of clonal selection was first proposed by Frank Macfarlane Burnet in 1959 

(BURNET, 1959), it explains how the immune system is able to recognize and produce 

antibodies only against the antigens to which the body was exposed. 

This means that, when antigens of a foreign pathogen invading the organism are identified 

by the immune cells, these suffer a cloning process which is followed by a controlled 

mutation and by a selective pressure, in order to improve the recognition capability of the 

cells and, consequently, the organism can properly respond against the infection.  

Clonal selection algorithms have been applied to optimization problems e.g. CLONALG 

(DE CASTRO; VON ZUBEN, 2002), opt-IA (NICOSIA, 2004), the B-Cell algorithm 

(KELSEY; TIMMIS, 2003) and to multi-objective optimization (CRUZ CORTES; 

COELLO COELLO, 2003). 
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The other fundamental theory, the Immune Network Theory (JERNE, 1974), discusses that 

the immune cells are also capable of recognizing each other, via a positive response or a 

negative response. A positive response is characterized by the activation of the recognizing 

cell and its cloning and mutation; a negative response is characterized by tolerance and 

possibly the suppression (elimination) of the recognized cell, since there may be another 

sufficiently similar cell with equivalent or better affinity with the antigen.  

 

3.2 – The cob-aiNet[C] algorithm 

 

The Concentration-based Artificial Immune Network (cob-aiNet) is an AIS (DE CASTRO, 

2006) that implements the fundamental ideas of the Clonal Selection Principle (JERNE, 

1974) and the Immune Network Theory (DE CASTRO, 2002) for optimization tasks. In 

order to solve, specifically, combinatorial optimization problems, the cob-aiNet[C] version 

(COELHO et al., 2011) can be used. 

In the following subsections, the main steps of cob-aiNet[C] are discussed. The full details 

of the technique are presented in its original paper, if the reader is interested (COELHO; 

VON ZUBEN, 2010; COELHO et al., 2011). 

The Pseudo-code 3.1 presents the main steps of the cob-aiNet[C] algorithm. 
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Pseudo-code 3.1 Algorithm cob-aiNet[C] 

 

Parameters: 

- nAB : initial number of cells; 

- maxAB : maximum number of cells; 

- n       : maximum number of clones per cell; 

- n     : minimum number of clones per cell; 

-    : initial concentration; 

-    : suppression threshold; 

-    : initial mutation parameter; 

-    : final mutation parameter; 

-      : number of local search iterations; 

-        : number of iterations between consecutive local search steps; 

- maxIT: maximum number of iterations; 

 

1. Randomly create the initial population of size nAB; 

2. Evaluate the fitness of the cells in the initial population; 

3. Evaluate the affinity among cells in the initial population; 

while (iteration   maxIT) do 

4. Define the number of clones n    that must be generated for cell i ; 

5. Generate n    clones for each cell i in the population; 

6. Apply the mutation operator to each of the generated clones; 

7. Evaluate the fitness of the new cells; 

8. Select those cells that must be kept in the next generation (with insertion); 

if ((iteration mod       ) == 0)  then 

9. Apply local search to all cells and update their fitness; 

end if 

10. Evaluate the affinity among cells in the population; 

11. Update the concentration of all cells; 

12. Remove from the population those cells with null concentration; 

end while 

13. Apply local search to all cells and update their fitness; 

14. Evaluate the affinity among cells in the population; 

15. Update the concentration of all cells; 

16. Remove from the population those cells with null concentration; 

  



23 

 

3.2.1 - Representation and affinity metrics 

 

In order to quantify the interactions between the elements of the system, affinity measures 

should be chosen. The concept of affinity maturation guarantees that the immune system 

becomes increasingly better at the task of optimization.  

The cob-aiNet[C] mechanisms are based on two affinity metrics such that both are 

evaluated, for each cell u in the population, at each iteration t. Considering a minimization 

task, the first measure is the affinity with antigens or fitness, called    (  ), which is 

defined by:  

   (  )     (  )̅̅ ̅̅ ̅̅ ̅                                                         (   ) 

where    (  )         is the affinity with antigens of cell u at iteration t and  (  )̅̅ ̅̅ ̅̅ ̅   

       is the normalized value of the cost function for cell u at iteration t.  

