
 
 

 

UNIVERSIDADE DE BRASÍLIA 

INSTITUTO DE CIÊNCIAS BIOLÓGICAS 

DEPARTAMENTO DE BIOLOGIA CELULAR 

PÓS-GRADUAÇÃO EM BIOLOGIA MOLECULAR 

 

 

 

 

 

 

 

 

 

 

Genômica, evolução e caracterização funcional de 

genes de baculovírus 

 

 

 

DANIEL M. P. ARDISSON-ARAÚJO 

 

 

 

Orientador: Dr. Bergmann Morais Ribeiro 

Co-orientador: Dr. Fernando Lucas Melo 

Orientador estrangeiro: Dr. Rollie J. Clem 

 

 

 

 

Brasília, 2015. 

  



ii 
 

 

UNIVERSIDADE DE BRASÍLIA 

INSTITUTO DE CIÊNCIAS BIOLÓGICAS 

DEPARTAMENTO DE BIOLOGIA CELULAR 

PÓS-GRADUAÇÃO EM BIOLOGIA MOLECULAR 

 

 

 

 

 

 

 

Genômica, evolução e caracterização funcional de 

genes de baculovírus 

 

 

 

DANIEL M. P. ARDISSON-ARAÚJO 

 

 

Orientador: Dr. Bergmann Morais Ribeiro 

Co-orientador: Dr. Fernando Lucas Melo 

Orientador estrangeiro: Dr. Rollie J. Clem 

 

 

Tese apresentada ao Programa de Pós-Graduação em 

Ciências Biológicas – Biologia Molecular, do 

Departamento de Biologia Celular, do Instituto de 

Ciências Biológicas da Universidade de Brasília como 

parte dos requisitos para obtenção do título de Doutor 

em Biologia Molecular. 

 

 

Brasília, 2015. 



iii 
 

DANIEL M. P. ARDISSON-ARAÚJO 

 

 

Genômica, evolução e caracterização funcional de genes de 

baculovírus 

 

Tese apresentada ao Programa de Pós-Graduação em 

Ciências Biológicas – Biologia Molecular, do 

Departamento de Biologia Celular, do Instituto de 

Ciências Biológicas da Universidade de Brasília como 

parte dos requisitos para obtenção do título de Doutor 

em Biologia Molecular. 

 

 

Banca Examinadora: 

 

 

_______________________________________ 

Prof. Dr. Bergmann Morais Ribeiro (Orientador) (CEL – UnB) 

 

_______________________________________ 

Profa. Dra. Ildinete Silva-Pereira (CEL – UnB) 

 

_______________________________________ 

Profa. Erna Geessien Kroon (ICB/UFMG) 

 

_______________________________________ 

Prof. Dr. Jônatas Santos Abrahão (ICB/UFMG) 

 

_______________________________________ 

Prof. Dr. Ricardo Henrique Kruger (CEL/UnB) 

 



iv 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

“Até onde posso, vou deixando o melhor de mim... 

Se alguém não viu, foi porque não me sentiu com o coração.” 

Clarice Lispector 

 

The greatest enemy of knowledge is not ignorance, 

it is the illusion of knowledge”. 

Stephen Hawking 

 

“Nothing in biology makes sense except in the light of evolution”. 

‘Nothing in life makes sense except in the light of changing’ (paráfrase). 

Theodosius Dobzhansky 

 

“E conhecereis a verdade e a verdade vos libertará”. 

João 8:32 

 

"Y las verdades se suceden en distintas épocas.  

No existe solamente una verdad." 

Mercedes Sosa 



v 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A minha família 

Ao prof. Bergmann M. Ribeiro 



vi 
 

Agradecimento 

 

Agradeço a todos que de alguma forma colaboraram para a elaboração desta tese, direta 

ou indiretamente. Agradeço à minha família: Moza, mãe e mãezona. Agradeço aos 

meus amigos de perto e de longe, cujo tropismo no coração é bem desenhado, alguns 

superficiais e agudos, outros profundos e crônicos. Agradeço aos professores que de 

alguma forma abriram caminho para esta história de amor profundo pelo conhecimento 

e pela busca de uma verdade, ainda que transiente. Agradeço em especial ao meu 

orientador de tantos anos, prof. Bergmann Morais Ribeiro. Agradeço ao meu co-

orientador, Fernando Lucas de Melo. Agradeço ao meu orientador estrangeiro, prof. 

Rollie J. Clem por me receber durante meu período sanduíche. Agradeço aos 

componentes da banca de ambos qualificação e de defesa de tese. Agradeço ao Brasil, 

ao CNPq, à CAPES, à FAP/DF, à Universidade de Brasília e a Kansas State University.  



vii 
 

Índice 

 

Agradecimento ................................................................................................................. vi 

Índice ................................................................................................................................ vii 

Resumo ............................................................................................................................. xiii 

Abstract ............................................................................................................................ xiv 

Capítulo 1. Introdução ...................................................................................................... 1 

1. Baculovírus ................................................................................................................. 1 

2. Objetivos gerais .......................................................................................................... 6 

3. Objetivos específicos .................................................................................................. 7 

4. Referências ................................................................................................................. 9 

Capítulo 2. Complete genome sequence of the first non-Asian isolate of Bombyx mori 

nucleopolyhedrovirus ....................................................................................................... 
10 

1. Abstract ...................................................................................................................... 10 

2. Introduction ................................................................................................................ 11 

3. Material and Methods ................................................................................................. 13 

3.1.Insect infection .......................................................................................................... 13 

3.2.Virus purification, Bm-5 cell infection, and DNA extraction …………………… 13 

3.3.Ultrastructural analyses ............................................................................................. 14 

3.4.Genome sequencing, annotation and analysis ........................................................... 14 

4. Results ....................................................................................................................... 15 

4.1.Ultrastructural analyses and B. mori-derived cell infection ……………………... 15 

4.2.Genome features, phylogenetic analysis, and gene comparison ………………… 18 

4.3.The gain and loss of bro genes .................................................................................. 22 

4.4.Intra-isolate diversity in BmNPV-Brazilian ……………………………………... 24 

5.  Discussion ................................................................................................................. 24 

6.  Conclusion ................................................................................................................. 27 

7.  Acknowledgements ................................................................................................... 28 

8.  Reference ................................................................................................................... 28 

9. Supplementary materials ............................................................................................ 31 



viii 
 

Capítulo 3. Genome sequence of Erinnyis ello granulovirus (ErelGV), a natural 

cassava hornworm pesticide and the first sequenced sphingid-infecting 

betabaculovirus …………………………………………………………………………. 

38 

1. Abstract ...................................................................................................................... 38 

2. Background ................................................................................................................ 39 

3. Results and discussion ................................................................................................ 41 

3.1.Virus characterization and genome features ............................................................. 41 

3.2.Phylogenetic analysis ................................................................................................ 43 

3.3.Betabaculovirus gene comparison ............................................................................. 47 

3.4.Lack of cathepsin and chitinase genes ...................................................................... 48 

3.5.dUTPase-like gene .................................................................................................... 49 

3.6.The he65-like and p43-likehomologues …………………………………………… 50 

3.7.Acquisitions of Densovirus-related genes in Betabaculovirus …………………….. 53 

4. Conclusion .................................................................................................................. 55 

5. Material and Methods ................................................................................................. 55 

5.1.Virus purification ...................................................................................................... 55 

5.2.Electron microscopy .................................................................................................. 56 

5.3.Genomic DNA restriction analyses ........................................................................... 57 

5.4.Genome sequencing, assembly, and annotation …………………………………… 57 

5.5.Phylogeny, genome, and gene comparisons ……………………………………….. 57 

6. Author’s contributions ................................................................................................ 58 

7. Acknowledgements .................................................................................................... 58 

8. References .................................................................................................................. 59 

9. Supplementary Material ............................................................................................. 62 

Capítulo 4. Characterization of Helicoverpa zea single nucleopolyhedrovirus isolated 

in Brazil during the first old world bollworm (Noctuidae: Helicoverpa armigera) 

nationwide outbreak ......................................................................................................... 

70 

1. Abstract ...................................................................................................................... 70 

2. Main text ..................................................................................................................... 71 

3. Acknowledgements .................................................................................................... 78 

4. References .................................................................................................................. 78 



ix 
 

Capítulo 5. Functional characterization of hesp018, a baculovirus-encoded serpin gene 80 

1. Summary .................................................................................................................... 80 

2. Introduction ................................................................................................................ 81 

3. Results ........................................................................................................................ 83 

3.1. Phylogenetic analysis of the hesp018 gene ............................................................... 83 

3.2. Inhibitory activity of the baculovirus serpin ............................................................. 85 

3.3. Serpin expression accelerates AcMPNV BV production .......................................... 88 

3.4. Viral and cellular enzyme activities influenced by Hesp018 expression ………… 90 

3.5. Hesp018 expression increases AcMNPV virulence in T. ni ………………………. 94 

4. Discussion .................................................................................................................. 95 

5. Methods ..................................................................................................................... 99 

5.1. Cells, virus, and insects ……………………………………………………………. 99 

5.2. Gene amplification and construction of shuttle vectors and recombinant viruses … 100 

5.3. Phylogenetic analysis ................................................................................................ 101 

5.4. Serpin expression and purification ………………………………………………… 101 

5.5. Hemolymph samples and proPO activity inhibition ………………………………. 102 

5.6. M. sexta injection ...................................................................................................... 102 

5.7. Amidase activity ........................................................................................................ 103 

5.8. Secretion analysis ...................................................................................................... 103 

5.9. Viral growth curves ................................................................................................... 104 

5.10. Cathepsin and chitinase activity ........................................................................... 104 

5.11. Caspase activity ………………………………………………………………… 105 

5.12. Bioassays in T. ni and S. frugiperda neonates ………………………………….. 105 

6. Acknowledgements .................................................................................................... 106 

7. References .................................................................................................................. 106 

Capítulo 6. A betabaculovirus encoding a gp64 homolog ............................................... 110 

1. Abstract ...................................................................................................................... 110 

2. Background ................................................................................................................ 111 

3. Results and Discussion ............................................................................................... 112 



x 
 

3.1.Viral infection confirmation ...................................................................................... 112 

3.2.DisaGV genome and phylogeny ................................................................................ 113 

3.3.DisaGV unique genes ................................................................................................ 118 

3.4.G protein-coupled receptor (GPCR) .......................................................................... 119 

3.5.GP64 .......................................................................................................................... 122 

4. Methods ...................................................................................................................... 125 

4.1.Viral origin, confirmation, and electron microscopy ……………………………… 125 

4.2.Sequencing system, assembly, and analysis of the DisaGV complete genome …… 126 

4.3.Phylogenetic analyses and genome comparison …………………………………... 126 

5. Conclusion .................................................................................................................. 127 

6. References .................................................................................................................. 127 

7. Supplementary material .............................................................................................. 129 

Capítulo 7. A betabaculovirus-enconded gp64 homolog is a functional envelope fusion 

protein ............................................................................................................................... 
138 

1. Summary .................................................................................................................... 138 

2. Main text ..................................................................................................................... 138 

3. References .................................................................................................................. 145 

Capítulo 8. Genome sequence of Perigonia lusca single nucleopolyhedrovirus 

(PeluSNPV): insights on the evolution of a nucleotide metabolism enzyme in the 

family Baculoviridae ........................................................................................................ 

147 

1. Abstract ...................................................................................................................... 147 

2. Introduction ................................................................................................................ 148 

3. Results ........................................................................................................................ 151 

3.1.Structural analysis, genome features, and phylogeny of PeluSNPV ………………. 151 

3.2.Gene contente ............................................................................................................ 155 

3.3.Genes related to nucleotide metabolism …………………………………………… 157 

3.4.Phylogenetic analysis of pelu112 gene ……………………………………………. 159 

3.5.Two tmk-dut genes were expressed and localized distinctly in infected cells …….. 163 

3.6.tmk-dut expression accelerated AcMNPV progeny production …………………… 165 

3.7.AcMNPV replication and IE1 and GP64 expression were accelerated by the tmk-

dut genes ..................................................................................................................... 
167 



xi 
 

3.8.Homology modeling .................................................................................................. 168 

4. Discussion .................................................................................................................. 170 

5. Material and Methods ................................................................................................. 176 

5.1.Virus purification ...................................................................................................... 176 

5.2.Scanning electron microscopy (SEM) and genomic DNA restriction analyses …… 176 

5.3.Genome sequencing, assembly, and annotation …………………………………… 177 

5.4.Phylogenetic analyses ................................................................................................ 177 

5.5.Viruses and insect cell line ........................................................................................ 178 

5.6.Gene amplification, shuttle vectors, and recombinant AcMNPV virus construction 178 

5.7.Virus growth curves and polyhedra production …………………………………… 180 

5.8.Immunoblotting ......................................................................................................... 181 

5.9.Quantitative real-time PCR (Q-PCR) ........................................................................ 181 

5.10.  Homology modeling ............................................................................................ 182 

6. References .................................................................................................................. 183 

7. Supplementary Material ............................................................................................. 186 

Capítulo 9. Discussão geral ............................................................................................ 199 

Anexo ............................................................................................................................... 206 

 

  



xii 
 

Resumo 

 

Baculovirus são vírus de DNA dupla-fita circular capazes de infectar oralmente o 

estágio larval de insetos. Atualmente, são usados para o controle biológico de insetos 

praga e como vetores de expressão de proteínas heterólogas. Pouco é sabido das bases 

moleculares da interação do vírus com o hospedeiro e de sua evolução. Os fatores 

limitantes estão associados ao número de genomas sequenciados bem como a restrição 

do cultivo in vitro de várias espécies virais. De fato, a base para o início de quaisquer 

estudos moleculares mais detalhados de novas espécies de baculovírus ou de isolados 

certamente se inicia com o sequenciamento do genoma completo e com o estudo de 

genes encontrados. Dessa forma, neste trabalho, vários genomas de baculovírus isolados 

no Brasil foram sequenciados e descritos. Sequenciamos e descrevemos baculovírus 

isolados do mandarová-da-mandicoca, da broca da cana-de-açúcar, do bicho da seda, da 

lagarta polífaga Helicoverpa armigera, do mandarová-do-mate entre outros. 

Concomitante à descrição do genoma, caracterizamos estruturalmente algumas espécies, 

avaliamos a taxa de mortalidade em situações controladas de infecção, bem como 

caracterizamos alguns genes que permitiram um entendimento evolutivo mais amplo 

das espécies descritas e de sua interação com o hospedeiro. Descrevemos o primeiro 

inibidor de serino protease de baculovírus capaz de bloquear a imunidade inata do 

inseto hospedeiro e causar proteção ao patógeno. Encontramos o primeiro 

betabaculovírus com uma proteína de fusão de envelope de alphabaculovírus, a gp64 e 

caracterizamos sua funcionalidade. Além disso, mostramos pela primeira vez o papel de 

genes envolvidos no metabolismo de nucleotídeo e sua capacidade de alterar o 

desempenho viral. Em conclusão, baculovírus apresentam plasticidade genômica com 

aquisições proeminentes de genes de vários organismos como outros vírus de insetos, 

bactérias e plantas. Além disso, perdas de genes ancestrais e duplicação são eventos 

recorrentes. Tanto a genômica quanto o estudo molecular básico de baculovírus tem 

contribuído para a compreensão de doenças associadas a humanos como câncer e 

doenças virais cujo agente etiológico apresenta genoma com DNA dupla-fita ou que 

infectam primariamente o intestino médio de insetos, como herpesvírus e arboviroses, 

respectivamente. 

 

Palavras-chave: baculovírus, betabaculovírus, alphabaculovírus, genômica, evolução, 

transferência horizontal de genes. 
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Abstract 

 

Baculoviruses are circular double-stranded DNA viruses that are orally infectious to 

larval stages of insects. Nowadays, they are used as biological control agents of 

agricultural and forest pests and as vector for heterologous protein expression. The 

understanding of both the molecular basis and the evolution of the virus/host interaction 

is scarce due to the few numbers of sequenced genomes and the restriction in cultivating 

several virus species in vitro. In fact, the beginning of any molecular study of new 

baculovirus species or isolates certainly pervades the whole genome sequencing. 

Therefore, in this work, several genomes of baculoviruses isolated in Brazil were 

sequenced and described. We sequenced and described baculoviruses isolated from 

subject cadavers of the cassava hornworm (Erinnyis ello), the sugar cane borer 

(Diatraea saccharalis), the silkworm (Bombyx mori), the bollworm (Helicoverpa 

armigera), and the mate hornworm (Perigonia lusca). Together with the genome 

description, we characterized structurally some species, evaluated the mortality in 

controlled infections, and characterized as well some genes to better understand the 

novel species and their interaction with the host. We described the first baculoviral 

serine protease inhibitor capable of blocking the insect immunity response and causing 

pathogen protection. We found the first betabaculovirus harboring an alphabaculovirus 

envelope fusion protein, a gp64 and we characterized its functionality. Furthermore, we 

have shown for the first time a role of genes related to nucleotide metabolism and it 

ability of altering the virus fitness. In conclusion, baculoviruses present genomic 

plasticity with great and recurrent acquisition of genes from several organisms including 

other insect viruses, bacteria, and plant. Moreover, ancestral gene losses and duplication 

are common events in baculovirus evolution. Both genomics and molecular biology of 

baculovirus have contributed to the comprehension of human-associated diseases such 

as cancer and viral whereas the etiologic agent presents dsDNA genome or infects 

primarily the insect midgut like herpexviruses and arboviruses, respectively. 

 

Keywords: baculovirus, betabaculovirus, alphabaculovíius, genomics, evolution, 

horizontal gene transfer. 



 
 

Capítulo 1. Introdução 

 

1. Baculovírus 

 

Baculovirus são vírus de DNA dupla-fita circular capazes de infectar oralmente o 

estágio larval de insetos das ordens Diptera (mosquitos da família Culicidae), 

Hymenoptera (larvas de vespa da família Diprionidae, que se comportam como lagartas) 

e Lepidoptera (mariposas e borboletas) (Rohrmann, 2013). No cenário mundial atual, 

baculovírus são poderosas ferramentas para o controle biológico de populações de 

insetos praga e vetores de expressão de proteínas heterólogas, além de apresentarem uso 

potencial como entregadores para terapia gênica (Summers, 2006; Ribeiro et al., 2015). 

 

O nome baculovírus, deriva do latim baculo que significa bastão, devido ao formato do 

nucleocapsideo viral (Rohrmann, 2013). Durante um ciclo infectivo completo, os vírus 

produzem dois fenótipos: (i) o vírion derivado de oclusão (ODV, do inglês ‘occlusion-

derived virion’) que é responsável pela infecção oral e está ocluído num corpo cristalino 

proteico chamado de corpo de oclusão (OB, do inglês, ‘occlusion body’) e (ii) o vírion 

brotado (BV, do inglês, ‘budded virion’) responsável pelo espalhamento da infecção ao 

longo do corpo do inseto hospedeiro (Clem & Passarelli, 2013). 

 

A rota de infecção do hospedeiro se inicia com a larva ingerindo alimentos (e.g. folha, 

ramos, frutos, caules, ou água no caso de larvas de mosquitos filtradores) contaminados 

por OBs. Os OBs atingem o intestino médio da larva e se dissolvem quando em contato 

com o pH alcalino do suco gástrico. Além dos vírions, a solubilização dos OBs libera 

enzimas que digerem a membrana peritrófica do lúmen intestinal, e permitem a 
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passagem das partículas infectivas em direção às células absortivas. ODVs infectam 

células colunares do intestino médio por fusão direta às microvilosidades e liberam 

nucleocapsídeo no citoplasma. O nucleocapsídeo é então direcionado por filamentos de 

actina para o núcleo, onde se desmonta e expõe o genoma viral para a maquinaria 

celular (Slack & Arif, 2007). 

 

Inicialmente, durante a fase prococe da infecção, baculovírus manipulam a célula 

hospedeira causando o desligamento da expressão de proteínas da célula (Ooi & Miller, 

1988). Toda a maquinaria celular fica a mercê do vírus, e trabalha a fim de produzir 

progênie viral durante a fase tardia da infecção. Depois de replicado, o genoma viral é 

montado em nucleocapsídeos e direcionado para a membrana da célula, de onde brotam 

como BVs. Os BVs espalham a infecção ao longo do corpo do inseto hospedeiro e 

estabelecem, dessa forma, a infecção secundária sistêmica. Depois da fase de produção 

de vírus brotados, a célula infectada ativa uma cascata de genes muito tardios virais 

responsáveis pela produção de ambos ODVs e OBs, encerrando assim o ciclo de 

infecção (Rohrmann, 2013). 

 

A família Baculoviridae está agrupada em quatro gêneros, com base no alinhamento de 

37 genes compartilhados (Jehle et al., 2006). Este agrupamento converge com o 

espectro de hospedeiro e com características morfológicas dos OBs. Representantes do 

gênero Alphabaculovirus infectam insetos da ordem Lepidoptera e apresentam OBs 

poliédricos com tamanho de 800-2.000 nm. Estes podem ser agrupoados ainda em 

grupo I ou grupo II. A primeira sugestão de agrupamento ocorreu com base em análise 

filogenética da proteína formadora do corpo de oclusão, a poliedrina (Zonotto et al., 

1993). Posteriormente, foi observado que o tipo de proteína de fusão ao receptor celular 
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do fenótipo BV também era diferente de acordo com o grupo. Representantes do gênero 

Betabaculovirus infectam insetos também da ordem Lepidoptera, porém apresentam 

OBs com a forma de grânulos semelhantes a grãos de arroz com dimensões de 500 nm 

de altura e 200 nm de largura. Os gêneros Gammabaculovirus e Deltabaculovirus são 

infectivos a Hymenoptera e Diptera, respectivamente e ambos apresentam OBs 

poliédricos. Importante, baculovírus com OBs poliédricos são denominados de 

nucleopolyhedrovirus (NPVs) enquanto que aqueles com OBs granulares são chamados 

de granulovirus (GVs) e ambos os termos, antigamente reconhecidos como gêneros 

parafiléticos, são ainda usados na nomenclatura das espécies virais. 

 

Quanto à anatomia dos vírions, ODVs e BVs apresentam nucleocapsídeos 

estruturalmente semelhantes entre si. Dessa forma, a principal diferença estrutural, 

composicional e funcional dos virions é gerada pelo envelope e por proteínas associadas 

(Braconi et al., 2014). O envelope de BV apresenta uma região peplomérica responsável 

pela ligação ao receptor da célula hospedeira; cuja principal proteína de fusão de 

envelope (EFP, do inglês ‘envelope fusion protein’) é a proteína F em alphabaculovírus 

grupo II, betabaculovírus e deltabaculovírus ou sua análoga funcional adquirida 

posteriomente em alphabaculovirus grupo I, a proteína GP64 (Herniou & Jehle, 2007; 

Jehle et al., 2006). As EFPs promovem endocitose adsortiva com receptores 

desconhecidos na superfície da célula hospedeira e, conforme maturação acídica do 

endossomo, sofrem modificação estrutural que permite fusão do envelope com a 

membrana do endossomo e liberação do nucleocapsídeo no citoplasma da célula (Wang 

et al., 2014). Por outro lado, gammabaculovirus (baculovírus infectivos para 

hymenopteros) não codificam proteínas de envelope análogas à proteína F ou à GP64 

em seu genoma, e dessa forma parecem não formar BVs durante o ciclo infectivo 
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completo (Rohrmann, 2013). Quanto aos ODVs, um complexo de proteínas de 

membrana denominadas fatores de infecção per os (PIF, do inglês ‘per os infective 

factor’) são responsáveis pela fusão direta do envelope com a membrana das 

microvilosidades das células do epitélio do intestino do inseto hospedeiro (Slack & Arif, 

2007). Esta fusão culmina na liberação de nucleocapsídeos no citoplasma celular. 

Importante, ODVs de Alphabaculovirus podem confinar um ou múltiplos 

nucleocapsídeos e são, por isso, respectivamente denominados SNPV (do inglês, ‘single 

NPV’) ou MNPV (do inglês, ‘multiple NPV) (Rohrmann, 2014). O ganho evolutivo e 

os fatores moleculares que geram tais fenótipos não são claros; entretanto, já se é sabido 

que em MNPVs, após fusão do ODV com a microvilosidade, um nucleocapsídeo pode 

estabelecer a infecção na célula colunar e os outros podem sofrer transcitose e 

atravessar a célula para iniciar a infecção secundária (Rohrmann, 2014). 

 

A construção da história evolutiva da família Baculoviridae permeia o estudo 

sistemático do vírus quanto à sua caracterização estrutural, patologia do inseto e da 

célula hospedeira bem como genômica e proteômica do vírus. De fato, a base para o 

início de quaisquer estudos moleculares mais detalhados de novas espécies virais ou de 

isolados certamente se inicia com sequenciamento do genoma completo. Assim, com o 

avanço das técnicas de sequenciamento de alto desempenho, novos genomas de 

baculovírus surgem de forma crescente permitindo um entendimento mais profícuo da 

história evolutiva da família viral. Além disso, é importante salientar que os dados 

gerados com sequenciamento influenciam diretamente no uso de baculovírus como 

agentes de controle biológicos bem como em seu melhoramento como vetor de 

expressão heteróloga. Por exemplo, análise da estabilidade genética de isolados 

temporais ou mutações associadas à perda ou ganho de virulência são informações 
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obtidas com a genômica de baculovírus que contribuem para o uso do vírus como 

controlador biológico. Além disso, a descoberta e caracterização de genes relacionados 

a desempenho viral pode aperfeiçoar a produção de proteínas heterólogas. Atualmente, 

existem mais de 100 genomas de baculovirus sequenciados e disponíveis no Genbank. 

Entretanto, apenas pouco mais de 60 são de espécies inéditas. Até o início deste trabalho 

(03/2012) existiam somente dois genomas de baculovírus isolados no Brasil 

sequenciados e publicados: o baculovirus da espécie Anticarsia gemmatalis multiple 

nucleopolyhedrovirus (AgMNPV) (Oliveira et al., 2006) e o isolado brasileiro 19 da 

espécie Spodoptera frugiperda multiple nucleopolyhedrovirus (SfMNPV) (Wolff et al., 

2008). 
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2. Objetivos gerais 

 

A fim de contribuir com o conhecimento mais amplo da diversidade viral de 

microrganismos isolados no Brasil, este trabalho teve por objetivo sequenciar e 

caracterizar novas espécies ou isolados de baculovírus brasileiros em níveis patológico, 

molecular, filogenético e estrutural. 
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3. Objetivos específicos 

 

 Sequenciar e descrever o genoma do primeiro isolado não-asiático da espécie 

Bombyx mori nucleopolyhedrovirus (BmNPV), caracterizar estruturalmente o vírus, 

analisar a história evolutiva de genes bro (local de maior divergência entre os 

isolados) e a diversidade genética da população viral isolada (Capítulo 2). 

 

 Sequenciar e descrever o genoma do betabaculovírus da espécie Erinnyis ello 

granulovirus (ErelGV), caracterizar estruturalmente e analisar a filogenia do vírus e 

de alguns genes adquiridos por transferência horizontal ou duplicação (Capítulo 3). 

 

 Identificar um baculovírus isolado de Helicoverpa armigera durante o primeiro 

surto nacional da praga, sequenciar e descrever o genoma completo, caracterizar 

estruturalmente e identificar a diversidade nucleotídica da população sequenciada 

(Capítulo 4). Além disso, comparar a patogenia do vírus a uma cepa comercial. 

 

 Caracterizar funcional e filogeneticamente um inibidor de serino protease (do 

inglês, serpin, ‘serine protease inhibitor’) identificado no baculovírus da espécie 

Hemileuca species nucleopolyhedrovirus (HespNPV) (Capítulo 5 – projeto principal 

do Doutorado Sanduíche). 

 

 Sequenciar e descrever o genoma do betabaculovírus da espécie Diatraea 

saccharalis granulovirus (DisaGV), caracterizar estruturalmente e analisar a 

filogenia do vírus e de alguns genes adquiridos por transferência horizontal como 

uma proteína GPCR vinda de inseto e um proteína de fusão de envelope nunca 
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observada em betabaculovírus (Capítulo 6). Além disso, caracterizar funcionalmente 

a proteína de fusão de envelope, gp64, encontrada no genoma de DisaGV (Capítulo 

7). 

 

 Sequenciar e descrever o genoma do baculovírus Perigonia lusca single 

nucleopolyhedrovirus (PeluSNPV), caracterizar estruturalmente o vírus, estabelecer 

filogenia e analisar a história evolutiva de um gene especial de metabolismo de 

nucleotídeo encontrado. Além disso, entender o papel deste gene na infecção viral e 

analisar sua funcionalidade (Capítulo 8). 
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Capítulo 2. Complete genome sequence of the first non-Asian isolate of Bombyx 

mori nucleopolyhedrovirus 

 

1. Abstract 

 

Brazil is one of the largest silk producers in the world. The domesticated silkworm 

(Bombyx mori) was formally introduced into the country in the twentieth century and 

the state of Paraná is the main national producer. During larval stages, B. mori can be 

afflicted by many different infectious diseases, which lead to substantial losses in silk 

production. In this work, we describe the structure and complete genome sequence of 

the first non-Asian isolate of Bombyx mori nucleopolyhedrovirus (BmNPV), the most 

important silkworm pathogen. The BmNPV-Brazilian isolate is a nucleopolyhedrovirus 

with singly enveloped nucleocapsids within polyhedral occlusion bodies. Its genome 

has 126,861 bp with a G+C content of 40.4%. Phylogenetic analysis clustered the virus 

with the Japanese strain (BmNPV-T3). As expected, we have detected intra-population 

variability in the virus sample. Variation along homologous regions (HRs) and bro 

genes was observed; there were seven HRs, deletion of bro-e, and division of bro-a into 

two ORFs. The study of baculoviruses allows for a better understanding of virus 

evolution providing insight for biological control of insect pests or protection against 

the pernicious disease caused by these viruses. 

 

Key-words: Bombyx mori; complete genome; baculovirus; BmNPV isolate; intra-

isolate diversity. 
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Este capítulo foi publicado na revista Virus Genes. Ardisson-Araujo, D. M., Melo, F. 

L., de Souza Andrade, M., Brancalhao, R. M., Bao, S. N. & Ribeiro, B. M. (2014). 

Complete genome sequence of the first non-Asian isolate of Bombyx mori 

nucleopolyhedrovirus. Virus Genes 49, 477-484. 

 

2. Introduction 

 

The Baculoviridae is a diverse family of insect viruses with circular double-stranded 

genomic DNA (Rohrmann, 2013). They are divided phylogenetically into four genera: 

Alpha, Beta, Gamma and Deltabaculovirus (Jehle et al., 2006). Both Alpha and 

Betabaculovirus produce occlusion-derived virions (ODVs) and budded virions (BVs) 

during a complete infection cycle (Slack & Arif, 2007). ODVs are orally infectious and 

are protected within a crystalline protein matrix called occlusion body (OB). After 

ingestion of contaminated food by the larvae, the OB dissolution releases ODVs that 

infect primarily the insect midgut epithelia (Xu et al., 2010). BVs are produced early in 

the replicative cycle (Wang et al., 2010) and disseminate from the midgut to the entire 

insect body (Washburn et al., 2002). In the end of infection, the larvae die and release 

OBs to the environment. The environmental stability of ODVs in OBs, the host 

specificity, and the lethality of infection make baculoviruses important pathogens for 

both beneficial and pest insects (Summers, 2006; Vasyl'ieva & Lebedynets, 2001). 

 

Almost five hundred alphabaculovirus have been described (Jehle et al., 2006) and the 

genomes of more than sixty have been fully sequenced (Rohrmann, 2013). Among these 

genomic data, there are ten Asian isolates found to infect the genus Bombyx L. 1758 

(Lepidoptera: Bombycidae). Two were isolated from B. mandarina (BomaNPV-S1 and 
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-S2) (Cheng et al., 2012; Xu et al., 2010) the silkworm found in nature, and eight were 

isolated from the domesticated silk thread producer, B. mori (BmNPV-T3, -Cubic, -

Indian, -Zhejiang, -Guangxi, -C1, -C2, and -C6) (Cheng et al., 2012; Fan et al., 2012; 

Gomi et al., 1999; Xu et al., 2013). 

 

B. mori is able to weave a big cocoon for protection during metamorphosis (Pandiarajan 

et al., 2011). This structure is composed of a single thread and can be used for fabric 

manufacture (Blossman-Myer & Burggren, 2009). Human intervention directed the 

insect evolution by inbreeding and artificial selection in order to increase silk 

production (Doreswamy & Gopal, 2013). As a result, the imago became unable to fly, 

mate, or even feed by itself. In other words, the domesticated silkworm is completely 

dependent on humans for survival and has therefore become part of human culture 

(Ball, 2009). The history of silk is not restricted to the Asia. Brazil in South America is 

one of the largest commercial silk producers in the world. In 2009, almost five tons of 

cocoons were produced, according to the EMATER (Brazilian Government Company 

of Technical Assistance and Rural Extension). Interestingly, fourteen different strains of 

B. mori have been identified in Brazil and biological assays have demonstrated that a 

Brazilian BmNPV (called here BmNPV-Brazilian) was found infecting these different 

commercial strains  (Brancalhao et al., 2009). BmNPV is the major cause of silk 

production losses and is a serious problem for sericulture in Brazil and in all other silk-

producing countries (Brancalhao et al., 2009; Pereira et al., 2013). Therefore, in order to 

better understand this important pathogen, we describe here the complete genome 

sequence of the BmNPV-Brazilian. 
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3. Materials and Methods 

 

3.1. Insect infection 

 

Fourth instar B. mori hybrid caterpillars were obtained from the silk industry (Fiação de 

Seda BRATAC S.A., Paraná, Brazil) and raised on fresh mulberry leaves (Morus sp.) as 

previously described (Pereira et al., 2008). BmNPV was obtained from infected B. mori 

hybrid caterpillars found in Paraná state in Brazil (Brancalh„o, 2002). Fifth instar larvae 

were starved for 24 hours after ecdysis and fed on mulberry leaf discs (2 cm diameter) 

with 20 µl of viral suspension at a concentration of 8x108 OBs/ml for virus 

amplification as previously described (Ribeiro Lde et al., 2009). Following complete 

ingestion, caterpillars were placed in individual plastic cups. 

 

3.2. Virus purification, Bm-5 cell infection, and DNA extraction 

 

Insect cadavers were collected and homogenized with the same volume of ddH2O (w/v), 

filtered through three layers of gauze, and centrifuged at 7,000 x g for 10 min. The 

pellet was washed three times with SDS 0.5% (w/v) and once with NaCl 0.5 M 

followed by centrifugation at 7,000 x g for 10 min for each washing. The last washed-

resulting pellet was resuspended in ddH2O, loaded onto a continuous 20-65% sucrose 

gradient, and centrifuged at 104.000 x g for three hours at 4 ºC. The OB band was 

collected, 3-fold diluted in ddH2O, and centrifuged at 7,000 x g for 15 min at 4 ºC. 

Purified polyhedra (109 OBs/ml) were dissolved in an alkaline solution and used for 

both Bm-5 cell monolayer infection and to extract DNA. Bm-5 cells were maintained at 

28 ºC in TNMFH (GIBCO BRL Life Technologies), supplemented with 10% fetal 

file:///C:/Users/Daniel%20Mendes/AppData/Roaming/Microsoft/Word/o,%23_ENREF_9
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bovine serum (Invitrogen, Carlsbad, CA, USA). DNA was extracted according to 

O’Reilly et al. (O'Reilly et al., 1992) from ODVs. The quantity and quality of the 

isolated DNA were determined by electrophoresis on a 0.8% agarose gel (data not 

shown). 

 

3.3. Ultrastructural analyses 

 

For Scanning Electron Microscopy (SEM), OBs (109 OBs/ml) were treated with acetone 

1 X and then incubated at 25 ºC for 1 hour. The solution was loaded in a metallic stub, 

dried overnight at 37 ºC, coated with gold in a Sputter Coater (Balzers) for 3 min, and 

observed in a SEM Jeol JSM 840A at 10 kV. For Transmission Electron Microscopy 

(TEM), pellets of purified OBs were fixed in Karnovsky fixative (2.5% glutaraldehyde, 

2% paraformaldehyde, in 0.1 M, pH 7.2, cacodylate buffer) for 2 h, post-fixed in 1% 

osmium tetroxide in the same buffer for 1 h and then stained en bloc with 0.5% aqueous 

uranyl acetate, dehydrated in acetone, and embedded in Spurr’s low viscosity 

embedding medium. The ultrathin sections were contrasted with uranyl acetate/lead 

citrate and observed in a TEM Jeol 1011 at 80 kV. 

 

3.4. Genome sequencing, annotation and analysis 

 

BmNPV-Brazilian (hereafter designated as Brazilian) genomic DNA was sequenced 

with the 454 Genome Sequencer (GS) FLX™ Standard (Roche) at Macrogen (Seoul, 

Korea). The singe-end reads were analyzed using Geneious 6.0 (Kearse et al., 2012). 

Firstly, all the reads were trimmed to remove sequencing adaptor and low quality 

regions (Q≥20), and then assembled de novo using a minimum overlap parameter of 200 
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nt and minimum overlap identity of 98%. The resulting contigs were mapped on the 

genome of BmNPV-T3 isolate (hereafter designated as T3) (Table 1) (Cheng et al., 

2012; Fan et al., 2012; Gomi et al., 1999; Xu et al., 2013; Xu et al., 2010). Next, the 

consensus sequence was used in a reference-guided alignment to obtain the consensus 

genome of our isolate. The Genbank accession number is KJ186100. Frame shifts at 

homopolymeric regions introduced by the 454-pyrosequencing method were corrected 

manually. For genome annotation, only open reading frames (ORFs) with at least 150 

nucleotides (nt) were considered. The homologous proteins were identified using blastp 

(Altschul & Lipman, 1990). For phylogenetic analysis, a MAFFT alignment (Katoh et 

al., 2002) was carried out with whole genome sequences of all Bombyx-isolate 

baculoviruses  available in Genbank (Table 1) and the AcMNPV-C6 genome 

(L22858.1). This alignment was manually inspected and poor aligned regions(at least 

50% of gaps) were deleted. The resulting alignment was approximately 127 kb long. 

Maximum likelihood tree was inferred using RAxML(Stamatakis et al., 2008) and 

PhyML (Guindon et al., 2010), under the Tamura-Nei model selected by jModelTest-

2.1.4 (Darriba et al., 2012). The branch support was estimated by non parametric 

bootstrap analysis with 100 repetitions (Stamatakis et al., 2008) and Shimodaira-

Hasegawa-like test (Anisimova et al., 2011). Moreover, a gene comparison was 

performed using all Bombyx-isolate baculovirus (Table 1). This dataset was compared 

using CGView Comparison Tool (Ardisson-Araujo et al., 2013) and the results were 

plotted using CIRCOS. Moreover, single nucleotide polymorphisms (SNP) were 

detected using Geneious 6.0. To perform this analysis the trimmed reads were mapped 

to the Brazilian isolate genome and the SNP were identified using the following 

parametrs: p-value for the sequence error of 1x10-6, a minimum coverage of 20 reads, 
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and a minimum variant frequency of 0.25. The lower the p-value is, the more likely the 

SNP represents an authentic variation. 

