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DEPARTAMENTO DE ENGENHARIA ELÉTRICA
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”In an economy where the only certainty is uncertainty,

the one sure source of lasting competitive advantage is knowledge.”

Ikujiro Nonaka
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eterna gratidão.
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de Sevilha (ES) contribuiu imensamente com este trabalho. Suas análises rápidas, in-

tervenções cirúrgicas e enorme conhecimento relacionado a processos e misturas Gaus-

sianas foram decisivos para a validação e qualidade deste trabalho.
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RESUMO

ANÁLISE PREDITIVA VIA PROCESSOS GAUSSIANOS E AUDITORIA ESTATÍS-

TICA VIA MISTURAS GAUSSIANAS EM SISTEMAS DE INTELIGÊNCIA DE

NEGÓCIOS

Autor: Bruno Hernandes Azenha Pilon

Orientador: Prof. Dr. João Paulo Carvalho Lustosa da Costa

Coorientador: Prof. Dr. Juan José Murillo-Fuentes

Programa de Pós-graduação em Engenharia Elétrica

Braśılia, Abril de 2015

Um sistema de Inteligência de Negócios, do inglês Business Intelligence (BI), é um sistema de

informação que emprega ferramentas de diversas áreas do conhecimento na coleta, integração e

análise de dados para aprimorar e embasar o processo decisório em empresas e instituições gover-

namentais. O Ministério do Planejamento, Orçamento e Gestão (MP), órgão do governo federal

brasileiro, possui uma série de sistemas de inteligência de negócios e, neste trabalho, dois destes

sistemas foram considerados. O primeiro sistema de BI, mantido pela Secretaria de Patrimônio da

União (SPU), contém dados de arrecadação mensal de impostos daquela Secretaria, enquanto o se-

gundo sistema de BI, mantido pela Coordenadoria de Inteligência e Auditoria Preventiva da Folha

de Pagamento (CGAUD), contém dados da folha de pagamento dos servidores públicos federais

brasileiros. Ambos os sistemas foram constrúıdos objetivando-se a detecção de fraudes e irregu-

laridades como evasão fiscal e pagamentos não autorizados. Ao longo deste trabalho, pretende-se

incorporar estágios que adicionem análise preditiva e melhorias de performance aos sistemas de BI

existentes. No sistema de BI da SPU, Regressão por Processos Gaussianos (RPG) é utilizada para

modelar as caracteŕısticas intŕınsecas da principal série temporal financeira. RPG retorna uma

descrição estat́ıstica completa da variável estimada, que pode ser tratada como uma medida de

confiança e pode ser utilizada como gatilho para classificar dados em confiáveis ou não confiáveis.

Ademais, um estágio de pré-processamento reconfigura a série temporal original em uma estru-

tura bidimensional. O algoritmo resultante, com RPG em seu núcleo, superou métodos preditivos

clássicos como indicadores financeiros e redes neurais artificiais. No sistema de BI da CGAUD,

um Modelo de Misturas Gaussianas (MMG) é utilizado para descrever o processo estocástico que

governa a distribuição de probabilidades dos contracheques. Rotular uma probabilidade relativa

em cada contracheque habilita o sistema de BI a listá-los e filtrá-los com base em suas probabili-

dades. A inserção de um filtro estat́ıstico em um sistema de BI determińıstico resultou em efetiva

redução na quantidade de dados a serem analisados pelas trilhas de auditoria.

Palavras-chave: Inteligência de negócios, processos Gaussianos, misturas Gaussianas.
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ABSTRACT

PREDICTIVE ANALYTICS VIA GAUSSIAN PROCESSES AND STATISTICAL

AUDIT VIA GAUSSIAN MIXTURES IN BUSINESS INTELLIGENCE SYSTEMS

Author: Bruno Hernandes Azenha Pilon

Supervisor: Prof. Dr. João Paulo Carvalho Lustosa da Costa

Co-supervisor: Prof. Dr. Juan José Murillo-Fuentes

Programa de Pós-graduação em Engenharia Elétrica

Braśılia, April of 2015

A Business Intelligence (BI) system is an information system that employs tools from several ar-

eas of knowledge for the collection, integration and analysis of data to improve and support the

decision making process in companies and governmental institutions. The Ministry of Planning,

Budget and Management, in portuguese Ministério do Planejamento, Orçamento e Gestão (MP),

an agency of the Brazilian federal government, possesses a wide number of BI systems and, in

this work, two of those systems were considered. The first BI system, maintained by the Fed-

eral Patrimony Department, in portuguese Secretaria de Patrimônio da União (SPU), contains

data regarding the monthly tax collection of that department, whereas the second BI system,

maintained by the Human Resources Auditing Department, in portuguese Coordenadoria de In-

teligência e Auditoria Preventiva da Folha de Pagamentos (CGAUD), contains data regarding the

payroll of Brazilian federal employees. Both systems were designed aimed at fraud and irregulari-

ties detection such as tax evasion and unauthorized payments. Throughout the present work, we

aim to incorporate stages into the existing BI systems in order to add predictive analytics and

performance enhancements. In the BI system of SPU, Gaussian Process for Regression (GPR) is

used to model the intrinsic characteristics of the core financial time series. GPR natively returns

a full statistical description of the estimated variable, which can be treated as a measure of con-

fidence and can be used as a trigger to classify trusted and untrusted data. In order to take into

account the multidimensional structure of the original data, we also propose a pre-processing stage

for reshaping the original time series into a bidimensional structure. The resulting algorithm, with

GPR at its core, outperforms classical predictive schemes such as financial indicators and artificial

neural networks. In the BI system of CGAUD, a Gaussian Mixture Model (GMM) is used to

describe the stochastic process that governs the probability distribution of payrolls. Attaching a

relative probability into each payroll enables the BI system to sort and filter payrolls based on

their probabilities. Inserting a statistical filter in a deterministic BI system showed to be effective

in reducing the amount of data to be analyzed by rule-based audit trails.

Keywords: Business intelligence, Gaussian process, Gaussian mixtures.
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2.1 Estimation of the total volume of electronically stored data in ZB along the years.

With a growing compound annual rate of 40 percent, stored data is estimated to

reach nearly 45 ZB by 2020 [3]. ..................................................................... 9

3.1 A traditional architecture and components of a generic BI system........................ 16

4.1 Scatter plot of 10,000 samples of payroll data, with gross income in one dimension

(ordinate) and total discounts and deductions in the other dimension (abscissa).

Both dimensions are plotted in Reais, the Brazilian currency. .............................. 31

4.2 Architecture of the current state-of-the-art BI system of CGAUD ........................ 32

4.3 Example of a concept map for an audit trail. Adapted from [14]. ......................... 33

4.4 Architecture of the current state-of-the-art BI system of SPU ............................. 34

4.5 Monthly tax collected by SPU, in reais (R$), indexed by the mth month. .............. 35

5.1 Scatter plot of 10,000 samples of payroll data, showed in Fig. 4.1, with a zoom

around the origin for a better visualization of the correlation profile. .................... 37

5.2 Block architecture of the proposed statistical audit module solution in the original

BI architecture shown in Fig. 4.2. .................................................................. 38

5.3 Contour plot of the estimated pdf of the dataset presented in Fig. 5.1 with (a)

8 sources (log-likelihood: −174317); (b) 16 sources (log-likelihood: −173282); (c)

24 sources (log-likelihood: −173019) and (d) 32 sources (log-likelihood: −172937).

The axis in all subfigures are the same as in Fig.5.1. ......................................... 41

5.4 (a) Contour plot and (b) surface plot of the resulting pdf of the proposed GMM. .... 42

xi



6.1 Normalized plot of the posterior inference of the Gaussian process, indexed by a

continuous time interval X = [0, 80], obtained using the covariance function (a)

k2,1(x,x′) in red (the periodic component) and k2,2(x,x′) in blue (the squared

exponential component); (b) k2(x,x′) in black (the product of both components). ... 47

6.2 Prediction results from conditioning the posterior Gaussian jointly distribution at

a continuous time interval X = [0, 75]. The blue dots are the training data, the red

dots are the target data, the black tick line is the expected value at a time index

and the gray band represents the 95% confidence interval (two standard deviations

above and below the expected value). ............................................................. 48

6.3 Estimated absolute normalized cross-correlation between the target data and the

hole SPU data set. The sequence was trimmed due the zero-padding, and the red

circles highlights where the lag m is a multiple of 12 months. .............................. 50

6.4 Plot of the SPU data set converted in a 2D array.............................................. 51

6.5 Plot of the Gaussian process prediction in blue, target SPU data in red. The error

bars corresponds to a confidence interval of two standard deviations with respect

to the predictive mean (around 95% of confidence)............................................ 54

6.6 Monthly plot of target data and predictive results, in Reais (R$), indexed by the

mth month. ............................................................................................... 56

xii



LIST OF TABLES

1.1 Os cinco V’s das propriedades dos dados......................................................... 3

2.1 The five V’s of data properties ...................................................................... 10

3.1 Key components in BI systems framework....................................................... 16

4.1 Legal attributions of MP ............................................................................. 30

5.1 Fraud occurrences detected by audit trails, grouped by trail ID # and divided

according to their probability of occurrence. .................................................... 43

5.2 Total fraud occurrences detected by audit trails, divided according to their proba-

bility of occurrence. .................................................................................... 43

6.1 Optimized set of hyperparameters Θ, σ2
1and σ2

n after 100 iterations, using the

marginal likelihood with the kernel in (6.4)...................................................... 53

6.2 Performance comparison by several error metrics .............................................. 55

xiii



LIST OF ACRONYMS

ABS

Absolute Value. 42

ANN

Artificial Neural Network. 19, 59

BI

Business Intelligence. xi, xiii, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 16, 17, 18, 19, 30,

31, 32, 34, 36, 37, 38, 42, 44, 45, 58, 59

CGAUD

Coordenadoria de Inteligência e Auditoria Preventiva da Folha de Pagamentos (Intelligence

and Preventive Audit of Payrolls Division). xi, 3, 4, 5, 7, 10, 11, 12, 13, 32, 36, 58, 59

CIO

Chief Information Officer. 58

DW

Data Warehouse. 17

E-Step

Expectation Step. 39

EB

Exabyte = 1018 bytes. 1, 8

EM

Expectation Maximization. 13, 21, 22, 38, 39, 40, 41, 42

ETL

Extract, Transform and Load. 16, 17

xiv



GB

Gigabyte = 109 bytes. 4, 31

GMM

Gaussian Mixture Model. xi, 12, 13, 20, 36, 37, 38, 39, 40, 42, 44, 58

GPR

Gaussian Process for Regression. 12, 13, 26, 27, 28, 45, 47, 48, 51, 52, 55, 56, 59

iid

independently and identically distributed. 19, 20, 26, 27

KRR

Kernel Ridge Regression. 28, 52

M-Step

Maximization Step. 39

ME

Maximização da Esperança (Expectation Maximization). 7

ML

Machine Learning. 15, 17, 28

MMG

Modelo de Misturas Gaussiana (Gaussian Mixture Model). 5, 7

MP

Ministério do Planejamento, Orçamento e Gestão (Ministry of Planning, Budget and Man-

agement). 4, 7, 11, 13, 30, 58

ODS

Operational Data Store. 16

OLAP

On-line Analytical Processing. 15, 17

pdf

probability density function. xi, 11, 19, 20, 21, 23, 36, 37, 38, 39, 40, 42, 58

xv



RPG

Regrassão por Processos Gaussianos (Gaussian Process for Regression). 6, 7

SIAPE

Sistema Integrado de Administração de Recursos Humanos (Integrated System of Human

Resources Administration). 31, 32, 37, 38, 40

SPU
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Caṕıtulo 1

INTRODUÇÃO

1.1 CONTEXTO E MOTIVAÇÃO

Conhecimento é poder. Em corporações e instituições governamentais, informações referentes

a inteligência do negócio são vitais para auxiliar a alta administração no processo de tomada de

decisão, na condução dos negócios e nas operações institucionais [1]. Neste domı́nio de conheci-

mento, BI1 evoluiu como um importante campo de pesquisa. Ademais, mesmo fora do mundo

acadêmico, BI foi reconhecida como uma iniciativa estratégica em aumentar a eficácia e gerar

inovações em diversas aplicações práticas no universo dos negócios.

Neste contexto, avanços tecnológicos aumentaram massissamente o volume de dados e in-

formações dispońıveis eletronicamente, onde cerca de 2,5 EB de dados são criados a cada dia ao

redor do mundo, e este número dobra a cada 40 meses aproximadamente [2]. A Fig. 1.1 ilustra

esta tendência de aumento exponencial do volume de dados ao longo dos anos. Por outro lado,

grande parte destes novos dados não possuem qualquer estrutura associada. Organizar e analisar

este volume de dados em ascensão e encontrar, em seu conteúdo, significado e informação útil são

pontos chave para sistemas de BI.

Sobre este tópico, Hal Varian, Economista-Chefe do Google e professor emérito da Univer-

sidade da Califórnia, comentou: “Então, o que está se tornando onipresente e barato? Dados.

E o que é complementar aos dados? Análise. Então, minha recomendação é frequentar muitos

cursos relacionados à manipulação e análise de dados: banco de dados, aprendizado de máquina,

econometria, estat́ıstica, visualização, e assim por diante.” [4].

Não obstante o volume crescente de dados, a gestão de grandes dados também lida com a

variedade, a velocidade, a variabilidade e o valor dos dados. Em [5], pela primeira vez, a gestão

de dados foi tratada a partir de uma visão tridimensional, onde o volume, a velocidade e a

1Inteligência de Negócios, do inglês Business Intelligence (BI)
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Figura 1.1: Estimativa do volume total de dados armazenados eletronicamente em ZB ao longo

dos anos. Com uma taxa de crescimento composta anual de 40 por cento, a estimativa do volume

de dados armazenados deve alcançar 45 ZB no ano de 2020 [3].

variedade contribuem, de forma independente, para o desenvolvimento de ferramentas e algoritmos

para a gestão de dados. Em [6], os autores adicionam duas outras dimensões nesta perspectiva:

variabilidade e valor. Estas propriedades estão resumidas na Tabela 1.1.

Com todo este montante de dados se tornando onipresente e barato, novas ferramentas de

captura, descoberta e análise podem ajudar empresas e instituições governamentais a ganhar

conhecimento a partir dos seus dados desestruturados, que respondem por mais de 90% do universo

digital [8]. Estas ferramentas podem ser programadas para criar dados sobre dados de forma

automatizada, assim como as rotinas de reconhecimento facial que ajudam a identificar fotos no

Facebook. Dados sobre dados, ou metadados, crescem ao dobro da taxa do universo digital como

um todo [8].

Como consequência deste cenário, onde mais e mais dados são armazenados e processados

eletronicamente e vastas quantidades de informação estão se tornando facilmente dispońıveis, o

processo de tomada de decisão em empresas e organizações governamentais está consideravelmente

mais rápido nos dias atuais. Tomadores de decisões estratégicas são expostos a um enorme fluxo

de dados e informação e estão sob constante pressão para responder a situações excepcionais e

para aproveitar oportunidades de negócio dispońıveis em curtos espaços de tempo.

