

UNIVERSIDADE DE BRASÍLIA INSTITUTO DE CIÊNCIAS BIOLÓGICAS PROGRAMA DE PÓS – GRADUAÇÃO EM BIOLOGIA ANIMAL

Quantificação de substâncias com atividade estrogênica e caracterização da toxicidade embriolarval em zebrafish (*Danio rerio*) nos efluentes das Estações de Tratamento de Esgotos Sul e Norte e no Lago Paranoá, Brasília-DF.

Sandra Rita Silva

UNIVERSIDADE DE BRASÍLIA INSTITUTO DE CIÊNCIAS BIOLÓGICAS PROGRAMA DE PÓS – GRADUAÇÃO EM BIOLOGIA ANIMAL

Quantificação de substâncias com atividade estrogênica e caracterização da toxicidade embriolarval em zebrafish (*Danio rerio*) nos efluentes das Estações de Tatamento de Esgotos Sul e Norte e no Lago Paranoá, Brasília-DF.

Dissertação de Mestrado apresentada ao Programa de Pós-Graduação em Biologia Animal do Instituto de Ciências Biológicas da Universidade de Brasília, como parte dos requisitos para a obtenção do título de Mestre em Biologia Animal.

Orientador: Prof. Dr. Cesar Koppe Grisolia

Co-orientador: Dr. Rhaul Oliveira

Brasília - DF

Agradecimentos

A Deus, fonte de vida, equilíbrio e sabedoria para enfrentar os desafios;

Aos meus pais, Raquel e José (in memoriam), por tudo o que sou;

Ao meu marido e minhas filhas, por compartilharem de perto todas as dificuldades, sempre me apoiando e incentivando;

Aos meus irmãos, cunhadas e sobrinhas, pela harmonia e carinho que me inspiram;

À minha comunidade do Caminho Neocatecumenal (PNSE) pelas orações que me fortalecem;

Ao meu orientador Prof. Dr.Cesar Koppe Grisolia, pela confiança depositada em mim na realização deste trabalho e pela sabedoria e equilíbrio com que sempre me orientou, me acalmando diante das dificuldades;

Ao meu co-orientador pesquisador Dr. Rhaul pela sua grande contribuição, boa vontade e espírito desafiador que me serviram de estímulo para prosseguir e acreditar que tudo valeria a pena;

À minha colaboradora de bancada e grande amiga Karen Py, por compartilhar seus conhecimentos que serviram de base não só para a realização desta pesquisa, mas também para a minha formação profissional;

Ao colaborador Prof. Dr. Fernando Sodré, por se colocar à disposição no que fosse necessário e compartilhar a sua grande experiência como químico ambiental, fundamental para a análise dos dados;

Ao colaborador Prof. Dr. Osmindo Pires Júnior, por ter apoiado o projeto dando todo o suporte necessário quanto ao uso do equipamento de HPLC, e ao desenvolvimento da metodologia utilizada na extração das amostras, que foram cruciais para o desenvolvimento da pesquisa;

Aos grandes profissionais e amigos do Laboratório de Genética Toxicológica, com quem compartilhei momentos intensos de dor e alegria: Vânia, Maria Luísa, Suzana, Paulim, toda a equipe do grupo Ecotox: Regis, Nati, Jéssica, Carolzinha, Nilma, Bryan, Diego, Pedro, e, de modo especial, Alane, minha fiel estagiária;

Ao querido amigo Prof. José de Souza Filho (*in memoriam*), parceiro de defesa, grande profissional, que com a sua alegria e simpatia contagiantes me animava diante das intermináveis horas de bancada, saudades eternas;

A todos os anjos que Deus colocou na minha vida, fora do ambiente acadêmico, para ajudar com uma palavra amiga e até mesmo em tarefas práticas do dia a dia: Fabiana, Fábio, Isabela, Cristiane, Fernanda e tantos outros;

À Caesb, que apoiou e colaborou com esta pesquisa, em especial aos gestores Carlos Eduardo Borges e Fernando Starling, que aprovaram o projeto, e aos funcionários que estiveram mais diretamente envolvidos com a obtenção de amostras: Ricardo Moreira, Ana Maria Mota, Auzileide, Rubervaldo e outros que, indiretamente, contribuíram com a realização desse trabalho;

Ao Programa de pós-graduação em Biologia Animal pela eficiência nos trâmites burocráticos:

À UNB pela grande oportunidade de crescimento profissional.

Resumo

O lançamento de esgoto doméstico em corpos hídricos resulta na deposição de vários poluentes, entre eles os chamados poluentes emergentes. Dentre esses destacam-se os interferentes endócrinos (IEs), agentes exógenos que mimetizam os hormônios naturais ativando ou bloqueando vias de sinalização que desencadeiam a função hormonal. Esses poluentes têm sido encontrados em amostras ambientais do mundo todo, incluindo o Brasil, em baixas concentrações, causando efeitos aos organismos expostos. Nesse contexto, os objetivos do presente trabalho foram: investigar a ocorrência de três poluentes emergentes com atividade estrogênica -17β-estradiol (E₂), 17α-etinilestradiol (EE₂) e bisfenol A (BPA) em amostras de água do Lago Paranoá e de efluentes das Estações de Tratamento de Esgoto (ETEs) Sul e Norte, Brasília-DF; verificar a toxicidade das amostras e do poluente mais frequentemente detectado (BPA), através de ensaios de exposição em embriões de *Danio rerio* e da avaliação de marcadores bioquímicos e, por fim, comparar os resultados obtidos com concentrações de efeito para animais aquáticos do primeiro e do segundo níveis tróficos descritos na literatura. Para as análises de quantificação, as amostras foram processadas por extração em fase sólida (SPE) e submetidas a um método analítico desenvolvido em HPLC/DAD/FL. A fase móvel utilizada na separação foi acetonitrila com água na proporção 40:60 (v/v), acidificadas com ácido trifluoracético (0,12%), em condição isocrática. Os ensaios de toxicidade seguiram o protocolo OCDE nº 236 (Guideline on Fish Embryo Toxicity Test-FET). As determinações enzimáticas foram feitas em espectrofotômetro usando microplacas de 96 poços. Os resultados obtidos revelaram que o BPA é o contaminante mais predominante, com frequência de detecção de 100% nas amostras de esgoto tratado e 23% nas amostras de água superficial. As concentrações obtidas variaram entre <394 ng L⁻¹ e 1231 ng L⁻¹ no efluente e entre <197 ng L⁻¹ e 644 ng L⁻¹ nas amostras do Lago. Os demais compostos, E₂ e EE₂, apresentaram baixa frequência de detecção (<18%), sendo que, em apenas uma amostra de efluente, o EE₂ pode ser quantificado, apresentando concentração de 591 ng L⁻¹. Os testes de toxicidade demonstraram que as amostras de água do Lago Paranoá e efluente da ETE Sul não apresentam toxicidade para embriões de Danio rerio, no que se refere aos parâmetros analisados; o BPA é pouco tóxico (CL₅₀ de 13,45 mg L⁻¹) além de ser rapidamente degradado em meio aquoso (4 - 5 dias). No entanto, efeitos na eclosão (CEO = 10 mg L⁻¹), atraso na pigmentação e na formação crânio-facial (CEO = 21,54 mg.L⁻¹) e inibição da GST (CEO = 11,68 µg L⁻¹) foram observados nos embriões expostos a BPA. Os níveis em que os três poluentes foram encontrados nas amostras estão entre as concentrações de efeito relatadas na literatura para animais aquáticos do primeiro e do segundo níveis tróficos, com exceção do BPA, onde as concentrações obtidas estiveram acima das CEO descritas para consumidores primários. Além disso, dados da literatura sugerem que o BPA tende a ser menos tóxico quando comparado ao E₂ e EE₂ de onde se conclui que, apesar de ser o composto mais frequentemente detectado nas amostras, o BPA é o que apresenta menor toxicidade para animais aquáticos. Os dados obtidos contribuem para ampliar o banco de dados relacionado à presença de contaminantes com atividade estrogênica no Lago Paranoá e nos efluentes ETEs, além de fornecer ferramentas para a avaliação da toxicidade das amostras. Considerando que em breve o Lago Paranoá será utilizado para abastecimento de água de parte da população do DF, esses resultados deverão auxiliar na tomada de decisões referentes aos processos de tratamento a serem implantados.

Palavras-chave: contaminantes emergentes, interferentes endócrinos, embriotoxicidade, esgoto doméstico, Lago Paranoá.

Abstract

Sewage release results in the disposal of various pollutants in water bodies, including the so-called emerging pollutants. Among these are the endocrine disrupters, exogenous agents that mimic the natural hormones binding to cell receptor sites activating or blocking cell signaling pathways that trigger hormone function. These pollutants have been found in environmental samples all over the world, including Brazil, at low concentrations causing effects to exposed organisms. In this context, the aims of this study were to investigate the occurrence of three emerging pollutants with estrogenic activity $(17\beta$ -estradiol- E_2 , 17α -ethinylestradiol- EE_2 and bisphenol A-BPA) in water samples from Paranoá Lake and effluent of Sewage Treatment Plants (STPs), North and South, in Brasília-DF; Evaluate the toxicity of both environmental samples as the pollutant most frequently detected (BPA) to zebrafish embryonic development. In addition, it was tested, in the same animal model, sub lethal doses of BPA by biochemical markers. Finally, the environmental concentrations detected were compared with effect concentrations, described in literature, for aquatic animals from the first and second trophic levels. In the quantification analysis, samples were processed by solid phase extraction (SPE) and subjected to an analytical method developed in HPLC/DAD/FL. In this case, the mobile phase was acetonitrile with water in the ratio 40:60 (v/v), acidified with trifluoroacetic acid (0,12%) in isocratic condition. All the toxicity assays was performed following the OECD Protocol 236 (Guideline on Fish Embryo Toxicity Test-FET). The results showed that BPA was the most predominant pollutant in analyzed samples, with 100% of detection in the treated wastewater and 23% in surface water. The concentrations found were between <394-1231 ng L⁻¹ in the effluent and <197-644 ng L⁻¹ in Lake samples. Other compounds, E₂ and EE₂, showed low frequency of detection (<18%) in both Lake and effluent samples and, for only one effluent sample, EE2 was quantified in concentration of 591 ng L⁻¹. Toxicity tests showed that water samples from Paranoá Lake and South STP effluent were no toxic to zebrafish embryos; BPA is slightly toxic to zebrafish embryos (LC50 13.45 mg L⁻¹) and was rapidly degraded in an aqueous medium (4 - 5 days). However, effects on hatching (CEO = 10 mg L⁻¹), delayed pigmentation, craniofacial formation (CEO = 21.54 mg L^{-1}) and inhibition of GST (CEO = 11.68 ug L^{-1} 1) were observed in embryos exposed to BPA. In addition, the levels at which the three pollutants were found in the analyzed samples are among the effects concentrations reported in the literature for aquatic animals of the first and second trophic levels, with the exception of BPA for primary consumers. Moreover, the literature suggests that BPA tends to be less toxic than E₂ and EE₂. It follows that, despite being the most often detected in samples, BPA is the one with less toxicity to aquatic animals. This data contribute to enlarge the database related to the presence of contaminants with estrogenic activity on Paranoá Lake and the effluent of the main treatment plants, which discharge into Lake, as well as, provide tools for assessing the toxicity of the water Lake and the Sewage Treatment Plants. Considering that, the Paranoá Lake will be used to supply water to part of the DF population, these results should also assist in the selection of the most appropriate water treatment processes.

Keywords: emerging contaminants endocrine disruptors, embryo toxicity, domestic sewage, Paranoá Lake.

Lista de figuras

Capítulo 1

Figura 1. Indice médio de tratamento de esgoto gerado no Brasil referente ao ano de 2011. Fonte: SNIS (2013)
Figura 2. Mapa das áreas de atendimento com sistemas de esgotamento sanitário do DF referente ao ano de 2013.
Fonte: CAESB (2014)07
Capítulo 2
Figura 1. Estrutura molecular do E_2 - $C_{18}H_{24}O_2$ (CAS: 50-28-2)
Capítulo 3
Figura 1. Metodologia de extração e concentração de amostras para análise de E ₂ , EE ₂ e BPA
Figura 2. Precipitação acumulada mensal durante o período de realização das coletas. Fonte: adaptado de INMET(2015). As setas indicam os meses em que foram realizadas as coletas
Norte. Fonte: Google Earth (2015)
Figura 6. Curvas de calibração dos analitos (E ₂ , EE ₂ e BPA) obtidas nos detectores de fluorescência e de arranjo de diodos, nas condições do método, através da injeção em triplicata de soluções padrão com 6 concentrações (mg L ⁻¹)
de coleta, obtido durante as campanhas amostrais90

Capítulo 4

Figura 1. Esquema dos testes de toxicidade com embriões de zebrafish. Adaptado de
(Lammer, Carr, et al. 2009)
Figura 2. Localização dos pontos de coleta no lago Paranoá para ensaios de
toxicidade
Figura 3. Visão geral dos testes de toxicidade com embriões de zebrafish durante as 96 h
de exposição a amostras de Efluente da ETE Sul e água do Lago Paranoá107
Figura 4. Taxas de mortalidade de embriões de zebrafish expostos a amostras de efluente
da ETE Sul e água do Lago Paranoá durante as 96h de duração do teste107
Figura 5. Visão geral do teste de toxicidade com embriões de zebrafish após 96 h de
esposição a diferentes concentrações de BPA113
Figura 6. Efeitos do BPA na taxa de eclosão dos embriões de zebrafish expostos a BPA.
Valores médios ± erro padrão113
Figura 7. Exemplos de anomalias no desenvolvimento embrionário de zebrafish durante
as 96 h de exposição à bisfenol A114

Lista de tabelas

Capítulo 1
Tabela 1: Grupo/classe de alguns compostos poluentes emergentes03
Capítulo 2
Tabela 1. Classificação dos interferentes endócrinos quanto à origem
Capítulo 3
Tabela 1. Concentrações de Bisfenol A, 17β-estradiol e 17α-etinilestradiol determinadas em amostras ambientais do Brasil e do mundo e metodologias de extração e detecção utilizadas
Tabela 1. Informações referentes ao volume de esgoto tratado pelas Estações de Tratamento de Esgoto Sul e Norte, áreas e população atendidas

Tabela 3. Resultados das análises físico-químicas e limnológicas das amostras do Lago Paranoá
Tabela 4. Concentrações de bisfenol A obtidas em HPLC/FL através do método descrito
no Capítulo 3 durante a realização de teste de degradação
Tabela 5. Concentração de efeito para embriões de zebrafish expostos a bisfenol A (mg L ⁻¹)
Tabela 6. Atividade enzimática de biomarcadores em embriões de zebrafish expostos por
96 h a diferentes conconcentrações BPA
Capítulo 5
Tabela 1.Concentrações ambientais de 17β-estradiol (E ₂), 17 α-etinilestradiol (EE ₂) e
bisfenol A (BPA) detectadas nas amostras analisadas e concentrações de efeito observado
(CEO) em organismos aquáticos
Apêndice
Apêndice Tabela Suplementar 1: Valores das análises físicas e químicas dos efluentes das Estações
Tabela Suplementar 1: Valores das análises físicas e químicas dos efluentes das Estações de Tratamento de Esgoto Sul e Norte nas campanhas de outubro de 2013 à Abril de 2014.
Tabela Suplementar 1: Valores das análises físicas e químicas dos efluentes das Estações de Tratamento de Esgoto Sul e Norte nas campanhas de outubro de 2013 à Abril de 2014.
Tabela Suplementar 1: Valores das análises físicas e químicas dos efluentes das Estações de Tratamento de Esgoto Sul e Norte nas campanhas de outubro de 2013 à Abril de 2014.
Tabela Suplementar 1: Valores das análises físicas e químicas dos efluentes das Estações de Tratamento de Esgoto Sul e Norte nas campanhas de outubro de 2013 à Abril de 2014
Tabela Suplementar 1: Valores das análises físicas e químicas dos efluentes das Estações de Tratamento de Esgoto Sul e Norte nas campanhas de outubro de 2013 à Abril de 2014
Tabela Suplementar 1: Valores das análises físicas e químicas dos efluentes das Estações de Tratamento de Esgoto Sul e Norte nas campanhas de outubro de 2013 à Abril de 2014
Tabela Suplementar 1: Valores das análises físicas e químicas dos efluentes das Estações de Tratamento de Esgoto Sul e Norte nas campanhas de outubro de 2013 à Abril de 2014

Listas de abreviaturas e siglas

Ache: acetilcolinesterase

ACN: acetonitrila

ANVISA: Agência Nacional de Vigilância Sanitária

BChe: butirilcolinesterase

BPA: bisfenol A

C 18: cadeias com 18 carbonos

CAESB: Companhia de Saneamento Ambiental do Distrito Federal

CAS: Código identificador de substâncias químicas (do inglês Chemical Abstract

Service)

CAT: catalase

CEO: concentração de efeito observado

ChEs: colinesterases

CL₅₀: concentração letal média

CE₅₀: concentração de efeito para 50% dos organismos

CONAMA: Conselho Nacional do Meio Ambiente

CV: coeficiente de variação

DAD: detector de arranjo de diodos

DBCP: dibromocloropropano

DBO: demanda bioquímica de oxigênio

DO-DF: Diário Oficial do Distrito Federal

E₂: 17 β-estradiol

EE₂: 17α-etinilestradiol

ELISA: ensaio imunoenzimático (do inglês Enzyme linked immuno sorbent assay)

ETE: Estação de Tratamento de Esgoto

FET: teste de toxidade com embriões de peixe (do inglês Fish Embryo Toxicity Test)

FL: detector de fluorescência

GC: cromatografia gasosa (do inglês gas chromatography)

GSH: glutationa reduzida

GST: glutationa S-transferase

HPLC: cromatografia líquida de alta eficiência (do inglês High-performace liquid

chromatography)

IEs: interferentes endócrinos

INMET: Instituto Nacional de Meteorologia

K_{oc}: coeficiente de adsorção

LC: cromatografia líquida (do inglês *liquid chromatography*)

LD: limite de detecção

LDH: lactato desidrogenase

LLE: extração líquida (Do inglês liquid-liquid extraction)

Log Kow: coeficiente de partição octanol-água

LQ: limite de quantificação

MS: espectrometria de massa (do inglês *mass spectrometry*)

NOEC: concentração de efeito não observado (do inglês no observed effect level)

OECD: Organização para Cooperação Econômica e Desenvolvimento (do inglês

Organization for Economic Co-operation and Development)

PA: para análise

PBDEs: retardantes de chama bromados

PBS: tampão fosfato salino

PCF: pentaclorofenol

PFOS: perfluoroctano sulfonados

PMS: sobrenadante pós-mitocondrial

RDC: Resolução da Diretoria Colegiada

ROS: espécies reativas de oxigênio

SNIS: Sistema Nacional de Informações sobre Saneamento

SPE: extração em fase solidada (do inglês *solid phase extraction*)

TFA: ácido trifluoracético

US-EPA: Agência de Proteção Ambiental Americana (do inglês US Environmental

Protection Agency)

UV: ultravioleta

VTG: vitelogenina

WET: teste completo de toxicidade de efluente (do inglês *whole effluent toxicity test*)

Sumário

Estrutura da dissertação

	Contextualização, justificativa e objetivos da dissertação	<i>I</i>
1.1. C	Contextualização	1
1.1.1.	A questão hídrica: Um panorama mundial	1
1.1.2.	A poluição hídrica por lançamento de esgoto doméstico	2
1.1.3.	Os poluentes emergentes	3
1.1.4.	A questão dos poluentes emergentes no Brasil	5
1.1.5.	Os interferentes endócrinos	8
1.2.	Objetivos	11
1.2.1.	Objetivos gerais	11
1.2.2.	Objetivos específicos	12
1.3. J	ustificativa	12
origem, d	2. Revisão de Literatura: 17 β-estradiol, 17 α-etinilestradiol e d destino em águas naturais e ecotoxicidade em animais antes do primeiro e do segundo níveis tróficos	s aquáticos
cpi escitte		
2.1. I		
	ntrodução	15
	ntrodução	15
2.2. 1	ntrodução	15 17 17
2.2. 1 2.2.1.	ntrodução7β-estradiol (E2)	151717
2.2. 1 2.2.1. 2.2.2. 2.2.3.	ntrodução	15171718
2.2. 1 2.2.1. 2.2.2. 2.2.3.	ntrodução	
2.2. 1 2.2.1. 2.2.2. 2.2.3. 2.3. 1	ntrodução	
2.2. 1 2.2.1. 2.2.2. 2.2.3. 2.3. 1 2.3.1.	ntrodução	
2.2. 1 2.2.1. 2.2.2. 2.2.3. 2.3. 1 2.3.1. 2.3.2. 2.3.3.	ntrodução	
2.2. 1 2.2.1. 2.2.2. 2.2.3. 2.3. 1 2.3.1. 2.3.2. 2.3.3.	ntrodução	
2.2. 1 2.2.1. 2.2.2. 2.2.3. 2.3. 1 2.3.1. 2.3.2. 2.3.3. 2.4. E	ntrodução	
2.2. 1 2.2.1. 2.2.2. 2.2.3. 2.3. 1 2.3.1. 2.3.2. 2.3.3. 2.4. E 2.4.1.	ntrodução	
2.2. 1 2.2.1. 2.2.2. 2.2.3. 2.3. 1 2.3.1. 2.3.2. 2.3.3. 2.4. E 2.4.1. 2.4.2. 2.4.3.	ntrodução	

Capítulo 3. Desenvolvimento de metodologia para identificação e quantificação e quantificação e quantificação e quantificação e desenvolvimento de Esquitario em amostras do Lago Paranoá e Efluentes das Estatamento de Esquitario Sul e Norte (Brasília-DF)	stações de
3.1. Introdução	
3.2. Materiais e métodos	
3.2.1. Limpeza de vidraria	59
3.2.2. Análise cromatográfica	60
3.2.3. Extração e concentração dos analitos	65
3.2.4. Amostragem: coletas e processamento	66
3.3. Resultados e discussão	70
3.3.1. Desenvolvimento do método analítico	70
3.3.2. Determinação de IEs em amostras de água do Lago Paranoá e em efl Estações de Tratamento de Esgotos Sul e Norte	
3.4. Conclusões	90
de esgoto tratado, águas superficiais do Lago Paranoá e do bisfenol A, o pola frequentemente detectado	
4.2. Materiais e métodos	98
4.2.1. Químicos	98
4.2.2. Cultivo dos organismos	99
4.2.3. Testes de toxicidade com embriões	99
4.2.4. Testes de toxicidade com amostras ambientais	
4.2.5. Testes de toxicidade com BPA	102
4.2.6. Determinação de biomarcadores enzimáticos	103
4.2.7. Análises estatísticas	
4.3. Resultados e discussão	
4.3.1. Testes de toxicidade com amostras ambientais	
4.3.2. Testes de toxicidade com o BPA	
4.3.3. Ensaios com biomarcadores enzimáticos	
4.4. Conclusões	116
Capítulo 5. Considerações finais, perspectivas e recomendações de trabalh	•
Referências	123
Apêndice	137

Estrutura da dissertação

Esta dissertação está dividida 04 capítulos incluindo uma breve contextualização (Capítulo 01), dois capítulos sobre os trabalhos experimentais realizados, e um último capítulo de considerações finais - além dos itens em Apêndice. Mais detalhadamente, o texto pode ser dividido da seguinte forma:

<u>Capítulo 01</u> – <u>Contextualização</u>, justificativa e objetivos da dissertação: nessa seção é abordada, em um panorama global e local, a problemática dos poluentes emergentes, incluindo os interferentes endócrinos. É também apresentada a introdução, os objetivos e a justificativa da dissertação.

Capítulo 02 – Revisão de Literatura: 17 β-estradiol, 17 α-etinilestradiol e Bisfenol A - origem, destino em águas naturais e ecotoxicidade em animais aquáticos: uma ampla revisão bibliográfica, considerando aspectos do metabolismo, biotransformação e ecotoxicidade dos três compostos com atividade estrogênica estudados.

<u>Capítulo 03</u> – <u>Desenvolvimento de metodologia para identificação e quantificação de interferentes endócrinos em amostras do Lago Paranoá e efluentes das Estações de Tratamento de Esgotos Sul e Norte (Brasília-DF)</u>: nesse capítulo é apresentado o desenvolvimento de um método analítico para detecção e quantificação dos contaminantes, objetos do estudo, bem como a aplicação desse método em amostras de água superficial do Lago Paranoá e em efluentes das ETEs Sul e Norte.

Capítulo 04 – Uso de embriões de *Danio rerio* (zebrafish) para avaliação da toxicidade de amostras de esgoto tratado, água superficial do Lago Paranoá e do bisfenol A, o interferente endócrino mais detectado nas amostras: Nesse capítulo são avaliadas a toxicidade das amostras ambientais e do composto com maior frequência de detecção, o

bisfenol A. Os dados dos testes com embriões de zebrafish incluem análise de teratologias, atividade de enzimas e mortalidade dos organismos.

<u>Capítulo 05</u> – <u>Considerações finais</u>, <u>perspectivas e recomendações para trabalhos futuros</u>:

Por fim, nessa seção, será feita uma comparação entre os resultados obtidos na pesquisa com os dados de efeito dos poluentes em organismos aquáticos representantes do primeiro e do segundo níveis tróficos descritos na literatura. Com base nisso, serão apresentadas as conclusões gerais da dissertação, bem como as possibilidades de trabalhos futuros.

Capítulo 1

Contextualização, justificativa e objetivos da dissertação.

Sandra Rita Silva

Universidade de Brasília, Departamento de Genética e Morfologia, Campus Universitário Darcy Ribeiro, 70910900, Brasília, Brasíl. e-mail: sanrisi@gmail.com

Dissertação de Mestrado

2015

1.1. Contextualização

1.1.1. A questão hídrica: Um panorama mundial

A água é um recurso natural imprescindível à manutenção da vida, de grande valor social, ambiental e econômico. Não obstante, estima-se que, atualmente, 748 milhões de pessoas no mundo não têm acesso a água potável (WHO 2014). Sendo assim, um dos maiores problemas do século será garantir o fornecimento de água em quantidade e qualidade suficientes para a população mundial.

Apesar da demanda por água ser crescente, predomina, especialmente em países em desenvolvimento, o mau uso, o desperdício e a degradação dos recursos hídricos. Os baixos índices de cobertura com sistemas de saneamento resultam no descarte direto de poluentes em mananciais de água, estes, ao serem carreados, deterioram a qualidade e afetam os usos múltiplos. Assim, o controle da poluição está diretamente relacionado com a proteção da saúde humana e com a garantia do meio ambiente ecologicamente equilibrado (CONAMA 2005).

Diante dessa crise mundial, o relatório das Nações Unidas sobre o desenvolvimento de água (2015) adverte que, se a gestão de recursos hídricos não for

melhorada, o mundo enfrentará um déficit de água de 40% até o ano de 2030. Logo, medidas de controle de poluição devem ser priorizadas pelos líderes governamentais, dentre elas, a implantação de metodologias adequadas de tratamento de esgoto e o desenvolvimento de medidas mais rigorosas para o controle de poluentes.

1.1.2. A poluição hídrica por lançamento de esgoto doméstico

De acordo com Sperling (2005), a poluição das águas, causada pelo descarte de esgoto doméstico, envolve três vertentes principais: (i) a contaminação por organismos patogênicos, (ii) a eutrofização (causada pelo excesso de nitrogênio e fósforo), (iii) a poluição por matéria orgânica. No entanto, nas últimas décadas, tem surgido uma nova preocupação: os poluentes químicos, também chamados de poluentes emergentes.

Os atuais sistemas de tratamento de esgoto são eficientes na remoção de nutrientes e matéria orgânica. No entanto, pesquisas demonstram que os poluentes emergentes são apenas parcialmente removidos (Liu et al. 2009; Deblonde et al. 2011). A maior parte permanece em baixas concentrações nos efluentes e são lançados no ambiente aquático (Liu et al. 2009). A diluição das águas residuais nos corpos hídricos resulta em significativa diminuição da concentração desses compostos, quer pela biodegradação, oxidação, fotodegradação, ligação com a matéria orgânica ou pela sedimentação, resultando em concentrações ainda mais baixas (Verstraeten et al. 2003). Tudo isso faz com que as ocorrências destas substâncias nos ambientes aquáticos variem de µg L⁻¹ a ng L⁻¹. No entanto, mesmo em concentrações traço, esses poluentes vêm acarretando efeitos na biota (Lee et al. 2012).

Existe, atualmente, cerca de 60 milhões de substâncias químicas registradas no CAS (*Chemical Abstract Service*), líder mundial em informações sobre substâncias químicas. Os estudos científicos e as práticas regulatórias não seguem o mesmo ritmo que

a produção de novos químicos, sendo assim, grande parte das substâncias não são monitoradas e não existe regulamentação específica de controle que garanta a saúde humana e do meio ambiente (Bolong et al. 2009).

1.1.3. Os poluentes emergentes

Os poluentes emergentes são definidos pela comunidade científica como substâncias não incluídas em programas oficiais de monitoramento, mas que podem ser candidatos à futura regulamentação - a depender de pesquisas sobre sua toxicidade -, potenciais efeitos na saúde, ocorrência em matrizes ambientais e percepção do público. (Glassmeyer, 2007). Esses poluentes abrangem ampla variedade de produtos químicos de uso farmacêutico, doméstico e higiene pessoal, tais como fragrâncias, antimicrobianos, tensoativos, surfactantes, plastificantes entre outros (Tabela 1). Algumas definições podem até incluir novas classes de compostos, tais como nanomateriais e alimentos geneticamente modificados. O uso do termo "emergente" tem levado a uma interpretação equivocada de que esses poluentes são recentes, e só agora têm sido liberados no meio ambiente. Na realidade, o que é emergente é a consciência da comunidade científica e da população sobre o fato de que esses químicos podem ser detectados na água, sedimento, solo e biota e causar efeitos adversos a saúde humana e animal (Glassmeyer, 2007).

Tabela 1.Grupo/classe de alguns compostos poluentes emergentes

Grupo	Classe de compostos	Compostos
Fármacos	Antibióticos humanos e veterinários	Trimetoprina, eritromicina, lincomicina, sulfametoxazol, cloranfericol, amoxilina.
	Analgésicos e anti- inflamatórios	Ibuprofeno, diclofenaco, fenoprofeno, acetaminofeno, naproxeno, ácido acetisalicílico, fluoxetina, cetoprofeno, indometacina, paracetamol.
	Drogas psiquiátricas	Diazepan, carbamazepina, primidona, salbutamol.

Tabela 1. Grupo/classe de alguns compostos poluentes emergentes

Grupo	Classe de compostos	Compostos
	Reguladores lipídicos	Ácido clofibrico, bezafribato, ácido fenofibrico, etofibrato, gemfibrozil.
	Beta- bloqueadores	Metoprolol, propranolol, timolol, sotalol, atenolol
	Contrastes raio-x	Iopromida, iopamidol, diatrizoato.
Produtos de cuidado pessoal	Fragâncias	Nitro, perfumes policíclico e macrocíclico, ftalatos
	Bronzeadores	Benzofenona, cânfora, metilbenzilideno
	Repelentes de insetos	N, N-dietiltoluamida
	Antissépticos	Triclosan, clorofeno
Interferentes endócrinos	Produtos químicos industriais	Alquifenóis, ftalatos, bisfenol-A, estreno, retardantes de chama bromados (PBDEs), surfactantes (perfluoroctano sulfonados – PFOS)
	Hormônios e esteróides	Estradiol, estrona, estriol, dietilestilbestrol, 17α - etinilestradiol
	Pesticidas	PCF (pentaclorofenol), rifuralin, atrazina, DBCP (dibromocloropropano), lindano.
Nanopartículas	Metálicas	Quantum dots, nanopartículas de ouro e prata, óxidos de ferro e titânio
	Orgânicas	Nanotubos de carbono, grafenos, lipossomas, policianoacrilatos polietileno (referência não confiável)
Outro	Pigmentos	Tinta de cabelo, pigmento têxtil
Outros poluentes emergentes	Alimentos geneticamente modificados	cry 1Aa, cry 1Ab, cry 1Ac e cry 2A

Fontes: Lima et al. 2007; Rodrigues et al. 2007; Grisolia et al. 2009.

Assim como outras classes de poluentes ambientais, os poluentes emergentes apresentam uma variedade de fontes de emissão para o ambiente aquático. Eles são originados a partir da indústria ou a partir da descarga de águas residuais (Deblonde et al. 2011). De acordo com as fontes em que se originam, eles podem ser classificados em pontuais e não pontuais. No primeiro caso, apresentam um ponto de entrada no meio ambiente bem caracterizado (descargas de efluentes industriais e esgotos domésticos, derramamentos acidentais, atividades de mineração, enchentes). Já os não pontuais não apresentam ponto de entrada no meio ambiente bem caracterizado, sendo resultado de deposições atmosféricas e escoamentos superficiais, um exemplo são os agrotóxicos provenientes das práticas agrícolas (Ghiselli & Jardim 2007).

1.1.4. A questão dos poluentes emergentes no Brasil

A contaminação de águas superficiais com poluentes emergentes, originados de descarte de esgoto doméstico, está diretamente relacionada às condições de saneamento básico. No Brasil a maior parte do esgoto gerado é lançada nos corpos hídricos sem tratamento. De acordo com dados do Sistema Nacional de Informações sobre Saneamento (SNIS 2014), o índice médio de tratamento do esgoto gerado no Brasil referente ao ano de 2013 é de apenas 39 %, dessa forma, 61 % do que, em tese, é produzido não recebe nenhum tipo de tratamento. Os piores índices estão nas regiões Norte e Nordeste e os melhores na região Centro-Oeste (Figura 1). No entanto, para cálculo do esgoto gerado toma-se como base o consumo de água consumida, isso significa que, os locais não atendidos com sistemas de saneamento e que também descartam água servida indevidamente, não são contabilizados. Considerando que, de acordo com os dados do SNIS, o índice urbano de atendimento com rede coletora de esgoto no Brasil é em média 56,3 %, conclui-se que, na verdade, o índice de tratamento de esgoto supracitado é um dado que subestima a situação real que é ainda pior.

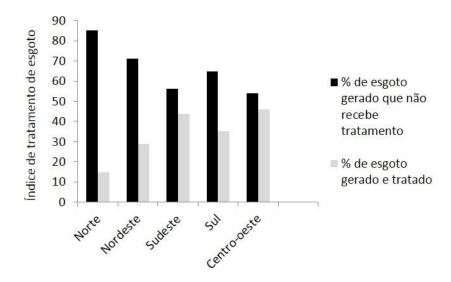


Figura 1. Índice médio de tratamento de esgoto gerado no Brasil referente ao ano de 2013. Fonte: Adaptado de SNIS (2014).

Diante dessa precariedade, a população brasileira ainda enfrenta os impactos da contaminação por esgotos domésticos relacionados com transmissão de doenças de veiculação hídrica. Consequência disso, é que, enquanto a questão dos poluentes emergentes é bastante debatida em outros países, no Brasil, não existe ainda uma preocupação política relativa ao tema, sendo essa demanda sufocada por preocupações mais básicas de saneamento. Dessa forma, o país não possui nenhum parâmetro para regulação e monitoramento desses poluentes, comumente encontrados em efluentes e águas superficiais.

O Distrito Federal tem uma situação privilegiada em relação ao restante do país pois, está entre os três estados com índice médio de atendimento urbano com rede coletora de esgotos superior a 70% (Figura 2). No que se refere ao índice que avalia o tratamento de esgotos, no ano de 2012, o Distrito Federal atingiu 100% do esgoto coletado tratado (CAESB 2014). De acordo com dados da CAESB, 42% do esgoto gerado no Distrito Federal é descartado na bacia do Lago Paranoá. Este lago está localizado na região central de Brasília e tem importantes funções paisagísticas, de lazer, geração de energia e, em breve, será utilizado como captação de água para reforço no abastecimento

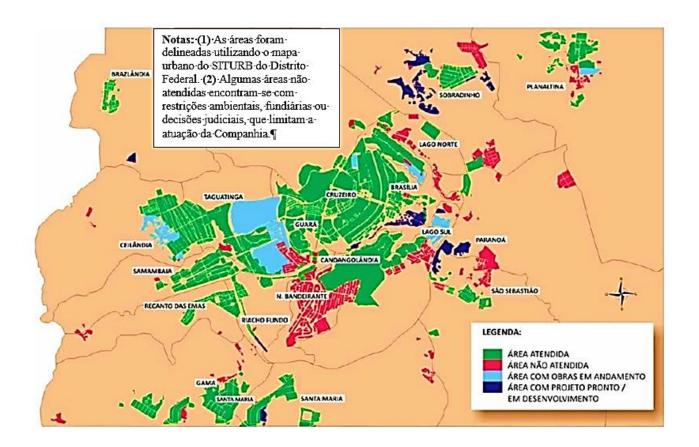


Figura 2. Mapa das áreas de atendimento com sistemas de esgotamento sanitário do DF referente ao ano de 2013. Fonte: CAESB (2014)

de cidades satélites, entre as quais Paranoá, Sobradinho e São Sebastião.

São ainda incipientes, no Brasil, estudos de monitoramento de micropoluentes e seu destino durante os tratamentos de esgotos e de água para consumo humano. No entanto, percebe-se um aumento do interesse da comunidade científica brasileira por esse tema nos últimos anos. O primeiro trabalho envolvendo a quantificação de poluentes emergentes foi realizado por pesquisadores estrangeiros no ano de 1999 em uma Estação de Tratamento de Esgotos do Rio de Janeiro (Ternes et al. 1999a). A partir do ano de 2006, vários trabalhos foram desenvolvidos no Brasil, entre os quais destacase o estado de São Paulo com o maior número de pesquisas (Ghiselli 2006; Raimundo 2007; Sodré et al. 2007; Torres 2009; Lopes et al. 2010; Sodré et al. 2010; Montagner & Jardim 2011). Existem também trabalhos realizados na cidade de Belo horizonte-MG (Moreira 2008; Queiroz 2011), no Rio de Janeiro-RJ (Kuster et al. 2009), em Fortaleza-CE (Souza 2011) e em Brasília-DF (Santana 2013; Braun et al. 2014; Costa 2014). São pesquisas que envolvem a quantificação de poluentes emergentes em águas naturais, em água tratada e em amostras de esgoto.

1.1.5. Os interferentes endócrinos

Dentre os poluentes emergentes destacam-se os interferentes endócrinos (IEs). Esses são definidos pela US-EPA, Agência de Proteção Ambiental Americana (do inglês US Environmental Protection Agency), como agentes exógenos que interferem na síntese, secreção, transporte, ligação, ação ou eliminação de hormônios naturais. São compostos que mimetizam os hormônios naturais e ligam-se aos sítios receptores ativando ou bloqueando vias de sinalização celular que desencadeiam a função hormonal (Raimundo 2007). Inicialmente, acreditava-se que atuavam principalmente através de receptores hormonais nucleares, incluindo os receptores de estrogênio, de andrógenos, de progesterona, da tireoide, de retinóides, entre outros. Hoje, a pesquisa científica mostra

que os mecanismos são muito mais amplos do que se reconhecia originalmente. Na verdade, os IEs agem via receptores nucleares, não nucleares, receptores de hormônios esteróides (endócrinos de membrana), receptores não esteróides (por exemplo, de neurotransmissores, tais como os receptores de serotonina, de dopamina e norepinefrina), vias enzimáticas envolvidas na biossíntese e/ou metabolismo de esteróides e numerosos outros mecanismos que convergem sobre os sistemas endócrino e reprodutivo (Diamanti-Kandarakis et al. 2009). Dessa forma, podem se ligar a uma proteína que está envolvida na produção do hormônio (por exemplo, a aromatase), ou a um transportador importante (por exemplo, sódio), ou ainda a uma proteína transportadora (por exemplo, cortisol) resultando em aumento ou diminuição dos níveis sanguíneos do hormônio. O impacto disso é o mesmo que ocorre em situações em que os níveis de hormônio são alterados por causa de doença ou defeito genético, em que a síntese do hormônio é inibida ou estimulada (WHO 2012).

Estrógenos, andrógenos e hormônios da tireoide são similares em todos os vertebrados (WHO 2012). Devido a essa semelhança existente nas diversas espécies, tanto na forma quanto em função hormonal, uma substância que interfira no mecanismo de ação hormonal pode atuar alterando o desenvolvimento, reprodução e funções de seres vivos de diversas espécies a ela expostos. As concentrações desses compostos, embora muito baixas (ng L⁻¹), são suficientes para induzir respostas estrogênicas e alterar a reprodução normal e desenvolvimento de seres vivos (Briciu, Kot-Wasik e Namiesnik 2009). A relação dose-resposta, no entanto, é ainda um tema controverso, pois seus efeitos em baixas doses ainda são discutíveis. Isso ocorre pois, alguns hormônios podem atuar em vários tipos e subtipos de receptores e com várias vias de sinalização intracelular resultando em uma relação dose-resposta do tipo não linear. Dessa forma, em baixas concentrações, um ligante pode se prender com alta afinidade a um receptor A e produzir

efeito estimulatório, enquanto que em altas concentrações o interferente endócrino pode também se ligar com baixa afinidade ao receptor B e produzir um efeito inibitório. Uma observação similar pode resultar de mudanças no processamento metabólico de químicos em altas doses. A essa relação dose-resposta na qual ocorre efeito inverso em doses altas e baixas resultando em curvas dose-resposta não lineares dá se o nome de hormesis (NORRIS e CARR, 2006). Além disso, fatores como frequência e duração da exposição, além da etapa do desenvolvimento em que ela ocorre, devem ser considerados (FONTENELE et al., 2010).

Ao interferir na regulação hormonal, essas substâncias podem causar várias alterações em seres vivos. Existem vários estudos que demonstram o efeito da exposição à IEs. Trata-se, em grande parte, de pesquisas *in vivo* que utilizam uma variedade de espécies animais aquáticas e terrestres como modelo (peixes, roedores, macacos, etc). No caso de estudos com seres humanos, os relatos estão, em grande parte dos casos, relacionados à exposição ocupacional ou acidental e estudos *in vitro*. Os principais efeitos descritos na literatura são:

a) Desordens na saúde reprodutiva de animais machos, (Andersson et al. 2007) e fêmeas (Wallach et al. 1998; Woodruff & Walker 2008), incluindo seres humanos. Ainda no que se refere à saúde reprodutiva, existem vários trabalhos que investigam a relação entre exposição à IEs e a reversão sexual em peixes (Örn et al. 2003; Hinck et al. 2009), puberdade precoce em roedores (Howdeshell et al. 1999; Rasier et al. 2007), endometriose em macacos (Yang et al. 2000), indução de vitelogenina em peixes (Barber et al. 2011; Liu et al. 2012), ovário policístico em macacos e ratos (Dumesic et al. 2007; Abbott et al. 2005; Diamanti-Kandarakis et al. 2007), entre outros efeitos;

- b) Aumento da incidência de alguns tipos de câncer em roedores, predominantemente mama e próstata (Murray et al. 2007; Vandenberg et al. 2008; Noble 1977; Jenkins et al. 2007; Liang & Shang 2013);
- c) Desordens neurológicas em roedores e macacos (Walker & Gore 2007; Dickerson & Gore 2007);
- d) Desordens metabólicas em seres humanos (Wada et al. 2007; Janesick & Blumberg 2011; Tang-Péronard et al. 2011);
 - e) Desordens do sistema imune em animais (Nalbandian & Kovats 2005);
 - f) Declínio populacional de invertebrados aquáticos (Gillis 2012).

Essa breve contextualização mostra que a desregulação endócrina é um fenômeno atual que está ocorrendo em todo mundo. Os efeitos nocivos para organismos vivos ocorrem por meio de uma variedade de mecanismos, conforme já descrito. No entanto, ressalta-se que esses mecanismos de ação entre os grupos animais são bastante complexos, sendo portanto objeto de investigação. No que se refere a organismos aquáticos o modo exato de ação dos IEs, principalmente entre os invertebrados, ainda não está totalmente elucidado. Além disso, atualmente, há uma compreensão limitada de como a desregulação endócrina afeta o desempenho das populações em ecossistemas naturais.

1.2. Objetivos

1.2.1. Objetivos gerais

Investigar a ocorrência de três poluentes emergentes com atividade estrogênica - 17β-estradiol, 17α-etinilestradiol e bisfenol A - nas águas do Lago Paranoá e nos efluentes das Estações de Tratamento de Esgoto (ETEs) Sul e Norte e avaliar os riscos ao ecossistema aquático através de ensaios de embriotoxicidade em peixes da espécie *Danio rerio* (zebrafish).

1.2.2. Objetivos específicos

- A) Desenvolver método de cromatografia líquida de alta eficiência para identificação e quantificação simultânea dos IEs 17β-estradiol, 17α-etinilestradiol e do bisfenol A em amostras ambientais;
- B) Fazer uma revisão de literatura sobre a origem e destino ambiental das moléculas de 17β-estradiol, 17α-etinilestradiol e do bisfenol A, bem como sobre a ecotoxidade para animais aquáticos representantes do primeiro e do segundo níveis tróficos;
- C) Aplicar a metodologia desenvolvida na identificação e quantificação das moléculas supracitadas em amostras de esgoto tratado (ETEs Sul e Norte) e água superficial (Lago Paranoá);
- Avaliar a embriotoxicidade e investigar possíveis alterações de biomarcadores enzimáticos em zebrafish com o interferente endócrino mais detectado nas análises químicas, testando concentrações próximas as obtidas nas amostras ambientais;
- E) Verificar o potencial tóxico das águas do Lago Paranoá e do efluente da ETE Sul sobre o desenvolvimento embrionário de zebrafish, por meio de ensaios de exposição;
- F) Comparar as concentrações de 17β-estradiol, 17α-etinilestradiol e de bisfenol A detectadas nas amostras ambientais com as concentrações de efeito (CEO) descritas na literatura para animais aquáticos representantes do primeiro e do segundo níveis tróficos.

1.3. Justificativa

A atenção da comunidade científica tem se voltado cada vez mais para a hipótese de que alguns poluentes emergentes são capazes de causar doenças em humanos e outros

organismos não-alvo ao interferir na atividade hormonal destes. Os efluentes de ETEs têm sido identificados como fonte de uma diversificada mistura de IEs no ambiente aquático. Águas residuais domésticas e indústriais incluem hormônios naturais e sintéticos (estrógenos, andrógenos), ingredientes ativos de produtos farmacêuticos, metais, pesticidas, aditivos de produtos de higiene pessoal e industrial, entre outros produtos químicos (WHO,2012).

A Companhia de Saneamento Ambiental do Distrito Federal (CAESB) pretende iniciar, no segundo semestre de 2015, as obras do sistema de captação de água do Lago Paranoá, que visam reforçar o abastecimento em várias regiões do Distrito Federal. A construção tem custo estimado de R\$ 480 milhões e ficará situada próxima à barragem do Paranoá, junto ao Parque Urbano Dom Bosco. O Sistema Produtor já tem licença ambiental concedida (DO-DF 05/12/2013) e vai abranger a captação de água e a construção de diversas estações elevatórias, reservatórios e tubulações de distribuição. Na primeira etapa, a adutora terá capacidade para produzir até 2,1 m³ de água tratada por segundo, e, na segunda etapa, 2,8 m³ por segundo. O volume produzido deverá abastecer cerca de 600 mil habitantes das seguintes cidades satélites: Paranoá, São Sebastião, Sobradinho, Jardim Botânico, St. Habitacional Tororó, Planaltina, Brasília e Lago Norte. Esse número representa 20% da atual população do DF, que é de aproximadamente 2.852.000 habitantes. (Disponível de em: http://g1.globo.com/distritofederal/noticia/2015/03/obras-para-captar-agua-do-paranoa-comecam-no-2-semestrediz-caesb.html. Acesso em 09/04/2015 http: //www.correiobraziliense.com.br/app/noticia/cidades/2013/04/19/interna_cidadesdf,361 300/caesb-promete-usar-lago-paranoa-para-ampliar-oferta-de-abastecimento-nodf.shtml. Acesso em 29/07/2015). Acontece que, o Lago Paranoá recebe esgoto tratado em um volume que corresponde a 42% do volume de esgoto gerado em todo o DF, sendo que a maior parte desse efluente é gerado nas ETEs Sul e Norte. Considerando que os métodos de tratamento de água convencionais não eliminam certas substâncias químicas, como aquelas com atividade estrogênica, e que a exposição a poluentes ambientais com características estrogênicas provoca diferentes distúrbios nos seres vivos, um estudo das concentrações desses contaminantes encontrados no efluente das estações de tratamento de esgotos e no curso de água que recebe a descarga, bem como uma avaliação toxicológica dessa água, torna-se indispensável. Ademais, existe também uma preocupação acerca da possibilidade dos níveis de IEs interferirem no equilíbrio ecológico do Lago Paranoá, afetando seus serviços ecossistêmicos, os quais abrangem não só a captação de água para consumo, mas também balneabilidade, regulação climática local, e a manutenção da diversidade da vida aquática.

Capítulo 2

Revisão de Literatura: 17 β-estradiol, 17 αetinilestradiol e Bisfenol A - origem, destino em águas naturais e ecotoxicidade em animais aquáticos representantes do primeiro e do segundo níveis tróficos

Dissertação de Mestrado

2015

2.1. Introdução

17β-estradiol (E₂), 17 α-etinilestradiol (EE₂) e bisfenol A (BPA) são moléculas que atuam como interferentes endócrinos e têm atraído grande quantidade de informação científica e atenção do público durante as últimas décadas. Em geral, substâncias com atividade estrogênica podem ser organizados em quatro grupos de acordo com a sua origem: (i) as que ocorrem naturalmente no organismo; (ii) as que são sintetizadas para serem ingeridas como medicamento; (iii) os fitoestrogênios presentes em plantas alimentícias e, por fim, (iv) os "xenoestrógenos" ou externos, sintetizados pelo homem e presentes em produtos de uso doméstico (Raimundo 2007). Essa classificação encontrase sistematizada na Tabela 1.

A avaliação dos efeitos potenciais de estrógenos e xenoestrógenos no desenvolvimento e reprodução animal é bastante complexa, pois depende de vários fatores tais como: a) a fase da vida em que ocorre a exposição, onde pequenas alterações nas fases iniciais de desenvolvimento podem resultar em disfunções reprodutivas irreversíveis em organismos adultos, b) a ação pleiotrópica, através da qual um mesmo hormônio pode desencadear diferentes mecanismos em diferentes organismos e c) a especificidade da ação dos estrógenos entre as espécies (Segner et al. 2003).

Tabela 1. Classificação dos interferentes endócrinos quanto à origem

Estrógenos	Exemplos	Definição
Naturais	17β-estradiol, estrona e estriol	Estrógenos endógenos responsáveis pelos caracteres secundários femininos.
Sintéticos	17α-etinilestradiol	Estrógeno sintético utilizado na fabricação de anticoncepcionais
Xenoestrógenos	Ftalatos, alquifenóis, pesticidas, bisfenol A	Estrógenos externos, sintetizados industrialmente.
Fitoestrógenos	Genisteína, norringenina, dadizeína	Presentes em plantas alimentícias.

Fonte: Raimundo, 2007

Quando se trata de invertebrados, essa tarefa é ainda mais difícil, pois o conhecimento acerca dos papéis fisiológicos dos estrógenos nesses grupos animais é ainda insuficiente.

Os tópicos seguintes farão uma breve revisão sobre os principais temas que envolvem origem e destino das moléculas de E2, EE2 e BPA em ambientes aquáticos, bem como os efeitos desses em organismos não alvo representantes de dois níveis de trofia: consumidores primários e secundários. Tendo em vista que uma das formas de descarte desses contaminantes está associada à atividade antrópica, na forma de despejos de esgoto doméstico, será dada ênfase ao metabolismo e excreção dessas moléculas em seres humanos. Uma vez descartados, os efeitos estão primeiramente associados aos organismos aquáticos, por estarem expostos diretamente a esses contaminantes. Sendo assim, estes serão o foco do tópico que envolve a ecotoxicidade.

2.2. 17β -estradiol (E₂)

Figura 1. Estrutura molecular do E₂ - C₁₈H₂₄O₂ (CAS: 50-28-2)

O E₂ é um hormônio endógeno que possui, em sua estrutura química, um radical fenólico ligado a 2 ciclohexanos e um ciclopentano condensado (Figura 1). É produzido pelos animais, sendo responsável por inúmeras ações fisiológicas relacionadas ao desenvolvimento. Em humanos, controlam o desenvolvimento das características sexuais secundárias femininas, auxiliam regulando o processo reprodutivo (o que inclui efeitos sobre o desenvolvimento, ações neuroendócrinas envolvidas no controle da ovulação, a preparação cíclica do trato reprodutivo para a fertilização e implantação), e em mecanismos bioquímicos que envolvem o metabolismo de minerais, hidratos de carbono, proteínas, e de lipídeos (Turan 1996). Apesar de serem produzidos em níveis muito inferiores em homens, os estrógenos também têm importantes ações, tais como: efeitos na estrutura óssea, na espermatogênese e no comportamento (Goodman & Gilman's 2006).

2.2.1. Metabolismo e excreção

Os estrógenos naturais são produzidos nos ovários, na placenta durante a gravidez e em menor quantidade nas glândulas adrenais e nos testículos. O E₂, principal produto da secreção, é formado a partir da testosterona via 19-OH-testosterona. É transportado pelo sangue ligado a globulinas ou albuminas do plasma e metabolizado no fígado, gerando a estrona, por oxidação. A estrona pode ser biotransformada em estriol, o maior produto de excreção (Turan 1996).

A produção de estrógenos por homens e mulheres varia em função de fatores como gênero, idade e ciclo reprodutivo. A secreção diária em mulheres depende da fase do ciclo menstrual e da idade, estando em torno de 3,0 μg por dia em mulheres pré menopausa e 2,3 μg por dia em mulheres pós menopausa. Essa quantidade pode subir para 259 μg/dia no final da gravidez. Em homens, a secreção de E₂ está em torno de 1,5 μg/dia (Turan,1996).

Antes de serem excretados, os estrógenos são metabolizados a uma forma biologicamente inativa e solúvel em água, conjugados com sulfato, ester ou glicuronídeos. São, portanto, excretados principalmente na forma inativa em conjugação glicurônica e com sulfatos (Ying et al. 2002; Turan 1996). Consequentemente, o E₂ é encontrado no meio ambiente predominantemente como 17β-estradiol-3-glicuronídeo (Ternes et al. 1999b).

2.2.2. Biotransformação

Uma vez excretado, o E₂ é descartado em águas residuais. O estrógeno conjugado não possui atividade biológica direta. A esterificação com glicuronídeos ou ácidos alteram drasticamente as propriedades físico-químicas, pois tornam a molécula mais hidrofílica e menos ativa biologicamente - podendo permanecer por mais tempo em ambientes aquáticos (Birkett & Lester 2003). No entanto, o E₂ é encontrado em amostras ambientais na forma molecular ativa, sem conjugação. Alguns autores (Baronti et al. 2000; Coleman et al. 2004; D'Ascenzo et al. 2003) associam isso ao fato de que bactérias presentes no esgoto e no lodo biológico, sobretudo *Escherichia coli*, desfazerem a reação de conjugação, regenerando-o a forma original. Isso ocorre porque a *Escherichia coli* tem atividade glicoronidase e sulfatase, obtendo energia da quebra da ligação glicurônica e de sulfato e retornando a molécula para a sua forma ativa (Ternes et al. 1999b). Como a forma ativa da molécula de E₂ é hidrofóbica, presume-se que durante o tratamento

biológico parte do E₂ fica retido no lodo podendo ocorrer acúmulo nesse (Johnson & Sumpter 2001; Andersen et al. 2004). Na forma ativa a meia-vida em ambiente aquoso está situada entre 2 e 3 dias (Filho & Araújo 2006).

2.2.3. Ecotoxicidade

Os estrógenos naturais, incluindo o E₂, despertam grande preocupação, tanto pela potência como pela contínua introdução no ambiente (Filho & Araújo 2006). As concentrações ambientais, embora muito baixas (ng L⁻¹), são suficientes para induzir respostas estrogênicas e alterar a reprodução normal e o desenvolvimento de seres vivos. A Tabela 2 sistematiza dados da literatura referentes aos principais efeitos descritos para organismos aquáticos. As menores concentrações em que esses efeitos são observados (CEO) foram descritas pela média dos dados obtidos em uma ampla revisão de literatura (Tabela suplementar S3) e sistematizadas na tabela 2.

De acordo com os dados demonstrados na Tabela 2, observa-se que, para consumidores primários, a média das menores concentrações de efeito do E₂ variaram entre 37,3 e 1585 μg L⁻¹ e para consumidores secundários entre 0,20 e 97,02 μg L⁻¹. A espécie mais sensível entre os representantes do primeiro nível de trofia foi o *Mytilus edulis*, um mexilhão que apresentou efeito genético relacionado à expressão do gene ciclooxigenase na concentração de 0,03 μg L⁻¹ em diferentes estágios de desenvolvimento (Cubero-Leon et al. 2010). A espécie menos sensível foi a bolacha-do-mar (*Dendraster excentricus*), que apresentou diminuição de células espermáticas quando expostas a 10000 μg L⁻¹ e efeitos morfológicos em embriões fertilizados após a exposição (Rempel et al. 2009). Entre os consumidores secundários, a espécie mais sensível foi a truta-arco-íris (*Oncorhynchus mykiss*), um peixe que quando exposto à concentração de 0,00042 μg L⁻¹, na idade adulta, apresentou efeitos bioquímicos e genéticos relativos à qualidade e

maturação dos gametas (Lahnsteiner et al. 2006). As espécies menos sensíveis foram as rãs *Rana pipiens e Rana sylvatica*, que apresentaram efeitos no desenvolvimento quando submetidas à $1362~\mu g~L^{-1}$ em período de metamorfose (Hogan et al. 2006).

Tabela 2. Média dos valores de CEO para 17β -estradiol em animais representantes do primeiro e do segundo níveis tróficos da cadeia alimentar aquática descritos na literatura.

	Consu	midores pri	mários		Cons	umidores secundá	rios	
Efeito	CEO ^a (µg L ⁻¹)	CEO ^a ((µg L ⁻¹)		CEO ^a (µg L ⁻¹)	CEO ^a (µg	$g L^{-1}$)	
	Média	Mínima	Máxima	N^b	Média	Mínima	Máxima	N^b
Celular	136,2			1	2,66	0,200	10,00	17
População	50	_	_	1	97,02	0,020	400,00	14
Genético	37,3	0,03	136,2	11	0,79	0,005	27,24	213
Reprodução	1471,4	0,048	10000	7	0,74	0,00042	10,00	31
Desenvolvimento	1585,9	0,5	10000	7	93,09	0,010	1362,00	39
Bioquímico	10	_	_	1	3,06	0,0047	50,00	119
Enzimático	_	_	_	_	39,04	0,2	100,00	27
Crescimento	_	_	_	_	15,77	0,008	100,00	21
Morfológico	_	_	_	_	4,74	0,004	100,00	49
Fisiológico	_	_	_	_	0,20	0,010	0,53	6
Comportamento	100,0	100	100	2	_	_	_	
Acumulação	46,0	10	100	5	14,57	0,27	100,00	35
Hormonal	_	_	_	_	3,06	0,0005	27,24	13
Imunológico	_	_	_	_	1,20	0,200	2,00	9
Total	_	_	_	35	_	- -	_	593

^a Concentração de efeito observado; ^bN:número de estudos; Referências: Tabela suplementar 3

2.3. 17α -etinilestradiol (EE₂)

Figura 2. Estrutura molecular do EE₂ - C₂₀H₂₄O₂ (CAS: 57-63-6)

O EE₂ é um derivado sintético dos estrógenos endógenos. É sintetizado a partir da introdução de um grupo etinil no carbono 17 da molécula de estradiol, o que lhe confere maior estabilidade (Figura 2) (Turan 1996). Além disso, o mestranol, ingrediente de anticoncepcionais, após administrado, é convertido a EE₂ por dimetilação (Ternes et al, 1999b). É bastante empregado como contraceptivo, sendo também utilizado no controle dos sintomas que envolvem a menopausa, distúrbios fisiológicos e no tratamento do câncer de próstata e de mama (Ghiselli & Jardim 2007).

2.3.1. Metabolismo e excreção

O EE₂, devido à estabilidade conferida pelo grupo etinil, é excretado cerca de 80% na forma conjugada (Turan 1996). A conjugação é a mesma descrita para o E₂. A presença do grupo etinil também proporciona maior potência por via oral, já que inibe o metabolismo de primeira passagem hepática, tornando-o mais biodisponível que os estrogênios naturais (Goodman & Gilman's 2006).

2.3.2. Biotransformação

Assim como o E₂, o EE₂ é excretado na forma de seus metabólitos conjugados e assim descartado em águas residuais. A biotransformação da molécula para a sua forma ativa ocorre devido a ação da *Escherichia coli* de forma similar ao que ocorre

com o E₂ e a meia-vida em ambiente aquoso está situada entre 4 e 6 dias (Filho & Araújo 2006).

2.3.3. Ecotoxicidade

O EE₂, juntamente com os hormônios endógenos são os que despertam maior preocupação, tanto pela potência como pela quantidade contínua introduzida no ambiente (Filho & Araújo 2006). É um dos IEs mais importantes encontrado no ambiente aquático, devido ao fato de ser altamente estrogênico e resistente à biodegradação (Ferreira 2008).

Em humanos, a afinidade de ligação do EE₂ aos receptores de estrógeno é até duas vezes mais alta que a do E₂ e tem sido demonstrado ser cinco a seis vezes mais em algumas espécies de peixe (Aris et al. 2014). Isso indica que o EE₂ pode ser um composto com atividade estrogênica mais potente comparado ao estrógeno endógeno E₂. Assim, apesar de ser encontrado em concentrações extremamente baixas (ng L⁻¹), quando comparadas a outros contaminantes antropogênicos (μg L⁻¹) (Tabela 1 – Capítulo 3), a presença desse contaminante não deve ser negligenciada.

Os efeitos para animais aquáticos, mais frequentemente descritos na literatura, estão sistematizados na Tabela 3 (Tabela suplementar 4). As concentrações médias de efeito (CEO) variam entre 0,5 e 2106 µg L⁻¹ para consumidores primários e entre 0,00095 e 14,96 µg L⁻¹ para consumidores secundários. A espécie mais sensível entre os representantes do primeiro nível trófico foi a Daphnia magna apresentando efeitos no crescimento e reprodutivos (redução do número de filhotes) na concentração de 0,0001µg L⁻¹ (Dietrich et al. 2010) e a espécie menos sensível foi o invertebrado bentônico *Chironomus tentans*, que apresentou efeitos no desenvolvimento e mortalidade de organismos com idade entre 7 e 14 dias, expostos por 42 dias a soluções

com concentração de 3100 µg L⁻¹ (Dussalt et al,2008). Entre os representantes do segundo nível trófico, a espécie mais sensível foi o *Oryzias latipes*, vulgarmente conhecido como peixe do arroizal, que apresentou efeitos morfológicos (alteração do sexo) quando expostos após a eclosão, por um período de 100 dias, a soluções na contendo 0,00003 µg L⁻¹ de EE₂ (Metcalfe et al. 2001), e a espécie menos sensível foi o *Salmo salar* ou Salmão do Atlântico, que apresentou efeitos genéticos (RNAm P450) em estudos *in vitro*, quando ovários de fêmeas jovens foram expostos a uma concentração de 296,43 µg L⁻¹ (Vang et al. 2007).

Tabela 3. Média dos valores de CEO para o 17 α-etinilestradiol em animais representantes do primeiro e do segundo níveis tróficos da cadeia alimentar aquática descritos na literatura.

	Cons		Consur	midores secund	lários			
Efeito	CEO ^a (µg L ⁻¹)	CEO ^a (μg L ⁻¹)		$CEO^a (\mu g L^{-1})$	CEO ^a (μg L ⁻¹)	
	Média	Mínima	Máxima	N^b	Média	Mínima	Máxima	N^b
Celular	_	_	_	_	1,94	0,0025	10	21
População	380,00	20	740	2	0,00095	0,00018	0,1	19
Genético	4,53	0,004	10	4	1,92	0,00005	296,43	247
Reprodução	401,25	0,0001	1000	16	0,09	0,00005	2	86
Desenvolvimento	2106,67	100	3100	6	1,42	0,00005	10	39
Bioquímico	333,37	0,05	1000	3	0,21	0,0001	10	133
Enzimático	_	_	_	_	14,96	0,005	51,38	12
Crescimento	211,43	0,0001	740	7	0,25	0,00018	10	51
Morfológico	0,50	0,5	0,5	2	0,98	0,00003	50	85
Fisiológico	10,00	_	_	1	_	_	_	_
Comportamento	_	_	_	_	0,01	0,0005	0,025	16
Histológico	0,50	_	_	1	0,03	0,0007	0,1	11
Hormonal	_	_	_	_	0,56	0,0002	2,96	24
Injúria	_	_	_	_	10,00	_	_	1
Total	-	_	_	42	_	_	_	745

^a Concentração de efeito observado; ^bN:número de estudos; Referências: Tabela suplementar 4

2.4. Bisfenol A (BPA)

Figura 3. Estrutura molecular do BPA - C₁₅H₁₆O₂ (CAS: 80-05-7)

O BPA é um dos produtos químicos de maior prevalência entre os produtos comercializados na atualidade (Fontenele et al. 2010). É um xenoestrógeno - origem industrial - preparado pela condensação da acetona (de onde advém o sufixo A no final do nome) com dois equivalentes de fenol. A reação é catalisada por um ácido, como o ácido clorídrico (HCl) ou resina poliestireno sulfonada. Tipicamente, um grande excesso de fenol costuma ser usado para garantir a condensação completa. Este monômero é utilizado na produção de resinas epóxi e na produção dos plásticos policarbonatos mais comuns (Beserra et al. 2012). O policarbonato é utilizado em embalagens de alimentos e tubulações de água e a resina epóxi é utilizada no revestimento de paredes de latas, tampas de frascos de vidro e garrafas para alimentos. O BPA também é encontrado em alguns plásticos de PVC, e em uma variedade de produtos (por exemplo, papel térmico e papel reciclado) (WHO 2012). Como o BPA pode migrar do policarbonato quando exposto a elevadas temperaturas, alimentos acondicionados em recipientes plásticos podem ser contaminados pelo bisfenol ao serem levados ao micro-ondas ou receberem alimento quente (Fontenele et al. 2010).

A rota primária de contaminação de ecossistemas aquáticos com BPA é por lançamento de esgoto doméstico e industrial e lixiviado de aterros. A presença em esgoto doméstico está associada a migração do BPA de embalagens plásticas, seja através da excreção humana ou através da liberação direta no ambiente aquático.

2.4.1. Metabolismo e excreção

Em seres humanos, após ingerido, o BPA é rapidamente absorvido no trato gastrointestinal. A conjugação com ácido glicurônico constitui a primeira etapa do metabolismo. Uma vez conjugado é liberado para a corrente sanguínea para eliminação através da urina. Völkel et al. (2002) demonstrou que a eliminação do BPA, administrado via oral, é completa em até 24hs após a administração. No entanto, quando altas doses são administradas, pode ocorrer a saturação da via de conjugação glicurônica e formamse outros metabólitos. Após testar doses ambientais relevantes (54 – 90 μg/Kg), a pesquisa demonstrou que uma pequena parcela de BPA fica disponível para outras vias de biotransformação, devido a rápida glicuronidação (Völkel et al. 2002).

Em peixes, dois metabólitos foram identificados após exposição ao BPA: o conjugado com sulfato e o conjugado com ácido glicurônico. Em um experimento realizado com duas espécies de peixes, o zebrafish e o truta arco-íris (*Oncorhynchus mykiss*), mostra que o segundo metabólito é predominante em ambas as espécies. A alta concentração de BPA conjugado a ácido glicurônico na bile de zebrafish indicou também que a excreção biliar via intestino é a principal forma de eliminação, no entanto não exclui a hipótese de que parte ocorra também por excreção renal, via epitélio branquial (Lindholst et al. 2003).

