
Universidade de Brasília
Instituto de Ciências Exatas

Departamento de Ciência da Computação

Dependability Verification for Contextual/Runtime
Goal Modelling

Danilo F. Mendonça

Dissertação apresentada como requisito parcial
para conclusão do Mestrado em Informática

Orientador
Prof. Dr. Genaína Nunes Rodrigues

Brasília
2015

Universidade de Brasília — UnB
Instituto de Ciências Exatas
Departamento de Ciência da Computação
Mestrado em Informática

Coordenadora: Prof.ª Dr.ª Alba Cristina M. de Melo

Banca examinadora composta por:

Prof. Dr. Genaína Nunes Rodrigues (Orientador) — CIC/UnB
Prof. Dr. Célia Ghedini Ralha — CIC/UnB
Prof. Dr. Luciano Baresi — Politecnico di Milano

CIP — Catalogação Internacional na Publicação

Mendonça, Danilo F..

Dependability Verification for Contextual/Runtime Goal Modelling /
Danilo F. Mendonça. Brasília : UnB, 2015.
89 p. : il. ; 29,5 cm.

Dissertação (Mestrado) — Universidade de Brasília, Brasília, 2015.

1. Dependabilidade, 2. confiabilidade, 3. engenharia de requisitos
orientada a objetivos, 4. contextos, 5. verificação de modelo
probabilística

CDU 004.4

Endereço: Universidade de Brasília
Campus Universitário Darcy Ribeiro — Asa Norte
CEP 70910-900
Brasília–DF — Brasil

Universidade de Brasília
Instituto de Ciências Exatas

Departamento de Ciência da Computação

Dependability Verification for Contextual/Runtime
Goal Modelling

Danilo F. Mendonça

Dissertação apresentada como requisito parcial
para conclusão do Mestrado em Informática

Prof. Dr. Genaína Nunes Rodrigues (Orientador)
CIC/UnB

Prof. Dr. Célia Ghedini Ralha Prof. Dr. Luciano Baresi
CIC/UnB Politecnico di Milano

Prof.ª Dr.ª Alba Cristina M. de Melo
Coordenadora do Mestrado em Informática

Brasília, 15 de fevereiro de 2015

Resumo

Um contexto de operação estático não é a realidade para muitos sistemas de software
atualmente. Variações de contextos impõe novos desafios ao desenvolvimento de sistemas
seguros, o que inclui a ativação de falhas apenas em contextos específicos de operação. A
engenharia de requisitos orientada a objetivos (GORE) explicita o ‘por quê’ dos requisitos
de um sistema, isto é, a intencionalidade por trás de objetivos do sistema e os meios de se
atingi-los. Um Runtime goal model (RGM) adiciona especificação de comportamento ao
modelo de objetivos convencional, enquanto um Contextual goal model (CGM) especifica
efeitos de contextos sobre objetivos, meios e métricas de qualidade. Visando uma verifi-
cação formal da dependabilidade de um Contextual-Runtime goal model (CRGM), nesse
trabalho é proposta uma nova abordagem para a análise de dependabilidade orientada a
objetivos baseada na técnica de verificação probabilística de modelos. Em particular, são
definidas regras para a transformação de um CRGM para um modelo cadeia de Makov de
tempo discreto (DTMC) com o qual se possa verificar a confiabilidade de se satisfazer um
ou mais objetivos do sistema. Adicionalmente, para diminuir o esforço de análise e au-
mentar a usabilidade de nossa proposta, um gerador automatizado de código CRGM para
DTMC foi implementado e integrado com sucesso à ferramenta gráfica que dá suporte às
fases de modelagem e análise de objetivos da metodologia TROPOS. A verificação contex-
tual de dependabilidade resultante reflete os requisitos no CRGM, que podem representar:
o projeto de um sistema, cuja verificação ocorreria em fase de projetos; ou um sistema
em execução, cujo comportamento pode ser verificado em tempo de execução como parte
de uma análise de auto-adaptação com foco em dependabilidade.

Palavras-chave: Dependabilidade, confiabilidade, engenharia de requisitos orientada a
objetivos, contextos, verificação de modelo probabilística

iv

Abstract

A static and stable operation environment is not a reality for many systems nowadays.
Context variations impose many threats to systems safety, including the activation of con-
text specific failures. Goal-oriented requirements engineering (GORE) brings forward the
‘why’ of system requirements, i.e., the intentionality behind system goals and the means
to meet then. A runtime goal model adds a behaviour specification layer to a conventional
design goal model, and a contextual goal model specifies the context effects over system
goals, means and qualitative metrics. In order to formally verify the dependability of a
CRGM, we propose a new goal-oriented dependability analysis based on the probabilis-
tic model checking technique. In particular, we define rules for the transformation of a
CRGM into a DTMC model that can be verified for the reliability of the fulfilment of one
or more system goals. Also, to mitigate the analysis overhead and increase the usability of
our proposal, we have successfully implemented and integrated a CRGM to DTMC code
generator to the graphical tool that supports the goal modelling and analysis phases of the
TROPOS development methodology. The resulting contextual dependability verification
reflects the system requirements in a CRGM, which may represent: a system-to-be, whose
verification would take place at design-time; or a running system, whose behaviour can
be verified at runtime as part of a self-adaptation analysis targeting dependability.

Keywords: Dependability, reliability, goal-oriented requirements engineering, context-
awareness, probabilistic model checking

v

Sumário

1 Introdução 1
1.1 Definição do Problema . 2

1.1.1 Requisitos para a Análise de Dependabilidade Orientada a Objetivos 5
1.2 Solução Proposta . 6
1.3 Avaliação . 7
1.4 Resumo das Contribuições . 7
1.5 Organização do Documento . 8

2 Referencial Teórico 9
2.1 Goal-oriented Requirements Engineering 9
2.2 TROPOS Methodology . 10
2.3 Goals, Means and Contexts . 11
2.4 Variability in GORE . 12

2.4.1 Design-time analysis . 12
2.4.2 Runtime analysis . 13

2.5 Dependability . 14
2.6 Probabilistic Model Checking . 16

2.6.1 PRISM tool . 16
2.6.2 PRISM language . 17
2.6.3 Probabilistic Computation Tree Logic 17
2.6.4 PARAM Tool . 17

2.7 ANTLR Language Recognition Tool . 18

3 Trabalhos Relacionados 20
3.1 Goal-oriented Modelling and Analysis . 20
3.2 Contextual Goal Model . 21
3.3 Runtime Goal Model . 22
3.4 Dependability Contextual Goal Model . 22
3.5 Awareness Requirements . 24

vi

3.6 Formal TROPOS . 24

4 Sistema Pessoal Móvel de Resposta a Emergências 26
4.1 Introduction . 26
4.2 TROPOS Requirements Engineering Phases 27

4.2.1 Early Requirements Phase . 27
4.2.2 Late Requirements Phase . 28

4.3 Runtime Goal Modelling . 29
4.3.1 RGM - UML activity diagram comparison 29

4.4 Contextual Goal Modelling . 30

5 Análise de Dependabilidade Orientada a Objetivos 34
5.1 Goal-oriented Probabilistic Verification Model 35

5.1.1 Leaf-tasks as transition systems . 36
5.1.2 Building the high-level DTMC model from a RGM 38
5.1.3 Context effects in the high-level DTMC model 50

5.2 Dependability Property Specification . 53
5.3 Design-time analysis . 55
5.4 Runtime analysis . 56
5.5 Evaluating leaf-tasks reliabilities . 57

5.5.1 Model-based verification . 57
5.5.2 Mean-time to failure verification at runtime 58

6 Geração Automática de Código DTMC 59
6.1 Architecture . 60
6.2 Implementation . 60

6.2.1 ANTLR Grammars . 63

7 Avaliação 66
7.1 Goal Question Metric . 66
7.2 Evaluation Scenario . 67
7.3 Results and Analysis . 69

7.3.1 DTMC generation and model . 69
7.3.2 Reliability verification . 70
7.3.3 Parametric formula evaluation . 72

7.4 Threats to Validity . 72

8 Conclusão 75

vii

Referências 77

viii

Lista de Figuras

2.1 Contribution analysis in TROPOS GORE. 12
2.2 Contexts affecting the requirements and the means for an emergency res-

ponse system. 13

4.1 TROPOS mixed model for MPERS at early requirements phase 28
4.2 TROPOS mixed diagram for MPERS at late requirements phase 32
4.3 MPERS tasks represented by an UML activity diagram 33
4.4 Context effect associated in the TAOM4E formal specification area. 33

5.1 Goal-oriented dependability analysis process. 35
5.2 Goal G17 decomposed by task T17 that is refined by subtasks T17.0 and T17.1. 36
5.3 State diagram for leaf-tasks in a RGM. 37
5.5 Alternative tasks T1|T2. 42
5.6 Optional task T. 45
5.7 Conditional tasks T9.0 and T9.1. 46
5.9 Atomic propositions required for the success of local goal G9 54
5.10 Experiments results with T7.10 and T8.0 ranging from 0 to 1. 56

6.1 High-level architecture of the CRGMtoDTMC generator. 60
6.2 Implementation architecture of the CRGMtoDTMC generator. 61

7.1 DTMC model size (M1.2) . 70
7.2 Memory allocated by design-time PRISM verification (M2.1) 71
7.3 Design-time PRISM verification time (M2.2) 71
7.4 Parametric formula generation time (M2.3) 71
7.5 Parametric formula evaluation time (M3.1) 72
7.6 Parametric formula size (M3.2) . 73

ix

Lista de Tabelas

3.1 Description of RGM behaviour rules used by the proposal. 23

4.1 Contexts affecting the MPERS system. 31

7.1 Definition of the evaluation objectives for the CRGM. 67
7.2 Different groups of goals involved in the evaluated of the metrics in the

GQM. 68
7.3 DTMC generation time (M1.1) . 69

x

Capítulo 1

Introdução

GORE [34] ganhou a atenção de profissionais acadêmicos e industriais devido à sua
habilidade de sistematicamente modelar a intencionalidade por trás dos requisitos de
sistemas. Mais do que apenas apresentar ‘o quê’ e ‘como’, modelos de objetivos também
expressam o ‘por quê’ da existência de diferentes requisitos. Sua notação gráfica simples
permite com que partes interessadas não técnicas participem do processo de análise e
tenham uma visão clara do sistema. Ademais, a verificação automatizada de modelos
deve evitar inconsistências da especificação de requisitos orientada a objetivos.

TROPOS [7] é uma metodologia GORE que também inclui fases de arquitetura e de
detalhes de projeto do desenvolvimento de sistema sócio-técnicos e multi-agentes. Siste-
mas sócio-técnicos proveem e controlam uma vasta gama de serviços usados diariamente.
Frequentemente esses serviços são responsáveis por requisitos críticos cujas falhas cau-
sariam consequências indesejáveis ou mesmo catastróficas. Isso requer que analistas e
desenvolvedores considerem a dependabilidade como um requisito de primeira ordem.

Entre as diferentes causas que levam um sistema a falhar, algumas podem ser ras-
treadas a decisões de projeto em fases iniciais do processo de desenvolvimento, enquanto
outras são causadas por variações no contexto de operação. Contextos dinâmicos aumen-
tam a complexidade do processo de desenvolvimento, visto que essas variações podem
alterar quais objetivos do sistema devem ser alcançados e quais meios estão disponíveis
para alcançá-los. Além disso, algumas falhas só são ativadas em contextos específicos,
fazendo emergir uma nova ameaça ao desenvolvimento de sistemas confiáveis.

Em TROPOS, assim como em outros frameworks GORE, não há uma abordagem
específica para a verificação de atributos de dependabilidade e outros requisitos não-
funcionais. A Análise de contribuição é usada para a comparação e seleção de alternativas
de projetos de soluções com base na contribuição de cada alternativa para um ou mais
objetivos do sistema, usualmente objetivos de qualidade do tipo softgoals [37]. Essa
abordagem, contudo, não é otimizada para métricas dependentes do comportamento do

1

sistema ou de técnicas de análise mais complexas.
Num trabalho anterior, o CGM [1] foi estendido para lidar com os efeitos das variações

de contextos sobre atributos de dependabilidade através de regras declarativas definidas
em lógica difusa [26]. A partir de nossa experiência, concluímos que uma abordagem mais
escalável e precisa para a verificação de métricas de dependabilidade em contextos dinâmi-
cos era necessária. A verificação probabilística de modelos (PMC), técnica já explorada
na verificação de dependabilidade no contexto de linhas de produtos de software [28],
foi considerada como método formal para uma análise de dependabilidade orientada a
objetivos.

Para o melhor de nosso conhecimento, a PMC ainda não foi usada como parte de uma
análise de dependabilidade orientada a objetivos, onde a natureza distribuída de sistemas
de software é levada em consideração, assim como o impacto causado por variações em seu
ambiente de operação. Em específico, o atributo de confiabilidade é o foco dessa proposta
e o modelo de verificação resultante deve verificar métricas relacionadas à confiabilidade
como parte de análises em tempo de projeto e automatizada em tempo de execução.
Finalmente, o efeito de contextos sobre objetivos, meios e métricas de qualidade, tal qual
descrito pelo CGM, devem também ser considerados pela análise.

1.1 Definição do Problema

Um processo de engenharia de requisitos sistemático visa, entre outros, aumentar a
qualidade do sistema entregue. Entretanto, poucas metodologias e frameworks investigam
a conformidade do projeto do sistema a objetivos e métricas de qualidade relacionados a
falhas do sistema e a sua segurança, nem provem meios adequados para o monitoramento e
análise dessas métricas como parte de um ciclo de auto-adaptação. A despeito da robustez
de arquitetura auto-adaptativas propostas na literatura [16], uma análise simplista da
dependabilidade de sistemas pode resultar em falhas severas ou catastróficas.

Modelos de objetivos não são restritos aos objetivos estratégicos de mais alto nível. Por
meio de decomposições do tipo E/OU, objetivos são refinados, delegados ou finalmente
operacionalizados por tarefas. Portanto, tarefas podem ser mapeadas em atividades que
compõe o comportamento do sistema. Dalpiaz et al. [9] propuseram uma mudança de
paradigma para a engenharia de requisitos orientada a objetivos. Em vez de um modelo
de objetivos estático visando apenas o projeto, uma linguagem regular é usada para a
especificação de comportamento de objetivos e tarefas compondo um RGM. O RGM
possibilita a verificação da conformidade da execução do sistema a seus objetivos por
meio do monitoramento da instância de objetivos e tarefas e sua comparação ao RGM
correspondente.

2

A despeito da contribuição para a verificação da conformidade em tempo de execução,
a estimativa detalhada das taxas de sucesso e falha sobre janelas temporais não são ainda
suportadas pelo framework RGM. Consequentemente, ele não provê os meios para se
verificar se um sistema compre o nível esperado de dependabilidade. Adicionalmente,
RGM se baseia em medidas sobre a execução passada tais quais ‘o percentual de sucesso
para um dado objetivo durante o último mês’ e ‘a tendência de falhas de um objetivo na
última semana’. Devido a essa limitação, o RGM original não é apropriada para a auto-
adaptação proativa em que sistemas devem evitar violações estimando a probabilidade
de ocorrência de falhas futuras. Dada a importância da dependabilidade para sistemas,
a proposta original do RGM precisa ser estendida para que a satisfação de objetivos em
tempo de execução seja propriamente analisada.

A verificação de modelos é uma técnica formal de verificação que permite com que
propriedades de comportamento de um determinado sistema sejam automaticamente ve-
rificadas com base num modelo do sistema e através da inspeção sistemática de todos os
estados desse modelo [3]. A maior vantagem da verificação de modelos é prover, dado um
modelo do sistema e uma ou mais propriedades, automação na verificação, em oposição
à prova de teoremas, além de habilitar consultas complexas a respeito da corretude do
modelo do sistema e sua conformidade em satisfazer ambos os requisitos funcionais e não
funcionais.

Em específico, o PMC tem sido amplamente explorado e suportado por ferramentas
tais quais o verificador de modelos PRISM. Contanto que o modelo de verificação cons-
truído a partir de uma especificação de comportamento seja precisa, esse método provê
uma estimativa precisa para métricas como aquelas relacionadas à dependabilide. Por
exemplo, PMC pode estimar a probabilidade de um sistema em alcançar seu estado final
de sucesso num modelo DTMC baseado na confiabilidade dos componentes envolvidos na
execução, o que define a confiabilidade global do sistema ou da atividade parcial anali-
sada [3, 31].

Assumindo os benefícios do GORE e a especificação de comportamento provida por
um RGM, esse trabalho investiga a viabilidade de uma abordagem PMC orientada a
objetivos em que as tarefas folhas, que representam o comportamento de alto nível do
sistema, são mapeadas num modelo de verificação probabilístico. O objetivo principal é
prover ambas análises quantitativas e qualitativas para a satisfação de diferentes objetivos
do sistema em tempo de projeto e de execução. Assim, nossa primeira questão de pesquisa
é definida:

3

Questão de Pesquisa 1 (QP1): Dado um correto e consistente RGM para o qual
seus objetivos são realizados ultimamente por um conjunto de tarefas folhas, é viável
a análise da probabilidade de se atingir um ou mais objetivos do sistema através de
uma técnica PMC?

Como descrita pelo CGM, a contextualização da informação obtida em tempo de
projeto se torna imperativa uma vez que sua validade pode ser ameaçada por variações
no ambiente de operação. Variações de contexto podem relativizar a necessidade de um
objetivo, restringir a adoção de meios alternativos e também afetar a qualidade desses
meios. Portanto, é desejável que a abordagem de verificação utilizada considere tais
efeitos no resultado da análise. Contudo, dado o grande número de estados de contexto
que podem afetar os requisitos e comportamento do sistema, a escalabilidade se torna a
principal ameaça de uma análise contextual de dependabilidade. A partir disso é definida
nossa segunda questão de pesquisa:

Questão de Pesquisa 2 (QP2): Dada análise de dependabilidade orientada a
objetivos em QP1, é viável se considerar os efeitos da variação de contextos sobre
quais objetivos são requisitados, quais alternativas são adotáveis e sobre a qualidade
de cada alternativa?

