
Universidade de Brasília
Instituto de Ciências Exatas

Departamento de Ciência da Computação

A User-Centered and Autonomic Multi-Cloud
Architecture for High Performance Computing

Applications

Alessandro Ferreira Leite

Thesis presented in partial fulfillment
of the requirements for the degree of

Doctor in Computer Science

Advisor
Prof. Dr. Alba Cristina Magalhães Alves de Melo

Advisor
Prof. Dr. Christine Eisenbeis

Brasília
2014

Universidade de Brasília — UnB
Instituto de Ciências Exatas
Departamento de Ciência da Computação
Doutorado em Informática

Coordenadora: Prof. Dr.ª Alba Cristina Magalhães Alves de Melo

Banca examinadora composta por:

Prof. Dr. Alba Cristina Magalhães Alves de Melo (Advisor) — CIC/UnB
Prof. Dr. Christine Eisenbeis (Advisor) — INRIA, LRI/Paris-Sud 11
Prof. Dr. Claude Tadonki (Co-Advisor) — Mines ParisTech
Prof. Dr. Christine Froidevaux — LRI/Paris-Sud 11
Prof. Dr. Célia Ghedini Ralha — CIC/UnB
Prof. Dr. Christine Morin — INRIA, IRISA
Prof. Dr. Christophe Cérin — LIPN/Paris 13
Prof. Dr. Jean-Louis Pazat — INSA Rennes

CIP — Catalogação Internacional na Publicação

Leite, Alessandro Ferreira.

A User-Centered and Autonomic Multi-Cloud Architecture for High Per-
formance Computing Applications / Alessandro Ferreira Leite. Brasília :
UnB, 2014.
282 p. : il. ; 29,5 cm.

Thesis (Ph.D.) — Universidade de Brasília, Brasília, 2014.

1. Computação Autonômica; Computação de Alto Desempenho;
Federação de Nuvens; Linha de Produto de Software; Modelo de
Features de Infraestrutura de Nuvens

CDU 004.4

Endereço: Universidade de Brasília
Campus Universitário Darcy Ribeiro — Asa Norte
CEP 70910-900
Brasília–DF — Brasil

To my family and my parents
To my niece and my nephews

Acknowledgements

First, I would like to thank my supervisors for their support and advices. Next, I
would like to thank my thesis’s reviewers Christophe Cérin and Jean-Louis Pazat, and
the members of my thesis committee: Christine Froidevaux, Célia Ghedini Ralha, and
Christine Morin. I appreciate all yours comments and questions.

Additionally, I would like to thank the professors Vander Alves, Genaína Rodrigues, Li
Weigang, and Jacques Blanc for their comments, suggestions, and discussions.

Next, I am very thankful to Katia Evrat and Valérie Berthou for kindly helping me in
various administrative works. In addition, I am grateful to the authors that sent me their
papers when I requested them.

After, I would like to thank all my team members in INRIA, especially Michael Kruse
and Taj Muhammad Khan. I also thank my friends Cícero Roberto, Antônio Junior, Éric
Silva, André Ribeiro, Francinaldo Araujo, Emerson Macedo, and the former Logus’s team.
Moreover, I would like to thank the people I collaborated with during the last years.

I further acknowledge the financial assistance of CAPES/CNPq through the program
science without borders (grant 237561/2012-3) during the year of 2013, and Campus
France/INRIA (project Pascale) during the period of February to July and November to
December 2014.

Last but not least, I would like to thank my parents and my family for their uncondi-
tional support and patience.

iii

Abstract

Cloud computing has been seen as an option to execute high performance computing (HPC)
applications. While traditional HPC platforms such as grid and supercomputers offer a stable
environment in terms of failures, performance, and number of resources, cloud computing offers
on-demand resources generally with unpredictable performance at low financial cost. Furthermore,
in cloud environment, failures are part of its normal operation. To overcome the limits of a single
cloud, clouds can be combined, forming a cloud federation often with minimal additional costs for
the users. A cloud federation can help both cloud providers and cloud users to achieve their goals
such as to reduce the execution time, to achieve minimum cost, to increase availability, to reduce
power consumption, among others. Hence, cloud federation can be an elegant solution to avoid
over provisioning, thus reducing the operational costs in an average load situation, and removing
resources that would otherwise remain idle and wasting power consumption, for instance. However,
cloud federation increases the range of resources available for the users. As a result, cloud or system
administration skills may be demanded from the users, as well as a considerable time to learn
about the available options. In this context, some questions arise such as: (a) which cloud resource
is appropriate for a given application? (b) how can the users execute their HPC applications with
acceptable performance and financial costs, without needing to re-engineer the applications to
fit clouds’ constraints? (c) how can non-cloud specialists maximize the features of the clouds,
without being tied to a cloud provider? and (d) how can the cloud providers use the federation
to reduce power consumption of the clouds, while still being able to give service-level agreement
(SLA) guarantees to the users? Motivated by these questions, this thesis presents a SLA-aware
application consolidation solution for cloud federation. Using a multi-agent system (MAS) to
negotiate virtual machine (VM) migrations between the clouds, simulation results show that our
approach could reduce up to 46% of the power consumption, while trying to meet performance
requirements. Using the federation, we developed and evaluated an approach to execute a huge
bioinformatics application at zero-cost. Moreover, we could decrease the execution time in 22.55%
over the best single cloud execution. In addition, this thesis presents a cloud architecture called
Excalibur to auto-scale cloud-unaware application. Executing a genomics workflow, Excalibur
could seamlessly scale the applications up to 11 virtual machines, reducing the execution time by
63% and the cost by 84% when compared to a user’s configuration. Finally, this thesis presents
a software product line engineering (SPLE) method to handle the commonality and variability
of infrastructure-as-a-service (IaaS) clouds, and an autonomic multi-cloud architecture that uses
this method to configure and to deal with failures autonomously. The SPLE method uses extended
feature model (EFM) with attributes to describe the resources and to select them based on the
users’ objectives. Experiments realized with two different cloud providers show that using the
proposed method, the users could execute their application on a federated cloud environment,
without needing to know the variability and constraints of the clouds.

Keywords: Autonomic computing; High performance computing (HPC); Cloud federation; Soft-
ware Product Line Engineering, Variability Management of Cloud Infrastructure

v

Résumé

Le cloud computing a été considéré comme une option pour exécuter des applications de calcul
haute performance (HPC). Bien que les plateformes traditionnelles de calcul haute performance telles
que les grilles et les supercalculateurs offrent un environnement stable du point de vue des défaillances,
des performances, et de la taille des ressources, le cloud computing offre des ressources à la demande,
généralement avec des performances imprévisibles mais à des coûts financiers abordables. En outre, dans
un environnement de cloud, les défaillances sont perçues comme étant ordinaires. Pour surmonter les
limites d’un cloud individuel, plusieurs clouds peuvent être combinés pour former une fédération de
clouds, souvent avec des coûts supplémentaires légers pour les utilisateurs. Une fédération de clouds peut
aider autant les fournisseurs que les utilisateurs à atteindre leurs objectifs tels la réduction du temps
d’exécution, la minimisation des coûts, l’augmentation de la disponibilité, la réduction de la consommation
d’énergie, pour ne citer que ceux-là. Ainsi, la fédération de clouds peut être une solution élégante pour
éviter le sur-approvisionnement, réduisant ainsi les coûts d’exploitation en situation de charge moyenne,
et en supprimant des ressources qui, autrement, resteraient inutilisées et gaspilleraient ainsi de énergie.
Cependant, la fédération de clouds élargit la gamme des ressources disponibles. En conséquence, pour
les utilisateurs, des compétences en cloud computing ou en administration système sont nécessaires,
ainsi qu’un temps d’apprentissage considérable pour maîtrises les options disponibles. Dans ce contexte,
certaines questions se posent : (a) Quelle ressource du cloud est appropriée pour une application donnée ?
(b) Comment les utilisateurs peuvent-ils exécuter leurs applications HPC avec un rendement acceptable
et des coûts financiers abordables, sans avoir à reconfigurer les applications pour répondre aux normes
et contraintes du cloud ? (c) Comment les non-spécialistes du cloud peuvent-ils maximiser l’usage des
caractéristiques du cloud, sans être liés au fournisseur du cloud ? et (d) Comment les fournisseurs de cloud
peuvent-ils exploiter la fédération pour réduire la consommation électrique, tout en étant en mesure de
fournir un service garantissant les normes de qualité préétablies ? À partir de ces questions, la présente
thèse propose une solution de consolidation d’applications pour la fédération de clouds qui garantit
le respect des normes de qualité de service. On utilise un système multi-agents (SMA) pour négocier
la migration des machines virtuelles entre les clouds. Les résultats de simulations montrent que notre
approche pourrait réduire jusqu’à 46% la consommation totale d’énergie, tout en respectant les exigences
de performance. En nous basant sur la fédération de clouds, nous avons développé et évalué une approche
pour exécuter une énorme application de bioinformatique à coût zéro. En outre, nous avons pu réduire
le temps d’exécution de 22,55% par rapport à la meilleure exécution dans un cloud individuel. Cette
thèse présente aussi une architecture de cloud baptisée « Excalibur » qui permet l’adaptation automatique
des applications standards pour le cloud. Dans l’exécution d’une chaîne de traitements de la génomique,
Excalibur a pu parfaitement mettre à l’échelle les applications sur jusqu’à 11 machines virtuelles, ce qui a
réduit le temps d’exécution de 63% et le coût de 84% par rapport à la configuration de l’utilisateur. Enfin,
cette thèse présente un processus d’ingénierie des lignes de produits (PLE) pour gérer la variabilité de
l’infrastructure à la demande du cloud, et une architecture multi-cloud autonome qui utilise ce processus
pour configurer et faire face aux défaillances de manière indépendante. Le processus PLE utilise le modèle
étendu de fonction (EFM) avec des attributs pour décrire les ressources et les sélectionner en fonction des
objectifs de l’utilisateur. Les expériences réalisées avec deux fournisseurs de cloud différents montrent qu’en
utilisant le modèle proposé, les utilisateurs peuvent exécuter leurs applications dans un environnement de
clouds fédérés, sans avoir besoin de connaître les variabilités et contraintes du cloud.

Mots-clés: Calcul Autonomique; Calcul Haute Performance (HPC); Cloud Federation; Ligne de Produits
Logiciels; Modèles de Variabilité

vii

Resumo

A computação em nuvem tem sido considerada como uma opção para executar aplicações de alto
desempenho. Entretanto, enquanto as plataformas de alto desempenho tradicionais como grid e su-
percomputadores oferecem um ambiente estável quanto à falha, desempenho e número de recursos, a
computação em nuvem oferece recursos sob demanda, geralmente com desempenho imprevisível à baixo
custo financeiro. Além disso, em ambiente de nuvem, as falhas fazem parte da sua normal operação. No
entanto, as nuvens podem ser combinadas, criando uma federação, para superar os limites de uma nuvem
muitas vezes com um baixo custo para os usuários. A federação de nuvens pode ajudar tanto os provedores
quanto os usuários das nuvens a atingirem diferentes objetivos tais como: reduzir o tempo de execução de
uma aplicação, reduzir o custo financeiro, aumentar a disponibilidade do ambiente, reduzir o consumo
de energia, entre outros. Por isso, a federação de nuvens pode ser uma solução elegante para evitar o
sub-provisionamento de recursos ajudando os provedores a reduzirem os custos operacionais e a reduzir o
número de recursos ativos, que outrora ficariam ociosos consumindo energia, por exemplo. No entanto, a
federação de nuvens aumenta as opções de recursos disponíveis para os usuários, requerendo, em muito dos
casos, conhecimento em administração de sistemas ou em computação em nuvem, bem como um tempo
considerável para aprender sobre as opções disponíveis. Neste contexto, surgem algumas questões, tais
como: (a) qual dentre os recursos disponíveis é apropriado para uma determinada aplicação? (b) como
os usuários podem executar suas aplicações na nuvem e obter um desempenho e um custo financeiro
aceitável, sem ter que modificá-las para atender as restrições do ambiente de nuvem? (c) como os usuários
não especialistas em nuvem podem maximizar o uso da nuvem, sem ficar dependente de um provedor?
(d) como os provedores podem utilizar a federação para reduzir o consumo de energia dos datacenters e ao
mesmo tempo atender os acordos de níveis de serviços? A partir destas questões, este trabalho apresenta
uma solução para consolidação de aplicações em nuvem federalizadas considerando os acordos de serviços.
Nossa solução utiliza um sistema multi-agente para negociar a migração das máquinas virtuais entres
as nuvens. Simulações mostram que nossa abordagem pode reduzir em até 46% o consumo de energia e
atender os requisitos de qualidade. Nós também desenvolvemos e avaliamos uma solução para executar
uma aplicação de bioinformática em nuvens federalizadas, a custo zero. Nesse caso, utilizando a federação,
conseguimos diminuir o tempo de execução da aplicação em 22,55%, considerando o seu tempo de execução
na melhor nuvem. Além disso, este trabalho apresenta uma arquitetura chamada Excalibur, que possibilita
escalar a execução de aplicações comuns em nuvem. Excalibur conseguiu escalar automaticamente a
execução de um conjunto de aplicações de bioinformática em até 11 máquinas virtuais, reduzindo o tempo
de execução em 63% e o custo financeiro em 84% quando comparado com uma configuração definida pelos
usuários. Por fim, este trabalho apresenta um método baseado em linha de produto de software para lidar
com as variabilidades dos serviços oferecidos por nuvens de infraestrutura (IaaS), e um sistema que utiliza
deste processo para configurar o ambiente e para lidar com falhas de forma automática. O nosso método
utiliza modelo de feature estendido com atributos para descrever os recursos e para selecioná-los com
base nos objetivos dos usuários. Experimentos realizados com dois provedores diferentes mostraram que
utilizando o nosso processo, os usuários podem executar as suas aplicações em um ambiente de nuvem
federalizada, sem conhecer as variabilidades e limitações das nuvens.

Palavras-chave: Computação Autonômica; Computação de Alto Desempenho; Federação de Nuvens;
Linha de Produto de Software; Modelo de Features de Infraestrutura de Nuvens

ix

Contents

List of Figures xvii

List of Tables xxi

Listings xxii

List of Abbreviations xxiii

1 Introduction 1
1.1 Motivation . 1
1.2 Objectives . 3
1.3 Thesis Statement . 4
1.4 Contributions . 4
1.5 Publications . 6
1.6 Thesis Outline . 7

I Background 9

2 Large-Scale Distributed Systems 10
2.1 Evolution . 11

2.1.1 The 1960s . 11
2.1.2 The 1970s . 12
2.1.3 The 1980s . 13
2.1.4 The 1990s . 13
2.1.5 2000-2014 . 15
2.1.6 Timeline . 16

2.2 Cluster Computing . 17
2.3 Grid Computing . 19

2.3.1 Architecture . 20
2.4 Peer-to-peer . 21

2.4.1 Architecture . 23
2.4.2 Unstructured P2P Network . 24
2.4.3 Structured P2P Network . 24
2.4.4 Hybrid P2P Network . 26
2.4.5 Hierarchical P2P Network . 27
2.4.6 Comparative View of P2P Structures 28

xi

2.5 Cloud Computing . 29
2.5.1 Characteristics . 30
2.5.2 Drawbacks . 32

2.6 Summary . 34

3 A Detailed View of Cloud Computing 36
3.1 Technologies Related to Cloud Computing 37

3.1.1 Virtualization . 37
3.1.1.1 Definition . 37
3.1.1.2 Techniques . 38
3.1.1.3 Live Migration . 39
3.1.1.4 Workload and Server Consolidation 39

3.1.2 Service-Level Agreement . 41
3.1.3 MapReduce . 43

3.1.3.1 Definition . 43
3.1.3.2 Characteristics . 44

3.2 Cloud Organization . 45
3.2.1 Architecture and Service Model . 45
3.2.2 Deployment Model . 47
3.2.3 Cloud Federation . 48

3.2.3.1 Definition . 48
3.2.3.2 Classification . 49
3.2.3.3 Challenges . 51

3.3 Cloud Standards and Metrics . 53
3.3.1 Cloud Standards . 53
3.3.2 Cloud Metrics . 54

3.4 IaaS Cloud Computing Systems . 55
3.4.1 Architecture . 55
3.4.2 Using an IaaS Cloud Service . 57

3.5 Cloud Computing Architectures . 60
3.5.1 Centralized Systems . 60

3.5.1.1 Claudia . 60
3.5.1.2 SciCumulus . 60
3.5.1.3 Cloud-TM . 61
3.5.1.4 mOSAIC . 63
3.5.1.5 TClouds . 63
3.5.1.6 FraSCAti . 63
3.5.1.7 STRATOS . 65
3.5.1.8 COS . 66
3.5.1.9 Rafhyc . 66
3.5.1.10 JSTaaS . 68

3.5.2 Decentralized Systems . 68
3.5.2.1 Reservoir . 68
3.5.2.2 Open Cirrus . 69
3.5.2.3 CometCloud . 70
3.5.2.4 Contrail . 71

xii

3.5.2.5 OPTIMIS . 72
3.5.3 Comparative View . 73

3.6 Summary . 73

4 Autonomic Computing 76
4.1 Definition . 77
4.2 Properties . 77
4.3 Architecture . 79
4.4 Autonomic Computing Systems . 80

4.4.1 V-MAN . 80
4.4.2 Sunflower . 80
4.4.3 Market-based . 81
4.4.4 Component-Management Approach 82
4.4.5 Snooze . 82
4.4.6 Cloudlet . 83
4.4.7 Distributed VM Scheduler . 83
4.4.8 Thermal Management Framework 85
4.4.9 SmartScale . 85
4.4.10 SLA Management . 86
4.4.11 Comparative View . 87

4.5 Summary . 87

5 Green Computing 89
5.1 Energy-Aware Computing . 90
5.2 Green Data Centers . 92

5.2.1 Green Data Center Benchmarks . 92
5.2.1.1 The Green500 Initiative 93
5.2.1.2 The Green Index . 93
5.2.1.3 SPECpower . 94
5.2.1.4 JouleSort . 94
5.2.1.5 Comparative View . 94

5.3 Green Performance Indicators . 95
5.3.1 The Approach of Stanley, Brill, and Koomey 95

5.3.1.1 Overview . 95
5.3.1.2 Metrics . 95
5.3.1.3 Final Remarks . 97

5.3.2 The Green Grid Approach . 97
5.3.2.1 Overview . 97
5.3.2.2 Metrics . 98
5.3.2.3 Final Remarks . 99

5.4 Summary . 99

II Contributions 100

6 Power-Aware Server Consolidation for Federated Clouds 101
6.1 Introduction and Motivation . 102

xiii

6.2 Design of the Proposed Solution . 103
6.3 Experimental Results . 106

6.3.1 Modifications in CloudSim . 106
6.3.2 Simulation Environment . 107
6.3.3 Scenario 1: workload submission to a single data center under power

consumption threshold . 107
6.3.4 Scenario 2: distinct workload submission to different overloaded

data centers . 109
6.4 Related Work . 109
6.5 Summary . 113

7 Biological Sequence Comparison at Zero-Cost on a Vertical Public Cloud
Federation 114
7.1 Introduction and Motivation . 115
7.2 Biological Sequence Comparison . 116

7.2.1 The Smith-Waterman Algorithm 117
7.3 Design of our Federated Cloud Architecture 118

7.3.1 Task Generation with MapReduce 120
7.3.2 Smith-Waterman Execution . 120

7.4 Experimental Results . 121
7.5 Related Work . 125
7.6 Summary . 126

8 Excalibur: A User-Centered Cloud Architecture for Executing Parallel
Applications 128
8.1 Introduction and Motivation . 129
8.2 Architecture Overview . 130

8.2.1 Scaling Cloud-Unaware Applications with Budget Restrictions and
Resource Constraints . 132

8.2.2 Reducing Data Movement to Reduce Cost and Execution Time . . 133
8.2.3 Reducing Job Makespan with Workload Adjustment 134
8.2.4 Making the Cloud Transparent for the Users 134

8.3 Experimental Results . 136
8.3.1 Scenario 1: execution without auto-scaling and based on users’

preferences . 139
8.3.2 Scenario 2: execution with auto-scaling 140

8.4 Related Work . 141
8.5 Summary . 143

9 Resource Selection Using Automated Feature-Based Configuration Man-
agement in Federated Clouds 145
9.1 Introduction . 146
9.2 Motivation and Challenges . 149
9.3 Multi-Objective Optimization . 151
9.4 Feature Modeling . 154
9.5 Proposed Model . 157

9.5.1 Cloud Computing Model . 158

xiv

9.5.1.1 Instance Type Model . 158
9.5.1.2 Disk Model . 158
9.5.1.3 Virtual Machine Image Model 159
9.5.1.4 Instance Model . 159

9.5.2 Cost Model . 160
9.5.2.1 Networking and Storage Cost 160
9.5.2.2 Instance Cost . 160

9.6 Modeling IaaS Clouds Configuration Options with Feature Model 161
9.7 Experimental Results . 162

9.7.1 Scenario 1: simple . 170
9.7.2 Scenario 2: compute . 170
9.7.3 Scenario 3: compute and memory 173

9.8 Related Work . 173
9.8.1 Virtual Machine Image Configuration 175

9.8.1.1 SCORCH . 175
9.8.1.2 VMI Provisioning . 175
9.8.1.3 Typical Virtual Appliances 177

9.8.2 Virtual Machine Image Deployment 177
9.8.2.1 Virtual Appliance Model 177
9.8.2.2 Composite Appliance . 177

9.8.3 Deploying PaaS Applications . 179
9.8.3.1 HW-CSPL . 179
9.8.3.2 SALOON . 179

9.8.4 Configuration options of multi-tenant applications 180
9.8.4.1 Multi-Tenant Deployment 180
9.8.4.2 Capturing Functional and Deployment Variability 180
9.8.4.3 Configuration Management Process 182
9.8.4.4 Service Line Engineering Process 183

9.8.5 Infrastructure Configuration . 184
9.8.5.1 AWS EC2 Service Provisioning 184

9.8.6 Comparative View . 184
9.9 Summary . 188

10 Dohko: An Autonomic and Goal-Oriented System for Federated Clouds189
10.1 Introduction and Motivation . 190
10.2 System Architecture . 191

10.2.1 Client Layer . 191
10.2.2 Core Layer . 193
10.2.3 Infrastructure Layer . 196
10.2.4 Monitoring Cross-Layer . 197
10.2.5 Autonomic Properties . 197

10.2.5.1 Self-Configuration . 198
10.2.5.2 Self-Healing . 198
10.2.5.3 Context-Awareness . 199

10.2.6 Executing an Application in the Architecture 200
10.3 Experimental Results . 201

xv

10.3.1 Experimental Setup . 201
10.3.2 Scenario 1: application deployment 205
10.3.3 Scenario 2: application execution 206
10.3.4 Scenario 3: application deployment and execution with failures . . . 206

10.4 Related Work . 209
10.5 Summary . 211

11 Conclusion 212
11.1 Overview . 212
11.2 Summary of the Contributions . 213
11.3 Threat to Validity . 217
11.4 Perspectives . 218
11.5 Summary . 219

Bibliography 220

xvi

List of Figures

2.1 Computing landmarks in five decades . 17
2.2 Tompouce: an example of a medium-scale cluster 18
2.3 Tianhe-2 architecture and network topology 18
2.4 Foster’s grid computing model . 19
2.5 Hourglass grid architecture . 20
2.6 Globus Toolkit 3 architecture . 21
2.7 Globus Toolkit 4 architecture . 22
2.8 Different use of P2P systems . 23
2.9 Generic P2P architecture . 24
2.10 Example of a lookup operation in Chord 27
2.11 A cloud computing system . 30
2.12 A vision of grid, P2P, and cloud computing characteristics overlaps 31

3.1 Example of virtualization . 38
3.2 Example of workload consolidation using virtual machines 40
3.3 Example of an SLA structure . 42
3.4 MapReduce execution flow . 44
3.5 Cloud computing architecture . 45
3.6 Cloud service model considering the customers’ viewpoint 46
3.7 Hybrid cloud scenario . 48
3.8 An example of the cloud federation approach 49
3.9 Difference between multi-clouds and federated clouds 50
3.10 Categories of federation of clouds: vertical, horizontal, inter-cloud, cross-

cloud, and sky computing . 50
3.11 A horizontal cloud federated scenario with three clouds 52
3.12 A generic IaaS architecture . 58
3.13 Storage types usually available in IaaS clouds 58
3.14 Claudia architecture . 61
3.15 SciCumulus architecture . 62
3.16 Cloud-TM architecture . 62
3.17 mOSAIC architecture . 64
3.18 TClouds architecture . 65
3.19 FraSCAti architecture . 65
3.20 Stratos architecture . 66
3.21 COS architecture . 67
3.22 Rafhyc architecture . 67

xvii

3.23 Cloud bursting architecture . 68
3.24 Reservoir architecture . 69
3.25 Open Cirrus architecture . 70
3.26 CometCloud architecture . 71
3.27 Contrail architecture . 72
3.28 OPTIMIS architecture . 73

4.1 Architecture of an autonomic element . 79
4.2 Sunflower architecture . 81
4.3 Control loop of a component management cloud system 82
4.4 Snooze architecture . 83
4.5 Cloudlet architecture . 84
4.6 DVMS control loop . 84
4.7 Thermal-aware autonomic management architecture 85
4.8 SmartScale architecture . 86

5.1 Taxonomy of power and energy management techniques 91
5.2 Green metrics categorization of Stanley, Brill, and Koomey 96
5.3 The Green Grid Metrics . 97

6.1 Agents of the cloud market . 104
6.2 Detailed view of a data center . 104
6.3 Case study 1: power consumption with 2 data centers under limited power

consumption . 108
6.4 Case study 2: power consumption of two overloaded data centers under

limited power consumption . 110

7.1 Comparing two biological sequences . 117
7.2 Example of a Smith-Waterman similarity matrix 118
7.3 Federated cloud architecture to execute MapReduce applications 119
7.4 Type of the messages exchanged in our multi-cloud architecture 119
7.5 Comparing protein sequences with a genomics database on multiple clouds 121
7.6 Smith-Waterman execution following the MapReduce model 121
7.7 Execution time for 24 sequence comparisons with the Uniprot/SwissProt

database . 123
7.8 Sequential execution time for the longest sequence (Q9UKN1) with SSEARCH

compared with the standalone execution time in Amazon EC2 124
7.9 GCUPS of 24 query sequences comparison with the database UniProtKB/Swiss-

Prot using our SW implementation . 124

8.1 Excalibur: services and layers . 131
8.2 A DAG representing a workflow application with 4 tasks, where one of

them, T3, is composed of three independent subtasks 132
8.3 Executing an application using the Excalibur cloud architecture 137
8.4 The Infernal-Segemehl workflow . 139
8.5 Infernal’s target hits table . 139
8.6 Cost and execution time of the Infernal-Segemehl workflow on the cloud,

when allocating the resources based on users’ preferences 140

xviii

8.7 Monetary cost and execution time of the Infernal-Segemehl workflow on the
cloud with the auto-scaling enabled . 142

8.8 Scaling the Infernal-Segemehl workflow . 142

9.1 An engineering method to handle clouds’ variabilities 148
9.2 Average network bandwidth of the Amazon EC2 instance c3.8xlarge when

created with the default configuration; and using an internal (private) and
an external (public) address for data transfer 150

9.3 Multi-objective optimization problem evaluation mapping 152
9.4 Pareto optimality for two objectives . 153
9.5 Example of a feature model with And, Optional, Mandatory, Or, and Alter-

native features . 156
9.6 Abstract extended feature model of IaaS clouds 163
9.7 Our process to select and to deploy the resources in the clouds 164
9.8 Example of the abstract extended feature model instantiated to represent

two products of Amazon EC2 . 166
9.9 Example of an abstract extended feature model instantiated to represent

two products of GCE . 167
9.10 UnixBench score for one, two, four, and eight virtual cores for the general

instance types of Amazon EC2 and Google Compute Engine (GCE) 169
9.11 Instance types that offer at least 4 vCPU cores and 4GB of RAM memory

with a cost of at most 0.5 USD/hour . 171
9.12 Instance types in the Pareto front that offer at least 4 vCPU cores and 4GB

of RAM memory with a cost of at most 0.5 USD/hour 171
9.13 Instance types suggested by the system that offer at least 4 vCPU cores

and 4GB of RAM memory with a cost of at most 0.5 USD/hour 172
9.14 Instance types that offer at least 16 CPU cores and 8GB of RAM memory

with a cost of at most 1.0 USD/hour . 172
9.15 The solutions with the minimal cost (best solutions) when requested at

least 16 CPU cores and 8GB of RAM memory with a cost of at most 1.0
USD/hour . 173

9.16 Instance types that offer at least 16 CPU cores and 90GB of RAM memory
with a cost of at most 2 USD/hour . 174

9.17 Instance types in the Pareto front that offer at least 16 CPU cores and
90GB of RAM memory, with a cost of at most 2 USD/hour 174

9.18 SCORCH MDE process . 176
9.19 MDE approach for VMI configuration . 176
9.20 Virtual appliance model . 178
9.21 Composite appliance model . 178
9.22 HW-CSPL’s feature model . 179
9.23 SALOON framework . 180
9.24 Feature model showing external and internal variability options of a multi-

tenant SaaS application . 181
9.25 A model for managing configuration options of SaaS applications 182
9.26 A configuration process model and its stages 183
9.27 A service line engineering method . 183

xix

9.28 Extended feature model for EC2, EBS, and S3 services 185

10.1 Design and main modules of an autonomic architecture for multiple clouds 192
10.2 Structure of the hierarchical P2P overlay connecting two clouds 197
10.3 The autonomic properties implemented by our architecture 198
10.4 Example of super-peer failure and definition of a new super-peer 199
10.5 Interaction between the architecture’s module when submitted an applica-

tion to execute . 202
10.6 Workflow to create one virtual machine in the cloud 203
10.7 Configuration time of the virtual machines on the clouds 206
10.8 SSEARCH’s execution time on the clouds to compare 24 genomics query

sequences with the UniProtKB/Swiss-Prot database 207
10.9 Execution time of the SSEARCH application to compare 24 genomics query

sequences with the UniProtKB/Swiss-Prot database in a multi-cloud scenario208
10.10Deployment and execution time of the experiments 208
10.11Execution time of the application on the clouds with three different type of

failures . 209

xx

List of Tables

2.1 Comparative view of the P2P overlay networks 28

3.1 A summary of some cloud standards . 54
3.2 Some metrics to evaluate an IaaS cloud . 56
3.3 Comparative view of some cloud architectures 74

4.1 Autonomic computing systems . 88

5.1 Energy efficiency benchmarks and metrics 95

6.1 Comparative view of cloud server consolidation strategies 113

7.1 Configuration of the clouds to execute the SW algorithm 122
7.2 Query sequences compared to the UniprotKb/Swiss-Prot genomics database122
7.3 Comparative view of the approaches that implement SW in HPC platforms 127

8.1 Resources used to execute the Infernal-Segemehl workflow 139
8.2 Comparative view of user-centered cloud architectures 143

9.1 Using group cardinality in feature model diagrams 156
9.2 Notation of the model . 157
9.3 Amazon EC2 instance types and their cost in the region of Virginia 165
9.4 Google Compute Engine (GCE) instance types and their cost in the US region168
9.5 Benchmark applications . 168
9.6 Three users’ requirements to select the clouds’ resources 170
9.7 Instance types in the Pareto front considering a demand for 16 CPU cores

and 8GB of RAM memory with a cost of at most 1.0 USD/hour 171
9.8 Characteristics of the instance types that offer at least 16 CPU cores and

90GB of RAM memory . 173
9.9 Comparative view of cloud variability models 187

10.1 Main operations implemented by the key-value store 196
10.2 Setup of the application . 203
10.3 Users’ requirements to execute the SSEARCH in the cloud 205
10.4 Instance types that met the users’ requirements to execute the SSEARCH 205
10.5 Financial cost for executing the application on the cloud considering different

requirements . 207
10.6 Comparison of the cloud architectures considering their autonomic properties210

xxi

Listings

3.1 Counting the number of occurrence of each word in a text using MapReduce [98] 43
8.1 Example of a splittable file format (i.e., FASTA file) 133
8.2 Example of a JSON with three genomics sequences 133
8.3 Defining a genomics analysis application 134
8.4 Defining a Twitter analysis application . 134
8.5 Excalibur: example of a YAML file with the requirements and one applica-

tion to be executed on the cloud . 136
8.6 Users’ description of the Infernal-Segemehl workflow 138
10.1 Structure of an application descriptor . 193
10.2 An example of a deployment descriptor generated by the provisioning module194
10.3 Example of one script with three variability points 195
10.4 Application descriptor with the requirements and one application to be

executed in one cloud . 201
10.5 An application descriptor with one SSEARCH description to be executed

in the cloud . 204

xxii

List of Abbreviations

AE Autonomic Element
AM Autonomic Manager
API Application Programming Interface
AT Allocation Trust
AWS Amazon Web Services
BPEL Business Process Execution Language
CA Cloud Availability
CDMI Cloud Data Management Interface
CE Cost-Effectiveness
CERA Carbon Emission Regulator Agency
CIMI Cloud Infrastructure Management Interface
CK Configuration Knowledge
Clafer Class feature reference
CloVR Cloud Virtual Service
CLSP Cloud Service Provider
CLU Cloud User
CORBA Common Object Request Broker Architecture
CP Constraint Programming
CPE Compute Power Efficiency
CSP Constraint Satisfaction Problem
DAG Directed Acyclic Graph
DAOP Dynamic Aspect-Oriented Programming
DCD Data Center Density
DCeP Data Center Energy Productivity
DCiE Data Center Infrastructure Efficiency
DCOM Distributed Computing Object Model
DCPE Data Center Performance Efficiency
DFS Distributed File System
DHT Distributed Hash Table

xxiii

DMTF Distributed Management Task Force
DPM Dynamic Power Management
DSL Domain Specific Language
DSTM Distributed Software Transaction Memory
DTM Distributed Transaction Memory
DVFS Dynamic Voltage and Frequency Scaling
EC2 Elastic Compute Cloud
ECA Event-Condition-Action
ECU Elastic Computing Unit
EFM Extended Feature Model
EPP Electric Power Provider
FAP Federated Application Provisioning
FM Feature Model
FODA Feature-Oriented Domain Analysis
GAE Google App Engine
GCE Google Compute Engine
GCEUs Google Compute Engine Units
GCUP Billions of Cell Updates per Second
GGF Global Grid Forum
GHG Greenhouse Gas
GPI Green Performance Indicator
GUI Graphical User Interface
HPC High Performance Computing
HTTP Hypertext Transfer Protocol
IaaS Infrastructure-as-a-Service
IC Instance Capability
IE Instance Efficiency
IM Infrastructure Manager
IOPS Input/Output Operations per Second
IPT Instance Performance Trust
ISP Instance Sustainable Performance
JSON JavaScript Object Notation
KPI Key Performance Indicator
MAS Multi-Agent System
MDE Model-Driven Engineering
ME Managed Element
MIMD Multiple Instruction Multiple Data

xxiv

MOOP Multi-Objective Optimization Problem
MPI Message Passing Interface
MPP Massively Parallel Processor
MQS Message Queue System
MTC Many Task Computing
MTRA Mean Time to Resource Acquisition
NAS Network-Attached Storage
NC Network Capacity
NIST National Institute of Standards and Technology
OCCI Open Cloud Computing Interface
OD Outage Duration
OGF Open Grid Forum
OGSA Open Grid Service Architecture
OGSI Open Grid Service Infrastructure
OS Operating System
OVF Open Virtualization Format
P2P Peer-to-peer
PaaS Platform-as-a-Service
PC Personal Computer
PLE Product Line Engineering
PLR Packet Lost Ratio
PUE Power Usage Effectiveness
PVM Parallel Virtual Machine
QoS Quality of Service
RE Resource Efficiency
REST Representational State Transfer
RMI Java Remote Method Invocation
RPC Remote Procedure Call
RRT Resource Release Time
SaaS Software-as-a-Service
SC Storage Capacity
SCA Service Component Architecture
SCORCH Smart Cloud Optimization for Resource Configuration Handling
SDA Service Discovery Agent
SDAR Storage Data Access Ratio
SGE Sun Grid Engine
SIMD Single Instruction Multiple Data

xxv

SLA Service-Level Agreement
SNIA Storage Networking Industry Association
SOA Service-Oriented Architecture
SOAP Simple Object Access Protocol
SOOP Single-Objective Optimization Problem
SPEC Standard Performance Evaluation Corporation
SPL Software Product Line
SPLE Software Product Line Engineering
SS Self-Scheduling
SSD Solid-State Disk
SSO Single Sign-On
SW Smith-Waterman
TGI The Green Index
TM Transactional Memory
TVA Typical Virtual Appliance
VA Virtual Appliance
VI Virtual Infrastructure
VM Virtual Machine
VMI Virtual Machine Image
VMM Virtual Machine Monitor
W3C World Wide Web Consortium
WfMS Workflow Management System
WSDL Web Service Definition Language
WSLA Web Service Level Agreement
WSRF Web Service Resource Framework
WWW World-Wide Web
XML Extensible Markup Language
XMPP Extensible Messaging and Presence Protocol
YAML YAML Ain’t Markup Language

xxvi

Chapter 1

Introduction

Contents
1.1 Motivation . 1

1.2 Objectives . 3

1.3 Thesis Statement . 4

1.4 Contributions . 4

1.5 Publications . 6

1.6 Thesis Outline . 7

1.1 Motivation
Cloud computing is a recent paradigm for provisioning of computing infrastructure,

platform and/or software. It provides computing resources through a virtualized infras-
tructure, letting applications, computing power, data storage and network resources to be
provisioned, and remotely managed over private networks or over the Internet [154, 307].
Hence, cloud computing enhances collaboration, agility, scalability, and availability to end
users and enterprises.

Furthermore, the clouds offer different features, enabling resource sharing (e.g., in-
frastructure, platform and/or software) among cloud providers and cloud users in a
pay-as-you-go model. These features have been used for many objectives such as (a) to
decrease the cost of ownership, (b) to increase the capacity of dedicated infrastructures
when they run out of resources, (c) to reduce power consumption and/or carbon footprint,
and (d) to respond effectively for changes in the demand. However, the access to these
features depends on the levels of abstraction (i.e., cloud layer). The levels of abstraction are
usually defined as being: infrastructure-as-a-service (IaaS), platform-as-a-service (PaaS),
and software-as-a-service (SaaS). While IaaS offers low-level access to the infrastructure,
including virtual machines (VMs), storages, and network, PaaS adds a layer above the IaaS
infrastructure, offering high-level primitives to help the users on developing native cloud
applications. In addition, it also provides services for application deployment, monitoring,

1

Chapter 1. Introduction

and scaling. Finally, SaaS provides the applications, and manages the whole computing
environment.

In this context, the users interested in the cloud face the problem of choosing low-level
services to execute ordinary applications, thus, being responsible for managing the com-
puting resources (i.e., VMs) or choosing high-level services needing to develop native cloud
applications, in order to delegate the management of the computing environment to cloud
providers. These two options exist, because the clouds often target Web applications,
whereas users’ applications are usually batch-oriented performing parameter sweeps. There-
fore, deploying and executing an application in the cloud is still a complex task [179, 392].
For instance, to execute an application using the cloud infrastructure, the users must first
select a virtual machine (VM), configure all necessary applications, transfer all data, and
finally, execute their applications. Learning this process can require days or even weeks, if
the users are unfamiliar with system administration, without guarantees of meeting their
objectives. Hence, this can represent a barrier to use the cloud infrastructure.

Moreover, with the number of cloud providers growing, the users have the challenge of
selecting an appropriate cloud and/or resource (e.g.,VM) to execute their applications. This
represent a difficult task because there is a wide range of resources offered by the clouds.
Furthermore, these resources are usually suited for different purposes, and they often have
multiple constraints. Since clouds can fail, or may have scalability limits, a cloud federation
scenario should be considered, increasing the work and the difficulties in using clouds’
infrastructures. Some questions that arise in this context are: (a) which resources (VMs)
are suitable for executing a given application; (b) how to avoid under and over-provisioning
taking into account both resources’ characteristics and users’ objectives (e.g., performance
at lower cost), without being tied to a cloud provider; and (c) how a non-cloud specialist may
maximize the usage of the cloud infrastructure without re-engineering their applications
to the cloud environment.

Although some efforts have been made to reduce the cloud’s complexity, most of
them target software developers and are not straightforward for inexperienced users [179].
Besides that, cloud services usually run on large-scale data centers and demand a huge
amount of electricity. Nowadays, the electricity cost can be seen as one of the major
concerns of data centers, since it is sometimes nonlinear with the capacity of the data
centers, and it is also associated with a high amount of carbon emission (CO2). The
projections considering the data center energy-efficiency [142, 201, 202] show that the
total amount of electricity consumed by data centers in the next years will be extremely
high, and it is like to overtake the airlines industry in terms of carbon emissions.

Additionally, depending on the efficiency of the data center infrastructure, the number
of watts that it requires can be from three to thirty times higher than the number of watts
needed for computations [330]. And it has a high impact on the total operation costs [31],
which can be over 60% of the peak load. Nevertheless, energy-saving schemes that result in
too much degradation of the system performance or in violations of service-level agreement
(SLA) parameters would eventually cause the users to move to another cloud provider.
Thus, there is a need to reach a balance between the energy savings and the costs incurred
by these savings in the execution of the applications.

In this context, we advocate the usage of cloud federation to seamlessly distribute the
services workload across different clouds, according to some objectives (e.g., to reduce energy
consumption) without incurring in too much degradation of performance requirements

2

Chapter 1. Introduction

defined between cloud providers and cloud users. Moreover, we advocate a declarative
approach where the users describe their applications and objectives, and submit it to a
system that automatically: (a) provisions the resources; (b) sets up the whole computing
environment; (c) tries to meet the users’ requirements such as performance at reduce cost;
and (d) handles failures in a federated cloud scenario.

1.2 Objectives
Following a goal-oriented strategy, this thesis aims to investigate the usage of federated

clouds considering different viewpoints. It considers the point of views of the: (a) cloud
providers, (b) experienced software developers, (c) ordinary users, and (d) multiple
users’ profiles (i.e., system administrators, unskilled and skilled cloud users, and software
developers). To achieve the main goal, this thesis considers the following four sub-goals.

1. reducing power consumption: the cloud services usually execute in big data
centers that normally contain a large number of computing nodes. Thus, the cost of
running these services may have a major impact on the total operational cost [31]
due to the amount of energy demanded by such services. In this scenario, we aim
to investigate the use of a cloud federation environment to help cloud providers on
reducing power consumption of the services, without having a great impact in quality
of service (QoS) requirements.

2. execution of a huge application at reduced-cost: most of the clouds provide
some resources at low financial costs. These resources normally have limited comput-
ing capacity and small amount of RAM memory. Moreover, they are heterogeneous
with regard to the cloud layer (i.e., PaaS and IaaS), requiring different strategies to
use and to connect them. Thus, we want to investigate if a federated execution using
exclusively the cheapest resources of each cloud can achieve an acceptable execution
time.

3. reducing the execution time of cloud-unaware applications: some of the
users applications were designed to execute in a single and dedicated resource with
almost predictable performance. Hence, these applications do not fit the cloud model,
where resource failures and performance variation are part of its normal operation.
However, most of these applications have parts that can be executed in parallel.
In other words, these applications comprise parts of independent tasks. In this
scenario, we aim to investigate the execution of cloud-unaware applications taking
into account the financial cost and trying to reduce their execution time without
users’ intervention.

4. automate the tasks of selection and configuration of clouds resources for
different kinds of users: nowadays, the users interested in the clouds face two
major problems. One is knowing what are the available resources including their
constraints and characteristics. Another is the required skill to select, to configure,
and to use these resources taking into account different objectives such as performance
and cost. In this context, one of our goal is to investigate how to help the users on

3

Chapter 1. Introduction

dealing with these problems, requiring minimal users’ intervention to configure a
single or a federated cloud environment.

1.3 Thesis Statement

In 1992, Smarr and Catlett [326] introduced the concept of metacomputing. Metacom-
puting refers to the use of distributed computing resources connected by the networks.
Thus creating a virtual supercomputer – the metacomputer. In this case, they advocated
that the users must be unaware of the metacomputer or even any computer, since the
metacomputer has the capacity to obtain whatever computing resources are necessary.

Based on this vision, our thesis statement is that:

Cloud computing is an interesting model for implementing a metacomputer due to
its characteristics such as on-demand, pay-per-usage, and elasticity. Moreover, the
cloud model focuses on delivering computing services rather than computing devices;
i.e., in the cloud, the users are normally unaware of the computing infrastructure.
Altogether, the cloud model can increase resource federation and reduce the efforts
to democratize the access to high performance computing (HPC) environments at
reduced cost.

Besides that, we ask the following research questions in this thesis:

can the cloud federation be used to reduce power consumption of data centers,
without incurring into several performance penalties for the users?

can software developers use the clouds to speed up the execution of a native-cloud
application at reduced-cost, without being locked to any cloud provider?

can inexperienced users utilize a cloud environment to execute cloud-unaware ap-
plications, without having to deal with low-level technical details, having both an
acceptable execution time and a financial cost, and without having to change their
applications to meet cloud’s constraints?

is there a method to support automatic resource selection and configuration on cloud
federation, and that offers a level of abstraction suitable for different users’ profiles?

1.4 Contributions
To tackle the introduced sub-goals this thesis makes the following five contributions:

1. Power-Aware Server Consolidation for Federated Clouds: we propose and
evaluate a power and SLA-aware application consolidation solution for cloud federa-
tions [215]. To achieve this goal, we designed a multi-agent system (MAS) for server
consolidation, taking into account service-level agreement (SLA), power consumption,
and carbon footprint. Different for similar solutions available in the literature, in our
solution, when a cloud is overloaded its data center needs to negotiate with other

4

Chapter 1. Introduction

data centers before migrating the workload (i.e., VM). Simulation results show that
our approach can reduce up to 46% of the power consumption, while trying to meet
performance requirements. Furthermore, we show that federated clouds can provide
an adequate solution to deal with power consumption in clouds. In this case, cloud
providers can use the computing infrastructure of other clouds according to their
objectives. This work was published in [215].

2. Biological Sequence Comparison at Zero-Cost on a Vertical Public Cloud
Federation: we propose and evaluate an approach to execute a huge bioinformatics
application on a vertical cloud federation [214]. This approach has two main
components: (i) an architecture that can transparently connect and manage
multiple clouds, thus creating a multi-cloud environment and (ii) an implementation
of a MapReduce version of the bioinformatics application in this architecture. The
architecture and the application were implemented and executed in five public
clouds (Amazon EC2, Google App Engine, Heroku, OpenShift, and PiCloud), using
only their free-quota. In our tests, we executed an application that did up to 12
million biological comparisons. Experimental results show that (a) our federated
approach could reduce the execution time in 22.55% over the best stand-alone
cloud execution; (b) we could reduce the execution time from 5 hours and 44
minutes (SSEARCH sequential tool) to 13 minutes (our Amazon EC2 execution);
and (c) federation can enable the execution of huge applications in clouds at no
expense (i.e., using only the free-quota). With this work, it became clear that our
architecture could federate real clouds and it could execute a real application. Even
though the architecture proposed was very effective, it was application-specific (i.e.,
Mapreduce application). Moreover, it became clear for us that configuration tasks
are complex in a real cloud environment, and they often require advanced computing
skills. So, we decided to investigate generic architectures and models that did not
impose complex configuration tasks for the users. This work was published in [214].

3. Excalibur: A User-Centered Cloud Architecture for Executing Parallel
Applications: we propose and evaluate a cloud architecture, called Excalibur.
This architecture has three main objectives [217]: (a) provide a platform for high
performance computing applications in the cloud for users without cloud skills;
(b) dynamically scale the applications without user intervention; and (c) meet the
users requirements such as high performance at reduced cost. Excalibur comprises
three main components: (i) an architecture that sets up the cloud environment;
(ii) an auto-scaling mechanism that tries to reduce the execution time of cloud-
unaware applications. In this case, the auto-scaling solution focuses on applications
that were developed to be executed sequentially, but that have parts that can
be executed in parallel; (iii) a domain specific language (DSL) that allows the
users to describe the dependencies between the applications based on the structure
of their data (i.e., input and output). We executed a complex genomics cloud-
unaware application in our architecture, which was deployed on Amazon EC2. The
experiments showed that the proposed architecture could dynamically scale this
application up to 11 instances, reducing the execution time by 63% and the cost by
84% when compared to the execution in a configuration specified by the users. In
this case, the execution time was reduced from 8 hours and 41 minutes to 3 hours

5

Chapter 1. Introduction

and 4 minutes; and the cost was reduced from 78 USD to 14 USD. With this work,
the advantages of auto-scaling in clouds became clear to us. Furthermore, we showed
that it was possible to execute a complex cloud-unaware application in the cloud.
This work was published in [217].

4. Resource Selection Using Automated Feature-Based Configuration Man-
agement in Federated Clouds: we propose and evaluate a model to handle the
variabilities of IaaS clouds. The model uses extended feature model (EFM) with
attributes to describe the resources and their characteristics and to select appro-
priate virtual machine based on users’ objectives. We implemented the model in a
solver (i.e., Choco [178]) considering the configurations of two different clouds (Ama-
zon EC2 and Google Compute Engine (GCE)). Experimental results showed that
using the proposed model, the users can get an optimal configuration with regard to
their objectives without needing to know the constraints and variabilities of each
cloud. Moreover, our model enabled application deployment and reconfiguration at
runtime in a federated cloud scenario without requiring the usage of virtual machine
image (VMI).

5. Dohko: An Autonomic and Goal-Oriented System for Federated Clouds:
we propose and evaluate an autonomic and goal-oriented system for federated clouds.
Our system implements the autonomic properties: self-configuration, self-healing,
and context-awareness. Using a declarative strategy, in our system, the users specify
their applications and requirements (e.g., number of CPU cores, maximal finan-
cial cost per hour, among others), and the system automatically (a) selects the
resources (i.e., VMs) that meet the constraints using the model proposed in con-
tribution 4; (b) configures and installs the applications in the clouds; (c) handles
resource failures; and (d) executes the applications. We executed a genomics applica-
tion (i.e., SSEARCH, September 2014) to compare up to 24 biological sequences with
the UniProtKB/Swiss-Prot (September 2014) in two different cloud providers (i.e.,
Amazon EC2 and GCE) and considering different scenarios (e.g., standalone (i.e.,
single cloud) and multiple clouds). Experimental results show that our system could
transparently connect different clouds and configure the whole execution environ-
ment, requiring minimal users intervention. Moreover, by employing a hierarchical
management organization (i.e., a hierarchical P2P overlay), our system was able
to handle failures and to organize the nodes in a way that reduced inter-cloud
communication.

1.5 Publications
1. Alessandro Ferreira Leite, Claude Tadonki, Christine Eisenbeis, Tainá Raiol, Maria

Emilia M. T. Walter, and Alba Cristina Magalhães Alves de Melo. Excalibur: An
autonomic cloud architecture for executing parallel applications. In 4th International
Workshop on Cloud Data and Platforms, pages 2:1–2:6, Amsterdam, Netherlands,
2014

6

Chapter 1. Introduction

2. Alessandro Ferreira Leite and Alba Cristina Magalhães Alves de Melo. Executing
a biological sequence comparison application on a federated cloud environment. In
19th International Conference on High Performance Computing (HiPC), pages 1-9,
Bangalore, India, 2012

3. Alessandro Ferreira Leite and Alba Cristina Magalhães Alves de Melo. Energy-aware
multi-agent server consolidation in federated clouds. In Mazin Yousif and Lutz
Schubert, editors, Cloud Computing, volume 112 of Lecture Notes of the Institute for
Computer Sciences, Social Informatics and Telecommunications Engineering, pages
72–81. 2013

4. Alessandro Ferreira Leite, Hammurabi Chagas Mendes, Li Weigang, Alba Cristina
Magalhães Alves de Melo, and Azzedine Boukerche. An architecture for P2P bag-
of-tasks execution with multiple task allocation policies in desktop grids. Cluster
Computing, 15(4), pages 351-361, 2012

1.6 Thesis Outline
This thesis is organized in two parts: background and contributions.
In the first part, we present the concepts and recent developments in the domain of

large-scale distributed systems. In this case, it comprises the following chapters:

chapter 2: we provide an historical perspective of concepts, mechanisms and tools
that are landmarks in the evolution of large-scale distributed systems. Then, we
present the most representative types of these systems: clusters, grids, P2P systems,
and clouds.

chapter 3: we discuss the practical aspects related to cloud computing, such as
virtualization, service-level agreement (SLA), MapReduce, and cloud computing
architectures.

chapter 4: we describe autonomic computing. First, we present the definition of
autonomic systems, followed by the autonomic properties. Then, we present the
concepts related to the architecture of autonomic systems. Finally, some autonomic
systems for large-scale distributed systems are presented and compared.

chapter 5: we present the concept of energy-aware computing, providing information
about green data centers followed by a discussion about green performance indicators.

In the second part, we present the contributions of this thesis, and it is organized as
follows:

chapter 6: we present the first contribution of this thesis: a server consolidation
approach to reduce power consumption in cloud federations. First, we present
the proposed multi-agent system (MAS) server consolidation strategy for federated
clouds. Then, the experimental results are discussed followed by the related work in
this area. Finally, we present final considerations.

7

Chapter 1. Introduction

chapter 7: in this chapter, we describe the seconds contribution of this thesis: our
approach to execute the Smith-Waterman (SW) algorithm in a cloud federation with
zero-cost. First, we provide a brief introduction for biological sequence comparison
followed by a description of the Smith-Waterman algorithm. Next, we present
the proposed architecture and the experimental results realized in a public cloud
federation scenario. Finally, we discuss some of the related works that have executed
the SW algorithm in different platforms followed by final considerations.

chapter 8: in this chapter, we describe the third contribution of this thesis: a
cloud architecture to help the users on reducing the execution time of cloud-unaware
applications. First, we present our cloud architecture. After, experimental results
are discussed followed by a discussion of similar cloud architecture available in the
literature. Finally, we present final considerations.

chapter 9: this chapter presents the fourth contribution of this thesis: a model to
handle the variabilities of IaaS clouds. First, it presents the motivation and challenges
addressed by our model followed by an overview of multi-objective optimization
problem (MOOP) and feature modeling. Next, the proposed model is presented.
After, it describes the experimental results followed by the related works. Finally, it
presents final considerations.

chapter 10: in this chapter, we present the fifth contribution of this thesis: an
autonomic cloud architecture. First, we present the proposed architecture and its
main components, followed by a description of its autonomic properties. Then,
experimental results are discussed. Next, a comparative view of some important
features of cloud architectures is presented. Finally, we present final considerations.

chapter 11: in this chapter, we summarize the overall manuscript, and we present
the limitations and future directions.

8

Part I

Background

9

Chapter 2

Large-Scale Distributed Systems

Contents
2.1 Evolution . 11

2.1.1 The 1960s . 11

2.1.2 The 1970s . 12

2.1.3 The 1980s . 13

2.1.4 The 1990s . 13

2.1.5 2000-2014 . 15

2.1.6 Timeline . 16

2.2 Cluster Computing . 17

2.3 Grid Computing . 19

2.3.1 Architecture . 20

2.4 Peer-to-peer . 21

2.4.1 Architecture . 23

2.4.2 Unstructured P2P Network . 24

2.4.3 Structured P2P Network . 24

2.4.4 Hybrid P2P Network . 26

2.4.5 Hierarchical P2P Network . 27

2.4.6 Comparative View of P2P Structures 28

2.5 Cloud Computing . 29

2.5.1 Characteristics . 30

2.5.2 Drawbacks . 32

2.6 Summary . 34

10

Chapter 2. Large-Scale Distributed Systems

Over the years, we have observed a considerable increase in the demand for powerful
computing infrastructures. This demand has been satisfied by aggregating resources
connected through a network, forming large-scale distributed systems. These systems
normally appear to users as a single system or computer [88, 341]. One example is the
Internet, where the users use different services to communicate and to share information,
without needing to know about its computing infrastructure.

Large-scale distributed systems can be defined as systems that coordinate a big number
of geographically distributed and mostly heterogeneous resources to deliver scalable services
without having a centralized control. Scalability is an important characteristic of large-scale
distributed systems since it guarantees that even if the number of users, nodes or the
system workload increases, these systems can still deliver their services without noticeable
effect on performance or on administrative complexity [192]. Examples of such systems
are the SETI@home [370], the LHC Computing Grid [33], among others.

In this context, this chapter presents the evolution of computing systems from the
1960s until today. Then, the most common large-scale systems are discussed: clusters,
grids, P2P systems, and clouds.

2.1 Evolution
Nowadays, we observe an astonishing level of complexity, interoperability, reliability,

and scalability of large-scale distributed systems. This is due to concepts, models, and
techniques developed in the last 50 years in many research domains, including computer
architecture, networking, and parallel/distributed computing. In this section, we present
a general landscape of events and the main landmarks that contributed to our current
development state. It must be noted that this is not intended to be an exhaustive list. In
order to give a historical perspective, this section is organized in subsections that describe
the main developments in each decade.

2.1.1 The 1960s
The 1960s was a period of innovative ideas that could not become reality because of

several technological barriers. It was also the decade of the first developments in the areas
of supercomputing and networking.

In the 1960s, some researchers conceived the idea of the computer as a utility. They
envisioned a world where the computer was not an expensive machine restricted to some
organizations, but a public utility as the telephone system. This idea was exposed by
John McCarthy in 1961 at a talk at the MIT Centennial [132]. In 1962, J. C. L. Licklider
proposed the Galactic Network concept [226], where a set of globally interconnected
computers could be used by anyone to quickly access data and programs. Even though
these ideas became popular in the 1960s, many technological barriers were encountered
that prevented their implementation at that time.

Still in the 1960s, the CDC 6000 series was designed by Seymour Cray as the first super-
computer, composed of multiple functional units and one or two CPUs. This was a multiple

11

Chapter 2. Large-Scale Distributed Systems

instruction multiple data (MIMD) machine, according to Flynn’s categorization [118]. In
the late 1960s, the CDC 8600 had 4 CPUs, with a shared memory design.

In 1962, the first wide-area network experiment was made, connecting a computer in
Massachusetts to a computer in California, using telephone lines. In 1969, the ARPANET
was created, aiming to connect computing nodes in several Universities in the US, making
use of the recently developed packet switching theory.

In 1965, IBM announced the System 370/67, introducing the usage of a software layer
called virtual machine monitor (VMM) that enabled to share the same computer among
several operating systems and computing environments [138, 146].

The concepts involved in the client/server model were first proposed in 1969, where the
server was named server-host and the client was named using-host. In this early model,
both client and server were physical machines.

2.1.2 The 1970s
The 1970s can be seen as the decade where some ideas proposed in the 1960s started

to be implemented. One of the main landmarks of this decade is the Internet.
In the early 1970s, Seymour Cray left CDC to create his own company, using a different

approach to build supercomputers. The idea was to exploit the single instruction multiple
data (SIMD) categorization [118], named vector processing at that time. It replicated the
execution units, instead of the whole CPU. The Cray-1 Machine, released in 1976, could
operate by blocks of 64 operands (SIMD capability), attaining 250 MFlops (millions of
floating-point operations per second).

Still in the 1970s, computers started to be connected by networks, using the ARPANET.
In 1972, a large demonstration of the ARPANET took place, using electronic mails as the
main application. In addition, the concept of open-architecture network was proposed,
where individual networks might be separately designed and then connected by a standard
protocol. A packet radio program that used the open-architecture concept was called
Internetting at DARPA. In 1973, the first Ethernet network was installed at the Xerox
Palo Alto Research Center. Telnet (remote login) and ftp (file transfer) protocols were
proposed in 1972 and 1973, respectively. In 1974, Cerf and Kahn published their paper
presenting the TCP protocol [72]; and the term Internet was coined to describe a global
TCP/IP network.

The combination of the time-sharing vision and the decentralization of computer
infrastructures led to the concept of distributed systems in the late 1970s. A distributed
system can be defined as a collection of autonomous computers connected by a network
that appears to its users as a single system. In this system, computers communicate
with each other using messages that are sent over the network, and this communication
process is hidden from the users [88, 134, 341]. Transparency is a very important point in
this definition. It means that users and applications should interact with a distributed
system in the same way as they interact with a standalone system. Other important
characteristics are scalability, availability and interoperability which, respectively, enable
distributed systems to be relatively easy to expand or scale; to be continuously available,
even though some parts are unavailable; and to establish communication among different
hardware and software platforms.

12

Chapter 2. Large-Scale Distributed Systems

2.1.3 The 1980s
The 1980s observed a rapid development in supercomputing, networking and distributed

systems. The World-Wide Web (WWW) was proposed in this decade.
In the 1980s, Cray continued to release supercomputers based on vector processing and,

in 1988, the first supercomputer to attain a sustained rate of 1 gigaflop was a Cray-YMP8,
composed of 8 CPUs, capable of operating simultaneously on 64 operands each. Still in the
1980s, several companies focused on shared memory MIMD supercomputers. The company
Thinking Machines built the CM-2 (Connection Machine) hypercube supercomputer, one
of the first so-called massively parallel processors (MPPs), composed of 65,536 (1-bit
check) processing elements with local memory. In 1989, the CM-2 with 65,536 processing
elements attained 2.5 gigaflops.

In 1983, the TCP/IP protocol was adopted by the ARPANET, replacing the previous
NCP protocol. In 1985, the TCP/IP protocol was used by several networks, including the
USENET, BITNET and NSFNET. In 1989, Berners-Lee [39, 40] proposed a new protocol
based on hypertext. This protocol would become the World-Wide Web (WWW) in 1991.

With the advent of personal computers (PCs) and workstations, the client-server model
gained popularity in the late 1980s, being mainly used for file sharing. Still in the 1980s,
important concepts in distributed systems such as event ordering, logical clocks, global
states, Byzantine faults and leader election were proposed [88].

In the 1980s, it became clear that a distributed system must comprise different providers
and that it should be independent from the communication technology. Initially, this was
a difficult objective to achieve since the communication in a distributed system was mostly
implemented using low-level socket primitives. Socket programming is complex and requires
a deep understanding of the underlying network protocols. To bypass these difficulties,
the remote procedure call (RPC) was proposed in 1983 [47], enabling functions that belong
to the same program to be performed by remote computers, as if they were running locally.
This represented a great advancement and RPC was the base for the CORBA and Web
services.

2.1.4 The 1990s
In the 1990s, great technological advances and intelligent design choices made it possible

to break the teraflop performance barrier. It was also the decade of the widespread adoption
of the Internet. Metacomputing, grid computing and cloud computing were proposed
in the 1990s. At this decade, the researchers also began to consider the use of virtual
machines to overcome some limitations of the x86 architecture and operating systems [301].

The idea of cluster computing became very popular in the 1990s. Clusters consisted of
commodity components connected in order to build a supercomputer. In 1993, the Beowulf
project was able to connect 8 PCs (DX4 processors) with the 10Mbit Ethernet, using the
Linux operating system. The number of PCs connected grew quickly and the 10Mbit
Ethernet was replaced by Fast Ethernet. One of the reasons for the success of clusters was
the development of programming environments such as parallel virtual machine (PVM)
and message passing interface (MPI). In 1997, clusters were included among the fastest 500
machines at the Top 500 list (top500.org), with a sustained performance of 10 gigaflops.

13

http://top500.org

Chapter 2. Large-Scale Distributed Systems

Still in the 1990s, research on supercomputing continued and, in 1997, the ASCI Red
machine, with 4,510 MIMD computing nodes was the first supercomputer to attain 1
teraflop of sustained performance.

In 1992, more than a million computers were connected to the Internet. In 1993,
the first graphic browser, called Mosaic, was introduced [254]. The World Wide Web
Consortium (W3C) was created in 1994 to promote and to develop standards for the Web.

Originated in 1991, the Common Object Request Broker Architecture (CORBA)
was one of the first attempts to create a standard for distributed objects management
in distributed systems [88]. However, due to some ambiguities in its specification, its
adoption was slow and its implementation complex. The ambiguities were solved in
the second version of Common Object Request Broker Architecture (CORBA) in 1998,
however the advent of other technologies as the Java Remote Method Invocation (RMI)
and the Extensible Markup Language (XML) led to the decline of CORBA.

The Distributed Computing Object Model (DCOM) came out in 1993. It was restricted
to the Windows platform and, beyond that, such as CORBA, the usage of Distributed Com-
puting Object Model (DCOM) over the Internet imposed some administrative challenges,
as it required the opening of some doors in the firewall, since both CORBA and DCOM
did not use the HTTP protocol.

In 1994, the Representational State Transfer (REST) was proposed as a model for
communicating Web concepts while developing the HTTP specification. REST is an
architecture style for Web applications that aims to minimize latency and network com-
munication, and to maximize scalability and independence of applications [114]. In
practice, REST provides a semantics interface based on the actions (e.g., GET, POST,
PUT, DELETE) of the HTTP protocol rather than on arbitrary or application-specific
interfaces to manipulate resources only exchanging the representations. Moreover, REST
interactions are stateless, which decouple the meaning of a message from the state of a
conversation. This architecture style has influenced many Web standards, and nowadays
it is widely adopted by the enterprises.

The global degree of maturity achieved by the Internet in the 1990s made possible the
appearance of several advanced distributed computing paradigms. In 1992, a paradigm
called Metacomputing [326] was proposed. Its main idea was to create a supercomputer by
connecting computers spread over the world in a transparent way via a network environment.
Later, in 1995, the term grid computing was conceived to denote a new infrastructure
of distributed computing that allows consumers to obtain resources on-demand in an
advanced scope [125]. The grid paradigm can be seen as an evolution of metacomputing
combined with utility computing, where not only processing power is shared but also other
resources such as databases, specific equipments and softwares, among others. Inspired
by the electrical power grid because of its pervasiveness, ease of use and reliability, the
motivation of grid computing was initially driven by large-scale resource sharing and
data-intensive scientific applications that require more resources than they provided by a
single computer [125]. In 1995, the Information-Wide-Area-Year (I-WAY) project [124]
was one of the first projects to demonstrate the power of distributed supercomputing.
Furthermore, the Globus Project (toolkit.globus.org/alliance/news/prGAannounce.html)
was established to develop standards for grid’s middlewares [124].

Simultaneously with the growing research interest in grid systems, peer-to-peer (P2P)
systems have evolved. A P2P system can be seen as a system where the nodes (peers)

14

http://toolkit.globus.org/alliance/news/prGAannounce.html

Chapter 2. Large-Scale Distributed Systems

organize themselves into different topologies and operate without any central control [14].
One of the first successful P2P systems was the Napster file sharing system, proposed
in 1999. Another type of P2P system, that harnesses computer power to solve complex
problems, was also proposed in the 1990s. In 1999, the SETI@home project started, and
it could connect millions of computers through the Internet [12].

In 1997, the term cloud computing was used by Chellappa in a talk about a new
computing paradigm [74]. Cloud computing was indeed proposed in the late 1990s aiming
to shift the location of the computing infrastructure, platform and/or software systems to
the network in order to reduce costs associated with resource management (hardware and
software) [154]. In cloud computing, data and programs are usually stored and executed
in huge data centers, with hundreds or thousands of machines.

In 1998, the VMware company was founded, introducing a system that virtualizes the
x86 architecture providing full isolation of a guest operating system [54]. Virtualization
would become a fundamental concept in cloud computing.

In 1999, the salesforce.com system was one of the first systems to provide a software-
as-a-service (SaaS) cloud solution to manage sales activities. Also, in 1999, an extension
for the HTTP protocol was proposed, and it became the HTTP/1.1 [115]. Such extension
provided a model for the WWW, defining how it should work; and it became the foundation
for the Web services architecture.

2.1.5 2000-2014
The first years of the 21st century observed extraordinary advancements in supercom-

puting and cloud computing.
From 2000 to 2014, research on supercomputing continued obtaining astonishing

results. Supercomputing infrastructures are nowadays normally composed of clusters,
where the nodes contain general-purpose processors combined with accelerators, and high
performance networks. In 2008, the IBM RoadRunner supercomputer was the first to
achieve 1 petaflop of sustained performance, with 6,912 Opteron processors combined with
12,960 PowerXCell accelerators. In 2011, the K Computer attained 10 petaflops, with
705,024 Sparc64 cores. In the latest supercomputer Top500 list, released in June 2014,
the fastest supercomputer is the Tianhe-2, attaining 33.8 petaflops with 3,120,000 cores,
in a hybrid design containing general-purpose Intel Xeon processors and Intel Xeon Phi
accelerators.

The interoperability issues presented by CORBA and DCOM were mainly solved
through the specification of Web services in 2000. The term Web service was defined by
the W3C in 2004, describing its interoperability and naming the Web Service Definition
Language (WSDL) format and the SOAP (Simple Object Access Protocol) protocol. Web
services are technology-independent and they use HTTP as the communication layer [51].
In this case, services are described using WSDL, enabling the interoperability between
distinct programming languages. Nowadays, Web services are the predominant model in
distributed computing.

From 2000 to now, cloud computing received a lot of attention from the industry and
academia since it aims to reduce the costs of managing hardware/software infrastructures.
Clouds are similar to grids since they also employ distributed resources to achieve the
computing objectives. However, in grid computing, the resources, which can be provided

15

Chapter 2. Large-Scale Distributed Systems

as utility, are allocated to applications for a period of time, paying for the whole period.
Instead, cloud computing normally uses on-demand resource provisioning, eliminating
over-provisioning, since the users pay for what they use [388].

The term autonomic computing was proposed in 2001 [162], referring to self-management
systems. These systems could adapt themselves for changes in the computing environmen-
t/infrastructure.

MapReduce [98] is a programming model proposed in 2004 as a solution to be used by
Google for large-scale data processing, and lately available for the general public through
the open source Apache Hadoop (hadoop.apache.org), in 2005. Hadoop provides a parallel
programming model, a distributed file system, a collection of tools for managing large
distributed systems, and coordination services for distributed applications. With Apache
Hadoop, the developers often do not need to be aware of data distribution and failures as
they are seamless delivered by Hadoop.

In 2006, Amazon created its Elastic Compute Cloud (EC2) as a commercial cloud
system, using the pay-per-use model.

Clouds are having success owing to the fact that the underlying infrastructure is
completely transparent to the users. Beyond that, clouds exhibit good scalability, allowing
users to run complex applications in the cloud infrastructure. In 2014, the Amazon Web
Services (AWS) is the largest cloud hosting company in the world. It provides services in
many geographic regions, including Australia, Brazil, Ireland, Japan, Singapore, and the
US. AWS can also be used as a supercomputer. In the supercomputer Top500 list, released
in June 2014, it appears in the 76th position, attaining 593.5 Teraflops with 26,496 cores.

2.1.6 Timeline
Figure 2.1 presents the main landmarks of each decade. As can be seen, the advances

in computing in five decades are astonishing. For instance, in the beginning of the
1970s, the supercomputers could perform 250 millions of floating point operations per
second (MFlops). In 2014, the fastest supercomputer performs 33.8 quadrillions of
operations per second (PFlops).

These advances are also owing to the improvements in networking that started as a
way to decrease the cost to build and to operate the computers as well as to increase data
sharing and collaboration.

It is also important to notice that some concepts were proposed in a visionary way.
One example is the concept of utility computing, proposed in the 1960s but incorporated
to grids and clouds only in the 1990s.

Nowadays, due to the utility model (i.e., cloud computing), the users can provision
a cluster with reasonable performance paying comparatively few dollars per cores per
hour. For instance, a cluster with 30, 000 cores distributed across different Amazon data
centers costs $1279/hour (0.043 USD per cores by hour) [91]. In this model, the developers
with innovative ideas for new Internet services no longer require large capital outlays in
hardware to deploy their services or the human expense to operate it. Moreover, companies
with large batch-oriented tasks can get results as quickly as their programs can scale, since
using 1,000 servers for one hour costs no more than using one server for 1,000 hours. This
elasticity of resources, without paying a premium for large scale, is unprecedented in the
history of computer science [20].

16

http://hadoop.apache.org

Chapter 2. Large-Scale Distributed Systems

The success of cloud computing is also due to the advances in virtualization technologies,
which hides the physical infrastructure from the users and often leads to increase resource
utilization, and in programming models as MapReduce [98] and its public available
implementation Apache Hadoop.

In the context of cloud computing, there are still many challenges to be addressed.
First, cloud providers should agree and support cloud standards to enable full porta-
bility and interoperability of data and applications among the clouds. Second, based
on standardization, the clouds should be combined to increase performance and/or to
decrease operational costs. Third, similar to the electrical power grid, that often providers
electricity with a well known variation, the clouds should deliver services with near constant
performance, defined according to the resource type. Nowadays, to achieve this, the users
have to distribute their applications across multiple clouds [269, 376] and to optimize
different parameters manually. Finally, cloud tools should be created to allow the users
without any cloud skill to maximize the cost/benefit ratio of the cloud.

- First supercomputer
- First WAN
- Concept of utility
computing
- First virtual machine
monitor

- First SIMD supercomputer
- ARPANET
- Internet (TCP, telnet, ftp)

- First gigaflop computer
- WWW
- PCs
- Advanced concepts in
distributed systems

- First teraflop computer
- Internet browser
- CORBA and DCOM
- REST
- Grid computing
- P2P computing
- Cloud computing
- Virtualization of the
x86 architecture

- First petaflop computer
- Web service
- Autonomic computing
- MapReduce
- Hadoop
- Public cloud systems

1960s 1970s 1980s 1990s 2000-2014

Figure 2.1 – Computing landmarks in five decades

2.2 Cluster Computing
A cluster is set of dedicated computing nodes connected by a dedicated and high-

speed local-area network. Cluster computing systems are often built to deliver high-
performance capabilities with a good price/performance ratio, running compute intensive
applications [341].

In general, clusters use a master/slave architecture, where the master node is responsible
for providing an interface to the users, for distributing the tasks to the slaves, and for
managing the execution of the tasks. Slave nodes, on the other hand, are responsible for
executing the assigned tasks. Furthermore, the nodes in a cluster are often homogeneous
with the same operating system and they belong to a single organization.

Figure 2.2 shows the architecture of the Tompouce cluster, which is a high-performance
medium-scale cluster maintained by INRIA Saclay (www.inria.fr/en/centre/saclay). It
has a master node and twenty compute nodes connected by two InfiniBand and one
gigabit Ethernet networks. In Tompouce, each node has two six-core Intel Xeon processors,
thereby 240 cores.

Clusters can be categorized in three classes [55]: high-availability (HA), load-balancing,
and compute clusters.