The second affinity measure is the affinity with antibodies or affinity with other cells, 

called    (  ), defined by: 

   (  ) ={

∑  (  )      (           ) 

∑  (  )     
         

                                         
                               (   ) 

where     (  ) is the total affinity between cell    and all the other cells in the population, 

at iteration t, J is the set of cells that are not worse than    ( 
  (  )      (  )) and that 

are reasonably similar to it, i.e. they are within a radius    (parameter of the algorithm) 

from   , according to a distance (dissimilarity) metric d(      ), and C(  ) is the 

concentration of cell    at iteration t. In simple words, the affinity with antibodies value is 

higher, for a given cell, when there are many high-concentrated cells that are too similar 

and with better fitness than this particularly one. 
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3.2.2 - Concentration model and suppression 

 

Inspired by the Immune Network Theory, the dynamic behavior of the algorithm is 

implemented by a concentration model that is directly ruled by its past values and by the 

affinity with other cells, such that at each iteration t, the concentration C(  )         of a 

given cell    in the population (initially defined with value   ) is updated as follows: 

  (    )       [     [(   (  )      (  ))  ]]                          (   ) 

where a is a regulatory factor expressed as: 

     {         (  )            
  (  )   

                                             
                       (   ) 

Note that non-null values of affinity (   (  )) help decreasing the concentration, 

otherwise the concentration is increased in proportion with the cell’s fitness (   (  )). 

Besides, if a given cell obtains a null concentration, it is eliminated from the population. 

This situation is typical when the cell represents, for some iterations, a poor quality 

solution and/or is too similar to other cells. 

 

3.2.3 - Cloning and Mutation  

 

In the cloning step of cob-aiNet[C] algorithm, a given number of clones nCl(  )  is 

created, at each iteration t, for each cell    in the population such that: 

nCl(  ) = C(  ) ∙ (              )                             (   ) 

where         and         are the limiting values defined by user. 

In the sequence, the process of mutation is applied for the new cells, where each cell u at 

iteration t has its parameters modified by a mutation operator     (  ) times, which is 

given by 

    (  )       ⌊ ( )       (  )  (  )⌋                                (   ) 

where  ( ) is the value of parameter β at iteration t, which indirectly influences the range 

of modifications made to the clones and is changed with respect to t according to a 
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mirrored-sigmoid function (COELHO; VON ZUBEN, 2010). Note that higher 

concentration levels imply a higher number of cell’s clones and higher fitness values imply 

that each clone should be submitted to fewer rounds of mutations, or, in the opposite way, 

bad solutions are mutated in a more intense manner. 

 

3.2.4 - Fitness-based selection and insertion 

 

The selection operator in cob-aiNet[C] also presents the ability for the insertion of new 

cells in the population. First, a fitness-based selection mechanism is applied to each subset 

composed by the parent cell and its mutated clones. If the best clone cell is distant enough 

from its parent, it is kept together with the parent, increasing the population; otherwise, just 

the best one between the clone and its parent is kept for the next iteration. Therefore, 

during runtime, cob-aiNet[C] adjusts the population size dynamically by the insertion 

operator combined with the suppression of cells.   

  

3.3 – The cobICA algorithm 

 

ICA over Galois Fields poses, as seen in Chapter 2, a combinatorial optimization task 

where the objective function is some measure of (in)dependence between the extracted 

signals. Notwithstanding, cob-aiNet[C] is a state-of-the-art immune-inspired optimization 

method that can be adopted in the context of high-dimension domains.  

In this section, we are able to join those concepts by studying the cobICA algorithm 

(SILVA et al., 2014): an immune-inspired algorithm to perform ICA over Galois Fields, 

which applies cob-aiNet[C] algorithm with the minimal mutual information (MMI) 

criterion and specific full-rank-preserving operators, in order to obtain the optimal 

separating matrix  . In the following, the algorithm proposal is detailed. 

 

3.3.1 - General aspects 

 

In a big picture, cobICA overall organization is shown in Figure 3.1. The algorithm models 

the problem of ICA over GF such that each individual of the population (cell) is a 

candidate to be the separating matrix and the search space is limited by adopting 

appropriate mutation and local search operations. 
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As mentioned in Section 2.1, the BSS/ICA problem assumes that the mixing and the 

separating matrix are invertible. Therefore, the search space should be the set of invertible 

matrices over GF(q) – i.e. 𝐺 (   ), for the N-dimension case – and, in this sense,  the 

algorithm does not violate the full rank restriction by using customized mutation and local 

search operators, which consequently avoids the search for inappropriate solutions. 