2.4.2. Biotransformação

Algumas espécies de bactérias que degradam o BPA têm sido descritas na literatura. Estas são encontradas no solo (Sasaki et al. 2005), águas de rios (Ike et al. 2000; J. H. Kang & Kondo 2002; Jeong H. Kang & Kondo 2002; Kang et al. 2004) e em estações de tratamento de esgoto (Spivacks et al. 1994). Entre essas bactérias destacam-se as do gênero *Arthrobacter*, *Pseudomonas* e *Enterobacteriaceae* (Ike et al. 2000). Alguns

metabólitos podem ser formados. Ike et al (2000) identificou o 2,3-bis(4-hidroxyfenil) - 1,2-propanediol e o álcool p-hidroxyfenacil como metabolitos frequentes na degradação do BPA.

Em geral, sob condições aeróbias, como nos rios, o BPA tem meia-vida que varia entre 4,5 e 4,7 dias (Cousins et al. 2002). Já sob condições anaeróbias a biodegradação é limitada o que faz com que o BPA seja acumulado por períodos mais longos em sedimentos anaeróbios. Voordeckers et al. (2002) demonstrou em seu experimento que sob condições anaeróbias não houve biodegradação significativa de BPA em um período de observação de 162 dias.

2.4.3. Ecotoxicidade

O BPA pode alterar a função endócrina de animais através de inúmeras vias. Em vertebrados, a principal forma é pela ação agonista em receptores estrogênicos. No entanto pode atuar, indiretamente, promovendo a ação endógena do 17 β-estradiol através de três mecanismos: estimulando a produção de receptores estrogênicos celulares, substituindo o E₂ em proteínas circulantes, e inibindo a excreção endógena de E₂ (Crain et al. 2007). Os mecanismos de ação em invertebrados são ainda pouco elucidados.

A Tabela 4 resume o resultado de uma revisão de literatura sobre os principais efeitos do BPA em organismos aquáticos (Tabela suplementar 5). Observa-se que, em média, a CEO para consumidores primários varia entre 98,10 μg L⁻¹ e 7133 μg L⁻¹. Entre os dados relatados, observa-se que o organismo mais sensível foi uma espécie de díptera, *Chironomus riparius*, que apresentou efeito morfológico quando expostos a soluções contedo BPA na concentração de 1 μg L⁻¹ durante o ciclo de vida aquático (ovopupa) (Watts et al. 2003). O organismo mais resistente foi a *Daphnia magna* que apresentou redução na atividade da catalase e alterações bioquímicas relativas ao teor de

proteína na concentração 20.000 μg L⁻¹ em um experimento realizado com de organismos neonatos (24 horas pós nascimento) (Jemec et al. 2012).

Para consumidores secundários, a média das menores concentrações de efeito variaram entre 5,5 e 1491,43 μg L⁻¹. O organismo que apresentou menor CEO foi o *gobiocypris rarus*, um peixe endêmico da China, que apresentou aumento de expressão gênica (citocromo P450 aromatase) quando indivíduos com a idade de 31 dias após a fertilização foram expostos a soluções cotendo 0,02 μg L⁻¹ de BPA (Wang et al. 2010). A menos sensível foi uma espécie de anfíbio, *Xenopus laevis*, quando expostos por 96 h a soluções contendo 12000 μg L⁻¹ de BPA, durante a fase embrionária, apresentaram declínio na expressão de alguns genes (gene receptor de estrógeno e RNAm pax6) (San Segundo et al. 2013) (Tabela 4).

Tabela 4. Média dos valores de CEO para o bisfenol A em animais representantes do primeiro e do segundo níveis tróficos da cadeia alimentar aquática descritos na literatura.

	C	onsumidor	es primários		Co	nsumidore	s secundários	
Efeito	CEO ^a (µg L ⁻¹)	CEO ^a (μg L ⁻¹)		CEO ^a (µg L ⁻¹)	CEO ^a ($ug L^{-1}$)	
	Média	Mínima	Máxima	N^b	Média	Mínima	Máxima	N^{b}
População	3600	_	_	1	22,89	-	_	1
Genético	865,3	3	3000	10	1491,43	0,02	12000	142
Reprodução	6893	1100	19400	6	16,25	1,75	20	34
Comportamento	7133	1000	19400	3	_	_	_	_
Desenvolvimento	189,26	22,82	1000	8	1188	0,1	6000	12
Bioquímico	1057	5	20000	36	161	1,75	1000	29
Enzimático	4978	100	20000	8	1186	2,5	4565,8	5
Crescimento	4971	114,14	13800	3	186	2	400	12
Morfológico	1	1	_	1	5,9	_	_	1
Fisiológico	98,10	50	114	4	5,5	1	10	2
Total	_	_	_	80	_	_	_	238

^a Concentração de efeito observado; ^bN:número de estudos; Referências: Tabela suplementar 5

2.5. Características físico-químicas e destino ambiental

Os estrógenos e xenoestrógenos têm sido encontrados em ambientes aquáticos, devido, principalmente, à remoção ineficiente em estações de tratamento de águas residuais (Tabela 1, Capítulo 3). O destino no ambiente aquático é influenciado pelas propriedades físico-químicas, pois estas agem determinando os mecanismos de sorção, adsorção e acumulação na biota aquática (Raimundo 2007; Ghiselli & Jardim 2007). Moléculas sorvidas apresentam menor mobilidade e ficam menos disponíveis para processos de transferência de fases, tem a biodisponibilidade reduzida, ficam também protegidas da luz ultravioleta ocasionando menor degradação no ambiente através da fotólise direta e por último, não reagem com foto-oxidantes indiretos como as radicais hidroxilas, abundantes nos ambientes aquáticos. Tudo isso atua de forma a determinar a meia-vida da molécula em ambiente aquático (Ghiselli & Jardim 2007; Raimundo 2007). A Tabela 5 mostra as principais propriedades físico-químicas das moléculas de E₂, EE₂ e BPA.

Tabela 5. Propriedades físicas e químicas das moléculas 17β-estradiol, 17α-etinilestradiol e bisfenol A

Composto	M (gmol ⁻¹)	pka	$\begin{array}{c} Log \\ K_{ow}{}^{b} \end{array}$	Kocc	Meia- vida ^d (dias)	$Solubilidade\\ em água\\ 20^{0}C\\ (mg~L^{-1})$
17β-Estradiol	272,38	10,5 - 10,7	3,94	3300	2 - 3	13
17α- etinilestradiol	296,41	10,3 – 10,8	4,15	4770	4-6	4,8
Bisfenol A	228,29	10,2	3,32	640-930	4 – 5	120

^aConstante de equilíbrio; ^bCoeficiente de partição octanol-água; ^cCoeficiente de adsorção; ^dMeia-vida na água. Fontes: Cousins et al. 2002; Vega-Morales et al. 2010; Raimundo 2007; Filho & Araújo, Vieira 2006.

De acordo com os dados apresentados na Tabela, 5 é possível fazer as seguintes observações: as moléculas de BPA, E_2 e EE_2 por possuírem altos coeficiente de partição octanol-água (log K_{ow}) e coeficiente de adsorção (K_{oc}) são compostos orgânicos

hidrofóbicos moderadamente solúveis em água (sendo o BPA o mais solúvel), que tendem, preferencialmente, a adsorver em sedimentos/partículas sólidas. É de se esperar, portanto, que ao serem descartadas juntamente com o esgoto, a adsorção no solo, sedimento ou lodo biológico sejam fatores significativos na redução da concentração desses estrógenos da fase aquosa (Urase & Kikuta 2005; Lai et al. 2000). No entanto, não é bem isso que se observa na prática. Experimentos que envolvem o mecanismo de sorção dos estrógenos em ambientes aquáticos sugerem que esses competem com outros químicos hidrofóbicos pelos sítios de ligação envolvidos nos mecanismos de sorção (Lai et al. 2000). Consequentemente, uma parte dos estrógenos, especialmente os menos hidrofóbicos, tende a permanecer na fase aquosa sendo degradados rapidamente. Dessa forma, tanto a adsorção quanto a degradação agem na remoção dos estrógenos da fase aquosa (Urase & Kikuta 2005). Além disso, esses compostos são continuamente introduzidos no ambiente, o que faz com que, apesar de possuírem meia-vida relativamente curta quando comparados a outros compostos orgânicos (como alguns pesticidas), tenham um caráter de prevalência (Filho & Araújo 2006).

2.6. Considerações finais

Em suma, os dados da literatura revelam que as concentrações médias de efeito relacionadas aos três compostos são maiores para animais representantes do primeiro nível trófico (0,5 a 7133 µg L⁻¹), do que para os do segundo nível trófico (0,00095 a 1491 µg L⁻¹). Alguns fatores podem explicar essa tendência:

 a) Os consumidores secundários são representados por vertebrados, animais que apresentam semelhanças genéticas e morfológicas no metabolismo dos estrógenos e tendem, portanto, a ser mais sensíves a ação dos IEs;

- b) A maior parte dos vertebrados tem todas as fases de vida no ambiente aquático, de onde se conclui a exposição contínua desses organismos a esses contaminantes. O mesmo não ocorre com os invertebrados que compõem grande parte dos consumidores primários, onde parte de ciclo de vida é terrestre;
- c) Os consumidores secundários estão no topo da cadeia alimentar aquática e tendem a bioacumular poluentes.

Sendo assim, em uma perspectiva macro, esses fatores atuam conjuntamente determinado a maior vulnerabilidade dos consumidores secundários a ação desses poluentes em ambientes aquáticos.

Em outra perspectiva, a comparação das concentrações de efeito relacionadas às três moléculas para os dois grupos animais revela que: o EE₂ causa efeitos em concentrações menores que o E₂ que por sua vez causa efeitos em concentrações menores que o BPA. Isso revela maior toxidade do EE₂ e menor toxidade do BPA, o que corrobora com dados da literatura que indicam maior potência estrogênica do estrógeno sintético EE₂. Fica evidente também que o bisfenol A, por ser um xenoestrógeno, tem menos afinidade pelos mecanismos biológicos em ambos os grupos animais competindo com os demais estrógenos na determinação dos efeitos.

Conclui-se, portanto, que apesar de terem meia-vida curta na água (2 a 6 dias), o fato de serem lançados continuamente é um fator que preocupa devido aos efeitos relacionados a cada composto aqui relatados. Além disso, a exposição a concentrações sub letais, por um período longo de tempo, podem alterar a fisiologia do organismo, impactar negativamente sua reprodução e sobrevivência, alterando a estrutura das populações e colocando em risco todo o ecossistema aquático.

Capítulo 3

Desenvolvimento de metodologia para identificação e quantificação de interferentes endócrinos em amostras do Lago Paranoá e Efluentes das Estações de Tratamento de Esgotos Sul e Norte (Brasília-DF)

Dissertação de Mestrado

2015

3.1. Introdução

Os interferentes endócrinos (IEs) são descritos na literatura como produtos químicos, antropogênicos e naturais, que interagem com sistemas endócrinos de organismos vivos, podendo causar efeitos nocivos à saúde, crescimento e capacidade reprodutiva. São representados por alguns integrantes dos seguintes grupos: produtos farmacêuticos, produtos de higiene pessoal, surfactantes, agrotóxicos, aditivos industriais, dentre outros produtos químicos (Bolong et al. 2009). Uma das formas de descarte no ambiente está associada ao lançamento de efluentes industriais e domésticos brutos ou tratados.

Dentre esses contaminantes, três compostos têm atraído a atenção da comunidade científica: o xenoestrógeno bisfenol A (BPA), o estrógeno endógeno 17β-estradiol (E₂) e o estrógeno sintético 17α-etinilestradiol (EE₂). A importância associada a essas moléculas deve-se ao fato de que têm sido encontradas em matrizes ambientais do mundo todo, além de terem atividade estrogênica comprovada. A Tabela 1 mostra um levantamento de dados da literatura sobre a quantificação desses contaminantes em amostras ambientais no Brasil e no mundo. Percebe-se, que de uma forma geral, são encontrados em quantidades traço (ng L⁻¹) em ambientes aquáticos, principalmente quando o esgoto é

tratado. No entanto, mesmo em baixas concentrações, dependendo da fase da vida em que ocorre a exposição e também da duração dessa exposição, são relatados efeitos em animais (Capítulos 2 e 4).

No que se refere a identificação e quantificação desses contaminantes em matrizes ambientais, o fato de serem encontrados em baixas quantidades (ng L⁻¹) faz com que a maior parte dos equipamentos não consiga detectá-los (Ghiselli & Jardim 2007). Isso, somado à complexidade das amostras ambientais e ao fato de que os IEs, incluindo os estrógenos, podem sofrer biodegradação e fotodegradação durante o transporte e a estocagem (Dionísio et al. 2010), faz com que seja necessário o emprego criterioso de técnicas adequadas de preservação, purificação e extração das amostras, além do uso de equipamentos com baixos limites de detecção (Briciu et al. 2009). Logo, o preparo da amostra antes da análise instrumental é um requisito essencial para o estabelecimento de um método analítico sensível e seletivo.

Briciu et al. (2009) destacam que a melhor estratégia para preservação de amostras aquosas para análise de contaminantes em quantidades traço, como os estrógenos, consiste em passar a amostra por um cartucho de extração contendo uma fase sólida adsorvedora, eluir os analitos de interesse com solvente apropriado e prosseguir com a preservação do extrato a -18°C. Sob estas condições, facilita-se o armazenamento e não se observa perda significativa após 60 dias. Uma alternativa a esse procedimento é a de armazenar as amostras à 4°C em frascos âmbar, previamente preservadas com solução de formaldeído - 1%. A adição dessa solução inibe o crescimento bacteriano reduzindo a perda de analitos (Briciu et al. 2009).

A quantidade de amostra a ser coletada varia de acordo com as propriedades intrínsecas da matriz, tipo de composto, método de extração e aparelho utilizado para a

Capítulo 03: Quantificação de interf. endócrinos em amostras ambientais

quantificação (Moreira 2008). No entanto, para a maioria dos casos é necessária uma grande quantidade de amostra, normalmente variando entre 250 e 1000 mL (Yang et al. 2006). A técnica de extração em fase sólida (SPE, do inglês *solid phase extraction*) tem sido amplamente empregada para a extração e concentração de analitos em amostras ambientais conforme mostra a Tabela 1.

.

Tabela 1. Concentrações de Bisfenol A, 17β -estradiol e 17α -etinilestradiol determinadas em amostras ambientais do Brasil e do mundo, metodologias de extração e detecção utilizadas.

Composto	Matriz	Tipo de extração	Tipo de detecção	Localização		entração g L ⁻¹)	Referência
Composio	11144112	Tipo de chiração	Tipo de detecção	Documbuşuo	Média	Min-Máx	Actor chem
Bisfenol A CAS: 80057	Esgoto bruto	SPE	GC/MS/MS	México	2500	-	Gibson et al. (2007)
		SPE-Oasis	LC/MS/MS	Itália	334	332-339	Laganà et al. (2004)
		SPE-Oasis HLB	LC/FL	Tailândia	606,5	128,6-606,5	Pookpoosa et al. (2014)
		SPE-C18	LC/MS	Espanha	358,00	500-1510	Céspedes et al. (2006)
		SPE-Discos de extração	GC/MS/MS	Amsterdam	1410	250-5620	Vethaak et al. (2005)
		SPE-C18	LC/MS/MS	Áustria	1823 ^c	720-2376	Clara et al. (2005)
		SPE-Oasis HLB	GC/MS	Canadá	353,33 ^d	88-590	Fernandez et al. (2007)
		SPE-Discos de extração	GC/MS	Estados Unidos	832°	281-3642 ^a	Drewes et al. (2005)
		SPE-Strata x/Strata sax	LC/MS	Brasil-MG	165	-	Queiroz (2011)

Tabela 1. Concentrações de Bisfenol A, 17β-estradiol e 17α-etinilestradiol determinadas em amostras ambientais do Brasil e do mundo, metodologias de extração e detecção utilizadas.

Composto	Matriz	Tipo de extração	Tipo de detecção	o de detecção Localização		entração g L ⁻¹)	Referência
Composio	1/24//222	1.po do cintração	11po de deceção	2000000	Média	Min-Máx	210202 021021
		SPE-Oasis HLB e ELL	GC/MS	Brasil-SP	8660	-	Ghiselli (2006)
		SPE-Oasis HLB	LC/MS/MS	Brasil-SP	-	2,5	Fernando F Sodré et al. (2010)
Bisfenol A	Esgoto tratado	SPE	LC/MS/MS	Espanha	6,4	-	Vega-Morales et al. (2010)
		SPE	GC/MS	Alemanha	10	4,8-47	Kuch & Ballschmiter
		SPE-Discos de extração	GC/MS/MS	Amsterdam	118	< 43-4090	Vethaak et al. (2005)
		SPE-C18	LC/MS	Espanha	136,67°	< 50-270	Céspedes et al. (2006)
		-	GC/MS/MS e LC/FL	Alemanha	-	18-702	Fromme et al. (2002)
		SPE-C18	LC/MS/MS	Áustria	407,46 ^c	16-1840	Clara et al. (2005)

Tabela 1. Concentrações de Bisfenol A, 17β-estradiol e 17α-etinilestradiol determinadas em amostras ambientais do Brasil e do mundo, metodologias de extração e detecção utilizadas.

Composto	Matriz	Matriz Tipo de extração	Tipo de detecção	Localização		ntração g L ⁻¹)	Referência
•		1 5	•	•	Média	Min-Máx	
Bisfenol A	Esgoto tratado	SPE-Oasis	LC/MS/MS	Itália	26	13-36	Laganà et al. (2004)
		SPE-Oasis HLB	GC/ MS	Canadá	160,71°	11-1054	Fernandez et al. (2007)
		SPE - Oasis HLB	LC/FL	Tailândia	135,3	57,5-257	Pookpoosa et al. (2014)
		SPE-Discos de extração	GC/MS	Estados Unidos	20,3°	6-50 ^b	Drewes et al. (2005)
		SPE-Oasis HLB	GC/MS	Austrália	23,2°	13-44 ^a	Ying et al. (2009)
		SPE- Strata x/ Strata sax	LC/MS	Brasil-MG	174,5 ^d	78-271 ^a	Queiroz (2011)
		SPE-Strata x	LC/MS	Brasil-DF	-	< 5-12,6	Costa (2014)
		SPE-Oasis HLB e ELL	GC/MS	Brasil-SP	7980	7980^{a}	Ghiselli (2006)

Tabela 1. Concentrações de Bisfenol A, 17β-estradiol e 17α-etinilestradiol determinadas em amostras ambientais do Brasil e do mundo, metodologias de extração e detecção utilizadas.

Composto	Matriz	Tipo de extração	Tipo de detecção	Localização	Concentração (ng L ⁻¹)		Referência	
		-	or an accession		Média	Min-Máx		
Bisfenol A	Água superficial	SPE-C 18	LC/MS	Espanha	-	< 50	Céspedes et al. (2006)	
		SPE-C18	GC/MS	Malásia	33,3 ^d	ND-214,5	Santhi et al. (2012)	
		SPE-Florisil	GC/MS	Grécia	-	138	Arditsoglou & Voutsa (2008)	
		LLE	GC/MS	Estados Unidos	140	12000	Kolpin et al. (2002)	
		SPE	GC/MS	Alemanha	3,8	0,5-14	Kuch & Ballschmiter	
		-	GC/MS/MS e LC/FL	Alemanha	-	0,5-410	Fromme et al. (2002)	
		SPE-C18	LC /MS	Itália	17,43°	< 1,0-145	Pojana et al. (2007)	
		LLE	GC/MS	Japão	44,33°	ND-36	Kawahata et al. (2004)	
		SPE-Discos de extração	GC/MS/MS	Amsterdam	45	< 8,8-1000	Vethaak et al. (2005)	

Tabela 1. Concentrações de Bisfenol A, 17β-estradiol e 17α-etinilestradiol determinadas em amostras ambientais do Brasil e do mundo, metodologias de extração e detecção utilizadas.

Composto	Matriz	Tipo de extração	Tipo de detecção	Localização		entração g L ⁻¹)	Referência
Composio			11po de deceção	20041124440	Média	Min-Máx	144141444
Bisfenol A	Água superficial	LLE	GC/MS	China	-	8300	Jin et al. (2004)
		SPE-Oasis	LC/MS/MS	Itália	22	15-29	Laganà et al. (2004)
		SPE-C18	GC/MS	Índia	10,6 ^d	2,8-136	Selvaraj et al. (2014)
		SPE-Oasis HLB	GC/MS	Austrália	17°	4-59	Ying et al. (2009)
		SPE-C18 e Stracta x	LC/MS/MS	França	-	ND	Vulliet et al. (2008)
		SPE-Discos de extração	GC/MS	Japão	35,25°	20,2-30,1 ^a	Hashimoto et al. (2005)
		SPE-Oasis HLB	GC/MS	China	23,81°	14,21-31,42	Zhang et al. (2011)
		SPE-Strata x	LC/MS	Brasil-DF	132,18	47,04- 303,11	Costa (2014)
		SPE-Oasis HLB	LC/MS/MS	Brasil-SP	41,66 ^c	25-84	Sodré et al. (2010

Tabela 1. Concentrações de Bisfenol A, 17β-estradiol e 17α-etinilestradiol determinadas em amostras ambientais do Brasil e do mundo, metodologias de extração e detecção utilizadas.

Composto	Matriz	Tipo de extração	Tipo de detecção	Localização		ntração g L ⁻¹)	Referência
3 33 P 3333		_r			Média	Min-Máx	
		SPE-Strata x	GC/MS	Brasil-SP	160	-	Sodré et al. (2010)
		SPE-Oasis HLB	LC/DAD/FL	Brasil-SP	4904	204-13,016	Montagner & Jardim (2011)
		SPE-Oasis HLB		Brasil-DF	16,43°	2,4-27	Santana (2013)
		SPE-Oasis HLB	LC/DAD/UV	Brasil-SP	439,4°	5-1760	Sodré et al, (2007)
		SPE-Oasis HLB e ELL	GC/MS	Brasil-SP	11893,75 ^d	<2300- 64200	Ghiselli (2006)
17β-estradiol CAS:57-63-6	Esgoto bruto	SPE	GC/MS/MS	Alemanha	15 ^e	-	Ternes et al. (1999a)
		SPE-C18 e NH ₂ prophil	LC/MS/MS	Espanha	0,73°	0,5-1,1	Farré et al. (2007)
		SPE-Discos de extração	GC/MS/MS	Amsterdam	36,5	17-150	Vethaak et al. (2005)

Tabela 1. Concentrações de Bisfenol A, 17β-estradiol e 17α-etinilestradiol determinadas em amostras ambientais do Brasil e do mundo, metodologias de extração e detecção utilizadas.

Composto	Matriz	Tipo de extração	Tipo de detecção	Localização		entração g L ⁻¹)	Referência
Composed	1/24//12	1.po ue emuquo	1.po de detecção	Zocumzuşuo	Média	Min-Máx	10101011011
l7β-estradiol	Esgoto bruto	SPE-C18	GC/MS	França	14,3	11,1-17,1ª	Cargouët et al. (2004)
		SPE	LC-MS-MS	Itália	11,55°	4-25	Baronti et al. (2000)
		SPE	LC/MS	Itália	11	-	D'Ascenzo et al. (2003)
		SPE-C18	LC/MS/MS	Áustria	66,07	14-125 ^a	Clara et al. (2005
		SPE-Oasis	LC/MS/MS	Itália	25	10-31	Laganà et al. (2004)
		SPE	LC/PDA/MS	Espanha	-	<5-30,4	Petrovic et al. (2002)
		SPE-LC18	GC/MS	Austrália	22	-	Braga et al. (2005
		SPE-Oasis HLB	GC/ MS	Canadá	4,33°	0-11	Fernandez et al. (2007)
		SPE	LC/MS/MS	Itália	1	0,35-3,0	Baronti et al. (2000)

Tabela 1. Concentrações de Bisfenol A, 17β-estradiol e 17α-etinilestradiol determinadas em amostras ambientais do Brasil e do mundo, metodologias de extração e detecção utilizadas.

Composto	Matriz	Tipo de extração	Tipo de detecção	Localização		entração g L ⁻¹)	Referência
Composito	1744712	Tipo de carração	Tipo de detecção	Documzação	Média	Min-Máx	Actor circu
17β-estradiol	Esgoto bruto	SPE-Oasis HLB	LC/MS/MS	Japão	-	<ld< td=""><td>Komori et al. (2004)</td></ld<>	Komori et al. (2004)
		SPE	GC/MS/MS	México	22	-	Gibson et al. (2007)
		SPE-Discos de extração	LC/ELISA	Estados Unidos	20,1°	4,6-37,5 ^a	Drewes et al. (2005)
		SPE	GC/MS/MS	Alemanha	15	-	Ternes et al. (1999a)
		SPE-C18	LC/MS/MS	Áustria	66,07°	-	Clara et al. (2005)
		SPE-C18	GC/MS/MS	Brasil-RJ	21	-	Ternes et al. (1999a)
		SPE-Oasis HLB e ELL	GC/MS	Brasil-CE	3420°	320-7400*	Souza (2011)
		SPE-Oasis HLB	GC/MS	Brasil-SP	6690	-	Ghiselli (2006)
		SPE-Strata x/Strata sax	LC/MS/MS	Brasil-SP	-	1,3	Sodré et al. (2010

Tabela 1. Concentrações de Bisfenol A, 17β-estradiol e 17α-etinilestradiol determinadas em amostras ambientais do Brasil e do mundo, metodologias de extração e detecção utilizadas.

Composto	Matriz	Matriz Tipo de extração Tipo	Tipo de detecção	Localização	Concentração (ng L ⁻¹)		Referência
·					Média	Min-Máx	
		SPE-Discos de extração	LC/MS	Brasil-MG	-	<93	Queiroz (2011)
17β-estradiol	Esgoto tratado	SPE-Discos de extração	LC/ELISA	Estados Unidos	4,5°	<0,6-6,2 ^b	Drewes et al. (2005)
		SPE	LC/MS/MS	Espanha	3,5	-	Vega-Morales et al. (2010)
		SPE-Discos de extração	GC/MS/MS	Amsterdam	-	< 0,8	Vethaak et al. (2005)
		SPE	LC/MS/MS	Espanha	$0,6^{\mathrm{e}}$	< LD-0,6	Farré et al. (2007)
		SPE	GC/MS	Alemanha	0,4	0,15-5,2	Kuch & Ballschmiter
		SPE-C18	GC/MS	França	6,7	4,5-8,6	Cargouët et al. (2004)
		SPE	LC/MS/MS	Itália	1,0°	0,35-3,5	Baronti et al. (2000)

Tabela 1. Concentrações de Bisfenol A, 17β-estradiol e 17α-etinilestradiol determinadas em amostras ambientais do Brasil e do mundo, metodologias de extração e detecção utilizadas.

Composto	Matriz	Matriz Tipo de extração Tipo de de	Tipo de detecção	Localização	Concentração (ng L ⁻¹)		Referência
					Média	Min-Máx	
17β-estradiol	Esgoto tratado	SPE	LC/MS	Itália	1,6	-	D'Ascenzo et al. (2003)
		SPE-C18	LC/MS/MS	Áustria	11,5°	ND-30 ^a	Clara et al. (2005)
		SPE-Oasis	LC/MS/MS	Itália	6	3-8	Laganà et al. (2004)
		SPE	LC/MS/MS	Japão	1,4	0,3-2,5	Isobe et al. (2003)
		SPE	LC/PDA/MS	Espanha	-	< 5,0	Petrovic et al. (2002)
		SPE-Oasis HLB	GC/ MS	Canadá	51,5°	0-158	Fernandez et al. (2007)
		SPE-Oasis HLB	ELISA	Austrália	3,189 ^c	1.37-6,35 ^a	Ying et al. (2009)
		SPE	GC/MS/MS	Alemanha	ND	ND-3	Ternes et al. (1999a)
		SPE	GC/MS/MS	Canadá	6	64 ^b	Ternes et al. (1999a)

Tabela 1. Concentrações de Bisfenol A, 17β-estradiol e 17α-etinilestradiol determinadas em amostras ambientais do Brasil e do mundo, metodologias de extração e detecção utilizadas.

Composto	Matriz	Tipo de extração	Tipo de detecção	Localização	Concentração (ng L ⁻¹)		Referência
•			•	3	Média	Min-Máx	
		SPE	GC/MS	República Checa	7,82	3,0-11	Morteani et al. (2006)
		SPE-C18	GC/MS	Brasil-CE	2673°	600-4000 ^a	Souza (2011)
		SPE-Oasis HLB e ELL	GC/MS	Brasil-SP	5560	-	Ghiselli (2006)
17β-estradiol	Água superficial	Centrifugação e secagem em N2	LC/DAD	China	4028	1670-6270	Wang et al. (2011)
		LLE	GC/MS	Estados Unidos	95 ^d	200	Kolpin et al. (2002)
		SPE	GC/MS	Alemanha	0,3	0,15-3,6	Kuch & Ballschmiter
		SPE-C18	LC/MS	Itália	25,68°	< 1,0-175	Pojana et al. (2007)
		SPE-Discos de extração	GC/MS/MS	Amsterdam	1	< 0,8-1	Vethaak et al. (2005)

Tabela 1. Concentrações de Bisfenol A, 17β-estradiol e 17α-etinilestradiol determinadas em amostras ambientais do Brasil e do mundo, metodologias de extração e detecção utilizadas.

Composto	Matriz	Matriz Tipo de extração Tipo de detecção	Tino de detecção	Localização	Concentração (ng L ⁻¹)		Referência
Composio	TVILLE	Tipo de extrução	Tipo de detecção	Documzação	Média	Min-Máx	Referencia
17β-estradiol	Água superficial	SPE-Discos de extração	GC/MS	Japão	1,25°	0,4-1,7ª	Hashimoto et al. (2005)
		SPE-C18	GC/MS	França	1,91	1,4-3,2	Cargouët et al. (2004)
		SPE-Oasis	LC/MS/MS	Itália	4	2-6	Laganà et al. (2004)
		SPE	LC/MS/MS	Japão	0,8°	<0,3-1	Isobe et al. (2003)
		SPE	GC/MS	República Checa	2,31	1,3-3,8	Morteani et al. (2006)
		SPE-Oasis HLB	LC/MS/MS	Turquia	2,07 ^d	<ld-10,2< td=""><td>Aydin & Talinli (2013)</td></ld-10,2<>	Aydin & Talinli (2013)
		SPE-Oasis HLB	GC/MS	China	1,43°	1,56	Zhang et al. (2011
		SPE-Oasis HLB	GC/MS	China	6,54 ^d	0,71-32,4	Lei et al. (2009)
		SPE-Oasis HLB	ELISA	Austrália	1,23 ^d	0,39-3,77	Ying et al. (2009)

Tabela 1. Concentrações de Bisfenol A, 17β-estradiol e 17α-etinilestradiol determinadas em amostras ambientais do Brasil e do mundo, metodologias de extração e detecção utilizadas.

Composto	Matriz	Tipo de extração	Tipo de extração Tipo de detecção	Localização	Concentração (ng L ⁻¹)		Referência
Composio	14141112	Tipo de extração	Tipo de detecção	Documzação	Média	Min-Máx	Referencia
17β-estradiol	Água superficial	SPE-C18 e Stracta x	LC/MS/MS	França	-	ND	Vulliet et al. (2008)
		Centrifugação e secagem em N2	LC/DAD	China	4028 ^c	1670- 6270	Wang et al. (2011)
		SPE-C18	LC/MS	Brasil-MG	12,8	1,5-36,8	Moreira (2008)
		SPE-C18	LC/FL	Brasil-SP	27,5	-	Filho & Araújo, (2006)
		SPE-C18	LC/MS/MS	Brasil-RJ	-	ND	Kuster et al. (2009)
		SPE-C18	LC/FL	Brasil-SP	-	8,6-25,8	Lopes et al. (2010)
		SPE-Oasis HLB	LC/DAD/FL	Brasil-SP	1613,25	252-6806	Montagner & Jardim (2011)
		SPE-Oasis HLB	LC/DAD/UV	Brasil-SP	866,33°	38-2510	Sodré et al. (2007)
		SPE-Oasis HLB	LC/MS/MS	Brasil-SP	6,45°	<0,6-7,3	Sodré et al. (2010)

Tabela 1. Concentrações de Bisfenol A, 17β-estradiol e 17α-etinilestradiol determinadas em amostras ambientais do Brasil e do mundo, metodologias de extração e detecção utilizadas.

Composto	Matriz	Matriz Tipo de extração	Tipo de detecção	Localização	Concentração (ng L ⁻¹)		Referência
C 022- F 0000		 po	1-p 0 30 40003		Média	Min-Máx	
		SPE-Oasis HLB e ELL	GC/MS	Brasil-SP	3097,14 ^d	<1800-6000	Ghiselli (2006)
		SPE-Oasis HLB	-	Brasil-DF	-	<ld< td=""><td>Santana (2013)</td></ld<>	Santana (2013)
17α-etinilestradiol CAS: 57-63-2	Esgoto bruto	SPE-C18	GC/MS/MS	Bélgica	36,3°	4,2-86,3 ^a	Pauwels et al. (2008)
		SPE	LC/MS/MS	Japão	-	5,7	Komori et al. (2004)
		SPE-C18 e NH ₂ prophil	LC/MS/MS	Espanha	-	<ld< td=""><td>Farré et al. (2007)</td></ld<>	Farré et al. (2007)
		SPE	GC/MS/MS	México	-	< 2,5	Gibson et al. (2007)
		SPE-Discos de extração	GC/MS/MS	Amsterdam	3,2	< 0,3-5,9	Vethaak et al. (2005)
		SPE-C18	GC/MS	França	6,05	4,9-7,1 ^a	Cargouët et al. (2004)

Tabela 1. Concentrações de Bisfenol A, 17β-estradiol e 17α-etinilestradiol determinadas em amostras ambientais do Brasil e do mundo, metodologias de extração e detecção utilizadas.

Composto	Matriz	Matriz Tipo de extração	Tipo de detecção	Localização	Concentração (ng L ⁻¹)		Referência
Composito	TVIULIZ	Tipo de extrução	Tipo de detecção		Média	Min-Máx	Kerereneu
17α-etinilestradiol	Esgoto bruto	SPE-C18	LC/MS/MS	Áustria	17,78°	3-70 ^a	Clara et al. (2005)
		SPE-Oasis HLB	GC/ MS	Canadá	$1,0^{c}$	0-2	Fernandez et al. (2007)
		SPE-Oasis	LC/MS/MS	Itália	-	ND	Laganà et al. (2004)
		SPE	LC/PDA/MS	Espanha	-	< 5,0	Petrovic et al. (2002)
		SPE	LC-MS-MS	Itália	$3,0^{c}$	0,40-13	Baronti et al. (2000)
		SPE-LC18	GC/MS	Austrália	-	< 5	Braga et al. (2005)
		SPE-Oasis HLB	LC/MS/MS	Japão	-	5,7	Komori et al. (2004)
		SPE	LC/MS/MS	Espanha	-	<ld< td=""><td>Farré et al. (2007)</td></ld<>	Farré et al. (2007)
		SPE	GC/MS/MS	México	-	<ld< td=""><td>Gibson et al. (2007)</td></ld<>	Gibson et al. (2007)

Tabela 1. Concentrações de Bisfenol A, 17β-estradiol e 17α-etinilestradiol determinadas em amostras ambientais do Brasil e do mundo, metodologias de extração e detecção utilizadas.

Composto	Matriz	Matriz Tipo de extração	Tipo de detecção	Localização	Concentração (ng L ⁻¹)		Referência
F		1	,		Média	Min-Máx	
		SPE-Discos de extração	GC/MS	Estados Unidos	9,2°	< 0,7-4,1 ^a	Drewes et al. (2005)
		SPE	GC/MS/MS	Brasil-RJ	-	<1,0	Ternes et al. (1999a)
		SPE-C18	GC/MS	Brasil-CE	3955°	2680-5230	Souza (2011)
		SPE-Oasis HLB e ELL	GC/MS	Brasil-SP	5810	-	Ghiselli (2006)
		SPE-Oasis HLB	LC/MS/MS	Brasil-SP	-	1,1	Sodré et al. (2010
		SPE-Strata x/Strata sax	LC/MS	Brasil-MG	-	<12,4	Queiroz (2011)
'7α-etinilestradiol	Esgoto tratado	SPE-C18	GC/MS/MS	Bélgica	53°	22,6-83,4 ^a	Pauwels et al. (2008)
		SPE	LC/MS/MS	Espanha	ND	ND	Vega-Morales et al. (2010)

Tabela 1. Concentrações de Bisfenol A, 17β-estradiol e 17α-etinilestradiol determinadas em amostras ambientais do Brasil e do mundo, metodologias de extração e detecção utilizadas.

Composto	Matriz	Tipo de extração	Tipo de detecção	Localização	Concentração (ng L ⁻¹)		Referência
				_	Média	Min-Máx	
17α-etinilestradiol	Esgoto tratado	SPE	GC-MS	Alemanha	0,7	0,1-8,9	Kuch & Ballschmiter
		SPE-Discos de extração	GC/MS/MS	Amsterdam	2,6	< 0,3-2,6	Vethaak et al. (2005)
		SPE-C18	GC/MS	França	3,67	2,7-4,4 ^a	Cargouët et al. (2004)
		SPE-C18	LC/MS/MS	Áustria	17 ^c	ND-106 ^a	Clara et al. (2005)
		SPE-Oasis HLB	GC/ MS	Canadá	25,66°	0-178	Fernandez et al. (2007)
		SPE-Discos C18	GC/MS	Estados Unidos	4,1°	< 0,7-4,1	Drewes et al. (2005)
		SPE-Oasis	LC/MS/MS	Itália	-	ND	Laganà et al. (2004)
		SPE	LC-MS-MS	Itália	0,45	ND-1,7	Baronti et al. (2000)
		SPE	GC/MS	República Checa	4,2	3,9-5	Morteani et al. (2006)

Tabela 1. Concentrações de Bisfenol A, 17β-estradiol e 17α-etinilestradiol determinadas em amostras ambientais do Brasil e do mundo, metodologias de extração e detecção utilizadas.

Composto	Matriz	Tipo de extração	Tipo de extração Tipo de detecção	Localização	Concentração (ng L ⁻¹)		Referência
Composito	17144112	Tipo de carração	Tipo de detecção	Documzação	Média	Min-Máx	Reservicion
		SPE-Oasis HLB	ELISA	Austrália	0,56 ^c	0,11-1,14 ^a	Ying et al. (2009)
		SPE	GC/MS/MS	Alemanha	1	15 ^b	Ternes et al. (1999a)
		SPE	GC/MS/MS	Canadá	9	42 ^b	Ternes et al. (1999a)
		SPE	LC/PDA/MS	Espanha	-	< 5,0	Petrovic et al. (2008)
		SPE-C18	GC/MS	Brasil-CE	1100°	1000-1200	Souza (2011)
		SPE-Oasis HLB e ELL	GC/MS	Brasil-SP	5040	-	Ghiselli (2006)
7α-etinilestradiol	Água superficial	LLE	GC/MS	Estados Unidos	73	831	Kolpin et al. (2002)
		SPE	GC/MS	Alemanha	0,4	0,10-5,1	Kuch & Ballschmiter

Tabela 1. Concentrações de Bisfenol A, 17β-estradiol e 17α-etinilestradiol determinadas em amostras ambientais do Brasil e do mundo, metodologias de extração e detecção utilizadas.

Composto	Matriz	Matriz Tipo de extração	Tipo de detecção	Localização	Concentração (ng L ⁻¹)		Referência
eomposto	11244122		Tipo de desecção	200011200	Média	Min-Máx	110101 0110111
17α-etinilestradiol	Água superficial	SPE-Oasis	LC/MS/MS	Itália	3	ND-1	Laganà et al. (2004)
		SPE-C18	LC/MS/MS	Itália	16,01°	< 0,8-34	Pojana et al. (2007)
		SPE-Discos de extração	GC/MS/MS	Amsterdam	0,4	< 0,3-0,4	Vethaak et al. (2005)
		SPE-C18	GC/MS	França	1,75	1,1-2,9	Cargouët et al. (2004)
		SPE	GC/MS	República Checa	3,3	1,4-4,6	Morteani et al. (2006)
		SPE-Oasis HLB	LC/MS/MS	Turquia	12,93 ^d	<ld-14< td=""><td>Aydin & Talinli (2013)</td></ld-14<>	Aydin & Talinli (2013)
		SPE-Oasis HLB	GC/MS	China	0,35 ^c	0,27-0,43	Zhang et al. (2011)
		SPE-Oasis HLB	GC/MS	China	5,81 ^d	ND-35,6	Lei et al. (2009)
		SPE-Oasis HLB	ELISA	Austrália	0,14 ^c	0,04-0,52 ^a	Ying et al. (2009)

Tabela 1. Concentrações de Bisfenol A, 17β-estradiol e 17α-etinilestradiol determinadas em amostras ambientais do Brasil e do mundo, metodologias de extração e detecção utilizadas.

Composto	Matriz	triz Tipo de extração	Tipo de detecção	Localização	Concentração (ng L ⁻¹)		Referência
C			F = # = # = # = # = # = # = # = # = # =		Média	Min-Máx	
17α-etinilestradiol	Água superficial	SPE-C18	LC/MS/MS	Brasil-RJ	-	ND	Kuster et al. (2009)
		SPE-C18	LC/MS	Brasil-MG	21,2	3,0-54	Moreira (2008)
		SPE-C18	LC/FL	Brasil-SP	20,13	11,4-30,1 ^a	Filho & Araújo, (2006)
		SPE-Oasis HLB e ELL	GC/MS	Brasil-SP	1862,5 ^d	<1000-3500	Ghiselli (2006)
		SPE-Oasis HLB	LC/DAD/FL	Brasil-SP	1386	< 17-4.390	Montagner & Jardim (2011)
		SPE-C18	LC/DAD	Brasil-SP	-	191	Torres (2009)
		SPE-Oasis HLB	LC/MS/MS	Brasil-SP	-	25	Sodré et al. (2010)
		SPE-Oasis HLB	LC/DAD/UV	Brasil-SP	116,67	6-310	Sodré et al. (2007)
		SPE-Oasis HLB	-	Brasil-DF		<ld< td=""><td>Santana (2013)</td></ld<>	Santana (2013)

ND: Não detectado; LD:Limite de detecção; ^aConcentração média; ^bConcentração máxima; ^cCálculo feito com base nas concentrações >LQ (Limite de quantificação); ^dCálculo feito com base nas concentrações médias informadas pelos autores; ^e Dado único.

Os principais objetivos da SPE são: remoção de interferentes da matriz, concentração e isolamento dos analitos. Esta técnica baseia-se na separação líquido-sólido, que ocorre ao se passar a amostra por um cartucho de extração, que contém uma fase sólida (sorvente) que irá reter os analitos (Jardim 2010). Logo, a escolha do sorvente apropriado dependerá de conhecimento acerca dos mecanismos de interação entre o sorvente e o analito de interesse e a fase sólida. Dentre as principais forças químicas e físicas atuantes entre as moléculas do analito e do sorvente, destacam-se as ligações de hidrogênio, interações dipolo-dipolo, dipolo induzido e interações iônicas (Zwir-Ferenc & Biziuk 2006).

Os cartuchos utilizados em SPE são formados basicamente por um tubo de polipropileno contendo material sorvente, com 40-60 µm de tamanho de partícula. Existe uma grande variedade de sorventes, dentre os quais pode se citar os quimicamente modificados de gel de sílica, os poliméricos e os grafitados ou de carbono porosos (Jardim 2010). Em todos os casos, são materiais poliméricos tridimensionais que são fabricados sob condições destinadas a proporcionar um material poroso, porém rígido e com uma grande área superficial. Para aumentar a sua aplicabilidade, a superfície do material de sílica é geralmente modificada por ligação de uma ampla variedade de grupos funcionais. A natureza da funcionalidade pode ser não-polar (por exemplo, C18), polar (por exemplo, NH₂), iónica ou de modo misto (C8 / de permuta catiônica) (Žwir-Ferenc & Biziuk 2006; Jardim 2010)

Em geral os autores dividem os procedimentos de SPE em 04 etapas:

 i) Condicionamento do sorvente: nessa etapa lava-se o cartucho e ativa-se o sorvente de forma a deixar os sítios ativos disponíveis para interagirem com os analitos;

- ii) Introdução da amostra: nessa etapa ocorre a retenção do analito e de algumas moléculas interferentes no sorvente;
- iii) Limpeza do cartucho para remoção dos interferentes (*clean up*): em geral as moléculas interferentes possuem interação mais fraca com a fase sólida e, por estarem menos retidos que o analito, são removidas. Essa é uma etapa opcional e depende das características da matriz;
- iv) Eluição do analito: normalmente utiliza-se um solvente ou uma mistura de solventes;

Após passar a amostra pelo processo de extração, obtêm-se o fator de concentração pela razão entre o volume inicial de amostra aplicado no cartucho e o volume final de solução concentrada. A concentração pode ser aumentada por um fator de 100 a 5000, dependendo do volume inicial da amostra. Isso torna possível a análise qualitativa e quantitativa de compostos em concentrações traço (Jardim 2010).

Vários métodos analíticos têm sido descritos na literatura para a determinação de IEs em amostras ambientais. Entre esses, a cromatografia líquida (LC) tem sido a técnica de separação predominante (Tabela 1), sendo especificamente recomendada para separar poluentes emergentes com alta polaridade e baixa volatilidade (Silva & Collins 2011). A combinação entre a cromatografia e a detecção dos analitos por espectrometria de massa (MS) permite a separação de uma mistura em seus componentes individuais e a subsequente identificação de cada composto da mistura, tanto qualitativa como quantitativamente (Sosa-ferrera et al. 2013). Além disso, a espectrometria de massa é uma técnica sensível e seletiva, pois fornece informações acerca da estrutura molecular dos compostos (Briciu et al. 2009).

Outros detectores tais como: o de absorção fotométrica na faixa do ultravioleta (UV), o de arranjo de diodos (DAD) e os por fluorescência molecular (FL) também são

utilizados em série com os equipamentos de HPLC (do inglês *High-performace liquid chromatography*) para determinação de compostos que absorvem na região do ultravioleta ou que são fluorescentes (Tabela 1). Nesse caso, os limites de detecção, em comparação ao uso de espectrometria de massa são mais altos (na faixa de µg L⁻¹ a ng L⁻¹), sendo melhor aplicados em análises ambientais onde se espera concentrações dos analitos na matriz na faixa de µg L⁻¹. Essas técnicas apresentam as seguintes vantagens:

- i) Têm menor custo, quando comparados com HPLC/MS;
- ii) No caso do detector de DAD, permite a comparação entre os espectros de uma molécula obtidos para a amostra e para um padrão. Esse dado é utilizado para avaliar a seletividade do método, confirmando a presença do composto na amostra em análise;
- iii) Quando mais de um detector é utilizado em série, é possível obter um fator a mais para a confirmação da presença do analito na amostra analisada.

Tendo em vista a importância da identificação e quantificação de substâncias com atividade estrogênica em matrizes ambientais, o presente trabalho propõe: 1) desenvolver um método analítico empregando HPLC/DAD/FL para a detecção e quantificação de E₂, EE₂ e BPA; 2) aplicar a metodologia em amostras de água do Lago Paranoá e das Estações de Tratamento Sul e Norte (Brasília-DF).

3.2. Materiais e métodos

3.2.1. Limpeza de vidraria

Toda a vidraria utilizada foi inicialmente imersa em solução com hipoclorito de sódio (2,5%) por 24 h. Em seguida, com auxílio de escovas de limpeza, foram removidos os resíduos das paredes internas e externas. Os materiais foram então enxaguados em água corrente e imersos em solução extran 8% por 48h. Após esse tempo, foram enxaguados novamente em água corrente (10 vezes) e imersos em banho

ultrassônico com água destilada por 40 min. Foi feita então a higienização utilizando álcool e acetona PA seguido de mais um enxague com água destilada e água ultrapura. A vidraria volumétrica foi seca à temperatura ambiente em bandejas recobertas com papel alumínio e as demais vidrarias levadas à estufa a 60 °C por 24h.

3.2.2. Análise cromatográfica

3.2.2.1. Reagentes e Padrões

Padrões de E₂ (E8875, 98% de pureza), EE₂ (46263, 99,3% de pureza) e BPA (239658, 99% de pureza) foram obtidos da Sigma (Sigma-Aldrich Co, St. Louis, MO, USA). Metanol (MeOH) e Acetonitrila (ACN) usados no preparo das amostras e nas análises cromatográficas foram de grau HPLC adquiridos de J.T.Baker SOLUSORB (Xalostoc, Edo. De Mexico). Ácido Trifluorácético (TFA) foi obtido de VETEC (Duque de Caxias, RJ, Brasil) e a água ultrapura foi obtida em aparelho de purificação da marca Thermo Scientific (modelo Thermo eletron LED GmbH).

3.2.2.2. Instrumentação

A técnica analítica empregada para identificar e quantificar os IEs foi HPLC/DAD/FL. O equipamento utilizado foi um Shimadzu-Proiminence composto por: desgaseificador (modelo DGU 20 A5), módulo de distribuição de solvente (modelo LC-20AT), detector por fluorescência (modelo RF-20 A), detector por arranjo de diodos (modelo SPD-M20 A) e sistema controlador CBM 20 A. Esse equipamento está localizado no Departamento de Fisiologia da Universidade de Brasília e foi cedido para uso por colaboradores desta pesquisa. A coluna utilizada foi uma C18 Phenomenex Kinetex, 5 μm (250 x 4.60 mm) acoplada a uma pré-coluna. O Software usado para processamento e identificação dos parâmetros cromatográficos foi o LC Solution (Shimadzu, Tokyo, Japan).

3.2.2.3. Desenvolvimento do método analítico

Inicialmente foi feita uma revisão de literatura de forma a estabelecer o procedimento adequado para a determinação dos compostos de interesse, utilizando-se HPLC/DAD/FL. Objetivou-se o desenvolvimento de um método analítico no qual fosse possível a determinação simultânea de três substâncias com atividade estrogênica a serem monitoradas nas águas do Lago Paranoá e Efluente das ETEs Sul e Norte: E2, EE2 e BPA. A partir dos dados obtidos na literatura, foram feitos estudos preliminares para avaliar a melhor metodologia de separação cromatográfica para os três compostos. Foram determinados os comprimentos de onda a serem utilizados no detector de fluorescência, os quais ficaram estabelecidos em 225 nm para excitação e 310 nm para emissão. Foi estabelecido também o comprimento de onda máximo a ser utilizado no detector de DAD que foi de 230 nm para os três analitos.

A fase móvel foi estabelecida através de testes com gradientes de água e acetonitrila, onde se obteve uma mistura isocrática ideal de ACN:H₂O 40:60 (v/v) com o agente de pareamento iônico TFA (0,12%) para a determinação simultânea dos compostos. Foi feito um estudo da separação de cada composto isoladamente e depois da mistura na concentração de 1,0 μg mL⁻¹. A melhor vazão de injeção foi a de 0,8 ml min⁻¹ para um volume de 50 μL, pois proporcionou as melhores condições em um tempo máximo de análise cromatográfica de 20 minutos. A análise foi feita de forma contínua com dois detectores instalados em série: fluorescência e arranjo de diodos.

As soluções estoque foram preparadas a partir da dissolução de 5,00 mg de cada padrão sólido em 10 mL de metanol (500 μg mL⁻¹) e as soluções de trabalho obtidas a partir da diluição da solução estoque em metanol 40:60 (v/v).

3.2.2.4. Confiabilidade do método analítico

A confiabilidade do método foi avaliada pela resposta analítica obtida através de ensaios de determinação de seletividade, linearidade, precisão e exatidão conforme descrito abaixo:

a) Seletividade

A seletividade de um método instrumental é a capacidade de avaliar, de forma inequívoca, as substâncias em exame na presença de componentes que podem interferir com a sua determinação em uma amostra complexa (Ribani et al. 2004).

No presente estudo, a seletividade foi avaliada de duas formas: 1) pela comparação entre o espectro obtido para cada composto nas amostras, por meio do detector de arranjo de diodos, com o espectro obtido pelo padrão de cada um dos compostos; 2) pela comparação do tempo de retenção dos analitos, obtido nos dois detectores, para o padrão e a amostra. O resultado indica a presença ou não do composto na amostra e se há picos interferentes com o mesmo tempo de retenção dos analitos.

b) Curva analítica

A quantificação dos compostos de interesse nas amostras de água superficial e efluentes das ETEs foi obtida a partir da comparação entre a área obtida no cromatograma da substância a ser quantificada nas amostras com as áreas obtidas em cromatogramas de soluções com concentrações conhecidas, preparadas a partir de um padrão em solvente. Para isso, soluções estoques dos padrões foram preparadas na concentração de 500 mg L⁻¹ em metanol e, a partir de diluições sucessivas dessa solução em metanol 40:60 (v/v), foram preparadas soluções de trabalho de forma a se obter uma série de soluções com diferentes concentrações de cada padrão. Essas concentrações variaram entre 0,02 e 2 mg L⁻¹ para o BPA e o E₂ e entre 0,05 e 2 mg L⁻¹ para o EE₂. As curvas analíticas foram construídas a partir da média das áreas obtidas para cada

concentração e a linearidade avaliada pela determinação do coeficiente de correlação (r²) obtido pela relação entre a área dos picos cromatográficos em função das diferentes concentrações do analito.

Os limites de detecção e quantificação foram determinados baseados nos parâmetros das curvas analíticas. Para isso, foi determinado o desvio padrão do intercepto a partir da média dos valores obtidos nas medições das três réplicas, e esse foi utilizado como parâmetro indicativo do desvio padrão da linha de regressão conforme descrito por Miller & Miller (2002). As seguintes fórmulas foram utilizadas:

$$LD = 3.3 \times \frac{s}{S}$$

$$LQ = 10 \times \frac{s}{S}$$

Onde s é a estimativa do desvio padrão do coeficiente linear da equação e S é a inclinação ou coeficiente angular da curva analítica.

c) Precisão

A precisão representa a dispersão de resultados entre ensaios independentes. Uma das formas de se avaliar a precisão é por meio de repetitividade ou precisão intra análise. Esta, representa a concordância entre os resultados de medições sucessivas de um mesmo método, efetuadas sob as mesmas condições de medição (mesmo procedimento, mesmo analista, mesmo instrumento usado sob as mesmas condições, mesmo local e repetições em um curto intervalo de tempo) (Ribani et al. 2004).

No presente estudo, a precisão do método cromatográfico foi avaliada por meio da repetibilidade interdia obtida através da concordância entre os resultados de quinze medidas sucessivas do método, sendo três repetições em cinco níveis, efetuadas pelo mesmo analista, sob as mesmas condições de análise, no mesmo instrumento em três dias diferentes. Seguiu-se, portanto, o critério estabelecido pela ICH (*International Conference on Harmonisation of Technical Requirements for Registration of*

Pharmaceuticals for Human Use) e a pela ANVISA, que sugerem a verificação da repetitividade a partir de um mínimo de nove determinações cobrindo o limite especificado do procedimento, ou a partir de um mínimo de seis determinações a uma concentração similar ao valor esperado.

d) Exatidão

De acordo com a ANVISA, a exatidão de um método analítico é a proximidade dos resultados obtidos pelo método em estudo em relação ao valor verdadeiro. Uma das formas de se avaliar a exatidão é por meio de ensaio de recuperação, pois esse reflete a quantidade de determinado analito recuperado no processo comparado à quantidade real, presente na amostra. Dessa forma, a exatidão é expressa como erro sistemático percentual inerente ao processo, que geralmente ocorre pela perda da substância devido à baixa recuperação da extração, medidas volumétricas imprecisas ou substâncias interferentes na amostra (Moreira 2008).

No presente trabalho, a exatidão foi avaliada através de ensaios de recuperação onde soluções contendo o padrão de cada substância foram adicionadas à amostra e submetidos à mesma metodologia de extração e quantificação. Para isso, foram feitas 06 determinações, em dias distintos, de soluções na concentração de 20 µg L⁻¹ para os três analitos em um volume final de 500 mL. O resultado foi expresso pela relação entre as concentrações determinadas experimentalmente e a concentração teórica correspondente da seguinte forma:

$$Recuperação = \frac{C1-C2}{C3} \times 100$$

Onde:

C₁: Concentração determinada na amostra fortificada

C₂: Concentração determinada na amostra não fortificada

C₃: Concentração nominal

3.2.3. Extração e concentração dos analitos

A extração dos analitos foi realizada em fase sólida, empregando cartuchos Stracta C18-E 200 mg/3 mL Phenomenex em um sistema de extração que foi desenvolvido no Laboratório de Genética Toxicológica da Universidade de Brasília e funcionou acoplado a uma bomba ao vácuo Tecnal modelo TE 058. O método de extração foi adaptado da metodologia desenvolvida por Torres (2009), da seguinte forma: O condicionamento dos cartuchos foi feito com 6 mL de metanol (grau HPLC), seguido de 6 mL de água ultrapura, ambos com fluxo de 2,0 mL min⁻¹. Após o condicionamento da fase sólida, seguiu-se com a concentração dos analitos, onde foram utilizados 1000 mL de cada uma das amostras do Lago e 500 mL das amostras dos efluentes das ETES em fluxo contínuo de 2,0 mL min⁻¹. Durante todo o processo, tomou-se cuidado para que a passagem tanto dos solventes condicionantes quanto da amostra fosse contínua. Dessa forma, evitou-se a ocorrência de fissuras e rachaduras na fase sólida que pudessem promover caminhos preferenciais e permitir que os analitos presentes não interagissem com os sítios ativos da fase sólida (Żwir-Ferenc & Biziuk 2006). Concluída essa etapa, o cartucho foi lavado com 10 mL de água ultrapura para remoção de moléculas interferentes e em seguida seco à vácuo por 30 min. A eluição das moléculas retidas no cartucho foi feita com 10 mL de metanol grau HPLC, com o mesmo fluxo usado para concentrar as amostras. O metanol foi armazenado em frascos âmbar de vidro e reservados a -16°C por no máximo 03 dias. Em seguida, o eluato foi evaporado em banho-maria, utilizando um sistema à vácuo (aparelho rotovapor marca Buchi V 850 com pressão de 200 mbar e temperatura de banho de 40 °C), conforme método testado por Vallejo-Rodríguez et al. (2011). A ressuspensão foi feita com 2 mL de solução preparada com 40 % de metanol e 60 % de água ultrapura. Por fim, procedeu-se então a filtração através de filtro Millex 0,22 nylon Millipore e a injeção de 50 µL em HPLC (Figura 1).

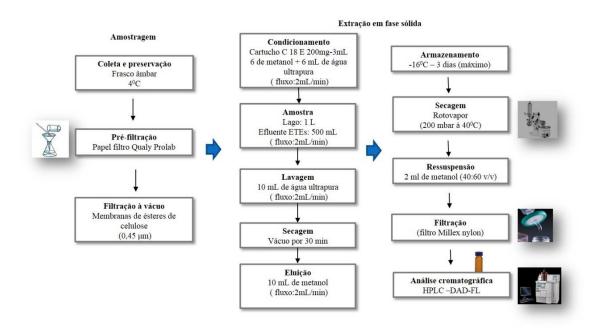


Figura 1: Metodologia de extração e concentração de amostras para análise de E2, EE2 e BPA

3.2.4. Amostragem: coletas e processamento

3.2.4.1. Campanhas amostrais

A quantificação dos três compostos (BPA, E₂ e EE₂) em amostras de água do Lago Paranoá e nos Efluentes das ETEs Sul e Norte foram feitas em 08 campanhas amostrais (entre os meses de outubro de 2014 a outubro de 2015). As coletas foram realizadas em meses chuvosos, de acordo com dados do Instituto Nacional de Meteorologia, INMET (Figura 2). Para tanto, foram seguidos os seguintes passos: (1) definição das metodologias de coleta e preservação das amostras, (2) extração e concentração dos analitos, (3) separação e determinação dos compostos usando HPLC/DAD/FL.

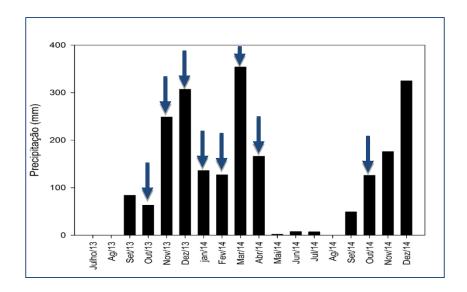


Figura 2: Precipitação acumulada mensal durante o período de realização das coletas. Fonte: adaptado de INMET(2015). As setas indicam os meses em que foram realizadas as coletas.

3.2.4.2. Amostragem e preservação

As amostras de efluente das ETEs foram obtidas de forma acumulada da seguinte forma: a amostragem foi realizada por um coletor automático da CAESB, que fica instalado na saída de cada uma das estações, em intervalos de 1h, entre 0h e 24h, e a amostra final feita manualmente em frasco âmbar (com capacidade para 3L), com volume proporcional à vazão horária da Estação conforme demonstrado na Tabela 2. Do volume final obtido, 03 litros foram destinados para a determinação dos IEs e o restante para as análises físico-químicas de rotina da CAESB. As amostras foram então armazenadas em caixas de isopor com gelo para serem transportadas.

Capítulo 03: Quantificação de interf. endócrinos em amostras ambientais

Tabela 2. Volumes para a composição de amostra de água residuária

Faixa de vazão (L/s)	Volume da amostra acumulada (mL)
Abaixo de 576	55
577 a 704	85
705 a 980	110
981 a 1211	145
1212 a 1437	170
1438 a 1645	200
1646 a 1696	220
Acima de 1696	240

Fonte: CAESB, DF.

Para avaliar a qualidade das águas do Lago Paranoá quanto à presença dos IEs E₂, EE₂ e BPA, foram escolhidos inicialmente dois pontos amostrais considerados representativos, F e A₅, conforme demonstrado na Figura 3. O principal critério para a escolha desses pontos foi a distância dos locais de lançamento do efluente das ETEs. No entanto, com o desenvolvimento dos trabalhos foi constatado que a metodologia desenvolvida melhor se aplicava para amostras das ETEs e para as regiões do Lago, sob influência da descarga de esgoto tratado. Sendo assim, na quinta campanha amostral foi inserido o ponto E (Figura 3), objetivando a obtenção de dados referentes aos dois "braços" do Lago que estão sob influência das ETEs, ficando da seguinte forma:

- a) Ponto F, situado próximo à barragem do Paranoá, distante dos pontos de lançamento de esgoto;
- b) Pontos A5 e E na condição oposta, próximo aos pontos de descarga das ETEs Sul e Norte respectivamente, em regiões do Lago sob forte influência do efluente tratado.

Figura 3. Mapa com a localização dos pontos amostrais: Lago Paranoá e ETEs Sul e Norte. Fonte: Google Earth (2015).

As coordenadas geográficas dos três pontos estão descritas na Tabela 3. Os pontos escolhidos são também pontos de coleta da CAESB para as análises de parâmetros físico-químicos e limnológicos.

Tabela 3. Coordenadas geográficas dos pontos amostrais do Lago Paranoá

		Coordenadas UTM (SICAD)*		
Pontos	Referência	E	N	
A5	Próximo à ETE-Sul	190908	8247778	
F	Captação lago Paranoá	201213	8251722	
E	Próximo à ETE Norte	8256783	192568	

^{*}Sistema Geográfico do Distrito Federal, 1991. Fonte: CAESB.

As coletas do Lago foram realizadas por um funcionário da CAESB, devidamente treinado para realizar a função. Para acesso aos pontos, utilizou-se uma lancha da CAESB, específica para esse uso. Foram coletados 2 frascos de 1 litro de amostra em cada um dos pontos. As coletas foram feitas com uma garrafa de Van Dorn,

à profundidade de 5m para o ponto F e 1m para os pontos A₅ e E e, em seguida, as amostras foram condicionadas em frasco âmbar e armazenadas em caixas de isopor com gelo para serem transportadas. O processamento teve início logo após a chegada ao laboratório.

3.2.4.3. Processamento das amostras do Lago e das ETEs: Extração e concentração

O processamento das amostras foi realizado imediatamente após a coleta e envolveu três etapas: filtração, concentração e extração em fase sólida. As amostras foram pré-filtradas com o uso de filtros de papel filtro (marca Qualy J Prolab), em seguida foram filtradas a vácuo em membranas de ésteres de celulose Millipore, com 0,45 µm de tamanho de poro. Após a filtração, as amostras foram concentradas por SPE conforme metodologia já descrita (Figura 1).

3.3. Resultados e discussão

3.3.1. Desenvolvimento do método analítico

Os tempos de retenção dos analitos, nas condições do método, foram de 11,3, 13,5 e 17,8 min para o BPA, E₂, e EE₂ respectivamente, conforme demonstrado na Figura 4.

Os resultados obtidos nos ensaios de avaliação da confiabilidade seguem descritos abaixo.

a) Seletividade

A Figura 5 mostra a comparação entre os espectros de absorção das moléculas de BPA, E₂ e EE₂, obtidos para soluções padrão, e amostras de efluente final das ETEs nas quais houve quantificação. Esse procedimento foi seguido para todas as amostras nas quais houve detecção dos analitos. Os resultados obtidos evidenciam um grau de semelhança (padrão x amostra ambiental), medido pelo detector de arranjo de

diodos, variando entre 94 e 99%. Além disso, os tempos de retenção das moléculas da solução padrão e das amostras ambientais, obtidos nos dois detectores (FL e DAD), foi coincidente, sendo de 11,4 min para o BPA, 13,3 min para o E₂ e 17,7 min para o EE₂. Essas duas análises confirmaram, portanto, a presença dos analitos de interesse nas amostras.

b) Curva analítica

As curvas analíticas obtidas pela injeção em triplicata de soluções padrão, em seis concentrações, seguem demonstradas na Figura 6. Observa-se que o detector de fluorescência apresenta maior sensibilidade para os três analitos se comparado com o detector de arranjo de diodos.

Os parâmetros das curvas analíticas, obtidos a partir da média das três réplicas, seguem demonstrados na Tabela 4. Esses foram os parâmetros utilizados para o cálculo dos limites de detecção e quantificação que seguem demonstrados na Tabela 5. Observa-se que dentro das faixas lineares descritas, o método analítico empregando HPLC/DAD/FL atendeu às exigências da ANVISA, pois todas as curvas apresentaram r² de 0.99.

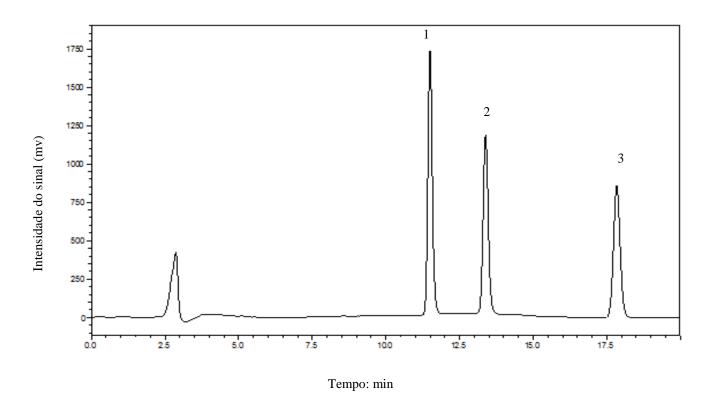


Figura 4. Cromatograma de uma solução contendo os três analitos em metanol 40:60 (v/v) na concentração de 1 μ g mL⁻¹ obtido por HPLC/FL nas condições do método. (1) Bisfenol A; (2)17 β -estradiol e (3)17 α -etinilestradiol.