A high-availability (HA) cluster aims to improve the availability of the services provided
by the cluster and to avoid single-points of failure. In this case, it operates employing

17

http://www.inria.fr/en/centre/saclay

Chapter 2. Large-Scale Distributed Systems

Master node
Dell R710

Scientific Linux

Parallel libs
(Hadoop, MPI,
python, etc.)

Management
application

Scientific Linux

Component of
the parallel
application

Scientific Linux

Component of
the parallel
application...

20x compute nodes Dell R510

Scientific Linux

NFS Storage
Node (Dell R510)

Scientific Linux Scientific Linux

FhGFS Filesystem

FhGFS 01
Dell R720

FhGFS 02
Dell R720

Giga Ethernet network

Infiniband network

Figure 2.2 – Tompouce: an example of a medium-scale cluster

redundant nodes, which are used when a system component fails. In load-balancing clusters,
multiple computers are connected to share the computational workload to improve the
overall performance of the system. Compute clusters, on the other hand, are designed
to provide supercomputing capabilities, often executing message passing interface (MPI)
applications.

Nowadays, clusters are being built with an astonishing number of cores, and they
represent up to 84% of the fastest machines listed in the Top500 list, released in June
2014. In this list, the number one (Tianhe-2, or TH-2) is a cluster of 16,000 nodes,
each one comprising two Intel Ivy Bridge processors and three Xeon Phi coprocessor
boards (Figure 2.3(a)), counting 3,120,000 cores [225]. These nodes are connected by
a proprietary interconnection called the TH Express-2 interconnect network. The TH
Express-2 is an optoelectronics hybrid transport technology organized as a fat tree network
with 13,576 ports at the top level (Figure 2.3(b)), which allows it to achieve high throughput
and low latency.

(a) Node architecture (b) Tianhe-2 organization

Figure 2.3 – The Tianhe-2 compute node architecture and its network topology [225]

18

Chapter 2. Large-Scale Distributed Systems

2.3 Grid Computing
Just as electrical power grids can acquire power from multiple power generators and

deliver the power needed by the consumers, the key emphasis of grid computing is to
enable resource sharing, where resources usually belong to different organizations, forming
a pool of shared resources that can be delivered in a transparent way to users. The goal of
grid computing is to enable resource aggregation in a dynamic environment abstracting the
complexity of computing resources. For this, grid computing relies on the usage of standard
network protocols and middlewares to mediate the access to heterogeneous resources.

Due to the overlap between the grid’s characteristics and other distributed architectures
such as clusters and supercomputers, Ian Foster and colleagues [126] defined a three point
checklist for determining whether a system is a grid or not. For them, a grid is a system
that: (i) coordinates resources that are not subject to centralized control; (ii) uses standard,
open, general-purpose protocols and interfaces; and (iii) delivers non-trivial quality of
service.

The first criterion emphasizes that a grid should integrate computing resources under
different control domains. This requires the ability to negotiate resource sharing agree-
ments among the virtual organizations through direct access to the resources either with
collaborative resource sharing or through negotiated resource brokering strategies. The
second criterion states the need of standard protocols to make the grid operations feasible.
Finally, a grid environment should support different quality of service requirements to
meet the users needs. Figure 2.4 shows this grid computing model.

VO1

VO3

VO2

Coordinated
resource
sharing

Decentralized
control

Protocols and
interfaces

Virtual
organizations

Global access policy

Access
policy

Figure 2.4 – Foster’s grid computing model [126]

In practice, grid systems employ a hierarchical administration with rules governing
resources’ availability. This availability can significantly vary over time, and the applications
request resources by specifying a set of attributes such as the number/type of CPU and
the amount of memory [349].

19

Chapter 2. Large-Scale Distributed Systems

In grid computing, virtual organizations are either physically distributed institutions
or logically distributed users perceived as a single unit that share a common objective. In
practice, each virtual organization manages its own resources, including allocation policies,
authorization, and access control.

Since the grid aggregates resources managed by virtual organizations, it makes possible
the solution of new types of problems, which in a single organization would take considerable
time to accomplish. In other words, a grid focuses on distributed resource integration
across multiple administrative domains, abstracting the resource heterogeneity and giving
to users a powerful computational environment.

2.3.1 Architecture
Many different architectural models have been proposed for grid. The first model that

became a standard was known as the hourglass model, depicted in figure 2.5. This model
has five different layers. The fabric layer providers access to computing resources mediated
by grid protocols. The connectivity layer defines the core protocols for authentication and
inter-node communication. The collective layer is responsible for interacting with different
services such as brokering services, directory services, authorization services, and even
MPI-based programming systems. The application layer comprises the users applications
developed using the grid components. This layer supports the users to execute their
applications in the grid.

Fabric

Connectivity

Resource

Collective

Application

Resource pool: Condor,
Globus Toolkit

Grid security
infrastructure

Protocols:
GRAM, GridFTP

Service façade
GIIS, CAS

Web Portals,
Applications

Virtual Organizations

Figure 2.5 – Hourglass grid architecture [126]

In 2002, the Open Grid Service Architecture (OGSA) was proposed by the Global Grid
Forum (GGF) as a Web service-based standard for grid systems, creating the concept
of grid services. The first specification of OGSA was called OGSA-OGSI (Open Grid
Service Infrastructure) and was implemented by the Globus Toolkit 3 [308]. Globus quickly
became the standard for grid middleware.

The OGSA-OGSI architecture had some problems because Web services are supposed
to be stateless and grid services are stateful. To achieve the convergence between Web
services and grid services, the OGSA-WSRF (Web Service Resource Framework) was

20

Chapter 2. Large-Scale Distributed Systems

proposed and it was implemented by the Globus Toolkit 4 [122]. In 2014, the most recent
version of globus is the Globus Toolkit 5, which has added mainly incremental updates
to Globus Toolkit 4. The figures 2.6 and 2.7 show the difference between Globus Toolkit
3 (OGSA-OGSI) and Globus Toolkit 4 (OGSA-WSRF).

Hosting Environment

Grid Service Container

User-Defined Services

Base Services

System-Level Services

OSGI Reference Implementation Security Infrastructure

Web Service Engine

Core GT component
Outside of the core infrastructure

Figure 2.6 – Globus Toolkit 3 architecture [308]

2.4 Peer-to-peer

Peer-to-peer (P2P) systems and grids are distributed computing systems driven by
the need of resource sharing, but targeting different communities. While the main target
of grid computing is the scientific community, the target of P2P systems is the general
user. Grids are usually used for complex scientific applications, which are time critical and
require some quality of service (QoS) guarantees. On the other hand, P2P applications
are normally content-sharing, IP communication, and cycle stealing available at the edges
of the Internet and without QoS guarantees [14].

Peer-to-peer systems are defined as distributed systems where the nodes (peers) au-
tonomously organize the system topology and respond to external usage in a decentralized
fashion to share resources without any central control [14].

Although there are differences between grid and P2P systems, their advantages can
be combined to increase scalability or to decrease maintenance costs. For instance, grid
resource discovery can be implemented with P2P structures due to their scalability and
self-management properties.

In P2P systems, there is no notion of clients or servers since all nodes are equal, and
thus can be both client and server. In another words, in a P2P system, the role of the peers
is symmetric. This symmetric role property helps, in many cases, to reduce communication
overhead or to avoid bottlenecks.

Although in the strictest definition P2P systems are totally distributed, sometimes nodes
with specialized functions can be used for specific tasks or communication management (e.g.,

21

Chapter 2. Large-Scale Distributed Systems

Core GT component: public interfaces frozen between incremental releases; best effort support
Contribution/Tech Preview: public interfaces may change between incremental releases

Communication
Authorization

Delegation

Authentication
Authorization

Pre-WS
Authentication
Authorization

Data
Replication

OSGA-DAI

Reliable
File

Transfer

GridFTP

Replica
Location

Credential
Management

Community
Scheduler
Framework

Grid
Telecontrol

Protocol

Workspace
Management

Grid
Resource

Allocation &
Management

Pre-WS Grid
Resource

Allocation &
Management

WebMDS

Index

Trigger

Monitoring &
Discovery
(MDS2)

Python
WS Core

C
WS Core

Java
WS Core

C Common
Libraries

eXtensible
IO

(XIO)

Deprecated Component: not supported; will be dropped in a future release

WS
Components

Non-WS
Components

Security Data
Management

Execution
Management

Information
Services

Common
Runtime

Globus Toolkit version 4 (GT4)

Figure 2.7 – Globus Toolkit 4 architecture [122]

22

Chapter 2. Large-Scale Distributed Systems

system bootstrapping or to obtain a global encryption key) since the system does not
rely on one or more global centralized nodes for its basic operation. However, it must be
noted that a system that uses a node to maintain a global index and depends on it to
operate (e.g., searching through the index) cannot be defined as a P2P system.

P2P systems have been used for different purposes and different kinds of applications,
as shown in figure 2.8. In P2P systems, every node potentially contributes to the system.
In this case, when the number of nodes increases, the capacity of the system also increases,
because of additional resources brought by the new nodes. Even though there may exist
differences in the resources provided by each node, such nodes have the same functional
capacity and responsibility in the system. In addition, P2P systems eliminate the single
point of failure by employing a decentralized architecture [14]. Furthermore, P2P systems
require minimum management, since they are often self-organized systems and they do not
depend on dedicated servers to manage the system. However, unlike centralized systems,
in which the decision point to access the resources is concentrated in a single node, P2P
systems provide access to resources located across the network. This requires efficient
algorithms to distribute and to locate data in the presence of a highly transient population
of nodes.

Peer-to-peer
Systems

Peer-to-peer
Applications

Peer-to-peer
Infrastructures

Routing and
Location

Anonymity

Reputation
Management

P2P File
Exchange

P2P Content
Publishing and

Storage

Communication
and Collaboration

Internet Service
Support

Distributed
Computation

Figure 2.8 – Different use of P2P systems [14]

2.4.1 Architecture
A P2P architecture relies on a network of connected nodes built on top of an underlying

network, known as overlay network [347] (Figure 2.9). The underlying network refers to
the physical network used by the nodes to route their communication packets. The overlay
network is responsible for providing P2P services (e.g., data storage) for the applications
built on top of it, and it is independent of the physical network. It also ensures that any
node can access any object by routing requests through the nodes, exploiting knowledge
at each of them to locate an object. According to Touch [347], the tasks of an overlay
network are: (i) to route requests to objects; (ii) to insert and to remove objects; (iii) to
place the nodes in the network; and (iv) to maintain the network. In this context, the
design of an overlay network is crucial for the operation of the system as it may affect its
scalability, performance, fault-tolerance, self-management, and security. A P2P application

23

Chapter 2. Large-Scale Distributed Systems

uses the overlay network to provide services for the users such as content distribution,
instant messaging, among others.

Application layer

Overlay network layer

Underlying network layer

Figure 2.9 – Generic P2P architecture [14]

A P2P overlay can be classified as: unstructured, structured, hybrid, and hierarchical.
These types of P2P overlays are discussed in sections 2.4.2 to 2.4.5.

2.4.2 Unstructured P2P Network
Unstructured P2P networks form arbitrary topologies. Each node joins the network

following some basic local rules to establish connectivity with other nodes. The network
can use flooding as the mechanism to send queries across the overlay with a limited scope
or more sophisticated strategies such as random walks [136, 234], gossiping, and routing
indices [350]. In an unstructured P2P network, when a node receives a query, it matches
it locally against its own content and sends a list of all content matching the query to the
requesting node. If there is no match, the query is sent to some neighbor using, for instance,
flooding. Flooding techniques are effective for locating highly replicated objects and they
are resilient to highly-transient node populations. However, they are not scalable as the
load of each node and the size of the system increases linearly with the number of queries.
In general, an unstructured P2P overlay has the following advantages: (i) it supports
complex queries since all searches are performed locally; (ii) it is self-organized and resilient
to either node failures or nodes frequently joining and leaving the network [175, 235],
which is known as churn; (iii) it is easy to built since it does not impose any constraint
about the topology [77]; and (iv) it has lower maintenance overhead, especially in the
presence of a high churn rate.

On the other hand, the disadvantages of unstructured P2P overlays are: (i) they
cannot guarantee on locating an object, even though the object exists in the network.
This is due to the strategy used for searching an object. In other words, as the size of the
network is unknown, the overlay limits the number of nodes that a searching message can
be forwarded to; and (ii) they are not scalable due to high message overhead [14].

Examples of unstructured P2P overlay are: Publius [361], FreeHaven [101], Gnutella
(rfc-gnutella.sf.net), FreeNet (freenetproject.org), and BitTorrent (bittorrent.com).

2.4.3 Structured P2P Network
Even though unstructured P2P overlays are simple and easy to deploy, they suffer

from low query processing efficiency. Unlike unstructured P2P overlays, structured P2P
overlays impose constraints on the topology and on data placement to enable efficient

24

http://rfc-gnutella.sf.net
http://freenetproject.org
http://bittorrent.com

Chapter 2. Large-Scale Distributed Systems

resource discovery. In these systems, when a node joins the system, it follows some strict
procedures to set up its position in the system according to the topology used.

The constraints imposed by structured P2P networks allow an efficient and accurate
resource discovery. In particular, these systems can guarantee that if a resource exists in
the system, it will be found with at most O(log n) messages where n is the number of
nodes in the system [14]. This resolves the issues of resource discovery and scalability of
the unstructured P2P systems. Nevertheless, structured P2P systems require considerable
efforts to maintain them in a consistent state, which makes structured P2P overlays
vulnerable in a churn scenario. In addition, as some structured P2P overlays are unaware
of the underlying network due to random key assignment, one logical hop can correspond
to multiple physical hops.

In general, structured P2P systems can be classified in three categories based on the
distributed data structure used: distributed hash table (DHT) based system, skip list
based system, and tree based system [360].

A distributed hash table based system uses a DHT to organize the nodes and to index
the data. In this case, each resource is identified by a key obtained by a uniform hashing
function [184] such as SHA-1. The key space is divided among the nodes, where each node
is responsible for one partition of the key space and for storing the data or a pointer to
them locally. As a result, DHT-based systems support efficient exact match queries and
uniform load distribution among the nodes, which ensures good performance. Nevertheless,
the disadvantages of DHT-based overlays are: (i) the lookup latency in the DHT-based
overlays can affect the performance of the applications running on them; (ii) they do not
provide anonymity since they map resources directly to nodes and store this information for
routing purpose; and (iii) they cannot support range queries since the uniform distribution
destroys the data ordering. DHT-based systems can be based on several structures such as
rings as in Chord [332], a multi-dimensional grid such as in CAN [291], a Plaxton mesh as
in Tapestry [391] and Pastry [302], or a XOR-based metric such as in Kademlia [241].

Skip list based systems employ the Skip list [285] structure to place the nodes and to
partition the data. In these systems, each level has many lists and a node participates in
a list at each level. As result, these systems preserve the order of the data, supporting
both exact match queries and range queries. Moreover, unlike DHT-based systems, skip-
list-based systems can inflate or deflate without needing to know the size of the system to
determine the range key values of the nodes. Example of skip list based systems are Skip
Graph [21], SkipNet [150], and SkipIndex [384].

Tree based systems use different tree types to index the data to support range queries
efficiently. Examples of the tree types employed by these systems are binary prefix tree as
in P-Grid [2], multi-way trees as in [223], balanced trees as in BATON [171], B+trees as
in P-ring [89, 90], and R-trees as in [172, 221, 252].

In section 2.4.3, we describe Chord [332], one of the DHT-based P2P overlays most
used in the literature and also used in this doctoral thesis.

Chord

Chord [332] organizes the nodes in a one-dimensional circle according to their identifier.
It uses a consistent hash function [184] to assign an m− bit identifier to each node and
data. The identifier space is a circle of numbers from 0 to 2m − 1, where m is the number

25

Chapter 2. Large-Scale Distributed Systems

of bits in the identifier space. A node identifier (N.id) is chosen by hashing the node’s
IP address and port, while a key (K.id) is chosen by hashing the data. In particular, the
value of m must be big enough to make the probability of key collision negligible.

In Chord, a key k is assigned to the first node whose identifier is equal to or follows
k in the identifier space, which is denoted the successor of k (successor(k)). Each node
maintains two links called predecessor (N.pred) and successor (N.succ), where N.pred is
equal to N.id − 1 and similarly, the N.succ is equal to N.id + 1, and a finger table to
accelerate resource discovery queries. A finger table consists of a data structure with a
maximum of m entries. Each entry i in the finger table of a node N represents the first
node whose identifier succeeds or is equal to N + 2i, where 0 ≤ i ≤ m− 1. A finger table
entry includes both the node identifier and its IP address and port. As a node can join and
leave the system any time, Chord uses a stabilization protocol [332] that runs periodically
to update the nodes’ links and the entries in the finger table.

In Chord, when a node N wants to find a key k, it first searches in its finger table for
a node n′ such that its identifier (n′.id) is between n and k. If such node exists, node n
asks n′ to re-start the search. Otherwise, n asks its immediate successor to find k.

For example, suppose a P2P network with 10 nodes built using Chord to store five
keys (k1 = 10, k2 = 24, k3 = 30, k4 = 38, k5 = 54), m equals to 6, and a query lookup
for key k = 54, starting at node N8 as shown in figure 2.10. In this scenario, k1 will
be located at node 14, as N14 is the first node whose identifier follows the identifier 10.
In the same way, the keys k2 and k3 would be located at node 32, key 38 at node N38,
and key 54 at node 56. To lookup the the k = 54, first, node N8 checks if the key is in
either its identifier space or in its successor. After, it searches its finger table to find the
farthest node that precedes the key (k = 54) in the identifier space. Since node N42 is
this node, N8 asks it to resolve the query. As a result, node N42 forwards the query to
node N51. Then, node N51 discovers that its successor, node N56, succeeds the key, and
hence, it continues to forward the the query to node N56. Finally, since node N56 holds
the key, it returns the result to node N8.

Using this mechanism, Chord can find a key requiring only O(log (n)) messages, even
in the presence of node failures [332]. Moreover, in Chord, nodes can dynamically join or
leave the network. In these cases, the ring structure and finger tables must be updated.
Aggressive updates must be avoided since they add a considerable overhead to the system.
For this reason, Chord uses a stabilization scheme that first fixes the predecessor and
successor information (Chord ring) and asynchronously adjusts the finger tables [332].

2.4.4 Hybrid P2P Network
Due to the scalability problem of unstructured P2P overlays and the maintenance cost

of structured ones on a high churn scenario, hybrid P2P overlays [231, 323] can be used to
combine the advantages of structured and unstructured P2P overlays and to minimize their
disadvantages. Hybrid P2P overlays often use flooding techniques for searching highly
replicated resources and a DHT to locate resources which are rarely accessed.

A major problem of hybrid P2P overlays is how to distinguish rarely accessed resources
from popular ones in a decentralized and self-organized environment. One solution can
be to identify rare resources based on the number of queries in which they appear, and

26

Chapter 2. Large-Scale Distributed Systems

+32

+16

+8

+4

+2

+1

N8's Finger table

N8 +1

N8 + 2

N8 + 4

N8 + 8

N8 + 16

N8 + 32

N14

N14

N14

N21

N32

N42

1

8

14

21

32
38

42

48

51

56

Where is the key 54?

Figure 2.10 – Example of the lookup for the key k = 54 starting at the node N8 and
m = 6 [332]

using a DHT to cache them. Another solution is gossiping historical summary statistics of
replicated resources [231].

Many approaches have been proposed to build hybrid P2P overlays. For instance,
Castro and colleagues [65] use search and data placement strategies of unstructured overlays
on a structured overlay to implement complex queries with a smaller number of messages
and with a higher rate of success response queries.

2.4.5 Hierarchical P2P Network
Hierarchical P2P overlays introduce layers to reduce the network load. To keep

the P2P advantages such as self-organization and decentralization, hierarchical P2P
overlays distinguish the nodes as super-peers and leaf-nodes. In this case, peers with a
large amount of physical resources such as CPU and network bandwidth are elected as
super-peers and they are responsible for defining a set of services for peers with fewer
resources, i.e., the leaf-nodes or ordinary nodes [336, 395]. Ordinary peers are connected to
a super-peer that acts as a proxy for them. Super-peers contact other super-peers on behalf
of their peers through flooding [336], gossiping [208, 228], or through a DHT [8, 64, 161, 250].
For example, Hui and colleagues use a DHT to organize the nodes in small clusters managed
by a head node (i.e., super-peer) to minimize the maintenance overhead of the structured
overlay. In this case, each cluster has one head node and k inner nodes. A head node
is responsible for maintaining a link for both its inner nodes (i.e., leaf-nodes) and for
other head nodes. Inner nodes of different clusters communicate through their head nodes.
In other words, when an inner node wants to communicate with a node outside its own
cluster, it sends a message for its super-peer that first identifies the super-peer of such
node, then it forwards the message for it. Other approaches [148, 270, 377] use a ring

27

Chapter 2. Large-Scale Distributed Systems

to organize the super-peers and a tree to place the ordinary peers, and some [323] are
interested in mutual anonymity and content ownership.

Super-peers can be dynamically elected according to the network load, since only the
super-peers are involved in advertising, discovering, and resource selection [26]. Many
hierarchical overlays have been proposed such as TOPLUS [131], and Chordella [161].

2.4.6 Comparative View of P2P Structures
Table 2.1 presents a comparative view of the P2P structures discussed in section 2.4.

In the first column we show the P2P structure. The second column shows the scalability of
the structure considering the number of messages to find a resource. In the third column,
the robustness of the P2P structure is presented, considering a network under highly churn
scenario. Finally, the last two columns present if the given structure requires maintenance
procedures to work properly, and if it supports range queries.

Table 2.1 – Comparative view of the P2P overlay networks

Network Scalability Robustness Maintenance Range
structure (hops) operations queries

Unstructured O(n) High No No
Structured O(log n) Low Yes Yes

Hybrid O(log n) High Yes Yes
Hierarchical O(log n) High Yes Yes

Scalability is an import characteristic of P2P systems and unstructured P2P systems
lack this property, due to the network overhead by flooding messages. Although some
improvements have been made to reduce this overhead, such as random walks [136, 234],
gossiping, and routing [350] indices, they increase the response time without guarantees of
finding the resources. On the other hand, structured networks are more scalable, but they
incur a high cost of maintenance under a churn scenario.

As P2P systems are expected to be formed of ephemeral nodes, this is a serious concern
for structured P2P systems. In these systems, nodes must be notified periodically to
update their view about the system. The result is an increase in the network traffic, if the
interval between two notifications is small, or outdated information if the interval is too
large. Although this is not a crucial problem for content-sharing P2P applications [14],
it can be an issue if the structured P2P system is used as resource discovery in a grid
environment, for instance.

These issues can be solved with hybrid P2P systems, since they often use unstructured
techniques for searching replicated resources and a DHT to locate rare resources. Nev-
ertheless, there is the cost of propagate the queries statistics to identify rare resources.
Furthermore, some nodes may become overloaded due to the high number of messages to
process or due to their limited computational capacity. The solution may be the use of
hierarchical P2P networks since they decrease the number of messages by employing the
concept of super-peers.

28

Chapter 2. Large-Scale Distributed Systems

Moreover, with the exception of unstructured P2P systems, where each node answers
the queries using only its own data, P2P systems can be used for resource discovery in
large-scale distributed systems since they can process queries efficiently [349].

2.5 Cloud Computing
Many cloud computing definitions have been proposed over the last years. One reason

for the existence of different perceptions about cloud computing is that cloud computing
is not a new technology, but a new operational model that brings together a set of existing
technologies in a different way [353, 386].

The National Institute of Standards and Technology (NIST) defines cloud computing
as [243]:

A model for enabling convenient, on-demand network access to a shared pool of
configurable computing resources (e.g., networks, servers, storage, applications, and
services) that can be rapidly provisioned and released with minimal management
effort or service interaction.

To Foster and colleagues [121], cloud computing is:

A large-scale distributed computing paradigm that is driven by economies of
scale, in which a pool of abstracted, virtualized, dynamically-scalable, managed
computing power, storage, platforms, and services are delivered on-demand to
external customers over the Internet.

Finally, Buyya and colleagues [56] define cloud computing as:

A type of parallel and distributed system consisting of a collection of inter-
connected and virtualized computers that are dynamically provisioned and presented
as one or more unified computing resource(s) based on service-level agreements
established through negotiation between the service provider and consumers.

These three definitions focus on certain aspects of cloud computing such as resource
sharing, virtualization and provision. In the NIST [243] definition, cloud computing
is characterized by the idea of elastic capacity and the illusion of infinite computing
resources, available through network access that can be easily provisioned with minimal
management effort or negotiation with the service provider. In this definition, cloud
computing is a specialization of the distributed computing paradigm that differs from
traditional distributed computing because it can be encapsulated as an abstract entity
that delivers different levels of services to customers outside the cloud and that is driven
by economies of scale, dynamically configured with on-demand delivery.

Even though there are considerable differences among the cloud computing definitions,
most of them state that a cloud computing system should have (i) pay-per-use capabilities,
(ii) elastic capacity and the illusion of infinite resources, (iii) self-service, and (iv) abstract
or virtualized resources.

In this thesis, we consider a definition that is mainly based on [56] and [121], where
cloud computing is a type of distributed system that dynamically provisions virtualized

29

Chapter 2. Large-Scale Distributed Systems

Physical Layer

Virtualization Layer

Service Layer

...

Cloud

Service 1 Service 2 Service 3 Service N

VM VM VM VM VM VM VM VM VM

Service
users

Service
providers

Figure 2.11 – A cloud computing system

elastic and on-demand resources, respecting service-level agreements (SLA) defined between
the service provider and the consumers.

In a cloud computing system, a cloud user or cloud customer is a person or organization
that uses the cloud. It may also be another cloud and, in some cases, that cloud may
be at the same time both a cloud user and a cloud provider. A cloud provider, on
the other hand, is either an organization or distributed organizations perceived as a
single unit by the consumers, that provide cloud services. In other words, in a cloud
computing environment, the role of the cloud provider is demonstrated in two aspects:
the infrastructure providers, who are responsible to manage cloud platforms and to lease
resources according to a usage-based pricing model, and the service providers, who rent
resources from infrastructure providers to serve the end users [386]. A cloud client is a
machine or application that accesses a cloud over a network connection, perhaps on behalf
of a cloud consumer [24]. Figure 2.11 illustrates a typical cloud computing system.

The cloud computing model overlaps with many existing technologies such as grid
computing, P2P, and Web applications in general as depicted in figure 2.12.

2.5.1 Characteristics
According to Mell and Grance [243], the cloud model is composed of five essential

characteristics: on-demand self-service, broad network access, resource pooling, elasticity,
and measured service.

on-demand self-service: the customers can provision resources without requiring
human negotiation with the providers.

broad network access: cloud services are available over the Internet and can be
accessed through standard network protocols.

30

Chapter 2. Large-Scale Distributed Systems

S
ca

le

Web 2.0

CloudsGrids

Supercomputers

Clusters

Application
Oriented

Services
Oriented

P2P

Figure 2.12 – A vision of grid, P2P, and cloud computing characteristics overlaps. Adapted
from [121]

resource pooling: cloud resources are dynamically provisioned by the providers to
serve multiple cloud users using a multi-tenant1 model according to user’s demands,
where the cloud users should only be aware of some high-level location information
about the cloud’s infrastructure such as country, state or data center as they might
have some location restrictions.

elasticity: resources can be dynamically provisioned or released on-demand and in
any quantity.

measured service: the provider monitors and controls the resources used by the cloud
users; provides appropriate report levels according to the type of the service; and
charges the cloud users based on a pay-as-you-go model.

Cloud computing provides several features that make it attractive, such as [20, 386]:

no need for up-front investment: resources are available for the users in a pay-as-you-
go model. In this case, a service provider does not need to invest in the infrastructure
to gain the benefits from cloud computing. It just demands resources from the cloud
according to its own need and pays for the usage.

low operating cost: resources can be easily allocated and de-allocated on-demand. In
other words, the service provider provisions the resources according to the peak load
and releases them when the service demand is low. This allows companies to start
small and increase the number of resources only when there is an increase in their
needs.

high scalability: infrastructure providers maintain a pool of resources from typically
large data centers and make their resources accessible to users, eliminating the need

1A tenant is a user that shares his/her computing infrastructure such as application instance or
hardware with other users (i.e., tenants), but they have their data and control flow completely isolated [43].
This constitutes a multi-tenant environment.

31

Chapter 2. Large-Scale Distributed Systems

to plan far ahead for provisioning, and achieving high scalability in a relatively easy
way.

easy access: services hosted in the cloud are generally web-based and easily accessible
through a variety of devices with Internet connections.

reduced business risk: in this case, a service provider shifts its business risk to the
infrastructure provider, which often has better expertise and is better equipped for
managing these risks.

To Foster and colleagues [121], the factors that contributed to the growing interests in
cloud computing are:

1. the rapid decrease in hardware cost, the increase in computing power and stor-
age capacity, combined with the advent of multi-core architectures and modern
supercomputers consisting of hundreds of thousands of cores.

2. the exponentially growing data size in scientific instrumentation/simulation and
Internet publishing and archiving.

3. the wide-spread adoption of services computing and Web 2.0 applications.

Cloud computing is also gaining popularity because it helps companies to reduce costs
and carbon footprint. Cloud data centers generally employ virtualization techniques to
provide computing resources as utilities and virtual machine (VM) technologies for server
consolidation inside big data centers, containing a large number of computing nodes. To
realize the potential of cloud computing, cloud providers have to ensure flexibility in
their services to meet different usage pattern requirements, allowing on-demand access
to resources, with no need for the user to provision or maintain resources. At the same
time, cloud providers aim to maximize the resources utilization and to reduce energy
consumption, for instance.

2.5.2 Drawbacks
There are still many problems concerning cloud computing such as [46, 144, 167, 338,

364, 365]:

lack of appropriate cloud simulation and testing tools: before moving his/her infras-
tructure to the cloud, the service provider should be able to simulate it and reason
about the advantages/disadvantages of this movement. In a similar way, the end user
should also be able to simulate the execution of his/her application in a controlled
cloud environment. So far, there are few simulation tools for clouds [58, 198, 329, 372]
and they are not prepared to simulate real-world scenarios.

reduced performance stability: since clouds use virtualized resources, which are
allocated to the application in a totally transparent way, big performance variations
can occur [167]. This is particularly problematic when running scientific applications
that take days or even weeks to execute.

32

Chapter 2. Large-Scale Distributed Systems

data lock-in and standardization: the lack of standardized APIs can restrict data
migration between different cloud providers and often prevents data sharing or
restricts the user to save data in a different format. This can easily lock a user to
a particular cloud provider. In some situations, the data are physically stored in
distributed locations and only the cloud provider has full control over the data. For
instance, it is often the case where only the cloud provider has access to logs and
the ability to remove data physically. One way to deal with the data lock-in issue
can be using independent data representation and adopting standard data import
and export functionality [275]. Google has attempted to address this issue through
its data liberation front (dataliberation.org) whose goal is to allow data movement
into/outside the Google infrastructure [117]. Other ways can be [156] (i) using
APIs that have different implementations; (ii) choosing an application model that
can run on multiple clouds (e.g., MapReduce); (iii) manually decoupling the cloud-
specific code of the application designed for each cloud provider from the application
logic layer; (iv) creating widespread standards and APIs; and (v) using vendor-
independent cloud abstraction layer. Cloud standardization is difficult since there
are many barriers to adopt standard APIs and protocols [275, 276] such as (i) cloud
providers are often creating facilities to avoid losing their users to other cloud
providers; (ii) cloud providers offer differentiated services and they want to have
unique services to attract more users; (iii) cloud providers usually do not easily agree
on standards; (iv) standards take years to be developed and to be adopted globally;
(v) there are various standards being developed simultaneously and agreement on
which one to adopt may be difficult, if not impossible, to attain; and (vi) the cloud
computing model requires multiple standards, rather than one overarching set of
standards.

reduced number of effective energy-efficient solutions: since the cloud applications are
executed in big data centers, power usage becomes a major concern. Even though
the industry and academy are starting to investigate energy-efficient proposals for
cloud computing environments, an effective and integrated solution to this problem
is yet to be conceived.

reduced security: security is a difficult issue [257, 338] for many reasons. First,
a cloud environment may have heterogeneous hardware and software resources.
Second, the cloud works on employing a shared model, where services are spread
across multiple providers. This can lead to ownership and compliance concerns.
Finally, the delivery and deployment model of cloud computing may result in security
breaks such as incorrect data isolation level. To some extent, virtualization achieves
resource homogeneity, but as cloud services are shared by different users, data and
application might break down, compromising its confidentiality and/or integrity.
Security breaks can occur intercepting inter-host or multi-domain communication
messages, VM migrations, preparing malicious VM images, failure in multi-tenancy
implementations, malicious service implementation, among others [185, 338]. Also,
a cloud service can involve different providers. For instance, a user can subscribe to
one cloud provider, that is subscribed to another cloud provider, which utilizes the
infrastructure of a third cloud provider. In this scenario, the guarantee of trust and
security properties can be affected since each cloud provider has normally distinct

33

http://dataliberation.org

Chapter 2. Large-Scale Distributed Systems

security policies in a manner that the user does not have guarantees that his/her
data are protected among cloud services interactions. In addition to that, there is a
lack of transparency about security assurances [185].

data integrity: several researches reported internal and external data threats for data
integrity in the cloud that resulted in data loss [364]. Also, some providers discard
rarely accessed data [364], decreasing their availability.

2.6 Summary
In this chapter, we discussed many important aspects of several types of large-scale

distributed systems. First, we briefly presented the main landmarks of the last fifty years
that led to the current state of these systems. Then, cluster, grid, P2P, and cloud computing
systems were briefly discussed, considering their characteristics and architectures.

While grid applications are often built to provide services for moderated-size com-
munities assuming a stable environment to be able to deliver non-trivial qualities of
services, P2P systems are designed to offer limited services to a huge number of partici-
pants in an unstable, unpredictable, and often untrusted environment. These distinctions
are associated to the goals of each environment.

Grid computing was driven by the need for more compute power [126], aggregating
powerful resources distributed across different virtual organizations, normally universities
and research institutes, to enable collaboration in a specific domain.

A P2P system, on the other hand, was driven by the need to decrease costs with
the use of commodity computing resources autonomously organized, employing ad-hoc
communications to increase collaboration among the peers [14]. This not only decreases the
cost, but also allows information to be disseminated effectively in a large-scale scenario [360].

A consequence of these communities characteristics is that early grid computing did
not address scalability and self-management as priorities [126, 360]. Furthermore, the
participants in a grid environment are trustful, usually not large, and they have incentives
to collaborate following well-defined policies. This enhances the resource’s ability to deliver
the expected quality of service but with a higher cost to manage the resources.

P2P computing became popular offering mass-culture services (e.g., file-sharing) with
anonymity guarantees, and executing highly parallel applications (e.g., SETI@home [370])
that scale in presence of thousands of nodes with intermittent participations and highly
variable behaviors [123]. In contrast to grids, the number of participants in a P2P system
is very large (e.g., hundred of thousands [12]) and the participants do not need to be
trustful.

In the last decade, we observed a convergence between grid computing and P2P
systems [123], aiming to provide the best characteristics of each paradigm. More specifically,
many grid environments began to employ P2P decentralized techniques to deal with
large-scale resource sharing. In the same way, in addition to the traditional file sharing
applications, P2P systems started to execute a wide range of scientific applications that
require sophisticated resource management techniques, usually present in grid systems.

Cloud computing is similar to grid computing since it also aims to provide distributed
resources to achieve some computing objectives at reduced costs. However, whereas the

34

Chapter 2. Large-Scale Distributed Systems

resources in grid are provided through immediate or advance reservation, cloud employs
an on-demand resource provision. This removes the need of reservation in order to meet
the users’ demands [20, 388] and reduces the costs. Also, the cloud infrastructure is
available to everyone at different scales [139, 181, 335] and not only to members of some
communities as in the grid. Moreover, grid computing is a one-model solution with tools
as the Globus Toolkit [122] deployed to enable resource aggregation [325]. On the other
hand, a cloud-based solution is based on multiple models (i.e., IaaS, PaaS, and SaaS),
which leads to a flexible environment for the customers. In the cloud, the customers do
not need to wait in a queue to execute their applications, but they can use the clouds’
APIs to allocate the resources on-demand in nearly real-time.

We claim that, in the next years, a distributed computing environment will be built
combining the advantages of each distributed architecture discussed in this chapter,
available for the users as a utility computer. It will require adequate tools to abstract
the computer according to the users goals and the users shall be unaware of it such as it
happens in the Internet today, approximating to the utility computing concept envisioned
by McCarthy [132].

35

Chapter 3

A Detailed View of Cloud
Computing

Contents
3.1 Technologies Related to Cloud Computing 37

3.1.1 Virtualization . 37

3.1.2 Service-Level Agreement . 41

3.1.3 MapReduce . 43

3.2 Cloud Organization . 45

3.2.1 Architecture and Service Model 45

3.2.2 Deployment Model . 47

3.2.3 Cloud Federation . 48

3.3 Cloud Standards and Metrics 53

3.3.1 Cloud Standards . 53

3.3.2 Cloud Metrics . 54

3.4 IaaS Cloud Computing Systems 55

3.4.1 Architecture . 55

3.4.2 Using an IaaS Cloud Service 57

3.5 Cloud Computing Architectures 60

3.5.1 Centralized Systems . 60

3.5.2 Decentralized Systems . 68

3.5.3 Comparative View . 73

3.6 Summary . 73

36

Chapter 3. A Detailed View of Cloud Computing

This chapter presents practical aspects that must be considered when developing a cloud
computing solution. First, we discuss virtualization techniques in section 3.1.1, since the
majority of cloud systems employ virtualization techniques for resource management and
workload isolation. Then, in section 3.1.2, we briefly discuss service-level agreement (SLA),
and the guarantees that are usually provided by the clouds. Cloud applications are usually
programmed using the MapReduce programming model, and we present the concepts of
MapReduce in section 3.1.3. The cloud organization is presented in section 3.2 followed by
some available cloud standards and metrics (Section 3.3). Cloud computing systems are
discussed in section 3.4 followed by a review of IaaS cloud architectures (Section 3.5). Finally,
section 3.6 summarizes this chapter.

3.1 Technologies Related to Cloud Computing

3.1.1 Virtualization
In this section, we discuss virtualization, which is a technology widely adopted to

implement clouds since it helps to increase resource utilization in an effective way. First,
we present a definition of virtualization. Second, we describe the virtualization techniques.
Then, the concept of virtual machine live migration and two approaches used to implement
it are discussed. Finally, we present the concept of workload and server consolidation,
which are by products of virtualization.

3.1.1.1 Definition

The term virtualization refers to the abstraction of computing resources (e.g., CPU,
disk, network) from the applications aiming to improve sharing and utilization of computer
systems [138]. The use of virtualization exists since 1960s, when it was first implemented
by IBM to provide concurrent, interactive access to the mainframe 360/67 (Sections 2.1
and 2.1.4).

A virtual machine (VM) is an environment provided by a virtualization software
called virtual machine monitor (VMM), or hypervisor. In this case, the virtualization
layer is placed between the bare hardware and the guest operating systems and gives the
OSes a virtualized view of the hardware as shown in figure 3.1. The platform used by the
hypervisor is named host machine, and the module that uses the virtual machine is named
guest machine. An important function of the hypervisor is to provide the connection
between virtual machines and the host machine. It also abstracts the resources of the
host machine, which will be used by the operating system through the virtual machine,
and it provides the isolation among virtual machines placed in the same host machine,
guaranteeing the independence of each other. Furthermore, the hypervisor handles changes
in the processor where the application is running on without affecting the user’s OS or
application [258, 325].

37

Chapter 3. A Detailed View of Cloud Computing

Hardware

Virtual Machine Monitor (VMM)

Operating System

Application1 Applicationn

Operating System

Application1 Applicationn

Virtual Machine1 Virtual Machinen

Host

Figure 3.1 – Example of virtualization [138]

3.1.1.2 Techniques

Virtualizing the entire hardware faces some challenges. First, most of the CPU
architectures were not designed to be virtualizable. Second, virtualization requires to
place a layer between the hardware and the operating system to create and to manage
the virtual machines. In other words, the guest operating system must often run in
an unprivileged level. However, most of the x86 operating systems are designed to run
directly on the bare hardware (privileged level), having full control of the machine. In
this scenario, the VMM must be able to intercept privileged instructions performed by the
virtual machine and to give them the appropriate treatment [283]. Nowadays, there are
three techniques to perform this interception namely full virtualization, paravirtualization,
and hardware-assisted virtualization.

Full virtualization provides a complete hardware emulation allowing the guest operating
system to have full control of the hardware. In this case, the guest operating system runs
in privileged mode using the hypervisor to intercept and to translate privileged instructions
on-the-fly [283, 301]. The main advantage of this technique is that the guest OS runs
completely unaware of the virtual machine environment and does not need to be modified.
The main disadvantage is the reduced performance of the VMM, due to frequent context
switching activity. As example, we can cite KVM [197], Microsoft Hyper-V, and VMware
ESX Server [100, 362].

Paravirtualization introduces a virtualization layer on top of the bare hardware. Unlike
full virtualization, in this technique the guest operating system is aware of the virtual
machine. In this case, the kernel of the guest OS is modified to delegate the execution of
non-virtualized instructions to the VMM and this simplifies the design of the hypervisor.
This technique can lead to better performance than full virtualization since the hypervisor
and the operating system are aware of each other and can cooperate to achieve several
tasks. Also, the operating system is provided with an interface to access directly some
devices like disks or network interfaces [28], improving the performance. As an example,
we can cite Xen [28].

The hardware-assisted virtualization is an alternative approach which aims to decrease
the performance gap between paravirtualization and full virtualization. It uses special
hardware instructions to automatically direct privileged and non-virtualized instructions

38

Chapter 3. A Detailed View of Cloud Computing

to the VMM, instead of emulating them. This allows the guest operating system to run
without changes. However, it has the overhead of context switches between the VMMs,
and it requires hardware support, which imposes a higher cost to server consolidation [5].

3.1.1.3 Live Migration

Live migration is the seamlessly movement of running virtual machines from one
physical machine to another with negligible downtime (i.e., in order of milliseconds) [80].
For instance, with live migration, a streaming media server can be migrated without
requiring the client to reconnect. Furthermore, moving an entire virtual machine allows
the administrators to optimize the placement of system workload, to perform maintenance
tasks, and to re-allocate resources on-the-fly without knowing details about the virtual
machine, which significantly improves the system manageability [80].

In most cases, VM’s live migration is done using a network-attached storage (NAS) in
preference to using local disks in each individual nodes, in order to avoid virtual machine
(VM) disk migration. It must also be noted that live migration without shared storage is
only supported by few hypervisors.

VM live migration can be categorized into two approaches: pre-copy [80] and post-
copy [157].

In the pre-copy approach [80] the VM’s memory pages are iteratively copied to the
target node while the VM continues to execute at the source node. If, during the copy
process, a transmitted page is modified, it is re-sent to the target node in another copy
iteration. After the end of the memory state transfer, the VM is suspended at the source
node and its CPU state and any remaining inconsistent memory pages are transferred to the
target node, where the VM is resumed. Finally, with the acknowledge of the target node,
the device drivers are reconfigured in the new node, the IP address of the migrated VM
is advertised, and the source node releases its allocation of the virtual machine. This
approach aims to minimize both VM downtime and application’s performance degradation
when the VM is executing a read-intensive workload.

On the other hand, the post-copy approach aims to minimize the network overhead
due to possible duplicate memory copies, transferring each memory page at most once.
The post-copy [157] live migration approach works as follows. The VM is first suspended
on the source node and its CPU state is transferred to the target node. Then, the VM is
resumed at the target node, that actively pushes the VM’s memory pages from the source
from the target node, when they are accessed. Note that this approach creates a residual
dependency between the source and target nodes.

The usage of each VM live migration approach depends on the VM workload type and
the performance goals of migration. For VMs with read-intensive workloads, the pre-copy
approach would be the best approach whereas the post-copy approach is best suited for
cases where a small number of pages is accessed in the target node.

3.1.1.4 Workload and Server Consolidation

Consolidation is a technique that reallocates virtual machines to achieve some objectives.
For instance, it can be used to reduce the amount of physical machines to run the virtual

39

Chapter 3. A Detailed View of Cloud Computing

machines or to improve performance of a virtual machine, migrating it for a more powerful
physical machine [239, 358].

Virtualization and live migration make possible to consolidate heterogeneous workloads
onto a single physical platform, reducing the total cost of ownership and leading to better
utilization. This practice is also employed to overcome potential software and hardware
incompatibilities in case of upgrades, allowing systems to run legacy and new operating
systems concurrently [351]. Recently, consolidation has been used to reduce the number of
underutilized servers.

Figure 3.2 illustrates the consolidation strategy. First, a power-inefficient allocation
is shown (Figure 3.2(a)). In this case, there are three active quad-core hosts, two of
them with 25% of their capacity utilized and one with 50% of its capacity utilized. With
consolidation, as shown in figure 3.2(b), all virtual machines are allocated in one host and
the other hosts can be turned off, reducing the power consumption of the whole system.

Host 1
OS

VM Monitor

VM1

Host 2
OS

VM Monitor

VM2

Host 3
OS

VM Monitor

VM4VM3

(a) Before consolidation

Host 1
OS

VM Monitor

VM1

Host 2
OS

VM Monitor

VM2

Host 3
OS

VM Monitor

VM4VM3VM1 VM4

(b) After consolidation

Figure 3.2 – Example of workload consolidation using virtual machines

Server consolidation uses workload consolidation in order to reduce the number of
active servers. It is the process of gathering several virtual machines into a single physical
server. It is often used by data centers to increase resource utilization and to reduce
electricity costs [358].

The consolidation process can be performed in a single step using the peak load demands,
known as static consolidation, or in a dynamic manner, re-evaluating periodically the
workload demand in each virtual machine (i.e., dynamic consolidation).

In static consolidation, once allocated, a virtual machine stays in the same physical
server during its whole lifetime. In this case, live migration is not used. The utilization of
the peak load demand ensures that the virtual machine does not overload. However, in a
dynamic environment with different load patterns, the virtual machine state can be idle
most of the time, resulting in an inefficient power allocation.

Dynamic consolidation usually yields better results since the allocation of virtual
machines occurs according to the current workload demands. Dynamic consolidation may
require migrating virtual machines between physical servers in order to [113]: (i) pull

40

Chapter 3. A Detailed View of Cloud Computing

out physical servers from an overload state when the total number of virtual machines
mapped to a physical server becomes higher than its capacity; (ii) or turn off a physical
server when it is idle or when the virtual machines mapped to it can be moved to another
physical server.

Consolidation influences utilization of resources in a non-trivial manner. Clearly, energy
usage does not linearly add when workloads are combined. For example, in an Intel i7
machine (4 real cores and 4 cores emulated) an application using 100% of one core, with
the other cores in the idle state, consumes 128W whereas the same application using 100%
of eight cores consumes 170W [36]. Moreover, resource utilization and performance can
also change in a non-trivial manner. Performance degradation occurs with consolidation
because of internal conflicts among consolidated applications, such as cache conflicts,
conflicts at functional units of the CPU, disk scheduling conflicts, and disk write buffer
conflicts [359].

In a cloud computing environment, server consolidation presents some additional
difficulties such as: (i) the cloud computing environment must provide reliable QoS,
normally defined in terms of service-level agreement (SLA), which describe characteristics
such as minimal throughput and maximal response time delivered by the deployed systems;
(ii) there can be dynamic changes of the incoming requests for the services; (iii) the resource
usage patterns are usually unpredictable; and (iv) the users have distinct preferences.

3.1.2 Service-Level Agreement
In cloud computing, the relation between consumers and service providers is usually

based on service-level agreement (SLA) [66]. A service-level agreement (SLA) defines the
level of services, priorities, guarantees, warrants, and obligations of both service providers
and consumers. It may also specifies the penalties in case of violation of the SLA [382].
Moreover, an SLA includes some service parameters referred to as quality of service (QoS),
such as availability, throughput, reliability, security, and performance indicators (e.g.,
response time, I/O bandwidth) [367, 382].

Since different organizations have distinct definitions for QoS parameters, it is not
possible to fulfill all consumer expectations from the service provider perspective and a
balance needs to be made via a negotiation process, committed in the end by the consumer
and the service provider. After the agreement has been established, it is recommended to
continuously monitor the attributes to ensure adherence to the contracted SLA parameters
or, in some cases, renegotiate them. This requires dedicated resources or an assistance of
a third-party to measure the SLA’s parameters appropriately. In the literature, there are
many frameworks [52, 199, 316] to help consumers and providers to measure their SLA’s
parameters.

In practice, an SLA is a document composed of several sections, which usually in-
cludes [45]:

objective: describes why the agreement was created.

parts: describes the parts involved in the agreement and their roles (consumer,
provider).

validity: defines the period of the time for which the agreement is valid.

41

Chapter 3. A Detailed View of Cloud Computing

scope: defines the services and resources involved in the agreement.

service level objectives: determines the service levels agreed between the parts, which
normally include indicators such as availability, response time, CPU time, disk usage,
among others.

penalties: defines the actions that should be taken if the service level objectives are
violated.

Figure 3.3 presents an example of an SLA document written in the Web service level
agreement (WSLA) language [190]. In this case, it describes an agreement named Stock-
quoteServiceLevelAgreement12345 specifying that the service provider must keep the service
response time below 5 seconds.

Nowadays, most of the cloud providers define their SLA in function of availability
guarantees. In such case, they define the minimum percentage of time that their services
will be available during a certain period of time and the penalties as discount for the users.

<wsla :SLA
xmlns : x s i=" http ://www.w3 . org /2001/XMLSchema−i n s t ance "

xmlns : wsla=" http ://www. ibm . com/wsla "
name=" StockquoteServiceLevelAgreement12345 ">

<Parties>
. . .

</Parties>

<ServiceDefinition>
. . .

</ServiceDefinition>

<Obligations>
<ServiceLevelObjective name=" g1 ">

<Obligated>provider</Obligated>
<Validity>

<Start>2001−11−30T14:00:00.000−05:00</Start>
<End>2001−12−31T14:00:00.000−05:00</End>

</Validity>
<Expression>

<Predicate x s i : type=" wsla : Less ">
<SLAParameter>AverageResponseTime<SLAParameter>
<Value>5</Value>
<TimeUnit>second</TimeUnit>

</Predicate>
</Expression>
<EvaluationEvent>NewValue</EvaluationEvent>

</ServiceLevelObjective>
</Obligations>

</wsla :SLA>

Figure 3.3 – Example of an SLA structure. Adapted from [190]

42

Chapter 3. A Detailed View of Cloud Computing

3.1.3 MapReduce
Designing and writing applications to execute in large-scale distributed systems is

often time consuming and a complex task. For instance, the developers are responsible
for specifying how the data are partitioned among the nodes; for handling failures and
performance variations during the applications’ execution; and finally, for synchronizing
data and processes.

Many programming frameworks and models have been created to address these issues.
MapReduce [98] is one of them, and it has been adopted by industry and academia due to
its characteristics such as automatic fault-tolerance and parallelization of the applications
adapted to the MapReduce model.

This section describes the MapReduce model, its characteristics and limitations.

3.1.3.1 Definition

MapReduce was proposed as a parallel programming model targeted to data-intensive
applications running on clusters of commodity machines [98]. In this model, a unit of work
is divided into two major phases called map and reduce. The map phase computes a set
of intermediate key/value pairs from the input data, as defined by the user, groups all
intermediate values associated with a key and passes it to the reduce phase. The reduce
phase accepts the key and its intermediate values, producing zero or one output value.
The intermediate values are supplied to the reduce function via an iterator, allowing to
handle lists of values that are too large to fit in memory [98].

Listing 3.1 shows an example of a MapReduce code for counting the occurrences of
each word in a text.

map(keyin , t ex t)
f o r each word w in document

emit−i n t e rmed ia t e (w, 1)

reduce (keyout , va lue s)
f o r each v in va lue s

r e s u l t += v
emit (keyout , r e s u l t)

Listing 3.1 – Counting the number of occurrence of each word in a text using MapReduce [98]

Conceptually, the MapReduce execution model can be expressed as [98]:

map : (K1, V1)→ [(K2, V2)]
reduce : (K2, V2)→ [V2]

where K and V are respectively the key and value pairs. In the map operation, input keys
(K1) and values (V1) belong to different domains than the output keys (K2) and values
(V2).

43

Chapter 3. A Detailed View of Cloud Computing

3.1.3.2 Characteristics

In MapReduce the processing engine and the underlying storage system are designed to
scale up or down independently. The storage system often uses a distributed file system to
split and to distribute the data over the machines. In this case, each partition is used as an
input for the mapper. Therefore, if the input data are split into M partitions, MapReduce
will create M mappers to process the data. In practice, the processing engine is structured
as a master/slave system, where the master is responsible to assign the tasks (map and
reduce) for the workers and to coordinate the execution flow. A worker parses the key/value
pairs out of the input data and executes the user-defined map function.

Figure 3.4 shows the overall flow of a MapReduce execution. First, the system splits
the input data in M partitions and then starts many copies of the user-program on a set of
machines. Second, one execution is elected the master, that uses a scheduler to assign the
tasks for idle workers based on data locality and network state. It also controls failed tasks
by rescheduling them to another worker. Third, the worker executes the map function and
stores the intermediate key/value pairs in memory. Forth, periodically, the worker flushes
the intermediate key/value pairs to its local file system and passes back the location to
the master, which is responsible for forwarding these locations to a reduce worker. Fifth,
a reducer worker reads all data and sorts them by the intermediate keys. The sorting is
necessary since many different keys may map to the same reduce task. Finally, the reduce
worker iterates over the intermediate values executing the user-defined reduce function
and stores the values into the final output file.

Distributed
File System

Storage

split1

split2

split3

split4

map key/value
key/value

map key/value
key/value

map key/value
key/value

map key/value
key/value

key/value
key/value
key/value
key/value

key/value
key/value
key/value
key/value

reduce

reduce

part1

part2

sort

sort

sort

sort

copy merge

merge

Mapper node Reducer nodeDistributed File System
shuffle

Figure 3.4 – MapReduce execution flow [98]

MapReduce tolerates failures of the map and reduce phases. When a map worker fails,
even for a completed map, the system re-executes the failed map and notifies all reduce
workers’ that are executing. This is necessary, because map workers store the result locally.
Also reduce tasks that have not already read the data from the failed worker need to be
signalized to read from the new worker. On the other hand, completed reduce tasks do
not need to be re-executed when a node failure occurs, since their output is stored into a
global file system.

MapReduce is in general guided by the following features [98]:

flexibility: the programmers just need to write the map and the reduce functions to
process the data, without needing to know how to parallelize a MapReduce job.

44

Chapter 3. A Detailed View of Cloud Computing

scalability: many existing applications face the challenge of scaling when the amount
of data increases. When elastic scalability is desired, it requires dynamic behavior
to scale up or down as the computation requirements change.

efficiency: MapReduce minimizes data movement, scheduling the tasks to process as
close as possible to the data location.

fault-tolerance: thanks to the distributed file system, which keeps replicas of a
partition, and the use of stateless functions to operate over the input values, tasks
or machines can fail without requiring effort from the programmer. The failures
are compensated by re-scheduling the tasks to another machine that can handle the
load.

Some limitations of MapReduce are [219]: (a) lack of support for multiple datasets
and (b) lack of support for iterative data analysis, requiring data to be loaded at each
iteration and demanding an extra MapReduce task to detect termination.

3.2 Cloud Organization

3.2.1 Architecture and Service Model
Several cloud architectures have been proposed in the literature. Generally, the

architecture of a cloud computing system can be divided into four layers: hardware,
infrastructure, platform and application layers, as shown in figure 3.5.

Infrastructure as a Service (IaaS)

Hardware

Platform as a Service (PaaS)
Microsoft Azure,

Google AppEngine,

Amazon SimpleDB/S3,

Amazon SQS

Software Framework

(Java/ Python/.Net)

Storage (DB/File)

Queue Systems

Amazon EC2

Rackspace

GigaSpaces

Virtual Machine

Virtual Network

Storage

Hardware

Microsoft Azure,

Google AppEngine,

Amazon SimpleDB/S3,

Amazon SQS

Software Framework

(Java/ Python/.Net)

Storage (DB/File)

Queue Systems

Amazon EC2

Rackspace

GigaSpaces

Virtual Machine

Virtual Network

Storage

Hardware

Amazon EC2

Rackspace

GigaSpaces

Virtual Machine

Virtual Network

Storage

Software as a Service (SaaS)
Google Apps,

SalesForce,

NetSuite

Application

Figure 3.5 – Cloud computing architecture [243]

The hardware layer contains the physical resources of the cloud, such as CPUs, disks
and networks. It is usually confined in data centers which contain thousands of servers
and storage systems interconnected by switches.

The infrastructure layer contains resources that have been abstracted typically by using
virtualization techniques (Section 3.1.1), creating a pool of computing resources to be
exposed as integrated resources to the upper layer and end users [121]. This layer is an
important component of cloud computing, since many features such as elastic resource
assignment are made available in this layer [386].

The platform layer consists of application frameworks and a collection of specialized
tools on top of the infrastructure layer to provide a development and/or deployment

45

Chapter 3. A Detailed View of Cloud Computing

platform aiming to minimize the burden of deploying applications directly into virtual
machines containers [121, 386].

The application layer contains the applications that run in the clouds. Different from
traditional applications, cloud applications can leverage on automatic scaling to achieve
better performance and availability in an on-demand usage.

Usually, a cloud service model is mapped to the cloud architecture. In such case, the
cloud service model is divided into three classes, according to the abstraction level and
the service model of the providers: infrastructure-as-a-service (IaaS), platform-as-a-service
(PaaS), and software-as-a-service (SaaS) [243] (Figure 3.5).

The main difference between these cloud service models relies on the kind of control
that the users may have over the cloud infrastructure (Figure 3.6).

Applications

Data

Runtime

Middleware

O.S

Virtualization

Servers

Storage

Networking

Packaged
Software

Infrastructure
(as a Service)

Platform
(as a Service)

Software
(as a Service)

Applications

Data

Runtime

Middleware

O.S

Virtualization

Servers

Storage

Networking

Applications

Data

Runtime

Middleware

O.S

Virtualization

Servers

Storage

Networking

Applications

Data

Runtime

Middleware

O.S

Virtualization

Servers

Storage

Networking

Th
e

us
er

s
m

an
ag

e

Th
e

pr
ov

id
er

s
m

an
ag

e

Th
e

us
er

s
m

an
ag

e

Th
e

pr
ov

id
er

s
m

an
ag

e

Th
e

pr
ov

id
er

s
m

an
ag

e

Th
e

us
er

s
m

an
ag

e

Figure 3.6 – Cloud service model considering the customers’ viewpoint. Adapted from [243]

In the traditional approach (i.e., non-cloud scenario), the users are responsible for
managing the whole stack (e.g., hardware, software, and data center facilities), which gives
them full control over the infrastructure.

In the infrastructure-as-a-service (IaaS) model, the users request processing power, stor-
age, network and other computing resources such as the operating system and pay for what
they use. The users pay for the use of resources, instead of having to setup them, and deploy
their own software on physical machines, controlling and managing them. The amount of
instances can be scaled dynamically to fill the users’ need. Examples of IaaS providers
are Amazon Elastic Compute Cloud (Amazon EC2)–(aws.amazon.com/ec2), Rackspace
cloud (rackspace.com/cloud), GigaSpaces (gigaspaces.com), Microsoft Windows Azure (win-
dowsazure.com), and Google Compute Engine (GCE)–(cloud.google.com/compute).

Platform-as-a-service (PaaS) are development platforms that allow the creation of
applications with supported programming languages and tools hosted in the cloud and
accessed through a browser. This model can slash development time, offering readily
available tools and services. PaaS providers offer a higher-level software infrastructure,

46

http://aws.amazon.com/ec2
http://rackspace.com/cloud
http://gigaspaces.com
http://windowsazure.com
http://windowsazure.com
http://cloud.google.com/compute

Chapter 3. A Detailed View of Cloud Computing

where the users can build and deploy particular classes of applications and services using
the tools and programming languages supported by the PaaS provider. The users have no
control over the underlying infrastructure, such as CPU, network, storage or operating
system, as it is abstracted away below the platform [243]. Examples of PaaS services
are Google App Engine (cloud.google.com/appengine), OpenShift (openshift.com), and
Heroku (heroku.com).

In the software-as-a-service (SaaS) model, applications run on the cloud infrastructure
and are accessible from various client devices. The users of these services do not control the
underlying infrastructure and application platform, i.e., only limited user-configurations
are available. The main architectural difference between the traditional software model
and SaaS model is the number of tenants the applications support. From the user viewpoint,
the SaaS model allows him/her to save money in servers and software licenses. Examples
of SaaS are SalesForce (salesforce.com), NetSuite (netsuite.com) and Microsoft Office Web
Apps (office.com).

3.2.2 Deployment Model
The cloud deployment model can be classified as [24]: private, public, community, and

hybrid.
In a private cloud, the cloud infrastructure usage is restricted to a single organization.

The infrastructure may be owned and managed by the organization that will use it or by
a third party organization. A private cloud can be built using either in-house solution or
third party solutions (e.g., VMware vCloud (vmware.com/products/vcloud-suite)) and
open-source solutions (e.g., OpenStack (openstack.org)).

In public clouds, the cloud infrastructure is available for everyone on the Internet. It is
often managed by public cloud providers, which allow the customers to use the resources
if they pay for them.

In community clouds, the cloud infrastructure is restricted to some organizations that
have common interests. Unlike the public cloud, in a community cloud the access is limited
to the community members. For example, scientific institutions (e.g., FutureGrid (future-
grid.org), WestGrid (westgrid.ca), and Chameleon (chameleoncloud.org) that can create a
community cloud to collaborate and to share resources.

Finally, in hybrid clouds, the cloud infrastructure is composed by two or more distinct
infrastructures (e.g., private, community, or public cloud). In other words, each cloud can
allocate resources owned by different clouds but they are managed by a unique cloud. For
instance, a private cloud can support a hybrid cloud using, in some situations, resources
from a public cloud [24, 328]. Hybrid clouds are often used for cloud bursting when the
first-choice infrastructure cannot meet the users demand. Cloud bursting is the process
of using another type of cloud (e.g., a public cloud) when workload spikes. It allows an
application to run in a private infrastructure and to burst into a public cloud in a scenario
with high demand of resources. A hybrid cloud can be also achieved by an application that
runs across multiple clouds or use different cloud services at the same time. Figure 3.7
show an example of a hybrid cloud scenario. Hybrid clouds can be seen as a type of cloud
federation, which will be discussed in section 3.2.3.

47

http://cloud.google.com/appengine
http://openshift.com
http://heroku.com
http://salesforce.com
http://netsuite.com
http://office.com
http://vmware.com/products/vcloud-suite
http://openstack.org
http://futuregrid.org
http://futuregrid.org
http://westgrid.ca
http://chameleoncloud.org

Chapter 3. A Detailed View of Cloud Computing

Cloud user

Private cloud
provider

Public cloud
provider

Figure 3.7 – Hybrid cloud scenario

3.2.3 Cloud Federation
Although most of the cloud providers claim an infinite pool of resources, i.e., infinite

scalability, in practice even the biggest provider may have scalability problems due to the
increasing demand of computational resources by the users. In addition, some clouds may
have outage problems owing to regional problems such as network partition or due to
technical problems such as software bugs, which can make unavailable the service deployed
on the cloud [10, 11, 107, 209, 292]. Furthermore, cloud services deployed on a single
cloud location may present significant performance degradation (e.g., response time) as
the number of users from different locations increases, requiring considerable data transfer.
Finally, the cloud providers can limit the number of resources that can be acquired in a
period of time.

These issues can be addressed by distributing the services either across different
cloud providers or across distinct cloud locations employing distributed coordination
as depicted in figure 3.8. This process is known as cloud federation, and it probably
represents the next stage of the cloud computing paradigm [56]. A cloud federation aims
to increase resource availability in a way similar to what we have in grid computing
environments (Section 2.3). On the one hand, cloud federation allows the users to diversify
their infrastructure portfolio in terms of both vendors and location. On the other hand,
it enables the cloud providers to increase the capacity of their infrastructure on-the-fly,
renting resources from other providers in order to meet unpredictable workloads without
needing to maintain extra resources in a ready state. Moreover, it also helps them to
meet service-level agreements (SLA) (Section 3.1.2).

3.2.3.1 Definition

A cloud federation can be defined as a cloud model that has the purpose of guaranteeing
quality of service, such as performance and availability, allowing on-demand reassignment
of resources and workload migration through a network of different cloud providers to
offer non trivial QoS services for the users, based on standard interfaces, and without a
centralized coordination [120].

This definition overlaps with the grid definition (Section 2.3), which also aims to
aggregate resources and to increase resource availability. It also does not specify if
the clouds collaborate voluntarily or not to create the federation [145]. In a federated
environment, each cloud may have its own resource allocation policy which requires
negotiation capability of the cloud providers to negotiate the most appropriate resources

48

Chapter 3. A Detailed View of Cloud Computing

Cloud federation

Entry point

Cloud federation
Entry point

Cloud federation

En
try

 p
oi

nt

Entry point

Multi-cloudMulti-cloud

Figure 3.8 – An example of the cloud federation approach [145]

to achieve their goals. These goals are usually described as QoS metrics, such as minimum
execution time, minimum price, availability, minimum power consumption and minimum
network latency, among others. This requires coordination and orchestration of resources
that belong to more than one cloud, which will be used, for instance, to meet the users’
demand. Furthermore, the requirements to achieve a cloud federation are [68, 296]:

automated and efficient deployment: cloud federation should support automated
provisioning of complex services based on an SLA that specifies the cloud’s infrastruc-
ture QoS requirements. This SLA should be reusable to provision multiple instances
of the services for different users and also be flexible to support customizations ac-
cording to the user’s need. In practice, this requires automatic discovery mechanisms
to look for resources in other clouds, automatic matchmaking process to select the
cloud that better fits the requirements, and automatic authentication mechanisms
to create a trusted context among the clouds.

dynamic resource allocation: the cloud infrastructure should autonomously adjust
the parameters of each virtual environment (e.g., resources) according to the system’s
workload aligned with the service-level agreement (SLA).

technology and provider independence: the cloud federation should be independent of
both technology and cloud provider. It should seamlessly execute services across dis-
tributed cloud providers considering the characteristics of each execution environment
and also the services’ requirements.

3.2.3.2 Classification

A cloud federation scenario can be classified according to the level of coupling or
inter-operations among the clouds [253, 277]. In this context, a federation can be defined

49

Chapter 3. A Detailed View of Cloud Computing

as loosely, partially or tightly coupled. In a loosely coupled federation, a cloud service has
limited control over the remote resources, monitoring data is limited, and some features
such as cross-site networks or migration are not supported. Partially coupled federation
allows some level of control over remote resources, as well as monitoring data interchanging
or advanced networking features [277]. Finally, a tightly coupled federation comprises
clouds that belong to the same organization, with advanced control over remote resources,
full access to monitoring data, and advanced networking features.

A cloud federation can be also achieved by combining multiple and independent clouds
by a client or service [112], which is denoted as a multi-cloud environment (Figures 3.7
and 3.9(a)). In this scenario, the clients or services are responsible to coordinate the clouds
and in most of the cases, the cloud providers are unaware of the federation. One of the
main issues in a multi-cloud scenario is the portability of applications between clouds,
whereas in the traditional federation the concern is about the interoperability between
different clouds [189, 278].

Cloud user

Cloud provider 1 Cloud provider 2 Cloud provider n...

(a) Multi-cloud scenario

Cloud user

Cloud provider 1 Cloud provider 2 Cloud provider n

(b) Federated cloud scenario

Figure 3.9 – Difference between multi-clouds and federated clouds

A cloud federation can be categorized as horizontal federation, vertical federation,
inter-cloud, cross-cloud, and sky computing as shown in figure 3.10.

 Federation of
clouds

Inter-cloud Cross-cloud Sky computingHorizontal
federation

Vertical
federation

Figure 3.10 – Categories of federation of clouds: vertical, horizontal, inter-cloud, cross-cloud,
and sky computing [275]

50

Chapter 3. A Detailed View of Cloud Computing

A vertical federation occurs when two or more cloud providers join to offer services
to different layers (e.g., IaaS, PaaS, SaaS) [357], whereas in a horizontal federation, these
cloud providers join to offer services at the same cloud layer [297].

Inter-cloud is the federation of clouds that maintains some characteristics such as
addressing, naming, identity, security policies, presence, messaging, multicast, time domain,
and application messaging [41]. In such case, the clouds are unified based on standard
protocols to allow the applications to scale across the clouds. The terms federated clouds
and inter-cloud are usually used interchangeably in the literature. However, there are
some important differences between these terms. First, inter-cloud is based on standards
and open interfaces, while federated clouds use the interfaces provided by the cloud
providers [106]. Second, inter-cloud goes beyond resources and services management from
multiple clouds that comprises a federation or a multi-cloud scenario, as it includes cloud
governance as well as a cloud broker [277]. Cloud governance can be seen as a set of
decision making processes, criteria and policies involved in the planning, design, acquisition,
deployment, operation and management of cloud computing resources [256]. In this case,
federated clouds can be seen as a prerequisite to achieve inter-cloud.

Cross-cloud is characterized by the use of resources owned by an external cloud (i.e., a
cloud that does not belong to the federation) in a trusted context [69].

Finally, sky computing occurs when multiple clouds are combined to provide new
services which are not provided by each isolated cloud. Moreover, sky providers are
consumers of other clouds [188]. In other words, sky providers are usually data center-
less providers. For example, a PaaS provider can deploy its services in a computing
infrastructure offered by an IaaS provider.

Considering the user viewpoint, a cloud federation can be also obtained through a
third agent called cloud broker. A cloud broker manages the usage, the performance, and
the relationships between the users and the cloud providers [275].

Figure 3.11 illustrates a horizontal cloud federated scenario. In this scenario, there
are three clouds, where cloud 1 is renting resources from clouds 2 and 3 to increase the
capacity of its infrastructure. In a federation, the resources do not need to move physically
across the clouds, but only be logically considered as belonging to another cloud. In other
words, the resources continue to be physically placed in the origin cloud, but they are
logically considered as resources indeed hosted within the buyer cloud.

3.2.3.3 Challenges

Over the years, the rapid development of cloud computing has pushed to a large market
of cloud services usually operated by different proprietary APIs. This has resulted in
heterogeneous service descriptions, data representation, and message level naming conflicts
making service interoperability (i.e., inter-operation management) and service portability
a complex task [275].

Service interoperability and service portability between clouds are key requirements
to create a cloud ecosystem and to take full advantage of cloud properties [275]. Service
interoperability is the ability of cloud users to use their data and applications across
multiple cloud providers with the same management interface, whereas service portability
is the ability to move their applications from one cloud provider to another regardless of
their choice as operating system, storage format or even APIs [49, 390].

51

Chapter 3. A Detailed View of Cloud Computing

Cloud 3

Service 1 Service 2

VM VM VM VM VM

VMVM
VM VM

VM VM

Cloud 2

Cloud 1

Resources allocated for the services

Service
providers

Cloud
customers

deployed
on

deployed
on

Figure 3.11 – A horizontal cloud federated scenario with three clouds. Adapted from [151]

In this context, there are some issues concerning cloud federations such as:

discovery: since each cloud provider employs different languages and formats to
describe its services and resources, automatic service/resource discovery is usually a
challenge. Service and resource discovery in federated clouds can allow users to select
the resources distributed across the clouds based on different objectives. Although
there exist some efforts to create standards for resource description (Section 3.3.1),
these standards are not supported by most of the cloud providers. Enforcing a
standard syntax on resource description is normally difficult due to the dynamic
nature of the clouds [140]. For instance, cloud providers are constantly creating new
services or adding more attributes to describe them.

selection: appropriate resource selection requires reliable data. However, the lack of
reliable data about cloud services performance criteria forces this task to be performed
manually, based often only in the user’s experiences. Therefore, resource allocation
across multiple clouds may benefit from some features such as different geographical
locations, lower latency, lower financial cost, and higher availability. In this scenario,
automated resource selection is important to improve performance and to reduce
financial costs. This can be performed based on either static information (e.g.,
resource description) or through dynamic QoS negotiation [276].

monitoring: resource monitoring can be used to collect data about the status of
computing resources, storage, and network. These data are often required for load
distribution or even disaster recovery [16]. In cloud federation environments, resource
monitoring is usually a challenge due to the dynamic nature of the environment that

52

Chapter 3. A Detailed View of Cloud Computing

can be comprised of heterogeneous infrastructures and resources may reside across
different clouds. In such case, monitoring systems must collect and aggregate data
provided by the monitored resources despite of the underlying infrastructure [16].
Therefore, most of the monitoring systems such as Ganglia [240], Nagios (nagios.org),
and GridICE [13] cannot be used in a cloud federation scenario. Moreover, in a
cloud federation environment, when virtual resources are migrated from one cloud
to another one, monitoring data needs to be collected in the destination. In this
case, the clouds need to support remote monitoring [81]. Furthermore, monitoring
systems must be designed to work autonomously. In other words, such monitoring
systems must reconfigure themselves when reconfiguration changes (e.g., services or
VM migrations, or even resource failure) occur.

3.3 Cloud Standards and Metrics

3.3.1 Cloud Standards
Cloud interoperability requires different standards to work properly at any level of the

cloud stack. Nowadays, there exist many organizations working on various standardization
efforts for cloud computing. Some of them are the Open Grid Forum (OGF) — (gridfo-
rum.org), the Distributed Management Task Force (DMTF), and the Storage Networking
Industry Association (SNIA).

This section highlights some standards for cloud computing and their adoption by
cloud providers and libraries. Table 3.1 summarizes the standards discussed in this section.

Open Virtualization Format (OVF) is an open standard of the DMTF. This standard
defines a descriptor for virtual appliance (VA) independent of both virtualization platform
and vendor. In this context, a VA is a complete software stack to be run on virtual
machines. In other words, it is the description of the software packages and the required
hardware configuration [311]. OVF has been designed to enable the deployment and
migration of virtual appliances across different virtualization platforms using a portable
format. In this case, it defines management actions for the whole life cycle of a VA such as
development, package, distribution, deploy, and retirement. An OVF package comprises
an XML file with the description of the VA such as name, hardware constraints, storage,
operating system, and network description. This standard is supported by many companies
such as Amazon, RackSpace, Google, Microsoft, VMWare, Oracle, IBM, and OpenStack.

The Cloud Infrastructure Management Interface (CIMI) is also a standard proposed
by the DMTF. It defines a protocol and a model to govern the interactions between
an infrastructure-as-a-service (IaaS) provider and a cloud user. Its model comprises a
description of the resources available in an IaaS such as virtual machines, storages, and
networks to enable the portability between clouds that support this standard, whereas its
protocols defines a RESTful API based on both XML and JavaScript Object Notation
(JSON) renderings [94].

