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Introdução Geral  1 

 2 

 Mesmo antes das primeiras tentativas de mapeamento da biodiversidade em 3 

nível mundial, e especialmente com os trabalhos de Augustin Pyramus de Candolle, 4 

Philip Sclater e Alfred Russel Wallace, é reconhecido que, em sua maioria, os 5 

organismos estão distribuídos de maneira limitada a diferentes porções dos continentes 6 

e em diferentes níveis de endemismo (Candolle, 1820; Sclater, 1858; Wallace, 1876). 7 

Nos mais de 150 anos passados desde então, uma enorme quantidade de dados foram 8 

acumulados e várias metodologias diferentes foram propostas para a delimitação de 9 

unidades biogeográficas (Hausdorf & Hennig, 2004; Morrone, 2013; Rueda et al., 10 

2013). Ainda assim, estudos atuais encontram basicamente o mesmo padrão geral de 11 

regionalização que Wallace propôs em sua época (Kreft & Jetz, 2013), mostrando que, 12 

em larga escala, tais padrões de distribuição são robustos e similares entre os distintos 13 

grupos de animais. Em menor escala, por outro lado, os problemas na delimitação de 14 

unidades biogeográficas se tornam mais aparentes devido à falta de simpatria estrita 15 

entre espécies co-distribuídas, aos papéis da dispersão e da extinção e ao conhecimento 16 

taxonômico e sistemático incompletos – os chamados Déficits Lineliano e Wallaceano 17 

(Cracraft, 1994; Morrone, 1994; Hausdorf, 2002; Whittaker et al., 2005).  18 

Encontrar padrões gerais e coincidentes de endemismo entre grupos de 19 

organismos com diferentes características gerais e histórias evolutivas distintas é um 20 

dos elementos-chave da biogeografia, já que tais padrões gerais requerem explicações 21 

gerais para os processos formadores da diversidade (Croizat et al., 1974; Vargas et al., 22 

1998). Um processo geral que pode explicar a distribuição coincidente de vários grupos 23 

de organismos é a vicariância, onde o surgimento de uma barreira gera a fragmentação 24 

de uma biota ancestral mais amplamente distribuída levando, com o passar do tempo, ao 25 
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aparecimento de um padrão congruente de distribuição entre as várias espécies 26 

formadas de cada lado da barreira  (Croizat et al., 1974; Hausdorf, 2002). Outros 27 

processos gerais também podem levar à regionalização da biota, tais como a migração 28 

conjunta de vários organismos quando uma barreira geográfica desaparece (Lieberman, 29 

2003), ciclos alternados de migração e isolamento geográfico – taxon-pulse (Erwin, 30 

1981; Halas et al., 2005), e a formação de refúgios climáticos/ecológicos (Haffer & 31 

Prance, 2002; Wronski & Hausdorf, 2008). Por outro lado, padrões de endemismo 32 

podem representar apenas coincidências geográficas da distribuição de vários 33 

organismos geradas por diferentes processos e eventos ao longo do tempo (Nihei, 34 

2008). Para distinguir entre tais eventos e processos, se gerais ou não, é necessária a 35 

informação dos relacionamentos filogenéticos entre as espécies que compõe as 36 

diferentes unidades biogeográficas e a informação temporal sobre quando ocorreram os 37 

eventos de cladogênese para a comparação com as épocas em que diferentes eventos 38 

geológicos ou climáticos ocorreram (Platnick & Nelson, 1978; Cracraft, 1982; 39 

Humphries & Parenti, 1999; Upchurch & Hunn, 2002).  40 

Entender tais processos geradores de endemismo e diversidade é essencial para 41 

decisões sobre como, onde e o que conservar (Avise, 2005; Faith, 2007). Sendo a única 42 

savana tropical listada como um hostspot global para a conservação (Mittermeier et al., 43 

2004), o Cerrado é  o maior bloco contínuo de savanas neotropicais, (Ab’Saber, 1977; 44 

Silva & Bates, 2002). Localizado na região central da América do Sul, estende-se por 45 

mais de 1.8 milhões de quilômetros quadrados e ocupa, primariamente, uma região 46 

dominada por antigos planaltos altamente dissecados e depressões periféricas adjacentes 47 

(Ab’Saber, 1983; Silva, 1997).   48 

Dois dos grupos de vertebrados mais diversos do Cerrado são os répteis da 49 

Ordem Squamata e os anfíbios da Ordem Anura (Colli, 2005). Os dois grupos 50 
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apresentam uma alta taxa de endemismo no Cerrado, com mais de 100 espécies 51 

endêmicas cada um (Nogueira et al., 2011; Valdujo et al., 2012a). A distribuição dos 52 

Squamata endêmicos do Cerrado parece delimitada especialmente pelos grandes platôs 53 

e planaltos, enquanto os anuros apresentam uma distribuição altamente estruturada em 54 

relação à proximidade com os domínios fitogeográficos adjacentes (Nogueira et al., 55 

2011; Valdujo et al., 2012b). As espécies destes dois grupos apresentam uma enorme 56 

diversidade no uso de habitats e microhabitats, e estes se distribuem de maneira 57 

heterogênea ao longo do Cerrado. Além de diferenças em uma escala local (entre 58 

espécies da mesma Ordem e entre as duas Ordens), anfíbios e répteis são separados por 59 

mais de 300 milhões de anos de história evolutiva, sendo dois grupos de organismos 60 

altamente distintos em seus requerimentos ecofisiológicos (Vitt & Caldwell, 2009).  61 

Tomando proveito das diferenças gerais entre as duas Ordens e da grande 62 

quantidade de dados acumulados em sínteses recentes sobre o Cerrado, tenho como 63 

objetivos principais buscar padrões de distribuição coincidentes entre esses dois grupos 64 

da herpetofauna, destacando também eventuais padrões únicos de cada linhagem, e por 65 

fim, inferir se tais padrões foram originados pelos mesmos eventos e processos. 66 

No capítulo 1, para verificar se é possível delimitar um padrão único de 67 

regionalização para os dois grupos, eu complementei as bases de dados de registros de 68 

localidades provenientes das sínteses recentes para herpetofauna endêmica do Cerrado 69 

(Nogueira et al., 2011; Valdujo et al., 2012a). Para isso, a partir de buscas 70 

bibliográficas, eu adicionei novos registros que ampliassem as distribuições conhecidas 71 

e espécies adicionais recentemente descritas. As análises para determinação das 72 

unidades biogeográficas foram realizadas com os dados de distribuição de cada grupo 73 

em separado (somente Anura ou somente Squamata) e comparadas com uma análise 74 

com os dados conjuntos dos dois grupos.  75 
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No capítulo 2, a partir das unidades biogeográficas delimitadas, eu busco 76 

resolver a relação entre essas áreas ao longo do tempo. Para isso, utilizo filogenias 77 

datadas de táxons que possuam registros em, ao menos, três unidades biogeográficas 78 

distintas para a produção de um cladograma geral de áreas. A partir deste cladograma de 79 

áreas, eu discuto os possíveis eventos envolvidos na diversificação das faunas de anuros 80 

e répteis Squamata, verificando se há padrões congruentes de diversificação entre os 81 

dois grupos. 82 

 83 
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ABSTRACT  20 

Aim. To analyse the ranges of endemic squamates and anurans in the Cerrado hotspot, testing 21 

for coincident distribution patterns in these two evolutionarily and ecologically distinct groups 22 

of organisms. 23 

Location. Cerrado region, central South America. 24 

Methods. We updated previous point-locality compilations for endemic species of the Cerrado 25 

herpetofauna, using 4,588 unique occurrence records. Using a 1° grid cell, we compared the 26 

regionalization results using biotic element and endemicity analyses. To search for a unified 27 

regionalization pattern, we performed an analysis with a combined dataset (anurans + 28 

squamates) and checked these results against those obtained in single group analyses. 29 

Results. We found 12 main biotic elements composed by species of anurans and squamates. 30 

The analysis with the combined dataset recovered more complete results than those in group-31 

specific analysis. Except for some biotic elements composed by poorly overlapping ranges, the 32 

distribution of most biotic elements corresponded to areas of endemism recovered by 33 

endemicity analysis with the combined dataset. The Cerrado region harbours a combination of 34 

congruent distributional patterns between these very distinctive groups, with few unique 35 

patterns for each group. Species in poorly sampled areas in the northern portion of Cerrado also 36 

showed restricted endemism patterns, although resulting in less resolved regionalization. 37 

Main conclusions. Similar overall biogeographical units were recovered with different methods 38 

and these may reflect a common regionalization pattern for anurans and squamates. As in 39 

previous results, most biogeographical units are found over ancient plateaus, separated from one 40 

another by peripheral depressions. These major topographical barriers may explain major 41 

coincident patterns.  42 

Keywords. Areas of endemism, Biodiversity, Biotic elements, Distribution patterns, 43 

Neotropical region, Open areas, Regionalization.  44 
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INTRODUCTION 45 

The global biota is divided into many different regions formed by taxa that share 46 

common patterns of endemism (Sclater, 1858; Wallace, 1876; Holt et al., 2013). Such 47 

regionalization pattern is hierarchically organized, with more restricted areas nested 48 

within larger ones (Cracraft, 1991, 1994; Morrone, 2014). The search for these patterns 49 

is a major goal of biogeography and a necessary first step for all subsequent analysis 50 

(Morrone, 2009). Although large scale global patterns are relatively well established, 51 

finer scale, intracontinental regionalization patterns are more difficult to delimit 52 

(Szumik et al., 2012), and at this level, regionalization patterns provide valuable 53 

information on what spatial portions of biodiversity should be conserved (Crisci, 2001; 54 

Whittaker et al., 2005), especially if coincident between diverse sets of organisms. 55 

The search for coincident regionalization patterns among organisms with 56 

different traits and evolutionary histories increases the reliability of the regionalization 57 

hypothesis, because common patterns for very distinct groups may indicate general, 58 

common processes (Croizat et al., 1974; Vargas et al., 1998). Therefore, many studies 59 

have analysed very different taxa to search for coincident patterns of regionalization, 60 

especially at continental scales (Linder et al., 2012; Ramdhani, 2012; Holt et al., 2013). 61 

Thus, different features of different organisms are not an obstacle to biogeography, and 62 

pattern analysis may provide clues into the impact of those differences on the origin of 63 

distributions (Craw et al. 1999). Following a total evidence approach (analogous to that 64 

applied in phylogenetic studies), the use of large data matrices from diverse taxa should 65 

provide better results than any a posteriori inference or consensus of independent results 66 

from different taxa (García-Barros et al., 2002; Szumik et al., 2012).  67 
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Both squamates and anurans show high endemism levels in the Cerrado region 68 

(Nogueira et al., 2011; Valdujo et al., 2012), the largest block of Neotropical savannas 69 

(Silva & Bates, 2002). Major biogeographical patterns in the Cerrado have only recently 70 

been described, and many new species have been described in recent years (Costa et al., 71 

2007; Nogueira et al., 2011; Valdujo et al., 2012). Ranges of Cerrado endemic 72 

squamates are clustered over different areas, especially on plateaus, forming seven 73 

groups of significantly co-distributed species (Nogueira et al., 2011). Major 74 

distributional patterns of anurans are related to proximity to forested domains, but some 75 

species with more restricted distributions are located in different higher areas of the 76 

Cerrado (Valdujo et al., 2012). Squamate reptiles and anurans are very distinct in terms 77 

of biology and natural history (Huey, 1976; Duellman & Trueb, 1994), and common 78 

distribution patterns between these two groups may be interpreted as a signal of shared 79 

historical processes, regardless of ecological or ecophysiological differences.  80 

Herein we use the most comprehensive species presence database of anurans and 81 

squamates to search for a general biogeographical regionalization in the Cerrado. The 82 

aims of our study are: (1) to detect and delineate non-random, coincident biogeographic 83 

units for anurans and squamates endemic to the Cerrado, minimizing the influence of 84 

method choice, and testing major predictions of the vicariant model (Hausdorf & 85 

Hennig, 2004); (2) to discriminate shared biogeographical patterns from patterns that 86 

are unique to each lineage, comparing the results found for each group to those in a total 87 

evidence dataset (anurans + squamates); (3) to provide a hypothesis about the origins of 88 

shared and unique patterns.     89 



12 
 

METHODS 90 

Study area 91 

The Cerrado region occupies at least 1.8 million square kilometres at the centre 92 

of South America, and is characterized by an ancient, fire-adapted flora (Ratter et al., 93 

1997; Silva & Bates, 2002). With a highly endemic and threatened biota, the Cerrado is 94 

the single tropical savanna listed as a biodiversity hotspot (Myers et al., 2000; Myers, 95 

2003). This region is characterized and dominated by seasonal intefluvial savannas, 96 

crossed by corridors of evergreen gallery forests along drainage systems (Eiten, 1972, 97 

1994). Ancient tectonic cycles of uplift, erosion and soil impoverishment, and recent 98 

dissection and expansion of peripheral depressions, formed the two major 99 

geomorphological units of the Cerrado: ancient headwater plateaus, generally above 500 100 

m, and younger depressions eroded by major drainage systems (Silva, 1997; Ab’Sáber, 101 

1998; Silva et al., 2006).  102 

Data sources 103 

We used the list of Cerrado endemic species and the distributional data compiled 104 

by Nogueira et al. (2011) for squamates, and Valdujo et al. (2012) for anurans. We 105 

updated the taxonomy according to the List of Brazilian Reptiles: (Bérnils & Costa, 106 

2012) and to the List of Brazilian Amphibians (Segalla et al., 2012). We complemented 107 

this source by literature review, including new locations and recently described endemic 108 

species (up to December 2013). As in earlier studies (Nogueira et al., 2011), we used 109 

the Brazilian vegetation map (IBGE, 1993) to define approximate limits of the Cerrado 110 

region. We follow da Silva (1997) and Nogueira et al. (2011) and considered as 111 

endemic those species with records largely coincident with the approximate limits of 112 
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Cerrado vegetation, including part of the Pantanal region and adjacent transition areas 113 