 

4. Results 

 

4.1. Ultrastructural analyses and B. mori-derived cell infection 

 

In this work we described the first non-Asian isolate of the baculovirus species 

BmNPV. The baculovirus was infecting a strain of the silkworm B. mori reared in 

Brazil for silk industry (Fig. 1a). OBs were purified from larvae cadavers and used for 

ultrastructural analyses. We observed single-occluded virions inside the protein matrix 

by Transmission Electron Microscopy (TEM) (Fig. 1c) and polyhedral OB shape by 

Scanning Electron Microscopy (SEM) (Fig. 1f). In general, the OBs presented size of 2 

to 4 µm with a regular shape. Immature OBs were also observed among the sample with 

spaces for ODV occlusion (Fig. 1f, inset). BmNPV is infectious to B. mori-derived cells 

such as the strain Bm-5 (Grace, 1967). Therefore, we used ODVs released from alkaline 

solution-treated OBs to infect Bm-5 cells. Infected cells presented typical features of 

baculovirus infection (Rohrmann, 2013) with nuclear hypertrophy and cell rounding  

(data not shown) and at late time post-infection several polyhedra were observed inside 

the cell nucleus (Fig. 1b). Interestingly, as previously described (Brancalh„o, 2002), we 

also observed ODVs with multiple nucleocapsids (Fig. 1d) and few irregular-shaped 

polyhedra (Fig. 1e). 

 

file:///C:/Users/Daniel%20Mendes/AppData/Roaming/Microsoft/Word/o,%23_ENREF_9
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Fig. 1 Silkworm strain reared in Brazil, cell infection, and ultrastructural analysis of 

occlusion bodies (OBs) from BmNPV-Brazilian isolate. a A silkworm reared in the 

Brazilian silk industry feeding on a mulberry leaf. b Bm-5 cells infected with the 

Brazilian isolate at 72 h p.i.. c Transmission electron micrograph reveals OB with single 

nucleocapsids (nc) within. d Polyhedra containing both single and multiple embedded 

rod-shaped nucleocapsids within single ODVs (arrowhead). e Scanning electron 

micrograph of a tetrahedral OB observed in our sample. f Several OBs with polyhedral 

shape and an inset showing immature OBs with holes for ODV occlusion. 
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4.2. Genome features, phylogenetic analysis, and gene comparison 

 

The 454 sequencing produced approximately 23,000 single-end reads. After size and 

quality trimming, 18,240 reads (average size of 496 nt) were assembled de novo with 

coverage of 46.7 ± 12.9. The genome has a size of 126,861 bp and a G+C content of 

40.4%, which is close to the average size of 127,159 ± 1,158.5 bp for Bombyx-isolated 

viruses (Table 1). The pairwise identity between BmNPV-Brazilian and the remaining 

isolates varied from 97.9 to 96.3 (Table 1). Our phylogenetic analysis shows that both 

BmNPV isolates and BomaNPV-S1 form together a well-supported monophyletic clade 

(Fig. 2), as previously described (Xu et al., 2010). Moreover, the newly sequenced 

Brazilian isolate clustered with BmNPV-T3 strain, originally isolated from Japan (Fig. 

2). This found is compatible with a virus introduction from Japan to Brazil. Annotation 

of the Brazilian genome resulted in 143 ORFs with more than 150 nt. As shown in 

Figure 3 and Table S1, most of these ORFs are shared among the Bombyx-isolated 

viruses, as well as with AcMNPV. The only unique ORF was the Bm(Br)Orf-26, which 

encodes a putative protein of 80 amino acids with no homologous in GenBank. Most 

variations were due to deletions and insertions on homologous repeat regions (hr) (Fig. 

3, green color and Table S2) and baculovirus repeated orf (bro) genes (Fig. 3, red 

color).  Seven HRs were identified in the BmNPV-Brazilian genome. We found a large 

deletion in HR2L compared to the other isolates.  HR2L and HR2R flank both the 

Bm(Br)Orf-26 and the fgf gene (Fig. 3). Even presenting high number of insertions and 

deletions, the identity among the HRs remained high among the isolates during pairwise 

alignment analyses (Table S2). The lowest global identity was observed for HR4L with 

74.9% of identity and an average size of 361.6 ± 75.5 bp. Both Guangxi and Zheijang 

isolates presented a complete synapomorphic deletion of the HR2L. On the other hand, 
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the closest relative to the Brazilian isolate (isolate T3) presented two insertions and no 

deletion at that same HR. Regarding the bro gene variability, a notable aspect was a 

division of bro-a into two ORFs (bro-a1: Bm(Br)Orf-23 and bro-a2: Orf-24) (Fig. 3, in 

red color), due to a single nucleotide polymorphism that introduced a stop codon 

(TAG). To confirm this, we searched carefully among the reads and identified 59 out of 

75 reads presenting the stop codon-introducing polymorphism (TCG to TAG) into the 

bro-a coding region, suggesting it as an authentic polymorphism. 

 

Table 1. Bombyx-isolated genomes used in this study 

Virus-Strain Size (nt) Id (%)a Country Reference Accession number 

BmNPV isolates 

Brazilian 126,863 100 Brazil This work KJ186100 

T3 128,413 97.2 Japan [16] L33180.1 

Guangxi 126,843 97.9 China [20] JQ991011 

Zheijiang 126,125 97.6 China [20] JQ991008 

C1 127,901 96.3 South Korea u/d KF306215 

C2 126,406 97 South Korea u/d KF306216 

C6 125,437 96.6 South Korea u/d KF306217 

Cubic 127,465 96.3 China [19] JQ991009 

India 126,879 97.9 India [21] JQ991010 

BomaNPV isolates 

S1 126,770 97.9 China [22] FJ882854.1 

S2 129,646 93.7 China [23] JQ071499.1 
u/d - unpublished data. 
a - identity related to whole genome of BmNPV-Brazilian isolate by MAFFT Alignment (25) 
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Fig. 2 Maximum likelihood tree for Bombyx-isolated baculoviruses. The phylogenetic 

inference is based on the MAFFT alignment among the whole genome using PhyML 

method (27). The AcMNPV is used as outgroup. The Brazilian (in bold) isolate is 

closely related to the Japanese plaque-isolated virus, T3. The branch support is 

estimated by a Shimodaira-Hasegawa-like test (29). 
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Fig. 3 Gene comparison of the BmNPV-Brazilian isolate with all the Bombyx-isolated 

baculoviruses. The heat map shows a comparison between both all CDS from Brazilian 

isolate and from all Bombyx-isolated baculoviruses. The identity (from 0 to 100%) is 

plotted in shades of blue for the ten inner circles. From the outermost ring: T3, Guangxi, 

Cubic, S1, India, C1, S2, C2, C6, Zhejiang. HRs are plotted in green only for the 

Brazilian isolate, bro genes are in red, and the Bm(Br)Orf-26 (without homologues in 

NCBI) is highlighted in purple. Only the isolates Brazilian, T3, and Guangxi present the 

bro-b gene. 
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4.3. The gain and loss of bro genes 

 

The distribution of bro genes along the phylogeny and a gene context analysis are 

shown in Figure 4. Four major observations can be draw from this distribution: (i) the 

most recent common ancestor (MRCA) of AcMNPV and Bombyx-isolated viruses had 

the bro-d gene  (Fig. 4a and Fig. 4b);(ii) bro-a, bro-c, and bro-e were probably gained 

by the MRCA of all Bombyx-isolated viruses (Fig. 4a); (iii) bro-e was lost in several 

isolates (Fig. 4a and 4b); (iv) bro-b was gained by the MRCA of the isolates Brazilian, 

T3, Guangxi and Zheijiang, and was subsequently lost by Zheijiang (Fig. 4a and 4b). 

Thus, bro-a, bro-c and bro-d were conserved in all Bombyx-isolated viruses, except for 

bro-a in both C6 (partial deletion) and Brazilian (split in two ORFs, as described above) 

isolates. The bro-b and bro-e were present only in a small number of isolates. Such 

pattern of gene evolution is compatible with multiple events of gene duplication and 

losses, as previously suggested by Kang et al. (Kang et al., 1999). A phylogenetic 

analysis using an alignment of all predicted BRO proteins confirmed that bro-a and bro-

c are closely related as well as bro-b and bro-e (Fig. S1). Therefore, it is reasonable to 

assume that bro-b originated probably from a bro-e duplication event in the ancestral 

lineage of the isolates Brazilian, T3, Guangxi and Zheijiang. Conversely, the bro-e 

evolutionary history was probably the result of one ancestral gain followed by six 

independent losses in several isolates (Fig. 4a). This independent loss scenario is 

corroborated by the gene context analysis, which showed that all isolates with bro-e, 

complete or vestigial, presented the same genomic context (Fig. 4b). 
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Fig. 4 bro genes occurrence among Bombyx-isolated baculoviruses. a Gain, partial loss, 

and loss (black, gray and empty symbols, respectively) for bro genes along the 

evolutionary history of Bombyx-isolated baculoviruses. AcMNPV is used as outgroup. 

Brazilian isolate presents a division of the bro-a gene into two orfs (not shown) and the 

C6 isolate presents a partial deletion (gray triangle). b Gene context of the bro-b, bro-c, 

bro-d, and bro-e genes. 
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4.4. Intra-isolate diversity in BmNPV-Brazilian 

 

As previously described, the 454 sequencing of the Brazilian isolate resulted in 18,240 

reads that were used to assembly the complete genome. However, this reads also 

provided information at genotypic variation within the isolate. Although the sequencing 

coverage of 46.7 ± 12.9, we were able to identify 404 SNPs, ignoring insertions and 

deletions associated frequently with 454-pyrosequencing errors. As shown in Fig. S2, 

most polymorphism observed was synonymous (67%). It was possible to observe a high 

number of SNPs in Bm(Br)Orf-74 (p95 with 23 SNPs), Bm(Br)Orf-15 (f protein, with 

13 SNPs), Bm(Br)Orf-83 (dna-helicase, with 11 SNPs), and Bm(Br)Orf-71 (gp41, with 

9 SNPs).  

 

5. Discussion 

 

In this study, the genome of a BmNPV strain isolated in Brazil was sequenced and 

compared to distinct Bombyx-isolated baculoviruses. The Brazilian strain is closely 

related to the strain T3, a Japanese isolate. The sericulture introduction history in Brazil 

is not clear. Some documents point to Japanese immigrants as the first formal silk 

producers in the country. Here, our find has suggested that both caterpillar and virus 

could have been introduced from Japan to Brazil. 

 

Most of genomic divergences among BmNPV isolates were in HRs and also in bro 

genes. Both regions were previously identified as primary areas of divergence within 

genomes of Bombyx-isolated baculoviruses (Xu et al., 2013). Here, we observed HR 

size variance in the genome of BmNPV-Brazilian. HRs are imperfect palindromic 
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sequences with size and location highly variable. The Brazilian isolate presented seven 

HRs with a large deletion in the HR2L which has been identified as the most unstable 

HR in BmNPV genomes (Xu et al., 2013). HRs are believed to play roles in genome 

replication, recombination, and gene transcription (Rohrmann, 2013). 

 

Sequence plasticity is also true for bro genes, being a constant trait for baculovirus 

genome evolution. These features are observed among different baculovirus species 

such as in virus isolated from Helicoverpa armigera and Spodoptera frugiperda 

(Harrison & Popham, 2008; Ogembo et al., 2009; Rowley et al., 2011; Simon et al., 

2011; Zhang et al., 2013). In this work, we found that the bro-a gene is divided into two 

ORFs. Previous work found insertions and deletions inside bro-a, during gene 

comparison between BmNPV-T3 and other plaque-purified BmNPV isolates (Pang et 

al., 2007). Moreover, the isolate BmNPV-C6 presents a partial deletion at the carboxi-

terminal of the bro-a gene, suggesting that this region is probably not required for virus 

viability. In the specific case of Bombyx-isolated baculoviruses, genome insertions and 

deletions (indels) of bro genes are quite common (Kang et al., 1999) (Fig. 3). These 

indels have been implicated in viral pathogenicity, genome replication capacity, and/or 

viral gene transcription kinetics (Xu et al., 2013; Zemskov et al., 2000). Since bro genes 

present a high repetitive content, the phylogenetic reconstruction can be misinterpreted 

based only in the gene sequence; hence we also looked at the loci of the genes. The 

AcMNPV genome is closest to Bombyx-isolated baculoviruses and present only one bro 

gene, a homologous to bro-d (Fig. 4b). In fact, the Bombyx-isolated baculovirus bro 

genes could be result of several duplication events that occurred only after the ancestral 

split of these lineages. The bro genes belong to a unique multigenic family (Bideshi et 

al., 2003). AcMNPV, as explained above, contains only a single bro gene in its genome 
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(Ayres et al., 1994). On the other hand, the Spodoptera exigua multiple 

nucleopolyhedrovirus (SeMNPV) completely lacks bro genes (Wf et al., 1999) and in 

Bombyx-isolated viruses the amount of bro genes varies (Fig. 4). Interestingly, some 

BRO proteins are present in both the cytoplasm and nuclei of infected cells (Gong et al., 

2003; Kang et al., 1999). They have nucleic acid and nucleosome association 

capabilities (Zemskov et al., 2000), a  single-stranded DNA (ssDNA) binding motif 

(Zemskov et al., 2000), and can also be present or not as a component of the virion 

structure (Braconi et al., 2014; Deng et al., 2007; Gong et al., 2003; Perera et al., 2007; 

Wang et al., 2010; Xu et al., 2013). However, the specific functions of bro genes and 

their protein products are still unknown. Specific bro genes seems to be crucial for the 

virus replication, considering the evolution with its own host, such as bro-d and bro-c 

genes of BmNPV (Kang et al., 1999) conserved in all isolates (Fig. 4A). 

 

We also found genomic diversity in our sample. The genotypic variation among viruses 

isolated from the field, in this situation, from the silk industry, is a common feature of 

baculoviruses (Craveiro et al., 2013). We did not plaque-purify the virus in order to 

access its diversity. Plaque-isolated viruses do not reflect intra-population heterogeneity 

and may also introduce errors or privilege genotypes during in vitro cell replication, 

changing drastically the virus diversity or introducing new errors. In fact, the 454 

sequencing may cause errors reflecting in a false variability. Therefore, we consider 

variation base on a minimum coverage of 20-fold, a minimum variant frequency of 0.25 

with a p-value for the sequence error of 1x10-6, meaning that the chance to see a variant 

by chance is 0.0001%. Intra-specific diversity might somehow be reflected in 

phenotypic features, for example the capacity of a single nucleopolyhedrovirus, as 

BmNPV isolates are, to occlude more than one nucleocapsid per virion (Fig. 1b, in the 
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same OB is possible to see multiple and single ODVs, showing this is not a 

contamination) or production of abnormal-shaped polyhedra (Fig. 1c). Interestingly, we 

found high number of SNPs in the genes p95, dna-helicase, and gp41 which are core 

genes in the family Baculoviridae (Garavaglia et al., 2012). However, the impact of this 

diversity in virus replication or pathogenicity is not clear. P95 has shown to be essential 

for BV production and nucleocapsid assembly (Xiang et al., 2013) being an ODV-

associated structural protein (Braunagel et al., 2003) and a component of the per os 

infectivity factor (PIF) complex (Peng et al., 2012). Moreover, DNA-helicase is an 

essential protein for virus replication (Ono et al., 2012; Rohrmann, 2013) and GP41 is a 

tegument-associated glycoprotein important for BV production and virus spread 

efficiency (Ono et al., 2012). Conversely, previous work has showed that different 

BmNPV isolates had a high degree of sequence divergence in ORFs, which are not core 

genes, but otherwise might play an important role in the virus evolution (Xu et al., 

2013). For instance, F protein, which is shared only among Alpha and Betabaculovirus, 

was found to present high level of SNPs as well (Garavaglia et al., 2012). The protein is 

believed to be a non-essential remnant protein in BmNPV-like viruses (Group I 

Alphabaculovirus) playing a role only on the virus pathogenicity (Lung et al., 2003). 

Therefore, the SNPs found might have influence in the adaptation of the virus to new 

strains of B. mori or other insect hosts.  

 

6. Conclusion 

 

The most informative way of accessing robust information about the evolutionary 

history of a virus is sequencing its whole genome. Overall, BmNPV is a good model for 

the study of baculovirus genome evolution since this virus is associated with an insect 
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that has been domesticated and reared by man for more than 3,000 years. Here, we 

described the first genome of a non-Asian isolate of the baculovirus species BmNPV. 
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9. Supplementary Materials 

 

 

 

Fig. S1 Phylogenetic analysis of Bro proteins found in Bombyx-related viruses and 

AcMNPV. The maximum likelihood phylogenetic tree was inferred using a MAFFT 

alignment (25) of all Bro proteins and PhyML (27). The proteins clusters are 

highlighted in gray.  
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Fig. S2 Polymorphism distribution along the different genes of the Brazilian isolate. The number of polymorphisms is shown in the Y-axis. The 

synonymous changes are shown in gray and non-synonymous in black. The different genes are shown in the X-axis in decreasing order of 

polymorphisms. We included both common gene name (when present) and the orf number in the BmNPV-Brazilian genome. 
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Table S1. Characteristics of the BmNPV-Brazilian isolate genome. Predicted ORFs are compared 

with homologues in BmNPV-T3 and AcMNPV-C6. 

Orf Gene name Positiona Size (aa) 
  BmNPV-T3 

 

AcMNPV 

  ORF Idb (%) 

 

ORF Idb (%) 

1 polh 1 > 738 245 

 

1 100 

 

8 86.1 

2 orf1629 768 < 2,387 539 

 

2 95.9 

 

9 86.5 

3 pk-1 2,386 > 3,210 274 

 

3 99.2 

 

10 94.8 

4 

 

3,236 < 4,258 340 

 

4 97.9 

 

11 93.2 

5 

 

4,593 < 5,588 331 

 

5 98.8 

 

13 92.1 

6 lef-1 5,468 < 6,280 270 

 

6 98.9 

 

14 94.1 

7 egt 6,397 > 7,917 506 

 

7 99.2 

 

15 96 

8 

 

7,930 > 8,091 53 

 

7a 100 

 

- - 

9 bv/odv-e26 8,057 > 8,746 229 

 

8 99.1 

 

16 96.1 

10 

 

8,715 > 9,347 210 

 

9 99.1 

 

17 95.7 

11 

 

9,377 < 10,447 356 

 

10 98.4 

 

18 94.2 

12 

 

10,449 > 10,781 110 

 

11 100 

 

19 90.9 

13 arif-1 10,968 < 12,284 438 

 

12 96.4 

 

20/21 88.5 

14 pif-2 12,321 > 13,469 382 

 

13 98.7 

 

22 92.9 

15 f protein 13,572 > 15,596 674 

 

14 98.7 

 

23 88.4 

16 pkip 15,627 < 16,136 169 

 

15 99.4 

 

24 91.7 

17 dbp 16,176 < 17,129 317 

 

16 100 

 

25 95.9 

18 

 

17,205 > 17,594 129 

 

17 99.2 

 

26 93.8 

19 iap-1 17,596 > 18,471 291 

 

18 94.9 

 

27 92.4 

20 lef-6 18,476 > 18,997 173 

 

19 99.4 

 

28 93.6 

21 

 

19,115 < 19,330 71 

 

20 100 

 

29 93 

22 

 

19,385 < 20,803 472 

 

21 99.6 

 

30 95.5 

23 bro-a1 20,839 < 21,009 56 

 

22 100 

 

- - 

24 bro-a2 21,049 < 21,786 245 

  

85.8 

 

- - 

25 sod 21,908 > 22,363 151 

 

23 97.4 

 

31 96.7 

26 

 

22,732 > 22,974 80 

 

- - 

 

- - 

27 fgf 22,931 > 23,479 182 

 

24 97.3 

 

32 90.2 

28 

 

24,004 < 24,651 215 

 

25 96.7 

 

34 94.4 

29 v-ubq 24,672 > 24,905 77 

 

26 100 

 

35 100 

30 39k; pp31 24,955 < 25,788 277 

 

27 98.6 

 

36 91 

31 lef-11 25,782 < 26,120 112 

 

28 98.2 

 

37 97.3 

32 nudix 26,083 < 26,736 217 

 

29 100 

 

38 96.3 

33 p43 26,804 < 27,892 362 

 

30 99.7 

 

39 91.9 

34 p47 27,900 < 29,099 399 

 

31 99.7 

 

40 97 

35 lef-12 29,104 > 29,637 177 

 

32 96 

 

41 95.5 

36 gta 29,713 > 31,233 506 

 

33 100 

 

42 96.4 

37 

 

31,247 > 31,483 78 

 

34 98.8 

 

43 91.1 

38 

 

31,464 > 31,859 131 

 

35 100 

 

44 98.5 

39 

 

31,861 > 32,445 194 

 

36 99 

 

45 89.2 

40 odv-e66 32,430 > 34,556 708 

 

37 98.4 

 

46 93.3 

41 trax-like (ets) 34,654 < 34,923 89 

 

38 98.9 

 

47 93.1 

42 lef-8 35,168 < 37,798 876 

 

39 99.8 

 

48 97.7 
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43 dna-J 37,825 > 38,784 319 40 99.7 51 94.4 

44 

 

38,775 < 39,359 194 

 

41 100 

 

52 91.6 

45 

 

39,361 > 39,780 139 

 

42 100 

 

53 95.7 

46 lef-10 39,777 > 40,013 78 

 

42a 100 

 

53a 96.2 

47 vp1054 39,871 > 40,968 365 

 

43 100 

 

54 95.6 

48 

 

41,050 > 41,283 77 

 

44 100 

 

55 88.3 

49 

 

41,285 > 41,539 84 

 

45 100 

 

56 94 

50 

 

41,778 > 42,263 161 

 

46 100 

 

57 93.8 

51 chaB-like 42,279 < 42,794 171 

 

47 99.4 

 

58/59 94.9 

52 chaB-like 42,806 < 43,054 82 

 

48 98.3 

 

60 85.1 

53 fp-25k 43,206 < 43,850 214 

 

49 99.1 

 

61 97.7 

54 lef-9 43,954 > 45,426 490 

 

50 99.6 

 

62 98.8 

55 

 

45,487 > 45,954 155 

 

51 98.7 

 

63 92.3 

56 gp37 46,029 < 46,913 294 

 

52 99.3 

 

64 95.6 

57 dna-pol 47,203 < 50,022 939 

 

53 99.6 

 

65 96.5 

58 

 

50,031 > 52,448 805 

 

54 98.6 

 

66 90.2 

59 lef-3 52,451 < 53,608 385 

 

55 99.5 

 

67 91.7 

60 

 

53,627 > 54,031 134 

 

56 99.3 

 

68 92.6 

61 mtase 54,009 > 54,797 262 

 

57 100 

 

69 97.7 

62 iap-2 54,946 > 55,695 249 

 

58 100 

 

71 95.6 

63 

 

55,754 > 55,936 60 

 

58a 98.3 

 

72 88.3 

64 

 

55,946 < 56,245 99 

 

59 94.9 

 

73 87.9 

65 

 

56,242 < 57,048 268 

 

60 100 

 

74 91.8 

66 

 

57,066 < 57,467 133 

 

61 100 

 

75 96.2 

67 

 

57,486 < 57,743 85 

 

62 100 

 

76 96.5 

68 vlf-1 57,759 < 58,898 379 

 

63 100 

 

77 98.2 

69 

 

58,904 < 59,236 110 

 

64 99.1 

 

78 94.5 

70 

 

59,239 < 59,553 104 

 

65 100 

 

79 99 

71 gp41 59,556 < 60,767 403 

 

66 98.8 

 

80 93.9 

72 

 

60,757 < 61,461 234 

 

67 99.6 

 

81 92.2 

73 

 

61,307 < 61,852 181 

 

68 98.9 

 

82 85 

74 p95 (vp91) 61,818 > 64,331 837 

 

69 98 

 

83 90.7 

75 p15 65,570 > 65,950 126 

 

70 100 

 

87 94.4 

76 cg30 65,955 < 66,752 265 

 

71 97.2 

 

88 91.3 

77 vp39 66,755 < 67,804 349 

 

72 97.7 

 

89 93.7 

78 lef-4 67,823 > 69,220 465 

 

73 99.4 

 

90 96.6 

79 

 

69,217 < 69,681 154 

 

74 100 

 

91 51.1 

80 p33 (sox) 69,718 < 70,497 259 

 

75 100 

 

92 97.3 

81 

 

70,496 > 70,981 161 

 

76 100 

 

93 98.8 

82 odv-e25 70,990 > 71,676 228 

 

77 99.6 

 

94 90.8 

83 dna-helicase 71,714 < 75,382 1222 

 

78 99.8 

 

95 95.9 

84 pif-4 75,369 > 75,917 182 

 

79 100 

 

96 94.7 

85 bro-b 76,013 > 76,738 241 

 

80 93.4 

 

- - 

86 bro-c 76,798 > 77,760 320 

 

81 90.7 

 

- - 

87 38K 77,907 < 78,869 320 

 

82 100 

 

98 93.4 

88 lef-5 78,804 > 79,601 265 

 

83 99.6 

 

99 97.4 
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89 p6.9 79,598 < 79,795 65 

 

84 98.5 

 

100 78.5 

90 p40 79,837 < 80,928 363 

 

85 97.8 

 

101 95.9 

91 p12 80,948 < 81,325 125 

 

86 97.6 

 

102 95.6 

92 p45 81,306 < 82,469 387 

 

87 99.5 

 

103 95.1 

93 vp80 82,495 > 84,573 692 

 

88 99.7 

 

104 96.2 

94 he65 84,595 < 85,464 289 

 

89 100 

 

105 95.1 

95 

 

86,173 > 86,922 249 

 

90 100 

 

106/107 87.9 

96 

 

86,899 < 87,240 113 

 

91 100 

 

108 96.2 

97 

 

87,255 < 88,430 391 

 

92 100 

 

109 96.2 

98 

 

88,454 < 88,633 59 

 

92a 98.3 

 

110 92.9 

99 

 

88,682 < 88,885 67 

 

93 100 

 

111 88.1 

100 

 

89,561 < 90,835 424 

 

94 99.5 

 

114 95.5 

101 pif-3 90,857 < 91,471 204 

 

95 99 

 

115 92.7 

102 

 

91,465 < 91,638 57 

 

95a 92.2 

 

116 84.4 

103 

 

91,574 > 91,861 95 

 

96 100 

 

117 94.7 

104 pif-1 91,991 > 93,574 527 

 

97 99.4 

 

119 84.6 

105 

 

93,582 > 93,830 82 

 

98 98.8 

 

120 92.7 

106 

 

93,933 > 94,106 57 

 

98a 94.9 

 

121 93 

107 

 

93,999 < 94,184 61 

 

99 100 

 

122 90.3 

108 pk-2 94,218 < 94,895 225 

 

100 99.1 

 

123 95.8 

109 

 

95,079 > 95,813 244 

 

101 99.2 

 

124 87.1 

110 lef-7 95,832 < 96,512 226 

 

102 96.1 

 

125 86.7 

111 chitinase 96,502 < 98,160 552 

 

103 99.6 

 

126 94.7 

112 v-cath 98,208 > 99,179 323 

 

104 99.7 

 

127 96.6 

113 gp64 99,296 < 100,888 530 

 

105 99.8 

 

128 94.9 

114 p24 101,015 > 101,602 195 

 

106 99 

 

129 90.9 

115 gp16 101,630 > 101,950 106 

 

107 100 

 

130 100 

116 pp34 102,012 > 102,953 313 

 

108 98.7 

 

131 88.3 

117 

 

102,956 > 103,618 220 

 

109 99.6 

 

132 95.5 

118 alk-exo 103,646 > 104,908 420 

 

110 99.8 

 

133 95.5 

119 

 

105,023 > 105,235 70 

 

111 100 

 

- - 

120 p35 105,369 > 106,268 299 

 

112 99.3 

 

135 90.6 

121 p26 106,996 > 107,718 240 

 

113 98.8 

 

136 93.3 

122 p10 107,791 > 108,003 70 

 

114 100 

 

137 88.6 

123 p74 108,089 < 110,026 645 

 

115 99.5 

 

138 90.9 

124 me53 110,256 < 111,617 453 

 

116 97.8 

 

139 91 

125 

 

111,763 < 111,966 67 

 

67c 100c 

 

- - 

126 ie-0 111,894 > 112,679 261 

 

117 100 

 

141 96.9 

127 bv/odv-nc50 112,694 > 114,124 476 

 

118 100 

 

142 98.5 

128 odv-e18 114,132 > 114,440 102 

 

119 88.2 

 

143 83.9 

129 odv-e27 114,455 > 115,327 290 

 

120 100 

 

144 99 

130 

 

115,342 > 115,629 95 

 

121 100 

 

145 93.5 

131 

 

115,624 < 116,229 201 

 

122 98.6 

 

146 96.6 

132 ie-1 116,295 > 118,049 584 

 

123 99.8 

 

147 95.7 

133 odv-e56 118,138 < 119,265 375 

 

124 98.7 

 

148 82.2 

134 

 

119,294 < 119,614 106 

 

125 98.1 

 

149 87.5 
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a Direction of putative transcripts is noted by the symbols > (sense) and < (antisense). 
b Identity acquired from Psi-BLAST analysis. 
c Even present in the BmNPV-T3, this ORF was not annotated. 

 

 

 

  

135 

 

119,583 > 119,930 115 

 

126 100 

 

150 69.7 

136 ie-2 119,963 < 121,243 426 

 

127 97.7 

 

151 71.5 

137 pe38 121,731 > 122,660 309 

 

128 98.4 

 

153 83.3 

138 

 

122,762 > 122,995 77 

 

129 98.8 

 

154 81.8 

139 ptp-1 123,682 > 124,188 168 

 

130 100 

 

1 97 

140 bro-d 124,185 < 125,234 349 

 

131 96.6 

 

2 82 

141 

 

125,308 < 125,763 151 

 

133 99.3 

 

4 94 

142 

 

125,792 > 126,121 109 

 

134 99.1 

 

5 91.7 

 

lef-2 126,102 > 126,734 210   135 99.5 

 

6 95.2 
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Table S2.  Characteristics of the homolog regions (HRs) in Bombyx-isolated baculoviruses. 

Name1 Id (%)2 Size ± SD3 (bp) 

HR Size (bp) 

BmNPV   BomaNPV 

Brazilian T3 Guangxi Zheijang India C1 C2 C6 Cubic   S1 S2 

HR1 89.5 540.5 ± 46.6 527 592 582 527 594 566 458 458 527 
 

584 527 

HR2L 86.8 622.0 ± 183.2 251 604 - - 620 918 513 513 784 
 

611 784 

HR2R 90.4 255.6 ± 28 258 267 267 258 168 258 267 267 267 
 

268 267 

HR3 94.2 498.8 ± 80.1 549 549 547 534 548 553 553 345 381 
 

547 381 

HR4L 74.9 361.6 ± 75.5 437 218 361 434 505 289 361 289 361 
 

362 361 

HR4R 95.7 582.8 ± 25.9 592 591 501 591 591 590 591 591 591 
 

591 591 

HR5 88.3 601.2 ± 68.9 550 615 552 552 726 659 659 659 553   615 473 

1. Based on BmNPV-T3 nomenclature (12). 2. Global pairwise identity obtained by MAFFT alignment. 3. Standard deviation.  
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Capítulo 3. Genome sequence of Erinnyis ello granulovirus (ErelGV), a natural 

cassava hornworm pesticide and the first sequenced sphingid-infecting 

betabaculovirus 

 

1. Abstract 

 

Background. Cassava (Manihot esculenta) is the basic source for dietary energy of 500 

million people in the world. In Brazil, Erinnyis ello ello (Lepidoptera: Sphingidae) is a 

major pest of cassava crops and a bottleneck for its production. In the 1980s, a naturally 

occurring baculovirus was isolated from E. ello larva and successfully applied as a bio-

pesticide in the field. Here, we described the structure, the complete genome sequence, 

and the phylogenetic relationships of the first sphingid-infecting betabaculovirus. 

Results. The baculovirus isolated from the cassava hornworm cadavers is a 

betabaculovirus designated Erinnyis ello granulovirus (ErelGV). The 102,759 bp long 

genome has a G+C content of 38.7%. We found 130 putative ORFs coding for 

polypeptides of at least 50 amino acid residues. Only eight genes were found to be 

unique. ErelGV is closely related to ChocGV and PiraGV isolates. We did not find 

typical homologous regions and cathepsin and chitinase homologous genes are lacked. 

The presence of he65 and p43homologous genes suggests horizontal gene transfer from 

Alphabaculovirus. Moreover, we found a nucleotide metabolism-related gene and two 

genes that could be acquired probably from Densovirus. Conclusions. The ErelGV 

represents a new virus species from the genus Betabaculovirus and is the closest relative 

of ChocGV. It contains a dUTPase-like, a he65-like, p43-like genes, which are also 

found in several other alpha- and betabaculovirus genomes, and two Densovirus-related 
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genes. Importantly, recombination event between insect viruses from unrelated families 

and genera might drive baculovirus genomic evolution. 

 

Key-words: biological control, cassava hornworm, baculovirus, Sphingidae, horizontal 

gene transfer, Betabaculovirus evolution. 

 

Este copítulo foi inteiramente publicado na revista BMC genomics. Ardisson-Araujo, 

D. M., de Melo, F. L., Andrade Mde, S., Sihler, W., Bao, S. N., Ribeiro, B. M. & de 

Souza, M. L. (2014). Genome sequence of Erinnyis ello granulovirus (ErelGV), a 

natural cassava hornworm pesticide and the first sequenced sphingid-infecting 

betabaculovirus. BMC Genomics 15, 856. 

 

2. Background 

 

Cassava (Manihot esculenta) is the basic source for dietary energy of 500 million 

people in tropical and subtropical areas of Africa, Asia, and Latin America (El-

Sharkawy, 2004). In Brazil, the hornworm Erinnyis ello ello(Lepidoptera: Sphingidae) 

is one of the most important pests (Pietrowski et al., 2010) occurring throughout the 

year and impacting greatly cassava production (Bellotti et al., 1992; Fazolin et al., 

2007). This pest has been observed in 35 plant species, especially in the Euphorbiaceae 

family. In large infestations, the cassava pest may reduce by 50% the roots yield. In the 

1980s, a naturally occurring baculovirus was isolated from this pest and applied as a 

bio-pesticide in Brazil (Schmitt, 1985). The biological control program has proven to be 

safe and economical (Schmitt, 1985; Schmitt, 2002). However, genomic and structural 

information about the virus is lacking. 
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The Baculoviridae is a family of insect viruses with circular double-stranded genomic 

DNA (Herniou et al., 2012; Jehle et al., 2006a; Rohrmann, 2013) that have been 

successfully applied in controlling agricultural and forest pests (Moscardi, 1999). So 

far, Alpha and Betabaculovirus are the most studied baculovirus genera; both infect 

Lepidoptera (Rohrmann, 2013). The infection is initiated when larvae feed on foliage 

contaminated with orally infectious occlusion bodies (OBs) (Ji et al., 2010) that release 

occlusion derived-virions (ODVs) in the midgut (Slack & Arif, 2007). Early after 

primary midgut epithelial cell infection, budded virions (BV) are produced and cause 

systemic infection. Infection symptoms include cuticle discoloration, movement loss, 

and incapability for feeding (Wang et al., 2010b; Washburn et al., 2003). 

 

Few full-length betabaculovius genome sequences are available compared to those from 

Alphabaculovirus and none of them was isolated from sphingid host. In this context, 

identification and sequencing of virus species from different lepidopteran families will 

provide a wider empirical database to help understand baculovirus evolution (Herniou et 

al., 2001; Herniou et al., 2003). Here, we presented the morphological characterization, 

the complete genome sequence, and the phylogenetic analyses of the natural cassava 

hornworm pesticide, the first completely sequenced betabaculovirus isolated from a 

sphingid host. 
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3. Results and Discussion 

 

3.1. Virus characterization and genome features 

 

A naturally occurring baculovirus was isolated from dead cassava hornworm (E. ello 

ello) caterpillars in crops from the South of Brazil in 1986. As shown in Figure 1A, the 

larvae is usually found hanged in cassava apical leaves, which is a characteristic 

symptom of the baculovirus infections(Hoover et al., 2011). Neither cuticle 

melanization nor post-mortem melting phenotypes were observed among the caterpillar 

cadavers, an attribute which probably facilitated virus collection and use for pesticide 

production as previously observed in another baculovirus (Anticarsia gemmatalis 

multiple nucleopolyhedrovirus - AgMNPV) (Moscardi, 1999). Ultrastructural analyses 

revealed a granular OB with irregular form and size (Figure 1B) containing single rod-

shaped nucleocapsid (Figure 1C). Both of these structural features, i.e. granular form 

and nucleocapsid shape, are typical of viruses from the genus Betabaculovirus 

(Ackermann & Smirnoff, 1983; Jehle et al., 2006a) and thus, we named it Erinnyis ello 

granulovirus (ErelGV) isolate Br-S86 (Brazil/South/1986). Two other cassava 

hornworm-isolated granuloviruses were previously reported, one isolated in Colombia 

(Finnerty et al., 2000) and another from an undisclosed geographical source (Jehle et 

al., 2006b). Restriction endonuclease profile analyses (Figure 1D) suggest that the 

Brazilian and the Colombian viruses (previously published in (Finnerty et al., 2000)) 

are either variants of the same species or are distinct species infecting the same host. 

However, the absence of sequence data from the latter prevents establishment of any 

phylogenetic relationship. 
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Figure 1 - Erinnyis ello granulovirus (ErelGV) infection and virus characterization. 

(A) Cassava hornworm cadaver found hanging in the field due to terminal baculovirus 

infection (Source: José Osmar Lorenzi). (B) Scanning and (C) transmission electron 

micrographs reveal granular occlusion bodies containing singly embedded rod-shaped 

nucleocapsid (nc) (scale bars = 0.5 µm). (C) Restriction enzyme profile of Brazilian 

isolate genomic DNA. Agarose gel electrophoresis-resolved DNA fragments digested 

with HindIII (lane 1), EcoRI (lane 2), BamHI (lane 3). 

 

We sequenced the genome of ErelGV, the first completely sequenced sphingid host-

isolated betabaculovirus (Genbank accession number KJ406702). The genome is 

102,759 bplong with a G+C content of 38.7% (Table 1). We found 130 putative genes 

coding for polypeptides of at least 50 amino acid residues. Table S1 summarizes the 

ErelGV genes and compares each predicted protein sequence with its orthlogues in 

other baculoviruses. Eight of these were shown to be unique (ErelOrf-11, ErelOrf-15, 

ErelOrf-27, ErelOrf-53, ErelOrf-59, ErelOrf-70, ErelOrf-90, ErelOrf-102) (Figure 3, in 
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red), and all of them are peptides with no significant similarity to any other sequence in 

GenBank. All 37 Baculoviridae core genes were found (Figure 3, in boldface). We 

identified five putative homologous regions (hrs)/repeat regions lacking typical 

alphabaculovirushr palindromes. This feature is also found in both Choristoneura 

occidentalis granulovirus (ChocGV) and Pieris rapae granulovirus (PiraGV) genomes. 

As observed in ChocGV (Escasa et al., 2006), ErelGV lacks both gp37 and exon0, 

which was previously predicted for being shared among all Alpha and Betabaculovirus 

(Garavaglia et al., 2012). 

 

Table 1. All species from the genusBetabaculovirus completely sequenced to date. 

Virus species Host Family Size (bp) ORFs Accession Refs. 