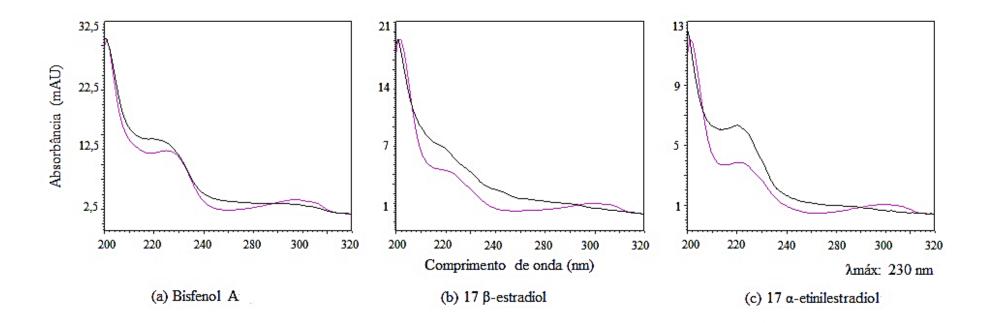


Figura 5. Comparação entre os espectros de absorção das moléculas de bisfenol A, 17β -estradiol e 17α -etinilestradiol obtidos pelo detector de arranjo de diodos em soluções padrão (rosa) com concentração de 1μ g mL⁻¹ e em amostras de efluente final das ETEs nas quais houve detecção (preto) nas condições do método. (a) Amostra de efluente tratado da ETE Sul obtida em novembro/2013; (b) Amostra de efluente tratado da ETE Norte obtida em novembro/2013; (c) Amostra de efluente tratado da ETE Sul obtida em janeiro/2014.

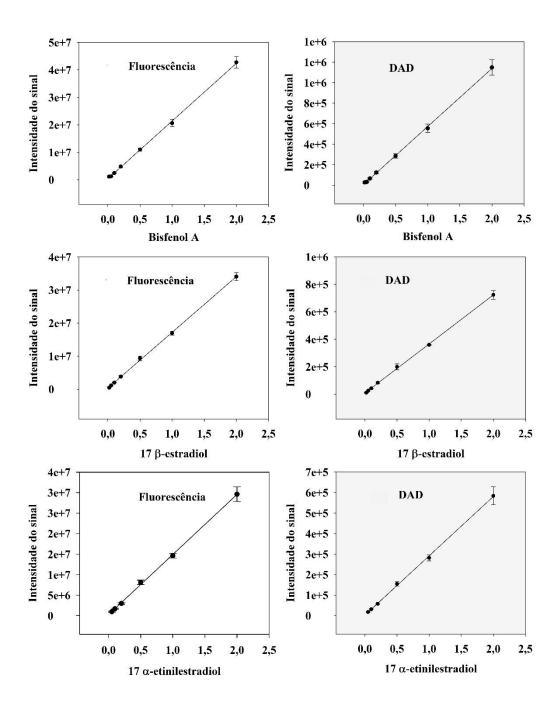


Figura 6. Curvas de calibração dos analitos (E_2 , EE_2 e BPA) obtidas nos detectores de fluorescência e de arranjo de diodos, nas condições do método, através da injeção em triplicata de soluções padrão com 6 concentrações (mg L^{-1}).

Tabela 4. Parâmetros das curvas analíticas obtidas para padrões de bisfenol A, 17 β -estradiol e 17 α -

etinilestradiol obtidos nas condições do método.

Analito Detector	Faixa linear ^a	Coeficiente angular	Coeficiente linear	Coeficiente de correlação (r²)	
Detector de fluorescên	сіа				
Bisfenol A	0.02 - 2	21002254,96	391158,38	0,99	
17β-estradiol	0.02 - 2	16842595,49	354984,21	0,99	
17α-etinilestradiol	0.05 - 2	14647023,12	278158,66	0,99	
Detector de arranjo de diodos					
Bisfenol A	0.02 - 2	565467,47	7490,18	0,99	
17β-estradiol	0.02 - 2	357082,02	8700,41	0,99	
17α-etinilestradiol	0.05 - 2	289244,21	2310,91	0,99	

^aEmpregando-se soluções padrão dos compostos em metanol 40:60 (v/v) em mg mL⁻¹.

Tabela 5. Limites de detecção (LD) e quantificação (LQ) do bisfenol A, 17β -estradiol e 17α -etinilestradiol em amostras de água do Lago Paranoá e em efluentes das ETEs Sul e Norte obtidos a partir dos parâmetros das curvas analíticas obtidas, para os detectores de fluorescência e de arranjo de diodos.

Analito	Lago F	Lago Paranoáª		Estações de tratamento de esgoto ^b	
Detecto	or LD ^c	LQc	$\mathbf{L}\mathbf{D}^{\mathrm{c}}$	$\mathbf{L}\mathbf{Q}^{\mathbf{c}}$	
Detector de fluorescência					
Bisfenol A	65	197	130	394	
17β-estradiol	59	179	118	357	
17α-etinilestradiol	80	242	160	485	
Detector de arranjo de diodos					
Bisfenol A	60	182	120	363	
17β-estradiol	60	182	120	364	
17α-etinilestradiol	84	255	168	509	

^aConsiderando um fator de concentração de 500 vezes; ^bConsiderando um fator de concentração de 250 vezes; ^cng L⁻¹

c) Precisão intraensaio

Os resultados obtidos nos testes de precisão foram avaliados através do cálculo do coeficiente de variação (CV) A e seguem representados na Figura 07.

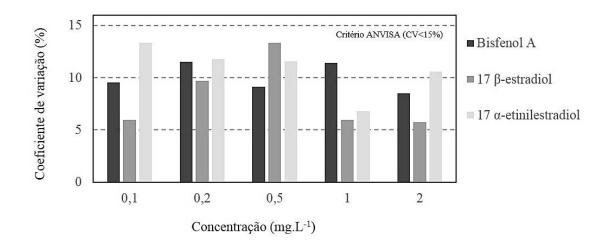


Figura 7. Repetibilidade dos resultados obtidos em HPLC/FL, nas condições do método, para soluções padrão contendo diferentes concentrações de cada um dos analitos (3 repetições realizadas em dias diferentes) expressa pelo coeficiente de variação (CV).

O valor máximo de CV depende do procedimento empregado, da concentração da amostra, do tipo de matriz e da finalidade do método (Raimundo 2007). A ANVISA admite CV de até 15% para amostras complexas. De acordo com esse critério, os resultados obtidos estão dentro da faixa esperada, já que os coeficientes de variação foram inferiores a 15% para os três compostos estudados em todas as concentrações testadas.

d) Exatidão: Ensaios de recuperação

Os resultados dos ensaios de recuperação seguem sistematizados na Tabela 6. Observa-se que a recuperação variou entre 70 e 77%. Em geral, a eficiência da extração varia de acordo o volume final e a concentração da amostra, sendo tanto maior quanto maiores forem essas variáveis. Os intervalos aceitáveis de recuperação para análise de resíduos geralmente estão entre 70 e 120%, com precisão de até ±20% (Ribani et al.

2004). Raimundo (2007) obteve, para os mesmos compostos extraídos em fase sólida, recuperação próxima a 100% em um volume de amostra de 1000 mL. Logo, os resultados obtidos estão dentro do que era esperado para as condições do teste.

Tabela 6. Porcentagem de recuperação média (%) e desvio padrão ao nível de 20 μg L⁻¹ dos compostos extraídos por SPE em 500 mL de amostra através da metodologia desenvolvida.

A 12	Concentração	Recuperação média	D ' 1~
Analito	(µg.L ⁻¹)	(%)	Desvio padrão
Bisfenol A	20	75	11
17β-estradiol	20	70	19
17α-etinilestradiol	20	77	11

3.3.2. Determinação de IEs em amostras de água do Lago Paranoá e em efluentes das Estações de Tratamento de Esgotos Sul e Norte

As coletas obtidas para a determinação de IEs foram realizadas em meses com altos índices pluviométricos, conforme demonstrado na Figura 2. Objetivava-se, inicialmente, a obtenção de dados referentes as duas estações, seca e chuva, no entanto, isso não foi possível devido a alguns fatores de ordem prática listados a seguir: a) o primeiro semestre do ano de 2013 foi destinado ao desenvolvimento do método analítico; b) As primeiras aplicações do método em amostras ambientais foram realizadas no mês de junho/2013; no entanto, houve a necessidade de adaptar o procedimento de extração de forma a reduzir os interferentes presente nas diferentes matrizes. Esse processo durou 3 meses, de forma que as detecções dos analitos nas amostras só obtiveram êxito a partir de outubro/13; c) Seguiu-se então com uma rotina mensal de coletas que foi interrompida em maio/14 devido a uma greve na CAESB, que durou cerca de 60 dias; d) Quando os trabalhos foram retomados, o processo de tratamento das duas ETEs estava prejudicado e foi necessário aguardar alguns meses até que a situação se normalizasse; e) Houve, então, a necessidade interromper as análises químicas para concentrar esforços na

realização dos testes ecotoxicológicos, que também fazem parte dos objetivos da presente pesquisa. Dessa forma, se justifica o grande intervalo de tempo entre as duas últimas coletas (abril – outubro/14), sendo que, a coleta realizada no mês de outubro foi feita paralelamente ao teste de toxicidade crônica em embriões de zebrafish.

Os resultados obtidos nas análises físico-químicas e, no caso das amostras de água superficial, de parâmetros liminológicos seguem como material suplementar (Tabelas S1 e S2).

3.3.2.1. Identificação e quantificação de BPA, E2 e EE2 nos Efluentes das ETEs Sul E Norte

A Tabela 7 mostra as concentrações obtidas nas amostras de efluente das ETEs Sul e Norte. As frequências de detecção foram de 100% para o BPA, 9% para o E₂ e 18% para o EE₂. Esses dados estão de acordo com a literatura onde é relatada ampla distribuição do BPA em amostras ambientais.

Os níveis de BPA variaram entre < 394 e 1231 ng L⁻¹, sendo as maiores concentrações observadas na ETE Norte nos meses de novembro e dezembro. Costa (2014) apresenta dados de um trabalho realizado pela Universidade de Ouro Preto, solicitado pela CAESB, onde são relatadas concentrações de BPA na saída das ETEs Sul e Norte variando entre <5 e 12,6 ng L⁻¹(Tabela 1), bem inferiores as encontradas neste trabalho. No entanto, os níveis de BPA aqui obtidos estão coerentes com os encontrados por Vethaak et al. (2005), Clara et al. (2005) e Fernandez et al. (2007), onde são relatados níveis de BPA em efluentes domésticos tratados em Amsterdã, na Áustria e no Canadá entre < 43–4090 ng L⁻¹; 16 – 1840 ng L⁻¹ e 11–1054 ng L⁻¹ respectivamente (Tabela 1).

Tabela 7. Concentrações de bisfenol A, 17β -estradiol e 17α -etinilestradiol em amostras de efluente das Estações de tratamento de esgotos sul e Norte através da aplicação do método desenvolvido durante as campanhas amostrais.

campanhas an	iosirais.	BPA	E2	EE2
Camp	anhas amostrais	Concentração ^a ng L ⁻¹		Concentração ^a ng L ⁻¹
ETE Norte	1 ^a campanha: out/13	924	ND	ND
	2ª campanha: nov/13	1019	<lq< td=""><td>ND</td></lq<>	ND
	3ª campanha: dez/13	1231	ND	ND
	4 ^a campanha: jan/14	735	ND	591
	5ª campanha: fev/14	*	*	*
	6ª campanha: mar/14	<lq< td=""><td>ND</td><td>ND</td></lq<>	ND	ND
	7 ^a campanha: abr/14	<lq< td=""><td>ND</td><td>ND</td></lq<>	ND	ND
	8ª campanha: out/14	*	*	*
ETE Sul	1 ^a campanha: out/13	*	*	*
	2ª campanha: nov/13	717	ND	ND
	3ª campanha: dez/13	821	ND	ND
	4ª campanha: jan/14	774	ND	<lq< td=""></lq<>
	5 ^a campanha: fev/14	*	*	*
	6ª campanha: mar/14	410	ND	ND
	7ª campanha: abr/14	407	ND	ND
	8 ^a campanha: out/14	*	*	*

^{*} Não houve coleta; ND: Não detectado; LQ: Limite de quantificação; ^a Concentração obtida no detector de fluorescência considerando um fator de concentração de 250 vezes.

A Figura 8 mostra um gráfico comparativo das concentrações médias de BPA obtidas em amostras ambientais no Brasil e no mundo. Percebe-se que os dados

variam bastante: em 41,6% das pesquisas relatadas, os níveis de BPA estão entre 1 e 100 ng L⁻¹, em 50%, os dados obtidos estão entre 100 e 1000 ng L⁻¹. Foi encontrado apenas um relato na literatura onde os níveis de BPA em amostra de esgoto tratado está acima desses valores, esse dado é do estado de São Paulo onde Ghiselli (2006) relata nível médio de BPA de 7980 ng L⁻¹. Dessa forma, os dados obtidos nessa pesquisa estão incluídos entre os 50% relatados na literatura com concentração média de 782 ng L⁻¹.

Quanto ao E₂, foi detectado em apenas uma amostra da ETE Norte e estava abaixo do limite de quantificação que foi de 357 ng L⁻¹. Esse estrógeno endógeno, apesar de ser o principal produto da secreção, em geral é pouco detectado em amostras ambientais, pois é metabolizado a estriol, o principal produto da excreção (Turan, 1999 e Lucena,2013). Quando ocorre detecção de E₂, os níveis médios estão normalmente abaixo de 100 ng L⁻¹ (Figura 9). Observa-se, no entanto, que no Brasil, são relatados níveis médios de E₂ em efluentes brutos e tratados superiores à média mundial (Figura 9). Ghiselli (2006) e Souza (2011) relatam níveis médios de E₂ em esgoto tratado de 5560 ng L⁻¹e 2673 ng L⁻¹ - respectivamente (Tabela 1). Percebe-se que o fato desse contaminante estar presente em maior concentração no esgoto bruto no Brasil (Figura 9), explica o motivo pelo qual é detectado em maior quantidade também nos efluentes tratados.

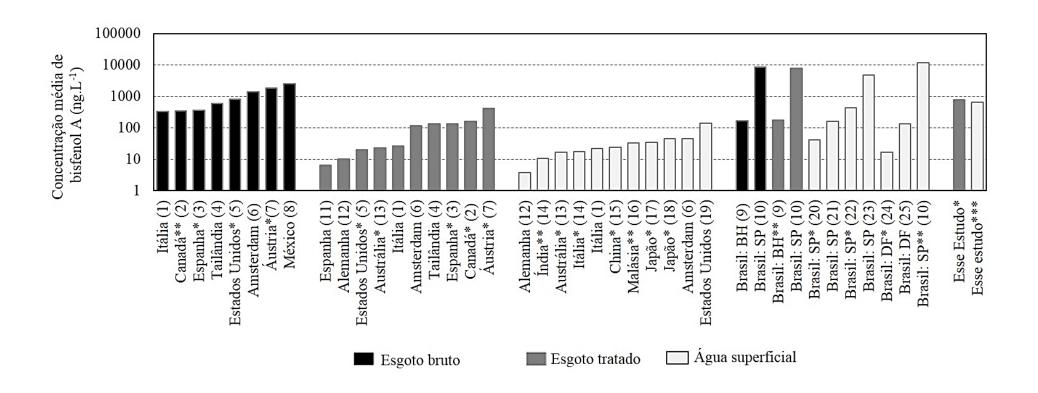


Figura 8. Concentrações médias de Bisfenol A em amostras ambientais no Brasil e no mundo. *Calculada com base na média das concentrações >LQ; **Calculada com base em concentrações médias apresentadas pelo autor; ***Única concentração obtida; (1) (Laganà et al. 2004); (2) (Fernandez et al. 2007); (3) (Céspedes et al. 2006); (4) (Pookpoosa et al. 2014); (5) (Drewes et al. 2005); (6) (Vethaak et al. 2005); (7) (Clara et al. 2005); (8) (Gibson et al. 2007); (9) (Queiroz 2011); (10) (Ghiselli 2006); (11) (Vega-Morales et al. 2010); (12) (Kuch & Ballschmiter 2001); (13) (Ying et al. 2009); (14) (Selvaraj et al. 2014); (15) (Zhang et al. 2011); (16) (Santhi et al. 2012); (17) (Hashimoto et al. 2005); (18) (Kawahata et al. 2004); (19) (Kolpin et al. 2002); (20) (Fernando F Sodré et al. 2010); (21) (Fernando F. Sodré et al. 2010); (22) (Sodré et al. 2007); (23) (Montagner & Jardim 2011); (24) (Santana 2013); (25) (Costa 2014).

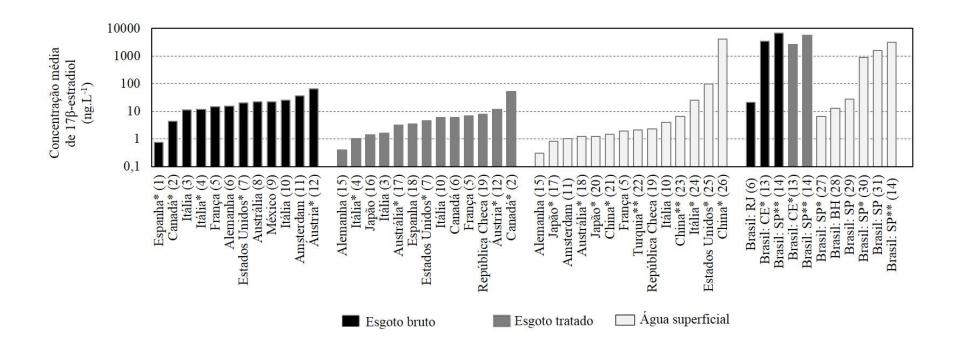


Figura 9. Concentrações médias ambientais de 17 β-estradiol no Brasil e no mundo. *Calculada com base na média das concentrações >LQ; **Calculada com base em concentrações médias apresentadas pelo autor; ***Única concentração obtida; (1) (Farré et al. 2007); (2) (Fernandez et al. 2007); (3) (D'Ascenzo et al. 2003); (4) (Baronti et al. 2000); (5) (Cargouët et al. 2004); (6) (Ternes et al. 1999a); (7) (Drewes et al. 2005); (8) (Braga et al. 2005); (9) (Gibson et al. 2007); (10) (Laganà et al. 2004); (11) (Vethaak et al. 2005); (12) (Clara et al. 2005); (13) (Souza 2011); (14) (Ghiselli 2006); (15) (Kuch & Ballschmiter 2001); (16) (Isobe et al. 2003); (17) (Ying et al. 2009); (18) (Vega-Morales et al. 2010); (19) (Morteani et al. 2006); (20) (Hashimoto et al. 2005); (21) (Zhang et al. 2011); (22) (Aydin & Talinli 2013); (24) (Pojana et al. 2007); (25) (Kolpin et al. 2002); (26) (Zhou et al. 2011); (27) (Fernando F Sodré et al. 2010); (28) (Moreira 2008); (29) (Filho & Araújo, Juliana Coutinho de Vieira 2006); (30) (Sodré et al. 2007); (31) (Montagner & Jardim 2011).

O EE₂ foi detectado em duas amostras, uma da ETE Sul e outra da ETE Norte, ambas correspondentes ao mês de janeiro do ano de 2014. As concentrações encontradas foram de < 485 e 591 ng L⁻¹ respectivamente. Esses dados estão acima dos níveis máximos de EE₂ encontrados em efluentes tratados em outros países, onde as concentrações médias de EE₂ relatadas na maior parte das pesquisas estão abaixo de 10 ng L⁻¹ (Figura 10). As maiores concentrações encontradas, com exceção do Brasil, foram relatadas no Canadá por Fernandez et al. (2007), na Áustria por Clara et al. (2005) e na Bélgica por Pauwels et al. (2008) e estão na faixa de ND-178 ng L⁻¹, ND-106 ng L⁻¹ e 22,6 – 83,4 ng L⁻¹ respectivamente (Tabela 1). Os dados aqui obtidos, estão de acordo com os níveis encontrados em efluentes domésticos tratados no Brasil onde são relatadas concentrações médias de EE₂ variando entre 1100 ng L⁻¹ (Souza 2011) e 5040 ng L⁻¹ (Ghiselli 2006). Da mesma forma que ocorre com o E₂, as altas concentrações de EE₂ obtidas em amostras de esgoto tratado no Brasil estão relacionadas com o maior aporte desse contaminante na entrada das estações (Figura 10).

Não foram encontrados na literatura dados relativos aos níveis de E_2 e E_2 em amostras de efluente doméstico no DF. Dessa forma, a presente pesquisa apresenta os primeiros relatos desses contaminantes em efluente tratado no Distrito Federal.

De uma forma geral, as concentrações encontradas na saída das ETEs podem estar associados a dois fatores: a eficiência da Estação e o aporte desses contaminantes na entrada do processo. Pesquisas realizadas no Brasil evidenciam altas concentrações desses contaminantes em esgoto bruto, se comparado com a média mundial (Figuras 8, 9 e 10). Sendo assim, mesmo que a Estação de Tratamento apresente boa eficiência na remoção dos contaminantes, os níveis encontrados na saída do processo tendem a ser proporcionais à concentração inicial. As ETEs objeto desse estudo empregam o processo de tratamento por lodo ativado, o qual é descrito na literatura como

uma metodologia de tratamento que alcança boa eficiência na remoção de IEs. As taxas de remoção variam entre 70 e 99% (Ternes et al. 1999a; Souza 2011; Baronti et al. 2000; Fromme et al. 2002; Johnson & Sumpter 2001), e estão associadas a adsorção do poluente no lodo biológico (Melo et al. 2009) e a biodegradação (Körner et al. 2000). Tendo em vista o exposto, as altas concentrações de BPA e EE₂ obtidas nas amostras de esgoto tratado nos permite inferir apenas que esses contaminantes estão presentes em grande quantidade nas amostras de efluente analisadas, se comparado à média mundial. No entanto, apesar das ETEs Sul e Norte empregarem o processo de tratamento por lodo ativado, não é possível fazer conclusões sobre a eficiência na remoção dos analitos avaliados. Para isso, recomenda-se um estudo que envolva medições dos níveis dos contaminantes no esgoto bruto e tratado.

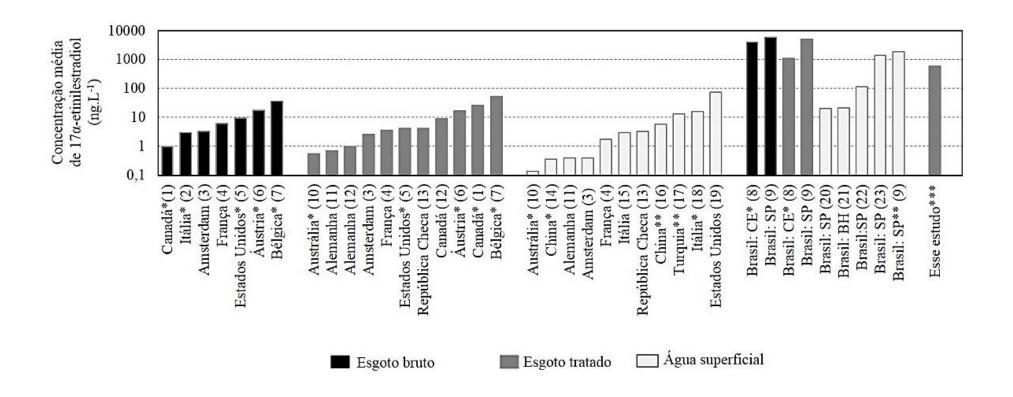


Figura 10. Concentrações médias de 17α-etinilestradiol em amostras ambientais no Brasil e no mundo. *Calculada com base na média das concentrações >LQ; **Calculada com base em concentrações médias apresentadas pelo autor; ***Única concentração obtida; (1) (Fernandez et al. 2007): (2) (Baronti et al. 2000); (3) (Vethaak et al. 2005); (4) (Cargouët et al. 2004): (5) (Drewes et al. 2005); (6) (Clara et al. 2005); (7) (Pauwels et al. 2008); (8) (Souza 2011); (9) (Ghiselli 2006); (10) (Ying et al. 2009); (11) (Kuch & Ballschmiter 2001); (12) (Ternes et al. 1999a); (13) (Morteani et al. 2006); (14) (Zhang et al. 2011); (15) (Laganà et al. 2004); (16) (Lei et al. 2009); (17) (Aydin & Talinli 2013); (18) (Pojana et al. 2007); (19) (Kolpin et al. 2002); (20) (Filho & Araújo, Juliana Coutinho de Vieira 2006); (21) (Moreira 2008); (22) (Sodré et al. 2007); (23) (Montagner & Jardim 2011).

3.3.2.2. Identificação e quantificação de BPA, E2 e EE2 em amostras de água do Lago Paranoá

Foram realizadas 13 coletas no Lago Paranoá assim distribuídas: 5 coletas no PF, 05 coletas no PA₅ e 03 coletas no PE (Tabela 8). Os percentuais de detecção obtidos foram de 23% para o BPA, 15% para o E₂ e 7,6% para o EE₂. Novamente o BPA foi o composto mais detectado.

As concentrações de BPA encontradas variaram entre <197 e 645 ng L⁻¹ e ocorreram nos pontos A₅ e F. O nível mais alto de BPA foi encontrado no ponto A₅, localizado próximo ao local de lançamento da ETE-Sul. Esses resultados estão acima do que foi relatado por Santana (2013) onde as concentrações de BPA, no Lago Paranoá, variaram entre 2,4 e 27 ng L⁻¹ (Tabela 1). No entanto, há de se considerar que Santana, em sua pesquisa, utilizou um método de coleta diferente, onde as amostras foram obtidas nas margens do Lago, sem o estabelecimento de critérios quanto a profundidade. Esse fator pode ter influenciado os resultados, visto que amostras obtidas próximas à superfície estão mais expostas a incidência de luz favorecendo os processos de fotodegradação e biodegradação. Costa (2014), apresenta resultados de um trabalho onde foram aplicados os mesmos procedimentos de coleta utilizados na presente pesquisa e relata níveis de BPA no Lago Paranoá variando entre 47,04 e 303,11 ng L⁻¹. Esses resultados estão mais próximos aos obtidos neste estudo.

Tabela 8: Concentrações de bisfenol A, $17~\beta$ -estradiol e $17~\alpha$ -etinilestradiol em amostras de água do Lago Paranoá durante as campanhas amostrais.

	ou durante as campannas amost	BPA	E2	EE2
(Campanhas amostrais	Concentração ^a ng L ⁻¹	Concentração ^a ng L ⁻¹	Concentração ^a ng L ⁻¹
PF	1a campanha: out/13	ND	ND	ND
	2ª campanha: nov/13	<lq< td=""><td>ND</td><td>ND</td></lq<>	ND	ND
	3ª campanha: dez/13	*	*	*
	4ª campanha: jan/14	*	*	*
	5ª campanha: fev/14	ND	ND	ND
	6ª campanha: mar/14	ND	ND	ND
	7ª campanha: abr/14	*	*	*
	8 ^a campanha: out/14	ND	ND	ND
PA5	1ª campanha: out/13	645	ND	ND
	2ª campanha: nov/13	ND	ND	ND
	3ª campanha: dez/13	*	*	*
	4 ^a campanha: jan/14	*	*	*
	5 ^a campanha: fev/14	ND	<lq< td=""><td>ND</td></lq<>	ND
	6 ^a campanha: mar/14	ND	ND	ND
	7ª campanha: abr/14	*	*	*
	8 ^a campanha: out/14	<lq< td=""><td>ND</td><td>ND</td></lq<>	ND	ND
PE	1ª campanha: out/13	*	*	*
	2ª campanha: nov/13	*	*	*
	3ª campanha: dez/13	*	*	*
	4 ^a campanha: jan/14	*	*	*
	5 ^a campanha: fev/14	ND	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
	6 ^a campanha: mar/14	ND	ND	ND
	7ª campanha: abr/14	*	*	*
	8 ^a campanha: out/14	ND	ND	ND

^{*} Não houve coleta; ND: Não detectado; LQ: Limite de quantificação; ^a Concentração obtida no detector de fluorescência considerando um fator de concentração de 500 vezes.

A Figura 8 mostra dados das concentrações médias de BPA em amostras ambientais no Brasil e no mundo. Em 66,6% das pesquisas, as concentrações de BPA em água superficial estão abaixo de 100 ng L⁻¹, em 22% os níveis encontrados estão entre 100 e 1000 ng L⁻¹. Concentrações acima desses valores são esporádicas e foram encontrados apenas em pesquisas realizadas no Brasil. Nessa faixa encontram-se os trabalhos de Montagner & Jardim (2011) e Ghiselli (2006), onde foram encontrados níveis médios de BPA entre 4904 ng L⁻¹ e 11893 ng L⁻¹ respetivamente, ambas no Estado de São Paulo.

O E₂ foi detectado em 2 das 13 análises realizadas em amostras de água do Lago, nos pontos A₅ e E, próximos as duas Estações de tratamento de esgoto. Em ambos os casos, estava abaixo do limite de quantificação estabelecido para o método que foi de 179 ng L⁻¹. Santana (2013) não detectou E₂ no Lago Paranoá para um limite de 3,3 ng L⁻¹. Novamente, deve-se considerar a metodologia de coleta utilizada por esse autor (já citada anteriormente). Observa-se que os níveis de E₂ encontrados em água superficial variam bastante (Figura 9) e que no Brasil esses são bem superiores aos relatados pelos demais países. Enquanto na maior parte do estudos as concentrações obtidas não ultrapassam 100 ng L⁻¹, no Brasil existem relatos de E₂, em amostras de água superficial, que chegam a 3097,14 ng L⁻¹ (Ghiselli 2006), cerca de 300 vezes mais que a média mundial.

O EE₂ foi o estrógeno menos detectado: das 13 amostras analisadas, foi encontrado em apenas uma e estava abaixo do limite de quantificação (242 ng L⁻¹). Santana (2013) investigou a presença de EE₂ no Lago Paranoá e, para um limite de detecção de 7,9 ng L⁻¹, relata que não houve detecção nas amostras analisadas. No entanto Sodré et al. (2007), em uma pesquisa realizada em São Paulo, obteve quantificações de EE₂ que variaram entre 6 e 310 ng L⁻¹ em amostras de água superficial. Dados da literatura

mostram que assim como o E_2 , o EE_2 quando detectado em águas superficiais encontrase em níveis que se situam abaixo de 100 ng L^{-1} (Figura 10). E mais uma vez, as pesquisas realizadas no Brasil evidenciam um quadro diferente do restante do mundo onde o EE_2 é detectado em concentrações que variam de 3,0 ng L^{-1} (Moreira 2008) a 4390 ng L^{-1} (Montagner & Jardim 2011).

Ao se comparar as frequências de detecção dos IEs nos efluentes das ETEs e no Lago (Figura 11) percebe-se uma tendência a aumento em direção aos pontos de lançamento das ETEs, atingindo o valor máximo nos efluentes tratados. O mesmo acontece com as concentrações obtidas em amostras de efluente, que de uma forma geral, foram maiores que os detectados no Lago (Tabelas 8 e 9). Esses dados corroboram o que foi relatado por Braun et al. (2014) em uma pesquisa realizada no Lago Paranoá, entre os anos de 2009 e 2012, onde foram investigadas a presença de 52 micropoluentes orgânicos, incluindo fármacos, herbicidas, produtos de higiene pessoal e cafeína. Nesse estudo, os autores constataram que a concentração dos analitos diminui significativamente com o aumento da distância dos pontos de lançamento das ETEs, de forma que, nos pontos centrais do lago, as concentrações encontradas foram menores se comparadas com os pontos localizados próximos à descarga de efluente.

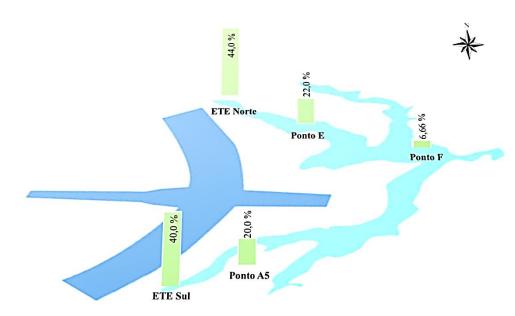


Figura 11: Frequência de detecção de interferentes endócrinos (BPA, E₂ e EE₂), por ponto de coleta, obtido durante as campanhas amostrais.

3.4. Conclusões

O método analítico empregando SPE e HPLC/DAD/FL mostrou-se eficiente na detecção dos IEs nas diferentes matrizes, água superficial e esgoto doméstico tratado. Os parâmetros de validação avaliados aumentaram a confiabilidade do método, nesse quesito, o detector de arranjo de diodos foi fundamental na seletividade pois, através do espectro das moléculas, foi possível a confirmação da presença dos analitos nas amostras analisadas. Os limites de detecção obtidos variaram entre 59 e 160 ng L⁻¹ e de quantificação entre 179 e 509 ng L⁻¹, mostrando-se maior aplicabilidade às amostras de efluente, visto que, na maior parte das amostras do Lago os analitos foram detectados em níveis não quantificáveis pelo método. Sendo assim, para trabalhos futuros, recomendase o emprego de metodologia mais sensível para quantificação desses poluentes em amostras do Lago Paranoá.

O xenoestrógeno bisfenol A foi o composto mais presente com uma frequência de detecção de 100% nas amostras de efluente tratado e 23% nas amostras do Lago. Apenas um ponto do Lago apresentou BPA em quantidade quantificável pelo método, o ponto A₅, onde foi detectado na concentração de 645 ng L⁻¹. Nas amostras de efluente, os níveis de BPA obtidos variaram entre 407 a 1231 ng L⁻¹, sendo >LQ em 81% das amostras. As detecções de E₂ e EE₂ estiveram abaixo do limite de quantificação na maior parte das análises. Isso está de acordo com dados da literatura, pois pesquisas indicam que esses estrógenos quando são encontrados em amostras ambientais estão em concentrações abaixo de 100 ng L⁻¹ (Tabela 1). Tendo em vista que os limites de quantificação obtidos através do método ficaram acima desse valor (179 a 509 ng L⁻¹), os resultados estão coerentes. De uma forma geral, os altos níveis obtidos para o três analitos, tanto nas amostras do Lago quanto nas amostras de esgoto, estão de acordo com o que se observa em trabalhos realizados no Brasil, onde são encontradas maiores quantidades desses contaminantes especialmente em amostras de esgoto.

As regiões do Lago que estão próximas aos pontos de lançamento das ETEs são impactadas mais fortemente pela descarga de efluentes apresentando maior frequência de detecção dos estrógenos (20 a 22%), especialmente de BPA. No ponto F, situado próximo ao ponto de construção da nova captação, foi encontrado apenas BPA, em uma amostra, e em concentração abaixo do limite de quantificação. Recomenda-se portanto, um estudo mais detalhado dessa região tendo em vista que é o ponto onde será instalada a futura captação de água da CAESB.

Dados da literatura indicam distribuição sazonal desses contaminantes em amostras ambientais. Dessa forma, sugere-se que pesquisas futuras busquem contemplar

períodos de seca, quando as concentrações podem apresentar variação em relação a época chuvosa.

São poucos os estudos envolvendo a determinação de contaminantes emergentes em amostras ambientais no Brasil, a maior parte está concentrada na região Sudeste e estão relacionadas com a quantificação em amostras de água. Pesquisas que envolvem quantificação em amostras de esgoto são menos frequentes. Dessa forma, esse trabalho contribui para integrar o quadro dos relatos de IEs em amostras ambientais no Brasil.

Em um contexto local, são ainda menores os relatos de IEs no Distrito Federal e mais especificamente no Lago Paranoá. Dessa forma, os dados gerados nesse trabalho, somam-se aos demais para formar um panorama da situação do Lago quanto a questão dos contaminantes emergentes, servindo de base para a CAESB no planejamento e implantação da Estação de tratamento de água que terá o Lago Paranoá como sistema produtor. Dessa forma, unem-se os esforços em prol de um bem comum que é fornecer água de qualidade para a população.

Capítulo 4

Uso de embriões de *Danio rerio* para avaliação de toxicidade de amostras de esgoto tratado, águas superficiais do Lago Paranoá e do bisfenol A, o poluente mais frequentemente detectado.

Dissertação de Mestrado

2015

4.1. Introdução

O Lago Paranoá está localizado na região central de Brasília estendendo-se ao longo das Asas Sul e Norte. Foi formado no ano de 1959, a partir do fechamento da barragem do Rio Paranoá represando águas do Riacho Fundo, Ribeirão Gama, Córrego Cabeça de veado, Ribeirão Torto e do Córrego Bananal, além de outros pequenos tributários (Fonseca, Neto e Cavalcante 2001). Compõe a maior bacia de drenagem do DF e têm importantes funções paisagística, de lazer, recreação, manutenção da vida aquática, geração de energia, regulação microclimática, e em breve será utilizado como captação de água para abastecimento de parte da população do Distrito Federal.

Dentre as principais fontes poluidoras do Lago Paranoá está a descarga de efluentes de estações de tratamento de esgoto. O Lago recebe mensalmente em média 4.316.366 m³ de esgoto tratado, o que corresponde a 42% do volume total de esgoto gerado no Distrito Federal sendo, a maior parte, descarregado pelas Estações de tratamento de esgoto Sul e Norte (CAESB 2014). Estas possuem capacidade para tratar uma vazão média de 1.500 L.s⁻¹ e 920 L.s⁻¹ respectivamente e empregam o processo de tratamento por lodo ativado em nível terciário, com remoção de fósforo e nitrogênio.

Atualmente a ETE Sul trata uma vazão média de 1.125.1 L s⁻¹ e a ETE Norte 483,8 L s⁻¹, sendo a ETE-Sul a Estação que trata maior volume de esgoto em todo o DF.

Tabela 1. Informações referentes ao volume de esgoto tratdo pelas Estações de tratamento de esgoto Sul e

Norte, áreas e população atendidas.

Unidade	Inauguração	Volume médio*	Áreas atendidas	Nº de habitantes
ETE Sul	1962	2.921.211	Asa Sul, Núcleo Bandeirante, Candangolândia, parte de Águas Claras, parte do Lago Sul, parte do Riacho Fundo I, Guará, Cruzeiro, S.I.A, S.C.I.A. e Setor Sudoeste	460.000
ETE Norte	1969	1.252.382	Asa Norte de Brasília, e nas localidades do Varjão, parte do Lago Norte e Vila Estrutural.	260.000

^{*} Volume médio mensal (m³) referente ao ano de 2013.

Não obstante ao cenário de contaminação ambiental de mananciais urbanos em diferentes partes do mundo, pesquisas recentes têm evidenciado a contaminação do Lago Paranoá por poluentes emergentes oriundos de efluentes de esgoto doméstico. Dentre estes, estão compostos como cafeína, bisfenol A, nonilfenol, atrazina, fármacos como carbamazepina, atenolol, bezofibrato, citalopram, claritomicina, eritromicina, ibuprofeno, diclofenaco, entre outros (Santana 2013; Braun et al. 2014; Costa 2014). O Capítulo 03 da presente dissertação, apresenta dados que corroboram a contaminação do Lago por níveis traços de poluentes emergentes, mais especificamente os com atividade estrogênica. O xenoestrógeno bisfenol A (BPA) é destacado como o contaminante mais frequentemente detectado.

O BPA é um químico usado mundialmente na fabricação de policarbonato e resinas epóxi (Crain et al. 2007). Está presente em vários produtos incluindo mamadeiras, copos infantis, garrafões de água mineral, além de outras embalagens e utensílios. Nas

últimas décadas, o BPA tem sido o foco das atenções de cientistas devido a sua atuação como interferente endócrino. Como medida preventiva, alguns países, inclusive o Brasil por meio da Resolução RDC n. 41/2011, proibiram o uso de BPA na fabricação de mamadeiras, considerando a maior exposição e susceptibilidade das crianças usuários deste produto. Vários estudos têm mostrado que o BPA mimetiza, ativa ou inibe a atividade de estrógenos endógenos e/ou interfere na ação dos receptores nucleares de hormônios em vertebrados e invertebrados causando diversos efeitos (ver Tabela Suplementar 5).

No entanto, o BPA é apenas um dos compostos que integra o rol dos contaminantes emergentes. Em geral, os efluentes mesmo tratados, são fonte contínua de diversos poluentes em ecossistemas aquáticos. Como a identificação de todos os contaminantes presentes em uma descarga de esgoto é uma tarefa bastante complexa, os estudos dos efeitos da exposição de organismos aos efluentes são utilizados como parâmetro para avaliar a toxicidade destes. Essas pesquisas utilizam vários organismos como modelo, entre eles os peixes.

Os peixes possuem muitas características que justificam seu uso em análises de avaliação de risco ambiental: são componentes críticos do ecossistema pois estão no ápice da cadeia alimentar aquática, funcionando como bioacumuladores de contaminantes; servem como modelos para outros vertebrados (anfíbios, aves, répteis, mamíferos e seres humanos), têm o metabolismo adaptado para inativar muitos toxicantes potenciais além de serem passíveis de estudos de campo e de laboratório (Embry et al. 2010). Por apresentar todas essas vantagens, os peixes têm sido utilizados em ensaios de avaliação do impacto ambiental de produtos químicos, para realizar avaliações de efluentes e monitorar a qualidade da água superficial (García-Cambero et al. 2012; Galus et al. 2013).

Os testes de toxicidade descritos na literatura, incluem a avaliação de efeitos agudos, tais como letalidade e crônicas, incluindo desenvolvimento, crescimento e reprodução.

Os testes de toxicidade aguda realizados com peixes vem sendo substituídos pelo teste com embriões. Esse foi inicialmente desenvolvido na Alemanha como ferramenta para a avaliação da toxicidade de efluentes tratados, onde tornou-se obrigatório desde janeiro de 2005. Os argumentos para a utilização de embriões de peixe para avaliação de toxicidade (FET, do inglês *fish embryo toxicity test*) são: (1) em termos legais, o teste FET é geralmente classificado como um teste não-animal, devido ao fato de os embriões ainda não terem desenvolvido a percepção da dor comparável à dos adultos; (2) exige baixos volumes de solução teste; (3) a duração é limitada a dois ou três dias e (3) testes subletais podem ser facilmente incorporados ao protocolo (Lammer, Kamp, et al. 2009).

Entre as espécies utilizadas em testes de toxicidade está o zebrafish (*Danio rerio*). Esse peixe pertence à família dos ciprinídeos e é bastante usado em estudos de desenvolvimento embrionário, fisiologia, genética e toxicologia. É também um organismo modelo para avaliação ecotoxicológica de químicos em amostras ambientais de ecossistemas aquáticos (Scholz et al. 2008). Algumas características do zebrafish favorecem a utilização em testes ecotoxicológicos, dentre as quais pode-se destacar: facilidade de cultivo e manutenção; facilidade de reprodução em cativeiro; desenvolvimento embrionário rápido (com apenas quatro dias vários de seus órgãos estão formados); produz grande quantidade de embriões (média de 50 ovos/casal); seu pequeno tamanho, que possibilita o uso de unidades experimentais com poços de 2 mL de volume útil; a transparência durante as fases embrionárias e larval que permitem a observação direta de possível alterações no desenvolvimento, entre outros. Além disso o zebrafish

tem o genoma completamente sequenciado e partilham homologia de 60 a 80% com os genes humanos (De Esch et al. 2012).

O protocolo OECD (Do inglês Organization for Economic Co-operatuion and Development), para teste FET (Fish Embryo Acute Toxicity Test, n° 236 de 2013), é baseado em estudos e atividades de validação desenvolvidos com embriões de zebrafish e tem sido aplicado com sucesso para uma ampla gama de substâncias com diferentes modos de ação, solubilidade, volatilidade e hidrofobicidade. Ademais, uma série de ensaios subletais, como biomarcadores enzimáticos, têm sido agregados aos testes de toxicidade aguda de forma a elucidar o modo de ação dos químicos testados e possíveis efeitos que não são revelados pela análise de mortalidade (De Coen et al. 2000). Dentre os marcadores bioquímicos destacam-se os marcadores de estresse oxidativo, enzimas das fases I e II de biotransformação e ainda biomarcadores neuroendócrinos como as colinesterases. As colinesterases são um grupo de enzimas que pertencem à família de esterases, que hidrolizam ésteres carboxílicos, sendo divididas em dois tipos: acetilcolinesterase e butirilcolinesterase. A acetilcolinesterase (AChE) é responsável pela hidrólise da acetilcolina em colina e ácido acético promovendo a inativação da acetilcolina no sistema nervoso e placa neuromuscular. É inibida por compostos neurotóxicos, como insecticidas organofosforados, causando acumulação neurotransmissor acetilcolina na sinapse, resultando em uma interrupção para a função do sistema nervoso. A produção de espécies reativas de oxigênio (ROS, do inglês reactive oxigen species) pode induzir dano oxidativo e estes serem um mecanismo de toxicidade para os organismos aquáticos que vivem em ambientes que recebem contaminantes continuamente através do contato direto com a água. Contaminantes ambientais, tais como herbicidas, metais pesados e inseticidas são conhecidos por modular os sistemas de defesa antioxidantes e por causar dano oxidativo em organismos aquáticos por produção de ROS, que pode ser medido por meio dos seguintes biomarcadores: atividade da catalase (CAT), glutationa peroxidase (GPx) e GST (Glutationa S-transferase), bem como pela atividade de GSH (glutationa reduzida) e pela peroxidação lipídica. A lactato desidrogenase (LDH) é uma enzima do metabolismo importante na fisiologia muscular. Em condições de stress químico, níveis elevados de energia são necessários. Logo, nessas condições são observados aumento na atividade de LDH o que faz com que essa enzima seja usada como um marcador para danos nos tecidos. A quantificação de biomarcadores em embriões de zebrafish expostos a agrotóxicos, metais, fármacos e IEs também tem sido descrita (Domingues et al. 2010).

Tendo em vista, a importância do Lago Paranoá para a cidade de Brasília, o projeto para utilização deste Lago como sistema produtor de água para abastecimento de parte da população do DF, a dimensão da ETE Sul em termos de volume de esgoto tratado e descarregado no Lago e a presença frequente do poluente químico BPA em amostras de água do Lago e efluentes das ETEs, o presente estudo teve dois objetivos principais: (i) avaliar a toxicidade de amostras de água superficial do Lago Paranoá e amostras de efluente da ETE Sul e (ii) avaliar a toxicidade do contaminante ambiental BPA por meio de testes de embriotoxidade com a análise de parâmetros de desenvolvimento e de biomarcardores enzimáticos de neurotoxicidade (ChEs), biotransformação (GST) e metabolismo energético (LDH).

4.2. Materiais e métodos

4.2.1. Químicos

BPA (CAS No 80057) com grau de pureza de 99% foi obtido da Sigma Aldrich.

4.2.2. Cultivo dos organismos

Embriões de zebrafish foram obtidos do Laboratório de Genética Toxicológica do Departamento de Genética e Morfologia (Instituto de Biologia) da Universidade de Brasília (Brasil), onde organismos adultos são mantidos em um sistema recirculante de criação de peixes, alimentados duas vezes ao dia com ração artificial (Sera discus[©] granulada e Tetra Min Flakes[©]). A água utilizada no cultivo é filtrada através de um filtro de carbono ativado e continuamente aerada. O controle da condutividade é feito por meio da adição de sal marinho artificial (condutividade 262,9 \pm 112,9 μ S cm⁻¹) e o controle do pH por meio da adição de bicarbonato de sódio (pH 7,4 \pm 0,2). Os organismos são mantidos a uma temperatura de 26,8 \pm 0,8 °C, sob um fotoperíodo de 12 horas de luz e 12 horas de escuro e o oxigênio dissolvido mantido > 95 % de saturação.

4.2.3. Testes de toxicidade com embriões

Os ensaios foram baseados no protocolo OCDE nº 236 (*Guideline on Fish Embryo Toxicity Test-FET*). Para obtenção de ovos fertilizados, um total de 15 adultos foram colocados em aquários (10 L) na proporção de 2 machos para cada fêmea separados por uma divisória de acrílico durante a noite. Na manhã seguinte a divisória foi retirada e aproximadamente 2hrs após a fertilização e os ovos de zebrafish recém-fertilizados foram coletados. Após inspeção no estereomicroscópio, os ovos com irregularidades na clivagem ou injúrias no córion foram descartados e os ovos viáveis distribuídos em placas de 24 poços conforme demonstrado na Figura 1.

Para todos os testes, exceto para determinação de biomarcadores, um total de 20 embriões foram expostos por tratamento, incluindo uma placa de controle negativo composto somente por água do sistema de criação de peixes. A exposição foi feita com um embrião por poço contendo 2 ml de solução de exposição cada. Adicionalmente, cada placa teve um controle negativo com 4 embriões expostos a água do sistema. As placas

foram mantidas em câmara climática a uma temperatura de 26 ± 1 °C e fotoperíodo 12:12 luz:escuro durante a realização dos testes que tiveram duração de 96 horas. Todos ensaios foram feitos em triplicata

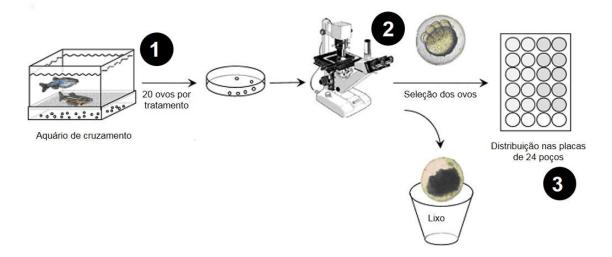


Figura 1. Esquema dos testes de toxicidade com embriões de zebrafish. Da esquerda para a direita: (1) os ovos são recolhidos dos aquários de cruzamento; (2) os ovos são selecionados ao estereomicroscópio e os ovos não fertilizados ou defeituosos são descartados; (3) os ovos são distribuídos em placas de 24 poços. Adaptado de (Lammer, Carr, et al. 2009).

Diariamente os embriões foram observados em estereomicroscópio (Stemi 2000-C, Zeiss, Germany), usando lente com 70x de aumento para os embriões e 40x para as larvas. Foram avaliados os seguintes parâmetros: coagulação de ovos fertilizados, ausência de formação de somitos, ausência de descolamento da cauda, falta de batimentos cardíacos, malformação craniofacial, microftalmia, pigmentação, otolito, edema cardíaco, absorção do saco vitelínico, malformação da cauda, alteração do equilíbrio, eclosão larval e outras anomalias que porventura aparecessem durante a realização do experimento.

4.2.4. Testes de toxicidade com amostras ambientais

4.2.4.1. Amostras de esgoto tratado

A coleta de efluente da ETE Sul foi realizada no mês de janeiro/2015. Para obtenção das amostras foi utilizado um coletor automático situado na saída da Estação. A

amostra final foi preparada de forma acumulada proporcionalmente a vazão horária conforme descrito no Capítulo 3 (ver item 3.2.4.2). Foram coletados 2 litros de amostra, sendo 1 L destinado para os testes ecotoxicológicos e o outro para análises físico-químicas de rotina da CAESB. A exposição dos embriões teve início logo em seguida a obtenção das coletas. Para isso foram feitas diluições sucessivas da amostra original de forma a obter a seguinte série: 100%, 50%, 25%, 12,5%, 6,25% e 3,12%, e os embriões expostos as soluções diluídas durante 4 dias seguindo os procedimentos acima descritos (itens 4.2.2. e 4.2.3). A água utilizada para a diluição das amostras foi a mesma utilizada no sistema de criação de peixes.

4.2.4.2. Amostras de água superficial

As coletas do Lago foram todas realizadas no mês de outubro/2014. Para obtenção das amostras foi utilizada uma garrafa de Van Dorn a uma profundidade de 1 m em diferentes pontos do Lago, partindo de regiões próximas à ETE Sul até a região central, totalizando 4 pontos (Figura 2). Para isso foi utilizada uma lancha da CAESB específica para esse uso, conforme descrito no item 3.2.3 do Capítulo 3. Objetivou-se com isso, obter amostras representativas de diferentes regiões do Lago da seguinte forma:

Pontos A_4 e A_5 : situados próximo ao ponto de lançamento da ETE Sul, a Estação que trata o maior volume de esgoto em todo o DF;

Ponto B: situado em um braço do Lago que é impactado tanto pelo lançamento da ETE Sul quanto, em um volume menor, pelo efluente da ETE Riacho fundo;

Ponto C: Localizado na região central do Lago onde ocorre o efeito da diluição natural das águas, sendo, portanto, uma região menos impactada, classificada pela CAESB como balneável.

Foram coletados aproximadamente 3 litros de amostra em cada ponto de coleta, sendo 1 L destinado aos testes ecotoxicológicos e o restante para a análise de parâmetros físico-químicos e liminológicos de rotina da CAESB. A exposição de embriões teve início logo em seguida à obtenção das coletas sendo estes expostos diretamente às amostras, não foram feitas diluições. Os testes tiveram a duração de 4 dias e seguiram os procedimentos descritos nos itens 4.2.2. e 4.2.3

Figura 2. Localização dos pontos de coleta no lago Paranoá para ensaios de toxicidade.

4.2.5. Testes de toxicidade com BPA

4.2.5.1. Preparação da solução estoque e análises químicas

Soluções estoque foram obtidas através da dissolução de 100 mg de BPA em água do sistema de criação de peixes e as soluções teste preparadas no início de cada experimento, através de sucessivas diluições da solução estoque.

Foi realizado um teste de degradação do BPA nas mesmas condições dos testes, da seguinte forma: a partir da solução estoque foram obtidas, por diluição, diferentes soluções nas concentrações de 1,0; 0,1 e 0,01 mg L⁻¹. Essas foram distribuídas

em frascos separados em quadruplicata, sob as mesmas condições experimentais dos testes de toxicidade. A quantificação de BPA foi feita diariamente em HPLC/FL através do método descrito no Capítulo 2.

4.2.5.2. Ensaio com embriões

Para o teste de toxicidade aguda, embriões foram selecionados e expostos a soluções de BPA nas seguintes concentrações: 0; 1; 2,15; 4,64; 10; 21,54; 46,42 e 100 mg L⁻¹. Os testes tiveram a duração de 4 dias e seguiram os procedimentos descritos no item 4.2.2. e 4.2.3.

4.2.6. Determinação de biomarcadores enzimáticos

Para o teste de biomarcadores, embriões foram coletados e expostos a soluções com concentrações sub-letais de BPA (0,35; 2,02; 11,68; 67,45; 389,63 e 2250,6 μg L⁻¹). A exposição foi feita em cubas de vidro contendo 1 L de solução de exposição com 400 embriões por tratamento. Após quatro dias, 10 grupos de 15 embriões foram coletados em ependorffs e congeladas para análise dos seguintes biomarcadores enzimáticos: acetilcolinesterase, butirilcolinesterase, propionilcolinesterase, glutationa-S-transferase e lactato desidrogenase.

No dia da análise enzimática, as amostras de embriões foram descongeladas a 4 °C e homogeneizadas com o uso de um sonicador (Bronson Ultrassonic Sonifier 450, Danbury, US). Em seguida, as amostras foram centrifugadas durante 20 minutos a 11.500 rpm para isolar o sobrenadante pós-mitocondrial (PMS) (Jesus et al. 2013). As determinações enzimáticas foram feitas em espectrofotômetro (Spectra Max M2 – Molecular Devices) usando microplacas de 96 poços.

A atividade das ChEs foram determinadas usando acetilcolina como substrato, medida a 414 nm durante 5 minutos, produto da conjugação entre tiocolina (um

produto da degradação da acetilcolina) e o ácido 5,5-ditiobis-2-nitrobenzóico (DTNB) (aumento da absorbância) em PBS, de acordo com o método de Ellman et al. (1961). As determinações da atividade enzimática foram feitas utilizando 40 µl de PMS da amostra, 250 µl de reação da mistura acetilcolina ou propionilcolina ou butirilcolina (7.5 mM) e DTNB (10 mM) em PBS (0.1 M, pH 7.2).

A atividade da GST foi determinada a 340 nm através da observação do aumento da absorbância durante 5 minutos, seguindo a metodologia geral descrita por Habig e Jakoby (1981) com modificações introduzidas por Frasco & Guilhermino (2002). As determinações da atividade enzimática foram realizadas usando 100 μl de PMS da amostra e 200 μl de mistura de reação composta por10 mM de glutationa reduzida (GSH) e 60 mM 1-cloro- 2,4-dinitrobenzeno em PBS (0.05 M, pH 6.5).

A atividade da LDH foi medida em 240 nm através do monitoramento (durante 2 minutos) da diminuição da absorbância provocada pela oxidação do NADH Vassault (1983) modificado por Diamantino et al. (2001). Para a reação, 50 μl de amostra foi misturado com 160 μL de solução de NADH (0.24 mM) e 40 μl de solução de piruvato (10 mM) em PBS (0.05 M, pH 7.2).

As atividades enzimáticas foram determinadas em quadruplicata e expressas em nanomol de substrato hidrolizado por minuto por mg de proteína. As concentrações de proteína nas amostras foram determinadas em quadruplicata através do método Bradford (1976), a 595 nm, usando γ-globulina como padrão.

4.2.7. Análises estatísticas

O pacote estatístico Sigma Stat 3.5 foi utilizado para analisar os dados (SPSS, 2004). Com o intuito de testar se o BPA causou diferenças significativas nos parâmetros analisados, os grupos de exposição foram comparados com o controle por

meio de uma análise de variância. Nos casos em que os dados passaram pelo teste de normalidade (Kolmogorov–Smirnov) e pelo teste de homogeneidade de variância (Levene's), uma ANOVA de uma via foi realizada seguida do teste *post-hoc* de Dunnett. Já para o caso de os dados não passarem pelo teste de normalidade e homogeneidade de variância, o teste não paramétrico de Kruskal–Wallis foi usado, seguido pelo post-hoc teste de Dunn's. As concentrações de efeito (CE₅₀) e concentrações letais (CL₅₀) foram calculadas usando uma função logística ou sigmoide. Todas as análises estatísticas tiveram como base o nível de significância de 0,05.

4.3. Resultados e discussão

4.3.1. Testes de toxicidade com amostras ambientais

Os resultados obtidos mostram que as amostras, de água do Lago e efluente da ETE Sul, não causam alterações em nenhum dos parâmetros de desenvolvimento analisados para embriões de zebrafish. As taxas de eclosão e mortalidade obtidas também não apresentaram diferença significativa em relação ao controle (Figuras 3 e 4). Jonáš e Jedličková (2011) avaliaram a toxicidade aguda de efluentes de sete Estações de Tratamento de Esgoto, da República Checa, em embriões de zebrafish. Os resultados relatam a ausência de efeitos na taxa de mortalidade, no entanto foi observado efeito subletal, nomeadamente edema cardíaco. No entanto, testes de toxidade crônica realizados por Grisolia et al. (2005 e 2009), em peixes adultos do Lago Paranoá (espécies nativas e introduzidas) expostos à amostras de esgoto tratado e água do Lago, revelam a ocorrência de danos significativos no DNA de espécies situadas no topo da cadeia alimentar. Os efeitos foram medidos por formação de micronúcleos e teste do cometa (Grisolia et al. 2005 e Grisolia et al. 2009).

Em face ao exposto, pode-se concluir que, em testes de curta duração para os parâmetros de desenvolvimento analisados, as amostras de esgoto doméstico tratado e de água do Lago tendem a ser pouco tóxicas para embriões de zebrafish. No entanto, conforme demonstrado por Grisolia, ensaios de exposição mais longos revelam potencial genotóxico para espécies locais. Sendo assim, considerando que o zebrafish não é uma espécie nativa da região, para trabalhos futuros sugere-se a aplicação de testes genotóxicos, em cenários de exposição crônicos que envolvam também outras espécies representantes da biota do Lago Paranoá. Dessa forma, torna-se possível a comparação e até a confirmação da aplicabilidade do *D. rerio* como organismo indicador de toxicidade para os peixes que compõem a fauna do Lago Paranoá.

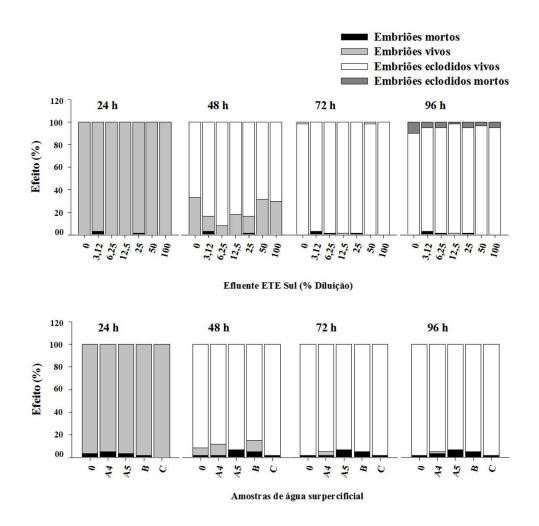


Figura 3. Visão geral dos testes de toxicidade com embriões de zebrafish durante as 96 h de exposição a amostras de Efluente da ETE Sul e água do Lago Paranoá.

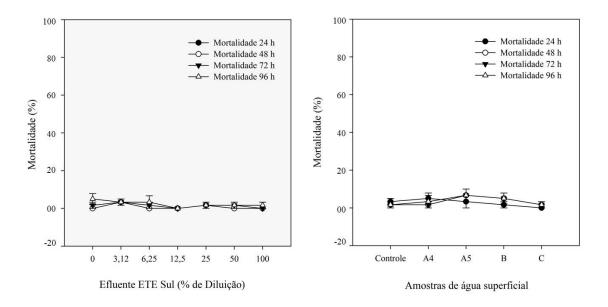


Figura 4. Taxas de mortalidade de embriões de zebrafish expostos a amostras de efluente da ETE Sul e água do Lago Paranoá durante as 96h de duração do teste.

Os resultados das análises físico-químicas das amostras de efluente da ETE Sul estão sistematizados na Tabela 2. Se analisados tendo como base a resolução CONAMA 430/2011, que regula as condições e padrões de lançamento de efluentes no Brasil, constata-se que os resultados obtidos atendem os critérios estabelecidos (DBO máxima de 120 mg L⁻¹, pH entre 5,0 e 9,0 e nitrogênio amoniacal total de no máximo 20 mg L⁻¹). No entanto a resolução comtempla outros parâmetros que não constam nessas análises. Ainda assim, considerando que o principal objetivo das estações convencionais de tratamento de esgoto é a remoção de matéria orgânica e nutrientes, os resultados aqui apresentados indicam eficiência da Estação na remoção desses contaminantes.

Tabela 2. Resultados das análises físico-químicas da amostra de eflente da Estação de tratamento de esgotos Sul

	Alumínio	DQO	N-NH _x	pН	PO ₄	Pt	SS	TKN	Turbidez
ETE Sul	0,05	37	6,18	7,02	0,07	0,58	11	6,7	5,1

DQO: demanda química de oxigênio; N-NH_x: Nitrogênio amoniacal (NO₃ e NO₄₊); N-NO_x: nitrito e nitrato; PO₄: ortofosfato; P_t: fósforo total; SS: sólidos em suspensão; TKN: nitrogênio total (amônia, nitrito e nitrato). Fonte: CAESB (Jan/2015).

No que se refere às amostras do Lago, a Tabela 3 sistematiza o resultado das análises físico-químicas e limnológicas. A coluna da direita traz valores de referência estabelecidos como padrões pela Resolução CONAMA 357/2005 para as águas doces classe 1. De acordo com essa resolução águas classe 1 podem ser destinadas: ao abastecimento para consumo humano, após tratamento simplificado; a proteção das comunidades aquáticas; a recreação de contato primário, tais como natação, esqui aquático e mergulho; a irrigação de hortaliças que são consumidas cruas e de frutas que se desenvolvam rentes ao solo e que sejam ingeridas cruas sem remoção de película; além da proteção das comunidades aquáticas em Terras Indígenas.

Constata-se que, para a maior parte dos parâmetros analisados as amostras estiveram dentro dos padrões estabelecidos, exceto para o oxigênio dissolvido (4,7 mg L⁻

¹) e para a clorofila A (12,6 μg L⁻¹) no ponto A₄. Os pontos A₄ e A₅ são classificados pela CAESB como regiões impróprias e não balneáveis por estarem situados próximo aos pontos de lançamento da ETE. Sendo assim, de acordo com os usos da água previsto para essa região, não se esperava realmente obter resultados que atendessem critérios de classificação nível 1 do CONAMA. No entanto, esses resultados por si só não servem de parâmetro para avaliação de todos os impactos que envolvem o lançamento de esgoto em um corpo hídrico. A resolução estabelece padrões para lançamento de poluentes químicos que não foram contemplados nessas análises. Além disso, sabe-se que o esgoto doméstico é formado por uma mistura complexa de diversos poluentes. Nesse contexto, os testes toxicológicos devem ser empregados como termômetro de toxicidade em amostras ambientais.

Tabela 3. Resultados das análises físico-químicas e limnológicas das amostras do Lago Paranoá.

Tabela 5. Resultados das a			Padrões		
Parâmetros	\mathbf{A}_4	\mathbf{A}_{5}	В	C	CONAMAa
Chla (ug.L ⁻¹)	12,6	15,6	6,5	5,3	10
COND (uS.cm ⁻¹)	136,8	155,8	123,3	114,1	_
COR(AP) (uH)	20	15	15	12	_
N-NH ₃ (mg.L ⁻¹)	1,372	1,587	0,46	0,125	1,0 ^b - 2,0 ^c
N-NO2 (mg.L ⁻¹)	0,093	0,106	0,05	0,046	10
$N-NO_3 (mg.L^{-1})$	0,479	0,537	0,467	0,434	1
NT (mg.L ⁻¹)	3,866	4,596	2,492	1,909	_
OD (mg.L ⁻¹)	4,7	6,6	7,5	7,3	> 6,0
pН	7,5	7,5	7,9	8,2	6,0 - 9,0
Pt (mg.L ⁻¹)	0,022	0,024	0,006	<0,006	0.02^{d}
SDT (mg.L ⁻¹)	82,1	93,5	74,1	68,3	500
Temperatura (°C)	24,7	25,3	25,4	26,6	-
Turbidez (NTU)	3,2	1,9	2	1,5	< 40
Transparência (Cm)	120	180	250	200	-
DBO (mg.L ⁻¹)	< 1	< 1	< 1	< 1	<3,0
PO ₄ (mg.L ⁻¹)	<0,001	<0,001	<0,001	<0,001	-
TC (mg.L ⁻¹)	14,14	13,543	10,84	11,159	_

^a Padrões de qualidade para enquadramento de água doce na classe 1(Res. 357/2005); ^b Para pH entre 8,0 e 8,5; ^c Para pH entre 7,5 e 8,0; ^d Ambiente lêntico; Chla: Clorofila A; NH₃: Amônia; N-NO₂: Nitrato; N-NO₃: Nitrito; NT: Nitrogênio total; OD: Oxigênio dissolvido; Pt: Fósforo total; SDT: Sólidos dissolvidos totais; DBO: Demanda bioquímica de oxigênio; PO₄: Ortofosfato; TC: Carbono orgânico total. Fonte: CAESB (Out/2014).

4.3.2. Testes de toxicidade com o BPA

4.3.2.1. Teste de degradação do BPA

Os resultados obtidos no teste de estabilidade do BPA evidenciam degradação abrupta a partir do terceiro dia do teste (Tabela 4). Observa-se que as concentrações de BPA permanecem constantes até que, entre o terceiro e o quarto dia, para a solução na concentração de 0,01 µg L⁻¹, ocorre a redução em 50% nos níveis do BPA. O mesmo ocorre para as demais soluções (0,1 e 1µg L⁻¹) entre o quarto e o quinto dia do teste. A partir daí a degradação é crescente até que os níveis encontrados passam ser não quantificáveis pelo método (<LQ). Esses resultados estão próximos aos dados da literatura que relatam a meia-vida do BPA entre 4- 5 dias (Cousins et al. 2002) e foram utilizados como parâmetro para a realização das trocas de meio durante os ensaios de exposição.

