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Background: The magnetic albumin nanosphere (MAN), encapsulating maghemite nanopar-

ticles, was designed as a magnetic drug delivery system (MDDS) able to perform a variety of 

biomedical applications. It is noteworthy that MAN was efficient in treating Ehrlich’s tumors 

by the magnetohyperthermia procedure.

Methods and materials: In this study, several nanotoxicity tests were systematically carried 

out in mice from 30 minutes until 30 days after MAN injection to investigate their biocompat-

ibility status. Cytometry analysis, viability tests, micronucleus assay, and histological analysis 

were performed.

Results: Cytometry analysis and viability tests revealed MAN promotes only slight and temporary 

alterations in the frequency of both leukocyte populations and viable peritoneal cells, respectively. 

Micronucleus assay showed absolutely no genotoxicity or cytotoxicity effects and histological 

analysis showed no alterations or even nanoparticle clusters in several investigated organs but, 

interestingly, revealed the presence of MAN clusters in the central nervous system (CNS).

Conclusion: The results showed that MAN has desirable in vivo biocompatibility, presenting 

potential for use as a MDDS, especially in CNS disease therapy.
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Introduction
The last four decades have been marked by huge interest in the development of drug 

delivery systems (DDS), with special emphasis on the design and fabrication of DDS 

for cancer treatment. In general, DDS are engineered to minimize drug degradation 

upon administration, prevent undesirable side effects, and sustain and/or increase the 

drug’s bioavailability in the targeted area.1–3

More recently, a new generation of DDS, which is in association with magnetic 

nanoparticles (MNPs), has become particularly interesting. A MNP-based DDS 

(MDDS) may not only present enhanced structural stability, tissue absorption, and 

targeting while reducing side effects,2,4 but also reveal specific properties of MNPs, 

including the potential to carry out hyperthermia5,6 and thermoablation of tumor cells, 

magnetic resonance imaging contrast enhancement, gene therapy, magnetic separa-

tion, and even offer the possibility of being site-guided or localized in a specific target 

tissue by external gradient of magnetic fields.7–9

Magnetohyperthermia is a particularly interesting application of MNPs: after bind-

ing to cancer cells, MNPs can be submitted to an external alternating magnetic field, 

promoting a mild increase in local temperature. This increase can cause the preferential 

destruction of cancer cells, with minor effects to neighboring normal cells,1 because 
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Figure 1 Transmission electron photomicrography of magnetic albumin nanospheres.
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tumor cells are less resistant to the sudden rise in temperature 

than the surrounding normal cells. Magnetohyperthermia is 

currently used to improve cancer treatments when used in 

combination with radiotherapy or chemotherapy.10

To be used as MDDS, as for instance in magnetohyper-

thermia protocols, the magnetic phase requires high magnetic 

susceptibility, as can be found in ionic magnetic fluid (MF) 

samples. However, the drawback to this approach is that 

ionic MF samples are not biocompatible materials. Indeed, 

appropriate surface functionalization of the suspended 

MNPs in MF samples is important to avoid particle cluster-

ing while promoting higher biocompatibility and extended 

circulation time.3,11 Protein polymeric-based templates, such 

as albumin, have been developed to produce biocompat-

ible nanocomposites for the engineering of DDS.12,13 An 

illustrative example is Abraxane® (Celgene Corp, Summit, 

NJ), an albumin-stabilized nanoparticulated formulation of 

paclitaxel, presenting higher antitumoral activity in patients 

with metastatic breast cancer while inducing minor side 

effects compared to the free drug.14

Taking all of these aspects into account, a recently devel-

oped MDDS is introduced and biologically tested in this 

study. To produce the new MDDS, maghemite nanoparticles, 

suspended as a stable ionic MF sample, were subsequently 

encapsulated within albumin-based nanospheres, from now 

on labeled magnetic albumin nanospheres (MAN). Bearing in 

mind that in vivo tests involving nanoparticulated systems rep-

resent a key aspect of current investigations in nanotoxicology, 

this study aims to evaluate the as-produced MAN using female 

Swiss mice as the animal model. The performance of MAN as 

a MDDS depends on its biocompatibility profile and biodistri-

bution parameters; these in turn depend to a great extent upon 

the interaction between the nanoparticulated system and cells. 