In order to control the diversity degree among the individuals of the population (as stated 

in cob-aiNet[C] algorithm specification, recall Section 3.2.1), cobICA chooses Hamming 

distance – the number of different symbols that exist between two sequences – as the 

dissimilarity metric. 

The remaining fundamental parts of cobICA are discussed in the following subsections. 

 

 

 

 

 

 

Figure 3.1 - The cobICA algorithm key components. Adapted from (SILVA et al., 2014). 

 

3.3.2 - Criterion and Representation  

 

As mentioned in Section 2.2, in order to solve the BSS over GF problem, since the sources 

are mutually independent and non-uniform, if one finds a separating matrix that yields 

statically independent signals, it is possible to recover the original sources. 

Based on this principle and the fact that independent signals yield a null value of mutual 

information, the minimal mutual information criterion is employed to guide the search 

process. 

cob-aiNet[C] 

MMI 

criterion 

Full-rank-

preserving 

operators 

cobICA 
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Recall that the ICA model considers the separating system output as        (see 

Equation 2.3), where the instant indexes are omitted for simplicity purposes. Since   is an 

invertible linear mapping over GF(q), we have (GUTCH et al., 2012): 

  ( )     (    )                                                     (   )                         

This shows that bijective linear transformations over discrete spaces yield a joint PMF for 

random vector y that is just a rearrangement of elements of   ( ). 

As a consequence, if the mutual information definition for random vectors, previously 

defined in Equation 2.14, is applied to the output  , the joint entropy term is not changed 

after the transformation, hence we can write: 

 ( )   ∑ (  )   ( )

 

   

                                       (   )    

where the term  ( ) is invariant. Thus, the search can be performed by minimizing only 

the first term of Equation 3.8, leading to the cost function of the algorithm, as follows: 

 ( )   ∑ ̂(  ) 

 

   

  

                                                                          (   )                     

Since it is not known, in advance, the probabilities distributions of the mixtures, an entropy 

estimator is employed over a set of T independent and identically distributed (iid) 

observations of each mixed signal, {  ( )     ( )  , therefore  ̂(  ) is the maximum-

likelihood estimator with the Miller-Madow bias correction (CARLTON, 1969): 

 ̂(  )  
   

  
   ∑  ̂  

( )      ̂  
( )

    ( )

                     (    ) 

 ̂  
( )  

 

 
∑   (

 

   

  ( ))                                                        (    ) 

where   (∙) is the indicator function, defined as: 

  ( )  {
                
                

                                        (    ) 
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According to the cost function defined in Equation 3.9, each individual cell of the 

population represent a candidate separating matrix and the whole population is evolved in 

order to find the ICA solution via the individual with the best fitness, when the algorithm 

finishes. In simple words, it tries to find the minimal value of the objective function 

defined in Equation 3.9. 

 

3.3.3 - The mutation operator 

 

The cobICA algorithm proposes a mutation operator as a routine that performs the linear 

combination of two rows, randomly chosen from the candidate matrix, and then replaces 

one of the original sequences.  

This operation between rows can be represented as a left product by an elementary matrix 

and preserves the full rank property (CARLTON, 1969), consequently, there is no risk of a 

candidate matrix to become an unfeasible solution after a mutation. Assume that matrix 

  𝐺 (   ) represents the individual to be mutated, the corresponding elementary matrix 

that adds row     multiplied by a scalar k to row      is defined as the same in Equation 

2.20, as follows 

    ( )  

[
 
 
 
 
     

     
 
 
 

 
 
 

 
 
 

 
 
 

 
 
 ]
 
 
 
 

                                     (    ) 

where     ( )  𝐺 (   ) is an identity matrix with a value   𝐺𝐹( ) (instead of 0) in   

(i, j) position. 

Hence, the new cell (or individual) after the mutation is represented by  

        ( )                                                           (    ) 

The idea practiced in this technique resembles the process of MEXICO algorithm, which is 

discussed in Section 2.5, but there is a subtle difference. While MEXICO algorithm 

performs the row substitution exclusively based on the entropy reduction of a single 

extracted signal, cobICA mutation operator performs the modification independently if it 

may promote an improvement in the solution. 
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The Pseudo-code 3.2, adapted from (SILVA et al., 2014) presents the main steps of the 

mutation process. 

