
DISSERTAÇÃO DE MESTRADO

AVALIAÇÃO DE DISCIPLINAS DE CONSULTA
EM PROTOCOLO DE CONTROLE DE ACESSO

AO MEIO INICIADO PELO RECEPTOR
PARA REDES SEM FIO AD HOC

Fadhil Firyaguna

Brasília, Dezembro de 2014

UNIVERSIDADE DE BRASÍLIA

FACULDADE DE TECNOLOGIA

UNIVERSIDADE DE BRASILIA

Faculdade de Tecnologia

DISSERTAÇÃO DE MESTRADO

AVALIAÇÃO DE DISCIPLINAS DE CONSULTA
EM PROTOCOLO DE CONTROLE DE ACESSO

AO MEIO INICIADO PELO RECEPTOR
PARA REDES SEM FIO AD HOC

Fadhil Firyaguna

Relatório submetido ao Departamento de Engenharia

Elétrica como requisito parcial para obtenção

do grau de Mestre em Engenharia de Sistemas Eletrônicos e de Automação

Banca Examinadora

Prof. Marcelo Menezes de Carvalho, ENE/UnB

Orientador

Prof. Renato Mariz de Moraes, ENE/UnB

Examinador interno

Prof. José Ferreira de Rezende , COPPE/UFRJ

Examinador externo

Dedicatória

Ao leitor que pesquisou algum termo deste trabalho, por acaso encontrou este e �cou

curioso em lê-lo. Ao leitor que não encontrou o que estava procurando e leu este trabalho

por ter sido sua última opção. Ao leitor que estava querendo buscar algo sobre o tema

deste trabalho e o encontrou na primeira opção. Ao leitor ao qual pedi para procurar este

trabalho para ler e o fez. E a todos que desejaram o sucesso deste trabalho.

Fadhil Firyaguna

Agradecimentos

Agradeço a todos os que acreditaram em mim nesta jornada. Em especial, segue a lista:

Igor Coelho, que sempre me ajudou em programação desde que eu era um calouro de gra-

duação e foi meu primeiro exemplo que me inspirou a seguir na academia e entrar para o

Mestrado. Tiago Bon�m, que praticamente me deu todo este trabalho para fazer e sempre

foi atencioso comigo desde a era da Iniciação Cientí�ca. Larissa Eglem e Lucas Soares,

que me acompanharam de perto nessa jornada que �zemos juntos, sempre ajudando uns

aos outros em problemas especí�cos do trabalho de cada um, debugando códigos, dando

ideias novas, tendo epifanías conjuntas! Mateus Marcuzzo, que me ajudou no desenvolvi-

mento do código no simulador. Juan Camilo, Ruben Ortega, Luciano Mauro, Stephanie

Alvares, Helard Becerra, Ricardo Kehrle, e Dário Morais, hermanos de diversos países

latino-americanos que me proporcionaram uma rica e excelente convivência no GPDS.

Evandro Costa, Éverton Andrade, Camila Lumy, Thayane Viana, Eduardo Vargas e Ed-

uardo Dias, meus calouros que foram sempre atenciosos quando eu tentava explicar ou

ensinar alguma coisa e que me deixavam participar dos seus trabalhos, mesmo que sendo

dando apoio moral, ajudando no código, ou no meio da rua segurando tablets! Professor

Marcelo M. Carvalho, que sempre motivou a mim e os outros alunos do NERdS a sempre

tentar fazer um pouco mais que o nosso melhor (olha quantos prêmios e conquistas esse

grupo já teve!). Raíssa Kapiski, que sempre me acolheu e me apoiou até nos momentos

mais sombrios desta jornada. E minha família, que me deu os valores para chegar onde

estou e para seguir em frente.

Fadhil Firyaguna

�Nothing is true, everthing is permitted�.

� The Creed's maxim.

RESUMO

O estudo de disciplinas de consulta para protocolos da sub-camada de controle de acesso ao

meio (MAC, do inglês, Medium Access Control) iniciados pelo receptor para redes ad hoc não tem

recebido muita atenção na literatura, e esquemas simples como a consulta cíclica e a priorização

uniforme são normalmente assumidos. Porém, não apenas a ordem, mas também a taxa com a qual

os nós são consultados é importante: uma taxa de consulta que é muito baixa pode levar a uma

baixa vazão e longos atrasos, enquanto que o oposto pode acarretar um tráfego de controle excessivo

e um número maior de colisões de quadros. Idealmente, um protocolo MAC iniciado pelo receptor

teria seu melhor desempenho se os nós pudessem saber �quem� e �quando� consultar baseados

na disponibilidade de dados em seus vizinhos. A primeira parte desta dissertação investiga um

protocolo MAC para comunicação ponto-a-ponto (�unicast�) que segue o paradigma de transmissão

com iniciativa do receptor, baseado na reversão do algoritmo de recuo exponencial binário (BEB,

do inglês, binary exponential backo�) do padrão IEEE 802.11, como forma de controlar a taxa com

que os nós são consultados. Com o algoritmo BEB, a taxa de consulta é auto-regulada de acordo

com as condições de canal e de tráfego. Além disso, o reordenamento de quadro nas �las � onde um

quadro pode ser transmitido ao ser consultado sem a necessidade de estar na cabeça da �la � e um

novo quadro de controle, o NTS (do inglês, Nothing-to-send), cujo papel é avisar ao nó consultor

que não há quadros de dados disponíveis, são apresentados para agilizar os turnos de consulta. O

desempenho do protocolo MAC iniciado pelo receptor baseado no algoritmo BEB é investigado sob

três disciplinas de consulta: uma consulta cíclica sem prioridades (�Round-robin�), uma que visa a

justiça de vazão entre os nós, a disciplina de justiça proporcional (PF, do inglês, proportional fair)

e uma que prioriza os nós de acordo com a probabilidade de sucesso de estabelecimento de conexão

(LSH, do inglês, likelihood of successful handshake). Comparações com o padrão IEEE 802.11 em

relação à sobrecarga de controle, atraso, justiça, e vazão, de acordo com diferentes topologias e

cenários de tráfego, sÃ£o apresentadas.

A partir dos resultados obtidos na avaliação das três disciplinas, é proposta uma variação

da estratégia de consulta que seleciona dinamicamente o algoritmo a ser utilizado na escolha do

destino da consulta. O protocolo MAC iniciado pelo receptor com o algoritmo BEB revertido com-

binado a esta nova estratégia de consulta denominou-se de Receiver-Initiated MAC with Adaptive

Polling Discipline (RIMAP), um protocolo MAC para comunicação ponto-a-ponto (�unicast�) que

dinamicamente seleciona uma disciplina de consulta de acordo com a contenção do canal e a ho-

mogeneidade da qualidade do enlace de todos os vizinhos. Para isso, duas disciplinas de consulta

são consideradas: o LSH e PF. O comportamento adaptativo é controlado por dois parâmetros de

comutação que podem ser ajustados para se obter um compromisso entre o desempenho de justiça

e de vazão/atraso. O desempenho do RIMAP é avaliado com simulações a eventos discretos sob

topologias com terminais escondidos, transmissões concorrentes, e tráfego saturado. Adicional-

mente, seu desempenho é comparado com o mesmo protocolo baseado no algoritmo BEB com as

disciplinas de consulta �xadas (LSH e PF somente), assim como comparado com o MAC do padrão

IEEE 802.11, o representante do paradigma iniciado pelo transmissor.

ABSTRACT

The study of polling disciplines for receiver-initiated MAC protocols for ad hoc networks has

not received much attention in the literature, and simple schemes such as round-robin or uniform

prioritization are usually assumed. However, not only the order, but also the rate at which nodes

are polled is signi�cant: a polling rate that is too slow may render low throughput and high delays,

whereas the opposite may lead to excessive control tra�c and frame collisions. Ideally, a receiver-

initiated MAC would perform best if nodes could know �whom� and �when� to poll based on data

availability. The �rst part of this work investigates a receiver-initiated unicast MAC protocol that

is based on reversing the binary exponential backo� (BEB) algorithm of the IEEE 802.11 as a

means to control the rate at which nodes are polled. With the BEB algorithm, the polling rate is

self-regulated according to channel and tra�c conditions. Additionally, frame reordering at queues

� where a frame can be transmitted when polled with no need to be in the head of queue � and a

new control frame, the Nothing-to-send (NTS), whose role is to notify the polling node that there is

no data frame available, are introduced to speed up polling rounds. The performance of the BEB-

based receiver-initiated MAC is investigated under three polling disciplines: a cyclic polling without

priorities (�Round-robin�), one that targets throughput fairness among nodes, the proportional fair

(PF) discipline, and one that prioritizes nodes according to the likelihood of successful handshake

(LSH). Comparisons with the IEEE 802.11 with respect to control overhead, delay, fairness, and

throughput, according to di�erent topologies and tra�c scenarios, are presented.

From the results obtained in the evaluation of the three disciplines, it is proposed a variation of

the polling strategy that selects dynamically the algorithm to be utilized in the choice of the polling

destination. The receiver-initiated MAC protocol with the BEB algorithm combined with this new

strategy is named Receiver-Initiated MAC with Adaptive Polling Discipline (RIMAP), a unicast

MAC protocol that dynamically selects a polling discipline according to channel contention and

link quality homogeneity to all neighbors. For that, two polling disciplines are considered: the LSH

and the Proportional Fair (PF). The adaptive behavior is controlled by two switching parameters

that can be tuned to trade o� fairness with throughput-delay performance. RIMAP performance

is evaluated with discrete-event simulations under topologies with hidden terminals, concurrent

transmissions, and saturated tra�c. Also, its performance is compared with the same BEB-based

MAC protocol under �xed polling disciplines (LSH or PF only), as well as with the IEEE 802.11

DCF MAC, a representative of sender-initiated paradigms.

SUMMARY

1 Introdução . 1

1.1 Contextualização ... 3

1.2 Definição do problema e Objetivos da Dissertação........................ 3

1.3 Contribuições... 5

1.4 Apresentação da Dissertação ... 5

2 Introduction . 7

2.1 Contextualization .. 9

2.2 Problem Definition and Dissertation Objectives 9

2.3 Contributions .. 10

2.4 Dissertation Organization .. 11

3 Related Work . 12

4 Protocol Description . 16

4.1 Binary Exponential Backoff (BEB) Algorithm 16

4.2 Initialization .. 18

4.3 Frame Reordering .. 19

4.4 Virtual Carrier Sensing .. 21

4.5 Data Acknowledgment and Retransmission 23

4.6 Summary .. 25

5 Polling Disciplines . 27

5.1 Round-Robin Discipline .. 27

5.2 Proportional Fair Discipline .. 28

5.3 Likelihood of Successful Handshake (LSH) Discipline 29

5.4 Summary .. 31

6 Performance Evaluation . 32

6.1 Simulation Setup... 33

6.2 Control Overhead .. 35

6.2.1 Scenario A ... 35

6.2.2 Scenario B ... 38

6.3 Average Delay per DATA Frame ... 39

iv

6.3.1 Scenario A ... 39

6.3.2 Scenario B ... 40

6.4 Fairness ... 42

6.4.1 Scenario A ... 42

6.4.2 Scenario B ... 43

6.5 Average Throughput ... 44

6.5.1 Scenario A ... 44

6.5.2 Scenario B ... 45

6.6 Conclusions ... 45

7 RIMAP: Receiver-Initiated MAC Protocol with Adaptive Polling

Discipline . 50

7.1 Adaptive Polling Discipline ... 51

7.2 Performance Evaluation of RIMAP for Ad Hoc Networks 52

7.2.1 Average Point-to-Point Delay per DATA frame 54

7.2.2 Average Throughput per Flow ... 54

7.2.3 Fairness ... 55

7.3 Conclusion... 56

8 Conclusions . 57

8.1 Future Work ... 59

REFERENCES . 62

Appendix . 66

I Performance of the Dynamic Polling Discipline in RIMAP Protocol

for Ad Hoc Networks. 67

I.1 Average Point-to-Point Delay per DATA frame 67

I.1.1 Scenario A ... 67

I.1.2 Scenario B ... 68

I.2 Average Throughput per Flow ... 69

I.2.1 Scenario A ... 69

I.2.2 Scenario B ... 70

I.3 Fairness ... 71

I.3.1 Scenario A ... 71

I.3.2 Scenario B ... 72

II Topology Generation . 73

IIINS-3 Main Script. 76

IV NS-3 Changelog . 86

IV.1 DcaTxop .. 86

IV.1.1 dca-txop.h ... 86

IV.1.2 dca-txop.cc .. 86

IV.2 DcfManager... 91

IV.2.1 dcf-manager.h .. 91

IV.2.2 dcf-manager.cc... 92

IV.3 EdcaTxopN .. 92

IV.3.1 edca-txop-n.h ... 92

IV.3.2 edca-txop-n.cc.. 92

IV.4 MacLow... 93

IV.4.1 mac-low.h .. 93

IV.4.2 mac-low.cc... 95

IV.5 RegularWifiMac... 102

IV.5.1 regular-wifi-mac.h .. 102

IV.5.2 regular-wifi-mac.cc .. 102

IV.6 WifiMacHeader .. 102

IV.6.1 wifi-mac-header.h ... 102

IV.6.2 wifi-mac-header.cc .. 103

IV.7 WifiMacQueue .. 104

IV.7.1 wifi-mac-queue.h ... 104

IV.7.2 wifi-mac-queue.cc.. 104

IV.8 WifiRemoteStationManager ... 106

IV.8.1 wifi-remote-station-manager.h.. 106

IV.8.2 wifi-remote-station-manager.cc .. 108

FIGURES LIST

4.1 Example of backo� contention window growth... 17

4.2 Example of backo� timer decrement. ... 17

4.3 Receiver Initiated MAC initialization �owchart.. 18

4.4 Example of frame reordering technique compared to FIFO queue. (a) FIFO oper-

ation. (b) Frame Reordering (FR). Average delay of the DATA frames is reduced

with FR technique. Blue frames are polling RTR frames, red frames are NTS, green

frames are ACK. ... 20

4.5 Frame reordering in MAC queue. The �rst packet addressed to RTR source is

transmitted. ... 21

4.6 NTS transmission. Since there is no packet addressed to RTR source, a negative

response is transmitted. .. 21

4.7 Receiver-Initiated handshake cases. (a) Polling with positive DATA response and

acknowledgement. (b) Polling with negative response (backo� starts earlier). (c)

Polling with no response. (d) DATA transmission with failed acknowledgment. 22

4.8 Example of ACK timeout. Data packet is enqueued back in MAC queue head-of-line. 23

4.9 Receiver-Initiated MAC �owchart. .. 25

5.1 Example of Round-Robin discipline in neighborhood table. 28

5.2 Example of Proportional Fair discipline in neighborhood table.............................. 29

5.3 Example of Likelihood of Successful Handshake discipline in neighborhood table. 29

5.4 Monte Carlo simulations for the estimated probability of successful handshake com-

puted by using both approaches (Eq. (5.3) and Eq. (5.4)). 31

6.1 Average tra�c distribution per node in the neighborhood. In Scenario A, all neigh-

bors have data available. In Scenario B, only one third of the neighbors have data

available. ... 33

6.2 Topologies with di�erent sparsity levels used in simulations. Green lines indicate

nodes within carrier sensing range of each other, and black lines indicate trans-

mit/receive pairs. Top row shows topologies from scenario A. Bottom row shows

topologies from scenario B... 34

6.3 Average number of packets in the MAC queue of node 5...................................... 35

6.4 (a) Control overhead for each polling discipline compared to IEEE 802.11b, across

di�erent groups of topology sparsity in Scenario A. (b) Control overhead gain over

IEEE 802.11b. .. 37

vii

6.5 (a) Control overhead for each polling discipline compared to IEEE 802.11b, across

di�erent groups of topology sparsity in Scenario B. (b) Control overhead gain over

IEEE 802.11b. .. 38

6.6 (a) Average point-to-point (or link) delay for each polling discipline compared to

IEEE 802.11b, across di�erent groups of topology sparsity in Scenario A. (b) Gain

on average point-to-point delay over IEEE 802.11b... 40

6.7 (a) Average point-to-point (or link) delay for each polling discipline compared to

IEEE 802.11b, across di�erent groups of topology sparsity in Scenario B. (b) Gain

on average point-to-point delay over IEEE 802.11b... 41

6.8 (a) Jain's fairness index for di�erent polling disciplines and di�erent topologies in

Scenario A, according to their average number of hops. All disciplines are compared

to sender-initiated IEEE 802.11 DCF MAC. (b) Gain of fairness with respect to

IEEE 802.11b. .. 43

6.9 (a) Jain's fairness index for di�erent polling disciplines and di�erent topologies in

Scenario B, according to their average number of hops. All disciplines are compared

to sender-initiated IEEE 802.11 DCF MAC. (b) Gain of fairness with respect to

IEEE 802.11b. .. 44

6.10 (a) Average throughput for di�erent polling disciplines and di�erent topologies in

Scenario A, according to their average number of hops. All disciplines are compared

to sender-initiated IEEE 802.11 DCF MAC. (b) Gain of average throughput with

respect to IEEE 802.11b. (c) Average aggregate throughput. 48

6.11 (a) Average throughput for di�erent polling disciplines and di�erent topologies in

Scenario B, according to their average number of hops. All disciplines are compared

to sender-initiated IEEE 802.11 DCF MAC. (b) Gain of average throughput with

respect to IEEE 802.11b. (c) Average aggregate throughput. 49

7.1 Sample topologies: green lines indicate nodes within carrier sensing range of each

other, and black lines indicate transmit/receive pairs. ... 53

7.2 Average delay per data frame. .. 54

7.3 Average �ow throughput. .. 55

7.4 Jain Fairness Index. ... 55

I.1 Average delay per data frame in Scenario A topology Type 0 (fully-connected). 67

I.2 Average delay per data frame in Scenario A topology Type 2. 67

I.3 Average delay per data frame in Scenario A topology Type 4. 67

I.4 Average delay per data frame in Scenario B topology Type 0 (fully-connected). 68

I.5 Average delay per data frame in Scenario B topology Type 2................................ 68

I.6 Average delay per data frame in Scenario B topology Type 4................................ 68

I.7 Average throughput per �ow in Scenario A topology Type 0 (fully-connected). 69

I.8 Average throughput per �ow in Scenario A topology Type 2. 69

I.9 Average throughput per �ow in Scenario A topology Type 4. 69

I.10 Average throughput per �ow in Scenario B topology Type 0 (fully-connected). 70

I.11 Average throughput per �ow in Scenario B topology Type 2................................. 70

I.12 Average throughput per �ow in Scenario B topology Type 4................................. 70

I.13 Jain Fairness Index in Scenario A topology Type 0 (fully-connected). 71

I.14 Jain Fairness Index in Scenario A topology Type 2... 71

I.15 Jain Fairness Index in Scenario A topology Type 4... 71

I.16 Jain Fairness Index in Scenario B topology Type 0 (fully-connected)...................... 72

I.17 Jain Fairness Index in Scenario B topology Type 2. .. 72

I.18 Jain Fairness Index in Scenario B topology Type 4. .. 72

TABLES LIST

6.1 Types of topologies used in simulations are classi�ed according to the average num-

ber of neighbors per node and average number of hops in the topology. 34

6.2 Physical layer parameters.. 36

6.3 MAC layer parameters ... 36

6.4 Application layer parameters ... 36

6.5 Simulation Parameters ... 37

II.1 Parameters for topology generation. .. 73

x

Chapter 1

Introdução

Nos últimos anos, houve uma rápida expansão na indústria da computação móvel devido à

popularização e às interfaces cada vez mais amigáveis do dispositivo com o usuário. Porém, os

dispositivos de comunicação sem �o atuais, aplicações e protocolos são projetados, em sua grande

maioria, para uso em redes celulares ou redes sem �o locais (WLANs, do inglês, wireless local

area networks), sem levar em conta o grande potencial oferecido pelas redes ad hoc. Uma rede

ad hoc é um conjunto autônomo de dispositivos móveis (tablets, smartphones, sensores, etc.) que

comunicam-se entre si através de enlaces sem �o e cooperam de maneira distribuída através de

repasse de pacotes e de atividade de roteamento executados por todos os dispositivos, a �m de

prover uma funcionalidade de rede necessária na ausência de uma infraestrutura �xa [1].

Os dispositivos de redes ad hoc são geralmente alimentados à bateria (restrição energética),

podem prover diversos tipos de funcionalidades (heterogeneidade), são capazes de associar-se

e desassociar-se da rede livremente, de modo que podem se mover aleatoriamente (topologia

dinâmica), e é possível se organizarem dinamicamente a �m de implantar uma rede funcional

na ausência de uma administração central (autonomia). Entretanto, uma rede ad hoc enfrenta

os mesmos problemas tradicionais inerentes às comunicações sem �o, tais quais uma menor con-

�abilidade em relação a um meio cabeado, segurança da camada física limitada, canais variantes

no tempo, interferência, etc. Mas, apesar das várias restrições, as redes ad hoc são altamente

satisfatórias para o uso em situações onde uma infraestrutura �xa é inexistente, não con�ável,

ou muito cara. Devido à sua capacidade de auto-criação, auto-organização e auto-administração,

redes ad hoc podem ser rapidamente implantadas com o mínimo de intervenção do usuário, sem a

necessidade de um planejamento detalhado de instalação de estações rádio-base ou de cabeamento.

Como consequência, há uma expectativa de que as redes ad hoc se tornem uma importante

parte da futura arquitetura das redes de nova geração (4G, 5G...), que visam prover ambientes

que dêem suporte ao usuário em realizar suas tarefas, acessando informação e se comunicando a

qualquer hora, em qualquer lugar, e de qualquer dispositivo [2, 3]. Neste contexto, há uma vasta

gama de aplicações para o uso de redes ad hoc em diversas áreas:

• Redes táticas: comunicações e operações militares, campos de batalha automatizados [4];

1

• Serviços de emergência: operações de busca e salvamento, recuperação de desastres [5];

• Serviços veiculares: orientação de rodovias e acidentes, transmissão de condições da via e de

condições climáticas, rede de táxis, redes inter-veiculares [6];

• Redes de sensores: sensores domésticos (smarthomes), rastreamento de condições ambientais,

monitoramento de fauna [7];

• Entretenimento: jogos multi-usuários [8], comunicação par-a-par (P2P) [9], redes sociais

móveis [10];

• Extensão de cobertura: extensão do acesso à rede (onloading) [11], escoamento de tráfego da

infraestrutura celular pelos dispositivos móveis (o�oading) [12], redes oportunísticas [13].

As características especí�cas de redes ad hoc impõem vários desa�os no projeto de protocolos

de redes em todas as camadas da pilha de protocolos. A camada física deve lidar com mudanças

rápidas nas características do enlace. A camada de controle de acesso ao meio (MAC, do inglês,

Medium Access Control) deve permitir um acesso justo ao canal, minimizar colisões de pacotes e

lidar com os problemas de terminal escondido e exposto. Na camada de rede, os nós devem cooperar

para calcular rotas. A camada de transporte deve ser capaz de manipular perda de pacotes e atrasos

característicos que são muito diferentes de redes cabeadas. Aplicações devem estar aptas a tratar

possíveis desconexões e reconexões. Além disso, o desenvolvimento dos protocolos deve levar em

conta possíveis problemas de segurança.

Neste trabalho, abordamos especi�camente o projeto de protocolo na camada MAC. As tec-

nologias principais utilizadas para o controle de acesso ao meio em redes ad hoc são o padrão

IEEE 802.11 (WiFi), o padrão IEEE 802.15 (Bluetooth, Zigbee, UWB, etc.), o padrão IEEE

802.16 (Broadband Wireless), entre outras tecnologias. Todas essas tecnologias citadas usam o

paradigma iniciado pelo transmissor, no qual a negociação da conexão entre os nós é iniciado pelo

remetente dos dados. Este paradigma já vem sendo amplamente utilizado nas últimas décadas e

está bem consolidado. Porém, a premissa de que o protocolo MAC deve permitir um acesso justo

ao canal não é satisfatória para o caso do paradigma iniciado pelo transmissor. Nesta questão, a

utilização de um paradigma iniciado pelo receptor pode ser mais apropriada já que a distribuição

do acesso ao canal é ponderada entre vários �uxos de dados oriundos dos vizinhos de um dado nó

(dá mais oportunidades de acesso aos demais �uxos), enquanto que no paradigma iniciado pelo

transmissor cada �uxo compete pela sua própria oportunidade de acesso. Entretanto, não há es-

tudos mais práticos que comparem os dois paradigmas, e por isso temos como objetivo descobrir o

quão e�ciente pode ser, de fato, uma implementação de um protocolo MAC iniciado pelo receptor.

Além disso, apesar dos ganhos de desempenho do paradigma iniciado pelo receptor em relação

ao iniciado pelo transmissor relatados na literatura [14, 15], não existem muitos estudos práticos

que avaliem o desempenho de protocolos MAC iniciados pelo receptor em cenários com múltiplos

saltos, com transmissões concomitantes e com a presença de terminais escondidos e de terminais

expostos, além de estudos em modelos analíticos [16]. Em tais cenários, deve-se levar em conta o

método (ou disciplina) em que os nós são consultados pelo receptor, pois não adianta a negociação

ser realizada com menos pacotes de controle se o método utilizado leva a ocorrência de várias

2

tentativas de conexão mal sucedidas. Por isso, a escolha de uma disciplina de consulta inadequada

pode suprimir o ganho obtido na diminuição do controle. Dessa forma, nosso objetivo também é

avaliar as estratégias de consulta sob o protocolo MAC iniciado pelo receptor.

1.1 Contextualização

Protocolos MAC iniciados pelo receptor para redes ad hoc sem �o têm sido estudados devido

aos seus potenciais benefícios em reduzir o número de quadros de controle necessários para um

estabelecimento de conexão (handshake). Mais importante ainda, o apelo em usar a abordagem

iniciada pelo receptor vem do fato de que o destinatário de um quadro de DADOS está melhor

posicionado para avaliar as condições do canal para uma recepção bem sucedida em um enlace

de comunicação. Consequentemente, colisões de quadros no receptor intencionado podem ser

potencialmente diminuidos se o próprio receptor decidir quando iniciar o recebimento de um quadro

de DADOS [17]. De fato, trabalhos teóricos anteriores sugerem que protocolos MAC iniciados

pelo receptor podem superar os iniciados pelo transmissor devido à redução na sobrecarga de

controle [14, 15]. Idealmente, um melhor desempenho pode ser alcançado se os receptores souberem

não somente quem tem quadros de DADOS endereçados a eles, mas também quando um quadro

de DADOS está pronto para ser transmitido de um dado transmissor. Obviamente, isto não é uma

tarefa trivial a ser cumprida na prática.

Parte deste esforço já tem sido iniciada em aplicações onde alguma sincronização temporal

entre os nós é possível, especialmente em protocolos baseados em �ciclos de trabalho� (duty-cycle)

ou em múltiplo acesso por divisão de tempo (TDMA, do inglês, time division multiple access),

para redes de sensores, onde alguns nós agem como agregadores (sink) de dados coletados por

outros nós [18, 19, 20]. Em tais cenários, é possível ter nós agregadores decidindo quem e quando

eles se comunicam baseando-se na informação entregue pelos nós sensores em intervalos de tempo

(slots) anteriores. Entretanto, pelo fato de que: i) protocolos MAC baseados em TDMA (e seus

variantes) requerem rigorosa sincronização temporal; ii) o agendamento ótimo de slots em cenários

de múltiplos saltos é um problema NP-difícil [21, 22]; iii) há outros tipos de redes ad hoc que não

contêm nós �especiais� que agem por conta de outros nós, isto é, todos os nós são considerados

igualmente importantes, a adoção de um protocolo MAC de acesso aleatório se torna a opção mais

viável para uma rápida e escalável implementação de rede.

1.2 De�nição do problema e Objetivos da Dissertação

Atualmente, a iniciativa pelo transmissor tem sido o paradigma preferido para protocolos MAC

de acesso aleatório, especialmente depois do enorme sucesso do padrão IEEE 802.11 nas últimas

décadas. Além disso, o paradigma iniciado pelo receptor não se encaixa tão naturalmente como

o iniciado pelo transmissor em respeito ao paradigma �armazenar-e-enviar� adotado pela maioria

das arquiteturas de rede para atividades de roteamento. Juntamente com a carência de estudos em

disciplinas de consulta adequadas para os vários cenários de aplicação de redes ad hoc, protocolos

3

MAC iniciados pelo receptor com acesso aleatório ainda não são amplamente adotados hoje.

Assim, a �m de contribuir para o desenvolvimento (e entendimennto) das disciplinas de con-

sulta para protocolos MAC iniciados pelo receptor com acesso aleatório, este trabalho investiga o

desempenho de três disciplinas de consulta quando aplicadas a um protocolo MAC iniciado pelo

receptor para comunicação ponto a ponto unicast especí�co apresentado anteriormente por Bon�m

e Carvalho [23]. O protocolo MAC proposto é baseado na reversão do algoritmo de recuo exponen-

cial binário (BEB, do inglês, binary exponential backo�) do padrão IEEE 802.11 como um meio

de controlar a taxa em que um nó consulta seus vizinhos. De fato, uma importante questão de

um protocolo MAC iniciado pelo receptor é sua taxa de consulta, porque uma taxa de consulta

que é muito baixa leva a uma baixa vazão e longos atrasos, enquanto que uma taxa de consulta

que é muito alta pode resultar em um alto número de colisões de quadro, que também resulta em

um mal desempenho de rede. Usando uma versão reversa do algoritmo BEB do IEEE 802.11, a

taxa de transmissão dos quadros de consulta é auto-regulada de acordo com a contenção do canal,

condições de propagação do sinal, e disponibilidade de tráfego nos nós consultados. Além disso, é

proposta uma disciplina adaptativa de consulta que controla a prioridade com a qual vizinhos são

consultados baseada na probabilidade do estabelecimento de uma conexão bem sucedida (LSH,

do inglês, likelihood of successful handshake). Este protocolo MAC é denominado como Receiver

Initiated with Binary Exponential Backo� (RIBB).

Este trabalho também apresenta duas importantes extensões ao RIBB: primeiro, propõe-se

uma técnica de reordenamento de quadro nas �las de transmissão. De acordo com este mecanismo,

toda vez que um nó é consultado por alguém, o nó deve procurar por um quadro de DADOS

endereçado ao nó consultante em toda sua �la de transmissão. Dessa forma, o processo de consulta

não é desperdiçado simplesmente porque não há um quadro de DADOS endereçado ao nó consul-

tante na cabeça da �la. Segundo, um quadro de controle nothing-to-send (NTS, nada-a-enviar) é

apresentado. O papel deste quadro de controle é deixar o nó consultante saber que não há quadros

de DADOS endereçados a ele em toda a �la de transmissão do nó consultado. Fazendo isso, o

envio de um quadro NTS agiliza o processo de consulta deixando o nó consultante escolher outro

vizinho para consulta assim que possível.

O desempenho do RIBB é avaliado baseado em simulações a eventos discretos a partir de sua

implementação no Network Simulator 3 [24]. Seu desempenho é também comparado ao desem-

penho de outras duas disciplinas de consulta (aplicadas ao mesmo mecanismo de taxa de consulta):

o primeiro é o simples mecanismo de consulta cíclica (round-robin), que denominamos como Re-

ceiver Initiated Round Robin (RIRR), e o outro é baseado no agendamento de justiça proporcional

(proportional fair) usado em redes 4G, que denominamos como Receiver Initiated Proportional

Fair (RIPF). Todas as três disciplinas de consulta são avaliadas em relação à sobrecarga de con-

trole, atraso, justiça, e vazão (todas em nível MAC), e seus desempenhos são também comparados

ao padrão IEEE 802.11 DCF iniciado pelo transmissor. Dois diferentes cenários de tráfego são

considerados sob topologias de rede com diferentes esparsidades (isto é, diferentes graus de conec-

tividade).

Baseado nos resultados obtidos, propomos o uso de um mecanismo de consulta adaptativo que

4

seleciona dinamicamente a disciplina de consulta de acordo com a contenção do canal e com a quali-

dade do enlace, denominado de Receiver Initiated MAC with Adaptive Polling Discipline (RIMAP),

um protocolo MAC de acesso aleatório para comunicação ponto a ponto. O procedimento de co-

mutação ajusta o compromisso entre maximizar vazão e justiça. Resultados de simulação mostram

que é possível alcançar melhor desempenho de justiça sem muita perda na vazão, além de melho-

rar o atraso de pacote em relação ao protocolo iniciado pelo transmissor (representado pelo IEEE

802.11).

1.3 Contribuições

• Uma implementação sem precedente do protocolo MAC iniciado pelo receptor apresentado

por Bon�m em um simulador a eventos discretos bem conhecido e de código livre, o Network

Simulator 3 (NS-3);

• Uma extensão deste protocolo apresentando um novo quadro de controle, o �Nada-a-Enviar�

(NTS, do inglês, Nothing-to-Send), que ajuda a mitigar pedidos inúteis de transmissão e

melhorar a utilização do canal;

• A incorporação do mecanismo de reordenamento de quadro na �la de transmissão MAC no

protocolo extendido;

• Um melhoramento na disciplina de consulta proposta por Bon�m no protocolo RIBB, al-

terando o cálculo da estimação das probabilidades;

• A investigação de três disciplinas de consulta em relação à sobrecarga de controle, à justiça,

ao atraso, e à vazão, sob diferentes condições de rede;

• A avaliação do desempenho do protocolo MAC extendido proposto e a comparação ao pro-

tocolo IEEE 802.11b iniciado pelo transmissor;

• Baseada nesta avaliação, a proposta de um mecanismo adaptativo que seleciona a disciplina

de consulta de acordo com as condições da rede;

• A avaliação do desempenho do mecanismo adaptativo proposto.

1.4 Apresentação da Dissertação

Primeiramente, apresentamos no Capítulo 3 os trabalhos relacionados mostrando o histórico

dos protocolos MAC iniciados pelo receptor, buscando mostrar como os mecanismos de disciplina

de consulta e de controle da taxa de consulta têm sido tratados na literatura, para então apresentar

as lacunas a serem preenchidas com o nosso trabalho. Em seguida, no Capítulo 4 descrevemos as

especi�cações do protocolo MAC iniciado pelo receptor, as funcionalidades de suas características,

e ilustramos o processo de estabelecimento de conexão entre os nós iniciado a partir do receptor.

A decisão do receptor em escolher o alvo de sua conexão é realizada pelo mecanismo da disciplina

5

de consulta, para a qual são investigados três tipos de disciplinas e apresentadas na sequência no

Capítulo 5. Posteriormente, no Capítulo 6 são apresentados os cenários de simulação utilizados

nas avaliações de desempenho dos protocolos RIBB, RIRR e RIPF, e os resultados numéricos com

respeito ao desempenho da sobrecarga de controle, atraso de pacote, justiça e vazão são exibi-

dos. A partir destes resultados, propomos uma disciplina de consulta adaptativa, e descrevemos

seu mecanismo atuando sobre o protocolo MAC iniciado pelo receptor no Capítulo 7. Então,

apresentamos os resultados numéricos das simulações utilizadas para a avaliação de desempenho.