(Ab’Saber, 1977). 114 

Delineating biogeographical units 115 

To perform all analyses, we produced presence-absence matrices from point-116 

locality records of anurans, squamates (taxon-specific datasets) and from a combined 117 

dataset (anurans + squamates) by intersecting the records with a 1° × 1° cell grid 118 

coincident with the core area of the Cerrado. We eliminated cells with less than two 119 

species to avoid misleading signals (Kreft & Jetz, 2010). First, we analysed distribution 120 

patterns in each group separately. Then, to search for a unified biogeographical 121 

regionalization for both anurans and squamate species, we repeated the analyses using 122 

the combined dataset. This is analogous to a total evidence approach. We checked the 123 

results of the taxon-specific dataset against the combined dataset to test for possible loss 124 

of patterns by using a total evidence approach. As our dataset consisted of similar 125 

numbers of anurans and squamates, we avoided any bias resulting from unequal 126 

numbers of endemics in each group (see Linder et al., 2012).  127 

To the search for a unified regionalization hypothesis, we used biotic element 128 

analysis. This analysis provides a test for non-random congruence of species 129 

distributions, and their resulting biotic elements: groups of taxa whose ranges are more 130 

similar to one another than to those of other such groups (Hausdorf 2002). They can be 131 

detected even if some species dispersed from the areas of endemism where they 132 

originated and/or when there is no strict distributional coincidence among species 133 

(Hausdorf & Hennig, 2003). Additionally, we checked the results of Biotic element 134 

analysis against areas of endemism identified by endemicity analysis - NDM (Szumik et 135 

al., 2002). In that way, we verified the influence of different methods in detecting 136 
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regionalization patterns in the Cerrado. As these two analyses operate differently, 137 

similar biogeographical units detected in both methods should be a result of recovered 138 

biogeographical signal, independent of choice method. We used the name 139 

“biogeographic unit” to refer to both areas of endemism (AOE) and biotic elements 140 

(BE).  141 

Analyses 142 

Biotic element analysis was implemented in prabclus (Hausdorf & Hennig, 2003, 143 

2004), an add-on package for the statistical software R (available at http://cran.r-144 

project.org.). We first constructed a dissimilarity matrix using the geco coefficient from 145 

the presence-absence matrix (Hennig & Hausdorf, 2006). This coefficient is a 146 

generalization of the Kulczynski dissimilarity, and takes into account the geographical 147 

distances between species occurrences, allowing the use of smaller grid cells and being 148 

more robust against incomplete sampling (Hennig & Hausdorf, 2006; Wronski & 149 

Hausdorf, 2008). For the required geco tuning constant, we used f = 0.2.  150 

Next, a T test for a departure from a null model of co-occurrence (Monte Carlo 151 

simulation) is made, and then, biogeographic units (defined by their biotic elements) are 152 

determined. We used the hprabclust command (in prabclus package), which clusters the 153 

dissimilarity matrix by taking the cut-partition of a hierarchical clustering and declaring 154 

all members of too small clusters as ‘noise’ (see description in prabclus Package, 155 

Hausdorf & Hennig 2003, 2004). We used UPGMA clustering metric as it is considered 156 

an efficient method in a biogeographical framework (Kreft & Jetz, 2010). The software 157 

requires two parameters: the “cutdist”, that is a value to take the ‘h-cut’ partition, and 158 

the “nnout”, that is the minimum number of members to form a cluster. To estimate the 159 

value to cut the tree (cutdist), we tested values between 0.1 and 0.5 (dissimilarity values 160 

http://cran.r-project.org/
http://cran.r-project.org/
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within clusters) with the combined dataset, against a value of nnout = 2 (more than two 161 

species to form a cluster). We adopted the value that maximized dissimilarity while still 162 

preserving spatial contiguity of the clusters in the combined dataset. We applied this 163 

value to the group-specific analysis for anurans and squamates. The result of biotic 164 

element analysis is a list of species classified into their respective biogeographic units, 165 

and the species not classified in any of these was included in the noise component 166 

(Hausdorf & Hennig, 2003). 167 

Endemicity analysis (NDM/VNDM) - To compare the results of biotic element analysis 168 

with possible outcomes from alternative methods, we used endemicity analysis (NDM). 169 

Endemicity analysis searches for areas with groups of taxa with congruent ranges 170 

(Szumik et al., 2002). The method uses the presence-absence matrix as a representation 171 

of taxon the ranges. Sets of cells are selected to maximize the number of range-172 

restricted taxa in the selected grid cells (more details in Szumzik & Goloboff, 2004). 173 

Like biotic element analysis, the method allows areas to overlap. We used the option 174 

“observed presences” = 20% and “assumed presences” = 50% to avoid bias of non-175 

overlapped records due to incomplete sampling. Searches were conducted saving sets 176 

that had two or more endemic species, and scores above 2.0. We chose to temporarily 177 

save sets within 0.995 of the current score and, keeping overlapping subsets if 60% of 178 

species were unique, in 100 replicates and discarding duplicated sets. Consensus 179 

endemic areas were then searched using the option ‘consense areas’, with a cut-off of 180 

50% similarity in species, using the option: against any of the other areas in the 181 

consensus.  182 

Mapping  183 
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The endemicity analysis viewer (VNDM) automatically draws the consensus area of 184 

endemism as the set of grids with best scores. To compare results of NDM with BE 185 

analysis, we drew biotic elements according to the region (set of grid cells) that 186 

contained two or more of its component species (in a 20 km radius from point-localities, 187 

similar as in NDM fill option). Then, biogeographical units with restricted patterns, that 188 

is, those composed by two or more species with congruent clustered ranges, were 189 

characterized according to the main geomorphological areas in which they are located. 190 

If some patterns were duplicated in the results (i. e. two overlapping AOE at the same 191 

geographical region, a common output of these analyses), we merged these areas. If a 192 

resulting biogeographic unit fully overlapped more than one restricted biogeographical 193 

units, we opted to consider only the more restricted patterns nested inside that area. 194 

To represent the ranges of each species that composed a biotic element, we also 195 

used the Brazilian map of catchment areas (ANA, 2006). We drew ranges according to 196 

5th order Ottobasins (Pfafstetter Coding) that are inside the species distribution extent 197 

or in a 20 km buffer of the point locality (for species with less than 3 point-localities). 198 

See a similar site delineation for restricted-range species in Nogueira et al. (2010). 199 

Catchment areas are correlated with the geomorphology of a region, and provide a 200 

better delimitation of biogeographical units than grid cells, used only for 201 

methodological purposes in NDM and BE analyses. Biotic element results were drawn 202 

as a richness map, highlighting core areas with more than 25% of the species that 203 

compose a biotic element (Hausdorf & Hennig, 2004). 204 

To test if biotic elements in the combined dataset are uniformly composed by 205 

anurans and squamates, we performed a chi-square test for independence of rows and 206 

columns of a cross-table, with rows as taxonomic groups (anurans and squamates) and 207 

columns as biogeographical units (biotic elements). We also used chi-squared test to 208 
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verify if species classified in some AOE in the combined dataset analysis (rows) 209 

belonged to an equivalent biotic element (columns). Finally, we tested if species 210 

classified in some biotic element in the taxa-specific analysis (rows) generally belonged 211 

to the same biotic element in the combined datasets (columns). 212 

 213 

RESULTS 214 

Species distribution data 215 

We included eight species to the list of endemic squamates, and 11 species for the list of 216 

endemic anurans of the Cerrado (Table 1, supplementary material - SI). In total, 750 217 

new records were added to the original databases. These new records represent new 218 

species and records extend in the known range of each species. This resulted in 4,588 219 

unique point localities of 216 taxa, including 103 endemic anurans (with three 220 

undescribed species), and 113 squamates (with eight undescribed species). These 11 221 

undescribed species are easily diagnosable taxa found in surveyed collections during the 222 

recent mentioned synthesis of the Cerrado herpetofauna (Nogueira et al., 2011; Valdujo 223 

et al., 2012). Endemic anurans of difficult determination, like some species of 224 

Pseudopaludicola, Leptodactylus, or taxa with taxonomic problems, were not included 225 

in the analysis.  226 

Clustering of distributions  227 

 For all biotic element analyses (squamates, anurans and combined dataset), the T 228 

statistics of the tests for a departure from a null model of co-occurrence were 229 

significantly smaller than expected by chance (Table 1). This indicates that ranges were 230 

significantly clustered, forming localized biotas across the Cerrado in all analyses. The 231 
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value of cutdist = 0.35 was the maximum value that preserved spatial contiguity of 232 

biotic elements (Table 2). Values larger than 0.35 resulted in smaller numbers of 233 

clusters, with a less resolved delimitation due the inclusion of species with very 234 

widespread ranges.    235 

Taxon-specific analyses 236 

Biogeographical map for anurans resulted from BE-analysis show 10 biotic elements 237 

mainly distributed over plateaus areas, except for BE 9, at the Middle Tocantins-238 

Araguaia depression (Figure 1). Endemicity analysis found seven AOE for anurans, 239 

including a single region (AOE – 17, Chapada das Mesas region) with no 240 

correspondent in biotic elements (Figure 1). By contrast, three anuran biotic elements 241 

(BEs – 9, 5 and 16) were not recovered in AOE results.  242 

Biogeographical map for squamates also resulted in 10 biotic elements (Figure 243 

1). Biotic elements 1, 2, 6, 11 and 12 are located over plateau areas (Fig 2 – for details 244 

of the main geomorphological surfaces), and at least three included both plateaus and 245 

peripheral depressions (BEs 5, 7, 10). Endemicity analysis for squamates found seven 246 

AOE (Figure 1), including one with no corresponding biotic element (AOE – 13 – 247 

Serranía de Huanchaca). Four squamate biotic elements had no corresponding AOE 248 

(BEs – 2, 5, 18 and 11). Although anurans presented a larger number of species 249 

classified in biotic elements (79%) in relation to squamates (57%), the same number of 250 

biotic elements was found for both groups (Table 3), indicating that ranges of anurans 251 

species are more clustered than squamates species. 252 

Comparisons 253 

A comparison between biotic elements in taxa-specific datasets and combined datasets 254 

reveals both congruence and differences (Figure 1). With exception of a biotic element 255 
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composed by squamate species with poor overlapping ranges (BE – 18, figure 1), all 256 

other biotic elements found with taxon-specific datasets presented a counterpart in the 257 

analysis with the combined datasets. We recovered three additional biotic elements 258 

using the combined dataset (BEs 13, 14 and 15, figure 1). Species forming a given BE 259 

in the taxa-specific analyses were generally found in the same biotic element in the 260 

combined analysis (chi-squared = 1849, P < 0.001).  261 

 Areas of endemism found with the combined dataset in endemicity analysis 262 

resulted in a similar biogeographical regionalization pattern in relation to the biotic 263 

elements found with the combined dataset (Figure 1). Contrary to taxa-specific 264 

analyses, all AOEs found with the combined dataset had a corresponding biotic element 265 

(combined dataset). Endemicity analysis failed to locate a corresponding area of 266 

endemism only in cases where the species forming a biotic element (combined dataset) 267 

had very poorly overlapping ranges (e. g. BEs 13, 14, 15, 16). For the final 268 

regionalization hypothesis, we considered these poorly defined biogeographical units as 269 

less robust than the remaining. The AOEs seemed to be located especially over the core 270 

areas of biotic elements (BEs 1 – 12, Figure 3). The species that composed a given AOE 271 

were generally classified into the correspondent biotic element (combined dataset; chi-272 

squared = 879, P < 0.001). 273 

Unified Regionalization hypothesis 274 

Biotic elements 1 – 12 (Figure 3) were the result of a recovered biogeographical signal, 275 

i. e. were recovered independent of method choice in the combined dataset. Of these, 276 

the following biotic elements found both for anurans and squamates in taxon-specific 277 

analysis were also recovered as shared areas with the combined dataset (coincident 278 

patterns – Table 4): Guimarães Plateau (BE 2), Central Plateau (BE 6), Espinhaço (BE 279 
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12), Serra Geral Plateau (BE 11), Pantanal/Bodoquena region (BE 5), and Tocantins-280 

Araguaia basin - BE 9 (Table 4 for the number of species of each group). A chi-square 281 

test indicates that anuran and squamates species are uniformly distributed across these 282 

six biotic elements (chi-squared = 6.1067, P = 0.1919). Within some of these biotic 283 

elements, the ranges of anuran species tended to be more clustered than the range of 284 

squamate species (e. g. Central Plateau, Tocantins-Araguaia, and Serra Geral BEs), 285 

while at Guimarães and Espinhaço BEs, all species of anurans and squamates are very 286 

clustered together (Figure 4). 287 

 Patterns found for only one of the groups were also recovered with the combined 288 

dataset: Parecis plateau (BE 1) with three squamate species and Jalapão region (BE 7) 289 

with eight squamate species, remained squamate-exclusive biotic elements in the 290 

combined dataset (Table 4).  The remaining patterns that were exclusive for one group 291 

in the taxa-specific datasets were recovered with additional species of the other group in 292 

the combined dataset analysis: Central Paraná basin plateau (BE 10), Veadeiros plateau 293 

(BE 4), Canastra plateau (BE 8), and Caiapônia plateau - BE 3 (Table 4). 294 

 The majority of the biotic elements are located over plateau areas, above 500 m 295 

(Figure 2). Some lower areas also harboured regionalized biotas shared by both groups, 296 

especially the Tocantins-Araguaia basin (BE 9). Some squamates and anurans classified 297 

in this BE have their point-localities highly correlated with the river channels (i.e. 298 

Adenomera saci, Pseudis tocantins, Hydrodinastes melanogigas), whereas others were 299 

less related to the river areas (i.e. Gymnodactylus amarali), and may be wrongly 300 

associated with this BE. Paraná basin plateau (BE 10) and Pantanal/Bodoquena region 301 

(BE 5) contained a combination of species related to both plateaus and adjacent 302 

depressions. This last biotic element was composed by species more restricted to the 303 

Bodoquena region, as found in the anuran taxa-specific dataset (i. e. Ameerega picta) 304 
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and by species with more widespread distributions over adjacent areas, as found with 305 

the combined dataset (i. e. Phalotris matogrossensis).  306 

 The remaining patterns (areas 13-17, Figure 3) are located mainly over north 307 

areas of the Cerrado and represented results not corroborated in comparisons among 308 

datasets or analyses. Area of endemism 13, at Serranía Huanchaca was found only with 309 