Como discutido anteriormente, a auto-adaptação deve se basear em análise adequada
com a complexidade e criticalidade das métricas sendo avaliadas. Confiabilidade é um
importante atributo de dependabilidade e um requisito de primeira classe para a auto-
adaptação, visto que define a continuidade do provimento de serviços corretos. Em mode-
los de objetivos, a resolução de variabilidade é baseada em entradas em tempo de execução
e critérios não funcionais medidos ou estimados para cada alternativa [38]. Considerando
o ciclo de alto-adaptação para a resolução de variabilidade, nossa terceira questão de
pesquisa é definida como:

Questão de Pesquisa 3 (QP3): É viável e escalável empregar uma análise de
dependabilidade orientada a objetivos baseada em PMC paramétrico como parte de
um ciclo de auto-adaptação que resolva a variabilidade do modelo de objetivos em
tempo de execução?

Um importante fator de sucesso para qualquer metodologia de software é o justificável
aumento de esforço de desenvolvimento, que inclui conhecimento de domínio específico de
linguagens e ferramentas utilizadas. PMC pode significantemente reduzir a ocorrência de
falhas de sistemas, porém tal técnica requer conhecimentos adicionais que podem pesar

4

na decisão de se adotá-la. Portanto, uma geração automática do modelo de verificação
para a técnica PMC a partir de um CRGM é desejável para se reduzir o esforço adicional
sobre a análise de dependabilidade proposta. Em acordo, nossa quarta e última questão
de pesquisa é definida como:

Questão de Pesquisa 4 (QP4): É possível se gerar automaticamente o modelo
probabilístico de verificação para a análise de dependabilidade orientada a objetivos
definida em QP1 e QP2?

1.1.1 Requisitos para a Análise de Dependabilidade Orientada a

Objetivos

Com base na lacuna identificada de uma verificação de dependabilidade orientada a
objetivos, contextual e parametrizável, foram definidos os seguintes requisitos que devem
ser endereçados pela proposta:

R.1 Compatibilidade retroativa: As notações de comportamento e de contexto esten-
dendo o modelo de objetivos da metodologia TROPOS não deverá conflitar com a
sintaxe e semântica originais.

R.2 Escopo de verificação: O escopo de verificação pode ser restrito a uma parte do
sistema (objetivos locais) ou se estender a todo o sistema (objetivo raiz).

R.3 Geração do modelo: A geração de um modelo probabilístico representado as ati-
vidades de um RGM com restrições de contexto de um CGM devem ser automatica-
mente geradas a partir do CRGM criado em ambiente de modelagem e análise que
dê suporte à metodologia TROPOS com extensão para notações de comportamento
e de contextos.

R.4 Integração de ferramentas: Em específico, a ferramenta e plugin TAOM4E deverá
ser estendida com sintaxes para anotações de comportamento e contexto e para a
geração automática de modelo DTMC PRISM a partir de um modelo CRGM.

R.5 Suporte à sintaxe de projeto: O modelo de verificação deve ser coerente às
decomposições E/OU de objetivos e tarefas e às relações objetivo-tarefa da sintaxe
convencional de modelos de objetivos.

5

R.6 Suporte à sintaxe de comportamento: O modelo de verificação deve ser coe-
rente à ordem de satisfação/execução de objetivos/tarefas, à cardinalidade e à satis-
fação/execução de objetivos/tarefas alternativas, opcionais e condicionais definidos
pela sintaxe herdada de um RGM.

R.7 Suporte à sintaxe de contextos: O modelo de verificação deve ser coerente aos
efeitos de variação de contextos sobre a ativação de objetivos, a adoção de sub-
objetivos e tarefas e sobre a métrica individual de qualidade de tarefas folhas.

1.2 Solução Proposta

Em contraste às abordagens anteriores para a análise de dependabilidade por meio de
PMC, esse trabalho propõe a verificação que é diretamente mapeada a um RGM. Em vez
de construir o modelo de verificação probabilístico a partir de modelos de comportamento
tradicionais Unified Markup Language (UML), o presente trabalho se beneficia da sintaxe
de um RGM que especifica também o comportamento de objetivos e tarefas para construir
um modelo de alto nível DTMC para a verificação de confiabilidade de diferentes objetivos
do sistema (QP1). Tal modelo, comparado a um diagrama de atividades UML de alto
nível, deve também incluir os efeitos de contexto sobre objetivos, meios e métricas de
qualidade como definido pelo CGM (QP2).

A ferramenta PRISM provê um rico ambiente de análise para PMC. No entanto, uma
análise de auto-adaptação em tempo de execução deve ser automática, isto é, baseada
em processos computáveis sem intervenção humana. O PMC paramétrico satisfaz esse
requisito ao gerar uma fórmula paramétrica para um determinado modelo probabilístico
e propriedade analisada com parâmetros no modelo no lugar de constantes [15]. Por-
tanto, diferentes análises em tempo de execução podem ser feitas a partir da simples
inicialização dos parâmetros da fórmula com valores, por exemplo, correspondentes a di-
ferentes alternativas ou configurações. Em nossa proposta, investigamos a viabilidade de
um PMC paramétrico como o método formal para a análise de dependabilidade orientada
a objetivos em sistemas auto-adaptativos (QP3).

Finalmente, para reduzir o esforço e custo de análise e melhorar a usabilidade, a
automaticidade e também reduzir a tendência ao erro da análise proposta, uma imple-
mentação em linguagem JAVA foi integrada à ferramenta TAOM4E [27]. Essa extensão
permite a geração automática de um modelo DTMC em linguagem PRISM a partir de
um CRGM (QP4).

6

1.3 Avaliação

A proposta foi avaliada com a aplicação de uma análise de confiabilidade orientada
a objetivos ao desenvolvimento de um sistema Sistema Pessoal Móvel de Resposta a
Emergências (MPERS). Tal sistema se enquadra no contexto de área de sensores do
corpo humano [25]. Em particular, o MPERS é um sistema de resposta a emergências
executado num dispositivo móvel que recebe informações de sinais vitais coletados pelos
sensores. Ao invés de um ambiente estático, o MPERS é concebido para permitir com que
pacientes com diferentes riscos de saúde possam preservar a sua mobilidade enquanto são
monitorados e assistidos. Por ser um sistema móvel, o MPERS é afetado por variações de
contexto e a auto-adaptação se torna um requisito mandatório para se otimizar recursos e
se evitar falhas, sobretudo falhas catastróficas que colocariam a vida de usuários em risco.

1.4 Resumo das Contribuições

Essa seção resume as contribuições almejadas por essa proposta.

1. Verificação de dependabilidade para CRGMs.

• Definição de regras de conversão entre diferentes tipos de decomposição e de
regras de comportamento num RGM para um modelo DTMC.

• Consideração explícita de contextos na modelagem e análise de dependabili-
dade, isto é, inclusão dos efeitos de contexto de um CGM no modelo DTMC.

• Habilidades de consulta probabilística sobre métricas relacionadas à confiabi-
lidade em se satisfazer um ou mais objetivos num CRGM.

2. A geração automatizada de um modelo DTMC em linguagem PRISM a partir de
um CRGM.

• Implementação de um parser para as anotações de comportamento especifica-
das pela linguagem regular num CRGM herdada da proposta original RGM.

• Implementação de um parser para os efeitos de contexto especificados por ex-
pressões lógicas que podem ativar/restringir um ou mais objetivos do sistema
e disponibilizar/restringir um ou mais tarefas herdados da proposta original
CGM.

7

• Implementação JAVA de um gerador CRGM para DTMC em PRISM inte-
grado à ferramenta TAOM4E que suporte a metodologia TROPOS conforme
arquitetura para plugins da plataforma Eclipse.

1.5 Organização do Documento

Essa dissertação foi organizada como se segue. O capítulo 2 apresenta a base dos
conceitos utilizados. O capítulor 3 descreve os mais relevantes trabalhos relacionados.
O capítulo 4 detalha o sistema que motiva essa abordagem. O capítulo 5 descreve a
proposta em si. O capítulo 6 descreve a implementação do gerador automático de um
modelo DTMC a partir de um modelo CRGM. O capítulo 7 avalia a presente proposta com
base no Goal Question Metric framework. Finalmente, o capítulo 8 conclui esse trabalho
com as considerações finais sobre a proposta, assim como nossos trabalhos futuros.

8

Capítulo 2

Referencial Teórico

2.1 Goal-oriented Requirements Engineering

GORE captures the intentionality behind system requirements [34]. Through a direc-
ted graph tree that begins with a root goal, goals are connected through decomposition
links. Higher level goals are usually related to strategical concerns, while lower level and
leaf-goals are related to technical and operational features of the system.

The main purpose of a goal model is to support the early process of RE, including
the elicitation of social needs and dependencies, the actors involved in delivering functi-
onalities and resources, the decomposition of higher-level goals into more granular and
detailed requirements chunks, the operationalization through means-end tasks and finally
the comparison between different alternatives for the system-to-be. A goal model is said
to be complete if all system goals are either decomposed, delegated to other actors or
fulfilled by operational system tasks.

Goal-oriented frameworks and methodologies like KAOS [10], the i* [36] and TRO-
POS [7] represent the foundations for the goal model analysis used by a variety of other
proposals. Despite some syntax differences, most goal-oriented approaches share a set of
common and more important core concepts:

• Actor: an entity that has goals and can decide autonomously how to achieve them.
They represent a physical, social or software agent. For example: a patient, an
emergency center, a doctor and a Mobile Personal Emergency System running in
patient’s smartphone.

• Goal: actors’ strategic interest. A goal with a clear-cut criteria for its satisfaction
is called a hard goal. In opposition, softgoals have no clear-cut criteria for deciding
whether they are satisfied or not and usually represent non-functional requirements.
For example: vital signs are monitored, emergency is detected, emergency center

9

is notified (hard goals) and emergency awareness, precise assistance, feel supported
(softgoals).

• Task: an operational means to satisfy actors’ goals. For example: monitor tempe-
rature sensor, persist vital signs data, request emergency assistance.

• Resource: a non intentional entity data or physical resource that is generated or
required by an actor. For example: a form input from the user, an exported file,
the power from the battery component, etc.

• AND/OR Decomposition: AND-decomposition (OR-decomposition) is a link
that decomposes an actor’s goal/task into actor’s sub-goals/tasks, meaning that all
(at least one) decomposed goals/tasks must be fulfilled/executed in order to satisfy
its parent entity.

• Means-end: a relation that indicates a means to fulfil an actor’s goal through the
execution of an operational task by the same actor.

• Contribution link: a positive or negative contribution between a given goal/task
to a softgoal. Contribution links are used for deciding between alternative goals/-
tasks at design time (contribution analysis).

• Social dependency: a delegation of a goal, task or resource (dependum) from an
actor (depender) to another (dependee).

2.2 TROPOS Methodology

TROPOS is a GORE methodology based on the i* framework [7]. Its main impro-
vement to the i* framework is the addition of new phases of requirements engineering,
architecture and system design, namely:

• Late requirements engineering: Beyond the social dependency modelling with actors
diagrams representing stakeholders and their needs in early requirements phase, a
late requirements phase focuses on the system actor analysis. In this phase, system
goals are inherited from stakeholders needs and represent both functional and non-
functional requirements. Each goal has to be further decomposed in more granular
sub-goals, delegated to other actors or to be fulfilled by means-end tasks.

10

• Architectural design: In this phase, new actors representing sub-systems are created
to fulfil different system goals. The idea is to shape the solution using a multi-
agent architecture style instead of a monolithic system approach. Data and control
interconnections are represented as dependencies.

• Detailed design: The last phase is characterized by the specification of agent ca-
pabilities and interactions though UML activity and sequence diagrams. Also, the
implementation platform and other specific implementation details are addressed in
order to directly map the design to system code.

2.3 Goals, Means and Contexts

Context may be defined as the reification of the environment that surrounds the system
operation [11]. Contexts, as already stated, may not be static, but dynamic, and a system
has no control over the context in which it operates. Accordingly, a system must be
able to support different contexts of operation without violating its functional and non-
functional goals. To achieve this, it must be able to monitor the state of their surrounding
environment and take adaptive actions regarding the alternatives used for fulfilling their
goals.

In a CGM, dynamic contexts may affect what goals a system has to reach, the means
available to meet them and also the quality achieved by each alternative [1]. Root goals
and higher-level strategical goals are generally not contextualized as they represent the
main purpose of a system [11]. As these goals are decomposed in more granular sub-goals,
a context condition may affect:

1. If one or more goals are required for that context, limiting what a system should
do. For instance, the goal ‘track person’s location’ is only required in the context
‘patient is not at home’.

2. If a sub-goal or task is adoptable, limiting the ‘means’ to fulfil a required goal. For
instance, ‘track by GPS’ may not be used in the context ‘battery is low’ (stakeholder
preference) or ‘no GPS signal’ (technical impediment).

3. The positive, neutral or negative contribution of one alternative to a qualitative
softgoal or to a non-functional metric. For instance, the precision of each geolocation
method - voice call, mobile triangulation and GPS variate according to contexts like
the health condition of the person and the strength of mobile and GPS signals.

Context effects may have different causes, among them:

11

• Stakeholders preferences: At a certain context, a stakeholder need (dependency)
that justifies a system goal may cease to exist (goal restriction); or it may prefer a
given alternative to another (means restriction).

• Technical impediments: At a certain context, a required information or physical
resource may not be available, imposing a restriction on the selection of one or more
alternatives (means restriction).

2.4 Variability in GORE

Given the possibility of an OR-decomposition in a goal model, more than one alterna-
tive can exist in terms of which subgoal should be achieved to satisfy its upper goal, which
means-end task should be executed to satisfy its upper goal or which subtask should be
executed to satisfy its upper task. Accordingly, multiple paths may lead to the satisfac-
tion of the root goal. They are called alternative behaviours, or alternatives. Solving the
variability problem in goal models has different meanings according to the development
phase it takes place.

2.4.1 Design-time analysis

At design time, multiple alternatives are elicited through goal-oriented analysis, but
not all are selected to be part of the system-to-be. In traditional GORE, contribution
analysis is used for the comparison of how each alternative contributes for one or more
softgoals. Usually, only one alternative with the more positive contribution sum is selected
for the system-to-be. Or, as in the simplistic example of Figure 2.1, the decision relies on
the softgoals priorities using a satisfaction analysis technique [18].

Figura 2.1: Contribution analysis in TROPOS GORE.

12

2.4.2 Runtime analysis

In contrast to the design-time variability in goal models, runtime variability depends
on runtime input and must be preserved at runtime, i.e., variability is inherited by the
solution design [38]. Runtime analysis should select the valid alternative according to
stakeholders preferences and the current context of operation.

The contextual goal model tackles the influence of the context on the autonomous
decision of which alternative should be selected [1]. For instance, if the monitored traffic
condition is ‘jammed’ and the patient health condition is ‘critical’, an emergency chopper
is selected for assistance in the place of an ambulance following the context rules in a
CGM. We refer to this context effect as ‘direct context implication’.

In other cases, alternatives should be monitored and analysed in terms of non-functional
metrics to decide which one is suitable for selection. Here, the context of operation does
not directly defines the adoptable alternative, but it affects the both the quality of each
alternative and the quality constraint that must be achieved. Thus, context indirectly de-
fine the more suitable or the valid alternatives. For instance, a more sophisticated analysis
must estimate the probability of the ambulance to reach the patient in less than X time
units given a traffic condition and the patient health condition. We call this ‘indirect
context implication’.

Figura 2.2: Contexts affecting the requirements and the means for an emergency response
system.

13

In Figure 2.2, the availability of the emergency resources are context facts that directly
restrict the adoption of corresponding transport means for an emergency team to reach
a patient. In contrast, the traffic condition affects the time to reach the patient by
ambulance, i.e., this context indirectly affects the selection of an ambulance and requires
further analysis to estimate the assistance time in different traffic conditions. Also, the
context ‘patient health’ affects the time restriction in the ‘fast assistance’ quality goal.
This scenario leads to the following question: Among the available functional alternatives,
which also fulfils the quality goal constraint in the current context of operation?

2.5 Dependability

The concept of dependability is related to dependence and trust as well as to the
ability of a system to avoid failures that are more frequent and more severe than a certain
threshold [2]. According to Avizienis et al., dependability encompasses the following
attributes:

• Availability: readiness for correct service.

• Reliability: continuity of correct service.

• Integrity: absence of improper system alterations.

• Safety: absence of catastrophic consequences on the user(s) and the environment.

• Maintainability: ability to undergo modifications and repairs.

A failure is a perceived deviation from system expected behaviour that may have
variable degrees of consequence on the user(s) and the environment. These failures are
caused by specification faults or specification violations. In the first case, requirements
and behaviour models fail to describe the system: either the goals or the means to fulfil
them are incorrect, inappropriate or incomplete. In the second case, software or hardware
behaviour did not follow its specification due to a natural phenomena, a human-made
fault, a malicious fault or an interaction fault [2].

Avezienis et al. distinguishes faults from errors and failures in a fault causality chain.
In their definition, errors are part of the system’s total state that may lead to failures.
Failures are characterized by deviations in the external service state, i.e., by external
errors. In turn, errors are caused by faults, resulting in the following chain:

fault→ error → failure

14

In most cases, a fault first causes an error in an internal state of a system. Not
all internal deviations results in external deviations, i.e., not all internal errors result in
failures. External faults may also cause internal errors and possibly subsequent service
failure(s), but only if a prior vulnerability exists, i.e., a previous internal fault enabling
the external fault to harm the system.

Failures can be characterized by different viewpoints. In this work, one important
aspect is the failure consequence level, as it describes the consequence of failures to user(s)
and to the environment. Two limiting levels are defined by Avezienis et al.:

• Minor consequence: where the harm caused by a failure is not higher than the
benefit of the correct system behaviour. For example, a momentary interruption in
a video streaming service.

• Major consequence: where the failure harm is incommensurably higher than the
benefit of the correct service. For example, the death of a user.

Other intermediary levels may exist according to each case. In a goal model, the
consequence level viewpoint may characterize the failure in achieving one or more system
goals. A failure in fulfilling a goal with higher relevance in the goal tree of a critical
system, for instance, would have a catastrophic consequence. There are many means to
attain systems dependability. Avezienis et al. groups them in four major categories:

• Fault prevention: means to prevent the occurrence or introduction of faults.

• Fault tolerance: means to avoid service failures as a consequence of faults.