  

 

 

 

 

 

 

 

 

 

3.3.4 - The local search process 

 

The authors of cob-aiNet[C] recommend the inclusion of a local search operator, in order 

to refine the optimal solution (COELHO et al., 2011). In the context of cobICA, hence, the 

same operator stated in Equation 3.14 is used for the local search process, with the  

difference that, this time, the routine updates the individual only if the fitness is improved 

(the cost function value, defined in Equation 3.9, decreases). If this occurs, the procedure 

stops; otherwise, it continues testing all the possibilities of i                 

This strategy also resembles MEXICO’s sweep operations, however, the update in cobICA 

is performed based on a distinct cost function, the mutual information between all the 

extracted signals, while the former employs as update criterion the entropy of a single one 

extracted signal. Naturally, this may lead MEXICO to a higher risk of local convergence, 

despite a reduced computational cost associated with its cost function evaluation. 

The Pseudo-code 3.3, adapted from (SILVA et al., 2014) presents the main steps of the 

local search process, note also that the local search executes only one sweep process and 

that it does not lead to null determinant matrices, as well. 

Pseudo-code 3.2 The main steps of the mutation process.  

Input parameters: 

B : individual / matrix to be mutated; 

N : number of mixtures / matrix dimension; 

q : order of the field; 

 

1- Randomly choose i                

2- Randomly choose k  𝐺𝐹( )  

3-  B       ( )   

Return B 
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3.4 – Concluding Remarks 

 

In this chapter we took a brief overview on an important class of Bioinspired algorithms, 

Artificial Immune Systems (AIS), which are computational systems inspired by functions, 

principles and models of the vertebrates’ immune system. Specifically, we studied the 

combinatorial version of the Concentration-based Artificial Immune Network – cob-

aiNet[C].  

Based on cob-aiNet[C], the cobICA technique was presented in the sequence, which is an 

immune-inspired search algorithm to perform ICA over Galois Fields. A particularity of 

cobICA, with respect to previous approaches (YEREDOR, 2011a; SILVA et al., 2014), is 

the employment of the MMI criterion and problem-tailored full-rank-preserving operators.  

Pseudo-code 3.3 The main steps of the local search process.  

Input parameters: 

B : individual / matrix to be mutated; 

N : number of mixtures / matrix dimension; 

q : order of the field; 

 

for all i        do  

         for all            do 

1- Randomly choose k    ( )  

2-  Calculate          ( )   

If cost function (  )   cost function (B) then 

3-        

return B 

end if  

   end for 

end for 

return B 
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In order to analyze, for the first time, the comparative performance of all the algorithms 

presented in this work, in the next chapter simulation results are presented, regarding the 

cobICA, AMERICA and MEXICO algorithms. 
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CHAPTER 4 

 

4 - Simulation Results 

 

In this chapter, numerical simulations results are presented, for a comparative performance 

evaluation of cobICA, AMERICA and MEXICO techniques. The analysis is performed in 

different contexts, considering various numbers of samples (from     = 32 to     = 1024 

samples), of sources and of field orders. The MATLAB code of cobICA is available in 

http://danielgs.weebly.com and AMERICA and MEXICO code are available at  

http://www.eng.tau.ac.il/~arie/ICA4GFP.rar.  

The performance metric to analyze the quality of each proposal in the separation task is the 

average success rate: it is the mean ratio between the numbers of extracted sources and  , 

where each algorithm estimates a separating matrix   and the quality of    is evaluated 

by counting the number of rows with strictly one non-null entry, indicating an extracted 

source. 

The average metric is calculated for each algorithm via the mean of 20 Monte Carlo runs, 

where sources are generated randomly, i.e. for a single trial, the sources are generated one 

by one according to randomly-defined PMFs. The mixing matrix   is also randomly 

generated, which yields   i.i.d. observations from each mixture    to be applied as input for 

the algorithms. 

Recall that ICA only works for non-uniform and non-degenerate distributions (see Section 

2.2), so we consider for the simulations probability vectors whose Kullback–Leibler 

divergences, provided by Equation 2.16, to the uniform distribution are greater than or 

equal to 0.2 and with all symbol probabilities within the interval (0, 0.98]. 

The cob-aiNet[C] parameters used by cobICA are defined as the same that were adopted 

after a cross-validation procedure performed in (SILVA et al., 2014), displayed in Table 

4.1, and are fixed for all experiments that follow.  

The simulation results are organized according to the different scenarios in the following 

four sub-sections, in order to facilitate the reader’s understanding.  In Sub-section 4.1, we 

study the behavior of cobICA by itself, with fields order      ,     ,     and    

  .  

http://danielgs.weebly.com/
http://www.eng.tau.ac.il/~arie/ICA4GFP.rar
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Subsequently, in Sub-section 4.2, the comparison between the techniques in terms of 

average success rate analysis, when the number of samples increases (from   =32 to 

   =1024), is presented. Due to the lack of implementations of AMERICA and MEXICO 

that operate with non-prime fields, the comparative analysis consider only prime fields, i.e. 