The Cloud Data Management Interface (CDMI) (cdmi.sniacloud.com) is a standard
proposed by SNIA. This standard defines a RESTful interface for storage management,
which is not bound to clouds. It aims to promote data portability among storage providers.
In this case, it specifies functions that (i) allow users to discover the capabilities in a data

53

http://nagios.org
http://gridforum.org
http://gridforum.org
http://cdmi.sniacloud.com

Chapter 3. A Detailed View of Cloud Computing

service offering; (ii) manage containers (e.g., a directory within a file system) and data that
are placed in them; and (iii) associate metadata for containers and objects. In addition,
CDMI offers a set of protocols that enable the users to perform other storage operations
such as monitoring, billing, and access management independent of provider. The main
feature of CDMI is that it allows users to understand the capabilities of the underlying
storage and data services through a homogeneous interface. Moreover, many storage
companies such as NetApp and EMC2 are compliant with this standard.

Open Cloud Computing Interface (OCCI) was proposed by OGF to create a remote
management API for IaaS-based services. Later, it has evolved to support all the cloud
service models (Section 3.2.1). OCCI aims to guarantee interoperability among multiple
cloud providers. In such context, cloud providers should work together without data
schema or format translation between their APIs. In other words, the OCCI API acts
as a service front-end for controlling cloud resources [390]. OCCI is compatible with
other cloud standards such as OVF and CDMI. Moreover, it also works as an integration
point for standardization among various working groups and organizations [344]. Actually,
the OCCI specification consists of three documents, namely OCCI core, OCCI Renderings,
and OCCI Extensions. The OCCI core defines the instance type of the OCCI model.
Basically, it provides an abstraction of cloud resources. The OCCI Rendering, on the other
hand, defines how the OCCI core model is rendered over the HTTP protocol to lead to a
RESTful API. Finally, the OCCI Extensions define some OCCI infrastructure extensions
for IaaS domain.

Furthermore, many libraries implement the OCCI model such as Apache
CloudStack (cloudstack.apache.org), OpenNebula [248], CompatibleOne [378], and
jclouds (jclouds.apache.org).

Table 3.1 – A summary of some cloud standards

Standard Group Focus Key operations

OVF DMTF Standard description of virtual appli-
ances

Develop, package, distribution, deploy,
and retirement

CIMI DMTF Portability and resource management
in the IaaS domain (RESTful API)

Resource management

CDMI SNIA Data portability Common file system operations (i.e.,
read, write), backup, replication, and
billing

OCCI OGF Service interoperability (REST-
ful API)

Deployment, monitoring, and auto-
scaling

3.3.2 Cloud Metrics
The growing interest in cloud computing has demanded metrics to support the users

on selecting a service considering different criteria. Cloud metrics is also required since the
providers often focus on resource availability without performance guarantees [20, 170, 257],
which makes difficult for users to select the appropriate cloud. This is mostly owing to the
cloud architecture that is based on a co-location model designed to minimize the costs for
providers [392]. In this scenario, cloud evaluation must rely on different characteristics

54

http://cloudstack.apache.org
http://jclouds.apache.org

Chapter 3. A Detailed View of Cloud Computing

such as bandwidth, throughput, latency, computing and storage capacities as well as on
resource availability and efficiency. Different works [137, 203, 206, 224, 237, 318] have been
proposed to evaluate a cloud service. Based on these works, this subsection presents some
metrics to evaluate IaaS services. Table 3.2 shows the metrics discussed in this section,
which are classified as general or specific metrics. General metrics are metrics that can be
used to evaluate any cloud service and/or resource, whereas specific metrics are metrics
bound to a specific cloud service and/or resource.

In table 3.2, the instance sustainable performance (ISP) metric measures the effective
average performance of an instance (i.e.,VM) to execute a particular application [205];
and it is computed as the geometric mean of the Flop rate of an application. The instance
capability (IC), on the other hand, represents the sustained performance of the instance
integrated over a time period. This metric can be also used to assess the price performance
of the instance dividing it by the cost of the instance. In other words, this metric can help
to determine the instance that delivers the best value out of all the available instances.

3.4 IaaS Cloud Computing Systems
This section describes the architecture of an IaaS cloud. First, its components are

discussed. Then, the steps to use a service offered by this architecture are presented.
Finally, some IaaS architectures are presented and compared.

3.4.1 Architecture
IaaS clouds comprise a set of physical resources offering virtualized resources for the

users on-demand in nearly real-time. In this context, the users are responsible to request
the virtual resources (e.g., virtual machines) and to manage them, whereas the providers
are responsible (a) to select a physical resource to host the virtual machines; (b) to
create/instantiate the virtual machines; (c) to monitor the hosts (i.e., physical machines)
to guarantee their availability, and (d) to charge for their usage.

A generic IaaS cloud architecture (Figure 3.12) relies on a virtualization layer (Sec-
tion 3.1.1).

Above the virtualization layer, there is a virtual infrastructure (VI) manager. The VI
manager creates the virtual resources (e.g., virtual machines, storage) aggregating a pool of
physical resources often regardless of the underlying virtualization layer. In addition, it can
implement more advanced functions such as automatic load balancing, server consolidation,
and dynamic infrastructure resizing and partitioning [328]. In general, VI managers can
be grouped into two categories [328]: cloud toolkit and non-cloud toolkit. Cloud toolkits
expose a remote interface to create, to monitor, and to control the virtualized resources, but
they lack some management functions such as server consolidation. The non-cloud toolkits,
on the other hand, provide advanced features such as automatic load balancing and server
consolidation without exposing remote cloud-like interfaces. Examples of VI managers
include Eucalyptus [263], Nimbus [186], OpenNebula [248], and OpenStack (openstack.org).

The services are built on top of the virtual infrastructure (VI) manager, and organized
within the service layer. The services include virtual machines, storage, networking,
and virtual machine images (VMI).

55

http://openstack.org

Chapter 3. A Detailed View of Cloud Computing
Ta

bl
e
3.
2
–
So

m
e
m
et
ric

s
to

ev
al
ua

te
an

Ia
aS

cl
ou

d

M
et
ri
c
na

m
e

Fo
rm

ul
a

Sc
op

e
T
yp

e
U
ni
t

M
ea
n
tim

e
to

re
so
ur
ce

ac
qu

isi
tio

n
(M

T
R
A
)

pr
ov
isi
on

in
g
tim

e
bo

ot
tim

e
G
en
er
al

C
lo
ud

s
(s
ec
on

ds
)

O
ut
ag
e
du

ra
tio

n
(O

D
)

ou
ta
ge

en
d
tim

e−
ou

ta
ge

st
ar
t
tim

e
G
en
er
al

C
lo
ud

m
(m

in
ut
es
)

C
lo
ud

av
ai
la
bi
lit
y
(C

A
)

up
tim

e
to
ta
lt
im

e
G
en
er
al

C
lo
ud

%

A
llo

ca
tio

n
tr
us
t
(A

T
)

nu
m
be

r
of

re
so
ur
ce
s
pr
ov
isi
on

ed
nu

m
be

r
of

re
so
ur
ce
s
av
ai
la
bl
e

G
en
er
al

C
lo
ud

%

C
os
t-
eff

ec
tiv

en
es
s
(C

E)
co
st

pe
rfo

rm
an

ce
im

pr
ov
em

en
t

G
en
er
al

Se
rv
ic
e

%

R
es
ou

rc
e
re
le
as
e
tim

e
(R

RT
)

tim
e
to

st
op

tim
e
to

re
m
ov
e

G
en
er
al

R
es
ou

rc
e

s

In
st
an

ce
effi

ci
en
cy

(I
E)

C
PU

pe
ak

C
PU

po
we

r
Sp

ec
ifi
c

In
st
an

ce
%

In
st
an

ce
pe

rfo
rm

an
ce

tr
us
t
(I
PT

)
ac
qu

ire
d
pe

rfo
rm

an
ce

du
ra
tio

n
up

tim
e

Sp
ec
ifi
c

In
st
an

ce
%

In
st
an

ce
su
st
ai
na

bl
e
pe

rfo
rm

an
ce

(I
SP

)
G
eo
m
et
ric

m
ea
n
[2
05
]

Sp
ec
ifi
c

In
st
an

ce
Fl
op

s/
s

In
st
an

ce
ca
pa

bi
lit
y
(I
C
)

I
S
P

∫ t j t i
P

(t
)d
t

Sp
ec
ifi
c

In
st
an

ce
M
Fl
op

s/
$

In
st
an

ce
EC

U
ra
tio

C
PU

po
we

r
in

G
H
z

1.
2
G
H
z

Sp
ec
ifi
c

C
PU

EC
U

R
es
ou

rc
e
effi

ci
en
cy

(R
E)

ex
pe

ct
ed

pe
rfo

rm
an

ce
∫ t1 t0

P
(t

)d
t

Sp
ec
ifi
c

C
PU

M
Fl
op

s/
$

St
or
ag
e
ca
pa

ci
ty

(S
C
)

n ∑ i=
1
st
or
ag
e
siz

e(
i)

Sp
ec
ifi
c

St
or
ag
e

G
B

St
or
ag
e
da

ta
ac
ce
ss

ra
tio

(S
D
A
R
)

nu
m
be

r
of

op
er
at
io
ns

m
ea
su
re
d
tim

e
Sp

ec
ifi
c

St
or
ag
e

Bi
ts
/s

N
et
wo

rk
ca
pa

ci
ty

(N
C
)

A
m
ou

nt
of

da
ta

tr
an

sm
itt

ed
m
ea
su
re
d
tim

e
Sp

ec
ifi
c

N
et
wo

rk
M
Bi
ts
/s

Pa
ck
et

lo
st

ra
tio

(P
LR

)
nu

m
be

r
of

pa
ck
et

lo
st

nu
m
be

r
of

pa
ck
et
s

Sp
ec
ifi
c

N
et
wo

rk
%

56

Chapter 3. A Detailed View of Cloud Computing

Computing services are provided as virtual machines (VM) instances. A virtual machine
belongs to an instance type that determines its hardware capacity such as the number of
CPU cores (i.e., vCPUs), the amount of RAM memory, the disks’ constraints, and the
network capacity. In addition, instance types are divided into different family types or
classes defined according to their purpose usage such as memory-, CPU-, or I/O-optimized,
among others. For instance, at the time of writing this thesis, Amazon EC2 offers seven
family types (general purpose, standard, compute optimized, memory optimized, GPU,
storage optimized, and HS1)1 and Google Compute Engine offers four family types (small
or shared-core, standard, high CPU, high memory)2.

Storage is provided as regular disks for the virtual machines and it can be (Figure 3.13):
instance disk, network disk, or object storage. Instance disks (Figure 3.13(a)) are ephemeral
disks physically attached to the host computer of a virtual machine. Network disks or block
storages (Figure 3.13(b)) are persistent disks that can be attached to a running virtual
machine that is in the same data center (i.e., availability zone). Object storages (Fig-
ure 3.13(c)), on the other hand, are external storage services that can be mounted in a
running virtual machine. Moreover, storages belong to a storage type that determines their
performance and constraints. An example of a storage type is the solid-state disk (SSD).
Finally, storage is often billed per size in a period of time, and some may have addition
charges such as the number of transactions or provisioned input/output operations per
second (IOPS).

Networking services provide network connectivity between the virtual resources and
other networks (e.g., Internet); and their costs are usually defined in function of the
amount of data transfered between the networks.

Virtual machine images (VMI) are provided as persistent disks that contain an operating
system and a root file system required to start a virtual machine. They can be configured
to run on a specific hypervisor (i.e., virtualization technique (Section 3.1.1.2)), and their
price often depends on the operating system. Moreover, the providers allow the users to:
(i) upload their own images to the cloud; (ii) create a new one based on one of their virtual
machines (VMs), i.e., to take a snapshot of a VM; or (iii) export an image. In this case,
the users are usually billed per transaction (i.e., import/export, snapshot) and per the
amount of storage used to store a snapshot and/or a VMI.

The client layer comprises the applications and the APIs available to access the
services. In most of the cases, the users have to create their own applications to access the
services through the application programming interfaces (APIs) provided by the clouds.

3.4.2 Using an IaaS Cloud Service
The steps to use an IaaS cloud service are: (1) choose a region to host the resources;

(2) select an instance type; (3) select a VMI; (4) select a disk type; (5) request the provider
to create the VM; (6) configure and monitor the VM; (7) execute the application; and
(8) transfer the data from the cloud to the users local machine.

1. selecting a region: a region is an independent cloud environment deployed in a
geographic location in order to increase availability, i.e., to meet users’ SLAs and

1aws.amazon.com/ec2/instance-types
2cloud.google.com/compute/docs/machine-types

57

http://aws.amazon.com/ec2/instance-types
http://cloud.google.com/compute/docs/machine-types

Chapter 3. A Detailed View of Cloud Computing

Cloud users

Virtualization

Virtual Infrastructure Manager

Hardware

Virtual
machines Disks Networking

Virtual
machine
images

IaaS resources

Client

Figure 3.12 – A generic IaaS architecture

VM1 VM2 VM3

Host computer 1 Host computer 2 Host computer 1

VM1 VM2 VM3

Host computer 2

Data center 1 (availability zone) Data center 2 (availability zone)Data center 1 (availability zone)

VM3

Host computer 1

Data center 1 (availability zone)

Storage
service

Connected

Connected

Cloud 1 Cloud 1

Cloud 1

Cloud 2

(a) Instance disks

VM1 VM2 VM3

Host computer 1 Host computer 2 Host computer 1

VM1 VM2 VM3

Host computer 2

Data center 1 (availability zone) Data center 2 (availability zone)Data center 1 (availability zone)

VM3

Host computer 1

Data center 1 (availability zone)

Storage
service

Connected

Connected

Cloud 1 Cloud 1

Cloud 1

Cloud 2

(b) Network disks

VM1 VM2 VM3

Host computer 1 Host computer 2 Host computer 1

VM1 VM2 VM3

Host computer 2

Data center 1 (availability zone) Data center 2 (availability zone)Data center 1 (availability zone)

VM3

Host computer 1

Data center 1 (availability zone)

Storage
service

Connected

Connected

Cloud 1 Cloud 1

Cloud 1

Cloud 2

(c) Object storages

Figure 3.13 – Storage types usually available in IaaS clouds

58

Chapter 3. A Detailed View of Cloud Computing

to decrease network latency. A region may have multiple availability zones, or for
short, zone. Availability zones are distinct data centers engineered to be decoupled
from failures in other zones; and to have high-network bandwidth and low-latency
network connections to other zones in the same region. The selection of a region
depends on the resources needed by the users and on the cost they want to pay
for, i.e., the users’ requirements. If a region has more than one data center (i.e.,
availability zone), the users may select one or they may delegate this task for the
cloud provider.

2. selecting an instance type: in this step, the users must select an instance type
based on the requirements of their computing environment, such as the minimum
number of CPU cores and the minimum amount of memory; and on the characteristics
of their applications (e.g., CPU- or memory-bound). Usually, there are several
instance types that meet the users constraints, and the users usually select one in an
ad-hoc way, which can lead to a high cost due to the mismatch between the instance
purpose usage and the application behavior.

3. selecting a virtual machine image (VMI): after choosing the instance type,
a virtual machine image must be selected. This selection depends on the operating
system and in some cases, on the instance type. An instance type can restrict the
usage of the images due to the hypervisor or virtualization technique required by
the instance.

4. selecting a disk type: as we said in the previous section, each disk type implies
different performance, costs, and constraints. The selection of a disk type depends
on the characteristics of the applications or on some I/O requirements. As in the
selection of an instance type, this process is realized manually by the users.

5. requesting a VM: after choosing the region, the instance type, the VMI, and the
disk type, the users request the provider to create the VM. Then, the provider creates
the requested VM through its virtual infrastructure (VI) manager (Figure 3.12).
Normally the steps to create a VM are: (a) select a physical machine to host the VM;
(b) create the disks to the new VM; (c) copy the virtual machine image (VMI) to
the select host; (d) request the hypervisor (virtualization layer) to start the virtual
machine; (e) contextualize the VM [187]; i.e., assigns an IP address, imports the
access keys, among other configurations; (f) test the state of the VM; and (g) start
to charge for its usage.

6. configuring the VM: in this step, the users connect and install their applications
and libraries in the virtual machine, as well as transfer all data from their local
machine to the cloud.

7. executing the applications: the users execute their applications and wait them
to finish. During this execution, the users must monitor both the virtual machine
and the application execution.

8. releasing the VM: in this step, the users transfer the output of the applications
to their local machine and terminate the virtual machine.

59

Chapter 3. A Detailed View of Cloud Computing

If the users want to deploy their application in more than one VM, they should restart
from the second step.

3.5 Cloud Computing Architectures
Over the years, many cloud computing systems have been proposed to manage and to

create an IaaS cloud. This section presents some of these systems that aim to manage a
cloud. They are organized as centralized or decentralized systems.

3.5.1 Centralized Systems
In this section, we present ten centralized cloud architectures that are in the same

domain of this doctoral thesis. The architectures are considered centralized as the decisions
to access the resources rely on a single node. Other centralized cloud architectures can be
found in [18, 128, 147, 180, 238, 280].

3.5.1.1 Claudia

Claudia [299] is a software layer that provides homogeneous interface for cloud service
management (Figure 3.14). For service management, Claudia uses an extension of the OVF
standard (Section 3.3.1), called service descriptor file, to allow the providers to describe
their services independent of technology or API, and to specify the dependencies between
the services.

Claudia implements auto-scaling services based on scalability rules defined by the
providers for each service in the descriptor file. Such rules define the conditions and the
actions to be executed by the system. A condition can be defined basing on user-defined
metrics or on hardware metrics. In this case, scalability rules encompass scaling resources
up/down in the same cloud provider as well as scaling in/out the number of resources
across multiple clouds.

Claudia uses OpenNebula [248] to manage the underlying infrastructure and to access
multiple clouds. In other words, the cloud interoperability is achieved through the use
of OpenNebula. In this case, the architecture is deployed in a single node (i.e., the
master node) that is responsible for managing the clouds through the cloud infrastructure
manager (i.e., VI manager).

Experimental results show that Claudia could scale the jobs of a Sun Grid Engine
(SGE) queue according to the scalability rules described in the descriptor file.

3.5.1.2 SciCumulus

SciCumulus [95] is a middleware to automate the execution of workflows on the cloud
following the many task computing (MTC) paradigm. It explores parameter sweep and
data fragmentation parallelism in workflows. In such case, SciCumulus aims to explore
workflow parallelism in the cloud focusing on implementing provenance services, to free
the users to deal with the complexity of collecting distributed provenance data [95].

60

Chapter 3. A Detailed View of Cloud Computing

Figure 3.14 – Claudia architecture [299]

The architecture of SciCumulus is organized in three layers: desktop, distribution, and
execution layer, which are placed between a workflow management system (WfMS) and
the cloud infrastructure (Figure 3.15). The desktop layer uses the WfMS to start the
execution of the workflow’s activities (steps 1 and 2). The distribution layer manages the
execution of cloud activities by recognizing the tasks that compose the workflow and using
a global schema to schedule them in the cloud (?? – steps 3.1, 3.2, 4, 5, and 6). A cloud
activity is a container with the application to execute, its execution strategy, its parameter
values, and its input data. For each assigned instance pair (instance, cloud activity), the
execution layer configures and executes the application (?? – steps 8.1, 8.2, 9, 10, and 11).

SciCumulus was validated using the CloudSim [58] simulator to evaluate the execution
time of a workflow when fragmented in 100 and 128 cloud activities. For the workflow
analyzed, the results show performance gains when the number of cloud activities is at most
100, otherwise the performance degrades due to the overhead of managing the activities.

3.5.1.3 Cloud-TM

Cloud-TM [300] is a cloud architecture to build and to execute applications based
on distributed transaction memory (DTM). It aims to combine the transactional mem-
ory (TM) approach with the scalability and failure resilience of redundant large-scale
infrastructures.

Its architecture comprises two components: data platform and autonomic manager (Fig-
ure 3.16). Data platform exposes an API for manipulating data across distributed
servers, and it implements the distributed software transaction memory (DSTM) services.
The DSTM is based on Infinispan (infinispan.org). Infinispan implements automatic data
partitioning across multiple nodes, enabling continuous data availability and transactional
integrity even in the presence of failures. The autonomic manager, on the other hand, is
responsible for scaling the data platform and for implementing self-optimizing strategies
to reconfigure the data grid. In such case, there is a monitoring component that gathers
data about the resources and sends them to a workload analyzer. Then, the workload
analyzer filters the data, generates a workload profile, and notifies the adaptation manager.

61

http://infinispan.org

Chapter 3. A Detailed View of Cloud Computing

���������	
���

�����������	
���

�������	
���

��������

��������� ��

!"#$� ���%
&���#�

'������(#�

)*���(#�

'�+*� $,#�

��* ��#�

'#+� �*
-# �*

.���/# #�
-�##*#�

'� �%
0���/#� #�

-$,#(��#�

!�$�*+��� ��

'�+ ��1� ���
��� ����#�

'� �%
-�//���2#�

!"#$� ��

3�+ ��$#%
��� ����#�
45

��������� ���%
6#*�+� ��7

'� �%
6#*�+� ��7

8��1��
-$,#/�

.��9#���$#

3�+ ��$#
.��9#���$#

'� �%
6#*�+� ��7

5

:

;<5 ;<:

=

>

?

@

A<5

5B

55

5:5;

5>

5>

.���/# #�
-�##*#�

'� �%
0���/#� #�

A<: C

Figure 3.15 – SciCumulus architecture [95]

Finally, the adaptation manager reconfigures the system to meet performance and cost
requirements.

Experimental results show that changing a distributed software transactional memory
solution, called D2STM [87], to use Cloud-TM helped it to achieve linear speed-ups.

Object Grid
Mapper

") "#"##$ $$" ,#$ # IaaS ProvidersPersistent Storage Systems

Data Platform Programming APIs

Data Platform

Object Grid
Mapper Search API

Distributed
Execution
Framework

Distributed Transactional Memory

Software Transactional Memory

Replication/Distribution Manager

Interface toward
Storage Systems

Group
Communication

System

W
O
RKLO

AD
&
Q
oS

M
O
N
ITO

R

W
O
RKLO

AD
AN
ALYZER

AD
APTIO

N
M
AN
AG
ER

Data
Platform

Optim
izer

Elastic
Scaling

M
anager

QoS/cost specification API

Autonomic Manager

Persitent Storage Systems IaaS Provider

Figure 3.16 – Cloud-TM architecture [42]

62

Chapter 3. A Detailed View of Cloud Computing

3.5.1.4 mOSAIC

mOSAIC [278, 279] is an API and platform to create cloud-aware applications to run on
hybrid clouds. Unlike other cloud APIs that try to abstract the cloud resources providing a
uniform API and keeping the programming style closed to the native cloud API, mOSAIC
assumes some characteristics of the deployed applications such as: (i) the applications are
divided into components with explicit dependencies in terms of both communication and
data among them; (ii) the applications use only the mOSAIC API for inter-component
communication; and finally, (iii) for each component, the developers specify its requirements
such as CPU and storage.

The architecture of mOSAIC comprises five major components (Figure 3.17): resource
broker, cloud agency, client interface, application executor, and semantic engine. The
resource broker mediates the interaction between the clients and the cloud providers.
The cloud agency implements resource discovery and negotiates resource usage with the
cloud providers. It is also used to monitor and to reconfigure the resources according to
the performance constraints. The client interface, on the other hand, is responsible for
requesting additional resources from an application executor. The application executor
deploys the applications and monitors their execution. Finally, the semantic engine helps
the developers on identifying a cloud for their applications. In such case, the developers
semantically describe and annotate their applications, and specify related concepts and
patterns using an ontology provided by mOSAIC.

mOSAIC has been used to deploy different applications developed in Java, Python,
and Erlang.

3.5.1.5 TClouds

TCloud [355] is a cloud architecture that implements automated attacks detection and
failure recovery services on top of the cloud infrastructure. To achieve the security levels
required by the applications, TCloud adds a software layer between the applications and
the clouds (Figure 3.18). This security layer clusters the resources (e.g., storage, virtual
machines) as trusted or untrusted, and intermediates the access to them. The idea is that
the resources classified as trusted are both resilient to attacks and to Byzantine failures. In
the same manner, a platform service is implemented to represent the trustworthy services
built on top of the trusted or untrusted cloud infrastructure.

TCloud was validated through a modified version of Apache Hadoop with support
for Byzantine failures, running on top of the infrastructure of a public cloud, i.e., an
untrusted IaaS infrastructure.

3.5.1.6 FraSCAti

FraSCAti [273] is a platform for deploying applications on multiple clouds. This platform
relies on three concepts: (i) an open service model, (ii) a configurable architecture, and
(iii) some infrastructure services.

The open service model is used to design and to build multi-cloud PaaS and SaaS
applications that run on top of FraSCAti. This model follows a service component
architecture (SCA) to define the services provided by the federated PaaS and by the SaaS
applications. In this case, services are defined independent of programming languages,

63

Chapter 3. A Detailed View of Cloud Computing

mOSAIC'S
proof-of-the-concept applications

User community
developed

applications

Cloud-enabled applications

mOSAIC PaaS and IaaS

Application support

API
implementation

Application
tools

Semantic engine

Java e Python
Cloudlets,

Demo
applications

Eclipse plug ins,
Front/back ends

Config tools,
Portable Testbed

Cluster

Builders,
Reasoner,

Search Engine,
Ontologies

Service discoverer

Software platform support Infrastructure sup.

Platform's core
components

Appl service
components

Cloud Agency

Cloud Adaptors

Deployable
service support

Hosting services support

Other hosting and deployable services

Application
support

components Agents

AWS, CloudBurst, Rackspace, Hostko,
Flexiscale, GoGrid, CloudSigma, CHS Eucalyptus,

OpenNebula,
DeltaCloud,
OpenStack

Broker,
Vendor Agents

SLA, Benchmark,
NetworkRegister, Discover

Packager,
Deploy,

Provision, mOS,
Monitor,

Scheduler, Scaler
Interop support

COSTS, Drivers

Mediator,
Meter,

Archiver

Figure 3.17 – mOSAIC architecture [279]

64

Chapter 3. A Detailed View of Cloud Computing

TClouds Global Physical Infastructure

Infrastructuretos

ACaaS
Ontology
Based

Reasoner
RA

Service CaaS

Middleware
BFT

SMaRT CheapBFT DepSky Fault-tolerant
Workflow Execution

Services

memcached S3
Proxy

Log
Service C2FS Relational

DB KV Store

Infrastructuretic

TOM
Trusted

Management
Channel

Trusted
Server

Log
Service

mgmt CoC

SAVE

Figure 3.18 – TClouds architecture [355]

protocols, and non-functional properties. In other words, SCA providers a framework that
addresses portability, interoperability, and heterogeneity of service-oriented systems [271].

The configurable architecture employs software product line (SPL) to capture the
characteristics and variability points of the cloud environments. In this case, the SPL is
implemented as an assembly of SCA components; and the variability points are captured
as a set of plug-ins (Figure 3.19). This enables the developers to meet the constraints of
the target cloud environment.

Infrastructure services, on the other hand, are management functions such that deal
with node provisioning and application deployment.

? 74@
? 74@

753&#A
753&#A
753&#A

B6C@
753&#A
753&#A
753&#A

D&#E
D&#E

753&#A
753&#A
753&#A

B6C@
753&#A
753&#A
753&#A

Assembly
Composite

Property

Component

Implementation

Service

Reference Interface WSDL

Binding

SCA
Parser

FraSCAti
Metamodel

SCA
Metamodel

Tinfi
Factory

SCA
Resolver

BPEL

SOAP

XSD

Assembly Factory
Run-time

Figure 3.19 – FraSCAti architecture [273]

FraSCAti was used to implement a P2P monitoring application composed of thirteen
peers, each one deployed on a different cloud. In this scenario, FraSCAti met the constraints
of each cloud environment due to the usage of the SPL.

3.5.1.7 STRATOS

STRATOS [274] is a cloud broker architecture for resource allocation on multiple
clouds. The clouds are selected at runtime according to some objectives. In such case,

65

Chapter 3. A Detailed View of Cloud Computing

the objectives are specified in terms of key performance indicators (KPIs). Thus, when a
request for a resource acquisition is made the broker considers it against all the providers.

In STRATOS, the users describe the execution environment using an XML file (i.e.,
topology description file) and submit it to a cloud manager (Figure 3.20). A description
includes functional and non-functional requirements such as the number of nodes, the
metrics to monitor, and the management directives. After receiving the topology file,
the cloud manager contacts the broker to instantiate the environment. Then, the broker
selects the providers that meet the users’ objectives; and it uses the translation layer to
creates the instances in the selected providers. The monitoring component is responsible
to monitor the metrics specified at the descriptor file and to send their data to both cloud
manager and broker.

Experimental results show that STRATOS could reduce up to 48% of the financial
cost, using both small and large instances of Amazon EC2 and Rackspace.

Cloud

Metadata

Service

Topology

Descriptor

IaaS

Provider

IaaS

Provider

Translation Layer

BrokerImage

DB

Cloud

Manager

M
o

n
it
o

ri
n

g

IaaS

Instances

IaaS

Instances

Application

Environment

Figure 3.20 – Stratos architecture [274]

3.5.1.8 COS

COS [165] is a cloud architecture to support application scaling based on migration.
In COS, the applications must be developed following the actor-based model and the
SALSA [354] programming language. In this case, according to the workload the architec-
ture migrates the applications’ components (i.e., actors) taking into account communication
and migration costs. In other words, there is a manager that continually receives the CPU
usage of the other nodes, and based on their usage, it decides either to create a new VM
or to consolidate the virtual machines.

The experiment results show that using actor-based model decreases up to 14% the
application migration time, when comparing to the migration time of the whole virtual
machine.

3.5.1.9 Rafhyc

Rafhyc [245] is a cloud architecture to create PaaS and SaaS services over federated
cloud resources. Its architecture (Figure 3.22) is organized in layers, namely Rafhyc

66

Chapter 3. A Detailed View of Cloud Computing

Physical Node #1

VM
Monitor

IOS Agent

SALSA Runtime

Node Manager Node Manager

SALSA Runtime

IOs Agent

ActorsActors

Domain-UDomain-U

Domain-0 Domain-0

Physical Node #2

1. Notify
high/low

CPU
utilization

2. Pass the
event to COS

Manager COS
Manager

4. Request VM
creation/ termination

5. Create/
Terminate

VM
6.

(Dis)connect
Load

Balancers

3. Determine if
requesting VM

creation / termination

VM
Monitor...

Autonomous Load Balancing

Figure 3.21 – COS architecture [165]

Resilient Layer and Rafhyc Services Layer. The Rafhyc Resilient Layer provides services
for executing the applications in the cloud. The Rafhyc Services Layer provides the services
to access and to manage the infrastructure. Moreover, Rafhyc has a configuration manager
responsible for monitoring the resources and the workload of the virtual machines. In
practice, the configuration manager continuously executes a benchmark in the virtual
machines to compute the efficiency and reliability of the clouds.

The experiments realized in a federated environment show that Rafhyc can manage
the execution of applications in a dynamic and heterogeneous environment. In this case,
the experiments focused on analyzing performance variabilities between the clouds.

Science gateways, pilot factories, job factories
science workflows, scientific applications

Rafhyc Resilient Layer

Rafhyc VM
Interface

Rafhyc Configuration
Interface

Rafhyc
Multi-Cloud Layer

Rafhyc Federated
Hybrid Cloud
Services Layer

Specific cloud manager
REST APIs

Specific web
services APIs

Federated
Cloud

Services
Private
Cloud

Public
Cloud

R
af

hy
c

L
ay

er

Figure 3.22 – Rafhyc architecture [245]

67

Chapter 3. A Detailed View of Cloud Computing

3.5.1.10 JSTaaS

JSTaaS [218] is a framework for enabling cloud bursting. Using an annotative strategy,
the developers can create multi-cloud solutions, executing their applications across multiple
clouds. In this case, JSTaaS (Figure 3.23) reads the annotations in the source code and
generates a new code with the instructions to create the virtual machines and to monitor
the applications. It implements cloud bursting, intercepting every method invocation at
runtime, and deciding in which node the method must be executed. In case of remote
execution, the framework uses a queue to schedule the execution of the method in another
node.

An experiment in a hybrid cloud scenario shows an increasing in the execution time
due to the network latencies between the clouds (i.e., private and public clouds).

CloudScale
Middleware

JSTaaS Application
Code

CGLib
Proxy

CGLib
Proxy

A
s
p
e
c
tJ
B
y
te
c
o
d
e
W
e
a
v
in
g

InMem

Database

Openstack Private Cloud

Amazon EC2 Public Cloud

Ubuntu 12.10 +
CloudScale
Service

Ubuntu 12.10 +
CloudScale
Service

Figure 3.23 – Cloud bursting architecture [218]

3.5.2 Decentralized Systems
In this section, we present five decentralized cloud architectures that are most related

to this PhD thesis.

3.5.2.1 Reservoir

Reservoir [296] is an architecture to manage services defined as a collection of virtual
execution environments (VEEs). Each VEE can spread over multiple sites, where each site
is completely autonomous. The architecture of Reservoir comprises three elements: service
manager (SM), VEE manager, and VEE host (VEEH) (Figure 3.24). The service manager
is in the highest level of the architecture, and it is responsible for deploying, provisioning,
and monitoring the VEEs. The VEE manager is responsible for placing the VEEs into the
hosts and also for adding or removing VEEs from a given VEE group. Finally, the VEE
host is responsible for managing the virtualization platform and for monitoring the VEEs.
In addition, it is also responsible to allow VEEs migrations across the sites.

In Reservoir, a service acts as a platform to execute the applications in the VEEs. In
this case, the developers describe the requirements of their applications using a service

68

Chapter 3. A Detailed View of Cloud Computing

definition manifest. A service definition manifest includes the virtual machine images
required to run the applications, as well as the elasticity and service-level agreement
(SLA) rules. This service manifest is submitted to a service manager (SM) that selects
the appropriate resources and instantiates the VEEs for each component defined in the
manifest. In addition, the SM also monitors the execution of the applications to scale
them according to the elasticity rules and to meet the SLAs. It scales the applications by
adjusting the service capacities, either adding more service components or changing the
resource requirements of a component according to its load.

In practice, the service manager requests the virtual execution environment man-
ager (VEEM) to create, to resize, and allocate the VEEs, satisfying services’ constraints.

Reservoir site

VEE manager (VEEM)

Servicemanager

VEEH
(e.g., hypervisor,
OSGi container)

Serviceprovider

Manifest

SLA

VMIVMI

SLA

SM
I

VH
I

VM
I

Figure 3.24 – Reservoir architecture [296]

3.5.2.2 Open Cirrus

Open Cirrus [22] is a federated cloud testbed sponsored by different companies in
collaboration with universities and institutions in the US, Germany, Russia, and Singapore.
It is composed of ten data centers located in North America, Europe, and Asia to offer
a cloud stack consisting of physical and virtual machines. The objective is to offer for
researchers access to low-level hardware and software resources, which are usually not
available and/or allowed in public clouds.

A Open Cirrus’s data center consists of three service layers called foundation, utility,
and primary domain services (Figure 3.25).

The foundation layer offers IaaS service capabilities; and it is based on Zoni. Zoni is a
software responsible for managing physical resources and some cloud services such as node
allocation, node isolation, software provisioning, network, and debugging of the allocated
resources.

The utility layer comprises non-critical services such as monitoring, power management,
networking file system, and accounting for resource utilization.

69

Chapter 3. A Detailed View of Cloud Computing

Finally, the primary domain layer offers PaaS-level services. Basically, this layer allows
the users to execute Hadoop or MPI applications without needing to interact with the
foundation services. It also provides services to manage virtual machine deployment across
multiple data centers via an AWS-compatible API.

Moreover, Open Cirrus supports resource allocation across multiple sites through a set
of global services. In this case, each service runs at one site to provide a common view of
the infrastructure. These common services are single sign-on, global monitoring tools, and
global storage.

According to the authors, the Open Cirrus testbed has been used to execute different
applications.

Domain

isolation

(VLAN)

Physical

machine

control

(IPMI)

Application framework (Hadoop,

MPI, Maui/Torque)

Networking

(DNS, DHCP)

Provisioning

(PXE)

Monitoring

(Ganglia)

Power

management

Accounting

and

billing

Attached

storage

(NFS)

Domain

isolation

(DLS)

Resource

telemetry

(RTS)

Virtual machine management

(AWS-compatible systems such as

Tashi and Eucalyptus)

Cluster storage

(HDFS)

Foundation services (Zoni) Site utilities services Primary domain services

Figure 3.25 – Open Cirrus architecture [22]

3.5.2.3 CometCloud

CometCloud [194] is a cloud architecture for cloud and grid environments. It comprises
three layers namely infrastructure layer, service layer, and programming layer. The
infrastructure layer uses a P2P overlay (i.e., Chord) to organize the resources and to
implement data lookup. In this case, the nodes are organized according to their credentials
and capabilities. In addition, each node propagates its state for its successor and predecessor.
This allows the architecture to support node failure merging the state of the failed node
with the one known by its predecessor and successor. The service layer implements
coordination services based on a tuple space model. This coordination model creates a
global space accessible for all nodes to implement membership authentication. This layer
also implements publish/subscribe messaging and event services. Events describing the
status of the system are clustered, and they are used to detect inconsistent states. Finally,
the programming layer provides a framework for application development as well as for
the execution of the applications.

CometCloud employs a master/slave architecture to schedule the tasks across the
clouds (Figure 3.26(c)). In this case, there is a scheduling agent responsible for distributing
the tasks and for managing their execution in order to achieve the performance constraints.
Moreover, the tasks are distributed according to a hierarchical security domain. The
security domain comprises three levels. Trusted resources (i.e., dedicated resources) and
management services (e.g., scheduling and resource coordination) are deployed in the first
level (Figure 3.26(b)). The second level, on the other hand, comprises trusted workers that
can pull tasks from the first level. Finally, the third level consists of untrusted workers (i.e.,
workers deployed in a public cloud) that require a proxy to access the resources in the first
level. This hierarchical security model helps CometCloud on enforcing SLA guarantees,

70

Chapter 3. A Detailed View of Cloud Computing

distributing the tasks first for trusted workers and for untrusted workers when the former
is overloaded.

Application

Master/Worker/BOT

Scheduling Monitoring Task
consistency

Workflow MapReduce
/Hadoop

Clustering/
Anomaly Detection

Discovery Event

Coordination

Messaging

Publish/Subscribe

Self-organizing layer

Data center/Grid/Cloud

Content-based routing Content security

Replication Load balancing

Programming
layer

Service layer

Infrastructure
layer

(a) Architecture layers

(b) Task distribution (c) Cloud bridging

Figure 3.26 – CometCloud architecture [194]

Experimental results showed a performance degradation due to the communication
overhead between the workers and the master. The master run on a private cloud and the
workers on Amazon EC2 to execute a Monte-Carlo application.

3.5.2.4 Contrail

Contrail [61] is a federated cloud architecture that aims to provide a homogeneous
interface for the clouds. In such case, it employs two types of federation: horizontal and
vertical. The vertical federation focuses on providing a platform to access the resources,
whereas the horizontal focuses on abstracting the interaction model between the clouds.

The architecture of Contrail comprises three layers: interface, core, and adapters (Fig-
ure 3.27).

The interface layer gathers requests from users as well as from other Contrail components
that rely on the federation. In this case, the services can be accessed through a command-
line interface (CLI) or through a web interface. The core layer contains the modules
responsible to support the federation requirements as identity management, application
deployment, and SLA coordination.

71

Chapter 3. A Detailed View of Cloud Computing

The identity management implements single sign-on (SSO) services, which once au-
thenticated, a user it not prompted to login at each cloud. Application deployment is
implemented by the federation runtime manager (FRM). The FRM implements resource
discovery considering different aspects such as cost and performance. It is also responsible
for managing the application life-cycle. In this case, it gathers static and dynamic data
of the federation through the provider watcher module. The provider watcher module
monitors the applications and updates the state module.

The adapters layer contains external and internal adapters that enable the access
to the services owned by both Contrail’s clouds and external clouds. Internal adapters
provider components for network, storage, and execution platform, while internal adapters
supply provider-specific drivers for external clouds (i.e., non-Contrail clouds) by translating
requests from the federation into requests that are understood by the providers.

Federation support

HTTP

REST

Core Layer

CLI

Security

Adapters layer

SLA
Management

Contrail Provider

SLA
Management

External Provider

VEP driver GAFS driver VIN driver External Cloud
adapters

SLA Organizer

State

SLA Template
Repository

SLA Negotiation

SLA Coordination

Federation Runtime
Manager

Mapping

Image Manager

Image Registry

Provider Watcher

User Identity

Authentication

Attribute Authority

Policy
Administration Point

Policy Decision Point

Figure 3.27 – Contrail architecture [61]

Contrail has been used to deploy ConPaas [280], which is a platform-as-a-service for
PHP applications.

3.5.2.5 OPTIMIS

OPTIMIS [112] is a multi-agent software architecture. It uses software agents to
implement resource provisioning across multiple clouds. One of the OPTIMIS agents is
the deployment engine (DE) (Figure 3.28) that is responsible to discover and to negotiate
the resources required by a service. First, it identifies the providers that meet the services’
requirements, then it creates a service manifest (i.e., SLA template), submits it to each
cloud provider, and waits for the offers. When a request to host a service is received, a
provider can reject it or make an deployment offer through the admission controller (AC).
The deployment decision is based on the workload of the cloud, on the requested resources,
and on the provider’s objectives (i.e., profit).

72

Chapter 3. A Detailed View of Cloud Computing

Each deployment offer is evaluated by the DE that selects the best offer considering
both qualitative (e.g., financial cost) and quantitative factors (e.g., energy consumption,
trust). After selecting a deployment offer, the DE prepares a VMI with all the applications
needed by the service and starts the deployment of the service within the selected cloud
provider. With the services deployed, a service optimizer (SO) continuously monitors the
service parameters to detect SLA violations. In OPTIMIS, the resources are allocated
using a cloud optimizer (CO), which is responsible to optimize (e.g., consolidating the
virtual machines) the cloud infrastructure.

Experimental results show that OPTIMIS was able to reduce the risk of over-
provisioning up to 3.5% for unknown workloads in a private cloud.

Service Builder (SB)

Basic
Toolkit

IDE
Programming

Model
Configuration

Manager

Admission
Controller (AC)

Deployment
Engine (DE)

Service
Optimizer (SO)

Cloud
Optimizer (CO)

Security Economical
Optimizer

Monitoring Green
Assessment

Trust Framework

Risk Framework

Figure 3.28 – OPTIMIS architecture [112]

3.5.3 Comparative View
Table 3.3 summarizes the cloud architectures reviewed in sections 3.5.1 and 3.5.2.

The first column presents the cloud computing system. The coordination model of the
system is presented in the second column. The third column presents if the system
can work in a multi-cloud environment. In this case, it can manage resources that
belong to different clouds, and the clouds can be private, public, or hybrid. The cloud
service model (Section 3.2.1) considered by the architectures is presented in the fourth
column. Finally, the last column presents the type of application that is the focus of each
system. In this case, generic means any type of applications; cloud-aware means application
developed using one of the programming languages supported by the architecture such
as Java, Python, Erlang, among others; whereas Java means that the system can only
execute Java applications.

As can be seen, most of the systems rely on a centralized architecture. This is because
these systems consider a static scenario, and they focus in helping the developers to create
native cloud applications. In this case, there is still a demand for systems that can
manage multiple clouds, taking into account different users’ profiles and different kind of
applications (i.e., native and cloud-unaware applications).

3.6 Summary
This chapter presented a detailed view of cloud computing, including the main tech-

nologies related to cloud computing systems, such as virtualization, service-level agreement
(SLA), and MapReduce.

73

Chapter 3. A Detailed View of Cloud Computing

Table 3.3 – Comparative view of some cloud architectures

Coordination Multi CloudSystem model cloud model Application

Claudia [299] Centralized Yes IaaS Generic
SciCumulus [95] Centralized No IaaS Workflow (Simulation)
Cloud-TM [300] Centralized Yes PaaS Java
mOSAIC [278] Centralized Yes PaaS Cloud-aware
TClouds [355] Centralized Yes PaaS Hadoop
FraSCAti [317] Centralized Yes PaaS Java

STRATOS [274] Centralized Yes PaaS Java
COS [165] Centralized No PaaS Java

COSCA [180] Centralized No PaaS Java
Rafhyc [245] Centralized Yes IaaS Generic
JSTaaS [218] Centralized Yes PaaS Java

Reservoir [296] Distributed Yes PaaS Cloud-aware
Open Cirrus [22] Distributed Yes IaaS Generic

CometCloud [194] Distributed Yes IaaS Generic
Contrail [61] Distributed Yes IaaS Cloud-aware

OPTIMIS [112] Distributed Yes PaaS Cloud-aware

Virtualization techniques introduce many advantages for such systems, such as mainte-
nance with negligible downtime, workload consolidation to maximize the usage of resources,
and properly workload isolation.

MapReduce, on the other hand, provides a simple and high-level API that enables the
developers to write distributed applications without needing to deal with failures, and
that can automatically scale.

Nevertheless, the customers’ services often rely on a single cloud infrastructure which
may represent a drawback to the scalability and availability of the services. This issue can
be mitigated by federating the resources that belong to different providers. This can help
providers to handle the requests that exceed their capacity by delegating them to other
cloud providers, avoiding over-provisioning solutions, and it can also help cloud users to
increase their services availability.

Cloud federation is likely to represent the next step in the evolution of cloud computing,
since it promotes the cooperation among different organizations and may contribute to
push down the costs. Cloud federation enables a utility as a service model, where similar
to the power generation, providers can delegate the exceed demand to their partners. Thus,
cloud providers can elastically scale up/down their infrastructure by renting computational
capability on-demand, and paying for them according to the business model (e.g., pay-
per-usage) [70]. The challenge is how to deal effectively and automatically with failures,
performance issues, and automatically deploy the services.

As in a cloud federation different platforms and technologies should coexist, this
requires the development of middlewares to address the problems that may arise due to
the federation characteristics, such as interoperability, heterogeneous resources, multiple
allocation policies, coordination, and data location.

Finally, a federated cloud should be designed considering a dynamic scenario, where
resources or even entire clouds could instantaneously appear and disappear. Considering
this scenario, P2P techniques should be considered to implement discovery and services

74

Chapter 3. A Detailed View of Cloud Computing

selection due to their characteristics (e.g., scalability and adaptability) in a highly transient
environment.

75

Chapter 4

Autonomic Computing

Contents
4.1 Definition . 77

4.2 Properties . 77

4.3 Architecture . 79

4.4 Autonomic Computing Systems 80

4.4.1 V-MAN . 80

4.4.2 Sunflower . 80

4.4.3 Market-based . 81

4.4.4 Component-Management Approach 82

4.4.5 Snooze . 82

4.4.6 Cloudlet . 83

4.4.7 Distributed VM Scheduler . 83

4.4.8 Thermal Management Framework 85

4.4.9 SmartScale . 85

4.4.10 SLA Management . 86

4.4.11 Comparative View . 87

4.5 Summary . 87

In the beginning of the 2000s, it was clear that computing systems were extremely
complex, running in heterogeneous and dynamic environments such as the Internet and
interacting with other systems in complicated ways. In this scenario, even the most skilled
administrators were having problems to configure, to tune, and to manage these systems
properly [163, 191]. Some challenges that arise in this scenario are [191]: (i) computing
systems must be scalable to provide a rich experience for users; (ii) computing systems

76

Chapter 4. Autonomic Computing

usually run in heterogeneous and unpredictable environments under multiple administrative
domains, where most of the interactions are known only at runtime; (iii) computing systems
should be reliable even if they run in a unreliable environment; and finally (iv) computing
systems must be aware of their execution environment.

Observing these difficulties, in March 2001, Paul Horn, from IBM, introduced the idea
of autonomic computing at the National Academy of Engineering (NAE) by comparing
computing systems to the human nervous system. He claimed that computing systems
should be able to regulate themselves as the human body regulates itself [162]. He
suggested that complex systems should independently take care of regular maintenance
and optimization tasks, thus reducing the workload of the system administrators.

This chapter describes autonomic computing. First, it provides the definition of
autonomic systems (Section 4.1) followed by the description of the autonomic proper-
ties (Section 4.2). Then, it presents concepts related to the architecture of autonomic
systems (Section 4.3). Finally, some autonomic systems for large-scale distributed systems
are presented and compared (Section 4.4), and section 4.5 summarizes this chapter.

4.1 Definition
Autonomic systems are defined as computing systems that manage themselves, adjusting

to environmental changes in order to achieve the users’ objectives [162]. Such systems must
anticipate needs and allow users to concentrate on what they want to accomplish with the
systems rather than spending their time overseeing the systems to get them there [162].
This idea comes from the humans autonomic nervous system, that can observe and adapt
the human body to the environment, requiring little conscious actions [191, 236]. For
instance, the nervous system autonomously controls the body’s temperature, the heart
rate, the blood sugar level, and other vital functions.

An autonomic computing system is essentially a self-management system. A self-
management system can configure and reconfigure itself under varying and unpredictable
scenarios without human intervention [27]. The main goal is to free system administra-
tors from the details of system operation. To achieve that, self-management systems
use autonomic managers (AMs) to monitor the environment and to take appropriate
actions [164, 191, 236].

4.2 Properties

According to Horn [162], autonomic systems are self-management systems with eight
characteristics or key elements: self-configuration, self-healing, self-optimization, self-
protection, self-knowledge, context-awareness, openness, and self-adaptation. The first
four elements are considered major characteristics, and the other elements are minor
characteristics [162].

Self-configuration refers to the ability of an autonomic element (AE) to be seamlessly
integrated into the system according to the system or users’ objectives. In this context,
an objective defines which states are desirable, without specifying how they should be
accomplished. For example, registering a node in a Hadoop (Section 3.1.3) cluster requires

77

Chapter 4. Autonomic Computing

changing on the Hadoop configuration in order to distribute tasks for the newest node.
With self-configuration, a node can learn about the cluster and register itself, so that other
components can either use it or modify their behavior to the new system’s state.

Debugging and fixing problems in large-scale systems is usually a challenging task.
They may require considerable amounts of time from programmers to diagnose problems
and to fix them. Moreover, such systems are often composed of interdependent subsystems
either developed or managed by different companies. Self-healing refers to the ability of a
system to detect and to diagnose problems automatically. Initially, an autonomic system
follows the rules defined by system administrators, but later, it begins to discover new
rules on its own that help it to meet the users’ goals. For instance, an autonomic system,
after having detected a software bug, may decide to install software updates and to execute
regression tests [191]. In this case, if the error continues, it can send a bug report to the
system administrators with detailed information about the bug (i.e., context), or it can
restore the system to a state that minimizes services’ interruption.

Large-scale systems may have hundreds of tunable parameters that must be correctly
set for the system to perform adequately. In addition, such systems are often integrated,
where adjusting one subsystem may affect the entire system [191]. In the context of
autonomic computing systems, self-optimization refers to the ability of a system to monitor
itself constantly, to learn based on past experiences, and to adjust system parameters in
order to satisfy the performance goals. For instance, adaptive algorithms running on each
system can tune their own parameters and learn the best values that lead to the desirable
performance level.

An autonomic system that pro-actively protects itself from malicious attacks and from
the users who can make changes that affect the system’s stability has the self-protection
characteristic. In this context, autonomic systems continuously tune themselves to achieve
desirable security levels and also to anticipate problems based on historical data.

Self-knowledge means the ability of a system to have detailed information about its
environment even if it runs in an unpredictable scenario. In this case, the system should
know its components as well as their status, their current capacity, and their connections
with other systems to be able to manage itself properly. Moreover, it should know which
resources belong to it, as well as the owners of other resources that it can borrow or lend,
and finally which resources can be shared [162]. The self-knowledge property requires
policies to govern the systems and to define their interactions.

Context-awareness refers to the ability of an autonomic system to know its environment
and the context surrounding its activities, and to act accordingly. In this case, it can
generate new rules to interact with its neighbors, and to describe itself and its available
resources to other systems, as well as to automatically discover other resources in the
environment. For example, in a cloud federation environment (Section 3.2.3), a context-
aware autonomic system may negotiate the use of its underutilized resources with another
clouds, which is geographically closed.

Besides these properties, autonomic systems must implement open standards to be
correctly integrated in heterogeneous environments (openess). Moreover, they must
anticipate their needs while keeping their complexity hidden from the users (self-adaptation).
For instance, an application server can compare real-time access data with historical data
to change the size of a cache service, anticipating performance degradation.

78

Chapter 4. Autonomic Computing

4.3 Architecture
Autonomic systems are often organized as a collection of distributed elements that

interact to deliver services in accordance with some objectives in a control loop known as
MAPE-K (Monitor, Analyze, Plan, Execute, and Knowledge) [164].

The monitoring function continuously collects, aggregates, and filters data obtained
from a managed element. The analyzing function observes the environment and determines
if some change needs to be made to achieve the desirable state. It takes into account the
current system state, historical data, and policies information to correlate and to model
complex events. The goal is to allow autonomic managers to learn about their environment
and to help them to predict future states [164]. The planning function creates a plan with
the actions needed to achieve the desired state. The execution function executes the plan
considering the precedence order of the actions as well as state changes. The data used by
these four functions are stored as shared knowledge to be used by autonomic managers.
Autonomic managers obtain the knowledge retrieving it from policies, monitors, sensors or
from an external knowledge source.

Figure 4.1 shows the structure of an autonomic element (AE). An autonomic element
has one or more managed elements (MEs), composed of sensors and actuators, coupled
with an autonomic manager (AM). The MAPE-K control loop is implemented by the AE
and it is similar to a generic agent model [306], where an intelligent agent perceives its
environment through sensors and uses such received data to act accordingly.

Analyze Plan

ExecuteMonitor Knowledge

Managed Element

Sensors Actuators

Autonomic Manager

Autonomic Element

Figure 4.1 – Architecture of an autonomic element [191]

The sensors are responsible for collecting data about the managed element (ME), which
represent any resource (i.e., hardware or software) that has an autonomic behavior by
coupling with an autonomic manager (AM) [191]. An AM is a software agent implemented
with autonomic properties. It controls and represents the MEs, monitoring them through
sensors and storing data into the knowledge database. Based on the system’s knowledge,
an AM decides the action to be taken, then it creates an execution plan, and sends it to

79

Chapter 4. Autonomic Computing

the MEs using the actuators. After, the MEs change their state, executing the actions
defined by the AM.

Each AE is responsible for managing its internal state and interactions with the
environment. Its relationships are driven by goals either defined by the user or by other
elements that have authority over it. The goals are expressed using event-condition-action
(ECA) policies or through a utility function [163, 191]. For instance, a rule can be defined
as follows: when the CPU load is less than 30%, then decrease the CPU frequency to
the lowest frequency available. In addition, AEs may cooperate requesting either data or
resources to achieve a common goal. In this case, each AE is responsible to request the
necessary data and/or resources and to deal with failures of the required resource. Thus,
AMs must be conscious of the state of their own managed elements and about the state of
the environment, in special other autonomic elements in the network [163, 236].

4.4 Autonomic Computing Systems
Since the proposal of autonomic computing, many autonomic computing systems have

been proposed in the literature. This section reviews some of these autonomic systems
designed for large-scale distributed systems.

4.4.1 V-MAN
V-MAN [239] is a decentralized VM management system based on an unstructured P2P

overlay. It implements self-optimization actions to reduce power consumption of the
physical machines. The optimization actions are based on workload consolidation and
on dynamic voltage and frequency scaling (DVFS) (Section 5.1). In V-MAN, each physical
machine knows a subset of other physical machines included in its local view through a peer
sampling service [174]. The control loop of V-MAN works as follows. Each node continually
exchanges messages with its neighbors to: (i) share its local view; (ii) build a new local
view, merging the old one with those received by the neighbors; and (iii) consolidate VMs
in order to minimize the number of underutilized physical machines.

4.4.2 Sunflower
Sunflower [272] is an agent-based framework to coordinate workflow execution in an

environment composed of grid and cloud resources. It implements self-optimization to
meet performance requirements. In this case, the optimization process first tries to use the
grid’s resources. But, when the performance degrades and cannot meet the users’ needs, it
moves some tasks to the cloud.

Its architecture, depicted in figure 4.2, comprises three main layers: Sunflower console,
cloud, and distributed information system. The Sunflower console provides a graphical user
interface (GUI) for users to design their workflows. A workflow is submitted to the workflow
manager that creates sub-workflows and submits them to different agents. The cloud layer
manages computing resources. In such case, it uses Eucalyptus (open.eucalyptus.com) to
allocate cloud’s resources and a grid service to access grid’s resources. The distributed

80

http://open.eucalyptus.com

Chapter 4. Autonomic Computing

information system organizes the nodes in groups using an ant clustering algorithm. These
nodes cooperate to reach an orchestrated execution using a Petri Net policy associated
with a BPEL application.

Figure 4.2 – Sunflower architecture [272]

4.4.3 Market-based
In [86], the authors propose a market-based and self-optimization approach for re-

source allocation in a multi-application scenario. The optimization process aims to meet
performance requirements, while trying to maximize the usage of the infrastructure. The
control loop of this approach works as follows. First, based on a bid market, an appli-
cation manager defines: (i) the minimal resources that should be allocated to meet
the application’s requirements; (ii) the spending rate; and (iii) the bids expressing their
willingness to pay for the resources. Then, it submits these data to a resource manager.
Next, the resource manager evaluates the requests and allocates the resources according to
the applications’ bids, grouping the highest bids in nodes with more free resources. In this
case, the resource manager maximizes resource usage and minimizes allocation failures,
whereas the application managers meet QoS requirements by adjusting their bids or the
spending rate.

81

Chapter 4. Autonomic Computing

4.4.4 Component-Management Approach
In [96], Oliveira and colleagues present a self-optimization cloud architecture to reduce

power consumption. In this architecture (Figure 4.3) there are two autonomic man-
agers — Application Manager (AM) and Infrastructure Manager (IM) — responsible for
managing the applications and the infrastructure. Each AM tests different configurations
such as disabling logging events or consolidating virtual machines in order to accomplish
its objectives (e.g., to reduce power consumption). An application is considered as a set of
independent components that can be deployed in different virtual machines and integrated
by AMs. In other words, AMs are responsible for synchronizing the states between the
components and their hosting virtual machines to minimize power consumption.

Figure 4.3 – Control loop of the self-management cloud architecture [96]

4.4.5 Snooze
Snooze [111] is a hierarchical autonomic framework for VM placement. Snooze imple-

ments self-optimization and self-healing by distinguishing three types of agents (Figure 4.4):
local controller, group leader, and group manager. These agents are responsible for allo-
cating and for monitoring the virtual machines. Implementing self-optimization actions,
Snooze tries to free the users (e.g., system administrators) from some system details such as
where and how to deploy a VM; and to minimize the number of overloaded or underutilized
physical machines. Self-healing, on the other hand, implements fault-tolerance employing
heartbeat multi-cast and leader election to discover and to connect group managers and
group leaders.

82

Chapter 4. Autonomic Computing

Client Client Client

C Binding C++ Binding Java Binding

Entry Point Entry Point Entry Point

Group Leader

Client Interface

Group Manager Group Manager Group Manager

Local Controller Local Controller
Monitor Monitor Monitor Monitor

Common Cluster Monitoring and Management Interface

Virtualization Management Library

Virtualized Node Virtualized Node

Cluster

C
lie

n
t

la
y
e
r

H
ie

ra
rc

h
ic

a
l

la
y
e
r

P
h
y
si

ca
l

la
y
e
r

Figure 4.4 – Snooze architecture [111]

4.4.6 Cloudlet
Cloudlet [321] is a multi-agent cloud computing architecture to discover and to negotiate

cloud services. It implements self-optimization to free the users from the details of selecting
and negotiating with different cloud providers functional and financial requirements. This
architecture implements a control loop that work as follows (Figure 4.5). First, the cloud
resources are registered in a database either by the cloud providers or by a crawler. Second,
the users submit a query with their functional and budget requirements to the service
discovery agent (SDA). Finally, the SDA negotiates with the cloud providers, and selects
the services that match the user’s requirements. As each cloud provider often uses different
terminologies to describe its resources, the SDA uses an ontology to reason about the
similarity between the users’ specification and the resources’ descriptions.

4.4.7 Distributed VM Scheduler
The distributed VM scheduler (DVMS) [286] is an agent-based VM scheduler that

aims to optimize VM placement based on a structured P2P overlay (Figure 4.6). The P2P
overlay is the Chord (Section 2.4.3). It implements self-optimization actions to select a
node to host a virtual machine according to some objective. In DVMS, each physical
machine has an agent responsible to monitor its resources, to communicate with its
neighbors, and to consolidate the virtual machines. In this case, the control loop of DVMS
works as follows. First, when a node detects a problem (e.g., overloaded or underutilized
state), it sends a message to its neighbor. Then, the neighbor can join the search, if it is
not already involved in another one, or it can forward the message to its neighbor. The
first node that accepts the message becomes the leader and the responsible for resolving
the problem (i.e., to allocate the VM). As this process may lead to deadlock due to node
partitions, duplicate searches are finished by the node with the lowest identifier.

83

Chapter 4. Autonomic Computing

Figure 4.5 – Cloudlet architecture [321]

Figure 4.6 – DVMS control loop [286]

84

Chapter 4. Autonomic Computing

4.4.8 Thermal Management Framework
In [298], Rodero and colleagues present an autonomic thermal management framework.

This framework implements self-optimization actions to reduce energy consumption through
workload consolidation (Section 3.1.1.4), taking into account performance constraints.
Its architecture (Figure 4.7) has some actuators and sensors that are responsible for
implementing self-optimization actions, using CPU pinning to handle thermal hotspots
and DVFS (Section 5.1) to reduce energy consumption. In this case, when the temperature
of a CPU core reaches a threshold, the system assigns its VMs to another CPU core,
and decreases both the frequency and the voltage of the freed CPU. Although this may
reduce the energy consumption, it may increase performance penalties due to high resource
sharing rates. Indeed, the system tries to partition the workloads according to their
characteristics (e.g., CPU-, memory-, and/or IO-bound) and to allocate each partition to
a physical server based on an off-line profile in order to minimize both power consumption
and performance losses. In other words, workloads with different characteristics are
combined and assigned to the same physical server.

Controller

Controller

Controller

Controller

Application/
Workload

Virtualization

Resources

Physical
Environment

Observer

Observer

Observer

Observer

Sensor

Sensor

Sensor

Sensor

Actuator

Actuator

Actuator

ActuatorSLA Management

Energy Management
(e.g. VM Migration)

Power Management
(e.g. DVFS)

Thermal Management
(e.g. cooling)

C
ro

ss
-la

ye
r m

an
ag

em
en

t
Figure 4.7 – Thermal-aware autonomic management architecture [298]

4.4.9 SmartScale
SmartScale [105] is an auto-scaling cloud architecture. It scales the applications based

on performance requirements and on the cost to reconfigure the resources. SmartScale
implements self-optimization properties to decide when the virtual machines should be
reconfigured and how this must be done. In this context, it tries to find an equilibrium
between the number of required resources, the performance goals, and the cost to reconfigure
the infrastructure.

The architecture of SmartScale, depicted in figure 4.8, comprises the following key
components: data warehouse, predictor, workload classifier, smartscale, and virtualization
manager. Its control loop works as follows. First, the data about the applications are
stored in a repository (i.e., data warehouse). These data include the number of requests of

85

Chapter 4. Autonomic Computing

each type for an application, the SLAs, and the CPU and memory usage of each virtual
machine. Then, the predictor reads the repository, and uses time-series analysis to predict
the number of requests of each type for the next configuration time. Next, a workload
classifier groups the workloads. After, the smartscale component selects the appropriate
allocating model for the virtual machines. Finally, the virtualization manager applies the
new configuration.

Data

Warehouse

Workload

Classifier

Predictor

GATEWAY

SmartScale

Virtualization

Manager

Admission Controller

/Load Balancer

Resource

Models

Cost

Models

Networked

Storage

IMAGE

LIBRARY

Application/System
Logs

Usage
Data

Request Type
Distribution

Model Refinement

Mix

Throughput

Throttling

Requests

Requests

RequestsScaling

Request Flow

Management Flow

Application VM

Background VM SERVER CLUSTER

Figure 4.8 – SmartScale architecture [105]

4.4.10 SLA Management
In [19], Ardagna and colleagues present a resource allocation framework that aims to

minimize both power consumption and SLA violations. The framework implements a
control loop to monitor the resources; to decide if it accepts a request to host a VM; and
to select a physical machine for hosting the VM. A request is accepted based on a utility
function that computes the expected revenue of a request or possible SLAs’ penalties due
to an increase in the response time of the applications. In this case, using the control loop,
the system tries to maximize the data center revenue, consolidating the workload in a way
that minimize both power consumption and SLA violation.

86

Chapter 4. Autonomic Computing

4.4.11 Comparative View
Table 4.1 summarizes the autonomic systems reviewed in this section. The first column

presents the system’s name or the paper. The second column presents their architecture
characteristics. In this case, a centralized solution means that the system depends on
centralized information to work, even though there are some distributed components. The
autonomic properties implemented by each system are presented in the third column. The
fourth column presents the environment for which the autonomic system was proposed.
Finally, the fifth column presents the objectives of the reviewed systems.

As can be seen in table 4.1, half of the systems rely on centralized information to
take decisions. This may limit its usage in large-scale systems. Furthermore, as these
systems focus on self-optimization, this may represent a challenge for their availability.
Moreover, depicted the vision of autonomic computing, some of its properties such as
self-configuration, self-healing, and context-awareness have not been completely addressed
by today’s autonomic systems, while self-optimization has started to be implemented by
such systems. Only Snooze [111] implements self-healing and self-optimization using a
hierarchical architecture to allocate virtual machines in a private cloud.

4.5 Summary
This chapter presented the definition, properties, and important concepts related to

the architecture of autonomic systems. Moreover, it described some autonomic systems
designed for large-scale systems.

The self-management property of autonomic computing systems may be used to
reduce considerably the burden on system managers, autonomously optimizing themselves
according to the environment changes. However, to achieve this, there are still many
work to do, since the majority of the autonomic systems available in the literature focuses
on one autonomic property, such as self-configuration, employing a centralized control
management.

87

Chapter 4. Autonomic Computing

Ta
bl
e
4.
1
–
A
ut
on

om
ic

co
m
pu

tin
g
sy
st
em

s

Sy
st
em

A
rc
hi
te
ct
ur
e

A
ut
on

om
ic

?

E
nv

ir
on

m
en
t

O
bj
ec
ti
ve
s

ch
ar
ac
te
ri
st
ic
s

V
-M

A
N

[2
39
]

U
ns
tr
uc
tu
re
d
P2

P
SO

C
lo
ud

M
in
im

iz
e
po

we
r
co
ns
um

pt
io
n

Su
nfl

ow
er

[2
72
]

C
en
tr
al
iz
ed

SO
G
rid

&
cl
ou

d
M
in
im

iz
e
SL

A
vi
ol
at
io
n

M
ar
ke
t-
ba

se
d
[8
6]

C
en
tr
al
iz
ed

SO
C
lo
ud

M
in
im

iz
e
SL

A
vi
ol
at
io
n

C
om

po
ne
nt
-m

an
ag
em

en
t
[9
6]

C
en
tr
al
iz
ed

SO
C
lo
ud

M
in
im

iz
e
po

we
r
co
ns
um

pt
io
n

Sn
oo

ze
[1
11
]

H
ie
ra
rc
hi
ca
l

SO
&

SH
C
lo
ud

M
in
im

iz
e
po

we
r
co
ns
um

pt
io
n

C
lo
ud

le
t
[3
21
]

C
en
tr
al
iz
ed

SO
C
lo
ud

M
in
im

iz
e
th
e
co
st

of
us
in
g
th
e
cl
ou

d
D
V
M
S
[2
86
]

St
ru
ct
ur
ed

P2
P

SO
C
lu
st
er

M
in
im

iz
e
th
e
nu

m
be

r
of

ph
ys
ic
al

m
ac
hi
ne
s

T
he
rm

al
[2
98
]

C
en
tr
al
iz
ed

SO
C
lo
ud

M
in
im

iz
e
en
er
gy

co
ns
um

pt
io
n

Sm
ar
tS
ca
le

[1
05
]

C
en
tr
al
iz
ed

SO
C
lo
ud

M
in
im

iz
e
SL

A
vi
ol
at
io
n

SL
A

m
an

ag
em

en
t
[1
9]

C
en
tr
al
iz
ed

SO
C
lo
ud

M
in
im

iz
e
po

we
r
co
ns
um

pt
io
n
an

d
SL

A
vi
ol
at
io
n

?
se
lf-
he
al
in
g
(S
H
),
se
lf-
op

ti
m
iz
at
io
n
(S
O
)

88

Chapter 5

Green Computing

Contents
5.1 Energy-Aware Computing . 90

5.2 Green Data Centers . 92

5.2.1 Green Data Center Benchmarks 92

5.3 Green Performance Indicators 95

5.3.1 The Approach of Stanley, Brill, and Koomey 95

5.3.2 The Green Grid Approach . 97

5.4 Summary . 99

The advances in large-scale distributed systems have historically been related to
improving in performance, scalability, and quality of service for the users. However, as the
infrastructures increased in size and computational capacity, other issues became critical.
Power management is one of these issues, because of the constantly increasing power
consumption of computing infrastructures. Also, systems with high peak power demand
complex and expensive cooling infrastructures [44, 183]. Depending on the efficiency of
a computing infrastructure, the total number of watts required for cooling can be from
three to thirty times higher than the number of watts needed for the computation [330].

According to Kumar [207], the actual power and cooling costs of servers represent
almost 60% of their initial acquisition cost. A study on power consumption by servers and
data centers in the US shows that the electricity used by the large-scale infrastructures in
2006 cost about USD 4.5 billion [201], and data centers are responsible for the emission
of tens millions of megatons of carbon dioxide annually. This study also indicates that
energy consumption has doubled, if compared to the consumption in 2000.

One of the major causes of inefficiency in data centers is the idle power wasted when
servers run at low utilization. This occurs because the power consumption of CPUs even
at low load utilization rate, is over 60% of the peak load [30, 50, 110, 213]. Therefore,
reducing the energy consumption without sacrificing quality of service commitments is

89

Chapter 5. Green Computing

an important issue, both for economical reasons and also for making the computing
infrastructure sustainable [38].

Currently, with the energy costs increasing, the focus shifts from optimizing large-scale
resource management for pure performance to optimize it for energy efficiency while
maintaining the level of the services [56].

Another important issue in large-scale distributed systems is the level of carbon
emissions. The high amount of carbon emissions in data centers is associated with the
amount of energy consumption. A recent study on cloud computing and climate change
shows that the total electricity consumed by data centers in 2020 will be 1, 963 billion kWh
and the carbon emissions associated would reach 1,024 megatons, overtaking the airline
industry in terms of carbon emissions [142]. Moreover, most of the electricity power comes
from non-renewable and high-carbon fuels [29]. In this scenario, strategies that are aware
of energy are gaining attention in academy and industry since they can fulfill the promise
of executing applications that can be tuned to consume less energy [244].

However, this represents a challenging problem, since there are many variables that
contribute to the power consumption of a resource. First, large-scale infrastructures
comprise different layers, and characterizing the power consumed by each of them is usually
a difficult task [265]. For instance, the power consumed by a resource may change according
to its position in the data center, as well as the data center’s temperature [60, 264]. Second,
it is often difficult to determine the locations where a workload should be distributed
while considering performance requirements. Third, in large scale, data centers’ carbon
footprint can vary significantly according to their load [129]. Finally, the environment
impact of an application may change depending on the users’ location, as electricity cost
and carbon footprint are location specific [129, 230]. Moreover, it may be difficult to
determine the overall power footprint of a workload since some companies still do not
publish any information about their power source [85].

Green computing involves a set of methodologies, mechanisms and techniques that
helps computing systems (hardware and/or software) to reduce power consumption or
carbon footprint. This chapter presents an introduction to green computing, including
the concepts of energy-aware computing (Section 5.1), green data centers (Section 5.2)
and green data centers benchmarks (Section 5.2.1). Finally, some green data performance
indicators (GPI) related to energy consumption are presented (Section 5.3).

5.1 Energy-Aware Computing

The power consumption of a system comprises two parts: a static (or leakage power)
and a dynamic part. The leakage power depends on the system size and on the type of
transistor. Static power consumption is related to the leakage currents that are present in
any powered system and it is independent of clock rates and usage scenarios. The dynamic
part, on the other hand, depends on the activity of a circuit, the usage scenario, and the
clock rates. Dynamic power consumption is mainly composed of short-circuit current and
switched capacitance [36]. Hence, it can be computed as showing in equation (5.1):

P = aCV 2f (5.1)

90

Chapter 5. Green Computing

where a is the switching activity, C is the capacitance, V is the supply voltage, and f is
the frequency.

Energy consumption, on the other hand, is defined as the average power consumption
over a period of time. Clearly, energy consumption and power consumption are closely
related but it is easy to see that a reduction in power consumption does not necessarily
imply a reduction in energy consumption.

Many efforts have been made to reduce both static and dynamic power consumption.
As a result of these efforts, the hardware energy efficiency has significantly improved.
However, whereas hardware is physically responsible for most of the power consumption,
hardware operations are guided by software, which is indirectly responsible for the energy
consumption [6].

Some of the software-level studies tried to minimize the power consumption by consid-
ering that the main reason for energy inefficiency is resource underutilized. One of the first
approaches to try to solve this problem consists of shutting down idle nodes [193, 251] and
waking up them when the workload increases or the average QoS violation ratio exceeds a
threshold.

At the hardware level, improvements are made turning off components, putting them
to sleep or changing their frequency using dynamic voltage and frequency scaling (DVFS)
techniques [135, 149, 337]. DVFS techniques assume that applications dominated by mem-
ory accesses or involving heavy I/O activities can be executed at lower CPU frequency with
only a marginal impact on their execution time. In that case, the goal of a DVFS scheduler
is to identify each execution phase of an application, quantify its workload characteristics,
and then switch the CPU frequency to the most appropriate power/performance mode. In
other words, DVFS is a dynamic power management (DPM) technique (Figure 5.1) that
uses real-time data about a system to optimize its energy consumption, without decreasing
the peak power consumption [36].

Power Management Techniques

Static Power Management (SPM) Dynamic Power Management (DPM)

Hardware Level Software Level Hardware Level Software Level

Circuit Level Logic Level Architectural Level Single Server Multiple Server, Data
Centers and Clouds

OS Level Virtualization Level

Figure 5.1 – Taxonomy of power and energy management techniques [36]

The problem of energy-efficient resource management has also been investigated in the
context of operating system, followed by homogeneous and heterogeneous architectures
such as clusters [204, 281], P2P [343], and cloud [133, 381]. Moreover, a number of studies
have explored software optimization at compiling level [53, 109, 322] in order to improve
both performance and energy-efficiency.