Adoxophyesorana granulovirus Tortricidae 99,657 119 AF547984 (Wormleaton et al., 2003) 

Agrotissegetum granulovirusXinjiang Noctuidae 131,680 132 AY522332 (Zhang et al., 2014) 

Agrotissegetum granulovirusL1 Noctuidae 131,442 149 KC994902 (Zhang et al., 2014) 

Choristoneuraoccidentalis granulovirus Tortricidae 104,710 116 DQ333351 (Escasa et al., 2006) 

Closteraanachoreta granulovirus Notodontidae 101,487 123 HQ116624 (Liang et al., 2011) 

Clostera anastomosis L. granulovirus Notodontidae 101,818 123 KC179784 u/d 

Cryptophlebialeucotreta granulovirus Tortricidae 110,907 129 AY229987 (Lange & Jehle, 2003) 

Cydiapomonella granulovirus Tortricidae 123,500 143 U53466 (Luque et al., 2001) 

Epinotiaaporema granulovirus Tortricidae 119,092 132 JN408834 (Ferrelli et al., 2012) 

Erinnyisello granulovirus Sphingidae 102,759 135 KJ406702 - 

Helicoverpaarmigera granulovirus Noctuidae 169,794 179 EU255577 (Harrison & Popham, 2008) 

Phthorimaeaoperculella granulovirus Gelechiidae 119,217 130 AF499596 u/d 

Pierisrapae granulovirusChina Pieridae 108,592 120 GQ884143 (Zhang et al., 2012) 

Pierisrapae granulovirus E3 Pieridae 108,476 125 GU111736 u/d 

Pierisrapae granulovirus South Korea Pieridae 108,658 120 JX968491 u/d 

Plutellaxylostella granulovirus Plutellidae 100,999 120 AF270937 (Hashimoto et al., 2000) 

Pseudaletiaunipuncta granulovirus Noctuidae 176,677 183 EU678671 u/d 

Spodopteralitura granulovirus Noctuidae 124,121 136 DQ288858 (Wang et al., 2011) 

Xestia c-nigrum granulovirus Noctuidae 178,733 181 AF162221 (Hayakawa et al., 1999) 

u/d - unpublished data 

 

3.2. Phylogenetic analysis 

 

In order to better understand the evolutionary history of ErelGV and the genus 

Betabaculovirus, we carried out a maximum likelihood phylogenetic analysis using the 
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37 baculovirus core gene alignment from all baculovirus genome available. ErelGV 

clustered with ChocGV and both viruses share the same ancestor with PiraGV isolates 

(Figure 2). Since the Chinese and Korean PiraGV isolates (Table 1) are very similar to 

each other (99.5%), we have included only the Chinese isolate in our analyses. Using 

Mauve alignment (Darling et al., 2004), we found that ChocGV and PiraGV genomes 

have respectively 38.5% and 34.5% of global pairwise identity when compared to 

ErelGV genome. Additionally, our phylogenetic analyses did not find support 

forBetabaculovirus division in two clades (A and B), as described previously using 

neighbor joining clustering method (Ferrelli et al., 2012; Liang et al., 2011). 

Phylogenetic relationships in Baculoviridae, in particular in the genus Betabaculovirus, 

are difficult to discern due to the limited number of sequenced genomes available 

(Table 1).Therefore, we further evaluated ErelGV phylogenetic relationships using 

granulin, lef-8, and lef-9partial gene dataset as previously carried out (Jehle et al., 

2006b; Lange et al., 2004) (28 partial sequences), but including new sequences publicly 

available (seven sequences from completely sequenced baculovirus) totalizing 35 

granulovirus sequences. This analysis revealed that ErelGV isolate Br-S86 is closely 

related to another ErelGV (also called EeGV) from the Steinhaus collection (Jehle et al., 

2006b) and that both are closer to Andraca bipunctata granulovirus (AnbiGV) (data not 

shown). 
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Figure 2 - Maximum likelihood tree for Betabaculovirus. The phylogenetic inference 

was based on the concatenated amino acid sequences of the 37 core genes identified in 

all complete baculovirus genome sequences. We collapsed all the Gammabaculovirus 

and Alphaphabaculovirus. The CuniNPV was used as root. ErelGV (boldface) clustered 

with ChocGV and both were closely related to PiraGV isolates. 
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Figure 3 - Gene comparison of ErelGV genome and all completely sequenced 

betabaculoviruses available in Genbank. CDS identities were acquired by BLAST 

analysis and ranked from 0 to 100%. From the outermost ring: ChocGV, PiraGV-E3, 

PiraGV-China, ClanGV, CaLGV, CrleGV, CypoGV, AdorGV, PhopGV, EpapGV, 

AgseGV, PlxyGV, PsunGV, XecnGV, HearGV, and SpliGV-K1. For this 

representation, gene synteny is not taken into account. CDS that were absent in the 

ErelGV genome but present in the query sequences were not displayed. To prevent the 

missing of known homologues, like p6.9 and odv-e18 (asterisk), all the low identity hits 
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(bellow 20%) were plotted as well. Unique genes are shown in red, core genes are in 

boldface, and Densovirus-related genes are shown in green. 

 

3.3. Betabaculovirus gene comparison 

 

We performed BLAST comparisons between ErelGV and all other full betabaculovirus 

genomes available in Genbank using the CGView Comparison Tool (Grant et al., 2012) 

and CIRCOS (Krzywinski et al., 2009). As shown in Figure 3, most of the ErelGV-

encoded ORFs are conserved among all betabaculovirus, but protein similarity varies 

widely across the species. Some structural proteins, such as granulin and the per os 

infectivity factors (PIFs), were the most conserved genes. Conversely, F protein, the 

major Betabaculovirus envelope fusion protein (EFP, encoded by ErelOrf-28) and 

matrix metalloproteinase (MMP, a stromelysin-1-like protein, encoded by ErelOrf-39) 

were particularly variable despite of both being present in every betabaculovirus 

sequenced to date. The EFP is essential for cell-to-cell movement and systemic virus 

spread (Rohrmann, 2013).GP64 is the EFP found in Group I Alphabaculovirus and all 

orthologues are closely related to each other (81 % of protein sequence identity), 

whereas the F protein, found in both Alpha and Betabaculovirus (Pearson & Rohrmann, 

2002), is very diverse (20 to 40% sequence identity). Interestingly, deletion of the gp64 

or f protein genes is lethal for BV propagation in Autographa californica multiple 

nucleopolyhedrovirus (AcMNPV) (Oomens & Blissard, 1999) and Helicoverpa 

armigera nuclepolyhedrovirus (HaNPV) (Wang et al., 2008; Wang et al., 2010a), 

respectively. The deficiency can be rescued by efp homologous from many different 

viruses in the case of AcMNPV (Lung et al., 2002), but the opposite is not true; 

AcMNPV gp64 is not able to completely rescue an f protein-deleted HaNPV. However, 
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it is not clear why the F protein from Plutella xylostella granulovirus (PlxyGV) is not 

able to rescue the infectivity of gp64-null AcMNPV (Lung et al., 2002) but that from 

AgseGV can. PlxyGV causes systemic infection to the diamondback moth P. xylostella 

(Plutellidae) larvae (Harrison & Lynn, 2007) and AgseGV infects the cutworm A. 

segetum (Noctuidae) (Wennmann & Jehle, 2014). Thus, the betabaculovirus EFP 

variability might reflect the cell machinery adjustment at the insect family level 

considering that AcMNPV infects caterpillar from the same insect family of A. segetum. 

A second highly variable gene, MMP, is a proteinase able to produce a distinct pattern 

of melanization in Bombyx mori larvae infected with the Xestia c-nigrum granulovirus 

(XecnGV) metalloproteinase-expressing Bombyx mori nucleopolyhedrovirus (Ko et al., 

2000). The enzyme is thought to enhance, replace, or act synergistically with proteins 

from virus or host playing an important role in the virus spread (Means & Passarelli, 

2010). This variability is not unexpected since granulovirus genomes vary in content 

with respect to the presence or absence of the proteases cathepsin and enhancin genes 

and also the chitinase gene, which seemingly converge a redundant enzymatic activity 

but not necessarily function(Ko et al., 2000; Lepore et al., 1996; Means & Passarelli, 

2010; Slack & Arif, 2007). 

 

3.4. Lack of cathepsin and chitinase genes 

 

ErelGV lacks cathepsin and chitinase genes, despite of their importance for promoting 

baculovirus horizontal transmission (D'Amico et al., 2013). This feature can explain the 

integrity of caterpillar flesh and light color after death (Figure 1A). Other 

betabaculovirus genomes also lack both enzymes: complete deletion in ChocGV 

(Escasa et al., 2006), Adoxophyes orana granulovirus (AdorGV) (Wormleaton et al., 
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2003), Phthorimaea opercullela granulovirus (PhopGV) (unpublished), 

PlxyGV(Hashimoto et al., 2000) and Spodoptera litura granulovirus (SpliGV)(Wang et 

al., 2011); Cryptophlebia leucotreta granulovirus (CrleGV)(Lange & Jehle, 2003) 

chitinase has an interruption; and in Helicoverpa armigera granulovirus (HearGV) 

(Harrison & Popham, 2008) only cathepsin is absent. Interestingly, most of these 

deletions seem to have occurred independently of each other within Betabaculovirus 

(data not shown), aside from ChocGV and ErelGV in which is strongly supported an 

ancestral lacking. Thus, it is reasonable to expect that AnbiGV, the closest relative to 

ErelGV, might also lack both cathepsin and chitinase. Taken together, these results 

reinforce the notion that both genes are most likely non-essential for the persistence of 

baculoviruses in the environment. Conversely, previous work from our research team 

has shown that introduction of cathepsin and chitinase from Choristoneura fumiferana 

defective nucleopolyhedrovirus into AgMNPV (which naturally lacks both genes) 

increases pathogenicity and occlusion body production relative to the wild type virus 

(Lima et al., 2013). 

 

3.5. dUTPase-like gene 

 

ErelOrf-5 codes for a nucleotide metabolism-related gene homologous to Orgyia 

pseudotsugata multiple nucleopolyhedrovirus (OpMNPV) Orf-31. The gene seems to be 

composed of a fusion between two distinct ORFs; a baculovirus thymidylate kinase-like 

gene and dUTPase-like genes. The thymidylate kinase enzyme catalyzes a critical step 

in the biosynthesis of deoxythymidine triphosphate (Cui et al., 2013). dUTPase 

catalyses dUTP dephosphorylation to generate dUMP (Penades et al., 2013). High 

levels of dUTP can be deleterious for virus genomic DNA replication since dTTP can 
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be substituted for dUTP during DNA synthesis (Priet et al., 2006). A high dUTP/dTTP 

ratio promotes uracil incorporation into DNA. Uracils in DNA are then targeted by 

uracil DNA glycosylase and excised, leading to futile repair cycles and DNA breakage 

and or translesional DNA synthesis (Castillo-Acosta et al., 2012; Guillet et al., 2006). 

Nucleotide metabolism-related enzyme acquisition is common in baculoviruses (Ferrelli 

et al., 2012) and could avoid this deleterious response by decreasing the dUTP/dTTP 

ratio, however how these genes alter the virus fitness is not clear (Herniou & Jehle, 

2007). 

 

3.6. The he65-like and p43-likehomologues 

 

The ErelGV genome contains homologues of the he65 and p43 genes. Homologues of 

he65are harbored by several alphabaculoviruses, four betabaculoviruses (Agrotis 

segetum granulovirus (AgseGV), HearGV, Pseudaletia unipuncta granulovirus 

(PsunGV), and Xestia c-nigrum granulovirus (XecnGV)), and two 

betaentomopoxviruses (Amsacta moorei entomopoxvirus - AMV and Mythimna 

separate entomopoxvirus - MSV). This gene is a member of a distinct RNA ligase 

family related to the T4 RNA ligase gp63-like gene and is present in all the domains of 

life (Bacteria, Archaea, and Eukarya) (Ho & Shuman, 2002; Rohrmann, 2013). The 

alignment of baculovirus and entomopoxvirushe65-like genes revealed large, 

independent, and recurrent deletions in the C-terminal region (data not shown), which 

contain five nucleotidyl transferase motifs (Ho & Shuman, 2002). The amino-terminal 

region was highly conserved although no previously characterized motifs were present. 

We performed a phylogenetic reconstruction based on this conserved domain. The he65 

reconstruction revealed distinct horizontal gene transfer (HGT) events from 
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Alphabaculovirus to Betabaculovirus and Betaentomopoxvirus (Figure 4A). 

Betabaculovirus likely endured two independent acquisitions from Group II 

Alphabaculovirus in distinct genomic regions: (i) a synapomorphic introduction for 

HearGV, PsunGV, and XecnGV (Figure 4A, yellow rectangle); and (ii) an additional 

gain for AgseGV (Figure 4A, brown rectangle). Importantly, support for AgseGV 

branch is low. However, the genomic context of the gene is conserved among HearGV, 

PsunGV, and XecnGV but not in AgseGV (data not shown), reinforcing our hypothesis 

that two independent introductions occurred. Likewise, Betaentomopoxvirus 

homologues were probably acquired from Group II Alphabaculovirus (Figure 4, orange 

rectangle). Remarkably, ErelGV is the first Betabaculovirus with a he65-like gene 

(ErelOrf-36 - Figure 4A, purple rectangle) acquired from Group I Alphabaculovirus. It 

is not clear whether C-terminal deleted he65 remains functional in baculovirus. 

However the maintenance of the amino-terminal region indicates that this gene region is 

under positive selection pressure. 
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Figure 4 - Phylogeny of he65and p43 reveals horizontal gene transfer in ErelGV 

from Alphabaculovirus. (A) The maximum likelihood (ML) tree was inferred using the 

conserved amino-terminal region alignment of he65-like gene for 36 baculoviruses and 

two entomopoxviruses. Circles indicate the presence (blue) or absence (red) of the 

carboxy-terminal region. The postulated horizontal gene transfer (HGT) events are 

highlighted for Betabaculovirus (light and dark orange), Betaentomopoxvirus (yellow), 

and ErelGV (green). (B) ML-Phylogenetic reconstruction for p43-like gene found in 

ErelGV genome. The trees are midpoint rooted for purposes of clarity. 

 

Furthermore, we found in ErelGV genome a p43-like gene (ErelOrf-105) whose 

homologues were found only in baculovirus species from the genus Alphabaculovirus 

with conserved amino acid sequence and position in the genome (Rohrmann, 2013). 

Deletion of p43 in AcMNPV does not affect virus replication in cell culture and the 

reason for gene acquisition and preservation is not clear (Yu & Carstens, 2011). Two 

hypotheses can be raised for p43 introduction in ErelGV: (i) ErelGV acquired the p43-

like gene from Group I Alphabaculovirus, specifically from AcMNPV-related viruses; 

or (ii) ErelGV acquired from Group II Alphabaculovirus, specifically from a 

baculovirus (e.g. Clanis bilineata nucleopolyhedrovirus - ClbiNPV (Zhu et al., 2009)) 

during co-infection of a sphingid host. 

 

3.7. Acquisitions of Densovirus-related genes in Betabaculovirus 

 

ErelOrf-57 and ErelOrf-100 are homologues to a non-structural Densovirus gene. 

Densovirus-related genes were previously described in two betabaculoviruses, ChocGV 

(ChocOrf-25) (Escasa et al., 2006) and CrleGV (CrleOrf-9) (Lange & Jehle, 2003), and 
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one gammabaculovirus (baculovirus infective to hymenoptera), Neodiprion lecontei 

nucleopolyhedrovirus (NeleNPV - NeleOrf-81) (Lauzon et al., 2004). The latter did not 

match the other two homologues (data not shown), suggesting these genes resulted from 

at least two HGT events between densoviruses and baculoviruses. Despite the limited 

number of Densovirus genomes available, we performed a phylogenetic analysis to help 

understand the origins of Betabaculovirus homologues. We found that the genes were 

dispersed over the phylogenetic tree, suggestive of multiple HGT events. As shown in 

Figure 5, Betabaculovirus homologues did not form a monophyletic cluster. To further 

substantiate our findings, we compared the likelihood of the observed tree to that 

estimated assuming a Betabaculovirus monophyletic clade (single-HGT event). Indeed, 

the likelihood ratio test rejected the monophyletic hypothesis favoring the multiple-

HGT scenario, which was also supported by the distinct genomic context observed for 

the homologous betabaculovirus genes (data not shown). Moreover, both ErelOrf-57 

and ErelOrf-100 form a well-supported clade, indicating that they probably represent a 

gene duplication event during ErelGV evolution. 

 

 

 

Figure 5. Densovirus-related genes in betabaculovirus and phylogenetic 

relationship. ML tree was inferred using the alignment of ErelOrf-57 and ErelOrf-100 
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from ErelGV with non-structural protein (NS) from Bombyx mori densovirus 2 and 3 

(BmbDENSV-2 / Genbank YP_007714627.1 and BmDENSV-3 / Genbank 

YP_007714627), NS3 from Diatraea saccharalis densovirus (DisaDENSV / Genbank 

NP_046812.1), Mythimna loreyi densovirus (MyloDENSV / Genbank NP_958098.1), 

Helicoverpa armigera densovirus (HaDENSV / Genbank AFK91982.1), Galleria 

mellonella densovirus (GameDENSV / Genbank NP_899649.1), Junonia coenia 

densovirus (JucoDENSV / Genbank AGO32182.1), and Pseudoplusia includens 

densovirus (PsinDENSV / GenbankYP_007003822.1), Orf-25 from ChocGV, and Orf-9 

from CrleGV. The tree is midpoint rooted for purposes of clarity only. We hypothesized 

gene duplication for both ErelGV genes (boldface). 

 

4. Conclusion 

 

ErelGV is a new betabaculovirus species closely related to ChocGV and PiraGV 

isolates. Its genome encodes 130 ORFs, eight of which are unique. We found evidence 

suggesting horizontal gene transfers from Alphabaculovirus and Densovirus to 

Betabaculovirus. The he65-like gene was independently acquired three times from 

Alphabaculovirus. We found a dUTPase homologous and two Densovirus-related 

genes.The contribution of these genes to baculovirus fitness is not clear and is being 

experimentally tested in our lab. Importantly, recombination event between insect 

viruses from unrelated families and genera might drive baculovirus genomic evolution. 
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5. Material and Methods 

 

5.1. Virus purification 

 

Insect cadavers of the hornworm E. ello ello with baculovirus infection symptoms were 

collected in cassava crops in the South of Brazil (Itajaí, Santa Catarina) in 1986. They 

were kindly provided by Dr. Renato Arcanjo Pegoraro (EPAGRI). The cadavers were 

kept in the freezer and later used for OBs purification. Insect cadavers were 

homogenized with ddH2O (w/v), filtered through three layers of gauze, and centrifuged 

at 7,000 x g for 10 min. The pellet was resuspended in 0.5% (w/v) SDS and again 

centrifuged at 7,000 x g for 10 min. The dilution and centrifugation steps were repeated 

four times, and the final pellet was washed in 0.5 M NaCl. The pellet was resuspended 

in ddH2O, loaded onto a continuous 40-65% sucrose gradient, and centrifuged at 

104.000 x g for 40 min at 4 ºC. The OB band was collected, diluted 4-fold in ddH2O, 

and centrifuged at 7,000 x g for 15 min at 4 ºC. 

 

5.2. Electron microscopy 

 

For scanning electron microscopy (SEM), 100 µl of the OB-containing solution (109 

OBs/ml) were incubated with 300 µl of acetone at 25 ºC for 1 hour. The solution was 

loaded in a metallic stub, dried overnight at 37 ºC, coated with gold in a Sputter Coater 

(Balzers) for 3 min, and observed in a scanning electron microscope Jeol JSM 840 A at 

10 kV. For transmission electron microscopy (TEM) pellets of purified granules were 

fixed in Karnovsky fixative (2.5% glutaraldehyde, 2% paraformaldehyde, in 0.1 M, 

cacodylate buffer, pH 7.2) for 2 h, post-fixed in 1% osmium tetroxide in the same buffer 
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for 1 h and then stained en bloc with 0.5% aqueous uranyl acetate, dehydrated in 

acetone, and embedded in Spurr’s low viscosity embedding medium. The ultrathin 

sections were contrasted with 2% uranyl acetate and observed in a ZEISS TEM 109 at 

80 kV. 

 

5.3. Genomic DNA restriction analyses 

 

Purified granules (109 OBs/ml) were dissolved in an alkaline solution and used to 

extract DNA according to O’Reilly et al. (O'Reilly et al., 1992). The quantity and 

quality of the isolated DNA were determined by electrophoresis on 0.8% agarose (data 

not shown). The viral DNA (1–2 µg) was individually cleaved with the restriction 

enzymes HindIII, EcoRI, and BamHI (Promega) according to manufacturer’s 

instructions. The DNA fragments generated were analyzed by 0.8% agarose gel 

electrophoresis (Sambrook & Russel, 2001), visualized, and photographed in 

AlphaImager® Mini (Alpha Innothech). 

 

5.4. Genome sequencing, assembly, and annotation. 

 

ErelGV genomic DNA was sequenced with the 454 Genome Sequencer (GS) FLX™ 

Standard (Roche) at the Centro de Genômica de Alto Desempenho do Distrito Federal 

(Brasília, Brazil). The genome was assembled de novo using Geneious 6.0 (Kearse et 

al., 2012) and confirmed using restriction enzyme digestion profile. The annotation was 

performed using Geneious 6.0 to identify the open reading frames (ORFs) that started 

with a methionine codon (ATG) encoding at least 50 amino acids and blastp (33) to 

identify homologues. 
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5.5. Phylogeny, genome, and gene comparisons 

 

For Baculoviridae phylogenetic analysis, a MAFFT alignment (Katoh et al., 2002) was 

carried out with concatenated amino acid sequences predicted for 37 baculovirus core 

genes. A maximum likelihood tree was inferred using PhyML with 100 repetitions of a 

non parametric bootstrap(Guindon et al., 2010),  implemented in Geneious, with 

LG+I+G+F model selected by Prottest 2.4 (Abascal et al., 2005). Moreover, a genomic 

comparison was performed using the protein dataset of all the complete Betabaculovirus 

genomes available in Genbank. The dataset was compared using CGView Comparison 

Tool (Grant et al., 2012)and the results were plotted using CIRCOS (Krzywinski et al., 

2009). We also compared ChocGV and PiraGV genomes with ErelGV genome using 

Mauve alignment (Darling et al., 2004). The horizontal gene transfer (HGTs) events 

were investigated comparing the maximum likelihood phylogenetic tree inferred using 

the RAxML method (Stamatakis et al., 2008) and a MAFT alignment of homologues 

for he65-like and p43-like,and Densovirus-related genes with 100 repetitions of a non 

parametric bootstrap for branch support. 
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Table S1. Characteristics of the Erinnyis ello granulovirus (ErelGV) genome: analysis and homology search. Predicted ORFs are compared with 

homologous genes in three related genomes. 

Orf Name 
Promoter 

motif 
Position 

Size 

(nt) 
Size (aa) 

  CypoGV   ChocGV   PiraGV 

  ORF 
Max Id 

(%) 
  ORF  

Max Id 

(%) 
  ORF 

Max Id 

(%) 

1b granulin L 1 > 747 747 248 
 

1 96.40 
 

1 97.20 
 

1 87.50 

2 
 

L 744 < 1,082 339 112 
 

2 51.60 
 

2 50.00 
 

2 60.30 

3 c pk-1 E 1,063 > 1,899 837 278 
 

3 57.00 
 

3 65.80 
 

3 67.80 

4 
 

? 1,996 > 2,541 546 181 
 

- - 
 

- - 
 

- - 

5 dUTPase-like E, L 2,811 > 3,764 954 317 
 

16e 31.30 
 

- - 
 

- - 

6 
 

E 3,839 < 4,414 576 191 
 

4 50.30 
 

5 53.40 
 

4 58.50 

7 
 

? 4,404 > 4,643 240 79 
 

5 45.20 
 

6 53.30 
 

5 57.90 

8 c ie-1 E 4,743 < 6,059 1,317 438 
 

7 45.10 
 

7 54.70 
 

6 56.30 

9 c 
 

? 6,090 > 6,665 576 191 
 

8 44.70 
 

8 51.50 
 

7 48.40 

10 b 
 

? 6,693 < 6,998 306 101 
 

9 65.30 
 

9 66.30 
 

8 64.40 

 
hr1  7,113 - 7,204 92 

          
11* 

 
? 7,151 < 7,792 642 213 

 
- - 

 
- - 

 
- - 

12 
 

E 7,791 > 7,949 159 52 
 

- - 
 

- - 
 

- - 

13 a odv-e18 L 8,172 < 8,447 276 91 
 

14 73.60 
 

12 79.50 
 

14 69.40 

14 a p49 E, L 8,448 < 9,827 1,380 459 
 

15 56.20 
 

13 60.60 
 

15 61.10 

15* 
 

E 9,736 > 9,960 225 74 
 

- - 
 

- - 
 

- - 

16 a odv-e56/pif-5 L 9,975 < 11,033 1,059 352 
 

18 69.50 
 

14 73.40 
 

16 67.20 
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17 
 

E, L 11,051 < 11,530 480 159 
 

- - 
 

- - 
 

17 29.30 

18 
 

E, L 11,545 < 11,943 399 132 
 

- - 
 

- - 
 

18 35.40 

19 
 

E 12,013 > 12,195 183 60 
 

19 40.70 
 

16 41.80 
 

19 47.30 

 
hr2  12,183 - 12,222 40 

          
20 pep-1 E, L 12,238 < 12,765 528 175 

 
20 58.90 

 
17 71.30 

 
20 54.00 

21 pep/p10 E, L 12,885 > 13,910 1,026 341 
 

22 69.20 
 

18 66.40 
 

21 67.60 

22 b pep-2 E, L 13,945 > 14,397 453 150 
 

23 62.20 
 

19 62.80 
 

22 59.90 

23 
 

? 14,494 < 15,636 1,143 380 
 

27 24.30 
 

- - 
 

- - 

 
hr3  15,715 - 15,853 139 

          

 
hr4  15,950 - 16,023 74 

          
24 

 
E 16,087 < 16,248 162 53 

 
- - 

 
- - 

 
- - 

25 
 

E 16,439 > 16,723 285 94 
 

- - 
 

- - 
 

- - 

26 
 

E 16,647 > 17,879 1,233 410 
 

- - 
 

22 48.20 
 

24 31.00 

27* 
 

E 17,928 < 18,116 189 62 
 

- - 
 

- - 
 

- 
 

28d f protein E 18,356 > 20,137 1,782 593 
 

31 56.60 
 

23 60.90 
 

27 58.70 

29 
 

E 20,368 > 21,297 930 309 
 

- - 
 

- - 
 

- - 

30 
 

E, L 21,359 < 22,069 711 236 
 

33 31.30 
 

24 44.00 
 

28 43.60 

31 a pif-3 E, L 22,107 > 22,673 567 188 
 

35 52.90 
 

26 47.80 
 

30 54.10 

32 
 

E, L 22,695 > 23,006 312 103 
 

39 62.10 
 

28 61.40 
 

31 55.30 

33 
 

L 23,038 < 23,352 315 104 
 

40 34.70 
 

- - 
 

- - 

34 a lef-2 ? 23,501 > 24,028 528 175 
 

41 49.10 
 

29 54.40 
 

33 55.00 

35 
 

E 24,012 > 24,284 273 90 
 

42 41.90 
 

30 43.70 
 

34 44.20 
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36 he65-like L 24,247 < 25,026 780 259 
 

- - 
 

- - 
 

- - 

37 
 

E 25,007 < 25,345 339 112 
 

43 29.40 
 

31 38.70 
 

35 37.00 

38 
 

E, L 25,355 < 25,801 447 148 
 

45 36.30 
 

32 56.60 
 

36 56.30 

39 mp-nase E, L 25,859 < 27,247 1,389 462 
 

46 39.70 
 

33 43.80 
 

37 46.50 

40 p13 L 27,226 > 28,071 846 281 
 

47 63.40 
 

34 65.50 
 

38 58.70 

41 chtBP L 28,091 > 28,348 258 85 
 

9 22.50 
 

7 23.90 
 

8 25.30 

42 a pif-2 L 28,358 > 29,482 1,125 374 
 

48 70.40 
 

35 69.00 
 

40 69.20 

43 pp-1 L 29,489 > 29,779 291 96 
 

- - 
 

36 45.30 
 

- - 

44 
 

L 29,694 > 32,642 2,949 982 
 

50 37.40 
 

- - 
 

- - 

45 b 
 

L 32,639 < 33,292 654 217 
 

52 78.00 
 

37 89.00 
 

43 72.00 

46 c 
 

L 33,302 > 33,454 153 50 
 

53 63.80 
 

38 70.00 
 

44 57.00 

47 c v-ubq E 33,462 < 33,749 288 95 
 

54 82.10 
 

39 87.20 
 

45 85.30 

48 a 
 

L 33,841 > 34,896 1,056 351 
 

55 52.30 
 

40 66.20 
 

46 63.60 

49 b 
 

E 34,794 > 35,066 273 90 
 

56 57.40 
 

41 54.30 
 

47 57.40 

50 c 39k; pp31 E 35,067 < 35,903 837 278 
 

57 40.00 
 

42 55.70 
 

48 58.90 

51 b lef-11 L 35,884 < 36,177 294 97 
 

58 53.30 
 

43 52.20 
 

49 57.40 

52 sod L 36,213 < 36,686 474 157 
 

59 65.90 
 

44 70.70 
 

50 68.80 

53* 
 

? 36,615 > 36,806 192 63 
 

- - 
 

- - 
 

- 45.80 

 
hr5  36,954 - 37,144 191 

          
54 p10 E, L 36,966 < 37,331 366 121 

 
- - 

 
45 54.50 

 
- - 

55 a p74 E, L 37,344 < 39,308 1,965 654 
 

60 60.10 
 

46 62.70 
 

51 58.80 

56 
 

L 39,312 < 39,689 378 125 
 

- - 
 

53 29.50 
 

- 34.70 
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57 
 

E 39,763 < 40,482 720 239 
 

- - 
 

25 35.10 
 

- - 

58 
 

E 40,640 < 41,245 606 201 
 

- - 
 

48 61.10 
 

54 61.20 

59* 
 

L 41,405 < 41,578 174 57 
 

- - 
 

- - 
 

- - 

60 
 

L 41,599 < 41,868 270 89 
 

62 76.20 
 

49 79.60 
 

55 71.00 

61 a p47 E, L 41,943 > 43,124 1,182 393 
 

68 65.50 
 

50 66.70 
 

56 66.30 

62 c bv-e31 E, L 43,170 > 43,835 666 221 
 

69 66.50 
 

51 67.60 
 

57 67.00 

63 c p24 L 43,849 > 44,412 564 187 
 

71 62.50 
 

52 67.80 
 

58 67.70 

64 
 

? 44,409 > 44,696 288 95 
 

- - 
 

53 45.50 
 

- - 

65 c 38.7k ? 44,748 < 45,221 474 157 
 

73 27.40 
 

54 34.80 
 

59 31.50 

66 a lef-1 ? 45,202 < 45,906 705 234 
 

74 57.00 
 

55 64.70 
 

60 63.40 

67 a pif-1 L 45,937 > 47,547 1,611 536 
 

75 65.50 
 

56 67.20 
 

61 58.70 

68 fgf-1 ? 47,548 < 48,231 684 227 
 

76 45.60 
 

57 55.30 
 

62 54.90 

69 
 

E 48,295 < 48,615 321 106 
 

77 37.40 
 

58 50.60 
 

63 44.20 

70* 
 

E, L 48,620 > 48,772 153 50 
 

- - 
 

- - 
 

- - 

71 
 

E, L 48,785 > 49,291 507 168 
 

79 36.30 
 

59 39.30 
 

64 41.30 

72 c lef-6 E 49,262 < 49,564 303 100 
 

80 38.00 
 

60 38.80 
 

65 50.00 

73 b dbp E 49,649 < 50,494 846 281 
 

81 48.80 
 

61 64.70 
 

66 60.60 

74 
 

L 50,509 < 50,739 231 76 
 

82 45.80 
 

62 52.90 
   

75 
 

E 50,675 < 51,244 570 189 
 

82 31.70 
 

63 38.50 
 

67 41.90 

76 a p48 E, L 51,268 > 52,440 1,173 390 
 

83 73.20 
 

64 74.80 
 

68 75.10 

77 c 
 

E, L 52,482 > 52,811 330 109 
 

84 57.40 
 

65 68.40 
 

69 57.40 

78 a 
 

L 52,865 > 53,989 1,125 374 
 

85 63.50 
 

66 71.30 
 

70 70.20 



67 
 

79 a p6.9 E, L 54,035 > 54,214 180 59 
 

86 49.10 e 
 

67 67.80 e 
 

71 69.40 e 

80 a lef-5 ? 54,264 < 54,995 732 243 
 

87 64.20 
 

68 66.90 
 

72 64.20 

81 a 38K L 54,942 > 55,841 900 299 
 

88 56.10 
 

69 66.00 
 

73 63.50 

82 a odv-e28/pif-4 L 55,838 < 56,323 486 161 
 

89 56.90 
 

70 68.10 
 

74 65.60 

83 a dna-helicase-1 L 56,389 > 59,694 3,306 1101 
 

90 53.00 
 

71 71.30 
 

75 64.30 

84 a odv-e25 E, L 59,724 < 60,365 642 213 
 

91 77.90 
 

72 77.80 
 

76 76.60 

85 a 
 

E, L 60,389 < 60,877 489 162 
 

92 50.90 
 

73 50.90 
 

77 57.50 

86 a p33/sox L 60,914 > 61,678 765 254 
 

93 63.40 
 

74 66.90 
 

78 68.00 

87 a lef-4 E, L 61,675 < 63,042 1,368 455 
 

95 54.10 
 

75 62.10 
 

80 55.90 

88 a vp39 L 63,119 > 63,979 861 286 
 

96 57.80 
 

76 63.40 
 

81 64.50 

89 a odv-e27 ? 64,040 > 64,894 903 300 
 

97 61.50 
 

77 73.10 
 

82 64.20 

 
hr6  64,964 - 65,177 214 

          
90* 

 
L 65,057 > 65,233 177 58 

 
- - 

 
- - 

 
- - 

91 
 

E, L 65,159 < 66,259 1,101 366 
 

90 40.20 
 

78 45.00 
 

83 41.40 

92 
 

? 66,258 > 66,632 375 124 
 

91 48.10 
 

79 40.90 
 

84 41.90 

93 a p95/vp91 E, L 66,619 < 68,409 1,791 596 
 

92 43.00 
 

80 54.50 
 

85 41.80 

94 c 
 

L 68,399 > 68,806 408 135 
 

102 50.00 
 

81 31.70 
 

86 34.10 

95 a 
 

E, L 68,784 > 69,365 582 193 
 

94 67.60 
 

82 72.50 
 

87 67.90 

96 a gp41 E, L 69,343 > 70,179 837 278 
 

95 62.60 
 

83 66.10 
 

88 63.50 

97 iap-3 E, L 70,213 > 71,022 810 269 
 

17 43.40 
 

84 42.30 
 

79 32.40 

98 a 
 

? 71,032 > 71,322 291 96 
 

105 39.30 
 

85 46.60 
 

89 39.80 

99 a vlf-1 L 71,246 > 72,367 1,122 373 
 

106 68.80 
 

86 65.80 
 

90 70.80 
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100 
 

E, L 72,429 < 73,097 669 222 
 

- - 
 

25 25.20 
 

- - 

101 
 

E 73,141 < 73,818 678 225 
 

- - 
 

87 43.50 
 

- - 

102* 
 

? 73,812 > 73,976 165 54 
 

- - 
 

- - 
 

- - 

103 
 

E, L 73,909 > 74,112 204 67 
 

107 59.40 
 

88 71.20 
 

91 67.30 

104 b 
 

E, L 74,174 > 74,626 453 150 
 

108 58.70 
 

89 64.00 
 

92 63.30 

105 p43-like ? 74,618 < 75,706 1,089 362 
 

- - 
 

- - 
 

- - 

106 a dna-pol E, L 75,743 < 78,901 3,159 1052 
 

111 62.30 
 

90 68.70 
 

93 67.10 

107 a desmoplakin ? 78,849 > 80,942 2,094 697 
 

112 34.70 
 

91 35.40 
 

94 38.50 

108 c lef-3 E 81,064 < 82,077 1,014 337 
 

113 41.40 
 

92 60.50 
 

95 52.50 

109 a pif-6 ? 82,049 > 82,426 378 125 
 

114 56.10 
 

93 65.60 
 

96 66.40 

110 
 

? 82,477 > 83,064 588 195 
 

115 31.40 
 

94 43.60 
 

97 48.30 

111 iap-5 E 83,045 > 83,887 843 280 
 

116 48.90 
 

95 56.00 
 

98 53.40 

112 a lef-9 ? 83,865 > 85,346 1,482 493 
 

117 69.40 
 

96 73.40 
 

99 73.60 

113 b fp-25k E, L 85,352 > 85,816 465 154 
 

118 65.20 
 

97 70.80 
 

100 63.60 

114 dna-ligase ? 85,813 < 87,486 1,674 557 
 

120 60.10 
 

99 66.80 
 

102 65.70 

115 
 

? 87,658 > 87,888 231 76 
 

121 45.00 
 

100 43.60 
 

103 39.60 

116 
 

L 87,943 > 88,161 219 72 
 

122 63.00 
 

101 60.30 
 

104 55.10 

117 fgf-2 ? 88,222 < 89,418 1,197 398 
 

123 34.30 
 

102 34.50 
 

105 34.20 

118 
 

E, L 89,545 > 89,823 279 92 
 

124 52.80 
 

103 60.70 
 

106 61.10 

119 a alk-exo E 89,873 > 91,078 1,206 401 
 

125 56.30 
 

104 63.90 
 

107 62.50 

120 dna-helicase-2 E 90,987 > 92,357 1,371 456 
 

126 54.90 
 

105 58.90 
 

108 54.60 

121 
 

? 92,402 < 93,457 1056 351 
 

130 41.20 
 

106 41.00 
 

109 32.90 
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hr7  92,550 - 92,622 73 

          
122 a lef-8 E, L 93,472 < 96,081 2,610 869 

 
131 70.50 

 
107 73.50 

 
110 71.40 

123 a 
 

L 96,357 > 96,755 399 132 
 

134 60.20 
 

109 60.20 
 

113 65.40 

124 
 

L 96,752 < 97,546 795 264 
 

135 35.60 
 

110 43.20 
 

114 42.90 

125 lef-10 E 97,773 > 98,159 387 128 
 

137 51.40 
 

112 61.60 
 

115 56.00 

126 a vp1054 ? 98,026 > 99,036 1,011 336 
 

138 57.40 
 

113 63.80 
 

116 64.30 

127 
 

L 99,033 > 99,206 174 57 
 

- - 
 

- - 
 

117 42.10 

128 fgf-3 E 99,231 > 100,130 900 299 
 

140 35.90 
 

114 40.20 
 

118 39.80 

129 egt E 100,150 < 101,550 1,401 466 
 

141 48.90 
 

115 52.30 
 

119 50.30 

130c me53 E 101,729 > 102,709 981 326 
 

143 49.00 
 

116 47.00 
 

120 50.20 
 

a α-, β-, γ-, and δ-baculovirus core genes; b α-, β-, and γ-baculovirus core genes; c α- and β-baculovirus core genes; d α-, β-, and δ-baculovirus core genes; e Identity was achieved by 

manual alignment. * ErelGV unique genes. The putative gene upstream regions were classified according to the presence of promoter motifs in early (E), late (L), or unknown (?).  
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Capítulo 4. Characterization of Helicoverpa zea single nucleopolyhedrovirus 

isolated in Brazil during the first old world bollworm (Noctuidae: Helicoverpa 

armigera) nationwide outbreak 

 

1. Abstract 

 

A baculovirus isolated in Brazil during the first nationwide outbreak of Helicoverpa 

armigera is described by ultrastructural analyses, restriction profiles, pathogenicity of 

host insects, and complete genome sequence. The results revealed that the virus is an 

isolate of the species Helicoverpa zea single nucleopolyhedrovirus (HzSNPV-Brazilian) 

never reported before in Brazil. Among the HzSNPV isolates few mutations were 

observed depicting likely a recent divergence of this lineage. Therefore, the entrance of 

both foreign pests and natural pathogens into the country must warn the government to 

reinforce sanitary barriers in order to avoid possible agriculture sabotage and novel 

foreign pest introductions. Moreover, we found that the Brazilian natural isolate was as 

lethal as a commercial strain to H. armigera. Importantly, virus characterization is of 

importance in establishment of an economical and useful virus-based biological control 

program in the country to counteract effectively pest infestations. 