Neste ambiente, sistemas de BI unem diversas áreas do conhecimento para entregar informação

e conhecimento para empresas e administrações, apoiando o processo de tomada de decisão em

todos os ńıveis de gestão. Sistemas de BI são referenciados como um conjunto integrado de ferra-

2



Tabela 1.1: Os cinco V’s das propriedades dos dados

Propriedade Descrição

Volume

O volume mede a quantidade de dados dispońıveis em uma organização, o

que não significa necessariamente que a organização possua todos estes dados,

desde que ela consiga ao menos acessá-los. Com o aumento do volume de

dados, o valor dos dados registrados declinará proporcionalmente à idade, tipo,

riqueza e quantidade, em meio a outros fatores [6].

Velocidade

É a medida da velocidade da criação, do fluxo e da aglutinação dos dados. Esta

caracteŕıstica não está limitada à velocidade de novos dados, mas também à

velocidade do fluxo de dados. Por exemplo, dados de dispositivos sensores

estão sendo armazenados constantemente em um banco de dados, e este mon-

tante de dados não é despreźıvel. Portanto, sistemas tradicionais não possuem

capacidade suficiente para analisar dados que estão constantemente em movi-

mento [7].

Variedade

Variedade é a medida da riqueza da representação dos dados - texto, imagens,

v́ıdeo, áudio, etc. De um ponto de vista anaĺıtico, é o principal obstáculo na

utilização efetiva de grandes volumes de dados. Formatos de dados incom-

pat́ıveis, estrutura de dados não alinhadas e semântica de dados inconsistente

são exemplos de desafios significativos [6].

Variabilidade

É uma grande tarefa criar correspondências, depurar e transformar dados origi-

nados de várias fontes. É necessário, também, conectar e correlacionar relações

e hierarquias ou a espiral de dados pode sair do controle rapidamente [7].

Valor

O valor dos dados mede a utilidade dos dados na tomada de decisão. É con-

senso que o propósito da computação é o conhecimento, não os números. A

ciência dos dados é exploratória e útil na construção do conhecimento dos

dados, mas a ciência anaĺıtica engloba o poder preditivo dos grandes dados [6].

mentas e tecnologias que são utilizadas para coletar, integrar, analisar e disponibilizar dados [9].

Sistemas de BI diferem de sistemas de gestão da informação tradicionais por terem - antes de tudo

- um escopo maior, análises multi-variáveis de dados semi estruturados que provém de diferentes

fontes e sua apresentação multidimensional [10]. Um sistema de BI contribui para otimizar pro-

cessos de negócios e recursos, maximizando lucros e melhorando a tomada de decisão proativa [10].
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1.2 OBJETIVOS E CONTRIBUIÇÕES

Neste trabalho, objetiva-se incorporar estágios em sistemas existentes de BI do governo federal

brasileiro, adicionando a estes capacidade de análise preditiva e melhorias de performance. O

governo federal brasileiro possui um vasto número de sistemas de BI e, neste trabalho, dois destes

sistemas serão utilizados. O primeiro sistema, mantido pela CGAUD, contém dados relativos

à folha de pagamento dos servidores públicos federais. O segundo sistema, mantido pela SPU,

contém dados relativos à arrecadação mensal de impostos daquele Órgão federal. Ambos os

sistemas foram desenvolvidos com foco em detecção de fraudes e irregularidades, como a evasão

fiscal e pagamentos não autorizados.

Métodos para detecção de irregularidades são classificados principalmente em duas catego-

rias [11]. Uma é a detecção baseada no conhecimento, onde ocorrências fraudulentas são previ-

amente definidas e categorizadas. Portanto, neste tipo de detecção, a irregularidade precisa ser

conhecida e descrita a priori e o sistema normalmente não consegue lidar com tipos de irregulari-

dades novos ou desconhecidos. Detecção de intrusão baseada no conhecimento em redes e sistemas

de computadores são mostradas em [12].

Como alternativa, um esquema de detecção de fraudes baseado em comportamento assume que

uma irregularidade possa ser detectada pela observação de ocorrências que são mais dissimilares

que o normal [11]. Um comportamento válido e padrão pode ser extráıdo de informações prévias

de referência, e este modelo pode ser comparado a um posśıvel candidato fraudulento de modo a

checar o grau de divergência entre eles. Em [13], os autores apresentam um sistema de detecção de

fraudes em cartões de crédito cuja metodologia utiliza redes neurais treinadas com dados anteriores

relacionados.

O sistema atual da CGAUD é baseado inteiramente em detecção de irregularidades por co-

nhecimento. A CGAUD, subordinada ao MP, criou seu sistema de BI com o objetivo de detectar

irregularidades na folha de pagamento dos servidores públicos federais. A proposta inicial do

sistema de BI foi apresentada em [14] e diversos aperfeiçoamentos foram propostos em [15], [16]

e [1*]. A versão mais recente do sistema de BI da CGAUD utiliza trilhas de auditoria constrúıdas

com indexação ontológica via mapas conceituais para detectar inconsistências [14, 15, 1*]. As

trilhas de auditoria consistem em um conjunto de heuŕısticas baseado em uma legislação federal

brasileira complexa, que dita o salário de cada servidor público federal de acordo com seu cargo e

sua posição na administração pública.

Não obstante o complexo sistema legislativo, o quantitativo de dados gerados periodicamente

referente à folha de pagamento dos servidores públicos federais é massivo: Por volta de 14GB

de dados brutos por mês, e mais de 200 milhões de linhas na tabela da dados financeiros a

cada ano [16]. Portanto, o custo de processamento para auditar esta quantidade de dados é
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bastante elevado, dado que cada trilha de auditoria varre todo o banco de dados na busca por

irregularidades.

De fato, enquanto a folha de pagamentos mensal dos servidores públicos federais brasileiros gira

em torno de R$12,5 bilhões, o atual sistema de BI da CGAUD é capaz de auditar aproximadamente

R$5 bilhões a cada mês [1*].

Neste cenário, nossa proposta é incorporar técnicas de modelagem de mistura finita com o

objetivo de computar a distribuição de probabilidades das folhas de pagamento. É consenso que

modelos de mistura constituem uma ferramenta probabiĺıstica versátil para representar a presença

de subpopulações em conjuntos de observações. Desta forma, modelos de mistura facilitam uma

descrição muito mais detalhada de sistemas complexos, ao passo que descrevem caracteŕısticas

diversas dos dados ao inferir todos os parâmetros de cada componente da mistura e explicando

como este conjunto de fontes interagem para formar um modelo de mistura.

Evidências da versatilidade de modelos de mistura são demonstradas pela aplicação deste

tópico em diversas áreas do conhecimento, como a astronomia [17], ecologia [18] e engenharia [19].

No contexto de sistemas de BI, modelos de mistura podem ser utilizados para representar funções

de densidade de probabilidade arbitrariamente complexas [20]. Esta caracteŕıstica faz dos mode-

los de mistura uma escolha confiável para representar funções de verossimilhança complexas em

cenários de aprendizado supervisionado [21], ou definições a priori em estimações de parâmetros

Bayesiana [22].

No sistema de BI da CGAUD, a hipótese que buscamos validar é a existência de uma relação

direta entre a probabilidade de ocorrência das folhas de pagamento dos servidores públicos federais

brasileiros e a detecção de fraudes atualmente existente nas trilhas de auditoria. Em outras pala-

vras, contracheques improváveis - que mais divergem do padrão - possivelmente têm mais chances

de possúırem algum tipo de irregularidade e de serem identificados pelas trilhas de auditoria.

Neste sentido, propomos uma abordagem estat́ıstica complementar, com um filtro generativo

baseado em MMG em um estágio de pré-processamento, com o objetivo de computar a pro-

babilidade das folhas de pagamento e excluir as folhas mais prováveis das trilhas de auditoria

subsequentes. Ao aprender um modelo de mistura que representa o comportamento mais provável

das folhas de pagamento dos servidores públicos federais brasileiros, nós conseguimos executar

uma seleção qualitativa no conjunto de todas as folhas de pagamento e entregar às trilhas de

auditoria somente as folhas de pagamento que mais divergem da norma.

Esta nova abordagem aumentou a eficiência do sistema de BI, bem como a sua capacidade de

processamento, com uma penalidade de perda de alguns falso negativos neste estágio proposto.

No sistema de BI mantido pela SPU, propomos a adição de um módulo de análise preditiva

com o objetivo de inferir o quantitativo de impostos a ser arrecadado por aquele Órgão federal. A
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hipótese que buscamos validar é a possibilidade de aumentar a eficiência do algoritmo preditivo

atualmente existente no sistema de BI da SPU - baseado em redes neurais artificiais - em termos

de métricas de erro.

O modelo escolhido como núcleo da predição é baseado em RPG, uma famı́lia de processos es-

tocásticos largamente utilizada na modelagem de dados interdependentes, primariamente devido

a duas propriedades essenciais que ditam o comportamento da variável predita. Primeiro, um

processo Gaussiano é completamente determinado por suas funções de média e de covariância, o

que reduz a quantidade de parâmetros a serem especificados já que somente os primeiro e segundo

momentos do processo são requeridos. Segundo, os valores preditos são função dos valores observa-

dos, onde todos os conjuntos de distribuições dimensionalmente finitas possuem uma distribuição

Gaussiana multivariada.

Em um ambiente de BI, o fato de RPG retornar uma descrição estat́ıstica completa da variável

predita pode adicionar confiança ao resultado final e ajudar na avaliação de sua própria perfor-

mance. Ademais, a descrição estat́ıstica pode ser utilizada como gatilho para transformar um

problema de regressão em um problema de classificação a depender do contexto. Quando lida-

mos com dados multidimensionais, RPG pode ser modelado de maneira independente em cada

dimensão, o que adiciona flexibilidade para conjuntos de dados com diferentes graus de correlação

entre suas dimensões.

Neste trabalho, nós utilizamos RPG para modelar a quantidade de imposto arrecadado men-

salmente pela SPU. Considerando que a série temporal advinda da SPU possui uma estrutura mul-

tidimensional, ainda que oculta, foi desenvolvido neste trabalho um estágio de pré-processamento

para reorganizar o conjunto original dos dados em uma estrutura bidimensional.

No sistema de BI da SPU, uma abordagem baseada em regressão preditiva utilizando processos

Gaussianos infere a quantidade de imposto cuja probabilidade de ocorrência é a mais provável em

um ponto de interesse. Ainda, como sistemas de BI voltados para a detecção de fraudes frequente-

mente requerem um estágio de classificação para etiquetar os dados em confiáveis ou possivelmente

fraudulentos, nós demonstramos que RPG pode ser utilizado tanto no estágio preditivo quanto

no estágio de classificação, com a utilização da descrição estat́ıstica da variável cont́ınua predita

como uma medida de gatilho para classificar os dados em regular ou possivelmente fraudulentos.

De acordo com [23], um problema de regressão pode ser visto como um problema de classi-

ficação onde o número de classes preditas tende ao infinito. De forma similar, pode ser dito que

um problema de classificação pode ser resolvido com a aplicação de um conjunto de heuŕısticas

em um ambiente de regressão para fatiar a variável cont́ınua em um conjunto de classes com

comprimento finito. Considerando também que RPG retorna não somente um valor predito, mas

uma descrição estat́ıstica condicional completa para a variável estimada, o nosso foco recai na
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regressão supervisionada.

RPG provê um ambiente completamente transparente, permitindo modelar uma relação de

entrada-sáıda de um processo sem camadas ocultas ou nebulosas, restando posśıvel adaptar ca-

racteŕısticas espećıficas de um sistema de detecção de fraude de modo a mantê-lo atualizado com

um novo eventual comportamento fraudulento.

1.3 ORGANIZAÇÃO DESTE TRABALHO

No caṕıtulo 3, expomos a fundamentação teórica que embasa este trabalho. Componentes

chave em sistemas de BI e o estado da arte em aplicações no campo da detecção de fraudes são

apresentados na Seção 3.1. A Seção 3.2 apresenta uma introdução a modelos de misturas finitas,

com foco em MMG e no algoritmo de ME. Na Seção 3.3, um modelo preditivo genérico baseado em

RPG é derivado, com a seleção da função de covariância e a otimização dos seus hiper-parâmetros.

No caṕıtulo 4, descrevemos o atual sistema e dados de BI geridos pelo MP que receberam

intervenções e melhorias ao longo deste trabalho. Na Seção 4.1, dissecamos o sistema de BI da

CGAUD e exploramos a metodologia utilizada na auditoria da folha de pagamento de servidores

públicos federais brasileiros. Na Seção 4.2, mostramos os dados de BI da SPU, que é constitúıdo

de uma série temporal histórica com a arrecadação de impostos efetuada por aquele Órgão.

No caṕıtulo 5, desenvolvemos métodos para a aplicação de MMG no sistema de BI da CGAUD.

Na Seção 5.1, analisamos as implicações de um módulo de análise estat́ıstica incorporado em

um sistema de BI determińıstico, i.e. o que o sistema tem a ganhar e quais são as posśıveis

armadilhas neste tipo de abordagem. Na Seção 5.2, discorremos sobre a otimização e os resultados

experimentais desta aplicação espećıfica.

No caṕıtulo 6, propomos um módulo de análise preditiva com RPG em seu núcleo para os dados

de BI da SPU. Na Seção 6.1, desenvolvemos um modelo preditivo unidimensional que captura as

caracteŕısticas intŕınsecas dos dados de BI da SPU. Na Seção 6.2, propomos uma abordagem

diferente para o módulo preditivo, transformando o conjunto de dados original em um conjunto de

dados bidimensional. Na Seção 6.3, os resultados da otimização são apresentados e os resultados

experimentais são comparados com outras técnicas preditivas por meio de diversas métricas de

erro.

O Caṕıtulo 7 desenha algumas conclusões e considerações sobre as realizações e resultados

deste trabalho, com sugestões de desenvolvimentos futuros.
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Chapter 2

INTRODUCTION

2.1 CONTEXT AND MOTIVATION

Knowledge is power. In corporations and governmental institutions, high-level management

needs business intelligent information to efficiently manage business and institutional operations

and support their process of decision making [1]. In this domain of expertise, BI has evolved as an

important field of research. Furthermore, outside of the academic world, BI has been recognized

as a strategic initiative and a key enabler for effectiveness and innovations in several practical

applications in the business universe.

In this context, advances in technology has massively increased the volume of electronic data

available, with about 2.5 EB of digital data being created each day in the world, and that number

is doubling every 40 months approximately [2]. Fig. 2.1 shows the increase trend of data in volume

each year. On the other hand, a great part of this new data lacks structure. Organize and analyze

this rising volume of raw data and find meaningful and useful information in its content are key

points in BI systems.

On this topic, Hal Varian, Chief Economist at Google and emeritus professor at the University

of California, Berkeley, commented: “So what’s getting ubiquitous and cheap? Data. And what is

complementary to data? Analysis. So my recommendation is to take lots of courses about how to

manipulate and analyze data: databases, machine learning, econometrics, statistics, visualization,

and so on.” [4].