Finalmente, concluimos no Capítulo 8 a respeito das contribuições do trabalho, re�etindo sobre a

aplicação do protocolo e possíveis trabalhos futuros.

6

Chapter 2

Introduction

In the last years, there was a quick expansion of the mobile computing industry due to its

popularization and the more friendly interfaces between the device and the user. However, the

present wireless communication devices, applications and protocols are mostly designed for using

in cellular networks and wireless local area networks, disregarding the great potential o�ered by ad

hoc networks. An ad hoc network is an autonomous set of mobile devices (tablets, smartphones,

sensors, etc.) that communicate with each other over wireless links and cooperate in a distributed

manner by forwarding packets and by routing activities executed by all devices, in order to provide

the necessary network functionality in the absence of a �xed infrastructure [1].

The ad hoc devices are generally powered by battery (energy restriction), they can provide sev-

eral types of functionalities (heterogeneity), they can associate and disassociate from the network

freely, so that they can move randomly (dynamic topology), and they can organize themselves

dynamically in order to deploy a functional network in the absence of centralized administration

(autonomy). However, a wireless ad hoc network faces the same traditional problems inherent to

the wireless communications, e.g., lower con�ability with respect to a wired medium, limited phys-

ical layer security, time varying channel, interference, etc. But, despite the various restrictions, the

wireless ad hoc networks are highly satisfactory for using in situation where a �xed infrastructure is

absent, non-trustable, or very expensive. Due to its capacity of self-criation, self-organization, and

self-administration, ad hoc networks may be rapidly deployed with minimum user intervention,

not requiring a detailed planning of base stations or cabling systems.

As consequence, there is an expectation that ad hoc networks become an important part of the

future architecture of next generation networks (4G, 5G...), that aim to provide an environment

that gives support to the user to perform its task, accessing the information and communicating at

any time, any place, and from any device [2, 3]. In this context, there is a wide range of applications

to be used in ad hoc networks in many areas:

• Tatical networks: militar operations and communications, automated battle�elds [4];

• Emergency services: search and rescue operations, disaster recovery [5];

• Vehicular services: road or accident guidance, transmission of road and weather conditions,

7

taxi cab network, inter-vehicle networks [6];

• Sensor networks: house sensors (smarthomes), environmental tracking, fauna monitoring [7];

• Entertainment: multi-user games [8], peer-to-peer communication (P2P) [9], mobile social

networks [10];

• Coverage extension: network access extension (onloading) [11], data o�oading from the

cellular infrastructure by the mobile devices [12], opportunistic networks [13].

The speci�c characteristics of ad hoc networks impose many challenges to network protocol

design on all layers of the protocol stack. The physical layer must deal with rapid changes in link

characteristics. The medium access control (MAC) layer must allow fair channel access, minimize

packet collisions and deal with hidden and exposed terminal. At the network layer, nodes need

to cooperate to calculate paths. The transport layer must be capable of handling packet loss and

delay characteristics that are very di�erent from wired networks. Applications must be able to

manage possible disconnections and reconnections. Furthermore, the development of protocols

must take into account possible security problems.

In this dissertation, we address speci�cally the project of protocol in MAC layer. The main

technologies utilized for the medium access control in ad hoc layers are the standards IEEE 802.11

(WiFi), IEEE 802.15 (Bluetooth, Zigbee, UWB, etc.), IEEE 802.16 (Broadband Wireless), and

other technologies. All these cited technologies use the sender-initiated paradigm, in which the

handshake between the nodes is initiated by the sender of the data. This paradigm has already

been widely employed in the last decades and it is well consolidated. But the assumption that

the MAC protocol must allow a fair access to the channel is not satisfactory for the case of

sender-initiated paradigm. In this issue, the utilization of a receiver-initiated paradigm may be

more appropriate since the distribution of the channel access is weighted among the multiple data

�ows from the neighbors of a given node (it gives more opportunities to access to other �ows),

while in sender-initiated paradigm each �ow competes for its own opportunity to access. However,

there is not many practical studies that compares both paradigms, and that is why we have as

objective to discover how e�cient, in fact, the receiver-initiated paradigm performance could be.

Furthermore, despite the receiver-initiated paradigm performance gains with respect to the sender-

initiated reported in literature [14, 15], there is not many works that evaluates the performance of

receiver-initiated MAC protocols in multi-hop scenarios, with concurrent transmissions, and hidden

and exposed terminals, besides studies with analytical models [16]. In such scenarios, one must

take into account the method (or discipline) in which the nodes are polled by the receiver, because

it is pointless to establish a connection with fewer control packets if the utilized method leads to

the occurrence of various unsuccessful conection attempts. Hence, the choice of an unappropriate

polling discipline may suppress the gains obtained in diminishing the control. Thus, our objective

is also to evaluate the strategies of polling under the receiver-initiated MAC protocol.

8

2.1 Contextualization

Receiver-initiated MAC protocols for wireless ad hoc networks have long been studied due

to their potential bene�ts in reducing the number of control frames needed for a handshake.

Most importantly, the appeal for using a receiver-initiated approach comes from the fact that

the recipient of a DATA frame is certainly better positioned to evaluate channel conditions for a

successful DATA frame reception in a communication link. Consequently, frame collisions at the

intended receiver may be potentially diminished if the receiver itself is the one who decides when

to start receiving a DATA frame [17]. In fact, previous theoretical works have suggested that

receiver-initiated MAC protocols may overcome sender-initiated ones due to a reduction in control

overhead [14, 15]. Ideally, best performance could be achieved if receivers were able to know not

only who has DATA frames addressed to them, but also when a DATA frame is ready to be sent

from a given transmitter. Obviously, this is not a trivial task to accomplish in practical scenarios.

Part of this e�ort has already started in applications where some time synchronization among

nodes is possible, especially in duty-cycle or TDMA-based MAC protocols for sensor networks,

where some nodes act as sinks for data collected by other nodes [18, 19, 20]. In such scenarios, it is

possible to have sink nodes deciding whom and when they contact based on information delivered

by sensor nodes in previous slot(s). However, because i) TDMA-based MAC protocols (and their

variants) strictly require time synchronization; ii) the optimal scheduling of slots in multihop

scenarios is an NP-hard problem [21, 22]; iii) there are other types of ad hoc networks that do

not have �special� nodes that act on behalf of other nodes, i.e., all nodes are considered equally

important, the adoption of a random access MAC protocol becomes the most viable option for a

fast and scalable network deployment.

2.2 Problem De�nition and Dissertation Objectives

To date, sender initiation has been the preferred paradigm for random access MAC protocols,

especially after the tremendous success of the IEEE 802.11 standard in the last decades. In

addition, the receiver-initiated paradigm does not �t as naturally as the sender-initiated one with

respect to the �store-and-forward� paradigm adopted by the majority of network architectures for

routing activities. Coupled with the lack of studies on polling disciplines suitable for the many

application scenarios of ad hoc networks, random-access receiver-initiated MAC protocols are still

not widely adopted today.

Hence, in order to contribute for the development (and understanding) of polling disciplines

for random-access receiver-initiated MAC protocols, this work investigates the performance of

three polling disciplines when applied to a speci�c receiver-initiated unicast MAC protocol earlier

introduced by Bon�m and Carvalho [23]. The proposed MAC protocol is based on reversing the

binary exponential backo� (BEB) algorithm of the IEEE 802.11 as a means to control the rate at

which a node polls its neighbors. In fact, an important issue of a receiver-initiated MAC protocol

is its polling rate, because a polling rate that is too low renders low throughput and long delays,

9

whereas a polling rate that is too high may result in a high number of frame collisions, which

also results in poor network performance. By using a reversed version of the IEEE 802.11 BEB

algorithm, the transmission rate of polling frames is self-regulated according to channel contention,

signal propagation conditions, and tra�c availability at polled nodes. Moreover, an adaptive polling

discipline is also proposed, that controls the priority with which neighbors are polled based on the

likelihood of a successful handshake. We name this MAC protocol as Receiver Initiated with Binary

Exponential Backo� (RIBB).

This work also introduces two important extensions to RIBB: �rst, a frame reordering technique

at transmit queues is proposed. According to this mechanism, every time a node is polled by

someone, it has to look for a DATA frame addressed to the polling node in its whole transmit

queue. This way, the polling process is not wasted simply because there is no DATA frame

addressed to the polling node at the head of the queue. Second, a nothing-to-send (NTS) control

frame is introduced. The role of this control frame is to let the polling node know that there is

no DATA frame addressed to it in the whole transmit queue of the polled node. By doing so,

the sending of an NTS frame speeds up the polling process by letting the polling node switch to

another neighbor as fast as possible.

The performance of RIBB is evaluated based on discrete-event simulations using the popular

Network Simulator 3 [24]. Its performance is also compared to the performance of two other

polling disciplines (applied to the same polling rate mechanism): the �rst is the plain round-robin

mechanism, which we name it as Receiver Initiated Round Robin (RIRR), and the other is based

on the proportional fair scheduling used in 4G networks, which we name it as Receiver Initiated

Proportional Fair (RIPF). All three polling disciplines are evaluated with respect to MAC-level

control overhead, delay, fairness, and throughput, and their performance is also compared to the

sender-initiated IEEE 802.11 DCF. Two di�erent tra�c scenarios are considered under network

topologies with di�erent sparsity levels (i.e., di�erent degrees of connectivity).

Based on the obtained results, we propose the utilization of an adaptive polling mechanism

that dynamically selects a polling discipline according to channel contention and link quality,

denomiminated as Receiver Initiated MAC with Adaptive Polling Discipline (RIMAP), a random

access unicast MAC protocol. The switching procedure tunes the trade-o� between maximizing

throughput and fairness. Simulation results show that it is possible to achieve better fairness

performance without much loss in throughput, in addition to improving packet delay with respect

to sender-initiated protocol (represented by IEEE 802.11).

2.3 Contributions

• An unprecedented implementation of the receiver-initiated MAC protocol introduced by Bon-

�m in the well-known open-source discrete-event simulator, the Network Simulator 3 (NS-3);

• An extension of this protocol by introducing a new control frame, the Nothing-To-Send

(NTS), which helps mitigating useless requests for transmission and improve channel utiliza-

tion;

10

• The incorporation of the mechanism of frame reordering in the MAC transmission queue in

the extended protocol;

• An enhancement of the polling discipline proposed by Bon�m in RIBB protocol, by changing

the computation of the probabilities estimation;

• The investigation of three di�erent polling disciplines with respect to control overhead, fair-

ness, delay, and throughput, under di�erent network conditions;

• The evaluation of the performance of the proposed extended MAC protocol and the compa-

ration to the sender-initiated protocol IEEE 802.11b;

• Based on this evaluation, a proposition of a adaptive mechanism that selects a polling disci-

pline according to the network conditions;

• The evaluation of the performance of the proposed adaptive mechanism.

2.4 Dissertation Organization

First, we present in Chapter 3 the related works showing the history of receiver-initiated MAC

protocols, indicating how the polling discipline and polling rate control mechanisms have been

addressed in the literature, and then presenting the gaps to be �lled by our work. Next, in

Chapter 4 we describe the speci�cations of the receiver-initiated MAC protocol, the functionalities

of the features, and we ilustrate the handshake process between the nodes initiated by the receiver.

The decision of the receiver on choosing the target of its handshake is performed by the polling

discipline mechanism, for which we investigate three types of disciplines and we present them

in Chapter 5. Subsequently, in Chapter 6, we present the simulation scenarios utilized in the

performance evaluation of protocols RIRR, RIPF, and RIBB, and the numerical results with respect

to control overhead, packet delay, network fairness, and �ow throughput are exhibited. From these

results, we propose an adaptive polling discipline, and we describe its mechanism acting over

the receiver-initiated MAC protocol in Chapter 7. Then, we present the numerical results of the

simulations utilized for the performance evaluation. Finnaly, we conclude in Chapter 8 with respect

to the contributions of the work, re�ecting on the protocol application and possible future works.

11

Chapter 3

Related Work

In this chapter, we describe previous works carried out in the context of receiver-initiated MAC

protocols. In particular, we look at how polling disciplines and polling rate control mechanisms

have been treated in the literature. The �rst receiver-initiated MAC protocol proposed in the

literature was the MACA By Invitation (MACA-BI) [14]. This work introduced the appealing

features of such a strategy, which reduces the number of control frames used in a handshake by

placing the responsibility of communication on the potential receiver of a DATA frame. In MACA-

BI, a node polls some neighbor by sending a ready-to-receive (RTR) control frame. If the RTR is

received successfully, the polled node may send a DATA frame back to the polling node if there is

a head-of-line DATA frame addressed to it. If the DATA frame is received successfully, the polling

node sends an acknowledgment (ACK) frame back to the polled node.

Later, Tzamaloukas and Garcia-Luna-Aceves [15] have shown that MACA-BI cannot ensure

perfect collision avoidance in networks with hidden terminals, and they have proposed the Receiver-

Initiated Multiple Access (RIMA) protocol. RIMA avoids hidden terminals with the use of a No-

Transmission-Request (NTR) control frame. This control frame has the job of telling the polled

node not to send any DATA frame after sensing channel activity in the end of an RTR transmission.

RIMA performance was evaluated based on the assumption that polling rates were governed by

a Poisson process (i.e., exponentially-distributed polling intervals), and polled nodes were chosen

randomly, with equal probability. Fully-connected (i.e., single-hop) scenarios and perfect channel

conditions were assumed for analysis.

Dhananjay-Lal et al. [25] have proposed a receiver-initiated MAC protocol that exploits space-

division multiple access, where directional reception is used to receive more than one packet from

spatially-separated transmitting nodes. In this protocol, the receiver-initiated paradigm is used as

a means to synchronize neighboring nodes involved in a packet transmission. However, in this work,

no mention is made to the polling discipline. Furthermore, it employs a strategy of independent

polling rate, i.e., the polling rate is independent of network tra�c. Later, Yi-Sheng Su et al. [26]

have proposed MAC protocols for mobile ad hoc networks that apply the receiver-initiated concept

with spread-spectrum technology. They have proposed two hybrid handshake schemes: the RIMA

Common-Transmitter-Based (RIMA/C-T) and the RIMA Receiver-Transmitter-Based (RIMA/R-

12

T). In their work, however, nothing is mentioned regarding the polling discipline or polling rate

control mechanisms. Takata et al. [27] have proposed the Receiver-Initiated Directional MAC (RI-

DMAC) to address the issue of deafness in directional MAC protocols. They use a combination of

receiver-initiated and sender-initiated protocols, where the sender-initiated approach is the default

operation mode, while the receiver-initiated mode is triggered when the transmitter experiences

deafness. Regarding the polling discipline, each node in RI-DMAC must maintain a polling table

to poll only the potentially deaf nodes. However, regarding the polling rate control, just a single

polling attempt is performed after each sender-initiated handshake attempt.

Sun et al. [18] have proposed an asynchronous duty cycle MAC protocol for wireless sensor

networks, the Receiver-Initiated MAC (RI-MAC). It employs receiver-initiated transmissions to

avoid energy waste due to the �idle listening� problem. Because their receiver-initiated design is

centered on asynchronous duty cycle, RI-MAC may reduce overhearing substantially, while also

achieving low collision probability and recovery cost. Inspired by RI-MAC, Qian Hu et al. [20] have

proposed the Reordering Passive MAC (RP-MAC), a duty-cycle MAC protocol for wireless sensor

networks. RP-MAC has better energy e�ciency than RI-MAC because the sender, after receiving

a DATA frame from upper layers, sleeps until it is awakened by the DATA receiver. In both

protocols, there is a polling discipline where a DATA receiver sends a broadcast beacon message to

request a DATA frame from its neighbors. Potential DATA transmitters must contend for channel

access after hearing the broadcast message. All DATA senders must use a binary exponential

backo� algorithm to contend for the channel, and the backo� window size is announced in the

broadcast message sent by the DATA receiver. In the event of DATA frame collisions, the DATA

receiver increases the backo� window size and send the information in the next beacon message.

The polling rate is controlled by the duty cycle activity. Another feature of RP-MAC is the frame

reordering (FR) mechanism: whenever the active time of any node arrives, the node searches its

queue for the �rst DATA frame addressed to the polling node. Thus, the FR scheme can improve

the frame delivery e�ciency. The performance of RP-MAC is compared to RI-MAC with respect to

latency and energy e�ciency. Throughput and fairness are not evaluated, and the network topology

considered for analysis is a simple star topology, consisting of only 11 nodes, with all data �ows

passing through the center node. Therefore, the impact of interference due to concurrent polling

activities from other polling nodes in the terrain, and corresponding DATA transmissions from

other DATA senders, is not considered in this work.

Dutta et al. [28] presents a receiver-initiated link layer for low-power wireless networks that

supports several services under a uni�ed architecture. In spite of o�ering support to extremely

low duty cycles or high data rates, no reference is made regarding the adopted polling discipline.

In addition, the control of the polling rate is related to the duty cycle activity only, disregarding

thus, other network parameters. Recently, Liang and Zhuang [29] have proposed a MAC protocol

for delay tolerant networks (DTNs) via roadside wireless local area networks (RS-WLANs), the

Double-Loop Receiver-Initiated MAC (DRMAC). This protocol aims at resolving channel con-

tention among multiple direct/relay links and exploits the predictable tra�c characteristics of this

scenario as a result of packet pre-downloading. The receiver-initiated mechanism is used to reduce

the signalling overhead, where the ACK message is used as an invitation for channel contention.

13

Given that tra�c characteristics are predictable, the polling rate and discipline can be adjusted

adaptively according to the given scenario.

Zhi Ang Eu and Hwee-Pink Tan [19] have proposed the Energy Harvesting MAC protocol (EH-

MAC) for multi-hop energy harvesting wireless sensor networks (EH-WSN). As the node requires

the store of energy before starting any activity, the polling rate of this protocol matches the energy

harvesting rate, so that, at the end of a charging state, a node sends a polling packet after some

random time. Regarding the polling discipline, the polling packet is broadcasted and, for each

polling node, the polling packet is associated with a contention probability, pc, which is used to

indicate the probability that a sender should transmit its data packet. So, every node that listens

to the polling packet (and contains DATA frames addressed to the polling node) transmits its

DATA frame with the given probability. Leonardi et al. [30] have proposed a protocol that can

be considered as a hybrid solution, the Carrier Sense Multiple Access with Collision Avoidance by

Receiver Detection (CSMA/CARD). It is both sender-and-receiver-initiated, where each receiver

can predict the existence of a potential sender in a timely manner. The approach uses events

occurring at the physical layer, and may interpret signi�cant received signal power variations

(probabilistically) as handshake messages initiated by a potential sender. The receiver then reacts

accordingly by anticipating a handshake. The receiver reaction depends on whether the received

signal power variation is a decodable RTS (received in NAV period) or non-decodable RTS (received

in DATA reception) in order to know if the RRTS (request-for-RTS) frame is addressed as unicast

(decodable RTS) or broadcast (non-decodable). In this case, the receiver cannot decode the RTS

sender address, and the potential senders have to contend for channel access, sending the RTS

again. Therefore, regarding the polling rate control mechanism, a polling attempt is performed

only after a sender-initiated handshake attempt.

Lina Pu et al. [31] have proposed a tra�c estimation-based receiver initiated MAC (FERI

MAC) for underwater acoustic networks (UANs) to mitigate the problem of high overhead of con-

trol messages due to the long preamble problem. FERI MAC hava a data polling mechanism

conditioned by the power consumption of control packets, and by the queueing delay for a packet

awaiting for transmission. Thus FERI MAC can achieve an user-desired energy e�ciency by ad-

justing the data polling frequency. Also, the protocol uses a tra�c prediction-based on an adaptive

data polling approach to estimate how much data to request from each sender. Then, the protocol

achieves a trade-o� between channel utilization and packet delivery delay, adjusting the amout of

packets to poll. The performance of FERI MAC is evaluated with respect to energy e�ciency,

channel utilization and one-hop delivery delay. Throughput and fairness are not evaluated, and

the network topology considered for analysis consists of eight nodes only deployed over a ring with

about 1 km average distance between neighbor nodes.

Although previous works have considered receiver-initiated MAC protocols in di�erent forms,

to date, there is no coherent understanding of the e�ect of di�erent polling mechanisms on overall

network performance. Moreover, it has been observed that a recent trend in MAC protocols

targeted at sensor networks is the fact that the polling packets are broadcast messages, instead

of unicast messages. In this work, we want to investigate polling disciplines applied to unicast

polling because in a random access scenario, a broadcast (or multicast) polling implies that the

14

potential transmitters must content for the channel, even after the receiver had already contended

for polling. Thus, in order to avoid doubled channel contentions for a single handshake, unicast

polling is adopted for random access networks, aided by the polling discipline. Moreover, we want

to investigate the impact of di�erent polling strategies under concurrent polling activity, where

nodes are scattered in the terrain according to di�erent sparsity levels, as opposed to the majority

of previous works who have considered single-hop (fully-connected) networks. Furthermore, we

focus on unicast polling for a general-purpose receiver-initiated MAC protocol that adaptively uses

two polling disciplines that can be tuned to trade o� fairness with throughput-delay performance.

15

Chapter 4

Protocol Description

In this chapter, we specify the details of the extended random-access receiver-initiated unicast

MAC protocol that is used to investigate the polling disciplines. This protocol follows the work by

Bon�m and Carvalho [23], who have proposed a reversed version of the IEEE 802.11 DCF binary

exponential backo� (BEB) algorithm as a means to control the rate at which a node polls its

neighbors. In their work, they have used an analytical model to evaluate the steady-state behavior of

saturated, not fully-connected networks under channel propagation e�ects. In this work, we extend

the protocol by including three new enhancements: a frame reordering technique, a new nothing-to-

send (NTS) control frame, and an improved polling discipline (to be introduced in Chapter 5). In

addition, we address some of the issues related to queue management and how neighborhood tables

are built and maintained, which are important for actual protocol implementation and operation

(as opposed to mathematical abstractions for modeling and analysis).

4.1 Binary Exponential Backo� (BEB) Algorithm

A key component of the proposed receiver-initiated MAC protocol is a reversed version of

the binary exponential backo� (BEB) algorithm of the IEEE 802.11 DCF: following the polling

discipline in place, every node picks a neighbor from its neighborhood table and executes the BEB

algorithm in order to control the rate at which they poll the selected neighbor. The idea of using

the BEB algorithm stems from the fact that, when polling a node, the RTR may not be received

(or replied) due to numerous reasons, such as: i) the RTR is received with errors due to channel

impairments or frame collisions; ii) the polled node does not contain a DATA frame addressed to

the polling node; iii) the DATA frame is received with errors at the polling node. Since this is a

unicast MAC protocol, a single polling attempt may not be enough for successful communication

due to the aforementioned reasons. Therefore, a �nite number of successive attempts should be

encouraged, spaced by random time intervals dictated by the BEB algorithm, so that channel

contention is alleviated and other nodes may have access to the channel as well. After a successful

transmission or a �nite number of failed attempts, the node picks another neighbor to poll from

its neighborhood table, according to the adopted polling discipline.

16

Similar to the IEEE 802.11 DCF, the BEB algorithm uses a discrete-time backo� timer. Before

transmission of each RTR, a backo� time is uniformly chosen in the interval [0,W −1]. The integer

value W is denoted as the contention window size, and it depends on the number of transmission

attempts for the speci�c RTR frame, as illustrated in Figure 4.1, i.e., for each new RTR, the

contention window size W takes an initial value Wmin that doubles after each unsuccessful RTR

transmission (for the given target node), up to a maximum Wmax. After reaching Wmax, it remains

at this value until it reaches the maximum number of transsmission attempts maxSSRC (maximum

station short retry count). As depicted in Figure 4.2, the backo� timer is decremented only when

the medium is sensed idle, and it is frozen when the medium is sensed busy. After a busy period, the

decrementing of the backo� timer resumes only after the medium is sensed idle longer than a DIFS

time interval (the same length as the IEEE 802.11 DIFS). Then, the RTR is transmitted when the

backo� timer zeroes out. While not transmitting an RTR, and during the backo� operation, the

node may be polled by someone else, in which case it freezes the backo� operation to reply to the

received RTR by sending a DATA frame (if any) addressed to the polling node. Next, we specify

how the protocol initiates, including how the neighborhood table is built and maintained.

Figure 4.1: Example of backo� contention window growth.

Figure 4.2: Example of backo� timer decrement.

17

4.2 Initialization

When the station is turned on, it immediately starts backing o� before accessing the channel,

as illustrated in Figure 4.3. As soon as the �rst backo� stage ends, and the station is allowed to

transmit, the station checks whether there is a packet at the head of its queue. If there is any,

and it is a broadcast MAC frame, it is dequeued and transmitted, since it may carry important

information regarding this node, such as routing control messages. Otherwise, if it is a unicastMAC

frame, it stays in queue, and the node starts the polling process for packets from its neighbors (the

packet left at head of the queue is a packet that needs to be polled by someone else). Therefore,

the node starts its own polling process with the transmission of an RTR frame.

At �rst, while a given node does not know any MAC address of its neighbors, the RTR frame

uses a broadcast MAC address as destination, and whoever hears the RTR broadcast message does

not reply, in order to avoid frame collisions. This procedure acts as an initial �hello� frame to

neighboring nodes, so they can add the source MAC address in this frame to their neighborhood

tables. As usual, the neighborhood table is a list of neighbors' MAC addresses, with an expiration

time associated to each of its entries. An entry is removed from the table if no frame is heard from

that particular node before time is up. It is expected that, as time goes by, all node's neighbors

also initiate their backo� algorithm and start sending MAC frames, which will allow this node

to �ll out its neighborhood table, too. A node can start sending unicast RTR frames to speci�c

nodes after acquiring the address of at least one neighbor. In fact, in order to quickly populate

the neighborhood table and keep it updated, every MAC frame heard by a node is used to �ll out

its neighborhood table.

Figure 4.3: Receiver Initiated MAC initialization �owchart.

18

4.3 Frame Reordering

The DATA frames in a MAC transmission queue are usually destined to various nodes. And

the network throughput and delay may be reduced tremendously if the sender sends those frames

with the original order strictly [20], as one can verify in the following example. We assume:

• There are two DATA frames in node A's queue. And their destinations are as follows: node

B and node C.

• Node B 's probability of successful polling is lower than node C 's (node B may be more

distant from node A than node C are, thus node B needs more RTR retransmissions before

polling successfully), i.e., node C accesses the channel more often than node B according to

BEB algorithm.

• Node A will send the frames according to the FIFO rule.

Now, the polling attempt is from node C to node A. Although there is a DATA frame for node

C in the queue, node A will not let it out because it is waiting for the polling from node B. Upon

receiving the expected polling, node A starts to transmit the pending DATA frame to node B.

However, due to bad channel conditions, the transmission may fail, leading to node B backs o�

while increasing its contention window. After a longer waiting, node A receives another polling

from node B and, this time, the DATA frame transmission is successful (or the DATA frame is

discarded because it exceed the maximum number of retransmissions). In the meantime, many

polling attempts from node C were ignored by node A. But now, as the frame destined to node

B has already been dequeued, node A can transmit the node C 's DATA frame upon receiving the

next polling from node C. The complete process is shown in Figure 4.4a. In this example, node

C 's DATA frame in node A's queue su�ered a delay caused by node C 's and node B 's backo�s,

and it was severely aggravated by the node B 's RTR retransmissions.

In fact, the e�ciency could be much higher if only node A adjusts the transmission order

according to the newcomer polling. Speci�cally in the example, if node A could transmit node

C 's DATA frame at the �rst moment it was polled, this frame would su�er delay only caused

by node C 's backo�, reducing signi�cantly the delay with respect to the previous example, as

depicted in Figure 4.4b. Moreover, comparing to the sender-initiated paradigm using FIFO queue,

node B 's DATA frame would still be retransmitted many times before a successful transmission

or its discard, thus node C 's DATA frame delay would also be a�ected in this case. Therefore, a

frame reordering technique is implemented in the receiver-initiated protocol as a necessary way of

increasing its e�ciency.

Assuming that the neighborhood table already contains at least one entry, the node may choose

a neighbor to poll (including the last neighbor polled) according to a given polling discipline. The

chosen destination MAC address is included in the RTR frame header, and the frame transmission

is initiated in the end of a backo� stage (i.e., every time the backo� timer zeroes out). When the

intended data source receives the RTR, it checks for the existence of any DATA frame addressed

to the RTR sender in its whole queue. In other words, not only the frame at the head of the queue

19

(a)

(b)

Figure 4.4: Example of frame reordering technique compared to FIFO queue. (a) FIFO operation.

(b) Frame Reordering (FR). Average delay of the DATA frames is reduced with FR technique.

Blue frames are polling RTR frames, red frames are NTS, green frames are ACK.

is checked, but also all frames stored in the MAC queue. This is to allow faster response to polling

nodes. If positive, the �rst DATA frame found in the queue is transmitted to the sender of the

RTR. After receiving a successful DATA frame, the polling node acknowledges it with the sending

of an ACK frame after a SIFS time interval, as depicted in Figure 4.5. Otherwise, a nothing-to-

send (NTS) control frame is transmitted. The NTS control frame serves the purpose of telling the

polling node that there is no DATA frame addressed to it from this polled node. Such a situation

is depicted in Figure 4.6. It must be stressed that the dequeued frame is not necessarily the �rst

in queue, but it is the �rst frame addressed to the polling node. Thus, a frame may not need to

wait for the transmission of all frames ahead of it in the queue. Consequently, the average DATA

frame delay may be reduced. This idea is similar to the frame reordering concept in [20].

Given that a DATA frame may remain in queue inde�nitely if its destination address is a

neighbor that no longer is within reach of the node (and, therefore, it may never poll this DATA

frame again either because it has left the network or it has moved away from this node), amaximum

queue delay is set for every DATA frame in the MAC queue. Hence, if this frame is not requested

by its destination node within this maximum delay, the DATA frame is dropped from the queue.

Notice that, because of the frame reordering technique, this is no longer a FIFO queue, and the

distribution of frames in the queue will depend on how frames arrive (or are generated) at this

node, and which neighbors poll this node along the time.

20

Figure 4.5: Frame reordering in MAC queue. The �rst packet addressed to RTR source is trans-

mitted.

Figure 4.6: NTS transmission. Since there is no packet addressed to RTR source, a negative

response is transmitted.

4.4 Virtual Carrier Sensing

Virtual carrier sensing is a mechanism adopted in CSMA/CA-like protocols. It consists in

predicting the tra�c on the channel depending on the time value of the duration �eld in control

frames, in order to avoid transmission while the indicated time is up. Similar to the IEEE 802.11

DCF, a virtual carrier sensing mechanism is also adopted for the sake of collision avoidance. Hence,

like the CTS frame in the IEEE 802.11 DCF, the sending of an RTR frame serves the purpose of

reserving the channel around the receiver before reception of a DATA frame. All frames (RTR,

NTS, DATA, ACK) carry timing information to update the NAV (Network Allocation Vector) of

21

neighboring nodes. The computation of the channel time to be reserved by an RTR frame needs

to take into account the maximum length of a DATA frame plus the ACK frame and all interframe

intervals (DIFS, and SIFS), as depicted in Figure 4.7. Notice that, because the polling node has no

knowledge about the length of the DATA frame to be sent by the polled node, it needs to reserve

the channel for the worst case scenario. The channel reservation time announced by the DATA

frame considers the time for an ACK plus a DIFS. And the channel reservation time announced by

the ACK frame is zero (if the DATA frame has not been fragmented). This procedure for the ACK

is similar to what the IEEE 802.11 DCF implements. Likewise, the estimated time announced

in the NTS header is equal to zero, since an NTS frame signi�es that the handshake is over due

to the lack of a DATA frame addressed to the sender of the RTR. As far as NAV updates are

concerned, the channel reservation time conveyed by a frame is used only if the advertised time

�nishes at a time instant superior to the time instant corresponding to the end of a previous RTR

time allocation. This is to avoid that other frames on the channel interfere with an ongoing virtual

carrier sensing.

Figure 4.7: Receiver-Initiated handshake cases. (a) Polling with positive DATA response and

acknowledgement. (b) Polling with negative response (backo� starts earlier). (c) Polling with no

response. (d) DATA transmission with failed acknowledgment.

22

4.5 Data Acknowledgment and Retransmission

After receiving a successful DATA frame, the node acknowledges it with the sending of an ACK

frame after a SIFS time interval, as described earlier. When the ACK frame is received successfully

at the polled node, the handshake is �nished, as illustrated in Figure 4.7(a). If the data receiver does

not get any response (DATA or NTS) within a given time interval, as illustrated in Figure 4.7(c),

it retries the sending of an RTR to the same destination address (after a random backo� period)

for a maximum number maxSSRC of attempts before it decides to poll another neighbor. On the

transmitter side, if the node does not get any ACK, as illustrated in Figure 4.7(d), it enqueues

the frame back in the �rst position, and retransmits it (when requested) for a maximum number

of attempts maxSLRC (maximum station large retry count) before the packet be discarded. The

packet is placed in the �rst position (queue's head), as illustrated in Figure 4.8, because we have

to guarantee that, when requested, the packet will be dequeued before the newer ones, since we do

the frame reordering operation and the receiver must receive the packets in correct order. If the

maximum number of attempts to transmit a given packet is reached, the packet must be discarded

as the receiver node may have moved away or left the network 1. Finally, when the handshake

is �nished (by ACK or NTS), the node is able to choose a new neighbor to poll. Otherwise, if

the handshake fails, the node will retry to send an RTR to the same neighbor. Then, in order to

restart the polling process, the node should wait before sending the next RTR frame according to

the BEB algorithm explained earlier. The algorithms at both DATA receiver (polling node) and

DATA transmitter (polled node) are summarized in Algorithms 1 and 2, and in the �owchart of

Figure 4.9 next.

Figure 4.8: Example of ACK timeout. Data packet is enqueued back in MAC queue head-of-line.

1Along with the data packet time expiration in the MAC queue, the maximum number of attempts to retransmit

a data packet is used to indicate that the packet must be discarded. In fact, only the packet expiration could be used

for this purpose, and the maxSLRC would be redundant. Thus, since there are a maximum number of polling retries,

after this number, the data packet would not be consulted anymore and it will eventually be discarded. However, we

decided to maintain the operation of data packet retransmission because it is already implemented in the original

sender-initiated IEEE 802.11 protocol code, which we used as basis for implementing the receiver-initiated protocol.

23

Algorithm 1 DATA Receiver
1: procedure DoStart

2: Reset contention window

3: Start backo�

4: procedure NotifyAccessGranted

5: Check packet in head of queue pkt

6: if pkt is broadcast then

7: Dequeue pkt

8: Start broadcast transmission pkt

9: else

10: Start polling RTR

11: procedure StartPolling

12: if NeighborhoodTable is empty then

13: dest← broadcastMACAddr

14: else

15: dest← GetAddrFromPollingDiscipline

16: Send RTR with destination dest

17: procedure ReceiveOk

18: if Received NTS then

19: Reset RTR retry counter ssrc

20: Notify handshake failed

21: Update contention window failed

22: Start backo�

23: else if Received DATA then

24: Reset RTR retry counter ssrc

25: Notify handshake success

26: Send ACK

27: Reset contention window

28: Start backo�

29: procedure DATA timeout

30: Increment RTR retry counter ssrc

31: if Max RTR retry maxSSRC reached then

32: Reset contention window

33: else

34: Update contention window failed
Start backo�

Algorithm 2 DATA Transmitter
1: procedure ReceiveOk

2: if Received RTR then

3: Check if DATA frame to polling node in queue

4: if There is DATA to polling node then

5: Send DATA

6: else

7: Send NTS

8: else if Received ACK then

9: Reset DATA retry counter slrc

10: Notify transmission success

11: procedure ACK timeout

12: Increment DATA retry counter slrc

13: if Max DATA retry maxSLRC reached then

14: Drop DATA

15: else

16: Push DATA to head of queue

24

Figure 4.9: Receiver-Initiated MAC �owchart.