• Fault removal: means to reduce the number and severity of faults.

• Fault forecasting: means to estimate the present number, the future incidence,
and the likely consequence of faults.

The scope of this work is restricted to specification violations, i.e., we assume that
a system specification is complete and consistent and failures are caused by anomalous
behaviour of the components participating in the execution of system tasks, including
technical components and human actors. Regarding the different means to attain depen-
dability, our goal-oriented dependability analysis is classified as a fault forecasting, as it
aims to estimate the probability of different system goals in being fulfilled.

15

2.6 Probabilistic Model Checking

Many systems are susceptible to various phenomena of stochastic nature and to non
determinism in their behaviour. For example, failures may be caused by unpredictable
events and by unreliable components. In contrast to model checking techniques for which
the absolute correctness of a system is verified, probabilistic model checking aims to ve-
rify properties over transitions systems enriched with probabilities [3]. Accordingly, PMC
allows quantitative statements to be made about the system behaviour, expressed as pro-
babilities or expectations, in addition to the qualitative statements made by conventional
model checking [20].

Among the most popular types of transition systems employed in PMC are those based
on Markov chains, e.g., the DTMC and the Markov decision process (MDP) [20]. Also,
probabilistic operators extend the conventional time-bounded or unbounded temporal
logics for property specification. Regarding dependability, the PMC technique enables
the forecasting of systems performance and dependability based on probabilistic events
and behaviour described in probabilistic models. As a model checking technique, PMC
requires:

1. a description of the system to be analysed, typically given in some high-level mo-
delling language, e.g., in DTMC.

2. a formal specification of quantitative properties of the system that are to be analy-
sed, usually expressed in variants of temporal logic, e.g., in Probabilistic Computa-
tion Tree Logic (PCTL) [13].

In PMC, the system description is converted to a probabilistic model. In addition to
the quantitative information regarding the probability and/or timing of the transition’s
occurrence, Markov chains can also be augmented with rewards used to specify additional
quantitative measures of interest [19].

2.6.1 PRISM tool

The PMC technique used in this approach is supported by the PRISM probabilistic
model checker tool [23]. The decision of using PRISM as the probabilistic state-based
model checker was due to the richness of its environment and to the number of successful
case studies that have used this tool, indicating its maturity [21].

PRISM is suitable for different kinds of model evaluations depending on the abstrac-
tion level, the type of probabilistic model and the PCTL properties to be analysed. Both
qualitative and quantitative analysis are available features in the simulation/verification

16

environment. Other environments for modelling and property specification are also avai-
lable in the tool.

2.6.2 PRISM language

PRISM language [22] offers a rich set of constructs that may represent system modules,
components and others architectural and design abstractions. Modules are the main
structure in a PRISM model. They are composed of variables and commands. The
first describes the finite states a module can be in. The later describes the behaviour
of a module, i.e., the actions that may result in state transitions and are guarded by
predicates which in turn can be composed of any variable in the model. Finally, labels
are used for command naming and synchronization. A DTMC command in PRISM takes
the following form:

[action] < guard >→< probability >:< update >;

2.6.3 Probabilistic Computation Tree Logic

PCTL is a temporal logic based on the Computation Tree Logic (CTL). Its main
difference from CTL is the probabilistic operator PJ(ϕ), where ϕ is a path formula and J
an interval in [0,1] indicating a lower and/or upper bound on the probability. PJ(ϕ) may
be read as the probability of a set of paths satisfying ϕ and starting at state s to meet
the bounds given by J [17].

The specification of domain-specific dependability properties with PCTL has been
explored in previous works [19, 20, 31]. For example, the reachability property expressed
by the Probabilistic existence PCTL formula P =? [F (ϕ)] computes the probability that
a system will eventually reach a state that satisfies ϕ [13]. Accordingly, the satisfaction of
this formula guarantees that a final and successful system state will be reached regardless
of the time elapsed to reach it. A time-bounded variant would express a similar event in
a restricted number of transitions or time units.

In our proposal, PCTL formulas may be specified to verify different properties of a
runtime goal model mapped to a DTMC verification model. In specific, Análise de De-
pendabilidade Orientada a Objetivos (GODA) focus in the time-unbounded reachability
of the states representing the fulfilment of one or more system goals.

2.6.4 PARAM Tool

The powerful analysis environment offered by PRISM tool is limited by the verification
of a single combination of initialized variables at a time. For instance, if a variable

17

represents the probability of a transition in the model, PRISM requires the initialization
of this value to produce a fixed output for a given specified property. At most, PRISM
allows the creation of experiments with undefined variables in the model ranging from
two limits at a fixed interval value.

A parametric model checking provides a more flexible analysis, as constant variables
in the model can be replaced by parameters [15]. Regarding the PMC, the PARAM
tool extends the PRISM language with the additional reserved word param to be used
with variables describing state transition probabilities. Given a probabilistic model with
additional param variables and a PCTL property, a corresponding parametric formula is
generated.

The main benefit of the parametric formula generated by PARAM is to enable the
verification of multiple combinations of values for each parameter in an efficient manner,
as the probabilistic model checking problem has been previously solved by the tool. Also,
different sorts of postprocessing operations can be performed by computer algebra packa-
ges, e.g., to find the optimal parameter settings and to evaluate the parametric formula
for a given setting [15].

In our proposal, a parametric formula generated offline could be evaluated at runtime
and integrate a self-adaptation loop. The formula scalability is a relevant concern, as
previous works have demonstrated its exponential relation with the number of parameters
in the model [28]. Nonetheless, depending on the modelling approach and the scope
of the verification, parametric model checking can be proven an efficient approach for
dependability analysis. The scalability of our goal-oriented dependability analysis based
on parametric PMC is addressed by our third research question.

More recent PRISM versions also supports a parametric model checking. Nonetheless,
PARAM has been successfully evaluated in more case studies in which it has been proved
a reliable and stable tool, justifying its adoption by this work in detriment of the built-in
PRISM parametric analysis.

2.7 ANTLR Language Recognition Tool

ANTLR (Another Tool for Language Recognition) is an open source parser generator
for reading, processing, executing or translating structured text or binary files [30]. The
main purpose is to automatically generate a parser for a custom language defined in a
specific grammar supported by the tool. The parser can then be imported by any JAVA
compatible project to build and walk parsed trees from an input stream.

As a result, domain-specific languages may be parsed using JAVA methods that will
manipulate primitive attributes and objects according to what each parser rule and lexical

18

term means for that language. In our proposal, ANTLR was successfully used to generate
the parser for the regular expression language that specifies the behaviour in a runtime
goal model and for the context effect formulas in a contextual goal model.

19

Capítulo 3

Trabalhos Relacionados

3.1 Goal-oriented Modelling and Analysis

Goal models have been used in requirements engineering (RE) to elicit, model and
analyse stakeholders requirements. The first proposal regarding goal orientation, namely
the KAOS framework, dates back more than 20 years [10]. The majority of the goal-
oriented frameworks and methodologies in the literature share a common set of conceptual
elements with variations on the syntax/notation and on the development phase they
applies to.

KAOS is a goal-directed requirements acquisition, including early and late require-
ments of the software development process. It is a knowledge-based system for acquiring
the conceptual structure, since requirements acquisition is driven by such higher-level
concepts. KAOS framework focuses on the identification of functions that a system-to-be
needs to implement to fulfil stakeholders goals. It was the first goal-oriented framework
to employ AND/OR operationalization links to relate goals to the operations which en-
sure them [10, 35]. Moreover, KAOS employs responsibility links to relate goals to agent
submodels.

The NFR (non-functional requirements) framework [8] aims to represent user intenti-
ons in technical systems vis softgoals, i.e., goals whose satisfaction has no clear-cut criteria.
AND/OR goal decomposition was also employed and the NFR framework introduced the
contribution links representing potentially partial negative and positive contributions to
and from softgoals.

The i* is a modelling strategic relationships for process reengineering proposed by
proposed by Yu et al. [36, 37]. It inherits the softgoals concept from the NFR framework
and includes hard goals with clear-cut satisfaction criteria. In contrast to KAOS, the i*
framework adds an early requirements phase in which the organization environment of
the system-to-be is modelled and analysed. Agents dependency links define situations

20

where an agent depends on another for a goal to be achieved, a task to be executed or a
resource to become available.

The TROPOS methodology [7], as described in Section 2.1, extends i* with later phases
of software life-cycle. In specific, TROPOS focuses on the development of socio-technical
systems based on the agent-oriented software architecture. The decision of using TROPOS
as the GORE in this work was not because of any particularity in its goal model, but
mainly because of its broader scope in the software development life-cycle, including the
detailed design phase in which agent behaviour are further specified. This specification
may be the input for a design-time dependability analysis based on PMC, which will
be covered in Chapter 6. Besides the broader scope, the TAOM4E open source tool
supporting TROPOS is in a stable version and has good usability. This tool has become
the basis for the implementation of an automatic transformation of a CRGM into a DTMC
verification model. More details on different goal-oriented frameworks/methodologies can
be found elsewhere [34].

3.2 Contextual Goal Model

The CGM [1] proposes the contextualization of the intentional elements and relations
in a goal model. From the activation of a root goal to the adoptability of tasks, CGM
defines different context implications that may affect the problem tackled by a system and
the validity and quality of possible solutions. CGM uses a graphical notation to associate
context to their affected elements. In specific, context can be associated to root goals
(activation), OR-decompositions (adoptability), means-end (adoptability), dependencies
(activation), AND-decomposition (activation), contribution to softgoals (quality).

The main benefits of the CGM are twofold. First, CGM enriches the conventional goal
model with the notation for the contextualization of intentional elements and relations.
Second, it provides the modelling constructs to analyse and discover relevant information
the system needs to capture in order to verify if a context applies, i.e., the rationale for
context monitoring. This last contribution is useful for runtime monitoring and analysis
of a self-adaptive system reflecting stakeholder’s rationale and the environment in which
the system operates [1].

CGM provides a more realistic and precise contribution analysis contextualized by en-
vironment conditions, but does not change the nature of the GORE contribution analysis.
In contrast to CGM, our work emphasizes the formal verification of non-functional require-
ments in place of the more subjective contribution analysis based on the direct evaluation
of the forward impact between alternatives and softgoals. However, our work has benefi-
ted from the CGM conceptual model where our goal-oriented dependability analysis takes

21

into account the context effects from a CGM over the requirements to be met and the
adoptable means in the corresponding probabilistic verification model.

3.3 Runtime Goal Model

Despite the use of goal models in the support of runtime monitoring and adaptation
in many works, Dalpiaz et al. argued that these proposals are ‘using design artefacts
for purposes they are not meant to, i.e., for reasoning about runtime system behaviour’.
As such, they proposed a conceptual distinction between the static goal model, namely a
Design goal model (DGM), and the Runtime Goal Model (RGM) that extends DGM with
additional state, behavioural and historical information about the fulfilment of goals [9].

The main purpose of the RGM approach is to provide a behaviour specification for
the fulfilment of goals and the execution of tasks. RGM defines a class model, while
the Instance goal model (IGM) captures instance states of monitored goals and tasks
that must conform to their class model, the RGM. If an IGM violates its RGM, then a
corrective action is expected to take place.

The IGM representation is built from algorithms that parses the execution traces of
the instrumented implementation of a running system. The contribution, however, is
restricted to the runtime regex and to the IGM algorithms. Other research questions
concerning the percentage of success/failures for a given goal with or without temporal
frames is not addressed by the RGM framework [9].

Our proposed goal-oriented dependability analysis has benefited from the RGM as
the PMC technique requires a system behaviour specification and the RGM provides a
high-level description of a system behaviour. In our work, RGM leaf-tasks are map-
ped to a probabilistic verification model in PRISM language preserving its behaviour
semantics. Our proposal aims to answer qualitative and quantitative questions about the
time-unbounded success/failure probability in fulfilling different system goals.

Table 3.1 provides a textual description of each RGM rule and the corresponding
meaning in terms of what behaviour it specifies and also an example from the MPERS
runtime goal model of Figure 4.2. A formal and detailed description can be found in [9].

3.4 Dependability Contextual Goal Model

The work presented in [26] by another proposal concerning GORE, dependability
analysis and dynamic contexts, namely the Dependability Contextual Goal Model (DCGM).
The contribution was focused on the context effect over both dependability requirements
and dependability attributes based on declarative fuzzy logic rules.

22

Expression Meaning Example (MPERS)

E1;E2 A goal/task E1 must be fulfilled/e-
xecuted before E2.

G1;G2;G3;G4

E1#E2 Interleaved fulfillment/execution of
goal/task E1 and E2.

(G1;G2;G3;G4)#G5

E+n Goal/task E must be fulfilled/exe-
cuted n times, with n > 0.

G22 + 2

E#n Interleaved fulfillment/execution of
n instances of E, with n > 0.

-

E1|E2 Fulfillment/execution of goal/task
E1 is alternative with respect to E2.

T23.0|T23.1

opt(E) Fulfillment/execution of goal/task
E is not mandatory.

opt(T17.2)

try(E)?E1:E2 If goal/task E succeeds, E1 must be
fulfilled/executed; otherwise, E2.

try(T9.0)? skip : T9.1

skip No action. Useful for conditional
ternary expressions involving two
elements.

try(T9.0)? skip : T9.1

Tabela 3.1: Description of RGM behaviour rules used by the proposal.

In DCGM, a failure classification scheme was used to classify the consequence level
and domain of failures in achieving system goals. This process leads to the definition of
dependability constraints that must be achieved by the means-end tasks used to fulfil leaf-
goals in specific contexts of operation, i.e., to the specification of contextual dependability
requirements (CDR). These requirements inherited the same form of the AwReq [32], but
instead of being static, CDRs are associated to context conditions. Another DCGM cha-
racteristic is the contextual failure implication (CFI), which consisted of a dependability
domain-specific contribution analysis supported by fuzzy logic to define IF-THEN rules
between context conditions and the corresponding level of a dependability attribute of a
given alternative, e.g., the reliability of a task in a context condition.

The main drawback of this proposal was the lack of scalability, as declarative rules must
be provided for different goals, attributes and contexts, proving to be a time-consuming
manual analysis task. A second problem was the subjectivity of the rules, as they were
based in domain knowledge that was also used to shape membership functions. This
problem, as much as in GORE contribution analysis, leads to the idea of coupling a more
precise and reliable verification approach such as the PMC technique to a runtime goal

23

model. Still, the idea of a failure classification and the specification of dependability
requirements as non-functional constraints have been also addressed in this proposal.

3.5 Awareness Requirements

Souza et al. [32] proposed the AwReq as a meta-requirements class in a goal model,
i.e., AwReqs specify, among others, the success/failure rate for other requirements in
the model, including goals, tasks, domain assumptions and even other AwReqs (*-meta-
requirement). The objective is to enrich the original goal model with constraints for
the system performance and to provide criteria for self-adaptation, as runtime AwReq
violations should be addressed by corrective actions. AwReq are formalized by a temporal
logic formula, namely the Object Constraints Logic with Temporal Message (OCLtm).

Despite its contribution to the specification of meta-requirements in goal models,
AwReq does not provide an approach for analysis and validation before system imple-
mentation or through system monitoring. Original GORE contribution analysis could be
used to define the impact of a given alternative to some attribute or value composing one
or more AwReqs, similarly to the DCGM [26]. In contrast, our approach tackles the veri-
fication of context-specific dependability meta-requirements through probabilistic model
checking technique that can be performed at design-time to support alternative design
decision or at runtime as part of a self-adaptation loop analysis.

3.6 Formal TROPOS

The idea behind the formalization of a goal model, as proposed by Formal TROPOS
(FTROPOS) [12], is to provide a formal specification of sufficient and necessary conditions
to create and achieve intentional elements like goals, tasks and dependencies in a goal
model and also invariants for each of these elements. In addition to this, new prior-to
links describe the temporal order of intentional elements. Also, cardinality constraints
may be added to any link in the model. Finally, FTROPOS uses a first-order linear-time
temporal logic as a specification language.

The nature of the verification proposed by FTROPOS is different from the PMC used
by our work. FTROPOS aims to provide the information required for a consistency
verification of the goal model. The verification is performed not only in respect to the
conventional goal model syntax of intentional elements and relations, but also to domain
specific information about how each element is created and fulfilled in time. Once the
model starts to have more elements and relations, its consistency checking becomes non-

24

trivial, justifying the use of a formal specification that can be automatically verified by a
model checker tool.

In contrast to FTROPOS, our proposal uses a probabilistic model checking technique
for the verification of dependability properties. Despite similarities in the behaviour
specification, FTROPOS focuses on consistency verification and not on the quantitative
analysis of the system performance and dependability. Therefore, both aproaches are
complementary.

25

Capítulo 4

Sistema Pessoal Móvel de Resposta a
Emergências

This chapter covers some relevant aspects of MPERS that motivates the use of a goal-
oriented dependability analysis. The MPERS system-to-be as well as its organizational
and operational environments are modelled and analysed with the conventional require-
ments phases in TROPOS methodology and by the additional context/runtime modelling
and analysis phases as proposed by the CGM [1] and the RGM [9], respectively.

4.1 Introduction

An emergency response system is a mission-critical system. Thus, failures in achieving
its goals by the time they are required may lead to catastrophic consequences on monitored
individuals expecting to be promptly assisted in case of a medical emergency. Accordingly,
any stakeholder that wishes to offer a service based on this system will have both ethical
and contractual obligations regarding the safety of its product, that is, it must employ all
means to prevent system failures and to attain dependability.

MPERS is expected to have a high availability - as it must be ready to respond to
an emergency that may happen at any time - and a high reliability - as an incorrect
emergency response may lead to death or to costly false-positives. Integrity is a less
critical attribute in this case, but it must also be addressed as user’s privacy may not
be violated by disclosing his personal health or geolocation information to unauthorized
persons. Maintainability is addressed, among others, by the use of a software development
methodology and by the ability to update emergency rules remotely at runtime.