91

Chapter 5. Green Computing

Besides reducing power consumption, data center providers are required to reduce
their carbon footprint from different organizations around the world. In this scenario,
some companies such as Apple, Google, and Microsoft have already taken the initiative to
achieve carbon neutrality [85, 369]. For instance, Apple (apple.com/environment) aims to
run its data centers using only renewable energy [85]. Although renewable energy may
have a lower carbon emission, in practice, it may be unreliable since green power supplies
highly depend on the weather conditions, which are usually time-varying. Thus, this
limits the broad adoption of green energy by large-scale infrastructures as they are mostly
designed for high availability [76, 324].

5.2 Green Data Centers
Cloud computing systems are often built on large data centers. These data centers

usually have a considerable number of servers and a sophisticated support and cooling
infrastructure that consume a huge amount of power and produce a lot of heat. Energy
efficiency is therefore a major concern in the design and operation of data centers.

According to Wang and Khan [366], there are two main methods to build a green
data center: (a) design and build the data center with green elements; or (b) operate a
conventionally built data center in a green way. These two methods are non-exclusive in
such a way that data centers designed as green can be also operated in a green way.

Green data center designs normally take into consideration the cooling systems inside
the chip. A sophisticated cooling solution with, for instance, localized cooling paths with
runtime thermal management, will generally favor designs that include a small number of
complex cores with power-hungry needs. On the other hand, a great number of simpler
cores can also be used, replacing the complex cores. A simpler cooling solution will often
be applied to simpler cores. In theory, both alternatives are able to deliver the same watt
per second rate, at a much higher financial cost for the first alternative.

In order to operate a data center in a green way, several techniques can be used, such
as: (a) reducing the data center temperature; (b) increasing the server utilization and
consequently turning off idle servers and/or (c) decreasing on-the-fly the power consumption
of the computing resources.

5.2.1 Green Data Center Benchmarks
Once a green data center is put into operation, there should be one or more metrics to

measure its “greeness”. Measuring how green a data center is is important mainly for two
reasons. First, it is an indicator of the effectiveness of the techniques employed. Second, it
provides a way to compare several data centers and rank them according to the success of
their green design.

In this scenario, there are challenges in identifying which metrics to be used, how to
use them and which components to measure. Initially, power and cooling components
were considered because of their size and scale of energy consumption. Nowadays, it is
becoming clear that metrics should also be applied to the computing components as well.
Moreover, when systems are interconnected, which is the case in a data center, defining

92

http://apple.com/environment

Chapter 5. Green Computing

energy efficiency is not straightforward. Saving energy in one computer can possibly cause
another one to consume more energy, increasing the overall energy consumption [232].

Metrics provide insight about how resources are being used and the efficiency of
that usage. They are often related to performance, availability, capacity and energy
consumption for servers, I/O resources and others, to meet a given level of service and
cost objectives [314].

Several metrics for assessing performance have been proposed over the past decades,
which have been successfully used in benchmarks. However, most of the benchmarks
available do not measure energy efficiency. Only in the past years, the need for establishing
good benchmarks to measure green solutions really appeared. Efforts in this direction
include the Green 500 initiative (green500.org), The Green Index (TGI) — (thegreenin-
dex.com), the SPEC Power Initiative [210] and JouleSort [295], which will be discussed in
the next subsections.

5.2.1.1 The Green500 Initiative

The Green500 list aims at increasing awareness about environmental impact and
long-term sustainability of high-end supercomputers by providing a list that ranks the
most energy-efficient supercomputers in the world. This ranking is based on the amount
of power needed to complete a fixed amount of work [79].

The Green500 effort treats both performance and power consumption as important
design constraints for high performance computing environments. Its main idea is to use
the flops (Floating Point Operations per Second) metric of the LINPACK benchmark [227],
which is widely used by the supercomputing community, and to combine it with a simple
metric that measures the power consumed, creating the flops per watt metric. In this
metric, the watts measured are the average system watts consumed during the execution
of the LINPACK benchmark with a specific problem size.

Even though the flops per watt metric is having good acceptance, some authors discuss
some of its potential drawbacks. For example, in [79], Feang and colleagues argue that
this metric might be biased toward smaller supercomputing systems since the wattage
scales linearly with the number of compute nodes whereas the flops performance scales
sub-linearly for non-embarrassingly parallel problems, which is the case for LINPACK.
This implies that smaller systems would have better ratings in such a metric. For this
reason, only the Top500 supercomputers (top500.org) are considered in the Green500 List.

5.2.1.2 The Green Index

The green index (TGI) metric [333] aims to capture the energy efficiency of a high
performance computing (HPC) system. It focuses on computing power, memory operations
and I/O activities. The main idea of The green index (TGI) is to combine the outputs
of several benchmarks into a single metric, which is obtained in 4 steps. In the first
step, different benchmarks are executed and the performance to watt ratio is calculated.
The ratios obtained in step 1 are compared in step 2 to a reference system (as in the
SPEC benchmark suites), generating TGI components. In step 3, a weight is assigned to
each TGI component obtained in step 2. Finally, all the TGI components are multiplied
by their respective weights and the addition of all these values is The green index.

93

http://green500.org
http://thegreenindex.com
http://thegreenindex.com
http://top500.org

Chapter 5. Green Computing

In order to evaluate TGI, the authors chose a 128-node cluster with 1024 cores as the
reference system. The cluster evaluated was an 8-node cluster with 128 cores and HPCC
benchmarks [233] that stress CPU, memory and I/O were used. Even though good results
were obtained, these results were clearly dependent on a good choice of the weights and
on a good reference system.

5.2.1.3 SPECpower

The Standard Performance Evaluation Corporation (SPEC) (spec.org) is a non-profit
corporation formed to establish, maintain and endorse a set of metrics and benchmarks to
be applied to a wide range of computing platforms [210].

In 2006, the SPEC community started the development of the SPECpower_ssj2008
benchmark, which was one of the first efforts to establish an industry-standard benchmark
that measures power and performance characteristics of several types of servers.

The SPECpower_ssj2008 is a Java application that executes several transactions spread
over 11 target loads, stressing the CPU and the memory subsystem [309]. The throughput
of each target load is measured in ssj_ops, i.e., the number of transactions completed per
second over a fixed period of time. The SPECpower_ssj2008 metric is then calculated by
dividing the sum of the ssj_ops in each load by the sum of the average power consumed
in each load.

As noted by some authors [309], the main limitation of SPECpower is that it does not
consider the disk activity and this activity is an important factor in measuring the energy
efficiency of a computing system.

5.2.1.4 JouleSort

JouleSort [294] is a holistic benchmark to measure the energy-efficiency of computer
systems, stressing CPU, memory and the I/O subsystem. The sort application was chosen
because of its simplicity, portability and capacity to stress multiple components of a given
machine.

The JouleSort benchmark sorts a file with 100-byte records and 10-byte keys. It is
required that the input and output files must be in non-volatile storage. The number of
records to be sorted is fixed in three scales: 108, 109 and 1010 records. The metric used is
SortedRecs / Joule. In this metric, energy is measured for power supplies of all hardware
components, including the idle machines and the cooling system. The energy (Joule) is the
total energy, which is the product of the average of the power consumed by the wallclock
time.

5.2.1.5 Comparative View

Table 5.1 summarizes the benchmarks discussed in section 5.2. In column 1 the green
benchmark is provided. The metrics are provided in column 2. Column 3 provides the
workload category. Finally, the domain (column 4) of the metrics can be data center, which
include all data center resources; enterprise, which consider QoS and organization process
parameters; and mobile and desktop resources.

94

http://spec.org

Chapter 5. Green Computing

Table 5.1 – Energy efficiency benchmarks and metrics

Benchmark Metric Category Domain
Green 500 MFLOPs/Watt HPC Data center

TGI Performance/Watt HPC Data center
SPECpower Operations/Watt (T/W) Web Enterprise

JouleSort Records sorted / Joule IT Resources Mobile, desktop, enterprise

5.3 Green Performance Indicators

Green performance indicators (GPIs) are defined as the driving policies for the data
collection and analysis related to energy consumption. The idea of GPI is interesting
because it can be adapted as criteria to define SLAs (Section 3.1.2), where requirements
about energy efficiency of services versus the expected quality of services are specified and
need to be satisfied.

In sections 5.3.1 and 5.3.2 we discuss two approaches used to categorize GPIs.

5.3.1 The Approach of Stanley, Brill, and Koomey

5.3.1.1 Overview

Stanley and colleagues [331], categorize the GPI metrics into four groups: IT strategy,
IT hardware utilization, IT energy efficient hardware deployment, site infrastructure. Each
of these groups consider different issues in a green data center deployment and involve
different metrics and techniques.

The IT strategy category contains the strategic choices made by the enterprise/orga-
nization to achieve its goals using less energy. These choices can be: data center Tier
functionality levels, centralized vs decentralized processing, and disaster recovery mecha-
nisms, among others. The IT hardware utilization category involves techniques such as
turning off servers and storage systems and using consolidation techniques, among others.
In the IT energy efficient deployment category, power-efficient techniques used to build
power supplies and more efficient chips are considered. Finally, the site infrastructure
category deals with techniques used to reduce the power consumed by the whole data
center. Figure 5.2 illustrates this categorization.

In the following paragraphs, the metrics DH-UR, DH-UE, and H-POM are presented.

5.3.1.2 Metrics

deployed hardware utilization ratio (DH-UR): this metric measures how many servers
are running applications in relation to the total number of servers in the data

95

Chapter 5. Green Computing

Stanley, Brill, and
Koomey approach

IT strategy IT hardware utilization IT energy efficient
hardware deployment Site infrastructure

Technique

select
appropriate tier

Energy-efficient
high-level
choices

Technique

Turn off idle
servers/storage

consolidation

Metrics

DH-UR

DH-UE

Technique Technique

Power-
efficient

Power
supplies

Power-
efficient

Intelligent
cooling
systems

Metrics

H-POM SI-POM

Metrics

Figure 5.2 – The metrics categorization of Stanley, Brill, and Koomey [331]

center. For servers, it is computed as shown in equation (5.2) and for storage it is
computed as shown in equation (5.3).

DH-UR (Servers) = Number of servers running applications
Number of servers

(5.2)

DH-UR (Storage) = Number of terabytes of storage holding frequently accessed data
Total terabytes of storage

(5.3)

deployed hardware utilization efficiency (DH-UE): this metric measures how efficiently
the servers are being used. It is computed as shown in equation (5.4).

DH-UE = Minimum number of servers necessary to handle peak compute load
Total number of servers

(5.4)
The minimum number of servers necessary to handle peak load is defined as: the
highest percentage of compute load of each server plus any overhead incurred in
virtualization, expressed as a percentage of the maximum load of a single server.

96

Chapter 5. Green Computing

IT hardware power overhead multiplier (H-POM): the H-POM metric measures how
much of the power input to a piece of hardware is wasted in power supply conversion
losses or diverted to internal fans, rather than making it useful to computing
components. It is computed as shown in equation (5.5).

H-POM = AC hardware load at the plug
DC hardware compute load (5.5)

The H-POM metric measures on where the data center equipment runs on its
operating curve. For instance, a server may have a power supply that is very efficient
at peak load (100 % of load) but inefficient at low loads. When the server runs only
a single application that requires little electric power to the processor, the power
source could run very inefficiently, resulting in a high H-POM.

5.3.1.3 Final Remarks

The metrics proposed by [331] focus in the efficiency of the data center equipments
without considering the characteristics of the applications deployed in Data center’s servers.
One possible consequence of it is that the data center can be energy-efficient, but with a
high impact to applications and in SLA indicators. It is also important to consider the
greenness factor of applications running in the data center because their design can incur
in an inefficient use of resources.

5.3.2 The Green Grid Approach

5.3.2.1 Overview

The Green Grid (thegreengrid.org) provides metrics that can helps to improve the
overall data center energy efficiency, considering resources usage efficiency (IT and non IT
resources) and their power consumption, tactical and operational data center operation
efficiency, including QoS parameters and the technologies used as well. Figure 5.3 presents
the metrics proposed by Green Grid.

Green Grid data
center metric

Data center infrastructure efficiency (DCiE)

Power usage effectiveness (PUE)

Compute power efficiency (CPE)

Data center density (DCD)

Data center energy productivity (DCeP)

Data center performance efficiency (DCPE)

Figure 5.3 – The Green Grid Metrics

In the following paragraphs, the metrics DCiE, PUE, CPE, DCD, DCeP, and DCPE
are presented.

97

http://thegreengrid.org

Chapter 5. Green Computing

5.3.2.2 Metrics

data center infrastructure efficiency (DCiE): this metric measures the energy effi-
ciency of a data center. It quantifies how much energy the data center computing
equipments consume from the total energy consumption. It is computed as shown
in equation (5.6).

DCiE = IT equipment power
Total facility power (5.6)

The IT equipment power is defined as the power consumed by equipments that are
used to manage, process, store or route data within the compute space. The total
facility power is defined as the power measured at the utility meter.

power usage effectiveness (PUE): this metric measures the energy efficiency of a
data center, calculated as a ratio between the total facility power and IT equipment
power. It is computed as the inverse of DCiE metric (Equation (5.6)) as shown
in equation (5.7).

PUE = Total facility power
IT equipment power (5.7)

compute power efficiency (CPE): this metric measures how efficiently the data center
energy is consumed for computation. By using this metric, the power consumed by
the idle servers is counted as overhead rather than as power that is being productively
used [196]. It is computed as shown in equation (5.8).

CPE = IT equipment utilization
PUE (5.8)

data center density (DCD): this metric measures the data center space effi-
ciency. The DCD focus on a tactical part of the data center design, including
the data center computing operational efficiency, and characteristics of the SLAs. It
is computed as shown in equation (5.9).

DCD = Power of all equipment on raised floor
Area of raised floor (kW/ft2) (5.9)

The primary use for this benchmark is to determine if the deployment has low,
medium, or high density. While this is a good metric to determine the absolute
performance of a data center relative to other data centers, it fails to capture whether
the deployment is being done effectively.

data center energy productivity (DCeP): this metric measures the number of useful
computation that a data center produces based on the amount of energy it consumes.
It is computed as shown in equation (5.10):

DCeP = Useful work produced
Total data center energy consumed (5.10)

98

Chapter 5. Green Computing

To the Green Grid (thegreengrid.org), useful work is defined by the equation (5.11).

UW =
M∑

i=1
Vi ∗ Ui(t, T) ∗ Ti (5.11)

where M is the number of tasks initiated during the considered time period. Vi

is a normalization factor that allows the tasks to be summed numerically. Ti = 1
if task i completes during the time period and Ti = 0 otherwise. Ui(t, T) is a
time-based utility function for each task, where the parameter t is the elapsed time
from initiation to completion of the task, and T is the absolute time of completion
of the task.

data center performance efficiency (DCPE): this metric measures how effective a data
center is using power to provide a given level of service or work such as energy per
transaction or energy per business function [23]. It is computed as a ratio between
the effective IT workload and total facility power as shown in equation (5.12).

DCPE = Effective IT workload
total facility power (5.12)

5.3.2.3 Final Remarks

All of the Green Grid metrics focus on measuring how the data center’s resources
are used efficiently considering the equipments and facilities but without considering the
organization process and the characteristics of the deployed applications.

5.4 Summary
Over the years, large-scale computing infrastructures have been mostly driven by

performance improvement, where power consumption and greenhouse gas (GHG) were
usually ignored. However, power and carbon footprint have started to impose constraints
in the design of computing systems and data centers [29, 34]. Thus, reducing power
consumption and carbon footprint are some of the challenges that large computing
infrastructures have to deal with. This requires the design of energy-aware solutions for
economic and environment reasons. In this case, several metrics and benchmarks have been
proposed where the mostly used are the PUE and the DCiE. These metrics provide a view
of the whole power consumed by infrastructure and the energy-efficient of its resources.
The main characteristic of these metrics is that they can be applied to any workload.
Nevertheless, they do not take performance into account. In this case, some benchmarks
can be used such as the ones discussed in sections 5.2.1.1 to 5.2.1.5.

Even though these benchmarks and metrics capture important aspects of energy-
efficient solutions, more research is required to define holistic metrics and tools that will
allow infrastructure operators and developers to evaluate their solutions in a broad sense.

99

http://thegreengrid.org

Part II

Contributions

100

Chapter 6

Power-Aware Server Consolidation
for Federated Clouds

Contents
6.1 Introduction and Motivation . 102

6.2 Design of the Proposed Solution 103

6.3 Experimental Results . 106

6.3.1 Modifications in CloudSim . 106

6.3.2 Simulation Environment . 107

6.3.3 Scenario 1: workload submission to a single data center under
power consumption threshold 107

6.3.4 Scenario 2: distinct workload submission to different overloaded
data centers . 109

6.4 Related Work . 109

6.5 Summary . 113

Cloud services normally execute in big data centers. These data centers comprise a
large number of computing nodes. One issue that arises in this scenario is the amount of
energy demanded by such services [31]. In this context, we aim to investigate the usage
of a cloud federation to help the cloud providers on reducing power consumption of the
services, without having a great impact on service-level agreements.

Thus, in this chapter, we present the first contribution of this PhD thesis: a server
consolidation strategy to reduce power consumption (Section 5.1) in cloud federation (Sec-
tion 3.2.3), taking into account SLA (Section 3.1.2) requirements. We assume that clouds
have limited power consumption defined by a third party agent, thereby a power capping
strategy [36] applied to data centers, and that when a cloud is overloaded, its data center
has to negotiate with other data centers before migrating the virtual machine. In this
case, we address applications’ workloads, considering the costs to turn servers on/off and

101

Chapter 6. Power-Aware Server Consolidation for Federated Clouds

to migrate the virtual machine (Section 3.1.1.3) in the same cloud and between different
clouds. Simulation results with two clouds and 400 simultaneous virtual machines show
that our approach can reduce up to 46% of the power consumption, while still meeting QoS
requirements. This work was published in [215].

The reminder of this chapter is organized as follows. In section 6.1, we present the
introduction and motivation behind this work. Section 6.2 presents the design of our server
consolidation strategy. In section 6.3, experimental results are presented and discussed.
Next, section 6.4 compares our proposal with the related works in the area. Finally,
section 6.5 concludes this chapter.

6.1 Introduction and Motivation
Over the years, large-scale distributed systems have required flexible and scalable

infrastructures. Benefiting from economies of scale and improvements of Web technologies,
data centers have came out as a model to host large-scale distributed systems such as
clouds [266]. As discussed in chapter 2, cloud computing is gaining popularity, since
it usually employs virtualization techniques to provide large-infrastructures on-demand.
Virtualization enables server consolidation. By employing server consolidation, data
centers can consolidate the workloads into fewer physical nodes and switch off unused
ones or put them in a low power consumption state mode (Section 5.1). Of course, the
effectiveness of this technique depends on (a) how saturated the cloud system is and
(b) how much slowdown the cloud applications will accept. If the cloud infrastructure is
not saturated, VMs can be moved to cores that are close to each other (e.g., in the same
physical machine) as shown in section 3.1.1.4, and power efficiency gains can be obtained
with small application slowdowns. However, if the cloud infrastructure is saturated (i.e.,
there are very few cores with idle capacity), the power efficiency gains provided by server
consolidation will come at the expense of severe performance losses in the applications
since, in this case, several VMs may share the same core.

Many studies have been conducted to provide power reduction for cloud systems and
some of them are based on server consolidation [36, 113, 334]. However, server consolidation
in cloud computing can introduce some difficulties such as: (i) the cloud computing
environment must provide reliable QoS, normally defined in terms of SLA; (ii) it is common
to occur dynamic changes of the incoming requests rate; (iii) the usage pattern of the
resources is often unpredictable; and (iv) different users have distinct preferences.

In this scenario, a multi-agent system (MAS) can be used where each participant is
an autonomous agent that incorporates market and negotiation capabilities [374]. Agents
are autonomous, proactive, and trigger actions by their own initiative. For these reasons,
agents are suitable for coordinating the cloud market, detecting problems, opportunities
and reacting to them. This capability can be used to negotiate resource usage by the
users, the cloud providers, the energy power providers, and the carbon emission regulator
agencies.

In order to tackle the issues discussed in the previous paragraphs, we propose the
use of a multi-agent system (MAS) for federated cloud server consolidation, taking into
account SLA, power consumption, and carbon footprint. In our approach, the users should
pay according to the efficiency of their applications in terms of resource utilization and

102

Chapter 6. Power-Aware Server Consolidation for Federated Clouds

power consumption. Therefore, we propose that the price paid by the users should increase
according to the whole energy consumption of the data center(s), especially when the
users refuse to negotiate performance requirements. Experimental results show that our
approach can reduce up to 46% of the power consumption, while still meeting the QoS
requirements. Our experiments were realized through the CloudSim [58] simulator with
two clouds and 400 simultaneous virtual machines. This work was published in [215].

The remainder of this chapter is organized as follows. Section 6.2 presents the pro-
posed multi-agent system (MAS) server consolidation strategy for federated clouds. In sec-
tion 6.3, experimental results are discussed. Section 6.4 presents some related works.
Finally, section 6.5 presents some remarks and future work.

6.2 Design of the Proposed Solution

The main goal of our approach, called federated application provisioning (FAP), is to
reduce power consumption of data centers, trying to meet QoS requirements, with limited
energy defined by a third party agent (carbon emission regulator agency). We consider
that data centers are concerned by an energy threshold, and they are in a federated cloud
computing environment, scheduling online the execution of the users’ applications. In this
case, a multi-agent strategy is used to negotiate resources’ allocations and the final price
to execute the users’ tasks.

We assume a federated cloud model composed of public and private clouds (Sec-
tion 3.2.3), and that the cost to transfer an application or to migrate VMs across the
clouds is known by the cloud providers.

In our cloud environment there are four distinct agents: cloud service provider (CLSP),
cloud user (CLU), electric power provider (EPP), and carbon emission regulator agency
(CERA) as shown in figure 6.1. In our design, the carbon emission regulator agency
determines the amount of carbon emissions that both CLSP and EPP can emit in a period
of time.

We also assume that each cloud is composed of one data center with one coordinator
accountable for monitoring the metrics, negotiating with the other agents (CLSP, CLU,
EPP, and CERA). There are also sensors to monitor power consumption, resource usage,
and SLA violation as depicted in figure 6.2.

Finally, we consider that the cloud system has a communication layer such that any
participant can exchange messages. Messages and QoS metrics are described in a format
that is known by the agents, and a cloud provider cannot reject users’ tasks.

The proposed scenario includes a set of data centers (clouds) composed by a set of
virtual machines, which are mapped to a set of physical servers that are interconnected
and deployed across the clouds. Let R = {r1, r2, · · · , rn} be the set of resources in data
center i with a capacity ck

i , where k ∈ R. The power consumption (Pi) can be defined
as [212]:

Pi = (pmax − pmin) ∗ Ui + pmin (6.1)

103

Chapter 6. Power-Aware Server Consolidation for Federated Clouds

Private Cloud

Electricity manager
AC

Cloud
coordinator

SLA
Manager

Carbon
footprint

calculator

regulates

Cloud
user

Public Cloud

Cloud
coordinator

CERA

Electricity
provider

Figure 6.1 – Agents of the cloud market

VM1 VM2 VMn
...

Node
Energy sensor

SLA sensor

Coordinator

VM1 VM2 VMn
...

Noden

Workload sensor

Energy sensor
SLA sensor

Workload sensor

Figure 6.2 – Detailed view of a data center

104

Chapter 6. Power-Aware Server Consolidation for Federated Clouds

where pmax is the power consumption for the data center i at the peak load, pmin is the
minimum power consumption in active mode, and Ui is the resource utilization of data
center i as defined in equation (6.2) [212]:

Ui =
n∑

j=1
ui,j (6.2)

where ui,j is the resource usage of resource j in the data center i.
The relation between a cloud provider and a cloud user is determined by a set of QoS

requirements described in the SLA (Section 3.1.2). Furthermore, data centers are sub-
jected to an energy consumption threshold agreed among the CLSP, the EPP, and
the CERA. When the energy consumption threshold is violated, this implies additional
costs. To calculate the carbon footprint of the CLSP and the EPP, the CERA uses
the following metrics: application performance indicators (FLOPS/kWh), data center
infrastructure efficiency (DCiE), power usage effectiveness (PUE), and compute power
efficiency (CPE) (Section 5.3).

Let T represent a set of independent tasks to be executed, which is subject to a
set of QoS constraints such as minimum RAM memory, minimum CPU utilization, and
minimum execution time. In this case, the following steps are executed:

1. when a task ti is submitted, the cloud provider calculates the price of ti’s execution (σi)
based on the power consumption (Equation (6.1)).

2. the cloud provider tries to place ti in an available resource, using consolidation
techniques to reduce the number of active physical servers.

3. if the cloud provider does not have enough available resources or the energy threshold
will be violated, the cloud provider first contacts another cloud provider and negotiates
with it the execution of this task. In this case, the price of this execution (Ct) is
defined as shown in equation (6.3).

Ct = σt + εt + λt (6.3)

where σt is the financial cost of executing task t based on its power consumption, εt

is the cost of the power impact of a task t in the environment, and λt is the cost to
transfer a task t to another cloud provider.

4. if the cloud provider does not succeed, it tries to consolidate its VMs considering
the service-level agreements.

5. If not possible, it tries to negotiate the energy threshold with the CERA and with
the EPP agents.

6. If all negotiations fail, the cloud provider finds the SLA whose violation implies in
lower cost, terminates the associated task, and executes the task ti. In this case, the
price to execute the tasks is defined as shown in equation (6.4).

Vt = Ct + γ + δ (6.4)

105

Chapter 6. Power-Aware Server Consolidation for Federated Clouds

where γ is the cost to violate the QoS requirements of other tasks and δ is the cost
associated with the power consumption violation.

To control tasks’ allocation, each cloud provider has a 3-dimensional matrix representing
the tasks (ti ∈ T), the virtual machines (vmj), and physical servers (rz ∈ R), where
r(i, j, z) = 1 iff task ti is allocated at virtual machine vmj in resource rz; 0 indicates that
the task can be allocated in vmj ; and finally, -1 represents that the allocation is impossible.

In order to illustrate our strategy, consider a federated cloud environment with 2
clouds (DC1 and DC2) and one user that contracted one cloud to execute him/her
applications. Consider that the contracted cloud (DC1) is overloaded and that the
QoS requirements described in the SLAs are based on response time. In this scenario,
when the user submits a set of tasks to execute, the cloud provider of DC1 first tries
to execute it locally considering power consumption and its available resources. Since
DC1 is overloaded, its cloud provider contacts another data center (DC2) and negotiates
the execution of the tasks. If DC2 accepts, the cost of the tasks execution is calculated
using equation (6.3). If DC2 refuses, then DC1 tries to consolidate its virtual machines
and, if not possible, it tries to negotiate the energy threshold with the carbon emission
regulator agency (CERA) and with the electric power provider (EPP) considering the
following metrics (Section 5.3): application performance indicators (FLOPS/kWh), data
center infrastructure efficiency (DCiE), power usage effectiveness (PUE), and compute
power efficiency (CPE). If all negotiations fail, then DC1 finds the SLA whose violations
implies in lower cost and terminates the execution of its associated task. Then, the cost
to execute the tasks is calculated using equation (6.4).

6.3 Experimental Results
In this section, we evaluate the proposed server consolidation mechanism for federated

clouds. We use the cloud simulator CloudSim [58], which is a well-established cloud
simulator that has been used in many previous works [319, 375, 387], among others,
for simulating resource management strategies. CloudSim is a simulation toolkit that
enables modeling and simulation of cloud computing systems and application provisioning
environments, with support for cloud system components such as data centers, virtual
machines and resource provisioning policies.

6.3.1 Modifications in CloudSim
In order to enable federation and energy regulation capabilities, we added 4 classes

to CloudSim, which are described below. CloudSim already implemented the support to
measure the power consumption of the nodes.

The CloudEnergyRegulation class represents the behavior of the carbon emission
regulator agency (CERA) agent. The CERA communicates with the data center cloud
coordinator to inform the power consumption threshold.

The DatacenterEnergySensor class implements the Sensor interface that monitors
the power consumption of the data center and informs the coordinator. When the power
consumption is close to the limit, this sensor creates an event (i.e., CloudSim event) and

106

Chapter 6. Power-Aware Server Consolidation for Federated Clouds

notifies the coordinator. In this case, the coordinator first tries to contact another data
center to transfer the virtual machines and if the data center does not accept, then the
coordinator tries to consolidate them (Section 6.2).

The FederatedPowerVmAllocationPolicy class extends the VmAllocationPol-
icy class to implement our strategy to allocate the virtual machines across the data
centers.

Finally, the CustomerDatacenterBroker class models the QoS requirements cus-
tomer behavior, negotiates with the cloud coordinator, and requests the resources.

6.3.2 Simulation Environment
In order to evaluate the effectiveness of our federated application provisioning (FAP)

technique, we used a simulation setup that is similar to the one described in [58]. Our
simulation environment included two clouds, each one with one data center (DC1 and
DC2) that had 100 hosts each. These hosts were modeled to have one CPU with four
cores with 1000 MIPS, 2GB of RAM and 1TB of storage. The workload model included
provisioning and allocating for 400 virtual machines. Each virtual machine requested
one CPU core, 256MB of RAM and 1GB of storage. The CPU utilization distribution
was generated according to the Poisson distribution, where each virtual machine required
150 MIPS and 1 to 10 minutes to complete execution, assuming a CPU utilization of 20,
40, 60, 80 and 100% and a global energy consumption threshold of 3 kWh of energy per
data center. Initially, the provisioner allocates as many as possible virtual machines in a
single host, without violating any constraint of the host. The SLA was defined in terms of
response time (10 minutes).

The energy consumption threshold of 3 kWh of energy per data center was chosen
based in the results of the power management technique, presented in [58].

6.3.3 Scenario 1: workload submission to a single data center
under power consumption threshold

In this scenario, tasks are always submitted to data center 1 (DC1). If needed, VMs
are migrated from DC1 to DC2. The simulation was repeated 10 times and the mean
values for energy consumption without our mechanism using only DC1 (trivial), and with
our federated application provisioning (FAP) approach are presented in figure 6.3(a).

Figure 6.3(a) shows that the proposed provision technique can reduce the total power
consumption of the data centers, without SLA violation. In this case, an average re-
duction of 46% in the power consumption was achieved since the data center 1 (DC1)
consumed more than 9 kWh with the trivial approach (without VM migration) and no more
than 4.8 kWh was consumed in total by both data centers with our approach (2.9 kWh for
DC1 and 1.9 kWh for DC2). In order to achieve this, data center 1 (DC1) tried first to
maximize the usage of its resources and to consume the limit of its energy power threshold,
without violating the SLAs. Hence, the data center 2 (DC2) was only used in imminence
of SLA violation or when the energy consumption was close to violate the limit. In all
cases, the energy consumption for DC1 remained close to the limit.

107

Chapter 6. Power-Aware Server Consolidation for Federated Clouds

20% 40% 60% 80% 100%

DC1 DC2 Without VM migration

CPU utilization threshold

Po
we

r c
on

su
m

pt
io

n
(k

W
h)

0
2

4
6

8
10

12

2.9

1.9

9.1

2.8

9

1.9

2.8

1.7

9.1

2.9

1.5

9.1

2.9

1.4

9.2

(a) Power consumption of the data centers with and without the FAP approach

20% 40% 60% 80% 100%

CPU utilization threshold

N
um

be
r o

f V
M

 m
ig

ra
tio

ns

0
50

10
0

15
0

20
0

186
172 168

152 148

(b) Number of VM migrated from DC1 to DC2
using the FAP approach

20% 40% 60% 80% 100%

FAP (DC1 + DC2) Without VM migration

CPU utilization threshold

Ex
ec

ut
io

n
tim

e
(s

ec
on

ds
)

0
50

0
10

00
15

00
20

00

1654

1360

1644

1320

1659

1296

1644

1298

1644

1290

(c) Execution time of the tasks with and without
the FAP approach

Figure 6.3 – Case study 1: power consumption with 2 data centers under limited power
consumption

108

Chapter 6. Power-Aware Server Consolidation for Federated Clouds

Figure 6.3(b) presents the number of VMs migrated when our mechanism is used.
It can be seen that the number of migrations decreases as the threshold of CPU usage
increases. This result was expected since with more CPU capacity, the allocation policy
tends to use it and to allocate more virtual machines in the same host.

In figure 6.3(c), we measured the wallclock time needed to execute 400 tasks, with
and without our mechanism (FAP). It can be seen that the proposed provision technique
increases the whole execution time. This occurs because of the overhead caused by VMs
migrations between the data centers, and the negotiations between the CLU and the CLSP.
Nevertheless, this increase is less than 22%, where the wallclock execution times without
and with the FAP mechanism are 21.5 minutes and 27.4 minutes, respectively, when
using the whole CPU capacity. We consider that this increase in the execution time is
compensated by the reduction in the power consumption (Figure 6.3(a)).

6.3.4 Scenario 2: distinct workload submission to different over-
loaded data centers

In this scenario, we consider two users, with distinct SLAs and each user submits 400
tasks to different data centers (DC1 and DC2). Our goal is to observe the rate of SLA
violation when the workload of both data centers is high. The energy consumption of the
data centers is presented in figure 6.4(a).

In figure 6.4(a), we can see that, even in a scenario with overloaded data centers, our
mechanism can maintain the power consumption below the threshold (3 kWh) for each data
center. Using the whole CPU capacity, the power consumption decreased from 9.2 kWh
to 5.5 kWh (DC1 + DC2), reaching a reduction of 40% in the power consumption.

Figures 6.4(b) and 6.4(c) show the number of VM migrations between the data centers
and the wallclock time to execute 800 tasks when both data centers are overloaded.
Comparing with the scenario with one overloaded data center (DC1), the number of VM
migrations decreased, keeping almost the same penalty in the execution time (23%) due
to the negotiations overhead between the agents and by server consolidations.

The number of SLA violations with two overloaded data centers was lower than with
just one data center (DC1) as we can see in figure 6.4(d). With the CPU utilization
threshold of 80%, the SLA violation decreased from 43.9% (DC1) to 31.4% (DC1 + DC2),
reaching 28% of reduction in the SLAs violations. This shows the appropriateness of VM
migration between different data centers in an overloaded scenario.

6.4 Related Work
Many studies have tried to improve the power efficiency of a computing system

by minimizing the static power consumption while trying to increase the performance
proportionally to the dynamic power consumption. As a result, the hardware energy
efficiency has significantly improved (Section 5.1). However, whereas hardware is physically
responsible for most of the power consumption, hardware operations are guided by software,
which is indirectly responsible for the energy consumption [6].

109

Chapter 6. Power-Aware Server Consolidation for Federated Clouds

20
%

40
%

60
%

80
%

10
0%

D
C

1
D

C
2

W
ith

ou
t V

M
 m

ig
ra

tio
n

C
PU

 u
til

iz
at

io
n

th
re

sh
ol

d

Power consumption (kWh)

024681012

2.
5

2.
9

9.
1

9
9.
1

9.
1

9.
2

2.
5

2.
9

2.
5

2.
9

2.
6

2.
9

2.
6

2.
9

(a
)
Po

we
rc

on
su
m
pt
io
n
of

th
ed

at
a
ce
nt
er
sw

ith
an

d
wi

th
ou

t
th
e
FA

P
ap

pr
oa
ch

20
%

40
%

60
%

80
%

10
0%

D
C

1
D

C
2

W
ith

ou
t V

M
 m

ig
ra

tio
n

C
PU

 u
til

iz
at

io
n

th
re

sh
ol

d

Power consumption (kWh)

024681012

2.
5

2.
9

9.
1

9
9.
1

9.
1

9.
2

2.
5

2.
9

2.
5

2.
9

2.
6

2.
9

2.
6

2.
9

(b
)
N
um

be
r
of

V
M

m
ig
ra
te
d
be

tw
ee
n
th
e
da

ta
ce
nt
er
s

w
ith

th
e
FA

P
ap

pr
oa
ch

20
%

40
%

60
%

80
%

10
0%

FA
P

(D
C

1
+

D
C

2)
W

ith
ou

t V
M

 m
ig

ra
tio

n

C
PU

 u
til

iz
at

io
n

th
re

sh
ol

d

Execution time (seconds)

0500100015002000

17
16

13
60

16
64

13
20

16
54

12
96

16
72

12
98

16
79

12
90

(c
)
Ex

ec
ut
io
n
tim

e
of

th
e
ta
sk
s
w
ith

tw
o
ov
er
lo
ad

ed
da

ta
ce
nt
er
s
w
ith

an
d
w
ith

ou
t
th
e
FA

P
ap

pr
oa
ch

20
%

40
%

60
%

80
%

10
0%

FA
P

(D
C

1
+

D
C

2)
W

ith
ou

t V
M

 m
ig

ra
tio

n

C
PU

 u
til

iz
at

io
n

th
re

sh
ol

d

Average SLA violation (%)

020406080100

31
.6

51
.4

31
.5

49

31
.6

44
.5

31
.4

43
.9

31
.4

41
.2

(d
)
Av

er
ag
e
SL

A
vi
ol
at
io
n
w
ith

an
d
w
ith

ou
t
th
e
FA

P
ap

pr
oa
ch

F
ig
ur
e
6.
4
–
C
as
e
st
ud

y
2:

po
we

r
co
ns
um

pt
io
n
of

tw
o
ov
er
lo
ad

ed
da

ta
ce
nt
er
s
un

de
r
lim

ite
d
po

we
r
co
ns
um

pt
io
n

110

Chapter 6. Power-Aware Server Consolidation for Federated Clouds

Some of the studies reported in literature try to minimize the power consumption from
the data center perspective, considering that the main reason for energy inefficiency is
resource underutilization. One of the first approaches to try to solve this problem consists
of shutting down idle nodes [193, 251] and waking them up when the workload increases
or the average QoS violation ratio exceeds a threshold.

At the hardware level, improvements are made turning off components, putting them
to sleep or changing their frequency using dynamic voltage and frequency scaling (DVFS)
techniques (Section 5.1). For example, in [195], a power-aware DVFS based cluster schedul-
ing algorithm is presented taking into account performance constraints. The proposed
algorithm selects the appropriate supply voltages that minimize energy consumption of
the resources. Simulation results show that the proposed scheduling algorithm can reduce
the power consumption with an increase in the execution time.

In [155], the authors describe a virtual machine placement framework called Entropy.
Entropy aims to minimize the number of physical hosts to allocate the virtual machines,
without violating any constraints (e.g., memory size and number of CPUs). Its placement
process comprises two phases. The first phase identifies the nodes that have sufficient
resources (i.e., RAM and CPU) to host a VM, and the second one allocates the VMs trying
to minimize both the number of physical hosts and the number of VM migrations. These
two phases use constraint programming to find out a feasible global solution. Experiments
realized in the Grid’5000 testbed (www.grid5000.fr) show that constraint programming
outperforms the first-fit decreasing (FDD) algorithm with regard to the number of VM
migrations and power savings. In [103], the authors use Entropy to allocate VMs in a
federated cloud environment, taking into account power consumption and CO2 emissions.
Experimental results show a power saving of almost 22% when considering only power and
a saving of almost 19% when the allocations considering both power and CO2 emissions.
The experiments considered two federated clouds, and they used two synthetic workloads.

In [356], the authors present pMapper, a power and VM placement framework. Its
architecture comprises three different managers: performance, migration, and power. In
pMapper, a sensor collects the current performance and power characteristics of both
virtual and physical machines. Then, it sends these data to the performance and power
managers. After, the performance manager analyses the data, and based on SLA violations,
it suggests to resize the VMs. Similarly, the power manager based on the current power
consumption suggests power throttling actions (e.g., DVFS). Based on these suggestions,
an arbitrator component selects a configuration, and defines the physical machines to
host the VMs, as well as the characteristics of each VM. Finally, the managers resize and
migrate the VMs. Since heterogeneous platforms are considered, each manager consults a
knowledge database to determine the cost of a VM migration in the performance of its
applications, as well as in the power consumption. pMapper implements three algorithms
called: min Power Parity (mPP), min Power Placement with history (mPPH), and PMaP.
The mPP algorithm attempts to allocate the VMs in order to minimize the total power
consumption, without taking into account the current placement of the VMs. Hence, the
mPP algorithm results in a high number of migrations. The mPPH, on the other hand,
extends the mPP to minimize VM migrations. However, its efficiency with regard to
minimizing the power consumption is low. Finally, the PMaP tries to find out an allocation
that minimizes both power consumption and VM migrations. Experimental results show
that the mPP and mPPH algorithms can reduce 25% of the power consumption when the

111

http://www.grid5000.fr

Chapter 6. Power-Aware Server Consolidation for Federated Clouds

utilization ratio is at most 75% of the cluster’s capacity.
In [75], a market-based multi-agent resource allocation model is presented. The resource

allocation model aims to provide an effective resource allocation policy through a genetic
algorithm in a cloud environment. Buyer and service provider agents determine the bid
and ask prices using interactions to find an acceptable price, considering the demands,
the availability of clouds’ resources and the constraints of the cloud users and/or service
providers. Simulation results show that this approach could increase the welfare of both
buyers and cloud providers.

In [93], the authors address the coordination of multiple autonomic managers for power
and performance trade-offs in a real data center environment, with a real HTTP traffic
and time-varying demand. By turning off servers under low load condition, the proposed
approach achieved power savings of more than 25% without incurring in SLA penalties.

In [212], two energy-conscious task consolidation heuristics (ECTC and MaxUtil) are
used to maximize resource utilization for power saving. The cost of the ECTC heuristics
is computed considering the energy consumption to run a group of parallel tasks. The
MaxUtil heuristic tries to increase the consolidation density. Simulation results show that
the proposed heuristics are able to save energy by 18%(ECTC) and 13%(MaxUtil).

In [58], CloudSim is used to simulate VM provisioning techniques. Experimental results
compare the performance of two energy-conscious resource management techniques (DVFS
and an extension of DVFS policy). In the DVFS policy, VMs were resized according to
the host’s CPU utilization. In the extension of DVFS, VMs were migrated every 5 seconds
using a greedy algorithm that sorts the VMs in decreasing order of CPU utilization. In
both of them, each VM was migrated to hosts that kept resources utilization below a
threshold. Experimental results show that the total power consumption of a data center
reduced up to 50%, but with an increase in the number of SLA violations.

In [393], Zhou and colleagues propose and evaluate a service scheduling approach,
called Random Dynamic Scheduling Problem (RDSP), to reduce energy consumption
in cloud computing environments. This approach uses Monte Carlo sample historical
data to approximate to the predictable user demand and a probabilistic model to express
QoS requirements in a homogeneous environment, where the servers’ power consumption
is constant. Using numeric validation and Monte Carlo sampling to estimate the users’
demand, the results show that the proposed scheduling strategy was able to decrease the
power consumption of the server when the user demand is predictable.

In [59], the authors present a VM consolidation policy for cloud computing. The
proposed policy aims to minimize power consumption taking into account QoS requirements.
And, it extends the Minimum Power policy [35] in order to minimize VM migrations and
to maximize resource usage. In this case, different from the Minimum Power policy, a VM
is migrated only when its node is overloaded and with SLA violations. Experimental
results show a reduction in the power consumption (up to 34%) and in the execution
time (63%). Moreover, the new policy increases SLA guarantees. The experiments were
realized through the CloudSim simulator considering one data center with 800 physical
nodes.

Table 6.1 summarizes the ten approaches discussed in the previous paragraphs. In the
last line, we present the characteristics of our work. As can be seen in this table, two
approaches [75, 93] use multi-agent systems to reduce power consumption and costs. One
of them targets a cloud environment and the other one a cluster computing environment.

112

Chapter 6. Power-Aware Server Consolidation for Federated Clouds

Five works [58, 59, 103, 212, 393] reduce power consumption in cloud computing consid-
ering SLAs. Only one proposal [103] deals with cloud federation to implement workload
consolidation. Nevertheless, it does not implement negotiation mechanisms between the
data centers, and VMs are always migrated when one cloud is overloaded. None of
these ten proposals tackle federated cloud environments for power-aware allocations that
are SLA-conscious, and the workload migration requires negotiation between the data
centers.

Table 6.1 – Comparative view of cloud server consolidation strategies

Paper Target Federated Multi-agent Migration Negotiation SLA

[195] Cluster No No No No No
[155] Cluster No No Same DC No No
[103] Cloud Yes No Among DCs No Yes
[356] Cluster No No Same DC No No
[75] Cloud No Yes No No No
[93] Cluster No Yes No No No
[212] Cloud No No No No Yes
[58] Cloud No No Same DC No Yes
[393] Cloud No No No No Yes
[59] Cloud No No Same DC No Yes

This work
[215] Cloud Yes Yes Among DCs Yes Yes

6.5 Summary
In this chapter, we proposed and evaluated a server consolidation approach for efficient

power management in federated clouds, taking into account energy consumption and QoS
requirements.

Using simulated data with two clouds and 400 simultaneous virtual machines, we
showed the benefits of distributing the workload across clouds, under limited power
consumption. In this case, the best gain was obtained when one cloud was overloaded,
and it migrates part of its workload to the second one, reducing the power consumption
from 9.3 kWh (cloud 1) to 4.8 kWh (cloud 1 and cloud 2) with an increase of less than
22% in the execution time. The proposed approach is consistent with other researches
that also envisioned the usage of transient resources [19, 289, 324, 379].

Even though we achieved good results with our approach, other variables should also be
considered such as the workload type, the data center characteristics (i.e., location, power
source), and the network latency as these variables can affect the whole power consumption
of a data center. Moreover, resource heterogeneity should also be considered as data centers
usually comprise heterogeneous resources that can have different power consumption and
capabilities. This requires energy and performance-aware load distribution strategies, and
we leave this extension for future work.

113

Chapter 7

Biological Sequence Comparison at
Zero-Cost on a Vertical Public Cloud
Federation

Contents
7.1 Introduction and Motivation . 115

7.2 Biological Sequence Comparison 116

7.2.1 The Smith-Waterman Algorithm 117

7.3 Design of our Federated Cloud Architecture 118

7.3.1 Task Generation with MapReduce 120

7.3.2 Smith-Waterman Execution . 120

7.4 Experimental Results . 121

7.5 Related Work . 125

7.6 Summary . 126

The previous chapter showed us that cloud federation can help the providers on
reducing the power consumption of the clouds, by migrating the tasks according to the
data center workload and the SLA violation ratio. In this chapter, we aim to use the
cloud federation considering the software developers viewpoint. In other words, we aim to
aggregate resources from different type of cloud providers (e.g., PaaS and IaaS) to execute
a biological sequence comparison application at reduced-cost. Therefore, we present
and evaluate a cloud architecture to execute a native cloud application on federated
clouds at zero-cost. Our architecture follows a hierarchical and distributed management
strategy to connect and to manage the services offered by PaaS and IaaS clouds, thus,
being an architecture for vertical federated clouds (Section 3.2.3.2). The application
is a biological sequence comparison application, which was implemented following the
MapReduce (Section 3.1.3) programming model.

114

Chapter 7. Biological Sequence Comparison at Zero-Cost on a Vertical Public Cloud
Federation

Experimental results show that, by using the resources of five different public clouds,
we could run our application over a huge genomics database in time that is comparable
with the one obtained in execution on multi-core clusters and Cell/BEs, showing the
appropriateness of our vertical cloud architecture.

The reminder of this chapter is organized as follows. In section 7.1, we present
the introduction and motivation behind this work. After, section 7.2, briefly introduces
biological sequence comparison and the Smith-Waterman (SW) algorithm. Next, section 7.3
presents the design of our architecture. In Section 7.4, experimental results are presented
and discussed. Section 7.5 presents some of the related works that have executed the SW
algorithm on different platforms. Finally, section 7.6 concludes this chapter.

7.1 Introduction and Motivation
Usually, scientific applications comprise a very large number of independent tasks

that can be executed in parallel. These applications are called embarrassingly parallel or
simply parameter sweep applications. For example, bioinformatics applications usually
perform genomics database searches to find the similarity between a query sequence and
the sequences in a database. As a genomics database may have hundreds of thousands of
sequences, this work can be performed in parallel, where each task compares the same
query sequence with a different sequence in the database. In other words, all tasks execute
the same program, with different input sequences. This can be implemented with some
programming models or frameworks available for processing large datasets. MapReduce
is one of such programming models that can execute in many computing infrastructures,
often using Hadoop (Section 3.1.3).

One of the most popular bioinformatics algorithms is the Smith-Waterman [327] (SW)
algorithm. Smith-Waterman is an exact algorithm that can obtain the best score and
alignment between two sequences of size n in quadratic space and time. Due to the
quadratic complexity, it may require large amounts of memory to store its dynamic
programming matrices and also a considerable computing time.

A great number of efforts has been made to accelerate the SW algorithm using high
performance computing platforms. These efforts include clusters ([261, 290]), Cell/BEs ([7,
385]), and GPUs ([97, 229]), among others. These platforms could significantly reduce the
execution times of SW by using elaborate and often complex programming techniques.

Recently, cloud computing has been considered to execute HPC applications due to
its characteristics such as pay-per-usage and elastic environment. In order to support
a large number of consumers or to decentralize the solution, clouds can be combined
forming a cloud federation. As discussed in section 3.2.3 and in chapter 6, in a federated
environment, clouds interact and negotiate the most appropriate resources to execute a
particular application/service. This choice may involve the coordination and orchestration
of resources that belong to more than one cloud, which will be used, for instance, in order
to execute huge applications.

Although cloud federation has many advantages (Section 3.2.3), using it to execute
huge applications is usually a difficult task for many reasons. First, clouds’ resources are
usually heterogeneous and they may change over time. Second, the clouds often have
different APIs, which requires extra work from the users to understand and to use them.

115

Chapter 7. Biological Sequence Comparison at Zero-Cost on a Vertical Public Cloud
Federation

Third, the resources mostly have unpredictable performance, even for resources of the
same type. Fourth, most of the users’ applications are cloud-unaware, which may not fit
the constraints of a cloud environment.

In this context, MapReduce (Section 3.1.3) may help us to dismiss these difficulties as
it provides an application model that can run on multiple clouds. Also, its implementation
is decoupled from the cloud provider or any particular infrastructure. Finally, it can easily
handle performance changing and node failures.

As noted in section 2.5, clouds usually employ the pay-as-you-go model. Nonetheless,
the majority of the clouds also provide resources at zero-cost, in a category called usually
as “free-quota”. The resources from the free-quota category have limited capacity such as
low CPU frequency and a small amount of RAM memory. Thus, we want to investigate
if a federated execution exclusively in the free-quota (i.e., at zero-cost) can yield good
execution times.

Therefore, in this chapter we describe our approach to execute the SW algorithm in a
cloud federation. Since the cloud providers are unaware of the federation, our proposal
is classified as a multi-cloud (Section 3.2.3.2). Our approach has two main components:
(a) an architecture that can transparently connect and manage multiple clouds, thus
creating a federated cloud environment; and (b) an implementation of the MapReduce
version of SW in this architecture. The proposed architecture is hierarchical in such a way
that one of the clouds is the cloud coordinator, which distributes the tasks to be executed;
and the other clouds are the workers responsible for executing a MapReduce version of
the SW algorithm over the piece of computation received from the coordinator. This work
was published in [214].

The reminder of this chapter is organized as follows. First, we provide a brief introduc-
tion for biological sequence comparison followed by a description of the Smith-Waterman
algorithm (Section 7.2). Next, we present the proposed architecture (Section 7.3) and the
experimental results realized in a public cloud federation scenario (Section 7.4). Finally,
we discuss some of the related works that have executed the SW algorithm in different
platforms (Section 7.5) followed by some considerations and future work.

7.2 Biological Sequence Comparison
A biological sequence is represented by a linear list of residues, which are nucleotide

bases (for DNA and RNA sequences) or amino acids (for protein sequences). To compare
biological sequences, we need to find the best alignment between them, which is to place
one sequence above the other making clear the correspondence between similar residues
from the sequences [104].

Given an alignment between two sequences s and t, a score can be associated for
it as follows. For each two bases in the same column, we associate (a) a punctuation
ma, if both characters are identical (match); or (b) a penalty mi, if the characters are
different (mismatch); or (c) a penalty g, if one of the characters is a space (gap). The
score is the sum of all these values and the maximal score is called the similarity between
the sequences.

Figure 7.1 illustrates a possible alignment and score between DNA sequences: S0 =
ACATGTCCGAG and S1 = ATTGTCAGGAG.

116

Chapter 7. Biological Sequence Comparison at Zero-Cost on a Vertical Public Cloud
Federation

A C A T G T C C G − A G
A − T T G T C A G G A G
+1 −2 −1 +1 +1 +1 +1 −1 +1 −2 +1 +1︸ ︷︷ ︸

score = 2

Figure 7.1 – Computing the alignment and the score of two biological sequences, where ma =
+1, mi = −1 and g = −2

If proteins are being compared, a substitution matrix of size 20 x 20 is used to store
the match/mismatch punctuation. The most commonly used substitution matrices are
PAM and BLOSUM [255].

7.2.1 The Smith-Waterman Algorithm
The Smith-Waterman algorithm (SW) [327] is an exact algorithm based on dynamic

programming to obtain the best local alignment between two sequences in quadratic time
and space. It is divided in two phases: create the similarity matrix and obtain the best
local alignment.

The first phase receives as input sequences s and t, with |s| = m and |t| = n, where |s|
represents the size of a sequence s. Typically, s and t can range from few characters to
thousands of characters. The notation used to represent the n-th character of a sequence
seq is seq[n] and, to represent a prefix with n characters, from the beginning of the sequence,
we use seq[1..n]. The similarity matrix is denoted as A and each element contains the
similarity score between the prefixes s[1..i] and t[1..j], i < m+ 1 ∧ j < n+ 1.

At the beginning, the first row and column are filled with zeros. The remaining elements
of A are obtained from equation (7.1). The SW score between sequences s and t is the
highest value contained in matrix A.

Ai,j = max

Ai−1,j−1 + (if s[i] = s[j] then ma else mi)

Ai,j−1 − g

Ai−1,j − g

0

(7.1)

The second phase is executed to obtain the best local alignment. The algorithm starts
from the cell that contains the highest value and follows the arrows until a zero-valued
cell is reached. A left arrow in Ai,j (Figure 7.2) indicates the alignment of s[i] with a gap
in t. An up arrow represents the alignment of t[j] with a gap in s. Finally, an arrow in
the diagonal indicates that s[i] is aligned with t[j].

In the next section, we describe how the SW is executed in a multi-cloud environment.

117

Chapter 7. Biological Sequence Comparison at Zero-Cost on a Vertical Public Cloud
Federation

* G A G C T A T G A G G
* 0 0 0 0 0 0 0 0 0 0 0 0
T 0 0 0 0 0 1 0 1 0 0 0 0
A 0 0 1 0 0 0 2 0 0 1 0 0
T 0 0 0 0 0 1 0 3 1 0 0 0
A 0 0 1 0 0 0 2 1 2 2 0 0
G 0 1 0 2 0 0 0 1 2 1 3 1
G 0 1 0 1 1 0 0 0 2 1 2 4
T 0 0 0 0 0 2 0 1 0 1 0 2
A 0 0 1

aa
0 0 0 3 1 0 1 0 0

G 0 1 0 2
aa

0 0 1 2 2 0 2 1
C 0 0 0 0 3

aa
1 0 0 1 1 0 1

T 0 0 0 0 1 4
aa

2 1 0 0 0 0
A 0 0 1 0 0 2 5

aa
3 1 1 0 0

Figure 7.2 – Smith-Waterman similarity matrix for sequences s = TATAGGTAGCTA and t =
GAGCTATGAGG. In this example, the alignment has score = 5.

7.3 Design of our Federated Cloud Architecture
Our architecture assumes a hierarchical and multi-cloud environment. In addition, we

assume that resource usage is limited. This limitation is not due to the cloud environment
itself, but it is associated with financial constraints. In an extreme scenario, the use of
cloud resources by the applications is limited by the free-quota offered by each cloud.

In our architecture, there is a coordinator responsible for the whole execution, and for
interacting with the user and the multiple clouds. Each cloudi has a cloud master and a
set of slave instances. The cloud master is responsible for executing the tasks assigned to
its cloud; and the slave instances are the ones that actually execute the tasks.

The proposed architecture, depicted in figure 7.3, comprises four layers: User, Storage,
Communication, and Execution.

The User layer provides a graphical user interface (GUI) to submit the MapReduce
applications, as well as the input files. In the case of the SW application, there are two
input files. The first file contains a set of biological query sequences and the second one
contains a genomics database, which is composed of a huge set of biological sequences.

At the Storage layer, the input files are persisted into a storage system and the tasks
are created using the MapReduce model. In this case, we create one task for each entry of
the map function and enqueue the task into the coordinator queue in the reduce function.
In other words, a task executes one SW comparison.

The Communication layer implements transparent communication among the clouds
and transparent access to the cloud database. In this layer, generic requests are trans-
lated to specific requests according to the cloud master environment. This creates a
homogeneous API to access the federated resources, and it reduces the needs of the users
knowing about the limitation of each cloud provider such as maximum request size, request
timeouts, and commands to interact with the environment.

118

Chapter 7. Biological Sequence Comparison at Zero-Cost on a Vertical Public Cloud
Federation

Job Controller

MapReduce

Communication Layer

Cloud master1 Cloud mastern

Slave1 Slavex
….

Input Queue Output Queue

C
lo

ud
 C

oo
rd

in
at

or

Storage

User Layer

Storage Layer

Slave1 Slavey

Input Queue Output Queue

….

Ex
ec

ut
io

n
La

ye
r

….

Figure 7.3 – Federated cloud architecture to execute MapReduce applications

In each cloud, there is an input and an output queue which are shared by the slave
instances, containing the tasks to be executed. At the Execution layer, each cloud master
receives the tasks and stores them into the input queue. Slave machines retrieve tasks
from this queue, process them and store the result into the output queue.

The architecture uses the HTTP protocol to implement message exchanges between the
masters and the slaves. A well-defined interface is defined to accept either data requests or
computational task requests. The body of a message can be either XML or JSON following
the REST architecture style [116]. The HTTP methods are used as following: (i) the
POST method is used to submit a task; (ii) the GET method is called to obtain information
about the cloud or about the status of the a task; and (iii) the DELETE method is used
to delete a task. Figure 7.4 presents the types of messages and their associations.

- failure : Exception
- code : int
- time : Date

Result

+ run() : void

- owner : URL
- createdIn : Date
- id : Long

Job

- value : String

Sequence

- database : String

Sequences

1..*

0..*

Task

query

target

<<enum>>
State

state

Score

computation

Alignment

state

Figure 7.4 – Type of the messages exchanged in our multi-cloud architecture

119

Chapter 7. Biological Sequence Comparison at Zero-Cost on a Vertical Public Cloud
Federation

As shown in figure 7.4, a Job has at least one Task, which represents the computation
work to be executed, a State and an owner. The owner of a job is always the user who
submitted the job. The states of a task can be: created, submitted, executing, and finished.
When a task finishes its execution, it updates the Result attribute with the following data:
the total execution time, the result code (i.e., 200 - successful or 400 - error), the output,
and the failure data.

7.3.1 Task Generation with MapReduce
The tasks are generated following the MapReduce approach. The input of the map

phase is an input file and its values are the tasks to be executed. In this case, the map
function is a data preparation phase. It creates all tasks with the necessary data in such a
way that the reduce function can submit it to the available cloud masters. The reduce
function is just one notification to the cloud master informing about the tasks to execute.

When the cloud master receives a notification about the tasks, it responds informing
that it is alive and ready to receive them. Then, the coordinator submits the tasks to
the cloud master as long as the response of its notification is 202 (i.e., accepted). The
state of all submitted tasks is changed to submitted and the task monitor starts the
execution. The coordinator monitors the execution of the tasks by contacting the masters,
and in case of failure or if another master responds that it is idle, the coordinator selects
the tasks in the states created or submitted, and assigns them to the idle cloud master.

When the cloud master receives the tasks, it stores them in its input queue, which is
accessed by the slaves instances. Then, the slaves execute the tasks and write the result
into the output queue. Finally, the master gets the results from the output queue and
sends them to the coordinator.

In order to illustrate our approach, consider that a user wants to compare protein
sequences with a genomics database, as depicted in figure 7.5. In this scenario, he/she
submits a file with the sequences to be queried and the database to be compared using
a Web application, at the User layer (Figure 7.5 (1)). The Web application creates a
job with tasks of type score and sends it for the coordinator, at the Storage layer. When
the coordinator receives this job, it analyses it and executes the following steps. First,
it uses the MapReduce module (Figure 7.5 (2)) to persist the sequences (database and
sequences to be queried) in the data storage (Figure 7.5 (3)). Second, it creates small
tasks to be executed by the clouds using the MapReduce model (Figure 7.5 (3)). Third, it
submits the tasks to the cloud master of each cloud (Figure 7.5 (4)). After the submission,
the coordinator monitors the execution of the tasks by contacting the cloud masters and,
and if necessary, it re-assigns tasks to another master. Finally, when the computation
finishes, the master sends the results to the coordinator (Figure 7.5 (5)), which notifies
the user about the result of his/her tasks (Figure 7.5 (6)).

7.3.2 Smith-Waterman Execution
To implement the Smith-Waterman algorithm, we used the MapReduce model, where

in the map phase the slave instances dequeue the tasks from the input queue, and execute
them, whereas in the reduce function they retrieve the result of the map function and
iterate over it to find the maximum score. Then, they write the output into the output

120

Chapter 7. Biological Sequence Comparison at Zero-Cost on a Vertical Public Cloud
Federation

Communication driver

Cloud
storage

Cloud
coordinator

Job
controller

MapReduce
Module

Communication driver

Cloud
master1

Task
module

OUT

IN
Task

executor1

Task
executorx

Communication driver

Cloud
master2

Task
module

OUT

IN
Task

executor1

Task
executory

Tasks

ResultsResults

Tasks

Query sequences and
genomics database

Scores G
U

I

2

3

44

5

6

Interaction between the components

1

Figure 7.5 – Comparing protein sequences with a genomics database on multiple clouds

queue. When a task starts, its state changes to running and the cloud master is notified
about it. Figure 7.6 illustrates this process.

Input Queue

Output Queue

Smith-Waterman AlgorithmSlave
instance

(1) dequeue one task to
execute

(3) enqueue the result
(score)

(2) execute the task

Map

Reduce

Figure 7.6 – Smith-Waterman execution following the MapReduce model

7.4 Experimental Results
The architecture and the SW algorithm were implemented in Java. We evaluated these

implementations in a multi-cloud environment composed of five public clouds: Amazon Elas-
tic Compute Cloud (aws.amazon.com/ec2), Google App Engine (appengine.google.com),
OpenShift (openshift.redhat.com), Heroku (heroku.com), and PiCloud (picloud.com). In
our tests, we used only the free quota of these clouds and that resulted in the configuration
depicted in table 7.1.

We executed SW in each cloud separately (i.e., standalone mode) and in the federated
mode (5 clouds). In the following paragraphs, we will discuss how our architecture was
implemented in each cloud.

In EC2, Heroku and PiCloud, we implemented the architecture as proposed in figure 7.3
using the standard Hadoop as the MapReduce implementation.

121

http://aws.amazon.com/ec2
http://appengine.google.com
http://openshift.redhat.com
http://heroku.com
http://picloud.com

Chapter 7. Biological Sequence Comparison at Zero-Cost on a Vertical Public Cloud
Federation

Table 7.1 – Configuration of the clouds to execute the SW algorithm

Cloud Configuration
Amazon Elastic Cloud (EC2) 24 applications in the micro instances
Google App Engine (GAE) 10 applications with 2 instances per application
Heroku 1 application deployed in the cedar stack configu-

ration
OpenShift 1 application deployed in the express configuration
PiCloud 1 application deployed in one Intel Xeon 2.66GHz,

8GB RAM

In OpenShift, we opted to use a combined Hadoop+JMS strategy. In this case, the
master application and slave instances use the Java Message System (JMS) to share the
work to be executed. When the master receives a task, it performs the steps described
in section 7.3, and the slaves are JMS consumers of the master queue.

Google App Engine (GAE) imposed many restrictions to design the application using
the free quota such as: (i) the request payload was limited to 32KB; (ii) the maximum
number of requests was 10,000 and (iii) the applications do not share resources (i.e., the
database). Since genomics databases usually have hundreds of MBytes and the database
must be shared, these restrictions invalidated the placement of the database inside GAE.
Therefore, we opted to place the cloud master in Amazon EC2 and the database in Amazon
S3, generating a hybrid version in this case.

For the multi-cloud, Amazon EC2 was chosen as the coordinator and the other clouds
acted as cloud masters.

In our tests, we compared up to 24 query sequences with the database UniProtKB/Swiss-
Prot (November 2011), publicly available at uniprot.org, composed of 532, 794 se-
quences (252.7 MB) with our SW cloud implementation (Section 7.3.2), using the substi-
tution matrix BLOSUM50 [255]. Table 7.2 presents the accession numbers and the sizes of
the real query sequences used in the tests. As can be seen in this table, the sequence sizes
ranged from 144 amino acids (shortest sequence) to 5, 478 amino acids (longest sequence).

Table 7.2 – Query sequences compared to the UniprotKb/Swiss-Prot genomics database

Sequence Length Sequence Length Sequence Length
P02232 144 P01111 189 P05013 189
P14942 222 P00762 246 P07327 375
P01008 464 P10635 497 P25705 553
P03435 567 P42357 657 P21177 729
O60341 852 P27895 1000 P07756 1500
P04775 2005 P19096 2504 P28167 2005
P0C6B8 3564 P20930 4061 P08519 4548
Q7TMA5 4743 P33450 5147 Q9UKN1 5478

Figure 7.7 presents the wallclock execution times for the five standalone clouds and
the multi-cloud approach. In this test, we are comparing the 24 protein sequences listed

122

http://uniprot.org

Chapter 7. Biological Sequence Comparison at Zero-Cost on a Vertical Public Cloud
Federation

in table 7.2 with the entire UniProtKB/Swiss-Prot genomics database. Therefore, we
executed 12,787,056 Smith-Waterman comparisons.

In figure 7.7, we can see that, for the standalone clouds, the lower execution time
was achieved by EC2 (4,800 seconds). The execution time in a multi-cloud configuration
was 3,720 seconds, which is 22.55% lower than the best standalone execution time. The
lower execution time in the Amazon EC2 reflects the small overhead of the infrastructure
for communicating the master, the storage, and the consumers, all developed as Hadoop
jobs. The overhead in this case is small because master and storage are in the same cloud.
Moreover, the throughput between EC2 and S3 is on average 3Gbps.

Amazon GAE Heroku PiCloud OpenShift Federated

0
50

00
10

00
0

15
00

0

4800

13500

14400

12800

9600

3720E
xe

cu
ti

o
n
 t

im
e
 (

se
co

n
d
s)

Cloud provider

Figure 7.7 – Execution time for 24 sequence comparisons with the Uniprot/SwissProt database

We also compared the execution time of our SW implementation running on EC2
with the execution time of the SSEARCH program. The SSEARCH program is an
implementation of SW that belongs to the FASTA suite and is publicly available at
www.ebi.ac.uk/Tools/sss. We downloaded the SSEARCH binary on November 2011 and
executed it sequentially on an Intel Core 2 Duo 2.4Ghz, 8GB RAM. Due to time constraints,
we only compared the longest sequence (Q9UKN1 in table 7.2) in this test. The sequential
comparison took 5 hours, 44 minutes and 14 seconds (20,682 seconds) whereas the EC2
execution, at zero-cost, took 13 minutes (780 sec) as shown in figure 7.8. Therefore, EC2
achieved a speedup of 26.51x over the SSEARCH sequential execution in this comparison.

Figure 7.9 presents the GCUPs (billions of cell updates per second) for the five
standalone clouds and the federated cloud execution. In this figure, we can see that the
best value was achieved in the multi-cloud configuration (0.5 GCUPs), only within the
free quota, which is comparable to the ones obtained by multi-core cluster and Cell/BE
approaches (Table 7.3), but with the difference that in our approach we compared 24 query
sequences with one huge database (UniProtKB/Swiss-Prot). For the standalone clouds,
the best value was achieved by EC2 (0.25 GCUPs). For the other clouds, the small GCUPs
value reflects the overhead with data transfer from EC2 to each master. The GCUP
obtained when comparing the longest sequence with the UniProtKB/Swiss-Prot database
using our architecture was 1.35, as presented in table 7.3.

123

http://www.ebi.ac.uk/Tools/sss

Chapter 7. Biological Sequence Comparison at Zero-Cost on a Vertical Public Cloud
Federation

Amazon Sequential

0
50

00
10

00
0

15
00

0
20

00
0

25
00

0

20682

780

Environment

E
xe
cu
ti
o
n
ti
m
e
(s
e
co
n
d
s)

Figure 7.8 – Sequential execution time for the longest sequence (Q9UKN1) with
SSEARCH (November 2011) compared with the standalone execution time in
Amazon EC2

Amazon GAE Heroku PiCloud OpenShift Federated

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.25

0.1 0.1 0.1

0.15

0.5

G
C

U
P
S

Cloud provider

Figure 7.9 – GCUPS of 24 query sequences comparison with the database UniProtKB/Swiss-
Prot (November 2011) using our SW implementation

124

Chapter 7. Biological Sequence Comparison at Zero-Cost on a Vertical Public Cloud
Federation

7.5 Related Work
The efforts that have been made to reduce the execution time of the SW applica-

tion include (i) classical parallel platforms, such as clusters; (ii) accelerators such as
Cell/BE and GPUs; and, more recently, (iii) clouds. Table 7.3 lists eight proposals of
SW implementations and compares them to our proposal. We must note that there are
many other implementations of SW in clusters, Cell/BEs, and GPUs. Here, we chose two
implementations in each platform to give a picture of the performance improvements that
have been achieved. As far as we know, there are only two implementations of SW in
Hadoop for cloud environments [127, 176].

In column 2, the computing platform is provided, which can be Cell/BEs, cluster of
Cell/BE, multi-core clusters, GPUs, and cloud.

The type of comparison is provided in column 3, which can be between two se-
quences (seq x seq) or query x dbase. Genomics databases (dbase) are composed of a great
number of sequences and each processing element compares the same sequence (query)
with a subset of sequences from the database. Therefore, a high amount of comparisons is
made in the (query x dbase) case, but the size of the similarity matrices is not big. The
seq x seq comparison, on the other hand, compares only two sequences and the size of the
similarity matrix is usually big.

Column 4 provides the grain of computation. All seq x seq comparisons are fine
grain comparisons, i.e., all the processing elements participate in the computation of a
single similarity matrix. Coarse grain computations are normally made in query x dbase
comparisons, where each processing element independently computes a set of similarity
matrices.

As output, the SW algorithm can provide the score or the score and the alignment (Col-
umn 5). In the first case, only the first phase of SW is executed.

The number of processing elements used in the comparisons is listed in column 6. This
number varies, and it depends on the platform used. Note that, even though only one
GPU was used in the GPU SW implementations, these GPUs have multiple cores. For
instance, the NVidia GTX 560Ti has 384 cores. In the first cloud implementation (line 7
of table 7.3), a cluster of 768 cores was used and in the second one (line 8 of table 7.3), 20
units of Amazon EC2 were used.

Column 7 lists the maximum speedups reported in the papers, which cannot be used
for direct comparison since each approach uses a different general-purpose processor as a
baseline to calculate speedups. Nevertheless, the reported speedups can give us an idea of
the gains that can be obtained by each approach.

To measure the performance of SW, the metric GCUPs is often used. This metric
calculates the rate at which the cells of the similarity matrix are updated. When a query
sequence is compared to a genomics database, the sizes of the query sequence and the
size of the whole database are taken into consideration. GCUPs range from 0.42 to 8.00
for the Cell/BE and from 0.25 to 4.38 for clusters. The best GCUPs were obtained with
GPUs (from 23.3 to 58.8 GCUPs). Neither speedups nor GCUPs were provided for the
cloud computing implementations.

In the last row, we present the details of our multi-cloud approach. Like most of the
approaches, we calculate the SW score between a query sequence and a genomics database
with coarse-grained computations. Unlike the other approaches, we propose and use a

125

Chapter 7. Biological Sequence Comparison at Zero-Cost on a Vertical Public Cloud
Federation

federated cloud architecture to execute our comparisons. Also, we used five public clouds
and, only within the free quota, we could launch 37 applications. The GCUP obtained
with our proposal (1.35 GCUPs) is comparable with the multi-core clusters and Cell/BEs
approaches. As far as we know, ours was the first attempt to execute the SW algorithm in
a vertical cloud federation.

7.6 Summary
In this chapter we proposed and evaluated a hierarchical multi-cloud architecture to

execute the Smith-Waterman (SW) algorithm in a cloud federation. By only using the
free-quota of five public clouds, we could execute the SW to compare 24 protein sequences
with the UniProtKB/Swiss-Prot database in approximately one hour and this result is
comparable to the ones obtained in SW cluster and Cell/BE executions. We also presented
results where the multi-cloud approach was 22.55% faster that the best standalone cloud
execution (EC2), showing the advantages of the cloud federation. In addition, we compared
the EC2 execution with the sequential SSEARCH execution (November 2011). In this
case, the EC2 execution achieved a speedup of 26.51x over SSEARCH.

Even though our approach could execute a huge application in multiple public clouds,
there are some issues with it, which are: (i) the usage of a centralized coordinator to
distribute the tasks, and (ii) the lack of fault-tolerance strategies for the coordinator and
for the masters. The first issue may limit the scalability of the architecture and its usage
in a dynamic environment. On the one hand, failure of the coordinator may require the
re-execution of the whole application as the architecture does not provide a way to discover
the tasks distributed to each master. In this case, the masters will continue the execution
of their tasks, but the result will be inaccessible for the users. On the other hand, masters’
failures will cause the re-execution of the tasks assigned to them. In both cases, the slaves
continue the execution. These two issues are tackled in chapter 10, where we propose a
decentralized and fault-tolerant architecture for cloud federations.

126

Chapter 7. Biological Sequence Comparison at Zero-Cost on a Vertical Public Cloud
Federation

Ta
bl
e
7.
3
–
C
om

pa
ra
tiv

e
vi
ew

of
th
e
ap

pr
oa

ch
es

th
at

im
pl
em

en
t
SW

in
H
PC

pl
at
fo
rm

s

P
ap

er
P
la
tf
or
m

C
om

pa
ri
so
n

G
ra
in

O
ut
pu

t
#

P
ro
c.