 

Keywords 

Helicoverpa argimera, pest outbreak, Brazil, baculovirus, HzSNPV, biological control. 
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Este capítulo foi inteiramente publicado na revista Virus Review & Research. 

Ardisson-Araújo, D. M., Sosa-Gomez, D. R., Melo, F. L., Báo, S. N. & Ribeiro, B. 

M. (2015). Characterization of Helicoverpa zea single nucleopolyhedrovirus isolated in 

Brazil during the first old world bollworm (Noctuidae: Helicoverpa armigera) 

nationwide outbreak. Virus Reviews & Research 20, 4. 

 

2. Main Text 

 

In February 2013 the old world cotton bollworm, Helicoverpa armigera (Lepidoptera: 

Noctuidae), that used to be restricted to Africa, Asia, and Europe was identified for the 

first time in Brazil. A month later, the Brazilian Corporation of Agricultural Research 

(Portuguese acronym EMBRAPA) reported this occurrence to the Brazilian Ministry of 

Agriculture, Livestock, and Food Supply (Notification Report n° 70570.000355/2013-

2). Unfortunately, by that time the crop pest was already spreadin a high prevalence in 

the country, which has led to severe agriculture damages and economical losses.This 

outbreak could be explained by an association of both inadequate management of 

planting host species (e.g. cotton, soybean, and corn) in extensive areas and the 

uncontrolled use of chemical pesticides which provided together optimal conditions for 

insect growing. 

 

The genus Helicoverpa presents some of the most devastating pest species in the world 

causing hefty economic losses in several crops including cotton, soybean, wheat, corn, 

green beans, tomatoes, citrus, and pastures (Cunningham & Zalucki, 2014). The larvae 

are naturally more tolerant to most of the common insecticides requiring higher 

application rates to be controlled efficiently (McCaffery, 1998). Almost 30% of all 
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pesticides used worldwide are directed against H. armigera (Ahmad, 2007) although the 

management of outbreaks has so far been ineffective and also has induced the 

appearance of resistant insect phenotypes (Oakeshott et al., 2013; Rowley et al., 2011) 

including engineered plants expressing Bacillus thuringiensis (Bt) toxins (Tabashnik et 

al., 2009).Therefore, other naturally found disease-causing pathogens like baculoviruses 

are important alternatives for the integrated and effective control of Helicoverpa 

(Rowley et al., 2011). Robust virus characterization allows the establishment of a virus-

based biological control program to control pest outbreaks as a safety, useful, and 

economical alternative for chemical pesticides. 

 

For the crop season 2013/2014, commercial baculoviruses infective to the old world 

bollworm have been imported to be usedin Brazil. Before this allowance by the 

Brazilian government to import Helicoverpa-infecting baculoviruses from other 

countries in order to control a nationwide H. armigera outbreak, a baculovirus was 

isolated in field from larvae cadavers with symptoms of infection. Cadavers of H. 

armigera were collected in March/2013 on soybean crops in Warta, Londrina County, 

Parana, Brazil.Although H. zea does not infest soybean in Brazil, we confirmed the 

species H. armigera by amplifying and sequencing the genes cytochrome c oxidase I 

(COI), cytochrome B, and the region cox1-tRNA-leu-cox2 (data not shown). Electron 

microscopy (EM) of purified occlusion bodies (OBs), which are hallmarks of the family 

Baculoviridae, showed polyhedral shape (FIG. 1A) and virions with singly enveloped 

nucleocapsids within (FIG. 1B). The occlusion bodies purification, polyhedra EM and 

DNA extraction were performed according to published protocols (Ardisson-Araujo et 

al., 2014). The viral DNA (1–2 µg) was individually cleaved with the restriction 

enzymes XhoI, BglII, PstI, or BamHI (Promega) according to manufacturer’s 
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instructions. Importantly, HzSNPV is found naturally infecting the genus Helicoverpa 

during its larval stage (Chen et al., 2002; Ogembo et al., 2009; Rowley et al., 2011). 

Based on the comparison of both the viral DNA restriction enzyme profiles (FIG. 1C) 

and previously published data of other Helicoverpa-infecting nucleopolyhedroviruses 

(Chen et al., 2002), we concluded that the virus belonged to the species HzSNPV which 

was one of the first commercial baculovirus pesticides registered in the 1970’s (Virion-

H, Biocontrol-VHZ, Elcar) and has been so far produced and applied successfully 

against both H. armigera and H. zea (Rowley et al., 2011; Shieh, 1989; van Beek & 

Davis, 2007). Therefore, we named the Brazilian isolate HzSNPV-Brazilian, even being 

found in H. armigera cadavers. 
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FIG. 1. Characterization of the Helicoverpa-infecting baculovirus found in Brazil. (A) 

Scanning electron micrograph shows polyhedral-shaped OBs. (B) Transmission electron 

micrograph shows sliced OBs with single-enveloped nucleocapsids within. (C) Agarose 

gel electrophoresis-resolved HzSNPV-Brazilian genome DNA fragments digested with 

XhoI (lane 1), BglII (lane 2), PstI (lane 3), and BamHI (lane 4), and molecular weight 

marker (lane M). All the features together corroborate that this isolate belongs to the 

species Helicoverpa zea single nucleopolyhedrovirus (HzSNPV). (D) Maximum 

likelihood tree of Helicoverpa-isolated single nucleopolyhedroviruses. The phylogeny 

was inferred using MAFFT alignment of whole genome and the relationship using 

PhyML method. The Brazilian isolate (boldface) is related to both HzSNPV-USA and 

HzSNPV-HS18 viruses and the closest relative to this group is the Australian HaNPV-

H25EA1. Branch support is estimated by a Shimodaira–Hasegawa-like test. 

 

To further substantiate our data, we carried out a bioassay using the Brazilian strain and 

a commercially available virus from the same species HzSNPV (Gemstar®) towards H. 

armigera and H. zea. For this experiment, serial dilution of the virus were carried out to 

determine both LC50 and LC99 in third-instar caterpillars and mixed with the larva diet 

as previously described (Ardisson-Araujo et al., 2014). Insects were allowed to feed ad 

libitum on virus inoculated diet. A group with no treatment (n=60) was set up as control. 

Mortality was recorded 13 days post-infection (p.i.) by scoring the number of dead 

insect which had no response to touch. The data was analyzed by Polo Plus program 

(LEORA SOFTWARE, POLO-Plus 1.0, Probit and Logit analysis, Petaluma, 

California. 2003). We found that the Brazilian isolate virus was more lethal to H. zea 

than to H. armigera in oral bioassays (Table 1). The OB concentration per ml of 

artificial diet capable to kill 50% of the tested insects at the third-instar (LC50) was 987 
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OB/ml to H. armigera and 215 OB/ml to H. zea. This ability to kill H. zea more 

efficiently by HzSNPV was previously reported (Rowley et al., 2011), which is a very 

interesting aspect of short term adaptation to the host even presenting high identity to 

the closest relatives (i.e.HaNPV isolates). Moreover, we tested whether the Brazilian 

strain could be as efficient as the commercially available HzSNPV from Gemstar® 

(Certis, Columbia, USA) to kill H. armigera. We found that both viruses had 

statistically equal lethal concentration to the tested insect (Table 1). Conversely, in a 

worldwide Helicoverpa-isolated baculovirus study, Gemstar® isolate of HzSNPV 

presented lethal concentration higher than the other naturally found isolates (Rowley et 

al., 2011). 

 

Table 1. Dose-mortality responses of Helicoverpa spp. third instar larvae infected orally with 

either HzSNPV-Brazilian (Br) or a commercial strain of HzSNPV (Gemstar®). 

Insect Virus n1 LC50 (OB/ml) 
95% Fiducial limits 

LC99 (OB/ml) 
Lower Upper 

H. zea Br 197 2.15 x 102 0.75 × 102 4.00 × 102 130.0 × 102 

H. armigera 
Br 482 9.87 x 102 6.60 × 102 15.6 × 102 754.0 × 102 

Gemstar® 283 10.2 x 102 4.71 × 102 21.5 × 102 nt 

1, number of tested insects; nt, non-tested 

 

The whole genome of HzSNPV-Brazilian (Genbank: KM596835) was sequenced with 

the 454 Genome Sequencer (GS) FLX™ Standard (Roche) at the Center of High-

performance Genomic (Brasilia, Brazil). The genome was de novo assembled using 

Geneious 6.0 (Kearse et al., 2012) and confirmed with the digestion profile. Annotation 

was also performed using Geneious 6.0 to identify the open reading frames (ORFs) that 

started with a methionine codon (ATG) encoding polypeptides with at least 50 amino 

acids, and BLASTP (Altschul et al., 1997) to identify homologs. The sequencing 

produced 8,237 single-end reads. After size and quality trimming, 8,068 reads (average 
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size of 755.5 nt) were assembled with coverage of 47.2±12.0 bp/site. The HzSNPV-

Brazilian genome has a size of 129,694 bp with a G+C content of 39.1 %. The genome 

potentially codes for 146 putative ORFs with predicted polypeptides of at least 50 

amino acids and all of them are homologs to those of HzSNPV isolates. Eight ORFs 

were not annotated in the first described genome but were present. Isolates of HzSNPV 

have a nucleotide pairwise alignment identity of 99% and the average identity across the 

Helicoverpa-infecting SNPVs is 96.22±1.49%. HzSNPV-Brazilian presents a deletion 

of 1,000 bp in the homolog region 1 (confirmed by PCR, data not shown).  

 

For phylogenetic analysis, a MAFFT alignment (Katoh et al., 2002)was carried out with 

whole genome sequences of all Helicoverpa-isolate single nucleopolyhedrovirus 

available in Genbank. This alignment was manually inspected, and poorly aligned 

regions (at least 50 % of gaps) were deleted. The resulting alignment was approximately 

135 kb long. The maximum likelihood tree was inferred using PhyML(Guindon et al., 

2010), under Tamura-Nei model selected by jModelTest-2.1.4 software (Darriba et al., 

2012). The branch support was estimated by a Shimodaira-Hasegawa-like test 

(Anisimova et al., 2011). The phylogenetic analysis confirmed that HzSNPV-Brazilian 

is closely related to HzSNPV isolates (FIG. 1D).The short branch length compared to 

the other isolatesindicates low genetic diversity and low branch support prevented us to 

establish the origin of the Brazilian strain. 

 

In order to determine the CDS diversity among the Helicoverpa-infecting single 

nucleopolyhedrovirus, we considered the completely sequenced viruses as two 

separated groups including viruses isolated from (i) H. armigera and (ii) from H. zea. 

To search for polymorphism, we concatenated 135 ORFs found to be common among 
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all the Helicoverpa-isolated single nucleopolyhedrovirus: HaNPV isolates C1 

[AF303045], Australia [JN584482], G4 [AF271059], NNg1 [AP010907], and H25A1 

[KJ922128] and HzSNPV isolates USA [AF334030], HS18 [KJ004000], and Brazilian 

[KM596835]. We performed a MAFFT alignment and set as reference sequence the 

genome of the G4 for the HaNPVgroup and the Brazilian for HzSNPV group.For the 

first (i.e. HaNPV-related baculovirus), we found 624 nonsynonymous polymorphisms 

out of 1,592 (data not shown). On the other hand, we found only 13 non synonymous 

polymorphisms out of 15 among the three HzSNPV isolates (data not shown). This very 

low genetic diversity among the HzSNPV isolates in comparison to HaNPV depicts a 

recent divergence of the isolates reinforcing the hypothesis that the Brazilian isolate 

could be recently introduced into the country from either the American or the Russian 

strain. Sublethal and latent infections are of importance for the persistence of 

baculoviruses in the environment  (Kukan, 1999) which could explain how HzSNPV 

together with the host insect has gotten into the country. In a previous study, we found 

the first non-Asian isolate of a Bomby mori-infecting baculovirus in Brazil. By complete 

genome sequencing and phylogenetic analysis, similarly to the results found in this 

work, we found that the virus was probably introduced together with the insect into the 

country (Ardisson-Araujo et al., 2014). 

 

We determined the following from the present short report. (i) The H. armigera-

infecting baculovirus isolated in Brazil belongs to the species HzSNPV. (ii) It is a single 

NPV with polyhedral-shaped occlusion bodies. (iii) The virus was more lethal to H. zea 

than to H. armigera, besides of presenting the same lethality as that observed for the 

commercial strain Gemstar® to H. armigera. (iv) The complete genome sequence 
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revealed its close relationship to HzSNPV isolates. (v) Low genetic diversity was 

observed among the HzSNPV isolates. 
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Capítulo 5. Functional characterization of hesp018, a baculovirus-encoded 

serpin gene 

 

1. Summary 

 

The serpin family of serine proteinase inhibitors plays key roles in a variety of 

biochemical pathways.  In insects, one of the important functions carried out by serpins 

is regulation of the phenoloxidase cascade, a pathway that produces melanin and other 

compounds that are important in insect humoral immunity. Recent sequencing of the 

baculovirus Hemileuca sp. nucleopolyhedrovirus (HespNPV) genome revealed the 

presence of a gene, hesp018, with homology to insect serpins. To our knowledge 

hesp018 is the only intact serpin homolog known to exist in a viral genome outside of 

the chordopoxviruses. In this study, the Hesp018 protein was shown to be a functional 

serpin with inhibitory activity against a subset of serine proteinases. Hesp018 also 

inhibited phenoloxidase activation when mixed with lepidopteran hemolymph. The 

Protein was secreted when expressed in lepidopteran cells, and a baculovirus expressing 

it exhibited accelerated production of viral progeny during in vitro infection. Expression 

of Hesp018 also reduced caspase activity induced by baculovirus infection, but caused 

increased cathepsin activity. In infected insect larvae, expression of Hesp018 resulted in 

faster larval melanization, consistent with increased activity of viral cathepsin. Finally, 

expression of Hesp018 increased the virulence of a prototype baculovirus by 4-fold in 

orally-infected neonate Trichoplusia ni larvae. Based on our observations, we 

hypothesize that the hesp018 may have been retained in HespNPV due to its ability to 

inhibit the activity of select host proteinases, possibly including proteinases involved in 

the phenoloxidase response, during infection of host insects.  
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Este capítulo foi inteiramente publicado na revista Journal of General Virology. 

Ardisson-Araujo, D. M., Rohrmann, G. F., Ribeiro, B. M. & Clem, R. J. (2015). 

Functional characterization of hesp018, a baculovirus-encoded serpin gene. J Gen Virol 

96, 1150-1160. 

 

2. Introduction 

 

The insect innate immune system responds against invading pathogens and parasites 

(Jiang et al., 2010; Xu & Cherry, 2014) by means of antimicrobial peptides, the action 

of hemocytes, and by intracellular mechanisms such as RNA interference (Jayachandran 

et al., 2012) and apoptosis (Clem, 2005). On the other hand, infectious agents have 

evolved mechanisms to overcome or even manipulate this hostile environment in order 

to survive and reproduce (Clem & Passarelli, 2013; Ferrandon et al., 2007). 

 

Baculoviruses are large DNA viruses that mainly infect the larval stages of Lepidoptera 

(moths and butterflies) (Herniou et al., 2012; Rohrmann, 2013a). A typical baculovirus 

infection initiates when susceptible caterpillars feed on foliage contaminated with viral 

occlusion bodies (OBs), which release occlusion-derived virions in the midgut and 

establish primary infection (Slack & Arif, 2007). Infected midgut epithelial cells 

produce budded virions (BV), which cross the midgut barrier and cause systemic 

secondary infection. Baculoviruses are able to manipulate the cellular environment to 

enhance their infection (Thiem, 2009), for example by inhibiting cell cycle progression 

(Prikhod'ko & Miller, 1998), inducing DNA damage response (Huang et al., 2011), 

blocking apoptosis (Ikeda et al., 2011), and inducing shutoff of host gene expression 
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(Ooi & Miller, 1988). They are also able to manipulate host physiology and behavior 

through the expression of various viral proteins (Kamita et al., 2005; Katsuma et al., 

2012; O'Reilly & Miller, 1989).  There is evidence that baculovirus infection causes 

immune suppression in infected larvae, which leads to an increase in gut microbiota 

(Jakubowska et al., 2013). However, it is not clear whether baculoviruses can directly 

(i.e. by expression of a viral gene product) control humoral innate immune responses. 

 

The presence of bacteria or fungi in the lepidopteran hemocoel stimulates cellular and 

humoral responses (Jiang et al., 2010); however, there is no consensus regarding 

immune activation caused by baculovirus infection. It has been proposed to be 

dependent on the route of infection or on specific responses which might vary between 

insects (Terenius et al., 2009). Hemocytes, when induced, can neutralize pathogens by 

engulfing or trapping them in nodules (Dean et al., 2004; Yu & Kanost, 2004) which 

become melanized through the activation of phenoloxidases (POs). POs produce 

reactive intermediates for melanin production and these contribute to the killing of 

microbes (Nappi & Christensen, 2005; Zhao et al., 2007; Zhao et al., 2011). 

Baculovirus-infected cells can also be encapsulated by hemocytes and melanized 

(McNeil et al., 2010; Trudeau et al., 2001; Washburn et al., 2000). POs are present in 

insect plasma in an inactive form called proPO. Microorganism invasion triggers 

activation of a serine proteinase cascade, which eventually results in the cleavage of 

proPO to active PO. The activity of the proteinases in the PO cascade is negatively 

regulated by serine proteinase inhibitors (serpins) (Jiang et al., 2010). 

 

In addition to regulating the activation of PO, serpins are also important in many other 

pathways involving serine proteinases (Gettins, 2002; Silverman et al., 2001). Serpins 
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consist of a single peptide chain typically composed of three β-sheets (A, B and C) and 

several α-helices. A reactive center loop located between β-sheet A and C determines 

the inhibitory selectivity (Huntington, 2011). Serpin inhibition initially involves 

formation of a non-covalent complex with the targeted proteinase. When the enzyme 

cleaves the serpin at the P1 residue within the reactive center loop, a covalent ester 

linkage is formed between the serpin and proteinase, resulting in dramatic 

conformational changes in both the enzyme, which is now inactive, and the serpin, 

which is cleaved (Huntington, 2011). 

 

While serpin homologs are present in chordopoxviruses that infect vertebrates, where 

they inhibit apoptosis and inflammatory responses (Tewari et al., 1995), until recently 

intact serpin genes had not been reported in other virus genomes. However Rohrmann et 

al.(Rohrmann et al., 2013) recently reported the presence of a serpin homolog, hesp018, 

in the genome of the baculovirus Hemileuca sp. nucleopolyhedrovirus (HespNPV).  In 

this report, we describe the analysis of the phylogeny of this baculovirus-encoded gene 

and its ability to function as a serpin, as well as the effects of hesp018 expression on the 

fitness of a prototype baculovirus. 

 

3. Results 

 

3.1. Phylogenetic analysis of the hesp018 gene 

 

To investigate the relationship of Hesp018 to other serpins, a maximum likelihood tree 

was constructed using the predicted amino acid sequence of Hesp018 and several 

arthropod serpin sequences. The results support the hypothesis that hesp018 arose as a 
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horizontal gene transfer from a lepidopteran host (Fig. 1A). We found that the Hesp018 

sequence clustered with lepidopteran serpin type 4 orthologs, as previously 

hypothesized (Rohrmann et al., 2013). Interestingly, the region of the HespNPV 

genome containing hesp018 may have been a hotspot for recombination in the ancestor 

of HespNPV-related baculovirus species (Group II Alphabaculovirus species) since 

hypothetical newly acquired genes and repeat regions are found in this region (Fig.1B).  

 

 

 

FIG. 1. In silico analyses of Hesp018. A) Phylogenetic analysis of selected arthropod 

serpins. Hesp018 sequence clustered with lepidopteran type 4 serpins. A crustacean-

derived serpin roots the Maximum Likelihood tree. B) The hesp018 gene region is a 

possible hotspot for recombination events.  Gene order is shown from Hemileuca sp. 

nucleopolyhedrovirus (HespNPV) and other type II alphabaculoviruses including Clanis 
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bilineata NPV (ClbiNPV), Apocheima cinerarium NPV (ApciNPV), Ectropis obliqua 

NPV (EcobNPV), Orgyia leucostigma NPV (OrleNPV), and Lymantria xylina MNPV 

(LyxyMNPV). C) Serpin annotation based on alignment of M. sexta and Hesp018 

protein sequences. SP, signal peptide with predicted cleavage sites represented by 

scissors and dashed lines; Sc, scissile bond involved in inhibition by serpins. The 

arginine residue at the predicted P1 site is indicated by an arrow. Conserved residues are 

bold-faced and residues that are in the signature but are not conserved are underlined. 

 

Based on alignment with insect serpins, we found that Hesp018 contains a predicted 

signal peptide, a conserved strand 3 of beta-sheet A, a hinge region, a scissile bond, and 

a prosite signature, all features commonly found in serpin proteins (Fig. 1C). The signal 

peptide contains two potential predicted cleavage sites (Fig. 1C, scissors). For the serpin 

signature region, six of nine residues are conserved in strand 3 of beta-sheet A, six of 

eight are conserved in the hinge region and the prosite-signature contains seven 

conserved residues (Fig. 1C). Importantly, Hesp018 has a basic arginine residue at the 

predicted P1 site at the scissile bond region (Fig. 1C, arrow), characteristic of trypsin-

like serine proteinase inhibitors (An et al., 2012). Based on these characteristics, we 

predicted that Hesp018 is an active serpin. 

 

3.2. Inhibitory activity of the baculovirus serpin 

 

To test for serpin activity, His-tagged Hesp018 protein was expressed in E. coli, 

purified and incubated with the serine proteinases trypsin, chymotrypsin, plasmin, and 

proteinase K. Hesp018 efficiently inhibited in a concentration-dependent manner 

trypsin, chymotrypsin, and plasmin, but not proteinase K (Fig. 2 and Table 1). Trypsin 
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and chymotrypsin were each able to cleave Hesp018 (Fig. 2E). Of the enzymes tested, 

plasmin was the most sensitive to inhibition by Hesp018, reaching 100% inhibition at 

10:1 molar ratio (serpin:proteinase). Inhibition of trypsin was 87% at 10:1, while 

chymotrypsin reached 67% inhibition at 10:1 (Table 1). Plasmin formed a stable 

complex with Hesp018 as detected by immunoblot analysis (data not shown), indicating 

that Hesp018 inhibited plasmin by the conserved serpin mechanism. 

 

 

 

FIG. 2. Hesp018 inhibits a subset of serine proteinases. Recombinant Hesp018 protein 

was incubated with (A) trypsin, (B) chymotrypsin, (C) plasmin, or (D) proteinase K at 

the indicated molar ratios of serpin (S) and proteinase (P), after which the residual 

amidase activity was measured. Standard errors (n=3) and statistical differences 

obtained by unpaired two-tailed Student’s t test are indicated (p values: *, p<0.05; **, 
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p≤0.01; ***, p≤0.0001). (E) The mixtures for trypsin and chymotrypsin were subjected 

to SDS-PAGE under reducing conditions, and the cleaved serpin was detected by 

immunoblotting using anti-His antibody: Lane 1, Hesp018; lane 2, trypsin; lane 3, 

Hesp018 + trypsin (1:1); lane 4, Hesp018 + chymotrypsin (1:1); lane 5, chymotrypsin. 

The asterisk and the circle indicate the migration of full length and cleaved Hesp018, 

respectively. 

 

aPercent inhibition relative to control lacking Hesp018 (± SE). 

 

 

Serpin-4 from Manduca sexta has been shown to inhibit the hemolymph proteinases 

HP-1, HP-6, and HP-21 in the PO pathway (Tong et al., 2005).  Since the closest 

relatives of Hesp018 are serpin-4 homologs, we examined the ability of purified 

recombinant Hesp018 protein to inhibit PO activation in lepidopteran plasma. We found 

that Hesp018 was able to prevent bacteria-stimulated M. sexta plasma PO activity (Fig. 

3A) and migrated faster by SDS-PAGE after incubation with the insect plasma (Fig. 

3B), indicating that Hesp018 was cleaved and functioned as a substrate inhibitor in 

hemolymph. Together, the results in Figs. 2 and 3 indicate that Hesp018 is a functional 

serpin. 

 

Table 1. Inhibition of serine proteinases by Hesp018. 

Ratio 

(Serpin:Proteinase) 
Trypsin Chymotrypsin Plasmin Proteinase K 

0.1:1 22.0a ± 5.1 30.6 ± 3.2 22.0  ± 0.3 0.3 ± 3.3  

   1:1 80.2 ± 4.0 63.8 ± 2.8 79.1 ± 9.3 -2.5 ± 4.4 

 10:1 87.8 ± 0.4 66.7 ± 2.4 100.0 ± 0.0 -5.3 ± 0.9 
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FIG. 3. Hesp018 can inhibit PO activity and is cleaved in plasma. (A) Inhibition of 

ProPO activation in M. sexta plasma by Hesp018. Cell-free plasma was incubated with 

100 ng purified Hesp018 for 10 min, followed by addition of M. luteus extract to 

stimulate PO activation. PO activity (mean ± S.E., n = 3) was measured after 10 min. 

Asterisks indicate statistical difference obtained by unpaired two-tailed Student’s t test 

(p≤0.0001) and by one-way ANOVA (Graphpad) (p<0.0001). (B) Purified Hesp018 

was incubated with plasma for 10 min and the mixture activated with bacterial extract. 

Transferred proteins were then detected with anti-His antibody; (1) Hesp018, (2) 

plasma, and (3) plasma-treated Hesp018. The asterisk and the circle indicate the 

migration of full length and cleaved Hesp018, respectively. 

 

3.3. Serpin expression accelerates AcMPNV BV production 

 

While it would be ideal to test the function of Hesp018 in the context of HespNPV 

infection, this virus is biologically uncharacterized, and currently only exists as an 

archived sample of occlusion bodies (Rohrmann, 2013b; Rohrmann et al., 2013). 

Therefore to examine the effect of Hesp018 expression during baculovirus infection, we 

constructed recombinant versions of the prototype Group I alphabaculovirus, 
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Autographa californica M nucleopolyhedrovirus (AcMNPV), expressing Hesp018 with 

or without a C-terminal HA epitope tag (Fig. 4A). For comparison we also constructed a 

virus expressing M. sexta serpin-4B protein (Fig. 4A).  

 

 

 

FIG. 4. Recombinant versions of AcMNPV expressing serpin genes. (A) Schematic 

representation of viruses expressing either Hesp018 or M. sexta serpin-4B under control 

of the D. melanogaster hsp70 promoter. (B) Hesp018 and serpin-4B were secreted 
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during recombinant AcMNPV in vitro infection. Cells were harvested at the indicated 

times and cell lysates or supernatants were analyzed by immunoblotting with either 

anti-HA antibody or anti-M. sexta serpin-4B. (C) BV growth curves (MOI = 0.01) as 

determined by TCID50 assay. The growth curve for the tagged hesp018-expressing virus 

was similar to the untagged version (not shown). Expression of either Hesp018 or 

serpin-4B increased BV titers at 24 and 48 h p.i. (n=4) with significance levels of 

p<0.001 obtained by Student’s t test. 

 

When recombinant viruses expressing Hesp018-HA or serpin-4B were used to infect 

Sf9 cells, both proteins were secreted into the media (Fig.4B). Expression of the serpin 

genes resulted in significantly increased AcMNPV BV titers at 24 and 48 h p.i., 

although by 96 h p.i. the titers were similar to control virus (Fig. 4C). This result 

indicates that serpin expression accelerated the production of BV in vitro.  

 

3.4. Viral and cellular enzyme activities influenced by Hesp018 expression 

 

We next tested whether the hesp018 gene could affect, directly or indirectly, cellular or 

viral proteinase activities when expressed during recombinant AcMNPV infection in 

vitro. Most baculoviruses, including AcMNPV, encode a papain-like cysteine 

proteinase that has homology to cathepsins (v-cath), as well as a chitinase homolog 

(chiA); both v-cath and chiA are required for baculovirus-induced host liquefaction, and 

v-cath is also involved in viral-induced host melanization (Hawtin et al., 1997; Slack et 

al., 1995).  In addition, AcMNPV infection stimulates the activation of cellular effector 

caspases, whose activities are normally inhibited by the viral P35 protein but which can 

be studied using mutants lacking p35. 
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Interestingly, we found that infection of Sf9 cells with viruses expressing either 

baculovirus- or insect-derived serpin genes caused significantly increased cathepsin 

activity, but not chitinase activity, when compared to the parental virus Ac-PG (Fig. 5A 

and B). Since cathepsin activity is required for caterpillar melanization (Slack et al., 

1995), we also examined the timing of melanization of M. sexta larvae injected with 

BV.  There was a noticeable increase in melanization at 24 h post-death when the larvae 

were injected with viruses expressing either Hesp018 or serpin-4B, compared to control 

virus (Fig. 5C). This increased melanization suggests that cathepsin activity may have 

also been increased by serpin expression during in vivo infection. 
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FIG. 5. Viral and cellular enzyme activities influenced by recombinant baculovirus-

mediated Hesp018 expression. Sf9 cells were infected with the indicated viruses and A) 

cathepsin or B) chitinase activity was measured at 42 h p.i. Ac-DelCC-PG is a virus 

lacking both chitinase and cathepsin viral genes. C) Expression of Hesp018 or serpin-

4B accelerates post-mortem melanization of M. sexta larvae. Larvae infected with 

viruses expressing Hesp018 or serpin-4B had noticeably darker cuticles than those 
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infected with Ac-PG at 24 h post-mortem. The results are representative of three 

biological replicates. To analyze caspase activity, Sf9 cells were infected with the 

viruses shown and caspase activity was measured at D) 24 h p.i. and E) 48 h p.i. HA-

tagged Hesp018 (Ac-hesp018-ha-REP-PG) or untagged Hesp018 (Ac-hesp018 -REP-

PG) were expressed from a version of AcMNPV lacking the caspase inhibitor p35. As a 

comparison, cells were infected with the parental p35 mutant virus (Ac-p35KO-PG) or a 

repair virus in which p35 was reinserted in the p35 mutant bacmid (Ac-p35-REP).  The 

results shown are combined from four biological replicates. Standard errors and 

statistical differences obtained by unpaired two-tailed Student’s t test are indicated (p 

values are indicated as described in the Fig. 2 legend). 

 

Some serpins, including the poxvirus serpin crmA, are known to be able to inhibit 

caspases, even though caspases are cysteine proteinases (Tewari et al., 1995). To test 

whether Hesp018 expression could inhibit caspases during AcMNPV infection, we 

expressed Hesp018 in a version of AcMNPV lacking P35 (Huang et al., 2011). 

Infection of Sf9 cells with p35 mutant AcMNPV resulted in high levels of effector 

caspase activity, as previously shown (Bertin et al., 1996; Huang et al., 2013). 

Expression of Hesp018 from the p35 mutant virus resulted in a significant reduction in 

caspase activity, although the level of caspase activity was not reduced as much as when 

p35 was re-inserted into the p35 deletion virus (Fig. 5D-E). Nevertheless, these results 

indicate that Hesp018 may have some inhibitory activity against caspases, although this 

will require additional confirmation. 
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3.5. Hesp018 expression increases AcMNPV virulence in T. ni 

 

To examine the effect of serpin expression during in vivo infection, we performed 

neonate oral infection assays using the Hesp018-expressing virus and control virus in 

two different species (Spodoptera frugiperda and Trichoplusia ni). While both species 

are susceptible to AcMNPV infection, T. ni is more sensitive than S. frugiperda, thus 

providing a valuable comparison. We found no significant difference in LT50 (time 

necessary for 50% lethality) for either T. ni or S. frugiperda neonates using an OB 

concentration sufficient to kill 95% of the insects (Table 2). Although the slopes 

(indicating steepness of the lethality curves) showed statistical differences in both 

species, the slope for the Hesp018-expressing virus was greater than control virus in T. 

ni, but lower than control in S. frugiperda, indicating no clear trend. 

 

However, when the LC50 (concentration of occlusion bodies required for 50% lethality) 

values of these viruses were compared, the LC50 of the Hesp018-expressing virus was 4-

fold less than the control virus in T.ni larvae (Table 3). No significant difference was 

observed in S. frugiperda (Table 3). Thus, expression of Hesp018 in AcMNPV resulted 

in an increase in viral virulence in T. ni larvae. 

 

Table 2. Time-mortality response of T. niand S. frugiperda neonate larvae infected orally 

with either Ac-PGor Ac-hesp018-PG. 

Insect Virus LT50 (h) 
95% Fiducial limits 

      Slope±SE 
Lower Upper 

T. ni 
Control 70.87983 64.99885 76.58491        9.8535 ± 0.9100 

Serpin 75.87458 70.98130 80.71219      11.8885 ± 1.0170 

S. frugiperda 
Control 88.35941 84.47834 92.24068      18.2834 ± 1.4670 

Serpin 82.29592 78.07245 86.57326      15.7703 ± 1.2303 
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Table 3. Dose-mortality response of T. niand S. frugiperda neonate larvae infected orally with 

either Ac-PG orAc-hesp018-PG. 

Insect Virus LC50 (OB/ml) 
95% Fiducial limits 

 Slope ± SE 
Lower Upper 

T. ni 
Control 6.04 x 103 4.19 x 103 8.41 x 103 1.706 ± 0.264 

Serpin 1.55 x 103 0.73 x 103 2.51 x 103 1.239 ± 0.213 

S. frugiperda 
Control 1.21 x 106 4.45 x 105 2.18 x 106 1.012 ± 0.184 

Serpin 6.57 x 105 1.51 x 105 1.37 x 106 0.9590.197 

 
 

 

4. Discussion 

 

The serpin homolog hesp018, previously reported in the genome of the Group II 

alphabaculovirus HespNPV (Rohrmann et al., 2013), is the first intact serpin gene found 

in a viral genome outside of the chordopoxviruses. In this report, we investigated the 

inhibitory activity of Hesp018 on several serine proteinases, and showed that it is a 

functional serpin. Expression of hesp018 in AcMNPV resulted in accelerated BV 

production in Sf9 cells and a 4-fold lower LC50 in T. ni larvae. These results support the 

hypothesis that acquisition of a serpin homolog provided an evolutionary advantage to 

an ancestor of HespNPV, causing it to be retained in this lineage. Although the natural 

host(s) of HespNPV is not known for certain, it was likely isolated from a Hemileuca 

sp. in the family Saturniidae, which is grouped together with Sphingidae and 

Bombycidae in the superfamily Bombycoidea (Regier et al., 2008). However, the 

hesp018 sequence is relatively divergent from noctuid and bombycoid lepidopteran 

serpin-4 homologs, indicating that if it was acquired from a bombycoid host, it is either 

not a recent acquisition, or it has evolved faster than the insect genes (Fig. 1A). 
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At this point we do not know the target enzyme(s) that are acted upon by Hesp018 

during HespNPV infection. Serpins are able to maintain the PO cascade in an inactive 

state in the absence of immune challenge, and down-regulate the cascade during or after 

infection (Jiang et al., 2010). One of the closest relatives to hesp018, serpin-4 from M. 

sexta, can inhibit hemolymph proteinases and block PO cascade activation (Tong et al., 

2005; Tong & Kanost, 2005). Therefore, we hypothesized that the hesp018 might play a 

role in regulating host immunity. Our data do indeed suggest that Hesp018 can suppress 

activation of the PO cascade, since incubation of recombinant Hesp018 with M. sexta 

hemolymph inhibited PO activity. However, it may very well be that the evolutionarily 

important function of Hesp018 is to inhibit another cellular proteinase that is not 

involved in PO activation. 

 

Interestingly, expression of either Hesp018 or M. sexta serpin-4B caused increased 

cathepsin activity in infected Sf9 cells. The mechanism of this increase in activity is 

unknown, but the simplest explanation is that it could be due to inhibition of a 

proteinase that normally degrades v-cath, since uninfected Sf9 cells or cells infected 

with a virus lacking v-cath have very low levels of endogenous cathepsin activity (Fig. 

5A). However it is also possible that this increase in activity is due to increased 

expression or activity of a cellular cathepsin. AcMNPV infection causes late 

melanization of larvae, usually after the host has died, but viruses lacking v-cath do not 

cause melanization (Slack et al., 1995).  Consistent with this, and also with the 

increased cathepsin activity observed in vitro, M. sexta larvae infected with AcMNPV 

expressing Hesp018 melanized more rapidly than controls. Since melanization is a 

result of PO activation, this more rapid melanization response may seem incongruent 

with the ability of recombinant Hesp018 to inhibit the PO response. However, the 
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melanization of the infected larvae occurred late in infection, after death. Presumably at 

these late times, overwhelming PO activation occurs that cannot be inhibited by 

expression of Hesp018. Increased levels or activity of v-cath would be expected to 

accelerate this late activation. 

 

Like other large DNA viruses, baculoviruses have frequently acquired host genes during 

their evolution, so from this point of view the horizontal acquisition of a proteinase 

inhibitor is not particularly surprising (Becker, 2000; Katsuma et al., 2012). It is 

curious, however, that acquisition of serpin homologs has been so rare during virus 

evolution. Well over 60 baculovirus genomes have been sequenced, but no other 

baculoviruses have been found to date that harbor serpin homologs, even though these 

viruses have co-evolved with their lepidopteran hosts for more than 100 million years 

(Theze et al., 2011). For that matter, functional serpins have not been found in any other 

viral genomes outside of the vertebrate-infecting chordopoxviruses. The scarcity of 

serpin homologs in baculoviruses (as well as other viruses) suggests that serpin 

expression may confer an advantage only in rare situations. It is even possible that 

serpin expression could have deleterious effects on viral fitness in many situations. For 

example, in the case of insect viruses such as baculoviruses, serpin expression could 

potentially allow increased competition by other microbes if inhibiting PO activation 

results in humoral immunity becoming compromised. Many chordopoxviruses encode 

multiple serpin homologs (Haller et al., 2014), and serpin expression contributes to the 

exquisite abilities of these viruses to manipulate the vertebrate immune response. 

Despite this, other vertebrate-infecting DNA viruses that also inhibit immune responses, 

such as herpes viruses and adenoviruses, have not acquired serpin homologs. 

Interestingly, intraperitoneal delivery of purified Serp-1 protein from myxomavirus to 
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mice infected with gammaherpesvirus 68 or ebolavirus improved host survival and 

reduced viral infection (Chen et al., 2013). Although this is an artificial situation, it is 

consistent with the idea that serpin expression may only be advantageous to viruses in 

highly specialized situations. 

 

Along these lines, in this work we used three different insect species from two 

lepidopteran families, the two noctuids T. ni and S. frugiperda and the sphingid M. 

sexta, to characterize the function of hesp018. However, even within the order 

Lepidoptera, immune responses have been found to vary at the family level. For 

example, the expression of hemolin, an immunoglobulin-like protein specific to 

lepidopterans, is stimulated by baculovirus infection in bombycoids 

(Antheraea pernyi and Hyalophora cecropia from Saturniidae, and Bombyx mori from 

Bombycidae) (Li et al., 2005) but not in the noctuids Helicoverpa zea, Heliothis 

virescens, or T. ni (Terenius et al., 2009). Interestingly, knocking down hemolin 

expression accelerated baculovirus infection in A. pernyi (Hirai et al., 2004). 