   , specifically         and  .  

Similarly, in Sub-section 4.3 the comparison between the techniques continues, in terms of 

average success rate analysis, but, now the number of sources ( ) increases (from 2 to 8), 

with field orders       and      , and with a fixed number of samples. 

Finally, an empirical computational complexity comparison between the techniques is 

drawn in Sub-section 4.4. 

 

Table 4.1 - Simulation parameter’s of cobICA algorithm. Adapted from (SILVA et al., 

2014). 

nAB  2 

maxAB  100 

n      2 

n        10 

    0.8    

    0.008    

      1 

        1 

maxIT  300 

 

4.1 – Simulations of cobICA 

 

In Figures 4.1.1  (a, b and c), the behavior of cobICA with fields order q = 2, q = 3 and q = 

5 indicates that, in order to get a better performance for high dimension cases, more 

samples are needed to estimate the fitness / objective function.  

Although Figure 4.1.1.a shows that a less number of sources with higher number of 

samples performs better, since the study is implemented in GF(2), which presents a small 



34 

 

search space size, the gain between the different number of sources performance is close to 

each other. 

On the other hand, in Figures 4.1.1.b and  4.1.1.c, due to the search space dimension 

increasing, the differences between the performances increased as well. Also, the result in 

Figure 4.1.1.b shows that the cobICA algorithm has the best performance, in this numerical 

simulation, for N = 4 and GF(3) . 

 

 

Figure 4.1.1 - Performance of cobICA for different values of sources (N),   2, 3 and 5.  

 

Figure 4.1.2 exhibits the analysis for different field orders, when the number of sources is 

fixed with N = 4. Since GF(4) implies more number of symbols than GF(2) and GF(3), the 

associated search space became larger, and so, it presents a lower quality performance than 

the others, which was expected as a natural behavior of cobICA algorithm. On the other 

hand, GF(2) implies the smallest number of symbols and, consequently, a smaller search 
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space, it was expected to provide a better result than the GF(3) case, however the empirical 

results show an opposite behavior, where the GF(2) case presents a worse performance 

than GF(3). 

In order to find an hypothesis for this behavior we refer to the results obtained by a 

Michigan-like
1
 implementation of cob-aiNet[C] for ICA over GF in (SILVA et al., 2014a), 

where a similar behavior between the GF(2) and GF(3) scenarios was noticed. In that 

work, this fact is interpreted due a possible damage caused by the “imperfection” of the 

dissimilarity metric, which is also the Hamming distance. This means, in other words, that 

some good candidate solutions may be mistakenly suppressed during the algorithm 

execution. 

Although there are clear differences between cobICA algorithm and the Michigan-like 

approach, where, especially in cobICA algorithm, the technique works with whole 

separating matrices as being candidate solutions and with the MMI criterion, instead of 

extraction vectors (lines of the separating matrix) and with minimum-entropy criterion in 

the Michigan-based approach, Hamming distance is the dissimilarity metric among the 

solutions for cobICA algorithm, as well.  

Hence, we consider still valid the hypothetical explanation presented by SILVA et al., 

(2014a), where the authors referred to WATERHOUSE (1987), who has shown that, based 

on Equation 2.5, the probability that a matrix (   ) in 𝐺𝐹( ) has null determinant is 

             – (  –    ) (  –    )  (  –    ) .          (4.1) 

This equation indicates that Prob[4; 2]   0.6923, while Prob[4; 3]    0.4365 and Prob[4; 

5]    0.2392. These values can induce that a mistaken suppression of a solution candidate 

(an invertible matrix) when       reduces the already relatively small set of invertible 

matrices (in comparison to the set of non-invertible ones) that comprise the feasible 

solutions set, as stated in Equation 4.1. 

 

                                                 
1
 The Michigan method for population-based algorithms states that, at the end of the 

execution, the problem solution is composed by the entire population, while in the 

Pittsburgh approach, only the individual with best fitness composes the final 

solution (BACK et al., 2000). 
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Figure 4.1.2 - Performance of cobICA for different field orders, N = 4. 