Tabela 4. Concentrações de bisfenol A obtidas em HPLC/FL através do método descrito no Capítulo 3 durante a realização de teste de degradação.

Tempo (dias)	Concentração de bisfenol A (mg L ⁻¹)								
D0	1 ¹	0.11	0.011						
D1	$0,953 (\pm 0,03)$	$0,149\ (\pm0,01)$	$0,017\ (\pm0,003)$						
D2	$0,865\ (\pm0,04)$	$0,136\ (\pm0,01)$	$0,014~(\pm 0,004)$						
D3	$0,961\ (\pm0,04)$	$0,154\ (\pm0,02)$	$0,017\ (\pm0,004)$						
D4	$0,959\ (\pm0,04)$	$0,144\ (\pm0,02)$	$0,006~(\pm 0,007)$						
D5	$0,311\ (\pm0,54)$	$0,098 \ (\pm 0,09)$	< LQ						
D6	$0,247\ (\pm0,43)$	$0,051\ (\pm0,09)$	< LQ						
D7	0,004 (±0,01)	< LQ	< LQ						
D8	< LQ	< LQ	< LQ						

<LQ: menor que o limite de quantificação; Concentração média± desvio padrão; Concentração nominal.

4.3.2.2. Testes com embriões

Foram observadas alterações em parâmetros letais e subletais em embriões de *D.rerio* durante a realização dos testes de toxicidade do BPA. Após 48h de exposição

verificou-se um valor de CL50 = 13,45 mg L^{-1} (Figura 5). Esse dado está de acordo com o obtido por Duan et al. (2008) em um teste semelhante, onde relata CL 50 de 16,75 mg L^{-1} .

Efeitos na eclosão (CEO = 10 mg L⁻¹) (Figuras 5 e 6 e Tabela 5), atraso na pigmentação e malformação crânio-facial (CEO = 21,54 mg L⁻¹) (Figura 7) também foram observados após 24 h de exposição. Novamente, Duan et al. (2008) relata atraso na eclosão em embriões de *D. rerio* expostos a BPA (EC 50 de 13,81 mg L⁻¹), o que corrobora os dados aqui obtidos. Esse foi o parâmetro mais sensível relacionado à exposição de *D. rerio* ao BPA.

Tabela 5. Concentração de Efeito para embriões de zebrafish expostos a bisfenol A (mg L⁻¹).

Eclosão	CE _{50*}	\mathbb{R}^2	Modelo
48 h	1.91 (1.72)	0.83	Logística 3 parâmetros
72 h	6.42 (3.13)	0.99	Sigmoide 3 parâmetros
96 h	9.24 (0.03)	0.99	Logística 4 parâmetros

^{*} Erro padrão entre parênteses

Malformação na cauda também foi observada em embriões expostos a 4,64 mg L⁻¹ após 72 h de exposição. Nesse caso, os valores não apresentaram diferença significativa em relação ao controle. No entanto, esse efeito está entre os relatos da literatura para ensaios semelhantes (Lam et al. 2011; Duan et al. 2008).

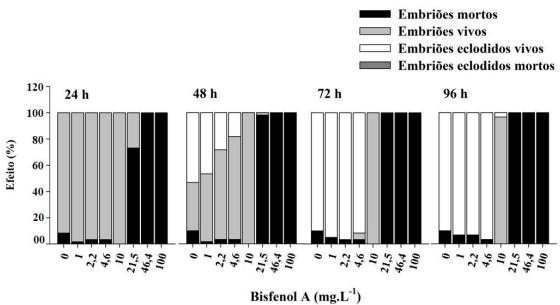


Figura 5. Visão geral do teste de toxicidade com embriões de zebrafish após 96 h de esposição a diferentes concentrações de BPA.

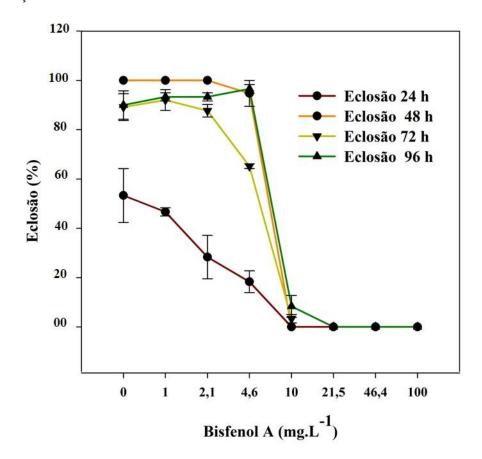


Figura 6. Efeitos do BPA na taxa de eclosão dos embriões de zebrafish expostos a BPA. Valores médios ± erro padrão.

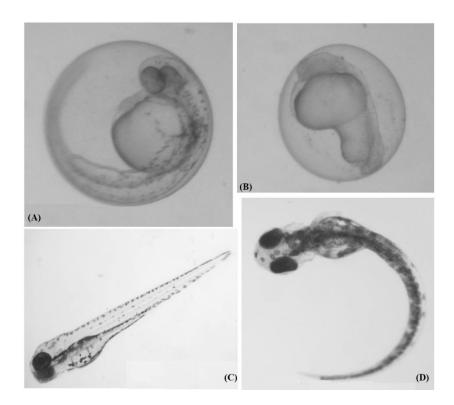


Figura 7. Exemplos de anomalias no desenvolvimento embrionário de zebrafish durante as 96 h de exposição à bisfenol A. (A) 24 h - controle; (B) Embrião com malformação crânio-facial e atraso na pigmentação após 24 h de exposição à concentração de 21,54 mg L⁻¹; (C) 72 h - controle; (D) Larva com malformação na cauda após 72 h de exposição à concentração de 4,64 mg L⁻¹.

4.3.3. Ensaios com biomarcadores enzimáticos

Os testes com biomarcadores enzimáticos avaliaram os efeitos subletais do BPA em embriões de zebrafish. Foram empregados pois, como são realizados em concentrações mais próximas as comumente encontradas em amostras ambientais, tornam o resultado mais representativo dos efeitos a que os organismos estão expostos na natureza.

As colinesterases são usadas como parâmetros de toxicidade neuroendócrina. Foram empregadas como teste complementar devido ao fato de terem sido observadas anomalias na região cranial dos embriões expostos a altas doses BPA. No entanto, para as doses testadas, não foram encontradas alterações significativas em embriões de zebrafish (Tabela 6). O mesmo aconteceu para a atividade da LDH. Sendo assim, para estudos futuros recomenda-se testes em concentrações mais próximas a LC50

e também o emprego de outros biomarcadores relacionados ao desenvolvimento do sistema nervoso.

Quanto a GST, os resultados obtidos indicam que o BPA inibe a atividade da enzima quando os embriões foram expostos a concentrações de BPA acima de 11,68 µg L⁻¹(Tabela 6). Esses dados corroboram os relatados por Wu et al. (2011) onde foi detectada inibição da GST em embriões de zebrafish em concentrações a partir de 1 µg L⁻¹ de BPA. O autor relata alteração em outras enzimas do stress oxidativo (CAT, SOD, GSH, GSSG e GPx) o que reforça hipótese de que a exposição a BPA está diretamente relacionada ao stress oxidativo em embriões de zebrafish.

Para estudos futuros, biomarcadores enzimáticos, complementares aos apresentados no presente estudo, podem ser utilizados de modo a se obter uma visão mais completa dos efeitos do BPA nos estágios iniciais de desenvolvimento. Como por exemplo, a vitelogenina (VTG), as demais enzimas de estresse oxidativo tais como catalase, glutationa peroxidase, soperoxido dismutase, entre outras.

Tabela 6. Atividade enzimática de biomarcadores em embriões de zebrafish expostos por 96 h a diferentes conconcentrações BPA.

Bisfenol A (μg.L ⁻¹)	0	0,35	2,02	11,68	67,45	389,63	
GST ^a	40,52 (0,87)	38,61 (1,45)	35,82 (1,75)	27,35 (0,98)*	30,72 (1,25)*	23,12 (3,74)*	
AChE ^a	708 (18,07)	680,26 (31,47)	591,67 (31,15)	530,94 (35,07)	703,15 (38,69)	528,6 (138,18)	
PChE ^a	78,93 (1,96)	73,87 (2,87)	79,44 (3,82)	70,57 (5,3)	87,34 (4,77)	39,58 (0,55)	
BChE ^a	7,0 (0,41)	12,5 (1,07)	11,97 (1,55)	12,38 (1,13)	4,09 (1,63)	8,93 (0,97)	
$\mathbf{LDH}^{\mathrm{a}}$	564,64 (19,82)	504,77 (17,72)	495,91 (26,81)	504,13 (30,67)	526,43 (25,09)	422,39 (65,41)	

^{*} Indica diferença estatística quando comparado ao grupo controle One-way Anova, método de Dunn's (P = <0,001); anmol de substrato hidrolisado por minuto por mg de proteína.

4.4. Conclusões

Os resultados obtidos mostram que as amostras de água do Lago Paranoá e efluente da ETE Sul além de atenderem as resoluções do CONAMA, para os parâmetros físico-químicos e limnológicos, não apresentam toxicidade para embriões de zebrafish. De onde se pode concluir que as amostras analisadas têm baixo nível de contaminação por matéria orgânica e nutrientes e que, apesar dos relatos de presença de contaminantes emergentes descritos na literatura, não apresentaram toxicidade para embriões de zebrafish.

No entanto, em ambientes naturais, os organismos são expostos a uma grande variedade de agentes físicos e químicos causadores de "stress". Nesse contexto, as alterações a nível bioquímico oferecem importantes vantagens como biomarcadores de efeito, por se tratar de alterações que são normalmente as primeiras respostas detectáveis e quantificáveis, constituindo um sistema de alerta em relação a possíveis efeitos adversos a nível fisiológico (Carvalho 2000). Para ilustrar essa afirmação, pode-se comparar os resultados aqui obtidos nos ensaios com zebrafish, onde o BPA apresentou baixa toxicidade para embriões com concentrações de efeito acima de 10 mg L⁻¹. Entretanto, quando testes bioquímicos foram aplicados, os efeitos foram observados na concentração de 11,68 μg L⁻¹, uma CEO quase 10.000 vezes mais baixa em relação a obtida nos testes para parâmetros de desenvolvimento. Por isso, para ensaios futuros, tanto em amostras ambientais quando em testes de efeitos de poluentes em concentrações traço, sugere-se a aplicação de ensaios bioquímicos ou similares.

Ademais, considerando que a exposição a poluentes em fase embrionária podem resultar em efeitos diversos em organismos adultos e tendo como base o princípio WET (whole effluent toxicity test) de que as espécies teste respondem a qualidade da água integrando os vários níveis de poluição para dar uma avaliação global do efluente em

questão (Embry 2010), sugere-se para estudos futuros o emprego de cenários de exposição crônica, testes com organismos de outros níveis tróficos (algas e invertebrados) além de espécies de peixes que integram a biota do Lago Paranoá, de forma a fornecer uma visão integrada dos possíveis efeitos dos poluentes.

Assim sendo, apesar dos resultados aqui obtidos indicarem baixa toxicidade do xenoestrógeno BPA, o poluente mais detectado nas amostras de água do Lago e efluente das ETEs (Capítulo 3) e ausência de toxicidade das referidas amostras para embriões de zebrafish, esse estudo vem reforçar a necessidade de monitoramento de mananciais de água e controle do descate de efluentes. Isso porque, a mistura de poluentes presentes em águas naturais, advindo de descargas de esgoto doméstico e de outras fontes, expõem os organismos aquáticos a efeitos menos perceptíveis, que não se limitam ao indivíduo, tendendo a envolver também níveis superiores de organização, tais como populações, comunidades e ecossistemas.

Capítulo 5

Considerações finais, perspectivas e recomendações de trabalhos futuros

Dissertação de Mestrado

2015

A avaliação dos impactos de IEs em ambientes aquáticos tem sido amplamente debatida pela comunidade científica incluindo ecólogos, ecotoxicólogos, químicos ambientais, dentre outros. Os compostos E₂, EE₂ e BPA fazem parte desse importante grupo de poluentes e têm sido detectados em amostras ambientais do mundo todo (Tabela 1, Capítulo 3). Nesse contexto, os resultados descritos nessa dissertação integram as duas vertentes principais da problemática do lançamento desses poluentes em águas naturais. A primeira é a identificação/quantificação em amostras ambientais (água e esgoto) e a segunda é a avaliação ecotoxicológica dos efeitos relacionados a exposição.

A tabela 1 mostra um resumo dos resultados obtidos nessa pesquisa de forma comparativa com dados da literatura referentes às concentrações de efeito (CEO) de cada um dos três poluentes (Tabelas S3, S4 e S5, em anexo) para animais aquáticos. Uma análise comparativa evidencia que as concentrações encontradas para os poluentes E2, EE2 e BPA, tanto em amostras de efluente das ETEs, quanto em amostras do Lago Paranoá, estão inseridas entre as concentrações de efeito para animais aquáticos representantes do segundo nível trófico (Tabela 1). O mesmo ocorre para representantes do primeiro nível trófico expostos a E2 e EE2, enquanto que, para o BPA, os resultados obtidos estão acima das concentrações de efeito.

Uma segunda análise pode ser feita ao selecionar, entre os dados da literatura, efeitos relatados para testes ecotoxicológicos que utilizam concentrações de exposição abaixo do que foi detectado nas amostras ambientais aqui quantificadas (<0,5 μg L⁻¹). Essa análise revela que, no que se refere a consumidores primários, não foram encontrados relatos de efeitos de BPA em concentrações abaixo de 0,5 μg L⁻¹. No entanto, o mesmo não acontece quando se trata do E₂ e do EE₂, onde são descritos efeitos para concentrações a partir de 0,00042 μg L⁻¹ e 0,00003 μg L⁻¹ respectivamente. Quanto aos animais representantes do segundo nível trófico, o número de relatos de efeitos associados a exposição a BPA em concentrações menores que 0,5 μg L⁻¹, ocorrem em número bem menor do que os efeitos relatados para o E₂ e o EE₂, e estão associados em sua maior parte a efeitos reprodutivos (61%). Já os relatos de efeito de exposição a E₂ e EE₂, estão associados em grande parte a alterações genéticas e bioquímicas, na seguinte proporção: 47% e 21% (E₂), 32% e 18% (EE₂), respectivamente (Tabelas suplementares S3, S4 e S5).

Tabela 1. Concentrações ambientais de 17β -estradiol (E_2), 17 α-etinilestradiol (E_2) e bisfenol A (BPA) detectadas nas amostras analisadas e concentrações de efeito observado (CEO) em organismos aquáticos.

	Dados da literatura ^a						Resultados desse trabalho ^b		
Composto	CEO (µg L ⁻¹) Consumidores primários		CEO (µg L ⁻¹) Consumidores secundários		Embriotoxicidade em zebrafish	Concentração Efluente tratado	Concentração Lago Paranoá		
	Média	Mínima	Máxima	Média	Mínima	Máxima	CEO (µg L ⁻¹)	$(\mu g L^{-1})$	(μg L ⁻¹)
E_2	37,3- 1585	0,03	10000	0,20 - 97,02	0,00042	1362	NA	<0,36	<0,18
EE_2	0,5 - 2106	0,0001	3100	0,00095 - 14,96	0,00003	296,43	NA	<0,48	<0,24
BPA	98,10 - 6893	3,0	20000	5,5 – 1491,43	0,02	12000	11,68 -10000	<0,39 - 1,23	<0,20 - 0,64

^aCEO para animais aquáticos descritos na literatura (capítulo 2 e Tabelas suplementares 3, 4 e 5); ^bResultados apresentados no Capítulo 3

Com base no acima exposto conclui-se que: os três poluentes contemplados nesse trabalho, E₂, EE₂ e BPA, nas concentrações em que foram encontrados em amostras de esgoto tratado e de água do Lago Paranoá, podem causar efeitos adversos em animais aquáticos, sendo esses em sua maior parte, relacionados a efeitos genéticos, bioquímicos e reprodutivos. Entre os compostos estudados, o BPA apresenta menor toxidade para animais aquáticos, tanto para representantes do primeiro quanto do segundo nível trófico. Dessa forma, conclui-se que, apesar de ser o composto mais frequentemente encontrado, 100% das amostras de efluente das ETEs e 23% das amostras do Lago, e também em maior quantidade (Tabela 1), o BPA demonstra ser o menos tóxico.

Dessa forma, sugere-se para estudos futuros, que envolvam testes de toxicidade em concentrações traço desses poluentes, o emprego de técnicas mais sensíveis (expressão genica, marcadores bioquímicos, entre outros) associados com períodos de exposição mais longos (crônicos). A mesma observação é válida para os testes de toxicidade das amostras de água do Lago e dos efluentes das duas ETEs Sul e Norte, onde não foi detectada toxicidade em embriões de zebrafish para os parâmetros analisados. A ausência de efeitos, não indica ausência de toxicidade, pois alterações de menor intensidade podem estar sendo subestimadas.

Sabe-se que, o Lago Paranoá é um corpo hídrico de fundamental importância para a manutenção da vida aquática e para população do DF. No entanto é pouco estudado no que se refere à presença de contaminantes emergentes e aos impactos ecológicos relacionados. Existem na literatura vários estudos que envolvem a dinâmica de poluentes em ambientes aquáticos do mundo todo, no entanto, o fato do Lago Paranoá ser um lago urbano tropical confere um caráter peculiar tanto referente a dinâmica dos poluentes, quanto aos impactos para a vida aquática. Dessa forma, os resultados obtidos na presente dissertação são em boa parte inéditos e reforçam a necessidade de um programa de

monitoramento das águas do Lago Paranoá e dos efluentes das Estações de tratamento de esgoto que tem o Lago como ponto de descarga. A aparente qualidade representada por indicadores físico-químicos e liminológicos e boas condições de balneabilidade podem mascarar efeitos discretos que a longo prazo podem interferir no equilíbrio da vida aquática não podendo, portanto, ser negligenciados.

Diante desse cenário, e da escassez de água evidente nos tempos hodiernos, onde o reuso é uma tendência mundial, é importante enfatizar que, a atenção dos gestores deve se voltar para o fato de que um número cada vez maior de contaminantes químicos, com toxicidade desconhecida, são descartados nos mananciais de água. Logo, diante dessa necessidade, tendo em vista o futuro uso do Lago Paranoá como ponto de captação de água para abastecimento e ainda considerando os resultados obtidos nessa pesquisa, recomenda-se o emprego de técnicas avançadas de tratamento de água que envolvam a remoção de contaminantes emergentes. Além disso, recomenda-se o constante monitoramento, em especial no ponto de captação, com ensaios ecotoxicológicos e quantificação de poluentes emergentes que podem representar riscos a saúde da população.

Referências

- A. Jonáš, B. Jedličková, L.B., 2011. Application of the Fish Embryo Toxicity Test for the Assessment of Waste Water Treatment Plant Effluents. *Acta Environmentalica Universitatis Comenianae*, 19, pp.136–139.
- Abbott, D.H. et al., 2005. Androgen excess fetal programming of female reproduction: a developmental aetiology for polycystic ovary syndrome? *Human reproduction update*, 11(4), pp.357–74.
- Andersen, H., Kjolholt, J. & Hansen, M., 2004. Degradation of estrogens in sewage treatment processes. *Environmental Project*, (899).
- Andersson, A.-M. et al., 2007. Secular decline in male testosterone and sex hormone binding globulin serum levels in Danish population surveys. *The Journal of clinical endocrinology and metabolism*, 92(12), pp.4696–705.
- ANVISA, 2011. Rdc 41/2011. In *Resolução 41/2011*. p. 7042.
- ANVISA. Resolução nº 27 , de 17 de maio, 2012. Disponível em Disponível em http://portal.anvisa.gov.br. Acesso em 20 mai, 2015.
- Arditsoglou, A. & Voutsa, D., 2008. Determination of phenolic and steroid endocrine disrupting compounds in environmental matrices. *Environmental science and pollution research international*, 15(3), pp.228–236.
- Aris, A.Z., Shamsuddin, A.S. & Praveena, S.M., 2014. Occurrence of 17α-ethynylestradiol (EE2) in the environment and effect on exposed biota: A review. *Environment International*, 69, pp.104–119.
- Aydin, E. & Talinli, I., 2013. Analysis, occurrence and fate of commonly used pharmaceuticals and hormones in the Buyukcekmece Watershed, Turkey. *Chemosphere*, 90(6), pp.2004–2012.
- Barber, L.B. et al., 2011. Effects of biologically-active chemical mixtures on fish in a wastewater-impacted urban stream. *The Science of the total environment*, 409, pp.4720–8.
- Baronti, C. et al., 2000. Monitoring natural and synthetic estrogens at activated sludge sewage treatment plants and in a receiving river water. *Environmental Science and Technology*, 34(24), pp.5059–5066.
- Beserra, M.R. et al., 2012. O Bisfenol A: Sua Utilização e a Atual Polêmica em Relação aos Possíveis Danos à Saúde Humana Bisphenol A: Possible Damage to Human Health. *Revista Eletrônica TECCEN*, 5(1), pp.37–45.
- Birkett, J.W. & Lester, J.N., 2003. Endocrine Disruptors in Wastewater and Sludge Treatment Processes. *Environmental health perspectives*, 111(10), p.13427.

- Bolong, N. et al., 2009. A review of the effects of emerging contaminants in wastewater and options for their removal. *Desalination*, 239(1), pp.229–246.
- Bradford, M.M., 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. *Analytical biochemistry*, 72, pp.248–254.
- Braga, O. et al., 2005. Fate of steroid estrogens in Australian inland and coastal wastewater treatment plants. *Environmental Science and Technology*, 39(9), pp.3351–3358.
- Braun, G.A. et al., 2014. Water quality of tropical reservoirs in a changuing world the case of lake Paranoá, Brasília, Brazil. In C. Lorz, F. Markeschin, & H. Weiss, eds. *Integrated Water Resource Management in Brazil*. London UK, pp. 73 92.
- Briciu, R.D., Kot-Wasik, A. & Namiesnik, J., 2009. Analytical challenges and recent advances in the determination of estrogens in water environments. *Journal of chromatographic science*, 47(2), pp.127–139.
- Companhia de Saenamento Ambiental do Distrito Federal (CAESB). Sinopse do Sistema de Esgotamento Sanitário do Distrito Federal, 2014. Brasília.
- Cargouët, M. et al., 2004. Assessment of river contamination by estrogenic compounds in Paris area (France). *Science of the Total Environment*, 324(1-3), pp.55–66.
- Carvalho, M.C. de M.C.A.S., 2000. Avaliação da toxicidade de compostos de níquel para o cladócero Daphnia magna. [Dissertação de Mestrado]. Portugal:Universidade do Porto,2000.118p.
- Céspedes, R. et al., 2006. Chemical monitoring and occurrence of alkylphenols, alkylphenol ethoxylates, alcohol ethoxylates, phthalates and benzothiazoles in sewage treatment plants and receiving waters along the ter River basin (Catalonia, N. E. Spain). *Analytical and Bioanalytical Chemistry*, 385(6), pp.992–1000.
- Clara, M. et al., 2005. The solids retention time A suitable design parameter to evaluate the capacity of wastewater treatment plants to remove micropollutants. *Water Research*, 39(1), pp.97–106.
- De Coen, W.M., Janssen, C.R. & Giesy, J.P., 2000. Biomarker applications in ecotoxicology: bridging the gap between toxicology and ecology. *New Microbiotests for Routine Toxicity Screening and Biomonitoring*, pp.13–25.
- Coleman, H.M. et al., 2004. Rapid loss of estrogenicity of steroid estrogens by UVA photolysis and photocatalysis over an immobilised titanium dioxide catalyst. *Water Research*, 38(14-15), pp.3233–3240.
- CONAMA, 2005. Resolução n 357, 18 de março de 2005. In Diário Oficial. pp. 58-63.

- CONAMA,2011. Resolução n 430, 13 de maio de 2011.Disponível em http://www.mma.gov.br/port/conama/legiabre.cfm?codlegi=646. Acesso em 20/04/2015.
- Companhia de Saneamento Ambiental do Distrito Federal(CAESB). Mapa de balneabilidade do Lago Paranoá. Disponível em: http://www.caesb.df.gov.br/balneabilidade-do-lago-paranoa.html. Acesso em: 31 mai. 2015.
- Costa, N.Y.M. Da, 2014. *Estudo geoquímico e de contaminantes na bacia do Lago Paranoá*. [Dissertação de Mestrado]. Brasília: Universidade de Brasília, 2014.118p.
- Cousins, I.T. et al., 2002. A Multimedia Assessment of the Environmental Fate of Bisphenol A. *Human and Ecological Risk Assessment: An International Journal*, 8(5), pp.1107–1135.
- Crain, D.A. et al., 2007. An ecological assessment of bisphenol-A: Evidence from comparative biology. *Reproductive Toxicology*, 24(2), pp.225–239.
- Cubero-Leon, E. et al., 2010. Estrogens disrupt serotonin receptor and cyclooxygenase mRNA expression in the gonads of mussels (Mytilus edulis). *Aquatic Toxicology*, 98(2), pp.178–187.
- D'Ascenzo, G. et al., 2003. Fate of natural estrogen conjugates in municipal sewage transport and treatment facilities. *Science of the Total Environment*, 302(1-3), pp.199–209.
- Deblonde, T., Cossu-Leguille, C. & Hartemann, P., 2011. Emerging pollutants in wastewater: a review of the literature. *International journal of hygiene and environmental health*, 214, pp.442–448.
- Diamanti-Kandarakis, E. et al., 2007. Accumulation of dietary glycotoxins in the reproductive system of normal female rats. *Journal of molecular medicine (Berlin, Germany)*, 85, pp.1413–20.
- Diamanti-Kandarakis, E. et al., 2009. Endocrine-disrupting chemicals: an Endocrine Society scientific statement. *Endocrine reviews*, 30(4), pp.293–342.
- Diamantino, T.C. et al., 2001. Lactate dehydrogenase activity as an effect criterion in toxicity tests with Daphnia magna straus. *Chemosphere*, 45(4-5), pp.553–560.
- Dickerson, S.M. & Gore, A.C., 2007. Estrogenic environmental endocrine-disrupting chemical effects on reproductive neuroendocrine function and dysfunction across the life cycle. *Reviews in endocrine & metabolic disorders*, 8, pp.143–59.
- Dietrich, S. et al., 2010. Single and combined toxicity of pharmaceuticals at environmentally relevant concentrations in Daphnia magna A multigenerational study. *Chemosphere*, 79(1), pp.60–66. Available at: http://dx.doi.org/10.1016/j.chemosphere.2009.12.069.

- Dionísio, A.G.G. et al., 2010. Novas tendências em preparo de amostras para cromatografia líquida. *Scientia Chromatographica*, 2(3), pp.19–29.
- Domingues, I. et al., 2010. Biomarkers as a tool to assess effects of chromium (VI): comparison of responses in zebrafish early life stages and adults. *Comparative biochemistry and physiology. Toxicology & pharmacology : CBP*, 152(3), pp.338–345.
- Drewes, J.E. et al., 2005. An assessment of endocrine disrupting activity changes during wastewater treatment through the use of bioassays and chemical measurements. *Water environment research: a research publication of the Water Environment Federation*, 77(1), pp.12–23.
- Duan, Z. et al., 2008. Individual and joint toxic effects of pentachlorophenol and bisphenol A on the development of zebrafish (Danio rerio) embryo. *Ecotoxicology and Environmental Safety*, 71(3), pp.774–780.
- Dumesic, D.A., Abbott, D.H. & Padmanabhan, V., 2007. Polycystic Ovary Syndrome and its Developmental Origins. *Rev Endocr Metab Disord.*, 8(2), pp.127–141.
- Embry, M.R. et al., 2010. The fish embryo toxicity test as an animal alternative method in hazard and risk assessment and scientific research. *Aquatic Toxicology*, 97(2), pp.79–87.
- De Esch, C. et al., 2012. Zebrafish as potential model for developmental neurotoxicity testing. A mini review. *Neurotoxicology and Teratology*, 34(6), pp.545–553.
- Farré, M. et al., 2007. Comparative study of an estradiol enzyme-linked immunosorbent assay kit, liquid chromatography-tandem mass spectrometry, and ultra performance liquid chromatography-quadrupole time of flight mass spectrometry for part-per-trillion analysis of estrogens in. *Journal of chromatography A*, 1160, pp.166–75.
- Fernandez, M.P., Ikonomou, M.G. & Buchanan, I., 2007. An assessment of estrogenic organic contaminants in Canadian wastewaters. *Science of the Total Environment*, 373(1), pp.250–269.
- Ferreira, M.G.M., 2008. *Remoção da atividade estrogênica de 17 betaestradiol e de etinilestradiol pelos processos de ozonização e O3/H2O2*.[Tese de doutorado].Rio de Janeiro: Universidade Federal do Rio de Janeiro, 2008.173p.
- Filho, R.W.R. & Araújo, Juliana Coutinho de Vieira, E. maria, 2006. Hormônios Sexuais estrógenos: Contaminantes Bioativos. *Quím. Nova*, 29(4), pp.817–822.
- Fonseca, F O, Neto, P B, Cavalcante, C V. *Olhares sobre o Lago Paranoá*.1ªedição.Brasília: Secretaria de Meio Ambiente e Recursos hídricos, 2001.425p.

- Fontenele, E.G.P. et al., 2010. Contaminantes ambientais e os interferentes endócrinos. *Arg. Bras Endocrinol Metab.*, 54(1), pp.6–16.
- Frasco, M.F. & Guilhermino, L., 2002. Effects of dimethoate and beta-naphthoflavone on selected biomarkers of Poecilia reticulata. *Fish Physiology and Biochemistry*, 26(2), pp.149–156.
- Fromme, H. et al., 2002. Occurrence of phthalates and bisphenol A and F in the environment. *Water Research*, 36(6), pp.1429–1438.
- Galus, M. et al., 2013. Chronic effects of exposure to a pharmaceutical mixture and municipal wastewater in zebrafish. *Aquatic Toxicology*, 132-133, pp.212–222.
- García-Cambero, J.P., Catalá, M. & Valcárcel, Y., 2012. River waters induced neurotoxicity in an embryo-larval zebrafish model. *Ecotoxicology and Environmental Safety*, 84, pp.84–91.
- Ghiselli, G., 2006. Avaliação das águas destinadas ao abastecimento público na região de Campinas: ocorrência e determinação dos interferentes endócrinos (IE) e produtos farmacêuticos e de higiene pessoal (PFHP). [Dissertação de Mestrado]. São Paulo: Unicamp, 2006.181p.
- Ghiselli, G. & Jardim, W.F., 2007. Interferentes Endócrinos no ambiente. *Química Nova*, 30(3), pp.695–706.
- Gibson, R. et al., 2007. Determination of acidic pharmaceuticals and potential endocrine disrupting compounds in wastewaters and spring waters by selective elution and analysis by gas chromatography-mass spectrometry. *Journal of chromatography A*, 1169, pp.31–9.
- Gillis, P.L., 2012. Cumulative impacts of urban runoff and municipal wastewater effluents on wild freshwater mussels (Lasmigona costata). *The Science of the total environment*, 431, pp.348–56.
- Glassmeyer, S.T. The cycle of emerging contaminants. *Water Resources Impact*, v. 9, n. 3, p.5-7, 2007.
- Goodman & Gilman's, 2006. *Goodman and Gilman's The Pharmacological Basis of Therapeutics* 11th ed. L. L. Brunton, ed., Chicago.
- Grisolia, C.K. et al., 2009. Genotoxic evaluation of different δ-endotoxins from Bacillus thuringiensis on zebrafish adults and development in early life stages. *Mutation Research/Genetic Toxicology and Environmental Mutagenesis*, 672(2), pp.119–123.
- Grisolia, C.K. et al., 2005. Genotoxicity evaluation of domestic sewage in a municipal wastewater treatment plant. *Genetics and Molecular Biology*, 28(2), pp.334–338.

- Grisolia, C.K. et al., 2009. Profile of micronucleus frequencies and DNA damage in different species of fish in a eutrophic tropical lake. *Genetics and Molecular Biology*, 32(1), pp.138–143.
- Hashimoto, S. et al., 2005. Horizontal and vertical distribution of estrogenic activities in sediments and waters from Tokyo Bay, Japan. *Archives of Environmental Contamination and Toxicology*, 48(2), pp.209–216.
- Hinck, J.E. et al., 2009. Widespread occurrence of intersex in black basses (Micropterus spp.) from U.S. rivers, 1995-2004. *Aquatic toxicology (Amsterdam, Netherlands)*, 95(1), pp.60–70.
- Hogan, N.S., Lean, D.R.S. & Trudeau, V.L., 2006. Exposures to estradiol, ethinylestradiol and octylphenol affect survival and growth of Rana pipiens and Rana sylvatica tadpoles. *Journal of toxicology and environmental health. Part A*, 69(16), pp.1555–1569.
- Howdeshell, K.L. et al., 1999. Exposure to bisphenol A advances puberty. *Nature*, 401, pp.763–764.
- ICH Harmonised tripartite guideline validation of analytical procedures.2005. Disponível em http://www.ich.org/products/guidelines/quality/article/quality-guidelines.html. Acesso em 10/03/2105.
- Ike, M., Jin, C.S. & Fujita, M., 2000. Biodegradation of bisphenol A in the aquatic environment. *Water Science and Technology*, 42(7-8), pp.31–38.
- Isobe, T. et al., 2003. Determination of estrogens and their conjugates in water using solid-phase extraction followed by liquid chromatography-tandem mass spectrometry. *Journal of Chromatography A*, 984(2), pp.195–202.
- Janesick, A. & Blumberg, B., 2011. Endocrine disrupting chemicals and the developmental programming of adipogenesis and obesity. *Birth defects research*. *Part C*, 93(1), pp.34–50.
- Jardim, I.C.S.F., 2010. Extração em Fase Sólida: Fundamentos Teóricos e Novas Estratégias para Preparação de Fases Sólidas. *Scientia Chromatographica*, 2(1), pp.13–25.
- Jemec, A. et al., 2012. Antioxidant responses and whole-organism changes in Daphnia magna acutely and chronically exposed to endocrine disruptor bisphenol A. *Ecotoxicology and Environmental Safety*, 86, pp.213–218.
- Jenkins, S. et al., 2007. Prenatal TCDD Exposure Predisposes for Mammary Cancer in Rats. *Reprod Toxic*, 23(3), pp.391–396.
- Jesus, F.T. et al., 2013. Lethal and sub lethal effects of the biocide chlorhexidine on aquatic organisms. *Ecotoxicology*, 22(9), pp.1348–1358.

- Jin, X. et al., 2004. Determination of 4-tert-octylphenol, 4-nonylphenol and bisphenol A in surface waters from the Haihe River in Tianjin by gas chromatography-mass spectrometry with selected ion monitoring. *Chemosphere*, 56(11), pp.1113–1119.
- Johnson, A.C. & Sumpter, J.P., 2001. Removal of endocrine-disrupting chemicals in activated sludge treatment works. *Environmental Science & Technology*, 35(24), pp.4697–4703.
- Kang, J.H. & Kondo, F., 2002. Bisphenol A degradation by bacteria isolated from river water. *Archives of Environmental Contamination and Toxicology*, 43(3), pp.265–269.
- Kang, J.H. & Kondo, F., 2002. Effects of bacterial counts and temperature on the biodegradation of bisphenol A in river water. *Chemosphere*, 49(5), pp.493–498.
- Kang, J.H., Ri, N. & Kondo, F., 2004. Streptomyces sp. strain isolated from river water has high bisphenol A degradability. *Letters in Applied Microbiology*, 39(2), pp.178–180.
- Kawahata, H. et al., 2004. Endocrine disrupter nonylphenol and bisphenol A contamination in Okinawa and Ishigaki Islands, Japan Within coral reefs and adjacent river mouths. *Chemosphere*, 55(11), pp.1519–1527.
- Kolpin, D.W. et al., 2002. Pharmaceuticals, hormones, and other organic wastewater contaminants in U.S. streams, 1999-2000: a national reconnaissance. *Environmental science & technology*, 36, pp.1202–11.
- Komori, K. et al., 2004. Analysis and Occurrence of Estrogen in Wastewater in japan. *Water Science and Technology*, 50(5), pp.93–100.
- Körner, W. et al., 2000. Input/output balance of estrogenic active compounds in a major municipal sewage plant in Germany. *Chemosphere*, 40, pp.1131–1142.
- Kuch, H.M. & Ballschmiter, K., 2001. Detennination of Compounds and Estrogens in Surface and Drinking Water by HRGC- (NCI) -MS in the Picogram per Liter Range. *Environ. Sci. Technol.*, 35(1), pp.3201–3206.
- Kuster, M. et al., 2009. Analysis of phytoestrogens, progestogens and estrogens in environmental waters from Rio de Janeiro (Brazil). *Environment international*, 35(7), pp.997–1003.
- Laganà, A. et al., 2004. Analytical methodologies for determining the occurrence of endocrine disrupting chemicals in sewage treatment plants and natural waters. *Analytica Chimica Acta*, 501(1), pp.79–88.
- Lahnsteiner, F. et al., 2006. Effect of 17beta-estradiol on gamete quality and maturation in two salmonid species. *Aquatic Toxicology*, 79(2), pp.124–131.

- Lai, K.M. et al., 2000. Binding of waterborne steroid estrogens to solid phases in river and estuarine systems. *Environmental Science and Technology*, 34(18), pp.3890–3894.
- Lam, S.H. et al., 2011. Toxicogenomic and phenotypic analyses of bisphenol-a early-life exposure toxicity in zebrafish. *PLOS ONE*, 6(12), pp.1-16.
- Lammer, E., Kamp, H.G., et al., 2009. Development of a flow-through system for the fish embryo toxicity test (FET) with the zebrafish (Danio rerio). *Toxicology in Vitro*, 23(7), pp.1436–1442.
- Lammer, E., Carr, G.J., et al., 2009. Is the fish embryo toxicity test (FET) with the zebrafish (Danio rerio) a potential alternative for the fish acute toxicity test? *Comparative Biochemistry and Physiology - C Toxicology and Pharmacology*, 149(2), pp.196–209.
- Lee, W. et al., 2012. Screening estrogenic activity of environmental contaminants and water samples using a transgenic medaka embryo bioassay. *Chemosphere*, 88(8), pp.945–952.
- Lei, B. et al., 2009. Levels of six estrogens in water and sediment from three rivers in Tianjin area, China. *Chemosphere*, 76(1), pp.36–42.
- Liang, J. & Shang, Y., 2013. Estrogen and cancer. *Annual review of physiology*, 75, pp.225–40.
- De Lima, R.O.A. et al., 2007. Mutagenic and carcinogenic potential of a textile azo dye processing plant effluent that impacts a drinking water source. *Mutation Research/Genetic Toxicology and Environmental Mutagenesis*, 626(1), pp.53–60.
- Lindholst, C. et al., 2003. Metabolism of bisphenol A in zebrafish (Danio rerio) and rainbow trout (Oncorhynchus mykiss)in relation to estrogenic response. *Comparative Biochemistry and Physiology Part C:*, 135, pp.169–177.
- Liu, J. et al., 2012. Biological effects and bioaccumulation of steroidal and phenolic endocrine disrupting chemicals in high-back crucian carp exposed to wastewater treatment plant effluents. *Environmental pollution*, 162, pp.325–31.
- Liu, Z.-H., Kanjo, Y. & Mizutani, S., 2009. Removal mechanisms for endocrine disrupting compounds (EDCs) in wastewater treatment physical means, biodegradation, and chemical advanced oxidation: a review. *The Science of the total environment*, 407(2), pp.731–48.
- Lopes, L.G. et al., 2010. Estrogênios em águas naturais e tratadas da região de jaboticabal São Paulo. *Quím. Nova*, 33(3), pp.639–643.
- Melo, S.A.S. et al., 2009. Revisão. *Química Nova*, 32(1), pp.188–197.

- Metcalfe, C.D. et al., 2001. Estrogenic potency of chemicals detected in sewage treatment plant effluents as determined by in vivo assays with Japanese medaka (Oryzias latipes). *Environmental toxicology and chemistry / SETAC*, 20(2), pp.297–308.
- Miller, J.N. & Miller, J.M. *Estadística y quimiometría para química analítica*. 4. ed. Spain: Isabel Capella, 2002. p. 278.
- Montagner, C.C. & Jardim, W.F., 2011. Spatial and Seasonal Variations of Pharmaceuticals and Endocrine Disruptors in the Atibaia River, São Paulo State (Brazil)., 22(8), pp.1452–1462.
- Moreira, D.S., 2008. Desenvolvimento de metodologia analítica por cromatografia/espectrometria de massas para avaliação da ocorrência de perturbadores endócrinos em mananciais de abastecimento da região metropolitana de Belo Horizonte. [Dissertação de Mestrado]. Ouro preto-MG: Universidade federal de Ouro Preto, 2008.108p.
- Morteani, G. et al., 2006. Input and fate of anthropogenic estrogens and gadolinium in surface water and sewage plants in the hydrological basin of Prague (Czech Republic). *Environmental Geochemistry and Health*, 28(3), pp.257–264.
- Murray, T.J. et al., 2007. Induction of mammary gland ductal hyperplasias and carcinoma in situ following fetal bisphenol A exposure. *Reproductive toxicology*, 23, pp.383–90.
- Nalbandian, G. & Kovats, S., 2005. Understanding Sex Biases in Immunity. *immunologic Research*, 31(2), pp.91–106.
- Noble, R.L., 1977. The Development of Prostatic Adenocarcinoma in Nb Rats following Prolonged Sex Hormone Administration. *Cancer Res*, 37, pp.1929–1933.
- OECD, 2013. OECD GUIDELINES FOR TESTING OF CHEMICALS. In *Fish Embryo Acute Toxity (FET) Test*. p. 22. Disponível em: http://www.oecd.org . Acesso em 31 de março, 2014.
- Örn, S. et al., 2003. Gonad development and vitellogenin production in zebrafish (Danio rerio) exposed to ethinylestradiol and methyltestosterone. *Aquatic Toxicology*, 65(4), pp.397–411.
- Pauwels, B. et al., 2008. Comparison of Steroid Hormone Concentrations in Domestic and Hospital Wastewater Treatment Plants. *Journal of Environmental Engineering*, 134(11), pp.933–936.
- Petrovic, M. et al., 2008. Emerging Contaminants in Waste Waters: Sources and Occurrence. *Env Chem*, 5(April), pp.1–35.

- Petrovic, M. et al., 2002. Endocrine disruptors in sewage treatment plants, receiving river waters, and sediments: integration of chemical analysis and biological effects on feral carp. *Environmental toxicology and chemistry / SETAC*, 21(10), pp.2146–2156.
- Pojana, G. et al., 2007. Natural and synthetic endocrine disrupting compounds (EDCs) in water, sediment and biota of a coastal lagoon. *Environment International*, 33(7), pp.929–936.
- Pookpoosa, I. et al., 2014. Occurrence of Bisphenol A in Some Municipal Wastewater Treatment Plants 'Effluents in Bangkok Region., 1(1), pp.116–120.
- Queiroz, F.B. de, 2011. Desenvolvimento e validação de metodologia para determinação de fármacos e perturbadores endócrinos em amostras de esgoto utilizando extração em fase sólida e cromatografia líquida acoplada à espectrometira de massas. [Dissertação de Mestrado]. Ouro Preto-MG: Univeresidade Federal de Ouro Preto, 2011.113p.
- Raimundo, C.C.M., 2007. Ocorrência de interferentes endócrinos e produtos farmacêuticos nas águas superficiais da bacia do rio Atibaia. [Dissertação de Mestrado]. São Paulo: Universidade Estadual de Campinas, 2007.108p.
- Rasier, G. et al., 2007. Early Maturation of Gonadotropin-Releasing Hormone Secretion and Sexual Precocity after Exposure of Infant Female Rats to Estradiol or Dichlorodiphenyltrichloroethane 1. *Biology of Reprodution*, 77, pp.734–742.
- Rempel, M.A. et al., 2009. Effects of 17β-estradiol, and its metabolite, 4-hydroxyestradiol on fertilization, embryo development and oxidative DNA damage in sand dollar (Dendraster excentricus) sperm. *Science of the Total Environment*, 407(7), pp.2209–2215.
- Ribani, M. et al., 2004. Validação em métodos cromatográficos e eletroforéticos. *Quimica Nova*, 27(5), pp.771–780.
- Rodrigues, A. et al., 2007. Poluentes e Fontes: Orgânicos.p.18.
- San Segundo, L., Martini, F. & Pablos, M.V., 2013. Gene expression responses for detecting sublethal effects of xenobiotics and whole effluents on a Xenopus laevis embryo assay. *Environmental Toxicology and Chemistry*, 32(9), pp.2018–2025.
- Santana, J. da S., 2013. *Determinação de contaminantes emergentes em mananciais de água bruta e na água para consumo humano do Distrito Federal*. [Dissertação de Mestrado]. Brasília: Universidade de Brasília; 2013. 101p.
- Santhi, V... et al., 2012. Occurrence of bisphenol A in surface water, drinking water and plasma from Malaysia with exposure assessment from consumption of drinking water. *The Science of the total environment*, 427-428, pp.332–8.

- Sasaki, M. et al., 2005. Biodegradation of bisphenol A by cells and cell lysate from Sphingomonas sp. strain AO1. *Biodegradation*, 16(5), pp.449–459.
- Scholz, S. et al., 2008. The zebrafish embryo model in environmental risk assessment Applications beyond acute toxicity testing. *Environmental Science and Pollution Research*, 15(5), pp.394–404.
- Segner, H. et al., 2003. Identification of endocrine-disrupting effects in aquatic vertebrates and invertebrates: Report from the European IDEA project. *Ecotoxicology and Environmental Safety*, 54(3), pp.302–314.
- Selvaraj, K.K. et al., 2014. GC-MS determination of bisphenol A and alkylphenol ethoxylates in river water from India and their ecotoxicological risk assessment. *Ecotoxicology and Environmental Safety*, 99, pp.13–20.
- Sieratowicz, A. et al., 2011. Reproductive toxicity of bisphenol A and cadmium in Potamopyrgus antipodarum and modulation of bisphenol A effects by different test temperature. *Environmental Pollution*, 159(10), pp.2766–2774.
- Silva, C.G.A. & Collins, C.H., 2011. Revisão. *Química Nova*, 34(4), pp.665–676.
- SNIS, 2014. Diagnóstico dos Serviços de Água e Esgotos-2013, p.360.
- Sodré, F. F. et al., 2007. Ocorrência de interferentes endócrinos e produtos farmacêuticos em águas superficiais da região de Campinas (SP, Brasil). *Journal of the Brazilian Society of Ecotoxicology*, 2(2), pp.187–196.
- Sodré, F.F. et al., 2010. Assessing selected estrogens and xenoestrogens in Brazilian surface waters by liquid chromatography tandem mass spectrometry. *Microchemical Journal*, 96(1), pp.92–98.
- Sodré, F.F., Locatelli, M.A.F. & Jardim, W.F., 2010. Occurrence of Emerging Contaminants in Brazilian Drinking Waters: A Sewage-To-Tap Issue. *Water, Air, and Soil Pollution*, 206(1-4), pp.57–67.
- Sosa-ferrera, Z., Mahugo-santana, C. & Santana-rodríguez, J.J., 2013. Analytical Methodologies for the Determination of Environmental Samples. *BioMed Research International*, 2013, pp.1–23.
- Souza, N.C. de, 2011. Avaliação de micropoluentes emergentes em esgotos e águas superficiais. Universidade Federal do Ceará.
- Sperling, M. Von, 2005. *Introdução à qualidade das águas e ao tratamento de esgotos* 3 ed. UFMG, Belo Horizonte.
- Spivacks, J., Leib, T.K. & Lobos, J.H., 1994. Novel Pathway for Bacterial Metabolism of Bisphenol A. *The Journal of biological chemistry*, 269(10), pp.7323–7329.

- Tang-Péronard, J.L. et al., 2011. Endocrine-disrupting chemicals and obesity development in humans: a review. *Obesity reviews : an official journal of the International Association for the Study of Obesity*, 12(8), pp.622–36.
- Ternes, T.A. et al., 1999a. Behavior and occurrence of estrogens in municipal sewage treatment plants--I. Investigations in Germany, Canada and Brazil. *The Science of the total environment*, 225, pp.81–90.
- Ternes, T. A., Kreckel, P. & Mueller, J., 1999b. Behaviour and occurrence of estrogens in municipal sewage treatment plants II. Aerobic batch experiments with activated sludge. *Science of the Total Environment*, 225(1-2), pp.91–99.
- Torres, N.H., 2009. *Monitoração de resíduos dos hormônios 17 alfa-etinilestradiol, 17beta-estradiol e estriol em águas de abastecimento urbano da cidade de Piracicaba, SP*. [Dissertação de Mestrado]. São Paulo: Universidade de São Paulo; 2009. 83p.
- Turan, A., 1996. Excretion of natural and synthetic estrogens and their metabolites: Ocurrence and behavior in water. In *Endocrinically active chemicals in the environment*. pp. 21–28.
- United Nations, 2015. Water for a sustainable world Water for a sustainable. In ONU, ed. *The United Nations World Water Development Report 2015*. p. 122.
- Urase, T. & Kikuta, T., 2005. Separate estimation of adsorption and degradation of pharmaceutical substances and estrogens in the activated sludge process. *Water Research*, 39(7), pp.1289–1300.
- Vallejo-Rodríguez, R. et al., 2011. Optimization of Analytical Conditions to Determine Steroids and Pharmaceuticals Drugs in Water Samples Using Solid Phase-Extraction and HPLC. *American Journal of Analytical Chemistry*, 02, pp.863–870.
- Vandenberg, L.N. et al., 2008. Perinatal exposure to the xenoestrogen bisphenol-A induces mammary intraductal hyperplasias in adult CD-1 mice. *Reproductive toxicology (Elmsford, N.Y.)*, 26, pp.210–219.
- Vang, S.H., Kortner, T.M. & Arukwe, A., 2007. Steroidogenic acute regulatory (StAR) protein and cholesterol side-chain cleavage (P450scc) as molecular and cellular targets for 17??- ethynylestradiol in salmon previtellogenic oocytes. *Chemical Research in Toxicology*, 20(12), pp.1811–1819.
- Vassault, A., 1983. Lactate dehydrogenase. Methods of enzymatic analysis, enzymes: oxireductases, transferase. *Academic Press, New York*, pp. 118–126.
- Vega-Morales, T., Sosa-Ferrera, Z. & Santana-Rodríguez, J.J., 2010. Determination of alkylphenol polyethoxylates, bisphenol-A, 17α-ethynylestradiol and 17β-estradiol and its metabolites in sewage samples by SPE and LC/MS/MS. *Journal of Hazardous Materials*, 183, pp.701–711.

- Verstraeten, I.M. et al., 2003. Occurrence of Endocrine-Disrupting and Other Wastewater Compounds during Water Treatment with Case Studies from Lincoln, Nebraska and Berlin, Germany. *Pract. Period. Hazard. Toxic Radioact. Waste Manage*, 7, pp.253–263.
- Vethaak, A.D. et al., 2005. An integrated assessment of estrogenic contamination and biological effects in the aquatic environment of The Netherlands. *Chemosphere*, 59(4), pp.511–24.
- Völkel, W. et al., 2002. Metabolism and kinetics of bisphenol a in humans at low doses following oral administration. *Chemical research in toxicology*, 15, pp.1281–7.
- Voordeckers, J.W. et al., 2002. Anaerobic biotransformation of tetrabromobisphenol A, tetrachlorobisphenol A, and bisphenol A in estuarine sediments. *Environmental Science and Technology*, 36(4), pp.696–701.
- Vulliet, E. et al., 2008. Multi-residue analysis of steroids at sub-ng/L levels in surface and ground-waters using liquid chromatography coupled to tandem mass spectrometry. *Journal of chromatography A*, 1210, pp.84–91.
- Wada, K. et al., 2007. Life Style-Related Diseases of the Digestive System: Endocrine Disruptors Stimulate Lipid Accumulation in Target Cells Related to Metabolic Syndrome. *J Pharmacol Sci*, 105, pp.133–137.
- Walker, D.M. & Gore, A.C., 2007. Endocrine-Disrupting Chemicals and the Brain. In G. A. C, ed. *Endocrine-Disrupting Chemicals From Basic research to Clinical Practice*. Texas, p. 361.
- Wallach, E.E. et al., 1998. Environmental toxicants and female, 70(4), pp.613–622.
- Wang, C. et al., 2011. Simultaneous determination of three naturally occurring estrogens in environmental waters by high-performance liquid chromatography. *Journal of separation science*, 34, pp.2371–5.
- Wang, J. et al., 2010. Expression of two cytochrome P450 aromatase genes is regulated by endocrine disrupting chemicals in rare minnow Gobiocypris rarus juveniles. *Comparative Biochemistry and Physiology C Toxicology and Pharmacology*, 152(3), pp.313–320.
- Watts, M.M., Pascoe D. e Carroll, K., 2002. Exposure to 17a-ethinylestradiol and bisphenol A—effects on larval moulting and mouthpart structure of Chironomus riparius. Ecotoxicology and Environmental Safety, 54, pp. 207–215.
- WHO, 2014. Investing in Water and Sanitation: Increasing Access, Reducing Inequalities. Disponível em:
 http://www.who.int/water-sanitation-health/glaas/2013/14063 SWA GLAAS Highlights.pdf. Acesso em 10/03/2014.

- WHO, 2012. *State of the Science of Endocrine Disrupting Chemicals -2012*. Disponível em http://www.who.int/ceh/publications/endocrine/en/. Acesso em 15/05/2013.
- Woodruff, T.K. & Walker, C.L., 2008. Fetal and early postnatal environmental exposures and reproductive health effects in the female. *Fertility and sterility*, 89(1), pp.47–51.
- Wu, M. et al., 2011. Oxidative stress in zebrafish embryos induced by short-term exposure to bisphenol A, nonylphenol, and their mixture. *Environmental Toxicology and Chemistry*, 30(10), pp.2335–2341.
- Yang, J.Z., Agarwal, S.K. & Foster, W.G., 2000. Modulates the Pathophysiology of Endometriosis in the Cynomolgus Monkey. *Toxicological Sciences*, 56, pp.374–381.
- Yang, L., Luan, T. & Lan, C., 2006. Solid-phase microextraction with on-fiber silylation for simultaneous determinations of endocrine disrupting chemicals and steroid hormones by gas chromatography-mass spectrometry. *Journal of Chromatography A*, 1104(1-2), pp.23–32.
- Ying, G.G. et al., 2009. Occurrence and implications of estrogens and xenoestrogens in sewage effluents and receiving waters from South East Queensland. *Science of the Total Environment*, 407(18), pp.5147–5155.
- Ying, G.G., Kookana, R.S. & Ru, Y.J., 2002. Occurrence and fate of hormone steroids in the environment. *Environment International*, 28(6), pp.545–551.
- Zhang, X. et al., 2011. Estrogenic compounds and estrogenicity in surface water, sediments, and organisms from Yundang Lagoon in Xiamen, China. *Archives of Environmental Contamination and Toxicology*, 61(1), pp.93–100.
- Zhou, X. et al., 2011. Distribution of estrogens along Licun River in Qingdao, China. *Procedia Environmental Sciences*, 10(PART C), pp.1876–1880.
- Zwir-Ferenc, A. & Biziuk, M., 2006. Solid Phase Extraction Technique Trends, Opportunities and Applications. *Polish J. Of Environ. Stud.*, 15(5), pp.677–690.
- Żwir-Ferenc, A. & Biziuk, M., 2006. Solid Phase Extraction Technique Trends, Opportunities and Applications. *Solid Phase Extraction Technique Trends, Opportunities and Applications*, 15(5), pp.677–690.

Apêndice

Dissertação de Mestrado

2015

Material Suplementar

Tabela Suplementar 1. Valores das analises físicas e químicas dos efluentes das Estações de Tratamento de Esgoto Sul e Norte nas campanhas de outubro de 2013 à Abril de 2014.

Parâmetro	Campanhas amostrais										
(mg/L)	Out/13	Nov/13	Dez/13	Jan/14	Mar/14	Abr/14					
ETE SUL											
Alumínio	0,05	0,05	_	0,05	0	0,02					
DBO	_	_	45	_	_	4					
DQO	_	57	55	29	28	33					
$N-NH_x$	27,3	18,45	11,4	1,51	1,55	3,34					
$N-NO_x$	0,53	0,5	_	_	_	_					
pН	7,66	7,2	7,57	7,32	7,17	7,14					
PO_4	_	0,05	0,05	0,05	0,05	0,05					
Pt	_	0,86	0,61	0,23	0,14	0,27					
SS	50	28	21	4	5	11					
TKN	_	20,4	13,1	3,4	3,1	4,9					
Turbidez	31,7	13,2	11,2	3,1	3,5	6,1					
ETE NORTE											
Alumínio	0,02	_	0,02	0	0,1	0,1					
DBO	_	_	7	_	_	_					
DQO	_	43	37	43	34	32					
$N-NH_x$	1,72	1,06	0,68	0,53	0,87	2,35					
$N-NO_x$	0,85	2,4	0,25	_	_	_					
pН	6,84	6,92	_	6,57	6,8	6,88					
PO_4	_	_	_	0,05	0,05	0,13					
Pt	_	0,34	_	0,15	0,11	0,3					
SS	7	6	3	1	2	8					
TKN	_	3,6	2,3	2,6	0,8	4,1					
Turbidez	3	3,8	3,2	1,3	2,4	4,4					

DQO: demanda química de oxigênio; N-NHx: Nitrogênio amoniacal (NO_3 e NO_4); N-NOx: nitrito e nitrato; PO_4 : ortofosfato; Pt: fósforo total; SS: sólidos em suspensão; TKN: nitrogênio total (amônia, nitrito e nitrato). Fonte: CAESB

Tabela Suplementar 2. Valores das análises físicas, químicas e biológicas das amostras de água do Lago Paranoá nas campanhas de outubro de 2013 à Outubro de 2014.

Paranoa na	Paranoá nas campanhas de outubro de 2013 à Outubro de 2014. Campanhas Amostrais												
tro			PA5			•		PF				PE	
Parâmetro	out/13	nov/13	fev/14	mar/14	out/14	out/13	nov/13	fev/14	mar/14	out/14	fev/14	mar/14	out/14
Chla (ug/L)	4,6	10,7	3,6	12,5	15, 6	0,7	5,3	3,2	4,3	5,3	6,4	6,4	8
Cond (uS/cm)	137 ,5	127, 2	123, 6	108, 4	155 ,8	99,3	108, 1	105, 9	94,8	94,9	109, 6	87,4	113 ,2
Cor verd (uH)	-	-	7	20	15	2	-	4	7	7	6	5	12
DTFito (Ind/L)	807 494 0	433 596 0	228 435 0	428 883 0	-	419 190 0	512 146 0	732 086 0	871 905 0	846 412 0	527 856 0	887 615 0	-
NH ₃ (mg/L)	1,8 7	1,19 9	0,25	0,23 4	1,5 87	0,20 4	0,26	0,04 9	0,08	0,13 5	0,07 7	0,07	0,0 6
N-NO ₂ (mg/L)	0,1 31	0,12 8	0,06 4	0,06	0,1 06	0,09 7	0,09	0,05	0,04 9	-	0,05	0,05	0,0 47
N-NO ₃ (mg/L)	0,5 45	0,54 7	0,53	0,53 1	0,5 37	0,44 6	0,47 8	0,4	0,36 5	-	0,41 9	0,42 4	0,4 07
NT	-	-	2,25	2,41	4,5 96	-	-	1,61	1,49 3	1,90 5	1,83	1,85 7	1,8 73
OD (mg/L)	8,3	6,6	6,5	6,1	6,6	7,9	7,4	7,2	6,3	7,2	6,8	7,2	7,7
pН	7,8	7,5	7,1	6,5	7,5	7,9	-	7,7	7	7,4	7,3	7,1	8,2
Pt (mg/L)	0,0 14	0,02	<0,0 06	0,02	0,0 24	<0,0 06	<0,0 06	<0,0 06	<0,0 06	<0,0 06	<0,0 06	0,02	<0, 006
SDT (mg/L)	82, 3	76,2	74,2	65	93, 5	59,8	64,8	63,5	56,8	57	65,9	52,8	67, 8
Temp (°C)	26, 5	25	26	26,5	25, 3	24,5	27	25,7	25,8	27	25,1	25,9	25, 5

Tabela Suplementar 2. Valores das análises físicas, químicas e biológicas das amostras de água do Lago Paranoá nas campanhas de outubro de 2013 à Outubro de 2014.

	Campanhas Amostrais												
netro			PA5					PF				PE	
Parâmetro	out/13	nov/13	fev/14	mar/14	out/14	out/13	nov/13	fev/14	mar/14	out/14	fev/14	mar/14	out/14
Turb (NTU)	3,6	6,1	5,5	6,3	1,9	1,3	1,7	1,3	1,7	1,7	2,1	1,7	1,9
Trans (cm)	180	110	140	3	180	-	-	300	3	250	230	3	260
DBO (mg/L)	10	-	1	5	< 1	8	-	-	4	< 1	-	7	< 1
PO ₄ (mg/L)	<0, 001	<0,0 01	<0,0 01	<0,0 01	<0, 001	-	<0,0 01	-	-	-	<0,0 01	<0,0 01	<0, 001
TC (mg/L)	-	-	12,2 5	13,0 9	13, 543	-	-	10,9 8	11,2 82	11,0 48	10,2 1	10,6 19	10, 96

Chla: Clorofila A; DTFito: Densidade total de fitoplâncton; NH₃: Amônia; N-NO₂: Nitrato; N-NO₃: Nitrito; NT: Nitrogênio total; OD: Oxigênio dissolvido; Pt: Fósforo total; SDT: Sólidos dissolvidos totais; DBO: Demanda bioquímica de oxigênio; PO4: Ortofosfato; TC: Carbono orgãnico total. Fonte: CAESB.