In addition to the increasing volume of data, big data management also deals with data

variety, velocity, variability and value. It was in [5] that data management was first shown as a

three dimensional scheme, with volume, velocity and variety independently contributing to the

development of tools and algorithms for handling and managing data. In [6], the authors add

two other dimensions into this perspective: variability and value. These data properties are
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Figure 2.1: Estimation of the total volume of electronically stored data in ZB along the years.

With a growing compound annual rate of 40 percent, stored data is estimated to reach nearly

45 ZB by 2020 [3].

summarized in Table 2.1.

With all this data getting cheap and ubiquitous, new capture, search, discovery, and analysis

tools can help organizations and governmental institutions gain insights from their unstructured

data, which accounts for more than 90% of the digital universe [8]. These tools can be programmed

to create data about data in an automated way, much like facial recognition routines that help tag

Facebook photos. Data about data, or metadata, is growing twice as fast as the digital universe

as a whole [8].

As a consequence of this scenario, where more and more data are stored and processed elec-

tronically and vasts amounts of information are becoming easily available and retrievable, the

decision making cycles in enterprises and governmental organizations are considerably shorter in

our days. Strategic decision makers are being exposed to huge inflows of data and information

and are constantly under pressure to respond to exceptional situations and to take advantage of

time-sensitive business opportunities.

In this environment, BI systems unites several areas of knowledge to deliver information and

knowledge to business and administrations, supporting the decision making on all management

levels. BI systems are referred to as an integrated set of tools and technologies that are used to

collect, integrate, analyze and make data available [9]. They differ from traditional management

information systems by - first of all - a wider subject range, multi-variant analyses of semi-

structured data that come from different sources and their multi-dimensional presentation [10].
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Table 2.1: The five V’s of data properties

Property Description

Volume

Data volume measures the amount of data available to an organization, which

does not necessarily have to own all of it as long as it can access it. As data

volume increases, the value of different data records will decrease in proportion

to age, type, richness, and quantity among other factors [6].

Velocity

Data velocity measures the speed of data creation, streaming, and aggregation.

This characteristic is not being limited to the speed of incoming data but also

speed at which the data flows. For example, the data from the sensor devices

would be constantly moving to the database store and this amount would not

be small enough. Thus our traditional systems are not capable enough on

performing the analytics on the data which is constantly in motion [7].

Variety

Data variety is a measure of the richness of the data representation - text, im-

ages video, audio, etc. From an analytic perspective, it is mainly the biggest

obstacle to effectively using large volumes of data. Incompatible data for-

mats, non-aligned data structures, and inconsistent data semantics represents

significant challenges that can lead to analytic sprawl [6].

Variability

It is quite an undertaking to link, match, cleanse and transform data across

systems coming from various sources. It is also necessary to connect and cor-

relate relationships, hierarchies and multiple data linkages or data can quickly

spiral out of control [7].

Value

Data value measures the usefulness of data in making decisions. It has been

noted that the purpose of computing is insight, not numbers. Data science

is exploratory and useful in getting to know the data, but analytic science

encompasses the predictive power of big data [6].

The BI systems contribute to optimizing business processes and resources, maximizing profits and

improving proactive decision making [10].

2.2 OBJECTIVES AND CONTRIBUTIONS

In this work, we aim to incorporate stages into existing BI systems of the Brazilian federal

government in order to add predictive analytics and performance enhancements. The Brazilian

federal government possesses a wide number of BI systems and, in this work, two of those systems

are used. The first system, maintained by CGAUD, contains data regarding the payroll of Brazilian

federal staff. The second system, maintained by SPU, contains data regarding the monthly tax
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collection of that federal department. Both systems were designed aimed at fraud and irregularities

detection such as tax evasion and unauthorized payments.

Methods for irregularities detection are mainly classified in two categories [11]. One is knowledge-

based detection, where fraudulent occurrences are previously defined and categorized. Thus, in

this kind of detection, the irregularity must be known and described a priori and the system is

usually unable to deal with new or unknown irregularities. Knowledge-based intrusion detection

schemes in network and computer systems are shown in [12].

Alternatively, a behavior-based fraud detection scheme assumes that an irregularity can be

detected by observing occurrences that are most dissimilar from the norm [11]. A valid and

standardized behavior can be extracted from previous reference information, and this model can

be compared to a fraudulent candidate in order to check for the degree of divergence between

them. In [13], the authors present a credit card fraud detection method using neural networks

trained with previous related data.

The current CGAUD BI system is entirely based on a knowledge-based approach for irreg-

ularity detection. CGAUD, subordinated to MP, created its own BI system with the objective

of detect irregularities on the payrolls of the Brazilian federal staff. The initial BI solution was

presented in [14] and several improvements were proposed in [15], [16] and [1*]. The most recent

BI system of CGAUD uses audit trails built with ontological indexation via concept maps in order

to detect inconsistencies [14, 15, 1*]. The audit trails consist on a set of heuristics based on a

complex Brazilian federal legislation, which dictates the income of each public employees according

to their position in the public administration organization.

In addition to a complex regulatory basis, the amount of data periodically generated regarding

the payroll of federal employees is massive: Around 14GB of raw data per month, and more than

200 million rows in the financial data table each year [16]. Thus, the processing cost of auditing

this amount of data is very high, since each audit trail has to go through all database performing

relational statements on the search for irregularities.

In fact, whereas the monthly payroll of the Brazilian federal staff is around 12.5 billion reais, the

current BI system of CGAUD is capable of auditing approximately 5 billion reais each month [1*].

In this scenario, we propose to incorporate finite mixture models techniques in order to compute

the pdf of payrolls. It is known that mixture models constitute a versatile probabilistic tool for

representing the presence of subpopulations within a set of observations. They thus facilitate a

much more detailed description of complex systems, describing different features of the data by

inferring all the parameters of each component of the mixture and by explaining how the set of

sources interact together to form a mixture model.

Evidences of the versatility of mixture models is their application in diverse areas, such as
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astronomy [17], ecology [18] and engineering [19]. In the context of BI systems, mixture models

can be used to represent arbitrarily complex probability density functions [20]. This characteristic

makes them a reliable choice for representing complex likelihood functions in supervised learning

scenarios [21], or priors for Bayesian parameter estimation [22].

In the BI system of CGAUD, the hypothesis we seek to test is the existence of a direct

relationship between the probability of occurrence of payrolls of the Brazilian federal employees

and the fraud detection currently performed by the audit trails. In other words, unlikely payrolls

- that most diverge from the norm - have more chances of being detected by the audit trails for

some irregularity.

Under this perspective, we propose a complementary statistical approach, with a generative

GMM filter in a pre-processing stage with the objective of compute payrolls with low probability

of occurrence as being irregular and exclude them of the following audit trails. By learning a

mixture model that represents the most probable behavior of the payrolls of the Brazilian federal

staff, we are able to perform a selection on all payrolls and deliver to the audit trails only payrolls

that diverge the most from the norm.

This new approach significantly increases the efficiency of the BI system and its processing

capacity, with a penalty of losing a few false negatives at this proposed stage.

On the other hand, in the BI system maintained by SPU, we propose to add a predictive

analytics module in order to forecast the amount of tax to be collected by that federal organization.

The hypothesis we intent to validate is the possibility to improve the error rates of the predictive

algorithm currently employed in the BI system of SPU, which is based on artificial neural networks.

The model chosen as the core predictor is based on GPR, a widely used family of stochastic

process schemes for modeling dependent data primarily due two essential properties that dictate

the behavior of the predicted variable [24]. First, a Gaussian process is completely determined

by its mean and covariance functions, which reduces the amount of parameters to be specified

since only the first and second order moments of the process are needed. Second, the predicted

values are a function of the observed values, where all finite-dimensional distributions sets have a

multivariate Gaussian distribution [25].

In a BI environment, the fact that GPR returns a complete statistical description of the

predicted variable can add confidence to the final result and help the evaluation of its own perfor-

mance. Additionally, the statistical description can be used as a trigger to transform a regression

problem into a classification problem depending on the context. When dealing with multidimen-

sional data, GPR can be independently modeled in each dimension, which adds flexibility for data

sets with different degrees of correlation among its dimensions.

In this work, we use GPR for modeling the amount of tax collected monthly by SPU. Con-
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sidering that the time series provided by SPU possess a latent multidimensional structure, we

propose a pre-processing stage to reshape that original data set into a bidimensional structure.

In the BI system of SPU, a supervised regression method to predict the amount of tax collected

at a given period by SPU is proposed. An approach based on predictive regression using Gaussian

processes was developed to forecast the amount of tax that is most likely to occur at the point

of interest. Furthermore, as BI systems aimed at fraud detection often requires a classification

stage to label trusted and possibly fraudulent data, we show that GPR can be used both in the

predictive and the classification stages using the statistical description of the continuous predicted

variable as a trigger measure to classify regular or possibly fraudulent data.

According to [23], a regression problem can be seen as a classification problem where the

number of predicted classes tends to infinity. Similarly, one can say that a classification problem

can be solved by applying a set of heuristics into a regression environment to break the continuous

variable into a finite-length set of classes. Considering also that GPR returns not only a predicted

value, but a full conditional statistical description of the estimated variable, we focus on supervised

regression.

GPR provides a complete transparent environment, allowing to model the input-output rela-

tionship of a process with no hidden or nebulous layers, making possible to adapt specific charac-

teristics of a fraud detection system to keep in tune with an eventual new fraud behavior.

2.3 ORGANIZATION OF THIS WORK

In Chapter 3, we expose the theoretical foundation on which this work is based. Key compo-

nents in BI systems and the state-of-the-art applications in the field of fraud detection are shown

in Section 3.1. Section 3.2 presents a gentle introduction to finite mixture models, focusing on

GMM and the EM algorithm. In Section 3.3, a generic predictive model based on GPR is derived,

with covariance function selection and hyperparameters tuning.

In Chapter 4, we describe the current BI systems and data managed by MP that have received

improvements and enhancements throughout this work. In Section 4.1, we dissect the BI system

of CGAUD and explore the methodology used to audit payrolls of Brazilian federal employees. In

Section 4.2, we show the BI data of SPU, which is consisted of a time series with historical federal

tax collected.

In Chapter 5, we develop methods to apply GMM in the BI system of CGAUD. In Section 5.1,

we analyze what are the implications of a statistical module on an entire deterministic BI system,

i.e. what the system has to gain and what are the possible pitfalls in this approach. In Section 5.2,

we go through the optimization and experimental results for this specific application.
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In Chapter 6, we propose a predictive analytics module, with GPR at its core, for the BI

data of SPU. In Section 6.1, we develop a unidimensional predictor model that captures the

intrinsic characteristics of the BI data of SPU. In Section 6.2, we propose a different approach

to the predictive module by transforming the original data set into a bidimensional data set. In

Section 6.3, the optimization results are shown and the experimental results are compared with

other predictive approaches by several error metric.

Chapter 7 draws some conclusions and thoughts about the accomplishments of this work, with

future development suggestions.
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Chapter 3

THEORETICAL FOUNDATION

3.1 BUSINESS INTELLIGENCE

The term BI has been used since late 1960s [26], where the author defined Business as a collec-

tion of activities carried on for whatever purpose, be it science, technology, commerce, industry,

law, government, defense, et cetera. The communication facility serving the conduct of a business,

in the broad sense, may be referred to as an intelligence system. The notion of intelligence is also

defined, in a more general sense, as “the ability to apprehend the interrelationships of presented

facts in such a way as to guide action towards a desired goal” [26].

BI, as it is understood today, is said to have evolved from the decision support systems which

began in the 1960s and developed throughout the 80s [27]. According to [28], the term BI was

coined in 1989 as an umbrella term to describe “concepts and methods to improve business decision

making by using fact-based support systems.” It was not until the late 1990s that this usage was

widespread [27].

A BI system combines data gathering, data storage, and knowledge management with analyt-

ical tools to present complex and competitive information to planners and decision makers [29].

The objectives are to enable business managers and analysts of all levels to readily access any

data in the organization and to conduct appropriate manipulation and analysis [30]. Implicit in

this definition is the notion that a BI system can improve the timeliness and quality of the input

to the decision making process [31].

In late 2000s,the authors in [32] argued that BI systems are composed of a set of three comple-

mentary data management technologies, namely data warehousing, OLAP and business analytics.

In this definition, business analytics is the subset of BI systems related to knowledge discovery,

which is predominantly aided by ML, statistics, prediction, and optimization techniques. More

recently, big data and big data analytics have been used to describe the data sets and analytical
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techniques in applications that are so large and complex that they require advanced and unique

data storage, management, analysis, and visualization technologies [33].

3.1.1 Key Components

From a process point of view, BI systems can be divided into two primary activities: insert

data into the system and extract information and knowledge out of the system [34]. The key

components of a BI system framework is summarized in Table 3.1 [35].

Table 3.1: Key components in BI systems framework

Layer Description

Data Source
Manages the external sources of data, operational databases and

transaction systems

Data Integration
ETL tools, that are responsible for data transfer from data sources

to data warehouses

Data Storage
Data warehouses, to provide some room for thematic storing of ag-

gregated data

Data Analysis
Knowledge discovery tools, which determines patterns, generaliza-

tions, probabilities, regularities and heuristics in data resources

Data Presentation
Reporting and ad hoc inquiry tools, for different synthetic reports

and customized graphical and multimedia interfaces

The traditional architecture of the key components in generic BI systems is shown in Fig. 3.1.

DATA SOURCES
DATA 

INTEGRATION
DATA STORAGE DATA ANALYSIS

DATA 
PRESENTATION

External Data 
Sources

Internal
Database

Operational
Data Store

Complex event
processing

ETL
Relational DBMS

MapReduce Engine

Reporting
Servers

Analytic Engines

Enterprise 
Search Engine

OLAP Server

Search

Spreadsheet

Dashboard

Data Context Information Knowledge

Actions

Figure 3.1: A traditional architecture and components of a generic BI system
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Usually, the first conceptual step in the development of a BI system regards its data integration

layer, which often translates into an ETL process, although some pre-processing stages can be

performed when the data is coming from an external data source, such as the use of an ODS [36].

ETL refers to a collection of tools that plays a crucial role in helping discover and correct data

quality issues and efficiently load large volumes of data into the warehouse. The accuracy and

timeliness of reporting, ad hoc queries, and data analysis depends on being able to efficiently get

high-quality data into the DW from operational databases and external data sources [37].

In the data storage layer, DW store current and historical data, which are later used for

creating trending reports for senior management. Other basic elements in the data storage layer

are the Data Marts. They are subsets of data stored at the DW, and are devoted to respond for

a necessity to work with a specific population.

The architecture of the Data Mart and the DW is a main concept that will impact on the

performance of the system [29]. Whether a bottom-up structure proposed by [38], or a top-down

structure proposed by [39], or even if big data technology [29] will be incorporated to the system

make a significant difference in the system responsiveness.

The data analysis layer contains the business analytics tools aimed at extracting knowledge

from the stored data [29]. OLAP tools enable users to analyze multidimensional data interactively

from multiple perspectives, whereas analytic engines, commonly based on ML techniques, seeks

for patterns, classes, statistical parameters and other relevant characteristics on the data.