Importantly, whereas hemolymph from a noctuid (H. virescens) exhibited virucidal 

activity (Popham et al., 2004; Shelby & Popham, 2006), hemolymph proteins from a 

saturniid (Lonomia obliqua) were actually able to improve baculovirus replication in 

vitro (Sousa et al., 2014). Furthermore, encapsulation and melanization of AcMNPV-

infected cells by hemocytes was shown to occur in semi-permissive H. zea but not in 

fully permissive H. virescens (Trudeau et al., 2001). Therefore, not just hemolin but 

possibly other components of the lepidopteran hemolymph could play differing roles in 

the protection of the host insect in different lepidopteran families. 

 



99 
 

In conclusion, we have shown that the baculovirus-encoded serpin Hesp018 is an active 

serpin, and that expression of Hesp018 in the heterologous baculovirus AcMNPV 

provided a replication advantage in vitro and enhanced virulence in vivo in one of two 

noctuid hosts.  We can only speculate that perhaps the natural host of HespNPV is a 

lepidopteran species that is adept at mounting a humoral immune response that inhibits 

baculovirus infection, or some other response that Hesp018 can inhibit, and thus 

retention of hesp018 confers a unique advantage to this virus. It would be interesting to 

study the function of hesp018 in its natural context, if the natural host could be 

identified. It will also be interesting to discover, as new viral genomes continue to be 

sequenced, whether other serpins have been acquired during virus evolution, and their 

roles in viral replication. 

 

5. Methods 

 

5.1. Cells, virus, and insects 

 

S. frugiperda (fall armyworm) Sf9 and T. ni (cabbage looper) TN-368 cells were 

cultured at 27°C in TC-100 medium (Invitrogen) supplemented with 10% fetal bovine 

serum, penicillin G (60 µg/ml), streptomycin sulfate (200 µg/ml), and amphotericin B 

(0.5 µg/ml).Viruses were titered by TCID50 assay (O'Reilly et al., 1992) in Sf9 or TN-

368 cells (for p35-deleted viruses). M. sexta eggs were obtained from Michael Kanost, 

Kansas State University. Insect larvae were reared as described previously (Dunn & 

Drake, 1983). T. ni and S. frugiperda eggs were purchased from Benzon Research 

(Carlisle, PA). After hatching, larvae were reared on artificial diet in a 27 °C chamber 

with a 12 h/12 h light/dark cycle. 
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5.2. Gene amplification and construction of shuttle vectors and recombinant 

viruses 

 

The hesp018 gene (with or without HA tag) or the M. sexta serpin-4B gene were 

separately amplified using different sets of primers (0.4 µM): hesp018/SacI F (GAG 

CTC ATG AAC ATG GTC GTC GGA TCA TCG TTA ATA G) and hesp018/NotI-HA 

R (GCG GCC GCT TAA GCG TAA TCC GGG ACG TCG TAG GGA TAA TTT 

GAA ATG AAA TCC ATT TTC GTC G) or hesp018/NotI R GCG GCC GCT TAA 

TTT GAA ATG AAA TCC ATT TTC GTC G); Serpin 4 A/B F (GGA TCC GAG CTC 

ATG AAG TGT GTG TTA GTG ATT GTA TTA TG) and Serpin 4 A/B R (GGA TCC 

GCG GCC GCT TAG TAA AGA AAA GGT TGT TTG TAT ATT CC). The amplified 

fragments were digested with SacI/NotI (New England Biolabs) and cloned into the 

shuttle plasmid pFB-PG-H-pA (a modified pFB-PG (Wu et al., 2006) containing a 

SV40-polyA signal and the Drosophila melanogaster hsp70 promoter to drive 

heterologous gene expression). The modified plasmids containing the serpin genes were 

transformed into DH10-Bac cells (Invitrogen, Carlsbad, CA, USA) and recombinant 

bacmids were selected and confirmed by PCR. Moreover, the plasmids were transposed 

into both a cathepsin/chitinase-deleted (Kaba et al., 2004) and a p35-deleted bacmid 

(Huang et al., 2011). 1 µg of each recombinant bacmid was transfected into Sf9 cells 

(106) using Lipofectin. For the p35-deleted bacmid, the transfection was performed 

using TN-368 cells. The supernatants containing the recombinant viruses were collected 

at seven days post-transfection, amplified in Sf9 or TN-368 cells, and titered. 
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5.3. Phylogenetic analysis 

 

A MAFFT alignment (Katoh et al., 2002) was performed with the amino acid sequences 

of Hesp018 (NC_021923) and serpins from 19 arthropod species (M. sexta serpin-4B 

(AY566163.1); M. sexta serpin-4A (AY566162.1); Bombyx mori serpin-4 

(NM_001043625.1); Danaus plexippus (AGBW01006202.1); Plutella xylostella serpin-

4 (KC686693.1); Chilo suppressalis (AFQ01142.1); B. mori serpin-5 

(NP_001037205.1); M. sexta serpin-5 (AY566166.1); D. plexippus serpin-5 

(EHJ70286.1); P. xylostella serpin-5 (AGK24648.1); B. mandarina serpin-7 

(NP_001139701.1); M. sexta serpin-7 (HQ149330.2); Culex quinquefasciatus 

(XM_001863294.1); Aedes aegypti (XM_001661855.1); Anopheles gambiae 

(XM_312891.3); Musca domestica (XM_005183439.1); Tribolium castaneum 

(XM_008195262.1); Locusta migratoria (AGC84400.1); Caligus rogercresseyi 

(BT076733.1). A maximum likelihood tree was inferred using RaxML method with 100 

repetitions of a non-parametric bootstrap (Stamatakis et al., 2008) and JTT model 

selected by Prottest 2.4 (Abascal et al., 2005). The crustacean C. rogercresseyi serpin 

sequence was used to root the tree. 

 

5.4. Serpin expression and purification 

 

The hesp018 gene was amplified using the primers hesp018 F 

(GGATCCCATTTAGACCATTTTTCATTAAA) and hesp018 R 

(AAGCTTAATTTGAAATGAAATCCATTTTC) and HespNPV genomic DNA as 

template. The generated fragment was cloned into pET19b (Novagen) in 

BamHI/HindIII restriction sites. The plasmid pET19b-hesp018 was transformed into E. 



102 
 

coli strain BL21(DE3)/pLysS. Recombinant N-terminally His-tagged protein was 

isolated using Talon resin (Clontech) as previously described (Wu & Passarelli, 2010). 

The purified protein was dialyzed against phosphate buffer (10 mM NaH2PO4, pH 6.2) 

and the concentration obtained by BCA assay (Pierce). 

 

5.5. Hemolymph samples and proPO activity inhibition 

 

Fifth-instar, day 3 larvae were chilled on ice for at least 20 min. Hemolymph was 

collected by clipping the dorsal horn with scissors. Hemocytes were removed by 

centrifugation at 10,000 × g for 10 min at 4 °C. Plasma samples were stored at −80 °C. 

For proPO activity analysis, 100 ng recombinant protein was incubated with 4 µl 

hemolymph for 10 min at room temperature. Subsequently, 2 µl of Micrococcus luteus 

extract (10 µg/µl in sterile water, Sigma) was added to stimulate PO activity. 300 ng of 

BSA was used as a negative control. After incubation for 10 min at room temperature, 

PO activity was measured by absorbance using dopamine as substrate. One unit of PO 

activity was defined as the amount of enzyme producing an increase in absorbance 

(A470) of 0.001 per min. Treatments were replicated three times and analyzed by 

unpaired two-tailed Student’s t test and one-way ANOVA. 

 

5.6. M. sexta injection 

 

Fifth-instar, day 3 larvae were chilled on ice for at least 20 min. Three caterpillars were 

each injected with 100 µl of virus (107pfu/ml). For this experiment, we used the 

cathepsin/chitinase-deleted virus transposed with shuttle vectors harboring no gene, M. 

sexta-derived serpin-4B gene, or HA-tagged hesp018 gene. After injection, the insects 
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were individually transferred into 1-oz plastic cups containing food. Photographs of 

dead caterpillars were taken 24 h post-death. 

 

5.7. Amidase activity 

 

Recombinant Hesp018 protein was incubated with proteinases at different molar ratios 

as described (An et al., 2012). One unit of amidase activity was defined as the amount 

of enzyme producing an increase in absorbance (A405) of 0.001 per min. Treatments 

were replicated three times and analyzed by one-way ANOVA. The following 

proteinases and their artificial substrates (Sigma-Aldrich, St. Louis, MO, USA) were 

used: bovine pancreatic α-chymotrypsin (120 ng) and N-succinyl-Ala-Ala-Pro-Phe-p-

nitroanilide; human serum plasmin (200 ng) and D-Phe-L-Pro-L-Arg-p-nitroanilide; 

proteinase K from Tritirchium album (40 ng) (Promega, Madison, WI, USA) and N-

succinyl-Ala-Ala-Pro-Phe-p-nitroanilide (synthesized in-house); bovine pancreatic 

trypsin (5 ng) and N-acetyl-Ile-Glu-Ala-Arg-p-nitroanilide (Biochemistry Core Facility, 

Kansas State University). Enzymes and substrates were kindly provided by Drs. 

Michael Kanost and Kristin Michel, Kansas State University. 

 

5.8. Secretion analysis 

 

Sf9 cells were infected at MOI of 5 with Ac-PG, Ac-hesp018-ha-PG, or Ac-Ms-serpin-

4B-PG for 1 hour at 27ºC, washed three times with fresh media, and replaced with 1 ml 

of TC-100 without FBS. At different time points, cells and supernatant were collected 

and centrifuged at 1,000 x g for 5 min at room temperature. The supernatant was 

transferred to a new tube and the pelleted cells were washed twice with phosphate-
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buffered saline (PBS), pH 6.2 and resuspended in PBS. The supernatant and the 

resuspended cells were incubated with an equal volume of 2x protein loading buffer and 

heated for 5 min at 100 ºC. Proteins were analyzed by SDS-PAGE (sodium dodecyl 

sulfate-polyacrylamide gel electrophoresis) followed by immunoblotting using 

monoclonal anti-HA (Covance) or anti-M. sexta Serpin-4B (Tong & Kanost, 2005) 

kindly provided by Michael Kanost. 

 

5.9. Viral growth curves 

 

Sf9 cells were infected at MOI=0.01. After 1 hr, virus was removed, the cells were 

washed twice with TC-100, and TC-100 containing 10% FBS was added.  Samples 

were collected at the indicated times and titered by TCID50 assay. 

 

5.10. Cathepsin and chitinase activity 

 

Sf9 cells were infected at an MOI=5 with Ac-PG, Ac-hesp018-ha-PG, Ac-Ms-serpin-

4B-PG, or AcDelCC-PG (Kaba et al., 2004). At 42 h post infection (p.i.), cells and 

supernatant were collected and centrifuged at 500 x g for 5 min at 4º C. The cells were 

washed twice with PBS. The final pellet was resuspended in 500 µl of PBS. The cells 

were lysed on ice using a glass homogenizer. The protein concentrations were obtained 

by BCA assay (Pierce), and 100 µg (cathepsin) or 10 µg (chitinase) of lysate was used 

for activity assays as previously described (Gopalakrishnan et al., 1995; Slack et al., 

1995). 
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5.11.  Caspase activity 

 

Sf9 cells were infected at MOI=5 with p35-deleted viruses harboring the hesp018 gene 

with or without HA tag or p35 for 1 h at 27 ºC. At 24 and 48 h p.i., cells were collected 

and washed twice with PBS and resuspended in 100 µl lysis buffer (20 mM HEPES 

KOH, pH 7.5, 50 mM KCl, 1.5 mM MgCl2, 1 mM EDTA, 1 mM EGTA, 1 mM DTT, 

250 mM sucrose) containing Complete Mini EDTA-free proteinase inhibitor cocktail. 

50 µl of cell lysate was incubated with 50 µl of reaction buffer (100 mM HEPES, pH 

7.4, 2 mM DTT, 0.1% CHAPS, 1% sucrose) at 37 ºC for 15 min. Caspase substrate Ac-

DEVD-AFC (MP Biomedicals) was added at a final concentration of 40 µM and the 

fluorescence (excitation wave length of 405 nm and emission wave length of 505 nm) 

was monitored every 10 min for 2 h at 25 ºC using a Victor 1420 Multilabel counter 

(Perkin-Elmer). The average slope (change in fluorescence versus time) was plotted.  

 

5.12. Bioassays in T. ni and S. frugiperda neonates 

 

T. ni and S. frugiperda neonates (within 24 h after hatching) were transferred to diet 

contaminated with OBs at different concentrations. OBs from Ac-PG and Ac-hesp018-

PG were obtained from per os-infected T. ni, purified (O'Reilly et al., 1992), 

resuspended in water, and vortexed for 2 h to dissociate clumps. Concentrations of OBs 

at 1.6 × 102, 8.0 × 103, 4.0 × 104, 2.0 × 105, and 1.0 × 106 OBs/ml for T. ni or 8.0 × 105, 

4.0 × 106, 2.0 × 107, and 1.0 × 108 OBs/ml for S. frugiperda in the diet were used, as 

previously described (Detvisitsakun et al., 2007). After feeding for 24 h, neonates were 

transferred into individual plastic cups containing uncontaminated food. Mortality was 

recorded at different time points by scoring the number of dead insects which had no 
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response to touch. The LC50 and LT50 values were determined using probit analysis 

(SAS Institute, 2004). 
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Capítulo 6. A betabaculovirus encoding a gp64 homolog 

 

1. Abstract 

 

Background. A betabaculovirus (DisaGV) was isolated from Diatraea saccharalis 

(Lepidoptera: Crambidae), one of the most important insect pest of the sugarcane and 

other monocot cultures in Brazil. Results. The complete genome sequence of DisaGV 

was determined using the 454-pyrosequencing method. The genome was 98,404 bp 

long, which makes it the smallest lepidopteran-infecting baculovirus sequenced to date. 

It had a G+C content of 29.7% encoding 125 putative open reading frames (ORF). All 

the 37 baculovirus core genes and a set of 19 betabaculovirus-specific genes were 

found. A group of 13 putative genes was not found in any other baculovirus genome 

sequenced so far. A phylogenetic analysis indicated that DisaGV is a member of 

Betabaculovirus genus and that it is a sister group to a cluster formed by ChocGV, 

ErelGV, PiraGV isolates, ClanGV, CaLGV, CypoGV, CrleGV AdorGV, PhopGV and 

EpapGV. Surprisingly, we found in the DisaGV genome a G protein-coupled receptor 

related to lepidopteran and other insect virus genes and a gp64 homolog which is likely 

a product of horizontal gene transfer from Group 1 alphabaculoviruses. Conclusion. 

DisaGV is a novel species into the genus Betabaculovirus. It is closely related to 

CypoGV-related species and presents the smallest genome in size so far. Remarkably, 

we found a homolog of gp64 which used to be present solely in group 1 

alphabaculovirus genomes. 

 

Keywords: Baculovirus genome, Diatraea saccharalis betabaculovirus, gp64, GPCR, 

evolution. 
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2. Background 

 

Brazil is the largest sugarcane (Saccharum officinarum, L.) and bioethanol producer in 

the world (Soccol et al., 2010; Zanin et al., 2000). Nowadays, sugarcane is grown on an 

area over 8 million hectares for both sugar and alcohol production (Soccol et al., 2010). 

As with other cultures cultivated over large areas, pest control is of crucial importance. 

The sugarcane borer Diatraea saccharalis Fabr. (Lepidoptera: Crambidae) is present in 

all sugarcane-producing regions of the country, and is considered the major sugarcane 

pest, especially in the southeast region (Dinardo-Miranda, 2008).  Biological control 

based on the release of the parasitoid Cotesia flavipes (Cameron) (Hymenoptera: 

Braconidae) has been used with success in the control of the sugarcane borer (Mahmoud 

et al., 2011; Rossi et al., 2014). However, other complementary and compatible 

methods, such as the application of baculoviruses, would be highly desirable. 

 

Baculoviruses are a large group of insect-specific viruses with circular double-stranded 

DNA, whose hallmark is the presence of occlusion bodies (OBs)(Rohrmann, 2013). The 

family Baculoviridae comprises four genera: two of them, Alphabaculovirus and 

Betabaculovirus, infect insects of the order Lepidoptera; the other two  

Gammabaculovirus and Deltabaculovirus, that infect insects of the orders Hymenoptera 



112 
 

and Diptera (Jehle et al., 2006b) respectively. To date more than 100 baculovirus 

genomes were completely sequenced, and 19 of them are betabaculoviruses. 

 

The Anticarsia gemmatalis multiple nucleopolyhedrovirus (AgMNPV) has been used in 

Brazil in one of the largest biocontrol programs in the world to control an insect pest 

(Moscardi, 1999). Other successful programs with baculoviruses have been reported 

elsewhere in the world (Rohrmann, 2013). The success of the AgMNPV program is due 

to a combination of factors, such as: high virulence, dead larvae can be collected 

directly from the field to be used as inoculum, efficient application technology, etc.  

Nevertheless, development is needed on pest species that are not so easily exposed to 

the virus, as in the case of borers. Large-scale DNA sequencing provides information on 

complete viral genomes allowing for “omic” approaches that will eventually facilitate 

the development of application strategies. Since Brazil is a very diverse country, several 

baculoviruses have been found and their genomes sequenced (Ardisson-Araujo et al., 

2014a; Ardisson-Araujo et al., 2014b; Ardisson-Araujo et al., 2015; Craveiro et al., 

2015; Oliveira et al., 2006; Wolff et al., 2008). With this prospect in mind, we have 

sequenced and analyzed the genome of Diatraea saccharalis granulovirus (DisaGV), 

the first betabaculovirus isolated from a member of the family Crambidae. The presence 

of a gp64 homolog was a unique and remarkable finding among betabaculoviruses. 

 

3. Results and Discussion 

 

3.1. Viral infection confirmation 

 

Subjects of the species Diatraea saccharalis with virus infection symptoms were found 

in sugarcane fields in the Southern Brazil. We performed the structural characterization 
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of the putative virus and a granulovirus infection was confirmed by transmission 

electron microscopy of OBs extracted from larvae cadavers. Each elliptical granule had 

a single rod-shaped virion surrounded by a robust protein matrix coat (Figure 1), 

indicating the typical morphology of GVs (Rohrmann, 2013). Since the protein matrix 

is formed by granulin produced in large amounts during late infection and because it is 

highly conserved among lepidopteran-infective baculovirus, we amplified and 

sequenced the granulin gene in order to obtain an initial confirmation to the viral type 

(data not shown). The 747 bp length of the DisaGV granulin had high amino acid 

identity with orthologs from the genus Betabaculovirus (data not shown). 

 

 

 

Figure 1. Ultrastructural analysis of Diatraea saccharalis granulovirus (DisaGV). 

Transmission electron micrograph reveals granular occlusion bodies containing singly 

embedded rod-shaped nucleocapsid (red arrow) (scale bars = 0.5 µm). 

 

3.2. DisaGV genome and phylogeny 

 

The complete genome of DisaGV (Genbank accession number: KP296186) was 98,407 

bp in length (mean coverage of 36 x), which makes the DisaGV the smallest 



114 
 

betabaculovirus sequenced to date, followed by AdorGV (99,657 bp) (Wormleaton et 

al., 2003) and PlxyGV (100,999 bp) (Hashimoto et al., 2000). The G+C content was 

29.7 % a typical low value found among GVs and potentially encoded 125 ORFs with 

at least 50 predicted amino acid residues (Table S1 and Figure 2).  The current 

baculovirus species demarcation criterion is based on pairwise nucleotide distances 

estimated using the Kimura 2-parameter model of nucleotide substitution for three 

genes, granulin, lef-8, and lef-9 (Jehle et al., 2006b). The pairwise distances of the viral 

sequences of DisaGV to other betabaculoviruses for both single loci and concatenated 

alignment are well in excess of 0.05 substitutions/site fulfilling all the criteria for a 

novel species (data not shown). In order to investigate the phylogenetic relationship of 

DisaGV to other baculoviruses, we carried out a maximum likelihood phylogenetic 

analysis based on the alignment of the 37 baculovirus core proteins from all baculovirus 

genomes publicly available using solely the unique species (Table S2). As suggested by 

both OB ultrastructural analysis  and granulin gene sequencing (data not shown), we 

found DisaGV as sister taxa of the cluster formed by ChocGV, ErelGV, PiraGV 

isolates, ClanGV, CaLGV, CypoGV and CrleGV (Figure 3A).  
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Figure 2. Circular genome map of DisaGV with all genes identified on the 98,392 bp 

long. Arrows show the transcripcional orientation and relative size of each ORF. Those 

are colored according to presence into baculoviral genera: in blue the 37 core genes, in 

green only betabaculovirus-specific genes, in red the DisaGV unique genes, in yellow 

genes found in some subjects of both alpha and betabaculovirus, and homologous 

regions (hrs) in orange. 

 



116 
 

 

 

Figure 3. Maximum-likelihood tree for Betabaculovirus and genome comparison. (A) 

The phylogeny was based on the concatenated amino acid sequences of the 37 core 

proteins identified in all baculovirus genome completely sequenced so far (Table S2). 

We collapsed gammabaculoviruses (orange, γ) and alphaphabaculoviruses (dark blue, 

α). The CuniNPV was used as root (light blue). DisaGV (boldface) is a betabaculovirus 

and sister species of the cluster formed by CypoGV-related species. (B) Genome 

comparison of the DisaGV genome against some related species including AgseGV, 

ChocGV, CypoGV, EpapGV, and ErelGV. Locally collinear blocks (LCB) are 

numbered in the DisaGV genome from 1 to 9. Same colors depict same LCBs across the 

genomes. Rearrangement can be seen among the species. 

 

Moreover, we performed a genomic comparison among some selected betabaculovirus 

genomes. We found nine Locally Collinear Blocks (LCB), composed of genomic 

segments that appear to have the same relative position of their shared genes (Figure 

3B). Interestingly, LCB5 (from bp 20013 to 37032), LCB7 (from bp 40326 to 76348) 

and LCB8 (from bp 76601 to 87652) had an unexpected gene content composition. 
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LCB5 lacked baculovirus core genes (2=2.46, p < 0.05, df =3), while LCB7 had a 

higher than expected number (2=3.84, p < 0.05, df =3) and LCB8 had a higher than 

expected number of DisaGV-unique genes, a lower than expected number of 

baculovirus core genes and less than expected GV-specific genes (2= 5.12, p < 0.01, df 

=3). 

 

DisaGV had a dna-ligase (disa107) and two helicase genes (helicase-1, disa081 and 

helicase-2, disa111) probably involved in replication, repair, and recombination of 

DNA (Kuzio et al., 1999). We also identified a deoxyuridine triphosphatase (dut) gene 

(disa073) and the ribonucleotide reductase subunits rr1 (disa112) and rr2a (disa113), 

involved in nucleotide metabolism. The role of those genes during baculovirus infection 

is not clear. It was noteworthy the absence of several genes for early transcription 

factors, such as the ie-0, ie-2, and pe38.  There were also no similar sequences to the 

baculovirus repeated ORFs (bro genes), to the ecdysteroid UDP-glucosyltransferase 

(egt), to the apoptosis inhibitor p35, and also to the cathepsin and chitinase genes.  We 

observed that the egt gene were absent only in the genomes of four other GVs, HearGV, 

PsunGV, SpliGV-K1 and XecnGV, that form a distinct phylogenic cluster. On the other 

hand, the p35 gene was found only in the genomes of ChocGV, CaLGV, ClanGV (Data 

not shown). The absence of the cathepsin and chitinase genes may be compensated by 

the presence of the putative gene for matrix metalloproteinase (a stromelysin-1-like 

gene, disa040). Whereas the loss of the cathepsin and chitinase genes is a common 

event among the betabaculoviruses (Ardisson-Araujo et al., 2014a), the   matrix 

metalloproteinase gene is present in all betabaculoviruses sequenced to date (Ishimwe 

et al., 2015a). The expression a functional CypoGV-encoded metalloproteinase into the 
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AcMNPV genome enhanced the virus virulence, promoted larval melanization, and 

could partially substitute the viral cathepsin (Ishimwe et al., 2015b).  

 

3.3. DisaGV unique genes 

 

Homologs to 25 DisaGV ORFs were not found in the genome of other baculoviruses. 

Taking into account the 450 bp region upstream of each unique ORF, three of them 

presented no previously characterized promoter motifs, 12 contained exclusively early 

promoter motifs (TATAW, TATAWAW, TATAWTW with W = A or T), and ten had 

both early and late (A/TTAAG) motifs (Table S). Two unique ORFs, disa034 and 

disa039 showed significant BlastP hits to other dsDNA virus sequences publicly 

available. disa034 encoded a putative 310 aa protein that showed 26% amino acid 

identity (e-value = 1e-06) to a 247 aa length protein of a phycodnavirus (Feldmannia 

irregularis virus a, AAR26869) (Figure 4A).  Moreover, disa039 coded for a 

hypothetical protein related to insect-infecting dsDNA viruses including Wiseana 

iridescent virus (WIV) (YP_004732905, 131 aa) and Amsacta moorei entomopoxvirus 

'L' (NP_064857, 158 aa) (Figure 4B). Phycodnaviruses are eukaryotic algae viruses and 

seem to share a common ancestor with other insect dsDNA viruses, including 

iridoviruses and entomopoxviruses, which share baculovirus genes as well (Yamada, 

2011). Several baculovirus genes were found into the genome of those viruses, 

suggesting the occurrence of lateral gene transfer during co-infection in the same insect 

host, as probably expected to disa034 (Iyer et al., 2006) and disa039.  
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Figure 4. Maximum likelihood phylogenetic trees of both Disa034 (A) and Disa039 (B) 

based on their predicted amino acid sequence. We used the for RaxML method under 

the LG+I+G model for Disa034 and WAG+I+F for Disa039 with a nonparametric 

bootstrap to support the branches. Organisms: (A) Organic Lake phycodnaviruses 

(PhycoV-1 and PhycoV-2), Feldmannia species virus (FespV), Feldmannia irregularis 

virus a (FeirV-a) and Prokaryotes. (B) Wiseana iridescent virus (WIV), Invertebrate 

iridovirus 25 (IIV-25), Amsacta moorei entomopoxvirus 'L' (AmmoEV-L), Adoxophyes 

honmai entomopoxvirus 'L' (AdhoEV-L), Mythimna separata entomopoxvirus 'L' 

(MyseEV-L) and Choristoneura rosaceana entomopoxvirus 'L' (ChroEV-L). 

 

3.4. G protein-coupled receptor (GPCR) 

 

We also found another unique gene  (disa038) related to a putative class B secretin-like 

G-protein coupled receptor (GPCR) of lepidopteran and an entomopoxvirus (Figure 

5A). GPCRs are cell membrane-associated GTPases that transmits signals from the 

environment to the cell inside or between cells allowing them to react to a 
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corresponding variety of extracellular stimuli that can be mediated by different peptides, 

lipids, proteins, nucleotides, nucleosides, organic odorants and photons (Kochman, 

2014). This type of receptors has been described in many animal species despite of not 

being quite common in virus genomes We found a predicted signal peptide and seven 

trans-membrane domains in Disa038 (Figure 5B) making it a member of the Secretin 

family (Krishnan et al., 2012). Three subfamilies are recognized for this family and one 

of them, the B2 contains receptors with long extracellular N-termini as observed for 

both the predicted Disa038 and the other related proteins. It is not clear the role 

displayed by this gene into DisaGV infection context. Otherwise, the human herpesvirus 

virus, another dsDNA virus, utilizes virally encoded GPCR to hijack cellular signaling 

networks for their own benefit suggesting a likely similar pathway during DisaGV 

infection in the host insect (Nijmeijer et al., 2010). 
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Figure 5. In silico analyses of Disa038, a betabaculovirus-encoded G protein-coupled 

receptor gene. (A) Phylogenetic analysis of selected arthropod GPCRs. Disa038 

sequence clustered with lepidopteran and an entomopoxvirus proteins. We performed 

the RaxML method under the WAG+I+G+F model with a nonparametric bootstrap. The 

tree is presented as a cladogram. (B) Schematic representation of Disa038 and 

phylogenetically related proteins. The betabaculovirus GPCR retained all the structures 

observed in the homologs including the signal peptide (gray), soluble fraction (black), 

and the transmembrane domains (TMDs, white). Plxy, Plutella xylostella; Psxu, Papilio 
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xuthus; Papo, Papilio polytes; MyseEV, Mythimna separata entomopoxvirus 'L'; and 

Dapl, Danaus plexippus.  

 

3.5. GP64 

 

The most striking aspect observed in the DisaGV genome was the presence of a gp64 

homolog gene, disa118. GP64 is the major envelope fusion protein (EFP) exclusively 

found in Group I alphabaculoviruses (G1-α) (Rohrmann, 2013). Both Group 2 

alphabaculovirus (G2-α) and betabaculovirus share an analog to the GP64, called F 

protein, as the major BV EFP (Garry & Garry, 2008) which is probably the ancestral 

EFP in baculovirus (Jehle et al., 2006a; Jehle et al., 2006b). GP64 was acquired 

probably later by the ancestor of G1-α likely from an insect retrovirus-like element 

(Rohrmann & Karplus, 2001; Wang et al., 2014) and is clearly related to the 

glycoprotein found in the genus Thogotovirus (from Orthomyxoviridae, an ssRNA 

negative-strand segmented virus family) (Morse et al., 1992). Therefore, in attempt to 

understand both acquisition and evolution of gp64 into the DisaGV genome, we 

performed a phylogenetic reconstruction of the gene. We found that DisaGV GP64  

clustered with G1-α EFP, suggestive of a horizontal transfer from G1-α to 

betabaculovirus (Figure 6A). Disa-GP64 clustered with DekiNPV. Therefore, gp64 

gene acquisition probably caused an improvement in the ancestor of DisaGV as 

probably had happened to the G1-α. Taken together, these results suggest that the 

common ancestor of the G1-α acquired this gene once by HGT from some unknown 

source, which was later transferred to DisaGV or some related betabaculovirus 

ancestral. Alternatively, but less probably, the gene was firstly acquired by a DisaGV-

related virus and later transferred to the common ancestor of G1-α. An adaptation of 
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disa118 to the G+C genome content of DisaGV was observed (Figure 6B) depicting that 

the gene acquisition is likely not recent (Monier et al., 2007). Experimental analysis has 

shown that the incorporation of GP64 into the genome of Helicoverpa armigera 

nucleopolyhedrovirus, a G2 α-baculovirus, enhanced virus infectivity in vivo and in 

vitro (Shen et al., 2012). GP64 and F protein can exploit either distinct (Westenberg et 

al., 2007) or similar (Wang et al., 2010) receptors to entry into the host. Therefore, gp64 

fixation has probably pervaded expansion in both fusion and biding virus activities 

(Liang et al., 2005; Yu et al., 2009) and could have functionally replaced the  F protein 

in G1-α (Wang et al., 2014). The evolutionary replacement hypothesis is reinforced by 

the fact that G1-α present a remnant F protein homolog in their genomes unable to 

compensate gp64 loss and probably playing a role only on the virus pathogenicity (Lung 

et al., 2003). Interestingly, despite the DisaGV genome codes for an F protein, large 

deletions were observed in several reads covering the gene, suggesting existence of 

viruses with deleted segments in the sequenced population (data not shown). This 

feature may indicate that the function of f protein has been replaced or complemented 

by gp64 in DisaGV. Moreover, in our report, we analyzed the 150 nucleotides up-

stream the predicted gp64 ATG start codon from DisaGV to compare with annotations 

identified previously in G1 α-baculovirus gp64 promoter region (Figure 6C). During 

viral de novo synthesis, gp64 expression is regulated by transcription from both early 

and late promoters with negative and multiple positive regulatory elements (Blissard & 

Rohrmann, 1991). The gp64 promoter region size was previously described to be 

around 140 bp (Chen et al., 2013; Garrity et al., 1997; Jarvis & Garcia, 1994). 

Concerning this region, we found 3 required elements GATA (-21, -89, and -104), 2 

TATA Box-like (-35 and -76), 2 CACGTG-like (-38 and -61) sequences with mutation 

on the first C to A in both, and one TATA-box (-35)-associated CAGT (-38). TATA-
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dependent activity and TATA-independent activity is mediated by RNA polymerase II 

in OpMNPV gp64 (Kogan et al., 1995). Two of the required GATA and CACGTG 

specifically bind to host transcription factors and activate transcription from the TATA-

dependent gp64 promoter (Kogan & Blissard, 1994; Kogan et al., 1995). The presence 

of these conserved regulatory expression sequences in the promoter region of disa-gp64 

gene indicates that it must be transcribed and functional. We are currently analyzing 

whether disa-gp64 is able to replace G1 α-baculovirus gp64 gene. 

 

 

 

Figure 6. Phylogeny, G+C content, and the promoter region analyses of the 

betabaculovirus-encoded gp64 homolog, disa118. (A) The DisaGV homolog is related 

to DekiNPV. The maximum likelihood (ML) tree was inferred using the predicted 

amino acid sequence of all the betabaculovirus GP64 (pink), several publicly available 

Group 1 alphabaculovirus genes (blue), and thogotovirus genes (orange). We performed 

the RaxML method under the WAG+I+G model with a nonparametric bootstrap for 

phylogeny reconstruction. Thogotoviruses root the tree that is presented here as a 

cladogram. (B) Comparison of the G+C content average for the third position of the 
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translational codon in the gp64 genes from all Group 1 Alphabaculovirus (G1-α) and 

DisaGV. disa118 underwent a gene adjustment for the low G+C content characteristic 

of betabaculoviruses when compared to the G1-α-derived genes. (C) Annotation of 110 

bp long from the disa118 promoter region. The elements and motifs were pictured 

based on previously published researches in alphabaculoviruses. We are presenting the 

required element GATA for gp64 transcription, the TATA-boxes, and a CAGTG-like 

element. 

 

4. Methods 

 

4.1. Viral origin, confirmation, and electron microscopy 

 

The DisaGV used in this study was obtained from infected larvae D. saccharalis 

collected in the state of Parana, Brazil in 2009. Transmission electron microscopy 

(TEM) of purified OBs and granulin gene amplicon sequence confirmed that the 

infection was due to a betabaculovirus.. The granulin amplification was performed with 

universal primers for the major OB protein gene as previously published (Lange et al., 

2004). The amplified fragment was purified from an agarose gel after electrophoresis 

with the GFX® kit (GE Healthcare) following the manufacturer`s instructions, Sanger 

sequencing reaction was performed with the BigDye kit (Applied Biosystems) and the 

sequence determined in an automated sequencer ABI Prism® 3100 Genetic Analyzer 

(Applied Biosystems). For transmission electron microscopy, a suspension of occlusion 

bodies extracted from larvae infected by DisaGV was  prepared  as described elsewhere 

(Ardisson-Araujo et al., 2014a). 
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4.2. Sequencing system, assembly, and analysis of the DisaGV complete genome 

 

DisaGV genomic DNA was sequenced with the 454 Genome Sequencer (GS) FLX™ 

Standard (Roche) at the Centro de Genômica de Alto Desempenho do Distrito Federal 

(Brasília, Brazil). The genome was assembled de novo using Geneious 7.0 (Kearse et 

al., 2012) and confirmed using restriction enzyme digestion profile. The annotation was 

performed using Geneious 7.0 to identify the open reading frames (ORFs) that started 

with a methionine codon (ATG) encoding at least 50 amino acids and blastp to identify 

homologs. Specific primers were designed to amplify and sequence, by Sanger method, 

all regions in the genome with low coverage (< 10 x).  

 

4.3. Phylogenetic analyses and genome comparison 

 

For the Baculoviridae phylogeny, a MAFFT alignment (Katoh et al., 2002) was carried 

out with the concatenated amino acid sequences predicted for the 37 baculovirus core 

genes. The hypothetical tree was inferred using the FastTree method (Liu et al., 2011),  

implemented in Geneious. For the putative horizontal gene transfer (HGTs) events the 

same alignment method was used for Disa034, Disa038, Disa039 (G protein-encoding 

gene), and Disa118 (gp64 homolog) and the hypothetical trees were inferred using the 

RaxML method  with 100 repetitions of a non parametric bootstrap (Guindon et al., 

2010), implemented in Geneious, with the models WAG+I+G for GP64, WAG+I+G+F 

for Disa038, WAG+I+F for Disa039, and LG+I+G for Disa034 selected by Prottest 2.4 

(Abascal et al., 2005). The signal peptide and the transmembrane domains were 

predicted by both the SignalP 4.1 server  (http://www.cbs.dtu.dk/services/SignalP/) and 

the TMHMM Sever v. 2.0 (http://www.cbs.dtu.dk/services/TMHMM/), respectively. 
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Moreover, the complete genome of DisaGV was compared with other betabaculovirus 

genomes through construction of syntenic maps with the Mauve program in the Genious 

7.1.7 using default parameter settings. 

 

5. Conclusion 

 

After structural characterization, complete genome sequence, and phylogenetic analyses 

of the Diatraea saccharalis-infecting virus, we found that it is a novel species into the 

genus Betabaculovirus, called by Diatraea saccharalis granulovirus (DisaGV). The 

genome seemed to be closely related to CypoGV-related species and to present so far 

the smallest genome among other betabaculoviruses. Remarkably, we found in the 

genome both a GPCR-like and gp64 gene. gp64 used to be found solely in the group 1 

alphabaculovirus genomes. 
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Table S1. Gene composition and general features of the Diatraea saccharalis granulovirus (DisaGV) genome relative to other baculovirus 

genomes. 