4.6 Summary

In this chapter, we described how the Receiver-Initiated MAC protocol works. First, we ex-

plained how the BEB algorithm controls the polling rate. Next, we presented the initial operation

of the node when it is turned on, the creation of the neighborhood table, and how a node starts to

25

poll its neighbors. Then, we explained how the Frame Reordering feature is useful for diminishing

the packet delay, as the frame does not need to reach the head of the queue to be transmitted.

Furthermore, we presented the virtual carrier sensing mechanism adopted for the sake of colli-

sion avoidance, and presented the role of the timing information to update the NAV, analogous

to the IEEE 802.11 DCF NAV operation. Finally, we explained the data acknowledgement and

the retransmission scheme of polling and data frames. Now, we still must de�ne the operation of

deciding which neighbor a node will poll. This operation is called Polling Discipline, and, in the

next chapter, we will describe the three polling disciplines evaluated in this work, and how each

discipline chooses the next neighbor to poll.

This Receiver-Initiated MAC protocol is implemented over the IEEE 802.11b implementation

in the ns-3, by reverting the handshake paradigm and the binary exponential backo� algorithm,

and the created and modi�ed ns-3 classes are presented in Appendix IV. We considered the

utilization of the 802.11b version because, at �rst, we wanted to simplify the implementation pro-

cess. Moreover, we want to evaluate the polling disciplines under the receiver-initiated protocol in

MAC-level without concerning the data rate achieved by the physical layer, and without concern-

ing Quality-of-Service. Thus, the IEEE 802.11b standard ful�lls our requirements with its basic

con�gurations.

26

Chapter 5

Polling Disciplines

The way how a node chooses the next neighbor to poll can change the performance of the

protocol in di�erent criteria. For instance, a discipline that treats all neighbors equally, i.e., that

polls each neighbor in the neighborhood table sequentially, without priorities, may actually poll

nodes that do not have any DATA frame destined to the polling node. As a result, precious

polling time may be wasted, resulting in lower overall throughput performance. Alternatively, if a

discipline prioritizes the polling of nodes that have experienced lower average throughput (as an

attempt to boost their performance), the protocol may achieve higher fairness, but lower overall

throughput. On the other hand, if a discipline prioritizes the nodes with which there are higher

probabilities of successful transmission, the protocol will not waste time polling nodes with bad

channel conditions (or no DATA frames to it), resulting in higher throughput, but less fairness, since

the nodes have di�erent opportunities to transmit. Therefore, the choice of a polling discipline for a

receiver-initiated MAC protocol implies on a trade-o� between di�erent performance metrics, such

as fairness, throughput, and/or delay. Consequently, depending on the target network application,

one polling discipline may serve better than others. In this chapter, we describe three polling

disciplines that embody di�erent types of prioritization and embody the same BEB algorithm.

5.1 Round-Robin Discipline

The Round-Robin discipline [32] is the simplest of all disciplines and, because of that, it is

commonly adopted in many studies. It consists in performing a cyclic poll of all nodes registered

in the neighborhood table. The main goal of the round-robin discipline is to make sure that

all nodes registered in the neighborhood table are treated equally, in the sense that there is no

prioritization in the polling process. In the case of our speci�c BEB-based MAC protocol, round

robin is implemented by making the polling node to switch to the next neighbor in the list only

after the end of current polling. This will happen either because i) a successful handshake has

taken place; ii) an NTS frame is received, or iii) the retry limit for current polling has been

reached. Once all nodes in the neighborhood table are polled, the polling node simply returns to

the top of the list to pick up the next node to poll, as depicted in Figure 5.1.

27

Figure 5.1: Example of Round-Robin discipline in neighborhood table.

5.2 Proportional Fair Discipline

The Proportional Fair discipline targets a minimal level of service to all neighbors in the

neighborhood table. This is accomplished by assigning a scheduling priority that is inversely

proportional to the historical average throughput of the given �ow between the receiver and the

potential transmitter [33]. In the prioritization scheme, a node is scheduled when its priority

function assumes a value that is the maximum among all nodes. The priority function is given by

P =
Tα

Rβ
, (5.1)

where T denotes the data rate achievable by the transmit node at the present time, R is the his-

torical average throughput of the transmit node, and α and β tunes the �fairness" of the scheduler.

By tuning the parameters α and β we can adjust the ratio with which the �best nodes� (with best

channel conditions) are served with respect to the �worst nodes� (the ones under worst channel

conditions), in a way that costly nodes are served often enough to have an acceptable level of

service. In the extreme case where α = 0 and β = 0, the scheduler acts as a uniformly random

scheduler, where all nodes have equal priority (i.e., uniformly distributed scheduling). If α = 1 and

β = 0, the scheduler always serves the nodes with best channel conditions, which will maximize

their throughput. On the other hand, the nodes with bad channel conditions may su�er from

throughput starvation. If α = β = 1, we have the proportional fair scheduler. Thus, the next

neighbor to poll is the one with the largest scheduling priority function, given by

P =
T

R
. (5.2)

This priority function is similar to the one used for proportional fair scheduling in 4G networks.

Thereby, the node which has the poorest data rate, at some moment, has the highest polling

priority, in order to enhance its throughput, as illustrated in Figure 5.2. Hence, this discipline

has the potential to deliver high fairness in an ad hoc network, as the nodes will not su�er from

starvation. For use in the BEB-based MAC protocol, the computation of R is given by the

historical average throughput computed for a particular node. This historical average throughput

is computed at a given node for each neighbor registered in the neighborhood table. Each entry

has a �eld that adds the number of bytes received from that particular neighbor since its last entry

update, and divides it by the corresponding time length. Each entry has a neighbor expiration

time Texp so that the historical average throughput is computed for a maximum period of time

Texp.

28

Figure 5.2: Example of Proportional Fair discipline in neighborhood table.

5.3 Likelihood of Successful Handshake (LSH) Discipline

Bon�m and Carvalho [23] have proposed a discipline that assigns polling probabilities to every

neighbor registered in the neighborhood table, according to the likelihood of successful handshake,

as illustrated in Figure 5.3. The entries in this table are derived from an adaptive estimation of the

probability of a successful handshake. Thus, each neighbor is polled according to the probability

assigned to it. The motivation for this discipline consists in prioritizing the polling of nodes with

whom there is a high probability of successful handshake. In fact, a successful handshake depends

on both link quality (channel contention and signal propagation conditions) and DATA frame

availability at the polled node. Otherwise, signi�cant time may be wasted if a node insists on

polling a neighbor that rarely has a DATA frame addressed to it (or that experiences bad channel

conditions). As a side e�ect, one should expect some level of unfairness due to the prioritization of

�good� neighbors. It is important to mention that it has been advocated in the literature [34] that

the performance of receiver-initiated protocols would achieve its best performance if the distribution

of tra�c at nodes could be known beforehand. This is exactly what the proposed discipline is trying

to accomplish indirectly, since it is trying to learn which nodes have DATA frames that can be

delivered to it successfully.

Figure 5.3: Example of Likelihood of Successful Handshake discipline in neighborhood table.

The operation of this discipline consists in the execution of the following steps: 1) estimate the

probability P succ of having a successful handshake with each neighbor registered in neighborhood

table; 2) compute the probability P poll of polling each neighbor in the neighborhood table; 3) pick

one neighbor according to the probability distribution just de�ned (the node with the highest P poll

has the highest chance of being picked); 4) assign the MAC address of the chosen neighbor to the

header of the RTR control frame.

29

Bon�m and Carvalho [23] have proposed an idea for estimating the probability of successful

handshake based on an iterative computation. In this work, we improve their idea by using an

exponentially-weighted moving average (EWMA) estimator. First, however, we review Bon�m's

original work in order to compare it with ours. According to Bon�m [23], the estimation of the

successful handshake probability must be updated every time a handshake is attempted with a

given neighbor. More speci�cally, at the end of node j's k-th attempt to initiate a handshake

with node i, the estimated probability P succ
ji (k) of having a successful handshake with i must be

updated as

P succ
ji (k) =

(k − 1)× P succ
ji (k − 1) + η

k
, (5.3)

where it is assumed that P succ
ji (0) = 1 ∀i, and η is an indicator function for the occurrence of a

successful handshake in this last attempt (i.e., η = 1 if success, and η = 0 if failure). As it can be

observed from Eq. (5.3), the e�ect of η on updating the value of the estimated probability P succ
ji (k)

diminishes as k increases. This will not be a problem if the network reaches some sort of steady

state (as it is assumed in Bon�m's analytical model). However, in practical scenarios, topology

and tra�c may change dramatically, and Bon�m has suggested to allow the parameter k to assume

a maximum value kmax, after which it should assume the last value computed for η (0 or 1), and

start over the estimation. Evidently, this truncated approach may cause inaccurate estimations

of the successful handshake probability. Because of that, we propose a modi�cation based on an

exponentially-weighted moving average (EWMA) estimation. Instead of using Eq. (5.3), we use the

EWMA probability estimation given by

P succ
ji (k) = (1− α)P succ

ji (k − 1) + α× η, (5.4)

where α is a weight coe�cient given to the information regarding the outcome of last attempted

handshake. The higher the value of α, the higher is the importance given to the outcome of recent

handshakes. On the other hand, the lower the value of α, the higher is the importance given to the

average value computed over past handshakes (i.e., past history). In the latter case, one achieves

slower convergence and smooth probability estimation.

Every time a new estimation is computed for the probability of successful handshake P succ
ji (k),

the node has to update the polling probability associated with every node in its neighborhood table.

The polling probability P poll
ji with which node j will poll node i will be given by

P poll
ji = λP succ

ji , (5.5)

where λ is obtained from the normalization condition
∑
∀i∈Vj

λP succ
ji = 1, where Vj is the set of

nodes in the neighborhood table of node j.

Figure 5.4 depicts Monte Carlo simulations for estimation of the probability of successful hand-

shake according to Eqs. (5.3) and (5.4). The goal of these simulations is to show how each estimator

behaves if the values of η are equally distributed, i.e., P [η = 0] = P [η = 1] = 0.5, which means

that half of the time there is a successful handshake (�real� P succ = 0.5). The parameter values

are kmax = 100 for Eq. (5.3) and α = 0.02 for Eq. (5.4). As we can see, the estimation computed

according to Eq. (5.3) (blue line) su�ers abrupt changes (to 0 or 1) every period of 100 iterations.

30

The estimation according to Eq. (5.4) (red line) reaches a value close to 0.5 before 100 iterations,

and stays around that value without abrupt changes.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 100 200 300 400 500 600

E
st

im
at

ed
 P

ro
ba

bi
lit

y

Iterations

Bonfim
average

WMA
average

Figure 5.4: Monte Carlo simulations for the estimated probability of successful handshake com-

puted by using both approaches (Eq. (5.3) and Eq. (5.4)).

5.4 Summary

In this chapter, we presented three di�erent polling disciplines with di�erent approaches, each

one emboding one type of prioritization. First, we described the simple Round-robin discipline,

where a node polls its neighbors in cyclic sequence. Next, we described the Proportional Fair

discipline, where a node polls the neighbor with less throughput, in order to try to equalize the

throughput levels across all the neighbors. And then, we described the Likelihood of Successful

Handshake discipline and its modi�cation with respect to the original proposition, where a node

gives more priority to neighbors that have higher probability of successful transmission. Now,

understanding the protocol operation and the disciplines, in the next chapter, we will evaluate the

performance of the receiver-initiated MAC protocol under the three disciplines and compare to the

sender-initiated IEEE 802.11 standard with respect to the MAC control overhead, point-to-point

packet delay, network fairness, and �ow throughput.

31

Chapter 6

Performance Evaluation

In this chapter, we evaluate the performance of the BEB-based receiver-initiated unicast MAC

protocol under the three polling disciplines, and compare their performance to the sender-initiated

IEEE 802.11b DCF1. Each version of the BEB-based receiver-initiated MAC protocol is named dif-

ferently depending on the polling discipline in use: receiver-initiated round-robin (RIRR), receiver-

initiated proportional fair (RIPF), and receiver-initiated binary exponential backo� (RIBB) (the

original one, with the likelihood of successful handshake (LSH) discipline). The goal of this eval-

uation is to understand how the BEB-based MAC protocol performs with each polling discipline.

Di�erently from some previous works, the scenarios under investigation consider large-scale channel

propagation e�ects, and network topologies are varied to allow various degrees of spatial sparsity.

Regarding tra�c conditions, all nodes are saturated (i.e., they always have DATA frames addressed

to someone at any time), and tra�c is generated at every node. This way, we evaluate the worst-

case MAC-level performance of each protocol. The destination of every DATA frame is always an

immediate neighbor: we focus on MAC-level performance and, therefore, all metrics concern link

performance only, without routing activities (all topologies are static, no mobility). In order to

investigate the e�ects of the polling disciplines, we consider two tra�c scenarios with respect to

the destination of DATA frames in every queue:

• Scenario A � the application at each node generates data packets to all of its neighbors

(according to an exponential distribution, as described next). Thus, every poll for a given

node may be potentially answered back with a DATA frame, if the corresponding RTR is

received successfully.

• Scenario B � the application at each node generates data packets addressed to a third of

the neighbors. Thus, on average, only a third 2 of a node's neighbors have DATA frames ad-

dressed to it. As a result, many polls may result on the reception of NTS frames, representing

a more realistic scenario.

1We cannot compare to other receiver-initiated MAC protocols because there is no implementation on the

Network Simulator 3.
2This is an arbitrary choice, since we observed that the nodes have at least two or three neighbors, it should be

at least one neighbor with data packets available.

32

Figure 6.1: Average tra�c distribution per node in the neighborhood. In Scenario A, all neighbors

have data available. In Scenario B, only one third of the neighbors have data available.

Five metrics are considered for performance evaluation: control overhead, average point-to-

point delay per DATA frame, fairness, average �ow throughput, and average aggregate throughput.

The control overhead measures the average number of control (CTL) frames needed to transmit

one successful DATA frame, and it is computed by dividing the total number of control frames

(RTR, NTS, RTS, CTS, ACK) transmitted, by the total number of DATA frames transmitted

successfully. The point-to-point delay per DATA frame measures how long it takes for each DATA

frame to reach the other end of the link, i.e., the time from the instant the local application

generates a data packet and places it in the transmit MAC queue, to the instant when the packet

is received at the other side of the link, after the MAC delivers it to the network layer. The average

delay is computed by dividing the sum of the delays of all successfully received data packets (from

all �ows in the network) by the total number of successfully received packets. The fairness metric

determines whether data �ows receive a fair share of the medium access, and it is computed by

using Jain's fairness index [35]

J(x1, ..., xn) =
(
∑n

i=1 xi)
2

n
∑n

i=1 x
2
i

, (6.1)

where xi is the throughput of the i-th �ow, and n is the number of �ows in the network. When the

index equals 1, it means that the data �ow throughputs are equally distributed. On the other side,

when the index equals 1/n, it means that only one data �ow has the maximum throughput. By �ow

we mean the set of DATA frames generated by a given node and addressed to a speci�c neighbor

(tra�c generation is explained shortly). The average �ow throughput is computed by dividing the

total number of received data bits in the network, by the total time it takes to receive that amount

of bits and by the total number of data �ows. Finnaly, the network aggregate throughput is the

sum of all �ow throughputs in the network, and it measures the transmission capacity of the whole

network. The metrics are computed after a period of network warm up, when nodes have already

initialized and stabilized their operations.

6.1 Simulation Setup

In order to observe the impact of network contention and spatial reuse, we use topologies with

6 dispersion levels: from a fully-connected network to more sparse topologies. The description of

the topologies generation process is in Appendix II. All topologies contain 50 nodes distributed

in a terrain of 800 × 800 m. We classify the topologies into six types, each one with a di�erent

33

average number of neighboring nodes (a neighbor is someone within the transmission range of the

node, according to the channel propagation model). Table 6.1 contains a description of the types

of topologies and corresponding average number of neighboring nodes for each node. In order

to classify the topologies, we de�ne a ratio called number of hops, which estimates the average

number of hops in the topology (sort of �diameter� of a graph). It is de�ned as total number

of nodes (minus 1) divided by the average number of neighbors of each node. Type-0 topologies

are fully-connected networks, whereas type-5 topologies are the ones with the highest number of

concurrent transmissions (highest sparsity). Figure 6.2 illustrates examples of topologies used in

simulations.

Type of topology 0 1 2 3 4 5

Average number of neighbors 49.0 24.5 12.2 8.1 6.1 4.9

Average number of hops 1 2 4 6 8 10

Table 6.1: Types of topologies used in simulations are classi�ed according to the average number

of neighbors per node and average number of hops in the topology.

Figure 6.2: Topologies with di�erent sparsity levels used in simulations. Green lines indicate nodes

within carrier sensing range of each other, and black lines indicate transmit/receive pairs. Top row

shows topologies from scenario A. Bottom row shows topologies from scenario B.

For data tra�c generation, the application layer at each node utilizes an �on-o�� data source,

where data for a single �ow is active (on) during an exponentially-distributed random period with

an average of 0.3 s, and inactive (o�) during an exponentially-distributed random period with an

average of 0.9 s. Each �on� period corresponds to the generation of data packets addressed to a

speci�c neighbor (�lling in the transmit MAC queue). Then, the next �on� period is dedicated for

generation of packets addressed to another neighbor (according to scenarios A or B). Hence, at

any time, a given node will have a mixed distribution of packets addressed to di�erent neighbors.

Figure 6.3 shows a snapshot of the packet distribution (by destination address) at the MAC

transmit queue of a node labelled �5� during simulations. The �gure clearly shows that there

is a reasonable distribution of DATA frames to practically all neighbors of node 5.

As far as the polling disciplines are concerned, we set α = 0.02 for the weight of the moving

34

Figure 6.3: Average number of packets in the MAC queue of node 5.

average of the LSH discipline. The value of α depends on how dynamically the topology changes.

A high value of α implies that the recent handshake outcomes gain more weight in the successful

handshake probability, which is adequated to topologies of high mobility, for instance. On the other

hand, a low value of α is more suitable for static topologies or with low mobility. Therefore, a value

of α that does not suit the kind of topology may cause an incorrect estimation of the successful

handshake probability, which may imply failures on handshake attempts and then degration of

performance. In this work, we set a very low α because we are using static topologies. For

the Proportional Fair discipline, we set the neighbor expiration time as 0.5 seconds. Hence, the

historical average data rate is computed over the number of received bytes in every 0.5 seconds,

and the average data rate is estimated over the most recent period. For the BEB algorithm, the

maximum number of RTR retransmission attempts (maxSSRC) is 7, whereas the maximum number

of DATA frame retransmissions (maxSLRC) is 7, as well. These values are chosen to be the same as

the ones used in the IEEE 802.11b DCF standard in order to have a fair comparison in this work.

The length of the RTR frame is equal to the length of an RTS, which is 44 bytes, and the length

of the NTS is equal to the length of a CTS, which is 38 bytes. By default, in NS-3, the maximum

size of the MAC queue is 400 packets, and the maximum waiting time for any frame in the queue

is 10 seconds, after which it is discarded from the queue (if not polled by any neighbor). The

maximum waiting time setting is important because, without this parameter, frames addressed to

nodes that are no longer neighbors will be kept in queue inde�nitely, taking the space of other new

incoming packets. Also, when the queue reaches its maximum size, any new incoming packet is

dropped. Simulation results correspond to an average computed over four instances of topologies

of the same type and four simulation seeds for each topology (16 simulation runs), and error bars

in the graphs indicate the computed standard deviation. The rest of simulation parameters are

shown in Tables 6.2, 6.3, 6.4, and 6.5.

6.2 Control Overhead

6.2.1 Scenario A

Figure 6.4a illustrates the MAC overhead computed as the average number of control (CTL)

frames per DATA frame transmitted successfully. The results are obtained for the receiver-initiated

35

Table 6.2: Physical layer parameters

Transmission rate 1 Mbps

Transmission power 10 dBm

Transmission range 150 m

Clear Channel Assessment range 225 m

Antenna height 1.2 m

Transmission gain 0 dB

Reception gain 0 dB

Noise �gure 10 dB

Propagation model Two Ray Ground

Modulation DBPSK

Carrier frequency 2.407 GHz

Table 6.3: MAC layer parameters

P succ mobile average weight (α) 0.02

Neighbor expiration time 0.5 seconds

Maximum Station Short Retry Count (ssrc) 7

Maximum Station Long Retry Count (slrc) 7

RTR frame size 44 bytes

NTR frame size 38 bytes

Maximum Transportation Unit 1500 bytes

ACK frame size 38 bytes

MAC Queue maximum size 400 packets

MAC Queue maximum delay 10 seconds

MAC protocol operating according to each polling discipline, across the six topology groups. Also,

the results for the sender-initiated IEEE 802.11b are also shown for comparison purposes. It is

noticeable that RIRR and RIPF disciplines present high overhead in less sparse topologies, about

9.5 CTL frames per DATA frame transmitted in fully-connected topologies, on average. Figure 6.4b

illustrates the percentage gain of the average overhead with respect to IEEE 802.11b, and one can

see that RIRR and RIPF requires 172% of control frames more than IEEE 802.11b in the fully-

connected topologies, and 102% more in the second less sparse topology. This is because there

are more polling attempts that are not successful due to the high contention levels present in

those kind of topologies. Meanwhile, RIBB overhead is less sensitive to topology sparsity, as RIBB

prioritizes the neighbors with higher likelihood of successful handshake. Thus, RIBB overhead

performance is closer to the 802.11 performance, whose average overhead is about 3.5 CTL frames

per DATA across all topologies and it is somewhat constant, and RIBB overhead goes from 4.9

CTL/DATA in fully-connected topologies to 2.5 CTL/DATA in more sparse topologies. In general,

receiver-initiated overhead decreases as more sparsed is the topology, becoming even lower than

802.11 overhead in more sparse topology. This is expected because 802.11 standard requires at

Table 6.4: Application layer parameters

Application UDP

Packet size 1412 bytes

Data rate 1 Mbps

ON time Exponential Random Value (mean 0.3)
OFF time Exponential Random Value (mean 0.9)

36

Table 6.5: Simulation Parameters

Simulation time 120 seconds

Warm up time 20 seconds

Cool down time 1 second

Nodes 50

Terrain 800 m × 800 m

least three control frames to transmit one DATA frame (RTS, CTS, ACK), while receiver-initiated

protocol requires at least two (RTR, ACK).

1 2 4 6 8 10
0

2

4

6

8

10

12

Average number of hops

O
ve

rh
ea

d
(n

o.
 o

f C
T

L
pe

r
D

A
T

A
)

RIRR
RIPF
RIBB
802.11

(a)

1 2 4 6 8 10
-200

-150

-100

-50

0

50

Average number of hops

G
ai

n
(%

)

RIRR
RIPF
RIBB

(b)

Figure 6.4: (a) Control overhead for each polling discipline compared to IEEE 802.11b, across

di�erent groups of topology sparsity in Scenario A. (b) Control overhead gain over IEEE 802.11b.

The high overhead of the Round Robin and the Proportional Fair disciplines in more connected

topologies impacts the data �ow throughput, as shown further. This result shows that the expected

gains of receiver-initiated MAC protocols over sender-initiated ones reported previously in the

literature [14] are not feasible without an appropriate polling discipline, despite the reduced number

of control frames in a successful handshake.

37

6.2.2 Scenario B

Figure 6.5a shows the MAC overhead computed as the average number of CTL per DATA frame

transmitted successfully for all polling disciplines and the IEEE 802.11b when about one third of a

node's neighbors have DATA frames addressed to it. Figure 6.5b shows the percentage gain of the

average overhead with respect to IEEE 802.11b. In this scenario, RIRR and RIPF overheads are

higher (9.7 CTL/DATA, on average) than in Scenario A (4.8 CTL/DATA), while RIBB and 802.11

overhead do not change that much. This is because, when there are less potential transmitter in

the neighborhood, RIRR and RIPF disciplines are more susceptible to get more negative responses

(NTS). This is di�erent from Scenario A where all neighbors are potential transmitters. As a result,

RIRR and RIPF generates more control tra�c before transmitting a DATA frame successfully. The

1 2 4 6 8 10
0

5

10

15

20

25

Average number of hops

O
ve

rh
ea

d
(n

o.
 o

f C
T

L
pe

r
D

A
T

A
)

RIRR
RIPF
RIBB
802.11

(a)

1 2 4 6 8 10
-600

-500

-400

-300

-200

-100

0

100

Average number of hops

G
ai

n
(%

)

RIRR
RIPF
RIBB

(b)

Figure 6.5: (a) Control overhead for each polling discipline compared to IEEE 802.11b, across

di�erent groups of topology sparsity in Scenario B. (b) Control overhead gain over IEEE 802.11b.

di�erence of RIBB and 802.11 performance between Scenario A and B is almost imperceptible (3.2

CTL/DATA on average in Scenario A, and 3.0 CTL/DATA in Scenario B). It shows that RIBB

discipline may properly predict which neighbor to poll in both scenarios. RIBB can estimate which

neighbors have DATA available to the polling node, and it will not waste control frames polling

other neighbors. Thus, RIBB performance can match 802.11 overhead, and even ouperform it in

38

more sparse topologies due to the reduced number of control frames in a given handshake.

6.3 Average Delay per DATA Frame

6.3.1 Scenario A

Figure 6.6a depicts the average point-to-point (link) delay per packet. As one can see, the

average delay in all receiver-initiated protocols is better than the delay in sender-initiated IEEE

802.11b networks across all topologies and disciplines, with an average gain of 31.6% with respect

to IEEE 802.11. Figure 6.6b depicts the percentage gain of the average delay with respect to IEEE

802.11b. Basically, this result is mostly due to the frame reordering mechanism adopted in the

MAC queue. In the receiver-initiated protocol, when a node receives a request for a DATA frame,

it pulls out the �rst DATA frame addressed to the polling node, regardless of its position in the

queue. Thus, a DATA frame does not need to wait for its arrival at the head of the queue in order

to be transmitted, as it is traditionally done in �rst-in �rst-out (FIFO) queue implementations of

the IEEE 802.11 DCF MAC.

Another important observation to make is the fact that, under scenario A, the average point-

to-point delay increases as topologies become more sparse. This result is somewhat contradictory,

since a decrease in channel contention should lead to a decrease in average delay. However, under

scenario A, all nodes are not only saturated, but they also generate DATA frames to all of its

neighbors. Consequently, regardless of the polling discipline, there is always a high chance of

consulting a node that has DATA frames addressed to the polling node. This is also true for IEEE

802.11 networks, where the sender �nds DATA frames in its queue addressed to all of its neighbors.

As a result, given that nodes are more distant from each other under sparse topologies, i.e., the

nodes become more distant from each other, signal reception becomes more susceptible to errors

due to weaker signal powers. Thus, not only every polled node will likely have DATA frames to

deliver, but also each DATA frame will require a higher number of retransmissions in order to be

successfully received at the target destination. Such retransmissions incur higher delays, which

certainly diminishes the gains of the frame reordering technique adopted in the receiver-initiated

protocol. As topologies become more sparse, the gain in performance with respect to IEEE 802.11

decreases by about 8.6% on average, as it can be seen in Figure 6.6b.

As far as the polling disciplines are concerned, we can observe that RIBB has achieved the best

performance across all topology groups. On average, the performance gain with respect to RIPF

and RIRR is about 9.5%, and with respect to IEEE 802.11b is 36.1%. RIBB discipline prioritizes

neighbors with higher successful handshake probabilities, which means that a node prefers to poll

neighbors who seem to experience better channel conditions (or are located closer to the polling

node), in general. Because, under scenario A, all nodes mostly have (in their MAC queues) DATA

frames addressed to all of its neighbors, it is fair to assume that, under this scenario, RIBB mostly

prioritizes nodes under better channel conditions (as opposed to the more rare and temporal case

when a node does not have DATA frames addressed to it). In spite of being fairer (as we will

see shortly), RIPF and RIRR waste more time polling nodes under bad channel conditions or less

39

1 2 4 6 8 10
0

2000

4000

6000

8000

10000

Average number of hops

D
el

ay
 p

er
 P

ac
ke

t (
m

ili
se

co
nd

s) RIRR
RIPF
RIBB
802.11

(a)

1 2 4 6 8 10
0

10

20

30

40

Average number of hops

G
ai

n
(%

)

RIRR
RIPF
RIBB

(b)

Figure 6.6: (a) Average point-to-point (or link) delay for each polling discipline compared to IEEE

802.11b, across di�erent groups of topology sparsity in Scenario A. (b) Gain on average point-to-

point delay over IEEE 802.11b.

temporal availability of DATA frames. This aspect will become more evident in Scenario B, where

the di�erence in performance between RIBB and the others is more striking.

6.3.2 Scenario B

Figure 6.7a depicts the average point-to-point delay per packet computed for all polling dis-

ciplines and the IEEE 802.11b when about one third of a node's neighbors have DATA frames

addressed to it. Figure 6.7b depicts the percentage gains with respect to the IEEE 802.11b per-

formance. In this scenario, the absolute delay values are a little higher, about 5.4% more on

average compared to the case where all nodes have DATA frames addressed to all neighbors. The

receiver-initiated delay values increase because the node wastes time polling nodes that do not

have DATA frames to it. Still, receiver-initiated delay is lower than IEEE 802.11 delay. Di�erent

from Scenario A, however, the average delay tends to decrease as topologies become more sparse.

This can be explained as a direct consequence of the use of the NTS control frame: polled nodes

40

with no DATA frames to the sender of the RTR immediately responds with an NTS to allow the

polling of other nodes. Thus, given that only a third of a node's neighbors (on average) have DATA

frames addressed to it, the polling process is sped up by the reception of NTS frames.

1 2 4 6 8 10
0

2000

4000

6000

8000

10000

Average number of hops

D
el

ay
 p

er
 P

ac
ke

t (
m

ili
se

co
nd

s) RIRR
RIPF
RIBB
802.11

(a)

1 2 4 6 8 10
-10

0

10

20

30

40

50

Average number of hops

G
ai

n
(%

)

RIRR
RIPF
RIBB

(b)

Figure 6.7: (a) Average point-to-point (or link) delay for each polling discipline compared to IEEE

802.11b, across di�erent groups of topology sparsity in Scenario B. (b) Gain on average point-to-

point delay over IEEE 802.11b.

As mentioned in Scenario A, RIBB outperforms RIPF and RIRR and this characteristic is

better observed in this scenario, where a polling node will not always receive a DATA frame in

response because the polled node may not have a DATA frame addressed to it. In addition, RIBB

is 28.6% better than IEEE 802.11b, on average. In fact, RIBB delay is not only the lowest, but

it also presents small variations among all topology groups. Basically, the delay seems to be ruled

by node saturation, and RIBB seems to do a good job in polling only the nodes of interest.

41

6.4 Fairness

6.4.1 Scenario A

Figure 6.8a contains the results for the fairness in throughput achieved by each protocol ac-

cording to Jain's fairness index. Figure 6.8b illustrates the percentage gains with respect to IEEE

802.11b. It is well-known that IEEE 802.11 networks present poor fairness performance due to

the use of the binary exponential backo� (BEB) algorithm [17]. Under BEB operation, the nodes

that last acquired the channel are the ones more likely to acquire it again (since they will start o�

with lower contention window sizes). Such unfair behavior may be exacerbated if a node's queue

is �lled with a stream of successive frames addressed to the same destination. On the other hand,

the use of the BEB algorithm on a receiver-initiated protocol does not necessarily lead to this

biased behavior. This is because, although some nodes may dominate channel access due to lower

contention window sizes (as a result of BEB), their handshakes are not necessarily biased towards

the same destination. For instance, RIRR selects a di�erent neighbor every time it performs a

new BEB cycle. Thus, depending on the polling discipline, the receiver-initiated protocol may

distribute channel access fairerly among nodes.

The Proportional Fair and Round Robin disciplines prevailed in this evaluation, as expected,

according to their main objective. The average gains of RIPF and RIRR with respect to IEEE

802.11b are 10.2% and 25.6%, respectively. Compared to RIBB, their performance gains are

17.6% and 30.8%, respectively. Under Scenario A, all neighbors usually have DATA frames in

their queues addressed to the polling node. Because of that, under low sparsity, RIRR delivers

the best performance, since all neighbors are treated equally. But, as topologies become more

sparse, RIPF surpasses RIRR because it tries to compensate for those nodes that are more likely

to undergo channel errors due to their distance from the polling node.

RIBB has the worst fairness performance among polling disciplines in Scenario A. This is ex-

pected, since RIBB prioritizes nodes with whom there are higher chances of successful handshakes.

In fact, under Scenario A, RIBB is worse than IEEE 802.11 when topologies are less sparse. This

unfair behavior is possibly aggravated due to the con�uence of two factors: under Scenario A, all

neighbors are likely to have DATA frames queued for the polling node, but only a subset of them

end up being prioritized by RIBB. This is due to a �reinforcement e�ect� in the iterative probability

computation of Eq. (5.4), which tends to favor the �rst nodes with which a successful handshake

has occurred. Secondly, the nodes who last acquired the channel are the ones more likely to access

it again. Therefore, the reinforcement e�ect is also con�ned to a small number of polling nodes in

less sparse topologies. However, as topologies become more sparse, channel errors come to play,

and neighbors are no longer �similar� to each other. Hence, under more sparse topologies, RIBB

learns about the best neighbors with which it can have a successful handshake. Because of that,

RIBB performance improves, and it becomes closer to the IEEE 802.11 performance.

From Figure 6.8a, one can realize that the more dispersed the nodes are, the lower are the

di�erences in fairness among polling disciplines. This is because, as there are fewer neighbors

around, there will be fewer options left to the polling discipline to choose, and the same nodes

42

1 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Average number of hops

Ja
in

’s
 F

ai
rn

es
s

In
de

x

RIRR
RIPF
RIBB
802.11

(a)

1 2 4 6 8 10
-40

-20

0

20

40

60

80

Average number of hops

G
ai

n
(%

)

RIRR
RIPF
RIBB

(b)

Figure 6.8: (a) Jain's fairness index for di�erent polling disciplines and di�erent topologies in

Scenario A, according to their average number of hops. All disciplines are compared to sender-

initiated IEEE 802.11 DCF MAC. (b) Gain of fairness with respect to IEEE 802.11b.

are likely to be polled regardless of the discipline. Furthermore, the gains over IEEE 802.11b

decrease as topologies become more sparse, for the same previous reasons, ranging from 13.7%

in fully-connected networks (on average), to -1%, in more sparse networks. Exceptionally, RIBB

gains increase with the dispersion of topologies.