 

In order to analyze the sensitivity to the non-uniform restriction (recall Section 2.2), 

Figures 4.1.3 (a and b) show the behavior of cobICA with different thresholds for the 

Kullback-Leibler divergence between the PMF of each source, defined in Equation 2.16, 

and the uniform distribution.   

The results reinforce that ICA over GF only works for non-uniform distributions, as 

already mentioned in Section 2.2, such that, the higher is the threshold, the more “non-

uniform” the sources are generated. 

As Figure 4.1.3.a shows, when       a similar performance can be achieved with higher 

number of samples (T = 2
10

), which compensates the characteristics of the distribution. On 

the other hand, as Figure 4.1.3.b shows, with 6 sources and      , the discrepancy is 

increased with higher number of samples. This indicates that as the search space increases 

in GF(5), the algorithm becomes more sensitive to the threshold value, in contrast with 

GF(3) in Figure 4.1.3.a, where a similar performance can be achieved for increased 

number of samples. 
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Figure 4.1.3 - Performance of cobICA when the non-uniform character of distributions is 

changed, (a) N = 4,    3, (b) N = 6,    5. 

 

4.2 – Comparative simulations for variable number of samples 

 

In the following, a comparative analysis takes place. Figures 4.2.1, 4.2.2 and 4.2.3 show 

the comparison between the techniques in terms of average success rate, when the number 

of samples increases (from   =32 to    =1024), with prime field orders   2, 3 and 5. 

The overall results show that AMERICA and cobICA have a quite similar performance in 

low dimension cases, while MEXICO does not achieve the same quality of results. 

As Figure 4.2.1.a shows, when the algorithms imply less number of sources, all the 

methods could achieve almost the same performance, which was expected because of the 

small size of the search space, and also the performances increased with higher number of 

samples, due to the natural improvement on estimating the cost functions associated to 

each method. 

On the other hand, with the addition of one more source in the case depicted by Figure 

4.2.1.b, a discrepancy between the performances appears, such that AMERICA and 

MEXICO present better results than cobICA, although their results become closer with 

higher number of samples. 

A similar situation can be seen in Figure 4.2.1.c too, with the difference that MEXICO 

presents a quality level closer to cobICA, while AMERICA still maintains a perceivable 

margin and presents the best performance among all methods. 
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Note that in Figure 4.2.1, since it is employed a field order        with a relatively small 

size of the search space for all scenarios, generally MEXICO shows better results than 

cobICA. Furthermore, this behavior of MEXICO is quite similar to GUTCH et al., (2012) 

simulation’s results, where for the fields order        and        , MEXICO 

performances are close to AMERICA, mainly for the less number of sources scenarios. 

 

 

Figure 4.2.1 - Comparison among the techniques for field orders   2, (a) N = 4, (b) N = 

5, (c) N = 6. 

 

In Figure 4.2.2 (a, b and c) the comparison between the techniques is again analyzed in 

terms of average success rate, but, this time with field order   3. 

As Figure 4.2.2.a shows, the performances of AMERICA and cobICA achieve full success 

in separation, while MEXICO presents a lower performance than the both ones. Clearly 

here we can see that, by increasing the search space, even for low dimension cases, where 
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we have less number of sources, MEXICO does not achieve the same level of quality as 

presented in Figure 4.2.1, in contrast with  the cobICA algorithm, which shows its best 

performance for N = 4 and GF(3). 

Furthermore, in both Figures 4.2.2.b and 4.2.2.c, as expected the performances get 

decreased due to the search space increasing, with AMERICA being the top-ranked 

method, closely followed by cobICA and, as the last-ranked strategy, MEXICO. 

 

 

Figure 4.2.2 - Comparison among the techniques for field order    3, (a) N = 4, (b) N = 5, 

(c) N = 6. 
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Figure 4.2.3 (a, b and c) shows the same type of comparative analysis but, now, with a 

field order   5.  

Figure 4.2.3.a indicates cobICA and AMERICA algorithms with a very close performance, 

even for low number of samples, while the line representing MEXICO shows that it 

performs close to the others algorithms only when the number of samples is increased, 

otherwise it doesn’t present the same quality level. 

Also, in Figures 4.2.3.b and 4.2.3.c, both graphics show that, although cobICA couldn’t 

achieve a quality performance as good as AMERICA, it is still better than MEXICO, 

especially in Figure 4.2.3.c.  

Note that in Figure 4.2.3.c, where the search space is large enough, the gain of the 

MEXICO increased more, compared with others, even for high number of samples. 