For these reasons, MAN–cell interaction was investigated in 

this study. In particular, MAN was evaluated with regard to 

its biocompatibility and biodistribution. The findings lead to 

the conclusion that MAN has good biocompatibility, presents 

enormous potential for use as a MDDS, and is able to be used 

in a variety of applications, including magnetohyperthermia 

and photodynamic therapy, as reported elsewhere.6,15

Materials and methods
Chemicals
Eosin methylene blue (Wright and Giemsa formulations), 

trypan blue and cyclophosphamide, and fetal bovine serum 

(FBS) were purchased from Vetec Fine Chemistry Ltd (Rio 

de Janeiro, Brazil), Sigma-Aldrich Co (São Paulo, Brazil), 

and Sorali Biotechnology (São Paulo, Brazil), respectively. 

Davidson liquid was prepared by mixing 40 mL of glycerin, 

40 mL of 40% formaldehyde, 120 mL of 95% ethanol, and 

120 mL of distilled water. All other chemicals were of ana-

lytical grade and used without further purification.

Magnetic nanospheres
Maghemite (γ-Fe

2
O

3
) nanoparticles (NPs), suspended as low-pH 

ionic magnetic fluid containing 2.3 × 1017 particles/mL,16 

were dispersed in aqueous medium containing bovine serum 

albumin (BSA) in order to produce the MAN sample, follow-

ing the protocol already described in the literature.17 MAN was 

prepared following the heat denaturation method at 100°C of 

an aqueous solution containing bovine serum albumin (BSA) 

under mechanical stirring at 13,000 rpm for 20  minutes. 

Then an aliquot of the ionic magnetic fluid sample contain-

ing maghemite nanoparticles was added to the BSA aque-

ous solution. The synthesis of the ionic magnetic fluid was 

performed following the methodology described by Morais 

et al.18 Shortly afterwards, ionic magnetic fluid with maghemite 

NPs (γ-Fe
2
O

3
) was synthesized by the coprecipitation method 

of Fe(II) and Fe(III) salts with ammonium hydroxide. After 

removing the aqueous solution, nitric acid was added to the 

precipitate until pH 3 was reached.

Transmission electron microscopy showed that MAN 

and maghemite NPs presented an average diameter of 

73.0 ± 3.0 nm and 8.9 ± 0.1 nm, respectively, by analysis 

micrographs (Figure 1). The average diameter of MAN and 

maghemite NPs was obtained by computer analysis, using 
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the program Image-Pro Plus 5.1 (MediaCybernetics, Inc, 

Bethesda, MD). The distribution of particles was achieved 

using the best fit log normal. The maghemite content in 

the MAN sample was about 25% in mass and about 7% 

in volume fraction. At this maghemite particle content the 

particle–particle interaction is quite effective and the mag-

netocrystalline anisotropy energy is around 1.119 eV.6

Animals
Female Swiss mice, aged 8–10 weeks and weighing 18–22 g, 

obtained from the animal facility of the University of São 

Paulo, were housed in plastic cages (3 or 6/cage) at room 

temperature (20°C ± 2°C), kept under a 12-hour light/dark 

cycle with lights on at 6 am and free access to food and water.

Experimental design
To perform the in vivo application, lyophilized MAN was 

dispersed in FBS to obtain an aqueous suspension containing 

5 mg MAN/mL (1.23 × 1014 MAN/mL). Mice were randomly 

allocated in groups that were intraperitoneally treated with 

a bolus dose of (1) 100  µL of MAN suspension (n  =  6), 

(2) 100  µL of FBS (n  =  3), or (3) received no treatment 

(n = 6). Groups 1 and 3 were used as control.