Context is an important factor for MPERS. First, as a mobile system, indispensable
resources may variate throughout operation, preventing a correct system behaviour or
affecting its performance. Moreover, an attentive user with good health condition who

26

wants to be monitored differs from a person with severe health problems history or who
has reached a specific age group of a higher health risk. Accordingly, the following context
variables potentially affecting MPERS have been elicited:

• The battery of the mobile device;

• The battery of the vital signs sensors;

• The disc memory used for storing the vital signs history;

• The mobile signal used for data communication and for geolocation triangulation;

• The GPS signal used for geolocation;

• The health risk of the patient;

• Health incidents and emergencies;

Later in this chapter, context formulas representing context effects on both goals
and tasks are presented. The next sections describe each of the phases involved in the
modelling and analysis of a CRGM for the MPERS.

4.2 TROPOS Requirements Engineering Phases

4.2.1 Early Requirements Phase

In early requirements phase, stakeholders and their needs are modelled in a goal mo-
del diagram. Each actor may be a depender or a dependee of a goal, task or resource.
In this phase, only social dependencies to the system actor and between application do-
main stakeholders are analysed, leaving the detailed system analysis to later development
phases.

The MPERS sytem and its social dependencies are presented by the actor model in
Figure 4.1. System actors and social actors are displayed in different colors. Among the
stakeholders, the emergency center represents a private or public organization interested
in providing an emergency response service to patients. Patient and doctor represent,
respectively, the assisted person and the medical responsible for defining and evolving the
emergency detection rules as part of an evolutionary approach for personal emergency
response. Finally, sensors retailer should provide the vital signs sensors required for
monitoring.

27

Figura 4.1: TROPOS mixed model for MPERS at early requirements phase

From the diagram in Figure 4.1 it is possible to have a first look of the MPERS system-
to-be. Main goals are divided in detecting, notifying and checking an emergency. Also,
the ability to update the emergency rules at runtime (RT) is the fifth and last mandatory
goal (AND-decomposition) that fulfils the ‘Patient is assisted’ root goal. System goals
and softgoals are directly or indirectly related to stakeholders needs.

The distinguished orange circle indicates that MPERS is a system actor. MPERS goals
can be seen with an additional behaviour annotation indicating its dynamic behaviour
as part of the runtime goal model as presented before in Section 3.3, Table 3.1. This
annotation reflects the RGM phase presented later in this chapter, as the TAOM4E tool
used for goal modelling shares unique entities and relations among different development
phases.

4.2.2 Late Requirements Phase

Later requirements phase concentrates the analysis in the system-to-be and its opera-
tional environment. The MPERS goal model occupies the most part of the diagram and
each of its main goals are further decomposed through AND/OR decomposition. Also,
means-end decomposition specifies how leaf-goals can be fulfilled by tasks performed by
the system actor. Figure 4.2 illustrates the late requirements diagram for the MPERS.

28

To evaluate our proposal, we have explored the PMC technique for the reliability
analysis of a system goal model resulting from the TROPOS late requirements phase
with additional behaviour and contextual specifications described in the next subsections.
The idea is to initially evaluate the approach in a monolithic representation without the
additional complexity of a multi-agent architecture. Hence, the evaluation involving later
TROPOS phases should be explored in future work.

4.3 Runtime Goal Modelling

At this point, the system is modelled as a monolithic actor and its goal model may
be extended with the behaviour specification to compose a RGM. This extended model
merges multiple views in the same diagram: goals, tasks and relations represent the
requirements view for the system-to-be as well as the intentionality behind then, while the
runtime specification provides the behaviour specification required for our goal-oriented
dependability analysis based on PMC.

The MPERS goal model in Figure 4.2 already presents the behaviour annotations
composing a RGM. Goals and tasks have received an unique identifier (ID). Elements
IDs are prefixed with an ‘G’, in the case of goals, and ‘T’, in the case of tasks. For
each decomposed element, a corresponding behaviour annotation specifies the behaviour
of all immediately underlying goals and tasks. Parenthesis are used for grouping related
goals/tasks and for clarification purposes only, as temporal order is parsed from the type
of the rule and its position in the behaviour annotation.

RGM behaviour rules have been described in Chapter 2. In this work, runtime anno-
tations have been added to the name area of goals and tasks in the goal model diagram
built with TAOM4E tool. They are enclosed by square brackets to enable their parsing.
Future works should extend TAOM4E business model with a proper field for that purpose.

The following subsection compares the MPERS RGM presented in Figure 4.2 to an
UML activity diagram for better understanding of the behaviour specified by a runtime
goal model.

4.3.1 RGM - UML activity diagram comparison

A similar behaviour specification achieved with the RGM in Figure 4.2 could be provi-
ded by an UML activity diagram with activities representing the leaf-tasks in the model.
However, activity diagrams have an homogeneous abstraction level and do not clearly cor-
relate behaviour to the requirements they are meant to satisfy. In contrast to the RGM,
activity diagrams denote behaviour through graphical symbols, while the RGM mixes
the original goal model notation with a behaviour specification. This simple notation

29

increases the utility of a goal model diagram. Figure 4.3 presents an activity diagram
corresponding to the MPERS leaf-tasks.

Among its limitations, RGM does not express that an emergency has to be confirmed
after a time (clock) or signal event as the UML activity diagram does. Both necessary
and sufficient conditions for the triggering and fulfilment of goals, tasks and dependencies
are provided by Formal TROPOS specification language. Still, sequential, interleaved,
alternative, optional and conditional execution flows as well as multiple executions of the
same task can be expressed by the RGM, providing a rich behaviour specification for the
system-to-be.

The idea of a runtime goal model is not to replace UML activity diagrams, but to
complement the static goal model with a clear runtime syntax that could be used for
documentation, communication and for conformance verification at both design time -
e.g., through model-based verification - and during system execution - as the execution
monitoring originally proposed by Dalpiaz et al [9]. Depending on the complexity of
the behaviour specification, a more robust runtime syntax would have to be employed or
complemented by traditional UML behaviour models. In this work, RGM is used as input
for our goal-oriented dependability analysis based on PMC.

4.4 Contextual Goal Modelling

At this phase, the analysis of the environment in which the system will operate is
performed. A careful investigation of what is static and what may change during operation
should list the contexts facts and variables that may potentially affect goals, operational
means (tasks) and the quality of different means (alternatives). In CGM, contexts are
described by statements and facts. Statements must be supported by facts, while facts can
be directly monitored by the system. In our work, we simplify the analysis by disregarding
context statements. Facts are specified as boolean expressions composed of variables and
operators. Variables can be either boolean or floating numbers. The following operators
can be used in the modelling environment:

• <, <=, >=, > (relational operators)

• =, ! = (equality operators)

• ! (negation)

• & (conjunction)

• | (disjunction)

30

Table 4.1 presents the contexts affecting the MPERS system. Each context has an
unique identifier (CID), a textual description and the corresponding boolean expression
that later will be parsed into a PRISM language formula.

CID Description Boolean expression A.E.

C1 User is at home HOME_WIFI & LOCATION_AGE <= 10 G6
!C1 User is out !HOME_WIFI | LOCATION_AGE > 10 G7
C2 Mobile signal SERV ICE ! = false T8.1
C3 WI-FI is on WIFI ! = false T6.0. T7.01
C4 GPS signal GPS ! = false T7.10
C5 Internet INTERNET ! = false T8.0, T12.0

T23.0, G5
C6 Disk space available DISK_SPACE >= 5 T17.1
C7 Low health risk HR = 1 G13
C8 Moderate health risk HR = 2 -
C9 Severe health risk HR = 3 -
C10 Emergency EMERGENCY ! = false G5

Tabela 4.1: Contexts affecting the MPERS system.

Column A.E. (Affected Element) indicates one or more goals/tasks that are activated/-
restricted by the context. Isolated boolean facts have been explicitly specified using the
false term just for clarification. In order to specify the context effects in the TAOM4E
modelling environment, we have applied logic predicates for each affected element, as
exemplified by Figure 4.4.

31

Figura 4.2: TROPOS mixed diagram for MPERS at late requirements phase

32

Figura 4.3: MPERS tasks represented by an UML activity diagram

Figura 4.4: Context effect associated in the TAOM4E formal specification area.

33

Capítulo 5

Análise de Dependabilidade Orientada
a Objetivos

This chapter describes our proposed goal-oriented dependability analysis, hereafter
referred to as GODA. Figure 5.1 illustrates GODA process that starts with requirements
phases of the TROPOS methodology involving goal-oriented analysis analysis briefly des-
cribed in Section 4.2. Conventional goal modelling is followed by the runtime analysis
(Sections 4.3) and context analysis (Section 4.4) that result in the CRGM. Next activity
is the transformation of the CRGM into a DTMC, which is the core of our contribution
and is described along this chapter, and by the specification of dependability properties
in PCTL language as described in Section 5.2. The GODA process finishes with the
design-time and runtime analysis presented in Sections 5.3 and 5.4, respectively.

Dashed arrows in the process indicates an iterative approach in which goal modelling
activities may be performed multiple times until a final version of the system-to-be is rea-
ched. For instance, context restrictions may end up with no alternatives to fulfil a certain
goal, which should be the case for a new iteration over the goal modelling and analysis.
Also, the dependability verification can reveal violations of the dependability constraints
for one or more elicited alternatives that could be tackled before implementation.

The next sections are structured as follows. First, the high-level DTMC model for
MPERS is built and details about the mapping of a CRGM into a DTMC in PRISM
language are provided. Next, dependability properties represented by the probability in
fulfilling different system goals are defined. Finally, we briefly describe how our verification
approach may be employed in both design-time analysis of the system-to-be and runtime
analysis through self-adaptation.

34

Figura 5.1: Goal-oriented dependability analysis process.

5.1 Goal-oriented Probabilistic Verification Model

This section describes our proposal regarding the transformation of a CRGM into
a DTMC verification model. We call it a goal-oriented dependability analysis because
the probabilistic verification model, in this case a DTMC model, is built directly from a
Contextual-Runtime goal model with the purpose of evaluating PCTL properties related
to the probability of different goals in being fulfilled, i.e., there is a clear mapping between
the goal model representation of the system and its dependability verification.

Throughout this work, the conventional goal model will be called DGM. A DGM is
formally defined as a directed graph M = (I, R), where I is a set of intentional elements
(nodes), while R is a set of relations (edges) [9]. For simplification purposes, only goals
and tasks have been considered as intentional elements and the relations are reduced to
AND/OR-decompositions. Thus, intentional elements can be in one of the two disjoint
refinement groups: AND-nodes and OR-nodes. Means-end refinements are considered
as OR-decomposition. A goal refined by AND/OR tasks is called a leaf-goal, while a
leaf-task has no further refinements.

Given a DGM M = (I, R), a RGM RM = (I, R, rt_annot()) is built by associating
each non-leaf element ε ∈ I with an expression rt_annot(ε), called a behaviour anno-
tation, that is intended to specify the behaviour of ε. The only trivial case are single
means-end tasks whose behaviour is inherited from their leaf-goals [9].

All goals and tasks elements in the model receive an unique identifier ID(ε) = prefix(ε)+

counter(ε), where prefix returns a G or a T for goals and tasks, respectively, and counter

35

returns an unique positive integer in the goals IDs set, if type(ε) = Goal, or a repetition of
the leaf-goal numeric ID with further decimals to distinct multiple tasks refinements for
the same leaf-goal. Figure 5.2 illustrates the identifiers for a leaf-goal, for its means-end
task and for this task’s refinements.

Figura 5.2: Goal G17 decomposed by task T17 that is refined by subtasks T17.0 and T17.1.

5.1.1 Leaf-tasks as transition systems

Since goals are ultimately realized by leaf-tasks, the overall system behaviour is the
realization of those tasks. As a result, the probabilistic behaviour of the leaf-tasks can
be modelled into a corresponding DTMC model. To present the well-formedness rules of
our transformation from a CRGM into a DTMC model, we first represent leaf-tasks as
transition systems and then as a DTMC model.

Despite the final representation of a leaf-tasks being a DTMC, we have decided for
a transition system as an intermediary representation due to its simplicity and also be-
cause a DTMC is a transition system specialization whose transitions follow probabilistic
distributions. In our work, only the transition from the running state to the success or
failure states are non-deterministic, as can be seen in the DTMC examples presented in
each case.

A transition system TS is defined by the tuple (S,Act,→, I, AP, L), where:

• S is the set of states,

• Act is a set of actions,

36

• → ⊂ S × Act × S is a transition relation,

• IS ⊆ S is a set of initial states,

• AP is a set of atomic propositions, and

• L : S → 2AP is a state labelling function.

A TS is called finite if S, Act, and AP are finite. An action α evolves the system from
state s to s′ if (s, α, s′) ∈ →, {s, s′} ⊆ S and s is the current state. In case a state
has more than one outgoing transition, the next transition is chosen nondeterministically.
Labels relates a set L(s) ∈ 2AP of atomic propositions to any state s. Given a propositi-
onal logic formula Φ, then s |= Φ ⇐⇒ L(s) |= Φ [3]. The TS representing leaf-tasks
is defined as follows:

• S = {initial, skipped, running, success, failure}

• IS = {initial}

• L(initial) = {∅}, L(skipped) = {not_selected}, L(running) = {selected},
L(success) = {succeeded}, L(failure) = {failed}

• AP = {not_selected, selected, succeeded, failed}

• Act = {skip, run, succeed, fail}

Figure 5.3 presents a state diagram for a RGM. In contrast to the state diagram
in [9], the waiting state has been suppressed, as we are interested in the outcome of a
task execution and not in the execution itself, and the skipped state has been added to
represent leaf-tasks that have been skipped for different reasons.

Figura 5.3: State diagram for leaf-tasks in a RGM.

Next, the leaf-tasks states are further described. For each state name, the correspon-
ding number used in the PRISM DTMC model is associated to the variable s ∈ S.

37

• Initial(s=0): corresponds to the initial/ready state of a given leaf-task. From this
state, a transition may occur to the running state, if the task is part of a selected
system alternative, or to the final skipped state, otherwise.

• Running(s=1): corresponds to the execution state of a given leaf-task. From this
state, a transition to the final success or failure states may occur.

• Success(s=2): corresponds to the absorbing and final success state of a singular task
execution.

• Skipped(s=3): indicates that a task does not participate in the fulfilment of the
analysed goal and should not impact the analysis results.

• Failure(s=4): the opposite from the final success state, meaning that a singular task
execution has deviated from its expected behaviour as a consequence of a natural
phenomena, a human-made fault, a malicious fault or an interaction fault, as stated
in the failure definition in Section 2.5.

5.1.2 Building the high-level DTMC model from a RGM

Once the transition system of leaf-tasks has been defined, the corresponding DTMC re-
presentation follows. DTMC is an specialization of a TS defined by the tuple (S, si, P, AP, L),
where:

• S is the set of states,

• si ∈ S is the initial state,

• P : S × S → [0, 1] is a transition probability matrix such that ∀s ∈ S,
∑

s′∈S P (s, s′) =

1,

• AP is a set of atomic propositions, and

• L : S → 2AP a state labelling function assigning to each state s ∈ S a set of
atomic propositions from AP .

In particular for a leaf-task, P represents the reliability of the task execution in case
of a transition from running to the success state. Complementarily, 1 − P in case of a
transition from running to the failure state.

For any goal Gi and a set Λ of leaf-tasks that fulfils all branches of subgoals up to
Gi, including all alternative branches, with Gi ∈ I and Λ ⊂ I, a DTMC model for Gi

38

is composed of k leaf-tasks DTMCs, where k = |Λ|. This model must represent, in its
finite state abstraction, the same behaviour of the corresponding RGM workflow, i.e.,
it must preserve goals/tasks temporal order and other behaviour semantics specified by
the runtime annotations. We call the resulting verification model of a high-level DTMC
because leaf-tasks may represent high-level activities, as in an UML Activity Diagram,
which could be further refined, e.g., by sequence diagrams [31].

In order to obtain the high-level DTMC from the RGM construct, we defined an
abstraction of the execution time of different leaf-tasks in the model for better unders-
tandability of the resulting DTMC and also for building an execution chain composed of
both sequential and interleaved leaf-tasks. We have formalized this abstraction according
to the following definition:

Definição 1 Execution time of a RGM is a tuple τ = (f, p), where f represents a
discrete time frame and p a discrete time path, with f, p ∈ N.

The CRGM starts in τ = (0, 0) and is parsed following a depth first algorithm. Si-
bling elements in the goal tree are sorted by their position in the runtime annotation
(rt_annot()) from left to right. Leaf-tasks can be executed either sequentially or in paral-
lel. Sequential leaf-tasks are in subsequent time frames, i.e., τi = (f, p)⇒ τi+1 = (f+1, p),
while parallel leaf-tasks share the same time frame, but occupy different time paths, i.e.,
τi = (f, p)⇒ τi+1 = (f, p+ 1). Each leaf-task in a CRGM is mapped to a specific τ .

Next, each behaviour rule is detailed within three levels: an UML activity diagram
representation that graphically explains the behaviour specified by the rule, the resulting
transition system and the following DTMC representation in PRISM. The effect of each
behaviour rule on the τ of the involved tasks is also described and can be noted in
the corresponding DTMC example as part of the [action] suffix in PRISM transition
commands, where the first term represents the time frame f and the second, separated
by an underscore, represent the time path p. Between different rules, only the actions in
AP of the transition systems variate, while S, →, IS, and L are kept the same.

Sequential and Interleaved Rule

Two fundamental behaviour rules consist of the sequential and interleaved execution
orders for the fulfilment of goals and execution of tasks. In a runtime annotation, the ‘;’
and ‘#’ symbols represent sequential and interleaved orders, respectively. Figures 5.4a
and 5.4b illustrate these behaviours in UML activity diagrams.

Sequential tasks (T1;T2) have subsequent time frames, meaning that T2’s execution is
subsequent to T1’s execution. To model this, we have synchronized the initial transition

39

(a) Sequential tasks T1;T2. (b) Interleaved tasks T1#T2.

of T2 to the final transition of T1. Considering the transition systems TS1 and TS2

corresponding to T1 and T2: TSi = (Si, Acti,→i, Ii, APi, Li), 1 ≤ i ≤ 2, the transition
system resulting from TS1;TS2 is defined by:

Act1 ∩ Act2 = {α}, s1
α−→1 s′1 ∧ s2

α−→2 s′2

< s1, s2 >
α−→ < s1′, s2′ >

where s1 = running, s2 = initial, s′1 = success, s′2 = running and α = succeed1 = run2.