6.4.2 Scenario B

Figure 6.9a illustrates the fairness in throughput measured by Jain's index, and Figure 6.9b

illustrates the percentage gains in relation to IEEE 802.11b. In this scenario, RIBB becomes

better than 802.11b, especially in less sparse topology (as opposed to Scenario A). The fact that

RIBB learns which neighbors have DATA for the polling node contributes to this result. Moreover,

RIBB is consistently better than 802.11b in all topology groups, and becomes better than RIRR

in the more sparse topology group. The fairness in throughput of the IEEE 802.11b is very bad in

fully-connected scenarios and in less sparse topologies, about 0.24 and 0.16 respectively, while the

43

receiver-initiated protocol achieves gains in relation to IEEE 802.11b from 72.0% (RIBB) to 122.5%

(RIPF) and 253.7% (RIRR) in these topology groups. The fairness index of RIPF and RIRR are

higher in these �rst groups because they serve each node more equally (especially RIRR), despite

spending time on polling unnecessary nodes (see Figures 6.6 and 6.7). For this same reason (i.e.,

spending time on polling unnecessary nodes), RIRR becomes worse than 802.11b in more sparse

topologies, about 6.0% of loss in relation to 802.11b for the more sparse topologies.

1 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

Average number of hops

Ja
in

’s
 F

ai
rn

es
s

In
de

x

RIRR
RIPF
RIBB
802.11

(a)

1 2 4 6 8 10
-50

0

50

100

150

200

250

300

Average number of hops

G
ai

n
(%

)

RIRR
RIPF
RIBB

(b)

Figure 6.9: (a) Jain's fairness index for di�erent polling disciplines and di�erent topologies in

Scenario B, according to their average number of hops. All disciplines are compared to sender-

initiated IEEE 802.11 DCF MAC. (b) Gain of fairness with respect to IEEE 802.11b.

6.5 Average Throughput

6.5.1 Scenario A

Figure 6.10a shows the average �ow throughput, i.e., for each �ow of data between a speci�c

pair of nodes. Figure 6.10b shows the percentage gains in relation to IEEE 802.11b. As it can

be observed in less sparse topologies, the receiver-initiated protocols present lower throughput

44

performance than IEEE 802.11. However, absolute values are generally very close, and they all

follow an exponential-like increase as topologies become more sparse. Performance losses with

respect to IEEE 802.11 are mostly under 23.5% with RIRR, 38.1% with RIPF, and less than

3.5% with RIBB, for less sparse topologies. This is a good result, considering the 31.6% average

gain in delay achieved by receiver-initiated protocols under Scenario A. In more sparse topologies,

receiver-initiated protocols present gains with respect to IEEE 802.11 from 0.6% to 4.24%, with an

average of 2.8%. Such a behavior has already been predicted by Bon�m and Carvalho [23], where

the 2.8% gain is very close to the one predicted by the analytical model (3%). This is basically

due to the reduction in the number of control frames in RIBB (see Figure 6.4b).

Given that all nodes generate tra�c to all of its neighbors in Scenario A, the di�erence in

performance between receiver-initiated protocols is not very di�erent. Also, because of this tra�c

distribution, average throughput of the �ows are much lower than the case where tra�c is generated

from only a third of the neighbors (which is analyzed in next). For completeness, Figure 6.10c

depicts the average aggregate throughput, i.e., the average sum of every �ow throughput within

the network. This metric gives an idea of the increase in network throughput as a result of spatial

reuse. Given that the percentage gains are similar to the average �ow throughput, the same

previous observations apply for the average aggregate throughput.

6.5.2 Scenario B

Figure 6.11a shows the average �ow throughput when DATA frames are generated from a third

of a given node's neighbors. Given the smaller number of di�erent �ows, throughput values are

much higher across all topologies compared to Scenario A. In this scenario, it is apparent the

throughput degradation observed in both RIRR and RIPF. Both disciplines unnecessarily poll

neighbors with no DATA frames (or initiate handshakes under bad channel conditions) more often

than RIBB does, since RIBB prioritizes nodes with whom it can actually communicate or contains

DATA frames. As a result, not only RIBB improves its performance in fully-connected scenarios

(3.4% gain) but it also keeps up with the throughput increase of the IEEE 802.11. Moreover, under

Scenario B, RIBB is always fairer and incur less delay than IEEE 802.11 across all topologies, in

addition to a 7.6% average gain in overhead. Figure 6.11b shows the gain of the average �ow

throughput in relation to the IEEE 802.11b performance and Figure 6.11c depicts the average

aggregate throughput.

6.6 Conclusions

This chapter presented a performance analysis of a random-access receiver-initiated MAC pro-

tocol that utilizes a reversed version of the binary exponential backo� (BEB) algorithm of the

IEEE 802.11 DCF as a means to self-regulate and control the rate at which a node polls its neigh-

bors. The use of the BEB algorithm indirectly takes into account the perceived level of contention,

channel state, and DATA frame availability at polled nodes. The proposed receiver-initiated MAC

protocol is also enhanced by allowing frame reordering at transmit queues, and the incorporation

45

of the nothing-to-send (NTS) control frame, which helps on speeding up polling rounds (i.e., a

node that receives an NTS from a polled node may immediately switch to the next neighbor in its

neighborhood table). To suplement the polling rate control mechanism, we also introduced an en-

hanced version of an adaptive polling discipline that prioritizes the polling of nodes according to the

likelihood of successful handshake. In addition to this polling discipline, we also investigated the

traditional round-robin scheme, and a variant of the proportional fair scheduling mechanism typical

of 4G networks. The performance of the receiver initiated MAC protocol with each of the polling

mechanisms (RIBB, RIRR, and RIPF) was compared to the performance of the sender-initiated

IEEE 802.11 DCF with respect to MAC-level control overhead, delay, fairness, and throughput.

Using a discrete-event simulator, we compared the performance of all protocols under two tra�c

scenarios in networks topologies with di�erent sparsity characteristics.

Regarding MAC overhead, we have observed that the receiver-initiated protocol has a lower

control overhead due to the reduced number of control frames in a handshake. However, one can

see that RIRR and RIPF require up to four times more control frames to transmit one DATA

frame than IEEE 802.11, in some cases. On the other hand, RIBB can keep up with IEEE 802.11

performance, and even achieving better performance in more sparse topologies, as the network

contention becomes less in�uent. This is a consequence of the priorization of neighbors with

higher likelihood of successful handshake, as the polling node potentially do not waste the usage

of control frames to poll neighbors with bad channel conditions or with no data frames to respond.

In general, we could observe that, as far as delay is concerned, the receiver-initiated protocols

(RIRR, RIPF, and RIBB) performed better than IEEE 802.11 across all tra�c scenarios and

topologies. This is a direct consequence of the frame reordering technique and the introduction

of the NTS control frame. In particular, RIBB delivers the best performance among all. When

tra�c is not homogeneously distributed among neighbors, RIBB learns the neighbors that actually

have DATA frames addressed to it, and prioritizes the ones which are also under relatively good

channel conditions. This does not happen with RIRR and RIPF, which either treats all nodes

equally (RIRR) or keeps trying to boost the performance of nodes under unfavorable conditions

(RIPF).

Regarding fairness, RIPF and RIRR prevailed in this category, as expected, because of their

inherent properties. Under fully-connected scenarios (or low sparsity), IEEE 802.11 is very unfair,

especially when tra�c is not homogenously distributed among nodes. Because of the prioritization

scheme incorporated into RIBB, it does not perform as well as RIRR and RIPF in homogeneous

tra�c scenarios (although it outperforms IEEE 802.11 in more sparse networks), but it is certainly

better than IEEE 802.11 in every topology when tra�c is not equally distributed among nodes.

Here, it is interesting to notice that the well-known fairness issues of the IEEE 802.11 BEB algo-

rithm are less pronounced in its reversed version because, even though a node may still dominate

channel acquisition more than its neighbors, polled nodes may vary completely, depending on the

polling discipline. This is in direct contrast to sender-initiated MAC protocols with FIFO queue

discipline, where a node not only may dominate channel acquisition, but it may also �lock� on a

speci�c receiver due to a stream of successive same-destination DATA frames in its transmit queue.

This phenomenon is well illustrated by the low fairness values obtained by IEEE 802.11 DCF in

46

the studied scenarios, especially under less sparse topologies.

Finally, regarding throughput, we could observe that the losses in performance of receiver-

initiated MAC protocols with respect to IEEE 802.11 were not very high, especially for RIBB, which

could closely follow IEEE 802.11 in both types of tra�c scenarios. RIRR and RIPF outperform

IEEE 802.11 in more sparsed scenarios, and when all neighbors are potential transmitters (Scenario

A), as RIBB as well. However, in Scenario B, where only one third of neighbors have data to

transmit, RIRR and RIPF performance degrade considerably, in contrast to RIBB outperforming

IEEE 802.11 in some cases, which is a combined e�ect of a lower number of control frames, the use

of NTS and frame reordering, and the adaptive learning of DATA frame availability at neighboring

nodes (queues are �nite, and they may not contain packets to some nodes, occasionally). Also,

from the results, it is clear that we should seek the design of a polling discipline that balances the

features of RIPF and RIBB according to the dynamics of the network topology and tra�c. This

approach is studied in Chapter 7.

47

1 2 4 6 8 10
0

5

10

15

20

25

Average number of hops

F
lo

w
 T

hr
ou

gh
pu

t (
kb

ps
)

RIRR
RIPF
RIBB
802.11

(a)

1 2 4 6 8 10
-40

-30

-20

-10

0

10

Average number of hops

G
ai

n
(%

)

RIRR
RIPF
RIBB

(b)

1 2 4 6 8 10
0

20

40

60

80

100

120

Average number of hops

A
gg

re
ga

te
 T

hr
ou

gh
pu

t (
kb

ps
) RIRR

RIPF
RIBB
802.11

(c)

Figure 6.10: (a) Average throughput for di�erent polling disciplines and di�erent topologies in

Scenario A, according to their average number of hops. All disciplines are compared to sender-

initiated IEEE 802.11 DCF MAC. (b) Gain of average throughput with respect to IEEE 802.11b.

(c) Average aggregate throughput.

48

1 2 4 6 8 10
0

10

20

30

40

50

60

Average number of hops

F
lo

w
 T

hr
ou

gh
pu

t (
kb

ps
)

RIRR
RIPF
RIBB
802.11

(a)

1 2 4 6 8 10
-80

-60

-40

-20

0

20

Average number of hops

G
ai

n
(%

)

RIRR
RIPF
RIBB

(b)

1 2 4 6 8 10
0

20

40

60

80

100

120

Average number of hops

A
gg

re
ga

te
 T

hr
ou

gh
pu

t (
kb

ps
) RIRR

RIPF
RIBB
802.11

(c)

Figure 6.11: (a) Average throughput for di�erent polling disciplines and di�erent topologies in

Scenario B, according to their average number of hops. All disciplines are compared to sender-

initiated IEEE 802.11 DCF MAC. (b) Gain of average throughput with respect to IEEE 802.11b.

(c) Average aggregate throughput.

49

Chapter 7

RIMAP: Receiver-Initiated MAC

Protocol with Adaptive Polling

Discipline

From the results of the polling disciplines evaluation in the previous chapter, the utilization of

the disciplines Likelihood of Successful Transmission and the Proportional Fair suggests a trade-

o� situation: as the LSH discipline prioritizes the neighbors with best probability of successful

handshake, in other words, with potentially better channel conditions or better chances to have

positive data response, the LSH improves data throughput at the expense of network fairness,

since it tends to select fewer neighbors to communicate with. Conversely, PF gives proportional

chances to neighbors with low data throughput in order to try to equalize the throughput of all

neighbors, and thus improving overall network fairness without concerning to achieve throughput

performance. But, in a wireless ad hoc network (and its applications, such as in vehicular networks),

there may exist scenarios where one discipline may �t better than the other. For instance, a node

that has too many neighbors�but perceives unequal and heterogeneous channel conditions to

each of them�will probably be better served if it uses the LSH discipline, which prioritizes the

best neighbors only. Likewise, a node that has few neighbors, and homogeneous link quality to

each of them, may be better served if it uses the PF discipline, because it may allow a fair share

of channel access without jeopardizing individual throughput. Hence, instead of using a speci�c

polling discipline, a receiver-initiated MAC protocol could implement an adaptive polling discipline

according to neighborhood conditions at any time.

In this chapter, we present the Receiver-Initiated MAC with Adaptive Polling Discipline

(RIMAP), a unicast MAC protocol that dynamically selects a polling discipline (LSH or PF)

according to channel contention and link quality homogeneity to all neighbors. The adaptive

behavior is controlled by two switching parameters that can be tuned to trade o� fairness with

throughput-delay performance. To control a node's polling rate, RIMAP utilizes the same reversed

version of the binary exponential backo� (BEB) algorithm of the IEEE 802.11 DCF (as presented

before). Similarly to RIRR, RIPF and RIBB protocols, it also implements the frame reordering

50

(FR) technique, and the Nothing-To-Send (NTS) control frame. RIMAP targets networks where

every node acts as both transmitter and receiver (i.e., there are no special nodes, such as �sinks�,

etc.), and without any node hierarchy (e.g., no master/slave, etc). RIMAP performance is eval-

uated with discrete-event simulations under topologies that present hidden terminals, concurrent

transmissions, and saturated tra�c. Also, its performance is compared with the same BEB-based

MAC protocol under �xed polling disciplines (LSH or PF only), as well as with the IEEE 802.11

DCF MAC, a representative of the sender-initiated paradigm.

7.1 Adaptive Polling Discipline

The RIMAP protocol operates as described in Chapter 4 only di�ering on how a given node

chooses the next neighbor to poll. Previously, a given node utilizes a single polling discipline

along time to select a neighbor to potentially receive a data frame from. Thus, the network could

achieve di�erent performances according to the discipline adopted. On the other hand, RIMAP

implements a mechanism that switches the polling discipline utilized when it is appropriate.

RIMAP seeks to �nd a balance between the two previous polling disciplines by taking advantage

of their strengths in an adaptive manner, according to the scenario perceived by each node. Hence,

every node makes use of two parameters to decide whether to switch to one discipline or the other.

A �rst criterion for switching is based on how homogeneous the quality of the links are with

respect to every neighbor in the neighborhood table. For that, an average signal-to-noise ratio

(SNR) is estimated each time a frame is received from each neighbor, and a historical average SNR

is associated to every neighbor. The variance of the estimated SNR values across all neighbors is

used as an indication of quality homogeneity: the smaller the variance, the more homogeneous the

quality of the links.

The other switch criterion is based on the number of neighbors registered in the neighborhood

table, at the moment of polling. When there are many neighbors, it may become too hard to

serve every neighbor fairly, especially if link quality is not homogeneous. Too much time may be

spent trying to poll a portion of the neighbors under low link quality, which can severely damage

the average throughput of nodes that could be better served otherwise. But, when there are few

neighbors, it may be worth it to pursue a more fair distribution of throughput among neighbors,

without compromising too much individual throughput, especially if all neighbors experience simi-

lar link quality. Based on these observations, two threshold parameters are de�ned: snrVarThresh

and nNeighThresh, which control the SNR variance and the number of neighbors, respectively.

Hence, the following discipline for switching between disciplines is proposed, represented by the

Algorithm 3: before polling a given node, if both estimated SNR variance and number of neigh-

bors are higher than their respective thresholds, switch to LSH discipline. Otherwise, switch to

PF discipline. Thus, the node switches to LSH discipline when both SNR variance and number

of neighbors are higher than their respective thresholds. Otherwise, the node switches to PF

discipline.

The adaptive mechanism of RIMAP protocol acts at the moment the polling node sets the

51

RTR destination address from the neighborhood table, where it is stored the average SNR of the

frames received by each neighbor. From this, the polling node computes the SNR variance among

the neighbors and the number of neighbors in the table, as well. Then, the polling node compare

these computed values with the given thresholds in order to decide which discipline will be used for

setting the RTR destination address, according to the Algorithm 3. Thus, the polling discipline

(LSH or PF) will choose the best neighbor to poll according to the current network condition,

parameterized by the SNR variance and the number of neighbors.

Algorithm 3 Discipline switching mode
1: procedure RIMAP

2: if snrVar > snrVarThresh and nNeigh > nNeighThresh then

3: use LSH

4: else

5: use PF

7.2 Performance Evaluation of RIMAP for Ad Hoc Networks

Now, we evaluate the performance of RIMAP for di�erent threshold values, and compare it with

�xed polling disciplines under the same BEB-based MAC protocol (RIPF and RIBB protocols).

Adittionally, we compare RIMAP with the standard IEEE 802.11 DCF MAC. Three performance

metrics are considered: average point-to-point delay per DATA frame, fairness, and average �ow

throughput.

The scenarios under investigation consider topologies that are not fully-connected (i.e., no

single-hop, topologies of Type 4, described in Table 6.1 in Chapter 6). Therefore, hidden terminals

may occur, as well as concurrent transmissions between distinct pair of nodes. All topologies

contain 50 nodes distributed on a terrain of 800 × 800 m, as depicted in Figures 7.1a and 7.1b. Only

large-scale propagation e�ects are considered (no small-scale fading), and tra�c is saturated at all

nodes, i.e., every node always has a DATA frame addressed to someone, at the head of their queues,

at any time. The destination of every DATA frame is always an immediate neighbor: we focus

on worst-case MAC-level performance only, and, therefore, all metrics express link performance,

without taking into account routing activities (all topologies are static, no mobility). Hence, data

is generated at each node, and data packets are addressed to only a third of the neighbors, so that,

on average, only a third of a node's neighbors have DATA frames addressed to it (notice that,

each node generates data �ows to a number of neighbors, as the Scenario B in the performance

evaluation in Chapter 6). This is to allow the occurrence of NTS frames in simulations: a fraction

of the polling attempts will trigger the transmission of NTS frames. The simulation parameters are

summarized in Tables 6.2, 6.3, 6.4, and 6.5. The NS-3 simulator [24] is used for simulations, and

the performance results correspond to average values computed over four instances of topologies,

each with three di�erent simulation seeds. In the following graphs, error bars indicate standard

deviation, and each point indicates RIMAP's performance for speci�c values of both SNR variance

(sT) and number of neighbors (nN) thresholds. The three horizontal lines in the graphs indicate the

performance of RIPF, RIBB, and IEEE 802.11, for comparison purposes. We evaluate the RIMAP

52

0 200 400 600 800
0

200

400

600

800

X Axis (meters)

Y
 A

xi
s

(m
et

er
s)

1

2
3

4

5

6

7

8

9

10

11 12

13

14

15

16

17

18

19

2021
22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46 47 48

49

50

(a)

0 200 400 600 800
0

200

400

600

800

X Axis (meters)

Y
 A

xi
s

(m
et

er
s)

12 3

4

5

67

8

9

10
11

12 13

1415
16

17

18

19

20

21

22
23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39 40
41

42
43

44

4546

47

48

49

50

(b)

Figure 7.1: Sample topologies: green lines indicate nodes within carrier sensing range of each other,

and black lines indicate transmit/receive pairs.

performance under the topologies of Types 0, 2, and 4 (the types correspond to a given sparsity

level de�ned in Table 6.1) in tra�c Scenario A and B, but we will present only the results for the

topologies of Type 4 of Scenario B. The results for topologies of Type 0 and Type 2 (less sparse)

of Scenario B, and topologies of Types 0, 2, and 4 of Scenario A, as well, are shown in Appendix I.

We omit the results for Scenario A topologies because, in this scenario, the performances of RIBB

and RIPF with respect to �ow throughput and fairness do not di�er much. Thus, regardless of

the values of the switching thresholds, RIMAP performance remains constant, closely following

RIBB and RIPF performances. The results for topologies of Type 0 and 2 of Scenario B are also

omitted because in this more sparse scenarios, the RIMAP swithching mechanism needs higher

values of the number of neighbors threshold to actually switch from RIBB to RIPF, since the more

connected the topology is, the more the number of neighbors a node will have, which increases the

minimum number of neighbors in the topology. While the threshold is lower than the minimum

number of neighbors, i.e., every node has more neighbors than the threshold, all nodes will use the

RIBB polling discipline. Therefore, a higher value for the number of neighbors threshold is needed

to switch the polling discipline, in order to perceive any change in network performance. Basically,

the graphics for the topologies of Type 0 and 2 of Scenario B just look like they have been �shifted�

to right. And we should evaluate the performance utilizing higher thresholds in order to visualize

the changes in the performance.

53

7.2.1 Average Point-to-Point Delay per DATA frame

Figure 7.2 depicts the average point-to-point delay per DATA frame obtained for all MAC

protocols. As we can see, the average delay of all receiver-initiated MAC protocols is lower than the

delay of the sender-initiated IEEE 802.11 DCF MAC (14.6% gain for RIPF, and 21.2% for RIBB).

As far as RIMAP threshold values are concerned, the higher the value of nN , the closer RIMAP

gets to RIPF's performance (as a result of more nodes executing the PF polling discipline in the

network). Conversely, the lower the value of nN , the closer RIMAP gets to RIBB's performance,

since more nodes switch to the LSH discipline in the network. In fact, with the combined use of the

sT and nN thresholds, RIMAP achieves the lowest delay among all protocols, when nN = 0 and

sT ranges from 1 to 1,000 (0 dB to 30 dB). Regarding the impact of sT on delay, it is clear that

it is not very signi�cant, since the performance corresponding to di�erent threshold values do not

di�er considerably (for a �xed value of nN). The only di�erence being the case when sT = 10,000

(40 dB), where few nodes switch to the LSH discipline and, thus, RIMAP performs very close to

RIPF for all values of the nN threshold.

0 2 4 6 8 10
5500

6000

6500

7000

7500

8000

8500

Number of neighbors threshold

D
el

ay
 p

er
 P

ac
ke

t (
m

ili
se

co
nd

s)

sT=0
sT=1
sT=10
sT=100
sT=1000
sT=10000
802.11
RIBB
RIPF

Figure 7.2: Average delay per data frame.

7.2.2 Average Throughput per Flow

Figure 7.3 shows the average �ow throughput, which is computed across all data �ows estab-

lished between all pair of nodes (recall that each node generates data packets addressed to a third

of their neighbors). The e�ect of the nN threshold on average throughput is similar to the e�ect

on delay: the higher its value, the closer RIMAP gets to RIPF's performance, and vice-versa.

However, di�erently from the case of delay, the sT threshold has a signi�cant impact on through-

put, especially when nN is low. In this case, as sT increases, a large number of nodes use the PF

discipline (only a few can switch to LSH). Hence, in spite of perceiving a high SNR variance among

neighbors, many nodes insist on polling their neighbors in a fairly manner, which induces a higher

rate of failed polling attempts to distant neighbors, decreasing throughput. But, as sT decreases

(and nN is kept low), a larger fraction of the nodes switch to LSH, which prioritizes the polling

of nodes with better channel conditions, resulting in higher average throughput. Notice that, in

such cases, RIMAP is similar to both RIBB and IEEE 802.11. Finally, as nN increases, few nodes

54

may switch to LSH, and irrespective of SNR variance, they are all forced to proceed with the PF

discipline (which explains the convergence to RIPF performance).

0 2 4 6 8 10
34

36

38

40

42

44

46

48

Number of neighbors threshold

F
lo

w
 T

hr
ou

gh
pu

t (
kb

ps
)

sT=0
sT=1
sT=10
sT=100
sT=1000
sT=10000
802.11
RIBB
RIPF

Figure 7.3: Average �ow throughput.

7.2.3 Fairness

Figure 7.4 contains the results for fairness. We can see that RIPF performs better than RIBB

and IEEE 802.11, whereas RIMAP can deliver the highest fairness, provided that appropriate

threshold values are used. In the studied scenarios, RIMAP achieves its best performance when

nN = 4, and sT ranges from 0 to 100 (i.e., SNR values di�er by up to 10 dB from average SNR).

In this case, nodes with up to four neighbors and low- to mid-range SNR variance use PF, whereas

nodes with higher number of neighbors, and SNR variance, switch to LSH, which guarantees the

prioritization of nodes with better channel conditions. In fact, under the BEB-based MAC protocol,

the sooner a node releases the channel, the better, because it can start polling other neighbors,

and neighboring nodes may resume their polling activity, as well. The pairing of these two factors

explain the highest fairness achieved by RIMAP on the selected threshold values.

0 2 4 6 8 10
0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

Number of neighbors threshold

Ja
in

 F
ai

rn
es

s
In

de
x

 sT=0

sT=1
sT=10
sT=100
sT=1000
sT=10000
802.11
RIBB
RIPF

Figure 7.4: Jain Fairness Index.

55

7.3 Conclusion

This chapter introduced the Receiver-Initiated MAC with Adaptive Polling Discipline (RIMAP),

a unicast MAC protocol that dynamically selects a polling discipline according to channel con-

tention and link quality homogeneity to all neighbors. For that, two polling disciplines were

considered: one that prioritizes nodes according to the likelihood of successful handshake (LSH),

and the other that targets throughput fairness among nodes, the proportional fair (PF) discipline.

The adaptive behavior is controlled by two switching parameters that can be tuned to trade o�

fairness with throughput-delay performance: number of neighbors, and perceived SNR variance

among neighbors. Simulation results with topologies under hidden terminals, concurrent transmis-

sions, and saturated tra�c have showed that RIMAP can deliver lower delays and higher fairness

than the polling disciplines by themselves (i.e., LSH and PF only, with gains up to 9.4% higher

than PF), as well as the IEEE 802.11 DCF (up to 31.8% higher), at the expense of relatively small

losses in throughput (up to 8.6% lower than LSH).

Simulation results show that, for our scenario, tuning the number of neighbor threshold to

about 4 neighbors and the SNR variance threshold to the lower values (0 to 10), it is possible to

reach a middle ground performance between RIPF and RIBB results in delay, but with a higher

performance in fairness, and without losing too much in throughput. However, these threshold

values are strictly related to the topology characteristics such as the node sparsity and channel

quality.

56

Chapter 8

Conclusions

The �rst part of this dissertation presented a performance analysis of a random-access receiver-

initiated MAC protocol that utilizes a reversed version of the binary exponential backo� (BEB)

algorithm of the IEEE 802.11 DCF as a means to self-regulate and control the rate at which a

node polls its neighbors. The use of the BEB algorithm indirectly takes into account the perceived

level of contention, channel state, and DATA frame availability at polled nodes. The proposed

receiver-initiated MAC protocol is also enhanced by allowing frame reordering at transmit queues,

and the incorporation of the nothing-to-send (NTS) control frame, which helps on speeding up

polling rounds (i.e., a node that receives an NTS from a polled node may immediately switch to

the next neighbor in its neighborhood table). To suplement the polling rate control mechanism,

we also introduced an enhanced version of a polling discipline that prioritizes the polling of nodes

according to the likelihood of successful handshake. In addition to this polling discipline, we also

investigated the traditional round-robin scheme, and a variant of the proportional fair scheduling

mechanism typical of 4G networks. The performance of the receiver initiated MAC protocol with

each of the polling mechanisms (which is named RIBB, RIRR, and RIPF) was compared to the

performance of the sender-initiated IEEE 802.11 DCF with respect to MAC-level control overhead,

delay, fairness, and throughput. Using a discrete-event simulator, we compared the performance of

all protocols under two tra�c scenarios in network topologies with di�erent sparsity characteristics.

Regarding MAC overhead, we have observed that the receiver-initiated protocol has a lower

control overhead due to the reduced number of control frames in a handshake. However, one can

see that RIRR and RIPF require up to four times more control frames to transmit one DATA

frame than IEEE 802.11, in some cases. On the other hand, RIBB can keep up with IEEE 802.11

performance, and even achieving better performance in more sparse topologies, as the network

contention becomes less in�uent. This is a consequence of the priorization of neighbors with

higher likelihood of successful handshake, as the polling node potentially do not waste the usage

of control frames to poll neighbors with bad channel conditions or with no data frames to respond.

In general, we could observe that, as far as delay is concerned, the receiver-initiated protocols

(RIRR, RIPF, and RIBB) performed better than IEEE 802.11 across all tra�c scenarios and

topologies. This is a direct consequence of the frame reordering technique and the introduction

57

of the NTS control frame. In particular, RIBB delivers the best performance among all. When

tra�c is not homogeneously distributed among neighbors, RIBB learns the neighbors that actually

have DATA frames addressed to it, and prioritizes the ones which are also under relatively good

channel conditions. This does not happen with RIRR and RIPF, which either treats all nodes

equally (RIRR) or keeps trying to boost the performance of nodes under unfavorable conditions

(RIPF).

Regarding fairness, RIPF and RIRR prevailed in this category, as expected, because of their

inherent properties. Under fully-connected scenarios (or low sparsity), IEEE 802.11 is very unfair,

especially when tra�c is not homogenously distributed among nodes. Because of the prioritization

scheme incorporated into RIBB, it does not perform as well as RIRR and RIPF in homogeneous

tra�c scenarios (although it outperforms IEEE 802.11 in more sparse networks), but it is certainly

better than IEEE 802.11 in every topology when tra�c is not equally distributed among nodes.

Here, it is interesting to notice that the well-known fairness issues of the IEEE 802.11 BEB algo-

rithm are less pronounced in its reversed version because, even though a node may still dominate

channel acquisition more than its neighbors, polled nodes may vary completely, depending on the

polling discipline. This is in direct contrast to sender-initiated MAC protocols with FIFO queue

discipline, where a node not only may dominate channel acquisition, but it may also �lock� on a

speci�c receiver due to a stream of successive same-destination DATA frames in its transmit queue.

This phenomenon is well illustrated by the low fairness values obtained by IEEE 802.11 DCF in

the studied scenarios, especially under less sparse topologies.

Finally, regarding throughput, we could observe that the losses in performance of receiver-

initiated MAC protocols with respect to IEEE 802.11 were not very high, especially for RIBB, which

could closely follow IEEE 802.11 in both types of tra�c scenarios. RIRR and RIPF outperform

IEEE 802.11 in more sparsed scenarios, and when all neighbors are potential transmitters (Scenario

A), as RIBB as well. However, in Scenario B, where only one third of neighbors have data to

transmit, RIRR and RIPF performance degrade considerably, in contrast to RIBB outperforming

IEEE 802.11 in some cases, which is a combined e�ect of a lower number of control frames, the use

of NTS and frame reordering, and the adaptive learning of DATA frame availability at neighboring

nodes (queues are �nite, and they may not contain packets to some nodes, occasionally). Motivated

by these results, we sought the design of a polling discipline that balances the features of RIPF

and RIBB according to the dynamics of the network topology and tra�c, adaptively using two

polling disciplines that can be tuned to trade o� fairness with throughput-delay performance.

The second part introduced the Receiver-Initiated MAC with Adaptive Polling Discipline

(RIMAP), a unicast MAC protocol that dynamically selects a polling discipline according to chan-

nel contention and link quality homogeneity to all neighbors. For that, two polling disciplines were

considered: one that prioritizes nodes according to the likelihood of successful handshake (LSH),

and the other that targets throughput fairness among nodes, the proportional fair (PF) discipline.

The adaptive behavior is controlled by two switching parameters that can be tuned to trade o�

fairness with throughput-delay performance: the number of neighbors, and the perceived SNR

variance among neighbors. If both estimated SNR variance and number of neighbors are higher

than their respective thresholds, the node switches to LSH discipline. Otherwise, the node switches

58

to PF discipline.

This adaptive scheme allows a given node to utilize the most approriate polling discipline

according to the current network condition perceived by itself. Since each node has a unique

perception of the network, the individual gains obtained by using di�erent polling disciplines

over the time and over the network are summed to achieve an overall network gain. Simulation

results with topologies under hidden terminals, concurrent transmissions, and saturated tra�c have

showed that RIMAP can deliver lower delays and higher fairness than the polling disciplines by

themselves, as well as the IEEE 802.11 DCF, at the expense of relatively small losses in throughput.

Most of the works concerning receiver-initiated MAC protocols are targeted to wireless sensor

networks (WSN), and there is a great e�ort on providing energy e�ciency on this type of network.

Although our protocol is not speci�c in addressing this issue, some features may indirectly alleviate

the energy consumption: the NTS frame that allows a polled node to immediately switch to the

next neighbor; the frame reordering technique that allows a frame to be transmitted at the time

it is polled (instead of waiting until it reaches the head of the queue), and the prioritization of

polling nodes in the LSH discipline. All these features may avoid the polled node to waste energy

on useless handshakes.

This work presented a receiver-initiated paradigm for MAC protocol that have competitive

qualities which directly confronts the sender-initiated paradigm. The sender-initiated paradigm

is widely adopted by its success in the last decades. However, this paradigm jeopardizes the

throughput fairness of the network due to its own backo� mechanism, which favors the node that

recently had a successful handshake, while the others are fated to have longer waiting before they

can access the channel. And also because there is this favored node in a sender-initiated handshake,

the channel is accessed by a single data �ow that will likely gain the right to access the channel

again, if it has more packets in the data stream. In the other hand, in the receiver-initiated

handshake, even if the same node wins the channel access every time, it may communicate with

di�erent neighbors at each time, giving the opportunity to diversify the data �ows over the channel.

Thus, the receiver-initiated paradigm diminishes the unfairness e�ect of the backo� algorithm by

reverting it. Furthermore, the polling discipline distributes the sharing of the channel among the

neighbor nodes. Therefore, the use of the receiver-initiated paradigm is crucial for wireless ad hoc

networks whose applications demand a high accesibility (more users are able to send their data

with a minimum service level, instead of a few users with high data throughput), provided mainly

by the MAC protocol. Besides, the minimum service level can be incresed by improving the data

rate of the link in the physical layer, whose capacities are enhancing over the years.

8.1 Future Work

For future work, we will investigate the impact of RIBB, RIRR, RIPF, and RIMAP on routing

protocols and under mobility. The creation of routes across multiple hops may a�ect polling

priorities signi�cantly, and the adaptive learning of RIBB must be able to keep track of changes

under mobility. Besides, this approach may require a cross-layer design, since the polling discipline

59

may gather the routing information in order to weight the priorization scheme of the polling

neighbor decision. Furthermore, we will investigate the impact on the energy e�ciency, since there

are ad hoc network applications working over nodes powered by batteries with limited life time.

And, concerning the wide utilization of receiver-initiated MAC protocols in WSNs, we will seek to

adapt the proposed protocol to sensor networks, including the mechanisms of duty cycles, energy

harvesting, and sleeping cycles, for instance.

Regarding the polling discipline, the Quality of Service (QoS) issue has an important weight in

the decision of which neighbor the node should poll. Di�erent priorities of services will be available

across the neighbors, and the polling node must handle the polling prioritizations according to the

transmitters tra�c demand. Since the polling node, a priori, does not have the information of

the QoS in the potential transmitters, the node must have a mechanism that predicts or discovers

the QoS information. Analogously, there is the sender-initated IEEE 802.11e standard with the

Enhanced Distributed Channel Access (EDCA) method, where high-priority tra�c has a higher

chance of being sent than low-priority tra�c: a station with high priority tra�c waits a little

less before it sends its packet, on average, than a station with low priority tra�c. Reverting the

paradigm, neighbors with high-priority tra�c should have a higher chance of being polled than

neighbors with low-priority tra�c. The IEEE 802.11e standard is considered of critical importance

for delay-sensitive applications, such as Voice over Wireless LAN and streaming multimedia, which

are very popular applications. Therefore, the development of reversed version of the EDCA is

crucial to help the receiver-initiated paradigm to be widely adopted.