Biocompatibility evaluation of MAN was performed by 

(a) total and differential leukocyte counts; (b) viability assay 

of peritoneal leukocytes; (c) genotoxicity and cytotoxicity 

studies in bone marrow; and (d) histological analysis of 

the brain, liver, lungs, spleen, pancreas, heart, and kidneys. 

Tests a, b, and d were performed at 30 minutes, 6, 12, 24, 

and 48 hours, and 7, 15, and 30 days after treatment, whereas 

test c was carried out at 24 and 48 hours, 7, 15, and 30 days 

after MAN or FBS administration. Histological analyses 

were also used to evaluate the MAN biodistribution profile. 

For the genotoxicity and cytotoxicity studies, a positive 

control group (n =  6) with intraperitoneally administered 

cyclophosphamide was included.

The present animal research was approved by the Animal 

Ethics Committee of the Institute of Biological Sciences, 

University of Brasília, Brazil.

Total and differential leukocyte counts
An aliquot (20  µL) of blood, collected through cardiac 

puncture, was homogenized with 380  µL of Turk’s solu-

tion for 2 minutes, and total white blood cells were counted 

visually in a Neubauer chamber using a light microscope 

(Axiophot; Carl Zeiss AG, Oberkochen, Germany). For the 

differential leukocyte count,19 blood smears or peritoneal 

cells imprinted in glass slides were fixed in methanol for 

5 minutes, stained with Wright–Giemsa dye, and observed 

under light microscope (n = 500 cells).

Cell viability assay
Immediately after animal death, viable cells were identified 

by exclusion of trypan blue dye, which penetrates into the 

cells with reduced vitality. For the assay, 10 mL of phos-

phate buffered saline (PBS), 4°C, pH 7.2, were injected into 

the peritoneal cavity. Subsequently, 8 mL of the peritoneal 

liquid were collected and centrifuged in a DynacTM centri-

fuge (Clay AdamsTM, NJ) at 160 g for 5 minutes. The pellet 

was resuspended in cold PBS and diluted (1:5) with trypan 

blue solution (0.4%). Viable cells (presenting bright yellow 

color) and dead cells (stained in blue color) were counted in 

a Neubauer chamber using a light microscope.

Genotoxicity and cytotoxicity evaluations
Micronucleus (MN) assay and the frequency of polychro-

matic erythrocytes (%) were used to study MAN genotoxic-

ity and cytotoxicity, respectively. The assay was performed 

with bone marrow erythrocytes. The femur bone marrow 

was collected with 1 mL of FBS and the cells centrifuged 

(160 g for 5 minutes). Supernatant was discarded and 50 µL 

of FBS were added to the pellet. Subsequently, 10 µL of 

suspension were smeared on glass slides, fixed by methanol 

for 5 minutes, and stained with Giemsa dye. Under the light 

microscope, 4000 erythrocytes were counted – 2000 poly-

chromatic erythrocytes (PCE) and 2000 normochromatic 

erythrocytes (NCE) – while registering the number of MN 

found in each cell type. For the evaluation of the induced-

MAN cytotoxicity, the number of PCE and NCE was also 

registered when either of these two cell populations reached 

the value of 2000. As a positive control group, six mice were 

intraperitoneally treated with cyclophosphamide at 4 mg/kg 

and the bone marrow red cells analyzed after 24 hours.19

Histological analyses
Histological analyses were performed to assess MAN-

induced morphological effects and biodistribution aspects.20 

Brain, liver, lungs, spleen, pancreas, heart, and kidneys were 

surgically removed. Portions of these organs were fixed in 

Davidson liquid at 4°C overnight, dehydrated by alcohol, 

followed by the diaphanization process using xylene, and 

subsequently embedded in paraffin blocks. Tissue sections 

of 5 µm thickness were stained with hematoxylin-and eosin 

or by Perls’ reaction. The tissue morphology was observed 

under a light microscope and the photomicrographies taken 

by an AxioCam MRc (Carl Zeiss AG).
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Figure 2 Effects of MAN administration on blood (A) and peritoneal (B) leukocytes as a function of time.
Notes: The data correspond to the means and to the standard deviation; *significant differences between CWT and MAN treatment by Tukey’s post-hoc test: P , 0.05.
Abbreviations: CWT, control group without treatment; WBC, global white blood cells; Lym, lymphocytes; Neu, neutrophils; Eos, eosinophils; Mon, monocytes; Mac, 
macrophages; Mas, mastocytes; MAN, magnetic albumin nanosphere.
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Statistical analysis
Statistical analysis was carried out using Minitab® 15 