NDM for squamates (merged with Parecis AOE). Biotic element 14, at Serra da Borda 310 

region, was detected only by BE-analysis with the combined dataset and have their 311 

limits inside the southern portion of the Serranía de Huanchaca. BEs 15 and 16 were 312 

recovered by BE-analyses but without equivalent with NDM results. The species ranges 313 

in these three last BEs overlap poorly. Finally, area 17, near Chapada das Mesas, was 314 

found with the total evidence datasets by both analyses (BE, NDM) and with anuran 315 

dataset (NDM). This biogeographic unit was composed by two undescribed species 316 

(one Apostolepis and one Adenomera), plus a poorly known, recently described anuran 317 

species (Elachistocleis bumbameuboi). 318 

  319 

DISCUSSION 320 

Taxonomic and distributional knowledge  321 

Only two to three years after the works with distributional data of the Cerrado 322 

herpetofauna (Nogueira et al., 2011; Valdujo et al., 2012), more than fourteen new 323 

endemic species were described. The effect of a yet incomplete taxonomy and sampling 324 

are probably influencing our results, resulting in some clusters not consistently detected 325 

between the analyses, as the biogeographic units found over Serra da Borda, Serranía 326 

de Huanchaca and near Roncador plateau. Another candidate biotic element is in the 327 

northeast of the Cerrado, near Chapada das Mesas. That region was only recently 328 
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sampled for the first time, and still requires additional collections and taxonomic studies 329 

(Costa et al., 2009). Moreover, some reminiscent eroded plateaus in the northeast of the 330 

Cerrado, along the Meio-Norte sedimentary basin, may harbour another endemic 331 

species, like Amphisbaena maranhensis, described near Chapada das Mesas (Gomes & 332 

Maciel, 2012). As these less robust patterns of endemism were generally in the poorly 333 

known northern portion of the Cerrado (Bini et al., 2006; Costa et al., 2007), a lower 334 

performance of analyses at these areas were expected. These are priority areas for 335 

sampling, as the faunal knowledge about the Cerrado domain has accumulated from 336 

south to north areas (Nogueira et al., 2010b).   337 

Final Regionalization hypothesis  338 

 Our study led to the recovery of regionalized biotas for both anurans and squamates in 339 

several regions throughout the Cerrado. These patterns were not lost using the combined 340 

dataset and some patterns were recovered only in the total evidence approach. The use 341 

of the combined dataset allowed the recovery of shared patterns without the use of 342 

subjective visual inspection. A combination of approaches, starting from taxon specific 343 

analysis and comparing the results with the combined dataset rendered an opportunity to 344 

better differentiate taxa-specific from shared, general patterns. Congruence in the 345 

biogeographical regions of different groups at global and continental scales were 346 

already reported (Linder, 2001; Lamoreux et al., 2006) and are correlated with main 347 

phytogeographical domains (Rueda et al., 2013). Herein we show that these 348 

congruencies between patterns of endemism of different groups may exist even within a 349 

phytogeographical domain, allowing for a more refined view of biogeographical 350 

regionalization. 351 
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 The coincident patterns found between anurans and squamates may be related to 352 

stable landscapes on isolated plateaus, over the “Campo Cerrado” centre of endemism 353 

(Müller, 1973; Werneck et al., 2012). One of the most isolated of these areas is the 354 

Guimarães plateau, uplifted during Plio-Pleistocene transition (Silva, 1997). By 355 

contrast, biotic elements found over the Central Brazilian, Caiapônia, Central-Paraná 356 

basin plateaus and the Espinhaço mountain range, are more connected by areas at 357 

elevations above 500 m (Figure 2). In fact, a great amount of endemics, have a 358 

relatively continuum distribution along these areas. The split between the west and 359 

remaining areas coincided with the uplift of the central Brazilian plateau, and may have 360 

contributed to old divergences in other Neotropical vertebrates (Prado et al., 2012). 361 

Moreover, the formation of plateaus and depressions influences many features of the 362 

Cerrado, like the dominant soil composition, vegetation mosaics and the dynamics of 363 

the climatic changes (Bush, 1994; Motta et al., 2002; Nogueira et al., 2011). These 364 

geomorphological differences may affect many groups at a time and in a same region, 365 

and could be responsible for the congruent distributional patterns between species with 366 

very different requirements. 367 

 On the other hand, the search for coincidences between both groups highlighted 368 

unique, group-specific patterns. Like other sandy areas deposits in the Neotropical 369 

region, the Jalapão region (BE 7) harbours a peculiar psammophilous squamate fauna 370 

(Rodrigues, 2002; Vitt et al., 2002). This area has a complex topography formed mainly 371 

by sandy deposits derived from the Serra Geral sandstone plateau (Rodrigues et al., 372 

2008), and no anuran species is known (so far) to be restricted to that region. Moreover, 373 

the biotic element detected over isolated sandy savanna patches in the Parecis plateau, is 374 

also composed by squamates found typically in sandy habitats, like Ameiva parecis and 375 
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Bachia didactyla (Colli et al., 2009; Freitas & Struessmann, 2011), which may 376 

corroborate that unique association to sandy soil patterns for squamates. 377 

By contrast, biotic elements over the Veadeiros and Canastra regions (BEs 4 and 378 

8) are composed mainly by anuran species. These areas, typically above 700-1,000 m, 379 

contain many small streams in open areas, rock fields, and rocky savannas (Machado & 380 

Walter, 2006). Many endemic anurans are dependent of that kind of habitat for 381 

reproduction and that may be the cause of the isolation of ancestral populations over 382 

these areas. Nevertheless, habitat use alone could not explain all the possible ancestral 383 

isolations, as some endemic anurans of these biotic elements are also typical of other 384 

habitats, like gallery forests (e. g. Hypsiboas ericae or species of Scinax catharinae and 385 

Bokermannohyla circumdata groups; Faivovich, 2002; Faivovich et al., 2005) and are 386 

also isolated at these biotic elements. In addition, other regions like the Espinhaço and 387 

some high areas of the Central Brazilian plateau harbours similar characteristics but also 388 

contains many endemic anurans typical of open and forested habitats, not to mention 389 

endemic squamates.  390 

Additionally, some of these group-specific patterns could be related to 391 

differences in the taxonomic and distributional data effort for each group in some of 392 

these regions. This is probably the case for isolated biotic elements in the western 393 

portion of the Cerrado (i. e. Parecis plateau), where efforts for the study of the reptilian 394 

fauna (Harvey & Gutberlet, 1998; Colli et al., 2003) may be more extensive than for 395 

amphibians, reflecting in the dominance of squamates in these biotic elements. Major 396 

differences between the distributional patterns of these two groups, reflecting finer-scale 397 

ecological difference and habitat selection, could be more evident in more inclusive 398 

scales (within biotic elements). The tendency anuran species for showing more clustered 399 

ranges inside biotic elements, and the greater proportion of anurans species classified in 400 
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different biotic elements than squamates, is probably related to a possible lower 401 

dispersal ability of anurans in relation to squamates (Chen et al., 2011).  402 

Even with relative low levels of endemism, other vertebrates like birds and 403 

mammals have some endemics restricted over areas of biotic elements like Espinhaço, 404 

Tocantins-Araguaia basin and Central Brazilian plateau (Silva, 1995; Marinho-Filho et 405 

al., 2002). The majority of species of these two groups are widespread over other South 406 

American domains (Macedo, 2002; Marinho-Filho et al., 2002). However, if plateaus 407 

represent persistent barriers to dispersal, we should expected similar patterns of 408 

endemism even between these groups with more dispersal ability and distinctive habitat 409 

use in relation to anurans and squamates, at least, taking into account population levels 410 

(Avise, 2000). As already demonstrated in other regions of the world, similar 411 

regionalization patterns could be found between groups as different as primates and 412 

frogs (Evans et al., 2003) or with very distinctive dispersal abilities as macropterous and 413 

flightless insects (Bouchard & Brooks, 2004). However, to estimate if all congruent 414 

patterns are caused by the same events, we need a biogeographical analysis with 415 

temporal information, the next step for a comprehension of the Cerrado evolution. The 416 

spatial framework discussed herein is thus the necessary first step for understanding the 417 

biogeographical events that led to the formation of Cerrado regionalized endemic 418 

patterns.   419 
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TABLES 

 

Table 1 - T statistics from the test for the clustering of the ranges. P-values smaller 

than 0.05 indicate a significantly clustered distributions. Minimum, maximum and 

the mean values of T, for 1,000 artificial populations were shown (Details in 

Hennig & Hausdorf, 2004). 

Dataset T statistic T minimum T maximum T mean P-value 

Anura 0.360 0.379 0.521 0.444 <0.001 

Squamata 0.374 0.372 0.478 0.425 0.002 

Combined 0.378 0.408 0.489 0.443 0.001 
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Table 2 – Values of cutdist (0.1 to 0.5) with resulting numbers of species not classified 

in any biotic element (noise), and the number of restricted range biotic elements in the 

analysis with combined dataset. Note that the maximum number of biotic elements was 

reached with cutdist = 0.35 (highlighted). Biotic elements were progressively merged 

with higher values of cutdist. 

Cutdist value = 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 

Noise n° spp. 160 124 93 71 47 37 21 11 9 

Restricted BEs  8 12 14 14 15 16 14 11 9 
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Table 3 - Biogeographic units found for anuran, squamates and combined datasets. 

Units classified as restricted represent the patterns of interest, without widespread and 

repeated patterns. 

 Biotic element analysis 

Dataset Anura Squamata Combined 

Total number 10 14 19 

Duplicated 0 1 0 

Widespread 0 3 3 

Restricted   10 10 16 

Restricted n° spp. 79 (76%) 64 (57%) 154 (71%) 

Unclassified n° spp. 25 (24%) 49 (43%) 60 (29%) 

 

 Endemicity analysis (NDM) 

Total number 9 7 17 

Duplicated 2 0 4 

Widespread 0 0 0 

Restricted   7 7 13 

Restricted n° spp. 51 (49%) 22 (19%) 87 (41%) 

Unclassified n° spp. 53 (51%) 92 (81%) 127 (59%) 
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Table 4 – Twelve main biotic elements (BE) composition according to the 

respective groups (anurans or squamates) in analyses with combined and taxa-

specific datasets. First six BEs represent coincident patterns of both groups in 

taxon-specific analysis and recovered as shared areas with the combined 

dataset.  

Biotic elements 

BE analysis - Combined 

dataset (n° spp.) 

BE analysis - Taxa-specific 

datasets (n° spp.) 

 anurans squamates  anurans squamates 

Guimarães (BE 2) 7 4  7 4 

Central (BE 6) 13 5  11 7 

Espinhaço (BE 12) 20 11  20 11 

Serra Geral (BE 11) 3 5  3 6 

Pant/Bodoq. (BE 5) 1 6  3 6 

Toc/Arag. (BE 9) 8 6  10 3 

Parecis (BE 1) none 3  none 3 

Jalapão (7) none 8  none 12 

Veadeiros (BE 4) 5 1  7 none 

Canastra (BE 8) 8 1  8 none 

Paraná plt. (BE 10) 1 9  none 9 

Caiapônia (BE 3) 4 2  5 none 
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Figure 1 – Biogeographical units detected with group-specific and combined datasets 

(below) with biotic element (BE) analysis and endemicity analysis (NDM). Grey colour 

indicates the Cerrado limits. Biogeographical units classification according to the main 

geomorphological places:  1 – Parecis Plateau.  2 – Guimarães Plateau.  3 - Caiapônia 

Plateau.  4 – Veadeiros Plateau.  5 - Pantanal/Bodoquena regions.  6 - Central Brazilian 

Plateau.  7 – Jalapão region.   8 – Canastra region.  9 – Tocantins-Araguaia Basin.  10 - 

Central Paraná Basin Plateau.  11 - Serra Geral plateau.  12 – Espinhaço mountain 

range.  13 - Serranía Huanchaca. 14 - Serra da Borda region.  15 – Roncador plateau.  

16 – Upper Parnaíba region.  17 – Chapada das Mesas. 18 – without core area. See 

Figure 2 for more details of geomorphogical places. 
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Figure 2 – Main geomorphological surfaces where herpetofaunal biogeographic units are 

located: 1 – Parecis Plateau (mainly on isolated sandy savannas surrounded by Amazonian 

forest). 2 – Guimarães Plateau (“Chapada” region). 3 – Caiapônia Plateau region (includes 

also part of Alcantilados, Rio Verde and north of Paraná Basin plateaus). 4 – Veadeiros 

Plateau (including associated headwaters). 5 – Pantanal region and Bodoquena Plateau (and 

associated small reminiscent plateaus). 6 – Central Brazilian Plateau. 7 – Jalapão region 

(including some regions of the Tocantins depression and reminiscent tabletops of Serra 

Geral Plateau).  8 – Canastra Plateau region (including neighbouring plateaus of South 

Minas Gerais including Poços de Caldas, Alto Rio Grande). 9 – Tocantins–Araguaia Basin 

(and associated depression). 10 – Central Paraná Basin Plateau (and the associated 

depression over the Paraná River Basin = “paulistania”). 11 – Serra Geral plateau (= 

“Chapadão Ocidental do Rio São Francisco”). 12 – Espinhaço mountain range (only 

southern portions over the Cerrado/Atlantic Forest ecotone). 13 – Serranía Huanchaca. 14 – 

Serra da Borda (the smaller plateau on the right). 17 – Chapada das Mesas region (and 

neighbouring reminiscent plateaus). 
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Figure 3 – Numbers 1 to 12: Biotic elements (BE) defined with the combined dataset that are consistent 

with the areas of endemism of NDM. Numbers 13 to 17 are other biogeographic units variations found in 

the study. Thick lines indicate the BE limits as the areas with the occurrence of at least two species that 

compose each BE (or more than 25% of the species in areas 9–12, for more accurate delimitation). 