As far as polling rate is concerned, we should seek alternative methods to optimize the polling

rate control, methods that better re�ect the channel contention conditions, and also considers QoS.

In sender-initiated paradigm, there is an e�ort to improve the access delay and fairness of the BEB

algorithm [36, 37, 38]. In general, the approach is to modify the backo� window size growth rate,

in order to balance between throughput and delay performance, given by the fact that, with a

faster growth rate, the network is better capable of absorbing the mounting contention. On the

other hand, it may lead to a more severe delay jitter due to a larger di�erence of backo� window

sizes between a fresh packet and a deeply backlogged one [39]. In receiver-initiated paradigm, we

must investigate the e�ect of modifying the window size growth rate, since there is the problem of

a polling rate that is too slow, which leads to higher delay levels, and if it is too fast, which leads

to higher chances of occurring a collision of polling packets.

This work is an intermediate step for studying the Multi-Packet Reception (MPR) in ad hoc

networks. The MPR is a technique that allows a node to receive multiple packets simultaneously

from di�erent sources. For this, it may be employed the use of Code Division Multiple Access

(CDMA) [40] or Multiple-In Multiple-Out (MIMO) antenas schemes [25]. In this last case, the

possibility of ad hoc networks becoming more scalable would not be limited by the multiple access

interference (MAI), but by the complexity of transmitters and receivers. They had proven that

the channel utilization in IEEE 802.11 networks could be signi�cantly improved by the MPR

mechanisms, in which the basics behind are the utilization of the receiver-initiated protocol as a

way to locally syncronize the nodes involved in the multiple transmission/reception of packets.

In this context, Bon�m and Carvalho proposed a Receiver-Initiated Multi-Packet MAC protocol,

60

denominated RIMP-MAC [41]. Although the syncronization issue has been addressed, their work

also addressed the lack of an approriate polling disciplines and a realistic mechanism of polling

rate control, whose descriptions we presented in this dissertation. Bon�m and Carvalho developed

an analytical model in order to evaluate the RIMP-MAC performance, and our future work is to

implement this protocol in a discrete-event network simulator based on the implementation already

done in this work. Therefore, we could evaluate the RIMP-MAC performance in more complex

scenarios with the presence of hidden and exposed terminals, concurrent transmission, mobility,

and routing.

Further, we could extend the receiver-initiated MAC protocol for the utilization of operation

dynamic spectrum access and multiple channel scenarios. Today, there is a large demand of data

services using 3G and LTE, and other technologies using ISM band such as WiFi and Bluetooth.

However, there is a bad allocation of band resources, which makes the spectrum looks scarce from

the user point of view. This spectrum sub-utilization leads to the necessity of planning protocols of

Dynamic Spectrum Access (DSA). One approach of DSA protocols is the Opportunistic Spectrum

Access (OSA), where it is imposed restrictions of when and where the users could transmit. This

approach focuses mainly in the idle spaces (spatial and temporal) of the spectrum, allowing op-

portunistic users to identify and to explore the available spaces in the spectrum in a non-intrusive

manner. In this context, Oliveira and Carvalho proposed the Opportunistic Channel Aggregation

MAC protocol (OCA-MAC) [42] for wireless ad hoc networks. OCA-MAC allows opportunistic

MAC-level channel aggregation per frame transmission avoiding the use of an extra control channel

for coordination among nodes. The extension of the receiver-initiated paradigm is given by the

fact that the receiver is the best positioned to know when and where the spectrum space will be

available for itself. Therefore, the receiver node should be the �rst to announce this information to

the potential transmitters. For multiple channel scenarios, the LSH discipline can be extended to,

not only prioritize speci�c neighbors, but prioritize the best channels available too. Simmilarly to

the estimation of the probability of successful handshake of a given neighbor, the information of

the estimated probability of successful transmission in a given channel could be added to weight

the decision of which channel will be use for polling.

This MAC protocol could be useful in applications such as vehicular ad hoc networks (VANETs),

where the vehicular nodes must communicate with each other with minimum delay levels since the

messages bring crucial information about tra�c safety, for instance. Also, vehicular applications

may not need to send long messages with a high data rate, but it may need that all vehicular

nodes have a fair use of the channel, in order to allow more nodes to send their short and frequent

messages. Other interesting application for the receiver-initiated MAC protocol is the networks of

robots, where autonomous machines cooperates with each other in order to accomplish a task in

a distributed manner. Each robotic node transmits its current status or commands, for instance,

in short messages. At the same time, the nodes are frequently asking for new commands and the

status of the other robotic nodes, in order to perform their own operations.

61

REFERENCES

[1] HOEBEKE, J.; MOERMAN, I.; DHOEDT, B.; DEMEESTER, P. An overview of mobile ad hoc

networks: applications and challenges. JOURNAL OF THE COMMUNICATIONS NETWORK,

v. 3, n. 3, p. 60�66, 2004.

[2] BHUSHAN, N.; LI, J.; MALLADI, D.; GILMORE, R.; BRENNER, D.; DAMNJANOVIC, A.;

SUKHAVASI, R.; PATEL, C.; GEIRHOFER, S. Network densi�cation: the dominant theme for

wireless evolution into 5g. IEEE Communications Magazine, v. 52, n. 2, p. 82�89, 2014.

[3] TEHRANI, M. N.; UYSAL, M.; YANIKOMEROGLU, H. Device-to-device communication in

5g cellular networks: challenges, solutions, and future directions. Communications Magazine,

IEEE, IEEE, v. 52, n. 5, p. 86�92, 2014.

[4] CHOUDHARY, M.; SHARMA, P.; SANGHI, D. Secure multicast model for ad-hoc military

networks. In: IEEE. Networks, 2004.(ICON 2004). Proceedings. 12th IEEE International Con-

ference on. [S.l.], 2004. v. 2, p. 683�688.

[5] TAKAHASHI, T.; KITAMURA, Y.; MIWA, H. Organizing rescue agents using ad-hoc net-

works. In: Highlights on Practical Applications of Agents and Multi-Agent Systems. [S.l.]:

Springer, 2012. p. 139�146.

[6] HARTENSTEIN, H.; LABERTEAUX, K. P. A tutorial survey on vehicular ad hoc networks.

Communications Magazine, IEEE, v. 46, n. 6, p. 164�171, 2008.

[7] YICK, J.; MUKHERJEE, B.; GHOSAL, D. Wireless sensor network survey. Computer net-

works, Elsevier, v. 52, n. 12, p. 2292�2330, 2008.

[8] KAISER, A.; ACHIR, N.; BOUSSETTA, K. Multiplayer games over wireless ad hoc networks:

energy and delay analysis. In: IEEE. Ultra Modern Telecommunications & Workshops, 2009.

ICUMT'09. International Conference on. [S.l.], 2009. p. 1�7.

[9] HEUVEN, D. Opportunistic sensing & Aggregation network Using Smartphones and Sensor

nodes. Dissertation (Master) � University of Twente, 2014.

[10] CHIN, A.; ZHANG, D. Mobile Social Networking. [S.l.]: Springer, 2014.

[11] BONTA, J. D.; CALCEV, G.; JR, B. J. F.; MANGALVEDHE, N. R.; SMITH, N. J. System

for enabling mobile coverage extension and peer-to-peer communications in an ad hoc network

and method of operation therefor. [S.l.]: Google Patents, nov. 29 2011. US Patent 8,068,454.

62

[12] KALEJAIYE, G. B.; RONDINA, J. A.; ALBUQUERQUE, L. V.; PEREIRA, T. L.; CAM-

POS, L. F.; MELO, R. A.; MASCARENHAS, D. S.; CARVALHO, M. M. Mobile o�oading in

wireless ad hoc networks: The tightness strategy. SIGCOMM Comput. Commun. Rev., ACM,

New York, NY, USA, v. 44, n. 3, p. 96�102, jul. 2014. ISSN 0146-4833. Available from Internet:

<http://doi.acm.org/10.1145/2656877.2656891>.

[13] PELUSI, L.; PASSARELLA, A.; CONTI, M. Opportunistic networking: data forwarding in

disconnected mobile ad hoc networks. Communications Magazine, IEEE, IEEE, v. 44, n. 11, p.

134�141, 2006.

[14] TALUCCI, F.; GERLA, M. MACA-BI (MACA by invitation). a wireless MAC protocol for

high speed ad hoc networking. In: IEEE. Universal Personal Communications Record, 1997.

Conference Record., 1997 IEEE 6th International Conference on. [S.l.], 1997. v. 2, p. 913�917.

[15] GARCIA-LUNA-ACEVES, J. J.; TZAMALOUKAS, A. Reversing the collision-avoidance

handshake in wireless networks. In: ACM. Proceedings of the 5th annual ACM/IEEE inter-

national conference on Mobile computing and networking. [S.l.], 1999. p. 120�131.

[16] MORAES, R. M. D.; GARCIA-LUNA-ACEVES, J. Receiver-initiated collision avoidance in

multi-hip ad hoc networks. In: CITESEER. Communications in Computing. [S.l.], 2004. p. 220�

226.

[17] WANG, Y.; GARCIA-LUNA-ACEVES, J. J. A hybrid collision avoidance scheme for ad hoc

networks. Wireless Networks, Springer, v. 10, n. 4, p. 439�446, 2004.

[18] SUN, Y.; GUREWITZ, O.; JOHNSON, D. B. RI-MAC: a receiver-initiated asynchronous duty

cycle MAC protocol for dynamic tra�c loads in wireless sensor networks. In: ACM. Proceedings

of the 6th ACM conference on Embedded network sensor systems. [S.l.], 2008. p. 1�14.

[19] EU, Z. A.; TAN, H.-P. Probabilistic polling for multi-hop energy harvesting wireless sensor

networks. In: IEEE. Communications (ICC), 2012 IEEE International Conference on. [S.l.],

2012. p. 271�275.

[20] HU, Q.; TIAN, Q.; TANG, Z. RP-MAC: A passive MAC protocol with frame reordering for

wireless sensor networks. International journal of wireless information networks, Springer, v. 20,

n. 1, p. 74�80, 2013.

[21] RAMANATHAN, S. A uni�ed framework and algorithm for channel assignment in wireless

networks. Wireless Networks, Springer-Verlag New York, Inc., v. 5, n. 2, p. 81�94, 1999.

[22] RAJENDRAN, V.; OBRACZKA, K.; GARCIA-LUNA-ACEVES, J. J. Energy-e�cient,

collision-free medium access control for wireless sensor networks. Wireless Networks, Springer-

Verlag New York, Inc., v. 12, n. 1, p. 63�78, 2006.

[23] BONFIM, T. S.; CARVALHO, M. M. Reversing the IEEE 802.11 backo� algorithm for

receiver-initiated MAC protocols. In: IEEE. Wireless Communications and Mobile Computing

Conference (IWCMC), 2012 8th International. [S.l.], 2012. p. 269�274.

63

[24] THE ns-3 Network Simulator. http://www.nsnam.org.

[25] LAL, D.; TOSHNIWAL, R.; RADHAKRISHNAN, R.; AGRAWAL, D.; JR, J. C. A novel

MAC layer protocol for space division multiple access in wireless ad hoc networks. In: IEEE.

Computer Communications and Networks, 2002. Proceedings. Eleventh International Conference

on. [S.l.], 2002. p. 614�619.

[26] SU, Y.-S.; SU, S.-L.; LI, J.-S. Receiver-initiated multiple access protocols for spread spectrum

mobile ad hoc networks. Computer Communications, v. 28, n. 10, p. 1251 � 1265, 2005. ISSN

0140-3664. Performance issues of Wireless LANs, PANs and ad hoc networks.

[27] TAKATA, M.; BANDAI, M.; WATANABE, T. A receiver-initiated directional MAC protocol

for handling deafness in ad hoc networks. In: Communications, 2006. ICC'06. IEEE Interna-

tional Conference on. [S.l.: s.n.], 2006. v. 9, p. 4089�4095.

[28] DUTTA, P.; DAWSON-HAGGERTY, S.; CHEN, Y.; LIANG, C.; TERZIS, A. Design and

evaluation of a versatile and e�cient receiver-initiated link layer for low-power wireless. In:

ACM. Proceedings of the 8th ACM Conference on Embedded Networked Sensor Systems. [S.l.],

2010. p. 1�14.

[29] LIANG, H.; ZHUANG, W. Double-loop receiver-initiated MAC for cooperative data dissemi-

nation via roadside WLANs. Communications, IEEE Transactions on, v. 60, n. 9, p. 2644�2656,

September 2012. ISSN 0090-6778.

[30] LEONARDI, A.; PALAZZO, S.; RAMETTA, C.; KNIGHTLY, E. W. A new adaptive receiver-

initiated scheme for mitigating starvation in wireless networks. Ad Hoc Networks, Elsevier, v. 11,

n. 2, p. 625�638, 2013.

[31] PU, L.; LUO, Y.; PENG, Z.; MO, H.; CUI, J.-H. Tra�c estimation based receiver initiated

MAC for underwater acoustic networks. In: ACM. Proceedings of the Eighth ACM International

Conference on Underwater Networks and Systems. [S.l.], 2013. p. 7.

[32] HAVERKORT, B. R. Performance of Computer Communication Systems: A Model-Based

Approach. [S.l.]: John Wiley & Sons, 1998.

[33] KUSHNER, H.; WHITING, P. Convergence of proportional-fair sharing algorithms under

general conditions. Wireless Communications, IEEE Transactions on, v. 3, n. 4, p. 1250�1259,

July 2004. ISSN 1536-1276.

[34] TOH, C.-K.; VASSILIOU, V.; GUICHAL, G.; SHIH, C.-H. MARCH: a medium access control

protocol for multihop wireless ad hoc networks. In: IEEE.MILCOM 2000. 21st Century Military

Communications Conference Proceedings. [S.l.], 2000. v. 1, p. 512�516.

[35] JAIN, R.; CHIU, D.-M.; HAWE, W. R. A quantitative measure of fairness and discrimination

for resource allocation in shared computer system. [S.l.]: Eastern Research Laboratory, Digital

Equipment Corporation Hudson, MA, 1984.

64

[36] KUPTSOV, D.; NECHAEV, B.; LUKYANENKO, A.; GURTOV, A. How penalty leads to

improvement: A measurement study of wireless backo� in ieee 802.11 networks. Computer Net-

works, Elsevier, 2014.

[37] CHEN, W.-T.; JIAN, B.-B.; LO, S.-C. An adaptive retransmission scheme with qos support

for the ieee 802.11 mac enhancement. In: IEEE. Vehicular Technology Conference, 2002. VTC

Spring 2002. IEEE 55th. [S.l.], 2002. v. 1, p. 70�74.

[38] NASIR, Q.; ALBALT, M. History based adaptive backo� (hbab) ieee 802.11 mac protocol.

In: IEEE. Communication Networks and Services Research Conference, 2008. CNSR 2008. 6th

Annual. [S.l.], 2008. p. 533�538.

[39] SUN, X.; DAI, L. Backo� design for ieee 802.11 dcf networks: Fundamental tradeo� and

design criterion. IEEE Trans. Networking.

[40] MERGEN, G.; TONG, L. Receiver controlled medium access in multihop ad hoc networks

with multipacket reception. In: IEEE. Military Communications Conference, 2001. MILCOM

2001. Communications for Network-Centric Operations: Creating the Information Force. IEEE.

[S.l.], 2001. v. 2, p. 1014�1018.

[41] BONFIM, T. d. S. RIMP: protocolo de controle de acesso ao meio com múltipla recepção de

pacotes para redes ad hoc. Dissertation (Master) � Universidade de Brasília, 2013.

[42] OLIVEIRA, L. M. E. d. OCA-MAC: protocolo de controle de acesso ao meio com agregação

oportunista de canal. Dissertation (Master) � Universidade de Brasília, 2014.

65

APPENDIX

66

I. PERFORMANCE OF THE DYNAMIC POLLING

DISCIPLINE IN RIMAP PROTOCOL FOR AD HOC

NETWORKS

I.1 Average Point-to-Point Delay per DATA frame

I.1.1 Scenario A

0 2 4 6 8 10
5000

6000

7000

8000

9000

Number of neighbors threshold

D
el

ay
 p

er
 P

ac
ke

t (
m

ili
se

co
nd

s)

sT=0
sT=1
sT=10
sT=100
sT=1000
sT=10000
802.11
RIBB
RIPF

Figure I.1: Average delay per data frame in Scenario A topology Type 0 (fully-connected).

0 2 4 6 8 10
5000

6000

7000

8000

9000

10000

Number of neighbors threshold

D
el

ay
 p

er
 P

ac
ke

t (
m

ili
se

co
nd

s)

sT=0
sT=1
sT=10
sT=100
sT=1000
sT=10000
802.11
RIBB
RIPF

Figure I.2: Average delay per data frame in Scenario A topology Type 2.

0 2 4 6 8 10
5000

6000

7000

8000

9000

10000

Number of neighbors threshold

D
el

ay
 p

er
 P

ac
ke

t (
m

ili
se

co
nd

s)

sT=0
sT=1
sT=10
sT=100
sT=1000
sT=10000
802.11
RIBB
RIPF

Figure I.3: Average delay per data frame in Scenario A topology Type 4.

67

I.1.2 Scenario B

0 2 4 6 8 10
5000

6000

7000

8000

9000

10000

Number of neighbors threshold

D
el

ay
 p

er
 P

ac
ke

t (
m

ili
se

co
nd

s)

sT=0
sT=1
sT=10
sT=100
sT=1000
sT=10000
802.11
RIBB
RIPF

Figure I.4: Average delay per data frame in Scenario B topology Type 0 (fully-connected).

0 2 4 6 8 10
5000

6000

7000

8000

9000

Number of neighbors threshold

D
el

ay
 p

er
 P

ac
ke

t (
m

ili
se

co
nd

s)

sT=0
sT=1
sT=10
sT=100
sT=1000
sT=10000
802.11
RIBB
RIPF

Figure I.5: Average delay per data frame in Scenario B topology Type 2.

0 2 4 6 8 10
5500

6000

6500

7000

7500

8000

8500

Number of neighbors threshold

D
el

ay
 p

er
 P

ac
ke

t (
m

ili
se

co
nd

s)

sT=0
sT=1
sT=10
sT=100
sT=1000
sT=10000
802.11
RIBB
RIPF

Figure I.6: Average delay per data frame in Scenario B topology Type 4.

68

I.2 Average Throughput per Flow

I.2.1 Scenario A

0 2 4 6 8 10
0.18

0.2

0.22

0.24

0.26

0.28

0.3

0.32

Number of neighbors threshold

F
lo

w
 T

hr
ou

gh
pu

t (
kb

ps
)

sT=0
sT=1
sT=10
sT=100
sT=1000
sT=10000
802.11
RIBB
RIPF

Figure I.7: Average throughput per �ow in Scenario A topology Type 0 (fully-connected).

0 2 4 6 8 10
1.5

2

2.5

3

3.5

Number of neighbors threshold

F
lo

w
 T

hr
ou

gh
pu

t (
kb

ps
)

sT=0
sT=1
sT=10
sT=100
sT=1000
sT=10000
802.11
RIBB
RIPF

Figure I.8: Average throughput per �ow in Scenario A topology Type 2.

0 2 4 6 8 10
7

8

9

10

11

12

Number of neighbors threshold

F
lo

w
 T

hr
ou

gh
pu

t (
kb

ps
)

sT=0
sT=1
sT=10
sT=100
sT=1000
sT=10000
802.11
RIBB
RIPF

Figure I.9: Average throughput per �ow in Scenario A topology Type 4.

69

I.2.2 Scenario B

0 2 4 6 8 10
0.4

0.5

0.6

0.7

0.8

0.9

1

Number of neighbors threshold
F

lo
w

 T
hr

ou
gh

pu
t (

kb
ps

)

sT=0
sT=1
sT=10
sT=100
sT=1000
sT=10000
802.11
RIBB
RIPF

Figure I.10: Average throughput per �ow in Scenario B topology Type 0 (fully-connected).

0 2 4 6 8 10
10

15

20

25

30

Number of neighbors threshold

F
lo

w
 T

hr
ou

gh
pu

t (
kb

ps
)

sT=0
sT=1
sT=10
sT=100
sT=1000
sT=10000
802.11
RIBB
RIPF

Figure I.11: Average throughput per �ow in Scenario B topology Type 2.

0 2 4 6 8 10
34

36

38

40

42

44

46

48

Number of neighbors threshold

F
lo

w
 T

hr
ou

gh
pu

t (
kb

ps
)

sT=0
sT=1
sT=10
sT=100
sT=1000
sT=10000
802.11
RIBB
RIPF

Figure I.12: Average throughput per �ow in Scenario B topology Type 4.

70

I.3 Fairness

I.3.1 Scenario A

0 2 4 6 8 10
0.15

0.2

0.25

0.3

0.35

Number of neighbors threshold

Ja
in

 F
ai

rn
es

s
In

de
x

 sT=0

sT=1
sT=10
sT=100
sT=1000
sT=10000
802.11
RIBB
RIPF

Figure I.13: Jain Fairness Index in Scenario A topology Type 0 (fully-connected).

0 2 4 6 8 10
0.25

0.3

0.35

0.4

0.45

Number of neighbors threshold

Ja
in

 F
ai

rn
es

s
In

de
x

 sT=0

sT=1
sT=10
sT=100
sT=1000
sT=10000
802.11
RIBB
RIPF

Figure I.14: Jain Fairness Index in Scenario A topology Type 2.

0 2 4 6 8 10
0.28

0.3

0.32

0.34

0.36

0.38

0.4

0.42

Number of neighbors threshold

Ja
in

 F
ai

rn
es

s
In

de
x

 sT=0

sT=1
sT=10
sT=100
sT=1000
sT=10000
802.11
RIBB
RIPF

Figure I.15: Jain Fairness Index in Scenario A topology Type 4.

71

I.3.2 Scenario B

0 2 4 6 8 10
0.2

0.3

0.4

0.5

0.6

0.7

Number of neighbors threshold
Ja

in
 F

ai
rn

es
s

In
de

x

 sT=0
sT=1
sT=10
sT=100
sT=1000
sT=10000
802.11
RIBB
RIPF

Figure I.16: Jain Fairness Index in Scenario B topology Type 0 (fully-connected).

0 2 4 6 8 10
0.3

0.4

0.5

0.6

0.7

Number of neighbors threshold

Ja
in

 F
ai

rn
es

s
In

de
x

 sT=0

sT=1
sT=10
sT=100
sT=1000
sT=10000
802.11
RIBB
RIPF

Figure I.17: Jain Fairness Index in Scenario B topology Type 2.

0 2 4 6 8 10
0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

Number of neighbors threshold

Ja
in

 F
ai

rn
es

s
In

de
x

 sT=0

sT=1
sT=10
sT=100
sT=1000
sT=10000
802.11
RIBB
RIPF

Figure I.18: Jain Fairness Index in Scenario B topology Type 4.

72

II. TOPOLOGY GENERATION

The topologies are generated considering 50 nodes distributed in a �at terrain of 800 × 800

m, with a transmission range of 150 m. The generation process allows to achieve di�erent levels

of sparsity, from fully-connected networks to more sparsed topologies. In order to achieve the

di�erent levels, we set two parameters to tune the sparsity of the network: the minimum number

of neighbors nmin, and the number of divisions sec of the total area. It is expected that the

higher is the minimum number of neighbors of a given topology, more connected is the network,

i.e., a given node will have at least nmin neighbors, and if this value is high, more neighbors

the node will have. On the other hand, the lower is nmin, more sparse the network will be.

The motivation of the number of divisions comes from the fact that the two-dimensional uniform

distribution concentrates the nodes in the center of the area, leading to more connected networks.

To circumvent this problem, we divide the total area in equal sectors, and uniformly distribute

an equal number of nodes in each sector, to achieve higher sparsity of the network in the total

area. Thus, tuning the number of sectors sec within the total area and the minimum number of

neighbors nmin, we can generate topologies with di�erent levels of sparsity. For instance, setting

nmin = 49 (49 neighbors in a 50 node topology) and sec = 1 (one distribution in the whole area)

will generate a fully-connected network. On the other side, setting nmin = 2 (few neighbors per

node) and sec = 16 (dividing the total area in 16 equal parts) will generate a more sparse topology

since it will distribute less nodes in a given region.

However, this process is not a precise function. Therefore, the topologies are generated by trial-

and-error until the characteristics of the de�ned categories are achieved. We classify the topologies

into six types, each one with a di�erent average number of neighboring nodes, de�ned by the ratio

called number of hops, which estimates the average number of hops in the topology. This ratio is

de�ned as total number of nodes (minus 1) divided by the average number of neighbors of each

node. Table II.1 shows the parameters utilized in each topology according to its category.

Type
Average Number

of Neighbors

Average Number

of Hops

Minimum

Neighbors

Sectors

De�ned

0 49.0 1 49 1

1 24.5 2 11 1

2 12.2 4 6 1

3 8.1 6 4 4

4 6.1 8 3 25

5 4.9 10 2 25

Table II.1: Parameters for topology generation.

The distribution of the nodes is given in three steps:

1. Draw the (x,y) coordenates for every node, each node is uniformly distributed within one

73

sector after the other until all nodes are positioned.

int sx=0, sy=0;

for(int j=0; j<nodes; j++)

{

x[j]= (uv.GetValue(sx*sec, (sx+1)*sec));

sx = (sx + 1) % sectors;

if (sx == (sectors-1)) sy = (sy + 1) % sectors;

y[j]= (uv.GetValue(sy*sec, (sy+1)*sec));

}

2. Calculate the distances between all the nodes and verify if there is any node that does not
have the minimum number of neighbors, i.e., if there is the minimum of nodes inside a given
transmission range.

bool somaProbOk = false;

int it=0;

while (!somaProbOk)

{

cout << "try " << it++ << endl;

int somaProb = 0;

for(int j=0; j<nodes; j++)

{

aux = 0;

for(int k=0; k<nodes; k++) if(j != k)

{

dist[j][k] = sqrt(pow((x[j]-x[k]),2) + pow((y[j]-y[k]),2));

if(dist[j][k] <= txrange) aux++;

}

if(aux < nmin)

{

prob[j] = 1;

cout << "\t" << j << " fail" << endl;

}

else {prob[j] = 0;}

}

3. Replace the nodes that did not present the minimum number of neighbors, distributing
uniformly within the total area, until they obtain the minimum number of neighbors or
more.

for(int j=0; j<nodes; j++)

{

aux=0;

if(prob[j] == 1)

{

while(aux < nmin)

{

x[j]= (uv.GetValue(0, limit));

y[j]= (uv.GetValue(0, limit));

for(int k=0; k<nodes; k++) if(j != k)

{

dist[j][k] = sqrt(pow((x[j]-x[k]),2) + pow((y[j]-y[k]),2));

if(dist[j][k] <= txrange) aux++;

}

}

}

}

for(int j=0; j<nodes; j++)

{

somaProb += prob[j];

}

if (somaProb == 0)

{

cout << "\tall ok" << endl;

somaProbOk = true;

}

}

After de�ning the position of the nodes and their respective neighbors, we de�ne the pairs of
data communication. The communication �ows between only immediate neighbors, because we

74

are evaluating concerning link performance only. Thus, if a neighbor is within the transmission
range, we de�ne the pair of communication with a probability given by the proportion prop of
neighbors with available data. Therefore, we can con�gure di�erent tra�c scenarios according to
this proportion. For instance, in Scenario A, we set the probability as 1.0, so that all neighbors
have a data �ow to the given node. And in Scenario B, we set the probability as 0.333, so that
only one third of the neighbors have data available to the given node.

for(int j=0; j<nodes; j++)

{

viz[j]=0;

cca[j]=0;

for (int k=0; k<nodes; k++)

{

dist[j][k] = sqrt(pow((x[j]-x[k]),2) + pow((y[j]-y[k]),2));

if(dist[j][k] <= txrange && j!=k)

{

mediaDistViz += dist[j][k];

v_pairs++;

viz[j]++;

if (uv.GetValue(0,1) < prop)

{

route << k+1 << " " << j+1 << " 0" << endl;

flow_pairs++;

}

}

if(dist[j][k] <= txrange*1.5 && dist[j][k] > txrange && j!=k)

{

mediaDistCca += dist[j][k];

c_pairs++;

cca[j]++;

}

}

}

75

III. NS-3 MAIN SCRIPT

/* -*- Mode: C++; c-file-style: "gnu"; indent-tabs-mode:nil; -*- */

/*

* Copyright (c) 2011-2013 NERds GPDS UnB

*

* This program is free software; you can redistribute it and/or modify

* it under the terms of the GNU General Public License version 2 as

* published by the Free Software Foundation;

*

* This program is distributed in the hope that it will be useful,

* but WITHOUT ANY WARRANTY; without even the implied warranty of

* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

* GNU General Public License for more details.

*

* You should have received a copy of the GNU General Public License

* along with this program; if not, write to the Free Software

* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

*

* Author: Fadhil Firyaguna <firyaguna@ieee.org>

*/

/* FEATURES

*

* ------------ SCRIPT INPUTS ------------------

* All variable parameters are in a 'sim_Info' struct with instance 'info'

* and they are accessible by command line.

* See //--- COMMAND LINE ---// section.

*

* ------------ TOPOLOGY READING ---------------

* It reads a topology file ("topo.dat") and a link file ("routes.dat"),

* varying from 1 to 10, that must be in this directory: "topology/tpX/",

* where X is the number of the topology.

*

* The files must be in this standard:

*

* "topo.dat"

* 526.0783 743.5801

* 397.6912 435.3065

* 183.8507 674.9844

* ...

* First column for x-axis, second column for y-axis.

*

* "routes.dat"

* 1 61 0

* 2 70 0

* 3 1 0

* ...

* First column for destination node, second column for source node.

* At each RngRun, the routes array order will be shuffled.

*

* ------------ PCAP (Wireshark) OUTPUT -------------

* Enable pcap tracing (-tracing=1) to create pcap files of all devices

* to open in Wireshark. By default, it always generate a pcap file for

* device number 1. These files are saved in "tracing/" folder.

*

* Input a prefix name for the pcap files (-out="prefixName").

* Default: "teste".

*

* ------------ SIMULATION RESULTS OUTPUT -----------

* Enable final report output to be saved in a file (-save=1). The output

* will be written in the end of file, so it would not be overwritten and

* will keep all report history. The same final report will be printed in

* the terminal. This file is saved in "tracing/output" if enabled.