(Minitab Inc, State College, PA) software. Data were 

expressed as mean ± standard deviation (SD) and statistical 

significance was accepted at a level of P , 0.05. Normal 

distribution and homogeneity of data variances were verified 

by Shapiro–Wilk and Levene tests, respectively. Differences 

between the groups were investigated through analysis of 

variance (ANOVA), and Tukey’s post-hoc test was chosen 

to carry out 2-to-2 comparisons between the treatments.

Results
Total and differential leukocyte counts
No significant differences were observed between control 

groups (Groups 2 and 3). Thus, only data providing compari-

sons between Group 1 (MAN-treated) and control Group 3 

are shown in Figure 2. With regard to the blood samples, our 

data indicate that the MAN treatment causes only a small 

number of significant decreases in the eosinophil popula-

tion after 6 hours (P = 0.029), in neutrophils after 24 hours 

(P = 0.035), and in total number of both leukocytes (P = 0.042) 

and lymphocytes (P = 0.031) after 7 days (see Figure 2A). 

Some of the peritoneal cavity white cell populations also 

presented significant but temporary increases in neutrophil 

and eosinophil populations after MAN application, mainly 

up to 7 days after injection (see Figure 2B).

Cell viability assay
A significant decrease was observed in the percentage of 

viable cells at 24 hours (57%) and 15 days (73%) after MAN 

administration (see Figure 3), compared to the control group 

(87%). No significant differences were observed between 

the control groups in the time window of our experiments.

Genotoxicity and cytotoxicity studies
The analyses indicated that MAN induced no significant 

increase in micronucleus frequency in either polychromatic 

or normochromatic bone marrow erythrocytes (Table  1). 

Whereas the micronucleus frequency was never higher 

than 4.33  ±  2.94 (P  =  0.261) after MAN treatment, the 

www.dovepress.com
www.dovepress.com
www.dovepress.com


International Journal of Nanomedicine 2011:6

0

CWT 30 min 6 h 12 h 24 h

Time

V
ia

b
le

 c
el

ls
 (

%
)

48 h 7 d 15 d

*
*

30 d

20

40

60

80

100

Figure 3 Effects of MAN administration on the index of viable peritoneal cells as a function of time.
Note: *Significant differences between CWT and MAN treatment by Tukey’s post-hoc test: P , 0.05.
Abbreviations: CWT, control group without treatment; MAN, magnetic albumin nanosphere.

Table 1 Effects of MAN administration on micronucleus frequency 
and polychromatic cell index