B
es
t

E
le
m
en
ts

Sp
ee
du

p
G
C
U
P
s

[3
85
]

C
el
l/
BE

qu
er
yx

db
as
e

co
ar
se

sc
or
e

6
SP

Es
—

8.
00

[7
]

cl
us
te
r
C
el
l/
BE

qu
er
yx

db
as
e

fin
e,
co
ar
se

sc
or
e,
al
ig
n.

84
SP

Es
55
x

0.
42

[2
90
]

cl
us
te
r

se
qx

se
q

fin
e

sc
or
e,
al
ig
n.

60
pr
oc
s

39
x

0.
25

[2
61
]

cl
us
te
r

qu
er
yx

db
as
e

co
ar
se

sc
or
e

24
co
re
s

14
x

4.
38

[2
29
]

G
PU

qu
er
yx

db
as
e

co
ar
se

sc
or
e

G
T
X
29
5

—
29
.7

[9
7]

G
PU

se
qx

se
q

fin
e

sc
or
e,
al
ig
n.

G
T
X
56
0

—
58
.2
1

[1
27
]

cl
ou

d
qu

er
yx

db
as
e

co
ar
se

sc
or
e

76
8
co
re
s

—
—

[1
76
]

cl
ou

d
qu

er
yx

db
as
e

co
ar
se

sc
or
e

20
EC

2
U
ni
ts

—
—

T
hi
s
wo

rk
fe
de
ra
te
d
cl
ou

d
qu

er
yx

db
as
e

co
ar
se

sc
or
e

5
cl
ou

ds
26
x

1.
35

[2
14
]

(3
7
ap

ps
)

(1
cl
ou

d)

127

Chapter 8

Excalibur: A User-Centered Cloud
Architecture for Executing Parallel
Applications

Contents
8.1 Introduction and Motivation . 129

8.2 Architecture Overview . 130

8.2.1 Scaling Cloud-Unaware Applications with Budget Restrictions
and Resource Constraints . 132

8.2.2 Reducing Data Movement to Reduce Cost and Execution Time 133

8.2.3 Reducing Job Makespan with Workload Adjustment 134

8.2.4 Making the Cloud Transparent for the Users 134

8.3 Experimental Results . 136

8.3.1 Scenario 1: execution without auto-scaling and based on users’
preferences . 139

8.3.2 Scenario 2: execution with auto-scaling 140

8.4 Related Work . 141

8.5 Summary . 143

The previous chapter showed us that developing and deploying cloud applications is
a difficult task, even for experienced software developers, due to the various constraints
and the complex configuration tasks. Thus, we decided to investigate the usage of a cloud
environment to execute cloud-unaware applications, considering the view of inexperience
cloud users, without having to change the applications to meet clouds’ environment
constraints.

128

Chapter 8. Excalibur: A User-Centered Cloud Architecture for Executing Parallel
Applications

Therefore, in this chapter, we propose and evaluate a cloud architecture, called Excal-
ibur, to execute applications on IaaS clouds. Our architecture aims to hide the configuration
tasks from the users and to implements an auto-scaling strategy. Experimental results show
that the proposed architecture could dynamically scale the application up to 11 virtual
machines, reducing both the execution time and the cost of executing a genomics workflow
when deployed on an instance type selected by the users.

The remainder of this chapter is organized as follows. In section 8.1, we present an
introduction and the motivation behind this work. Section 8.2 presents the design of
our cloud architecture. Experimental results are presented and discussed in section 8.3.
Section 8.4 presents and compares some related works. Finally, section 8.5 concludes this
chapter.

8.1 Introduction and Motivation
As stated in previous chapter, nowadays, the cloud infrastructure may be used to

execute HPC applications, due to its characteristics such as resources on-demand, pay-as-
you-go model, and full access to the underlying infrastructure [1]. However, executing high
performance computing applications in the cloud still faces some difficulties such as the
differences in HPC cloud infrastructures and the applications were not written for cloud.

Hence, cloud infrastructures require a new level of robustness and flexibility from the
applications, as hardware failures and performance variations become part of its normal
operation. In addition, cloud resources are optimized to reduce the cost for cloud providers
often without providing performance guarantees at low cost for the users. Furthermore,
cloud providers offer different resources and services that have costs and performance
defined according to their purpose usage. In this scenario, the users face many problems.
First, re-engineering applications to fit the cloud model requires expertise in both domains:
cloud and high performance computing, as well as a considerable time to accomplish it.
Second, selecting the resources that meet the applications’ needs demands data about
both applications and resources. Thus, deploying and executing an application in the
cloud is still a complex task [179, 392].

Although some efforts have been made to help in solving these problems, most of them
target software developers [262, 315], and they are not straightforward for inexperienced
users [179].

Therefore, in this chapter, we propose and evaluate a cloud architecture, called Ex-
calibur, to execute applications in the cloud with three main objectives: (a) provide a
platform for high performance computing applications in the cloud for users without cloud
skills; (b) dynamically scale the applications without user intervention; and (c) meet the
users requirements such as performance at reduced cost. This work was published in [217].

The remainder of this chapter is organized as follows. Section 8.2 presents our cloud
architecture. In section 8.3, experimental results are discussed. Section 8.4 presents
related work and discusses cloud architectures to perform high performance computing
applications. Finally, section 8.5 presents final considerations and future work.

129

Chapter 8. Excalibur: A User-Centered Cloud Architecture for Executing Parallel
Applications

8.2 Architecture Overview
The proposed architecture aims to simplify the use of the cloud and to run applications

on it without requiring re-design of the applications. To achieve these goals, we consider
that a cloud can be used to increase the capacity of local resources or combined with other
clouds, i.e., hybrid cloud environment (Section 3.2.2).

In this chapter, an application represents a user’s demand/work, being seen as a single
unit by the user. An application is composed of one or more tasks which represent the
smallest work unit to be executed by the system. The tasks that form an application can
be connected by precedence relations, forming a workflow. The workflow is defined to be
a set of activities, and these activities can be tasks, as said above, or even other workflows.
Moreover, a partition is a set of independent tasks with respect to the precedence relation.
The terms application and job are used interchangeably in this chapter.

We propose an architecture composed of micro-services. A micro-service is a lightweight
and independent service that performs single functions and collaborates with other ser-
vices using a well-defined interface to achieve some objectives. Micro-services make our
architecture flexible and scalable since services can be changed dynamically according to
the users’ objectives. In other words, if a service does not achieve a desirable performance
in a given cloud, it can be deployed in another one without requiring service restart.

Our architecture, called Excalibur, has three layers: resource management, application,
and user layer as depicted in figure 8.1. The resource management layer comprises the
services responsible for managing the resources (e.g., VM and/or storage). A resource can
be registered by the providers or by the users through the service registry. By default, the
resources provided by the public clouds are registered with the following data: resource
type (e.g., physical or virtual machine, storage), URL, costs, and purpose usage (e.g., if
the resource is optimized for CPU, memory or I/O-bound applications). The resource
management service is responsible to validate these data and to keep them up-to-date.
First, it gets a list of the resources through the service registry. Then, it asks the clouds
the state of each resource and updates its state in the system. This is necessary because a
resource registered at time ti may not be available at time tj, tj > ti for many reasons.
The monitoring and deployment services, on the other hand, are responsible to deploy and
to monitor the applications. Monitoring is an important activity in our architecture for
three reasons. First, it collects data about the resources. Second, it can be used to detect
failures — sometimes the providers terminate services when they are stressing the CPU,
RAM memory, or both. And finally, it supports our auto-scaling mechanism.

We provide a uniform view of the clouds through a communication API. This is
necessary because each cloud provider often has different interfaces to access its resources.

On top of the resource management layer, the application layer provides services to
schedule the jobs (provisioning), to control the data flows (workflow data event), to provide
data streaming service (data streaming processing), and to execute the applications. The
architecture uses MapReduce (Section 3.1.3) to distribute the applications. This does not
mean that only MapReduce applications are supported, as in chapter 7, but only that the
applications are distributed following the MapReduce model.

The coordination service manages the resources, which can be distributed across
different cloud providers, and provides a uniform view of the system such as the available
resources and the system’s workload.

130

Chapter 8. Excalibur: A User-Centered Cloud Architecture for Executing Parallel
Applications

The provisioning service creates a workflow with the activities to set up the environment,
and it creates an execution plan for the applications. In practice, the provisioning service
communicates with the coordination service to obtain data about the resources and to
allocate them for the applications. After that, it submits the workflow to the workflow
management service.

An execution plan comprises the application to execute, its input data (i.e., data
sources), the resources to execute it, a state (initializing, waiting data, ready, executing,
and finished), and a characteristic that can be known or unknown by the system. A
characteristic represents the application’s behavior such as CPU, memory, or I/O-bound.

The workflow management service coordinates the execution of the workflow and
creates the data flows (i.e., data streams) in the workflow data event service.

The workflow data event service is responsible to provide the data for the execution
plans. A data flow has a source and a sink and it can supply data for multiple execution
plans simultaneously. This avoids multiple accesses for the distributed file system (DFS)
to fetch the same data.

Finally, the user layer has two services: job submission and job stats processing. The
users submit their jobs through the job submission service. A job has the following data:
the tasks which compose it, the constraints, the data definition (input and output), and
the data about the cloud providers (e.g., name and access key). The users can monitor or
obtain the results of their jobs through the job stats processing.

Monitoring and
deployment

Provisioning Coordination

Workflow
Management Distributed Job Processing

(MapReduce)

Distributed File System
(DFS)

Workflow data
event

User
layerJob submission Job stats

Service registry Resource
management

Communication API
Cloud Provider API

Application layer

Resource management layer

Distributed
database

Data streaming
processing

Monitors the resources

Interaction between the services

Figure 8.1 – Excalibur: services and layers

Scaling cloud-unaware applications without having technical skills requires an architec-
ture that abstracts the whole environment, taking into account the users’ objectives. In
the next subsections, we explain how the proposed architecture achieves these objectives.

131

Chapter 8. Excalibur: A User-Centered Cloud Architecture for Executing Parallel
Applications

8.2.1 Scaling Cloud-Unaware Applications with Budget Restric-
tions and Resource Constraints

The applications considered in this chapter are workflows but some parts of the
workflow can be composed of a set of independent tasks that can be run in parallel. These
independent tasks are the target of our scaling technique. For example, figure 8.2 shows
a directed acyclic graph (DAG) with four tasks (T1, T2, T3, and T4) and the temporal
precedence relations among the tasks. In this example, tasks T2 and T3 can be executed
in parallel, after task T1 finishing, as expected by any workflow engine. However, task T3
is composed of three independent subtasks (s1, s2 and, s3).

T1

T2

T4

s2

s1s3T3

Figure 8.2 – A DAG representing a workflow application with 4 tasks, where one of them, T3,
is composed of three independent subtasks

In this case, the subtasks can be grouped in p partitions and assigned to different
nodes. One important problem here is to determine the size and the number of partitions.
Over-partitioning can lead to a great number of short duration tasks that may cause a
considerable overhead to the system. Hence, over-partitioning can result in inefficient
resource usage. To avoid this, the size of one partition (Pp) is estimated as [15]:

Pp = bNq ∗R
T
c (8.1)

where Nq is the workload size; T is the estimated CPU time for executing Nq in the
partition; and R is a parameter for the maximum execution time for partition Pp. A
partition size can be adjusted according to the node characteristics. For instance, if the
resource usage by a partition Pp is below a threshold, Pp can be increased.

Partitions exist due to the concept of splittable and static files. It is the user who
defines which data are splittable and how to split them when the system does not know.
Splittable data are converted to JSON records and persisted onto the distributed database,
so a partition represents a set of JSON records. Static data, on the other hand, are kept
in the local file system.

Listing 8.1 illustrates the input file of task T3. This file represents a FASTA file, and
each line starting with the > character represents a genomics sequence, thus a subtask. The
FASTA file is converted to the JSON format as shown in listing 8.1. A genomics sequence
has a name (e.g., ERR135910.3), a description (e.g., 2405:1:1101:1234:1973:Y/1), and a
value (e.g., NAAGGGTTTGAGTAAGAGCATAGCTGTTGGGACCCGAAAGATGGT-
GAACT). In this case, the system will create a table with name sequences in the distributed

132

Chapter 8. Excalibur: A User-Centered Cloud Architecture for Executing Parallel
Applications

database and will store onto it the genomics sequences. Moreover, three partitions can be
created to execute in parallel.

>ERR135910.3 2405:1:1101:1234:1973:Y/1
NAAGGGTTTGAGTAAGAGCATAGCTGTTGGGACCCGAAAGATGGTGAACT

>ERR135910.5 2405:1:1101:1170:1994:Y/1
NTCAACGAGGAATTCCTAGTAAGCGNAAGTCATCANCTTGCGTTGAATAC

>ERR135910.6 2405:1:1101:1272:1972:Y/1
NTAGTACTATGGTTGGAGACAACATGGGAATCCGGGGTGCTGTAGGCTTG

Listing 8.1 – Example of a splittable file format (i.e., FASTA file)

1 {
2 "sequences" : [{
3 "name" : "ERR135910.3",
4 "description" : "2405:1:1101:1234:1973:Y/1",
5 "value" : "NAAGGGTTTGAGTAAGAGCATAGCTGTTGGGACCCGAAAGATGGTGAACT"
6 }, {
7 "name" : "ERR135910.5",
8 "description" : "2405:1:1101:1170:1994:Y/1",
9 "value" : "NTCAACGAGGAATTCCTAGTAAGCGNAAGTCATCANCTTGCGTTGAATAC"

10 }, {
11 "name" : "ERR135910.6",
12 "description" : "2405:1:1101:1272:1972:Y/1",
13 "value" : "NTAGTACTATGGTTGGAGACAACATGGGAATCCGGGGTGCTGTAGGCTTG"
14 }]
15 }

Listing 8.2 – Example of a JSON with three genomics sequences

8.2.2 Reducing Data Movement to Reduce Cost and Execution
Time

Data movement can increase the total execution time of an application (i.e., makespan)
and sometimes it can be higher than the computation time due to the differences in
networks’ bandwidth. In this case, we can invert the direction of the logical flow, moving
the application to as close as possible of the data location. Actually, we distribute the
data using a DFS and the MapReduce strategy.

Although MapReduce is an elegant solution, it has the overhead of creating the map
and the reduce tasks every time a query must be executed. We minimize this overhead by
using a data structure to keep the data in memory. This increases the memory usage and
requires data consistency policies to keep the data updated. However it does not increase
financial costs. We implemented a data policy that works as follows. Each record read
by a node is kept in memory and its key is sent for the coordination service (Figure 8.1).
The coordination service stores the key/value pairs and the information where they were
read. When a node updates a record, it removes it from its memory and notifies the
coordinator. Then, the coordination service asynchronously notifies all nodes that have the
key to remove it from its memory. This is not a strong consistency policy, since we assume

133

Chapter 8. Excalibur: A User-Centered Cloud Architecture for Executing Parallel
Applications

that a node partition does not affect system’s consistency, and the tasks are idempotent.
For instance, consider a scenario where a key k was loaded by three nodes (N1, N2, N3)
and a partition occurred after the readings. The task represented by the key k will be
executed by the nodes, but its result will be the same.

8.2.3 Reducing Job Makespan with Workload Adjustment
In an environment with incomplete information and unpredictable usage patterns as

the cloud, load imbalance can have high impact in the total execution time and in the
monetary cost. For instance, assigning a CPU-bound task to a memory optimized node is
not a good choice. To tackle this problem, we propose a workload adjustment technique
that works as follows. For execution plans in the ready state and with an unknown
application’s characteristics, the scheduler selects similar execution plans and submits
them for each available resource (i.e., CPU, memory or I/O optimized) and waits their
execution to finish. When the first execution finishes, the scheduler checks if there are
similar execution plans in the ready state and submits them. Execution plans are similar
if they execute the same application and almost the same number of tasks.

When there are no more execution plans in the ready state, the scheduler assigns one
that is executing. Note that, in this case, the cost can increase, since we have more than
one node executing the same task. In fact, we minimize this, finishing the slowest node
according to the difference between the elapsed time and the time to charge for its usage.

8.2.4 Making the Cloud Transparent for the Users
As our architecture aims to make the cloud transparent for the users, it automates the

whole setup process. However, for some users, this is not sufficient since some jobs still
require programming skills. For instance, consider the following scenarios: (i) a biologist
who wants to search DNA units that have some properties in a genomics database, and to
compare these DNA units with another sequence that he/she has built; (ii) a social media
analyst who wants to filter tweets using some keywords.

Normally, these works require a program to read, to parse, and to filter the data.
However, in our solution, the users only have to know the structure or their data and to
use a domain specific language (DSL) to perform their work. Listings 8.3 and 8.4 show
how these works can be defined, where b, P1, P2, T, and w are users’ parameters.

execute T with (select reads from genomic−database where P1 = X and P2 =
Y) −seq = b

Listing 8.3 – Defining a genomics analysis application

select tweet from tweets where t ex t conta in s (w)

Listing 8.4 – Defining a Twitter analysis application

In these cases, a data structure (i.e., a file) is seen as a table whose fields can be
filtered. Although there are similar approaches in the literature such as BioPig [262] and

134

Chapter 8. Excalibur: A User-Centered Cloud Architecture for Executing Parallel
Applications

SeqPig [315], they still require programming skills to register the drivers and to load/store
the data. In other words, to use them, the users have to know the internals of the system.

In order to illustrate our architecture, consider the bioinformatics scenario described
above. In this case, the biologist submits a YAML Ain’t Markup Language (YAML) file
depicted in listing 8.5, with the application, the requirements, and the input data (e.g.,
the genomics database and the built sequence) using a console application (a client of
the job submission service) at the user layer (Figure 8.3 (1)). The job submission sends
the job description to the provisioning service at the application layer (Figure 8.3 (2)).
When the provisioning service receives the application, it requests the coordination ser-
vice resources the resources that match the users’ requirements (Figure 8.3 (3)). Then,
the coordination service asks the resource management service such resources, and returns
them for the provisioning service (Figure 8.3 (4)). Next, the provisioning service creates
a workflow (i.e., deployment workflow) with the activities to configure the environment
and an execution plan for the application. Next, it submits them to the workflow manage-
ment (Figure 8.3 (5)). The deployment workflow’s activities are: (i) selects the cheapest
virtual machine to setup the environment; (ii) gets non splittable files (e.g., a reference
genome) to store them in the local file system; (iii) gets the splittable files (e.g., the
genomics database) and persists them into the DFS; (iv) creates a VMI of the config-
ured environment; and (v) finishes the VM used to configure the environment. After,
the workflow management service executes the deployment workflow. In other words,
it stores the splittable files (Figure 8.3 (6)) into the distributed database, deploys the
applications (Figure 8.3 (7)), and asks the workflow data event service (Figure 8.3 (8))
to create the data streams. Then, the workflow data event registers the data streams in
the data stream processing service (Figure 8.3 (9)). Finally, the workflow management
service executes the application (Figure 8.3 (10)).

In this scenario, a partition has a set of genomics sequences read from the DFS by
the workflow data event and it is assigned to an execution plan. During the execution,
the provisioning service monitors the applications through the monitoring service and
if the execution time of a partition reaches the expected time it creates more VMs to
redistribute the workload. After all tasks have finished, the user receives the output
through the job submission service.

135

Chapter 8. Excalibur: A User-Centered Cloud Architecture for Executing Parallel
Applications

1 ---
2 id: "cmsearch"

4 requirements:
5 - memory: "4"
6 - architecture: "I386_64"
7 - platform: "LINUX"

9 applications:
10 application:
11 - command: "cmsearch -o ${hits} ${rfam} ${query_sequence}"

13 data-def:
14 data:
15 - id: "hits"
16 is-output: true
17 is-splittable: true
18 path: "$HOME/hits.txt"

20 - id: "rfam"
21 is-output: false
22 is-splittable: false
23 path: "$HOME/Rfam/11.1/Rfam.cm"

25 - id: "query_sequence"
26 is-output: false
27 is-splittable: true
28 path: "$HOME/query_sequence.fa"

Listing 8.5 – Excalibur: example of a YAML file with the requirements and one
application to be executed on the cloud

8.3 Experimental Results
We deployed an instance of our architecture on Amazon EC2. Our goal was to evaluate

the architecture when instanced by a user without cloud computing skills.
We executed a genomics workflow that aims to identify non-coding RNA (ncRNA) in

the fungi Schizosaccharomyces pombe (S. pombe). This workflow, called Infernal-Segemehl,
consists of four phases (Figure 8.4): (i) first, the application Infernal [260] maps the S.
pombe sequences onto a nucleic acid sequence database (e.g., Rfam [143]); (ii) then, the
sequences with no hit or with a low score are processed by segemehl [160]; (iii) next,
SAMTools [220] is used to sort the alignments and to convert them to the SAM/BAM
format. Finally, (iv) the RNAFold [159] application computes the minimum free energy of
the RNA molecules obtained in step (iii).

We used the Rfam version 11.1 (with 2278 ncRNA families) and S. pombe sequences
extracted from the EMBL-EBI (1 million reads). Rfam is a database of non-coding RNA
families with a seed alignment for each family and a covariance model profile built on this
seed to identify additional members of a family [143].

136

Chapter 8. Excalibur: A User-Centered Cloud Architecture for Executing Parallel
Applications

Monitoring and

deployment

Provisioning Coordination

Workflow

Management Distributed Job Processing

(MapReduce)

Distributed File System

(DFS)

Workflow data

event

User
layerJob submission Job stats

Service registry
Resource

management

Communication API

Cloud Provider API

Application layer

Resource management layer

Distributed

database

Data streaming

processing

Application, requirements,

and input data
1

2Application

description

5
Creates the

deployment

workflow and

an execution

plan

3
Requests the instance

types that match the

users’ requirements

4 Requests the

resources to

execute the

applications

6
Stores

splittable

inputs

7Deploys the

application

8Creates the

data streams

Registers the data streams

10Executes the

application

Monitors the resources

9

Monitors the

application

Interaction between the services

Figure 8.3 – Executing an application using the Excalibur cloud architecture

Although, in its higher level, this workflow executes only four applications, it is data
oriented. In other words, each step processes a huge amount of data and, in all tools, each
pairwise sequence comparison is independent. So, the data can be split and processed in
parallel.

Listing 8.6 shows an input file with two applications and their input/output files.
In this execution, the users requested at least 80GB of RAM memory and the Linux
operating system to execute two tasks: cmsearch (Infernal, figure 8.4) and segemehl.x (sege-
mehl [160]). The cmsearch task receives as input a nucleic acid sequence database ($HOME-
/Rfam/11.1/Rfam.cm in listing 8.6) and one file with the genomics sequences ($HOME-
/Spombe/reads_spombe2.fa), and its outputs should be stored in $HOME/infernal/in-
fernal_hits.txt and in $HOME/infernal/infernal_hits_table.txt. The segemehl.x task,
on the other hand, receives as input one index ($HOME/genome/chrs_mm10.idx), a
reference genome ($HOME/genome/chrs_mm10.fa), and one database sequence (sege-
mehl_database). The segemehl_database comprises the S. pombe sequences without hit
or which a score lower than 34. These sequences should be obtained from both the Infer-
nal’s output ($HOME/infernal/infernal_hits.txt) and the (S. pombe reads (spombe_reads,
through the expression (Line 51) given by the users.

In this context, each splittable data (ids: infernal_hits, infernal_hits_table, and
spombe_reads in listing 8.6) represents a table that can be filtered based on their structure.
For example, figure 8.5 shows the top five lines of the infernal_hits_table output file. This
file consists of 18 fields [259], each one with a name (e.g., target name, accession, and
score), that are used to filter the data. In other words, at runtime, the system creates a
table named infernal_hits_table with these fields, enabling filter operations.

137

Chapter 8. Excalibur: A User-Centered Cloud Architecture for Executing Parallel
Applications

1 ---
2 id: "infernal-segemehl"

4 requirements:
5 - memory: "80"
6 - architecture: "i86_64"
7 - platform: "Linux"

9 applications:
10 application:
11 - command: "cmsearch -o ${infernal_hits} --tblout ${infernal_hits_table} ${rfam} ${

spombe_reads}"
12 order: 1
13 - command: "segemehl.x -i ${idx} -d ${genome} -q ${segemehl_database} > ${output}"
14 order: 2

16 data-def:
17 data:
18 - id: "infernal_hits"
19 is-output: true
20 is-splittable: true
21 path: "$HOME/infernal/infernal_hits.txt"

23 - id: "infernal_hits_table"
24 is-output: true
25 is-splittable: true
26 path: "$HOME/infernal/infernal_hits_table.txt"

28 - id: "rfam"
29 is-output: false
30 is-splittable: false
31 path: "$HOME/Rfam/11.1/Rfam.cm"

33 - id: "spombe_reads"
34 is-output: false
35 is-splittable: true
36 path: "$HOME/Spombe/reads_spombe2.fa"

38 - id: "idx"
39 is-output: false
40 is-splittable: false
41 path: "$HOME/genome/chrs_mm10.idx"

43 - id: "genome"
44 is-output: false
45 is-splittable: false
46 path: "$HOME/genome/chrs_mm10.fa"

48 - id: "segemehl_database"
49 is-output: false
50 is-splittable: false
51 query: " select sequence from spombe_reads where sequence not in (select sequence from

infernal_hits where score >= 34)"

Listing 8.6 – Users’ description of the Infernal-Segemehl workflow

138

Chapter 8. Excalibur: A User-Centered Cloud Architecture for Executing Parallel
Applications

Infernal Segemehl RNAfoldSAMtools

Figure 8.4 – The Infernal-Segemehl workflow

#target name accession query name accession mdl mdl from mdl to seq from seq to strand trunc pass gc bias score E-value inc description of target
#-------------- --------- ---------- --------- --- -------- -------- -------- -------- ------ ----- ---- ---- ----- ------ --------- --- ---------------------
ERR135910.3845 - 5S_rRNA RF00001 cm 9 59 1 50 + 5’&3’ 4 0.54 0.2 39.2 2.7e-07 ! 2405:1:1101:20720:2186:Y/1
ERR135910.4258 - 5S_rRNA RF00001 cm 12 62 1 50 + 5’&3’ 4 0.52 0.1 38.5 4.2e-07 ! 2405:1:1101:2670:2486:Y/1
ERR135910.8417 - 5S_rRNA RF00001 cm 12 62 1 50 + 5’&3’ 4 0.52 0.1 38.5 4.2e-07 ! 2405:1:1101:6991:2660:Y/1

Listing 8.7: Example of Infernal’s target hits table

132

Figure 8.5 – Infernal’s target hits table

The Amazon EC2 micro instance (t1.micro) was used to setup the environment (e.g.,
install the applications, to copy the static files to the local file system), and to create
a virtual machine image (VMI).

In addition to the cloud’s executions, we also executed the workflow in a local PC (Ta-
ble 8.1) to have an idea of the cloud overhead.

Table 8.1 – Resources used to execute the Infernal-Segemehl workflow

Instance type CPU RAM Cost ($/hour)
PC Intel Core 2 Quad CPU 2.40 GHz 4 GB Not applicable
hs1.8xlarge Intel Xeon 2.0 GHz 16 cores 171 GB 4.60
m1.xlarge Intel Xeon 2.0 GHz 4 cores 15 GB 0.48
c1.xlarge Intel Xeon 2.0 GHz 8 cores 7 GB 0.58
t1.micro Intel Xeon 2.0 GHz 1 core 613 MB 0.02

8.3.1 Scenario 1: execution without auto-scaling and based on
users’ preferences

This experiment aims to simulate the users’ preferences. In this case, the users are
responsible for selecting an instance type based on their knowledge about the applications
or on the amount of computational resources offered by the instance types. We executed
the workflow illustrated in figure 8.4 in the first four instances listed in table 8.1.

Figure 8.6 shows the costs and the execution time for the four instances. The time was
measured from the moment the application was submitted until the time all the results
were produced (i.e., wallclock time). Therefore, it includes the cloud overhead (e.g., data
movement to/from the cloud, VM creation, among others). The instance hs1.8xlarge,
which was selected based on the application requirements (≥ 88GB of RAM), outperformed
all other instances. Although it was possible for the users to execute the workflow without
requiring cloud skills, they paid a high cost (USD 78.00). This happened because the
users (i.e., biologists) specified that their applications would need more than 88GB of
RAM and in fact, they used only 3GB of RAM. Moreover, the hs1.8xlarge is suitable for
applications that demand high I/O performance operations.

139

Chapter 8. Excalibur: A User-Centered Cloud Architecture for Executing Parallel
Applications

Considering this scenario, the cloud is not an attractive alternative for the users due to
its execution times. They were 22% and 31% higher than the local execution (PC table 8.1).
Even in the best configuration (hs1.8xlarge), the execution time was only 60% lower with
a high monetary cost. These differences are owing to the multi-tenant model employed by
the clouds.

12

78

27

0

20

40

60

80

c1.xlarge

hs1.8xlarge

m1.xlarge

Instance type

C
os

t (
U

S
D

)

(a) Monetary cost

61462

31295

65888

50113

0

20000

40000

60000

c1.xlarge

hs1.8xlarge

m1.xlarge
PC

Instance type

E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

(b) Execution time

Figure 8.6 – Cost and execution time of the Infernal-Segemehl workflow (Figure 8.4) on the
cloud, when allocating the resources based on users’ preferences

8.3.2 Scenario 2: execution with auto-scaling
This experiment aims to evaluate if the architecture can scale a cloud-unaware applica-

tion.
Based upon the previous experiment (Figure 8.6), the system discarded the I/O

optimized instance (hs1.8xlarge) due to its high cost (Table 8.1) and also because the
application did not really require the amount of memory defined by the user. In a normal
scenario, this instance is selected only if the monitoring service confirms that the application
is I/O intensive.

To scale the application, the system created p partitions using the equation (8.1) with
R equals to one hour and with T equals to nine hours. These values represent the expected
execution time for one partition and for the whole workflow. They were defined because
Amazon charges the resource per hour and because, in the previous experiment, the best

140

Chapter 8. Excalibur: A User-Centered Cloud Architecture for Executing Parallel
Applications

execution time took approximately 9 hours to finish (Figure 8.6). This means that this
experiment aimed to at least decrease the cost. In this case, 9 partitions were created.

As in the beginning, the system had not sufficient data to decide if the workflow was
memory or CPU-bound, it submitted two similar partitions — for two instance types
(m1.xlarge and c1.xlarge) — to realize which one was the most appropriate to execute the
applications.

Figure 8.7 shows the execution time for each partition in the selected instance types. As
soon as the execution of the partition assigned to the c1.xlarge instance finished, the system
created one VM for each partition in the ready state and executed them. Although there
were only seven partitions in the ready state and one in execution (execution state), the
architecture duplicated the partition in execution, since its execution time in the m1.xlarge
instance was unknown. After one hour, three more instances were created to redistribute
the tasks as shown in figure 8.8.

Due to the cloud infrastructure, which provided in nearly real-time the requested
resources, and the auto-scaling mechanism, which selected the resources based on the
partitions’ characteristics, we decreased the cost (5 times) and the makespan (63%) using
10 c1.xlarge instances (80 vCPUs) and one m1.xlarge (4 vCPUs) compared to instance
type specified by the users (hs1.8xlarge in table 8.1). The makespan was reduced from
31, 295 seconds (Figure 8.6(b)) to 10, 830 seconds (Figure 8.8).

Our strategy differs from scaling services (e.g., Amazon CloudWatch –
aws.amazon.com/cloudwatch/) offered by the cloud providers, since the users do not
have to select an instance type nor to set up the environment.

8.4 Related Work
In the last years, many works have described the challenges and opportunities of

running high-performance computing in the cloud [1, 179, 392].
Therefore, many works have focused on developing new architectures to execute users’

applications in the cloud considering both cost and performance. For instance, the Cloud
Virtual Service (CloVR) [15] is a desktop application for automated sequences analysis
using cloud computing resources. With CloVR, the users execute a VM on their computer,
configure the applications, insert the data in a special directory, and CloVR deploys an
instance of this VM on the cloud to scale and to execute the applications. CloVR scales
the application by splitting the workload in p partitions through the equation (8.1), and
executing the Cunningham BLAST runtime [371] to estimate the CPU time for each
BLAST query.

Iordache and colleagues [166] developed Resilin, an architecture to scale MapReduce
jobs in the cloud. The solution has different services to provision the resources, to handle
jobs flow execution, to process the users requests, and to scale according to the load of the
system. Doing bioinformatics data analysis with Hadoop requires knowledge about the
Hadoop internal and considerable effort to implement the data flow.

In [262], a tool for bioinformatics data analysis called BioPig is presented. In this case,
the users select and register a driver — bioformatics algorithms — provided by the tool
and write their analysis’ jobs using the Apache Pig (pig.apache.org) data flow language.

141

http://aws.amazon.com/cloudwatch/
http://pig.apache.org

Chapter 8. Excalibur: A User-Centered Cloud Architecture for Executing Parallel
Applications

12

2
0

20

40

60

80

c1.xlarge

m1x.large

Instance type

C
os

t (
U

S
D

)

5408

8160

0

2000

4000

6000

8000

c1.xlarge

m1.xlarge

Instance type
E

xe
cu

tio
n

tim
e

(s
ec

on
ds

)

(a) Cost to execute the workflow using 10 c1.xlarge
instances and 1 m1.xlarge instance

(b) Execution time for one partition when executed
in the c1.xlarge and m1.xlarge instances. One
partition was defined to finish in 1 hour with the
deadline of 9 hours for the whole workflow

Figure 8.7 – Monetary cost and execution time of the Infernal-Segemehl workflow (Figure 8.4)
on the cloud with the auto-scaling enabled

time (seconds)

#i
ns

ta
nc

es

0

2

4

6

8

10

0 2000 4000 6000 8000 10000

Figure 8.8 – Scaling the Infernal-Segemehl workflow

142

Chapter 8. Excalibur: A User-Centered Cloud Architecture for Executing Parallel
Applications

SeqPig [315] is another tool that has the same objective of BioPig. The differences
between them are the drivers provided by each tool. These tools reduce the needs to know
Hadoop internal to realize bioinformatics data analysis.

Table 8.2 summarizes the approaches discussed in the previous paragraphs. As can
be seen in this table, one architecture, CloVR[15], can both execute and scale workflow
in the cloud. The others [166, 262, 315] can execute MapReduce applications. Hence,
the auto-scaling is supported by the in-built approaches implemented by MapReduce’s
frameworks such as Apache Hadoop.

The closest works to ours are CloVR [15], BioPig [262], and SeqPig [315]. Our work
differs from these approaches in the following ways. First, the users do not need to
configure a VM in their computers to execute the applications in the cloud. Second, our
architecture tries to match the workload to the appropriate instance type. Third, the
data flow is defined using an abstract language freeing the users to write any code. The
language is the same as used by BioPig and SeqPig but with the difference that the users
write the data flow by only considering the data structure. For instance, to filter the
sequences using BioPig or SeqPig the users have to register the loaders, the drivers, and
to write a script to execute the analysis, which can be more appropriate for software
developers.

Table 8.2 – Comparative view of user-centered cloud architectures

Paper Workflow Auto-scaling User support Application

CloVR [15] Yes Yes Script BLAST
Resilin [166] No Yes Hadoop MapReduce applications
BioPig [262] No Yes Pig MapReduce applications
SeqPig [315] No Yes Pig MapReduce applications

Excalibur [217] Yes Yes DSL + Pig More general applications

8.5 Summary
In this chapter, we proposed and evaluated a cloud architecture, named Excalibur.

Excalibur aims to execute cloud-unaware applications in the cloud without requiring
programming or cloud skills from the users. Following an autonomic approach, Excalibur:
(a) set up the whole cloud environment; (b) dynamically scaled the applications to reduce
both the monetary cost and the execution time of a genomics workflow (Figure 8.4); and
(c) enabled the users to describe the dependencies between the applications based on the
structure of their data (i.e., input and output data).

We instantiated our architecture on Amazon EC2 considering two different scenarios:
one with the auto-scaling enabled and another with it disabled. In the first case, the user
was responsible for selecting an instance type to execute the applications, whereas in the
second case, an instance type was selected based on historical data and on characteristics
of the applications. Using 11 virtual machines, Excalibur reduced the execution time by
63% and the cost by 84%.

Therefore, in this chapter, we considered a single cloud, and the users were responsible
for selecting an instance type to start the execution of the applications. Moreover, Excalibur

143

Chapter 8. Excalibur: A User-Centered Cloud Architecture for Executing Parallel
Applications

assumed that the clouds were homogeneous with regard to the resources’ constraints. In
other words, that the constraints of the resources were equal between the clouds belonging
to a cloud provider. Nonetheless, nowadays, the clouds are usually heterogeneous even
when they belong to the same cloud provider. Hence, we need a method to handle clouds’
heterogeneity properly, and this motivated the work that we will be described in the next
chapter.

144

Chapter 9

Resource Selection Using Automated
Feature-Based Configuration
Management in Federated Clouds

Contents
9.1 Introduction . 146

9.2 Motivation and Challenges . 149

9.3 Multi-Objective Optimization 151

9.4 Feature Modeling . 154

9.5 Proposed Model . 157

9.5.1 Cloud Computing Model . 158

9.5.2 Cost Model . 160

9.6 Modeling IaaS Clouds Configuration Options with Feature
Model . 161

9.7 Experimental Results . 162

9.7.1 Scenario 1: simple . 170

9.7.2 Scenario 2: compute . 170

9.7.3 Scenario 3: compute and memory 173

9.8 Related Work . 173

9.8.1 Virtual Machine Image Configuration 175

9.8.2 Virtual Machine Image Deployment 177

9.8.3 Deploying PaaS Applications 179

9.8.4 Configuration options of multi-tenant applications 180

145

Chapter 9. Resource Selection Using Automated Feature-Based Configuration
Management in Federated Clouds

9.8.5 Infrastructure Configuration . 184

9.8.6 Comparative View . 184

9.9 Summary . 188

In the previous chapter, we implemented an architecture and a domain specific language
(DSL) that allowed the users to execute a set of ordinary applications on a cloud. The
architecture focused on users without cloud computing skills, and implemented an auto-
scaling strategy to trie to speed up the execution of the applications. Therefore, we
considered a simplified environment, where the constraints associated with the resources
were the same in all clouds belonging to a provider, and we only considered a single cloud.

For that reason, in this chapter, we are interested in using multiple clouds, taking
into account different user profiles. In other words, we aim to help the users on selecting
appropriate clouds’ resources to execute their applications on heterogeneous and feder-
ated clouds. Hence, we present and evaluate an engineering method based on software
product line (SPL) to achieve these goals. The SPL-based engineering method enables
a declarative and goal-oriented strategy, allowing resource selection and deployment on
multiple clouds.To the best of our knowledge, our engineering method is the first that
(a) supports the description of clouds’ services independent of cloud providers; (b) enables
automatic resource selection and configuration on various clouds, considering temporal
and functional dependencies between the resources, which leaves the environment in a
consistent state; (c) offers a level of abstraction suitable for different user profiles (i.e.,
system administrators, software developers, and ordinary users).

The remainder of this chapter is organized as follows. In section 9.1, we present the
introduction of this chapter. Section 9.2 presents the motivations behind this chapter, as
well as the challenges we are addressing in this chapter. Sections 9.3 and 9.4 provide a
briefly introduction for multi-objective optimization problem (MOOP) and feature model
(FM). In section 9.5, we present the proposed cloud model followed by the feature models
to handle commonalities and variabilities of the clouds. Experimental results are presented
and discussed in section 9.7. Section 9.8 presents and compares related works. Finally,
section 9.9 concludes this chapter.

9.1 Introduction
Resource selection in the cloud normally represents a difficult task, mostly because the

clouds offer a wide range of resources [200, 392]. Moreover, such resources are usually suited
for different purposes, and they may have multiple constraints [102, 173]. Learning how
to deal with these options may require days or even weeks, without guarantees of meeting
the users needs [179, 346]. In this scenario, the users mostly take decisions based on very
few data, which can lead to under or over resource provisioning and can also increase the
financial cost. For example, to execute an application in an IaaS cloud, the users have to:
(a) select an instance type, a disk type, and an operating system; (b) install and configure
all necessary applications; (c) transfer all data to the cloud; (d) create a virtual machine
image (VMI) to avoid to install and to configure the applications in all nodes, if multiple
nodes are needed; and finally, (e) execute their application. However, choosing an instance

146

Chapter 9. Resource Selection Using Automated Feature-Based Configuration
Management in Federated Clouds

type demands data about the characteristics of the applications as well as data about
the technical requirements and purpose usage of the instances (i.e., virtual machines). In
this case, a mismatching between the application characteristics and the instance purpose
usage commonly results in a high-financial cost [73, 167, 267], as we also observed in
the previous chapter. In addition, some instance types require specific virtualization
technique (Section 3.1.1.2) to work correctly. This demands technical knowledge about the
virtualization techniques and about the virtual machine images (Section 3.4.1) available
for usage. Nonetheless, the users normally lack such knowledge, which often lead to invalid
configuration requests, increasing the time to configure a computing environment in the
cloud. Hence, the users must have system administration and cloud computing skills.

In order to tackle these problems, we propose a product line engineering (PLE) process
to help the users on dealing with configuration options and to enable a declarative strategy.
In this case, the users specify their needs and the system automatically (i) selects the
resources and (ii) sets up the whole environment accordingly. Product line engineering
is a strategy to design a family of products, with variations in features, and with a
common architecture [82]. A feature means a user requirement or a visible functionality
of a product [182]. In other words, a product line engineering approach aims to develop
a platform and to use mass customization to create a group of similar products that
differ from each other in some specific characteristics. These different characteristics are
called variation points and their possible values are known as variants [282].

Figure 9.1 shows how our engineering strategy works. First, the domain engineers
create an abstract model to describe the commonalities and variabilities of the clouds.
After, in the domain design phase, the system engineers define the configuration knowledge
(CK), the software product line (SPL) architecture, and benchmark the clouds to obtain
qualitative and quantitative attributes of the clouds’ resources, such as performance
and cost. In the next phase, domain implementation, the engineers refine the feature
models with these data and publish it to be used by the users. In other words, the
engineers create the concrete feature models that describes the configurations available in
the clouds. Then, the users specify the requirements of the computing environment they
want, as well as their objectives (such as to maximize performance and/or to minimize
cost). Finally, the configurations that are optimal with respect to the users’ objectives
are automatically selected and instantiated through the clouds’ APIs. In this scenario, a
computing environment is always a product of a valid model and non-technical users can
obtain optimal configurations.

Considering the scenario illustrated in the first paragraph of this section and following
the product line engineering method, the users only need to describe their requirements,
e.g., the number of CPU cores, the amount of memory, the storage size, and their objectives;
and the system allocates and configures the whole environment based on the feature models.

The advantages of our software product line (SPL) engineering method are manifold.
First, it enables auto-scaling strategies to reuse existing configurations. Second, it avoids
invalid configurations or configurations that do not match some objectives (e.g., maximize
performance at minimal cost) without requiring from users cloud computing or system
administration skills. Third, it provides a uniform view of the clouds translating specific
cloud terms to concepts independent of cloud providers. Fourth, it can support the users
on provisioning their resources based on multiple parameters such as the location where
the resources should be deployed; the software packages, or the cloud provider. Fifth, it

147

Chapter 9. Resource Selection Using Automated Feature-Based Configuration
Management in Federated Clouds

Cloud communality

and variability

modeling

(Domain analysis)

Deployment

(Product configuration)

Abstract feature model

Concrete feature model with the constraints

and quantitative attributes of the clouds

Product configurations

in the Pareto Front

Reference for the deployed

resources (products)

Domain knowledge

System

engineers

Domain

engineers

Cloud

users

Requirements

and objectives

Description and

constraints of the

environment

System

System and configuration

scripts implementation

(Domain implementation)

Optimal

configurations

Requirements analysis

Domain Engineering

Product Engineering

User needs

Configuration

knowledge

definition

Measurement

Domain design

SPL

architecture

definition

The CSP model

1
2

Phase Activity Sub-activity

Figure 9.1 – An engineering method to handle clouds’ variabilities

can be used to document the whole execution environment (i.e., hardware and software)
without needing virtual appliances.

Similar strategies have been considered by many works in the domain of cloud com-
puting. Some of these works [67, 288] have focused on handling the variabilities of
the platform-as-a-service (PaaS) layer (Section 3.2.1). In this case, they aim to support the
developers on deploying their application in the cloud or to support them on developing
cloud-aware applications, i.e., in writing applications that use cloud’s services. Other
studies [102, 339, 340] have employed feature models to describe the variabilities of virtual
machine images (i.e., virtual appliance (VA)) with different objectives. For instance, some
works aim to reduce energy consumption [102, 339] of virtual machines taking into account
performance constraints and the time to set up one VM; other works aim to reduce the
amount of storage [389] used with pre-built virtual machine images. Cloud service selec-
tion [373] and configuration of multi-tenant applications (SaaS layer) have been addressed
by some works such as [304, 305, 313] that aim to help the users on customizing SaaS
applications. In [373], the users define multiple models of a service (e.g., storage) and
submit them to a system that selects one that meets their objectives. Finally, feature
model has been used to capture the variabilities of one specific IaaS provider [130]. Our
approach differs from these works in the following ways: (i) it addresses the configuration
options at the IaaS layer independent of cloud provider, and in a way that different user
profiles could express their preferences, enabling model reuse; (ii) it considers multiple
service selections (e.g., virtual machine, storage); (iii) it uses feature models to handle the
variabilities of the execution environment and to enable a multi-cloud scenario without
employing virtual machine image; and (iv) it considers the deployment of the selected
configurations (products) in the clouds. To the best of our knowledge, there is no approach
in the literature that considers all these points. In other words, the contribution of our
work is the following: it handles the variabilities at the IaaS layer, including support for
the whole environment (hardware and software) independent of cloud provider; and it
enables resource allocation in a multi-cloud scenario.

In the rest of this chapter, we present and evaluate our method to handle multi-cloud
variabilities at the infrastructure layer. The method uses extended feature model (EFM)
with attributes (Section 9.4) to describe the resources and their qualitative and quantitative

148

Chapter 9. Resource Selection Using Automated Feature-Based Configuration
Management in Federated Clouds

characteristics. We employ constraint programming (CP) to select the resources through
the Choco [178] constraint satisfaction problem solver. Choco [178] was used since it is
a well-known satisfaction problem solver, and also because it has been successfully used
by other works for such purpose (Section 9.8). We developed a prototype to evaluate the
whole process (Figure 9.1) and our model, considering two different cloud providers and
multiple users’ objectives (Section 9.7).

In section 9.2, we describe the motivation and challenges addressed by our model
followed by an overview of multi-objective optimization problem (MOOP) (Section 9.3).

9.2 Motivation and Challenges
Currently, with the existing techniques, before executing an application in the cloud,

the users have to select the most suited resources for their applications and to configure
them accordingly. Otherwise, the cost and the execution time can be very high. In other
words, the users have to know the characteristics and the technical requirements of the
resources as well as the behavior of their applications. Moreover, to reduce the risks of
losing their work due to cloud failures, it is interesting to consider a multi-cloud scenario.
A multi-cloud scenario may also be necessary since a single cloud may have a limited
number of resources or its resources may not meet the users’ constraints.

In this context, the overall objectives of the users can be defined as: (i) minimize
the financial cost to execute applications across multiple clouds, and (ii) maximize the
usage of configurations that have both best resource capabilities and performance without
needing to deal with low-level technical details.

Nevertheless, there exist some open important challenges to address in order to help
users on achieving these objectives. Some of these challenges are:

challenge 1: capturing clouds heterogeneity and constraints. Normally,
clouds’ resources are offered within different geographic regions with different costs
and constraints. In addition, they are often deployed in heterogeneous data centers
in the same region. In other words, clouds’ variabilities may happen at any level (e.g.
region, data center, resource). Hence, the users have to read extensive documentation
in order to ensure that their desired resources are available in the cloud and also to
understand the constraints of each resource. For example, at the time of writing this
thesis, the Amazon EC2 cloud at Virginia has four availability zones (data centers)
but only three of them support SSD disks. Thus, in order to know these restrictions
the users have to test each zone. Furthermore, the clouds usually employ different
terms to describe their resources. For instance, Amazon EC2 uses Elastic Computing
Unit (ECU) as a metric to express the CPU capacity of a virtual machine, while
Google Compute Engine uses Google Compute Engine Units (GCEUs). Finally, the
clouds often employ high-level terms to describe the performance of their resources
such as low, moderate, and high, which limits a decision based only on the resources’
descriptions.

challenge 2: matching application requirements with the resources char-
acteristics. Determining an optimal-configuration environment for an application in
the cloud can be a difficult task for many reasons. First, cloud environments usually

149

Chapter 9. Resource Selection Using Automated Feature-Based Configuration
Management in Federated Clouds

lack both performance stability and visibility due to hardware heterogeneity as well
as the strategies used by hypervisors when allocating the virtual machines [269].
Cloud performance variation can range from 20% for CPU to 268% for memory [269].
This leads to a gap between the service levels expected by the users with the level
delivered by the clouds [211]. This mostly occurs because the clouds’ SLAs are nor-
mally based on resource availability without performance guarantees. In this context,
the users have to benchmark their applications on multiple resources, considering
various optimization parameters. For instance, figure 9.2 shows the average network
bandwidth of an Amazon EC2 instance type designed to deliver 10 Gbps of network
throughput. However, this throughput is disabled by default and to enable it the
users must (a) install and activate a network driver in the instance’s operating
system; (b) stop the virtual machine and enable a feature called enhanced networking.
In addition, they must know that this feature is only allowed on hardware-assisted
virtualization type and to enable it, they have to call a method of the EC2’s API.
In other words, the users cannot enable this feature through the EC2 console (Web
interface); and they must know all the technical details of the instance types. Thus,
application benchmarking can increase the financial costs, it is often time-consuming,
and demands system administration skills. Moreover, in some case, a global view of
the environment is required in order to minimize the cost. For example, considering
the scenario depicted in figure 9.2, the users must know the location of their resources
to decide if data transfer between the resources must be done using an internal
or an external IP address, as using the internal IP address implies zero costs. Fi-
nally, for some constraints, the users should balance between performance, cost, and
availability as some requirements are only available in non-optimal configurations.

Enhanced networking
disabled

Enhanced networking
enabled

Public IP
Private IP

0

2

4

6

8

10 9.33

7.97

5.02

1.97

Average networking bandwidth (Gbits/sec)

Figure 9.2 – Average network bandwidth of the Amazon EC2 instance c3.8xlarge when created
with the default configuration; and using an internal (private) and an exter-
nal (public) address for data transfer. The networking bandwidth was measured
between two c3.8xlarge instances deployed in the region of Virginia (availability
zone us-east-1a) and running the iperf [168] application during one hour for each
configuration scenario

150

Chapter 9. Resource Selection Using Automated Feature-Based Configuration
Management in Federated Clouds

challenge 3: describing a multi-cloud deployment environment. Currently,
to deploy an application on multiple clouds the users have to configure each cloud
individually. In some cases, they can create a virtual machine image (VMI) with
their applications. However, the VMI can only handle software package descriptions
leaving for the users the work of selecting a resource and for orchestrating the
resources accordingly, i.e., the work of selecting and instantiating the VMI in
each cloud. Hence, we need an approach that can describe the whole computing
environment, independent of the cloud provider and that also enables automatic
resources provisioning on multiple clouds taking into account temporal and functional
dependencies between the resources, to leave the environment in a consistent state.

challenge 4: supporting auto-scaling decisions. Auto-scaling systems and
resources on-demand are key features of cloud computing. Therefore, they depend
on functional and non-functional data about the resources to avoid under or over-
provisioning, as well as to consider clouds’ capabilities. On the one hand, functional
properties like storage size, type of operating system, and software packages can be
handled by virtual appliances, but they may not be appropriate in a multi-cloud
scenario due to the network traffic. On the other hand, cloud computing lacks an
easy way to capture non-functional data such as the amount of time to install or to
remove a software package; the average time to boot or to release a resource, and the
location of the resources. Therefore, some of these data are only available via API
calling, which can lead to vendor lock-in. Furthermore, in case of cloud’s failure, it
may be difficult for users to re-create the environment in another cloud.

9.3 Multi-Objective Optimization

A multi-objective optimization problem (MOOP) can be defined as a problem of finding
a vector of decision variables which satisfies constraints and optimizes a vector function
whose elements represent the objective functions. These functions form a mathematical
description of performance criteria which are usually in conflict with each other [268]. In
other words, multi-objective problems are such problems where the goal is to optimize k,
often conflicting, objective functions simultaneously and to find a solution which would
give the values of all the objective functions acceptable to the decision maker [246].

Therefore, multi-objective optimization problems can be formally defined as fol-
lows [352]:

optimize y = F (~x) = (f1(~x), f2(~x), . . . , fk(~x))
subject to gi(~x) = (g1(~x), g2(~x), . . . , gm(~x)) ≤ 0

where ~x = (x1, x2, . . . , xn) ∈ Ω
~y = (y1, y2, . . . , yk) ∈ Λ

(9.1)

where ~x is an n-dimensional decision variable vector; ~y is an n-dimensional objective vector;
Ω is denoted as the decision universe (Ω = {x ∈ Rn}); and Λ is called the objective
region (Λ = {y ∈ Rk}). The constraints gi(~x) ≤ 0 determine the set of feasible solutions.

151

Chapter 9. Resource Selection Using Automated Feature-Based Configuration
Management in Federated Clouds

A feasible set Xf ∈ Ω is defined as the set of decision vectors ~x that satisfy the
constraints gi(~x) ≤ 0:

Xf = {x ∈ Ω | gi(~x) ≤ 0} (9.2)

Thus, a multi-objective optimization problem (MOOP) consists of n decisions variables,
m constraints, and k objectives of which any or all of the objectives functions can be linear or
also non-linear. The MOOP’s evaluation function maps decision variables (~x = x1, . . . , xn)
to objective vectors (~y = y1, . . . , yk). In other words, objective vectors are images of
decision vectors as shown in figure 9.3.

x1

x2

F1

F2

F3

F

Ω

Decision variable space (Ω) Objective function space ()

Figure 9.3 – MOOP evaluation mapping [352]

Unlike single-objective optimization problems (SOOPs), which may have a unique
solution for the objective function, an MOOP often presents an infinite [83] set of solutions
that, when evaluated, produce vectors whose components represent the trade-offs in the
objective space. For instance, in the design of a computer architecture under reliability
constraints, cost and performance conflict. An optimal solution would be a computer system
that achieves maximum performance at minimal cost without violating any constraint.
Thus, if such solution exists, we only have to solve a SOOP [312]. In this case, the
optimal solution for one objective is also optimum for the other objective. However,
if the individual optima corresponding to the objective functions are different, there
are conflicting objective functions that cannot be optimized simultaneously [394]. This
is the case of the previous example, since high-performance systems usually have high
cost; and low-cost architectures commonly provide low performance. Furthermore, in
a single-objective optimization problem, the feasible set is completely ordered according
to an objective function f , whereas it is partially ordered in multi-objective optimization
problems.

An MOOP solution can be best, worst, and indifferent according to the objective
values (Figure 9.4). Indifferent solutions means solutions neither dominating nor dominated
with respect to each trade-off. A best solution, on the other hand, means a solution not
worst in any of the objectives and at least better in one objective than the other [3]. A
solution is considered optimal if none of its elements can be improved without deteriorating
any other objective. Such solution is called Pareto optimal and the entire set of optimal
trade-off is called Pareto-optimal set [84].

152

Chapter 9. Resource Selection Using Automated Feature-Based Configuration
Management in Federated Clouds

Indifferentdominated

Indifferent they are dominating

Pareto-optim
al solutions

f1

f2

Figure 9.4 – Pareto optimality for the objective space F (~x) = (f1(~x), f2(~x)) [119]

In the following, important Pareto concepts used in multi-objective optimization
problems are presented [352]1:

1. Pareto Dominance: For any two decision vectors ~u = (u1, . . . , uk) ∈ Ω and
~v = (v1, . . . , vk) ∈ Ω:

~u ≺ ~v (~u dominates ~v) ⇐⇒ ∀ i ∈ {1, . . . , k}, fi(~u) > fi(~v)
~u � ~v (~u weakly dominates ~v) ⇐⇒ ∀ i ∈ {1, . . . , k}, fi(~u) ≥ fi(~v)
~u ∼ ~v (~u is indifferent to ~v) ⇐⇒ ∃ i ∈ {1, . . . , k}, fi(~u) ≥ fi(~v)

∧ ∃ j ∈ {1, . . . , k}, fj(~u) < fj(~v)

(9.3)

In other words, the decision vector ~u dominates ~v if and only if, ~u is as good as ~v
considering all objectives, and ~u is strictly better than ~v in at least one objective.

2. Pareto Optimality: A solution x ∈ Ω is said to be Pareto optimal regarding to Ω
if and only if there is no x′ ∈ Ω for which ~v = F (x′) = (f1(x′), . . . , fk(x′)) dominates
~u = F (x) = (f1(x), . . . , fk(x)). The set of all Pareto-optimal solutions is called
the Pareto-optimal set. The corresponding set of objective vectors is known as the
non-dominated set, surface or Pareto-optimal front. In practice, it is common for
these terms to be used interchangeably to describe solutions of an MOOP [119].

1Without loss of generality, a maximization problem is assumed

153

Chapter 9. Resource Selection Using Automated Feature-Based Configuration
Management in Federated Clouds

3. Pareto Optimal Set: For a given MOOP function F (x), the Pareto optimal set
(P ∗) is defined as:

P ∗ = {x ∈ Ω | @ x′ ∈ Ω : F (x′) � F (x)} (9.4)

4. Pareto Front: For a given MOOP function F (x) and Pareto optimal set P ∗, the
Pareto front (PF ∗) is defined as:

PF ∗ = {F (~x = (f1(~x), . . . , fk(~x)) | x ∈ P ∗} (9.5)

9.4 Feature Modeling
Feature modeling is a software engineering activity used for capturing commonalities

and variabilities in a SPL. It was introduced in the early 1990s as a part of the feature-
oriented domain analysis (FODA) methodology [182]. A SPL is a set of software systems
that share a set of features that satisfy the needs of a particular domain or mission and are
developed from a common set of assets in a prescribed way [82]. SPL engineering usually
uses feature models to define its assets and their valid combinations [32].

A feature model describes the concepts (i.e., features) of a domain, and details the
relationships between them [92]. As an example, consider the variability of a virtual
machine, depicted in figure 9.5. Hence, each functional property (i.e., operating system,
hardware, purpose usage, and placement group) is represented as a feature. In practice, a
feature model is a tree, where each node represents a feature of a product (or solution)
and the relation between a parent (or compound) feature and its child features (i.e.,
subfeatures) are categorized as [182]:

And: all subfeatures must be selected. The features placement group and cluster
have an And relationship.

Optional (variability): a parent feature does not imply the child feature. For instance,
not all virtual machines have a placement group.

Mandatory (commonality): whenever a parent feature is selected, the child feature
must also be selected. For example, all instances have a hardware, an operating
system, and a purpose usage.

Or : at least one child feature must be selected when its parent feature is. In figure 9.5,
whenever storage type is selected, the features provisioned, ebs or both must be
selected.

Alternative: exactly one child feature must be selected. For example, a virtual
machine has only one operating system and it can only be either CentOS, Debian
or Ubuntu.

Notice that a feature may have multiple child features but only one parent feature,
and that a child feature can only appear in a product if its parent does.

154

Chapter 9. Resource Selection Using Automated Feature-Based Configuration
Management in Federated Clouds

Feature models fit into a problem space, as they determine what products are valid in
a particular domain. According to figure 9.5, the configuration (or product): {Debian, Ivy
Bridge, dedicated, ten GB, one hundred GB, provisioned, and server} is valid, whereas the
one {Ivy Bridge, dedicated, ten GB, one hundred GB, provisioned, and server} is invalid
since it does not specify an operating system.

Besides these relationships, constraints can be also specified using propositional logic
to express dependencies among the features. Usually inclusion or exclusion statements
describe constraints in the form: if feature F is selected, then features A and B must also
be included or excluded. For instance, constraint c1 (Figure 9.5) indicates that selecting
the feature bootstrap excludes features cluster, Ivy Bridge, Sandy Bridge, dedicated, ten
GB, one hundred GB, and provisioned. In other words, selecting the feature bootstrap,
reduces the configuration space to only the operating system.

Moreover, features can be classified as abstract or concrete [345]. Abstract features are
used to structure future models, and they do not have any instance2 as they represent
domain decisions [345]. Concrete features, on the other hand, represent instances (i.e.,
products). For instance, operating system is an abstract feature whereas Ubuntu is a
concrete feature.

Feature models may also have attributes devoted to a feature, which is known as ex-
tended feature model (EFM). Such attributes often represent non-functional properties such
as cost, power consumption, performance, among others. Although there is no consensus
on a notation to define attributes, most of the proposals agree that an attribute should be
at least a triple with a name, a domain, and a value [37]. In figure 9.5, the feature storage
has the attribute size.

Finally, feature models may use cardinalities to express the relationships between their
features. These relationships are classified as [37]:

feature cardinality: determines the number of instances of a feature that can be
part of a product. It is denoted as an interval [n..m], where n is the lower bound
and m is the upper bound. This relationship may be used as a generalization of
the Mandatory ([1, 1]) and the Optional ([0, 1]) relationships.

group cardinality: limits the number of child features that can be included in a
product when its parent feature is selected. A group cardinality is denoted by its
multiplicity (〈n..m〉) comprising a lower and an upper bound value. The multiplicity
value defines how many instances of a group must be at least and at most presented
in a variant configuration. Table 9.1 shows how the relations Optional, Mandatory,
Or, and Alternative are expressed using group cardinality.

One important characteristic of feature models is that they help the users on organizing
concepts in a structured and hierarchical manner, and to define its assets and their valid
combinations [32]. In this context, a valid member of a domain model satisfies all the
constraints in the corresponding feature model. Moreover, feature models are usually
understood by non-technical users, since they refer to domain concepts.

2In this context, an instance means a product or a software artifact.

155

Chapter 9. Resource Selection Using Automated Feature-Based Configuration
Management in Federated Clouds

Table 9.1 – Using group cardinality in feature model diagrams [293]

Relationship Group cardinality Number of features
Optional 0..1 1

Mandatory 1..1 1
Or 1..* n

Alternative 0..1 1

CentOS

Debian

Ubuntu

Legend:

Mandatory
Optional
Or
Alternative
Abstract
Concrete

Bootstrap ⇒ Shared ∧ EBS ∧ One_GB ∧ One_Hundred_GB ∧ ¬Cluster
Ivy_Bridge ∨ Sandy_Bridge ⇔ ¬Shared

c1:
c2:

Operating system

Processor

Ivy Bridge

Xeon

Sandy Bridge

Shared

Dedicated

One GB

Ten GB

One TB

One hundred GB

EBS

Provisioned
Storage type

Storage

Memory

Processor type

Server

Cluster

Bootstrap

Placement group

Purpose usage

HardwareVirtual machine

And

Figure 9.5 – Example of a feature model with And, Optional, Mandatory, Or, and Alternative
features

156

Chapter 9. Resource Selection Using Automated Feature-Based Configuration
Management in Federated Clouds

9.5 Proposed Model
This section presents our cloud model to handle the variability points of IaaS clouds.

It aims to enable resource selection based on quantitative attributes and on the users’
objectives. For a better understanding, table 9.2 presents the concepts/symbols used in
this section and their meaning.

Table 9.2 – Notation of the model

Name Meaning

cj Cloud j
q Number of clouds

ri,j Resource i from cloud j
lci,j Network bandwidth between the resources i and j
iti,j Instance type i of cloud j
lagi,j Acquisition time of instance i in cloud j
itdi,j,k Disk i of instance type j in cloud k

Θi,j Set of disks from instance type i in cloud j
estwi,j Estimated execution time of workload k in resource i which belongs to cloud j
costi,j Financial cost of resource i in cloud j
σi,j Maximum number of virtual machines allowed for an instance type i in cloud j

vmii,j Virtual machine image i in cloud j
ηi,j Maximum number of disk allowed for the instance type i in cloud j
ωi,j Total amount of disk space, in gigabytes, that can be mounted by instance type i in cloud j
tpsj Maximum aggregate disk space that can be provisioned in cloud j
dti,j Disk type i in the cloud j

mini,j Minimum size in gigabytes of a disk type i in cloud j
maxi,j Maximum size in gigabytes of a disk type i in cloud j
diski,j,k Disk i of type j in cloud k

dsi Size in gigabytes of disk i
dpi Performance in IOPS of disk i
dthi Technology of disk i
ρi,j Size of virtual machine image i, in gigabytes, in cloud j
vti,j Virtualization technique of virtual machine image i in cloud j
spi,j Software packages of virtual machine image i in cloud j
vk Maximum number of virtual machines in cloud k
δj,k Number of virtual machines of type j hosted in cloud k

vmi,j,k Virtual machine i of type j hosted in cloud k
bdi,k Boot disk of virtual machine i in cloud k

nadi,k Number of attached disks to a virtual machine i in cloud k
Ψi,k Total disks size mounted by VM i in cloud k

Hi,j,k(t) Matrix of virtual machines allocation (vmi,j hosted in cloud k at the time t)
pricei Real price of virtual machine i
pmi Price model of virtual machine i. For example, on-demand, spot, reserved
azi,k Zone (data center) where virtual machine i of cloud k is deployed
gi,k Group of the virtual machine i in cloud k
ici A metric that determines the capacity of virtual machine i (c.f. table 3.2)
ipti Performance trust of virtual machine i (c.f. table 3.2)
νi Internal networking cost of cloud i
λi External networking cost of cloud i
ϕi Networking cost of cloud i
φi Storage cost of cloud i

157

Chapter 9. Resource Selection Using Automated Feature-Based Configuration
Management in Federated Clouds

9.5.1 Cloud Computing Model
We assume a cloud computing system with a set of q clouds denoted as C =

{c1, c2, . . . , cq}. The clouds are defined as an undirected graph G(R,L) where R =
{ri,j}, 1 ≤ j ≤ q ∧ 1 ≤ i ≤ nj represents a set of virtual machines (VMs)3 deployed
across the clouds, and L is a set of edges connecting these VMs. Each edge (r, r′) ∈ L
has a capacity value lcr,r′ , representing the network bandwidth between the VMs r and r′,
with lcr,r′ > 0. A virtual machine belongs to an instance type and it has a price model,
a virtual machine image (VMI), and at least one disk. Additionally, a VM is deployed
in a zone (data center) and it may belong to a group. In the remainder of this section j
usually refers to the g cloud where the resource stands.

9.5.1.1 Instance Type Model

A cloud cj, 1 ≤ j ≤ q offers a set of mj instance types denoted by ITj =
{it1,j, it2,j, . . . , itm,j}. The instance types have different capabilities such as processing
power, network throughput, and a cost per use. The cost is defined per unit of time (e.g.,
per hour) and any partial usage is rounded up to the next time unit. For instance, in
a hourly-based scenario, the cost for using an instance during one hour and one minute
is the same as using it during two hours. Moreover, an instance type has a family type
that determines a target workload (e.g., CPU-, Memory-, I/O-optimized), i.e., a purpose
usage. Furthermore, it has a non-negligible and varying acquisition time shortly denoted
as lagi,j, 1 ≤ i ≤ m ∧ 1 ≤ j ≤ k. Additionally, an instance type iti,j may have a set of
disks denoted by Θi,j = {itd1,i,j, itd2,i,j, . . . , itdd,i,j}, d ∈ N+. Finally, a cloud may limit
the number of instances of each type that can be acquired by a user.

Formally, an instance type iti,j is defined as a tuple with an expected execution time
for a given workload (estwi,j), a hourly-based price (costi,j), an acquisition time (lagi,j), the
maximum number of instances (σi,j ∈ Z∗) allowed for it, and a set of disks (Θi,j).

iti,j = < estwi,j, costi,j, lagi,j, σi,j,Θi,j > (9.6)

Additionally, an instance type may have a restriction on the maximum number of disks
and on the total amount of disk space that can be mounted simultaneously. Let ηi,j ∈ N∗
be the maximum number of disk allowed for an instance type i, ωi,j be the total amount
of disk space, in gigabytes, that can be mounted by a type i, and tpsj the maximum
aggregate disk space that can be provisioned by a user in the cloud j.

9.5.1.2 Disk Model

A cloud offers a set of disk types to be used by a virtual machine. Example of disk types
are ephemeral or instance disks, persistent, and object store. Let dti,j be a disk type i in
the cloud j. In this case, dti,j is a tuple with a minimum (mini,j) and a maximum (maxi,j)
size in gigabytes, and a cost per gigabytes/month (costi,j).

dti,j = < mini,j,maxi,j, costi,j > (9.7)
3The terms instance, node, and virtual machine are used interchangeably in this chapter

158

Chapter 9. Resource Selection Using Automated Feature-Based Configuration
Management in Federated Clouds

In this context, a disk (diski,j,k) has a type (dtj,k), a size in gigabytes (dsi), a perfor-
mance (dpi) defined as the number of input/output operations per second (IOPS), and a
disk technology (dthi). Example of disk technologies are standard4 and SSD.

diski,j,k = < dti,k, dsi, dpi, dthi > (9.8)

where, minj,k ≤ dsi ≤ maxj,k and
n∑

i=1
dsi ≤ tpsk.

9.5.1.3 Virtual Machine Image Model

A virtual machine image (VMI) is a disk that contains an operating system and a
root file system required to start a virtual machine. Moreover, it is designed to run on
a hypervisor (i.e., virtualization technique), and it may have a set of software packages.
Formally, a VMI (vmii,j) is a tuple with a cost per hour (costi,j), a size in gigabytes (ρi,j),
a virtualization technique (vti,j), and a set of software packages (spi,j).

vmii,j = < costi,j, ρi,j, vti,j, spi,j > (9.9)

with ρi,j ≤ tpsj.

9.5.1.4 Instance Model

An instance is a virtual machine (VM) deployed in a cloud k. A VM i (vmi,j,k) belongs
to only one instance type (j) and to only one cloud (k). It cannot be migrated, and a
cloud may limit the number of instances that can be acquired.

Let δj,k be the number of virtual machines of type j hosted by cloud ck. Thus, δj,k ≤ σj,k,
and the maximum number of virtual machines in the cloud (ck) is:

vk ≤
m∑

j=1
δj,k (9.10)

An instance requires a virtual machine image (vmii,k) and a boot disk (bdi,k) with
dsi ≥ ρi, where dsi is boot disk (bdi,k) size. Additionally, it may have a set of attached
disks. Let nadi,k be the number of attached disks of a virtual machine i, and Ψi,k the
current total disk size mounted by VM i. Thus, nadi,k ≤ ηj,k and ωj,k ≤ Ψi,k ≤ tpsk. In
other words, the number and amount of disks attached by a virtual machine must be at
most the allowed for its instance type.

We use a binary integer matrix Hi,j,k(t) to represent the deployment of a VM in a
cloud at the time (t), where:

Hi,j,k(t) =
 1 if vmi,j is hosted by the cloud ck during the period t

0 otherwise
(9.11)

4Standard disks are often network storages that can be mounted by a virtual machine, which offer the
same functions of a regular hard disk attached to a computer.

159

Chapter 9. Resource Selection Using Automated Feature-Based Configuration
Management in Federated Clouds

Moreover, a instance runs in a zone (data center) and it can belong to a group.
An instance vmi,j,k can be defined as a tuple with a price, a pricing model (pmi),

a virtual machine image (vmii,k), a boot disk (bdi,k), a zone (azi,k), a group (gi,k), and the
metrics: instance capability (IC) and performance trust (IPT), detailed in section 3.3.2.

vmi,j,k = < pricei, pmi, vmii,k, bdi,k, ici, ipti > (9.12)

9.5.2 Cost Model

9.5.2.1 Networking and Storage Cost

Each cloud may have different monetary costs for data transfer (i.e., network pricing)
and data provisioning (i.e., storage).

The data transfer cost consists of the inbound and outbound price per gigabytes. In
other words, it is the network cost per amount of data transferred from/to a cloud’s
resource. It is defined as internal when the resources are located at the same cloud or
external when one resource belongs to another cloud (i.e., the Internet traffic). Let νi and
λi be respectively the internal and external networking costs of the cloud i. Thus, the
networking cost can be defined as:

ϕi = νi + λi (9.13)

The data provisioning, on the other hand, is the monetary storage cost. The clouds
often consider three storage costs: the provisioned space cost (i.e., disks cost), the snapshot
storage cost, and the image storage cost. The provisioned space is the cost of the provisioned
disks. The snapshot storage cost is the price to pay for taking a snapshot of an instance
and to store it in the cloud. Finally, the image storage cost is the price to store a virtual
machine image (VMI) in a cloud. These costs are defined in gigabytes per dollar. Let φk

be the total storage cost in the cloud k. It can be defined as follows:

φk =
n∑

i=1
dsi ∗ costi,k +

n∑
j=1

dsj ∗ costj,k +
n∑

l=1
dsl ∗ costl,k (9.14)

where dsi, dsj, and dsl are respectively the size of: disk i, snapshot j, and image l in
gigabytes.

9.5.2.2 Instance Cost

A virtual machine can be acquired following three pricing models: on-demand, spot,
and reserved. The on-demand model has a fixed cost. The spot model, on the other hand,
has a varying model, where the users can specify the maximum value that they would like
to pay. Finally, in the reserved model, the users pay in advance to use the cloud during a
fixed time.

160

Chapter 9. Resource Selection Using Automated Feature-Based Configuration
Management in Federated Clouds

Let Pi,j,k(t) be the real price of the instance i of type j deployed in the cloud k during
the period t. It can be defined as:

Pi,j,k(t) =
 costj,k if i is an on-demand instance
spi,j,k otherwise

(9.15)

where, costj,k is the price defined by the cloud provider for the instance type, and spi,j,k is
the user’s bid for the virtual machine. We assume that these prices are known before the
use of an instance.

Hence, the cost of using a cloud ck at the time (t) can be defined as follows:

Cost(t) = (
n∑

i=1

v∑
j=1

k∑
p=1

Hi,j,p(t) ∗ Pi,j,p(t)) + ϕp + φp (9.16)

In other words, it is the cost of using each instance at the time t plus the storage and
network costs. Finally, the total cost of using a cloud during h ≥ 1 hours is:

totalCost(h) =
h∑

t=1
Cost(t) (9.17)

This model should be included in a scheduling algorithm to provision and to schedule
the virtual machines taking into account the characteristics of the applications and the
cost/performance of the virtual machines.

9.6 Modeling IaaS Clouds Configuration Options
with Feature Model

For a reference example, consider two different user groups: one group comprises
non-technical users or users who have only high-level knowledge about either system
administration or cloud computing, whereas the second group comprises specialized
users (i.e., system administrators). While users belonging to the former group might be
interested in creating their computing environment based on higher-level descriptions
such as CPU, memory size, and operating system, the latter may want to create the
environment (or at least to have the option to create it) based on fine-grained options
such as hypervisor, virtualization type, storage technologies, among others.