*

*

* ------------ SIMULATION SCENARIO --------------

* Wifi Ad Hoc scenario based on 802.11b standard

* Wifi Channel

* - constant propagation delay

* - Friis or TwoRay propagation loss

* - Rician fading (Nakagami loss)

* Wifi Physical Layer

* - energy detection threshold as a function of distance

* - cca threshold proportional to energy threshold

* - constant rate 1 mbps

76

* Mobility

* - constant position

*

* IP Configuration

* - base "10.1.1.0"

* - mask "255.255.255.0"

* - ARP cache is pre-populated before simulation starts

*

* Udp Socket Application

* - each application defined by "routes.dat" starts after 0.05s the

* previous application

* - constant bit rate 1 mbps

* - on and off times are exponentially distributed with mean 0.5s

*/

#include "ns3/core-module.h"

#include "ns3/network-module.h"

#include "ns3/internet-module.h"

#include "ns3/config-store-module.h"

#include "ns3/mobility-module.h"

#include "ns3/wifi-module.h"

#include "ns3/random-variable.h"

#include "ns3/flow-monitor-module.h"

#include "ns3/applications-module.h"

#include <iostream>

#include <fstream>

#include <vector>

#include <string>

#include <cstdio>

#include <cstdlib>

#include <stdexcept>

#include <ctime>

#include <iomanip>

NS_LOG_COMPONENT_DEFINE ("WifiAdhocControle");

using namespace ns3;

using namespace std;

struct sim_Info

{

// simulation parameters

int run; // simulation run

double stop; // simulation time

double warmUp; // network warm up time

int nos; // number of nodes

int rotas; // number of routes

int top; // topology number

char topType; // topology type

bool tracing; // enable pcap tracing

string outfile; // output file name

bool verbose; // enable all log

bool save; // enable simulation report

// physical layer parameters

string phyMode;

double k; // rician factor

double distance; // transmission range [meters]

double factorCca; // cca range [times distance]

float height; // antenna height

double txPowerDbm; // tx power

bool useTwoRay; // enable tworay propagation

double noiseFig; // noise figure

// mac layer parameters

int ssrc; // ssrc counter

double alpha; // success tx probability update rate

int pollingMode; // polling discipline mode

bool rima; // rima

int neighborsThresh; // number of neighbors threshold

double snrVarThresh; // snr variation threshold

bool moreData; // enable moreData flag

int cwmin; // minimum contention window

int cwmax; // maximum contention window

// application layer parameters

double onTime; // exponential mean for ON time

double offTime; // exponential mean for OFF time

uint32_t packetSize; // packet size [bytes]

77

sim_Info ()

{

// simulation parameters

run = 7; // simulation run

stop = 120.0; // simulation time

warmUp = 20; // network warm up time

nos = 0; // number of nodes

rotas = 0; // number of routes

top = 0; // topology number

topType = 'b'; // topology type

tracing = false; // enable pcap tracing

outfile = "teste"; // output file name

verbose = false; // enable all log

save = false; // enable simulation report

// physical layer parameters

phyMode = "DsssRate1Mbps";

k = 100; // rician factor

distance = 150; // transmission range [meters]

factorCca = 1.5; // cca range [times distance]

height = 1.2; // antenna height

txPowerDbm = 10; // tx power

useTwoRay = true; // enable tworay propagation

noiseFig = 10; // noise figure

// mac layer parameters

ssrc = 7; // ssrc counter

alpha = 0.02; // success tx probability update rate

pollingMode = 1; // polling discipline mode

rima = true; // rima

neighborsThresh = 0; // number of neighbors threshold

snrVarThresh = 0; // snr variation threshold

moreData = false; // enable moreData flag

cwmin = 31; // minimum contention window

cwmax = 1023; // maximum contention window

// application layer parameters

onTime = 0.3; // exponential mean for ON time

offTime = 0.9; // exponential mean for OFF time

packetSize = 1412; // packet size [bytes]

}

} info;

struct sim_Result

{

uint64_t sumRxBytesByFlow;

uint64_t sumRxBytesQuadByFlow;

uint64_t sumLostPktsByFlow;

uint64_t sumRxPktsByFlow;

uint64_t sumTxPktsByFlow;

uint64_t sumDelayFlow;

uint64_t nFlows;

/* Throughput Average by Flow (bps) = sumRxBytesByFlow * 8 / (nFlows * time)

* Throughput Quadratic Average by Flow (bps) = sumRxBytesQuadByFlow * 64 / (nFlows * time * time)

* Net Aggregated Throughput Average by Node (bps) = sumRxBytesByFlow * 8 / (nodes * time)

* Fairness = sumRxBytesByFlow^2 / (nFlows * sumRxBytesQuadByFlow)

* Delay per Packet (seconds/packet) = sumDelayFlow / sumRxPktsByFlow

* Lost Ratio (%) = 100 * sumLostPktsByFlow / sumTxPktsByFlow

*/

double thrpAvgByFlow;

double thrpAvgQuadByFlow;

double thrpVarByFlow;

double netThrpAvgByNode;

double fairness;

double delayByPkt;

double lostRatio;

sim_Result ()

{

sumRxBytesByFlow = 0;

sumRxBytesQuadByFlow = 0;

sumLostPktsByFlow = 0;

sumRxPktsByFlow = 0;

sumTxPktsByFlow = 0;

sumDelayFlow = 0;

nFlows = 0;

}

} data;

78

void PopulateArpCache (void);

Vector GetPosition (Ptr<Node> node);

void LerTopologia (char *topo, char *routes);

double rxPowerDbm (double distance, double height, double txPowerDbm, bool useTwoRay);

void ComputeResults (void);

//node coordinates and routes

float *x;

float *y;

ifstream in;

char ch;

int *from;

int *to;

const double PI = 3.14159265358979323846;

const double lambda = (3.0e8 / 2.407e9);

const double freq = 2.407e9;

int

main (int argc, char *argv[])

{

// LogComponentEnable ("AdhocWifiMac", LOG_LEVEL_FUNCTION);

// LogComponentEnable ("MacLow", LOG_LEVEL_DEBUG);

// LogComponentEnable ("DcaTxop", LOG_LEVEL_DEBUG);

// LogComponentEnable ("DcaTxop", LOG_LEVEL_FUNCTION);

// LogComponentEnable ("WifiRemoteStationManager", LOG_LEVEL_DEBUG);

// LogComponentEnable ("DcfManager", LOG_LEVEL_ALL);

// LogComponentEnable ("RegularWifiMac", LOG_LEVEL_DEBUG);

//-----------------------------COMMAND LINE--//

CommandLine cmd;

// simulation parameters

cmd.AddValue ("run", "seed", info.run);

cmd.AddValue ("stop", "stop simulation at this time in seconds", info.stop);

cmd.AddValue ("warmup", "start monitoring network after this time in seconds", info.warmUp);

cmd.AddValue ("top", "input topology file name", info.top);

cmd.AddValue ("topType", "input topology type", info.topType);

cmd.AddValue ("out", "output file name", info.outfile);

cmd.AddValue ("tracing", "enable pcap tracing", info.tracing);

cmd.AddValue ("verbose", "turn on all WifiNetDevice log components", info.verbose);

cmd.AddValue ("save", "enable final report file output", info.save);

cmd.AddValue ("rima", "rima", info.rima);

// physical layer parameters

cmd.AddValue ("phyMode", "Wifi Phy mode", info.phyMode);

cmd.AddValue ("ricianK", "LOS and NLOS ratio", info.k);

cmd.AddValue ("cca", "multiplier factor for CCA distance", info.factorCca);

cmd.AddValue ("noise", "noise figure loss in dB", info.noiseFig);

// mac layer parameters

cmd.AddValue ("ssrc", "max ssrc", info.ssrc);

cmd.AddValue ("alpha", "success tx probability update rate", info.alpha);

cmd.AddValue ("poll", "polling discipline mode", info.pollingMode);

cmd.AddValue ("neighborsThresh", "number of neighbors threshold", info.neighborsThresh);

cmd.AddValue ("snrVarThresh", "snr variation threshold", info.snrVarThresh);

cmd.AddValue ("moreData", "enable moreData flag", info.moreData);

cmd.AddValue ("cwmin", "minimum contention window", info.cwmin);

cmd.AddValue ("cwmax", "maximum contention window", info.cwmax);

// application layer parameters

cmd.AddValue ("onTime", "exponential mean for ON time", info.onTime);

cmd.AddValue ("offTime", "exponential mean for OFF time", info.offTime);

cmd.AddValue ("packetSize", "size of application packet sent", info.packetSize);

cmd.Parse (argc, argv);

//-----------------------------fim-COMMAND LINE -------------------------------------//

RngSeedManager::SetRun (info.run);

char prefix[100];

sprintf (prefix, "-top%d%crun%d-", info.top, info.topType, info.run);

if (info.topType == 'a') info.outfile = "tracing/top-a/" + info.outfile;

if (info.topType == 'b') info.outfile = "tracing/top-b/" + info.outfile;

cout << "Tracing file: " << info.outfile << prefix << endl;

char topofile[100]; //topology file "topo.dat" path name

char routesfile[100]; //routes file "routes.dat" path name

if (info.top == 0)

{

sprintf (topofile,"%s", "topology/teste/topo-teste.dat"); //topology file "topo.dat" path name

sprintf (routesfile,"%s","topology/teste/routes-teste.dat"); //routes file "routes.dat" path name

}

79

else

{

sprintf (topofile,"%s%c%s%d%s","topology/top-",info.topType,"/tp",info.top,"/topo.dat");

sprintf (routesfile,"%s%c%s%d%s","topology/top-",info.topType,"/tp",info.top,"/routes.dat");

}

LerTopologia (topofile, routesfile);

// disable fragmentation for frames below 2200 bytes

Config::SetDefault ("ns3::WifiRemoteStationManager::FragmentationThreshold", StringValue ("2200"));

// turn off RTS/CTS for frames below 2200 bytes

Config::SetDefault ("ns3::WifiRemoteStationManager::RtsCtsThreshold", StringValue ("1000"));

// Fix non-unicast data rate to be the same as that of unicast

Config::SetDefault ("ns3::WifiRemoteStationManager::NonUnicastMode", StringValue (info.phyMode));

if (info.rima)

{

// Change RTR and DATA retry counter

Config::SetDefault ("ns3::WifiRemoteStationManager::MaxSsrc", UintegerValue (info.ssrc));

Config::SetDefault ("ns3::WifiRemoteStationManager::MaxSlrc", UintegerValue (info.ssrc));

// Change success tx probability update rate

Config::SetDefault ("ns3::WifiRemoteStationManager::UpdateRate", DoubleValue (info.alpha));

// Change polling discipline mode

/* Polling modes:

* 0 (default) = adaptive polling

* 1 = alpha moving average (Tiago)

* 2 = proportional fair

* 3 = round robin

*/

Config::SetDefault ("ns3::WifiRemoteStationManager::PollingMode", UintegerValue (info.pollingMode));

Config::SetDefault ("ns3::WifiRemoteStationManager::nNeighborsThreshold", UintegerValue (info.neighborsThresh));

Config::SetDefault ("ns3::WifiRemoteStationManager::SnrVarThreshold", DoubleValue (info.snrVarThresh));

Config::SetDefault ("ns3::WifiRemoteStationManager::EnableMoreData", BooleanValue (info.moreData));

}

Config::SetDefault ("ns3::DcaTxop::CwMin", UintegerValue (info.cwmin - 1));

// Config::SetDefault ("ns3::DcaTxop::MaxCw", UintegerValue (info.cwmax));

NodeContainer c;

c.Create (info.nos);

// The below set of helpers will help us to put together the wifi NICs we want

WifiHelper wifi;

wifi.SetStandard (WIFI_PHY_STANDARD_80211b);

YansWifiPhyHelper wifiPhy = YansWifiPhyHelper::Default ();

// ns-3 supports RadioTap and Prism tracing extensions for 802.11b

wifiPhy.SetPcapDataLinkType (YansWifiPhyHelper::DLT_IEEE802_11_RADIO);

wifiPhy.Set ("RxNoiseFigure", DoubleValue (info.noiseFig));

wifiPhy.SetErrorRateModel ("ns3::YansErrorRateModel");

wifiPhy.Set ("TxGain", DoubleValue(0));

wifiPhy.Set ("RxGain", DoubleValue(0));

wifiPhy.Set ("TxPowerStart", DoubleValue(info.txPowerDbm));

wifiPhy.Set ("TxPowerEnd", DoubleValue(info.txPowerDbm));

// wifiPhy.Set ("EnergyDetectionThreshold", DoubleValue(-81.0));

// wifiPhy.Set ("CcaMode1Threshold", DoubleValue(-91.0));

wifiPhy.Set ("EnergyDetectionThreshold", DoubleValue(rxPowerDbm (info.distance, info.height, info.txPowerDbm, info.useTwoRay)));

wifiPhy.Set ("CcaMode1Threshold", DoubleValue(rxPowerDbm (info.distance*info.factorCca, info.height, info.txPowerDbm, info.useTwoRay)));

YansWifiChannelHelper wifiChannel ;

wifiChannel.SetPropagationDelay ("ns3::ConstantSpeedPropagationDelayModel");

if(!info.useTwoRay){

wifiChannel.AddPropagationLoss ("ns3::FriisPropagationLossModel",

"Frequency", DoubleValue(freq));

}else{

wifiChannel.AddPropagationLoss ("ns3::TwoRayGroundPropagationLossModel",

"Frequency", DoubleValue(freq));

}

/*/------------------------------Rician Fading-----------------------------//

double m;

m = (pow((info.k+1),2)) / (2*info.k+1); // "Wireless Communications" (Molisch)

wifiChannel.AddPropagationLoss ("ns3::NakagamiPropagationLossModel",

"m0", DoubleValue (m),"m1", DoubleValue (m),"m2", DoubleValue (m));

//-------------------------------Rician Fading ---------------------------/*/

wifiPhy.SetChannel (wifiChannel.Create ());

// Add a non-QoS upper mac, and disable rate control

NqosWifiMacHelper wifiMac = NqosWifiMacHelper::Default ();

80

wifi.SetRemoteStationManager ("ns3::ConstantRateWifiManager", "DataMode",StringValue(info.phyMode),

"ControlMode",StringValue(info.phyMode));

// Set it to adhoc mode

wifiMac.SetType ("ns3::AdhocWifiMac");

NetDeviceContainer devices = wifi.Install (wifiPhy, wifiMac, c);

MobilityHelper mobility;

Ptr<ListPositionAllocator> positionAlloc = CreateObject<ListPositionAllocator> ();

for(int j=0;j<info.nos;j++) positionAlloc->Add (Vector (x[j],y[j],info.height)); //alocaÃ§Ã£o das posiÃ§Ãµes dos nÃ³s

mobility.SetPositionAllocator (positionAlloc);

mobility.SetMobilityModel ("ns3::ConstantPositionMobilityModel");

mobility.Install (c);

InternetStackHelper internet;

internet.Install (c);

Ipv4AddressHelper ipv4;

NS_LOG_INFO ("Assign IP Addresses.");

ipv4.SetBase ("10.1.1.0", "255.255.255.0");

Ipv4InterfaceContainer interface = ipv4.Assign (devices);

PopulateArpCache ();

//-----------------------Constant Rate application------------------------------------//

double start;

srand (RngSeedManager::GetRun ());

int index[info.rotas];

for (int i=0; i<info.rotas; i++) index[i] = i;

random_shuffle (&index[0], &index[info.rotas]);

char MeanValueOn[50], MeanValueOff[50];

sprintf (MeanValueOn, "ns3::ExponentialRandomVariable[Mean=%.3f]", info.onTime);

sprintf (MeanValueOff, "ns3::ExponentialRandomVariable[Mean=%.3f]", info.offTime);

cout << MeanValueOn << endl;

for (int j=0; j<info.rotas; j++)

{

int i = index[j];

// cout << from[i] << " -> " << to[i] << endl;

PacketSinkHelper sink("ns3::UdpSocketFactory",

InetSocketAddress(interface.GetAddress(to[i]-1), 80));

ApplicationContainer sinkApp = sink.Install(c.Get(to[i]-1));

start = 0.0 + 0.05*i;

sinkApp.Start(Seconds(start));

sinkApp.Stop(Seconds(info.stop));

OnOffHelper onOff ("ns3::UdpSocketFactory",

InetSocketAddress(interface.GetAddress(from[i]-1), 80));

onOff.SetConstantRate (DataRate("1000000"), info.packetSize);

onOff.SetAttribute ("Remote", AddressValue(InetSocketAddress(interface.GetAddress(to[i]-1),80)));

onOff.SetAttribute ("OnTime", StringValue (MeanValueOn));

onOff.SetAttribute ("OffTime", StringValue (MeanValueOff));

ApplicationContainer udpApp = onOff.Install(c.Get(from[i]-1));

udpApp.Start(Seconds(start));

udpApp.Stop(Seconds(info.stop));

}

//----------------------Constant Rate application--/*/

//--------------- Tracing----------------//

if (info.tracing)

{

// wifiPhy.EnablePcap (info.outfile + prefix, devices);

AsciiTraceHelper ascii;

wifiPhy.EnableAsciiAll (ascii.CreateFileStream ("ascii-" + info.outfile + prefix + ".tr"));

}

// wifiPhy.EnablePcap (info.outfile + prefix, devices.Get (31));

//---------------Tracing------------/*/

//-------------------------------Flow Monitor-----------------------/*/

FlowMonitorHelper flowmon;

Ptr<FlowMonitor> monitor = flowmon.InstallAll ();

monitor->Start (Seconds (info.warmUp)); // start monitoring after network warm up

monitor->Stop (Seconds (info.stop)); // stop monitoring

Simulator::Stop (Seconds (info.stop+0.001));

Simulator::Run ();

monitor->CheckForLostPackets ();

Ptr<Ipv4FlowClassifier> classifier = DynamicCast<Ipv4FlowClassifier> (flowmon.GetClassifier ());

81

std::map<FlowId, FlowMonitor::FlowStats> stats = monitor->GetFlowStats ();

for (std::map<FlowId, FlowMonitor::FlowStats>::const_iterator i = stats.begin (); i != stats.end (); ++i)

{

/* Throughput Average by Flow (bps) = sumRxBytesByFlow * 8 / (nFlows * time)

* Throughput Quadratic Average by Flow (bps) = sumRxBytesQuadByFlow * 64 / (nFlows * time * time)

* Net Aggregated Throughput Average by Node (bps) = sumRxBytesByFlow * 8 / (nodes * time)

* Fairness = sumRxBytesByFlow^2 / (nFlows * sumRxBytesQuadByFlow)

* Delay per Packet (seconds/packet) = sumDelayFlow / sumRxPktsByFlow

* Lost Ratio (%) = 100 * sumLostPktsByFlow / sumTxPktsByFlow

*/

data.nFlows++;

data.sumRxBytesByFlow += i->second.rxBytes; // sum flows

data.sumRxBytesQuadByFlow += i->second.rxBytes * i->second.rxBytes; // sum flowsÂ²

data.sumDelayFlow += i->second.delaySum.GetInteger (); // sum delays

data.sumRxPktsByFlow += i->second.rxPackets; // sum rx pkts

data.sumTxPktsByFlow += i->second.txPackets; // sum tx pkts

data.sumLostPktsByFlow += i->second.lostPackets; // sum lost pkts

}

//---------------------------fim-Flow Monitor-----------------------/*/

Simulator::Destroy ();

ComputeResults ();

return 0;

}

double

rxPowerDbm (double distance, double height, double txPowerDbm, bool useTwoRay)

{

double lossPowerDbm;

if (useTwoRay){

double dCross = (4 * PI * height * height) / lambda;

if (distance <= dCross){

lossPowerDbm = 10 * log10(lambda*lambda / (16.0 * PI*PI * distance*distance));

} else {

lossPowerDbm = 10 * log10((height*height*height*height) / (distance*distance*distance*distance));

}

}

else {

lossPowerDbm = 10 * log10(lambda*lambda / (16.0 * PI*PI * distance*distance));

}

return txPowerDbm + lossPowerDbm;

}

void

LerTopologia (char *topo, char *routes)

{

in.open(topo); // counting number of lines

if (!in){

cerr << "Topology file not found" << endl;

return;

}else{

while (in.get(ch)){

if (ch=='\n'){ info.nos++;} // number of lines is number of nodes

}

}

in.close ();

x = (float *)malloc(info.nos * sizeof(float));

y = (float *)malloc(info.nos * sizeof(float));

in.open(topo); // read coordinates

if (!in){ cerr << "Topology file not found!" << endl; }

else{

while (in){

for(int i=0; i<info.nos; i++){ in >> x[i] >> y[i]; }

in.close ();

}

}

in.close ();

//--//

in.open(routes); // count number of lines

if (!in){

cerr << "Routes file not found" << endl;

return;

}else{

82

while (in.get(ch)){

if (ch=='\n'){ info.rotas++;} // number of lines is number of routes

}

}

in.close ();

from = (int *)malloc(info.rotas * sizeof(int));

to = (int *)malloc(info.rotas * sizeof(int));

in.open(routes); // read routes

if (!in){ cerr << "Routes file not found!" << endl; }

else{

while (in){

for(int i=0; i<info.rotas; i++){ in >> from[i] >> to[i] >> ch; }

in.close ();

}

}

in.close ();

// for (int i=0; i<info.rotas; i++)

// {

// cout << from[i] << " -> " << to[i] << endl;

// }

// int opa;

// cin >> opa;

}

Vector

GetPosition (Ptr<Node> node)

{

Ptr<MobilityModel> mobility = node->GetObject<MobilityModel> ();

return mobility->GetPosition ();

}

void

ComputeResults (void)

{

double deltaT = (info.stop - info.warmUp);

// Throughput Average by Flow (bps)

data.thrpAvgByFlow = (double) data.sumRxBytesByFlow * 8 / (data.nFlows * deltaT);

// Throughput Quadratic Average by Flow (bpsÂ²)

data.thrpAvgQuadByFlow = (double) data.sumRxBytesQuadByFlow * 8*8 / (data.nFlows * deltaT*deltaT);

// Throughput Variance by Flow (bpsÂ²)

data.thrpVarByFlow = data.thrpAvgQuadByFlow - data.thrpAvgByFlow * data.thrpAvgByFlow;

// Network Aggregated Throughput Average by Node (bps)

data.netThrpAvgByNode = (double) data.sumRxBytesByFlow * 8 / (info.nos * deltaT);

// Fairness Jain's Index

data.fairness = (double) data.sumRxBytesByFlow * data.sumRxBytesByFlow / (data.nFlows * data.sumRxBytesQuadByFlow);

// Delay Mean by Packet (nanoseconds)

data.delayByPkt = (double) data.sumDelayFlow / data.sumRxPktsByFlow;

// Lost Ratio (%)

data.lostRatio = (double) 100 * data.sumLostPktsByFlow / data.sumTxPktsByFlow;

time_t now = time(0);

char* dt = ctime(&now);

cout << "==" << endl

<< dt

<< "==" << endl

<< "Simulation parameters:" << endl

<< "Run: \t" << info.run << endl

<< "Time: \t" << info.stop << " s" << endl

<< "Warm up: \t" << info.warmUp << " s" << endl

<< "Topology: \t" << info.top << endl

<< "Nodes: \t" << info.nos << endl

<< "Polling: \t" << info.pollingMode << endl

<< endl

<< "==" << endl

<< "Simulation results:" << endl

<< "Throughput Average by Flow (kbps):\t" << data.thrpAvgByFlow / 1024.0 << endl

<< "Throughput Deviation by Flow (kbps):\t" << sqrt (data.thrpVarByFlow) / 1024.0 << endl

<< "Network Aggregated Throughput Average by Node (kbps):\t" << data.netThrpAvgByNode / 1024.0 << endl

<< "Fairness Jain's Index:\t" << data.fairness << endl

<< "Delay Mean by Packet (seconds):\t" << data.delayByPkt / 1e9 << endl

<< "Packet Lost Ratio (%):\t" << data.lostRatio << endl << endl << endl;

if (info.save)

{

// ofstream saida;

// char filename[100];

// strcpy (filename, info.outfile.c_str());

83

// saida.open (filename, ios::app);

// cout << "Output file: " << info.outfile << endl;

// saida << "==" << endl

// << dt

// << "==" << endl

// << "Simulation parameters:" << endl

// << "Run: \t" << info.run << endl

// << "Time: \t" << info.stop << " s" << endl

// << "Warm up: \t" << info.warmUp << " s" << endl

// << "Topology: \t" << info.top << endl

// << "Nodes: \t" << info.nos << endl

// << "Polling: \t" << info.pollingMode << endl

// << endl

// << "Physical layer parameters:" << endl

// << "Phy mode: \t" << info.phyMode << endl

// << "Rician fading: \t" << info.k << endl

// << "Tx range: \t" << info.distance << " m" << endl

// << "Cca range: \t" << info.distance*info.factorCca << " m" << endl

// << "Tx power: \t" << info.txPowerDbm << " dBm" << endl

// << endl

// << "Mac layer parameters:" << endl

// << "Max ssrc: \t" << info.ssrc << endl

// << endl

// << "Application layer parameters:" << endl

// << "On time: \t" << info.onTime << " s" << endl

// << "Off time: \t" << info.offTime << " s" << endl

// << "Packet size: \t" << info.packetSize << " bytes" << endl

// << endl

// << "==" << endl

// << "Simulation results:" << endl

// << "Throughput Average by Flow (kbps): \t\t\t" << data.thrpAvgByFlow / 1024.0 << endl

// << "Throughput Deviation by Flow (kbps): \t\t\t" << sqrt (data.thrpVarByFlow) / 1024.0 << endl

// << "Network Aggregated Throughput Average by Node (kbps): \t" << data.netThrpAvgByNode / 1024.0 << endl

// << "Fairness Jain's Index: \t\t\t\t\t" << data.fairness << endl

// << "Delay Mean by Packet (miliseconds): \t\t\t" << data.delayByPkt / 1e6 << endl

// << "Packet Lost Ratio (%): \t\t\t\t\t" << data.lostRatio << endl << endl << endl;

// saida.close ();

ofstream sheet;

char filename2[100];

strcpy (filename2 ,info.outfile.c_str());

strcat (filename2, "_sh");

sheet.open (filename2, ios::app);

cout << "Output sheet file: " << filename2 << endl;

// if (sheet.tellp () == sheet.eof ()) sheet << "Top"<<"\t"<< setw (9)<<"FlowThrp"<<"\t"<< setw (9)<<"NetThrp"<<"\t"<< setw (9)<<"Fairness"<<"\t"<< setw (9)<<"Delay" << endl;

sheet << info.pollingMode << "\t" << setw (9) << info.run << "\t" << setw (9) << info.top << "\t" << setw (9) << info.neighborsThresh << "\t" << setw (9) << info.snrVarThresh << "\t" << setw (9) << data.thrpAvgByFlow / 1024.0 << "\t"<< setw (9) << data.netThrpAvgByNode / 1024.0 << "\t" << setw (9) << data.fairness << "\t" << setw (9) << data.delayByPkt / 1e6 << endl;

sheet.close ();

}

}

void

PopulateArpCache (void)

{

Ptr<ArpCache> arp = CreateObject<ArpCache> ();

arp->SetAliveTimeout (Seconds(3600 * 24 * 365));

for (NodeList::Iterator i = NodeList::Begin(); i != NodeList::End(); ++i)

{

Ptr<Ipv4L3Protocol> ip = (*i)->GetObject<Ipv4L3Protocol> ();

NS_ASSERT(ip !=0);

ObjectVectorValue interfaces;

ip->GetAttribute("InterfaceList", interfaces);

for(ObjectVectorValue::Iterator j = interfaces.Begin(); j !=

interfaces.End (); j ++)

{

Ptr<Ipv4Interface> ipIface = (j->second)->GetObject<Ipv4Interface> ();

NS_ASSERT(ipIface != 0);

Ptr<NetDevice> device = ipIface->GetDevice();

NS_ASSERT(device != 0);

Mac48Address addr = Mac48Address::ConvertFrom(device->GetAddress ());

for(uint32_t k = 0; k < ipIface->GetNAddresses (); k ++)

{

Ipv4Address ipAddr = ipIface->GetAddress (k).GetLocal();

if(ipAddr == Ipv4Address::GetLoopback())

continue;

ArpCache::Entry * entry = arp->Add(ipAddr);

entry->MarkWaitReply(0);

entry->MarkAlive(addr);

}

}

}

84

for (NodeList::Iterator i = NodeList::Begin(); i != NodeList::End(); ++i)

{

Ptr<Ipv4L3Protocol> ip = (*i)->GetObject<Ipv4L3Protocol> ();

NS_ASSERT(ip !=0);

ObjectVectorValue interfaces;

ip->GetAttribute("InterfaceList", interfaces);

for(ObjectVectorValue::Iterator j = interfaces.Begin(); j !=

interfaces.End (); j ++)

{

Ptr<Ipv4Interface> ipIface = (j->second)->GetObject<Ipv4Interface> ();

ipIface->SetAttribute("ArpCache", PointerValue(arp));

}

}

}

85

IV. NS-3 CHANGELOG

IV.1 DcaTxop

IV.1.1 dca-txop.h

4d3

< * Copyright (c) 2013,2014 NERds UnB

20,21d18

< * Modifier: Fadhil Firyaguna <firyaguna@ieee.org>

< * Modifier: Mateus Marcuzzo <mateusmarcuzzo@ieee.org>

202,205d198

< /**

< *

< */

< void DequeueByAddress (Mac48Address addr); // RIMA

209,226d201

< * Event handler when a DATA is received.

< *

< * \param snr

< * \param txMode

< */

< void GotData (double snr, WifiMode txMode); // RIMA

< /**

< * Event handler when a DATA timeout has occurred.

< */

< void MissedData (void); // RIMA

< /**

< * Event handler when a NTS is received.

< *

< * \param snr

< * \param txMode

< */

< void GotNts (void); // RIMA

< /**

280,283d254

< *

< */

< bool NeedRtrRetransmission (void); // RIMA

< /**

359,360c330

< double m_ptxBroadcast; // RIMA

< uint32_t m_initMinCw; // RIMA

> uint32_t m_initMinCw;

IV.1.2 dca-txop.cc

4d3

< * Copyright (c) 2013,2014 NERds UnB

20,21d18

< * Modifier: Fadhil Firyaguna <firyaguna@ieee.org>

< * Modifier: Mateus Marcuzzo <mateusmarcuzzo@ieee.org>

32,34d28

< #include "ns3/double.h"

< #include "ns3/random-variable.h"

<

96,112d89

< virtual void DequeueByAddress (Mac48Address addr) // RIMA

< {

< return m_txop->DequeueByAddress (addr);

< }

< virtual void GotData (double snr, WifiMode txMode) // RIMA

< {

< m_txop->GotData (snr, txMode);

< }

< virtual void MissedData (void) // RIMA

< {

< m_txop->MissedData ();

< }

< virtual void GotNts (void) // RIMA

86

< {

< m_txop->GotNts ();

< }

<

158,161d134

< .AddAttribute ("ProbTxBroadcast", "Probability of transmit broadcast", // RIMA

< DoubleValue (0.8),

< MakeDoubleAccessor (&DcaTxop::m_ptxBroadcast),

< MakeDoubleChecker<double> ())

166c139

< MakeUintegerChecker<uint32_t> ())

> MakeUintegerChecker<uint32_t> ())

221d193

< m_low->SetTransmissionListener (m_transmissionListener); // RIMA

296,299d267

< /* RIMA

< * Ao receber um pacote da camada superior, apenas colocar na fila.

< * NÃ£o Ã© necessÃ¡rio pedir acesso ao meio.

< */

306c274

< // StartAccessIfNeeded (); // RIMA

> StartAccessIfNeeded ();

320,323d287

< /* RIMA

< * O acesso Ã© reiniciado apÃ³s uma tentativa bem sucedida

< * (GotData) ou nÃ£o (MissedData) de consulta.

< */

325c289

< if (/*(m_currentPacket != 0

> if ((m_currentPacket != 0

327c291

< && */!m_dcf->IsAccessRequested ())

> && !m_dcf->IsAccessRequested ())

366c330

< NS_LOG_DEBUG ("cwmin=" << m_dcf->GetCwMin () << " cwmax=" << m_dcf->GetCwMax ());

> NS_LOG_DEBUG ("cwmin=" << m_dcf->GetCwMin ());

368,372d331

< // request access for polling

< /*

< * A consulta por dados Ã© iniciada jÃ¡ ao ligar.

< */

< m_manager->RequestAccess (m_dcf); // RIMA

375,383d333

< bool // RIMA

< DcaTxop::NeedRtrRetransmission (void)

< {

< /*

< * Retorna TRUE se o nÃºmero de tentativas de consulta a um dado endereÃ§o

< * Ã© menor que o nÃºmero mÃ¡ximo permitido.

< */

< return m_stationManager->NeedRtrRetransmission (Low ()->GetCurrentPollAddr ());

< }

466,506d415

< void // RIMA

< DcaTxop::DequeueByAddress (Mac48Address addr)

< {

< /*

< * Procura na fila um pacote destinado ao endereÃ§o 'addr'

< * e retorna o primeiro que Ã© encontrado.

< */

< if (m_queue->IsEmpty ())

< {

< NS_LOG_DEBUG ("queue empty, packet for no one");

< }

< else

< {

< NS_LOG_DEBUG ("search packet for " << addr);

< Ptr<const Packet> packet = m_queue->PeekByAddress (&m_currentHdr, addr);

< if (packet == 0)

< {

< NS_LOG_DEBUG ("no packet for " << addr << " found, sorry");

< }

< else

< {

< NS_LOG_DEBUG ("found it");

< m_currentPacket = m_queue->DequeueByAddress (&m_currentHdr, addr);

87

< NS_ASSERT (m_currentPacket != 0);

< uint16_t sequence = m_txMiddle->GetNextSequenceNumberfor (&m_currentHdr);

< m_currentHdr.SetSequenceNumber (sequence);

< m_currentHdr.SetFragmentNumber (0);

< m_currentHdr.SetNoMoreFragments ();

< m_currentHdr.SetNoRetry ();

< m_fragmentNumber = 0;

< NS_LOG_DEBUG ("dequeued size=" << m_currentPacket->GetSize () <<

< ", to=" << m_currentHdr.GetAddr1 () <<

< ", seq=" << m_currentHdr.GetSequenceControl ());

< Low ()->SetCurrentPacket (m_currentPacket, &m_currentHdr);

< }

< }

<

< // Dec 20th 2013

< // m_queue->GetQueueStatus (Low ()->GetAddress ());

< }

<

513,514c422

<

< void //---------- Feb 5th 2014

> void

517,521c425,444

< /* Channel access granted

< * With probability 0.5, transmit broadcast if there is any

< * Else, transmit polling packet

< */

< NS_LOG_DEBUG ("dca-txop access granted");

> NS_LOG_FUNCTION (this);

> if (m_currentPacket == 0)

> {

> if (m_queue->IsEmpty ())

> {

> NS_LOG_DEBUG ("queue empty");

> return;

> }

> m_currentPacket = m_queue->Dequeue (&m_currentHdr);

> NS_ASSERT (m_currentPacket != 0);

> uint16_t sequence = m_txMiddle->GetNextSequenceNumberfor (&m_currentHdr);

> m_currentHdr.SetSequenceNumber (sequence);

> m_currentHdr.SetFragmentNumber (0);

> m_currentHdr.SetNoMoreFragments ();

> m_currentHdr.SetNoRetry ();

> m_fragmentNumber = 0;

> NS_LOG_DEBUG ("dequeued size=" << m_currentPacket->GetSize () <<

> ", to=" << m_currentHdr.GetAddr1 () <<

> ", seq=" << m_currentHdr.GetSequenceControl ());

> }

524,557c447,457

<

< NS_LOG_FUNCTION (this);

<

< UniformVariable p (0,1);

< bool p_txBroadcast = p.GetValue () < m_ptxBroadcast;

<

< WifiMacHeader broadcastHdr;

< Ptr<const Packet> broadcastPacket = m_queue->PeekByAddress (&broadcastHdr, Mac48Address::GetBroadcast ());

< bool gotBroadcast = (broadcastPacket != 0);

<

< if (gotBroadcast and p_txBroadcast)

< {

< m_currentPacket = m_queue->DequeueByAddress (&m_currentHdr, Mac48Address::GetBroadcast ());

< NS_ASSERT (m_currentPacket != 0);

< uint16_t sequence = m_txMiddle->GetNextSequenceNumberfor (&m_currentHdr);

< m_currentHdr.SetSequenceNumber (sequence);

< m_currentHdr.SetFragmentNumber (0);

< m_currentHdr.SetNoMoreFragments ();

< m_currentHdr.SetNoRetry ();

< m_fragmentNumber = 0;

< NS_LOG_DEBUG ("dequeued size=" << m_currentPacket->GetSize () <<

< ", to=" << m_currentHdr.GetAddr1 () <<

< ", seq=" << m_currentHdr.GetSequenceControl ());

<

< params.DisableRtr (); // desabilitar RTR

< params.DisableAck ();

< params.DisableNextData ();

< Low ()->StartTransmission (m_currentPacket, // pacote broadcast

< &m_currentHdr,

< params, // carrega a informaÃ§Ã£o de que o RTR estÃ¡ desabilitado

88

< m_transmissionListener);

< NS_LOG_DEBUG ("tx broadcast");

< return;

< }

> if (m_currentHdr.GetAddr1 ().IsGroup ())

> {

> params.DisableRts ();

> params.DisableAck ();

> params.DisableNextData ();

> Low ()->StartTransmission (m_currentPacket,

> &m_currentHdr,

> params,

> m_transmissionListener);

> NS_LOG_DEBUG ("tx broadcast");

> }

559,565c459,503

< {

< NS_LOG_DEBUG ("dca-txop polling");

< params.EnableRtr (); // habilitar RTR

< Low ()->StartTransmission (m_currentPacket, // objeto vazio

< &m_currentHdr, // objeto vazio

< params, m_transmissionListener);

< }

> {

> params.EnableAck ();

>

> if (NeedFragmentation ())

> {

> WifiMacHeader hdr;

> Ptr<Packet> fragment = GetFragmentPacket (&hdr);

> if (NeedRts (fragment, &hdr))

> {

> params.EnableRts ();

> }

> else

> {

> params.DisableRts ();

> }

> if (IsLastFragment ())

> {

> NS_LOG_DEBUG ("fragmenting last fragment size=" << fragment->GetSize ());

> params.DisableNextData ();

> }

> else

> {

> NS_LOG_DEBUG ("fragmenting size=" << fragment->GetSize ());

> params.EnableNextData (GetNextFragmentSize ());

> }

> Low ()->StartTransmission (fragment, &hdr, params,

> m_transmissionListener);

> }

> else

> {

> if (NeedRts (m_currentPacket, &m_currentHdr))

> {

> params.EnableRts ();

> NS_LOG_DEBUG ("tx unicast rts");

> }

> else

> {

> params.DisableRts ();

> NS_LOG_DEBUG ("tx unicast");

> }

> params.DisableNextData ();

> Low ()->StartTransmission (m_currentPacket, &m_currentHdr,

> params, m_transmissionListener);

> }

> }

578a517

> NS_LOG_DEBUG ("cwmin=" << m_dcf->GetCwMin ());

591,656d529

< void // RIMA

< DcaTxop::GotData (double snr, WifiMode txMode)

< {

< NS_LOG_FUNCTION (this << snr << txMode);

< NS_LOG_DEBUG ("got data");

<

< /*

< * ApÃ³s o recebimento do DATA, conclui-se que o handshake

89

< * foi bem sucedido, reseta a janela de contenÃ§Ã£o e

< * reinicia o backoff.