Time Group MN-PCE MN-NCE % PCE

CWT 3.67 ± 1.03 2.00 ± 1.10 0.55 ± 0.06
PC 36.50 ± 5.39* 3.50 ± 1.38 0.49 ± 0.07

24 h FBS 1.67 ± 2.08 3.33 ± 2.31 0.54 ± 0.02

MAN 4.33 ± 2.94 3.83 ± 2.14 0.49 ± 0.04

48 h FBS 3.00 ± 1.00 4.00 ± 0.00 0.55 ± 0.01

MAN 3.17 ± 1.72 4.50 ± 2.67 0.49 ± 0.04

7 d FBS 3.33 ± 0.58 1.33 ± 2.31 0.51 ± 0.01

MAN 4.17 ± 1.17 2.50 ± 0.84 0.49 ± 0.04

15 d FBS 4.67 ± 1.53 1.00 ± 1.00 0.51 ± 0.01

MAN 4.17 ± 0.41 2.17 ± 0.75 0.53 ± 0.03
30 d FBS 2.00 ± 1.00 2.00 ± 1.00 0.53 ± 0.05

MAN 2.50 ± 1.23 1.50 ± 1.05 0.52 ± 0.06

Note: *Significant difference between CWT and cyclophosphamide treatment (PC) 
by Tukey’s post-hoc test, with P , 0.005.
Abbreviations: CWT, control group without treatment; PC, positive control 
treated with cyclophosphamide; FBS, fetal bovine serum; MAN, magnetic albumin 
nanosphere; MN-PCE, micronucleated polychromatic erythrocytes; MN-NCE, 
micronucleated normochromatic erythrocytes; % PCE, percentage of polychromatic 
erythrocytes.

A B

C D

Figure 4 Photomicrographies of CNS showing ferric pigment in animals treated 
with MAN. (A) Erythrocytes in capillary from cerebellum 12 hours after treatment; 
(B) cells from BBB 12 hours after treatment; (C) glial cell (arrow) next to neurons 
from brain 24 hours after MAN treatment; (D) neurons from brain with nanoparticle 
clusters in one of the polar regions (arrow) 30 days after treatment. (A and B) sections 
stained with hematoxylin and eosin; (C and D) sections stained by Perls’ method.
Abbreviations: ER, erythrocyte; P, pericyte; E, endothelial cell; MAN, magnetic 
albumin nanosphere; BBB, blood–brain barrier; CNS, central nervous system.
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administration of cyclophosphamide significantly increased 

this value to 36.50 ± 5.39 (P = 0.000), as expected while using 

this positive control. Furthermore, no significant change was 

observed in the % PCE after MAN administration (Table 1).

Histological analysis
Observation of MNP clustering was carried out while ana-

lyzing the histological slides of the brain. MNP clusters 

were visualized as brown or blue pigment after hematoxylin 

and eosin or Perls’ staining, respectively. Clusters were 

first observed associated with erythrocytes (Figure 4A) of cere-

bral cortex capillaries, cerebellum, medulla, and also in areas 

of circumventricular organs (CVO). The highest concentration 

of MNP clusters associated with the erythrocytes was detected 

at 12 hours and 7 days after treatment. The analyses clearly 

showed that MNPs crossed the blood–brain barrier (BBB) as 

shown in Figure 4B, following distribution among both glial 

(Figure 4C) and choroid plexus cells. Additionally, MNPs 

were also internalized by neurons (Figure 4D), mainly in gran-

ule cells from the cerebellum. The highest content of MNP 

clusters in neurons was found 2 days after the MAN treatment, 

followed by a reduction in MNP content 30 days after MAN 

injection. Apparently the glial cells are of the cellular type 

that accumulated not only the highest content of MNPs but 

also kept the MNP clusters for the longest time period in our  

experiments.
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MAN did not promote any histological alteration in the 

brain, liver, spleen, kidneys, heart, and pancreas, although 

MNP clusters were found in the central nervous system 

(CNS). The diluent FBS induced thickening of alveolar septa 

in control animals, and thus this effect was more intense in 

the lungs of MAN-treated animals (data not shown).