 

 

Figure 4.2.3 - Comparison among the techniques for field order   5, (a) N = 4, (b) N = 5 

and (c) N = 6. 
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4.3 – Comparative simulations for a variable number of sources 

 

Now considering a field order    3, a different analysis is displayed in Figure 4.3.1 (a and 

b), which shows the comparison between the techniques when N is increased, for a fixed 

number of samples: T = 32 (a) and T = 64 (b). A relatively small number of samples were 

initially chosen in order to emphasize the performances variability between the methods, 

possibly avoiding that a certain technique obtains full separation in all trials. The results 

show that the performance of AMERICA and cobICA are similar, with a superiority for the 

former, while MEXICO presents a lower quality degree; naturally, when N increases all 

algorithms decrease performance, but, interestingly, for T = 32 AMERICA degrades 

quicker than cobICA. 

Furthermore, Figure 4.3.1.c shows the same type of comparison between the techniques, 

but with higher numbers of sources and a higher number of samples (T = 512). It is 

noticeable the considerable reduction of MEXICO algorithm results, in comparison to the 

other two approaches, which are reasonably capable of maintaining good performances 

until N = 12, with, again, an advantage for AMERICA technique. 
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Figure 4.3.1 - Comparison among the techniques for different values of sources when field 

order    3, (a) 32 samples, (b) 64 samples and (c) 512 samples. 

 

We repeat the analysis of quality versus number of sources previously seen in Figure 4.3.1, 

but for a field order    5 in Figure 4.3.2. The results show that the performance of 

AMERICA and cobICA are close in the lowest dimension cases, while MEXICO is not 

successful enough. 

Although for T = 32, which is shown in Figure 4.3.2.a, all the algorithms degrade their 

performance levels fast, cobICA results seem to degrade quicker than the others. 

Moreover, Figure 4.3.2.b reminds that, as expected, when N increases all algorithms 

performances decrease as well.  
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Figure 4.3.2 - Comparison among the techniques for different values of sources when field 

order    5, (a) 32 samples, (b) 64 samples. 

 

4.4 – Computational complexity comparison  

 

The comparative results that were discussed in the previous sections point out that 

AMERICA yields the best separation quality, followed by cobICA technique and, then, the 

MEXICO algorithm presents the lowest general performance. Notwithstanding, the three 

approaches present fundamental differences concerning the implementation of the search 

strategy and of the criterion, which may imply different computational demands when each 

one is executed.  

In this context, this sub-section experiment compares the computational costs of cobICA, 

AMERICA and MEXICO, by considering the number of times that the crucial function 

that is the basis of each algorithm criterion, the entropy of a given component, is evaluated 

for each method, since this operation is, besides the explicit importance, the most costly 

operation for all techniques. The field order is    3, a fixed number of samples is adopted 

(T = 512), with a varying number of sources (N = 8, 10 and 12). 

As the author mentions in (YEREDOR, 2011a), for AMERICA algorithm, an exhaustive 

search over all non-trivial candidate vectors is executed to extract each source, then 

  (    ) values of entropy are estimated or, in big-O notation, AMERICA is  (   ), 

as it is mentioned in Section 2.4. Differently than AMERICA, MEXICO and cobICA have 

a non-deterministic number of entropy calculations, dependent on the convergence to the 
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optimal solution, hence a numerical estimate of the average computational complexity of 

both methods is calculated, via the average number of entropy function evaluations over 20 

independent algorithm runs. 

As Figure 4.4.1 shows, although MEXICO offers a smaller computational complexity than 

the other two methods, as already shown in the previous experiments, especially in Figure 

4.3.1.c, this benefit comes with the burden of the poorest overall quality in separation. 

Moreover, AMERICA has lower values than cobICA until N = 12, when in this case the 

exponential computational cost points the highest cost level. In contrast, although cobICA 

starts with a relatively high level, the algorithm seems to present a lower increasing 

pattern, with respect to the number of sources. Despite the actual number of entropy 

evaluations of cobICA and MEXICO may vary due to their non-deterministic character, 

this comparison indicates that cobICA, specifically, has an intermediate computational 

cost, taking place between the most expensive AMERICA and the cheapest MEXICO, for 

higher numbers of sources.  

Therefore we can infer that cobICA technique presents a compromise between  scalability 

and separation quality, considering time constraints, specially when the number of sources 

is increased.  

 

 

Figure 4.4.1 - Number of entropy evaluations for different values of sources when field 

order    3. 
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Figure 4.4.2 presentes the same type of comparison between the techniques, but when the 

number of samples increases (from    = 32 to     = 1024) and a fixed number of sources is 

adopted (N = 8).   