To meet the objectives of these two groups, we can follow a product line engineer-
ing (PLE) process (Figure 9.1). The PLE has two major phases: domain engineering
and product engineering. In the domain engineering phase, a variability model is defined
for the product line. This model includes the variation points and the commonalities of
the products. It can also include the constraints between the variations and the products.
The product engineering phase, on the other hand, is responsible for deriving the products
from the model established in the domain engineering phase [48].

In both phases, we can use feature models to describe the products. In this case, the
output of the domain engineering phase is an abstract feature model. After, a concrete
model is created with the products. Figure 9.6 shows our abstract model to handle the

161

Chapter 9. Resource Selection Using Automated Feature-Based Configuration
Management in Federated Clouds

configuration options at the infrastructure layer. Its functional properties are guided by
the taxonomies available in the literature [158, 284, 320, 353, 383], and it uses attributes
to describe the qualitative characteristics of the resources such as network throughput and
CPU capacity (i.e., sustainable performance). With this model, the users can see the kind
of resources that are available in IaaS clouds, as well as their constraints and variabilities
such as disk type, location, among others.

In figure 9.6, a family type determines the characteristics and the recommended usage
for an instance type. This usage is based on the amount of resources available for the
instances such as CPU, memory, and accelerators. Moreover, the members of a family
type often have the same hardware configuration, i.e., they are homogeneous with regard
to the underlying infrastructure. Unlike the family type shared, all other instance types
offer a fixed amount of resources. Furthermore, instance types that do not have a defined
purpose usage are classified as general. Although some clouds and models [130] add a new
level to classify the size of an instance type using terms such as medium, large, xlarge,
among others, our model does not for two reasons. First, these classifications differ only in
the amount of resources provided by each instance that can be handled by using attributes.
Second, these classifications require additional data to describe an instance type, since
instances belonging to different family types may receive the same classification.

As we said in section 3.4, some instance types may have physical disks attached to the
host computer of a virtual machine, i.e., instance disks. These disks are normally ephemeral,
which cannot be used as the primary disk of the instance. In this case, a VM can mount
the instance disks, but it must have at least one persistent disk. It is the virtual machine
image which defines the persistent disk. In other words, the VMI defines the root file
system of a VM as well as its minimal size. In figure 9.6, HVM and PVM are respectively
hardware assisted and paravirtualization techniques described in section 3.1.1.2.

Additionally, virtual machines can be placed in a group to decrease network latency
and/or to increase network throughput, for instance, i.e., they can be organized in a cluster.
In this case, the instances must be in the same zone (data center). However, a cloud
provider may restrict the instance types that can be placed in a cluster. This feature enables
us to reference the cluster instead of each virtual machine individually, and it can also used
to model a physical cluster. For example, to represent the Tompouce cluster (Figure 2.2),
we can modeled one virtual machine with the total number of cores (i.e.,#vcpu) and
GFlops of the cluster or we can model all nodes and assign them the same group.

Finally, as each region have at least one zone, we model this data through a constraint,
assuming that there is a function that returns all zones of a region, and that this function
is used to validate the zone assigned to a disk or to a group. Moreover, a virtual machine’s
zone is always the same of its attached disks.

9.7 Experimental Results
To validate our model, we modeled entirely two different cloud providers: Amazon EC2

and GCE. As in the PLE process, the first step consists of implementing the variability
model and the second one of representing the clouds with this model, we implemented
the models and a system to manage the models in Java to allow the users to instantiate
the clouds, as depicted in figure 9.7. The system works as follows. First, the data about

162

Chapter 9. Resource Selection Using Automated Feature-Based Configuration
Management in Federated Clouds

Legend:

Mandatory

Optional

Alternative

Abstract

Concrete

x64 ⇔ b64

IaaS cloud Virtual machine

Price model

On-demand

Reserved

Spot

Hardware configuration

Compute unit Bus size
b32

b64

RAM memory

Network

Compute

General

Instance type

Family type

Instance disk

Operating system

Virtualization technique

Memory

Storage

Shared

GPU

Intel Phi

FPGA

Accelerator

Platform

Architecture

Linux

Windows

x32

x64

Software package

HVM

PVM

VMI

Disk type

Disk technology

Disk

Zone

Group

Africa

Asia

Australia

North America

Europe

South America

Ephemeral

Persistent

Object store

SSD

Standard

gflops: Integer
frequency: Integer
#vcpu: Integer

sizeGB: Integer

throughputGbps: Integer
ingressCostGB: Integer
egressCostGB: Integer

Requires

Requires

R
eq

ui
re

s
R

eq
ui

re
s

[1..n]

diskSizeGB: Integer

minSizeGB: Integer
maxSizeGB: Integer

iops: Integer

costPerGBMonth: Integer

Region

[0..n]

diskSizeGB: Integer
iops: Integer

R
eq

ui
re

s

requires
[0..n]

cost: Integer
lag: Integer
est: Integer

maxMntDisks: Integer
maxMntDisksSizeGB: Integer

maxTps: Integer
maxInstances: Integer

zone(disk) == zone (virtual machine) && Zone in zones(Region)

cost: Integer
sizeGB: Integer

maxInstances: Integer

price: Integer

Figure 9.6 – Abstract extended feature model of IaaS clouds

163

Chapter 9. Resource Selection Using Automated Feature-Based Configuration
Management in Federated Clouds

the clouds are stored in a database. These data include the costs, the restrictions in each
region of the clouds, and the performance of the instance types obtained with benchmarks.
Next, the users define their constraints and submit them to a system. Then, the system
reads the database to load the data about the resources and uses Choco [178], a constraint
satisfaction problem solver, to find the configurations that meet the objectives. Next, the
valid configurations are sent for the users, who can see all the solutions, the best solutions,
and the solutions in the Pareto front. Finally, the users can select the configurations
and request the system to deploy them in the clouds, or they can demand the system to
based on the Pareto front suggests one without considering one objective (e.g., cost, CPU,
memory).

Tables 9.3 and 9.4 show the instance types available in the clouds EC2 and GCE,
respectively, and their cost in one region. Although each table shows the price of only one
region, our system considers all regions of the clouds.

Domain and
system engineers

Cloud API

System

solver

Feature
models

1. create the
feature models

2. Submit their
requirements

3. Loads the
models

5.
 R

et
ur

ns
 th

e
so

lu
tio

ns
(A

ll,
 b

es
t,

P
ar

et
o

fro
nt

)

4.
 A

sk
s

fo
r t

he

va
lid

 s
ol

ut
io

ns
8. Stores the

selected
solutions

6. Shows the solutions
(All, best, Pareto front)

7. Request the
deploy

9.
 D

ep
lo

y
th

e
re

so
ur

ce
s

Figure 9.7 – Our process to select and to deploy the resources in the clouds

Based on the instance types of the clouds, figures 9.8 and 9.9 show the abstract model
instantiated to describe two different products (virtual machines) of each cloud. With
these models, the users can see that both clouds offer resources in different regions (Europe
and North America), and that only EC2’s instance types have ephemeral SSD disks with
zero cost, for example.

Moreover, using these models, we can simulate resource migration between the clouds.
In this case, we use the abstract model to describe the environment and the concrete models
to select the resources. For example, a description like: { b64, #vcpu = 2, memorySizeGB
= 15, General, HVM, Linux, x64, North America, Persistent, SSD, diskSizeGB = 30 }
returns VM1 of GCE (Figure 9.9).

We conducted three benchmarks (Table 9.5) to evaluate the characteristics of the
instance types. These benchmarks were required because: (i) the literature only has data
about the first generation of EC2 instance types [167, 170, 242, 267, 269, 284], and we
were interested in all generations as well as in the GCE’s instance types. In addition, only
few instance types have been evaluated by these works; and (ii) the literature lacks data
about the network throughput of the instances.

In order to obtain the CPU performance, similar to [267, 284], we executed LIN-
PACK [227] with five problem sizes ranging from 13,000 to 55,000. The information

164

Chapter 9. Resource Selection Using Automated Feature-Based Configuration
Management in Federated Clouds

Table 9.3 – Amazon EC2 instance types and their cost in the region of Virginia

Instance type Virtual cores Memory (GB) Cost (USD) / Hour Family type

c3.large 2 3.75 0.105 Compute
c1.medium 2 1.7 0.130 Compute
c3.xlarge 4 7.5 0.210 Compute
c3.2xlarge 8 15.0 0.420 Compute
c1.xlarge 8 7.0 0.520 Compute
c3.4xlarge 16 30.0 0.840 Compute
c3.8xlarge 32 60.0 1.680 Compute
cc2.8xlarge 32 60.5 2.000 Compute
g2.2xlarge 8 15.0 0.650 GPU
cg1.4xlarge 16 22.5 2.100 GPU
m3.medium 1 3.75 0.070 General

t2.micro 1 1.0 0.013 General
t2.small 1 2.0 0.026 General
m1.small 1 1.7 0.044 General

m1.medium 1 3.75 0.087 General
m3.large 2 7.5 0.140 General

t2.medium 2 4.0 0.052 General
m1.large 2 7.5 0.175 General

m3.xlarge 4 15.0 0.280 General
m1.xlarge 4 15.0 0.350 General

m3.2xlarge 8 30.0 0.560 General
r3.large 2 15.0 0.175 Memory

m2.xlarge 2 17.1 0.245 Memory
r3.xlarge 4 30.5 0.350 Memory

m2.2xlarge 4 34.2 0.490 Memory
r3.2xlarge 8 61.0 0.700 Memory
m2.4xlarge 8 68.4 0.980 Memory
r3.4xlarge 16 122.0 1.400 Memory
r3.8xlarge 32 244.0 2.800 Memory
cr1.8xlarge 32 244.0 3.500 Memory

t1.micro 1 0.615 0.020 Shared
i2.xlarge 4 30.5 0.853 Storage
i2.2xlarge 8 61.0 1.705 Storage
i2.4xlarge 16 122.0 3.410 Storage

hs1.8xlarge 16 117.0 4.600 Storage
hi1.4xlarge 16 60.5 3.100 Storage
i2.8xlarge 32 244.0 6.820 Storage

165

Chapter 9. Resource Selection Using Automated Feature-Based Configuration
Management in Federated Clouds

c3
_2
xla
rg
e

S
po

t

c3
.2

xl
ar

ge
-h

ar
dw

ar
e

In
te

l X
eo

n
E

5-
26

80
b6

4

c3
.2

xl
ar

ge
-n

et
w

or
k

E
ph

em
er

al

S
S

D

E
ph

em
er

al

S
S

D

Li
nu

x

x6
4

U
bu

nt
u

S
er

ve
r 1

4.
04

 L
TS

N
or

th
 A

m
er

ic
a

P
er

si
st

en
t

S
S

D

H
V

M

am
i-8

64
d8

4e
e

V
M

1

E
C

2

di
sk

-1

us
-e

as
t-1

a

G
ro

up
-1

O
n-

de
m

an
d

C
om

pu
te

in
st

an
ce

-d
is

k-
1

in
st

an
ce

-d
is

k-
2

V
M

2

m
3.

la
rg

e
G

en
er

al

m
3.

la
rg

e-
ha

rd
w

ar
e

m
3.

in
st

an
ce

-d
is

k-
1

P
V

M

U
bu

nt
u

S
er

ve
r 1

4.
04

 L
TS

E
ur

op
e

P
er

si
st

en
t

E
B

S

Li
nu

x

x6
4

S
S

D

E
ph

em
er

al

m
3.

la
rg

e-
ne

tw
or

k

In
te

l X
eo

n
E

5-
26

70

m
3.

di
sk

-1

eu
-w

es
t-1

a

am
i-3

90
7d

64
e

co
st

: 0
.5

3
U

S
D

la
g:

 0
.1

5
m

ax
In

st
an

ce
s:

 2
0

m
ax

M
nt

D
is

ks
S

iz
eG

B
: 2

0,
48

0

gf
lo

ps
: 1

23
.2

0
fre

qu
en

cy
: 2

.8
 G

H
z

#v
cp

u:
 8

th
ro

ug
hp

ut
G

bp
s:

 1
.5

eg
re

ss
C

os
tG

B
: 0

.1
2

in
gr

es
sC

os
tG

B
: 0

.0
di

sk
S

iz
eG

B
: 8

0
io

ps
: 2

4
co

st
: 0

.0

di
sk

S
iz

eG
B

: 8
0

io
ps

: 2
4

co
st

: 0
.0

th
ro

ug
hp

ut
G

bp
s:

 0
.7

in
gr

es
sC

os
tG

B
: 0

.0
eg

re
ss

C
os

tG
B

: 0
.1

2

gf
lo

ps
: 2

0.
35

fre
qu

en
cy

: 2
.5

 G
H

z
#v

cp
u:

 2

di
sk

S
iz

eG
B

: 3
2

io
ps

: 2
4

co
st

: 0
.0

di
sk

S
iz

eG
B

: 3
0

io
ps

: 9
0

co
st

: 1
.6

5

di
sk

S
iz

eG
B

: 3
0

io
ps

: 9
0

co
st

: 3
.0

co
st

: 0
.1

40
 U

S
D

la
g:

 0
.1

0
m

ax
In

st
an

ce
s:

 2
0

m
ax

M
nt

S
iz

eG
B

: 2
0,

48
0

m
ax

In
st

an
ce

s:
 2

0
m

ax
Tp

s:
 2

0,
48

0

F
ig
ur
e
9.
8
–
Ex

am
pl
e
of

th
e
ab

st
ra
ct

ex
te
nd

ed
fe
at
ur
e
m
od

el
(F

ig
ur
e
9.
6)

in
st
an

tia
te
d
to

re
pr
es
en
t
tw

o
pr
od

uc
ts

of
A
m
az
on

EC
2

166

Chapter 9. Resource Selection Using Automated Feature-Based Configuration
Management in Federated Clouds

GC
E

VM
1

Ge
ne

ral
HV

M
Lin

ux
x6

4

Per
sis

ten
t

SS
D

VM
2

Co
mp

ute

Eu
rop

e

EB
S

Int
el

Sa
nd

yB
rid

ge
Xe

on

gfl
op

s: 2
6.4

fre
qu

en
cy:

 2.
6 G

Hz
#v

pcu
: 2

n2
-ne

tw
ork

thr
ou

gh
pu

tGb
ps:

 0.
56

ing
res

sC
ost

GB
: 0

.0
eg

res
sC

ost
: 0

.11

n1
-st

an
da

rd-
2-h

ard
wa

re

De
bia

nv
7

No
rth

Am
eri

ca

n1
-st

an
da

rd-
2

dis
kS

ize
GB

: 3
0

cos
t: 9

.75
iop

s: 1
4.4

dis
k-1

us-
cen

tra
l1-

a

On
-de

ma
nd

cos
t: 0

.14

dis
k-2

eu
rop

e-w
est

1-a

De
bia

nv
7

HV
M

n1
-hi

gh
cpu

-ha
rdw

are
Int

el
Ivy

Bri
dg

eX
eo

n

gfl
op

s: 9
6.8

fre
qu

en
cy:

 2.
8 G

Hz
#v

pcu
: 8 thr

ou
gh

pu
tGb

ps:
 1.

0
eg

res
sC

ost
: 0

.12
ing

res
sC

ost
: 0

.0

n1
-hc

pu
-ne

tw
ork

Lin
ux

x6
4

Per
sis

ten
t

dis
kS

ize
GB

: 3
0

cos
t: 1

.2
iop

s: 3

de
bia

n-7
-w

he
ezy

-v2
01

40
71

8

de
bia

n-7
-w

he
ezy

-v2
01

40
71

8

On
-de

ma
nd

n1
-hi

gh
cpu

-8

la
g:

 0
.1

0
m

ax
In

st
an

ce
s:

 1
2

m
ax

M
nt

D
is

ks
: 1

6
m

ax
M

nt
D

is
kS

iz
eG

B
: 1

0,
 2

40

la
g:

 0
.1

2
m

ax
In

st
an

ce
s:

 3
m

ax
M

nt
D

is
ks

: 1
6

m
ax

M
nt

D
is

ks
S

iz
eG

B
: 1

0,
24

0

co
st

: 0
.3

84

m
ax

In
st

an
ce

s:
 2

4
m

ax
Tp

s:
 5

,1
20

F
ig
ur
e
9.
9
–
Ex

am
pl
e
of

th
e
ab

st
ra
ct

ex
te
nd

ed
fe
at
ur
e
m
od

el
(F

ig
ur
e
9.
6)

in
st
an

tia
te
d
to

re
pr
es
en
t
tw

o
pr
od

uc
ts

of
G
C
E

167

Chapter 9. Resource Selection Using Automated Feature-Based Configuration
Management in Federated Clouds

Table 9.4 – Google Compute Engine (GCE) instance types and their cost in the US region

Instance type Virtual cores Memory (GB) Cost (USD) / Hour Family type

n1-highcpu-2 2 1.8 0.088 Compute
n1-highcpu-4 4 3.6 0.176 Compute
n1-highcpu-8 8 7.2 0.352 Compute

n1-highcpu-16 16 14.4 0.704 Compute
n1-standard-1 1 3.75 0.070 General
n1-standard-2 2 7.5 0.140 General
n1-standard-4 4 15.0 0.280 General
n1-standard-8 8 30.0 0.560 General
n1-standard-16 16 60.0 1.120 General
n1-highmem-2 2 13.0 0.164 Memory
n1-highmem-4 4 26.0 0.328 Memory
n1-highmem-8 8 52.0 0.656 Memory
n1-highmem-16 16 104.0 1.312 Memory

f1-micro 1 0.6 0.013 Shared
g1-small 1 1.7 0.035 Shared

about the underlying hardware was acquired through the non-trapping cpuid instruction.
The UnixBench [57] was employed to provide another way to compare the performance
variations within the same cloud platform. UnixBench is a test suite for Linux systems to
analyze their performance with regard to CPU, I/O, system call, among other operations.
Based on the result of each test, an index score value is calculated, i.e., the UnixBench
computes the index score value of a system using the SPARCstation 20 as baseline. This
benchmark allows us to compare the CPU performance of the instances that belong to
a family type but that offer a different number of virtual cores. Figure 9.10 shows the
CPU performance of the general instance type of the clouds. The general instance type
was evaluated since it is not bound to any application’s characteristics, which can be used
as a baseline to choose other specialized instance types. We observe that in GCE, small
instances must be preferred when the applications do not use all the resources (e.g., virtual
cores) of the instances, as the performance of a single core type is better than using a
virtual core of an eight core instance type (Figure 9.10).

For network performance, we used iperf [168] to measure TCP and UDP throughput.
Each measure has a client and a server component located in the same zone belonging
to the same instance type. The measurements was done during one day for each type
considering both internal and external data transfer.

Table 9.5 – Benchmark applications

Resource type Application
CPU LINPACK [227], UnixBench [57]

Network iperf [168]

Considering these data, we simulated some users requirements, depicted in table 9.6,
considering that they want to select instance types that maximize the amount of memory,
the number of CPU cores (vCPU), the CPU performance (GFlops), and the network
throughput with a minimal cost. Hence, in table 9.6 the requirements are defined as the

168

Chapter 9. Resource Selection Using Automated Feature-Based Configuration
Management in Federated Clouds

m3.medium m3.large m3.xlarge m3.2xlarge

1 vCPU
2 vCPU
4 vCPU
8 vCPU

U
ni

xB
en

ch
S

co
re

(H
ig

he
ri

s
be

tte
r)

0
10

00
20

00
30

00
40

00

565

848 837
919

1522

2195

949

1636

2545

3232

(a) Amazon EC2

n1−standard−1 n1−standard−2 n1−standard−4 n1−standard−8

1 vCPU
2 vCPU
4 vCPU
8 vCPU

U
ni
xB

en
ch

S
co
re

(H
ig
he

ri
s
be

tte
r)

0
10

00
20

00
30

00
40

00
50

00
60

00

1826

1369

2151

1469

2290

3225

1659

2268

3739

4899

(b) Google Compute Engine (GCE)

Figure 9.10 – UnixBench score for one, two, four, and eight virtual cores for the general instance
types of Amazon EC2 and GCE

169

Chapter 9. Resource Selection Using Automated Feature-Based Configuration
Management in Federated Clouds

minimal number of vCPUs and the amount of memory; and the maximal financial cost
per hour, since these data are often known by the users. In this case, each row represents
the users’ requirements.

Table 9.6 – Three users’ requirements to select the clouds’ resources

vCPU Memory (GB) Cost (USD/hour)
4 4 0.5
16 8 1.0
16 90 2

9.7.1 Scenario 1: simple
The first scenario (First row in table 9.6), represents a small demand of the clouds, as

the required resources are relatively small. For this case, there are 55 solutions (Figure 9.11)
with the price ranging from 0.21 (c3.xlarge) to 0.49 (m2.2xlarge) dollars/hour, where 7
of them are in the Pareto front, as depicted in figure 9.12. Although the cheapest one
meets the users’ requirements, they can pay 34% more and get the double of memory
and sustainable performance (m3.xlarge). However, the best solution, taking into account
all the objectives, may depend on the characteristics of their applications or on other
preferences. For example, fixing the cost, and requesting the system to based on the Pareto
front to suggest one instance type, trying to maximize the other variables (vCPU, memory,
GFlops, network throughput), the users still have two options (Figure 9.13). However,
keeping the cost at the minimal value, after two iterations, they can select the r3.xlarge
instance type paying 28% less than in the previous one (Figure 9.13) with the same
sustainable performance and with a high amount of memory. Finally, if performance is
the most important objective at the minimal cost, the c3.2xlarge is the instance to select.

9.7.2 Scenario 2: compute
The second scenario (Second row in table 9.6) simulates a CPU-bound demand due to

the number of cores requested, which is the maximum offered by the GCE cloud (Table 9.4).
In this case, there are 10 valid solutions, as shown in figure 9.14. However, only two
different instance types (n1-highcpu-16 and c3.4xlarge) met the objectives in different cloud
providers (Figure 9.15). Hence, two of the solutions are in the Pareto front (Table 9.7).
The n1-highcpu-16 instance type can be selected if the network throughput is not important
as the c3.4xlarge can offer a network throughput of 9.3 Gbps. However, the users must
consider that to achieve this throughput, the instance must be restarted, which means
that if it is needed in the first hour, a cost of 0.840 USD must be added for its usage.
Otherwise the throughput is the same as the delivered by the other solution. Moreover,
the n1-highcpu-16 instance is also the best solution with regard to the minimal cost.

170

Chapter 9. Resource Selection Using Automated Feature-Based Configuration
Management in Federated Clouds

 0 2 4 6 8 10

 0
 5

10
15

20
25

30
35

 0

 50

100

150

200

250

Cost (USD/Hour)

M
em

or
y

(G
B

)

vC

P
U All instances

Valid instances
Pareto Front

Figure 9.11 – Instance types that offer at least 4 vCPU cores and 4GB of RAM memory with
a cost of at most 0.5 USD/hour

Figure 9.12 – Instance types in the Pareto front that offer at least 4 vCPU cores and 4GB of
RAM memory with a cost of at most 0.5 USD/hour

Table 9.7 – Instance types in the Pareto front considering a demand for 16 CPU cores and
8GB of RAM memory with a cost of at most 1.0 USD/hour

Instance Virtual Memory Cost (USD) Family GFlops Network
type cores (GB) / Hour type throughput (Gbps)

n1-highcpu-16 16 14.4 0.704 Compute 81.6 0.8
c3.4xlarge 16 30 0.840 Compute 72.7 9.3

171

Chapter 9. Resource Selection Using Automated Feature-Based Configuration
Management in Federated Clouds

Figure 9.13 – Instance types suggested by the system that offer at least 4 vCPU cores and
4GB of RAM memory with a cost of at most 0.5 USD/hour

 0 2 4 6 8 10

 0
 5

10
15

20
25

30
35

 0

 50

100

150

200

250

Cost (USD/Hour)

M
em

or
y

(G
B

)

vC

P
U All instances

Valid instances
Pareto Front

Figure 9.14 – Instance types that offer at least 16 CPU cores and 8GB of RAM memory with
a cost of at most 1.0 USD/hour

172

Chapter 9. Resource Selection Using Automated Feature-Based Configuration
Management in Federated Clouds

Figure 9.15 – The solutions with the minimal cost (best solutions) when requested at least 16
CPU cores and 8GB of RAM memory with a cost of at most 1.0 USD/hour

9.7.3 Scenario 3: compute and memory
The last scenario, on the other hand, simulates the need of a memory-bound application

but that also requires a high number of CPU cores, i.e., a compute and memory demand.
Similar to the previous scenario, there are only two different instance types (n1-highmem-16
and r3.4xlarge) from the 13 valid solutions (Figure 9.16).

In this case, the best choice is the EC2’s instance type (r3.4xlarge) as it costs only 6%
more than the other instance type (n1-highmem-16) in the Pareto front (Figure 9.17) but,
it has 17% more memory, a sustainable performance (GFlops) higher than the delivered
by the other one (Table 9.8). In addition, it also has a network throughput of 9.3 Gbps.
Without all this information, it may be difficult for the users deciding to use the r3.4xlarge,
taking into account that they want low cost, and the description of both instances offers
almost the same amount of resources (i.e., vCPU and RAM memory).

Table 9.8 – Characteristics of the instance types that offer at least 16 CPU cores and 90GB of
RAM memory

Instance Virtual Memory Cost (USD) Family GFlops Network
type cores (GB) / Hour type throughput (Gbps)

n1-highmem-16 16 104 1.312 Memory 79.06 0.8
r3.4xlarge 16 122 1.400 Memory 138.86 9.3

9.8 Related Work
This section describes how cloud variabilities have been modeled in the literature and

for which objective, as well as which cloud model has been considered. In order to highlight
these objectives, the discussed works are organized in five categories: (i) modeling cloud

173

Chapter 9. Resource Selection Using Automated Feature-Based Configuration
Management in Federated Clouds

 0 2 4 6 8 10

 0
 5

10
15

20
25

30
35

 0

 50

100

150

200

250

Cost (USD/Hour)

M
em

or
y

(G
B

)

vC

P
U All instances

Valid instances
Pareto Front

Figure 9.16 – Instance types that offer at least 16 CPU cores and 90GB of RAM memory with
a cost of at most 2 USD/hour

Figure 9.17 – Instance types in the Pareto front that offer at least 16 CPU cores and 90GB of
RAM memory, with a cost of at most 2 USD/hour

174

Chapter 9. Resource Selection Using Automated Feature-Based Configuration
Management in Federated Clouds

variability with feature model, (ii) modeling machine image deployment, (iii) modeling
PaaS applications, (iv) customization of multi-tenant applications, and (v) modeling
infrastructure configurations.

9.8.1 Virtual Machine Image Configuration

9.8.1.1 SCORCH

Smart cloud optimization for resource configuration handling (SCORCH) [102] is
a model-driven engineering (MDE) approach to manage virtual machine image (VMI)
configurations. It aims to meet applications’ performance taking into account the power
consumption of the virtual machines. To achieve these goals, SCORCH uses feature
modeling to describe the VMI and the applications’ requirements. Furthermore, it em-
ploys constraint programming (CP) to find out the feasible configurations. In other words,
SCORCH uses feature model to select a virtual machine in an auto-scaling queue that
matches the applications requirements or that minimizes the time to setup one.

The proposed approach comprises five models (Figure 9.18): (i) cloud configuration
model, (ii) configuration demand model, (iii) configuration adaptation model, (iv) energy
model, and (v) cost model. The cloud configuration model is a feature model with the
VMI configuration options such as CPU, memory, operating system, and application server.
This model allows the developers to create a request for an instance configuration, and to
check if it is valid. The configuration demand model specifies the instance type required by
each application, and its required software packages. The configuration adaptation model,
on the other hand, indicates the amount of time to add or to remove a feature from a
configuration. The energy and cost models represent respectively the power consumption
and the financial cost of each feature.

These models were used to deploy an e-commerce application considering three-family
types (general, compute and memory) of Amazon EC2 and three provisioning scenarios:
static, non-optimized auto-scaling, and optimized auto-scaling. The static scenario creates
the virtual machines in advance and keeps them running all the time, whereas the non-
optimized one creates them on-demand but without considering reconfiguration. The
optimized scenario, on the other hand, extends the non-optimized to consider image
reconfiguration. Using the models, the optimized provisioning strategy could reduce the
power consumption and the response time of the applications.

9.8.1.2 VMI Provisioning

In [340], Tam and colleagues use MDE and feature modeling to configure and to
deploy VMI. In this case, the proposed feature model, depicted in figure 9.19, describes
the software packages required by a VMI and the constraints among them. In this case,
the authors employ feature modeling to reduce the time to set up a virtual machine trying
to match a user’s configuration with one available in a repository.

Experiments realized in a testbed show that this approach could reduce the setup
time and the network traffic. Moreover, using an extended feature model, this approach
can reduce the power consumption of the virtual machines by removing redundant soft-
ware [339].

175

Chapter 9. Resource Selection Using Automated Feature-Based Configuration
Management in Federated Clouds

Figure 9.18 – SCORCH MDE process [102]

Legend:
Mandatory
Optional
Or
Alternative
Abstract
Concrete

Virtual Machine Image

Operating System

Database

Monitoring

Windows 7

Ubuntu 11.10

.Net Framework 4.0

Java Runtime

IBM Websphere AppServer 8.0

JRE 1.6 Linux

JRE 1.6 Win

Eclipse 3.5 Windows

Eclipse 3.5 Linux

Tomcat 5.5 Windows

Tomcat 5.5 Linux

Tomcat 5.5 Linux or Eclipse 3.5 Linux or JRE 1.6 Linux requires Ubuntu 11.10
Tomcat 5.5 Windows or Eclipse 3.5 Windows or JRE 1.6 Win or .Net Framework 4.0 requires Windows 7
Visual Sudio 2010 requires .Net Framework 4.0
Eclipse 3.5 requires Java Runtime

Visual Studio 2010

Eclipse 3.5

Apache Tomcat Server 5.5

IDE

Framework

Application Server

Figure 9.19 – MDE approach for VMI configuration. Adapted from [340]

176

Chapter 9. Resource Selection Using Automated Feature-Based Configuration
Management in Federated Clouds

9.8.1.3 Typical Virtual Appliances

Zhang and colleagues [389] present a model called typical virtual appliance (TVA) for
provisioning and management of virtual machines. A TVA is a template describing a set of
popular softwares, and the frequently used services. The main objective of this approach
is to minimize both storage space wasted with pre-built virtual machine images and the
time to set up a virtual appliance. In this context, when a user requests a configuration
that the system cannot match with one available in a repository, the system tries to select
one that requires the minimal time to be converted to the requested configuration.

Simulation results show that this approach can reduce the setup time when there are
sufficient data about popular software demands.

9.8.2 Virtual Machine Image Deployment

9.8.2.1 Virtual Appliance Model

In [200], Konstantinou and colleagues present an MDE approach for virtual machine
image deployment using a virtual appliance model. A virtual appliance model is an
abstract deployment plan that describes the configuration options of virtual machines.
These configuration options are pre-built virtual machine images defined by domain
experts. This approach, depicted in figure 9.20, works as follows. First, a solution
architect creates a virtual solution model (VSM) by selecting virtual appliance models
and specifying configuration options such as placement constraints, network zones, and
resource consumption requirements. Then, a deployment architect transforms the VSM
into a cloud-specific virtual solution deployment model (VSDM), where specific cloud
configurations are added. Finally, the deployment model is converted into an executable
plan called virtual solution deployment plan (VSDP). Then, the VSDP invokes the cloud’s
operations to configure the environment and the virtual machines based on the virtual
solution model.

According to the authors, the idea of using these different models is first to capture
the deployment logic of possible software service topologies and layers. Moreover, they
enable a new kind of service called composition-as-a-service.

Experimental results show that using these models, a software architecture could deploy
a virtual machine in a cloud.

9.8.2.2 Composite Appliance

Chieu and colleagues [78] introduce the concept of composite appliance to deploy appli-
cations in the cloud. A composite appliance is a set of virtual machine images configured
to work as a single configuration option. In this case, the proposed model (Figure 9.21)
has five classes that describe and capture the constraints of a virtual appliance such as
memory size, number of CPUs and required software packages.

The proposed model aims to reduce the time to deploy a VM in the cloud by reusing
the images configured for a deployment scenario.

177

Chapter 9. Resource Selection Using Automated Feature-Based Configuration
Management in Federated Clouds

Domain
Expert

Virtual
Image

Configuration
Operations

Virtual Appliance

Create

Solution
Architect

Virtual Solution
Model

Compose

Virtual Solution
Deployment Plan

Deployment
Architect

Appliance
Model Zone 1 Zone 2

Virtual Solution
Deployment Model

Amazon
Security
Group 1

AMI AMI
Elastic

IP

Amazon
Security
Group 2

Transform

Generate

Deployer /
User

Parameterize &
Execute

Figure 9.20 – Virtual appliance model [200]

Name
Description

Node

Req_Memory
Req_CPU
Req_DiskSize
Req_Network

Image Requirement

Val_OSType
Val_ImageId
Val_Filename
Val_VirtualizationType
Val_RunOnceScript
Val_Userid
Val_Password

Image Specification

Name
Value

Software Attributes

1

1

1

1

1

*

Name
Description

Node

1

*

Figure 9.21 – Composite appliance model [78]

178

Chapter 9. Resource Selection Using Automated Feature-Based Configuration
Management in Federated Clouds

9.8.3 Deploying PaaS Applications

9.8.3.1 HW-CSPL

Cavalcante and colleagues [9, 67] propose an adaptation of SPL-based development to
deploy a Health Watcher application in the cloud (Figure 9.22). This approach works as
following. First, the feature model of the application is modified to include cloud features
such as storage and database type. Second, the developers change the source code of
the application to implement cloud’s variability. In such case, feature modeling helps the
developers in identifying the clouds that meet the application’s requirements, as well as to
use the services of the clouds.

They validated this model using conditional compiling techniques and dynamic aspect-
oriented programming (DAOP) to implement logging and database services offered by two
different clouds.

Deployment

Persistence
Memory

DataStore

Database

Blobstore

Legend:
Mandatory
Optional
Alternative
Abstract
Concrete

Property Provider: String = "AWS"
Pricing: String =

Relational_Persistence

Property Provider: String = "GAE"
Pricing: String =

DataStore

"http://aws.amazon.com/rds/pricing"

"http://code.google.com/appengine/billing.html"

Amazon Web Services

Google App Engine

Non Relational Persistence

Relational Persistence

Google Authentication

GAE Log Service

Amazon SimpleDB

Amazon S3

Log System

File Storage

Login System
HW-CSPL

Figure 9.22 – HW-CSPL’s feature model. Adapted from [67]

9.8.3.2 SALOON

SALOON [287] is a framework that combines feature models and ontology to support
the developers on deploying their applications on multiple PaaS providers. In such case,
it uses feature models to capture clouds variability, and ontologies to describe the fea-
tures (Figure 9.23). SALOON has two ontologies, namely OntoCloud and OntoDim. The
OntoCloud translates general cloud concepts to the terms used by each cloud provider,
whereas the OntoDim describes the attributes of the feature models. In other words, in this
work, feature models handle cloud configurations, and ontologies translate the features
and the attributes of each cloud model to general cloud concepts.

Experiments show that SALOON was able to select four different PaaS providers based
on two configuration options of an application. Moreover, it could also generate the scripts
to deploy the application in the clouds [288].

179

Chapter 9. Resource Selection Using Automated Feature-Based Configuration
Management in Federated Clouds

(a) SALOON approach

PaaS

Database

Application
Server

SQL

NoSQL

provides

Cloud

IaaS

Resource

RAM

CPU

uses

CapacityMemory

Dimension

Storage

Frequency

range

OntoCloud OntoDim

(b) SALOON’s ontologies

Figure 9.23 – SALOON framework [287]

9.8.4 Configuration options of multi-tenant applications

9.8.4.1 Multi-Tenant Deployment

Mietzner and colleagues [247] use variability modeling to support SaaS providers
in managing configuration options of their applications. They consider two types of
variability options: external and internal. On the one hand, external variability comprises
the configuration options that (i) are visible and can be managed by the users (i.e., tenants),
and (ii) do not change the application deployment such as changing the logo or the title
of an application. On the other hand, internal variability concerns the infrastructure or
deployment options that are only managed by the providers such as replication, clustering,
and database sharding.

Figure 9.24 shows the feature model with external and internal options of the application
modeled by the authors. In this case, feature modeling helped the users on changing the
application’s requirements (e.g., functional and non-functional) on-the-fly and supported
the SaaS providers on generating the deployment scripts for each configuration.

9.8.4.2 Capturing Functional and Deployment Variability

Ruehl and colleagues [304, 305] use feature modeling to allow the users on customizing
SaaS applications taking into account four different data-sharing models. Based on
configuration templates, an execution engine adjusts a generic application to a configuration
requested by a user5.

In this context, a provider creates a catalog with the variability options supported by
the applications, and the users utilize this catalog to deploy their applications (Figure 9.25).
In such case, each variability option is implemented as a component that is instantiated
according to a deployment model. The deployment model can be private, public, white
hybrid, or black hybrid. In the private model, an application runs without sharing its

5In the context of this work, a user (i.e., tenant) may be a company and it may have multiple users.

180

Chapter 9. Resource Selection Using Automated Feature-Based Configuration
Management in Federated Clouds

MeetR

Workflow
Long

Short

Logo

DataSeparation
Notguaranteed

Guaranteed

Title

StoreEmails Yes

Availability
Standard

High

DBPattern
SingleInstance

MultipleInstances

Environment
Non_Clustered

Clustered

Legend:
Mandatory
Optional
Alternative
Abstract
Concrete

Long ⇒ StoreEmails
Notguaranteed ⇒ DBPattern

Yes ⇒ DBPattern
High ⇒ Clustered

Guaranteed ⇒ MultipleInstances

External variability

Internal variability

Figure 9.24 – Feature model showing external and internal variability options of a multi-tenant
SaaS application. Adapted from [247]

181

Chapter 9. Resource Selection Using Automated Feature-Based Configuration
Management in Federated Clouds

components with other applications, whereas in the public model, it runs following the
multi-tenant mode, i.e., multiple tenants use the same component. In the hybrid model,
the tenants specify with whom they want to share their application’s components.

Using variability modeling the users could select a configuration that met their security
constraints and the providers could find a configuration option that reduced the number
of single tenant-deployment.

Figure 9.25 – A model for managing configuration options of SaaS applications [305]

9.8.4.3 Configuration Management Process

Schroeter and colleagues [313] propose a configuration management process to deal
with application requirements, different users views, and dynamic reconfiguration. The
configuration process comprises an extended feature model (EFM), a view model, and a
configuration process model. The proposed configuration process works as follows. First,
extended feature models are used to express functional and non-functional requirements
of an application. Then, the variability options are logically grouped according to the
users (i.e., tenants) interests. In such case, a view model is created to support the mapping
between the configuration decisions and the feature models, as well as to identify the users
with similar concerns. Finally, the configuration process model defines the order of each
configuration in four different stages as depicted in figure 9.26, where each stage represents
a customer view. In the declaration stage, feature models are defined and their variability
options are bounded in the specialization stage. Then, these feature models are merged in
the integration stage. Moreover, the separation stage splits each feature model in multiple
restricted extended feature models.

The objective of this process is to build consistent feature models and to guarantee
valid configuration options.

182

Chapter 9. Resource Selection Using Automated Feature-Based Configuration
Management in Federated Clouds

Figure 9.26 – The configuration process model and its stages [313]

9.8.4.4 Service Line Engineering Process

In [363], Walraven and colleagues propose a software line engineering method to support
configuration and deployment of multi-tenant applications. The method comprises four
stages namely service line development, service line configuration, service line composition,
and service line deployment (Figure 9.27). Each stage has different activities to support
the users on creating the feature models and on developing the applications. This feature-
oriented method aims to support the management and development of multi-tenant
applications. In other words, this work focus on providing a method to handle the
customization of multi-tenant applications in the cloud.

It was validated through the development of a document processing application and
the results show that this method could reduce the costs to create and to operate the
application.

Figure 9.27 – The service line engineering method [363]

183

Chapter 9. Resource Selection Using Automated Feature-Based Configuration
Management in Federated Clouds

9.8.5 Infrastructure Configuration

9.8.5.1 AWS EC2 Service Provisioning

García-Galán and colleagues [130] uses an extended feature model (EFM) to describe
some AWS services. They aim to support the users on selecting valid service configurations
basing on high-level constraints such as the number of CPUs, the minimum memory or
storage size, and the maximum financial cost (Figure 9.28). Functional requirements (e.g.
instance type) were modeled as features and non-functional requirements (e.g., cost and
usage) as attributes.

The proposed approach comprises two phases. The first-phase validates if a user’s
configuration meets the constraints of a model; and the second one selects the configurations
that fulfill a given objective. These phases were validated using a customized version of
the FaMa tool6 [348] to show the users which Amazon EC2 configurations fulfill the given
objective.

9.8.6 Comparative View
Table 9.9 summarizes the papers reviewed in this section. The first column shows

the paper or the name of the solution presented in the paper. Then, the second column
presents how feature modeling is used to deal with the clouds’ variabilities. The cloud
service model considered by each paper is described in the third column. The last column,
on the other hand, presents the objectives of each paper.

In the domain of cloud computing, feature modeling has also been used to handle the
variabilities of VMI, multi-tenant applications, and services offered by the cloud providers.

Most of the reviewed works [78, 102, 200, 340, 389] handle the variabilities of virtual
machine images. In this case, they aim to minimize the time to setup a virtual machine
considering performance constraints and in some case, power consumption [102, 339].
Feature modeling has also used to reduce storage space [389] used with pre-built images
or to support the users on deploying a virtual machine in the cloud.

At the PaaS layer, one solution [9, 67] uses feature modeling to help the developers on
changing the code of an application to use cloud’s services; and another solution [287, 288]
uses it to support the developers on deploying their native cloud applications.

The variabilities of SaaS applications have also be considered by some works [247,
304, 305, 313, 363] with different objectives. In such case, they aim to avoid invalid
configurations, to minimize the time to configure or to create an application, and to avoid
single tenant deploys.

There is one work that considers resource selection [363] in an specific cloud. In this
case, based on the users’ requirements, a feature model is used to obtain the configurations
of the cloud and to check that a user’s configuration is valid.

Our work handles the variabilities at the infrastructure layer, and similar to [363],
we use feature modeling to select the resources according to the users’ requirements.
However, we consider multiple users’ objectives and multiple clouds, employing an abstract
feature model. This abstract model allows us to select different resources like virtual

6FaMa is a tool to analyze feature models.

184

Chapter 9. Resource Selection Using Automated Feature-Based Configuration
Management in Federated Clouds

AmazonFM

EC2

OS

Windows

StdWindows

SQLStd

SQLWeb

Linux

StdLinux

RedHat

Suse

EBS
ProvisionedStorage

StdStorage

InstanceType

Default

S

M

L

XL

HighIO

HighMem

HighMemXL

HighMem2XL

HighMem4XL

HighCPU
HighCPUM

HighCPUXL

Cluster

Cluster4XL

Cluster8XL

GPU4XL

DetailedMonitoring

S3
ReduncedRedundancy

Standard

SpecialReqs

GPU

IO_Performance

IOMedium

IOHigh

IOVeryHigh

SO64Bits

SSD

RedHat ⇒ ¬ Cluster
SQLStd ⇒ XL ∨ GPU4XL ∨ HighCPUM

Requests: IOPS
size: GB

usage: % month
cu: compute units
ram: GB
dataOut: GB

cost: $

size: GB

Figure 9.28 – Extended feature model for EC2, EBS, and S3 services. Adapted from [130]

185

Chapter 9. Resource Selection Using Automated Feature-Based Configuration
Management in Federated Clouds

machine image, disks, and to describe the whole environment. Moreover, it avoids invalid
configurations and it can deploy the configurations in the clouds.

186

Chapter 9. Resource Selection Using Automated Feature-Based Configuration
Management in Federated Clouds

Ta
bl
e
9.
9
–
C
om

pa
ra
tiv

e
vi
ew

of
cl
ou

d
va
ria

bi
lit
y
m
od

el
s

U
sa
ge

of
C
lo
ud

M
ul
ti

P
ap

er
fe
at
ur
e
m
od

el
m
od

el
cl
ou

d
O
bj
ec
ti
ve
s

SC
O
RC

H
Ia
aS

N
o

M
in
im

iz
e
po

we
r
co
ns
um

pt
io
n
ta
ki
ng

in
to

ac
co
un

t
pe

rfo
rm

an
ce

co
ns
tr
ai
nt
s

[1
02
]

V
M
Ic

on
fig

ur
at
io
n

[3
39
,3

40
]

V
M
Ic

on
fig

ur
at
io
n

Ia
aS

N
o

M
in
im

iz
e
th
e
tim

e
to

se
tu
p
a
V
M

an
d
po

we
r
co
ns
um

pt
io
n

[3
89
]

V
M
Ic

on
fig

ur
at
io
n

Ia
aS

N
o

M
in
im

iz
e
st
or
ag
e
sp
ac
e
w
ith

pr
e-
bu

ilt
V
M
Ia

nd
th
e
tim

e
to

se
tu
p
a
V
M

[2
00
]

V
M
Id

ep
lo
ym

en
t

Ia
aS

N
o

M
in
im

iz
e
th
e
tim

e
to

de
pl
oy

a
V
M

[7
8]

V
M
Id

ep
lo
ym

en
t

Ia
aS

N
o

M
in
im

iz
e
th
e
tim

e
to

de
pl
oy

an
ap

pl
ic
at
io
n

H
W

-C
SP

L
D
ev
el
op

m
en
t
of

a
Pa

aS
Ye

s
[9
,6

7]
cl
ou

d-
aw

ar
e
ap

pl
ic
at
io
n

M
in
im

iz
e
th
e
tim

e
to

ch
an

ge
an

ap
pl
ic
at
io
n
to

us
e
cl
ou

ds
’s

er
vi
ce
s

SA
LO

O
N

D
ep
lo
ym

en
t
of

Pa
aS

Ye
s

M
in
im

iz
e
th
e
tim

e/
eff

or
t
to

de
pl
oy

na
tiv

e
cl
ou

d
ap

pl
ic
at
io
ns

[2
87
,2

88
]

cl
ou

d-
aw

ar
e
ap

pl
ic
at
io
ns

[2
47
]

C
M
M
TA

?
Sa

aS
N
o

M
in
im

iz
e
th
e
tim

e
to

co
nfi

gu
re

an
ap

pl
ic
at
io
n

[3
04
,3

05
]

C
M
M
TA

?
Sa

aS
N
o

M
in
im

iz
e
th
e
nu

m
be

r
of

sin
gl
e-
te
na

nt
de

pl
oy
s
ta
ki
ng

in
to

ac
co
un

t
us
er
s’

se
cu

rit
y
co
ns
tr
ai
nt
s

[3
13
]

C
M
M
TA

?
Sa

aS
N
o

M
in
im

iz
e
in
co
ns
ist

en
t
fe
at
ur
e
m
od

el
s

[3
63
]

C
M
M
TA

?
Sa

aS
N
o

M
in
im

iz
e
th
e
tim

e
to

cr
ea
te

a
cl
ou

d-
aw

ar
e
ap

pl
ic
at
io
n

[1
30
]

In
st
an

ce
se
le
ct
io
n

Ia
aS

N
o

M
in
im

iz
e
in
va
lid

co
nfi

gu
ra
tio

ns
co
ns
id
er
in
g
a
sin

gl
e
ob

je
ct
iv
e

T
hi
s
wo

rk
IS

an
d
IC

]
Ia
aS

Ye
s

Av
oi
d
in
va
lid

co
nfi

gu
ra
tio

ns
an

d
se
le
ct

th
e
in
st
an

ce
s
ta
ki
ng

in
to

ac
co
un

t
m
ul
tip

le
ob

je
ct
iv
es

?
C
on

fig
ur
at
io
n
m
an

ag
em

en
t
of

m
ul
ti
-t
en
an

t
ap

pl
ic
at
io
ns

(C
M
M
TA

)
]
In
st
an

ce
se
le
ct
io
n
an

d
in
fr
as
tr
uc
tu
re

co
nfi

gu
ra
ti
on

187

Chapter 9. Resource Selection Using Automated Feature-Based Configuration
Management in Federated Clouds

9.9 Summary
In this chapter, we presented our solution to help the users on selecting the clouds and

the instance types to execute their applications, taking into account multiple objectives.
The proposed solution is based on a product line engineering (PLE) process that comprises
different phases and roles (Figure 9.1). In the first phase, an abstract feature model (FM)
is created to describe the variabilities of the IaaS clouds. Next, this model is instantiated
with the features and characteristics (i.e., qualitative and quantitative attributes) of the
products available in the clouds. After, the users specify their requirements and objectives,
and the configurations that are optimal with regard to the objectives are selected and
deployed in the clouds.

We validated our model employing constraint programming (CP) implemented through
the Choco [178], a well-established satisfaction problem solver, considering two different
cloud providers and multiple objectives. The experimental results show that with our
approach, the users can get optimal configurations with regard to their objectives, which
without the support of a system it may be difficult for users deciding for the suggested
ones.

Our solution deals with the challenges identified in section 9.2 as follows. To face
the first challenge (capturing clouds heterogeneity and constraints), we proposed a cloud
model and an abstract feature model that specify the characteristics and constraints of the
clouds. The product line engineering approach deals with the second challenge (matching
application requirements with the resources characteristics) enabling resource selection
based on a declarative strategy and on the users’ objectives. In this case, the engineers
benchmark the clouds and include the results in the models. We used our abstract model
to handle the configuration options of two different clouds (Figures 9.8 and 9.9), helping us
to deal with the third challenge (describing a multi-cloud deployment environment). These
models consider the dependencies between the resources in a multi-cloud environment.
Finally, as our models have functional and non-functional data about the clouds, it can
support auto-scaling systems without the usage of virtual machine images, dealing with
the fourth challenge (supporting auto-scaling decisions).

Our solution can be used to implement a control loop, where a system continuously
monitors the environment and takes decisions in order to meet the users’ objectives. In
other words, it can be used to support a system that aims to implement autonomic
properties such as self-configuration and self-optimization.

188

Chapter 10

Dohko: An Autonomic and
Goal-Oriented System for Federated
Clouds

Contents
10.1 Introduction and Motivation . 190

10.2 System Architecture . 191

10.2.1 Client Layer . 191

10.2.2 Core Layer . 193

10.2.3 Infrastructure Layer . 196

10.2.4 Monitoring Cross-Layer . 197

10.2.5 Autonomic Properties . 197

10.2.6 Executing an Application in the Architecture 200

10.3 Experimental Results . 201

10.3.1 Experimental Setup . 201

10.3.2 Scenario 1: application deployment 205

10.3.3 Scenario 2: application execution 206

10.3.4 Scenario 3: application deployment and execution with failures 206

10.4 Related Work . 209

10.5 Summary . 211

In the previous chapter, we described proposed a method based on software product
line that allowed automated configuration and deployment of the resources in the cloud,
enabling a generative approach. In this chapter, we use this method to build an autonomic

189

Chapter 10. Dohko: An Autonomic and Goal-Oriented System for Federated Clouds

and goal-oriented cloud system. This system aims to help the users on executing their
applications on federated IaaS clouds. Moreover, our system tackles the issues identified
in the second contribution (Chapter 7) of this doctoral thesis, relying on top of a P2P
layer. Finally, it meets most of the functional requirements identified for multiple cloud
systems such as [277]: (a) it provides a way to describe functional and non-functional
requirements through the usage of our software product line engineering method described
in the previous chapter; (b) it can aggregate services from different clouds; (c) it provides
a homogeneous interface to access services of multiple clouds; (d) it allows the service
selection of the clouds; (e) it can deploy its components on multiple clouds; (f) it provides
automatic procedures for deployments; (g) it utilizes an overlay network to connect and to
organize the resources; (h) it does not impose constraints for the connected clouds.

The reminder of this chapter is organized as follows. Section 10.1 presents the intro-
duction and motivation behind this chapter. Section 10.2 presents the proposed system
architecture and its main components, followed by a description of its autonomic proper-
ties. Experimental results are presented and discussed in 10.3. Section 10.4 presents a
comparative view of some important features of cloud architectures. Finally, section 10.5
concludes this chapter.

10.1 Introduction and Motivation
Deploying and executing an application in an IaaS cloud demand a considerable amount

of work. This amount of work is mostly due to the kind of applications considered by
these clouds. While the clouds focus on Web applications, the users’ applications are
many times batch-oriented, performing parameter sweep operations. Furthermore, users
applications may require specific configurations and some of them may take days or even
weeks to complete their executions.

While the former issue can be dealt with virtual machine image (VMI), the latter
requires monitoring and fault-tolerance strategies in order to reduce the chances of losing the
work (i.e., the application execution) just before it completes. Nonetheless, creating VMIs
is often time-consuming and demands advanced technical skills. Monitoring, on the
other hand, is usually realized by employing heartbeats [153]. Heartbeats are presence
notification messages sent by each virtual machine to a monitor [88]. In this case, when a
heartbeat message fails to reach the monitor within a given threshold, the VM is considered
unavailable and a process to recovery it or to create a new one starts.

Since clouds are susceptible to failures, it is interesting to consider a multi-cloud
scenario. This scenario increases the difficulties to deploy and to execute an application.
These difficulties are mainly due to the clouds’ heterogeneity and because of the cost of
exporting and importing virtual machine images between the clouds. In addition, the
users should be aware of the clouds’ internals and the communication pattern of their
applications in order to reduce the cost, for instance. For example, in some clouds, the cost
of data transfers between virtual machines in the same data center using their external IP
addresses is the same as the cost of transferring data between different clouds or regions.
Moreover, the network throughput is often lower when using external IP addresses. Hence,
changing the applications to consider the location of the nodes or realizing this work
manually may be very difficult for the users, especially when there are multiple clouds and

190

Chapter 10. Dohko: An Autonomic and Goal-Oriented System for Federated Clouds

the environment can change at runtime. In this context, we advocate the use of autonomic
systems (Chapter 4) to do this work automatically.

Therefore, in this chapter we propose and evaluate an autonomic cloud architecture. The
proposed architecture implements self-configuration, self-healing, and context-awareness
properties to help users on executing their applications in multiple clouds and to tackle
the difficulties described previously. Our architecture relies on a hierarchical P2P overlay
to organize the virtual machines and to deal with inter-cloud communication.

The reminder of this chapter is organized as follows. Section 10.2 presents the proposed
architecture and its main components, followed by a description of its autonomic properties.
Then, experimental results are discussed in 10.3. Next, a comparative view of some
important features of cloud architectures is presented in section 10.4. Finally, section 10.5
presents final considerations.

10.2 System Architecture
In our proposal, we assume a multi-cloud environment, where each cloud has a pub-

lic API that implements the operations to: (a) manage the virtual machines (e.g., to
create, to start, to shutdown) and their disks; (b) get the list of the available VMs and
their state (e.g., running, stopped, terminated, among others); (c) complement the VMs’
descriptions through the usage of metadata. We also consider that the virtual machines
fail following the fail-stop model. In other words, when a VM fails, its state changes to
stopped and the system can either restart it or replace it by a new one.

As the proposed architecture organizes the nodes using a P2P overlay, we assume
that there is a set of nodes (e.g., super-peers) responsible for executing some specialized
functions such as system bootstrapping and communication management. It is important
to notice that the presence of such nodes does not mean a centralized control, as described
in section 2.4. In addition, the number of these specialized nodes may vary according to
some objective, e.g., the number of clouds.

The architecture uses a message queue system (MQS) to implement a publish/subscribe
policy. The publish/subscribe interaction pattern is employed due to its properties such
as [108]: space decoupling, time decoupling, and synchronization decoupling. These prop-
erties help the system to increase scalability and to make its communication infrastructure
ready to work on distributed environments. Moreover, message queue systems normally do
not impose any constraint for the infrastructure. In this case, all messages are persisted to
support both node’s and services’ failures; and a message continues in the queue until a
subscriber consumes it or until a defined timeout is achieved.

The proposed architecture comprises three layers: client, core, and infrastructure, as
depicted in figure 10.1. There is also a cross-layer called monitoring. In the context of
this work, the rationale for using a layered architecture is that it enables a loosely coupled
design and a service-oriented architecture (SOA).

10.2.1 Client Layer
The client layer provides the job submission module. This module takes an application

descriptor as input, and submits it to a node in the cloud. This node is called application

191

Chapter 10. Dohko: An Autonomic and Goal-Oriented System for Federated Clouds

Provisioning Deploy

Instance
configuration RegistryFeature engine

Resource provisioning
Workflow
engine

DB

Executor

XMPP
server

XMPP
client

Group
communication

Scheduler

Job execution

MQS M
on

ito
rin

g

Discovery

Hierarchical P2P overlay

Key-value
store

Cloud driver

Push message

Pull message

Direct access

Infrastructure layer

Core layer

Client layer

External system

Job submission

Deployment
descriptor

(XML)

Workflow
definition
(JSON)

References
for the VMs

(JSON)

Distributed data
management

Application
descriptor
(YAML)

VMs’
configuration

tasks

deploys configurations instances

Figure 10.1 – Design and main modules of an autonomic architecture for multiple clouds

manager, and it will coordinate the executions in the cloud.
An application descriptor has five parts (Listing 10.1): user, requirements, clouds,

applications, and on-finish action. The user section contains the user’s information such
as user name and his/her SSH keys. If the user does not have the SSH keys, they will
be generated by the system. These keys are used to create and to connect to the virtual
machines. The requirements section, on the other hand, includes: (a) the maximal cost
to pay for a VM per hour; (b) the minimal number of CPU cores and RAM memory size;
(c) the platform (i.e., operating system); and (d) the number of virtual machines to be
created in each cloud. These requirements are used to select the instance types based on
the product line engineering (PLE) approach described in chapter 9. The clouds section
comprises the data of the user in each cloud provider. These data consist of the access and
the secret key required to invoke the clouds’ operations, and they are given to users by
the cloud providers. This section also contains informations such as region and instance
types. However, these parameters target advanced users (e.g., system administrators) who
may already have the regions and/or the instance types to be used. The applications
section describes the tasks to be executed including their inputs and outputs. Finally,
the on-finish (Line 42 in listing 10.1) part instructs the architecture about what to do
after the applications have finished. The options are: NONE, FINISH, and TERMINATE.
The FINISH option shuts down the virtual machines, which means that their persistent
disks continue in the clouds; whereas the TERMINATE option shuts down and deletes
the virtual machines.

192

Chapter 10. Dohko: An Autonomic and Goal-Oriented System for Federated Clouds

1 ---
2 name:

4 user:
5 username:
6 keys:
7 key: []

9 requirements:
10 cpu:
11 memory:
12 platform:
13 cost:
14 number-of-instances-per-cloud:

16 clouds:
17 cloud:
18 - name:
19 provider:
20 name:
21 access-key:
22 access-key:
23 secret-key:
24 region:
25 - name:
26 zone:
27 - name:
28 instance-types:
29 instance-type:
30 - name:
31 number-of-instances:

33 applications:
34 application:
35 name:
36 command-line:
37 file:
38 - name:
39 path:
40 generated:

42 on-finish:

Listing 10.1 – Structure of an application descriptor

10.2.2 Core Layer
The core layer of the architecture (Figure 10.1) comprises the modules to provision, to

create, to configure, to implement group communication, and to manage data distribution,
as well as to execute the applications.

The provisioning module is responsible for receiving an application descriptor and for
generating a deployment descriptor. It utilizes the feature engine to obtain the instance
types that meet the users’ requirements. The feature engine implements the feature model

193

Chapter 10. Dohko: An Autonomic and Goal-Oriented System for Federated Clouds

(FM) described in chapter 9. The deployment descriptor comprises all data required
to create a virtual machine. These data are: (a) the cloud provider; (b) the instance
type; (c) the zone (data center); (d) the virtual machine image; (e) the network security
group and its inbound and outbound traffic rules; (f) the disks; and (g) the metadata.
Listing 10.2 shows an example of an deployment descriptor. In this example, one virtual
machine should be created with the name e8e4b9711d36f4fb9814fa49b74f1b724-1 in the
zone us-east-1a of region us-east-1. The cloud provider should be Amazon, using the
instance type t2.micro and the virtual machine image ami-864d84ee. Furthermore, two
metadata (tags) are added to the virtual machine (app-deployment-id and manager).

1 <?xml version="1.0" encoding="UTF-8"?>
2 <deployment user="username">
3 <uuid>f4070433-a551-4a60-ba57-3e771ceb145f</uuid>
4 <node name="e8e4b9711d36f4fb9814fa49b74f1b724-1" count="1" region="us-east-1"
5 zone="us-east-1a">
6 <provider name="amazon">
7 
8 <instance-type>t2.micro</instance-type>
9 </provider>

10 <tags>
11 <tag>
12 <name>app-deployment-id</name>
13 <value>e8e4b9711d36f4fb9814fa49b74f1b724</value>
14 </tag>
15 <tag>
16 <name>manager</name>
17 <value>i-a1f8798c</value>
18 </tag>
19 </tags>
20 </node>
21 </deployment>

Listing 10.2 – An example of a deployment descriptor generated by the
provisioning module

The deployment descriptor is sent to the deploy module. Then, the deploy module
creates a workflow (deployment workflow) with the tasks to instantiate the VMs. A
workflow is used since there are some precedent steps that must be performed in order to
guarantee the creation of the VMs. For example, (a) the SSH keys must be generated and
imported into the clouds; (b) if the instance types support the group feature (Figure 9.6),
the system must check if one exists in the given zone and if not, create it. Furthermore,
using workflow enables the architecture to support partial failures of the deployment
process. In addition, it decouples the architecture from the clouds’ drivers. In this case,
based on the provider’s name, the deploy module selects in the database its correspondent
driver to be instantiated at runtime by the workflow engine. This deployment workflow
is enqueued by the deploy module and dequeued by the workflow engine. The workflow
engine executes the workflow and enqueues the references to the created virtual machines
in another queue.

The registry module is responsible for: (a) storing the instances informations in a local
database and in the distributed key-value store; and (b) selecting the configurations (i.e.,
software packages) to be applied in each instance. These configurations are usually defined

194

Chapter 10. Dohko: An Autonomic and Goal-Oriented System for Federated Clouds

by the product engineers (Chapter 9), and they represent a set of scripts. Each script
may have some variability points. The variability points are informations only known
at runtime such as the location (i.e., zone), the name, the addresses (e.g., internal and
external), among others, that must be set by the system. Listing 10.3 illustrates one script
with three variability points. A variability point is defined between ${[and]}. In this
example, the script is exporting tp the system the region’s name of a node, its endpoint,
and its zone’s name.

...
export NODE_REGION_NAME=${[location.region.name]}
export NODE_REGION_ENDPOINT=${[location.region.endpoint]}
export NODE_ZONE_NAME=${[location.name]}

...

Listing 10.3 – Example of one script with three variability points

The configuration tasks are put in a queue to be executed by the instance configuration
module. The instance configuration module connects to the virtual machine via SSH and
executes all the scripts, installing the software packages. This process guarantees that all
instances have the required software packages.

The group communication module uses the Extensible Messaging and Presence Protocol
(XMPP) (xmpp.org) for instant communication among the nodes in a cloud. It has
an XMPP server and an XMPP client. The architecture uses the XMPP since some other
group communication techniques such as broadcast or multicast are often disabled by
the cloud provider. In addition, it supports the monitoring layer through its presence
states (e.g., available, off-line, busy, among others).

The job execution module comprises a scheduler and an executor. They are responsible
for implementing a task allocation policy and for executing the tasks. The task allocation
policy determines in which node a task will be executed, considering that there are no
temporal precedence relations among the tasks [63]. The goal of a task allocation/scheduling
problem may be: (a) minimize the execution time of each task; (b) minimize the execution
time of the whole application; (c) maximize the throughput (number of tasks completed
per period of time). On its generic formulation, this problem has been proved NP-
complete [141]. For this reason, several heuristics have been proposed to solve it. By
default, this architecture provides an implementation of a simple task allocation policy (i.e.,
self-scheduling (SS) [342]). However, other task allocation policies can be implemented
and added to our architecture, i.e., this architecture does not assume any specific task
allocation policy.

The self-scheduling (SS) policy assumes a master/slave organization, where there is a
master node responsible for allocating the tasks, and several slaves nodes that execute the
tasks. Moreover, it considers that very few information is available about the execution
time of the tasks and the computing power of the nodes. In this case, it distributes the
tasks, one by one, as they are required by the slave nodes. Thus, each node always receives
one task, executes it, and, when the execution finishes, asks for more task [342].

In our architecture, the node that receives the application descriptor becomes the
application master node, and it is the responsible for creating and coordinating the
configuration of the other nodes (e.g., slave nodes).

195

http://xmpp.org

Chapter 10. Dohko: An Autonomic and Goal-Oriented System for Federated Clouds

The distributed data management module provides a resource discovery and a dis-
tributed key-value store service. These services are based on the hierarchical P2P (Sec-
tion 2.4.5) overlay available at the infrastructure layer (Section 10.2.3). Table 10.1 shows
the operations implemented by the key-value store. Basically, the key-value store providers
three operations: (i) insert, (ii) retrieve, and (iii) remove. The insert operation takes a
key and a value, and stores the value under the given key. In case there exists a value
with the same key, all of them they are stored. In other words, the value of a key may be
a set of objects. The retrieve method receives a key and returns its values. Finally, the
remove method can remove all values of a given key or only one specific value.

Table 10.1 – Main operations implemented by the key-value store

Operation Description

void insert (key, value) inserts the value into the network with the given key. If two or more
values exist with the same key, all of them are stored

Set<Value> retrieve (key) returns all the values with the given key
remove (key) removes all the values stored under the given key

void remove (key, value) removes the value stored under the given key

10.2.3 Infrastructure Layer
The infrastructure layer consists of the hierarchical P2P overlay and the cloud drivers.

The hierarchical P2P overlay is used to connect the clouds and their nodes. In this case,
in a cloud with n nodes, where n > 0, n − 1 nodes (i.e., leaf-nodes) join an internal
overlay network and one node (super-peer) joins the external overlay network. In other
words, there is one overlay network connecting the clouds and another overlay network in
each cloud connecting its nodes. The super-peer and its leaf-nodes communicate through
a HTTP service, and the leaf-nodes monitor the super-peer via XMPP. Both overlays are
implemented using the Chord [332] protocol presented in section 2.4.3. This solution is an
extension of a previous work that was published in [216]. In [216], there is a P2P module
that implements P2P functions such as placement, search, event, among others, decoupled
from both system and protocol used. Figure 10.2 illustrates the hierarchical P2P overlays
connecting two clouds, each one with four nodes.

When a node n running in cloud c starts, it asks the bootstrapping node through
a HTTP service, the super-peers of cloud c. If node n is the first peer of cloud c, it joins
the super-peers overlay by the bootstrapping node. Otherwise, it demands the super-peer,
its leaf-nodes and joins the leaf-nodes overlay network or creates a overlay network. After
has joined one overlay network, the node stores in the key-value store its information under
the keys: /c/n, if it is the super-peer or /c/ < super-peer’s id > /members, otherwise.

Leaf-nodes of different clouds communicate through their super-peers. In this case,
when a leaf-node wants to communicate with a node outside its cloud, it sends a message
for its super-peer that first connects to the super-peer of such node, and next forwards the
message for it.

When a node leaves one cloud, it notifies its super-peer that removes the information
about the node from the system.

196

Chapter 10. Dohko: An Autonomic and Goal-Oriented System for Federated Clouds

N1 M1

N2

N3

N4

M2

M3

M4

Cloud 1 Cloud 2

XMPP connection

Chord ring

Figure 10.2 – Structure of the hierarchical P2P overlay connecting two clouds

10.2.4 Monitoring Cross-Layer
The monitoring layer is responsible for (a) checking if there are virtual machines that

were not configured; (b) detecting and restarting failure nodes; (c) keeping up-to-date the
information about the super-peers and the leaf-nodes in the system.

10.2.5 Autonomic Properties
This section presents how the proposed architecture implements the following autonomic

properties: self-configuration, self-healing, and context-awareness. These autonomic
properties were presented in section 4.2. Although there exists other autonomic properties,
as described in chapter 4, our architecture implements only these properties since our focus
is to help the users to tackle the difficulties of deploying and executing an application
in the clouds, taking into account different objectives and without requiring cloud and
system administration skills from the users. Figure 10.3 shows the autonomic control loop
implemented by this architecture.

The process follows a declarative strategy. A declarative strategy allows the users to
concentrate on their objectives rather than on dealing with cloud or system administration
issues. In this case, the process starts with the users describing their applications and
constraints. Then, using a self-configuration process, the system (a) creates and configures
the whole computing environment taking into account the characteristics and the state of
the environment, i.e., the availability of other virtual machines; (b) monitors the availability
and state of the nodes through the self-healing; (c) connects the nodes taking into account
their location. In other words, using a hierarchical organization, nodes in the same cloud
joins an internal overlay network and one of them joins an external overlay network,
connecting the clouds (Figure 10.2). Nodes in the internal overlay network use internal IP
addresses for communication, which often has zero cost and a network throughput higher
than if they were using external IP addresses; finally (d) executes the applications.

In the next sections, we will explain each one of these properties in detail.

197

Chapter 10. Dohko: An Autonomic and Goal-Oriented System for Federated Clouds

Cloud users

Self-configuration

Self-healing

Context-awareness

Autonomic
properties

Application
descriptor

Submit applications’
and environment’s

requirements

Figure 10.3 – The autonomic properties implemented by our architecture

10.2.5.1 Self-Configuration

Our architecture automatically creates and configures the virtual machines in the
clouds. The configuration process is based on the concrete feature model defined by the
product engineers (Section 9.6) and on the users requirements. When the architecture
receives an application descriptor, it (a) creates the SSH keys (i.e., private and public
keys) to be used by the virtual machines, and imports them into the clouds; (b) creates
a security group with the inbound and outbound rules; (c) uses the clouds’ metadata
support to describe the VMs, allowing the users to trace the origin of each resource, and
to access them without using the architecture, if necessary. In addition, these metadata
provide support for the self-healing process; (d) selects one data center (i.e., availability
zone) to deploy the virtual machines according to the availability of VMs running in the
same zone; (e) selects the instance types; (f) configures the instances with all the software
packages; (g) starts all the required services considering the instance state. For example, if
a service requires one information (e.g., its region’s name, up-to-date IP addresses) about
the environment where it is running, it is automatically assigned by the architecture before
it starts. For instance, when an instance fails or needs to be restarted, the architecture
detects the new values of its ephemeral properties such as the IP addresses (i.e., private
and public IPs) and starts its services to use up-to-date informations.

The metadata of an instance include: (i) the user name to access the VM, (ii) the
value of the keys, (iii) the name of its virtual machine image (VMI), (iv) the owner (i.e.,
the user), (v) the name of its application manager, and (vi) the name of the feature model
used to configure it. These data help the system to support failures of both the manager
and the architecture. For example, suppose that just after having created the virtual
machines, the application manager node fails. Without these metadata, another node
could not access the instances to configure them, leaving for the system only the option
to terminate the instances, which implies a financial cost as the users will pay for the
instances without having used them.

10.2.5.2 Self-Healing

The cross-layermonitor module uses the XMPP to monitor the availability of the virtual
machines. In this case, every virtual machine runs an XMPP server, which periodically,
requests the discovery service to list the VMs running in the cloud. The returned VMs

198

Chapter 10. Dohko: An Autonomic and Goal-Oriented System for Federated Clouds

are included as the monitor contact. In this context, each VM utilizes the XMPP’s status
to report to other one its status and also to know their status. When a VM’s status
changes to off-line, its application manager waits a determined time and requests the
cloud provider to restart it. The restarting avoid unresponsive node due to its workload
state (i.e., overloaded VM) or some network issues. If the node’s status does not change
to on-line, the manager terminates it, and creates a new one. In case of the super-peer’s
failures (Figure 10.4(a)), the leaf-node with the higher uptime tries to recover the failed
super-peer. If not possible, this leaf-node leaves its network (Figure 10.4(b)) and joins the
super-peers network, becoming the new super-peer.

N1 M1

N2

N3

N4

M2

M3

M4

Cloud 1 Cloud 2

XMPP connection

Chord ring

X

X Failed super-peer

(a) The cloud’s 1 super-peer (N1) failed disconnecting the clouds 1
and 2

N2 M1

N3

N4

M2

M3

M4

Cloud 1 Cloud 2

XMPP connection

Chord ring

(b) The leaf-node N2 leaves its overlay network and joins the new
super-peer overlay network, connecting the clouds 1 and 2

Figure 10.4 – Example of super-peer failure and definition of a new super-peer

Since the application manager may completely fail during the configuration of the
virtual machines, the monitor checks if there are instances created by the architecture
without have been completely configured. If such instances do exist, it contacts their
application manager or sends them for other node to continue its configuration.

10.2.5.3 Context-Awareness

Similar to [222] and [17], by context we refer to the topology of the overlay network or
peers association, which may impact the overall system’s performance (e.g., throughput
and latency), as well as in the financial cost (e.g., network communication cost). In other
words, in the context of this work, context-awareness means the capacity of the P2P

199

Chapter 10. Dohko: An Autonomic and Goal-Oriented System for Federated Clouds

communication protocol be aware of the peers’ locations and of adapting the system’s
behavior based on the situation changes [222, 380].

As described in section 10.2, the nodes are organized into two overlay networks. This
avoids unnecessary data transfers between the clouds and often increases the network
throughput between the nodes in the internal overlay. Furthermore, it helps to decrease
the cost of the application execution, avoiding inter-cloud data transferring due to the
overlay stabilization activities (Section 2.4.3). If all nodes were organized in the same P2P
overlay network, they would have to communicate using external IP addresses (i.e., public
IP), which implies in Internet traffic cost, even if the nodes are located in the same data
center. In addition, in a high churn rate scenario (Section 2.4.2), it decreases the cost of
maintaining the distributed hash tables (DHTs) (Section 2.4.3) up-to-date since it does
not require inter-cloud communication.

10.2.6 Executing an Application in the Architecture
In order to illustrate the usage of our architecture, consider that one user is interested

in executing his/her application in the cloud (Figure 10.5). In this example, the application
manager is the node that receives the user’s demand (application descriptor), and the
worker is a node that receives a task to execute.

The process starts when the user defines an application descriptor depicted in list-
ing 10.4, with the requirements and applications. In this example, one virtual machine
with at least 1 CPU core and 1 GB of RAM memory is requested, with the Linux operating
system, and a cost of at most 0.02 USD/hour. Moreover, this instance should be created
on Amazon using the given access and secret key. Finally, the task consists of getting the
information about the CPU (Line 25 in listing 10.4).