Gradient colours of each BE indicates richness. Grey colour indicate the Cerrado limits. BE classification 

according to the main geomorphological units:  1 – Parecis Plateau.  2 – Guimarães Plateau.  3 – 

Caiapônia Plateau.  4 – Veadeiros Plateau.  5 – Pantanal/Bodoquena region.  6 – Central Brazilian 

Plateau.  7 – Jalapão.   8 – Canastra Plateau.  9 – Tocantins–Araguaia basin.  10 – Central Paraná basin 

Plateau.  11 – Serra Geral Plateau.  12 – Espinhaço mountain range.  13 – Serranía Huanchaca.  14 – Serra 

da Borda region.  15 – Roncador Plateau.  16 – Upper Parnaíba region.  17 – Chapada das Mesas.  
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Figure 4 – Prabclus results of species clusters in the first two dimensions of a non-

metric multidimensional scaling ordination of ranges of squamates (red dots) and 

anurans (black dots) over biotic elements (BEs) of the Cerrado herpetofauna – 

Combined dataset.  
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Supplementary Information 

Table 1 – Species classified in areas of endemism (AOE) by endemicity analysis 

(NDM) or in biotic elements (BE) analysis with anuran (An), squamate (Sq) and 

combined datasets. Species not classified in any biogeographic unit are denoted by 

noise (N). W = widespread biogeographic units. A roman number indicates repeated 

biogeographic units. * indicates species included in this study. Main geomorphological 

places:  1 – Parecis plateau.  2 – Guimarães plateau.  3 – Caiapônia plateau.  4 – 

Veadeiros plateau.  5 – Pantanal and Bodoquena.  6 – Central Brazilian Plateau.  7 – 

Jalapão.   8 – Canastra plateau.  9 – Tocantins–Araguaia basin.  10 – Central Paraná 

basin plateau.  11 – Serra Geral plateau.  12 – Espinhaço mountain range.  13 – Serranía 

Huanchaca.  14 – Serra da Borda.  15 – Roncador plateau.  16 – Upper Parnaíba region.  

17 – ‘Chapada’ das Mesas. 18 – Without core area. 

Species Order 
BE 

Combined 

NDM  

Combined 

BE  

Squamata 

BE      

Anura 

Ameiva parecis Sq BE  1 AOE  1 BE  1 NA 

Apostolepis striata Sq BE  1 AOE  1 BE  1 NA 

Bachia didactyla Sq BE  1 N BE  1 NA 

Allobates brunneus An BE  2 N NA BE  2 

Ameerega braccata An BE  2 AOE  2 NA BE  2 

Dendropsophus tritaeniatus An BE  2 N NA BE  2 

Phyllomedusa centralis An BE  2 AOE  2 NA BE  2 

Pristimantis crepitans An BE  2 N NA BE  2 

Pristimantis dundeei An BE  2 AOE  2 NA BE  2 

Proceratophrys huntingtoni* An BE  2 AOE  2 NA BE  2 

Amphisbaena absaberi Sq BE  2 N N NA 

Amphisbaena brevis Sq BE  2 N BE  2 NA 

Amphisbaena cuiabana Sq BE  2 N BE  2 NA 

Amphisbaena neglecta Sq BE  2 AOE  2 BE  2 NA 

Apostolepis lineata Sq BE  2 N BE  2 NA 

Dendropsophus araguaya An BE  3 AOE  3 NA BE  3 

Pristimantis ventrigranulosus An BE  3 AOE  3 II NA BE  3 

Proceratophrys dibernardoi* An BE  3 AOE  3 II NA BE  3 

Scinax pusillus An BE  3 AOE  3 NA BE  3 

Ameiva jacuba* Sq BE  3 N N NA 

Leposternon cerradensis Sq BE  3 AOE  3 N NA 

Chiasmocleis centralis An BE  4 N NA N 

Hypsiboas ericae An BE  4 AOE  4 NA BE  6 - 4 

Leptodactylus tapiti An BE  4 AOE  4 NA BE  6 - 4 

Proceratophrys bagnoi* An BE  4 AOE  4 II NA BE  6 - 4 

Proceratophrys rotundipalpebra* An BE  4 AOE  4 NA BE  6 - 4 

Trilepida fuliginosa Sq BE  4 N W III NA 

Elachistocleis matogrosso An BE  5 N NA BE  5 

Amphisbaena bedai Sq BE  5 AOE  5 BE  5 NA 

Amphisbaena leeseri Sq BE  5 N BE  5 NA 

Apostolepis intermedia Sq BE  5 AOE  5 BE  5 NA 
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Species Order 
BE 

Combined 

NDM  

Combined 

BE  

Squamata 

BE      

Anura 

Micrurus tricolor Sq BE  5 N BE  5 NA 

Phalotris matogrossensis Sq BE  5 N BE  5 NA 

Xenodon matogrossensis Sq BE  5 N BE  5 NA 

Allobates goianus An BE  6 AOE  6 NA BE  6 - 4 

Bokermannohyla pseudopseudis An BE  6 N NA BE  6 - 4 

Bokermannohyla sapiranga* An BE  6 AOE  6 NA BE  6 

Hypsiboas buriti An BE  6 AOE  6 NA BE  6 

Hypsiboas goianus An BE  6 AOE  6 NA BE  6 

Hypsiboas phaeopleura An BE  6 AOE  4 II NA BE  6 - 4 

Odontophrynus salvatori An BE  6 N NA BE  6 - 4 

Phyllomedusa oreades An BE  6 AOE  4 II NA BE  6 - 4 

Proceratophrys goyana An BE  6 N NA BE  6 - 4 

Proceratophrys vielliardi An BE  6 AOE  6 NA BE  6 

Scinax centralis An BE  6 N NA BE  6 

Scinax skaios An BE  6 AOE  6 NA BE  6 - 4 

Scinax tigrinus An BE  6 AOE  6 NA BE  6 

Amphisbaena anaemariae Sq BE  6 N BE  6 NA 

Amphisbaena mensae Sq BE  6 AOE  6 BE  6 NA 

Apostolepis albicollaris Sq BE  6 N BE  6 NA 

Apostolepis sp. 1 Sq BE  6 AOE  6 BE  6 NA 

Enyalius aff. bilineatus Sq BE  6 AOE  6 BE  6 NA 

Ameivula jalapensis Sq BE  7 AOE  7 BE  7 NA 

Ameivula mumbuca Sq BE  7 AOE  7 BE  7 NA 

Amphisbaena acrobeles Sq BE  7 AOE  7 BE  7 NA 

Apostolepis longicaudata Sq BE  7 AOE  7 BE  7 NA 

Apostolepis polylepis Sq BE  7 N BE  7 NA 

Bachia oxyrhina Sq BE  7 N BE  7 NA 

Kentropyx sp. Sq BE  7 AOE  7 BE  7 NA 

Siagonodon acutirostris* Sq BE  7 AOE  7 BE  7 NA 

Bokermannohyla ibitiguara An BE  8 AOE  8 NA BE  8 I 

Dendropsophus rhea An BE  8 AOE  10 II NA BE  8 I 

Hypsiboas stenocephalus An BE  8 AOE  8 NA BE  8 I 

Odontophrynus monachus An BE  8 AOE  8 NA BE  8 I 

Phyllomedusa ayeaye An BE  8 AOE  8 NA BE  8 I 

Scinax canastrensis An BE  8 AOE  8 NA BE  8 I 

Scinax maracaya An BE  8 N NA BE  8 I 

Scinax pombali* An BE  8 AOE  8 NA BE  8 I 

Liotyphlops schubarti Sq BE  8 AOE  10 BE  10 II NA 

Adenomera saci* An BE  9 N NA BE  9 

Adenomera sp. 2 An BE  9 N NA BE  9 

Allobates aff. brunneus An BE  9 N NA BE  9 

Barycholos ternetzi An BE  9 N NA BE  9 

Dendropsophus anataliasiasi An BE  9 N NA BE  9 

Dendropsophus cruzi An BE  9 N NA BE  9 
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Species Order 
BE 

Combined 

NDM  

Combined 

BE  

Squamata 

BE      

Anura 

Proceratophrys branti* An BE  9 N NA BE  9 

Pseudis tocantins An BE  9 N NA BE  9 

Rhinella ocellata An BE  9 N NA BE  9 

Scinax constrictus An BE  9 N NA BE  9 

Amphisbaena kraoh Sq BE  9 AOE  7 BE  7 NA 

Amphisbaena saxosa Sq BE  9 AOE  9 BE  7 NA 

Apostolepis nelsonjorgei Sq BE  9 N W III NA 

Bachia micromela Sq BE  9 AOE  9 BE  7 NA 

Bachia psamophila Sq BE  9 AOE  9 BE  7 NA 

Gymnodactylus amarali Sq BE  9 N W III NA 

Hydrodynastes melanogigas Sq BE  9 N BE  9 NA 

Phalotris labiomaculatus Sq BE  9 N BE  9 NA 

Proceratophrys moratoi An BE  10 AOE  10 II NA N 

Ameiva aff. parecis  Sq BE  10 AOE  10 II BE  10 II NA 

Amphisbaena sanctaeritae Sq BE  10 AOE  10 BE  10 II NA 

Bothrops itapetiningae Sq BE  10 N W NA 

Erythrolamprus frenatus Sq BE  10 N BE  10 NA 

Mussurana quimi Sq BE  10 N W NA 

Phalotris lativittatus Sq BE  10 N BE  10 II NA 

Phalotris multipunctatus Sq BE  10 N BE  10 NA 

Philodryas livida Sq BE  10 N BE  10 NA 

Rhachidelus brazili Sq BE  10 N W NA 

Trilepida koppesi Sq BE  10 N BE  10 NA 

Xenodon nattereri Sq BE  10 N W NA 

Oreobates remotus An BE  11 AOE  11 NA BE  11 

Rhinella inopina An BE  11 AOE  11 NA BE  11 

Trachycephalus mambaiensis An BE  11 N NA BE  11 

Amphisbaena carli Sq BE  11 N BE  11 NA 

Bachia geralista* Sq BE  11 AOE  11 BE  11 NA 

Leposternon maximus* Sq BE  11 AOE  11 BE  11 NA 

Psilophthalmus sp. Sq BE  11 N BE  11 NA 

Stenocercus quinarius Sq BE  11 N BE  11 NA 

Bokermannohyla alvarengai An BE  12 AOE  12 III NA BE  12 

Bokermannohyla nanuzae An BE  12 AOE  12 IV NA BE  12 

Bokermannohyla sagarana An BE  12 AOE  12 IV NA BE  12 

Bokermannohyla saxicola An BE  12 AOE  12 IV NA BE  12 

Crossodactylus bokermanni An BE  12 AOE  12 III NA BE  12 

Crossodactylus trachystomus An BE  12 AOE  12 IV NA BE  12 

Hylodes otavioi An BE  12 AOE  12 II NA BE  12 

Hypsiboas cipoensis An BE  12 AOE  12 IV NA BE  12 

Leptodactylus camaquara An BE  12 AOE  12 IV NA BE  12 

Leptodactylus cunicularius An BE  12 N NA BE  12 

Phasmahyla jandaia An BE  12 AOE  12 II NA BE  12 

Phyllomedusa megacephala An BE  12 AOE  12 III NA BE  12 
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Species Order 
BE 

Combined 

NDM  

Combined 

BE  

Squamata 

BE      

Anura 

Physalaemus deimaticus An BE  12 N NA BE  12 

Physalaemus evangelistai An BE  12 AOE  12 IV NA BE  12 

Proceratophrys cururu An BE  12 AOE  12 IV NA BE  12 

Scinax cabralensis An BE  12 AOE  12 IV NA BE  12 

Scinax curicica An BE  12 AOE  12 III NA BE  12 

Scinax machadoi An BE  12 AOE  12 II NA BE  12 

Scinax pinima An BE  12 AOE  12 II NA BE  12 

Thoropa megatympanum An BE  12 AOE  12 III NA BE  12 

Atractus spinalis* Sq BE  12 AOE  12 II BE  12 NA 

Bothrops aff. neuwiedi Sq BE  12 N BE  12 NA 

Eurolophosaurus nanuzae Sq BE  12 AOE  12 III BE  12 NA 

Gymnodactylus guttulatus Sq BE  12 N BE  12 NA 

Heterodactylus lundii Sq BE  12 N BE  12 NA 

Placosoma cipoense Sq BE  12 AOE  12 II BE  12 NA 

Rhachisaurus brachylepis Sq BE  12 AOE  12 I BE  12 NA 

Tantilla boipiranga Sq BE  12 N BE  12 NA 

Trilepida jani* Sq BE  12 AOE  12 II BE  12 NA 

Tropidophis preciosus* Sq BE  12 AOE  12 II BE  12 NA 

Tropidurus montanus Sq BE  12 N BE  12 NA 

Proceratophrys strussmannae An BE  14 N NA N 

Amphisbaena steindachneri Sq BE  14 N N NA 

Bothrops aff. mattogrossensis Sq BE  14 N N NA 

Ameerega berohoka An BE  15 AOE  3 NA BE  3 

Osteocephallus aff. taurinus An BE  15 N NA N 

Amphisbaena silvestrii Sq BE  15 N BE  18 NA 

Amphisbaena talisiae Sq BE  15 N N NA 

Bokermannohyla napolii* An BE  16 N NA BE  16 

Bokermannohyla ravida An BE  16 N NA BE  16 

Bokermannohyla sazimai An BE  16 AOE  8 NA BE  16 

Ischnocnema penaxavantinho An BE  16 N NA BE  16 

Phyllomedusa araguari An BE  16 N NA BE  16 

Adenomera sp. 1 An BE  17 AOE  17 NA N 

Elachistocleis bumbameuboi An BE  17 AOE  17 NA N 

Apostolepis sp. 2 Sq BE  17 AOE  17 BE  9 NA 

Adenomera martinezi An N N NA N 

Ameerega flavopicta An N N NA BE  6 

Ameerega picta An N AOE  5 NA BE  5 

Dendropsophus cerradensis An N N NA N 

Coleodactylus brachystoma Sq N N W II NA 

Hylodes sazimai* An N N NA N 

Hypsiboas botumirim An N N NA N 

Hypsiboas jaguariaivensis An N N NA N 

Leptodactylus sertanejo An N N NA N 

Lysapsus caraya An N N NA N 
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Species Order 
BE 