Composto/ Nível trófico	Espécie	Meio	Tempo (dias)	Tendência	Efeito Efeito	Efeito medido	CEO (µg L ⁻¹)	Referência
17 β-estradiol		Água	1	Aumento	Acumulação	Resíduo	10	Huang et al. (2006)
CAS: 50282 Consumidores primários		doce Água doce	14	Aumento	Acumulação	Resíduo	100	Huang et al. (2006)
	Neocaridina denticulata	Água ḍoce	28	Aumento	Acumulação	Resíduo	10	Huang et al. (2006)
	Neocaridina denticulata	Água doce	3	Aumento	Acumulação	Resíduo	100	Huang et al. (2006)
	Neocaridina denticulata	Água doce	3	Aumento	Bioquímico	Vitelogenina	10	Huang et al. (2006)
	Neocaridina denticulata	Agua doce	7	Aumento	Acumulação	Resíduo	10	Huang et al. (2006)
	Nitocra spinipes	Água salgada	18	Declínio	População	Proporção sexual	50	Breitholtz e Bengtsson (2001)
	Tisbe battagliai	Água salgada	21	Declínio	Reprodução	Fecundidade	100	Hutchinson et al. (1999)
	Tisbe battagliai	Água salgada	21	Não relatado	Reprodução	Reprodução geral	100	Pounds et al. (2002)
	Brachionus calyciflorus	Água doce	10	Aumento	Desenvolvimento	Estágio	100	Huang et al. (2012)
	Brachionus calyciflorus	Agua doce	10	Aumento	Reprodução	Taxa líquida de reprodução	100	Huang et al. (2012)
	Dendraster excentricus	Água salgada	.0417	Declínio	Reprodução	Fertilização	10000	Rempel et al. (2009)
	Dendraster excentricus	Agua salgada	2	Aumento	Desenvolvimento	Anormal	10000	Rempel et al. (2009)
	Strongylocentrotus purpuratus	Água salgada	.0729	Declínio	Desenvolvimento	Clivagem celular	500	Mwatibo e Green (1998)

Composto/ Nível trófico	Espécie	Meio	Tempo (dias)	Tendência	Efeito	Efeito medido	CEO (µg L ⁻¹)	Referência
	Strongylocentrotus purpuratus	Água salgada	.1146	Declínio	Desenvolvimento	Clivagem celular	500	Mwatibo e Green (1998)
	Strongylocentrotus purpuratus	Água salgada	2.125	Declínio	Desenvolvimento	Anormal	0.5	Roepke et al. (2005)
	Strongylocentrotus purpuratus	Água salgada	2.9583	Declínio	Desenvolvimento	Anormal	0.5	Roepke et al. (2005)
	Strongylocentrotus purpuratus	Água salgada	3.7083	Declínio	Desenvolvimento	Anormal	0.5	Roepke et al. (2005)
	Coretus corneus	Água doce	14	Declínio	Reprodução	Número de progênies	0.048	Benstead et al. (2011)
	Coretus corneus	Agua doce	28	Declínio	Reprodução	Número de progênies	0.048	Benstead et al. (2011)
	Coretus corneus	Agua doce	56	Declínio	Reprodução	Número de progênies	0.048	Benstead et al. (2011)
	Elliptio complanata	Água doce	.25	Declínio	Comportamento	Alterações comportamentais e no comprimento	100	Flynn et al. (2013)
	Elliptio complanata	Água doce	.25	Declínio	Comportamento	Alterações comportamentais e no comprimento	100	Flynn et al. (2013)
	Mytilus galloprovincialis	Água salgada	1	Declínio	Genético	RNAm do ativador do Gangliosídeo GM2	136,2	Canesi et al. (2011)
	Mytilus galloprovincialis	Água salgada	1	Aumento	Genético	RNAm da catalase	136,2	Canesi et al. (2011)
	Mytilus galloprovincialis	Água salgada	1	Aumento	Genético	RNAm do ativador do Gangliosídeo GM2	136,2	Canesi et al. (2011)
	Mytilus galloprovincialis	Água salgada	1	Declínio	Celular	Viabilidade celular	136,2	Canesi et al. (2011)
	Scrobicularia plana	Água salgada	6	Aumento	Genético	Dano	1	Petridis et al. (2009)

	3. Efeitos do 1/ β-estrad	ioi em anim		antes do primeiro e	do segundo niveis trofic	os da cadeia alimentar aquática.	QT 0	
Composto/ Nível trófico	Espécie	Meio	Tempo (dias)	Tendência	Efeito	Efeito medido	CEO (µg L ⁻¹)	Referência
	Mytilus edulis	Água salgada	10	Declínio	Genético	RNAm da lumbroquinase	0.0306	Cubero-Leon et al. (2010)
	Mytilus edulis	Água salgada	10	Declínio	Genético	RNAm da lumbroquinase	0.0306	Cubero-Leon et al. (2010)
	Mytilus edulis	Água salgada	10	Declínio	Genético	RNAm da ciclooxigenase	0.0306	Cubero-Leon et al. (2010)
	Mytilus edulis	Água salgada	10	Declínio	Genético	RNAm da ciclooxigenase	0.0306	Cubero-Leon et al. (2010)
	Mytilus edulis	Água salgada	10	Declínio	Genético	RNAm da ciclooxigenase	0.0307	Cubero-Leon et al. (2010)
	Mytilus edulis	Água salgada	10	Aumento	Genético	RNAm da lumbroquinase	0.0307	Cubero-Leon et al. (2010)
	Mytilus edulis	Água salgada	10	Aumento	Genético	RNAm da lumbroquinase	0.0307	Cubero-Leon et al. (2010)
Consumidores secundários	Bufo americanus	Água doce	21	Declínio	Desenvolvimento	Lentidão, atraso, retardo ou não desenvolvimento	27,24	Storrs e Semlitsch (2008)
	Bufo americanus	Água doce	Não relatado	Declínio	Desenvolvimento	Lentidão, atraso, retardo ou não desenvolvimento	27,24	Storrs e Semlitsch (2008)
	Hyla versicolor	Água doce	21	Aumento	Desenvolvimento	Até a metamorfose	27,24	Storrs e Semlitsch (2008)
	Lithobates clamitans ssp. clamitans	Água doce	506	Declínio	Desenvolvimento	Até a metamorfose	100	Coady et al. (2004)
	Lithobates pipiens	Água doce	124	Não relatado	População	Proporção sexual	1	Mackenzie et al. (2003)

Composto/ Nível trófico	Espécie	Meio	Tempo (dias)	Tendência	Efeito	Efeito medido	CEO (µg L ⁻¹)	Referência
Consumidores secundários	Lithobates pipiens	Água doce	91.5	Aumento	Crescimento	Comprimento	50	La Fiandra (2006)
	Lithobates pipiens	Água doce	91.5	Aumento	Crescimento	Peso	50	La Fiandra (2006)
	Lithobates pipiens	Água doce	14	Declínio	Desenvolvimento	Peso	1362	Hogan et al. (2006)
	Lithobates pipiens	Água doce	14	Declínio	Desenvolvimento	Peso	1362	Hogan et al. (2006)
	Lithobates pipiens	Água doce	124	Aumento	Reprodução	Vitelogênese	1	Mackenzie et al. (2003)
	Lithobates sphenocephalus ssp. sphenocephalus	Água doce	Não relatado	Declínio	Desenvolvimento	Até a metamorfose	27,24	Storrs e Semlitsch (2008)
	Lithobates sphenocephalus ssp. sphenocephalus	Água doce	63	Declínio	Desenvolvimento	Formação de órgãos/tecidos	27,24	Storrs e Semlitsch (2008)
	Lithobates sphenocephalus ssp. sphenocephalus	Água doce	Não relatado	Declínio	Desenvolvimento	Formação de órgãos/tecidos	27,24	Storrs e Semlitsch (2008)
	Rhinella arenarum	Água doce	200	Declínio	Desenvolvimento	Estágio	100	Brodeur et al. (2013)
	Rhinella arenarum	Água doce	200	Declínio	Desenvolvimento	Estágio	100	Brodeur et al. (2013)
	Rhinella arenarum	Água doce	200	Declínio	Desenvolvimento	Estágio	100	Brodeur et al. (2013)

Composto/ Nível trófico	Espécie	Meio	Tempo (dias)	Tendência	Efeito	Efeito medido	CEO (µg L ⁻¹)	Referência
Consumidores secundários	Rhinella arenarum	Água doce	200	Aumento	Morfológico	Comprimento	100	Brodeur et al. (2013)
	Rhinella arenarum	Água doce	200	Aumento	Crescimento	Peso	100	Brodeur et al. (2013)
	Rhinella arenarum	Água doce	200	Aumento	Crescimento	Peso	100	Brodeur et al. (2013)
	Xenopus laevis	Água doce	78	Aumento	População	Proporção sexual	0.157	Carr et al. (2003)
	Xenopus laevis	Água doce	78	Aumento	Morfológico	Alterações no sexo	0.157	Carr et al. (2003)
	Xenopus laevis	Água doce	78	Aumento	Crescimento	Comprimento	0.157	Carr et al. (2003)
	Xenopus laevis	Água doce	56	Aumento	Genético	RNAm P450 aromB	0.27	Oka et al. (2008)
	Xenopus laevis	Água doce	56	Aumento	Bioquímico	Vitelogenina	0.27	Oka et al. (2008)
	Xenopus laevis	Água doce	120	Alteração	População	Proporção sexual	27,24	Levy et al. (2004)
	Xenopus laevis	Água doce	120	Aumento	População	Proporção sexual	27,24	Levy et al. (2004)
	Xenopus laevis	Água doce	14	Aumento	Genético	RNAm estrogênico	27,24	Levy et al. (2004)
	Xenopus laevis	Água doce	30.44	Alteração	População	Proporção sexual	100	Cong et al. (2006)
	Xenopus laevis	Água doce	185	Declínio	Enzimático	Aromatase	100	Coady et al. (2005)
	Xenopus laevis	Água doce	185	Aumento	Acumulação	Resíduo	100	Coady et al. (2005)

Composto/ Nível trófico	Espécie	Meio	Tempo (dias)	Tendência	Efeito Efeito	Efeito medido	CEO (µg L ⁻¹)	Referência
Consumidores secundários	Xenopus laevis	Água doce	49	Declínio	Hormonal	Testosterona	0.1	Hecker et al. (2005)
	Xenopus laevis	Água doce	49	Aumento	Hormonal	17-beta estradiol	0.1	Hecker et al. (2005)
	Xenopus laevis	Água doce	49	Declínio	Reprodução	Número de células espermáticas	0.1	Hecker et al. (2005)
	Acanthogobius flavimanus	Água salgada	21	Aumento	Bioquímico	Vitelogenina	0.0807	Ohkubo et al. (2003)
	Acanthogobius flavimanus	Água salgada	21	Aumento	Bioquímico	Vitelogenina	0.606	Ohkubo et al. (2003)
	Acanthogobius flavimanus	Não relatado	21	Aumento	Genético	RNA mensageiro	0.1	Mochida et al. (2003)
	Acanthogobius flavimanus	Não relatado	21	Aumento	Genético	RNA mensageiro	0.1	Mochida et al. (2003)
	Gambusia holbrooki	Água doce	84	Declínio	População	Proporção sexual	0.5	Rawson et al. (2006)
	Gambusia holbrooki	Água doce	84	Declínio	Reprodução	Comportamento de corte	0.02	Doyle e Lim (2005)
	Gambusia holbrooki	Água doce	84	Declínio	Reprodução	Cópula, coito	0.02	Doyle e Lim (2005)
	Gambusia holbrooki	Água doce	84	Declínio	Reprodução	Gravidez	0.1	Doyle e Lim (2005)
	Gambusia holbrooki	Água doce	56	Declínio	Morfológico	Comprimento	0.5	Rawson et al. (2006)
	Gambusia holbrooki	Água doce	56	Declínio	Morfológico	Comprimento	0.5	Rawson et al. (2006)
	Gambusia holbrooki	Água doce	56	Declínio	Morfológico	Taxa	0.5	Rawson et al. (2006)

Composto/ Nível trófico	Espécie	Meio	Tempo (dias)	Tendência	Efeito Efeito	Efeito medido	CEO (µg L ⁻¹)	Referência
Consumidores secundários	Gobiocypris rarus	Água doce	4	Aumento	Genético	RNAm da vitelogenina Ao1	0.1	Ma et al. (2009)
	Jenynsia multidentata	Água doce	28	Aumento	Genético	RNAm CYP19b	0.05	Guyon et al. (2012)
	Lateolabrax japonicus	Água salgada	15	Declínio	Celular	Trombócitos	0.2	Thilagam et al. (2009)
	Lateolabrax japonicus	Água salgada	15	Aumento	Celular	Trombócitos	2	Thilagam et al. (2009)
	Lateolabrax japonicus	Água salgada	15	Aumento	Imunológico	Atividade oxidativa	0.2	Thilagam et al. (2009)
	Lateolabrax japonicus	Água salgada	15	Aumento	Imunológico	Atividade oxidativa	0.2	Thilagam et al. (2009)
	Lateolabrax japonicus	Água salgada	30	Declínio	Celular	Trombócitos	0.2	Thilagam et al. (2009)
	Lateolabrax japonicus	Água salgada	30	Declínio	Imunológico	Atividade oxidativa	2	Thilagam et al. (2009)
	Lateolabrax japonicus	Água salgada	30	Aumento	Imunológico	Atividade oxidativa	2	Thilagam et al. (2009)
	Lateolabrax japonicus	Água salgada	5	Declínio	Celular	Neutrofil	2	Thilagam et al. (2009)
	Lateolabrax japonicus	Água salgada	5	Declínio	Celular	Linfócito	0.2	Thilagam et al. (2009)
	Lateolabrax japonicus	Água salgada	5	Declínio	Celular	Trombócitos	2	Thilagam et al. (2009)
	Lateolabrax japonicus	Água salgada	5	Declínio	Celular	Monócito	2	Thilagam et al. (2009)
	Lateolabrax japonicus	Água salgada	5	Aumento	Celular	Trombócitos	0.2	Thilagam et al. (2009)

Composto/ Nível trófico	Espécie	Meio	Tempo (dias)	Tendência	Efeito Efeito	Efeito medido	CEO (µg L ⁻¹)	Referência
Consumidores		Água	5	Aumento	Celular	Neutrofil	2	Thilagam et al. (2009)
secundários		salgada	3	Tumento	Colulai	reducin	2	rimagam et al. (2007)
	Lateolabrax japonicus	Agua salgada	5	Aumento	Imunológico	Atividade oxidativa	0.2	Thilagam et al. (2009)
	Lateolabrax japonicus	Água salgada	5	Aumento	Imunológico	Atividade oxidativa	2	Thilagam et al. (2009)
	Lateolabrax japonicus	Água salgada	15	Aumento	Bioquímico	Teor de proteína	2	Thilagam et al. (2009)
	Lateolabrax japonicus	Água salgada	15	Aumento	Bioquímico	Teor de proteína	2	Thilagam et al. (2009)
	Lateolabrax japonicus	Água salgada	15	Aumento	Imunológico	Imunoglobulina M	2	Thilagam et al. (2009)
	Lateolabrax japonicus	Água salgada	15	Aumento	Imunológico	Imunoglobulina M	2	Thilagam et al. (2009)
	Lateolabrax japonicus	Água salgada	30	Aumento	Bioquímico	Teor de proteína	2	Thilagam et al. (2009)
	Lateolabrax japonicus	Água salgada	5	Aumento	Imunológico	Imunoglobulina M	0.2	Thilagam et al. (2009)
	Lateolabrax japonicus	Água salgada	15	Declínio	Enzimático	Tripsina	0.2	Thilagam et al. (2009)
	Lateolabrax japonicus	Água salgada	15	Declínio	Enzimático	Tripsina	0.2	Thilagam et al. (2009)
	Lateolabrax japonicus	Água salgada	15	Declínio	Bioquímico	Albumina	0.2	Thilagam et al. (2009)
	Lateolabrax japonicus	Água salgada	15	Declínio	Bioquímico	Albumina	2	Thilagam et al. (2009)
	Lateolabrax japonicus	Água salgada	15	Declínio	Bioquímico	Globulina	0.2	Thilagam et al. (2009)

Composto/ Nível trófico	Espécie	Meio	Tempo (dias)	Tendência	Efeito Efeito	Efeito medido	CEO (µg L ⁻¹)	Referência
Consumidores		Água	15	Declínio	Bioquímico	Globulina	0.2	Thilagam et al. (2009)
secundários		salgada	13	Decimio	Dioquillico	Giobullia	0.2	Timagam et al. (2007)
	Lateolabrax japonicus	Agua salgada	15	Declínio	Bioquímico	Teor de proteína	0.2	Thilagam et al. (2009)
	Lateolabrax japonicus	Água salgada	15	Declínio	Bioquímico	Teor de proteína	0.2	Thilagam et al. (2009)
	Lateolabrax japonicus	Água salgada	15	Declínio	Enzimático	Atividade da lisozima	0.2	Thilagam et al. (2009)
	Lateolabrax japonicus	Água salgada	15	Declínio	Enzimático	Atividade da lisozima	0.2	Thilagam et al. (2009)
	Lateolabrax japonicus	Água salgada	15	Aumento	Enzimático	Atividade peroxidase	0.2	Thilagam et al. (2009)
	Lateolabrax japonicus	Água salgada	15	Aumento	Enzimático	Atividade peroxidase	0.2	Thilagam et al. (2009)
	Lateolabrax japonicus	Água salgada	30	Declínio	Enzimático	Tripsina	0.2	Thilagam et al. (2009)
	Lateolabrax japonicus	Água salgada	30	Declínio	Bioquímico	Albumina	0.2	Thilagam et al. (2009)
	Lateolabrax japonicus	Água salgada	30	Declínio	Bioquímico	Albumina	0.2	Thilagam et al. (2009)
	Lateolabrax japonicus	Água salgada	30	Declínio	Bioquímico	Globulina	0.2	Thilagam et al. (2009)
	Lateolabrax japonicus	Água salgada	30	Declínio	Bioquímico	Globulina	0.2	Thilagam et al. (2009)
	Lateolabrax japonicus	Água salgada	30	Declínio	Bioquímico	Teor de proteína	0.2	Thilagam et al. (2009)
	Lateolabrax japonicus	Água salgada	30	Declínio	Bioquímico	Teor de proteína	0.2	Thilagam et al. (2009)

Composto/ Nível trófico	Espécie	Meio	Tempo (dias)	Tendência	Efeito Efeito	Efeito medido	CEO (µg L ⁻¹)	Referência
Consumidores secundários	Lateolabrax japonicus	Água salgada	30	Declínio	Enzimático	Atividade da lisozima	0.2	Thilagam et al. (2009)
	Lateolabrax japonicus	Água salgada	30	Declínio	Enzimático	Atividade da lisozima	2	Thilagam et al. (2009)
	Lateolabrax japonicus	Água salgada	30	Declínio	Enzimático	Atividade peroxidase	2	Thilagam et al. (2009)
	Lateolabrax japonicus	Água salgada	5	Declínio	Bioquímico	Albumina	0.2	Thilagam et al. (2009)
	Lateolabrax japonicus	Água salgada	5	Declínio	Bioquímico	Albumina	0.2	Thilagam et al. (2009)
	Lateolabrax japonicus	Água salgada	5	Declínio	Bioquímico	Globulina	0.2	Thilagam et al. (2009)
	Lateolabrax japonicus	Água salgada	5	Declínio	Bioquímico	Globulina	0.2	Thilagam et al. (2009)
	Lateolabrax japonicus	Água salgada	5	Declínio	Bioquímico	Teor de proteína	0.2	Thilagam et al. (2009)
	Lateolabrax japonicus	Água salgada	5	Declínio	Bioquímico	Teor de proteína	0.2	Thilagam et al. (2009)
	Lateolabrax japonicus	Água salgada	5	Declínio	Enzimático	Atividade da lisozima	0.2	Thilagam et al. (2009)
	Lateolabrax japonicus	Água salgada	5	Declínio	Enzimático	Atividade da lisozima	0.2	Thilagam et al. (2009)
	Lateolabrax japonicus	Água salgada	5	Aumento	Enzimático	Atividade peroxidase	0.2	Thilagam et al. (2009)
	Melanotaenia fluviatilis	Água doce	7	Aumento	Genético	RNAm da vitelogenina	0.01	Woods e Kumar (2011)
	Melanotaenia fluviatilis	Água doce	7	Aumento	Bioquímico	Vitelogenina	0.01	Woods e Kumar (2011)

Composto/ Nível trófico	Espécie	Meio	Tempo (dias)	Tendência	Efeito	Efeito medido	CEO (µg L ⁻¹)	Referência
	Morone saxatilis ssp. x chrysops	Água doce	21	Aumento	Bioquímico	Proteína receptora de estrógeno	10	Thompson (2000)
	Morone saxatilis ssp. x chrysops	Água doce	21	Aumento	Morfológico	Peso do órgão em relação ao peso do corpo	100	Thompson (2000)
	Morone saxatilis ssp. x chrysops	Água doce	21	Aumento	Bioquímico	Vitelogenina	10	Thompson (2000)
	Morone saxatilis ssp. x chrysops	Água doce	21	Aumento	Acumulação	Resíduo	100	Thompson (2000)
	Oryzias melastigma	Água salgada	7	Aumento	Genético	RNAm omChgH	0.01	Chen et al. (2008)
	Oryzias melastigma	Água salgada	7	Aumento	Genético	RNAm omChgH	0.1	Chen et al. (2008)
	Oryzias melastigma	Água salgada	7	Aumento	Genético	RNAm omChgL	0.1	Chen et al. (2008)
	Oryzias melastigma	Água salgada	7	Aumento	Genético	RNAm omChgL	0.1	Chen et al. (2008)
	Paralichthys dentatus	Água salgada	.0208	Aumento	Acumulação	Resíduo	30,236	Specker e Chandlee (2003)
	Paralichthys dentatus	Água salgada	.0417	Aumento	Acumulação	Resíduo	23,699	Specker e Chandlee (2003)
	Paralichthys dentatus	Água salgada	.1667	Aumento	Acumulação	Resíduo	20,702	Specker e Chandlee (2003)
	Paralichthys dentatus	Água salgada	1	Aumento	Acumulação	Resíduo	14,437	Specker e Chandlee (2003)
	Paralichthys dentatus	Água salgada	2	Aumento	Acumulação	Resíduo	7,3548	Specker e Chandlee (2003)
	Paralichthys dentatus	Água salgada	2	Aumento	Acumulação	Resíduo	12,803	Specker e Chandlee (2003)

Composto/ Nível trófico	Espécie	Meio	Tempo (dias)	Tendência	Efeito	Efeito medido	CEO (μg L ⁻¹)	Referência
Consumidores secundários	· ·	Água salgada	2	Aumento	Acumulação	Resíduo	1,362	Specker e Chandlee (2003)
	Paralichthys dentatus	Água salgada	.0208	Aumento	Acumulação	Resíduo	27,24	Specker e Chandlee (2003)
	Paralichthys dentatus	Água salgada	.0417	Aumento	Acumulação	Resíduo	27,24	Specker e Chandlee (2003)
	Paralichthys dentatus	Água salgada	.1667	Aumento	Acumulação	Resíduo	27,24	Specker e Chandlee (2003)
	Paralichthys dentatus	Água salgada	1	Aumento	Acumulação	Resíduo	27,24	Specker e Chandlee (2003)
	Paralichthys dentatus	Água salgada	2	Aumento	Acumulação	Resíduo	27,24	Specker e Chandlee (2003)
	Paralichthys dentatus	Água salgada	2	Aumento	Acumulação	Resíduo	1,0896	Specker e Chandlee (2003)
	Pomatoschistus minutus	Não relatado	152.2	Aumento	Morfológico	Peso do órgão em relação ao peso do corpo	0.071	Robinson et al. (2004)
	Pomatoschistus minutus	Não relatado	60.88	Declínio	Morfológico	Peso do órgão em relação ao peso do corpo	0.071	Robinson et al. (2004)
	Pomatoschistus minutus	Não relatado	91.32	Declínio	Morfológico	Peso do órgão em relação ao peso do corpo	0.53	Robinson et al. (2004)
	Pomatoschistus minutus	Não relatado	152.2	Aumento	Genético	RNAm da vitelogenina	0.071	Robinson et al. (2004)
	Pomatoschistus minutus	Não relatado	243.52	Aumento	Genético	RNAm da vitelogenina	0.071	Robinson et al. (2004)
	Pomatoschistus minutus	Não relatado	91.32	Aumento	Genético	RNAm da vitelogenina	0.071	Robinson et al. (2004)
	Pomatoschistus minutus	Não relatado	243.52	Declínio	Reprodução	Número de progênies	0.071	Robinson et al. (2004)

Composto/ Nível trófico	Espécie	Meio	Tempo (dias)	Tendência	Efeito Efeito	Efeito medido	CEO (μg L ⁻¹)	Referência
	Pomatoschistus	Não	243.52	Declínio	Reprodução	Número de progênies	0.53	Robinson et al. (2004)
secundários	minutus Pomatoschistus minutus	relatado Não relatado	243.52	Aumento	Fisiológico	Fragilidade osmótica	0.53	Robinson et al. (2004)
	Pomatoschistus minutus	Não relatado	152.2	Declínio	Desenvolvimento	Coloração	0.071	Robinson et al. (2004)
	Pomatoschistus minutus	Não relatado	243.52	Declínio	Desenvolvimento	Coloração	0.53	Robinson et al. (2004)
	Pomatoschistus minutus	Não relatado	91.32	Declínio	Desenvolvimento	Coloração	0.53	Robinson et al. (2004)
	Pomatoschistus minutus	Não relatado	152.2	Declínio	Morfológico	Peso do órgão em relação ao peso do corpo	0.071	Robinson et al. (2004)
	Pomatoschistus minutus	Não relatado	243.52	Declínio	Morfológico	Peso do órgão em relação ao peso do corpo	0.53	Robinson et al. (2004)
	Pomatoschistus minutus	Não relatado	91.32	Declínio	Morfológico	Peso do órgão em relação ao peso do corpo	0.071	Robinson et al. (2004)
	Pomatoschistus minutus	Água salgada	152.2	Declínio	Bioquímico	Hematócrito (anemia)	0.097	Robinson et al. (2007)
	Pomatoschistus minutus	Água salgada	152.2	Declínio	Desenvolvimento	Desenvolvimento sexual	0.097	Robinson et al. (2007)
	Pomatoschistus minutus	Água salgada	243.52	Declínio	Desenvolvimento	Desenvolvimento sexual	0.669	Robinson et al. (2007)
	Pomatoschistus minutus	Água salgada	91.32	Declínio	Desenvolvimento	Desenvolvimento sexual	0.669	Robinson et al. (2007)
	Pomatoschistus minutus	Água salgada	152.2	Aumento	Morfológico	Peso do órgão em relação ao peso do corpo	0.097	Robinson et al. (2007)
	Pomatoschistus minutus	Água salgada	152.2	Aumento	Morfológico	Peso do órgão em relação ao peso do corpo	0.016	Robinson et al. (2007)

Composto/ Nível trófico	Espécie	Meio	Tempo (dias)	Tendência	Efeito	Efeito medido	CEO (µg L ⁻¹)	Referência
Consumidores secundários	Pomatoschistus minutus	Água salgada	243.52	Aumento	Morfológico	Peso do órgão em relação ao peso do corpo	0.016	Robinson et al. (2007)
	Pomatoschistus minutus	Água salgada	60.88	Declínio	Morfológico	Peso do órgão em relação ao peso do corpo	0.097	Robinson et al. (2007)
	Pomatoschistus minutus	Água salgada	91.32	Declínio	Morfológico	Peso do órgão em relação ao peso do corpo	0.016	Robinson et al. (2007)
	Pomatoschistus minutus	Água salgada	91.32	Declínio	Morfológico	Peso do órgão em relação ao peso do corpo	0.669	Robinson et al. (2007)
	Pomatoschistus minutus	Água salgada	152.2	Aumento	Genético	RNAm da vitelogenina	0.097	Robinson et al. (2007)
	Pomatoschistus minutus	Água salgada	243.52	Aumento	Genético	RNAm da vitelogenina	0.097	Robinson et al. (2007)
	Pomatoschistus minutus	Água salgada	91.32	Aumento	Genético	RNAm da vitelogenina	0.097	Robinson et al. (2007)
	Pomatoschistus minutus	Água salgada	243.52	Declínio	Morfológico	Peso	0.669	Robinson et al. (2007)
	Pomatoschistus minutus	Agua salgada	243.52	Declínio	Morfológico	Peso	0.669	Robinson et al. (2007)
	Pomatoschistus minutus	Agua salgada	56	Declínio	Reprodução	Fertilidade	0.669	Robinson et al. (2007)
	Pomatoschistus minutus	Agua salgada	56	Declínio	Reprodução	Desova	0.669	Robinson et al. (2007)
	Pomatoschistus minutus	Agua salgada	56	Declínio	Reprodução	Iniciação do ninho	0.669	Robinson et al. (2007)
	Pomatoschistus minutus	Água salgada	56	Declínio	Reprodução	Fertilidade	0.669	Robinson et al. (2007)
	Pomatoschistus minutus	Ågua salgada	56	Declínio	Reprodução	Fertilidade	0.669	Robinson et al. (2007)

Composto/ Nível trófico	Espécie	Meio	Tempo (dias)	Tendência	Efeito	Efeito medido	CEO (µg L ⁻¹)	Referência
Consumidores secundários	Pomatoschistus minutus	Água salgada	152.2	Declínio	Morfológico	Peso do órgão em relação ao peso do corpo	0.097	Robinson et al. (2007)
	Pomatoschistus minutus	Água salgada	243.52	Declínio	Morfológico	Peso do órgão em relação ao peso do corpo	0.669	Robinson et al. (2007)
	Pomatoschistus minutus	Água salgada	91.32	Declínio	Morfológico	Peso do órgão em relação ao peso do corpo	0.097	Robinson et al. (2007)
	Rivulus marmoratus	Água doce	4	Aumento	Genético	Oncogene RAS	0.1	Rhee et al. (2009)
	Rivulus marmoratus	Água doce	4	Aumento	Genético	Oncogene RAS	0.1	Rhee et al. (2009)
	Rivulus marmoratus	Água doce	4	Aumento	Genético	Oncogene RAS	0.1	Rhee et al. (2009)
	Rivulus marmoratus	Água doce	4	Aumento	Genético	Oncogene RAS	0.1	Rhee et al. (2009)
	Rivulus marmoratus	Agua doce	4	Aumento	Genético	Oncogene RAS	0.1	Rhee et al. (2009)
	Rivulus marmoratus	Agua doce	4	Aumento	Genético	Oncogene RAS	0.1	Rhee et al. (2009)
	Rivulus marmoratus	Agua doce	4	Aumento	Genético	Oncogene RAS	0.1	Rhee et al. (2009)
	Rivulus marmoratus	Agua doce	4	Aumento	Genético	Oncogene RAS	0.1	Rhee et al. (2009)
	Thymallus thymallus	Água doce	50	Declínio	Reprodução	Linearidade	0.00107	Lahnsteiner et al. (2006)
	Thymallus thymallus	Água doce	50	Declínio	Reprodução	Mobilidade	0.00107	Lahnsteiner et al. (2006)
	Thymallus thymallus	Água doce	50	Declínio	Reprodução	Células circulares	0.00107	Lahnsteiner et al. (2006)

Composto/ Nível trófico	Espécie	Meio	Tempo (dias)	Tendência	Efeito	Efeito medido	CEO (µg L ⁻¹)	Referência
00.000.000	Thymallus thymallus	Água doce	50	Declínio	Reprodução	Número de células espermáticas	0.00107	Lahnsteiner et al. (2006)
	Thymallus thymallus	Água doce	50	Declínio	Reprodução	Velocidade	0.00107	Lahnsteiner et al. (2006)
	Thymallus thymallus	Água doce	50	Aumento	Reprodução	Mobilidade	0.00107	Lahnsteiner et al. (2006)
	Zoarces viviparus	Água salgada	35	Aumento	Acumulação	Resíduo	0.5	Rasmussen et al. (2002)
	Zoarces viviparus	Água salgada	35	Declínio	Crescimento	Peso	0.5	Rasmussen et al. (2002)
	Zoarces viviparus	Água salgada	2	Aumento	Genético	RNA mensageiro	0.5	Andreassen et al. (2005)
	Zoarces viviparus	Água salgada	35	Aumento	Celular	Sítios receptores de estradiol	0.5	Rasmussen et al. (2002)
	Zoarces viviparus	Água salgada	35	Aumento	Morfológico	Peso do órgão em relação ao peso do corpo	0.5	Rasmussen et al. (2002)
	Zoarces viviparus	Água salgada	4	Aumento	Bioquímico	Ligação de proteínas	0.5	Andreassen et al. (2005)
	Zoarces viviparus	Água salgada	4	Aumento	Genético	RNA mensageiro	0.5	Andreassen et al. (2005)
	Zoarces viviparus	Água salgada	7	Aumento	Bioquímico	Ligação de proteínas	0.5	Andreassen et al. (2005)
	Zoarces viviparus	Água salgada	7	Aumento	Genético	RNA mensageiro	0.5	Andreassen et al. (2005)
	Zoarces viviparus	Água salgada	2	Aumento	Bioquímico	Vitelogenina	0.5	Andreassen et al. (2005)

Composto/ Nível trófico	Espécie	Meio	Tempo (dias)	Tendência	Efeito	Efeito medido	CEO (µg L ⁻¹)	Referência
Consumidores secundários	Zoarces viviparus	Água salgada	35	Aumento	Acumulação	Resíduo	0.5	Rasmussen et al. (2002)
	Zoarces viviparus	Água salgada	35	Aumento	Bioquímico	Vitelogenina	0.5	Rasmussen et al. (2002)
	Zoarces viviparus	Água salgada	4	Aumento	Bioquímico	Vitelogenina	0.5	Andreassen et al. (2005)
	Zoarces viviparus	Água salgada	7	Aumento	Bioquímico	Vitelogenina	0.5	Andreassen et al. (2005)
	Zoarces viviparus	Água salgada	35	Aumento	Morfológico	Peso do órgão em relação ao peso do corpo	0.5	Rasmussen et al. (2002)
	Zoarces viviparus	Água salgada	35	Aumento	Morfológico	Peso	0.5	Rasmussen et al. (2002)
	Cyprinodon variegatus	Água salgada	7	Aumento	Genético	RNAm da vitelogenina	1.622	Bowman et al. (2000)
	Cyprinodon variegatus	Água salgada	7	Aumento	Bioquímico	Vitelogenina	1.622	Bowman et al. (2000)
	Danio rerio	Água doce	14	Aumento	Bioquímico	Vitelogenina	0.0859	Seki et al. (2006)
	Danio rerio	Agua doce	21	Aumento	Bioquímico	Vitelogenina	0.0859	Seki et al. (2006)
	Danio rerio	Agua doce	21	Aumento	Bioquímico	Vitelogenina	0.0859	Seki et al. (2006)
	Danio rerio	Água doce	40	Declínio	Hormonal	11-Ketotestosterona	0.0005	Nash et al. (2004)
	Danio rerio	Água doce	21	Declínio	Morfológico	Peso do órgão em relação ao peso do corpo	0.082	Brion et al. (2004)
	Danio rerio	Água doce	22	Aumento	Morfológico	Alterações no sexo	0.109	Brion et al. (2004)

Composto/ Nível trófico	Espécie	Meio	Tempo (dias)	Tendência	Efeito	Efeito medido	CEO (µg L ⁻¹)	Referência
Consumidores secundários	Danio rerio	Água doce	160	Aumento	População	Proporção sexual	0.117	Brion et al. (2004)
	Danio rerio	Água doce	Não relatado	Declínio	Reprodução	Viabilidade	0.0048	Nash et al. (2004)
	Danio rerio	Água doce	Não relatado	Declínio	Reprodução	Viabilidade	0.0048	Nash et al. (2004)
	Danio rerio	Água doce	21	Aumento	Desenvolvimento	Formação de órgãos/tecidos	0.0165	Brion et al. (2004)
	Danio rerio	Água doce	21	Declínio	Bioquímico	Vitelogenina	0.0165	Brion et al. (2004)
	Danio rerio	Água doce	21	Aumento	Bioquímico	Vitelogenina	0.0165	Brion et al. (2004)
	Danio rerio	Água doce	21	Aumento	Bioquímico	Vitelogenina	0.117	Brion et al. (2004)
	Danio rerio	Água doce	22	Declínio	Crescimento	Comprimento	0.0216	Brion et al. (2004)
	Danio rerio	Água doce	22	Declínio	Crescimento	Peso	0.109	Brion et al. (2004)
	Danio rerio	Água doce	22	Aumento	Bioquímico	Vitelogenina	0.109	Brion et al. (2004)
	Danio rerio	Água doce	8	Aumento	Bioquímico	Vitelogenina	0.0214	Rose et al. (2002)
	Danio rerio	Água doce	Não relatado	Aumento	Crescimento	Índice de condição	0.117	Brion et al. (2004)
	Danio rerio	Água doce	42	Aumento	Bioquímico	Vitelogenina	0.0825	Bogers et al. (2006)
	Danio rerio	Água doce	21	Aumento	Genético	RNAm CYP19A2	0.2	Kallivretaki et al. (2006)

Composto/ Nível trófico	Espécie	Meio	Tempo (dias)	Tendência	Efeito	Efeito medido	CEO (µg L ⁻¹)	Referência
Consumidores secundários	Danio rerio	Água doce	40	Aumento	População	Proporção sexual	0.0537	Holbech et al. (2006)
	Danio rerio	Água doce	18	Aumento	Bioquímico	Vitelogenina	0.054	Holbech et al. (2006)
	Danio rerio	Água doce	15	Aumento	Celular	Área	10	Ortiz-Zarragoitia e Cajaraville (2005)
	Danio rerio	Água doce	15	Aumento	Celular	Número de células	10	Ortiz-Zarragoitia e Cajaraville (2005)
	Danio rerio	Água doce	16	Declínio	Bioquímico	Glicogênio	1	Peute et al. (1985)
	Danio rerio	Água doce	16	Declínio	Celular	Núcleo	1	Peute et al. (1985)
	Danio rerio	Água doce	16	Aumento	Celular	Alterações em organelas	1	Peute et al. (1985)
	Danio rerio	Água doce	16	Aumento	Bioquímico	Lipídeo	1	Peute et al. (1985)
	Danio rerio	Água doce	2	Declínio	Bioquímico	Glicogênio	1	Peute et al. (1985)
	Danio rerio	Água doce	2	Declínio	Celular	Núcleo	1	Peute et al. (1985)
	Danio rerio	Água doce	2	Aumento	Bioquímico	Lipídeo	1	Peute et al. (1985)
	Danio rerio	Água doce	2	Aumento	Genético	RNAm do receptor estrogênico alfa	0.25	Jin et al. (2009)
	Danio rerio	Água doce	2	Aumento	Genético	RNAm do receptor estrogênico alfa	0.25	Jin et al. (2009)
	Danio rerio	Água doce	2	Aumento	Genético	RNAm do receptor estrogênico alfa	0.25	Jin et al. (2009)

Composto/ Nível trófico	Espécie	Meio	Tempo (dias)	Tendência	Efeito Efeito	Efeito medido	CEO (µg L ⁻¹)	Referência
Consumidores secundários	Danio rerio	Água doce	2	Aumento	Genético	RNAm do receptor estrogênico alfa	0.25	Jin et al. (2009)
	Danio rerio	Agua doce	2	Aumento	Genético	RNAm da vitelogenina 1	0.025	Jin et al. (2009)
	Danio rerio	Água doce	2	Aumento	Genético	RNAm da vitelogenina 1	0.025	Jin et al. (2009)
	Danio rerio	Água doce	2	Aumento	Genético	RNAm da vitelogenina 1	0.25	Jin et al. (2009)
	Danio rerio	Água doce	2	Aumento	Genético	RNAm da vitelogenina 1	0.25	Jin et al. (2009)
	Danio rerio	Água doce	2	Aumento	Genético	RNAm da vitelogenina 1	0.25	Jin et al. (2009)
	Danio rerio	Água doce	2	Aumento	Genético	RNAm da vitelogenina 1	0.25	Jin et al. (2009)
	Danio rerio	Água doce	2	Aumento	Genético	RNAm da vitelogenina isoforma 2	0.025	Jin et al. (2009)
	Danio rerio	Água doce	2	Aumento	Genético	RNAm da vitelogenina isoforma 2	0.25	Jin et al. (2009)
	Danio rerio	Água doce	2	Aumento	Genético	RNAm da vitelogenina isoforma 2	0.25	Jin et al. (2009)
	Danio rerio	Água doce	2	Aumento	Genético	RNAm da vitelogenina isoforma 2	0.25	Jin et al. (2009)
	Danio rerio	Água doce	2	Aumento	Genético	RNAm da vitelogenina isoforma 2	0.25	Jin et al. (2009)
	Danio rerio	Água doce	2	Aumento	Genético	RNAm da vitelogenina isoforma 2	0.25	Jin et al. (2009)
	Danio rerio	Água doce	3	Aumento	Genético	RNAm do fator de necrose tumoral alfa-induzido	12.5	Jin et al. (2009)

Composto/ Nível trófico	Espécie	Meio	Tempo (dias)	Tendência	Efeito	Efeito medido	CEO (µg L ⁻¹)	Referência
Consumidores secundários	Danio rerio	Água doce	3	Aumento	Genético	RNAm da citoquina	12.5	Jin et al. (2009)
	Danio rerio	Água doce	3	Aumento	Genético	RNAm da beta interleucina 1	12.5	Jin et al. (2009)
	Danio rerio	Água doce	3	Aumento	Genético	RNAm do interferon gama	12.5	Jin et al. (2009)
	Danio rerio	Água doce	3	Aumento	Genético	RNAm da óxido nítrico sintase	12.5	Jin et al. (2009)
	Danio rerio	Agua doce	4	Declínio	Bioquímico	Glicogênio	1	Peute et al. (1985)
	Danio rerio	Água doce	4	Aumento	Celular	Alterações em organelas	1	Peute et al. (1985)
	Danio rerio	Água doce	4	Aumento	Bioquímico	Lipídeo	1	Peute et al. (1985)
	Danio rerio	Água doce	70	Alteração	População	Proporção sexual	0,27	Bulder et al. (2006)
	Danio rerio	Água doce	5	Aumento	Genético	Expressão gênica	2.7	Muncke et al. (2007)
	Danio rerio	Água doce	21	Declínio	Morfológico	Peso do órgão em relação ao peso do corpo	0,1253	Van den Belt et al. (2004)
	Danio rerio	Água doce	21	Aumento	Bioquímico	Vitelogenina	0.02	Van den Belt et al. (2003)
	Danio rerio	Água doce	21	Aumento	Bioquímico	Vitelogenina	0,1253	Van den Belt et al. (2004)
	Danio rerio	Água doce	15	Aumento	Celular	Área	10	Ortiz-Zarragoitia e Cajaraville (2005)
	Danio rerio	Água doce	15	Aumento	Reprodução	Espermatogônia	10	Ortiz-Zarragoitia e Cajaraville (2005)

Composto/ Nível trófico	Espécie	Meio	Tempo (dias)	Tendência	Efeito	os da cadeia alimentar aquática. Efeito medido	CEO (µg L ⁻¹)	Referência
Consumidores secundários	Danio rerio	Água doce	15	Aumento	Bioquímico	Vitelogenina	10	Ortiz-Zarragoitia e Cajaraville (2005)
	Danio rerio	Água doce	7	Aumento	Bioquímico	Vitelogenina	10	Ortiz-Zarragoitia e Cajaraville (2005)
	Danio rerio	Água doce	7	Aumento	Enzimático	Acil-CoA oxidase	10	Ortiz-Zarragoitia e Cajaraville (2005)
	Danio rerio	Água doce	7	Aumento	Genético	RNAm CYP19	0.05	Jin et al. (2009)
	Danio rerio	Água doce	7	Aumento	Genético	RNAm CYP19	0.05	Jin et al. (2009)
	Danio rerio	Água doce	7	Aumento	Genético	RNAm do receptor estrogênico alfa	0.05	Jin et al. (2009)
	Danio rerio	Água doce	7	Aumento	Genético	RNAm da vitelogenina	0.025	Jin et al. (2009)
	Danio rerio	Água doce	7	Aumento	Genético	RNAm da vitelogenina 1	0.05	Jin et al. (2009)
	Danio rerio	Água doce	5	Aumento	Desenvolvimento	Anormal	272,39	Saili et al. (2012)
	Danio rerio	Água doce	2	Aumento	Genético	RNA mensageiro	1	Jin et al. (2008)
	Danio rerio	Água doce	2	Aumento	Genético	RNAm da vitelogenina	0.1	Jin et al. (2008)
	Danio rerio	Água doce	2	Aumento	Genético	RNAm da vitelogenina 1	0.05	Jin et al. (2008)
	Dicentrarchus labrax	Água salgada	.0833	Declínio	Enzimático	Alanina transaminase	35,684	Teles et al. (2004)
	Dicentrarchus labrax	Água salgada	.1667	Aumento	Bioquímico	Glicose	35,684	Teles et al. (2004)

Composto/ Nível trófico	Espécie	Meio	Tempo (dias)	Tendência	Efeito	Efeito medido	CEO (µg L ⁻¹)	Referência
Consumidores secundários		Água doce	21	Aumento	Morfológico	Peso do órgão em relação ao peso do corpo	1	Thompson (2000)
	Ictalurus punctatus	Água doce	21	Aumento	Bioquímico	Vitelogenina	1	Thompson et al. (2000)
	Ictalurus punctatus	Água doce	21	Aumento	Acumulação	Resíduo	10	Thompson (2000)
	Oryzias latipes	Água doce	101	Declínio	Morfológico	Peso do órgão em relação ao peso do corpo	0.0279	Seki et al. (2005)
	Oryzias latipes	Água doce	60	Aumento	Morfológico	Alterações no sexo	0.00866	Seki et al. (2005)
	Oryzias latipes	Água doce	101	Aumento	Bioquímico	Vitelogenina	0.00866	Seki et al. (2005)
	Oryzias latipes	Água doce	14	Aumento	Bioquímico	Vitelogenina	0.0282	Seki et al. (2006)
	Oryzias latipes	Água doce	21	Aumento	Bioquímico	Vitelogenina	0.00894	Seki et al. (2006)
	Oryzias latipes	Água doce	21	Aumento	Bioquímico	Vitelogenina	0.0851	Seki et al. (2006)
	Oryzias latipes	Agua doce	25	Declínio	Bioquímico	Vitelogenina	0.0557	Kang et al. (2002)
	Oryzias latipes	Agua doce	60	Declínio	População	Proporção sexual	0.0279	Seki et al. (2005)
	Oryzias latipes	Água doce	Não relatado	Declínio	Reprodução	Fecundidade	0.0279	Seki et al. (2005)
	Oryzias latipes	Água doce	Não relatado	Declínio	Reprodução	Fertilidade	0.00866	Seki et al. (2005)
	Oryzias latipes	Àgua doce	60	Declínio	Desenvolvimento	Formação de órgãos/tecidos	0.0279	Seki et al. (2005)

Composto/ Nível trófico	Espécie	Meio	Tempo (dias)	Tendência	Efeito Efeito	Efeito medido	CEO (µg L ⁻¹)	Referência
Consumidores secundários	Oryzias latipes	Água doce	25	Aumento	Morfológico	Alterações no sexo	0.0293	Kang et al. (2002)
	Oryzias latipes	Água doce	60	Declínio	Desenvolvimento	Formação de órgãos/tecidos	0.0279	Seki et al. (2005)
	Oryzias latipes	Água doce	167	Aumento	Crescimento	Comprimento	0.00866	Seki et al. (2005)
	Oryzias latipes	Água doce	Não relatado	Aumento	Morfológico	Peso	0.032	Lin et al. (2009)
	Oryzias latipes	Água doce	Não relatado	Aumento	Morfológico	Alterações no sexo	0.032	Lin et al. (2009)
	Oryzias latipes	Água doce	.3333	Aumento	Genético	RNAm do receptor estrogênico alfa	0.01	Yamaguchi et al. (2005)
	Oryzias latipes	Água doce	.3333	Aumento	Genético	RNAm da vitelogenina	0.1	Yamaguchi et al. (2005)
	Oryzias latipes	Água doce	.3333	Aumento	Genético	RNAm da vitelogenina 1	0.1	Yamaguchi et al. (2005)
	Oryzias latipes	Água doce	8	Aumento	Morfológico	Peso do órgão em relação ao peso do corpo	1	Nimrod (1996)
	Oryzias latipes	Água doce	Não relatado	Aumento	Morfológico	Alterações no sexo	0.004	Metcalfe et al. (2001)
	Oryzias latipes	Não relatado	14	Declínio	Reprodução	Número de progênies	2.52834	Jukosky et al. (2008)
	Oryzias latipes	Não relatado	14	Declínio	Reprodução	Número de progênies	2.52834	Jukosky et al. (2008)
	Oryzias latipes	Não relatado	14	Declínio	Reprodução	Frequência de desova	2.52834	Jukosky et al. (2008)
	Oryzias latipes	Não relatado	14	Declínio	Hormonal	Testosterona	2.52834	Jukosky et al. (2008)

Composto/ Nível trófico	Espécie	Meio	Tempo (dias)	Tendência	Efeito Efeito	Efeito medido	CEO (μg L ⁻¹)	Referência
Consumidores secundários	Oryzias latipes	Não relatado	14	Aumento	Bioquímico	Vitelogenina	0.05627	Jukosky et al. (2008)
	Oryzias latipes	Água doce	2	Declínio	Desenvolvimento	Formação de órgãos/tecidos	1	Lee et al. (2012)
	Oryzias latipes	Agua doce	4	Declínio	Desenvolvimento	Formação de órgãos/tecidos	1	Lee et al. (2012)
	Oryzias latipes	Água doce	6	Declínio	Enzimático	Flavina contendo mono- oxigenase	100	El-Alfy e Schlenk (2002)
	Oryzias latipes	Água doce	6	Declínio	Enzimático	Flavina contendo mono- oxigenase	100	El-Alfy e Schlenk (2002)
	Oryzias latipes	Água doce	6	Aumento	Enzimático	Flavina contendo mono- oxigenase	100	El-Alfy e Schlenk (2002)
	Oryzias latipes	Água doce	6	Aumento	Enzimático	Flavina contendo mono- oxigenase	100	El-Alfy e Schlenk (2002)
	Oryzias latipes	Água doce	6	Aumento	Enzimático	Flavina contendo mono- oxigenase	100	El-Alfy e Schlenk (2002)
	Oryzias latipes	Água doce	2	Declínio	Desenvolvimento	Formação de órgãos/tecidos	1	Lee et al. (2012)
	Oryzias latipes	Água doce	4	Declínio	Desenvolvimento	Formação de órgãos/tecidos	1	Lee et al. (2012)
	Oryzias latipes	Água doce	2	Declínio	Fisiológico	Frequência cardíaca	0.01	Lee et al. (2012)
	Oryzias latipes	Agua doce	4	Declínio	Fisiológico	Frequência cardíaca	0.01	Lee et al. (2012)
	Oryzias latipes	Água doce	1	Aumento	Genético	RNAm do receptor de vitelogenina	0,2724	Moffatt (2008)
	Oryzias latipes	Água doce	1	Aumento	Genético	RNAm do receptor de vitelogenina	0,2724	Moffatt (2008)

Composto/ Nível trófico	Espécie	Meio	Tempo (dias)	Tendência	Efeito	Efeito medido	CEO (µg L ⁻¹)	Referência
Consumidores secundários	Oryzias latipes	Água doce	1	Aumento	Genético	RNAm da vitelogenina	0,2724	Moffatt et al. (2010)
	Oryzias latipes	Água doce	1	Aumento	Genético	RNAm da vitelogenina	0,2724	Moffatt et al. (2010)
	Oryzias latipes	Agua doce	1	Aumento	Genético	RNAm da vitelogenina	0,2724	Moffatt et al. (2011)
	Oryzias latipes	Água doce	2	Aumento	Genético	RNAm do receptor de vitelogenina	0,2724	Moffatt (2008)
	Oryzias latipes	Água doce	2	Aumento	Genético	RNAm do receptor de vitelogenina	0,2724	Moffatt (2008)
	Oryzias latipes	Água doce	2	Aumento	Genético	RNAm da vitelogenina	0,2724	Moffatt et al. (2010)
	Oryzias latipes	Água doce	2	Aumento	Genético	RNAm da vitelogenina	0,2724	Moffatt et al. (2010)
	Oryzias latipes	Água doce	2	Aumento	Genético	RNAm da vitelogenina	0,2724	Moffatt et al. (2011)
	Oryzias latipes	Água doce	2	Aumento	Genético	RNAm da vitelogenina	0,2724	Moffatt et al. (2011)
	Oryzias latipes	Água doce	21	Aumento	Fisiológico	Bioluminescência	0.05	Zeng et al. (2005)
	Oryzias latipes	Água doce	21	Aumento	Bioquímico	Proteína receptora de estrógeno	1	Thompson (2000)
	Oryzias latipes	Água doce	21	Aumento	Bioquímico	Proteína receptora de estrógeno	1	Thompson (2000)
	Oryzias latipes	Água doce	21	Aumento	Morfológico	Peso do órgão em relação ao peso do corpo	10	Thompson (2000)
	Oryzias latipes	Água doce	3	Aumento	Genético	RNAm do receptor de vitelogenina	0,2724	Moffatt (2008)

Composto/ Nível trófico	Espécie	Meio	Tempo (dias)	Tendência	Efeito	Efeito medido	CEO (µg L ⁻¹)	Referência
Consumidores secundários	Oryzias latipes	Água doce	3	Aumento	Genético	RNAm do receptor de vitelogenina	0,2724	Moffatt (2008)
	Oryzias latipes	Água doce	3	Aumento	Genético	RNAm da vitelogenina	0,2724	Moffatt et al. (2010)
	Oryzias latipes	Água doce	3	Aumento	Genético	RNAm da vitelogenina	0,0272	Moffatt et al. (2011)
	Oryzias latipes	Água doce	3	Aumento	Genético	RNAm da vitelogenina	0,2724	Moffatt et al. (2011)
	Oryzias latipes	Água doce	4	Aumento	Genético	RNAm do receptor de vitelogenina	0,2724	Moffatt (2008)
	Oryzias latipes	Agua doce	4	Aumento	Genético	RNAm da vitelogenina	0,0272	Moffatt et al. (2011)
	Oryzias latipes	Água doce	4	Aumento	Genético	RNAm da vitelogenina	0,2724	Moffatt et al. (2011)
	Oryzias latipes	Água doce	6	Declínio	Enzimático	Flavina contendo mono- oxigenase	100	El-Alfy e Schlenk (2002)
	Oryzias latipes	Água doce	6	Declínio	Enzimático	Flavina contendo mono- oxigenase	100	El-Alfy e Schlenk (2002)
	Oryzias latipes	Água doce	6	Declínio	Enzimático	Flavina contendo mono- oxigenase	100	El-Alfy e Schlenk (2002)
	Oryzias latipes	Água doce	6	Declínio	Enzimático	Flavina contendo mono- oxigenase	100	El-Alfy e Schlenk (2002)
	Oryzias latipes	Água doce	7	Declínio	Bioquímico	Vitelogenina	0.1	Schlenk et al. (2012)
	Oryzias latipes	Água doce	7	Aumento	Bioquímico	Proteína receptora de estrógeno	10	Thompson (2000)
	Oryzias latipes	Água doce	100	Aumento	Morfológico	Alterações no sexo	1	Balch e Metcalfe (2006)

Composto/ Nível trófico	Espécie	Meio	Tempo (dias)	Tendência	Efeito	Efeito medido	CEO (µg L ⁻¹)	Referência
Consumidores secundários	Oryzias latipes	Água doce	2	Declínio	Desenvolvimento	Formação de órgãos/tecidos	0.1	Lee et al. (2012)
	Oryzias latipes	Água doce	4	Declínio	Desenvolvimento	Formação de órgãos/tecidos	0.1	Lee et al. (2012)
	Oryzias latipes	Água doce	4	Declínio	Genético	RNAm do receptor 1 do hormônio liberador de gonadotrofina	1	Lee et al. (2012)
	Oryzias latipes	Água doce	4	Declínio	Genético	Gonadotropina liberadora de RNAm do receptor hormonal 2	1	Lee et al. (2012)
	Oryzias latipes	Água doce	4	Declínio	Genético	Gonadotropina liberadora de RNAm do receptor hormonal 3	1	Lee et al. (2012)
	Oryzias latipes	Água doce	4	Declínio	Genético	RNAm do receptor estrogênico alfa	1	Lee et al. (2012)
	Oryzias latipes	Água doce	100	Aumento	População	Proporção sexual	1	Balch e Metcalfe (2006)
	Oryzias latipes	Água doce	14	Aumento	Bioquímico	Vitelogenina	0.5	Thompson (2000)
	Oryzias latipes	Água doce	14	Aumento	Acumulação	Resíduo	10	Thompson (2000)
	Oryzias latipes	Água doce	21	Aumento	Bioquímico	Vitelogenina	1	Thompson et al. (2000)
	Oryzias latipes	Água doce	21	Aumento	Bioquímico	Vitelogenina	0.1	Thompson (2000)
	Oryzias latipes	Água doce	21	Aumento	Acumulação	Resíduo	1	Thompson (2000)
	Oryzias latipes	Água doce	21	Aumento	Acumulação	Resíduo	1	Thompson (2000)

Composto/ Nível trófico	Espécie	Meio	Tempo (dias)	Tendência	Efeito	Efeito medido	CEO (µg L ⁻¹)	Referência
Consumidores secundários	Oryzias latipes	Água doce	7	Aumento	Bioquímico	Vitelogenina	1	Thompson (2000)
	Oryzias latipes	Água doce	7	Aumento	Acumulação	Resíduo	10	Thompson (2000)
	Oryzias latipes	Água doce	7	Aumento	Hormonal	Testosterona	1	Thompson (2000)
	Oryzias latipes	Água doce	21	Declínio	Hormonal	Testosterona	0.01	Thompson (2000)
	Oryzias latipes	Água doce	21	Aumento	Enzimático	Aromatase	0.1	Thompson (2000)
	Oryzias latipes	Água doce	21	Aumento	Hormonal	17-beta estradiol	0.5	Thompson (2000)
	Oryzias latipes	Água doce	14	Aumento	Bioquímico	Vitelogenina	0.0552	Tulou et al. (2008)
	Oryzias latipes	Água doce	21	Aumento	Fisiológico	Bioluminescência	0.1	Zeng et al. (2005)
	Oryzias latipes	Água doce	30	Aumento	Fisiológico	Bioluminescência	0.5	Zeng et al. (2005)
	Oryzias latipes	Água doce	Não relatado	Aumento	Bioquímico	Vitelogenina	0.01	Kang et al. (2005)
	Oryzias latipes	Água doce	Não relatado	Aumento	Bioquímico	Vitelogenina	10	Kang et al. (2006)
	Oryzias latipes	Água doce	.3333	Não relatado	Genético	RNAm da vitelogenina 1	0,1008	Yamaguchi et al. (2009)
	Oryzias latipes	Água doce	.3333	Não relatado	Genético	RNAm da vitelogenina isoforma 2	0,1008	Yamaguchi et al. (2009)
	Oryzias latipes	Água doce	1	Aumento	Bioquímico	Fluorescência	0,1716	Kurauchi et al. (2005)

Composto/ Nível trófico	Espécie	Meio	Tempo (dias)	Tendência	Efeito Efeito	Efeito medido	CEO (μg L ⁻¹)	Referência
Consumidores secundários	Oryzias latipes	Água doce	5	Aumento	Genético	Proporção RNA/DNA	1	Nimrod (1996)
	Oryzias latipes	Água doce	5	Aumento	Morfológico	Peso do órgão em relação ao peso do corpo	1000	Nimrod (1996)
	Pimephales promelas	Água doce	14	Aumento	Bioquímico	Vitelogenina	0.0286	Seki et al. (2006)
	Pimephales promelas	Água doce	21	Aumento	Bioquímico	Vitelogenina	0.0286	Seki et al. (2006)
	Pimephales promelas	Água doce	21	Aumento	Bioquímico	Vitelogenina	0.086	Seki et al. (2006)
	Pimephales promelas	Água doce	21	Aumento	Bioquímico	Vitelogenina	0.03	Schultz et al. (2012)
	Pimephales promelas	Água doce	4	Aumento	Bioquímico	Vitelogenina	0.029	Thorpe et al. (2007)
	Pimephales promelas	Água doce	21	Declínio	Morfológico	Quantidade	0.086	Seki et al. (2006)
	Pimephales promelas	Água doce	21	Aumento	Bioquímico	Vitelogenina	0,1362	Cline et al. (2003)
	Pimephales promelas	Água doce	21	Aumento	Bioquímico	Vitelogenina	0,1362	Cline et al. (2003)
	Pimephales promelas	Água doce	16	Declínio	Morfológico	Diâmetro	0,5448	Miles-Richardson et al. (1999)
	Pimephales promelas	Água doce	4	Declínio	Genético	RNAm P450-17alpha	0,2724	Moffatt (2008)
	Pimephales promelas	Água doce	4	Aumento	Genético	RNAm do receptor de vitelogenina	0,2724	Moffatt (2008)
	Pimephales promelas	Água doce	5	Aumento	Genético	RNAm do receptor de vitelogenina	0,2724	Moffatt (2008)

Espécie	Meio	Tempo (dias)	Tendência	Efeito	Efeito medido	CEO (µg L ⁻¹)	Referência
Pimephales	Água	6	Aumento	Genético	RNAm do receptor de		Moffatt (2008)
•	doce	O	rumento	Genetico	vitelogenina	0,2721	141011att (2000)
*		1	Declínio	Genético	Expressão gênica	0.041	Larkin et al. (2007)
	,				r		(,
*	_	1	Declínio	Genético	Expressão gênica	0.041	Larkin et al. (2007)
*	,				1		, ,
•		1	Declínio	Genético	Expressão gênica	0.041	Larkin et al. (2007)
*	,						
*	_	1	Declínio	Genético	Expressão gênica	0.041	Larkin et al. (2007)
*	,						
_		1	Declínio	Genético	Expressão gênica	0.041	Larkin et al. (2007)
*	,	1	D 1/ '	G 4:	F ~ ^ .	0.041	1 1: (1 (2007)
promelas	doce	1	Declinio	Genetico	Expressao genica	0.041	Larkin et al. (2007)
Pimephales	Água	1	Doolínio	Canática	Evenassão cânico	0.041	Lordrin at al. (2007)
promelas	doce	1	Decimio	Genetico	Expressão genica	0.041	Larkin et al. (2007)
Pimephales	Água	1	Declínio	Genético	Expressão gênica	0.107	Larkin et al. (2007)
*	doce	1	Decimio	Genetico	Expressão genica	0.107	Larkiii et al. (2007)
	Água	1	Declínio	Genético	Expressão gênica	0.107	Larkin et al. (2007)
=	,	-	2 00111110		Ziipressuo gemeu	0.10,	
	_	1	Declínio	Genético	Expressão gênica	0.107	Larkin et al. (2007)
	,				1 2		, ,
•	_	1	Declínio	Genético	Expressão gênica	0.107	Larkin et al. (2007)
*	,	1			-		Larkin et al. (2007)
*	_	1	Declínio	Genético	Expressão gênica	0.107	Larkin et al. (2007)
	,	1					
*	_	1	Declínio	Genético	Expressão gênica	0.107	Larkin et al. (2007)
	Pimephales promelas	Pimephales Água promelas doce Pimephales Água	Pimephales Água doce	Pimephales Água doce	Pimephales Agua doce Pimephale	Pimephales Água doce doce Pimephales Água doce Pime	Especie Melo (dias) Tendencia Ereito Eteito medido (µg L¹) Pimephales Água doce 6 Aumento Genético RNAm do receptor de vitelogenina 0,2724 Pimephales Água 1 Declínio Genético Expressão gênica 0.041 Pimephales Água 1 Declínio Genético Expressão gênica 0.107 Pimephales Água 1 Declínio Genético Expressão gênica 0.107

Composto/ Nível trófico	Espécie	Meio	Tempo (dias)	Tendência	Efeito	Efeito medido	CEO (µg L ⁻¹)	Referência
Consumidores	Pimephales	Água	1	Declínio	Genético	Expressão gênica	0.107	Larkin et al. (2007)
secundários	*	doce	1	Decimo	Genetico	Expressão genica	0.107	Earkin et al. (2007)
	Pimephales promelas	Água doce	1	Declínio	Genético	Expressão gênica	0.107	Larkin et al. (2007)
	Pimephales	Água	1	Declínio	Genético	Expressão gênica	0.107	Larkin et al. (2007)
	promelas Pimephales	doce Água	1	Declínio	Genético	Expressão gênica	0.107	Larkin et al. (2007)
	promelas	doce	1	Decimio	Genetico	Expressão genica	0.107	Laikiii et al. (2007)
	Pimephales promelas	Água doce	1	Declínio	Genético	Expressão gênica	0.107	Larkin et al. (2007)
	Pimephales promelas	Água doce	1	Declínio	Genético	Expressão gênica	0.107	Larkin et al. (2007)
	Pimephales	Água	1	Declínio	Genético	Expressão gênica	0.107	Larkin et al. (2007)
	promelas Pimephales	doce Água	1	Declínio	Genético	Expressão gênica	0.107	Larkin et al. (2007)
	promelas Pimephales	doce Água		Declínio	Genético			, ,
	promelas	doce	1	Decimo	Genetico	Expressão gênica	0.107	Larkin et al. (2007)
	Pimephales promelas	Água doce	1	Declínio	Genético	Expressão gênica	0.107	Larkin et al. (2007)
	Pimephales promelas	Água doce	1	Declínio	Genético	Expressão gênica	0.107	Larkin et al. (2007)
	Pimephales promelas	Água doce	1	Declínio	Genético	Expressão gênica	0.107	Larkin et al. (2007)
	Pimephales	Água	1	Declínio	Genético	Expressão gênica	0.107	Larkin et al. (2007)
	promelas Pimephales promelas	doce Água doce	1	Declínio	Genético	Expressão gênica	0.107	Larkin et al. (2007)

Composto/ Nível trófico	Espécie	Meio	Tempo (dias)	Tendência	Efeito	Efeito medido	CEO (µg L ⁻¹)	Referência
Consumidores	*	Água	1	Declínio	Genético	Expressão gênica	0.107	Larkin et al. (2007)
secundários	-	doce	1	Decimo	Genetico	Expressão genica	0.107	Larkiii et al. (2007)
	Pimephales	Água	1	Declínio	Genético	Expressão gênica	0.107	Larkin et al. (2007)
	promelas	doce	•	Domino	Concues	Empressuo gemeu	0.107	Zarian et an (2007)
	Pimephales	Agua	1	Declínio	Genético	Expressão gênica	0.107	Larkin et al. (2007)
	promelas	doce	_			8	0.120.	
	Pimephales	Agua	1	Declínio	Genético	Expressão gênica	0.107	Larkin et al. (2007)
	promelas	doce				1 8		,
	Pimephales	Agua	1	Declínio	Genético	Expressão gênica	0.107	Larkin et al. (2007)
	promelas	doce				1 0		, ,
	Pimephales	Agua	1	Declínio	Genético	Expressão gênica	0.107	Larkin et al. (2007)
	promelas Pimephales	doce				_		
	promelas	Agua doce	1	Declínio	Genético	Expressão gênica	0.107	Larkin et al. (2007)
	Pimephales	Água						
	promelas	doce	1	Declínio	Genético	Expressão gênica	0.107	Larkin et al. (2007)
	Pimephales	Água						
	promelas	doce	1	Declínio	Genético	Expressão gênica	0.107	Larkin et al. (2007)
	Pimephales	Água	4	5 1/ 1			0.405	1 (2005)
	promelas	doce	1	Declínio	Genético	Expressão gênica	0.107	Larkin et al. (2007)
	Pimephales	Água	1	D 1/ 1	C 4:	F ~ ^ .	0.107	1 1: (1 (2007)
	promelas	doce	1	Declínio	Genético	Expressão gênica	0.107	Larkin et al. (2007)
	Pimephales	Água	1	Daalínia	Genético	Evenessão cânico	0.107	Lowlein at al. (2007)
	promelas	doce	1	Declínio	Genetico	Expressão gênica	0.107	Larkin et al. (2007)
	Pimephales	Água	1	Declínio	Ganático	Evnraccão gânica	0.107	Larkin et al. (2007)
	promelas	doce	1	Decimio	Genético	Expressão gênica	0.107	Larkin et al. (2007)
	Pimephales	Água	1	Declínio	Genético	Expressão gênica	0.107	Larkin et al. (2007)
	promelas	doce	1	Decimo	Ochcheo	Expressão genica	0.107	Laikiii Ct ai. (2007)

Composto/ Nível trófico	Espécie	Meio	Tempo (dias)	Tendência	Efeito	Efeito medido	CEO (µg L ⁻¹)	Referência
Consumidores	_	Água	1	Aumento	Genético	Expressão gênica	0.041	Larkin et al. (2007)
secundários	-	doce	1	Admento	Genetico	Expressão genica	0.041	Larkiii et al. (2007)
	Pimephales	Água	1	Aumento	Genético	Expressão gênica	0.041	Larkin et al. (2007)
	promelas	doce	•		Concues	Empressuo gemen	0.0.1	Zurkin et un (2007)
	Pimephales	Agua	1	Aumento	Genético	Expressão gênica	0.041	Larkin et al. (2007)
	promelas	doce	_			8	0.00.	(,,
	Pimephales	Agua	1	Aumento	Genético	Expressão gênica	0.041	Larkin et al. (2007)
	promelas	doce				1 &		,
	Pimephales	Agua	1	Aumento	Genético	Expressão gênica	0.041	Larkin et al. (2007)
	promelas	doce				1 0		, ,
	Pimephales	Agua	1	Aumento	Genético	Expressão gênica	0.041	Larkin et al. (2007)
	promelas Dim only alog	doce				-		
	Pimephales promelas	Agua doce	1	Aumento	Genético	Expressão gênica	0.107	Larkin et al. (2007)
	Pimephales	,						
	promelas	Água doce	1	Aumento	Genético	Expressão gênica	0.107	Larkin et al. (2007)
	Pimephales	Água						
	promelas	doce	1	Aumento	Genético	Expressão gênica	0.107	Larkin et al. (2007)
	Pimephales	Água						
	promelas	doce	1	Aumento	Genético	Expressão gênica	0.107	Larkin et al. (2007)
	Pimephales	Água			~		0.40=	
	promelas	doce	I	Aumento	Genético	Expressão gênica	0.107	Larkin et al. (2007)
	Pimephales	Água	1		<i>C</i> 4:	~ ^ .	0.107	1 1: (1 (2007)
1 1-	promelas	doce	1	Aumento	Genético	Expressão gênica	0.107	Larkin et al. (2007)
	Pimephales	Água	1	A at a	Canática	Errango a cânico	0.107	Laulzin et al. (2007)
	promelas	doce	1	Aumento	Genético	Expressão gênica	0.107	Larkin et al. (2007)
	Pimephales	Água	1	Aumento	Genético	Evpressão cânico	0.107	Larkin et al. (2007)
	promelas	doce	1	Aumento	Genetico	Expressão gênica	0.107	Laikiii et al. (2007)

Composto/ Nível trófico	Espécie	Meio	Tempo (dias)	Tendência	Efeito	Efeito medido	CEO (µg L ⁻¹)	Referência
Consumidores	_	Água	1	Aumento	Genético	Expressão gênica	0.107	Larkin et al. (2007)
secundários	promelas	doce	1	Aumento	Genetico	Expressão genica	0.107	Larkin et al. (2007)
	Pimephales	Agua	1	Aumento	Genético	Expressão gênica	0.107	Larkin et al. (2007)
	promelas	doce	-	1 10/11/01/0		_npressus gemen	0,10,	2007)
	Pimephales	Agua	1	Aumento	Genético	Expressão gênica	0.107	Larkin et al. (2007)
	promelas	doce					0.1.0.	
	Pimephales	Agua	1	Aumento	Genético	Expressão gênica	0.107	Larkin et al. (2007)
	promelas	doce				1 6		,
	Pimephales	Agua	1	Aumento	Genético	Expressão gênica	0.107	Larkin et al. (2007)
	promelas	doce				1 0		
	Pimephales	Agua	1	Aumento	Genético	Expressão gênica	0.107	Larkin et al. (2007)
	promelas Pimephales	doce						
	promelas	Água doce	1	Aumento	Genético	Expressão gênica	0.107	Larkin et al. (2007)
	Pimephales	Água						
	promelas	doce	1	Aumento	Genético	Expressão gênica	0.107	Larkin et al. (2007)
	Pimephales	Água						
	promelas	doce	1	Aumento	Genético	Expressão gênica	0.107	Larkin et al. (2007)
	Pimephales	Água			~		0.40=	- 11 (200 -)
	promelas	doce	1	Aumento	Genético	Expressão gênica	0.107	Larkin et al. (2007)
	Pimephales	Água	1		G 4:	~ ^ .	0.107	1 1: (2007)
	promelas	doce	1	Aumento	Genético	Expressão gênica	0.107	Larkin et al. (2007)
	Pimephales	Água	1	Aumonto	Canática	Evenessão cânico	0.107	Lowlrin et al. (2007)
	promelas	doce	1	Aumento	Genético	Expressão gênica	0.107	Larkin et al. (2007)
	Pimephales	Água	1	Aumento	Dioguímico	Vitalogonina	0.107	Larkin et al. (2007)
	promelas	doce	1	Aumento	Bioquímico	Vitelogenina	0.107	Laikiii et al. (2007)
	Pimephales promelas	Água doce	9	Alteração	Morfológico	Peso do órgão em relação ao peso do corpo	0.27	Cline et al. (2003)