In contrast, interleaved tasks (T1#T2) are in the same time frame, but occupy different
time paths. The interleaving occurs on the running state, while the synchronization occurs
on the initial and final success states. The transition system resulting from TS1#TS2 is
defined by:

Act1 ∩ Act2 = {α}, s1
α−→1 s′1 ∧ s2

α−→2 s′2

< s1, s2 >
α−→ < s1′, s2′ >

where s1 = initial, s2 = initial, s′1 = running, s′2 = running and α = init, and:

β1 ∈ Act1, β2 ∈ Act2,
s1

β1−→1 s′1

< s1, s2 >
β1−→ < s′1, s2 >

,
s2

β2−→2 s′2

< s1, s2 >
β2−→ < s1, s′2 >

where si = running, s′i = success, and βi = succeedi, 1 ≤ i ≤ 2.

Generically, for any finite number of interleaved tasks succeeding a transition system
TS0, a resulting transition system TS0; (TS1#..#TSi#..#TSN), where 0 < i ≤ N is
defined as:

⋂
0≤i≤N

Acti = {α}, s0
α−→0 s′0 ∧ ... ∧ si

α−→i s
′
i ∧ ... ∧ sN

α−→n s′N

< s0, ..., si, ..., sN >
α−→ < s0′, ..., si′, ..., sN ′ >

40

where s0 = running, s0′ = success, si = initial, s′i = running, for 0 < i ≤ N and
α = succeed0 = runi, and:

⋃
0<i≤N

si
βi−→i s

′
i

< s1, ..., si, ...sN >
βi−→ < s1, ..., s′i, ..., sN >

where si = running, s′i = success, βi ∈ Acti and βi = succeedi. Listings 5.1 and 5.2
present the PRISM DTMC modules for T8.0;T8.1 and T22#T23.0, respectively.

1 const double rTaskT8_0;
2 module T8_0_RESTRequisition
3 sT8_0 :[0..4] init 0;
4

5 [success1_1] sT8_0 = 0 -> (sT8_0 ’=1);//init to running
6 [] sT8_0 = 1 -> rTaskT8_0 : (sT8_0 ’=2) + (1 - rTaskT8_0) : (sT8_0 ’=4);// running to

final state
7 [success1_2] sT8_0 = 2 -> (sT8_0 ’=2);// final state success
8 [success1_2] sT8_0 = 3 -> (sT8_0 ’=3);// final state skipped
9 [failT8_0] sT8_0 = 4 -> (sT8_0 ’=4);//final state failure

10 endmodule
11

12 const double rTaskT8_1;
13 module T8_1_SMSNotification
14 sT8_1 :[0..4] init 0;
15

16 [success1_2] sT8_1 = 0 -> (sT8_1 ’=1);//init to running
17 [] sT8_1 = 1 -> rTaskT8_1 : (sT8_1 ’=2) + (1 - rTaskT8_1) : (sT8_1 ’=4);// running to

final state
18 [success1_3] sT8_1 = 2 -> (sT8_1 ’=2);// final state success
19 [success1_3] sT8_1 = 3 -> (sT8_1 ’=3);// final state skipped
20 [failT8_1] sT8_1 = 4 -> (sT8_1 ’=4);//final state failure
21 endmodule

Listing 5.1: Sequential tasks T15 and T16 as DTMC modules with final transitions of the
first module synchronized to the initial transition of the second.

1 const double rTaskT22;
2

3 module T22_PlaySoundAlarm
4 sT22 :[0..4] init 0;
5

6 [success0_7] sT22 = 0 -> (sT22 ’=1);//init to running
7 [] sT22 = 1 -> rTaskT22 : (sT22 ’=2) + (1 - rTaskT22) : (sT22 ’=4);// running to final

state
8 [success0_8] sT22 = 2 -> (sT22 ’=2);//final state success
9 [success0_8] sT22 = 3 -> (sT22 ’=3);//final state skipped

10 [failT22] sT22 = 4 -> (sT22 ’=4);//final state failure
11 endmodule
12

13 const double rTaskT23_0;
14

15 module T23_0_DisplayEmergencyScreen

41

16 sT23_0 :[0..4] init 0;
17

18 [success0_7] sT23_0 = 0 -> (sT23_0 ’=1);//init to running
19 [] sT23_0 = 1 -> rTaskT23_0 : (sT23_0 ’=2) + (1 - rTaskT23_0) : (sT23_0 ’=4);// running

to final state
20 [success0_8] sT23_0 = 2 -> (sT23_0 ’=2);//final state success
21 [success0_8] sT23_0 = 3 -> (sT23_0 ’=3);//final state skipped
22 [failT23_0] sT23_0 = 4 -> (sT23_0 ’=4);//final state failure
23 endmodule

Listing 5.2: Parallel tasks T22 and T23.0 as DTMC modules with initial and final
transitions synchronized and interleaved running transitions.

Alternative Rule

Alternative behaviour rule specifies that only one goal/task among two or more may
be selected, i.e., they are mutually exclusive (XOR-decomposition). Figure 5.5 illustrate
alternative behaviour in UML activity diagram.

Figura 5.5: Alternative tasks T1|T2.

Alternative leaf-tasks share both time frame and path, as only one task may be se-
lected. The increment in τ is defined by the preceding sequential or interleaved order
rule. The alternative selection is conditioned to an input data provided at design-time or
runtime. Considering the transition systems TS1 and TS2 corresponding to alternative
tasks T1 and T2, where TSi = (Si, Acti,→i, Ii, APi, Li), for 1 ≤ i ≤ 2, the transition
system resulting from TS1|TS2 is defined by the rules for the transitions from the initial
state to the running or skipped states:

{γ1, γ2} ⊂ (Act1 ∩ Act2)

s1
γ1−→1 s′1

< s1, s2 >
γ1−→ < s′1, s′2 >

,
s2

γ2−→2 s′′2

< s1, s2 >
γ2−→ < s′′1, s′′2 >

42

where s1 = initial, s2 = initial, s′1 = running, s′2 = skipped, s′′1 = skipped, s′′2 =

running, γ1 = run1 and γ2 = run2.

Generically, for any finite number of alternative tasks, a resulting transition system
TS1|..|TSi|..|TSN , for 0 < i ≤ N , is defined as:

{γ1, .., γi, .., γN} ⊂
⋂

0<i≤N

Acti

⋃
0<i≤N

si
γi−→i s

′
i

< s1, ..., si, ...sN >
γi−→ < s′1, ..., s′i, ..., s′N >

where si = initial, si′ = running, s′j = skipped, for 0 < j ≤ N , such that j 6= i,
and γi = runi.

To represent this rule in a DTMC model, additional selecting enumerators define which
alternative from a set of two or more is selected for execution instead of different actions
for selecting different alternatives ({run1, run2, ..}). As well as in optional execution,
XOR_Ei = 0 results in a deterministic transition from the initial state to the skipped
state for all leaf-tasks underlying the element Ei, in the case of a goal or a non-leaf task,
or for Ei itself, in the case Ei is a leaf-task. In opposition, a deterministic transition from
the initial state to the running state occurs if XOR_Ei = 1. We guarantee the structural
validity for alternative execution by using a binary construction that avoids more than
one alternative to be selected at the same time. In specific, for any number of alternative
tasks N , where T1|..|Ti|..|TN and 0 < i ≤ N , their initial transition in a DTMC is built
with the following pattern:

[success]sTi = 0→
N∏

j=1;j 6=i

(1−XOR_Tj) ∗ (XOR_Ti) : (sTi
′ = 1) +

N∏
j=1;j 6=i

(XOR_Tj) ∗ (1−XOR_Ti) : (sTi
′ = 3) (5.1)

For any invalid combination of the selecting enumerators, the DTMC becomes invalid,
as the sum of probabilities would not be 1. Listing 5.3 presents the DTMC modules for
alternative tasks T16.20, T16.21 and T16.22.

1 param int XOR_T16_20;
2 param int XOR_T16_21;

43

3 param int XOR_T16_22;
4

5 const double rTaskT16_20;
6

7 module T16_20_TriangulateMobileSignal
8 sT16_20 :[0..4] init 0;
9

10 [success0_0] sT16_20 = 0 -> XOR_T16_20 *(1 - XOR_T16_21)*(1 - XOR_T16_22) : (sT16_20
’=1) + (1 - XOR_T16_20)*XOR_T16_21*XOR_T16_22 : (sT16_20 ’=3);//init to running or
skip

11 [] sT16_20 = 1 -> rTaskT16_20 : (sT16_20 ’=2) + (1 - rTaskT16_20) : (sT16_20 ’=4);//
running to final state

12 [success1_1] sT16_20 = 2 -> (sT16_20 ’=2);// final state success
13 [success1_1] sT16_20 = 3 -> (sT16_20 ’=3);// final state skipped
14 [failT16_20] sT16_20 = 4 -> (sT16_20 ’=4);// final state failure
15 endmodule
16

17 const double rTaskT16_21;
18

19 module T16_21_PublicWI_FILookup
20 sT16_21 :[0..4] init 0;
21

22 [success0_0] sT16_21 = 0 -> (1 - XOR_T16_20)*XOR_T16_21 *(1 - XOR_T16_22) : (sT16_20
’=1) : (sT16_21 ’=1) + XOR_T16_20 *(1 - XOR_T16_21)*XOR_T16_22 : (sT16_21 ’=3);//init
to running or skip

23 [] sT16_21 = 1 -> rTaskT16_21 : (sT16_21 ’=2) + (1 - rTaskT16_21) : (sT16_21 ’=4);//
running to final state

24 [success1_1] sT16_21 = 2 -> (sT16_21 ’=2);// final state success
25 [success1_1] sT16_21 = 3 -> (sT16_21 ’=3);// final state skipped
26 [failT16_21] sT16_21 = 4 -> (sT16_21 ’=4);// final state failure
27 endmodule
28

29 const double rTaskT16_22;
30

31 module T16_22_TrackGPS
32 sT16_22 :[0..4] init 0;
33

34 [success0_0] sT16_22 = 0 -> (1 - XOR_T16_20)*(1 - XOR_T16_21)*XOR_T16_22 : (sT16_22
’=1) + XOR_T16_20*XOR_T16_21 *(1 - XOR_G16) : (sT16_22 ’=3);//init to running or skip

35 [] sT16_22 = 1 -> rTaskT16_22 : (sT16_22 ’=2) + (1 - rTaskT16_22) : (sT16_22 ’=4);//
running to final state

36 [success1_1] sT16_22 = 2 -> (sT16_22 ’=2);// final state success
37 [success1_1] sT16_22 = 3 -> (sT16_22 ’=3);// final state skipped
38 [failT16_22] sT16_22 = 4 -> (sT16_22 ’=4);// final state failure
39 endmodule

Listing 5.3: Alternative tasks T7.00, T7.01 and T7.10 as DTMC modules with additional
integer variable used for selection.

Optional Rule

Given a decomposed goal or task, its fulfilment or execution may be tagged as optional,
meaning that the non-satisfaction of this element does not prevent its refined goal or task

44

to be met. In this case, the other non-optional elements in an AND-decomposition must
be satisfied. Figure 5.6 illustrates an optional task T.

Figura 5.6: Optional task T.

Optional behaviour does not causes any additional increment to τ , which is defined
by previous sequential or interleaved order rule. In order to synchronize the optional
task T0 with a subsequent task T1, the initial transition of T1 is synchronized to the skip
action of T0, in addition to the synchronization to T0’s succeed action. Thus, considering
the transition system for these tasks defined by TSi = (Si, Acti,→i, Ii, APi, Li), for
0 ≤ i ≤ 1, the resulting transition system from opt(TS0);TS1 is defined by the rules:

{α, γ} ⊂ (Act0 ∩ Act1)

so
α−→0 s′0 ∧ s1

α−→1 s′1

< s0, s1 >
α−→ < s′0, s′1 >

where so = running, s′o = success, s1 = initial, s′1 = running, α = succeed0 = run1.

s0
γ−→0 s′0 ∧ s1

γ−→1 s′1

< s0, s1 >
γ−→ < s′0, s′1 >

where so = initial, s′o = skiped, s1 = initial, s′1 = running and γ = skip0 = run1.

Similarly to alternative rule, optional leaf-tasks are selected by an additional varia-
ble in their DTMC model. Instead of different actions (run, skip), a select enumera-
tor determines in a single action which state will follow the initial state: running, if
OPT_T_ID = 1, or skipped, if OPT_T_ID = 0. In PRISM, we achieved this by using
this enumerator to model a deterministic transition to either the running state or to the
skipped state. Listing 5.4 illustrates the DTMC module of optional task T17.1 with the
select enumerator OPT_T_17_1.

1 const double rTaskT17_1;
2 const int OPT_T17_1;
3

4 module T17_1_PersistInDatabase

45

5 sT17_1 :[0..4] init 0;
6

7 [success1_3] sT17_1 = 0 -> (OPT_T17_1) : (sT17_1 ’=1) + (1 - OPT_T17_1) : (sT17_1 ’=3);//
init to running or to skipped

8 [success1_3] sT17_1 = 0 -> (sT17_1 ’=4);//init to fail
9 [] sT17_1 = 1 -> rTaskT17_1 : (sT17_1 ’=2) + (1 - rTaskT17_1) : (sT17_1 ’=4);// running

to final state
10 [success1_4] sT17_1 = 2 -> (sT17_1 ’=2);//final state success
11 [success1_4] sT17_1 = 3 -> (sT17_1 ’=3);//final state skipped
12 [failT17_1] sT17_1 = 4 -> (sT17_1 ’=4);//final state failure
13 endmodule

Listing 5.4: An optional task T17.1 as a DTMC with additional select enumerator
OPT_T17_1.

Conditional Rule

Some goals/tasks are conditioned to the fulfilment/execution of another goal/task. In
such cases, an OR-decomposition is annotated with a ternary rule try(E1) ? E2 : E3

where E2 is conditioned to the success of E1, while E3 is conditioned to its failure. The
skip term is used if no further behaviour is conditioned to either the success or the failure
of E1. For example, in try(T1) ? skip : T2, task T2 is only required for execution if T1 fails
and no further behaviour is expected if T1 succeeds. In particular, try(T1) ? skip : T2

defines a design diversity as a fault tolerance for T1. Figure 5.7 illustrates a conditional
decomposition.

Figura 5.7: Conditional tasks T9.0 and T9.1.

Conditional behaviour does increment the time frame as the conditioned leaf-tasks
are subsequent to the success or failure of E1. Considering the transition systems TS1,
TS2 and TS3 corresponding to alternative tasks T1, T2 and T3: TSi = (Si, Acti,→i

, Ii, APi, Li), for 1 ≤ i ≤ 3, the transition system resulting from try(TS1) ? TS2 : TS3

is defined by the rules:

{δ1, δ2} ⊂ (Act1 ∩ Act2 ∩ Act3)

46

s1
δ1−→ s′1 ∧ s2

δ1−→ s′2 ∧ s3
δ1−→ s′3

< s1, s2, s3 >
δ1−→ < s′1, s′2, s′3 >

,
s1

δ2−→ s′′1 ∧ s2
δ2−→ s′′2 ∧ s3

δ2−→ s′′3

< s1, s2, s3 >
δ2−→ < s′′1, s′′2, s′′3 >

where s1 = initial, s2 = initial, s3 = initial, s′1 = success, s′2 = running, s′3 = skipped,
s′′1 = failure, s′′2 = skipped, s′′3 = running, δ1 = success1 and δ2 = failure1.

Any task subsequent to a conditional execution must have its initial transition syn-
chronized to all possible successful outcomes, i.e., to the succeed actions of E2 and E3.
Given the transition systems TS1, TS2, TS3 and TS4 corresponding to the leaf-tasks T1,
T2, T3 and T4: TSi = (Si, Acti,→i, Ii, APi, Li), for 1 ≤ i ≤ 4, the resulting transition
system for (try(TS1) ? TS2 : TS3);TS4 is defined by the additional rules:

α2 ∈ (Act2 ∩ Act4), α3 ∈ (Act3 ∩ Act4)

s2
α2−→2 s′2 ∧ s4

α2−→4 s′4

< s2, s4 >
α2−→ < s′2, s′4 >

,
s3

α3−→3 s′3 ∧ s4
α3−→4 s′4

< s3, s4 >
α3−→ < s′3, s′4 >

where s2 = running, s3 = running, s4 = initial, s′2 = success, s′3 = success, s′4 =

running, α2 = success2 and α3 = success3.

To represent conditional behaviour in DTMC models, shared actions synchronize the
initial transition of leaf-tasks conditioned to the success and failure of a third leaf-task or
a set of leaf-tasks, as the conditional rule may be applied to one or to multiple elements
at a time or to non-leaf elements. Figure 5.5 present the DTMCs for conditional tasks in
the rule try(T9.0) ? skip : T9.1.

1 const double rTaskT9_0;
2

3 module T9_0_RESTRequisition
4 sT9_0 :[0..4] init 0;
5

6 [success0_2] sT9_0 = 0 -> (sT9_0 ’=1);//init to running
7 [] sT9_0 = 1 -> rTaskT9_0 : (sT9_0 ’=2) + (1 - rTaskT9_0) : (sT9_0 ’=4);// running to

final state
8 [success2_3] sT9_0 = 2 -> (sT9_0 ’=2);// final state success
9 [success2_3] sT9_0 = 3 -> (sT9_0 ’=3);// final state skipped

10 [failT9_0] sT9_0 = 4 -> (sT9_0 ’=4);//final state failure
11 endmodule
12

13 const double rTaskT9_1;
14

15 module T9_1_SMSNotification
16 sT9_1 :[0..4] init 0;

47

17

18 [failT9_0] sT9_1 = 0 -> (sT9_1 ’=1);//init to running
19 [success2_3] sT9_1 = 0 -> (sT9_1 ’=3);//not used , skip running
20 [] sT9_1 = 1 -> rTaskT9_1 : (sT9_1 ’=2) + (1 - rTaskT9_1) : (sT9_1 ’=4);// running to

final state
21 [success2_4] sT9_1 = 2 -> (sT9_1 ’=2);// final state success
22 [success2_4] sT9_1 = 3 -> (sT9_1 ’=3);// final state skipped
23 [failT9_1] sT9_1 = 4 -> (sT9_1 ’=4);//final state failure
24 endmodule

Listing 5.5: Conditional tasks T9.0 and T9.1 as DTMCs.