Combined 

NDM  

Combined 

BE  

Squamata 

BE      

Anura 

Oreobates heterodactylus An N N NA N 

Proceratophrys carranca* An N AOE  12 IV NA N 

Rhinella scitula An N N NA BE  5 

Rhinella veredas An N N NA N 

Scinax lutzorum An N AOE  17 NA N 

Amphisbaena crisae Sq N N BE  18 NA 

Amphisbaena maranhensis* Sq N N N NA 

Amphisbaena miringoera Sq N N N NA 

Apostolepis serrana Sq N N BE  18 NA 

Apostolepis vittata Sq N N N NA 

Atractus albuquerquei Sq N N N NA 

Bachia cacerensis Sq N N N NA 

Bothrops lutzi Sq N N N NA 

Bothrops marmoratus Sq N N BE  10 II NA 

Bothrops mattogrossensis Sq N N W II NA 

Bothrops neuwiedi Sq N N BE  6 NA 

Bothrops pauloensis Sq N N BE  6 NA 

Erythrolamprus maryellenae Sq N N N NA 

Hoplocercus spinosus Sq N N W II NA 

Kentropyx vanzoi Sq N N N NA 

Manciola guaporicola Sq N N N NA 

Micrurus brasiliensis Sq N N N NA 

Phalotris concolor Sq N N N NA 

Stenocercus sinesaccus Sq N N N NA 

Trilepida brasiliensis Sq N N BE  11 NA 

Tropidurus callathelys Sq N AOE  1 N NA 

Tropidurus chromatops Sq N AOE  1 N NA 

Tropidurus insulanus Sq N N N NA 

Chiasmocleis albopunctata An W N NA W 

Dendropsophus elianeae An W N NA W 

Dendropsophus jimi An W N NA W 

Eupemphix nattereri An W N NA W 

Hypsiboas lundii An W N NA W 

Odontophrynus cultripes An W N NA W 

Apostolepis goiasensis Sq W N W NA 

Bothrops moojeni Sq W N W NA 

Cercosaura albostrigata Sq W N W NA 

Drymoluber brazili Sq W N W NA 

Epicrates crassus Sq W N W NA 

Kentropyx paulensis Sq W N W NA 

Micrabelpharus atticolus Sq W N W NA 

Norops meridionalis Sq W N W NA 

Phalotris nasutus Sq W N W NA 

Simophis rhinostoma Sq W N W NA 
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Species Order 
BE 

Combined 

NDM  

Combined 

BE  

Squamata 

BE      

Anura 

Tropidurus itambere Sq W N W NA 

Xenopholis undulatus Sq W N W NA 

Apostolepis ammodites Sq W II N W III NA 

Apostolepis flavotorquata Sq W II N W III NA 

Lygophis paucidens Sq W II N W III NA 

Tupinambis quadrilineatus Sq W II N W III NA 

Rhinella cerradensis An W III N NA N 

Bachia bresslaui Sq W III N N NA 

Salvator duseni Sq W III N N NA 
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ABSTRACT  17 

Aim. To investigate the historical relationships among biogeographical units detected 18 

for endemic anurans and squamates of the Brazilian Cerrado, depicting congruent 19 

events between areas and between these two major evolutionary groups. 20 

Location. Cerrado savannas, central portion of South America. 21 

Methods. Based on biotic elements detected for Cerrado endemic anurans and 22 

squamates, we created general-area cladograms (GAC) using PACT and Three-area 23 

statements analyses.  24 

Results. The final GAC derived from PACT yielded 34 terminals, of which half 25 

represented coincident patterns. From these patterns, more 70% were composed of at 26 

least one anuran and one squamate species, suggesting a common spatial-temporal 27 

regionalization pattern for both groups. Three-area statements results shown a similar 28 

sequence of events, depicting a main division of the Cerrado in West and 29 

Central/Southeast areas, with older events occurring at places like Parecis, Espinhaço 30 

and Serra Geral.  31 

Main conclusions. We found a predominance of vicariance events. The major 32 

evolutionary events of the Cerrado herpetofauna occurred throughout Miocene until 33 

Pleistocene, probably related with major events of uplift and subsequent dissections of 34 

plateaus that influenced ancestral ranges of both anurans and squamates. Some biotic 35 

elements were involved in more than one event, and some of them presented a 36 

reticulated history, indicating greater complexity of historical events in some areas in 37 

relation to others.  38 

Keywords. Herpetofauna, PACT, cladistic biogeography, evolution, Neotropics, 39 

vicariance, biotic elements, Three-area statements   40 
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INTRODUCTION 41 

 42 

Identifying the mechanisms and process that generate endemism patterns is a 43 

major step in understanding the evolution of biotas (Nelson & Platnick, 1981; Cracraft, 44 

1988; Anderson, 1994). Moreover, such knowledge is central for conservation efforts 45 

aiming to protect biogeographical processes at continental scales (Pressey et al., 1993; 46 

Faith, 1994; Klein et al., 2009). From the delimitation of different biogeographic units 47 

(i. e. biotic elements, areas of endemism), it is possible to verify if such endemism 48 

pattern corresponds to general process, like vicariance (Hausdorf, 2002). One way is to 49 

verify if closely related species are distributed over different biotic elements (Hausdorf 50 

& Hennig, 2004). However, common distributional patterns could also be generated by 51 

many unrelated events between distinct groups - generating only coincident ranges, but 52 

not real areas of endemism - (Craw, 1983; Donoghue & Moore, 2003). Therefore, only 53 

with the aid of phylogenetic information it is possible to infer if regionalization patterns 54 

were generated by a general historical processes, providing clues on the history of areal 55 

relationships and on the formation of biotas (Platnick & Nelson, 1978; Morrone, 1994; 56 

Humphries & Parenti, 1999). 57 

As phylogenetic relationships of only one taxon are not enough to resolve the 58 

histories of speciation of any given group or area, the analysis of many simpatric taxa 59 

can reveal general events, and discriminate these from clade-specific ones (Lieberman, 60 

2003; Folinsbee & Brooks, 2007).  If area cladograms of different groups show similar 61 

topological structure, then similar events should be invoked to explain regionalization 62 

patterns (Rosen, 1975; Folinsbee & Evans, 2012). Several methods have been proposed 63 

to uncover historical biogeographic patterns, and there has been a debate regarding 64 

which methods are more appropriate (Veller et al., 2003; Parenti & Ebach, 2009). Some 65 
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methods employed a kind of data modification to include only the information about 66 

sister-group relationships to infer area-relationships, to depict the main vicariant events 67 

(Nelson & Platnick, 1981; Humphries & Parenti, 1999), while others use all data, 68 

including widespread species and paralogy, without modification (Wiley, 1988). The 69 

second approach provides opportunities to interpret not only vicariance-driven biotic 70 

diversification, but also taxon-pulse and dispersal-driven biotic diversification 71 

(Wojcicki & Brooks, 2004; Halas et al., 2005; Eckstut et al., 2011).  72 

Nevertheless, without temporal information, even the same general topology 73 

between different area cladograms is not enough. General patterns may also be 74 

generated by pseudo-congruence, a coincident area relationships pattern generated by 75 

different events at different times (Cunningham & Collins, 1994). Such pseudo-76 

congruent patterns can often mislead historical interpretations, and can only be detected 77 

if temporal information is included in the analysis (Upchurch & Hunn, 2002; Donoghue 78 

& Moore, 2003).   79 

Many regionalization hypotheses were proposed at different scales within the 80 

Neotropical region, based on different groups, from harvestmen to snakes (Silva, 1997; 81 

Pinto-da-Rocha et al., 2005; Nogueira et al., 2011; Guedes et al., 2014; Morrone, 2014). 82 

The Cerrado region is the largest block of Neotropical savannas. Located in the centre 83 

of South America, and it harbours a rich and highly endemic herpetofauna, composed 84 

by more than 480 species of anurans and squamates (Nogueira et al., 2011; Valdujo et 85 

al., 2012a; Azevedo et al., in prep.). A great proportion of its herpetofauna is derived 86 

from Gondwanan lineages plus some immigrants from North America that arrived at 87 

different times over the Tertiary (Colli, 2005). It has been hypothesized that events from 88 

the Tertiary until Pleistocene, including Andean tectonism, elevation of plateaus, and 89 

marine introgressions, have strongly shaped the distributions of the Cerrado biota 90 
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(Silva, 1997; Colli et al., 2002). The coincident spatial clustering of species ranges of 91 

very different groups such as anurans and squamates across some biotic elements, 92 

mainly localized over different plateau areas in Cerrado, is an evidence of such general 93 

influence (Azevedo et al., in prep). However, this strongly non-random, regionalized 94 

pattern is based only on raw distribution data and geographical coincidence across 95 

ranges, with no information on temporal and historical hierarchy among these taxa and 96 

their corresponding areas.          97 

 Herein we used historical biogeographical analyses and temporal information 98 

derived from molecular dating to identify congruent and unique biogeographical events 99 

between anurans and squamates of the Cerrado, uncovering and describing patterns of 100 

historical areal relationships. The aims of our study are to:  (1) to investigate historical 101 

relationships between the biogeographical units of the Cerrado herpetofauna; (2) to 102 

distinguish between congruent and unique events between both herpetofaunal groups; 103 

(3) to verify if the coincidence of distributions between anurans and squamates in the 104 

Cerrado are related to the same historical process and; (4) to interpret these results in the 105 

light of available information on the geological history of central Brazil and the 106 

Neotropics. 107 

 108 

METHODS 109 

Cerrado regionalization hypothesis 110 

The Cerrado region is subdivided in at least 12 main biotic elements, delimited 111 

by the distribution of endemic anuran and squamate species (Azevedo et al., in prep). 112 

Four of these biotic elements are composed mainly by one group (only squamates, BEs 113 

1 and 7; mainly anurans, BEs – 4 and 8), and the remaining nine contain representatives 114 
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of both groups (Figure 1). We included Serranía Huanchaca + Serra da Borda region in 115 

our regionalization hypotheses (areas between the BEs – 1 and 2), because we have 116 

lineages with important phylogenetic information in that region. We considered these 117 

areas as the same biogeographic unit as indicated in Azevedo et al., (in prep.).  118 

Data sources 119 

Phylogenetic hypotheses – We used phylogenies that contained at least three 120 

terminal taxa distributed over biotic elements of the Cerrado herpetofauna. For 121 

squamates we used phylogenies of pitvipers of the Bothrops neuwiedi group (Machado 122 

et al., 2014), the teiid lizards genus Kentropyx (Werneck et al., 2009), and Ameiva 123 

(Giugliano 2009; Giugliano et al., 2013), plus phylogeographical hypotheses for 124 

Phyllopezus pollicaris (Gamble et al., 2012) and Micrablepharus atticolus (Santos et 125 

al., 2014). For anurans we used the phylogenies of Phyllomedusa megacephala group 126 

(Faivovich et al., 2010), the genus Pseudopaludicola (Veiga-Menoncello et al., 2014), 127 

the Rhinella marina species group (Vallinoto et al., 2010) and the phylogeography of 128 

Hypsiboas albopunctatus (Prado et al., 2012).  129 

Molecular dating – Of the selected phylogenies, those of Phyllomedusa 130 

megacephala group and Pseudopaludicola were not dated in the original studies. 131 

Therefore, we dated these phylogenies using ∗BEAST version 1.8.0 (Drummond et al., 132 

2006; Drummond & Rambaut, 2007). We obtained the mtDNA sequences produced by 133 

the mentioned systematic works from GenBank (accession number in Table 1, SI). We 134 

aligned the sequences using Clustal X (Thompson et al., 1997). As no fossils of these 135 

groups are known, we used an indirect calibration method based on substitution rates to 136 

provide at least a relative idea about the divergence times of these groups. We used 137 

uncorrelated relaxed clocks to allow for rate heterogeneity among lineages and a simple 138 
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birth process prior - Yule (Aldous, 2001). We used the estimated value of “0.0069 139 

substitutions/my” divergence rate for amphibians mitochondrial DNA (Macey et al., 140 

1998), with 1% standard deviation, and the normal prior on the global substitution rate. 141 

Results were checked for convergent distributions using Tracer, version 1.8.0 (Rambaut 142 

& Drummond, 2003).  143 

Biogeographical analysis 144 

Before the analyses, each phylogenetic tree was converted into a taxon–area cladogram 145 

(TAC), by replacing names of each terminal with their respective areas - biotic 146 

elements. In the case of phylogeographies, we considered as terminals, the well-147 

delimited populations. As biotic elements are characteristically diffuse (Hausdorf & 148 

Hennig, 2003), we did not include species that occurred only marginally in a particular 149 

BE. Species were assigned to BEs only if occurring in their core areas (darker areas in 150 

the Figure 1, see similar delineation in Nogueira et al., 2011). Whenever possible, we 151 

used only the geographical information contained in the original phylogenetic studies, 152 

to avoid bias by inadequately including populations not analysed.  153 

General Area Cladogram using the PACT algorithm – Phylogenetic Analysis for 154 

Comparing Trees (PACT) has recently emerged as a biogeographical method that 155 

provides an general-area cladogram for vicariance-driven biotic diversification, taxon-156 

pulse and dispersal-driven biotic diversification, enabling the distinction between 157 

general and unique events (Wojcicki & Brooks, 2004; Eckstut et al., 2011). We 158 

combined each taxon–area cladogram by hand to form a general-area cladograma 159 

(GAC) using the PACT algorithm (Wojcicki & Brooks, 2004, 2005). PACT works 160 

comparing two TACs at time, and adding (superimposing) one over the other (Table 2, 161 

SI, for an example). First, all taxon–area cladograms are converted to Venn diagrams 162 
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(Table 1). The first selected TAC to compare is the template, where common elements 163 

[Y] (terminals and nodes) with a second taxon-area cladogram are combined: “Y + Y = 164 

Y”, and novel elements (N) are added at the point they first appear: “Y + N = YN”. 165 

Three additional rules complete the algorithm: (1) If two terminals are connected at 166 

different nodes, they will not be combined: “Y(Y− = Y(Y−”, (2) Common elements (Y) 167 

between two cladograms are combined even in the presence of novel elements (Y + YN 168 

= YN); and (3) “YN + YN – YNN”, when Y is the same for each, but N is different. As 169 

PACT follows Assumption 0, we did not removed or modified information of each 170 

input phylogeny (Wiley, 1988).  171 

Reducing pseudo-congruent patterns - To avoid connecting ‘Ys’ of different 172 

ages (pseudo-congruence), we used the temporal information from dated phylogenies to 173 

construct the GAC, making the final area cladogram temporally consistent (Lim, 2008). 174 