Composto/ Nível trófico	Espécie	Meio	Tempo (dias)	Tendência	Efeito	Efeito medido	CEO (µg L ⁻¹)	Referência
Consumidores secundários	-	Água doce	1	Aumento	Bioquímico	Vitelogenina	0,2724	Cline et al. (2003)
	Pimephales promelas	Água doce	7	Aumento	Bioquímico	Vitelogenina	0,2724	Cline et al. (2003)
	Poecilia reticulata	Água doce	14	Declínio	Morfológico	Peso do órgão em relação ao peso do corpo	1	Li e Wang (2005)
	Poecilia reticulata	Água doce	7	Aumento	Morfológico	Peso do órgão em relação ao peso do corpo	1	Li e Wang (2005)
	Poecilia reticulata	Água doce	14	Aumento	Bioquímico	Vitelogenina	1	Li e Wang (2005)
	Poecilia reticulata	Água doce	21	Aumento	Bioquímico	Vitelogenina	1	Li e Wang (2005)
	Poecilia reticulata	Água doce	7	Aumento	Bioquímico	Vitelogenina	1	Li e Wang (2005)
	Salmo trutta	Água doce	8	Aumento	Bioquímico	Vitelogenina	0.02	Bjerregaard et al. (2008)
	Salmo trutta	Água doce	15	Aumento	Bioquímico	Vitelogenina	0.1	Sherry et al. (1999)
	Gasterosteus aculeatus	Não relatado	14	Aumento	Bioquímico	Vitelogenina	0.04913	Allen et al. (2008)
	Gasterosteus aculeatus	Não relatado	14	Aumento	Bioquímico	Vitelogenina	0.06768	Allen et al. (2008)
	Gasterosteus aculeatus	Não relatado	21	Aumento	Bioquímico	Vitelogenina	0.04913	Allen et al. (2008)
	Gasterosteus aculeatus	Não relatado	21	Aumento	Bioquímico	Vitelogenina	0.06768	Allen et al. (2008)
	Gasterosteus aculeatus	Não relatado	7	Aumento	Genético	RNAm da vitelogenina	0.01	Hogan et al. (2008)

Composto/ Nível trófico	Espécie	Meio	Tempo (dias)	Tendência	Efeito	Efeito medido	CEO (µg L ⁻¹)	Referência
		Não	14	Aumento	Bioquímico	Vitelogenina	0.1	Allen et al. (2008)
secundários		relatado	1.	1 Idilicilio	Bioquimeo	v nerogenma	0.1	7 men et al. (2000)
	Gasterosteus aculeatus	Não relatado	21	Aumento	Bioquímico	Vitelogenina	0.1	Allen et al. (2008)
	Gasterosteus	Não	Não	Alteração	Desenvolvimento	Desenvolvimento sexual	1	Hahlbeck (2004)
	aculeatus	relatado	relatado	Titteração	Descrivorvimento	Desenvorvimento sexual	1	11amoeek (2004)
	Gasterosteus aculeatus	Ågua salgada	Não relatado	Alteração	Desenvolvimento	Desenvolvimento sexual	10	Hahlbeck et al. (2004)
	Gasterosteus aculeatus	Água salgada	Não relatado	Alteração	Desenvolvimento	Desenvolvimento sexual	10	Hahlbeck et al. (2004)
	Gasterosteus aculeatus	Água salgada	Não relatado	Alteração	Desenvolvimento	Desenvolvimento sexual	0.01	Hahlbeck et al. (2004)
	Gasterosteus aculeatus	Água salgada	Não relatado	Alteração	Desenvolvimento	Desenvolvimento sexual	1	Hahlbeck et al. (2004)
	Gasterosteus aculeatus	Água salgada	Não	Alteração	Desenvolvimento	Desenvolvimento sexual	1	Hahlbeck et al. (2004)
	Gasterosteus aculeatus	Água salgada	Não relatado	Alteração	Desenvolvimento	Desenvolvimento sexual	1	Hahlbeck et al. (2004)
	Gasterosteus aculeatus	Água salgada	Não relatado	Alteração	Desenvolvimento	Desenvolvimento sexual	10	Hahlbeck et al. (2004)
	Gasterosteus aculeatus	Água salgada	Não relatado	Alteração	Desenvolvimento	Desenvolvimento sexual	10	Hahlbeck et al. (2004)
	Gasterosteus aculeatus	Água salgada	Não relatado	Alteração	Desenvolvimento	Desenvolvimento sexual	10	Hahlbeck et al. (2004)
	Gasterosteus aculeatus	Água salgada	Não relatado	Alteração	Desenvolvimento	Desenvolvimento sexual	10	Hahlbeck et al. (2004)
	Gasterosteus aculeatus	Água salgada	Não relatado	Alteração	Morfológico	Alterações no sexo	1	Hahlbeck et al. (2004)

Composto/ Nível trófico	Espécie	Meio	Tempo (dias)	Tendência	Efeito	Efeito medido	CEO (µg L ⁻¹)	Referência
		Água	Não	Declínio	Crescimento	Índice de condição	1	Hahlbeck et al. (2004)
secundários	Gasterosteus aculeatus	salgada Água salgada	Não	Declínio	Crescimento	Índice de condição	1	Hahlbeck et al. (2004)
	Gasterosteus aculeatus	Água salgada	Não relatado	Declínio	Crescimento	Índice de condição	1	Hahlbeck et al. (2004)
	Gasterosteus aculeatus	Água salgada	Não relatado	Declínio	Crescimento	Índice de condição	10	Hahlbeck et al. (2004)
	Gasterosteus aculeatus	Água salgada	Não relatado	Declínio	Crescimento	Comprimento	1	Hahlbeck et al. (2004)
	Gasterosteus aculeatus	Água salgada	Não relatado	Declínio	Crescimento	Comprimento	1	Hahlbeck et al. (2004)
	Gasterosteus aculeatus	Água salgada	Não relatado	Declínio	Crescimento	Comprimento	1	Hahlbeck et al. (2004)
	Gasterosteus aculeatus	Água salgada		Declínio	Crescimento	Comprimento	10	Hahlbeck et al. (2004)
	Gasterosteus aculeatus	Água salgada	Não relatado	Aumento	Bioquímico	Vitelogenina	1	Hahlbeck et al. (2004)
	Oncorhynchus mykiss	Água doce	14	Aumento	Genético	RNAm da alfa proteína de envelope vitelina	0.0048	Thomas-Jones et al. (2003)
	Oncorhynchus mykiss	Água doce	14	Aumento	Genético	RNAm da beta proteína de envelope vitelina	0.014	Thomas-Jones et al. (2003)
	Oncorhynchus mykiss	Água doce	14	Aumento	Genético	RNAm da gama proteína de envelope vitelina	0.014	Thomas-Jones et al. (2003)
	Oncorhynchus mykiss	Água doce	14	Aumento	Genético	RNAm da vitelogenina	0.014	Thomas-Jones et al. (2003)
	Oncorhynchus mykiss	Água doce	2	Aumento	Genético	RNAm da alfa proteína de envelope vitelina	0.0097	Thomas-Jones et al. (2003)

Composto/ Nível trófico	Espécie	Meio	Tempo (dias)	Tendência	Efeito	Efeito medido	CEO (µg L ⁻¹)	Referência
Consumidores secundários	-	Água doce	2	Aumento	Genético	RNAm da alfa proteína de envelope vitelina	0.03	Thomas-Jones et al. (2003)
	Oncorhynchus mykiss	Água doce	2	Aumento	Genético	RNAm da gama proteína de envelope vitelina	0.03	Thomas-Jones et al. (2003)
	Oncorhynchus mykiss	Água doce	2	Aumento	Genético	RNAm da vitelogenina	0.03	Thomas-Jones et al. (2003)
	Oncorhynchus mykiss	Água doce	4	Aumento	Genético	RNAm da alfa proteína de envelope vitelina	0.0097	Thomas-Jones et al. (2003)
	Oncorhynchus mykiss	Água doce	4	Aumento	Genético	RNAm da alfa proteína de envelope vitelina	0.0097	Thomas-Jones et al. (2003)
	Oncorhynchus mykiss	Água doce	4	Aumento	Genético	RNAm da gama proteína de envelope vitelina	0.0097	Thomas-Jones et al. (2003)
	Oncorhynchus mykiss	Água doce	4	Aumento	Genético	RNAm da vitelogenina	0.0097	Thomas-Jones et al. (2003)
	Oncorhynchus mykiss	Água doce	7	Aumento	Genético	RNAm da alfa proteína de envelope vitelina	0.0097	Thomas-Jones et al. (2003)
	Oncorhynchus mykiss	Água doce	7	Aumento	Genético	RNAm da alfa proteína de envelope vitelina	0.0097	Thomas-Jones et al. (2003)
	Oncorhynchus mykiss	Água doce	7	Aumento	Genético	RNAm da gama proteína de envelope vitelina	0.0097	Thomas-Jones et al. (2003)
	Oncorhynchus mykiss	Água doce	7	Aumento	Genético	RNAm da vitelogenina	0.0097	Thomas-Jones et al. (2003)
	Oncorhynchus mykiss	Água doce	14	Aumento	Bioquímico	Vitelogenina	0.0047	Thorpe et al. (2001)
	Oncorhynchus mykiss	Água doce	14	Aumento	Bioquímico	Vitelogenina	0.0079	Thorpe et al. (2001)

Composto/ Nível trófico	Espécie	Meio	Tempo (dias)	Tendência	Efeito	Efeito medido	CEO (µg L ⁻¹)	Referência
Consumidores secundários	Oncorhynchus mykiss	Água doce	14	Aumento	Bioquímico	Vitelogenina	0.014	Thorpe et al. (2003)
	Oncorhynchus mykiss	Água doce	14	Aumento	Bioquímico	Vitelogenina	0.022	Thorpe et al. (2003)
	Oncorhynchus mykiss	Água doce	14	Aumento	Bioquímico	Vitelogenina	0.024	Tyler et al. (2002)
	Oncorhynchus mykiss	Água doce	14	Aumento	Bioquímico	Vitelogenina	0.014	Thomas-Jones et al. (2003)
	Oncorhynchus mykiss	Água doce	2	Aumento	Bioquímico	Vitelogenina	0.03	Thomas-Jones et al. (2003)
	Oncorhynchus mykiss	Água doce	4	Aumento	Bioquímico	Vitelogenina	0.0097	Thomas-Jones et al. (2003)
	Oncorhynchus mykiss	Água doce	7	Aumento	Bioquímico	Vitelogenina	0.0097	Thomas-Jones et al. (2003)
	Oncorhynchus mykiss	Água doce	35	Declínio	Reprodução	Linearidade	0.00042	Lahnsteiner et al. (2006)
	Oncorhynchus mykiss	Água doce	35	Aumento	Reprodução	Células circulares	0.00042	Lahnsteiner et al. (2006)
	Oncorhynchus mykiss	Água doce	50	Declínio	Reprodução	Fertilidade	0.00111	Lahnsteiner et al. (2006)
	Oncorhynchus mykiss	Água doce	50	Declínio	Reprodução	Número de células espermáticas	0.00111	Lahnsteiner et al. (2006)
	Oncorhynchus mykiss	Água doce	50	Declínio	Reprodução	Número de células espermáticas	0.00111	Lahnsteiner et al. (2006)
	Oncorhynchus mykiss	Água doce	12	Aumento	Bioquímico	Vitelogenina	50	Alslev et al. (2005)

Composto/ Nível trófico	Espécie	Meio	Tempo (dias)	Tendência	Efeito	Efeito medido	CEO (µg L ⁻¹)	Referência
Consumidores secundários	•	Água doce	12	Aumento	Bioquímico	Vitelogenina	50	Alslev et al. (2005)
	Oncorhynchus mykiss	Água doce	3	Aumento	Bioquímico	Vitelogenina	50	Alslev et al. (2005)
	Oncorhynchus mykiss	Água doce	6	Aumento	Bioquímico	Vitelogenina	50	Alslev et al. (2005)
	Oncorhynchus mykiss	Agua doce	21	Aumento	Morfológico	Peso do órgão em relação ao peso do corpo	0.25	Tremblay et al. (1999)
	Oncorhynchus mykiss	Água doce	21	Aumento	Morfológico	Peso do órgão em relação ao peso do corpo	0.25	Tremblay et al. (1999)
	Oncorhynchus mykiss	Água doce	21	Aumento	Bioquímico	Vitelogenina	0.02	Van den Belt et al. (2003)
	Oncorhynchus mykiss	Água doce	21	Aumento	Bioquímico	Vitelogenina	0.1	Tremblay et al. (1999)
	Oncorhynchus mykiss	Água doce	21	Aumento	Hormonal	Testosterona	0.25	Tremblay et al. (1999)
	Oncorhynchus mykiss	Água doce	21	Declínio	Crescimento	Índice de condição	0.25	Tremblay et al. (1999)
	Oncorhynchus tshawytscha	Agua doce	4	Aumento	Bioquímico	Vitelogenina	0.1	Riar (1992)
	Oncorhynchus tshawytscha	Água doce	194	Aumento	População	Proporção sexual	400	Piferrer e Donaldson (1992)
	Oncorhynchus tshawytscha	Água doce	194	Aumento	População	Proporção sexual	400	Piferrer e Donaldson (1992)
	Oncorhynchus tshawytscha	Água doce	194	Aumento	População	Proporção sexual	400	Piferrer e Donaldson (1992)
	Salmo salar	Água doce	21	Declínio	Enzimático	Sódio e potássio ATPase	2	Lerner et al. (2007)

Composto/ Nível trófico	Espécie	Meio	Tempo (dias)	Tendência -	Efeito	Efeito medido	CEO (µg L ⁻¹)	Referência
Consumidores secundários	Salmo salar	Água doce	21	Aumento	Morfológico	Peso do órgão em relação ao peso do corpo	2	Lerner et al. (2007)
	Salmo salar	Água doce	21	Declínio	Crescimento	Taxa de crescimento	2	Lerner et al. (2007)
	Salmo salar	Água doce	21	Declínio	Crescimento	Peso	2	Lerner et al. (2007)
	Salmo salar	Água doce	21	Declínio	Hormonal	Hormônio do crescimento	2	Lerner et al. (2007)
	Salmo salar	Água doce	21	Declínio	Hormonal	Somatomedina C	2	Lerner et al. (2007)
	Salmo salar	Água doce	21	Declínio	Hormonal	Triiodotironina	2	Lerner et al. (2007)
	Salmo salar	Água doce	21	Declínio	Bioquímico	Teor de sódio	2	Lerner et al. (2007)
	Salmo salar	Água doce	21	Aumento	Bioquímico	Glicose	2	Lerner et al. (2007)
	Salmo salar	Água doce	21	Aumento	Hormonal	Cortisol	2	Lerner et al. (2007)
	Carassius auratus	Água doce	10	Declínio	Genético	AR2M	0.16	Yan et al. (2012)
	Carassius auratus	Água doce	10	Declínio	Genético	RNAm do Citocromo P1A	0.16	Yan et al. (2012)
	Carassius auratus	Água doce	10	Aumento	Bioquímico	Vitelogenina	0.16	Yan et al. (2012)
	Carassius auratus	Água doce	10	Aumento	Genético	RNAm do receptor estrogênico alfa	0.16	Yan et al. (2012)
	Carassius auratus	Água doce	10	Aumento	Genético	RNAm da vitelogenina	0.16	Yan et al. (2012)

Composto/ Nível trófico	Espécie	Meio	Tempo (dias)	Tendência	Efeito	Efeito medido	CEO (µg L ⁻¹)	Referência
Consumidores secundários	Carassius auratus	Água doce	10	Aumento	Acumulação	Resíduo	0.16	Yan et al. (2012)
	Carassius auratus	Água doce	10	Aumento	Bioquímico	Vitelogenina	0.16	Yan et al. (2012)
	Carassius auratus	Água doce	1	Aumento	Genético	RNAm do receptor estrogênico alfa	0,2724	Marlatt et al. (2010)
	Carassius auratus	Água doce	21	Aumento	Genético	RNA mensageiro	27,24	Soverchia et al. (2005)
	Carassius auratus	Água doce	6	Aumento	Genético	RNAm do receptor estrogênico alfa	0,2724	Marlatt et al. (2010)
	Carassius auratus	Agua doce	6	Aumento	Genético	RNAm da vitelogenina	0,2724	Marlatt et al. (2010)
	Carassius auratus	Água doce	1	Aumento	Acumulação	Resíduo	0,2724	Marlatt et al. (2010)
	Carassius auratus	Água doce	21	Declínio	Hormonal	Andrógeno	27,24	Soverchia et al. (2005)
	Carassius auratus	Água doce	21	Aumento	Acumulação	Resíduo	27,24	Soverchia et al. (2005)
	Carassius auratus	Água doce	21	Aumento	Bioquímico	Vitelogenina	27,24	Soverchia et al. (2005)
	Carassius auratus	Água doce	6	Aumento	Acumulação	Resíduo	0,2724	Marlatt et al. (2010)
	Carassius auratus	Água doce	1	Declínio	Genético	RNAm da proteína receptora de estrógeno beta 1	0,2724	Marlatt et al. (2010)
	Carassius auratus	Água doce	.5	Aumento	Genético	ABMR	0,2724	Marlatt et al. (2010)
	Carassius auratus	Água doce	1	Aumento	Genético	ABMR	0,2724	Marlatt et al. (2010)

Composto/ Nível trófico	Espécie	Meio	Tempo (dias)	Tendência	Efeito	Efeito medido	CEO (µg L ⁻¹)	Referência
Consumidores secundários	Carassius auratus	Água doce	.125	Aumento	Genético	RNAm da vitelogenina	0,2724	Marlatt et al. (2010)
	Carassius auratus	Água doce	.25	Aumento	Genético	RNAm do receptor estrogênico alfa	0,2724	Marlatt et al. (2010)
	Carassius auratus	Água doce	.5	Aumento	Genético	RNAm da vitelogenina	0,2724	Marlatt et al. (2010)
	Carassius auratus	Água doce	1	Aumento	Genético	RNAm do receptor estrogênico alfa	0,2724	Marlatt et al. (2010)
	Carassius auratus	Água doce	1	Aumento	Genético	RNAm do receptor estrogênico alfa	0,2724	Marlatt et al. (2010)
	Carassius auratus	Água doce	1	Aumento	Genético	RNAm do receptor estrogênico alfa	0,2724	Marlatt et al. (2010)
	Carassius auratus	Água doce	.125	Aumento	Acumulação	Resíduo	0,2724	Marlatt et al. (2010)
	Carassius auratus	Água doce	.125	Aumento	Acumulação	Resíduo	0,2724	Marlatt et al. (2010)
	Carassius auratus	Água doce	.25	Aumento	Acumulação	Resíduo	0,2724	Marlatt et al. (2010)
	Carassius auratus	Água doce	.25	Aumento	Acumulação	Resíduo	0,2724	Marlatt et al. (2010)
	Carassius auratus	Água doce	.5	Aumento	Acumulação	Resíduo	0,2724	Marlatt et al. (2010)
	Carassius auratus	Água doce	.5	Aumento	Acumulação	Resíduo	0,2724	Marlatt et al. (2010)
	Carassius auratus	Água doce	1	Aumento	Acumulação	Resíduo	0,2724	Marlatt et al. (2010)
	Carassius auratus	Água doce	1	Aumento	Acumulação	Resíduo	0,2724	Marlatt et al. (2010)

Composto/ Nível trófico	Espécie	Meio	Tempo (dias)	Tendência	Efeito	Efeito medido	CEO (µg L ⁻¹)	Referência
Consumidores secundários	Carassius auratus	Água doce	3	Aumento	Acumulação	Resíduo	0,2724	Marlatt et al. (2012)
	Carassius auratus	Água doce	1	Declínio	Genético	RNAm da proteína receptora de estrógeno beta 1	0,2724	Marlatt et al. (2010)
	Carassius auratus	Água doce	.125	Aumento	Genético	RNAm do receptor estrogênico alfa	0,2724	Marlatt et al. (2010)
	Carassius auratus	Água doce	.25	Aumento	Genético	RNAm da proteína receptora de estrógeno beta	0,2724	Marlatt et al. (2010)
	Carassius auratus	Água doce	0.25	Aumento	Genético	RNAm do receptor estrogênico alfa	0,2724	Marlatt et al. (2010)
	Gambusia affinis	Água doce	8	Declínio	Genético	RNAm do receptor alfa de Andrógenoógeno	1.03	Huang et al. (2012)
	Gambusia affinis	Água doce	8	Declínio	Genético	RNAm do Citocromo P1A	1.01	Huang et al. (2013)
	Gambusia affinis	Água doce	8	Declínio	Genético	RNAm do Citocromo P1A	1.03	Huang et al. (2012)
	Gambusia affinis	Água doce	8	Declínio	Genético	RNAm do receptor de estrógeno beta	1.03	Huang et al. (2012)
	Gambusia affinis	Água doce	8	Declínio	Genético	RNAm da metalotioneína	1.03	Huang et al. (2012)
	Gambusia affinis	Água doce	8	Aumento	Genético	RNAm do receptor estrogênico alfa	1.01	Huang et al. (2013)
	Gambusia affinis	Água doce	8	Aumento	Genético	RNAm do receptor estrogênico alfa	1.03	Huang et al. (2012)
	Gambusia affinis	Água doce	8	Aumento	Genético	Gene assoiciado a vitelogenina	1.01	Huang et al. (2013)

Composto/ Nível trófico	Espécie	Meio	Tempo (dias)	Tendência	Efeito Efeito	Efeito medido	CEO (µg L ⁻¹)	Referência
Consumidores secundários	Gambusia affinis	Água doce	8	Aumento	Genético	Gene assoiciado a vitelogenina	1.03	Huang et al. (2012)
	Gambusia affinis	Água doce	8	Aumento	Genético	Gene assoiciado a vitelogenina	1.01	Huang et al. (2013)
	Gambusia affinis	Água doce	8	Aumento	Genético	Gene assoiciado a vitelogenina	1.03	Huang et al. (2012)
	Gambusia affinis	Água doce	8	Aumento	Genético	Gene assoiciado a vitelogenina	1.01	Huang et al. (2013)
	Gambusia affinis	Água doce	8	Declínio	Genético	RNAm da metalotioneína	1.03	Huang et al. (2012)
	Gambusia affinis	Água doce	8	Declínio	Genético	RNAm do receptor beta de Andrógenoógeno	1.01	Huang et al. (2013)
	Gambusia affinis	Água doce	8	Declínio	Genético	RNAm do receptor estrogênico alfa	1.01	Huang et al. (2013)
	Gambusia affinis	Água doce	8	Declínio	Genético	RNAm do receptor de estrógeno beta	1.01	Huang et al. (2013)
	Gambusia affinis	Água doce	1	Aumento	Genético	RNAm da vitelogenina	500000	Kamata et al. (2011)
	Gambusia affinis	Água doce	1	Aumento	Genético	RNAm da vitelogenina	500000	Kamata et al. (2011)
	Gambusia affinis	Água doce	2	Aumento	Genético	RNAm da vitelogenina	500000	Kamata et al. (2011)
	Gambusia affinis	Água doce	2	Aumento	Genético	RNAm da vitelogenina	500000	Kamata et al. (2011)
	Gambusia affinis	Água doce	2	Aumento	Genético	RNAm da vitelogenina	500000	Kamata et al. (2011)
	Gambusia affinis	Água doce	3	Aumento	Genético	RNAm da vitelogenina	500000	Kamata et al. (2011)

Composto/ Nível trófico	Espécie	Meio	Tempo (dias)	Tendência	Efeito	Efeito medido	CEO (µg L ⁻¹)	Referência
Consumidores secundários	Gambusia affinis	Água doce	3	Aumento	Genético	RNAm da vitelogenina	500000	Kamata et al. (2011)
	Platichthys flesus	Água salgada	10	Aumento	Bioquímico	Vitelogenina	0.333	Kirby et al. (2007)

Composto/ Nível trófico	Espécies	Meio	Tempo (dias)	Tendência	Efeito	Efeito medido	CEO (µg L ⁻¹)	Referência
17 α-etinilestradiol CAS: 57636	Tisbe battagliai	Água salgada	21	Declínio	Reprodução	Fecundidade	100	Hutchinson et at. (1999)
Consumidores primários	Tisbe battagliai	Água salgada	21	Não relatado	Reprodução	Reprodução geral	100	Pounds et al. (2002)
	Daphnia magna	Água doce	6	Declínio	Reprodução	Tempo para a primeira progênie	0.0001	Dietrich et al. (2010)
	Daphnia magna	Água doce	6	Aumento	Reprodução	Número de progênies	0.0001	Dietrich et al. (2010)
	Daphnia magna	Água doce	1	Declínio	Reprodução	Número de progênies	1000	Clubbs e Brooks (2007)
	Daphnia magna	Água doce	2	Declínio	Reprodução	Número de progênies	1000	Clubbs e Brooks (2007)
	Daphnia magna	Água doce	2	Declínio	Reprodução	Número de progênies	1000	Clubbs e Brooks (2007)
	Daphnia magna	Água doce	21	Declínio	Bioquímico	Vitelo	1000	Clubbs e Brooks (2007)
	Daphnia magna	Água doce	3	Declínio	Reprodução	Número de progênies	62.5	Clubbs e Brooks (2007)

Tabela Suplementar 4. Efeitos do 17 α-etinilestradiol em animais representantes do primeiro e do segundo níveis tróficos da cadeia alimentar aquática.

Composto/ Nível trófico	Espécies	Meio	Tempo (dias)	Tendência	Efeito	Efeito medido	CEO (µg L ⁻¹)	Referência
Consumidores primários	Daphnia magna	Água doce	4	Declínio	Reprodução	Número de progênies	0.0001	Dietrich et al. (2010)
	Daphnia magna	Água doce	Não relatado	Declínio	Reprodução	Número de progênies	1000	Clubbs e Brooks (2007)
	Daphnia magna	Água doce	6	Declínio	Crescimento	Comprimento	0.0001	Dietrich et al. (2010)
	Daphnia magna	Água doce	4	Declínio	Crescimento	Comprimento	0.0001	Dietrich et al. (2010)
	Daphnia magna	Água doce	4	Aumento	Crescimento	Comprimento	0.0001	Dietrich et al. (2010)
	Hyalella azteca	Água doce	42	Declínio	População	Biomassa	740	Dussault et al. (2008)
	Hyalella azteca	Agua doce	42	Declínio	Reprodução	Cópula, coito	740	Dussault et al. (2008)
	Hyalella azteca	Água doce	42	Declínio	Reprodução	Número de progênies	740	Dussault et al. (2008)
	Hyalella azteca	Água doce	42	Declínio	Reprodução	Número de progênies	740	Dussault et al. (2008)
	Hyalella azteca	Agua doce	42	Declínio	Crescimento	Comprimento	740	Dussault et al. (2008)
	Hyalella azteca	Agua doce	42	Declínio	Crescimento	Comprimento	740	Dussault et al. (2008)
	Chironomus riparius	Água doce	1	Declínio	Genético	C92M	10	Nair et al. (2013)
	Chironomus riparius	Água doce	20	Aumento	Desenvolvimento	Emergência	100	Lee e Choi (2007)
	Chironomus tentans	Água doce	47	Declínio	Desenvolvimento	Emergência	140	Dussault et al. (2008)

Tabela Suplementar 4. Efeitos do 17 α-etinilestradiol em animais representantes do primeiro e do segundo níveis tróficos da cadeia alimentar aquática.

Composto/ Nível trófico	Espécies	Meio	Tempo (dias)	Tendência	Efeito	Efeito medido	CEO (µg L ⁻¹)	Referência
Consumidores primários	Chironomus tentans	Água doce	47	Declínio	Desenvolvimento	Emergência	3100	Dussault et al. (2008)
	Chironomus tentans	Água doce	47	Declínio	Desenvolvimento	Emergência	3100	Dussault et al. (2008)
	Chironomus tentans	Água doce	47	Declínio	População	Biomassa	20	Dussault et al. (2008)
	Chironomus tentans	Água doce	42	Declínio	Desenvolvimento	Emergência	3100	Dussault et al. (2008)
	Chironomus Água tentans doce Chironomus Água tentans doce		42	Declínio	Desenvolvimento	Emergência	3100	Dussault et al. (2008)
		_	1	Aumento	Genético	Expressão gênica	8	Lee at al. (2006)
	Bithynia tentaculata	Água doce	Não relatado	Declínio	Crescimento	Taxa de crescimento	0.009	Hallgren et al. (2012)
	Marisa cornuarietis	Água doce	9	Declínio	Fisiológico	Frequência cardíaca	10	Schirling et al. (2006)
	Marisa cornuarietis	Água doce	182.64	Aumento	Morfológico	Comprimento	0.5	Tillmann et al. (2001)
	Marisa cornuarietis Marisa cornuarietis	Água doce	365.28	Aumento	Histologia	Alterações histológicas gerais	0.5	Tillmann et al. (2001)
		Água doce	273.96	Aumento	Morfológico	Alterações no sexo	0.5	Tillmann et al. (2001)
	Radix balthica	Água doce	Não relatado	Aumento	Crescimento	Taxa de crescimento	0.009	Hallgren et al. (2012)
	Saccostrea glomerata	Água salgada	56	Aumento	Bioquímico	Vitelogenina	0.05	Andrew et al. (2008)
	Saccostrea glomerata	Água salgada	56	Aumento	Bioquímico	Vitelogenina	0.05	Andrew et al. (2008)

Tabela Suplementar 4. Efeitos do 17 α-etinilestradiol em animais representantes do primeiro e do segundo níveis tróficos da cadeia alimentar aquática.

Composto/ Nível trófico	Espécies	Meio	Tempo (dias)	Tendência	Efeito	Efeito medido	CEO (µg L ⁻¹)	Referência
	Mytilus edulis	Água salgada	10	Aumento	Genético	RNAm da lumbroquinase	0.0042	Cubero-Leon et al. (2010)
	Potamopyrgus antipodarum	Água doce	28	Aumento	Reprodução	Número de progênies	0.05	Sieratowicz et al. (2011)
	Potamopyrgus antipodarum	Água doce	28	Aumento	Reprodução	Número de progênies	0.1	Stange et al. (2012)
	Potamopyrgus antipodarum	Água doce	63	Aumento	Reprodução	Número de progênies	0.025	Jobling et al. (2003)
	Potamopyrgus antipodarum	Água doce	1	Aumento	Genético	Receptor de estógeno	0.1	Stange et al. (2012)
Consumidores secundários	Lithobates clamitans ssp. clamitans	Água doce	61	Aumento	Desenvolvimento	Estágio	0.0061	Park e Kidd (2005)
	Lithobates clamitans ssp. clamitans	Água doce	82	Aumento	Desenvolvimento	Estágio	0.0061	Park e Kidd (2005)
	Lithobates clamitans ssp. clamitans	Água doce	119	Alteração	Morfológico	Diâmetro	0.0058	Park (2003)
	Lithobates clamitans ssp. clamitans	Água doce	119	Aumento	Morfológico	Diâmetro	0.0058	Park (2003)
	Lithobates pipiens	Água doce	124	Aumento	Morfológico	Alterações no sexo	10	Mackenzie et al. (2003)
	Lithobates septentrionalis	Água doce	87	Declínio	Desenvolvimento	Estágio	0.005	Park e Kidd (2005)

Tabela Suplementar 4. Efeitos do 17 α-etinilestradiol em animais representantes do primeiro e do segundo níveis tróficos da cadeia alimentar aquática.

Composto/ Nível trófico	Espécies	Meio	Tempo (dias)	Tendência	Efeito	Efeito medido	CEO (µg L ⁻¹)	Referência
Consumidores secundários	Lithobates septentrionalis	Água doce	87	Declínio	Crescimento	Peso	0.005	Park e Kidd (2005)
	Rana temporaria	Água doce	Não relatado	Declínio	Hormonal	Testosterona	0.115	Brande-Lavridsen et al. (2008)
	Rana temporaria	Água doce	Não relatado	Aumento	Bioquímico	Teor de cálcio	0.077	Brande-Lavridsen et al. (2008)
	Rana temporaria	Água doce	Não relatado	Aumento	Desenvolvimento	Até a metamorfose	0.006	Brande-Lavridsen et al. (2008)
	Rana temporaria	Água doce	Não relatado	Declínio	Celular	Altura	0.006	Brande-Lavridsen et al. (2008)
	Xenopus tropicalis	Água doce	Não relatado	Aumento	Desenvolvimento	Até a metamorfose	0,018	Pettersson e Berg (2007)
	Xenopus tropicalis	Água doce	Não relatado	Aumento	População	Proporção sexual	0,018	Pettersson e Berg (2007)
	Xenopus tropicalis	Água doce	324	Aumento	Morfológico	Ausência	19,0379	Pettersson et al. (2006)
	Xenopus laevis	Água doce	28	Aumento	Genético	RNAm da aromatase A Citocromo P450	2,96	Massari et al. (2010)
	Xenopus laevis	Água doce	4	Aumento	Enzimático	Luciferase	0,15	Trudeau et al. (2005)
	Xenopus laevis	Água doce	28	Declínio	Genético	RNAm da transferrina	2,96	Urbatzka et al. (2007)
	Xenopus laevis	Água doce	28	Declínio	Genético	RNAm da transferrina	2,96	Urbatzka et al. (2007)
	Xenopus laevis	Água doce	28	Declínio	Genético	RNAm da transtiretina	2,96	Urbatzka et al. (2007)

Tabela Suplementar 4. Efeitos do 17 α-etinilestradiol em animais representantes do primeiro e do segundo níveis tróficos da cadeia alimentar aquática.

Composto/ Nível trófico	Espécies	Meio	Tempo (dias)	Tendência	Efeito	Efeito medido	CEO (µg L ⁻¹)	Referência
Consumidores secundários	Xenopus laevis	Água doce	28	Declínio	Genético	RNAm da transtiretina	2,96	Urbatzka et al. (2007)
	Xenopus laevis	Água doce	28	Aumento	Genético	RNAm da proteína de ligação ao retinol	2,96	Urbatzka et al. (2007)
	Xenopus laevis	Água doce	28	Aumento	Genético	RNAm da proteína de ligação ao retinol	2,96	Urbatzka et al. (2007)
	Xenopus laevis	Água doce	28	Declínio	Hormonal	17-beta estradiol	2,96	Urbatzka et al. (2007)
	Rana catesbeiana	Água doce	2	Aumento	Genético	RNAm da aromatase A Citocromo P450	0.05	Gunderson et al. (2011)
	Alburnus tarichi	Água doce	32	Aumento	Genético	Apoptose, morte celular programada, fragmentação do DNA	0.1	Kaptaner e Unal (2011)
	Alburnus tarichi	Água doce	32	Aumento	Genético	Apoptose, morte celular programada, fragmentação do DNA	0.1	Kaptaner e Unal (2011)
	Alburnus tarichi	Água doce	32	Aumento	Reprodução	Estágio de folículo atrésico	0.1	Kaptaner e Unal (2011)

Tabela Suplementar 4. Efeitos do 17 α-etinilestradiol em animais representantes do primeiro e do segundo níveis tróficos da cadeia alimentar aquática.

Composto/ Nível trófico	Espécies	Meio	Tempo (dias)	Tendência	Efeito	Efeito medido	CEO (µg L ⁻¹)	Referência
Consumidores secundários	Alburnus tarichi	Água doce	32	Aumento	Genético	Apoptose, morte celular programada, fragmentação do DNA	0.1	Kaptaner e Unal (2011)
	Alburnus tarichi	Água doce	32	Aumento	Genético	Apoptose, morte celular programada, fragmentação do DNA	0.1	Kaptaner e Unal (2011)
	Clarias gariepinus	Água doce	3	Aumento	Enzimático	7- Ethoxyresorufin O-deethylase	51.38	Mdegela et al. (2006)
	Clarias gariepinus	Água doce	21	Declínio	Bioquímico	Dopamina	1	Swapna e Senthilkumaran (2009)
	Clarias gariepinus	Água doce	21	Declínio	Genético	RNAm da actina RNAm da	1	Swapna e Senthilkumaran (2009)
	Clarias gariepinus	Água doce	21	Declínio	Genético	gonodotrofina liberadora de hormônio	1	Swapna e Senthilkumaran (2009)
	Clarias gariepinus	Água doce	21	Declínio	Hormonal	Epinefrina	1	Swapna e Senthilkumaran (2009)
	Clarias gariepinus	Água doce	21	Declínio	Hormonal	Norepinefrina	1	Swapna e Senthilkumaran (2009)
	Clarias gariepinus	Água doce	21	Declínio	Hormonal	Serotonina	1	Swapna e Senthilkumaran (2009)
	Clarias gariepinus	Água doce	21	Aumento	Hormonal	Dopamina	1	Swapna e Senthilkumaran (2009)

Tabela Suplementar 4. Efeitos do 17 α-etinilestradiol em animais representantes do primeiro e do segundo níveis tróficos da cadeia alimentar aquática.

Composto/ Nível trófico	Espécies	Meio	Tempo (dias)	Tendência	Efeito	Efeito medido	CEO (µg L ⁻¹)	Referência
Consumidores secundários	Etheostoma caeruleum	Água doce	21	Aumento	Morfológico	Alterações no sexo	0.2	Elias et al. (2007)
	Etheostoma caeruleum	Água doce	21	Aumento	Desenvolvimento	Desenvolvimen to sexual	0.2	Elias et al. (2007)
	Fundulus heteroclitus	Água salgada	14	Declínio	Morfológico	Peso do órgão em relação ao peso do corpo	0.2479	Hogan et al. (2010)
	Fundulus heteroclitus	Água salgada	14	Aumento	Genético	RNAm do receptor estrogênico alfa	0.0679	Hogan et al. (2010)
	Fundulus heteroclitus	Água salgada	14	Aumento	Genético	RNAm da vitelogenina	0.0679	Hogan et al. (2010)
	Fundulus heteroclitus	Água salgada	60	Aumento	Desenvolvimento	Deformação	10	Boudreau et al. (2004)
	Fundulus heteroclitus	Água salgada	60	Aumento	Desenvolvimento	Deformação	10	Boudreau et al. (2004)
	Fundulus heteroclitus	Água salgada	28	Aumento	Morfológico	Peso do órgão em relação ao peso do corpo	0.1	Peters et al. (2007)
	Fundulus heteroclitus	Água salgada	364	Declínio	Morfológico	Peso do órgão em relação ao peso do corpo	0.1	Peters et al. (2007)
	Fundulus heteroclitus	Água salgada	60	Aumento	Desenvolvimento	Deformação	10	Boudreau et al. (2004)
	Fundulus heteroclitus	Água salgada	60	Aumento	Desenvolvimento	Deformação	10	Boudreau et al. (2004)
	Fundulus heteroclitus	Água salgada	364	Aumento	Bioquímico	Vitelogenina	0.1	Peters et al. (2010)

Tabela Suplementar 4. Efeitos do 17 α-etinilestradiol em animais representantes do primeiro e do segundo níveis tróficos da cadeia alimentar aquática.

Composto/ Nível trófico	Espécies	Meio	Tempo (dias)	Tendência	Efeito	Efeito medido	CEO (µg L ⁻¹)	Referência
Consumidores secundários	Fundulus heteroclitus	Água salgada	28	Declínio	Reprodução	Média de desovas por fêmea	0.1	Peters et al. (2007)
	Fundulus heteroclitus	Água salgada	28	Declínio	Reprodução	Frequência de desova	0.1	Peters et al. (2007)
	Fundulus heteroclitus	Água salgada	336	Aumento	População	Proporção sexual	0.1	Peters et al. (2010)
	Fundulus heteroclitus	Água salgada	364	Aumento	População	Proporção sexual	0.1	Peters et al. (2010)
	Fundulus heteroclitus	Água salgada	364	Aumento	População	Proporção sexual	0.1	Peters et al. (2010)
	Fundulus heteroclitus	Água salgada	364	Aumento	População	Proporção sexual	0.1	Peters et al. (2010)
	Fundulus heteroclitus	Água salgada	427	Aumento	População	Proporção sexual	0.1	Peters et al. (2010)
	Fundulus heteroclitus	Água salgada	60	Aumento	Desenvolvimento	Anormal	1	Peters et al. (2010)
	Fundulus heteroclitus	Água salgada	Não relatado	Declínio	Reprodução	Fertilização	0.1	Peters et al. (2007)
	Fundulus heteroclitus	Água salgada	364	Aumento	Reprodução	Vitelogênese	0.001	Peters et al. (2010)
	Fundulus heteroclitus	Água salgada	21	Declínio	Hormonal	17-beta estradiol	0.1	Peters et al. (2007)
	Fundulus heteroclitus	Água salgada	21	Declínio	Hormonal	11- Ketotestosteron a	0.001	Peters et al. (2007)
	Fundulus heteroclitus	Água salgada	21	Declínio	Hormonal	Testosterona	0.1	Peters et al. (2007)

Tabela Suplementar 4. Efeitos do 17 α-etinilestradiol em animais representantes do primeiro e do segundo níveis tróficos da cadeia alimentar aquática.

Composto/ Nível trófico	Espécies	Meio	Tempo (dias)	Tendência	Efeito	Efeito medido	CEO (µg L ⁻¹)	Referência
Consumidores secundários	Fundulus heteroclitus	Água salgada	21	Aumento	Bioquímico	Vitelogenina	0.1	Peters et al. (2007)
	Fundulus heteroclitus	Água salgada	28	Declínio	Hormonal	17-beta estradiol	0.01	Peters et al. (2007)
	Fundulus heteroclitus	Água salgada	28	Aumento	Bioquímico	Vitelogenina	0.1	Peters et al. (2007)
	Fundulus heteroclitus	heteroclitus salgada Fundulus Água heteroclitus salgada	60	Aumento	Desenvolvimento	Deformação	10	Boudreau et al. (2004)
			25	Aumento	Injúria	Curvatura	10	Boudreau et al. (2004)
	Fundulus heteroclitus	Água salgada	60	Aumento	Desenvolvimento	Deformação	1	Boudreau et al. (2004)
	Fundulus heteroclitus	Água salgada	21	Declínio	Hormonal	Testosterona	0.1	Peters et al. (2007)
	Fundulus heteroclitus	Água salgada	28	Declínio	Hormonal	Testosterona	0.1	Peters et al. (2007)
	Fundulus heteroclitus	Água salgada	60	Declínio	Crescimento	Comprimento	10	Boudreau et al. (2004)
	Gobiocypris rarus	Água doce	21	Aumento	Morfológico	Alterações no sexo	0.00361	Zha et al. (2008)
	Gobiocypris rarus	Gobiocypris Água	21	Aumento	Histologia	Lesões	0.00361	Zha et al. (2008)
	Gobiocypris rarus	Água doce	21	Aumento	Morfológico	Peso do órgão em relação ao peso do corpo	0.00361	Zha et al. (2008)
	Gobiocypris rarus	Água doce	21	Aumento	Morfológico	Peso do órgão em relação ao peso do corpo	0.00361	Zha et al. (2008)

Tabela Suplementar 4. Efeitos do 17 α-etinilestradiol em animais representantes do primeiro e do segundo níveis tróficos da cadeia alimentar aquática.

Composto/ Nível trófico	Espécies	Meio	Tempo (dias)	Tendência	Efeito	Efeito medido	CEO (µg L ⁻¹)	Referência
Consumidores secundários	Gobiocypris rarus	Água doce	28	Não codificado	Morfológico	Peso do órgão em relação ao peso do corpo	0.001	Zha et al. (2007)
	Gobiocypris rarus	Água doce	21	Aumento	Histologia	Lesões	0.00361	Zha et al. (2008)
	Gobiocypris rarus	Água doce	21	Aumento	Morfológico	Peso do órgão em relação ao peso do corpo	0.00361	Zha et al. (2008)
	Gobiocypris rarus	Água doce	21	Declínio	Reprodução	Fertilização	0.00361	Zha et al. (2008)
	Gobiocypris rarus	Água doce	21	Declínio	Reprodução	Número de progênies	0.00361	Zha et al. (2008)
	Gobiocypris rarus	Água doce	21	Declínio	Reprodução	Número de progênies	0.00361	Zha et al. (2008)
	Gobiocypris rarus	Água doce	21	Aumento	Reprodução	Número de dias entre ovos ou ninhadas	0.00361	Zha et al. (2008)
	Gobiocypris rarus	Água doce	21	Aumento	Bioquímico	Vitelogenina	0.00361	Zha et al. (2008)
	Gobiocypris rarus	Água doce	21	Aumento	Bioquímico	Vitelogenina	0.00361	Zha et al. (2008)
	Gobiocypris rarus	Água doce	28	Aumento	Morfológico	Peso do órgão em relação ao peso do corpo	0.001	Zha et al. (2007)
	Gobiocypris rarus	Água doce	28	Aumento	Morfológico	Peso do órgão em relação ao peso do corpo	0.005	Zha et al. (2007)

Tabela Suplementar 4. Efeitos do 17 α-etinilestradiol em animais representantes do primeiro e do segundo níveis tróficos da cadeia alimentar aquática.

Composto/ Nível trófico	Espécies	Meio	Tempo (dias)	Tendência	Efeito	Efeito medido	CEO (µg L ⁻¹)	Referência
Consumidores secundários	Gobiocypris rarus	Água doce	28	Aumento	Morfológico	Peso do órgão em relação ao peso do corpo	0.025	Zha et al. (2007)
	Gobiocypris rarus	Água doce	28	Declínio	Morfológico	Peso do órgão em relação ao peso do corpo	0.005	Zha et al. (2007)
	Gobiocypris rarus	Água doce	28	Declínio	Crescimento	Comprimento	0.025	Zha et al. (2007)
	Gobiocypris rarus	Água doce	28	Declínio	Crescimento	Comprimento	0.025	Zha et al. (2007)
	Gobiocypris rarus	Água doce	21	Aumento	Morfológico	Peso do órgão em relação ao peso do corpo	0.0002	Ma et al. (2007)
	Gobiocypris rarus	Água doce	21	Aumento	Morfológico	Peso do órgão em relação ao peso do corpo	0.0002	Ma et al. (2007)
	Gobiocypris rarus	Água doce	7	Declínio	Genético	RNAm CYP19A1	0.025	Liu et al. (2012)
	Gobiocypris rarus	Água doce	7	Declínio	Genético	RNAm P450scc	0.025	Liu et al. (2012)
	Gobiocypris rarus	Água doce	21	Aumento	Bioquímico	Vitelogenina	0.0002	Ma et al. (2007)
	Gobiocypris rarus	Água doce	3	Declínio	Genético	RNAm P450 aromB	0,296	Wang et al. (2010)
	Gobiocypris rarus	Água doce	3	Aumento	Genético	RNAm CYP19b	0,0296	Wang et al. (2010)
	Gobiocypris rarus	Água doce	3	Declínio	Genético	RNAm da proteína	0,296	Wang et al. (2011)

Tabela Suplementar 4. Efeitos do 17 α-etinilestradiol em animais representantes do primeiro e do segundo níveis tróficos da cadeia alimentar aquática.

Composto/ Nível trófico	Espécies	Meio	Tempo (dias)	Tendência	Efeito	Efeito medido	CEO (μg L ⁻¹)	Referência
Consumidores secundários	Gobiocypris rarus	Água doce	3	Aumento	Genético	receptora de estrógeno beta 1 RNAm da proteína receptora estrogênica beta	0,0296	Wang et al. (2011)
	Gobiocypris rarus	Água doce	3	Aumento	Genético	RNAm do receptor estrogênico alfa	0,00296	Wang et al. (2011)
	Gobiocypris rarus	Água doce	3	Aumento	Genético	RNAm da vitelogenina	0,00296	Wang et al. (2011)
	Gobiocypris rarus	Água doce	7	Não codificado	Bioquímico	Vitelogenina	0.0008	Liao et al. (2006)
	Gobiocypris rarus	Água doce	180	Declínio	Morfológico	Peso do órgão em relação ao peso do corpo	0.01361	Zha et al. (2008)
	Gobiocypris rarus	Água doce	180	Declínio	Morfológico	Peso do órgão em relação ao peso do corpo	0.00018	Zha et al. (2008)
	Gobiocypris rarus	Água doce	420	Declínio	Morfológico	Peso do órgão em relação ao peso do corpo	0.00018	Zha et al. (2008)
	Gobiocypris rarus	Água doce	180	Declínio	Morfológico	Peso do órgão em relação ao peso do corpo	0.00091	Zha et al. (2008)
	Gobiocypris rarus	Água doce	180	Aumento	Morfológico	Peso do órgão em relação ao peso do corpo	0.00091	Zha et al. (2008)

Tabela Suplementar 4. Efeitos do 17 α-etinilestradiol em animais representantes do primeiro e do segundo níveis tróficos da cadeia alimentar aquática.

Composto/ Nível trófico	Espécies	Meio	Tempo (dias)	Tendência	Efeito	Efeito medido	CEO (μg L ⁻¹)	Referência
	Gobiocypris rarus	Água doce	420	Aumento	Morfológico	Peso do órgão em relação ao peso do corpo	0.00018	Zha et al. (2008)
	Gobiocypris rarus	Água doce	420	Aumento	Morfológico	Peso do órgão em relação ao peso do corpo	0.00091	Zha et al. (2008)
	Gobiocypris rarus	Água doce	180	Aumento	Morfológico	Peso do órgão em relação ao peso do corpo	0.00091	Zha et al. (2008)
	Gobiocypris rarus	Água doce	180	Aumento	Morfológico	Peso do órgão em relação ao peso do corpo	0.00361	Zha et al. (2008)
	Gobiocypris rarus	Água doce	420	Aumento	Morfológico	Peso do órgão em relação ao peso do corpo	0.00018	Zha et al. (2008)
	Gobiocypris rarus	Água doce	420	Aumento	Morfológico	Peso do órgão em relação ao peso do corpo	0.00091	Zha et al. (2008)
	Gobiocypris rarus	Água doce	180	Alteração	População	Proporção sexual	0.00018	Zha et al. (2008)
	Gobiocypris rarus	Água doce	180	Declínio	Reprodução	Número de progênies	0.00018	Zha et al. (2008)
	Gobiocypris rarus	Água doce	180	Declínio	Reprodução	Número de progênies	0.00018	Zha et al. (2008)
	Gobiocypris rarus	Água doce	180	Aumento	Reprodução	Fertilização	0.00018	Zha et al. (2008)
	Gobiocypris rarus	Água doce	180	Aumento	Reprodução	Frequência de desova	0.00091	Zha et al. (2008)

Tabela Suplementar 4. Efeitos do 17 α-etinilestradiol em animais representantes do primeiro e do segundo níveis tróficos da cadeia alimentar aquática.

Composto/ Nível trófico	Espécies	Meio	Tempo (dias)	Tendência	Efeito	Efeito medido	CEO (µg L ⁻¹)	Referência
Consumidores secundários	Gobiocypris rarus	Água doce	420	Alteração	População	Proporção sexual	0.00018	Zha et al. (2008)
	Gobiocypris rarus	Água doce	120	Aumento	Bioquímico	Vitelogenina	0.01361	Zha et al. (2008)
	Gobiocypris rarus	Água doce	180	Aumento	Bioquímico	Vitelogenina	0.00018	Zha et al. (2008)
	Gobiocypris rarus	Água doce	420	Aumento	Bioquímico	Vitelogenina	0.00018	Zha et al. (2008)
	Gobiocypris rarus	Água doce	420	Aumento	Bioquímico	Vitelogenina	0.00091	Zha et al. (2008)
	Gobiocypris rarus	Água doce	180	Declínio	Crescimento	Comprimento	0.00361	Zha et al. (2008)
	Gobiocypris rarus	Água doce	180	Declínio	Crescimento	Peso	0.00091	Zha et al. (2008)
	Gobiocypris rarus	Água doce	270	Declínio	Crescimento	Peso	0.00018	Zha et al. (2008)
	Gobiocypris rarus	Água doce	420	Declínio	Crescimento	Peso	0.00018	Zha et al. (2008)
	Gobiocypris rarus	Água doce	90	Declínio	Crescimento	Comprimento	0.01361	Zha et al. (2008)
	Gobiocypris rarus	Água doce	90	Declínio	Crescimento	Peso	0.00361	Zha et al. (2008)
	Lipophrys pholis	Água salgada	21	Aumento	Genético	RNAm da vitelogenina isoforma 2	0.015	Ferreira et al. (2009)
	Melanotaenia fluviatilis	Água doce	7	Aumento	Genético	RNAm da vitelogenina	0.005	Woods e Kumar (2011
	Melanotaenia fluviatilis	Água doce	7	Aumento	Bioquímico	Vitelogenina	0.005	Woods e Kumar (2011

Tabela Suplementar 4. Efeitos do 17 α-etinilestradiol em animais representantes do primeiro e do segundo níveis tróficos da cadeia alimentar aquática.

Composto/ Nível trófico	Espécies	Meio	Tempo (dias)	Tendência	Efeito	Efeito medido	CEO (µg L ⁻¹)	Referência
Consumidores secundários	Oreochromis niloticus	Água doce	20	Declínio	Genético	RNAm do fator de crescimento 1	0.01623	Shved et al. (2008)
	Oreochromis niloticus	Água doce	20	Aumento	Genético	RNAm do receptor estrogênico alfa	0.00434	Shved et al. (2008)
	Oreochromis niloticus	Água doce	20	Aumento	Genético	RNAm do fator de crescimento 1	0.01623	Shved et al. (2008)
	Oreochromis niloticus	Água doce	40	Declínio	Genético	RNAm do fator de crescimento 1	0.00434	Shved et al. (2008)
	Oreochromis niloticus	Água doce	40	Declínio	Genético	RNAm do fator de crescimento 1	0.01623	Shved et al. (2008)
	Oreochromis niloticus	Água doce	40	Aumento	Genético	RNAm do hormônio do crescimento	0.00434	Shved et al. (2008)
	Oreochromis niloticus	Água doce	90	Declínio	Genético	RNAm do receptor estrogênico alfa	0.01623	Shved et al. (2008)
	Oreochromis niloticus	Água doce	90	Declínio	Genético	RNAm do hormônio do crescimento	0.00434	Shved et al. (2008)
	Oreochromis niloticus	Água doce	90	Declínio	Genético	RNAm do hormônio do crescimento	0.01623	Shved et al. (2008)

Tabela Suplementar 4. Efeitos do 17 α-etinilestradiol em animais representantes do primeiro e do segundo níveis tróficos da cadeia alimentar aquática.

Composto/ Nível trófico	Espécies	Meio	Tempo (dias)	Tendência	Efeito	Efeito medido	CEO (µg L ⁻¹)	Referência
Consumidores secundários	Oreochromis niloticus	Água doce	90	Aumento	Genético	RNAm do fator de crescimento 1	0.00434	Shved et al. (2008)
	Oreochromis niloticus	Água doce	20	Aumento	Genético	RNAm do receptor estrogênico alfa	0.00434	Shved et al. (2008)
	Oreochromis niloticus	Água doce	20	Aumento	Genético	RNAm do fator de crescimento 1	0.00434	Shved et al. (2008)
	Oreochromis niloticus	Água doce	20	Aumento	Genético	RNAm do fator de crescimento 1	0.00434	Shved et al. (2008)
	Oreochromis niloticus	Água doce	40	Declínio	Genético	RNAm do fator de crescimento 1	0.01623	Shved et al. (2008)
	Oreochromis niloticus	Água doce	65	Declínio	Genético	RNAm do receptor estrogênico alfa	0.00434	Shved et al. (2008)
	Oreochromis niloticus	Água doce	65	Declínio	Genético	RNAm do fator de crescimento 1	0.00434	Shved et al. (2008)
	Oreochromis niloticus	Água doce	65	Declínio	Genético	RNAm do fator de crescimento 1	0.01623	Shved et al. (2008)
	Oreochromis niloticus	Água doce	90	Declínio	Genético	RNAm do receptor estrogênico alfa	0.01623	Shved et al. (2008)

Tabela Suplementar 4. Efeitos do 17 α-etinilestradiol em animais representantes do primeiro e do segundo níveis tróficos da cadeia alimentar aquática.

Composto/ Nível trófico	Espécies	Meio	Tempo (dias)	Tendência	Efeito	Efeito medido	CEO (µg L ⁻¹)	Referência
Consumidores secundários	Oreochromis niloticus	Água doce	90	Declínio	Genético	RNAm do fator de crescimento	0.00434	Shved et al. (2008)
	Oreochromis niloticus	Água doce	90	Aumento	População	Proporção sexual	0.00434	Shved et al. (2008)
	Oreochromis niloticus	Água doce	20	Declínio	Genético	RNAm do receptor estrogênico alfa	0.01623	Shved et al. (2008)
	Oreochromis niloticus	Água doce	40	Declínio	Genético	RNAm do fator de crescimento	0.00434	Shved et al. (2008)
	Oreochromis niloticus	Água doce	65	Declínio	Genético	RNAm do fator de crescimento	0.01623	Shved et al. (2008)
	Oreochromis niloticus	Água doce	90	Aumento	Genético	RNAm do fator de crescimento 1	0.01623	Shved et al. (2008)
	Oreochromis niloticus	Água doce	40	Declínio	Crescimento	Comprimento	0.00434	Shved et al. (2008)
	Oreochromis niloticus	Água doce	40	Sem efeito	Crescimento	Peso	0.01623	Shved et al. (2008)
	Oreochromis niloticus	Água doce	65	Declínio	Crescimento	Comprimento	0.00434	Shved et al. (2008)
	Oreochromis niloticus	Água doce	65	Declínio	Crescimento	Peso	0.00434	Shved et al. (2008)
	Oreochromis niloticus	Água doce	90	Declínio	Crescimento	Peso	0.00434	Shved et al. (2008)
	Oreochromis niloticus	Água doce	90	Declínio	Crescimento	Comprimento	0.00434	Shved et al. (2008)

Tabela Suplementar 4. Efeitos do 17 α-etinilestradiol em animais representantes do primeiro e do segundo níveis tróficos da cadeia alimentar aquática.

Composto/ Nível trófico	Espécies	Meio	Tempo (dias)	Tendência	Efeito	Efeito medido	CEO (µg L ⁻¹)	Referência
Consumidores secundários	Oreochromis niloticus	Água doce	40	Declínio	Genético	RNAm do Insl3	0.005	Berishvili et al. (2010)
	Oreochromis niloticus	Água doce	90	Aumento	Genético	RNAm do Insl3	0.005	Berishvili et al. (2010)
	Oryzias melastigma	Água salgada	7	Aumento	Genético	RNAm omChgH	0.01	Chen et al. (2008)
	Oryzias melastigma	Água salgada	7	Aumento	Genético	RNAm omChgH	0.01	Chen et al. (2008)
	Oryzias melastigma	Água salgada	7	Aumento	Genético	RNAm omChgL	0.01	Chen et al. (2008)
	Oryzias melastigma	Água salgada	7	Aumento	Genético	RNAm omChgL	0.1	Chen et al. (2008)
	Pomatoschistus minutus	Água salgada	13	Declínio	Morfológico	Peso do órgão em relação ao peso do corpo	0.011	Saaristo et al. (2010)
	Pomatoschistus minutus	Água salgada	18	Declínio	Morfológico	Peso do órgão em relação ao peso do corpo	0.011	Saaristo et al. (2010)
	Pomatoschistus minutus	Água salgada	23	Declínio	Morfológico	Peso do órgão em relação ao peso do corpo	0.011	Saaristo et al. (2010)
	Pomatoschistus minutus	Água salgada	28	Declínio	Morfológico	Peso do órgão em relação ao peso do corpo	0.011	Saaristo et al. (2010)
	Pomatoschistus minutus	Água salgada	8	Declínio	Morfológico	Peso do órgão em relação ao peso do corpo	0.011	Saaristo et al. (2010)
	Pomatoschistus minutus	Água salgada	13	Aumento	Genético	RNAm da vitelogenina	0.011	Saaristo et al. (2010)

Tabela Suplementar 4. Efeitos do 17 α-etinilestradiol em animais representantes do primeiro e do segundo níveis tróficos da cadeia alimentar aquática.

Composto/ Nível trófico	Espécies	Meio	Tempo (dias)	Tendência	Efeito	Efeito medido	CEO (µg L ⁻¹)	Referência
Consumidores secundários	Pomatoschistus minutus	Água salgada	13	Aumento	Genético	RNAm zona radiata	0.011	Saaristo et al. (2010)
	Pomatoschistus minutus	Água salgada	18	Declínio	Genético	RNAm zona radiata	0.011	Saaristo et al. (2010)
	Pomatoschistus minutus	Água salgada	18	Aumento	Genético	RNAm da vitelogenina	0.011	Saaristo et al. (2010)
	Pomatoschistus minutus	Água salgada	23	Aumento	Genético	RNAm da vitelogenina	0.011	Saaristo et al. (2010)
	Pomatoschistus minutus	Água salgada	23	Aumento	Genético	RNAm zona radiata	0.011	Saaristo et al. (2010)
	Pomatoschistus minutus	Água salgada	28	Aumento	Genético	RNAm da vitelogenina	0.011	Saaristo et al. (2010)
	Pomatoschistus minutus	Água salgada	28	Aumento	Genético	RNAm zona radiata	0.011	Saaristo et al. (2010)
	Pomatoschistus minutus	Água salgada	8	Aumento	Genético	RNAm da vitelogenina	0.011	Saaristo et al. (2010)
	Pomatoschistus minutus	Água salgada	8	Aumento	Genético	RNAm zona radiata	0.011	Saaristo et al. (2010)
	Pomatoschistus minutus	Água salgada	Não relatado	Declínio	Comportamento	Agressão	0.011	Saaristo et al. (2010)
	Pomatoschistus minutus	Água salgada	Não relatado	Declínio	Comportamento	Agressão	0.011	Saaristo et al. (2010)
	Pomatoschistus minutus	Água salgada	Não relatado	Declínio	Reprodução	Comportamento de corte	0.011	Saaristo et al. (2010)
	Pomatoschistus minutus	Água salgada	Não relatado	Declínio	Reprodução	Comportamento de corte	0.011	Saaristo et al. (2010)
	Pomatoschistus minutus	Água salgada	Não relatado	Declínio	Reprodução	Comportamento de corte	0.011	Saaristo et al. (2010)

Tabela Suplementar 4. Efeitos do 17 α-etinilestradiol em animais representantes do primeiro e do segundo níveis tróficos da cadeia alimentar aquática.

Composto/ Nível trófico	Espécies	Meio	Tempo (dias)	Tendência	Efeito	Efeito medido	CEO (μg L ⁻¹)	Referência
Consumidores secundários	Pomatoschistus minutus	Água salgada	Não relatado	Declínio	Reprodução	Comportamento de corte	0.011	Saaristo et al. (2010)
	Pomatoschistus minutus	Água salgada	Não relatado	Declínio	Reprodução	Iniciação do ninho	0.011	Saaristo et al. (2010)
	Pomatoschistus minutus	Água salgada	Não relatado	Aumento	Reprodução	Iniciação do ninho	0.011	Saaristo et al. (2010)
	Pomatoschistus minutus	Água salgada	Não relatado	Declínio	Reprodução	Comportamento de ligação de nidificação em	0.004	Saaristo et al. (2009)
	Pomatoschistus minutus	Água salgada	Não relatado	Declínio	Reprodução	par Comportamento de ligação de nidificação em par	0.004	Saaristo et al. (2009)
	Pomatoschistus minutus	Água salgada	Não relatado	Declínio	Reprodução	Comportamento de corte	0.004	Saaristo et al. (2009)
	Pomatoschistus minutus	Água salgada	Não relatado	Declínio	Reprodução	Comportamento de corte	0.004	Saaristo et al. (2009)
	Rutilus rutilus	Água doce	18	Declínio	Morfológico	Peso do órgão em relação ao peso do corpo	0.0011	Flores-Valverde et al. (2010)
	Rutilus rutilus	Água doce	18	Declínio	Morfológico	Peso do órgão em relação ao peso do corpo	0.0011	Flores-Valverde et al. (2010)
	Rutilus rutilus	Água doce	94	Aumento	Genético	RNAm do receptor estrogênico alfa	0.0001	Katsu et al. (2007)

Tabela Suplementar 4. Efeitos do 17 α-etinilestradiol em animais representantes do primeiro e do segundo níveis tróficos da cadeia alimentar aquática.

Composto/ Nível trófico	Espécies	Meio	Tempo (dias)	Tendência	Efeito	Efeito medido	CEO (µg L ⁻¹)	Referência
Consumidores secundários	Rutilus rutilus	Água doce	122	Declínio	Genético	RNAm CYP19A1	0.004	Lange et al. (2008)
	Rutilus rutilus	Água doce	122	Declínio	Genético	RNAm do receptor de estrógeno beta	0.004	Lange et al. (2008)
	Rutilus rutilus	Água doce	122	Aumento	Genético	RNAm Cyp1b1	0.0003	Lange et al. (2008)
	Rutilus rutilus	Água doce	38	Aumento	Genético	RNAm Cyp1b1	0.004	Lange et al. (2008)
	Rutilus rutilus	Água doce	38	Aumento	Genético	RNAm do receptor estrogênico alfa	0.0003	Lange et al. (2008)
	Rutilus rutilus	Água doce	38	Aumento	Genético	RNAm do receptor de estrógeno beta	0.0003	Lange et al. (2008)
	Rutilus rutilus	Água doce	66	Aumento	Genético	RNAm CYP19A1	0.0003	Lange et al. (2008)
	Rutilus rutilus	Água doce	66	Aumento	Genético	RNAm Cyp1b1	0.0003	Lange et al. (2008)
	Rutilus rutilus	Água doce	66	Aumento	Genético	RNAm do receptor estrogênico alfa	0.0003	Lange et al. (2008)
	Rutilus rutilus	Água doce	66	Aumento	Genético	RNAm do receptor de estrógeno beta	0.0003	Lange et al. (2008)
	Rutilus rutilus	Água doce	94	Aumento	Genético	RNAm Cyp1b1	0.004	Lange et al. (2008)
	Rutilus rutilus	Água doce	7	Aumento	Genético	RNAm da vitelogenina	0.003	Lange et al. (2012)

Tabela Suplementar 4. Efeitos do 17 α-etinilestradiol em animais representantes do primeiro e do segundo níveis tróficos da cadeia alimentar aquática.

Composto/ Nível trófico	Espécies	Meio	Tempo (dias)	Tendência	Efeito	Efeito medido	CEO (μg L ⁻¹)	Referência
Consumidores secundários	Rutilus rutilus	Água doce	720	Alteração	População	Proporção sexual	0.0003	Lange et al. (2009)
	Rutilus rutilus	Água doce	120	Aumento	Bioquímico	Vitelogenina	0.004	Lange et al. (2009)
	Rutilus rutilus	Água doce	518	Aumento	Bioquímico	Vitelogenina	0.004	Lange et al. (2009)
	Rutilus rutilus	Água doce	94	Aumento	Genético	RNAm do receptor estrogênico alfa	0.0001	Katsu et al. (2007)
	Rutilus rutilus	Água doce	94	Aumento	Genético	RNAm do receptor de estrógeno beta	0.0003	Katsu et al. (2007)
	Rutilus rutilus	Água doce	122	Declínio	Genético	RNAm do receptor de estrógeno beta	0.004	Lange et al. (2008)
	Rutilus rutilus	Água doce	122	Aumento	Genético	RNAm Cyp1b1	0.004	Lange et al. (2008)
	Rutilus rutilus	Água doce	122	Aumento	Genético	RNAm do receptor estrogênico alfa	0.004	Lange et al. (2008)
	Rutilus rutilus	Água doce	38	Aumento	Genético	RNAm Cyp1b1	0.004	Lange et al. (2008)
	Rutilus rutilus	Água doce	38	Aumento	Genético	RNAm do receptor estrogênico alfa	0.004	Lange et al. (2008)
	Rutilus rutilus	Água doce	66	Aumento	Genético	RNAm CYP19A1	0.0003	Lange et al. (2008)
	Rutilus rutilus	Água doce	66	Aumento	Genético	RNAm Cyp1b1	0.0003	Lange et al. (2008)

Tabela Suplementar 4. Efeitos do 17 α-etinilestradiol em animais representantes do primeiro e do segundo níveis tróficos da cadeia alimentar aquática.