Discussion
In this study, MAN with 73.0 ± 3.0 nm average diameter was 

considered biocompatible. This statement is based on the data 

showing no cytotoxic, genotoxic, or neurotoxic effects and 

only temporary alterations in both white cell populations (up 

to 7 days) and cell viability (up to 15 days after MAN applica-

tion). Interestingly, MAN was able to cross the BBB safely, 

with no observable neurotoxicity, suggesting its potential 

use as MDDS, especially while targeting the CNS, an event 

only possible for a small number of drugs.21

It has been shown that the physical–chemical character-

istics of MNPs, such as core-shell chemical composition, 

surface charge, and size, modulate MNP behavior in the 

biological environment.22–24 For instance, the surface coating 

of nano-sized material structures with non-opsonin serum 

proteins, such as albumin, represents a successful strategy to 

reduce recognition by the phagocytary mononuclear system 

cells,25,26 while presenting a negative charge in neutral pH and 

a hydrophilic surface. In this context, the temporary decrease 

in leukocytes in the animals’ blood was possibly due to their 

migration to the peritoneum or any other targeted organ, 

as would be expected from a pro-inflammatory reaction to 

foreign particles. Late migration, especially of neutrophils, 

indicates that the phagocytary mononuclear system cells 

take longer to recognize the injected MAN.27–29 Thus, the 

combination of negatively charged surface and hydrophilicity 

embodied by MAN helps prevent major drawbacks in regard 

to leukocyte counts.

Differential count of peritoneal leukocytes was per-

formed to check the possible occurrence of local inflam-

matory effects after the intraperitoneal administration of 

MAN. Significant differences were not observed in the 

most abundant peritoneal cell populations (macrophages 

and lymphocytes). However, some fluctuations in peritoneal 

cell populations related to the inflammatory response (neu-

trophils and eosinophils)19,30–32 were detected until 7 days, 

even after just one single injection of MAN, as observed 

previously. These fluctuations in peritoneal cell viability may 

be associated with the particulate state of the intraperitone-

ally administered MNPs and the consequent responses of 

neutrophil and eosinophil populations. After phagocytosis of 

a relatively high quantity of MAN, neutrophils die, releasing 

MNPs in the peritoneal cavity while reducing the viability 

index observed at 24 hours. Due to the particulate state of 

these released MNPs, more neutrophils are recruited to the 

peritoneum, increasing the peritoneal cell viability observed 

at 48  hours and 7  days. These fluctuations in neutrophil 

populations probably occur until the total clearance of MNPs 

from the peritoneum. Further, death of eosinophils from 8 to 

12 days after migration to the peritoneum may explain, to a 

lesser degree, the decrease in cell viability at 15 days after 

the MAN treatment. The effects detected in cell viability 

were temporary and observed until 48 hours (neutrophil) 

or 7 days (eosinophil) after treatment, thus evidencing only 

a slight inflammatory process.

Strong evidence of MAN biocompatibility was obtained 

with the MN assay. Although micronuclei development may 

be associated with reactive oxygen species (ROS) induced by 

iron excess,23,33 in the present study, the MN assay showed no 

MAN effect on cell division or genotoxicity, differently from 

other samples based on magnetic nanoparticles.19,20,32 Also, 

the % PCE indicated that the MAN sample was not cytotoxic 

to the erythrocytic lineage in bone marrow.

MAN biodistribution and the possible induction of tissue 

alterations, such as inflammatory infiltration, thickening, and 

tissue necrosis were investigated through histological analy-

ses. We hypothesize that individual MNPs, released from 

MAN due to bleaching while in the organism, were used to 

build clusters, thus suggesting MNP targets. MNP clusters 

were not visualized in the spleen, liver, pancreas, kidneys, 

or heart, differently from the data previously observed after 

administration of several magnetic fluid samples.11,19,20,31 It 

should be noted that the absence of histological alteration in 

the analyzed organs is another signature of MAN biocom-

patibility. On the other hand, MNP clusters were observed 

in the nervous tissue, suggesting the high specificity of this 

new albumin-based magnetic nanomaterial to the CNS. 

Interestingly, although MNP clusters were observed in the 

CNS, no histological alteration was detected in this organ. 

Transmission electron microscopy (TEM) investigations 

showed further evidence for this observation,34 suggesting 

that MAN reduced neurotoxicity.