ORF Name Position 
Size 

(bp) 

Size 

(aa) 

Transcriptional 

motifs 

Orthologs - ORF number (identity) 

AcMNPV CypoGV CrleGV PiraGV ChocGV 

1 granulin 1 > 747 747 248 E, L 8 (55) 1 (93) 1 (91) 1 (81) 1 (91) 

2 
 

1084 < 728 357 118 E, L - 2 (58) 2 (59) 2 (51) 2 (39) 

3 pk-1 1065 > 1877 813 270 E, L 10 (38) 3 (54) 3 (58) 3 (61) 3 (61) 

4 
 

2112 < 1852 261 86 E - - - - - 

 
hr1 1921 - 2134 214 - - - - - - - 

5 
 

2701 < 2132 570 189 E, L - 4 (51) 4 (51) 4 (56) 5 (49) 

6 ie-1 4218 < 2932 1287 428 E 147 (29) 7 (45) 6 (44) 6 (47) 7 (41) 

7 
 

4249 > 4818 570 189 E, L 146 (28) 8 (46) 7 (47) 7 (55) 8 (55) 

8 
 

5134 < 4838 297 98 E, L 145 (38) 9 (60) 8 (61) 8 (65) 9 (61) 

9 odv-e18 5406 < 5140 267 88 E, L 143 (29) 14 (76) 13 (72) 14 (66) 12 (73) 

10 p49 6790 < 5393 1398 465 E, L 142 (31) 15 (58) 14 (59) 15 (64) 13 (60) 

11 
 

7946 < 7368 579 192 E, L - 16 (52) 15 (53) - - 

12 odv-e56 9070 < 7943 1128 375 E 148 (46) 18 (70) 17 (68) 16 (68) 14 (72) 

13 
 

9096 > 9299 204 67 E - - - - - 

14 pep1 9757 < 9260 498 165 E, L - 20 (57) 20 (66) 20 (53) 17 (70) 

15 
 

9837 > 10406 570 189 E, L - - - - - 

16 pep/p10 10453 > 11427 975 324 E, L - 22 (64) 23 (63) 22 (60) 18 (64) 

17 pep2 11439 > 11873 435 144 E, L - 23 (71) 24 (70) 22 (70) 19 (66) 

18 
 

12838 < 11885 954 317 E, L - 29 (36) - 24 (27) 22 (29) 

19 
 

13103 < 12879 225 74 E, L - - - - - 

20 
 

13528 > 14025 498 165 E, L - - - - - 

21 gp41 14904 < 14047 858 285 E, L 80 (32) 104 (67) 95 (69) 88 (71) 83 (66) 

22 
 

15445 < 14849 597 198 E, L 81 (47) 103 (73) 94 (71) 87 (71) 82 (70) 

23 
 

15740 < 15429 312 103 E 82 (26) 102 (47) 93 (43) 86 (47) 81 (45) 

24 vp91 15718 > 17355 1638 545 E, L 83 (26) 101 (55) 92 (55) 89 (53) 80 (53) 

25 efp/f protein 17418 > 19028 1611 536 E, L 23 (22) 31 (38) 30 (39) 26 (40) 23 (41) 

26 
 

19145 > 19630 486 161 E, L - - - - - 

27 
 

19829 < 19587 243 80 E, L - - - - - 

28 
 

19804 > 19989 186 61 - - - - - - 

29 
 

20609 < 20007 603 200 E, L - 33 (38) 32 (41) 28 (42) 24 (38) 

30 pif-3 20637 > 21194 558 185 E, L 115 (39) 35 (53) 34 (48) 30 (52) 26 (50) 

31 odv-e66 23470 < 21185 2286 761 L 46 (58) 37 (65) 35 (67) 45 (56) 27 (60) 
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32 
 

23509 > 23820 312 103 E, L - 39 (66) 36 (68) 31 (64) 28 (55) 

33 
 

24140 < 23856 285 94 E, L - - - - - 

34 
 

25142 < 24210 933 310 E - - - - - 

35 
 

25067 > 25219 153 50 E - - - - - 

36 lef-2 25278 > 25796 519 172 E 6 (27) 41 (48) 38 (49) 33 (54) 29 (51) 

37 
 

25783 > 26028 246 81 E, L - 42 (33) 39 (37) 34 (48) 30 (41) 

38 
 

26098 > 27294 1197 398 E, L - - - - - 

39 
 

27632 < 27291 342 113 E - - - - - 

40 metalloproteinase 28746 < 27634 1113 370 E, L - 46 (36) 43 (40) 37 (40) 33 (39) 

41 p13 28756 > 29556 801 266 E, L - 47 (59) 44 (61) 38 (54) 34 (60) 

 
hr-2 29572 - 29929 358 - - - - - - - 

42 pif-2 30025 > 31146 1122 373 E, L 22 (52) 48 (70) 45 (71) 40 (70) 35 (66) 

43 
 

31209 > 31592 384 127 E - - - - - 

44 
 

31794 < 31597 198 65 E, L - 49 (43) 46 (35) 41 (43) - 

45 
 

31814 > 33667 1854 617 E, L - 50 (46) 47 (51) 42 (31) - 

46 
 

34271 < 33672 600 199 E, L 106 (39) 52 (68) 50 (71) 43 (72) 37 (72) 

47 
 

34283 > 34432 150 49 E, L 110 (24) 53 (67) 51 (63) 44 (76) 38 (81) 

48 v-ubq 34775 < 34419 357 118 E 35 (79) 54 (82) 52 (84) 45 (82) 39 (85) 

49 odv-ec43 34779 > 35816 1038 345 E, L 109 (32) 55 (56) 53 (58) 46 (69) 40 (65) 

50 
 

35822 > 36016 195 64 E, L - 56 (47) 54 (56) 47 (45) 41 (58) 

51 39k/pp31 36755 < 36018 738 245 E, L 36 (35) 57 (46) 52 (44) 48 (51) 55 (41) 

52 lef-11 37026 < 36745 282 93 E, L 37 (27) 58 (66) 53 (64) 49 (59) 56 (56) 

53 p74 39004 < 36950 2055 684 E, L 138 (42) 60 (60) 58 (61) 51 (60) 46 (58) 

54 
 

39497 < 39057 441 146 E, L - - - - - 

55 acetyltransferase 40081 < 39497 585 194 E, L - - - 56 (66) 48 (58) 

56 
 

40513 < 40094 420 139 E, L - 62 (70) 60 (58) 55 (47) 49 (86) 

 
hr-3 40146 - 40318 173 - - - - - - - 

57 p47 40557 > 41711 1155 384 E, L 40 (42) 68 (65) 61 (65) 56 (66) 50 (66) 

58 bv-e31 41746 > 42399 654 217 E, L 38 (42) 69 (76) 62 (75) 57 (76) 51 (72) 

 
hr-4 42416 - 43074 659 - - - - - - - 

59 
 

42631 < 42455 177 58 - - - - - - 

60 p24 43135 > 43626 492 163 E, L 129 (32) 71 (61) 63 (64) 58 (56) 52 (63) 

61 38.8k 44072 < 43647 426 141 - 13 (30) 73 (35) 65 (40) 62 (45) 54 (37) 

62 lef-1 44760 < 44053 708 235 E 14 (31) 74 (59) 66 (59) 60 (63) 55 (59) 

63 pif-1 44770 > 46323 1554 517 E, L 119 (36) 75 (60) 67 (60) 61 (58) 56 (59) 

64 
 

46328 > 46690 363 120 E, L - 70 (34) - - - 



132 
 

65 iap-3 46790 > 47584 795 264 E, L 27 (32) 17 (54) 16 (48) - 84 (50) 

66 
 

47630 > 47782 153 51 E, L - - - - - 

67 
 

47800 > 48003 204 67 E, L 150 (22) 79 (35) 70 (35) - 59 (38) 

68 lef-6 48269 < 47985 285 94 E 28 (31) 80 (45) 71 (43) 65 (58) 60 (52) 

69 dbp 49084 < 48287 798 265 E, L 25 (22) 81 (46) 72 (44) 66 (50) 61 (48) 

70 
 

49321 < 49103 219 72 E, L - 82 (51) 73 (46) 70 (60) 62 (48) 

71 
 

49847 < 49263 585 194 E, L - 82 (27) 73 (27) 67 (41) 63 (34) 

72 p48/p45 49869 > 51041 1173 390 E, L 103 (33) 83 (70) 74 (68) 68 (73) 64 (69) 

73 
 

51068 > 51355 288 95 E, L 102 (26) 84 (50) 75 (49) 69 (50) 65 (40) 

74 
 

52171 < 51395 777 258 E, L - - - - - 

75 odv-c42/p40 52403 > 53563 1161 386 E, L 101 (22) 85 (59) 76 (58) 70 (57) 66 (55) 

76 p6.9 53571 > 53756 186 61 E, L - - - - - 

77 lef-5 54493 < 53792 702 234 E, L 99 (42) 87 (68) 78 (68) 72 (71) 68 (66) 

78 38 k 54443 > 55354 912 303 E, L 98 (39) 88 (60) 79 (59) 73 (73) 69 (66) 

79 dut 55338 > 55808 471 156 E, L - - - - - 

80 
 

55805 > 56179 375 124 - - - - - - 

81 odv-e28/pif-4 56684 < 56199 486 161 E, L 96 (35) 89 (62) 80 (64) 74 (61) 70 (55) 

82 helicase-1 56668 > 60051 3384 1127 E, L 95 (26) 90 (52) 81 (52) 75 (57) 71 (54) 

83 odv-e25 60707 < 60069 639 212 E, L 94 (37) 91 (69) 82 (69) 76 (68) 72 (70) 

84 p18 61209 < 60727 483 160 E, L 93 (33) 92 (44) 83 (40) 77 (49) 73 (46) 

85 sox/p33 61224 > 61979 756 251 E, L 92 (36) 93 (66) 84 (64) 78 (67) 74 (66) 

86 lef-4 63298 < 61976 1323 440 E, L 90 (32) 95 (54) 86 (52) 80 (57) 75 (55) 

87 vp39 63312 > 64166 855 284 E, L 89 (33) 96 (60) 87 (62) 81 (63) 76 (61) 

88 odv-ec27 64217 > 65029 813 270 L 144 (31) 97 (61) 88 (61) 82 (64) 77 (55) 

 
hr5 65061 - 65488 428 - - - - - - - 

89 
 

65127 > 65417 291 96 E - - - - - 

90 
 

66499 < 65465 1035 344 E, L - 99 (35) 90 (35) 83 (36) 78 (37) 

91 
 

66528 > 66722 195 64 E, L - 100 (50) 91 (51) 84 (50) 79 (60) 

92 
 

66729 > 66995 267 88 E, L 78 (42) 105 (41) 96 (46) 89 (45) 85 (48) 

93 vlf-1 66940 > 68055 1116 371 E, L 77 (34) 106 (73) 97 (74) 90 (77) 86 (67) 

94 
 

68079 > 68330 252 83 E, L 76 (26) 107 (67) 98 (65) 91 (70) 88 (68) 

95 
 

68345 > 68800 456 151 E, L 75 (28) 108 (57) 99 (58) 92 (63) 89 (63) 

96 
 

69174 < 68830 345 114 E, L - 110 (26) 100 (23) - - 

97 dna pol 72280 < 69203 3078 1025 E 65 (33) 111(65) 101(66) 93 (68) 90 (66) 

98 desmoplakin 72255 > 73895 1641 546 E, L 66 (27) 112 (31) 102 (32) 98 (32) 91 (33) 

 
hr-6 73837 - 74251 415 - - - - - - - 
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99 lef-3 75316 < 74249 1068 355 E, L 67 (24) 113 (35) 103 (38) 95 (45) 92 (43) 

100 odv-nc42 75282 > 75668 387 128 E, L 68 (34) 114 (65) 104 (57) 96 (65) 93 (62) 

101 
 

75849 < 75661 189 62 E - - - - - 

102 
 

75766 > 76248 483 160 E, L - 115 (38) 105 (33) 97 (39) 94 (33) 

103 iap-5 76307 > 77101 795 264 E - 116 (63) 106 (60) 98 (58) 95 (58) 

104 lef-9 77106 > 78584 1479 492 L 62 (53) 117 (73) 107 (72) 99 (75) 96 (73) 

105 fp25k 78590 > 79030 441 146 E, L 61 (36) 118 (68) 108 (66) 100 (72) 97 (67) 

106 
 

80190 < 79057 1134 377 E - - - - - 

107 
 

80444 < 80193 252 83 E - - - - - 

108 
 

82066 < 80555 1512 503 E - - - - - 

109 dna ligase 83743 < 82106 1638 545 E, L - 120 (59) 110 (59) 102 (59) 99 (58) 

110 
 

83942 < 83745 198 65 E, L - - - - - 

111 
 

84027 > 84341 315 104 E, L - 124 (55) 114 (56) 106 (49) 103 (55) 

112 
 

84499 < 84317 183 60 E - - - - - 

113 alk-exo 84414 > 85610 1197 398 E, L 133 (33) 125 (53) 115(53) 107 (64) 104 (56) 

114 helicase-2 85513 > 86805 1293 430 E, L - 126 (59) 116 (54) 108 (59) 105 (52) 

115 rr1 88666 < 86849 1818 605 E - 127 (54) - - - 

116 rr2a 88765 > 89892 1128 375 L - 128 (59) - - - 

117 
 

89960 < 89808 153 50 E - - - - - 

118 gp64 89952 > 91469 1518 505 E, L 128 (74) - - - - 

119 lef-8 93976 < 91472 2505 834 E, L 50 (48) 131 (69) 119 (67) 110 (70) 107 (68) 

120 
 

94000 > 94404 405 134 E, L 53 (36) 134 (67) 121 (69) 113 (68) 109 (63) 

 
hr-7 94399 - 94911 513 - - - - - - - 

121 
 

95772 < 94963 810 269 E, L - 135 (41) 122 (29) 114 (38) 110 (31) 

122 
 

96139 < 95942 198 65 E, L - 136 (41) 123 (44) 115 (50) 111 (44) 

123 lef-10 96120 > 96353 234 77 E, L 53a (38) 137 (52) 124 (56) 120 (61) 112 (55) 

124 vp1054 96214 > 97197 984 327 E, L 54 (30) 138 (59) 125 (58) 116 (66) 113 (59) 

125 me53 97422 > 98366 945 314 E 139 (27) 143 (52) 129 (47) 125 (52) 116 (46) 
Note: Position, transcriptional orientation and length (bp and aa) of 125 putative ORFs of the DisaGV genome. The ORFs were compared with their respective 

homologs in AcMNPV and 4 betabaculoviruses in terms of corresponding ORF number and amino acid identity (ID %). DisaGV unique ORFs are shown in red, 

betabaculovirus-specific ORFs in green, ORFs conserved in all baculovirus genomes (core genes) in blue. The conserved early (E; TATAW, TATAWTW e/ou 

TATAWAW) and late (L; A/T/GTAAG) transcriptional motifs within 450 bp upstream each putative ORF are also shown. 
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Table S2. Species used in this paper for reconstruction of the baculovirus phylogeny in the FIG. 3A. The species from the genera 

Alphabaculovirus (dark blue), Betabaculovirus (pink), Gammabaculovirus (orange), and Deltabaculovirus (light blue) are presented 

here together with the abbreviation used in the main text, the host family where the virus was isolated from, and the Genbank 

accession number as well. 

Species Abbreviation Host family Accession 

Adoxophyes honmai nucleopolyhedrovirus AdhoNPV Tortricidae AP006270 

Adoxophyes orana nucleopolyhedrovirus AdorNPV Tortricidae EU591746 

Agrotis ipsilon multiple nucleopolyhedrovirus strain illinois AgipMNPV Noctuidae EU839994 

Agrotis segetum nucleopolyhedrovirus AgseNPV Noctuidae DQ123841 

Apocheima cinerarium nucleopolyhedrovirus ApciNPV Geometridae FJ914221 

Buzura suppressaria nucleopolyhedrovirus BusuNPV Geometridae KF611977 

Chrysodeixis chalcites nucleopolyhedrovirus ChchNPV Noctuidae AY864330 

Clanis bilineata nucleopolyhedrovirus ClbiNPV Sphingidae DQ504428 

Ectropis obliqua nucleopolyhedrovirus strain A1 EcobNPV-A1 Geometridae DQ837165 

Euproctis pseudoconspersa nucleopolyhedrovirus EupsNPV Lymantriidae FJ227128 

Helicoverpa armigera multiple nucleopolyhedrovirus HaMNPV Noctuidae EU730893 

Helicoverpa armigera nucleopolyhedrovirus C1 HaNPV-C1 Noctuidae AF303045 

Helicoverpa zea single nucleopolyhedrovirus USA HzSNPV-USA Noctuidae AF334030 

Hemileuca sp. nucleopolyhedrovirus HespNPV Saturniidae KF158713 

Lambdina fiscellaria nucleopolyhedrovirus LafiNPV Geometriidae KP752043 

Leucania separata nuclear polyhedrovirus strain AH1 LeseNPV Noctuidae AY394490 

Lymantria díspar multiple nucleopolyhedrovirus LdMNPV Lymantriidae AF081810 

Lymantria xylina multiple nucleopolyhedrovirus LyxyMNPV Lymantriidae GQ202541 

Mamestra brassicae multiple nucleopolyhedrovirus strain Chb1 MbMNPV-CHb1 Noctuidae JX138237 
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Mamestra configurata nucleopolyhedrovirus-A strain 90/2 MacoNPV-A 90/2 Noctuidae U59461 

Mamestra configurata nucleopolyhedrovirus B MacoNPV-B Noctuidae AY126275 

Orgyia leucostigma nucleopolyhedrovirus isolate CFS-77 OrleNPV Lymantriidae EU309041 

Peridroma sp. nucleopolyhedrovirus PespNPV Noctuidae KM009991 

Perigonia lusca single nucleopolyhedrovirus PeluSNPV Sphigidae KM596836 

Pseudoplusia includens single nucleopolyhedrovirus IE PsinSNPV Noctuidae KJ631622 

Spodoptera exigua nucleopolyhedrovirus SeMNPV Noctuidae AF169823 

Spodoptera frugiperda multiple nucleopolyhedrovirus isolate 19 SfMNPV-19 Noctuidae EU258200 

Spodoptera litoralis nucleopolyhedrovirus isolate AN1956 SpliNPV-1956 Noctuidae JX454574 

Spodoptera litura nucleopolyhedrovirus G2 SpliNPV-G2 Noctuidae AF325155 

Spodoptera litura nucleopolyhedrovirus II SpliNPV-II Noctuidae EU780426 

Sucra jujuba nucleopolyhedrovirus SujuNPV Geometridae KJ676450 

Trichoplusia ni single nucleopolyhedrovirus TnSNPV Noctuidae DQ017380 

Autographa californica nucleopolyhedrovirus clone C6 AcMNPV-C6 Noctuidae L22858 

Anticarsia gemmatalis nucleopolyhedrovirus AgMNPV Noctuidae DQ813662 

Antheraea pernyi nucleopolyhedrovirus isolate L2 AnpeNPV-L2 Saturniidae EF207986 

Bombyx mori nucleopolyhedrovirus strain T3 BmNPV-T3 Bombycidae L33180 

Bombyx mandarina nucleopolyhedrovirus S2 BomaNPV-S2 Bombycidae JQ071499 

Choristoneura fumiferana defective multiple nucleopolyhedrovirus CfDEFMNPV Tortricidae AY327402 

Choristoneura fumiferana multiple nucleopolyhedrovirus CfMNPV Tortricidae AF512031 

Choristoneura murinana nucleopolyhedrovirus ChmuNPV Tortricidae KF894742 

Choristoneura occidentalis nucleopolyhedrovirus ChocNPV Tortricidae KC961303 

Choristoneura rosaceana nucleopolyhedrovirus ChroNPV Tortricidae KC961304 

Condylorrhiza vestigialis multiple nucleopolyhedrovirus CoveMNPV Crambidae KJ631623 
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Dendrolimus kikuchii nucleopolyhedrovirus DekiNPV Lasiocampidae JX193905 

Epiphyas postvittana nucleopolyhedrovirus EppoNPV Tortricidae AY043265 

Hyphantria cunea nucleopolyhedrovirus HycuNPV Arctiidae AP009046 

Maruca vitrata multiple nucleopolyhedrovirus MaviMNPV Crambidae EF125867 

Orgyia pseudotsugata multiple nucleopolyhedrovirus OpMNPV Lymantriidae U75930 

Philosamia cynthia ricini nucleopolyhedrovirus PhcyNPV Saturniidae JX404026 

Plutella xylostella multiple nucleopolyhedrovirus isolate CL3 PlxyMNPV Plutellidae DQ457003 

Rachiplusia ou multiple nucleopolyhedrovirus RoMNPV Noctuidae AY145471 

Thysanoplusia orichalcea nucleopolyhedrovirus ThorNPV Noctuidae JX467702 

Adoxophyes orana granulovirus AdorGV Tortricidae AF547984 

Agrotis segetum granulovirus-L1 AgseGV-L1 Noctuidae KC994902 

Choristoneura occidentalis granulovirus ChocGV Tortricidae DQ333351 

Clostera anastomosis granulovirus CaLGV Notodontidae KC179784 

Clostera anachoreta granulovirus ClanGV Notodontidae HQ116624 

Clostera anastomosis granulovirus Strain B ClanGV-B Notodontidae KR091910 

Cryptophlebia leucotreta granulovirus isolate CV3 CrleGV Tortricidae AY229987 

Cydia pomonella granulovirus CpGV Tortricidae U53466 

Diatraea saccharalis granulovirus DisaGV Crambidae KP296186 

Epinotia aporema granulovirus EpapGV Tortricidae JN408834 

Erinnyis ello granulovirus ErelGV Sphingidae KJ406702 

Helicoverpa armigera granulovirus HaGV Noctuidae EU255577 

Phthorimaea operculella granulovirus PhopGV Gelechiidae AF499596 

Pieris rapae granulovirus E3 PiraGV-E3 Pieridae GU111736 

Plutella xylostella granulovirus PlxyGV Plutellidae AF270937 
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Pseudaletia unipuncta granulovirus PsunGV-Hawaiin Noctuidae EU678671 

Spodoptera frugiperda granulovirus SpfrGV Noctuidae KM371112 

Spodoptera litura granulovirus isolate K1 SpliGV Noctuidae DQ288858 

Xestia c-nigrum granulovirus XcGV Noctuidae AF162221 

Neodiprion sertifer nucleopolyhedrovirus NeseNPV Diprionidae AY430810 

Neodiprion lecontei nucleopolyhedrovirus NeleNPV Diprionidae AY349019 

Neodiprion abietis nucleopolyhedrovirus NeabNPV Diprionidae DQ317692 

Culex nigripalpus nucleopolyhedrovirus CuniNPV Culicidae AF403738 
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Capítulo 7. A betabaculovirus-enconded gp64 homolog is a functional envelope 

fusion protein 

 

 

1. SUMMARY 

 

The envelope fusion protein GP64 is a hallmark of group I alphabaculoviruses. 

However, the Diatraea saccharalis granulovirus genome sequence revealed the first 

betabaculovirus species harboring a gp64 homolog (disa118). In this work, we have 

shown that this homolog is a functional envelope fusion protein and could enable 

infection and fusogenic abilities of a gp64-null prototype baculovirus. Therefore, GP64 

may complement or may be in the process of replacing F protein activity in this virus 

lineage. 

 

Este capítulo não foi publicado. Ardisson-Araujo, D. M., Melo, F. L., Clem, R. J., 

Wolff, J. L.,  & Ribeiro, B. M. (2014). A betabaculovirus-enconded gp64 homolog is a 

functional envelope fusion protein 

 

2. MAIN TEXT 

 

The Baculoviridae is a family of insect viruses with double-stranded DNA genomes. It 

is currently divided into four genera, two of which, Alphabaculovirus and 

Betabaculovirus, contain members that are infective to the larval stages of moths and 

butterflies. During a complete infection cycle, viruses from both genera produce two 

virion phenotypes, (1) the occlusion-derived virus (ODV) which is surrounded by a 

crystalline protein matrix, the occlusion body (OB), and is responsible for the inter-host 
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oral primary infection and (2) the budded virion (BV), responsible for intra-host 

systemic infection (Rohrmann, 2013). GP64 is the major envelope fusion protein (EFP) 

found in the BVs of all group I alphabaculoviruses (G1-α) (Rohrmann, 2013). Other 

baculoviruses including those from group II alphabaculovirus (G2-α) and 

betabaculovirus share a GP64 analog called F protein as the major BV EFP (Garry & 

Garry, 2008). 

 

The betabaculovirus Diatraea saccharalis granulovirus (DisaGV) was isolated from one 

of the most devastating insect pest of sugarcane and other cultures in Brazil. After 

complete genome sequencing (Genbank accession number: KP296186), a gp64 

homolog, disa118 was found (unpublished data). disa118 clustered with genes from 

alphabaculovirus group I instead of orthomyxovirus homologs, which confirms that 

gp64 was acquired once by alphabaculovirus and then transferred to either DisaGV or a 

related ancestor (unpublished data). GP64 is a class III integral membrane glycoprotein 

(Garry & Garry, 2008) that plays essential roles in host cell receptor binding (Hefferon 

et al., 1999), low-pH-triggered viral membrane fusion, (Kingsley et al., 1999) and 

systemic infection of the host insect (Monsma et al., 1996). Here, we investigated 

whether the gp64 (disa118) homolog found in DisaGV is a functional EFP. 

 

To examine the function of the DisaGV gp64 homolog, we generated a gp64-null 

Autographa californica multiple nucleopolyhedrovirus (Ac-Δgp64-PG) bacmid 

pseudotyped with the disa118 gene (hereby called disa-gp64). The pseudotyped virus 

Ac-REP-disa-gp64-PG was able to infect and spread upon transfection into Spodoptera 

frugiperda cell line 9 (Sf9) (FIG. 1A). To confirm that infectious BVs were being 

produced after transfection, we transferred the supernatants from transfection to healthy 
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Sf9 cell cultures. Ac-REP-disa-gp64-PG was able to cause infection (FIG. 1B). 

However, the efficiency was lower than the control viruses in a controlled infection 

assay (triplicate infection with MOI 5 and 6 h rocking, FIG 1C). In a previous study, a 

gp64-null virus expressing the EFP of the vesicular stomatitis virus G was able to 

produce infection, replicate, and propagate in Sf9 cells despite the cell-to-cell 

propagation being delayed in comparison to the parental virus (Mangor et al., 2001). 

Interestingly, even with a pairwise identity of 73.2 % between Ac-GP64 and Disa-

GP64, a monoclonal antibody against Ac-GP64 was unable to recognize Disa-GP64. 

However, a polyclonal antibody raised against Anticarsia gemmatalis multiple 

nucleopolyhedrovirus GP64 lacking both the signal peptide and the transmembrane 

domain recognized both Disa-GP64 and Ac-GP64 (FIG. 1D). We also carried out a 

fusogenic activity assay to verify whether the betabaculovirus glycoprotein could 

mediate low-pH-triggered membrane fusion. We found that cells infected with both 

vAc-REP-disa-gp64-PG and vAc-REP-ac-gp64-PG mediated membrane fusion and 

syncytium formation when exposed to low pH (FIG 2A and B, respectively). The 

efficiency of syncytium formation was apparently much lower when compared to the 

positive control. Moreover, no syncytium formation was observed when the cells were 

mock infected and treated with low pH (data not shown). 

 

file:///C:/Users/Daniel%20Mendes/Downloads/Disa-gp64_Draft_final.docx%23_ENREF_12
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FIG. 1. Disa-GP64 is a functional envelope fusion protein. (A) Transfection assay of 

Ac-PG (positive control), Ac-ΔGP64-PG (negative control), Ac-REP-ac-gp64-PG 

(repaired virus), and Ac-REP-disa-gp64-PG (pseudotyped virus). 1 µg of DNA from 

each virus was transfected into Sf9 cells. The cells were photographed at 24 and 72 h 

p.i. (B) Ac-REP-disa-gp64-PG transfection supernatant is infective to Sf9 cells. At 5 

days post-transfection, clarified supernatants were used to infect Sf9 cells. The cells 

were photographed at 5 days post-infection. (C) The infection efficiency of the 

pseudotyped Ac-REP-disa-gp64-PG was reduced when compared to the repaired Ac-

REP-ac-gp64-PG. Cells were infected with MOI of 5 (determined by end-point 

dilution) and photographed at 24 hpi. (D) A monoclonal anti-Ac-GP64 does not 

recognize Disa-GP64 when expressed by recombinant AcMNPV but a polyclonal anti-

Ag-GP64 does. Anti-Ac-VP39 antibody was used as a baculovirus infection control. 

Cells were mock infected or infected with (i) Ac-PG, (ii) Ac-REP-ac-gp64-PG (Ac), or 

(iii) Ac-REP-disa-gp64-PG (Disa) at an MOI of 5 for 72 hpi. Cells were harvested, and 
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the total proteins were extracted, resolved on SDS-12% PAGE gels, and analyzed by 

immunoblotting with polyclonal anti-Ac-VP39, monoclonal anti-Ac-GP64, or 

polyclonal anti-Ag-GP64 antibody. 

 

 

 

FIG.2. Syncitium formation mediated by recombinant baculovirus infections. Sf9 cells 

were infected with either AcRep-Disa-gp64-PG or AcRep-Ac-gp64-PG at MOI of 1. 

The infected cells were then incubated with low pH TC100 media (pH 4.0) for 10 min 

at 48 or 120 hpi, as indicated. After 10 min the media was replaced by media at pH 6.0. 

Syncitium formation was observed and photographed at 4 h after treatment. 

Multinucleated cells are indicated by arrow heads. The absence of OBs is due to the 

different time pos-infection used for the repaired virus. 

 

To understand this reduction in virus infectivity, spread, and syncytium formation 

efficiency, we mapped functionally important amino acid residues in Disa-GP64 based 

on previous reports and protein alignment (Fig. 3). Two main regions were analyzed 

which included the signal peptide (SP) and the ectodomain (ED, region between the SP 
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and the transmembrane domain, TMD). By MAFFT alignment (Katoh et al., 2002), we 

found that GP64 SPs across baculovirus species are variable per se, with a pairwise 

identity of 39.8% (Fig. 3A), which is not an exclusive feature in GP64 alone. Other 

baculoviral envelope proteins and secreted enzymes present highly variable SP 

sequences as well (e.g. per os infectivity factors and EGT) (data not shown). These 

amino acid substitutions could be related to host adaptation and might be responsible for 

the efficiency reduction displayed by the pseudotyped virus since DisaGV and 

AcMNPV were found infecting caterpillars from different lepidopteran families i.e. 

Crambidae and Noctuidae, respectively. On the other hand, the ED has been shown to 

present important regions for the functions of GP64 (Katou et al., 2010; Li & Blissard, 

2009; Zhou & Blissard, 2008). Using the same alignment method cited above, we found 

that most of the previously mapped ED regions and sites are highly conserved in Disa-

GP64 such as intra-molecular disulfide bonds, which are critical in membrane fusion (Li 

& Blissard, 2010) (not shown). However, out of four glycosylation sites identified in 

Ac-GP64 ED (N198, N355, N385, and N426) and conserved in all other G1-α GP64 

orthologs, three are maintained in Disa-GP64; only N355 underwent a substitution (Fig. 

3B). Cell surface expression, assembly into infectious BV, and fusogenic activity do not 

require N-linked oligosaccharide processing; however, the removal of one or more N-

glycosylation sites in Ac-GP64 impairs binding of budded virus to the cell, indicating 

that this modification is necessary for optimal GP64 function (Jarvis & Garcia, 1994; 

Jarvis et al., 1998). Interestingly, both the production of infectious BV and the fusion 

activity were reduced when glycosylation of GP64 was inhibited in Bombyx mori 

nucleopolyhedrovirus (Rahman & Gopinathan, 2003). 
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FIG. 3. Aligned regions of GP64 homologs from group I alphabaculoviruses and 

DisaGV. (A) Signal peptide region alignment. The last residue shown (glutamate) is the 

predicted beginning of the soluble portion of the protein. (B) Alignment of part of the  

soluble portion revealing the substitution in DisaGV from N355 to I355 when compared 

to the other alphabaculovirus species (asterisk). This residue has been experimentally 

shown to be a N-linked glycosylation site in AcMNPV. By the MAFFT alignment 

method, strictly conserved amino acid residues are shown in black boxes and partially 

conserved residues in grey boxes. 

 

The main question here is why has gp64 been fixed into DisaGV? Fixation of gp64 is 

responsible for improvement of both fusion and biding activities (Liang et al., 2005; 

Shen et al., 2012; Yu et al., 2009), and possibly led to replacement of F protein in G1-α 

(Wang et al., 2014). In fact, G1-α viruses also contain a remnant F protein homolog in 

their genomes that is unable to compensate for gp64 loss (14, 15), and that plays a role 

in virus pathogenicity (Lung et al., 2003). Previous experimental analysis has shown 

that the incorporation of GP64 into a G2-α enhanced virus infectivity in vivo and in 

vitro (Shen et al., 2012). Since D. saccharalis is an insect borer during the larval stage 

and presents a very short time of virus exposure between the egg hatching and the insect 
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penetration into the host plant which includes sugar cane, rice, and other monocots, it is 

reasonable to propose that a novel gene acquisition occurred that allowed the virus to 

improve its spread within the host and more effectively establish infection. 

 

In summary, GP64 of DisaGV is a functional EFP that is able to pseudotype a gp64-null 

AcMNPV, although with a lower efficiency in spreading the infection and in fusogenic 

activity. The lack of one conserved glycosylation site and the possible adaptation to a 

different lepidopteran-family cell machinery could explain this reduction. We are 

constructing different mutants of disa-gp64 to test those hypotheses. Importantly, in 

submitted work describing the DisaGV genome, we found several early transcriptional 

motifs upstream the gp64 start codon; however, it is not clear whether DisaGV express 

the gp64 homolog and uses it as a functional EPF. We can only speculate that GP64 

could complement or may even be in the process of replacing F protein activity in this 

betabaculovirus lineage. 
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Capítulo 8. Genome sequence of Perigonia lusca single nucleopolyhedrovirus 

(PeluSNPV): insights on the evolution of a nucleotide metabolism enzyme in the 

family Baculoviridae 

 

1. Abstract 

 

The genome of a novel group II alphabaculovirus, Perigonia lusca single 

nucleopolyhedrovirus (PeluSNPV), was sequenced and shown to contain 132,831 bp 

with 145 putative ORFs (open reading frames) encoding polypeptides with at least 50 

amino acid residues. Among the 145 ORFs, 18 were found to be unique and, based on 

alignment with the concatenated sequences of 37 baculovirus core genes, we found that 

the closest relative to PeluSNPV was Clanis bilineata nucleopolyhedrovirus, another 

sphingid-infecting alphabaculovirus. An interesting feature of this novel genome was 

the presence of a putative nucleotide metabolism enzyme-encoding gene (pelu112). The 

pelu112 gene was predicted to be a fusion of thymidylate kinase (tmk) and deoxyuridine 

triphosphatase (dut), and this fused genes appears to have also been acquired 

convergently by two other distantly related baculoviruses. Moreover, phylogenetic 

analysis indicated that baculoviruses have independently acquired tmk and dut several 

times during their evolution from different sources. In order to test whether the 

expression of a tmk-dut fusion gene by a baculovirus that naturally lacks it would result 

in an adaptive gain, we inserted two homologs of the tmk-dut fusion gene into the 

Autographa californica multiple nucleopolyhedrovirus (AcMNPV) genome. The 

recombinant baculoviruses produced viral DNA, virus progeny, and some viral proteins 

earlier during in vitro infection and the yields of viral occlusion bodies were increased 

2.5-fold when compared to the parental virus. Interestingly, both enzymes appear to 
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retain their active sites, based on separate modeling using previously solved crystals 

tructures. We therefore suggest that the retention of these tmk-dut fusion genes by 

certain baculoviruses could be related to accelerating virus replication. The hypothetical 

mechanism is likely related to synchronizing the cell cycle state, controlling the cellular 

nucleotide pool size (dUTP/dTTP ratio), or altering the expression or function of 

cellular nucleotide metabolism enzymes. 

 

Keywords: Baculovirus, PeluSNPV, AcMNPV, thymidylate kinase (tmk), deoxyuridine 

triphosphatase (dut), horizontal gene transfer. 

 

Este capítulo ainda não foi publicado. Genome sequence of Perigonia lusca single 

nucleopolyhedrovirus (PeluSNPV): insights on the evolution of a nucleotide 

metabolism enzyme in the family Baculoviridae. Daniel M. P. Ardisson-Araújo, 

Rayane Nunes Lima, Fernando L. Melo, Rollie Clem, Ning Huang, Sônia Nair Báo, 

Daniel R. Sosa-Gómez, Bergmann M. Ribeiro. 

 

2. Introduction 

 

Large double-stranded DNA viruses exhibit high genomic plasticity and primarily evolve by 

both horizontal gene transfer (HGT) and gene duplication/loss (Becker, 2000; Monier et al., 

2007). In many cases, viruses take advantage of an existing cellular pathway and fully or 

partially incorporate it into their genome (Monier et al., 2007). With the increasing availability 

of genome sequence data, HGT events have been extensively documented in several viral 

families. This is particularly true for members of Baculoviridae, a family of dsDNA viruses 

infective mostly to larval stages of lepidoptera (moths and butterflies) (Jehle et al., 2006). 
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More than 500 different types of genes have been found in the genomes of the 70-plus 

baculoviruses from different species that have been sequenced to date (Miele et al., 

2011), and many of them seem to be products of HGTs (Katsuma et al., 2008). Exactly 

how most of these genes have been fixed in the genomes of baculoviruses still remains unclear 

(Rohrmann, 2013). For instance, an interesting but poorly studied group of genes acquired 

by baculoviruses are those related to nucleotide metabolism. Various baculoviruses 

contain homologs to dUTP diphosphatase (dut), ribonucleotide-diphosphate reductase 

(rnr), and thymidine monophosphate kinase (tmk), but none of these have been 

characterized at the molecular level and there is no evidence of fitness changes 

associated with them. Moreover, it has been suggested that baculoviruses have 

independently acquired dut and rnr genes more than once during their evolution 

(Herniou et al., 2003). 

 

Several viruses including baculoviruses, asfarvirus, herpesviruses, poxviruses, and 

certain retroviruses encode deoxyuridine triphosphatase (dUTPase) and/or thymidine 

monophosphate kinase (TMK) enzymes in their genome. However, it is unclear why 

these viruses encode an enzyme that is already encoded by the host cell. The enzyme 

dUTPase is conserved in prokaryotic and eukaryotic cells and such conservation is 

thought to be related to the shared inability of DNA polymerases in discriminating 

between dUTP and dTTP during DNA synthesis (Dube et al., 1979). The enzyme TMK 

participates in both the de novo and the salvage dTTP biosynthesis pathways(Reichard, 

1988). The misincorporation of dUTP in lieu of dTTP can lead to either deleterious 

mutations in the cell genome or to futile repair cycles and DNA breakage events that 

kill the cell (Ladner, 2001). Therefore, dUTPase activity associated with dTTP 
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biosynthesis pathway enzymes (e.g.TMK) are an essential preventive DNA repair 

mechanism that hydrolyses dUTP to dUMP and PPi and thereby plays a role in both 

lowering the dUTP/dTTP ratio and in providing substrate for the major biosynthesis 

pathway of dTTP (Mustafi et al., 2003). Other roles for dUTPases have been 

demonstrated including transposase-like activity, regulation of the immune system, 

autoimmunity, and apoptosis, suggesting that they also perform regulatory functions 

(Penades et al., 2013). 

 

The baculovirus Perigonia lusca single nucleopolyhedrovirus (PeluSNPV) is a natural 

pathogen that was previously discovered infecting the half-blind sphinx moth Perigonia 

lusca ilus (Lepidoptera: Sphingidae) in 1988 (Sosa-Gómez et al., 1994). So far, P. lusca 

does not present great agricultural interest, despite causing occasional damage on crops 

of Paraguay tea (Ilex paraguariensis) and Krug's holly (I. krugiana), genipapo 

(Genipaamericana), and coffee (Coffeaarabica) in Brazil (Primo et al., 2013), 

Argentina, Puerto Rico, Cuba, and USA (The Natural History Museum, 

http://www.nhm.ac.uk). In previous work, the half-blind sphinx-infecting baculovirus was 

structurally described (Sosa-Gómez et al., 1994); however, neither genomic 

organization nor phylogenetic relationships of the virus have been described. In this 

work, we sequenced the complete genome of PeluSNPV and established its phylogeny to other 

baculoviruses. Furthermore, a tmk-dut fused gene was found in the PeluSNPV genome which 

led us to the reconstruction of the phylogenetic history of dut genes in the Baculoviridae. 

When both the PeluSNPV tmk-dut fused gene and another baculovirus homolog were inserted 

into the baculovirus Autographa californica multiple nucleopolyhedrovirus (AcMNPV), which 

naturally lacks a dut gene, accelerated virus progeny production, virus genome replication, and 

viral gene expression were observed. These results lead us to hypothesize that the reason why 
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nucleotide metabolism genes, especially tmk-dut, are fixed in some baculovirus genomes may 

be due their ability to control the size of the cellular nucleotide pool, enabling faster virus 

replication. 