Composto/ Nível trófico	Espécies	Meio	Tempo (dias)	Tendência	Efeito	Efeito medido	CEO (μg L ⁻¹)	Referência
Consumidores secundários	Rutilus rutilus	Água doce	66	Aumento	Genético	RNAm do receptor estrogênico alfa	0.0003	Lange et al. (2008)
	Rutilus rutilus	Água doce	66	Aumento	Genético	RNAm do receptor de estrógeno beta	0.0003	Lange et al. (2008)
	Rutilus rutilus	Água doce	94	Aumento	Genético	RNAm do receptor estrogênico alfa	0.004	Lange et al. (2008)
	Rutilus rutilus	Água doce	94	Aumento	Bioquímico	Vitelogenina	0.004	Katsu et al. (2007)
	Rutilus rutilus	Água doce	122	Aumento	Bioquímico	Vitelogenina	0.004	Lange et al. (2008)
	Rutilus rutilus	Água doce	66	Aumento	Bioquímico	Vitelogenina	0.004	Lange et al. (2008)
	Rutilus rutilus	Água doce	94	Aumento	Bioquímico	Vitelogenina	0.004	Lange et al. (2008)
	Syngnathus abaster	Água salgada	40	Alteração	Comportamento	Distância percorrida, mudança no movimento direto	0.00608	Sarria et al. (2011)
	Syngnathus abaster	Água salgada	7	Aumento	Comportamento	Número de movimentos	0.009	Sarria et al. (2011)
	Syngnathus scovelli	Água salgada	10	Aumento	Desenvolvimento	Coloração	0.1	Partridge et al. (2010)
	Syngnathus scovelli	Água salgada	10	Aumento	Crescimento	Tamanho	0.001	Partridge et al. (2010)

Tabela Suplementar 4. Efeitos do 17 α-etinilestradiol em animais representantes do primeiro e do segundo níveis tróficos da cadeia alimentar aquática.

Composto/ Nível trófico	Espécies	Meio	Tempo (dias)	Tendência	Efeito	Efeito medido	CEO (µg L ⁻¹)	Referência
Consumidores secundários	Zoarces viviparus	Água salgada	21	Aumento	Genético	RNAm estrogênico	0.005	Velasco-Santamaria et al. (2010)
	Zoarces viviparus	Água salgada	21	Aumento	Bioquímico	Vitelogenina	0.005	Velasco-Santamaria et al. (2010)
	Zoarces viviparus	Água salgada	21	Aumento	Genético	RNAm da vitelogenina	0.005	Velasco-Santamaria et al. (2010)
	Zoarces viviparus	Água salgada	21	Declínio	Desenvolvimento	Desenvolvimen to sexual	0.005	Velasco-Santamaria et al. (2010)
	Zoarces viviparus	Água salgada	21	Declínio	Morfológico	Peso do órgão em relação ao peso do corpo	0.005	Velasco-Santamaria et al. (2010)
	Zoarces viviparus	Água salgada	21	Declínio	Celular	Diâmetro	0.005	Velasco-Santamaria et al. (2010)
	Zoarces viviparus	Água salgada	21	Declínio	Morfológico	Peso do órgão em relação ao peso do corpo	0.005	Velasco-Santamaria et al. (2010)
	Zoarces viviparus	Água salgada	21	Aumento	Celular	Número de células	0.005	Velasco-Santamaria et al. (2010)
	Catostomus commersoni	Água doce	182.5	Declínio	Morfológico	Peso do órgão em relação ao peso do corpo	0.0061	Palace et al. (2009)
	Catostomus commersoni	Água doce	182.5	Declínio	Bioquímico	Vitelogenina	0.0061	Palace et al. (2009)
	Catostomus commersoni	Água doce	182.5	Aumento	Bioquímico	Vitelogenina	0.0061	Palace et al. (2009)
	Cyprinodon variegatus	Água salgada	7	Aumento	Bioquímico	Vitelogenina	0.832	Bowman et al. (2000)
	Danio rerio	Água doce	121.76	Aumento	Genético	Anormalidade nuclear	0.00385	Micael et al. (2007)

Tabela Suplementar 4. Efeitos do 17 α-etinilestradiol em animais representantes do primeiro e do segundo níveis tróficos da cadeia alimentar aquática.

Composto/ Nível trófico	Espécies	Meio	Tempo (dias)	Tendência	Efeito	Efeito medido	CEO (μg L ⁻¹)	Referência
Consumidores secundários	Danio rerio	Água doce	2	Aumento	Genético	RNAm da vitelogenina	0.03	Biales et al. (2007)
	Danio rerio	Água doce	17	Declínio	Reprodução	Sucesso reprodutivo	0.0106	Coe et al. (2008)
	Danio rerio	Água doce	17	Declínio	Reprodução	Sucesso reprodutivo	0.0106	Coe et al. (2008)
	Danio rerio	Água doce	Não relatado	Aumento	Reprodução	Tempo para desovar	0.0011	Wenzel et al. (2001)
	Danio rerio	Água doce	Não relatado	Declínio	Reprodução	Fertilização	0.0011	Wenzel et al. (2001)
	Danio rerio	Água doce	Não relatado	Declínio	Reprodução	Número de progênies	0.0011	Wenzel et al. (2001)
	Danio rerio	Água doce	Não relatado	Declínio	Reprodução	Número de progênies	0.0011	Wenzel et al. (2001)
	Danio rerio	Água doce	Não relatado	Declínio	Reprodução	Fertilização	0.002	Schafers et al. (2007)
	Danio rerio	Água doce	Não relatado	Declínio	Reprodução	Número de progênies	0.002	Schafers et al. (2007)
	Danio rerio	Água doce	Não relatado	Aumento	Reprodução	Tempo para desovar	0.002	Schafers et al. (2007)
	Danio rerio	Água doce	Não relatado	Aumento	Reprodução	Tempo para desovar	0.002	Schafers et al. (2007)
	Danio rerio	Água doce	Não relatado	Declínio	Reprodução	Fertilização	0.0011	Schafers et al. (2007)
	Danio rerio	Água doce	Não relatado	Declínio	Reprodução	Número de progênies	0.0011	Schafers et al. (2007)

Tabela Suplementar 4. Efeitos do 17 α-etinilestradiol em animais representantes do primeiro e do segundo níveis tróficos da cadeia alimentar aquática.

Composto/ Nível trófico	Espécies	Meio	Tempo (dias)	Tendência	Efeito	Efeito medido	CEO (µg L ⁻¹)	Referência
Consumidores secundários	Danio rerio	Água doce	Não relatado	Aumento	Reprodução	Tempo para desovar	0.0093	Schafers et al. (2007)
	Danio rerio	Água doce	Não relatado	Aumento	Reprodução	Tempo para desovar	0.0093	Schafers et al. (2007)
	Danio rerio	Água doce	252	Declínio	Crescimento	Comprimento	0.0003	Wenzel et al. (2001)
	Danio rerio	Água doce	252	Declínio	Crescimento	Comprimento	0.0003	Wenzel et al. (2001)
	Danio rerio	Agua doce	35	Declínio	Crescimento	Comprimento	0.002	Schafers et al. (2007)
	Danio rerio	Água doce	7	Declínio	Hormonal	Testosterona	0.0264	Andersen et al. (2006)
	Danio rerio	Água doce	75	Declínio	Crescimento	Comprimento	0.00036	Schafers et al. (2007)
	Danio rerio	Agua doce	75	Declínio	Crescimento	Comprimento	0.0011	Schafers et al. (2007)
	Danio rerio	Agua doce	8	Aumento	Bioquímico	Vitelogenina	0.00297	Rose et al. (2002)
	Danio rerio	Água doce	Não relatado	Declínio	Crescimento	Comprimento	0.00036	Schafers et al. (2007)
	Danio rerio	Água doce	Não relatado	Declínio	Crescimento	Comprimento	0.0011	Schafers et al. (2007)
	Danio rerio	Água doce	124	Aumento	Morfológico	Anormal	0.0005	Larsen et al. (2008)
	Danio rerio	Água doce	14	Aumento	Genético	RNAm da vitelogenina	0.005	Reyhanian et al. (2011)
	Danio rerio	Agua doce	21	Aumento	Bioquímico	Vitelogenina	0.0025	Islinger et al. (2003)

Tabela Suplementar 4. Efeitos do 17 α-etinilestradiol em animais representantes do primeiro e do segundo níveis tróficos da cadeia alimentar aquática.

Composto/ Nível trófico	Espécies	Meio	Tempo (dias)	Tendência	Efeito	Efeito medido	CEO (µg L ⁻¹)	Referência
Consumidores secundários	Danio rerio	Água doce	4	Aumento	Bioquímico	Vitelogenina	0.0085	Islinger et al. (2003)
	Danio rerio	Água doce	Não relatado	Aumento	Celular	Sítios receptores de estradiol	0.0025	Islinger et al. (2003)
	Danio rerio	Água doce	124	Declínio	Reprodução	Fertilização	0.00005	Larsen et al. (2008)
	Danio rerio	Água doce	124	Declínio	População	Proporção sexual	0.0005	Larsen et al. (2008)
	Danio rerio	Água doce	124	Aumento	Desenvolvimento	Coloração	0.00005	Larsen et al. (2008)
	Danio rerio	Água doce	14	Declínio	Comportamento	Número de movimentos	0.005	Reyhanian et al. (2011)
	Danio rerio	Água doce	14	Declínio	Comportamento	Número de movimentos	0.005	Reyhanian et al. (2011)
	Danio rerio	Água doce	14	Declínio	Comportamento	Número de movimentos	0.005	Reyhanian et al. (2011)
	Danio rerio	Água doce	14	Declínio	Comportamento	Comportamento de procura, exploração	0.025	Reyhanian et al. (2011)
	Danio rerio	Água doce	14	Declínio	Comportamento	Nadar	0.025	Reyhanian et al. (2011)
	Danio rerio	Água doce	14	Aumento	Comportamento	Número de movimentos	0.005	Reyhanian et al. (2011)
	Danio rerio	Água doce	16	Aumento	Reprodução	Fertilização	0.005	Reyhanian et al. (2011)
	Danio rerio	Água doce	28	Declínio	Genético	RNAm dmrt1	0.0005	Schulz et al. (2007)

Tabela Suplementar 4. Efeitos do 17 α-etinilestradiol em animais representantes do primeiro e do segundo níveis tróficos da cadeia alimentar aquática.

Composto/ Nível trófico	Espécies	Meio	Tempo (dias)	Tendência	Efeito	Efeito medido	CEO (μg L ⁻¹)	Referência
Consumidores secundários	Danio rerio	Água doce	28	Aumento	Genético	RNAm amh	0.005	Schulz et al. (2007)
	Danio rerio	Água doce	56	Aumento	Genético	RNAm amh	0.0005	Schulz et al. (2007)
	Danio rerio	Água doce	56	Aumento	Genético	RNAm dmrt1	0.00005	Schulz et al. (2007)
	Danio rerio	Água doce	124	Aumento	Morfológico	Alterações no sexo	0.00005	Schulz et al. (2008)
	Danio rerio	Água doce	28	Aumento	Bioquímico	Vitelogenina	0.005	Schulz et al. (2007)
	Danio rerio	Água doce	56	Declínio	Crescimento	Peso	0.005	Schulz et al. (2007)
	Danio rerio	Água doce	56	Aumento	Bioquímico	Vitelogenina	0.005	Schulz et al. (2007)
	Danio rerio	Água doce	40	Declínio	Hormonal	11- Ketotestosteron a	0.0005	Nash et al. (2004)
	Danio rerio	Água doce	124	Declínio	Reprodução	Comportamento de corte	0.00558	Larsen et al. (2008)
	Danio rerio	Água doce	Não relatado	Declínio	Reprodução	Número de progênies	0.05	Nash et al. (2004)
	Danio rerio	Água doce	Não relatado	Declínio	Reprodução	Fecundidade	0.0045	Nash et al. (2004)
	Danio rerio	Água doce	Não relatado	Declínio	Reprodução	Número de progênies	0.0045	Nash et al. (2004)
	Danio rerio	Água doce	Não relatado	Declínio	Reprodução	Fecundidade	0.0045	Nash et al. (2004)

Tabela Suplementar 4. Efeitos do 17 α-etinilestradiol em animais representantes do primeiro e do segundo níveis tróficos da cadeia alimentar aquática.

Composto/ Nível trófico	Espécies	Meio	Tempo (dias)	Tendência	Efeito	Efeito medido	CEO (µg L ⁻¹)	Referência
Consumidores secundários	Danio rerio	Água doce	Não relatado	Declínio	Reprodução	Viabilidade	0.0005	Nash et al. (2004)
	Danio rerio	Água doce	21	Declínio	Morfológico	Peso do órgão em relação ao peso do corpo	0.1	Silva et al. (2012)
	Danio rerio	Água doce	21	Declínio	Morfológico	Peso do órgão em relação ao peso do corpo	0.1	Silva et al. (2012)
	Danio rerio	Água doce	21	Declínio	Morfológico	Peso	0.1	Silva et al. (2012)
	Danio rerio	Água doce	21	Declínio	Morfológico	Peso	0.1	Silva et al. (2012)
	Danio rerio	Água doce	40	Aumento	População	Proporção sexual	0.0116	Holbech et al. (200
	Danio rerio	Água doce	40	Aumento	População	Proporção sexual	0.0062	Holbech et al. (200
	Danio rerio	Água doce	40	Aumento	População	Proporção sexual	0.0006	Orn et al. (2003)
	Danio rerio	Água doce	7	Aumento	Genético	RNAm da vitelogenina	0.0092	Lange et al. (2012)
	Danio rerio	Água doce	21	Declínio	Reprodução	Contagem de células germinativas	0.1	Silva et al. (2012)
	Danio rerio	Água doce	21	Declínio	Reprodução	Contagem de células germinativas	0.1	Silva et al. (2012)
	Danio rerio	Água doce	21	Declínio	Reprodução	Contagem de células germinativas	0.1	Silva et al. (2012)

Tabela Suplementar 4. Efeitos do 17 α-etinilestradiol em animais representantes do primeiro e do segundo níveis tróficos da cadeia alimentar aquática.

Composto/ Nível trófico	Espécies	Meio	Tempo (dias)	Tendência	Efeito	Efeito medido	CEO (µg L ⁻¹)	Referência
Consumidores secundários	Danio rerio	Água doce	21	Declínio	Reprodução	Contagem de células germinativas	0.1	Silva et al. (2012)
	Danio rerio	Água doce	21	Declínio	Reprodução	Contagem de células germinativas	0.1	Silva et al. (2012)
	Danio rerio	Água doce	21	Declínio	Reprodução	Contagem de células germinativas	0.1	Silva et al. (2012)
	Danio rerio	Água doce	21	Declínio	Reprodução	Contagem de células germinativas	0.1	Silva et al. (2012)
	Danio rerio	Água doce	21	Declínio	Reprodução	Contagem de células germinativas	0.1	Silva et al. (2012)
	Danio rerio	Água doce	21	Declínio	Reprodução	Contagem de células germinativas	0.1	Silva et al. (2012)
	Danio rerio	Água doce	21	Declínio	Reprodução	Contagem de células germinativas	0.1	Silva et al. (2012)
	Danio rerio	Água doce	21	Declínio	Reprodução	Contagem de células germinativas	0.1	Silva et al. (2012)
	Danio rerio	Água doce	21	Declínio	Reprodução	Contagem de células germinativas	0.1	Silva et al. (2012)

Tabela Suplementar 4. Efeitos do 17 α-etinilestradiol em animais representantes do primeiro e do segundo níveis tróficos da cadeia alimentar aquática.

Composto/ Nível trófico	Espécies	Meio	Tempo (dias)	Tendência	Efeito	Efeito medido	CEO (µg L ⁻¹)	Referência
Consumidores secundários	Danio rerio	Água doce	21	Declínio	Reprodução	Contagem de células germinativas	0.1	Silva et al. (2012)
	Danio rerio	Água doce	21	Declínio	Reprodução	Contagem de células germinativas	0.1	Silva et al. (2012)
	Danio rerio	Água doce	21	Aumento	Reprodução	Contagem de células germinativas	0.1	Silva et al. (2012)
	Danio rerio	Água doce	3	Declínio	Comportamento	Agressão	0.0058	Colman et al. (2009)
	Danio rerio	Água doce	3	Declínio	Comportamento	Mordida	0.0058	Colman et al. (2009)
	Danio rerio	Água doce	3	Aumento	Comportamento	Agressão	0.0058	Colman et al. (2009)
	Danio rerio	Água doce	21	Declínio	Morfológico	Volume	0.1	Silva et al. (2012)
	Danio rerio	Água doce	21	Aumento	Histologia	Espaço extracelular	0.1	Silva et al. (2012)
	Danio rerio	Água doce	21	Declínio	Morfológico	Volume	0.1	Silva et al. (2012)
	Danio rerio	Água doce	21	Aumento	Histologia	Espaço extracelular	0.1	Silva et al. (2012)
	Danio rerio	Água doce	21	Aumento	Histologia	Espaço extracelular	0.1	Silva et al. (2012)
	Danio rerio	Água doce	18	Aumento	Bioquímico	Vitelogenina	0.0062	Holbech et al. (2006)
	Danio rerio	Água doce	18	Aumento	Bioquímico	Vitelogenina	0.0116	Holbech et al. (2006)

Tabela Suplementar 4. Efeitos do 17 α-etinilestradiol em animais representantes do primeiro e do segundo níveis tróficos da cadeia alimentar aquática.

Composto/ Nível trófico	Espécies	Meio	Tempo (dias)	Tendência	Efeito	Efeito medido	CEO (µg L ⁻¹)	Referência
Consumidores secundários	Danio rerio	Água doce	21	Declínio	Crescimento	Peso	0.1	Silva et al. (2012)
	Danio rerio	Água doce	21	Declínio	Crescimento	Peso	0.1	Silva et al. (2012)
	Danio rerio	Água doce	10	Aumento	Genético	Expressão gênica	5	Ortiz-Zarragoitia et al. (2006)
	Danio rerio	Água doce	35	Aumento	Genético	Expressão gênica	5	Ortiz-Zarragoitia et al. (2006)
	Danio rerio	Água doce	4	Aumento	Genético	Expressão gênica	5	Ortiz-Zarragoitia et al. (2006)
	Danio rerio	Água doce	240	Declínio	Reprodução	Viabilidade	0.001	Lin e Janz (2006)
	Danio rerio	Água doce	10	Declínio	Celular	Área	0.03	Vosges et al. (2010)
	Danio rerio	Água doce	10	Declínio	Celular	Área	0.03	Vosges et al. (2010)
	Danio rerio	Água doce	10	Aumento	Celular	Densidade	0.15	Vosges et al. (2010)
	Danio rerio	Água doce	10	Aumento	Celular	Número de células	0.03	Vosges et al. (2010)
	Danio rerio	Água doce	5	Declínio	Celular	Área	0.03	Vosges et al. (2010)
	Danio rerio	Água doce	5	Aumento	Celular	Densidade	0.15	Vosges et al. (2010)
	Danio rerio	Água doce	5	Aumento	Celular	Número de células	0.03	Vosges et al. (2010)
	Danio rerio	Água doce	5	Aumento	Celular	Número de células	0,15	Vosges et al. (2012)

Tabela Suplementar 4. Efeitos do 17 α-etinilestradiol em animais representantes do primeiro e do segundo níveis tróficos da cadeia alimentar aquática.

Composto/ Nível trófico	Espécies	Meio	Tempo (dias)	Tendência	Efeito	Efeito medido	CEO (µg L ⁻¹)	Referência
Consumidores secundários	Danio rerio	Água doce	7	Aumento	Celular	Número de células	0,15	Vosges et al. (2012)
	Danio rerio	Agua doce	88	Aumento	Histologia	Edema	0.002	Xu et al. (2008)
	Danio rerio	Água doce	58	Aumento	Celular	Picnose	0.01	Weber et al. (2003)
	Danio rerio	Água doce	58	Aumento	Histologia	Degeneração	0.01	Weber et al. (2003)
	Danio rerio	Água doce	58	Aumento	Histologia	Dilatação	0.01	Weber et al. (2003)
	Danio rerio	Água doce	14	Declínio	Genético	Metilação do DNA	0.1	Stromqvist et al. (2010)
	Danio rerio	Água doce	14	Declínio	Genético	Metilação do DNA	0.1	Stromqvist et al. (2010)
	Danio rerio	Água doce	14	Declínio	Genético	Metilação do DNA	0.1	Stromqvist et al. (2010)
	Danio rerio	Água doce	14	Declínio	Genético	Metilação do DNA	0.1	Stromqvist et al. (2010)
	Danio rerio	Água doce	14	Declínio	Genético	Metilação do DNA	0.1	Stromqvist et al. (2010)
	Danio rerio	Água doce	21	Declínio	Genético	RNAm apolipoproteína A1	0.01	Martyniuk et al. (2007)
	Danio rerio	Água doce	21	Declínio	Genético	RNAm da ATPase Na+/K+ alpha 1a.4	0.01	Martyniuk et al. (2007)
	Danio rerio	Água doce	21	Aumento	Genético	RNAm Cyp2K	0.01	Martyniuk et al. (2007)

Tabela Suplementar 4. Efeitos do 17 α-etinilestradiol em animais representantes do primeiro e do segundo níveis tróficos da cadeia alimentar aquática.

Composto/ Nível trófico	Espécies	Meio	Tempo (dias)	Tendência	Efeito	Efeito medido	CEO (µg L ⁻¹)	Referência
Consumidores secundários	Danio rerio	Água doce	21	Aumento	Genético	RNAm do receptor estrogênico alfa	0.01	Martyniuk et al. (2007)
500 3.1344.1 05	Danio rerio	Água doce	21	Aumento	Genético	RNAm da vitelogenina 1 RNAm da	0.01	Martyniuk et al. (2007)
	Danio rerio	Água doce	21	Aumento	Genético	isoforma 3 da vitelogenina	0.01	Martyniuk et al. (2007)
	Danio rerio	Água doce	35	Aumento	Celular	Densidade	5	Ortiz-Zarragoitia et al. (2006)
	Danio rerio	Água doce	35	Aumento	Celular	Volume	5	Ortiz-Zarragoitia et al. (2006)
	Danio rerio	Água doce	58	Declínio	Celular	Picnose	0.01	Weber et al. (2003)
	Danio rerio	Água doce	7	Declínio	Genético	RNAm Cyp1A1	0.001	Notch et al. (2007)
	Danio rerio	Água doce	7	Declínio	Genético	RNAm Cyp1A1	0.1	Notch et al. (2007)
	Danio rerio	Água doce	7	Declínio	Genético	RNAm XPA	0.01	Notch et al. (2007)
	Danio rerio	Água doce	7	Declínio	Genético	RNAm XPC	0.001	Notch et al. (2007)
	Danio rerio	Água doce	7	Declínio	Genético	RNAm XPC	0.01	Notch et al. (2007)
	Danio rerio	Água doce	7	Declínio	Genético	RNAm XPD	0.01	Notch et al. (2007)
	Danio rerio	Água doce	7	Aumento	Celular	Área	10	Ortiz-Zarragoitia e Cajaraville (2005)

Tabela Suplementar 4. Efeitos do 17 α-etinilestradiol em animais representantes do primeiro e do segundo níveis tróficos da cadeia alimentar aquática.

Composto/ Nível trófico	Espécies	Meio	Tempo (dias)	Tendência	Efeito	Efeito medido	CEO (µg L ⁻¹)	Referência
Consumidores secundários	Danio rerio	Água doce	7	Aumento	Celular	Número de células	10	Ortiz-Zarragoitia e Cajaraville (2005)
	Danio rerio	Água doce	7	Aumento	Genético	RNAm da vitelogenina	0.01	Notch et al. (2007)
	Danio rerio	Água doce	7	Aumento	Genético	RNAm da vitelogenina	0.1	Notch et al. (2007)
	Danio rerio	Água doce	7	Aumento	Genético	RNAm XPD	0.001	Notch et al. (2007)
	Danio rerio	Água doce	7	Aumento	Genético	RNAm XPF	0.001	Notch et al. (2007)
	Danio rerio	Água doce	7	Declínio	Genético	Expressão gênica	0.01	Lister et al. (2009)
	Danio rerio	Água doce	240	Aumento	População	Proporção sexual	0.01	Lin e Janz (2006)
	Danio rerio	Água doce	10	Aumento	Genético	Expressão gênica	5	Ortiz-Zarragoitia et al. (2006)
	Danio rerio	Água doce	21	Aumento	Genético	Expressão gênica	5	Ortiz-Zarragoitia et al. (2006)
	Danio rerio	Água doce	21	Aumento	Genético	Expressão gênica	5	Ortiz-Zarragoitia et al. (2006)
	Danio rerio	Água doce	3	Aumento	Genético	Expressão gênica	0,003	Kazeto et al. (2004)
	Danio rerio	Água doce	3	Aumento	Genético	Expressão gênica	0,003	Kazeto et al. (2004)
	Danio rerio	Água doce	35	Aumento	Genético	Expressão gênica	5	Ortiz-Zarragoitia et al. (2006)
	Danio rerio	Água doce	40	Declínio	População	Proporção sexual	0.025	Andersen et al. (2004)

Tabela Suplementar 4. Efeitos do 17 α-etinilestradiol em animais representantes do primeiro e do segundo níveis tróficos da cadeia alimentar aquática.

Composto/ Nível trófico	Espécies	Meio	Tempo (dias)	Tendência	Efeito	Efeito medido	CEO (µg L ⁻¹)	Referência
Consumidores secundários	Danio rerio	Água doce	40	Declínio	Crescimento	Comprimento	0.025	Andersen et al. (2004)
	Danio rerio	Água doce	40	Aumento	Crescimento	Índice de condição	0.025	Andersen et al. (2004)
	Danio rerio	Água doce	5	Aumento	Genético	Expressão gênica	0.025	Muncke et al. (2007)
	Danio rerio	Água doce	6	Aumento	Genético	Expressão gênica	5	Ortiz-Zarragoitia et al. (2006)
	Danio rerio	Água doce	88	Alteração	População	Proporção sexual	0.002	Xu et al. (2008)
	Danio rerio	Água doce	21	Declínio	Genético	Expressão gênica	5	Ortiz-Zarragoitia et al. (2006)
	Danio rerio	Água doce	35	Declínio	Genético	Expressão gênica	5	Ortiz-Zarragoitia et al. (2006)
	Danio rerio	Água doce	7	Declínio	Genético	Expressão gênica	0.01	Lister et al. (2009)
	Danio rerio	Água doce	Não relatado	Declínio	Genético	Expressão gênica	5	Ortiz-Zarragoitia et al. (2006)
	Danio rerio	Água doce	21	Aumento	Bioquímico	Vitelogenina	0.01	Van den Belt et al. (2001)
	Danio rerio	Água doce	21	Aumento	Bioquímico	Vitelogenina	0.00167	Fenske et al. (2001)
	Danio rerio	Água doce	21	Não codificado	Bioquímico	Vitelogenina	0.005	Van den Belt et al. (2003)
	Danio rerio	Água doce	240	Declínio	Desenvolvimento	Estágio	0.01	Lin e Janz (2006)
	Danio rerio	Água doce	58	Declínio	Desenvolvimento	Estágio	0.01	Hill e Janz (2003)

Tabela Suplementar 4. Efeitos do 17 α-etinilestradiol em animais representantes do primeiro e do segundo níveis tróficos da cadeia alimentar aquática.

Composto/ Nível trófico	Espécies	Meio	Tempo (dias)	Tendência	Efeito	Efeito medido	CEO (µg L ⁻¹)	Referência
Consumidores secundários	Danio rerio	Água doce	240	Declínio	Morfológico	Peso do órgão em relação ao peso do corpo	0.01	Lin e Janz (2006)
	Danio rerio	Água doce	15	Aumento	Celular	Área	10	Ortiz-Zarragoitia e Cajaraville (2005)
	Danio rerio	Água doce	58	Declínio	Celular	Diâmetro	0.01	Weber et al. (2003)
	Danio rerio	Água doce	58	Aumento	Histologia	Fibrose	0.001	Weber et al. (2003)
	Danio rerio	Água doce	15	Aumento	Bioquímico	Vitelogenina	10	Ortiz-Zarragoitia e Cajaraville (2005)
	Danio rerio	Água doce	7	Declínio	Enzimático	Catalase	10	Ortiz-Zarragoitia e Cajaraville (2005)
	Danio rerio	Água doce	7	Aumento	Enzimático	Acil-CoA oxidase	10	Ortiz-Zarragoitia e Cajaraville (2005)
	Danio rerio	Água doce	18	Aumento	Bioquímico	Vitelogenina	0.025	Andersen et al. (2004)
	Danio rerio	Água doce	3	Declínio	Genético	RNAm P450 aromB	29,64	Kazeto et al. (2004)
	Danio rerio	Água doce	3	Declínio	Genético	RNAm P450 aromB	29,64	Kazeto et al. (2004)
	Danio rerio	Água doce	3	Aumento	Genético	RNAm P450 aromB	0,00029	Kazeto et al. (2004)
	Danio rerio	Água doce	35	Aumento	Enzimático	Acil-CoA oxidase	5	Ortiz-Zarragoitia et al. (2006)
	Danio rerio	Água doce	58	Declínio	Crescimento	Comprimento	0.01	Lin e Janz (2006)
	Danio rerio	Água doce	58	Declínio	Crescimento	Peso	0.01	Lin e Janz (2006)

Tabela Suplementar 4. Efeitos do 17 α-etinilestradiol em animais representantes do primeiro e do segundo níveis tróficos da cadeia alimentar aquática.

Composto/ Nível trófico	Espécies	Meio	Tempo (dias)	Tendência	Efeito	Efeito medido	CEO (μg L ⁻¹)	Referência
Consumidores secundários	Danio rerio	Água doce	7	Não codificado	Bioquímico	Vitelogenina	0.004	Liao et al. (2006)
	Danio rerio	Água doce	88	Declínio	Crescimento	Índice de condição	0.01	Xu et al. (2008)
	Danio rerio	Água doce	88	Declínio	Crescimento	Comprimento	0.01	Xu et al. (2008)
	Danio rerio	Água doce	88	Declínio	Crescimento	Peso	0.01	Xu et al. (2008)
	Danio rerio	Água doce	3	Declínio	Comportamento	BITE	0.0005	Colman et al. (2009)
	Dicentrarchus labrax	Água salgada	14	Aumento	Bioquímico	Vitelogenina	0.0149	Correia et al. (2007)
	Oryzias latipes	Água doce	1	Aumento	Genético	RNAm da vitelogenina	0.1	Biales et al. (2007)
	Oryzias latipes	Água doce	21	Aumento	Morfológico	Alterações no sexo	0.0639	Seki et al. (2002)
	Oryzias latipes	Água doce	21	Aumento	Bioquímico	Vitelogenina	0.0639	Seki et al. (2002)
	Oryzias latipes	Água doce	Não relatado	Declínio	Reprodução	Fecundidade	0.488	Seki et al. (2002)
	Oryzias latipes	Não relatado	28	Declínio	Morfológico	Peso do órgão em relação ao peso do corpo	0.216	Hano et al. (2007)
	Oryzias latipes	Não relatado	28	Declínio	Morfológico	Peso do órgão em relação ao peso do corpo	0.522	Hano et al. (2007)
	Oryzias latipes	Não relatado	28	Declínio	Bioquímico	Teor de proteína	0.216	Hano et al. (2007)

Tabela Suplementar 4. Efeitos do 17 α-etinilestradiol em animais representantes do primeiro e do segundo níveis tróficos da cadeia alimentar aquática.

Composto/ Nível trófico	Espécies	Meio	Tempo (dias)	Tendência	Efeito	Efeito medido	CEO (μg L ⁻¹)	Referência
Consumidores secundários	Oryzias latipes	Não relatado	28	Declínio	Bioquímico	Teor de proteína	0.522	Hano et al. (2007)
	Oryzias latipes	Não relatado	28	Aumento	Morfológico	Peso do órgão em relação ao peso do corpo	0.522	Hano et al. (2007)
	Oryzias latipes	Não relatado	28	Declínio	Crescimento	Taxa de crescimento	0.216	Hano et al. (2007)
	Oryzias latipes	Não relatado	28	Declínio	Crescimento	Taxa de crescimento	0.522	Hano et al. (2007)
	Oryzias latipes	Água doce	7	Aumento	Genético	RNAm da vitelogenina	0.0092	Lange et al. (2012)
	Oryzias latipes	Água doce	Não relatado	Aumento	Morfológico	Alterações no sexo	0.00003	Metcalfe et al. (2001)
	Oryzias latipes	Água doce	7	Alteração	Genético	Expressão gênica	0.5	Zhang et al. (2008)
	Oryzias latipes	Água doce	7	Declínio	Genético	Expressão gênica	0.005	Zhang et al. (2008)
	Oryzias latipes	Água doce	7	Aumento	Genético	Expressão gênica	0.5	Zhang et al. (2008)
	Oryzias latipes	Água doce	14	Declínio	Morfológico	Peso do órgão em relação ao peso do corpo	0.5	Tilton et al. (2005)
	Oryzias latipes	Água doce	21	Declínio	Morfológico	Peso do órgão em relação ao peso do corpo	0.05	Ma et al. (2007)
	Oryzias latipes	Água doce	7	Declínio	Genético	Expressão gênica	0.5	Zhang et al. (2008)
	Oryzias latipes	Água doce	7	Declínio	Genético	Expressão gênica	0.5	Zhang et al. (2008)

Tabela Suplementar 4. Efeitos do 17 α-etinilestradiol em animais representantes do primeiro e do segundo níveis tróficos da cadeia alimentar aquática.

Composto/ Nível trófico	Espécies	Meio	Tempo (dias)	Tendência	Efeito	Efeito medido	CEO (μg L ⁻¹)	Referência
Consumidores secundários	Oryzias latipes	Água doce	14	Aumento	Bioquímico	Proteína receptora de estrógeno	0.5	Tilton et al. (2005)
	Oryzias latipes	Água doce	14	Aumento	Bioquímico	Proteína receptora de estrógeno	0.5	Tilton et al. (2005)
	Oryzias latipes	Água doce	21	Aumento	Morfológico	Peso do órgão em relação ao peso do corpo	0.002	Ma et al. (2007)
	Oryzias latipes	Água doce	21	Aumento	Morfológico	Peso do órgão em relação ao peso do corpo	0.05	Ma et al. (2007)
	Oryzias latipes	Água doce	7	Aumento	Genético	Expressão gênica	0.025	Islinger et al. (2002)
	Oryzias latipes	Água doce	7	Alteração	Genético	Expressão gênica	0.05	Zhang et al. (2008)
	Oryzias latipes	Água doce	7	Alteração	Genético	Expressão gênica	0.5	Zhang et al. (2008)
	Oryzias latipes	Água doce	7	Aumento	Bioquímico	Ácidos nucléicos	0.5	Park et. (2009)
	Oryzias latipes	Água doce	7	Aumento	Genético	RNAm da vitelogenina isoforma 2	0.005	Park et. (2009)
	Oryzias latipes	Água doce	7	Aumento	Morfológico	Peso do órgão em relação ao peso do corpo	0.005	Park et. (2009)
	Oryzias latipes	Água doce	14	Declínio	Reprodução	Fertilização	0.5	Tilton et al. (2005)

Tabela Suplementar 4. Efeitos do 17 α-etinilestradiol em animais representantes do primeiro e do segundo níveis tróficos da cadeia alimentar aquática.

Composto/ Nível trófico	Espécies	Meio	Tempo (dias)	Tendência	Efeito	Efeito medido	CEO (µg L ⁻¹)	Referência
Consumidores secundários	Oryzias latipes	Água doce	14	Declínio	Reprodução	Frequência de desova	0.5	Tilton et al. (2005)
	Oryzias latipes	Agua doce	14	Declínio	Enzimático	Aromatase	0.005	Tilton et al. (2005)
	Oryzias latipes	Água doce	14	Declínio	Hormonal	Testosterona	0.5	Tilton et al. (2005)
	Oryzias latipes	Água doce	14	Aumento	Hormonal	17-beta estradiol	0.0002	Tilton et al. (2005)
	Oryzias latipes	Agua doce	14	Aumento	Bioquímico	Vitelogenina	0.5	Tilton et al. (2005)
	Oryzias latipes	Água doce	14	Aumento	Bioquímico	Vitelogenina	0.5	Tilton et al. (2005)
	Oryzias latipes	Água doce	14	Aumento	Hormonal	17-beta estradiol	0.005	Tilton et al. (2005)
	Oryzias latipes	Agua doce	21	Aumento	Bioquímico	Vitelogenina	0.002	Ma et al. (2007)
	Oryzias latipes	Água doce	21	Aumento	Bioquímico	Vitelogenina	0.06	Hashimoto et al. (2009)
	Oryzias latipes	Água doce	21	Aumento	Bioquímico	Vitelogenina	0.06	Hashimoto et al. (2009)
	Oryzias latipes	Água doce	14	Aumento	Hormonal	Testosterona	0.005	Tilton et al. (2005)
	Oryzias latipes	Água doce	1	Não codificado	Bioquímico	Fluorescência	0,1007	Kurauchi et al. (2007)
	Oryzias latipes	Água doce	1	Aumento	Bioquímico	Vitelogenina	0.1	Kashiwada et al. (2007)
	Pimephales promelas	Água doce	182.5	Alteração	Morfológico	Peso do órgão em relação ao peso do corpo	0.0061	Palace et al. (2009)

Tabela Suplementar 4. Efeitos do 17 α-etinilestradiol em animais representantes do primeiro e do segundo níveis tróficos da cadeia alimentar aquática.

Composto/ Nível trófico	Espécies	Meio	Tempo (dias)	Tendência	Efeito	Efeito medido	CEO (µg L ⁻¹)	Referência
Consumidores secundários	Pimephales promelas	Água doce	182.5	Aumento	Morfológico	Peso do órgão em relação ao peso do corpo	0.0061	Palace et al. (2009)
	Pimephales promelas	Água doce	365	Alteração	Morfológico	Diâmetro dos túbulos seminíforos	0.0061	Palace et al. (2009)
	Pimephales promelas	Água doce	365	Alteração	Reprodução	Espermatogônia	0.0061	Palace et al. (2009)
	Pimephales promelas	Água doce	21	Declínio	Desenvolvimento	Formação de órgãos/tecidos	0.011933	Filby et al. (2007)
	Pimephales promelas	Água doce	4	Declínio	Morfológico	Peso do órgão em relação ao peso do corpo	0.083	Ekman et al. (2008)
	Pimephales promelas	Água doce	8	Declínio	Morfológico	Peso do órgão em relação ao peso do corpo	0.083	Ekman et al. (2008)
	Pimephales promelas	Água doce	172	Aumento	Morfológico	Alterações no sexo	0.0028	Lange et al. (2001)
	Pimephales promelas	Água doce	21	Aumento	Genético	Dano	0.011933	Filby et al. (2007)
	Pimephales promelas	Água doce	21	Aumento	Genético	Expressão gênica	0.011933	Filby et al. (2007)
	Pimephales promelas	Água doce	21	Alteração	Genético	Expressão gênica	0.0106	Filby et al. (2007)
	Pimephales promelas	Água doce	21	Alteração	Genético	Expressão gênica	0.0106	Filby et al. (2007)
	Pimephales promelas	Água doce	56	Aumento	Morfológico	Alterações no sexo	0.0028	Lange et al. (2001)

Tabela Suplementar 4. Efeitos do 17 α-etinilestradiol em animais representantes do primeiro e do segundo níveis tróficos da cadeia alimentar aquática.

Composto/ Nível trófico	Espécies	Meio	Tempo (dias)	Tendência	Efeito	Efeito medido	CEO (µg L ⁻¹)	Referência
Consumidores	Pimephales	Água	1	Declínio	Bioquímico	Glicina betaína	0.007	Ekman et al. (2008)
secundários	promelas	doce	1	Decimo	Dioquillico	Offerna octama	0.007	Ekman et al. (2000)
	Pimephales	Água	1	Declínio	Bioquímico	Glicogênio	0.007	Ekman et al. (2008)
	promelas	doce	1	Decimio	Dioquillico	Gileogenio	0.007	Ekman et al. (2000)
	Pimephales	Água	1	Aumento	Bioquímico	Alanina	0.007	Ekman et al. (2008)
	promelas	doce	1	Tumento	Dioquillico	7 Humma	0.007	Ekman et al. (2000)
	Pimephales	Água	1	Aumento	Bioquímico	Glutamato	0.083	Ekman et al. (2008)
	promelas	doce	1	Tumento	Dioquillico	Giutumuto	0.003	Ekinaii et al. (2000)
	Pimephales	Água	1	Aumento	Bioquímico	Lactato	0.083	Ekman et al. (2008)
	promelas	doce	-	1 1011101100	210400000		0.000	
	Pimephales	Água	10	Aumento	Genético	RNAm da	0.00347	Brodeur et al. (2005)
	promelas	doce				vitelogenina		
	Pimephales	Água	14	Aumento	Genético	RNAm da	0.00347	Brodeur et al. (2005)
	promelas	doce				vitelogenina		
	Pimephales	Água	21	D 1/ 1	F ' 4'	7-	0.011022	E'II (2007)
	promelas	doce	21	Declínio	Enzimático	Ethoxyresorufin	0.011933	Filby et al. (2007)
	•	Á				O-deethylase		
	Pimephales	Água	21	Declínio	Genético	Expressão	0.011933	Filby et al. (2007)
	promelas	doce				gênica		•
	Pimephales	Água	21	Declínio	Genético	Expressão	0.011933	Filby et al. (2007)
	promelas	doce				gênica		•
	Pimephales	Água	21	Declínio	Genético	Expressão	0.011933	Filby et al. (2007)
	promelas	doce				gênica		
	Pimephales	Água	21	Aumento	Genético	Expressão	0.011933	Filby et al. (2007)
	promelas Pimanhalas	doce				gênica		
	Pimephales	Agua	21	Aumento	Genético	Expressão	0.011933	Filby et al. (2007)
	promelas Pimanhalas	doce Água				gênica		
	Pimephales	Agua	21	Alteração	Genético	Expressão	0.0106	Filby et al. (2007)
	promelas	doce				gênica		

Tabela Suplementar 4. Efeitos do 17 α-etinilestradiol em animais representantes do primeiro e do segundo níveis tróficos da cadeia alimentar aquática.

Composto/ Nível trófico	Espécies	Meio	Tempo (dias)	Tendência	Efeito	Efeito medido	CEO (µg L ⁻¹)	Referência
Consumidores secundários	Pimephales promelas	Água doce	21	Alteração	Genético	Expressão gênica	0.0106	Filby et al. (2007)
	Pimephales promelas	Agua doce	4	Declínio	Bioquímico	Colesterol	0.083	Ekman et al. (2009)
	Pimephales promelas	Água doce	4	Declínio	Bioquímico	Glicina betaína	0.083	Ekman et al. (2008)
	Pimephales promelas	Água doce	4	Declínio	Bioquímico	Glicose	0.007	Ekman et al. (2008)
	Pimephales promelas	Água doce	4	Declínio	Bioquímico	Glicogênio	0.007	Ekman et al. (2008)
	Pimephales promelas	Água doce	4	Declínio	Bioquímico	Teor de fosfatidilcolina	0.083	Ekman et al. (2008)
	Pimephales promelas	Água doce	4	Aumento	Bioquímico	Alanina	0.007	Ekman et al. (2008)
	Pimephales promelas	Água doce	4	Aumento	Bioquímico	Glutamato	0.007	Ekman et al. (2008)
	Pimephales promelas	Água doce	4	Aumento	Bioquímico	Lactato	0.007	Ekman et al. (2008)
	Pimephales promelas	Água doce	4	Aumento	Bioquímico	Lactato	0.083	Ekman et al. (2008)
	Pimephales promelas	Água doce	4	Aumento	Bioquímico	Teor de fosfatidilcolina	0.083	Ekman et al. (2009)
	Pimephales promelas	Água doce	7	Aumento	Genético	RNAm da vitelogenina	0.00347	Brodeur et al. (2005)
	Pimephales promelas	Água doce	7	Aumento	Genético	RNAm da vitelogenina	0.0029	Lange et al. (2012)
	Pimephales promelas	Água doce	7	Aumento	Genético	RNAm da vitelogenina	0.0029	Lange et al. (2012)

Tabela Suplementar 4. Efeitos do 17 α-etinilestradiol em animais representantes do primeiro e do segundo níveis tróficos da cadeia alimentar aquática.

Composto/ Nível trófico	Espécies	Meio	Tempo (dias)	Tendência	Efeito	Efeito medido	CEO (μg L ⁻¹)	Referência
Consumidores secundários	Pimephales promelas	Água doce	8	Declínio	Bioquímico	Diglicerídeo	0.083	Ekman et al. (2009)
	Pimephales promelas	Água doce	8	Declínio	Bioquímico	Glicina betaína	0.083	Ekman et al. (2008)
	Pimephales promelas	Água doce	8	Declínio	Bioquímico	Glicose	0.007	Ekman et al. (2008)
	Pimephales promelas	Água doce	8	Declínio	Bioquímico	Glicogênio	0.007	Ekman et al. (2008)
	Pimephales promelas	Água doce	8	Declínio	Bioquímico	Triglicerídeos	0.083	Ekman et al. (2009)
	Pimephales promelas	Água doce	8	Aumento	Bioquímico	Alanina	0.007	Ekman et al. (2008)
	Pimephales promelas	Água doce	8	Aumento	Bioquímico	Glutamato	0.007	Ekman et al. (2008)
	Pimephales promelas	Água doce	8	Aumento	Bioquímico	Teor de fosfatidilcolina	0.083	Ekman et al. (2009)
	Pimephales promelas	Água doce	8	Aumento	Bioquímico	Teor de fosfatidilcolina	0.083	Ekman et al. (2009)
	Pimephales promelas	Água doce	301	Declínio	Reprodução	Número de progênies	0.00076	Lange et al. (2001)
	Pimephales promelas	Água doce	21	Declínio	Morfológico	Peso do órgão em relação ao peso do corpo	0.0106	Filby et al. (2007)
	Pimephales promelas	Água doce	1	Aumento	Bioquímico	Vitelogenina	0.083	Ekman et al. (2008)
	Pimephales promelas	Água doce	1	Aumento	Bioquímico	Vitelogenina	0.083	Ekman et al. (2008)
	Pimephales promelas	Água doce	10	Aumento	Bioquímico	Vitelogenina	0.00347	Brodeur et al. (2005)

Tabela Suplementar 4. Efeitos do 17 α-etinilestradiol em animais representantes do primeiro e do segundo níveis tróficos da cadeia alimentar aquática.

Composto/ Nível trófico	Espécies	Meio	Tempo (dias)	Tendência	Efeito	Efeito medido	CEO (µg L ⁻¹)	Referência
Consumidores	Pimephales	Água	114	Aumento	Bioquímico	Vitelogenina	0.012	Bogers et al. (2006)
secundários	promelas	doce		1 10/11/01/0	21040	, 10013 gennum	0.012	208010 00 min (2000)
	Pimephales promelas	Água doce	114	Aumento	Bioquímico	Vitelogenina	0.012	Bogers et al. (2006)
	Pimephales	Água						
	promelas	doce	14	Aumento	Bioquímico	Vitelogenina	0.00347	Brodeur et al. (2005)
	Pimephales	Água	1.4		D:	T7'. 1	0.0016	A 11 (2010)
	promelas	doce	14	Aumento	Bioquímico	Vitelogenina	0.0016	Ankley et al. (2010)
	Pimephales	Água	14	Aumento	Bioquímico	Vitelogenina	0.0078	Ankley et al. (2010)
	promelas	doce	14	Admento	Dioquillico	vitelogelilla	0.0076	Ankiey et al. (2010)
	Pimephales	Água	172	Aumento	Bioquímico	Vitelogenina	0.0121	Lange et al. (2001)
	promelas	doce			1	C		
	Pimephales promelas	Água doce	21	Aumento	Bioquímico	Vitelogenina	0.011933	Filby et al. (2007)
	Pimephales	Água						
	promelas	doce	- / 1	Aumento	Bioquímico	Vitelogenina	0.011933	Filby et al. (2007)
	Pimephales	Água	21		D:	T 7'. 1	0.0106	E'11 (2007)
	promelas	doce	21	Aumento	Bioquímico	Vitelogenina	0.0106	Filby et al. (2007)
	Pimephales	Água	21	Aumento	Bioquímico	Vitelogenina	0.0106	Filby et al. (2007)
	promelas	doce	21	Admento	Dioquillico	vitelogelilla	0.0100	1110y Ct al. (2007)
	Pimephales	Água	4	Declínio	Bioquímico	Colesterol	0.083	Ekman et al. (2009)
	promelas	doce			1			
	Pimephales	Água doce	4	Declínio	Bioquímico	Colesterol	0.083	Ekman et al. (2009)
	promelas Pimephales	Água				Teor de		
	promelas	doce	4	Aumento	Bioquímico	fosfatidilcolina	0.083	Ekman et al. (2009)
	Pimephales	Água	,		D' ('	Teor de	0.002	El (1 (0000)
	promelas	doce	4	Aumento	Bioquímico	fosfatidilcolina	0.083	Ekman et al. (2009)

Tabela Suplementar 4. Efeitos do 17 α-etinilestradiol em animais representantes do primeiro e do segundo níveis tróficos da cadeia alimentar aquática.

Composto/ Nível trófico	Espécies	Meio	Tempo (dias)	Tendência	Efeito	Efeito medido	CEO (μg L ⁻¹)	Referência
Consumidores secundários	Pimephales promelas	Água doce	4	Aumento	Bioquímico	Vitelogenina	0.007	Ekman et al. (2009)
	Pimephales promelas	Água doce	4	Aumento	Bioquímico	Vitelogenina	0.083	Ekman et al. (2009)
	Pimephales Água promelas doce Pimephales Água promelas doce Pimephales Água promelas doce Pimephales Água promelas doce Pimephales Água doce	Água doce	63	Aumento	Bioquímico	Vitelogenina	0.012	Bogers et al. (2006)
		_	7	Aumento	Bioquímico	Vitelogenina	0.00347	Brodeur et al. (2005)
			8	Aumento	Bioquímico	Vitelogenina	0.007	Ekman et al. (2008)
		_	8	Aumento	Bioquímico	Vitelogenina	0.007	Ekman et al. (2008)
	Pimephales promelas	Água doce	21	Declínio	Desenvolvimento	Formação de órgãos/tecidos	0.011933	Filby et al. (2007)
	Pimephales Água promelas doce		21	Declínio	Morfológico	Quantidade	0.011933	Filby et al. (2007)
	Pimephales promelas	Água doce	21	Declínio	Desenvolvimento	Desenvolvimen to sexual	0.0106	Filby et al. (2007)
	Pimephales Água promelas doce	doce	21	Declínio	Morfológico	Peso do órgão em relação ao peso do corpo	0.0106	Filby et al. (2007)
		_	114	Declínio	Crescimento	Peso úmido	0.012	Bogers et al. (2006)
		_	21	Declínio	Crescimento	Índice de condição	0.0106	Filby et al. (2007)
		28	Não relatado	Crescimento	Comprimento	0.0121	Lange et al. (2001)	
	Pimephales promelas	Água doce	301	Declínio	Crescimento	Comprimento	0.00076	Lange et al. (2001)

Tabela Suplementar 4. Efeitos do 17 α-etinilestradiol em animais representantes do primeiro e do segundo níveis tróficos da cadeia alimentar aquática.

Composto/ Nível trófico	Espécies	Meio	Tempo (dias)	Tendência	Efeito	Efeito medido	CEO (μg L ⁻¹)	Referência
Consumidores secundários	Pimephales promelas	Água doce	301	Declínio	Crescimento	Comprimento	0.00076	Lange et al. (2001)
	Pimephales promelas	Água doce	301	Declínio	Crescimento	Peso úmido	0.00076	Lange et al. (2001)
	Pimephales promelas	Água doce	301	Declínio	Crescimento	Peso úmido	0.00076	Lange et al. (2001)
	Pimephales promelas	Água doce	56	Declínio	Crescimento	Comprimento	0.0028	Lange et al. (2001)
	Pimephales promelas Pimephales	Água doce	56	Declínio	Crescimento	Peso úmido	0.0468	Lange et al. (2001)
	Pimephales promelas	Água doce	107	Declínio	Morfológico	Peso do órgão em relação ao peso do corpo	0.01	Panter et al. (2006)
	Pimephales promelas	Água doce	21	Declínio	Genético	Expressão gênica	0.01	Filby e Tyler (2007)
	Pimephales promelas	Água doce	21	Declínio	Genético	Expressão gênica	0.01	Filby e Tyler (2007)
	Pimephales promelas	Água doce	21	Alteração	Genético	Expressão gênica	0.01	Filby e Tyler (2007)
	Pimephales promelas	Água doce	21	Alteração	Genético	Expressão gênica	0.01	Filby e Tyler (2007)
	Pimephales promelas	Água doce	21	Declínio	Genético	Expressão gênica	0.01	Filby e Tyler (2007)
	Pimephales promelas	Água doce	21	Declínio	Genético	Expressão gênica	0.01	Filby e Tyler (2007)
	Pimephales promelas	Água doce	21	Aumento	Genético	Expressão gênica	0.01	Filby e Tyler (2007)
	Pimephales promelas	Água doce	21	Aumento	Genético	Expressão gênica	0.01	Filby e Tyler (2007)

Tabela Suplementar 4. Efeitos do 17 α-etinilestradiol em animais representantes do primeiro e do segundo níveis tróficos da cadeia alimentar aquática.

Composto/ Nível trófico	Espécies	Meio	Tempo (dias)	Tendência	Efeito	Efeito medido	CEO (µg L ⁻¹)	Referência
Consumidores secundários	Pimephales promelas	Água doce	107	Alteração	Desenvolvimento	Desenvolvimen to sexual	0.01	Panter et al. (2006)
	Pimephales promelas	Água doce	107	Declínio	Morfológico	Índice de condição	0.01	Panter et al. (2006)
	Pimephales promelas	Água doce	107	Declínio	População	Proporção sexual	0.01	Panter et al. (2006)
	Pimephales promelas	Água doce	60	Alteração	Desenvolvimento	Desenvolvimen to sexual	0.01	Panter et al. (2006)
	Pimephales promelas	Água doce	60	Declínio	População	Proporção sexual	0.01	Panter et al. (2006)
	Pimephales promelas	Água doce	107	Aumento	Bioquímico	Vitelogenina	0.01	Panter et al. (2006)
	Pimephales promelas	Água doce	14	Aumento	Bioquímico	Vitelogenina	0.01	Panter et al. (2004)
	Pimephales promelas	Água doce	21	Aumento	Bioquímico	Vitelogenina	0.01	Panter et al. (2004)
	Pimephales promelas	Água doce	21	Aumento	Bioquímico	Vitelogenina	0.01	Panter et al. (2004)
	Pimephales promelas	Água doce	21	Aumento	Bioquímico	Vitelogenina	0.01	Panter et al. (2004)
	Pimephales promelas	Água doce	21	Aumento	Bioquímico	Vitelogenina	0.01	Panter et al. (2004)
	Pimephales promelas	Água doce	21	Não codificado	Histologia	Alterações estruturais	0.003	Pawlowski et al. (2004)
	Pimephales promelas	Água doce	21	Não codificado	Reprodução	Fertilização	0.0008	Pawlowski et al. (2004)
	Pimephales promelas	Água doce	21	Não codificado	Crescimento	Índice de condição	0.0078	Pawlowski et al. (2004)

Tabela Suplementar 4. Efeitos do 17 α-etinilestradiol em animais representantes do primeiro e do segundo níveis tróficos da cadeia alimentar aquática.

Composto/ Nível trófico	Espécies	Meio	Tempo (dias)	Tendência	Efeito	Efeito medido	CEO (µg L ⁻¹)	Referência
Consumidores secundários	Pimephales promelas	Água doce	21	Não codificado	Crescimento	Índice de condição	0.1	Pawlowski et al. (2004)
	Pimephales promelas	Água doce	21	Não codificado	Reprodução	Número de progênies	0.0001	Pawlowski et al. (2004)
	Pimephales promelas	Água doce	21	Não codificado	Morfológico	Peso do órgão em relação ao peso do corpo	0.1	Pawlowski et al. (2004)
	Pimephales promelas	Água doce	21	Não codificado	Bioquímico	Vitelogenina	0.0007	Pawlowski et al. (2004)
	Pimephales promelas	Água doce	21	Não codificado	Bioquímico	Vitelogenina	0.001	Pawlowski et al. (2004)
	Pimephales promelas	Água doce	21	Não codificado	Desenvolvimento	Normal	0.0007	Pawlowski et al. (2004)
	Pimephales promelas	Água doce	21	Não codificado	Histologia	Alterações estruturais	0.0007	Pawlowski et al. (2004)
	Pimephales promelas	Água doce	21	Não codificado	Morfológico	Peso do órgão em relação ao peso do corpo	0.0078	Pawlowski et al. (2004)
	Pimephales promelas	Água doce	21	Declínio	Morfológico	Peso do órgão em relação ao peso do corpo	0.01	Salierno e Kane (2009)
	Pimephales promelas	Água doce	15	Declínio	Morfológico	Peso do órgão em relação ao peso do corpo	0.05	Weisbrod et al. (2007)
	Pimephales promelas	Água doce	21	Declínio	Reprodução	Comportamento de corte	0.01	Salierno e Kane (2009)
	Pimephales promelas	Água doce	21	Declínio	Reprodução	Comportamento de corte	0.02	Salierno e Kane (2009)

Tabela Suplementar 4. Efeitos do 17 α-etinilestradiol em animais representantes do primeiro e do segundo níveis tróficos da cadeia alimentar aquática.

Composto/ Nível trófico	Espécies	Meio	Tempo (dias)	Tendência	Efeito	Efeito medido	CEO (µg L ⁻¹)	Referência
Consumidores secundários	Pimephales promelas	Água doce	21	Declínio	Reprodução	Comportamento de corte	0.02	Salierno e Kane (2009)
	Pimephales promelas	Água doce	21	Declínio	Reprodução	Comportamento de corte	0.02	Salierno e Kane (2009)
	Pimephales promelas	Água doce	21	Declínio	Reprodução	Comportamento de corte	0.04	Salierno e Kane (2009)
	Pimephales promelas	Água doce	15	Declínio	Reprodução	Contagem de células germinativas	0.05	Weisbrod et al. (2007)
	Pimephales promelas	Água doce	15	Declínio	Reprodução	Contagem de células germinativas	0.05	Weisbrod et al. (2007)
	Pimephales promelas	Água doce	21	Aumento	Desenvolvimento	Desenvolvimen to sexual	0.04	Salierno e Kane (2009)
	Pimephales promelas	Água doce	15	Aumento	Bioquímico	Vitelogenina	0.05	Weisbrod et al. (2007)
	Pimephales promelas	Água doce	21	Declínio	Hormonal	17-beta estradiol	0.01	Salierno e Kane (2009)
	Pimephales promelas	Água doce	21	Declínio	Hormonal	11- Ketotestosteron a	0.01	Salierno e Kane (2009)
	Pimephales promelas	Água doce	21	Declínio	Hormonal	Testosterona	0.01	Salierno e Kane (2009)
	Pimephales promelas	Água doce	21	Aumento	Bioquímico	Vitelogenina	0.01	Salierno e Kane (2009)
	Pimephales promelas	Água doce	21	Declínio	Desenvolvimento	Desenvolvimen to sexual	0.01	Salierno e Kane (2009)
	Pimephales promelas	Água doce	21	Declínio	Desenvolvimento	Desenvolvimen to sexual	0.01	Salierno e Kane (2009)

Tabela Suplementar 4. Efeitos do 17 α-etinilestradiol em animais representantes do primeiro e do segundo níveis tróficos da cadeia alimentar aquática.

Composto/ Nível trófico	Espécies	Meio	Tempo (dias)	Tendência	Efeito	Efeito medido	CEO (µg L ⁻¹)	Referência
Consumidores secundários	Pimephales promelas	Água doce	21	Declínio	Desenvolvimento	Desenvolvimen to sexual	0.01	Salierno e Kane (2009)
	Pimephales promelas	Água doce	21	Aumento	Desenvolvimento	Desenvolvimen to sexual	0.01	Salierno e Kane (2009)
	Pimephales promelas	Água doce	15	Declínio	Reprodução	espermatócitos	0.05	Weisbrod et al. (2007)
	Pimephales promelas	Água doce	21	Declínio	Reprodução	Espermatogônia	0.02	Salierno e Kane (2009)
	Pimephales promelas	Água doce	Não relatado	Aumento	Desenvolvimento	Deformação	0.1	Warner e Jenkins (2007)
	Pimephales promelas	Água doce	15	Declínio	Crescimento	Índice de condição	0.05	Weisbrod et al. (2007)
	Pimephales promelas	Água doce	15	Declínio	Crescimento	Peso	0.05	Weisbrod et al. (2007)
	Pimephales promelas	Água doce	Não relatado	Declínio	Genético	RNAm do fator de crescimento 1	1	Warner (2006)
	Pimephales promelas	Água doce	Não relatado	Declínio	Crescimento	Peso	0.1	Warner (2006)
	Pimephales promelas	Água doce	2	Alteração	Bioquímico	Teor de proteína RNAm da	0.0054	Martyniuk et al. (2010)
	Pimephales promelas	Água doce	2	Declínio	Genético	proteína associada a microtúbulo	0.0054	Martyniuk et al. (2010)
	Pimephales promelas	Água doce	2	Declínio	Hormonal	17-beta estradiol	0.0054	Martyniuk et al. (2010)

Tabela Suplementar 4. Efeitos do 17 α-etinilestradiol em animais representantes do primeiro e do segundo níveis tróficos da cadeia alimentar aquática.

Composto/ Nível trófico	Espécies	Meio	Tempo (dias)	Tendência	Efeito	Efeito medido	CEO (µg L ⁻¹)	Referência
Consumidores secundários	Pimephales promelas	Água doce	1	Aumento	Genético	RNAm da isoforma 3 da vitelogenina	0.005	Miracle et al. (2006)
	Poecilia reticulata	Água doce	108	Declínio	Desenvolvimento	Coloração	0.2	Nielsen e Baatrup (2006)
	Poecilia reticulata	Água doce	Não relatado	Aumento	Enzimático	Aromatase	0.01	Hallgren e Olsen (2010)
	Poecilia reticulata	Água doce	Não relatado	Aumento	Enzimático	Aromatase	50	Hallgren e Olsen (2010)
	Poecilia reticulata	Água doce	Não relatado	Aumento	Enzimático	Aromatase	50	Hallgren e Olsen (2010)
	Poecilia reticulata	Água doce	Não relatado	Aumento	Morfológico	Peso do órgão em relação ao peso do corpo	50	Hallgren e Olsen (2010)
	Poecilia reticulata	Água doce	112	Declínio	Desenvolvimento	Desenvolvimen to sexual	2	Shenoy (2012)
	Poecilia reticulata	Água doce	112	Declínio	Reprodução	Comportamento de corte	2	Shenoy (2012)
	Salmo trutta	Água doce	21	Aumento	Genético	RNAm do receptor estrogênico alfa	0.00212	Korner et al. (2008)
	Salmo trutta	Água doce	21	Aumento	Genético	RNAm do receptor estrogênico alfa	0.0024	Korner et al. (2008)
	Salmo trutta	Água doce	21	Aumento	Genético	RNAm da vitelogenina	0.00208	Korner et al. (2008)
	Salmo trutta	Água doce	21	Aumento	Genético	RNAm da vitelogenina	0.00212	Korner et al. (2008)

Tabela Suplementar 4. Efeitos do 17 α-etinilestradiol em animais representantes do primeiro e do segundo níveis tróficos da cadeia alimentar aquática.

Composto/ Nível trófico	Espécies	Meio	Tempo (dias)	Tendência	Efeito	Efeito medido	CEO (µg L ⁻¹)	Referência
Consumidores secundários	Salmo trutta	Água doce	21	Aumento	Genético	RNAm da vitelogenina	0.0024	Korner et al. (2008)
	Salmo trutta	Água doce	21	Aumento	Morfológico	Peso do órgão em relação ao peso do corpo	0.00212	Korner et al. (2008)
	Salmo trutta	Água doce	21	Aumento	Morfológico	Peso do órgão em relação ao peso do corpo	0.0024	Korner et al. (2008)
	Salmo trutta	Água doce	Não relatado	Aumento	Bioquímico	Vitelogenina	0.0011	Bjerregaard et al. (2008)
	Salmo trutta	Água doce	Não relatado	Aumento	Bioquímico	Vitelogenina	0.0051	Bjerregaard et al. (2008)
	Salvelinus namaycush	Água doce	182.5	Alteração	Morfológico	Peso do órgão em relação ao peso do corpo	0.0061	Palace et al. (2009)
	Salvelinus namaycush	Água doce	182.5	Aumento	Bioquímico	Vitelogenina	0.0061	Palace et al. (2009)
	Salvelinus namaycush	Água doce	21	Declínio	Bioquímico	Metalotioneína	0.035	Werner et al. (2003)
	Salvelinus namaycush	Água doce	21	Aumento	Bioquímico	Metalotioneína	0.035	Werner et al. (2003)
	Salvelinus namaycush	Água doce	21	Declínio	Bioquímico	Metalotioneína	0.035	Werner et al. (2003)
	Salvelinus namaycush	Água doce	21	Declínio	Bioquímico	Metalotioneína	0.035	Werner et al. (2003)
	Salvelinus namaycush	Água doce	21	Aumento	Morfológico	Peso do órgão em relação ao peso do corpo	0.015	Werner et al. (2003)

Tabela Suplementar 4. Efeitos do 17 α-etinilestradiol em animais representantes do primeiro e do segundo níveis tróficos da cadeia alimentar aquática.

Composto/ Nível trófico	Espécies	Meio	Tempo (dias)	Tendência	Efeito	Efeito medido	CEO (μg L ⁻¹)	Referência
Consumidores secundários	Salvelinus namaycush	Água doce	21	Aumento	Morfológico	Peso do órgão em relação ao peso do corpo	0.035	Werner et al. (2003)
	Salvelinus namaycush	Água doce	21	Declínio	Bioquímico	Metalotioneína	0.035	Werner (2006)
	Cyprinus carpio	Água doce	15	Aumento	Bioquímico	Vitelogenina	5	Ebrahimi (2007)
	Cyprinus carpio	Água doce	30	Aumento	Bioquímico	Vitelogenina	5	Ebrahimi (2007)
	Cyprinus carpio	Água doce	10	Aumento	Bioquímico	Vitelogenina	0.01	Purdom et al. (1994)
	Cyprinus carpio	Água doce	7	Declínio	Genético	RNAm da vitelogenina	0.0017	Lange et al. (2012)
	Gasterosteus aculeatus	Água salgada	21	Não relatado	Bioquímico	Vitelogenina	0.0041	Katsiadaki et al. (2010)
	Gasterosteus aculeatus	Água salgada	4	Não relatado	Genético	RNAm do aldeído desidrogenase família 5,subfamília A1	0.00101	Katsiadaki et al. (2010)
	Gasterosteus aculeatus	Água salgada	4	Não relatado	Genético	RNAm do citocromo P450 2K5	0.00101	Katsiadaki et al. (2010)
	Gasterosteus aculeatus	Água salgada	4	Não relatado	Genético	Clone CDA56- A07, Final 5'RNAm	0.00101	Katsiadaki et al. (2010)
	Gasterosteus aculeatus	Água salgada	4	Não relatado	Genético	RNAm da ciclina B2	0.00101	Katsiadaki et al. (2010)

Tabela Suplementar 4. Efeitos do 17 α-etinilestradiol em animais representantes do primeiro e do segundo níveis tróficos da cadeia alimentar aquática.