< */

< m_dcf->ResetCw (); // A atualizaÃ§Ã£o da CW Ã© feita pelo consultor

< NS_LOG_DEBUG ("cwmin=" << m_dcf->GetCwMin () << " cwmax=" << m_dcf->GetCwMax ());

< m_dcf->StartBackoffNow (m_rng->GetNext (0, m_dcf->GetCw ()));

< RestartAccessIfNeeded ();

< }

< void // RIMA

< DcaTxop::MissedData (void)

< {

< NS_LOG_FUNCTION (this);

< NS_LOG_DEBUG ("missed data from " << Low ()->GetCurrentPollAddr ());

< if (!NeedRtrRetransmission ())

< /*

< * Nesta parte, o nÃºmero de tentativas de envio de RTR

< * chegou ao mÃ¡ximo. A consulta para um determinado nÃ³

< * Ã© abortada, a janela de contenÃ§Ã£o Ã© reiniciada para

< * consultar um novo vizinho.

< */

< {

< NS_LOG_DEBUG ("Data Fail");

< m_stationManager->ReportFinalRtrFailed (Low ()->GetCurrentPollAddr ());

< // if (!m_txFailedCallback.IsNull ())

< // {

< // m_txFailedCallback (m_currentHdr);

< // }

< // to reset the dcf.

< // m_currentPacket = 0;

< m_dcf->ResetCw (); // A atualizaÃ§Ã£o da CW Ã© feita pelo consultor

< }

< else

< {

< /*

< * Nesta parte, continuam as tentativas de consulta.

< * A janela de contenÃ§Ã£o Ã© aumentada devido o handshake

< * mal sucedido e reinicia o backoff.

< */

< m_dcf->UpdateFailedCw (); // A atualizaÃ§Ã£o da CW Ã© feita pelo consultor

< }

< NS_LOG_DEBUG ("cwmin=" << m_dcf->GetCwMin () << " cwmax=" << m_dcf->GetCwMax ());

< m_dcf->StartBackoffNow (m_rng->GetNext (0, m_dcf->GetCw ()));

< RestartAccessIfNeeded ();

< }

<

< void // RIMA

< DcaTxop::GotNts (void)

< {

< NS_LOG_FUNCTION (this);

< NS_LOG_DEBUG ("got nts");

< m_stationManager->ReportFinalRtrFailed (Low ()->GetCurrentPollAddr ());

< // m_dcf->ResetCw ();

< m_dcf->UpdateFailedCw ();

< NS_LOG_DEBUG ("cwmin=" << m_dcf->GetCwMin () << " cwmax=" << m_dcf->GetCwMax ());

< m_dcf->StartBackoffNow (m_rng->GetNext (0, m_dcf->GetCw ()));

< RestartAccessIfNeeded ();

< }

<

683a557

> NS_LOG_DEBUG ("cwmin=" << m_dcf->GetCwMin ());

687,688c561

<

< void // RIMA Apr 11th 2013

> void

704,714d576

<

< /* Eu estava esperando meu backoff terminar quando de repente

< * recebo um RTR e tenho DATA para mandar. Interrompo meu

< * temporizador, mando o DATA e recebo o ACK. Retomo o tempo

< * do backoff de onde tinha parado e continuo a esperar.

< *

< * Portanto, nÃ£o preciso resetar a Cw, nem gerar um novo

< * tempo de backoff para recomeÃ§ar o recÃºo.

< *

< * Com o ACK recebido, eu posso descartar o pacote jÃ¡ enviado.

< */

716,718c578,581

< // m_dcf->ResetCw (); // O transmissor nÃ£o necessita atualizar Cw. Apenas o consultor.

< // m_dcf->StartBackoffNow (m_rng->GetNext (0, m_dcf->GetCw ()));

< // RestartAccessIfNeeded ();

90

> m_dcf->ResetCw ();

> NS_LOG_DEBUG ("cwmin=" << m_dcf->GetCwMin ());

> m_dcf->StartBackoffNow (m_rng->GetNext (0, m_dcf->GetCw ()));

> RestartAccessIfNeeded ();

732,735d594

< /*

< * Nesta parte, o limite de retransmissÃµes para um dado endereÃ§o foi alcanÃ§ado.

< * Descartar o pacote.

< */

741a601

> // to reset the dcf.

743c603

< // m_dcf->ResetCw (); // O transmissor nÃ£o necessita atualizar Cw. Apenas o consultor.

> m_dcf->ResetCw ();

747,750d606

< /*

< * Nesta parte, o nÃºmero de retransmissÃµes para um dado endereÃ§o Ã© menor que o limite.

< * Devolver o pacote que nÃ£o foi reconhecido para a comeÃ§o da fila.

< */

753,754c609

< m_queue->PushFront (m_currentPacket, m_currentHdr);

< // m_dcf->UpdateFailedCw (); // O transmissor nÃ£o necessita atualizar Cw. Apenas o consultor.

> m_dcf->UpdateFailedCw ();

756,767c611,613

< /*

< * Eu estava esperando meu backoff terminar quando de repente

< * recebo um RTR e tenho DATA para mandar. Interrompo meu

< * temporizador, mando o DATA e mas nÃ£o recebo o ACK. EntÃ£o

< * eu deixo o pacote que mandei para ele ser consultado de novo

< * e retomo o tempo do backoff de onde tinha parado.

< *

< * Portanto, nÃ£o preciso resetar a Cw, nem gerar um novo

< * tempo de backoff para recomeÃ§ar o recÃºo.

< */

< // m_dcf->StartBackoffNow (m_rng->GetNext (0, m_dcf->GetCw ()));

< // RestartAccessIfNeeded ();

> NS_LOG_DEBUG ("cwmin=" << m_dcf->GetCwMin ());

> m_dcf->StartBackoffNow (m_rng->GetNext (0, m_dcf->GetCw ()));

> RestartAccessIfNeeded ();

825c671

< void // RIMA

> void

831c677,678

< // m_dcf->ResetCw ();

> m_dcf->ResetCw ();

> NS_LOG_DEBUG ("cwmin=" << m_dcf->GetCwMin ());

833,834c680

< // StartAccessIfNeeded ();

< RestartAccessIfNeeded ();

> StartAccessIfNeeded ();

IV.2 DcfManager

IV.2.1 dcf-manager.h

4d3

< * Copyright (c) 2013,2014 NERds UnB

20,21d18

< * Modifier: Fadhil Firyaguna <firyaguna@ieee.org>

< * Modifier: Mateus Marcuzzo <mateusmarcuzzo@ieee.org>

372,381d368

< /**

< * Notify that DATA timer has started for the given duration.

< *

< * \param duration

< */

< void NotifyDataTimeoutStartNow (Time duration); // RIMA

< /**

< * Notify that DATA timer has resetted.

< */

91

< void NotifyDataTimeoutResetNow (); // RIMA

490d476

< Time m_lastDataTimeoutEnd; // RIMA

IV.2.2 dcf-manager.cc

4d3

< * Copyright (c) 2013,2014 NERds UnB

20,21d18

< * Modifier: Fadhil Firyaguna <firyaguna@ieee.org>

< * Modifier: Mateus Marcuzzo <mateusmarcuzzo@ieee.org>

211,218d207

< virtual void DataTimeoutStart (Time duration) // RIMA

< {

< m_dcf->NotifyDataTimeoutStartNow (duration);

< }

< virtual void DataTimeoutReset () // RIMA

< {

< m_dcf->NotifyDataTimeoutResetNow ();

< }

276d264

< m_lastDataTimeoutEnd (MicroSeconds (0)), // RIMA

544d531

< Time dataTimeoutAccessStart = m_lastDataTimeoutEnd + m_sifs; // RIMA

551,552c538

< MostRecent(ctsTimeoutAccessStart,

< dataTimeoutAccessStart),

> ctsTimeoutAccessStart,

732,735d717

< if (m_lastDataTimeoutEnd > now) // RIMA

< {

< m_lastDataTimeoutEnd = now;

< }

821,831d802

< DoRestartAccessTimeoutIfNeeded ();

< }

< void // RIMA

< DcfManager::NotifyDataTimeoutStartNow (Time duration)

< {

< m_lastDataTimeoutEnd = Simulator::Now () + duration;

< }

< void // RIMA

< DcfManager::NotifyDataTimeoutResetNow ()

< {

< m_lastDataTimeoutEnd = Simulator::Now ();

IV.3 EdcaTxopN

IV.3.1 edca-txop-n.h

IV.3.2 edca-txop-n.cc

5d4

< * Copyright (c) 2013,2014 NERds UnB

22d20

< * Modifier: Fadhil Firyaguna <firyaguna@ieee.org>

83,95d80

<

< virtual void DequeueByAddress (Mac48Address addr) // RIMA

< {

< }

< virtual void GotData (double snr, WifiMode txMode) // RIMA

< {

< }

< virtual void MissedData (void) // RIMA

< {

< }

< virtual void GotNts (void) // RIMA

< {

< }

92

IV.4 MacLow

IV.4.1 mac-low.h

5d4

< * Copyright (c) 2013,2014 NERds UnB

22,23d20

< * Modifier: Fadhil Firyaguna <firyaguna@ieee.org>

< * Modifier: Mateus Marcuzzo <mateusmarcuzzo@ieee.org>

66,86d62

< * \param addr the destination address of the packet

< */

< virtual void DequeueByAddress (Mac48Address addr) = 0; // RIMA

< /**

< * \param snr the snr of the cts

< * \param txMode the txMode of the cts

< *

< * ns3::MacLow received an expected DATA within

< * DataTimeout.

< */

< virtual void GotData (double snr, WifiMode txMode) = 0; // RIMA

< /**

< * ns3::MacLow did not receive an expected DATA

< * within DataTimeout

< */

< virtual void MissedData (void) = 0; // RIMA

< /**

< * ns3::MacLow received a NTS within DataTimeout

< */

< virtual void GotNts (void) = 0; // RIMA

< /**

208,217d183

< /**

< * Notify that DATA timeout has started for a given duration.

< *

< * \param duration duration of DATA timeout

< */

< virtual void DataTimeoutStart (Time duration) = 0; // RIMA

< /**

< * Notify that DATA timeout has resetted.

< */

< virtual void DataTimeoutReset () = 0; // RIMA

258,264d223

< * Send a RTR, and wait DATATimeout for a DATA. If we get a

< * DATA on time, call MacLowTransmissionListener::GotData

< * and send ACK. Otherwise, call MacLowTransmissionListener::MissedData

< * and do not send ACK.

< */

< void EnableRtr (void); // RIMA

< /**

331,334d289

< * Do not send rtr before receiving data.

< */

< void DisableRtr (void); // RIMA

< /**

401,405d355

< /**

< * \returns true if RTR should be sent before

< * receiving data, false otherwise

< */

< bool MustSendRtr (void) const; // RIMA

444d393

< bool m_sendRtr; // RIMA

511,516d459

< * Set DATA timeout of this MacLow.

< *

< * \param ctsTimeout DATA timeout of this MacLow

< */

< void SetDataTimeout (Time dataTimeout); // RIMA

< /**

593,598d535

< * Return DATA timeout of this MacLow.

< *

< * \return DATA timeout

< */

< Time GetDataTimeout (void) const; // RIMA

< /**

641,661d577

<

93

< void SetTransmissionListener (MacLowTransmissionListener *listener); // RIMA

< void SetCurrentPollAddr (Mac48Address ad); // RIMA

< Mac48Address GetCurrentPollAddr (void) const; // RIMA

< Mac48Address GetPollingAddress (void); // RIMA

<

< void UpdatePollingTable (Mac48Address addr, int txok); // RIMA

<

< void CheckRouteRequest (Ptr<Packet> packet, Mac48Address addr); // RIMA AODV

< void CheckRouteReply (Ptr<Packet> packet, Mac48Address addr); // RIMA AODV

< void CheckRouteError (Ptr<Packet> packet, Mac48Address addr); // RIMA AODV

< void ResetRoute (Mac48Address addr); // RIMA AODV

<

< /**

< * \param packet packet requested by polling

< * \param hdr 802.11 header for packet

< *

< * This method copies the packet from DcaTxop to MacLow, to be transmitted

< * to the poller node.

< */

< void SetCurrentPacket (Ptr<const Packet> packet, const WifiMacHeader* hdr); // RIMA

795,800d710

< * Return the total RTR size (including FCS trailer).

< *

< * \return the total RTR size

< */

< uint32_t GetRtrSize (void) const; // RIMA

< /**

832,840d741

< * Return a TXVECTOR for the RTR frame given the destination.

< * The function consults WifiRemoteStationManager, which controls the rate

< * to different destinations.

< *

< * \param from the MAC address of the RTR sender

< * \return TXVECTOR for the RTS of the given packet

< */

< WifiTxVector GetRtrTxVector (Mac48Address from) const; // RIMA

< /**

896,905d796

< * Return a TXVECTOR for the NTS frame given the destination and the mode of the RTR

< * used by the sender.

< * The function consults WifiRemoteStationManager, which controls the rate

< * to different destinations.

< *

< * \param to the MAC address of the NTS receiver

< * \return TXVECTOR for the NTS

< */

< WifiTxVector GetNtsTxVectorForRtr (Mac48Address to) const; // RIMA

< /**

1009,1021d899

< * DATA timer should be started for the given

< * duration.

< *

< * \param duration

< */

< void NotifyDataTimeoutStartNow (Time duration); // RIMA

< /**

< * Notify DcfManager (via DcfListener) that

< * DATA timer should be resetted.

< */

< void NotifyDataTimeoutResetNow (); // RIMA

< /**

< * Notify DcfManager (via DcfListener) that

1064,1067d941

< * Event handler when DATA timeout occurs.

< */

< void DataTimeout (void); // RIMA

< /**

1076,1084d949

< * Send NTS after receiving RTR.

< *

< * \param source

< * \param duration

< * \param txMode

< * \param rtsSnr

< */

< void SendNtsAfterRtr (Mac48Address source, Time duration, WifiMode txMode, double rtsSnr); // RIMA

< /**

1103,1110d967

< * Send DATA after receiving RTR.

< *

< * \param source

94

< * \param duration

< * \param txMode

< */

< void SendDataAfterRtr (Mac48Address source, Time duration, WifiMode txMode, double rtsSnr); // RIMA

< /**

1129,1132d985

< * Send RTS to begin RTR-DATA-ACK transaction.

< */

< void SendRtrForPacket (void); // RIMA

< /**

1236d1088

< EventId m_dataTimeoutEvent; // RIMA //!< DATA timeout event

1240d1091

< EventId m_sendNtsEvent; // RIMA //!< Event to send NTS

1250d1100

< Mac48Address m_currentPollAddr; // RIMA //!< Address to poll

1256d1105

< Time m_dataTimeout; // RIMA //!< DATA timeout

IV.4.2 mac-low.cc

5d4

< * Copyright (c) 2013,2014 NERds UnB

22,23d20

< * Modifier: Fadhil Firyaguna <firyaguna@ieee.org>

< * Modifier: Mateus Marcuzzo <mateusmarcuzzo@ieee.org>

41,43d37

< #include "ns3/ipv4-header.h"

< #include "ns3/aodv-packet.h"

<

88,97d81

< void // RIMA

< MacLowTransmissionParameters::EnableRtr (void)

< {

< m_sendRtr = true;

< }

< void // RIMA

< MacLowTransmissionParameters::DisableRtr (void)

< {

< m_sendRtr = false;

< }

198,202d181

< bool // RIMA

< MacLowTransmissionParameters::MustSendRtr (void) const

< {

< return m_sendRtr;

< }

316d294

< m_dataTimeoutEvent (), // RIMA

416,420d393

< if (m_dataTimeoutEvent.IsRunning ()) // RIMA

< {

< m_dataTimeoutEvent.Cancel ();

< oneRunning = true;

< }

482,486d454

< void // RIMA

< MacLow::SetDataTimeout (Time dataTimeout)

< {

< m_dataTimeout = dataTimeout;

< }

552,556d519

< Time // RIMA

< MacLow::GetDataTimeout (void) const

< {

< return m_dataTimeout;

< }

593,724d555

< void // RIMA

< MacLow::SetTransmissionListener (MacLowTransmissionListener *listener)

< {

< m_listener = listener;

< }

<

< void // RIMA

< MacLow::SetCurrentPollAddr (Mac48Address addr)

< {

< m_currentPollAddr = addr;

< }

95

<

< Mac48Address // RIMA

< MacLow::GetCurrentPollAddr (void) const

< {

< return m_currentPollAddr;

< }

< void // RIMA

< MacLow::UpdatePollingTable (Mac48Address addr, int txok)

< {

< m_stationManager->UpdateTxProbability (addr, txok);

< }

<

< Mac48Address // RIMA

< MacLow::GetPollingAddress (void)

< {

< if ((m_stationManager->NeedRtrRetransmission (m_currentPollAddr)

< and m_currentPollAddr != Mac48Address ("00:00:00:00:00:00"))

< or m_stationManager->HasMoreData (m_currentPollAddr))

< /*

< * Insistir a consulta ao mesmo endereÃ§o atÃ© o nÃºmero mÃ¡ximo de tentativas.

< *

< * ou

< * Se Ãºltimo transmissor tiver mais dados, insistir tambÃ©m.

< */

< {

< return m_currentPollAddr;

< }

< else

< {

< return m_stationManager->NextPollingAddress (m_currentPollAddr);

< /*/------------------- TEST -----------------------------//

< uint8_t addr[6];

< m_self.CopyTo (addr);

< Mac48Address nextPoll;

< addr[5] = addr[5] - 1;

< if (addr[5] == 0) addr[5] = 9;

< nextPoll.CopyFrom (addr);

< return nextPoll;

< //------------------- TEST -----------------------------/*/

< }

< }

<

< void // RIMA

< MacLow::SetCurrentPacket (Ptr<const Packet> packet, const WifiMacHeader* hdr)

< {

< if (packet != 0)

< {

< m_currentPacket = packet->Copy ();

< m_currentHdr = *hdr;

< }

< }

<

< void // RIMA AODV

< MacLow::CheckRouteRequest (Ptr<Packet> packet, Mac48Address addr)

< {

< /* RIMA AODV CROSS LAYER - Apr 1st 2014

< * checar se Ã© pacote ip

< * tiro cabeÃ§alho ip

< * checar se Ã© pacote aodv (verificar socket 654)

< * olho cabeÃ§alho TypeHeader genÃ©rico

< * verifico se Ã© RREQ

< * se sim, m_routeRequested = true

< * coloco cabeÃ§alho ip de volta

< */

< Ptr<Packet> copy = packet->Copy ();

< PacketMetadata::ItemIterator metadataIterator = copy->BeginItem ();

< PacketMetadata::Item item;

< while (metadataIterator.HasNext ())

< {

< item = metadataIterator.Next ();

< NS_LOG_FUNCTION ("item name: " << item.tid.GetName ());

< if (item.tid.GetName () == "ns3::aodv::RreqHeader")

< {

< m_stationManager->SetRouteRequester (addr, true);

< }

< }

< }

<

< void // RIMA AODV

< MacLow::CheckRouteReply (Ptr<Packet> packet, Mac48Address addr)

< {

96

< Ptr<Packet> copy = packet->Copy ();

< PacketMetadata::ItemIterator metadataIterator = copy->BeginItem ();

< PacketMetadata::Item item;

< while (metadataIterator.HasNext ())

< {

< item = metadataIterator.Next ();

< NS_LOG_FUNCTION ("item name: " << item.tid.GetName ());

< if (item.tid.GetName () == "ns3::aodv::RrepHeader")

< {

< m_stationManager->SetRouteReplier (addr, true);

< Time activeRouteTimeout = Seconds (3);

< Simulator::Schedule (activeRouteTimeout, &MacLow::ResetRoute, this, addr);

< }

< }

< }

<

< void // RIMA AODV

< MacLow::CheckRouteError (Ptr<Packet> packet, Mac48Address addr)

< {

< Ptr<Packet> copy = packet->Copy ();

< PacketMetadata::ItemIterator metadataIterator = copy->BeginItem ();

< PacketMetadata::Item item;

< while (metadataIterator.HasNext ())

< {

< item = metadataIterator.Next ();

< NS_LOG_FUNCTION ("item name: " << item.tid.GetName ());

< if (item.tid.GetName () == "ns3::aodv::RerrHeader")

< {

< m_stationManager->SetRouteReplier (addr, false);

< m_stationManager->SetRouteRequester (addr, false);

< }

< }

< }

<

< void // RIMA AODV

< MacLow::ResetRoute (Mac48Address addr)

< {

< m_stationManager->SetRouteReplier (addr, false);

< }

<

758,766c589,590

< /*

< * Se nÃ£o havia pacote na fila, entÃ£o o objeto Ptr<const Packet> packet

< * foi passado nulo, logo nÃ£o Ã© necessÃ¡rio realizar a cÃ³pia para o MacLow.

< */

< if (packet != 0)

< {

< m_currentPacket = packet->Copy ();

< m_currentHdr = *hdr;

< }

> m_currentPacket = packet->Copy ();

> m_currentHdr = *hdr;

773,777c597,600

< /*

< * Verificar se foi RTR foi habilitado (envio de pacotes comuns)

< * ou nÃ£o (envio de broadcast)

< */

< if (m_txParams.MustSendRtr ())

> NS_LOG_DEBUG ("startTx size=" << GetSize (m_currentPacket, &m_currentHdr) <<

> ", to=" << m_currentHdr.GetAddr1 () << ", listener=" << m_listener);

>

> if (m_txParams.MustSendRts ())

779c602

< SendRtrForPacket ();

> SendRtsForPacket ();

781c604

< else if (packet != 0)

> else

783,785d605

< NS_LOG_DEBUG ("startTx size=" << GetSize (m_currentPacket, &m_currentHdr) <<

< ", to=" << m_currentHdr.GetAddr1 () << ", listener=" << m_listener);

<

846,857d665

<

< /*

< * Atualizar lista de vizinhos

< */

97

< if (!m_stationManager->IsNeighbor (hdr.GetAddr2 ())

< && hdr.GetAddr2 () != Mac48Address ("00:00:00:00:00:00"))

< {

< // NS_LOG_DEBUG ("Vizinhos de " << m_self);

< m_stationManager->AddNeighbor (hdr.GetAddr2 ());

< }

< m_stationManager->UpdateNeighborhood ();

< m_stationManager->RecSnr (hdr.GetAddr2 (), rxSnr);

912,983d719

< else if (hdr.IsRtr ())

< {

< /*

< * A STA that is addressed by an RTR frame shall transmit a DATA frame after a SIFS

< * period if the NAV at the STA receiving the RTR frame indicates that the medium is

< * idle. If the NAV at the STA receiving the RTR indicates the medium is not idle,

< * that STA shall not respond to the RTR frame.

< */

< if (isPrevNavZero && hdr.GetAddr1 () == m_self)

< {

< if (m_currentPacket == 0)

< {

< /*

< * Verifica se hÃ¡ algum pacote na fila para o endereÃ§o de origem do RTR.

< */

< m_listener->DequeueByAddress (hdr.GetAddr2 ());

< }

< NS_LOG_DEBUG ("rx RTR from=" << hdr.GetAddr2 () << " to=" << hdr.GetAddr1 ());

< NS_ASSERT (m_sendDataEvent.IsExpired ());

< m_stationManager->ReportRxOk (hdr.GetAddr2 (), &hdr,

< rxSnr, txMode);

<

< if (m_currentHdr.GetAddr1 () == hdr.GetAddr2 () && m_currentPacket != 0)

< /*

< * O pacote atual Ã© destinado ao endereÃ§o requisitante.

< * Enviar o pacote de dados para o destino.

< */

< {

< m_txParams.EnableAck ();

< m_sendDataEvent = Simulator::Schedule (GetSifs (),

< &MacLow::SendDataAfterRtr, this,

< hdr.GetAddr2 (),

< hdr.GetDuration (),

< txMode,

< rxSnr);

< }

< else

< /*

< * O pacote atual nÃ£o Ã© destinado ao endereÃ§o requisitante.

< * Enviar o resposta negativa (NTS) para o destino.

< */

< {

< m_sendNtsEvent = Simulator::Schedule (GetSifs (), // criar objeto m_sendNtsEvent - ok fadhil

< &MacLow::SendNtsAfterRtr, this,

< hdr.GetAddr2 (),

< hdr.GetDuration (),

< txMode,

< rxSnr);

< }

< }

< else

< /*

< * Foi recebido um RTR alheio.

< * Apenas atualizar NAV e aguardar o final da transmissÃ£o.

< */

< {

< NS_LOG_DEBUG ("rx RTR from=" << hdr.GetAddr2 () << ", not for me");

< }

< }

< else if (hdr.IsNts ()

< && hdr.GetAddr1 () == m_self)

< {

< NS_LOG_DEBUG ("rx NTS from=" << m_currentPollAddr << ", no DATA for " << m_self);

< SnrTag tag;

< packet->RemovePacketTag (tag);

< m_stationManager->ReportRxOk (m_currentPollAddr, &hdr, rxSnr, txMode);

< m_stationManager->ReportRtrOk (m_currentPollAddr, rxSnr, txMode, tag.Get ());

< UpdatePollingTable (hdr.GetAddr2 (), 0);

< m_dataTimeoutEvent.Cancel ();

< NotifyDataTimeoutResetNow ();

< m_listener->GotNts ();

< }

98

1084,1109d819

<

< // RIMA

< SnrTag tag;

< packet->RemovePacketTag (tag);

< m_stationManager->ReportRtrOk (m_currentPollAddr,

< rxSnr, txMode, tag.Get ());

< m_dataTimeoutEvent.Cancel ();

< NotifyDataTimeoutResetNow ();

< m_listener->GotData (rxSnr, txMode);

<

< // CheckRouteRequest (packet, hdr.GetAddr2 ()); // RIMA AODV

<

< // RIMA DATA STREAM

< bool moreData = false;

< if (m_stationManager->IsMoreDataEnabled ())

< {

< moreData = hdr.IsMoreData ();

< }

< m_stationManager->SetMoreData (hdr.GetAddr2 (), moreData);

< if (!moreData)

< {

< // depois que termina o burst (nÃ£o hÃ¡ mais dados),

< // atualiza a prob de sucesso de handshake

< UpdatePollingTable (hdr.GetAddr2 (), 1); // RIMA

< }

<

1232,1238d941

< MacLow::GetRtrSize (void) const // RIMA

< {

< WifiMacHeader rtr;

< rtr.SetType (WIFI_MAC_CTL_RTR);

< return rtr.GetSize () + 4;

< }

< uint32_t

1310,1315d1012

< WifiTxVector // RIMA

< MacLow::GetRtrTxVector (Mac48Address address) const

< {

< return m_stationManager->GetRtrTxVector (address); // TODO

< }

<

1353,1358d1049

< WifiTxVector // RIMA

< MacLow::GetNtsTxVectorForRtr (Mac48Address to) const

< {

< return m_stationManager->GetRtrTxVector (to); // a priori utilizar o mesmo txMode do RTR

< }

<

1458c1149

< if (hdr.IsRtr () && navUpdated)

> if (hdr.IsRts () && navUpdated)

1533,1548d1223

< void // RIMA

< MacLow::NotifyDataTimeoutStartNow (Time duration)

< {

< for (DcfListenersCI i = m_dcfListeners.begin (); i != m_dcfListeners.end (); i++)

< {

< (*i)->DataTimeoutStart (duration);

< }

< }

< void // RIMA

< MacLow::NotifyDataTimeoutResetNow ()

< {

< for (DcfListenersCI i = m_dcfListeners.begin (); i != m_dcfListeners.end (); i++)

< {

< (*i)->DataTimeoutReset ();

< }

< }

1580,1599d1254

< void // RIMA

< MacLow::DataTimeout (void)

< {

< NS_LOG_FUNCTION (this);

< NS_LOG_DEBUG ("Data timeout");

< // XXX: should check that there was no rx start before now.

< // we should restart a new data timeout now until the expected

< // end of rx if there was a rx start before now.

< m_stationManager->ReportRtrFailed (m_currentPollAddr);

< // UpdatePollingTable (m_currentPollAddr, 0);

99

< MacLowTransmissionListener *listener = m_listener;

< // Normalmente, se apaga o listener pois Ã© criado um novo

< // quando comeÃ§a um novo handshake no StartTransmission.

< // PorÃ©m, sÃ³ Ã© chamado o StartTransmission quando faz polling.

< // Quando vc nÃ£o faz polling, vc estÃ¡ esperando receber e

< // o listener deve estar sempre ativo.

< // m_listener = 0;

< listener->MissedData ();

< }

<

1624,1629c1279

< // Normalmente, se apaga o listener pois Ã© criado um novo

< // quando comeÃ§a um novo handshake no StartTransmission.

< // PorÃ©m, sÃ³ Ã© chamado o StartTransmission quando faz polling.

< // Quando vc nÃ£o faz polling, vc estÃ¡ esperando receber e

< // o listener deve estar sempre ativo.

< // m_listener = 0; // RIMA Apr 12th 2013

> m_listener = 0;

1679,1750d1328

< void // RIMA

< MacLow::SendRtrForPacket (void)

< {

< /* send an RTR polling for a chosen destination */

<

< WifiMacHeader rtr;

< rtr.SetType (WIFI_MAC_CTL_RTR);

< rtr.SetDsNotFrom ();

< rtr.SetDsNotTo ();

< rtr.SetNoRetry ();

< rtr.SetNoMoreFragments ();

< rtr.SetAddr2 (m_self); // endereÃ§o do remetente do RTR

<

< if (!m_stationManager->IsNeighborhoodEmpty ())

< {

< m_currentPollAddr = GetPollingAddress (); // mÃ©todo que retorna o endereÃ§o de quem deve ser consultado

< }

< else

< {

< m_currentPollAddr = Mac48Address ("00:00:00:00:00:00");

< }

< Mac48Address addr1 = m_currentPollAddr;

< rtr.SetAddr1 (addr1); // endereÃ§o do destino do RTR

<

< /* No mÃ©todo SendRtsForPacket original, Ã© utilizado o WifiMode do quadro de dados (dataTxMode)

< * que depende do m_currentPacket para o cÃ¡lculo da duraÃ§Ã£o da transmissÃ£o (txDuration). Como

< * nÃ£o hÃ¡ aqui um m_currentPacket (Ã© nulo), o WifiMode Ã© o padrÃ£o enquanto nÃ£o haver decisÃ£o de

< * projeto melhor.

< */

< WifiTxVector rtrTxVector = GetRtrTxVector (m_self);

< Time duration = Seconds (0);

<

< WifiPreamble preamble;

< //standard says RTS packets can have GF format sec 9.6.0e.1 page 110 bullet b 2

< preamble=WIFI_PREAMBLE_LONG;

<

< duration += GetSifs ();

< /* duraÃ§Ã£o mÃ¡xima de um pacote

< * Deve estimar a duraÃ§Ã£o total da transmissÃ£o sem saber o tamanho do quadro de dados que

< * se espera receber. Como o receptor nÃ£o tem como fazer essa previsÃ£o, Ã© estimado o pior

< * caso que Ã© a de um quadro com o tamanho mÃ¡ximo MTU (1500 bytes).

< */

< uint16_t maxDataSize = 1500; // MTU - The MAC-level Maximum Transmission Unit

< duration += m_phy->CalculateTxDuration (maxDataSize, rtrTxVector, preamble);

< duration += GetSifs ();

< duration += GetAckDuration (m_self, rtrTxVector);

<

< /* Este valor da duraÃ§Ã£o da transmissÃ£o Ã© guardado no cabeÃ§alho do RTR.

< * Todos os nÃ³s que receberem este RTR atualizarÃ£o seus NAVs com este valor

< * que Ã© a priori a duraÃ§Ã£o mÃ¡xima de uma transmissÃ£o. Entretanto, quando

< * os nÃ³s receberem o DATA de resposta, o cabeÃ§alho do DATA informarÃ¡ o valor

< * correto da duraÃ§Ã£o de sua transmissÃ£o, assim os nÃ³s atualizarÃ£o seus NAVs

< * novamente e portanto, ficarÃ£o aguardando pelo tempo correto.

< */

< rtr.SetDuration (duration);

<

< Time txDuration = m_phy->CalculateTxDuration (GetRtrSize (), rtrTxVector, preamble);

< Time timerDelay = txDuration + duration - GetAckDuration (m_self, rtrTxVector);

< // NS_LOG_DEBUG ("timerDelay=" << timerDelay);

<

< NS_ASSERT (m_dataTimeoutEvent.IsExpired ());

100

< NotifyDataTimeoutStartNow (timerDelay);

< m_dataTimeoutEvent = Simulator::Schedule (timerDelay, &MacLow::DataTimeout, this);

<

< Ptr<Packet> packet = Create<Packet> ();

< packet->AddHeader (rtr);

< WifiMacTrailer fcs;

< packet->AddTrailer (fcs);

<

< ForwardDown (packet, &rtr, rtrTxVector, preamble);

< }

<

2073,2165d1650

< void // RIMA

< MacLow::SendDataAfterRtr (Mac48Address source, Time duration, WifiMode txMode, double rtrSnr)

< {

< NS_LOG_FUNCTION (this);

< /* send the second step in a

< * RTR/DATA/ACK handshake

< *

< * mÃ©todo anÃ¡logo ao SendDataAfterCts

< * m_currentPacket Ã© o pacote que veio da fila da camada superior

< */

< NS_ASSERT (m_currentPacket != 0);

<

< WifiTxVector dataTxVector = GetDataTxVector (m_currentPacket, &m_currentHdr);

<

< StartDataTxTimers (dataTxVector);

<

< WifiPreamble preamble;

< preamble=WIFI_PREAMBLE_LONG;

<

< Time newDuration = Seconds (0);

< newDuration += GetSifs ();

< newDuration += GetAckDuration (m_currentHdr.GetAddr1 (), dataTxVector);

<

< /*

< * Como a duraÃ§Ã£o calculada pelo RTR foi uma estimativa do pior caso (duraÃ§Ã£o mÃ¡xima),

< * a nova duraÃ§Ã£o deve ser atualizada no envio do quadro DATA. A duraÃ§Ã£o calculada aqui

< * Ã© menor ou igual Ã calculada no RTR. Portanto, apenas subtrair as duraÃ§Ãµes jÃ¡ passadas

< * (SIFS e DATA) seria diferente do que usar a duraÃ§Ã£o dos eventos seguintes (SIFS e ACK).

< */

< duration = newDuration;

< NS_ASSERT (duration >= MicroSeconds (0));

< m_currentHdr.SetDuration (duration);

<

< m_currentPacket->AddHeader (m_currentHdr);

< WifiMacTrailer fcs;

< m_currentPacket->AddTrailer (fcs);

<

< SnrTag tag;

< tag.Set (rtrSnr);

< m_currentPacket->AddPacketTag (tag);

<

< // CheckRouteReply (m_currentPacket, m_currentHdr.GetAddr1 ()); // RIMA AODV

< // CheckRouteError (m_currentPacket, m_currentHdr.GetAddr1 ()); // RIMA AODV

<

< ForwardDown (m_currentPacket, &m_currentHdr, dataTxVector, preamble);

< m_currentPacket = 0;

< }

<

< void // RIMA

< MacLow::SendNtsAfterRtr (Mac48Address source, Time duration, WifiMode rtrTxMode, double rtrSnr)

< {

< NS_LOG_FUNCTION (this << source << duration << rtrTxMode << rtrSnr);

< /* no DATA to transmit

< * send a NTS when you receive a RTR

< * right after SIFS.