Before using PACT, we classified elements of each TAC-Venn-diagram according to 175 

the dated phylogenies (Figure 1, SI). So, if a template-TAC shows a split between the 176 

most ancestral clade at the Pleistocene, as: (APleistocene(BC)) and another TAC shows the 177 

split at the Miocene, (AMiocene(BC)), we did not join these two ‘As’ as we would 178 

according to the the first rule. Instead, we considered these as two different events, 179 

resulting in (AMiocene(APleistocene(BC))). We did not use absolute ages of each phylogeny. 180 

Instead, we classified each node age in a categorical interval: late (0-0.781my) or early 181 

(0.781-2.58my) Pleistocene; late (2.58-3.6my) or early (3.6-5.3my) Pliocene; and late 182 

(5.3-11.6my) or mid Miocene (11.6-16my) as suggested by Eckstut (2013). We joined 183 

only patterns of these categorical dates that are temporally nested (i.e. if the template 184 

Venn-diagram: (Aearly-Pleistocene(BC)) will be joined with the input Venn-diagram: 185 

(Alate-Pliocene(BC)) the result is: (Ae-Pleistocene/l-Pliocene(BC)). This approach leads to 186 

an indirect inclusion of a great proportion of confidence intervals from molecular dating 187 
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in our analysis, avoiding bias of using only mean ages of nodes (Graur & Martin, 2004; 188 

Hedges & Kumar, 2004).  189 

We described the possible alternative GAC constructions because, with the great 190 

number of areas used here (thirteen), the potential for ambiguous placement of specific 191 

taxa would seem to be high. The ambiguity could be also caused by the topology of the 192 

input cladograms (Folinsbee & Brooks, 2007). 193 

Interpreting the PACT - GAC – To depict all events of each lineage in the 194 

general-area cladogram, we gave a standard numerical code to each of the branches and 195 

nodes for each taxon–area cladogram and mapped them over the GAC (Figure 1, SI). 196 

We considered as congruent events those composed by two or more lineages in the final 197 

GAC derived from PACT.  We depicted which of these congruent events are composed 198 

by both groups (i. e. with at least one anuran and one squamate species), and which 199 

patterns are characteristic of each lineage (with at least two anuran species, or with at 200 

least two squamate species). Finally, we used these congruent patterns to infer historical 201 

processes over time at the Cerrado region.  202 

 We used the Lieberman protocol to distinguish vicariance from biotic expansion 203 

in general nodes (Lieberman & Eldredge, 1996; Lieberman, 2003): Using the Fitch 204 

(1971) parsimony algorithm in Mesquite (Maddison & Maddison, 2001), we optimized 205 

the ancestral areas for nodes. To favoured general events over unique clade-specific 206 

events, for cases of Multiple Areas in Single Terminals [MASTs], we represented each 207 

MASTs as a polytomy, with each terminal derived from respective TAC transformed in 208 

a single terminal. This causes the algorithm to favour repeated events over a single 209 

event. Then, from the optimization of ancestral areas, transitions between ancestral 210 

nodes and descendent nodes (or terminals) that involved decreased range sizes 211 
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(decreasing of number of biotic elements from ancestral to descendent nodes) were 212 

considered as possible cases of vicariance. Transitions that involved geographical 213 

expansion (increase in numbers of biotic elements) were considered as possible cases of 214 

biotic expansion events (geo-dispersal).  215 

Three-area analysis – In order to visualize the main areal-relationships for the 216 

Cerrado herpetofauna, reducing the influence of widespread taxa and paralogy in the 217 

GAC construction, we conducted Three-area statements Analysis (Nelson & Ladiges, 218 

1991). Using LisBeth program, version 1.3 (Bagils et al., 2012), we conduced Paralogy-219 

free Subtree analysis (Nelson & Ladiges, 1996) to handle redundant areas in the TACs, 220 

and Transparent Method to handle Multiple Areas in Single Terminals [MASTs] (Ebach 221 

et al., 2005). We then used LisBeth to construct the intersection tree, which summarizes 222 

the information shared by optimal trees (most parsimonious trees found by 3-area 223 

analysis). To evaluate results, we used the retention index (Farris, 1983; Archie, 1989), 224 

equivalent to the percentage of 3-areas included in the intersection tree (the final GAC), 225 

and the completeness index (Bagils et al., 2012), that is the proportion of 3-areas 226 

present in all optimal trees also present in the intersection tree. Low values of 227 

completeness index indicate that few characters support the cladogram. Unlike PACT or 228 

BPA (analysis based on Assumption 0), that include information of relationships based 229 

in shared areas (i. e. if a species inhabits areas A and B, this information is used to infer 230 

a close relationship between these areas), 3-area analysis uses only phylogenetic 231 

relationships among taxa to solve the relationships among areas they inhabit (using 232 

Assumption 2). To understand the influence of too young or too old events, we also 233 

performed three-area analysis  with temporally partitioned taxon cladograms (Upchurch 234 

& Hunn, 2002), first deleting only events at Pleistocene (collapsing nodes connected at 235 
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that date) in the input TACs, and then deleting only events at Miocene in the input 236 

TACs.  237 

 238 

RESULTS 239 

General-Area Cladogram from PACT 240 

The resulting node ages of BEAST for each phylogeny dated by our study are shown in 241 

the supplementary information (Table 3), together with all cladograms and respective 242 

TACs derived from the original phylogenetic works (Table 3 and Figure 1, SI).  243 

The GAC resulting from PACT shows 34 operational taxonomic units -“OTUs” 244 

or terminals - (Figure 2). We represented multiple areas in single terminals as 245 

polytomies (steps of GAC construction in Figure 2, SI). Many cases of widespread taxa 246 

over the input taxon area-cladograms (TACs) produced ambiguous placements of 247 

specific taxa in the GAC. At least in two situations, species with widespread ranges 248 

(Rhinella schneideri and Bothrops mattogrossensis) resulted in terminals in the TACs 249 

that could not be adequately allocated with other terminals and were represented by the 250 

OTUs named “widespread” in the GAC (OTUs 15 and 16). Kentropyx paulensis, 251 

another species with a widespread range (over six biotic elements) generates a TAC that 252 

could be allocated at terminal positions in the GAC (OTUs 29-34), but only a 253 

systematic study at the population level could solve the relationships among these 254 

terminals.  255 

Interpreting the GAC  256 

Coincident topologies of taxon-area cladograms in the final GAC include 17 OTUs 257 

(thick lines, Figure 2), indicating that half (17 of 34) of all patterns found with the 258 
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actual information for the Cerrado herpetofauna are coincident. Such pattern indicates 259 

the fit of the cladograms, but a priori, not congruent events (see the nodal congruence 260 

below). From these coincident fits, 13 OTUs (76%) are composed by at least one anuran 261 

and one squamate species. Three of these coincident fits are composed only by 262 

squamates (18%), including Parecis, Jalapão and Paraná basin Plateau BEs (OTUs 1, 11 263 

and 34), and one is composed only by anurans (6%) at the Guimarães BE (OTU 28). In 264 

these situations, the lack of anuran or squamate species should be related to the data 265 

deficiency for each group in different areas and times: no anuran phylogeny includes 266 

species from the Parecis BE, and only one anuran phylogeny includes taxa in the Serra 267 

Geral BE – (Rhinella marina group). The remaining OTUs represents 12 unique events 268 

for squamates (35% of total) and 5 unique (15%) events for anurans.   269 

Some areas were related to each other by sister-group relationships of different 270 

clades (nodes linked by black vertical lines, Fig. 2), while others are connected by 271 

widespread lineages that occur in more than one biotic element (linked by red lines, 272 

Figure 2). This result in 17 areal-relationships in the former case, but this number might 273 

be slightly higher. For example, the first 3 OTUs are connected only by shared 274 

widespread species. This could represent up to 3 independent splits of these areas in 275 

relation to remaining Cerrado, with secondary post-especiational dispersal, or 276 

alternatively, failure to response the vicariance event, and so on.  Of these 17 areal-277 

relationships, at least nine are based on congruent events between more than one taxa. 278 

Nevertheless, as already mentioned, this number might be higher up to 13 congruent 279 

events between areas (if counting the red nodes).  280 

Main biogeographical events for the Cerrado herpetofauna   281 
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In general, there was a predominance of presumed vicariance events over presumed 282 

biotic expansion events (Table 2). Along the Miocene, at least three western areas of the 283 

Cerrado - Parecis, Guimarães, and Pantanal/Bodoquena BEs - were involved in 284 

congruent events (Figures 2 and 3). Using the Lieberman protocol at general nodes, 285 

these events were considered presumed vicariance events (GAC with the reconstruction 286 

of ancestral ranges, Figure 3 SI). The dates of events in the first two OTUs derived from 287 

each dated TAC vary across a wide time frame at Miocene, with more ancient events 288 

beginning more than 15 million years ago, and ending about 6 Mya (grey bars, Figure 289 

2). Between 5 to 11 Mya, Espinhaço BE (OTU 9), and then, Serra Geral/Jalapão BEs 290 

(OTUs 10 and 11), were involved in presumed vicariance events at the east portion of 291 

the Cerrado (Table 2, Figures 2 and 3). Next, a biotic expansion event occurred at 292 

Miocene/Pliocene transition from areas like Guimarães, Serra Geral and Espinhaço BEs 293 

to adjacent areas like Tocantins/Araguaia basin and Central Paraná Plateau (Table 2, 294 

Figure 3).  295 

Vicariance events in the southeast Cerrado (Paraná basin and Canastra region 296 

BEs) predominated along the Pliocene (Table 2, Figure 3). At the late Pliocene and 297 

through Pleistocene, presumed vicariance events occurred in the west 298 

(Huanchaca/Borda and Guimarães BE), in the southeast, at Espinhaço, and in central 299 

areas like Caiapônia and Central Plateau BEs. At the Pleistocene, many unique, lineage-300 

specific events occurred, especially between Espinhaço, Paraná Plateau and Canastra 301 

BEs (nodes k, p and s). Finally, a biotic expansion event occurred over the more 302 

connected areas over the central Brazil, like Caiapônia, Central Plateau, Veadeiros, 303 

Serra Geral and Paraná basin Plateau (Table 2, Figure 3).  304 

Pseudo-congruence was highlighted by the presence of repeated areas over the 305 

GAC, which represent different events separated by time. Cases of pseudo-congruence 306 
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involves Guimarães, Espinhaço, Serra Geral and Paraná basin BEs. These areas appear 307 

to be involved in recent events over the Pleistocene, as well as in older events in the 308 

Pliocene and Miocene. On the other hand, Huanchaca/Borda, Caiapônia, 309 

Pantanal/Bodoquena and Jalapão BEs appear only once, even taking into account the 310 

unique events over the GAC. Additionally, Canastra and Parecis BEs appears only once 311 

as congruent events.  312 

GAC of Three-item analysis 313 

The intersection tree (Figure 4 – A) derived from three optimal trees gives a retention 314 

index (RI) = 71.6% (representing 159 of 223 optimal TACs found by Paralogy–free 315 

Subtree and Transparent method analyses). The completeness index (CI) was 51.1%, 316 

indicating incongruences among optimal trees and the intersection tree, probably related 317 

to reticulated history of some biotic elements.  318 

A general picture of historical areal relationships could be drawn as follows: The 319 

basal division of the Parecis BE (node a) is followed by Serra Geral and Jalapão BEs 320 

(node b, Figure 4 – A). This reinforce that basal relation of Parecis and Guimarães 321 

depicted by PACT, may have been caused only by secondary dispersal. Next, a main 322 

difference between the PACT and Thee–area analysis appears: a main division of the 323 

Cerrado areas (at node d) between west/central (node e) and southwest/central (node j) 324 

biotic elements (Figure 4–A).  325 

The relationships among areas nested inside nodes e and j are more affected by 326 

the reticulation, by the lack of dates and by the need of more distributional and 327 

phylogenetic information: the relationships within node i are due to a unique event 328 

between two species of the Bothrops neuwiedi group. The relationship between 329 
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Veadeiros BE basal to Pantanal BE (node f), is derived from a unique and very ancient 330 

sister group relationship found in the Phyllopezus pollicaris phylogeography.  331 

 The general–area cladogram derived from TACs without events at Pleistocene 332 

(Figure 4 – B; RI = 70.8%; CI = 48.3%) and the GAC without events at Miocene 333 

(Figure 4 – C; RI = 74.4%; CI = 73.6%) resulted in quite different relationships between 334 

the areas. In the GAC of Miocene/Pliocene events (Figure 4 – B), biotic elements of a 335 

more or less continuum areas at central/south Cerrado, including Veadeiros, Central 336 

Plateau, Caiapônia and Paraná basin BEs, are nested together (node e), in crown 337 

position in relation to western areas like Guimarães, Parecis and Pantanal/Bodoquena 338 

BEs.  339 

In the Pliocene/Pleistocene cladogram (Figure 4 – C), Paraná basin, Espinhaço 340 

and Central Plateau are shown basal in relation to western areas like Guimarães and 341 

Tocantins/Araguaia basin, similar to the General events cladogram (Figure 4–A), but 342 

slightly different from the cladogram of older events (Figure 4–B). The main reticulated 343 

pattern occurs between Veadeiros and Caiapônia, closed related with central/south 344 

biotic elements in the Miocene/Pliocene GAC, and then related to western areas in 345 