The presentation layer converts the raw knowledge information to different reports and cus-

tomized interfaces for each different end user at any level of the organization [29]. Role based BI

is a concept that suggests that it is not necessary to drown people with information, but rather

delivery just the information they need, customized to their function. The architecture should

support every level of end user, including external consumers to the organization [29].

3.1.2 Fraud Detection Applications

In the context of BI systems, fraud detection schemes is a continuously evolving topic. In 2012,

global credit, debit and prepaid card fraud losses reach $11.27 billion [40]. Of that, card issuers

lost 63% and acquires lost the other 37% [40].

In a competitive environment, fraud can become a business critical problem if it is very preva-

lent and if the prevention procedures are not fail-safe [41]. Fraud detection, being part of the

overall fraud control, has become one of the most established industrial and governmental data

mining applications [41].

Fraud is a perpetually changing enterprise. When a new fraud detection scheme becomes
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public domain, criminals are likely to use this information to evade themselves of this type of

detection, limiting the public exchange of ideas regarding this topic [11].

In many applications, BI systems aimed at fraud detection deal with huge data sets. For

example, business general-purpose credit card transactions in the United States reached 3.4 billion

in 2012 [42]. Search for fraudulent transactions in such data sets makes data mining techniques

relevant, requiring more than state-of-the-art statistical models [11].

The need for fast and efficient algorithms makes automated fraud detection techniques widely

varied, but there are common features. Essentially, those methods compare observed or estimated

data with expected values [11].

In addition, automated fraud detection methods can be divided in supervised and unsuper-

vised. Supervised methods use samples of known to be either fraudulent and nonfraudulent data

in order to construct a model that classifies new data into one of those two classes [11]. In

this case, the objective is to obtain a model to maximize the differences between fraudulent and

nonfraudulent data, which requires a high confidence about the records used as fraudulent and

trustable. Also, the use of supervised methods can only be applied to detect types of fraud that

have previously occurred or simulated.

On the other hand, unsupervised methods seek for samples that are most dissimilar from the

norm [11]. In this case, the goal is to model the normal behavior of the monitored environment

and to establish a quantifiable measure that segregates a possibly fraudulent event. Frequently,

unsupervised methods are used to alert the fact that an observation is anomalous and requires a

closer investigation.

Some of the most commonly used techniques for automated fraud detection applications are:

• Data preprocessing techniques for detection, validation, error correction, and filling up of

missing or incorrect data.

• Calculation of various statistical parameters such as averages, quantiles, performance met-

rics, probability distributions, etc..

• Models and probability distributions of various business activities either in terms of various

parameters or probability distributions.

• Computing user profiles.

• Time-series analysis of time-dependent data.

• Clustering and classification to find patterns and associations among groups of data.
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• Matching algorithms to detect anomalies in the behavior of transactions or users as compared

to previously known models and profiles. Techniques are also needed to eliminate false

alarms, estimate risks, and predict future of current transactions or users.

• Data mining to classify, cluster, and segment the data and automatically find associations

and rules in the data that may signify interesting patterns, including those related to fraud.

• Expert systems to encode expertise for detecting fraud in the form of heuristics.

• Pattern recognition to detect approximate classes, clusters, or patterns of suspicious behavior

either unsupervised or to match given inputs.

• Machine learning techniques to automatically identify characteristics of fraud.

• Neural networks that can learn suspicious patterns from samples and used later to detect

them.

Automated fraud detection approaches have been used in [43], where statistical analysis were

used to detect medicaid1 claim fraudulent requests; in [44], where an ANN is used for fraud

detection in credit card operations; in [45], where an ANN based predictor was used in real world

BI data for forecasting a time series and heuristics based on error metrics decides if the predicted

data is possibly fraudulent or regular. In [46], supported vector machines and genetic algorithms

are used to identify electricity theft.

3.2 FINITE MIXTURE MODELS

A convex combination of two or more pdf is a mixture. The approximation of any arbitrary

distribution can be achieved by the combination of the properties of a set of individual pdf [47],

making mixture models a powerful tool for modeling complex data. While within a parametric fam-

ily, mixture models offer malleable approximations in non-parametric settings and, although based

on standard distributions, mixture models pose highly complex computational challenges [48].

To accompany our model, let X = (x1,x2, . . . ,xL) be an unlabeled random sample obtained

in an iid manner. The pdf of a mixture model is defined as

p(x|Θ) =
K∑
k=1

αkpk(x|θk) k = 1, . . . ,K, (3.1)

1Medicaid is a social health care program for families and individuals with low income and limited resources in

the United States. Please refer to http://www.medicaid.gov for further details.
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where x = (x1, . . . , xd)
T ∈ Rd is a set of d observed random samples, K ∈ Z+ is the number

of components (sources) in the mixture, pk(x|θk) is the pdf of the kth component and Θ =

(α1, . . . , αK , θ1, . . . , θK) ∈ Ω is the set of parameters of the mixture, with Ω being the parameter

space of all possible combinations of values for all the different parameters of the mixture [49]. The

collection αk is the mixing proportion (or weighting factor) of the kth component, representing

the probability that a randomly selected xi ∈ X was generated by the kth component.

In the particular case of a Gaussian mixture model, (3.1) can be written as

p(x|Θ) =
K∑
k=1

αkpk(x|µk,Σk), (3.2)

where µk ∈ Rd is the mean vector and Σk ∈ Rd×d is the covariance matrix, both of them originated

by the kth Gaussian component. Each of those component density is a Gaussian function of the

form

p(x|µk,Σk) =
1

(2π)d/2|Σk|1/2
exp {−1

2
(x− µk)

TΣ−1
k (x− µk)}. (3.3)

Note that the Gaussian mixture model is completely parametrized by its mean vectors, covari-

ance matrices and mixture weights from all component densities [50].

Given that (3.1) and (3.2) represent a convex combination of K distributions [47], it can be

stated that

αk ≥ 0, for k ∈ {1, . . . ,K}, and

K∑
k=1

αk = 1.
(3.4)

In addition, since each pk(x|θk) defines a pdf, p(x|Θ) will also be a pdf [47].

One straightforward interpretation of mixture models is that (3.1) describes a complete stochas-

tic model [51], thus giving us a recipe to generate new data points. Another point of view, in

the mixture model context, is that any observed data sample is generated from a combination

of K distinct random processes, each one modeled by the density pk(x|θk), with αk defining the

proportion of a particular random process in the overall observations.

3.2.1 Estimation of Parametric Mixture Models

Once defined the mixture model and the particular case of a GMM, next a numerical approach

that will allow the estimate of the parameters set Θ = (θ1, θ2, . . . , θk) is presented.
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Let X ∈ RN×L be a set ofN unlabeled observations, where xik is the value of the ith observation

for the kth component. Since the observed set X is iid, the joint pdf for X can be written as [52]

p(X|Θ) =

N∏
i=1

p(xi|θ1, . . . , θk). (3.5)

The likelihood function of the data, also assuming that xi are independently distributed, is

defined as

p(X|Θ) = L(Θ|X) =
N∏
i=1

K∑
k=1

αkpk(xi|θk). (3.6)

The likelihood can be thought of as a function of the parameters Θ where the observed data

X is fixed. In the maximum likelihood problem, our goal is to find the Θ that maximizes L(Θ|X),

thus determining which parameters values are more likely for the observed values [53]:

Θ∗ = arg max
Θ∈Ω

L(Θ|X). (3.7)

In general cases, it is often preferable to maximize log(L(Θ|X) instead, since it is analytically

easier [53]. However, in many scenarios an analytical solution is not possible to develop. One

alternative is to maximize the likelihood in an EM approach.

3.2.2 Expectation Maximization Algorithm

The EM algorithm is an iterative method for estimating the maximum likelihood of a stochastic

model where exists a dependency upon latent, or unobserved, data [54].

Throughout the remainder of this subsection, the EM algorithm is used to obtain an accurate

approximation of the maximum likelihood of a mixture model which has incomplete data associated

with it. This consideration is taken into account when optimizing the likelihood function is

analytically intractable, but the likelihood function can be simplified by assuming the existence

of additional but missing values [53].

Therefore, let X be a random incomplete observed data set, Y be a random unobserved data

set and Z = (X ,Y) be a complete data set.

To establish the notation, let p(z|Θ) = p(x,y|Θ) be the joint pdf of the random variables X
and Y , g(x|Θ) be the marginal pdf of X and k(y|x,Θ) be the conditional probability of Y given

X = x.
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The EM algorithm aims to maximize the incomplete data log-likelihood [54],

log[L(Θ|X )] = log[g(x|Θ)] for Θ ∈ Ω,

by using p(x,y|Θ) and g(x|Θ). From Bayes’ rule, p(z|Θ) can be represented as

p(z|Θ) = p(x,y|Θ) = k(y|x,Θ) · g(x|Θ), (3.8)

for x ∈ X and y ∈ Y .

The E-step of the EM algorithm seeks to find the expected value of the complete data log-

likelihood, defined as

log[L(Θ|X ,Y)] = log[p(x,y|Θ)]. (3.9)

In (3.9), the observed samples X and some a priori parameter estimate Θp ∈ Ω are given as

inputs. In addition, an auxiliary function Q is defined such as

Q(Θ|Θp) = E[log[p(x,y|Θ)|x,Θp]], (3.10)

where x ∈ X , y ∈ Y , Θp ∈ Ω and E[·] denotes the expectation operator. The key thing in (3.10)

is that X and Θp are constants, Θ is a regular variable which we want to optimize and Y is a

random variable governed by the distribution k(y|x,Θ).

The M-step of the EM algorithm intents to maximize (3.10) by selecting a new set of parameters

Θ∗ ∈ Ω such that

Θ∗ ∈ arg max
Θ∈Ω

Q(Θ|Θp). (3.11)

The EM algorithm presented in [54] can abstractly be summarized as follows:

1. E-Step: Calculate Q(Θ|Θp).

2. M-Step: Pick Θ∗ ∈ arg maxΘ∈ΩQ(Θ|Θp).

3. Θp ← Θ∗.

4. Iterate (1)-(3) until some convergence criterion is met.

At each iteration, the EM algorithm increases the log-likelihood converging to a local maxi-

mum [55]. More properties on convergence of the EM algorithm can be found at [54] and [56].
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3.3 GAUSSIAN PROCESS FOR REGRESSION

Gaussian processes belong to the family of stochastic processes schemes that can be used

for modeling dependent data observed over time and/or space [25]. Our main interest relies

on supervised learning, which can be characterized by a function that maps the input-output

relationship learned from empirical data, i.e. a training data set.

In order to make predictions based on a finite data set, a function h needs to link the known sets

of the training data with all the other possible sets of input-output values. The characteristics of

this underlying function h can be defined in a wide variety of ways [57], and that is where Gaussian

processes are applied. Stochastic processes, as the Gaussian process, dictate the properties of

the underlying function as well as probability distributions govern the properties of a random

variable [25].

Two properties make Gaussian processes an interesting tool for inference. First, a Gaussian

process is completely determined by its mean and covariance functions, requiring only the first and

second order moments to be specified, which makes it a non parametric model whose structure is

fixed and completely known. Second, the predictor of a Gaussian process is based on a conditional

probability and can be solved with simple linear algebra, as shown in [58].

3.3.1 Multivariate Gaussian Distribution

Consider a multivariate random variable x ∈ Rn. If x has a multivariate Gaussian distribution

with mean vector µ ∈ Rn and covariance matrix Σ ∈ Sn++, where Sn++ is the space of symmetric

positive definite n× n matrices2, the pdf of x has the form [58]:

f(x) =
1

(2π)n/2|Σ|
exp
[
− 1

2
(x− µ)TΣ−1(x− µ)

]
, (3.12)

where |Σ| is the determinant of Σ.

To denote a random variable to be Gaussian distributed we write:

x ∼ N (µ,Σ). (3.13)

Now, consider that the random vector x ∈ Rn, with x ∼ N (µ,Σ), is partitioned into two sets

xA and xB, such that:

xA = [x1, x2, · · · , xr]T ∈ Rr,

xB = [xr+1, xr+2, · · · , xn]T ∈ Rn−r.
(3.14)

2In some cases, Σ can be positive semidefinite but not positive definite, such as the case where Σ is not full rank.

In those cases, Σ−1 does not exist, and the definition given by (3.12) does not apply.
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Similarly, the mean vector µ and the covariance matrix Σ can also be partitioned into two

sets, resulting in:

x =

xA

xB

 , µ =

µA
µB

 , Σ =

ΣAA ΣAB

ΣBA ΣBB

 , (3.15)

where ΣAA = var(xA), ΣBB = var(xB) and ΣAB = (ΣAB)T = cov(xA,xB).

In Subsections 3.3.1, 3.3.1 and 3.3.1 some useful properties for (3.15) are proven.

Marginalization

Given the marginal density function of xA and xB,

f(xA) =

∫
xB

f(x) dxB,

f(xB) =

∫
xA

f(x) dxA,

(3.16)

it can be stated that the densities in (3.16) are Gaussian distributed [58]. Therefore, it is possible

to write:

xA ∼ N (µA,ΣAA),

xB ∼ N (µB,ΣBB).
(3.17)

Conditioning

Given the conditional density function of xA|xB and xB|xA,

f(xA|xB) =
f(x)

f(xB)
,

f(xB|xA) =
f(x)

f(xA)
;

(3.18)

their conditional densities in (3.18) are also Gaussian distributed [58], which leads to:

xA|xB ∼ N (µA|B,ΣA|B),

xB|xA ∼ N (µB|A,ΣB|A);
(3.19)

where

µA|B = µA + ΣBAΣ−1
AA(xB − µB),

µB|A = µB + ΣABΣ−1
BB(xA − µA),

ΣA|B = ΣAA −ΣABΣ−1
BBΣBA,

ΣB|A = ΣBB −ΣBAΣ−1
AAΣAB.

(3.20)

24



Summation

The sum of independent multivariate Gaussian random variables with the same dimensionality

results in another multivariate Gaussian random variable [58]. As an example, let y ∼ N (µ,Σ)

and z ∼ N (µ′,Σ′). The sum of y and z, provided they are independent, can be stated as:

y + z ∼ N (µ + µ′,Σ + Σ′). (3.21)

3.3.2 Gaussian Processes

Multivariate Gaussian distributions are useful for modeling finite collections of real-valued

random variables due to their analytical properties showed in Subsection 3.3.1. Gaussian processes

extend this scenario, evolving from distributions over random vectors to distributions over random

functions.

A stochastic process is a collection of random variables, e.g. {h(x) : x ∈ X}, defined on a

certain probability space and indexed by elements from some set [59]. Just as a random variable

assigns a real number to every outcome of a random experiment, a stochastic process assigns a

sample function to every outcome of a random experiment [59].