< */

< WifiTxVector ntsTxVector = GetNtsTxVectorForRtr (source);

<

< WifiPreamble preamble;

< preamble=WIFI_PREAMBLE_LONG;

<

< WifiMacHeader nts;

< nts.SetType (WIFI_MAC_CTL_NTS);

< nts.SetDsNotFrom ();

< nts.SetDsNotTo ();

< nts.SetNoMoreFragments ();

< nts.SetNoRetry ();

< nts.SetAddr1 (source);

< nts.SetAddr2 (m_self);

101

< /*

< * A duraÃ§Ã£o original da transmissÃ£o (RTR+DATA+ACK) Ã© cancelada

< * jÃ¡ que, como nÃ£o hÃ¡ dados para ser transmitido, a duraÃ§Ã£o do

< * handshake Ã© diminuida. Assim, o NAV Ã© atualizado mais cedo.

< */

< uint16_t maxDataSize = 1500; // MTU - The MAC-level Maximum Transmission Unit

< duration -= m_phy->CalculateTxDuration (maxDataSize, ntsTxVector, preamble);

< duration -= GetSifs ();

< duration -= GetAckDuration (source, ntsTxVector);

< NS_ASSERT (duration >= MicroSeconds (0));

< nts.SetDuration (duration);

<

< Ptr<Packet> packet = Create<Packet> ();

< packet->AddHeader (nts);

< WifiMacTrailer fcs;

< packet->AddTrailer (fcs);

<

< SnrTag tag;

< tag.Set (rtrSnr);

< packet->AddPacketTag (tag);

<

< ForwardDown (packet, &nts, ntsTxVector, preamble);

< }

<

2216c1701

< // m_listener = 0; // RIMA

> m_listener = 0;

IV.5 RegularWi�Mac

IV.5.1 regular-wi�-mac.h

IV.5.2 regular-wi�-mac.cc

718d717

< cwmax = 1023;

720,721c719

< // cwmax = m_dca->GetMaxCw ();

< NS_LOG_DEBUG ("cwmin=" << cwmin << " cwmax=" << cwmax);

> cwmax = 1023;

IV.6 Wi�MacHeader

IV.6.1 wi�-mac-header.h

5d4

< * Copyright (c) 2013, 2014 NERds UnB

22,23d20

< * Modifier: Fadhil Firyaguna <firyaguna@ieee.org>

< * Modifier: Mateus Marcuzzo <mateusmarcuzzo@ieee.org>

46,48d42

<

< WIFI_MAC_CTL_RTR, // RIMA - Request to Receive

< WIFI_MAC_CTL_NTS, // RIMA - Nothing to Send

249,256d242

< * Un-set the More Data bit in the Frame Control Field

< */

< void SetNoMoreData (void);

< /**

< * Set the More Data bit in the Frame Control field

< */

< void SetMoreData (void);

< /**

391,402d376

< * Return true if the header is a RTR header.

< *

< * \return true if the header is a RTR header, false otherwise

102

< */

< bool IsRtr (void) const; // RIMA

< /**

< * Return true if the header is a NTS header.

< *

< * \return true if the header is a NTS header, false otherwise

< */

< bool IsNts (void) const; // RIMA

< /**

541,546d514

< /**

< * Return if the More Data bit is set.

< *

< * \return true if the More Data bit is set, false otherwise

< */

< bool IsMoreData (void) const;

IV.6.2 wi�-mac-header.cc

5d4

< * Copyright (c) 2013, 2014 NERds UnB

22,23d20

< * Modifier: Fadhil Firyaguna <firyaguna@ieee.org>

< * Modifier: Mateus Marcuzzo <mateusmarcuzzo@ieee.org>

47,49c44

< SUBTYPE_CTL_CTLWRAPPER=7,

< SUBTYPE_CTL_RTR = 14, // RIMA

< SUBTYPE_CTL_NTS = 15 // RIMA

> SUBTYPE_CTL_CTLWRAPPER=7

180,187d174

< case WIFI_MAC_CTL_RTR: // RIMA

< m_ctrlType = TYPE_CTL;

< m_ctrlSubtype = SUBTYPE_CTL_RTR;

< break;

< case WIFI_MAC_CTL_NTS: // RIMA

< m_ctrlType = TYPE_CTL;

< m_ctrlSubtype = SUBTYPE_CTL_NTS;

< break;

345,352d331

< } // RIMA DATA STREAM

< void WifiMacHeader::SetNoMoreData (void)

< {

< m_ctrlMoreData = 0;

< } // RIMA DATA STREAM

< void WifiMacHeader::SetMoreData (void)

< {

< m_ctrlMoreData = 1;

516,521d494

< case SUBTYPE_CTL_RTR: // RIMA

< return WIFI_MAC_CTL_RTR;

< break;

< case SUBTYPE_CTL_NTS: // RIMA

< return WIFI_MAC_CTL_NTS;

< break;

641,650d613

< bool // RIMA

< WifiMacHeader::IsRtr (void) const

< {

< return (GetType () == WIFI_MAC_CTL_RTR);

< }

< bool // RIMA

< WifiMacHeader::IsNts (void) const

< {

< return (GetType () == WIFI_MAC_CTL_NTS);

< }

768,772d730

< bool // RIMA DATA STREAM

< WifiMacHeader::IsMoreData (void) const

< {

< return (m_ctrlMoreData == 1);

< }

913d870

< case SUBTYPE_CTL_RTR: // RIMA

917d873

< case SUBTYPE_CTL_NTS: // RIMA

955,956d910

< FOO (CTL_RTR); // RIMA

< FOO (CTL_NTS); // RIMA

103

1031d984

< case WIFI_MAC_CTL_RTR: // RIMA

1036d988

< case WIFI_MAC_CTL_NTS: // RIMA

1141d1092

< case SUBTYPE_CTL_RTR: // RIMA

1145d1095

< case SUBTYPE_CTL_NTS: // RIMA

1197d1146

< case SUBTYPE_CTL_RTR: // RIMA

1201d1149

< case SUBTYPE_CTL_NTS: // RIMA

IV.7 Wi�MacQueue

IV.7.1 wi�-mac-queue.h

5d4

< * Copyright (c) 2013, 2014 NERdS UnB

22d20

< * Author: Fadhil Firyaguna <firyaguna@ieee.org>

146,169d143

< /**

< * Searchs and returns, if is present in this queue, first packet having

< * address equals to <i>addr</i>.

< * This method removes the packet from this queue.

< * Is typically used by ns3::MacLow in order to return the packet

< * requested by an specified poller.

< */

< Ptr<const Packet> DequeueByAddress (WifiMacHeader *hdr, Mac48Address addr); // RIMA

< /**

< * Searchs and returns, if is present in this queue, first packet having

< * address equals to <i>addr</i>.

< * This method doesn't removes the packet from this queue.

< * Is typically used by ns3::MacLow in order to return the packet

< * requested by an specified poller.

< */

< Ptr<const Packet> PeekByAddress (WifiMacHeader *hdr, Mac48Address addr); // RIMA

< /**

< * Searchs and returns, if is present in this queue, first packet having

< * address indicated by <i>type</i> equals to <i>addr</i>, and tid

< * equals to <i>tid</i>. This method removes the packet from this queue.

< * Is typically used by ns3::EdcaTxopN in order to perform correct MSDU

< * aggregation (A-MSDU).

< */

< void GetQueueStatus (Mac48Address addr); // RIMA Dec 20th 2013

IV.7.2 wi�-mac-queue.cc

5d4

< * Copyright (c) 2013, 2014 NERdS UnB

22d20

< * Author: Fadhil Firyaguna <firyaguna@ieee.org>

32,36d29

< #include <iostream>

< #include <fstream>

< #include <cstdio>

< #include <iomanip>

<

218,310d210

< }

<

< Ptr<const Packet> // RIMA DATA STREAM

< WifiMacQueue::DequeueByAddress (WifiMacHeader *hdr, Mac48Address dest)

< {

< Cleanup ();

< Ptr<const Packet> packet = 0;

< if (!m_queue.empty ())

< {

< PacketQueueI it;

< for (it = m_queue.begin (); it != m_queue.end (); ++it)

< {

< if (it->hdr.GetAddr1 () == dest)

< {

< packet = it->packet;

104

<

< it++;

< bool nextIsForDest = (it->hdr.GetAddr1 () == dest);

< it--;

< if (nextIsForDest)

< { // se o prÃ³ximo tbm Ã©

< // set moredata flag

< it->hdr.SetMoreData ();

< }

< else

< {

< it->hdr.SetNoMoreData ();

< }

<

< *hdr = it->hdr;

< m_queue.erase (it);

< m_size--;

< break;

< }

< }

< }

< return packet;

< }

<

< Ptr<const Packet> // RIMA

< WifiMacQueue::PeekByAddress (WifiMacHeader *hdr, Mac48Address dest)

< {

< Cleanup ();

< if (!m_queue.empty ())

< {

< PacketQueueI it;

< for (it = m_queue.begin (); it != m_queue.end (); ++it)

< {

< if (it->hdr.GetAddr1 () == dest)

< {

< *hdr = it->hdr;

< return it->packet;

< }

< }

< }

< return 0;

< }

< // Dec 20th 2013

< void

< WifiMacQueue::GetQueueStatus (Mac48Address self)

< {

< if (!m_queue.empty ())

< {

< // contar quantos pacotes de cada endereÃ§o existem na fila

< int numPacketsbyNode[51];

< for (int i=0; i<51; i++) { numPacketsbyNode[i] = 0; }

< PacketQueueI it;

< WifiMacHeader hdr;

< for (it = m_queue.begin (); it != m_queue.end (); ++it)

< {

< uint8_t addr[6];

< it->hdr.GetAddr1 ().CopyTo (addr);

< numPacketsbyNode[addr[5]]++;

< }

< // imprimir histograma no arquivo

< uint8_t s_add[6];

< self.CopyTo (s_add);

< std::ofstream hist;

< char filename[50] = "tracing/histograms/hist_node";

< sprintf (filename, "%s%d", filename, s_add[5]);

< hist.open (filename, std::ios::app);

< if (hist)

< {

< // std::cout << "getting queue status of " << self << std::endl;

< hist << Simulator::Now ().GetSeconds () << ";";

< for (int i=1; i<51; i++)

< {

< hist << numPacketsbyNode[i] << ";";

< }

< hist << std::endl;

< }

< hist.close ();

< }

105

IV.8 Wi�RemoteStationManager

IV.8.1 wi�-remote-station-manager.h

4d3

< * Copyright (c) 2013,2014 NERds UnB

20,21d18

< * Modifier: Fadhil Firyaguna <firyaguna@ieee.org>

< * Modifier: Mateus Marcuzzo <mateusmarcuzzo@ieee.org>

354,360d350

< *

< * \return the transmission mode to use to send the RTR prior to the

< * transmission of the data packet itself.

< */

< WifiTxVector GetRtrTxVector (Mac48Address address);

< /**

< * \param address remote address

391,395d380

< * Should be invoked whenever the DataTimeout associated to a transmission

< * attempt expires.

< */

< void ReportRtrFailed (Mac48Address address); // RIMA

< /**

412,421d396

< * Should be invoked whenever we receive the DATA associated to an RTR

< * we just sent.

< *

< * \param address the address of the receiver

< * \param dataSnr the SNR of the DATA we received

< * \param dataMode the WifiMode the receiver used to send the DATA

< * \param rtsSnr the SNR of the RTS we sent

< */

< void ReportRtrOk (Mac48Address address, double dataSnr, WifiMode dataMode, double rtsSnr); // RIMA

< /**

447,453d421

< * Should be invoked after calling ReportRtrFailed if

< * NeedRtrRetransmission returns false

< *

< * \param address the address of the polled node

< */

< void ReportFinalRtrFailed (Mac48Address address); // RIMA

< /**

483,489d450

< * \returns true if we want to use an RTR polling for packet

< * false otherwise.

< */

< bool NeedRtr (Mac48Address address); // RIMA

<

< /**

< * \param address remote address

507,512d467

< * \returns true if we want to restart a failed RTR polling,

< * false otherwise.

< */

< bool NeedRtrRetransmission (Mac48Address address); // RIMA

< /**

< * \param address remote address

606,621d560

<

< //----------- Neighborhood -------------//

< bool IsNeighbor (Mac48Address addr);

< void AddNeighbor (Mac48Address addr);

< bool IsNeighborhoodEmpty (void);

< Mac48Address NextPollingAddress (Mac48Address m_lastAddr);

< void UpdateNeighborhood (void);

< void UpdateTxProbability (Mac48Address addr, int success);

< void RecRxData (Mac48Address addr, uint32_t rxBytes);

< void SetRouteRequester (Mac48Address addr, bool rreq); // RIMA AODV

< void SetRouteReplier (Mac48Address addr, bool rrep); // RIMA AODV

< void RecSnr (Mac48Address addr, double snr); // ADAPTIVE POLLING

< void SetMoreData (Mac48Address addr, bool moreData); // RIMA DATA STREAM

< bool HasMoreData (Mac48Address addr); // RIMA DATA STREAM

< bool IsMoreDataEnabled (void); // RIMA DATA STREAM

< //----------- Neighborhood -------------//

832,838d770

< * \param station the station that we failed to send RTR

< */

< // virtual void DoReportRtrFailed (WifiRemoteStation *station) = 0; // RIMA

< /**

106

< * This method is a pure virtual method that must be implemented by the sub-class.

< * This allows different types of WifiRemoteStationManager to respond differently,

< *

854,864d785

< * \param datantsSnr the SNR of the CTS we received

< * \param datantsMode the WifiMode the receiver used to send the CTS

< * \param rtsSnr the SNR of the RTS we sent

< */

< // virtual void DoReportRtrOk (WifiRemoteStation *station,

< // double datantsSnr, WifiMode datantsMode, double rtrSnr) = 0; // RIMA

< /**

< * This method is a pure virtual method that must be implemented by the sub-class.

< * This allows different types of WifiRemoteStationManager to respond differently,

< *

< * \param station the station that we successfully sent RTS

886,892d806

< * \param station the station that we failed to send RTR

< */

< // virtual void DoReportFinalRtrFailed (WifiRemoteStation *station) = 0; // RIMA

< /**

< * This method is a pure virtual method that must be implemented by the sub-class.

< * This allows different types of WifiRemoteStationManager to respond differently,

< *

963,1014d876

< //----------- Neighborhood -------------//

< struct Neighbor

< {

< Mac48Address m_macAddress;

< Time m_startTime; // neighborhood start time

< Time m_expirationTime; // Simulator::Now () + Estimated link life

< uint32_t m_rxData; // received data since start time

< double m_txProb; // successful transmission probability

< double m_pollProb; // polling probability

< uint32_t m_pollCounter; // polling counter

< uint32_t m_maxPollCounter; // max polling counter

<

< // RIMA AODV CROSS LAYER - Apr 1st 2014

< bool m_routeRequested; // true if that neighbor requested a route for me

< bool m_routeReplied; // true if I replied a route to that neighbor

< double m_routeTxProb; // transmission probability weighted by route existance

<

< // ADAPTIVE POLLING - Apr 9th 2014

< double m_snr; // average snr

<

< // DATA STREAM - Jun 18th 2014

< bool m_moreData;

<

< Neighbor (Mac48Address address, Time startTime, Time expirationTime) :

< m_macAddress (address),

< m_startTime (startTime),

< m_expirationTime (expirationTime),

< m_rxData (0),

< m_txProb (0.001),

< m_pollProb (1),

< m_pollCounter (0),

< m_maxPollCounter (100),

< m_routeRequested (false),

< m_routeReplied (false),

< m_routeTxProb (1),

< m_snr (0),

< m_moreData (false)

< {}

< };

<

< typedef std::list <Neighbor *> Neighbors;

< Neighbors m_neighbors;

< uint32_t m_currentPollNeighbor;

<

< double m_updateRate;

< uint16_t m_pollingMode;

< double m_estimatedLifeTime;

< uint32_t m_nNeighborsThreshold;

< double m_snrVarThreshold;

< bool m_enableMoreData;

< //----------- Neighborhood -------------//

<

1058,1061d919

< * The trace source fired when the transmission of a single RTR has failed

< */

< TracedCallback<Mac48Address> m_macTxRtrFailed; // RIMA

< /**

107

1069,1073d926

< /**

< * The trace source fired when the transmission of a RTR has

< * exceeded the maximum number of attempts

< */

< TracedCallback<Mac48Address> m_macTxFinalRtrFailed; // RIMA

IV.8.2 wi�-remote-station-manager.cc

4d3

< * Copyright (c) 2013,2014 NERds UnB

20,21d18

< * Modifier: Fadhil Firyaguna <firyaguna@ieee.org>

< * Modifier: Mateus Marcuzzo <mateusmarcuzzo@ieee.org>

37,39d33

< #include "ns3/random-variable.h"

< #include <fstream>

<

265,290d258

< .AddAttribute ("PollingMode", "Polling discipline mode", // RIMA

< UintegerValue (0),

< MakeUintegerAccessor (&WifiRemoteStationManager::m_pollingMode),

< MakeUintegerChecker<uint16_t> ())

< .AddAttribute ("UpdateRate", "Update rate of neighbor successful tx probability" // RIMA

< " 'alpha' weight of the moving average computation.",

< DoubleValue (0.05),

< MakeDoubleAccessor (&WifiRemoteStationManager::m_updateRate),

< MakeDoubleChecker<double> ())

< .AddAttribute ("EstimatedLifeTime", "Estimated life time of neighbor entry on table" // RIMA

< " 'alpha' weight of the moving average computation.",

< DoubleValue (2.0),

< MakeDoubleAccessor (&WifiRemoteStationManager::m_estimatedLifeTime),

< MakeDoubleChecker<double> ())

< .AddAttribute ("nNeighborsThreshold", "Number of neighbors threshold", // ADAPTIVE RIMA

< UintegerValue (5),

< MakeUintegerAccessor (&WifiRemoteStationManager::m_nNeighborsThreshold),

< MakeUintegerChecker<uint32_t> ())

< .AddAttribute ("SnrVarThreshold", "SNR variation threshold", // ADAPTIVE RIMA

< DoubleValue (5.0),

< MakeDoubleAccessor (&WifiRemoteStationManager::m_snrVarThreshold),

< MakeDoubleChecker<double> ())

< .AddAttribute ("EnableMoreData", "If true, moreData function is enabled", // RIMA DATA STREAM

< BooleanValue (false),

< MakeBooleanAccessor (&WifiRemoteStationManager::m_enableMoreData),

< MakeBooleanChecker ())

609,615d576

< WifiTxVector // RIMA

< WifiRemoteStationManager::GetRtrTxVector (Mac48Address address)

< {

< NS_ASSERT (!address.IsGroup ());

< uint8_t tid = 0; // assuming non-QoS

< return DoGetRtsTxVector (Lookup (address, tid));

< }

659,675d619

< void // RIMA

< WifiRemoteStationManager::ReportRtrFailed (Mac48Address address)

< {

< NS_ASSERT (!address.IsGroup ());

< uint8_t tid = 0; // assuming non-QoS

< WifiRemoteStation *station = Lookup (address, tid);

< if (station->m_ssrc != GetMaxSsrc ())

< {

< station->m_ssrc++;

< }

< else

< {

< station->m_ssrc = 0;

< }

< m_macTxRtrFailed (address);

< // DoReportRtrFailed (station); // mÃ©todo apenas de DEBUG

< }

694,704d637

< void // RIMA

< WifiRemoteStationManager::ReportRtrOk (Mac48Address address, double dataSnr, WifiMode dataMode, double rtrSnr)

< {

< NS_ASSERT (!address.IsGroup ());

< uint8_t tid = 0; // assuming non-QoS

< WifiRemoteStation *station = Lookup (address, tid);

< station->m_state->m_info.NotifyTxSuccess (station->m_ssrc);

108

< station->m_ssrc = GetMaxSsrc ();

< // station->m_ssrc = 0;

< // DoReportRtrOk (station, dataSnr, dataMode, rtrSnr); // mÃ©todo apenas de DEBUG

< }

725,735d657

< void // RIMA

< WifiRemoteStationManager::ReportFinalRtrFailed (Mac48Address address)

< {

< NS_ASSERT (!address.IsGroup ());

< uint8_t tid = 0; // assuming non-QoS

< WifiRemoteStation *station = Lookup (address, tid);

< station->m_state->m_info.NotifyTxFailed ();

< station->m_ssrc = GetMaxSsrc ();

< m_macTxFinalRtrFailed (address); // ok - fadhil

< // DoReportFinalRtrFailed (station); // mÃ©todo apenas de DEBUG

< }

767,778d688

< bool // RIMA

< WifiRemoteStationManager::NeedRtr (Mac48Address address)

< {

< if (address.IsGroup ())

< {

< return false;

< }

< else

< {

< return true;

< }

< }

818,826d727

< bool // RIMA

< WifiRemoteStationManager::NeedRtrRetransmission (Mac48Address address)

< {

< NS_ASSERT (!address.IsGroup ());

< uint8_t tid = 0; // assumin non-QoS

< WifiRemoteStation *station = Lookup (address, tid);

< bool normally = station->m_ssrc < GetMaxSsrc ();

< return normally;

< }

1490,1881d1390

<

< //----------- Neighborhood -------------//

< bool

< WifiRemoteStationManager::IsNeighbor (Mac48Address address)

< {

< /*

< * Verifica se o endereÃ§o for encontrado na lista de vizinhos.

< */

< for (Neighbors::const_iterator i = m_neighbors.begin (); i != m_neighbors.end (); i++)

< {

< if ((*i)->m_macAddress == address)

< {

< return true;

< }

< }

< return false;

< }

<

< // bool

< // WifiRemoteStationManager::IsNeighborExpired (std::_List_const_iterator<ns3::WifiRemoteStationManager::Neighbor*>& n)

< // {

< // /*

< // * Verifica se a vizinhanÃ§a expirou.

< // */

< // return ((*n)->m_expirationTime < Simulator::Now ());

< // }

<

< void

< WifiRemoteStationManager::AddNeighbor (Mac48Address address)

< {

< NS_LOG_DEBUG ("antes");

< for (Neighbors::const_iterator i = m_neighbors.begin (); i != m_neighbors.end (); i++)

< {

< NS_LOG_DEBUG ((*i)->m_macAddress);

< }

< /*

< * Adiciona um novo endereÃ§o na lista de vizinhos.

< */

< Time estimatedLifeTime = Seconds (m_estimatedLifeTime);

< Time expirationTime = Simulator::Now () + estimatedLifeTime;

< Neighbor *new_Neighbor = new Neighbor (address, Simulator::Now (), expirationTime);

109

< const_cast<WifiRemoteStationManager *> (this)->m_neighbors.push_back (new_Neighbor);

<

< NS_LOG_DEBUG ("depois");

< for (Neighbors::const_iterator i = m_neighbors.begin (); i != m_neighbors.end (); i++)

< {

< NS_LOG_DEBUG ((*i)->m_macAddress);

< }

< }

<

< bool

< WifiRemoteStationManager::IsNeighborhoodEmpty (void)

< {

< return m_neighbors.empty ();

< }

<

< Mac48Address

< WifiRemoteStationManager::NextPollingAddress (Mac48Address m_lastAddr)

< {

< Neighbor *temp_Neighbor;

< // Mac48Address nextAddr;

< bool tempCopied = false;

< // if (m_neighbors.size () > 1)

< // {

< // for (Neighbors::const_iterator i = m_neighbors.begin (); i != m_neighbors.end (); i++)

< // {

< // if ((*i)->m_macAddress == m_lastAddr)

< // {

< // temp_Neighbor = (*i);

< // tempCopied = true;

< // m_neighbors.remove (*i);

< // break;

< // }

< // }

< // }

< //

< uint16_t local_pollingMode = 0;

< if (m_pollingMode == 0) // algoritmo de decisÃ£o de polling

< {

< /*

< * Dynamic adaptive polling mode.

< * Set local_pollingMode according to:

< * number of neighbors in table

< * snr variation in neighborhood table

< */

< uint32_t n_Neighbors = m_neighbors.size ();

< double snrVar = 0;

< double snrAvg = 0;

< for (Neighbors::const_iterator i = m_neighbors.begin (); i != m_neighbors.end (); i++)

< {

< snrAvg = (*i)->m_snr++;

< }

< snrAvg = (double) snrAvg / n_Neighbors;

<

< double sum_aux = 0;

< for (Neighbors::const_iterator i = m_neighbors.begin (); i != m_neighbors.end (); i++)

< {

< sum_aux = sum_aux + ((*i)->m_snr - snrAvg)*((*i)->m_snr - snrAvg);

< }

< snrVar = (double) sum_aux / (n_Neighbors - 1);

<

< if (snrVar > m_snrVarThreshold and n_Neighbors > m_nNeighborsThreshold)

< {

< local_pollingMode = 1; // RIPF

< }

< else //if (n_Neighbors > m_nNeighborsThreshold)

< {

< local_pollingMode = 2; // RIBB

< }

< // else

< // {

< // local_pollingMode = 3; // RIRR

< // }

<

< }

< else

< {

< local_pollingMode = m_pollingMode;

< }

<

< if (local_pollingMode == 1)

< {

110

< /* Disciplina de consulta do Tiago

< * Calcular Beta (normalizaÃ§Ã£o)

< * Somar todas as m_txProb dos vizinhos

< * Beta = inverso da soma

< * Calcular probabilidade de consulta

< * m_pollProb = m_txProb / Beta

< * Definir intervalos de tamanho m_pollProb para cada estaÃ§Ã£o entre 0 e 1

< * Sortear um nÃºmero uniformemente aleatÃ³rio entre 0 e 1

< * Verificar o intervalo em que o nÃºmero foi sorteado correspondente a station

< * Retornar o respectivo endereÃ§o dessa station

< */

< //---------- Disciplina de consulta do Tiago -------------//

< double beta = 0;

< for (Neighbors::const_iterator i = m_neighbors.begin (); i != m_neighbors.end (); i++)

< {

< beta += (*i)->m_txProb;

< }

< beta = 1.0 / beta;

< for (Neighbors::const_iterator i = m_neighbors.begin (); i != m_neighbors.end (); i++)

< {

< (*i)->m_pollProb = (*i)->m_txProb * beta;

< }

< for (Neighbors::const_iterator i = m_neighbors.begin (); i != m_neighbors.end (); i++)

< {

< NS_LOG_DEBUG ((*i)->m_macAddress << "\t" << (*i)->m_pollProb);

< }

<

< UniformVariable uv (0,1);

< double x = uv.GetValue ();

< NS_LOG_DEBUG ("sort: " << x);

< double range = 0;

< for (Neighbors::const_iterator i = m_neighbors.begin (); i != m_neighbors.end (); i++)

< {

< if (x < (*i)->m_pollProb + range)

< {

< if (tempCopied) m_neighbors.push_back (temp_Neighbor);

< return (*i)->m_macAddress;

< }

< else

< {

< range += (*i)->m_pollProb;

< }

< }

< return Mac48Address ("00:00:00:00:00:00");

< //---------- Disciplina de consulta do Tiago -------------/*/

< }

< else if (local_pollingMode == 2)

< {

< /* Proportional Fair Sharing

< * The algorithm proposed by Qualcomm performs this

< * sharing by comparing the given rate for each user

< * with its average throughput to date, and selecting

< * the one with the maximum ratio.

< */

< //------ PROPORTIONAL FAIR --------//

< double best = 0;

< Neighbors::const_iterator best_i;

< for (Neighbors::const_iterator i = m_neighbors.begin (); i != m_neighbors.end (); i++)

< {

< Time dt = Simulator::Now () - (*i)->m_startTime;

< double avg = (double) (*i)->m_rxData * 8 / dt.GetSeconds (); // average throughput to date (bps)

< double given = 1e6; // constant given rate 1 Mbps

< double ratio = given / avg;

< if (ratio > best)

< {

< best = ratio;

< best_i = i;

< }

< }

< if (tempCopied) m_neighbors.push_back (temp_Neighbor);

< return (*best_i)->m_macAddress;

< //------ PROPORTIONAL FAIR --------/*/

< }

< else if (local_pollingMode == 3)

< {

< /*

< * Consulta cÃ­clica

< */

< //------ ROUND ROBIN --------//

< Neighbors::const_iterator i = m_neighbors.begin ();

< if (m_currentPollNeighbor >= m_neighbors.size ())

111

< {

< m_currentPollNeighbor = 0;

< }

< std::advance (i, m_currentPollNeighbor);

< m_currentPollNeighbor++;

< if (tempCopied) m_neighbors.push_back (temp_Neighbor);

< return (*i)->m_macAddress;

< //------ ROUND ROBIN --------/*/

< }

< else if (local_pollingMode == 4)

< {

< //---------- Disciplina de consulta do Tiago + ponderaÃ§Ã£o de rota AODV -------------//

< for (Neighbors::const_iterator i = m_neighbors.begin (); i != m_neighbors.end (); i++)

< {

< double routeOn = 0;

< if ((*i)->m_routeReplied and (*i)->m_routeRequested) routeOn = 1;

< NS_LOG_DEBUG ("Route from " << (*i)->m_macAddress << " ON");

< (*i)->m_routeTxProb = ((*i)->m_txProb + 6*routeOn) / 7.0;

< }

<

< double beta = 0;

< for (Neighbors::const_iterator i = m_neighbors.begin (); i != m_neighbors.end (); i++)

< {

< beta += (*i)->m_routeTxProb;

< }

< beta = 1.0 / beta;

< for (Neighbors::const_iterator i = m_neighbors.begin (); i != m_neighbors.end (); i++)

< {

< (*i)->m_pollProb = (*i)->m_txProb * beta;

< }

< for (Neighbors::const_iterator i = m_neighbors.begin (); i != m_neighbors.end (); i++)

< {

< NS_LOG_DEBUG ((*i)->m_macAddress << "\t" << (*i)->m_pollProb);

< }

<

< UniformVariable uv (0,1);

< double x = uv.GetValue ();

< NS_LOG_DEBUG ("sort: " << x);

< double range = 0;

< for (Neighbors::const_iterator i = m_neighbors.begin (); i != m_neighbors.end (); i++)

< {

< if (x < (*i)->m_pollProb + range)

< {

< if (tempCopied) m_neighbors.push_back (temp_Neighbor);

< return (*i)->m_macAddress;

< }

< else

< {

< range += (*i)->m_pollProb;

< }

< }

< return Mac48Address ("00:00:00:00:00:00");

< //---------- Disciplina de consulta do Tiago + ponderaÃ§Ã£o de rota AODV -------------/*/

< }

< else

< {

< /*

< * Escolhe aleatoriamente um vizinho para consultar.

< */

< //------ TEST RANDOM DISCIPLINE------//

< Neighbors::const_iterator i = m_neighbors.begin ();

< UniformVariable x;

< std::advance (i, x.GetInteger (0, m_neighbors.size () - 1));

< if (tempCopied) m_neighbors.push_back (temp_Neighbor);

< return (*i)->m_macAddress;

< //------ TEST ------/*/

< }

< }

<

< void

< WifiRemoteStationManager::UpdateNeighborhood (void)

< {

< /*

< * Remove os vizinhos cujos tempos jÃ¡ expiraram.

< */

< for (Neighbors::iterator i = m_neighbors.begin (); i != m_neighbors.end (); i++)

< {

< if ((*i)->m_expirationTime < Simulator::Now ())

< {

< NS_LOG_DEBUG ((*i)->m_macAddress << " expired");

< i = m_neighbors.erase (i);

112

< }

< }

< // NS_LOG_DEBUG ("depois");

< // for (Neighbors::const_iterator i = m_neighbors.begin (); i != m_neighbors.end (); i++)

< // {

< // NS_LOG_DEBUG ((*i)->m_macAddress);

< // }

< }

<

< void

< WifiRemoteStationManager::UpdateTxProbability (Mac48Address addr, int eta)

< {

< for (Neighbors::const_iterator i = m_neighbors.begin (); i != m_neighbors.end (); i++)

< {

< if ((*i)->m_macAddress == addr)

< {

< (*i)->m_txProb = (1 - m_updateRate) * (*i)->m_txProb + m_updateRate * eta;

< }

< }

< }

<

< void

< WifiRemoteStationManager::RecRxData (Mac48Address addr, uint32_t rxBytes)

< {

< /*

< * Record received data for Proportional Fair computation

< */

< for (Neighbors::const_iterator i = m_neighbors.begin (); i != m_neighbors.end (); i++)

< {

< if ((*i)->m_macAddress == addr)

< {

< (*i)->m_rxData += rxBytes;

< }

< }

< }

<

< void // ADAPTIVE POLLING

< WifiRemoteStationManager::RecSnr (Mac48Address addr, double snr)

< {

< /*

< * Record received SNR value and compute the weighted moving average

< */

< for (Neighbors::const_iterator i = m_neighbors.begin (); i != m_neighbors.end (); i++)

< {

< if ((*i)->m_macAddress == addr)

< {

< (*i)->m_snr = (1 - m_updateRate) * (*i)->m_snr + m_updateRate * snr;

< }

< }

< }

<

< void // RIMA AODV

< WifiRemoteStationManager::SetRouteRequester (Mac48Address addr, bool rreq)

< {

< for (Neighbors::const_iterator i = m_neighbors.begin (); i != m_neighbors.end (); i++)

< {

< if ((*i)->m_macAddress == addr)

< {

< (*i)->m_routeReplied = rreq;

< }

< }

< }

<

< void // RIMA AODV

< WifiRemoteStationManager::SetRouteReplier (Mac48Address addr, bool rrep)

< {

< for (Neighbors::const_iterator i = m_neighbors.begin (); i != m_neighbors.end (); i++)

< {

< if ((*i)->m_macAddress == addr)

< {

< (*i)->m_routeRequested = rrep;

< }

< }

< }

<

< void // RIMA DATA STREAM

< WifiRemoteStationManager::SetMoreData (Mac48Address addr, bool moreData)

< {

< for (Neighbors::const_iterator i = m_neighbors.begin (); i != m_neighbors.end (); i++)

< {

< if ((*i)->m_macAddress == addr)

113

< {

< (*i)->m_moreData = moreData;

< }

< }

< }

<

< bool // RIMA DATA STREAM

< WifiRemoteStationManager::HasMoreData (Mac48Address addr)

< {

< for (Neighbors::const_iterator i = m_neighbors.begin (); i != m_neighbors.end (); i++)

< {

< if ((*i)->m_macAddress == addr)

< {

< // std::cout << "more data to " << addr << std::endl;

< return (*i)->m_moreData;

< }

< }

< return false;

< }

<

< bool // RIMA DATA STREAM

< WifiRemoteStationManager::IsMoreDataEnabled (void)

< {

< return m_enableMoreData;

< }

< //----------- Neighborhood -------------//

<

114