Pliocene/Pleistocene GAC. The Jalapão BE also showed a reticulated pattern in relation 346 

to the Serra Geral (Figure 1 – A) and Central/South biotic elements. The area cladogram 347 

of Miocene/Pliocene (Figure 1 – B) is more comparable with PACT general–area 348 

cladogram (Figure 2), with a similar sequence of events beginning in western areas, 349 

passing by Serra Geral and Espinhaço, and ending in less resolved central/southern 350 

areas relationships.  351 

  352 
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DISCUSSION 353 

 354 

We found that vicariant process were the main driver of speciation for the 355 

Cerrado herpetofauna throughout the Neogene and Quaternary. The presence of groups 356 

of squamates and anurans species with coincident distributions over the Cerrado region 357 

is the first indication that some general process, like vicariance and/or some kind of 358 

congruent dispersal (or the formation of biological refuges), shaped the Cerrado biota in 359 

some regions, regardless of the biological characteristics of each group (Azevedo et al., 360 

in prep). Biotic elements of the Cerrado herpetofauna are mainly composed by poor 361 

dispersers like many fossorial squamates (Nogueira et al., 2011), a factor that may have 362 

helped in the identification of such vicariant pattern, less prone to be obscured by 363 

extensive post-speciational dispersal (Hausdorf & Hennig, 2006). The detection of at 364 

least three biotic expansion events and the presence of reticulated relationships between 365 

areas may also suggest a taxon-pulse like pattern of diversification (Erwin, 1981; Halas 366 

et al., 2005). 367 

The majority of speciation events within the Cerrado in our study occurred less 368 

than 12 Mya, in conformity with the findings for vascular plants (Simon et al., 2009), 369 

suggesting a recent major diversification of the Cerrado lineages, in coincidence with 370 

the expansion of other savannas in the world (Edwards et al., 2010). The high levels of 371 

species endemism and the rarity of endemic genera in the Cerrado region (see Nogueira 372 

et al., 2011; Valdujo et al., 2012) is another indication of the possible recent assembly 373 

of the Cerrado herpetofauna. That diversification events are also parallel with the timing 374 

of Amazonian amphibian diversification (Santos et al., 2009). However, some deep 375 

events related to the Cerrado herpetofauna occurred in places like Parecis, Espinhaço, 376 

Guimarães and Serra Geral, from mid Miocene until early Pliocene, instead of the 377 
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Pleistocene. Furthermore, the single endemic lizard genus of Cerrado, the monotypic 378 

Hoplocercus, may have an ancient origin, even before the Miocene (Torres-Carvajal & 379 

de Queiroz, 2009).  Then, the lack of endemic genera should be related to the incipient 380 

systematic knowledge. As more dated phylogenies of species-rich genera like 381 

Amphisbaena, Apostolepis, Tropidurus and Proceratophrys become available, more 382 

ancient diversification events could be discovered.   383 

Most congruent events of the Cerrado Herpetofauna may coincide with major 384 

events of the geomorphological evolution of the South America. During the middle 385 

Cenozoic, areas harbouring many of the recovered biotic elements were uplifted and 386 

separated by major peripheral depressions (Ab’Saber, 1983). These areas are formed by 387 

a heterogeneous set of formations, including rocks of different sedimentary origins in 388 

Parecis, Bodoquena, Serra Geral and Jalapão (Filho & Karmann, 2007; Villela & 389 

Nogueira, 2011; Ross, 2013). There are also formations originated from very ancient 390 

continental Precambrian crystalline igneous and high-grade metamorphic rocks over the 391 

Central Plateau, Veadeiros and especially at the Espinhaço range (Pinto, 1986; Saadi, 392 

2013). In part due to these different compositions, some of these areas were uplifted and 393 

others subsided at different rates (Silva, 1997). The development of the peripheral 394 

depressions also increased the isolation of the mentioned areas at different rates, in part, 395 

due to these different compositions (Ab’Saber, 1998) and, should be the main factor for 396 

the isolation of the associated fauna over different times along Miocene, Pliocene and 397 

Pleistocene.  398 

These peripheral depressions have isolated ancestral populations not only by 399 

physical barriers, but also by the instability of the Cerrado vegetation in these places, 400 

constantly colonized by forested or arid formations along historical climatic changes 401 

(Ab’Saber, 1983). Compared to these depressions, the plateaus showed more stable 402 
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habitat composition, and probably retained savanna-gallery forest mosaics along large 403 

periods of time (Silva, 1997; Brown  Jr. & Gifford, 2002). The Cerrado vegetation also 404 

expanded over these lower areas in some periods, and the presumable biotic expansion 405 

events depicted in our GAC should be related to these savanna-vegetation expansions, 406 

providing connectivity among different areas, especially between disjunct plateaus. The 407 

biotic expansion showed by our GAC in the Pleistocene may be correlated with the 408 

emergence of the actual climatic conditions that caused the Cerrado expansion towards 409 

its current extension, while other vegetation types retracted (Werneck, 2011). These 410 

expansions and retractions of the Cerrado from refuge areas probably occurred many 411 

times, even before the Pleistocene, like in other South American domains (Haffer & 412 

Prance, 2002).  413 

In addition to these expansions and retractions of the Cerrado, some areas 414 

remained more or less geologically instable, and these factors may have reflected in the 415 

reticulated history of some areas like the Espinhaço, with more tectonic activity (at 416 

Miocene/Pliocene and Pleistocene) and geomorphological complexity than more stable 417 

areas at the Central Plateau (Saadi, 2013). The isolation of ancestral populations leading 418 

to speciation throughout different times, created a pseudo-congruent pattern in the 419 

results of Three-area analysis that was depicted in the PACT results. These reticulations 420 

and pseudo-congruencies highlighted the dynamic character of biogeographical units, 421 

and impose technical difficulties to reconstructing their history (Nihei, 2008). 422 

Moreover, such pseudo-congruence also indicate that evolutionary processes may occur 423 

more frequently in certain places, (i. e. Espinhaço or Guimarães BEs), which may have 424 

implications for the conservation of evolutionary process (Balmford et al., 1998; 425 

Moritz, 2002).  426 
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However, there are many source of errors in the estimation of node ages in 427 

phylogenies (Graur & Martin, 2004; Hedges & Kumar, 2004) that could be responsible 428 

for the supposed pseudo-congruences found in some areas (Upchurch, 2008), although 429 

the majority of the area-duplications depicted by our results derived from the topology 430 

of the input TACs. Moreover, other biotic elements involved in only one congruent 431 

event may show a pseudo-congruent pattern that was impossible to detect in our dataset. 432 

Using only criteria of two or more species to consider a congruent event, any new 433 

information derived from additional phylogenies could transform one of the 14 unique 434 

events shown here in a new congruent event.  435 

On the other hand, these events depicted by PACT could not correspond to a real 436 

pseudo-congruences. The formation of a geographical barrier could be a gradual event, 437 

increasing the isolation of two areas over a wide range of time. This implies that in 438 

principle, depending of some characteristics of the organisms involved (i. e. more or 439 

less dispersal ability), a geographical barrier could isolate a population of one species 440 

before and, as the barrier develops (i. e. the increasing width of the river valleys 441 

between two plateau areas) another species becomes isolated. Different habitat 442 

preferences can also cause temporal disparity (i. e. sandy substrate habitats could 443 

fragment more quickly than rocky substrate during geological uplift, and their 444 

respective habitat-specialist taxon should exhibit a pseudo-congruent pattern; Riddle & 445 

Hafner, 2006). Even if the barrier appears suddenly, different species could speciate at 446 

different times because of intrinsic characteristics, such as higher evolutionary rates, or 447 

more limited dispersal ability.  448 

Therefore, the results of the Three-area analysis provide a broad picture of the 449 

general patterns regardless of temporal information. The division of the Cerrado region 450 

in central/southwest and eastern areas, more or less divided by the Tocantins-Araguaia 451 
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basin and associated depression (Figure 5), was better depicted with the Three-area 452 

results, and is parallel with the division found in phytogeography patterns of vascular 453 

plants (Novaes et al., 2013). The basal position of Parecis, Serra Geral and Jalapão 454 

biotic elements was concordant between the two analyses, even considering that the two 455 

former areas have a poor representation of lineages in our phylogenies. These regions 456 

have a sedimentary origin (Radambrasil, 1981; Nascimento, 1991) and after the general 457 

Tertiary cycles of uplift, their arenitic tabletops may have eroded before the more 458 

continuum areas of the central and southwest, formed by a more resistant clay rich 459 

deposits, which, form, nowadays, larger blocks of continuous plateaus.  460 

The reticulated patterns found in our analysis may be reinforced if we include 461 

species that occur in the adjacent phytogeographic domains. Especially for anurans, the 462 

proximity to adjacent domains is important for the composition of the communities, 463 

even for the endemics (Valdujo et al., 2012b). As an example, in the phylogeny of the 464 

Phyllomedusa megacephala group, the species P. rohdei occurs in forested areas along 465 

the Atlantic Forest, and its the sister species P. megacephala, occurs at the Espinhaço. 466 

In that case, the TAC would indicate the close relation between Espinhaço and Atlantic 467 

Forests, basal to other Cerrado areas, like Canastra, while other phylogenies indicate 468 

that the Espinhaço range is more related to other Cerrado areas like Canastra or Paraná 469 

basin BEs (Bothrops neuwiedii group).  470 

Azevedo et al (in prep, chapter 1) hypothesized that the coincident ranges of the 471 

squamates and anuran species over the Cerrado region could be due to the same events. 472 

In accordance with that idea, most congruent events depicted here were composed by at 473 

least one anuran and one squamate species. Nevertheless, patterns restricted to anurans 474 

or to squamates, such as the prevalence of squamates in the Parecis and Jalapão BEs, 475 

have a parallel in the general events found here, only affecting members of squamates in 476 
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that biotic elements. Moreover, some events seem to have affected more some lineages 477 

than others, even in the regions with coincident distribution of anurans and squamates, 478 

like in the Guimarães BE at Pliocene/Pleistocene boundary (OTU 29), that affected only 479 

anurans. In fact, if considering only congruent events of each group individually, the 480 

pattern found here would be different, with the sequence of congruent events of 481 

(Espinhaço(Paraná(Guimarães(Veadeiros+Central, Caiapônia) for anurans and 482 

(Parecis(Pantanal/Bodoquena(Serra Geral, Jalapão(Central, Caiapônia + Paraná) for 483 

squamates and additional information might show if this is the real pattern, or only due 484 

to the actual knowledge. 485 

 486 
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TABLES 

 

Table 1 – Venn diagrams of each phylogeny used in our analysis. Red letters 

represents the distribution of a single clade over more than one biotic element. A –

Parecis, B – Guimarães, C – central Paraná Plateau, D –Jalapão, E - Central Brazilian 

Plateau, F –Espinhaço, G – Pantanal/Bodoquena, H –Tocantins-Araguaia Basin, I –

Serra Geral, J –Caiapônia Plateau, K – Veadeiros Plateau, L –Canastra Plateau, M – 

Huanchaca/Borda Plateau region. 

Lineages Venn diagrams 

Ameiva parecis group (A(J,C)) 

Bothrops neuwiedi group (ID(CL(F(EJK)))((JEK)(HKEJGB))) 

Hypsiboas albopunctatus (B((CF)((EJK)(CF)))) 

Kentropyx pauloensis group (BA(G(D(EICBJK)))) 

Micrablepharus atticolus (B(JC((A)(HE)))) 

Phyllomedusa megacephala group (F(L(B(EK)))) 

Phyllopezus pollicaris (F(KH(G))((KI)(IDH))) 

Pseudopaludicola saltica group (G(F(BE(F,C)))) 

Pseudopaludicola ternetzi group ((B,M)(CE)) 

Rhinella marina group (central-north clade) (I(A-M(IJE))) 
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Table 2 – Events between ancestral and descendent congruent nodes or terminals in the 

GAC using reconstructed ancestral ranges over nodes (Lieberman protocol), to 

distinguish vicariance from congruent dispersal (biotic expansion).  

Nodes/Terminals Presumable event Place (Biotic elements) 

a - OTU 1-2 Vicariance Parecis, Guimarães* isolation 

c - OTU 4 Vicariance Pantanal isolation 

c - f Vicariance Veadeiros isolation** 

f - OTU 9 Vicariance Espinhaço*** isolation 

g - h Vicariance Serra Geral and Jalapão isolation 

g - i Biotic expansion To Tocantins/Araguaia, Paraná Plateau. 

i - OTU 13 Vicariance Paraná Plateau*** isolation 

i - o Ambiguous Range shift to Canastra, Central, Huanc./Bor. 

o - OTU 19 Vicariance Canastra isolation 

o - OTU 20 Vicariance Paraná Plateau isolation 

q - OTU 22 Vicariance Huanchaca/Borda isolation 

q - r Ambiguous Range shift to Espinhaço and Caiapônia 

r - OTU 27 Vicariance Espinhaço isolation 

t - OTU 28 Vicariance Guimarães isolation 

t - u Vicariance Caiapônia/Central isolation 

u - OTUs 29-34 Biotic expansion From Central/Caiapônia to adjacent areas 

* The following general nodes remained including Guimarães BE, which may indicate that vicariance 

split involves only the Parecis biotic element at that point, with posterior dispersal of some species to 

Guimarães BE. 

** At that point, Veadeiros BE was involved only in unique events over the terminals. 

*** Remained included in the next nodes due lineage-specific subsequent events.
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FIGURES 

 

 

Figure 1 – Biotic elements (BE) defined by distribution of herpetofaunal species (Azevedo et al, 

in prep). The thick lines indicate the BE limits as the areas with the occurrence of two or more 

species. The gradient colours of each BE indicate the richness, with the darker tones indicating 

the approximate core area of each biotic element. The grey colour indicate the Cerrado limits. 