 

3. Results 

 

3.1. Structural analysis, genome features, and phylogeny of PeluSNPV. 

 

For structural analysis, we performed a scanning electron microscopy (SEM) of purified 

occlusion bodies (OBs) of PeluSNPV. Mature OBs with non-regular shape and size 

were observed (FIG.1A). Immature OBs revealed singly enveloped nucleocapsid 

occlusion spaces (inset, Fig. 1A) as previously described (Sosa-Gómez et al., 1994). 

Furthermore, restriction analysis of the virus DNA revealed that PeluSNPV was 

probably a novel virus since no similar restriction profile was found in the literature 

(Fig. 1B). Distinctions among species of the Baculoviridae have been based on DNA 

restriction endonuclease fragment patterns and comparisons of nucleotide and predicted 

amino acid sequences from various genes. A proposed species demarcation criterion 

was published in 2006 that is based on pairwise nucleotide distances estimated using the 

Kimura 2-parameter model of nucleotide substitution (Jehle et al., 2006). 
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Figure 1. Structural analyses of PeluSNPV. (A) Scanning electron microscopy of 

purified polyhedral occlusion bodies (OBs) with non-regular shape and size. Immature 

OBs are inset. Moreover, singly embedded rod-shaped nucleocapsid spaces are shown. 

(B) Agarose gel electrophoresis-resolved DNA fragments digested with each ApaI (lane 

1), BamHI (lane 2), PstI (lane 3), XbaI (lane 4), XhoI (lane 5), BglII (lane 6), NsiI (lane 

7), or ClaI (lane 8). Molecular weight marker (lane M). 

 

The entire genome of PeluSNPV was sequenced using 454 technology (Genbank 

accession number KM596836). Over 18,807 single-end reads were obtained. After size 

and quality trimming, 18,355 reads (mean size of 356.6 ±147.1 bp) were used for de 

novo assembly with a pairwise identity of 96.3 %. The mean coverage was 50.4±12.5 

bases/site. The PeluSNPV genome was shown to contain 132,831 bp with a G+C 

content of 39.6 %. We found 145 putative ORFs encoding polypeptides with at least 50 

amino acid residues (Table S1). Eighteen of these were shown to be unique in 

baculoviruses with no predicted motifs (pelu004, pelu006, pelu010, pelu017, pelu018, 

pelu026, pelu035, pelu048, pelu054, pelu055, pelu089, pelu099, pelu100, pelu101, 

pelu119, pelu120, pelu140, and pelu144) and only two homologous regions (hrs) with 

approximately 1,000 bp each were observed. All of the currently defined 37 baculovirus 

core genes were found and, based on phylogenetic analysis using the concatenated 
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alignment of the core genes from the completely sequenced baculoviruses (Table S2), 

PeluSNPV was found to belong to the genus Alphabaculovirus and clustered with 

Clanis bilineata nucleopolyhedrovirus (ClbiNPV), the first group II sphingid-infecting 

alphabaculovirus sequenced (Fig. 2). The nucleotide identity of PeluSNPV core genes 

(i.e. the 37 genes) with the closest relative ClbiNPV was 58%. Branch length separating 

this virus from its closest relatives is in a range that is comparable to the branch lengths 

separating viruses in other recognized alphabaculovirus species. Furthermore, many 

inversions, deletions, and insertions were observed in the genome of these closely 

related species when the gene content of PeluSNPV was compared to both ClbiNPV 

(Fig. 3 A) and AcMNPV (Fig. 3B) by gene parity plot. The gene order was not strictly 

conserved between PeluSNPV and ClbiNPV and four major inversions were detected 

(Fig. 3A). Although these sphingid-isolated viruses are closely related to each other, 

each contains several unique genes. The pairwise distances of the viral sequences of 

PeluSNPV to other alphabaculoviruses for both single locus and concatenated 

alignment are well in excess of 0.05 substitutions/site fulfilling all the criteria for a 

novel baculovirus species. 
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Figure 2. PeluSNPV is a Group II alphabaculovirus. Maximum likelihood inference 

based on the concatenated amino acid sequences of 37 core proteins of all complete 

baculovirus genomes (Table S2). The branch support was determined by a SH-like 

method. Some branches were collapsed for clarity: Gammabaculovirus (orange), 

Betabaculovirus (dark blue), and group I Alphabaculovirus (red). The deltabaculovirus 
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CuniNPVwas used as the root (light blue). PeluSNPV (boldface) belongs to the genus 

Alphabaculovirus and clustered with another sphingid-infecting group II 

alphabaculovirus, ClbiNPV. 

 

 

 

Figure 3. Gene content and sinteny of PeluSNPV compared to other two species. (A) 

PeluSNPV was compared to ClbiNPV, another sphingid-infecting baculovirus. (B) 

PeluSNPVwas compared to the baculovirus type species, AcMNPV. 

 

3.2. Gene content 

 

Several known examples of auxiliary genes were observed in the PeluSNPV genome. 

For instance, both cathepsin and chitinase were found in the genome in an opposite 

orientation, as commonly found in other baculovirus genomes. The putative chitinase 

presents a KTEL motif at the very end of the C-terminal region, which is related to 

retention into the ER. The presence of these genes is consistent with the post-mortem 

phenotype observed for the host caterpillar infected with PeluSNPV, which includes 

both body melanization and liquefaction of internal tissues (data not shown). The iap-2 

(pelu064) and iap-3 (pelu102) genes, which are usually present in the genomes of group 

II alphabaculoviruses and are involved in the anti-apoptotic response induced by virus 
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infection, were also observed. However, the predicted iap-3 (pelu102) homolog lacks 

one of the two commonly conserved Baculovirus IAP Repeat (BIR) domains at the N-

terminal region (data not shown), which is involved in protein-protein interactions 

(Hinds et al., 1999). Furthermore, we found a homolog of non-structural (NS) 

densovirus gene, pelu104. Homologs of this gene were previously found in three 

betabaculovirus genomes including Choristoneura occidentalis granulovirus (choc025) 

(Escasa et al., 2006), Cryptophlebia leucotreta granulovirus (crle009) (Lange & Jehle, 

2003), and Erinnyis ello granulovirus (erel057 and erel100) (Ardisson-Araujo et al., 

2014a). To our knowledge, PeluSNPV is the first alphabaculovirus harboring a 

densovirus-related gene. The phylogenetic reconstruction revealed that PeluSNPV 

probably acquired it from a betabaculovirus (data not shown). The fitness effects of this 

gene are unknown, but a Helicoverpa armigera-associated densovirus was found to 

protect the host insect from both baculovirus and Bacillus thuringiensis infection (Xu et 

al., 2014). Moreover, a homolog of he65 (RNA ligase-like gene) was also found in the 

PeluSNPV genome, pelu124. In a previous study, we reconstructed the phylogenetic 

history of he65 and found that it is present in several baculovirus and two 

entomopoxvirus genomes. Importantly, a large and recurrent deletion observed at the C-

terminal region of the putative baculovirus proteins has also been observed in the 

putative Pelu124 (Ardisson-Araujo et al., 2014a). The phylogenetic analyses clustered 

pelu124 with both group II alphabaculovirus and entomopoxvirus genes, while the 

closest baculovirus relative of PeluSNPV (i.e. ClbiNPV) lacks he65 ortholog. 
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3.3. Genes related to nucleotide metabolism 

 

Genes encoding both the large and small subunits of ribonucleotide reductase (RNR) 

were found in the PeluSNPV genome, pelu145 and pelu126, respectively. 

Ribonucleotide reductase catalyzes the rate-limiting step for deoxyribonucleotide 

production required for DNA synthesis. The enzyme is a tetramer consisting of two 

large and two small subunits (Huang & Elledge, 1997). Several baculoviruses and other 

arthropod-related viruses contain these genes in their genomes including the white spot 

syndrome virus (van Hulten et al., 2001). The presence of these genes has been also 

associated with the presence of dut genes in baculovirus genomes (Herniou et al., 2003) 

but some dut-harboring betabaculoviruses lack the RNR enzyme (e.g. ErelGV) 

(Ardisson-Araujo et al., 2014a). 

 

The putative ORF pelu112 was found to be a nucleotide metabolism gene with some 

peculiar features. Firstly, pelu112 was found to be a fusion of two putative genes. The 

predicted N-terminal region was related to the cypo016 gene of the baculovirus Cydia 

pomonella granulovirus (CypoGV), which has identity with a thymidylate kinase (tmk, 

Fig. 4A) whereas the predicted C-terminus was related to dut (Fig. 4B). Several 

secondary structures were conserved when both regions were compared to previously 

solved crystal proteins. Moreover, tmk and dut homologs are present in many other 

baculovirus genomes as separated ORFs or, in the case of the latter one, often fused to 

other genes. Secondly, pelu112 has homologs in two other distantly related 

baculoviruses, ErelGV (erel005) (Ardisson-Araujo et al., 2014a) and Orgyia 

pseudotsugata multiple nucleopolyhedrovirus (OpMNPV) (op031) (Ahrens et al., 1997) 
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(Fig. 4) with pairwise identity of , 90.2% and 74.1% respectively. The identities were 

obtained by MAFFT alignment. 

 

 

 

Figure 4. Individual alignments of both TMK and dUTPase regions of PeluSNPV, 

ErelGV, and OpMNPV against proteins with crystal solved structures. (A) Predicted N-

terminal region presents homology to Cypo016, a putative thymidylate kinase enzyme. 
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(B) Predicted C-terminal region presents homology to trimeric dUTPases. The 

conserved motifs are boxed in black lines from I to V. The predicted secondary 

structures are shown for both Pelu112 regions and the proteins with crystal solved 

structures. α/spirals: α-helices; β/arrows: β-sheet; tt: turns; dashed lines: no secondary 

structure found; red box: strictly conserved residues. 

 

3.4. Phylogenetic analysis of pelu112 gene 

 

We performed separate phylogenetic reconstructions of both regions (tmk and dut) of 

pelu112 (Fig. 5). In the tmk dataset, we included genes related to entomopoxvirus, 

nudivirus, and to the mealworm disease-associated apicomplexan Gregarina 

niphandrodes obtained by BLASTX. The ErelGV-, OpMNPV- and PeluSNPV-derived 

genes clustered together, suggesting a common ancestry (Fig. 5A).  The closest relatives 

were both nudivirus and apicomplexan genes. Betabaculovirus-derived tmk genes 

(except ErelGV) clustered together and the same occurred with alphabaculovirus group 

II genes. The unique exception for alphabaculoviruses was the ClbiNPV gene, 

suggesting an independent HGT event. We confirmed this by looking at the gene 

context in the genome and as expected, all HGT events presented different genomic 

contexts (data not shown). 
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Figure 5. Phylogeny and evolution of both TMK and dUTPase regions in the family 

Baculoviridae. (A) Phylogeny of cypo16-like, the N-terminal portion of tmk-dut fused 

gene. ErelGV, OpMNPV, and PeluSNPV-derived proteins clustered together, indicating 

common ancestry. (B) Phylogeny of dUTPases in the family Baculoviridae. Several 

dUTPases clustered and seemed to be shared by several group II alphabaculoviruses. 

The putative independent acquisitions are numbered from i to x. (C) Based on the 

hypothetical phylogeny trees, the history of gain and loss of both tmk and dut in the 

family Baculoviridae were described. For this phylogenetic analysis, we used the 

concatenated alignment of 37 core genes of alpha and betabaculoviruses. Filled and 
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empty symbols represent gain and loss events, respectively. Similar events of dut 

acquisitions (circles) are shown with the same color. All the trees were midpoint rooted 

and presented as cladogram for clarity. 

 

We carried out a similar phylogenetic analysis using the predicted protein sequence of 

several dut genes from bacteria, viruses, and mitochondrial isoform genes. We found 

that many group II alphabaculovirus dut genes clustered together forming a well-

supported monophyletic clade with a fungus mitochondrial gene being the likely 

ancestor (Fig. 5B). Conversely, some baculovirus genes were found to be spread along 

the tree depicting at least nine predicted HGT events from several sources including 

other baculoviruses (Fig 5B and C). The dut gene of Epinotia aporema granulovirus 

(EpapGV) seemed to be acquired from an insect mitochondrial isoform gene (i). The dut 

genes of Spodoptera litura granulovirus (SpliGV), Spodoptera frugiperda granulovirus 

(SpfrGV), Spodoptera litura nucleopolyhedrovirus AN1956 (SpliNPV-1956), and 

Spodoptera littoralis nucleopolyhedrovirus II (SpliNPV-II) clustered together and it 

seems to be product of a double HGT event (ii and iii). Firstly, the gene was probably 

acquired from an amoeba-related mitochondrial isoform by the ancestor of either 

SpliGV and SpfrGV or SpliNPV-1956 and SpliNPV-II. The second event may have 

occurred during a co-infection scenario of a Spodoptera sp. host by both ancestors. 

Three other independent acquisitions (iv, v, and vi) seemed to take place in PeluSNPV, 

ErelGV, and OpMNPV evolution, that formed a dissimilar well-supported subclade 

closely related to bacteria-, lentivirus-, and adenovirus-derived dut genes (Fig. 5B). This 

acquisition happened probably once in the ancestor of one of those species (i.e. 

PeluSNPV, OpMNPV, ErelGV) and was transferred to the other baculoviruses during 

co-infection events. For instance, both PeluSNPV and ErelGV are sphingid-infecting 
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baculovirus and their ancestors could potentially infect the same host. Another event 

appears to have occurred in Leucania separata nucleopolyhedrovirus (LeseNPV) (vii), 

with its closest relative being a bacterium. Finally, Lymantria xylina multiple 

nucleopolyhedrovirus (LyxyMNPV), Lymantria dispar multiple nucleopolyhedrovirus 

(LdMNPV) (viii) and Agrotis segetum granulovirus (AgseGV) (ix) appear to have 

independently acquired their homologs from unknown ancestors. To further substantiate 

our findings, we examined the genomic context of the baculovirusdut genes, since 

unrelated HGT usually occurs at different genomic loci. As expected, all HGT events 

presented different genomic contexts (data not shown). 

 

The tmk genes are found in three different manners in the baculovirus genomes: fused to 

either a polynucleotide kinase 3’-phosphatase (pnk, previously annotated as a 

nicotinamideriboside kinase 1, nrk-1) or dut, or alone (Fig. 5C). In group II 

alphabaculoviruses, the gene is usually fused to the N-terminal portion of pnk (closed 

square/diamond, Fig. 5C). The unique exception was in ClbiNPV, where no pnk is 

found and the genomic context is different when compared to the other viruses (data not 

shown). Therefore, we concluded that some species lost the tmk gene during evolution 

(open square/diamond, Fig. 5C) and reacquired it independently from an undisclosed 

source (e.g. ClbiNPV and PeluSNPV) (Fig. 5C). On the other hand, only in PeluSNPV, 

ErelGV, and OpMNPV was a tmk gene found fused to the N-terminal region of a dut 

gene (square/circle, Fig. 5C). Finally, tmk was found with no fusion in most 

betabaculoviruses (single square, Fig. 5C). 
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3.5. Two tmk-dut genes were expressed and localized distinctly in infected cells 

 

We engineered the type baculovirus, Autographa californica multiple 

nucleopolyhedrovirus (AcMNPV), by inserting separately either pelu112 or erel005 

with an N-terminal HA tag (Fig. 6A). AcMNPV naturally lacks dut, tmk, and any other 

nucleotide metabolism genes. The genes were inserted under the transcriptional control 

of a constitutive insect promoter (Drosophila melanogaster heat shock protein 70 gene 

promoter) (Ardisson-Araujo et al., 2015a). Immunoblotting analysis confirmed that 

both pelu112 and erel005 were expressed as fusions and not as cleaved proteins, based 

on their migration. Although both proteins have similar predicted molecular masses 

(37.5 kDa), pelu112 produced a product that migrated more slowly compared to erel005 

(Fig. 6B). Time course analysis of the recombinant virus infections revealed that the 

proteins were first detected at 12 h p.i. and accumulated during infection progression 

(Fig. 6C). As a loading control, an over-exposure-derived unspecific reactive band is 

shown. By confocal microscopy at 24 h p.i., Pelu112 was found close to the plasma 

membrane and present in the cytoplasm, and the nucleus ring-zone, while Erel005 was 

mostly near the plasma membrane and in the cell cytoplasm (Fig. 6D). 
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Figure 6. Schematic representation of engineered recombinant viruses, expression of 

HA-Pelu112 and HA-Erel005 proteins, and cytolocalization analyses. (A) The HA-

tagged genes were inserted into the AcMNPV genome under the control of an insect 

constitutive promoter (hsp70). (B) Cells were mock-infected or infected with (i) Ac-PG 

(Control), (ii) Ac-ha-pelu112-PG (Pelu), or (iii) Ac-ha-erel005-PG (Erel) at an MOI of 

0.01. Cells were harvested at 48 h p.i., and the total proteins were analyzed by 

immunoblotting with anti-HA antibody. An over-exposure-derived unspecific reactive 

band is shown as a loading control. (C) Expression kinetics of HA-tagged proteins were 

assessed by immunoblotting. (D) Cytolocalization in virus-infected Sf9 cells. Images of 

virus-infected cells (MOI of 10) were photographed at 24 h p.i. using confocal laser 

scanning microscopy. Image panels show the red (anti-HA secondary antibody), green 

(GFP expressed by all recombinant viruses), and blue (DAPI) fluorescent channels. 

Overlays of all channels and the bright-field images are also shown (MERGE/BF). 
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3.6. tmk-dut expression accelerated AcMNPV progeny production 

 

In order to check whether expression of pelu112 or erel005 could influence baculovirus 

infection, we looked at tmk-dut-expressing virus progeny production in vitro using Sf9 

cells. Interestingly, the recombinants expressing either pelu112 or erel005 produced 

higher levels of BV at 24 and 48 h p.i. than the control virus, although the final titers 

were similar at 72 and 96 h p.i. (Fig. 7A). For pelu112-expressing virus, the increase 

was 8.6- and 10.4-fold higher at 24 and 48 h p.i. respectively when compared to the 

parental virus, while for the erel005-expressing virus, the increase was 6.8- and 7.4-fold 

at the same times. Moreover, the yields of occlusion bodies (OB) were increased 2.5-

fold in the tmk-dut-fused-expressing viruses compared to the control (Fig. 7B). It is 

important to note that in this experiment only OB production was monitored, not the 

ability to occlude virions. 
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Figure 7. Expression of HA-Pelu112 or HA-Erel005 accelerated AcMNPV replication, 

viral DNA synthesis, and viral protein expression. (A) Analysis of BV production by 

endpoint dilution assays. Titers were determined from supernatants of cells infected 

with parental Ac-PG (Control), Ac-ha-pelu112-PG (Pelu), or Ac-ha-erel005-PG (Erel) 

(MOI of 0.01) at the designated time points in triplicate. Statistical differences at 24 and 

48 h p.i. obtained by unpaired T-test are shown (p values: *, p≤0.01; **, p≤0.001). (B) 

Yields of occlusion bodies (OB) were increased 2.5-fold in the recombinant viruses. 

OBs were purified from Sf9 cells infected with the respective viruses (MOI of 5) at 120 

hp.i.. Bar heights indicate the averages of four repeats, and the error bars represent the 

standard deviations. Statistical differences by unpaired T-test are shown (p values: ***, 

p≤0.0001; *, p≤0.01). (C) Cells were infected (MOI of 10) with the indicated viruses 

and at 0, 12, 24, 36, and 48 h p.i. total intracellular DNA was purified and analyzed by 



167 
 

real-time PCR in three repeats. Statistical difference by unpaired T-test are shown by 

letters above the bar heights. Different letters indicate that statistical difference exists. 

(D) The fused genes accelerated both IE-1 and GP64 expression during in vitro virus 

infection when compared to the control virus. Lysates obtained from the same number 

of cells was loaded in each lane. Cells were infected with the indicated viruses (MOI of 

0.01) and at 0, 12, 24, 36, and 48 hpi total cellular proteins were analyzed by 

immunoblotting with specific anti-IE-1 or anti-GP64 antibodies. 

 

3.7. AcMNPV replication and IE1 and GP64 expression were accelerated by the 

tmk-dut genes 

 

Since homologs of pelu112 and erel005 are hypothetically thought to play roles in 

nucleotide biosynthesis pathways, we examined viral DNA replication during 

recombinant infection. Viral DNA replication was accelerated during recombinant 

infection in vitro and remained higher through 36 h p.i. (Fig. 7C). At 12 and 24 h p.i., 

the erel005-expressing virus produced more viral DNA than either the pelu112-

expressing virus or the parental virus. However, at 36 h p.i. the recombinant harboring 

pelu112 accumulated more DNA than the two others, while the erel005-expressing 

virus remained higher than the control. By 48 h p.i., there was no significant difference 

in the levels of viral DNA produced by any of the viruses. We also examined the levels 

of two essential virus proteins, IE-1 (the major alphabaculovirus transcription factor) 

and GP64 (the envelope fusion protein). Both proteins were detected earlier in cells 

infected with the tmk-dut-fusion-expressing viruses than with the control virus, 

consistent with the results observed for viral DNA replication and BV production (Fig. 

7D). 
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3.8. Homology modeling 

 

In order to determine whether pelu112 and its homologs (op031 and erel005) 

potentially encode functional proteins and this activity could be related to the viral 

performance infection change, we performed an alignment against homologs using 

solved crystal structures (Fig. 4). Both TMK (Fig 4A) and dUTPase (Fig. 4B) presented 

all the amino acid residues responsible for the enzymatic activity despite of presenting 

few variations. We also built a 3D model of each domain for the predicted amino acid 

sequence of Pelu112.  The identity between the target sequences (N- and C terminal 

regions) and their templates were 27.15 % (PDB ID: 4TMK) and 28.06% (PDB ID: 

3EHW), respectively. The Ramachandran plot of TMK region showed 92% residues in 

favored region, 5.52% in allowed region and 2.45% outliers (Fig. S1B). Whereas the 

dUPTase region showed 92% residues in favored region, 6% in allowed region, and 2% 

outliers (Fig. S1B).  The overall structure of both TMK and dUTPase homology models 

were similar to that of the templates. The TMK-like enzyme at the Pelu112 N-region 

(FIG. 8A) has an α/β fold with a three-stranded parallel β-sheet surrounded by seven α-

helices, similarly to other TMKs (Yan & Tsai, 1999). On the other hand, the Pelu112 C-

terminal core is a putative homotrimer composed of β-strands (12 strands) (Fig. 8B and 

Fig. S1C). The dUTPase had a sequence homology to trimeric dUTPases and presented 

all the five conserved motifs commonly found intrimeric dUTPases (Fig. B). Moreover, 

the N-terminal region of the monomer is projected outward leaving it free to be fused to 

other proteins such as TMK (data not shown). A fusion model is also proposed (Fig. 8D 

and Fig. S1D). 
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Figure 8. Homology modeling of Pelu112. (A) N-terminal region presents homology to 

thymidylate kinase. The model obtained presents several α-helixes as commonly is 

found in this enzyme. (B) Homotrimer model proposed for the C-terminal region of 

Pelu112. The three monomers interacting with their substrates (dUTP in black) are 

shown. (C) Conserved catalytic site of the modeled dUTPase interacting with dUTP 

(dashed lines). The template crystal used for the proposed model is shown in green 

overlapping the proposed model in blue. Although we identified one amino acid 

substitution in Pelu112 (G110 to F97), the interacting region was clearly conserved and 
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remained stable through projecting the lateral chain to outside from the catalytic site. 

(D) Fused model TMK-dUTPase. Both the N-terminus and C-terminus are shown. All 

the proposed models were constructed using previously solved protein structures 

available in PDB database. (E) dTTP biosyinthesis pathway presention baculovirus-

encoded enzymes highlighting the enzymes that are fused in the Pelu112 (dashed box) 

and their respective action on the path. RNR, ribonucleotide reductase; NDK, 

nucleoside diphosphate kinase; CD, cytosine deaminase; TYMS, thymidylate synthase, 

TMK, thymidylate kinase. 

 

Based on this, we conclude that these motifs form a functional dUTPase active site and 

allow the C-terminal region of Pelu112 to form a trimeric quaternary structure with 

three active sites per trimer capable to interacting at the N-terminal region with other 

proteins (Fig. 8B). Moreover, we overlapped the catalytic site from both the template 

and the proposed model of the dUTPase (Fig. 8C, light green). Only one amino acid 

difference was observed in the catalytic site, a phenylalanine in Pelu112 rather than a 

glycine. Crucially, this amino acid substitution did not impact the interaction with dUTP 

due to the positioning of amino acid lateral chain. Therefore, it is reasonable to assume 

that pelu112 encodes a bona fide TMK-dUTPase enzyme enzyme related to different 

steps of the dTTP biosynthesis pathway (Fig. 8E). 

 

4. Discussion 

 

The complete genome sequence of the Perigonia lusca-isolated group II 

alphabaculovirus PeluSNPV revealed that the virus is a new species most closely 

related to Clanis bilineata nucleopolyhedrovirus (ClbiNPV), another sphingid-infecting 
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virus. In the PeluSNPV genome, we found all of the 37 baculovirus core genes and 

many auxiliary genes including a densovirus-related non-structural homolog, he65-like, 

chitinase, cathepsin, iap-2 and iap-3, and both small and large subunits of the 

ribonucleotide reductase. Moreover, the genome sequence revealed a peculiar 

nucleotide metabolism gene acquisition (pelu112) which was found to be a fusion of 

two other genes with separate homologs in other genomes, thymidylate kinase or 

thymidine monophosphate kinase (tmk) and deoxyuridine triphosphatase (dut), and this 

particular gene fusion seemed to be acquired independently by two other distantly 

related baculoviruses. Reconstructing the evolutionary history of both regions 

separately, we found that (i) this form of tmk seemed to be acquired several times during 

baculovirus evolution as a fusion or non-fused protein, while the dut has been acquired 

at least ten times. Furthermore, we have provided for the first time experimental 

evidences that expressing a fused nucleotide metabolism gene in a prototypic 

baculovirus that naturally lacks it resulted in accelerated in vitro virus progeny 

production, viral gene expression, and genome replication, as well as increased OB 

yields. Both enzymes retained tertiary structures predicted based on alignment with 

crystal-solved enzymes, which is strong, but not confirmed evidence of enzyme activity. 

Together, our results suggest that encoding a nucleotide metabolism gene homolog is 

beneficial for baculovirus replication and infection in vitro, and likely explains why 

these genes have been repeatedly acquired and retained during baculovirus evolution. 

 

As a general rule, neither tmk or dut are essential for baculovirus infection given that 

several species lack them (Fig. 5C). However, the independent and recurrent acquisition 

of nucleotide metabolism genes, especially dut,from distinct taxonomic groups by 

baculoviruses and other viruses strongly suggests that there is a selective advantage for 
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viruses harboring these genes. Indeed, a gene that provides accelerated progeny 

production such as that observed for the recombinant viruses produced in this work 

would be probably fixed into the virus population along the course of evolution. 

Importantly, in this work we are not asking whether the enzyme activities are the main 

reason for the adaptive gain observed in the recombinant viruses, since we did not test 

for it. Even though we have shown that the fused enzymes retained their individual 

structures and catalytic site as well, our evolutionary question here is whether the 

presence and expression of a nucleotide metabolism gene into a prototype baculovirus 

that naturally lacks it may change the virus infection. Therefore, we have chosen this 

especial fused gene for two main reasons; firstly, the gene has being independently 

acquired three times during baculovirus evolution and secondly the gene is a fusion of 

two nucleotide metabolism genes. 

 

There is no clear evidence indicating that this fusion would negatively impact the 

hypothetical enzyme activities. By homology modeling, we observed the possibility that 

fusion would have no allosteric impact on the chimeric structure and we did not observe 

cleavage products when the chimera was expressed during baculovirus infection. The 

fusion of nucleotide metabolism-related genes is also observed in the genome of the 

nimavirus White Spot Syndrome Virus (WSSV). The WSSV genome encodes a 

thymidine kinase (tk) fused to a tmk (Tsai et al., 2000) despite only TK activity being 

demonstrated in the fused gene (Tzeng et al., 2002). 

 

In an attempt to understand and explain our results, we found in previously published 

work that the expression of cellular dUTPase is regulated by the cell cycle and is at 

higher levels in dividing cells than in non-dividing cells (Pardo & Gutierrez, 1990; 
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Strahler et al., 1993). In the context of virus infection, uracil incorporation controlled by 

the expression of cellular dUTPase and enzymes related to dTTP biosynthesis could 

work as a weapon against viruses (Priet et al., 2006). For baculoviruses, insect cells do 

not undergo synchronous division when cultivated in vitro as stable lineages (Braunagel 

et al., 1998; Lynn & Hink, 1978) and hence the nucleotide pool size likely also varies 

between cells. Cultures with higher percentages of cells in middle and late S phase are 

more susceptible to baculovirus infection than cultures inoculated with virus in the 

G2 phase (Lynn & Hink, 1978). An advantage for viruses to be able to replicate 

efficiently in a heterogeneous cell type tissue may allow them to establish infection 

more effectively in the host (Chen et al., 2002; Steagall et al., 1995).Therefore, a virus 

that harbors dUTPase, TMK, and other enzymes related to nucleotide metabolism (e.g. 

ribonucleotide reductase) could be able to better replicate in cells that are not in S phase 

by controlling the nucleotide pool size. In dividing cells, dUTPase activity would 

presumably not be necessary for the replication of several pathogens including 

herpersviruses, asfavirus, and several lentiviruses,while in non-dividing cells the virus 

replication is significantly reduced (Caradonna & Cheng, 1981; Lerner et al., 1995; 

Oliveros et al., 1999; Pyles et al., 1992; Ross et al., 1997; Threadgill et al., 1993; 

Turelli et al., 1996). On the other hand, the replication of dUTPase-minus lentivirus 

mutants was severely affected in non-dividing host cells (e.g. primary macrophages), 

with a decrease in virus load and an increase in viral DNA transition mutations (Turelli 

et al., 1997). Interestingly, in the case of the four known betabaculoviruses that harbor 

nucleotide metabolism genes (e.g. dut, tmk, or rnr) each species possesses a dut gene 

that appears to have been captured on four independent occasions. Both AgseGV and 

EpapGV are known to present polyorganotropic pathology (Ferrelli et al., 2012; 

Goldberg et al., 2002) which means that the virus can spread throughout the insect body 
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and is not restricted to the midgut. Since cell division rates vary according to the tissue 

type, nucleotide metabolism genes could help viruses to overcome the non-dividing cell 

state of some tissues. Interestingly, EpapGV codes for a novel enzyme TMK (Ferrelli et 

al., 2012) that seems to differ from the tmk gene addressed by this work. We did not 

find close relationship by BLAST search between them; therefore, the tmk gene found at 

the N-terminal region of Pelu112 has no clearly defined source. TMK enzymes can be 

found in several viruses from different families including Asfaviridae, Herpesviridae, 

and Poxviridae and some of them seem to be homologs. In vaccinia virus, the enzyme 

was not essential for virus replication and was able to complement the enzyme of a 

Saccharomyces cerevisaetmk mutant (Hughes et al., 1991).  

 

Along these lines, we found that HA-Pelu112 migrated more slowly in SDS-PAGE 

compared to HA-Erel005, despite both proteins having similar predicted molecular 

masses (37.55 kDa) and high pairwise amino acid identity (90.2 %). This difference in 

migration could be related to a type of post-translational modification such as 

phosphorylation. Herpes simplex virus 1 (HSV-1) dUTPase phosphorylation regulates 

viral virulence and genome integrity by compensating for the low cellular dUTPase 

activity in the central nervous system (Kato et al., 2015). We found also that HA-

Pelu112 and HA-Erel005 presented different patterns of cytolocalization upon infection 

progression. Pelu112 was observed in both cytoplasm and nucleus while the 

betabaculovirus-derived protein Erel005 was found only in the cell cytoplasm. 

Phosphorylation can lead to different patterns of cell localization (Nardozzi et al., 

2010). The dUTPase from Ophiusa disjungens nucleopolyhedrovirus was found to be in 

the cell nucleus at 24 h p.i., but at 72 h p.i. it was excluded from this compartment and 

diffusely scattered all over the cell (Lin et al., 2012). It is relevant to note that 
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betabaculoviruses can cause nuclear disruption upon infection, making the infected cell 

a mixture of cytoplasm and nucleoplasm (Goldberg et al., 2002; Lacey et al., 2011). 

 

There is no clear reason to explain why some viruses have a nucleotide metabolism 

gene and others lack it. The reason could be related to conditional expression or 

specificity of the host enzyme. For instance, E. coli dUTPase activity was not 

sufficiently active to exclude uracil from a dUTPase mutant bacteriophage T5 during 

infection, and about 3% of the thymine was replaced by uracil in viral progeny genomes 

(Warner et al., 1979). In the case of HSV-1 with a dut gene deletion, the replication 

process was sufficiently complemented by a cellular dUTPase (Williams, 1988). 

 

Overall, we cannot say for sure whether Pelu112 is an active enzyme but we have 

shown that both tmk and dut gene acquisition happened independently several times 

during baculovirus evolution, which also seems to be a convergent and common feature 

among other viruses (e.g. herpesvirus, iridovirus, phycodnavirus, adenovirus, and 

lentivirus). Moreover, we have shown that both regions of Pelu112 are structurally 

conserved and crucially, that the insertion of tmk-dut fused genes into the genome of 

AcMNPV, which does not normally express them, accelerated virus replication in vitro. 

We can only speculate that expression of tmk-dut accelerated replication by increasing 

the nucleotide pool size in non-dividing cells, making them a more permissive and less 

deleterious environment for virus replication. It would be interesting to study the 

function of nucleotide metabolism gene in its natural context by constructing a deletion 

virus and check for the enzyme activities in the fused protein and separately. However, 

our results have presented the first clues for explaining nucleotide metabolism gene 

fixation in baculovirus genomes. Overall, in this context, the identification and 
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sequencing of novel virus species or isolates, especially from countries with high 

diversity of flora and fauna such as Brazil, has provided a wider empirical database to 

help understand baculovirus evolution (Ardisson-Araujo et al., 2014a; Ardisson-Araujo 

et al., 2014b; Ardisson-Araujo et al., 2015b; Craveiro et al., 2015; Oliveira et al., 2006). 

 

5. Material and Methods 

 

5.1. Virus purification 

 

Insect cadavers of P. lusca ilus with symptoms of baculovirus infection were collected 

in mate tea crops from the South Brazil. The cadavers were kept in freezer and used for 

further OB purification (O'Reilly et al., 1992). 

 

5.2. Scanning electron microscopy (SEM) and genomic DNA restriction analyses 

 

One hundred µl of the OB-containing suspension (109 OBs/ml of ddH2O) were used for 

SEM according to previously published protocol (Ardisson-Araujo et al., 2014b). For 

endonuclease restriction analyses, OBs were dissolved in alkaline solution and used to 

extract DNA (O'Reilly et al., 1992). Both quantity and quality of the purified DNA were 

determined by electrophoresis on a 0.8% agarose gel (data not shown). The viral DNA 

(1–2 µg) was individually cleaved with the restriction enzymes ApaI, BamHI, PstI, 

XbaI, XhoI, BglII, NsiI, and ClaI (Promega) according to manufacturer’s instructions. 

The DNA fragments were resolved by 0.8% agarose gel electrophoresis (Sambrook & 

Russel, 2001), visualized, and photographed in AlphaImager® Mini (Alpha Innotech). 
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5.3. Genome sequencing, assembly, and annotation 

 

PeluSNPV genomic DNA was sequenced with a 454 Genome Sequencer (GS) FLX™ 

Standard (Roche) at the ‘Centro de Genômica de Alto Desempenho do Distrito Federal’ 

(Center of High-Performance Genomic, Brasilia, Brazil). The genome was assembled 

de novo using Geneious 7.0 (Kearse et al., 2012) and confirmed using restriction 

enzyme digestion profile. One homologous region with low coverage was amplified 

(PeluOrf-7 F GGG TCA TAC ATC GTA TCA CCA AGC G and Pelu-p74 R CAT CTT 

ATC GGT TGG CGT ACG TGA C), cloned into pCRII (Invitrogen), and sequenced by 

Sanger (GENEWIZ®, Inc., USA). The open reading frames (ORFs) that started with a 

methionine codon (ATG) and encoded polypeptides of at least 50 amino acids were 

identified with Genious 7.0 and annotated using BLASTP (Altschul et al., 1997). 

 

5.4. Phylogenetic analyses 

 

For Baculoviridae phylogenetic analysis, a MAFFT alignment (Katoh et al., 2002) was 

carried out with concatenated amino acid sequences of 37 baculoviral core genes from 

73 baculovirus genomes publicly available (Table S2). A maximum likelihood tree was 

inferred using a MAFFT alignment, the Fast-tree method (Stamatakis et al., 2008)and a 

Shimodaira-Hasegawa-like test(Anisimova et al., 2011). Horizontal gene transfer 

(HGT) events were investigated using the same method described above. MAFFT 

alignments (available upon request) of 36 sequences (for the cypo016-like genes) and 88 

sequences (for dutgenes) of homologs were used with the multiple sequence alignment 

package T-Coffee(Notredame et al., 2000). Both the tree for cypo016-like and dut gene 
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were transformed to a cladogram using FigTree v1.4.0 in order to archive clarity. All 

the alignments are available upon request. 

 

5.5. Viruses and insect cell line 

 

Spodoptera frugiperda (fall armyworm) (Sf9) cells (Alami et al., 2003) were 

maintained at 27 ºC in TC-100 medium (Invitrogen), supplemented with 10% fetal 

bovine serum (FBS, Invitrogen), penicillin G (60 µg/ml), streptomycin sulfate (200 

µg/ml), and amphotericin B (0.5 µg/ml). Recombinant AcMNPV-C6 were propagated 

in insect cell cultures and their titers determined by end-point dilution (O'Reilly et al., 

1992). 

 

5.6. Gene amplification, shuttle vectors, and recombinant AcMNPV virus 

construction 

 

Gene from PeluSNPV (pelu112) and ErelGV (erel005) were separately amplified using 

two set of primers (Pelu F - ACA ACAGAG CTC ATG AAG ACC TAC ATT TGT 

GGT AC and Pelu R - AAT AGC GGC CGC TTA AAA AGT AGA TCC GAA TC, 

Erel F - ACA ACAGAG CTC ATG AAG ACC TAC ATT TGC GGT ACG and Erel R 

- AAA CGC GG CCG CTT AAG AAG TAG ACC CGA ACC) in two reactions which 

contained 100 ng of the DNA-template (PeluSNPV or ErelGV genomes), 300 µM of 

dNTP mix (Fermentas, Pittsburgh, PA, USA), 0.4 µM of each set of primer pairs, 1 U of 

VENT Polymerase (New England Biolabs, Ipswich, MA, USA), and 1x of the supplied 

reaction buffer. The reactions were subjected to the following program: 95 ºC/2 min, 35 

cycles of 95 ºC/ 30s, 55 ºC/30 s and 68 ºC/1 min with a final extension of 5 min at 68 
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ºC. The amplified fragments were digested with SacI/NotI (New England Biolabs, 

Ipswich, MA, USA) and cloned into pFB-PG-H-ha-pA shuttle plasmid (a modified 

pFB-PG containing a SV40-polyA signal and the Drosophila melanogaster hsp70 

promoter to drive the heterolog gene expression with a for-fusion-ha-tag before the 

restriction sites) (Ardisson-Araujo et al., 2015a) and confirmed by restriction digestion 

and sequencing (GENEWIZ®, Inc., USA). The modified plasmids containing the 

heterologous genes were transformed into DH10-Bac cells (Invitrogen, Carlsbad, CA, 

USA) by heat shock (Sambrook & Russel, 2001). Recombinant bacmids were selected 

and confirmed by PCR following the manufacturer’s instructions (Bac-to-Bac®, 

Baculovirus expression systems, Invitrogen, Carlsbad, CA, USA). One µg of each 

recombinant bacmid was transfected into Sf9 cells (106) using Lipofectin (Wu & 

Passarelli, 2010). The supernatant of seven day post-transfection cells containing the 

recombinant viruses were collected, amplified in Sf9 cells, and titered as previously 

described (O'Reilly et al., 1992). 