The composition of iron and albumin seems to be impor-

tant in understanding not only the observed MAN biocompat-

ibility but also the cellular uptake mechanisms responsible for 

passage of MAN through the BBB, dispersion to the nervous 

tissue, and internalization by several CNS cellular types. 
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The specificity of MAN to the CNS is in agreement with 

Bickel’s report,35 which emphasized that albumin presents 

selectivity to brain tissue in rats, in comparison to other 

organs such as the liver, heart, and lungs. Other reports36,37 

showed that polyethylene glycol-coated liposomes and poly-

meric nanoparticles, both based on bovine albumin, were able 

to cross the BBB. Data in the literature allow us to hypoth-

esize that the ability of MAN to cross the BBB is partially 

due to the interaction of albumin with lipidic membranes.38 

Transport could be mediated by specific receptors, such as 

gp60, which facilitate transcytosis through BBB endothelial 

cells by a tyrosine-kinase dependent pathway.39

Furthermore, changes in cell membrane permeability, 

induced by the presence of Fe3+ on the structure and function 

of the phospholipid bilayer,40 may help shed light on the abil-

ity of MAN to cross the BBB. The region of CVO,41 where the 

capillaries from BBB are more permeable to solutes, could 

also influence interactions between MAN and the CNS. When 

MAN reaches the CNS the initial targeted regions were very 

close to lateral ventricles and the CVO.

A number of reports showed that MNPs can enter the 

brain and cause tissue injury.42 Previous studies showed 

that high concentrations of anionic or cationic nanopar-

ticles (NPs) disrupted the BBB, whereas neutral NPs and 

low concentrations of anionic NPs had no effect on BBB 

integrity.43 Further, interactions of ferric ions with phospho-

lipids of bilayers may lead to the disruption of the structure 

of cellular membrane44 and decrease the fluidity of neuronal 

membranes.45 The structural changes in membranes may 

lead to higher internalization of iron through changes in 

permeability. Thus, iron could interact with structures of 

neuronal cytoskeletons, acting on the axonal transport sys-

tem and on synapses. In our study, it was found that glial 

cells were the cellular type that accumulated the highest 

content of MNPs and kept them for the longest period. It is 

known that glial cells46 accumulate a high concentration of 

iron when there is an injury, but are rarely seen accumulat-

ing iron in normal conditions.47 Nevertheless, no alterations 

were detected in glial cells, even under TEM analysis,34 

thus suggesting that the MAN surface chemical–physical 

characteristics protect CNS structures from injuries and that 

the released iron is not enough to induce reactive oxygen 

species generation.48

The finding of MAN biocompatibility is an important 

milestone in nanotoxicity research as it can foster future 

studies related to biomedical applications of MAN-related 

materials. The observed capacity of MAN to cross the BBB 

with reduced neurotoxicity is extremely promising for 

targeting diseases related to the CNS, such as Parkinson’s 

disease, Alzheimer’s disease, and multiple sclerosis.7,49 In 

addition, the authors firmly believe that MAN represents 

a promising material vehicle to selectively destroy cancer 

cells, including brain tumors, mainly because those cells 

overexpress a number of receptors to albumin.12,17 MAN 

can be loaded with different materials, with the purpose 

of either diagnosis or therapy,6,15 since albumin presents 

a number of reactive amino and carboxylic groups. The 

potential of MAN in tumor treatment using magneto-

hyperthermia or carrying sensitizers for photodynamic 

therapy has been recently shown by in vitro15,40 and in vivo6 

investigations.

Conclusion
It is concluded that the designed and investigated magnetic 

albumin nanosphere (MAN) represents a biocompatible and 

safe material. This affirmation is mainly based on the data 

presenting absolutely no cytotoxic and genotoxic effects, nor 

any morphological alterations while tested using an animal 

model. MAN induced some slight and transitory alterations 

in other nanotoxicity tests that do not interfere in its bio-

compatibility status. Actually, data revealed the importance 

of investigating nanomaterials for a longer time window 

because some biological responses may be reversed after a 

relatively long period of time, as observed in the viability 

tests. Finally, the presence of MNP clusters in the central 

nervous system evidences the high specificity of MAN in 

targeting the brain, suggesting its use as a new MDDS that 

is able to cross the BBB, with reduced neurotoxicity, and 

thus representing a promising material platform for therapy 

of brain-related diseases.
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