Cardinality Rules

Variations of the original RGM proposal were employed for the E+ and E# cardinality
rules. Instead of an infinite/undetermined cardinality, analysts should provide the upper
bound cardinality limit. Figures 5.8a and 5.8b illustrate sequential and interleaved task
behaviours, respectively.

(a) Sequential cardinality T1, for
0 < j ≤ n.

(b) Interleaved cardinality of task T2, for
0 < j ≤ n.

In our proposal, cardinality is represented by the number of sequential (E + n) or
interleaved (E#n) executions of the same task. Considering a transition system TS,
cardinality follows the same rules of sequential or interleaved executions, except that the
same transition system is repeated n times. Thus, the resulting transition systems TS+n

and TS#n are the same as TS1; ..;TSi; ..;TSn and TS1#..#TSi#..#TSn, where:

N−1∑
i=1

TSi = TSi+1

.
To represent these rules in a DTMC model, the corresponding leaf-tasks modules are

repeated n − 1 times though PRISM language module renaming, as n = 1 is trivially
represented by the original module. In case of sequential cardinality, the state variable,
the initial and final transition actions are renamed for all repetitions, forming a sequential
execution chain of the same task, where τi = (f, p) ⇒ τi+1 = (f + 1, p). In case of

48

interleaved cardinality, only the state variable is renamed, resulting in the synchronization
of the initial and the final transitions of the renamed modules, leaving only the run actions
unsynchronized. This module renaming forms an interleaved execution of the same task,
with τi = (f, p)⇒ τi = (f, p+ 1). It must be noted that the time path resulting from the
interleaved execution is not incremented, as the parallelism ends with the rule and the
main execution path is restored.

Listings 5.6 and 5.7 present the DTMC models for both cases. The second example
does not come from the MPERS RGM in Figure 4.2 and was introduced to exemplify the
interleaved cardinality module renaming approach.

1 const double rTaskT22;
2 module T22_ListenToButton
3 sT22 :[0..4] init 0;
4

5 [success0_8] sT22 = 0 -> (sT22 ’=1);//init to running
6 [] sT22 = 1 -> rTaskT22 : (sT22 ’=2) + (1 - rTaskT22) : (sT22 ’=4);// running to final

state
7 [success0_9] sT22 = 2 -> (sT22 ’=2);//final state success
8 [success0_9] sT22 = 3 -> (sT22 ’=3);//final state skipped
9 [failT22] sT22 = 4 -> (sT22 ’=4);//final state failure

10 endmodule
11 module T22_S2 = T22_ListenToButton [sT22=sT22_S2 , success0_9=success0_10 , success0_8=

success0_9 , failT22=failT22_S2] endmodule

Listing 5.6: Sequential cardinality with n=2 for task T22.

1 const double rTaskT22;
2 module T22_ListenToButton
3 sT22 :[0..4] init 0;
4

5 [success0_8] sT22 = 0 -> (sT22 ’=1);//init to running
6 [] sT22 = 1 -> rTaskT22 : (sT22 ’=2) + (1 - rTaskT22) : (sT22 ’=4);// running to final

state
7 [success0_9] sT22 = 2 -> (sT22 ’=2);//final state success
8 [success0_9] sT22 = 3 -> (sT22 ’=3);//final state skipped
9 [failT22] sT22 = 4 -> (sT22 ’=4);//final state failure

10 endmodule
11 module T22_N2 = T22_ListenToButton [sT22=sT22_N2 , failT22=failT22_N2] endmodule
12 module T22_N3 = T22_ListenToButton [sT22=sT22_N3 , failT22=failT22_N3] endmodule

Listing 5.7: Interleaved cardinality with n=3 for task T22.

In addition to the original RGM, we also support the specification of retries for tasks
executions (E@n) as a cardinality behaviour rule. In this particular case, the run action
is performed multiple times until the maximum number of retries or the final success state
are reached. Only in the first case the fail action takes the task module to the final failure
state. Listing 5.8 illustrates this behaviour in a DTMC model.

1 const double rTaskT26_0;
2 const double maxRetriesT26_0 =3;

49

3

4 module T26_0_RESTRequisition
5 sT26_0 :[0..4] init 0;
6 triesT26_0 : [0..3] init 0;
7

8 [success0_10] (G25) & sT26_0 = 0 -> (sT26_0 ’=1);//init to running
9 [] sT26_0 = 1 & triesT26_0 < maxRetriesT26_0 -> rTaskT26_0 : (sT26_0 ’=2) + (1 -

rTaskT26_0) : (triesT26_0 ’= triesT26_0 +1);//try
10 [] sT26_0 = 1 & triesT26_0 = maxRetriesT26_0 -> (sT26_0 ’=4);//no more retries
11 [success0_11] sT26_0 = 2 -> (sT26_0 ’=2);//final state success
12 [success0_11] sT26_0 = 3 -> (sT26_0 ’=3);//final state skipped
13 [failT26_0] sT26_0 = 4 -> (sT26_0 ’=4);//final state failure
14 endmodule

Listing 5.8: Retry behaviour with n=2 for task T26.0.

5.1.3 Context effects in the high-level DTMC model

Regarding a goal-oriented dependability analysis, context variation may change the
scope of the verification and consequently limit the operational leaf-tasks that must be
part of the analysis - either because they do not have a goal to satisfy in that context
or because they are restricted by that context and cannot be selected for execution.
Besides the effects over goals and tasks, we have not considered the direct context effect
over qualitative softgoals, as softgoals provide no clear-cut criteria for their analysis.
Nonetheless, our methodology evaluates the dependability of systems as the overall goal
achievement that may be affected by context restrictions on goals and tasks, which in
turn can be considered as an indirect context effect over a qualitative goal.

Given a CRGM, all context effects are parsed following a depth first approach for
traversing the directed tree graph. Even if a context variable occurs multiple times in the
same context formula or across other contexts in the model, only one variable is declared
in the DTMC model (PRISM variable declaration). A reference to this variable is then
used to compose the boolean formulas in the DTMC models corresponding to the affected
leaf-tasks, according to the type of effect it imposes. Next, the modelling of the context
effects on goals and tasks in a DTMC model is described.

Contextual goals activation/restriction

If a goal is activated/restricted by a context, the corresponding verification scope must
be adjusted. The MPERS RGM in Figure 4.2 has a few goals whose activation depends
on specific context conditions, as specified in Table 4.1. Consequently, leaf-tasks related
to these goals must not affect the analysis results if these conditions are not satisfied. In
our proposal, the leaf-tasks related to a restricted goal are skipped from execution.

50

For instance, the goals ‘stationary geolocation is checked ’ and ‘moving geolocation is
tracked ’ are mandatory subgoals for the ‘patient location is monitored ’ goal. The first
is activated by the context ‘user is at home’ and the later by the negation of this same
context. Analysts have put this restriction to avoid an aggressive geolocation tracking
that consumes too much battery when the user is known to be at home. The following
formulas specify this restricting context and its negation:

C1: HOME_WIFI & LOCATION_AGE < 10 (5.2)

!C1: !HOME_WIFI | LOCATION_AGE >= 10 (5.3)

Home WI-FI BSSID is configured once and stored by the application. If its signal
is not in reach for the last 10 minutes, patient is considered to be outdoors. To map
these restrictions into the DTMC model, HOME_WIFI and LOCATION_AGE are
declared as boolean and double variables, respectively. The C1 and !C1 formulas are
then employed as guard conditions in the corresponding leaf-task modules. If the context
formula is not satisfied, a deterministic transition to the skipped final state (sTask=3)
automatically excludes the related leaf-tasks from the analysis results. If the context for-
mula holds, a deterministic transition evolves the leaf-task to the running state (sTask=1).
Listing 5.9 presents the DTMC model of a MPERS leaf-task whose goal is restricted by
the context formula C1.

1 const bool HOME_WIFI;
2 const double LOCATION_AGE;
3 const double rTaskT6_0 =0.999;
4

5 module T6_0_CheckHomeWI_FIRange
6 sT6_0 :[0..4] init 0;
7

8 [success0_0] (HOME_WIFI & LOCATION_AGE < 10) & sT6_0 = 0 -> (sT6_0 ’=1);//init to
running

9 [success0_0] !(HOME_WIFI & LOCATION_AGE < 10) & sT6_0 = 0 -> (sT6_0 ’=3);//init to
skipped

10

11 [] sT6_0 = 1 -> rTaskT6_0 : (sT6_0 ’=2) + (1 - rTaskT6_0) : (sT6_0 ’=4);// running to
final state

12 [success0_1] sT6_0 = 2 -> (sT6_0 ’=2);// final state success
13 [success0_1] sT6_0 = 3 -> (sT6_0 ’=3);// final state skipped
14 [failT6_0] sT6_0 = 4 -> (sT6_0 ’=4);//final state failure
15 endmodule

Listing 5.9: Contextual restrictions on a leaf-task execution.

51

Tasks restriction

Regarding the context restriction on system tasks, all operations depending on a spe-
cific system resource considered to be dynamic could be tagged with a context restriction.
Also, stakeholder preferences may specify the availability of a given task only in specific
contexts.

The MPERS CRGM has also a few context restrictions on tasks. For example,
the restrictions over the communication tasks ‘REST requisition’ and ‘REST service’
(context ‘internet is available’), over the geolocation tracking tasks ‘public WIFI’ and
‘track GPS’ (contexts ‘WI-FI is on’ and ‘GPS signal is available’) and over the sto-
rage task ‘persist in database’ (context ‘disk memory available’). The following boolean
formulas represent these contexts:

C2: CONNECTION (5.4)

C3: WI_FI (5.5)

C4: GPS_SIGNAL (5.6)

C5: USED_DISK <= 95 (5.7)

These formulas follow the same principle from the previous goal restriction formulas.
For C5, a threshold of 95% of disk usage and not 100% has been defined to avoid ins-
tabilities in the operational system. The availabilities of the Wi-Fi and GPS signals are
provided by the platform and have been modelled as boolean facts.

In contrast to the goals restriction, tasks restrictions are modelled by an additional
deterministic transition to the failure state guarded by the negation of the corresponding
context formula instead of a transition to the skipped state. Consequently, if this formula
is evaluated as false, the leaf-task will certainly fail (sTask=4). This is in accordance
to the perception that, if a task is required and restricted at the same time, a failure
will occur. Similarly to the contextual goal activation/restriction, if the context formula
holds, a deterministic transition evolves the leaf-task to the running state (sTask=1).
Listing 5.10 presents a DTMC model with one restricted MPERS leaf-task.

1 const bool CONNECTION;// context variable declaration
2 const double rTaskT9_0;
3

4 module T9_0_RESTRequisition
5 sT9_0 :[0..4] init 0;
6

52

7 [success0_2] CONNECTION & sT9_0 = 0 -> (sT9_0 ’=1);//init to running
8 [success0_2] !CONNECTION & sT9_0 = 0 -> (sT9_0 ’=4);//init to failure
9

10

11 [] sT9_0 = 1 -> rTaskT9_0 : (sT9_0 ’=2) + (1 - rTaskT9_0) : (sT9_0 ’=4);// running to
final state

12 [success2_3] sT9_0 = 2 -> (sT9_0 ’=2);// final state success
13 [success2_3] sT9_0 = 3 -> (sT9_0 ’=3);// final state skipped
14 [failT9_0] sT9_0 = 4 -> (sT9_0 ’=4);//final state failure
15 endmodule

Listing 5.10: Contextual restrictions on a leaf-task execution.

5.2 Dependability Property Specification

Once a probabilistic verification model is built from a system CRGM, different PCTL
properties may be specified for verification. As part of our goal-oriented dependability
analysis, we focus on the reachability property for the success of system goals. The
reachability of a final and successful system state defines the reliability of that system,
i.e., the probability in fulfilling its root or ultimate goal. Accordingly, the reachability of
a partial success state indicates the partial reliability of the system, i.e., the probability in
fulfilling one or more of its subgoals. Reachability can be represented by the Probabilistic
existence property [14]:

P =? [F (ϕ)] (5.8)

Given a CRGM CRM = (I, R, rt_annot(), ctx_annot()) and a set of leaf-tasks Λ ∈ I,
the scope of the probabilistic verification is defined as:

• Global, if Λ is a minimum set composed of the leaf-tasks that satisfies the chain of
subgoals up to the root goal Groot, where Groot ∈ I.

• Local, if Λ is a set composed of leaf-tasks that satisfies the chain of subgoals up to
a goal Gx, where Gi ∈ I and Gi 6= Groot.

For a global or local verification of Gi, the proposition ϕ in (5.8) represents the success
of Gi and is composed of atomic propositions for the transition systems of the leaf-tasks
in Λ according to the behaviour rules and the AND/OR-decompositions in the CRGM
following a depth-first algorithm: More coarse propositions are recursively formed from
the connection of propositions of underlying elements until a final proposition for the
fulfilment of Gi is composed, where Gi is satisfied ⇐⇒ ϕ is satisfied. Figure 5.9 presents
a small example of the atomic propositions underlying goal G9.

53

Figura 5.9: Atomic propositions required for the success of local goal G9

Next, the propositions φ for the leaf-tasks whose behaviour have been specified by
different rules in a CRGM are individually described in terms of the atomic propositions
of leaf-tasks defined in Section 5.1.1:

• Sequential or interleaved execution of tasks T1 and T2:

φ = (succeeded1 ∧ succeeded2)

• Optional execution of leaf-task T:

φ = (succeeded ∨ failed)

• Alternative execution of leaf-tasks Ti, where 0 < i ≤ N :

φ =
N∨
i=1

(succeededi)

• Conditional execution of tasks T1, T2 and T3:

φ = ((succeeded1 ∧ succeeded2) ∨ (failed1 ∧ succeeded3))

54

• Sequential or interleaved cardinality of n leaf-tasks Ti, where 0 < i ≤ N :

φ =
n∧
i=1

(succeededi)

• n retries of a leaf-task instances Tj:

φ =
n∨
j=1

(succeededj)

5.3 Design-time analysis

At design-time, analysts may benefit from the rich graphical environment provided
by PRISM probabilistic model checker tool. Given a propositional formula specifying the
success in fulfilling a specific MPERS goal G9 whose leaf-tasks have been mapped into
the DTMC model, a corresponding proposition ϕ is defined as:

ϕ9 = (succeededT15 & succeededT16) & (succeededT17_0 & (succeededT17_1 | skippedT17_1))

(5.9)
The probability of fulfilling G9, i.e., the reachability of G9S is specified by the following

Probabilistic existence property:

P = ? [F (ϕ9)] (5.10)

Once the reliabilities of the involved leaf-tasks have been collected, the verification
of this property through PRISM verification feature reveals the probability in eventually
fulfilling the analysed goal. To illustrate this, considering a fixed reliability of 0.98 for all
leaf-tasks ε ∈ Λ, the probability of fulfilling G9 is evaluated by PRISM as:

Preach(ϕ9) = 0.929199

PRISM also provides the experiment feature that automates multiple instances of a
model checking. Instead of fixing the value of all constants in the model, one or more
constants may range from an initial value to a final value in fixed steps. The experiment
creates a series graph and reveals the trend for the analysed property in respect to the
input range. For example, by ranging the reliability of tasks T8.0 and T7.10 from 0 to 1
in steps of 0.1 and leaving all other leaf-tasks reliabilities values fixed in 0.98 as part of

55

the G1S reachability property (5.12) verification, the experiments produces the composed
graphic in Figure 5.10.

ϕ1 = (succeededT15 & succeededT16) & (succeededT17_0 & (succeededT17_1 | skippedT17_1))

(5.11)

P = ? [F (G1S)] (5.12)

Figura 5.10: Experiments results with T7.10 and T8.0 ranging from 0 to 1.

5.4 Runtime analysis

Given a verification model, the feasibility of a runtime analysis depends on metrics such
as its scalability and performance and also on the technical feasibility of an automated
verification. As part of our third research question, we investigate the use of the PARAM
tool to create a parametric formula for the probability of fulfilling one or more system
goals in a CRGM.

PARAM extends PRISM with the param keyword that indicates which variables are
parametrized. PARAM has a few restrictions regarding where parameters can be placed
in the model. In fact, parameters can only be part of the right part of a PRISM command
as a transition probability ranging from 0 to 1. In our proposal, parameters were used to
represent, in a parametric DTMC model, the following constructs:

• The select enumerators for optional and alternative behaviour rules.

• The reliability of the leaf-tasks.

Once the parametric DTMC model for a goal Gi of a CRGM is built and a Probabilistic
existence property with ϕi is specified, PARAM tool generates an arithmetic formula, also

56

called a parametric formula. The evaluation of this formula requires the initialization of
all corresponding parameters with the values for the selection of optional and alternative
tasks and also for the reliability of all involved leaf-tasks. The result of this evaluation
represents the probability of Gi in being fulfilled, i.e., it represents the reachability of ϕi.

For example, given the parametric DTMC model and the success proposition ϕ2 for
the G2 goal of the MPERS CRGM, the following parametric formula is generated:

OPT_T19.1 ∗ rTaskT17 ∗ rTaskT18 ∗ rTaskT19.0 ∗ rTaskT19.1 ∗ rTaskT20 ∗ rTaskT21.0 ∗ rTaskT21.1

−OPT_T_19.1 ∗ rTaskT17 ∗ rTaskT18 ∗ rTaskT19.0 ∗ rTaskT20 ∗ rTaskT21.0 ∗ rTaskT21.1

+ rTaskT17 ∗ rTaskT18 ∗ rTaskT19.0 ∗ rTaskT20 ∗ rTaskT21.0 ∗ rTaskT21.1 (5.13)

The evaluation of the parametric formula in (5.13) for a fixed reliability of 0.98 for all
leaf-tasks involved and the optional task T19.1 selected (OPT_T19.1 = 1) results in the
following probability for the fulfilment of G2:

Preach(ϕ2) = 0.86812553324672

5.5 Evaluating leaf-tasks reliabilities

As have been demonstrated in the previous sections regarding design-time and runtime
analysis, the reliability values for the leaf-tasks involved in the quantitative verification of
a CRGM must be set. In this section, we present two possible approaches for evaluating
leaf-tasks reliabilities. The purpose is to illustrate, based on previous approaches, how a
precise quantitative verification could be achieved by the high-level DTMC generated by
our proposed goal-oriented dependability analysis.