 

Sf9 cells (1×106) were seeded on coverslips in 35-mm-diameter culture dishes and 

infected at MOI of 10 with recombinant viruses. At 24 h p.i., the supernatant was 

removed and the cells were washed twice with PBS, pH 6.2, and fixed in 2.5% 

formaldehyde in PBS for 10 min at room temperature (RT). The fixed cells were 

washed three times in PBS for 5 min, followed by permeabilization in 0.1% NP-40 

(Sigma) in PBS for 10 min at RT. Cells were washed three times in PBS for 5 min per 

wash before incubation with blocking solution (5% BSA, 0.3% Triton-100 in PBS) for 

1 h at RT, followed by incubation with anti-HA (1:500) in PBS with 1% BSA, 0.3% 

Triton X-100 overnight at 4  C in a humid chamber.Cells were washed three times in 

blocking solution for 5 min each, followed by 1 h incubation with Alexa Fluor 594-
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conjugated goat anti-rabbit antibody (1:1,000) in the dark at RT. Cells were washed 

three times for 5 min each in PBS, followed by incubation with DAPI (Invitrogen) 

solution according to the manufacture instructions in PBS for 15 min at RT. The cells 

were subsequently washed three times for 10 min each in PBS. Coverslips were 

mounted on a glass slide with Fluoromount-G (SouthernBiotech) and stored at 4 °C in 

the dark until examined with a Carl Zeiss LSM 5 Pascal Laser Scanning Confocal 

Microscope. 

 

5.7. Virus growth curves and polyhedra production 

 

For viral growth curve analyses, three independent Sf9 cell dishes (0.5 x 106 cells/35-

mm-diameter dish) were infected (MOI of 0.01 TCID50/cell) for 1 h and then washed 

twice with TC-100 medium  and replenished with 2 ml of fresh TC-100 medium 

supplemented with 10% FBS. The supernatants of the infected cells were collected at 

various time points to determine titers by 50% tissue culture infective dose (TCID50) 

endpoint dilution assays (O'Reilly et al., 1992) on Sf9 cells. For polyhedra production, 

three independent infections were separately performed in Sf9 cells at 80% confluency 

in cell culture flasks (75 cm2) at MOI of 5 TCID50/cell. Cell monolayers were incubated 

for 1 h with the virus inocula, washed twice with TC-100 medium, and replenished with 

12 ml fresh TC-100 medium supplemented with 10% FBS. The cells and polyhedra 

released were collected at 120 h p.i. and purified according to O’Reilly et al., (O'Reilly 

et al., 1992). The purified OBs were diluted in the same volume, homogenized by 

vortexing overnight at 200 rpm, and counted using a hemocytometer. 
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5.8. Immunoblotting 

 

Protein samples were mixed with equal volumes of 2x protein loading buffer (0.25 M 

Tris-Cl, pH 6.8, 4% SDS, 20% glycerol, 10% 2-mercaptoethanol, and 0.02% 

bromophenol blue) and incubated at 100°C for 5 min. Samples were resolved by 15 or 

12% SDS-PAGE, transferred onto polyvinylidenefluoride (PVDF) membrane 

(Millipore), and probed with (i) mouse monoclonal anti-hemagglutinin (anti-HA) 

antibody (Covance), (ii) mouse monoclonal anti-GP64 antibody (eBioscience), or (iii) 

mouse polyclonal anti-IE-1 antibody; this probing was followed by incubation with 

horseradish peroxidase-conjugated secondary antibodies (Sigma). Blots were developed 

using the SuperSignal West Pico chemiluminescent substrate (Pierce) and exposed to X-

ray films. 

 

5.9. Quantitative real-time PCR (Q-PCR) 

 

To detect viral DNA replication in virus-infected cells, Q-PCR was performed as 

previously described. Sf9 cells (1.0 x 106 cells/35-mm-diameter dish) were infected in 

triplicate at MOI of 5 TCID50/cell, and cells were collected at different time points. 

Total DNA was prepared with the Wizard genomic DNA purification kit (Promega) 

according to the protocol of the manufacturer. Purified DNA was quantified by optical 

density measurement. Q-PCR was performed with 10 ng DNA and Absolute Q-PCR 

SYBR green fluorescein mix (Thermo Scientific) according to the protocol of the 

manufacturer by using the same primers to amplify a 100-bp region of the AcMNPV 

gp41 gene as described previously (Vanarsdall et al., 2005). Standard DNA samples 

were used from purified AcMNPV BV DNA and serially diluted to 100, 10, 1, 0.1, 
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0.01, and 0.001 ng. Genomic equivalents of DNA samples were determined by 

extrapolation from standard curves. A melting-curve analysis of each amplified sample 

was carried out to check the specificity of each reaction. The results were analyzed 

using GraphPad Prism version 5.01 (GraphPad Software, Inc.). 

 

5.10. Homology modeling 

 

The templates for three dimensional (3D) structure prediction of Pelu112 protein were 

searched in expasy SWISS-MODEL server (Biasini et al., 2014) using the amino acid 

(aa) sequence as the reference. The Suitable templates were aligned with Pelu112 

protein using T-Coffee server(Notredame et al., 2000) and the resulting alignments 

were manually improved using BioEdit (Hall, 1999). Aligned sequences were used with 

MODELLERv9.10 (Sali & Blundell, 1993) to develop high quality 3D models. The 

highest quality models were selected and the accuracy of these predicted models was 

further analyzed through MolProbity (Chen et al., 2010). The validation of all these 

models was done by checking the psi/phi ratio of Ramachandran plot obtained from 

MolProbity analysis. Yasara (Krieger et al., 2009) was also applied for final models to 

check for energy minimization criteria. Ramachandran outlier residues were fixed with 

COOT (Emsley et al., 2010) and energy minimization. The models were visualized 

usingThe PyMOL molecular graphics systemversion 1.0 (DeLano Scientific, San 

Carlos, CA). 
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7. SUPPLEMENTARY MATERIAL 

 

 

 

Figure S1. Ramachandran plot for each protein model proposed.(A) N-terminal region 

of Pelu112, the TMK-like enzyme. (B) C-terminal region of Pelu112, the dUTPase-like 

enzyme. (C) dUTPase homotrimer. (C) Fused model. The individual, assembled, or 

fused structures are shown below each respective plot. 
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Table S1. Characteristics of the Perigonia lusca single nucleopolyhedrovirus (PeluSNPV) genome: analysis and homology search. Predicted 

ORFs are compared with homolog genes in two related genomes. 

Orf Name Position 
Size  

(nt) 

Size 

(aa) 

ClbiNPV  AcMNPV  

Best hit 
Orf 

Max 

Id (%)+ 

 
Orf 

Max 

Id (%)+ 

 

1 polh 1 > 741 741 246 1 91  8 89  OrleNPV 

2 orf1629 902 < 2,566 1,665 554 2 27  9 29  ClbiNPV 

3 pk-1 2,559 > 3,356 798 265 3 55  10 44  AgseNPV-B 

4a   3,629 < 4,042 414 137 - -  - -  Ceriporiopsis subvermispora 

5 hoar 4,128 < 6,239 2,112 703 4 30  

  

 EcobNPV 

6 a   6,469 > 6,657 189 62 - -  - -  Daphnia pulex 

7 a   6,804 > 8,276 1,473 490 - -  - -  Megasphaera sp. 

 

hr1 8,291 - 9,364 1,074 - - -  - -  - 

8 p74 9,382 < 11,358 1,977 658 14 62  138 59  OrleNPV 

9 me53 11,452 < 12,522 1,071 356 12 49  139 23  ClbiNPV 

10 a   12,561 > 12,713 153 50 - -  - -  Beta vulgaris 

11 ie-0 12,860 > 13,693 834 277 11 40  141 28  ChchNPV 

12 p49 13,742 > 15,265 1,524 507 10 71  142 51  ClbiNPV 

13 odv-e18 15,210 > 15,470 261 86 10b* 71§  143 83  LyxyMNPV 

14 odv-e27 15,508 > 16,371 864 287 9 67  144 49  OrleNPV 
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15 chtb-1 16,388 > 16,669 282 93 9b* 69§  145 49  AdhoNPV 

16 ep23 16,680 < 17,300 621 206 8 34  146 33  ApciNPV 

17 a   17,380 > 17,838 459 152 - -  - -  no hit 

18 a   17,901 > 18,380 480 159 - -  - -  no hit 

19 ie-1 18,245 > 19,615 1,371 456 7 41  147 31  EcobNPV 

20 odv-e56 (pif-5) 19,769 < 20,836 1,068 355 6 61  148 54  OrleNPV 

 

hr2 20,849 - 21,997 1,149 - - -  - -  - 

21 p47 22,004 > 23,218 1,215 404 36 65  40 54  HespNPV 

22 dbp-1 23,378 < 24,301 924 307 27 46  25 29  ClbiNPV 

23 nudix; bv-e31 24,479 > 25,354 876 291 25 57  38 52  AgipMNPV 

24 lef-11 25,198 > 25,800 603 200 - -  37 34  AgseNPV-B 

25 39k 25,736 > 26,689 954 317 24 43  36 37  ClbiNPV 

26 a   26,833 < 27,012 180 59 - -  - -  no hit 

27 v-ubq 26,969 < 27,247 279 92 22 80  35 76  HespNPV 

28 lef-7 27,414 > 28,388 975 324 37 39  125 31  MaviNPV 

29   28,404 > 29,021 618 205 21 54  34 33  HespNPV 

30 p10 29,152 < 29,415 264 87 20 63  137 29  ChchNPV 

31 p26-1 29,517 < 30,377 861 286 19 42  136 32  ApciNPV 

32   30,583 > 30,834 252 83 18 48  29 29  MacoNPV-A 

33 lef-6 30,963 < 31,733 771 256 17 55  28 47  AgseNPV 
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34 dbp-2 31,781 < 32,560 780 259 16 36  25 30  AgseNPV 

35 a   32,780 > 32,938 159 52 - -  - -  Saccharomonospora viridis 

36 lef-12 33,316 > 34,035 720 239 34 28  41 37  AdorNPV 

37   34,025 > 34,276 252 83 33 38  43 31  BomaNPV 

38   34,295 < 34,843 549 182 - -  - -  MacoNPV-A 

39 ctl-1 34,946 > 35,131 186 61 53 60  3 40  ChmuNPV 

40 lef-9 35,207 < 36,703 1,497 498 47 76  62 68  ChchNPV 

41 fp-25k 36,892 > 37,536 645 214 46 67  61 60  OrleNPV 

42 bro-a 37,725 > 38,108 384 127 105 52  - -  HespNPV 

43 chab-a 38,202 > 38,516 315 104 45 56  60 56  LdMNPV 

44 chab-b 38,568 > 39,068 501 166 44 72  58/59 47  MacoNPV-A 

45   39,121 < 39,693 573 190 43 42  57 43  BusuNPV 

46   40,084 < 40,338 255 84 - -  - -  AdorNPV 

47   40,277 < 40,564 288 95 41 59  55 40  SujuNPV 

48 a   40,545 > 40,751 207 68 - -  - -  no hit 

49 vp1054 40,685 < 41,749 1,065 354 39 48  54 39  AgipMNPV 

50 lef-10 41,604 < 41,837 234 77 - -  53a 33  TnSNPV 

51   41,800 > 42,030 231 76 - -  - -  TnSNPV 

52   42,047 > 43,141 1,095 364 38 31  - -  HespNPV 

53   43,130 < 43,555 426 141 28 63  53 46  OrleNPV 
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54 a   43,613 > 43,858 246 81 - -  - -  no hit 

55 a   43,708 < 43,965 258 85 - -  - -  Flavobacterium soli 

56 dnaj 43,990 < 44,886 897 298 31 34  - -  ClbiNPV 

57 lef-8 44,907 > 47,582 2,676 891 32 69  50 62  ApciNPV 

58 gp37 47,791 < 48,741 951 316 56 57  64 47  ClbiNPV 

59   48,918 < 49,124 207 68 58 46  111 52  BmNPV 

60 chitinase 49,277 < 50,989 1,713 570 59 72  126 71  ClbiNPV 

61 v-cath 51,109 > 52,122 1,014 337 60 69  127 69  SujuNPV 

62 p26-2 52,171 < 52,899 729 242 61 44  136 28  ClbiNPV 

63 chtB-2 52,992 < 53,330 339 112 62 45  150 31  HaNPV 

64 iap-2 53,334 < 54,077 744 247 63 34  71 31  AgseNPV 

65 mtase-1 54,074 < 54,886 813 270 64 52  69 49  SpliNPV-II 

66   54,858 < 55,232 375 124 - -  68 41  AgseNPV 

67 lef-3 55,394 > 56,470 1,077 358 65 43  67 28  ClbiNPV 

68 desmoplakin 56,641 < 58,983 2,343 780 66 32  66 31  TnSNPV 

69 dna-pol 59,021 > 62,206 3,186 1061 67 65  65 48  ClbiNPV 

70   62,300 < 62,689 390 129 68 60  75 31  ClbiNPV 

71   62,697 < 62,954 258 85 69 72  76 59  OrleNPV 

72 vlf-1 63,029 < 64,207 1,179 392 71 81  77 73  ClbiNPV 

73   64,219 < 64,569 351 116 72 72  78 59  BusuNPV 
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74 gp41 64,640 < 65,602 963 320 73 79  80 60  ClbiNPV 

75   65,729 < 66,247 519 172 74 57  81 60  TnSNPV 

76 tlp20 66,177 < 66,938 762 253 75 48  82 35  EupsNPV 

77 p95 (vp91) 66,808 > 69,255 2,448 815 76 39  83 35  ApciNPV 

78 cg30 69,491 < 70,228 738 245 77 32  88 32  OrleNPV 

79 vp39 70,330 < 71,337 1,008 335 78 58  89 40  ClbiNPV 

80 lef-4 71,336 > 72,886 1,551 516 79 53  90 45  HespNPV 

81 p33 (sox) 72,916 < 73,617 702 233 80 65  92 47  ClbiNPV 

82 p18 73,696 > 74,196 501 166 81 66  93 48  PespNPV 

83 odv-e25 74,193 > 74,888 696 231 82 72  94 42  ClbiNPV 

84 dna-helicase 75,018 < 78,680 3,663 1220 83 58  95 42  OrleNPV 

85 odv-e28 (pif-4) 78,649 > 79,173 525 174 84 61  96 50  OrleNPV 

86 38k 79,214 < 80,254 1,041 346 85 59  98 49  ClbiNPV 

87 lef-5 80,150 > 81,037 888 295 86 61  99 48  OrleNPV 

88 p6.9 81,055 < 81,285 231 76 86b* 44§  100 42§  no hit 

89 a   81,240 > 81,410 171 56 - -  - -  no hit 

90 p40 81,347 < 82,522 1,176 391 87 56  101 39  ClbiNPV 

91 p12 82,541 < 82,912 372 123 88 59  102 36  ClbiNPV 

92 p48/p45 82,905 < 84,092 1,188 395 89 69  103 39  ClbiNPV 

93 vp80 84,121 > 86,733 2,613 870 90 28  104 24  ClbiNPV 
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94   86,755 > 86,922 168 55 91 59  110 35  EcobNPV 

95 odv-ec43 86,929 > 88,008 1,080 359 92 72  109 43  ClbiNPV 

96   88,077 > 88,367 291 96 - -  - -  SfMNPV 

97 p13 88,397 < 89,218 822 273 94 62  - -  SpliNPV-II 

98   89,273 > 90,373 1,101 366 95 31  112/113 36  LyxyMNPV 

99 a   90,556 > 90,906 351 116 - -  - -  Arabidopsis thaliana 

100 a   90,810 < 91,187 378 125 - -  - -  no hit 

101 a   91,056 > 91,829 774 257 - -  - -  Halomonas sp. 

102 iap-3 91,830 > 92,432 603 200 - -  - -  LdMNPV 

103   92,443 < 93,135 693 230 97 92  106 64  ClbiNPV 

104   93,294 > 94,025 732 243 - -  - -  ErelGV 

105 pagr 94,075 < 95,580 1,506 501 98 21  - -  SujuNPV 

106   95,671 < 96,060 390 129 99 39  - -  ApciNPV 

107 pif-3 96,071 < 96,697 627 208 100 44  115 44  SpliNPV-II 

108 sod 96,777 > 97,268 492 163 102 76  31 73  ClbiNPV 

109   97,317 < 98,336 1,020 339 - -  11 47  AgMNPV 

110   98,277 > 98,459 183 60 - -  - -  ChroNPV 

111 ctl-2 98,483 > 98,644 162 53 - -  3 74  AcMNPV 

112 dut-fused 98,827 > 99,780 954 317 - -  - -  ErelGV 

113   99,938 > 100,315 378 125 103 33  - -  AgseNPV 
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114   100,312 > 100,590 279 92 104 40  117 40  ClbiNPV 

115 pif-2 100,652 < 101,794 1,143 380 107 72  22 66  BusuNPV 

116 pkip 101,837 < 102,415 579 192 108 33  - -  HzSNPV 

117 lef-2 102,469 < 103,098 630 209 109 57  6 42  ClbiNPV 

118   103,070 < 103,438 369 122 110 43  - -  AdorNPV 

119 a   103,643 < 104,098 456 151 - -  - -  Sulfolobus islandicus 

120 a   104,260 < 104,409 150 49 - -  - -  no hit 

121 p24 104,462 > 105,241 780 259 111 54  129 40  HespNPV 

122   105,242 < 105,712 471 156 112 30  - -  HespNPV 

123 gp16 105,810 > 106,106 297 98 113 49  130 37  TnSNPV 

124 he65 106,230 > 107,057 828 275 - -  105 35  AgseGV 

125 pep; pp34 107,208 > 108,128 921 306 114 55  131 28  OrleNPV 

126 rr2a 108,210 < 109,262 1,053 350 - -  - -  HespNPV 

127   109,345 < 109,758 414 137 115 44  19 36  OrleNPV 

128   109,769 > 110,989 1,221 406 116 32  18 27  AgseNPV 

129 alk-exo 111,007 > 112,266 1,260 419 117 48  133 39  ApciNPV 

130   112,341 < 113,060 720 239 - -  - -  AgseNPV-B 

131 fgf 113,223 > 114,365 1,143 380 118 33  32 21  SujuNPV 

132   114,379 < 114,615 237 78 - -  - -  AgseNPV-B 

133 pif-1 114,618 < 116,240 1,623 540 120 48  119 51  ApciNPV 
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134 odv-e66 116,280 < 118,259 1,980 659 - -  46 45  OrleNPV 

135 f protein 118,381 < 120,507 2,127 708 129 67  23 23  ClbiNPV 

136   120,663 > 123,596 2,934 977 128 42  - -  ClbiNPV 

137   123,633 < 124,490 858 285 127 33  17 36  HespNPV 

138   124,598 < 125,272 675 224 126 48  - -  ClbiNPV 

139 egt 125,504 < 127,117 1,614 537 125 47  15 52  AcMNPV 

140 a   127,192 < 127,401 210 69 - -  - -  no hit 

141   127,362 < 127,700 339 112 124 56  - -  OrleNPV 

142 lef-1 127,719 > 128,411 693 230 123 48  14 42  ClbiNPV 

143 38.7k 128,429 > 129,580 1,152 383 122 39  13 41  ClbiNPV 

144 a   129,678 < 130,292 615 204 - -  - -  Plasmodium vinckei petteri 

145 rr1 130,348 < 132,645 2,298 765 - -  - -  EupsNPV 

+: identity obtained by BLASTX. 

a: unique gene 

*: not annotated in the  Genbank database genome 

§: acquired by manual alignment using the MAFFT method 
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Table S2. Species used in this paper for reconstruction of the baculovirus phylogeny in the FIG. 2. The species from the genera 

Alphabaculovirus from Group I (red) and Group II (black), Betabaculovirus (dark blue), Gammabaculovirus (orange), and 

Deltabaculovirus (light blue) are presented here together with abbreviation used in the main text, host family from where the virus was 

isolated, and the Genbank accession number. 

Species Abbreviation Host family Accession 

Adoxophyes honmai nucleopolyhedrovirus AdhoNPV Tortricidae AP006270 

Adoxophyes orana nucleopolyhedrovirus AdorNPV Tortricidae EU591746 

Agrotis ipsilon multiple nucleopolyhedrovirus strain illinois AgipMNPV Noctuidae EU839994 

Agrotis segetum nucleopolyhedrovirus AgseNPV Noctuidae DQ123841 

Apocheima cinerarium nucleopolyhedrovirus ApciNPV Geometridae FJ914221 

Buzura suppressaria nucleopolyhedrovirus BusuNPV Geometridae KF611977 

Chrysodeixis chalcites nucleopolyhedrovirus ChchNPV Noctuidae AY864330 

Clanis bilineata nucleopolyhedrovirus ClbiNPV Sphingidae DQ504428 

Ectropis obliqua nucleopolyhedrovirus strain A1 EcobNPV-A1 Geometridae DQ837165 

Euproctis pseudoconspersa nucleopolyhedrovirus EupsNPV Lymantriidae FJ227128 

Helicoverpa armigera multiple nucleopolyhedrovirus HaMNPV Noctuidae EU730893 

Helicoverpa armigera nucleopolyhedrovirus C1 HaNPV-C1 Noctuidae AF303045 

Helicoverpa zea single nucleopolyhedrovirus USA HzSNPV-USA Noctuidae AF334030 

Hemileuca sp. nucleopolyhedrovirus HespNPV Saturniidae KF158713 

Lambdina fiscellaria nucleopolyhedrovirus LafiNPV Geometriidae KP752043 

Leucania separata nuclear polyhedrovirus strain AH1 LeseNPV Noctuidae AY394490 

Lymantria díspar multiple nucleopolyhedrovirus LdMNPV Lymantriidae AF081810 

Lymantria xylina multiple nucleopolyhedrovirus LyxyMNPV Lymantriidae GQ202541 

Mamestra brassicae multiple nucleopolyhedrovirus strain Chb1 MbMNPV-CHb1 Noctuidae JX138237 
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Mamestra configurata nucleopolyhedrovirus-A strain 90/2 MacoNPV-A 90/2 Noctuidae U59461 

Mamestra configurata nucleopolyhedrovirus B MacoNPV-B Noctuidae AY126275 

Orgyia leucostigma nucleopolyhedrovirus isolate CFS-77 OrleNPV Lymantriidae EU309041 

Peridroma sp. nucleopolyhedrovirus PespNPV Noctuidae KM009991 

Perigonia lusca single nucleopolyhedrovirus PeluSNPV Sphigidae KM596836 

Pseudoplusia includens single nucleopolyhedrovirus IE PsinSNPV Noctuidae KJ631622 

Spodoptera exigua nucleopolyhedrovirus SeMNPV Noctuidae AF169823 

Spodoptera frugiperda multiple nucleopolyhedrovirus isolate 19 SfMNPV-19 Noctuidae EU258200 

Spodoptera litoralis nucleopolyhedrovirus isolate AN1956 SpliNPV-1956 Noctuidae JX454574 

Spodoptera litura nucleopolyhedrovirus G2 SpliNPV-G2 Noctuidae AF325155 

Spodoptera litura nucleopolyhedrovirus II SpliNPV-II Noctuidae EU780426 

Sucra jujuba nucleopolyhedrovirus SujuNPV Geometridae KJ676450 

Trichoplusia ni single nucleopolyhedrovirus TnSNPV Noctuidae DQ017380 

Autographa californica nucleopolyhedrovirus clone C6 AcMNPV-C6 Noctuidae L22858 

Anticarsia gemmatalis nucleopolyhedrovirus AgMNPV Noctuidae DQ813662 

Antheraea pernyi nucleopolyhedrovirus isolate L2 AnpeNPV-L2 Saturniidae EF207986 

Bombyx mori nucleopolyhedrovirus strain T3 BmNPV-T3 Bombycidae L33180 

Bombyx mandarina nucleopolyhedrovirus S2 BomaNPV-S2 Bombycidae JQ071499 

Choristoneura fumiferana defective multiple nucleopolyhedrovirus CfDEFMNPV Tortricidae AY327402 

Choristoneura fumiferana multiple nucleopolyhedrovirus CfMNPV Tortricidae AF512031 

Choristoneura murinana nucleopolyhedrovirus ChmuNPV Tortricidae KF894742 

Choristoneura occidentalis nucleopolyhedrovirus ChocNPV Tortricidae KC961303 

Choristoneura rosaceana nucleopolyhedrovirus ChroNPV Tortricidae KC961304 

Condylorrhiza vestigialis multiple nucleopolyhedrovirus CoveMNPV Crambidae KJ631623 
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Dendrolimus kikuchii nucleopolyhedrovirus DekiNPV Lasiocampidae JX193905 

Epiphyas postvittana nucleopolyhedrovirus EppoNPV Tortricidae AY043265 

Hyphantria cunea nucleopolyhedrovirus HycuNPV Arctiidae AP009046 

Maruca vitrata multiple nucleopolyhedrovirus MaviMNPV Crambidae EF125867 

Orgyia pseudotsugata multiple nucleopolyhedrovirus OpMNPV Lymantriidae U75930 

Philosamia cynthia ricini nucleopolyhedrovirus PhcyNPV Saturniidae JX404026 

Plutella xylostella multiple nucleopolyhedrovirus isolate CL3 PlxyMNPV Plutellidae DQ457003 

Rachiplusia ou multiple nucleopolyhedrovirus RoMNPV Noctuidae AY145471 

Thysanoplusia orichalcea nucleopolyhedrovirus ThorNPV Noctuidae JX467702 

Adoxophyes orana granulovirus AdorGV Tortricidae AF547984 

Agrotis segetum granulovirus-L1 AgseGV-L1 Noctuidae KC994902 

Choristoneura occidentalis granulovirus ChocGV Tortricidae DQ333351 

Clostera anastomosis granulovirus CaLGV Notodontidae KC179784 

Clostera anachoreta granulovirus ClanGV Notodontidae HQ116624 

Cryptophlebia leucotreta granulovirus isolate CV3 CrleGV Tortricidae AY229987 

Cydia pomonella granulovirus CpGV Tortricidae U53466 

Epinotia aporema granulovirus EpapGV Tortricidae JN408834 

Erinnyis ello granulovirus ErelGV Sphingidae KJ406702 

Helicoverpa armigera granulovirus HaGV Noctuidae EU255577 

Phthorimaea operculella granulovirus PhopGV Gelechiidae AF499596 

Pieris rapae granulovirus E3 PiraGV-E3 Pieridae GU111736 

Plutella xylostella granulovirus PlxyGV Plutellidae AF270937 

Pseudaletia unipuncta granulovirus PsunGV-Hawaiin Noctuidae EU678671 

Spodoptera frugiperda granulovirus SpfrGV Noctuidae KM371112 
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Spodoptera litura granulovirus isolate K1 SpliGV Noctuidae DQ288858 

Xestia c-nigrum granulovirus XcGV Noctuidae AF162221 

Neodiprion sertifer nucleopolyhedrovirus NeseNPV Diprionidae AY430810 

Neodiprion lecontei nucleopolyhedrovirus NeleNPV Diprionidae AY349019 

Neodiprion abietis nucleopolyhedrovirus NeabNPV Diprionidae DQ317692 

Culex nigripalpus nucleopolyhedrovirus CuniNPV Culicidae AF403738 
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Capítulo 9. Discussão Geral 

 

O interesse pelo estudo de doenças associadas a insetos tem seu início num passado 

bastante remoto com a primeira descrição formal da ‘wilting disease’ (do inglês, doença 

do murchamento) acometendo larvas do bicho da seda (Bombyx mori) no século XVI 

(Herniou et al., 2003). Somente em meados do século XX foi observada uma partícula 

viral com a forma de bastão associada a tal doença, característico da família 

Baculoviridae. Contrapondo-se a insetos benéficos, muitas espécies são consideradas 

pragas no contexto de interação com humanos ao competirem por alimentos cultivados. 

Felizmente, tais populações são susceptíveis a infecções virais, o que impulsiona 

também o estudo de virologia de insetos como agentes para o controle biológico. 

 

Várias famílias virais de insetos foram descritas e com o advento e diminuição de custos 

de sequenciamento em larga escala, o número de espécies cresce vigorosamente. De 

fato, para a maioria desses vírus, pouco se é sabido da evolução, de aspectos 

moleculares da infecção, da interação com o hospedeiro e do papel na dinâmica de 

população dos hospedeiros. Dessa forma, neste trabalho, vários genomas de baculovírus 

isolados no Brasil foram sequenciados e descritos: betabaculovírus das espécies 

Erinnyis ello granulovirus (Capítulo 3) e Diatraea saccharalis granulovirus (Capítulo 

6) e alphabaculovirus das espécies Bombyx mori nucleopolyhedrovirus (Capítulo 2), 

Helicoverpa zea single nucleopolyhedrovirus (Capítulo 4) e Perigonia lusca single 

nucleopolyhedrovirus (Capítulo 8). Concomitante à descrição do genoma, 

caracterizamos estruturalmente algumas espécies, avaliamos a taxa de mortalidade em 

situações controladas de infecção, bem como caracterizamos alguns genes que 

permitiram um entendimento evolutivo mais amplo das espécies descritas e de sua 
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interação com o hospedeiro. Concernente ao estudo de baculovírus, o estudo da 

interação patógeno-hospedeiro e sua evolução pode ser estendida para organismos 

relacionados como outros vírus de DNA dupla-fita ou vírus oralmente infectivos 

associados a insetos, como arboviroses. 

 

Aquisições por transferência horizontal, perdas e duplicações gênicas são as principais 

forças que dirigem a diversificação de baculovírus e refletem a natureza fluídica de seu 

genoma (Herniou et al., 2001). Contudo, tanto a troca de informações quanto sua 

fixação no genoma ocorre por mecanismos moleculares desconhecidos, apesar de 

recorrentes em regiões de alta repetição de bases (Capítulo 5) (Ardisson-Araujo et al., 

2015). Organismos fontes de genes incluem não somente o inseto hospedeiro e outras 

espécies de baculovírus, como também bactérias, plantas e outras famílias virais 

(Ardisson-Araujo et al., 2015; de Castro Oliveira et al., 2008; Kamita et al., 2005; 

Theze et al., 2015). Essa troca pode estar relacionada ao fato de que vírus de insetos 

com diferentes origens filogenéticas exploram o mesmo nicho ecológico. Assim, 

pressão de seleção similar tende a forçar os organismos a evoluírem adaptações 

convergentes como semelhança de conteúdo genômico mediado por aquisição de genes 

e compartilhamento (Theze et al., 2015). Por exemplo, genes relacionados a 

metabolismo de nucleotídeo parecem ter sido adquiridos de forma independente pelo 

menos nove vezes em baculovírus.  

 

Mecanismo de intercâmbio gênico em alguns contextos pode ser de certa forma, 

intuitivo como quando associado a diferentes espécies de baculovírus, uma vez que 

tanto a molécula alvo quanto a molécula doadora apresentam semelhante composição 

bioquímica. Por exemplo, aquisições independentes de um mesmo gene relacionado a 
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metabolismo de nucleotídeo foram observadas no genoma de espécies de baculovírus 

distantemente relacionadas (dut-tmk no Capítulo 8). Dessa forma, eventos de co-

infecção de uma mesma célula hospedeira poderiam desenhar o cenário ideal de troca 

de informação por recombinação gênica clássica. Vários patógenos intracelulares 

estritos apresentam mecanismos que evitam co-infecções (Beperet et al., 2014). 

Entretanto, no caso de baculovírus, o conteúdo gênico aponta eventos de co-infecção 

como recorrentes. Alphabaculovírus e betabaculovírus podem explorar diferentes 

receptores para entrada na célula, uma vez que a proteína de envelope do vírus 

responsável pelo espalhamento da infecção varia (Westenberg et al., 2007). Isso poderia 

explicar o intenso fluxo gênico entre alphabaculovírus e betabaculovírus (Cuartas et al., 

2015), uma vez que não haveria competição direta de receptores para entrada na célula e 

estabelecimento de um cenário de co-infecção. 

 

O mecanismo de troca de informações entre baculovírus seria possivelmente estendido 

para outros vírus de inseto da classe I e II, isto é com genoma de dsDNA e ssDNA com 

intermediáio dsDNA, como é o caso de entomopoxvirus, iridovirus; vírus gigantes e 

densovírus (Capítulo 6). Densovírus são vírus de DNA fita-simples capazes de infectar 

diferentes ordens de inseto causando doença ou protegendo ao hospedeiro ao qual está 

associado (Xu et al., 2014). No genoma de ErelGV, PeluSNPV e DisaGV foram 

encontrados genes associados à proteína não-estrutural de densovírus (Capítulo 3, 6 e 

8). Uma vez que intermediários de replicação de vírus de ssDNA apresentam dsDNA, é 

razoável pensar que este pode ter sido adquirido e fixado num evento de recombinação 

com o intermediário replicativo. Por outro lado, para classes virais distintas, os 

mecanismos de recombinação gênica se tornam obscuros. Por exemplo, aquisição de 

genes do hospedeiro (e.g. serpin, Capítulo 5) ou de vírus com genoma de RNA (e.g. o 
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doador da proteína de envelope gp64, Capítulos 6 e 7) permeiam mecanismos 

moleculares mais complexos como a perda de íntrons e transcrição reversa. Vários 

genes de baculovírus parecem ter sido adquiridos também de bactérias e plantas. Ambos 

os organismos estão, de alguma forma associados a insetos causando doenças, presentes 

na microbiota do trato digestório, ou como alimento (de Castro Oliveira et al., 2008). O 

mecanismo de aquisição de genes nesse contexto é completamente desconhecido. 

 

Outra pergunta chave para o entendimento da aquisição gênica por virus está 

relacionada aos mecanismos de fixação do gene ao longo da evolução. Quais vantagens 

são conferidas por estas novas aquisições e como medi-las? Interessantemente, no 

decorrer destas linhas, dois genes dut-tmk (Capítulo 8) e serpin (Capítulo 5) foram 

encontrados como sendo capazes de modificar a infecção de um baculovírus prototípico. 

Neste contexto, características da infecção como número de vírus produzidos, nível de 

expressão de genes virais, virulência, e replicação foram avaliadas, e concluiu-se que a 

presença de tais genes, mesmo que num contexto não-natural, foi capaz de alterar o 

desempenho do vírus recombinante. Durante a evolução, quaisquer características que 

de alguma forma beneficiam a replicação viral e interfiram na manipulação do 

hospedeiro são positivamente selecionadas e fixadas. Por exemplo, a proteína inibidora 

de serino proteases foi capaz de controlar a resposta imune do inseto hospedeiro, 

inibindo a cascata de melanização que opsoniza antígenos presentes na hemolinfa do 

inseto, provavelmente protegendo o vírus de eventuais ataques (Ardisson-Araujo et al., 

2015). Por outro lado, foi encontrado o primeiro baculovírus codificando para um 

transdutor de sinais, um receptor acoplado a proteína G (disa038, Capítulo 6) que 

provavelmente interfere na percepção da célula infectada ao ambiente. 
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Além disso, definições previamente estabelecidas podem mudar conforme novos 

genomas são sequenciados. Por exemplo, uma regra básica quanto à presença da 

glicoproteína de fusão GP64 (discutida nos Capítulos 6, 7 e 10) em baculovírus é a de 

que a proteína está presente apenas em alphabaculovírus do grupo I. Entretanto, neste 

trabalho, encontramos uma exceção a esta regra, que certamente redefinirá os conceitos 

para baculovírus: um homólogo funcional de gp64 foi encontrado no genoma do 

betabaculovírus DisaGV. Betabaculovírus são definidos como não contendo GP64 

como a glicoproteína de envelope principal (Rohrmann, 2013). Não está claro papel da 

GP64 na patologia da broca da cana de açúcar, uma vez que DisaGV também retém a 

proteína F, mas demonstramos que, apenas de com menor eficiência, a GP64 de 

DisaGV é funcional. 

 

Não apenas a história evolutiva do vírus, como também da interação do homem com os 

insetos benéficos e pragas pode ser inferida pela genômica de baculovírus. Por exemplo, 

neste trabalho duas espécies de baculovírus já descritas em outros locais do mundo 

foram isoladas no Brasil e seus genomas sequenciados. Por reconstrução filogenética, 

encontramos que ambos Bombyx mori NPV (BmNPV) e Helicoverpa zea SNPV 

(HzSNPV) foram introduzidos no Brasil muito provavelmente por ação antrôpica. 

BmNPV é infectivo para o bicho da seda, Bombyx mori e causa intensas perdas na 

sericultura nacional e global. A cultura foi introduzida no Brasil por imigrantes 

japoneses e interessantemente, o isolado BmNPV-Brazilian é mais proximamente 

relacionado ao isolado japonês T3. Por outro lado, HzSNPV infecta lagartas de 

diferentes espécies polífagas do gênero Helicoverpa, que causa intensas perdas na 

agricultura. Este vírus foi isolado durante o primeiro surto de Helicoverpa armigera no 

país. Ambos os vírus BmNPV e HzSNPV foram provavelmente introduzidos no Brasil 
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junto com o hospedeiro inseto durante infecção não-letal, característica já descrita 

previamente para baculovírus. 

 

Poucos trabalhos investigam o conteúdo gênico e o relacionam com a taxonomia do 

hospedeiro em nível de família. Especialização de patógenos aos seus hospedeiros pode 

ser consequência de co-evolução em longo termo, que é definida como uma evolução 

recíproca em espécies que interagem, dirigida por seleção natural (Herniou et al., 2004). 

Estas especializações podem ser refletidas na composição gênica. Baculovírus 

claramente co-evoluiu com o inseto hospedeiro em nível taxonômico de ordem; 

entretanto pouco se é investigado dessa co-evolução em nível de família. Neste trabalho, 

descrevemos pela primeira vez características genômicas associadas a um grupo 

específico de betabaculovírus infectivo para a família Noctuidae de lepidópteros 

(Capítulo 9). Uma clara expansão gênica aconteceu nesta família, levando ao 

surgimento dos maiores genomas entre os baculovírus. O controle fino da interação do 

vírus com o hospedeiro relativo ao limiar entre letalidade e latência parece ser mais 

complexo do que simplesmente replicar e causar a morte do hospedeiro. Este grupo de 

betabaculovírus apresenta baixa letalidade e longo tempo para causar a morte, 

restringindo a infecção ao tecido adiposo (Goldberg et al., 2002). 

 

Em conclusão, a genômica e o estudo molecular básico de baculovírus têm influenciado 

também a compreensão de doenças associadas a humanos como câncer e infecções 

arbovirais. Por exemplo, baculovírus codificam em seu genoma uma série de proteínas 

inibidoras da resposta suicida, que bloqueiam direta ou indiretamente a resposta 

antiviral celular, os inibidores de apoptose (IAP) que foram descritos pela primeira vez 

em baculovírus (Crook et al., 1993) e estão associadas a várias neoplasias humanas 
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(Clem, 2015). Por outro lado, uma vez que baculovírus são vírus oralmente infectivos 

para insetos, a compreensão da rota de infecção viral pode ser estendida a outros vírus 

de inseto, como arbovírus causadores de doenças humanas uma vez que a mesma 

barreira de proteção inata de lepidóptera a ser transposta por baculovírus está 

conservada em vetores de doenças virais humanas, como mosquitos. 
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