The application descriptor is submitted to the system through the job submission
module (Figure 10.5 (1)). Then, the job submission module looks for an appropriate node
through the discovery service (Figure 10.5 (2)), and sends the application descriptor to
it (Figure 10.5 (3)).

After, the provisioning module in the application manager takes the application
descriptor and persists into its database (Figure 10.5 (4)). Next, the provisioning module
demands the feature engine module: (a) an instance type that meets the user’s constraints,
and (b) a virtual machine image (VMI). The feature engine returns the t2.micro (Table 9.3)
instance type in the us-east-1 region, and the virtual machine image ami-864d84ee. With
these data, the provisioning module: (a) selects a zone to host the virtual machine,
(b) generates the deployment descriptor (Listing 10.2), and (c) submits it to the deployment
module (Figure 10.5 (5)).

The deployment module creates a workflow (Figure 10.6) with the steps to instantiate
the VM, and enqueues it through the MQS (Figure 10.5 (6), queue: deploys). The workflow
engine executes the deployment workflow, i.e., it connects to the cloud and creates the
virtual machine (Figure 10.5 (7 and 8)). The data about the VM are enqueued in in-
stances queue (Figure 10.5 (9)). Next, the registry module dequeues the instance from
the queue instances and inserts its information into the database and into the key-value
store (Figure 10.5 (10)). After, it creates the configuration tasks to be executed in the
virtual machine (Figure 10.5 (11)). Each task comprises a host, a user name, the SSH keys,
and the scripts to be executed. After, the instance configuration module: (a) connects

200

Chapter 10. Dohko: An Autonomic and Goal-Oriented System for Federated Clouds

to the node via SSH; (b) executes the scripts; and (c) starts an instance of this architec-
ture (Figure 10.5 (12)). Then, the virtual machine, which is now executing the architecture,
notifies the application manager using the group communication module (Figure 10.5 (13)).
Finally, the manager uses the scheduler (Figure 10.5 (14)) to distribute the tasks, according
to the self-scheduling (SS) task allocation policy (i.e., self-scheduling (SS) [342]). In other
words, the scheduler sends a task to the worker, that should execute it and return its result
to the application manager. The whole process is monitored by the monitor module.

1 ---
2 name: "example"
3 user:
4 username: "user"
5 requirements:
6 cpu: 1
7 memory: 1
8 platform: "LINUX"
9 cost: 0.02

10 number-of-instances-per-cloud: 1
11 clouds:
12 cloud:
13 - name: "ec2"
14 provider:
15 name: "amazon"
16 access-key:
17 access-key: "65AA31A0E92741A2"
18 secret-key: "619770ECE1D5492886D80B44E3AA2970"
19 region: []
20 instance-types:
21 instance-type: []
22 applications:
23 application:
24 name: "cpuinfo"
25 command-line: "cat /proc/cpuinfo"
26 on-finished: "NONE"

Listing 10.4 – Application descriptor with the requirements and one appli-
cation to be executed in one cloud

10.3 Experimental Results

10.3.1 Experimental Setup
The architecture was implemented in Java 7 and it used the RabbitMQ as the MQS.

The Linux distributions: Debian and Ubuntu were used by the nodes in the clouds. In
this case, the Debian was used in the experiments executed in GCE and Ubuntu in the
ones executed in EC2. Table 10.2 presents the setup of the application.

In order to evaluate our architecture, we used the self-scheduling (SS) task allocation
policy [342] to execute parameter sweep applications. A parameter sweep application is
defined as a set T = {t1, t2, . . . , tm} of m independent tasks. In this context, independence
means that there is neither communication nor temporal precedence relations among the

201

Chapter 10. Dohko: An Autonomic and Goal-Oriented System for Federated Clouds

P
ro

vi
si

on
in

g
D

ep
lo

y

In
st

an
ce

co
nf

ig
ur

at
io

n
R

eg
is

try
Fe

at
ur

e
en

gi
ne

R
es

ou
rc

e
pr

ov
is

io
ni

ng
W

or
kf

lo
w

en

gi
ne

D
B

E
xe

cu
to

r

X
M

P
P

se
rv

er
XM

PP
cl

ie
nt

G
ro

up

co
m

m
un

ic
at

io
n

S
ch

ed
ul

er

Jo
b

ex
ec

ut
io

n

M
Q

S

Monitoring

D
is

co
ve

ry

H
ie

ra
rc

hi
ca

l P
2P

 o
ve

rla
y

Ke
y-

va
lu

e
st

or
e

C
lo

ud
 d

riv
er

Pu
sh

 m
es

sa
ge

Pu
ll

m
es

sa
ge

D
ire

ct
 a

cc
es

s

In
fr

as
tr

uc
tu

re
 la

ye
r

C
or

e
la

ye
r

C
lie

nt
 la

ye
r

E
xt

er
na

l s
ys

te
m

Jo
b

su
bm

is
si

on

An
 a

pp
lic

at
io

n
de

sc
rip

to
r (

Y
AM

L)

A
pp

lic
at

io
n

m
an

ag
er

1

3

5
D

ep
lo

ym
en

t
de

sc
rip

to
r

(X
M

L)

6
W

or
kf

lo
w

de

fin
iti

on
(J

SO
N

)

7

9
R

ef
er

en
ce

s
fo

r t
he

 V
M

s
(J

S
O

N
)

Pe
rs

is
ts

 th
e

da
ta

ab

ou
t t

he
 V

M
s

11

D
is

tri
bu

te
d

da
ta

m

an
ag

em
en

t

2
R

eq
ue

st
s

th
e

IP

ad
dr

es
s

of
 a

n
ap

pr
op

ria
te

 n
od

e

S
ub

m
its

 th
e

ap
pl

ic
at

io
n

de
sc

rip
to

r

4
A

pp
lic

at
io

n
de

sc
rip

to
r

(Y
AM

L)

10VM
s’

co

nf
ig

ur
at

io
n

ta
sk

s
W

or
ke

r

12
C

on
fig

ur
es

 th
e

VM
 a

nd

st
ar

ts
 th

e
sy

st
em

(a

rc
hi

te
ct

ur
e)

(S
SH

 c
on

ne
ct

io
n)

13
R

eg
is

te
rs

 it
se

lf
as

a

co
nt

ac
t o

f t
he

m

an
ag

er

In
st

an
ce

 o
f t

he

ar
ch

ite
ct

ur
e

14

Se
nd

s
a

ta
sk

 fo
r

th
e

id
le

 V
M

(H
TT

P
re

qu
es

t -
JS

O
N

 fo
rm

at
)

8
C

re
at

es
 th

e
VM

s

de
pl

oy
s

co
nf

ig
ur

at
io

ns
in

st
an

ce
s

F
ig
ur
e
10

.5
–
In
te
ra
ct
io
n
be

tw
ee
n
th
e
ar
ch
ite

ct
ur
e’
s
m
od

ul
e
w
he

n
su
bm

itt
ed

an
ap

pl
ic
at
io
n
to

ex
ec
ut
e

202

Chapter 10. Dohko: An Autonomic and Goal-Oriented System for Federated Clouds

Deployment workflow 2014/09/17 powered by astah*

Creates the SSH keys

Imports the SSH keys

Does the instance type
support group feature?

Creates a group

Creates the security group

Authorizes inbound and
outbound traffic

[Yes]

Creates the virtual machines

Are the virtual machines running?

Waits t seconds

[No]

[Yes]

[No]

Figure 10.6 – Workflow to create one virtual machine in the cloud

Table 10.2 – Setup of the application

Software Version
GNU/Linux x86_64 3.2.0-4-amd64
GNU/Linux x86_64 3.13.0-29-generic

OpenJDK 1.7.0_65
RabbitMQ 3.3.5
SSEARCH 36.3.6

203

Chapter 10. Dohko: An Autonomic and Goal-Oriented System for Federated Clouds

tasks. Besides that, all the m tasks execute exactly the same program changing only the
input of each task [62].

We used the SSEARCH program retrieved from www.ebi.ac.uk/Tools/sss as the param-
eter sweep application. In our tests, the SSEARCH application compared 24 sequences with
the database UniProtKB/Swiss-Prot (September 2014), available at uniprot.org/downloads,
composed of 546, 238 sequences. The query sequences are the same presented in table 7.2.
For each sequence, we defined an entry in the application descriptor, i.e., each sequence
represents a task. Listing 10.5 illustrates the definition (i.e., command line) of one task.

In this execution, we requested at least 2 cores and 6 GB of RAM memory, the
Linux operating system, and a cost of at most 0.2 USD/hour. We asked to execute the
task ssearch36 24 times. Each ssearch36 task receives as input one query sequence ($HOME-
/sequences/O60341.fasta in listing 10.5) and one database ($HOME/uniprot_sprot.fasta).
Its output should be stored in $HOME/scores/O60341_scores.txt.

We evaluated our architecture considering a multiple and a single cloud scenarios,
and different users’ requirements. The cloud providers were Google Compute Engine
(GCE) and Elastic Compute Cloud (EC2). Table 10.3 presents the users’ constraints and
table 10.3 the instance types that were selected based on these requirements.

Each experiment was repeated three times, and the mean was taken.

1 ---
2 name: "ssearch-app"
3 user:
4 key: []
5 username: "user"
6 requirements:
7 cpu: 2
8 memory: 6
9 platform: "LINUX"

10 cost: 0.2
11 clouds:
12 cloud: []
13 applications:
14 application:
15 name: "ssearch36"
16 command-line: "ssearch36 -d 0 ${query} ${database} >> ${score_table}"
17 file:
18 - name: "query"
19 path: "$HOME/sequences/O60341.fasta"
20 generated: "N"
21 - name: "database"
22 path: "$HOME/uniprot_sprot.fasta"
23 generated: "N"
24 - name: "score_table"
25 path: "$HOME/scores/O60341_scores.txt"
26 generated: "Y"
27 ...
28 on-finished: "TERMINATE"

Listing 10.5 – An application descriptor with one SSEARCH description to
be executed in the cloud

204

http://www.ebi.ac.uk/Tools/sss
http://uniprot.org/downloads

Chapter 10. Dohko: An Autonomic and Goal-Oriented System for Federated Clouds

Table 10.3 – Users’ requirements to execute the SSEARCH in the cloud

Req. # # vCPU Memory (GB) Cost ($/hour) # VM Cloud provider

2 6 0.2 51 2 6 0.2 10 EC2

2 6 0.2 52 2 6 0.2 10 GCE

4 6 1.0 53 4 6 1.0 10 EC2

4 6 1.0 54 4 6 1.0 10 GCE

4 6 1.0 55 4 6 1.0 10 EC2 and GCE

Table 10.4 – Instance types that met the users’ requirements to execute the SSEARCH

Req. # Instance # vCPU Memory Cost Family Cloud
type (GB) (USD/hour) type provider

1 m3.large 2 7.5 0.14 General EC2
2 n1-standard-2 2 7.5 0.14 Memory GCE
3 c3.xlarge 4 7.5 0.21 Compute EC2
4 n1-standard-4 4 15 0.28 General GCE

c3.xlarge 4 15 0.21? General EC25 n1-standard-4 4 15 0.28 General GCE

3 c3.xlarge and 2 n1-standard-4 virtual machines

10.3.2 Scenario 1: application deployment
This experiment aims to measure the deployment time, i.e., the time to create and to

configure the virtual machines. The wallclock time was measured including: (a) the time
to instantiate the VMs in the cloud provider; (b) the time to download and to configure
all the software packages (e.g., Java, RabbitMQ, SSEARCH, among others); and (c) the
time to start the architecture. By default, the architecture performs the configurations in
parallel, with the number of parallel processes defined in a parameter of the architecture.
In this case, the maximum of 10 configurations were done in parallel.

Figure 10.7 presents the deployment time for the instance types listed in table 10.4.
As can be seen, in Amazon, increasing the number of virtual machines to deploy from 5
to 10 decreased the deployment time. This occurs because the virtual machines of each
experiment are homogeneous, which enables us to request multiple instances at the same
time. Similar behavior has already been observed by other works in the literature [167, 267].
On the other hand, in Google, the deployment time is proportional to the number of
virtual machines.

In our experiment, the deployment time of 5/10 VMs took at most 10 minutes. With
this, the applications can start across multiple VMs and multiple clouds, without requiring
from users cloud and system administration skills, and also without needing the use
of virtual machine image (VMI).

The 10 virtual machines of the instance type: n1-standard-4 were deployed in a multiple
cloud scenario, since GCE imposes a limit of 6 virtual machines of this type in each region.

205

Chapter 10. Dohko: An Autonomic and Goal-Oriented System for Federated Clouds

In this case, the system allocated 5 VMs in the U.S. and 5 in Europe.

514

432
468

549

502

441
414

515

0

100

200

300

400

500

600

m3.large
(EC2)

n1−standard−2
(GCE)

c3.xlarge
(EC2)

n1−standard−4
(GCE)

C
on

fig
ur

at
io

n
tim

e
(s

ec
on

ds
)

5 instances

10 instances

Figure 10.7 – Configuration time of the virtual machines on the clouds

10.3.3 Scenario 2: application execution
Figure 10.8 presents the wallclock execution time for the four standalone experi-

ments (i.e., requirements 1 to 4 of table 10.3), and table 10.5 their total financial cost.
We can see that the instances that belong to the same family type have almost the
same performance. The lower execution time (89 seconds) was achieved by the instance
type c3.xlarge (40 vCPU cores) with a cost of 2.10 USD. Considering that the application
does not take a long time to finish neither it demands many computing resources, this
represents a high cost. If the users wait 33% more (43 seconds), they can pay 50% less (1.05
USD).

In figure 10.9, we present the execution time for a multi-cloud scenario. In this case,
for the requirement of 5 instances (i.e., requirement 5 of table 10.3), 3 virtual machines
were used from EC2 and 2 instances from GCE. If we compare figure 10.8 with figure 10.9,
we can see that the execution time increased almost 34%. One reason for this difference
is probably the network throughput between the clouds of different providers, since we
do not observe such overhead in the scenario with ten n1-standard-4 virtual machines
distributed across two GCE’s clouds.

Figure 10.10 presents the total time (i.e., deployment + execution time) for the
experiments. In this figure, we can observe the impact of deploying 10 virtual machines
has in the total execution time. In this case, the deploy time of 5 virtual machines was
better than the deploy time of 10 virtual machines.

10.3.4 Scenario 3: application deployment and execution with
failures

To evaluate the self-healing property of our architecture, we simulated two types of
failures. In the first case, we stopped the application manager just after it had received the

206

Chapter 10. Dohko: An Autonomic and Goal-Oriented System for Federated Clouds

276

188

249

170

132

89

135

93

0

100

200

300

m3.large
(EC2)

n1−standard−2
(GCE)

c3.xlarge
(EC2)

n1−standard−4
(GCE)

E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

5 instances

10 instances

Figure 10.8 – SSEARCH’s execution time on the clouds to compare 24 genomics query se-
quences with the UniProtKB/Swiss-Prot database

Table 10.5 – Financial cost for executing the application in the cloud considering different
requirements (Table 10.3)

Instance # Instances Wallclock time Total cost
type (seconds) (USD)
m3.large 5 276 0.7
m3.large 10 188 1.4

n1-standard-2 5 249 0.7
n1-standard-2 10 170 1.4

c3.large 5 132 1.05
c3.large 10 89 2.10

n1-standard-4 5 135 1.4
n1-standard-4 10 93 2.94?

c3.large 3 0.63
n1-standard-4 2 131 0.53]

c3.large 5 1.05
n1-standard-4 5 119 1.40[

?total cost: 2.96 (USD) (1.4 (U.S.) + 1.54 (Europe))
]total cost: 1.16 USD
[total cost: 2.45 USD

207

Chapter 10. Dohko: An Autonomic and Goal-Oriented System for Federated Clouds

131

119

0

50

100

150

c3.xlarge (EC2) and
n1−standard−4 (GCE)

E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

5 instances

10 instances

Figure 10.9 – Execution time of the SSEARCH application to compare 24 genomics query
sequences with the UniProtKB/Swiss-Prot database in a multi-cloud scenario

519

442
473

559

507

451
419

525

0

100

200

300

400

500

600

m3.large
(EC2)

n1−standard−2
(GCE)

c3.xlarge
(EC2)

n1−standard−4
(GCE)

C
on

fig
ur

at
io

n
an

d
ex

ec
ut

io
n

tim
e

(s
ec

on
ds

)

5 instances

10 instances

Figure 10.10 – Deployment and execution time of the experiments

208

Chapter 10. Dohko: An Autonomic and Goal-Oriented System for Federated Clouds

tasks to execute. In the second case, we executed a process that, at each minute, selected
and stopped a worker. These failures were evaluated in a multi-cloud scenario (10 virtual
machines – 5 c3.xlarge and 5 n1-standard-4). Figure 10.11 presents the execution time for
each failure scenario.

The failure of the application manager has a high impact in the total execution time,
however, it is low than of the workers. This is mostly occurs because worker’s failures,
demands a time from the application manager to detect it and to reassign the task of the
failed worker to another one. Moreover, since multiple workers failed, this highly impacted
the total execution time compared with both the failure-free scenario and the failure of
the application manager. Moreover, when the application manager fails, the workers can
still continue the execution of their tasks.

119

572

240

Failure−free

Workers

Application
manager

0 100 200 300 400 500 600
Execution time (seconds)

Figure 10.11 – Execution time of the application on the clouds with three different type of
failures

10.4 Related Work
Over the years, different cloud architectures have been proposed in the literature, with

different objectives. We discussed some of these proposals in section 3.5 and chapter 4.
In table 10.6, we present a comparative view of important features of these architectures.
The architecture is presented in the first column. The second column presents if the
architecture implements self-configuration, which means that it can select and configure
the resources automatically. The third column presents if the system implements failure
recovery policy. The fourth and the fifth columns show if the architectures are context-
aware and if they implement self-optimization. Context-aware in this case, means if
nodes are organized considering their location. The cloud model of the architecture is
presented in the sixth column. Finally, the last column presents if the system can work in
a multi-cloud environment.

As can be seen, half of the works implement self-configuration properties. In this case,
the developers specify their needs in a service manifest, and the architecture automatically
selects a cloud provider and deploys the applications. Moreover, self-healing property is
implemented by some of the works. For example, Snooze [111] employs a hierarchical
resource management, and uses multicast to locate the different nodes (e.g., group managers,

209

Chapter 10. Dohko: An Autonomic and Goal-Oriented System for Federated Clouds

local controllers). Similar to us, CometCloud [194] organizes the nodes using a P2P overlay
to connect and to detect failures.

Only two architectures [112, 194] deploy the applications taking into account the
location of the resources (i.e., nodes) where the application will run. For example,
OPTMIS [112] deploys the applications taking into account the energy consumption of the
cloud as well its carbon footprint. Another example is CometCloud [194]. CometCloud
distributes the tasks considering three security domain level. In this case, there is a master
that tries to send the tasks to trusted workers, i.e., workers that are running in a private
cloud. Tasks are sent to untrusted workers (i.e., workers that are running in a public
cloud) only when the SLA violation ratio exceeds a threshold.

Moreover, the majority of the architectures, implements self-optimization property to
help the developers on meeting the QoS constraints of their native cloud applications [218,
278, 296, 300] or to minimize power consumption [111].

Finally, only two architectures target IaaS cloud, and the other ones platform-as-a-
service (PaaS) cloud.

CometCloud [194] is the closest work to ours. Our work differs from it in the following
ways. First, we consider that self-configuration is an important feature to support the
users on running their applications in the clouds, since most of the cloud potential users do
not have cloud and/or system administration skills. Our self-configuration relies on feature
models (FMs), described in chapter 9, which enables a declarative strategy. In CometCloud,
there is not self-configuration. Second, we use a hierarchical P2P overlay to organize the
resources, which helps us to reduce the cost of communication between the clouds. In
CometCloud, the resources are organized in the same P2P overlay, and it uses different
security domains to distribute the tasks.

Table 10.6 – Comparison of the cloud architectures considering their autonomic properties

Architecture SC SH CA SO Cloud Model Multiple clouds
Cloud-TM [300] No Yes No Yes PaaS Yes

JSTaaS [218] Yes No No Yes PaaS Yes
mOSAIC [278] Yes No No Yes PaaS Yes
Reservoir [296] Yes Yes No Yes PaaS Yes
OPTIMIS [112] Yes No Yes Yes PaaS Yes
FraSCaTi [317] Yes No No No PaaS Yes
TClouds [355] No Yes No No PaaS Yes

COS [165] No No No Yes PaaS No
Snooze [111] No Yes No Yes IaaS No

CometCloud [194] No Yes Yes Yes IaaS Yes
This work Yes Yes Yes No IaaS Yes

self-configuration (SC), self-healing (SH), context-awareness (CA), self-optimization (SO)

210

Chapter 10. Dohko: An Autonomic and Goal-Oriented System for Federated Clouds

10.5 Summary
In this chapter, we presented and evaluated an IaaS cloud architecture. Our architecture

enables a declarative approach, where the users describe their applications and submit it
to the system. Then, the system automatically creates and configures the virtual machines
in one or multiple clouds, taking into account the users’ constraints; and executes the
applications. In addition, the architecture implements self-healing strategies to support
failures of the resources.

In our experiments, we could execute the SSEARCH to compare up to 24 query
sequences with the database UniProtKB/Swiss-Prot (September 2014) in two different
cloud providers and five different scenarios.

211

Chapter 11

Conclusion

Contents
11.1 Overview . 212

11.2 Summary of the Contributions 213

11.3 Threat to Validity . 217

11.4 Perspectives . 218

11.5 Summary . 219

11.1 Overview

In the 1960s, time-sharing pushed up the development of computer networks [152].
Nowadays, cloud computing is being seen as the new time-sharing [71] due to characteristics
such as on-demand, pay-per-usage, and elasticity.

In addition, it is pushing down the cost of the users pay for having their own large-scale
computing infrastructures, and removing the need for up-front investments to establish
these computing infrastructures. In other words, cloud computing has enabled a utility
computing model, offering computing, storage, and software as a service.

The utility model yields the notion of resource democratization and provides the
capability for a pool of resources accessible to anyone on the Internet in nearly real-time.
This notion is the main difference between cloud computing and other paradigms (e.g.,
grid computing systems) that have tried to deliver computing resources over the Internet
before cloud [388]. Besides that, clouds offer services without knowing who the users are
and unaware of the technology they use to access the services. Finally, cloud computing
has also gained popularity since it can help data centers to reduce monetary costs and
carbon footprint.

However, considering the cloud users and the cloud data center viewpoints, we identified
four major concerns related to the cloud: (a) the high amount of energy consumed by
cloud data centers; (b) the difficulty to select an appropriate cloud to execute applications

212

Chapter 11. Conclusion

at reduced cost; (c) the difficulty to configure cloud resources in an appropriate way; and
(d) the difficulty to model different clouds in a uniform way.

In this context, this thesis has focused on federated clouds. Particularly, we have
set out one general goal:“ to investigate the use of federated clouds to achieve different
objectives taking into account multiple users’ profiles, i.e., providers, developers, and
both experienced (e.g., system administrators) and inexperienced cloud users”. This main
goal was broken down into four objectives delineated in chapter 1. In order to achieve
these objectives, we, firstly, presented the state-of-the-art in large-scale distributed sys-
tems (Chapter 2), which included cluster, grid, P2P, and cloud. The descriptions of these
systems were followed by some important and related concepts such as virtualization (Sec-
tion 3.1.1), MapReduce (Section 3.1.3), autonomic computing (Chapter 4), and green
computing (Chapter 5). Furthermore, a review of IaaS cloud architectures (Section 3.5)
and autonomic computing systems (Section 4.4) were also presented.

We observed a convergence between grid, P2P, and cloud computing systems. On the
one hand, many grid environments have employed virtualization techniques to provide
customized execution environments and to increase resource control [4, 310, 368]. More-
over, some grid systems have relied on P2P techniques to deal with large-scale resource
sharing [123]. On the other hand, clouds have started to make use of grid concepts such
as resource federation [56] to increase cloud’s capacity on-demand, to increase resource
availability, and to help the users (i.e., cloud providers and cloud users) on decreasing
financial costs. As a result, the complexity of managing, using, and developing for these
environments increased. In such context, autonomic computing has taken place. Auto-
nomic computing systems can autonomously optimize themselves according to the users’
objectives [162], adapting to changes in the environment.

In the domain of large-scale distributed systems, autonomic computing systems have be
used to decrease power consumption [239, 298], to meet performance guarantees [105, 272],
and to deal with failures [111]. Nevertheless, the majority of the autonomic systems
available in the literature has addressed only one autonomic property of the eight prop-
erties (Section 4.2) proposed by Horn [162]. Furthermore, it has relied on a centralized
architecture, which limits the systems’ scalability.

After the state-of-the-art, we presented our contributions, which are summarized in
the next section.

11.2 Summary of the Contributions
This work has succeeded in achieving the objectives pointed out in the Introduction

and in addressing the issues already presented all over this document. In this section, we
describe the contributions of this doctoral thesis.

A power-aware server consolidation for federated clouds
In chapter 6, we presented the first contribution of this thesis: a server consolidation

strategy to reduce power consumption on cloud federations, which tackles concern (a)
cited in section 11.1. Our server consolidation strategy aims to reduce power consumption
on cloud federations while trying to meet QoS requirements. We assumed that clouds have

213

Chapter 11. Conclusion

a limited power consumption defined by a third party agent. In this case, we addressed
applications’ workloads, considering the costs to turn servers on/off and to migrate the vir-
tual machines in the same data center and between different data centers [215]. Simulation
results showed that our strategy could reduce up to 46% of the power consumption, with
a slowdown of 22% in the execution time. Similar to other works [319, 375, 387], the
experiments were realized through the CloudSim [58] simulator with two clouds and 400
simultaneous virtual machines. Altogether, the results demonstrated that cloud federation
can provide an interesting solution to deal with power consumption, by using the computing
infrastructure of other clouds when a cloud runs out of resources or when other clouds have
power-efficient resources. Even though we achieved very good results with our strategy, we
noticed that other variables should also be considered such as the workload type, the data
center characteristics (i.e., location, power source), and the network bandwidth as these
variables may impact the whole power consumption of a data center. In addition, since the
CPU no longer dominates the nodes’ power consumption [249], the power consumption of
other components (e.g., memory, disks) must be taken into account. Moreover, resource
heterogeneity should also be considered, as data centers usually comprise heterogeneous
resources that can have different power consumption and curves. This requires energy and
performance-aware load distribution strategies. We leave these extensions for future work.

An architecture to execute native cloud applications on a vertical
cloud federation

In chapter 7, we proposed and evaluated an architecture to execute a native cloud
application on a vertical cloud federation (Section 3.2.3.2) at zero-cost [214], which tackles
concern (b) presented in section 11.1. The architecture used a hierarchical and distributed
management strategy to allow the developers to execute their applications using services
offered by two different types of cloud providers, i.e., PaaS and IaaS clouds (Section 3.2.1).
In our architecture, there is a cloud coordinator, several cloud masters, and slaves. The users
submit their applications to the cloud coordinator, which sends them to the cloud masters.
Then, the cloud masters distribute the tasks to the slaves following a publish/subscribe
model. The application was a MapReduce version of a biological sequence comparison
application, which was also implemented in this work. Experimental results showed
that (i) using five public clouds, the proposed architecture could outperform up to 22.55%
the execution time of the best stand-alone cloud execution; (ii) the execution time was
reduced from 5 hours and 44 minutes (SSEARCH sequential tool) to 13 minutes (our
cloud execution). This result is comparable to the ones achieved with biological sequence
comparison executions in multi-core clusters and Cell/BEs (Table 7.3 on page 127); and
(iii) the federation could enable the execution of huge cloud-aware application at no
expense and without being tied to any cloud provider. In this experiment, we executed
biological sequence comparisons. Although we could execute a huge application in a
vertical cloud federation, our architecture had some issues such as: (i) the usage of a
centralized coordinator to distribute the tasks, and (ii) the lack of fault-tolerance strategies
for both cloud coordinator and cloud masters. The first issue limited the scalability of
the architecture and its usage in a dynamic environment. In addition, the failure of the
coordinator required the re-execution of the whole application, as the architecture did

214

Chapter 11. Conclusion

not provide a way to discover the tasks distributed to each cloud master. In this case,
the masters continued the execution of their tasks, but the results are inaccessible for the
users.

Besides that, even though MapReduce applications are computing infrastructure
agnostic, it became clear for us that designing and developing applications for different
clouds represent a difficult task even for experienced cloud developers, due to the various
constraints and resource types offered by the clouds, i.e., clouds’ heterogeneity. Hence, at
this point, we decided to investigate: (a) the feasibility of the use of a cloud environment by
ordinary users to execute cloud-unaware applications, without needing to re-engineering the
applications; and (b) models that may help the users on dealing with cloud heterogeneity,
offering a level of abstraction that can be understood by different user profiles and that
can also promote reuse.

Excalibur
In chapter 8, we proposed and evaluated a cloud architecture that aims to: (i) help

unskilled cloud users on executing their applications on the cloud; (ii) scale the applications
requiring minimal users’ intervention; and (iii) try to meet the users objectives such as
performance and reduced financial cost [217]. To achieve such goals and also to tackle the
concern (c) cited in section 11.1, our architecture sets up the whole cloud environment,
and it tries to speed up the execution of the applications by implementing an auto-scaling
strategy. Our auto-scaling targets applications that comprise independent tasks, although
the applications were developed to execute sequentially. The independent tasks are identi-
fied based on high-level descriptions provided by the user. We evaluated the architecture
executing a genomics workflow on Amazon EC2, considering two scenarios. In the first
scenario, the users selected the resources, whereas in the second one, our architecture, based
on historical data, automatically selected the resources. The experiments showed that our
auto-scaling strategy could outperform the execution time of the resource chosen by the
users,dynamically scaling the applications up to 11 virtual machines (VMs). Moreover,
it also helped on reducing the monetary cost in 84%. However, this architecture has the
following issues: (i) the users had to select the resources in the first execution of the
applications; (ii) it assumed an environment where the constraints associated to a resource
were the same between all the clouds belonging to a cloud provider. Nevertheless, the
clouds of a provider are commonly heterogeneous.

A software product line engineering method for resource selection
and configuration on federated clouds

Motivated by the difficulties which we have observed when developing for multiple
clouds and by the complexity tasks required to configure a real cloud environment, as
explained in our two previous contributions, we decided to investigate models that would
tackle these problems. Particularly, we were interested in models that would (i) support
the description of clouds’ services independent of cloud providers; (ii) enable automatic
resources provisioning on multiple clouds, taking into account temporal and functional
dependencies between the resources, thus leaving the environments in a consistent state;

215

Chapter 11. Conclusion

(iii) help on achieving the goals (i.e., functional and non-functional requirements) of different
user profiles, i.e., cloud experts, system administrators, developers, and novice users; and
(iv) provide a level of abstraction suitable for these different kinds of users. To the best
of our knowledge, the literature lacked such models. In order to tackle these problems,
in chapter 9, we used a software product line (SPL) engineering method. Using SPL, we
defined a feature-based variability model for the cloud configurations. Using this model,
we were able to define an architecture and to derive appropriate products. By employing
an SPL engineering method, we could capture the knowledge of creating and configuring
cloud computing environments in the form of reusable assets. Moreover, non-technical
users understand feature models, as they refer to domain concepts. In the context of this
thesis, a valid product is a cloud computing environment (i.e., virtual machine (VM) and
applications) that meets the users’ requirements, where the requirements can be either
based on high or low-level descriptions.

While high-level descriptions include the number of CPU cores, the operating system,
the minimal amount of RAM memory, and the maximum financial cost per hour, low-
level descriptions include the virtualization type, the sustainable performance, the disk
technology, among others. Besides that, a cloud computing environment must also match
cloud’s configuration constraints and applications dependencies. From the users’ viewpoint,
using an SPL engineering method led to customizable cloud environments at lower financial
costs. In addition, as various assets were reused, it increased reliability and correctness [92].
Thus, in particular, our contributions in this part are the following: (i) the use of extended
feature model (EFM) (Section 9.4) with attributes to describe IaaS cloud environments.
The feature model (FM) handles the commonalities and variabilities at the IaaS layer,
enabling the description of the whole computing environment (i.e., hardware and software)
independent of cloud provider and without requiring the usage of virtual machine image;
(ii) a declarative and automated strategy that allows resource selection and configuration
on a multi-cloud scenario; (iii) a domain configuration knowledge mapping the feature
models into reusable assets; (iv) the automated deployment of the computing environment
on the clouds.

We also developed a prototype to evaluate our method considering two different
cloud providers. In this prototype, we used Choco [178], an off-the-shelf constraint
satisfaction problem (CSP) solver, to implement our feature-based model and to select
the configurations that meet the users’ objectives. Experimental results showed that
using the proposed method the users could get an optimal configuration with regard to
their objectives without needing to know the constraints and variabilities of each cloud.
Moreover, our model enabled application deployment and reconfiguration at runtime in a
federated cloud scenario, without requiring the usage of virtual machine image (VMI). The
proposed SPL engineering method was used to implement an autonomic system, which
tackles the concerns (c) and (d) pointed out in section 11.1.

Dohko
In chapter 10, we proposed and evaluated our last contribution: an autonomic and

goal-oriented system for federated clouds. Our autonomic system aims to tackle the issues
identified in our second contribution (Chapter 7) and to enable a declarative strategy to
execute the users’ applications on multiple clouds, following the SPL engineering method

216

Chapter 11. Conclusion

described in the previous section and in chapter 9. Our system implements the following
autonomic properties: self-configuration, self-healing, and context-awareness. Moreover,
it relies on a hierarchical P2P overlay [216] to deal with failures and to reduce inter-
cloud communication. By employing a declarative strategy, the system could execute a
biological sequence comparison application in a single and in a federated cloud scenario,
requiring minimal users’ intervention to select, to deploy, and to configure the whole cloud
environment. In particular, our system tackled the lack of middleware prototypes that can
support different scenarios when using services from multiple IaaS clouds. Moreover, it met
the various functional requirements identified for multiple cloud-unaware systems [277]
such as: (i) it provides a way to describe functional and non-functional requirements
through the usage of a product line engineering (PLE) method (Chapter 9); (ii) it can
aggregate services from different clouds; (iii) it provides a homogeneous interface to access
services of multiple clouds; (iv) it allows the service selection of the clouds; (v) it can deploy
its components on multiple clouds; (vi) it provides automatic procedures for deployments;
(vii) it utilizes an overlay network to connect and to organize the resources; (viii) it does
not impose constraint for the connected clouds.

One issue of our system is the lack of a self-optimization strategy, since it does not focus
on task scheduling. We leave this extension as our future work. The software prototype is
available at dohko.io.

11.3 Threat to Validity
There are some concerns related to the validity of our contributions described in the

second part of this doctoral thesis. First, the systems and feature models illustrated in this
work were built based on our experience in developing, deploying, and configuring IaaS
cloud services, as well as in administrating computing environments. Seconds, these
models were limited to the features released by the cloud providers. Third, since our
method relied on benchmarks to gather the qualitative attributed of the resources, small
variations in their result values might occur mostly for two reasons: (i) we cannot control
the allocation of the physical resources to the virtual ones and (ii) clouds’ workload
may change over time, as well as the cloud providers’ objectives. Fourth, due to the
evolution of cloud computing, some resources, clouds or even providers may appear
and/or disappear. Thus, the experiments and concrete feature models presented in
this thesis might not be valid anymore over the long term. However, this does not
invalidate our abstract feature model (Figure 9.6 on page 163), it is independent of
cloud provider. Moreover, our architecture (Figures 10.1 and 10.5) is not invalidated
too. Finally, although the examples deal with public clouds such as EC2, GCE, and
Heroku, our contributions are not limited to these clouds, as the cloud platforms follow
the same principles employed by these cloud providers. Examples of cloud platforms
include OpenStack (openstack.org), OpenNebula [248], CloudStack (cloudstack.apache.org),
Eucalyptus [263], and Nimbus [186]

217

http://dohko.io
http://openstack.org
http://cloudstack.apache.org

Chapter 11. Conclusion

11.4 Perspectives
In this section, we present some future research directions for this work. They can

be categorized as follows: (a) energy management models for multiple clouds; (b) cloud
computing management and opportunistic computing; (c) supporting other autonomic
properties; and (d) improved mechanisms to support the developers on writing self-adaptive
applications.

Energy management models for multiple clouds: it should be interesting to consider
a dynamic multi-cloud scenario, where the objectives and incentives of the providers change
over time. In this case, we intend to investigate strategies based on game theory to model
the different interactions among cloud entities (e.g., users, providers), taking into account
selfish behaviors and conflicts. Moreover, we want to extend our power-aware strategy to
take into consideration other variables as the type of power source, data center location,
and carbon neutrality. For example, carbon neutrality can be achieved by purchasing
carbon credits from the providers on the federation, distributing the workload across
the clouds with both low electricity cost and carbon footprint, and/or using workload
consolidation to reduce the number of underutilized resources.

Cloud computing management and opportunistic computing: we also intend to
combine the computational power of mobile devices with the cloud in such a way that
applications autonomously decide which code can be performed locally and which one
should be offloaded to the cloud. This can be used to reduce financial cost or to reduce
power consumption of both portable devices and data center, as well as to maximize the
usage of mobile devices. A difficulty may be the coordination and distribution of the work
for the devices. In this case, a P2P coordination model can be employed together with
the usage of a product line engineering method, as the one described in the chapter 9, to
deal with functional and non-functional dependencies. Moreover, distributed resources
might be aggregated to create micro-clouds1 in order to provide enough resource to an
application.

Supporting other autonomic properties: we plan to implement self-optimization and
to extend our context-awareness implementation to consider other reconfiguration scenarios
at runtime, according to the characteristics of the applications and the appearance of new
clouds or resources. In addition, we also intend to investigate the implementation of task
scheduling strategies such as work stealing [177, 303] in cloud federation environments.

Improved mechanisms to support the developers on writing self-adaptive ap-
plications: although software product line helps on improving maintainability of an
application, there is still a needing for tools and frameworks to support the development
of self-adaptive applications for large-scale environments. In this case, domain-specific
languages might be developed. Today, we have Class feature reference (Clafer) [25] that
allows the domain engineers to validate the domain models and to generate the represen-
tation of the models to be reasoned by some solvers such as Alloy [169] and Choco [178].

1Amicro-cloud represents the usage of commodity computing infrastructures to aggregate computational
capacity at a low financial cost. In this scenario, the clouds are similar to a peer on a P2P system.

218

Chapter 11. Conclusion

Thus, similar strategy might be created to validate the development of product lines, and
to support autonomic applications’ decisions at runtime.

11.5 Summary
Cloud represents a computing model for providing high performance computing as

utility, promoting the cooperation among different organizations and also to push down
the costs. We expect that studies, such as the ones presented in this thesis, contribute
for the development of cloud’s systems, i.e., to the development of the metacomputer,
approximating to the utility computing concept envisioned by McCarthy [132], Smarr and
Catlett [326], and Dertouzos [99].

219

Bibliography

[1] Moustafa AbdelBaky, Manish Parashar, Hyunjoo Kim, Kirk E. Jordan, Vipin
Sachdeva, James Sexton, Hani Jamjoom, Zon-Yin Shae, Gergina Pencheva, Reza
Tavakoli, and Mary F. Wheeler. Enabling high-performance computing as a service.
Computer, 45(10):72–80, 2012. (Cited on pages 129 and 141)

[2] Karl Aberer. P-Grid: A self-organizing access structure for P2P information systems.
In 9th International Conference on Cooperative Information Systems, pages 179–194,
2001. (Cited on page 25)

[3] Ajith Abraham and Lakhmi Jain. Evolutionary multiobjective optimization. In Ajith
Abraham, Lakhmi Jain, and Robert Goldberg, editors, Evolutionary Multiobjective
Optimization, pages 1–6. Springer, 2005. (Cited on page 152)

[4] Sumalatha Adabala, Vineet Chadha, Puneet Chawla, Renato Figueiredo, José Fortes,
Ivan Krsul, Andrea Matsunaga, Mauricio Tsugawa, Jian Zhang, Ming Zhao, Liping
Zhu, and Xiaomin Zhu. From virtualized resources to virtual computing grids: The
in-vigo system. Future Generation Computer Systems, 21(6):896–909, 2005. (Cited
on page 213)

[5] Keith Adams and Ole Agesen. A comparison of software and hardware techniques
for x86 virtualization. In 12th International Conference on Architectural Support
for Programming Languages and Operating Systems, pages 2–13, 2006. (Cited on
page 39)

[6] G. Agosta, M. Bessi, E. Capra, and C. Francalanci. Dynamic memoization for energy
efficiency in financial applications. In International Green Computing Conference
and Workshops, pages 1–8, 2011. (Cited on pages 91 and 109)

[7] A.M. Aji andWu chun Feng. Optimizing performance, cost, and sensitivity in pairwise
sequence search on a cluster of PlayStations. In IEEE International Conference on
BioInformatics and BioEngineering, pages 1–6, 2008. (Cited on pages 115 and 127)

[8] M. Albano, L. Ricci, and L. Genovali. Hierarchical P2P overlays for DVE: An
additively weighted Voronoi based approach. In International Conference on Ultra
Modern Telecommunications Workshops, pages 1–8, 2009. (Cited on page 27)

[9] André Almeida, Everton Cavalcante, Thais Batista, Nélio Cacho, Frederico Lopes,
Flavia Delicato, and Paulo Pires. Dynamic adaptation of cloud computing applica-
tions. In 25th International. Conference on Software Engineering and Knowledge
Engineering, pages 67–72, 2013. (Cited on pages 179, 184, and 187)

220

Bibliography

[10] Amazon. Summary of the Amazon EC2 and Amazon RDS service disruption in the
US east region. aws.amazon.com/message/65648, 2011. Last accessed in July 2014.
(Cited on page 48)

[11] Amazon. Summary of the AWS service event in the US east region. aws.amazon.
com/message/67457, 2012. Last accessed in July 2014. (Cited on page 48)

[12] David P. Anderson, Jeff Cobb, Eric Korpela, Matt Lebofsky, and Dan Werthimer.
SETI@Home: An experiment in public-resource computing. Communications of the
ACM, 45(11):56–61, 2002. (Cited on pages 15 and 34)

[13] Sergio Andreozzi, Natascia De Bortoli, Sergio Fantinel, Antonia Ghiselli, Gian Luca
Rubini, Gennaro Tortone, and Maria Cristina Vistoli. GridICE: A monitoring service
for grid systems. Future Generation Computer Systems, 21(4):559–571, 2005. (Cited
on page 53)

[14] Stephanos Androutsellis-Theotokis and Diomidis Spinellis. A survey of peer-to-peer
content distribution technologies. ACM Computing Surveys, 36(4):335–371, 2004.
(Cited on pages 15, 21, 23, 24, 25, 28, and 34)

[15] Samuel V Angiuoli, Malcolm Matalka, Aaron Gussman, Kevin Galens, Mahesh
Vangala, David R Riley, Cesar Arze, James R White, and W Florian Fricke. CloVR:
A virtual machine for automated and portable sequence analysis from the desktop
using cloud computing. BMC Bioinformatics, 12(1):1–15, 2011. (Cited on pages 132,
141, and 143)

[16] Tomonori Aoyama and Hiroshi Sakai. Inter-cloud computing. Business & Information
Systems Engineering, 3(3):173–177, 2011. (Cited on pages 52 and 53)

[17] Knarig Arabshian and Henning Schulzrinne. Distributed context-aware agent ar-
chitecture for global service discovery. In 2nd International Workshop on Semantic
Web Technology For Ubiquitous and Mobile Applications, 2006. (Cited on page 199)

[18] Danilo Ardagna, Elisabetta Di Nitto, Giuliano Casale, Dana Petcu, Parastoo Mo-
hagheghi, Sébastien Mosser, Peter Matthews, Anke Gericke, Cyril Ballagny, Francesco
D’Andria, Cosmin-Septimiu Nechifor, and Craig Sheridan. MODAClouds: A model-
driven approach for the design and execution of applications on multiple clouds. In
ICSE Workshop on Modeling in Software Engineering, pages 50–56, 2012. (Cited on
page 60)

[19] Danilo Ardagna, Barbara Panicucci, Marco Trubian, and Li Zhang. Energy-aware au-
tonomic resource allocation in multitier virtualized environments. IEEE Transactions
on Services Computing, 5(1):2–19, 2012. (Cited on pages 86, 88, and 113)

[20] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D. Joseph, Randy H.
Katz, Andrew Konwinski, Gunho Lee, David A. Patterson, Ariel Rabkin, Ion
Stoica, and Matei Zaharia. Above the clouds: A Berkeley view of cloud computing.
Technical Report UCB/EECS-2009-28, EECS Department, University of California,
Berkeley, February 2009. URL www.eecs.berkeley.edu/Pubs/TechRpts/2009/

221

aws.amazon.com/message/65648
aws.amazon.com/message/67457
aws.amazon.com/message/67457
www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-28.html
www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-28.html
www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-28.html

Bibliography

EECS-2009-28.html. Last accessed in January 2014. (Cited on pages 16, 31, 35,
and 54)

[21] James Aspnes and Gauri Shah. Skip Graphs. In 14th Annual ACM-SIAM Symposium
on Discrete Algorithms, pages 384–393, 2003. (Cited on page 25)

[22] Arutyun I. Avetisyan, Roy Campbell, Indranil Gupta, Michael T. Heath, Steven Y.
Ko, Gregory R. Ganger, Michael A. Kozuch, David O’Hallaron, Marcel Kunze,
Thomas T. Kwan, Kevin Lai, Martha Lyons, Dejan S. Milojicic, Hing Yan Lee,
Yeng Chai Soh, Ng Kwang Ming, Jing-Yuan Luke, and Han Namgoong. Open Cirrus:
A global cloud computing testbed. Computer, 43(4):35–43, 2010. (Cited on pages 69,
70, and 74)

[23] Dan Azevedo and Andy Rawson. Measuring data center productivity. Technical
report, AMD Metrics and Measurements Work Group, 2008. URL bit.ly/1ynfWzp.
Last accessed in April 2014. (Cited on page 99)

[24] Lee Badger, Tim Grance, Robert Patt-Corner, and Jeff Voas. Cloud computing
synopsis and recommendations. Technical Report NIST Special Publication 800-146,
National Institute of Standards and Technology, May 2012. URL csrc.nist.gov/
publications/nistpubs/800-146/sp800-146.pdf. Last accessed in July 2014.
(Cited on pages 30 and 47)

[25] Kacper Bak, Krzysztof Czarnecki, and Andrzej Wasowski. Feature and meta-models
in Clafer: Mixed, specialized, and coupled. In 3rd International Conference on
Software Language Engineering, pages 102–122, 2011. (Cited on page 218)

[26] H.M.N. Dilum Bandara and Anura P. Jayasumana. Collaborative applications
over peer-to-peer systems-challenges and solutions. Peer-to-Peer Networking and
Applications, 6(3):257–276, 2013. (Cited on page 28)

[27] D.F. Bantz, C. Bisdikian, D. Challener, J.P. Karidis, S. Mastrianni, A. Mohindra,
D.G. Shea, and M. Vanover. Autonomic personal computing. IBM Systems Journal,
42(1):165–176, 2003. (Cited on page 77)

[28] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex Ho, Rolf
Neugebauer, Ian Pratt, and Andrew Warfield. Xen and the art of virtualization. In
19th ACM Symposium on Operating Systems Principles, pages 164–177, 2003. (Cited
on page 38)

[29] Luiz André Barroso. The price of performance. ACM Queue, 3(7):48–53, 2005.
(Cited on pages 90 and 99)

[30] Luiz André Barroso and Urs Hölzle. The case for energy-proportional computing.
IEEE Computer, 40:33–37, 2007. (Cited on page 89)

[31] Luiz André Barroso, Jimmy Clidaras, and Urs Hölzle. The Datacenter as a Computer:
An Introduction to the Design of Warehouse-Scale Machines. Synthesis Lectures on
Computer Architecture. Morgan and Claypool Publishers, 2nd edition, 2013. (Cited
on pages 2, 3, and 101)

222

www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-28.html
www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-28.html
www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-28.html
bit.ly/1ynfWzp
csrc.nist.gov/publications/nistpubs/800-146/sp800-146.pdf
csrc.nist.gov/publications/nistpubs/800-146/sp800-146.pdf

Bibliography

[32] Don Batory. Feature models, grammars, and propositional formulas. In 9th Interna-
tional Conference on Software Product Lines, pages 7–20, 2005. (Cited on pages 154
and 155)

[33] J.-P. Baud, J. Casey, S. Lemaitre, and C. Nicholson. Performance analysis of a file
catalog for the LHC computing grid. In 14th IEEE International Symposium High
Performance Distributed Computing, pages 91–99, 2005. (Cited on page 11)

[34] Christian L. Belady. In the data center, power and cooling costs more than the it
equipment it supports. Electronics Cooling, 13(1), 2007. (Cited on page 99)

[35] Anton Beloglazov and Rajkumar Buyya. Optimal online deterministic algorithms
and adaptive heuristics for energy and performance efficient dynamic consolidation
of virtual machines in cloud data centers. Concurrency and Computation: Practice
and Experience, 24(13), 2012. (Cited on page 112)

[36] Anton Beloglazov, Rajkumar Buyya, Young Choon Lee, and Albert Zomaya. A
taxonomy and survey of energy-efficient data centers and cloud computing systems.
In Advances in Computers, volume 82, pages 47–111. Elsevier, 2011. (Cited on
pages 41, 90, 91, 101, and 102)

[37] David Benavides, Sergio Segura, and Antonio Ruiz-Cortés. Automated Analysis of
Feature Models 20 Years Later: A Literature Review. Information Systems, 35(6):
615–636, 2010. (Cited on page 155)

[38] Andreas Berl, Erol Gelenbe, Marco Di Girolamo, Giovanni Giuliani, Hermann
De Meer, Minh Quan Dang, and Kostas Pentikousis. Energy-efficient cloud computing.
Computer Journal, 53:1045–1051, 2010. (Cited on page 90)

[39] Tim Berners-Lee. Information management: A proposal. www.w3.org/History/
1989/proposal.html, 1989. Last accessed in January 2014. (Cited on page 13)

[40] Tim Berners-Lee. WWW: past, present, and future. Computer, 29(10):69–77, 1996.
(Cited on page 13)

[41] David Bernstein, Erik Ludvigson, Krishna Sankar, Steve Diamond, and Monique
Morrow. Blueprint for the intercloud - protocols and formats for cloud computing
interoperability. In 4th International Conference on Internet and Web Applications
and Services, pages 328–336, 2009. (Cited on page 51)

[42] Alysson Bessani, Rüdiger Kapitza, Dana Petcu, Paolo Romano, Spyridon V. Gogou-
vitis, Dimosthenis Kyriazis, and Roberto G. Cascella. A look to the old-world*sky:
Eu-funded dependability cloud computing research. ACM SIGOPS Operating Sys-
tems Review, 46(2):43–56, 2012. (Cited on page 62)

[43] Cor-Paul Bezemer and Andy Zaidman. Multi-tenant saas applications: Maintenance
dream or nightmare? In International Workshop on Principles of Software Evolution,
pages 88–92, 2010. (Cited on page 31)

[44] Ricardo Bianchini and Ram Rajamony. Power and energy management for server
systems. IEEE Computer, 37(11):68–74, 2004. (Cited on page 89)

223

www.w3.org/History/1989/proposal.html
www.w3.org/History/1989/proposal.html

Bibliography

[45] Philip Bianco, Grace A. Lewis, and Paulo Merson. Service level agreements in
service-oriented architecture environments. Technical Report CMU/SEI-2008-TN-
021, Software Engineering Institute, September 2008. URL sei.cmu.edu/reports/
08tn021.pdf. Last accessed in February 2014. (Cited on page 41)

[46] Ken Birman, Gregory Chockler, and Robbert van Renesse. Toward a cloud computing
research agenda. ACM SIGACT News, 40(2):68–80, 2009. (Cited on page 32)

[47] Andrew D. Birrell and Bruce Jay Nelson. Implementing remote procedure calls.
In 9th ACM Symposium on Operating Systems Principles, page 3, 1983. (Cited on
page 13)

[48] Günter Böckle, Klaus Pohl, and Frank van der Linden. A framework for software
product line engineering. In Software Product Line Engineering, pages 19–38.
Springer, 2005. (Cited on page 161)

[49] Robert B. Bohn, John Messina, Fang Liu, Jin Tong, and Jian Mao. NIST cloud
computing reference architecture. In IEEE World Congress on Services, pages
594–596, 2011. (Cited on page 51)

[50] Pat Bohrer, Elmootazbellah N. Elnozahy, Tom Keller, Michael Kistler, Charles
Lefurgy, Chandler McDowell, and Ram Rajamony. The case for power management
in web servers, pages 261–289. Kluwer Academic Publishers, 2002. (Cited on page 89)

[51] David Booth, Hugo Haas, Francis McCabe, Eric Newcomer, Michael Champion,
Chris Ferris, and David Orchard. Web Services Architecture. www.w3.org/TR/2004/
NOTE-ws-arch-20040211, 2004. Last accessed in January 2014. (Cited on page 15)

[52] Damien Borgetto, Michael Maurer, Georges Da-Costa, Jean-Marc Pierson, and
Ivona Brandic. Energy-efficient and SLA-aware management of IaaS clouds. In 3rd
International Conference on Future Energy Systems: Where Energy, Computing and
Communication Meet, pages 25:1–25:10, 2012. (Cited on page 41)

[53] David Brooks, Vivek Tiwari, and Margaret Martonosi. Wattch: a framework for
architectural-level power analysis and optimizations. In International Symposium on
Computer architecture, pages 83–94, 2000. (Cited on page 91)

[54] Edouard Bugnion, Scott Devine, Mendel Rosenblum, Jeremy Sugerman, and Ed-
ward Y. Wang. Bringing virtualization to the x86 architecture with the original
VMware workstation. ACM Transactions on Computer Systems, 30(4):12:1–12:51,
2012. (Cited on page 15)

[55] Rajkumar Buyya. High Performance Cluster Computing: Architectures and Systems.
Prentice Hall PTR, 1999. (Cited on page 17)

[56] Rajkumar Buyya, Chee Shin Yeo, Srikumar Venugopal, James Broberg, and Ivona
Brandic. Cloud computing and emerging it platforms: Vision, hype, and reality for
delivering computing as the 5th utility. Future Generation Computer Systems, 25:
599–616, 2009. (Cited on pages 29, 48, 90, and 213)

224

sei.cmu.edu/reports/08tn021.pdf
sei.cmu.edu/reports/08tn021.pdf
www.w3.org/TR/2004/NOTE-ws-arch-20040211
www.w3.org/TR/2004/NOTE-ws-arch-20040211

Bibliography

[57] byte-unixbench. A Unix benchmark suite. code.google.com/p/byte-unixbench,
2014. Last accessed in July 2014. (Cited on page 168)

[58] Rodrigo N. Calheiros, Rajiv Ranjan, Anton Beloglazov, César A. F. De Rose,
and Rajkumar Buyya. CloudSim: a toolkit for modeling and simulation of cloud
computing environments and evaluation of resource provisioning algorithms. Software:
Practice and Experience, 41(1):23–50, 2011. (Cited on pages 32, 61, 103, 106, 107,
112, 113, and 214)

[59] Zhibo Cao and Shoubin Dong. An energy-aware heuristic framework for virtual
machine consolidation in cloud computing. The Journal of Supercomputing, 69(1):
429–451, 2014. (Cited on pages 112 and 113)

[60] Eugenio Capra, Chiara Francalanci, and Sandra A. Slaughter. Is software "green"?
application development environments and energy efficiency in open source ap-
plications. Information and Software Technology, 54(1):60–71, 2012. (Cited on
page 90)

[61] Emanuele Carlini, Massimo Coppola, Patrizio Dazzi, Laura Ricci, and Giacomo
Righetti. Cloud federations in Contrail. In International Conference on Parallel
Processing, pages 159–168, 2011. (Cited on pages 71, 72, and 74)

[62] Henri Casanova, Dmitrii Zagorodnov, Francine Berman, and Arnaud Legrand.
Heuristics for scheduling parameter sweep applications in grid environments. In 9th
Heterogeneous Computing Workshop, pages 349–363, 2000. (Cited on page 204)

[63] T. L. Casavant and J. G. Kuhl. A taxonomy of scheduling in general-purpose
distributed computing systems. IEEE Transactions on Software Engineering, 14(2):
141–154, 1988. (Cited on page 195)

[64] Miguel Castro, Peter Druschel, Anne-Marie Kermarrec, and Antony I. T. Rowstron.
One ring to rule them all: service discovery and binding in structured peer-to-peer
overlay networks. In ACM SIGOPS European Workshop, pages 140–145, 2002. (Cited
on page 27)

[65] Miguel Castro, Manuel Costa, and Antony Rowstron. Debunking some myths
about structured and unstructured overlays. In 2nd Conference on Symposium on
Networked Systems Design & Implementation, pages 85–98. USENIX, 2005. (Cited
on page 27)

[66] Danielle Catteddu and Gilles Hogben. Cloud computing: Benefits,
risks and recommendations for information security. Technical report,
European Network and Information Security Agency (ENISA), Febru-
ary 2009. URL www.enisa.europa.eu/act/rm/files/deliverables/
cloud-computing-risk-assessment/at_download/fullReport. Last accessed in
February 2014. (Cited on page 41)

[67] Everton Cavalcante, André Almeida, Thais Batista, Nélio Cacho, Frederico Lopes,
Flavia C. Delicato, Thiago Sena, and Paulo F. Pires. Exploiting software product

225

code.google.com/p/byte-unixbench
www.enisa.europa.eu/act/rm/files/deliverables/cloud-computing-risk-assessment/at_download/fullReport
www.enisa.europa.eu/act/rm/files/deliverables/cloud-computing-risk-assessment/at_download/fullReport

Bibliography

lines to develop cloud computing applications. In 16th International Software Product
Line Conference, pages 179–187, 2012. (Cited on pages 148, 179, 184, and 187)

[68] Antonio Celesti, Francesco Tusa, Massimo Villari, and Antonio Puliafito. How to
enhance cloud architectures to enable cross-federation. In 3rd IEEE International
Conference on Cloud Computing, pages 337–345, 2010. (Cited on page 49)

[69] Antonio Celesti, Francesco Tusa, Massimo Villari, and Antonio Puliafito. Three-phase
cross-cloud federation model: The cloud SSO authentication. In 2nd International
Conference on Advances in Future Internet, pages 94–101, 2010. (Cited on page 51)

[70] Antonio Celesti, Francesco Tusa, and Massimo Villari. Toward Cloud Federation:
Concepts and Challenges. In Ivona Brandic, Massimo Villari, and Francesco Tusa,
editors, Achieving Federated and Self-Manageable Cloud Infrastructures: Theory and
Practice, pages 1–17. IGI Global, 2012. (Cited on page 74)

[71] Vinton G. Cerf. ACM and the professional programmer. Queue, 12(7):10:10–10:11,
2014. (Cited on page 212)

[72] Vinton G. Cerf and Robert E. Kahn. A protocol for packet network intercommuni-
cation. IEEE Transactions on Communications, Com-22(5):627–641, 1974. (Cited
on page 12)

[73] Kelly Chard, Michael Russell, Yves A. Lussier, Eneida A Mendonça, and Jonathan C.
Silverstein. Scalability and cost of a cloud-based approach to medical NLP. In 24th
International Symposium on Computer-Based Medical Systems, pages 1–6, 2011.
(Cited on page 147)

[74] Ramnath Chellappa. Intermediaries in cloud-computing: A new computing paradigm.
INFORMS, 1997. (Cited on page 15)

[75] Yee Ming Chen and Hsin-Mei Yeh. An implementation of the multiagent system for
market-based cloud resource allocation. Journal of Computing, 2(11):27–33, 2010.
(Cited on pages 112 and 113)

[76] Dazhao Cheng, Changjun Jiang, and Xiaobo Zhou. Heterogeneity-aware workload
placement and migration in distributed sustainable datacenters. In 28th IEEE
Internal Parallel and Distributed Processing Symposium, pages 307–316, 2014. (Cited
on page 92)

[77] Ann Chervenak and Shishir Bharathi. Peer-to-peer approaches to grid resource
discovery. In Making Grids Work. Springer, 2008. (Cited on page 24)

[78] Trieu C. Chieu, Ajay Mohindra, Alexei Karve, and Alla Segal. Solution-based
deployment of complex application services on a cloud. In IEEE International
Conference on Service Operations and Logistics and Informatics, pages 282–287,
2010. (Cited on pages 177, 178, 184, and 187)

[79] Wu chun Feng, Xizhou Feng, and Rong Ge. Green supercomputing comes of age.
IT Professional, 10:17–23, 2008. (Cited on page 93)

226

Bibliography

[80] Christopher Clark, Keir Fraser, Steven Hand, Jacob Gorm Hansen, Eric Jul, Christian
Limpach, Ian Pratt, and Andrew Warfield. Live migration of virtual machines. In
2nd Conference on Symposium on Networked Systems Design & Implementation,
pages 273–286. USENIX Association, 2005. (Cited on page 39)

[81] Stuart Clayman, Alex Galis, Clovis Chapman, Giovanni Toffetti, Luis Rodero-Merino,
Luis M. Vaquero, Kenneth Nagin, and Benny Rochwerger. Monitoring service clouds
in the future internet. In Georgios Tselentis, John Domingue, Alex Galis, Anastasius
Gavras, David Hausheer, Srdjan Krco, Volkmar Lotz, and Theodore Zahariadis,
editors, Towards the Future Internet: Emerging Trends from European Research,
pages 115–126. IOS Press, 2010. (Cited on page 53)

[82] Paul Clements and Linda Northrop. Software Product Lines: Practices and Patterns.
Addison-Wesley, 2001. (Cited on pages 147 and 154)

[83] Carlos A. Coello Coello, Gary B. Lamont, and David A. Van Veldhuizen. Evolutionary
algorithms for solving multi-objective problems, volume 242. Springer, 2 edition, 2002.
(Cited on page 152)

[84] Jared L. Cohon. Multiobjective programming and planning. Academic Press, 1978.
(Cited on page 152)

[85] Gary Cook, Tom Dowdall, David Pomerantz, and Yifei Wang. Clicking Clean: How
companies are creating the green Internet 2014. Technical report, Greenpeace, April
2014. URL greenpeace.org/usa/Global/usa/planet3/PDFs/clickingclean.
pdf. Last accessed in May 2014. (Cited on pages 90 and 92)

[86] Stefania Costache, Nikos Parlavantzas, Christine Morin, and Samuel Kortas. An
economic approach for application QoS management in clouds. In International
Conference on Parallel Processing, pages 426–435, 2012. (Cited on pages 81 and 88)

[87] Maria Couceiro, Paolo Romano, Nuno Carvalho, and Luís Rodrigues. D2STM:
Dependable distributed software transactional memory. In 15th IEEE Pacific Rim
International Symposium on Dependable Computing, pages 307–313, 2009. (Cited on
page 62)

[88] George Coulouris, Jean Dollimore, Tim Kindberg, and Gordon Blair. Distributed
Systems: Concepts and Design. Addison-Wesley, 5th edition, 2011. (Cited on
pages 11, 12, 13, 14, and 190)

[89] Adina Crainiceanu, Prakash Linga, Johannes Gehrke, and Jayavel Shanmugasun-
daram. Querying peer-to-peer networks using p-trees. In 7th International Workshop
on the Web and Databases, pages 25–30, 2004. (Cited on page 25)

[90] Adina Crainiceanu, Prakash Linga, Ashwin Machanavajjhala, Johannes Gehrke,
and Jayavel Shanmugasundaram. P-ring: An efficient and robust P2P range index
structure. In ACM SIGMOD International Conference on Management of Data,
pages 223–234, 2007. (Cited on page 25)

227

greenpeace.org/usa/Global/usa/planet3/PDFs/clickingclean.pdf
greenpeace.org/usa/Global/usa/planet3/PDFs/clickingclean.pdf

Bibliography

[91] Cycle Computing. New cyclecloud HPC cluster is a triple threat: 30000 cores,
$1279/hour, & grill monitoring GUI for Chef. bit.ly/cyclecomputing, 2011. Last
accessed in February 2014. (Cited on page 16)

[92] Krzysztof Czarnecki and Ulrich W. Eisenecker. Generative Programming: Methods,
Tools, and Applications. ACM Press/Addison-Wesley, 2000. (Cited on pages 154
and 216)

[93] Rajarshi Das, Jeffrey O. Kephart, Charles Lefurgy, Gerald Tesauro, David W. Levine,
and Hoi Chan. Autonomic multi-agent management of power and performance in
data centers. In AAMAS, pages 107–114, 2008. (Cited on pages 112 and 113)

[94] Doug Davis and Gilbert Pilz. Cloud Infrastructure Management Interface (CIMI)
Model and RESTful HTTP-based Protocol: An interface for managing cloud infras-
tructure. Technical Report DSP0263, Distributed Management Task Force, May
2012. URL dmtf.org/sites/default/files/standards/documents/DSP0263_1.
0.0.pdf. Last accessed in July 2014. (Cited on page 53)

[95] Daniel de Oliveira, Eduardo Ogasawara, Fernanda Baião, and Marta Mattoso.
SciCumulus: A lightweight cloud middleware to explore many task computing
paradigm in scientific workflows. In 3rd IEEE International Conference on Cloud
Computing, pages 378–385, 2010. (Cited on pages 60, 62, and 74)

[96] Frederico Alvares de Oliveira, Jr. and Thomas Ledoux. Self-management of cloud
applications and infrastructure for energy optimization. ACM SIGOPS Operating
Systems Review, 46(2):10–18, 2012. (Cited on pages 82 and 88)

[97] Edans Flavius de Oliveira Sandes and Alba Cristina Magalhães Alves de Melo.
Retrieving Smith-Waterman Alignments with Optimizations for Megabase Biological
Sequences Using GPU. IEEE Transactions on Parallel and Distributed Systems, 24
(5):1009–1021, 2013. (Cited on pages 115 and 127)

[98] Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified data processing on
large clusters. In Conference on Symposium on Opearting Systems Design & Imple-
mentation, pages 137–149. USENIX Association, 2004. (Cited on pages xxii, 16, 17,
43, and 44)

[99] Michael L. Dertouzos. The Unfinished Revolution: Human-Centered Computers and
What They Can Do for Us. HarperInformation, 2001. (Cited on page 219)

[100] Scott W Devine, Edouard Bugnion, and Mendel Rosenblum. Virtualization system
including a virtual machine monitor for a computer with a segmented architecture,
1998. US Patent 6397242. (Cited on page 38)

[101] Roger Dingledine, Michael J. Freedman, and David Molnar. The free haven project:
Distributed anonymous storage service. In Workshop on Design Issues in Anonymity
and Unobservability, pages 67–95, 2000. (Cited on page 24)

[102] Brian Dougherty, Jules White, and Douglas C. Schmidt. Model-driven auto-scaling
of green cloud computing infrastructure. Future Generation Computer Systems, 28
(2):371–378, 2012. (Cited on pages 146, 148, 175, 176, 184, and 187)

228

bit.ly/cyclecomputing
dmtf.org/sites/default/files/standards/documents/DSP0263_1.0.0.pdf
dmtf.org/sites/default/files/standards/documents/DSP0263_1.0.0.pdf

Bibliography

[103] Corentin Dupont, Thomas Schulze, Giovanni Giuliani, Andrey Somov, and Fabien
Hermenier. An energy aware framework for virtual machine placement in cloud
federated data centres. In 3rd International Conference on Future Energy Systems:
Where Energy, Computing and Communication Meet, pages 4:1–4:10, 2012. (Cited
on pages 111 and 113)

[104] Richard Durbin, Sean R. Eddy, Anders Krogh, and Graeme Mitchison. Biological
Sequence Analysis. Cambridge, UK:Cambridge University Press, 1998. (Cited on
page 116)

[105] Sourav Dutta, Sankalp Gera, Akshat Verma, and Balaji Viswanathan. SmartScale:
Automatic application scaling in enterprise clouds. In 5th International Conference
on Cloud Computing (CLOUD), pages 221–228, 2012. (Cited on pages 85, 86, 88,
and 213)

[106] Rubin Ellen. Cloud federation and the intercloud. ellenrubin.sys-con.com/node/
1249746, 2010. Last accessed in May 2014. (Cited on page 51)

[107] Google App Engine. Google App Engine post-mortem for February 24th, 2010
outage. goo.gl/uYnQFf, 2010. Last accessed in July 2014. (Cited on page 48)

[108] Patrick Th. Eugster, Pascal A. Felber, Rachid Guerraoui, and Anne-Marie Kermarrec.
The many faces of publish/subscribe. ACM Computing Surveys, 35(2):114–131, 2003.
(Cited on page 191)

[109] Faiza Fakhar, Barkha Javed, Raihan ur Rasool, Owais Malik, and Khurram Zulfiqar.
Software level green computing for large scale systems. Journal of Cloud Computing,
1(1):1–17, 2012. (Cited on page 91)

[110] Xiaobo Fan, Wolf-Dietrich Weber, and Luiz André Barroso. Power provisioning for
a warehouse-sized computer. In 34th annual international symposium on Computer
architecture, pages 13–23, 2007. (Cited on page 89)

[111] Eugen Feller, Louis Rilling, and Christine Morin. Snooze: A scalable and autonomic
virtual machine management framework for private clouds. In IEEE/ACM Inter-
national Symposium on Cluster, Cloud and Grid Computing, pages 482–489, 2012.
(Cited on pages 82, 83, 87, 88, 209, 210, and 213)

[112] Ana Juan Ferrer, Francisco Hernández, Johan Tordsson, Erik Elmroth, Ahmed Ali-
Eldin, Csilla Zsigri, Raül Sirvent, Jordi Guitart, Rosa M. Badia, Karim Djemame,
Wolfgang Ziegler, Theo Dimitrakos, Srijith K. Nair, George Kousiouris, Kleopatra
Konstanteli, Theodora Varvarigou, Benoit Hudzia, Alexander Kipp, Stefan Wesner,
Marcelo Corrales, Nikolaus Forgó, Tabassum Sharif, and Craig Sheridan. OPTIMIS:
A holistic approach to cloud service provisioning. Future Generation Computer
Systems, 28(1):66–77, 2012. (Cited on pages 50, 72, 73, 74, and 210)

[113] Tiago C. Ferreto, Marco A. S. Netto, Rodrigo N. Calheiros, and César A. F. De Rose.
Server consolidation with migration control for virtualized data centers. Future
Generation Computer Systems, 27(8):1027–1034, 2011. (Cited on pages 40 and 102)

229

ellenrubin.sys-con.com/node/1249746
ellenrubin.sys-con.com/node/1249746
goo.gl/uYnQFf

Bibliography

[114] Roy T. Fielding and Richard N. Taylor. Principled design of the modern web
architecture. ACM Transactions on Internet Technology, 2(2):115–150, 2002. (Cited
on page 14)

[115] Roy T Fielding, J. Gettys, H. Frystyk, L. Masinter, and Tim Berners-Lee. Hyper-
text Transfer Protocol – HTTP/1.1. www.ietf.org/rfc/rfc2616.txt, 1999. Last
accessed in January 2014. (Cited on page 15)

[116] Roy Thomas Fielding. Architectural styles and the design of network-based software
architectures. PhD thesis, University of California, Irvine, 2000. (Cited on page 119)

[117] Brian W. Fitzpatrick and JJ Lueck. The case against data lock-in. Communications
of the ACM, 53(11):42–46, 2010. (Cited on page 33)

[118] Michael J. Flynn. Some computer organizations and their effectiveness. IEEE
Transactions on Computers, 21(9):948–960, 1972. (Cited on page 12)

[119] Carlos M. Fonseca and Peter J. Fleming. An overview of evolutionary algorithms in
multiobjective optimization. Evolutionary Computation, 3(1):1–16, 1995. (Cited on
page 153)

[120] Global Inter-Cloud Technology Forum. Use cases and functional requirements for
inter-cloud computing. Technical report, Global Inter-Cloud Technology Forum, Au-
gust 2010. URL gictf.jp/doc/GICTF_Whitepaper_20100809.pdf. Last accessed
in January 2014. (Cited on page 48)

[121] I. Foster, Yong Zhao, I. Raicu, and S. Lu. Cloud computing and grid computing
360-degree compared. In Grid Computing Environments Workshop, pages 1–10, 2008.
(Cited on pages 29, 31, 32, 45, and 46)

[122] Ian Foster. Globus Toolkit version 4: Software for service-oriented systems. In
International Conference on Network and Parallel Computing, pages 2–13. Springer-
Verlag, 2005. (Cited on pages 21, 22, and 35)

[123] Ian Foster and Adriana Iamnitchi. On death, taxes, and the convergence of peer-to-
peer and grid computing. In 2nd International Workshop on Peer-to-Peer Systems,
pages 118–128, 2003. (Cited on pages 34 and 213)

[124] Ian Foster and Carl Kesselman. Globus: A metacomputing infrastructure toolkit.
International Journal of Supercomputer Applications, 11:115–128, 1996. (Cited on
page 14)

[125] Ian Foster and Carl Kesselman. The Grid: Blueprint for a New Computing Infras-
tructure. Morgan Kaufmann Publishers Inc., 1999. (Cited on page 14)

[126] Ian Foster, Carl Kesselman, and Steven Tuecke. The anatomy of the grid: Enabling
scalable virtual organizations. International Journal of High Performance Computing
Applications, 15(3):200–222, 2001. (Cited on pages 19, 20, and 34)

230

www.ietf.org/rfc/rfc2616.txt
gictf.jp/doc/GICTF_Whitepaper_20100809.pdf

Bibliography

[127] Geoffrey Fox, Xiaohong Qiu, Scott Beason, Jong Choi, Jaliya Ekanayake, Thilina
Gunarathne, Mina Rho, Haixu Tang, Neil Devadasan, and Gilbert Liu. Biomedical
Case Studies in Data Intensive Computing. In IEEE International Conference on
Cloud Computing, pages 2–18, 2009. (Cited on pages 125 and 127)

[128] Guilherme Galante and Luis Carlos Erpen Bona. Constructing elastic scientific appli-
cations using elasticity primitives. 13th International Conference on Computational
Science and Applications, 5:281–294, 2013. (Cited on page 60)

[129] Peter Xiang Gao, Andrew R. Curtis, Bernard Wong, and Srinivasan Keshav. It’s not
easy being green. In Conference on Applications, Technologies, Architectures, and
Protocols for Computer Communication, pages 211–222, 2012. (Cited on page 90)

[130] Jesús García-Galán, Omer Rana, Pablo Trinidad, and Antonio Ruiz-Cortés. Mi-
grating to the cloud: a software product line based analysis. In 3rd International
Conference on Cloud Computing and Services Science, pages 416–426, 2013. (Cited
on pages 148, 162, 184, 185, and 187)