5.5.1 Model-based verification

Leaf-tasks are not necessarily atomic system operations and are generally described
with a high abstraction level. The more abstract a task is, the more difficult is to ob-
tain their individual metrics - like their reliability, as the trace between an higher-level
activity and the corresponding system operation(s) becomes less evident. For instance,
the MPERS task ‘Find active sensors’ could be further decomposed in more granular and
concrete tasks according to the platform, architecture and language used for implemen-
tation.

As has been described in Section 2.2, TROPOS methodology defines additional phases
of architecture design and detailed design. This last phase involves the specification of

57

the internal behaviour of leaf-tasks through UML activity and sequence diagrams. In
previous works, UML behaviour models serve as input for the generation of a DTMC
model representing system activities in terms of components interactions [13, 31]. In a
similar approach, leaf-tasks can have their behaviour specified at TROPOS detailed design
phase, enabling their individual reliability verification through PMC.

5.5.2 Mean-time to failure verification at runtime

The original RGM proposal relies on the assumption that the instance states of goals
and tasks can be monitored. In fact, if concrete system operations can be traced back to
the leaf-tasks in a RGM, i.e., if an execution trace can be generated indicating the state in
which the leaf-tasks instances have been, different statistical measures could be calculated
for all the monitored system tasks. For example, the mean-time to failure (MTTF) can be
calculated as the average time between failures of a task, i.e., between transitions to their
failure state. Disregarding the time to repair (non-repairable system), MTTF defines the
reliability of the monitored leaf-tasks.

58

Capítulo 6

Geração Automática de Código DTMC

In the probabilistic verification adapted by this proposal, a behavioural specification is
manually converted to a probabilistic model in PRISM language. However, this tends to
be a costly and error-prone process which might be proportionally complex to the number
of components, actions and interactions causing state transitions. By traversing a goal
model from strategical root goal to operational leaf-tasks, a behaviour specification as
proposed by the RGM serves as input for the generation of a DTMC model in PRISM
language. Additional context effects in a CRGM may also be considered, as we have
demonstrated in Chapter 5. However, the manual conversion from a CRGM to a DTMC
model is still a costly and error-prone task.

To tackle this problem, an automated generation of the DTMC model in PRISM
and PARAM languages have been implemented based on an existing JAVA open source
tool supporting TROPOS development methodology named TAOM4E [27]. TAOM4E
provides a graphical environment for goal modelling with TROPOS methodology based
on the Eclipse Modelling Framework (EMF) and Graphical Editing Framework (GEF).
Moreover, it also supports a model driven agent code generation. The CRGM to DTMC
code generator have also been implemented as an Eclipse plugin integrated to the goal
modelling environment provided by TAOM4E tool.

The purpose of our CRGM to DTMC automated code generation is to optimize the
formal verification step by abstracting the probabilistic modelling know-how from the
analysts and reduce the overhead and errors caused by the manual generation of the ve-
rification model. This should increase the feasibility of adopting the extended TROPOS
methodology by keeping analysts with their original responsibility of modelling and analy-
sing the system, its behaviour and its different contexts of operation. The integration of
our CRGM to DTMC generation to the TAOM4E environment forms a tool chain for a
goal-oriented dependability analysis.

59

6.1 Architecture

The CRGM to DTMC code generator have been designed as a modular plugin for
the Eclipse platform. Figures 6.1 presents the reference architecture used by the CRGM-
toDTMC plugin.

Figura 6.1: High-level architecture of the CRGMtoDTMC generator.

6.2 Implementation

The CRGM to DTMC implementation consists four major packages: the CRGM to
DTMC (1), the TAO4ME model (2), the ANTLR regex (3) and the Eclipse Plugin SDK
(4). Figure 6.2 depicts the implementation architecture for the code generator.

The CRGM to DTMC code generation process was divided in two phases:

1. Parsing phase: the TROPOS input file containing a goal model within a system
actor is parsed using a depth first algorithm. Container objects for goals and tasks
are kept in memory with any relevant metadata. The behaviour annotations in non-
leaf elements and the context effects in any goal or task are also parsed by ANTLR
generated APIs for the grammars in Listings 6.1 and 6.2. Both behaviour rules and

60

Figura 6.2: Implementation architecture of the CRGMtoDTMC generator.

context effects in a decomposition at any tree level must reach the leaf-tasks in the
end of the related branches.

2. Writing phase: the container objects with all information required for the ge-
neration of a DTMC model are traversed from the root goal container. Leaf-task
DTMC modules are created and concatenated to a global variable. For each goal Gi

in the model, a success formula declared as G1 is also concatenated to the model.
These formulas can be part of the Probability existence PCTL properties specifying
the probability in fulfilling one or more system goals, which eliminates the effort of
manually building such formulas. After processing all context effects, only one de-
claration of the context variables parsed from context conditions associated to goals
and tasks in the CRGM are appended to the model. Finally, the DTMC model file
output is generated in a folder defined in the preferences section of the modelling
environment with the agent’s name.

The decision to divide the generation process in two phases was due to the complexity
of parsing the goal model with additional behaviour rules and context effects. The two
phases process has successfully divided different aspects of the code generation: parsing
the input CRGM and writing the output DTMC. Consequently, the cohesion of each class
has been preserved and future implementations could generate different types of output
model.

61

The classes in Figure 6.2 interact as follows:

1. A user clicks on a specific menu item in the TAOM4E goal modelling tool, namely
the Generate DTMC model in the Formal Verification menu.

2. The action listener in the DTMCAction singleton receives the TROPOS goal model
environment context and creates a new thread for the DTMCProducer, passing the
TROPOS input file from the modelling context.

3. The DTMCProducer instantiates the TroposNavigator with the TROPOS input
file.

4. The TroposNaviagator accesses the business model from the TAOM4E model plu-
gin and retrieves the actors in the input file.

5. The system actor is identified and its root goal extracted.

6. The DTMCProducer starts the depth-first algorithm by the root goal calling the
addGoal() method.

7. Each goal or non-leaf task have their children elements extracted and saved as contai-
ners in the CRGMDefinition class instance before a recursive call to addGoal()/addTask():

• Behaviour annotation are parsed by the RTParser and the corresponding
attributes setted in the child elements containers.

• All context effects in goals and tasks are parsed by the CtxParser and the
corresponding attributes are setted in the child elements containers.

• A recursive call to addGoal()/addTask() is performed.

8. The recursive call return of a given child element is added to the parent element
attributes to propagate nested time increments to subsequent goals/tasks.

9. The DTMCDefinition file with all goals and tasks and a reference to the root goal
is passed to the writeModel() method in DTMCWriter class.

10. PRISM language patterns for the creation of the DTMC model are loaded from files
in the Eclipse Plugin package.

11. A depth-first algorithm traverses the transient container objects starting from the
root goal.

• Leaf-tasks have their modules created by replacing leaf-tasks attributes for
time, context effects and other behaviour particularities in the corresponding
PRISM language patterns.

62

• Variables for optional and alternative behaviours are appended to the model
before corresponding leaf-tasks modules.

• Each leaf-task module creation call returns the boolean formula for its own
success.

• Goals and non-leaf tasks success formulas are created by concatenating the
formulas returned by recursive calls with logical PRISM language operators
according to the decomposition type of the current root element.

• Context effects in goals and tasks have their variables type/value pairs stored
in a set collection with no duplications.

12. The output DTMC file is opened.

13. The DTMC model header is written.

14. Context variables pairs are written as unsigned variable declarations.

15. The leaf-tasks modules, goals success formulas and additional alternative/optional
unsigned variables are written.

16. The output DTMC file is closed.

6.2.1 ANTLR Grammars

Listing 6.1 and 6.2 present the grammar for the RGM behaviour rules and for the
context effects, respectively. In both cases, a recursive definition of the expr parser rule
encompasses all syntax alternatives and lexer rules define the tokens and fragments used
by each grammar.

1 grammar RTRegex;

2 rt: expr NEWLINE # printExpr

3 | NEWLINE # blank

4 ;

5

6 expr: expr op=(’+’|’%’|’@’) expr # gCard

7 | expr op=’|’ expr # gAlt

8 | ’opt(’ expr ’)’ # gOpt

9 | ’try(’ expr ’)’ ’?’ expr ’:’ expr # gTry

10 | expr op=(’;’|’#’) expr # gTime

11 | SKIP # gSkip

12 | GID # gId

63

13 | FLOAT # n

14 | ’(’ expr ’)’ # parens

15 ;

16

17 GID : [GT] FLOAT ;

18 FLOAT : DIGIT+’.’?DIGIT*;

19 SEQ : ’;’ ;

20 INT : ’#’ ;

21 C_SEQ : ’+’ ;

22 C_INT : ’%’ ;

23 C_RTRY : ’@’ ;

24 ALT : ’|’ ;

25 SKIP : ’skip ’ ;

26 NEWLINE : [\r\n]+ ;

27 WS : [\t]+ -> skip ;

28

29 fragment

30 DIGIT : [0-9] ;

Listing 6.1: ANTLR grammar for the RGM behaviour rules.

1 grammar CtxRegex;

2 ctx: expr NEWLINE # printExpr

3 | NEWLINE # blank

4 ;

5

6 expr: expr op=’<’ expr # cLT

7 | expr op=’<=’ expr # cLE

8 | expr op=’>’ expr # cGT

9 | expr op=’>=’ expr # cGE

10 | expr op=’=’ expr # cEQ

11 | expr op=’!=’ expr # cDIFF

12 | expr op=’&’ expr # cAnd

13 | expr op=’|’ expr # cOr

14 | BOOL # cBool

15 | VAR # cVar

16 | FLOAT # cFloat

17 | ’(’ expr ’)’ # cParens

18 ;

19

20 BOOL : [false|true] ;

64

21 VAR : (’a’..’z’|’A’..’Z’|’_’)+ ;

22 FLOAT : DIGIT+’.’?DIGIT* ;

23 NEWLINE : [\r\n]+ ;

24 WS : (’ ’|’\t’)+ -> skip ;

25

26 fragment

27 DIGIT : [0-9] ;

Listing 6.2: ANTLR grammar for the context effects in CGM.

65

Capítulo 7

Avaliação

In this chapter, qualitative and quantitative aspects of our proposal are evaluated.
First, we focus on the CRGM model and on the automatic generation process. Second,
we focus on the PRISM DTMC model itself. Third, we focus on the parametric formula
generated by PARAM. Our evaluation is performed with the MPERS CRGM presented
in Chapter 5.

7.1 Goal Question Metric

As we aim to integrate our approach to a software development methodology (SDM),
questions related to the time of the analysis emerges. Time to market is an important
factor in the adoption of a SDM and the analysis overhead must be justified by its benefits.
Also, the scalability of the verification may become a threat to its validity. The space
consumed by the generated verification model and by the parametric formula as well as
the time consumed in the verification and the generation of the parametric formula from
this model are technical concerns addressed by this evaluation.

The Goal Question Metric (GQM) method provides a systematic structure to guide
the evaluation process [6]. GQM is a top-down method to define measures tied to the
organizational context and goals. The idea is to first state formal measurements goals,
then ask questions that must be answered in order to meet the goals and finally define
the metrics that could answer the questions.

As an initial GQM step, Table 7.1 summarizes the quality goal aspects of this evalu-
ation:

66

Purpose Evaluate
Issue the scalability of the
Object goal-oriented dependability analysis
Viewpoint requirements engineer/application engineer
Context MPERS CRGM

Tabela 7.1: Definition of the evaluation objectives for the CRGM.

Regarding each of the model artefacts and generations processes, the following ques-
tions and metrics have been defined:

• Q1: What is the time-space complexity of the automatic DTMC generation as a
function of the number of leaf-tasks?

– M1.1: The generation time.

– M1.2: The size of the DTMC model file.

• Q2: What is the time-space complexity of the reliability verification as a function
of the number of interleaved leaf-tasks?

– M2.1: The memory consumed by the fixed reliability verification.

– M2.2: The time consumed by the fixed reliability verification.

– M2.3: The time consumed by the generation of the parametric formula.

• Q3: What is the time-space complexity of the parametric formula evaluation as a
function of the number of interleaved leaf-tasks?

– M3.1: The size of the parametric formula.

– M3.2: The time consumed by the parametric formula evaluation.

7.2 Evaluation Scenario

Once the GQM has been defined, the evaluation scenario is described. The MPERS
used in this work is based on the functional requirements as industrially advertised. The
evaluation of the GQM metrics is performed over the MPERS requirements modelled and
analysed in the extended TAOM4E tool environment to produce a CRGM.

Regarding the behaviour rules inherited from the RGM proposal, the MPERS CRGM
specifies all but one rule regarding the interleaved cardinality. Nonetheless, a similar
behaviour is achieved by the interleaving of different tasks that exist in the MPERS

67

CRGM. Context effects have been specified to the extent of goals, which are enabled in
specific context conditions, and tasks, whose adoptability is restricted to specific context
conditions. The context space regarding a mobile system may include several other effects
on goals and tasks. However, we considered the context selection for the MPERS CRGM
a viable starting point for the scalability evaluation of the inclusion of context effects in
the proposal.

The final CRGM model has its space dimension characterized as follows:

• Number of goals: 28

• Number of tasks: 49

• Number of leaf-tasks: 28

• File size: 468.674 kbytes

In our proposal, the scope of the dependability verification is defined by the target
goal Gi. Thus, from the complete MPERS CGM in Figure 4.2, we have defined groups
of goals according to the number of leaf-tasks they contain and how many of these tasks
are interleaved to each other. The verification of systems with interleaving behaviour
through model checking leads to the well known state explosion problem [3]. For this
reason, metrics in the GQM affected by the interleaving of leaf-tasks are evaluated for
each of these groups. Table 7.2 presents the evaluation groups. Nested interleaving rules
in the RGM tree are summed, which explains the interleaved tasks number in some groups
to be higher than the number of leaf-tasks in these groups.

Goal(s) |Leaf-tasks| |Interleaved tasks|

G5 3 0
G1 7 0
G2-4 18 11
G1-2 14 14
G1-3 19 24
G1-4 25 36
G0 28 39

Tabela 7.2: Different groups of goals involved in the evaluated of the metrics in the GQM.

The measurements in this evaluation have been collected with the PRISM model
checker version 4.0.3-linux64 or the PARAM tool version 2-2-64α running in a personal

68

computer with dual-core/4-threads Intel i5 2.40GHz processor, 8GB DDR3-800 1066 MHz
memory and Linux Ubuntu 14.04 operational system.

7.3 Results and Analysis

Following the GQM and the evaluation scenario, the measurements have been perfor-
med. Next subsections present each of the metrics in the GQM as well as their analysis.

7.3.1 DTMC generation and model

The automatic generation of a DTMC from the MPERS CRGM has its time comple-
xity defined by the depth-first search algorithm employed by the implementation. Accor-
dingly, the time complexity for the automatic generation of a DTMC model from a CRGM
CRM = (I, R, rtannot(), ctxannot()) is proportional to the complexity of the depth-first
algorithm, which is linear to the number of nodes in the tree, or Ω(|I|). The automatic
generation time for different evaluation groups is presented by Table 7.3.

Leaf-tasks Mean (ms) S.D. (ms)

3 7.43303 1.7224
7 18.8 3.96232
18 24 7.43303
28 15.33333 2.06559

Tabela 7.3: DTMC generation time (M1.1)

Regarding the values for the automatic DTMC generation time, we found that the
time consumed by the JAVA implementation for an increasing number of leaf-tasks did
not present a clear tendency of growth, as the average time consumed by the last gene-
ration involving 28 leaf-tasks was actually lower than the average time consumed for the
generation of 18 leaf-tasks. We consider that an evaluation involving a higher magnitude
of leaf-tasks should point out the linear growth tendency more precisely.

The DTMC model for a goal Gi ∈ I contains |Λ| modules for each of the leaf-goals
ε ∈ Λ. Thus, the textual size of a DTMC model for Gi is linearly proportional to |Λ|, as
presented by the curve in Figure 7.1.

The measurements for the DTMC model generation and for the textual model size
indicate the scalability of the proposed CRGM to DTMC automatic generation.

69

3 7 14 1819 25 28
0

2

4

6

8

10

12

14

16

Leaf-tasks

D
T

M
C

m
od

el
si

ze
(K

b)

DTMC model size

Figura 7.1: DTMC model size (M1.2)

7.3.2 Reliability verification

The time-space complexity of the dependability verification performed by PRISM and
PARAM tools have been evaluated for each of the evaluation groups in Table 7.2. The
plots in Figures 7.2, 7.3 and 7.4 present the values for the memory and time consumed by
the design-time PRISM verification and the time consumed for the parametric formula
generation by PARAM as a function of the number of interleaved leaf-tasks. As predicted,
the metric represented by these figures grow exponentially with the number of interleaved
leaf-goals verified.

A relevant fact observed in the design-time PRISM verification results for both per-
formance and memory consumption is the decrease between points 11 and 14. A possible
explanation for this discrepancy may be found in the number of leaf-tasks in both cases:
at 11, 18 leaf-tasks are verified, while 14 leaf-tasks are verified at point 14, as described
by the evaluation groups in Table 7.2. Despite the count of 18 interleaved leaf-tasks at
the second point to be considerably higher than the 11 interleaved leaf-tasks in the first
point, the methodology to obtain these numbers included the repetition of interleaved or-
der in nested branches of the CRGM tree and disregarded the total number of sequential
leaf-tasks. A more sophisticated approach considering both the number of interleaved and
sequential leaf-tasks could result in a better configuration for the for the definition of the
horizontal axis of the results.

The exponential complexity of the dependability verification in the case of interleaved
behaviour could potentially indicate the infeasibility of the GODA approach for systems
with more than a certain threshold of interleaved tasks, as well ground on the literature.
Also, this certainly depends on the processor ability to concurrent executions. In our
case, this threshold was close to 35 interleaved tasks.