A Gaussian process is a stochastic process where any finite subcollection of random variables

has a multivariate Gaussian distribution. In other words, a collection of random variables {h(x) :

x ∈ X} is a Gaussian process with mean function m(·) and covariance function k(·, ·) if, for

any finite set of elements {x1, x2, . . . , xn ∈ X}, the associated finite set of random variables

{h(x1), h(x2), . . . , h(xn)} have a distribution of the form:

h(x) =


h(x1)

h(x2)
...

h(xn)

∼ N



m(x1)

m(x2)
...

m(xn)

 ,

k(x1, x1) · · · k(x1, xn)

k(x2, x1) · · · k(x2, xn)
...

. . .
...

k(xn, x1) · · · k(xn, xn)



 . (3.22)

The notation for defining h(x) as a Gaussian process is

h(x) ∼ GP(m(x), k(x,x′)), (3.23)

for any x and x′ ∈ X . The mean and covariance functions are given, respectively, by:

m(x) = E[x],

k(x,x′) = E[(x−m(x))(x′ −m(x′))];
(3.24)

also for any x and x′ ∈ X .
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Intuitively, a sample function h(x) drawn from a Gaussian process can be seen as an extremely

high dimensional vector obtained from an extremely high dimensional multivariate Gaussian,

where each dimension of the multivariate Gaussian corresponds to an element xk from the index

X , and the corresponding component of the random vector represents the value of h(xk) [25].

3.3.3 Regression Model and Inference

Let S = {(xi, yi)}mi=1,x ∈ Rn and y ∈ R, be a training set of iid samples from some unknown

distribution. In its simplest form, GPR models the output nonlinearly by [24]:

yi = h(xi) + νi; i = 1, . . . ,m (3.25)

where h(x) ∈ Rm. An additive iid noise variable ν ∈ Rm, with N (0, σ2), is used for noise modeling.

Other noise models can be seen in [60]. Assume a prior distribution over function h(·) being a

Gaussian process with zero mean:

h(·) ∼ GP(0, k(·, ·)), (3.26)

for some valid covariance function k(·, ·) and, in addition, let T = {x̂i, ŷi)}m̂i=1, x̂ ∈ Rn and

ŷ ∈ R, be a set of iid test points drawn from the same unknown distribution as that of the data

S. Defining, for notational purposes:

X =


(x1)T

(x2)T

...

(xm)T

 ∈ Rm×n; X̂ =


(x̂1)T

(x̂2)T

...

(x̂m)T

 ∈ Rm̂×n,

and

h =


h(x1)

h(x2)
...

h(xm)

 , ν =


ν1

ν2

...

νm

 , y =


y1

y2

...

ym

 ∈ Rm;

ĥ =


h(x̂1)

h(x̂2)
...

h(x̂m̂)

 , ν̂ =


ν̂1

ν̂2

...

ν̂m̂

 , ŷ =


ŷ1

ŷ2

...

ŷm̂

 ∈ Rm̂.

Given the training data S, the prior distribution h(·) and the testing inputs X̂, the use of

standard tools of Bayesian statistics such as the Bayes’ rule, marginalization and conditioning

allow the computation of the posterior predictive distribution over the testing outputs ŷ [25].
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Recalling that, for any function h(·) drawn from a zero mean Gaussian process prior with

covariance function k(·, ·), the marginal distribution over any finite set of input points belonging

to X must have a joint multivariate Gaussian distribution:h

ĥ

∣∣∣∣∣X, X̂ ∼ N
0,

K(X,X) K(X, X̂)

K(X̂,X) K(X̂, X̂)

 , (3.27)

where K(X,X) ∈ Rm×m, K(X, X̂) ∈ Rm×m̂, K(X̂,X) ∈ Rm̂×m and K(X̂, X̂) ∈ Rm̂×m̂.

Considering the assumed iid noise model,ν
ν̂

 ∼ N
0,

σ2I 0

0 σ2I

 , (3.28)

and taking into account that the sum of independent Gaussian random variables are also Gaus-

sians, it yields: y

ŷ

∣∣∣∣∣X, X̂ =

h

ĥ

+

ν
ν̂

 ∼ N (µ[1],Σ[1]), (3.29)

where

µ[1] = 0,

Σ[1] =

K(X,X) + σ2I K(X, X̂)

K(X̂,X) K(X̂, X̂) + σ2I

 .
Deriving the conditional distribution of ŷ results in the predictive equations of GPR:

ŷ|y,X, X̂ ∼ N (µ[2],Σ[2]), (3.30)

where

µ[2] = K(X̂,X)[K(X,X) + σ2I]−1y,

Σ[2] = K(X̂, X̂) + σ2I−K(X̂,X)[K(X,X) + σ2I]−1K(X, X̂).

Since a Gaussian process returns a distribution over functions, each of the infinite points of

the function ŷ have a mean and a variance associated with it. The expected or most probable

value of ŷ is its mean, whereas the confidence about that value can be derived from its variance.

3.3.4 Covariance Functions and its Hyperparameters

In the previous section, it was assumed that the covariance function k(·, ·) is known, which is

not usually the case. In fact, the power of the Gaussian process to express a rich distribution on

functions rests solely on the shoulders of the covariance function [61], if the mean function can be
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set or assumed to be zero. The covariance function defines similarity between data points and its

form determines the possible solutions of GPR [24].

A wide variety of families of covariance functions exists, including squared exponential, poly-

nomial, etc. See [25] for further details. Each family usually contains a number of free hyperpa-

rameters, whose value also need to be determined. Therefore, choosing a covariance function for

a particular application involves the tuning of its hyperparameters [25].

The covariance function must be positive semi-definite, given that it represents the covariance

matrix of a multivariate Gaussian distribution [24]. It is possible to build composite covariance

functions by adding simpler covariance functions, weighted by a positive hyperparameter, or by

multiplying them, as adding and multiplying positive definite matrices results in a positive definite

matrix [24].

One of the most commonly used covariance function in GPR is the squared exponential kernel

given by (3.31), which reflects the prior assumption that the latent function to be learned is

smooth [62]

k(x,x′) = σ2 · exp

(
−(x− x′)

2θ2

)
. (3.31)

In a nutshell, the hyperparameter σ controls the overall variance of the kernel function and

the hyperparameter θ controls the distance from which two points will be uncorrelated, both of

them presented in (3.31). These free parameters allow a flexible customization of the problem

at hand [62], and maybe selected by inspection or automatically tuned by ML using the training

data set. Also, the kernel is isotropic and stationary.

The covariance function in GPR plays the same roll as the kernel function in other approaches

such as SVM and KRR [63]. Typically, these kernel methods use cross-validation techniques to ad-

just its hyperparameters [24], which are highly computational demanding and essentially consists

of splitting the training set into k disjoint sets and evaluate the probability of the hyperparame-

ters [25].

On the other hand, GPR can infer the hyperparameters from samples of the training set using

the Bayesian framework [24]. The marginal likelihood of the hyperparameters of the kernel given

the training data set can be defined as:

p(y|X) =

∫
p(y|f ,X)p(f |X)df . (3.32)

Recalling that X is dependent of the hyperparameter’s set, [64] proposes to maximize the
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marginal likelihood in (3.32) in order to to obtain the optimal setting of the hyperparameters.

Although setting the hyperparameters by maximum likelihood is not a purely Bayesian solution,

it is fairly standard in the community and it allows using Bayesian solutions in time sensitive

applications [24]. More detailed information regarding practical considerations about this topic

will be presented in Subsection 6.3.1 and can be found in [65].
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Chapter 4

BUSINESS INTELLIGENCE

SYSTEMS AND DATA

The BI systems and data used in this work were developed in partnership with MP, a Brazilian

federal Ministry whose legal attributions [66] are summarized in Table 4.1.

Table 4.1: Legal attributions of MP

# Description

I Participate in the elaboration of the national strategic planning

II Evaluate the economic and social impact of federal programs and politics

III
Conduct studies and research to follow the social and economic conjuncture

and manage the cartographic national system

IV
Elaborate and evaluate the laws initiated by the executive power related to

art. 165 of the Brazilian Federal Constitution

V
Conduct viability studies on new sources of revenue for the government plan-

ning

VI Coordinate the partnerships with the private sector

VII
Formulate guidelines, coordinate negotiations and evaluate foreign finance of

public projects with multilateral organizations and governmental agencies

VIII

Manage and coordinate the systems of federal budget, planning, civilian em-

ployees, patrimony, information technology and general services, as well as the

government actions for public administration improvement

IX Define and coordinate the criteria of corporate governance of federal companies

X Manage the federal patrimony

It can be noticed that, among the legal attributions of MP listed in Table 4.1, the development
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and maintenance of key information systems in the areas of civilian federal staff and patrimony

management.

SIAPE is a national system that manages the monthly payroll of Brazilian federal employ-

ees [67], and SPU is responsible for managing the Brazilian federal patrimony. In Section 4.1, the

BI system fed by the SIAPE database is explained, and in Section 4.2 the BI system maintained

by SPU is shown.

4.1 PAYROLLS OF FEDERAL EMPLOYEES

SIAPE includes information of approximately two and half million workers among active,

retired and pensioners; 14GB of raw data are generated each month, with 212 fields of personal,

functional and financial data [16]. In the 2012 fiscal year, the size of the database of SIAPE ended

up with more than 27 million rows for the public workers table and about 200 million rows in the

financial data table [16]. An example of data contained in SIAPE is shown in Fig. 4.1.
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Figure 4.1: Scatter plot of 10,000 samples of payroll data, with gross income in one dimension

(ordinate) and total discounts and deductions in the other dimension (abscissa). Both dimensions

are plotted in Reais, the Brazilian currency.
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Furthermore, there is a massive legal basis from which the payroll of the Brazilian federal staff

are generated. The Federal Constitution of Brazil, laws, decrees and executive orders created

more than 2,200 different rubrics [1*], the basic element of the payroll, consisting of a positive

or negative value according to the characteristics of the position of the employee in the public

administration organization.

According to the Brazilian legislation, CGAUD is the responsible department for auditing the

rubrics of every payroll aimed at fraud detection such as incompatibility of benefits, inconsistencies

and irregularities. Before the initial BI solution proposed in [14], CGAUD performed the audit

process in a manual fashion.

After the implementation of the BI System proposed in [14], with several improvements pro-

posed in [15], [16] and [1*], the current state-of-the-art BI system for auditing SIAPE is based on

an ontology indexation process via concept maps in order to detect irregularities on the payrolls,

big data technologies such as Hadoop and Hbase for increasing the performance of the processing

stage and a reimbursement tracking system for monitoring the payroll of federal employees who

have to reimburse the Brazilian Treasury. Fig 4.2 shows the architecture of the current BI system

of CGAUD. Please refer to [1*] for further details on the existing BI architecture.
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Figure 4.2: Architecture of the current state-of-the-art BI system of CGAUD

Despite the fact that the audit process is made before the payroll is actually paid to the em-

ployee, the existing audit process is fully based on audit trails, i.e. a deterministic analysis of the

complete data structure where the information is presumably encoded in the hypothesis. Onto-

logical audit trails mapping summarizes a set of hypothetic rules based on Brazilian legislation,

such as incompatibility of rubrics, and the real world data validates or refutes those hypothesis.

Fig. 4.3 shows an example of audit trail concept map. Please refer to [14] for more details on the

construction of audit trails.

Hence, the current audit process has no predictive component and no pre-processing of the
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huge amount of monthly incoming data, having to check every row of a specific rubric in order to

detect any irregularity.

[  ] YEAR AND MONTH

MONTH

- MONITORED
- INCOMPATIBLE

TYPE OF RUBRIC

- STATE MINISTER
- LEGAL CONSULTANT
- PROFESSOR OF BASIC EDUCATION AND HIGH SCHOOL
- FEDERAL POLICE AGENT
- CIVIL PRISON GUARD
- METALLURGIC TECHNICIAN
- MECANIC TECHNICIAN
- ELECTRICITY AND COMMUNICATIONS TECHNICIAN
- CARPENTRY TECHNICIAN
- GRAPHIC ARTS TECHNICIAN
- AERONAUTICS TECHNICIAN
- TECHNICIAN ASSISTANT
...

TYPE OF POSITION

AUDIT TRAIL: INCOMPATIBILITY BETWEEN BASIC 
SALARY RUBRICS

- QUANTILY OF REGISTERS
- VALUE OF MONITORED RUBRIC
- VALUE OF INCOMPATIBLE RUBRIC

REGISTER METRICS

TIME INSTITUTION RUBRIC POSITION

YEAR

- FEDERAL UNIVERSITY OF PARA
- FEDERAL UNIVERSITY OF PARAIBA
- FEDERAL UNIVERSITY OF PERNAMBUCO
- MINISTRY OF SCIENCE AND TECHNOLOGY
- ADMIN. COUNCIL ON ECONOMIC DEFENSE 
- NATIONAL INSTITUTE OF EDUCATIONAL STUDIES AND RESEARCH
- BRAZILIAN INSTITURE OF ENVIRONMENT AND NATURAL RESOURCES
- NATIONAL AGENCY OF PETROL AND GAS
- FEDERAL RURAL UNIVERSITY OF PERNAMBUCO
- BRAZILIAN INTELLIGENCE AGENCY
- NATIONAL FUNDS FOR EDUCATION DEVELOPMENT
- MINISTRY OF FINANCE
...

TYPE OF INSTITUTION

HAS HAS HAS HAS

HAS

HAS

HAS HAS HAS

Figure 4.3: Example of a concept map for an audit trail. Adapted from [14].
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4.2 FEDERAL TAX COLLECTION

SPU is legally responsible for managing, supervising and grant permission to use federal real

estate properties in Brazil. The monthly revenue managed by this branch of the federal government

comes mainly from taxes and other associated fees collected by its Department of Patrimony

Revenue Management1 [68].

Similarly to the data regarding the payrolls of the Brazilian federal staff, the tax collected by

SPU is based on a massive amount of federal legislation spread out among the Constitution of

Brazil, laws, decrees and executive orders. A BI system designed for SPU was first implemented

by [69], where a predictive analytics module based on artificial neural network forecasted the

monthly amount of tax to be collected.

Fig 4.2 shows the architecture of the current BI system of SPU. Please refer to [69] for more

details on the existing BI architecture.
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Figure 4.4: Architecture of the current state-of-the-art BI system of SPU

Since the BI system of SPU already possesses a predictive analytics model embedded in its

current architecture, from this point forward our focus will rely only on techniques inside that

particular module, in order to obtain improved prediction results.

In addition, the same input data of SPU used in [45] will be used in this work for comparison

purposes. The data regards the monthly tax collection of SPU, ranging from years 2005 to 2010.

The amount collected, expressed in reais (R$), is treated as a random variable indexed by the mth

month, where m ranges from 1 to 72. Thus, m = 1, . . . , 12 is related to the first year’s collection

1In portuguese, Departamento de Gestão de Receitas Patrimoniais.
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(2005); m = 13, . . . , 24 is related to the second year’s collection (2006), and so forth.

In alignment with the strategy used in [45], also for comparison purposes, it was used only the

first 60 months of the data (ranging from 2005 to 2009) to train the predictive algorithm. The

data regarding the year 2010 was exclusively used to evaluate the performance of the proposed

predictor by error measurement. Therefore, the first five years of data will be referred as the

training data set, and the sixth year of data will be referred as the target data set. Figure 4.5

shows a bar plot of the the data model used in this work.