[131] L. Garcés-Erice, K.W. Ross, E.W. Biersack, P.A. Felber, and G. Urvoy-Keller.
Topology-centric look-up service. In 5th International Workshop on Networked
Group Communications, pages 58–69, 2003. (Cited on page 28)

[132] Simson Garfinkel. The computer utility. In Harold Abelson, editor, Architects of the
Information Society: 35 Years of the Laboratory for Computer Science at MIT. MIT
Press, 1999. (Cited on pages 11, 35, and 219)

[133] Saurabh Kumar Garg, Steve Versteeg, and Rajkumar Buyya. SMICloud: A frame-
work for comparing and ranking cloud services. In 4th IEEE International Conference
on Utility and Cloud Computing, pages 210–218, 2011. (Cited on page 91)

[134] Vijay K. Garg, Ph.D. Elements of Distributed Computing. John Wiley & Sons, 2002.
(Cited on page 12)

[135] Rong Ge, Xizhou Feng, Wu-chun Feng, and Kirk W. Cameron. CPU MISER: A
performance-directed, run-time system for power-aware clusters. In International
Conference on Parallel Processing, pages 18–26, 2007. (Cited on page 91)

[136] Christos Gkantsidis, Milena Mihail, and Amin Saberi. Random walks in peer-to-peer
networks: Algorithms and evaluation. Performance Evaluation, 63(3):241–263, 2006.
(Cited on pages 24 and 28)

[137] Íñigo Goiri, Ferran Julià, J. Oriol Fitó, Mario Macías, and Jordi Guitart. Supporting
CPU-based Guarantees in Cloud SLAs via Resource-level QoS Metrics. Future
Generation Computer Systems, 28(8):1295–1302, 2012. (Cited on page 55)

[138] Robert P. Goldberg. Survey of virtual machine research. IEEE Computer, 7(9):
34–45, 1974. (Cited on pages 12, 37, and 38)

[139] Pam Frost Gorder. Coming soon: Research in a cloud. Computing in Science and
Engineering, 10(6):6–10, 2008. (Cited on page 35)

231

Bibliography

[140] Andrzej Goscinski and Michael Brock. Toward dynamic and attribute based publi-
cation, discovery and selection for cloud computing. Future Generation Computer
Systems, 26(7):947–970, 2010. (Cited on page 52)

[141] R.L. Graham, E.L. Lawler, J.K. Lenstra, and A.H.G.Rinnooy Kan. Optimization
and approximation in deterministic sequencing and scheduling: a survey. Annals of
discrete Mathematics, 5:287–326, 1979. (Cited on page 195)

[142] Greenpeace. Make it green: Cloud computing and its contribution to climate change.
Technical report, Greenpeace International, March 2010. URL greenpeace.org/
usa/Global/usa/report/2010/3/make-it-green-cloud-computing.pdf. Last
accessed in April 2014. (Cited on pages 2 and 90)

[143] Sam Griffiths-Jones, Simon Moxon, Mhairi Marshall, Ajay Khanna, Sean R. Eddy,
and Alex Bateman. Rfam: annotating non-coding RNAs in complete genomes.
Nucleic Acids Research, 33:D121–D124, 2005. (Cited on page 136)

[144] Bernd Grobauer, Tobias Walloschek, and Elmar Stocker. Understanding cloud
computing vulnerabilities. IEEE Security and Privacy, 9:50–57, 2011. (Cited on
page 32)

[145] Nikolay Grozev and Rajkumar Buyya. Inter-Cloud architectures and application
brokering: taxonomy and survey. Software: Practice and Experience, 44(3):369–390,
2014. (Cited on pages 48 and 49)

[146] P. H. Gum. System/370 extended architecture: Facilities for virtual machines. IBM
Journal of Research and Development, 27(6):530–544, 1983. (Cited on page 12)

[147] Tian Guo, Upendra Sharma, Prashant Shenoy, Timothy Wood, and Sambit Sahu.
Cost-aware cloud bursting for enterprise applications. ACM Transactions on Internet
Technology, 13(3):10:1–10:24, 2014. (Cited on page 60)

[148] Hongmu Han, Jie He, and Cuihua Zuo. A hybrid P2P overlay network for high
efficient search. In 2nd IEEE International Conference on Information and Financial
Engineering, pages 241–245, 2010. (Cited on page 27)

[149] Vinay Hanumaiah and Sarma Vrudhula. Energy-efficient operation of multi-core
processors by DVFS, task migration and active cooling. IEEE Transactions on
Computers, 99, 2012. (Cited on page 91)

[150] Nicholas J. A. Harvey, Michael B. Jones, Stefan Saroiu, Marvin Theimer, and Alec
Wolman. SkipNet: A scalable overlay network with practical locality properties.
In 4th Conference on USENIX Symposium on Internet Technologies and Systems,
pages 9–21, 2003. (Cited on page 25)

[151] Mohammad Mehedi Hassan, M.Shamim Hossain, A.M.Jehad Sarkar, and Eui-Nam
Huh. Cooperative game-based distributed resource allocation in horizontal dynamic
cloud federation platform. Information Systems Frontiers, pages 1–20, 2012. (Cited
on page 52)

232

greenpeace.org/usa/Global/usa/report/2010/3/make-it-green-cloud-computing.pdf
greenpeace.org/usa/Global/usa/report/2010/3/make-it-green-cloud-computing.pdf

Bibliography

[152] Michael Hauben and Ronda Hauben. Netizens: On the History and Impact of Usenet
and the Internet. Wiley-IEEE Computer Society, 1997. (Cited on page 212)

[153] Naohiro Hayashibara and Adel Cherif. Failure detectors for large-scale distributed
systems. In 21st IEEE Symposium on Reliable Distributed Systems, pages 404–409,
2002. (Cited on page 190)

[154] Brian Hayes. Cloud computing. Communications of the ACM, 51:9–11, 2008. (Cited
on pages 1 and 15)

[155] Fabien Hermenier, Xavier Lorca, Jean-Marc Menaud, Gilles Muller, and Julia
Lawall. Entropy: A consolidation manager for clusters. In ACM SIGPLAN/SIGOPS
International Conference on Virtual Execution Environments, pages 41–50, 2009.
(Cited on pages 111 and 113)

[156] Z. Hill and M. Humphrey. CSAL: A cloud storage abstraction layer to enable
portable cloud applications. In 2nd International Conference on Cloud Computing
Technology and Science, pages 504–511, 2010. (Cited on page 33)

[157] Michael R. Hines, Umesh Deshpande, and Kartik Gopalan. Post-copy live migration
of virtual machines. ACM SIGOPS Operating Systems Review, 43(3):14–26, 2009.
(Cited on page 39)

[158] C. N. Hoefer and G. Karagiannis. Taxonomy of cloud computing services. In IEEE
GLOBECOM Workshops, pages 1345–1350, 2010. (Cited on page 162)

[159] I. L. Hofacker, W. Fontana, P. F. Stadler, L. S. Bonhoeffer, M. Tacker, and P. Schuster.
Fast folding and comparison of RNA secondary structures. Chemical Monthly, 125
(2):167–188, 1994. (Cited on page 136)

[160] Steve Hoffmann, Christian Otto, Stefan Kurtz, Cynthia M. Sharma, Philipp
Khaitovich, Jörg Vogel, Peter F. Stadler, and Jörg Hackermüller. Fast mapping of
short sequences with mismatches, insertions and deletions using index structures.
PLoS computational biology, 5:e1000502, 2009. (Cited on pages 136 and 137)

[161] Q. Hofstatter, S. Zols, M. Michel, Z. Despotovic, and W. Kellerer. Chordella - a
hierarchical peer-to-peer overlay implementation for heterogeneous, mobile environ-
ments. In 8th International Conference on Peer-to-Peer Computing, pages 75–76,
2008. (Cited on pages 27 and 28)

[162] Paul Horn. Autonomic computing: IBM’s perspective on the state of infor-
mation technology. www.research.ibm.com/autonomic/manifesto/autonomic_
computing.pdf, 2001. Last accessed in January 2014. (Cited on pages 16, 77, 78,
and 213)

[163] Markus C. Huebscher and Julie A. McCann. A survey of autonomic comput-
ing—degrees, models, and applications. ACM Computing Surveys, 40(3):7:1–7:28,
2008. (Cited on pages 76 and 80)

233

www.research.ibm.com/autonomic/manifesto/autonomic_computing.pdf
www.research.ibm.com/autonomic/manifesto/autonomic_computing.pdf

Bibliography

[164] IBM. An architectural blueprint for autonomic computing. Technical Re-
port Third edition, IBM, June 2005. URL www-03.ibm.com/autonomic/pdfs/
ACBlueprintWhitePaperV7.pdf. Last accessed in January 2014. (Cited on pages 77
and 79)

[165] Shigeru Imai, Thomas Chestna, and Carlos A. Varela. Elastic scalable cloud comput-
ing using application-level migration. In 5th IEEE/ACM International Conference
on Utility and Cloud Computing, pages 91–98, 2012. (Cited on pages 66, 67, 74,
and 210)

[166] Anca Iordache, Christine Morin, Nikos Parlavantzas, Eugen Feller, and Pierre Riteau.
Resilin: Elastic MapReduce over multiple clouds. In 13th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing, pages 261–268, 2013. (Cited on
pages 141 and 143)

[167] Alexandru Iosup, Simon Ostermann, Nezih Yigitbasi, Radu Prodan, Thomas
Fahringer, and Dick Epema. Performance analysis of cloud computing services
for many-tasks scientific computing. IEEE Transactions on Parallel and Distributed
System, 22(6):931–945, 2011. (Cited on pages 32, 147, 164, and 205)

[168] iperf3. software.es.net/iperf, 2014. Last accessed in July 2014. (Cited on
pages 150 and 168)

[169] Daniel Jackson. Software Abstractions: Logic, Language, and Analysis. The MIT
Press, revised edition, 2012. (Cited on page 218)

[170] Keith R. Jackson, Lavanya Ramakrishnan, Krishna Muriki, Shane Canon, Shreyas
Cholia, John Shalf, Harvey J. Wasserman, and Nicholas J. Wright. Performance
analysis of high performance computing applications on the Amazon Web Services
cloud. In 2nd IEEE International Conference on Cloud Computing Technology and
Science, pages 159–168, 2010. (Cited on pages 54 and 164)

[171] H. V. Jagadish, Beng Chin Ooi, and Quang Hieu Vu. BATON: A balanced tree
structure for peer-to-peer networks. In 31st International Conference on Very Large
Data Bases, pages 661–672, 2005. (Cited on page 25)

[172] H.V. Jagadish, Beng-Chin Ooi, Quang Hieu Vu, Rong Zhang, and Aoying Zhou.
VBI-Tree: A peer-to-peer framework for supporting multi-dimensional indexing
schemes. In 22nd International Conference on Data Engineering, pages 34–34, 2006.
(Cited on page 25)

[173] Pelle Jakovits and Satish Narayana Srirama. Adapting scientific applications to
cloud by using distributed computing frameworks. In 13th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing, pages 164–167, 2013. (Cited on
page 146)

[174] Márk Jelasity, Spyros Voulgaris, Rachid Guerraoui, Anne-Marie Kermarrec, and
Maarten van Steen. Gossip-based peer sampling. ACM Transactions on Computer
Systems, 25(3):1–36, 2007. (Cited on page 80)

234

www-03.ibm.com/autonomic/pdfs/AC Blueprint White Paper V7.pdf
www-03.ibm.com/autonomic/pdfs/AC Blueprint White Paper V7.pdf
software.es.net/iperf

Bibliography

[175] Xing Jin and S.-H.Gary Chan. Unstructured peer-to-peer network architectures. In
Xuemin Shen, Heather Yu, John Buford, and Mursalin Akon, editors, Handbook of
Peer-to-Peer Networking, pages 117–142. Springer, 2010. (Cited on page 24)

[176] Laurent Jourdren, Maria Bernard, Marie-Agnès Dillies, and Stéphane Le Crom. Eoul-
san: A cloud computing-based framework facilitating high throughput sequencing
analyses. Bioinformatics, 28(11):1541–1543, 2012. (Cited on pages 125 and 127)

[177] Robert H. Halstead Jr. Implementation of Multilisp: Lisp on a Multiprocessor. In
ACM Symposium on LISP and Functional Programming, pages 9–17, 1984. (Cited
on page 218)

[178] Narendra Jussien, Guillaume Rochart, and Xavier Lorca. Choco: an Open Source
Java Constraint Programming Library. In Workshop on Open-Source Software for
Integer and Contraint Programming, pages 1–10, 2008. (Cited on pages 6, 149, 164,
188, 216, and 218)

[179] Gideon Juve, Mats Rynge, Ewa Deelman, Jens-S. Vockler, and G. Bruce Berriman.
Comparing FutureGrid, Amazon EC2, and Open Science Grid for Scientific Work-
flows. Computing in Science & Engineering, 15(4):20–29, 2013. (Cited on pages 2,
129, 141, and 146)

[180] Steffen Kächele and Franz J. Hauck. Component-based scalability for cloud applica-
tions. In 3rd International Workshop on Cloud Data and Platforms, pages 19–24,
2013. (Cited on pages 60 and 74)

[181] Yoshiaki Kakuda, Hideki Yukitomo, Shinji Kusumoto, and Tohru Kikuno. Scientific
computing in the cloud. IEEE Design & Test, 12(3):34–43, 2010. (Cited on page 35)

[182] Kyo C Kang, Sholom G Cohen, James A Hess, William E Novak, and A Spencer
Peterson. Feature-oriented domain analysis (FODA) feasibility study. Technical
Report CMU/SEI-90-TR-21, Software Engineering Institute, November 1990. URL
www.sei.cmu.edu/reports/90tr021.pdf. Last accessed in June 2014. (Cited on
pages 147 and 154)

[183] Krishna Kant and Prasant Mohapatra. Internet data centers. IEEE Computer, 37:
35–37, 2004. (Cited on page 89)

[184] David Karger, Eric Lehman, Tom Leighton, Rina Panigrahy, Matthew Levine, and
Daniel Lewin. Consistent hashing and random trees: Distributed caching protocols
for relieving hot spots on the World Wide Web. In 29th Annual ACM Symposium
on Theory of Computing, pages 654–663, 1997. (Cited on page 25)

[185] Lori M. Kaufman. Can a trusted environment provide security? IEEE Security and
Privacy, 8(1):50–52, 2010. (Cited on pages 33 and 34)

[186] K. Keahey, I. Foster, T. Freeman, and X. Zhang. Virtual workspaces: Achieving
quality of service and quality of life in the grid. Scientific Programming, 13(4):
265–275, 2005. (Cited on pages 55 and 217)

235

www.sei.cmu.edu/reports/90tr021.pdf

Bibliography

[187] Katarzyna Keahey and Tim Freeman. Contextualization: Providing one-click virtual
clusters. In 4th IEEE International Conference on eScience, pages 301–308, 2008.
(Cited on page 59)

[188] Katarzyna Keahey, Mauricio Tsugawa, Andrea Matsunaga, and Jose Fortes. Sky
computing. IEEE Internet Computing, 13(5):43–51, 2009. (Cited on page 51)

[189] Gabor Kecskemeti, Attila Kertesz, Attila Marosi, and Peter Kacsuk. Interoperable
resource management for establishing federated clouds. In Ivona Brandic, Massimo
Villari, and Francesco Tusa, editors, Achieving Federated and Self-Manageable Cloud
Infrastructures: Theory and Practice, pages 18–35. IGI Global, 2012. (Cited on
page 50)

[190] Alexander Keller and Heiko Ludwig. The WSLA framework: Specifying and moni-
toring service level agreements for web services. Journal of Network and Systems
Management, 11:57–81, 2003. (Cited on page 42)

[191] Jeffrey O. Kephart and David M. Chess. The vision of autonomic computing. IEEE
Computer, 36(1):41–50, 2003. (Cited on pages 76, 77, 78, 79, and 80)

[192] Anne-Marie Kermarrec and Peter Triantafillou. XL peer-to-peer pub/sub systems.
ACM Computing Surveys, 46(2):16:1–16:45, 2013. (Cited on page 11)

[193] Hamzeh Khazaei, Jelena Misic, and Vojislav B. Misic. Performance Analysis of Cloud
Computing Centers Using M/G/m/m+r Queuing Systems. IEEE Transactions on
Parallel and Distributed Systems, 23(5):936–943, 2012. (Cited on pages 91 and 111)

[194] Hyunjoo Kim and Manish Parashar. CometCloud: An Autonomic Cloud Engine,
pages 275–297. John Wiley & Sons, Inc., 2011. (Cited on pages 70, 71, 74, and 210)

[195] Kyong Hoon Kim, Wan Yeon Lee, Jong Kim, and Rajkumar Buyya. SLA-based
scheduling of bag-of-tasks applications on power-aware cluster systems. Transactions
on Information and Systems, E93-D(12):3194–3201, 2010. (Cited on pages 111
and 113)

[196] Alexander Kipp, Tao Jiang, Mariagrazia Fugini, and Ioan Salomie. Layered green
performance indicators. Future Generation Computer Systems, 28(2):478–489, 2012.
(Cited on page 98)

[197] Avi Kivity, Yaniv Kamay, Dor Laor, Uri Lublin, and Anthony Liguori. kvm: the
Linux virtual machine monitor. In PLinux Symposium, volume 1, pages 225–230,
2007. (Cited on page 38)

[198] Dzmitry Kliazovich, Pascal Bouvry, and Samee Ullah Khan. Greencloud: A packet-
level simulator of energy-aware cloud computing data centers. In IEEE Global
Telecommunications Conference, pages 1–5, 2010. (Cited on page 32)

[199] Sonja Klingert, Thomas Schulze, and Christian Bunse. GreenSLAs for the energy-
efficient management of data centres. In 2nd International Conference on Energy-
Efficient Computing and Networking, pages 21–30, 2011. (Cited on page 41)

236

Bibliography

[200] Alexander V. Konstantinou, Tamar Eilam, Michael Kalantar, Alexander A. Totok,
William Arnold, and Edward Snible. An architecture for virtual solution compo-
sition and deployment in infrastructure clouds. In 3rd International Workshop on
Virtualization Technologies in Distributed Computing, pages 9–18, 2009. (Cited on
pages 146, 177, 178, 184, and 187)

[201] Jonathan G Koomey. Estimating total power consumption by servers in the U.S.
and the world. Technical report, Lawrence Berkeley National Laboratory and
Consulting Professor, Stanford University, February 2007. URL hightech.lbl.gov/
documents/DATA_CENTERS/svrpwrusecompletefinal.pdf. Last accessed in April
2014. (Cited on pages 2 and 89)

[202] Jonathan G Koomey. Growth in data center electricity use 2005 to 2010. Oakland,
CA: Analytics Press, 2011. (Cited on page 2)

[203] Pawel Koperek and Wlodzimierz Funika. Dynamic business metrics-driven resource
provisioning in cloud environments. In 9th International Conference on Parallel
Processing and Applied Mathematics - Volume Part II, pages 171–180, 2012. (Cited
on page 55)

[204] Hugo H. Kramer, Vinicius Petrucci, Anand Subramanian, and Eduardo Uchoa. A
column generation approach for power-aware optimization of virtualized heteroge-
neous server clusters. Computers and Industrial Engineering, 63(3):652–662, 2012.
(Cited on page 91)

[205] William T.C. Kramer, John M. Shalf, and Erich Strohmaier. The NERSC sustained
system performance (SSP) metric. In 9AD, pages 6–12, 2005. (Cited on pages 55
and 56)

[206] Rouven Krebs, Christof Momm, and Samuel Kounev. Metrics and techniques for
quantifying performance isolation in cloud environments. In 8th International ACM
SIGSOFT Conference on Quality of Software Architectures, pages 91–100, 2012.
(Cited on page 55)

[207] Rakesh Kumar. Important power, cooling and green it concerns. Tech-
nical report, Gartner Report, 2007. URL gartner.com/doc/500296/
important-power-cooling-green-it. Last accessed in April 2014. (Cited on
page 89)

[208] Shun Kit Kwan and J.K. Muppala. Bag-of-tasks applications scheduling on volunteer
desktop grids with adaptive information dissemination. In IEEE 35th Conference
on Local Computer Networks, pages 544–551, 2010. (Cited on page 27)

[209] Bill Laing. Windows Azure service disruption update. azure.microsoft.com/blog/
2012/02/29/windows-azure-service-disruption-update/, 2012. Last accessed
in July 2014. (Cited on page 48)

[210] Klaus-Dieter Lange. Identifying shades of green: The SPECpower benchmarks.
IEEE Computer, 42:95–97, 2009. (Cited on pages 93 and 94)

237

hightech.lbl.gov/documents/DATA_CENTERS/svrpwrusecompletefinal.pdf
hightech.lbl.gov/documents/DATA_CENTERS/svrpwrusecompletefinal.pdf
gartner.com/doc/500296/important-power-cooling-green-it
gartner.com/doc/500296/important-power-cooling-green-it
azure.microsoft.com/blog/2012/02/29/windows-azure-service-disruption-update/
azure.microsoft.com/blog/2012/02/29/windows-azure-service-disruption-update/

Bibliography

[211] Jason Lango. Toward software-defined SLAs. ACM Queue, 11(11):20:20–20:31, 2013.
(Cited on page 150)

[212] Young Choon Lee and Albert Y. Zomaya. Energy efficient utilization of resources in
cloud computing systems. The Journal of Supercomputing, pages 1–13, 2010. (Cited
on pages 103, 105, 112, and 113)

[213] Charles Lefurgy, Xiaorui Wang, and Malcolm Ware. Server-level power control. In
Fourth Autonomic Computing, 2007. (Cited on page 89)

[214] Alessandro Ferreira Leite and Alba Cristina Magalhães Alves de Melo. Executing a
biological sequence comparison application on a federated cloud environment. In
19th International Conference on High Performance Computing, pages 1–9, 2012.
(Cited on pages 5, 116, 127, and 214)

[215] Alessandro Ferreira Leite and Alba Cristina Magalhães Alves de Melo. Energy-aware
multi-agent server consolidation in federated clouds. In Mazin Yousif and Lutz
Schubert, editors, Cloud Computing, volume 112 of Lecture Notes of the Institute for
Computer Sciences, Social Informatics and Telecommunications Engineering, pages
72–81. 2013. (Cited on pages 4, 5, 102, 103, 113, and 214)

[216] Alessandro Ferreira Leite, Hammurabi Chagas Mendes, Li Weigang, Alba Cristina
Magalhães Alves Melo, and Azzedine Boukerche. An architecture for P2P bag-
of-tasks execution with multiple task allocation policies in desktop grids. Cluster
Computing, 15(4):351–361, 2012. (Cited on pages 196 and 217)

[217] Alessandro Ferreira Leite, Claude Tadonki, Christine Eisenbeis, Tainá Raiol, Maria
Emilia M. T. Walter, and Alba Cristina Magalhães Alves de Melo. Excalibur: An
autonomic cloud architecture for executing parallel applications. In 4th International
Workshop on Cloud Data and Platforms, pages 2:1–2:6, 2014. (Cited on pages 5, 6,
129, 143, and 215)

[218] Philipp Leitner, Zabolotnyi Rostyslav, Alessio Gambi, and Schahram Dustdar.
A framework and middleware for application-level cloud bursting on top of
infrastructure-as-a-service clouds. In 6th IEEE/ACM International Conference
on Utility and Cloud Computing, pages 163–170, 2013. (Cited on pages 68, 74,
and 210)

[219] Feng Li, Beng Chin Ooi, M. Tamer Özsu, and Sai Wu. Distributed data management
using MapReduce. ACM Computing Surveys, 46(3):31:1–31:42, 2014. (Cited on
page 45)

[220] Heng Li, Bob Handsaker, Alec Wysoker, Tim Fennell, Jue Ruan, Nils Homer, Gabor
Marth, Goncalo Abecasis, Richard Durbin, and 1000 Genome Project Data Processing
Subgroup. The sequence alignment/map format and SAMtools. Bioinformatics, 25
(16):2078–2079, 8 2009. (Cited on page 136)

[221] Mei Li, Wang-Chien Lee, and Anand Sivasubramaniam. DPTree: A balanced tree
based indexing framework for peer-to-peer systems. In International Conference on
Network Protocols, pages 12–21, 2006. (Cited on page 25)

238

Bibliography

[222] Qing Li, Hongkun Li, Paul Russell Jr., Zhuo Chen, and Chonggang Wang. CA-
P2P: Context-aware proximity-based peer-to-peer wireless communications. IEEE
Communications Magazine, 52(6):32–41, 2014. (Cited on pages 199 and 200)

[223] X. Li and J Wu. Searching techniques in peer-to-peer networks. In Handbook of
Theoretical and Algorithmic Aspects of Ad Hoc, Sensor, and Peer-to-Peer Networks,
pages 613–642. Averbach, 2006. (Cited on page 25)

[224] Zheng Li, Liam O’Brien, He Zhang, and Rainbow Cai. Boosting metrics for cloud
services evaluation – the last mile of using benchmark suites. In 27th International
Conference on Advanced Information Networking and Applications, pages 381–388,
2013. (Cited on page 55)

[225] Xiangke Liao, Liquan Xiao, Canqun Yang, and Yutong Lu. MilkyWay-2 supercom-
puter: system and application. Frontiers of Computer Science, 8(3):345–356, 2014.
(Cited on page 18)

[226] J. C. R. Licklider and Robert W. Taylor. The computer as a communication device.
Science and Technology, 76:21–31, 1968. (Cited on page 11)

[227] LINPACK. netlib.org/linpack, 2012. Last accessed in July 2014. (Cited on
pages 93, 164, and 168)

[228] Meirong Liu, Timo Koskela, Zhonghong Ou, Jiehan Zhou, Jukka Riekki, and Mika
Ylianttila. Super-peer-based coordinated service provision. Journal of Network and
Computer Applications, 34(4):1210–1224, 2011. (Cited on page 27)

[229] Yongchao Liu, Douglas L Maskell, and Bertil Schmidt. CUDASW++: optimizing
Smith-Waterman sequence database searches for CUDA-enabled graphics processing
units. BMC Bioinformatics, 2, 2009. (Cited on pages 115 and 127)

[230] Zhenhua Liu, Yuan Chen, Cullen Bash, Adam Wierman, Daniel Gmach, Zhikui
Wang, Manish Marwah, and Chris Hyser. Renewable and cooling aware workload
management for sustainable data centers. In 12th ACM SIGMETRICS/PERFOR-
MANCE Joint International Conference on Measurement and Modeling of Computer
Systems, pages 175–186, 2012. (Cited on page 90)

[231] Boon Thau Loo, Ryan Huebsch, Ion Stoica, and Joseph M. Hellerstein. The case
for a hybrid P2P search infrastructure. In International workshop on Peer-To-Peer
Systems, pages 141–150, 2004. (Cited on pages 26 and 27)

[232] Yung-Hsiang Lu, Qinru Qiu, Ali R. Butt, and Kirk W. Cameron. End-to-end energy
management. IEEE Computer, 44(11):75–77, 2011. (Cited on page 93)

[233] Piotr R Luszczek, David H Bailey, Jack J Dongarra, Jeremy Kepner, Robert F Lucas,
Rolf Rabenseifner, and Daisuke Takahashi. The HPC Challenge (HPCC) benchmark
suite. In ACM/IEEE conference on Supercomputing, 2006. (Cited on page 94)

[234] Qin Lv, Pei Cao, Edith Cohen, Kai Li, and Scott Shenker. Search and replica-
tion in unstructured peer-to-peer networks. In 16th International Conference on
Supercomputing, pages 84–95, 2002. (Cited on pages 24 and 28)

239

netlib.org/linpack

Bibliography

[235] Qin Lv, Sylvia Ratnasamy, and Scott Shenker. Can heterogeneity make Gnutella
scalable? In International workshop on Peer-To-Peer Systems, volume 2429, pages
94–103, 2002. (Cited on page 24)

[236] Evaristus Mainsah. Autonomic computing: the next era of computing. Electronics
Communication Engineering Journal, 14(1):2–3, 2002. (Cited on pages 77 and 80)

[237] Madhavi Maiya, Sai Dasari, Ravi Yadav, Sandhya Shivaprasad, and Dejan Milojicic.
Quantifying manageability of cloud platforms. In 5th IEEE International Conference
on Cloud Computing, pages 993–995, 2012. (Cited on page 55)

[238] Attila Csaba Marosi, Gabor Kecskemeti, Attila Kertesz, and Peter Kacsuk. FCM: an
architecture for integrating IaaS cloud systems. In 2nd International Conference on
Cloud Computing, GRIDs, and Virtualization, pages 7–12, 2011. (Cited on page 60)

[239] Moreno Marzolla, Ozalp Babaoglu, and Fabio Panzieri. Server consolidation in
clouds through gossiping. In IEEE International Symposium on a World of Wireless,
Mobile and Multimedia Networks, pages 1–6. IEEE Computer, 2011. (Cited on
pages 40, 80, 88, and 213)

[240] Matthew L. Massie, Brent N. Chun, and David E. Culler. The Ganglia distributed
monitoring system: Design, implementation and experience. Parallel Computing, 30
(7):817–840, 2003. (Cited on page 53)

[241] Petar Maymounkov and David Mazières. Kademlia: A peer-to-peer information
system based on the XOR metric. In First International Workshop on Peer-to-Peer
Systems, pages 53–65, 2002. (Cited on page 25)

[242] Piyush Mehrotra, Jahed Djomehri, Steve Heistand, Robert Hood, Haoqiang Jin,
Arthur Lazanoff, Subhash Saini, and Rupak Biswas. Performance evaluation of
Amazon EC2 for NASA HPC applications. In 3rd Workshop on Scientific Cloud
Computing Date, pages 41–50, 2012. (Cited on page 164)

[243] Peter Mell and Timothy Grance. The NIST definition of Cloud Computing, National
Institute of Standards and Technology. Technical Report SP800-145, NIST Informa-
tion Technology Laboratory, 2011. URL csrc.nist.gov/publications/nistpubs/
800-145/SP800-145.pdf. Last accessed in January 2014. (Cited on pages 29, 30,
45, 46, and 47)

[244] Alexandre Mello Ferreira, Kyriakos Kritikos, and Barbara Pernici. Energy-aware
design of service-based applications. In Service-Oriented Computing, volume 5900,
pages 99–114. Springer-Verlag, 2009. (Cited on page 90)

[245] Víctor Méndez Muñoz, Adrian Casajús Ramo, Víctor Fernández Albor, Ricardo
Graciani Diaz, and Gonzalo Merino Arévalo. Rafhyc: An architecture for constructing
resilient services on federated hybrid clouds. Journal of Grid Computing, 11(4):
753–770, 2013. (Cited on pages 66, 67, and 74)

240

csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf
csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf

Bibliography

[246] Kaisa Miettinen. Introduction to multiobjective optimization: Noninteractive ap-
proaches. In Jürgen Branke, Kalyanmoy Deb, Kaisa Miettinen, and Roman Słowiński,
editors, Multiobjective Optimization, volume 5252, pages 1–26. Springer Berlin Hei-
delberg, 2008. (Cited on page 151)

[247] R. Mietzner, A. Metzger, F. Leymann, and K. Pohl. Variability modeling to
support customization and deployment of multi-tenant-aware software as a service
applications. In Workshop on Principles of Engineering Service Oriented Systems,
pages 18–25, 2009. (Cited on pages 180, 181, 184, and 187)

[248] Dejan Milojicic, Ignacio M. Llorente, and Ruben S. Montero. OpenNebula: A cloud
management tool. IEEE Internet Computing, 15(2):11–14, 2011. (Cited on pages 54,
55, 60, and 217)

[249] Laurl Minas and Brad Ellison. Energy Efficiency for Information Technology: How
to Reduce Power Consumption in Servers and Data Centers. Intel Press, 2009. (Cited
on page 214)

[250] Alan Mislove and Peter Druschel. Providing administrative control and autonomy
in structured peer-to-peer overlays. In International workshop on Peer-To-Peer
Systems, pages 162–172, 2004. (Cited on page 27)

[251] Isi Mitrani. Service center trade-offs between customer impatience and power
consumption. Performance Evaluation, 68(11):1222–1231, 2011. (Cited on pages 91
and 111)

[252] Anirban Mondal, Yi Lifu, and Masaru Kitsuregawa. P2PR-Tree: An r-tree-based
spatial index for peer-to-peer environments. In International Conference on Current
Trends in Database Technology, pages 516–525. Springer-Verlag, 2004. (Cited on
page 25)

[253] Rafael Moreno-Vozmediano, Ruben Montero, and Ignacio Llorente. IaaS cloud archi-
tecture: From virtualized datacenters to federated cloud infrastructures. Computer,
45(12):65–72, 2012. (Cited on page 49)

[254] Mosaic: The First Global Web Browser. www.livinginternet.com/w/wi_mosaic.
htm, 2014. Last accessed in January 2014. (Cited on page 14)

[255] David Mount. Bioinformatics: Sequence and Genome Analysis. Cold Spring Harbor
Laboratory Press, 1st edition, 2004. (Cited on pages 117 and 122)

[256] Victor Ion Munteanu, Teodor-Florin Fortis, and Adrian Copie. Building a cloud
governance bus. International Journal of Computers, Communications & Control, 7
(5):900–906, 2012. (Cited on page 51)

[257] Mihir Nanavati, Patrick Colp, Bill Aiello, and Andrew Warfield. Cloud security:
A gathering storm. Communications of the ACM, 57(5):70–79, 2014. (Cited on
pages 33 and 54)

241

www.livinginternet.com/w/wi_mosaic.htm
www.livinginternet.com/w/wi_mosaic.htm

Bibliography

[258] Susanta Nanda and Tzi cker Chiueh. A survey of virtualization technologies. Technical
Report TR–179, Stony Brook University, February 2005. URL www.ecsl.cs.sunysb.
edu/tr/TR179.pdf. Last accessed in February 2014. (Cited on page 37)

[259] Eric Nawrocki and Sean Eddy. INFERNAL user’s guide. selab.janelia.org/
software/infernal/Userguide.pdf, 2014. Last accessed in May 2014. (Cited on
page 137)

[260] Eric P. Nawrocki, Diana L. Kolbe, and Sean R. Eddy. Infernal 1.0: inference of RNA
alignments. Bioinformatics, 25(10):1335–1337, 2009. (Cited on page 136)

[261] Mahdi Noorian, Hamidreza Pooshfam, Zeinab Noorian, and Rosni Abdullah. Perfor-
mance enhancement of Smith-Waterman algorithm using hybrid model: comparing
the MPI and hybrid programming paradigm on SMP clusters. In IEEE International
Conference on Systems, Man and Cybernetics, pages 492–497, 2009. (Cited on
pages 115 and 127)

[262] Henrik Nordberg, Karan Bhatia, Kai Wang, and Zhong Wang. BioPig: a Hadoop-
based analytic toolkit for large-scale sequence data. Bioinformatics, 29(23):3014–3019,
2013. (Cited on pages 129, 134, 141, and 143)

[263] Daniel Nurmi, Rich Wolski, Chris Grzegorczyk, Graziano Obertelli, Sunil So-
man, Lamia Youseff, and Dmitrii Zagorodnov. The eucalyptus open-source cloud-
computing system. In 9th IEEE/ACM International Symposium on Cluster Com-
puting and the Grid, pages 124–131, 2009. (Cited on pages 55 and 217)

[264] Anne-Cecile Orgerie, Laurent Lefevre, and Jean-Patrick Gelas. Demystifying energy
consumption in grids and clouds. In International Conference on Green Computing,
pages 335–342, 2010. (Cited on page 90)

[265] Anne-Cecile Orgerie, Marcos Dias de Assuncao, and Laurent Lefevre. A survey on
techniques for improving the energy efficiency of large-scale distributed systems.
ACM Computing Surveys, 46(4):47:1–47:31, 2014. (Cited on page 90)

[266] Anne-Cecile Orgerie, Marcos Dias de Assuncao, and Laurent Lefevre. A survey on
techniques for improving the energy efficiency of large-scale distributed systems.
ACM Computing Surveys, 46(4):47:1–47:31, 2014. (Cited on page 102)

[267] Simon Ostermann, Alexandru Iosup, Nezih Yigitbasi, Radu Prodan, Thomas
Fahringer, and Dick Epema. A performance analysis of EC2 cloud computing
services for scientific computing. In Cloud Computing, pages 115–131. Springer, 2010.
(Cited on pages 147, 164, and 205)

[268] Andrzej Osyczka. Multicriteria optimization for engineering design, pages 193–227.
Academic Press, 1985. (Cited on page 151)

[269] Zhonghong Ou, Hao Zhuang, Andrey Lukyanenko, Jukka K. Nurminen, Pan Hui,
Vladimir Mazalov, and Antti Ylä-Jääski. Is the same instance type created equal?
exploiting heterogeneity of public clouds. IEEE Transactions on Cloud Computing,
1(2):201–214, 2013. (Cited on pages 17, 150, and 164)

242

www.ecsl.cs.sunysb.edu/tr/TR179.pdf
www.ecsl.cs.sunysb.edu/tr/TR179.pdf
selab.janelia.org/software/infernal/Userguide.pdf
selab.janelia.org/software/infernal/Userguide.pdf

Bibliography

[270] Harris Papadakis, Paolo Trunfio, Domenico Talia, and Paraskevi Fragopoulou. Design
and implementation of a hybrid P2P-based grid resource discovery system. In Making
Grids Work, pages 89–101. Springer, 2008. (Cited on page 27)

[271] Michael P. Papazoglou, Paolo Traverso, Schahram Dustdar, and Frank Leymann.
Service-oriented computing: State of the art and research challenges. Computer, 40
(11):38–45, 2007. (Cited on page 65)

[272] Giuseppe Papuzzo and Giandomenico Spezzano. Autonomic management of work-
flows on hybrid grid-cloud infrastructure. In 7th International Conference on Network
and Services Management, pages 230–233. International Federation for Information
Processing, 2011. (Cited on pages 80, 81, 88, and 213)

[273] Fawaz Paraiso, Nicolas Haderer, Philippe Merle, Romain Rouvoy, and Lionel Sein-
turier. A federated multi-cloud PaaS infrastructure. In 5th International Conference
on Cloud Computing, pages 392–399, 2012. (Cited on pages 63 and 65)

[274] Przemyslaw Pawluk, Bradley Simmons, Michael Smit, Marin Litoiu, and Serge
Mankovski. Introducing STRATOS: A cloud broker service. In 5th IEEE Interna-
tional Conference on Cloud Computing, pages 891–898, 2012. (Cited on pages 65,
66, and 74)

[275] Dana Petcu. Portability and interoperability between clouds: Challenges and case
study. In 4th European Conference on Towards a Service-based Internet, pages 62–74,
2011. (Cited on pages 33, 50, and 51)

[276] Dana Petcu. Multi-cloud: Expectations and current approaches. In International
Workshop on Multi-cloud Applications and Federated Clouds, pages 1–6, 2013. (Cited
on pages 33 and 52)

[277] Dana Petcu. Consuming resources and services from multiple clouds. Journal of
Grid Computing, pages 1–25, 2014. (Cited on pages 49, 50, 51, 190, and 217)

[278] Dana Petcu, Ciprian Craciun, and Massimiliano Rak. Towards a cross platform cloud
API. In 1st International Conference on Cloud Computing and Services Science,
pages 166–169, 2011. (Cited on pages 50, 63, 74, and 210)

[279] Dana Petcu, BeniaminoDi Martino, Salvatore Venticinque, Massimiliano Rak, Tamás
Máhr, GorkaEsnal Lopez, Fabrice Brito, Roberto Cossu, Miha Stopar, Svatopluk
Šperka, and Vlado Stankovski. Experiences in building a mOSAIC of clouds. Journal
of Cloud Computing, 2(1), 2013. (Cited on pages 63 and 64)

[280] Guillaume Pierre and Corina Stratan. ConPaaS: a platform for hosting elastic cloud
applications. IEEE Internet Computing, 16(5):88–92, 2012. (Cited on pages 60
and 72)

[281] Eduardo Pinheiro, Ricardo Bianchini, Enrique V. Carrera, and Taliver Heath. Load
balancing and unbalancing for power and performance in cluster-based systems.
Workshop on Compilers and Operating Systems for Low Power, pages 182–195, 2001.
(Cited on page 91)

243

Bibliography

[282] Klaus Pohl, Günter Böckle, and Frank J. van der Linden. Software Product Line
Engineering: Foundations, Principles and Techniques. Springer-Verlag New York,
2005. (Cited on page 147)

[283] Gerald J. Popek and Robert P. Goldberg. Formal requirements for virtualizable
third generation architectures. Communications of the ACM, 17(7):412–421, 1974.
(Cited on page 38)

[284] R. Prodan and S. Ostermann. A survey and taxonomy of infrastructure as a service
and web hosting cloud providers. In 10th IEEE/ACM International Conference on
Grid Computing, pages 17–25, 2009. (Cited on pages 162 and 164)

[285] William Pugh. Skip Lists: A probabilistic alternative to balanced trees. Communi-
cations of the ACM, 33(6):668–676, 1990. (Cited on page 25)

[286] Flavien Quesnel, Adrien Lèbre, and Mario Südholt. Cooperative and reactive schedul-
ing in large-scale virtualized platforms with DVMS. Concurrency and Computation:
Practice and Experience, 25(12):1643–1655, 2013. (Cited on pages 83, 84, and 88)

[287] Clément Quinton, Nicolas Haderer, Romain Rouvoy, and Laurence Duchien. Towards
multi-cloud configurations using feature models and ontologies. In International
Workshop on Multi-cloud Applications and Federated Clouds, pages 21–26, 2013.
(Cited on pages 179, 180, 184, and 187)

[288] Clément Quinton, Daniel Romero, and Laurence Duchien. Automated selection and
configuration of cloud environments using software product lines principles. In 7th
IEEE International Conference on Cloud Computing, 2014. (Cited on pages 148,
179, 184, and 187)

[289] Asfandyar Qureshi, Rick Weber, Hari Balakrishnan, John Guttag, and Bruce Maggs.
Cutting the electric bill for internet-scale systems. In ACM SIGCOMM conference
on Data communication, pages 123–134, 2009. (Cited on page 113)

[290] S. Rajko and S. Aluru. Space and time optimal parallel sequence alignments. IEEE
Transactions on Parallel and Distributed Systems, 15(12):1070–1081, 2004. (Cited
on pages 115 and 127)

[291] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, and Scott Shenker. A
scalable content-addressable network. In Conference on Applications, Technologies,
Architectures, and Protocols for Computer Communications, pages 161–172, 2001.
(Cited on page 25)

[292] Mikael Ricknäs. Microsoft’s Windows Azure cloud hit by world-
wide management interuption. pcworld.com/article/2059901/
microsofts-windows-azure-cloud-hit-by-worldwide-management-interuption.
html, 2013. Last accessed in July 2014. (Cited on page 48)

[293] Matthias Riebisch, Kai Matthias, Böllert, Detlef Streitferdt, and Ilka Philippow.
Extending feature diagrams with UML multiplicities. In 6th World Conference on
Integrated Design and Process Technology, volume 50, pages 1–7, 2002. (Cited on
page 156)

244

pcworld.com/article/2059901/microsofts-windows-azure-cloud-hit-by-worldwide-management-interuption.html
pcworld.com/article/2059901/microsofts-windows-azure-cloud-hit-by-worldwide-management-interuption.html
pcworld.com/article/2059901/microsofts-windows-azure-cloud-hit-by-worldwide-management-interuption.html

Bibliography

[294] Suzanne Rivoire, Mehul A. Shah, Parthasarathy Ranganathan, and Christos
Kozyrakis. JouleSort: a balanced energy-efficiency benchmark. In ACM SIG-
MOD international conference on Management of Data, pages 365–376, 2007. (Cited
on page 94)

[295] Suzanne Rivoire, Mehul A. Shah, Parthasarathy Ranganathan, Christos Kozyrakis,
and Justin Meza. Models and metrics to enable energy-efficiency optimizations.
IEEE Computer, 40(12):39–48, 2007. (Cited on page 93)

[296] B. Rochwerger, D. Breitgand, E. Levy, A. Galis, K. Nagin, I.M. Llorente, R. Montero,
Y. Wolfsthal, E. Elmroth, J. Caceres, M. Ben-Yehuda, W. Emmerich, and F. Galan.
The Reservoir model and architecture for open federated cloud computing. IBM
Journal of Research and Development, 53(4):4:1–4:11, 2009. (Cited on pages 49, 68,
69, 74, and 210)

[297] Benny Rochwerger, David Breitgand, Amir Epstein, David Hadas, Irit Loy, Kenneth
Nagin, Johan Tordsson, Carmelo Ragusa, Massimo Villari, Stuart Clayman, Eliezer
Levy, Alessandro Maraschini, Philippe Massonet, Henar Munoz, and Giovanni Tofetti.
Reservoir - when one cloud is not enough. Computer, 44(3):44–51, 2011. (Cited on
page 51)

[298] Ivan Rodero, Hariharasudhan Viswanathan, Eun Kyung Lee, Marc Gamell, Dario
Pompili, and Manish Parashar. Energy-efficient thermal-aware autonomic manage-
ment of virtualized HPC cloud infrastructure. Journal of Grid Computing, 10(3):
447–473, 2012. (Cited on pages 85, 88, and 213)

[299] Luis Rodero-Merino, Luis M. Vaquero, Victor Gil, Fermín Galán, Javier Fontán,
Rubén S. Montero, and Ignacio M. Llorente. From infrastructure delivery to service
management in clouds. Future Generation Computer Systems, 26(8):1226–1240,
2010. (Cited on pages 60, 61, and 74)

[300] Paolo Romano, Luis Rodrigues, Nuno Carvalho, and Joäo Cachopo. Cloud-TM:
Harnessing the cloud with distributed transactional memories. ACM SIGOPS
Operating Systems Review, 44(2):1–6, 2010. (Cited on pages 61, 74, and 210)

[301] Mendel Rosenblum and Tal Garfinkel. Virtual machine monitors: Current technology
and future trends. IEEE Computer, 38:39–47, 2005. (Cited on pages 13 and 38)

[302] Antony I. T. Rowstron and Peter Druschel. Pastry: Scalable, decentralized object
location, and routing for large-scale peer-to-peer systems. In IFIP/ACM International
Conference on Distributed Systems Platforms Heidelberg, pages 329–350, 2001. (Cited
on page 25)

[303] Larry Rudolph, Miriam Slivkin-Allalouf, and Eli Upfal. A simple load balancing
scheme for task allocation in parallel machines. In 3rd Annual ACM Symposium on
Parallel Algorithms and Architectures, pages 237–245, 1991. (Cited on page 218)

[304] Stefan T. Ruehl and Urs Andelfinger. Applying software product lines to create
customizable software-as-a-service applications. In 15th International Software

245

Bibliography

Product Line Conference, pages 16:1–16:4, 2011. (Cited on pages 148, 180, 184,
and 187)

[305] Stefan T. Ruehl, Urs Andelfinger, Andreas Rausch, and Stephan A. W. Verclas.
Toward realization of deployment variability for software-as-a-service applications.
In IEEE 5th International Conference on Cloud Computing, pages 622–629, 2012.
(Cited on pages 148, 180, 182, 184, and 187)

[306] Stuart J. Russell and Peter Norvig. Artificial Intelligence: A Modern Approach.
Pearson Education, 3rd edition, 2009. (Cited on page 79)

[307] A. Samba. Logical data models for cloud computing architectures. IT Professional,
14(1):19–26, 2012. (Cited on page 1)

[308] Thomas Sandholm and Jarek Gawor. Globus Toolkit 3 core-a grid service container
framework. toolkit.globus.org/toolkit/3.0/ogsa/docs/gt3_core.pdf, July
2003. Last accessed in January 2014. (Cited on pages 20 and 21)

[309] Sriram Sankar and Kushagra Vaid. Addressing the stranded power problem in
datacenters using storage workload characterization. In 1st Joint WOSP/SIPEW
International Conference on Performance engineering, pages 217–222, 2010. (Cited
on page 94)

[310] Sriya Santhanam, Pradheep Elango, Andrea Arpaci-Dusseau, and Miron Livny.
Deploying virtual machines as sandboxes for the grid. In 2nd Conference on Real,
Large Distributed Systems, pages 7–12, 2005. (Cited on page 213)

[311] Constantine Sapuntzakis and Monica S. Lam. Virtual appliances in the collective:
A road to hassle-free computing. In 9th Conference on Hot Topics in Operating
Systems, pages 55–60, 2003. (Cited on page 53)

[312] Yoshikazu Sawaragi, Hirotaka Nakayama, and Tetsuzo Tanino. Theory of Multiob-
jective Optimization. Academic Press, 1985. (Cited on page 152)

[313] Julia Schroeter, Peter Mucha, Marcel Muth, Kay Jugel, and Malte Lochau. Dynamic
configuration management of cloud-based applications. In 16th International Software
Product Line Conference, pages 171–178, 2012. (Cited on pages 148, 182, 183, 184,
and 187)

[314] Greg Schulz. The Green and Virtual Data Center. CRC Press, 2009. (Cited on
page 93)

[315] André Schumacher, Luca Pireddu, Matti Niemenmaa, Aleksi Kallio, Eija Korpelainen,
Gianluigi Zanetti, and Keijo Heljanko. SeqPig: simple and scalable scripting for
large sequencing data sets in Hadoop. Bioinformatics, 30(1):119–120, 2014. (Cited
on pages 129, 135, and 143)

[316] Glauber Scorsatto and Alba Cristina Magalhães Alves de Melo. GrAMoS: A flexible
service for WS-agreement monitoring in grid environments. In 14th international
Euro-Par conference on Parallel Processing, pages 534–543, 2008. (Cited on page 41)

246

toolkit.globus.org/toolkit/3.0/ogsa/docs/gt3_core.pdf

Bibliography

[317] Lionel Seinturier, Philippe Merle, Damien Fournier, Nicolas Dolet, Valerio Schiavoni,
and Jean-Bernard Stefani. Reconfigurable SCA Applications with the FraSCAti
Platform. In IEEE International Conference on Services Computing, pages 268–275,
2009. (Cited on pages 74 and 210)

[318] Jin Shao and Qianxiang Wang. A performance guarantee approach for cloud appli-
cations based on monitoring. In 35th Annual Computer Software and Applications
Conference Workshops, pages 25–30, 2011. (Cited on page 55)

[319] Yuxiang Shi, Xiaohong Jiang, and Kejiang Ye. An energy-efficient scheme for cloud
resource provisioning based on CloudSim. In IEEE International Conference on
Cluster Computing, pages 595–599, 2011. (Cited on pages 106 and 214)

[320] Jacopo Silvestro, Daniele Canavese, Emanuele Cesena, and Paolo Smiraglia. A unified
ontology for the virtualization domain. In Confederated International Conference
on On the Move to Meaningful Internet Systems, pages 617–624, 2011. (Cited on
page 162)

[321] Kwang Mong Sim. Agent-based cloud computing. IEEE Transactions on Services
Computing, 5(4):564–577, 2012. (Cited on pages 83, 84, and 88)

[322] G. Sinevriotis and T. Stouraitis. A novel list-scheduling algorithm for the low-energy
program execution. In IEEE International Symposium on Circuits and Systems,
volume 4, pages IV–97–IV–100, 2002. (Cited on page 91)

[323] A. Singh and Ling Liu. A hybrid topology architecture for P2P systems. In
13th International Conference on Computer Communications and Networks, pages
475–480, 2004. (Cited on pages 26 and 28)

[324] Rahul Singh, David Irwin, Prashant Shenoy, and K. K. Ramakrishnan. Yank:
Enabling green data centers to pull the plug. In 10th USENIX Conference on
Networked Systems Design and Implementation, pages 143–156, 2013. (Cited on
pages 92 and 113)

[325] Dinkar Sitaram and Geetha Manjunath. Moving To The Cloud: Developing Apps in
the New World of Cloud Computing. Syngress Publishing, 2011. (Cited on pages 35
and 37)

[326] Larry Smarr and Charles E. Catlett. Metacomputing. Communications of the ACM,
35(6):44–52, 1992. (Cited on pages 4, 14, and 219)

[327] T. F. Smith and M. S. Waterman. Identification of common molecular subsequences.
Journal of Molecular Biology, 147:195–197, 1981. (Cited on pages 115 and 117)

[328] Borja Sotomayor, Ruben S. Montero, Ignacio M. Llorente, and Ian Foster. Virtual
infrastructure management in private and hybrid clouds. IEEE Internet Computing,
13(5):14–22, 2009. (Cited on pages 47 and 55)

[329] Ilango Sriram. SPECI, a simulation tool exploring cloud-scale data centres. In
1st International Conference on Cloud Computing, pages 381–392, 2009. (Cited on
page 32)

247

Bibliography

[330] Edward Stanford. Environmental trends and opportunities for computer system
power delivery. In 20th International Symposium on Power Semiconductor Devices
and IC’s, pages 1–3, 2008. (Cited on pages 2 and 89)

[331] John R. Stanley, Kenneth G. Brill, and Jonathan Koomey. Four metrics define data
center ’greenness’: Enabling users to quantify energy consumption initiatives for
environmental sustainability and bottom line profitability. Technical report, Uptime
Institute, 2007. URL uptimeinstitute.org/component/docman/doc_download/
16-four-metrics-define-data-center-greenness. Last accessed in April 2014.
(Cited on pages 95, 96, and 97)

[332] Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, and Hari Balakrish-
nan. Chord: A scalable peer-to-peer lookup service for internet applications. In
Conference on Applications, Technologies, Architectures, and Protocols for Computer
Communications, pages 149–160, 2001. (Cited on pages 25, 26, 27, and 196)

[333] Balaji Subramaniam and Wu-chun Feng. The green index: A metric for evaluating
system-wide energy efficiency in hpc systems. In IEEE 26th International on Parallel
and Distributed Processing Symposium Workshops PhD Forum, pages 1007–1013,
2012. (Cited on page 93)

[334] Chandrasekar Subramanian, Arunchandar Vasan, and Anand Sivasubramaniam.
Reducing data center power with server consolidation: Approximation and evaluation.
In International Conference on High Performance Computing, pages 1–10, 2010.
(Cited on page 102)

[335] Francis Sullivan. Cloud computing for the sciences. Computing in Science and
Engineering, 11(4):10–11, 2009. (Cited on page 35)

[336] Xin Sun, Yong Tian, Yushu Liu, and Yue He. An unstructured P2P network model for
efficient resource discovery. In First International Conference on the Applications of
Digital Information and Web Technologies, pages 156–161, 2008. (Cited on page 27)

[337] Vaibhav Sundriyal, Masha Sosonkina, Fang Liu, and Michael W. Schmidt. Dynamic
frequency scaling and energy saving in quantum chemistry applications. In IEEE
International Symposium on Parallel and Distributed Processing Workshops and
PhD Forum, pages 837–845, 2011. (Cited on page 91)

[338] Hassan Takabi, James B. D. Joshi, and Gail-Joon Ahn. Security and privacy
challenges in cloud computing environments. IEEE Security and Privacy, 8(6):24–31,
2010. (Cited on pages 32 and 33)

[339] Le Nhan Tam, Gerson Sunyé, and Jean-Marc Jezequel. A model-based approach
for optimizing power consumption of IaaS. In 2nd Symposium on Network Cloud
Computing and Applications, pages 31–39, 2012. (Cited on pages 148, 175, 184,
and 187)

[340] Le Nhan Tam, Gerson Sunyé, and Jean-Marc Jézéquel. A model-driven approach for
virtual machine image provisioning in cloud computing. In 1st European Conference

248

uptimeinstitute.org/component/docman/doc_download/16-four-metrics-define-data-center-greenness
uptimeinstitute.org/component/docman/doc_download/16-four-metrics-define-data-center-greenness

Bibliography

on Service-Oriented and Cloud Computing, pages 107–121, 2012. (Cited on pages 148,
175, 176, 184, and 187)

[341] Andrew S. Tanenbaum and Maarten van Steen. Distributed Systems: Principles and
Paradigms. Prentice-Hall, 2nd edition, 2006. (Cited on pages 11, 12, and 17)

[342] Peiyi Tang and Pen-Chung Yew. Processor self-scheduling for multiple-nested parallel
loops. In International Conference on Parallel Processing, pages 528–535, 1986.
(Cited on pages 195 and 201)

[343] Andrei Tchernykh, Johnatan E. Pecero, Aritz Barrondo, and Elisa Schaeffer. Adaptive
energy efficient scheduling in peer-to-peer desktop grids. Future Generation Computer
Systems, 2013. (Cited on page 91)

[344] Ralf Teckelmann, Christoph Reich, and Anthony Sulistio. Mapping of cloud standards
to the taxonomy of interoperability in IaaS. In 3rd International Conference on
Cloud Computing Technology and Science, pages 522–526, 2011. (Cited on page 54)

[345] Thomas Thum, Christian Kastner, Sebastian Erdweg, and Norbert Siegmund. Ab-
stract features in feature modeling. In 15th International Software Product Line
Conference, pages 191–200, 2011. (Cited on page 155)

[346] Adel Nadjaran Toosi, Rodrigo N. Calheiros, and Rajkumar Buyya. Interconnected
cloud computing environments: Challenges, taxonomy, and survey. ACM Computing
Surveys, 47(1):7:1–7:47, 2014. (Cited on page 146)

[347] Joe Touch. Overlay networks. Computer Networks, 36(2–3):115–116, 2001. (Cited
on page 23)

[348] Pablo Trinidad, David Benavides, Antonio Ruiz-Cortés, Sergio Segura, and Alberto
Jimenez. FAMA Framework. In 12th International Software Product Line Conference,
pages 359–359, 2008. (Cited on page 184)

[349] P. Trunfio, D. Talia, H. Papadakis, P. Fragopoulou, M. Mordacchini, M. Pennanen,
K. Popov, V. Vlassov, and S. Haridi. Peer-to-peer resource discovery in grids: Models
and systems. Future Generation Computer Systems, 23(7):864–878, 2007. (Cited on
pages 19 and 29)

[350] Dimitrios Tsoumakos and Nick Roussopoulos. A comparison of peer-to-peer search
methods. In 6th International Workhop on the Web and Databases, 2003. (Cited on
pages 24 and 28)

[351] R. Uhlig, G. Neiger, D. Rodgers, A.L. Santoni, F.C.M. Martins, A.V. Anderson,
S.M. Bennett, A. Kagi, F.H. Leung, and L. Smith. Intel virtualization technology.
IEEE Computer, 38(5):48–56, 2005. (Cited on page 40)

[352] David A. Van Veldhuizen and Gary B. Lamont. Multiobjective evolutionary algo-
rithms: Analyzing the state-of-the-art. Evolutionary Computation, 8(2):125–147,
2000. (Cited on pages 151, 152, and 153)

249

Bibliography

[353] Luis M. Vaquero, Luis Rodero-Merino, Juan Caceres, and Maik Lindner. A break in
the clouds: towards a cloud definition. ACM SIGCOMM Computer Communication
Review, 39(1):50–55, 2008. (Cited on pages 29 and 162)

[354] Carlos Varela and Gul Agha. Programming dynamically reconfigurable open systems
with SALSA. ACM SIGPLAN Notices, 36(12):20–34, 2001. (Cited on page 66)

[355] P. Verissimo, A. Bessani, and M. Pasin. The TClouds architecture: Open and
resilient cloud-of-clouds computing. In IEEE/IFIP 42nd International Conference
on Dependable Systems and Networks Workshops, pages 1–6, 2012. (Cited on pages 63,
65, 74, and 210)

[356] Akshat Verma, Puneet Ahuja, and Anindya Neogi. pmapper: Power and migration
cost aware application placement in virtualized systems. In ACM/IFIP/USENIX
International Conference on Middleware, pages 243–264, 2008. (Cited on pages 111
and 113)

[357] David Villegas, Norman Bobroff, Ivan Rodero, Javier Delgado, Yanbin Liu, Aditya
Devarakonda, Liana Fong, S. Masoud Sadjadi, and Manish Parashar. Cloud federation
in a layered service model. Journal of Computer and System Sciences, 78(5):1330–
1344, 2012. (Cited on page 51)

[358] Werner Vogels. Beyond server consolidation. Jounal of ACM Queue, 6(1):20–26,
2008. (Cited on page 40)

[359] William Voorsluys, James Broberg, Srikumar Venugopal, and Rajkumar Buyya.
Cost of virtual machine live migration in clouds: A performance evaluation. In
1st International Conference on Cloud Computing, pages 254–265, 2009. (Cited on
page 41)

[360] QuangHieu Vu, Mihai Lupu, and BengChin Ooi. Routing in peer-to-peer networks.
In Peer-to-Peer Computing, pages 39–80. Springer, 2010. (Cited on pages 25 and 34)

[361] Marc Waldman, Aviel Rubin, and Lorrie Cranor. Publius: A robust, tamper-evident,
censorship-resistant web publishing system. In 9th USENIX Security Symposium,
pages 59–72, 2000. (Cited on page 24)

[362] Carl A. Waldspurger. Memory Resource Management in VMware ESX Server.
Symposium on operating systems design and implementation, 36(SI):181–194, 2002.
(Cited on page 38)

[363] Stefan Walraven, Dimitri Van Landuyt, Eddy Truyen, Koen Handekyn, and Wouter
Joosen. Efficient customization of multi-tenant software-as-a-service applications
with service lines. Journal of Systems and Software, 91:48–62, 2014. (Cited on
pages 183, 184, and 187)

[364] Cong Wang, Qian Wang, Kui Ren, Ning Cao, and Wenjing Lou. Toward secure and
dependable storage services in cloud computing. IEEE Transactions on Services
Computing, 5:220–232, 2012. (Cited on pages 32 and 34)

250

Bibliography

[365] Lei Wang, Jianfeng Zhan, Weisong Shi, and Yi Liang. In cloud, can scientific
communities benefit from the economies of scale? IEEE Transactions on Parallel
and Distributed Systems, 23(2):296–303, 2012. (Cited on page 32)

[366] Lizhe Wang and Samee Khan. Review of performance metrics for green data centers:
a taxonomy study. The Journal of Supercomputing, pages 1–18, 2011. (Cited on
page 92)

[367] Lizhe Wang, Gregor Laszewski, Andrew Younge, He Xi, Marcel Kunze, Tao Jie, and
Fu Cheng. Cloud computing: a perspective study. New Generation Computing, 28
(2):137–146, 2010. (Cited on page 41)

[368] Lizhe Wang, Gregor von Laszewski, Marcel Kunze, Jie Tao, and Jai Dayal. Provide
virtual distributed environments for grid computing on demand. Advances in
Engineering Software, 41(2):213–219, 2010. (Cited on page 213)

[369] Ucilia Wang. Microsoft pledges to be carbon neutral starting this summer. gigaom.
com/2012/05/08/microsoft-pledges-to-be-carbon-neutral-by-the-summer,
2012. Last accessed in July 2014. (Cited on page 92)

[370] Dan Werthimer, Jeff Cobb, Matt Lebofsky, David Anderson, and Eric Korpela.
SETI@Home–massively distributed computing for SETI. IEEE Computing in Science
and Engineering, 3(1):78–83, 2001. (Cited on pages 11 and 34)

[371] James Robert White, Malcolm Matalka, W. Florian Fricke, and Samuel V. Angiuoli.
Cunningham: a BLAST runtime estimator. Nature Precedings, pages 1–6, 2011.
(Cited on page 141)

[372] Bhathiya Wickremasinghe, Rodrigo N. Calheiros, and Rajkumar Buyya. CloudAna-
lyst: A CloudSim-based visual modeller for analysing cloud computing environments
and applications. In 24th IEEE International Conference on Advanced Information
Networking and Applications, pages 446–452, 2010. (Cited on page 32)

[373] Erik Wittern, Jörn Kuhlenkamp, and Michael Menzel. Cloud service selection
based on variability modeling. In 10th International Conference on Service-Oriented
Computing, pages 127–141, 2012. (Cited on page 148)

[374] Michael Wooldridge. An Introduction to MultiAgent Systems. Wiley Publishing, 2nd
edition, 2009. (Cited on page 102)

[375] Linlin Wu, Saurabh Kumar Garg, and Rajkumar Buyya. SLA-based resource
allocation for software as a service provider (SaaS) in cloud computing environments.
In 11th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing,
pages 195–204, 2011. (Cited on pages 106 and 214)

[376] Yunjing Xu, Zachary Musgrave, Brian Noble, and Michael Bailey. Bobtail: Avoiding
long tails in the cloud. In 10th USENIX Conference on Networked Systems Design
and Implementation, pages 329–342, 2013. (Cited on page 17)

251

gigaom.com/2012/05/08/microsoft-pledges-to-be-carbon-neutral-by-the-summer
gigaom.com/2012/05/08/microsoft-pledges-to-be-carbon-neutral-by-the-summer

Bibliography

[377] Min Yang and Yuanyuan Yang. An efficient hybrid peer-to-peer system for distributed
data sharing. IEEE Transactions on Computers, 59(9):1158–1171, 2010. (Cited on
page 27)

[378] Sami Yangui, Iain-James Marshall, Jean-Pierre Laisne, and Samir Tata. Compati-
bleOne: The open source cloud broker. Journal of Grid Computing, 12(1):93–109,
2014. (Cited on page 54)

[379] Yuan Yao, Longbo Huang, Abhishek Sharma, Leana Golubchik, and Michael Neely.
Power cost reduction in distributed data centers: A two-time-scale approach for
delay tolerant workloads. IEEE Transactions on Parallel and Distributed System, 25
(1):200–211, 2014. (Cited on page 113)

[380] Stephen S. Yau, Yu Wang, and Fariaz Karim. Development of situation-aware appli-
cation software for ubiquitous computing environments. In 26th Annual International
Computer Software and Applications Conference, pages 233–238, 2002. (Cited on
page 200)

[381] Sungkap Yeo and Hsien-Hsin Lee. Using mathematical modeling in provisioning a
heterogeneous cloud computing environment. IEEE Computer, 44(8):55–62, 2011.
(Cited on page 91)

[382] Christos A. Yfoulis and Anastasios Gounaris. Honoring SLAs on cloud computing
services: a control perspective. In EUCA/IEEE European Control Conference, 2009.
(Cited on page 41)

[383] Lamia Youseff, Maria Butrico, and Dilma da Silva. Toward a unified ontology of
cloud computing. In Grid Computing Environments Workshop, pages 1–10, 2008.
(Cited on page 162)

[384] Chi Zhang and Arvind Krishnamurthy. Skipindex: Towards a scalable peer-to-peer
index service for high dimensional data. Technical Report TR-703-04, Princeton
University, 2004. (Cited on page 25)

[385] Qi Zhang, Lu Cheng, and Raouf Boutaba. SWPS3 fast multi-threaded vectorized
Smith-Waterman for IBM Cell/B.E. and x86/SSE2. BMC Research Notes, 1:107–110,
2008. (Cited on pages 115 and 127)

[386] Qi Zhang, Lu Cheng, and Raouf Boutaba. Cloud computing: state-of-the-art and
research challenges. Journal of Internet Services and Applications, 1:7–18, 2010.
(Cited on pages 29, 30, 31, 45, and 46)

[387] Qi Zhang, Eren Gürses, Raouf Boutaba, and Jin Xiao. Dynamic resource allocation
for spot markets in clouds. In 11th USENIX Conference on Hot Topics in Manage-
ment of Internet, Cloud, and Enterprise Networks and Services, pages 1–6, 2011.
(Cited on pages 106 and 214)

[388] Shuai Zhang, Xuebin Chen, Shufen Zhang, and Xiuzhen Huo. The comparison
between cloud computing and grid computing. In International Conference on
Computer Application and System Modeling, volume 11, pages V11–72–V11–75, 2010.
(Cited on pages 16, 35, and 212)

252

Bibliography

[389] Tianle Zhang, Zhihui Du, Yinong Chen, Xiang Ji, and Xiaoying Wang. Typical
virtual appliances: An optimized mechanism for virtual appliances provisioning and
management. Journal of Systems and Software, 84(3):377–387, 2011. (Cited on
pages 148, 177, 184, and 187)

[390] Zhizhong Zhang, Chuan Wu, and David W.L. Cheung. A survey on cloud interop-
erability: Taxonomies, standards, and practice. ACM SIGMETRICS Performance
Evaluation Review, 40(4):13–22, 2013. (Cited on pages 51 and 54)

[391] Ben Y. Zhao, Ling Huang, Jeremy Stribling, Sean C. Rhea, Anthony D. Joseph, and
John Kubiatowicz. Tapestry: a resilient global-scale overlay for service deployment.
IEEE Journal on Selected Areas in Communications, 22(1):41–53, 2004. (Cited on
page 25)

[392] Yong Zhao, Xubo Fei, I. Raicu, and Shiyong Lu. Opportunities and challenges in
running scientific workflows on the cloud. In CyberC, pages 455–462, 2011. (Cited
on pages 2, 54, 129, 141, and 146)

[393] Liang Zhou, Baoyu Zheng, Jingwu Cui, and Sulan Tang. Toward green service in
cloud: From the perspective of scheduling. In International Conference on Computing,
Networking and Communications, pages 939–943, 2012. (Cited on pages 112 and 113)

[394] Eckart Zitzler. Evolutionary algorithms for multiobjective optimization: methods
and applications. PhD thesis, Swiss Federal Institute of Technology (ETH), Zurich,
Switzerland, 1999. (Cited on page 152)

[395] Stefan Zoels, Zoran Despotovic, and Wolfgang Kellerer. On hierarchical DHT systems
- an analytical approach for optimal designs. Computer Communications, 31(3):
576–590, 2008. (Cited on page 27)

253

	Acknowledgements
	Abstract
	Résumé
	Resumo
	List of Figures
	List of Tables
	Listings
	List of Abbreviations
	Introduction
	Motivation
	Objectives
	Thesis Statement
	Contributions
	Publications
	Thesis Outline

	I Background
	Large-Scale Distributed Systems
	Evolution
	The 1960s
	The 1970s
	The 1980s
	The 1990s
	2000-2014
	Timeline

	Cluster Computing
	Grid Computing
	Architecture

	Peer-to-peer
	Architecture
	Unstructured P2P Network
	Structured P2P Network
	Hybrid P2P Network
	Hierarchical P2P Network
	Comparative View of P2P Structures

	Cloud Computing
	Characteristics
	Drawbacks

	Summary

	A Detailed View of Cloud Computing
	Technologies Related to Cloud Computing
	Virtualization
	Definition
	Techniques
	Live Migration
	Workload and Server Consolidation

	Service-Level Agreement
	MapReduce
	Definition
	Characteristics

	Cloud Organization
	Architecture and Service Model
	Deployment Model
	Cloud Federation
	Definition
	Classification
	Challenges

	Cloud Standards and Metrics
	Cloud Standards
	Cloud Metrics

	IaaS Cloud Computing Systems
	Architecture
	Using an IaaS Cloud Service

	Cloud Computing Architectures
	Centralized Systems
	Claudia
	SciCumulus
	Cloud-TM
	mOSAIC
	TClouds
	FraSCAti
	STRATOS
	COS
	Rafhyc
	JSTaaS

	Decentralized Systems
	Reservoir
	Open Cirrus
	CometCloud
	Contrail
	OPTIMIS

	Comparative View

	Summary

	Autonomic Computing
	Definition
	Properties
	Architecture
	Autonomic Computing Systems
	V-MAN
	Sunflower
	Market-based
	Component-Management Approach
	Snooze
	Cloudlet
	Distributed VM Scheduler
	Thermal Management Framework
	SmartScale
	SLA Management
	Comparative View

	Summary

	Green Computing
	Energy-Aware Computing
	Green Data Centers
	Green Data Center Benchmarks
	The Green500 Initiative
	The Green Index
	SPECpower
	JouleSort
	Comparative View

	Green Performance Indicators
	The Approach of Stanley, Brill, and Koomey
	Overview
	Metrics
	Final Remarks

	The Green Grid Approach
	Overview
	Metrics
	Final Remarks

	Summary

	II Contributions
	Power-Aware Server Consolidation for Federated Clouds
	Introduction and Motivation
	Design of the Proposed Solution
	Experimental Results
	Modifications in CloudSim
	Simulation Environment
	Scenario 1: workload submission to a single data center under power consumption threshold
	Scenario 2: distinct workload submission to different overloaded data centers

	Related Work
	Summary

	Biological Sequence Comparison at Zero-Cost on a Vertical Public Cloud Federation
	Introduction and Motivation
	Biological Sequence Comparison
	The Smith-Waterman Algorithm

	Design of our Federated Cloud Architecture
	Task Generation with MapReduce
	Smith-Waterman Execution

	Experimental Results
	Related Work
	Summary

	Excalibur: A User-Centered Cloud Architecture for Executing Parallel Applications
	Introduction and Motivation
	Architecture Overview
	Scaling Cloud-Unaware Applications with Budget Restrictions and Resource Constraints
	Reducing Data Movement to Reduce Cost and Execution Time
	Reducing Job Makespan with Workload Adjustment
	Making the Cloud Transparent for the Users

	Experimental Results
	Scenario 1: execution without auto-scaling and based on users' preferences
	Scenario 2: execution with auto-scaling

	Related Work
	Summary

	Resource Selection Using Automated Feature-Based Configuration Management in Federated Clouds
	Introduction
	Motivation and Challenges
	Multi-Objective Optimization
	Feature Modeling
	Proposed Model
	Cloud Computing Model
	Instance Type Model
	Disk Model
	Virtual Machine Image Model
	Instance Model

	Cost Model
	Networking and Storage Cost
	Instance Cost

	Modeling iaas Clouds Configuration Options with Feature Model
	Experimental Results
	Scenario 1: simple
	Scenario 2: compute
	Scenario 3: compute and memory

	Related Work
	Virtual Machine Image Configuration
	SCORCH
	VMI Provisioning
	Typical Virtual Appliances

	Virtual Machine Image Deployment
	Virtual Appliance Model
	Composite Appliance

	Deploying PaaS Applications
	HW-CSPL
	SALOON

	Configuration options of multi-tenant applications
	Multi-Tenant Deployment
	Capturing Functional and Deployment Variability
	Configuration Management Process
	Service Line Engineering Process

	Infrastructure Configuration
	AWS EC2 Service Provisioning

	Comparative View

	Summary

	Dohko: An Autonomic and Goal-Oriented System for Federated Clouds
	Introduction and Motivation
	System Architecture
	Client Layer
	Core Layer
	Infrastructure Layer
	Monitoring Cross-Layer
	Autonomic Properties
	Self-Configuration
	Self-Healing
	Context-Awareness

	Executing an Application in the Architecture

	Experimental Results
	Experimental Setup
	Scenario 1: application deployment
	Scenario 2: application execution
	Scenario 3: application deployment and execution with failures

	Related Work
	Summary

	Conclusion
	Overview
	Summary of the Contributions
	Threat to Validity
	Perspectives
	Summary

	Bibliography