Biotic elements classification according to the main geomorphological places: places: 1 – Parecis 

Plateau. 2 – Guimarães Plateau. 3 – Caiapônia Plateau. 4 – Veadeiros Plateau. 5 – Pantanal and 

Bodoquena regions. 6 – Central Brazilian Plateau. 7 – Jalapão region.  8 – Canastra region. 9 – 

Tocantins–Araguaia basin. 10 – Central Paraná basin Plateau. 11 – Serra Geral Plateau. 12 – 

Espinhaço mountain range. 13 – Serranía de Huanchaca. 14 – Serra da Borda.  
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Figure 2 – General-Area Cladogram (GAC) derived from PACT analysis. The biotic 

elements (BE) in bold indicate coincident fits between more than one lineage from the 

original taxon-areas cladograms (TACs). Thick black lines also indicate coincidence 

between two or more TACs. Thin lines represent unique, clade-specific events of each 

TAC. Red vertical lines indicate areal relationships derived from the information of 

species distributed over more than one BE. In those cases, the split between these areas, if 

real, could not be dated in the GAC. Green symbols on the right, represent the number of 

anuran lineages in each terminal, while black symbols represent squamates. The split of 

each branch was positioned at the oldest event date in the original TACs, while grey bars 

represent the time range until the youngest event (see a protocol to calibrate GACs in 

Folinsbee & Evans, 2012). Major nodes were coded from “a” to “u”. 
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Figure 3 – Map with main vicariance splits and dispersal routs of the Cerrado Herpetofauna. I – 

Parecis (Guimarães?) isolation; II – Pantanal/Bodoquena isolation; III – Espinhaço isolation; IV 

– Serra Geral/Jalapão isolation; V – Central Paraná Plateau isolation; VI – Canastra isolation; 

VII – Central Paraná Plateau isolation; VIII – Huanchaca/Borda isolation; IX – Espinhaço 

isolation; X – Guimarães isolation. XI – Caiapônia/Central plateaus isolation. See Fig. 1 for the 

biotic element names.  
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Figure 4 - Intersection trees derived from Three-area analysis showing the areal 

relationships among the Cerrado biotic elements (Figure 1). A- General-area cladogram 

(GAC) derived from complete taxon-area cladograms (TACs). B – GAC derived from 

TACs without events over the Pleistocene. C – GAC derived from TACs without events 

over the Miocene. The nodes are labelled from a to k. 
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Figure 5 – Main current geomorphological surfaces where biotic elements of Cerrado are located (adapted from 

Azevedo et al., in prep). Dashed line represent the major division depicted by three–area analysis in Western and 

Eastern Cerrado. Biotic elements: 1 – Parecis Plateau. 2 – Guimarães Plateau. 3 – Caiapônia Plateau. 4 – Veadeiros 

Plateau. 5 – Pantanal and Bodoquena regions. 6 – Central Plateau. 7 – Jalapão.  8 – Canastra Plateau. 9 – Tocantins–

Araguaia basin. 10 – Central Paraná basin Plateau. 11 – Serra Geral Plateau. 12 – Espinhaço mountain range. 13 – 

Serranía Huanchaca. 14 – Serra da Borda.  
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SUPPLEMENTARY INFORMATION  

 

TABLES 

 

Table 1 – Mitochondrial DNA sequences from GenBank used to date phylogenies.  

Taxon Voucher GenBank Sequences Locality 

Pseudopaludicola 

saltica 

ZUEC 14239 KJ147002.1 12S and 16S, tRNA-Val  Mato Grosso: Chapada dos 

Guimarães 

Pseudopaludicola 

saltica 

ZUEC 14240 KJ147003.1 12S and 16S, tRNA-Val  Mato Grosso: Chapada dos 

Guimarães 

Pseudopaludicola 

saltica 

ZUEC 14291 KJ146994.1 12S and 16S, tRNA-Val  Minas Gerais: Uberlândia 

Pseudopaludicola 

saltica 

ZUEC 14292 KJ146995.1 12S and 16S, tRNA-Val  Minas Gerais: Uberlândia 

Pseudopaludicola 

saltica 

ZUEC 19553 KJ147053.1 12S and 16S, tRNA-Val  Minas Gerais: Serra da 

Moeda 

Pseudopaludicola 

saltica 

ZUEC 19556 KJ147051.1 12S and 16S, tRNA-Val  Minas Gerais: Serra da 

Moeda 

Pseudopaludicola 

murundu 

CFBH-T1467 KJ147008.1 12S and 16S, tRNA-Val  São Paulo: Rio Claro 

Pseudopaludicola 

murundu 

ZUEC 14286 KJ147032.1 12S and 16S, tRNA-Val  São Paulo: Rio Claro 

Pseudopaludicola 

mineira 

ZUEC 14317 KJ147027.1 12S and 16S, tRNA-Val  Minas Gerais: Serra do Cipó 

Pseudopaludicola 

mineira 

ZUEC 14318 KJ147026.1 12S and 16S, tRNA-Val  Minas Gerais: Serra do Cipó 

Pseudopaludicola 

ameghini 

UFMT 8543 KJ146976.1 12S and 16S, tRNA-Val  Mato Grosso: Chapada dos 

Guimarães 

Pseudopaludicola 

ameghini 

ZUEC 14138 KJ146977.1 12S and 16S, tRNA-Val  Mato Grosso: Chapada dos 

Guimarães 

Pseudopaludicola 

ameghini 

ZUEC 14140 KJ146975.1 12S and 16S, tRNA-Val  Mato Grosso: Chapada dos 

Guimarães 

Pseudopaludicola 

ameghini 

ZUEC 13923 KJ147047.1 12S and 16S, tRNA-Val  Mato Gross: Vila Bela Sta. 

Trindade 

Pseudopaludicola 

ameghini 

ZUEC 13924 KJ147045.1 12S and 16S, tRNA-Val  Mato Gross: Vila Bela Sta. 

Trindade 

Pseudopaludicola 

ameghini 

ZUEC 13925 KJ147046.1 12S and 16S, tRNA-Val  Mato Gross: Vila Bela Sta. 

Trindade 
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Taxon Voucher GenBank Sequences Locality 

Pseudopaludicola 

ameghini 

ZUEC 14146 KJ147048.1 12S and 16S, tRNA-Val  Mato Gross: Vila Bela Sta. 

Trindade 

Pseudopaludicola 

ternetzi 

DZSJRP 

6445 

KJ147012.1 12S and 16S, tRNA-Val  São Paulo: Icém 

Pseudopaludicola 

ternetzi 

DZSJRP 

6446 

KJ147011.1 12S and 16S, tRNA-Val  São Paulo: Icém 

Pseudopaludicola 

ternetzi 

DZSJRP 

6456 

KJ147010.1 12S and 16S, tRNA-Val  São Paulo: Icém 

Pseudoudicola 

sp. 

ZUEC 13928 KJ146992.1 12S and 16S, tRNA-Val  M.Grosso: Poconé 

Pseudopaludicola 

sp. 

ZUEC 13930 KJ147040.1 12S and 16S, tRNA-Val  M.Grosso: Poconé 

Pseudopaludicola 

ternetzi 

DZSJRP 

8723 

KJ147029.1 12S and 16S, tRNA-Val  São Paulo: Icém 

Pseudopaludicola 

ternetzi 

UFMT 15753 KJ147054.1 12S and 16S, tRNA-Val  Goiás: Uruaçu 

Pseudopaludicola 

ternetzi 

UFMT 15754 KJ147055.1 12S and 16S, tRNA-Val  Goiás: Uruaçu 

Pseudopaludicola 

ternetzi 

UFMT 18061 KJ147056.1 12S and 16S, tRNA-Val  Goiás: Uruaçu 

Pseudopaludicola 

ternetzi 

ZUEC 14169 KJ146986.1 12S and 16S, tRNA-Val  Minas Gerais: Uberlândia 

Pseudopaludicola 

ternetzi 

ZUEC 14171 KJ146987.1 12S and 16S, tRNA-Val  Minas Gerais: Uberlândia 

Pseudopaludicola 

ternetzi 

ZUEC 14172 KJ147042.1 12S and 16S, tRNA-Val  Minas Gerais: Uberlândia 

Pseudopaludicola 

ternetzi 

SMRP 266.6 KJ147043.1 12S and 16S, tRNA-Val  Minas Gerais: Uberlândia 

Phyllomedusa 

megacephala 

CFBH 10225 GQ366269.1 12S and 16S  RNA; tRNA-

Val ; cytb 

Minas Gerais: Serra do Cipó 

Phyllomedusa 

megacephala 

MCNAM 

6339 

GQ365955.1 12S and 16S  RNA; tRNA-

Val ; cytb 

Minas Gerais: Serra do Cipó 

Phyllomedusa 

ayeaye 

CFBH 15672 GQ365932.1 12S and 16S  RNA; tRNA-

Val ; cytb 

São Paulo: PE das Furnas 

Phyllomedusa 

ayeaye 

CHUNB 

51421 

GQ366244.1 12S and 16S  RNA; tRNA-

Val ; cytb 

São Paulo:PN Serra da 

Canastra 

Phyllomedusa 

centralis 

CHUNB 

12571 

GQ366261.1 12S and 16S  RNA; tRNA-

Val ; cytb 

Mato Grosso: Chapada dos 

Guimarães 
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Taxon Voucher GenBank Sequences Locality 

Phyllomedusa 

centralis 

UFMT 6221 GQ365947.1 12S and 16S  RNA; tRNA-

Val ; cytb 

Mato Grosso: Chapada dos 

Guimarães 

Phyllomedusa 

oreades 

CHUNB 

56871 

GQ365963.1 12S and 16S  RNA; tRNA-

Val ; cytb 

Goiás: PE Serra de Caldas 

Phyllomedusa 

oreades 

CHUNB 

56869 

GQ366274.1 12S and 16S  RNA; tRNA-

Val ; cytb 

Goiás: PE Serra de Caldas 

Phyllomedusa 

azurea 

MLP DB 

2795 

GQ366250 12S and 16S  RNA; tRNA-

Val ; cytb 

Argentina: Chacabuco, 

Charata 
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Table 2 - Example of how PACT works. Note that the true positioning of E in relation 

to H needs more data or temporal information. 

Template diagram Input diagram 

(A(B(H(CD)))) (A(B(E(CD)))) 

First, we compare the elements of each cladogram, denoting Y for the common elements and 

N for the different. Then we use the PACT rules to combine both diagrams.  

A – Y; B – Y; H – N; C – Y, CD - Y A – Y; B – Y; E – N; C – Y; D – Y. 

CD – Y 

Using the rule ‘Y + Y = Y’, we can combine the A, B, C, D and CD of the two diagrams. 

Using the rule ‘Y + N = YN’, we can combine E + CD, and then, H + E(CD) resulting in: 

(A(B(H(E(CD)))) 
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Table 3 – Node ages and Epoch classification of each input phylogeny. 

Group Node date (mi years) Epoch Souce 

Ameiva parecis 5 ±8,5 (±2,0) late Miocene Giugliano et al., in press 

Ameiva parecis 4 ±1,9 (±1,0) early Pleistocene Giugliano et al., in press 

Bothops neuwiedi 23 4,64 (±1,0) early Pliocene Machado et al., 2013 

Bothops neuwiedi 22 4,26 (±1,0) early Pliocene Machado et al., 2013 

Bothops neuwiedi 21 2,35 (±1,0) late Pliocene Machado et al., 2013 

Bothops neuwiedi 20 3,25 (±1,0) late Pliocene Machado et al., 2013 

Bothops neuwiedi 19 1,56 (±1,0) early Pleistocene Machado et al., 2013 

Bothops neuwiedi 18 1,63 (±1,0) early Pleistocene Machado et al., 2013 

Hypsiboas albopunctatus 28 5,88 (±1,6) late Miocene Prado et al., 2012 

Hypsiboas albopunctatus 27 0,84 (±0,2) early Pleistocene Prado et al., 2012 

Hypsiboas albopunctatus 26 0,69 (±0,2) mid Pleistocene Prado et al., 2012 

Kentropyx 35 ±17,0 (±6,0) early Miocene Werneck et al., 2009 

Kentropyx 34 ±12,5 (± 5,0) mid Miocene Werneck et al., 2009 

Kentropyx 33 ±4,0 (±3,5) early Pliocene Werneck et al., 2009 

Micrablepharus atticolus 42 2,9 (±0,6) late Pliocene Santos et al., 2013 

Micrablepharus atticolus 41 1,8 (±0,5) early Pleistocene Santos et al., 2013 

Micrablepharus atticolus 40 1,4 (±0,3) early Pleistocene Santos et al., 2013 

Phyllomedusa 49 5,98 (±4,2) late Miocene This study 

Phyllomedusa 48 1,29 (±1,0) early Pleistocene This study 

Phyllomedusa 47 0,4 (±0,3) mid Pleistocene This study 

Phyllopezus policaris 59 ±11,6  (±4,5) late Miocene Werneck et al., 2009 

Phyllopezus policaris 58 ±11,5 (±4,5) late Miocene Werneck et al., 2009 

Phyllopezus policaris 56 ±11,4 (±4,5) late Miocene Werneck et al., 2009 

Phyllopezus policaris 57 ±10,5 (±4,5) late Miocene Werneck et al., 2009 

Pseudopaludicola. gr.saltica 68 12,7 (±11,0) late/mid Miocene This study 

Pseudopaludicola. gr.saltica 67 7,65 (±7,0) late Miocene This study 

Pseudopaludicola. gr.saltica 66 4,0 (±3,7) early Pliocene This study 

Pseudopaludicola. gr.saltica 62 1,55 (±2,0) early Pleistocene This study 

Pseudopaludicola. gr.saltica 65 1,24 (±1,6) early Pleistocene This study 

Pseudopaludicola. gr.ternetzi 73 2,28 (±1,7) early Pleistocene This study 

Pseudopaludicola. gr.ternetzi 72 0,89 (±0,6) mid Pleistocene This study 

Rhinella gr. marina 78 ±9,0 (±3,7) late Miocene Maciel et al., 2010 

Rhinella gr. marina 77 ±3,5 (±0,5) late/early Pliocene Maciel et al., 2010 
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FIGURES 
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Figure 1 – Phylogenies and taxon-area-cladograms (TACs), with the respective code 

numbers for terminals and nodes. Roman numerals represents each Epoch: I – Late 

Pleistocene; II – Mid Pleistocene; III – Early Pleistocene; IV – Late Pliocene; V – Early 

Pliocene; VI – Late Miocene; VII Mid Miocene. For Bothrops neuwiedi group and 

Pseudopaludicola, we used only the localities of specimens used in the respective 

systematic studies. 
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Figure 2 – Step-by-step generation of GAC using PACT algorithm. Biotic elements: A 

–Parecis Plateau, B – Guimarães Plateau, C – Paraná Plateau, D – Jalapão, E – Central 

Plateau, F – Espinhaço, G – Pantanal/Bodoquena, H – BE Tocantins–Araguaia basin, I 

–Serra Geral Plateau, J – Caiapônia Plateau, K – Veadeiros Plateau, L – Canastra, M – 

Huanchaca/Borda Plateau region. 
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Figure 3 – Expanded General-area cladogram derived from PACT to show the number coding 

derived from each TAC and the inferred ancestral areas over the nodes inferred by Fitch 

parsimony algorithm. Major nodes from a to u. Roman numerals represents each Epoch: I – 

Late Pleistocene; II – Mid Pleistocene; III – Early Pleistocene; IV – Late Pliocene; V – Early 

Pliocene; VI – Late Miocene; VII Mid Miocene. Red line represented polytomy expanded to 

depict the number coding of each lineage. 
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