The gray scale bars, representing the years between 2005 and 2009, were chosen as the training

set, and the red bars, representing the year 2010, were chosen as the target set.
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Figure 4.5: Monthly tax collected by SPU, in reais (R$), indexed by the mth month.
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Chapter 5

STATISTICAL AUDIT

This Chapter is dedicated to present a new approach to the existing BI system in CGAUD,

which audits the monthly payroll of Brazilian federal employees. In Section 5.1, we put into

perspective the arguments for incorporating a statistical analysis approach into a complete deter-

ministic BI system in its state-of-the-art. The statistical technique proposed is based on GMM,

which models the probabilistic behavior of payrolls and act as a filter to improve the computa-

tional efficiency of the system as well as its responsiveness. In Section 5.2, we go through the

algorithm optimization process and overall experimental results.

5.1 STATYSTICAL ANALYSIS ON A DETERMINISTIC BI

SYSTEM

Considering the amount of data to be analyzed by the current BI system of CGAUD, and

the rising trend of the number of audit trails which also causes the processing requirements of

the system to rise proportionally, this work proposes a complementary statistical approach to the

system based on GMM described in Section 3.2. Focused on the data, the system aims to model a

pdf for each category of the Brazilian federal staff with common payroll characteristics (professors,

police officers, judges, etc.), hence defining a regular behavior for the payrolls of each category.

After the definition of a standard payroll behavior for a given category of employees, the next

goal is to classify each individual payroll as regular or possibly inconsistent. In other words, the

principle of the proposed system can be stated as the higher the probability of a random payroll,

the less likely that payroll is to be inconsistent. One way to validate this hypothesis is to use the

current BI system as a qualitative measure, where the removal of the most probable payrolls from

the audit trails should not drastically impact the result of the original audit trails.

The data used in this work consists of 101,400 payroll entries of the federal professors category,
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since this is one of the categories with more employees of the Brazilian federal staff [70]. The chosen

month of application of the proposed technique was June/03, since federal employees in Brazil

are monthly payed and June is one month of the year with a high variance among all the other

months given that the first part of the 13rd salary is payed on that month for a substantial part

of the governmental staff [71].

Each payroll is arranged in a two dimensional structure, where instead of dealing with more

than 2,200 different rubrics, the whole information of the rubrics is condensed into gross income in

one dimension and total deductions in the other dimension. Generalizing positive rubrics (incomes)

in one dimension and negative rubrics (deductions) in another dimension resulted in the scatter

diagram of the data sets shown in Fig. 5.1.
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Figure 5.1: Scatter plot of 10,000 samples of payroll data, showed in Fig. 4.1, with a zoom around

the origin for a better visualization of the correlation profile.

Fig. 5.1 shows a 10,000 points sample of the data. As expected, it can be noted in the cropped

scatter plot a positive correlation between the amount of gross income and the total deductions

and discounts from the payroll.
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5.1.1 Statistical Audit Module

The proposed statistical audit module, based on a generative GMM pdf, was incorporated into

the original BI system described in Section 4.1 between SIAPE and TRAIL databases, inside the

relational stage (see Fig. 4.2). A block diagram in Fig. 5.2 shows the new audit module in the BI

architecture.
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Figure 5.2: Block architecture of the proposed statistical audit module solution in the original BI

architecture shown in Fig. 4.2.

The statistical audit module acts as a filter for the audit trail database, removing high prob-

ability payrolls contained in the SIAPE database and feeding the TRAIL database only with

payrolls that are most dissimilar from the normal payroll behavior modeled by a GMM pdf.

Given that the TRAIL database is generated through computationally cost relational state-

ments between each audit trail and the hole SIAPE database, and the GMM pdf inside the

statistical audit module is generated by a one time optimization process via EM algorithm, a pos-

itive trade off between cost and effort could be established. Although any probabilistic method

has a certain degree of uncertainty associated with it, which in this specific case translates into

losing some false negatives (i.e. high probability payrolls that have some kind of irregularity) in

the statistical audit module, the gain obtained in terms of computational efficiency and velocity

of execution enables the hole BI system to audit a more significant portion of the overall payroll

of Brazilian public employees.

5.1.2 GMM for Statistical Auditing

The approach chosen to model the data is a finite GMM, which gives a complete statistical

description of the latent underlying system that generated the data. GMM is a parametric model,

completely defined by its mixing weights, mean vectors and covariance matrices. Therefore, in the
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context of this work, GMM can be seen as a generative model capable of defining the probability

of a random payroll to occur.

In order to obtain the pdf of our GMM, i.e. learn the parameters Θ = {αk,µk,Σk}, we apply

the EM algorithm for a GMM. The derivation of closed form solutions for the equations presented

in Subsection 3.2.2 for a mixture of multivariate Gaussians require techniques which are beyond

the scope of this project. For a detailed derivation of those, please refer to [53].

Using the framework previously defined in subsection 3.2.2, a closed form solution for the

auxiliary function Q, the conditional expectation of the complete data, can be written as:

Q(Θ|Θp) =
N∑
i=1

K∑
k=1

αpkpk(xi|θk)
p(xi|Θ)

log(αk) +
N∑
i=1

K∑
k=1

αpkpk(xi|θk)
p(xi|Θ)

log(pk(xi|θk) (5.1)

The expression for Q derived in (5.1) appears in the E-Step of the EM algorithm and may be

maximized for a particular pdf pk.

Assuming pk being a multivariate Gaussian distribution in the form of (3.3), and that

Θp = (αp1, . . . , α
p
k, θ

p
1, . . . , θ

p
k) ∈ Ω

is our prior set of parameters, the goal is to implement the M-Step of the EM algorithm to obtain

updated maximizers denoted by Θ∗ = (α∗1, . . . , α
∗
k, θ
∗
1, . . . , θ

∗
k) ∈ Ω.

This can be achieved by maximizing Q with respect to αk and θk = (µk,Σk), leading to

the updated parameter equations of the M-Step f the EM algorithm for α∗k, µ
∗
k and Σ∗k as being,

respectively:

α∗k =
1

K

N∑
i=1

αpkpk(xi|θ
p
k)

p(xi|Θp)
; (5.2)

µ∗k =

N∑
i=1

xi
αpkpk(xi|θ

p
k)

p(xi|Θp)

N∑
i=1

αpkpk(xi|θ
p
k)

p(xi|Θp)

; (5.3)

Σ∗k =

N∑
i=1

(xi − µ∗k)(xi − µ∗k)
T α

p
kpk(xi|θ

p
k)

p(xi|Θp)

N∑
i=1

αpkpk(xi|θ
p
k)

p(xi|Θp)

. (5.4)

Again, please refer to [53] for a detailed derivation of (5.2), (5.3) and (5.4).
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Initialization and Convergence Issues for EM

A crucial point of the EM algorithm is the initial set of parameters Θp of the model. A

standard way to obtain Θp is to choose random αk values uniformly from [0, 1] and estimate the

individual source parameters with a M-Step [72].

In order to deal with the effects of random initialization and a possible convergence to a local

maximum, all estimations can be repeated a number of times and the solution with the highest

likelihood is selected [72].

5.2 OPTIMIZATION AND EXPERIMENTAL RESULTS

One key aspect of modeling the payroll data set as a bidimensional GMM is the number of

source components K in (3.1). Whereas the number of sources can be linked directly to the number

of clusters of a classification algorithm, in many cases extending the finite mixture model such as

K →∞ produces densities whose generalization is highly competitive with other commonly used

methods [73].

Recalling that our classification proposal is not based on the number of classes, or source

components, but instead is based exclusively on the pdf generated by the mixture model, where

payrolls that have a probability level above a certain threshold are classified as less likely to be

irregular. In this particular case, not limiting the number of classes a priori removes an extra

parameter of the stochastic model to be estimated.

Hence, whereas the number of clusters increases with the number of sources in a classical

mixture model, the underlying pdf of the mixture tends to stabilize as shown in Fig. 5.3. Due to

computational constrains, it is not possible to extend the number of classes to infinity, but in our

particular case the pdf showed to be stable with a number of sources K ≥ 30. It is important to

state that, in Fig. 5.3, our main interest lies at the areas inside the red and brown contours. These

are the areas with highest probability values and thus these are the areas we look for stability.

Another interesting feature noticed in Fig. 5.3 is the decay rate of the log-likelihood function.

As the number of sources increases, the resulting likelihood function tends to increase as well [72].

Taking that assumption to the limit, when the number of sources is equal to the number of

observed data points, the likelihood of each point being generated by its own data source is equal

to 1. Nevertheless, it can be observed in our system that, as the number of source components

increase, the rate of decay of the log-likelihood function decreases, leading to the conclusion that

adding more source components to the mixture does not add much more significant information

about the system.
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Figure 5.3: Contour plot of the estimated pdf of the dataset presented in Fig. 5.1 with (a) 8 sources

(log-likelihood: −174317); (b) 16 sources (log-likelihood: −173282); (c) 24 sources (log-likelihood:

−173019) and (d) 32 sources (log-likelihood: −172937). The axis in all subfigures are the same as

in Fig.5.1.

With the number of sources K = 30 defined in (3.1), the EM algorithm was applied to the set

of data of SIAPE regarding the federal professors staff, originally a data set with 101,400 payroll

entries.

In order to avoid a possible convergence to a local maximum, all estimations are made 15

times [72] with different random set of initial parameters Θp = (αpk,µ
p
k,Σ

p
k) ∈ Ω in (5.2), (5.3)

and (5.4). The initial set of parameters are obtained by randomly choosing K observations from

X = (x1, . . . ,xL) in (3.1) as initial component means. The mixing weights are uniform. The

covariance matrices for all components are diagonal, where the element j on the diagonal is the

variance of X (:, j).

The convergence criteria adopted for the EM algorithm is the termination tolerance on the
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Figure 5.4: (a) Contour plot and (b) surface plot of the resulting pdf of the proposed GMM.

log-likelihood function in (3.8), where the algorithm stops when the new guesses of parameters

Θ∗ produce only minimal increments of the log-likelihood function given in (3.8), e.g. increments

smaller than 10−5. Thus, the convergence criteria is met when only negligible improvements of

the solution can be achieved by performing new iterations.

The resulting pdf of the GMM, optimized with the EM algorithm according to the settings

previously described, is shown in Fig. 5.4.

It can be seen in Fig. 5.4, through the equi-probability contour lines, that the learned GMM

pdf possess high values of probability where the set of observed data samples are more dense. Since

the observed data set regards the proportion of gross income and total discounts and deductions

from payrolls, the hypothesis we are seeking to test is that employees which have a proportion of

gross income versus discounts that are far away from the normal behavior of the GMM pdf are

more likely to have irregularities in their payroll.

To confirm that hypothesis, a pre-processing stage was created on the current BI system model

described in Section 4.1. As previously discussed, this stage consists of a statistical filter, where

high probability payrolls according to the GMM pdf are presumed regular and are not processed

by the deterministic BI system based on audit trails. Please refer to Fig. 5.2.

Tables 5.1 and 5.2 show the statistical filter results by comparison with unfiltered data. The

audit trails chosen to populate the tables are the ones that contain the most significant number

of occurrences.

The information in the Table 5.1 is organized as follows: In the first line of the table, it can

be seen that if we filter, i.e remove, the 5% most probable payrolls off our observed data set,

this implicates in a loss of 1.26% of the total occurrences of the current audit process in trail
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Table 5.1: Fraud occurrences detected by audit trails, grouped by trail ID # and divided according

to their probability of occurrence.

Probability of

Occurrence

%

Reference

Audit Trail #13 Audit Trail #18 Audit Trail #31

Abs % Abs % Abs %

0 ∼ 5 % 5% 329 1.26% 226 0.77 % 28 0.72 %

5 ∼ 10 % 5% 847 3.25% 410 1.40 % 65 1.67 %

10 ∼ 20 % 10% 1806 6.93% 1152 3.93 % 177 4.54 %

20 ∼ 40 % 20% 4704 18.05% 5308 18.09 % 857 21.99 %

40 ∼ 60 % 20% 4074 15.63% 7147 24.36 % 1145 29.38 %

60 ∼ 80 % 20% 5785 22.20% 7245 24.69 % 983 25.22 %

80 ∼ 100 % 20% 8512 32.67% 7853 26.76 % 642 16.47 %

Total 100% 26057 100% 29341 100 % 3897 100 %

#13 (false negatives). Analogously, filtering 20% of the most probable payrolls off our observed

data set causes a loss in the trail #13 of 11.44% in false negatives, given that we lose 1.26% of

the 5% most probable payrolls plus 3.25% of payrolls with probabilities between 5% and 10% and

6.93% of payrolls with probabilities between 10% and 20%. The ABS columns contain the number

of occurrences per trail #; the probability of occurrence column contains the intervals which a

random payroll can be classified; the % reference column contains the range of the intervals in the

column probability of occurrence.

Table 5.2: Total fraud occurrences detected by audit trails, divided according to their probability

of occurrence.

Probability of

Occurrence
% Reference % Average % Cumulative

0 ∼ 5 % 5% 0.92 % 0.92 %

5 ∼ 10 % 5% 2.11 % 3.02 %

10 ∼ 20 % 10% 5.13 % 8.16 %

20 ∼ 40 % 20% 19.38 % 27.53 %

40 ∼ 60 % 20% 23.12 % 50.66 %

60 ∼ 80 % 20% 24.04 % 74.70 %

80 ∼ 100 % 20% 25.30 % 100.00 %

The information in the Table 5.2 is organized as follows: In the first line of the table, it can

be seen that if we filter, i.e remove, the 5% most probable payrolls off our observed data set, this

implicates in an cumulative loss of 0.92% of the total occurrences of the current audit process
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(false negatives). Analogously, filtering 20% of the most probable payrolls off our observed data

set causes an cumulative loss in the current audit trails of 8.16%. The probability of occurrence

column contains the intervals which a random payroll can be classified; the % reference column

contains the range of the intervals in the column probability of occurrence; the % average column

contains the % of the filtered observed payroll population at that level of probability.

Given that the GMM filter proposed in this work is unique for all the audit trails, so the

output of the GMM filter feeds all the audit trails in the current BI system, the gain in terms of

efficiency is considerable since, with the use of the filter, it is possible to reduce the processing

requirements of the system by 20% with an average audit loss of about 8.16%. In other words, it

can be stated that if we submit 80% of the less probable payrolls to the audit trails, we will be

able to detect 91.84% of the irregularities.

In addition, the underlying rules that dictate the behavior of payrolls are highly related to

federal Brazilian legislation. Taking that into consideration, the proposed GMM of a certain

month of the year should not present severe changes if the legislation regarding public workers

remains unchanged, reducing the need to recompute the GMM for every month.
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Chapter 6

PREDICTIVE ANALYTICS

In this Chapter, we address the data analysis module in the SPU BI system highlighted in

Fig. 4.4. The BI system maintained by SPU performs a predictive analytics on the monthly

tax collection, among other tasks, and its current state-of-the-art algorithm uses artificial neural

networks to find hidden patterns in the time series. In Section 6.1, we propose to model the

data regarding the monthly tax collection with the use of GPR in an unidimensional fashion.