The result shows the same performance already achieved in Figure 4.4.1,  where in N = 8, 

MEXICO has the smallest computational complexity and cobICA offers the biggest one, 

while MEXICO has the worst quality, recall Figure 4.3.1.c. 

But differently than Figure 4.4.1, where the computational complexity of all algorithms has 

considerably increased by increasing the number of sources, in Figure 4.4.2 the 

performances of all the algorithms remain almost fixed when the number of samples 

increases. This means that increasing the number of the samples may not change the 

algorithms number of iterations, and, consequently, it does not cause significant changes in 

the number of entropy evaluations. 

 

 

Figure 4.4.2 - Number of entropy evaluations for different numbers of samples when field 

order    3 and N = 8. 
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CHAPTER 5 

 

5 - Concluding Remarks 

 

This dissertation studies Blind Source Separation and its associated solution via 

Independent Component Analysis, in the context of signals and models defined over Galois 

fields. Three modern algorithms for ICA over GF, namely AMERICA, MEXICO (GUTCH 

et al., 2012) and cobICA (SILVA et al., 2014), are studied and analyzed in a pioneering 

comparative context. 

The goal of ICA over GF is to recover independent components from a set of mixtures that 

are originated by an (unknown) linear mixing process of (also unknown) independent 

source signals, as shown in Equation 2.3. Due to the discrete nature of all entities that are 

involved, the problem can be formulated as a combinatorial optimization task. In order to 

solve it, a cost function that measures the dependence degree between the extracted 

components y(n) should be defined. 

In this context, the AMERICA and MEXICO algorithms, which try to find the lowest 

entropy linear combination of mixtures to yield independent signals, are effective 

heuristics that have shown results of good reliability. While AMERICA and MEXICO 

follow the same base idea, iteratively estimating the independent components by reducing 

their entropy values, their main difference is in the search process: AMERICA evaluates 

the entropy of an extracted signal which is generated by combining   mixtures, but 

MEXICO makes an equivalent entropy evaluation only between combined pairs of 

mixtures.  

Under a different perspective, the cobICA algorithm implements an immune-inspired 

search strategy, the cob-aiNet[C] algorithm, to optimize a mutual information-based cost 

function. Nevertheless, the operators of mutation and local search still resemble heuristic 

strategies, such as the full-rank operations adopted in MEXICO technique. According to 

the experimental results, the cobICA algorithm has shown to be a competitive method for 

small number of sources and, also, presented good success rates for more complex 

instances.  
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By shifting the context to the computational burden of each technique, a comparison 

between the methods shows that cobICA costs less than AMERICA when the number of 

sources increases, with respect to the number of entropy evaluations. Notwithstanding, the 

less costly algorithm according to the experimental evidences is MEXICO, but this 

efficiency is provided due to a search procedure that is prone to local convergence and, 

consequently, less quality separation results (which were confirmed by the experimental 

analysis). 

Therefore, it is possible to infer that the main advantage of cobICA technique lies on 

offering good separation solutions with an asymptotic smaller computational complexity, 

for which the experimental results yield to a lower increasing behavior, with respect to 

AMERICA, as shown in Figure 4.4.1. Those evidences promote cobICA technique to be a 

possible solution in allowing the application of ICA to BSS and factor analysis in the 

context of large datasets of discrete nature. On the other hand, for small numbers of 

components, AMERICA algorithm is confirmed, by the studies developed in this 

dissertation, as the best approach for ICA over GF. 

 

5.1 - Future perspectives 

 

According to the achieved results, there are several possible future works to be performed, 

while several potential applications are already being explored, such as: ICA for 

eavesdropping a Tomlinson-Harashima pre-coded MIMO channel (YEREDOR 2011a; 

GUTCH et al., 2012); a binary independent component analysis approach (NGUYEN, 

ZHENG, 2011; NGUYEN, ZHENG, 2013) and the application of ICA in the context of 

Network Coding (NEMOIANU et al., 2013). 

Moreover, it would be interesting to extend the comparative analysis of cobICA, 

AMERICA and MEXICO for non-prime fields, orders higher than    5 and to study 

cobICA with different dissimilarity metrics and different cost function estimators. 

In terms of practical applications, there are open possibilities of implementing ICA over 

GF in real time applications for digital telecommunication systems, image processing, as 

well as in radar, sonar and multidimensional digital data in a general perspective. 
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