70

0 11 14 24 36 39
0

200
400
600
800

1,000
1,200
1,400
1,600
1,800
2,000
2,200
2,400
2,600

Interleaved tasks

M
em

or
y

(k
by

te
s)

Memory allocation

Figura 7.2: Memory allocated by design-time PRISM verification (M2.1)

0 11 14 24 36 39
0

20

40

60

80

100

120

Interleaved tasks

T
im

e
(m

s)

Verification time

Figura 7.3: Design-time PRISM verification time (M2.2)

0 11 14 24 36
0

100
200
300
400
500
600
700
800
900

Interleaved tasks

T
im

e
(m

s)

Parametric formula generation time

Figura 7.4: Parametric formula generation time (M2.3)

71

As it has been proposed in previous works [28], heuristics for how the system beha-
viour should be modelled and verified can also be used by our proposal. In particular,
by verifying two interleaved branches of the tree separately and multiplying the results
generates the exact same result of the one instance verification of the two branches. For
example, a non-factorized formula for the root goal may be composed of the multiplica-
tion of formulas for underlying interleaved subgoals, which are smaller and much more
efficient to obtain, store and evaluate.

7.3.3 Parametric formula evaluation

The time for the formula evaluation consists on the time for the arithmetic expression
to be solved. Thus, its time complexity is proportional to the number of operations and
the type of each operation. Once the space of the states and transitions in the DTMC
model representing a goal Gi have been checked for the reliability in fulfilling this goal,
the evaluation time of the parametric formula should grow at a similar rate of the formula
size. Figures 7.5 and 7.6 do confirm this hypothesis. Also, Figure 7.6 indicates that the
formula size grows exponentially with the increase in the number of interleaved tasks.

0 11 14 24 36
0

0.2

0.4

0.6

0.8

1

1.2

Interleaved tasks

T
im

e
(m

s)

Parametric formula evaluation time

Figura 7.5: Parametric formula evaluation time (M3.1)

7.4 Threats to Validity

Some factors can be considered as threats to validity of the evaluation presented in
this paper. They have been structured in four different viewpoints: the construct validity,
that concerns the correctness of the experiment design, including the questions, concepts
and metrics examined; the internal validity, that defines the correctness of the causal
relationship between facts observed and the conclusions they lead to; the external validity,

72

0 11 14 24 36
0

1

2

3

4

5

6

·106

Interleaved tasks

Si
ze

(b
yt

es
)

Parametric formula size

Figura 7.6: Parametric formula size (M3.2)

that concerns the domain from which the results may be generalized; the reliability, that
tackles the experiment reproducibility.

Next, the particular threats to validity of this work are detailed.

• : Construct validity:

– The GQM method mitigates a potential mislead definition of the metrics in-
volved in the evaluation of the proposed goal-oriented dependability analysis.
However, the selection of the evaluation groups composed of different goals in
the MPERS CRGM was focused on the number of interleaved leaf-tasks in each
group.

• : Internal validity:

– The MPERS CRGM for which this experiment has been designed encompas-
ses all but one behaviour rule for the interleaved cardinality. Despite this rule
being a particular case of the Interleaved Order rule, it may have some unex-
pected influence on the results. Nonetheless, we have been able to analyse the
rules for sequential and interleaved orders, alternative, optional and conditional
behaviour, as well as sequential cardinality and the retry behaviour.

• External validity:

– The MPERS CRGM, which this evaluation was based on, have been modelled
and analysed referencing the diagrams and the advertise of similar products

73

provided by the industry. Despite the evaluation with a single system CRGM,
our proposal is not limited to any specific domain; In fact, it can be applied to
any other domain as long as the system can be modelled as a CRGM.

– The TROPOS methodology could be replaced by other frameworks for goal
modelling and analysis, as our approach is not limited to a specific goal model
syntax. However, we enforce that in our proposal we tackle the operationaliza-
tion of goals as leaf-tasks, in contrast to goal models without any representation
of system activities, for instance, the one defined by the i* framework.

• Reliability:

– Despite the systematic preparation of the experiment environment, the measu-
rements have been performed in a personal computer running an operational
system with concurrent processes that could have affected the results at some
unexpected degree.

74

Capítulo 8

Conclusão

Neste trabalho propusemos uma nova abordagem para a verificação de dependabilidade
que reflite os requisitos de alto nível especificados por um modelo de objetivos. Em
particular, focamos na verificação de confiabilidade de um CRGM utilizando a técnica de
verificação probabilística de modelos.

Considerando nossas quatro questões de pesquisa, as principais conquistas alcançadas
podem ser sumarizadas como se segue: primeiro, a viabilidade técnica de uma verifica-
ção probabilística sobre a satisfação de um ou mais objetivos de um RGM foi alcançada
pelas regras de transformação propostas (QP1). Em segundo, a viabilidade da inclusão
dos efeitos de contexto sobre objetivos e tarefas como especificados num CGM foi con-
templada pela proposta (QP2). Em terceiro, a viabilidade da análise de dependabilidade
orientada a objetivos como parte de um ciclo de auto-adaptação foi demonstrada pelo
uso de uma verificação probabilística de modelos parametrizada , cuja fórmula resultante
avalia a confiabilidade de diferentes alternativas em atingir objetivos diversos do sistema
(QP3). Por último, mas não menos importante, nossa proposta contemplou com sucesso
a geração automatizada de um modelo DTMC a partir de um CRGM, o que constitui
uma importante contribuição para a usabilidade da proposta dado que reduz o custo e
esforço da análise e diminui a incidência de erro humano nas atividades de modelagem
(QP4).

Algumas melhorias relevantes para essa proposta e potenciais novas contribuições en-
volvendo a análise de dependabilidade orientada a objetivos constituem nosso trabalho
futuro:

• Aplicação e avaliação da proposta num caso de estudo: como um trabalho
futuro imediato, gostaríamos de aplicar o GODA a um caso de estudo real para o
qual a dependabilidade seja um requisito de primeira classe e cujas restrições de
recursos da plataforma móvel sejam consideradas.

75

• Recompensas: A estrutura de recompensas na linguagem PRISM pode ser usada
para se estender o GODA com a verificação do consumo de recursos restritos, tal
qual a bateria.

• Verificação de confiabilidade e outras métricas relacionadas à dependa-
bilidade: A linguagem PCTL permite a especificação de uma ampla gama de pro-
priedades que poderiam ser verificadas, incluindo propriedades restritas no tempo.
Gostaríamos de explorar a análise de outras métricas e atributos de dependabilidade
que possam ser verificados em tempo de execução.

• Heurísticas para a escalabilidade: A formalização de heurísticas para se di-
minuir a complexidade espaço-temporal da geração da fórmula paramétrica e sua
avaliação, tal qual a composição de uma fórmula global a partir de fórmulas indivi-
duais referentes a ramos de execução em interleaving é um potencial trabalho futuro
para a geração automatizada CRGM para DTMC.

76

Referências

[1] Raian Ali, Fabiano Dalpiaz, and Paolo Giorgini. A goal-based framework for contex-
tual requirements modeling and analysis. Requirements Engineering, 15(4):439–458,
July 2010. 2, 11, 13, 21, 26

[2] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr. Basic concepts and ta-
xonomy of dependable and secure computing. Dependable and Secure Computing,
IEEE Transactions on, 1(1):11–33, 2004. 14

[3] Christel Baier and Joost-Pieter Katoen. Principles of Model Checking (Representa-
tion and Mind Series). The MIT Press, 2008. 3, 16, 37, 68

[4] Luciano Baresi and Liliana Pasquale. Adaptive Goals for Self-Adaptive Service Com-
positions. In 2010 IEEE International Conference on Web Services, pages 353–360.
IEEE, July 2010.

[5] Luciano Baresi, Liliana Pasquale, and Paola Spoletini. Fuzzy Goals for Requirements-
Driven Adaptation. In 2010 18th IEEE International Requirements Engineering Con-
ference, pages 125–134. IEEE, September 2010.

[6] Victor R. Basili, Gianluigi Caldiera, and H. Dieter Rombach. The goal question
metric approach. In Encyclopedia of Software Engineering. Wiley, 1994. 66

[7] Paolo Bresciani, Anna Perini, Paolo Giorgini, Fausto Giunchiglia, and John Mylo-
poulos. Tropos: An agent-oriented software development methodology. Autonomous
Agents and Multi-Agent Systems, 8(3):203–236, 2004. 1, 9, 10, 21

[8] Lawrence Chung, Brian A. Nixon, Eric Yu, and John Mylopoulos. Non-Functional
Requirements in Software Engineering, volume 5 of International Series in Software
Engineering. Springer, October 1999. 20

[9] F. Dalpiaz, A. Borgida, J. Horkoff, and J. Mylopoulos. Runtime goal models: Key-
note. In Research Challenges in Information Science (RCIS), 2013 IEEE Seventh
International Conference on, pages 1–11, May 2013. 2, 22, 26, 30, 35, 37

[10] Anne Dardenne, Axel van Lamsweerde, and Stephen Fickas. Goal-directed require-
ments acquisition. Science of Computer Programming, 20(1):3–50, 1993. 9, 20

[11] Anthony Finkelstein and Andrea Savigni. A framework for requirements engineering
for context-aware services. In In Proc. of 1 st International Workshop From Software
Requirements to Architectures (STRAW 01, pages 200–1, 2001. 11

77

[12] Ariel Fuxman, Lin Liu, John Mylopoulos, Marco Pistore, Marco Roveri, and Pa-
olo Traverso. Specifying and analyzing early requirements in tropos. Requir. Eng.,
9(2):132–150, May 2004. 24

[13] Carlo Ghezzi and Amir Molzam Sharifloo. Model-based verification of quantitative
non-functional properties for software product lines. Inf. Softw. Technol., 55(3):508–
524, March 2013. 16, 17, 58

[14] Lars Grunske. Specification patterns for probabilistic quality properties. In Procee-
dings of the 30th International Conference on Software Engineering, ICSE ’08, pages
31–40, New York, NY, USA, 2008. ACM. 53

[15] Ernst Moritz Hahn, Holger Hermanns, Björn Wachter, and Lijun Zhang. Param: A
model checker for parametric markov models. In CAV, pages 660–664, 2010. 6, 18

[16] S. Hallsteinsen, K. Geihs, N. Paspallis, F. Eliassen, G. Horn, J. Lorenzo, A. Ma-
melli, and G. A. Papadopoulos. A development framework and methodology for
self-adapting applications in ubiquitous computing environments. J. Syst. Softw.,
85(12):2840–2859, December 2012. 2

[17] Hans Hansson and Bengt Jonsson. A logic for reasoning about time and reliability.
Formal aspects of computing, 6(5):512–535, 1994. 17

[18] Jennifer Horkoff and Eric Yu. Comparison and evaluation of goal-oriented satisfaction
analysis techniques. Requirements Engineering, 18(3):199–222, 2013. 12

[19] M. Kwiatkowska, G. Norman, and D. Parker. Prism: Probabilistic model checking for
performance and reliability analysis. ACM SIGMETRICS Performance Evaluation
Review, 36(4):40–45, 2009. 16, 17

[20] M. Kwiatkowska and D. Parker. Advances in probabilistic model checking. In T. Nip-
kow, O. Grumberg, and B. Hauptmann, editors, Software Safety and Security - Tools
for Analysis and Verification, volume 33 of NATO Science for Peace and Security
Series - D: Information and Communication Security, pages 126–151. IOS Press,
2012. 16, 17

[21] Oxford University Computing Laboratory. PRISM case studies. http://www.
prismmodelchecker.org/casestudies/, 2015. [Online; accessed 25-january-2015].
16

[22] Oxford University Computing Laboratory. PRISM language manual. http://www.
prismmodelchecker.org/manual/ThePRISMLanguage/Introduction, 2015. [On-
line; accessed 25-january-2015]. 17

[23] Oxford University Computing Laboratory. PRISM web site. http://www.
prismmodelchecker.org/, 2015. [Online; accessed 25-january-2015]. 16

[24] PHILIPS® LIFETIME. GoSafe MPERS. http://www.lifelinesys.com/
content/lifeline-products/get-life-gosafe/, 2015. [Online; accessed 25-
january-2015].

78

http://www.prismmodelchecker.org/casestudies/
http://www.prismmodelchecker.org/casestudies/
http://www.prismmodelchecker.org/manual/ThePRISMLanguage/Introduction
http://www.prismmodelchecker.org/manual/ThePRISMLanguage/Introduction
http://www.prismmodelchecker.org/
http://www.prismmodelchecker.org/
http://www.lifelinesys.com/content/lifeline-products/get-life-gosafe/
http://www.lifelinesys.com/content/lifeline-products/get-life-gosafe/

[25] K. Lorincz, D.J. Malan, T.R.F. Fulford-Jones, A. Nawoj, A. Clavel, V. Shnayder,
G. Mainland, M. Welsh, and S. Moulton. Sensor Networks for Emergency Res-
ponse: Challenges and Opportunities. IEEE Pervasive Computing, 3(4):16–23, Oc-
tober 2004. 7

[26] Danilo F. Mendonça, Raian Ali, and Genaína N. Rodrigues. Modelling and analysing
contextual failures for dependability requirements. In Proceedings of the 9th Interna-
tional Symposium on Software Engineering for Adaptive and Self-Managing Systems,
SEAMS 2014, pages 55–64, New York, NY, USA, 2014. ACM. 2, 22, 24

[27] Mirko Morandini, Duy Cu Nguyen, Anna Perini, Alberto Siena, and Angelo Susi.
Tool-supported development with tropos: The conference management system case
study. In Proceedings of the 8th International Conference on Agent-oriented Soft-
ware Engineering VIII, AOSE’07, pages 182–196, Berlin, Heidelberg, 2008. Springer-
Verlag. 6, 59

[28] V. Nunes, P. Fernandes, V. Alves, and G. Rodrigues. Variability management of re-
liability models in software product lines: An expressiveness and scalability analysis.
In Software Components Architectures and Reuse (SBCARS), 2012 Sixth Brazilian
Symposium on, pages 51–60, Sept 2012. 2, 18, 72

[29] OnGuardHelp. OnGuardHelp Safety App. http://www.onguardhelp.com/
how-it-works/, 2015. [Online; accessed 25-january-2015].

[30] Terence Parr. The Definitive ANTLR Reference: Building Domain-Specific Langua-
ges. Pragmatic Bookshelf, 2007. 18

[31] Genaína Nunes Rodrigues, Vander Alves, Renato Silveira, and Luiz A. Laranjeira.
Dependability analysis in the ambient assisted living domain: An exploratory case
study. Journal of Systems and Software, 85(1):112 – 131, 2012. Dynamic Analysis
and Testing of Embedded Software. 3, 17, 39, 58

[32] Vítor E. Silva Souza, Alexei Lapouchnian, William N. Robinson, and John Mylopou-
los. Awareness requirements for adaptive systems. In Proceeding of the 6th interna-
tional symposium on Software engineering for adaptive and self-managing systems -
SEAMS ’11, page 60, 2011. 23, 24

[33] Shan Tang, Xin Peng, Yijun Yu, and Wenyun Zhao. Goal-directed modeling of
self-adaptive software architecture. In Terry Halpin, John Krogstie, Selmin Nurcan,
Erik Proper, Rainer Schmidt, Pnina Soffer, and Roland Ukor, editors, Enterprise,
Business-Process and Information Systems Modeling, volume 29 of Lecture Notes in
Business Information Processing, pages 313–325. Springer Berlin Heidelberg, 2009.

[34] A. van Lamsweerde. Goal-oriented requirements engineering: a guided tour. In
Requirements Engineering, 2001. Proceedings. Fifth IEEE International Symposium
on, pages 249–262, 2001. 1, 9, 21

[35] A. van Lamsweerde and L. Willemet. Inferring declarative requirements specifi-
cations from operational scenarios. Software Engineering, IEEE Transactions on,
24(12):1089–1114, Dec 1998. 20

79

http://www.onguardhelp.com/how-it-works/
http://www.onguardhelp.com/how-it-works/

[36] Eric Siu-Kwong Yu. Modelling strategic relationships for process reengineering. 1996.
UMI Order No. GAXNN-02887 (Canadian dissertation). 9, 20

[37] E.S.K. Yu. Modeling organizations for information systems requirements engineering.
In Requirements Engineering, 1993., Proceedings of IEEE International Symposium
on, pages 34–41, Jan 1993. 1, 20

[38] Yijun Yu, Alexei Lapouchnian, Sotirios Liaskos, John Mylopoulos, and JulioC.S.P.
Leite. From goals to high-variability software design. In Aijun An, Stan Matwin,
ZbigniewW. Raś, and Dominik Ślęzak, editors, Foundations of Intelligent Systems,
volume 4994 of Lecture Notes in Computer Science, pages 1–16. Springer Berlin
Heidelberg, 2008. 4, 13

80

	Resumo
	Abstract
	Introdução
	Definição do Problema
	Requisitos para a Análise de Dependabilidade Orientada a Objetivos

	Solução Proposta
	Avaliação
	Resumo das Contribuições
	Organização do Documento

	Referencial Teórico
	Goal-oriented Requirements Engineering
	TROPOS Methodology
	Goals, Means and Contexts
	Variability in GORE
	Design-time analysis
	Runtime analysis

	Dependability
	Probabilistic Model Checking
	PRISM tool
	PRISM language
	Probabilistic Computation Tree Logic
	PARAM Tool

	ANTLR Language Recognition Tool

	Trabalhos Relacionados
	Goal-oriented Modelling and Analysis
	Contextual Goal Model
	Runtime Goal Model
	Dependability Contextual Goal Model
	Awareness Requirements
	Formal TROPOS

	Sistema Pessoal Móvel de Resposta a Emergências
	Introduction
	TROPOS Requirements Engineering Phases
	Early Requirements Phase
	Late Requirements Phase

	Runtime Goal Modelling
	RGM - UML activity diagram comparison

	Contextual Goal Modelling

	Análise de Dependabilidade Orientada a Objetivos
	Goal-oriented Probabilistic Verification Model
	Leaf-tasks as transition systems
	Building the high-level DTMC model from a RGM
	Context effects in the high-level DTMC model

	Dependability Property Specification
	Design-time analysis
	Runtime analysis
	Evaluating leaf-tasks reliabilities
	Model-based verification
	Mean-time to failure verification at runtime

	Geração Automática de Código DTMC
	Architecture
	Implementation
	ANTLR Grammars

	Avaliação
	Goal Question Metric
	Evaluation Scenario
	Results and Analysis
	DTMC generation and model
	Reliability verification
	Parametric formula evaluation

	Threats to Validity

	Conclusão
	Referências