Section 6.2, we perform a transformation in the original data set, taking advantage of the bidi-

mensional structure of the data and enabling the use of an adapted multidimensional GPR model.

In Section 6.3, we discuss the optimization of the hyperparameters of the GPR model, present

the results of the predictive module and propose a classification stage based on the statistical

description natively produced by GPR.

6.1 UNIDIMENSIONAL PREDICTOR MODEL

In practice, a Gaussian process can be fully defined by just its second moment, or covariance

function, if the mean function can be set or assumed to be zero. The implications of that approach

takes place in Subsection 6.1.1, where the data normalization and a unidimensional model for the

mean and covariance functions are discussed. The prediction results using this unidimensional

model is presented in Subsection 6.1.2.

6.1.1 Mean and Covariance Function Modeling

Considering the training SPU data set in Fig. 4.5, a pre-processing stage normalized that data

set by a mean subtraction - transforming it into a zero mean data set - and an amplitude reduction

by a factor of one standard deviation. Thus, the mean function in (3.24) can be set to zero and

the focus of the GPR modeling can be fully relied on the covariance function.
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Some features of the training data are noticeable by visual inspection, such as the long term

rising trend and the periodic component regarding seasonal variations between consecutive years.

Taking those characteristics into account, a combination of some well known covariance functions

is proposed in order to achieve a more complex one, which is able to handle those specific data

set characteristics.

The uptrend component of the data set was modeled by the following linear covariance function:

k1(x,x′) = xTx′. (6.1)

A closer examination of the data set reveals that, yearly, there is a peak in the tax collection.

Additionally, for the years of 2005 and 2006, the peak occurred in the fifth month (May), whereas

from 2007 to 2010 the peak occurred in the sixth month (June). The shift of this important

data signature makes the seasonal variations not to be exactly periodic. Therefore, the periodic

covariance function

k2,1(x,x′) = σ2
1 exp

(
−

2 sin2[ πθ2 (x− x′)]

θ2
1

)
is modified by the squared exponential covariance function

k2,2(x,x′) = exp

(
−(x− x′)

2θ2
3

)
,

resulting in the following covariance function to model the seasonal variations:

k2(x,x′) = k2,1 · k2,2 = σ2
1 exp

(
−

2 sin2[ πθ2 (x− x′)]

θ2
1

− (x− x′)

2θ2
3

)
. (6.2)

Finally, the sum of the characteristic components in (6.1) and (6.2) leads to the proposed

noiseless covariance function:

k(x,x′) = k1(x,x′) + k2(x,x′) = σ2
1 exp

(
−

2 sin2[ πθ2 (x− x′)]

θ2
1

− (x− x′)

2θ2
3

)
+ xTx′. (6.3)

In (6.3), the hyperparameter σ1 gives the magnitude, or scaling factor, of the covariance

function. The θ1 and θ3 give the relative length scale of periodic and squared exponential functions,

respectively, and can be interpreted as a ”forgetting factor”. The smaller the values of θ1,3, the

more uncorrelated two given observations x and x′ are. The θ2, on the other hand, controls

the cycle of the periodic component of the covariance function, forcing that underlying function

component to repeat itself after θ2 time indexes.

To complete the modeling profile, the measured noise is assumed to be additive white Gaussian

with variance σ2
n, which leads to the final noisy covariance function:

k(x,x′) = k1(x,x′) + k2(x,x′) + σ2
nI.

k(x,x′) = σ2
1 exp

(
−

2 sin2[ πθ2 (x− x′)]

θ2
1

− (x− x′)

2θ2
3

)
+ xTx′ + σ2

nI.
(6.4)
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As an example of the individual contributions of each component of the covariance function to

the final prediction, Fig. 6.1 shows the decomposed product function k2(x,x′) of (6.2) in terms of

the periodic and the squared exponential componentes. The input observed data is the normalized

SPU data set in Fig. 4.5.
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Figure 6.1: Normalized plot of the posterior inference of the Gaussian process, indexed by a

continuous time interval X = [0, 80], obtained using the covariance function (a) k2,1(x,x′) in

red (the periodic component) and k2,2(x,x′) in blue (the squared exponential component); (b)

k2(x,x′) in black (the product of both components).

The plots of Fig. 6.1 were obtained with the hyperparameters

σ2
1 = 1; θ1 = 0.3; θ2 = 12; θ3 = 60 and σ2

n = 0.1.

The magnitude σ2
1 was set to 1 not to distort the resulting function regarding the training set;

the θ1 was set to 0.3 month due to the poor month-to-month correlation that the data presents;

the θ2 was set to 12 months due the periodicity of the data; the θ3 was set to 60 months to ensure

all data points are taken into account in the final prediction results and, at least, the σ2
n was set

to 0.1 to add some white Gaussian noise on the observation set. At this point, it is important

to remember that the initial choice of hyperparameters have only taken into consideration the

characteristics of the original data set. Later, on Subsection 6.3.1, we present a optimization

method for tuning them.

6.1.2 Unidimensional Prediction Results

With the covariance function defined in (6.4) and a set of training points given by the first 60

months of the normalized SPU data of Fig. 4.5, it is possible to formulate a GPR with time as

input.
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The GPR’s characteristic of returning a probability distribution over a function enables the

evaluation of the uncertainty level of a given result. For each point of interest, the Gaussian

process can provide the expected value and the variance of the random variable, as shown in

Fig. 6.2.
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Figure 6.2: Prediction results from conditioning the posterior Gaussian jointly distribution at a

continuous time interval X = [0, 75]. The blue dots are the training data, the red dots are the

target data, the black tick line is the expected value at a time index and the gray band represents

the 95% confidence interval (two standard deviations above and below the expected value).

It is noticeable that, for the twelve month prediction using the proposed model, two predicted

months fell off the confidence band that delimitates the 95% certainty interval - June and Novem-

ber. These two months have a high contribution on the overall prediction error on this initial

approach.

6.2 BIDIMENSIONAL DATASET RESHAPE

In this section, we propose a pre-processing stage based on the cross-correlation profile of the

original data set. This profile is used to separate highly correlated months into one dimension

and poor correlated months into a different dimension, leading to a two dimensional structure.

Subsection 6.2.1 shows an analysis of the time cross-correlation results and implications on the

proposed model, and Subsection 6.2.2 shows the proposed reshaped data set.
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6.2.1 Time Cross-Correlation

Although the uptrend and the periodic seasonal characteristics are prominent in our data set,

some important features of the data are not visible at first sight. Considering that the covariance

function used to define the GPR is based on a measure of distance, where closer pairs of observation

points tend to have a strong correlation and distant pairs of points tend to have a weak correlation,

a measure of month-to-month correlation in SPU data can reveal the accuracy of that approach.

The cross-correlation between two any infinite length sequences is given by [74]:

Rxy(m) = E[xny
∗
n−m] (6.5)

In practice, sequences x and y are likely to have a finite length, therefore the true cross correla-

tion stated in (6.5) needs to be estimated since only partial information about the random process

is available. Thus, the estimated cross-correlation, with no normalization, can be calculated by

[74]:

R̂xy(m)



N−m−1∑
n=0

xn+m y∗n if m ≥ 0

R̂y∗x(−m) if m < 0

(6.6)

Fig. 6.3 shows a plot of the absolute cross-correlation of the entire SPU data as sequence xn,

and the last year’s target data as sequence yn. The smaller sequence was zero-padded to give

both sequences the same length. The resulting cross-correlation was also normalized to return 1.0

exactly where the lag m matches the last year’s target data month-by-month.

The cross-correlation between the target data and the rest of the sequence exhibited a couple

of interesting features about the data. First, it can be noted that the first two years are poorly

correlated with the last year. Second, there are some clear peaks on the cross-correlation function

where the lag m is a multiple of 12.

Some important conclusions arise from those features. First one is that there is not much

information about the last year on the first two years of data, and the amount of information

rises as it gets closer to the target. This complies with the distance based correlation function

previously proposed.

Also, the peaks pattern shows that the month-to-month correlation is poor, since we only

get high correlation values when comparing January of 2010 with January of 2009, 2008, 2007;

February of 2010 with February of 2009, 2008, 2007 and so forth. Although some secondary order
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Figure 6.3: Estimated absolute normalized cross-correlation between the target data and the hole

SPU data set. The sequence was trimmed due the zero-padding, and the red circles highlights

where the lag m is a multiple of 12 months.

correlation peaks can be noted, their correlation are smaller than the noisy first two years, leading

to the assumption that they do not provide much information.

6.2.2 Dataset Reshape

With the objective of incorporating the knowledge obtained from the time cross-correlation

showed in the previous subsection, some changes were made in the overall modeling proposed. An

exponential profile shows a good approximation for modeling the cross-correlation peaks, although

the vicinity of the peaks demonstrates a very low correlation with the target data.

In spite the fact that an exponential profile is the main characteristic of the squared exponential

covariance function, for it to be a good approximation the exponential profile is required to be

present at all times. In this case, the cross-correlation profile shows that the tax collected 12

months before the prediction is more correlated than the tax collected on the previous month of

the prediction.

In order to take advantage of the squared exponential covariance function in translating the

peaks correlation profile and, at the same time, to carry the characteristics of the original data,

this section proposes to convert the original one dimensional SPU data into a two dimensional

array, with the first dimension indexed by month M = 1, 2, . . . , 12 and the second dimension

indexed by year Y = 1, 2, . . . , 6. This leads to a reshape of the 1D data of Fig. 4.5 into a 2D data

array presented at Fig. 6.4.

With this new array as the input of our Gaussian process, we can now separate the mean and

the covariance function in a two dimensional structure, with different hyperparameters for it in
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Figure 6.4: Plot of the SPU data set converted in a 2D array.

each dimension. Considering the cross-correlation profile of our data shown in Subsection 6.2.1, we

will assume that only the amount of tax collected on January of 2005, 2006, 2007, 2008 and 2009

will influence the predictive amount of tax collected in January of 2010, and analogously to the

other months. In other words, the information used by the predictor will be obtained exclusively

from the highlights of Fig. 6.3. Therefore, from this point forward, the selected approach is to

apply the final covariance function showed in (6.4) exclusively in the monthly dimension.

6.3 OPTIMIZATION AND PREDICTION RESULTS

This section describes the technique used to optimize the hyperparameters of the proposed

covariance function and the resulting prediction using the optimum settings. In addition, we de-

scribe preliminary proposals for a classification stage aimed at future studies. In Subsection 6.3.1,

the knowledge of the cross-correlation profile is applied into the covariance function model and

the hyperparameters evaluation. In Subsection 6.3.2, the bidimensional resulting prediction is

shown and in Subsection 6.3.3 a series of performance measurements and error comparisons are

made with the previously obtained results, including comparisons with a similar approach using
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Neural Networks proposed in the literature and a usual financial estimating technique. In Subsec-

tion 6.3.4, a classification stage based on the statistical description of GPR is discussed, labeling

the data into regular or possibly fraudulent.

6.3.1 Hyperparameters Tuning

Regarding the initial choice of the hyperparameters and its tuning, that learning problem

can be viewed as an adaptation of the hyperparameters to a collection of observed data. Two

techniques are usual for inferencing their values in a regression environment: i) the cross-validation

and ii) the maximization of the marginal likelihood. As already discussed, GPR can infer the

hyperparameters from the training data naturally through a Bayesian framework, unlike other

kernel methods such as SVM and KRR that usually rely on cross-validation schemes, which are

computational intensive procedures.

Since our observed data possess a trend, splitting it would require some de-trending approach

in the pre-processing stage. Also, the number of training data points in this work is small, and

the use of cross-validation would lead to an even smaller training set [25]. Therefore, the marginal

likelihood maximization was chosen to optimize the hyperparameter’s set.

The marginal likelihood of the training data is the integral of the likelihood times the prior:

p(y|X) =

∫
p(y|f ,X)p(f |X)df . (6.7)

Recalling that X is dependent of the hyperparameter’s set Θ, [25] shows that the log marginal

likelihood can be stated as:

log p(y|X,Θ) = −1

2
yTK

−1
y y − 1

2
log |Ky| −

n

2
log 2π. (6.8)

In (6.8), Ky = Kf + σ2
nI is the covariance matrix of the noisy targets y and Kf is the

covariance matrix of the noise-free latent f . To infer the hyperparameters by maximizing the

marginal likelihood in (6.7), [25] shows a numerically stable algorithm that seeks the partial

derivatives of the logarithmic marginal likelihood in (6.8) with respect to the hyperparameters.

The methodology above described was used to determine the optimum set of hyperparameters

Θ̂. However, [25] states two problems regarding this approach. The first one is that the likelihood

distribution is multimodal, i.e. is dependent of the initial conditions of Θ. Also, the inversion of

the matrix Ky is computationally demanding.

In addition, our case presents another important restriction. Our final covariance function

in (6.4) possess an hyperparameter θ2, one of the periodic covariance function’s hyperparame-

ters, that dictates the overall period of that function. As seen in Subsection 6.2.1, the optimum
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periodicity of the covariance function should be within a finite set of multiples of 12, leading to

θ̂2 = {12, 24, 36, 48, 60}.

Imposing that restriction, the proposed algorithm for hyperparameter’s optimization follows

the sequence below:

• Define the initial values of the hyperparameter’s set Θ;

• Evaluate the marginal likelihood of the periodic component among the finite set of θ2, keeping

the other hyperparameters fixed at their initial values;

• Choose the periodic hyerparameter with the maximum marginal likelihood;

• Evaluate the marginal likelihood of the resting hyperparameters, keeping the periodic hy-

perparameter fixed;

• Choose the final set of hyperparameters with the maximum marginal likelihood.

The initial hyperparameter’s set is Θ = {1; 12; 60}. The initial magnitude σ2
1 = 0.7 and initial

noise variance σ2
n = 0.1 were also treated as hyperparameters and, therefore, optimized together

with the set Θ. As already discussed, the technique used to optimize the hyperparameters is the

algorithm described in [25], whose optimization results are shown in Table 6.1.

Table 6.1: Optimized set of hyperparameters Θ, σ2
1and σ2

n after 100 iterations, using the marginal

likelihood with the kernel in (6.4).

Predicted Month θ1 θ2 θ3 σ2
n σ2

1

01. January 0.9907 12 1019 0.2653 0.6935

02. February 0.9360 12 1361 0.2670 0.6552

03. March 0.9151 12 71.12 0.3952 0.6406

04. April 0.8792 12 46.87 0.3662 0.6154

05. May 1.0012 12 23.02 1.5523 0.7008

06. June 1.0000 24 6465 0.5056 0.7000

07. July 0.8919 12 90.50 0.4273 0.4273

08. August 0.7594 12 48.60 0.5075 0.5315

09. September 0.8613 12 88.59 0.3749 0.6029

10. October 0.8994 12 39.55 0.4587 0.6296

11. November 1.0000 24 1252 0.3934 0.7000

12. December 0.8705 12 77.79 0.4636 0.6094
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6.3.2 Bidimensional Prediction Results

Fig. 6.5 shows a plot of the predicted values using the optimized hyperparameters in Table 6.1,

where it can be seen that the uncertainty of May’s prediction is quite higher, presenting an

optimized σ2
n = 1.5523, mainly because the tax collection profile changed drastically in the

training data. This behavior contradicts the linear increasing trend that were used to model the

covariance function, since the linear regression of this specific month shows a clear downtrend.