Composto/ Nível trófico	Espécies	Meio	Tempo (dias)	Tendência	Efeito	Efeito medido	CEO (μg L ⁻¹)	Referência
Consumidores secundários	Gasterosteus aculeatus	Água salgada	4	Não relatado	Genético	RNAm da proteína coriônica	0.00101	Katsiadaki et al. (2010)
	Gasterosteus aculeatus	Água salgada	4	Não relatado	Genético	Domínio de ligação do factor de alongamento Tu GTP contendo um RNAm	0.00101	Katsiadaki et al. (2010)
	Gasterosteus aculeatus	Água salgada	4	Não relatado	Genético	RNAm da glicogênio fosforilase	0.00101	Katsiadaki et al. (2010)
	Gasterosteus aculeatus	Água salgada	4	Não relatado	Genético	RNA m da Hidroximetilglu taril-CoA sintase	0.00101	Katsiadaki et al. (2010)
	Gasterosteus aculeatus	Água salgada	4	Não relatado	Genético	RNAm da proteína hipotética HMPREF9474_ 04637	0.00101	Katsiadaki et al. (2010)
	Gasterosteus aculeatus	Água salgada	4	Não relatado	Genético	RNAm da proteína MX RNAm do	0.00101	Katsiadaki et al. (2010)
	Gasterosteus aculeatus	Água salgada	4	Não relatado	Genético	NADPH hemoproteina redutase	0.00101	Katsiadaki et al. (2010)
	Gasterosteus aculeatus	Água salgada	4	Não relatado	Genético	RNAm da fosfolipase A2	0.00101	Katsiadaki et al. (2010)

Tabela Suplementar 4. Efeitos do 17 α-etinilestradiol em animais representantes do primeiro e do segundo níveis tróficos da cadeia alimentar aquática.

Composto/ Nível trófico	Espécies	Meio	Tempo (dias)	Tendência	Efeito	Efeito medido	CEO (µg L ⁻¹)	Referência
Consumidores secundários	Gasterosteus aculeatus	Água salgada	4	Não relatado	Genético	RNAm da ligase Prolina tRNA	0.00101	Katsiadaki et al. (2010)
	Gasterosteus aculeatus	Água salgada	4	Não relatado	Genético	RNAm da proteína ribossomal 60S L7	0.00101	Katsiadaki et al. (2010)
	Gasterosteus aculeatus	Água salgada	4	Não relatado	Genético	RNAm talin 1	0.00101	Katsiadaki et al. (2010)
	Gasterosteus aculeatus	Água salgada	4	Não relatado	Genético	RNAm da proteína Bb da zona pelúcida	0.00101	Katsiadaki et al. (2010)
	Gasterosteus aculeatus	Água salgada	4	Declínio	Bioquímico	Vitelogenina	0.01765	Katsiadaki et al. (2010)
	Gasterosteus aculeatus	Não relatado	Não relatado	Alteração	Desenvolvimento	Desenvolvimen to sexual	0.05	Hahlbeck (2004)
	Gasterosteus aculeatus	Não relatado	Não relatado	Alteração	Desenvolvimento	Desenvolvimen to sexual	0.1	Hahlbeck (2004)
	Gasterosteus aculeatus	Não relatado	Não relatado	Não relatado	Bioquímico	Vitelogenina	0.004	Hahlbeck (2004)
	Gasterosteus aculeatus	Não relatado	Não relatado	Não relatado	Bioquímico	Vitelogenina	0.05	Hahlbeck (2004)
	Gasterosteus aculeatus	Não relatado	7	Aumento	Genético	RNAm da vitelogenina	0.0095	Lange et al. (2012)
	Gasterosteus aculeatus	Água salgada	Não relatado	Alteração	Desenvolvimento	Desenvolvimen to sexual	0.05	Hahlbeck et al.(2004)
	Gasterosteus aculeatus	Água salgada	Não relatado	Alteração	Desenvolvimento	Desenvolvimen to sexual	0.05	Hahlbeck et al.(2004)

Tabela Suplementar 4. Efeitos do 17 α-etinilestradiol em animais representantes do primeiro e do segundo níveis tróficos da cadeia alimentar aquática.

Composto/ Nível trófico	Espécies	Meio	Tempo (dias)	Tendência	Efeito	Efeito medido	CEO (μg L ⁻¹)	Referência
Consumidores secundários	Gasterosteus aculeatus	Água salgada	Não relatado	Alteração	Desenvolvimento	Desenvolvimen to sexual	0.05	Hahlbeck et al.(2004)
	Gasterosteus aculeatus	Água salgada	Não relatado	Alteração	Desenvolvimento	Desenvolvimen to sexual	0.05	Hahlbeck et al.(2004)
	Gasterosteus aculeatus	Água salgada	Não relatado	Alteração	Desenvolvimento	Desenvolvimen to sexual	0.05	Hahlbeck et al.(2004)
	Gasterosteus aculeatus	Água salgada	3.2083	Declínio	Comportamento	BITE	0.015	Dzieweczynski et al. (2011)
	Gasterosteus aculeatus	Água salgada	3.2083	Declínio	Comportamento	Nadar	0.015	Dzieweczynski et al. (2011)
	Gasterosteus aculeatus	Água salgada	3.2083	Declínio	Reprodução	Alterações no comportamento reprodutivo	0.015	Dzieweczynski et al. (2011)
	Gasterosteus aculeatus	Água salgada	3.2083	Declínio	Reprodução	Alterações no comportamento reprodutivo	0.015	Dzieweczynski et al. (2011)
	Gasterosteus aculeatus	Água salgada	3.2083	Declínio	Reprodução	Alterações no comportamento reprodutivo	0.015	Dzieweczynski et al. (2011)
	Gasterosteus aculeatus	Água salgada	42	Aumento	Morfológico	Alterações no sexo	0.05	Le Mer et al. (2013)
	Gasterosteus aculeatus	Água salgada	42	Aumento	Morfológico	Alterações no sexo	0.05	Le Mer et al. (2013)
	Gasterosteus aculeatus	Água salgada	Não relatado	Alteração	Morfológico	Alterações no sexo	0.05	Hahlbeck et al.(2004)
	Oncorhynchus mykiss	Água doce	1	Aumento	Genético	RNAm da vitelogenina	0.0025	Biales et al. (2007)

Tabela Suplementar 4. Efeitos do 17 α-etinilestradiol em animais representantes do primeiro e do segundo níveis tróficos da cadeia alimentar aquática.

Composto/ Nível trófico	Espécies	Meio	Tempo (dias)	Tendência	Efeito	Efeito medido	CEO (μg L ⁻¹)	Referência
Consumidores secundários	Oncorhynchus mykiss	Água doce	14	Aumento	Genético	RNAm da alfa proteína de envelope vitelina	0.001	Thomas-Jones et al. (2003)
	Oncorhynchus mykiss	Água doce	14	Aumento	Genético	RNAm da beta proteína de envelope vitelina	0.001	Thomas-Jones et al. (2003)
	Oncorhynchus mykiss	Água doce	14	Aumento	Genético	RNAm da vitelogenina	0.001	Thomas-Jones et al. (2003)
	Oncorhynchus mykiss	Água doce	14	Não codificado	Genético	RNAm da gama proteína de envelope vitelina	0.00021	Thomas-Jones et al. (2003)
	Oncorhynchus mykiss	Água doce	7	Não relatado	Genético	Expressão gênica	0.102	Hook et al. (2008)
	Oncorhynchus mykiss	Água doce	7	Não relatado	Genético	Expressão gênica	0.102	Hook et al. (2008)
	Oncorhynchus mykiss	Água doce	7	Não relatado	Genético	Expressão gênica	0.102	Hook et al. (2008)
	Oncorhynchus mykiss	Água doce	7	Não relatado	Genético	Expressão gênica	0.102	Hook et al. (2008)
	Oncorhynchus mykiss	Água doce	7	Não relatado	Genético	Expressão gênica	0.102	Hook et al. (2008)
	Oncorhynchus mykiss	Água doce	7	Não relatado	Genético	Expressão gênica	0.102	Hook et al. (2008)
	Oncorhynchus mykiss	Água doce	7	Não relatado	Genético	Expressão gênica	0.102	Hook et al. (2008)

Tabela Suplementar 4. Efeitos do 17 α-etinilestradiol em animais representantes do primeiro e do segundo níveis tróficos da cadeia alimentar aquática.

Composto/ Nível trófico	Espécies	Meio	Tempo (dias)	Tendência	Efeito	Efeito medido	CEO (μg L ⁻¹)	Referência
Consumidores secundários	Oncorhynchus mykiss	Água doce	7	Não relatado	Genético	Expressão gênica	0.102	Hook et al. (2008)
	Oncorhynchus mykiss	Água doce	7	Não relatado	Genético	Expressão gênica	0.102	Hook et al. (2008)
	Oncorhynchus mykiss	Água doce	7	Não relatado	Genético	Expressão gênica	0.102	Hook et al. (2008)
	Oncorhynchus mykiss	Água doce	7	Não relatado	Genético	Expressão gênica	0.102	Hook et al. (2008)
	Oncorhynchus mykiss	Água doce	7	Não relatado	Genético	Expressão gênica	0.102	Hook et al. (2008)
	Oncorhynchus mykiss	Água doce	7	Não relatado	Genético	Expressão gênica	0.102	Hook et al. (2008)
	Oncorhynchus mykiss	Água doce	7	Não relatado	Genético	Expressão gênica	0.102	Hook et al. (2008)
	Oncorhynchus mykiss	Água doce	7	Aumento	Genético	RNAm da vitelogenina	0.003	Lange et al. (2012)
	Oncorhynchus mykiss	Água doce	90	Declínio	Reprodução	Fertilização	0.131	Schultz et al. (2003)
	Oncorhynchus mykiss	Água doce	90	Declínio	Reprodução	Fertilização	0.0156	Schultz et al. (2003)
	Oncorhynchus mykiss	Água doce	90	Declínio	Reprodução	Fertilização	0.0156	Schultz et al. (2003)
	Oncorhynchus mykiss	Água doce	14	Não codificado	Bioquímico	Vitelogenina	0.001	Thomas-Jones et al. (2003)
	Oncorhynchus mykiss	Água doce	14	Não codificado	Bioquímico	Vitelogenina	0.001	Thorpe et al. (2003)
	Oncorhynchus mykiss	Água doce	14	Não codificado	Bioquímico	Vitelogenina	0.0076	Thorpe et al. (2003)

Tabela Suplementar 4. Efeitos do 17 α-etinilestradiol em animais representantes do primeiro e do segundo níveis tróficos da cadeia alimentar aquática.

Composto/ Nível trófico	Espécies	Meio	Tempo (dias)	Tendência	Efeito	Efeito medido	CEO (µg L ⁻¹)	Referência
Consumidores secundários	Oncorhynchus mykiss	Água doce	62	Declínio	Hormonal	11- Ketotestosteron a	0.131	Schultz et al. (2003)
	Oncorhynchus mykiss	Água doce	62	Aumento	Reprodução	Número de células espermáticas	0.0156	Schultz et al. (2003)
	Oncorhynchus mykiss	Água doce	62	Declínio	Morfológico	Peso do órgão em relação ao peso do corpo	0.131	Schultz et al. (2003)
	Oncorhynchus mykiss	Água doce	10	Aumento	Bioquímico	Vitelogenina	0.0001	Purdom et al. (1994)
	Oncorhynchus mykiss	Água doce	10	Aumento	Bioquímico	Vitelogenina	0.01	Purdom et al. (1994)
	Oncorhynchus mykiss	Água doce	21	Não codificado	Bioquímico	Vitelogenina	0.005	Van den Belt et al. (2003)
	Salmo salar	Água doce	14	Aumento	Genético	RNAm P450 aromB	29,64	Vang et al. (2007)
	Salmo salar	Água doce	14	Aumento	Genético	RNAm P450scc	2,96	Vang et al. (2007)
	Salmo salar	Água doce	14	Aumento	Hormonal	Testosterona	2,96	Vang et al. (2007)
	Salmo salar	Água doce	3	Aumento	Hormonal	Testosterona	2,96	Vang et al. (2007)
	Salmo salar	Água doce	7	Aumento	Genético	RNAm P450 aromB	2,96	Vang et al. (2007)
	Salmo salar	Água doce	7	Aumento	Genético	RNAm P450scc	296,403	Vang et al. (2007)
	Salmo salar	Água doce	3	Aumento	Genético	RNAm beta CYP11	0.005	Lyssimachou e Arukwe (2007)

Tabela Suplementar 4. Efeitos do 17 α-etinilestradiol em animais representantes do primeiro e do segundo níveis tróficos da cadeia alimentar aquática.

Composto/ Nível trófico	Espécies	Meio	Tempo (dias)	Tendência	Efeito	Efeito medido	CEO (µg L ⁻¹)	Referência
Consumidores secundários	Salmo salar	Água doce	3	Aumento	Genético	RNAm da aromatase A Citocromo P450	0.005	Lyssimachou et al. (2006)
	Salmo salar	Água doce	3	Aumento	Genético	RNAm do receptor estrogênico alfa	0.005	Lyssimachou et al. (2006)
	Salmo salar	Água doce	3	Aumento	Genético	RNAm P450scc	0.005	Lyssimachou e Arukwe (2007)
	Salmo salar	Água doce	3	Aumento	Genético	Steroidogenic Acute Regulatory protein mRNA	0.005	Lyssimachou e Arukwe (2007)
	Salmo salar	Água doce	3	Aumento	Genético	RNAm beta CYP11	0.05	Lyssimachou e Arukwe (2007)
	Salmo salar	Água doce	3	Aumento	Genético	RNAm P450scc	0.005	Lyssimachou e Arukwe (2007)
	Salmo salar	Água doce	3	Aumento	Genético	Steroidogenic Acute Regulatory protein mRNA	0.005	Lyssimachou e Arukwe (2007)
	Salmo salar	Água doce	7	Declínio	Genético	Steroidogenic Acute Regulatory protein mRNA	0.05	Lyssimachou e Arukwe (2007)
	Salmo salar	Água doce	3	Declínio	Genético	RNAm Cyp1A1	0.005	Mortensen e Arukwe (2007)

Tabela Suplementar 4. Efeitos do 17 α-etinilestradiol em animais representantes do primeiro e do segundo níveis tróficos da cadeia alimentar aquática.

Composto/ Nível trófico	Espécies	Meio	Tempo (dias)	Tendência	Efeito	Efeito medido	CEO (µg L ⁻¹)	Referência
Consumidores secundários	Salmo salar	Água doce	3	Declínio	Genético	RNAm do receptor estrogênico alfa	0.05	Mortensen e Arukwe (2007)
	Salmo salar	Água doce	3	Declínio	Genético	RNAm do receptor de estrógeno beta	0.05	Mortensen e Arukwe (2007)
	Salmo salar	Água doce	3	Declínio	Genético	RNA mensageiro	0.05	Mortensen e Arukwe (2007)
	Salmo salar	Água doce	3	Aumento	Genético	RNAm da vitelogenina	0.05	Mortensen e Arukwe (2007)
	Salmo salar	Água doce	3	Aumento	Genético	RNAm zona radiata	0.05	Mortensen e Arukwe (2007)
	Salmo salar	Água doce	7	Declínio	Genético	RNAm da proteína receptor de hidrocarboneto aromático	0.05	Mortensen e Arukwe (2007)
	Salmo salar	Água doce	7	Declínio	Genético	RNAm Cyp1A1	0.005	Mortensen e Arukwe (2007)
	Salmo salar	Água doce	7	Declínio	Genético	RNA mensageiro	0.05	Mortensen e Arukwe (2007)
	Salmo salar	Água doce	7	Declínio	Genético	RNA mensageiro	0.05	Mortensen e Arukwe (2007)
	Salmo salar	Água doce	3	Aumento	Enzimático	Glutationa S- transferase	0.005	Greco et al. (2007)
	Salmo salar	Água doce	7	Declínio	Bioquímico	Lactato	0.05	Greco et al. (2007)
	Salmo salar	Água doce	3	Aumento	Bioquímico	Vitelogenina	0.005	Mortensen e Arukwe (2007)

Tabela Suplementar 4. Efeitos do 17 α-etinilestradiol em animais representantes do primeiro e do segundo níveis tróficos da cadeia alimentar aquática.

Composto/ Nível trófico	Espécies	Meio	Tempo (dias)	Tendência	Efeito	Efeito medido	CEO (µg L ⁻¹)	Referência
Consumidores secundários	Salmo salar	Água doce	7	Declínio	Bioquímico	Vitelogenina	0.05	Mortensen e Arukwe (2007)
	Carassius auratus	Água doce	6	Aumento	Enzimático	Luciferase	2,96	Trudeau et al. (2005)
	Carassius auratus	Água doce	1	Aumento	Genético	RNAm do receptor estrogênico alfa	0.1	Marlatt et al. (2010)
	Carassius auratus	Água doce	1	Aumento	Genético		0.1	Marlatt et al. (2010)
	Gambusia affinis	Água doce	35	Declínio	Genético	RNAm da vitelogenina	1,482	Raut e Angus (2010)
	Gambusia affinis	Água doce	35	Declínio	Reprodução	Número de células espermáticas	1,482	Raut e Angus (2010)
	Gambusia affinis	Água doce	35	Declínio	Crescimento	Ganho de peso	1,482	Raut e Angus (2010)

Tabela Suplementar 5. Efeitos do bisfenol A em animais representantes do primeiro e do segundo níveis tróficos da cadeia alimentar aquática.

Composto/ Nível trófico	Espécies	Meio	Tempo (dias)	Tendência	Efeito	Efeito medido	CEO (µg L ⁻¹)	Referência
Bisfenol A - CAS: 80057	Gammarus pulex	Água doce	1	Declínio	Comportame nto de evitar	Evasão ao estímulo	19400	Watts et al. (2001)
Consumidores primários	Gammarus pulex	Água doce	11 667	Aumento	Reprodução	Alterações no comportamento reprodutivo	19400	Watts et al. (2001)
	Hyas araneus	Não relatado	21	Alteração	Bioquímico	Teor de proteína	50	Gomiero et al. (2006)
	Hyas araneus	Não relatado	21	Alteração	Bioquímico	Teor de proteína	50	Gomiero et al. (2006)

Tabela Suplementar 5. Efeitos do bisfenol A em animais representantes do primeiro e do segundo níveis tróficos da cadeia alimentar aquática.

Composto/ Nível trófico	Espécies	Meio	Tempo (dias)	Tendência	Efeito	Efeito medido	CEO (µg L ⁻¹)	Referência
Consumidores primários	Hyas araneus	Não relatado	21	Declínio	Bioquímico	Teor de proteína	50	Gomiero et al. (2006)
	Hyas araneus	Não relatado	21	Declínio	Bioquímico	Teor de proteína	50	Gomiero et al. (2006)
	Hyas araneus	Não relatado	21	Declínio	Bioquímico	Teor de proteína	50	Gomiero et al. (2006)
	Hyas araneus	Não relatado	21	Declínio	Bioquímico	Teor de proteína	50	Gomiero et al. (2006)
	Hyas araneus	Não relatado	21	Declínio	Bioquímico	Teor de proteína	50	Gomiero et al. (2006)
	Hyas araneus	Não relatado	21	Declínio	Bioquímico	Teor de proteína	50	Gomiero et al. (2006)
	Hyas araneus	Não relatado	21	Declínio	Bioquímico	Teor de proteína	50	Gomiero et al. (2006)
	Hyas araneus	Não relatado	21	Declínio	Bioquímico	Teor de proteína	50	Gomiero et al. (2006)
	Hyas araneus	Não relatado	21	Declínio	Bioquímico	Teor de proteína	50	Gomiero et al. (2006)
	Hyas araneus	Não relatado	21	Declínio	Bioquímico	Teor de proteína	50	Gomiero et al. (2006)
	Hyas araneus	Não relatado	21	Declínio	Bioquímico	Teor de proteína	50	Gomiero et al. (2006)
	Hyas araneus	Não relatado	21	Declínio	Bioquímico	Teor de proteína	50	Gomiero et al. (2006)
	Hyas araneus	Não relatado	21	Declínio	Bioquímico	Teor de proteína	50	Gomiero et al. (2006)
	Hyas araneus	Não relatado	21	Declínio	Bioquímico	Teor de proteína	50	Gomiero et al. (2006)

Tabela Suplementar 5. Efeitos do bisfenol A em animais representantes do primeiro e do segundo níveis tróficos da cadeia alimentar aquática.

Composto/ Nível trófico	Espécies	Meio	Tempo (dias)	Tendência	Efeito	Efeito medido	CEO (µg L ⁻¹)	Referência
Consumidores primários	Hyas araneus	Não relatado	21	Declínio	Bioquímico	Teor de proteína	50	Gomiero et al. (2006)
	Hyas araneus	Não relatado	21	Declínio	Bioquímico	Teor de proteína	50	Gomiero et al. (2006)
	Hyas araneus	Não relatado	21	Aumento	Bioquímico	Teor de proteína	5	Gomiero et al. (2006)
	Hyas araneus	Não relatado	21	Aumento	Bioquímico	Teor de proteína	5	Gomiero et al. (2006)
	Hyas araneus	Não relatado	21	Aumento	Bioquímico	Teor de proteína	50	Gomiero et al. (2006)
	Hyas araneus	Não relatado	21	Aumento	Bioquímico	Teor de proteína	50	Gomiero et al. (2006)
	Ceriodaphnia dubia	Água doce	Não relatado	Declínio	Reprodução	Número de progênies	1880	Tatarazako et al. (2002)
	Daphnia magna	Agua doce	2	Declínio	Enzimático	Catalase	20000	Jemec et al. (2012)
	Daphnia magna	Água doce	2	Aumento	Bioquímico	Teor de proteína	20000	Jemec et al. (2012)
	Daphnia magna	Água doce	2	Aumento	Enzimático	Glutationa S-transferase	100	Jemec et al. (2012)
	Daphnia magna	Água doce	21	Declínio	Reprodução	Tamanho da ninhada	13800	Jemec et al. (2012)
	Daphnia magna	Água doce	21	Declínio	Reprodução	Pares com ninhada	1730	Jemec et al. (2012)
	Daphnia magna	Água doce	21	Declínio	Reprodução	Número de progênies	3450	Jemec et al. (2012)
	Daphnia magna	Água doce	21	Declínio	Bioquímico	Teor de proteína	13800	Jemec et al. (2012)

Tabela Suplementar 5. Efeitos do bisfenol A em animais representantes do primeiro e do segundo níveis tróficos da cadeia alimentar aquática.

Composto/ Nível trófico	Espécies	Meio	Tempo (dias)	Tendência	Efeito	Efeito medido	CEO (µg L ⁻¹)	Referência
Consumidores primários	Daphnia magna	Água doce	21	Declínio	Enzimático	Catalase	13800	Jemec et al. (2012)
	Daphnia magna	Água doce	21	Aumento	Enzimático	Glutationa S-transferase	1730	Jemec et al. (2012)
	Daphnia magna	Água doce	21	Sem efeito	Crescimento	Comprimento	13800	Jemec et al. (2012)
	Daphnia magna	Água doce	1	Aumento	Genético	RNAm (domínio 2 da hemoglobina)	3	Mihaich et al. (2009)
	Hyalella azteca	Água doce	42	Declínio	Reprodução	Número de progênies	1100	Mihaich et al. (2009)
	Chironomus riparius	Água doce	1	Aumento	Genético	Transcrição RNAm Cla	3000	Martinez-Guitarte et al. (2012)
S	Chironomus riparius	Água doce	1	Aumento	Genético	Transcrição telomérica RNAm	3000	Martinez-Guitarte et al. (2012)
	Chironomus riparius	Água doce	4	Não relatado	Genético	RNAm da proteína ribossomica L15	50	Park e Kwak (2012)
	Chironomus riparius	Água doce	4	Não relatado	Genético	RNAm da proteína S3A ribossomal 40S	50	Park e Kwak (2012)
	Chironomus riparius	Água doce	Não relatado	Declínio	Desenvolvim ento	Muda	1000	Watts et al. (2003)
	Chironomus riparius	Água doce	Não relatado	Declínio	Crescimento	Peso	1000	Watts et al. (2003)
	Chironomus riparius	Água doce	Não relatado	Aumento	Morfológico	Anormal	1	Watts et al. (2003)
	Chironomus riparius	Água doce	1	Declínio	Genético	C92M	100	Nair et al. (2013)
	Chironomus tentans	Água doce	2	Declínio	Comportame nto	Atividade geral	1000	Cho (2005)

Tabela Suplementar 5. Efeitos do bisfenol A em animais representantes do primeiro e do segundo níveis tróficos da cadeia alimentar aquática.

Composto/ Nível trófico	Espécies	Meio	Tempo (dias)	Tendência	Efeito	Efeito medido	CEO (µg L ⁻¹)	Referência
Consumidores primários	Hemicentrotus pulcherrimus	Água salgada	80	Declínio	Crescimento	Diâmetro	114,145	Kiyomoto et al. (2006)
•	Brachionus calyciflorus	Água doce	2	Declínio	População	Taxa de crescimento intrínseca	3600	Mihaich et al. (2009)
	Ciona intestinalis	Água salgada	.0278	Declínio	Desenvolvim ento	Normal	22,829	Cangialosi et al. (2013)
	Ciona intestinalis	Água salgada	.0278	Aumento	Desenvolvim ento	Anormal	22,829	Cangialosi et al. (2013)
	Ciona intestinalis	Água salgada	.125	Declínio	Desenvolvim ento	Normal	22,829	Cangialosi et al. (2013)
	Ciona intestinalis	Água salgada	.25	Declínio	Desenvolvim ento	Normal	22,829	Cangialosi et al. (2013)
	Ciona intestinalis	Água salgada	.9167	Declínio	Desenvolvim ento	Normal	22,829	Cangialosi et al. (2013)
	Haliotis diversicolor ssp. supertexta	Água salgada	91.32	Aumento	Enzimático	CMAT	100	Zhou et al. (2010)
	Haliotis diversicolor ssp. supertexta	Água salgada	91.32	Aumento	Enzimático	Atividade peroxidase	100	Zhou et al. (2010)
	Haliotis diversicolor ssp. supertexta	Água salgada	.3125	Aumento	Desenvolvim ento	Anormal	200	Zhou et al. (2011)
	Haliotis diversicolor ssp. supertexta	Água salgada	49 792	Declínio	Desenvolvim ento	Até a metamorfose	200	Zhou et al. (2011)
	Haliotis diversicolor ssp. supertexta	Água salgada	.3125	Declínio	Enzimático	Atividade peroxidase	2000	Zhou et al. (2011)

Tabela Suplementar 5. Efeitos do bisfenol A em animais representantes do primeiro e do segundo níveis tróficos da cadeia alimentar aquática.

Composto/ Nível trófico	Espécies	Meio	Tempo (dias)	Tendência	Efeito	Efeito medido	CEO (µg L ⁻¹)	Referência
Consumidores primários	Haliotis diversicolor ssp. supertexta	Água salgada	.3125	Declínio	Genético	PC1M	200	Zhou et al. (2011)
	Haliotis diversicolor ssp. supertexta	Água salgada	.3125	Aumento	Bioquímico	Malondialdeído	2000	Zhou et al. (2011)
	Haliotis diversicolor ssp. supertexta	Água salgada	.3125	Aumento	Enzimático	Sódio e potássio ATPase	2000	Zhou et al. (2011)
	Haliotis diversicolor ssp. supertexta	Água salgada	.3125	Aumento	Genético	RNAm ciclina B	200	Zhou et al. (2011)
	Haliotis diversicolor ssp. supertexta	Água salgada	.3125	Aumento	Genético	CDKM	2000	Zhou et al. (2011)
	Marisa cornuarietis	Água doce	9	Declínio	Fisiológico	Frequência cardíaca	50	Schirling et al. (2006)
	Mytilus galloprovincialis	Água salgada	.25	Declínio	Bioquímico	Fosforilação de proteínas	114,145	Canesi et al. (2005)
	Mytilus galloprovincialis	Água salgada	.25	Declínio	Bioquímico	Fosforilação de proteínas	114,145	Canesi et al. (2005)
	Mytilus galloprovincialis	Água salgada	.25	Declínio	Fisiológico	Captação do vermelho neutro	114,145	Canesi et al. (2005)
	Mytilus galloprovincialis	Água salgada	.25	Aumento	Bioquímico	Fosforilação de proteínas	114,145	Canesi et al. (2005)
	Mytilus galloprovincialis	Água salgada	.25	Aumento	Bioquímico	Fosforilação de proteínas	114,145	Canesi et al. (2005)
	Mytilus galloprovincialis	Água salgada	.5	Declínio	Bioquímico	Fosforilação de proteínas	114,145	Canesi et al. (2005)

Tabela Suplementar 5. Efeitos do bisfenol A em animais representantes do primeiro e do segundo níveis tróficos da cadeia alimentar aquática.

Composto/ Nível trófico	Espécies	Meio	Tempo (dias)	Tendência	Efeito	Efeito medido	CEO (µg L ⁻¹)	Referência
Consumidores primários	Mytilus galloprovincialis	Água salgada	.5	Declínio	Bioquímico	Fosforilação de proteínas	114,145	Canesi et al. (2005)
	Mytilus galloprovincialis	Água salgada	.5	Declínio	Bioquímico	Fosforilação de proteínas	114,145	Canesi et al. (2005)
	Mytilus galloprovincialis	Água salgada	1	Declínio	Bioquímico	Fosforilação de proteínas	114,145	Canesi et al. (2005)
		Água salgada	1	Declínio	Fisiológico	Captação do vermelho neutro	114,145	Canesi et al. (2005)
	Mytilus galloprovincialis	Água salgada	1	Aumento	Bioquímico	Fosforilação de proteínas	114,145	Canesi et al. (2005)
	Mytilus galloprovincialis	Água salgada	1	Aumento	Bioquímico	Fosforilação de proteínas	114,145	Canesi et al. (2005)
	Mytilus galloprovincialis	Água salgada Água	1	Aumento	Bioquímico	Fosforilação de proteínas	114,145	Canesi et al. (2005)
	Mytilus galloprovincialis	Água salgada Água	.5	Declínio	Fisiológico	Captação do vermelho neutro	114,145	Canesi et al. (2005)
	Mytilus edulis	Ågua salgada	21	Aumento	Genético	Micronúcleo	50	Barsiene et al. (2006)
Consumidores secundários	Xenopus laevis	Água doce	18	Declínio	Enzimático	Gama secretase	4565,8	Baba et al. (2009)
	Xenopus laevis	Água doce	120	Alteração	População	Proporção sexual	22,829	Levy et al. (2004)
	Xenopus laevis	Água doce	14	Aumento	Genético	RNAm estrogênico	22,829	Levy et al. (2004)
	Xenopus laevis	Água doce	36	Declínio	Desenvolvim ento	Normal	4565,8	Baba et al. (2009)
	Xenopus laevis	Agua doce	36	Aumento	Desenvolvim ento	Anormal	2282,9	Baba et al. (2009)

Tabela Suplementar 5. Efeitos do bisfenol A em animais representantes do primeiro e do segundo níveis tróficos da cadeia alimentar aquática.

Composto/ Nível trófico	Espécies	Meio	Tempo (dias)	Tendência	Efeito	Efeito medido	CEO (μg L ⁻¹)	Referência
Consumidores secundários	Xenopus laevis	Água doce	4	Aumento	Desenvolvim ento	Deformação	6000	San Segundo et al. (2013)
	Xenopus laevis	Água doce	.1667	Declínio	Genético	Gene do receptor de estrógeno	12000	San Segundo et al. (2013)
	Xenopus laevis	Água doce	1	Declínio	Genético	Gene do receptor de estrógeno	12000	San Segundo et al. (2013)
	Xenopus laevis	Água doce	1	Declínio	Genético	RNAm pax6	12000	San Segundo et al. (2013)
	Xenopus laevis	Água doce	1	Aumento	Genético	RNAm HSP70	3000	San Segundo et al. (2013)
	Xenopus laevis	Água doce	13	Declínio	Genético	RNAm do receptor estrogênico alfa	4565,8	Baba et al. (2009)
	Xenopus laevis	Água doce	14	Declínio	Genético	RNAm do receptor estrogênico alfa	4565,8	Baba et al. (2009)
	Xenopus laevis	Água doce	14	Declínio	Genético	RNAm pax6	4565,8	Baba et al. (2009)
	Xenopus laevis	Água doce	15	Declínio	Genético	RNAm do receptor estrogênico alfa	4565,8	Baba et al. (2009)
	Xenopus laevis	Água doce	15	Declínio	Genético	RNAm pax6	4565,8	Baba et al. (2009)
	Xenopus laevis	Água doce	16	Declínio	Genético	RNAm do receptor estrogênico alfa	4565,8	Baba et al. (2009)
	Xenopus laevis	Água doce	16	Declínio	Genético	RNAm pax6	4565,8	Baba et al. (2009)
	Xenopus laevis	Água doce	17	Declínio	Genético	RNAm do receptor estrogênico alfa	4565,8	Baba et al. (2009)
	Xenopus laevis	Água doce	17	Declínio	Genético	RNAm pax6	4565,8	Baba et al. (2009)

Tabela Suplementar 5. Efeitos do bisfenol A em animais representantes do primeiro e do segundo níveis tróficos da cadeia alimentar aquática.

Composto/ Nível trófico	Espécies	Meio	Tempo (dias)	Tendência	Efeito	Efeito medido	CEO (µg L ⁻¹)	Referência
Consumidores secundários	Xenopus laevis	Água doce	17	Declínio	Genético	RNAm sox2	4565,8	Baba et al. (2009)
	Xenopus laevis	Água doce	18	Declínio	Genético	RNAm do receptor estrogênico alfa	4565,8	Baba et al. (2009)
	Xenopus laevis	Agua doce	18	Declínio	Genético	RNAm pax6	4565,8	Baba et al. (2009)
	Xenopus laevis	Água doce	18	Declínio	Genético	RNAm sox2	4565,8	Baba et al. (2009)
	Xenopus laevis	Água doce	19	Declínio	Genético	RNAm do receptor estrogênico alfa	4565,8	Baba et al. (2009)
	Xenopus laevis	Agua doce	19	Declínio	Genético	RNAm sox2	4565,8	Baba et al. (2009)
	Xenopus laevis	Água doce	20	Declínio	Genético	RNAm FoxD3	4565,8	Baba et al. (2009)
	Xenopus laevis	Água doce	20	Declínio	Genético	RNAm sox2	4565,8	Baba et al. (2009)
	Xenopus laevis	Água doce	21	Declínio	Genético	RNAm FoxD3	4565,8	Baba et al. (2009)
	Xenopus laevis	Água doce	21	Declínio	Genético	RNAm sox2	4565,8	Baba et al. (2009)
	Xenopus laevis	Água doce	22	Declínio	Genético	RNAm FoxD3	4565,8	Baba et al. (2009)
	Xenopus laevis	Água doce	22	Declínio	Genético	RNAm sox2	4565,8	Baba et al. (2009)
	Xenopus laevis	Água doce	4	Declínio	Genético	Gene do receptor de estrógeno	6000	San Segundo et al. (2013)
	Acipenser ruthenus	Água doce	.0001	Declínio	Reprodução	Mobilidade	0.5	Hulak et al. (2013)

Tabela Suplementar 5. Efeitos do bisfenol A em animais representantes do primeiro e do segundo níveis tróficos da cadeia alimentar aquática.

Composto/ Nível trófico	Espécies	Meio	Tempo (dias)	Tendência	Efeito	Efeito medido	CEO (µg L ⁻¹)	Referência
Consumidores secundários	Acipenser ruthenus	Água doce	.0001	Declínio	Reprodução	Velocidade	1.75	Hulak et al. (2013)
	Acipenser ruthenus	Água doce	.0003	Declínio	Reprodução	Mobilidade	0.5	Hulak et al. (2013)
	Acipenser ruthenus	Água doce	.0003	Declínio	Reprodução	Velocidade	5	Hulak et al. (2013)
	Acipenser ruthenus	Água doce	.0007	Declínio	Reprodução	Mobilidade	2.5	Hulak et al. (2013)
	Acipenser ruthenus	Água doce	.0007	Declínio	Reprodução	Velocidade	0.5	Hulak et al. (2013)
	Acipenser ruthenus	Água doce	.001	Declínio	Reprodução	Mobilidade	0.5	Hulak et al. (2013)
	Acipenser ruthenus	Água doce	.001	Declínio	Reprodução	Velocidade	1.75	Hulak et al. (2013)
	Acipenser ruthenus	Água doce	.0014	Declínio	Reprodução	Mobilidade	2.5	Hulak et al. (2013)
	Acipenser ruthenus	Água doce	.0014	Declínio	Reprodução	Velocidade	5	Hulak et al. (2013)
	Acipenser ruthenus	Água doce	.0833	Declínio	Bioquímico	Adenosina trifosfato	2.5	Hulak et al. (2013)
	Acipenser ruthenus	Água doce	.0833	Aumento	Genético	Dano	2.5	Hulak et al. (2013)
	Acipenser ruthenus	Água doce	.0833	Aumento	Bioquímico	Proteína carbonil	1.75	Hulak et al. (2013)
	Acipenser ruthenus	Água doce	.0833	Aumento	Bioquímico	Substâncias reativas ao ácido tiobarbitúrico	2.5	Hulak et al. (2013)
	Acipenser ruthenus	Água doce	.0833	Aumento	Enzimático	Atividade da enzima superóxido dismutase	2.5	Hulak et al. (2013)

Tabela Suplementar 5. Efeitos do bisfenol A em animais representantes do primeiro e do segundo níveis tróficos da cadeia alimentar aquática.

Composto/ Nível trófico	Espécies	Meio	Tempo (dias)	Tendência	Efeito	Efeito medido	CEO (µg L ⁻¹)	Referência
Consumidores secundários	Acipenser ruthenus	Água doce	.0833	Aumento	Genético	Dano	1.75	Hulak et al. (2013)
	Gadus morhua	Água salgada	21	Declínio	Bioquímico	Substâncias reativas ao ácido tiobarbitúrico	59	Olsvik et al. (2009)
	Gadus morhua	Água salgada	21	Declínio	Enzimático	7-Benzyloxy-4- trifluoromethylcoumarin O- debenzylase	59	Olsvik et al. (2009)
	Gadus morhua	Água salgada	21	Declínio	Enzimático	7-Ethoxyresorufin O- deethylase	59	Olsvik et al. (2009)
	Gadus morhua	Água salgada	21	Declínio	Enzimático	7-Ethoxyresorufin O- deethylase	59	Olsvik et al. (2009)
	Gadus morhua	Água salgada	21	Declínio	Genético	Expressão gênica	59	Olsvik et al. (2009)
	Gadus morhua	Água salgada	21	Declínio	Genético	Expressão gênica	59	Olsvik et al. (2009)
	Gadus morhua	Água salgada	21	Declínio	Genético	Expressão gênica	59	Olsvik et al. (2009)
	Gadus morhua	Água salgada	21	Declínio	Bioquímico	Teor de proteína	59	Larsen et al. (2006)
	Gadus morhua	Água salgada	21	Declínio	Bioquímico	Teor de proteína	59	Larsen et al. (2006)
	Gadus morhua	Água salgada	21	Declínio	Bioquímico	Teor de proteína	59	Larsen et al. (2006)
	Gadus morhua	Água salgada	21	Aumento	Bioquímico	Teor de proteína	59	Larsen et al. (2006)
	Gadus morhua	Água salgada	21	Aumento	Bioquímico	Teor de proteína	59	Larsen et al. (2006)
	Gadus morhua	Água salgada	21	Aumento	Bioquímico	Teor de proteína	59	Larsen et al. (2006)

Tabela Suplementar 5. Efeitos do bisfenol A em animais representantes do primeiro e do segundo níveis tróficos da cadeia alimentar aquática.

Composto/ Nível trófico	Espécies	Meio	Tempo (dias)	Tendência	Efeito	Efeito medido	CEO (μg L ⁻¹)	Referência
Consumidores secundários	Gadus morhua	Água salgada	21	Aumento	Bioquímico	Vitelogenina	59	Larsen et al. (2006)
	Gadus morhua	Água salgada	21	Aumento	Bioquímico	Proteína zona radiata	59	Larsen et al. (2006)
	Gadus morhua	Água salgada	21	Aumento	Bioquímico	Proteína zona radiata	59	Larsen et al. (2006)
	Gadus morhua	Água salgada	21	Aumento	Bioquímico	Proteína zona radiata	59	Larsen et al. (2006)
	Gobiocypris rarus	Água doce	7	Declínio	Genético	RNAm CYP19A1	5	Liu et al. (2012)
	Gobiocypris rarus	Água doce	3	Declínio	Genético	RNAm P450 aromB	2,2829	Wang et al. (2010)
	Gobiocypris rarus	Água doce	3	Aumento	Genético	RNAm CYP19b	0,022829	Wang et al. (2010)
	Gobiocypris rarus	Água doce	3	Aumento	Genético	RNAm do receptor estrogênico alfa	2,2829	Wang et al. (2011)
	Micropogonias undulatus	Água doce	.5	Declínio	Desenvolvim ento	Resíduo tóxico máximo permitido	0,10951	Thomas e Sweatman (2008)
	Oryzias melastigma	Água salgada	7	Aumento	Genético	RNAm omChgH	100	Chen et al. (2008)
	Oryzias melastigma	Agua salgada	7	Aumento	Genético	RNAm omChgH	100	Chen et al. (2008)
	Oryzias melastigma	Água salgada	7	Aumento	Genético	RNAm omChgL	100	Chen et al. (2008)
	Oryzias melastigma	Água salgada	7	Aumento	Genético	RNAm omChgL	200	Chen et al. (2008)
	Oryzias melastigma	Água salgada	8	Declínio	Crescimento	Largura	200	Huang et al. (2012)

Tabela Suplementar 5. Efeitos do bisfenol A em animais representantes do primeiro e do segundo níveis tróficos da cadeia alimentar aquática.

Composto/ Nível trófico	Espécies	Meio	Tempo (dias)	Tendência	Efeito	Efeito medido	CEO (µg L ⁻¹)	Referência
Consumidores secundários	Oryzias melastigma	Água salgada	8	Aumento	Crescimento	Comprimento	200	Huang et al. (2012)
	Oryzias melastigma	Água salgada	4	Declínio	Genético	RNAm da proteína 4 de morfogenética óssea	200	Huang et al. (2012)
	Oryzias melastigma	Ågua salgada	4	Declínio	Genético	RNAm Cox1	200	Huang et al. (2012)
	Oryzias melastigma	Água salgada	4	Declínio	Genético	RNAm do fator de crescimento do fibroblasto 8	200	Huang et al. (2012)
	Oryzias melastigma	Água salgada	4	Declínio	Genético	RNAm da proteína homeobos Nkx-2,5	200	Huang et al. (2012)
	Oryzias melastigma	Água salgada	4	Declínio	Genético	RNAm Na+ K+ ATPase	200	Huang et al. (2012)
	Oryzias melastigma	Água salgada	4	Declínio	Genético	RNAm do fator de transcrição GATA-4	200	Huang et al. (2012)
	Oryzias melastigma	Água salgada	4	Aumento	Genético	RNAm do fator de necrose tumoral alfa-induzido	200	Huang et al. (2012)
	Oryzias melastigma	Água salgada	8	Declínio	Genético	RNAm da proteína 4 de morfogenética óssea	200	Huang et al. (2012)
	Oryzias melastigma	Água salgada	8	Declínio	Genético	RNAm Cox1	200	Huang et al. (2012)
	Oryzias melastigma	Água salgada	8	Declínio	Genético	RNAm do fator de crescimento do fibroblasto 8	200	Huang et al. (2012)
	Oryzias melastigma	Água salgada	8	Declínio	Genético	RNAm da proteína homeobos Nkx-2,5	200	Huang et al. (2012)
	Oryzias melastigma	Água salgada	8	Declínio	Genético	RNAm Na+ K+ ATPase	200	Huang et al. (2012)
	Oryzias melastigma	Água salgada	8	Declínio	Genético	RNAm do fator de transcrição GATA-4	200	Huang et al. (2012)

Tabela Suplementar 5. Efeitos do bisfenol A em animais representantes do primeiro e do segundo níveis tróficos da cadeia alimentar aquática.

Composto/ Nível trófico	Espécies	Meio	Tempo (dias)	Tendência	Efeito	Efeito medido	CEO (µg L ⁻¹)	Referência
Consumidores secundários	Oryzias melastigma	Água salgada	8	Aumento	Genético	RNAm do fator de necrose tumoral alfa-induzido	200	Huang et al. (2012)
	Oryzias melastigma	Água salgada	8	Aumento	Genético	RNAm COX2	200	Huang et al. (2012)
	Oryzias melastigma	Água salgada	8	Aumento	Genético	RNAm da eotaxina	200	Huang et al. (2012)
	Oryzias melastigma	Água salgada	8	Aumento	Genético	RNAm da beta interleucina 1	200	Huang et al. (2012)
	Oryzias melastigma	Água salgada	8	Aumento	Genético	RNAm do receptor da leptina	200	Huang et al. (2012)
	Oryzias melastigma	Água salgada	8	Aumento	Genético	RNAm superóxido dismutase	200	Huang et al. (2012)
	Psetta maxima	Água salgada	21	Declínio	Bioquímico	Teor de proteína	59	Larsen et al. (2006)
	Psetta maxima	Água salgada	21	Declínio	Bioquímico	Teor de proteína	59	Larsen et al. (2006)
	Psetta maxima	Água salgada	21	Declínio	Bioquímico	Teor de proteína	59	Larsen et al. (2006)
	Psetta maxima	Água salgada	21	Aumento	Bioquímico	Teor de proteína	59	Larsen et al. (2006)
	Psetta maxima	Água salgada	21	Aumento	Bioquímico	Teor de proteína	59	Larsen et al. (2006)
	Psetta maxima	Água salgada	21	Aumento	Bioquímico	Teor de proteína	59	Larsen et al. (2006)
	Psetta maxima	Água salgada	21	Aumento	Bioquímico	Proteína zona radiata	59	Larsen et al. (2006)
	Rivulus marmoratus	Água salgada	4	Declínio	Genético	RNAm da metalotioneína	600	Rhee et al. (2009)

Tabela Suplementar 5. Efeitos do bisfenol A em animais representantes do primeiro e do segundo níveis tróficos da cadeia alimentar aquática.

Composto/ Nível trófico	Espécies	Meio	Tempo (dias)	Tendência	Efeito	Efeito medido	CEO (µg L ⁻¹)	Referência
Consumidores secundários	Rivulus marmoratus	Água salgada	4	Declínio	Genético	RNAm da metalotioneína	600	Rhee et al. (2009)
	Rivulus marmoratus	Água salgada	4	Declínio	Genético	RNAm da metalotioneína	600	Rhee et al. (2009)
	Rivulus marmoratus	Água salgada	4	Declínio	Genético	RNAm da metalotioneína	600	Rhee et al. (2009)
	Rivulus marmoratus	Água salgada	0.125	Declínio	Genético	RNAm da metalotioneína	600	Rhee et al. (2009)
	Rivulus marmoratus	Água salgada	0.25	Declínio	Genético	RNAm da metalotioneína	600	Rhee et al. (2009)
	Rivulus marmoratus	Água salgada	0.5	Declínio	Genético	RNAm da metalotioneína	600	Rhee et al. (2009)
	Rivulus marmoratus	Água salgada	1	Declínio	Genético	RNAm da metalotioneína	600	Rhee et al. (2009)
	Rivulus marmoratus	Água salgada	4	Declínio	Genético	RNAm da metalotioneína	600	Rhee et al. (2009)
	Rivulus marmoratus	Água salgada	4	Declínio	Genético	RNAm da metalotioneína	600	Rhee et al. (2009)
	Rivulus marmoratus	Água salgada	4	Aumento	Genético	Oncogene RAS	600	Rhee et al. (2009)
	Rivulus marmoratus	Água salgada	4	Aumento	Genético	Oncogene RAS	600	Rhee et al. (2009)
	Rivulus marmoratus	Água salgada	4	Aumento	Genético	Oncogene RAS	600	Rhee et al. (2009)
	Rivulus marmoratus	Água salgada	4	Aumento	Genético	Oncogene RAS	600	Rhee et al. (2009)
	Rivulus marmoratus	Água salgada	4	Aumento	Genético	Oncogene RAS	600	Rhee et al. (2009)

Tabela Suplementar 5. Efeitos do bisfenol A em animais representantes do primeiro e do segundo níveis tróficos da cadeia alimentar aquática.

Composto/ Nível trófico	Espécies	Meio	Tempo (dias)	Tendência	Efeito	Efeito medido	CEO (µg L ⁻¹)	Referência
Consumidores secundários	Rivulus marmoratus	Água salgada	4	Aumento	Genético	Oncogene RAS	600	Rhee et al. (2009)
	Rivulus marmoratus	Água salgada	4	Aumento	Genético	Oncogene RAS	600	Rhee et al. (2009)
	Rivulus marmoratus	Água salgada	.5	Aumento	Genético	Oncogene RAS	600	Rhee et al. (2009)
	Rivulus marmoratus	Água salgada	1	Aumento	Genético	Oncogene RAS	600	Rhee et al. (2009)
	Salmo trutta ssp. fario	Água doce	60.88	Declínio	Crescimento	Volume	5.00	Lahnsteiner et al. (2005)
	Salmo trutta ssp. fario	Água doce	30.44	Declínio	Reprodução	Número de células espermáticas	1.75	Lahnsteiner et al. (2005)
	Salmo trutta ssp. fario	Água doce	60.88	Declínio	Reprodução	Número de progênies	5.00	Lahnsteiner et al. (2005)
	Salmo trutta ssp. fario	Água doce	30.44	Declínio	Reprodução	Mobilidade	1.75	Lahnsteiner et al. (2005)
	Salmo trutta ssp. fario	Água doce	30.44	Declínio	Reprodução	Células circulares	2.40	Lahnsteiner et al. (2005)
	Salmo trutta ssp. fario	Água doce	30.44	Declínio	Reprodução	Velocidade	1.75	Lahnsteiner et al. (2005)
	Salmo trutta ssp. fario	Água doce	30.44	Aumento	Reprodução	Linearidade	2.40	Lahnsteiner et al. (2005)
	Salmo trutta ssp. fario	Água doce	45.66	Declínio	Reprodução	Linearidade	2.40	Lahnsteiner et al. (2005)
	Salmo trutta ssp. fario	Água doce	45.66	Declínio	Reprodução	Mobilidade	2.40	Lahnsteiner et al. (2005)
	Salmo trutta ssp. fario	Água doce	45.66	Declínio	Reprodução	Velocidade	1.75	Lahnsteiner et al. (2005)

Tabela Suplementar 5. Efeitos do bisfenol A em animais representantes do primeiro e do segundo níveis tróficos da cadeia alimentar aquática.

Composto/ Nível trófico	Espécies	Meio	Tempo (dias)	Tendência	Efeito	Efeito medido	CEO (µg L ⁻¹)	Referência
Consumidores secundários	Salmo trutta ssp. fario	Água doce	45.66	Aumento	Reprodução	Linearidade	2.40	Lahnsteiner et al. (2005)
	Salmo trutta ssp. fario	Água doce	45.66	Aumento	Reprodução	Células circulares	1.76	Lahnsteiner et al. (2005)
	Salmo trutta ssp. fario	Água doce	60.88	Declínio	Reprodução	Linearidade	2.40	Lahnsteiner et al. (2005)
	Salmo trutta ssp. fario	Água doce	60.88	Declínio	Reprodução	Velocidade	2.40	Lahnsteiner et al. (2005)
	Salmo trutta ssp. fario	Água doce	60.88	Aumento	Reprodução	Células circulares	1.76	Lahnsteiner et al. (2005)
	Takifugu obscurus	Agua salgada	.25	Declínio	Genético	Ácido ciclico guanílico	600	Kim et al. (2013)
	Takifugu obscurus	Água salgada	.25	Aumento	Genético	RNAm da ciclofilina	600	Kim et al. (2013)
	Takifugu obscurus	Água salgada	.5	Declínio	Genético	Ácido ciclico guanílico	600	Kim et al. (2013)
	Takifugu obscurus	Água salgada	.5	Aumento	Genético	RNAm da ciclofilina	600	Kim et al. (2013)
	Takifugu obscurus	Água salgada	.5	Aumento	Genético	RNAm do receptor de glicocorticóide	600	Kim et al. (2013)
	Takifugu obscurus	Água salgada	1	Declínio	Genético	Ácido ciclico guanílico	600	Kim et al. (2013)
	Takifugu obscurus	Água salgada	1	Aumento	Genético	RNAm da ciclofilina	600	Kim et al. (2013)
	Takifugu obscurus	Água salgada	1	Aumento	Genético	RNAm do receptor de glicocorticóide	600	Kim et al. (2013)
	Takifugu obscurus	Água salgada	1	Aumento	Genético	RNAm HSP70	600	Kim et al. (2013)

Tabela Suplementar 5. Efeitos do bisfenol A em animais representantes do primeiro e do segundo níveis tróficos da cadeia alimentar aquática.

Composto/ Nível trófico	Espécies	Meio	Tempo (dias)	Tendência	Efeito	Efeito medido	CEO (µg L ⁻¹)	Referência
Consumidores secundários	Takifugu obscurus	Água salgada	1	Aumento	Genético	RNAm HSP90 (Proteína do choque térmico 90)	600	Kim et al. (2013)
	Takifugu obscurus	Agua salgada	1	Aumento	Genético	MCRM	600	Kim et al. (2013)
	Takifugu obscurus	Água salgada	2	Aumento	Genético	RNAm da ciclofilina	600	Kim et al. (2013)
	Takifugu obscurus	Água salgada	2	Aumento	Genético	RNAm do receptor de glicocorticóide	600	Kim et al. (2013)
	Takifugu obscurus	Água salgada	2	Aumento	Genético	RNAm HSP70	600	Kim et al. (2013)
	Takifugu obscurus	Água salgada	2	Aumento	Genético	RNAm HSP90 (Proteína do choque térmico 90)	600	Kim et al. (2013)
	Takifugu obscurus	Água salgada	2	Aumento	Genético	MCRM	600	Kim et al. (2013)
	Takifugu obscurus	Água salgada	2	Aumento	Genético	Ácido ciclico guanílico	600	Kim et al. (2013)
	Takifugu obscurus	Água salgada	3	Aumento	Genético	RNAm da ciclofilina	600	Kim et al. (2013)
	Takifugu obscurus	Água salgada	3	Aumento	Genético	RNAm do receptor de glicocorticóide	600	Kim et al. (2013)
	Takifugu obscurus	Água salgada	3	Aumento	Genético	RNAm HSP70	600	Kim et al. (2013)
	Takifugu obscurus	Água salgada	3	Aumento	Genético	RNAm HSP90 (Proteína do choque térmico 90)	600	Kim et al. (2013)
	Takifugu obscurus	Água salgada	3	Aumento	Genético	MCRM	600	Kim et al. (2013)
	Takifugu obscurus	Água salgada	3	Aumento	Genético	Ácido ciclico guanílico	600	Kim et al. (2013)

Tabela Suplementar 5. Efeitos do bisfenol A em animais representantes do primeiro e do segundo níveis tróficos da cadeia alimentar aquática.

Composto/ Nível trófico	Espécies	Meio	Tempo (dias)	Tendência	Efeito	Efeito medido	CEO (µg L ⁻¹)	Referência
Consumidores secundários	Takifugu obscurus	Água salgada	4	Aumento	Genético	RNAm da ciclofilina	600	Kim et al. (2013)
	Takifugu obscurus	Água salgada	4	Aumento	Genético	RNAm do receptor de glicocorticóide	600	Kim et al. (2013)
	Takifugu obscurus	Água salgada	4	Aumento	Genético	RNAm HSP70	600	Kim et al. (2013)
	Takifugu obscurus	Água salgada	4	Aumento	Genético	RNAm HSP90 (Proteína do choque térmico 90)	600	Kim et al. (2013)
	Takifugu obscurus	Água salgada	4	Aumento	Genético	MCRM	600	Kim et al. (2013)
	Takifugu obscurus	Água salgada	4	Aumento	Genético	Ácido ciclico guanílico	600	Kim et al. (2013)
	Xiphophorus helleri	Água doce	60	Declínio	Crescimento	Comprimento	2	Kwak et al. (2001)
	Danio rerio	Água doce	180	Aumento	Bioquímico	Vitelogenina	10	Keiter et al. (2012)
	Danio rerio	Água doce	226	Declínio	Crescimento	Comprimento	10	Keiter et al. (2012)
	Danio rerio	Água doce	226	Declínio	Crescimento	Comprimento	10	Keiter et al. (2012)
	Danio rerio	Água doce	226	Declínio	Crescimento	Peso	10	Keiter et al. (2012)
	Danio rerio	Água doce	226	Declínio	Crescimento	Peso	10	Keiter et al. (2012)
	Danio rerio	Água doce	316	Declínio	Crescimento	Comprimento	400	Keiter et al. (2012)
	Danio rerio	Água doce	316	Declínio	Crescimento	Comprimento	400	Keiter et al. (2012)

Tabela Suplementar 5. Efeitos do bisfenol A em animais representantes do primeiro e do segundo níveis tróficos da cadeia alimentar aquática.

Composto/ Nível trófico	Espécies	Meio	Tempo (dias)	Tendência	Efeito	Efeito medido	CEO (μg L ⁻¹)	Referência
Consumidores secundários	Danio rerio	Água doce	316	Declínio	Crescimento	Peso	400	Keiter et al. (2012)
	Danio rerio	Água doce	316	Aumento	Crescimento	Peso	400	Keiter et al. (2012)
	Danio rerio	Água doce	90	Aumento	Bioquímico	Vitelogenina	400	Keiter et al. (2012)
	Danio rerio	Água doce	4	Aumento	Genético	RNAm do hormônio estimulador da tireóide	800	Chan e Chan (2012)
	Danio rerio	Água doce	5	Aumento	Genético	Expressão gênica	2282,9	Muncke et al. (2007)
	Danio rerio	Água doce	21	Aumento	Bioquímico	Vitelogenina	1000	Van den Belt et al. (2003)
	Danio rerio	Água doce	2	Aumento	Genético	RNAm do receptor de glicocorticóide	2282,9	Terrien et al. (2011)
	Danio rerio	Água doce	2	Aumento	Genético	Expressão gênica	2282,9	Terrien et al. (2011)
	Danio rerio	Água doce	2	Aumento	Genético	Expressão gênica	2282,9	Terrien et al. (2011)
	Dicentrarchus labrax	Água salgada	14	Aumento	Bioquímico	Vitelogenina	10	Correia et al. (2007)
	Oryzias latipes	Água doce	7	Aumento	Bioquímico	Vitelogenina	500	Sakuyama et al. (2003)
	Oryzias latipes	Água doce	.3333	Aumento	Genético	RNAm do receptor estrogênico alfa	8000	Yamaguchi et al. (2005)
	Oryzias latipes	Água doce	.3333	Aumento	Genético	RNAm da vitelogenina	8000	Yamaguchi et al. (2005)
	Oryzias latipes	Água doce	.3333	Não relatado	Genético	RNAm da vitelogenina 1	8000	Yamaguchi et al. (2005)

Tabela Suplementar 5. Efeitos do bisfenol A em animais representantes do primeiro e do segundo níveis tróficos da cadeia alimentar aquática.

Composto/ Nível trófico	Espécies	Meio	Tempo (dias)	Tendência	Efeito	Efeito medido	CEO (µg L ⁻¹)	Referência
Consumidores secundários	Oryzias latipes	Água doce	Não relatado	Aumento	Morfológico	Alterações no sexo	5.9	Metcalfe et al. (2001)
	Oryzias latipes	Água doce	2	Declínio	Desenvolvim ento	Formação de órgãos/tecidos	1	Lee et al. (2012)
	Oryzias latipes	Água doce	4	Declínio	Desenvolvim ento	Formação de órgãos/tecidos	100	Lee et al. (2012)
	Oryzias latipes	Água doce	2	Declínio	Desenvolvim ento	Formação de órgãos/tecidos	100	Lee et al. (2012)
	Oryzias latipes	Água doce	4	Declínio	Desenvolvim ento	Formação de órgãos/tecidos	100	Lee et al. (2012)
	Oryzias latipes	Água doce	2	Declínio	Fisiológico	Frequência cardíaca	10	Lee et al. (2012)
	Oryzias latipes	Água doce	4	Declínio	Fisiológico	Frequência cardíaca	1	Lee et al. (2012)
	Oryzias latipes	Água doce	2	Declínio	Desenvolvim ento	Formação de órgãos/tecidos	1	Lee et al. (2012)
	Oryzias latipes	Água doce	4	Declínio	Desenvolvim ento	Formação de órgãos/tecidos	1	Lee et al. (2012)
	Oryzias latipes	Água doce	4	Declínio	Genético	RNAm do receptor 1 do hormônio liberador de gonadotrofina	100	Lee et al. (2012)
	Oryzias latipes	Água doce	4	Declínio	Genético	Gonadotropina liberadora de RNAm do receptor hormonal 2	100	Lee et al. (2012)
	Oryzias latipes	Água doce	4	Declínio	Genético	Gonadotropina liberadora de RNAm do receptor hormonal	100	Lee et al. (2012)
	Pimephales promelas	Água doce	14	Aumento	Bioquímico	Vitelogenina	102	Ankley et al. (2010)

Tabela Suplementar 5. Efeitos do bisfenol A em animais representantes do primeiro e do segundo níveis tróficos da cadeia alimentar aquática.

Composto/ Nível trófico	Espécies	Meio	Tempo (dias)	Tendência	Efeito	Efeito medido	CEO (µg L ⁻¹)	Referência
Consumidores secundários	Pimephales promelas	Água doce	14	Aumento	Bioquímico	Vitelogenina	102	Ankley et al. (2010)
	Pimephales promelas	Água doce	14	Declínio	Desenvolvim ento	Desenvolvimento sexual	102	Ankley et al. (2010)
	Pimephales promelas	Água doce	Não relatado	Declínio	Desenvolvim ento	Anormal	1000	Warner e Jenkins (2007)
	Oncorhynchus mykiss	Água doce	21	Aumento	Bioquímico	Vitelogenina	1000	Van den Belt et al. (2003)
	Carassius auratus	Água doce	15	Aumento	Genético	RNAm da proteína receptora de estrógeno beta 1	20	Hatef et al. (2012)
	Carassius auratus	Água doce	30	Aumento	Genético	RNAm CYP19b	20	Hatef et al. (2012)
	Carassius auratus	Água doce	30	Aumento	Genético	RNAm da proteína receptora de estrógeno beta 1	20	Hatef et al. (2012)
	Carassius auratus	Água doce	30	Aumento	Genético	RNAm da proteína receptora de estrógenio beta 2	20	Hatef et al. (2012)
	Carassius auratus	Água doce	30	Aumento	Genético	RNAm do receptor estrogênico alfa	20	Hatef et al. (2012)
	Carassius auratus	Água doce	60	Aumento	Genético	RNAm da proteína receptora de estrógeno beta 1	20	Hatef et al. (2012)
	Carassius auratus	Água doce	60	Aumento	Genético	RNAm do receptor estrogênico alfa	20	Hatef et al. (2012)
	Carassius auratus	Água doce	7	Aumento	Genético	RNAm da proteína receptora de estrógeno beta 1	20	Hatef et al. (2012)
	Carassius auratus	Água doce	90	Aumento	Genético	RNAm da proteína receptora de estrógeno beta 1	20	Hatef et al. (2012)
	Carassius auratus	Água doce	60	Aumento	Genético	RNAm da proteína receptora de estrógeno beta 1	20	Hatef et al. (2012)

Tabela Suplementar 5. Efeitos do bisfenol A em animais representantes do primeiro e do segundo níveis tróficos da cadeia alimentar aquática.

Composto/ Nível trófico	Espécies	Meio	Tempo (dias)	Tendência	Efeito	Efeito medido	CEO (μg L ⁻¹)	Referência
Consumidores secundários	Carassius auratus	Água doce	60	Aumento	Genético	RNAm da proteína receptora de estrógeno beta 2	20	Hatef et al. (2012)
	Carassius auratus	Água doce	60	Aumento	Genético	RNAm da vitelogenina	20	Hatef et al. (2012)
	Carassius auratus	Água doce	90	Aumento	Genético	RNAm da proteína receptora de estrógeno beta 1	0.2	Hatef et al. (2012)
	Carassius auratus	Água doce	90	Aumento	Genético	RNAm da proteína receptora de estrógeno beta 2	20	Hatef et al. (2012)
	Carassius auratus	Agua doce	90	Aumento	Genético	RNAm da vitelogenina	20	Hatef et al. (2012)
	Carassius auratus	Água doce	90	Declínio	Reprodução	Contagem de células germinativas	0.2	Hatef et al. (2012)
	Carassius auratus	Água doce	90	Declínio	Reprodução	Contagem de células germinativas	20	Hatef et al. (2012)
	Carassius auratus	Água doce	90	Declínio	Reprodução	Mobilidade	0.2	Hatef et al. (2012)
	Carassius auratus	Água doce	90	Declínio	Reprodução	Mobilidade	0.2	Hatef et al. (2012)
	Carassius auratus	Água doce	90	Declínio	Reprodução	Mobilidade	0.2	Hatef et al. (2012)
	Carassius auratus	Agua doce	90	Declínio	Reprodução	Mobilidade	20	Hatef et al. (2012)
	Carassius auratus	Água doce	90	Declínio	Reprodução	Velocidade	20	Hatef et al. (2012)
	Carassius auratus	Água doce	90	Declínio	Reprodução	Velocidade	20	Hatef et al. (2012)
	Carassius auratus	Água doce	90	Declínio	Reprodução	Velocidade	20	Hatef et al. (2012)

Tabela Suplementar 5. Efeitos do bisfenol A em animais representantes do primeiro e do segundo níveis tróficos da cadeia alimentar aquática.

Composto/ Nível trófico	Espécies	Meio	Tempo (dias)	Tendência	Efeito	Efeito medido	CEO (µg L ⁻¹)	Referência
Consumidores secundários	Carassius auratus	Água doce	90	Declínio	Reprodução	Velocidade	20	Hatef et al. (2012)
	Carassius auratus	Água doce	60	Aumento	Genético	RNAm CYP19A	0.2	Hatef et al. (2012)
	Carassius auratus	Água doce	60	Aumento	Genético	RNAm da proteína receptora de estrógeno beta 1	20	Hatef et al. (2012)
	Carassius auratus	Água doce	60	Aumento	Genético	RNAm da proteína receptora de estrógenio beta 2	20	Hatef et al. (2012)
	Carassius auratus	Água doce	90	Aumento	Genético	ARMR	20	Hatef et al. (2012)
	Carassius auratus	Água doce	90	Aumento	Genético	RNAm CYP19A	20	Hatef et al. (2012)
	Carassius auratus	Água doce	90	Aumento	Genético	RNAm da proteína receptora de estrógenio beta 2	0.2	Hatef et al. (2012)
	Gambusia affinis	Água doce	2	Aumento	Genético	RNAm da vitelogenina	1000	Kamata et al. (2011)
	Gambusia affinis	Água doce	2	Aumento	Genético	RNAm da vitelogenina	1000	Kamata et al. (2011)
	Gambusia affinis	Água doce	2	Aumento	Genético	RNAm da vitelogenina	1000	Kamata et al. (2011)