However, in spite of the uncertainty level, the prediction of this month turned out to be precise.

Also, it can be noted that November was the only month whose target value fell of the un-

certainty predictive interval delimited in this section. In spite the fact that the predicted value is

larger than the last year’s value for this month, the rate of growth from 2009 to 2010 could not

be estimated by this model based only on the information of the training data.
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Figure 6.5: Plot of the Gaussian process prediction in blue, target SPU data in red. The error

bars corresponds to a confidence interval of two standard deviations with respect to the predictive

mean (around 95% of confidence).

6.3.3 Prediction Comparison and Error Metrics

The resulting prediction obtained in Subsection 6.3.2 will be evaluated by comparison with

other predictive techniques and analyzed by different error metrics between the target data and

the predictive data. The comparative evaluation will be made month-by-month with two other

predictive approaches, one using an artificial neural network and another using an economical

indicator. Also, an yearly comparison will be made with the projected tax collection, a revenue

estimation made by the Brazilian federal government and published by SPU.

The approach proposed by [45] addressed the same problem, where an artificial neural network

is used to predict the SPU tax collection for the year of 2010. On the other hand, a pure financial
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approach consists of projecting the annual tax collection of SPU by readjusting the previous year’s

collection by an economic indicator. In this case, the chosen indicator to measure the inflation

of the period is the National Index of Consumer’s Prices (IPCA), consolidated by the Brazilian

Institute of Geography and Statistics (IBGE). In 2009, the twelve month accumulated index was

4,31% [75].

The error metrics used in this subsection aim to evaluate the goodness of fit between the

predicted and the testing data set for all the predictive approaches, using the mean squared

error (MSE), the normalized mean squared error (NMSE), the root mean squared error (RMSE),

the normalized root mean squarred error (NRMSE), the mean absolute error (MAE), the mean

absolute relative error (MARE), the coefficient of correlation (r), the coefficient of determination

(d) and the coefficient of efficiency (e). The descriptive formulas of each metric are described in

Appendix A.

All the predictive approaches, including the one proposed in this work, have their prediction

error calculated with respect to the target data and the results are summarized in Table 6.2.

Table 6.2: Performance comparison by several error metrics

Error

Metric

Optimum

Value

Gaussian

Process

Art. Neural

Network
Inflation

MSE 0 22275× 1010 23777× 1010 35059× 1010

NMSE 0 0.20100 0.21455 0.31636

RMSE 0 14924× 103 15419× 103 18724× 103

NRMSE 0 0.44833 0.46320 0.56246

MAE 0 87190× 102 13207× 103 13660× 103

MARE 0 0.14830 0.31021 0.23222

r 1 0.90613 0.94585 0.96230

d 1 0.82107 0.89463 0.92603

e 1 0.78072 0.7659 0.67730

It is important to notice that the overall error in the Gaussian process prediction showed in

Table 6.2 is mainly concentrated in November. Removing this month from the error measurements

would lead to MSE = 37782× 109, NMSE = 0.05127, RMSE = 61467× 102, NRMSE = 0.22644,

MAE = 51924× 102, MARE = 0.12524, r = 0.97220, d = 0.94517 and e = 0.94359.

Fig. 6.6 shows a comparative plot among the target data and all the predictive approaches

side by side.

Finally, the Brazilian government revenue estimation, published by SPU on its annual re-

port [68], projects an amount of tax collection by SPU in 2010 of R$ 444, 085, 000.00, whereas the
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Figure 6.6: Monthly plot of target data and predictive results, in Reais (R$), indexed by the mth

month.

total amount collected that year was R$ 635, 094, 000.00 - a gross difference of 38.48% between

the estimated and the executed amount of tax collection. The GPR approach presented in this

work, in a yearly basis, projected a total tax collection amount of R$ 620, 703, 197.42, resulting in

a gross difference of 2.27% between the projected and executed amounts.

6.3.4 Classification Stage Proposals

The statistical description of the estimated variable, natively given by Gaussian processes in

the regression stage, can be used to build heuristics to classify a predicted dataset into regular or

possibly fraudulent. Here, we propose two different heuristics that are suitable to fraud detection

scenarios. However, given the limited information publicly available from SPU regarding the

dataset used in this work, the evaluation of the proposed schemes is incomplete and deserve to be

better investigated in future studies.

The resulting regression obtained through GPR, presented in Fig. 6.5, shows the variance of the

estimated variable as a measure of confidence by translating it into error bars. Since this confidence

can be as large or as small as we desire it to be, it is possible to optimize a classification stage

based on this information and, hence, build a trigger where high error bars means high probability

of fraud and vice versa. In our case, without any doubt this system would classify May (month

number 5) as a possibly fraudulent one. Despite the high uncertainty level of the prediction of

this month, the prediction showed to be accurate when compared to the target data.

Another classification approach using the variance information can be build simply by con-

fronting the predicted confidence interval with the real data, when it becomes available. In our

case, this system would classify November (month number 11) as a possibly fraudulent one. SPU’s

annual repport [68] states that an extraordinary revenue of R$ 73, 759, 533.99 happened in 2010,

but it is not possible to precise in which month it happened. In november, the difference between

the predicted value and the actual revenue was R$ 55, 015, 235.13.

Whereas the first proposed system returns the classified data in advance, together with the
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predicted values in the regression stage, the second system needs the real revenue data in order

to classify it. On the other hand, the second approach seeks for samples that are most dissimilar

from the norm, whereas the first approach needs to be optimized in order to learn the norm and

distinguish anomalous behaviors.

As previously mentioned, it is not possible to evaluate the performance of these classification

stage proposals due to the limited information regarding our dataset, but the preliminary results

using the statistical description of the estimated variable showed in this section encourages further

studies on this topic.
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Chapter 7

CONCLUSIONS

Business Intelligence is one of the most challenging and active fields of research nowadays. The

multidisciplinary aspect of BI, not rarely embracing knowledge from exact and social sciences,

makes its overall development not trivial. Business executives, end users, customers, CIO’s and

engineers are a few examples of what a BI solution in an organization must address. Often, a BI

system must be broken into smaller portions to allow an expert suitable approach for each one of

its parts.

Governmental BI systems aimed at fraud and irregularities detection are a continuously evolv-

ing topic due to the changing nature of fraudulent behavior. In addition, the exchange of ideas

regarding fraud detection is limited in the public domain, as publishing information about fraud

detection schemes ends up helping the circumvention of that particular scheme. It is not by chance

that the technology and development process of major BI systems focused on fraud detection in

financial institutions, banks, credit card issuers, governmental organizations, etc., are not made

public.

In this work, we proposed to incorporate stages into existing BI systems maintained by MP,

an agency of Brazilian federal government, to add predictive analytics capability, improve its

performance, error rates and overall system responsiveness. The predominant goal in the BI

systems addressed in this work is fraud detection. The BI system maintained by CGAUD runs

audit trails on payrolls of the Brazilian public employees, whereas the BI system maintained by

SPU seeks to predict the amount of tax to be collected by that branch of the government.

In the BI system of CGAUD, we proposed a statistical filter based on GMM applied in a BI

environment. In its early versions, the BI system used a purely deterministic approach based

on audit trails via concept maps to detect irregularities and inconsistencies in the payroll of the

Brazilian public employees. With the insertion of the proposed statistical filter as a pre-processing

stage of the BI system, it was possible to obtain a gain of efficiency in the overall system [2*].
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The statistical filter developed in this work models a generative underlying pdf that governs

the observed data set as a mixture of Gaussians. When applied to the real world data, the filter

successfully reduced in 20% the amount of data to be analyzed by the audit trails, with a penalty

of losing 8.16% in false negatives. In addition, the statistical filter is unique for all the audit trails,

which extends its efficiency gain since each audit trail can use the one time filtered data as input.

Finally, considering that Brazilian legislation set the rules for the payroll of federal public staff,

the generative underlying pdf behavior should not present expressive changes if the legislation

remains unmodified, which enables the GMM pdf of a certain month to be used in the subsequent

years used without having to be recomputed [2*].

Considering that, nowadays, the BI system of CGAUD is capable of auditing approximately

5 billion reais each month, where the total payroll of the Brazilian public employees is around

12.5 billion reais [1*], an increase in the processing capacity of the BI system through a statistical

pre-processing filter can lead to a more comprehensive auditory in the overall payroll, even with

the penalty of false negatives that are intrinsic to any probabilistic model [2*].

Future developments in this particular area include predictive serial analytics, moving from a

spacial analysis repeated every month to a predictive time series analysis, enabling the system to

feedback itself and learn to track irregularities over time.

Regarding the BI system of SPU, we presented a GPR application, aimed to model the intrinsic

characteristics of a specific financial series. A unidimensional model for the GPR’s covariance

function was proposed, and a pre-processing stage reshaped the original data set based on its cross-

correlation profile. That approach empowered the use of a unidimensional GPR in a bidimensional

environment by isolating high correlated months in one dimension and poor correlated months in

another dimension.

Although Neural Networks are known for their flexibilities and reliable results when used

for regression of time series, GPR are a transparent environment, with a parametric covariance

function and no hidden layers, which can be an advantage when evaluating different components

of a time series. The hyperparameters of GPR’s covariance function were optimized by maximum

likelihood, i.e. the proposed model let the data speaks for itself by learning the hyperparameters

only with information obtained from the data. It is relevant to notice that the optimization

algorithm can converge to a local minimum, making the initial choice of hyperparameters a critical

part of the optimization task [3*].

Another positive point of GPR is related to the complete statistical description of the predicted

data, which gives an powerful tool of confidence. Using this feature, a classification method can

be built to trigger trusted and possibly fraudulent tax collection data based on the confidence

interval of the prediction [3*].
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The regression results outperformed some classical predictive approaches such as ANN and

economical indicator by several error metrics. In a yearly basis, the difference between the es-

timated and the real tax collection for 2010 using the approach proposed in this work was of

2.27%, whereas that difference reached 38.48% with the Brazilian government own estimation

method [3*].

The approach explored in this work showed to be particularly useful for a small number of

training samples, since the covariance function chosen to model the series results in a strong

relationship for closer training points and a weak relationship for distant points. On the other

hand, adding more training years before 2005 should not make a substantial difference in the

prediction result using this method.
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[46] J. Nagi, K. Yap, S. Tiong, S. Ahmed, and A. Mohammad, “Detection of abnormalities and

electricity theft using genetic support vector machines,” in TENCON 2008-2008 IEEE Region

10 Conference. IEEE, 2008, pp. 1–6.

[47] G. McLachlan and D. Peel, Finite mixture models. John Wiley & Sons, 2004.

[48] J.-M. Marin, K. Mengersen, and C. P. Robert, “Bayesian modelling and inference on mixtures

of distributions,” Handbook of statistics, vol. 25, pp. 459–507, 2005.

65



[49] M. Aitkin and D. B. Rubin, “Estimation and hypothesis testing in finite mixture models,”

Journal of the Royal Statistical Society. Series B (Methodological), pp. 67–75, 1985.

[50] D. A. Reynolds, T. F. Quatieri, and R. B. Dunn, “Speaker verification using adapted Gaussian

mixture models,” Digital signal processing, vol. 10, no. 1, pp. 19–41, 2000.

[51] G. J. McLachlan and K. E. Basford, “Mixture models. inference and applications to cluster-

ing,” Statistics: Textbooks and Monographs, New York: Dekker, 1988, vol. 1, 1988.

[52] D. A. Reynolds and R. C. Rose, “Robust text-independent speaker identification using gaus-

sian mixture speaker models,” Speech and Audio Processing, IEEE Transactions on, vol. 3,

no. 1, pp. 72–83, 1995.

[53] J. A. Bilmes et al., “A gentle tutorial of the EM algorithm and its application to parameter

estimation for gaussian mixture and hidden markov models,” International Computer Science

Institute, vol. 4, no. 510, p. 126, 1998.

[54] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likelihood from incomplete data

via the EM algorithm,” Journal of the Royal Statistical Society. Series B (Methodological),

pp. 1–38, 1977.

[55] R. A. Redner and H. F. Walker, “Mixture densities, maximum likelihood and the EM algo-

rithm,” Society of Industrial and Applied Mathematics Review, vol. 26, no. 2, pp. 195–239,

1984.

[56] C. J. Wu, “On the convergence properties of the EM algorithm,” The Annals of statistics,

pp. 95–103, 1983.

[57] J. Bernardo, J. Berger, A. Dawid, A. Smith et al., “Regression and classification using Gaus-

sian process priors,” Bayesian statistics, vol. 6, p. 475, 1998.

[58] R. A. Davis, “Gaussian process,” in Encyclopedia of Environmetrics, Section on Stochastic

Modeling and Environmental Change, D. Brillinger, Ed. NY: Willey, 2001.

[59] E. Cinlar, Introduction to stochastic processes. Courier Dover Publications, 2013.

[60] R. Murray-Smith and A. Girard, “Gaussian process priors with ARMA noise models,” in

Irish Signals and Systems Conference. Maynooth, 2001, pp. 147–152.

[61] J. Snoek, H. Larochelle, and R. P. Adams, “Practical bayesian optimization of machine

learning algorithms.” in NIPS, 2012, pp. 2960–2968.

[62] M. Blum and M. Riedmiller, “Optimization of Gaussian process hyperparameters using

Rprop,” in European Symposium on Artificial Neural Networks, Computational Intelligence

and Machine Learning, 2013.

66
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Appendix A

ERROR METRIC FORMULAS

Being t ∈ Rn a target vector with the desired values and y ∈ Rn an output vector of a

regression model, the goodness of fit between t and y will be ginve in terms of:

1. Mean Squared Error (MSE):

1

n

n∑
i=1

(ti − yi)2

2. Normalized Mean Squared Error (NMSE):

1

n

n∑
i=1

(ti − yi)2

Var[t]

3. Root Mean Squared Error (RMSE): √√√√ 1

n

n∑
i=1

(ti − yi)2

4. Normalized Root Mean Squared Error (NRMSE):√√√√√√ 1

n

n∑
i=1

(ti − yi)2

Var[t]

5. Mean Absolute Error (MAE):

1

n

n∑
i=1

|ti − yi|

6. Mean Absolute Relative Error (MARE):

1

n

n∑
i=1

∣∣∣∣ ti − yiti

∣∣∣∣
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7. Coefficient of Correlation (r):

n∑
i=1

(ti − t̄)(yi − ȳ)√√√√ n∑
i=1

(ti − t̄)2

√√√√ n∑
i=1

(yi − ȳ)2

8. Coefficient of Determination (d):
n∑
i=1

(ti − t̄)(yi − ȳ)√√√√ n∑
i=1

(ti − t̄)2

√√√√ n∑
i=1

(yi − ȳ)2



2

9. Coefficient of Efficiency (e):

1−

n∑
i=1

(ti − yi)2

n∑
i=1

(ti − t̄)2
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